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We study Gaussian sample covariance matrices with population covariance a bounded-

rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive

perturbations. The top eigenvalues are known to exhibit a phase transition in the large

size limit: with weak perturbations they follow Tracy-Widom statistics as in the un-

perturbed case, while above a threshold there are outliers with independent Gaussian

fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex

case and conjectured a similar picture in the real case, the latter of most relevance to

high-dimensional data analysis.

Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit

near the phase transition. Our starting point is the work of Rámirez, Rider and Virág

(2006) on the general beta random matrix soft edge. For rank one perturbations, a

modified tridiagonal form converges to the known random Schrödinger operator on the

half-line but with a boundary condition that depends on the perturbation. For general

finite-rank perturbations we develop a new band form; it converges to a limiting operator

with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the

perturbation varies in a fixed subspace. Their laws are also characterized in terms of a

diffusion related to Dyson’s Brownian motion and in terms of a linear parabolic PDE.

We offer a related heuristic for the supercritical behaviour and rigorously treat the
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supercritical asymptotics of the ground state of the limiting operator.

In a further development, we use the PDE to make the first explicit connection be-

tween a general beta characterization and the celebrated Painlevé representations of

Tracy and Widom (1993, 1996). In particular, for β = 2, 4 we give novel proofs of the

latter.

Finally, we report briefly on evidence suggesting that the PDE provides a stable, even

efficient method for numerical evaluation of the Tracy-Widom distributions, their general

beta analogues and the deformations discussed and introduced here.

This thesis is based in part on work to be published jointly with Bálint Virág.
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Chapter 1

Introduction

This introductory chapter briefly reviews some background material, sketches the contri-

butions of the thesis and provides an outline of subsequent chapters. Precise definitions

and statements as well as many additional references will be found in the opening sections

of the chapters, especially Chapters 2 and 3.

1.1 Background

Random matrices

Random matrix theory is predominantly concerned with the asymptotic spectral proper-

ties of large matrices with random entries jointly distributed according to one of several

natural models. Most classical are the Gaussian orthogonal, unitary and symplectic en-

sembles (GO/U/SE), introduced to physics by Wigner and Dyson in the 1950s and 60s.

These distributions on real symmetric, complex Hermitian or quaternion self-dual matri-

ces have density proportional to e−
β
4
trA2

where β = 1, 2, 4 respectively; they are unique in

having the double virtue of invariance under the associated classical group of symmetries

as well as independence of the entries up to the algebraic constraints. They may also

be described by filling a matrix X with independent standard real/complex/quaternion

Gaussians and additively symmetrizing: A = 1√
2
(X + X†). General references include

Mehta (2004), Deift (1999), Anderson, Guionnet and Zeitouni (2009), Forrester (2010).

Already in the late 1920s, Wishart considered Gaussian sample covariance matrices.

Here one begins with a “data matrix” X of independent Gaussian columns and the

symmetrization is multiplicative: A = XX†. Wishart matrices continue to be of central

1



Chapter 1. Introduction 2

importance in multivariate statistics; see Muirhead (1982), Bai (1999), Anderson (2003).

There are several asymptotic regimes. At the global scale one may study the empirical

spectral distribution and find the famous Wigner semicircle and Marčenko-Pastur laws in

the Gaussian and Wishart cases respectively. The semicircle law states that, if λ1, . . . , λn

are the eigenvalues of an n× n GO/U/SE matrix, then with probability one there is the

weak convergence

1

n

n∑
i=1

δλi/
√
n → µ where

dµ

dx
=

√
4− x2
2π

1[−2,2](x).

This law holds for much more general self-adjoint matrices with independent entries,

known as Wigner matrices.

Wigner and Dyson were originally intersted in eigenvalue spacing in the bulk of the

spectrum as a model for the excitation spectra of heavy nuclei. The setting of this thesis

is the point process formed by the largest eigenvalues, also referred to as the “soft edge”

of the spectrum. The fundamental limit law for the n×n GO/U/SE is due to Tracy and

Widom (1993, 1994, 1996); for the largest eigenvalue λ1 it states that

Pn

(
n1/6

(
λ1 − 2

√
n
)
≤ x

)
→ Fβ(x),

again with β = 1, 2, 4 respectively, where Fβ are the celebrated Tracy-Widom distribu-

tions. There are striking explicit representations, for example

F2(x) = exp

(
−
∫ ∞
x

(s− x)u2(s) ds

)
(1.1)

where u is the so-called Hastings-McLeod solution of the Painlevé II equation, a “non-

linear special function” determined by

u′′ = 2u3 + xu,

u(x) ∼ Ai(x) as x→ +∞.
(1.2)

Universality is the recurring theme: one broadly expects the same local asymptotics

irrespective of the details of the model beyond the symmetry class β. There are now

large bodies of rigorous results in this direction for broad classes of random matrices

retaining either one of the two salient features of the Gaussian ensembles. We give just

two references, namely Deift (2007), Erdős and Yau (2011).

Most remarkable, however, is that the relevance of the local limit laws extends to

diverse parts of mathematics and physics. In the case of the Tracy-Widom laws the
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seminal result is that of Baik, Deift and Johansson (1999) on the longest increasing

subsequence of a random permutation, which was followed by work of Johansson (2000)

on a model of interface growth in two dimensions. These discoveries have since been

reinforced by a decade of intense mathematical activity (Tracy and Widom 2002, Deift

2007). In an exciting recent development, experimental results on interface fluctuations

using liquid crystals confirm Tracy-Widom statistics with astonishing accuracy (Takeuchi

and Sano 2010, Takeuchi, Sano, Sasamoto and Spohn 2011).

The spiked model and the BBP transition

Multivariate statistical analysis traditionally assumed a fixed sample dimensionality p and

a relatively large sample size n. Modern problems typically feature high dimensionality,

where p is on the same order as n or perhaps even larger; traditional techniques of

covariance estimation then break down and subtle new phenomena arise. In detail,

consider a p × n “data matrix” X with n independent Np(0,Σ) columns where the

p × p population covariance matrix Σ > 0; then form the p × p Wishart matrix XX†.

Eigenvalues of the sample covariance matrix 1
n
XX† no longer consistently estimate those

of Σ; even in the so-called null case Σ = I, if p ∼ cn with 0 < c < ∞ the sample

eigenvalues spread out over an interval as described by the Marčenko-Pastur law.

Johansson (2000) and Johnstone (2001) proved respectively GUE/GOE Tracy-Widom

fluctuations for the largest eigenvalues of complex/real null Wishart matrices when n, p

are both large. Johnstone pointed out the relevance to statistical analysis and called

for an understanding of the much more general non-null case. Motivated by prevalent

techniques like principal components analysis as well as observed behaviour in real data

sets, he proposed the following “spiked population model”: fix a finite “rank” r and let Σ

have r non-null population eigenvalues `1, . . . , `r (the spikes) with the rest set to 1. The

relevant question is the large n, p behaviour of the top sample covariance eigenvalues.

Baik, Ben Arous and Péché (2005) (BBP) gave a fairly complete analysis of the

complex spiked Wishart model and discovered a fascinating phase transition. If the `i

all remain some positive distance below 1 +
√
p/n then the largest sample eigenvalues

behave exactly as in the null case, developing GUE Tracy-Widom fluctuations about the

right endpoint of Marčenko-Pastur. The statistical relevance is clear: in this “subcritical

regime” one cannot hope to observe the “signal” amidst the high-dimensional “noise”. If

several `i exceed 1 +
√
p/n, the same number of sample eigenvalues will separate from
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the rest and develop larger Gaussian fluctuations around their outlying limits; this is the

“supercritical regime”. The transition itself occurs on the scale `i−(1+
√
p/n) ∼ cn−1/3,

and in this “critical regime” one finds subcritical-like behaviour but with new fluctuation

laws: multi-parameter families of distributions that deform F2.

This phenomenon is now often referred to as the BBP transition and has been widely

cited. Applications include population genetics, economics and statistical learning (John-

stone 2007, Paul 2007), but these generally involve real-valued data. BBP conjectured a

similar transition for real spiked Wishart matrices: all the same scalings, but now with

F1 subcritical fluctuations (and presumably some deformations in the critical regime).

Their techniques, however, do not go over to the real case. They begin with the joint

eigenvalue density, making essential use of the Harish-Chandra-Itzykson-Zuber formula

to integrate out over the unitary group and arrive at a determinantal form for the largest

eigenvalue distribution that can be analyzed.

A partial description in the real case was obtained by various other methods: Baik

and Silverstein (2006) found the anticipated behaviour on the level of a.s. limits (gen-

eralized by Benaych-Georges and Nadakuditi 2009 in work related to free probability),

Paul (2007), Bai and Yao (2008) confirmed supercritical Gaussian fluctuations, and Féral

and Péché (2009) proved F1 limits when the spikes are well-separated from the critical

point from below. The two latter works also show that the phase transition is universal

in the sense that one finds precisely the same behaviour for a large class of non-Gaussian

sample covariance matrices.

Analogous results for finite-rank additive perturbations of the GUE were found by

Péché (2006). One finds exactly the same transition in the additive setting, which is

strong evidence for universality of the effect of finite-rank perturbations on the random

matrix soft edge. Once again, the real (GOE) case has proved elusive.

This story will be continued in Section 1.2.

Beta ensembles and the stochastic operator approach

The joint eigenvalue density of the n× n GO/U/SE is

Z−1n,β
∏
i

e−βλ
2
i /4
∏
i<j

|λj − λi|β , (1.3)

again with β = 1, 2, 4 respectively. One may view (1.3) as the Boltzmann factor for a so-

called log gas at inverse temperature β, whereupon it becomes natural to consider general
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β > 0. (An analogous remark holds in the null Wishart setting; the Vandermonde factor

persists and only the weight in the background product measure is different.) Forrester

(2010) gives a comprehensive account of this point of view. Though one expects many

local asymptotics of random matrix eigenvalues to extend to general “β-ensembles”, the

standard techniques involving orthogonal polynomials are unavailable as they rely heavily

on the symmetry underlying the matrix models.

Recent progress began when Dumitriu and Edelman (2002) introduced a family of

symmetric tridiagonal (Jacobi) matrix models with (1.3) as eigenvalue density for arbi-

trary β:

1√
β



g χ(n−1)β

χ(n−1)β g χ(n−2)β

χ(n−2)β g
. . .

. . . . . . χβ

χβ g


(1.4)

where the entries are independent random variables up to symmetry, g ∼ Normal(0, 2)

and χk ∼ Chi(k). Once again there is a similar story in the null Wishart case. Trotter

(1984) already used tridiagonal forms of the Gaussian and null Wishart ensembles to

give novel derivations of the Wigner semicircle and Marčenko-Pastur laws; Dimitriu and

Edelman observed the similarity of the forms for β = 1, 2, 4, postulated interpolating

matrix ensembles and proved their eigenvalue densities were as expected. An extension

to more general weights will appear in Krishnapur, Rider and Virág (2011+).

Edelman and Sutton (2007) recognized that these random tridiagonal matrices offer

a new route to asymptotic phenomena (see also Sutton 2005). They viewed the matrices

as discrete random Schrödinger operators and conjectured limiting continuum random

Schrödinger operators in the various spectral scaling regimes (bulk, soft edge, hard edge).

Their promising heuristic arguments were first made rigorous in the soft edge case by

Ramı́rez, Rider and Virág (2011) (RRV). The hard edge was treated by Ramı́rez and

Rider (2009), and the bulk by Valkó and Virág (2009), Killip and Stoiciu (2009).

At the soft edge, the limiting object is a random Schrödinger operator on L2(R+)

called the stochastic Airy operator. It is

− d2

dx2
+ x+ 2√

β
b′x (1.5)

where b′x is standard Gaussian white noise, and comes with Dirichlet boundary condition

at the origin. RRV made sense of this operator and showed it is almost surely bounded
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below with purely discrete spectrum. More significantly, they proved that the largest

eigenvalues of (1.4) converge, jointly in distribution, to the low-lying eigenvalues of this

operator. (The corresponding eigenvectors also converge when suitably embedded as

functions.) In particular, the ground state defines Tracy-Widom distribution Fβ for arbi-

trary β > 0. The authors further characterized Fβ in terms of the explosion probability

of a certain diffusion.

Broadly speaking, the general β perspective allows for an important distinction:

Which facts truly depend on the classical symmetries, and which persist when only

the physical character of the eigenvalue repulsion is retained? Many important phe-

nomena seem to fall under the second class; evidence includes the recent general β bulk

universality results of Bourgade, Erdős and Yau (2011).

1.2 Contributions and outline

Limits of spiked random matrices

In Chapters 2 and 3 we generalize the results and methods of RRV to develop a com-

prehensive picture of the BBP transition up to and including the critical regime. Real,

complex and quaternion spiked Wishart matices and additively perturbed Gaussian ma-

trices are treated simultaneously in a unified framework. While any description of a limit

in the critical regime is new at β = 1, our results are in some ways more complete even

at β = 2. For one thing, we allow considerably more general scaling assumptions on

the parameters; in particular, the Wishart dimensions n, p are allowed to tend to infinity

together arbitrarily. Furthermore, we view the perturbation as a parameter and describe

a joint limit as the same data are spiked differently.

Chapter 2 treats rank one perturbations. The starting point is the observation that

the perturbation commutes with the tridiagonalization in both the Gaussian and the

Wishart cases. The resulting “spiked” tridiagonal models make sense for general β.

Generalizing the method of RRV, we prove joint convergence of the top eigenvaues and

eigenvectors to the low-lying states of the stochastic Airy operator (1.5) but with a

boundary condition that now depends on the perturbation. In the subcritical cases we

have the usual Dirichlet condition f(0) = 0; in the critical window, however, we have the

general homogeneous linear condition f ′(0) = wf(0) where w ∈ R is a scaling parameter

for the spike.
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The distribution of the ground state forms a one-parameter family of deformations

Fβ(x,w) of Tracy-Widom(β) with the latter recovered at w = +∞. We proceed to

characterize this family in terms of the diffusion introduced in RRV, and give a related

characterization in terms of a simple parabolic linear PDE:

∂F

∂x
+

2

β

∂2F

∂w2
+
(
x− w2

)∂F
∂w

= 0 for (x,w) ∈ R2, (1.6)

F (x,w)→ 1 as x,w →∞ together,

F (x,w)→ 0 as w → −∞ with x ≤ x0 <∞.

This boundary value problem is the starting point for Chapters 5 and 6.

In Appendix A, we recast the stochastic Airy eigenvalue problem as a classical Sturm-

Liouville problem. This perspective is different from the one taken in RRV and allows

for a simpler derivation of the required oscillation theory and spectral theory.

We note that Chapter 2 represents joint work with Bálint Virág that appeared first as

Bloemendal and Virág (2010). Since that article was posted, Mo (2011) gave a completely

different treatment of the real rank one case. Despite the difficulties mentioned, he

succeeds with the standard program of obtaining forms for the joint eigenvalue and

largest eigenvalue distributions and doing asymptotic analysis on the latter. Forrester

(2011) makes some remarks on the two treatments.

Chapter 3 treats the general case of r spikes, i.e. rank r spiked Wishart matrices and

additively perturbed Gaussian ensembles. Here we begin by introducing a new (2r + 1)-

diagonal form capable of handling a rank r perturbation. The change of basis is in fact

uniquely determined by fixing the subspace for the spikes; fortunately, it interacts well

with the Gaussian structure of the Gaussian and Wishart models much like in the r = 1

case.

Viewing this band form as an r×r block tridiagonal matrix, we then develop a matrix-

valued analogue of the RRV technology. We obtain a limiting Schrödinger operator with

matrix-valued potential, in which the Brownian motion in (1.5) is replaced with a stan-

dard matrix Brownian motion. We consider spikes that may be subcritical or critical and

obtain a general homogeneous linear boundary condition for the vector-valued eigenfunc-

tions. The real, complex and quaternion cases are treated simultaneously; interestingly,

however, there is no obvious general β analogue when r > 1.

Passage to diffusion and PDE characterizations of the laws involves an additional

twist. Matrix Sturm oscillation theory (a topic initiated by Morse 1932) and Dyson’s
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Brownian (the dynamical version of (1.3) obtained by observing the eigenvalues of a

matrix Brownian motion, see Dyson 1962) both play a role.

A note regarding the technical sections of Chapters 2 and 3 that generalize their

counterparts in RRV: While certain parts of the RRV argument are recapitulated in

Chapter 2, the development is significantly streamlined to use the quadratic form and

variational characterization more efficiently. In a few places, we simply refer to corre-

sponding arguments in RRV. Chapter 3 significantly generalizes the entire development,

however, and here the proofs are fully self-contained.

Supercritical asymptotics and heuristics

Chapter 4 presents a new heuristic for understanding the supercritical regime of the BBP

transition in the operator limit framework. The heuristic is justified by rigorously proving

asymptotics for the ground state and ground state energy of the stochastic Airy operator

as the parameter in the boundary condition tends to the supercritical limit. It is further

illustrated by computing the largest eigenvalue separation for rank one supercritically

spiked Wishart matrices and heuristically computing the Gaussian fluctuations. The

heuristic also suggests a new description of supercritical eigenvector concentration in the

tridiagonal basis.

A connection with Painlevé II

In Chapter 5 we use the PDE characterization (1.6) to give an independent rigorous

proof of a formula of Baik (2006) for F2(x;w) given in terms of the Hastings McLeod

solution of Painlevé II (1.2) and the associated Lax pair equations. More precisely, we

show directly—at the level of the limiting objects—that Baik’s formula satisfies the PDE

and the boundary conditions. As a corollary, we establish the Tracy-Widom representa-

tion (1.1) in a rigorous and completely novel way. A similar result holds at β = 4.

This connection between a general β characterization of a random matrix limit law

and a known explicit representation at classical β is the first and so far the only one

of its kind. In joint work with Alexander Its, the connection is extended to include

the Ablowitz-Segur family of solutions of Painlevé II. Finally, we report on a symbolic

computation giving very strong evidence that the formulas of Baik (2006) for the higher-

rank deformations can be similarly related to the “multispiked” PDE of Chapter 3. On

the whole, the connection remains somewhat mysterious.
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Numerics

Chapter 6 is a brief and informal report on attempts at solving the boundary value

problem (1.6) numerically. The goal is a new, general β method of evaluating the Tracy-

Widom(β) laws and the deformations Fβ(x,w) described above. Evidence is very promis-

ing: using an off-the-shelf Mathematica package we can compute an entire table of values

for a given β in roughly 10 seconds on a laptop, and for β = 1, 2 these values were found

to agree with published results to 7–8 digits. At the time of writing, development of the

method is underway with Brian Sutton.

1.3 Concluding remarks

The contributions of this thesis may be summarized as follows. We develop a comprehen-

sive description of the BBP transition, handling the real, complex and quaternion cases

together and extending the existing picture even in the well-studied complex case; to do

so, we significantly generalize the methods of RRV; we offer and justify a new heuristic

for the supercritical behaviour; we use a PDE characterization of the limit laws to make

the first connection between a general β characterization and known Painlevé structure

at classical β; and based on the PDE we present a promising new general β method of

evaluating the distributions numerically.

The stochastic operator approach stands in sharp contrast to the usual routes to

asymptotic results about statistics of a solvable model or matrix ensemble. Typically

one first works to obtain useable “finite-n” formulas for distributions of the statistics;

one then proceeds with an asymptotic analysis. Although this method has been very

successful in random matrix theory, it tends to be highly dependent on symmetry and

integrable structure: when the symmetry class changes, the first step must be completely

redone (if it can be done at all), even though the model is similar and the scalings are

the same. The difficulty is well-illustrated by the spiked model: in spite of the success of

BBP at β = 2, carrying out the program was not at all straightforward at β = 1, 4 even

in the rank one case (Wang 2008, Mo 2011).

The point of view taken here is more probabilistic, essentially what Aldous and Steele

(2004) called the “objective method”. One begins with a form of the model that has a

scaling limit object in some sense; heuristically, one “reads off” the asymptotic behaviour

of the desired statistics from this object; the task is then to give a rigorous proof.



Chapter 2

One spike

2.1 Introduction

The study of sample covariance matrices is the oldest random matrix theory, predating

Wigner’s introduction of the Gaussian ensembles into physics by nearly three decades.

Given a sample X1, . . . , Xn ∈ Rp drawn from a large, centred population, form the p× n
data matrix X = [X1 . . . Xn]; the p × p matrix S = XX† plays a central role in multi-

variate statistical analysis (Muirhead 1982, Bai 1999, Anderson 2003). The distribution

in the i.i.d. Gaussian case is named after Wishart who computed the density in 1928.

The classical story is that of the consistency of the sample covariance matrix 1
n
S as

an estimator of the population covariance matrix Σ = EXiX
†
i when the dimension

p is fixed and the sample size n becomes large. The law of large numbers already gives
1
n
S → Σ. In this fixed dimensional setting, the eigenvalues λ1 ≥ · · · ≥ λp of S produce

consistent estimators of the eigenvalues `1 ≥ · · · ≥ `p of Σ: for example, the sample

eigenvalue 1
n
λk tends almost surely to the population eigenvalue `k as n → ∞,

with Gaussian fluctuations on the order n−1/2 (Anderson 1963). The same holds in the

complex case Xi ∈ Cp.

Contemporary problems typically involve high dimensional data, meaning that p

is large as well—perhaps on the same order as n or even larger. In this setting, say

with null covariance Σ = I, the sample eigenvalues may no longer concentrate around

the population eigenvalue 1 but rather spread out over a certain compact interval. If

p/n → c with 0 < c ≤ 1, Marčenko and Pastur (1967) proved that a.s. the empirical

spectral distribution 1
p

∑
k δλk/n converges weakly to the continuous distribution with

10
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density √
(b− x)(x− a)

2πcx
1[a,b](x)

where a = (1−
√
c)2 and b = (1+

√
c)2. (The singular case c > 1 is similar by the obvious

duality between n and p, except that the p− n zero eigenvalues become an atom at zero

of mass 1−c−1.) This Marčenko-Pastur law is the analogue of Wigner’s semicircle law

in this setting of multiplicative rather than additive symmetrization (see also Silverstein

and Bai 1995). The assumption of Gaussian entries may be significantly relaxed.

Often one is primarily interested in the largest eigenvalues, as for example in the

widely practiced statistical method of principal components analysis. Here the goal is

a good low-dimensional projection of a high-dimensional data set, i.e. one that captures

most of the variance; the structure of the significant trends and correlations is estimated

using the largest sample eigenvalues and their eigenvectors. The challenge is to de-

termine which observed eigenvalues actually represent structure in the population, and

understanding the behaviour in the null case is therefore an essential first step.

In the null case the first-order behaviour is simple: 1
n
λk → b a.s. for each fixed k as

n → ∞, i.e. none have limits beyond the edge of the support of the limiting spectral

distribution (Geman 1980, Yin, Bai and Krishnaiah 1988). More interestingly, the fluc-

tuations are no longer asymptotically Gaussian but are rather those now recognized as

universal at a real symmetric or Hermitian random matrix soft edge: they are on

the order n−2/3, asymptotically distributed according to the appropriate Tracy-Widom

law. The latter were introduced by Tracy and Widom (1994, 1996) as limiting largest

eigenvalue distributions for the Gaussian ensembles (see also Forrester 1993) and have

since been found to occur in diverse probabilistic models. The limit theorems for sample

covariance matrices were proved by Johansson (2000) in the complex case and by John-

stone (2001) in the real case (see Soshnikov 2002 for the first universality results here).

Restrictions c 6= 0,∞ on the limiting dimensional ratio were removed by El Karoui (2003)

(see also Péché 2009).

Motivated by principal components analysis, it is natural to study the behaviour of

the largest sample eigenvalues when the population covariance is not null but rather has

a few trends or correlations. Johnstone (2001) proposed the spiked population model

in which all but a fixed finite number of population eigenvalues (the spikes) are taken

to be 1 as n, p become large. Baik, Ben Arous and Péché (2005) (BBP) analyzed the

spiked complex Wishart model and discovered a very interesting phenomenon: a phase
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transition in the asymptotic behaviour of the largest sample eigenvalue as a function of

the spikes. We restrict attention to the case of a single spike in the present chapter,

setting `1 = `, `2 = `3 = · · · = 1.

In this rank one perturbed case, BBP describe three distinct regimes. Assume

that p/n = γ2 is compactly contained in (0, 1]. If `n,p is in compactly contained in

(0, 1 +γ) then the behaviour of the top eigenvalue is exactly the same as in the null case:

P
(

γ−1

(1+γ−1)4/3
n2/3

(
1
n
λ1 − (1 + γ)2

)
≤ x

)
→ F2(x),

where F2 is the Tracy-Widom law for the top GUE eigenvalue. This is the subcritical

regime. If `n,p is compactly contained in (1 + γ,∞) then the top eigenvalue separates

from the bulk and has Gaussian fluctuations on the order n−1/2:

P

((
`2 − γ2 `2

(`−1)2

)−1/2
n1/2

(
1
n
λ1 −

(
`+ γ2 `

(`−1)

))
≤ x

)
→ 1√

2π

∫ x

−∞
e−t

2/2 dt.

This is the supercritical regime. Finally there is a one-parameter family of critical

scalings in which `n,p− (1+γ) is on the order n−1/3; these double scaling limits are tuned

so that the fluctuations—which are on the order n−2/3 as in the subcritical case—are

asymptotically given by a certain one-parameter family of deformations of F2. We refer

the reader to the original work for details. Subsequent work includes a treatment of the

singular case p > n along the same lines (Onatski 2008), deeper investigations into the

limiting kernels (Desrosiers and Forrester 2006), and generalizations beyond the spiked

model (El Karoui 2007) and away from Gaussianity (Bai and Yao 2008, Féral and Péché

2009). BBP conjectured a similar phase transition for spiked real Wishart matrices, in

the sense that all scalings should be the same but the limiting distributions would be

different.

Now often referred to as the BBP transition, this picture is relevant in various ap-

plications. Within mathematics it has been applied to the TASEP model of interacting

particles on the line (Ben Arous and Corwin 2011). Spiked complex Wishart matrices

occur in problems in wireless communications (Telatar 1999). With these two exceptions,

however, most applications involve data that are real rather than complex. They include

economics and finance—Harding (2008) used the phase transition to explain an old stan-

dard example of the failure of PCA—and medical and population genetics—Patterson,

Price and Reich (2006) discuss its role in attempting to answer such questions as “Given

genotype data, is it from a homogeneous population?” Further applications include

speech recognition, statistical learning and the physics of mixtures (see Johnstone 2007,



Chapter 2. One spike 13

Paul 2007, Féral and Péché 2009 for references). In general, asymptotic distributions in

the non-null cases are relevant when evaluating the power of a statistical test (Johnstone

2007).

Despite these developments, the conjectured BBP picture for spiked real Wishart

matrices has proven elusive even in the rank one case. The difficulty is with the joint

eigenvalue density: The complex case involves an integral over the unitary group that

BBP analyzed via the Harish-Chandra-Itzykson-Zuber integral, a tool originating in rep-

resentation theory that appears to have no straightforward analogue over the orthogonal

group. Much is known, however. At the level of a law of large numbers, the phase tran-

sition is described by Baik and Silverstein (2006); a related separation phenomenon was

observed already by Bai and Silverstein (1998, 1999). A broad generalization of the re-

sults on a.s. limits is developed by Benaych-Georges and Nadakuditi (2009) and dubbed

“spiked free probability theory”. Paul (2007), Bai and Yao (2008) prove Gaussian central

limit theorems in the supercritical regime. Féral and Péché (2009) prove Tracy-Widom

fluctuations in the subcritical regime under the scaling assumptions of BBP. Interest-

ingly, Wang (2008) obtained a critical limiting distribution for certain rank one spiked

quaternion Wishart matrices.

It remains to obtain the asymptotic behaviour in the critically spiked regime around

the phase transition in the real case. We do so here, establishing the existence of limiting

distributions under the scalings conjectured by BBP and characterizing the laws. Our

results apply also to the complex case, and they are more general than the corresponding

statements from BBP. We do not restrict the scaling of n, p beyond requiring that they

tend to infinity together, nor that of ` beyond what is strictly necessary for the existence of

a limiting distribution in the subcritical or critical regimes. We therefore allow for certain

relevant possibilities that were previously excluded, namely p � n and p � n. The

picture of the dependence on the spike is also more complete: we include all intermediate

scalings of ` with n, p across the subcritical and critical regimes. Separately, we describe

a joint convergence in law when the same underlying data is spiked with different `.

Since the work represented in this chapter was first posted (Bloemendal and Virág

2010), Mo (2011) gave a different treatment of the real rank one case. Despite the

difficulties mentioned, he succeeds with the standard program of obtaining forms for the

joint eigenvalue and largest eigenvalue distributions and doing asymptotic analysis on

the latter. His description of the limiting distribution naturally looks very different from

ours. See Forrester (2011) for some remarks on the two treatments and an alternative
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construction of the “general β” model we now introduce.

We bypass the eigenvalue density altogether; our starting point is rather a reduc-

tion of the matrix to tridiagonal form via Householder’s algorithm, a well-known tool

in numerical analysis. Trotter (1984) observed that the algorithm interacts nicely with

the Gaussian structure, using the resulting forms to derive the Wigner semicircle and

Marčenko-Pastur laws without going through their moments. Observing the similarity of

the forms in the β = 1, 2, 4 cases, Dumitriu and Edelman (2002) introduced interpolating

matrix ensembles for all β > 0 whose eigenvalue density is given by Dyson’s Coulomb

or log gas model

1

Z

∏
j<k

|λj − λk|β
∏
j

v(λj)
β/2 (2.1)

where v is the Hermite or the Laguerre weight and Z is a normalizing factor (see Forrester

2010 for more on such models). Incidentally, Trotter’s argument applies to these general

β analogues and establishes Wigner semicircle and Marčenko-Pastur laws in this setting.

An extension to more general weights is part of a forthcoming work of Krishnapur, Rider

and Virág (2011+).

The second step is to consider the tridiagonal ensemble as a discrete random

Schrödinger operator (i.e. discrete Laplacian plus random potential) and then take a

scaling limit at the soft edge to obtain a certain continuum random Schrödinger op-

erator on the half-line. This “stochastic operator approach to random matrix theory”

was pioneered by Edelman and Sutton (2007), Sutton (2005); in the soft edge case their

heuristics were proved by Ramı́rez, Rider and Virág (2011), who in particular established

joint convergence of the largest eigenvalues. Our method is directly based on the latter

work and we refer to it throughout by the initials RRV. The key point is that both steps

can be adapted to the setting of rank one perturbations. As we will see, the limiting

operator feels the perturbation in the boundary condition at the origin.

In detail, let X be a p×n sample matrix whose columns are independent real N(0,Σ)

with Σ = diag
(
`, 1, . . . , 1) for some ` > 0; we shall say S = XX† has the `-spiked

p-variate real Wishart distribution with n degrees of freedom. (There is no loss

of generality in taking Σ diagonal in the Gaussian case.) We also consider the complex

and quaternion cases. The tridiagonalization is carried out in detail in Section 2.3. The

result is a symmetric tridiagonal (n ∧ p) × (n ∧ p) matrix W †W , where W is a certain
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bidiagonal matrix with the same nonzero singular values as X. Explicitly, W is given by

W β,`
n,p =

1√
β



√
` χ̃βn

χβ(p−1) χ̃β(n−1)

χβ(p−2) χ̃β(n−2)
. . . . . .

χβ(p−(n∧p)+1) χ̃β(n−(n∧p)+1)

χβ(p−(n∧p))


(2.2)

where β = 1, 2, 4 in the real, complex and quaternion cases respectively and the χ, χ̃’s

are mutually independent chi distributed random variables with parameters given by

their indices. In fact (2.2) makes sense for any β > 0, and the resulting ensemble W †W

is a “spiked version” of the β-Laguerre ensemble of Dumitriu and Edelman (2002); we

call it the `-spiked β-Laguerre ensemble with parameters n, p. Such a matrix

almost surely has exactly n ∧ p distinct nonzero eigenvalues by the theory of Jacobi

matrices. In the null case ` = 1, their joint density is (2.1) with the Laguerre weight

v(x) = x|n−p|+1−2/βe−x1x>0. We note that there is an obvious coupling of (2.2) over all

` > 0; in the spiked Wishart cases it corresponds to the natural coupling obtained by

considering X as a matrix of standard Gaussians left multiplied by
√

Σ.

In order to state our results, we now recall the stochastic Airy operator introduced

by Edelman and Sutton (2007). Formally this is the random Schrödinger operator

Hβ = − d2

dx2
+ x+ 2√

β
b′x

acting on L2(R+) where b′x is standard Gaussian white noise. RRV defined this operator

rigorously and considered the eigenvalue problem Hβf = Λf with Dirichlet boundary

condition f(0) = 0. We will consider a general homogeneous boundary condition f ′(0) =

wf(0), a Neumann or Robin condition for w ∈ (−∞,∞) with the limiting Dirichlet case

naturally corresponding to w = +∞. Precise definitions will be given in Section 2.2 in

a more general setting; for now, we write Hβ,w to indicate the stochastic Airy operator

together with this boundary condition.

We will see that, almost surely, Hβ,w is bounded below with purely discrete, simple

spectrum {Λ0 < Λ1 < · · · } for all w ∈ (−∞,∞]. This fact will be established simulta-

neously with the standard variational characterization: in Proposition 2.2.9, we show in

particular that Λk and the corresponding eigenfunction fk are given recursively by

Λk = inf
f∈L2, ‖f‖=1,
f⊥f0,...fk−1

∫ ∞
0

(
f ′(x)

2
+ xf 2(x)

)
dx+ wf(0)2 + 2√

β

∫ ∞
0

f 2(x) dbx (2.3)
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in which we consider only candidates f for which the first integral is finite, and the

stochastic integral is defined pathwise via integration by parts. Recall from RRV that

the distribution Fβ,∞ of −Λ0 in the Dirichlet case w = +∞ may be taken as a definition

of Tracy-Widom(β) for general β > 0, a one-parameter family of distributions interpo-

lating between those at the standard values β = 1, 2, 4. Fixing β, the distributions Fβ,w

for finite w may be thought of as a family of deformations of Tracy-Widom(β). We note

that the pathwise dependence of Hβ,w on the Brownian motion allows the operators to

be coupled over w in a natural way.

Our first result gives a convergence in distribution at the soft edge of the `-spiked

β-Laguerre spectrum over the full range of subcritical and critical scalings. Note the

absence of extraneous hypotheses on n, p and `n,p.

Theorem 2.1.1. Let `n,p > 0. Let S = Sn,p have the real (resp. complex, quaternion)

`n,p-spiked p-variate Wishart distribution with n degrees of freedom and set β = 1 (resp. 2,

4), or, let β > 0 and take Sn,p from the `n,p-spiked β-Laguerre ensemble with parameters

n, p. Writing mn,p =
(
n−1/2 + p−1/2

)−2/3
, suppose that

mn,p

(
1−

√
n/p
(
`n,p − 1

))
→ w ∈ (−∞,∞] as n ∧ p→∞. (2.4)

Let λ1 > · · · > λn∧p be the nonzero eigenvalues of S. Then, jointly for k = 1, 2, . . . in the

sense of finite-dimensional distributions, we have

m2
n,p√
np

(
λk −

(√
n+
√
p
)2) ⇒ −Λk−1 as n ∧ p→∞

where Λ0 < Λ1 < · · · are the eigenvalues of Hβ,w. Furthermore, the convergence holds

jointly with respect to the natural couplings over all {`n,p}, w satisfying (2.4).

Remark 2.1.2. In the tridiagonal basis, the convergence holds also at the level of the

corresponding eigenvectors. If the eigenvector corresponding to λk is embedded in L2(R+)

as a step-function with step width m−1n,p and support [0, (n ∧ p)/mn,p], then it converges

to fk−1 in distribution with respect to the L2 norm; the details are the subject of the next

section. In particular, distributional convergence of the rescaled tridiagonal operators to

Hβ,w holds in the norm resolvent sense (see e.g. Weidmann 1997). Defining Hβ,w as a

closed operator on the appropriate (random) dense subspace of L2 requires some care,

however (see e.g. Savchuk and Shkalikov 1999) and we shall not pursue it here.
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Remark 2.1.3. The supercritical regime w = −∞ sees a macroscopic separation of the

largest eigenvalue from the bulk of the spectrum; the fluctuations of λ1 are on a larger

order and they are asymptotically Gaussian, independent of the rest. See Chapter 4 for

a partial treatment in the stochastic Airy framework. Though this regime is understood

for both real and complex spiked sample covariance matrices (BBP, Paul 2007, Bai and

Yao 2008), existing results do not cover intermediate “vanishingly supercritical” scalings

of ` with n, p and thus leave a certain gap between the critical and supercritical regimes.

Remark 2.1.4. Work of Féral and Péché (2009) on the universality of real and complex

BBP immediately allows extension of the previous theorem in the real and complex spiked

Wishart cases to more general spiked sample covariance matrices. More precisely, the

i.i.d. multivariate Gaussian columns of the data matrix X may be replaced with i.i.d.

columns having zero mean and rank one spiked diagonal covariance, and satisfying some

moment conditions. These authors make the same assumptions on the dimension ratio

as BBP, but the null case universality result of Péché (2009) suggest these could be

removed.

We prove Theorem 2.1.1 by establishing a more general technical result, Theo-

rem 2.2.11 in Section 2.2. The latter theorem gives conditions under which the low-lying

eigenvalues and corresponding eigenvectors of a large random symmetric tridiagonal ma-

trix converge in law to those of a random Schrödinger operator on the half-line with a

given potential and homogeneous boundary condition at the origin. Verifying the hy-

potheses for suitably scaled spiked Laguerre matrices will be relatively straightforward;

we do it in Section 2.3. The approach follows that of RRV, where the null case of

Theorem 2.1.1 is treated.

One advantage of such an approach is that it immediately yields results for other

matrix models as well. In particular, finite-rank additive perturbations of Gaussian

orthogonal, unitary and symplectic ensembles (GO/U/SE) have received con-

siderable attention. The analogue of the BBP result in the perturbed GUE setting

was established by Péché (2006), Desrosiers and Forrester (2006). Bassler, Forrester

and Frankel (2010) treat an interesting generalization and mention some applications to

physics. We consider a simple additive rank one perturbation of the GOE obtained by

shifting the mean of every entry by the same constant µ/
√
n. By orthogonal invariance,

this has the same effect on the spectrum as shifting the (1,1) entry by
√
nµ. With

this perturbation, the usual tridiagonalization procedure works; the resulting form is the
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β = 1 case of

Gβ,µ
n =

1√
β



√
2 g1 +

√
βnµ χβ(n−1)

χβ(n−1)
√

2 g2 χβ(n−2)

χβ(n−2)
√

2 g3
. . .

. . . . . . χβ

χβ
√

2 gn


, (2.5)

where the g’s are independent standard Gaussians and the χ’s are independent Chi

random variables indexed by their parameter as before. The analogous procedure for a

shifted mean GUE (resp. GSE) yields (2.5) with β = 2 (resp. 4). This matrix ensemble

is a perturbed version of the β-Hermite ensemble of Dumitriu and Edelman (2002).

In the unperturbed case µ = 0, the joint eigenvalue density is (2.1) with the Hermite

weight v(x) = e−x
2/2. Again, the models are naturally coupled over all µ ∈ R.

As in the spiked real Wishart setting, the critical regime for the rank one perturbed

GOE has resisted description. We show that the phase transition in the perturbed

Hermite ensemble has the same characterization as the one in the Laguerre ensemble.

Theorem 2.1.5. Let µn ∈ R. Let G = Gn be a (µn/
√
n)-shifted mean n×n GOE (resp.

GUE, GSE) matrix and set β = 1 (resp. 2, 4), or, let β > 0 and take Gn = Gβ,µn
n as in

(2.5). Suppose that

n1/3 (1− µn) → w ∈ (−∞,∞] as n→∞. (2.6)

Let λ1 > · · · > λn be the eigenvalues of G. Then, jointly for k = 0, 1, . . . in the sense of

finite-dimensional distributions, we have

n1/6
(
λk − 2

√
n
)
⇒ −Λk−1 as n→∞

where Λ0 < Λ1 < · · · are the eigenvalues of Hβ,w. Furthermore, the convergence holds

jointly with respect to the natural couplings over all {µn}, w satisfying (2.6).

Remark 2.1.6. The remarks following the previous theorem apply also to this theorem;

the universality issue is discussed in Féral and Péché (2007).

The limit of a rank one perturbed general β soft edge thus seems to be universal, just

as at β = 2. We offer two alternative descriptions.

Theorem 2.1.7. Fix β > 0 and let Λ0 be the ground state energy of Hβ,w where w ∈
(−∞,∞]. The distribution Fβ,w(x) = Pβ,w(−Λ0 ≤ x) has the following alternative

characterizations.
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(i) (RRV) Consider the stochastic differential equation

dpx = 2√
β
dbx +

(
x− p2x

)
dx (2.7)

and let P(x0,w) be the Itō diffusion measure on paths {px}x≥x0 started from px0 = w.

A path almost surely either explodes to −∞ in finite time or grows like px ∼
√
x as

x→∞, and we have

Fβ,w(x) = P(x,w)

(
p does not explode

)
. (2.8)

(ii) The boundary value problem

∂F

∂x
+

2

β

∂2F

∂w2
+
(
x− w2

)∂F
∂w

= 0 for (x,w) ∈ R2, (2.9)

F (x,w)→ 1 as x,w →∞ together,

F (x,w)→ 0 as w → −∞ with x bounded above
(2.10)

has a unique bounded solution, and we have Fβ,w(x) = F (x,w) for w ∈ (−∞,∞).

We recover the Tracy-Widom(β) distribution Fβ,∞(x) = limw→∞ F (x,w).

Remark 2.1.8. These characterizations can be extended to the higher eigenvalues; details

appear in Section 2.4.

In RRV the diffusion characterization is derived with classical tools, namely the Ric-

cati transformation and Sturm oscillation theory. We review the relevant facts in Sec-

tion 2.4 before proceeding to the boundary value problem. For a more classical and fully

rigorous approach, see Appendix A.

While the PDE characterization amounts to a fairly straightforward reformulation of

the diffusion characterization, the former is appealing in that it involves no stochastic

objects. It also turns out to offer a promising way to evaluate the distributions numeri-

cally; see Chapter 6. Most interestingly, however, in Chapter 5 we show how it provides

a sought-after connection with known integrable structure at classical β.

Separately, we remark that Adler, Delépine and van Moerbeke (2009) derive a com-

pletely different, third-order nonlinear PDE for what appears to be the same quantity

F2(x;w) in a different context. It remains to reconcile their PDE with ours.

2.2 Limits of spiked tridiagonal matrices

In this section we strengthen the argument of RRV to apply in the rank one spiked cases.

The main convergence result will be applied in the next section to the tridiagonal forms
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described in the introduction.

Theorem 2.2.11 below generalizes Theorem 5.1 of RRV in a natural way, giving condi-

tions under which the low-lying eigenvalues and corresponding eigenvectors of a random

symmetric tridiagonal matrix converge in law to those of a random Schrödinger opera-

tor on the half-line with a given potential and homogeneous boundary condition at the

origin. We include substantial parts of the original argument both for completeness and

to highlight the new material; see Anderson, Guionnet and Zeitouni (2009) for another

presentation of the original argument in a special case.

Matrix model and embedding

Underlying the convergence is the embedding of the discrete half-line Z+ = {0, 1, . . .}
into R+ = [0,∞) via j 7→ j/mn, where the scale factors mn → ∞ but with mn = o(n).

Define an associated embedding of function spaces by step functions:

`2n(Z+) ↪→ L2(R+), (v0, v1, . . .) 7→ v(x) = vbmnxc,

which is isometric with `2n-norm ‖v‖2 = m−1n
∑∞

j=0 v
2
j . Identify Rn with the initial coor-

dinate subspace {v ∈ `2n : vj = 0, j ≥ n}. We will generally not refer to the embedding

explicitly.

We define some operators on L2, all of which leave `2n invariant. The translation

operator (Tnf)(x) = f(x+m−1n ) extends the left shift on `2n. The difference quotient Dn =

mn(Tn−1) extends a discrete derivative. Write En = diag(mn, 0, 0, . . .) for multiplication

by mn1[0,m−1
n ), a “discrete delta function at the origin”, and Rn = diag(1, . . . , 1, 0, 0, . . .)

for multiplication by 1[0,n/mn), which extends orthogonal projection `2n → Rn.

Let (yn,i;j)j=0,...,n, i = 1, 2 be two discrete-time real-valued random processes with

yn,i;0 = 0, and let wn be a real-valued random variable. Embed the processes as above.

Define a “potential” matrix (or operator)

Vn = diag(Dnyn,1) + 1
2

(
diag(Dnyn,2)Tn + T †n diag(Dnyn,2)

)
,

and finally set

Hn = Rn

(
D†nDn + Vn + wnEn

)
. (2.11)

This operator leaves the subspace Rn invariant. The matrix of its restriction with respect
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to the coordinate basis is symmetric tridiagonal, with on- and off-diagonal processes

m2
n + (yn,1;1 + wn)mn, 2m2

n + (yn,1;2 − yn,1;1)mn, . . . ,

2m2
n + (yn,1;n − yn,1;n−1)mn

(2.12)

−m2
n + 1

2
yn,2;1mn, −m2

n + 1
2
(yn,2;2 − yn,2;1)mn, . . . ,

−m2
n + 1

2
(yn,2;n−1 − yn,2;n−2)mn

(2.13)

respectively. We denote this random matrix also as Hn, and call it a spiked tridiagonal

ensemble. (We could have absorbed wn into yn,1 as an additive constant, but keep it

separate for reasons that will soon be apparent.)

As in RRV, convergence rests on a few key assumptions on the random variables just

introduced. By choice, no additional scalings will be required.

Assumption 1 (Tightness and convergence). There exists a continuous random process

{y(x)}x≥0 with y(0) = 0 such that

{yn,i(x)}x≥0, i = 1, 2 are tight in law,

yn,1 + yn,2 ⇒ y in law
(2.14)

with respect to the compact-uniform topology on paths.

Assumption 2 (Growth and oscillation bounds). There is a decomposition

yn,i;j = m−1n

j−1∑
k=0

ηn,i;k + ωn,i;j

with ηn,i;j ≥ 0 such that for some deterministic unbounded nondecreasing continuous

functions η(x) > 0, ζ(x) ≥ 1 not depending on n, and random constants κn ≥ 1 defined

on the same probability spaces, the following hold: The κn are tight in distribution, and

for each n we have almost surely

η(x)/κn − κn ≤ ηn,1(x) + ηn,2(x) ≤ κn
(
1 + η(x)

)
, (2.15)

ηn,2(x) ≤ 2m2
n, (2.16)

|ωn,1(ξ)− ωn,1(x)|2 + |ωn,2(ξ)− ωn,2(x)|2 ≤ κn
(
1 + η(x)/ζ(x)

)
(2.17)

for all x, ξ ∈ [0, n/mn] with |ξ − x| ≤ 1.

Assumption 3 (Critical or subcritical spiking). For some nonrandom w ∈ (−∞,∞], we

have

wn → w in probability. (2.18)
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The necessity of first and third assumptions will be evident when we define a con-

tinuum limit and prove convergence. The more technical second assumption ensures

tightness of the matrix eigenvalues; its limiting version (derived in the next subsection)

will guarantee discreteness of the limiting spectrum. Lastly, we note that for given yn

the models may be coupled over different choices of wn.

Reduction to deterministic setting

In the next subsection we will define a limiting object in terms of y and w; we want

to prove that the discrete models converge to this continuum limit in law. We reduce

the problem to a deterministic convergence statement as follows. First, select any subse-

quence. It will be convenient to extract a further subsequence so that certain additional

tight sequences converge jointly in law; Skorokhod’s representation theorem (see Ethier

and Kurtz 1986) says this convergence can be realized almost surely on a single proba-

bility space. We may then proceed pathwise.

In detail, consider (2.14)–(2.18). Note in particular that the upper bound of (2.15)

shows that the piecewise linear process
{∫ x

0
ηn,i
}
x≥0 is tight in distribution under the

compact-uniform topology for i = 1, 2. Given a subsequence, we pass to a further subse-

quence so that the following distributional limits exist jointly:

yn,i ⇒ yi,∫
0
ηn,i ⇒ η†i ,

κn ⇒ κ,

(2.19)

for i = 1, 2, where convergence in the first two lines is in the compact-uniform topology.

We realize (2.19) pathwise a.s. on some probability space and continue in this determin-

istic setting.

We can take the bounds (2.15),(2.17) to hold with κn replaced with a single constant

κ. Observe that (2.15) gives a local Lipschitz bound on the
∫
ηn,i, which is inherited

by their limits η†i . Thus ηi =
(
η†i
)′

is defined almost everywhere on R+, satisfies (2.15),

and may be defined to satisfy this inequality everywhere. Furthermore, one easily checks

that m−1n
∑
ηn,i →

∫
ηi compact-uniformly as well (use continuity of the limit). Therefore

ωn,i = yn,i−m−1n
∑
ηn,i must have a continuous limit ωi for i = 1, 2; moreover, the bound

(2.17) is inherited by the limits. Lastly, put η = η1 + η2, ω = ω1 + ω2 and note that

yi =
∫
ηi + ωi and y =

∫
η + ω.
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Without further reference to the subsequences, we will assume this situation for the

remainder of the section.

Limiting operator and variational characterization

Formally, the limit of the spiked tridiagonal ensemble Hn will be the eigenvalue problem

Hf = Λf on R+

f ′(0) = wf(0), f(+∞) = 0
(2.20)

where H = −d2/dx2 + y′(x) and w ∈ (−∞,∞] is fixed. If w = +∞, the boundary

condition is to be interpreted as f(0) = 0; we refer to this as the Dirichlet case, and

it will require special treatment in what follows. The primary object for us will be a

symmetric bilinear form associated with the eigenvalue problem (2.20).

Define a space of test functions C∞0 consisting of smooth functions on R+ with com-

pact support that may contain the origin, except in the Dirichlet case. Denote by ‖·‖
and 〈·, ·〉 the norm and inner product of L2[0,∞). Define a weighted Sobolev norm by

‖f‖2∗ =
∥∥f ′∥∥2 +

∥∥f√1 + η
∥∥2

and an associated Hilbert space L∗ as the closure of C∞0 under this norm. Note that our

L∗ differs slightly from the one in RRV. We register some basic facts about L∗ functions.

Fact 2.2.1. Any f ∈ L∗ is uniformly Hölder(1/2)-continuous, satisfies |f(x)| ≤ ‖f‖∗ for

all x, and in the Dirichlet case has f(0) = 0.

Proof. We have |f(y)− f(x)| =
∣∣∫ y
x
f ′
∣∣ ≤ ‖f ′‖ |y − x|1/2. For f ∈ C∞0 we have

f(x)2 = −
∫ ∞
x

(f 2)
′ ≤ 2 ‖f ′‖ ‖f‖ ≤ ‖f‖2∗ .

An L∗-bounded sequence in C∞0 therefore has a compact-uniformly convergent subse-

quence, so we can extend this bound to f ∈ L∗ and conclude further that f(0) = 0 in

the Dirichlet case.

For future reference, we also record some compactness properties of the L∗-norm.

Fact 2.2.2. Every L∗-bounded sequence has a subsequence converging in the following

modes: (i) weakly in L∗, (ii) derivatives weakly in L2, (iii) uniformly on compacts, and

(iv) in L2.
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Proof. (i) and (ii) are just Banach-Alaoglu; (iii) is the previous fact and Arzelà-Ascoli

again; (iii) implies L2 convergence locally, while the uniform bound on
∫
ηf 2

n produces

the uniform integrability required for (iv). Note that the weak limit in (ii) really is the

derivative of the limit function, as one can see by integrating against functions 1[0,x] and

using pointwise convergence.

We introduce a symmetric bilinear form on C∞0 × C∞0 by

HY,W (ϕ, ψ) = 〈ϕ′, ψ′〉 −
〈
(φψ)′, y

〉
+ wϕ(0)ψ(0), (2.21)

dropping the last term in the Dirichlet case. (We could have absorbed w into y as an

additive constant in the finite case, but prefer to keep the boundary term separate.)

Formally, HY,W (ϕ, f) is just 〈ϕ,Hf〉; notice how the mixed boundary condition is built

“implicitly” into the form, while the Dirichlet boundary condition is built “explicitly”

into the space.

Lemma 2.2.3. There are constants c, C > 0 so that the following bounds holds for all

f ∈ C∞0 :

c ‖f‖2∗ − C ‖f‖
2 ≤ HY,W (f, f) ≤ C ‖f‖2∗ . (2.22)

In particular, HY,W (·, ·) extends uniquely to a continuous symmetric bilinear form on

L∗ × L∗ satisfying the same bounds.

Proof. For the first two terms of (2.21), we use the decomposition y =
∫
η + ω from the

previous subsection. Integrating the
∫
η term by parts, the limiting version of (2.15)

easily yields
1
κ
‖f‖2∗ − C

′ ‖f‖2 ≤ ‖f ′‖2 +
〈
f 2, η

〉
≤ κ ‖f‖2∗ .

Break up the ω term as follows. The moving average ωx =
∫ x+1

x
ω is differentiable with

ω′x = ωx+1 − ωx; writing ω = ω + (ω − ω), we have

−
〈
(f 2)

′
, ω
〉

=
〈
f, ω′f

〉
+ 2
〈
f ′, (ω − ω)f

〉
.

The limiting version of (2.17) gives max
(
|ωξ − ωx| , |ωξ − ωx|2

)
≤ Cε+εη(x) for |ξ − x| ≤

1, where ε can be made small. In particular, the first term above is bounded absolutely

by ε ‖f‖2∗+Cε ‖f‖2. Averaging, we also get |ωx − ωx| ≤ (Cε+εη(x))1/2; Cauchy-Schwarz

then bounds the second term above absolutely by
√
ε
∫∞
0

(f ′)2 + 1√
ε

∫∞
0
f 2(Cε + εη) and

thus by
√
ε ‖f‖2∗ + C ′ε ‖f‖

2. Now combine all the terms and set ε small to obtain the

result.
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For the boundary term wf(0)2, it suffices to obtain a bound of the form f(0)2 ≤
ε ‖f‖2∗+C ′′ε ‖f‖

2. But f(0)2 ≤ 2 ‖f ′‖ ‖f‖ from the proof of Fact 2.2.1 gives such a bound

with C ′′ε = 1/ε.

The L∗ form bound follows from the fact that the L∗-norm dominates the L2-norm.

We obtain the quadratic form bound |HY,W (f, f)| ≤ C ‖f‖2∗; it is a standard Hilbert

space fact that it may be polarized to a bilinear form bound (see e.g. Halmos 1957).

Definition 2.2.4. Call (Λ, f) an eigenvalue-eigenfunction pair if f ∈ L∗, ‖f‖ = 1,

and for all ϕ ∈ C∞0 we have

HY,W (ϕ, f) = Λ 〈ϕ, f〉 . (2.23)

Note that (2.23) then automatically holds for all ϕ ∈ L∗, by L∗-continuity of both sides.

Remark 2.2.5. This definition represents a weak or distributional version of the prob-

lem (2.20). As further justification, integrate by parts to write the definition

〈ϕ′, f ′〉 −
〈
(ϕf)′, y

〉
+ wϕ(0)f(0) = Λ 〈ϕ, f〉

in the form

〈ϕ′, f ′〉 − 〈ϕ′, fy〉+
〈
ϕ′,
∫
0
f ′y
〉
− wf(0) 〈ϕ′,1〉 = −Λ

〈
ϕ′,
∫
0
f
〉
,

which is equivalent to

f ′(x) = wf(0) + y(x)f(x)−
∫ x

0

yf ′ − Λ

∫ x

0

f a.e. x. (2.24)

In the Dirichlet case the first term on the right is replaced with f ′(0). On the one hand

(2.24) shows that f ′ has a continuous version, and the equation may be taken to hold

everywhere. In particular, f satisfies the boundary condition of (2.20) at the origin. On

the other hand, (2.24) is a straightforward integrated version of the eigenvalue equation

in which the potential term has been interpreted via integration by parts. This equation

will be useful in Lemma 2.2.7 below and is the starting point for a rigorous derivation of

(2.7) in the stochastic Airy case.

Remark 2.2.6. The requirement f ∈ L∗ in Definition 2.2.4 is a technical convenience.

Regarding regularity, we need f at least absolutely continuous to make sense of the

eigenvalue equation in either an integrated or a distributional sense; we have seen,

however, that solutions are in fact C1. Regarding behaviour at infinity, the diffusion

picture developed by RRV shows a dichotomy: almost all solutions of the eigenvalue

equation grow super-exponentially at infinity, except for the eigenfunctions which decay

sub-exponentially.
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We now characterize eigenvalue-eigenfunction pairs variationally. It is easy to see

that each eigenspace is finite-dimensional: a sequence of normalized eigenfunctions must

have an L2-convergent subsequence by (2.22) and Fact 2.2.2. By the same argument,

eigenvalues can accumulate only at infinity. In fact, more is true:

Lemma 2.2.7. For each Λ ∈ R, the corresponding eigenspace is at most one-dimensional.

Proof. By linearity, it suffices to show a solution of (2.24) with f ′(0) = f(0) = 0 must

vanish identically. Integrate by parts to write

f ′(x) = y(x)

∫ x

0

f ′ −
∫ x

0

yf ′ − Λx

∫ x

0

f ′ + Λ

∫ x

0

tf ′(t)dt,

which implies that |f ′(x)| ≤ C(x)
∫ x
0
|f ′| with some C(x) <∞ increasing in x. Gronwall’s

lemma then gives f ′(x) = 0 for all x ≥ 0.

Remark 2.2.8. Compare these simple arguments with Proposition 3.5 of RRV, which

requires the diffusion representation.

The eigenfunction corresponding to a given eigenvalue is thus uniquely specified with

the additional sign normalization −π
2
< arg

(
f(0), f ′(0)

)
≤ π

2
. We order eigenvalue-

eigenfunction pairs by their eigenvalues. As usual, it follows from the symmetry of the

form that distinct eigenfunctions are L2-orthogonal.

Proposition 2.2.9. There is a well-defined (k+1)st lowest eigenvalue-eigenfunction pair

(Λk, fk); it is given recursively by the minimum and minimizer in the variational problem

inf
f∈L∗, ‖f‖=1,
f⊥f0,...,fk−1

HY,W (f, f) .

Remark 2.2.10. Since we must have Λk → ∞, the min-max principle (Reed and Simon

1978) states that {Λ0,Λ1, . . .} exhausts the full spectrum and the operator has compact

resolvent. We do not make this precise. Appendix A contains a more classical approach

to the spectral theory of the stochastic Airy operator, and includes the statement that

the eigenvectors form a complete orthonormal set in L2.

Proof. First taking k = 0, the infimum Λ̃ is finite by (2.22). Let fn be a minimizing

sequence; it is L∗-bounded, again by (2.22). Pass to a subsequence converging to f ∈ L∗

in all the modes of Fact 2.2.2. In particular 1 = ‖fn‖ → ‖f‖, so HY,W (f, f) ≥ Λ̃ by
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definition. But also

HY,W (f, f) = ‖f ′‖2 +

∫
f 2η +

〈
f, ω′f

〉
+ 2
〈
f ′, (ω − ω)f

〉
+ wf(0)2

≤ lim inf
n→∞

HY,W (fn, fn)

by a term-by-term comparison. Indeed, the inequality holds for the first term by weak

convergence, and for the second term by pointwise convergence and Fatou’s lemma; the

remaining terms are just equal to the corresponding limits, because the second members

of the inner products converge in L2 by the bounds from the proof of Lemma 2.2.3

together with L∗-boundedness and L2-convergence. Therefore HY,W (f, f) = Λ̃.

A standard argument now shows (Λ̃, f) is an eigenvalue-eigenfunction pair: tak-

ing ϕ ∈ C∞0 and ε small, put f ε = (f + εϕ)/‖f + εϕ‖; since f is a minimizer,
d
dε

∣∣
ε=0
HY,W (f ε, f ε) must vanish; the latter says precisely (2.23) with Λ̃. Finally, sup-

pose (Λ, g) is any eigenvalue-eigenfunction pair; then HY,W (g, g) = Λ, and hence Λ̃ ≤ Λ.

We are thus justified in setting Λ0 = Λ̃ and f0 = f .

Proceed inductively, minimizing now over {f ∈ L∗ : ‖f‖ = 1, f ⊥ f0, . . . fk−1}.
Again, L2-convergence of a minimizing sequence guarantees that the limit remains ad-

missible; as before, the limit is in fact a minimizer; conclude by applying the arguments

of the previous paragraph in the ortho-complement. The preceding lemma guarantees

that Λ0 < Λ1 < · · · , and that the corresponding eigenfunctions f0, f1, . . . are uniquely

determined.

Statement

We are finally ready to state the main result of this section. When we speak of an

eigenvalue-eigenvector pair (λ, v) of an n × n matrix, we take v ∈ Rn embedded in

L2(R+) as usual and normalized by ‖v‖ = 1 and −π
2
< arg(v0, v1) ≤ π

2
.

Theorem 2.2.11. Suppose that Hn as in (2.11) satisfies Assumptions 1–3 and let

(λn,k, vn,k) be its (k + 1)st lowest eigenvalue-eigenvector pair. Define the corresponding

form Hy,w as in (2.21) and let (Λk, fk) be its a.s. defined (k + 1)st lowest eigenvalue-

eigenfunction pair. Then, jointly for all k = 0, 1, . . . in the sense of finite dimensional

distributions, we have λn,k ⇒ Λk and vn,k ⇒L2 fk as n → ∞. The convergence holds

jointly over different wn, w for given yn, y.

Remark 2.2.12. Essentially, the resolvent matrices (precomposed with the corresponding
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finite-rank projections) are converging to the continuum resolvent in L2-operator norm.

We do not define the resolvent operator here.

The proof will be given over the course of the next two subsections. Recall that we

proceed in the subsequential almost-sure context of the previous subsection.

Tightness

We will need a discrete analogue of the L∗-norm and a counterpart of Lemma 2.2.3 with

constants uniform in n. For v ∈ Rn, define the L∗n-norm by

‖v‖2∗n =


∥∥Dnv

∥∥2 +
∥∥v√1 + η

∥∥2 if w <∞,∥∥Dnv
∥∥2 +

∥∥v√1 + η
∥∥2 + wnv

2
0 if w =∞,

noting that the additional term in the Dirichlet case is nonnegative for sufficiently large

n.

Remark 2.2.13. As in the continuum version, the Dirichlet boundary condition must be

put explicitly into the norm (see also Lemma 2.2.16 below). The case considered in

RRV has wn = mn in our notation; though it is somewhat hidden in the definitions, the

L∗n-norm used there contains a term mnv
2
0.

Lemma 2.2.14. There are constants c, C > 0 so that, for each n and all v ∈ Rn,

c ‖v‖2∗n − C ‖v‖
2 ≤ 〈v,Hnv〉 ≤ C ‖v‖2∗n . (2.25)

Proof. The derivative and potential terms may be handled exactly as in RRV (proof

of Lemma 5.6); the proof of Lemma 3.3.13 in the next chapter contains a streamlined

version in a more general setting. For the spike term wnv
2
0 we recall Assumption 3.

In the w < ∞ case the wn are bounded, so it suffices to obtain a bound of the form

v20 ≤ ε ‖v‖2∗n + Cε ‖v‖2 for each ε > 0 where ε, Cε do not depend on n. Mimicking the

continuum version in the proof of Fact 2.2.1, we have

v20 =
〈
−Dnv

2,1
〉

= 〈−(Dnv)(Tnv + v),1〉 ≤ 〈−(Dnv), Tnv + v〉 ≤ 2 ‖Dnv‖ ‖v‖ ,

which gives the desired bound with Cε = 1/ε.

In the Dirichlet case, start with (2.25) but with the spike term left out (both of the

form and the norm); it can be easily added back in by simply ensuring that c ≤ 1 and

C ≥ 1.
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Remark 2.2.15. If wn → −∞ then the lower bound in Lemma 2.2.14 breaks down: the

lowest eigenvalue of Hn really is going to −∞. This is the supercritical regime; see

Chapter 4.

Convergence

We begin with a lemma, a discrete-to-continuous version of Fact 2.2.2.

Lemma 2.2.16. Let fn ∈ Rn with ‖fn‖∗n uniformly bounded. Then there exist f ∈ L∗

and a subsequence along which (i) fn → f uniformly on compacts, (ii) fn →L2 f , and

(iii) Dnfn → f ′ weakly in L2.

Proof. Consider gn(x) = fn(0)+
∫ x
0
Dnfn, a piecewise-linear version of fn; they coincide at

points x = i/mn, i ∈ Z+. One easily checks that ‖gn‖2∗ ≤ 2 ‖fn‖2∗n, so some subsequence

gn → f ∈ L∗ in all the modes of Fact 2.2.2; in the Dirichlet case, the extra term in

the L∗n norm guarantees that f(0) = 0. But then also fn → f compact-uniformly by

a simple argument using the uniform continuity of f , fn →L2 f because ‖fn − gn‖2 ≤
(1/3n2) ‖Dnfn‖2, and Dnfn → f ′ weakly in L2 because Dnfn = g′n a.e.

Next we establish a kind of weak convergence of the form 〈·, Hn·〉 to HY,W (·, ·). Let

Pn be orthogonal projection from L2 onto Rn. One can check the following: for f ∈ L2,

Pnf →L2 f (the Lebesgue differentiation theorem gives pointwise convergence and we

have uniform L2-integrability); for smooth f , Pnf → f uniformly on compacts; further,

if f ′ ∈ L2 then Dnf →L2 f ′ (Dnf is a convolution of f ′ with an approximate delta).

Observe that Pn commutes with Rn and with DnRn.

Lemma 2.2.17. Let fn → f be as in the hypothesis and conclusion of Lemma 2.2.16.

Then for all ϕ ∈ C∞0 we have 〈ϕ,Hnfn〉 → HY,W (ϕ, f). In particular, Pnϕ → ϕ in this

way and so

〈Pnϕ,HnPnϕ〉 = 〈ϕ,HnPnϕ〉 → HY,W (ϕ, ϕ) . (2.26)

Proof. Note that if fn →L2 f , gn is L2-bounded and gn → g weakly in L2, then 〈fn, gn〉 →
〈f, g〉. Therefore

〈
ϕ,D†nDnfn

〉
= 〈Dnϕ,Dnfn〉 → 〈ϕ′, f ′〉. The potential term converges

as in RRV (proof of Lemma 5.7) or Chapter 3 (proof of Lemma 3.3.16). Moreover, the

spike term converges to the boundary term:

wnfn(0)(Pnϕ)(0)→ w f(0)ϕ(0),
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where in the Dirichlet case the left side vanishes for n large because ϕ is supported away

from 0.

For the second statement, the uniform L∗n bound follows from the following observa-

tions:
∥∥(Pnϕ)

√
1 + η

∥∥ =
∥∥Pnϕ√1 + η

∥∥ ≤ ∥∥ϕ√1 + η
∥∥; for n large enough that Rnϕ = ϕ

we have ‖DnPnϕ‖ = ‖PnDnϕ‖ ≤ ‖Dnϕ‖ ≤ ‖ϕ′‖ (Young’s inequality); and in the Dirich-

let case, the extra term vanishes for n large. The convergence is easy: Pnϕ→ ϕ compact-

uniformly and in L2, and for g ∈ L2 we have 〈g,DnPnϕ〉 = 〈Png,Dnϕ〉 → 〈g, ϕ′〉 .

Finally, we recall the argument of RRV to put all the pieces together.

Proof of Theorem 2.2.11. First we show that for all k we have λk = lim inf λn,k ≥ Λk. As-

sume that λk <∞. The eigenvalues ofHn are uniformly bounded below by Lemma 2.2.14,

so there is a subsequence along which (λn,1, . . . , λn,k) → (ξ1, . . . , ξk = λk). By the same

lemma the corresponding eigenvector sequences have L∗n-norm uniformly bounded; pass

to a further subsequence so that they all converge as in Lemma 2.2.16. The limit func-

tions are orthonormal, and by Lemma 2.2.17 they are eigenfunctions with eigenvalues ξk.

There are therefore k distinct eigenvalues at most λk, as required.

We proceed by induction, assuming the conclusion of the theorem up to k − 1. First

find f εk ∈ C∞0 with ‖f εk − fk‖∗ < ε. Consider the vector

fn,k = Pnf εk −
k−1∑
j=0

〈vn,j,Pnf εk〉 vn,j.

The L∗n-norm of the sum term is uniformly bounded by Cε: indeed, the ‖vn,j‖∗n
are uniformly bounded by Lemma 2.2.14, while the coefficients satisfy |〈vn,j, f εk〉| ≤
‖f εk − fk‖ + ‖vn,j − fj‖ < 2ε for large n. By the variational characterization in finite

dimensions, and the uniform L∗n form bound on 〈·, Hn·〉 (Lemma 2.2.14) together with

the uniform bound on ‖Pnf εk‖∗n (Lemma 2.2.17), we then have

lim supλn,k ≤ lim sup
〈fn,k, Hnfn,k〉
〈fn,k, fn,k〉

= lim sup
〈Pnf εk , HnPnf εk〉
〈Pnf εk ,Pnf εk〉

+ oε(1), (2.27)

where oε(1) → 0 as ε → 0. But (2.26) of Lemma 2.2.17 provides lim 〈Pnf εk , HnPnf εk〉 =

HY,W (f εk , f
ε
k), so the right hand side of (2.27) is

HY,W (f εk , f
ε
k)

〈f εk , f εk〉
+ oε(1) =

HY,W (fk, fk)

〈fk, fk〉
+ oε(1) = Λk + oε(1).

Now letting ε→ 0, we conclude lim supλn,k ≤ Λk.
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Thus λn,k → Λk; Lemmas 2.2.14 and 2.2.17 imply that any subsequence of the vn,k

has a further subsequence converging in L2 to some g ∈ L∗ with (Λk, g) an eigenvalue-

eigenfunction pair. But then g = fk, and so vn,k →L2 fk.

2.3 Application to Wishart and Gaussian models

We now apply Theorem 2.2.11 to prove Theorems 2.1.1 and 2.1.5. The first step is to

obtain the tridiagonal forms. Then, after recalling the derivation of the scaling limit at

the soft edge, we verify Assumptions 1–3 for certain scalings of the perturbation.

Tridiagonalization

We explain how to tridiagonalize a rank one spiked real Wishart matrix; the algorithm

is basically the usual one described by Trotter (1984) with a few careful choices. We

restrict for the moment to the case n ≥ p, but lift this restriction in the Remark 2.3.1

below. For a given p× n data matrix X we will construct a pair of orthogonal matrices

O ∈ O(p), O′ ∈ O(n) so that W = OXO′ becomes lower bidiagonal; then X and W

have the same singular values and WW † is a symmetric tridiagonal matrix with the same

eigenvalues as XX†. Further, the structure of X and O,O′ will be such that the entries

of W are independent with explicit known distributions.

We build up O and O′ as follows. Let e1, . . . , ep ∈ Rp be the standard basis of column

vectors and ẽ1, . . . , ẽn ∈ Rn the standard basis of row vectors.

• First, reflect (or rotate) the top row of X into the positive ẽ1 direction via right

multiplication by O′1 ∈ O(n), chosen independently of the other rows. This row be-

comes
√
` χ̃nẽ1, where χ̃n is a Chi(n) random variable (i.e. distributed as the length

of an n-dimensional standard normal vector); the other rows remain independent

standard normal vectors, since their distribution is invariant under an independent

reflection.

• Next, reflect the first column of XO′1 as follows: leaving 〈e1〉 invariant, reflect the

orthogonal 〈e2, . . . , ep〉 component of the column into the positive e2 direction via

left multiplication by O1 ∈ {I1} ⊕ O(p − 1), chosen independently of the other

columns. This component of the column becomes χp−1e2 where χp−1 ∼ Chi(p− 1),

independent of χ̃n. The same components of the other columns remain independent

standard normal vectors, while the first row is untouched.
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• Reflect the second row of O1XO
′
1 as follows: leaving 〈ẽ1〉 invariant, reflect the or-

thogonal component of the row into the positive ẽ2 direction via right multiplication

by O′2 ∈ {I1} ⊕O(n− 1), chosen independently of the other rows.

• Reflect the second column of O1XO
′
1O
′
2 as follows: leaving 〈e1, e2〉 invariant, reflect

the orthogonal component of the column into the positive e3 direction via left

multiplication by O2 ∈ {I2}⊕O(p−2), chosen independently of the other columns.

• Continue in this way, alternately reflecting rows and columns while leaving the

results of previous steps untouched.

The result is that with O′ = O′1 · · ·O′p and O = Op−1 · · ·O1 we have

W = OXO′ =



√
`χ̃n

χp−1 χ̃n−1
. . . . . .

χ2 χ̃n−p+2

χ1 χ̃n−p+1


,

where {χ̃n−j}p−1j=0 and {χp−j}p−1j=1 are independent Chi random variables of parameters

given by their indices. We have truncated the n−p rightmost columns of zeros to obtain

a p× p matrix, leaving the product WW † unchanged. We will actually work with W †W

below, which has the same eigenvalues.

Remark 2.3.1. Attempting the above procedure in the case n < p produces a lower

bidiagonal matrix W with n+ 1 nonzero rows. The matrix W †W is now n× n, has the

same nonzero eigenvalues as XX†, and looks just like it does in the n ≥ p case except

for a discrepancy in the bottom-right corner. The two cases may in fact be unified if one

agrees that χ0 = 0; then W is (n ∧ p + 1) × (n ∧ p) and has the form (2.2) with β = 1,

while W †W is (n ∧ p)× (n ∧ p).

The same algorithm will tridiagonalize a rank one spiked complex (resp. quaternionic)

Wishart matrix by unitary (resp. symplectic or hyperunitary) conjugations. The lower

bidiagonal matrix will be W β,`
n,p from (2.2) with β = 2 (resp. 4).

The perturbed GOE/GUE/GSE ensembles are even easier to tridiagonalize; as in

the Wishart case, the usual procedure of Trotter (1984) works without modification.

Starting with an n × n GOE matrix M with a perturbation in the (1,1) entry, the

upshot is that for certain O1, . . . , On−1 with Oj ∈ {Ij}⊕O(n− j) the conjugated matrix

On−1 · · ·O1MO†1 · · ·O
†
n−1 has the form (2.5) with β = 1. We do not detail it further here.
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Scaling limit

Consider the `-spiked β-Laguerre ensemble S = W †W with W = Wn,p = W
β,`n,p
n,p as

in (2.2), recalling that Sn,p is (n ∧ p)× (n ∧ p). The diagonal and off-diagonal processes

of βS are

`n,pχ̃
2
βn + χ2

β(p−1), χ̃2
β(n−1) + χ2

β(p−2), χ̃2
β(n−2) + χ2

β(p−3), . . .

χ̃β(n−1)χβ(p−1), χ̃β(n−2)χβ(p−2), . . .

respectively. The usual centering and rescaling for fluctuations at the soft edge—as well

as the operator limit itself—can be predicted using the approximations

χk ≈
√
k +

√
1/2 g, χ2

k ≈ k +
√

2k g,

valid for k large, where g is a suitably coupled standard Gaussian. We briefly reproduce

the heuristic argument.

To leading order, the top-left corner of S has n+ p on the diagonal and
√
np on the

off-diagonal. So the top-left corner of

1
√
np

(
S −

(√
n+
√
p
)2
I
)

is approximately an unscaled discrete Laplacian. If time is scaled by m−1, space has to

be scaled by m2 for this to converge to d2

dx2
. The next order terms for the j’th diagonal

and off-diagonal entries of S, where j � n ∧ p, are respectively

1√
β

(√
2n g̃n−j+1 +

√
2p gp−j − 2j

)
,

1√
β

(√
p/2 g̃n−j +

√
n/2 gp−j − 1/2(

√
p/n+

√
n/p)j

)
.

(we have indexed the g’s to match the corresponding χ’s). The total noise per unit

(unscaled) time is like 2√
β

(√
n+
√
p
)
g; convergence to 2√

β
times standard Gaussian white

noise b′x then requires
(√

n +
√
p
)
m2
n/
√
np = m1/2. The averaged part of the potential

requires
(
2+
√
p/n+

√
n/p
)
m2/
√
np = m−1 to converge to the function −x. Fortunately

these two scaling requirements match perfectly; we set

mn,p =

( √
np

√
n+
√
p

)2/3

, Hn,p =
m2
n,p√
np

((√
n+
√
p
)2
In∧p − Sn,p

)
and set the integrated limiting potential to

y(x) = 1
2
x2 + 2√

β
bx
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where bx is a standard Brownian motion. Note that

2−2/3(n ∧ p)1/3 ≤ m ≤ (n ∧ p)1/3,

so the conditions m→∞, m = o(n ∧ p) are met by merely having n, p→∞ together.

We now carefully decompose Hn,p as in (2.11). In (2.12),(2.13) there is a little freedom

between yn,1;1 and wn, but only in to an additive constant in yn,1 that tends to zero in

probability anyway. Thus we may as well set yn,1;1 = 0 to fix wn and yn,i. Assumptions 1

and 2 (the CLT (2.14) and required tightness (2.15)–(2.17) for the potential terms yn,i)

are then verified as in the final subsection of RRV; Section 3.4 of the next chapter does

it in a more general setting with some clarifications and minor corrections.

It remains to consider Assumption 3. We have

wn = mn,p

(
1 +

√
n

p

(
1− `n,p

χ̃2
βn

βn

)
+

√
p

n

(
1−

χ2
β(p−1)

βp

))
.

First order heuristics suggest we take `n,p to satisfy

wn = mn,p

(
1 +

√
n

p
(1− `n,p)

)
→ w ∈ (−∞,∞] as n ∧ p→∞

as in (2.4). We want to show that, in this case, wn → w in probability; it is certainly

enough to show that wn − wn → 0 in probability.

Second order heuristics say the error terms are on the order (n∧ p)−1/6 or m−1/2, and

L2 estimates easily provide the rigour. All we need is that χ2
k has mean k and variance

2k. We have

wn − wn = − m`

β
√
np

(
χ2
βn − βn

)
+

m

β
√
np

(
β(p− 1)− χ2

β(p−1)
)

+
m
√
np
.

Using that ` ≤ 1 + 2
√
p/n, the mean square of the first term is O(m2/p+m2/n), which

is O(m−1). The mean square of the second term is O(m2/n), again O(m−1). The last

term is negligible. This completes the proof of Theorem 2.1.1.

Turning now to the perturbed β-Hermite ensemble, take Gn = Gβ,µn
n as in (2.5). With

heuristic motivation similar to that in the previous proof, set

mn = n1/3, Hn =
m2
n√
n

(
2
√
nIn −Gn

)
and y(x) as before. Decompose Hn as in (2.11). Again, the verification of Assumptions

1 and 2 on yn,i proceeds as in RRV (Lemmas 6.2, 6.3) or Section 3.4. Moving on to

Assumption 3, we have

wn = mn

(
1−

(
µn +

√
2/βn g1

))
.
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Putting

wn = mn (1− µn)

as in (2.6), the difference is wn − wn = −n−1/6
√

2/β g1. It follows that wn − wn → 0 in

probability, which completes the proof of Theorem 2.1.5.

2.4 Alternative characterizations of the laws

In this section we prove Theorem 2.1.7 and its extension to higher eigenvalues.

Diffusion

The diffusion characterization is developed in RRV; we recall the important facts here

with a general initial condition. For a fully rigorous treatment see Appendix A. The

starting point is an application of the classical Riccati map p = f ′/f to the eigenvalue

equation (2.20), or rigorously to (2.24); the result is the first order differential equation

p′(x) = x− λ+ 2√
β
b′(x)− p2(x) (2.28)

understood also in the integrated sense. The boundary condition at the origin becomes

the initial value

p(0) = w,

and a zero of f would have p explode to −∞ and immediately restart at +∞.

One can in fact construct the solution for any λ ∈ R. One way to see this is to

introduce the variable q(x) = p(x) + 2√
β
b(x); the ODE

q′ = x− λ−
(
q + 2√

β
b
)2

(2.29)

is classical and the Picard existence and uniqueness theorem applies. Although solutions

can explode to −∞ in finite time, this is not a problem if we consider the values on the

projective line. Behaviour through ∞ can then be understood in the other coordinate

q̃ = 1/q, which evolves as

q̃′ =
(
1 + 2√

β
bq̃
)2 − (x− λ)q̃2;

in particular, q̃′ = 1 whenever q̃ = 0. The solution can thus be continued for all time.

Moreover, it depends monotonically and continuously on the the parameter λ, uniformly
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on compact time-intervals with respect to the topology of the projective line. Following

classical Sturm oscillation theory one can argue that almost surely, for all λ ∈ R, the

number of eigenvalues strictly less than λ equals the number of explosions of p on R+.

For a fixed λ, the Riccati equation (2.28) may also be understood in the Itō sense;

by translation equivariance the time-shift x 7→ x−λ produces the same path measure as

the Itō diffusion (2.7) started at time x0 = −λ. Writing κ(x0,w0) for the distribution of

the first explosion time of px under P(x0,w0)—an improper distribution with some mass

on ∞—we have Pβ,w(Λ0 < λ) = κ(−λ,w)(R) or Fβ,w(x) = κ(x,w)({∞}) as in (2.8). More

generally, the strong Markov property gives

Pβ,w(−Λk−1 > x) =

∫
Rk
κ(x,w)(dx1)κ(x1,∞)(dx2) · · · κ(xk−1,∞)(dxk). (2.30)

The stated path properties of (2.7) appear also in RRV (Propositions 3.7 and 3.9).

Boundary value problem

Briefly, the boundary value problem is just the Kolmogorov backward equation for a

hitting probability of the diffusion. We assume the diffusion representation Fβ,w(x) =

κ(x,w)({∞}) for the distribution of −Λ0.

Lemma 2.4.1. For each fixed x, Fβ,w(x) is nondecreasing and continuous in w ∈ (∞,∞]

and tends to zero as w → −∞.

Remark 2.4.2. There are in fact almost-sure counterparts of these assertions that describe

how Λ0 depends on w for each Brownian path, but we do not need them here.

Proof. The monotonicity is a consequence of uniqueness of the diffusion path from each

space-time point: two paths started from (x,w0) and (x,w1) with w0 < w1 never cross, so

if the upper path explodes to −∞ then the lower path must do so as well. The continuity

is a general property of statistics of diffusions: κ(x,px)({∞}) is a martingale, so Fβ,w(x)

is in fact space-time harmonic. (Again, the behaviour at w = +∞ may be understood

by changing coordinates.)

The final assertion is that for fixed x0 explosion becomes certain as w → −∞. It

may be verified by a domination argument involving the ODE (2.29) (time-shifted as

above so that λ = 0 and the initial time is x0), whose paths explode simultaneously with

those of (2.7). Given ε > 0, let M be such that P(supx∈[x0,x0+1] |bx| > M) < ε. It is

easy to check that for r0 sufficiently negative, the solution of r′ = x − (r + M)2 with
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initial value r(x0) = r0 explodes to −∞ before time x0 + 1. Now consider the solution of

q′ = x − (q + b)2 with q(x0) ≤ r0 ≤ −M . With probability 1 − ε we have q′(x) ≤ r′(x)

whenever q(x) = r(x), so the paths never cross and q explodes as well.

Proof of Theorem 2.1.7 (ii). Writing L for the space-time generator of the SDE (2.7), the

PDE (2.9) is simply the equation LF = 0. Therefore the hitting probability F (x,w) =

Fβ,w(x) satisfies the PDE. The boundary behaviour (2.10) follows from Lemma 2.4.1

and the fact that F (·, w) is a distribution function for each w. Specifically, the lower

part of the boundary behaviour follows from the fact that F (x,w) is increasing in x and

F (x,w)→ 0 as w → −∞ for each x. The upper part follows from the fact that F (x,w)

is increasing in w and F (x,w)→ 1 for fixed w as x→∞.

Toward uniqueness, suppose F̃ (x,w) is another bounded solution of (2.9),(2.10). By

the PDE, F̃ (x, px) is a local martingale under P(x0,w0) and thus a bounded martingale. Let

T be the lifetime of the diffusion; optional stopping gives F̃ (x,w) = E(x,w) F̃ (T ∧ t, pT∧t)
for all t ≥ x. Taking t → ∞, we conclude by bounded convergence, the boundary

behaviour of F̃ and the stated path properties of the diffusion that F̃ (x,w) is the non-

explosion probability. That is, F̃ = F .

As promised, we indicate how the laws of the higher eigenvalues Λ1,Λ2, . . . may be

characterized in terms of the PDE (2.9). The characterization is inductive and follows

from (2.30) by reasoning just as in the preceding proof.

Theorem 2.4.3. Let F(0)(x,w) = Pβ,w(−Λ0 < x). For each k = 1, 2, . . ., the boundary

value problem

∂F

∂x
+

2

β

∂2F

∂w2
+
(
x− w2

)∂F
∂w

= 0 for (x,w) ∈ R2,

F (x,w)→

1 as x,w →∞ together,

F(k−1)(x0,+∞) as w → −∞ while x→ x0 ∈ R

has a unique bounded solution F(k), and we have Pβ,w(−Λk < x) = F(k)(x,w) for w ∈
(−∞,∞); further, Pβ,∞(−Λk < x) = limw→∞ F(k)(x,w).
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Several spikes

3.1 Introduction

We refer the reader to the introduction of Chapter 2 for background on the spiked Wishart

model introduced by Johnstone (2001) in the context of high-dimensional data analysis,

especially the phase transition phenomenon that Baik, Ben Arous and Péché (2005)

(BBP) described in the complex case. We refer the reader to the same place for back-

ground on the stochastic Airy operator introduced by Sutton (2005), Edelman and Sutton

(2007), and its development byRamı́rez, Rider and Virág (2011) (RRV) that we build

on.

In Chapter 2 we considered rank one spiked real/complex/quaternion Wishart matri-

ces and additive rank one perturbations of the Gaussian orthogonal, unitary and sym-

plectic ensembles. We introduced their general β analogues in terms of “spiked” versions

of the tridiagonal ensembles of Dumitriu and Edelman (2002) and extended the RRV

technology to describe the soft-edge scaling limit in terms of the stochastic Airy operator

− d2

dx2
+ 2√

β
b′x + x

on L2(R+) with a boundary condition depending on the spike. The boundary condition

changes from Dirichlet f(0) = 0 to Neumann/Robin f ′(0) = wf(0) at the onset of the

BBP phase transition, with w ∈ R representing a scaling parameter for perturbations in

a “critical window”. The resulting largest eigenvalue laws form a one-parameter family

of deformations of Tracy-Widom(β), naturally generalizing the characterization of RRV

in terms of the ground state of this random Schrödinger operator. We went on to char-

acterize the limit laws in terms of the diffusion from RRV and further in terms of an

38
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associated second-order linear parabolic PDE.

Here we deal with r “spikes”, or general bounded-rank perturbations of Gaussian and

Wishart matrices. To do so we introduce a new “canonical form for perturbations in a

fixed subspace”, a (2r+1)-diagonal band form that has a purely algebraic interpretation.

It generalizes the Dimitriu–Edelman forms and is able to handle rank r perturbations.

We then develop a generalization of the methods of RRV and Chapter 2 to a matrix-

valued setting: block tridiagonal matrices converge to a half-line Schrödinger operator

with matrix-valued potential, the spikes once again appearing in the boundary condition.

We treat the real, complex and quaternion (β = 1, 2, 4) cases simultaneously. Once again,

even the existence of a near-critical soft-edge limit is new off β = 2. Unlike in Chapter 2,

however, we do not define a general β version of either matrix model, nor of the limiting

operator; we will see that in the higher rank cases these objects do not readily admit a

β-generalization.

Dyson’s Brownian motion makes a surprise appearance, providing nice SDE and PDE

characterizations of the limit laws—r parameter deformations of Tracy-Widom(β)—in

which β reappears as a simple parameter. The derivation makes use of the matrix versions

of classical Sturm oscillation theory and the Riccati transformation.

We highlight two more features of our approach beyond the novelty of bypassing

joint densities and handling β = 1, 2, 4 together. First, we treat the perturbation as a

parameter. By this we mean that all perturbations in a fixed subspace are considered

jointly (on the same probability space); this picture is carried through to the limit, which

is therefore a family of point processes parametrized by an r×r matrix. Second, we allow

more general scalings than those considered in BBP. Most importantly, in the Wishart

case we do not require the two dimensional parameters n, p to have a positive limiting

ratio but rather allow them to tend to infinity together arbitrarily.

To state our results we introduce some objects and notation that will be used through-

out the chapter.

Let F = R, C, or H and β = 1, 2 or 4, respectively. A standard F Gaussian Z ∼
FN(0, 1) is an F-valued random variable described in terms of independent real Gaussians

g1, . . . , gβ ∼ N(0, 1) as g1 for F = R, (g1 +g2i)/
√

2 for F = C, and (g1 +g2i+g3j+g4k)/2

for F = H. Note that in each case E |Z|2 = 1 and uZ ∼ FN(0, 1) for u ∈ F with

|u|2 = u∗u = 1.

The space of column vectors Fn is endowed with the standard inner product u†v and

associated norm |u|2 = u†u (we reserve double bars for function spaces). Write FNn(0, I)
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for a vector of independent standard F Gaussians. With Σ ∈Mn(F) positive definite, we

write Z ∼ FNn(0,Σ) for Z = Σ1/2Z0 with Z0 ∼ FNn(0, I).

Define the unitary group Un(F) = {U ∈ Fn×n : U †U = I}, better known as the

orthogonal, unitary or symplectic group for F = R, C, H respectively. It acts on Fn by

left multiplication, on which the distribution FNn(0, I) is invariant. Write Mn(F) = {A ∈
Fn×n : A† = A} for the self-adjoint matrices, also known as real symmetric, complex

hermitian or quaternion self-dual. Un(F) acts on Mn(F) by conjugation.

The Gaussian orthogonal/unitary/symplectic ensemble (GO/U/SE) is the

probability measure on Mn(F) described by A = (X + X†)/
√

2 where X is an n × n

matrix of independent FN(0, 1) entries. The distribution is invariant under the unitary

action. Furthermore, the algebraically independent entries Aij, i ≥ j are statistically

independent. (Together, this invariance and independence characterizes the distribution

up to a scale factorr.) For an entry-wise description, the diagonal entries are distributed

as N(0, 2/β) while the off-diagonal entries are FN(0, 1).

Fixing a positive integer r, we study rank r additive perturbations A = A0 + P

of a GO/U/SE matrix A0, where P = P̃ ⊕ 0n−r with P̃ ∈ Mr(F) nonrandom. We will

be interested in the eigenvalues λ1 ≥ · · · ≥ λn of A. Of course for a single P their

distribution depends only on the eigenvalues of P , but we consider them jointly over all

P̃ .

We also consider real/complex/quaternion Wishart matrices. These are ran-

dom nonnegative matrices in Mp(F) given by XX† where the data matrix X is p × n
with n independent FNp(0,Σ) columns. We speak of a p-variate Wishart with n de-

grees of freedom and p× p covariance Σ > 0. Since we are interested in the nonzero

eigenvalues λ1 ≥ · · · ≥ λn∧p, we can equally well consider X†X. The distribution of X†X

may also be described as X†0ΣX0 where X0 is a p × n matrix of independent FN(0, 1)

entries. The case Σ = I is referred to as the null case. We study the rank r spiked

case where Σ = Σ̃⊕ Ip−r with Σ̃ ∈Mr(F) nonrandom. Once again the eigenvalue distri-

bution depends only on the eigenvalues of Σ, but we consider the spectrum jointly as Σ̃

varies.

Our starting point is a new banded or multidiagonal form introduced in Section 3.2,

ideally suited to the types of perturbations we consider. It is defined for almost every

matrix A ∈ Mn(F); given vectors v1, . . . , vr ∈ Fn, the new basis may be obtained by
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applying the Gram-Schmidt process to the first n vectors of the sequence

v1, . . . , vr, Av1, . . . , Avr, A
2v1, . . . , A

2vr, . . . .

The result is a (2r+ 1)-diagonal matrix with positive outer diagonals. For Gaussian and

null Wishart ensembles, the change of basis interacts well with the Gaussian structure;

this observation goes back to Trotter (1984) in the r = 1 case. In the GO/U/SE case

v1, . . . , vr are simply the initial coordinate basis vectors, while in the Wishart case they

represent the initial rows of the data matrix X. As in Chapter 2, the key observation is

that the perturbations commute with the change of basis.

For the (unperturbed) Gaussian ensembles, the band form looks like

g̃ g∗ · · · g∗ χ

g g̃ g∗ · · · g∗ χ
... g g̃ g∗ · · · g∗ χ

g
... g

. . . . . . . . . . . .

χ g
...

. . .

χ g

χ
. . .
. . .


where the entries are independent random variables up to the †-symmetry with g̃ ∼
N(0, 2/β), g ∼ FN(0, 1), and χ ∼ 1√

β
Chi((n − r − k)β), k = 0, 1, 2, . . . going down

the matrix. (Recall that if Z ∼ RNm(0, I) then |Z| ∼ Chi(m).) For the null Wishart

ensemble, the form is best described as follows. One first obtains a lower (r+1)-diagonal

form for the data matix X whose nonzero singular values are the same as those of X. It

looks like 

χ̃

g χ̃
... g χ̃

g
... g

. . .

χ g
...

. . .

χ g

χ
. . .
. . .


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where the entries are independent random variables with g ∼ FN(0, 1), χ̃ ∼ 1√
β
Chi((n−

k)β) and χ ∼ 1√
β
Chi((n − r − k)β), k = 0, 1, 2, . . . going down the matrix. One then

forms its multiplicative symmetrization, a (2r+1)-diagonal matrix with the same nonzero

eigenvalues as X. In both cases the perturbations appear in the upper-left r × r block.

Section 3.2 provides derivations. The obstacle to β-generalization at this level is the

presence of F Gaussians in the intermediate diagonals.

Proceeding with an analogue of the RRV convergence result hinges on reinterpreting

these forms as block tridiagonal with r × r blocks. In Section 3.3 we develop an Mr(F)-

valued analogue of the RRV technology, providing general conditions under which the

principal eigenvalues and corresponding eigenvectors of such a random block tridiagonal

matrix converge to a those of a continuum half-line random Schrödinger operator with

matrix-valued potential. As in Chapter 2 we allow for a general boundary condition at

the origin.

In Section 3.4 we apply this result to the band forms just described, proving a process

central limit theorem for the potential and verifying the required tightness assumptions.

The limiting operator turns out to be a multidimensional version of the stochastic Airy

operator, which we now describe.

First, a standard F Brownian motion {bt}t≥0 is a continuous F-valued random

process with b0 = 0 and independent increments bt − bs ∼ FN(0, t − s). (It can be

described in terms of β = 1, 2 or 4 independent standard real Brownian motions.) A

standard matrix Brownian motion {Bt}t≥0 has continuous Mn(F)-valued paths with

B0 = 0 and independent increments Bt − Bs distributed as
√
t− s times a GO/U/SE.

The diagonal processes are thus
√

2/β times standard real Brownian motions while the

off-diagonal processes are standard F Brownian motions, mutually independent up to

symmetry.

Finally, we define the multivariate stochastic Airy operator. Operating on the

vector-valued function space L2(R+,Fr) with inner product 〈f, g〉 =
∫∞
0
f †g and associ-

ated norm ‖f‖2 =
∫∞
0
|f |2, it is the random Schrödinger operator

Hβ = − d2

dx2
+
√

2B′x + rx (3.1)

where B′x is “standard matrix white noise”, the derivative of a standard matrix Brownian

motion, and rx is scalar. (Here again β is restricted to the classical values, as the noise

term lacks a straightforward β-generalization.) The potential is thus the derivative of

a continuous matrix-valued function; rigorous definitions will appear in Section 3.3 in a
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more general setting.

For now it is enough to know that, together with a general self-adjoint boundary

condition

f ′(0) = Wf(0), (3.2)

the multivariate stochastic Airy operator is bounded below with purely discrete spec-

turm given by a variational principle. Here W ∈ Mr(F); actually, writing the spectral

decomposition W =
∑r

i=1wiuiu
†
i , we formally allow wi ∈ (−∞,∞]. Writing fi = u†if ,

(3.2) is then to be interpreted as

f ′i(0) = wifi(0) for wi ∈ R

fi(0) = 0 for wi = +∞.

We write W ∈M∗
r (F) for this extended set and Hβ,W for (3.1) together with (3.2).

For concreteness, we record that the eigenvalues Λ0 ≤ Λ1 ≤ . . . and correspond-

ing eigenfunctions f0, f1, . . . of Hβ,W are given respectively by the minimum and any

minimizer in the recursive variational problem

inf
f∈L2(R+)

‖f‖=1, f⊥f0,...,fk−1

∫ ∞
0

(
|f ′|2 + rx |f |2

)
dx+ f(0)†Wf(0) + 2√

β

∫ ∞
0

f †dBxf.

Here canidates f are only considered if the first integral and boundary term are finite; the

stochastic integral can then be defined pathwise via integration by parts. The eigenvalues

and eigenfunctions are thus jointly defined random processes indexed over W .

Remark 3.1.1. We note one important property of the eigenvalue processes, namely the

pathwise monotonicity of Λk in W with respect to the usual matrix partial order. This is

immediate from the variational characterization and the fact that the objective functional

is monotone in W . (For the higher eigenvalues it is most apparent from the standard

min-max formulation of the variational problem.)

We can now state the main convergence results. As outlined, Sections 3.2–3.4 furnish

the proofs. One last shorthand: when we write that a sequence Wn ∈ Mr(F) tends to

W ∈M∗
r (F), we mean the following. Writing W =

∑r
i=1wiuiu

†
i with wi ∈ (−∞,∞], one

has Wn =
∑r

i=1wn,iuiu
†
i with wn,i ∈ R satisfying wn,i → wi for each i. In other words,

the matrices are simultaneously diagonal and the eigenvalues tend to the corresponding

limits.
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Theorem 3.1.2. Let A = A0 +
√
nPn where A0 is an n × n GO/U/SE matrix and

Pn = P̃n ⊕ 0n−r with P̃n ∈Mr(F), and let λ1 ≥ · · · ≥ λn be its eigenvalues. If

n1/3
(
1− P̃n) → W ∈M∗

r (F) as n→∞

then, jointly for k = 1, 2, . . . in the sense of finite-dimensional distributions,

n1/6
(
λk − 2

√
n
)
⇒ −Λk−1 as n→∞

where Λ0 ≤ Λ1 ≤ . . . are the eigenvalues of Hβ,W . Convergence holds jointly over

{Pn},W satisfying the condition.

Theorem 3.1.3. Consider a p-variate real/complex/quaternion Wishart matrix with n

degrees of freedom and spiked covariance Σn,p = Σ̃n,p ⊕ Ip−r > 0 with Σ̃n,p ∈ Mr(F), and

let λ1 ≥ · · · ≥ λn∧p be its nonzero eigenvalues. Writing mn,p = (n−1/2 + p−1/2)−2/3, if

mn,p

(
1−

√
n/p
(
Σ̃n,p − 1

))
→ W ∈M∗

r (F) as n→∞

then, jointly for k = 1, 2, . . . in the sense of finite-dimensional distributions,

m2
n,p√
np

(
λk − (

√
n+
√
p)2
)
⇒ −Λk−1 as n→∞

where Λ0 ≤ Λ1 ≤ . . . are the eigenvalues of Hβ,W . Convergence holds jointly over

{Σn,p},W satisfying the condition.

Remark 3.1.4. In the band basis described above, we also have joint convergence of the

corresponding eigenvectors to the eigenfunctions of Hβ,W . In detail, the eigenvectors

should be embedded in L2(R+) as step functions with step width n−1/3 in the Gaussian

case and m−1n,p in the Wishart case, and convergence is in law with respect to the L2 norm

topology. To be precise, one should use either subsequences or spectral projections; one

could also formulate the joint eigenvalue-eigenvector convergence in terms of the norm

resolvent topology. See Theorem 3.3.9 and the remark that follows.

We now give the two promised alternative characterizations of the limiting eigenvalue

laws. Fix β = 1, 2, 4 and W ∈ M∗
r (F) with eigenvalues −∞ < w1 ≤ . . . ≤ wr ≤ ∞.

Writing P for the probability measure associated with Hβ,W and its spectrum {Λ0 ≤
Λ1 ≤ . . .}, let

F k
β (x;w1, . . . , wr) = P(−Λk ≤ x)

for k = 0, 1, . . .. Write simply Fβ = F 0
β for the ground state distribution (limiting largest

eigenvalue law). Once again, the generalization from Chapter 2 is not straightforward.

The proofs are contained in Section 3.5.
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Theorem 3.1.5. Let Px0,(w1,...,wr) be the measure on paths (p1, . . . , pr) : [x0,∞) →
(−∞,∞]r determined by the coupled diffusions

dpi = 2√
β
dbi +

(
rx− p2i +

∑
j 6=i

2

pi − pj

)
dx (3.3)

with initial conditions pi(x0) = wi and entering into {p1 < . . . < pr}, where b1, . . . , br are

independent standard Brownian motions; particles pi may explode to −∞ in finite time

whereupon they are restarted at +∞. Then

Fβ(x;w1, . . . , wr) = Px/r,(w1,...,wr)(no explosions). (3.4)

More generally,

F k
β (x;w1, . . . , wr) = Px/r,(w1,...,wr)(at most k explosions). (3.5)

We describe the diffusion more carefully in Section 3.5, asserting that it determines

a law on paths valued in an appropriate space. Probabilistic arguments lead to the

following reformulation in terms of its generator.

Theorem 3.1.6. Fβ(x;w1, . . . , wr) is the unique bounded function F : R × Rr → R
symmetric with respect to permutation of w1, . . . , wr that satisfies the PDE

r
∂F

∂x
+

r∑
i=1

(
2

β

∂2F

∂w2
i

+ (x− w2
i )
∂F

∂wi

)
+
∑
i<j

2

wi − wj

(
∂F

∂wi
− ∂F

∂wj

)
= 0 (3.6)

and the boundary conditions

F → 1 as x→∞ with w1, . . . , wr bounded below; (3.7)

F → 0 as any wi → −∞ with x bounded above. (3.8)

Furthermore, Fβ is “continuous to the boundary” as one or several wi → +∞. For

subsequent eigenvalue laws F k
β (x;w1, . . . , wr), (3.8) is replaced with the recursive boundary

condition

F k(x;w1, . . . , wr)→ F k−1(x∗;w∗1, . . . , w
∗
r−1,+∞)

as x→ x∗ ∈ R, wi → w∗i ∈ R for i = 1, . . . , r − 1, and wr → −∞.
(3.9)

At β = 2 these distributions were obtained in BBP in the form of Fredholm deter-

minants of finite-rank perturbations of the Airy kernel. Baik (2006) derived Painlevé II



Chapter 3. Several spikes 46

formulas, and by a symbolic computation with the computer algebra system Maple we

were able to verify that the latter satisfy the PDE (3.6) for r = 2, 3, 4, 5. We give the

details in Section 5.3 of Chapter 5. Of course a pencil-and-paper proof for all r would be

more illuminating and certainly more satisfying.

We make two final remarks. From the finite n matrix models it is clear that the

“rank r deformed” limiting distributions Fβ,r(x;w1, . . . , wr) reduce to those for a lower

rank r0 < r in the following way:

Fβ,r(x;w1, . . . , wr0 ,+∞, . . . ,+∞) = Fβ,r0(x;w1, . . . , wr0).

Unfortunately this reduction relation is not readily apparent from any of our characteri-

zations (operator, SDE or PDE).

Lastly, the SDE and PDE characterizations seem to make sense for all β > 0 (although

one has to be careful for β < 1). It would be interesting to find natural “general β

multispiked models” at finite n, interpolating between those studied here at β = 1, 2, 4

and generalizing those introduced in Chapter 2 for r = 1. At β = 2, perhaps one could

discover a relationship with formulas of Baik and Wang (2011).

3.2 A canonical form for perturbation in a fixed sub-

space

In Chapter 2 we observed that the tridiagonal models of Gaussian and Wishart matrices

were amenable to rank one perturbation. In this section we introduce a banded (also block

tridiagonal) generalization amenable to higher-rank perturbation. We first describe it as

a natural object of pure linear algebra; we then show how it interacts with the structure

of Gaussian and Wishart random matrices to produce the band forms displayed in the

introduction.

The basic facts of “linear algebra over F”, where F may be R, C or the skew field of

quaternions H, are summarized in Appendix E of Anderson et al. (2009). Everything we

need (inner product geometry, self-adjointness, eigenvalues, and the spectral theorem)

simply works over H as expected, keeping in mind only that non-real scalars may not

commute.
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The band Jacobi form as an algebraic object

We present a natural “canonical form” for studying perturbations in a fixed subspace of

dimension r. It is a (2r+1)-diagonal band matrix generalizing the symmetric tridiagonal

Jacobi form, which is the r = 1 case. The outermost diagonals continue to be positive;

however, intermediate diagonals between the main and outermost ones are not in general

real. Once again, the presence of F Gaussians is the obstacle to writing down a general

β analogue.

We begin with a geometric, coordinate-free formulation.

Theorem 3.2.1. Let T be a self-adjoint linear transformation on a finite-dimensional

inner product space V of dimension n over F. An orthonormal sequence {v1, . . . , vr} ⊂ V

with 1 ≤ r ≤ n can be extended to an ordered orthonormal basis {v1, . . . , vn} for V such

that 〈vi, T vj〉 ≥ 0 for |i− j| = r and 〈vi, T vj〉 = 0 for |i− j| > r. Furthermore, if

〈vi, T vj〉 > 0 for |i− j| = r then the extension is unique.

The point is that the same extension works for T ′ = T + P provided P ∈ Mn(F)

satisfies P
∣∣
{v1,...,vr}⊥

= 0. In this case span{v1, . . . , vr} is also an invariant subspace of P

and we speak of perturbing in this subspace.

Proof. We give an explicit inductive construction. Along the way we will see that the

uniqueness condition holds precisely when the choice is forced at each step.

It is convenient to restate the properties of the orthonormal basis in the theorem in

the following equivalent way: For r + 1 ≤ i ≤ n we have 〈vi, T vi−r〉 ≥ 0 and Tvi−r ∈
span{v1, . . . , vi}. Suppose inductively that v1, . . . , vk−1 have been obtained for some

r+ 1 ≤ k ≤ n, satisfying the preceding conditions for r+ 1 ≤ i ≤ k− 1. Let w = Tvk−r;

we must choose vk so that 〈vk, w〉 ≥ 0 and w ∈ span{v1, . . . , vk}. There are two cases to

consider. If w /∈ span{v1, . . . , vk−1} then vk must be a multiple of w′ = w−
∑k−1

i=1 〈vi, w〉 vi;
the positivity condition further forces vk = w′/ |w′|, which gives 〈vk, w〉 = |w′| > 0. If

w ∈ span{v1, . . . , vk−1} then any vk ∈ {v1, . . . , vk−1}⊥ will do, and in this case 〈vk, w〉 =

0.

Remark 3.2.2. When uniqueness holds, as is generically the case, the basis may also be

obtained by applying the Gram-Schmidt process to the first n vectors of the sequence

v1, . . . , vr, T v1, . . . , T vr, T
2v1, . . . , T

2vr, . . . .



Chapter 3. Several spikes 48

We now state and prove a concrete matrix formulation in which the first r coordinate

vectors play the role of v1, . . . vr. The point of the second proof is that it emphasizes the

resulting band matrix rather than the change of basis; the algorithm will be used in the

next subsection.

Theorem 3.2.3. Let A ∈ Mn(F) and 1 ≤ r ≤ n. There there exists U ∈ Un(F) of the

form U = Ir ⊕ Ũ with Ũ ∈ Un−r(F) such that B = UAU † satisfies

Bij ≥ 0 for 1 ≤ i, j ≤ n with |i− j| = r, (3.10)

Bij = 0 for 1 ≤ i, j ≤ n with |i− j| > r. (3.11)

Furthermore, if strict positivity holds in (3.10) then U and B as such are unique.

We refer to B as the band Jacobi form of A. The allowed perturbations here have

the form P = P̃ ⊕ 0n−r for P̃ ∈ Mr(F); these are invariant under conjugation by U , so

U(A+ P )U † = B + P .

Proof. We prove existence by giving an explicit algorithm; it generalizes the Lanczos

algorithm, which applies in the case r = 1.

• For the first step, let v = [Ai,1]r+1≤i≤n ∈ Fn−r and take Ũ ∈ Un−r(F) such that

Ũv = |v|ẽ1, where ẽ1 is the first standard basis vector of Fn−r. A concrete choice

is the Householder reflection Ũ = In−r − 2ww†/w†w with w = v − |v|ẽ1. Set

U1 = Ir ⊕ Ũ and B1 = U1AU
†
1 .

• Continue inductively: Having obtained Uk, Bk, let v = [(B1)i,(k+1)]r+k+1≤i≤n ∈
Fn−r−k and take Ũ ∈ Un−r−k(F) such that Ũv = |v|ẽ1. Set Uk+1 = Ir+k ⊕ Ũ and

Bk+1 = Uk+1BkU
†
k+1.

• Stop when k = n− r. Let U = Un−r · · ·U1 and B = Bn−r = UAU †.

It is immediate that U and B have the required properties. The point is that the kth

column of Bk already “looks right”, i.e. (Bk)r+k,k ≥ 0 and (Bk)r+l,k = 0 for l > k, and

subsequent transformations Uk+1, . . . , Un−k ∈ {Ir+k} ⊕ Un−r−k(F) “don’t mess it up.”

Towards uniqueness, suppose that U ′, B′ = U ′AU ′† also have the required properties

and let W = U ′U−1 so that B′ = WBW †. Assume inductively that W ∈ {Ir+k} ⊕
Un−r−k(F), which is certainly true in the base case k = 0. Write W = Ir+k ⊕ W̃ . Let

b = [Bi,k+1]r+k+1≤i≤n ∈ Fn−r−k and similarly for b′. Then b′ = W̃ b. But b = aẽ1 and
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b′ = a′ẽ1 with a, a′ > 0 by assumption. It follows that a = a′ and W̃ ẽ1 = ẽ1. Hence

W̃ ∈ {I1} ⊕ Un−r−(k+1)(F) and W ∈ {Ir+k+1} ⊕ Un−r−(k+1)(F), completing the induction

step. We conclude that W = In.

Perturbed Gaussian and spiked Wishart models

The change of basis described above interacts very nicely with the Gaussian structure

in Gaussian and Wishart random matrices. The r = 1 case of this observation is due

to Trotter (1984), who described the tridiagonal forms explicitly. His forms fall into the

framework of Theorem 3.2.1 by taking the initial vector to be fixed in the Gaussian case,

and taking it to be the top row of the data matrix in the Wishart case. As we observed

in Chapter 2, the change of basis commutes with rank one additive perturbations for the

Gaussian case and with rank one spiking for the Wishart case. We now extend the story

to the r > 1 setting.

In the Gaussian case we will be perturbing in a fixed (non-random) subspace; without

loss of generality this may be taken as the initial r-dimensional coordinate subspace, and

so we take the basis of Theorem 3.2.1 that begins with the first r standard basis vectors.

We can therefore obtain the band form by a direct application of the algorithm from the

proof of Theorem 3.2.3. The Wishart case is a little more complicated; here we want to

perturb in the random subspace spanned by the first r rows of the data matrix. Our new

basis will begin with the Gram-Schmidt orthogonalization of these initial rows. As in

the r = 1 case it is most transparent to construct a lower band form of the data matrix

first, afterwards realizing the band Jacobi form as its multiplicative symmetrization. In

both the Gaussian and the Wishart cases we will see that the uniqueness condition of

Theorem 3.2.1 holds almost surely.

Let A be an n × n GOE matrix. Applying the algorithm from the proof of Theo-

rem 3.2.3 while keeping track of the distribution of the matrix Bk at each step—the key

of course being the unitary invariance of standard Gaussian vectors—yields the following
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band Jacobi random matrix G = UAU †:

Gij =



√
2
β
g̃i i = j

gij j < i < j + r

1√
β
χ(n−i+1)β i = j + r

0 i > j + r

G∗ji i < j

(3.12)

for 1 ≤ i, j ≤ n, where the random variables appearing explicitly are independent,

g̃i ∼ N(0, 1), gij ∼ FN(0, 1), and χk ∼ Chi(k). The latter is the distribution of the

length of a k-dimensional standard Gaussian vector.

We can introduce a rank r additive perturbation A = A0 +
√
nP , where P = P̃ ⊕0n−r

with P̃ ∈Mr(F); since P commutes with the change of basis U ∈ {Ir}⊕Un−r(F), we can

write

G = UAU † = U(A0 +
√
nP )U † = UA0U

† +
√
nP = G0 +

√
nP. (3.13)

As expected the perturbation shows up undisturbed in the upper-left r × r corner of G

Turning to the Wishart case, we first consider the null Wishart random matrix X†X,

where X is p×n with independent FN(0, 1) entries. (Remember that X†X and XX† have

the same nonzero eigenvalues λ1, . . . , λn∧p.) The final form can be described abstractly

as given in the basis of Theorem 3.2.1 that extends the Gram-Schmidt orthogonaliza-

tion of the first r rows of X. One cannot readily obtain a description of the resulting

random matrix from here, however, so we give another way that generalizes Trotter’s

original procedure. It is a “singular value analogue” of the algorithm from the proof of

Theorem 3.2.3, producing matrices U ∈ Un(F) and V ∈ Up(F) such that L = V XU has

a “lower band form” that is zero off the main and first r subdiagonals and positive on

the outermost of these. The key is to work alternately on rows and columns.

• Take U1 ∈ Un(F) so that the first row of XU1 lies in the (positive) direction of the

first coordinate basis vector of Fn.

• Take V1 = Ir ⊕ Up−r(F) so that [(V1XU1)i,1]r+1≤i≤p ∈ Fp−r lies in the direction of

the first coordinate basis vector of the latter subspace.

• Take U2 ∈ I1 ⊕ Un−1(F) so that [(V1XU1U2)2,j]2≤j≤n ∈ Fn−1 lies in the direction of

the first coordinate basis vector of the latter subspace.
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• Take V2 ∈ Ir+1 ⊕ Up−r−1(F) so that [(V2V1XU1U2)i,2]r+2≤j≤p ∈ Fp−r−1 lies in the

direction of the first coordinate basis vector of the latter subspace.

• Continue in this way until the rows and columns both run out (stop alternating if

one runs out before the other).

The resulting L = Vn∧(p−r) · · ·V1XU1 · · ·Un∧p has n ∧ p nonzero columns and (n+ r) ∧ p
nonzero rows, which can be described as follows:

Lij =



1√
β
χ̃(n−i+1)β i = j

gij j < i < j + r

1√
β
χ(p−i+1)β i = j + r

0 i < j or i > j + r

(3.14)

where the entries are independent, χ̃k, χk ∼ Chi(k), gij ∼ FN(0, 1). Truncating the

remaining zero rows or columns, the matrix S = L†L is (n ∧ p) × (n ∧ p) and has the

same nonzero eigenvalues as X†X. It has the band form

Sij =



1
β
χ̃2
(n−i+1)β +

∑
i<k<i+r |gk,i|

2 + 1
β
χ2
(p−i−r+1)β i = j

1√
β
χ̃(n−i+1)βgij +

∑
i<k<j+r g

∗
k,igk,j + 1√

β
g∗j+r,iχ(p−j−r+1)β j < i < j + r

1
β
χ̃(n−i+1)βχ(p−i+1)β i = j + r

0 i > j + r

S∗ji i < j

(3.15)

where we have ignored the issue of truncation in the final r rows and columns (g′s and χ′s

with indices beyond the allowed range should simply be zero). The change of basis is thus

U1 · · ·Un∧p; a little thought shows that, as claimed earlier, the new basis begins with the

orthogonalization of the first r rows of X. Since the form (3.15) satisfies the uniqueness

condition of Theorem 3.2.1 a.s., the basis is indeed the one given by the theorem.

Now we consider the spiked Wishart matrix X†X = X†0ΣX0, with Σ = Σ̃⊕ Ip−r > 0.

Here X0 is a null Wishart matrix and X = Σ1/2X0. Notice that X†X−X†0X0 = X†0
(
(Σ̃−

Ir)⊕0
)
X0 is indeed an additive perturbation in the subspace spanned by the first r rows

of X0. Since Σ1/2 = Σ̃1/2⊕I commutes with the inner transformation V ∈ {Ir}⊕Up−r(F),

we have

L†L = U †X†XU = U †X†0ΣX0U = U †X†0V
†ΣV X0U = L†0ΣL0
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where L = V XU and L0 = V X0U . The point is that same change of basis works in the

rank r spiked case, and by the lower band structure of L0, the perturbation shows up in

the upper-left r × r corner:

S − S0 = L†L− L†0L0 = L̃†0(Σ̃− Ir)L̃0 ⊕ 0. (3.16)

Viewed in terms of the algorithm used to produce L, the point is that the first r rows of X

are never “mixed” together or with the lower rows, but only “rotated” within themselves.

3.3 Limits of block tridiagonal matrices

The banded forms of Section 3.2 may also be considered as block tridiagonal matrices with

r×r blocks. In this section we give general conditions under which such random matrices,

appropriately scaled, converge at the soft spectral edge to a random Schrödinger operator

on the half-line with r × r matrix-valued potential and general self-adjoint boundary

condition at the origin. In Section 3.4 we verify these assumptions for the two specific

matrix models we consider.

Proposition 3.3.7 establishes that the limiting operator is a.s. bounded below with

purely discrete spectrum via a variational principle. The main result is Theorem 3.3.9,

which asserts that the low-lying states of the discrete models converge to those of the

operator limit.

The scalar r = 1 case of Chapter 2, based in turn on RRV, serves as a prototype.

Care is required throughout to adapt the arguments to the matrix-valued setting, and

we give a self-contained treatment.

Discrete model and embedding

Underlying the convergence is the embedding of the discrete half-line Z+ = {0, 1, . . .}
into the continuum R+ = [0,∞) via j 7→ j/mn, where the scale factors mn → ∞ but

with mn = o(n). Define an associated embedding of vector-valued function spaces by

step functions:

`2n(Z+,Fr) ↪→ L2(R+,Fr), (v0, v1, . . .) 7→ v(x) = vbmnxc,

which is isometric with `2n norm ‖v‖2 = m−1n
∑∞

j=0 |vj|
2. (Recall that Fr and L2 have

norms |v|2 = v†v and ‖f‖2 =
∫∞
0
|f |2 respectively.) Fix a standard basis for `2n with
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lexicographic ordering

(e1, 0, . . .), (e2, 0, . . .), . . . , (er, 0, . . .), (0, e1, 0, . . .), . . .

where e1, . . . , er is the standard basis for Fr. Identify Fn with the n-dimensional ini-

tial coordinate subspace of `2n, consisting of Fr-valued step-functions supported on

the interval
[
0, dn/re/mn

)
and with the final step value in the subspace spanned by

e1, . . . , er−(dn/rer−n). Our n × n matrices will act on Fn with respect to the above basis;

we will generally assume the embedding Fn ⊂ `2n ↪→ L2 implicitly.

We define some operators on L2, all of which leave `2n invariant and may also be con-

sidered as infinite block matrices with r× r blocks. The translation operator (Tnf)(x) =

f(x+m−1n ) extends the left shift on `2n. Its adjoint T †n is the right shift, where T †nf = 0 on

[0,m−1n ). The difference quotient Dn = mn(Tn − 1) extends a discrete derivative. Write

diag(A0, A1, . . .) for both an r× r block diagonal matrix and its extension to a pointwise

matrix multiplication on L2. Thus En = diag(mnIr, 0, 0, . . .) is scalar multiplication by

mn1[0,m−1
n ), a “discretized delta function at the origin”. Orthogonal projection from `2n

onto Fn extends to a multiplication Rn = diag(Ir, . . . , Ir, diag(1, . . . , 1, 0, . . . , 0), 0, . . .),

in which there are dn/re non-zero blocks and a total of n 1’s.

Let (Yn,i;j)j∈Z+ , i = 1, 2 be two discrete-time r × r matrix-valued random processes

with Yn,1;j ∈ Mr(F) for all j. The processes may be embedded into continuous time as

above, by setting Yn,i(x) = Yn,i;bmnxc. Note also that Tn and 4n = mn(1 − T †n) = −D†n
may be sensibly applied to such matrix-valued functions. The processes Yn,i are on- and

off-diagonal integrated potentials, and we define a “potential operator” by

Vn = diag(4nYn,1) + 1
2

(
diag(4nYn,2)Tn + T †n diag(4nY

†
n,2)
)
. (3.17)

Fix Wn ∈Mr(F), a nonrandom “boundary term”.

Finally, consider

Hn = Rn

(
D†nDn + Vn +WnEn

)
Rn. (3.18)

This operator leaves the initial coordinate subspace Fn invariant; we shall also use Hn

to denote the matrix of its restriction to Fn. The matrix Hn ∈ Mn(F) is self-adjoint

and block tridiagonal up to a truncation in the lower-right corner. Its main- and super-

diagonal processes are

m2
n +mn(Wn + Yn,1;0), 2m2

n +mn(Yn,1;1 − Yn,1;0), 2m2
n +mn(Yn,1;2 − Yn,1;1), . . .

−m2
n + 1

2
mnYn,2;0, −m2

n + 1
2
mn(Yn,2;1 − Yn,2;0), . . . (3.19)
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respectively; the sub-diagonal process is of course the conjugate transpose of the super-

diagonal process. (We could have absorbed Wn into Yn,1 as an additive constant, but

keep it separate for reasons that will soon be clear. Note also that the upper-left block

has m2
n rather than 2m2

n.) We refer to Hn as a rank r block tridiagonal ensemble.

As in RRV and Chapter 2, convergence rests on a few key assumptions on the potential

and boundary terms just introduced. By choice, no additional scaling will be required.

The role of the convergence in the first and third assumption below will be clear as

soon as we define the continuum limit. The growth and oscillation bounds of the second

assumption (and the lower bound implied by the third) ensure tightness of the low-lying

states; in particular, they guarantee that the spectrum remains discrete and bounded

below in the limit.

Assumption 1 (Tightness and convergence). There exists a continuous Mr(F)-valued

random process {Y (x)}x≥0 with Y (0) = 0 such that

{Yn,i(x)}x≥0, i = 1, 2 are tight in law,

Yn,1 + 1
2
(Yn,2 + Y †n,2) ⇒ Y in law

(3.20)

with respect to the compact-uniform topology (defined using any matrix norm).

Assumption 2 (Growth and oscillation bounds). There is a decomposition

Yn,i;j = m−1n

j∑
k=0

ηn,i;k + ωn,i;j (3.21)

(so 4nYn,i = ηn,i+4nωn,i) with ηn,i;j ≥ 0 (as matrices), such that for some deterministic

scalar continuous nondecreasing unbounded functions η(x) > 0, ζ(x) ≥ 1 not depending

on n, and random constants κn ≥ 1 defined on the same probability spaces, the following

hold: The κn are tight in distribution, and for each n we have almost surely

η(x)/κn − κn ≤ ηn,1(x) + ηn,2(x) ≤ κn
(
1 + η(x)

)
, (3.22)

ηn,2(x) ≤ 2m2
n, (3.23)

|ωn,1(ξ)− ωn,1(x)|2 + |ωn,2(ξ)− ωn,2(x)|2 ≤ κn
(
1 + η(x)/ζ(x)

)
(3.24)

for all x, ξ ∈ [0, dn/re/mn) with |ξ − x| ≤ 1. Here matrix inequalities have their usual

meaning and single bars denote the spectral (or `2(Fr) operator) norm.
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Assumption 3 (Critical or subcritical perturbation). For some orthonormal basis

u1, . . . , ur of Fr and −∞ < w1 ≤ . . . ≤ wr ≤ ∞ we have Wn =
∑r

i=1wn,iuiu
†
i , where

wn,i ∈ R satisfy limn→∞wn,i = wi for each i.

We write r0 = #{i : wi < ∞} ∈ {0, . . . , r} for the “critical rank”. Formally, Wn →
W =

∑r
i=1wiuiu

†
i ∈ M∗

r (F). It is natural to view W as a parameter: that is, we will

consider the joint behaviour of the model (for given Yn,i, Y ) over all Wn, W satisfying

Assumption 3.

Reduction to deterministic setting

In the next subsection we will define a limiting object in terms of Y (x) and W ; we

want to prove that the discrete models converge to this continuum limit in law. We

reduce the problem to a deterministic convergence statement as follows. First, select

any subsequence. It will be convenient to extract a further subsequence so that certain

additional tight sequences converge jointly in law; Skorokhod’s representation theorem

(see Ethier and Kurtz 1986) says this convergence can be realized almost surely on a

single probability space. We may then proceed pathwise.

In detail, consider (3.20)–(3.24). Note in particular that non-negativity of the ηn,i and

the upper bound of (3.22) give that for i = 1, 2 the piecewise linear process
{∫ x

0
ηn,i
}
x≥0

is tight in distribution, pointwise with respect to the spectral norm and in fact compact-

uniformly. Given a subsequence, we pass to a further subsequence so that the following

distributional limits exist jointly:

Yn,i ⇒ Yi,∫
0
ηn,i ⇒ η̃i,

κn ⇒ κ,

(3.25)

for i = 1, 2, where convergence in the first two lines is in the compact-uniform topology.

We realize (3.25) pathwise a.s. on some probability space and continue in this determin-

istic setting.

We can take (3.22)–(3.24) to hold with κn replaced with a single κ. Observe that (3.22)

gives a local Lipschitz bound on the
∫
ηn,i, which is inherited by their limits η̃i (the spec-

tral norm controls the matrix entries). Thus ηi = η̃i
′ is defined almost everywhere on R+,

satisfies (3.22), and may be defined to satisfy this inequality everywhere. Furthermore,

one easily checks that m−1n
∑
ηn,i →

∫
ηi compact-uniformly as well (use continuity
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of the limit). Therefore ωn,i = yn,i − m−1n
∑
ηn,i must have a continuous limit ωi for

i = 1, 2; moreover, the bound (3.24) is inherited by the limits. Lastly, put η = η1 + η2,

ω = ω1 + 1
2
(ω2 + ω†2) and note that Yi =

∫
ηi + ωi and Y =

∫
η + ω. For convenience, we

record the bounds inherited by η, ω:

η(x)/κ− κ ≤ η(x) ≤ κ
(
1 + η(x)

)
(3.26)

|ω(ξ)− ω(x)|2 ≤ κ
(
1 + η(x)/ζ(x)

)
(3.27)

for x, ξ ∈ R+ with |ξ − x| ≤ 1 (and note that κ ≥ 1).

We will assume this subsequential pathwise coupling for the remainder of the

section.

Limiting object and variational characterization

Formally, the limiting object is the eigenvalue problem

Hf = Λf on L2(R+,Fr)

f ′(0) = Wf(0)
(3.28)

where

H = − d2

dx2
+ Y ′(x).

Writing the spectral decomposition W =
∑r

i=1wiuiu
†
i , recall (Assumption 3) that we

actually allow wi ∈ R for 1 ≤ i ≤ r0 and, symbolically, wi = +∞ for r0 + 1 ≤ i ≤ r.

Writing fi = u†if , the boundary condition is then to be interpreted as

f ′i(0) = wifi(0) for i ≤ r0,

fi(0) = 0 for i > r0.
(3.29)

We thus have a completely general homogeneous linear self-adjoint boundary condition.

We refer to span{ui : i > r0} as the Dirichlet subspace and the corresponding fi as

Dirichlet components; they will require special treatment in what follows.

We will actually work with a symmetric bilinear form (properly, sesquilinear if F = C
or H) associated with the eigenvalue problem (3.28). Define a space of test functions C∞0

consisting of smooth Fr-valued functions ϕ on R+ with compact support; we additionally

require the Dirichlet components to be supported away from the origin. Introduce a

symmetric bilinear form on C∞0 × C∞0 by

H(ϕ, ψ) = 〈ϕ′, ψ′〉 − 〈ϕ′, Y ψ〉 − 〈ϕ, Y ψ′〉+ ϕ(0)†Wψ(0), (3.30)
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where the Dirichlet part of the last term is interpreted as zero. Formally, the form H(·, ·)
is just the usual one 〈·,H·〉 associated with the operator H; the potential term has been

integrated by parts and the boundary condition “built in”. See also Remark 3.3.5 below.

The regularity and decay conditions naturally associated with this form are given by

the following weighted Sobolev norm:

‖f‖2∗ =

∫ ∞
0

(
|f ′|2 + (1 + η) |f |2

)
+ f(0)†W+f(0) (3.31)

where the positive part of W is defined as W+ =
∑r

i=1w
+
i uiu

†
i with w+ = w ∨ 0.

(Define the negative part similarly with w−i = −(w ∧ 0), so that W = W+−W−.) We

refer to ‖·‖∗ as the L∗ norm and define an associated Hilbert space L∗ as the closure of

C∞0 under this norm. (The formal Dirichlet terms are again interpreted to be zero, but

they can also be thought of as imposing the Dirichlet condition.) We record some basic

facts about L∗.

Fact 3.3.1. Any f ∈ L∗ is uniformly Hölder(1/2)-continuous and satisfies |f(x)|2 ≤
2 ‖f ′‖ ‖f‖ ≤ ‖f‖2∗ for all x; furthermore, fi(0) = 0 for i > r0.

Proof. We have |f(y)− f(x)| =
∣∣∫ y
x
f ′
∣∣ ≤ ‖f ′‖ |y − x|1/2. For f ∈ C∞0 we have |f(x)|2 =

−
∫∞
x

2 Re f †f ′ ≤ 2 ‖f‖ ‖f ′‖ ≤ ‖f‖2∗; an L∗-bounded sequence in C∞0 therefore has a

compact-uniformly convergent subsequence, so we can extend this bound to f ∈ L∗ and

also conclude the behaviour in the Dirichlet components.

Fact 3.3.2. Every L∗-bounded sequence has a subsequence converging in the following

modes: (i) weakly in L∗, (ii) derivatives weakly in L2, (iii) uniformly on compacts, and

(iv) in L2.

Proof. (i) and (ii) are just Banach-Alaoglu; (iii) is the previous fact and Arzelà-Ascoli

again; (iii) implies L2 convergence locally, while the uniform bound on
∫
η |fn|2 produces

the uniform integrability required for (iv). Note that the weak limit in (ii) really is the

derivative of the limit function, as one can see by integrating against functions 1[0,x] and

using pointwise convergence.

By the bound in Fact 3.3.1 with x = 0, the boundary term in (3.31) could be done

away with. It is natural to include the term, however, when considering all W simulta-

neously and viewing the Dirichlet case as a limiting case. More importantly, it clarifies

the role of the boundary terms in the following key bound.
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Lemma 3.3.3. For every 0 < c < 1/κ there is a C > 0 such that, for each b > 0, the

following holds for all W ≥ −b and all f ∈ C∞0 :

c ‖f‖2∗ − (1 + b2)C ‖f‖2 ≤ H(f, f) ≤ C ‖f‖2∗ . (3.32)

In particular, H(·, ·) extends uniquely to a continuous symmetric bilinear form on L∗×L∗.

Proof. For the first three terms of (3.30), we use the decomposition Y =
∫
η + ω from

the previous subsection. Integrating the
∫
η term by parts, (3.26) easily yields

1
κ
‖f‖2∗ − κ ‖f‖

2 ≤ ‖f ′‖2 + 〈f, ηf〉 ≤ κ ‖f‖2∗ .

Break up the ω term as follows. The moving average ωx =
∫ x+1

x
ω is differentiable with

ω′x = ωx+1 − ωx; writing ω = ω + (ω − ω), we have

−2 Re
〈
f ′, ωf

〉
=
〈
f, ω′f

〉
+ 2 Re

〈
f ′, (ω − ω)f

〉
.

By (3.27), max
(
|ωξ − ωx| , |ωξ − ωx|2

)
≤ Cε + εη(x) for |ξ − x| ≤ 1, where ε can be made

small. In particular, the first term above is bounded absolutely by ε ‖f‖2∗ + Cε ‖f‖2.
Averaging, we also get |ωx − ωx| ≤ (Cε + εη(x))1/2; Cauchy-Schwarz then bounds the

second term absolutely by
√
ε
∫∞
0
|f ′|2 + 1√

ε

∫∞
0

(Cε + εη) |f |2 and thus by
√
ε ‖f‖2∗ +

C ′ε ‖f‖
2. Now combine all the terms and set ε small to obtain a version of (3.32) with

the boundary terms omitted (from both the form and the norm).

We break the boundary term in (3.30) into its positive and negative parts. For the

negative part, Fact 3.3.2 gives |f(0)|2 ≤ (ε/b) ‖f ′‖2 + (b/ε) ‖f‖2; W− ≤ b then implies

that

0 ≤ f(0)†W−f(0) ≤ ε ‖f‖2∗ + C ′′ε b
2 ‖f‖2 ,

which may be subtracted from the inequality already obtained. For the positive part

f(0)†W+f(0), use the fact that c ≤ 1 ≤ C to simply add it in. We thus arrive at (3.32).

For the L∗ bilinear form bound, begin with the quadratic form bound |H(f, f)| ≤
Cc,b ‖f‖2∗; it is a standard Hilbert space fact that it may be polarized to a bilinear form

bound (see e.g. §18 of Halmos 1957).

Definition 3.3.4. We say f ∈ L∗ is an eigenfunction with eigenvalue Λ if f 6= 0 and

for all ϕ ∈ C∞0 we have

H(ϕ, f) = Λ 〈ϕ, f〉 . (3.33)

Note that (3.33) then automatically holds for all ϕ ∈ L∗, by L∗-continuity of both sides.
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Remark 3.3.5. This definition represents a weak or distributional version of the prob-

lem (3.28). As further justification, integrate by parts to write the definition

〈ϕ′, f ′〉 − 〈ϕ′, Y f〉 − 〈ϕ, Y f ′〉+ ϕ(0)†Wf(0) = Λ 〈ϕ, f〉

in the form

〈ϕ′, f ′〉 − 〈ϕ′, Y f〉+
〈
ϕ′,
∫
0
Y f ′

〉
− 〈ϕ′,Wf(0)〉 = −Λ

〈
ϕ′,
∫
0
f
〉
,

which is equivalent to

f ′(x) = Wf(0) + Y (x)f(x)−
∫ x

0

Y f ′ − Λ

∫ x

0

f a.e. x. (3.34)

(For a Dirichlet component fi the restriction on test functions implies that 〈ϕ′i, 1〉 = 0,

so the first boundary term on the right-hand side is replaced with an arbitrary constant.)

Now (3.34) shows that f ′ has a continuous version, and the equation may be taken to

hold everywhere. In particular, f satisfies the boundary condition of (3.28) classically.

(For a Dirichlet component we just find that the arbitrary constant is f ′i(0).) One can

also view (3.34) as a straightforward integrated version of the eigenvalue equation in

which the potential term has been interpreted via integration by parts. This equation

will be useful in Lemma 3.3.6 below and is the starting point for the development in

Section 3.5.

We now characterize the eigenvalues and eigenfunctions variationally. As usual, it

follows from the symmetry of the form that eigenvalues are real (and eigenfunctions with

distinct eigenvalues are L2-orthogonal). The L2 part of the lower bound in (3.32) says

the spectrum is bounded below. The rest of (3.32) implies that there are only finitely

many eigenvalues below any given level: a sequence of normalized eigenfunctions with

bounded eigenvalues must have an L2-convergent subsequence by Fact 3.3.2. At a given

level, more is true:

Lemma 3.3.6. For each Λ ∈ R, the corresponding eigenspace is at most r-dimensional.

Proof. By linearity, it suffices to show a solution of (3.34) with f ′(0) = f(0) = 0 must

vanish identically. Integrate by parts to write

f ′(x) = Y (x)

∫ x

0

f ′ −
∫ x

0

Y f ′ − Λx

∫ x

0

f ′ + Λ

∫ x

0

tf ′(t)dt,

which implies that |f ′(x)| ≤ C(x)
∫ x
0
|f ′| with some C(x) <∞ increasing in x. Gronwall’s

lemma then gives |f ′(x)| = 0 for all x ≥ 0.
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Proposition 3.3.7. There is a well-defined (k+1)st lowest eigenvalue Λk, counting with

multiplicity. The eigenvalues Λ0 ≤ Λ1 ≤ . . . together with an orthonormal sequence of

corresponding eigenvectors f0, f1, . . . are given recursively by the variational problem

Λk = inf
f∈L∗, ‖f‖=1,
f⊥f0,...fk−1

H(f, f)

in which the minimum is attained and we set fk to be any minimizer.

Remark 3.3.8. Since we must have Λk →∞, {Λ0,Λ1, . . .} exhausts the spectrum and the

resolvent operator is compact. We do not make this statement precise.

Proof. First taking k = 0, the infimum Λ̃ is finite by (3.32). Let fn be a minimizing

sequence; it is L∗-bounded, again by (3.32). Pass to a subsequence converging to f ∈ L∗

in all the modes of Fact 3.3.2. In particular 1 = ‖fn‖ → ‖f‖, so H(f, f) ≥ Λ̃ by

definition. But also

H(f, f) = ‖f ′‖2 + 〈f, ηf〉+
〈
f, ω′f

〉
+ 2 Re

〈
f ′, (ω − ω)f

〉
+ f(0)†Wf(0)

≤ lim inf
n→∞

H(fn, fn)

by a term-by-term comparison. Indeed, the inequality holds for the first term by weak

convergence, and for the second term by pointwise convergence and Fatou’s lemma; the

remaining terms are just equal to the corresponding limits, because the second members

of the inner products converge in L2 by the bounds from the proof of Lemma 3.3.3

together with L∗-boundedness and L2-convergence. Therefore H(f, f) = Λ̃.

A standard argument now shows (Λ̃, f) is an eigenvalue-eigenfunction pair: taking ϕ ∈
C∞0 and ε small, put f ε = (f+εϕ)/‖f + εϕ‖; since f is a minimizer, d

dε

∣∣
ε=0
H(f ε, f ε) must

vanish; the latter says precisely (3.33) with Λ̃. Finally, suppose (Λ, g) is any eigenvalue-

eigenfunction pair; then H(g, g) = Λ, and hence Λ̃ ≤ Λ. We are thus justified in setting

Λ0 = Λ̃ and f0 = f .

Proceed inductively, minimizing now over the orthocomplement {f ∈ L∗ : ‖f‖ =

1, f ⊥ f0, . . . fk−1}. Again, L2-convergence of a minimizing sequence guarantees that the

limit remains admissible; as before, the limit is in fact a minimizer; conclude by applying

the arguments of the previous paragraph with ϕ, g also restricted to the orthocomplement.
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Statement

We are finally ready to state the main result of this section. Recall that we consider

eigenvectors of a matrix Hn ∈ Mn(F) in the embedding Fn ⊂ `2n(Z+,Fr) ↪→ L2(R+,Fr)
above.

Theorem 3.3.9. Let Hn be a rank r block tridiagonal ensemble as in (3.18) satisfying

Assumptions 1–3, and let λn,k be its (k + 1)st lowest eigenvalue. Define the associated

form H as in (3.30) and let Λk be its a.s. defined (k + 1)st lowest eigenvalue. In the

deterministic setting of subsequential pathwise coupling, λn,k → Λk for each k = 0, 1, . . ..

Furthermore, a sequence of normalized eigenvectors corresponding to λn,k is pre-compact

in L2 norm, and every subsequential limit is an eigenfunction corresponding to Λk. Fi-

nally, convergence holds uniformly over possible Wn,W ≥ −b > −∞. One recovers the

corresponding distributional tightness and convergence statements for the full sequence,

jointly for k = 0, 1, ... in the sense of finite-dimensional distributions and jointly over

Wn,W .

Remark 3.3.10. The eigenvector convergence statement requires subsequences for two

reasons: possible multiplicity of the limiting eigenvalues, and the sign or phase ambiguity

of the eigenvectors. It is possible to formulate the conclusion of the theorem very simply

using spectral projections. (If H has purely discrete spectrum, the spectral projection

1A(H) is simply orthogonal projection of L2 onto the span of those eigenvectors of H

whose eigenvalues lie in A ⊂ R.) The joint eigenvalue-eigenvector convergence may

be restated in the deterministic setting as follows: For all a ∈ R \ {Λ0,Λ1, . . .}, the

spectral projections 1(−∞,a)(Hn) → 1(−∞,a)(H) in L2 operator norm. The corresponding

distributional statement holds jointly over all a that are a.s. off the limiting spectrum

(or simply all a if the distributions of the Λk are non-atomic).

Remark 3.3.11. An operator-theoretic formulation of the theorem (which we do not de-

velop here) would state a norm resolvent convergence: the resolvent matrices, precom-

posed with the finite-rank projections L2 → Fn associated with the embedding, con-

verge to the continuum resolvent in L2 operator norm. This mode of convergence is the

strongest one can hope for in the unbounded setting (see e.g. VIII.7 of Reed and Simon

1980, Weidmann 1997).

The proof will be given over the course of the next two subsections.
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Tightness

We will need a discrete analogue of the L∗ norm and a counterpart of Lemma 3.3.3 with

constants uniform in n. For v ∈ Fn ↪→ L2(R+,Fr) as above, define the L∗n norm by

‖v‖2∗n =
〈
v,
(
D†nDn + 1 + η + EnW

+
n

)
v
〉

=

∫ ∞
0

(
|Dnv|2 + (1 + η) |v|2

)
+ v(0)†W+

n v(0)
(3.35)

with the non-negative part W+
n defined as before.

Remark 3.3.12. When considering just a single Wn,W , the boundary term in (3.35) is

really only required when the limit includes Dirichlet terms; it is simpler, however, not

to distinguish the two cases here. More importantly, including this term clarifies the role

of the boundary term in the following key bound. Note that the original case considered

in RRV has Wn = mn in our notation. (The Hn form and L∗n norm there contained a

term mn |v0|2, though it is hidden in the fact that, in our notation, they use 4n in place

of Dn.)

Lemma 3.3.13. For every 0 < c < 1/4κ there is a C > 0 such that, for each b > 0, the

following holds for all n, Wn ≥ −b and v ∈ Fn:

c ‖v‖2∗n − (1 + b2)C ‖v‖2 ≤ 〈v,Hnv〉 ≤ C ‖v‖2∗n . (3.36)

Proof. We drop the subscript n. The form associated with (3.18) is

〈v,Hv〉 = ‖Dv‖2 + 〈v, V v〉+ v(0)†Wv(0). (3.37)

The potential term 〈v, V v〉 =
∫∞
0
v†V v, defined in (3.17), is analyzed according to (3.21):

v†V v = v†(4Y1)v + Re v†(4Y2)Tv

=
(
v†η1v + Re v†η2Tv

)
+
(
v†(4ω1)v + Re v†(4ω2)Tv

)
.

Together with |Dnv|2, the η-terms provide the structure of the bound as we now show.

Afterwards we will control the ω-terms and lastly deal with the boundary term.

Recall (3.22) and that ηi ≥ 0. For an upper bound, rearrange (v−Tv)†η2(v−Tv) ≥ 0

to

Re v†η2Tv ≤ 1
2
v†η2v + 1

2
(Tv)†η2Tv

≤ 1
2
κ(η + 1)

(
|v|2 + |Tv|2

)
.
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Now
∫
η |Tv|2 =

∫
(T †η) |v|2 ≤

∫
η |v|2 since η is nondecreasing, and we obtain

‖Dv‖2 + 〈v, η1v〉+ Re 〈v, η2Tv〉 ≤ 2κ ‖v‖2∗ . (3.38)

Toward a lower bound we use the slightly tricky rearrangement 0 ≤ (1
2
v + Tv)†η2(

1
2
v +

Tv) = 3 Re v†η2Tv + (Tv − v)†η2(Tv − v)− 3
4
v†η2v. With (3.23) we get

Re v†η2Tv ≥ −1
3
(Tv − v)†η2(Tv − v) + 1

4
v†η2v

≥ −2
3
|Dv|2 + 1

4
v†η2v,

so by (3.22),

|Dv|2 + v†η1v + Re v†η2Tv ≥ 1
3
|Dv|2 + 1

4
(η/κ− κ) |v|2

and thus

‖Dv‖2 + 〈v, η1v〉+ Re 〈v, η2Tv〉 ≥ (1/4κ) ‖v‖2∗ − (κ/4) ‖v‖2 . (3.39)

We handle the ω-terms with a discrete analogue of the decomposition used in the

continuum proof. Consider the moving average

ωi = bmc−1
bmc∑
j=1

T jωi

which has 4ωi = (m/bmc)(T bmc−1)ωi; it is convenient to extend ωi(x) = ωi(dn/re/mn)

for x > dn/re/mn. Decompose ωi = ωi + (ωi − ωi). For the ω1-term,

v†4ω1v = (m/bmc)v†(T bmcω1 − ω1)v + v†4(ω1 − ω1)v.

By (3.24) and Cauchy-Schwarz, the first term is bounded absolutely by (Cε+εη) |v|2 and

its integral by ε ‖v‖2∗ + Cε ‖v‖2. The second term calls for a summation by parts:〈
v,4(ω1 − ω1)v

〉
= mn

(〈
v, (ω1 − ω1)v

〉
−
〈
Tv, (ω1 − ω1)Tv

〉)
= mn Re

〈
v − Tv, (ω1 − ω1)(v + Tv)

〉
= Re

〈
Dv, (ω1 − ω1)(v + Tv)

〉
.

The averaged bound |ω1 − ω1| ≤ (Cε + εη)1/2 and Cauchy-Schwarz bound the integrand

∣∣(Dv)†(ω1 − ω1)(v + Tv)
∣∣ ≤ √ε |Dv|2 + (1/4

√
ε)(Cε + εη)(|v|2 + |Tv|2),

and its integral by
√
ε ‖v‖2∗+C ′ε ‖v‖

2. One thus obtains a similar bound on
∣∣〈v, (4ω1)v

〉∣∣.
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There are corresponding bounds for the ω2-terms. For the ω2-term, use 2 |v| |Tv| ≤
|v|2 + |Tv|2. For the (ω2 − ω2)-term, modify the summation by parts:

Re
〈
(v,4(ω2 − ω2)Tv

〉
= mn Re

(〈
(v − Tv), (ω2 − ω2)Tv

〉
+
〈
Tv, (ω2 − ω2)(Tv − T 2v)

〉)
= Re

〈
Dv + TDv, (ω2 − ω2)Tv

〉
.

Incorporating all the ω-terms into (3.38, 3.39) and setting ε small, we obtain (3.36) but

with the boundary terms omitted (from both the form and the norm).

We break the boundary term in (3.37) into its positive and negative parts. A discrete

analogue of a bound from Fact 3.3.1 will be useful:

|v(0)|2 =

∫ ∞
0

−D |v|2 =

∫ ∞
0

Rem(v − Tv)†(v + Tv) ≤ 2 ‖Dv‖ ‖v‖ .

It gives |v(0)|2 ≤ (ε/b) ‖Dv‖2 + (b/ε) ‖v‖2, and then W− ≤ b implies that

0 ≤ v(0)†W−v(0) ≤ ε ‖v‖2∗ + C ′′ε b
2 ‖v‖2

which may be subtracted from the inequality already obtained. The positive part may

simply be added in using that c ≤ 1 ≤ C. We thus arrive at (3.36).

Remark 3.3.14. If the Wn are not bounded below then the lower bound in (3.36) breaks

down: in fact, the bottom eigenvalue of Hn really goes to −∞ like minus the square of

the bottom eigenvalue of Wn. This is the supercritical regime.

Convergence

We begin with a simple lemma, a discrete-to-continuous version of Fact 3.3.2.

Lemma 3.3.15. Let fn ∈ Fn with ‖fn‖∗n uniformly bounded. Then there exist f ∈ L∗

and a subsequence along which (i) fn → f uniformly on compacts, (ii) fn →L2 f , and

(iii) Dnfn → f ′ weakly in L2.

Proof. Consider gn(x) = fn(0)+
∫ x
0
Dnfn, a piecewise-linear version of fn; they coincide at

points x = i/mn, i ∈ Z+. One easily checks that ‖gn‖2∗ ≤ 2 ‖fn‖2∗n, so some subsequence

gn → f ∈ L∗ in all the modes of Fact 3.3.2; for a Dirichlet component, the boundary

term in the L∗n norm guarantees that the limit vanishes at 0. But then also fn → f

compact-uniformly by a simple argument using the uniform continuity of f , fn →L2 f

because ‖fn − gn‖2 ≤ (1/3n2) ‖Dnfn‖2, and Dnfn → f ′ weakly in L2 because Dnfn = g′n

a.e.
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Next we establish a kind of weak convergence of the forms 〈·, Hn·〉 to H(·, ·). Let Pn
be orthogonal projection from L2 onto Fn embedded as above. The following facts will

be useful and are easy to check. For f ∈ L2, Pnf →L2 f (the Lebesgue differentiation

theorem gives pointwise convergence and we have uniform L2-integrability); further, if

f ′ ∈ L2 then Dnf →L2 f ′ (Dnf is a convolution of f ′ with an approximate delta); for

smooth ϕ, Pnϕ→ ϕ uniformly on compacts. It is also useful to note that Pn commutes

with Rn and with DnRn. Finally, if fn →L2 f , gn is L2-bounded and gn → g weakly in

L2, then 〈fn, gn〉 → 〈f, g〉.

Lemma 3.3.16. Let fn → f be as in the hypothesis and conclusion of Lemma 3.3.15.

Then for all ϕ ∈ C∞0 we have 〈ϕ,Hnfn〉 → H(ϕ, f). In particular, Pnϕ→ ϕ in this way

and so

〈Pnϕ,HnPnϕ〉 = 〈ϕ,HnPnϕ〉 → H(ϕ, ϕ). (3.40)

Proof. Since ϕ is compactly supported we have Rnϕ = ϕ for n large and the Rns may

be dropped. By assumption Dnfn is L2 bounded and Dnfn → f ′ weakly in L2, so by the

preceding observations Dnϕ→L2 ϕ′ and〈
ϕ,D†nDnfn

〉
= 〈Dnϕ,Dnfn〉 → 〈ϕ′, f ′〉 .

For the potential term we must verify that

〈ϕ, Vnfn〉 =
〈
ϕ,
(
4nYn,1 + 1

2

(
(4nYn,2)Tn + T †n(4nY

†
n,2)
))
fn
〉

converges to −〈ϕ′, Y f〉−〈ϕ, Y f ′〉. Recall by Assumption 1 (3.20) and (3.25) that Yn,i →
Yi compact-uniformly (i = 1, 2) and Y = Y1 + 1

2
(Y2 + Y †2 ). Writing Yn = Yn,1 + 1

2
(Yn,2 +

Y †n,2) → Y (and disregarding the notational collision with Yi), we first approximate Vn

by 4Yn:

〈ϕ, (4nYn)fn〉 = mn

(
〈ϕ, Ynfn〉 − 〈Tnϕ, YnTnfn〉

)
= mn

(
〈ϕ, Ynfn〉 − 〈Tnϕ, Ynfn〉+ 〈Tnϕ, Ynfn〉 − 〈Tnϕ, YnTnfn〉

)
= −〈Dnϕ, Ynfn〉 − 〈Tnϕ, YnDnfn〉 ,

which converges to the desired limit by the observations preceding the lemma together

with the assumptions on fn and the fact that Tnϕ →L2 ϕ in L2 since mn ‖Tnϕ− ϕ‖ =

‖Dnϕ‖ is bounded. The error in the above approximation comes as a sum of Tn and T †n

terms. Consider twice the Tn term:

|〈ϕ, (4nYn,2)(Tn − 1)fn〉| =
∣∣〈ϕ, (m−1n 4nYn,2)Dnfn

〉∣∣
≤ ‖ϕ‖ sup

I

∣∣Yn,2 − T †nYn,2∣∣ ‖Dnfn‖
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where I is a compact interval supporting ϕ. (The single bars in the supremum denote

the spectral or `2-operator norm, which is of course equivalent to the max norm on the

entries.) Note that Dnfn is L2-bounded because it converges weakly in L2. Now Yn,2 and

T †nYn,2 both converge to Y2 uniformly on I, in the latter case by the uniform continuity

of Y2 on I; it follows that the supremum, and hence the whole term, vanish in the limit.

The T †n term is handled similarly, the only difference being that the Dn in the estimate

lands on ϕ instead.

Finally, for the boundary terms Assumption 3 gives

(Pnϕ)∗i (0)wn,i fn,i(0)→ ϕ∗i (0)wi fi(0),

where in the Dirichlet case i > r0 the left side vanishes for n large because ϕi is supported

away from 0.

Turning to the second statement, we must verify that Pnϕ → ϕ as in Lemma

3.3.15. The uniform L∗n bound on Pnϕ follows from the following observations:∥∥(Pnϕ)
√

1 + η
∥∥ =

∥∥Pnϕ√1 + η
∥∥ ≤ ∥∥ϕ√1 + η

∥∥; for n large enough that Rnϕ = ϕ we

have ‖DnPnϕ‖ = ‖PnDnϕ‖ ≤ ‖Dnϕ‖ ≤ ‖ϕ′‖ (Young’s inequality); for the boundary

term note that (Pnϕ)i(0) is bounded if i ≤ r0 and in fact vanishes for n large if i > r0.

The convergence is easy: Pnϕ→ ϕ compact-uniformly and in L2, and for g ∈ L2 we have

〈g,DnPnϕ〉 = 〈Png,Dnϕ〉 → 〈g, ϕ′〉 .

We finish by recalling the argument to put all the pieces together. A technical point:

unlike in previous treatments we do not assume that the eigenvalues are simple.

Proof of Theorem 3.3.9. We first show that for all k we have λk = lim inf λn,k ≥ Λk. As-

sume that λk <∞. The eigenvalues ofHn are uniformly bounded below by Lemma 3.3.13,

so there is a subsequence along which (λn,1, . . . , λn,k) → (ξ1, . . . , ξk = λk). By the

same lemma, corresponding orthonormal eigenvector sequences have L∗n-norm uniformly

bounded. Pass to a further subsequence so that they all converge as in Lemma 3.3.15.

The limit functions are orthonormal; by Lemma 3.3.16 they are eigenfunctions with

eigenvalues ξj ≤ λk and we are done.

We proceed by induction, assuming the conclusion of the theorem up to k − 1. For

j = 0, . . . , k − 1 let vn,j be orthonormal eigenvectors corresponding to λn,j; for any

subsequence we can pass to a further subsequence such that vn,j →L2 fj, eigenfunctions

corresponding to Λj. Take an orthogonal eigenfunction fk corresponding to Λk and find
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f εk ∈ C∞0 with ‖f εk − fk‖∗ < ε. Consider the vector

fn,k = Pnf εk −
k−1∑
j=0

〈vn,j,Pnf εk〉 vn,j.

The L∗n-norm of the sum term is uniformly bounded by Cε: indeed, the ‖vn,j‖∗n
are uniformly bounded by Lemma 3.3.13, while the coefficients satisfy |〈vn,j, f εk〉| ≤
‖f εk − fk‖ + ‖vn,j − fj‖ < 2ε for large n. By the variational characterization in finite

dimensions and the uniform L∗n form bound on 〈·, Hn·〉 (by Lemma 3.3.13) together with

the uniform bound on ‖Pnf εk‖∗n (by Lemma 3.3.16), we then have

lim supλn,k ≤ lim sup
〈fn,k, Hnfn,k〉
〈fn,k, fn,k〉

= lim sup
〈Pnf εk , HnPnf εk〉
〈Pnf εk ,Pnf εk〉

+ oε(1), (3.41)

where oε(1) → 0 as ε → 0. But (3.40) of Lemma 3.3.16 provides lim 〈Pnf εk , HnPnf εk〉 =

H(f εk , f
ε
k), so the right hand side of (3.41) is

H(f εk , f
ε
k)

〈f εk , f εk〉
+ oε(1) =

H(fk, fk)

〈fk, fk〉
+ oε(1) = Λk + oε(1).

Now letting ε→ 0, we conclude lim supλn,k ≤ Λk.

Thus λn,k → Λk; Lemmas 3.3.13 and 3.3.15 imply that any subsequence of the vn,k

has a further subsequence converging in L2 to some f ∈ L∗; Lemma 3.3.16 then implies

that f is an eigenfunction corresponding to Λk. Finally, convergence is uniform over

Wn,W ≥ −b since the bound 3.3.13 is.

3.4 CLT and tightness for Gaussian and Wishart

models

We now verify Assumptions 1–3 of Section 3.3 for the band Jacobi forms of Section 3.2

and thus prove Theorems 3.1.2 and 3.1.3 via Theorem 3.3.9.

We must consider the band forms as (r×r)-block tridiagonal matrices. This amounts

to reindexing the entries by (k + rj, l + rj), where j ∈ Z+ indexes the blocks and

1 ≤ k, l ≤ r give the index within each block. The scalar processes obtained by fixing k, l

can then be analyzed jointly; finally, they can be assembled into a matrix-valued process.

The technical tool we use to establish (3.20) is a functional central limit theorem

for convergence of discrete time processes with independent increments of given mean

and variance (and controlled fourth moments) to Brownian motion plus a nice drift.
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Appearing as Corollary 6.1 in RRV, it is just a tailored version of a much more general

result given as Theorem 7.4.1 in Ethier and Kurtz (1986). We record it here.

Proposition 3.4.1. Let a ∈ R and h ∈ C1(R+), and let yn be a sequence of discrete time

real-valued processes with yn,0 = 0 and independent increments δyn,j = yn,j − yn,j−1 =

m−1n 4nyn,j. Assume that mn →∞ and

mn E δyn,j = h′(j/mn) + o(1), mn E(δyn,j)
2 = a2 + o(1), mn E(δyn,j)

4 = o(1)

uniformly for j/mn on compact sets as n → ∞. Then yn(x) = yn,bmnxc converges in

law, with respect to the compact-uniform topology, to the process h(x) + abx where bx is

a standard Brownian motion.

Remark 3.4.2. Since the limit is a.s. continuous, Skorokhod convergence (the topology

used in the references) implies uniform convergence on compact intervals (see Theorem

3.10.2 in Ethier and Kurtz 1986) and we may as well speak in terms of the latter.

The Gaussian case

Take Gn = Gn;0 +
√
nPn as in(3.13) with Gn;0 as in (3.12) and Pn = P̃n ⊕ 0n−r. We

denote upper-left r × r blocks with a tilde throughout. Set

mn = n1/3, Hn =
m2
n√
n

(
2
√
n−Gn

)
.

As usual, this soft-edge scaling can be predicted as follows. Centering Gn by 2
√
n gives,

to first order,
√
n times the discrete Laplacian on blocks of size r. With space scaled

down by mn, the Laplacian must be scaled up by m2
n to converge to the second derivative.

Finally, the scaling mn = n1/3 is determined by convergence of the next order terms to

the noise and drift parts of the limiting potential.

Decompose Hn as in (3.18),(3.19). The upper-left block is

H̃n = m2
n +mn(Wn + Yn,1;0) = m2

n(2− n−1/2G̃n,0 − P̃n);

we want the boundary term Wn to absorb the “extra” m2
n (the 2 in the right hand

side “should be” a 1) and the perturbation in order to make Yn,1;0 small just like the

subsequent increments of Yn,i). We therefore set

Wn = mn

(
1− P̃n

)
.
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With this choice Assumption 3 is an immediate consequence of the hypotheses of Theorem

3.1.2. The processes Yn,1, Yn,2 are determined and it remains to verify Assumptions 1 and

2.

We begin with Assumption 1, identifying the limiting integrated potential Y : R+ →
Mr(F) as that of the multivariate stochastic Airy operator:

Y (x) =
√

2Bx + 1
2
rx2 (3.42)

where Bx is a standard Mr(F) Brownian motion and second term is a scalar matrix.

Proof of (3.20), Gaussian case. Define scalar processes yk,l for 1 ≤ l ≤ r and l ≤ k ≤ l+r

by

yk,l =


(
Yn,1

)
k,l

l ≤ k ≤ r(
1
2
Y †n,2

)
k−r,l r + 1 ≤ k ≤ l + r.

(3.43)

(We have dropped the subscript n.) Equivalently, for 1 ≤ k, l ≤ r,

(
Yn,1

)
kl

=

y∗l,k k ≤ l

yk,l k ≥ l,

(
1
2
Y †n,2

)
kl

=

yk+r,l k ≤ l

0 k > l.
(3.44)

Then we have

δyk,l;j = n−1/6


− 2
β
g̃k+rj k = l

−gk+rj,l+rj l < k < l + r(√
n− 1√

β
χ(n−k−rj+1)β

)
k = l + r.

(3.45)

Note that the yk,l are independent increment processes that are mutually independent

of one another. With the usual embedding j = bn1/3xc, Proposition 3.4.1 together

with standard moment computations for Gaussian and Gamma random variables—in

particular

Eχα =
√
α +O(1/

√
α), E(χα −

√
α)2 = 1/2 +O(1/α), E(χα −

√
α)4 = O(1),

for α large (valid since we consider j = O(n1/3) here)—leads to the convergence of

processes

yk,l(x)⇒



√
2
β
b̃k(x) k = l

bk,l(x), l < k < l + r

1√
2β
bk(x) + 1

4
rx2 k = l + r
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where bk, b̃k are standard real Brownian motions and bk,l are standard F Brownian mo-

tions. By independence, the convergence occurs jointly over k, l and the limiting Brow-

nian motions are all independent. (For the F Brownian motions apply Proposition 3.4.1

to each of the β real components, which are independent of one another.) Therefore Yn,i

are both tight, and using (3.44) we have, jointly for 1 ≤ k, l ≤ r,

(
Yn,1 + 1

2
(Y †n,2 + Yn,2)

)
k,l

=


yk,k + 2yk+r,k

yk,l + y∗l+r,k

y∗l,k + yk+r,l

⇒



√
2
β
(̃bk + bk) + 1

2
rx2 k = l

bk,l + b∗l+r,k k > l

b∗l,k + bk+r,l k < l.

Noting that the two Brownian motions in each entry are independent and that the entries

on and below the diagonal are independent of each other, we conclude that this limiting

matrix process is distributed as Y (x) in (3.42).

We turn to Assumption 2. Here we need bounds over the full range 0 ≤ j ≤ dn/re−1.

Recall that we can extend the Yn,i processes beyond the end of the matrix arbitrarily

(Rn takes care of the truncation), and it is convenient to “continue the pattern” for

an extra block or two by setting χα = 0 for α < 0. For the decomposition (3.21), we

simply take ηn,i to be the expectation of 4Yn,i and 4ωn,i to be its centered version;

the components of ηn,i are then easily estimated and those of ωn,i become independent

increment martingales. We further set η(x) = rx.

Proof of (3.22)–(3.24), Gaussian case. From (3.45) we have ηn,1;j = 0 and

(ηn,2;j)k,l = E 2mnδyk+r,l;j = 2n1/6
(√

n− β−1/2 Eχ(n−k−r(j+1)+1)β

)
1k=l.

The estimate √
(α− 1)+ ≤ Eχα =

√
2

Γ((α + 1)/2)

Γ(α/2)
≤
√
α. (3.46)

is useful. We obtain

2n1/6 rj − c
2
√
n
≤ (ηn,2;j)k,k ≤ 2n1/6 rj + c√

n

for some fixed c, which yields the matrix inequalities

rx− cn−1/3 ≤ ηn,2(x) ≤ 2rx+ cn−1/3

and verifies (3.22) with η(x) = rx. Separately, we have the upper bound (3.23):

ηn,2(x) ≤ 2n2/3 = 2m2
n.
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The bound (3.24) may be done entry by entry, so we consider the process

{(ωi,n;j)k,l}j∈Z+ for fixed i = 1, 2 and 1 ≤ k, l ≤ r and further omit these indices; for

the F-valued processes we restrict attention further to one of the β real-valued compo-

nents, and denote the latter simply by ωn;j. Consider (3.45); the key points are that the

increments δωn;j are independent and centered, and that scaled up by n1/6 = m
1/2
n they

have uniformly bounded fourth moments. To prove (3.24) it is enough to consider x at

integer points and show that the random variables

sup
x=0,1,...,n/rmn

xε−1 sup
j=1,...,mn

|ωn;mnx+j − ωn;mnx|
2

are tight over n. Squaring, bounding the outer supremum by the corresponding sum,

and then taking expectations gives

n/rmn∑
x=0

E supj=1,...,mn |ωn;mnx+j − ωn;mnx|
4

x2−2ε
≤

n/rmn∑
x=0

16 E
∣∣ωn;mn(x+1) − ωn;mnx

∣∣4
x2−2ε

,

where we have used the Lp maximum inequality for martingales (see e.g. Proposition

2.2.16 of Ethier and Kurtz 1986). To bound the latter expectation, expand the fourth

power to obtain O(m2
n) nonzero terms that are O(m−2n ) with constants independent of x

and n. It follows that the entire sum is uniformly bounded over n, as required.

The Wishart case

Take Ln,p = Σ
1/2
n,pLn,p,0 with Ln,p,0 as in (3.14) and, denoting the upper-left r × r block

with a tilde, Σn,p = Σ̃n,p ⊕ In∧p. Recall that Ln,p is ((n + r) ∧ p) × (n ∧ p). Put

Sn,p = L†n,pLn,p and similarly for Sn,p,0; these matrices are (n∧ p)× (n∧ p) and the latter

is given explicitly in (3.15). We sometimes drop the subscripts n, p. Recall (3.16) that

S − S0 = L̃†0(Σ̃− 1)L̃0 ⊕ 0.

We set

mn,p =

( √
np

√
n+
√
p

)2/3

, Hn,p =
m2
n,p√
np

((√
n+
√
p
)2 − Sn,p) . (3.47)

See Chapter 2 for detailed heuristics behind the scaling; written in this way, it allows

that p, n→∞ together arbitrarily, i.e. only n ∧ p→∞. It is useful to note that

2−2/3(n ∧ p)1/3 ≤ mn,p ≤ (n ∧ p)1/3.
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Decompose Hn,p as in (3.18),(3.19). The upper-left block is

H̃ = m2 +m(W + Y1;0) = 2m2 − m2

√
np

(
S̃0 − n− p+ L̃†0(Σ̃− 1)L̃0

)
.

As before we want W to absorb the extra m2 and the perturbation in order to make Y1;0

small. Now the perturbation term is random, but it does not have to be fully absorbed;

it is enough that Y1;0 → 0 in probability. The reason is that the process Y1 can absorb

an overall additive random constant that tends to zero in probability, as is clear in

Assumption 1 while in Assumption 2 the constant may be put into ω1. Since L̃0 ≈
√
n,

we set

Wn,p = mn,p

(
1−

√
n/p
(
Σ̃n,p − 1

))
. (3.48)

Once again, Assumption 3 follows immediately from the hypotheses of Theorem 3.1.3.

We must still deal with the perturbed term in Y1;0 and show that

m
√
np

(
nΣ̃− L̃†0Σ̃L̃0

)
→ 0 (3.49)

in probability. We defer this to the end of the proof of Assumption 1, to which we now

turn. As in the Gaussian case, Y is given by (3.42).

Proof of (3.20), Wishart case. By the preceding paragraph it suffices to treat the null

case Σ = I and afterwards check (3.49). Define processes yk,l for 1 ≤ l ≤ r and l ≤ k ≤
l + r by (3.43) as in the Gaussian case. From (3.15) with the centering and scaling of

(3.47) and (3.19) we obtain

δyk,l;j =
m
√
np



n+ p− 1
β

(
χ̃2
(n−k−rj+1)β + χ2

(p−k−r(j+1)+1)β

)
+O(1) k = l

− 1√
β

(
χ̃(n−k−rj+1)βgk+rj,l+rj

+χ(p−l−r(j+1)+1)βg
∗
l+r(j+1),k+rj

)
+O(1) l < k < l + r

√
np− 1

β
χ̃(n−k−rj+1)βχ(p−k−rj+1)β k = l + r

where the O(1) terms stand in for the interior Gaussian sums of (3.15), all of whose

moments are bounded uniformly in n, p. Since m1+k/(np)k/2 ≤ m1−2k = o(1) for k ≥
1, these terms are negligible in the scaling of Proposition 3.4.1 in the sense that the

associated processes converge to the zero process. Next, use that expressions of type

χn −
√
n are O(1) in the same sense, and that

√
n−
√
n− j = O(j/

√
n) = O(m/

√
n) =
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o(1) since we consider j/m bounded here (and similarly for p), to write

δyk,l;j =
m
√
np



2√
β

(√
n(
√
βn− χ̃(n−k−rj+1)β)

+
√
p(
√
βp− χ(p−k−r(j+1)+1)β)

)
+O(1) k = l

−
√
n gk+rj,l+rj −

√
p g∗l+r(j+1),k+rj +O(1) l < k < l + r

1√
β

(√
p(
√
βn− χ̃(n−k−rj+1)β)

+
√
n(
√
βp− χ(p−k−rj+1)β)

)
+O(1) k = l + r

(3.50)

It suffices prove tightness and convergence in distribution along a subsequence of any

given subsequence, and we may therefore assume that p/n → γ2 ∈ [0,∞]. Each case of

(3.50) contains two terms, and each one of these terms forms an independent increment

process to which Proposition 3.4.1 may be applied. (Break the F-valued terms up further

into their real-valued parts.) Standard moment computations as in the Gaussian case,

together with independence, then lead to the joint convergence of processes

yk,l(x)⇒



√
2
β

(
1

1+γ
b̃k(x) + γ

1+γ
bk(x)

)
+ γ

(1+γ)2
rx2 k = l

1
1+γ

bk,l(x) + γ
1+γ

b∗l+r,k(x) l < k < l + r

1√
2β

(
γ

1+γ
b̃k(x) + 1

1+γ
bk(x)

)
+ 1+γ2

4(1+γ)2
rx2 k = l + r

where bk, b̃k are standard real Brownian motions and bk,l are standard F Brownian mo-

tions, all independent except that bk+r,l+r and bk,l are identified. Therefore Yn,i are both

tight. Furthermore, using (3.44) we have

(
Yn,1 + 1

2
(Y †n,2 + Yn,2)

)
k,l

=


yk,k + 2yk+r,k

yk,l + y∗l+r,k

y∗l,k + yk+r,l

⇒



√
2
β
(̃bk + bk) + 1

2
rx2 k = l

bk,l + b∗l+r,k k > l

b∗l,k + bk+r,l k < l

jointly for 1 ≤ k, l ≤ r. After the dust clears we thus arrive at exactly the same limiting

process as in the Gaussian case, namely (3.42).

We now address (3.49). Here we can replace L̃0 with
√
nIr at the cost of an error

that has uniformly bounded second and fourth moments. Now (3.48) and the assumed

lower bound on Wn,p give that Σ̃ ≤ 1 + 2
√
p/n for n, p large; this matrix inequality holds

entrywise in the diagonal basis for Σ̃ (which was fixed over n, p). One therefore obtains

error terms with mean square O(m2/n+m2/p) = O(m−1) which is o(1) as required.
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Turning to Assumption 2, we may continue the processes Yn,i past the end of the

matrix for convenience just as in the Gaussian case. The Wishart case presents an

additional issue at the “end” of the matrix: recall that the final r rows and columns of S

in (3.15) may have some apparently non-zero terms set to zero. However, these changes

are easily absorbed into the bounds that follow. For (3.21) we once again take ηn,i to be

the expectation of 4Yn,i and 4ωn,i to be its centered version. We also set η(x) = rx as

before.

Proof of (3.22)–(3.24), Wishart case. This time we have

(ηn,1;j)k,l = Emδyk,l;j = m2(np)−1/2
(
2rj − r + 1

)
1k=l,

(ηn,2;j)k,l = E 2mδyk+r,l;j = 2m2
(
1− β−1(np)−1/2 E χ̃(n−k−rj+1)βχ(p−k−rj+1)β

)
1k=l.

Using (3.46) one finds, for some constant c, that

m−1(rj + c) ≤ (ηn,1;j + ηn,2;j)k,k ≤ m−1(2rj + c)

which yields (3.22) with η(x) = rx. Separately, we have the upper bound (3.23). The os-

cillation bound (3.24) may be proved exactly as in the Gaussian case: we have once again

that {√mn(ωn,i;j)k,l}j∈Z+ are martingales with independent increments whose fourth mo-

ments are uniformly bounded.

3.5 Alternative characterizations of the laws

In this section we derive the SDE and PDE characterizations, proving Theorems 3.1.5

and 3.1.6.

First order linear ODE

For each noise path Bx, the eigenvalue equation Hβ,Wf = λf can be rewritten as a first-

order linear ODE with continuous coefficients. We begin with the formal second order

linear differential equation

f ′′(x) = (x− λ+
√

2B′x)f(x) (3.51)

where f : R+ → Fr, with initial condition

f ′(0) = Wf(0). (3.52)
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As usual we allow W ∈ M∗
r (F) and interpret (3.52) via (3.29) . Rewrite (3.51) in the

form (
f ′ −

√
2Bf

)′
= (x− λ)f −

√
2Bf ′.

Now let g = f ′ −
√

2Bf . The equation becomes

g′ = (x− λ)f −
√

2Bf ′

= (x− λ− 2B2)f −
√

2Bg.

In other words, the pair
(
f(x), g(x)

)
formally satisfies the first order linear system[

f ′

g′

]
=

[ √
2B 1

x− λ− 2B2 −
√

2B

][
f

g

]
. (3.53)

Since B0 = 0, g simply replaces f ′ in the initial condition (3.52). If one prefers, this

condition can be written in the standard form

− W̃f(0) + Ĩg(0) = 0 (3.54)

where W̃ =
∑

i≤r0 wiuiu
†
i +
∑

i>r0
uiu
†
i and Ĩ =

∑
i≤r0 uiu

†
i .

One could allow general measurable coefficients and define a solution to be a pair

of absolutely continuous functions (f, g) satisfying (3.53) Lebesgue a.e. This definition,

equivalent to writing (3.53) in an integrated form, is easily seen to coincide with (3.34). As

in Remark 3.3.5, however, we note the coefficients are continuous; solutions may therefore

be taken to satisfy (3.53) everywhere and are in fact continuously differentiable. It is

classical that the initial value problem has a unique solution which exists for all x ∈ R+

(and further depends continuously on the parameter λ and the initial condition W ).

Matrix oscillation theory

The matrix generalization of Sturm oscillation theory goes back to the classic work of

Morse Morse (1932) (see also Morse 1973). Textbook treatments of self-adjoint differen-

tial systems include that of Reid (1971). Our reference will be the paper of Baur and

Kratz (1989), which allows sufficiently general boundary conditions.

We first consider the eigenvalue problem on a finite interval [0, L] with Dirichlet

boundary condition f(L) = 0 at the right endpoint. In the scalar-valued setting, the

number of eigenvalues below λ is found to coincide with the number of zeros of f (the

solution of the initial value problem) that lie in (0, L). The correct generalization to the



Chapter 3. Several spikes 76

matrix-valued setting involves tracking a matrix whose columns form a basis of solutions,

and counting the so-called “focal points”.

We need a little terminology and a few facts from Baur and Kratz (1989), especially

Definition 1 on p. 338 there and the points that follow. A matrix solution of (3.53) is

a pair F,G : R+ → Fr×r such that each column of
[
F
G

]
is a solution. A conjoined basis

for (3.53) is a matrix solution (F,G) with the additional properties that F †G = G†F and

rank
[
F
G

]
= r. The latter properties hold identically on R+ as soon as they do at a single

point; in particular, we may set F (0) = Ĩ and G(0) = W̃ to obtain a conjoined basis for

the initial condition (3.54). A point x ∈ R+ is called a focal point if F (x) is singular,

of multiplicity nullityF (x). The following proposition summarizes what we need from

the more general results of Baur and Kratz (1989).

Proposition 3.5.1. Consider the differential system[
f ′

g′

]
=

[
A B

C − C0λ −A†

][
f

g

]

with real parameter λ, where A(x), B(x), C(x), C0(x) are n× n matrices depending con-

tinuously on x ∈ R with B,C,C0 Hermitian and B,C0 > 0. For each λ ∈ R, let (F,G)

be a conjoined basis with some fixed initial condition at 0. Consider also the associated

eigenvalue problem on [0, L] with the same boundary condition at 0 and Dirichlet con-

dition f = 0 at L. Then, for all λ ∈ R, the number of focal points of (F,G) in (0, L)

equals the number of eigenvalues below λ. Furthermore, the spectrum is purely discrete

and bounded below with eigenvalues tending to infinity.

Proof. The idea is that focal points are isolated and move continuously to the left as

λ increases. For sufficiently negative λ there are no focal points on (0, L]; each time λ

passes an eigenvalue, a new focal point is introduced at L.

We indicate how the proposition follows from the results of Baur and Kratz (1989).

Note that conditions (A1), (A2) on p. 337 are satisfied by our coefficients, and that (A3)

on p. 340 is satisfied by our boundary conditions. Theorem 1 on p. 345 thus applies.

See (3.5) on p. 341 for the definition of Λ(λ); the Dirichlet condition at L gives the

particularly simple result that the right hand side of (4.1) vanishes, so the quantity n2(λ)

is constant. Theorem 2 applies as well, and we obtain n1(λ) − n1 = n3(λ). Here n1(λ)

is the number of focal points in [0, L), n1 = limλ→−∞ n1(λ) and n3(λ) is the number

of eigenvalues below λ. To finish we consult Theorem 3 on p. 353; noting that (A4′)
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is satisfied by Section 7.2, p. 365, to find that n1 is simply the multiplicity of the focal

point at 0. The oscillation result follows. For the assertion about the spectrum we apply

Theorem 4, noting that (A5), p. 358 holds by (i) there, and (A6), p. 359 also holds .

We conclude the following for our matrix system.

Lemma 3.5.2. Consider the eigenvalue problem (3.53) on [0, L] with boundary conditions

(3.54) and f(L) = 0. For each λ ∈ R, let (F,G) be the conjoined basis initialized by

F (0) = Ĩ and G(0) = W̃ ; then the number of focal points in the interval (0, L), counting

multiplicity, equals the number of eigenvalues below λ. Furthermore, the spectrum is

purely discrete and bounded below with eigenvalues tending to infinity.

A soft argument now recovers an oscillation theorem for the original half-line problem.

Theorem 3.5.3. Consider the eigenvalue problem (3.53),(3.54) on L2(R+). For each

λ ∈ R, let (F,G) be the conjoined basis as above; then the number of focal points in

(0,∞) equals the number of eigenvalues strictly below λ.

Proof. Let ΛL,k, Λk, k = 0, 1, . . . denote the lowest eigenvalues of the truncated and

half-line operators HL, H respectively; it suffices to show that limL→∞ ΛL,k = Λk for

each k. Indeed, taking L → ∞ in Lemma 3.5.2 then yields the conclusion for each

λ ∈ R \ {Λ0,Λ1, . . .}. Letting λ ↘ Λk, the right-most focal point must tend to ∞ by

monotonicity and continuity, so the claim actually holds for all λ ∈ R.

The variational problem for HL simply minimizes over the subset of L∗ functions that

vanish on [L,∞); the Dirichlet condition is important here. It follows immediately that

ΛL,k ≥ Λk, using the min-max formulation of the variational characterization. Proceed

by induction, assuming that ΛL,j → ΛL for j = 0, . . . , k − 1.

Let fL,j be orthonormal eigenvectors corresponding to ΛL,j. By the induction hypoth-

esis, the variational characterization forH and the finite-dimensionality of its eigenspaces,

every subsequence has a further subsequence such that fL,j →L2 fj, eigenvectors corre-

sponding to Λj. Let fk be an orthogonal eigenvector corresponding to Λk and take f εk

compactly supported with ‖f εk − fk‖∗ < ε. Let

gL = f εk −
k−1∑
j=0

〈f εk , fL,j〉 fL,j.

For large L the inner products are at most 2ε, so ‖gL − fk‖∗ ≤ cε. Noting that gL is

eventually supported on [0, L], the variational characterization gives

lim sup
L→∞

ΛL,k ≤ lim sup
L→∞

H(gL, gL)

〈gL, gL〉
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and the right-hand side tends to H(fk, fk)/〈fk, fk〉 = Λk as ε→ 0.

Riccati SDE: stochastic Airy meets Dyson

Let (F,G) be a conjoined basis for (3.53) as defined in the previous subsection. Then,

on any interval with no focal points, the matrix Q = GF−1 is self-adjoint and satisfies

the matrix Riccati equation

Q′ = rx− λ− (Q+
√

2B)2. (3.55)

(see p. 338 of Baur and Kratz 1989).

As x passes through a focal point x0, an eigenvalue q of Q “explodes to −∞ and

restarts at +∞”. The precise evolution of Q near x0 can be seen by choosing a ∈ R so

that Q̃ = (Q− a)−1 = F (G− aF )−1 is defined; then Q̃ satisfies

Q̃′ =
(
1 + Q̃(

√
2B + a)

)(
1 + (

√
2B + a)Q̃

)
− (x− λ)Q̃2. (3.56)

Writing q̃ = 1/(q − a) and v for the corresponding eigenvector, notice how

q̃′(x0) = v(x0)
†Q̃′(x0)v(x0) = 1.

Thus q̃ is “pushed up through zero,” corresponding to the explosion/restart in q = 1/q̃+a.

In this way we may consider Q(x) ∈M∗
r (F) to be defined for all x. The initial condition

is then simply Q(0) = W .

Now let P = F ′F−1. While P = Q+
√

2B is not differentiable, by (3.55) it certainly

satisfies the integral equation

Px2 − Px1 =
√

2(Bx2 −Bx1) +

∫ x2

x1

(ry − λ− P 2
y ) dy

if [x1, x2] is free of focal points. In other words, P is a strong solution of the Itō equation

dPx =
√

2 dBx + (rx− λ− P 2
x )dx (3.57)

off the focal points. The evolution of P through a focal point can be described in the

coordinate P̃ = (P −a)−1 = F (F ′−aF )−1. Using (3.56) and Itō’s lemma one could write

down an SDE for P̃ = Q̃(1 +
√

2BQ̃)−1. The initial condition here is also P (0) = W .

Consider the eigenvalues p1, . . . , pr of P . The main point is that the drift term

in (3.57) is unitarily equivariant and passes through the usual derivation of Dyson’s
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Brownian motion (Dyson 1962). The eigenvalues therefore evolve as an autonomous

Markov process.

To describe the law on paths we need a space, and there are two issues: it will be

necessary to keep the eigenvalues ordered but also allow for explosions/restarts. We

therefore define a sequence of Weyl chambers Ck ⊂ (−∞,∞]r by

C0 = {p1 < · · · < pr}

C1 = {p2 < · · · < pr < p1}

C2 = {p3 < · · · < pr < p1 < p2}

and so on, permuting cyclically. We glue successive adjacent chambers together at infinity

in the natural way to make the disjoint union C = C0 ∪ C1 ∪ . . . into a connected

smooth manifold. That is, taking p1 → −∞ in C0 puts you at p1 = +∞ in C1; the

smooth structure is defined by the coordinate p̃1 = 1/p1, which vanishes along the seam.

Glue Ck−1 to Ck similarly along {p k mod r = ∞}. We also define Ck, C in which some

coordinates may be equal, and ∂Ck = Ck \Ck, ∂C = C \ C in which some coordinates are

equal.

Theorem 3.5.4. Represent the eigenvalues of W ∈ M∗
r (F) as w = (w1 . . . , wr) ∈ C0.

The eigenvalues p = (p1, . . . , pr) of P evolve as an autonomous Markov process whose

law on paths R+ → C is the unique weak solution of the SDE system

dpi = 2√
β
dbi +

(
rx− λ− p2i +

∑
j 6=i

2

pi − pj

)
dx (3.58)

with initial condition p(0) = w, where b1, . . . , br are independent standard real Brownian

motions. An eigenvalue pi can explode to −∞ and restart at +∞, meaning p crosses from

Ck to Ck+1; the evolution through an explosion is described in the coordinate p̃i = 1/pi,

which satisfies

dp̃i = − 2√
β
p̃2i dbi +

(
1 +

(
λ− rx+

∑
j 6=i

2p̃ip̃j
p̃i − p̃j

)
p̃2i + 4

β
p̃3i

)
dx. (3.59)

Proof. Deriving (3.58) from (3.57) is simply a matter of applying Itō’s lemma, at least

in C where the eigenvalues are distinct. One needs to differentiate an eigenvalue with

respect to a matrix, and this information is given by Hadamard’s variation formulas. In

detail, let A ∈ Mr(F) vary smoothly in time and suppose A(0) has distinct spectrum.
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Then eigenvalues λ1, . . . , λr of A and corresponding eigenvectors v1, . . . , vr vary smoothly

near 0 by the implicit function theorem. Differentiating Avi = λivi and v†i vi = 1 leads to

the formulas

λ̇i = v†i Ȧvi, λ̈i = v†i Ävi + 2
∑
j 6=i

∣∣v†i Ȧvj∣∣2
λi − λj

.

Writing X = Ȧ(0) and ∇X for the directional derivative, and taking v1(0), . . . , vr(0) to

be the standard basis, we find

∇Xλi = Xii, ∇2
Xλi = 2

∑
j 6=i

|Xij|2

λi − λj
.

Returning to (3.57), at each fixed time x we can change to the diagonal basis for Px

because the noise term is invariant in distribution and the drift term is equivariant. Itō’s

lemma amounts to formally writing dpi = ∇dP pi+
1
2
∇2
dP pi and using that dBii are jointly

distributed as
√

2/β dbi for i = 1 . . . , r while |dBij|2 = dt for j 6= i. We thus arrive at

(3.58).

Recall that the evolution of P through a focal point is still described by an SDE, after

changing coordinates. The same is therefore true of p through an explosion; the form

(3.59) is obtained from (3.58) by an application of Itō’s lemma.

Just as with the usual Dyson’s Brownian motion, the pi are almost surely distinct at

all positive times: p(x) ∈ C for all x > 0. One can show this “no collision property” holds

for any solution of (3.58),(3.59), even with an initial condition p(0) ∈ ∂C0. (Technically,

one defines an entrance law from ∂C by a limiting procedure.) Since the coefficients are

regular inside C, this suffices to prove uniqueness of the law. See Anderson et al. (2009),

Section 4.3.1 for a detailed proof in the driftless case.

Proof of Theorem 3.1.5. Explosions of p as in Theorem 3.5.4 correspond to focal points

of F for each λ. By Theorem 3.5.3, the total number of explosions K is equal to the

number of eigenvalues strictly below λ. (Notice that p ends up in CK .) For a fixed

λ, translation invariance of the driving Brownian motions bi allows one to shift time

x 7→ x − λ/r and use (3.3) started at x0 = −λ/r. Putting a = −λ we have P(−Λk ≤
a) = P(Λk ≥ λ) = Pa/r,w(K ≤ k) as required.

PDE and boundary value problem

We now prove the PDE characterization, Theorem 3.1.6. We will need two properties of

the eigenvalue diffusion.
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Lemma 3.5.5. Let p : [x0,∞)→ C have law Px0,w as in (3.3) and let K be the number

of explosions. Then the following hold:

(i) Given x0, k, Px0,w(K ≤ k) is increasing in w with respect to the partial order

w ≤ w′ given by wi ≤ w′i, i = 1, . . . , r.

(ii) Px0,w-almost surely, p1, . . . , pr remain bounded below in CK (after the last explo-

sion), or equivalently in C0 on the event {K = 0}.

Proof. Part (i) is a consequence Theorem 3.1.5 and Remark 3.1.1, the pathwise mono-

tonicity of the eigenvalues Λk as a function of the boundary parameter W with respect to

the usual matrix partial order. It can also be seen from the related fact that the matrix

partial order is preserved pathwise by the matrix Riccati equation (3.57), which implies

that a solution started from W explodes no later than one started from W ′ ≥ W . This

fact holds for the P evolution if it holds for the Q evolution (3.55), and for the latter it

is Theorem IV.4.1 of Reid (1972).

Part (ii) follows from the stronger assertion that pi ∼
√
rx as x → ∞. In the r = 1

case this is Proposition 3.7 of RRV. Heuristically, the single particle drift linearizes at the

stable equilibrium
√
rx to 2

√
rx(
√
rx − pi); even with the repulsion terms one expects

fluctuations of variance only C/
√
x. We omit the proof.

Proof of Theorem 3.1.6. Assume the diffusion representation of Theorem 3.1.5 for

Fβ(x; w) = P(−Λ0 ≤ x) on R × C0. We first show F = Fβ has the asserted prop-

erties and afterwards argue uniqueness. Writing L for the space-time generator of (3.3),

the PDE (3.6) is simply the equation LF = 0 after replacing x with x/r. In other words,

it is the Kolmogorov backward equation for the hitting probability (3.4) (more precisely,

the probability of never hitting {w1 = −∞}), which is L-harmonic. This extends to

wr = +∞ by using the local coordinate there; from (3.59) one sees that the coefficients

remain regular. Although the diffusivity vanishes at wr = +∞, the drift does not, and

it follows that F is continuous up to wr = +∞. The PDE holds even at points w ∈ ∂C0

with appropriate one-sided derivatives; notice that the apparent singularity in the “Dyson

term” of the PDE is in fact removable for F regular and symmetric in the wi. (For a

toy version, consider a function f : R→ R that is twice differentiable and even; then f ′

is odd and f ′(w)/w is continuous with value f ′′(0) at w = 0. These functions form the

domain of the generator of the Bessel process on the half-line {w ≥ 0} in the same way

that symmetric functions form the domain of the generator of Dyson’s Brownian motion
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on a Weyl chamber.) Finally, the picture can be copied to w ∈ (−∞,∞]r by symmetry,

permuting the wi.

The boundary condition (3.7) follows from the monotonicity property of

Lemma 3.5.5 (i). For fixed w, F (x; w) → 1 as x → ∞ because it is a distribution

function in x; by monotonicity in w, the convergence is uniform over a set of w bounded

below. To understand the boundary condition (3.8) (using w1 in C0), change to the coor-

dinate w̃1 = 1/w1 and close the domain to include the “bottom boundary” {w1 = −∞}.
Then (3.8) becomes an ordinary Dirichlet condition. While the diffusivity vanishes on

this boundary, the drift is nonzero into the boundary. The hitting probability is therefore

continuous up to the boundary.

For F k there is the following more general picture. Consider the PDE in C0 ∪ · · · ∪
Ck, defined across the seams by changing coordinates as in (3.59). Put the boundary

condition (3.7) on all the chambers and (3.8) on the bottom of Ck. Then the solution

is F k in C0; the reason is the same as for F = F 0, but now using (3.5) and the hitting

event “at most k explosions”. Similarly, the solution is F k−1 in C1 and so on down to F 0

in Ck. Continuity holds across the seams and (3.9) follows after permuting coordinates.

Toward uniqueness, suppose F̃ is another bounded solution of the boundary value

problem (3.6)–(3.8) on R × C0. With the notation of Theorem 3.1.5, F̃ (rx; px) is

a local martingale under Px0,w by the PDE (3.6). It is therefore a bounded mar-

tingale. Let ζ ∈ (x0,∞] be the time of the first explosion; optional stopping gives

F̃ (rx0; w) = Ex0,w F̃
(
r(ζ ∧ x); pζ∧x

)
for all x ≥ x0. Taking x → ∞, we conclude by

bounded convergence, the boundary behavior (3.7),(3.8) of F̃ and Lemma 3.5.5 (ii) that

F̃ (rx0,w) = Px0,w(ζ = ∞). By Theorem 3.1.5, this probability is Fβ(rx0,w). One

argues similarly for the higher eigenvalues.
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Going supercritical

Chapters 2 and 3 treat the subcritical and critical regimes of the BBP phase transition.

The supercritical regime is very different; here the largest eigenvalues no longer tend to

the edge of the limiting empirical spectral distribution, but rather separate and tend to

outlying points. Furthermore, rather than displaying Tracy-Widom fluctuations on the

order n−2/3, they display Gaussian fluctuations on the order n−1/2. (When k supercritical

population eigenvalues coincide, the k largest eigenvalues are actually governed by the

joint eigenvalue law of the GOE/GUE of size k.) As mentioned previously, in the complex

Wishart case these results were part of BBP. In the real case the limiting eigenvalue

location was confirmed by Baik and Silverstein (2006) and the limiting fluctuations by

Paul (2007), Bai and Yao (2008) who used perturbation theory arguments. (The former

paper just does k = 1, while the latter also applies to more general non-Gaussian sample

covariance matrices.)

Despite the existing results, it is interesting to try to complete the picture developed in

Chapters 2 and 3 and understand the supercritical regime in the operator limit framework.

In any case, a natural question is what happens at the “supercritical end of the critical

regime” on the level of the limiting eigenvalue process. This question is answered in the

rank one case in Section 4.1, where we prove Gaussian asymptotics of the stochastic Airy

ground state energy as the boundary condition tends to supercritical.

In Section 4.2 we use the tridiagonal form of a rank one spiked Wishart matrix to

prove that, with supercritical spiking, the largest eigenvalue tends to the correct outlying

location. The proof offers a simple heuristic for this location. In Section 4.3 we build

on these heuristics to predict the precise limiting fluctuations. One could proceed very

similarly for the rank one perturbed Gaussian model but we do not do so here.

83
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There is an underlying idea, a version of which is made precise in Section 4.1. Recall

the stochastic Airy operator

− d2

dx2
+ 2√

β
b′x + x (4.1)

acting on L2(R+), where b′x is standard Gaussian white noise. The three terms correspond

to effects in the tridiagonal models that are balanced on the scale of soft edge fluctuations.

On larger scales, the effects separate into three distinct orders: Laplacian� noise� Airy

potential. The Laplacian term therefore governs the principal eigenvector; the eigenvector

will have a deterministic limit on the correct scale, namely a decaying geometric sequence

on Z+ (or a decaying exponential function on R+ for “vanishingly supercritical” spiking).

This limiting eigenvector determines the limiting eigenvalue and governs its fluctuations,

which will be a deterministic linear functional of the noise and therefore Gaussian. The

Airy term only helps to control behaviour at infinity.

In some sense, the separation phenomenon is captured in the following “cartoon

version”: the operator −d2/dx2 on L2(R+) with boundary condition f ′(0) = af(0) has

continuous spectrum [0,∞), but when a < 0 there is also an outlying eigenvalue −a2.
We believe it is feasible to give a complete treatment of the supercritical regime using

the ideas of this chapter. Beyond the heuristics just discussed, one could proceed by

discrete analogues of the arguments of the Section 4.1, especially the coercivity/uniform

convexity argument for Lemma 4.1.3. One motivation to pursue this line is that it

would offer a new description of eigenvector concentration in the supercritical regime,

an important phenomenon studied by several authors including Paul (2007), Benaych-

Georges and Nadakuditi (2009).

4.1 The supercritical end of the critical regime

Fix β > 0 and consider the stochastic Airy operator (4.1) acting on L2(R+) with boundary

condition f ′(0) = wf(0) for some w ∈ R. Recall from Chapter 2 that there is almost

surely a well defined ground state f0 (normalized by ‖f‖ = 1 and f(0) > 0) at finite

energy Λ0. Theorem 2.2.9 provides the variational characterization

Λ0 = inf
f∈L2, ‖f‖=1

∫ ∞
0

(
f ′(x)

2
+ xf(x)2

)
dx+ wf(0)2 + 2√

β

∫ ∞
0

f(x)2 dbx (4.2)

in which the minimum is attained at f0. (Candidate minimizers should have the first

integral finite, and for these f the other two terms are a.s. defined and finite; the stochastic

integral is defined pathwise via integration by parts.)
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We are concerned here with the limit w → −∞. In this case we know from

Lemma 2.4.1 and monotonicity in w that Λ0 → −∞ a.s. We now describe the asymptotic

behaviour of f0 and Λ0. As usual, ‖f‖2H1 = ‖f‖2 + ‖f ′‖2.

Theorem 4.1.1. Almost surely |w|−1/2f0
(
|w|−1 t

)
→
√

2 e−t in H1(R+), and we have

the distributional convergence

Λ0 + w2√
|w|

⇒ N
(
0, 4

β

)
as w → −∞.

When the left-hand side is considered jointly with bx, they are asymptotically jointly

Gaussian and uncorrelated.

Remark 4.1.2. As for the higher eigenvalues, Lemma 2.4.1 and monotonicity imply that(
Λ1(w),Λ2(w), . . .

)
→
(
Λ0(+∞),Λ1(+∞), . . .

)
a.s. as w → −∞,

where w = +∞ indicates the Dirichlet (unperturbed) spectrum. The last assertion of

the theorem implies that the Gaussian limit of Λ0 is independent of this limit when they

are taken jointly.

Proof. By way of motivation, the “first order behaviour” of the ground state should

already be described by the Laplacian and boundary terms. As soon as w < 0, the

minimizer in

inf
‖f‖=1

‖f ′‖2 + wf(0)2

is
√

2|w|ewx with corresponding minimum −w2; this suggests centering by w2 and repara-

metrizing time as t = |w|x. Furthermore, the order of the fluctuations should be predicted

by the stochastic integral, which for the latter function has variance |w|; this suggests

scaling by 1/
√
|w|.

Writing

Ew =
Λ0 + w2√
|w|

,

ψ(t) = |w|−1/2 f(|w|−1 t), Bt = |w|1/2 b|w|−1t

(note that ‖ψ‖ = ‖f‖ and B is again a standard Brownian motion), we are thus led to

consider

Ew = inf
‖ψ‖=1

Iw(ψ), (4.3)
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where the objective quadratic functional is

Iw(ψ) = |w|3/2 J(ψ) + 2√
β

∫ ∞
0

ψ2 dB + |w|−3/2
∫ ∞
0

ψ2 t dt (4.4)

in which we put

J(ψ) = ‖ψ′‖2 − ψ(0)2 + ‖ψ‖2 =
∥∥ψ′ + ψ

∥∥2.
The minimum is attained at

ψw(t) = |w|−1/2 f0(|w|−1 t).

The separation of scales mentioned in the introduction can already be seen in (4.4).

Now on the one hand,

Ew = Iw(ψw) ≥ 2√
β

∫
ψ2
w dB. (4.5)

On the other hand, J(ψ) = 0 for ψ a multiple of e−t; writing

ψ∗(t) =
√

2 e−t,

certainly

Ew ≤ Iw(ψ∗) = 2√
β

∫
ψ2
∗ dB + 1

2
|w|−3/2 . (4.6)

It is convenient to recouple the models over w so that now paths of B are fixed as w

varies. The proof is completed by Proposition 4.1.5 below, where we show that ψw → ψ∗

as w → −∞ in a sense sufficient to guarantee pathwise convergence of the stochastic

integral in (4.5) to the one in (4.6). Then

Ew → 2√
β

∫
ψ2
∗ dB a.s. as w → −∞, (4.7)

which implies the distributional convergence in the theorem.

As for the joint behaviour with bx, it is enough to show that for s ∈ R and f a

compactly supported step function on R+ we have

E ei(sEw+
∫
f db) → e−(2/β)s

2−(1/2)‖f‖2 as w → −∞.

Now

E
∣∣∣ei(sEw+∫

f db) − ei(s(2/
√
β)

∫
ψ∗dB+

∫
f db)

∣∣∣ = E
∣∣∣eisEw − eis(2/√β) ∫ ψ∗dB∣∣∣→ 0



Chapter 4. Going supercritical 87

by (4.7) and the bounded convergence theorem. But

E ei(s(2/
√
β)

∫
ψ∗dB+

∫
f db) = E ei

∫∞
0 (s(2/

√
β)ψ∗(t)+|w|−1/2f(|w|−1t))dBt

= e−
1
2

∫∞
0 (s(2/

√
β)ψ∗(t)+|w|−1/2f(|w|−1t))

2
dt

which has the desired limit because the cross term
∫∞
0
ψ∗(t) |w|−1/2f(|w|−1 t) dt → 0.

(The basic fact that L2 functions on distinct scales are asymptotically orthogonal may

be proved by breaking the integral into two pieces on an intermediate scale.)

Lemma 4.1.3. If ψ ∈ H1(R+) with ‖ψ‖L2 = 1 and 〈ψ, ψ∗〉 ≥ 0, then

‖ψ − ψ∗‖2H1 ≤ 8 J(ψ).

Proof. We first claim that for ϕ ∈ H1 with 〈ϕ, e−t〉 = 0 we have

J(ϕ) ≥ ‖ϕ‖2 + 1
2
‖ϕ′‖2 .

Indeed, the orthogonality relation can be integrated by parts to give

ϕ(0) =
〈
ϕ′, e−t

〉
;

an application of Cauchy-Schwarz then yields

1
2
‖ϕ′‖2 ≥ ϕ(0)2,

which is equivalent to the claim.

Now put ϕ = ψ − 〈ψ, ψ∗〉ψ∗. By the previous estimate and the hypotheses on ψ,

‖ψ − ψ∗‖2 = 2
(
1− 〈ψ, ψ∗〉

)
≤ 2

(
1− 〈ψ, ψ∗〉2

)
= 2 ‖ϕ‖2 ≤ 2J(ϕ) = 2J(ψ).

In other words,

‖ψ − ψ∗‖ ≤
√

2J(ψ)1/2.

But

J(ψ)1/2 = J(ψ − ψ∗)1/2 = ‖(ψ′ − ψ′∗) + (ψ − ψ∗)‖ ≥ ‖ψ′ − ψ′∗‖ − ‖ψ − ψ∗‖ ,

so also

‖ψ′ − ψ′∗‖ ≤
(
1 +
√

2
)
J(ψ)1/2.

Square and add to conclude.
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Note that ψw satisfies the hypotheses of this lemma by facts about f0 from Chapter 2.

In particular, ψw > 0 by the oscillation theory (or by Perron-Frobenius theory), so

certainly 〈ψw, ψ∗〉 ≥ 0.

Lemma 4.1.4. There is a random, almost surely finite constant C0 such that∣∣∣∣ 2√
β

∫
ψ2 dB

∣∣∣∣ ≤ C0

(∥∥ψ′∥∥2 + log
(
1
ε

)∥∥ψ∥∥2 + ε
∥∥ψ√t∥∥2) (4.8)

for all ψ and all 0 < ε ≤ 1
2
.

Proof. Decompose B as in RRV (Lemma 2.3 and Proposition 2.4 there); in the last step,

use log(2 + t) ≤ log
(
1
ε

)
+ εt. (The function εt + log

(
1
ε

)
− log(2 + t) is minimized at

t = 1
ε
− 2 with minimum 1− 2ε, so the inequality holds for ε ≤ 1

2
.)

It is standard (see e.g. Halmos 1957 §18, Theorem 3) that the above quadratic form

bound may be polarized to a bilinear form bound. Denoting the quantity in parentheses

on the right hand side of (4.8) by ‖ψ‖2L∗ε , we have∣∣∣∣∫ ϕψ dB

∣∣∣∣ ≤ C0

∥∥ϕ∥∥
L∗ε

∥∥ψ∥∥
L∗ε
. (4.9)

Proposition 4.1.5. Almost surely, ψw → ψ∗ in H1(R+) and∫
ψ2
w dB →

∫
ψ2
∗ dB.

Proof. Throughout, C denotes a random, almost surely finite constant that is allowed to

change from line to line.

First, using 2 |〈ψ′, ψ〉| ≤ (1− δ) ‖ψ′‖2 + 1
1−δ ‖ψ‖

2 gives

J(ψ) ≥ δ ‖ψ′‖2 + (1− 1
1−δ ) ‖ψ‖

2 ≥ δ ‖ψ′‖2 − 2δ ‖ψ‖2

for 0 ≤ δ ≤ 1
2
. Then by (4.6) together with Lemma 4.1.4 (any ε), one has

C ≥ Iw(ψ∗)

≥ Iw(ψw)

≥ |w|3/2
(
1
2
J(ψw) + (δ/2) ‖ψ′w‖

2 − δ
)

+ 2√
β

∫
ψ2
w dB + |w|−3/2

∥∥ψw√t∥∥2.
Applying Lemma 4.1.4 now with ε = |w|−3/2 /2C0, and taking δ = 2 |w|−3/2 (C0 + 1)

above, we find

|w|3/2 J(ψw) + ‖ψ′w‖
2

+ |w|−3/2
∥∥ψw√t∥∥2 ≤ C log |w| (4.10)
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for w sufficiently negative. In particular∥∥ψw − ψ∗∥∥2H1 ≤ 8 J(ψw) ≤ C |w|−3/2 log |w| (4.11)

by Lemma 4.1.3, establishing the first assertion.

We conclude by using (4.9) with ε = |w|−3 as follows:∣∣∣∣∫ (ψ2
w − ψ2

∗
)
dB

∣∣∣∣ ≤ C0

∥∥ψw + ψ∗
∥∥
L∗ε

∥∥ψw − ψ∗∥∥L∗ε
≤ C

(∥∥ψ′w∥∥2 +
∥∥ψ′∗∥∥2 + log |w|+ |w|−3

(∥∥ψw√t∥∥2 +
∥∥ψ∗√t∥∥2))1/2

×
(∥∥ψ′w − ψ′∗∥∥2 + log |w|

∥∥ψw − ψ∗∥∥2 + |w|−3
(∥∥ψw√t∥∥2 +

∥∥ψ∗√t∥∥2))1/2
≤ C |w|−3/4 log3/2 |w| ,

where the last inequality is a consequence of (4.10) and (4.11).

4.2 The limiting location

Here we focus on the rank one spiked Wishart ensemble and its general β analogue as

defined in Chapter 2. We find the limiting location of the largest eigenvalue using a

simple heuristic together with a little matrix perturbation theory.

Our heuristic is the following observation: A spiked unscaled discrete Laplacian has

a certain geometric sequence as its principal eigenvector, which is decaying in the super-

critical case. Specifically, for r > 0 the matrix

r − 2 1

1 −2 1

1 −2
. . .

. . . . . . 1

1 −2 1

1 r−1 − 2


has an eigenvector vi = r−i with corresponding eigenvalue λ = (r− 1)2/r. We know λ is

the top eigenvalue because v has no sign-changes. (The observation also has an infinite

Jacobi matrix version.) The supercritical case is r > 1. In this case we argue that it is

good enough for the matrix to look roughly like this in the top-left corner, which gets us

the limiting location. In the next section we use first-order perturbation theory to give

a heuristic computation of the limiting fluctuations.
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Recall the tridiagonal form Sn,p = W †
n,pWn,p with Wn,p = W

β,`n,p
n,p as in (2.2). We

recall the following approximations from the heuristics in Section 2.3. The diagonal and

off-diagonal processes of βSn,p are

`n,pχ̃
2
βn + χ2

β(p−1), χ̃2
β(n−1) + χ2

β(p−2), χ̃2
β(n−2) + χ2

β(p−3), . . .

χ̃β(n−1)χβ(p−1), χ̃β(n−2)χβ(p−2), . . .

respectively. The approximations

χk ≈
√
k +

√
1/2 g, χ2

k ≈ k +
√

2k g,

are valid for k large, where g is a suitably coupled standard Gaussian. To leading order,

the top-left corner of S has n+ p on the diagonal and
√
np on the off-diagonal (ignoring

the spike). So the top-left corner of

1
√
np

(
S −

(√
n+
√
p
)2
I
)

is approximately an unscaled discrete Laplacian.

Theorem 4.2.1. Assuming the notation of Theorem 2.1.1, suppose that√
n/p (`n,p − 1) → r > 1 as n ∧ p→∞.

Then in probability (in fact almost surely),

1
√
np

(
λ1 −

(√
n+
√
p
)2) → (r − 1)2

r
as n ∧ p→∞.

Remark 4.2.2. Of course for all other λk, k ≥ 2 the corresponding limit is zero in this

scaling, by Theorem 2.1.1 and Weyl interlacing.

To recover a statement in the form familiar from Baik and Silverstein (2006), assume

that p/n→ γ2 ∈ (0,∞) and let `n,p = ` = 1 + γr. Our theorem implies the following: If

r > 1, then a.s.
1

n
λ1 → (1 + γ)2 + γ

(r − 1)2

r
= `+ γ2

`

`− 1
.

Recall that (1 + γ)2 is the right endpoint of the support of Marcenko-Pastur; the term

γ(r − 1)2/r therefore quantifies the separation. Our formulation treats n and p sym-

metrically (apart from the inherent asymmetry of the spike) and has the advantage of

allowing n, p→∞ together arbitrarily.

Toward a proof, we recall a standard fact.
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Lemma 4.2.3. Let A be a symmetric n×n matrix and endow Rn with the standard inner

product and norm. Suppose that λ̃ ∈ R and ṽ ∈ Rn satisfy ‖ṽ‖ = 1 and
∥∥(A− λ̃)ṽ

∥∥ < ε

for some ε > 0. Then there is an eigenvalue λ of A with
∣∣λ− λ̃∣∣ < ε.

Proof. Let v1, . . . , vn be an orthonormal basis of eigenvalues with corresponding eigen-

vectors λ1, . . . , λn. Write ṽ =
∑

i aivi and note that
∑

i |ai|
2 = 1. Then

ε2 >
∥∥(A− λ̃)ṽ

∥∥2 =
∥∥∑

i ai(λi − λ̃)vi
∥∥2 =

∑
i

∣∣ai∣∣2∣∣λi − λ̃∣∣2,
which implies that

∣∣λi − λ̃∣∣2 < ε2 for some i.

Proof of Theorem 4.2.1. Put

An,p =
1
√
np

(
Sn,p − (

√
n+
√
p)2
)

and rn,p =
√
n/p (`n,p − 1) .

By the remark and the lemma it suffices to show that
∥∥(An,p− λ̃n,p)ṽn,p

∥∥→ 0 a.s., where

λ̃n,p = (rn,p − 1)2/rn,p and ṽn,p(i) = r−in,p.

In the following, C denotes a constant that is independent of n, p but may change from

line to line. Let r0 > 1 be such that rn,p ≥ r0 for n ∧ p sufficiently large. Using standard

facts about moments of chi random variables, independence, and that `n,p ≤ C
√
p/n, we

estimate

E
∥∥(A− λ̃)ṽ

∥∥2 ≤ C

np
E

n∧p∑
i=0

r−2i0

((p
n

+ 1
)(

1
β
χ̃2
β(n−i) − n

)2
+
(

1
β
χ2
β(p−i) − p

)2
+
(

1
β
χ̃β(n−i)χβ(p−i) −

√
np
)2)

≤ C

np

n∧p∑
i=0

r−2i0

(
n+ p+ i(n+ p) + i2(n+ p)

)
≤ C

(
1

n
+

1

p

) ∞∑
i=0

i2r−2i0

≤ C

n ∧ p
.

(We omitted an additional error of r
−(n∧p)
0 from the last term.) While this is only good

enough for convergence in probability, similar calculations with higher moments give the

fourth moment bound E
∥∥(A− λ̃)ṽ

∥∥4 ≤ C/(n ∧ p)2.
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4.3 Heuristic for the limiting fluctuations

In the previous section we also predicted the limiting eigenvector. One can therefore

predict the first-order eigenvalue correction, i.e. the fluctuations. First-order perturbation

theory states that if λ, v is an eigenvalue/eigenvector pair of A (with v normalized) and

P is small, then to first order A+ P has an eigenvalue λ+ v†Pv.

We take up the approximations of the previous section. To first order, we found that(
Sn,p − (

√
n+
√
p)2
)
/
√
np is a “spiked discrete Laplacian”. The next order terms are,

omitting a
√

2/β prefactor and going down the diagonal and off-diagonal respectively:

1√
p
`g̃n + 1√

n
gp−1,

1√
p
g̃n−1 + 1√

n
gp−2,

1√
p
g̃n−2 + 1√

n
gp−3, . . .

1
2
√
n
g̃n−1 + 1

2
√
p
gp−1,

1
2
√
n
g̃n−2 + 1

2
√
p
gp−2, . . .

where we have labeled the g’s to match the corresponding χ’s, the important thing

being that distinctly labeled g’s are independent. Again with rn,p =
√
n/p (`n,p − 1), the

limiting eigenvector is
√

1− r−2
[

1 r−1 r−2 . . .
]†
.

First order perturbation theory then predicts that
(
λ1 − (

√
n+
√
p)2
)
/
√
np has Gaussian

fluctuations with variance

2
β
(1− r−2)2

(
1
p
`2 + ( 1√

n
+ 1√

p
r−1)2 + ( 1√

n
r−1 + 1√

p
r−2)2 + · · ·

)
= 2

β
(1− r−2)

(
1
p
`2(1− r−2) + ( 1√

n
+ 1√

p
r−1)2

)
= 2

β
(1− r−2)

(
1
p
`2
(
1− p

n(`−1)2
)

+ 1
n

(
`
`−1

)2)
=

2

β

(
`2

p
− `2

n(`− 1)2

)
.

This prediction agrees with results of BBP, Paul (2007) for β = 1, 2 respectively.

Note once again that we state the scaling slightly differently, dividing λ1 by
√
np rather

than n; our formulation has the advantage of symmetry in n, p and allowing n, p → ∞
arbitrarily.
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Connection with Painlevé II

In this chapter we connect our PDE characterization of the deformed Tracy-Widom(β)

laws, Theorems 2.1.7(ii), 2.4.3 and 3.1.6, with known Painlevé II representations for these

laws at β = 2 due to Baik (2006) (derived of course from the Fredholm determinant

representations of BBP). In the rank one case we obtain a rigorous alternative proof

of these representations. Furthermore, using results of Baik and Rains (2000, 2001) we

guess and prove a similar formula at β = 4. In particular, we recover a novel proof of

the Painlevé II representations of the Tracy-Widom laws for β = 2, 4.

At β = 2 we indicate how the connection extends to the second largest and subsequent

eigenvalue laws. Put another way, the connection between the PDE and Painlevé II

includes not only the Hastings-McLeod solution but also the Ablowitz-Segur solutions.

For the multi-spiked deformations, we describe a computer-assisted symbolic computation

providing strong evidence that the connection holds here as well.

A number of points remain somewhat mysterious. Most obviously, we lack a connec-

tion in the β = 1 case; while the literature previously did not even suggest a guess, it

would now be satisfying to reconcile (2.9), (2.10) with the formula obtained by Mo (2011).

We point out that in the work of Dieng (2005), the β = 1 case also involves additional

complications; perhaps they are related to ours, though this is idle speculation.

Even at β = 2, 4 it seems there should be a more direct way to derive or at least

understand the connection. From the point of view of the PDE, some kind of extra

structure appears to be present at certain special values of the parameter β; what about

other values? From the point of view of nonlinear special functions, we show directly—

independently of any limit theorems—how certain well-studied solutions of Painlevé II

admit a new characterization in terms of a linear parabolic boundary value problem in

93
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the plane.

5.1 Tracy-Widom laws and rank one deformations

We introduce the functions involved in the Painlevé representations. The Hastings-

McLeod solution u(x) of the homogeneous Painlevé II equation

u′′ = 2u3 + xu, (5.1)

is characterized by

u(x) ∼ Ai(x) as x→ +∞ (5.2)

where Ai(x) is the Airy function (characterized in turn by Ai′′ = xAi and Ai(+∞) = 0).

It is known that there is a unique such function and that it has no singularities on R
(Hastings and McLeod 1980). Put

v(x) =
∫∞
x
u2, (5.3)

E(x) = exp
(
−
∫∞
x
u
)
, F (x) = exp

(
−
∫∞
x
v
)
. (5.4)

Next define two functions f(x,w), g(x,w) on R2, analytic in w for each fixed x, by the

first order linear ODEs

∂

∂w

(
f

g

)
=

(
u2 −wu− u′

−wu+ u′ w2 − x− u2

)(
f

g

)
(5.5)

and the initial conditions

f(x, 0) = E(x) = g(x, 0). (5.6)

Equation (5.5) is one member of the Lax pair for the Painlevé II equation. The functions

f, g can also be defined in terms of the solution of the associated Riemann-Hilbert prob-

lem; analysis of the latter yields some information about u, f, g summarized in Facts 5.1.5

and 5.1.6 below. The following theorem expresses the relationship between the objects

just defined and the general β characterization at β = 2, 4.

Theorem 5.1.1. The identities

F2,w(x) = f(x,w)F (x), (5.7)

F4,w(x) =

(
(f + g)E−1/2 + (f − g)E1/2

2

)
F 1/2

∣∣∣∣
(22/3x, 21/3w)

(5.8)

hold and follow directly from Theorem 2.1.7 and Facts 5.1.5 and 5.1.6.
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The formula for F2,w is given by Baik (2006), although it appeared earlier in work of

Baik and Rains (2000, 2001) in a very different context. The formula for F4,w appears

in Baik and Rains (2000, 2001) in a disguised form; the w = 0 case is obtained by Wang

(2008), but it is a new result in this context for w 6= 0,∞.

In particular, we recover the Painlevé II representations of Tracy and Widom at these

β in a novel and simple way.

Corollary 5.1.2 (Tracy and Widom 1994, 1996, BBP 2005, Wang 2008). We have

F2,∞(x) = F (x), (5.9)

F4,∞(2−2/3x) = 1
2

(
E1/2(x) + E−1/2(x)

)
F 1/2(x), (5.10)

F
1/2
2,0 (x) = F4,0(2

−2/3x) = E1/2(x)F 1/2(x). (5.11)

Remark 5.1.3. The latter distribution is known to be F1,∞(x) (Tracy and Widom 1996).

Unfortunately we lack an independent proof.

Remark 5.1.4. With β = 4 one often encounters an old convention in which the scaling

of the independent variable is “off” by a factor 21/6.

We now prove Theorem 5.1.1 and Corollary 5.1.2. We will need some standard facts

about the function u(x) defined by (5.1, 5.2) and the derived functions v(x), E(x), F (x)

defined in (5.3, 5.4).

Fact 5.1.5. The following hold:

(i) u > 0 on R and u′/u ∼ −
√
x as x→ +∞.

(ii) E and F are distribution functions.

(iii) E(x) = O(e−cx
3/2

) for some c > 0 as x→ +∞.

We will also take for granted some additional information about the functions f(x,w),

g(x,w) defined by (5.5, 5.6).

Fact 5.1.6. The following hold.

(i) For each x ∈ R,

lim
w→+∞

(
f

g

)
=

(
1

0

)
, (5.12)

lim
w→−∞

(
f

g

)
=

(
0

0

)
. (5.13)
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(ii) For each w ∈ R,

∂

∂x

(
f

g

)
=

(
0 u(x)

u(x) −w

)(
f

g

)
. (5.14)

(iii) There is the identity

g(x,w) = f(x,−w)e
1
3
w3−xw. (5.15)

(iv) For fixed w ∈ R,

f(x,w)→ 1 as x→ +∞; (5.16)

f(x,w) > 0 for x sufficiently negative. (5.17)

These properties follow from an analysis of the associated Riemann-Hilbert problem

with the special monodromy data corresponding to the Hastings-McLeod solution (see

Fokas, Its, Kapaev and Novokshenov 2006). They are proved in Baik and Rains (2001)

except for (iv) which goes back to Deift and Zhou (1995). Interestingly (5.6) and (5.12)

are interchangeable in that the latter also uniquely determines a solution of (5.5); this

fact does not depend on the specific solution of (5.1) specified by (5.2). By contrast,

(5.13) does depend on (5.2). Equations (5.5, 5.14) constitute a so-called Lax pair for the

Painlevé II equation (5.1). (It is in fact a simple transformation of the standard Flaschka-

Newell Lax pair.) The consistency condition of this overdetermined system—i.e. that the

partials commute—is (5.1).

Proof of Theorem 5.1.1, β = 2 case. Let F̃2(x,w) denote the right-hand side of (5.7).

Using (5.4), (5.5) and (5.14), we check that that F̃2 solves the PDE (2.9) with β = 2:

compute

∂F̃2

∂x
=
{
vf + ug

}
F

∂F̃2

∂w
=
{
u2f +

(
−wu− u′

)
g
}
F

∂2F̃2

∂w2
=
{(
u4 + w2u2 − (u′)2

)
f +

(
−u+ (wu+ u′)(x− w2)

)
g
}
F

and substitute. The coefficient of g vanishes and the coefficient of f is

v + u4 − (u′)2 + xu2.

Differentiating, we see that this quantity is constant by (5.1). As all terms vanish in the

limit as x→∞, the constant is zero.
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We must check that F̃2 is bounded and that it has the boundary behaviour (2.10).

To this end we claim f, g > 0 on R2. Fixing w, (5.17, 5.15) cover x sufficiently negative.

Now (5.14) shows f increases at least until x0 = min{x : g(x,w) = 0}. But if x0

exists then (5.14) shows ∂g
∂x

(x0) > 0, a contradiction. This proves the claim. It now

follows from (5.14) that ∂f
∂x

> 0. From (5.16) we deduce that f ≤ 1; in particular f is

bounded, and hence so is F̃2. Furthermore, for a given x ∈ R and ε > 0, (5.12) yields

w+ such that f > 1 − ε on [x,∞) × [w+,∞), and (5.13) yields w− such that f < ε on

(−∞, x]× (−∞, w−]. Using that F (x) is a distribution function, (2.10) follows.

Proof of Theorem 5.1.1, β = 4 case. That the right-hand side F̃4 of (5.8) satisfies the

PDE (2.9) with β = 4 may be verified just as in the β = 2 case; the computation is more

tedious but the result is very similar and the final step is the same.

It is a little more work to get boundedness and the boundary behaviour (2.10) this

time. Dropping the scale factors on x,w, consider

G = F−1/2F̃4 = 1
2

(
E−1/2 + E1/2

)
f + 1

2

(
E−1/2 − E1/2

)
g.

Clearly G > 0. For fixed w, G→ 1 as x→∞ by (5.16) and the fact that E−1/2−E1/2 =

O(e−cx
3/2

) while g = O(ewx) from (5.15). Now by (5.14) we have

∂G

∂x
= 1

2

(
E−1/2 + E1/2

)(
1
2
ug
)

+ 1
2

(
E−1/2 − E1/2

)(
1
2
uf − wg

)
,

which is positive for w ≤ 0. Boundedness in the lower half-plane {w ≤ 0} follows, as

does the lower boundary behaviour using (5.13).

From (5.15) we immediately see g ≤ 1 on {x ≥ 0, 0 ≤ w ≤
√

3x}. By Lemma 5.1.2,
∂
∂w
Fβ,w(x) ≥ 0. The β = 2 case of the present theorem then implies that ∂f

∂w
≥ 0.

From (5.5) we conclude g ≤ u/(w + u′/u) provided the denominator is positive. But

u′/u ∼ −
√
x as x → +∞, so there is x1 such that u′/u ≥ −

√
2x for x ≥ x1. The latter

bound for g therefore implies that g is bounded on {x ≥ x1, w ≥
√

3x}. Moreover, for

any x0 < x1 we have that u and u′/u are bounded on the interval x0 ≤ x ≤ x1, so

g is bounded uniformly over these x for all w sufficiently large. Putting these bounds

together we conclude g is bounded on all right half-planes {x ≥ x0}, and the same then

follows for F̃4.

The upper boundary behaviour follows as well. Indeed, as x,w → ∞ together the

coefficient of g vanishes while the coefficient of f tends to 1; the g-term then vanishes

while the f -term tends to 1 as in the β = 2 case.
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It remains to show F̃4 is bounded on the whole plane; it suffices to bound F̃4 on the

upper-left quadrant Q = {x ≤ 0, w ≥ 0}. Here we can use the fact that F̃4 solves the

PDE. With notation as in Theorem 2.1.7 we have that F̃4(x, px) is a local martingale under

P(x0,w0). By boundedness on right half-planes, it is in fact a bounded martingale. Using

that paths explode only to −∞, optional stopping gives the representation F̃4(x0, w0) =

E(x0,w0) F̃4(T, pT ) where T = inf{x : (x, px) /∈ Q}. The bound thus extends to Q.

Proof of Corollary 5.1.2. These identities are straightforward consequences of the theo-

rem, (5.6) and (5.12).

5.2 Subsequent eigenvalue laws

In the previous section we demonstrated an explicit connection between our boundary

value problem for the top eigenvalue law at β = 2 and the Hastings-McLeod solution of

Painlevé II. In this section, based on conversations with Alexander Its, we outline how

the connection extends to one between the boundary value problem for the subsequent

eigenvalue laws and the Ablowitz-Segur solutions.

Taking up the notation of Theorem 2.4.3, let F(k)(x;w) and F(k)(x) = F(k)(x; +∞) be

the limiting distributions for the w-deformed and un-deformed (k+1)st largest eigenvalue

with β = 2. Suppose 0 ≤ λ ≤ 1. Tracy and Widom (1994) proved that

∞∑
k=0

(1− λ)kλF(k)(x) = exp

(
−
∫ ∞
x

(s− x)u2(s, λ) ds

)
(5.18)

where u(·, λ) solves (5.1) subject to

u(x, λ) ∼
√
λAi(x) as x→∞. (5.19)

Ablowitz and Segur (1977) show that the latter function is unique with no singularities

on R for 0 ≤ λ < 1; Hastings and McLeod (1980) showed this statement continues

to hold for λ = 1 (but fails for λ > 1). The subsequent eigenvalue laws are therefore

expressed, via the generating function on the left side of (5.18), in terms of the Ablowitz-

Segur solutions. Of course one could differentiate repeatedly at λ = 1 and solve for

F(1), F(2), . . . to obtain the formulas in Tracy and Widom (1994).

Remark 5.2.1. Tracy and Widom (1994) actually showed the two sides of (5.18) are

both equal to a certain Fredholm determinant. We briefly explain the situation by
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introducing the determinantal representation at β = 2; while not neeeded here, it is

somewhat illuminating. The β = 2 soft edge limit is a determinantal point process with

the so-called Airy kernel given by

A(x, y) =
Ai(x) Ai′(y)− Ai′(x) Ai(y)

x− y

(Forrester 1993). See Hough, Krishnapur, Peres and Virág (2009) for definitions and facts

about determinantal processes. The gap probabilities can be represented by Fredholm

determinants: for example,

F(0)(x) = det(1−Ax)

where Ax represents the (trace class) integral operator with Airy kernel acting on

L2(x,∞). The subsequent eigenvalue laws are encoded as follows. For 0 ≤ λ ≤ 1,

the determinantal process with kernel λAx can be described probabilistically by sam-

pling from the original λ = 1 process and then independently deleting each point with

probability 1 − λ. For the gap probability of this “incomplete spectrum” we then have

the geometric mixture

∞∑
k=0

(1− λ)kλF(k)(x) = det(1− λAx). (5.20)

Tracy and Widom (1994) prove the identity of the right hand sides of (5.18) and (5.20).

Turning to our PDE characterization Theorem 2.4.3, consider the geometric mixture

Fλ(x;w) =
∞∑
k=0

(1− λ)kλF(k)(x;w).

Recall that F(k) solves the usual PDE (2.9); by linearity, so does Fλ. Writing the boundary

conditions informally, F(k) also solves the usual F(k)(+∞,+∞) = 1 but now the recursive

condition

F(k)(x,−∞) = F(k−1)(x,+∞).

It follows that Fλ solves Fλ(+∞,+∞) = 1 but now the “periodic” condition

Fλ(x,−∞) = (1− λ)Fλ(x,+∞). (5.21)

One can show that there is a unique bounded solution of the PDE with these boundary

conditions; argue as in Section 2.4 but using a diffusion path that explodes and restarts

a random number of times with Geometric(λ) distribution.
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Now, one can also define λ-dependent “Ablowitz-Segur versions” of v(x), E(x), F (x),

f(x;w), g(x;w) by (5.3)–(5.6) but using u(x, λ) characterized by (5.1),(5.19). Once again

(5.14) also holds, and therefore F̃λ(x;w) = F (x)f(x,w) satisfies the PDE (2.9) by the

same independent verification as in Section 5.1. Remarkably, it is also possible to verify

independently that this f and hence F̃λ satisfy the same boundary conditions as those

satisfied by Fλ, especially the periodic boundary conditon (5.21)! We omit the details,

deferring to a personal communication (Its 2011).

5.3 Higher-rank deformations

Baik (2006) also gives a formula for the multi-parameter function F2(x;w1, . . . , wr) which

appeared originally in BBP and which we also characterize in Theorem 3.1.6. While we

do not have an independent proof of Baik’s formula at present, we used the computer

algebra system Maple to verify symbolically that it does indeed satisfy our PDE (3.6) at

β = 2 for r = 2, 3, 4, 5. Of course, a pencil-and-paper proof for all r would be much more

satisfying. (It would then remain to verify boundedness and the boundary conditions

(3.7),(3.8).)

Baik’s formula is

F2(x;w1, . . . , wr) = F (x)
det
((
wi + ∂

∂x

)j−1
f(x,wi)

)
1≤i,j≤r∏

1≤i<j≤r(wj − wi)
. (5.22)

Our symbolic verification for small values of r consisted of the following steps. The

differential relations given by (5.1), (5.3), (5.4), (5.5) and (5.14) were encoded as formal

substitution rules. The determinant in (5.22) was expanded (this step becomes problem-

atic for larger r!) and the result plugged into our PDE (3.6). The substitution rules were

then applied repeatedly. Finally, the result was factored using Maple’s built-in command.

Each time, the output contained the factor

v + u4 − (u′)2 + xu2,

which vanishes identically. (Once again, differentiate and apply (5.1) to see it is constant

and then take x→∞ to see the constant is zero.)
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A note on numerics

Consider the problem of evaluating the Tracy-Widom distributions Fβ(x) numerically.

One use for such values (especially with β = 1) is in hypothesis testing on high-

dimensional data, e.g. with the so-called largest root test (Johnstone 2001, 2007, 2008,

2009). Another use has been in high-precision experimental verification of mathematical

predictions about growth interface fluctuations (Takeuchi and Sano 2010). A third use

is in “experimental mathematics”: good numerics allow one to test proposed relations

or identities before attempting a proof, and even sometimes to discover new identities

(Bornemann 2010a).

If there were no structure at all, the only recourse would be to Monte Carlo simu-

lation with large random matrices. Of course, the Fredholm determinant and Painlevé

II representations suggest better alternatives. For a long time, the common point of

view was that the Painlevé representations offered the most straightforward method. As

this method essentially only requires solving an ODE/initial value problem on the line,

one might reasonably expect this to be the case. Unfortunately, näıve solution of the

Painlevé II equation (5.1) with Hastings-Mcleod asymptotic data (5.2) is well-known to

be unstable and inevitably leads to large errors. Deeper knowledge of this nonlinear

special function (the so-called “connection formulas” giving the left tail asymptotics)

allowed Tracy and Widom and especially Prähofer and Spohn (2004) to obtain good re-

sults. The latter authors obtained tables with 16-digit accuracy (Prähofer 2003) but used

variable precision software arithmetic with up to 1500 digits. More recently, Bornemann

(2010b) demonstrated that the Fredholm determinant representations actually offer the

better route to efficient and accurate numerical evaluation. See Bornemann (2010a) for

a review of these developments.
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In this short note we suggest a third approach, under development with Brian Sutton,

based on numerical solution of the boundary value problem (2.9),(2.10). While numerical

solution of PDE can in general be computationally demanding and fraught with potential

problems, preliminary results using a standard solution scheme are very promising.

The main novelty of the approach is that it is “general β”: in stark contrast to the

other approaches, one can switch from F1 to F2 to F4 by changing a single parameter in

the code. Of course one can also evaluate Fβ for nonclassical β, and here our method

seems far superior to the one suggested in RRV, namely Monte-Carlo simulation based on

the diffusion representation. Another new feature is that one automatically computes an

entire table of values at once, rather than evaluating one argument at a time. One further

obtains all the rank one deformed distributions Fβ(x;w) for free along the way, and for

β = 1 this is so far the only reasonable way to evaluate these distributions numerically.

(Using (3.6), it should be possible to obtain the higher rank deformations as well.) Finally,

extension to subsequent eigenvalue distributions is completely straightforward. A current

limitation, however, is the lack of access to joint distributions of the eigenvalues (i.e.

multi-point correlation functions of the soft edge limit).

Turning to the details of the implementation, the PDE (2.9) is a fairly standard

diffusion-advection equation with space variable w and time variable −x. The main

apparent difficulty with the formulation of the boundary value problem (2.9), (2.10) is

that the boundary conditions and the desired slice of the solution are all at infinity. There

is a natural way around this problem for the w variable: in deriving the PDE, instead of

using the affine Riccatti coordinate w = f ′/f in the (f, f ′) phase plane of the stochastic

Airy equation, use the angular Prüfer coordinate θ = arg(f, f ′). This amounts to simply

making a tangent substitution; we actually use w = − cot θ to put the bottom boundary

w = −∞ at θ = 0.

Abusing notation we still write F (x, θ) and the equation becomes

∂F

∂x
+

(
2

β
sin4 θ

)
∂2F

∂θ2
+

((
x+

2

β
sin 2θ

)
sin2 θ − cos2 θ

)
∂F

∂θ
= 0.

Note that the coefficients are smooth: there is in fact no singularity at θ = kπ. The

boundary conditions become

F → 1 as x→∞ with θ ≥ θ0 > 0

F = 0 on θ = 0

and one finds the undeformed Tracy-Widom(β) distribution at the θ = π slice, i.e.
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Fβ = F (·, π). The equation makes sense for all θ > 0, however, and by Theorem 2.4.3,

one finds the k’th largest eigenvalue law at θ = kπ.

To deal with the boundary condition at x = +∞, we cut the domain off at, say,

x = x0 = 10 and use the Gaussian asymptotics obtained in Theorem 4.1.1. Specifically,

we use the approximately valid initial data

F (x0, θ) =


Φ

(
x0 − cot2 θ√
(4/β) cot θ

)
0 ≤ θ ≤ π/2

1 θ ≥ π/2

where Φ is the standard normal distribution function. (Plots confirm this initial data

is correct. However, there appears to be some inherent stability in the sense that using

“wrong” initial data at x = 10 barely affects the results for, say, x ≤ 9.)

At this stage we can almost plug the boundary value problem into an off-the-shelf

numerical solution package such as Mathematica’s NDSolve. We still need an upper

boundary, so we cut the domain off arbitrarily at θ = θ1. Mathematically there is no need

for an upper boundary condition: at θ = kπ the equation has vanishing diffusivity and

a unit upward drift (going in the positive time or −x direction). One might incorporate

this property into a custom numerical scheme using upwind differencing, but off-the-

shelf schemes require a boundary condition and we simply use F (x, θ1) = 1. If we are

interested in values θ ≤ kπ, it seems wise to use θ1 = (k + 1)π at least.

Choosing any final time, say x = x1 = −10, it is now possible to plug our linear

parabolic initial/boundary value problem on the box [x1, x0]× [0, θ1] into Mathematica’s

NDSolve. Here is a sample implementation (with b = β = 1 and z = θ):

b = 1;

h[x_, z_] :=

Piecewise[{{0, z == 0},

{CDF[NormalDistribution[Cot[z]^2,Sqrt[4/b*Cot[z]]],x], 0<z<Pi/2},

{1, z>=Pi/2}}]

x0 = 10; xm = -10; zm = 3 Pi;

sol = NDSolve[{D[F[x,z],x] + (2/b)Sin[z]^4*D[F[x,z],{z,2}]

+((x+(2/b)Sin[2*z])*Sin[z]^2-Cos[z]^2) D[F[x,z],z] == 0,

F[x0,z] == h[x0,z], F[x,0] == 0, F[x,zm] == 1},

F, {z,0,zm}, {x,x0,xm}, MaxStepSize->.005, AccuracyGoal->6];
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This simple code executes in around 10 seconds on a laptop. The resulting object,

essentially a table of values, is of Mathematica type InterpolatingFunction. It can

therefore be conveniently evaluated at any point; slices can be numerically integrated,

differentiated or even inverted to solve for quantiles. We run a very simple test:

Fb[x_] := F[x, Pi] /. sol[[1]];

NumberForm[{x,Fb[x],Log[Fb’[x]]},8]/.x->2

NumberForm[{x,Fb[x],Log[Fb’[x]]},8]/.x->-2

These commands define Fβ (recall we put β = 1) and evaluate F1(x) and logF ′1(x) at

x = 2,−2 with the output displayed to 8 digits:

{ 2, 0.98959757, -4.0472670}

{-2, 0.27432019, -1.2680192}

These values are in agreement up to the last digit with those found in Prähofer (2003).

One finds similarly good results over a range of x-values and for β = 2 as well. Numeri-

cally integrating to find the mean and variance also agrees well with published results for

β = 1, 2, 4. (Note that for β = 4 published results generally use an old scaling convention

whereby the independent variable is off by a factor 21/6.)

If one wants fast results for plotting or experimenting, it is possible to tweak

MaxStepSize and AccuracyGoal to make the code yield 5–6 digits in less than a second.

At this point, attempting to push for more than 8–9 digits seems to increase compute

time significantly without giving uniformly better results. One should remember, how-

ever, that the schemes used here are not tailored to the problem at hand. We are hopeful

that the method presented could be improved and optimized in many respects.



Appendix A

Stochastic Airy is a classical

Sturm-Liouville problem

The spectral theory of the Stochastic Airy operator and its Riccati diffusion representa-

tion are developed in Ramı́rez, Rider and Virág (2011) (RRV). It is possible to recast

this development to take advantage of classical Sturm-Liouville theory. The point is

that continuous integrated potentials actually fall well within the scope of the standard

theory. One rewrites the eigenvalue equation as a pair of first order linear ODEs with

continuous coefficients; this system is in fact equivalent to the integrated form of the

eigenvalue equation in the paper. A further change of variables reduces the equation to

standard Sturm-Liouville form with coefficients satisfying the most classical hypotheses.

The main advantage is that various standard results become available. For the prob-

lem on a finite interval, the classical Sturm oscillation and comparison theorems apply

directly. One also more easily gets a full picture of the spectral theory, including for

example the completeness of the eigenfunctions in L2(R+).

After the fact, one can apply the Riccati transformation to the linear system, obtain-

ing a nonlinear ODE with continuous coefficients whose solutions are already understood.

A final change of variables recovers the SDE from the ODE. This formulation has the

further advantage of avoiding infinity: “blowups and restarts” only appear once the work

is already done. Of course, they could be avoided altogether by working with the angular

Prüfer coordinate instead of the affine Riccati coordinate in the phase plane; the resulting

ODE and SDE have trigonometric rather than quadratic nonlinearity, however, and are

somewhat more complicated (see Chapter 6).
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The linear system

The formal second order linear differential equation

f ′′(x) = (x− λ+ b′x)f(x) (A.1)

on x ∈ R+ with initial condition

f ′(0) = wf(0) (A.2)

has a standard classical interpretation. Note that the Dirichlet case f(0) = 0 is included

by formally allowing w = +∞, and we omit the 2√
β

factor in the white noise. Following

Section V.1 of Reid (1971), begin by rewriting (A.1) in the form(
f ′ − bxf

)′
= (x− λ)f − bxf ′.

Now let g = f ′ − bxf . The equation becomes

g′ = (x− λ)f − bxf ′

= (x− λ− b2x)f − bxg.

In other words, the pair
(
f(x), g(x)

)
∈ R2 formally satisfies the first order linear system(

f ′

g′

)
=

(
bx 1

x− λ− b2x −bx

)(
f

g

)
. (A.3)

The initial condition becomes
(
f(0), g(0)

)
= (1, w) up to a factor, (0,1).

Following Carathéodory one can allow general measurable coefficients and define a

solution to be a pair of absolutely continuous functions (f, g) satisfying (A.3) Lebesgue

a.e. This definition, equivalent to writing (A.3) in integrated form, is easily seen to

coincide with the definition in RRV. Here the coefficients are continuous, however; such

solutions may therefore be taken to satisfy (A.3) everywhere and are in fact continuously

differentiable. It is classical that the initial value problem has a unique solution, which

exists for all x ∈ R+ and depends smoothly on the parameter λ and the initial condition

w (see e.g. Sections 1.5 and 1.7 of Coddington and Levinson 1955).

The Sturm-Liouville equation

While Reid (1971, 1980) works in a framework sufficiently general to include (A.3), he

also discusses a standard reduction to a simpler form. It consists in the integrating factor

substitution

f̃ = e−
∫ x
0 bf, g̃ = e

∫ x
0 bg,
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which transforms (A.3) into(
f̃ ′

g̃′

)
=

(
0 e−2

∫ x
0 b

(x− λ− b2x)e2
∫ x
0 b 0

)(
f̃

g̃

)
. (A.4)

The auxilliary function g̃ = e2
∫ x
0 bf̃ ′ is sometimes called the “quasi-derivative”. It is

common to abbreviate (A.4) as(
e2

∫ x
0 bf̃ ′

)′
= (x− λ− b2x)e2

∫ x
0 bf̃ . (A.5)

The latter equation is in standard Sturm-Liouville form. As such it satisfies the most

classical hypotheses: the coefficients are continuous, the coefficient of f̃ ′ is positive and

continuously differentiable, and the “weight function” e2
∫ x
0 b that multiplies λ is positive.

In the language of functional analysis, the mapping f 7→ f̃ = e−
∫ x
0 bf is an isometry

of L2(R+) onto the weighted space L2(R+, e
2
∫ x
0 bdx). It transforms the stochastic Airy

operator

H = − d2

dx2
+ x+ b′x

which is self-adjoint on L2(R+, dx) into the classical Sturm-Liouville operator

H̃ = −e−2
∫ x
0 b
d

dx
e2

∫ x
0 b
d

dx
+ x− b2x

which is self-adjoint on L2(R+, e
2
∫ x
0 bdx). Denoting the weighted inner product with a

tilde and neglecting boundary terms, the associated quadratic form is simply〈
f̃ , H̃f̃

〉
∼ =

〈
f̃ ′, f̃ ′

〉
∼ +

〈
f̃ , (x− b2x)f̃

〉
∼

=
〈
f ′ − bxf, f ′ − bxf

〉
+
〈
f, (x− b2x)f

〉
=
〈
f ′, f ′

〉
+
〈
f, xf

〉
− 2
〈
f ′, bxf

〉
which is precisely the integrated-by-parts definition of

〈
f,Hf

〉
given in RRV!

Sturm-Liouville theory

In the 1830s Sturm and Liouville studied so-called regular self-adjoint second order

boundary value problems, marking the first systematic investigation of an important

class of equations that generally lack explicit solutions. Here “regular” basically means

that the problem is posed on a compact interval. In 1910 Weyl initiated the study of the

much more complicated singular case, which includes the present problem.
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Weyl’s theory begins with the “limit-point/limit-circle” dichotomy, explained in Sec-

tion 9.2 of Teschl (2009). In functional analytic language, the point is to understand the

self-adjoint versions of the operator. In our case H̃ is regular and hence limit-circle at the

left endpoint 0. At the right endpoint ∞, H̃ is limit-point by Weyl’s criterion (Theorem

9.9 in Teschl 2009) since there are many solutions of (A.5) that are not square integrable

near infinity. It follows that, for each w ∈ (−∞,∞], the operator H̃ with domain{
f ∈ L2(R+) : f ′,

(
e2

∫ x
0 bf ′

)′ ∈ L1
loc, H̃f ∈ L2, f ′(0) = wf ′(0)

}
is self-adjoint (Theorem 9.6 in Teschl 2009).

The spectral theorem and the min-max theorem now apply (Theorems 3.7 and 4.10

in Teschl 2009). The variational characterization in RRV, together with the fact that

eigenvalues accumulate only at infinity (proved very simply just before Lemma 2.2.7),

implies rigorously that there is no essential spectrum. The eigenfunctions form a complete

orthonormal basis for L2(R+ e
2
∫ x
0 bdx), and the resolvents are compact operators on the

latter space. The completeness transfers to the eigenfunctions of H in L2(R+), implying

the expansions

Hf =
∞∑
k=0

λk 〈fk, f〉 fk,

〈
f,Hf

〉
=
∞∑
k=0

λk |〈f, fk〉|2 .

While there are oscillation theorems for singular Sturm-Liouville problems, they are

far less straightforward than the one for the classical regular case. Here it still seems

best to proceed as in RRV, truncating to approximate the singular problem with regular

problems that converge to it in norm resolvent sense.

We therefore consider the truncated eigenvalue problem HL on a compact interval

[0, L] with Dirichlet condition f(L) = 0 at the right endpoint. In the form (A.5), we

can use the most classical oscillation theorem in Section 8.2 of Coddington and Levinson

(1955); see also V.7 of Reid (1971) or II.5 of Reid (1980). The theorem states that

the spectrum of HL is purely discrete, the eigenvalues are simple and form a sequence

λL0 < λL1 < ... with λLk → ∞ as k → ∞, and the eigenfunction fLk corresponding to λLk

has exactly k zeros on (0, L).

Comparison theorems in 8.1 of Coddington and Levinson (1955) or V.7 of Reid (1971)

state that, for each λ, the kth largest zero of the solution f(x;λ) of the initial value
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problem on R+ is a continuous decreasing function of λ as soon as it exists. We conclude

that for each λ, the number of zeros of f(·;λ) in (0, L) equals the number of eigenvalues

of HL strictly below λ.

Lemma 3.3 of RRV and its proof give that λLk → λk and fLk →L2 fk as L→∞, where

λk, fk are the eigenvalues and eigenfunctions of H on L2(R+). (The initial condition

at 0 can be general.) Equivalently, the spectral projections 1(−∞,λ)HL → 1(−∞,λ)H in

norm for all λ ∈ R \ {λ0, λ1, . . .}; the operators converge in norm resolvent sense. Taking

L→∞ in the claim of the previous paragraph, we see that for each λ ∈ R\{λ0, λ1, . . .},
the number of zeros of f(·;λ) in (0,∞) equals the number of eigenvalues of H strictly

below λ. As λ↘ λk the last zero must tend to∞ by monotonicity and continuity, so the

claim actually holds for all λ ∈ R.

Riccati equation and diffusion

We return to (A.3). The right-hand side describes a two-dimensional vector field. Be-

cause it is linear, it factors through the projective quotient into a one-dimensional vector

field on the projective line; this is the essence of the Riccati transformation. (These

vector fields integrate respectively to flows of linear transformations and fractional linear

transformations.)

By uniqueness, a nontrivial solution (f, g) never passes through (0, 0). At a zero of

f we have f ′ = g, and it follows that the zeros of f are isolated. On an interval where

f does not vanish, the projective coordinate q = g/f is continuously differentiable and

satsifies the Riccati equation

q′ = x− λ− (q + b)2.

At a zero of f , q explodes to −∞ and restarts at +∞. To see the evolution through such

an explosion, switch to the other coordinate q̃ = f/g = 1/q, which satisfies

q̃′ = (1 + q̃s)2 − (x− λ)q̃2.

Notice how q̃′ = 1 when q̃ = 0.

Now let p = q + b = f ′/f . While p is not differentiable, it certainly satisfies the

integral equation

px − p0 = bx +

∫ x

0

(y − λ− p2y) dy.

In other words, px is a strong solution of the Itō equation

dpx = dbx + (x− λ− p2x)dx
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To see the behavior through ∞, let p̃ = 1/p = f/f ′. By Itō’s lemma, p̃ = q̃/(1 + bq̃)

solves

dp̃x = −p̃2xdbx + (1− (x− λ)p̃2x + p̃3x)dx.

Inverse questions

It would be interesting to obtain a better understanding of how the spectrum of the

operator and its rank one perturbations are related to the Brownian path in the stochastic

Airy potential. It is possible that certain “inverse questions” could be answered, see e.g.

Pöschel and Trubowitz (1987).

For a preliminary question, the stochastic Airy spectrum is (pathwise almost surely)

monotone in the rank one perturbation w; it would be nice to know that it is strictly

monotone and analytic. In particular, given λ ∈ R, is it true that there is exactly

one w ∈ (−∞,∞] such that λ is an eigenvalue? The analogous statement in the finite

dimensional setting is that, for a given matrix A, cyclic vector v and λ with A − λ 6> 0

there is exactly one t ∈ [0,∞) so that λ ∈ spec(A + tvv∗). This fact follows from

Lemma A.1 of Stolz (2011) and it seems that there should be a fully analogous picture

for stochastic Airy.
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Phys. Rev. Lett. 38: 1103–1106.
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