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Abstract

Prostate cancer is the most common malignancy among men. The gold standard

clinical diagnosis method for prostate cancer is histopathologic analysis of biopsy

samples acquired under ultrasound guidance. However, most prostate tumors lack

visually distinct appearances on medical images. Therefore, pathologically significant

cases of cancer can be missed during biopsy, resulting in false negative or repeated

trials. The goal of our research is to augment ultrasound-guided prostate biopsy

by adding tissue typing information that can be used for targeted biopsies. As a

new paradigm in tissue typing, we hypothesize and demonstrate that if a specific

location in tissue undergoes sequential interactions with ultrasound, the time series

of echoes, which we call radiofrequency (RF) time series, would carry “tissue typing”

information. We provide a potential physical explanation for this phenomenon and

justify it based on computer simulations of the ultrasound probe and scattering media.

We also report laboratory and animal studies that illustrate the utility of the method.

We rely on a set of seven spectral and fractal features extracted from RF time series

for tissue typing.

To show the clinical value of the proposed approach, we report an ex-vivo study

involving 35 patients in which the utility of RF time series features for detection

of prostate tumors is confirmed. The outcomes are validated using histopathologic
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disease distribution maps provided for the studied specimen. We show that the RF

time series features are powerful tissue typing parameters that result in an area under

receiver operating characteristic (ROC) curve of 0.87 in 10-fold cross validation for

diagnosis of prostate cancer. They are significantly more accurate and sensitive than

spectral features extracted from single RF frames, and also B-scan texture features

(area under ROC curve of 0.78 and 0.72, respectively). A combination of these three

categories of features results in a feature vector that provides an area under ROC curve

of 0.95 in 10-fold cross-validation and 0.82 in leave-one-patient-out cross validation

for diagnosis of prostate cancer. Using this hybrid feature vector and support vector

machines, we create cancer distribution probability maps that highlight areas of tissue

with high risk of cancer.
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Glossary

A-mode Type of ultrasound scanning mode in which the amplitude of the signal

is plotted versus the depth of the interface. The strength of the reflected

echo is represented by the height of a spike [81].

ANOVA Analysis of variance. A statistical test aiming to find out whether data

from several groups have a common mean.

Attenuation The decrease in the intensity in intensity as a sound beam travels

through the medium. Attenuation depends on different mechanisms of

interaction of ultrasound with tissue.

B-mode Brightness mode ultrasound scanning, which modulates the brightness of

a dot to indicate the amplitude of the signal displayed at the location of

the interface [81].

BPH Benign prostatic hyperplasia. Refers to the increase in size of the prostate

in middle-aged and elderly men due to hyperplasia.

Carcinoma A malignancy neoplasm that arises from epithelial cells [114].

DRE Digital rectal examination. A clinical test to diagnose prostate cancer dur-

ing which, the physician touches the prostate of the patient with fingers.
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The cancerous prostate tissue is known to be stiffer than normal tissue;

therefore, the physician tries to determine if the tissue is unusually hard.

Epithelium Epithelium is a tissue composed of layers of cells that line the cavities

and surfaces of structures throughout the body. It is also the type of tissue

of which many glands are formed.

Ex-vivo Latin: Out of the living. It refers to experiments and measurements per-

formed on living tissue in an environment outside the body.

FWHM Full Width at Half Maximum. The full width at half maximum (FWHM)

is a parameter commonly used to describe the width of a bump on a curve

or function. It is given by the distance between points on the curve at

which the function reaches half its maximum value [Mathworld]. As a

tissue typing feature extracted from B-scan ultrasound images, FWHM is

measured by identifying the points on the image histogram which are half

the maximum value.

Hyperechoic Characterization of relatively strong echoes created in ultrasound

images compared with nearby regions [81].

Hyperplasia A general term referring to the proliferation of cells within an organ

or tissue beyond the ordinarily levels. Hyperplasia may result in the gross

enlargement of an organ.

Hypoechoic Characterization of relatively weak echoes created in ultrasound im-

ages compared with nearby regions [81].
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In-vivo Latin: within the living. Refers to something which takes place inside

an organism. In-vivo refers to experimentation done in or on the living

tissue of a whole, living organism as opposed to a partial or dead one or a

controlled environment.

Neoplasia The abnormal proliferation of cells, resulting in a neoplasm. Neoplasia

is the scientific term for the group of diseases commonly called tumor or

cancer.

PCA Principal component analysis. A vector space transform often used to

reduce multidimensional data sets to lower dimensions for visualization

and analysis [13].

PIN Prostatic intraepithelial neoplasia. A non-cancerous condition that occurs

when the cells that line the ducts of the prostate change. PIN is fre-

quently observed in coexistence with carcinoma, therefore, it is considered

a probable precursor to carcinoma of prostate [114].

PSA Prostate specific antigen. A protein produced by the cells of the prostate

gland. PSA is present in small quantities in the serum of normal men, and

is often elevated in the presence of prostate cancer and in other prostate

disorders. A blood test to measure PSA is a test currently available for

the early detection of prostate cancer.

RBF Radial basis function. A real valued function whose value at each point

depends only on the distance of that point from a specific center point.

RF signals Radiofrequency signals. In this thesis, it refers to the signals received in

xxi



the ultrasound probe. The frequency of ultrasound in clinical applications

falls within the range of radiofrequency electromagnetic signals. Although

ultrasound is a mechanical wave and fundamentally different from elec-

tromagnetic waves, the transducer transforms the mechanical wave to an

electrical signal in the RF range of frequency.

RF time series The sequence of one sample of one ultrasound RF scan line over

time forms an RF time series. To acquire the RF time series, one keeps

the ultrasound probe and the tissue fixed in place and continues acquiring

frames of RF data at the frame rate of the ultrasound machine.

ROC curve Receiver Operating Characteristic curve. A plot of sensitivity versus

specificity or probability of false alarm for different values of the decision

threshold in a classification method. ROC curves can be used to compare

the diagnostic performance of diagnostic tests.

ROI Region of Interest. A rectangular area in the B-scan or RF data space

that is represented with tissue typing features and is classified into one of

possible tissue categories.

Scattering The redirection of sound energy resulting from the sound beam striking

an interface whose physical dimension is less than the wavelength.

Sensitivity In a classification test, specificity measures the proportion of negatives

which are correctly identified.

SNR Signal to Noise Ratio. In general, the ratio of signal power to noise power.

As a tissue typing feature extracted from B-scan ultrasound images, SNR
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is computed as the ratio of speckle mean to standard deviation.

Specificity In a classfication test, specificity measures the proportion of negatives

which are correctly identified.

SVM Support vector machine. A classification method that falls within the

category of maximum margin classifiers.

TGC Time gain control. A method of increasing amplification of the ultrasound

signal with depth to compensate for loss caused by attenuation.

TRUS Transrectal ultrasound. Diagnostic imaging of prostate through rectum.
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Chapter 1

Introduction

1.1 Motivation

Prostate Cancer (PCa) is the most common malignancy among men and the second

leading cancer-related cause of death after lung cancer [92]. Prostate is an accessory

gland in the urinary and reproductive system of the male. It is located deep in the

pelvis, just below the bladder. In a mature male, prostate is cone shaped and weighs

approximately 12 − 20 gr. For detailed information on the anatomy and possible

disease of prostate see [32, 173].

Prostate cancer accounted for 29% of cancer cases among North American men

and terminated the lives of 31,350 of them in 2007 [93]. The Canadian Cancer Society

estimates that 24,700 new cases of PCa will be diagnosed among male Canadians in

2008, leaving it as the most prevalent type of cancer among men [21]. PCa is also the

most prevalent type of cancer in male Europeans and affects over 237,000 men in 40

European countries annually [16].

Despite its prevalence, PCa is a curable condition in many cases. In Canada for
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: The current clinical approach for detection and grading of PCa.

example, the five-year survival rate of prostate cancer for men between the ages of

50-79 is 96% [21]. Mortality often happens when patients are affected by metastasis

of the cancer to bones. At that stage, surgical and hormonal treatments are not very

effective. Therefore, the early diagnosis and staging of the disease play an important

role in the choice and the success of the treatment. The currently available treatments,

including brachytherapy, prostatectomy, hormone therapy and chemotherapy result

in different degrees of side effects, especially incontinence and impotence. Therefore,

it is important to choose a treatment option that maximizes the likelihood of success

while minimizing the side effects.
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Figure 1.2: Typical microscopic histopathology images of prostate tissue illustrating
normal prostate (left), and prostatic carcinoma (right).

The process of screening and diagnosis of prostate cancer is far from a perfect pro-

cedure (Figure 1.1). Immunoassay-based measurement of the blood levels of Prostate

Specific Antigen (PSA: a glycoprotein produced almost exclusively in the epithelium

of the prostate gland) is commonly accepted as the first step in screening of prostate

cancer. The case for a public screening process has been a topic of discussion since

the early 90’s when the PSA test was introduced [188]. PSA test is prone to both

false positives and false negatives. Sceptics believe that false positive outcomes of

PSA are too high and result in unnecessary and more invasive follow-up procedures

such as biopsy. Some suggest that in general, public screening with PSA test results

in over-diagnosis of PCa and, hence, in surgical or brachytherapy treatments in cases

of prostate cancer that should not be treated due to their non-aggressive and chronic

nature [233].

On the other hand, PSA results in false negative outcomes as well. While serum

PSA levels of over 4 ng/ml are normally associated with high risk of PCa1, studies

1More precisely, the threshold is 3.5 ng/ml for men in their 50’s, 4.5 ng/ml for men in their 60’s
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Figure 1.3: Anterior view of the left and the right lobes of the prostate gland. 1)
Urethra, 2) apex of the prostate, 3) base of the prostate, 4) seminal
vesicles. Picture taken with permission from http://www.celtnet.org.uk
/cancer/prostate-cancer.html.

have shown that certain populations of men with lower levels of PSA share the same

risk level [36, 187]. PSA tests are often accompanied with detection by palpation

through digital rectal examination (DRE). DRE test is based on the clinical fact that

the cancerous tissue is stiffer than normal prostate tissue. DRE is limited to relatively

large and superficial lesions [108].

Given all the limitations of the non-invasive diagnostic tests, the current “gold

standard” for PCa diagnosis is histopathologic analysis of biopsy tissue samples (Fig-

ure 1.2) under Transrectal Ultrasound (TRUS). During biopsy, a radiologist extracts

core samples of prostatic tissue using a needle guided to prostate under ultrasound

imaging. The most common prostate biopsy protocol is the sextant systematic ap-

proach proposed in 1989 [84]. The sextant protocol involves taking tissue samples

from the apex (inferior portion), the midsection, and the base (superior portion) of

the left and the right lobes of prostate (See Figure 1.3). Several studies have shown

and 6.5 ng/ml for men in their 70’s [21].



CHAPTER 1. INTRODUCTION 5

that this protocol is prone to missing cancer in many patients. Therefore, different

variations of the sextant biopsy have been suggested in which the number of cores is

increased to 10, 12 or even 18 [200].

Unfortunately, even the invasive biopsy operation is not a perfect diagnostic tool.

Biopsy is a sampling process and due to the multifocal nature of PCa, there is always

some level of risk for missing pathologically significant lesions resulting in false nega-

tives and/or repeated biopsies [176]. Different studies have estimated the sensitivity

of TRUS-guided needle biopsies to be between 40% and 60% [42, 154] showing that

almost half of cancer cases are missed on the first biopsy. This low sensitivity is

partly due to the fact that most prostate tumors lack visually distinct appearances

on ultrasound images that are used for the guidance of the biopsy process. While

the hypoechoic lesions in ultrasound images are generally attributed to cancer in

prostate, studies have shown that only 40% of the peripheral zone hypoechoic lesions

prove malignant [193]. Furthermore, isoechoic and even hyperechoic tumors have

been observed [88]. Therefore, the clinical value of TRUS is limited to an anatomical

guidance tool 2. As a result, the rate of false negative outcomes in prostate biopsy is

high and a large number of men have to go through repeated biopsies.

1.2 Objective

We argued that improving the biopsy process is a pressing need. Ideally, this should

be done with minimal overhead imposed on the routine clinical biopsy process. Since

2Studies have shown that using Magnetic Resonance Imaging (MRI) as the guidance tool for
prostate biopsies does not effectively change the sensitivity of the process [104, 236].
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ultrasound imaging is currently an integrated part of the biopsy process, an enhance-

ment to this process based on ultrasound imaging is preferable. Furthermore, ultra-

sound is an inexpensive imaging modality that does not expose the patient or the

radiologist to ionizing radiation and produces real-time images. The goal of the re-

search described in this thesis is to enhance the TRUS-guided biopsy process. Our

approach to achieve this goal is to augment ultrasound images with tissue typing in-

formation that can be used for cancer detection and targeting during biopsy. Previous

research has shown that although visual inspection of B-scan ultrasound images is

not sensitive for cancer diagnosis, computer-based approaches can improve the out-

comes. Such approaches take advantage of texture analysis of B-scan images and

more importantly, rely on the analysis of raw RF ultrasound signals [55, 128]. How-

ever, the available techniques are not accurate enough and lack a widespread clinical

acceptance [53].

In this thesis, we propose a novel approach to acquire and analyze ultrasound RF

signals for tissue typing. We extensively evaluate this approach through simulation,

and on phantom and animal studies and show its feasibility. We also report a clinical

study that shows the promising outcomes of the proposed method, for diagnosis of

cancer in human prostate tissue.

1.3 Hypothesis

We introduce a new paradigm in ultrasound tissue typing which is based on the

concept of “RF time series”. An RF time series is formed by the sequence of RF

echoes received from one location in the tissue over time. To acquire the RF time

series, one keeps the ultrasound probe and the tissue fixed in place and acquires
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frames of RF data at the frame rate of the ultrasound machine. We hypothesize that

if a specific location in tissue undergoes sequential interactions with ultrasound at the

typical clinical ultrasound frame rates, the sequence of RF echoes from that location,

the RF time series, would carry tissue typing information. We use this information

to enhance the TRUS-guided prostate biopsy process.

A “potential” physical explanation for the existence of the tissue-type dependent

information in RF time series will be discussed and examined through simulations in

Chapter 3. However, throughout the thesis, we will follow a primarily experimental

approach to validate the hypothesis described here.

1.4 Contributions

The major contributions of the thesis are as follows. This thesis:

• Introduces the concept of the RF time series for the first time and provides

analytical methods to extract efficient tissue typing parameters from the RF

time series.

• Provides a potential explanation for the existence of tissue-type related infor-

mation in the ultrasound RF time series. Computer simulations of ultrasound

probes and scattering media provide evidence to support this explanation.

• Introduces six parameters extracted from frequency spectrum of ultrasound RF

time series for tissue typing. It also shows that fractal dimension of RF time

series can be used for tissue typing.

• Describes phantom and animal tissue typing experiments. The phantom studies
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aim at proving the relationship between cellular microstructure and the RF

time series. In animal tissue typing experiments, RF time series acquired both

using a clinical ultrasound machine and a high-frequency machine operating at

55 MHz are studied.

• Reports an ex-vivo clinical study involving 35 patients in which the performance

of the RF time series features for detection of prostate cancer has been evalu-

ated. Also, the thesis reports quantitative comparisons between the accuracy of

detection of prostate cancer using the RF time series features and the classical

ultrasound-based tissue typing features proposed by Lizzi and Feleppa [55, 130].

Detailed histopathological analysis of the studied prostate specimens is used as

the gold standard.

• Presents cancer distribution probability maps acquired using a combination of

the time series features with B-scan texture and Lizzi-Feleppa features along

with Support Vector Machine (SVM) classification.

• Reports experimental studies that characterize the effects of parameters such

as the acoustic power of ultrasound, the depth of imaging and the ultrasound

acquisition frame rate on the effectiveness of detection of prostate cancer based

on the RF time series features.

1.5 Organization of the thesis

In this chapter, we presented the research problem studied in this thesis and discussed

the importance of developing a computer-based methodology to enhance the TRUS-

guided prostate biopsy. Additionally, we listed the contributions of the thesis. The
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remaining chapters of the thesis are organized as follows:

• Chapter 2 reviews the state of the art in computer-aided diagnosis of prostate

cancer. Ultrasound-based cancer diagnosis methods are reviewed in more de-

tail. Several other approaches and trends in diagnosis of prostate cancer based

on magnetic resonance imaging, elastography, and automatic analysis of micro-

scopic histopathology images of prostate tissue are also discussed.

• Chapter 3 introduces the concept of RF time series, provides a potential physical

explanation for the existence of tissue-type related information in RF time series

and presents our simulation study.

• Chapter 4 describes the tissue typing features proposed based on RF time series.

This chapter also provides information on the classification approaches utilized

in the thesis.

• Chapter 5 describes our phantom and animal studies.

• Chapter 6 describes our clinical study involving 35 patients. The chapter de-

scribes methods developed for generation of probabilistic maps of prostate can-

cer based on RF time series, and the steps taken to validate the outcomes of

the study based on histopathologic analysis of prostate specimens. The effects

of imaging depth, acoustic power of the ultrasound, and frame rate on the

outcomes are analyzed.

• Chapter 7 provides the summary and conclusions of the thesis along with a

discussion of the limitations and the future work.



CHAPTER 1. INTRODUCTION 10

It should be noted that the order of presentation of experiments in this thesis

does not match the chronological order in which the experiments were carried out.

The research started in 2005 with a preliminary human study involving four patients.

The experiments continued throughout 2006 with animal tissues. Data collection and

analysis for the larger human study involving 35 patients were performed in 2007. The

phantom studies were carried out in 2008.



Chapter 2

Review of the related work

This chapter reviews the state of the art in computer-aided diagnosis of prostate

cancer and focuses, in particular, on ultrasound-based techniques. We provide a gen-

eral overview of several image-based techniques for detection and grading of prostate

cancer. Further, in accordance with the topic of this thesis, we provide an in-depth re-

view of ultrasound-based methods. We review numerous studies in which ultrasound

Radio Frequency (RF) signals, B-scan images and Doppler images have been used for

computer-aided diagnosis of the disease. In recent years, computer-aided diagnosis

and treatment of prostate cancer have been very active fields of research. The reader

is encouraged to consult survey papers by Moradi et al. [143] and Zhu et al. [240]

for further exploration of the field. Through the analysis of the vast array of meth-

ods proposed in the literature, we intend to demonstrate that the ultrasound-based

methods are among the most cost-effective and promising approaches for detection of

prostate cancer. At the same time, shortcomings of all the computer-assisted meth-

ods, including those based on ultrasound, justify continued research in the field.

It should be noted that computer-aided diagnosis systems are designed to provide

11
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a second opinion and are not to replace the opinion of physicians. This general rule

applies to prostate cancer as well. The prevalence of false negatives in diagnosis of

prostate cancer implies that a second opinion can be very valuable. If this assisting

opinion becomes available during the biopsy process, it gives the radiologist an upper

hand in selecting the biopsy sites.

2.1 Overview of image-based methods for

diagnosis of prostate cancer

The task of categorizing computer-aided PCa detection techniques is non-trivial. We

provide a review of image-based techniques for detection of PCa in this section. We

will continue in Section 2.2 with ultrasound-based methods as the main focus of the

current thesis.

2.1.1 Magnetic Resonance Imaging (MRI)

There have been attempts to use imaging modalities such as MRI and CT scan

for diagnosis of prostate cancer1. MRI, in particular, has received the attention of

researchers based on the premise that localizing prostate tumors with endorectal MRI

could be more accurate than localizing such tumors with ultrasound [163]. Some of

the main approaches to utilize MRI imaging in computer-aided diagnosis of prostate

cancer are introduced in this section.

1CT scan is usually used as a post-diagnosis method for finding possible metastases to abdominal
cavity, bones and lymph nodes; however, the application of CT scan has not resulted in superior
detection outcomes (compared to ultrasound) during prostate biopsy [168]. CT scan has also been
used for brachytherapy treatment planning and post-implant dosimetric analysis [169]. Although
there have been reports on using Positron Emission Tomography in prostate cancer diagnosis [181],
the role of PET has yet to be defined [195].
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MRI provides superior anatomical image quality compared to ultrasound imaging.

This results in more accurate boundary delineations and 3D model generation of the

organ under study which can be used to compute the volume of prostate and to plan

radiotherapeutic treatments. Rasch et al. [172] have described the methodology of

volume determination using MRI scans. It should be noted that dynamic contrast-

enhanced magnetic resonance imaging of the prostate tumor is also used to study the

tissue perfusion and to image prostate carcinoma [19, 125]. Nowrolski et al. have

reported that cancer regions in peripheral zone of prostate can be distinguished from

normal regions using dynamic contrast enhanced MRI [153].

MRI has been used as an imaging modality for guidance during prostate biopsy

[26, 30, 80, 229]. Hata et al. have reported a comprehensive study on using T2-

weighted MR images acquired from a 0.5 T intraoperative MR system to guide place-

ment of biopsy needles in both suspected targets and sextant location in the peripheral

zone of the prostate [80]. The mismatch in needle placement in their study (reported

both on validation phantoms and on two clinical cases) has been less than 1.9 mm

(the error is mainly due to the deflection of needle in the soft tissue). Kaplan et

al. [100] have also used TRUS as the intraoperative image modality and MRI as the

preoperative modality for prostate biopsy procedures. In their study, MRI image sets

were registered to the ultrasound images in real time during the biopsy. Kaplan et al.

used a hardware setting similar to the hardware utilized for brachytherapy implant

procedure [99] and stereotactically targeted the abnormal areas of the tissue as identi-

fied on MRI images. More recently, a remotely actuated manipulator for accessing the

prostate tissue under magnetic resonance imaging guidance was introduced [62, 112].

The designers of this system have reportedly overcome the engineering challenges
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imposed by the high intensity magnetic field inside the MRI machine (ferromagnetic

materials and electronic devices are not allowed to be in the magnet). The details

of software interface for visualization, planning, and monitoring of this MRI-based

robot for prostate biopsy

Contrary to the technical achievements in MRI-based prostate interventions, most

clinicians still believe that MRI images do not effectively change the level of accuracy

of the diagnosis process [104]. Some of the studies acknowledge this impression: The

accuracy, sensitivity, and positive predictive value of MRI for detecting tumor foci

greater than 1 cm in diameter has been reported to be 79.8%, 85.3%, and 92.6%,

respectively, in a recent study [148]. However, based on the same work, the cor-

responding values for detecting tumor foci smaller than 1 cm decreased to 24.2%,

26.2%, and 75.9%, respectively. This suggests that MRI is more useful for detection

of presence, size, and possible extension of cancer foci greater than 1 cm in diameter.

Another interesting study, by Madabhushi et al., provides some insight into usefulness

of MRI in detection of prostate cancer [134]. The authors have performed a compre-

hensive study using 35 3D texture features extracted from high resolution (4T) MRI

to identify cancer tumors in prostate tissue. The authors’ best reported sensitivity is

in the range of 40-50% which is superior to the sensitivity of diagnosis by an expert

reported on the same dataset; however, inadequate as a clinically feasible system2.

In a very recent work, an unsupervised segmentation method has been presented by

Viswanatha et al., which “employs manifold learning via consensus schemes for detec-

tion of cancerous regions” from high resolution 1.5 T endorectal in-vivo prostate MRI

[219]. Evaluation on 18 patents has resulted in sensitivity of 92.7% and specificity of

2It should be noted that Madabhushi et al. have aimed at classifying single sub-millimeter voxels
in cancerous and normal classes and have acquired very high values of specificity.
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82.1%.

The time complexity of MRI-based prostate cancer diagnosis systems should also

be taken into consideration. Particularly, in 3D systems, the computation time for

analysis of one complete MRI scan exceeds an hour [134]. The application of MRI as

a routine diagnostic procedure for PCa is also restricted by its high cost. As we will

discuss in upcoming sections of this chapter, ultrasound scans provide the same level

of diagnostic value as MRI with significantly lower cost.

An alternative imaging modality based on magnetic resonance which is widely

utilized for prostate cancer detection is Magnetic Resonance Spectroscopy (MRS). It

has been shown that prostate gland is a unique organ in human body by having a high

level of citrate. In the mid 90’s, a correlation between water T2 relaxation time and

citrate concentration in the normal prostate was demonstrated [124]. Furthermore,

a proven negative correlation between neoplasia and citrate level in prostate is well

documented [28]. A strong positive correlation between choline level and prostate

cancer is also reported [203]. Based on these facts, many researchers have under-

taken studies on the use of MRS to detect metabolic biomarkers (mainly choline and

citrate) for characterizing prostate tissue [67, 115, 146]. The analysis of the MRS

data to automatically identify likely cancerous areas of prostate is the topic of a few

studies [209]. A few investigators have studied prostate cancer through registering

the MRS signals to MRI anatomic images; they have validated correlations between

cancer characterizing patterns in the signals, biopsy outcomes and texture in the im-

ages [105, 153]. Van Dorsten et al. have tried to differentiate prostate carcinoma

from healthy peripheral zone and central gland using quantitative dynamic contrast-

enhanced magnetic resonance (MR) imaging and two-dimensional MRS combined
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into one clinical protocol [214]. Their results are in agreement with [28] and show

that a combination of high-resolution dynamic MRI and metabolic information from

MRS has the potential for improved diagnosis of prostate cancer.

In a recent study, Feleppa et al. have reported combining MRS and ultrasound

for detection of prostate cancer [53]. They have used the ratio of choline to citrate

concentrations acquired through MRS along with RF spectrum features extracted

from ultrasound (see Section 2.2) for tissue typing. Reportedly, the area under the

receiver operating characteristic (ROC) curve acquired from the MRS-based method

increased from 0.64 to 0.84 after addition of the ultrasound-based features [52].

Before we close our discussion on MRI-based methods, it should be noted that

currently MRI-based techniques are in use for PCa computer-aided treatment proce-

dures such as: MRI-guided radio-frequency thermal ablation of PCa [50, 51], planning

of the radiotherapy treatment and quality control of the correct placement of radioac-

tive seeds in prostate brachytherapy (post-implant dosimetric analysis) [169, 202, 215].

Therapeutic methods are beyond the scope of the present survey.

2.1.2 Ultrasound

In ultrasound imaging, tissue typing based on the acoustic parameters such as at-

tenuation and backscattering coefficients extracted from RF echo signals has been

studied since the early 70’s (see [130] for a review). Texture features extracted from

B-scan ultrasound images also account for an important category of parameters used

for cancer detection. Furthermore, the proven correlation of neovascularity with can-

cer generation has impelled investigators to use features extracted from ultrasound
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color Doppler images for tissue typing. All these ultrasound-based tissue typing ap-

proaches have been applied to prostate cancer detection. The advantages of having an

ultrasound-based PCa detection system are encouraging enough to boost this field of

study: ultrasound provides real-time images; TRUS is already accepted as the stan-

dard prostate biopsy guidance tool; different ultrasound data and image modalities

are simultaneously available on modern ultrasound machines; and ultrasound imaging

is among the most accessible and least harmful medical imaging systems. The disad-

vantages of ultrasound imaging include low contrast and existence of speckle in the

images. As ultrasound-based methods for detection of prostate cancer are the main

focus of the current thesis, Sections 2.2 and 2.3 will focus on RF, B-scan and Doppler

techniques applied to PCa detection. We will present the accuracies of prostate can-

cer detection reported in different studies and show that they are comparable to the

accuracies acquired using MR imaging as discussed in this section.

Another category of studies focuses mainly on the application of ultrasound as a

guidance technique for biopsy. Robotic techniques based on 3D ultrasound imaging

form a major trend in such studies. One such system is developed by Tong et al. and

consists of a standard 2D TRUS probe equipped with a motor driven mechanism that

rapidly acquires 2D B-mode images and reconstructs a 3D model [210]. In 3D ultra-

sound imaging, there is always a compromise between the size of the dataset (which is

in direct relationship with the information made available for diagnosis) and technical

challenges for volume reconstruction and visualization [38]. However, with the recent

developments of the 3D ultrasound systems, near real-time views of the anatomy are

available [61]. Based on such systems, investigators have designed robotic systems for
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targeted prostate biopsy or placement of radioactive seeds for brachytherapy treat-

ments with sub-millimeter accuracy [221]. More recently, Fichtinger et al. [63] have

reported a robotically assisted prostate brachytherapy system that consists of tran-

srectal ultrasound, and a spatially registered robot integrated with an FDA-approved

commercial treatment planning system.

Tissue motion and deformation create serious challenges for image-based guidance

of the biopsy process. Under current biopsy protocols, it is almost impossible to track

the biopsy samples back to their exact location for quality control or targeted repeated

biopsies. To overcome this limitation, Baumann et al. proposed a 3D TRUS-based

tracking system for precise prostate biopsy sample localization [10]. Their method

is based on the fact that the probe motion range is large and is constrained only

by rectum walls, and therefore, the initial alignment needed to solve the registration

problem (from a given reference space to the tracking space during biopsy) might

have to estimate rigid transformations that are beyond the capture range of simple

image similarity measures. They propose a multiresolution attribute-vector regis-

tration approach that combines global and local optimization methods to solve this

problem. They report successful convergence of the 3D-3D registration approach in

96% of cases with an accuracy of 1.41 mm.

2.1.3 Elastography

An alternative ultrasound-based method for cancer detection is “elastography”. Al-

terations in the elastic properties of the tissue are indicators of the prostate malig-

nancy and are normally examined by digital palpation (DRE test). Elastography,
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“palpation by imaging” and “strain imaging” are different names for automatic tech-

niques aiming at depicting the elastic properties of the tissue [66] in search for patho-

logic areas. Ophir et al. [158] described elastography as a technique for quantitative

imaging of elastic properties of tissue from its strain profile computed through com-

parison of locations of peaks in ultrasound RF echo signals before and after applying

an external compression. The comparison is made by cross-correlation analysis of

corresponding pairs of RF A-lines (one acquired before and one after compression).

In case of prostate elastography, the compression can be applied manually by a hand-

held transrectal probe [133]. The resulting system is an automated version of the

DRE test which extends the elastic analysis of the tissue to non-superficial lesions3.

One disadvantage of the correlation-based technique for strain estimation in elastog-

raphy is its computational complexity. Pesavento and Lorenz et al. introduced an

algorithm for real-time and accurate strain estimation that relies on phase differences

of the corresponding pairs of RF signals [133, 164].

In a study published in 1998, Fatemi and Greenleaf [49] showed that the tissue

motion caused by ultrasound radiation force can be used for measuring the acoustic

response of material to mechanical excitation. Interfering focused beams of ultrasound

were used to create the mechanical response from the tissue. In a more recent study,

the same group described a methodology in which the radiation force of ultrasound

is used to scan the object at a resonant frequency. The vibration of the object is

measured by laser and the resulting acoustic emission from the object is measured by a

hydrophone. Although the experimental results of [238] are reported on a mechanical

heart valve and arterial phantom, they confirm the possibility of creating mechanical

3An MRI-based technique known as magnetic resonance elastography also measures the propa-
gation of acoustic strain waves in tissue subjected to mechanical excitation. For information on that
technique and its potential application in detecting prostate cancer see [113, 137].
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excitation and microscopic vibrations in response to ultrasound emission.

Salcudean et al. have recently reported a vibro-elastography system specifically

designed to study the mechanical properties of prostate tissue [179]. Their system in-

tegrates the TRUS transducer with an actuation system that can apply low-frequency

(< 20 Hz) vibrations to the tissue. With the assumption that the response of the

tissue to excitation is linear, they have applied mechanical frequencies up to 20 Hz to

the tissue and have estimated tissue mechanical frequency responses (transfer func-

tions). They have shown that for more than 80% of their computed transfer functions,

the coherency over the frequencies of excitation is at least 0.9 which is a sign of high

signal to noise ratio and linearity.

In another recent study, Courtis and Samani [29] proposed an elastography method

based on finite element registration. The technique requires two 3D TRUS volumes:

a baseline volume, and a second volume in which the US probe is displaced vertically

to deform the prostate. Then a finite element model of the prostate, tumor, rectum,

TRUS probe, and surrounding tissue is used to simulate the deformation induced by

the probe. Results from their phantom study showed that the technique could detect

the increased stiffness of the simulated tumor.

In recent years, significant improvements in computational and engineering meth-

ods employed for elastography have been reported [22, 25, 43, 120, 140, 147, 159, 162,

174]. Elastography is proved to be a valuable tool for tissue typing and is currently

under study either as an independent tool [4] or in combination with 3D imaging for

PCa detection [122]. However, the restricted value of signal to noise, frequent cases of

multi-focal and very small cancer loci in prostate malignancies, high computational

cost of the method that restricts its real-time application, and relatively complicated
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settings of the method have restricted its applicability in daily clinical procedures.

In particular, the prostate anatomy restricts investigators’ control over the accuracy

of the compression applied during the procedure, and implies the need for more re-

producible compression techniques [89, 133]. This problem was initially tackled by

Omata and Constantinous using a bio-sensor for in-vivo evaluation of prostatic stiff-

ness [156]. Slightly different versions of this tactile sensor have been fabricated and

used to evaluate the elasticity of prostate and other tissue types in-vivo and ex-vivo in

animal studies [120, 147]. Recently, there have been reports on the utilization of mag-

netically induced motion for imaging prostate tissue after implanting brachytherapy

radioactive seeds [140].

2.1.4 Microscopic histopathology images

Studying the histopathology of the biopsy samples is the means for reporting the

presence and the grade of prostate cancer. Higher grade (more aggressive) lesions

correspond to highly irregular cellular networks in tissue. The commonly accepted

grading system for PCa is Gleason grade [32] that suggests a ten grade system based

on the appearance of processed tissue samples. Therefore, grading is dependent upon

the subjective and time consuming procedure of microscopic analysis of the level of

irregularity in the cellular structure of the tissue.

Automation of the histopathologic analysis of microscopic images of tissue has

engaged many researchers in image processing and computer vision fields. Based on

a number of shape and texture features of the microscopic image, Stotzka et al. have

used neural networks to distinguish the moderately and poorly differentiated lesions

of prostate tissues [201]. Shape and texture features combined with neural networks
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[8], similarity measurement methods [198] and multi-wavelet features combined with

K-Nearest Neighbor (K-NN) classifiers [90] have been applied to automatic grading

of prostate biopsy samples. Tabesh et al. combined linear and quadratic Gaussian

classifiers with color channel histogram, and fractal and wavelet-based features to

grade pathologic samples [204]. Farjem et al. have devised a tree-structured grading

algorithm that uses roundness and shape distribution features in addition to texture

features for classification of cancerous glands [48]. In the recent studies on automatic

grading of pathologic prostate cancer tissues, classification accuracies of up to 95%

have been reported [204, 48]. Doyle et al. have suggested exploiting multiple image

scales to extract up to 600 texture features for automatic pathological typing [40]

of prostate tissue. The authors have shown that their multi-scale approach results

in very high performances based on ROC analysis (ROC curves are provided, but

the authors have not reported the value of the area under the ROC curve). More

recently, utilizing architectural and textural image features with Support Vector Ma-

chine (SVM) classification, Doyle et al. reported accuracies between 76% and 92% in

distinguishing different grades of prostate cancer from each other and from normal

prostate tissue types [39].

Histopathologic analysis of microscopic images of prostate tissue is labor-intensive;

as a result, providing the pathologists with a computer-aided diagnosis as a “second

opinion” can be valuable. We were unable to find any reports on a commercial

software implemented and in use for histopathologic grading of prostate tissue.

It should be added that different researchers have used the results of histopatho-

logic analysis of large populations of prostate cancer patients to generate statistical

atlases of distribution of the disease. Biopsy protocols can be adjusted based on the
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findings of such studies to increase the sensitivity of the procedure. Sofer et al. have

constructed a statistical distribution map of cancer using the prostate tissue of 301

patients. The removed prostates were sectioned at 2.25 mm intervals and scanned to

generate digital image files. 3D reconstruction of prostates based on these slices were

combined with histopathology results. The researchers designed a biopsy protocol to

maximize the likelihood of targeting cancer tissues based on these statistical maps

and acquired significantly higher detection rates than protocols currently used clini-

cally [199]. Shen et al. have also generated a 3D statistical atlas of the distribution of

prostate cancer lesions in large populations of patients [190, 191]. This atlas has been

used for selecting biopsy sites in a separate group of patients with an accuracy of 99%

in finding the cancerous lesions. In a recent publication, Zhan et al. also reported a

study in which statistical atlases have been used to optimize the biopsy process [237].

In their approach, first, a statistical atlas of the spatial distribution of prostate cancer

is constructed from histological images. Then, a probabilistic optimization framework

is employed to optimize the biopsy strategy. Finally, the optimized biopsy strategy

generated in the atlas space is mapped to a specific patient space using an automated

segmentation and deformable registration method. Zhan et al. reported that the pre-

dictive power of the optimized biopsy strategy for cancer detection reached to 94% –

96% for 67 biopsy cores.

2.1.5 Section summary and discussion

In this section, we reviewed several image-based solutions to tackle the problem of

localizing prostate cancer lesions. Recently, there has been more interest towards

using MR images both for characterizing prostate tissue and guidance during biopsy.
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MRI provides higher quality in depicting the anatomy (compared to ultrasound), and

MR spectroscopy reveals the concentration levels of choline and citrate which are

important biomarkers for prostate cancer. Researchers have developed solutions to

the engineering challenges posed by strong magnetic fields within MRI machines to

build automatic biopsy targeting systems [62, 80, 112], and also proposed effective

feature extraction and classification approaches for prostate tissue typing from MR

images [134].

Due to its numerous clinical advantages, ultrasound is still the main imaging

modality for prostate cancer diagnosis. Among these advantages are the inexpensive

and versatile process of ultrasound scanning, real-time image formation and non-

ionizing nature of ultrasound. Most importantly, the diagnostic value of ultrasound

is not inferior to MRI [236].

However, it should be noted that one does not find a consensus in the literature on

the performance of ultrasound or MRI in detection of prostate cancer. The reported

values for accuracy and sensitivity of these diagnostic methods vary in different stud-

ies. Schiebler et al. have summarized the results of some clinical studies that use

MRI for finding prostate cancer [185]. In two cases, the datasets have been studied

both with MRI and ultrasound. In both cases, the sensitivity of diagnosis by the

radiologist is around 10% higher when MRI has been used4.

The size of region of interest (ROI), or equivalently the resolution of diagnosis

influences the results. For example, the study by Schiebler et al. suggests that it is

easy to visualize tumors as small as 3mm3 in MRI5 [185]. Madabhushi et al. have

4According to [185], in a large study with around 219 patients involved, the sensitivity values
were 77% and 66%, respectively, for MRI and ultrasound.

5This is in contradiction with [148] which concludes the performance of MRI significantly reduces
for tumor sizes smaller than 1 cm in diameter.
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suggested that it is impossible to visualize lesions of size smaller than 5 − 6 mm3

using ultrasound [134].

Accuracy and sensitivity are not the only factors for comparing ultrasound and

MRI-based techniques. Cost and time-complexity also need to be considered and

ultrasound is superior in these aspects. While the high resolution MRI-based tissue

classification results reviewed in this section are acquired on 4 T MRI machines with

over an hour of computation time, the ultrasound-based methods hardly add any

hardware overhead to the clinical routines and are performed in near real-time fashion

(Section 2.2).

To summarize, most researchers believe that in experienced hands, the most ac-

curate imaging test for primary staging of the disease is MRI using an endorectal coil

[181, 230]. Nevertheless, according to different studies, the sensitivity of local staging

of prostate cancer with MRI ranges between 37% and 77% [134, 185, 230]. The re-

cently proposed computer-based diagnosis systems have been successful in providing

similar levels of performance from MRI [134] and also from ultrasound [55, 182, 236].

In other words, image-based methods can facilitate and enhance the diagnostic pro-

cess by providing a “second diagnostic opinion” to the physician. Nevertheless, the

“second opinion” provided by computer-aided analysis of medical images is not accu-

rate enough to gain the clinical acceptance (and replace the biopsy and histopathology

process).

Based on our brief review of strain-imaging and elastography techniques, it ap-

pears that ultrasound-based elastography is gaining more popularity among researchers.
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Most of the older versions of elastography were based on quasi-static and/or man-

ual compression of tissue. Therefore, the images were operator dependent and non-

reproducible. Advances in the fabrication of compression and vibration inducing

systems integrated with the ultrasound probes have advanced elastography [147, 175,

179, 238].

We close our discussion with reminding the readers that computer-aided tech-

niques for detection of prostate cancer are not limited to the image-based methods

introduced in this section. As mentioned earlier, the present survey is not aimed at

covering all PCa detection techniques reported in the literature. We have presented a

brief review of the image-based techniques in this section, and will focus specifically

on ultrasound-based tissue typing methods applied to diagnosis of prostate cancer

in the remainder of this chapter. The reader is also encouraged to consider DNA

microarray-based gene expression analysis of prostate tissue which has led to suggest-

ing specific sets of genes as biomarkers of prostate cancer [33, 118, 119, 196, 225],

analysis of protein profiles associated with PCa [3], and bioimpendence-based meth-

ods that take advantage of the tissue conductivity reduction with formation of cancer

[98, 197]. These techniques are beyond the scope of the present survey.

2.2 Ultrasound-based methods for

diagnosis of prostate cancer

Ultrasound-based prostate tissue typing was introduced in the previous section as

a potential technique to improve the accuracy of the biopsy process and ultimately

to eliminate the need for histopathologic analysis. In this section, we present the
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fundamentals of tissue typing based on ultrasound RF echo signals (Section 2.2.1)

and B-scan images (Section 2.2.2) and review the studies that have used RF and

B-scan based features for prostate tissue typing (Section 2.2.3).

2.2.1 Fundamentals of tissue typing using RF echo signals

Commercial medical ultrasound transducers generally operate at frequency ranges of

2− 12 MHz. The ultrasound beams generated by these machines undergo different

interactions with the structural elements of the tissue. The main interactions are the

scattering and the absorption of the ultrasound signal. The net result of each interac-

tion mechanism on the signal is a function of the ultrasound frequency, temperature,

and the characteristics of the tissue. Therefore, the ultrasound echo signals (which,

due to the similarity of their frequency range to radio-frequency waves, are called RF

echo signals) contain valuable information about the physical properties of the tissue

[94].

Some of the tissue characterizing parameters can only be extracted from RF echo

signals before they go through the nonlinear process of envelope detection for B-scan

image generation. The methodology of this analysis was introduced in the late 60’s:

Researchers realized that the frequency dependence of the backscattering phenomena

can be used to derive the tissue characterizing parameters from the RF echo signals

[128]. This frequency dependency results in high-frequency components of an ultra-

sonic pulse being more reduced in amplitude compared to low-frequency components

at the same depth. The distortion caused in the waveform shifts down the central

frequency in the spectrum of the RF echo signal and the pattern of this change can be

used to characterize the propagation medium [41]. However, there exists one major
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challenge to this approach: the echo signals received by the transducer in an ultra-

sound system are affected by other factors as well. For tissue typing, we are interested

in fundamental properties of the tissue that affect the ultrasound through frequency-

dependent backscattering and attenuation of the signal. Yet the ultrasound signals

are also affected by movement of the tissue, the mechanical and electrical properties

of the transducer, and diffraction effects due to the finite aperture of the transducer

[126, 186]. Thus, appropriate measurements and analytical models of different phe-

nomena affecting the signal are needed to extract the scattering function of the tissue

[76, 126].

The most commonly utilized tissue characterizing parameters extracted from RF

signals are those describing the attenuation and scattering of ultrasound in the tissue.

The first assumption made for characterizing the ultrasound attenuation is to consider

a uniformly distributed attenuation due to absorption. According to the classical

work of Pauli and Schwan [161] which was further developed in [24], the acoustic

attenuation of ultrasound in tissue is an exponential function of the covered distance

in the tissue and of the frequency-dependent attenuation coefficient. For biological

tissues, this frequency dependency can be considered linear [150] and the parameters

of this linear relationship characterize the attenuation.

A more complex interaction between tissue and ultrasound is scattering. Fluc-

tuations of physical properties such as elasticity, density, acoustic velocity, specific

acoustic impedance, index of refraction and viscosity in different parts of the tissue

result in scattering. The task of quantitatively characterizing the scattering based

on RF echo signals has proven problematic. The difficulty stems from two sets of
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problems: i) measurement reproducibility and transducer calibration, and ii) the-

oretical shortcomings in modeling the scattering phenomena. Researchers need to

consider simplifying assumptions (such as isotropic scattering and uniform absorp-

tion) to reasonably describe the interaction of ultrasound and tissue (see [126] for de-

tails). Scattering measures may only be extracted after compensating the spectrum

for depth-dependent attenuation effects. Details of the multi-narrow-band method

used to model and compensate for the attenuation, are discussed in [24, 130, 157].

Today, well-established methods exist for the extraction of tissue characterizing

features from RF echo signals. As illustrated in the first row of Figure 2.1, the fea-

ture extraction procedure involves a pre-processing step during which the signal is

compensated for the system-dependent effects. The most popular attenuation pa-

rameters include the axis intercept, slope and midband values (extracted from the

linear regression of the frequency spectrum of the RF signal). After the attenuation

parameters are extracted, the spectrum is compensated for depth-dependent attenua-

tion and the primary spectral features characterizing the backscattering of the tissue

are computed. Important backscattering features are slope, axis intercept, midband

value, integrated power and deviation from the linear regression fit of the spectrum

[37, 128, 182, 186]. A number of groups have theoretically analyzed the capability of

RF-spectrum parameters to discriminate tissue types in prostate. Feleppa et al. [55]

used databases of RF parameters drawn from normal and histopathologically proven

cancerous tissues, and tried to extract parameter ranges and discriminant functions

for different pathological conditions. Their study shows a significant intercept, slope

and midband value differences between normal and cancerous tissues in a population

of 30 patients.



CHAPTER 2. REVIEW OF THE RELATED WORK 30

Figure 2.1: The general procedure of RF- and B-scan-based tissue typing. Features
characterizing the attenuation and backscattering are extracted from the
frequency spectrum of RF signals (top row) and combined with texture
features extracted from B-scan images (bottom row) to be used for tissue
classification.

2.2.2 Fundamentals of tissue typing using B-scan images

Besides the RF-spectrum analysis, many researchers have used texture features ex-

tracted from ultrasound B-scan images for prostate tissue typing. The initiative is

that the speckle pattern in the ultrasonic image can reveal structural information

about the tissue. We review some of the important B-scan texture features utilized

for prostate tissue typing.

For texture classification, the object image is divided into windows of reason-

able size or ROIs6. The first-order statistical moments (mean, standard deviation,

skewness and kurtosis) of the intensities of pixels in each ROI form a basic set of

features for texture typing [182, 85]. Furthermore, the speckle Signal to Noise Ratio

(SNR), maximum and minimum, ratio of squares, and the Full Width at Half Maxi-

mum (FWHM) of the intensity of the pixels within ROIs have been found useful for

prostate tissue typing [182, 186].

6ROI sizes between 0.1 cm2 and 1.45 cm2 have been reported in the literature.
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Texture classification based on first-order statistical features has three major

shortcomings: i) it has been shown that the SNR of the ultrasound images approaches

a saturation value of 1.91 as the scatterer density increases [220]. Therefore, the ca-

pability of some first-order statistics to characterize high density tissues is limited.

The scatterer density in many biological tissues does not exceed the saturation level

[226]; ii) the mean intensity values of different images can not be compared because

different imaging systems apply different gain adjustments [9]; and iii) tissues affected

by the same pathology might show different acoustical properties (For example, in

case of prostate cancer, while most PCa lesions are hypoechoic, there are cases of

hyperechoic and even isoechoic appearance of tumor on ultrasound images).

These limitations have prompted researchers to use features extracted from co-

occurrence matrices which are based on second-order conditional statistics [9, 182,

186]. The co-occurrence matrix of an image is a square matrix of size Ng×Ng (where

Ng is the number of gray scale levels in the image). It is a histogram representation

that describes the co-occurrence of a pair of intensities at a given distance (d) along

a certain direction (θ). For feature extraction from gray-scale images, usually only

the co-occurrence matrices corresponding to directions θ = 0◦ and θ = 90◦ with

different values of d are used [9, 213]. A great number of texture features can be

extracted from co-occurrence matrices. Haralick et al. were the first to introduce the

concept and the formulation of such features [79]. For prostate tissue typing, features

such as entropy (a measure of disorder in distribution of intensities), contrast (a

measure of variation in intensities), correlation, angular second momentum (a measure

for homogeneity), variance of the co-occurrence matrix elements, inverse difference

moments, sum average, sum variance, sum entropy, difference entropy, information
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measures of correlation, maximum probability, and many others have been extracted

from co-occurrence matrices and used in different studies [9, 87, 142, 182, 213]. We

will review the classification methodology and results of these studies in Section 2.2.3.

Texture parameters extracted by other techniques have also been utilized for ul-

trasonic tissue typing (mostly in tissue types other than prostate). Previous literature

proposed a PCa diagnosis method based on Gabor filter texture segmentation [141].

Vorhoeven and Thijssen studied the potential application of fractal dimensions for

lesion detection in echographic images [218] and later, fractal feature vectors based

on M-band wavelet transform were used for ultrasonic liver tissue typing [121]. Bleck

et al. [14] extracted texture parameters considering autoregressive periodic random

field models for liver tissue typing. DaPonte et al. [31] applied Markov field models

for texture feature extraction. De Marchi et al. have used fractal and statistical

features of speckle in B-scan images for detection of prostate cancer [138].

It should be noted that manual, semiautomatic or automatic detection of the

boundary of prostate on the ultrasound images is a primary step for applying the

methods discussed in this section and also for generating 3D models of prostate [54,

59]. Several researchers have worked in this area [1, 27, 35, 65, 68, 73, 74, 86, 116, 117,

127, 149, 160, 192, 212, 222, 232, 236]. A comprehensive review of different boundary

delineation and segmentation methods of prostate tissue from ultrasound images is

beyond the purpose of the current survey (for a recent review paper on ultrasound

segmentation see [151])7.

7In addition, it is important to note that to evaluate the results of ultrasound-based techniques
for prostate cancer detection, one should compare them with the results acquired by the histopatho-
logic analysis of the same cross section of tissue. This brings up an ultrasound to histopathology
registration problem, which is normally solved using visual landmarks. However, some researchers
have developed more accurate approaches to solve this problem. For example, see [207] who have
created fiducial points in the tissue using a four prong device to register their ex-vivo ultrasound
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2.2.3 The results of ultrasound-based methods in diagnosis

of prostate cancer

RF/B-scan features have been used in combination with pattern recognition tech-

niques to increase the accuracy of PCa diagnosis. Here, we review some of the studies

that have followed this approach. The final results of these studies, which are usually

presented as 2D or 3D maps illustrating different classes of prostate tissue are used

for biopsy guidance or diagnostic decision making.

A few researchers merely use texture features to characterize prostate tissue [85,

132], sometimes in combination with basic clinical measures such as the location of

area of interest in the prostate gland [78]. In [85], the performance of the first-order

statistics (mean, standard deviation, skewness and kurtosis) of the B-scan images were

analyzed to localize cancer lesions on a group of 25 patients. The results show that

the average pixel intensities in non-cancerous regions are lower compared to cancerous

areas; the average skewness and kurtosis values are greater in the cancerous areas; and

the standard deviations are not significantly different. The authors utilized decision

trees to classify ROIs based on mean and skewness values [85] and acquired an overall

accuracy rate of about 80% (compare to the 64% accuracy of the visual inspections).

Basset et al. [9] published a detailed analysis on the functionality of texture features

derived solely from co-occurrence matrices (second-order statistics) for prostate tissue

images to histopathology. They have used a 3-D correlation registration algorithm and reported ac-
curacies between 89%–94%. Similarly, researchers have studied MRI to histopathology registration.
Zhan et al. have developed a deformable registration methodology that utilizes prostate boundary
points and internal salient points, identified with a space-scale analysis method, as landmarks. Using
this approach, they have reported an average of up to 80% of correct overlap between manually and
automatically labeled cancerous regions on MRI images [234, 235]. Also, in a recent work, a regis-
tration method called combined feature ensemble mutual information is developed for registration of
4 T MRI with whole mount histology images [23]. The authors of [23] found their method superior
to image intensity-based mutual information registration.
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typing. They applied values of d = 2 to d = 50 (where d stands for the distance used

in computation of the co-occurrence matrices, see section 2.2.2) and have reported

the classification results for ROIs of about 64×64 pixels in size corresponding to

1.45 cm2 of the actual tissue. The ROC analysis showed 83% specificity versus 71%

sensitivity. However, decreasing the region size to 16×16 pixels reduced the accuracy,

and resulted in sensitivity of 41%.

Recently, Mohamed and Salama [142] used a mutual information algorithm to

select a subset of second order texture features for prostate tissue classification. They

examined their feature vectors using support vector machines as classifiers and re-

ported accuracy ranges from 83.5% to 93.7%. Huynen et al. [87] obtained a specificity

of 77.1% and a sensitivity of 80.6% by devising a feature vector of combined first-

and second-order statistics of prostate ultrasound images. One of the most recent

studies that take advantage of only textural B-scan features for detection of prostate

cancer is by Llobet et al. [132] who report an area under the ROC curve of 61.6%

with k-nearest neighbors (k-NN) and Hidden Markov classifiers.

As previously discussed, an important set of ultrasound-based tissue typing fea-

tures are extracted from RF echo signals. Feleppa et al. [57, 56, 60] reported on

prostate tissue typing systems that combine a set of features extracted from spec-

trum analysis of RF signals with clinical data. The clinical data fields consisted

of PSA, age, ethnicity, and radiologist’s interpretation of the B-scan images. This

combined feature vector was used in conjunction with artificial neural networks as

classifiers. The authors found radial basis function neural networks and Multi-Layer

Perceptrons (MLPs) efficient for this application. The best performance of an MLP

in their study was 84% (showing a considerable improvement compared to the 66%
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success rate on clinical assessment of B-scan images from the same dataset).

Different ranges of accuracy have been reported on the classification efficiency

of specific groups of features. This can be interpreted as a sign of the dataset-

dependent nature of some of the features utilized and also of the different sizes of

ROIs considered for feature vector generation. One possible solution for designing

a robust tissue typing system is to use large datasets and hybrid feature vectors

(including RF spectrum, image texture features, and clinical data). This is an ongoing

trend. Scheipers et al. [182, 183] published a study involving 100 patients who all

received radical prostatectomy as their treatment option. The researchers analyzed

40 different features [183] and later a selected set of 28 features [182] for classification

of ROIs of 0.1 cm2 in size. In the latter study, features included three attenuation

parameters, five scattering parameters, eight first-order image texture parameters,

nine second-order texture parameters extracted from co-occurrence matrices, and also

three clinical parameters. The classification method of the study involved feeding

the feature vectors characterizing each ROI to two parallel neuro-fuzzy inference

systems. The outputs were processed to evaluate the contextual information and

then combined to generate a malignancy map to assist the biopsy process. The

researchers obtained a success rate of 86% (in terms of the area under the ROC curve)

in distinguishing between hyperechoic or hypoechoic tumors from normal tissue, and

84% in distinguishing between the isoechoic tumors and normal tissue.

Schmitz et al. [186] also utilized hybrid feature vectors for PCa detection in ROIs

of the same size (0.1 cm2). They performed studies on 33 patients and used Kohonen

maps and linear and quadratic Bayes classifiers, and nearest neighbor methods. ROIs

characterized by a 16-dimensional feature vector consisting of attenuation, scatter
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and texture parameters were classified. Their best result is reported to be acquired

from a 3×3 self-organizing Kohonen map based on the Mahalanobis distance. The

results were presented by a color map which included six different color codes. They

acquired a success rate of 82% for sensitivity and 88% for specificity.

2.2.4 Section summary and discussion

In this section, we reviewed computer-aided methods for detection of prostate cancer

that utilize features extracted from B-scan images or ultrasound RF signals. Tissue

regions of sizes in the range of 0.1 cm2 to 1.45 cm2 have been classified based on

first-order statistical moments of B-scan images [85] and second order statistics such

as co-occurrence matrices [9]. Researchers have also used features like axis intercept,

slope and midband values extracted from the frequency spectrum of the ultrasound

RF signals for prostate tissue classification. In several studies, the RF and B-scan fea-

tures have been combined to obtain the optimal ultrasound-based feature vector for

PCa detection. Overall, ultrasound-based prostate tissue classification systems out-

perform the visual interpretation of images. Feleppa et al. have reported a comparison

between the performance of visual inspection and classification based on RF-spectrum

features in detection of PCa. While the former results in accuracies ranging from 64%

to 66%, RF-based classification delivers 75-82% accurate classifications [58].

From the survey of the literature it appears that texture features extracted from

B-scan images and spectral parameters proposed by Lizzi and Feleppa [55, 130] are

the most frequently utilized and cited approaches in ultrasound-based tissue char-

acterization. Therefore, in the current thesis, these two methods were chosen for

comparison with the proposed method of detection of prostate cancer from RF time
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series features. Detailed description of the features proposed by Lizzi and Feleppa

and also the texture features will be given in the upcoming chapters.

Clinical acceptance of the methods reviewed in this section is subject to overcom-

ing challenges in ultrasound-based tissue typing [101]. However, as a cost efficient

diagnostic approach, ultrasound-based techniques can potentially play an important

role in the future of computer-aided methods for detection of PCa. Some of the de-

scribed diagnostic techniques in this survey, and the methodology developed in this

thesis, require direct access to RF signals. Previously, this access has only been pos-

sible through the design of custom-built hardware by individual research groups, or

special arrangements with ultrasound manufacturers. Recently, at least two manu-

facturers of ultrasound machines have provided their users with direct access to RF

echo signals, on certain models of their clinical products, with no need for additional

hardware.

2.3 Ultrasound Doppler

Doppler mode imaging is an alternative ultrasound-based solution for detection of

pathologic conditions. In this section, we review the basic principles of this ap-

proach and describe some of the features extracted from Doppler images for tissue

typing purposes (Section 2.3.1). We also review methodologies and results of studies

that evaluate the performance of ultrasound Doppler-based methods for detection of

prostate cancer (Section 2.3.2).
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2.3.1 Fundamentals of Doppler-based tissue typing

The development of cancer is associated with changes in cellular metabolism. In this

process, an increase in the uptake rate of nutrients and oxygen eventually leads to

an increase in blood supply per unit time to cancer lesions and therefore, to neovas-

cularization in the malignant area [75]. In general, according to studies on different

organs (including prostate [15, 18, 180]), hypervascularization is believed to be corre-

lated with cancer. Moreover, clear correlations between the micro-vessel density and

Gleason grade in prostate cancer have been found [224].

The neovascularity phenomenon suggests that malignant tissue could be identified

by studying the blood flow at the capillary level. Ultrasound Doppler systems are now

standard tools to study the blood flow in the cardiovascular system. Such ultrasound-

based systems operate based on the Doppler phenomenon: Reflected/scattered ultra-

sonic waves from a moving object undergo a frequency shift proportional to the speed

of the moving object. Modern Doppler systems provide a color flow image in which

Doppler frequency shifts measured from sample volumes are displayed on the B-scan

gray scale images. An alternative representation is to measure and display the total

power of Doppler signal from each sample volume; this quantity is governed by the

volume of moving scatterers (mainly red blood cells). Systems that measure and

present the power of Doppler signal produce the so-called power Doppler images.

A fundamental problem in Doppler-based cancer detection stems from the fact

that ultrasound beam is backscattered both from the tissue and from the moving

blood cells. Blood is a relatively weak scatterer of the ultrasound (much weaker than

the surrounding tissue). Therefore, in order to separate a Doppler signal from the
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background signal, a considerable frequency shift is required which confines high-

accuracy Doppler studies to larger vessels with high blood velocity. The neovas-

cularization associated with neoplasia is usually at microvascular level. This fact

restricts the applicability of Doppler analysis in PCa detection [144]. It is possible to

increase the intensity of signals scattered from blood cells by injecting ultrasonic con-

trast agents. The acoustic properties of these agents result in a stronger signal being

reflected from the blood, enabling the Doppler method to detect even small vessels

perfusing around a tumor [217]. Studies have shown that the contrast-enhanced ultra-

sound Doppler results in reproducible classification of prostate tissue [189]. Current

limitations of the contrast agents include the lack of availability of approved agents,

the cost, and the lack of randomized trails demonstrating an actual improvement in

the diagnosis rate [72].

In spite of these limitations, some researchers have attempted to extract the max-

imum possible tissue typing information from Doppler data. Here, we introduce the

quantitative vascular measures extracted from Doppler images and signals.

Power Doppler pixel density, normalized mean power in colored pixels and nor-

malized power-weighted pixel density are three quantitative measures extracted from

power Doppler images that characterize the distribution of Doppler signal power in

ROIs. In color flow images, Speed Weighted Pixel Density (SWD) and mean speed

in colored pixels quantize the frequency shifts in ROIs. Speed- and power-weighted

normalized pixel density is a combined measure which uses both the frequency shift

and power mode information. Details on the computation of these features can be

found in [144].

The pulsatility index and the resistance index are the most widely used measures
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for quantitative analysis of Doppler data and are extracted from Doppler signals [46].

They are measures of damping in the waveform which can be an indication of stenosis

in cardiovascular studies (see [46] for the formulations). Results of [106] show that

the resistance index can be an acceptable indicator of benign prostatic hyperplasia

(non-cancerous enlargement of prostate). The resistance index is also used in kinetic

studies of prostate tumor blood flow [155].

Vascularity indices are functions of the number of color pixels in a region of in-

terest. In order to evaluate the correlation between vascularity and prostate cancer,

researchers need to register the Doppler images spatially with the gold standard im-

ages (i.e. histopathology images on which cancerous lesions are segmented by a

pathologist). The accuracy of tumor segmentation and registration process can affect

the overall performance of the researchers in evaluating their results. Segmentation

is almost always performed manually and registration is carried out either visually or

semi-automatically [145, 167]. Potdevin et al. have used manual segmentation of tu-

mors in histopathology slides [167]. They have used an ellipsoid fit for the boundaries

of prostate in both the histological and Doppler ultrasound images and applied an

affine transformation to register the two datasets. They report an average registration

error of 0.2 cm.

2.3.2 The results of studies in Doppler-based methods

Initial reports on application of Doppler imaging for prostate studies date back to

1990 [223]. At that time, power Doppler method was not available and conventional

color flow imaging was used for tissue typing. Today, Doppler signals, power Doppler

images, and color flow images are all utilized for detecting malignant tissues and
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assisting biopsy [155, 217].

Potdevin et al. have used Doppler measures to locally discriminate PCa [167].

In that study, prostate glands were visually divided into peripheral and periurethral

regions. Doppler measures were calculated for ROIs of size 1 mm2 .The results show

that speed and SWD are acceptable discriminators for PCa in the peripheral and

periurethral regions of the gland, respectively. According to the results of this study,

the area under the ROC curve, obtained from SWD, is about 80%, making it an

acceptable measure for inclusion in feature vectors used for classification of prostate

tissue. Two power Doppler features utilized in the mentioned study did not show a

high diagnostic value (the area under the ROC curve was reportedly about 60%).

In another study [206], Tang et al. selected 54 patients with distinct cancer lesions

on ultrasound images. They manually segmented lesion areas. For this specific set of

regions of interest (with typical diameter of 2.2 cm), they calculated the density of

color pixels from Doppler images and used statistical t-test to analyze the relationship

between the density ratio and malignancy. In 91% of the cases, abnormalities were

detected (this sensitivity should be interpreted along with the large size of ROIs).

In a recent study by Arger et al. [5], the total vascularity and vascular density

extracted from power Doppler images were exploited for cancer diagnosis. Total

vascularity is the average number of vessels per image plane of the prostate. It is based

on a simple count of color pixels in the image planes. On the other hand, vascular

density divides the number of color pixels in each plane by the total number of pixels

enclosed within a region which can be the entire prostate, central or peripheral zones.

Based on the report of Arger et al., vascularity extent measured by total vascularity

and vascular density ranged from low to high in different tissue types and hence, these
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measures did not show a substantial difference between diverse pathologic situations.

In a clinical trial, Kravchick et al. [111] reported a considerable increase in the

diagnostic accuracy resulting from combining the B-scan image and Doppler infor-

mation. It has also been shown that increasing the operating frequency of the ultra-

sound to about 20 MHz makes it much more efficient for imaging microcirculation

[69], which is not feasible on current clinical machines.

2.3.3 Section summary and discussion

In this section, ultrasound Doppler was reviewed as another ultrasound-based source

of information for detection of prostate cancer. Doppler-based cancer detection meth-

ods take advantage of the neovascularization phenomenon in cancer tumors. However,

the results obtained from computational analysis of Doppler images for PCa detection

are not generally in harmony with the strong biological evidence indicating increased

vascularity in cancer lesions. This is probably due to the basic limitations of Doppler

signal intensity during imaging of the microvascular structures. While the intravas-

cular contrast enhancing agents can increase the intensity of Doppler signal from

the micro-vessels, legal and technical difficulties have limited the application of such

agents. One of the possible applications for Doppler-based indices can be combining

them with other sources of information such as ultrasound images and signals. This

possibility has hardly been explored in the reported studies.

It should be noted that the resolution of the Doppler-based methods for cancer

detection (at least at their present form) is limited. In other words, Doppler measures

provide us with a general image of vascularity without specifically delineating the

borders of the tumor.
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An alternative solution to take advantage of the neovascularization phenomenon

for PCa detection is the visualization of microscopic capillaries. High-frequency ul-

trasonic imaging (ultrasound biomicroscopy) is a technique that aims to achieve such

visualizations [64]. This technique is well studied in applications such as ophthalmol-

ogy, however, clinical trials of ultrasound biomicroscopy in case of prostate cancer are

only in primary stages [227]8.

2.4 Chapter summary and conclusions

Accurate and efficient diagnosis and grading of prostate cancer plays a crucial role in

controlling the mortality rate of this common malignancy in men. It also can provide

the information needed for properly deciding on the treatment options for patients.

This chapter presented a comprehensive review of the current computer-aided meth-

ods for diagnosis of prostate cancer. We particularly discussed the ultrasound-based

techniques used for prostate tissue typing. Hybrid texture/RF-spectrum features

in combination with nonlinear classification methods have resulted in detection of

prostate cancer in ROIs as small as 0.1 cm2 with sensitivity and specificity values

of up to 82%. This is a great achievement; however, higher values of accuracy and

stronger scientific theories that correlate pathological conditions with acoustic proper-

ties of tissue are needed to justify the inclusion of automatic ultrasound-based tissue

typing methods in routine diagnosis. Furthermore, large scale clinical studies are

needed to ensure the utility of the tissue typing methods in diagnosis of prostate

cancer.

8Studies on brain MRI images has also confirmed a correlation between abnormally shaped vessels
and cancer [20].
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We also reviewed studies in which the phenomenon of neovascularization around

cancerous tissue has been studied with ultrasound Doppler techniques. Researchers

have often failed to correlate Doppler features extracted from the clinical ultrasound

machines with the actual capillary counts. This limitation is probably due to the

weakness of the Doppler element of the ultrasound signal generated by the capillar-

ies compared to the signal scattered by the surrounding tissue and can be partly

addressed by using contrast agents.

In recent years, researchers have been trying to design automatic systems for tar-

geted biopsy and placement of radioactive seeds for brachytherapy purposes under

ultrasound and MRI guidance [6, 34, 61, 71, 80, 100, 112, 221] and have used C-arm

images registered to ultrasound to overcome the poor quality of the radioactive seeds

in ultrasound images [91]. With efficient targeting and guidance systems already avail-

able, accurate and reliable classification of prostate tissue (from ultrasound and MRI

images) is a missing component of a comprehensive computer-aided prostate inter-

vention system. The research carried out for this thesis is an effort to devise a method

that improves and/or complements the available methodologies for ultrasound-based

tissue characterization aimed at augmenting the prostate interventions, specifically,

the biopsy process.



Chapter 3

Ultrasound RF Time Series

The fundamental novelty of this thesis is the introduction of ultrasound RF time series

as the source of tissue typing information. In this chapter, we describe this concept.

We also present a simulation study that confirms the existence of information-rich

variations in ultrasound RF echo samples acquired from a specific location in a scat-

tering media subject to sequential ultrasound emissions.

3.1 RF time series: A new paradigm in ultrasound-

based tissue typing

Ultrasound beams undergo different interactions with the structural elements of the

tissue, mainly scattering and absorption. The mechanism of these interactions is

frequency-dependent and is also affected by the characteristics of the microstructure

and macrostructure of the tissue. Therefore, the ultrasound echo signals (which, due

45
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to the range of frequencies of medical ultrasound probes, are called RF echo sig-

nals) contain valuable information about the structural properties of the tissue [94].

However, several factors complicate the process of ultrasound tissue characterization,

mainly: 1) Biological tissue is highly heterogenous. What is collectively called “tis-

sue”, in fact consists of a combination of different cell types and biological molecules

in the microstructure level and various structures such as glands and capillaries with

different acoustic properties. 2) The sources of the perturbations in echoes are not

fully understood. The models that describe the backscattering and attenuation of

ultrasound in biological tissue are complicated and approximate. 3) The alterations

in the received echoes are also a factor of variations in transducer parameters such as

the center frequency or output intensity. These challenges have limited the level of

the success in ultrasound-based tissue typing [101].

The most commonly cited and utilized approach for ultrasound-based tissue typ-

ing proposed by late Frederick Lizzi and Ernest Feleppa [55, 130], compensates the

effects of system dependent parameters by dividing the frequency spectrum of the

received RF signals by a calibration spectrum. The calibration spectrum is acquired

by scanning an isonified flat glass plate and describes the machine dependent proper-

ties of the ultrasound echoes. Lizzi, Feleppa and their colleagues have shown that the

average slope and intercept of the calibrated frequency spectrum of segments of RF

A-lines in an ROI of the tissue can be used as tissue characterizing features [128]. This

approach to tissue typing does not rely on a physical model of the interaction between

the tissue and ultrasound. Instead, it relies on the consistent experimental “observa-

tion” of certain characteristics in the frequency spectrum of the signals backscattered

from a tissue type and assumes that the occurrence of such characteristics indicates
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the presence of that tissue type [102].

The methodology of tissue typing proposed in this thesis shares the “observation-

based” nature of the previous approaches. However, the observed features of backscat-

tered ultrasound are extracted from a sequence of echoes received from a specific

location of tissue, and not from a single frame. In other words, the fundamental

observation is that if a certain spot in tissue undergoes sequential ultrasound emis-

sions in the typical frame rates of clinical ultrasound machines, the time series formed

by recording the echoes from that location carries information that can be used for

tissue typing. In order to clarify this statement, one should notice that digital ul-

trasound machines normally have a linear or curved array of piezoelectric crystals

(128 is a typical number). To form the ultrasound image, a number of the crystals

become active at a time (32 is a typical number for the active crystals). The received

echoes are combined with beamforming techniques, to form one line of sight which

is called an RF scan line [81]. Each scan line is a discrete signal and the number

of its samples depends on the depth of imaging and the sampling frequency of the

ultrasound machine. A number of these scan lines that cover the width of the probe,

form one frame of RF data. The mechanism of forming the B-scan images involves

applying envelope detection to the RF scan lines. However, the envelope detection

process removes some of the details of the signal that could be vital for tissue typing.

Therefore, for tissue typing, the conventional methods extract the features from the

spectral frequency of these RF scan lines before transformation to B-scan data. In

our proposed method, we acquired the RF scan lines, keep the ultrasound probe and

the tissue fixed in place, and continue acquiring frames of RF data at the frame rate

of the ultrasound machine. The sequence of one sample of one RF scan line over
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Figure 3.1: Samples of RF echo signals, collected over time from a fixed spot of tissue
under emission of ultrasound at the frame rate of the ultrasound machine,
form one RF time series.

time, forms what we call an RF time series. The principal frequency of the RF time

series is defined by the frame rate of the ultrasound machine. Figure 3.1 illustrates

the concept of RF time series.

In the remainder of this chapter, we provide a potential explanation for the phe-

nomenon that forms the central hypothesis of this thesis (Chapter 1.3): the existence

of tissue typing information in RF time series.

3.2 A potential explanation for variations in RF

time series

The two following questions about RF times series are inevitable: 1) Why should

there be any alterations in the RF time series while the tissue and the probe are fixed

in position? 2) If such alterations do exist, do they contain tissue typing information?
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A large portion of the present thesis will be dedicated to the answer to the second

question. We will provide phantom studies, animal tissue typing studies and a clinical

study involving detection of prostate cancer from ultrasound data. The results of

these studies show that a set of features extracted from RF time series are accurate

in tissue typing and improve the clinical diagnosis of prostate cancer. The remainder

of this chapter, deals with the first question.

In the absence of external mechanical force or controlled variation of the incoming

ultrasound beams, two sources can create variations in the echoes received from the

tissue: 1) The electronic noise of the ultrasound machine that appears as jitter in

the intensity and the frequency of the ultrasound beam. 2) Possible vibrations in

the microstructure of the tissue caused by the acoustic radiation force exerted by the

sequence of ultrasound beams. The former source is undisputable. However, as we

will show in Chapter 6, it has a negative effect on the tissue typing results. So we

discuss the latter here.

All forms of wave motion, including the acoustic waves, exert a unidirectional

radiation force on obstacles in their path [211]. In case of acoustic waves, it has been

shown that the force applied to the tissue can be described as:

F =
2αI

c
(3.1)

where c is the speed of sound in the medium, α is the absorption coefficient of the

tissue, and I is the average intensity of the incident beam. The average intensity can

be described as

I =
1

S

d〈E〉
dt

(3.2)
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where S is the cross sectional area of the beam and 〈E〉 is the short term time average

of the energy of the ultrasound waveform [109].

For a perfectly sinusoidal ultrasound beam waveform, the mean sound pressure

and the force that particles undergo can be considered zero [211]. However, perfect

sinusoidal waveform is not achievable even with the simplest model of medium of

propagation [211]. The aberration of the waveform from sinusoidal form occurs due

to the nonlinear interaction of tissue with the ultrasound beams. Torr has shown [211]

that the radiation force intensity of 1 W/cm2 exerted by the ultrasound beam can be

explained by the existence of an aberration of the incoming signal from the sinusoidal

form that produces only an average pressure of 10−4 times the amplitude of the

ultrasound waveform. Therefore, the radiation force does exist, even at the absence

of a controlled method to generate harmonic locally deposited energy1. Konofagu

and Hynynen [110] show the validity of this claim through measuring the particle

displacements. Since the existence of this force depends on the alteration of the

ultrasound waveform from its original sinusoidal form due to the effects of tissue type

dependent absorption and attenuation, the amount of force, F , depends on the tissue

type.

In our methodology, the ultrasound force is applied in an intermittent manner with

a frequency matching the frame rate of the ultrasound machine (22 or 45 Hz in most

of our experiments). The existence of the tissue-type dependent information in the

1It is important to note that different groups have used the concept of acoustic radiation force
to generate harmonic locally deposited energy for imaging the mechanical response of the tissue
[49, 110, 238]. The common approach is to use two focused ultrasound probes that work at slightly
different frequencies. At the common focal zone, the average energy deposited locally by the two
beams follows a sinusoidal variation with a frequency equal to the difference of the frequencies of
the two transducers (see [109] for the derivation of this result.) By adjusting the difference of the
frequencies to match the mechanical resonance frequency of the tissue, harmonic displacements with
magnitudes up to 600− 800 µm have been measured and reported in the literature [110].
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time series of RF echoes could be attributed to the microstructural vibrations under

the low frequency mechanical excitation caused by the sequentially applied ultrasound

energy that gives rise to a mechanical force in the direction of wave propagation.

To analytically evaluate the displacements of the particles under the scenario of

RF time series acquisition, one could solve for the displacements of all nodes on an

elastic network of connected nodes. Researchers in the field of elastography have

proposed methods to solve for the displacements of tissue nodes under known force

profiles using finite element methods [70]. The state of the system at the end of one

cycle of emission, characterized by the locations and speeds of the nodes, could be

used as the initial state for the next cycle. In the viscoelastic medium of the biological

tissue, the displacement caused by F can be acquired by solving for x from [171]

mẍ + dẋ + kx = F (3.3)

where m, d and k are mass, damping and stiffness matrices describing the microstruc-

ture model of the tissue. Given the unknowns of the system, solving (3.3) under the

assumption of intermittent emission of ultrasound is challenging [17]. The charac-

terization of the force, F , at each spatial location is very complicated due to its

dependence on the interaction between the tissue and the ultrasound and also the

electronic noise of the machine. Furthermore, the inhomogeneous characteristics of

biological tissue mean that the values of parameters m, d and k are not readily avail-

able. Due to these complications, we avoid the analytical approach for characterizing

the displacements and resulting alterations in the echoed signals.

In the remainder of this chapter we will show, through computer simulation, that

the microstructural vibrations can cause variations in ultrasound echoes and these

variations meaningfully change with alterations in the simulated microstructure. This
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will be performed by applying random vibrations to the scattering particles and study-

ing the effects on the RF time series.

It should be noted the existence of the physiological movements caused by the

spontaneous cell movements and capillary level blood circulation, can cause tissue-

characteristic variations in RF time series in in-vivo studies. Recently, spontaneous

cell movements under different physiological conditions have been characterized [205].

Since all the experiments reported in this thesis are performed in ex-vivo conditions,

this phenomenon is unlikely to play a role. However, this should be considered for

extending the method to in-vivo studies.

3.3 Field II simulations

As described in the previous section, the aim of the simulation study described here is

to demonstrate that vibrations in microscopic level can cause variations in ultrasound

echoes acquired from an ultrasound transducer and that these variations meaningfully

change with alterations in the simulated microstructure. We used Field II ultrasound

simulation program [95] to generate a simulated scattering medium with an assumed

number of scattering particles and also, an ultrasound probe with realistic physical

parameters. We created a frame of data consisting of a number of RF scan lines, ap-

plied a microscopic displacement to the scatterers and a minute and realistic amount

of variation to the characteristics of the beam, and simulated the next frame. The

magnitude of these variations was selected according to the manufacturer’s datasheet

available for the simulated probe (BPSL9-5 transrectal probe, Vermon, France). A

sequence of 128 frames created with this methodology, formed the RF time series

(Figure 3.2).
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Since we did not have an analytical description of the force and the potential

vibrations caused by the sequence of ultrasound emissions or the physiological move-

ments, we could not exactly simulate the locations of the particles at the end of each

cycle of emission. Instead, we applied random noise with Gaussian distribution to

the location of the scatterers (relative to the locations at the beginning of the sim-

ulation) to model the microscopic displacement of the backscattering particles from

each emission cycle to the next one. The mean of this Gaussian noise was chosen

according to the published measurements of particle movements under emission of

ultrasound [110]. Therefore, it should be noted that this simulation is not a modeling

of the exact interaction of the tissue with the sequence of ultrasound beams.

3.3.1 Methodology

Field II is a simulation package that finds the intensity of echoes received by an ultra-

sound transducer. The program is written in C programming language and provides

a number of Matlab (Mathworks, Inc.) m-files that call different functions of the pro-

gram. The primary goal of the designer of the program, Dr. J. A. Jensen, has been

simulating the ultrasound images in order to optimize the design of the ultrasound

probes [95, 97]. The program provides commands to define the type of ultrasound

probe (linear, phased or 2D matrix arrays) and also the number of piezoelectric ele-

ments, the number of active elements, the size and the distance between the elements,

and the number and specifications of focal zones. To simulate the ultrasound image,

Field II relies on the linear system theory and uses the concept of spatial impulse

response to find the intensity of ultrasound created by a simulated probe at any given

point in a simulated medium. The impulse response defined for the probe aperture
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Figure 3.2: A flowchart illustrating the simulation process of RF time series. The
simulation considered reasonable variations in the intensity and central
frequency of ultrasound from each frame to the next. Under this assump-
tion, the effects of the density of the scattering medium and the magnitude
of the microstructural vibrations of the scatterers on the energy level of
RF time series were studied.
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determines the emitted ultrasound field at a specific point in space as a function

of time, when the transducer is excited by an impulse (Dirac delta function). The

field for any kind of excitation can then be found by convolving the spatial impulse

response with the excitation function.

The simulated ultrasound transducer

The probe specifications in Field II were chosen to match those of the BPSL9-5

transrectal probe (Vermon, France) distributed by Ultrasonix Medical Systems (Rich-

mond, BC, Canada) with SonixRP ultrasound machines. This probe has 128 elements

with 32 active elements. The distance between the elements is 25 microns. The probe

center frequency is 6.6 MHz. The sampling rate for the RF data was set to 40 MHz

which is one of the two possibilities available on SonixRP.

The simulated medium

The physical phenomenon behind the formation of ultrasound RF signals and ultra-

sound images is the collection of echoes backscattered or reflected from the medium

on the surface of a transducer. The medium can be considered continuous or dis-

crete. In our simulation, we used the discrete model introduced by Bamber and

Dickinson which is the basis of most studies on statistics of ultrasound speckle [7].

The medium was simulated as a collection of individual and independent scatterers,

each re-emitting a part of the received acoustic energy in all directions in space. The

Filed II methodology for calculation of the contributions of individual scatterers in

the ultrasound echoes received in the probe is explained in detail in [96, 123].

We created a medium of dimensions 50×60×10 mm. The scatters were distributed
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in the medium with a random uniform distribution. The density of scatterers was

changed in different experiments to study its effect on the RF time series. The

scattering amplitudes were chosen similar to the methodology of [95] which assumes

a standard Gaussian distribution (N(1, 0)). It should be noted that the simulated

mediums corresponded to virtual phantoms with no specific anatomical structures or

strong reflecting surfaces.

Field II is capable of simulating the effects of frequency and depth dependent

attenuation of ultrasound due to absorption. We set the attenuation coefficient of the

medium to 0.5 dB/MHz − cm which is a typical value for vascular tissue [55].

The simulated data

The number of RF scan lines in each frame, covering the width of the phantom, was

set to 50. The main disadvantage of Field II is the computation time. In our study,

since each time series is formed by acquisition of 128 frames, the timing problem was a

serious challenge. Therefore, we only simulated 16 lines in the center of the phantom

for each simulation experiment.

With the described depth and sampling frequency, the length of each RF scan

line in our simulated data was 3,500. A single transmit focal point was set at 3 cm

deep in the tissue. The data at the focal zone was used for the analysis presented in

this thesis and included 500 samples along each line totalling to 8,000 samples over

16 lines. Each of these samples formed a time series of length 128.

The noise applied to the central frequency of the probe from each frame to the

next followed a Gaussian distribution with the mean at 0 and standard deviation

of 50 KHz. The noise applied to the amplitude of the waveform was ±3% with a
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Gaussian distribution. In other words, the central frequency of the probe at each

frame was fc = f0 + N(0, 50KHz) where f0 = 6.6 MHz in our experiments and

N(µ, σ) describes a Gaussian random variable with the mean of µ and the standard

deviation of σ. The intensity of ultrasound at each location followed this pattern

I = I0sin(2πfct) + N(0, 0.03I0) (3.4)

These values were realistically chosen according to the data provided by the probe

manufacturer. For example, the maximum deviation of the central frequency of the

probe from the expected frequency of 6.6 MHz is 100 KHz. Therefore, a Gaussian

noise with µ = 0 and σ = 50 KHz could describe the electronic noise in this case.

Data analysis

For our analysis, we performed two sets of simulations:

1) In the first set, we created phantoms with different number of scatterers per

volume. Specifically we created seven phantoms with 25,000, 50,000, 75,000, 100,000,

125,000, 150,000 and 175,000 scattering particles distributed uniformly over the vol-

ume of 50×60×10 mm. A time series of frames was created from each phantom. From

each frame in the time series to the next, the beam and the location of the particles

were perturbed. The location of the particles was perturbed relative to the original

location, by displacing each particle along the direction of the ultrasound beam. The

amount of displacement followed a Gaussian distribution of form N(0, 1 µm). This

value is recorded in the measurements of [110] in the absence of harmonic mechanical

excitation.

2) In the second set of experiments, we studied the effects of the magnitude of
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the applied microstructural vibrations on the energy of the RF time series variations.

We performed this experiment with three different phantoms with 50,000, 75,000 and

125,000 scattering particles. For each phantom, five time series of RF frames of length

128 were simulated. The difference between the five simulations was in the amount of

displacement applied to the particle locations: the particles were displaced along the

direction of the beam relative to the initial locations following Gaussian distributions

all with mean of 0 µm and standard deviations of 0 µm, 0.5 µm, 1 µm, 2 µm, and

3 µm.

In our analysis, we compared the level of energy of variations of RF time series in

different simulations. The existence of such variations, and their dependence on the

specifications of the phantoms, could provide evidence to support our hypothesis of

utility of RF time series for tissue typing. Therefore, the parameter of interest, used

for comparison of RF time series in different simulations, was the averaged normalized

energy of the time series which was computed as follows. For a single RF time series,

with samples xts1, ..., xts128, the energy was calculated as

E =
1

128

128∑
i=1

(xtsi − xts)
2 (3.5)

where xts was the mean of the time series and the length of the RF time series was

128. This value was averaged over each line segment as follows

El =
1

500

500∑
i=1

Ei (3.6)

(the length of each of the scan line segments in the focal zone which were used in

the analysis was 500). Therefore, for each simulation, 16 average energy values were

acquired (El1 to El16). In order to compare the energy levels of different simulations,
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these values were normalized by dividing them to the average spatial energy over all

the sixteen lines of the first frame (among the 128 RF frames that formed the time

series) in the simulation computed as

Espatial =
1

(8, 000)

16∑

l=1

500∑
i=1

(xil − xl)
2 (3.7)

where xil’s and xl were the samples and the mean of the samples along RF scan line

l. This resulted in 16 averaged and normalized energy values corresponding to 16 line

segments in each simulation. We called these values El1
ts to El16

ts

Eli
ts = Eli/Espatial (3.8)

3.3.2 Results of the simulation study

The results of the seven experiments with phantoms of different particle intensities

are summarized in Figure 3.3. Each point in this figure is the average of the 16 values

of Eli
ts for one simulation. The length of the error bar is two times the standard

deviation of these 16 values. It is clear from Figure 3.3 that although the distribution

of electronic noise was similar in all seven simulations, the increase in the density of

the scattering particles resulted in a substantial increase in the average normalized

energy of the RF time series.

The results of the experiments with varied magnitudes of microstructural vibra-

tions applied to the scattering particles are depicted in Figure 3.4 for three different

phantoms. The most important observation in this set of experiments was that when

the magnitude of microstructural vibrations was set to zero, the average normalized
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Figure 3.3: Normalized energy of RF time series for simulated phantoms with different
number of scatterers per volume (seven simulations). At a fixed noise level
(±3% noise applied to the intensity of ultrasound and ±50 KHz applied
to the probe center frequency), the energy of variations in RF time series
substantially increased for more dense scattering media.
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Figure 3.4: Normalized energy of RF time series for simulated phantoms with different
amounts of microstructural vibrations. The simulations were performed
for three different phantoms with 50,000, 75,000 and 125,000 particles.
At a fixed noise level (±3% noise applied to the intensity of ultrasound
and ±50 KHz applied to the probe center frequency), the energy of
variations in RF time series consistently increased with larger magnitudes
of vibration in all three phantoms.

energy of the RF time series was substantially smaller than the simulations with ap-

plication of 1 µm or even 0.5 µm vibrations to the particles. It should be noted that

the electronic noise was present in all cases and the level of noise applied to the beam

was similar in all simulations. In other words, the key factor in formation of the

variations of RF time series was the microstructural vibrations. It was also notable

that increasing the mean of the distribution of displacements applied to the particles

increased the energy level of the RF time series. This was consistently true for all

three phantoms.
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These experiments demonstrated that the microstructural vibrations of the scat-

tering particles, within the ranges reported in the literature, under ultrasound emis-

sions can create variations in time series of RF echoes. These variations increase

with an increase in the density of the medium and are substantially stronger than the

variations in RF time series caused only by the electronic noise of the probe.

3.4 Chapter summary and conclusions

In this thesis, we introduced the concept of ultrasound RF time series. To form the

RF time series, we record ultrasound RF echoes backscattered from tissue, at the

frequency determined by the frame rate of the ultrasound machine, while the imag-

ing probe and the tissue are stationary in position. Our studies have shown that

these time series contain tissue-type dependent information. We emphasize that our

methodology to prove the utility of RF time series for tissue typing and specifically de-

tection of prostate cancer is experimental and relies on pattern recognition techniques

that will be described in the next chapter of this thesis. However, in this chapter,

we provided a possible explanations for the existence of tissue typing contents in RF

time series. Microstructural vibrations can be caused by the ultrasound radiation

force. We examined the equations for the ultrasound radiation force which show that

for ultrasound waveforms that are not perfectly sinusoidal, the long term average

of the ultrasound radiation force is not zero. Since the ultrasound beams undergo

non-linear and tissue-type dependent interactions with the biological medium, the

beamform deviates from the sinusoidal form and, therefore, the scatters experience a

non-zero and tissue-dependent force. Under emission of ultrasound at the frequency

determined by the frame rate of the ultrasound machine, this non-zero force might
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cause microstructure vibrations. In live tissue, physiological movements caused by

spontaneous cell motions and capillary level blood circulation (both of which depend

on the function of the tissue) can also create variations in the sequence of RF echoes.

In order to show that microstructural vibrations, in the order of 1 µm, can cause

tissue dependent variations in RF time series, we performed a study using the Field II

ultrasound simulation program. The results of this simulation study showed that

microstructural vibrations can cause variations in the sequence of ultrasound echoes.

These variations carry more energy than the variations caused merely by the electronic

noise of the ultrasound probe. It was also shown that the energy of these variations

increases with an increase in the density of scatterer particles. The results confirm a

possibility of variations in RF echoes caused by the microstructural vibrations.

The physical phenomenon described here is one possible cause of the existence of

the tissue-type dependent information in RF time series. The techniques presented in

this thesis do not solely rely on the validity of this physical explanation. Throughout

this thesis, we have chosen an experimental approach towards proving the utility of

RF time series for tissue typing. We will discuss feature extraction and classification

approaches that take advantage of this phenomenon for tissue typing. We show that

the concept of RF time series can be successfully used for separating tissue mimicking

phantoms with different sizes of particles. Then, we show that for animal tissue types

of distinctly different microstructure, the success rate in tissue typing based on the

proposed method is very high. Finally, we present the results of a study that show

the proposed method can be used to detect prostate cancer.



Chapter 4

Feature Extraction and

Classification

In our methodology for enhancing the prostate biopsy, small regions of interest (ROI)

of tissue are described by features extracted from the corresponding ultrasound RF

time series. A classifier is trained, in a supervised manner, using a portion of the

data with known tissue types. This standard pattern recognition framework requires

the extraction of proper features from RF time series and the choice of suitable

classifiers. The proposed features and utilized classification methods are discussed in

this chapter. The discussion here includes both the novel aspects of the presented

research and the readily available features and classifiers approaches readily available.

Such techniques are clearly distinguished from the novelties of the current work.

64
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4.1 Novel features based on RF time series

The main group of tissue typing features proposed in this thesis are extracted from

the Discrete Fourier Transform (DFT) of RF time series. These features should not be

confused with the spectral features proposed by Lizzi and Feleppa which are based on

the analysis of segments of RF scan lines in single frames of ultrasound data [55, 130].

4.1.1 Spectral features from RF time series

We propose six parameters extracted from the amplitude of the DFT of RF time

series averaged over an ROI for tissue typing. These features form a small profile

that represents the frequency spectrum of RF time series. Four of these features

represent the energy of the time series in different frequency bands and two of them

describe the general appearance of the spectrum of the time series.

Each RF time series is a discrete signal of length N equal to the number of

sequentially acquired frames. We were interested in the variations of this signal;

therefore, features were extracted from the zero-meaned time series. The discrete

Fourier transform of the time series xt is computed as

X[k] =
1

N

N−1∑
n=0

xt[n]e−j(2π/N)kn (4.1)

where X is the DFT of the zero-meaned RF time series xt. The time series were

zero-padded in case of some of our experiments were N was not a power of 2. DFT

is computed using the Fast Fourier Transform (FFT) algorithm as implemented in

MATLABTM (Mathworks Inc.). Since the RF time series are real and have mean

of zero, |X[0]| = 0 and |X[k]| = |X[N − k]| where |.| denotes amplitude. In other
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words, the frequency spectrum1 of RF time series was completely represented by N/2

values, namely |X[k]| where k = 1, ..., N/2. We averaged the spectrum over all RF

time series corresponding to RF samples in one ROI. The averaged spectrum of the

ROI (|X|ROI) was then normalized as follows

|X̂ROI [k]| = |XROI [k]|/max(|XROI |) (4.2)

This normalization process set the maximum of the averaged spectrum to 1 and

enabled us to compare data from different ROIs. The six proposed RF time series

features, listed below, were extracted from |X̂ROI |. The first four features (S1, S2, S3

and S4) were the integral of |X̂ROI | in four quarters of the frequency range

S1 =

N/8∑

k=1

|X̂ROI [k]| (4.3)

S2 =

N/4∑

k=N/8+1

|X̂ROI [k]| (4.4)

S3 =

3N/8∑

k=N/4+1

|X̂ROI [k]| (4.5)

S4 =

N/2∑

k=3N/8+1

|X̂ROI [k]| (4.6)

In other words, we averaged the spectrum over different frequency bands to con-

dense the signal information in S1 − S4 as features for tissue typing2. We also fit

1It should be noted that the described methodology here provides only the periodogram of the
time series which is a rough estimation of the frequency spectrum. Throughout the thesis, we have
used the expression “frequency spectrum” to describe this rough estimate.

2The idea of summarizing the frequency spectrum of a signal in a few parameters for pattern
recognition purposes has been suggested in [170] and [231].
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Figure 4.1: A plot of the normalized average frequency spectrum of RF time series of
length 127 from ROIs of the pig liver tissue. The slope and intercept of
the linear regression of the frequency spectrum and also, the sum of the
amplitude values in four different frequency bands (separated by vertical
lines on the graph) were used as features. The probe frame rate (which
determines the principal frequency of RF time series was set to 22 fps.
The probe central frequency was set to 6.6 MHz.

a least mean square regression line to values of the spectrum versus normalized fre-

quency. The intercept (S5) and slope (S6) of this line were used as two more features.

Figure 4.1 shows the normalized average frequency spectrum for one ROI of RF time

series data acquired from pig liver tissue and depicts the process of computing S1-S6.

4.1.2 Fractal dimension

One of the parameters extracted from RF time series and found effective as a feature

for tissue typing was the average fractal dimension of RF time series in a region
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of interest in the tissue. The concept of fractal dimension (FD) is a generalization

of the Euclidean dimension that reflects the complexity of a signal or object3. FD

is a common feature used for the analysis of biomedical signals such as EEG [2,

82]. Researchers have studied FD of the time series formed by numerous biological

processes including blood pressure [139] and heart rate [11].

The fractal dimension of a time series reveals properties that are raised from com-

plex internal nonlinear dynamics of the underlying process [194] (rather than those

caused by noise and environmental conditions). This property of FD is the incentive

in utilizing it as a tissue typing feature. We do not have an analytical model of the

mechanism of interaction between tissue microstructure and sequential ultrasound

emissions. Therefore, it is difficult to separate the noise from microstructure-related

features. Since FD is affected more significantly by the nonlinear dynamics of the

interaction between the tissue microstructure and ultrasound beams, it proves useful

in separating tissue types based on RF time series.

There are several algorithms for estimation of the fractal dimension of a time

series [83, 103, 165]. Some of these algorithms (such as Katz’s [103]) rely on geometric

features of the curve formed by the time series. Others such as the widely utilized

algorithm proposed by Higuchi [83], decompose the signal into different scales and

evaluate the signal complexity.

3The concept of fractal dimension is widely used to characterize the self-similarity of an object.
Self-similarity is the property of objects that are geometrically similar to their parts or have similar
statistical properties to their parts. In signals, self similarity results in scale-invariant complexity:
the signal preserves its complexity when it is scaled down. As Mandelbrot demonstrates [136], FD
provides a measure of scale-invariant complexity even when the object is not a fractal object/signal.
Therefore, one does not need to claim that the RF time series are essentially fractal in order to use
FD as a measure of complexity. Since our simulations in Chapter 3 show that the energy of variations
in RF time series significantly increases with increasing the complexity (number of scatterers) in the
medium, the complexity of the RF time series characterized by FD was considered as one of the
tissue typing features.
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Higuchi’s algorithm is proven to be a stable and accurate method to estimate the

FD4 of time series and more importantly, works for time series with few samples [45].

The algorithm computes mean length of the signal at different scales, plots a log-log

graph of length versus scale, and measures the slope of the linear fit of this graph as

the FD. The implementation details are as follows:

Consider N frames of RF data acquired while the probe and the tissue are fixed in

position. Over time, each sample of the RF data forms a time series {X(1), X(2), ..., X(N)}.
From this time series, first k new time series of form

Xm
k : {X(m), X(m + k), X(m + 2k)..., X(m + [

N −m

k
].k)} (4.7)

are constructed where k is the sampling time interval (which determines the scale,

k < N) and m = 1, 2, ..., k − 1. Both m and k are integers. The length of each time

series, Lm(k), is defined as

Lm(k) = 1/k × (
N − 1

[N−m
k

].k
)×

[N−m
k

]∑
i=1

|X(m + ik)−X(m + (i− 1).k)| (4.8)

The average value of Lm(k) over k sets, L(k), is the so-called length of the time

series at scale k. This procedure is repeated for each k ranging from 1 to kmax. A line

is fitted to values of ln (L(k)) versus ln (1/k) and the slope of this line is considered as

the FD. The number of the samples, N , and the nature of the time series determine

the optimal value of the parameter kmax. We chose the value of kmax that resulted

in the maximized classification accuracy for tissue typing. We performed a study

4Our simulation results also confirmed this finding. When Higuchi’s algorithm was used to extract
the fractal dimension of time series of length 1,000 originating from a simulated Brownian motion
process with theoretical FD=1.5, an unbiased estimate of the FD with a standard deviation smaller
than 0.05 was acquired (smaller variances were achievable when longer lengths of simulated time
series were used). Similar simulations with Katz’s algorithm resulted in biased estimations.
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on the separability of the tissue types under fractal dimensions evaluated with kmax

values between 4 and 56. Based on that study, which will be detailed in Chapter 5,

kmax = 16 was chosen.

4.2 Classical features from B-scan and RF data

Throughout this thesis we have used texture features extracted from ultrasound B-

scan images and also, a group of spectral features extracted from single frames of RF

data as proposed by Lizzi and Feleppa [55, 130] for comparison with our methodology

and also to complement it. A brief description of these feature extraction methods is

provided here.

4.2.1 B-scan texture features

Texture features extracted from B-scan images have been extensively used for ultrasound-

based tissue typing for diagnostic purposes. Several researchers have used them as the

sole set of features [9, 85, 142, 213], other groups have combined them with features

extracted from the spectrum of RF signals [182, 186]. In this section, we describe the

utilized texture features.

B-scan statistical moments: We computed the first-order statistical moments:

mean (M), standard deviation (SD), skewness (Sk) and kurtosis (K), of the intensities

of pixels in each ROI. Although these features have been shown to be useful for texture

classification [85], addition of second order statistics in form of co-occurrence features

can increase the performance of texture-based tissue typing [9, 220].
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B-scan co-occurrence features: Co-occurrence matrices of an image are his-

togram representations, each describing the co-occurrence of a pair of intensities at

a certain distance (l) along a certain direction (θ). These matrices are sources for

valuable texture features originally proposed in [79]. For feature extraction from

gray-scale images, usually only the co-occurrence matrices corresponding to direc-

tions θ = 0◦ and θ = 90◦ are used [9, 213]. Features extracted from these matrices

statistically describe the relationships between pixels in the image.

In this work, we used co-occurrence distance of l = 1 and directions θ = 0◦

and θ = 90◦ (vertical and horizontal adjacency). In other words, we calculated the

following two co-occurrence matrices for each ROI

θ = 0◦ : p(I(m,n) = i, I(m± 1, n) = j) = (4.9)

no. of horizontally adjacent pixel pairs with values (i, j)

total number of possible pairs

and,

θ = 90◦ : p(I(m,n) = i, I(m,n± 1) = j) = (4.10)

no. of vertically adjacent pixel pairs with values (i, j)

total number of possible pairs

The following eight features were extracted from co-occurrence matrices:

Contrast (Cn0, Cn90): A measure of the intensity contrast between a pixel and

its neighbors in the image

Cn =
∑

i

∑
j

p(i, j)× |i− j|2 (4.11)

Correlation (Cr0, Cr90): A measure of correlation between the intensity of a pixel
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and its neighbor

Cr =
(
∑

i

∑
j(ij)p(i, j))− µiµj

σiσj

(4.12)

where µi and σi are the mean and standard deviation of row i in the co-occurrence

matrix.

Energy (E0, E90): A measure of the smoothness of the image, also known as the

angular second moment

E =
∑

i

∑
j

p(i, j)2 (4.13)

Homogeneity (H0, H90): A measure of randomness in the image which takes low

values for smooth images

H =
∑

i

∑
j

p(i, j)

1 + |i− j| (4.14)

4.2.2 Lizzi-Feleppa features (LF1,LF2,LF3):

In this thesis, we have used the classical ultrasound-based tissue typing features ex-

tracted from single RF frames for comparison with the RF time series features in case

of our clinical study on human prostate specimens. Lizzi, Feleppa and their colleagues

have shown that the intercept extrapolated to zero frequency (LF1), the average slope

(LF2), and mid-band value (LF3) of a line fitted to the mid-band portion of the cal-

ibrated frequency spectrum of segments of RF A-lines can be used as the signature

of cancerous and normal tissue types in prostate [55, 60]. We closely followed the
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methodology described in [55] for calibration of the frequency spectrum. In our clini-

cal study involving prostate specimens, the calibration data for Lizzi-Feleppa method

was acquired from the surface of a flat glass plate in a water bath at the transducer

focal zone, with minimum amplifier gain and flat TGC. A sliding Hamming window

was applied to the RF lines, and the squared magnitude of the Fourier transform of

the windowed data was computed. The linear fit was computed for the portion of the

spectra extending from 3.5 MHz to 9 MHz (the central frequency of the probe was

6.6 MHz). The values of slope and mid-band value were corrected for an assumed

linear attenuation coefficient of 0.5 dB/MHz − cm [55] and averaged over the ROI.

It is important to note that although LF features and RF time series features are

both computed based on the spectral analysis of echo signals, they are fundamentally

different. The LF features are computed based on spectral analysis of segments of RF

A-lines in one single frame. RF time series features, on the other hand, are computed

based on spectral analysis of temporal samples of RF echoes all originating from

the same spatial location in the tissue. In the literature, LF features are commonly

referred to as spectral RF features. We chose to call them LF features in order to

avoid the confusion with spectral RF time series features.

4.3 Classification methods

In our methodology, each region of interest (ROI) in the tissue is described with a

feature vector. In different studies on phantom, animal and human tissue presented

in this thesis, the feature vector is composed of RF time series features alone, or in

combination with LF and texture features. In this section, we will use x to refer to

the feature vector describing the ROI.
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Due to the heterogenous and complex nature of biological tissue, the assumption

of a specific statistical distribution for the values of the features is a difficult task

in case of tissue typing based on ultrasound echoes. Therefore, we avoid the use of

methods such as Bayesian classifiers that rely on a parametric estimation of feature

distributions. Instead, we rely on two types of classifiers which take advantage of

supervised learning to optimize the parameters of a discriminant model by minimizing

the classification error on training data. These methods are multilayer perceptron

which belongs to the category of neural networks, and support vector machine (SVM)

that belongs to the category of maximum margin classifiers. Neural networks and

SVM are nonparametric classifiers [77]. This is due to the fact that they do not rely

on any assumption concerning the distribution of features.

4.3.1 Multilayer perceptron network

The general model for classification can be described by a discriminant function of

the feature vector, x, of form5

y(x,w) = f
( M∑

j=1

wjφj(x)
)

(4.15)

where f(.) is a nonlinear activation function, φj(x) are the basis functions and y stands

for the outcome of the classification or the class labels. A neural network is a specific

type of this general model. In other words, the neural network model is simply a

nonlinear function from a set of input variables, x, to a set of output variables, y [13].

5This model is in fact called the linear model of classification [13]. The linearity, however, is with
respect to the parameter vector w. The mapping is nonlinear due to the existence of the function f
and potentially nonlinear φ.
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The name “neural network” has its roots in studies that aimed at finding mathemati-

cal representations for the mechanism of data processing in biological neural systems

[177]. However, for the practical pattern recognition purposes, these biological in-

terpretations are unnecessary. Among different types of neural networks, multilayer

perceptron has proven very efficient. The architecture of a multilayer perceptron is

composed of a network of processing units, or neurons, arranged as an input layer,

an output layer and one or more hidden layers. Each neuron combines its inputs in

a linear manner and applies a nonlinear function to the result to generate the input

to the next layer. For a two layer perceptron, which is composed of an input, output

and a hidden layer, the overall network function can be written as [13]

yk(x,w) = g
( M∑

j=0

w
(2)
kj g

( D∑
i=0

w
(1)
ji xi

))
(4.16)

where yk represents the output of the kth neuron in the output layer (k = 1, ..., K),

D is the number of input neurons, M is the number of neurons in the hidden layer,

parameters of form w
(1)
ij represent the weight of the connection between the ith neuron

in layer (1) with the jth neuron in the next layer. The biases of each connection are

also included in the weight vectors. Therefore, the indices of the summations start at

0 instead of 1. A common choice for the function g(.) is the logistic sigmoid function

of form

g(a) =
1

1 + (exp(−a))
(4.17)

which yields values between 0 and 1. In a two class problem, a single output layer is

sufficient and the class label can be decided by rounding the output of the neuron to
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the closer number of the set {0, 1}.
In the training phase, given a set of input vectors xn with known output vectors

tn, the intention is to find the set of parameters w that minimizes an error function.

A common error function, which we used, is the mean square error function of form

E(w) =
1

2

n=1∑
N

‖y(xn,w)− tn‖2 (4.18)

The most common solution for solving this optimization problem is the backprop-

agation technique [178] which was used in this thesis as well. This method involved

an iterative procedure. We used the backpropagation technique based on gradient

decent. Network weights were initialized with random values and then changed in

the direction that reduced the error. The details of the backpropagation algorithm

can be found in the original reference [178] or any pattern recognition text [13]. The

stopping criteria for the training process was determined by monitoring the learning

curve which depicts the value of the objective function vs. the number of iterations.

4.3.2 Support vector machines

Support vector machines belong to the family of maximum margin classifiers. Using

a kernel function, SVM maps the input data to a higher dimension space where a

hyperplane can separate the data in different classes. The process of training a SVM

classifier is equivalent to finding this optimal hyperplane in a way that minimizes

the error on the training dataset and maximizes the perpendicular distance between

the decision boundary and the closest data points in the classes [216]. In a two-class

case, if the training dataset consists of N feature vectors {x1, ...,xN} with class labels

yi ∈ {1,−1}, then the SVM training problem is equivalent to finding W and b such
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that [13]

1/2×W T W + C

i=N∑
i=1

ξi (4.19)

is minimized subject to

yi(W
T φ(xi) + b) ≥ 1− ξi (4.20)

where ξi ≥ 0 are the so-called slack variables that allow for misclassification of noisy

and difficult data points, and C > 0 controls the trade-off between the slack variable

penalty and the margin [13]. The function φ(.) maps the data to a higher dimensional

space. This new space is defined by its kernel function: K(xi,xj) = φ(xi)
T .φ(xj).

The above problem can be formulated as a quadratic optimization process. The

details of the solution, as used in our methodology, and its implementation can be

found in [47]. For the choice of kernel type, we examined linear, sigmoid, polynomial

and Gaussian Radial Basis Function (RBF) kernels. We chose the RBF kernel which

is defined as

K(xi,xj) = e−γ‖xi−xj‖2 (4.21)

This choice was due to two reasons: 1) The RBF kernel has only one parameter

(γ > 0) to adjust. This means that the process of tuning the SVM classifier to a

specific problem is limited to finding the appropriate values for two parameters: C

and γ; 2) we found SVM classifiers based on RBF kernel more accurate in case of

detection of prostate cancer in our dataset.

We used the publicly available C++ implementation of the SVM algorithms known

as LIBSVM [47]. The entire dataset was normalized prior to training by setting the

maximum value of each feature to 1 and the minimum to 0. For parameter selection
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(C and γ), exhaustive search was performed. The details will be provided along with

the description of the experiments in future chapters.

4.3.3 Posterior class probabilities for cancer distribution maps

In this section, we explain the methodology used to generate the posterior class prob-

abilities of tissue ROIs classified with the SVM method. These probability values

were used to generate cancer distribution probability maps. Unlike some statistical

classification methods such as the Bayesian classifier, SVM is merely a decision ma-

chine: If f(xn) = W T φ(xn) + b > 0, then the class label for xn is yn = 1. In other

words, SVM does not provide posterior class probabilities (P (class|input)). In or-

der to generate the cancer distribution probability maps and also Receiver Operating

Characteristic (ROC) curves for our human study, we needed posterior probabilities

of normal and cancer classes

Pc(xn) = p(y = 1|f(xn)) (4.22)

where Pc(xn) stands for probability of xn being cancerous and Pnor(xn) = 1−Pc(xn).

Platt [166] has extended SVM for probability estimates. Platt’s method trains an

SVM and then, trains the parameters of an additional sigmoid function of form

Pc = (yn = 1|f(xn)) =
1

1 + exp(Af(xn) + B)
(4.23)

to map the values of f(xn) to posterior probabilities. The values of parameters A

and B are fit using maximum likelihood estimation from the training set for which

the actual labels are known [166, 228]. We used class probabilities generated with

this method for creating the probabilistic cancer maps.
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4.3.4 Receiver Operator Characteristic

The performance of computer-aided diagnosis methods is usually expressed with mea-

sures including accuracy, specificity, sensitivity, and Receiver Operator Characteristic

(ROC) curves. In this section, we provide definitions of these measures. In case of

the ROC curve, we will provide a description of our method for creating ROC curve

based on SVM outcomes. It should be noted that throughout this thesis, measures

of performance are presented based on the number of ROIs in the test set. In other

words, if in a certain classification experiment an accuracy of 80% is reported, then

80% of the ROIs in the test set have been correctly classified.

The sensitivity and specificity are indicators of the frequency of correct diagnosis

in subjects (ROIs in our experiments) with and without the disease, respectively.

Mathematically they can be expressed as [152]

se = sensitivity =
true positives

Number of positive cases in the test set
(4.24)

sp = specificity =
true negatives

Number of negative cases in the test set
(4.25)

where true positive refers to the number of ROIs correctly classified as positive (can-

cerous) and true negative refers to the number of ROIs correctly classified as negative.

In any detection/diagnosis study, there is a simple or composite parameter based on

which the “critical value” or “decision boundary” is determined. There always ex-

ists a trade-off between having high specificity and high sensitivity values depending

on the chosen threshold. Therefore, the sensitivity of diagnosis or detection method

should always be assessed along with its specificity. One method to assess the di-

agnostic value of a test and to define an appropriate decision boundary, is the ROC



CHAPTER 4. FEATURE EXTRACTION AND CLASSIFICATION 80

curve analysis. ROC curve is a plot of sensitivity against specificity which is derived

by varying the decision boundary and measuring sensitivity and specificity for each

threshold value6. Conventionally, specificity is plotted along the abscissa and sensi-

tivity is plotted along the ordinate [46]. A desirable test is one for which sensitivity

rises rapidly without a major decrease in specificity. The area under an ideal ROC

curve is therefore close to 1 when specificity and sensitivity are expressed in [0, 1]

interval.

In case of SVM classification which was the method of choice in our clinical study,

the posterior cancer probability (Pc computed using the method described in Section

4.3.3) was used to determine the decision boundary (t) used for plotting the ROC

curve. In other words, an ROI was classified as cancerous if Pc > t. The value of

t was incrementally increased from 0 to 1 with steps of size 0.001. For each step,

sensitivity and specificity values were calculated. The area under the ROC curve was

then calculated as follows [184]

AROC =
1

2

( ∑
i

(sei + sei−1)(spi−1 − spi)
)

(4.26)

where sei and spi were the sensitivity and specificity corresponding to point i on the

ROC curve. The area under the ROC curve was used as the primary measure for

evaluation of the classification performance in our clinical study.

6Many researchers prefer to plot sensitivity versus 1-specificity which is called Probability of False
Alarm (PFA).
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4.3.5 The choice of the classifier

The classification method of choice for our animal studies was neural networks. It

was noted that very simple architectures of neural networks, such as the two layer

model described in Section 4.3.1, provide very high classification accuracies. However,

for the case of the clinical study, we used the SVM classifier. This was due to the

practical advantages of the SVM to the neural networks, including: 1) A systematic

method for choosing the best architecture of neural network for a specific problem

is outstanding. In case of SVM, on the other hand, the tuning of the classifier is

equivalent to finding the values of only two parameters through a sparse search on a

large interval followed by a more exhaustive search on a smaller subset. 2) Although

for both neural network and SVM classifiers the training process involves nonlin-

ear optimization, it can be shown that the objective function in case of the SVM

training is convex [13]. Therefore, the solution of the optimization problem is more

straightforward and the training goal is achieved in a significantly shorter time.

The cancer distribution probability maps reported in Chapter 6 were created using

the SVM classification method based on the posterior class probability estimation

method described in Section 4.3.3.

4.4 Chapter summary and conclusions

In this chapter we discussed the methods utilized in the thesis for extraction of tissue

typing features from ultrasound RF time series. We introduced the spectral and

fractal parameters used to characterize RF time series received from tissue. We

also briefly described a set of B-scan texture features and spectral features extracted
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from single frames of RF data proposed in the literature for ultrasound-based tissue

typing. These features will be used for comparison with and also for complementing

the performance of our novel RF time series features in Chapter 6. Further, we

provided details of the multilayer perceptron neural network and SVM classification

methods used for tissue typing in the current work.



Chapter 5

Phantom and Animal Studies

In this chapter, we provide experimental evidence, based on phantom and animal

studies, showing that the ultrasound RF time series can be used for tissue typing

within a pattern recognition framework that utilizes training supervised classifiers

such as neural networks and support vector machines. In the phantom studies, we

examine the capabilities of RF time series features in distinguishing tissue mimicking

phantoms, with difference only in the size of cell-mimicking microscopic glass beads.

Prostate tumors are composed of immature and “small cells” which lack structural

organization [114]. Previous studies have shown that the size and the microstructure

of the sub-wavelength particles affect the backscattered signals [107] and the spectral

parameters extracted from single RF frames [131], and are likely to be among impor-

tant factors in the success of ultrasound-based tissue typing methods. Therefore, in

our phantom studies, we model the cell sizes as one of the differences between the

cancerous and normal tissue, and examine the success of our proposed tissue typing

approach in separation of the phantoms with different cell sizes.

Once the basic idea of utilizing RF time series features for tissue typing was

83
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examined on phantoms, we performed animal studies involving tissue types of different

microstructure to extend the methodology to biological tissues. In the animal studies,

we acquired RF time series from four different types of animal tissue, computed the

proposed features for Regions of Interest (ROIs) of the tissue, and utilized them

along with a neural network classifier for tissue typing. It should be noted that

although successful differentiation of the animal tissue types does not directly imply

the usefulness of the proposed method on the real clinical applications, it provides

experimental support for the central idea of this thesis.

As part of this animal study, we also examined the RF time series acquired from a

high-frequency ultrasound machine operating at the central frequency of 55 MHz. It

is a well-known fact that at very high frequencies the scattering of ultrasound is pri-

marily caused by the cellular microstructure [64] as opposed to tissue macrostructure.

Therefore, the dependence of the RF time series features on cellular microstructure

should be more evident in high-frequency data. The results of our animal study

confirmed this hypothesis.

We also compared the tissue typing performance of the proposed method with

B-scan texture characterization. The 12 texture features introduced in Section 4.2.1

provide a conventional approach to ultrasound-based tissue typing. The results of

our comparative study demonstrated that the new approach outlined in this thesis is

more accurate for tissue typing.

5.1 Methodology of the phantom study

Since the microstructural changes in cellular structure of tissue are important indica-

tors of cancer formation, they are likely to be the source of tissue typing information
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in RF time series as well. An important microstructural feature of tissue is the cell

size. To determine the effects of cell size on RF time series, we acquired and stud-

ied ultrasound RF time series from custom tissue mimicking phantoms with varied

microscopic particle sizes.

5.1.1 The phantoms

We built tissue mimicking phantoms in the form of gelatin-agar based suspensions

[12, 135]. Microscopic glass beads with known distributions of particle sizes were

added to study the effects of cell size. Gelatin and agar (Sigma Aldrich, Canada,

Oakville, ON) were mixed in distilled water in room temperature and while being

constantly stirred, were heated to 90◦C at which point glass beads (Potters Industries,

Parsippany, NJ) were added. Small quantities of bleach were added to avoid bacterial

growth in the phantoms [44]. The resulting mix was slowly cooled down to the

room temperature, while being stirred. When reached to the room temperature, the

suspension was transferred to a plastic box and stored overnight in a cooler. The

ultrasound data was collected the next day.

The dry weight percentages of ingredients used in the utilized phantoms are given

in Table 5.1. Two different types of phantoms were built which shared the same

recipe, with the only difference being the size of microscopic glass beads. The two

types of utilized glass beads were of average diameter of 35 µm (Potters Industries

catalog number: 3000E) and 11 µm (Potters Industries catalog number: 5000E). It is

notable that prostate PC-3 cell line has a mean diameter of 26 µm [107]. The detailed

distribution of bead sizes in 3000E and 5000E materials are provided in Table 5.2.

The physical properties of the phantoms (such as density, elasticity, and speed
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Table 5.1: Dry weight percentage of the various components in the particle size phan-
toms.

Component Weight %
Agar 1.17

Gelatin 3.6
Glass beads 6

Bleach 0.25
Water 88.98

of sound) were similar. This was important since the phantoms were intended to

be different only in terms of cell sizes. The 3000E and 5000E materials have very

close untapped densities (101 vs. 99 lbs/ft3). The resulting phantoms, also had very

similar elastic properties. The stress-strain curves acquired using an Instron 5500R

materials test system, are depicted in Figure 5.1. Since the speed of sound is related

to density and stiffness (c =
√

C/ρ where C is the coefficient of stiffness and ρ is

the density [81]), the similar values of elasticity and density mean that the speed of

sound should also be similar in the two types of phantoms.

For cross-validation purposes, two copies of the 3000E phantom and two of the

5000E phantom were built (four phantoms in total). It should be noted that the

B-scan images acquired from the two types of the phantoms appeared very similar

(Figure 5.2)1.

A cylindrical opening was created in the phantoms just before congealing by in-

serting a plastic pipe into one corner of the holding boxes. Before imaging, this pipe

was removed carefully and the transrectal ultrasound probe (BPSL9-5/55/10, center

frequency: 6.6 MHz) was inserted vertically into the hole left behind and was fixed

1Not surprisingly, an attempt to distinguish the 3000E phantoms from 5000E phantoms based
on B-scan texture features described in Section 4.2.1 failed with an acquired accuracy of just below
60%. The SVM classification approach was used in this test.
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Table 5.2: The distribution of particle sizes in glass beads used in particle size phan-
toms.

3000E 5000E
10% finer than 18 µm 3 µm
50% finer than 35 µm 9 µm
90% finer than 65 µm 38 µm

Mean value 35 µm 11 µm

Figure 5.1: The stress-strain curves for the particle size phantoms.

with a standing clamp (Figure 5.3). The data was collected using a Sonix RP (Ul-

trasonix Inc., Richmond, BC, Canada) ultrasound machine. To form the RF time

series, we acquired 128 frames of RF data from eight different cross sections within

each phantom. Therefore, the length of RF time series in our analysis of phantom

data was 128. The data was acquired at 22 frames per second (fps). A single transmit

focal point was set at 1.5 cm and only data from the focal zone (1 cm on each side of

the focal point) were used for feature extraction and classification experiments. The

RF sampling rate was 20 MHz and the number of bits per RF sample was 16.

5.1.2 Feature extraction and classification

We extracted the RF time series features from areas of interest (ROIs) of size 1 mm×
3.5 mm (this was chosen to match the ROI size in our human study of Chapter 6).
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(3000E) (5000E)

Figure 5.2: The typical B-scan images of 3000E and 5000E phantoms. The textures
appear to be visually identical.

This included four segments of RF lines, each of length 96 samples. In other words,

each ROI was formed by 384 RF time series, each of length 128. A total of 2624

ROIs of each phantom type were available which almost equally originated from the

two versions built from each phantom type. Six spectral RF time series features

(S1,S2,S3,S4,S5,S6) were extracted from the ROIs and used for separation of the

phantoms (the description of these features were provided in Section 4.1)2.

For classification, we compared the performance of the neural networks and SVM

classifiers. Multilayer perceptrons with two and three hidden layers and 3-11 neurons

in each of the hidden layers were examined first. The best performing neural network

classifier was the architecture with one hidden layer and five neurons in that layer.

We also examined the SVM classifier with the Gaussian RBF kernel. For parameter

selection (C and γ, see Section 4.3.2), we exhaustively searched the parameter space

C ∈ {2−10, 2−9, ..., 210} and γ ∈ {2−10, 2−9, ..., 210}. For each set of parameters, 10-fold

2In case of the phantom study, the addition of the FD to the features did not result in a significant
change in the classification accuracies. In the animal study, on the other hand, the FD played an
important role.
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Figure 5.3: Data collection setup for phantom studies.

cross-validation was performed to determine the best SVM parameters. The values

of γ = 4 and C = 0.25 were used.

5.2 Results of the phantom study

As previously stated, we made two copies of the 3000E and two copies of the 5000E

phantom (3000E1, 3000E2, 5000E1, 5000E2). We performed six sets of classification

experiments using these phantoms.

Experiment 1 - train on 3000E1 vs. 5000E1, test on 3000E1 vs. 5000E1: In this

experiment, the classifier was trained to separate RF time series ROIs from 3000E1

and 5000E1 phantoms. The classifier was trained on a portion of the data from

3000E1 and 5000E1 phantoms and tested on a different portion of the data from
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those phantoms. Eight cross sections of RF time series data were available from each

phantom. The experiments were performed with a leave-one-out approach. In other

words, the classifier was trained on data from seven cross sections of the 3000E1 data

vs. seven cross sections of the 5000E1 data and tested on one cross section of 3000E1

vs. 5000E1. The process was repeated for all eight cross sections.

Experiment 2 - train on 3000E2 vs. 5000E2, test on 3000E2 vs. 5000E2: This was

similar to experiment 1, however, data from 3000E2 and 5000E2 phantoms was used.

Experiment 3 - train on 3000E1 vs. 5000E1, test on 3000E2 vs. 5000E2: In this

experiment, the classifier was trained on data from 3000E1 and 5000E1 phantoms and

was tested on separating the ROIs of 3000E2 from 5000E2 phantoms. All ROIs from

3000E1 and 5000E1 were used for training and all ROIs from 3000E2 and 5000E2

were used for testing.

Experiment 4 - train on 3000E2 vs. 5000E2, test on 3000E1 vs. 5000E1: This was

similar to experiment 3, only the training and testing sets were switched.

Experiment 5 - negative control 1: In this experiment, the classifier was trained

to separate 3000E1 ROIs from 3000E2 ROIs. Half of the data from each of these

phantoms were used for training and the other half was used for testing.

Experiment 6 - negative control 2: In this experiment, the classifier was trained

to separate 5000E1 ROIs from 5000E2 ROIs. Half of the data from each of these

phantoms were used for training and the other half was used for testing.

The results of experiments 1 and 2, when a SVM classifier was used, are presented

in Table 5.3 averaged together as the intra-phantom trials. The average accuracy,

sensitivity and specificity (with 5000E defined as the positive detection), were 80.5%,
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79.8% and 81.1%, respectively. It was noted that the results from the neural net-

work classification were slightly less accurate (accuracy of 78±6.9% on a feedforward

network with five neurons in a single hidden layer).

The results of experiments 3 and 4, when a SVM classifier was used, are presented

in Table 5.3 averaged together as the inter-phantom trials. The accuracy slightly

dropped to 79% compared to the intra-phantom experiments. This was expected

due to the fact that the training and testing data in inter-phantom trials were from

physically different versions of 3000E and 5000E phantoms.

As Table 5.3 shows, the average accuracy of the negative control tests where the

two classes of ROIs originated from the same phantom types, was 58%. In other

words, physically different phantoms which had similar cell sizes were very poorly

distinguishable from each other based on the proposed tissue typing approach. Since

the phantoms were custom made, small structural differences between the phantoms

of the same type were inevitable.

The results showed that RF time series acquired from tissue mimicking phan-

toms with difference only in the size of cell-mimicking particles were distinguishable

with statistically reliable accuracy of 80.5%. The low accuracy of the classification

acquired on the negative control experiments involving phantoms with identical cell

sizes showed that the method is in fact sensitive to the cell size.

The phantom study reported here focused only on one of the possible differences

between cancerous and normal tissue, namely cell size. Tissue properties such as elas-

ticity or vascularity also change during formation of cancer. Based on a small study

which involved agar and gelatine-based phantoms with different levels of stiffness, we

can not confirm that RF time series features are sensitive to elasticity.
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Table 5.3: Classification results on particle size phantoms: 3000E versus 5000E phan-
toms. Analysis of variance (ANOVA) test confirmed that the classification
of ROIs in both intra-phantom and inter-phantom experiments was signifi-
cantly more accurate than the classification in negative control experiment
(p < 0.001).

Accuracy (std) Sensitivity Specificity
Intra-phantom (experiments 1 and 2) 80.5% (6.2) 79.8% (5.9) 81.1% (6.6)
Inter-phantom (experiments 3 and 4) 79% (3.1) 77.5% (3.1) 82.6% (3.5)

Negative control (experiments 5 and 6) 58% (7.1) 62.5% (6.1) 60.3 % (6.9)

5.3 Methodology of the animal study

5.3.1 Tissue types

We used four animal tissue types which were all available from butcher-shop cuts.

They were: bovine liver, pig liver, bovine muscle, and chicken breast. As illustrated

in Figure 5.4, the cellular structure of both bovine and pig liver are characterized by

hepatocyte cells (of slightly different shape and density), whereas bovine muscle and

chicken breast both have fibrous structures.

These significantly different cellular microstructures do not translate to distinct

appearances on ultrasound B-scan images. To quantitatively validate this claim, we

performed a simple “visual inspection test”. We asked seven graduate students, who

were all familiar with ultrasound imaging, to train themselves by looking at five

ultrasound B-scan images acquired from the cross sections of each of the four tissue

types used in this study. Students were given up to half an hour to review these 20

images. Immediately after training, they were given 20 new images in a random order

and were asked to associate them to one of the four classes. The average performance

of the human inspectors in this simple test was 71.7% and they all complained about
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(a: Bovine liver) (b: Pig liver)

(c: Chicken breast) (d: Bovine muscle)

Figure 5.4: Images of the cellular structure of tissue types used in this study at 200X
magnification (acquired from H&E stained slides with a Zeiss AxioImager
M1 microscope).

the lack of a simple pattern that distinguishes the tissue types3. In other words, the

studied tissue types are not readily distinct on ultrasound images. This is in fact

similar to the situation in clinical problem of cancer detection which is our ultimate

goal for developing a tissue typing method.

3This result is not directly comparable to the results of the computer-aided methods described
in this thesis, mainly because the computer-based methods classify regions of interest of the tissue
and not the entire images. Furthermore, one should notice that while this visual classification is a
four-class problem, most of our analysis in this chapter considers pairwise tissue typing.
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5.3.2 Data collection

The experiments were performed on data acquired with two different imaging systems:

an ultrasound machine operating at the typical clinical frequency of 6.6 MHz and a

high-frequency machine operating at 55 MHz. The data collection procedures and

specifications of the two datasets were as follows:

Data acquired at 6.6 MHz

We used a Sonix RP (Ultrasonix Inc., Richmond, BC, Canada) ultrasound machine

to collect RF echo signals. The ultrasound probe was a BPSL9-5/55/10 transrectal

probe which generates ultrasound signals with wide-band spectrum. The centeral

frequency was set to 6.6 MHz. The depth of imaging was set to 2 cm.

From each of the four tissue types, we scanned 10 cross sections, where each cross

section was from a different butcher-shop piece of that tissue (40 cross sections in total,

each coming from a different animal). We took numerous measures to ensure that the

differences of RF time series collected from various tissue types do not originate from

alterations in the imaging conditions. The probe was placed in direct contact with

the tissue and only one transmit focal point was set at depth 0.5 cm in all cases. The

tissue was firmly suspended in a water bath and prior to scanning we measured the

temperature of water to make sure that all tissue types were scanned at temperature

range of 22−23◦C. Furthermore, after mounting each tissue piece and positioning the

probe at the imaging position, we waited until the level of water became completely

calm. We used distilled water and changed the contents of the water bath after

scanning each tissue cross section. Figure 5.5 shows our data collection setup.
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(a) (b)

Figure 5.5: Experimental setup for collection of data at 6.6 MHz, (a) A close-up
of the tissue mounted in the water bath and the transrectal probe, (b)
Ultrasound machine and the scanning water bath.

To form the RF time series, we continually acquired 127 frames4 of RF data, at

the rate of 27 frames per second, from each cross section of the tissue. In other words,

the length of the time series was set to 127. Each frame of the RF data consisted

of 256 A-lines. An ROI in our classification experiments corresponded to an area of

3.5 mm2 of the tissue or equivalently an 8× 96 window in the RF data. The number

of ROIs from different tissue types included in the classification experiments ranged

between 368 and 400.

In this chapter, we compare the performance of our proposed methodology with

the performance of texture features extracted from the B-scan images. A B-scan

image of each cross section, which was constructed from the first RF frame in the

time series, was used for this purpose. The equivalent ROI size in the B-scan image

was 8× 8 pixels.

4At the time of acquisition of this dataset, we were limited to 127 frames for technical reasons.
The RF time series were zero-padded to 128 for computation of the DFT-based features.
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Figure 5.6: The scanning setup and the probe used for the high-frequency study.

Data acquired at 55 MHz

The high-frequency RF time series in this study were collected using a Vevo 770 high-

resolution ultrasound system (VisualSonics Inc., Toronto, Canada) with the RMV711

scanhead (Figure 5.6). The probe central frequency was 55 MHz which provided an

axial resolution of 30 µm. The scanhead featured a single crystal and we operated it

in A-scan mode. The depth of scanning was about 1 mm which corresponded to 512

signal samples. While the tissue and the probe were fixed in place, we continually

acquired 500 ultrasound A-lines (frame rate: 60 fps) from one spot of the tissue. In

other words, we formed RF time series of length 500 from each sample of each A-line.

We acquired time series corresponding to two separate A-lines from two different areas

of each tissue type. The tissue typing features were extracted from single time series

of RF samples and averaged over segments of length 10 samples (20 µm). 100 ROIs

of each tissue type were available in our high-frequency dataset.
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5.3.3 Feature extraction and classification

In total, we utilized seven RF time series features: fractal dimension and six simple

parameters extracted from the magnitude of the Discrete Fourier Transform (DFT)

of RF time series. The detailed description of the seven RF time series features

(S1,S2,S3,S4,S5,S6,FD) were provided in Section 4.1.

For selection of the kmax value for computation of the fractal dimension, we per-

formed a study on the separability of the tissue types under fractal dimensions evalu-

ated with kmax values between 4 and 56. The results of that study showed that kmax

values between 8 and 20 yield FD values that can be used for separating tissue types

types with a peak in performance at kmax = 16. Therefore, kmax = 16 was used for

computing the fractal dimension.

For evaluation and comparison, we used 12 texture features computed from B-

scan images constructed from the first frame in the RF time series for data acquired

at 6.6 MHz. The texture features were used for typing of the four animal tissue

types and the results were compared to the performance of the proposed RF time

series features. Since our high-frequency data was acquired at A-scan mode, no

texture feature analysis was performed at high-frequency. The description of the 12

texture features used in the study (M,SD,Sk,K,E0,E90Cn0,Cn90,Cr0,Cr90,H0,H90)

were provided in Section 4.2.1.

We used feedforward multi-layer perceptron networks for tissue classification5. To

determine the architecture of the neural network, we studied networks with one and

two hidden layers. We found that the networks with a single hidden layer yield higher

5The choice of the neural network classifier was merely based on the fact that a simple structure
of multilayer feedforward network provided a universally satisfactory performance in our animal
studies. Therefore, we did not explore other types of classifiers for this purpose.
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accuracies. Also, we examined networks with one hidden layer with different number

of neurons in the hidden layer (3-11 neurons). We found that the performance of

the neural network is maximized with seven neurons when used with the RF time

series features, and with five neurons when used with the texture features. We de-

fined the transfer functions of the neurons in the networks as log-sigmoid and used

the Levenberg-Marquardt backpropagation algorithm for supervised training of the

classifier.

We used a leave-10%-out strategy for training and testing the networks and for

validation of the results. In other words, in each experiment, we randomly divided the

data from the two tissue types involved in the classification to 10 folds. We trained

the network on 90% of the data samples and tested it on the remaining 10%. We

repeated this procedure for all 10 portions of the data. The test accuracies from 10

portions were averaged. This result is not independent from the random process of

splitting the data in 10 parts. Therefore, we repeated the leave-10%-out process 50

times, each time with a different random partitioning of the data in 10 parts. We

report the mean and standard deviation of the outcomes of these 50 trials on test

portion of the data.

5.3.4 Feature selection

There are several reasons for reducing the size of the feature vector used for classifica-

tion. Apart from increased computational complexity, unnecessary inputs also reduce

the generalizability of the trained classifier which translates to reduced test accuracy.

In pattern recognition literature, the complications introduced in classifier design by

the large number of features is referred to as “the curse of dimensionality” [208].
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We used the exhaustive search algorithm to find the best subset of features for

tissue typing. The computational complexity of exhaustive search for feature selection

exponentially grows with increasing size of the feature space [208]. To choose the

optimal subset of features from an n-dimensional feature space, one needs to examine

2n− 1 different subsets. This adds up to 127 subsets in case of the seven-dimensional

RF time series features, and to 4095 subsets in case of 12 B-scan texture features.

We had access to a high end parallel computing server (Sun Microsystems, Sun Fire

V890) which made the exhaustive search possible. We performed our entire process

of leave-10%-out training and validation, detailed in the next subsection, for all six

pairs of tissue types and for all of the possible combinations of features (separately

for time series and texture features). We ranked the combinations based on accuracy

of classification on validation data, for each pair of tissue types, and found the best

subsets of n features, 1 ≤ n ≤ 7 for RF time series features and 1 ≤ n ≤ 12 for

texture features.

5.4 Results of the animal study

5.4.1 Results at 6.6 MHz

In this section, we first provide a detailed analysis of the performance of the seven

proposed RF time series features in pairwise tissue typing at 6.6 MHz. This includes

results of analysis of the performance of each of the seven features separately, and the

optimal feature subsets at different dimensions (one to seven) for all six pairs of tissue

types. The outcomes will be compared with the results acquired using the texture

features. We will also present the classification results on data acquired at 55 MHz
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Table 5.4: The best performing single features extracted from RF time series at
6.6 MHz.
Tissue types Best single feature Classification accuracy (STD)

Bovine liver - chicken breast FD 74.3% (1.7)
Bovine liver - bovine muscle FD 90.2% (4.7)
Chicken breast - pig liver FD 72.2% (2.2)
Pig liver - bovine muscle S6 82.4% (3.1)
Bovine liver - pig liver FD 74.1% (1.8)

Chicken breast - bovine muscle FD 82.8% (2.8)

Table 5.5: The second best performing single features extracted from RF time series
at 6.6 MHz.
Tissue types Best single feature Classification accuracy (STD)

Bovine liver - chicken breast S6 72.3% (2.7)
Bovine liver - bovine muscle S6 84.2% (3.1)
Chicken breast - pig liver S6 70.3% (2.1)
Pig liver - bovine muscle FD 79.1% (2.2)
Bovine liver - pig liver S6 72.1% (2.8)

Chicken breast - bovine muscle S6 75.1% (1.8)

to examine the effects of increasing ultrasound frequency. In all tables in this section,

accuracy values are averaged over 50 times of execution of the leave-10%-out cross-

validation process and are followed by the standard deviation of the accuracy values

in parentheses.

Best single features: FD and S6

Tables 5.4 and 5.5 list the best performing and the second best performing single

features for the six different tissue type pairs. Fractal dimension showed the best

performance in five cases with S6 (slope) following it closely. In case of pig liver

versus bovine muscle, S6 performed more accurately. From Table 5.4, it is notable

that tissue typing accuracies in range of 74-90% are achievable using a single feature.

While S1-S4 are each governed by limited frequency bands in the spectrum of the



CHAPTER 5. PHANTOM AND ANIMAL STUDIES 101

time series, FD and S6 are features that best represent the general behavior of the

time series. Therefore, they carry more information about the RF time series, and

not surprisingly, provide the best classification results.

Figures 5.7 and 5.8 show the distribution of the values of S6 and FD for the four

different tissue types in histogram format. In case of bovine muscle versus pig liver,

as Figure 5.8 illustrates, the histograms of the FD values were very similar. In this

case the single feature of choice was S6.

As a nonlinear classifier, the neural network maps the data to higher dimensions

for extraction of the decision planes. Therefore, we acquired relatively high accu-

racies even in cases where the histograms of the FD values were fairly similar (e.g.

chicken breast versus pig live). It was however evident that one single feature was

not universally sufficient for separating these tissue types.

Best combinations of RF time series features

The exhaustive search executed on all possible combinations of the seven proposed

features showed that in all six tissue pairs, the tissue typing accuracy had a peak

when four or five features were used. For each tissue type, Figure 5.9 shows the

mean and standard deviation of the accuracy of classification acquired from the best

combination of one to seven features. It is clear that in all cases, increasing the size

of feature vector to six or seven is unnecessary or even detrimental.

Table 5.6 provides the list of the four or five features that were selected as the

optimal subset for each tissue type pair. It should be noted that FD and S6 appeared

in the optimal feature vector in all and five out of six experiments, respectively.

S1,S2,S3, and S4 did not show a significant difference in terms of class separability
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Figure 5.7: Distribution of the values of the feature S6 (slope of the regression line)
in different tissue types.

from each other. These features characterize specific bands of the frequency spectrum

of RF time series. We conclude that the tissue typing information of RF time series

is not specific to certain frequency bands; therefore, parameters such as FD and S6

which provide a general view of the behavior of RF time series are the best tissue

typing features.

Table 5.6 shows that with a set of features selected from the seven proposed

features, tissue typing accuracies ranging between 91% (bovine muscle versus chicken

breast) and 98% (bovine muscle versus bovine liver) can be acquired. The average

over all six tissue pairs was 95.1%.
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Figure 5.8: Distribution of the values of the feature FD (fractal dimension) in different
tissue types.

Four-class classification

In a separate experiment, we used the seven proposed features along with a feedfor-

ward neural network classifier to perform four-way tissue typing. Data from all four

tissue types were used for training and the network was tested on all four classes as

well. The network architecture consisted of a hidden layer with 5 neurons, and two

neurons in the output layer which was sufficient to code the four possible outcomes.

For this experiment, we used 75% of the data from each tissue type for training and

25% for testing. The training-testing procedure was performed 100 times with dif-

ferent random selections of train and validation data and the test accuracies were
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Figure 5.9: Performance of the best feature vectors of different sizes in tissue typing.
The Error bars denote ± one standard deviation (over 50 leave-10%-out
trials).

averaged. An average accuracy of 86.5% with a standard deviation of 7.2% was

acquired.

Performance of B-scan texture features

For evaluation and comparison purposes, we used the texture features from B-scan

windows equivalent to the analyzed RF time series ROI as alternative features for

tissue typing. An exhaustive search determined the optimal subset of the 12 features

for each of the six different tissue pair classifications. Table 5.7 illustrates the list
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Table 5.6: Results of applying the proposed tissue classification approach based on
RF time series to the data acquired on a clinical ultrasound machine (probe
center frequency: 6.6 MHz). For each tissue pair, the results of the best
performing set of features is reported.
Tissue types Selected features Classification accuracy (STD)

Bovine liver - chicken breast S1,S2,S3,S6,FD 97.5% (3.0)
Bovine liver - bovine muscle S1,S2,S5,FD 98.1% (0.8)
Chicken breast - pig liver S1,S3,S4,S6,FD 94.6% (3.2)
Pig liver - bovine muscle S2,S5,S6,FD 94.8% (1.8)
Bovine liver - pig liver S1, S4,S5,S6,FD 95.4% (2.6)

Chicken breast - bovine muscle S4,S5,S6,FD 90.6% (0.9)
Average over all six tissue pairs 95.1%

of selected subsets of texture features along with the accuracies acquired for each of

the tissue typing experiments. The results show a maximum of 88.1% in bovine liver

versus bovine muscle classification, which yielded the maximum accuracy using the

RF time series as well. On average, over all six pairs of tissue types, an accuracy

of almost 77.5% was acquired. The first order texture features appeared in all of

the selected feature vectors (Table 5.7). However, they did not show an acceptable

performance without inclusion of the co-occurrence features. In case of all six tissue

pairs, the optimal feature subset selected during the exhaustive search consisted of

five, six or seven features. The difference between the performance of the texture

features and the RF time series features is sizable: 77.5% versus 95.1%.

5.4.2 Results at 55 MHz

At very high frequencies, the scattering of ultrasound is primarily caused by the

cellular microstructure [64] as opposed to tissue macrostructure. Therefore, the de-

pendence of the variations in RF time series on cellular microstructure should be

more evident in high-frequency data. We used a dataset of RF time series, acquired
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Table 5.7: Performance of the twelve texture features in classification of tissue types.
For each tissue pair, the results of the best performing set of features is
reported.

Tissue types Selected features Accuracy (STD)

Bovine liver - chicken breast Cn90,E90,H90,M,SD,K 74.4% (1.5)
Bovine liver-bovine muscle Cn0,Cr0,Cr90,M,SD 88.1% (2.5)
Chicken breast - pig liver Cn0,Cn90,H0,M,Sk 65.7% (1.9)
Pig liver - bovine muscle Cr0,Cr90,E90,H90,M,SD,Sk 81.7% (1.9)
Bovine liver - pig liver Cn90,Cr90,E0,H90,M,Sk 70.9% (1.3)

Chicken breast - bovine muscle Cn0,E0,H90,M,SD,Sk 84.4% (2.2)
Average over all six tissue pairs 77.5%

at 55 MHz from the four tissue types analyzed in this study, to examine the effects of

high-frequency ultrasound on the tissue typing capabilities of the proposed features.

We exhaustively searched for the optimal set of features in each of the six tissue

typing experiments on high-frequency data. It was noticed that in the high-frequency

data, one can accurately identify the tissue types with even one single feature. For

example, using only the FD of RF time series, we were able to achieve an average

accuracy of just below 90% over six tissue pairs. This accuracy was achieved when FD

was calculated with kmax = 16. Figure 5.10 shows the average classification accuracies

acquired when FD with different values of kmax were used.

As presented in Table 5.8, the average accuracy increased to 98.1% when we

used optimal combinations of features. Compared to the accuracy acquired with

the clinical frequency data, the tissue typing with the high frequency machine was

significantly more accurate (p < 0.01). In some cases, such as bovine liver versus

chicken breast, and chicken breast versus pig liver the obtained classification accura-

cies were practically 100% over almost all 50 rounds of leave-10%-out trials. Table

5.8 provides the selected features and acquired accuracies in our high-frequency tissue
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Figure 5.10: The average accuracy of classification over the six pairwise trials vs. the
kmax value used for calculation of FD. Only the FD was used for the
classification. This result was acquired using data at 55 MHz.

typing experiments on the six available tissue pairs.

It should be also noted that in the high-frequency data, the difference in classifica-

tion accuracy between optimal combinations of feature vectors with three, four or five

features was very subtle. Also, features that did not show a significant tissue typing

value when extracted from low-frequency data, appeared useful in tissue typing at

high-frequency. This is noticeable by examining the optimal feature vector found for

the last experiment in Table 5.8 where a very high accuracy is obtained without FD

or S6 being part of the feature vector. Similarly, for bovine liver versus pig liver, S6

and FD are absent. However, the combination of S1,S2,S3,S4 carries the information

about the spectral slope (S6).

The difference between the average accuracy acquired on high-frequency data

versus low-frequency data was significant (98% versus 95%, the difference is almost

three times larger than the highest standard deviation in Table 5.8). This is even

more evident when we consider the performance of FD, the best single tissue typing
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Table 5.8: Tissue typing results on data acquired at 55 MHz. For each tissue pair,
the results of the best performing set of features is reported. The results
were significantly more accurate than the clinical frequency experiments
(p < 0.01).
Tissue types Selected features Classification accuracy (STD)

Bovine liver - chicken breast S1,S3,FD 99.9% (0.3)
Bovine liver - bovine muscle S2,S3,S4,FD 97.9% (0.7)
Chicken breast - pig liver S3,S4,S6,FD 99.4% (0.7)
Pig liver - bovine muscle S1,S2,S3,S5,S6,FD 97.2% (0.7)
Bovine liver - pig liver S1,S2,S3,S4 96.4% (0.9)

Chicken breast - bovine muscle S1,S2,S5 98.0% (0.9)
Average over all six tissue pairs 98.1%

feature, on the two datasets. While on average FD yields an accuracy of 78% when

used as the only tissue typing feature for low frequency data, an accuracy of 90% is

acquired with FD at 55 MHz.

Validation tests

To ensure that the class separability of the features originated from the tissue mi-

crostructure variations (and not from possibly different imaging conditions), we per-

formed classifications in only one tissue type (negative control): we tried to distinguish

ROIs from the two different A-lines that were available from two different pieces of

the same tissue type using the fractal dimension of high frequency RF time series.

These classification experiments resulted in an average accuracy of 53% (std: 4.3%).

In other words, the proposed tissue typing parameters only separated data from dif-

ferent tissue types and failed to distinguish data acquired from different areas of the

same tissue type. This is another indication of the link between tissue microstructure

and variations of RF time series

We also performed a bootstrap test to ensure the validity of the classification
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accuracies reported in this section. In this bootstrap test, we randomly mixed the

feature vectors belonging to two classes of tissue. In other words, each ROI was given

a wrong class label with probability of 0.5. This mixed dataset was used for leave-

10%-out classification and validation. This process was repeated 1,000 times, each

time with a new random mixture of class labels. Figure 5.11 shows the distribution of

the acquired classification accuracies for the case of bovine liver versus chicken breast

classification. The distribution is very close to a Gaussian with mean at 50.1% and

standard deviation of 3.6%. In other words, when data is blindly combined and mixed,

classification outcomes are poor and the very high classification accuracy acquired

with the original data is definitely significant and originates from the difference in

tissue types.

Four-class classification with high-frequency data

To further validate the tissue typing capability of the proposed features extracted from

high-frequency ultrasound, we used the data from all four tissue types for training

and the network was tested on all four classes as well. The network architecture

consisted of a hidden layer with five neurons, and two neurons in the output layer.

We used 75% of the data from each tissue type for training and 25% for testing.

The training and testing procedure was performed 100 times with different random

selections of train and validation data and the test accuracies were averaged. The

average accuracy was 92.6% with a standard deviation of 6.6%.
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Figure 5.11: Result of the bootstrap test for analysis of validity of the classification
results on bovine liver versus chicken breast. The histogram shows the
distribution of the classification accuracies when the class labels of the
ROIs of the two classes are randomly mixed. The original data yields
an average classification accuracy of 99% which is significantly outside
the distribution of the randomly mixed data.

5.5 Chapter summary and conclusions

This chapter described two different studies that provided experimental evidence for

the utility of the tissue typing method based on the RF time series features proposed in

this thesis. First, in a study that involved custom-made agar-gelatin based phantoms,

we showed that the proposed RF time series features when used along with SVM or

neural network classifiers, can differentiate phantoms with cell mimicking particles of

different sizes. Two different types of microscopic glass beads with average diameters

of 11 µm and 35 µm were used in these phantoms and we were able to distinguish
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them with statistically significant accuracies of up to 80.5%.

Second, we performed an animal study involving four different animal tissue types

that extended the proposed methodology to biological tissues. We demonstrated that

a set of parameters extracted from RF time series are very efficient for tissue typing.

These parameters included six spectral features and the fractal dimension of RF

time series. Our exhaustive feature selection study pinpointed four to five of these

features as the subset that produced the highest classification accuracy for each of

the six tissue pairs. The classification accuracy averaged over all six analyzed tissue

pairs was 95.1% for the data acquired at 6.6 MHz. We compared this result with

the performance of the texture features extracted from windows of B-scan images

equivalent to RF ROIs. The average classification accuracy using the B-scan features

was 77.5%, significantly inferior to the results acquired from our proposed features.

In order to ensure that the results are not system specific and also to study the

effects of increasing the ultrasound frequency on the outcome of our approach, we

studied RF time series acquired on a high-frequency (55 MHz) ultrasound probe

from the four animal tissue types. We found that using the high-frequency data,

classification accuracies of up to 99.9% are achievable (an average accuracy of 98.1%

over all six pairs).

The phantom and animal studies described in this chapter provided sufficient

evidence to support the central idea of this research. They justified a large scale

investigation involving human prostate tissue to achieve the ultimate goal of this

thesis which is improving the diagnosis of prostate cancer. The next chapter will

report that study.



Chapter 6

Ex-vivo Human Studies

The primary goal of this research is to enhance the clinical process of diagnosis of

prostate cancer through augmenting ultrasound images with cancer probability infor-

mation. Such information can assist a radiologist during the biopsy process to reduce

the risk of false negative outcomes. In previous chapters, we laid the foundations of

our proposed methodology for tissue typing based on RF time series, and provided

experimental evidence that supported its utility through phantom and animal studies.

In this chapter, we will provide the results of applying the methodology on human

prostate tissue.

The overall format of the study involved collecting ultrasound RF time series from

extracted prostate glands of patients who underwent prostatectomy. Histopathologic

analysis of tissue was acquired at the same cross sections that were scanned. The pro-

posed tissue typing features in Chapter 4 were extracted from the ultrasound data.

A SVM classifier, trained to classify regions of interest described by tissue typing

features in cancerous and normal classes, was used to create the cancer distribution

probability maps. The gold standard used to train the classifier, and also to evaluate

112
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its performance, was histopathology reports. The histopathology analysis was ac-

quired after manual registration of ultrasound and images of whole mount pathology

slides.

As part of the study reported in this chapter, we examined the effects of tissue

depth, ultrasound acoustic power and frame rate on the performance of the method-

ology. The results of this analysis can be used for optimization of the imaging pa-

rameters during biopsy.

6.1 Ex-vivo human data

We performed a process of ultrasound and histopathology data collection from pa-

tients who chose prostatectomy as their treatment option at Kingston General Hospi-

tal during 2007. Data was collected from 35 patients. Patients’ consents were acquired

to perform ultrasound scanning on extracted prostate specimens prior to their partic-

ipation in the study. After the surgery, the tissue was fixed in formaldehyde solution

overnight, scanned the next day and sent back for histopathology analysis.

Extracted prostate specimens were suspended in a water bath, and were scanned

along transverse planes, 4 mm apart (see Figure 6.1). The location of the first cross

section was marked, by the pathologist, with two parallel needles, visible in ultrasound

image as two lines. To ensure the validity of the manual registration, the needles were

needed to mark the first cross section. Consequent cross sections were acquired at

4 mm intervals. The strong echoes from the needles rendered the data from the first

cross section practically useless. However, the needles were needed to ensure that

the location of the first cross section was preserved during the process. Four to six

consequent cross sections of data were acquired from each specimen (depending on
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Figure 6.1: Experimental setup. Left: Two needles mark the location for the first
cross section. Right: the prostate is suspended in a water bath and
scanned at cross sections 4 mm apart.

the size of the specimen). Next, whole mount pathology slides were created from

the specimens at approximately the same cross sections scanned, starting from the

plane marked by the needles and continuing at parallel cross sections 4 mm apart.

The slides were analyzed by a senior pathologist at Kingston General Hospital and

cancerous areas were reported. The contours of tumors were directly marked on the

slides by a senior pathologist. The slides were then photographed with a digital

camera.

The ultrasound RF data was collected using a Sonix RP (Ultrasonix Inc., Rich-

mond, BC, Canada) ultrasound machine. A transrectal probe (BPSL9-5/55/10) was

used with the central frequency of 6.6 MHz. To form the RF time series, we acquired
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112 frames of RF data, at the rate of 22 frames per second (fps) from each cross sec-

tion of the tissue. Therefore, the length of RF time series in our human data was 112

for each tissue cross section. The maximum imaging depth was set to 4.5 cm. The

sampling frequency of the RF data was 20 MHz. The probe was placed in direct

contact with the tissue in water, and only one focal point was set at depth 1.5 cm in

all cases. Prior to scanning, we measured the temperature of water to ensure that all

tissue specimens were scanned at temperature range of 22− 24◦C.

During each data collection session, the calibration data for Lizzi-Feleppa method

was acquired from the surface of a flat glass plate in a water bath at the transducer

focal zone, with minimum amplifier gain and flat TGC.

6.2 Histopathology to ultrasound registration

The process of registering the histopathology maps to the RF frames was performed

manually. Due to the non-zero elevation beam width of the ultrasound beams and also

inevitable errors caused by the low precision cutting process in the pathology labora-

tory, the accurate match between tumor boundaries in ultrasound and histopathology

images was challenging. As the first step in the manual registration, the cross sec-

tions from histopathology and ultrasound were matched based on the order of scans

starting at the cross section with the needles. Landmarks such as the urethra or

the characteristic irregularities in the boundaries of prostate in both ultrasound and

histopathology images were matched to ensure the correspondence of the cross sec-

tions (Figure 6.2). In some slides, we were unable to find and match such landmarks.

Those slides were not included in the training data. The scale factors in ultrasound

images and digital images of the pathology slides were then used to determine the
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Figure 6.2: The histopathology results were reported as contours of tumors directly
depicted on the whole-mount slides. These contours were used to manu-
ally mark the cancerous areas on the ultrasound images. Landmarks such
as the urethra were used to determine the location of tumors in the ul-
trasound image (white arrow in both images above). ROIs were selected
from areas residing in the center of the cancer contours.

approximate location of tumor in the ultrasound image. Since the determination of

the exact boundaries of the tumors on ultrasound was subject to registration error,

in selection of the cancerous areas we only chose the ROIs that resided within the

central zones of the tumors and avoided using ROIs that were closer to the approx-

imate boundaries. As a result, many of the slides with very small tumors could not

be used for selection of the cancerous areas for the training set. The normal ROIs

used for training were chosen from the areas of the peripheral zones of the specimens

that were safely far from any marked malignancy.

This process amounted to 1824 normal and 1025 cancerous ROIs of size 1 mm×
3.5 mm selected from 55 cross sections. This ROI size included segments of four RF

A-lines, each of length 96 samples1. This specific choice of width was due to the fact

1During the manual selection process, the selected ROIs were of size 2 mm× 3.5 mm (eight line
segments of length 96 in RF space). These ROIs were each divided in two halves. The resulting
ROIs of size 1 mm× 3.5 mm were used as independent ROIs.
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that the width of the tissue cores acquired in clinical biopsies is approximately 1 mm.

The choice of the length was based on a compromise. Long ROI sizes would have

further constrained using smaller tumors in the study. The length of 3.5 mm was

chosen since it enabled us to select ROIs within tumors as small as 5 mm. Shorter

ROIs, on the other hand, could limit the accuracy of the spectral frequency calculated

for the extraction of Lizzi-Feleppa features from segments of RF scan lines in the ROI.

6.3 Features and classification

All three categories of features including RF time series features, Lizzi-Feleppa (LF)

features and B-scan texture features described in Section 4.1 were extracted from the

tissue ROIs. We separately performed an exhaustive search process to find the best

subset of texture, LF and time series features that maximized the tissue typing accu-

racy for cancer detection. These three best subsets were combined and subjected to

an additional exhaustive search. The outcome was the feature vector used to generate

the cancer distribution probability maps. This two stage method of feature selection

(aimed at optimizing both the dimension of the feature vector and the choice of fea-

tures) was not guaranteed to provide the highest possible accuracy. An exhaustive

search over all 22 features combined could have resulted in a better performing subset.

However, it required examining
∑22

n=0 C22
n = 222 subsets which was computationally

infeasible. Feature space reduction based on Principal Component Analysis (PCA)

was an alternative solution. We chose the two-stage method because it also enabled

us to compare the performance of the three approaches for tissue typing. However,

we also examined the PCA-generated feature vector. The performance of the best

PCA-based feature vector was compared with the feature vector selected through the
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exhaustive search (Section 6.5.2).

For reasons that were detailed in Section 4.3.5, we used the SVM classification

approach for our human study. The entire dataset was normalized prior to train-

ing by setting the maximum value of each feature to 1 and the minimum to 0.

For parameter selection (C and γ), we exhaustively searched the parameter space

{C ∈ {2−10, 2−9, ..., 210}, γ ∈ {2−10, 2−9, ..., 210}} followed by a search on {1 ≤ C ≤
100, 1 ≤ γ ≤ 100} with steps of length 1. This two step search is frequently used

in studies involving SVM [47]. For each set of parameters, 10-fold cross-validation

was performed: we trained the SVM using 90% of the available ROIs, classified the

remaining 10%, and repeated the procedure for all 10 portions of the data. The com-

putational expense of this exhaustive search was feasible on our parallel computing

server (Sun Microsystems, Sun Fire V890, equipped with eight dual core processors

running at 2.1 GHz frequency).

6.4 Cancer distribution probability maps

Cancer distribution probability maps were generated based on the outcome of the

SVM classification. For generation of each map, the SVM classifier was trained on

all the training data expect for the ROIs originating from the patient under study.

Then, the proposed tissue typing features were extracted from data acquired from a

cross section of interest in the patient under study. ROIs of size 1 mm × 3.5 mm

were classified and the posterior probability of cancer Pc was computed for each ROI

using the method described in Section 4.3.3. For generation of the cancer distribution

probability maps, we chose the threshold of Pc > 0.4 to color an ROI on the map. The

color theme was yellow to red (where red stands for the highest probability of cancer).
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The choice of the threshold was rather subjective. However, we found that with the

threshold of Pc > 0.4, the visualized maps demonstrated all the major tumors in the

dataset without a significant number of false positive detections.

It should be noted that the cancer distribution probability maps were acquired by

tissue typing of the entire peripheral zone of the prostate. In other words, the test

data used for each map was not limited to the ROIs that were manually registered and

used for feature selection and training. The quantitative evaluation of the accuracy of

the cancer distribution probability maps was, however, performed only on the ROIs

for which a definitive label was available.

6.5 Results

6.5.1 Performance of different groups of features

The exhaustive search for the best subset within each of the three categories of fea-

tures resulted in a two-dimensional feature vector among texture features (Mean and

correlation at 0◦), a two-dimensional feature vector among Lizzi-Feleppa features

(LF1,LF3), and a six-dimensional feature vector (S2,S3,S4,S5,S6,FD) among the pro-

posed time series features. As Table 6.1 demonstrates, while LF features show a

superior performance in cancer diagnosis compared to texture features, time series

features outperform both of them. The area under the ROC curve acquired was 0.87

for RF time series features, 0.78 for Lizzi-Feleppa features and 0.72 for the texture

features.
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Table 6.1: Comparison of the performance of texture, Lizzi-Feleppa, and RF time
series features in classification of cancerous vs. normal human prostate
tissue with 10-fold cross-validation. The numbers in parentheses are the
standard deviations.

Feature Area under ROC
Group ROI size: 1 mm× 3.5 mm

(std)

Best subset of
Texture features 0.72 (0.008)

(Mean and correlation at 0◦)
Best subset of

Lizzi-Feleppa features 0.78 (0.005)
(LF1,LF3)

Best subset of
Time series features 0.87 (0.006)
(S2,S3,S4,S5,S6,FD)

Best subset of the combination
of the three groups above: 0.95 (0.004)

(Mean,S2,S4,S6,FD,LF1,LF3)

6.5.2 Optimal combined feature vector

To acquire the best combination of features for the cancer distribution probability

maps, we combined the selected features from the three groups into a ten-dimensional

feature vector and performed the exhaustive search on them. As Figure 6.3 demon-

strates, we found specific subsets with seven, eight and nine features equally and

highly accurate in classification of ROIs. It was noticed that these specific sub-

sets (which are detailed on Figure 6.3) provide the highest sensitivity and accuracy

compared to the other subsets of their size. The seven-dimensional subset (Mean,

S2,S4,S6,FD,LF1,LF3) was selected due to its smaller size. As the last row of Table

6.1 reports, an area under ROC curve of 0.95 was achieved on ten-fold validation

using this seven-dimensional feature vector. The ROC curves acquired using different
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Figure 6.3: The combination of optimal subsets of features in the three tissue typing
approaches resulted in ten features. The outcome of the exhaustive search
on all possible subsets of these 10 features is depicted here. The subsets
listed on the diagrams maximized the sensitivity and the accuracy in their
respective sizes.

tissue typing methodologies are illustrated in Figures 6.4,6.5,6.6 and 6.7.

As discussed in Section 6.3, we also examined the PCA-based method for feature

vector reduction. PCA is an orthogonal projection of feature vectors onto a lower

dimensional space defined by the eigenvectors of the data covariance matrix. The

new features are a linear combination of the old features. In the resulting feature

vectors in the new space, the features are sorted in order of their contribution to the

variance in the data. Therefore, in order to go from N features to M , where M < N ,

one needs to apply the PCA transform and use the first M features, with the largest

contribution to the variance, in the new space as the reduced feature vector. We

applied PCA to the 22-dimensional data space in our study. We tried inclusion of up

to 10 components of PCA; it was noted that inclusion of more than 10 components

of PCA did not result in a substantial improvement in the classification results. The

area under ROC curve, acquired with a 10-dimensional feature vector, corresponding
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Figure 6.4: ROC curve resulting from 10-fold cross-validation with the selection of
texture features. Note that at the sensitivity of 90%, the specificity was
45%.

to the first 10 principal components of the data was 0.91 ± 0.003% in 10 fold cross

validation. This was slightly less accurate than the performance of the the feature

vector resulting from exhaustive search in detection of cancer.

6.5.3 Cancer distribution probability maps

The cancer distribution probability maps were created by tissue typing of the en-

tire peripheral zone of the prostate. In other words, the test data used for each

colormap was not limited to the ROIs that were manually registered and used for

feature selection and training. Figure 6.8 demonstrates some of the cancer distribu-

tion probability maps acquired using the described best seven-dimensional (Mean,

S2,S4,S6,FD,LF1,LF3) feature vector and the coloring threshold of Pc > 0.4. The
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Figure 6.5: ROC curve resulting from 10-fold cross-validation with the selection of
Lizzi-Feleppa features. Note that at the sensitivity of 90%, the specificity
was 40%.

color theme was yellow to red (where red stood for the highest probability of cancer).

It should be noted that due to uncertainties in the registration, caused by the

inevitable errors in the spatial measurements during the cutting process in pathology,

by ultrasound beam thickness, and by elastic deformations of the tissue, the bound-

aries of the tumors in ultrasound and pathology images in Figure 6.8 are not expected

to match precisely. Also, the rectangular shape of the ROIs limits the geometrical

flexibility of the boundaries of tumors depicted in the colormaps.

6.5.4 Quantitative patient-based validations

When assessing the accuracy of a tissue typing approach, it is important that the

test subsets be drawn from patients completely absent in the training data [101].



CHAPTER 6. EX-VIVO HUMAN STUDIES 124

Figure 6.6: ROC curve resulting from 10-fold cross-validation with the selection of
time series features. Note that at the sensitivity of 90%, the specificity
was 60%.

Therefore, to gain a more realistic measure of the performance, we performed patient-

based cross validation. The test data for this cross validation consisted only of the

ROIs manually registered from ultrasound to histopathology (1824 normal and 1025

cancerous ROIs from 55 cross sections within the data). The test was performed in

leave-one-patient-out manner. For each patient, we trained the SVM based on ROIs

from all other patients and tested it on ROIs from the patient in question. With

repeating this process for all the patients in the dataset, all the ROIs were included

in the tests. The area under ROC curve for this patient-based validation was 0.82

with a standard deviation of ±7% over the patients in the dataset.
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Figure 6.7: ROC curve resulting from 10-fold cross-validation with the combination
of texture, LF, and time series features. Note that at the sensitivity of
90%, the specificity was over 90%.

6.6 Effects of imaging parameters on tissue typing

accuracy

The results described in the previous section show that the RF time series features are

powerful tissue typing parameters. While the LF and texture parameters have long

been studied for their statistical distribution and physical interpretations [85, 129],

time series features are new and hardly explored. In this section, we report the results

of our analysis on some of the parameters that can potentially have an effect on the

tissue typing capabilities of the RF time series.
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Figure 6.8: Cancer probability maps along with the closest matching histopathology
slides for seven patients. The ultrasound probe is in touch with the left
side of the gland in all cases.

6.6.1 The effect of ROI size

The resolution of the probabilistic cancer maps is determined by the size of ROI. One

advantage of the RF time series features is that theoretically, the ROI size can be

decreased arbitrarily. Clearly, at very small ROI sizes, the noise plays an increasingly

important role and the accuracy is expected to drop. On the other hand, very large

ROIs are bound to be inhomogeneous and affect the classification outcome. Our

analysis confirmed this intuition. We performed 10-fold cross-validation experiments
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with only RF time series features acquired from various ROI sizes. We studied ROIs

which included segments of 1, 2, 4, and 8 RF A-lines. The most accurate classification

result was acquired when ROIs consisting of only one RF A-line of length 96 were

classified (area under ROC curve of 0.88±0.002 for an ROI size of 0.25 mm×3.5 mm

corresponding to 1× 96 RF samples). This was only slightly more accurate than the

performance of the classification acquired on ROIs of size 1 mm× 3.5 mm primarily

used in this research (0.87). The choice of the ROIs of width 1 mm can also be

justified based on its similarity to the width of biospy cores. The lowest accuracy was

acquired on the largest studied ROI size which included segments of 8 RF A-lines,

each of length 96 and provided an area under ROC of 0.837± 0.01.

6.6.2 The effect of tissue depth

For ROIs of length 1 mm × 1.8 mm or 48 samples long2, and the imaging depth of

4.5 cm, we had ROIs at 24 discrete depth levels in the dataset. We performed a leave-

one-patient-out SVM classification and validation using all the manually registered

ROIs, and measured the accuracy at each depth. Our analysis showed that tissue

typing based on RF time series features is more accurate in areas that are closer to

the ultrasound probe. As the diagram in Figure 6.9 demonstrates, we witnessed a

meaningful drop in the accuracy of our prostate tissue typing experiments (based on

only the RF time series features) for ROIs that are more than 3 cm away from the

probe. With the only transmit focal point set at 2 cm (in the prostate data), the

ultrasound beams diverge increasingly at deeper areas of the tissue. Furthermore, the

effects of amplifier noise are more prevalent in deeper areas. Therefore, data from the

2These ROIs were generated by vertically dividing the original ROIs of length 1 mm × 3.5 mm
in two equal halves.
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Figure 6.9: Left: the accuracy of tissue typing vs. the depth of the ROI. It is clear
that the accuracy drops substantially with increasing depth of the tissue.
Right: the histogram showing the number of ROIs in different depths.

deeper areas have higher levels of noise (noise is measured as
∑i=112

i=1 (xi−x)2 where x

is the mean of the RF time series and xi’s are the samples of the RF time series; the

length of the time series is 112). The tissue typing information is carried in time series

variations, and the increasing levels of destructive noise in deeper areas of the tissue

decreases the signal-to-noise ratio (SNR) in the received RF time series. From the

clinical point of view, the depth-dependent accuracy of the approach does not pose a

significant challenge. The reason is that the most cancer-prone area of the prostate

gland is the peripheral zone which is also the target of inspection during biopsy.

According to [114], up to 80% of cancer findings in prostate occur in the peripheral

zone. The ultrasound probe is in touch with the peripheral zone of prostate during

the biopsy process.
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6.6.3 The effect of ultrasound power

A reduction in the acoustic output power of the ultrasound probe also reduces the

signal-to-noise ratio in the RF time series. The ultrasound machine is normally

operated at its highest acoustic power level to maximize the contrast and signal-to-

noise ratio (all the results reported in previous sections were acquired at this level).

To study the effects of ultrasound acoustic power applied, we repeated the 10-fold

cross-validation experiment, based on only RF time series features, at two additional

power settings. We found that a 2 dB reduction in the output power resulted in

a drop of area under ROC curve from 0.87 ± 0.006 (Table 6.1) to 0.84 ± 0.009. A

6 dB reduction in the acoustic power output resulted in a more significant drop of the

outcome to 0.76 ± 0.009. Figure 6.10 demonstrates a visual comparison of the noise

levels at the three studied power settings (data acquired by mounting the probe in a

large water container with no tissue involved). It is also notable that the noise level

increases at deeper areas in all three settings.

According to these results, the tissue-dependent information has a direct relation-

ship with the amount of energy applied to the tissue. This supports the explanation

provided in Chapter 3 which suggested that the tissue typing information in RF

time series originates from microstructural vibrations in biological tissue caused by

the acoustic force from ultrasound beams. Obviously, this mechanism fades at lower

levels of energy. Therefore, it is expected to witness a decay in the tissue typing

information in the RF echoes originating from deeper regions of the tissue or lower

levels of acoustic power. Our observations confirm this decay.
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Figure 6.10: The noise level at different depths for three different decreasing trans-
ducer acoustic power settings (0 dB, −2 dB and −6 dB). The data was
acquired by mounting the probe in a large water container with no tissue
involved. The noise level is calculated based on the method described in
Section 6.6.2 and mapped onto the ultrasound image. Noise amplitude
increases at deeper areas and in lower power levels. The increased level
of noise decreases the SNR in the backscattered echoes and reduces the
accuracy.

6.6.4 The effect of frame rate

RF time series are generated by continuous scattering of ultrasound beams from tissue

structures. The frame rate of the ultrasound machine determines the frequency at

which this interaction occurs. Therefore, it is important to determine if our frame

rate of 22 fps is sufficient for observing this interaction. To answer this question, we

examined the tissue typing capabilities of our features acquired at the frame rate of

45 fps. No substantial change was observed in the results. This outcome indicates

that the acquisition rate of 22 fps (which is a typical clinical frame rate) is sufficient

for the analysis of RF time series to detect prostate cancer.

In case of phantom experiments (Section 5.2), it appeared that increasing the

frame rate slightly improved the accuracy of the classification. The inter-phantom
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classification experiments on particle size phantoms with features extracted from RF

time series acquired at 15 fps, 22 fps and 45 fps resulted in accuracies of 74.2±4.5%,

79±3.1%, and 82.2±3.2%, respectively.

6.7 The histologic variations of prostate tissue

One of the most resource-intensive steps during this study was the histopathologic

analysis of whole mount slides and marking the cancerous areas by an expert pathol-

ogist. The result of such analysis was provided in form of tumor contours marked

on the slides. This level of analysis did not consider the vast variety of tissue types,

such as benign malformations, that exist in tissue and can cause non-cancerous de-

viations from the normal microstructure3. This could affect the accuracy of the gold

standard used for the study and eventually the final outcomes. This issue might have

contributed to the false positive or false negative errors in some cases.

Specifically, any type of tissue that was not characterized as cancerous, was con-

sidered “normal” in our analysis. This could have increased the false positive rates

in our results. To gain an insight to the effects of this limitation in our gold standard

on the specificity of our results, we chose five slides in which our ultrasound-based

analysis had resulted in false positive tumor detections. We acquired a more detailed

histopathologic analysis on these slides. In two cases, our pathologist reported find-

ings of prostatic intraepithelial neoplasia (PIN) in areas that matched with our false

positive detections (Figure 6.11). PIN is an abnormal proliferation of cells that has

been widely observed along with carcinoma of prostate. PIN findings demonstrate an

3A comprehensive list of such abnormalities and the histopathologic appearance of the tissue
undergoing such conditions is outside the scope of this thesis. See [114] as a preliminary reference
and [239] as a more comprehensive reference
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Figure 6.11: One of the false positive detections caused by the existence of prostatic
intraepithelial neoplasia. The ultrasound-based method correctly found
a tumor in the left anterior side of this specimen and also resulted in
the detection of a tumor in the posterior of the gland which did not
exist in the original histopathology report. Further histopathology anal-
ysis showed a combination of low and high grade PIN in the area that
matched the false positive ultrasound-based finding.

entirely different microstructure from normal prostate cells. However, they are not

classified as cancerous tissue. Therefore, isolated cases of PIN that did not accom-

pany cancerous tumors were not originally marked by our pathologist. In two other

cases, cystic tissue malformations were witnessed. No unusual finding was reported

in the fifth slide.

One common histopathologic finding in prostate malignancies is that the small

cancerous glands infiltrate the adjacent normal glands [114]. In other words, it is

highly unlikely to find an area within prostate tissue that entirely consists of cancerous

glands. The true ratio of cancerous glands to the normal glands in areas marked as

cancer in our dataset was not determined. A closer analysis of four tumors in our

slides showed that in some cases, this ratio was as low as 20% in specific areas of
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Figure 6.12: A case of low percentage of carcinoma in an area marked as cancer
in histopathology slides. In this case, the ultrasound-detected tumor
was significantly smaller than the tumor as marked by the expert on
histopathology slide. In a detailed secondary analysis of the tumor,
we divided it to four parts and asked the pathologist to determine the
approximate percentage of cancerous glands in each quarter. This per-
centage was widely different in the four parts (the numbers are presented
on the figure). It was noted that the ultrasound-based method was only
sensitive in the upper right side of the tumor which had a higher per-
centage of cancerous glands.

tumors. An example is depicted in Figure 6.12. In this specific case, the ultrasound-

based method showed a high sensitivity in the upper right side of the tumor where

90% of glands were cancerous. The size of the detected tumor in the ultrasound data

was smaller than the tumor marked on the histopathology slide. It appears that in

this case, and likely other cases with low percentage of cancerous glands, the limited

information available in the gold standard histopathology dataset resulted in a limited

sensitivity. Due to the limited accuracy of registration, it was not possible to quantify

the effects of this limitation on the results.
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6.8 Chapter summary and conclusions

This chapter presented the details of our Ex-vivo human study involving 35 patients

undergoing prostatectomy. We described our ultrasound-based diagnostic approach

based on the novel concept of ultrasound RF time series. We described a compre-

hensive methodology to acquire probabilistic cancer maps of prostate tissue from

ultrasound RF time series. We found the features extracted from RF time series

more accurate and sensitive than Lizzi-Feleppa features [55, 130] and B-scan texture

features. Nevertheless, the latter groups of features complemented the RF time series

features resulting in a very effective feature vector that provides an area under ROC

curve of 0.95 in 10-fold cross-validation and 0.82 in leave-one-patient-out cross valida-

tion. Based on this hybrid feature vector, and an extension to the SVM classification

approach [166], we created colormaps that accurately highlighted areas of tissue with

high risk of cancer on ultrasound images.

We analyzed the effects of depth of tissue and acoustic power of the ultrasound

on the diagnostic outcomes. This analysis showed that reduced acoustic energy levels

applied to tissue at deeper areas or at lower ultrasound output power levels, reduce

the tissue typing capabilities of RF time series features. An increase in the ultrasound

frame rate from 22 fps to 45 fps did not create a substantial change in the outcomes

suggesting that the typical clinical frame rate of 22 fps is sufficient for acquisition of

RF time series for tissue typing.

An important issue affecting the outcomes of this study was the vast variety of

microstructures observed within the two general categories of cancerous and non-

cancerous tissue types. PIN (prostatic intraepithelial neoplasia) and BPH (benign
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prostatic hyperplasia) are only two of the possible benign variations. Within the can-

cerous tumors, the cancerous and normal glands are present along with each other and

the percentage of cancerous glands is widely different in tumors of different patients

or even within different parts of one tumor. These realities suggest that the cellular

microstructure of cancerous and normal tissues is a fuzzy concept. The histopatho-

logic analysis used as the gold standard in our study did not take this fuzziness

into account. We illustrated examples of limited sensitivity and specificity in our

ultrasound-based diagnostic outcomes that are likely caused by this limitation.

The results of the proposed approach in detection of prostate cancer described

in this chapter are promising. Furthermore, the RF time series approach has some

advantages over the available ultrasound-based tissue typing methods. For example,

since all samples of one RF time series originate from the same depth of the tissue, the

need for compensation of signals for depth-dependent effects is eliminated. This is an

advantage of our methodology compared to the conventional techniques, such as the

Lizzi-Feleppa method, that extract features from a segment of one RF A-line. Also,

our approach imposes very little overhead to the conventional ultrasound imaging.

Unlike elastography, the proposed methodology does not require the compression and

mechanical excitation of the tissue.



Chapter 7

Summary and Conclusions

7.1 Summary

This thesis introduced a new paradigm in ultrasound-based tissue typing. The ob-

jective of this research was to improve the clinical practice of biopsy for detection

of prostate cancer. Studies show a 40-50% rate of repeated biopsies among patients

with a negative outcome on the first trial [42, 154]. Therefore, there is a pressing

need for the enhancement of the biopsy practice.

We reviewed the state of the art in computer-based methods for diagnosis of

prostate cancer and concluded that a comprehensive solution for the low sensitivity

and specificity of imaging methods for this application is still outstanding. Ultrasound-

based methods for prostate cancer diagnosis are more desirable due to advantages such

as non-ionizing nature of the beams, real-time and low cost procedure of ultrasound

imaging, and the acceptance of ultrasound as the standard of care in the field.

Therefore, we focused on ultrasound and devised a novel tissue typing approach

to augment the ultrasound images of prostate with cancer distribution information

136
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and to enhance the biopsy process. The summary of the contributions are as follows:

• We introduced the concept of the ultrasound RF time series and provided an-

alytical methods to extract efficient tissue typing parameters from RF time

series. The core of the idea was that if a location in tissue undergoes sequential

interactions with ultrasound, the time series of echoes from that location would

carry “tissue typing” information. We introduced six tissue typing parameters

extracted from frequency spectrum of ultrasound RF time series for tissue typ-

ing. We also showed that fractal dimension of RF time series can be used for

tissue typing.

• We argued, based on the evidence available from the literature, that the long

term average of the acoustic force applied by ultrasound beams to tissue is not

zero but rather depends on the tissue type. Based on this finding we provided

a possible explanation for the existence of tissue-type related information in

ultrasound RF time series. We described simulation studies that confirmed

the existence of information-rich variations in ultrasound RF echoes acquired

from a specific location in a scattering media subject to ultrasound emissions.

Nevertheless, our case for the feasibility of the proposed tissue typing method

for detection of prostate cancer is primarily based on experimental studies.

• We showed that RF time series acquired from agar-gelatin based tissue mim-

icking phantoms, with difference only in the size of cell-mimicking microscopic

glass beads, are distinguishable with statistically reliable accuracies up to 80.5%.

This finding suggests that the differences in tissue microstructures affect the ul-

trasound RF time series features.
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• We described animal tissue typing experiments. These experiments were per-

formed using both a clinical ultrasound machine and a high-frequency machine.

With nearly perfect classification results acquired on tissue ROIs as small as

20 microns scanned at 55 MHz, the outcome of our proposed tissue typing

approach is comparable to the ultrasound biomicroscopy techniques [64].

• We reported an ex-vivo clinical study involving 35 patients in which the utility

of RF time series features for detection of prostate tumors was confirmed. The

outcomes were validated based on detailed histopathologic maps acquired from

studied specimens. When a combination of RF time series features, B-scan

texture features and Lizzi-Feleppa features were used, a feature vector for cancer

detection was obtained that provided an area under ROC curve of 0.95 in 10-fold

cross-validation and 0.82 in leave-one-patient-out cross validation. We created

cancer distribution probability maps that highlighted areas of tissue with high

risk of cancer on ultrasound images.

• We showed that reduced acoustic energy applied to tissue during scanning re-

sults in a statistically significant drop in the accuracy of the proposed tissue

typing method: a finding that supports our hypothesis about the role of the

radiation force of ultrasound in generation of tissue micro-vibrations during

acquisition of RF time series.

7.2 Limitations

Although the results reported in this thesis are very promising, the proposed method-

ology suffers from some limitations which will pose challenges to the process of clinical
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utilization. In order to acquire the RF time series, the radiologist needs to collect six

to seven seconds of data. During this time, the radiologist’s hands should not move

or the probe should be fixed in position.

Even with a perfectly fixed ultrasound probe, the in-vivo imaging conditions are

different from our experiments with extracted prostate specimens. In the live con-

ditions, there are physiological movements at the microscopic level and also on the

macroscopic level. On the microscopic level, as discussed in Chapter 3, the sponta-

neous cell movements and capillary level blood circulation depend on the tissue type

and function. Therefore, we can assume that they will add to the information con-

tent of the RF time series. However, the macroscopic physiological motion, caused

by breathing of the patient and arterial pulsations can significantly affect the process

of RF time series acquisition.

Another practical consideration with the proposed tissue typing method is the

computational complexity of the calculation of RF time series features. The analysis

of RF time series is computationally more costly compared to the analysis of only one

RF or B-scan frame. However, our implementations show that the feature values can

be extracted from a 1 cm2 area of the tissue in around one second on a single-CPU

(P4, 3 GHz) computer. Therefore, the radiologist can choose a reasonably large area

of the image and acquire the cancer distribution probability maps in a very short

time during biopsy. Furthermore, parallel processing can increase the speed. We do

not believe that computational cost is a major obstacle for development of a clinical

biopsy assisting system based on the RF time series method.

A methodological limitation of the proposed technique is its dependence on super-

vised training of SVM or neural network classifiers. In order to acquire a generalizable
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classifier, a large training dataset obtained in-vivo will be needed. Given the vast va-

riety of possible pathological (benign or malignant) findings in the human prostate

tissue, this training process can be prone to the type of deficiencies discussed in Sec-

tion 6.7 which reduce the sensitivity and specificity of the diagnostic outcomes. It

should be noted that the inhomogeneous nature of biological tissue is a challenge for

all tissue typing methods.

7.3 Future Work

We are planning in-vivo studies that will determine the effectiveness of our proposed

method in clinical practice. Data will be collected from patients during biopsy. The

results will be validated based on the histopathological analysis of the biopsy cores.

As discussed in the previous section, a probe fixation mechanism is a requirement for

the success of the method.

One of our objectives during the in-vivo study is to examine the effects of spon-

taneous physiological motions and specifically, the effects of perfusion and blood cir-

culation on RF time series. Based on the outcome of these studies, we will consider

the possibility of combining the RF time series method with Doppler imaging which

has shown some potential for diagnosis of prostate cancer (See Section 2.3).

An important improvement to this system can be achieved through consideration

of the intrinsic fuzziness of the definition of “normal” and “cancer” in histopatholog-

ical analysis of tissue types. A rule-based system can be designed in which the ROIs

are classified using fuzzy logic principles. The design of this rule-based system will

be a challenging task. This is because the stage of malignancy is not only a function

of the percentage of cancerous glands in an area of the tissue, but also a function
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of microstructural arrangement of the glands, the degree of glandular differentiation,

the architecture of the neoplastic glands, and the enlargement of the nuclei. These

features are used to define the grade of a tumor using the Gleason grading system

[114]. On the other hand, benign malformations such as PIN or BPH are defined

based on the features that are not similar to those of normal or cancerous tissue. A

comprehensive tissue typing system should assign these malformations to separate

classes.

The cancer distribution probability maps presented in this thesis have not been

subject to any morphological manipulations. A system designed for clinical appli-

cations could benefit from inclusion of morphological operations such as closing of

possible holes within colored areas or removal of isolated colored ROIs. Further-

more, the rectangular shape of ROIs defined in our method limits the flexibility of

the algorithm in finding the accurate contour of the tumor. The implementation of

the method can be enhanced by removal of this limitation and by defining ROIs of

arbitrary shape.

In order to facilitate the clinical application of the proposed techniques, currently

a software system is being developed to implement a client-server connection to the

SonixRP (Ultrasonix, Richmond, BC) ultrasound machine and to collect the RF time

series. The GUI of the software will provide a real-time B-scan image and a quasi-

real-time view of the probability of malignancy in the tissue. The system will feature

libraries of classifiers and feature extraction techniques and will be trained based on

the data acquired from a large number of prostate cancer patients undergoing the

biopsy procedure. At the current stage, the GUI is designed using Qt (Trolltech,

Oslo, Norway), developed with Visual C++ in Microsoft Studio .Net environment.
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Figure 7.1: The GUI of a software system under development for real-time creation
of cancer probability maps during biopsy.

The data collection and feature computation functions are already in place. Figure

7.1 demonstrates the proposed GUI.
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