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Abstract 

Throughout nature, complex self-assembled entities emerge from decentralized compo­

nents governed by simple rules. Natural self-assembly is dictated by components, their 

environment, and the interactions among them — physical information — forming a 

system, describable by a set of rules. The process of self-assembly is equivalent to per­

forming a physical computation, using the interaction and transformation of physically 

encoded information in a system to build physical information structures — entities as 

the output. However, designing artificial self-assembling systems remains an elusive goal. 

Understanding the interplay between information and the generation of a process is re­

quired for engineering emergence in this form of natural computing. To investigate this 

interplay, a self-assembly design methodology was developed, the three-level approach, 

comprising of: (1) specifying a set of rules, (2) modelling these rules to determine the 

outcome of a system in software, and (3) translating to a physical system by mapping 

the set of rules using physically encoded information. The contributions of this thesis 

stem from using the three-level approach to demonstrate how physical information can 

be used to: enable the self-assembly of desired entities while reducing errors during the 

process, address the algorithmic constraints of the problem of designing self-assembling 

systems, and divide the self-assembly process into time-intervals to create more complex 

desired entities not otherwise possible. These contributions are substantiated through a 

set of proof-of-concept experiments. Mechanical components in two and three spatial di­

mensions (in terms of component movement), are confined to a surface or suspended in a 

fluid. Vibrational energy from the environment facilitates component mobility. Compo­

nent shape and magnetic-bit patterns are used to encode interactions. Components and 

environments are fabricated using rapid prototyping. The successful results demonstrate 

the feasibility of designing self-assembling systems via physically encoded information. 
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Chapter 1 

Introduction 

Place the individual pieces of a jigsaw puzzle in a box and shake. Could a jigsaw puzzle 

effectively construct itself resulting in a fixed structure representing the solution (Fig­

ure 1.1)? Or, put the parts of a car in an even larger box and shake. Would this action 

result in a complex machine, a car? These two metaphors were used in the past to depict 

what could be achieved through the mastery of self-assembly to compute solutions and 

create devices (Jones 2004; Drexler 1986). Self-assembly, the autonomous construction of 

a set of building blocks in an environment into a desired entity, is not merely in the realm 

of science fiction. From granules of salt to galaxies and from bacteria to blue whales, the 

plethora of complex inorganic and organic systems seen throughout nature are the result 

of self-assembly. Self-assembly is fundamental to a variety of natural processes, including 

crystalline growth and biological development. 

The old adage that no two snow flakes are alike has been demystified by understand­

ing the self-assembly process of snow crystals. Linus Pauling was the first to propose a 

description to the molecular structure of the ice crystal (1935). Quantum mechanics ex­

plains how two hydrogen atoms and one oxygen atom form a single water molecule, and 

Figure 1.1: What are the requirements to have a set of parts self-assemble into a desired 
entity? 
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how multiple water molecules attach together to form a hexagonal crystal lattice (Lib-

bercht 2001). It is this hexagonal symmetry of ice that results in the six-fold symmetry of 

snow crystals. One differentiating factor to how a snow crystal is formed versus ordinary 

ice is in the initialization of the process. In nature, the process of creating a snow crystal 

is initialized through the use of a seed particle, typically a bacterium (Christner et al. 

2008) or a dust particle (Libbercht 2001), to which water molecules can attach to. The 

variation and relation of environment variables leads to the vast range of snow crystal 

morphologies. 

This process has been leveraged to create predictable artificial snow crystals of vary­

ing form under a controlled environment. In a laboratory, the self-assembly process is 

initiated using the tip of an ice needle to act as the seed particle. The ice needle is 

placed in a chamber, where the supersaturation level of water vapour, temperature, and 

background gas can be controlled. By understanding the relationship between these 

three environment variables, it has lead to the predictable self-assembly of artificial snow 

crystal morphologies (Figure 1.2). 

Likewise, investigations into the mechanisms of the self-assembly process is helping to 

unravel the mysteries of biological development. The outboard motor provides propul­

sion to boats, and has been used as an analogy to describe the bacterial flagellum that 

provides one mechanism for bacteria motility (Dawkins 2004). A bacterial flagellum can 

be considered as a rotary motor, which has a diameter of approximately 30 nanometres, 

rotates at around 20,000 revolutions per minute (rpm), consumes energy of roughly 10~6 

Watts, and has energy conversion near 100% (Ishiguro 2004). Unlike an outboard motor, 

this remarkable machine is created autonomously (Yonekura et al. 2000; Macnab 2003). 

Since the tail of the flagellum extends past the bacterial cell wall, many of the flag-

ellum's components are extruded through an export apparatus that self-assembles first, 

and is part of the base of the final structure. The self-assembly process of the bacte-
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Figure 1.2: Resulting self-assembled snow crystal morphologies depending on the tem­
perature and the supersaturation level of water vapour (Libbercht 2001). 

rial flagellum can be viewed as a linear process, where components first form the base 

(which serves as a mounting plate), followed by the construction of the hook (which 

acts as a universal joint) second, and finally followed by the formation of the filament 

third (Figure 1.3). The filament is fragile and suffers from breakage, but can be regrown. 

The sequence of steps to the self-assembly and self-repair of the bacterial flagellum is 

understood by the interactions of the flagellum's components. 

Snow crystals and bacterial flagellum are just two of the plethora of complex inorganic 

and organic systems seen throughout nature that are the result of self-assembly. Complex 

self-assembled entities emerge from decentralized components governed by simple rules. 

Natural self-assembly is dictated by the morphology of the components and the environ­

mental conditions they are subjected to, as well as their component and environment 

physical and chemical properties — their information (Ball 1999, 2009a,c,d; Thompson 

1917). Components, their environment, and the interactions among them form a system, 

which can be described by a set of simple rules. One could view entities in nature consti-
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Figure 1.3: Components comprising the bacterial flagellum, and their self-assembly se­
quence. 

tuting programs that are based on the rules present in a system (Wolfram 2002). These 

programs are the interaction and transformation of physically and chemically encoded 

information in a system. The process of self-assembly has been shown to being equivalent 

to performing a physical computation, as information is compared and exploited to build 

larger structures (Winfree 1995, 1999). However, designing and constructing artificial 

self-assembling systems remains an elusive goal. 

1.1 Scientific Motivation 

Comprehending the principles and mechanisms of self-assembly has been described as 

one of the important aspects to understanding life (Ingber 1998). In addition to this 

profound goal and understanding natural self-assembly universally, self-assembly is also 

viewed as an enabling technology for the creation of artificial systems (Pelesko 2007). Of 

the various applications incorporating self-assembly, the most anticipated advantage of 

self-assembly is in the creation of nanotechnology (Frankel & Whitesides 2009; Whitesides 

& Grzybowski 2002; Nalwa 2004). 
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In 1959, Richard Feynman gave is visionary talk (later transcribed; 1960) There's 

Plenty of Room at the Bottom, where he postulated the construction of matter from the 

molecular level up, atom-by-atom. As part of his vision, Feynman spoke of billions of tiny 

factories being able to manufacture materials. In a later talk, Infinitesimal Machinery, 

Feynman further developed his vision of molecular machines (with a manuscript written 

based on his talk; 1993). K. Eric Drexler built upon Feynman's ideas with the notion 

of self-replicating machines, in Engines of Creation: The Coming Era of Nanotechnology 

(1986). To Feynman and Drexler, the potential impact of nanotechnology was nothing 

short of creating new materials from the bottom-up, nano-devices delivering medications 

to target areas in the human body, and nano-machines removing pollutants from the 

environment (Drexler 1981, 1986, 1992). 

Although it is considered as revisionist history to credit Feynman as the founder of 

nanotechnology (Ball 2009b), and that the details Feynman and Drexler described on 

achieving their grander visions have been met with controversy (Baum 2003; White-

sides 2001; Committee to Review the National Nanotechnology Initiative & National 

Research Council 2006), their conceptual visions have nevertheless provided inspiration 

and have generated interest in nanotechnology (Toumey 2005). The Scanning tunnel­

ing microscope (STM; Binnig et al. 1982a,b) is described as the founding ancestor to 

nanotechnology (Ball 2009b; Toumey 2005). The STM, the atomic force microscope 

(AFM; Binnig et al. 1986), and other technologies (Whitesides & Love 2001; Gates et al. 

2005) create nanostructures using traditional top-down design approaches where atoms 

are placed one-by-one. However, self-assembly is recognized as one of the few practical 

methods to building ensembles of nanostructures moving forward, as well as being central 

to dynamic multicomponent systems for the creation of smart materials, self-repairing 

structures, and self-replicating machines (Whitesides & Grzybowski 2002; Gates et al. 

2005). 
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In addition to these broad motivations for understanding natural self-assembly and 

developing self-assembly as an enabling technology for the creation of artificial systems, 

there are several specific motivations to studying self-assembly in the context of this 

thesis. These specific motivations include: 

• creating mesoscale/macroscale (micrometre to millimetre / centimetre and above) 

self-assembling systems (Whitesides & Boncheva 2002; Boncheva et al. 2003b; 

Whitesides & Boncheva 2005), 

• constructing self-assembling systems in three spatial dimensions (Terfort et al. 

1997), 

• developing the computational aspects of self-assembly (Stepney et al. 2005, 2006), 

• advancing the nascent field of morphogenetic engineering (Doursat 2008), and 

• investigating complexity theory (Whitesides & Grzybowski 2002). 

The physical realization of self-assembling systems is not limited to molecular and 

nanoscale systems. Both mesoscale and macroscale self-assembly offer a unique qual­

ity in that components at these scales offer flexibility in design and access to types of 

functionality unparalleled in comparison to molecular and nanoscale systems (Whitesides 

k Boncheva 2005). As a corollary, self-assembly at the millimetre to centimetre scale 

gives a hands-on approach, which is also a unique opportunity to build knowledge in self-

assembly research (Pelesko 2007). However, mesoscale self-assembly has its challenges 

(Whitesides & Boncheva 2005), which include: 

• designing components (e.g. size, shape, and complexity) and environments (e.g. 

temperature and boundary conditions), 

• fabricating components and environments, 
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• understanding the range of self-assembled structures that are possible in a system 

and the potential for defects, and 

• designing abiological systems. 

From a material science perspective, the physical properties for self-assembly in bi­

ological systems may not be well suited for systems using non-biological parts. For 

example, magnetic interactions are not common in biological systems, but the insensi-

tivity of magnetic interactions to environmental influences (such as solvent properties) 

are regarded as the most promising in mesoscale self-assembly (Whitesides & Boncheva 

2005). 

From the macroscale to the nanoscale, the creation of self-assembling systems in three 

spatial dimensions has the potential for a number of advantages. The human brain is 

one of the greatest examples of three-dimensional self-assembly, with features ranging 

across these physical scales (Whitesides & Grzybowski 2002). Potential advantages of 

three-dimensional self-assembly include: 

• shorter interconnections between components (Whitesides & Grzybowski 2002), 

• efficient use of volume, (Whitesides & Grzybowski 2002), and 

• execution of algorithms which would otherwise be more difficult to implement in 

two spatial dimensions (Pelletier & Weimerskrich 2002). 

The advent of three-dimensional self-assembly will push the boundaries of embodied 

computation and morphogenetic engineering. Self-assembly is identified as a fundamental 

aspect to achieving embodied computation (Stepney et al. 2005, 2006), where physical 

computation is dependent on the underlying substrate for example. Understanding the 

interplay between programmability/controllability and self-organization is required in 

order for engineering emergence in this form of natural computing (Li et al. 2008). In 
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addition, understanding this interplay has also been identified for creating new technolo­

gies with natural characteristics (e.g. self-repair, self-reproduction, self-reconfiguration, 

and parallel construction), as is the goal of morphogenetic engineering (Doursat 2008). 

Along with practical applications, self-assembly can also be used in theoretical inves­

tigations to advance areas such as complexity theory (Mitchell 2006, 2009). It has been 

argued that self-assembly, by bridging the study of distinct components and the study of 

many interacting components, can be used to investigate the relationship between reduc-

tionism to complexity and emergence (Whitesides & Grzybowski 2002). Self-assembly 

has been shown to being an algorithmically NP-complete problem (Adleman et al. 2002). 

The most notable characteristic of an NP-complete problem is that no computationally 

efficient method is know to solve them; any given solution to an NP-complete problem 

can be verified efficiently, but there is no efficient method to find a solution to begin with 

(Sipser 1997). Consequently, it will be more challenging to deploy top-down self-assembly 

design methodologies as the sophistication of these systems increases. 

The development of a design method that inherently combines bottom-up design with 

bottom-up construction has the potential to advance the theory and practice of self-

assembly. For example, instead of a top-down method that takes a desired entity and 

dissects it into a set of components, a bottom-up method could specify the properties 

of the components and environmental conditions as well as present what emerges after 

the system is allowed to run (Wolfram 2002). The development of such a bottom-up 

self-assembly design method requires the pairing of theory and experiment in order for 

the science of self-assembly to continue to move forward (Pelesko 2007). 



9 

1.2 Thesis Hypothesis 

The following hypothesis statement forms the foundation of this thesis. 

Thesis Hypothesis: it is possible to encode information as physical compo­

nents and their corresponding environments to enable the self-assembly of 

closed structures with desired morphologies. 

Where, 

Components: are disordered, mobile, fundamental building blocks, which are able to 

adjust their connectivity with respect to each other (Whitesides &; Grzybowski 2002). 

Corresponding Environments: are constraints, conditions, and external energy sources 

for components. 

Self-assembly: is an autonomous, bottom-up process that involves the aggregation of 

components through selective, local interactions in a corresponding environment, where 

components can equilibrate between aggregated and non-aggregated states (Whitesides 

& Grzybowski 2002). 

Encode Information: to encode information in this work means a process that trans­

forms information into physical information. 

Closed Structures: are aggregated components forming an entity with a defined bound­

ary (created by the aggregated components, and not permitting further components to 

aggregate to the entity — in contrast to open structures; Whitesides & Grzybowski 2002). 
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Desired Morphologies: are the compositions of the structures that meet a prede­

fined set of requirements, including the arrangement of components, shape, and symmet­

ric/asymmetric features. 

The notion of encoding physical information to enable the self-assembly process is 

the principle contribution of this thesis. The development of this notion involves the 

understanding of what physical information actually means, how the description (rules) 

of an abstract system can be mapped using physical information to a physical system, 

and what is the minimal set of rules needed to enable a successful self-assembling system. 

The concept of physical information is further developed in Chapter 2: Literature Revietv, 

and further refined in Chapter 3: Physical Information Analysis and Chapter 4'- The 

Three-Level Approach to Self-Assembly Design. 

To produce evidence to support this thesis, three problems are addressed that require 

the creation of a self-assembly design methodology that allows for the investigation into 

encoding physical information. These three problems are: 

1. How to specify a set of rules that can be mapped to create a physical system using 

physically encoded information? 

2. How to automatically generate sets of rules using computer software, to address 

self-assembly being an algorithmically NP-complete problem? 

3. How to use physical information to create more complex target structures? 

The verification of the sets of rules resulting from the self-assembly design process 

will be conducted through physical experiments. In this work, mechanical, macroscale 

components (with mesoscale features) requiring external energy to permit component, 

movement spatially in two or three spatial dimensions (2D or 3D) are used in experiments. 
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The corresponding environments to these components result in components either being 

confined to a surface (2D) or suspended in a fluid (3D), where environment vibrations 

transfer energy to the components. 

1.3 Thesis Objectives 

The objectives of the research presented, in order to test the thesis hypothesis, are the 

following: 

1. Study existing methods to design and construct self-assembling systems. 

2. Prototype the specification of rules encapsulating a self-assembling system using 

an idealized virtual model. 

3. Analyze the first, artificial self-assembling system (Penrose & Penrose 1957) through 

reverse engineering to identify the self-assembly rules, including their physical 

equivalents, used in the system. 

4. Develop a self-assembly design methodology, referred to as the three-level approach, 

which inherently combines bottom-up design with bottom-up construction by using 

a set of self-assembly rules that can be mapped to an abstract model for analysis 

using software, and that can be translated to a physical system for verification. 

5. Devise a set of self-assembly rules that can encode a self-assembling system, which 

uses passive components that can move in either two or three spatial dimensions. 

6. Create two simulators to model the self-assembly rules in 2D and 3D. 

7. Develop a method to fabricate components and their corresponding environments. 

8. Conduct a series of experiments where a set of self-assembly rules can be specified 

by the user to test the three-level approach. 
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9. Investigate a method to which self-assembly rules can be generated bottom-up by 

computer software. 

10. Conduct a series of experiments where a set of self-assembly rules can be generated 

given the attributes of a desired target structure to test the three-level approach. 

11. Investigate a method that can leverage a limited set of self-assembly rules, using 

fixed components (that cannot differentiate), to create target structures with more 

complex morphologies that would not otherwise be possible. 

12. Conduct a series of experiments using the method that leverages a limited set of 

self-assembly rules to test the three-level approach. 

13. Identify the shortcomings of the conducted research, and future work. 

1.4 Thesis Structure 

The remainder of this thesis is structured as follows: 

Chapter 2: reviews the relevant literature pertaining to this thesis. An overview of 

self-assembly, including the types of self-assembly and classifications based on physical 

scale, is provided. A set of physical self-assembling systems based on the scale classifi­

cation is given to show extensions to, and limitations of, systems in the literature. DNA 

nanotechnology and computing are described within the scope of this thesis, and are used 

as the foundation to the computational and complexity element to this thesis. Lastly, 

top-down and bottom-up self-assembly design methodologies are contrasted. 

Chapter 3: provides physical information analysis in the context of self-assembly. The 

chapter is divided into two parts. In the first part, an abstraction of the self-assembly 

principles from natural and artificial systems is presented. These principles are used to 
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design and analyze interaction rules between virtual homogeneous spherical components 

into target structures. In contrast, the second part analyzes the physical information in 

the first artificial physical self-assembling system (Penrose & Penrose 1957), where the 

motion of the system is restricted spatially to one dimension (ID). 

Chapter 4: introduces the developed self-assembly design methodology, the three-level 

approach. The three levels — (1) definition of rule set, (2) virtual execution of rule set, 

and (3) physical realization of rule set — are described in the context of self-assembly 

in 2D and 3D. Different physical information encoding schemes are presented at level 

three to demonstrate how potential errors in the self-assembly process can be reduced or 

prevented. 

Chapter 5: presents a programming paradigm to self-assembling systems based on phys­

ically encoded information, and uses the three-level approach directly. Eight experiments 

(three experiments in 2D and five experiments in 3D) are provided to test the feasibility 

of the physical component encoding schemes and their corresponding environments in 

the self-assembly of closed target structures with desired morphologies. 

Chapter 6: incorporates evolutionary computing into the three-level approach to evolve 

self-assembly rule sets. Five experiments (two experiments in 2D and three experiments 

in 3D) are used to test the automated generation of component sets, and their ability (in 

the context of their corresponding environments) to construct closed target structures 

with desired morphologies. 

Chapter 7: extends the original self-assembly rules presented by dividing the self-

assembly process into time intervals. Four experiments (one experiment in 2D and three 
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experiments in 3D) are provided. These experiments are used to test the self-assembly 

of closed structures with desired morphologies by dividing the self-assembly process into 

time intervals based on physically encoded information. 

Chapter 8: summarizes the results of the experiments conducted, analyzes a design 

methodology using an example self-assembling system where the target structure has a 

more complex desired morphology, and offers future work extending the research pre­

sented in chapters three to seven. The design of more complex target structures is shown 

by how a limited set of components can be leveraged by reintroducing component in­

formation used earlier at later time intervals in the self-assembly process. Future work 

includes identifying the advantages of alternative component, morphological information 

to address fault tolerances resulting during the self-assembly process, and more broad 

directions of self-assembly research with an exploration of error correction methods and 

how to scale self-assembling systems. Lastly, applications of the work presented in this 

thesis are discussed. 

Chapter 9: concludes the thesis. Satisfaction of the thesis hypothesis is addressed by 

examining the experimental evidence. Lists of the scientific contributions, and publica­

tions, resulting from the research conducted as part of this thesis are provided. All of 

the research presented in chapters three to seven have been published or are accepted for 

publication. Finally, concluding remarks are given to demonstrate how the state of the 

art is advanced by designing self-assembling systems via physically encoded information. 
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Chapter 2 

Literature Review 

The origins of self-assembly as a research field can be traced back to organic chemistry 

(Whitesides & Grzybowski 2002). Since its initial formal study, the process of self-

assembly has been used in a wide variety of fields and applications. The relevant self-

assembly literature is critically reviewed in the context of this thesis. 

Although there is no definitive definition to what self-assembly is (Bhalla 2009), the 

definition of self-assembly used in this thesis (section 1.2: Thesis Hypothesis) is the basis 

to the work presented, and is also specified for future comparative study and refinement. 

There are two main types of self-assembly, static and dynamic (Whitesides & Grzybowski 

2002). Static self-assembly refers to processes that lead to structures or patterns in local 

or global equilibrium and do not dissipate energy (e.g. crystals). In contrast, dynamic 

self-assembly refers to processes that lead to structures or patterns that can only occur 

when the system is dissipating energy (e.g. biological systems). Research in static self-

assembly is more mature, whereas research in dynamic self-assembly is in its infancy. 

Going from static self-assembling systems to dynamic self-assembling systems (e.g. the 

creation of biological cells) is even less well understood (Whitesides & Grzybowski 2002). 

Further types of self-assembly are defined in (Whitesides & Grzybowski 2002), which 

can be considered as specializations of both static and dynamic self-assembly, and in­

clude: templated self-assembly, biological self-assembly, and netted systems. Templated 

self-assembly uses regular features in the environment to enable the self-assembly pro­

cesses. Biological self-assembly is characterized by the variety and complexity of the 

structures, functions, and systems it produces. Netted systems consist of sensors and 

controllers that interact and self-assemble through data communication (e.g. robotic 
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systems). In this work, three additional forms of self-assembly are defined, software 

self-assembly, algorithmic self-assembly, and staged self-assembly (also known as hier­

archical self-assembly). Software self-assembly uses software components that are inte­

grated together based on self-assembly to create specific software architectures (Li et al. 

2006, 2008). Algorithmic self-assembly is where computation is embedded into the self-

assembly process, typically as a process of crystalline growth (Winfree 1995; Winfree 

et al. 1998b). Staged self-assembly is where the self-assembly process is divided into time 

intervals (stages; Demaine et al. 2008). At each time interval, components can be added 

to, or removed from, an environment. The advantage of staging is that it encodes the 

construction of a target structure in the staging algorithm itself, and not exclusively in 

the design of components. 

As presented in section 1.2: Thesis Hypothesis, physical, static self-assembling sys­

tems will be used in part to test the thesis hypothesis. Although the focus is on static 

systems, relevant physical systems are reviewed in the next section. Systems presented 

at the nanoscale are further discussed in the context of physical information encoding 

and DNA computing to underpin the theoretical aspects of self-assembly. Lastly, design 

methodologies that are applicable to creating self-assembling systems are contrasted. 

2.1 Physical Self-Assembling Systems 

Starting from the first artificial mechanical self-assembling system to state-of-the-art 

DNA self-assembling systems, the relevant physical self-assembling systems from the 

macroscale, across the mesoscale, and down to the nanoscale are critically reviewed in 

this section. These systems vary in terms of spatial dimension, methods to enable the 

self-assembly process, environment, techniques to reduce or prevent errors from occurring 

during the self-assembly process, and the creation of open and closed structures. 
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2.1.1 Macroscale Self-Assembly 

At the macroscale, two broad categories of self-assembling systems are considered, me­

chanical systems and robotic systems. Mechanical systems use physical or chemical 

features in components or their environment to enable the self-assembly process. In 

contrast, primarily data communication is used between components (robotic units) to 

enable the self-assembly process of modular robotic systems. With the addition of Pen­

rose (1958), Miyashita et al. (2009), Mao et al. (2002), Kalontarov et al. (2010), Olson 

et al. (2007), Tibbits (2010), Hawkes et al. (2010), Goldstein et al. (2005), and Zykov 

et al. (2008) the self-assembling systems reviewed here at the macroscale are considered 

as significant contributions to the literature (Grofi & Dorigo 2008). 

Mechanical Systems 

Lionel S. Penrose and R. Penrose were the first to create an artificial, mechanical self-

assembling system (1957). Their system consisted of two types of components, which 

were confined to a track environment. The track was shaken horizontally in ID. Only in 

the presence of a two-component seed complex (consisting of both types of components) 

would self-assembly occur by components hooking and latching together, resulting in 

the self-reproduction of the seed complex. Detailed analysis of this pioneering system is 

provided in section 3.2: A Self-Reproducing Analogue. Building upon his original system, 

L.S. Penrose went on to extend his mechanical self-reproducing systems to 2D as layered 

ID systems (Figure 2.1 I; Penrose 1958, 1959). 

As a transition from ID systems to 2D, Hosokawa et al. (1996) presented two systems 

using triangle shaped components that were in a fiat box environment, which was rotated 

vertically (Figure 2.1 II). The goal of both systems was to create multiple hexagon target 

structures. In the first system, one permanent magnet of opposite polarity was embedded 

vertically in two of the three sides of each component. However, poor yield of the target 
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Figure 2.1: Mechanical macroscale self-assembling systems: (I) extension to the original 
self-reproducing system (Penrose 1958), (II) hexagon target structure (Hosokawa et al. 
1996), (III) using component shape and magnetic patterns to create target structures with 
symmetric/asymmetric features (Bhalla & Bentley 2006), (IV) open target structures 
(Miyashita et al. 2009), (V) self-replication using an oscillating environment (Breivik 
2001), (VI) self-reconfiguration (Reprinted (adapted) with permission from Mao et al. 
2002, © 2002 American Chemical Society), (VII) cube components directed using the 
environment (Kalontarov et al. 2010), and (VIII) virus model (Olson et al. 2007). 
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structures occurred, since substructures would not necessarily self-assemble together to 

form target structures. To resolve this incompatible substructure problem, a second 

system was developed that used seed components and variable components. The number 

of seed components present equalled the number of desired target structures. As with 

components in the first system, permanent magnets of opposite polarity were embedded 

vertically in two edges of each seed component. However, variable components had two 

permanent magnets within the interior of components that would only move to the edge 

when a magnet of opposite polarity was present in a neighbouring component. The use 

of seed and variable components allowed for the creation of an assembly sequence, and 

prevented the occurrence of incompatible substructures. However, the drawback of this 

second system is that seed components were able to self-assemble, resulting in errors due 

to the combination of simple magnetic bonding and component shape. 

As an alternative to relying on seed components for 2D self-assembly along with 

the prospect of creating a variety of target structures with symmetric and asymmetric 

polygon forms (Figure 2.1 III), the combination of permanent magnetic patterns and 

component shape was considered (Bhalla 2004; Bhalla & Bentley 2006; Kaewkamnerd-

pong et al. 2007). 2D permanent magnetic discs naturally form linear, triangular, or 

grid patterns. These magnetic patterns were leveraged by horizontally placing a sin­

gle permanent disc magnet in the interior of components constructed from foam board. 

The foam was cut to create polygon key and lock shapes, similar to the hook-and-latch 

mechanism in L.S. Penrose and R. Penrose's original system. Closed target structures 

could be created by varying the size of components, and creating regions where magnets 

of opposite polarity would be suitably spaced as to not be able to overcome the force 

of friction (between components and their environment) to self-assemble. Homogenous, 

heterogenous, or a combination of component shapes could be used to create target struc­

tures with symmetric/asymmetric features. Components were placed on the surface of 
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a tray. Components and their environment were hand-built. The disadvantage of this 

system is that the environment was shaken by hand (in 2D), limiting reproducibility. 

In Miyashita et al. (2009), a single permanent disc magnet was placed in the centre 

of each component. Components with square, circle, and square with rounded corners 

were used (either a single component shape or mixed component shapes) to determine 

the influence of component shape on the self-assembly of open target structures (Fig­

ure 2.1 IV, page 18). Components with rounded edges (circles or squares with rounded 

corners) were found to be superior in experiments, since the rounded edges permitted 

complementary components to rotate onto one another. The environment, a tray where 

components floated on the surface of water, was automatically controlled. A measure, 

the degree of parallelism (DOP) was proposed to quantify the aggregation characteristic 

of components into a single open structure. The disadvantage of this measure is discussed 

in section 2.2.5: The Complexity of Self-Assembly. 

As an alternative to using component features, the environment can also be used 

to enable the self-assembly process. In Breivik (2001), two component types with two 

different kinds of permanent magnets were used to create template-replicating structures 

(Figure 2.1 V, page 18). The two types of magnets vary in Curie points (the tempera­

ture above which ferromagnets become paramagnetic, and this effect is reversible). By 

cycling the environment temperature, components could undergo assembly and disas­

sembly actions, creating replicas of linear seed structures. Another method using the 

environment to enable the self-assembly process was to change the environment chemical 

conditions (Figure 2.1 VI, page 18; Mao et al. 2002). For example, components with 

hydrophobic and hydrophilic coatings on their edges could form one type of target struc­

ture in one chemical solution, and form another target structure in another chemical 

solution. However, components were tethered together using string to reduce the time 

required to complete the self-assembly process. The environment can also be used to di­
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rect component movement. In Kalontarov et al. (2010), floating cube-based components 

self-assembled to a template at the bottom of their environment. Valves in the template 

could be opened and closed, resulting in the opening and closing of valves on the faces 

of components. The resulting vortices in the fluid environment was used to pull com­

ponents in sequence to appropriate locations to create closed 3D target structures with 

symmetric/asymmetric features (Figure 2.1 VII, page 18). The advantage of using the 

environment is that it reduces the time required to complete the self-assembly process. 

However, the disadvantage of relying on the environment to enable the self-assembly pro­

cess is that it is then difficult to prevent disruption leading to unwanted substructures 

(e.g. interrupting the self-replication process) in an automated procedure, and using 

global environmental conditions to direct the local interactions of many components in 

parallel. 

3D static self-assembly has also been demonstrated using homogeneous components 

shaken by hand in a jar to create a single spherical structure, based on the structure of 

a virus (Figure 2.1 VIII, page 18; Olson et al. 2007). 3D static self-assembly has also 

been demonstrated by hand shaking linear strands of components that can fold into 3D 

structures (Tibbits 2010). Folding is directed by the arrangement of the components in 

their initial linear structure that can either bend left or right, implementing physical logic 

gates. The drawback of these two systems and Bhalla & Bentley (2006), is that hand 

controlled environments limit reproducibility. As well, a certain amount of intelligent 

shaking by hand might influence the results of the self-assembly process. 

Robotic Systems 

Robotic self-assembling systems are often distinguished by the components (robotic units) 

used. Passive components cannot propel themselves in their environment, whereas active 

components are able to propel themselves in their environment (GroB & Dorigo 2008). 
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Homer Jacobson used two components (referred to as heads and tails) to create a 

self-replicating system (1958). Components could autonomously move around a circular 

track, with several sidings. Initially, components were placed in a random sequence on 

the track. With the addition of a seed complex (consisting of one head and one tail 

component) the system would self-assemble replicas of the seed complex until all the 

components were exhausted. Templated self-assembly resulting in self-replication has 

also been achieved using passive components to create longer linear target structures 

in 2D (Figure 2.2 I; Griffith et al. 2005) and in 3D (Zykov et al. 2005). An extension 

addressing the limitations of replicating linear structures to various 2D shapes has been 

proposed in simulations using modular self-assembling robots (Mathews 2008). 

Passive systems have also been created in 2D that can create various target structures 

(Figure 2.2 II; Bishop et al. 2005; White et al. 2004). Furthermore, these systems used 

components with electromagnets that could self-assemble and self-disassemble, resulting 

in self-recofigurable systems. The advantage of these systems is in their use of logic, 

via data communication between components, to enable the self-assembly process. The 

disadvantage of these systems is their high energy requirements (onboard components) to 

operate the electromagnets. 2D sheets that can fold into 3D shapes (based on origami) 

using electromagnets have also been developed (Figure 2.2 III; Hawkes et al. 2010), also 

energy intensive for folding. Consequently, these systems are not practical as they will 

not be scalable to systems with many components due to their energy requirements. 

The use of electromagnets in passive components has also been extended to 3D. In 

White et al. (2005), a template at the bottom of a tank of fluid was used to fix a 

component to provide power through an electrical connection, as an alternative to energy 

onboard components (Figure 2.2 IV). The electromagnets were then used to assemble 

free-floating components, and disassemble components that were part of the structure. 

An extension to this 3D system uses valves within components and valves within the 
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Figure 2.2: Robotic macroscale self-assembling systems: (I) 2D self-replication (Griffith 
et al. 2005), (II) reprogrammable components (Bishop et al. 2005, © 2005 IEEE), (III) 
folding sheet (Hawkes et al. 2010), (IV) 3D templated self-assembly (White et al. 2005), 
(V) Claytronics self-reconfigurable robot (Goldstein et al. 2005), and (VI) Swarm-bot 
(Mondada et al. 2003, © 2003 IEEE). 
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template in the environment to direct components to self-assemble to one another (White 

et al. 2005), with the advantage of reducing the components' energy requirements. These 

systems also have the disadvantage of requiring high amounts of energy to enable self-

reconfiguration, and are not scalable to systems requiring many components. 

Examples using active components include those which use cube-based components 

(varying in degrees of rotational freedom of faces) of pre-configured chains of compo­

nent performed self-reconfiguration (Fukuda et al. 1991; Yim et al. 2000; Castano et al. 

2000; Murata et al. 2002; Zykov et al. 2008). Cylindrical components using layers of 

electromagnets in pre-configured states have also been used to for self-reconfiguration 

(Figure 2.2 VII; Goldstein et al. 2005). Alternatively, Miyashita et al. (2010) used a 

freeze-thaw connector to freeze water between components for assembly. 

However, Super Mechano Colony (SMC) (Damoto et al. 2001; Hirose 2001; Hirose 

et al. 2000) and Swarm-bot (Mondada et al. 2003; Dorigo et al. 2006) used active compo­

nents that did not need to be pre-configured. SMC consists of parent and child compo­

nents. Child components can disassemble, perform a task, and reassemble at a later time. 

Swarm-bot consists of homogenous cylindrical components (s-bots), and uses swarm in­

telligence for localized communication (Figure 2.2 VI; Bonabeau et al. 1999). The ad­

vantage of Swarm-bot over SMC was in creating static structures (Grofi et al. 2006) and 

dynamic machines (e.g. the formation of a chain of s-bots capable of traversing a gap 

larger than an s-bot in the environment, and group transport of heavy objects; O'Grady 

et al. 2005; Nouyan et al. 2006). Using light primarily to communicate, Swarm-bot is 

easier to program than other robotic system. However, Swarm-bot is not scalable to 

3D due to the design of the s-bots. Swarm-bot has been extended to a system using 

heterogeneous robots, called Swarmanoid (Mathews et al. 2010). Swarm intelligence has 

also been investigated as a control mechanism to enable the self-assembly of nanoscale 

robots (Kaewkamnerdpong 2008; Kaewkamnerdpong et al. 2007). 
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2.1.2 Mesoscale Self-Assembly 

At the mesoscale, both millimetre and micrometre scale self-assembling systems are re­

viewed in 2D and 3D. 

2D Systems 

Capillary forces can be used to self-assemble mesoscale components (Whitesides & Boncheva 

2002). In Choi et al. (2000), two type of components (triangular and circular) floating 

in a liquid-air interface created an open target structure where triangular components 

(with millimetre features) self-assembled around circular (centimetre scale) components 

(Figure 2.3 I). Capillary forces have also been used with hexagonal components (millime­

tre scale) to create an open target structure, with deliberate hexagonal holes (Figure 2.3 

II; Bowden et al. 1997). Hexagonal, micrometre components have also been used to 

create an open, layered target structure (Clark et al. 2001). Templates have also been 

used to demonstrate the creation of closed target structures using hexagonal, millimetre 

components (Clark et al. 2002). However, using capillary forces exclusively to enable the 

self-assembly process is difficult to leverage for the creation of closed target structures 

with symmetric/asymmetric features. 

Hydrophobic and hydrophilic interactions between components can also be used to 

enable the self-assembly process (Rothemund 2000). In this example, 2D components 

(cut using a laser cutter and with either hydrophobic or hydrophilic coatings on their 

edges) would self-assemble into periodic and aperiodic tilings (Figure 2.3 III). The goal of 

the aperiodic tilings were to demonstrate computation by self-assembly. The significance 

of aperiodic tilings is further discussed in section 2.2.1: Physical Information Encoding 

in Nature and section 2.2.3: The abstract Tile Assembly Model. However, the target 

structures (tiling of the plane using different patterns) was not achieved, since no method 

was used to enforce the correct sequences for tiling the plane. As a result, holes would 
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Figure 2.3: 2D mesoscale self-assembling systems: (I) triangular and circular components 
(Reprinted (adapted) with permission from Choi et al. 2000, © 2000 American Chemical 
Society), (II) open structure with deliberate hexagonal holes (Bowden et al. 1997), and 
(III) aperiodic tiling (Rothemund 2000). 
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form in the structure or incompatible substructures would form. 

The use of environmental conditions has also been used to enable self-assembly using 

millimetre scale and micrometre scale components. As an example of dynamic self-

assembly using mechanical components, permanent magnetic discs floating either in a 

liquid-air interface (Grzybowski et al. 2000), floating in a layered formation (Grzybowski 

& Whitesides 2002b), or using chiral spinners (Grzybowski & Whitesides 2002a) would 

self-assemble into different target structures due to an electromagnet in the environment. 

Various self-assembled formations would occur based on the rotation sequence of the elec­

tromagnet. The self-assembled structures would no longer exist when the electromagnet 

was turned off (when the system was no longer dissipating energy). Another example 

of dynamic self-assembly is in Diller et al. (2011), where an external magnetic field was 

oscillated to enable the self-assembly and locomotion of micrometre scale robots on a 2D 

surface. 

Changes in environmental conditions have also been used to create static structures 

using micrometre scale components (Krishnan et al. 2008; Tolley et al. 2008). By con­

trolling the flow in a microfluidic chamber, components could be directed globally and 

use local interactions to self-assemble. This technique of controlling flow, along with 

templates in the environment, has successfully created both symmetric and asymmetric 

target structures. An extension to this system was presented in (Krishnan et al. 2009), 

where components could be selectively assembled to, or disassembled from, a larger struc­

ture by direct thermal modulation of the local viscosity field surrounding components. 

The advantage of these systems, including Diller et al. (2011), is that, they do not rely on 

pre-programmed assembly protocols between the components. The challenge with these 

techniques is when scaling to systems with large numbers of components, where again it 

is difficult to use global conditions to direct local interactions. 
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3D Systems 

Terfort et al. (1997) were the first to demonstrate 3D artificial self-assembly using mil­

limetre scale components (Figure 2.4 I). Three systems used homogeneous components 

to create symmetric structures, and one system used two different components (one with 

a key shape and one with a lock shape) to create a cylinder. A variety of open target 

structures using helical, millimetre scale components have also been created (Figure 2.4 

II; Boncheva et al. 2003a). In contrast to Boncheva et al. (2003a), Terfort et al. (1997) 

demonstrated the advantage of using hydrophobic and hydrophilic properties in combi­

nation with two types of component shapes in one system to enable the self-assembly 

process using heterogeneous components for the self-assembly of a closed target structure. 

Staging has also been used to enable the self-assembly of millimetre scale spherical 

components into various open target structures (Figure 2.4 III; Wu et al. 2002). Two 

time intervals were used. In the first time interval, spherical components were packed 

into templates (tubes with triangular, hexagonal, rectangular, and circular shapes). The 

second time interval used the substructures created in the first time interval to create 

the open target structure (e.g. using linear substructures to create a cubic lattice open 

target structure). Furthermore, templates in the second time interval could also be used 

to create open target structures (e.g. hexagonal shaped tube to create a hexagonal lattice 

open target structure). In this example, only templates at each stage were used to enable 

the self-assembly process. No examples of using component properties at each stage to 

enable the self-assembly process were provided. 

Garcias et al. (2002) created a system where the faces of self-assembled micrometre 

cubes had patterned faces (four metallic squares near each corner of a face, Figure 2.4 

IV). The resulting cubes were constructed using a folding technique, where the faces of 

a cube were initially attached in a 2D arrangement. However, the patterning on the 

faces of components did not enable the self-assembly of cubes into larger structures. As 
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Figure 2.4: 3D mesoscale self-assembling systems: (I) cylinder using key-lock shape 
(Terfort et al. 1997), (II) open chiral structure (Reprinted (adapted) with permission 
Boncheva et al. 2003a, © 2003 American Chemical Society), (III) staged self-assembly 
using spherical components (Reprinted (adapted) with permission Wu et al. 2002, © 2002 
American Chemical Society), (IV) cube with patterned faces (Garcias et al. 2002), (V) 
3D circuit (Garcias et al. 2000), and (VI) casquet made using micro-masonry (Fernandez 
& Khademhosseini 2010). 
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a precursor to this work, polyhedral components were self-assembled in an open lattice 

structure creating a 3D circuit (Figure 2.4 V; Garcias et al. 2000). 

A technique referred to as micro-masonry created 3D target structures using shape-

controlled microgels (Fernandez & Khademhosseini 2010). Microgels self-assemble using 

capillary forces, on the surface of a template. Multi-layered structures can be created 

using microgels using components with key and lock shapes. Micro-masonary has been 

used to create a tube, solid ball, and casquet target structures (Figure 2.4 VI). The 

advantage of this system is that it uses a combination of capillary forces and a template 

to create closed target structures, with symmetric features. 

2.1.3 Nanoscale Self-Assembly 

At the nanoscale, DNA is considered as one of the most promising materials for the cre­

ation of nanotechnology due to its inherent self-assembly properties (Seeman 2004, 2007). 

DNA nanotechnology was invented by Nadrian Seeman (Pelesko 2007), who realized that 

3D lattices could be used to direct molecules simplifying their crystallographic study. The 

first 3D nanoscale objects created using self-assembly were a cube and a truncated octa­

hedron made out of DNA (Figure 2.5 I; Chen & Seeman 1991; Zhang & Seeman 1994). 

However, these objects were not rigid enough to create 3D lattices (Pelesko 2007). 

DNA tiles were developed to address this rigidity problem, while still being able to 

create lattice structures (Winfree et al. 1998a). These tiles use interwoven double DNA 

strands to create the square body of a tile, with single DNA strands extending from 

the edges of a tile (Figure 2.5 II). A tile type is defined by the single strands (motifs) 

extending from the North, West, South, and East edges of the 2D DNA tiles. At the 

time of writing, the realization of 3D DNA tiles has not been achieved. 

Paul Rothemund pioneered a technique to create a wide variety of 2D self-assembled 

DNA structures, referred to as DNA origami (2005; 2006). This technique uses smaller 
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Figure 2.5: DNA nanoscale self-assembling systems: (I) truncated-octahedron (Reprinted 
(adapted) with permission Zhang & Seeman 1994, © 1994 American Chemical Society), 
(II) DNA Tiles (Winfree et al. 1998a), (III) 2D DNA origami (Rothemund 2006), (IV) 
3D DNA origami (Douglas et al. 2009), (V) 2D DNA origami using shapes (Woo & 
Rothemund 2011), and (VI) staged tetrahedron (He et al. 2008). 
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single strands of DNA to act as scaffolding, which self-assemble to a longer single strand 

of DNA folding it into a target structure (Figure 2.5 III). The use of folding in DNA 

origami has been extended to 3D (Figure 2.5 IV; Douglas et al. 2009). However, only one 

example was shown in Douglas et al. (2009) where components created using 3D DNA 

origami would then self-assemble into a 3D target structure. In this example, identical 

components were used to self-assemble multiples of a symmetrical target structure, a 

tetrahedron. 

Methods to scale DNA nanotechnology to use larger numbers of components to create 

more complex target structures include using error correction techniques (Kari & Ma-

halingam 2010; Meng & Kashyap 2009) and staged self-assembly (Demaine et al. 2008). 

One of the drawbacks of DNA tiles is the challenge in designing the extending single 

strands. For large numbers of tiles, it is difficult to create a variety of single strands 

that do not have complementary regions (between separate strands or within an individ­

ual strand). As a result, long single strands are required. Long single strands of DNA 

pose a problem as they are no longer rigid in comparison to short single strands, and 

cause defects to occur during the self-assembly process. One solution to this problem 

has been proposed using DNA origami to design shapes, acting as keys and locks, within 

components. Single DNA strands within these shapes are used to assemble complemen­

tary shapes between components (Figure 2.5 V). The combination of these shapes and 

short single DNA strands is used to reduce errors from occurring during the self-assembly 

process (Woo & Rothemund 2011). This techniques has not been extended to 3D, nor 

has a similar technique in the creation of 2D DNA tiles using shapes (Turberfield 2011). 

Likewise, He et al. (2008) used three-point star motif tiles in a two-staged self-assembly 

process to reduce errors and create more complex target structures (Figure 2.5 VI). By 

controlling the motif lengths and the concentration of tiles, three-point star tiles were able 

to self-assemble into tetrahedrons, dodecahedrons, and buckyballs. However, the com­
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bination of these two techniques using component morphology and staged self-assembly 

has not been used. 

DNA is also being used to devise nanoscale robots, nucleic acid robots (Nubots). DNA 

hybridization can be used as a chemical energy source to drive these molecular machines 

(Turberfield et al. 2003). Example machines include a DNA motor (Yurke et al. 2000), 

a DNA glider (Zhang & Seelig 2011), and a DNA walker (Omabegho et al. 2009). 

2.2 Physical Information Encoding and DNA Computing 

Advancements in DNA nanotechnology, particularly the invention of DNA tiles, has 

allowed for investigations into new forms of embodied computation. The computational 

perspective of these advancements, including physical information encoding in nature, 

DNA computing, a DNA tiling model and its extension, as well as the complexity of 

self-assembly are all considered in investigating, what is physical information? 

2.2.1 Physical Information Encoding in Nature 

One of the most prolific insights was that of Erwin Schrodinger and his proposed aperiodic 

crystal for genetic information encoding, described in his popular science classic, What 

is Life? (1944, reprinted 2003). Schrodinger conjectured that in contrast to a periodic 

crystal, only an aperiodic crystal would be able to create a microcode for an organism. 

Schrodinger's aperiodic crystal predates the discovery of the aperiodic structure of DNA 

(Symonds 1986, 1987), later discovered by James Watson and Francis Crick (1953). 

Crick acknowledges Schrodinger for inspiring him to study the structure of DNA 

(Murphy & O'Neill 1997). The discovery of the structure of DNA lead to the central 

dogma of molecular biology (Crick 1970). The central dogma describes the transfer of 

genetic information encoded in DNA, through transcription to RNA, and translation to 

Proteins. Proteins, the resulting self-assembling shapes, are the primary building blocks 
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of living organisms. It is this mechanism of genetic information transfer that enables the 

process of biological development, which uses explicit stages in its provision of a solution 

to the construction of a multicellular organism (Wolpert 1998). The explicit stages in 

biological development are often irreversible, and cannot be repeated at later stages, such 

as invagination, gastrulation, and the formation of a body plan. This higher-order process 

of staged development in nature allows for the creation of more complex phenotypes, 

which would not otherwise be possible (Wolpert 1998). Driving the mechanisms behind 

both the process of genetic information transfer and the process of staged biological 

development is molecular recognition. Over a century ago, Emil Fisher proposed the 

key-lock principle to explain the mechanism of enzyme action (Ball 1994). The idea was 

that an enzyme has a bonding site that fits the shape of its substrate. Shape and geometry 

are central to molecular interactions, within the context of an appropriate environment. 

Fisher's principle is still valid today, and the analogy is applicable to explaining molecular 

recognition. 

However, it was Schrodinger's insight into the requirement of an aperiodic crystal 

containing a microcode that could generate an organism that forms the basis for Stuart 

Kauffman's question1, what is information?. In Kauffman's opinion, traditional defini­

tions to what information is, such as Shannon information (Shannon 1948) and Kol-

mogorov information (Kolmogorov 1965), are insufficient to describe the complexity of 

the biosphere as they have no direct linking of information to matter and energy in these 

definitions. From Kauffman's perspective, the notion of generating is the set of specific 

processes aspect of information that is needed in the definition of what information is, as 

part of the explanation to what lead to the complexity of the natural world. The inclu­

sion of generation of physical processes differentiates this notion of physical information 

from that used in physics (Landauer 1996, 1999; Friedman 1998, 2001), and will be fur­

1S. Kauffman (2010). What is information? NPR 13.7 Cosmos and Culture. URL: 
http://www.npr.Org/blogs/13.7/2010/06/04/127473541/what-is-information 
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ther discussed in section 2.2.5: The Complexity of Self-Assembly from the perspective of 

DNA computing. 

2.2.2 DNA Computing 

In addition to understanding how the aperiodic structure of DNA serves as a genetic 

information medium in biological systems, research is being conducted on manipulating 

DNA for information encoding and computation. Leonard Adleman first showed that 

computing using self-assembling molecules, DNA, was possible (1994). An algorithm 

was devised to solve a seven node directed Hamiltonian path problem (Garey & John­

son 1979). Single strands of DNA were created to encode partial candidate solutions to 

the problem (representing the edges and vertices of the directed graph). These partial 

sample solutions were then allowed to interact and self-assemble based on Watson-Crick 

complementarity. The linear double-stranded self-assembled structures representing po­

tential solutions were then filtered using biochemistry and molecular biology techniques 

to identify the true self-assembled solution. 

With the success of Adleman's experiment, research has focused on scaling DNA com­

puting to solve larger problems (Paun et al. 1998). This requires a shift from the original 

brute-force approach. Developing new DNA structures and algorithmic techniques has 

shown tremendous promise in furthering this method of embodied computation. The 

role of shape and structure in physical information encoding and computation plays a 

vital role in embodied computing, as will be discussed in the progress from the origins of 

DNA computing. 

2.2.3 The abstract Tile Assembly Model 

Wang tiles, created by Hao Wang (1961; 1965), are a mathematical construction where 

each unit square tile has coloured edges. Wang tiles can be arranged (translated, but 



Figure 2.6: A set of 13 Wang tiles that only result in an aperiodic tiling of the plane. 

not rotated or reflected) on a rectangular plane only when adjacent tiles have the same 

colour. Given a set of Wang tiles, the main question is proving if that set (allowing for 

infinite copies of tiles in the set) can tile the plane or not. Wang presented an algorithm 

that could take any finite set of Wang tiles and decide if that set could tile the plane or 

not (1961). In his proof, Wang assumed that any set that could tile the plane would result 

in a periodic tiling. However, Robert Berger proved that Wang's conjecture was false, 

by creating a set of Wang tiles that would result only in an aperiodic tiling (1966). This 

form of aperiodic tiling is similar to a Penrose tiling (Penrose 1974) and Quasicrystals 

(Sheehtman et al. 1984; Senechal 2006). Berger's original set contained 20,426 Wang tiles. 

Later, Karel Culik (1996) created a set of Wang tiles of size 13 that would result only 

in an aperiodic tiling (Figure 2.6). Any Turing machine (Turing 1936) can be translated 

into a set of Wang tiles, such that the set of Wang tiles will only tile the plane if and 

only if the Turing machine will never halt. The halting problem (Sipser 1997; Turing 

1936) is undecidable, just as Wang's tiling problem is uncomputable. Wang tiles have 

been proven to be Turing universal (Sipser 1997). 

The physical realization of Wang tiles was achieved through the creation of DNA tiles, 

where single DNA strands extending from the edges of the square tiles represent colours. 

Erik Winfree created the abstract Tile Assembly Model (aTAM; 1998b), originally named 

the Tile Assembly Model (TAM; Rothemund & Winfree 2000), as a mathematical model 

of pseudo-crystalline growth. 
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In the aTAM, a tile type is defined by the bonding domains (e.g. colours) on the 

North, West, South, and East edges of a tile. A finite set of tile types is specified (which 

are in infinite supply in the model). Tiles can only bond together if the interactions 

between bonding domains are of sufficient strength (provided by a strength function), as 

determined by the temperature parameter. The sum of the bonding strengths of the edges 

of a tile must meet or exceed the temperature parameter. As a result, the temperature 

parameter dictates co-operative bonding. There are four constraints with the aTAM: 

1. At least one seed tile must be specified to start the self-assembly process. 

2. Tiles cannot be rotated or reflected (realized through co-operative bonding con­

straints). 

3. There cannot be more than one tile type that can be used at a particular assembly 

location in the growing structure (although the same bonding domain is permitted 

on more than one tile type). 

4. All tiles are present in the same environment, referred to as a one-pot-mixture. 

These four constraints, along with the set of tiles, bonding domains, strength function, 

and temperature parameter define the aTAM. The seed tile is first selected and placed 

on the square lattice environment. Tiles are then selected one at a time, and placed on 

the grid if the bonding strength constraints are satisfied. The output is a given shape of 

fixed size, if the model can uniquely construct it. 

There are alternative models of self-assembly (Krasnogor et al. 2008), which are based 

on: Artificial Chemistry (Dittrich et al. 2001), Dissipative Particle Dynamics (Groot & 

Warren 1997), dynamic Bonding Dissipative Particle Dynamics (Buchanan et al. 2008), 

P-Systems (Bernardini & Gheorgh 2004), and the Sticky Graph model (Boo 2004). How­

ever, these models in contrast to the aTAM do not link self-assembly to computation. 
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2.2.4 Extensions to the abstract Tile Assembly Model 

There are several extensions to the aTAM (Aggarwal et al. 2005; Chandran et al. 2009; 

Demaine et al. 2008; Doty 2009; Kao & Schweller 2008; Patitz et al. 2011; Winfree 

1998b), offering an alternative programming approach within tile-based systems due to 

their additional model features. These extensions and the aTAM can be classified into 

the following four programming approaches (Doty 2009): 

1. Tile Hard-coding Programming (THcP) 

2. Staged Programming (SP) 

3. Tile Concentration Programming (TCP) 

4. Temperature Programming (TP) 

THcP relies on hard-coded information in the tiles to direct the self-assembly process. 

The aTAM falls under this category. SP allows for tiles to be added dynamically in 

sequence, or intermediate structures can be stored separately and added to the main 

mixture at later time steps. These staged additions of individual tiles or intermediate 

structures enables the self-assembly process in SP. In TCP, tile types are specified in 

terms of concentration values. The probability of tile interactions is used to enable 

the self-assembly process in TCP. TP uses changes or fluctuations in the environment 

temperature to enable the self-assembly process. Each of these extensions has been 

useful in investigating the impact of different aspects to the self-assembly process from 

an algorithmic perspective. However, none of these extensions consider the potential 

impact of fundamental properties, such as component rotation, on the self-assembly 

process (further discussed in section 2.2.5: The Complexity of Self-Assembly). 

Lego World was created by Kauffman, which served as a model to study complexity 

and emergence abstractly (2000). The model generates the possible outcomes (structures) 
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from assembling Lego bricks. The bricks (e.g. rectangular blocks of size lxl, 1x2, 2x3, 

and 3x4) represent the primitive set. The primitive operations permitted in Lego World 

include both construction and deconstruction, as adding two primitive parts together 

or adding a primitive part to a growing assemblage (object structure), and removing a 

primitive part off another primitive part or assemblage. The inclusion of deconstruction 

steps is the primary difference between Lego World and the aTAM and its extensions. 

The set specifying the quantities of the unassembled primitive bricks in the primitive 

set is referred to as the founder set in Lego World. To determine the types of structures 

that are possible from a founder set in Lego World, one can consider the number of steps 

required to reach a structure. At each step, a single primitive operation can be performed. 

For example, rank one includes all the possible structures that can be built from one 

construction step, and all the possible structures from two construction/deconstruction 

steps would be part of rank two. The number of ranks may continue to infinity, given 

an infinite founder set. Kauffman refers to the founder set and the transformations on 

those bricks into assemblages as a technology graph. Kauffman notes that a technology 

graph is similar to a chemical reaction bipartite graph, where the founder set is a set of 

organic molecules, the resulting molecules are the objects, and the transformations are 

the reaction hyperedges linking substrates and products among the objects (Kauffman 

2000). The graph is bipartite with two types of entities: nodes (representing objects) 

and hyperedges (representing transformations). In this form, a technology graph can also 

be considered as an abstract model for self-assembly, and its relationship to chemical 

reactions as a parallel to the origins of self-assembly and its roots in organic chemistry 

(Whitesides & Grzybowski 2002). 
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2.2.5 The Complexity of Self-Assembly 

The aTAM and its extensions have been used to investigate the complexity of self-

assembly, asking primarily four questions: 

1. What is the computational power of self-assembly? 

2. How complex is the problem of having a set of components self-assemble into a 

target structure? 

3. Can self-assembly be used to perform computation? 

4. How does one measure the complexity of a self-assembled target structure? 

Turing Universality 

By basing the aTAM on Wang tiles (section 2.2.3: The abstract Tile Assembly Model), 

Winfree was able to prove that the aTAM is Turing universal at temperature two in 2D 

(Winfree 1995). Winfree's proof was done by showing a one-to-one-mapping between the 

aTAM and Wang tiles. Winfree then used the aTAM to design a set of physical DNA 

tiles that are Turing universal. 

However, an extension to the aTAM using restricted glue strengths (i.e. bond strengths), 

referred to as the restricted glue Tile Assembly Model (rgTAM), is Turing Universal at 

temperature one in 2D (Patitz et al. 2011). This was achieved by: 

• having an absolute value of one for every glue strength, 

• using a single negative glue type (i.e. a repulsive interaction between components), 

and 

• excluding conflicting glue types from interacting with one another (i.e. the glue 

interaction matrix is diagonal). 
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The term 'restricted' in the rgTAM is used to distinguish it from other extensions 

to the aTAM that use negative glues, as those extensions allow for non-diagonal glue 

functions (e.g. multiple glue types over a large range of glue strengths). The rgTAM is 

restricted to glue strengths of either -1, 0, or 1. As stated by the authors, the goal of the 

rgTAM is "to study the "simplest" model of algorithmic self-assembly that retains the 

computational and expressiveness of temperature 2 self-assembly" (Patitz et al. 2011). 

The physical realization of temperature two tile-based systems has proven to be difficult 

(e.g. partial attachments between components), and therefore "the characterization of 

self-assembly at temperature 1 is of the utmost importance" (Patitz et al. 2011). The 

physical creation of DNA tiles with repulsive interaction (negative glues) can be achieved 

by attaching magnetic particles to DNA (Kinsella & Ivanisevic 2005; Rickwood & Lund 

1998). 

The rgTAM was proven to be Turing universal at temperature one in 2D by first 

defining a zig-zag tile assembly system (Cook et al. 2011). Zig-zag systems are those that 

grow horizontally one row at a time, by alternating in either left-to-right or right-to-left 

growth in only one direction (e.g. north and not south). Zig-zag systems are Turing 

universal (Cook et al. 2011). It was then shown that there is a restricted tile assembly 

system in rgTAM for every zig-zag tile assembly system. The combination of positive 

and negative glues are used to direct the self-assembly sequence of the target structures. 

The aTAM has also been extended to 3D using cube-based tiles (Zhang et al. 2011), 

equivalent to 3D Wang tiles (Culik & Kari 1996). In addition to the rgTAM, the 3D 

aTAM has been proven to be Turing universal at temperature one (Cook et al. 2011). 

The proof was conducted by showing how 3D systems are capable of simulating large 

classes of 2D systems, including 2D zig-zag systems. 
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NP-Completeness 

The aTAM has also been used to study the complexity of the problem of self-assembly 

itself, using the Minimum Tile Set Problem (MTSP; Adleman et al. 2002). The goal of 

the MTSP is to find the lowest number of tile types that can uniquely self-assemble into 

a target structure. The MTSP is an NP-complete problem for general target structures. 

A decision problem C is NP-complete if C is in the class NP (condition one) and every 

problem in the class NP is reducible to C in polynomial time (condition two; Sipser 1997). 

Condition one can be met by proving that C can be verified in polynomial time. To meet 

condition one, Adleman et al. (2002) created an algorithm, Unique-Shape, that decides 

whether a tile system uniquely produces the shape of a target structure, which they 

proved can be verified in polynomial time. Condition two can be met by proving that 

an already known NP-complete problem can be reduced to C (i.e. proving that C is NP-

hard). The decision problem for determining if the variables in a Boolean formula can be 

assigned in such a way to have the formula evaluate to true is referred to as satisfiability 

(SAT; Sipser 1997). SAT was the first decision problem known to be in the class NP-

complete (Cook 1971). One of several special cases of SAT is where the formulae are in 

conjunctive normal form (CNF; Sipser 1997). The 3CNF-SAT problem (determining if 

each clause in a formula is limited to at least three literals) is known to be in the class 

NP-complete (Karp 1972; Sipser 1997). To meet condition two, Adleman et al. (2002) 

reduced the 3CNF-SAT problem to the MTSP by encoding a 3CNF-formula into shapes 

using two structures: (1) a tree, for which it is possible to compute the minimal tile set 

in polynomial time, and (2) a tree substructure, for which can only be satisfied if and 

only if the tree substructure can be assembled using distinct tile types. By proving that, 

the MTSP is in the class NP and that the MTSP is in the class NP-hard (by proving 

that 3CNF-SAT can be reduced to the MTSP), Adleman et al. (2002) proved that the 

MTSP is in the class NP-complete for general target structures. 
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In addition to the MTSP, Adleman et al. (2002) also devised the Tile Concentration 

Problem (TCP). The goal of the TCP is to find the relative concentrations of tile types 

that self-assemble into a target structure using the fewest assembly steps. The algorithmic 

complexity of the TCP has only been calculated for specific classes of target structures. 

The aTAM and variations of tile-based self-assembly have also been used to investigate 

self-assembly complexity classes (Jonoska & McColm 2009) and using self-assembly to 

solve NP-complete problems (Brun 2008a,b). 

Algorithmic Self-Assembly 

The aTAM and its extensions have also been used to analyze the algorithmic complexity 

of self-assembly. The aTAM has lead to new algorithmic proposals for using DNA to 

perform mathematical operations, including binary counter, multiplication, and cyclic 

convolution product. Several binary counter algorithms have been proposed using DNA 

tiles that self-assemble into 2D structures (Barish et al. 2005; de Espanes & Goel 2007; 

Goel et al. 2004; Krasnogor et al. 2008). There has been progress on constructing a 

physical example of a binary counter, but with a few counting errors due to assembly 

errors (Barish et al. 2005). A theoretical algorithm to perform multiplication also uses a 

2D structure (Pelletier & Weimerskrich 2002). The theoretical algorithm for the cyclic 

convolution product requires new 3D DNA tiles allowing for the self-assembly of a 3D 

structure (Pelletier & Weimerskrich 2002). However, the physical creation of 3D DNA 

tiles has not been achieved at the time of writing. 

The aTAM has also been used to study the algorithmic complexity of constructing 

target structures. One target structure is the Sierpmski Triangle (Stewart 1995), which 

is a fractal (Mandelbrot 1977). The significance of this target structure is that it is self-

similar, and the pattern can be reproduced at any magnification or reduction. As a result 

of using a Sierpinski Triangle as a target structure, it was physically demonstrated that 
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small sets of components could be used to self-assemble into large (theoretically infinite) 

target structures (Rothemund et al. 2004). 

The most common target structures (at the time of writing) used for comparative 

study are lines and squares (Adleman et al. 2001; Rothemund & Winfree 2000; Winfree 

1998a). Lines serve as a basic target structure, and which can also be used as substruc­

tures (e.g. zig-zag systems). Squares pose a challenge, as a method of coordination is 

required during the self-assembly process to prevent the formation of holes. 

Complexity Measures 

Complexity in self-assembling systems is primarily measured in terms of Kolmogorov 

information (Krasnogor et al. 2008; Pelesko 2007; Rothemund & Winfree 2000). Given 

an input string of symbols, Kolmogorov information is the measurement of the smallest 

computer program that can output the input string. In this context, Kolmogorov infor­

mation represents the number of tile types required to build a structure, such as a line 

o r  a  s q u a r e .  I n  t h e  c a s e  o f  t h e  a T A M ,  t h e  c o m p l e x i t y  o f  c r e a t i n g  a  l i n e  o f  s i z e  n  i s  0 { n ) .  

where n € N, since no rotations or reflections are permitted (Figure 2.7). If rotation is 

permitted then the complexity is reduced to either 0(n/2) or 0(\n/2\) for lines con­

sisting of either an even or odd number of tiles respectively (Figure 2.7). Although a 

constant factor reduction is not considered a significant improvement from an algorithmic 

complexity perspective, as others have shown greater complexity improvements for the 

creation of lines with extensions to the aTAM that continue to not permit rotation and 

reflection, e.g. using tile concentrations (Chandran et al. 2009). However, this simple 

example is used to illustrate the shortcomings of the aTAM and its extensions, and the 

use of Kolmogorov information to measure complexity in self-assembling systems. 

When considering the construction of physical self-assembling systems, permitting 

rot ation allows one to take advantage of any symmetry in the target structure. Leveraging 
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ZUL 
Figure 2.7: An example of the benefit of reducing the amount of information required 
when rotation is permitted (bottom) compared to when rotation is not permitted (top) 
between components with complementary information (represented using colours, similar 
to Wang tiles where tiles with the same coloured edges can be assembled). 

symmetry in a system allows for the following benefits: 

• reduce the number of tile types required, 

• reduce the time it takes for a self-assembled structure to emerge by increasing the 

interchangeability of components in the self-assembly process, and 

• reduce the number of unique bonding domains. 

These advantages of leveraging symmetry, enabled by rotations, are not encapsulated 

using Kolmogorov information. The aTAM is useful for mathematically analyzing self-

assembling systems (and permitting rotations does make the analysis more difficult). 

However, the disembodiment of Kolmogorov information creates a great disconnect be­

tween these tile-based models and the desired attributes in a physical system. 

Likewise, Shannon information is disconnected from matter and energy. Shannon in­

formation is the measurement of transmitting a string of symbols across a channel from a 

sender to a receiver, e.g. the number of bits required to transmit a binary string. As such, 

Shannon information tells one how much information is present (or required for transmis­

sion), but does not say what that information is. The DOP (section 2.1.1: Mechanical 
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Systems), based on Shannon information, has been applied to measure the parallelism 

in components being able to self-assemble into open target structures (Miyashita et al. 

2009). Although parallelism is an important characteristic to self-assembling systems, it 

is not exclusive. Shannon information and Kolmogorov information do not fully measure 

self-assembling systems. 

2.3 Designing Self-Assembling Systems 

As shown with the examples in section 2.1: Physical Self-Assembling Systems and as 

discussed section 2.2.5: The Complexity of Self-Assembly, creating self-assembling sys­

tems pose many difficult design challenges. In this section, top-down versus bottom-up 

self-assembly design is contrasted with respect to self-assembly being an algorithmically 

NP-complete problem. 

2.3.1 Top-Down Self-Assembly Design 

As with the physical self-assembly examples presented in section 2.1: Physical Self-

Assembling Systems and further examples based on the relevant literature (Grofi & Dorigo 

2008), primarily top-down self-assembly design methodologies have been used to create 

physical self-assembling systems. Top-down self-assembly design uses the information 

from a target structure's global morphology to create a set of components. Algorithms 

evaluating the geometry of a global morphology have been used in modular robotics 

(Jones & Matari 2003; Klavins et al. 2006; Nagpal 2006). DNA origami has also relied 

on using the global morphology of target structures to act as templates, for example to 

dictate the mechanism in which components can recreate 2D images (Rothemund 2006, 

2005). 

An extension to this dissection method was presented in Tolley & Lipson (2010), 

for stochastic assembly planning of cube-based components in a fluid environment. A 
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template in the environment is used to direct fluid, by opening and closing valves within 

components to enable the self-assembly process. A cube-based representation of the tar­

get structure's geometry is first created, by disassembling it virtually one cube-based 

component at a time. The reverse order of this process defines one assembly sequence 

that is guaranteed to result in the target structure without error. Since it is difficult 

to predict when and where components will be available for self-assembly, the time re­

quired to complete the self-assembly process can be decreased by planning alternative 

assembly sequences (opening and closing valves) depending on which options occur first. 

As a result, this top-down design self-assembly design methodology is capable of on-line 

planning. 

An alternative top-down self-assembly design methodology based on the aTAM uses a 

spanning tree (Solveichik & Winfree 2007). Informally, a spanning tree T of an undirected 

graph UG is a selection of edges from G that form a tree spanning every vertex, and 

no cycles are formed (Sipser 1997). In this case, the seed tile defined in the aTAM acts 

as the root of the tree, and each component represents a vertex in the undirected graph 

representing the topology of the target structure. The drawback of this technique is that 

designing spanning tress is an NP-complete problem. 

2.3.2 Bottom-Up Self-Assembly Design 

As the sophistication of self-assembling systems increase, it will be more challenging to use 

top-down design, as self-assembly is an algorithmically NP-complete problem. It will be 

difficult to use dissection techniques when the self-assembly process goes through multiple 

stages to create a target structure. Using an NP-complete problem to solve another NP-

complete problem, i.e. using spanning trees to design self-assembling systems, is not 

computationally efficient. 

Evolutionary computing is well-suited to solving NP-complete problems (Mitchell 
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1996), and offers the potential for a bottom-up self-assembly design approach to self-

assembly. Evolved, self-assembled programs have been created using repositories of soft­

ware components, as an example of software self-assembly (Li et al. 2008). The practical 

benefit of evolving software self-assembly over other automated programming methodolo­

gies, such as Genetic Programming, have not been demonstrated at the time of writing. 

Evolutionary computing has been applied in theoretical studies where chemical com­

pounds were evolved (Buchanan et al. 2008), and where different co-operative bonding 

mechanisms were evolved in the context of the aTAM to create a single 10x10 square 

target structure (Terrazas et al. 2007). Evolutionary computing has been applied to solv­

ing the MTSP (section 2.2.5: The Complexity of Self-Assembly) using both theoretical 

2D and 3D tiles, and also considering component rotations in both 2D and 3D (Vieira 

& Barbosa 2011). However, only square and cube target structures were considered, and 

no physical systems of the generated designs were implemented. 

S-bots have been used to show a physical example of using evolutionary computing for 

bottom-up self-assembly design (Ampatzis et al. 2009). In this case, the communication 

sequence between two s-bots was evolved to enable their self-assembly. During the evolved 

communication sequence, the two s-bots determine which one is designated the seed 

component, and the other one self-assembles to it. Evolutionary computing has also 

been used to evolve the self-assembly sequence of cube-based robots, resulting in self-

replication (Zykov et al. 2007). Although evolutionary computing has been applied to 

virtual systems, and communication between robotic units in physical systems, it has not 

been applied to generate component sets (including component morphology) in physical 

self-assembling systems. 
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2.4 Summary 

This chapter critically reviewed the relevant self-assembly research pertaining to this 

thesis, by surveying physical self-assembling systems across physical scales, examining 

the computational aspects of self-assembly from the perspective of DNA computing, and 

contrasting top-down versus bottom-up self-assembly design methods in the literature. A 

summary of these three aspects of the self-assembly literature, including the shortcomings 

which the work in this thesis addresses, is provided below. 

Physical Self-Assembling Systems 

Artificial, physical self-assembling systems (including examples of static, dynamic, and 

templated self-assembly, and netted systems) from the macroscale, across the mesoscale, 

and down to the nanoscale were surveyed, in ID, 2D, and 3D. There has been advance­

ment in methods to reduce or prevent component interactions in static self-assembling 

systems, using shape and oligonucleotides in DNA-based components at the nanoscale 

for example. However, these examples and other systems in the literature do not demon­

strate how component characteristics can be used to reduce or prevent errors while simul­

taneously be used to enable the self-assembly of closed target structures with symmet­

ric/asymmetric features. Furthermore, these error reduction/prevention techniques have 

not been extended to 3D components, nor has component physical information to enable 

3D component interactions (e.g. rotational properties) been considered at of the time of 

writing. In this thesis, evidence from physical experiments is provided to demonstrate 

how component characteristics in 2D and 3D can be exploited to reduce or prevent com­

ponent interaction errors while simultaneously being used to self-assemble closed target 

structures with symmetric/asymmetric features. 
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Physical Information Encoding and DNA Computing 

The role of asymmetry was discussed in both defining the notion of physical information 

(the generation of physical processes, such as self-assembly) and mathematical tiling, 

providing a link between self-assembly and models of pseudo-crystalline growth, such as 

the aTAM. As with all its extensions, the aTAM does not permit component rotations. It 

was demonstrated that although the incorporation of rotations may not have a significant 

reduction in terms of the number of components required in a system from an algorithmic 

complexity perspective, the inclusion of rotations is beneficial in exploiting symmetry in 

a target structure and parallelism in the self-assembly process. Although the aTAM 

was proven to be Turing universal at temperature two, the rgTAM proved that Turing 

universal computation is possible at temperature one in 2D, and similarly in 3D. The 

creation of temperature one systems are of significance, as temperature two co-operative 

bonding is difficult to implement in practice. As well, it was shown how the aTAM was 

used to prove that designing self-assembling system is an NP-complete problem. The 

work described in this thesis (resulting in physical systems) uses tile-based modelling, 

incorporating 2D and 3D rotations at temperature one, to address the complexity of 

designing self-assembling systems. 

Designing Self-Assembling Systems 

Primarily top-down design methodologies have been used to design physical self-assembling 

systems. It will be more difficult to use top-down design (such as dissection techniques) 

as the sophistication of these systems increases (e.g. large numbers of components inter­

acting with one another and their environment in parallel, and when the self-assembly 

process goes through multiple stages to create a target structure). The development of a 

design methodology that is inherently bottom-up and coupled with bottom-up construc­

tion (self-assembly), and which encodes physical information to enable the self-assembly 
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process is the principle contribution of this thesis. Furthermore, it is shown how this 

design process can be extended to incorporate evolutionary computing to address self-

assembly being an NP-complete problem, and to incorporate staging where component 

physical information is leveraged to prevent and reduce errors to create more complex 

target structure that would not otherwise be possible. 
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Chapter 3 

Physical Information Analysis 

The work presented in this chapter was part of an initial investigation in the develop­

ment of a self-assembly design methodology. Designing self-assembling systems is an 

algorithmically NP-complete problem (section 2.2.5: The Complexity of Self-Assembly 

and section 2.3: Designing Self-Assembling Systems). Based on the relevant literature 

(Chapter 2: Literature Review), an overarching self-assembly design methodology to ad­

dress this design challenge would be one that, is inherently bottom-up and based on the 

interplay between information and the generation of a process, incorporating the con­

nection between self-assembly and computation (Winfree 1995). It is desired that such 

a self-assembly design methodology have a way to: (1) describe the information in a 

system, (2) model that information using software as a computationally efficient method 

to determine the outcome of an emergent system, and (3) upon successful evaluation in 

simulation, translate that information into a physical self-assembling system. Therefore, 

the purpose of this initial investigation was to analyze physical information in the context 

of designing self-assembling systems, and was accomplished by contrasting two systems. 

The first system is an idealized model of self-assembly, where homogeneous com­

ponents use localized, intra-component communication to create closed self-assembled 

structures with symmetric/asymmetric features (Bhalla & Jacob 2007). The second 

system is the original artificial physical self-assembling system, using two mechanical, 

passive components (Bhalla & Bent ley in print), which is remarkable in its ability to cre­

ate self-reproducing structures. These two systems were selected to investigate features 

of self-assembly where there are few practical physical constraints in the idealized model, 

and to contrast those features to ones in the pioneering physical system which is highly 
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constrained. A summary of these features is provided at the end of this chapter, includ­

ing: components, environment, initial conditions, energy, communication, conditional 

behaviour, positional information, target structures, and generated process. A method 

of applying a description of information is applied to both systems. The resulting self-

assembly design methodology from this initial investigation is presented in Chapter 4'-

The Three-Level Approach to Self-Assembly Design. 

3.1 An Idealized Self-Assembly Model 

Here, self-assembly principles and mechanisms are abstracted to form a framework, based 

on the artificial systems presented in section 2.1: Physical Self-Assembling Systems and 

natural systems (Ball 1999, 2009a,c,d; Thompson 1917), including snow crystals and 

bacterial flagellum (Chapter 1: Introduction). This framework is the basis to the design of 

a virtual system. The purpose of this system is to investigate what information is required 

to create self-assembling systems in 2D and 3D with symmetric/asymmetric features 

using unit spherical components, by leveraging different patterns (based on the spatial 

arrangements of components occurring due to their assembly locations, e.g. forming 

square or hexagonal lattice patterns). Five prototypes are discussed to demonstrate how 

this framework can be leveraged to analyze and create self-assembling systems. 

3.1.1 Framework 

The mechanisms and constraints in natural self-assembly and netted systems do not need 

to be viewed separately. For the purposes of analyzing and creating self-assembling sys­

tems. these mechanisms and constraints can be abstracted to eight items as an expansion 

of the framework presented in (Bhalla & Jacob 2007): 
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• Components 

• Environment 

• Energy 

• Assembly Protocol 

• Spatial Relationship 

• Localized Communication 

• Rule Set 

• Time 

Components are defined by their properties. Such properties include, but are not 

limited to, shape, mass, scale, and material properties. Component properties can act as 

information encodings, enabling the self-assembly process. 

The physical and chemical properties of the environment will influence the manner 

in which components interact with one another, as well as the way in which components 

self-assemble. For example, the environment medium can influence the motion of the 

components. The environment can provide various functionalities, such as a boundary 

to which components are confined to. The state of the environment, whether it is con­

stant or fluctuating is an important factor in self-assembling systems. Controlling the 

parameters of a fluctuating environment can be used to enable the self-assembly process 

of components that have limited properties or constrained interactions. 

In order for components to self-assemble, they need to be mobile in their environment . 

This requires components to have energy. Energy could be transferred to components 

from their environment and/or be available internally. Static self-assembling systems 

lead to structures or patterns in local or global equilibrium and do not dissipate energy. 
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Whereas dynamic self-assembling systems lead to structures or patterns that can only 

occur when the system is dissipating energy. 

An assembly protocol defines the methods in which components can self-assemble. 

These methods are highly dependent on the scale of a system, as well as the physical and 

chemical properties of the components and the environment. For example, Watson-Crick 

complementarity can be used with DNA-based components at the nanoscale, hydropho-

bic/hydrophilic and capillary forces can be used at the mesoscale, and magnetism can be 

used at the macroscale. 

The spatial relationship between the components and/or elements in their environ­

ment defines the underlying pattern formations capable by a system. Pattern formation 

has a great influence on the range of achievable self-assembled structures by a system, 

and is seen at all scales. The influence of a spatial relationship is seen in both natural 

systems (e.g. the hexagonal symmetry of ice crystals) and synthetic systems (e.g. the 

linking points of robotic units in modular and swarm robotics). 

Localized communication is an important consideration in self-assembly. This is the 

primary factor in viewing self-assembly as an emergent property of decentralized systems. 

This is seen throughout nature at all scales. Localized communication dictates how 

components interact with one another and their environment. It can be viewed as a 

physical/chemical encoding (Bhalla & Bentley 2006), achieved through data, or other 

communication means. 

The rule set can also be viewed as a physical/chemical encoding (Bhalla & Bentley 

2006), or achieved through data communication. The rule set can be basic and still lead 

to a wide variety of self-assembled forms (e.g. the various supersaturation, temperature, 

and background gas settings lead to varying snow crystal morphologies). Or, the rule 

set can be internalized in the components and lead to a wide variation of self-assembled 

entities displaying many forms and performing many functions (e.g. DNA within cells). 
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Time can be used to specify the duration of the self-assembly process, and can also be 

divided into stages where components can be added to, or removed from, an environment. 

The environmental conditions, such as temperature, can also vary over time. 

This proposed framework facilitates the melding of the various self-assembly principles 

and mechanisms across disciplines. This interdisciplinary view is beneficial in that it 

aids in the pursuit of creating artificial systems, mirroring the robustness of bottom-up 

construction, self-assembly, in nature. 

3.1.2 Idealized Model Design 

Based upon the above framework, an idealized model was created as a proof-of-concept 

method to analyze and create self-assembling systems. The objective of the idealized 

model was to determine how homogeneous, spherical components could self-assemble 

into 2D and 3D closed target structures with symmetric/asymmetric features. 

Single components move around freely within the environment. One component is 

selected at random and placed in the environment, and set to remain stationary. This 

component acts as the seed particle to initiate the self-assembly process. When free com­

ponents collide with stationary components, they either reflect or assemble with them 

and become incorporated into the aggregate structure as stationary components. The 

locations to which new free components are allowed to attach is determined through com­

munication between neighbouring stationary components. Localized, intra-component, 

communication was anticipated to allow for the creation of closed target structures, in­

stead of resulting in open target structures, as created in diffusion-limited aggregation 

models (Witten & Sander 1981). Details of the proposed idealized model are as follows. 

Spherical components in the system are all of unit radius and unit mass. The com­

ponents are considered as solid entities and follow the principles of elastic collisions. 

Components are confined to a spherical environment. The surface of the environment 
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is also treated as a solid structure in order to serve as a boundary to confine the com­

ponents. The radius of the environment is specified at the beginning, and then remains 

fixed for the duration of a simulation run. Components are assigned random velocities 

within a user specified range and move around the 3D environment. When free moving 

components collide and attach to stationary components, their velocity is set to zero, 

and they become stationary themselves. 

For computational efficiency, the components' and environment's shape was chosen 

to be spherical. Computing collision detection and response between components and 

with the environment is much simpler for spheres, in contrast to other 3D forms (e.g. 

polyhedra). Component morphology can be used as a physical or geometric means of 

encoding information to enable the self-assembly process (Bhalla & Bentley 2006). Since 

the components in this system are all unit spheres, additional component attributes are 

required. These additional attributes are described in terms of the assembly protocol, 

spatial relationship, localized communication method, and rule set. 

The assembly protocol in this idealized model is based on the concept of stickiness. 

When two components collide, and each is in a particular state, the two components stick 

together to form an aggregate structure. One factor affecting a component's state is its 

location in the aggregate structure. A component's location in the aggregate structure is 

determined by the spatial relationship and localized communication between components. 

The underlying pattern formation, or spatial relationship, between components de­

fines the set of target structure morphologies. Locations on a component, referred to 

as sticky sites, determine the morphologies achievable by the aggregate structure. The 

user defines these sticky sites, on the 3D surface of the components. The locations of the 

sticky sites are the same for every component present in the system. Figure 3.1 shows two 

example components with different sticky sites and their resulting pattern formations. 

For computational reasons, sticky sites are defined in a pairwise fashion. In Fig-
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Figure 3.1: 2D square lattice pattern (left) and diamond lattice pattern (right). 

ure 3.1, the pairs of sticky sites are the ones labelled (0,1) and (2,3). When a component 

collides with a stationary component, it attaches to the closest available sticky site on 

the stationary component. If no sticky site is available, the colliding component reflects 

off the stationary component. The manner in which two components stick together is 

determined by the pairwise relationship of their sticky sites. For example, if the available 

sticky site on the stationary component is at position zero, then the colliding compo­

nent will attach via its sticky site at position one. This eliminates the need to calculate 

the orientation of each component. It is also used to allow for two forms of localized 

communication. 

Components are able to communicate with their local neighbours. The user-defined 

spatial relationship determines the neighbourhood relationship of the components. In this 

idealized model, components can only communicate with their immediate neighbours, i.e. 

the ones they are directly connected to. 

Communication between components is used to update two types of information. 

These two types of information are encoded into every component present in the system. 

Both types are used as a means for the components to infer geometric information from 
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their neighbours in regards to their position in the aggregate structure. 

This information is based on the axes that are created through the pairwise relation­

ship of the sticky sites. The number of axes present determines the number of values 

used to represent this information. One axis is created for each sticky site pair. This can 

be viewed as x-y and x-y-z Cartesian coordinates for a 2D square lattice and a 3D cubic 

lattice respectively. 

The first type of information is referred to as global axes information. Each component 

at the beginning of a simulation run starts with their global axes information set to 

(0,0) for the square lattice and to (0,0,0) for the cubic lattice examples. Each number 

represents a components location in relation to the x-y or x-y-z axis. Furthermore, the 

pairwise relationship of a sticky site set can be interpreted as the resulting axis having 

a positive and negative direction. The selection of which sticky site within a pair is 

negative or positive is arbitrary; its selection only needs to be consistently referred to in 

the manner in which it is selected. 

When a component attaches to another component that is part of a self-assembled 

aggregate structure, it updates its global axes information. It does this by first requesting 

the global axes information from the component it has attached to. The component then 

updates its own global axes information by first incrementing or decrementing the value 

corresponding to the axes through which it is attached. Secondly, it either copies, incre­

ments, or decrements the rest of the values appropriately. The increment or decrement 

value is dependent on the type of spatial relationship used. For example, an increment 

and decrement value of one is used for square lattices (Figure 3.2). 

The second type of information is referred to as axes count information. Initially, 

all components start with their axes count values set to (0,0,0,0) for the 2D and to 

(0,0,0,0,0,0) for the 3D Cartesian coordinates examples. In this case, two values are used 

to represent a components location in relation to each axis. Axes are used in a way to 
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Figure 3.2: Global axes information for 2D square lattice pattern, with component (0,0) 
positioned at the centre of the grid. 

allow components to infer the number of components that are located in both directions 

of each axis present. For a specific component that is part of an aggregate structure, this 

is the number of components to its left and to its right, for example. 

The axes count information is updated when a component attaches to the aggregate 

structure. However, since a newly attaching component can affect the axes count informa­

tion of other components in the self-assembled aggregate structure, multiple components 

need to update this information when a new component attaches in this scenario. Two 

cases arise for this type of information. The first case is when a component attaches 

to the aggregate structure, and it only has one neighbour. In this case, the axes count 

information only needs to be updated for one axis in one direction. Figure 3.3 shows an 

example of this case. The second case is when a component attaches to the aggregate 

structure, and it has more than one neighbour. In this case, axes count information is 

updated for multiple axes and/or in both directions of an axis. Figure 3.3 also shows 

an example of this second case. For both cases, updated information and communica­

tion is done locally as a propagation of information. This maintains the decentralized 

characteristic of natural self-assembling systems. 



Figure 3.3: Axes count information (original configuration, left), with case one indi­
cated with the black-outlined white-filed component, and case two indicated with the 
black-outlined grey-filled component. 

These two types of information were incorporated into a rule set. By doing so, it was 

anticipated that the idealized model would be able to achieve the objective of designing 

2D and 3D closed self-assembled structures with symmetric/asymmetric features. The 

rule set, which is specified by the user, is the same for all components that are present 

during a simulation run. A number and a type is used to reference rules. Rule type one 

is in reference to the global axes information, and rule type two is in reference to the 

axes count information. When a component attaches to the aggregate structure, it goes 

through each rule in the set and executes each rule that applies. 

Each rule is defined as a state-action pair. The state comprises of two parts. The 

first part depends on whether the component is mobile or stationary. The second part 

is in reference to either of the two types of information. If both parts are satisfied, then 

an action is performed. The action in this case is the activation or deactivation of sticky 

sites. By doing so, it allows for the emergence of closed self-assembled structures. 



Figure 3.4: The two black-outlined components with the same axes count information 
(left); and the same two with unique global axes information (right). 

Both rule types allow for the emergence of symmetric structures. However, the axes 

count information could possibly be the same for multiple components in the aggregate 

structure. This gives the potential for using one rule that is applicable to more than 

one component in the aggregate structure. Figure 3.4 (left) shows an example of this 

condition. In contrast, only the global axes information allows for the emergence of 

asymmetric structures. This is achieved because components can be identified uniquely 

through local communication, and thus a rule can be specified for a component in a 

unique state. Figure 3.4 (right) also shows an example of this condition. 

Table 3.1 provides a summary of the idealized model in the context of the framework 

presented. The objective of the idealized model is to determine how spherical components 

can self-assemble into 2D and 3D target structures with symmetric/asymmetric features. 

3.1.3 Prototypes 

The software was written using BREVE (Klein 2002), a software package for visualizing 

decentralized multi-agent systems. To test the conceptual foundation of the proposed 

system, four target structures were specified: a cube, the letters N and B, a chair, and a 

mug (Figure 3.5). 



Components spheres of unit radius and unit mass 

Environment spherical boundary to contain 
components 

Energy components are set to a random velocity 

Assembly Protocol stickiness 

Spatial Relationship pairwise relationship of sticky sites 

Localized Communication global axes and axes count information 

Rule Set 

state-action pair (state: mobile vs. 
stationary, and global axes information 
vs. axes count information; action: 
activation/deactivation of sticky sites) 

Time duration to complete the self-assembly 
process 

Table 3.1: Idealized model summary 

Figure 3.5: Four target structures: cube (top-left), chair 
and mug (bottom-right); © 2007 IEEE. 

(top-right), NB (bottom-left), 
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Figure 3.6: 3D cubic lattice (left), 2D hexagonal lattice (centre), and 3D layered hexag­
onal lattice (right); © 2007 IEEE. 

These closed target structures were chosen because they have symmetric/asymmetric 

features. The morphologies of these target structures cannot be created through pattern 

formation exclusively. They require additional information, and therefore were appropri­

ate candidates to test the capabilities of the idealized model. 

In order to create these structures, three spatial relationships were needed. These 

three patterns are a 3D cubic lattice, 2D hexagonal lattice, and a 3D layered hexagonal 

lattice (Figure 3.6). For the 3D cubic lattice, the update scheme used for the global 

axes information was the one as described in the previous section. An increment or 

decrement of one was used depending on the positive or negative position of the axis the 

new component was self-assembling on, and all other values were copied. 

The update scheme developed for hexagonal lattices was developed from the idea of 

fitting a hexagonal grid to a square grid. With this idea, three cases arise for updating 

the global axes information. Each case is described in reference to the sticky sites posi­

tions shown in Figure 3.7. When a free component attaches to a stationary component 

at either position four or five, an increment or decrement of two is used to update the 

vertical information. All other information is copied. The second case arises when a 

free component attaches to a stationary component in either the zero, one, two, or three 

position. This is a special case, and both the (0,1) and the (2,3) axes are considered as 

horizontal information. As a simplification of the resulting geometry, for each component 

the values for these two axes are the same. Hence, the vertical information correspond-
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4 

5 

Figure 3.7: Sticky site locations for the 3D hexagonal grid, with positions 6 and 7 located 
at the centre-front and centre-back of the component indicated by the black circle. 

ing to axis (4,5) is incremented or decremented by one, and the horizontal information 

corresponding to (0,1) and (2,3) is incremented or decremented by one, depending on 

the resulting position of the free component in relation to the quadrant on a Cartesian 

plane. In the 3D case, an update to the height information corresponding to the (6,7) 

axis is incremented or decremented by one, and all other information is copied. As a 

result, this update scheme for the global axes information allows each component in the 

aggregate structure to have a uniquely identified position. Figure 3.8 gives an example 

of this idea for the 2D case. 

The 2D hexagonal and 3D layered hexagonal lattices were used to create the letters 

N and B, and the mug, respectively. The 3D cubic lattice was used to create the cube 

and the chair target structures. These spatial relationships were used in five prototype 

systems. The first four prototypes corresponded to the four target structures. For these 

prototypes, rules utilizing the global axes information were used. This was done because 

it was a simplified approach to test the conceptual basis of the idealized model, since these 

prototypes are a proof-of-concept. The parameter settings corresponding to these four 

prototypes are summarized in Table 3.2 (page 67). The number of rules for each prototype 

equals the number of components needed to create its respective target structure. A fifth 

prototype was constructed that utilizes rules based on both the global axes information 
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Figure 3.8: Global axes information for a 2D hexagonal lattice shown as a 2D square 
grid (left), and the global axes information values (right). 

and the axes count information. This was done as an attempt to reduce the number 

of rules required by taking advantage of the symmetric properties of a target structure. 

This experiment was done to create the cube target structure. The parameter settings 

corresponding to this prototype are also included in Table 3.2. 

3.1.4 Prototype Results 

Each of the five prototypes was successful in having a subset of the overall components 

self-assemble into their respective closed target structure. The robustness of the bottom-

up construction process of self-assembly was demonstrated in each of these five proto­

types. Figure 3.9 shows the results of the first four prototypes, where components were 

assigned random colours. Each time a particular system was executed, the self-assembly 

process was unique, but the final closed target structure was always achieved. For exam­

ple, in one simulation run, the base of the mug self-assembles, followed by the cylinder, 



67 

Cube -1 150 10 30 GA 44 44 S 

Chair 150 10 30 GA 40 40 S & A 

NB 150 10 30 GA 36 36 A 

Mug 300 10 30 GA 87 87 S & A 

Cube - 2 150 10 30 GA& 
AC 

35 44 S 

Table 3.2: Parameter settings and target structure features for the five prototypes (P): 
number of simulation components (#SC), component velocity (CV), environment radius 
(ER), rule type (RT) of either global axes (GA) and/or axes count (AC) information, 
number of rules (#R), number of components (#C), and symmetric/asymmetric (S/A) 
features 

and finally followed by the handle. In another simulation run, each of the three main 

features of the mug could be partially self-assembled at some time point, and continue to 

self-assemble in parallel, as shown in Figure 3.10 (page 69). This was achieved because 

the actions associated with the rules specified all the specific sticky locations that should 

be activated or deactivated for each component comprising the desired entity. 

Another qualitative observation from running these four prototypes showed that even 

the mug (which consists of approximately twice as many components as the other three 

target structures) was able to self-assemble easily. This was due to the fact that most 

of the components present in the mug are part of the cylinder. As a result, there are a 

greater number of locations and a much larger surface area (in comparison to the other 

three closed target structures) where free components can self-assemble to. For example, 

the legs of the chair were on occasion difficult to self-assemble, because free components 

would take a long time to collide with the stationary components comprising the legs, 



Cube -1 (initial) Cube -1 (intermediate) Cube -1 (final) 

Chair (initial) 

NB -1 (initial) 

Chair (intermediate) 

NB (intermediate) 

lajr (final) 

NB (final) 

Mug (initial) Mug (intermediate) Mug (final) 

Cube - 2 (initial) Cube - 2 (intermediate) Cube - 2 (final) 

Figure 3.9: Five prototype results; © 2007 IEEE. 
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Figure 3.10: Four examples of different mug configurations, demonstrating the bottom-up 
parallel construction characteristic of self-assembly; © 2007 IEEE. 

due to the stochastic behaviour of the system. 

The above observations were also present in the fifth prototype. In this prototype, the 

use of rules utilizing the axes count information reduced the number of rules needed to 

create the cube target structure. This is an important result, because it shows that there 

is potential in creating systems that are scalable, as the number of components comprising 

the desired entity increases. Figure 3.9 also shows the results of this experiment (Cube 2). 

Components present in the bottom and top two square elements change their respective 

colours to red, as an indication of the execution of rules associated with the global axes 

information. The components present in the vertical structures change their respective 

colours to black. This indicates the execution of rules associated with the axes count 

rules. Only three rules were needed to define the twelve components present in the 

vertical elements of the cube target structure. 

Exploiting the parallel features in a target structure is one method to reduce the 

number of rules required for scalability purposes. Since the planar surfaces present in 

each of the four target structures is either very small or essentially non-existent, the 

spatial relationship between components could not be exploited as a method to reduce the 

number of rules. For example, a system utilizing a 2D square lattice spatial relationship 

in order to create a large 2D filled square only needs rules to specify the outer perimeter 

or boundary of the desired filled square. The components in the interior of the square 
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can self-assemble purely based on pattern formation in this idealized model. Further 

methods to exploit the spatial relationship of a system could be used to reduce the 

number of required rules. 

The desired entities in the five prototypes would each self-assemble approximately 

between forty and three hundred seconds. The focus in these experiments was not on 

construction time and instead on demonstrating that the self-assembly of closed target 

structures with symmetric/asymmetric features was feasible. However in the future, cre­

ating systems with predictable time frames is important in realizing new self-assembling 

technologies. The combination of compact rule sets, exploiting the spatial relationship 

of a system, and more advanced assembly protocols (e.g. swarm intelligence) should be 

explored to create systems that can self-assemble in more predictable time frames. 

3.2 A Self-Reproducing Analogue 

In contrast to the virtual system using unit spherical components, the first mechanical 

analogue to natural self-assembly by L.S. Penrose and R. Penrose is used to demonstrate 

how it is possible to design a self-assembling system via physically encoded information. 

An overview of their system is provided first. Next, a description of how the physically 

encoded information in the components, and their environment, interacts through a set 

of rules. This is followed by specifications and by test results from an implementation 

created through reverse engineering to verify their self-reproducing analogue. 

3.2.1 System Overview 

Self-reproduction was once thought to be an intrinsic property of nature, and one that 

could not be mimicked in artificial systems. L.S. Penrose and R. Penrose were the first to 

show a mechanical self-reproducing analogue (1957). Their system is akin to molecular 

amplification in the form of templated self-assembly. They created two component types, 
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Figure 3.11: Prom left to right: component a and (3 (in their neutral positions), and 
complex a (3 and /3a. 

Figure 3.12: Example scenario with initial configuration (top) and final configuration 
(bottom). 

labelled here as a and (3. These two components connected in either an a [3 or (3a 

configuration (Figure 3.11). Multiples of these a and (3 components were confined to a 

track in a random ordering. The track was shaken horizontally, in ID, which allowed 

components to interact with one another and their environment. If only individual a and 

(3 components were shaken, self-assembly would not occur. However, if an a/3 (or a (3a) 

seed complex was placed on the track, only then would neighbouring a and (3 (or /3 and 

a) components self-assemble into a(3 (or /3a) complexes respectively (Figure 3.12). 

3.2.2 Rules 

Although L.S. Penrose and R. Penrose did not discuss this in particular, they were 

able to achieve artificial self-reproduction through the morphology of each component 

type and the design of the environment. There are ten information locations physically 

encoded through hooks, latches, and neutral sites (where no assembly occurs) on the two 

component types (Figure 3.13). 

There are ten component interaction rules present. The information associated with 

each of these rules is physically encoded by shape. Rules (3.1) and (3.2) directly die-
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B 

Figure 3.13: a (left) and (3 (right) identifying regions of physically encoded information 
using shapes. 

\ i ^ I 1 

*  ^  \ ^ — z  & 6  

Figure 3.14: a(3 assembly (left, using rule (3.1)) and (3a assembly (right, using rule (3.2)). 

tate the self-assembly of the two component types, by hooking-and-latching together 

(Figure 3.14). 

D fits E —»• D+ E (3.1) 

C fits F -4 C+ F (3.2) 

There are also two sets of four rotation rules, clockwise (cw) and anti-clockwise (acw). 

The first set (3.3) to (3.6) applies to the creation of a/3 complexes (Figure 3.15). The 

second set (3.7) to (3.10) applies to the creation of (3a complexes (Figure 3.16). 

A rotatesacw H (3.3) 

J rotatesacw A (3.4) 

A rotatesacw B (3.5) 

J rotatesacw G (3.6) 
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Figure 3.15: Rotation rules (3.3) to (3.6) promote the creation of new a/5 complexes. 

(3.8) 

(3.7) 

(310) 

Figure 3.16: Rotation rules (3.7) to (3.10) promote the creation of new 0a complexes. 

I rotates^ B (3.7) 

B rotatescw G (3.8) 

I rotatescw H (3.9) 

B rotatescw A (3.10) 

To facilitate the component interaction rules (assembly and rotation), there are two 

environment rules in this system. The first environment rule is the prevention of compo­

nents from flipping when rotating, so as not to move into a position where self-assembly 

cannot occur. The second environment rule is the provision of enough rotational flexibil­

ity for the components, and aids in bond creation by allowing the components to slide 

and hook-and-latch onto one another. These two environment rules result from having 

an appropriate environment height (Figure 3.17). 
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Figure 3.17: Environment height constraints (represented with lines) prevents compo­
nents from flipping (left), and provides rotation flexibility to aid in bond creation between 
components (right). 

In addition to the geometry of the environment, the shaking motion of the environ­

ment is horizontal (ID). This motion is applied to both individual components (initially 

placed in their respective neutral position) and seed complexes. These component in­

teraction and environment rules, along with initially placing either an aft or fta seed 

complex, ensures which information comes in contact and the amplification of a/3 or fta 

complexes through two autocatalysis system rules (3.11) and (3.12). These two rules 

ensure that self-assembly only occurs in the presence of a seed complex (the ; symbol 

denotes separate entities). When the environment is shaken horizontally, aft or fta com­

plexes act as a catalyst as they are not consumed in the creation of creating aft or fta 

complexes using assembly rules (3.1) and (3.2) and rotation rules (3.3) to (3.10). In­

dividual a and ft components do not act as a catalysts in this system, since when the 

environment is shaken horizontally a and ft components cannot rotate, and assembly 

rules (3.1) and (3.2) do not occur as a result. 

3.2.3 Specifications 

L.S. Penrose build upon this system to develop more sophisticated self-replicating ma­

chines in 2D (1958; 1959). This system was independently verified by Edward F. Moore 

aft autocatalysis a; ft -¥ aft; aft (3.11) 

fta autocatalysis ft-, a —> fta; fta (3.12) 
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(1962). However, Moore did not provide an explanation to how this system works (refer­

ring to it as L.S. Penrose's basic model), nor did he provide any explanation to how he 

constructed the system. "No picture of Penrose's basic model is included in this paper, 

since if the reader attempts the problem of how to design the shapes of the units [a] and 

[0] so as to have the specified properties, the difficulties he will encounter in his attempts 

will cause him to more readily appreciate the ingenuity of Penrose's very simple solution 

to this problem" (Moore 1962). 

In pursuit of reverse engineering this system, one can certainly attest to the difficulty 

in constructing it, and one does have a greater appreciation for this simple, yet powerful, 

pioneering self-assembling system. However, in addition to an explanation of how this 

system works in the previous section through a set of rules, the specifications are provided 

for how to construct this system. 

The drawings provided in Penrose & Penrose (1957) were used to determine the spec­

ification of the a and /3 components. Mathematical specifications for the main surfaces 

of the two components is provided in section A.l: Penrose Components. The width of 

both components is 35 mm, and the height of a is 12 mm and (3 is 13 mm. The depth 

of the components was not specified in Penrose & Penrose (1957). Component depth is 

primarily dependent on the construction material, and will influence bond strength, as 

well as the dimensions of the environment. 

An environment height of 17 mm was determined by reverse engineering to being 

capable of achieving the two environment rules. The width and depth of the environment 

were not provided in Penrose & Penrose (1957). The width primarily depends on the 

number of components, and the shaking strength used. The depth of the environment 

primarily depends on the depth of the components. A balance must be maintained to 

allow for the components to be able to slide back and forth, but not to be able to twist 

and not bond correctly. Also not discussed in Penrose & Penrose (1957), the shape of the 
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Figure 3.18: Machined component a (left) and ft (right). 

ends of the environment will play a role in the self-assembly process. The ends can either 

break, maintain, or enhance component bonding. Although there may be particular 

shapes to enhance the self-assembly process, vertical ends are sufficient. 

The mathematical specifications of the components and the environment were used 

to create a set of physical specifications, accounting for tolerances. In the original system 

it was suggested that components could be made from wood or vulcanite (Penrose & 

Penrose 1957). In this implementation, a and ft components were made from standard 

brass plate (7/64" depth; approximately 2.78 mm). The components were cut using a 

3-axis milling machine (CNC Takumi V6). The vertical edges of the top point of the ft 

component were slightly narrowed, by 2 microns. This provided enough tolerance for the 

two components to hook-and-latch together, and not disassemble easily. In addition, a 

slight curvature was put at eight points, related to four information locations on the two 

components. This curvature also assisted in creating and maintaining bonds between 

components. Figure 3.18 provides a photograph of the physically implemented a and ft 

components. The environment for the components consisted of three main parts: back, 

middle, and front. These parts were made from clear acrylic sheet (3 mm depth), and cut 

on a laser cutter (Trotec Speedy 300 Laser Engraver). The three parts were connected 

to hold the components, using two stainless steel screws and wing nuts. Environment 

specifications for this system are provided in section B.l: Penrose Environment. 
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Figure 3.19: Initial (left) and final (right) configurations after running each of the four 
system tests. 

3.2.4 Test Results 

Four tests were conducted on the reverse engineered physical system. Each test configu­

ration was shaken horizontally by hand six times (three time to the left and three times 

to the right). Details of the test procedure is provided in section C.l: Experimental 

Procedure for the Penrose System. Figure 3.19 provides photographs of the test results. 

There are three characteristics of the implemented system that should be noted: (1) 

component-component bond strength, (2) component-environment spatial relationship, 

and (3) shaking motion of the environment. 

As discussed in Frietas & Merkel (2004), the strength of the bonds are weak, as they 

are simply mechanical bonds. In the steps towards physically reconstructing this system, 

it was also observed that the mass of the components can influence the bond strength. 

Earlier prototypes were constructed using plastic components and aluminum components 

of the same specification. Brass components (which have a higher density) were found to 
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be superior. Brass was used instead of increasing the thickness of the components. The 

weight of the components also helps prevent them from moving vertically in the envi­

ronment when irregular shaking is applied. When this occurs, undesirable, spontaneous 

assembly can occur. 

It was observed that two assembled components occupy less physical space as two a 

and P components in their neutral positions. The implication here is that as the self-

assembly process progresses, more free space is created in the environment. As a corollary, 

the more free space there is, the more energy is required. It was also observed that the 

environment does not necessarily have to be shaken horizontally (ID). The environment 

can also be shaken in an up-and-down motion, e.g. +/- 45 degrees from its centre. A 

more in depth investigation into the affects of the environment in this system is required 

for future analysis. The successful results show that the original system by L.S. Penrose 

and R. Penrose truly is a mechanical analogue to self-reproduction. 

3.3 Summary 

This chapter investigated physical information analysis in the context of designing self-

assembling systems by contrasting two systems, an idealized model and L.S. and R. 

Penrose's original self-reproducing analogue. It is anticipated that a design methodology 

to address the challenges of creating self-assembling systems, particularly self-assembly 

being an algorithmically NP-complete problem, would be one that is inherently bottom-

up and based on the interplay between information and the generation of a process. 

These two systems were selected as an initial step to verify if such a design methodology 

was feasible. The two systems were used to test the three desired characteristics of 

such a self-assembly design methodology: (1) describe the information in a system, (2) 

model that information using software as a computationally efficient method to determine 
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the outcome of an emergent system, and (3) upon successful evaluation in simulation, 

translate that information into a physical self-assembling system. 

Table 3.3 provides a summary of the features of the idealized model and the original 

self-reproducing analogue. For both systems, a set of simple rules can be used to enable 

the self-assembly process. Since all the components were unit spheres in the idealized 

model, information in the form of two localized communication methods using message 

passing (global axes information and axes count information). These two forms of local­

ized message passing created gradients within the emerging structure, similar to protein 

gradients in multicellular organisms (Wolpert 1998), were required to compensate for the 

lack of distinct component attributes. These two forms of information were able to create 

closed target structures with symmetric/asymmetric features. In contrast, the original 

self-reproducing analogue used components with unique physical features. The shapes of 

the components facilitated the encoding of component-to-component and component-to-

environment interactions. The component and environment information, along with the 

set of interactions rules were used to create a successful replica of the original artificial 

self-assembling system. The simple hook-and-latch is an elegant method for mirroring 

the key-lock principle of enzyme action (section 2.2.1: Physical Information Encoding in 

Nature). However, these bonds in this case were relatively weak, and it would be difficult 

to create structures in 2D and 3D using only hook-and-latch bonds. 

The ideal model provided a computationally efficient method to evaluate the out­

come of a system. One advantage, as part of the initial investigation, is that it was 

possible to explore many forms of underlying component pattern formations. The dis­

advantage of the examples provided is that they relied on a seed particle, whereas an 

optional seed particle would allow for a greater variety of systems to be explored. How­

ever, using the other characteristics of the idealized model to extend a tile-based model 

such as the aTAM (section 2.2.3: The abstract Tile Assembly Model) would be help-



Components 
unit spherical components 
with a common set of 
communication rules 

a and 0 components 

Environment spherical boundary linear boundary 

Initial Conditions 

seed component placed in 
the centre of the 
environment and other 
components randomly 
placed throughout the 
environment 

seed complex placed 
anywhere in the 
environment and other 
components randomly 
placed throughout the 
environment in their 
neutral positions 

Energy 

internalized within the 
components resulting in 
movement in 2D and 3D 

vibrational energy in 1D 
transfered from the 
environment to the 
components 

Communication 
localized message 
passing between 
components 

component physical 
properties 

Conditional Behaviour 

state-action pair of global 
axes and axes count 
information resulting in 
component-to-component 
interactions 

fits, rotates, and 
autocatalysis rules 

Positional Information 

components can infer their 
global position and relative 
position in the target 
structure 

left and right positional 
information of the two 
components comprising 
the seed complex and 
resulting structures 

Target Structures 
variety of 2D and 3D 
structures with symmetric/ 
asymmetric features 

either a0 or 0a structures 
exclusively 

Generated Process self-assembly self-assembly and self-
reproduction 

Table 3.3: Comparison of the features of the idealized model and the original Penrose 
self-reproducing analogue 
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ful in advancing the theoretical aspects of self-assembly research. These characteristics 

include modelling concurrent self-assembly (as multiple regions in the emerging struc­

ture could self-assemble simultaneous), using symmetry to reduce the number of unique 

rules/information (achieved through the axes count information), and exploiting asym­

metry (achieved through global axes information). In an extended tile-based model not 

requiring a seed particle, concurrency could be realized using multiple emerging substruc­

tures and regions within substructures, symmetry could be realized through component 

rotation (section 2.2.5: The Complexity of Self-Assembly), and asymmetry could be re­

alized by allowing components to have distinct information regions. 

The original self-reproducing analogue demonstrated how a set of rules could be trans­

lated into a physical system. The use of neutral information (in both systems) enabled the 

self-assembly of closed target structures. However, it is difficult to create several shapes 

to implement hook-and-latch bonds to assemble many types of components together (fits 

rules). Furthermore, it is also difficult to implement error-correction mechanisms when 

using hook-and-latch bonds exclusively. Ideally, a method to encode several forms of 

component interactions, including rotations, that are applicable to 2D and 3D would 

advance the state of the art of physical self-assembling systems. 

The success in analyzing these two system, along with identifying their advantages 

and disadvantages, supports the pursuit of developing the desired self-assembly design 

methodology. The three main attributes of these two investigations, (1) being able to 

describe a system through a set of rules, (2) modelling those rules to determine the 

outcome of a system in software, and (3) translating to a physical systems by mapping 

those rules using physically encoded information, is the basis to the self-assembly design 

methodology presented in the next chapter, Chapter4: The Three-Level Approach to 

Self-Assembly Design. 
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Chapter 4 

The Three-Level Approach to Self-Assembly Design 

In pursuit of answering the question of how one could specify a set of rules that can be 

mapped to a physical system using physically encoded information, the self-assembly of 

a variety of 2D and 3D closed target structures with symmetric/asymmetric features was 

considered. Just as L.S. Penrose and R. Penrose took a biomimetic approach (inspired by 

nucleic acid complexes in chromosomes), the self-assembly design methodology presented 

in this chapter is a biomimetic one, inspired by the central dogma of molecular biology 

(the transfer of genetic information to create proteins, physical shapes). The resulting 

design methodology, referred to as the three-level approach (Bhalla et al. 2007), is a 

combination of the idealized model and the first mechanical analogue of self-assembly. 

The three phases to the three-level approach are: (1) definition of rule set, (2) vir­

tual execution of rule set, and (3) physical realization of rule set (Figure 4.1). The 

motivation behind the three-level approach is in finding the fundamental information 

structures and rules that enable self-assembly in theory (level one), testing and refining 

those self-assembly rules through simulation (level two), and testing and refining those 

self-assembly rules through embodied physical experiments (level three). The three-level 

approach provides a bottom-up method for designing physical self-assembling systems. 

This is achieved by being able to directly map a set of rules to a physical system. 

Level One: Definition of Rule Set The highest level, level one, is concerned with 

being able to describe any rule set. The rules could be of several types. For example, 

rules represented mathematically could be of the string re-writing form, e.g. L-Systems 

(Prusinkiewicz & Linenmayer 1990; Jacob 2001). The two types of rules presented in 
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Level 1: Definition of Rule Set 

map rule set to phy 
independent model 
evaluation 

Level 2: Virtual 
Execution of 
Rule Set 

map rule set 
to physically 
encoded 
information 

Level 3: Physical Realization of Rule Set 

Figure 4.1: The three-level approach to self-assembly design. 

section 3.1 An Idealized Self-Assembly Model used state-actions pairs. As an extension 

to the rules presented in section 3.2: A Self-Reproducing Analogue that describe a system 

akin to molecular amplification, rules expressed abstractly could mirror those seen with 

proteins, e.g. A fits B, C+D fits E, F breaks G+H (where the letters represent physically 

and chemically encoded information). As well, rules in which physically and/or chem­

ically encoded information is effected by natural phenomena should also be addressed. 

Such rules could include temperatureT breaks I+J. For example, the physical equivalent 

to this rule represents that DNA is denatured at a high enough temperature (i.e. double 

strand breaks apart into two single strands). 

Level Two: Virtual Execution of Rule Set Execution of a set of level one rules is 

accomplished at the mid level, level two. Information comprising the components and 

their environment, as well as the rule set present, are expressed using modelling. This 

could be implemented through a simulation or a model (section 3.1 An Idealized Self-

Assembly Model). In order to evaluate an emergent system, it has to be allowed to run 

(Wolfram 2002). This is the primary purpose of this level. The outcome of the simulation 
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can determine if, in order for a self-assembled target structure to emerge, the level one 

rules or the information related to the different component types and their environment 

need to be modified. Representations used for the information and the rules should be 

independent of any physical medium. This has two benefits. The first is that it allows 

for the simulation to remain simple and computationally efficient to run (modelling the 

interactions of complex forms is a difficult task). The second is that it then allows for the 

integration of various materials and self-assembly mechanisms, which may be required 

depending on the target structures. 

Level Three: Physical Realization of Rule Set At level three, information compris­

ing the components and/or their environment, together with the level one rules present 

in the system, are mapped from their virtual representations to a physical system. Since 

this mapping is done directly, it is independent of the results observed from the level two 

modelling. The consequence of this is that mapping can occur before, during, or after a 

simulation run. Section 3.2: A Self-Reproducing Analogue shows how a set of rules can 

be mapped directly to create a physical self-assembling system. 

The three-level approach provides a high-level description to designing a self-assembling 

system. The following level one rules, level two model, and level three physically encoded 

information were designed with the potential to create 2D and 3D self-assembled closed 

target structures with symmetric/asymmetric features to test the thesis hypothesis. 

4.1 Level One: Definition of Rule Set 

At level one, a self-assembling system is defined by three categories of rules: compo­

nent, environment, and system. These rules are in the context of component movement, 
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spatially in 2D and 3D. The objective of these rules is to provide a high-level, abstract 

description of the type of self-assembling systems used in this thesis. 

Component Rules: specify component information. Conceptually similar to DNA 

tiles, components are either squares (2D) or cubes (3D). Each edge/face of a component 

serves as an information location, in either a four-point (Top, Left, Bottom, Right) or six-

point (Top, Left, Bottom, Right, Front, Back) arrangement for 2D and 3D components 

respectively (Figure 4.2). Information is represented by a capital letter, A to H for 2D 

components and I to T for 3D components. A subscript (1 to 4) is used with each capital 

letter (e.g. ;V4) to indicate orientation on a 3D component's face (Figure 4.2). The dash 

symbol (—) represents a neutral site (where no assembly information is present). The 

spatial relationship of a component's information defines its type (Figure 4.2). 

Environment Rules: specify temperature (4>) and boundary constraints. An assembly 

protocol must at least meet the temperature for assembly bonds to occur. The boundary 

confines components to the environment. Components are permitted to translate and 

rotate in 2D and 3D systems. In addition, components have rotational information and 

can be reflected in 3D systems. 

System Rules: specify component type frequency, and component-to-component in­

formation interactions (i.e. assembly interactions) and component-to-environment inter­

actions (transfer of energy and boundary interactions). There are two types of system 

interaction rules referred to as fits and breaks rules. If two complementary pieces of 

information come into contact, (e.g. A fits B), it will cause them to assemble. This rule 

type is commutative (e.g. if A fits B, then B fits A). Furthermore, fits rules encapsulate 

component-to-component rotational interactions in 3D systems. A subscript (360, 180, 
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Figure 4.2: 2D and 3D component spatial information relationship (I and V respectively), 
an example of information orientation on a 3D component's face (VII), and example 2D 
component types (where III and IV are of the same type under planar rotation and are 
distinguished from II). 

and 90) is used to represent if the faces of complementary 3D components can fit to­

gether in four, two, or in one way respectively (e.g. M fits]80 N). If two assembled pieces 

of information experience a temperature of two (</>2), then their assembly breaks. The 

interaction rules used in the self-assembling systems presented in this work are provided 

in Table 4.1 (2D) and Table 4.2 (3D). 

4.2 Level Two: Virtual Execution of Rule Set 

At level two, a rule set is mapped to an abstract model for efficient evaluation, and is 

used to determine if physical evaluation of a rule set is applicable at level three. In 

the original publication of the three-level approach an agent-based model (similar to the 

model presented in section 3.1: An Idealized Self-Assembly Model) was used at level two 
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A fits B A+B 4>2 breaks A+B -» A; B 

C fits D - C+D <J>2 breaks C+D -+ C ; D 

E fits F -» E+F <J>2 breaks E+F -» E ; F 

G fits H -+ G+H <J>2 breaks G+H -* G ; H 

Table 4.1: 2D interaction rules (fits and breaks; transition, assembly, disas­
sembly, and '02' temperature 2), where A-H represent component information. 

1 fitS360 J l+J <J>2 breaks l+J —• 1; J 

K fitS36o L -» K+L 4>2 breaks K+L -• K ; L 

M fitSi so N -• M+N <t>2 breaks M+N -+ M ; N 

0 fitsgo P -» O+P <t>2 breaks O+P -• 0 ; P 

Q fitS9o R Q+R <t>2 breaks Q+R ->Q;R 

S fitSgo T —* S+T <j>2 breaks S+T ->S;T 

Table 4.2: 3D interaction rules (fits and breaks; transition, '+' assembly, disas­
sembly, and l<p2 temperature 2), where I-T represent component information and 360, 
180, and 90 represent component rotational interactions. 
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Seed Components not required required 

Parallel Self-Assembly yes no 

Number of Tile Types at an 
Assembly Location 

multiple one 

2D/3D 2DcTAM/3DcTAM 2D 

Rotations 2D/3D none 

One-Pot-Mixture yes yes 

Table 4.3: Model features of the cTAM compared to the aTAM 

(Bhalla et al. 2007). This model was later replaced with a more computationally efficient 

tile-based model (Bhalla et al. 2010; Bhalla & Bentley in print; Bhalla et al. 2011a), which 

is better suited for comparison to other tile-based models of self-assembly. The tile-based 

model used here is an extension to the aTAM and combines features of Lego World, 

and is referred to as the 2D concurrent Tile Assembly Model and the 3D concurrent 

Tile Assembly Model (2DcTAM and 3DcTAM; distinguished spatially using 2D and 3D 

components respectively). The 2DcTAM and 3DcTAM are better suited to the type of 

self-assembling systems used in this work, by accommodating for component rotation 

and allowing for concurrent self-assembly. The features of the aTAM are compared to 

the features of the 2DcTAM and 3DcTAM in Table 4.2. 

The 2DcTAM and the 3DcTAM follow a common algorithm. Pseudocode for the 

concurrent Tile Assembly Algorithm is provided on the next page. Figure 4.3 (page 90) 

provides an example of the assembly process in the 2DcTAM. A post-evaluation of the 

set of resulting self-assembled structures at the conclusion of the algorithm is sufficient 

in this work, as the set of resulting self-assembled structures is of more concern than 
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environmental constraints in this work. Since assembly is considered concurrently and 

more than one tile (component) type can be used at an assembly location, errors must 

be accounted for and include: neutral site, uncomplimentary information, and boundary 

violations, as well as the requirement of an assembly path (Figure 4.4, page 91). 

Algorithm concurrent Tile Assembly Algorithm 

Input: a multiset of tiles FounderSet 

Output: set of self-assembled target structures and remaining tiles 

1. while there are tiles in FounderSet with open assembly locations 

2. do select a random R tile or substructure from FounderSet that has a tile with 

an open assembly location L 

3. remove R from FounderSet 

4. set L to unmatchable select all tiles and substructures from FounderSet that 

have tiles with open complementary information to L and place in a list 

AssemblyCandidateList 

5. while L is unmatchable AND the size of AssemblyCandidateList > 0 

6. do select at random a tile or substructure T from AssemblyCandidateList 

7. if R can be added to T (without incurring an assembly violation, all 

applicable assembly locations, including their rotational information, 

must not conflict when adding two substructures together) 

8. then add R to T 

9. set L and all applicable open assembly locations in R and T 

to match 

10. remove R from FounderSet 

11. add T to FounderSet 

12. else remove T from AssemblyCandidateList 

13. return FounderSet 
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Figure 4.3: 2DcTAM example steps. 

4.3 Level Three: Physical Realization of Rule Set 

While in levels one and two it is assumed component and environment information can be 

perfectly achieved, in level three this theoretical information must be physically instan­

tiated, often resulting in precise choices of materials, energy, and forms for components 

and their environment. The physical systems used in this work have similar character­

istics. The goal of each system is to investigate whether or not a set of mechanical, 

macroscale components (with concave/convex polygon or polyhedron shapes) can self-

assemble into a target structure (with a polygon perimeter or polyhedron volume form, 

with symmetric/asymmetric features). Components are either confined to a surface (2D) 

or suspended in a fluid (3D). Environment vibrations transfer energy to the components, 

causing components to move around and interact with one another. These two new au­

tomated environments improve upon hand-controlled environments (Bhalla & Bentley 

2006; Olson et al. 2007; Tibbits 2010; Hosokawa et al. 1996) and are similar to Miyashita 

et al. (2009), using a tray surface for 2D systems (but not using of a fluid in the tray) 

and extended for 3D systems. 
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Figure 4.4: Examples of assembly violations (left) and no assembly path (right). 

Permanent magnets embedded in the components are used to enable components to 

attract and repel one another. The approach to physically encoding information in terms 

of a component design space is inspired by chemistry, particularly molecular interactions. 

The components presented here use a simplified set of shape primitives and magnetic 

patterns (using multiple permanent magnets). The set of shape primitives use key and 

lock shapes (Bhalla & Bentley 2006; Terfort et al. 1997) and a neutral shape to allow 

for the creation of closed target structures (Bhalla & Bentley 2006). By using magnetic 

patterns, these new components are conceptually similar to DNA tiles (Winfree et al. 

1998a), with the distinction that 3D DNA tiles have not been physically created at the 

time of writing. Magnetic patterns along the edges of 2D components or on the faces of 3D 

components (Garcias et al. 2002), in addition to key and lock shapes, enable component-

to-component interactions. The role of component shape and magnetic interactions are 

contrasted to demonstrate how to leverage particular aspects of component interactions 

during self-assembly. 
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4.3.1 Component Design Space 

Fisher's key-lock principle (section 2.2.1: Physical Information Encoding in Nature) is 

extended in this work to a key-lock-neutral concept (neutral meaning where no bonding 

is possible) and apply it to self-assembly. This concept is central to the component design 

space used here. The design space defines the set of physically feasible designs. Here, 

the design space is a combination of a shape space and an assembly protocol space. The 

shape space is based on the key-lock-neutral concept to define component shape. The 

assembly protocol space uses magnetism to define bonding. Together, they can be used 

to enable the self-assembly process. 

However, the shape space and the assembly protocol space must be used in such a 

way to give the component design space two properties: (1) using shapes to create stable 

joints between complementary components, and (2) creating the ability for components to 

selectively bond to corresponding components and not to conflicting components (Bhalla 

& Bentley 2006). The first property is achieved by using both concave and convex shapes, 

creat ing joints which are less likely to disassemble during collisions with other components 

and the environment. The second property is achieved by placing the magnets in the 

interior of a non-magnetic material. By not allowing components to join directly together, 

components have a higher degree of freedom to move around and interact with one 

another. This is an important aspect to the definition of self-assembly, requiring adaptive 

component interactions (section 1.2: Thesis Hypothesis). 

A continuous version of this design space for self-assembly was first used in (Bhalla 

2004; Bhalla k. Bentley 2006; Kaewkamnerdpong et al. 2007). In this work, the design 

space is a discrete version. Two implementations in both 2D and 3D are contrasted to 

demonstrate how the design space can be leveraged to reduce potential component-to-

component interaction errors from occurring during the self-assembly process. 
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Figure 4.5: Design space for the first 2D physical information encoding scheme (left), and 
an example component showing the shortcoming of neighbouring lock shapes (right). 

4.3.2 2D Physical Information Encoding Schemes 

Different materials and manufacturing techniques to construct 2D components are used 

to demonstrate how they can be used in two 2D physical information encoding schemes 

to reduce potential errors from occurring during the self-assembly process. 

First 2D Physical Information Encoding Scheme 

This 2D physical information encoding scheme (Figure 4.5) was used in the original 

implementation of the three-level approach (Bhalla et al. 2007). In this case, components 

and the environment were hand-built from foam board, and the environment was shaken 

in 2D. A component's base shape is a square, where a shape primitive is applied to each 

edge: key (convex), lock (concave), and neutral (linear). Three magnets are associated 

with keys and locks, but not with neutral sites. Magnets are placed within the sides of 

the components, and covered with foam, to allow for selective bonding. A single magnet 

is used at each location in the 3-magnetic-bit pattern (magnetic south/north arbitrarily 

assigned to one and zero). By manipulating the designation of the 3-magnetic-bit patterns 

to keys and locks, convex key-to-key errors can be reduced (Table 4.4). However, this is 

at the expense of not being able to minimize key-to-lock errors. Due to the challenges of 

building components from foam by hand, the shortcoming of this shape space was that 

neighbouring lock shapes on the same component are not well defined (Figure 4.5). 
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Lock 000 A A fits B -»A+B 4>2 breaks A+B -»A;B 

Lock 001 c C fits D -* C+D 4>2 breaks C+D C ; D 

Lock 100 E E fits F E+F <f>2 breaks E+F -» E ; F 

Lock 010 G G fits H -• G+H <|>2 breaks G+H -* G ; H 

Key 111 B B fits A -* B+A 4>2 breaks B+A -• B ; A 

Key 110 D D fits C -* D+C <t>2 breaks D+C -» D ; C 

Key 011 F F fits E -> F+E tj>2 breaks F+E -» F ; E 

Key 101 H H fits G -• H+G 4>2 breaks H+G -» H ; G 

Table 4.4: First key and lock designations to the 3-magnetic-bit patterns (red/zero and 
blue/one represent magnetic south and north respectively) 

The corresponding environment information for this first 2D design space matched 

the environment for the continuous design space: materials (foam board), shaking motion 

(by hand randomly in 2D, parallel to the surface of the tray), and resulting component-

to-component and component-to-environment interactions (for corresponding and con­

flicting components). Five physical self-assembling systems were created, Figure 4.6, by 

building components using this first 2D design space (and varying the number and types 

of components) and their corresponding tray environment. Despite the shortcoming of 

this shape space, the five systems were able to achieve their target structures. 

Second 2D Physical Information Encoding Scheme 

A solution to the shortcoming of the first 2D physical information encoding scheme is 

achieved by using rapid prototyping to fabricate components (Figure 4.7, page 96). As 

with the first 2D shape space, three shape primitives are used in association with a base 



Line L-shape 

Open Square T-shape 

Y-shape 

Figure 4.6: Self-assembling systems using the first 2D physical information encoding 
scheme (Bhalla et al. 2007). 



Figure 4.7: Design space for the second 2D physical information encoding scheme (left), 
and an example component with information markers. 

square shape. Smaller and stronger components can be built, since rapid prototyping 

is used. As a result, neighbouring lock shapes on the same component are well defined. 

The main body of a component is made from plastic. Similar to the first 2D assembly 

protocol space, a 3-magnetic-bit pattern is used. Due to greater precision in fabricat­

ing components using rapid prototyping, lock-to-lock interactions never occur and more 

magnets can be placed within the sides of components (using an air gap along an edge for 

selective bonding). Instead, the 3-magnetic-bit pattern uses one magnet in each position 

associated with a key and two magnets in each position associated with a lock (Table 4.5). 

This ensures strong bonding between keys and locks, and weak bonding between keys. 

Weak bonding can be avoided through an appropriate physical environment temperature. 

Therefore, key-to-key matching errors can be avoided and key-to-lock matching errors 

can be reduced through proper designation of the 3-magnetic-bit patterns to keys and 

locks. 

Information markers on the top surfaces of components, using red and blue paint, 

are used to identify the 3-magnetic-bit pattern used with a key or lock (Figure 4.7). A 

2D component's base shape is 10 mm2, and can have a maximum width or length of 20 

mm2. Specifications are detailed in Appendix A.2: 2D Components. 

The corresponding environment information for this second 2D design space contrasts 

the environment for the first 2D design space: in materials (fabricated from plastic using 
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Lock 000 A A fits B -+ A+B <J>2 breaks A+B -* A; B 

Lock 110 c C fits D -» C+D cf>2 breaks C+D -+ C ; D 

Lock 011 E E fits F -» E+F <t>2 breaks E+F E ; F 

Lock 101 G G fits H -+ G+H <t>2 breaks G+H -+ G ; H 

Key 111 B B fits A -+ B+A cj>2 breaks B+A B ; A 

Key 001 D D fits C -* D+C <|>2 breaks D+C -» D ; C 

Key 100 F F fits E -> F+E 4>2 breaks F+E -» F ; E 

Key 010 H H fits G -• H+G 4>2 breaks H+G -+ H ; G 

Table 4.5: Second key and lock designations to the 3-magnetie-bit patterns (red/zero 
and blue/one represent magnetic south and north respectively) 

rapid prototyping) and shaking motion (in a 2D orbital motion, automated using a Maxi 

Mix II Vortex Mixer). Achieving an appropriate environment temperature, to maintain 

bonds between complementary components and break bonds between conflicting compo­

nents, was extremely difficult. As with the two previous physical self-assembling systems 

examples, the environment temperature corresponds to a mechanical shaking level. This 

mechanical shaking level is a combination of the speed of the mixer, the total number 

of components in the system, and the size of the tray environment. Also, the Maxi 

Mix II Vortex Mixer is not purely an orbital shaker. A spring joint in the mixer adds 

variability to the shaking motion. This variability is another factor in the mechanical 

shaking level. However, a rpm setting of 1,050 was found to create the appropriate tem­

perature (abstractly equivalent to one). Specifications are detailed in Appendix B.2: 2D 

Environment. 
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4.3.3 3D Physical Information Encoding Schemes 

With the benefits of rapid prototyping being demonstrated in fabricating 2D compo­

nents, rapid prototyping is also used to fabricate 3D components. This form of precision 

manufacturing allows for the manipulation of magnetic patterns which are used in two 

3D physical information encoding schemes to reduce rotation errors during component-

to-component interactions during the self-assembly process. 

First 3D Physical Information Encoding Scheme 

A 5-magnetic-bit pattern defines the assembly protocol space (Figure 4.8). The five 

permanent magnetic discs can be added to a face of a cube-based component. Of the 

thirty-two total 5-magnetic-bit patterns, there are six unique complementary pairs of 

patterns when considering planar rotation of a component's face (Figure 4.8). These 

six codes encapsulate rotational information for component-to-component interactions, 

where two pairs encapsulate 360°, one pair encapsulates 180°, and three pairs encapsulate 

90° rotational component-to-component interactions. 

A key-lock-neutral concept defines the shape space (Figure 4.9). Either a key, lock, or 

neutral shape is used on each face of a component. A pair of complementary key and lock 

shapes is used to create stable joints between complementary components. A 5-magnetic-

bit pattern is placed within a key or a lock. However, the magnets are not flush with 

the surface, creating an air gap, to allow for selective bonding between components by 

maintaining component-to-component interactions to be adjustable (section 1.2: Thesis 

Hypothesis). In this context, neutral means where no assembly is possible. To simplify 

the evaluation of correct self-assembly bond formations at the conclusion of the self-

assembly process (visually by the user), coloured circles are used (when possible) on 

neutral sites to identify neighbouring 5-magnetic-bit patterns (referred to as interaction 

markers). A 3D component's base shape is 15 mm3, and can have a maximum height of 
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Black White Purple Green Orange Yellow 

Figure 4.8: Six pairs of unique 5-magnetic-bit patterns, where blue and red represent 
magnetic north and south respectively, along with rotational properties (360°, 180°, and 
90°), and colours associated with each pair (used as paint markers on components to 
indicate information associated with component-to-component interactions). 

20 mm3. Specifications are detailed in Appendix A. 3: 3D Components. 

A linear representation of the magnets on a component's face are listed as: centre, 

bottom-right, bottom-left, top-left, and top-right. Again, one represents magnetic north 

and zero represents magnetic south arbitrarily. In this first 3D physical information 

encoding scheme, a single permanent magnet is used in each location of the 5-magnetic-

bit patterns. Using this magnetic condition, the 5-magnetic-bit patterns can be assigned 

to keys and locks to reduce key-to-key error interactions (Table 4.6). In this example, 

Figure 4.9: 3D component shape space (left; showing the base component with infor­
mation markers, the minimum component with lock shapes on all six faces, and the 
maximum component with key shapes on all six faces), and example components (right). 



Lock 00000 I I fitS360 I l+J <J>2 breaks l+J -* 1; J 

Lock 10000 K K fitS36o L -» K+L <j>2 breaks K+L -• K ; L 

Lock 01010 M M fits 180 N -* M+N <t>2 breaks M+N -» M ; N 

Lock 01100 0 O fitSgo P O+P 4>2 breaks O+P -• O ; P 

Lock 11000 Q Q fitSgo R Q+R <J>2 breaks Q+R -» Q ; R 

Lock 01000 s S fitsgo T S+T <j>2 breaks S+T -> S ; T 

Key 11111 J J fitS360 I l+J (j>2 breaks J+l J ; 1 

Key 01111 L L fitS36o K -+ L+K <t>2 breaks L+K -> L;K 

Key 10101 N N fitSiso M N+M <J>2 breaks N+M -» N ; M 

Key 10011 P P fitS9o O —* P+O <t>2 breaks P+O -» P ; O 

Key 00111 R R fitSgo Q R+Q 4»2 breaks R+Q -* R ; Q 

Key 10111 T T fitSgo S T+S <j>2 breaks T+S -» T ; S 

Table 4.6: First key and lock designations to the 5-magnetic-bit patterns (red/zero and 
blue/one represent magnetic south and north respectively) 

the worst possible match between magnets that can occur is a three out of five match 

(e.g. I interacting with N). 

Second 3D Physical Information Encoding Scheme 

In this second example, a single permanent magnet is used in each location of the 5-

magnetic-bit patterns which are assigned to keys, and two permanent magnets are used 

in each location of the 5-magnetic-bit patterns which are assigned to locks. This magnetic 

condition is used to take advantage of lock-to-lock interactions not being possible, and 

allows for the reduction of key-to-lock error interactions (Table 4.7). Although key-to-



Lock 00000 I I fitS360 I l+J <J>2 breaks l+J 1; J 

Lock 10000 K K fitS36o L -• K+L 4>2 breaks K+L -* K ; L 

Lock 01010 M M fitSiso N M+N <t>2 breaks M+N -+ M ; N 

Lock 10011 p P fitS9o O -+ P+O 4>2 breaks P+O -• P ; O 

Lock 00111 R R fitsgo Q R+Q 4>2 breaks R+Q -+ R ; Q 

Lock 10111 T T fitS9o S -+ T+S <t>2 breaks T+S -• T ; S 

Key 11111 J J fitS360 1 l+J <J)2 breaks J+l -» J ; 1 

Key 01111 L L fitS36o K -• L+K <f>2 breaks L+K ->L;K 

Key 10101 N N fitSiso M -+ N+M 4>2 breaks N+M -» N ; M 

Key 01100 O O fitsgo P O+P <|>2 breaks O+P -» O ; P 

Key 11000 Q Q fitsgo R Q+R <j>2 breaks Q+R -+ Q ; R 

Key 01000 S S fitsgo T —• S+T <(>2 breaks S+T -+ S ; T 

Table 4.7: Second key and lock designations to the 5-magnetic-bit patterns (red/zero 
and blue/one represent magnetic south and north respectively) 

key interactions will still occur, the environment temperature can be adjusted to break 

magnetically weak key-to-key bonds and maintain magnetically strong key-to-lock bonds. 

Furthermore, there is more than one configuration of 5-magnetic-bit patterns assigned 

to keys and locks to reduce key-to-lock error interactions. 

The corresponding physical environment information to these two 3D component 

physical encoding schemes consists of a jar to provide a boundary for components, the 

placement of the jar in a rack on an orbital shaker to provide energy to the system 

(a parameter in setting environment temperature), and mineral oil in the jar to allow 



102 

components to freely move in three spatial dimensions. Mineral oil is used to prevent the 

permanent magnets from corroding, and to provide the appropriate viscosity. The design 

of the environment was discovered through extensive preliminary trials and experiments. 

Specifications are detailed in Appendix B.3: 3D Environment. 

4.4 Summary 

This chapter introduced the three-level approach for designing self-assembling systems 

via physically encoded information. Three levels of this design methodology include: 

(1) definition of rule set, (2) virtual execution of rule set, and (3) physical realization 

of rule set. The objective of of this approach is to provide an inherently bottom-up 

manner to create components and/or their environment for addressing the scale problem 

of designing self-assembling systems. This is achieved by being able to directly map a 

set of rules to physical systems. 

At level one, component, environment, and system rules were presented. These rules 

provide a high-level, abstract description of the type of self-assembling systems used 

in the preceding experiments. As well, 3D component interaction rules with rotational 

information were presented. These rules incorporate component rotations in temperature 

one systems. 

At level two, a computationally efficient tile-based model, the 2DcTAM and the 3Dc-

TAM, was discussed. These two tile-based models are distinguished from the aTAM and 

its extensions, because they consider concurrent self-assembly and incorporate compo­

nent rotations. As a result, assembly violations need to be considered in the two models. 

The 2DcTAM and the 3DcTAM are both Turing universal at temperature one, just as 

the rgTAM (Patitz et al. 2011) and 3D aTAM (Cook et al. 2011) have been proven to be 

Turing universal at temperature one (section 2.2.5: The Complexity of Self-Assembly). 
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At level three, a component design space that consists of a shape space and an assem­

bly protocol space was described. A key-lock-neutral concept defines the shape space. 

3-magnetic-bit and 5-magnetic-bit patterns defines the assembly protocol space. Fur­

thermore, this design space was described in the context of two physical information 

encoding schemes, for both 2D and 3D systems. It was shown that by varying the num­

ber of magnets in each location of the magnetic-bit patterns, component-to-component 

interaction errors can be reduced. Also, the 5-magnetic-bit patterns encode 360°, 180°, 

and 90° 3D component rotational information. Lastly, the advantages of rapid prototyp­

ing to fabricate components were presented, particularly in precision manufacturing of 

the shape space. Along with fabricated components, automated environments were also 

presented, to create reproducible self-assembling systems. The second 2D and 3D phys­

ical encodings schemes are used in a series of experiments in Chapter 5: Programming 

Self-Assembling Systems, Chapter 6: Evolving Self-Assembly Rule Sets, and Chapter 7: 

Staging the Self-Assembly Process. 
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Programming Self-Assembling Systems 

"The connection between self-assembly and computation suggests that a shape can be 

considered the output of a self-assembly "program", a set of tiles that fit together to 

create a shape" (Solveichik & Winfree 2007). This quote summarizes the intent of the 

first set of experiments, which was to test the feasibility of the three-level approach to 

program (design) self-assembling systems. In these programming experiments, the three-

level approach is used directly to demonstrate a programming paradigm where rules are 

hand-designed to test the second 2D and 3D physical information encoding schemes, 

Table 4.5 (page 97) and Table 4.7 (page 101) respectively. Research pertaining to the 

2D programming experiments is published in Bhalla & Bentley (in print), and the 3D 

programming experiments in Bhalla et al. (2011a). 

5.1 Hypothesis Statement 

The hypothesis for the programming experiments was, 

Hypothesis: physical information can be used to enable components to self-

assemble into closed target structures with symmetric/asymmetric features. 

The three-level approach, by first defining sets of rules (level one), was used to test 

this hypothesis, virtually (level two) and physically (level three). Three 2D programming 

(2DP) experiments and five 3D programming (3DP) experiments (referred to as 2DPE1 

to 2DPE3 and 3DPE1 to 3DPE5 respectively) were used to test this hypothesis. A target 
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Figure 5.1: Prom left to right: target structures for the 2DP experiments corresponding 
to 2DPE1 to 2DPE3 respectively. 

structure was assigned to each experiment (provided in sections 5.2: 2D Programming 

Experiments and Results and 5.3: 3D Programming Experiments and Results). Enough 

components were supplied to create up to three 2D and 3D target structures. The 

number of target structures corresponds to the capacity of the environments used. Ten 

trials were run for each experiment1. A trial was evaluated to be successful if all three 2D 

and 3D target structures were created at level two, and if at least one 2D and 3D target 

structure was created at level three. The independent variable in these experiments was 

the set of components, defined by their type and frequency. The dependent variable is 

the resulting self-assembled structures. For each experiment, a programmed component 

set was specified along with a random component set to test the independent variable. 

5.2 2D Programming Experiments and Results 

Three 2D programming experiments were conducted, where a target structure was as­

signed to each experiment (Figure 5.1). The experimental procedures and results are 

described according to the three-level approach: defining self-assembly rule sets (level 

one), modelling using 2DcTAM (level two), and physically testing systems using the 

second 2D physical information encoding scheme (level three). 

'An additional five trials for each 2D experiment, to the original five trials presented in (Bhalla & 
Bentley in print), were conducted to collect further data. 
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These three target structures were chosen because they offer various degrees of com­

plexity in terms of the number of components required and symmetric/asymmetric fea­

tures in their morphology. Consequently, each target structure cannot be created by 

pattern formation exclusively. Therefore, it was appropriate to determine if the compo­

nents had sufficient information to achieve the target structures by self-assembly. 

5.2.1 Level One: Rule Set for 2DP Experiments 

At level one, component rule sets were specified for the level two and level three trials. 

Programmed component sets were created using a combination of top-down decomposi­

tion and bottom-up trial and error. The morphology of a single target structure was used 

to identify the connectivity (number and position of neighbouring components) of each 

component, and determine the number of unique components (based on connectivity) and 

their frequency. The connectivity of each unique component established the symmetric 

and asymmetric information required, and was used to assign component information to 

create each component type. A detailed example of designing a self-assembling system is 

provided in section 8.2: Leveraging Limited Rule Sets. After this initial set was specified, 

the quantity of each component type was multiplied by three to create the maximum 

number of target structures for each experiment. The difficulty was in verifying if a 

correct set of components were specified when considering parallel construction without 

the use of seed components, and the self-assembly process not resulting in errors. 

For the random component sets, component types were specified by selecting with 

uniform probability the information (A to H, and —) assigned to each information loca­

tion. Then the quantity of each component type was multiplied by three to create the 

maximum number of target structures for each experiment, conducted at level two and 

three. Component rules and the quantity of each component are provided in Table 5.1. 

The system rules from Table 4.5 (page 97) were applicable to both groups. 
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2DPE1 
P 6  X  ( B , 3  X  ( A , - , A , - )  

2DPE1 
R 6 X (F,B,-,D), 3 X (D,D,D,H) 

2DPE2 
P 6  X  ( B , 3  X  ( - , D , - , A ) ,  3  X  ( A , - , C , - )  

2DPE2 
R 6 X (B,B,C,F), 3 X (-,A,A,C), 3 X (C,C,D,D) 

2DPE3 
P 9 X (B,-,-,-), 3 X (-AG,A), 3 X (H.-.A,-) 

2DPE3 
R 9 X (-,E,D,D), 3 X (E,B,G,E)I 3 X (G,B>B.B) 

Table 5.1: Programmed and random (P/R) component sets (represented as x (Top, 
Left, Bottom, Right)', where # represents quantity and the directions refer to component 
information) for the 2DP experiments (EX) 

5.2.2 Level Two: Virtual Execution of Rule Set for 2DP Experiments 

For each 2DP experiment, the 2DcTAM (section J^.2: Level Two: Virtual Execution of 

Rule Set) was used to virtually evaluate the ability of each rule set (programmed or 

random) to create its respective target structure. 

Level Two: Experimental Setup for 2DP Experiments 

Component mles from Table 5.1 and the environment rules were mapped to an abstract 

representation appropriate for the 2DcTAM. Each component's shape was a unit square. 

The environment rule associated with boundary size was set to 10 x 10 units (a represen­

tation of widthxdepth, and the ratio between component and environment size). The 

temperature parameter was set to one. A different random seed was used to initialize 

the 2DcTAM for each trial. 

Level Two: Experimental Results for 2DP Experiments 

At level two, the 2DcTAM was used to evaluate each trial. Each of the programmed 

component sets successfully created three of their applicable target structures. These 
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results show that even with no component acting as a seed, and permitting component 

rotation, it is still possible to successfully create target structures. Furthermore, these 

results also show that it is possible to create multiples of the same target structure 

concurrently, when appropriate component information is used. 

In contrast, none of the random component sets successfully created at least one target 

structure. There are two reasons for the unsuccessful random component sets. The first 

reason, which applies to the random component sets used in 2DPE1 and 2DPE3, was 

that no compatible fits rule existed for the information encoded in the components. As 

a result, no assembly could take place with these components. The second reason, which 

applies to the random component set used in 2DPE2, is that multiple fits rules apply 

to either multiple component types or to multiple information locations within the same 

component type. There are two information locations labelled D in the third component 

type. These two information locations can bond to information locations labelled C in 

the first and second component type. In addition, since multiples of the third component 

type exist, they can also bond to each other. As a result, the generated structures are 

not stable, meaning the same structures would not emerge from different executions of 

the 2DcTAM. 

Fisher's Exact Test (one-sided) for analyzing binary data (Cox & Snell 1989), was 

used to analyze the results of the level two 2DP experiments. The results are statisti­

cally significant, with a p-value of 0 (Table 5.2). These successful results support the 

programming experiment hypothesis at level two in the context of the 2DP experiments. 

5.2.3 Level Three: Physical Realization of Rule Set for 2DP Experiments 

With the success of each system using a programmed component set, a level three transla­

tion was performed for each 2DP experiment. A level three translation was not performed 

on the systems using a random component set, since they were not successful. 
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2DPE1 
Programmed 10 0 

0 2DPE1 
Random 0 10 

0 

2DPE2 
Programmed 10 0 

0 2DPE2 
Random 0 10 

0 

2DPE3 
Programmed 10 0 

0 2DPE3 
Random 0 10 

0 

Table 5.2: The number of successful and unsuccessful trials for each programmed and 
random 2DP experiment (2DPE1 - 2DPE3) at level two, with corresponding p-value 
calculated using Fisher's Exact Test (one-sided) for analyzing binary data 

Level Three: Experimental Setup for 2DP Experiments 

Component mapping followed Table 4.5 (page 97). For each trial, components were 

randomly placed on the surface of the tray, which was mounted on an orbital shaker (their 

environment). Each system was shaken for 20 minutes. The state a system was recorded 

at the conclusion of each trial, observations included: the number of target structures 

created, the number of matching errors (between conflicting physical information, where 

no fits rule is applicable), and the number of assembly errors (partial attachment where 

a fits rule is applicable). Details regarding the physical experiment setup for the 2DP 

experiments is provided in section C.2: Experimental Procedure for the 2D Systems. 

Level Three: Experimental Results for 2DP Experiments 

Figure 5.2 shows the number of target structures created in the 2DP experiments. Fig­

ure 5.3 (page 111) shows an example of a successful trial for each experiment. One reason 

for unsuccessful trials in 2DPE3, was the resulting spatial relationship between emerging 

substructures. In 2DPE3 trial 2, the components self-assembled into two substructures 
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2DP - Number of Target Structures 

TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

• 2DPE1 • 2DPE2 • 2DPE3 

Figure 5.2: Number of target structures created at the end of each trial (TR1 - TRIO), 
for each 2DP experiment (2DPE1 - 2DP3). 

that would not allow the self-assembly process to continue (Figure 5.3). 

No assembly errors were present at the end of each trial for each of the three 2DP 

experiments. Only 2DPE1 had zero matching errors, due to the single physical code pair 

used. 2DPE2 had more matching errors in comparison to 2DPE3 (Figure 5.4, page 112), 

which can be explained by two reasons. The first reason is that the two physical code 

pairs used in 2DPE2 have the highest matching error possibility. The second reason is 

that the total number of components used in 2DPE2 are fewer, and as a result, there are 

less components moving around to break apart assembly errors. 

It was qualitatively observed that self-repair was possible in the systems. For example, 

if two complementary components formed an assembly error, typically a collision with 

the environment (the side of the tray wall) would result in a proper assembly. In practice 

it was a challenge to implement an environment temperature of one. 
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2DPE1 2DPE2 

2DPE3 Error Example 

Figure 5.3: Photographs of successful 2DP experiments (2DPE1 - 2DPE3) and an exam­
ple error (trial from 2DPE3), where adjacent components to the outlined shapes are not 
attached to the self-assembled structures (resting positions when energy was removed 
from the environment). 
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2DP - Number of Matching Errors 

TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

2DPE1 2DPE2 2DPE3 

Figure 5.4: Number of matching errors at the end of each trial (TRl - TRIO), for each 
2DP experiment (2DPE1 - 2DP3). 
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2DPE1 Programmed 10 0 0 

2DPE2 Programmed 9 1 0 

2DPE3 Programmed 7 3 0.002 

Table 5.3: The number of successful and unsuccessful trials for the 2DP experiments at 
level three, with corresponding p-values (calculated using Fisher's Exact Test (one-sided) 
for analyzing binary data with respect to 0 successful and 10 unsuccessful trials for the 
random component sets for each 2DP experiment from their level two results) 

The 2DP experiments at level three were analyzed using Fisher's Exact Test (one­

sided) for analyzing binary data (Cox & Snell 1989). All three 2DP experiments are 

statistically significant at the 0.01 level (meaning there is a 99% chance the results are not 

due to chance, Table 5.3). The successful 2DP experiments provide evidence to support 

the hypothesis that physical information can be used to enable a set of components to 

self-assembly into 2D closed target structures with symmetric/asymmetric features. 

5.3 3D Programming Experiments and Results 

Five 3DP experiments were conducted. Figure 5.5 provides the corresponding target 

structures for the five 3DP experiments. The experimental procedures and results are 

described according to the three-level approach: defining a self-assembly rule set (level 

one), modelling using 3DcTAM (level two), and physically testing systems using the 

second 3D physical information encoding scheme (level three). 

These five target structures were chosen since they offer degrees of complexity in 

terms of the number of components and their concentration and symmetric/asymmetric 

features in the target structures. Consequently, the five target structures cannot be 

created by using the underlying cubic lattice pattern of component formations exclusively. 
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Figure 5.5: From left to right: target structures for the 3DP experiments corresponding 
to 3DPE1 to 3DPE5 respectively (with perspective, top, and front views). 

Therefore, it was appropriate to determine if the information encoded in the components 

was sufficient to achieve the target structures by self-assembly. 

5.3.1 Level One: Rule Set for 3DP Experiments 

Similar to the 2DP experiments, programmed component sets followed the same scheme, 

with the additional difficulty in verifying if the correct rotational information was speci­

fied. Random component sets were created by specifying component types using selected 

information (I to T, and —) assigned to each information location. However in this case, 

the quantity of each component type in both the programmed and random components 

sets were multiplied by three to create the maximum number of target structures for each 

level two and level three 3DP experiment. Component rules and the quantity of each 

component type are provided in Table 5.4, and the system rules from Table 4.7 (page 

101) applied to both groups. 



3DPE1 
P 9  X  ( h , 3  X  ( J i , - , - , J i , J i , - )  

3DPE1 
R 9X(03,-,PI,-,JI,-),3X(S2,-,-,T4,-,-) 

3DPE2 
P 9  X  ( K i t V 3  X  (Mi,-,-,-,Li,-), 3 X (N2,LI,-,LI,-,-) 

3DPE2 
R 9 X (-,lif-,Ki,Ki,-), 3 X Ki,-,03), 3 X (N2,-,-,T2,R4,-) 

3DPE3 
P 6  X  ( J i 3  X  ( P i , - , " - l i ) ,  3  X  

3DPE3 
R 6 X (-,-,PI,NI,S2,-)> 3 X (-.h.Ma.Ci,-,-), 3 X (04,-,Si,T3)-,-) 

3DPE4 
P 6  X  ( L i 3  X  ( Q i , v , - , K i , - ) ,  3  X  ( R i K i , - )  

3DPE4 
R 6  X  ( J , , - , 0 4 ) ,  3  X  ( - - . P i . R i . M a ) ,  3  X  ( 0 4 , - , - , l i , - , N i )  

3DPE5 
P 6  X  ( J i , 3  X  3  X  ( S i , l i , - )  

3DPE5 
R 6 X (Q3iQ4,-,-,II,-), 3 X Ki3 X (P4,N2)-,Si,-,-) 

Table 5.4: Programmed and random (P/R) components sets (represented as '# x (Top, 
Left, Bottom, Right, FYont, Back)', where # represents quantity and the directions refer 
to component information) for the 3DP experiments (EX) 
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5.3.2 Level Two: Virtual Execution of Rule Set for 3DP Experiments 

The 3DcTAM (section 1^.2: Level Two: Virtual Execution of Rule Set) was used to eval­

uate the ability of component rule set (programmed or random) to create its respective 

target structures. 

Level Two: Experimental Setup for 3DP Experiments 

The component sets from Table 5.4 were mapped to an abstract representation for the 

3DcTAM. Each component's shape was a unit cube. The size of the environment was 

represented as 4x4x4 units (widthxdepthxheight). These environment dimensions are 

related to the physical dimensions of the environment as a ratio between the physical 

components and environment, and rounded down to the nearest unit. Since the 3DcTAM 

selects tiles/substructures at random to step through the self-assembly process, a different 

random seed was used to initialize the 3DcTAM for each trial. Ten trials were conducted 

for each experiment. 

Level Two: Experimental Results for 3DP Experiments 

Each programmed component set successfully created five of their applicable target struc­

tures. These results show that even with a seed component (tile), it is still possible to 

create multiples of the same target structure, when appropriate component information 

is used. In contrast , none of the random component sets successfully created at least one 

target structure, in each 3DP experiment. 

The reasons for the unsuccessful random component sets include components having 

uncomplimentary information within their component sets (3DPE2 and 3DPE5), com­

ponent sets not being able to consistently create structures due to rotational information 

(3DPE3 and 3DPE4), and components creating structures consisting of at most two 

components (3DPE1). 

Fisher's Exact Test (one-sided) for analyzing binary data was used to analyze the 
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3DPE1 
Programmed 10 0 0 

3DPE1 
Random 0 10 0 

3DPE2 
Programmed 10 0 0 

3DPE2 
Random 0 10 0 

3DPE3 
Programmed 10 0 0 

3DPE3 
Random 0 10 0 

3DPE4 
Programmed 10 0 0 

3DPE4 
Random 0 10 0 

3DPE5 
Programmed 10 0 0 

3DPE5 
Random 0 10 0 

Table 5.5: The number of successful and unsuccessful trials for each programmed and 
random 2DP experiment (2DPE1 - 2DPE3) at level two, with corresponding p-value 
calculated using Fisher's Exact Test (one-sided) for analyzing binary data 

results of the level two 3DP experiments (Table 5.5). The results are statistically sig­

nificant, with a p-value of 0. These successful results provide evidence to support the 

programming experiments hypothesis at level two in the context of the 3DP experiments. 

5.3.3 Level Three: Physical Realization of Rule Set for 3DP Experiments 

With the success of each system using a programmed component set at level two, a level 

three translation was performed to test if the translated component set of each 3DP 

experiment could self-assemble its respective target structures. A level three translation 

was not performed on the systems using a random component set, since they were not 

successful. 
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Level Three: Experimental Setup for 3DP Experiments 

For each experiment trial, components were randomly placed in a jar of mineral oil, 

and placed on an orbital shaker (their environment). Each system was shaken for 20 

minutes, after which the state of each system was recorded, including observations for: 

the number of target structures created, the number of matching errors, the number 

of rotation errors (between complementary components), and the number of assembly 

errors. The detailed physical experimental setup for the 3DP experiments is provided in 

section C.3: Experimental Procedure for the 3D Systems 

Level Three: Experimental Results for 3DP Experiments 

Each experiment was successful in creating at least one target structure (Figure 5.6). 

Figure 5.7 (page 120) shows an example of a successful trial from each 3DP experiment. In 

3DPE1 and 3DPE2, there were no matching and rotation errors (as this was not possible 

due to the 5-magnetic-bit patterns present), and no assembly errors. Figure 5.8 (page 

121) shows the rotation errors for 3DPE3, 3DPE4, and 3DPE5. There were no matching 

and assembly errors in 3DPE3, 3DPE4, and 3DPE5. As with the 2DP experiments, it 

was challenge to create a physical environment temperature of one. 

Fisher's Exact Test (one-sided) for analyzing binary data was used to determine the 

statistical significance of creating target structures in each 3DP experiment (Table 5.6). 

All five programming experiments are statistically significant at the 0.01 level (i.e there 

is a 99% percent certainty the results are not due to chance). The successful 3DP 

experiments demonstrate that physical information can be used to enable components to 

self-assemble into closed 3D target structures with symmetric/asymmetric features, and 

provide evidence to support the hypothesis for the programming experiments. 
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3DP - Number of Target Structures 
3 

2 

TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

3DPE1 3DPE2 3DPE3 3DPE4 3DPE5 

Figure 5.6: Number of target structures created in each of the ten trials (TR1 - TRIO), 
for each of the five programming experiments (3DPE1 - 3DPE5) at level three. 

3DPE1 Programmed 10 0 0 

3DPE2 Programmed 7 3 0.002 

3DPE3 Programmed 9 1 0 

3DPE4 Programmed 7 3 0.002 

3DPE5 Programmed 9 1 0 

Table 5.6: Number of successful and unsuccessful trials for the programming experiments 
(PEX1 - PEX5) at level three, with corresponding p-values (calculated using Fisher's 
Exact Test (one-sided) for analyzing binary data, with respect to 0 successful and 10 
unsuccessful trials for the random sets for each programming experiment from their level 
two results) 
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3DPE1 3DPE2 

3DPE4 

3DPE5 

Figure 5.7: Photographs of successful level three programming experiment trials (PEXl 
- PEX5). 
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3DP - Number of Matching Errors 
2 

1 

0 — 
TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

• 3DPE1 • 3DPE2 • 3DPE3 • 3DPE4 • 3DPE5 

Figure 5.8: Number of rotation errors in each of the ten trials (TRl - TRIO), for each of 
the five programming experiments (PEX1 - PEX5) at level three. 
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5.4 Summary 

The first set of experiments using the three-level approach were presented in this chap­

ter. Here the three-level approach was used directly in the context of a programming 

paradigm, where the output of a self-assembly program is a target structure. Three 

2DP and five 3DP experiments were conducted, each with a specific target structure. 

These experiments were used to test the programming experiments hypothesis of wether 

physical information can be used to enable components to self-assemble into closed tar­

get structures with symmetric/asymmetric features. The independent variable in these 

experiments was the set of components (programmed or random), and the dependent 

variable was the resulting set of self-assembled structures. All the types of physically 

encoded information, as part of the second 2D and 3D physical information encoding 

schemes, Table 4.5 (page 97) and Table 4.7 (page 101) respectively, were used across the 

2DP and 3DP experiments. All the programming experiments are statistically significant 

with a p-value of 0 or 0.002. The successful results of the 2DP and 3DP experiments 

provide evidence to support the hypothesis for the programming experiments. 

Furthermore, the successful programming results provide credibility to the three-

level approach, including the set of rules used at level one, and the 2DcTAM and the 

3DcTAM used at level two (concurrent self-assembly, where no seed tiles are required and 

component rotations are permitted, at temperature one). With the success of the second 

2D and 3D physical information encoding schemes, further experiments extending the 

three-level approach are presented in Chapter 6: Evolving Self-Assembly Rule Sets and 

Chapter 1: Staging the Self-Assembly Process. 
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Chapter 6 

Evolving Self-Assembly Rule Sets 

With the success of the programming experiments (presented in Chapter 5: Program­

ming Self-Assembling Systems), the next step was to demonstrate how to automatically 

generate sets of rules using computer software to design physical self-assembling systems 

via physically encoded information. As the sophistication of self-assembling systems 

continues to increase, it will be more challenging to use top-down design due to self-

assembly being an algorithmically NP-complete problem (section 2.2.5: The Complexity 

of Self-Assembly). Evolutionary computing is well-suited for addressing such problems 

(Mitchell 1996). By incorporating evolutionary computing into the three-level approach 

(Figure 6.1), it couples bottom-up construction (self-assembly) with bottom-up design 

(evolution). As a corollary, an evolutionary methodology is beneficial in that no knowl­

edge of a target structure's morphology is required, only it's functionality. 

Two 2D evolutionary (2DE) experiments and three 3D evolutionary (3DE) experi­

ments were conducted. The evolutionary algorithm (including genotype and phenotype 

representations, multi-objective fitness function, and selection, crossover, and genetic op­

erators) is detailed, followed by the 2DE and 3DE experiments. This research and the 

2DE and 3DE experiments have been published in Bhalla et al. (2010) and Bhalla et al. 

(2011a) respectively. 

6.1 Evolutionary Algorithm 

The objective of the evolutionary algorithm is to search for a good enough solution, 

i.e. a component set (type and concentration) able to self-assemble into a single target 
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Level 1: Definition of Rule Set Level 1: Definition of Rule Set 

map rule set to phy 
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Level 3: Physical Realization of Rule Set Level 3: Physical Realization of Rule Set 

Figure 6.1: Three-level approach (left) incorporating evolutionary computing (right). 

structure. Environment and system (fits and breaks) rules are fixed. A generational 

evolutionary algorithm (Mitchell 1996) is used. The evolutionary unit, gene, is a single 

component (2D or 3D). A collection of gene sequences, databank, is used to identify 

and compare genes. A linear sequence constitutes a single gene (Top, Left, Bottom, 

Right) representing a 2D component (using A to H to indicate information orientation 

on an edge, and the — symbol to indicate a neutral site), and (Top, Left, Bottom, 

Right, Front, Right) representing a 3D component (using I to T with subscripts 1 to 

4 to indicate information orientation on a face, and the — symbol). There are 6,561 

total and 1,665 unique 2D genes (when considering 2D shape and rotation), and there 

are 1,291,467,969 total and 53,977,737 unique genes (when considering three-dimensional 

shape and rotations). By varying the set of genes (representing a set of components in 

a system) and the information (capital letter) associated with each gene, both are the 

evolvable elements, different phenotypes can be created (resulting set of structures in a 

system at the end of the self-assembly process). 

Elitism was used, where a portion of the individuals with highest fitness were copied 

to the next generation. The parameter settings for the number of generations, population 
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Number of Generations 5,000 10,000 

Population Size 50 100 

Elitism 10% 10% 

Table 6.1: Evolutionary algorithm parameter settings for 2D and 3D systems. 

size, and elitism for the 2D and 3D evolutionary experiments are provided in Table 6.1. 

The following is an overview of the genotype and phenotype representations, fitness 

function, and selection, crossover, and genetic operators used. 

6.1.1 Genotype and Phenotype Representations 

Genotype and phenotype representations are the same for both the 2D and 3D case. An 

individual's genotype representation is a variable length list of genes (Figure 6.2). At least 

two genes define a genotype (since this is the minimum for self-assembly to occur). An 

individual's phenotype representation is the resulting set of self-assembled structures. 

A single genotype representation may have more than one phenotype representation, 

depending on the set of components and assembly steps. As a worst-case example, a 

genotype that consists of n components (where n e N) with information / on all faces 

and n components with information J on all faces would result in at most 2n\ phenotypes. 

Consequently, it is not practical to test all the resulting phenotypes corresponding to a 

large genotype. Therefore, each individual (genotype) is evaluated three times, at each 

generation, to help determine the fitness of an individual. 
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2 X 1 X 1 X <-,-,-,1^ ,l*ir) 

Figure 6.2: Example of a 3D genotype that has more than one phenotype, where the 
180° bond between information M and N can assemble in two different configurations 
(shown with the dashed lines). 

6.1.2 Multi-Objective Fitness Function 

Two multi-objective fitness functions are used to evaluate each 2D and 3D individual. 

Both multi-objective fitness functions consist of a general solution and a refined solution. 

The general solution describes the morphology of a target structure. A refined solution 

is one that minimizes the number of remaining open assembly locations (preference for 

closed structures) and potential for assembly errors (due to magnetic interactions). Next, 

the objectives and functions comprising the 2D and 3D multi-objective fitness functions 

are provided. 

2D Multi-Objective Fitness Function 

Seven objectives can be categorized into evaluating a general and a refined solution (Fig­

ure 6.3, page 128). The general solution has five objectives: (1) area (j4), (2) perimeter 

(P), (3) Euler (E), (4) z-axis, and (5) matches. Each of these objectives is used to 

achieve the shape of the target structure. The area, perimeter, and Euler (connectivity 

of a shape) are calculated using 2D Morphological Image Analysis (Soille 2003), and are 
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Table 6.2: A sliding window technique is used (matrix) as a sum of magnetic errors (odd 
number of magnets must match at each position along the sliding window) and is applied 
to all potential two-component key-to-key interactions in a system 

provided in Equations 6.1 - 6.3 (where ns is the number of squares (components), ne is the 

number of edges, and n,, is the number of edges). The second-moment of inertia in the 

z-axis (Beer et al. 2009) is calculated to identify similar, but rotated structures. To dis­

tinguish between reflected structures (which are not permitted), the number of matching 

components between a self-assembled structure and the target structure is calculated. A 

refined solution is accounted for by using two objectives: (6) locations and (7) error. We 

consider a refined solution as one that minimizes the number of remaining open assembly 

locations and potential assembly errors (due to magnet interactions). The combination 

of these two objectives also reduces the number of unique components required. 

A = n s  (6.1) 

P=-4 + 2 n e  (6.2) 

E = n s  — n e  + n v  (6.3) 

Each objective is normalized, using the highest and lowest values from a generation 

(Bentley & Wakefield 1997). For objectives one to five (?,). the average normalized ob­

jective (ANOi) over three 2DcTAM evaluations is calculated and compared to the target 
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Figure 6.3: Fitness objective examples: structure I {A = 5, P = 12, and E = 1); structure 
II has the same second moment of inertia for its reflected equivalent; number of matches 
between reflected structure II is 3 (III); number of open locations is 2 (black circles, IV); 
an error of 2 in IV (Table 6.2). 
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objective (TOi) value. For objective six, the normalized average over the three 2DcTAM 

evaluations (ANOe) is calculated. For objective seven, the normalized objective (NO7) is 

calculated with respect to a genotype. The objectives are then weighted to give the final 

fitness score F2D (Equation 6.4). The weights were selected by conducting preliminary 

experiments. 

5 

F2D = (0.18 ITOi ~ ANOi\) + 0.05(AAr06 + N07) (6.4) 
i = l  

3D Multi-Objective Fitness Function 

Eight objectives can be categorized into evaluating a general and a refined solution (Fig­

ure 6.4). The general solution has six objectives: (1) volume (V), (2) surface area (S). (3) 

mean breadth (5), (4) Euler (E), (5) z-axis, and (6) matches. The volume, surface area, 

mean breadth, and Euler are calculated using Equations 6.5 to 6.8 (where nc is the num­

ber of cubes (components), n^ is the number of faces, ne is the number of edges, and n^ is 

the number of vertices). Together, these six general objectives are sufficient to describe 

the 3D shape of the target structures considered in the experiments. The volume, surface 

area, integral mean curvature, and Euler (connectivity of a shape) are calculated using 

3D Morphological Image Analysis (Blasquez & Poiraudeau 2003; Michielsen & de Raedt 

2000; Soille 2003). The second moment of inertia in the z-axis (Beer et al. 2009) is cal­

culated to identify either identical structures or different structures which have similar 

reflected features. To distinguish between reflected structures, the number of matching 

components between a self-assembled structure and the target structure is calculated. A 

refined solution is accounted for by using two objectives: (7) locations, and (8) error. 

A refined solution is considered as one that minimizes the number of remaining open 

assembly locations (for the creation of closed target structures), and potential assembly 

errors (due to magnetic interactions). Errors in magnetic interactions is applied to all 
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/ 
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V I  

Figure 6.4: Fitness objective examples: structure I (V = 3, S = 14, B = 2.5, and E 
= 1), structures II and III have the same moment of inertia, the number of matches 
between structures II and III which have similar reflected features is 3, the number of 
open locations is 2 (indicated using black circles in IV; 2D top view), and the potential 
error score in IV is 8 (Table 6.3). 

potential two-component key-to-lock and key-to-key (all five magnets positions are con­

sidered in key-to-key errors, and partial interactions are not accounted for) in a system. 

The potential magnet error is calculated as the sum of the scores in Table 6.3, where 

each cell in the matrix is the sum of errors occurring between two pieces of information 

in all four orientations. The combination of these two objectives also reduces the number 

of unique components required, as well as favouring 5-magnetic-bit patterns with higher 

rotational freedom. 

V = nc  (6.5) 

S = — 6nc + 2rif (6.6) 

B = (3nc — 2rif + ne)/2 (6.7) 

E = — nc  + rif — ne  + nv  (6.8) 

Each objective is normalized, using the highest and lowest fitness scores from the 
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12 32 

8 0 0 

36 24 

I 36 24 24 24 6 16 

24 24 36 16 24 24 
16 

24 36 24 21 I 
36 24 12 32 36 16 24 

24 12 36 24 I 
12 32 36 24 24 24 16 

12 24 24 36 I 

24 12 

36 

27 

20 

30 

Table 6.3: Magnetic error interactions matrix (in reference to Table 4.7, page 101), where 
the numbers are the sum of all errors between information in the four orientations (using 
the number of magnets, i.e. two or one, in each mismatched location), and where N/A 
is in reference to lock-to-lock interactions not being possible 
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current generation (Bentley & Wakefield 1997). This method has been shown to be an 

effective way to calculate multi-objective fitness (Corne & Knowles 2007). For objective 

i (where i varies from 1 to 6) the average normalized objective (ANOi) over three 3Dc-

TAM evaluations is calculated and compared to the target objective (TOi) value. For 

objective seven, the normalized average over the three 3DcTAM evaluations (ANOj) is 

calculated. For objective eight, the normalized objective (NOg) is calculated with re­

spect to a genotype. The average is not used with objective 8 as the error calculated is 

based exclusively on a genotype, and does not vary over the three 3DcTAM evaluations. 

The objectives are then weighted and summed to give a final fitness score F3D (Equation 

6.9). The weights were selected from preliminary experiments, and based on the 2D 

evolutionary experiments conducted. It was found that a weighting where the refined 

objectives accounted for more than 10% of the overall fitness function did not lead to 

good solutions. 

6 

F:w = (0.15 IT°i ~ AN°i\) + 0-05(AN07 + NOs) (6.9) 
;=1 

6.1.3 Selection, Crossover, and Genetic Operators 

The same selection, crossover, and genetic operators are used in both the 2D and 3D case. 

The fitness scores for each individual are used during selection. Roulette-wheel selection 

is used to select two parents (favouring lowest fitness scores). The two parents, using a 

variable-length crossover operator, are used to create two children. Each common gene 

(determined by the gene databank) between the two parents is copied to each child. Each 

uncommon gene, for example the gene from parent one, has a 90% probability of being 

copied to child one (likewise for parent two and child two). After crossover is performed 

to create two children, the genetic operators duplication, deletion, and mutation are 

applied to each child. There is a 10% probability of a single gene, chosen at random, of 
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being duplicated, and likewise being deleted. For each information location in a gene, 

there is a 10% probability of being mutated (equal probability A to H, and — in the 2D 

case, and equal probability I to T in all four orientations, and — in the 3D case). 

6.2 Hypothesis Statement 

The hypothesis for the evolutionary experiments was, 

Hypothesis: given a closed target structure with symmetric/asymmetric fea­

tures, an evolutionary algorithm can be used to evolve a set of components 

that are able to self-assemble into the desired target structure. 

The three-level approach with the addition of evolutionary computing (evolved rule 

sets at level one) was used to test this hypothesis, virtually (level two) and physically 

(level three). Two 2DE experiments and three 3DE experiments (referred to as 2DEE1, 

2DEE2, and 3DEE1 to 3DEE3 respectively) were conducted to test this hypothesis. 

A target structure was assigned to each experiment (provided in section 6.3: 2D 

Evolutionary Experiments and Results and section 6.4: 3D Evolutionary Experiments 

and Results). As with the programming experiments, enough components were supplied 

to create up to three 2D and 3D target structures. Again, the number of components 

corresponds to the capacity of the corresponding environments. Ten trials were conducted 

for each experiment1. Like the programming experiments, a trial was evaluated by be 

successful if all three 2D and 3D target structures were created at level two, and if at least 

one 2D and 3D target structures were created at level three. The independent variable 

in these experiments was the set of components, defined by their type and frequency. 

1An additional five trials for each 2D experiment, to the original five trials presented in (Bhalla et al. 
2010), were conducted to collect further data. 
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Figure 6.5: Target structures for 2DEE1 (left) and 2DEE2 (right). 

The dependent variable is the resulting self-assembled structures. For each experiment, 

an evolved component set was specified along with a random component set to test the 

independent variable. 

6.3 2D Evolutionary Experiments and Results 

Two 2DE experiments were conducted, where a target structure was assigned to each ex­

periment (Figure 6.5). The experimental procedures and results are described according 

to the three-level approach: evolving rule sets (level one), modelling using 2DcTAM (level 

two), and physically testing systems using the second 2D physical information encoding 

scheme (level three). 

6.3.1 Level One: Rule Set for 2DE Experiments 

The evolutionary algorithm used 5,000 generations, with a population size of 50 indi­

viduals. for each run. The initial individual (genotype) length was set to the required 

number of components to create one target structure. Figure 6.6 shows the evolutionary 

algorithm results. Five runs were conducted for each experiment. For 2DEE1, the two 

optimal solutions were achieved. The second solution was chosen for these experiments, 

as components from previous 2DPE1 could be reused. For 2DEE2, the single optimal 

solution was achieved. For the random component sets, components were created by se-
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Figure 6.6: The two optimal solutions for 2DEE1 (I and II) and the single optimal 
solution for 2DEE2 (III). 

lecting, with uniform probability, the information assigned to each location. The number 

of components randomly generated were equal to the required number of components to 

create one target structure. A summary of the component rules, for each experiment, is 

provided in Table 6.4. The number of components specified (evolved and random) were 

multiplied by three in order to create the maximum number of target structures for the 

2DE experiments. The system rules from Table 4.5 (page 97) were applicable to both 

groups. 

6.3.2 Level Two: Virtual Execution of Rule Set for 2DE Experiments 

The 2DcTAM was used to virtually evaluate the ability of each rule set (evolved or 

random) to create its respective target structure. Although the 2DcTAM is used by the 

evolutionary algorithm, it is used again to verify the creation of multiple target structures 

concurrently for each rule set (evolved and random). 

Level Two: Experimental Setup for 2DE Experiments 

The component rules from Table 6.4 were mapped to an abstract representation for 

the 2DcTAM. The same parameter settings for the 2DcTAM from section 5.2.2: Level 



E 3 X (A,A,A,A), 12 X 

2DEE1 
R 

3 X (-,-,B,G)f 3 X (-,D,E,E), 3 X (C,-,-,C), 3 X (C.E,-,-), 
3 X (-,F,B,H) 

2DEE2 
E 3 X 6 X A), 3 X (H,-,-,B) 

2DEE2 
R 3 X (G,H,H,-), 3 X (-,A,V), 3 X (-.H,-,-), 3 X (-,-,E,A) 

Table 6.4: Evolved and random (E/R) component sets (represented as '# x (Top, Left, 
Bottom, Right)', where # represents quantity and the directions refer to component 
information) for the 2DE experiments (EX) 

Two: Experimental Setup for 2DP Experiments was used: each component's shape was 

a unit square, the environment boundary size was 10x10 units, and the environment 

temperature was set to one. Again, a different random seed was used to initialize the 

2DcTAM for each of the ten trials. 

Level Two: Experimental Results for 2DE Experiments 

Each evolved component set successfully created three of their applicable target struc­

tures, at level two. These results show that even without a component acting as a seed, it 

is still possible to successfully create target structures. Furthermore, these results show 

that it is possible to create multiples of the same target structure, when appropriate 

component information is used. In contrast, none of the random component sets suc­

cessfully created at least one target structure, in each trial. In this case, the same reason 

for the unsuccessful results applies to both random sets. For 2DEE1, the first and last 

component types will form substructures that are independent from substructures formed 

by the second, third, and fourth component types. Likewise for 2DEE2, the first and 

third component types will form substructures that are independent from substructures 

formed by the second and fourth component types. 
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2DEE1 
Evolved 10 0 

0 2DEE1 
Random 0 10 

0 

2DEE2 
Evolved 10 0 

0 2DEE2 
Random 0 10 

0 

Table 6.5: The number of successful and unsuccessful trials for each evolved and random 
evolutionary experiment (2DEE1 and 2DE2) at level two, with corresponding p-value 
calculated using Fisher's Exact Test (one-sided) for analyzing binary data 

To evaluate the level two results, Fisher's Exact Test (one-sided) for analyzing binary 

data was used. Each experiment is statistically significant with a p-value of 0 (Table 6.5). 

Therefore, the hypothesis for the evolutionary experiments is supported at level two by 

the evidence from these successful 2DE experiments. 

6.3.3 Level Three: Physical Realization of Rule Set for 2DE Experiments 

With the success of each system using an evolved component set at level two, a level 

three translation was performed to test if the translated component set of each system 

could self-assemble into its respective target structure. A level three translation was not 

performed on the systems using a randomly generated component set, since they were 

not successful. 

Level Three: Experimental Setup for 2DE Experiments 

Component mapping followed Table 4.5 (page 97). The physical experimental procedure 

followed .section 5.2.3: Level Three: Experimental Setup for 2DP Experiments. Randomly 

placed components on the surface of a tray were shaken for 20 minutes, after which the 

state of the system was recorded: number of target structures, number of matching errors, 
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2DE - Number of Target Structures 
3 
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0 
TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

• 2DEE1 • 2DEE2 

Figure 6.7: Number of target structures created in each of the ten trials (TRl - TRIO), 
for each of the two evolutionary experiments (2DEE1 and 2DEE2) at level three. 

and number of assembly errors. Details regarding the physical experiment setup for the 

2DE experiments is provided in section C.2: Experimental Procedure for the 2D Systems. 

Level Three: Experimental Results for 2DE Experiments 

Each trial, for each experiment, was successful in creating at least one target structure. 

Figure 6.7 shows the number of target structures achieved in each trial. Figure 6.8 shows 

the final state for the best trial for each experiment. In 2DEE1, there were no matching 

errors (as this was not possible due to the 3-magnetic-bit codes present) and no assembly 

errors. In 2DEE2, there was only one matching error (trial five) and no assembly errors. 

As structures self-assembled, the environmental free space was reduced, constraining the 

rotation of substructures and sometimes constraining single components from reaching 

assembly locations. 
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2DEE1 2DEE2 

Figure 6.8: Photographs of successful 2DE experiments (2DEE1 and 2DEE2), where 
adjacent components to the outlined shapes are not attached to the self-assembled struc­
tures (resting positions when energy was removed from the environment). 

Fisher's Exact Test (one-sided) for analyzing binary data was used to determine the 

statistical significance of the results from the 2DE experiments. For both 2DE experi­

ments, the p-value is 0, which is considered to be statistically relevant (Table 6.6). As 

a result, these successful results provide evidence to support the hypothesis that given a 

closed 2D structure with symmetric/asymmetric feature, an evolutionary algorithm can 

be used to evolve a set of components that are able to self-assemble into the desired 

target target structure. 

6.4 3D Evolutionary Experiments and Results 

Three 3DE experiments were conducted (Figure 6.9, page 141). As with the 3DP ex­

periments, these target structures vary in the number of components and their symmet­

ric/asymmetric features, and cannot be created using the underlying cube lattice pattern. 

As a result, these target structures are appropriate to test if the information encoded in 

the component sets is sufficient to achieve the target structure using self-assembly. The 

experimental procedures and results are described according to the three-level approach: 
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2DPE1 Programmed 10 0 0 

2DPE2 Programmed 9 1 0 

Table 6.6: Number of successful and unsuccessful trials for the evolutionary experi­
ments (2DEE1 and 2DEE2) at level three, with corresponding p-values (calculated using 
Fisher's Exact Test (one-sided) for analyzing binary data, with respect to 0 successful 
and 10 unsuccessful trials for the random sets for each evolutionary experiment from 
there level two results) 

evolving a component rule set (level one), modelling using the 3DcTAM, and physically 

testing systems using the second 3D physical information encoding scheme (level three). 

6.4.1 Level One: Rule Set for 3DE Experiments 

Although multiple solutions were evolved for each 3DP experiment, the selected solutions 

were based on those which used component designs previously used in the 3DP experi­

ments (to reduce financial costs of fabricating components). The number of components 

specified (evolved and random) were multiplied by three in order to increase the chances 

of being able to create up to three examples of the target structures. This method for 

creating the evolved and random component sets was chosen as part of the experimental 

setup with the aim of providing proof-of-concept evidence for the evolutionary paradigm, 

by conducting a statistical significance tests. The component sets used in the evolution­

ary experiments is provided in Table 6.7. System rules from Table 4.7 (page 101) applied 

to both evolved and random component sets. 

6.4.2 Level Two: Virtual Execution of Rule Set for 3DE Experiments 

The 3DcTAM was used to evaluate the ability of each rule set (evolved or random) to 

create its respective target structure. Although the 3DcTAM is used by the evolutionary 



Figure 6.9: From left to right: target structures for the 3DE experiments corresponding 
to 3DEE1 to 3DEE3 respectively (with perspective, top, and front views). 

3DEE1 
E 

3DEE1 
R 3X(->-,M2,-,li,li)t6X(LitPif-,-,-,-) 

3DEE2 
E 12 X 3 X (-F-F->M2LKI>KI)F 3 X (KI,-,KI,-,-,NI) 

3DEE2 
R 12 X (Ii,-,Ii,-,S2,R3), 3 X (-fS4,Li,3 X(-,-,li,Lv,-) 

3DEE3 
E 9 X 3 X (-.Si.li.-.li,-), 3 X 

3DEE3 
R 9 X (-,03,Nif-,Ni,-,), 3 X (-,Mi,Ji,3 X (-.Li.-.-.-W 

Table 6.7: Evolved and random (E/R) components sets (represented as '# x (Top, Left, 
Bottom, Right, Front, Back)', where # represents quantity and the directions refer to 
component information) for the 3DE experiments (EX) 
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algorithm, it also used to verify the creation of the three 3D target structures. 

Level Two: Experimental Setup for 3DE Experiments 

With the exception of component rules following Table 6.7, the same level two exper­

imental setup from the 3DP experiments was used for the level two 3DE experiments 

(section 5.3.3: Level Two Experimental Setup for the 3DP Experiments). 

Level Two: Experimental Results for 3DE Experiments 

Table 6.8 provides the results of the 3DP experiments at level two. Each evolved compo­

nent set successfully created all three target structures, whereas the random component 

sets were unsuccessful in generating any target structures. Along with the level two 3DP 

experiments, these evolved results further support that seed tiles (components) are not 

required to create target structures. The causes for the unsuccessful randomly generated 

results follow the same reason as the level two 3DP experiments of random component 

sets having uncomplimentary information (3DPEE1 and 3DEE2), and random compo­

nent sets not being able to consistently create structures due to rotational information 

(3DEE3). To analyze the evolutionary results, Fisher's Exact Test (one sided) for ana­

lyzing binary data was used. The p-value for each 3DP experiment is 0. These successful 

results provide evidence to support the hypothesis for the evolutionary experiments at 

level two in the context of the 3DE experiments. 

6.4.3 Level Three: Physical Realization of Rule Set for 3DE Experiments 

Each system using an evolved component set was successful at level two. As a result, 

a level three translation was performed to test if the translated component set of each 

evolved system could self-assemble into its respective target structure. Since the results 

were unsuccessful, a level three translation was not performed for the random component 

sets. 
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3DEE1 
Evolved 10 0 

0 3DEE1 
Random 0 10 

0 

3DEE2 
Evolved 10 0 

0 3DEE2 
Random 0 10 

0 

3DEE3 
Evolved 10 0 

0 3DEE3 
Random 0 10 

0 

Table 6.8: The number of successful and unsuccessful trials for each evolved and random 
evolutionary experiment (3DEE1 - 3DEE3) at level two, with corresponding p-value 
calculated using Fisher's Exact Test (one-sided) for analyzing binary data 

Level Three: Experimental Setup for 3DE Experiments 

The same level three physical experimental setup used in the 3DP experiments (sec­

tion 5.3.3: Level Three: Experimental Setup for 3D Experiments) was used for the 

level three 3DE experiments, with the exception of jar placements on the orbital shaker 

(sectionC.3: Experimental Procedure for the 3D Systems). At the conclusion of each 

physical 3DE trial, the state of system was recorded (number of target structures cre­

ated, matching errors, rotation errors, and assembly errors). 

Level Three: Experimental Results for 3DE Experiments 

Figure 6.10 shows the results for each 3DP experiment at level three. Figure 6.11 (page 

145) shows an example of the final state of a successful trial, for each experiment. Ro­

tation errors did not occur in 3DEE1 and 3DEE2, but did in 3DEE3 (one rotation error 

in trial one). Matching and assembly errors did not occur in all three 3DE experiments. 

Fisher's Exact Test (one-sided) for analyzing binary data was used to determine the 

statistical significance of creating target structures in each experiment (Table 6.9, page 
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3DE - Number of Target Strcutures 
3 

2 

1 

0 
TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

• 3DEE1 • 3DEE2 • 3DEE3 

Figure 6.10: Number of target structures created in each of the ten trials (TR1 - TRIO), 
for each of the three evolutionary experiments (3DEE1 - 3DEE3) at level three. 

145). All three 3DE experiments are statistically significant at the 0.01 level. These suc­

cessful 3DP experiments provide evidence to support the evolutionary hypothesis that-

given the attributes of a closed 3D target structure with symmetric/asymmetric features, 

an evolutionary algorithm can be used to evolve a set of components that are able to 

self-assemble into the target structure. 

6.5 Summary 

As discussed in section 2.2.5: The Complexity of Self-Assembly, designing self-assembling 

systems is an NP-complete problem. As a result, it will be more challenging to use 

traditional top-down design methodologies to create self-assembling systems as their so­

phistication increases. Evolutionary computing is well-suited to addressing NP-complete 
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V* 
V 

3DEE1 3DEE2 

3DEE3 

Figure 6.11: Photographs of successful level three evolutionary experiment trials (3DEE1 
- 3DEE3). 

3DPE1 Evolved 10 0 0 

3DPE2 Evolved 7 3 0.002 

3DPE3 Evolved 8 2 0 

Table 6.9: Number of successful and unsuccessful trials for the evolutionary experiments 
(3DEE1 - 3DEE3) at level three, with corresponding p-values (calculated using Fisher's 
Exact Test (one-sided) for analyzing binary data, with respect to 0 successful and 10 
unsuccessful trials for the random sets for each evolutionary experiment from there level 
two results) 
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problems. In this chapter, an extension to the three-level approach incorporating evolu­

tionary computing was presented. An evolutionary algorithm was detailed, for evolving 

good enough solutions (a component set able to self-assemble into a single target struc­

ture). An overview of the evolutionary algorithm (including search space considerations), 

genotype and phenotype representations (particularly that a single genotype may have 

multiple phenotypes), multi-objective fitness functions (comprising a general and refined 

solution), and selection, crossover, and genetic operators were presented. Furthermore, 

one of the strengths of the evolutionary paradigm described here, is that it can be easily 

extended from using 2D systems to 3D systems. 

The three-level approach incorporating evolutionary computing was used to conduct 

two 2DE and three 3DE experiments, each with a specific target structure. These ex­

periments were conducted to test the evolutionary hypothesis of given the attributes 

of a closed target structure with symmetric/asymmetric features, an evolutionary al­

gorithm can be used to evolve a set of components that are able to self-assemble into 

the desired target structure. The independent variable in these experiments was the set 

of components (evolved or random), and the dependent variable was the resulting set of 

self-assembled structures. The results of all the evolutionary experiments are statistically 

significant, with a p-value of either 0 or 0.002. The successful 2DE and 3DE experiments 

supports the evolutionary hypothesis. Therefore, the three-level approach incorporating 

evolutionary computing, and using physically encoded information, is one method to 

address the self-assembly design problem being NP-complete. 

With the success of using the three-level approach in the context of a programming 

paradigm and extending it to an evolutionary paradigm, a continuation of testing the 

boundaries of designing physical self-assembling systems is provided in Chapter 1: Staging 

the Self-Assembly Process, Time intervals are used to divide the self-assembly process 

into stages to create target structures that would not otherwise be possible. 
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Chapter 7 

Staging the Self-Assembly Process 

One important challenge when creating artificial self-assembling systems is caused by 

the use of components that lack the plasticity of biological cells. Using components 

that cannot differentiate results in self-assembly being constrained to a limited set of 

fixed components and their bonding mechanisms (Demaine et al. 2008). One strategy 

to address this challenge is to divide the self-assembly process into stages, referred to 

as staged or hierarchical self-assembly. Demaine et al. (2008) formalized the method of 

staging where components can be added to, or removed from, an environment at various 

time intervals. 

Demaine et al. (2008) demonstrated the benefits of staging theoretically using abstract 

tiles, where staging the self-assembly process was based on the temporal aspects of con­

ducting laboratory experiments. In contrast, it is proposed in this chapter that one can 

use physically encoded information, specifically component morphology, as the dividing 

basis to stage the self-assembly process, inspired by biological development. This chapter 

considers how physical features in a set of heterogeneous, passive, mechanical components 

can be exploited to reduce potential assembly errors, leverage rotational bonding mecha­

nisms, and create closed structures with symmetrical/assymerical features. This staging 

strategy is consistent with the definition of self-assembly (section 1.2: Thesis Hypoth­

esis), as a process involving components that can be controlled through their proper 

design and their environment, and where components can adjust their relative positions. 

Staged self-assembly provides the advantage of encoding the construction of a tar­

get structure in the staging algorithm itself and not exclusively into the design of the 

components. For example, a staging algorithm can be used to reintroduce previously 
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used components and bonding mechanisms at later time intervals, prevent the formation 

of holes, and create more complex structure morphologies that may not be otherwise 

possible due to shape conflicts between components. 

The sTAM extends the aTAM (section 2.2.3: The abstract Tile Assembly Model) 

by dividing the self-assembly process into time intervals. Components can be added 

to, or removed from, as set of environments, mirroring the laboratory operations of 

adding/filtering DNA-based components to solutions that can be mixed together. The 

sTAM has been used to investigate the algorithmic construction of structures, such as 

a fully connected nxn square (n G N). The construction of a square is problematic, 

as assembling tiles must be coordinated to prevent the occurrence of holes. The sTAM 

has shown an algorithmic efficiency with minimal tile sets and bonding mechanisms (not 

requiring co-operative bonding, at temperature one) in the construction of such structures 

(Demaine et al. 2008). This efficiency is due to staging, and is an advantage over the 

aTAM itself that relies on co-operative bonding, or other extensions to the aTAM that 

use either changes in temperature or by varying the concentration of tiles (section 2.2.4-' 

Extensions to the abstract Tile Assembly Model). 

Situated development is another method investigating staged construction, where ar­

tificial evolution was used to evolve the assembly plan of a structure (Reiffel & Pollack 

2005). Based on rapid prototyping, assembly plans were evolved using permanent and 

temporary components which were "dropped" in an environment. Temporary compo­

nents act as scaffolding and can be removed (representing how support material can be 

removed in rapid prototyping). 

In contrast to Demaine et al. (2008) and Reiffel & Pollack (2005), physical examples of 

staged self-assembly include where staging relies on templates to enable the self-assembly 

process (section 2.1: Physical Self-Assembling Systems). Despite this work, there is little 

(if any) literature that describes the use of component physical information to stage the 
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self-assembly process. 

The purpose of the 2D staged (2DS) experiment and 3D staged (3DS) experiments is 

to demonstrate, as proof-of-concept, that staging can enable the self-assembly of closed 

target structures with symmetric/asymmetric features not otherwise possible. An ex­

tension to the three-level approach incorporating staging is presented next, followed by 

the 2DS and 3DS experiments. Research described in the staged experiments has been 

published in Bhalla et al. (2011b). 

7.1 Staging and the Three-Level Approach 

The three-level approach is extended here to incorporate a staging strategy based on 

exploiting component physical information. At level one, a new system rule is introduced 

to specify which components are present at a particular time interval. To accommodate 

this new rule, an extension to a self-assembly model based on the aTAM is provided 

at level two. Finally, physical features of components that are exploited in this staging 

strategy are described at level three. 

7.1.1 Staging - Level One: Definition of Rule Set 

At level one, the same component, environment, and systems interaction (fits and breaks) 

rules presented in section 4-1: Level One: Definition of Rule Set are used for staging. A 

modification to the system rule now includes specifying component type and frequency 

in each time interval (tp). Time intervals indicate when components are added to a single 

environment (e.g. </>o; using a subscript 0 to n, where n £ N and 0 indicates the start of 

the self-assembly process). In the staged experiments to follow, components can only be 

added to the same one-pot-mixture environment. 
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7.1.2 Staging - Level Two: Virtual Execution of Rule Set 

At level two, the 2DcTAM and the 3DcTAM (section 4-2: Level Two: Virtual Execution 

of Rule Set) is extended to incorporate staging. The extended model is referred to as 

the 2D and 3D staged concurrent Tile Assembly Model (2DscTAM and 3DscTAM). As 

with the 2DcTAM and the 3DcTAM, self-assembly is modeled in parallel, no seed tiles 

are required, tiles are permitted to rotate, tiles are in the in a one-pot-mixture, and the 

environment temperature is one. 

The 2DscTAM and the 3DscTAM use a common algorithm, staged concurrent Tile 

Assembly Algorithm. Pseudocode for this algorithm is provided below. This algorithm 

has a loop to accommodate staging, where the algorithm followed by the 2DcTAM and 

the 3DcTAM, concurrent Tile Assembly Algorithm, is used at each stage. 

Algorithm staged concurrent Tile Assembly Algorithm 

Input: a set of staged multiset components StagedSet; 0 to n, where the first set indicates 

the start- of the staged self-assembly process 

Output: set of self-assembled target structures and remaining tiles 

1. create an empty results set ResultSet for tiles and substructures 

2. for i 4— 0 to the (size of StagedSet — 1) 

3. if i ± 0 

4. then set all assembly locations labelled unmatchable in ResultSet to open 

5. add elements from StagedSet [i] to ResultSet 

6. ResultSet <— concurrent Tile Assembly A Igomthm (Result Set) 

7. return ResultSet 

Figure 7.1 provides an example of the 2DscTAM. As with the 2DcTAM and the 

3DcTAM, a post-evaluation is conducted to test for any violations between the resulting 

set of self-assembled structures and the environment. Accounting for errors, including 
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Figure 7.1: 2DseTAM example where two time intervals are used to self-assemble a 3x3 
square target structure. 

neutral site, uncomplimentary information, and boundary violations, and the requirement 

for an assembly path (Figure 4.4, page 91) are also incorporated into the 2DscTAM and 

the 3DscTAM. 

7.1.3 Staging - Level Three: Physical Realization of Rule Set 

At level three, the second 2D and 3D physical information encoding schemes are used, 

Table 4.5 (page 97) and Table 4.7 (page 101) respectively. Component physical features 

including key and lock shapes and magnetic-bit patterns — the morphologies of the com­

ponents — are used to divide the self-assembly process into stages in the self-assembling 

systems provided in the remainder of this chapter. 

Designing staged self-assembling systems using component physical features is similar 

to the programming paradigm, where the connectivity of a target structure was used to 

assign component information and determine the frequency of each component type. 

However in this case, component types that have the potential to lead to conflicts are 
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separated into different time intervals. A detailed example of designing a staged self-

assembling system is provided in section 8.2: Leveraging Limited Rule Sets. Due to 

the types of static self-assembling systems used in this work, a staged self-assembly 

process is an additive process where a target structure is constructed from the inside 

out. Detailed examples of designing staged self-assembling systems are used to achieve 

the goal of the staging strategy presented in this chapter, which is to demonstrate how 

component physical information can be used to further reduce errors (section 7.3: 2D 

Staging Experiments and Results) and leverage rotational properties (section 7.4: 3D 

Staging Experiments and Results) by using staging. 

7.2 Hypothesis Statement 

The hypothesis for the staged experiments was, 

Hypothesis: staging based on component physical information can be used to 

enable components to self-assemble into closed target structures with sym­

metric/asymmetric features. 

The three-level approach incorporating staging was used to test this hypothesis, vir­

tually (level two) and physically (level three). One 2DS and three 3DS experiments 

(referred to as 2DSE1 and 3DSE1 to 3DSE3 respectively) were used to test this hypoth­

esis. A target structure was assigned to each experiment (provided in section 7.3: 2D 

Staging Experiments and Results and section 7.4: 3D Staging Experiments and Results). 

In contrast to the programming and evolutionary experiments, enough components were 

supplied to create one 2D target structure and up to two 3D target structures. These 

target structures use more components than the previous target structures, and the num-
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Figure 7.2: 2D staged target structure for the 2DS experiment (2DSE1). 

ber of components required by these staged target structures correspond to the capacity 

of the environment. Ten trials were run for each experiment. A trial was evaluated to be 

successful if all 2D and 3D target structures were created at level two, and if at least one 

2D and 3D target structure was created at level three. The independent variable in these 

experiments is the use of two time intervals. The dependent variable is the resulting 

self-assembled structures. For each experiment, a staged component set was specified 

along with a non-staged component set to test the independent variable. 

7.3 2D Staging Experiments and Results 

One 2DS experiment was conducted. Figure 7.2 provides the target structure for this 

experiment. The staging strategy for creating the 2D 3x3 square target structure is to 

construct the centre and edges of the square in the first time interval, and construct the 

corners of the square in the second time interval (Figure 7.3). In the first time interval, 

potential errors between the edge components can be reduced by appropriate selection of 

3-magnetic-bit patterns and the use of lock shapes to assemble to the centre component . 

The morphology of the substructure after the first time interval has corner features that 

can reduce assembly errors with the use of corner components that use only lock assembly 

shapes. The neutral edges of the corner components effectively block a corner component 

from assembling to the substructure in an improper orientation (Figure 7.3). 
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Figure 7.3: Staging strategy for the 2D target structure, and error prevention due to shape 
and proper 3-magnetic-bit pattern selection (e.g. avoid magnetic repulsion configuration). 

The experimental procedures and results are presented according to the three-level 

approach: defining a staged rule set (level one), modelling using the 2DscTAM (level 

two), and physically testing systems using the second 2D physical information encoding 

scheme (level three). 

7.3.1 Level One: Rule Set for 2DS Experiment 

Table 7.1 provides the component rules. The control group represents components that 

were not divided into time intervals (non-staged). The experimental group used the same 

components, but divides them into two time intervals (staged). The system interaction 

rules from Table 4.5 (page 97) were applicable to both groups. 

7.3.2 Level Two: Virtual Execution of Rule Set for 2DS Experiment 

For each 2DS trial, the 2DscTAM was used to virtually evaluate the ability of each rule 

set (staged and non-staged) to create the 2D target structure. 
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2DSE1 
i|Jo{1 X (D.D.D.D), 4 X (B,-,B,C)} 
I|ji {4 X (-AA,-)} 

Table 7.1: Staged component set (represented as lpsi # x (Top, Left, Bottom, Right)', 
where ip identifies the time interval, # represents quantity, and the directions refer to 
component information) for the 2DS experiment (EX) 

Level Two: Experimental Setup for 2DS Experiment 

The component rules from Table 7.1 were mapped to an abstract representation for 

the 2DscTAM. The same parameter settings for the 2DcTAM from section 5.2.2: Level 

Two: Experimental Setup for 2DP Experiments were used: each component's shape was 

a unit square, the environment boundary size was 10x10 units, and the environment 

temperature was set to one. Again, a different random seed was used to initialize the 

2DscTAM for each of the ten trials. 

Level Two: Experimental Results for 2DS Experiment 

The staged components successfully created one target structure in each of the ten tri­

als. None of the non-staged components were able to create one target structure. The 

unsuccessful non-staged trials either resulted in a set of substructures (due to edge and 

corner components assembling in incorrect orientations), or the creation of a 3x3 open 

square. The results at level two were analyzed using Fisher's Exact Test (one sided) for 

binary data. The results are statistically significant with a p-value of 0 (Table 7.2). 

7.3.3 Level Three: Physical Realization of Rule Set for 2DS Experiment 

A level three translation was preformed for both the staged and non-staged components 

(to observe the physical results of non-staged components). 



156 

2DSE1 
Staged 

Non-Staged 

10 

0 

0 

10 
0 

Table 7.2: The number of successful and unsuccessful trials for the staged and non-staged 
trials for 2DSE1 at level two, with corresponding p-value calculated using Fisher's Exact 
Test (one-sided) for analyzing binary data 

Level Three: Experimental Setup for 2DS Experiment 

Component mapping followed Table 4.5 (page 97). The physical experimental procedure 

followed section 5.2.3: Level Three: Experimental Setup for 2DP Experiments, with the 

exception that two 10 minute time intervals were used for the staged component set, and 

one 20 minute time interval was used for the non-staged component set. Components 

were randomly placed initially on the surface of the tray. New components added to 

the second time interval of the staged trials were also randomly placed on the surface 

of the tray (without disturbing any components/substructures from the previous time 

interval). At the conclusion of each time interval, the state of the system was recorded: 

number of target structures, number of matching errors, and number of assembly errors. 

Details regarding the physical experimental setup for the 2DP experiment is provided in 

section C.2: Experimental Procedure for the 2D Systems. 

Level Three: Experimental Results for 2DS Experiment 

Figure 7.4 provides an example of the end of each time interval of a successful trial. Ta­

ble 7.3 shows the number of successful and unsuccessful trial for the staged and non-staged 

trials. For both component groups, no matching and assembly errors were observed in 

the ten trials. Only partial structures were observed, and no open 3x3 squares, were 

observed at the conclusion of the non-staged trials. Using Fisher's Exact Test, this ex-
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2DSE1 - ip0 2DSE1 -1|>1 

Figure 7.4: Photographs of the successful 2DS experiment (2DSE1) after the first time 
interval (left) and the second time interval (right). 

2DSE1 
Staged 

Non-Staged 
0.002 

0 10 

Table 7.3: The number of successful and unsuccessful trials for the staged and non-staged 
trials for 2DSE1 at level three, with corresponding p-value calculated using Fisher's Exact 
Test (one-sided) for analyzing binary data 

periment is statistically significant at the 0.01 level (i.e. there is a 99% certainty the 

results are not due to chance). 

7.4 3D Staging Experiments and Results 

Three 3DS experiments were conducted, and a target structure was assigned to each 

experiment (Figure 7.5). The three 3D target structures have a three-component common 

core structure, and vary in the number of periphery components (increasing from two, 

three, and four). The core structure requires two specialized 90° bonds, whereas the 
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Figure 7.5: From left to right: target structures for the 3DS experiments corresponding 
to 3DSE1 to 3DSE3 respectively (with perspective, top, and front views). 

periphery components only require general 360° bonds. As observed in the preliminary 

3D experiments, substructures consisting of at, least three components are not able to 

assemble together. Given that the likelihood of general 360° bonds occurring is more 

likely than specialized 90° bonds, the staging strategy for creating the three 3D target 

structures is to construct the core substructure in the first time interval, and construct the 

periphery substructures in the second time interval (Figure 7.6). The first time interval 

leverages the specialized component rotational information. Lock shapes for the 360° 

bonds are used as part of the morphology of the components in the first time interval, to 

reduce potential matching errors between specialized and general bonds. Furthermore, 

the resulting morphologies of the resulting core substructures at the end of the second 

time interval consist only of neutral and lock shapes, preventing assembly between the 

core substructures. 

The experimental procedures and results are presented according to the three-level 
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1>t 

Figure 7.6: Staging strategy for the second 3D target structure (applicable to the first 
and third target structure). 

approach: defining a staged rule set (level one), modelling using the 3DscTAM (level 

two), and physically testing systems using the second 2D physical information encoding 

scheme (level three). 

7.4.1 Level One: Rule Set for 3DS Experiments 

The component rules for the 3DS experiments is provided in Table 7.4. Control groups 

and experimental groups represent non-staged and staged (using two time intervals) 

component sets respectively. System interaction rules from Table 4.7 (page 101) applied 

to both staged and non-staged component sets. 

7.4.2 Level Two: Virtual Execution of Rule Set for 3DS Experiments 

For each 3DS trial, the 3DscTAM was used to virtually evaluate the ability of each rule 

set, staged and non-staged, to create the 3D target structures. 

Level Two: Experimental Setup for 3DS Experiments 

With the exception of component rules following Table 7.4, the same level two exper­

imental setup from the 3DP experiments was used for the level two 3DS experiments 
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3DSE1 ipo {2 X (-,-,03,-,Oi,-), 4 X (.,li,.,.,p1f.)> 
ipi {4 X (Ji 

3DSE2 ip0{2 X (-,Qi,-,QifKi,-), 4 X Ki,Ri,-)} 
ipi {6 X (Li 

3DSE3 
ipo{2 X (Ti,.fT4,4 X (-.-.h.h.Si,-)} 
ipi {8 X (Ji 

Table 7.4: Staged component set (represented as 'ps i  # x (Top, Left, Bottom, Right, 
Front, Back)', where tp identifies the time interval, # represents quantity, and the direc­
tions refer to component information) for the 3DS experiment (EX) 

(.section 5.3.3: Level Two Experimental Setup for the 3DP Experiments). 

Level Two: Experimental Results for 3DS Experiments 

The staged components, for each experiment, successfully created two target structures 

in each of the ten trials. Whereas, the non-staged components were not able to create 

a target structure. As expected, the unsuccessful non-staged components resulted in 

substructures consisting of three components (favouring assemblies with 360° bonds) or 

two components. The results at level two are statistically significant with a p-value of 0 

using Fisher's Exact Test for binary data (Table 7.5). 

7.4.3 Level Three: Physical Realization of Rule Set for 3DS Experiments 

As with the 2DS experiment, a level-three translation was performed for both staged and 

non-staged components (to observe the physical results of non-staged components). 

Level Three: Experimental Setup for 3DS Experiments 

Component mapping followed Table 4.7 (page 101). The same level three physical ex­

perimental setup used in the 3DP experiments (section 5.3.3: Level Three: Experimental 
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3DSE1 
Staged 10 0 

0 3DSE1 
Non-Staged 0 10 

0 

3DSE2 
Staged 10 0 

0 3DSE2 
Non-Staged 0 10 

0 

3DSE3 
Staged 10 0 

0 3DSE3 
Non-Staged 0 10 

0 

Table 7.5: The number of successful and unsuccessful trials for the staged and non-staged 
trials for 3DSE1 - 3DSE3 at level two, with corresponding p-value calculated using 
Fisher's Exact Test (one-sided) for analyzing binary data 

Setup for 3D Experiments) was used for the level three 3DS experiments, with the ex­

ception of using two 20 minute time intervals for staged trials and one 40 minute trial 

for non-staged trials, and jar placements on the orbital shaker (sectionC.3: Experimental 

Procedure for the 3D Systems). At the conclusion of each time interval, the state of sys­

tem was recorded (number of target structures created, matching errors, rotation errors, 

and assembly errors). 

Level Three: Experimental Results for 3DS Experiments 

The 3D level-three results are provided in Figure 7.7 (page 163), along with examples 

of the end of each time interval of a successful staged trial. For each experiment, no 

matching and assembly errors were observed in the ten trials. Rotational errors were ob­

served in each staged experiment (Figure 7.8, page 164), and each non-staged experiment 

(Figure 7.9, page 165). Using Fisher's Exact Test, the first, two 3D experiments are sta­

tistically significant at the 0.05 level and the third experiment is statistically significant 

at the 0.50 level (i.e. there is a 95% and 50% certainty the results are not due to chance). 
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3DSE1 
Staged 4 6 

0.043 3DSE1 
Non-Staged 0 10 

0.043 

3DSE2 
Staged 5 5 

0.016 3DSE2 
Non-Staged 0 10 

0.016 

3DSE3 
Staged 1 9 

0.500 3DSE3 
Non-Staged 0 10 

0.500 

Table 7.6: Number of successful and unsuccessful trials for the staging experiments 
(3DSE1 - 3DSE3) at level three, with corresponding p-values calculated using Fisher's 
Exact Test (one-sided) for analyzing binary data 

Even though one successful staged trial was observed with the third 3D experiment, we 

do not consider the result statistically relevant. 

7.5 Summary 

Staging is an essential part of biological development. Staged self-assembly provides the 

advantage of encoding the construction of a target structure in the staging algorithm 

itself and not exclusively into the design of the components. In contrast to other staging 

methods, based on the temporal aspects of conducting laboratory experiments or relying 

on templates to enable the self-assembly process, the staging strategy presented in this 

chapter uses physically encoded information as the dividing basis. 

An extension to the three-level approach incorporating staging was presented. A 

new system rule specifying component type and frequency for each stage was given at 

level one. Two new analytical tools were detailed at level two. The 2DscTAM and the 

3DscTAM use staged, parallel self-assembly, do not require seed tiles, permit component 



3DSE1 * ijtg 3DSE1 - ipt 
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Figure 7.7: Photographs of successful level three staged experiment trials (3DSE1 
3DSE3) after the first time interval (left) and the second time interval (right). 
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3DS (Staged) - Number of Rotation Errors 

TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

3DSE1 3DSE2 3DSE3 

Figure 7.8: Rotational errors at the end of each 3DS staged trial. 

rotation, at temperature one. Furthermore, the 2DscTAM and the 3DscTAM are based 

on the 2DcTAM and the 3DcTAM and are likewise Turing universal. At level three, it was 

proposed that the interplay between component physical information (shape and mag­

netic patterns) could be used to reduce assembly errors and leverage rotational properties 

by using staging. 

Four proof-of-concept experiments were provided. The independent variable in these 

experiments was the use of two time intervals. The dependent variable was the resulting 

set of self-assembled structures. All the staged component sets, except for the 3DSE3 

experiment, were able to successfully construct their respective target structures at a 

statistically significant level (with 99% and 95% confidence for the 2DS and 3DS experi­

ments), at level three. The successful results provide evidence to support the hypothesis, 

that staging can be used to enable components to self-assemble into closed target struc-
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3DS (Non-Staged) - Number of Rotation Errors 

TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9TR10 

3DSE1 3DSE2 3DSE3 

Figure 7.9: Rotational errors at the end of each 3DS non-staged trial. 

tures with symmetric/asymmetric features. 

An implication of staging is on the self-repairing properties of a system. Although 

it was observed that the 2D 3x3 square was able to self-repair, this was only within 

the second stage. Further research into features that allow for, and the understanding 

of the limits to, self-repair between specific stages is required to continue to further 

develop this staging paradigm. For example, although salamanders undergo development 

through unique stages, they can regrow lost limbs by repeating earlier developmental 

stages (Wolpert 1998). 
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Chapter 8 

Discussion 

In this chapter, the 2D and 3D experimental results from Chapter 5: Programming Self-

Assembling Systems, Chapter 6: Evolving Self-Assembly Rule Sets, and Chapter 1: Stag­

ing the Self-Assembly Process are summarized and analyzed. Next an extension to the 

staging paradigm is presented. Future work is examined, including an additional physi­

cal information encoding scheme, and considering error correction and scaling methods. 

Finally, applications of the research presented in this thesis are discussed. 

8.1 Summary and Analysis of the Experimental Results 

The self-assembly design methodology, the three-level approach (presented in Chapter 4-

The Three-Level Approach to Self-Assembly Design) was developed to test, the thesis 

hypothesis (section 1.2: Thesis Hypothesis) and determine the feasibility of encoding 

information as physical components and their corresponding environments to enable the 

self-assembly of closed structures with desired morphologies. The three phases of the 

three-level approach include: (1) definition of rule set, (2) virtual execution of rule set, 

and (3) physical realization of rule set. The motivation behind the three-level approach is 

in finding the fundamental information structures and rules in theory (level one), testing 

and refining those rules through simulation (level two), and testing and refining those 

rules through embodied physical experiments (level three). 

Proof-of-concept experiments were presented, where different design paradigms used 

the three level-aproach, including: programming (Chapter 5), evolving (Chapter 6), and 

staging (Chapter 7). Experiments were conducted using 2D and 3D systems for each 
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paradigm (programming: 2DPE1 - 2DPE3, and 3DPE1 - 3DPE5; evolving: 2DEE1 

and 2DEE2, and 3DEE1 - 3DEE3; and staging: 2DSE1, and 3DSE1 - 3DSE3). Each 

experiment was assigned a unique closed target structure with symmetric/asymmetric 

features. Due to the morphology of each target structure, the underlying lattice pattern 

of the components (square and cubic lattices) was insufficient for components to self-

assemble into the target structures in their corresponding environments. Therefore, it 

was appropriate to determine if the information encoded in a set of components was 

sufficient to achieve the applicable target structure by self-assembly in their environment, 

for each experiment. 

With the exception of 2DSE1, the creation of multiple target structures in parallel 

was considered. Ten trials were conducted for each experiment. A trial at level two was 

considered successful if all three of the applicable target structures were achieved. A 

trial at level three was considered successful if at least one target structure was achieved. 

The difference in the number of target structures for successful evaluation was due to 

physical self-assembly being more challenging than modelling. In the programming and 

evolutionary experiments, the independent variable was a set of components, and the de­

pendent variable was the resulting self-assembled structures. In contrast to the staging 

experiments, the independent variable was the use of two time intervals, and the depen­

dent variable was again the resulting set of self-assembled structures. As a result, two 

groups of components were specified for each experiment , one designed using the three-

level approach and one as a control group. The control groups for the programming and 

evolutionary experiments were randomly generated. The control group for the staging 

experiments used only a single time interval. This method of creating the designed and 

control component sets was chosen as part of the experimental setup with the aim of 

providing proof-of-concept evidence to test the thesis hypothesis, by conducting a sta­

tistical significance test. Fisher's Exact Test (one-sided) for analyzing binary data was 
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selected to complement the successful or unsuccessful evaluation of each trial, for each 

experiment. 

Table 8.1 summarizes the results from the level two experiments presented in this 

thesis. Each experiment was successful, with a p-value of 0. The successful results vali­

date the use of the self-assembly models developed, the 2DcTAM/3DcTAM (section 4-2: 

Level Two: Virtual Execution of Rule Set) and the 2DscTAM/3DscTAM (section 7.1.2: 

Staging - Level Two: Virtual Execution of Rule Set). The level two results justify the 

benefits of the unique features of these models, including: 

• modelling self-assembly concurrently, 

• not requiring seed tiles (components), 

• permitting tile rotations, 

• accommodating 2D and 3D tiles, and 

• using an environment temperature of one. 

Furthermore, these successful level two results support the three different paradigms 

(programming, evolving, and staging) using the three-level approach in their ability to 

be used to design self-assembling systems. 

There were two reasons for the unsuccessful control group results. The first reason was 

the creation of inappropriate substructures. These substructures would either be open 

but prohibit the creation of a target structure (due to the arrangement of the compo­

nents), be closed and therefore not allow for the possibility of creating a target structure, 

or create undesirable features such as holes (i.e. for the 3x3 square target structure for 

2DSE1). The second reason, which is only applicable to the random component sets, 

is that some sets had components that did not have complementary information to the 
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2DPE1 10 0 0 

2DP 2DPE2 10 0 0 

2DPE3 10 0 0 

2DE 
2DEE1 10 0 0 

2DE 
2DEE2 10 0 0 

2DS 2DSE1 10 0 0 

3DPE1 10 0 0 

3DPE2 10 0 0 

3DP 3DPE3 10 0 0 

3DPE4 10 0 0 

3DPE5 10 0 0 

3DEE1 10 0 0 

3DE 3DEE2 10 0 0 

3DEE3 10 0 0 

3DSE1 10 0 0 

3DS 3DSE2 10 0 0 

3DSE3 10 0 0 

Table 8.1: Summary of the level two experiments, showing the number of successful and 
unsuccessful trials for the designed component groups of the programming (2DP and 
3DP), evolving (2DE and 3DE), and staging (2DS and 3DS) experiments, and corre­
sponding p-values calculated using Fisher's Exact Test (one-sided) for analyzing binary 
data where all the control component groups had zero successful and ten unsuccessful 
trials 
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other components in the set. As a result, these components could not be included in the 

self-assembly process. 

With the success of all the level two experiments, a level three translation was con­

ducted for the programmed and evolved (designed) component sets (and not their corre­

sponding random component sets as they were unsuccessful), and for both groups for the 

staged experiments (as both groups shared the same components, testing the non-staged 

component sets was conducted to observe the physical results and was feasible since 

there was no additional financial cost to construct components and run experiments). 

Table 8.2 summarizes the results of the level three experiments presented in this the­

sis. P-values were calculated for the programming and evolutionary experiments, with 

respect to the zero successful and ten unsuccessful trials for the random component sets 

from the level two results. P-values for the staging experiments were calculated using the 

level three results of both the staged and non-staged component sets. The programming 

and evolutionary physical experiments are statistically significant at the 0.01 level, and 

with the exception of 3DSE3, the staged physical experiments are statistically significant 

at the 0.05 level. There is a 99% and 95% certainty these results are not due to chance. 

Therefore, these physical results are considered to be statistically relevant. 

There was one successful trial in 3DSE3. This experiment is statistically significant 

at the 0.50 level (i.e. there is a 50% certainty the results are not due to chance). Despite 

one successful trial, this experiment is not considered to be statistically relevant. In 

general, the results from all the staged experiments are lower than those achieved by all 

the programmed and evolved experiments. This is consistent with the outlook that the 

staged experiments would be more challenging, since they use more components with 

specialized 90° rotational information in comparison to the programmed and evolved 

experiments. 

At the end of each trial of the 2D experiments, the state of the system was recorded, 
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2DPE1 10 0 0 

2DP 2DPE2 9 0 0 

2DPE3 7 3 0.002 

2DE 
2DEE1 10 0 0 

2DE 
2DEE2 9 1 0 

2DS 2DSE1 7 3 0.002 

3DPE1 10 0 0 

3DPE2 7 3 0.002 

3DP 3DPE3 9 1 0 

3DPE4 7 3 0.002 

3DPE5 9 1 0 

3DEE1 10 0 0 

3DE 3DEE2 7 3 0.002 

3DEE3 8 2 0 

3DSE1 4 6 0.043 

3DS 3DSE2 5 5 0.016 

3DSE3 1 9 0.5 

Table 8.2: Summary of the level three experiments, showing the number of successful 
and unsuccessful trials for the designed component groups of the programming (2DP 
and 3DP), evolving (2DE and 3DE), and staging (2DS and 3DS) experiments, and corre­
sponding p-values calculated using Fisher's Exact Test (one-sided) for analyzing binary 
data where all the control component groups had zero successful and ten unsuccessful 
trials 
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including: number of target structures, number of matching errors (between conflicting 

physical information, where no fits rule is applicable), and number of assembly errors 

(partial attachment between complementary physical information). The components in 

2DPE1 created the largest number of target structures, as this experiment used a com­

bination of the fewest components and error-free 3-magnetic-bit patterns in relation to 

their environment size and temperature, in comparison to the other 2D experiments. 

No matching errors were observed in the 2D experiments. Assembly errors were only 

observed in 2DPE2 and 2DPE3. In addition to these quantitative observations, quali­

tative observations were also made. In the programmed and evolved 2D experiments, it 

was observed that the emerging substructures would at times create a spatial relation­

ship between them that would negatively impact the self-assembly process. However, it 

was also observed in the 2D programmed and evolved experiments that self-repair was 

possible. Self-repair was also observed in the second time interval of 2DSE1. Lastly, 

it was difficult to implement a physical environment temperature of one. A number of 

factors, including the number of components and their physical information, the size and 

shaking-level of the environment, and the emerging substructures all play a role in the 

environment temperature of these mechanical systems. 

Likewise for the 3D experiments, quantitative measures with the addition of rota­

tional errors (between complementary 3D physical information) were recorded at the 

end of each trial. Experiments using the fewest number of components and error-free 

5-magnetic-bit patterns produced the largest number of target structures. As with the 

2D experiments, no matching errors were observed in the 3D experiments. In contrast to 

the 2D experiments, no assembly errors were observed in the 3D experiments. However, 

rotational errors were observed in the 3D programmed and staged experiments. Addi­

tional qualitative observations, such as self-repair and the interactions between emerging 

substructures, were not possible due to the experimental setup of the 3D experiments. 
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However, it was again difficult to implement a physical environment temperature of one. 

It is believed that this discrepancy in achieving an accurate environment temperature is 

one of the reasons for observing rotation errors. 

Both the 2D and 3D experiments demonstrate the benefits of permitting component 

rotations. Consequently, permitting rotations allows for multiples of the same component 

type to be used in a system, and allows for the exploitation of symmetry in a target 

structure (section 2.2.5: The Complexity of Self-Assembly). The emergence of target 

structures with asymmetric features in the 2D and 3D experiments demonstrate how 

the use of physically encoded information in a component set or the use of specialized 

rotational information in 3D systems can be used to achieve such features (section 2.2.1: 

Physical Information Encoding in Nature). 

The design of successful 2D and 3D experiments was due to the three-level approach, 

which is inherently bottom-up by being able to map a set of rules to a physical system 

using physical encoded information. The three-level approach was used in the context of 

three design paradigms, programming, evolving, and staging. The programming experi­

ments used the three-level approach directly and showed that all the second 2D (Table 4.5 

page 97) and 3D (Table 4.7 page 101) physical information encoding schemes were capa­

ble of being used to create closed target structures with symmetric/asymmetric features. 

The three-level approach was extended to incorporate evolutionary computing for the 

evolutionary experiments. These experiments presented how component rule sets could 

be evolved to self-assemble into desired target structures. Furthermore, the evolutionary 

experiments provided a design solution to self-assembly being an algorithmically NP-

complete design problem. The three-level approach was extended again using staging 

and demonstrated how additional information (the use of time intervals) could be used 

to achieve more complex target structures that would not otherwise be possible. As 

well, the successful 2D and 3D results demonstrate how component physical information 
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(and in the context of staging) can be used to reduce or prevent errors from occurring 

during the self-assembly process, and how 3D component rotational information can be 

leveraged. Therefore, the successful physical experimental results at level three provide 

evidence to support the thesis hypothesis that it is possible to encoded information as 

physical components and their corresponding environment to enable the self-assembly of 

closed structures with desired morphologies. 

8.2 Leveraging Limited Rule Sets 

To expand upon the proof-of-concept experimental results presented in this thesis, par­

ticularly the 3D staging concept based on component physical information, a method 

to leverage a limited set of component rules using staging is discussed. As it is difficult 

to construct components (Demaine et al. 2008), it is important to be able to leverage a 

limited set of components and their corresponding rule sets. The following example was 

created using a target structure with the shape of a dog (Figure 8.1). This example is 

used to demonstrate how staged self-assembly can also be used to leverage a limited set 

of component interaction rules (3D 5-magnetic-bit patterns, Figure 4.8, page 98), and 

create body plan designs inspired by development in biological systems (Wolpert 1998). 

In this example a fully-connected dog structure is desired, meaning that neighbouring 

components must be assembled to one another (e.g. no neighbouring neutral shapes or 

neighbouring neutral and lock shapes). Although fully-connected self-assembled struc­

tures are not required in general, this constraint is used here for structural rigidity con­

cerns. Another constraint placed on this example, similar to the staged experiments pre­

sented (Chapter 7: Staging the Self-Assembly Process), is that each time interval follows 

a one-component-step after the initial stage. This means that the existing substructure 

can only grow by at most one component in all axes in Cartesian space. The staged self-
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Figure 8.1: Four views of the dog target structure. 

assembly of a single dog structure is presented first, followed by design considerations for 

the staged self-assembly of multiple dog structures in parallel. 

Component types and their rotational properties is based on the connectivity of the 

components in the dog target structure. As shown in Figure 8.2 (page 177), the dog 

target structure requires six pairs of 90° rotational codes. However, only three pairs of 

90° rotational codes are present in the 5-magnetic-bit pattern (Figure 4.8 page, 98). To 

overcome this deficiency in the number of 90° rotational codes, staging can be used to: 

• reintroduce previously used component information al later time intervals, 

• use the morphology of a substructure of the dog target structure (at an intermediate 

stage during the self-assembly process) of neighbouring components to emulate a 

90° rotational code using the 180° rotational codes, and 

• reduce the number of 90° rotational codes required when constructing only one 
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single target structure in contrast to multiple target structures, since the orientation 

of the overall dog target structure during its construction is not important (i.e. head 

versus tail facing forward). 

The dog target structure can use all three types of rotational information in a single 

structure. Table 8.3 (page 178) lists the 5-magnetic-bit patterns assigned to key and lock 

shapes that are better suited to create the dog target structure. In this designation, the 

worst possible mismatch error between conflicting component information is a 3-out-of-

5 positional match, which is the same worst-case scenario between complementary 90° 

rotational codes. 

Using this new 5-magnetic-bit encoding scheme arrangement, a single dog structure 

can be made using six time intervals (Figure 8.3, page 179). In this case, time interval 

V>i is used to determine the orientation of the head and tail. The second and third time 

intervals are used to create the main body, and determine the orientation of the head, 

neck, and direction of the head. The fourth and fifth intervals are used to build the legs 

and neck. The sixth interval is used to build the head, feet, and tail. This staged process 

takes advantage of using similar component types in the same time interval, and shows 

the benefits of symmetry within a time interval for parallel self-assembly. Furthermore, 

rotational information Q used in time interval V'q is reused in time interval ^3 (Figure 8.3, 

page 179). 

The disadvantage with the previous staged self-assembly process is it cannot be used 

to create multiple dog target structures, as it would then be possible to create dogs with 

either two heads or two tails in time interval ^I- To solve this problem, at least one pair 

from each of the three 90° rotational codes is required in time interval Vi (Figure 8.4, 

page 181). However, this results in an insufficient number of pairs of 90° rotational 

codes to create the corner parts of the main body of the dog target structure. The 

180° rotational code pair can be used due to the spatial relationship of the neighbouring 
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Front Right 

Figure 8.2: The dog target structure showing an assembly between neighbouring compo­
nents (solid black circle) and the 90° rotational requirements (dashed lines), where the 
grouped connections can use the same rotational information due to symmetry (and the 
four corner components in the body can use the same rotational information, top view). 



Lock 00000 I I fitS360 I l+J 4)2 breaks l+J -* I; J 

Lock 01111 L L fitS36o K -• L+K <t>2 breaks L+K -• L ; K 

Lock 01010 M M fitsiso N M+N <|)2 breaks M+N -» M ; N 

Lock 01100 0 O fitS9o P O+P cj)2 breaks O+P -» O ; P 

Lock 11000 Q Q fitS9o R Q+R 4>2 breaks Q+R Q ; R 

Lock 10111 T T fitSgo S —* T+S 4>2 breaks T+S -* T ; S 

Key 11111 J J fitS360 I l+J 4)2 breaks J+l -* J ; I 

Key 10000 K K fitS36o L -* K+L 4>2 breaks K+L -• K ; L 

Key 10101 N N fitSi so M N+M 4)2 breaks N+M -» N ; M 

Key 10011 P P fitsgo O -* P+O 4)2 breaks P+O -» P ; O 

Key 00111 R R fitS9o Q -» R+Q 4)2 breaks R+Q -> R ; Q 

Key 01000 S S fitS9o T -* S+T 4>2 breaks S+T -• S ; T 

Table 8.3: 5-magnetie-bit encoding scheme to create the dog target structure, where the 
differences between the encoding scheme used for the previous 3D experiments (Table 4.7 
page 100) are highlighted 
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Figure 8.3: Staging for a single dog target structure, where colours are used to identify 
the six time intervals. 
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components to the corner components of the main body structure of the dog target 

structure (Figure 8.4). As with the staged self-assembly process to create a single dog 

target structure, the staged self-assembly process to create multiple dog target structures 

also uses six time intervals and reuses rotational information Q in time interval ipo again 

in time interval *03 (Figure 8.4). 

This example shows how staged development of a body plan can be used to leverage a 

limited set of rules. In particular, component interaction rules can be exploited by rein­

troducing previously used component information at later time intervals. The physical 

construction of this staged dog target structure is one area of future work. 

8.3 Future Work 

As future work, alternative component information encoding schemes using magnetic-bit 

patterns is presented as a method to reduce component rotational errors in 3D systems. 

In addition, more broad directions of future work in self-assembly are considered. 

8.3.1 Alternative Physical Information Encoding Schemes 

Alternative physical information encoding schemes, particularly the 3-magnetic-bit and 

5-magnetic-bit. patterns presented in this thesis, should be considered to potentially re­

duce or prevent errors during the self-assembly process and as one avenue to create 

more complex self-assembling systems. As an example, a 9-magnetic-bit pattern could 

be used alternatively to a 5-magnetic-bit pattern with 3D components. The 3D compo­

nents presented in this thesis have the capacity to accommodate nine locations (3x3) for 

permanent magnets in key and lock shapes. 

In the 5-magnetic-bit patterns, specialized 90° rotational information had the property 

that self-errors were possible, resulting in a 3-out-of-5 match between complementary 

magnetic polarities. Although 4-out-of-5 matches could be avoided by manipulating 
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Figure 8.4: Staging for multiple dog target structures, where colours are used to identify 
the six time intervals (the last three time intervals correspond to the last three time 
intervals used to create a single dog target structure Figure 8.3 page 179). 
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the assignment of the 5-magnetic-bit patterns to keys and locks, and selection of which 

component physical information was present in a system (and each stage). This small 

gap between a perfect 5-out-of-5 match and an error of a 3-out-of-5 match was one of 

the reason for the difficulty in implementing an appropriate environment temperature. 

With a 9-magnetic-bit pattern, there are seventy pairs of complementary codes. Ta­

ble 8.4 shows the complementary codes and their self-matches, considering planar rotation 

of a component's face. Although there are several categories of information that have a 

high number of self-errors, these 9-magnetic-bit patterns do not need to be used. The 

remaining information categories have at worst a 5-out-of-9 match (highlighted in yellow, 

Table 8.4). This wider gap between a perfect match and self-error potentially allows for 

an easier implementation of an appropriate physical environment temperature to reduce 

or prevent errors during the self-assembly process. 

Additional future work concerns regarding physical information encoding in static self-

assembling systems includes the use of layered magnetic-bit patterns in 2D systems, as a 

way to manage component size (similar to the layered electromagnets used in Claytronics, 

section 2.1.1: Robotic Systems). As well, the use of don't-care bits would create one-to-

many component interactions (e.g. U fits V —> U+ V, and U fits W —> U+W). The 

benefit of one-to-may component interactions is that it offers another avenue to study 

symmetry and asymmetry in self-assembling systems. 

Additional materials should also be investigated in creating more complex forms of 

physical information (e.g. including capillary and hydrophobic/hydrophilic interactions 

along with magnetic interactions at the macro and mesoscale, or Watson-Crick com­

plementarity with magnetic interactions at the nanoscale). Lastly, future physical in­

formation encoding schemes should also be considered with more complex environment 

interactions, as a method to further reduce or prevent errors, and reduce the time required 

to complete the self-assembly process. 
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Table 8.4: The number of self-matching errors using a 9-magnetic-bit pattern and the 
corresponding number of pairs for each category of rotational information, where ROT-1 
- ROT-4 correspond to a 90° planar rotation between the faces of two components with 
the same rotational information 
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8.3.2 Broad Directions 

Along with the above future considerations regarding leveraging limited rule sets and 

alternative physical information encoding schemes, more broad directions of future work 

are given. These directions are based on the three design paradigms (programming, 

evolving, and staging) based on the three-level approach, the computational aspects of 

self-assembly, error correction methods, and scaling self-assembling systems. 

Programming Self-Assembling Systems 

The programming methodology used the three-level approach, and all three levels can 

be extended. At level one, additional rule types should be investigated. New forms of 

components and environments should be considered. Along with one-to-many component 

interactions, such as selective disassembly, selective partial assembly and catalysts should 

lead to more complex interactions. These types of rules could help bridge the knowl­

edge gap between static and dynamic self-assembling systems (Whitesides & Grzybowski 

2002). These additional interaction rules should also lead to self-repair, self-disassembly, 

and self-reconfiguration along with self-assembly rule sets. These additional rules would 

allow for a deeper investigation into the relationship between reductionism, emergence, 

and complexity under the guise of self-assembly (Whitesides k, Grzybowski 2002). 

An overall improvement to the three-level approach would be augmentations of the 

level two modelling. Such an augmentation includes the use of both an abstract, tile-

based model (e.g. 2DcTAM/3DcTAM and 2DscTAm/3DscTAM) for computationally 

efficient evaluation of a set of self-assembly rules, along with a physics-based model for 

evaluation of a translated set of self-assembly rules. For example, only self-assembly rule 

sets that are successful in the tile-based model would be evaluated using the physics-

based model for a more efficient use of computational resources. Such an augmentation 

would be better at detecting physically infeasible rule sets. 
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Along with the above considerations of alternative forms of physical information en­

coding, both further discrete design spaces and continuous design spaces (e.g. Bhalla 

& Bentley 2006) should also be considered at level three to create more complex self-

assembling systems. It is anticipated that using neutrally buoyant components would 

avoid the layering effect seen the in the 3D systems presented. However, mixed com­

ponent systems should continue to be improved, as the plethora of self-assembly exam­

ples using mixed component systems throughout nature (e.g. biological systems) provide 

enough motivation for their study. Although it was qualitatively observed that structures 

would assemble, disassemble, and new structures would emergence periodically, a better 

experimental setup, particularly for 3D systems, to record quantitative environment ob­

servations would assist in making improvements to the environment. New experiments 

for testing the various environment variables (e.g. shaking speed and duration) would 

also lead to more robust physical results. Evaluating the resulting environment data 

would be required to also consider future experiments where changes in the environment 

(such as fluctuations in temperature) could be used to enable the self-assembly process 

along with component information. 

Evolving Self-Assembling Systems 

Improvements to the evolutionary algorithm include conducting experiments to determine 

if there are better parameter settings for the number of generations, population size, 

and number of genotype evaluations, as well as for the selection, crossover, and genetic 

operators. Similarly, investigations into objective weightings, and new objectives (e.g. 

when considering refined solutions), should also be conducted to improve multi-objective 

fitness evaluations. Enhancements to the canonical genetic algorithm used here should 

also be considered, as another method to improve the evolved results. As future work, 

evolving multiple target structures should also be investigated. Lastly, evolutionary 
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computing could also be used to evolve component and environment specifications, along 

with component-to-component and component-to-environment interactions. 

Staging Self-Assembling Systems 

Additional directions of future work based on staged self-assemble include investigating 

additional examples which leverage limited rule sets, studying self-repair properties and 

constraints between stages, and considering how and which stages can be compressed 

such that each stage does not necessarily have to follow a one-component-step assembly 

sequence. 

Computational Aspects of Self-Assembling Systems 

The aTAM links computation with self-assembly as a model of pseudo-crystalline growth. 

However, the resulting self-assembled structures are static. A shift towards using new 

rule sets that are capable of Turing universal computation for the creation of dynamic 

structures should also be considered. The advent of a Turing universal dynamic self-

assembling systems could lead to the creation of a self-assembling computer which is able 

to interact with its environment. Evolving the morphologies of new active components 

and their environments could give rise to such self-assembling systems. 

8.3.3 Error Correction 

Error correction is an essential part of working towards creating more complex self-

assembled structures. The aTAM was used to demonstrate how co-operative bonding 

can be used to reduce/prevent errors from occurring during the self-assembly process 

at temperature two (section 2.2,3: The abstract Tile Assembly Model). Templates in 

the environment have also been used reduce/prevent errors from occurring in physical 

systems (section 2.1.2: Mesoscale Self-Assembly). In this thesis, two additional methods 

to reduce/prevent errors was presented: (1) using component physical properties based 
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on the combination of a shape space and an assembly protocol space (section 4-3: Level 

Three: Physical Realization of Rule Set), and (2) using staging based on the morphology 

of substructures between time intervals (Chapter 1: Staging the Self-Assembly Process 

and section 8.2: Leveraging Limited Rule Sets). Future methods to correct erroneous 

structures could include: using specialized structures to adjust misconstructed structures 

(as an additional form of templating), removing misconstructed structures (e.g. realized 

by changes in the environment), and using components that can adjust their morphologies 

to start, stop, and restart the self-assembly process. 

8.3.4 Scaling 

There are a variety of scaling issues in self-assembling system, including the physical 

size of components, designing components, and the number of components in a system. 

Section 2.1: Physical Self-Assembling Systems presented physical self-assembling sys­

tems from the macroscale, across the mesoscale, and down to the nanoscale. Fractals 

can be used to create structures that are self-similar at all level of magnification (sec­

tion 2.2.5: The Complexity of Self-Assembly). Designing self-assembling systems is an 

algorithmically NP-complete problem (section 2.2.5: The Complexity of Self-Assembly). 

The time needed to solve an NP-complete problem using currently known algorithms 

increase dramatically as the size of the problem grows, e.g. the number of components. 

In this thesis, evolutionary computing was used to address the algorithmic constraints 

of designing self-assembling systems (Chapter 6: Evolving Self-Assembly Rule Sets). As 

well, this thesis provided an example of how staging can be used to reuse component 

information in previous time intervals to create structures with larger numbers of com­

ponents (section 8.2: Leveraging Limited Rule Sets). The staged self-assembling systems 

provided require additional components to be inserted into the system. As future work, 

automated staging should be considered, and could be realized using partial assembly 
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rules for example. As well, shepherd components could be used to guide components, and 

catalytic components could be used to amplify the creation of substructures in systems 

with large environments to accommodate copious components. Dynamic self-assembly 

could also be used to demonstrate the recycling of components, by using selective assem­

bly and disassembly interactions, in a target structure to perform a function. Being able 

to recycle components to compute functions would also address another aspect to scaling 

self-assembling system, and would be another step towards creating systems using large 

numbers of components in the future. 

8.4 Applications 

In general, the advantages of three-dimensional self-assembly include the creation of 

structures that make a more efficient use of volume, as well as shorter interconnections 

between components (Whitesides & Grzybowski 2002). Specifically, the three-level ap­

proach is envisioned to being applicable to the design of structures (including at the nano 

and microscale), circuit fabrication, modular and swarm robotics control systems, syn­

thetic biology, and DNA computing using self-assembly. For example, three-dimensional 

DNA computing has been proposed, but the required components have not been achieved 

at the time of writing (Pelletier & Weimerskrich 2002). The combination of component 

shape and an assembly protocol can be used to reduce component-to-component interac­

tion errors and create more complex self-assembled structures using DNA nanotechnol-

ogy (Turberfield 2011; Woo & Rothemund 2011). Furthermore, potential applications for 

three-dimensional self-assembly includes the creation of hybrid rapid prototyping tech­

nologies that make use of self-assembly at larger physical scales (Hiller & Lipson 2009), 

and potentially at the nanoscale (Gates et al. 2005). 
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8.5 Summary 

A summary of the experimental results presented in this thesis was given first in this chap­

ter. In total, six 2D experiments and eleven 3D experiments were conducted. The three-

level approach for designing self-assembling systems via physically encoded information 

was used in the context of three design paradigms across the experiments: programming, 

evolving, and staging. A unique closed target structure with symmetric/asymmetric 

features was assigned to each experiment. With rule sets provided at level one, vir­

tual testing was conducted at level two, and physical testing was conducted at level 

three. All the experiments successfully created their target structure at level two, with 

a statistical significance level of a p-value of 0. The successful level two results support 

the unique modelling features of the 2DcTAM/3DcTAM and the 2DscTAM/3DscTAM, 

namely: modelling self-assembly concurrently, not requiring seed tiles (components), per­

mitting tile rotations, accommodating 2D and 3D components, and using an environment 

temperature of one. With the success of the level two experiments, a level three trans­

lation was conducted for all applicable systems. Each system was able to achieve its 

target structure. The physical experiments were statistically significant at either the 

0.01 or the 0.05 level (meaning there is a 99% or a 95% chance the results were not due 

to chance), with the exception of one of the 3D staged experiments (3DSE3). Although 

one trial was successful in 3DSE3, the result is not considered statistically significant, 

where as all the other physical experiment are. Therefore, the successful 2D and 3D 

proof-of-concept experiments provide evidence to support the thesis hypothesis that it is 

possible to encode information as components and their corresponding environment to 

enable the self-assembly of closed target structures with desired morphologies. 

Next, an example of how staging can be used to leverage a limited rule set, inspired 

by the use of a body plan in biological development, was provided. As future work, 
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alternative physical information encoding schemes were discussed, including an example 

of a 9-magnetic-bit encoding scheme. This was followed with more broad directions of 

future work. These directions include all aspects to improve the three-level approach and 

the design paradigms used in the experiments (programming, evolving, and staging) to go 

beyond the proof-of-concept systems presented in this thesis, as well as the computational 

aspects of self-assembly, error correction methods, and scaling self-assembling systems. 

Finally, applications were discussed over a wide variety of disciplines and across physical 

scales to identify the potential practical benefits designing self-assembling systems via 

physically encoded information. 
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Chapter 9 

Conclusions 

Designing and constructing artificial self-assembling systems presents numerous chal­

lenges, and remains an elusive goal. In order to work towards achieving this goal, the aim 

of this thesis was to demonstrate the feasibility of a design methodology using physically 

encoded information — the three-level approach — to enable the self-assembly process 

resulting in closed target structures with symmetric/asymmetric features. Three design 

paradigms using the three level-approach were investigated in this thesis: programming, 

evolving, and staging. These three design paradigms further develop the notion of phys­

ical information, as information that is embodied as components in their corresponding 

environments that are conducive to the generation of physical processes, specifically in 

this thesis the process of self-assembly to construct target structures. 

This chapter summarizes the preceding chapters, reviews the evidence satisfying the 

thesis hypothesis, provides the contributions of this work, lists the publications resulting 

from this research, and finally presents the conclusions of this thesis. 

9.1 Thesis Summary 

Chapter 1 provided a brief introduction to self-assembling systems, by providing two ex­

amples from nature where physical information enables the self-assembly of static struc­

tures (the crystalline growth of snow crystals) and dynamic machines (the development 

of the bacterial flagellum providing bacteria motility). It also provided scientific mo­

tivation to studying self-assembling systems, focusing on the potential benefits using 

self-assembly as an enabling technology for the creation of artificial systems. This chap­
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ter also described how the work presented in this thesis is expected to work towards 

creating more sophisticated self-assembling system by developing a self-assembly design 

process that allows for the encoding of physical information. 

Chapter 2 provided a critical review of the relevant literature to this thesis. Physi­

cal self-assembling systems, from the macroscale, across the mesoscale, and down to the 

nanoscale presented the advantages and limitations to current physical, artificial system 

representing the state of the art. Limitations of current physical self-assembling systems 

include the prevention/reduction of errors during the self-assembly process, exclusion of 

varied component rotation interactions for the creation of 3D systems, and the limita­

tion of methods to create target structures with symmetric/asymmetric features. DNA 

computing was used to underpin the theoretical aspects of self-assembly. The pioneering 

development of the aTAM (2D tile-based model capable of Turing universal computation 

at temperature two) was contrasted to its extensions, including recent developments in 

2D and 3D tile-based self-assembly at a more easily physical implementable temperature 

of one. The aTAM was also used to describe how self-assembly has been proven to being 

an algorithmically NP-complete problem. Lastly, tile-based models and a tile-based phys­

ical system that used either Kolomogrov information or Shannon information were used 

to illustrate the limitation of both approaches to encapsulating physical self-assembling 

system, as both fundamentally disconnect information from matter and energy. The 

chapter concluded by contrasting top-down and bottom-up self-assembly design method­

ologies. In particular, evolutionary computing (a bottom-up algorithm) is well-suited to 

solving NP-complete problems. 

Chapter 3 presented physical information analysis in the context of two self-assembling 

systems. The first system was an idealized model consisting of only unit spherical compo­

nents in a fixed environment. Components could assemble into different open structures, 

such as cubic, hexagonal, and layered hexagonal lattices by varying the sticky site loca­
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tions on components. Due to the homogenous component shapes, two types of component 

interaction rules (based on localized message passing forming gradients between compo­

nents in a structure) using global axes information and axes count information were 

developed to create 2D and 3D closed target structures with symmetric/asymmetric fea­

tures. Furthermore, these two types of component interaction rules were used to show 

how symmetric features in the target structures could be exploited to reduce the number 

of rules required. The second system was the first artificial, mechanical self-assembling 

system, an analogue to self-reproduction akin to molecular amplification in the form of 

templated self-assembly. An abstract description of the component assembly, compo­

nent rotation, environment interactions, and autocatalysis rules based on the physical 

characteristics of the system was presented. Through reverse engineering, an equivalent 

physical system was constructed and successfully tested the proposed rules, and verified 

that the original system truly is a mechanical analogue to self-reproduction. 

Chapter 4 introduced a self-assembly design methodology, based on a combination 

of the idealized model and the first mechanical analogue to self-assembly, referred to as 

the three-level approach. The three-level approach was inspired by the central dogma of 

molecular biology, the transfer of genetic information to create physical self-assembling 

shapes. The three levels - (1) definition of rule set, (2) virtual execution of rule set, and 

(3) physical realization of rule set - were described in the context of 2D and 3D self-

assembly. The three-level approach provides a bottom-up method for designing physical 

self-assembling systems, by being able to directly map a set of rules to a physical system. 

At level one, an abstract , high-level set of rules were presented that describe the type of 

self-assembling systems used in this work. The 2DcTAM and the 3DcTAM, extensions 

to the aTAM by allowing for concurrent self-assembly and rotations, provided a Turing 

universal tile-based model using a temperature of one for the creation of 2D and 3D target 

structures respectively, at level two. Finally at level three, a component design space was 



194 

used. The design space consisted of a key-lock-neutral shape space inspired by molecular 

recognition, and an assembly protocol space using either a 3-magnetic-bit pattern or a 

5-magnetic-bit pattern for 2D and 3D components respectively. Furthermore, two 2D 

and two 3D physical encoding schemes were presented which leveraged different aspects 

of the design space to prevent/reduce errors during the self-assembly process and realize 

3D component-to-component, rotation interactions. Components were constructed using 

rapid prototyping, and placed in their corresponding, automated environments in 2D (on 

the surface of a tray) or in 3D (in a jar of fluid) providing vibrational energy to the 

mechanical components. 

Chapter 5 was used to test the second 2D and second 3D physical component in­

formation encoding schemes, and their corresponding environments, in the context of 

a programming paradigm. A structure can be considered as the output of a physical 

program, connecting computation and self-assembly. Hand-designed rules were used to 

create three 2D and five 3D closed target structures with symmetric/asymmetric features, 

in a series of experiments. Each experiment was successful in the system being able to 

self-assemble its uniquely assigned target structure. Therefore, the three-level approach 

is a valid self-assembly design method, and the 2D and 3D physical information encoding 

schemes presented are capable of self-assembly. 

Chapter 6 incorporated evolutionary computing into the three-level approach. Evo­

lutionary computing was used to evolve rules (sets of components) to demonstrate a 

bottom-up method to designing physical self-assembling systems, which is computation­

ally suitable for addressing self-assembly being an algorithmically NP-complete problem. 

Five experiments (two experiments in 2D and three experiments in 3D) were used to test 

the automated generation of component sets, and their ability to construct closed tar­

get structures with symmetric/asymmetric features in their corresponding environments. 

The successful experiments confirm the validity in using evolutionary computing to gen­
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erate sets of components that can be mapped using physically encoded information, to 

create physical self-assembling systems. 

Chapter 7 extended the three-level approach by incorporating staging, a method for 

dividing the self-assembly process into time intervals, inspired by staged biological devel­

opment. Staged development in nature, e.g. the formation of a body plan, allows for the 

creation of more complex phenotypes, not otherwise possible. One important challenge 

when creating artificial self-assembling systems is caused by the use of components that 

lack the plasticity of biological cells. Using components that cannot differentiate results 

in self-assembly being constrained to a limited set of components and their bonding mech­

anisms. The benefit of staging is that it encodes the construction of a target structure 

in the staging algorithm itself, and not necessarily in the design of the components. One 

2D and three 3D staged experiments were conducted. The successful results validate 

how physical features in a set of heterogeneous, passive, mechanical components can be 

exploited to reduce potential assembly errors, leverage rotational bonding mechanisms, 

and create closed target structures with symmetric/asymmetric features. 

Chapter 8, lastly, summarized the results of the proof-of-concept experiments using 

the three design paradigms based on the three-level approach using physically encoded 

information, provided analysis of a more advanced staging technique, and offered future 

directions extending the research corresponding to the experiments. An example using an 

abstract dog target structure was used to show the formation of a body plan using staging, 

where component physical information could be reused at later time intervals, in the 

self-assembly of a single or multiple dog target structures. Higher-order 3D component 

physical information in the form of a 9-magnetic-bit pattern was presented to show 

its advantages to address rotation interaction errors during the self-assembly process. 

Broad directions of future work were explored, including improving all aspects of the 

three-level approach, error correction methods, and scaling self-assembling systems. As 
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well, applications of the research described in this thesis were presented, including using 

a component design space consisting of component shape and an assembly protocol as 

physical information to enable the self-assembly of more complex DNA-based closed 

target structures with symmetric/asymmetric features. 

9.2 Thesis Hypothesis Satisfaction 

The hypothesis of this thesis was, 

Thesis Hypothesis: it is possible to encode information as physical compo­

nents and their corresponding environments to enable the self-assembly of 

closed structures with desired morphologies. 

To encode information in this work means a process that transforms information into 

physical information. Here, the notion of physical information incorporates the concept of 

information embodied as components in a corresponding environment that are conducive 

to the generation of physical processes, specifically the process of self-assembly. As such, 

to encode information is a design problem, and requires a design solution. 

Three self-assembly design questions were addressed to test the thesis hypothesis. 

These three self-assembly design problems required the creation of a self-assembly design 

methodology that allowed for an investigation into encoding physical information. 

1. How to specify a set of rules that can be mapped to create a physical system using 

physically encoded information? 
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The three-level approach presented in Chapter 4 provides a design methodology, where 

self-assembly rules can be translated to a physical system by mapping physically encoded 

information. The two component-to-component and component-to-environment interac­

tions rules represent the smallest set of rules to describe the interactions required to 

create static self-assembling systems. These two rules are consistent with the definition 

of self-assembly, where the first rule incorporates component assembly, and the second 

rule incorporates selective component interactions. The three-level approach served as 

the basis for using evolution and staging, to address question two and question three. 

2. How to automatically generate sets of rules using computer software, to address self-

assembly being an algorithmically NP-complete problem? 

Since the three-level approach can directly map a set of level one rules to a level 

three physical system — bottom-up design — evolutionary computing can be appro­

priately incorporated. Designing self-assembling systems is an NP-complete problem, 

and evolutionary computing is well-suited for addressing such problems. In Chapter 

6, a proof-of-concept demonstration showed how the three-level approach can be used 

to evolve component sets. The benefit of using evolution to automatically generate sets 

of rules, is that only the functionality of a target structure is required, not its morphology. 

3. How to xise physical information to create more complex target structures? 

Staging was used to create more complex target structures, not otherwise possible. 

In Chapter 7, a proof-of-concept demonstration was given where component sets were 

divided into two time intervals. The dog structure in Chapter 8 served as an example for 

a more sophisticated staging technique, using the notion of a body plan. 
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Creating a self-assembly design methodology, the three-level approach, served as the 

basis for investigating these three self-assembly design problems. Each one demonstrated 

the ability of using the three-level approach to encode physical information, enabling 

the self-assembly process. Extensive virtual and physical experiments, both in 2D and in 

3D, for each of these three questions were conducted. The successful experimental results 

provide strong statistical evidence to answer those three questions (Table 8.1 page 169, 

and Table 8.2 page 171). The experimental evidence supports the thesis hypothesis, as it 

is feasible to encode information as physical components and their environment to enable 

the self-assembly of closed structures with desired morphologies. 

9.3 Thesis Contributions 

The notion of using physical information to enable the self-assembly process is the prin­

ciple contribution of this thesis. Detailed contributions resulting from the research pre­

sented in this thesis are the following: 

• a framework for designing and creating self-assembling systems, 

• examples of how component pattern formation can be exploited in homogenous 

systems using simple forms of gradient-based local communication between com­

ponents to create 2D and 3D closed target structures with symmetric/asymmetric 

features, 

• by reverse engineering, analysis and construction of the original L.S. Penrose and 

R. Penrose self-reproducing analogue, 

• a bottom-up self-assembly design methodology, the three-level approach, 
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• minimal set of abstract, high-level self-assembly interaction rules for the creation 

of static self-assembling systems, 

• temperature one tile-based models that incorporate component rotations to exploit 

symmetry, which are Turing universal (the 2DcTAM and the 3DcTAM), and which 

are extendible to include staging (the 2DscTAM and the 3DscTAM), 

• a physical 2D component information encoding scheme that can reduce/prevent 

component interaction errors, 

• a physical 3D component information encoding scheme that can reduce/prevent, 

component interaction errors and encode component rotational properties, 

• a programming design paradigm using physically encoded information, 

• an evolutionary design paradigm to address self-assembly being an algorithmically 

NP-complete problem, 

• a staging design paradigm using component physical information to reduce/prevent 

errors during the self-assembly process, 

• new machining and raid prototyping techniques to fabricate components and con­

struct their corresponding environments, and 

• continued development to the notion of what is physical information. 

9.4 Thesis Publications 

The following is a list of publications resulting from the research conducted as a part of 

this thesis. 
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N. Bhalla and P.J. Bentley (in print). Programming self-assembling systems via physi­

cally encoded information. Invited Chapter in R. Doursat, H. Sayama, and O. Michel 

(Eds.) Morphogenetic Engineering. Springer. 

N. Bhalla, P.J. Bentley, P.D. Vize, and C. Jacob (2011). Programming and evolving 

self-assembling systems in three dimensions. Natural Computing, Special Issue on Engi­

neering Emergence. S. Stepney and P. Andrews (Eds.). DOI 10.1007/sll047-011-9293-6. 

N. Bhalla, P.J. Bentley, P.D. Vize, and C. Jacob (2011). Staging the self-assembly process 

using morphological information. Proceedings of the European Conference on Artificial 

Life (ECAL 2011). p. 93-100. 

N. Bhalla, P.J. Bentley, and C. Jacob (2010). Evolving physical self-assembling systems 

in two-dimensions. Proceedings of the International Conference on Evolvable Systems 

(ICES 2010). p.381-391. 

N. Bhalla, P.J. Bentley, and C. Jacob (2007). Mapping virtual self-assembly rules to 

physical systems. Proceedings of the International Conference on Unconventional Com­

puting (UC 2007). p. 117-148. 

N. Bhalla and C. Jacob (2006). A framework for analyzing and creating self-assembling 

systems. Proceedings of the IEEE Symposium Series on Computational Intelligence, 

Swarm Intelligence Symposium (SIS 2006). p. 281-288. 
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9.5 Thesis Conclusions 

This thesis investigated how physically encoded information can be used to design self-

assembling systems. The three-level approach, where a set of rules can be mapped 

bottom-up to a physical system using physically encoded information, was used to demon­

strate how it can be used within three paradigms: programming, evolving, and staging 

self-assembling systems. What this thesis has illustrated through these design paradigms 

is physical information can be used for the design of 2D and 3D closed target structures 

with symmetric/asymmetric features. Theoretical advancements were also made in this 

thesis, by developing tile-based models that are Turing universal at temperature one, 

incorporate component rotation in 2D and 3D, and model self-assembly concurrently. 

The theoretical advancements along with the 2D and 3D physical information encoding 

schemes used together in a self-assembly design methodology that can map a set of rules 

demonstrates the generation of physical processes aspect (specifically self-assembly) in 

advancing the notion of physical information. The successful experimental results, in­

cluding strong statistical evidence, further supports the connection between self-assembly 

and computation. Designing self-assembling systems remains an elusive goal. However, 

the design advancements made in this thesis work towards solving this problem. The 

successful research presented in this thesis demonstrates a viable method for continued 

development in the area of self-assembly based on designing self-assembling systems via 

physically encoded information. 
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Appendix A 

Component Specifications 

The following is a list of the materials and methods used for constructing the physical 

components corresponding to the original Penrose system (Penrose & Penrose 1957) 

presented in Chapter 3: Physical Information Analysis, and the 2D and 3D experiments 

presented in Chapter 5: Programming Self-Assembling Systems, Chapter 6: Evolving 

Self-Assembly Rule Sets, and Chapter 1: Staging the Self-Assembly Process. 

A.l Penrose Components 

The materials used for constructing the Penrose components include: 

• Brass plate (7/64"; approximately 2.78 mm) 

• CNC Takumi V6 3-axis milling machine 

• Rhino3D version 4.0 computer-aided design (CAD) software 

The method for constructing the Penrose components has the following two steps: 

1. Create the CNC files using Rhino3D for the a and (3 components, based on the 

specifications in Figure A.l. 

2. Machine four a and four /3 components using a CNC Takumi V6 3-axis milling 

machine with the brass plate and CNC files. 

A.2 2D Components 

The materials used for constructing the 2D components include: 
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Figure A.l: Mathematical specifications for the Penrose components a (left) and /3 
(right). 

• Eden 333 Polyjet rapid prototyping machine 

• Vero Gray resin 

• Neodymium (NdFeB) disc magnets; 1/16" x 1/32" (diameter x height), grade N50 

• Magnetic pole identifier 

• Vice; built from a PanaVise bench clamp mount, a PanaVise low profile base, and 

a PanaVise low profile head 

• Sharpie paint pens; oil based, extra fine point (colours: red and blue) 

• Rhino3D version 4.0 CAD software 

The method for constructing the 2D components has the following eight steps: 

1. Create the CAD files using Rhino3D for the 2D magnet placement tool (Figure A.2, 

page 227), for the 2D component protection tool (Figure A.3, page 227) and for 

the 2D components, based on the specifications in Figure A.4 (page 228) and in 

association with the 2D component shape space (to determine key, lock, and neutral 

information locations on each 2D component, as well as any component interaction 

markers on the top surfaces of the 2D components). 
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2. Fabricate two 2D magnet placement tools and the 2D components using an Eden 

333 Polyjet rapid prototyping machine with Vero Gray resin and the CAD files. 

3. Insert three neodymium disc magnets in each 2D magnet placement tool, to create 

one tool with magnetic north polarity and the other with magnetic south polarity 

(identify polarity using the magnetic pole identifier). 

4. Paint the 2D magnet placement tools, using the Sharpie paint pens (blue for mag­

netic north and red for magnetic south), to complete the construction of the 2D 

magnet placement tools. 

5. Insert magnets into the 2D components by first identifying the appropriate 3-

magnetic-bit pattern for each key and lock, and then placing magnets on the appro­

priate 2D magnet placement tool (two magnets for a key shape and three magnets 

for a lock shape) and using the vice to insert the magnets into the appropriate 

location in the 3-magnetic bit pattern (Figure A.5, page 228). 

6. Remove the 2D magnet placement tool and 2D component from the vice and sep­

arate the 2D component placement tool and the 2D component (the extra magnet 

will dislodge and create an air gap on the 2D component where the magnets were 

inserted; this follows the 2D component physical encoding scheme for minimizing 

key-to-lock error interactions provided in Table 4.5 (page 97). 

7. Repeat steps seven and eight until all magnets have been inserted into all the 2D 

components. 

8. Paint, using the Sharpie paint pens, the 2D component interaction markers (refer to 

Table 4.5, page 97, to use the appropriate colours) corresponding to the 3-magnet,ic-

bit patterns used, to complete the construction of the 2D components. 
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Figure A.2: 2D magnet tool specification (top/bottom and front view) - all magnet holes 
on the sides have the same radius (depth at key sites is 1.35 millimetres, and depth at 
lock sites is 2.20 millimetres), and all paint holes on the top an bottom have the same 
radius (all construction units in millimetres). 

Figure A.3: 2D component protection tool (top view) - the height of this part is 5 
millimetres (all construction units in millimetres). 



228 

.20 

R0.80 0 0 0 

Figure A.4: 2D component specification (top view and front view) - all magnet holes on 
the sides have the same radius, and all paint holes on the top have the same radius and 
depth (all construction units in millimetres). 

Figure A.5: Example of constructing a 2D component during a vice press, and 2D magnet 
placement tool (left) and 2D component (right) inside the vice. 
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A.3 3D Components 

The materials used for constructing the 3D components include: 

• Eden 333 Polyjet rapid prototyping machine 

• Vero Gray resin 

• Neodymium (NdFeB) disc magnets; 1/16" x 1/32" (diameter x height), grade N50 

• Magnetic pole identifier 

• Vice; built from a PanaVise bench clamp mount, a PanaVise low profile base, and 

a PanaVise low profile head 

• Sharpie paint pens; oil based, fine point (colours: black, white, purple, yellow, 

green, and orange), and extra fine point (colours: red and blue) 

• Rhino3D version 4.0 CAD software 

The method for constructing the 3D components has the following eight steps: 

1. Create the CAD files using Rhino3D for the 3D magnet placement tool (Figure A.6, 

page 231) and for the 3D components, based on the specifications in Figure A.7 

(page 232) and in association with the 3D component shape space (to determine 

key, lock, and neutral information locations on each 3D component, as well as 

any 3D component interaction markers on neutral shapes adjacent to information 

locations). 

2. Fabricate four 3D magnet placement tools (two with a magnet in the centre, and 

two with a magnet in the corner) and the 3D components using an Eden 333 Polyjet 

rapid prototyping machine with Vero Gray resin and the CAD files. 
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3. Insert three neodymium disc magnets in each 3D magnet placement tool, to create 

one tool with magnetic north polarity and the other with magnetic south polarity 

(identify polarity using the magnetic pole identifier). 

4. Paint the 3D magnet placement tools, using the Sharpie paint pens (blue for mag­

netic north and red for magnetic south), to complete the construction of the 3D 

magnet placement tools. 

5. Insert magnets into the 3D components by first identifying the appropriate 5-

magnetic-bit pattern for each key and lock, and then placing magnets on the appro­

priate 3D magnet placement tool (two magnets for a key shape and three magnets 

for a lock shape) and using the vice to insert the magnets into the appropriate 

location in the 5-magnetic-bit pattern (Figure A.8, page 233). 

6. Remove the 3D magnet placement tool and the 3D component from the vice, and 

separate the 3D component placement tool and the 3D component (the extra mag­

net will dislodge and create an air gap on the component where the magnets were 

inserted; this follows the 3D component physical encoding scheme for minimizing 

key-to-lock error interactions provided in Table 4.7 (page 101). 

7. Repeat steps seven and eight until all magnets have been inserted into all the 3D 

components. 

8. Paint, using the Sharpie paint pens, the magnets that have been placed in the 

components (blue for magnetic north and red for magnetic south) and any 3D 

component interaction markers (refer to Table 4.7, page 101, to use the appropriate 

colours), to complete the construction of the 3D components. 
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Figure A.6: 3D magnet placement tool specifications (counter-clockwise from top right: 
perspective, top, front, right views), with all construction units in millimetres; note two 
magnet locations are shown at the top of the component (centre and corner), however 
only one magnet location should be used per tool (two locations are show here to reduce 
the number of technical drawings). 
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Figure A.7: 3D Component specifications showing the base component dimensions, key 
shape, lock shape, and interaction markers (counter-clockwise from top right: perspec­
tive, top, front, right views), with all construction units in millimetres. 



Figure A.8: Example of constructing a 3D component during a vice press, and 3D magnet 
placement tool (left) and 3D component (right) inside the vice. 
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Appendix B 

Environment Specifications 

The following is a list of the materials and methods used for constructing the physical 

environments corresponding to the original Penrose system (Penrose & Penrose 1957) 

presented in Chapter 3: Physical Information Analysis, and the 2D and 3D experiments 

presented in Chapter 5: Programming Self-Assembling Systems, Chapter 6: Evolving 

Self-Assembly Rule Sets, and Chapter 7: Staging the Self-Assembly Process. 

B.l Penrose Environment 

The materials used for constructing the Penrose environment include: 

• Clear acrylic sheet (3mm in thickness) 

• Screws (5/8" in length, pan head, 6-32 UTS, 18-8 grade stainless steel) 

• Wing nuts (6-32 UTS, 18-8 grade stainless steel) 

• Trotec Speedy 300 Laser Engraver machine 

• Adobe Illustrator Creative Suite 4 

The method for constructing the Penrose environment has the following three steps: 

1. Create the CAD files using Adobe Illustrator for the Penrose environment (Fig­

ure B.l). 

2. Fabricate the Penrose environment parts (front, middle, and back) using a Trotec 

Speedy 300 Laser Engraver machine using the acrylic sheet and the CAD files. 

3. Construct the Penrose environment using the screws and wing nuts (Figure B.2). 
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Figure B.l: Specification for the three parts, front and back parts (top) and centre part 
(bottom), making the Penrose environment (all construction units in millimetres; note 
hole diameter is 4 millimetres). 

Figure B.2 Fully constructed physical Penrose environment. 
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B.2 2D Environment 

The materials used for constructing the 2D environment include: 

• Dimensions Elite rapid prototyping machine 

• ABS plastic 

• Trotec Speedy 300 Laser Engraver machine 

• Acrylic sheet (2mm in height) 

• Screws (1" in length, pan head, 6-32 UTS, polycarbonate) 

• Hex nuts (6-32 UTS, polycarbonate) 

• Wing nuts (6-32 UTS, polycarbonate) 

• Max Mix II Vortex Mixer 

• Rhino3D version 4.0 CAD Software 

• Adobe Illustrator Creative Suite 4 

The method for constructing the 2D environment has the following nine steps: 

1. Create the CAD files for the using Rhino3D for the tray base (Figure B.3) and the 

tray mounting bracket (Figure B.4 and Figure B.5, page 238). 

2. Fabricate the tray base and the tray mounting bracket using a Dimensions Elite 

rapid prototyping machine with the sparse-fill option (used when printing to save 

material, as well as produce a rough textured surface), using ABS plastic and the 

CAD files. 

3. Create the CAD files for the tray lid using Adobe Illustrator (Figure B.6, page 

239). 
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Figure B.3: Tray base specification (top view) - the outer radius is 135; the inner radius 
is 125; the outer wall height is 9; the inner wall height is 6; the radius for each screw hole 
is 2 (all construction units in millimetres). 

4. Fabricate the tray lid using a Trotec Speedy 300 Laser Engraver machine, using 

acrylic sheet. 

5. Place four screws in the appropriate holes on the tray mounting bracket and secure 

with hex nuts (screw heads are at the bottom of the tray mounting bracket and 

hex nuts are at the top, Figure B.7, page 239). 

6. Secure the tray mounting bracket to the Maxi Mix II Vortex Mixer using the two 

screws supplied with the mixer (Figure B.7, page 239). 

7. Slide the tray base over the screw ends on the tray mounting bracket until it is 

flush with the hex nuts (Figure B.7, page 239). 

8. Place the tray lid over the screw ends on the tray mounting bracket until it is flush 

with the tray base, and secure the tray lid to the tray base using four wing nuts 

(Figure B.7, page 239). 
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Figure B.4: Tray mounting bracket specification (surface specification, top view) - the 
outer radius is 220; in each group of five screw holes, the distance from closest to furthest 
(centre of the hole to the centre of the part) is 55, 67.5, 80, 92.5, 105; the radius for each 
screw holes is 2 (all construction units in millimetres). 
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Figure B.5: Tray mounting bracket specification (mount detail, front view) - smaller 
bracket surface for clarity (all construction units in millimetres). 
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Figure B.6: Tray lid specification (top view) - the radius is 135; the height is 2; the radius 
for each screw hole is 2 (all construction units in millimetres). 

Figure B.7: From left to right: steps five to eight to construct the 2D environment. 

B.3 3D Environment 

The materials used for constructing the 3D environment include: 

• Trotec Speedy 300 Laser Engraver machine 

• Acrylic sheet; transparent, 3mm in height 

• Mill board; 0.8 mm in height 

• Screws; first type (5/8" in length, pan head, 6-32 UTS, 18-8 grade stainless steel), 

second type (1/4" in length, pan head, 6-32 UTS, 18-8 grade stainless steel) 

• Hex nuts; 6-32 UTS, 18-8 grade stainless steel 

• Glue; Loctite, regular, gel 
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• Angle brackets; 1, stainless steel 

• New Brunswick Scientific Excella El Platform Shaker 

• Adobe Illustrator Creative Suite 4 

The method for constructing the 3D environment has the following six steps: 

1. Create the CAD files using Adobe Illustrator for the jar rack parts (Figure B.8). 

2. Fabricate the jar rack parts (two bottom parts X and one bottom part Y. two side 

parts, and one top part) using a Trotec Speedy 300 Laser Engraver machine using 

mill board for the jar sleeve and acrylic for the remaining environment jar rack 

parts, and the CAD files. 

3. Glue the three bottom jar rack parts together (bottom parts X both below bottom 

p a r t  Y ) .  

4. Construct the jar rack by using the screws, hex nuts, and corner braces to secure 

the bottom, sides, and top parts of the jar rack, and using the screws and hex nuts 

to secure the jar sleeve to the top of the jar rack. 

5. Fold the overhang pieces of the jar rack sleeve over the holes for the jars in the top 

par of the jar rack. 

6. Place the jar rack on the shaker (Figure B.9, page 242), and secure the jar rack 

to the shaker using the screw on the side of shakers platform (these screws are 

supplied with the shaker), to complete construction of the environment. 
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Figure B.8: Environment parts for jar rack (from top left to bottom: bottom part X, 
bottom part Y, top part, jar sleeve, and side part), with all construction units in mil­
limetres. 
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Figure B.9: Photograph of the 3D environment with the jar rack secured to the shaker, 
and a jar with mineral oil containing components as an example (jars of mineral oil are 
used to finalize the 3D components environment; details are provided in section C.3: 
Experimental Procedures for the 3D Systems). 
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Appendix C 

Experimental Procedures 

The following is a list of the experimental procedures corresponding to the original Pen­

rose system (Penrose & Penrose 1957) presented in Chapter 3: Physical Information 

Analysis, and the 2D and 3D experiments presented in Chapter 5: Programming Self-

Assembling Systems, Chapter 6: Evolving Self-Assembly Rule Sets, and Chapter 7: Stag­

ing the Self-Assembly Process. 

C.l Experimental Procedure for the Penrose Systems 

The experimental procedure for the Penrose experiments has the following six steps: 

1. Place the middle Penrose environment part on top of the back Penrose environment 

part. 

2. Place the a and parts, and the corresponding seed complex parts on the back 

Penrose environment part according to the initial configuration. 

3. Place the top Penrose environment part on top of the middle Penrose environment 

part. 

4. Secure the Penrose environment parts together using the screws and wing nuts. 

5. Shake the Penrsoe environment (ID) by hand six times (three times to the left, 

and three time to the right) with enough force to ensure that all the components 

slide to one end of the Penrose environment. 

6. Record the state of the system. 
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C.2 Experimental Procedure for the 2D Systems 

The materials required to conduct the physical 2D experimental procedure include: 

• Stopwatch 

• 3" c-clamp 

• Hex nuts (6-32 UTS, 18-8 grade stainless steel) 

The experimental procedure for the 2D experiments has the following seven steps: 

1. Set the continuous speed control on the Maxi Mix II Vortex mixer to 1,050 rpm. 

2. Secure the mixer to a table, using a 3" c-clamp and six hex nuts (to help secure 

the c-clamp to the back of the mixer). 

3. Randomly place the 2D components on the surface of the tray (trying to ensure 

that complementary bonding sites on the 2D components are not in-line with each 

other). 

4. Secure the tray lid. 

5. Turn the mixer on, and start the stopwatch. 

6. Run the mixer for 20 minutes (for the 2DP experiments, the 2DE experiments, or 

the non-staged 2DS experiments), or for two 10 minutes intervals (for the staged 

2DS experiment, and randomly place the 2D components corresponding to the 

second time interval after the first time interval has completed). 

7. Record the state of the system, observations including: the number of target struc­

tures created, the number of matching errors (between conflicting physical informa­

tion, where no fits rule is applicable), and the number of assembly errors (partial 

attachment where a fits rule is applicable). 
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C.3 Experimental Procedure for the 3D Systems 

The materials required to conduct the physical 3D experimental procedure include: 

• Graduated cylinder 

• Mineral oil; Rogier Pharma light grade 

• Stopwatch 

• Jars; VWR clear glass wide mouth, plastic lid with rubber liner, 500 mL capacity, 

91 mm x 95 mm (diameter x height) 

The experimental procedure for the 3D experiments has the following six steps: 

1. Use the graduated cylinder to measure 325 mL of mineral oil for each jar used: 

3DP (5 jars), 3DE (3 jars), or 3DS (3 jars). 

2. Place the jars of mineral oil in the jar rack (Figure C.l). 

3. Randomly place the 3D components for each experiment into the appropriate jar, 

and secure the jar lid. 

4. Turn the shaker on by setting the speed to 32.5 rpm, and start the stopwatch. 

5. Run the shaker for 20 minutes (for the 3DP and 3DE experiments), for 40 minutes 

(for the non-staged 3DS experiments), or for two 20 minute intervals (for the staged 

3DS experiments, and randomly place the 3D components corresponding to the 

second time interval after the first time interval has completed) 

6. Record the state of each system, observations including: the number of target 

structures created, the number of matching errors (between conflicting physical 
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Figure C.l: Jar configurations (top view) for the 3DP experiments (left, 3DPE1 -
3DPE5), the 3DE experiments (centre, 3DEE1 - 3DEE3), and the 3DS experiments 
(right, 3DSE1 - 3DSE3). 

information, where no fits rule is applicable), the number of rotation errors (be­

tween complementary components), and the number of assembly errors (partial 

attachment where a fits rule is applicable). 


