
A Verification Framework for Access Control

in Dynamic Web Applications

by

Manar H. Alalfi

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

April 2010

Copyright c© Manar H. Alalfi, 2010



 
 

Library and Archives 
Canada 

Bibliothèque et 
Archives Canada 
 

Published Heritage 
Branch 
 

Direction du 
Patrimoine de l’édition 
 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 
 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 
 

Your file  Votre référence 
ISBN: 978-0-494-69949-2
Our file   Notre référence 
ISBN: 978-0-494-69949-2
 
 
 

 
 
 

 

NOTICE: 
 
The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 
. 

AVIS: 
 
L’auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l’Internet, prêter, 
distribuer et vendre des thèses partout dans le 
monde, à des fins commerciales ou autres, sur 
support microforme, papier, électronique et/ou 
autres formats. 
 

The author retains copyright 
ownership and moral rights in this 
thesis.  Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author’s permission. 
 

L’auteur conserve la propriété du droit d’auteur 
et des droits moraux qui protège cette thèse. Ni 
la thèse ni des extraits substantiels de celle-ci 
ne doivent être imprimés ou autrement 
reproduits sans son autorisation.  
 

 
In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 
 
While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

 
Conformément à la loi canadienne sur la 
protection de la vie privée, quelques 
formulaires secondaires ont été enlevés de 
cette thèse. 
 
Bien que ces formulaires aient inclus dans 
la pagination, il n’y aura aucun contenu 
manquant.

 

 



Abstract

Current technologies such as anti-virus software programs and network firewalls provide

reasonably secure protection at the host and network levels, but not at the application

level. When network and host-level entry points are comparatively secure, public interfaces

of web applications become the focus of malicious software attacks. In this thesis, we focus

on one of most serious web application vulnerabilities, broken access control. Attackers

often try to access unauthorized objects and resources other than URL pages in an indi-

rect way; for instance, using indirect access to back-end resources such as databases. The

consequences of these attacks can be very destructive, especially when the web application

allows administrators to remotely manage users and contents over the web. In such cases,

the attackers are not only able to view unauthorized content,but also to take over site ad-

ministration. To protect against these types of attacks, we have designed and implemented

a security analysis framework for dynamic web applications. A reverse engineering process

is performed on an existing dynamic web application to extract a role-based access-control

security model. A formal analysis is applied on the recovered model to check access-control

security properties. This framework can be used to verify that a dynamic web application

conforms to access control polices specified by a security engineer. Our framework provides

a set of novel techniques for the analysis and modeling of web applications for the purpose

of security verification and validation. It is largely language independent, and based on

adaptable model recovery which can support a wide range of security analysis tasks.

i



Co-Authorship

All papers resulting from this thesis were co-authored with my supervisors Dr. James R.

Cordy and Dr. Thomas R. Dean. In all cases I am the primary author.

Part of Chapter 2 was published at the International Conference on Web Engineering

(ICWE 2007) [9], and in the Journal of Software Testing, Verification, and Reliability

(STVR) [13]. Part of Chapter 3 was published at the Canadian Conference on Computer

Science and Software Engineering (C3S2E 2009) [11]. Part of Chapter 4 was published

at the Working Conference on Reverse Engineering (WCRE 2008) [8]. Chapter 5 was

published at the international workshop on Web Testing (WebTest 2009) [?]. Chapter 6

was published at the international symposium of Web Systems Evolution (WSE 2009) [14].

Chapter 7 will appear in the proceedings of the 13th European Conference on Software

Maintenance and Reengineering (CSMR 2010). Part of Chapter 8 is submitted to the

International Symposium on Software Testing and Analysis (ISSTA 2010).

ii



Dedication

In loving memory of my whole-hearted father, Hassan Alalfi, the candle that burned to shed

the light for me to go. To you I dedicated the fruit of my efforts, it was your dream and I

thank Allah for helping me to make it come true. May Allah bless you.

iii



Acknowledgments

In the name of Allah, the Most Gracious, the Most Merciful. First and foremost praises and

thanks to Allah, the Lord, the Almighty, the All-Knowing and the Glorious who bestowed

upon us all the blessings and the faculties of thinking, searching, and learning.

Praise be to Allah, who says in his glorious book ”If you give thanks, I will give you

more of my blessings” so I praise Allah for his favour to me in completing this dissertation

and for surrounding me with people who care and love.

This dissertation would not have been a real fulfillment without the backing and cooper-

ation from my supervisors Professors James Cordy and Thomas Dean. Their collaborative

approach in supervision was instrumental in planting the seed for a successful scholar. They

always were respectful of my views and ideas. I’m really fortunate to have the opportu-

nity of working with them. They both are great role models of open minded and brilliant

researchers who one should strive to become.

I would also like to thank the members of my oral defense committee, Ettore Merlo,

T.C.N. Graham, T.P. Martin, and K. Rudie for their time and insightful questions. My

appreciation and gratefulness to all my colleagues and to the friendly members of the School

of Computing who have helped in one way or another along the way. In particular, I would

like to thank Aseel Almonaies for her sincere friendship.

Most importantly, none of this would have been possible without the love and patience

of my family. Mom, thank you so much for your love and payers, you have been a constant

iv



source of love, concern, support and strength all these years. It was under my father and

your watchful eyes that I gained so much drive and an ability to tackle challenges head on.

I would like to express my heart-felt gratitude, to all my brothers and sisters, especially my

brother Salah Alalfi, for their faith in me and allowing me to be as ambitious as I wanted.

Also I warmly appreciate my mother-in-law’s love and prayers.

I owe my deepest gratitude to my husband, Shaker Jarrar, who has been proud and sup-

portive of my work and who has shared the many uncertainties, challenges and sacrifices for

completing this dissertation. His support, encouragement, quiet patience and unwavering

love were undeniably the bedrock upon which the past five years of my life have been built.

My son, Muhammad Jarrar, who has grown into a wonderful 4 years old in spite of his

mother spending so much time away from him working on this dissertation. Thanks my

little one for your patience and for filling my moments with happiness and joy.

v



Statement of Originality

I, Manar H. Alalfi, certify that the research work presented in this thesis is my own and

was conducted under the supervision of Dr. James R. Cordy and Dr. Thomas R.Dean. All

references to the work of other people are properly cited.

vi



Table of Contents

Abstract i

Co-Authorship ii

Dedication iii

Acknowledgments iv

Statement of Originality vi

Table of Contents vii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2:
Related Work - Analysis Models and Methods for Web Ap-
plication Verification and Testing . . . . . . . . . . . . . . . . . 7

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Web Application Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Comparison and Categorization Criteria . . . . . . . . . . . . . . . . . . . . 17
2.4 Comparative Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Proposed Methods That Do Not Fit Our Comparison Criteria. . . . . . . . 44
2.6 Models Proposed But Not Yet Used for Verification and Testing. . . . . . . 46
2.7 Conclusions and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



Chapter 3:
A Verification Framework for Access Control in Dynamic Web
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Evaluation and Preliminary Results . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4:
Lightweight Transformation of Data Models from SQL Schemas
to UML-ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 SQL2XMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 An Example: PhpBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5:
Automated Reverse Engineering of UML Sequence Diagrams
for Dynamic Web Applications . . . . . . . . . . . . . . . . . . 79

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 PHP2XMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 An Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 6:
WAFA: Fine-grained Dynamic Analysis of Web Applications 97

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Instrumentation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6 Future Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 7:
DWASTIC: Automating Coverage Metrics For Dynamic Web
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Web Application Coverage Metrics . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Constructing the Coverage Database . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



Chapter 8:
Recovering Role-Based Access Control Security Models from
Dynamic Web Applications . . . . . . . . . . . . . . . . . . . . . 140

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3 Structural Model Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Behavioural Model Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 SecureUML Model Construction . . . . . . . . . . . . . . . . . . . . . . . . 148
8.6 Security Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Chapter 9:
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.1 Testing Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 10:
Summary and Future Work . . . . . . . . . . . . . . . . . . . . 174

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ix



List of Tables

2.1 Desirable Properties for Website modeling. . . . . . . . . . . . . . . . . . . 14
2.2 Desirable Properties for Website modeling (Cont.) . . . . . . . . . . . . . . 15
2.3 Reference linking summary tables with text . . . . . . . . . . . . . . . . . . 21
2.4 Summary of Methods Categorized by Modeling Level . . . . . . . . . . . . 22
2.5 Detailed Comparison of Methods by Properties Covered . . . . . . . . . . . 23

4.1 Mappings between MySQL schema elements, ERD elements, and XMI 2.1
elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Sample trace elements for the Server Pages database table . . . . . . . . . 111
6.2 Sample trace elements for the Http Variables database table . . . . . . . . . 111
6.3 Sample trace elements for the Database Interactions database table . . . . . 112
6.4 Trace statistics for anonymous user interactions with a PhpBB 2.0 forum . 113
6.5 Related work comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Example AllPhpPages coverage database table, tracking page coverage . . . 124
7.2 Example AllHttpVars coverage database table, tracking server environment

variables coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Example AllSqlsources coverage database table, tracking SQL statement

coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Coverage metrics results for pages, server environment variables and SQL

statements at the application level for a sample test case . . . . . . . . . . . 135
7.5 Coverage metrics results for server environment variables and SQL state-

ments at the page level for a sample test case . . . . . . . . . . . . . . . . . 135
7.6 Coverage metrics results for pages and server environment variables at the

SQL statement level for a sample test case . . . . . . . . . . . . . . . . . . . 136
7.7 Performance penalty of DWASTIC instrumentation on dynamic pages of Ph-

pBB 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1 Characteristics of the PhPBB2.0 application . . . . . . . . . . . . . . . . . . 163
9.2 Experiment statistics for the number of navigated and filtered pages . . . . 164
9.3 Experiment coverage information for SQL statements, pages and server en-

vironment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.4 More detailed coverage information for SQL statements, and server environ-

ment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

x



9.5 Unauthorized pages access for a guest user attempting to access administra-
tor’s links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.6 Unauthorized pages access with parameters for a guest user attempting to
access administrator’s links. PhpBB react code: access redirected(1), error
message(2), access allowed(3) . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.7 Unauthorized server’s environment variables access for a guest user attempt-
ing to access administrator’s links . . . . . . . . . . . . . . . . . . . . . . . . 168

9.8 Unauthorized SQL statement access for a guest user attempting to access an
administrator’s links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.9 List of pages and actions that permits a user to access other user’s Email
address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xi



List of Figures

2.1 Web Application Components (from [151]) . . . . . . . . . . . . . . . . . . . 11
2.2 Interaction Behavior Modeling Methods: the Di Lucca and Di Penta (Luc-

caP03) [65], Graunke et al. (GFKF03) [88] and Licata and Krishnamurthi
(LK04) [120] models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Interaction Behavior Modeling Methods (cont’d): the Bordbar and Anas-
tasakis (BA05) [33] and Chen and Zhao (CZ04) [45] models. . . . . . . . . . 28

2.4 UML-Based Models: the Tonella and Ricca (TR02) [163] and Conallen (Con99)
[54] models , and the Knapp and Zhang (KZ06) [111] UWE basis model. . . 32

2.5 Graph-Based Models: the MCWEB [60], Ricca and Tonella (RT00) [150] and
Di Sciascio et al. (SMP02, SMP03) [72, 71] models. . . . . . . . . . . . . . 34

2.6 Graph-Based Models (cont’d): the Di Sciascio et al. (SDM+05) [73] and
Castelluccia et al. (CMRT06) [40] methods. . . . . . . . . . . . . . . . . . 37

2.7 Modeling Web Applications Using a Single Model: the VeriWeb (BFG02)
[32], Haydar et al. (HPS04) [100], and FSMWeb (AOA05) [24] methods. . 41

3.1 The Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 The TXL Transformation Technique as Applied in our Tool . . . . . . . . . 66
4.2 Grammatical specification and main transformation rule (function) . . . . . 66
4.3 The GenerateERDElements function, which transforms each SQL table to

its representation in XMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 The createEntityAttribute function, which translates SQL table columns to

attributes in XMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 The IsPKAttribute function, which identifies and stereotypes the XMI rep-

resentation of columns which are primary keys . . . . . . . . . . . . . . . . 71
4.6 A part of the PhpBB 2.0 MySQL schema . . . . . . . . . . . . . . . . . . . 73
4.7 Sample of the generated XMI 2.1 file . . . . . . . . . . . . . . . . . . . . . 75
4.8 RSA visualization for a part of the generated diagram . . . . . . . . . . . . 76

5.1 PHP2XMI tool Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 The main TXL transformation rule . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 The instrumentHttpVar transform. rule . . . . . . . . . . . . . . . . . . . . 86
5.4 The Conv func GET TXL transform. rule . . . . . . . . . . . . . . . . . . . 87
5.5 Result of instrumenting the main index.php server page of PhpBB 2.0 . . . 88
5.6 UML sequence diagram meta-model elements . . . . . . . . . . . . . . . . . 90

xii



5.7 Sample of a database view of generated execution traces . . . . . . . . . . . 90
5.8 Fine grained information collected by PHP2XMI . . . . . . . . . . . . . . . 91
5.9 An example of a generated sequence diagram . . . . . . . . . . . . . . . . . 92

6.1 WAFA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 The WAFA Dynamic Analysis database model . . . . . . . . . . . . . . . . 101
6.3 Results of instrumenting server environment variables in a snippet of code in

PhbBB 2.0 application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Result of instrumenting cookie management functions in a snippet of code in

the PhbBB 2.0 application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5 PHP grammar extension to recognize guest patterns (SQL statements) . . . 105
6.6 Instrumented snippet of code for PhpBB2.0 application - 1 . . . . . . . . . 107
6.7 Instrumented snippet of code for PhpBB2.0 application - 2 . . . . . . . . . 108
6.8 The instrumentQueriesSource transformation rule . . . . . . . . . . . . . 110
6.9 The instrumentSQL transformation rule . . . . . . . . . . . . . . . . . . . . 110

7.1 DWASTIC Tool Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2 Dynamic Analysis database model . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 The TXL instrumentPage rule adds page coverage instrumentation to the

top of each processed page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 Coverage instrumentation added by DWASTIC to the search.php dynamic

page of the PhpBB 2.0 application . . . . . . . . . . . . . . . . . . . . . . . 129
7.5 DWASTIC instrumentation for the database interaction points of the mysql4.php

function of PhpBB 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6 TXL program to identify and extract the coverage aspect of an instrumented

PHP program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.7 Part of the extracted instrumentation slice for PhpBB 2.0 augmented with

database insertion code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.1 Tool Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2 Mappings between Database trace model and UML SD meta-model . . . . . . . . 143
8.3 Interaction scenarios and messages encoding . . . . . . . . . . . . . . . . . . . . 144
8.4 A sample UML2.0 Entity-level Sequence Diagram (SD) as generated by WAFA and

PHP2XMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.5 UML2.0 Structural and behavioural meta-models and their mappings to SecureUML

meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.6 TXL main rule for PHP2SecureUML . . . . . . . . . . . . . . . . . . . . . . . . 150
8.7 RSA project explorer shows the SecurUML elements as recovered by our tool . . . 153
8.8 A sample of a generated SecureUML model instance . . . . . . . . . . . . . . . . 154
8.9 TXL main rule for SecureUML2Prolog . . . . . . . . . . . . . . . . . . . . . . . 155
8.10 A sample TXL rule for generating permission facts from SecureUML meta-model

elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.11 Prolog Facts generated for SecureUML model analysis . . . . . . . . . . . . . . . 157

xiii



9.1 The CollectFormInputs algorithm for collecting the application’s forms
input elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2 Prolog rules to check for unauthorized access on the application’ entities . . 165
9.3 Prolog rules to check for Guest access on other registered users’ profiles . . 170
9.4 PageStart.php file in PhpBB 2.0, code that control the access on adminstra-

tion management pages is highlighted . . . . . . . . . . . . . . . . . . . . . 172

xiv



Chapter 1

Introduction

1.1 Motivation

Current technologies such as anti-virus software programs and network firewalls provide

reasonably secure protection at the host and network levels, but not at the application

level. When network and host-level entry points are comparatively secure, public interfaces

of web applications become the focus of attacks [170].

This thesis focuses on one of most serious web application vulnerabilities, broken access

control. Access control, sometimes called authorization, governs how web applications grant

access to functions and content to some users and not to others [146]. Depending on the

access control model, sets of users can be grouped into roles, where privileges are assigned

to roles rather than users. This kind of access control model facilitates the administration

of user management and is called a Role-Based Access Control model (RBAC) [158].

Broken access control in web applications is considered one of the top ten web application

security vulnerabilities [146]. Most web applications try to implement access control polices

using obscurity, where links to pages are not presented to unauthorized users. This method

of protection is not sufficient because attackers can attempt to access hidden URLs, knowing

that sensitive information and functions lie behind these URLs. Attackers also try to access

1



CHAPTER 1. INTRODUCTION 2

unauthorized objects and resources other than URL pages in an indirect way, for instance,

indirect access to back-end resources such as databases.

The consequences of allowing unprotected flows to crafted requests could be very de-

structive, especially when the web application allows administrators to remotely manage

users and contents over the web. In such cases the attackers are not only able to view

unauthorized content, but also to take over site administration.

Broken access control is usually caused by an unreliable implementation of access control

techniques. In many current web applications, access control polices are spread over the

code, which makes the process of understanding and maintaining such rules a difficult if

not impossible task [146].

To protect against this attack, access control polices should be based on a strong model

that is implemented at all levels of the web application, including both the presentation

level and the business level as well. Checking for authorization should be done on every

attempt to access secure information, and access control mechanisms should be extensively

tested to ensure that there is no way to bypass them [146].

Most of the previous efforts in web application testing and verification are forward

engineering approaches [107, 16, 58, 6, 7], while the real need is for a reverse engineering

approach that is not only able to model access control polices, but also able to check them

in real applications. There is a critical need for an approach that is able to test or model

check web applications to ensure that they are protected from broken access control attacks,

and this is the goal of our work.

1.2 Research Statement

This thesis presents a security analysis framework for dynamic web applications. The

framework is aimed at testing the conformance of dynamic web applications with role-

based access control security policies. A reverse engineering process is performed over a



CHAPTER 1. INTRODUCTION 3

dynamic web application to extract a role based access control security model. A formal

analysis is applied on the recovered model to check access control security properties. This

framework can be used to verify that a dynamic web application conforms to access control

polices specified by a security engineer, either with a correctness check, or with a counter

example if any access control violation is encountered in the code.

1.3 Contributions

• The proposed approach is a novel one in web application security verification. Be-

sides being the first approach to tackle the issue of access control verification, the

proposed framework is flexible enough to allow for different server side technologies

and databases in plug and play fashion.

• Our approach also yields the potential for application in systems other than web

applications. The static and dynamic reverse-engineering front-end of the framework

can be reused for other kinds of analysis, and the framework could be used to discover

other kinds of security attacks, such as cross-site scripting and SQL injection.

• In the first part of this thesis, we conducted a comprehensive survey on different

modeling methods used in web site verification and testing. Based on a short catalogue

of desirable properties of web applications that require analysis, two different views of

the methods are presented: a general categorization by modeling level, and a detailed

comparison based on property coverage.

• In the second part of this thesis we designed and implemented an automated transfor-

mation from an SQL (DDL) schema to an open XMI 2.1 UML-adapted class model.

The adapted model is a tailored UML class model to represent the basic ER diagram

components, including entities, attributes, relations, and primary keys. Our transfor-

mation technique with its tool, SQL2XMI, is a novel one in that it is open, non-vendor



CHAPTER 1. INTRODUCTION 4

specific, and targeted at the standard UML 2.1 exchange format, XMI 2.1. Although

comparable commercial transformations exist, they are closed technologies targeted

at formats tightly coupled to the vendor’s tools, hindering portability and preventing

users from choosing their preferred tools in the development process.

• In the third part we designed and implemented an approach to automatically instru-

ment dynamic web applications using source transformation technology, and to recover

a sequence diagram from execution traces generated by the resulting instrumentation.

Using an SQL database to store generated execution traces, our approach automat-

ically filters traces to reduce redundant information that may complicate program

understanding.

• We supported the dynamic analysis phase by an automated instrumentation coverage

approach to decrease the percentage of false positives. A set of new coverage metrics,

specialized for dynamic web applications, is also proposed and implemented. In addi-

tion, we performed a great deal of analysis on the embedded database interaction in

the host application. This includes automated distilling of the SQL embedded system,

analyzing it, and modeling it as a part of the whole system. Also, three tools have

been developed in support of this part, PHP2XMI , WAFA , and DWASTIC.

• In the fourth part, making use of Model Driven Engineering, we automatically con-

structed a Role-Based Access Control security model from the recovered structural

and behavioral models. We used TXL to implement the automatic model to model

transformation and composition. The generated model is also represented in the UML

2.1 exchange format, XMI 2.1.

• In the last part, we developed, based on model-to-model transformation approach, a

novel tool to transform the semi-formal UML 2.1 security model into a formal model

to ease the process of verifying the system against security properties. Two tools have



CHAPTER 1. INTRODUCTION 5

been developed in support of this phase, PHP2SecureUML, and SecureUML2Prolog.

• In our first experiment, the framework is being evaluated on one of the most pop-

ular PHP web applications, PhpBB, to check that the application is free from any

remaining access control vulnerabilities.

1.4 Structure of the dissertation

In this chapter we have presented and motivated the primary research problem of RBAC

security model recovery and analysis for dynamic web applications, the thesis statement,

and the contributions of the thesis research. The remaining chapters of the thesis are

organized as follows:

• Chapter 2 : presents our proposed categorization criteria for web application verifi-

cation and testing modeling methods, and provides a comprehensive state of the art

study of methods in the field.

• Chapter 3 : provides an outlines for our Role-Based Access Control security analysis

framework and its components.

• Chapter 4 : describes an approach for automated transformation from an SQL (DDL)

schema to an open XMI 2.1 UML-adapted class model.

• Chapter 5 : presents an approach and tool to automatically instrument dynamic web

applications using source transformation technology and to recover a sequence diagram

from execution traces generated by the resulting instrumentation.

• Chapter 6 : presents an approach for fine-grained analysis of dynamic web applications.

• Chapter 7 : presents an automated instrumentation coverage approach to support

dynamic analysis and to decrease the percentage of false positives.



CHAPTER 1. INTRODUCTION 6

• Chapter 8 : describes our approach for automatically constructing a Role-based Access

Control security model from the recovered structural and behavioral models.

• Chapter 9 : presents a set of experiments for our framework and analyses the results

• Chapter 10 : presents a summary of the thesis, a list of contributions, future work and

a statement of conclusions.



Chapter 2

Related Work - Analysis Models

and Methods for Web Application

Verification and Testing

Models are considered an essential step in capturing different system behaviors and sim-

plifying the analysis required to check or improve the quality of software. Verification and

testing of web software requires effective modeling techniques that address the specific chal-

lenges of web applications. In this study we survey 24 different modeling methods used

in website verification and testing. Based on a short catalogue of desirable properties of

web applications that require analysis, two different views of the methods are presented:

a general categorization by modeling level, and a detailed comparison based on property

coverage.

The rest of this chapter is organized as follows. Section 2.1 motivates our work. Sec-

tion 2.2 gives a brief introduction to web applications and web services and the challenges

that affect the analysis and modeling of web applications. Section 2.3 describes the set of

comparison and categorization criteria used in our study. In Section 2.4 we give a brief

7



CHAPTER 2. RELATED WORK 8

summary and a comparative analysis of the 24 modeling methods. Sections 2.5 and 2.6 add

descriptions of some other related methods. Finally, we conclude and suggest some of the

open problems in the area in Section 2.7.

2.1 Motivation

Like many software domains, web applications are becoming more complex. This com-

plexity arises due to several factors, such as a larger number of hyperlinks, more complex

interaction, and the increased use of distributed servers. Modeling can help to understand

these complex systems, and several papers in the literature have studied the specific prob-

lem of modeling web applications. In some cases, new models have been proposed, while in

other cases, existing modeling techniques have been adapted from other software domains.

Modeling can help designers during the design phases by formally defining the requirements,

providing multiple levels of detail, and providing support for testing prior to implementa-

tion. Support from modeling can also be used in later phases to support validation and

verification.

Most of the early literature concentrates on the process of modeling the design of web ap-

plications. It proposes forward engineering-based methods designed to simplify the process

of building highly interactive web applications [84, 152, 62, 43]. Other research uses reverse

engineering methods to extract models from existing web applications in order to support

their maintenance and evolution [99, 25, 66]. This chapter surveys a range of different

analysis models that are currently applied in the field of verification and testing of web

applications. Design modeling methodologies such as those reviewed in [56, 112, 76] are

outside the scope of our study. Our survey focuses on the modeling methods used. Thus

testing and verification methods as a whole, such as user session-data testing [75] and bypass

testing [140] are also outside the scope of this survey.

While reviewing different analysis methods in our scope, we found that some of the



CHAPTER 2. RELATED WORK 9

literature focuses on modeling the navigational aspects of web applications [30, 150, 73, 96],

while others concentrate on solving problems arising from user interaction with the browser

in a way that affects the underlying business process [33, 120]. Still others are interested

in validating the correctness and completeness of web page contents [18, 20, 17, 19]. The

surveyed models are interested in modeling and verifying either the static or the dynamic

behaviors and features of web applications [24, 100].

Previous surveys have compared methods proposed for web application development

[112, 76]. Most concentrate on design methods, methods that focus on the preliminary

phases of the software life cycle. Cuaresma et al. [56] on the other hand concentrate

on comparing methods dedicated to requirements engineering. The work most similar to

our study is the survey done by Di Lucca and Fasolino [69], but their focus is on the

functional testing of web applications, while ours is on the analysis models underlying web

application verification and testing. We are interested in those methods that propose models

to capture different properties related to the structure (navigation), behavior, and content

of web applications, and whether these properties are static, dynamic, or interactive.

To date, no one has analyzed modeling methods devoted to verification and testing of

web applications taking into consideration the capabilities of those methods in capturing,

verifying or testing the set of desired web application properties that we discuss in this

chapter. This study is undertaken to investigate the current state of the art in the field

of web application verification and testing, and to distill what is being done and what

still needs to be done to help researchers interested in this field to fill the gaps. For web

engineers interested in modeling, this study may provide an insight to the different models

and notations used to capture the different features in web applications, and encourage them

to propose new improved models. For those interested in web application verification and

testing, the analysis provided here may suggest new directions that need to be investigated

to improve the quality of web applications. In addition, it provides an overview of the range

of analyses that are being used to support web application verification and testing which



CHAPTER 2. RELATED WORK 10

may help in the integration of different methods to derive new, improved techniques.

2.2 Web Application Modeling

In this section we set our work in the context of the web environment, web applications and

services, introduce the major challenges in the analysis and modeling of web applications

for verification and testing, and outline the desirable properties of web application models

that form the basis of our study.

2.2.1 Web Applications

For the purpose of this survey, a web application is a software application that is accessible

via a thin client (i.e., web browser) over a network such as the Internet or an intranet. A

web application is often structured as a three-tiered application. As shown in Figure 2.1,

the web browser represents the first tier. The web server that implements CGI, PHP, Java

Servlets or Active Server Pages (ASP), along with the application server that interacts with

the database and other web objects is considered the middle tier. Finally, the database

along with the DBMS server forms the third tier.

Web applications generate web pages, comprising different kinds of information such as

text, images and forms. These web pages can be either static or dynamic. Static pages reside

on a web server and contain only HTML and client-side executable code (e.g., JavaScript)

and are served by the web server. Dynamic pages are generated as the result of the execution

of various scripts and components on the server. These pages contain a mixture of HTML

source and executable code, and are served by the application server.

In our study we treat the terms web application and website as synonymous. Some

researchers consider a website to be simply a set of related web pages grouped together by

some means on a server, or in a folder on a server. Such pages are static pages that don’t

use dynamic features and thus need not be processed by the application servers.



CHAPTER 2. RELATED WORK 11

Figure 2.1: Web Application Components (from [151])

We are interested in all methods that propose models to capture different properties

related to the structure (navigation), behavior, and content of web applications; and whether

these properties are static, dynamic, or interactive. Another level that could be considered

is the presentation level, which describes how information is to be presented to users. Issues

related to this level include attributes such as color and font as well as cascading style sheets.

In this study we concentrate on the semantics of web applications rather than presentation

issues.

2.2.2 Web Services

Web services are a standardized way of integrating web-based applications using separate

service communication interfaces that can be used by other web applications. They are



CHAPTER 2. RELATED WORK 12

primarily used as a means for businesses to communicate with clients and each other without

exposing detailed knowledge of each other’s IT systems. Communication is usually in XML,

and not tied to any particular operating system or programming language. Web services

don’t require the use of browsers or HTML, and don’t provide the user with a GUI. Web

services are outside the scope of the present study, but may be a future direction for our

work.

2.2.3 Challenges in Analysis and Modeling of Websites

Web applications are evolving rapidly, as many new technologies, languages, and program-

ming models are used to increase the interactivity and the usability of web applications.

This inherent complexity brings challenges to modeling, analysis, testing, and verification

of this kind of software. Some of these challenges are:

• The diversity and complexity of the web application environment increases the risk

of non-interoperability and the complexity of integration. Web applications interact

with many components that run on diverse hardware and software platforms. They are

written in diverse languages and they are based on different programming approaches

such as procedural, OO, interpreted, and hybrid languages such as Java Server Pages

(JSPs). The client-side includes browsers, HTML, embedded scripting languages and

applets. The server-side includes CGI, JSPs, Java Servlets, and .NET technologies.

They all interact with diverse back-end engines and other components that are found

on the web server or other servers. The integration of such components and the

web system in general is extremely loose and dynamically coupled, which provides

powerful abstraction capabilities to the developers, but makes analysis for testing and

verification extremely difficult.

• Another major challenge comes from the dynamic behavior, including dynamically

generated client components, dynamic interaction among clients and servers, and the



CHAPTER 2. RELATED WORK 13

continual changes in the system context and web technologies.

• Web applications may have several entry points, and users can engage in complicated

interactions that the web application cannot prevent. Web applications often contain

database components and may provide the same data to different users. In these

cases, applying access control mechanisms becomes an important requirement for safe

and secure access to web application resources, and the process of implementing and

applying such rules is considered a great challenge.

• Web applications have the property of low observability, due to the difficulty of track-

ing some outputs. Usually the output that is observed and analyzed consists of the

HTML documents sent back to the user. But there are also other kinds of output,

such as the changed state of the server or the database, messages sent to other web

applications and services, and so on. It is considered a challenge to perform a precise

analysis of web applications that takes into account all of this information.

2.2.4 Desirable Properties For Website Modeling

We can view web applications from three orthogonal perspectives (levels of modeling): web

navigation, web content and web behavior. We first present an initial categorization of the

desirable properties of web applications based on the level of modeling, and in Section 2.3

we further categorize the properties according to the static, dynamic, or interaction aspects

as applicable:

1. Web Navigation

• Static navigation properties: Most of the early literature on web analysis and

modeling concentrates on dealing with static links, treating web applications as

hypermedia applications. It addresses the checking of properties such as broken

links, reachability (e.g., return to the home page), consistency of frame structure,



CHAPTER 2. RELATED WORK 14

Feature modeled or property 
checked 

Example feature or property description 

Static 
Navigation 
Properties 
 
 
 
 

 

Broken links Verify the absence of broken links in the web site. An example formula in computational tree logic (CTL), [SDMP02]: 
 
           Φ1 = AG(link → EX  page). 
 
 For each link in the web site, a page exists that is attached to it in the next sate.  

Reachablity Check if there is at least one navigation path from the start page (StartPage) to the target page (TargetPage).  An 
example formula in computational tree logic (CTL), [HH06]: 
 
          EF (StartPage =  TargetPage). 
 

Dead End Check that it is not possible to reach Target Page along any path from the start point. (TargetPage  is not reachable 
from any other page.). An example  formula in computational tree logic (CTL), [HH06]: 
    
        Not( AG EF (StartPage = TargetPage)). 
 

Frames 
consistency 
 

Example situations that lead to frames inconsistencies: 
– Duplicated frame names (a name l that occurs in more than one frame tag).  
– Frame trees deeper than a fixed threshold.  
– Non-existent link targets (anchors tag < a, l > such that l does not appear in any frame tag). [dA01] 
 
  An example  formula in linear temporal logic (LTL),[HPS04]: 
         []  p,  where  p  = duplicateFrames_mainW  =  =  0   
 
duplicateFrames_mainW is a Boolean variable that is set to True if two frames having same name are active simultaneously. 
 This  property requires the absence of a frames error where frames having same names are active simultaneously 

Form filling 
 

The ability of modeling form based pages, and to populate those forms with different values automatically or semi-
automatically. 

Longest path The length of a path consists of the number of bytes, or the number of links, that must be downloaded in order to follow 
it.   An example formula in  Constructive µ – calculus [dA01]: 
 
In MCWEB, there is an extension that enables the computation of the longest and shortest paths in a set of webnodes. 
To find the all-pair longest path between webnodes of a domain ∆, MCWEB post-processes the output of the formula, 
 a: home page a; Post(x):  webnodes reachable by following one edge from x, in_ domain ∆ :   holds for a webnode W 
  if there is an URLpage S in W such that S contains the substring ∆ ; 
       
       〉〉∆∩∪=〈〈 xdomaininxPostaxx ,)_)((.µ  
 
 The computation of the all-pair longest path can provide information about the bottlenecks in the navigation of a site. 

Dynamic 
 Navigation 
 
 

System input Modeling using input provided by the user or system to generate a different target for the same navigation link. For 
example, links that are available only if the user has given access rights; search engines such as Google, which depend on 
user’s keywords to generate a document containing dynamically generated links representing the result of the search. 

User input 

Interaction 
 Navigation 

HTML + user 
operations 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling and checking the user interactions with the browser that may affect the business logic of web application; this 
could include modeling the back button, the forward button, and URL rewriting. The following sequence of steps 
generates the Amazon bug[18], a well known bug caused by ignoring user interactions with the browser. 
 
Step 1: The shopping cart of the user is empty and the user browses the web site. 
Step 2: The user adds an item Item1 to the shopping cart. 
Step 3: The user decides that he does not want to buy Item1 after all, but instead of deleting it from the shopping cart he  
uses the “back” button to return to the previous shopping cart which is empty. 
 
An example formula using Alloy,  [BA05]: 
 
all s: State | s.browser.display.cHasItems = s.browser.bl.scHasItems 
 
A major requirement of the model is to guarantee the integrity of the system by ensuring that the list of items that are 
displayed on the browses current web page (cHasItems) is identical to the contents of the shopping cart (scHasItems); bl 
(business logic)  is an abstract class that relates the browser to its data content.  Using Alloy Analyzer one can see that 
the assertion fails.  

Table 2.1: Desirable Properties for Website modeling.



CHAPTER 2. RELATED WORK 15

 

Feature modeled or property 
checked 

Example feature or property description 

Static 
content 
properties 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Incomplete WP The model should enforce that a given web page contains some information, links between pages exist and that the web 
page exists. An example formula using Rewriting-based specification language, [ABF05]: 
 
L→#r : If L is recognized in some web page of W, then r must be recognized in some web page of W which contain the 
marked part of r.  
 
member(name(X), surname(Y )) → hpage(name(X), surname(Y ), status()) 
 
If there is a Web page containing a member list, then for each member a home page exists containing (at least) 
 the name, the surname and the status of this member. 
 

Incorrect WP The model should enforce that the information provided on a web page is valid based on the application requirements. 
An example formula using Rewriting-based specification language, [ABF05]: 
 
L →error | C, If L is recognized in some web page of W and all the expressions represented in C are evaluated to True (or 
C is empty), the web page is incorrect. 
 
project(year(X)) → error | X in[0 − 9]*, X < 1990 
 
If there is a Web page containing a project year, where the year is numeric and less than 1990, it should be replaced with 
error. 

Dynamic 
content 
properties 
 

Incomplete WP Check that the syntax and semantics (specifically the incomplete property) of dynamically generated content that results 
from the execution of scripts on the application server. 
(None of the examined modeling methods use this kind of checking.) 
 

Incorrect WP 
 
 
 

Check that the syntax and semantics (specifically the incorrect property) of dynamically generated content that results 
from the execution of scripts on the application server. 
(None of the examined modeling methods use this kind of checking.) 

New 
connection 

Model connections whose source and target is determined by the system at run time. For example: 
Link an electronic book which has 200 chapters; linking each one individually in the content list is time consuming; time 
could be saved by using an algorithm that can use user selected text (in the content list) to automatically links the 
chapter with a title corresponding to the selected text. 
 

New content Model new generated components that the user can’t determine until run time. 
 

Instruction  
processing 

Server-side 
execution 

If the method provides a model for code that is executed on the client or the server, can the method specify the location 
of such execution (i.e.  is it  executing on the client or server side). 

Client-side 
execution 

Security 
properties 
 
 
 
 
 
 

Access control Check if the access control rules specified in the application requirements are violated in the web application. An 
example in computational tree logic (CTL), [CMRT06]: 
A member cannot have administrator functions and an anonymous user cannot view pages belonging to a member 
 
AG(member → !all); AG(noLog  →  (!partialΛ!all)) 
 
All: administrator functions; partial: member functions. 
 

Session/cookie. Check if the inactive period of the current session is over a time limit (e.g. 5 minutes). If the inactive period is greater 
than the time limit, the HTTP request must be redirected to an authentication page to re-authenticate the user. An 
example in first-order logic [KLH00]: 
 

))(.)5().().)((( AuthredirectthisInactivesSessionthissSessions →>∧=∈∃  
 
The this.Session ( ) is a function that returns a session object; s.Inactive() is a function that returns the inactive period 
for the session object s. The this.redirect (Auth) specifies that the HTTP request is redirected to the Auth server-page. 
 

Table 2.2: Desirable Properties for Website modeling (Cont.)



CHAPTER 2. RELATED WORK 16

and other features related to estimating the cost of navigation, such as longest

path analysis.

• Dynamic navigation properties: This analysis focuses on aspects that make the

navigation dynamic. That is, the same link may lead to different pages depend-

ing on given inputs. The inputs could be user inputs transferred via forms, or

system inputs depending on some state in the server such as date, time, session

information, access control information or information in hidden fields.

• Interaction navigation properties: This analysis focuses on properties that are

related to user navigation that happens outside the control of the web application,

such as user interaction with the browser. This includes features such as use of

the back or forward buttons.

2. Web Content

• Static content properties: Consistency of the original web page content with

respect to syntax and semantics. Two properties are explored in this category,

completeness and correctness. When verifying the completeness of a web applica-

tion the model should enforce that a given web page contains some information,

links between web page exist and sometimes even check that the web pages exist

(broken links). Correctness implies that the information provided on a web page

is valid based on the application requirements.

• Dynamic content properties: Consistency of the syntax and semantics of dynamic

content. This analysis requires the ability to check the dynamically generated

content that results from the execution of script code by the application server.

Some technologies are also able to generate new connections, some of which may

be to a different server. New web components could be generated at run time,

and these components must also be analyzed.



CHAPTER 2. RELATED WORK 17

3. Web Behavior

• Security properties: This issue is related to access control mechanisms that are

employed on the web content or web links. This issue could also be employed

on the back-end, as the database may contain data reserved to specific users.

Non-authorized users must not be able to access such data. These properties are

also tied to session control mechanisms.

• Instruction processing properties: These issues include both server and client-side

execution. We define client-side execution as any process changing the state of the

application without communication with the web server. Server-side execution

is defined by all instructions processed on a web server in response to a client’s

request. A modeling method should to be able to model these features and to

recognize whether execution is done on the server or on the client.

Tables 2.1 and 2.2 provide descriptions and examples of these properties. The list is not

complete, but it provides a summary of the set of properties that the reviewed methods

are interested in modeling, checking or testing. We use symbolic keys in the tables (e.g.,

SDMP02) to refer to the surveyed methods. Please refer to Table 2.3 in Section 2.4 for

details on the symbolic keys.

2.3 Comparison and Categorization Criteria

In our study we reviewed 24 different modeling methods that are applied in the field of

testing and verification of web applications. Following is a brief description of the main

comparison criteria that are used in our review:

1. Feature Type: The web application features that are being captured by the proposed

models, and the properties that the modeling methods are capable of checking. These

features are categorized first in Section 2.2.4 based on the level of web application



CHAPTER 2. RELATED WORK 18

modeling into features related to web application navigation, content, or behavior.

In this section, we add another categorization dimension, static, dynamic, or interac-

tive. This additional information can help us to identify the improvements that the

modeling methods are trying to achieve at each level of web application modeling.

We relate each category to the properties described in Section 2.2.4 at the end of its

description.

• Static Features: These include the static properties of web applications, such

as links that connect an HTML page with other HTML pages. When the user

clicks on a static button or a static link, a request is sent to the server in order

to fetch a page. The server responds to the request by retrieving the required

page from its storage and sends it back to the client. In this category properties

from Section 2.2.4 related to static navigation and static content can be checked.

• Dynamic Features: These features include dynamic links and dynamic content

properties. Dynamic links describe the connection between HTML pages and

code that must to be executed on the server in order to generate the required

information, build it into an HTML page, and return it to the client. The

processing done by the server may depend on input that is provided by the user

or the system. User inputs are usually sent by filling a form or by hidden fields

in the HTTP request. System inputs depend on the server state, such as server

time, or on some kind of interaction with other resources, such as database servers

or web objects. The output could be constructed as new content, or a link in a

new HTML page. Properties from Section 2.2.4 that fall into this category are

those related to dynamic navigation, dynamic content, security, and instruction

processing properties.

• Interaction Features: The browser’s influence on the navigation behavior of the

web application should be taken into consideration when modeling or analyzing



CHAPTER 2. RELATED WORK 19

web applications, since user interaction with the browser can interactively modify

navigation paths. This category includes properties from Section 2.2.4 related to

user interaction with the browser.

2. Notation: Modeling methods use different notations; some of them are formal, while

others are either semi- formal or informal. The main notations used by the reviewed

methods are:

• Statecharts [97].

• UML and OCL [2] [1]

• UML-based Web Engineering (UWE) [113]

• Alloy [107].

• Finite State Machines (FSM) [167]

• Directed Graphs and Control Flow Graphs (CFG) [89] [129]

• Specification and Description Language (SDL) [80].

• Term Rewriting Systems (TRS) [110]

3. Levels of modeling: Web application modeling can be viewed from different perspec-

tives. We compare the modeling methods here according to three basic levels: content,

structure (navigation), and behavior. These three levels in turn could have a static

or a dynamic flavor.

4. Application of the model: In our study we focus on methods that are concerned with

modeling web applications for the purpose of testing or verification; this also could

include design verification.

5. Source code required?: Modeling methods may apply a white-box analysis, which

requires source code, or a black-box analysis which does not require source code.



CHAPTER 2. RELATED WORK 20

6. Model optimization: Complex systems in general have a state explosion problem or

they generate a large complex model. In all cases such models need some sort of

optimization. In web applications, this problem becomes a major challenge to the

success of any method that attempts to analyze and model a scalable web system.

7. Tool support: We note whether the method is supported by a proposed or existing

tool.

2.4 Comparative Analysis.

Our study produced two different views of the surveyed methods: a general categorization

by modeling level, and a detailed comparison by property coverage. To minimize space in

tables and text, we identify each modeling method with a key based on the last name of

authors and the date of publication. Table 2.3 gives these keys along with the full name in

text and the citation for the method.

Table 2.4 summarizes the first view, categorizing each of the methods based on the level

of modeling: as interaction behavior modeling methods, navigation modeling methods,

content modeling methods or hybrid modeling methods (methods that model more than

one level). In each category, methods are sorted according to the notation used by the

method. At the same time, comparison between the methods was also done based on the

other criteria presented in section 4.

The second comparison, shown in Table 2.5, compares some of the more specific details

of methods in the same category, in particular, and with other methods in other categories

in general. The comparison is based on a combination of feature type and the level of web

application modeling, using the comparison criteria outlined in Section 2.2.4 as desirable

properties for web site modeling.

In the remainder of this section we discuss and compare the characteristics of the meth-

ods summarized in these tables. Our presentation is organized by the levels in Table 2.4,



CHAPTER 2. RELATED WORK 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Shortcut  Keys Full name in Text Reference No. 

LuccaP03 Di Lucca and Di Penta 2003 
 

[68] 

GFKF03 Graunke et al. 2003 
 

[90] 

LK04 Licata and Krishnamurthi 2004 
 

[121] 

CZ04 Chen and Zhao 2004 
 

[48] 

BA05 
ABGR07 

Bordbar and Anastasakis  2005  
Anastasakis   et al. 2007 

[37] 
[27] 

ABF+07 
ABF06 

Alpuente et al. 2006 
Alpuente et al. 2007 

[22,24,21,23] 

CF07 
CF06 

Coelho and Florido 2007 
Coelho and Florido 2006 
 

[55,56] 

Con99 
 

Conallen , 1999 [57] 

BMT04 Bellettini et al. 2004 
 

[34] 

RT00 Ricca and Tonella 2000 
 

[150] 

dA01 

dAHM01 
MCWEB , de Alfaro  2001 
de Alfaro et al. 2001 

[62,63] 

SDMP02 
SDMP03 

Sciascio et al. 2002 
Sciascio et al. 2003 
 

[74,75] 

SDM+05 

CMRT06 
Sciascio et al. 2005 
WAver ,  Castelluccia et al. 2006 
 

[76] 
[44] 

WP03 

 
Winckler and Palanque 2003 
 

[172] 

HH06 

(FARNav) 
FARNav , Han and Hofmeister 2006 
 

[98] 

SM03 Syriani and Mansour 2003 
 

[161] 

KLH00 

(WTM) 
Web Test Model  WTM, Kung et al. 2000 [118] 

BFG02 

(Veriweb) 
VeriWeb, Benedikt et al. 2002 
 

[36] 

HPS04 Haydar et al. 2004 
 

[102] 

AOA05 

(FSMWeb) 
FSMWEB, Andrews et al. 2005 
 

[28] 

WO02 Wu and Offutt 2002 
 

[173] 

TR04 

TR02 
Two- layer-model, Tonella and Ricca  2004 
Tonella and Ricca 2002 

[164] 
[163] 

KZ06 Knapp and Zhang 2006 
 

[113] 

GSDA07 Guerra et al. 2007 [93] 

Interaction B
ehavior 

M
odeling M

ethods 

C
ontent M

odeling 
M

ethods 
N

avigational M
odeling 

M
ethods 

H
ybrid M

odeling M
ethods 

(M
ore than one level )  

Table 2.3: Reference linking summary tables with text



CHAPTER 2. RELATED WORK 22

Method 
Name 

Feature 
type 

Notation Level Application Source 
code 
required 

Model 
optimization 

Tool support 

LuccaP03 Interaction StateCharts Interaction Behavior Testing No No None 

GFKF03 Interaction Abstract model, use 
lambda calculus 

Interaction Behavior Web application 
interaction with the 
browser 

No No Prototype 

LK04  Interaction WebCFG Interaction Behavior Verification Yes Yes 
 

Implement a 
model checker 

CZ04  Interaction 
+Static  

Labeled transition Interaction + static 
(Navigations) 

Testing and verification No Yes None 

  BA05   
ABGR07 

Interaction UML(Web application  
structure) 
 OCL ( behavior of the 
model) 

Interaction Behavior Verification for user 
interaction( Amazon + 
Orbitz bug) 

No Yes UML2Alloy 

ABF+07 
ABF06 

Static Partial rewriting Content Verification  Yes No WebVerdi-M 
GVerdi-R 

CF07 
CF06 

Static Logic PL- Prolog 
extension (XCentric) 

Content XML_based web 
application verification 

Yes No VeriFLog 

Con99 Static Extended UML Structure (Navigation) Analysis No No Rational Rose 
Tools 

BMT04 Static + 
dynamic 

UML-meta Model + 
UML state diagram 

 Structure(Navigation) Analysis & Testing Yes No WebUML 

RT00  Static Directed graph 
 

Structure(Navigation) Analysis + can be used for  
verification & testing 

No No ReWeb 

dA01  
dAHM01   

Static Directed graph 
With Webnodes 

Structure(Navigation) Verification No No MCWeb 

SDMP02  Static + 
dynamic 

Web graph Structure(Navigation) Design Verification  No No AnWeb 

SDM+05 

CMRT06  
 

Static + 
dynamic 

(WAG)Web 
application graph + 
extension to Kripke 
structure 

Structure(Navigation) Design Verification No  No WAVer + SMV 
tools 

WP03 

 
Static + 
dynamic 

Extended StateCharts  Structure(Navigation)  Design Verification Yes Yes SWCEditor 

HH06 

FARNav 
Static + 
dynamic 

StateCharts Adaptive (Navigation) Design and 
implementation 
Verification + testing 

No Yes Existing SVM 
model-checking 
tools 

SM03  Static +  
dynamic 

SDL Structure(Navigation) Testing and verification Yes No Existing SDL 
Support tool 

KLH00 

WTM 
Static + 
dynamic 

Control flow graph, 
data flow graph, and 
finite state machines 
OSD( object state 
diagram) 

Static and dynamic 
Behavior, Dynamic 
Navigation 
 

Testing Yes No None 

BFG02  
Veriweb 

static + 
dynamic 

Directed graph Navigation + Behavior Testing Yes Yes VeriSoft + web 
Navigator + 
ChoiceFinder + 
SmartProfiles 

HPS04  Static+ 
dynamic 

System of 
communicating 
automata 

Navigation + Behavior Verification No Yes Famework with 
GUI + network 
monitoring tool 
+ analysis tool 

AOA05  
FSMWeb 

static + 
dynamic 

hierarchies of Finite 
State Machines (FSM) 

Navigation + Behavior System level testing No Yes Prototype 

WO02  Interaction 
+ static + 
dynamic 

Regular  expression Interaction + dynamic 
Behavior 

Can be used for testing + 
implementation + impact 
analysis 

Yes No None 

TR04 

TR02 
Static + 
dynamic 

 (model navigation 
layer) + CFG (client  
& server code) 

Structure(Navigation)
+Behavior 

Testing Yes  No ReWeb + 
TestWeb 

KZ06 Static + 
dynamic 

Extended UML 
(UWE) 

Structure(Navigation) 
+Behavior 

Design Validation and 
Verification 

No No ArgoUWE + 
Spin or 
UPPAAL 

GSDA07 
 

Static + 
dynamic 

Ariadne Development 
Method(ADM) 

Structure(Navigation) 
+Behavior 

Design Validation and 
Verification 

No No a Framework 
implemented  in 
AToM3    

 
 

 
 

Interaction B
ehavior 

M
odeling M

ethods 

C
ontent M

odeling 
M

ethods 
N

avigational M
odeling 

M
ethods 

H
ybrid M

odeling M
ethods 

 (M
ore than one level )  

Table 2.4: Summary of Methods Categorized by Modeling Level



CHAPTER 2. RELATED WORK 23

 

D
es

ir
ab

le
  F

ea
tu

re
s o

f  
W

eb
 a

pp
lic

at
io

n 
M

od
el

in
g 

        M
et

ho
d 

N
am

e 

St
at

ic
 N

av
ig

at
io

n 
Pr

op
er

tie
s 

D
yn

am
ic

 
N

av
ig

at
io

n 
In

te
ra

ct
io

n 
N

av
ig

at
io

n 
St

at
ic

 c
on

te
nt

 p
ro

p.
 

D
yn

am
ic

 c
on

te
nt

 p
ro

pe
rt

ie
s 

In
st

ru
ct

io
ns

  
pr

oc
es

si
ng

 
Se

cu
ri

ty
 p

ro
pe

rt
ie

s 

B
ro

ke
n 

lin
ks

 
R

ea
ch

ab
lit

y 
F

ra
m

es
 

co
ns

is
te

nc
y 

 

F
or

m
 

fil
lin

g 
Lo

ng
es

t 
pa

th
 

Sy
st

em
 

in
pu

t 
U

se
r 

in
pu

t 
H

TM
L 

+ 
us

er
 

op
er

at
io

ns
 

In
co

m
pl

et
e 

W
P 

In
co

rr
ec

t 
W

P 
In

co
m

pl
et

e 
W

P 
In

co
rr

ec
t 

W
P 

N
ew

 
co

nn
ec

tio
n 

N
ew

 
co

nt
en

t 
Se

rv
er

-
si

de
 

ex
ec

ut
io

n 

C
lie

nt
-

si
de

 
ex

ec
ut

io
n 

A
cc

es
s 

co
nt

ro
l 

Se
ss

io
n/

co
ok

ie
s 

L
uc

ca
P0

3 
 

 
 

 
 

 
 

Y
 

 
 

 
 

 
 

 
 

 
 

 

G
FK

F0
3 

 
 

 
Y

 
 

 
 

Y
 

 
 

 
 

 
 

 
 

 
 

 

L
K

04
 

 
 

 
 

Y
 

 
 

Y
 

 
 

 
 

 
 

 
 

 
 

 

C
Z0

4 
 

Y
 

Y
 

Y
 

 
 

 
 

Y
 

 
 

 
 

 
 

 
 

 
Y

 
 

  B
A

05
   

A
B

G
R

07
 

 
 

 
 

 
 

 
Y

 
 

 
 

 
 

 
 

 
 

 
 

A
B

F+
07

 
A

B
F0

6 
 

 
 

 
 

 
 

 
Y

 
Y

 
 

 
 

 
 

 
 

 
 

C
F0

7 
C

F0
6 

 
 

 
 

 
 

 
 

Y
 

Y
 

 
 

 
 

 
 

 
 

 

C
on

99
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

B
M

T
04

  
Y

 
Y

 
Y

 
Y

 
 

 
Y

 
 

 
 

 
 

 
 

Y
 

Y
 

 
 

 

R
T

00
  

Y
 

Y
 

Y
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

dA
01

 

dA
H

M
01

   
Y

 
Y

 
Y

 
 

Y
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

SD
M

P0
2 

 
Y

 
Y

 
Y

 
 

Y
 

 
Y

 
 

 
 

 
 

 
 

 
 

 
 

 

SD
M

+0
5 

C
M

R
T

06
  

 

Y
 

Y
 

Y
 

 
Y

 
Y

 
Y

 
 

 
 

 
 

 
 

 
 

 
 

 

W
P0

3 
 

 
Y

 
Y

 
Y

 
 

Y
 

Y
 

Y
 

 
 

 
 

 
 

 
 

 
Y

 
 

 

H
H

06
  

(F
A

R
N

av
) 

Y
 

Y
 

Y
 

 
 

Y
 

Y
 

 
 

 
 

 
Y

 
Y

 
 

 
 

 
 

SM
03

  
Y

 
Y

 
Y 

 
 

Y
 

Y
 

 
 

 
 

 
 

 
 

 
 

 
 

K
L

H
00

 

(W
T

M
) 

Y
 

Y
 

Y
 

 
 

 
Y

 
 

 
 

 
 

 
 

 
 

 
 

 

B
FG

02
  

(V
er

iw
eb

) 
Y

 
Y

 
Y

 
 

 
Y

 
Y

 
 

 
 

 
 

 
 

Y
 

Y
 

 
Y

 
 

H
PS

04
  

Y
 

Y
 

Y
 

Y
 

Y
 

 
Y

 
 

Y
 

 
 

 
 

 
 

Y
 

 
 

 

A
O

A
05

 

(F
SM

W
eb

) 
Y

 
Y

 
Y

 
Y

 
 

 
Y

 
 

 
 

 
 

 
 

 
Y

 
 

 
 

W
O

02
  

Y
 

Y
 

Y
 

Y
 

 
Y

 
Y

 
 

 
 

 
 

Y
 

Y
 

Y
 

Y
 

 
 

 

T
R

04
  

T
R

02
  

Y
 

Y
 

Y
 

 
 

Y
 

Y
 

Y
 

 
 

 
 

 
Y

 
Y

 
Y

 
 

 
 

K
Z0

6 
 

Y
 

Y
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Y

 
 

G
SD

A
07

 
 

Y
 

Y
 

 
 

 
Y

 
Y

 
 

 
 

 
 

 
 

 
 

Y
 

 
 

St
at

ic
St

at
ic

D
yn

am
ic

 
D

yn
am

ic
 

In
te

ra
ct

io
n 

Table 2.5: Detailed Comparison of Methods by Properties Covered



CHAPTER 2. RELATED WORK 24

that is, we first discuss interaction modeling methods in section 2.4.1, then content mod-

eling methods in section 2.4.2 followed by navigation modeling methods in section 2.4.3,

and finally hybrid methods in section 2.4.4. The categories are not disjoint; some methods

are discussed more than once since they have aspects that address multiple levels, but we

try to make the presentation consistent with Table 2.4 otherwise. For example methods in

each category are discussed based on the notation employed by those methods in order to

identify how specific notation can affect the capability of the modeling methods to capture

different features.

2.4.1 Interaction Behavior Modeling Methods

Dealing with user operations (interactions) is very important. Such interactions are prob-

lematic, for example: clicking the back button forces the computation to resume at a prior

interaction point; submitting multiple forms then clicking the back button causes computa-

tions at the same interaction point to resume many times. These operations happen in the

browser and are not reported to the web application. Consequently, the browser interacts

with the web application in an unexpected manner. Modeling methods that do not take into

account this kind of behavior are incomplete and unrealistic. The methods discussed here

refer to the first section of Tables 2.4 and 2.5. The presentation follows the chronological

order of the methods unless specific relationships between methods need to be identified.

Di Lucca and Di Penta (LuccaP03) [65] model the browser loading a page as a Statechart

with four basic states: Back Disabled, Forward Disabled (BDFD); Back Enabled, Forward

Disabled (BEFD); Back Enabled, Forward Enabled (BEFE); Back Disabled, Forward En-

abled (BDFE), as shown in Figure 2.2(a). The user navigation is modeled as transitions

between those basic states and the transition has four different labels: forward, backward,

reload and link, to indicate if the transition is activated by clicking on regular links or by

clicking browser navigational buttons. The state transitions are also labeled with guard

conditions to specify the navigation sequence restrictions. Possible interactions with the



CHAPTER 2. RELATED WORK 25

browser are generated using test cases to satisfy defined coverage criteria, such as all states,

all transitions, all transition k-tuples, and all round-trip paths. Potential inconsistencies

are collected by executing the browser test cases and comparing the results with an oracle,

taking into account the verification of the chosen coverage criteria. The authors propose a

way to integrate their browser model with other web application testing models to make

them browser interaction aware methods. Unlike the following methods, this method is

applied in web application testing rather than verification.

Graunke et al. (GFKF03) [88] detect data inconsistency problems such as the “Orbitz”

bug [120] and bugs caused by form input. Problems are detected dynamically by modifying

the server run-time system. An abstract model encodes user interactions with either the

application or the browser using its navigation buttons (e.g., forward, backward) in terms

of three rewriting rules (pattern/replacement pairs describing changes in state): fillform,

switch, and submit. The model is focussed on sequential web interaction and thus is

limited to a single server and a single client (Figure 2.2(b)). Dynamic features are limited

to client-side forms with arbitrary client-side navigation (such as back and forward buttons)

represented using the rewrite rules, allowing for detection of navigation bugs such as the

Orbitz problem.

Licata and Krishnamurthi (LK04) [120] have built a model checker that uses the Graunke

et al. model to reduce user operations to two main rewriting rules: submit and switch.

Their method differs from Graunke et al. in that it is a static method that can provide

guarantees about all possible execution sequences using a control flow graph (CFG) to

model the web application. User operations are added to extend the graph to a WebCFG

constructed automatically from the source of the application. The WebCFG is built using a

standard CFG construction technique followed by a graph traversal to add web interaction

nodes and edges which model the user interactions with the browser. The resulting model

is checkable using language containment, implemented as constraint automata optimized

by automatically generating constraints to rule out redundant forward paths.



CHAPTER 2. RELATED WORK 26

Figure 2.2: Interaction Behavior Modeling Methods: the Di Lucca and Di Penta (LuccaP03)
[65], Graunke et al. (GFKF03) [88] and Licata and Krishnamurthi (LK04) [120]
models.

Chen and Zhao (CZ04) [45] model user interactions with web browsers using a much

more complete model. As well as modeling the back button, forward button and URL

rewriting functionalities, their method is distinguished from other methods in its ability to

represent the history stack and its impact on navigation, the local cache and its influence

on the freshness of web pages, and authentication sessions. While this method builds a

navigational model taking into account interaction with the browser, dynamic links are

not represented in the assumed page navigation diagram, and in the functionality provided

by session/cookie techniques of the application under test, Chen and Zhao have chosen

to model only session control. The proposed model (Figure 2.3(d)) is a labeled transition



CHAPTER 2. RELATED WORK 27

system (LTS) consisting of a set of states S, a set of labels L and a set of transition rules

mapping between states. States maintain a page id to denote the current page and an error

page for invalid accesses, a history stack of current URLs in the session history, a set of

page ids for locally cached pages, and a boolean to represent the authentication status of

the session. Labels encode user actions as entry (a manually entered URL), back, forward,

err (navigation redirected to a special error page), or one of a number of specific user actions

such as signin or signout. A fresh/cache flag indicates whether the resulting page is from

the server or the local cache.

In this model, the example rule shown in the Figure 2.3(D) can be translated as: “If

the user can sign-in from page p into page q and q is in the cache, then there is a transition

from the current state p to the one with page q, where q is put into the history stack”. In

the new state, the guard is set true to indicate that the session for authentication is now

open, and the label on the transition indicates that this is a sign-in action.

Bordbar and Anastasakis (BA05) [33] create an abstract model, called Abstract De-

scription of Interactions (ADI) to depict the interactions between the browser and business

logic. This model consists of four classes: the browser with its functionality, the business

logic that relates to the browser and it’s data content, the data that are exchanged between

the server and the browser, and the generic functionality of the web page that contains data

which could be altered from the user interface. Figure 2.3(e) shows their proposed model.

While Licata and Krishnamurthi (LK04) [120] built their own model checker, Anas-

tasakis et al. [23] use the Alloy [107] model checker to find interaction bugs. The main

difficulty of this method is the process of building the ADI model from the Platform Inde-

pendent Models (PIM) for web applications which are large and complex. The construction

process requires a projection of the PIM and deletion of the unrelated model elements,

which is currently done manually.

To summarize, the authors in this section are able to model the interactions of web ap-

plications with the browser by using abstract models represented in different notations. All



CHAPTER 2. RELATED WORK 28

Figure 2.3: Interaction Behavior Modeling Methods (cont’d): the Bordbar and Anastasakis
(BA05) [33] and Chen and Zhao (CZ04) [45] models.

of the surveyed methods are able to model the basic browser back and forward operations.

Some of the methods also model other browser features such as the history stack, the page

cache and user sessions. These methods manually integrate the interaction model with a

static navigational model. Some detect bugs in the interaction between the web application

and the browser by implementing their own model checker or by using existing testing and

model checking techniques. None of the models demonstrate integration with dynamic web

applications, or how dynamic features affect the interaction models.



CHAPTER 2. RELATED WORK 29

2.4.2 Content Modeling Methods

These methods check the completeness and the correctness properties of web application

content. As the examples in Table 2.2 demonstrate, these methods must be able to en-

force and check that certain information is available on a given web page, links between

pages exist, or even the existence of the web pages themselves (completeness property).

Furthermore, web application content may need to be checked against semantic conditions

to see if they are met by the web document (correctness property). This kind of checking

must handle both static and dynamic content. The methods discussed here refer to the

second section of Tables 2.4 and 2.5. The presentation follows the chronological order of

the methods unless specific relationships between methods need to be identified.

Alpuente et al. in (ABF+06,ABF07) [18, 20, 17, 19] propose a method for verifying

static web applications for both syntactic and semantic properties using partial rewriting.

In this method, web pages are modeled as the ground terms (constant formulae) of a term

algebra, and the entire web site is represented as a set of such ground terms [110]. Rewrit-

ing rules specify pattern/replacement pairs for modifications to the formulae. A checking

specification is a triple (R, IN, IM), where R is a set of global function definitions used in

the rules, IN is the set of correctness constraints encoded as partial rewriting rules, and IM

is the set of completeness constraints encoded as partial rewriting rules. Table 2.2 shows

an example of completeness and correctness rules using this method.

The Alpuente et al. method is implemented in GV erdi, a graphical evolution of the

VERDI verification system, and improved in a new prototype WebV erdi − M (Web Ver-

ification and Rewriting for Debugging Internet sites with Maude) (ABF+07) [19], which

implements a more scalable, efficient and usable verification system that can be used as a

web service from anywhere by any user. GV erdi−R is an improved GVerdi system able to

repair faulty web pages semi-automatically [20]. Ballis and Romero in [27] have improved

the level of automation of the GVerdi-R system by decreasing the amount of information



CHAPTER 2. RELATED WORK 30

to be changed and the number of repair actions to be made to correct a faulty web site.

In place of the partial rewriting applied in the Alpuente et al.’s approach, which uses

tree simulation for recognizing patterns inside semi-structured documents (HTML/XML),

Coelho and Florido (CF06,CF07) [52, 53] use an extension of Prolog called XCentric to check

and repair the syntactic and semantic properties for the content of XML-based web sites.

The XML web document is translated into a temporary document which is composed of

logical terms corresponding to the XML tags in the original document, then, a sequence of

checking and repairing rules is applied on the translated document to verify the semantic

of its content. The verified document is then translated back to its original representation,

XML. The framework was first implemented in Coelho and Florido (CF06) VeriFLog [52],

then improved in Coelho and Florido (CF07) [53].

While the focus of the above methods is on verifying the static content of web applica-

tions, up until now none has studied the verification of dynamic content for correctness and

completeness. Such a study will be required to help with the increasing dynamism of web

applications.

2.4.3 Navigation Modeling Methods

The methods discussed here refer to the third section of Tables 2.4 and 2.5. In this group,

some methods share the same underlying modeling notation, so we discuss methods based

first on the notation then take into consideration the chronological order. The discussion

begins with the UML-based models, continues with graph-based models, then Statechart-

based models and finally an SDL-based model.

UML Navigation Models. Conallen (Con99) [54] extends UML notation to represent web

application components with both static and dynamic features. These extensions include

stereotypes, tagged values and constraints. Stereotypes in UML allow the definition of new

semantics for a modeling element. In this method, this idea is used to define two kinds of web

pages, client pages and server pages, and a web page is modeled as a class with the semantics



CHAPTER 2. RELATED WORK 31

of either a client or server page as defined by the stereotype. The relation between server

and client pages is defined using the stereotype 〈〈build〉〉 and relations between web pages

are expressed using the stereotype 〈〈link〉〉. Other HTML elements, such as JavaScript,

Java applets, ActiveX controls, forms, and frames, are similarly represented as stereotyped

classes. Tagged values, which represent new properties that can be associated with model

elements, are used here to define the parameters that are passed along with a link request,

for example the link association tagged value Parameters is a list of parameter names

(and optional values) that are expected and used by the server page that processes the

request. Finally, constraints specify new conditions under which a model can be considered

“well-formed”.

While Conallen does not himself present a modeling method for any of the web appli-

cation development phases, his UML extensions form the basis of many modeling methods

applied in different phases of web development. The main benefit of this method is that it

allows representation of all components of a web application using standard UML notation.

Like Conallen, Tonella and Ricca (TR02) [163] propose a UML meta-model for modeling

web applications, specifically to represent static navigation. The main difference between

the two approaches is that Conallen’s model describes web applications from a design point

of view, without proposing a method for design or for designing the navigation aspects of

a web application. Tonella and Ricca on the other hand use their model in a reverse engi-

neering method, in order to extract a model of the web application to aid in maintenance

and evolution. Their model is therefore aimed more at analysis rather than design, and

specifically at modeling and analyzing navigation features. The Tonella and Ricca method

is semi-automatic; it requires user interaction to complete the model extraction process.

Since user input from POST access methods is not normally logged by most web servers,

the web server or the web application must be augmented with extra tracing. Also, server

responses may be cached (by the client or by a proxy), so some values must be recon-

structed heuristically. The input values used during model extraction are not generated



CHAPTER 2. RELATED WORK 32

Figure 2.4: UML-Based Models: the Tonella and Ricca (TR02) [163] and Conallen (Con99)
[54] models , and the Knapp and Zhang (KZ06) [111] UWE basis model.

automatically, but instead are provided by extensive user interaction. Source code running

on the browser, such as Javascript and applets, that are executed by the web server are

not currently analyzed. However, their analysis allows treatment of these components as

white-boxes. Figure 2.4(b) shows the Tonella-Ricca model.

Bellettini et al. (BMT04) [30] use a model similar to the Conallen [54] and Tonella

and Ricca [163] models to extract a model instance (in particular class and state diagrams)

from the analyzed web application. Their method differs from Tonella and Ricca in that

Bellettini’s WebUML requires minimal user interaction. Class diagrams are used to describe

the structure and the components of the web application (forms, frames, Java applets, input

fields, cookies, scripts, and so on), while state diagrams are used to represent the behavior



CHAPTER 2. RELATED WORK 33

and navigational structures (client-server pages, navigation links, frames sets, inputs, and

scripting code flow control). WebUML employs a mix of techniques based on source code

static and dynamic analysis. Static analysis is performed using simple parsers based on a

pattern matching scanner. Dynamic analysis is performed through source code mutational

techniques combined with simulated web application execution. This technique avoids heavy

language analysis, but requires the implementation of a simple map of mutant operators.

Castelluccia et al. (CMRT06) [40] and Di Sciascio et al. (SDM+05) [73] use the Conallen

model in order to build a diagram for the web application, where the aim is to verify the

design of the application. In order to apply model checking techniques to any model, the

models must be formal. Di Sciascio et al. implement a component, XMI2SMV, that converts

UML diagrams in XMI format into a Web Application Graph (WAG). The WAG can be

translated, in turn, into a Symbolic Model Verifier (SMV) model which is given as input to

the NuSMV model checker [50].

A similar conversion idea was applied by Bordbar and Anastasakis (BA05) [33] which is

described in section 2.4.1. They also designed a model translation tool, UML2Alloy, that in

their case maps from a UML diagram to an Alloy model, which can then be model checked

using Alloy.

Graph Navigation Models. UML diagrams provide a valid support to verify web ap-

plications requirements; however, they need to be turned into a formal model; so other

researchers prefer to start with a formal model rather than doing the conversion.

In MCWEB [60, 59] de Alfaro et al. model web applications using a webgraph, an

extension to the simple flat directed graph model in which web pages are modeled as nodes,

and links, anchors and frame (sub-frame) tags are modeled as edges. The model supports

natural connectivity analysis of the web, where web graph nodes (webnodes) form a hierar-

chical frame structure, generated by the grammar webnode ::= URLpage (name webnode)∗.

A URLpage is the result of fetching a given URL from the web application using a GET



CHAPTER 2. RELATED WORK 34

Figure 2.5: Graph-Based Models: the MCWEB [60], Ricca and Tonella (RT00) [150] and
Di Sciascio et al. (SMP02, SMP03) [72, 71] models.

method, and each (name webnode) pair consists of the name of a subframe and the sub-

frame content. The edges of the graph correspond to links between web pages, where

the destination webnode is obtained by updating the frame structure as specified in the

HTML standard. Based on this model, de Alfaro verifies properties expressed in construc-

tive µ− calculus against static web applications. The MCWEB tool downloads a web site

from a given URL and builds an abstract representation of it in the form of a graph. Figure

2.5(a) shows an example of the structure of a web site in this model.

Like de Alfaro, Ricca and Tonella (RT00) [150] address the issue of hierarchical frame

structure of web pages but in a different way. In their model, nodes and edges of the graph

representation are partitioned into different subsets. The nodes are split into the set of



CHAPTER 2. RELATED WORK 35

all web pages, the set of frames for one web page, and the set of all frames. The edges

are split into three subsets according to the type of target node. This includes a set of

hyper-links between pages or a relation showing the composition of web page into frames

(E1); a set of the relations between frames and pages as they show which page in which

frame is loaded (E2); and a set of relations showing the loading of a page into a particular

frame (E3) as shown in Figure 2.5(b). The name of the frame is given as a label next to

the link. This model is implemented in ReWeb. ReWeb can download and analyze a web

site, and also provides a graphical user interface for searching and navigating the analysis

results. ReWeb’s purpose is understanding web applications, but it is also used to generate

a UML model that can be used by TestWeb, a tool implemented by Ricca for the purpose of

web application testing [149]. ReWeb can be applied to static web pages with, or without,

frame structure.

Di Sciascio et al. (SMP02,SMP03) [72, 71] model the frame structure of web pages by

proposing a new state window that corresponds to a page that could be divided into one

or more frames that, in turn, can load one or more web pages. Each node can be window,

page or link, as shown in Figure 2.5(C). In this work, client-side scripts are modeled as

static pages. For server-side scripts the dynamic redirection actions depend on user input

from forms. Other dynamic features that require white-box analysis for the scripts, such as

server contact with the database and other resources, are not considered. Such pages are

considered static pages.

Di Sciascio et al. (SDM+05) [73] extend their previous model by adding actions to the

set of states. Web applications are modeled as a finite state machine, where pages, links,

windows and actions are states. Their method, AnWeb, is shown in Figure 2.6(C).

Castelluccia et al.(CMRT06) extend the web application graph in the verification tool

WAver [40] by adding some important features related to web application access policies.

The extension was made by assigning some resources to two categories of users:



CHAPTER 2. RELATED WORK 36

• Authorized users: They can view specific areas of the web application not accessible

to anonymous users.

• Administrators: They can insert or cancel a new user, view the list of authorized users

and access all the resources of the web application.

By introducing this extension, Castelluccia et al. are able to model important features

related to access control, and are able to verify properties related to this feature using

axioms formulated in CTL (computational tree logic). The main advantage of this method

is its ability to perform a priori verification of web application design by applying the

verification process to the UML-design of web application in a single automated process

using the verification tool WAver. Figure 2.6(e) shows the proposed model.

To summarize, graph-based models can be used to verify page reachability, dominators

of the navigation path, navigation path length, strongly connected components, broken links

and frame errors. It is also possible to do pattern matching to find out if the navigation

model contains a diamond structure, tree structure or index structure.

Statechart Navigation Models. Winckler and Palanque (WP03) [172] have created an

extension of Statecharts [98] called StateWebCharts (SWCs) which is similar to the Conallen

model in that it creates an extension to an existing notation (Statecharts, instead of UML

in the Conallen case). Thus they can help designers in building a formal model of their

web application that can be directly model-checked. Currently SWCs are used to describe

the navigation between documents rather than the interaction between objects. They have

created a tool, SWCEditor, that supports their proposed notation and helps designers

create, edit, visualize and simulate SWC models.

Han and Hofmeister (HH06) [96] also use a formal model for navigation. Their method,

FARNav, uses Statecharts [97] to model adaptive navigation - web applications that can

semi-automatically improve their organization and presentation by learning from visitor

access patterns. In this model, the authors use parallel (ANDed) sub-states to represent



CHAPTER 2. RELATED WORK 37

Figure 2.6: Graph-Based Models (cont’d): the Di Sciascio et al. (SDM+05) [73] and Castel-
luccia et al. (CMRT06) [40] methods.

learned navigation patterns. The main sub-state contains a state machine with one state per

web page, and transitions between pages for the navigation links. When a web application

has only simple (non-adaptive) navigation, this sub-state comprises the entire navigation

model. The model is created by observing the behavior of the web application and treating

screens that provide similar kinds of content as one web page. They attempt to scale

their model by making use of the hierarchical features of Statecharts. Like Di Sciascio

et al., their model is converted into the SMV modeling language CTL to be verified. An

existing approach is used for translation of the Statechart model to CTL. Since FARNav

uses Statecharts, the limitations of state machines’ modeling capabilities make it difficult



CHAPTER 2. RELATED WORK 38

to verify certain properties that are easy to verify with a graph-based model such as the

de Alfaro, Di Sciascio et al. and Ricca and Tonella methods. For example, it is difficult to

count the length of the navigation path, which can provide information about bottlenecks

in the navigation of a site, using this method. In addition, none of these models supports

adaptive navigation.

SDL Navigation Models. Syriani and Mansour (SM03) [161] use the Specification and

Description Language (SDL) [80] to model web applications. SDL is a modeling language

used to describe real-time systems. SDL is used to model the details of a system, which can

then be simulated and proven, whereas UML is used to model at a higher level of abstraction

[80]. Using SDL, Syriani and Mansour are able to model pages, hyperlinks, the behavior of

the web page on both the client-side and the server-side, and client-server and distributed-

server communication. In this method, each web page is represented by an agent, and

hyperlinks between pages are represented by signals. A hyperlink in a web application

represents a navigational path through the system, and this relationship is represented in

the SDL model by a signal sent between agents using a channel association. Signals may

carry parameters such as user name and password that are sent with the signals to login to

a server. SDL tools are used to do the testing of their model and to help them in verifying

the consistency of a web application implementation with its specification.

The approaches described in this section all use either a UML or graph based model

to represent the navigation level of the web. While UML is the modeling standard for

many applications, including the web, it may not be the appropriate choice for testing

and verification. In order for the UML based models to apply the testing and verification

techniques, the models should be translated into formal ones. The alternative choice is to

use graph based models that can be directly tested or model checked. All the proposed

UML-based models are able to capture the static features of navigation, and to represent

the specific details of the web pages including the frame structure. In graph based models,

nodes represent different modeling semantics in the different methods, from simple pages



CHAPTER 2. RELATED WORK 39

in the flat model to pages with frame structure. Nodes are used also to represent windows,

links, actions, and in some methods nodes are categorized into classes to reflect secure

resources.

2.4.4 Hybrid Modeling Methods

Some researchers model the web application as a whole, using a single model for multiple

levels of the application. After the model is expressed, they then attempt to solve the

state explosion problem. Other methods analyze web applications at more than one level

by using separate models. This section begins with the single model methods, followed by

a discussion of methods using separate models for different web application levels. After

both are discussed we give a general comparison of all the methods. In general, the methods

discussed here refer to the fourth section of Tables 2.4 and 2.5. The presentation follows the

chronological order of the methods unless we are identifying a specific relationship between

methods.

Single Model Methods. VeriWeb (BFG02) [32], is a dynamic navigation testing tool

for web applications. In this tool a systematic website exploration is performed under

the control of VeriSoft, an existing tool for systematically exploring the state spaces of

concurrent, reactive software systems. In VeriSoft the state space of the system is defined

as a directed graph that represents the combined behavior of all the components of the

system being tested. Paths in this graph correspond to sequences of operations (scenarios)

that can be observed during executions of the system. In web applications the state space

is the set of web pages (statically or dynamically generated) in the site that can be reached

from some initial page. Reachable pages are the states of the website state space, while the

set of possible actions from a given page defines the set of transitions from a given state.

The size of the graphs is controlled using a pruning process. VeriWeb is able to deal with

static pages, forms and client-side scripts. Figure 2.7(a) shows the VeriWeb method.

Haydar et al. (HPS04) [100] propose a method where an automaton is generated to



CHAPTER 2. RELATED WORK 40

model observed run time behaviors of both static and dynamic pages with form filling

(using the GET and POST methods). The authors call these observed behaviors browsing

sessions. Frames and frameset behavior, multiple windows, and their concurrent behavior

are also observed as portions of browsing sessions, called local browsing sessions. Those

partitions are modeled as communicating automata to represent the concurrent interaction

between local browsing sessions and to assist in reducing the state space of the underling

system.

The method is implemented using a framework that includes the following five steps:

First, the user defines desired attributes using a graphical user interface prior to the analysis

process. These attributes are used in formulating the formal properties to verify. Second, a

monitoring tool intercepts HTTP requests and responses during the navigation of the Web

Application Under Test (WAUT). Third, the intercepted data are fed to an analysis tool that

either continuously analyzes the data in real time (online mode), or incrementally builds

an internal data structure of the automata model of the browsing session, and translates

it into XML-Promela. Fourth, The XML-Promela file is then imported into aSpin, an

extension of the Spin model checker. Finally, the aSpin checker verifies the model against

the properties, yielding counter-examples that facilitate error tracking. While outwardly

extensive, this work lacks for completeness, as other dynamic features, user operations, and

security properties are not captured. Figure 2.7(b) shows the Haydar’s et al. framework.

Rather than building a flat graph model like the VeriWeb model, or using communicating

automata like Haydar’s model, FSMWEB (AOA05) [24] uses the idea of clustering related

web pages into a logical web page. Hierarchies of finite state machines are then built for the

resulting logical web pages. The FSMWeb model is able to capture many static and dynamic

features, but is not able to cope with all the required features such as user interactions, and

security properties. The logical web pages are currently generated by hand. The hierarchies

of FSMs reduce the state space size an alternative to the graph pruning used by VeriWeb.

The communicating automata in Haydar’s model represents another kind of reduction of



CHAPTER 2. RELATED WORK 41

Figure 2.7: Modeling Web Applications Using a Single Model: the VeriWeb (BFG02) [32],
Haydar et al. (HPS04) [100], and FSMWeb (AOA05) [24] methods.

the state space. Figure 2.7 shows all three methods.

Wu and Offutt (WO02) [173] present a modeling technique for web applications based

on regular expressions. They model the behavior of web applications consisting only of

dynamically generated pages for the purpose of functional testing. The technique identifies

atomic elements, defined as a static HTML files or sections of a server programs that print

HTML and have an all-or-nothing property (i.e., either the entire section is sent to clients

or none of it is sent). An atomic element may be a constant HTML section, or it may

be an HTML section that has a static structure but may contain variable content. These

elements are dynamically combined to create composite web pages using sequence, selection,



CHAPTER 2. RELATED WORK 42

aggregation, and regular expressions. This work is different from FSMWeb, Haydar et al.

and VeriWeb in its ability to deal with user operations, and in its use of source code in the

analysis.

Multiple Model Methods. Kung et al. developed their method, the Web Test Model

(WTM) (KLH00) [117], based on multiple models of the applications under test. The mod-

els include Object Relation Diagrams (ORD), Object State Diagrams (OSD), a Function

Cluster Diagram (FCD), and a Page Navigation Diagram (PND). The web application is

represented using object relation diagrams (ORD) expressed in terms of objects (web pages

and components) and their relationships. An ORD = (V,L,E) is a directed graph, where

V is a set of nodes representing the objects, L is a set of labels representing the relationship

types, and (E ⊂ V x V x L) is a set of edges representing the relations between the objects.

There are three kinds of objects in WTM: client pages, server pages, and components. The

relations navigation, request, response, and redirect are used to model navigation, HTTP

request/ response, and redirect respectively in web applications. Navigation behavior of

the web application is represented using a page navigation diagram (PND), a finite state

machine with states to represent client pages, and transitions between the states to repre-

sent hyperlinks. Object state diagrams (OSDs), which are similar to Statecharts, are used

to describe the state behavior of interacting objects. To capture control and data flow in-

formation, a Block Branch Diagram (BBD, similar to a control flow graph) and a Function

Cluster Diagram (FCD, a graph representation of dynamic function calls) are used.

The FSMWeb (AOA05) [24] and Haydar et al. (HPS04) [100] methods differ from

Kung’s work in that those methods do not require source code to be available; their models

are built depending on logical web pages rather than physical web pages, and they use an

enhanced single FSM model instead of multiple models. Kung et al. differs from FSMWeb

in that it can not deal with dynamically generated web pages, and from Haydar et al. in

not handling the concurrent behavior of multiple windows.

Tonella and Ricca propose a two-layer model (TR04) [164]. The first layer is a UML



CHAPTER 2. RELATED WORK 43

model of the web application for high level abstraction. This model is based entirely on

static HTML links and does not incorporate any dynamic aspects of the software. The

second layer is represented using a multicolored control flow graph (CFG) obtained by

white-box analysis supported with information extracted from the access log of the server

while the application is under executing. This work is different from FSMWeb and Haydar

et al. in that it performs white-box analysis and uses multiple models. It also differs in not

handling the concurrent behavior of frames and multiple windows.

Even though WTM, Tonella and Ricca, and Wu and Offutt’s (WO02) [173] methods

all use a white-box approach in the analysis of the web application, the navigational model

obtained by Tonella and Ricca is static, whereas in WTM and Wu and Offutt the model

is dynamic. While WTM and Tonella and Ricca both try to model web applications using

more than one model, the integration of the models and the validation of their interaction

is not clearly described.

In contrast, Knapp and Zhang (KZ06) [111] propose a systematic approach to integrate

a complete model for web applications from separate models. This is done using graph

transformation rules on the UML-based web engineering meta-model [113] to generate a

UML state machine that includes static navigation in addition to dynamic behavior. The

final model can then be validated formally, though this model still lacks for checking of

many dynamic, security and interaction properties.

Another integration method is proposed by Dı́az et al. [74], the Ariadne Development

Method, which is able to specify and evaluate hypermedia and web applications in a sys-

tematic, flexible, integrative and platform-independent way. The Ariadne Development

Method provides a set of meta-models to specify information structure, navigation paths,

interaction mechanisms, presentation features and access control policies.

Guerra et al. (GSDA07) [91] propose a verification framework dedicated to security

policies in web design. Their approach is based on graph transformation, using a source

model based on a strong design model, the Ariadne Development Method of Dı́az et al. [74].



CHAPTER 2. RELATED WORK 44

The Ariadne Development Method is able to capture many static and dynamic navigation

behaviors, including security policies. In Guerra et al., the focus is on verifying properties

related to access control policies. They generate an equivalent Petri net graph from the

Ariadne design model using the triple graph transformation system (TGTS) [77]. This is

composed of three graphs: the source graph, the target graph, and a correspondence graph

that relates the elements in the source and the target graphs. Using this transformation,

the authors are not only able to verify many static and dynamic properties, but also to

relate the results of the analysis back to the original model.

To summarize, the approaches described here either use a single model for representing

more than one level of the web application, or an integration of different models where each

represents a single level. In the single model methods, to control the large state space caused

by the complexity of web applications, the authors either use pruning in the graph-based

models or clustering and communicating automata for FSM-based models, using the concept

of logical web pages rather than physical web pages as a basis. For the integrated models,

the authors use a variety of notations to represent the different levels, but mostly they

use UML-based models to represent static navigation, and state-based models to represent

dynamic behavior. The methods discussed here do not provide a clear description on how

the integration is done, and none of them is able to model or check the desirable properties

at all web application levels.

2.5 Proposed Methods That Do Not Fit Our Comparison

Criteria.

Other work has been proposed to check the correctness of web application design specifi-

cations [63, 64], and yet others try to verify consistency between design specifications and

the implementation of web applications [127].

Deutsch et al. propose a framework, WAVE, to help designers verify properties expressed



CHAPTER 2. RELATED WORK 45

in temporal logic against web application specifications expressed in a rule-based textual

format. The checking is done statically at design time [63, 64, 34]. The output is expressed

by either true if the property is satisfied or false with counter examples if the property is not

satisfied. The framework also is able to generate code based on the verified web application

specifications. The set of properties that WAVE is able to verify is quite different from

those that we reviewed in this survey. Besides being able to verify reachability properties

like all other methods, WAVE focuses on checking the semantic properties of the business

process underlying the web application such as, “the user cannot cancel an order that has

already been shipped”.

Based on the verification engine provided by WAVE, Brambilla et al. [34] provide a front

end taking advantage of Model Driven Architecture (MDA). Instead of writing the text-

based specification to be fed into WAVE along with the properties to be checked at design

time, Brambilla et al.’s framework enables web developers to verify models built by WebML,

a high-level notation for data-, service-, and process- centric web applications, using a set

of transformations to translate WebML models into WAVE specifications. Again, both

frameworks are different from the methods that we are interested in, as they are focused on

different kind of properties - business process properties. They could however be classified

according to our taxonomy as navigational modeling methods.

Miao and Zeng [127] propose an approach to check the consistency between two models:

the design model of the web application and its implementation model. They use Object

Relation Diagram (ORD) proposed by Kung et al. [117] to build their design model. Unlike

most of the methods that we reviewed, properties to be checked are derived from the design

model rather than being specified in advance. The automatically generated properties along

with the implementation model that is extracted manually from the code are fed to the SMV

model checker. The properties to be checked are generated based on a consistency theory

proposed by the authors. The consistency theory is mainly concerned with the coverage of

all the nodes (any web page or web component) and relations (any navigational link between



CHAPTER 2. RELATED WORK 46

the nodes) specified in the design model. It also checks that any other relation or node not

specified in the design model is not covered. The authors also use the same approach

to automatically generate a sequence of test cases based on the consistency between the

design and the implementation models [176]. This approach could fit in our classification

under navigational modeling methods. However, we choose not to include it because the

set of properties to be checked is not specified in advance, even though they are mainly

reachability properties.

The Choi and Watanabe [48] propose an approach to check consistency between dif-

ferent design models of web applications. They check consistency between the page flow

diagram and the class model, which is composed of the object oriented-web application class

specifications along with their methods. They also check consistency of the behavior of the

designed web application by checking the consistency of the class model vs. the activity

diagram. They generate a formal model by representing all the design models as labeled

transition systems that are fed into the model checker UPPAAL[29]. Choi and Watanabe

method is quite different from the methods that we reviewed in that they focus on consis-

tency issues between the different design models rather than properties that other models

are interested in verifying.

2.6 Models Proposed But Not Yet Used for Verification and

Testing.

Dargham and Nasrawi [57] propose a new approach for modeling hypermedia web applica-

tions using an extended Finite State Machine (FSM). The authors first propose a classifica-

tion for a web application’s pages and links to capture most of the web application behavior

such as the static, dynamic, and interaction behaviors, then they represent the web applica-

tion using an extended FSM by adding types to its states and transitions which map to their

proposed classification. Their model can be used for testing and verification, because it is



CHAPTER 2. RELATED WORK 47

based on a formal notation that has been used for this purpose in many previous methods.

In place of using a FSM, Qian et al. [154] use a labeled transition system (LTS) to

model hyper-media web applications using a very similar classification to Dargham and

Nasrawi. Then they extend the LTS to add types to its constructs that correspond to

their classification. Again their model can be used for verification and testing, and is able

to capture different behaviors of web applications such as static, dynamic and interaction

behaviors. However, both models still lack the ability to capture properties related to

security, sessions and cookies.

2.7 Conclusions and Open Problems

Little work has been done to compare different modeling methods used in web application

validation. Even though there has been small-scale comparison, to the best of our knowledge

this is the first study, other than our previous short summary [9], that provides a compre-

hensive review and comparative study of modeling methods that are currently applied in

the field of web application verification and testing. All previous work has focused on the

development process in general, and on the design phase in particular. Comprehensive re-

views and comparative studies such as ours can help in highlighting the areas that need

further research, and may help new researchers who are interested in the area to quickly get

an idea of what has been done, and what could be done. This is especially so if the study

is able to provide them with the strong and the weak points for each method, which may

give them ideas on how to combine the strong points in a unified improved new modeling

method.

2.7.1 The State of the Art

Our study shows two different views of the methods we surveyed, a general categorization

by modeling level, and a detailed comparison by property coverage. Table 2.4 summarizes



CHAPTER 2. RELATED WORK 48

the first one, where the 24 methods are categorized according to the level of web application

modeling, as interaction behavior modeling methods, navigation modeling methods, content

modeling methods and hybrid modeling methods (methods that model more than one level).

In each category, methods are sorted according to the notation used by the method. At the

same time, comparison between the methods was also done based on other criteria such as

application for the method (analysis, testing, verification or some combination); whether

the source code is required for the analysis or not; the way the method solves the state space

explosion problem; and finally, whether there is tool support for the method. The second

comparison, shown in Table 2.5, aims at a comparison of the more specific details between

methods in the same category in particular, and with other methods in other categories in

general. The comparison is based on a combination of feature type and the level of web

application modeling, using the comparison criteria outlined in Section 2.2.4 as desirable

properties for web site modeling. Based on our analysis in this review we want to highlight

the following ideas and results.

First, in Section 2.4.1, we saw that interaction modeling approaches are able to model the

interaction of web applications with the browser by proposing abstract models represented

in different notations. All of the proposed methods are able to model the basic browser back

and forward operations, and some are more mature, with the ability to model other browser

features such as the history stack, page caches, and user sessions. The authors discuss the

ability to integrate their interaction models with the static navigational model and try to

do the integration manually, some try to detect web application- browser interaction bugs

by implementing their own model checker or by using existing testing and model checking

techniques. None of the models discuss integration with dynamic web applications, or how

the dynamic features affect their interaction models.

For content modeling methods, the focus of the discussed methods is on verifying the

static content of web applications. Up until now none has studied the verification of dynamic

content for the same features of correctness and completeness. This kind of study will be



CHAPTER 2. RELATED WORK 49

required to help with the increasing dynamism of web applications.

In navigation modeling methods, the authors use either UML-based models, Graph-

based, Statechart-based models or SDL-based models to represent the navigation level of

the web. While UML is the modeling standard for many applications including the web, it

may not be the appropriate choice for testing and verification. In order for the UML-based

models to apply the testing and verification techniques, the models should be translated

into formal ones. The alternative choice is to use graph based models that can be directly

tested or model checked.

All the proposed UML-based models are able to capture the static features of the navi-

gation, and to represent the specific details of the web pages including the frame structure.

In Graph-based models, nodes represent different modeling semantics in the different meth-

ods, from simple page in the flat model into page with frame structure. Nodes are used

also to represent windows, links, actions, and in some methods nodes are categorized into

classes to reflect secure resources.

For hybrid modeling methods, some researchers model the web application as a whole,

taking into account all the modeling levels of the application, and then attempt to solve the

problem of the state space explosion in some way. Other methods model web applications at

more than one level by using separate models. Using separate models for the different levels

of the web application help in reducing the complexity of the model as well as decreasing its

state space size which will have its effect in the accuracy of the testing and the verification

process. However, the integration between those models should be declared explicitly and

carefully by the modeling methods, whereas most of the discussed methods fails to satisfy,

and none is able to completely check or test web applications from all its modeling levels.

2.7.2 Challenges for the Future

Ideally, we are looking for a model that is able to capture all the desirable features of web

applications at all modeling levels, as well as being able to validate the model using model



CHAPTER 2. RELATED WORK 50

checking. To the best of our knowledge no such model yet exists, but perhaps it may be

obtained by integrating some of the existing modeling techniques.

In addition, web applications have the property of low observability, due to the difficulty

of tracking some outputs. Usually the output that is sent back to the user as HTML

documents are being analyzed, but there are also other kinds of output, such as changing

the state of the server or the database, and sending messages to other web applications and

services. Up until now it appears that there is no research which can address this issue.

Finally, there is also a need for work on security modeling techniques that are able to

deal with the complex, distributed structure of web applications, taking into account the

concurrent access to web servers and the other resources that are attached to them.

In the remainder of this thesis, we present a new framework for addressing these issues.

The framework provides a set of novel techniques for the analysis and modeling of web

applications for the purpose of security verification and validation. It is largely language

independent, and based on adaptable model recovery which can support a wide range of

security analysis tasks.



Chapter 3

A Verification Framework for

Access Control in Dynamic Web

Applications

In the previous chapter we found that many methods propose static models and tools

to check static properties of web applications, and some of them try to model and check

dynamic features, but none of them is able to check or even model the access control features

of web applications. To target this challenge we present in this chapter a security analysis

framework for dynamic web applications. our framework is aimed at testing the conformance

of dynamic web applications with role-based access control security policies. A role-based

access control (RBAC) security model is recovered from the dynamic web application using

a combination of static and dynamic analysis techniques. A formal analysis is applied on

the recovered model to check access control security polices specified by a security engineer,

either with a correctness check, or with a counter example if any access control violation is

encountered in the code.

This chapter is organized as follows: Section 3.1 motivates our work. Section 3.2 outlines

51



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 52

our framework. Section 3.3 presents our plans for evaluating it. and Section 3.4 concludes

and summarizes the chapter.

3.1 Motivation

Many methods and tools have been proposed to check for attack vulnerabilities in web

applications such as SQL injection and cross site scripting [102, 103], but none of them

attempts to detect broken access control attacks, either by testing or by model checking. In

our previous work [9, 13], and as shown in Chapter 2, we found that many methods propose

static models and tools to check static properties of web applications, and some of them try

to model and check dynamic features, but none of them is able to check or even model the

access control features of web applications.

In general there is little work [107, 16, 58, 6] on UML-based security modeling. The

focus of UMLsec [107] is on modeling security issues such as data confidentiality and in-

tegrity rather than access control. Basin et al. propose Model Driven Security (MDS) and

their tool SecureUML [58] to integrate security models into system models. The authors

first specify a secure modeling language for modeling access control requirements as a gen-

eralization for RBAC, after which, they embed this language within an extension of UML

Class diagrams. The authors of authUML [16] take a step back and focus on analyzing

access control requirements before proceeding to the design modeling to ensure consistent,

conflict-free and complete requirements. The Ahn and Hu method [6] differs from the above

approaches in using standard UML to represent the access control features of the security

model. They provide a policy validation based on Object Constraint Language (OCL) and

Role-based Constraints Language 2000(RCL2000) [7], and then translate the security model

to enforcement code.

All of these are forward engineering approaches, while the real need is for a reverse

engineering approach that is not only able to model access control polices, but also able



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 53

to check them in real applications. There is a critical need for an approach that is able to

test or model check web applications to ensure that they are protected from broken access

control attacks, and this is the goal of our work.

3.2 Research Approach

Our proposed framework (Figure 3.1) is aimed at recovering an RBAC security model from

dynamic web applications. Based on a formal version of this model, the framework can be

used to verify whether a dynamic web application conforms to the access control polices

specified by a security engineer, either with a correctness check, or with a counter example

if an access control violation is encountered in the code. The framework involves two main

phases:

1. Static and dynamic reverse engineering of the web application structure and behavior.

2. Security model construction and analysis.

In the following subsections we will outline all of the framework components and the flow

of data between them.

3.2.1 Web Application Reverse Engineering

In the first phase, static and dynamic analysis of the dynamic web application is used to

recover the basic elements of a RBAC model [158]. We need to specify the set of users, roles,

resources and their hierarchies, as well as the relations and access policies between them.

Extracting static models such as class diagrams and behavioral models such as sequence

diagrams helps us in this regard.



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 54

A B C D

Behavioral Model Reverse-
Engineering

Structural Model Reverse-
Engineering

Security Model 
Construction

Model Transformation  
and Formal Verification

PHP TXL 
Grammar

TXL
Transform-
aion Rules

PHP
Documents

MySql TXL y q
Grammar

TXL
Transform-
aion Rules

Database
schema

XMI SecureUML
Model

Static Analysis Instrumentation

Source 
Transformation Identification of  

Users, Roles,
Resources

XMI to Formal 
Model 

transformation

Access 

Instrumented
PHP documents

Mutant 
Operators

Static
Information

Model 
Checker

control
properties

Class 
Diagram

Sequence 
Diagram

Correct Counter 
E l

Random 
User 
Input

Mutant
Instrumented

PHP documents

Execution 
Traces Dynamic

Information

Example

Figure 3.1: The Proposed Framework

Static Analysis

The static analysis shown in Figure 3.1(B) extracts class diagrams that help in identify-

ing the set of users, roles, resources and any relations between them. In Chapter 4, we

present [8] an automated transformation from an SQL (DDL) schema to an open XMI 2.1

UML-adapted class model. The adapted model is a tailored UML class model to represent

the basic ER diagram components, including entities, attributes, relations, and primary

keys. Our transformation technique is a novel one in that it is open, non-vendor specific,



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 55

and targeted at the standard UML 2.1 exchange format, XMI 2.1. Although comparable

commercial transformations exist, they are closed technologies targeted at formats tightly

coupled to the venders tools, hindering portability and preventing users from choosing their

preferred tools in the development process. This analysis is supported by a dynamic analysis

that may refine the class diagram, as well as recover behavioral models.

Dynamic Analysis

Static analysis is not adequate because it does not take into account the runtime behavior

of web applications. Dynamic analysis is required to perform a full security analysis, in-

cluding tracking user sessions, cookies, and user inputs. To recover the implicit permissions

from dynamic web applications, we have proposed and implemented an approach and tool

[39][14] to automatically instrument dynamic web applications using source transformation

technology [55], and to recover a sequence diagram from execution traces generated by the

resulting instrumentation, Figure 3.1(A).

Using an SQL database to store generated execution traces, our approach automatically

filters traces to reduce redundant information that may complicate program understanding.

The elements in the sequence diagram are the interactive user and browser session, the

Application Server, and the application pages and entities. The messages between these

elements represent page transitions and how they affect the application entities, either with

read or write operations. While our current implementation supports all versions of the

PHP scripting language, the framework is not tied to any particular language and can be

easily adapted to other scripting languages. This aspect of the framework is discussed in

Chapter 5.

Our proposed framework addresses code coverage by augmenting the dynamic analysis

with instrumentation for code coverage, as presented in Chapter 6. This will decrease the

percentage of false positives due to an analysis that results in a model that only partially

covers the code (leading to verifications of properties that may in fact not hold).



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 56

Even using code and flow coverage methods, enumerating all execution paths is difficult.

Ideally our framework should be able to identify all execution paths, but in some cases the

human factor may be unavoidable, for instance when valid or critical information is needed

in forms, user names or passwords. Like web security scanning tools such as VeriWeb [128]

and AppScan [106], we have adopted a profile-based solution which requires administrators

to manually supply valid values for form fields.

3.2.2 Model Construction and Analysis

In this phase a UML-based security model is constructed based on the Basin et al. [58] se-

curity meta-model (SecureUML). A transformation from this model to a state-based formal

analysis model is then performed to ease the process of security analysis and verification.

RBAC-Model Construction

The core part of the proposed framework is the security model. In order to be able to check

the web application’s access-control security properties, the framework must be based on

a strong security model, and be able to extract it from the source code. We construct

our security model using a Role-Based Access Control (RBAC) approach, Figure 3.1(C).

Since users are not assigned permissions directly, but rather acquire them through their

role (or roles), management of individual user rights is simplified. In a role-based model,

permissions for common operations such as adding a user or changing a user’s department

become obvious.

Our RBAC model is constructed by binding the recovered application ER model [8]

with the recovered dynamic behavioral model (sequence diagram). The recovered sequence

diagram is generated based on execution traces collected from the dynamic analysis part of

our framework [39]. Web crawling tools that mimic user interactions with web applications,

such as clicking links, filling in forms and pressing buttons [39, 169] are used to automate

collecting traces, while the application roles themselves are recovered manually by studying



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 57

the software documentation. Roles can be identified from the HTTP session variable and by

recovering the way the web application classifies users into roles. (Complete automation of

this part is currently a work in progress). The generated sequence diagrams are combined

with the application XMI 2.1 form of the ER model recovered by the static analysis part

of our framework [8], using Model Driven Security (MDS) [58] to automatically generate

a SecureUML model for the web application. Chapter 8 elaborates on this part in more

detail.

Model Transformation and Formal Verification

Once the SecureUML model is constructed, we need to analyze it against the security

properties (Figure 3.1(D)). While UML models provide good support for verifying web

application requirements, they need to be converted into a formal state model in order to

be automatically checked [9, 13]. Several methods in the literature propose tools for the

translation from UML diagrams to formal state models that can be checked using existing

formal verification tools. Examples are UML2Alloy [33] and XMI2SMV [40].

In Chapter 8, we convert our SecureUML model to a formal state model using a similar

conversion process. The formal model along with the desired security properties is fed to a

formal verification tool such as Alloy, yielding either confirmation that the properties hold,

or a counter example. When a counter example is generated, the problem is mapped back

to the code at the function point level by tracing back to the violated dynamic page. In

some cases it may be possible to go deeper, for example using the parameters provided in

the URL to identify the block of code causing the violation.

3.3 Evaluation and Preliminary Results

In our first experiment, we applied the proposed approach to the PhpBB [90] web ap-

plication. PhpBB is the world’s leading open source forum software. It has a powerful



CHAPTER 3. A VERIF. FRAMEWORK FOR ACCESS CONTROL IN WEB APP 58

permission system and a number of other key features such as private messaging, search

functions, a customizable template and language system, and support for multiple database

technologies.

Each phase of our framework has been evaluated on a partial trace of the whole ap-

plication, and results have been described along with approach discussion. A thorough

experiment for the whole framework is also provided in Chapter 9.

3.4 Conclusion

The proposed approach is a novel one in web application security verification. Besides being

the first approach to tackle the issue of access control verification, the proposed framework

is flexible enough to allow for different server side technologies and databases.

Our approach also yields the potential for application in systems other than web ap-

plications. The static and dynamic reverse-engineering front-end of the framework can be

reused for other kinds of analysis, and the framework could be used to discover other kinds

of security attacks, such as cross-site scripting and SQL injection.

In our first experiment, the framework is evaluated on one of the most popular PHP

web applications, PhpBB, to check that the application is free from any remaining access

control vulnerabilities.



Chapter 4

Lightweight Transformation of

Data Models from SQL Schemas to

UML-ER

Data modeling is an essential part of the software development process, and together with

application modeling forms the core of the model-driven approach to software engineer-

ing. While UML is considered the standard for application modeling, there is really no

corresponding open standard for data modeling. In this chapter, we propose an approach

and a tool to help bridge the gap between application and data modeling based on source

transformation technology. The approach, SQL2XMI, was initially created to support our

security analysis framework. Its role is to recover the application resources from an SQL

schema and to represent them as a UML-ER model expressed in XML Meta Interchange

(XMI) 2.1. On the other hand the approach we have used can be generalized to recover

a rich UML-ER model from any SQL schemas to any XMI 2.x format, and can easily be

extended to support code engineering by automatically generating SQL schemas from an

XMI 2.x file.

59



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 60

This chapter is structured as follows. Section 4.1 motivates our work, and Section 4.2

places it in the context of related work. Section 4.3 introduces the SQL2XMI tool and briefly

discusses its implementation using source transformations. Section 4.4 presents a small case

study, using the tool to recover a UML ER diagram from the SQL DDL database schema

of a popular open source production web application. Finally, Section 4.5 concludes the

chapter and outlines possible directions for future work.

4.1 Motivation

Model-driven software development generally begins with either application modeling or

data modeling. The two are closely related to, and complement, one another. In the

application modeling domain, several Object Oriented modeling notations were combined

in the early 1990s to produce the Unified Modeling Language (UML [138]). It has become

the open standard notation for describing multiple aspects of the specification and design

of large software systems. On the other hand, Entity-Relationship diagrams (ER diagrams

[46]) are usually used for data modeling, and ER is the most commonly used method to

build data models for relational databases.

However, ER modeling does not define a standard graphical syntax for the representation

of ER diagrams, and there is no open standard for representing data objects in ER. Rather,

each practical modeling methodology uses its own notation. The original notation used by

Chen [46] is widely used in academic texts and journals, but is rarely seen in either CASE

tools or publications by non-academics. Currently, a number of notations are used; among

the more common are Bachman [26], crow’s foot [162], and IDEFIX [79]. This diversity

in the underlying notations leads to data modeling that is tightly coupled to the specific

data modeling tool of a specific vendor. As a result there is neither a generally accepted

open standard nor interoperability of ER data models. From a model-driven engineering

(MDE) perspective there is no general way to define transformations that either generate



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 61

or consume such data models.

As researchers try to find a standardized graphical representation for data modeling

using ER diagrams, the obvious choice is to use UML. Using UML as a standard for ER

data modeling could bring many benefits. First, because UML it is a widely accepted

language used by analysts and software developers, it can be an excellent fit for graphical

representation of ER diagrams. Second, UML’s generality can assist in the unification of all

areas of expertise into a unified platform. It does not matter how different the technologies

are, all of them can be described using the same language. This strength is brought to UML

by profiles, a standardized set of extensions and constraints that tailors UML to particular

uses [139]. Finally, recent empirical research comparing ER with UML class diagrams

indicates that UML can significantly improve the comprehension level of programmers [61].

Through UML, development teams for application modeling and data modeling can

more easily communicate. In addition they can gain the benefits of easy integration into

repositories using meta-models, use of a standardized input/output format (XMI), and a

unified software development process from analysis to implementation to deployment. In

the long run, other benefits related to code engineering may be gained, for example by using

the UML model to generate Data Definition Language (DDL) scripts, which can be executed

on database systems to create the specified tables. In the shorter term, reverse engineering

of independently created SQL database definitions (DDL scripts) to UML models can yield

some benefits for reasoning about and maintaining deployed production systems.

Unfortunately, up until now there is no standardized UML data modeling profile. The

need for such a profile has already forced some UML vendors and users to define their own

UML profiles, but each has made their own interpretation and trade-offs, and all are UML

1.x based profiles.

This chapter is an extended version of our previous short paper [9] in which we pro-

posed a transformation technique to bridge the gap between data modeling and application

modeling using UML. An automated transformation from a SQL (DDL) schema to an open



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 62

XMI 2.1 UML-adapted class model is presented. The adapted model is a tailored UML

class model to represent the basic ER diagram components, including entities, attributes,

relations, and primary keys. Our transformation technique is a novel one in that it is open,

non-vendor specific, and targeted at the standard UML 2.1 exchange format, XMI 2.1. Al-

though comparable commercial transformations exist, they are closed technologies targeted

at formats tightly coupled to the vender’s tools, hindering portability and preventing users

from choosing their preferred tools in the development process.

While so far a prototype, our tool can recover a UML-based ER diagram from any

SQL DDL schema and visualize it using any UML tool that supports the import of open

standard XMI 2.1 exchange format. The tool can be easily adapted to be compatible with

many different implementations of the SQL DDL notation, as well as different XMI 2.x

versions. Using our method an open reverse transformation from XMI 2.x to an SQL DDL

schema can also be easily implemented.

4.2 Previous Work

Several UML data modeling profiles (e.g., Ambler [21][22], Gorp [86], Gronik[85], and Silin-

gas and Kaukenas [155]) have been proposed to answer the need for a UML data modeling

profile to support the entire development process and help integrate with application model-

ing. In the absence of a formal UML data modeling profile, the proposed profiles represent a

partial solution at best, since they support only UML 1.x, do not address the interoperabil-

ity issue, and do not support the need for valid transformations to generate and consume

these models.

Many commercial tools, such as Rational Data Architect(RDA) [104], Rational Soft-

ware Architect(RSA) [105] and MagicDraw [136] provide their users with a transformation

facility to import SQL DDL schemas to ER diagrams. However, the transformations used

in these systems involve specific proprietary file formats that are tied to their own tools,



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 63

making portability difficult. For example, IBM tightly integrates RSA, which is used for

application modeling, with RDA, used for data modeling. They have a transformation from

an SQL DDL schema to an RDA logical data model (LDM) which can then be transformed

into an RSA UML model and vice versa, but they do not provide a facility for direct trans-

formation from an SQL DDL schema to an RSA UML model [44] and do not provide open

interoperation. By contrast, our tool supports direct transformation from SQL DDL to the

open standard XMI 2.1 portable interchange format for UML 2.1, thus supporting direct

semantic model interchange between the range of different UML tools that are able to im-

port the XMI 2.1 standard, including RSA. In addition, because our tool is open rather

than proprietary, it can be quickly and easily adapted to support other XMI 2.x versions

that may be used by other UML tools.

We use the TXL source transformation system [55] to implement our tool. This tech-

nology has previously been used by Abu-Hamdeh et al. [4] to reverse engineer SQL schemas

to Prolog-style textual factbases. While Abu-Hamdeh et al.’s transformation recovers more

information than our tool, for example entity types (weak, strong, etc.), cardinalities and

some constraints, our target representation is the XMI 2.1 model interchange standard,

which can be easily imported, visualized and manipulated by UML-based tools. The ad-

ditional information recovered by Abu-Hamdeh et al. can be handled by our tool in the

future using additional transformation rules, but is not required in our current program

comprehension application.

Another related system is Chung and Hartford’s XMI2SQL [49], which can transform

an XMI file exported by a UML tool to an SQL implementation. An ER model based

on the Ambler profile [21] is built in UML first, and then exported to XMI by the UML

tool. XMI2SQL then transforms this Ambler-based model in XMI to an SQL DDL schema.

XMI2SQL is implemented as a web service in C#. This tool complements our work on the

forward engineering and code generation side. However, its adaptation to cope with different

variations of XMI files and SQL schemas could be challenging, since it is implemented as a



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 64

traditional custom C# program. Our use of source transformation rules makes it easy to

rapidly adapt to variations.

There is a long history of reverse engineering of ER diagrams from databases, such as

Premerlani and Blaha [145]. These approaches are more mature and handle more features

by utilizing more input artifacts. Di Lucca et al. [70], Yang et al. [174] and Canfora et

al. [38] all recover data models from the source code of data intensive applications. The

purpose of our work is different, providing a lightweight translation of SQL DDL schemas

to standard UML, a problem for which the OMG called for proposals in 2005 [137].

4.3 SQL2XMI

SQL2XMI is a process for automatically transforming an SQL DDL database schema to

a UML ER diagram in XMI 2.1 model exchange format. In this first implementation, we

have targeted MySQL, although extending to any other SQL variants is straightforward.

The SQL grammar used in our project is tuned for MySQL version 3.23.44. MySQL

supports multiple storage engines. The InnoDB engine supports the checking of foreign key

constraints and enforcement of referential integrity. This support requires the explicit use

of foreign key and reference attributes during table creation. Other engines ignore these

attributes. When provided, SQL2XMI uses these attributes to recover relations between

entities. Without the attributes, SQL2XMI recovers relations based on naming conventions.

Identifying foreign keys that are not explicitly defined is a problem that has been researched

intensively in the past [145]. However, these approaches (e.g. [70, 174, 38]) require analy-

sis of source code, which is difficult in dynamic dispatch systems such as PHP. Naming

convention has proved sufficient for our purposes.

Our present prototype reverse engineers all the basic elements of the ER diagram, that

is, the set of entities and their attributes, the primary key set, the foreign key set, and

the relationships between them. In this initial version we do not infer entity types or



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 65

cardinalities, although they can be easily inferred if required. Our initial application is

the complex software comprehension of web applications for security analysis, and in this

application entity types and cardinalities are not a concern.

4.3.1 Implementation

Our implementation is based on source transformation technology, in which the target pro-

gram, an XMI file, is viewed as a syntactic modification of the source program, the SQL

DDL schema. This modification involves adding the target language features as extensions

to the grammar of the source language, and then transforming each input language gram-

matical form to corresponding target language forms. For this purpose we use TXL [55],

a programming language designed for manipulating and experimenting with programming

language notations and features. TXL has been used in many production applications with

transformations involving billions of lines of source code.

The TXL transformation process normally consists of three parts: a context-free “base”

grammar for the source language to be manipulated, a set of context-free grammatical

“overrides” (extensions or changes) to the base grammar, and a rooted set of source trans-

formation rules to implement transformation of the extensions to the base language [55].

The TXL processer parses the source program and converts it into a parse tree, then re-

cursively applies the set of transformation rules, beginning with a “main” rule, until there

is no match encountered in the parse tree. TXL finalizes the process by unparsing the

transformed parse tree into the target program. Figure 4.1 shows the TXL transformation

process as applied in our tool. In our application we began by defining a grammar for the

input MySQL DDL, and a second (override) grammar for our target XMI output forms.

The main grammatical form (called [program] in TXL) allows both, but expects the XMI

part to be empty on input and full on output, and vice-versa for the SQL part, Figure 4.2.

We used the TXL producer-consumer translation paradigm to make a set of transformation

rules to “produce” the XMI output while “consuming” the SQL input. The transformation



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 66

if the Col is PK in T1, then check the occurrence of this column in all other tables 
(T2..Tn), If a match happened with a column in Ti , it will add an XMI 
ownedAttribute element of type uml:Property to refer to a relation of type Ti  
between the two tables. 

e. The function GenerateERDElements  then identify table relations based on foreign 
keys (relation target) by applying the function constructRelations on each table  Ti, 
which will check for each non primary key column  the occurrence of this coulmn in 
the set of PK_T list that is collected in step a, if there is a mach with PKj_Ti, add an 
XMI ownedAttribute element of type uml:Property to refer to a relation of type Ti  
between the two tables. 

f. The function GenerateERDElements  then creates the relations  links and  for each 
relation between table Ti and Tj ,  detected in step d and e, create an XMI 
packagedElement of type uml:Association, this element should be generated once for 
each PK_Ti set and FK_Tj set. 

g.  The function GenerateERDElements finally concatenate the results of steps 1, 2, 3 
and 4. 

 
 
TXL  is a programming language specifically designed for manipulating and experimenting with 
programming language notations and features using source to source transformation. The motivating paradigm of 
TXL consists of beginning with a grammar for an existing language, specifying syntactic modifications to the 
grammar representing new language features or extensions, and rapidly prototyping these new features by source 
transformation to the original language.[13] 
 
TXL has grown into a powerful general purpose source transformation programming system. It has been used in a 
wide range of applications, including industrial transformations involving billions of lines of source code. 
 
TXL programs (Fig. 1) normally consist of three parts, a context-free “base” grammar for the language to be 
manipulated, a set of context-free grammatical “overrides” (extensions or changes) to the base grammar, and a 
rooted set of source transformation rules to implement transformation of the extensions to the base language. 
 
  
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 

Parse Transform Unparse

TXL Processor

MySQL DDL 
Schema  Grammar 

XMI  Grammar 
Override 

Main rule 
Transformation 

TXL Program

MySQL DDL 
Schema  

UML ER  Diagram in 
XMI2.1 Format 

Figure 4.1: The TXL Transformation Technique as Applied in our Tool
 

% Base grammar for SQL 
include "MySQLGrammar.grm" 
 

% Output override grammar for XMI 
include "XMI.grm" 
 

% Allow for both input and output forms 
define program 
   [repeat MySQLStatement] 
   [repeat XMItoken] 
end define 
 

% Main transformation rule 
function main  
   replace [program]  
      MySQLS  [repeat MySQLStatement]  
      XMIFile [repeat XMItoken]  
   by 
      XMIFile            % Initially empty 
         [createXMIH]    % Make XMI header 
         [GenerateERDElements MySQLS each MySQLS] 
                         % Generate XMI elements  
         [createXMIE]    % Make XMI trailer 
end function 

Figure 4.2: Grammatical specification and main transformation rule (function)

is started by the main rule, shown in Figure 4.2. TXL begins by parsing the MySQL input

schema into its basic DDL statements (pattern variable MySQLs), with an initially empty

XMI output (pattern variable XMIFile). The main rule replaces this entire input by con-

structing the XMI output beginning with the empty XMIFile and transforming it into the

XMI representation of the input MySQLs using three transformation subrules, createXMIH,

GenerateERDElements, and createXMIE.

The functions createXMIH and createXMIE simply create the XMI header and trailer

elements which bracket the body of the translation. The function GenerateERDElements,

shown in Figure 4.3, is responsible for the bulk of the transformation, transforming each



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 67

 

% Generate the UML ER diagram XMI element for each table column 
 

function GenerateERDElements   
            AllTableStructures [repeat MySQLStatement] 
            TableStructure [MySQLStatement] 
 

   deconstruct TableStructure 
      CREATE TABLE TN [id] ( ColList [list createDefinition] );  
 

   construct Tname [stringlit] 
      _ [quote TN] 
 

   construct SetOfAllPK [repeat XMItoken] 
      _ [findAllPKL each AllTableStructures] 
 

   construct SetOfPK [list index_col_name] 
      _ [findPKL each ColList] 
 

   construct eAnnotationsID [stringlit] 
      _ [quote TN ] [+ "EAnnotation" ] 
 

   construct detailsID [stringlit] 
      _ [quote TN ] [+ "_Entity" ] 
 

   construct XMI_ERD_Entity [repeat XMItoken] 
      <packagedElement  
         xmi:type="uml:Class" xmi:id=Tname name=Tname>  
      <xmi:Extension      
         extender="http://www.eclipse.org/emf/2002/Ecore"> 
         <eAnnotations xmi:type="ecore:EAnnotation"  
               xmi:id= eAnnotationsID   
               source="http://www.eclipse.org/uml2/2.0.0/UML"> 
            <details xmi:type="ecore:EStringToStringMapEntry" 
               xmi:id= detailsID key="Entity"/> 
         </eAnnotations> 
      </xmi:Extension> 
 

   construct packagedElementCloseT [repeat XMItoken] 
      </packagedElement> 
 

   construct XMI_ERD [repeat XMItoken] 
      XMI_ERD_Entity  
         [createEntityAttrib Tname SetOfAllPK each ColList] 
         [constructFKside_Relation TableStructure each SetOfAllPK] 
         [constructRelations TN  AllTableStructures each SetOfPK] 
         [. packagedElementCloseT] 
         [constructAss TN  SetOfPK each AllTableStructures] 
 

   replace * [repeat XMItoken] 
 % tail of output 
   by 
      XMI_ERD 
end function 

Figure 4.3: The GenerateERDElements function, which transforms each SQL table to its
representation in XMI



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 68

a.
 

Sc
an

 th
e 

M
yS

ql
 sc

he
m

a 
b.

 
C

ol
le

ct
 th

e 
se

t o
f a

ll 
PK

_T
 (P

rim
ar

y 
ke

y,
 ta

bl
e 

na
m

e)
, b

as
ed

 o
n 

th
e 

ex
pl

ic
it 

pr
im

ar
y 

ke
y 

co
ns

tra
in

t s
ta

te
m

en
t i

n 
ea

ch
 ta

bl
e 

de
fin

iti
on

. 
c.

 
Fo

r e
ac

h 
ta

bl
e 

cr
ea

te
 th

e 
co

rr
es

po
nd

an
ce

 X
M

I p
ac

ka
ge

dE
le

m
en

t o
f t

yp
e 

um
l:C

la
ss

  
el

em
en

t t
ha

t i
s a

nn
ot

ed
 to

 b
e 

of
 E

nt
ity

 ty
pe

, u
si

ng
 st

er
eo

ty
pi

ng
. 

d.
 

Fo
r e

ac
h 

ta
bl

e 
co

lu
m

n 
ge

ne
ra

te
 a

n 
X

M
I o

w
ne

dA
ttr

ib
ut

e 
of

 ty
pe

 u
m

l:P
ro

pe
rty

, a
nd

 
m

ap
 th

e 
M

yS
ql

 d
at

a 
ty

pe
 fo

r t
ha

t c
ol

um
n 

in
to

 th
e 

m
os

t a
pp

ro
pe

ria
t o

ne
 in

 th
e 

pr
ed

ef
in

ed
 ty

pe
s i

n 
th

e 
cl

as
s d

ia
gr

am
. 

e.
 

Id
en

tif
y 

ta
bl

e 
pr

im
ar

y 
ke

ys
: C

he
ck

 if
 th

e 
ta

bl
e 

co
lu

m
n 

(C
ol

) a
nd

 it
s t

ab
le

 (T
_n

am
e)

 
ar

e 
lo

ca
te

d 
in

 th
e 

se
t o

f a
ll 

PK
_T

, w
hi

ch
 is

 c
ol

le
ct

ed
 in

 st
ep

 b
, i

f s
o 

ad
d 

an
 X

M
I 

eA
nn

ot
at

io
ns

 e
le

m
en

t f
or

 th
e 

X
M

I a
ttr

ib
ut

e 
el

em
en

t t
ha

t i
s c

or
re

sp
on

ds
 to

 th
e 

m
ac

he
d 

ta
bl

e 
co

lu
m

n.
 

f. 
Id

en
tif

y 
ta

bl
e 

re
la

tio
ns

 b
as

ed
 o

n 
fo

re
ig

n 
ke

ys
 (r

el
at

io
n 

so
ur

ce
): 

If
  t

he
 C

ol
 is

 P
K

 in
 

T1
, t

he
n 

ch
ec

k 
th

e 
oc

cu
rr

en
ce

 o
f t

hi
s c

ol
um

n 
in

 a
ll 

ot
he

r t
ab

le
s (

T2
..T

n)
, I

f a
 m

at
ch

 
ha

pp
en

ds
 w

ith
 a

 c
ol

um
n 

in
 T

i , 
ad

d 
an

 X
M

I o
w

ne
dA

ttr
ib

ut
e 

el
em

en
t o

f t
yp

e 
um

l:P
ro

pe
rty

 to
 re

fe
r t

o 
a 

re
la

tio
n 

of
 ty

pe
 T

i  
be

tw
ee

n 
th

e 
tw

o 
ta

bl
es

. 
g.

 
Id

en
tif

y 
ta

bl
e 

re
la

tio
ns

 b
as

ed
 o

n 
fo

re
ig

n 
ke

ys
 (r

el
at

io
n 

ta
rg

et
): 

Fo
r e

ac
h 

no
n 

pr
im

ar
y 

ke
y 

co
lu

m
n 

ch
ec

k 
th

e 
oc

cu
rr

en
ce

 o
f t

hi
s c

ou
lm

n 
in

 th
e 

se
t o

f P
K

_T
 li

st
 th

at
 is

 
co

lle
ct

ed
 in

 st
ep

 b
, i

f t
he

re
 is

 a
 m

ac
h 

w
ith

 P
K

j_
T i

, a
dd

 a
n 

X
M

I o
w

ne
dA

ttr
ib

ut
e 

el
em

en
t o

f t
yp

e 
um

l:P
ro

pe
rty

 to
 re

fe
r t

o 
a 

re
la

tio
n 

of
 ty

pe
 T

i  
be

tw
ee

n 
th

e 
tw

o 
ta

bl
es

. 
h.

 
(C

re
at

e 
re

la
tio

n 
lin

k)
: F

or
 e

ac
h 

re
la

tio
n 

be
tw

ee
n 

ta
bl

e 
T i

 a
nd

 T
j ,

  d
et

ec
te

d 
in

 st
ep

 I 
an

d 
g,

 cr
ea

t a
n 

X
M

I p
ac

ka
ge

dE
le

m
en

t o
f t

yp
e 

um
l:A

ss
oc

ia
tio

n,
 th

is
 e

le
m

en
t s

ho
ul

d 
be

 g
en

er
at

ed
 o

nc
e 

fo
r e

ac
h 

PK
_T

i s
et

 a
nd

 F
K

_T
j s

et
. 

 
7.

 
C

re
at

e 
th

e 
X

M
I e

nd
 e

le
m

en
ts

. 
8.

 
C

on
ca

te
na

te
 th

e 
re

sl
ul

ts
 o

f s
te

ps
 1

, 2
 a

nd
 3

. 
      

R
e
l
a
t
i
o
n
a
l
 

D
a
t
a
b
a
s
e
 

E
l
e
m
e
n
t
 

E
n
t
i
t
y
 

R
e
l
a
t
i
o
n
 

D
i
a
g
r
a
m
 

E
l
e
m
e
n
t
 

U
M
L
 
C
l
a
s
s
 
D
i
a
g
r
a
m
 
X
M
I
 
e
l
e
m
e
n
t
s
 
(
t
a
i
l
o
r
e
d
 
t
o
 
E
R
 
d
i
a
g
r
a
m
)
 

 X
M
I
 
T
a
g
 

X
M
I
 
T
y
p
e
 

X
M
I
 
I
D
 

X
M
I
 
N
a
m
e
 
 

X
M
I
 
E
x
t
e
n
s
i
o
n
 
o
r
 
a
d
d
i
t
i
o
n
a
l
 
a
t
t
r
i
b
u
t
e
s
 

T
a
b
l
e
 

<
<
E
n
t
i
t
y
>
>
 

p
a
c
k
a
g
e
d
E
l
e
m
e
n
t
 

u
m
l
:
C
l
a
s
s
 

T
a
b
l
e
 
n
a
m
e
 

T
a
b
l
e
 

n
a
m
e
 

e
A
n
n
o
t
a
t
i
o
n
s
 
 

e
x
t
e
n
s
i
o
n
 

w
i
t
h
 
a
 

d
e
t
a
i
l
 

e
l
e
m
e
n
t
 

t
y
p
e
 

e
c
o
r
e
:
 

E
S
t
r
i
n
g
T
o
S
t
r
i
n
g
M
a
p
E
n
t
r
y
 

i
d
 

U
n
i
q
u
e
 
I
D
 

K
e
y
 

“
E
n
t
i
t
y
”
 

C
o
l
u
m
n
 

A
t
t
r
i
b
u
t
e
 

o
w
n
e
d
A
t
t
r
i
b
u
t
e
 
 

u
m
l
:
P
r
o
p
e
r
t
y
 

A
t
t
r
i
b
u
t
e
 

N
a
m
e
 
 
 

A
t
t
r
i
b
u
t
e
 

N
a
m
e
 
 
 

A
d
d
i
t
i
o
n
a
l
 

a
t
t
r
i
b
u
t
e
s
 

v
i
s
i
b
i
l
i
t
y
 

 
p
r
i
v
a
t
e
|
p
u
b
l
i
c
|
.
.
 

t
y
p
e
 

 
A
t
t
r
i
b
u
t
e
 
D
a
t
a
 
T
y
p
e
 

P
r
i
m
a
r
y
 
K
e
y
 

A
t
t
r
i
b
u
t
e
 

W
i
t
h
 

e
x
t
e
n
s
i
o
n
 

(
s
t
e
r
e
o
t
y
p
e
 

a
n
n
o
t
a
t
i
o
n
)
 

<
<
P
K
>
>
 

o
w
n
e
d
A
t
t
r
i
b
u
t
e
 
 

u
m
l
:
P
r
o
p
e
r
t
y
 

A
t
t
r
i
b
u
t
e
 

N
a
m
e
 
 
 

A
t
t
r
i
b
u
t
e
 

N
a
m
e
 
 
 

A
d
d
i
t
i
o
n
a
l
 

a
t
t
r
i
b
u
t
e
s
 

v
i
s
i
b
i
l
i
t
y
 

 
p
r
i
v
a
t
e
|
p
u
b
l
i
c
|
.
.
 

t
y
p
e
 

 
A
t
t
r
i
b
u
t
e
 
D
a
t
a
 
T
y
p
e
 

e
A
n
n
o
t
a
t
i
o
n
s
 

e
x
t
e
n
s
i
o
n
 
 

w
i
t
h
 
a
 

d
e
t
a
i
l
 

e
l
e
m
e
n
t
 

t
y
p
e
 

e
c
o
r
e
:
 

E
S
t
r
i
n
g
T
o
S
t
r
i
n
g
M
a
p
E
n
t
r
y
 

i
d
 

U
n
i
q
u
e
 
I
D
 

K
e
y
 

“
P
K
”
 

F
o
r
e
i
g
n
 
K
e
y
 
 
A
t
t
r
i
b
u
t
e
 

o
w
n
e
d
A
t
t
r
i
b
u
t
e
 
 

u
m
l
:
P
r
o
p
e
r
t
y
 

S
o
u
r
c
e
 
T
a
b
l
e
 

N
a
m
e
_
 
T
a
r
g
e
t
 

T
a
b
l
e
 
N
a
m
e
 
 
 
 

T
a
r
g
e
t
 
 

T
a
b
l
e
 

N
a
m
e
(
P
K
)
 
 

A
d
d
i
t
i
o
n
a
l
 

a
t
t
r
i
b
u
t
e
s
 

v
i
s
i
b
i
l
i
t
y
 

 
p
r
i
v
a
t
e
|
p
u
b
l
i
c
|
.
.
 

t
y
p
e
 

T
a
r
g
e
t
 
T
a
b
l
e
 
N
a
m
e
 
 
 

a
s
s
o
c
i
a
t
i
o
n
 

A
s
s
o
c
i
a
t
i
o
n
I
D
 

A
s
s
o
c
i
a
t
i
o
n
 

R
e
l
a
t
i
o
n
 

p
a
c
k
a
g
e
d
E
l
e
m
e
n
t
 
 
u
m
l
:
A
s
s
o
c
i
a
t
i
o
n
 

A
s
s
o
c
i
a
t
i
o
n
I
D
 

N
U
L
L
 

A
d
d
i
t
i
o
n
a
l
 

a
t
t
r
i
b
u
t
e
s
 

m
e
m
b
e
r
E
n
d
 

S
t
r
i
n
g
 
t
y
p
e
 
c
o
n
t
a
i
n
i
n
g
 

t
h
e
 
i
d
 
o
f
 
e
n
t
i
t
i
e
s
 

m
e
m
b
e
r
 
i
n
 
t
h
i
s
 
r
e
l
a
t
i
o
n
 

 

Table 4.1: Mappings between MySQL schema elements, ERD elements, and XMI 2.1 ele-
ments



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 69

SQL table definition, including all of its attributes, relations, and primary keys, to the cor-

responding XMI 2.1 elements. The correspondence between SQL DDL schema elements and

XMI 2.1 elements (i.e., UML 2.1 ER diagram elements) implemented by the transforma-

tion is shown in Table 4.1. The GenerateERDElements function uses pattern matching to

recognize each of the DDL table elements and map them to the corresponding XMI output.

4.3.2 Transforming Table Definitions to Entities, Attributes and Rela-

tionships

For the transformation of each SQL table in the input, the GenerateERDElements function

is passed both the particular table to be transformed (each MySQLs) and the entire set of

all of the input tables (MySQLs). This is because SQL tables do not have a simple one-to-

one relationship with the corresponding UML 2.1 ER model - rather, the transformation

of each table definition depends on information that can only be derived from other tables

to which it is related, for example the set of all primary keys in the schema. Thus it is a

context-dependent source transformation.

The function begins by deconstructing the create table statement to break it into its

syntactic parts so we can access and manipulate them separately. By doing so, we are able

to extract the table name to map to the entity name, the table columns to map to the

entity attributes, and to identify the table’s primary keys and relations shared between the

entities. Our implementation involves 16 separate transformation rules. Here we discuss

three of the critical transformations in detail, and briefly outline the overall transformation

process. Other rules in our transformation are similar.

The TXL constructor SetOfAllPK collects a list of all (primary key, table name) pairs

based on the explicit primary key constraint statements in all of the table definitions in the

database. This information is required later in the rule for inferring entity relationships for

the table being processed. The constructor SetOfPK then collects another list of all the

primary keys defined in the particular table being processed.



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 70

 

% Generate the UML ER diagram XMI element 
% for each table column 
 

function createEntityAttrib  STableName [stringlit]  
      PKL [ repeat XMItoken] Colm [createDefinition]  
 

   deconstruct Colm 
      ColName [colm_name] ColDef [col_def] 
 

   deconstruct * [dataType] ColDef 
      DT [dataType 
 

   % isPKAttrib checks if the column is primary key  
   % and annotates it with PK stereotype if so 
   construct ModefidColName [repeat XMItoken] 
      _ [isPKAttrib STableName ColName each PKL] 
 

   construct AttribName [stringlit] 
      _ [quote ColName] 
 

   construct AttribDT [stringlit] 
      _ [quote DT] 
 

   construct AttribDef [repeat XMItoken] 
      <ownedAttribute xmi:type="uml:Property"  
         xmi:id= AttribName name= AttribName  
         visibility="private"> 
 

   construct Closingtag [repeat XMItoken] 
      </ownedAttribute> 
 

   replace * [repeat XMItoken] 
      % tail of output 
   by 
      AttribDef [.ModefidColName] [.Closingtag] 
end function 

Figure 4.4: The createEntityAttribute function, which translates SQL table columns to
attributes in XMI

The constructor XMI ERD Entity creates the XMI representation of the entity for the

table, consisting of an XMI packagedElement element of type uml:Class that is annotated

to be an Entity using stereotyping. The constructor XMI ERD then uses a number of

subrules to flesh out this initial ER representation of the table by adding the translation

of attributes, foreign keys and relationships to yield the entire translation of the SQL table

definition.

4.3.3 Transforming Table Columns to Attributes

For each table column, the GenerateERDElements function uses the transformation subrule

createEntityAttribute, shown in Figure 5.3. This transformation function generates an XMI

ownedAttribute of type uml:Property to represent the table column. It begins by using



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 71 

 

% Annotate XMI attribute element with PK stereotype  
% if primary key 
 

function IsPKAttrib STableName [stringlit]   
            ColN [colm_name] SetOfAllPK [XMItoken]  
 

   construct ColN_string [stringlit] 
      _ [ quote ColN] 
 

   % Is this column of this table in the primary keys? 
   deconstruct SetOfAllPK 
      <ownedAttribute _ [opt xmi_colon]  
            _ [id_or_key] = STableName]  
            _ [id_or_key] = ColN_string > 
 

   replace * [repeat XMItoken] 
      % tail of output 
   by 
      <xmi:Extension    
          extender="http://www.eclipse.org/emf/2002/Ecore"> 
        <eAnnotations xmi:type="ecore:EAnnotation" 
            xmi:id="_Ovi-uPdEdy8F"  
            source="http://www.eclipse.org /uml2/2.0.0/UML"> 
          <details    
            xmi:type="ecore:EStringToStringMapEntry"  
            xmi:id="_Ovi-V- 8rGg0Zw" key="PK"/> 
        </eAnnotations> 
      </xmi:Extension> 
end  function 

Figure 4.5: The IsPKAttribute function, which identifies and stereotypes the XMI repre-
sentation of columns which are primary keys

TXL deconstructors pattern to capture the column’s name(ColName), definition (ColDef ),

and data type (DT ). The TXL constructor uses the transformation subrule IsPKAttrib to

determine if the column is a primary key of the table and to annotate it with the XMI

primary key stereotype if so. The remainder of the function creates the ownedAttribute

representation of the column in XMI, embeds the primary key stereotyping and appends

the result to the XMI entity representation of the table.

The transformation subrule IsPKAttrib, shown in Figure 4.5, identifies table primary

keys by checking if the table column ColN and its table STableName are present in the set

of all primary keys that was collected in GenerateERDElements and passed as parameter to

its subrules. If so, an XMI primary key stereotype eAnnotation element that corresponds to

the matched table column is returned by the function (otherwise it returns no annotation).

The annotation is added to the XMI representation of the column by GenerateERDElements

in its translation.



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 72

4.3.4 Transforming Foreign Keys and Relations to Relationships and As-

sociations

When foreign key and references attributes exist in the schema, they can be used by

SQL2XMI to identify relations. When absent, SQL2XMI uses naming convention and

column data type to infer foreign key relations. This can be augmented in the future with

stemming operations to enhance naming conventions. Otherwise, foreign key inference is

a difficult problem that requires additional data and code analysis such as the work by Di

Lucca et al. [70], Yang et al. [174] and Canfora et al. [38], which require a completed run-

ning application and is outside the scope of our work. The following are the steps used to

recover relations between tables based on naming convention and the data type similarity,

as the other case is straightforward:

First, following the transformation of table columns, the GenerateERDElements func-

tion uses similar transformation subrules to handle foreign keys and relations. The subrule

constructFKside Relation identifies foreign keys as relation target by checking for an occur-

rence of each KEY column in the set of all primary keys SetOfAllPK, which is passed as a

parameter to the subrule. For each primary key of another table Ti that matches, an XMI

ownedAttribute element of type uml:Property to refer to a relation of type Ti between the

two tables is generated, where Ti is the name of the other table.

Next, GenerateERDElements uses the transformation subrule constructRelations to

identify foreign keys as relation source by checking for columns that are primary keys in

this table and also occur as a KEY column in another table. For each such foreign key,

an XMI ownedAttribute element of type uml:Property is generated to refer to a relation of

type Ti between the two tables.

Finally, GenerateERDElements uses the transformation subrule constructAss to create

an XMI packagedElement of type uml:Association between the two tables involved in each

relation generated by the previous two subrules.



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 73

 

CREATE TABLE phpbb_forums ( 
   forum_id smallint(5) UNSIGNED NOT NULL, 
   cat_id mediumint(8) UNSIGNED NOT NULL, 
   forum_name varchar(150), 
   forum_desc text, 
   forum_status tinyint(4) DEFAULT '0' NOT NULL, 
   forum_order mediumint(8) UNSIGNED DEFAULT '1' NOT NULL, 
   forum_posts mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   forum_topics mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   forum_last_post_id mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   prune_next int(11), 
   prune_enable tinyint(1) DEFAULT '0' NOT NULL, 
   auth_view tinyint(2) DEFAULT '0' NOT NULL, 
   auth_read tinyint(2) DEFAULT '0' NOT NULL, 
   auth_post tinyint(2) DEFAULT '0' NOT NULL, 
   auth_reply tinyint(2) DEFAULT '0' NOT NULL, 
   auth_edit tinyint(2) DEFAULT '0' NOT NULL, 
   auth_delete tinyint(2) DEFAULT '0' NOT NULL, 
   auth_sticky tinyint(2) DEFAULT '0' NOT NULL, 
   auth_announce tinyint(2) DEFAULT '0' NOT NULL, 
   auth_vote tinyint(2) DEFAULT '0' NOT NULL, 
   auth_pollcreate tinyint(2) DEFAULT '0' NOT NULL, 
   auth_attachments tinyint(2) DEFAULT '0' NOT NULL, 
   PRIMARY KEY (forum_id), 
   KEY forums_order (forum_order), 
   KEY cat_id (cat_id), 
   KEY forum_last_post_id (forum_last_post_id)); 

CREATE TABLE phpbb_users ( 
   user_id mediumint(8) NOT NULL, 
   user_active tinyint(1) DEFAULT '1', 
   username varchar(25) NOT NULL, 
   user_password varchar(32) NOT NULL, 
   user_session_time int(11) DEFAULT '0' NOT NULL, 
   user_session_page smallint(5) DEFAULT '0' NOT NULL, 
   user_lastvisit int(11) DEFAULT '0' NOT NULL, 
   user_regdate int(11) DEFAULT '0' NOT NULL, 
   user_level tinyint(4) DEFAULT '0', 
   user_posts mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   user_timezone decimal(5,2) DEFAULT '0' NOT NULL, 
   user_style tinyint(4), 
   user_lang varchar(255), 
   user_dateformat varchar(14) DEFAULT 'd M Y H:i' NOT NULL, 
   user_new_privmsg smallint(5) UNSIGNED DEFAULT '0' NOT NULL, 
   user_unread_privmsg smallint(5) UNSIGNED DEFAULT '0' NOT NULL, 
   user_last_privmsg int(11) DEFAULT '0' NOT NULL, 
   user_login_tries smallint(5) UNSIGNED DEFAULT '0' NOT NULL, 
   user_last_login_try int(11) DEFAULT '0' NOT NULL, 
   user_emailtime int(11), 
   user_viewemail tinyint(1), 
   user_attachsig tinyint(1), 
   user_allowhtml tinyint(1) DEFAULT '1', 
   user_allowbbcode tinyint(1) DEFAULT '1', 
   user_allowsmile tinyint(1) DEFAULT '1', 
   user_allowavatar tinyint(1) DEFAULT '1' NOT NULL, 
   user_allow_pm tinyint(1) DEFAULT '1' NOT NULL, 
   user_allow_viewonline tinyint(1) DEFAULT '1' NOT NULL, 
   user_notify tinyint(1) DEFAULT '1' NOT NULL, 
   user_notify_pm tinyint(1) DEFAULT '0' NOT NULL, 
   user_popup_pm tinyint(1) DEFAULT '0' NOT NULL, 
   user_rank int(11) DEFAULT '0', 
   user_avatar varchar(100), 
   user_avatar_type tinyint(4) DEFAULT '0' NOT NULL, 
   user_email varchar(255), 
   user_icq varchar(15), 
   user_website varchar(100), 
   user_from varchar(100), 
   user_sig text, 
   user_sig_bbcode_uid char(10), 
   user_aim varchar(255), 
   user_yim varchar(255), 
   user_msnm varchar(255), 
   user_occ varchar(100), 
   user_interests varchar(255), 
   user_actkey varchar(32), 
   user_newpasswd varchar(32), 
   PRIMARY KEY (user_id), 
   KEY user_session_time (user_session_time)); 

CREATE TABLE phpbb_forum_prune ( 
   prune_id mediumint(8) UNSIGNED NOT NULL auto_increment, 
   forum_id smallint(5) UNSIGNED NOT NULL, 
   prune_days smallint(5) UNSIGNED NOT NULL, 
   prune_freq smallint(5) UNSIGNED NOT NULL, 
   PRIMARY KEY(prune_id), 
   KEY forum_id (forum_id)); 
 
CREATE TABLE phpbb_categories ( 
   cat_id mediumint(8) UNSIGNED NOT NULL auto_increment, 
   cat_title varchar(100), 
   cat_order mediumint(8) UNSIGNED NOT NULL, 
   PRIMARY KEY (cat_id), 
   KEY cat_order (cat_order)); 

CREATE TABLE phpbb_user_group ( 
   group_id mediumint(8) DEFAULT '0' NOT NULL, 
   user_id mediumint(8) DEFAULT '0' NOT NULL, 
   user_pending tinyint(1), 
   PRIMARY KEY (group_id, user_id), 
   KEY group_id (group_id), 
   KEY user_id (user_id)); 

CREATE TABLE phpbb_posts ( 
   post_id mediumint(8) UNSIGNED NOT NULL auto_increment, 
   topic_id mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   forum_id smallint(5) UNSIGNED DEFAULT '0' NOT NULL, 
   poster_id mediumint(8) DEFAULT '0' NOT NULL, 
   post_time int(11) DEFAULT '0' NOT NULL, 
   poster_ip char(8) NOT NULL, 
   post_username varchar(25), 
   enable_bbcode tinyint(1) DEFAULT '1' NOT NULL, 
   enable_html tinyint(1) DEFAULT '0' NOT NULL, 
   enable_smilies tinyint(1) DEFAULT '1' NOT NULL, 
   enable_sig tinyint(1) DEFAULT '1' NOT NULL, 
   post_edit_time int(11), 
   post_edit_count smallint(5) UNSIGNED DEFAULT '0' NOT NULL, 
   PRIMARY KEY (post_id), 
   KEY forum_id (forum_id), 
   KEY topic_id (topic_id), 
   KEY poster_id (poster_id), 
   KEY post_time (post_time)); 

CREATE TABLE phpbb_topics ( 
   topic_id mediumint(8) UNSIGNED NOT NULL auto_increment, 
   forum_id smallint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   topic_title char(60) NOT NULL, 
   topic_poster mediumint(8) DEFAULT '0' NOT NULL, 
   topic_time int(11) DEFAULT '0' NOT NULL, 
   topic_views mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   topic_replies mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   topic_status tinyint(3) DEFAULT '0' NOT NULL, 
   topic_vote tinyint(1) DEFAULT '0' NOT NULL, 
   topic_type tinyint(3) DEFAULT '0' NOT NULL, 
   topic_first_post_id mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   topic_last_post_id mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   topic_moved_id mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   PRIMARY KEY (topic_id), 
   KEY forum_id (forum_id), 
   KEY topic_moved_id (topic_moved_id), 
   KEY topic_status (topic_status), 
   KEY topic_type (topic_type)); 
 

 
CREATE TABLE phpbb_posts_text ( 
   post_id mediumint(8) UNSIGNED DEFAULT '0' NOT NULL, 
   bbcode_uid char(10) DEFAULT '' NOT NULL, 
   post_subject char(60), 
   post_text text, 
   PRIMARY KEY (post_id) ); 
 

CREATE TABLE phpbb_topics_watch ( 
  topic_id mediumint(8) UNSIGNED NOT NULL DEFAULT '0', 
  user_id mediumint(8) NOT NULL DEFAULT '0', 
  notify_status tinyint(1) NOT NULL default '0', 
  PRIMARY KEY (topic_id,user_id,notify_status), 
  KEY topic_id (topic_id), 
  KEY user_id (user_id), 
  KEY notify_status (notify_status)); 

CREATE TABLE phpbb_auth_access ( 
   group_id mediumint(8) DEFAULT '0' NOT NULL, 
   forum_id smallint(5) UNSIGNED DEFAULT '0' NOT NULL, 
   auth_view tinyint(1) DEFAULT '0' NOT NULL, 
   auth_read tinyint(1) DEFAULT '0' NOT NULL, 
   auth_post tinyint(1) DEFAULT '0' NOT NULL, 
   auth_reply tinyint(1) DEFAULT '0' NOT NULL, 
   auth_edit tinyint(1) DEFAULT '0' NOT NULL, 
   auth_delete tinyint(1) DEFAULT '0' NOT NULL, 
   auth_sticky tinyint(1) DEFAULT '0' NOT NULL, 
   auth_announce tinyint(1) DEFAULT '0' NOT NULL, 
   auth_vote tinyint(1) DEFAULT '0' NOT NULL, 
   auth_pollcreate tinyint(1) DEFAULT '0' NOT NULL, 
   auth_attachments tinyint(1) DEFAULT '0' NOT NULL, 
   auth_mod tinyint(1) DEFAULT '0' NOT NULL, 
   PRIMARY KEY (group_id, forum_id), 
   KEY group_id (group_id), 
   KEY forum_id (forum_id)); 

CREATE TABLE phpbb_groups (
   group_id mediumint(8) NOT NULL auto_increment, 
   group_type tinyint(4) DEFAULT '1' NOT NULL, 
   group_name varchar(40) NOT NULL, 
   group_description varchar(255) NOT NULL, 
   group_moderator mediumint(8) DEFAULT '0' NOT NULL, 
   group_single_user tinyint(1) DEFAULT '1' NOT NULL, 
   PRIMARY KEY (group_id), 
   KEY group_single_user (group_single_user)); 

A B 

 C 

Figure 4.6: A part of the PhpBB 2.0 MySQL schema



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 74

The concatenation of the results of the entire set of transformation subrules of Gener-

ateERDElements forms the complete result transformation of the column to XMI, and the

concatenation of the transformations of the whole set of columns forms the result of the

main transformation function, yielding the complete XMI 2.1 representation of the UML

2.1 ER diagram for the original SQL schema.

4.4 An Example: PhpBB

SQL2XMI was originally designed to serve an ongoing project in web application security

analysis, in which reverse engineering based on both static and dynamic analysis is being

used to identify the application resources, permissions, and subjects that constitute the

basic elements of a security system. Data models constitute one of the main sources of

such information, and visualizing data models facilitates the process of understanding the

structure of the system, its basic entities and their relationships. The output of the un-

derstanding phase is mainly represented using UML models, and we are using the XMI 2.1

model interchange notation to help unify the results of the understanding phases of our

project.

In this context, we have evaluated SQL2XMI on the popular web bulletin board system

PhpBB versions 2.0 and 3.0 [90]. Using the source transformation system described in

Section 4.3.1, SQL2XMI has been able to automatically recover ER diagrams for the data

models of both versions. The result has helped us both to understand the complex data

model of this system and to recognize that the data model of PhpBB 3.0 has been completely

restructured from the previous version.

PhpBB 2.0 has 30 tables that generate a 30 page XMI file representing a UML2 ER

diagram much too large to fit in this chapter. So as an example we show only a part of

the schema including ten tables in Figure 4.6, one page of the generated XMI file, showing

one entity and all of its relations in Figure 4.7, and a snapshot of part of the visualization



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 75

DATABASEPAPEREXAMPLE.txt 6/4/2008

1 <uml:Model xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore="
http://www.eclipse.org/emf/2002/Ecore" xmlns:uml="http://schema.omg.org/spec/UML/2.1.1" xsi:schemaLocation="http://schema.omg.org/spec/UML/2.1.1
http://www.eclipse.org/uml2/2.0.0/UML" xmi:id="_XrSbENk5EdyEZoPpUv3LUw" name="Blank Model">

2 <packageImport xmi:type="uml:PackageImport" xmi:id="_XrSbEdk5EdyEZoPpUv3LUw">
3 <importedPackage xmi:type="uml:Model" href="http://schema.omg.org/spec/UML/2.1.1/uml.xml#_0"/>
4 </packageImport>
5 <packagedElement xmi:type="uml:Class" xmi:id="phpbb_groups" name="phpbb_groups">
6 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
7 <eAnnotations xmi:type="ecore:EAnnotation" xmi:id="phpbb_groupsEAnnotation" source="http://www.eclipse.org/uml2/2.0.0/UML">
8 <details xmi:type="ecore:EStringToStringMapEntry" xmi:id="phpbb_groups_Entity" key="Entity"/>
9 </eAnnotations>

10 </xmi:Extension>
11 <ownedAttribute xmi:type="uml:Property" xmi:id="group_id" name="group_id" visibility="private">
12 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
13 <eAnnotations xmi:type="ecore:EAnnotation" xmi:id="_Ovi-VuPdEdy8F_b8rGg0Zw" source="http://www.eclipse.org/uml2/2.0.0/UML">
14 <details xmi:type="ecore:EStringToStringMapEntry" xmi:id="_Ovi-V-PdEdy8F_b8rGg0Zw" key="PK"/>
15 </eAnnotations>
16 </xmi:Extension>
17 </ownedAttribute>
18 <ownedAttribute xmi:type="uml:Property" xmi:id="group_type" name="group_type" visibility="private">
19 </ownedAttribute>
20 <ownedAttribute xmi:type="uml:Property" xmi:id="group_name" name="group_name" visibility="private">
21 </ownedAttribute>
22 <ownedAttribute xmi:type="uml:Property" xmi:id="group_description" name="group_description" visibility="private">
23 </ownedAttribute>
24 <ownedAttribute xmi:type="uml:Property" xmi:id="group_moderator" name="group_moderator" visibility="private">
25 </ownedAttribute>
26 <ownedAttribute xmi:type="uml:Property" xmi:id="group_single_user" name="group_single_user" visibility="private">
27 </ownedAttribute>
28 <ownedAttribute xmi:type="uml:Property" xmi:id="phpbb_groupsphpbb_auth_access_ass" name="phpbb_auth_access(group_id)" visibility="private"

type="phpbb_auth_access" association="phpbb_auth_access__phpbb_groups__group_id"/>
29 <ownedAttribute xmi:type="uml:Property" xmi:id="phpbb_groupsphpbb_user_group_ass" name="phpbb_user_group(group_id)" visibility="private"

type="phpbb_user_group" association="phpbb_user_group__phpbb_groups__group_id"/>
30 <ownedAttribute xmi:type="uml:Property" xmi:id="phpbb_groupsphpbb_auth_access_ass" name="phpbb_auth_access(group_id)" visibility="private"

type="phpbb_auth_access" association="phpbb_groups__phpbb_auth_access__group_id"/>
31 <ownedAttribute xmi:type="uml:Property" xmi:id="phpbb_groupsphpbb_user_group_ass" name="phpbb_user_group(group_id)" visibility="private"

type="phpbb_user_group" association="phpbb_groups__phpbb_user_group__group_id"/>
32 </packagedElement>
33 <packagedElement xmi:type="uml:Association" xmi:id="phpbb_groups__phpbb_auth_access__group_id" memberEnd="phpbb_groupsphpbb_auth_access_ass

phpbb_auth_accessphpbb_groups_ass"/>
34 <packagedElement xmi:type="uml:Association" xmi:id="phpbb_groups__phpbb_user_group__group_id" memberEnd="phpbb_groupsphpbb_user_group_ass

phpbb_user_groupphpbb_groups_ass"/>
35 <packagedElement xmi:type="uml:Class" xmi:id="phpbb_auth_access" name="phpbb_auth_access">
36 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
37 <eAnnotations xmi:type="ecore:EAnnotation" xmi:id="phpbb_auth_accessEAnnotation" source="http://www.eclipse.org/uml2/2.0.0/UML">
38 <details xmi:type="ecore:EStringToStringMapEntry" xmi:id="phpbb_auth_access_Entity" key="Entity"/>
39 </eAnnotations>
40 </xmi:Extension>
41 <ownedAttribute xmi:type="uml:Property" xmi:id="group_id" name="group_id" visibility="private">
42 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
43 <eAnnotations xmi:type="ecore:EAnnotation" xmi:id="_Ovi-VuPdEdy8F_b8rGg0Zw" source="http://www.eclipse.org/uml2/2.0.0/UML">
44 <details xmi:type="ecore:EStringToStringMapEntry" xmi:id="_Ovi-V-PdEdy8F_b8rGg0Zw" key="PK"/>
45 </eAnnotations>
46 </xmi:Extension>
47 </ownedAttribute>
48 <ownedAttribute xmi:type="uml:Property" xmi:id="forum_id" name="forum_id" visibility="private">
49 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
50 <eAnnotations xmi:type="ecore:EAnnotation" xmi:id="_Ovi-VuPdEdy8F_b8rGg0Zw" source="http://www.eclipse.org/uml2/2.0.0/UML">
51 <details xmi:type="ecore:EStringToStringMapEntry" xmi:id="_Ovi-V-PdEdy8F_b8rGg0Zw" key="PK"/>
52 </eAnnotations>
53 </xmi:Extension>
54 </ownedAttribute>
55 <ownedAttribute xmi:type="uml:Property" xmi:id="auth_view" name="auth_view" visibility="private">
56 </ownedAttribute>
57 <ownedAttribute xmi:type="uml:Property" xmi:id="auth_read" name="auth_read" visibility="private">
58 </ownedAttribute>
59 . . .
60 </packagedElement>
61 . . . .
62 <profileApplication xmi:type="uml:ProfileApplication" xmi:id="_XrSbHdk5EdyEZoPpUv3LUw">
63 <xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
64 <eAnnotations xmi:type="ecore:EAnnotation" xmi:id="_XrSbHtk5EdyEZoPpUv3LUw" source="http://www.eclipse.org/uml2/2.0.0/UML">
65 <references xmi:type="ecore:EPackage" href="http://schema.omg.org/spec/UML/2.1.1/StandardProfileL2.xmi#_yzU58YinEdqtvbnfB2L_5w"/>
66 </eAnnotations>
67 </xmi:Extension>
68 <appliedProfile xmi:type="uml:Profile" href="http://schema.omg.org/spec/UML/2.1.1/StandardProfileL2.xmi#_0"/>
69 </profileApplication>
70 /uml:Model>
71

1

Figure 4.7: Sample of the generated XMI 2.1 file



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 76

«Entity»

phpbb_forums

«PK» forum_id

cat_id

forum_name

forum_desc

forum_status

forum_order

forum_posts

forum_topics

forum_last_post_id

prune_next

prune_enable

auth_view

auth_read

auth_post

auth_reply

auth_edit

auth_delete

auth_sticky

auth_announce

auth_vote

auth_pollcreate

auth_attachments

«Entity»

phpbb_auth_access

«PK» group_id

«PK» forum_id

auth_view

auth_read

auth_post

auth_reply

auth_edit

auth_delete

auth_sticky

auth_announce

auth_vote

auth_pollcreate

auth_attachments

auth_mod

«Entity»

phpbb_forum_prune

«PK» prune_id

forum_id

prune_days

prune_freq

attribute1

«Entity»

phpbb_posts

«PK» post_id

topic_id

forum_id

poster_id

post_time

poster_ip

post_username

enable_bbcode

enable_html

enable_smilies

enable_sig

post_edit_time

post_edit_count

«Entity»

phpbb_categories

«PK» cat_id

cat_title

cat_order

«Entity»

phpbb_topics

«PK» topic_id

forum_id

topic_title

topic_poster

topic_time

topic_views

topic_replies

topic_status

topic_vote

topic_type

topic_first_post_id

topic_last_post_id

topic_moved_id

«Entity»

phpbb_groups

«PK» group_id

group_type

group_name

group_description

group_moderator

group_single_user

«Entity»

phpbb_user_group

«PK» group_id

«PK» user_id

user_pending

«Entity»

phpbb_users

«PK» user_id

user_active

username

user_password

user_session_time

user_session_page

user_lastvisit

user_regdate

user_level

user_posts

user_timezone

user_style

user_lang

user_dateformat

user_new_privmsg

user_unread_privmsg

user_last_privmsg

user_login_tries

user_last_login_try

user_emailtime

user_viewemail

user_attachsig

user_allowhtml

user_allowbbcode

user_allowsmile

user_allowavatar

user_allow_pm

user_allow_viewonline

user_notify

user_notify_pm

user_popup_pm

user_rank

user_avatar

user_avatar_type

user_email

user_icq

user_website

user_from

user_sig

user_sig_bbcode_uid

user_aim

user_yim

user_msnm

user_occ

user_interests

user_actkey

user_newpasswd

«Entity»

phpbb_topics_watch

«PK» topic_id

«PK» user_id

«PK» notify_status

1

- phpbb_forums(forum_id) 1

- phpbb_auth_access(forum_id)

1

- phpbb_forums(forum_id)

1

- phpbb_forum_prune(forum_id)

1

- phpbb_forums(forum_id)

1

- phpbb_posts(forum_id)

1

- phpbb_forums(forum_id)
1

- phpbb_topics(forum_id)

1
- phpbb_categories(cat_id)

1
- phpbb_forums(cat_id)

1

- phpbb_auth_access(forum_id)

1

- phpbb_forum_prune(forum_id)

1

- phpbb_auth_access(forum_id)

1

- phpbb_posts(forum_id)

1
- phpbb_auth_access(forum_id)

1

- phpbb_topics(forum_id)

1
- phpbb_groups(group_id)

1

- phpbb_auth_access(group_id)

1- phpbb_user_group(group_id)

1

- phpbb_auth_access(group_id)

1

- phpbb_topics(topic_id)

1

- phpbb_posts(topic_id)

1

- phpbb_topics_watch(topic_id)
1
- phpbb_posts(topic_id)

1

- phpbb_topics_watch(topic_id)

1

- phpbb_topics(topic_id)

1

- phpbb_user_group(group_id)1

- phpbb_groups(group_id)

1
- phpbb_user_group(user_id)

1
- phpbb_users(user_id)

1

- phpbb_user_group(user_id)

1

- phpbb_topics_watch(user_id)

1

- phpbb_users(user_id)

1
- phpbb_topics_watch(user_id)

Figure 4.8: RSA visualization for a part of the generated diagram



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 77

of the ER diagram for the ten tables in Figure 4.8. We used Rational Software Architect

(RSA) [105] to import and visualize the UML 2.1 ER diagram represented by the XMI 2.1

file automatically generated by our tool.

To get a better feeling for the process, we can look at a table from the schema presented

in Figure 4.6 and see how it is mapped into the elements of the XMI file in Figure 4.7, and

on to the ER diagram in Figure 4.8.

The table phpbb groups, which is the last table defined in the schema of Figure 4.6(A)

has one primary key, group id, and six columns. The table does not define a foreign key

statement, so it hard to tell from a first look at the schema which other tables are involved

in relations with this table. In Figure 4.7, we can see that, based on the mappings defined

on Table 4.1, the phpbb groups table has been mapped into a UML packagedElement of

type ”uml:Class” and annotated as an ”Entity” using the XMI tag ”eAnnotation”.

The primary key, group id, has been mapped to an XMI ”ownedAttribute” element

with type uml:property, and annotated with the XMI ”eAnnotation” element to be of type

”PK”. Each of the other five columns is mapped to an XMI ”ownedAttribute” element of

type ”uml:property”, but without any annotation. In the lower middle part of Figure 4.8 we

can see the visualization of the XMI element and how it is represented as << Entity >>,

with the primary key represented as << PK >> group id, and the other five attributes

listed without any annotation.

We can recognize easily in Figure 4.8 that the entity phpbb groups, marked with (A),

is involved in two relations based on its primary key, one with phpbb auth access entity,

marked with (B), while the other with phpbb user group, marked with (C) . This fact is

difficult to see in the original schema because the foreign key constraint is not defined explic-

itly. Relations for the table have been recovered as described in section II, and constructed

in the XMI file as a packageElement of type ”uml:Association” whose memberEnds are the

entities evolved in the relation. We can recognize two of these in the XMI file, reflecting the

two relations that the phpbb groups entity is involved in. XMI ownedAttribute elements of



CHAPTER 4. TRANSFORMATION FROM SQL SCHEMAS TO UML-ER 78

XMI type ”uml:Property” has been recovered for both entities that share a relation, such

that each one refers to the other in the type attribute of the element, and both of them

refer to the same association element that joins them.

Even in this first simple example we can see that important information such as relations

can often not be easily understood directly from the SQL schema. The process of compre-

hending the application at this level can be tedious work, especially for more complicated

and larger schemas. Similarly, even after automatic transformation to ER form, the XMI

file structure is itself much too complicated to follow. Visualizing the XMI file as an ER

diagram as shown in Figure 4.8, however, presents the database schema in format that can

be easily and quickly understood by all members of the development team.

4.5 Conclusions and Future Work

In this chapter we have presented a source transformation technique to bridge the gap

between data modeling and application modeling that can assist in the process of com-

plex software comprehension and evolution. Our new open tool, SQL2XMI, automatically

transforms an SQL DDL schema to a UML 2.1 ER diagram which can be visualized by any

UML tool that supports XMI 2.1. Unlike other tools that reverse engineer to proprietary

formats, SQL2XMI explicitly aims at open and flexible portability, requiring only the SQL

DDL schema and targeting the official OMG XMI 2.1 UML representation. We have pre-

sented the details of our lightweight source transformation-based approach and an example

of the application of our tool to recover an ER diagram for the popular internet bulletin

board system PhpBB. The approach and mapping are unique to our work.



Chapter 5

Automated Reverse Engineering of

UML Sequence Diagrams for

Dynamic Web Applications

In Chapter 4, we used static analysis to recover application entities and the relations between

them as a UML-based ER model. In this chapter, we use dynamic analysis, implemented

via PHP2XMI, to recover the permissions associated with each user role and express them

as a behavioral model represented by a UML sequence diagram.

This chapter presents an approach and tool to automatically instrument dynamic web

applications using source transformation technology, and to reverse engineer a UML 2.1

sequence diagram from the execution traces generated by the resulting instrumentation. The

result can be directly imported and visualized in a UML toolset such as Rational Software

Architect. Our approach dynamically filters traces to reduce redundant information that

may complicate program understanding. While our current implementation works on PHP-

based applications, the framework is easily extended to other scripting languages in plug-

and-play fashion. In addition to supporting web application understanding, our tool is

79



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 80

being used to recover traces from dynamic web applications in support of web application

security analysis and testing. We demonstrate our method on the analysis of the popular

internet bulletin board system PhpBB 2.0.

The rest of this chapter is structured as follows. Section 5.1 motivates our work. Sec-

tion 5.2 presents the details of our approach, and Section 5.3 presents an example that

demonstrates our method on a real system. Section 5.4 relates our efforts to previous work.

Finally, Section 5.5 outlines our conclusions and plans for future work.

5.1 Motivation

Program comprehension, analysis and evolution is often based on reverse engineering of the

structure and behavior of software to visual models such as UML diagrams, and much recent

research has been focussed on recovering and presenting the structure of programs as UML

class diagrams. However, the recovery of dynamic behavior, and particularly interaction

behavior, to models such as sequence diagrams presents many challenges that have yet to

be addressed.

The problem of recovering execution traces to sequence diagrams for object oriented

systems, written in languages such as C++ or Java, has already been extensively studied.

Hamou-Lhadj and Lethbridge [95], and Briand et al. [35] provide surveys of tools that

have been applied in the domain of object oriented languages that deal with interaction

behaviors, and Merdes and Dorsch [126] have presented the major challenges in building a

scalable and efficient tool to understand the interaction behavior of such software. These

surveys raise four main issues: First, how do methods model the execution traces? Second,

how do they solve the execution trace explosion problem? Third, is the method able to

represent technical details such as loops and conditions in the sequence diagrams? And

fourth, how do the methods represent the final diagram for visualization purposes?

Reverse engineering of sequence diagrams from web applications implemented using

scripting languages such as PHP faces all of these problems, and presents a number of



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 81

additional challenges that are not addressed by these object-oriented analysis methods:

• Identification of the interaction elements. In general, web applications are not built

based on object oriented concepts, so it can be difficult to identify the application

entities in the source code.

• Identification of loops and conditions. Web applications often have multiple entry

points, and exhibit behavior that is difficult to detect until run time. This behavior

usually depends on user inputs that can not be inferred by static analysis.

• Recognition of similar execution trace patterns from static or run time information.

• Representation of the complete set of behavioral changes from state to state in se-

quence diagram terminology. Web applications often have several components that

may be affected by a single page execution, such as the database and session and

cookie variables.

• Analysis of multilingual documents.

In this work we present an approach and a tool that faces these additional challenges,

automatically generating interaction sequence diagrams from dynamic web applications.

Our method is not a perfect solution for all of these issues, but is an improvement to

the extent that it delivers accurate results and supports the process of web application

comprehension, analysis and evolution.

5.1.1 Web Application Testing

PHP2XMI is an essential part of a framework aimed at testing the conformance of dynamic

web applications with role-based access control security policies. A role-based access control

(RBAC) security model is recovered from the dynamic web application using a combination

of static and dynamic analysis techniques. The static analysis is used to recover application

entities and the relations between them as a UML-based ER model [8]. The dynamic

analysis, implemented using PHP2XMI, recovers the permissions associated with each user

role and expresses them as a behavioral model expressed as a UML sequence diagram.



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 82

Visualizing execution traces as a sequence diagram facilitates the process of understanding

the interaction behavior of the system, and helps us deduce the permissions for each user

role. The XMI 2.1 textual representation of the sequence model is analyzed and combined

with the XMI 2.1 representation of the ER model to construct a UML-based RBAC model,

which can be converted into a formal model to be checked for access control vulnerabilities

using a standard model checker.

This chapter explains how PHP2XMI is used to recover role permissions at the level

of page access, and we are currently also evaluating it at the entity level. The behavioral

model recovery technique implemented in PHP2XMI can be used to test for other web

application security vulnerabilities, such as SQL injection, by tracking SQL sources and

their relation to user inputs captured as HTTP variables. For security analysis we want to

preserve all the possible paths the user may follow to reach target pages. Hence, the model

behind the execution traces is a complete graph. A filtering process is used to ensure that

each observed path is stored just once in the database. While our current version of the

tool does not model loops explicitly, our filtering does not prevent the handling of cycles

and they can be easily detected by analyzing the database and representing them using the

appropriate UML 2.1 meta-model elements.

5.2 PHP2XMI

PHP2XMI is a new reverse engineering tool aimed at recovering UML 2.1 sequence diagrams

from PHP-based dynamic web applications. The approach used in PHP2XMI involves three

steps, as shown in Figure 5.1:

1. Parsing and Dynamic Instrumentation: The core of our method, which automatically

inserts probes into the source code to collect dynamic information such as page URLs,

http variables, sessions and cookies.

2. Filtering and Storing : During interactive browser sessions, execution traces generated



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 83

Dynamic PHP
Web Application

Instrumented  PHP
Application

Test  cases

I t ti

Web crawling 
Tool

Instrumentig
Transformation

Instrumenting
Function Library

Filtering

Browser 
Session

SQL Trace
Database

XMI2.1
Sequence

Model UML 2.1 
Sequence
Diagram

Trace to XMI 
Transformation

Rational 
Software 
Architect

Diagram

Figure 5.1: PHP2XMI tool Architecture

by the probes are filtered to ignore redundant information and stored in an SQL

database for further analysis.

3. Database Analysis and Model Generation: The execution traces stored in the database

are transformed into UML2.1 sequence meta-model elements.

In the following subsections we present the details of each of these main steps.

5.2.1 Parsing and Dynamic Instrumentation

Static analysis alone is not sufficient for architectural recovery of heterogeneous and highly

dynamic software such as web applications, and therefore it must be complemented by dy-

namic analysis [153]. Instrumentation is one of the techniques used to observe and extract

dynamic information from systems during execution [109]. Instrumentation does not mod-

ify the system structure and behavior. It may add new variables, insert new code, invoke

the original program methods, or replace part of the code by an invocation of a new method

that substitutes for the omitted code while performing additional tasks related to the in-

strumentation process. However, the functionality of the original program should not be

affected by instrumentation, and the instrumented program must deliver the same results

as the original uninstrumented version. The only side effect caused by instrumentation is



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 84

the additional overhead of recompiling the source code, executing the instrumentation code

and generating the execution traces. In our method we use a source transformation tech-

nique to add source code instrumentation to dynamic web applications. For this purpose we

use TXL [55], a programming language for manipulating and experimenting with program-

ming language notations and features. TXL is a powerful source transformation system

that has been used in industrial applications involving millions of lines of source code. The

TXL transformation process consists of three parts: a context-free “base” grammar for the

language to be manipulated, a set of context-free grammatical “overrides” (extensions or

modifications) to the base grammar, and a rooted set of source transformation rules to im-

plement transformation of the extensions to the base language. The TXL processer parses

the source program into a parse tree, then recursively applies the set of transformation rules,

beginning with a main rule, until there are no remaining matches in the parse tree. The

transformation is completed by unparsing the transformed tree to the new target source

program.

The source transformation approach brings two benefits to the instrumentation process.

First, the process can be adapted in a plug and play fashion to deal with any scripting

language as a source for instrumentation. This can be done by writing a set of context-free

grammatical overrides to the base grammar (in our case at present PHP versions 3,4,5) to

add the grammars of the additional languages, along with additional transformation rules

to take into account the code of the newly added scripting languages.

Second, source transformation easily adapts to documents that include a mixture of

languages and technologies, usually by applying island grammars [166], for example in the

approach used by Synytskyy et al. [160] to handle mixed-language web pages. Island

grammars divide the input into interesting input forms, called “islands”, and uninteresting

sequences of other input items, called “water”. In our case, the islands are the PHP script

statements that we want to instrument, and the water is the surrounding static HTML code

and text. The main benefit of island grammars is that interesting parts can be identified



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 85

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

include "php.grm" 
  
function main  
  replace [program] 
        P [program] 
   by 

   P [instrumentPage] 
      [instrumentcookie] 
       [instrumentHttpVar] 
 end function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: The main TXL transformation rule

The main rule simply matches the entire input PHP server page source document and applies the transfor-
mation subrules instrumentPage, instrumentCookie and instrumentHttpVar globally to it.

without performing a detailed parse of the entire input [131]. In addition, no preprocessing

is needed to unify the source code of the web application as in the approach used by WANDA

[25].

The instrumentation process begins with the main rule, shown in Figure 5.2, by parsing

each web application server page into a parse tree based on the context-free grammar

definitions in the grammar file php.grm.

TXL begins by applying the main rule to this tree, and then recursively applies the

transformation rules until the entire set of pages is instrumented. The main transformation

rules we used for instrumentation are: instrumentPage, which inserts a call to a PHP

function that is responsible for tracing page URLs along and their parameters, filtering

them and inserting them into an SQL database, instrumentcookie, which inserts a call

to a PHP function that captures cookie information and inserts it into the database, and

instrumentHttpVar (Figure 5.3), which inserts a call to a PHP function that captures in-

formation about HTTP variables and inserts it into the SQL database. As an example to

demonstrate the transformation process, we discuss here the details involved in instrument-

ing HTTP variables.

The rule instrumentHttpVar (Figure 5.3) begins by searching for HTTP variables in

its pattern by finding all instances of the grammatical type [Expr] (expression) from the

PHP grammar, and applying a set of transformation subrules, each of which matches a



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 86

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rule instrumentHttpVar 
    replace [Expr] 
        E [Expr] 
    construct NewE [Expr] 
        E [Conv_func_GET] 
          [Conv_func_POST] 
          [Conv_func_COOKIE] 
          [Conv_func_SESSION] 
    where not 
        NewE [= E] 
    by 
        NewE 
end rule 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: The instrumentHttpVar transform. rule

The instrumentHttpVar rule finds every PHP expression ( [Expr]) and applies four transformation subrules
to recognize and instrument instances of HTTP variables for GET, POST, cookies and sessions respectively.

specific HTTP variable. Expressions that are not references to HTTP variables are simply

left unchanged since no subrule matches them.

For example, the Conv func GET subrule (Figure 5.4) matches any expression of the form

$HTTP GET VARS [list of parameters] and replaces it with a call to the instrumenting

function HttpVar track (Param, $HTTP GET VARS [Param], ’GET’) . At run time the

HttpVar track () function inserts into the database the parameter names and values and

identifies them as GET parameters, returning the value of the HTTP variable to the caller

as originally expected without instrumentation. The transformation is supported by a small

library of such instrumenting functions that interact with the database. The three other

subrules referenced in Figure 5.3 do similar transformations on references to HTTP variables

associated with POST, cookies, and sessions.

Figure 5.5 shows the result of transforming the main PHP server page of the PhpBB 2.0

web application. Sections shown in boldface are instrumentation function calls automati-

cally added by our source transformation.



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 87

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
rule Conv_func_GET 
    replace  [Expr] 
        E [ReferenceVariable] 
    deconstruct E 
        '$HTTP_GET_VARS 
            '[ Param [Expr] '] 
    by 
        HttpVar_track(Param, 
          $HTTP_GET_VARS'[Param'],'GET') 
end rule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: The Conv func GET TXL transform. rule

The Conv func GET rule transforms each HTTP GET VARS expression to a call to the instrumenting function
HttpVar track which tracks the GET parameters in the database and returns the original result.

5.2.2 Filtering and Storing

Once the dynamic web application has been instrumented, execution traces are collected as

the application is executed in a web browser. The instrumentation function calls inserted by

the source transformations dynamically populate a database with the collected trace infor-

mation. In our security work, we are primarily interested in collecting unique traces based

on user roles. Thus at present we are automatically collecting traces and analyzing them

one role at a time. Web crawling tools that mimic user interactions with web applications,

such as clicking links, filling in forms and pressing buttons [39, 169] are used to automate

collecting traces, while the application roles themselves are recovered manually by studying

the software documentation. Roles can be identified from the HTTP session variable and

by recovering the way the web application classifies users into roles. (Complete automation

of this part is currently a work in progress.)

A user in a specific role can visit a web page more than once, following either the same

path or different paths. Capturing each visit and storing it in the database leads to a huge

amount of redundant information that can complicate the analysis process. To address this

issue, we dynamically optimize the recovered traces by filtering such that we store only

unique traces. We recognize unique traces as those that lead to the generation of a new

client page, or that generate a previously visited client page using a different path.

New and previously visited client pages are recognized by tracking server pages executed



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 88

<?php   
{  
    ob_start ();  
    include_once ('sensfunc.php');  
}  
define ('IN_PHPBB', true);  
$phpbb_root_path = './';  
include ($phpbb_root_path . 'extension.inc');  
include ($phpbb_root_path . 'common.' . $phpEx);  
$userdata = session_pagestart ($user_ip, PAGE_INDEX);  
init_userprefs($userdata);  
$viewcat = (! empty ($HTTP_GET_VARS [POST_CAT_URL])) ?   
   HttpVar_track (POST_CAT_URL, $HTTP_GET_VARS [POST_CAT_URL],GET) : -1;  
if (isset ($HTTP_GET_VARS ['mark']) || isset ($HTTP_POST_VARS ['mark']))  
{  
   $mark_read = (isset ($HTTP_POST_VARS ['mark'])) ?  
       HttpVar_track ('mark', $HTTP_POST_VARS ['mark'], POST) :  
       HttpVar_track ('mark', $HTTP_GET_VARS ['mark'], GET);  
}  
else  
{  
    $mark_read = '';  
}  
if ($mark_read == 'forums')  
{  
 if ($userdata ['session_logged_in'])  
  {  
   setcookie($board_config ['cookie_name'] . '_f_all', time (), 0,  
       $board_config ['cookie_path'], $board_config['cookie_domain'],  
       $board_config['cookie_secure']);  
   cookie_track($board_config['cookie_name'].'_f_all', time (), 0,  
       $board_config ['cookie_path'], $board_config['cookie_domain'],  
       $board_config['cookie_secure']);  
  }  
}  
  . . .  
     
$template -> pparse ('body');  
include ($phpbb_root_path . 'includes/page_tail.' . $phpEx);  
ob_flush ();  
?> 

Figure 5.5: Result of instrumenting the main index.php server page of PhpBB 2.0
Sections in boldface have been added by our instrumenting transformation.

due to user visits. Each server page can generate one or more client pages depending on

the parameters passed to the page. We consider that the same client page is regenerated

if the server page is re-executed without any parameters, or with the same parameters.

In such cases we do not insert the new page into the database unless a different path is

followed in its generation. Our database is constructed to reject any insertion that violates

these conditions. This approach also detects loops in traces, including revisits to pages from

themselves.



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 89

5.2.3 Database Analysis and Model Generation

In this phase a sequence diagram is built as a UML 2.1 sequence model based on the

execution traces stored in the database. We implement a PHP program to transform the

execution traces in the database to the sequence diagram elements shown in Figure 5.6, in

the form specified by the Object Management Group (OMG) [138].

Many web applications, including the example presented in this chapter, are not built

with object-oriented concepts in mind. Therefore, the interaction elements in our method

are the browser session, the generated pages, and the page transitions including their para-

meters. The instrumentation process generates a record of fine-grained information includ-

ing such details as http variables, cookies, and sessions. This information is too large to

be included in its entirety in the generated sequence diagram, so we have chosen to include

only those parameters that are passed in page transitions and shown in the URL address

bar.

Execution trace elements, which constitute a database row for a user in a specific role,

represent a page ID, a page URL, page parameters, and a page access time. User roles

and page URLs for a specific page ID are mapped into sequence diagram lifelines. The

transitions between pages and the set of parameters that accompany these transitions are

mapped into sequence diagram messages. Page access times in the database are used to

determine the order of page transmissions and in the sequence diagram appear as two sets

of MessageOccurrenceSpecification events, one for sending the message and the other

for receiving it. The message receipt event begins the BehaviorExecutionSpecification

fragment (the rectangle bar in the figure), and the message sending event,

ExecutionOccurrenceSpecification, ends the same BehaviorExecutionSpecification

fragment in that lifeline.



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 90

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fragment: (sending) 
MessageOccurrenceSpecification 

Lifeline 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Lifeline 

Interaction 

Message 
fragment: 
BehaviorExecutionSpecificati

fragment: 
ExecutionOccurrenceSpecification

fragment: (reciving) 
MessageOccurrenceSpecification 

Figure 5.6: UML sequence diagram meta-model elements

Page  
ID Page Name Page parameters

Prev. 
Page ID

Page 
Type Page Acc_TS

1 http:///phpBB2/index.php 0 PHP 1211134854
2 http:///phpBB2/viewforum.php ?f=1&sid=668ea9c6f9d3530aa85152da6fc3d7c6 1 PHP 1211134870
3 http:///phpBB2/viewtopic.php ?t=5 2 PHP 1211134894
4 http:///phpBB2/posting.php ?mode=reply&t=5 3 PHP 1211134902
5 http:///phpBB2/login.php ?redirect=posting.php&mode=reply&t=5 4 PHP 1211134903
6 http:///phpBB2/login.php 5 PHP 1211134918
7 http:///phpBB2/posting.php ?mode=reply&t=5&sid=668ea9c6f9d3530aa85152da6fc3d7c6 6 PHP 1211134918
8 http:///phpBB2/posting.php ?mode=topicreview&t=5 6 PHP 1211134919
9 http:///phpBB2/posting.php 8 PHP 1211134957
10 http:///phpBB2/viewtopic.php ?p=11 9 PHP 1211134961
11 http:///phpBB2/admin/index.php ?sid=668ea9c6f9d3530aa85152da6fc3d7c6 10 PHP 1211134989
12 http:///phpBB2/login.php ?redirect=admin/index.php&admin=1&sid=668ea9c6f9d3530aa85152da6fc3d7c6 11 PHP 1211134990
6 http:///phpBB2/login.php 12 PHP 1211135018
13 http:///phpBB2/admin/index.php ?admin=1&sid=668ea9c6f9d3530aa85152da6fc3d7c6 6 PHP 1211135018
14 http:///phpBB2/admin/index.php ?pane=right&sid=668ea9c6f9d3530aa85152da6fc3d7c6 13 PHP 1211135018
15 http:///phpBB2/admin/index.php ?pane=left&sid=668ea9c6f9d3530aa85152da6fc3d7c6 13 PHP 1211135018

Figure 5.7: Sample of a database view of generated execution traces

5.3 An Example Application

We have applied PHP2XMI to the analysis of the popular internet bulletin board system

PhpBB 2.0 [90]. Using the method described in the previous section, PHP2XMI was able

to automatically recover sequence diagrams from user interaction with this application.

The system under test was first uploaded to a test server, where it was automatically

instrumented by PHP2XMI and executed in a controlled environment. Test scripts were



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 91

Page 
ID   Page Name   Page Param.

PageAccess 
TimeStamp

Prev 
PageID

HttpVar 
Name

HttpVar 
Value

HttpVar 
Type

HttpVar 
Time_Stamp CookiesName Cookies value

Cookies 
ExpireTime

1 http:///phpBB2/index.php 1211134854 0 NULL NULL NULL NULL phpbb2mysql_data
a:2:{s:11:"autologinid";s:0:""
;s:6:"userid";i:.1;} 1242670855

2 http:///phpBB2/viewforum.php
?f=1&sid=668ea9c6f9d35
30aa85152da6fc3d7c 61211134870 1 f 1 GET 1211134871 NULL NULL NULL

3 http:///phpBB2/viewtopic.php ?t=5 1211134894 2 t 5 GET 1211134895 NULL NULL NULL
4 http:///phpBB2/posting.php ?mode=reply&t=5 1211134902 3 mode reply GET 1211134903 NULL NULL NULL
4 http:///phpBB2/posting.php ?mode=reply&t=5 1211134902 3 t 5 GET 1211134903 NULL NULL NULL

5 http:///phpBB2/login.php
?redirect=posting.php&mo
de=reply&t=5 1211134903 4 NULL NULL NULL NULL NULL NULL NULL

6 http:///phpBB2/login.php 1211134918 5 username admin POST 1211134918 phpbb2mysql_data
a:2:{s:11:"autologinid";s:0:""
;s:6:"userid";i:.1;} 1242670918

Figure 5.8: Fine grained information collected by PHP2XMI

used to drive the web browser in a manner similar to a user of the application. The test

scripts were implemented using Watir [169], a library that interfaces Ruby to Microsoft

Internet Explorer. Although our framework collects coverage information as part of its

instrumentation, in this example we did not attempt to cover all possible execution traces

for any specific user role, as that would generate a result much too large to fit in this

chapter. Instead we collected a representative set of 15 separate execution records, which

generated the database shown in Figure 5.8. From this database PHP2XMI automatically

generated a UML sequence diagram model that we imported and visualized using Rational

Software Architect (RSA) [105] (Figure 5.9).

Figure 5.7 shows a sample of the execution traces collected by PHP2XMI for a browser

session with PhpBB 2.0. The sample represents the scenario of an anonymous user visiting

a forum main page and exploring one of the active forums, then trying to do a reply on

one of its topics, which requires registered user permission. The user then logs in as an

Administrator, replies to the post and switches to the Administrator panel.

Each server page is represented by one or more unique Page IDs based on whether the

page receives parameters when executed. For example, the server page posting.php has

four entries in the table, each with a different Page ID. This is done to reflect the fact

that the server page posting.php, in this particular example, generates four different client

pages based on the parameters it receives. As another example, the server page login.php

has four entries. Two of them receive different parameters, and thus PHP2XMI gives them

different Page IDs. On the other hand, the other two entries do not receive any parameters,



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 92

Sequence::Collaboration1::Interaction1

Browser 
Session

index viewforum login :posting viewtopic Admin_ndex

1: index()

1.1: viewforum(?f=1 , sid=668ea9c6f9d3530aa85152da6fc3d7c6)

1.1.1: viewtopic(?t=5)

1.1.1.1.1.2.3.1.1.2: index(?admin=1 , sid=668ea9c6f9d3530aa85152da6fc3d7c6)

1.1.1.1.1.1: login()

1.1.1.1.1.2: posting(?mode=reply , t=5 , sid=668ea9c6f9d3530aa85152da6fc3d7c6)

1.1.1.1.1.2.3.1.1.1: login()

1.1.1.1.1: login(?redirect=posting.php , mode=reply , t=5)

1.1.1.1.1.2.3.1.1: login(?redirect=admin/index.php , admin=1 , sid=668ea9c6f9d3530aa85152da6fc3d7c6)

1.1.1.1.1.2.1: posting(?mode=topicreview , t=5)

1.1.1.1.1.2.2: posting()

1.1.1.1.1.2.3: viewtopic(?p=11)

1.1.1.1: posting(?mode=reply , t=5)

1.1.1.1.1.2.3.1: index(?sid=668ea9c6f9d3530aa85152da6fc3d7c6)

1.1.1.1.1.2.3.1.1.2.1: index(?pane=right , sid=668ea9c6f9d3530aa85152da6fc3d7c

1.1.1.1.1.2.3.1.1.2.2: index(?pane=left , sid=668ea9c6f9d3530aa85152da6fc3d

Figure 5.9: An example of a generated sequence diagram

but are from different paths. PHP2XMI inserts both these visits, but gives them the same

page ID, in order preserve all the paths that may lead to a specific page. In all cases,



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 93

filtering insures that the Pages table does not include any duplicate rows with the same

combination of Page Name, Page Parameter and Prev. Page ID. Figure 5.8 shows a view

of the join of three tables of the collected database, illustrating the fine-grained information

collected by PHP2XMI, including page information, HTTP variables, cookies, and sessions.

In order to map page transitions from rows of Figure 5.7 to sequence diagram elements

of Figure 5.6, a lifeline is assigned to the interactive browser session and to each server page.

For instance, the Page Name of the second row in Figure 5.7 is mapped into an UML 2.1

element of type uml:Lifeline. The covered by property of this lifeline lists the xmi:id’s

of the set of MessageOccurrenceSpecification and BehaviorExecutionSpecification

events that this lifeline is engaged in, and that to represent the event of sending and receiving

the first message between the two lifelines, index.php and viewforum.php. This message is

represented using an UML 2.1 element of type uml:message, and its name is the composition

of the server page name and the parameter it receives. Finally, UML 2.1 elements of type

uml:class represent each lifeline and the set of messages it receives as a class with a set of

operations.

Figure 5.9 shows a visualization for a part of the generated model using Rational Soft-

ware Architect. Once imported into RSA, the diagram can be explored and connected to

other UML models to develop a unified understanding of the entire web application.

5.4 Related Work

In CPP2XMI [114], Korshunova et al. describe a reverse engineering tool to extract class,

sequence, and activity diagrams from C++ source to XMI 1.1 format. The authors use

Columbus/CAN [82] as a fact extractor, which parses the C++ code and generates output

in XMI. The authors then analyze the XMI file to extract the information needed for each

diagram, using Dot [115] to visualize the output.

Briand et al. [36] propose a method to reverse engineer sequence diagrams from C++

applications, using Perl to implement the automatic instrumentation and Java to transform



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 94

traces into sequence diagrams. They propose two meta-models, one to represent the recov-

ered traces and the other to represent sequence diagrams, transforming one to the other

based on OCL constraints. While they recover the technical details such as conditions and

loops, they do not address visualization of the resulting sequence diagrams.

Jiang et al. [108] propose a method to reverse engineer a sequence diagram in UML

2.0 format from the runtime communication between sample applications and an API.

Their method works by monitoring API usage in the sample applications, then filtering

the generated execution traces and merging them into a state machine. The analysis of

the state machine leads to the recognition of common, optional and alternative parts. A

combined sequence diagram is then built and illustrated as a UML 2.0 sequence diagram.

Our approach differs from the above methods in its ability to handle applications with

multilingual source code documents, such as web applications. Unlike the Korshunova et al.

and Briand et al. methods, PHP2XMI automatically generates XMI 2.1 sequence diagram

files which can be visualized directly in any UML 2.1 toolset. While both methods use

filtration, ours is focussed on minimizing the database to optimize extraction of sequence

diagrams, whereas CPP2XMI gathers a much richer initial XMI representation and then

filters to extract sequence elements.

Many methods have been proposed to extract behavioral models from web applications

for the purpose of testing. Ricca and Tonella [148], for example, construct a UML object

model of a web application’s pages, frames, forms and the links between them from the

dynamic HTML output of the application. While their object model is aimed at generating

test cases, our approach uses automated test cases implemented using Watir [169] and a

coverage metric to recover a model for the purpose of testing security properties of dynamic

web applications. A major difference between our recovered behavioral models, the Ricca

and Tonella custom models, and almost all other previous work in this field, is that ours

are the only recovered behavioral models represented using standard UML2.1 sequence

diagrams. This is an important advantage from a practical point of view, since it allows



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 95

import, analysis and manipulation using standard UML tools such as Rational Software

Architect. A detailed analysis of the state of the art in the field of web applications modeling

for analysis and testing can be found in our survey[13].

Although it is not designed for web applications testing, the work most similar to our

approach is WANDA (Web ApplicatioNs Dynamic Analyzer) [25], which collects execution

traces in a similar way. In WANDA execution traces are not filtered, which leads to a

huge amount of redundant information stored in the database, and consequently tends to

yield cluttered sequence diagrams that are difficult to comprehend. Di Lucca and Di Penta

[67] have proposed an approach to filter the execution traces generated by WANDA by

using the WARE tool [123] to identify groups of equivalent Built Client Pages (i.e., client

pages dynamically built by server pages which share common features). A filtration of the

execution traces collected by WANDA is then performed based on page clustering. This

method has been evaluated on a PHP web application.

PHP2XMI differs from WANDA in using source transformation technology for the pars-

ing and the instrumentation phases, which aids in eliminating the overhead caused by any

preprocessing needed to deal with multilingual documents. The filtration proposed by Di

Lucca and Di Penta is based on the static analysis provided by WARE, which may identify

the web application pages, but does not preserve all the possible paths that the application

may allow its users. For this reason their method is not sufficient for security testing pur-

poses, whereas PHP2XMI’s filtering is tailored to the task. WANDA’s unfiltered model can

also have scalability problems, whereas PHP2XMI’s dynamic filtering bounds the number

of lifelines and messages in the model to the number of server pages and paths between

them. The output format generated by PHP2XMI is in the XMI 2.1 standard for model

interchange between the UML tools, whereas WANDA uses a custom local format.



CHAPTER 5. AUTOMATED REVERSE ENG. OF UML SD FOR WEB APP. 96

5.5 Conclusion and Future Work

We have presented an automated approach and practical tool to instrument dynamic web

applications using source transformation technology to recover a dynamic behavior model

from observed interaction. The tool is able to automatically reverse engineer UML 2.1

sequence diagrams from PHP-based web applications. The result can be imported and

visualized in any UML 2.1 toolset. The approach we use filters execution traces directly

on insertion into the database, automatically eliminating redundant information that may

complicate the understanding process.

In this chapter the interaction elements in the resulting sequence diagram are the user

and the dynamic pages of a browser session, represented as lifelines, and the dynamic

transitions between the pages along with their parameters, represented as messages. In the

next chapter we present an approach which supports the process of raising the sequence

diagram to the entity level from the page level.

At this stage, we don’t try to enumerate all the possible executions for each role, but

we will see in Chapter 7 how we use an instrumentation coverage technique to handle this

issue and to provide a measure for the completeness of the generated sequence diagram.



Chapter 6

WAFA: Fine-grained Dynamic

Analysis of Web Applications

In Chapter 5 we recovered sequence diagrams for test sessions at the page level. We have

used the work described in this chapter to extend the recovered sequence diagrams to include

interactions with the database. The extended sequence diagrams are then used as part of

our RBAC model-based analysis framework.

Database interactions are a vital source of information in the analysis of highly dynamic

systems such as web applications. Most web application security vulnerabilities, such as

SQL injection and broken access control, can be traced to problems in database interactions.

which are implemented as a set of embedded or constructed SQL statements. The identi-

fication and analysis of these embedded statements as an integral component of the host

application requires complex analysis including robust parsing, pattern matching, control

flow and data flow analysis.

In this chapter, we propose an approach to this problem using source transformation

technology. A rich model of fine-grained information is extracted from dynamic web applica-

tions, allowing us to reason not only about the SQL embedded system, but also about page

97



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 98

access, server environment variables, cookies and session management functions. We eval-

uate our system on the popular bulletin board web application PhpBB, a PHP / MySQL-

based dynamic web application.

This chapter is organized as follows: Section 6.1 provides the motivation for our ap-

proach. Section 6.2 presents WAFA, our fine-grained analysis approach. Section 6.3 presents

the instrumention technique used in WAFA. Section 6.4 evaluates WAFA on some test cases

from PhpBB. Section 6.5 relates our approach to previous work. Finally, Section 6.6 con-

cludes the chapter.

6.1 Motivation

Web applications are one of many kinds of systems with multiple components that dy-

namically interact to deliver a specific business process. Sophisticated static and dynamic

analysis is needed when reverse engineering web applications to extract all relevant infor-

mation from the various components, and to correlate the extracted information to model

the actual application behavior.

Several approaches for reverse engineering web applications have been proposed, most

of which have focused on extracting the structural levels of the application, such as pages,

frames, forms, and hyperlinks [123, 148]. Others have addressed particular aspects of ap-

plication behavior such as interaction with the browser [65], and still others have aimed at

extracting a higher level abstract behavioral model which describes the basic application

elements, but does not combine the results or extract the details of database interaction

[68, 25, 67].

Most current dynamic web application business processes depend on the support of a

database back end. A great deal of information is stored in the database, including critical

knowledge such as session management and access permissions. Dynamically identifying

and extracting database interactions alone can be misleading, as they do not reflect the

actual intended behavior of the application business process as a whole. Analyzing database



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 99

interactions in the context of the entire web application may clarify aspects of the business

process hidden behind the web application presentation level. Since many web application

vulnerabilities rely on modifying the database interaction statements at runtime, there is a

need to analyze not only the values of the SQL statements constructed at runtime, but also

the original source of the host language statements used to construct the SQL statements.

Database interactions are often implemented in web applications using a combination

of string concatenation expressions and host language statements that work together to

construct an SQL statement. These expressions and statements are composed of constant

strings and application variables. Identifying, extracting, and analyzing these dynamically

constructed statements in the context of the overall system is not a trivial process.

In this chapter we propose an approach to analyze dynamic web applications, extracting

a fine-grained model aimed at understanding the interaction between the web application

and the database. Our approach is different from other methods in the following aspects:

• An automated instrumentation methodology that handles mixed languages, and can

be easily extended to other technologies and host languages.

• Extraction of a model that relates information about pages, server environment vari-

ables, database interactions and host language source statements. This model is stored

in a database to facilitate accessibility and future analysis.

• Extraction of a web application’s embedded SQL components, which is comprised of

the source of the original SQL statements, and the corresponding execution instances.

The SQL components also include both static host application variables and dynamic

server environment variables.

This work takes place in the context of a larger project on web application security, specif-

ically the analysis of role based access control [11]. In the class of web applications we are

analyzing, user roles and access permissions are stored in the application database with

the other application data. Providing the context of the database interactions allows us to



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 100

PHP Grammar & 
Transformation Rules

Instrumented  PHP
Application

Browser 
Session

Transformation Rules

Dynamic PHP
Web Application

Instrumenting
Transformation

I t ti

Test  cases

Web Crawling (A)
Instrumenting

Function Library

Filtering

Tool

SQL & PHP 

Analysis (B)

SQL Trace
Database

SQL Statement 
Analysis

Grammars & SQL 
Transformation Rules (C)

Figure 6.1: WAFA Architecture

better analyze these interactions and recover the details of user roles and permissions. In

the previous chapter we recovered sequence diagrams for test sessions at the page level. We

have used the work described in this chapter to extend the recovered sequence diagrams to

include interactions with the database. The extended sequence diagrams are then used as

part of a model-based analysis of access control.

Another possible application of our approach is the analysis of SQL injection attacks in

a way similar to Halfond and Orso [94]. Differences between the structure of the runtime

query and the source version of the query indicate input that may have changed the meaning

of the query.

6.2 Approach

Figure 6.1 shows the architecture of our approach, called WAFA (Web Application Fine-

grained Analysis). An instrumentation transformation is used to analyze the source code of

the application, inserting appropriate calls to an instrumentation library written in PHP,

Figure 6.1(A). The instrumented application is deployed in a testing environment, where a

web crawling tool uses predefined test cases to exercise the web application. Since test case

design and coverage are important issues, they are discussed in detail in Chapter 7. We

focus our discussion here on recovering the interaction behavior between the web application



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 101

Server  Pages

Page_Ins_ID
Page_ID
«PK» Page_Name
«PK» Page_Param
«PK» Prev_PageID
Page_Acc_TS

Http Variables

«PK» HttpVar_ID
HttpVar_Name
HttpVar_Value
Assigned_Var
HttpVar_Type
HttpVar_Acc_Time
«FK» Page_Ins_ID

Sessions

«PK» Session_ID
Session_IP
Session_ST
Session_ET
«FK» Page_Ins_ID

Database Interactions

«PK» SqlStm_ID
Sql_Source
Sql_Instance
SqlType
EntityName
SQL_Parts
SqlTransTime
«FK» Page_Ins_ID

Cookies

«PK» Cookie_ID
Cookie_Name
Cookie_Value
Cookie_Path
Cookie_Domain
Cookie_Expire_T
Cookie_HttpOnly
Cookie_Secure
«FK» Page_Ins_ID

Dynamic Analsis View

Page_ID
Page_Name
Page_Param
HttpVar_Name
HttpVar_Value
HttpVar_Type
Assigned_Var
Sql_Stm
Sql_Source
EntityName
Php_param
SqlTransTime
Page_Ins_ID

1

- server  pages

*

- cookies

1
- server  pages

*

- http variables

1
- server  pages

*
- DB interactions

1 - server  pages

*
- dynamic analsis view

*

- sessions
1

- server  pages

1

- http variables

*

- dynamic analsis view

1

- DB Interactions

*

- dynamic analsis view

1

- cookies

*
- dynamic analsis view

Figure 6.2: The WAFA Dynamic Analysis database model

components.

As the tests run, Figure 6.1(B), the instrumentation library inserts information about

each query into a separate instrumentation database. A source transformation is performed

on each SQL statement at runtime to analyze its structure. This structural information is

inserted in the database along with the query, Figure 6.1(C). The schema for our database

is shown in Figure 7.2. It is comprised of five tables and one view. The Server Pages table

is used to keep track of access to individual pages, while the other four tables contain infor-

mation about the HTTP variables, environment variables, cookies and database statements

associated with each page, linked using the Page Ins ID field. We combine the information

from the various tables into a single unified trace view in the Dynamic Analysis view. The

following section elaborates the approach in more detail.

6.3 Instrumentation Methodology

We automatically analyze and add source code instrumentation to web application source

using TXL [55], a programming language designed for manipulating and experimenting with

programming language notations and features. TXL is a powerful source transformation



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 102

system that has been used in industrial applications involving millions of lines of source

code. The TXL processor takes as input a context-free grammar for the language to be

manipulated, parses the source program into a parse tree, and then recursively applies a set

of transformation rules, beginning with a main rule, until there are no remaining matches

in the parse tree. The transformation is completed by unparsing the transformed tree to

the new target source program.

Our implementation presently instruments web applications written in PHP(3,4,5) and

MySQL(5.x). However, our TXL-based approach is easily adapted to deal with other script-

ing languages and database engines. Documents that include a mixture of languages and

technologies are easily handled by employing island grammars [160]. In our implementation,

the islands are PHP code, while the HTML source and document text are considered water.

Island grammars simplify the transformation as interesting elements can be identified and

analyzed without parsing the entire document.

6.3.1 Instrumenting and Collecting Page Information

In our process, page access is tracked by querying the server execution environment informa-

tion created by the web server when the user interacts with the web application. Pages are

instrumented by inserting an instrumenting function call at the head of each PHP dynamic

page that performs this query to retrieve the page URL address along with any parame-

ters passed to the page as well as the page access time, and inserts a trace element of this

information in the page access table of our instrumenting database.

As part of the insertion of each page access trace element in the database, an analysis

is performed to insure that the inserted trace element is unique. We recognize unique

trace elements as those that lead to the generation of a new client page, or that generate a

previously visited client page using a different path. Each server page can generate one or

more client pages depending on the parameters passed to the page. We consider a generated

client page to be the same if the same server page is re-executed without any parameters,



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 103

or with the same parameters. In such cases we do not insert the new page into the database

unless a different path is followed in its generation. Our database is constructed to reject

any insertion that violates these conditions.

6.3.2 Instrumenting and Collecting Server Information

In PHP, predefined global variables contain information about a script’s environment, such

as the client’s web browser, the HTTP host, and the HTTP connection. All those variables

along with any function that manipulates them are instrumented. When the application is

executed, a trace element on each piece of information will be inserted in a database for

later analysis.

In particular, four types of HTTP variables are identified and instrumented, namely,

the GET, POST, COOKIE, and SESSION variables. References to these variables are replaced

with a call to the instrumenting function HttpVar track(), which takes as parameters the

HTTP variable name, value, type, name of the PHP variable to which the HTTP variable

is assigned(if any), and the page number in which the variable is located. After adding

the information to our database, the function returns the value of the HTTP variable so

as to preserve the semantics of the code. An example of this instrumentation is shown

in Figure 6.3. In the Figure, references to the HTTP parameter mode are logged in the

database along with the fact that it is assigned to the PHP variable $mode.

6.3.3 Cookies and session management functions

In the HTTP Protocol, state is preserved between consecutive requests using cookies, a small

identifier that is stored in the client browser and sent back to the server on each subsequent

request. This identifier is used by the web application to store and retrieve data specific

to that session. The predefined global variables $HTTP COOKIE VAR is used to access the

cookies, and this variable is instrumented as described in the previous section. In addition,

we instrument changes to the cookie by adding a call to our instrumentation function,

cookie track(), after each call to the PHP function setcookie(). Our function takes the



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 104

<?php

...

if ( !empty($HTTP_POST_VARS['mode']) || !empty($HTTP_GET_VARS['mode']) )

  $mode = ( !empty($HTTP_POST_VARS['mode']) ) ?

$HTTP_POST_VARS['mode'] : $HTTP_GET_VARS['mode']; 

  Transformed into . . . 

if ( !empty($HTTP_POST_VARS['mode']) || !empty($HTTP_GET_VARS['mode']) )

  $mode = (! empty ($HTTP_POST_VARS ['mode'])) ?

HttpVar_track ('$mode', 'mode', $HTTP_POST_VARS ['mode'],186,192, POST):

HttpVar_track ('$mode', 'mode', $HTTP_GET_VARS ['mode'],186,191, GET); 

...

?>

Figure 6.3: Results of instrumenting server environment variables in a snippet of code in
PhbBB 2.0 application

Each HTTP reference variable is identified and transformed into an instrumenting function call which is
passed the variable name, assigned variable name, variable value, unique ids for the variable name and
the page name, and the variable type. The instrumenting function returns the variable value as its return
value.

<?php

. . . 

if ($userdata ['session_logged_in']){ 

setcookie ($board_config ['cookie_name'].'_f_all', time (), 0,

$board_config ['cookie_path'], $board_config ['cookie_domain'], 

$board_config ['cookie_secure']); 

 New instrumentation function added . . . 

cookie_track ($board_config ['cookie_name'].'_f_all', time (), 0, 

    $board_config ['cookie_path'], $board_config ['cookie_domain'], 

    $board_config ['cookie_secure']);} 

. . . 

?>

Figure 6.4: Result of instrumenting cookie management functions in a snippet of code in
the PhbBB 2.0 application

Each cookie management function is identified and an additional instrumenting function call that captures
all cookie management function parameters is added

same parameters and stores them in the Cookie table of our instrumentation database. An

example of this transformation is shown in Figure 6.4. The line in bold is added to the

contents of the if statement directly after the call to setcookie(). If cookies have been

disabled, then session information is encoded into URLs using PHP utility routines. We

instrument the calls to these functions in a similar manner.



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 105

 

% SqlCommandString is any string or character literal 
%   beginning with an SQL query verb 
tokens 

   SqlCommandString   "'SELECT #'*'" 
          | "'INSERT #'*'" 
          | "'DELETE #'*'" 
                | "'UPDATE #'*'" 
          | "\"SELECT #\"*\"" 
          | "\"INSERT #\"*\"" 
     | "\"DELETE #\"*\"" 
          | "\"UPDATE #\"*\"" 
        % and any others needed 

end tokens 
 
% SqlExpr is any string concatenation expression  
%   that begins with one of the above magic words 

define SqlExpr 
   [SqlCommandString] [CatAddExpr*] 
end define 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: PHP grammar extension to recognize guest patterns (SQL statements)

6.3.4 Instrumenting and Collecting Database Interactions

The most complex set of transformations is used to identify and instrument the interactions

with the database. We break the transformation into four parts. The first is to identify

dynamically constructed SQL statements. Once they are identified, then we can insert code

to construct a string value that contains the same SQL statement, but with the names of

the application variables that are used instead of the variables. Together the two strings are

inserted into the instrumentation database. An analysis of each of the SQL statements is

done to identify the type of the statement, and the key elements present in the statement.

This information is added to the database entry for the statement.

Identifying Dynamically Constructed SQL Statements

Our approach uses a separate lexical token class (SQLCommandString) to distinguish string

literals that begin with the SQL keywords Select, Insert, Update, Delete, Create,

Alter and Drop from other strings in the PHP source text. This allows us to use the

parser to recognize concatenation expressions built from these strings (Figure 6.5). The

transformation then targets assignment statements that use these strings to build larger



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 106

strings. Once an assignment is found that uses one of these SQL keyword strings, other

assignments using the same PHP variable are also checked and instrumented. The code is

normalized prior to the transformations, moving string expressions to separate assignment

statements and replacing them with a temporary PHP variable.

Constructing SQL Statement Sources

As the SQL assignment statements identified in the previous section are encountered, our

transformation inserts additional assignments into the code to accumulate the source rep-

resentation of the SQL statement as shown in bold in Figure 6.6. The SQL command that

is constructed by the code in the Figure is the string:

”INSERT INTO phpbb themes(themes id,template name,style name) VALUES(’8’,’test’,’test style’);”

At the same time, the assignment statements inserted by our instrumentation construct

a second string:

”INSERT INTO phpbb themes($db fields[$i], $db fields[$i],

$db fields[$i]) VALUES ($db values[$i], $db values[$i], $db values[$i]);”

Just before the SQL command string is sent to the database, both strings are inserted

into the instrumentation database. This gives us a runtime snapshot that contains not only

the values used in the actual SQL query, but also the PHP variables from which the query

was constructed. Figure 6.8 shows the TXL transformation rule instrumentQueriesSource

that identifies an assignment containing an SQL Command String and adds the instrumen-

tation assignments.

The instrumented SQL statement is constructed in the TXL variable SQLE Source. The

parts of the SQL expression are passed as a parameter to the collectparameters function

which processes them one part a time. It classifies each SQL part it receives into one of

three categories:



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 107

<?php 
... 
{ 
$sql = "INSERT INTO ".THEMES_TABLE." ("; 
$GLOBALS ["Sql_Source"] [594] [0] = 'INSERT INTO '.THEMES_TABLE.' ('; 
$GLOBALS ["Sql_Source"] [594] [1] = 516; 
$GLOBALS ["Sql_index"] = 594; 
} 
for ($i = 0; $i < count ($db_fields); $i ++) 
{ 
 { 
  $sql.= $db_fields [$i]; 
  $GLOBALS ["Sql_Source"] [594] [0].= '$db_fields [$i]'; 
 } 
 if ($i != (count ($db_fields) - 1)) 
 { 
  { 
   $sql.= ", "; 
   $GLOBALS ["Sql_Source"] [594] [0].= ', '; 
  } 
 } 
} 
{ 
 $sql.= ") VALUES ("; 
 $GLOBALS ["Sql_Source"] [594] [0].= ''.') VALUES ('; 
} 
for ($i = 0; $i < count ($db_values); $i ++) 
{ 
 { 
  $sql.= "'".$db_values [$i]."'"; 
  $GLOBALS ["Sql_Source"] [594] [0].= '$db_values [$i]'; 
 } 
 if ($i != (count ($db_values) - 1)) 
 { 
  { 
   $sql.= ", "; 
   $GLOBALS ["Sql_Source"] [594] [0].= ', '; 
  } 
 } 
} 
{ 
 $sql.= ")"; 
 $GLOBALS ["Sql_Source"] [594] [0].= ')'; 
} 
 
... 
 
?> 
 

 
Figure 6.6: Instrumented snippet of code for PhpBB2.0 application - 1

Sections in boldface have been added by our instrumenting transformation. This example demonstrates how
the dynamic SQL statement is constructed from its fragments using forward flow analysis.

1. Constant variables. Constant variables are the same for all SQL statement instances,

so the function concatenates them to the result without quotes , adding the actual

values at run time. The first assignment shown in Figure 6.6 references the constant



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 108

 

 

 

 

 

 

 
 

 
<?php 

... 
{  
  $join_sql_table = (! $post_id) ? '' : ", ".POSTS_TABLE." p, ".POSTS_TABLE." p2 "; 
  $GLOBALS ["SqlParts"] ['join_sql_table'] = (((! $post_id)) ? ('') : (', ').(POSTS_TABLE).(' p, ').(POSTS_TABLE).(' p2 '));   
} 
{ 
  $join_sql = (! $post_id) ? "t.topic_id = $topic_id" : "p.post_id = $post_id AND t.topic_id = p.topic_id AND  
  p2.topic_id = p.topic_id AND p2.post_id <= $post_id"; 
  $GLOBALS ["SqlParts"] ['join_sql'] = (((! $post_id)) ? ('t.topic_id = $topic_id') : ('p.post_id = $post_id AND  
                        t.topic_id = p.topic_id AND p2.topic_id = p.topic_id AND     p2.post_id <= $post_id')); 
} 
{  
  $count_sql = (! $post_id) ? '' : ", COUNT(p2.post_id) AS prev_posts"; 
  $GLOBALS ["SqlParts"] ['count_sql'] = (((! $post_id)) ? ('') : (', COUNT(p2.post_id) AS prev_posts'));  
} 
{ 
  $order_sql = (! $post_id) ? '' : "GROUP BY p.post_id, t.topic_id  ORDER BY p.post_id ASC"; 
  $GLOBALS ["SqlParts"] ['order_sql'] = (((! $post_id)) ? ('') : ('GROUP BY p.post_id, t.topic_id  ORDER BY p.post_id ASC')); 
} 
{  
  $sql = "SELECT t.topic_id, t.topic_title, t.topic_status, t.topic_replies, t.topic_last_post_id, f.forum_name,  
          f.forum_status,f.forum_id, ".$count_sql."FROM ".TOPICS_TABLE." t, ".FORUMS_TABLE. " f".$join_sql_table. 
          " WHERE $join_sql AND f.forum_id = t.forum_id  $order_sql"; 
  $GLOBALS ["Sql_Source"] [394] [0] = (('SELECT t.topic_id, t.topic_title, t.topic_status, t.topic_replies,  
          t.topic_last_post_id, f.forum_name, f.forum_status, f.forum_id,).((''.$GLOBALS ["SqlParts"] ['count_sql'].'')). 
          ('FROM  ').(TOPICS_TABLE).(' t, ').(FORUMS_TABLE).(' f').((''.$GLOBALS ["SqlParts"] ['join_sql_table'].'')). 
          (('WHERE '.$GLOBALS ["SqlParts"] ['join_sql'].('AND f.forum_id = t.forum_id'.$GLOBALS ["SqlParts"] ['order_sql'].'')))); 
  $GLOBALS ["Sql_Source"] [394] [1] = 391; 
  $GLOBALS ["Sql_index"] = 394;  
} 

... 
?> 
 

 
 

 

 

 

 

Figure 6.7: Instrumented snippet of code for PhpBB2.0 application - 2
Sections in boldface have been added by our instrumenting transformation. This example shows how the

dynamic SQL statement is expanded from its fragments using backward flow analysis

variable, THEMES TABLE. This variable, which contains the name of the table, is con-

catenated without quotes in the instrumentation assignment on the next line, shown

in bold. Note that at this point in time, the assignment statements have yet to be

generated. The function is constructing the expressions that will occur on the right

hand side of the instrumentation assignment statements.

2. PHP variables. These variables are bound to different values at run time, generating

different versions of the SQL statement. The function concatenates a quoted version of

the variables to the result, protecting the variable from runtime substitution. In Figure

6.6, the assignments of the PHP variables, $db fields[$i] and $db values[$i], are quoted

when concatenated to the instrumentation variable $GLOBAL["Sql source"][549][0].

In some situations, an SQL statement is constructed in fragments using multiple PHP

variables before assembling the final SQL statement. Currently, we are using naming

conventions (ending in sql ) to identify the part variables, which are collected in a



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 109

TXL global variable. Once identified, we instrument each of the variables in a similar

manner. In Figure 6.7, the SQL statement assigned to $sql is constructed from parts

contained in the $count sql, $join sql table, $join sql, and $order sql variables. The

Figure shows how each of the part variables are instrumented and collected in the

global array SqlParts. The final assembly of the SQL statement is shown at the

bottom of the Figure. The instrumentation string is constructed by concatenating

the parts that were previously stored in the SqlParts array.

3. String expressions. In PHP, string expressions can have two forms: double quoted and

single quoted strings. The difference between the two forms is that embedded PHP

variables will be substituted in double quoted strings but not in single quoted strings.

Thus the collectparameters function transforms double quoted strings into single

quoted ones to protect embedded variables, unless the variables are recognized as SQL

fragment variables. In Figure 6.7 the string literals in the SQL fragment assigned to

the PHP variable, $join sql have been changed to single quotes when assigned to the

instrumentation array.

Once the expressions have been collected, a unique identifier for the SQL statement

is generated. The TXL rule in Figure 6.8 generates the assignment statements to collect

the SQL instrumentation strings in the PHP global array Sql Source using the unique

identifier. The unique identifier for the page (uniquePageid) is also stored in the array so

that it can be stored in the database to link the SQL statement to the page from which it

was generated.

The TXL rule instrumSqlStmParts is called on the remaining source code to search

for and mark any concatenation statement that may contribute to the construction of the

SQL statement identified in the rule. It takes as parameters the PHP variable from the

left hand side of the assignment, and the statement’s unique identifier. Figure 6.6 shows

how the SQL statement with the unique id 594 is constructed from its fragments that are



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 110
 

 
 

rule instrumentQueriesSource 
   % Get the page ID for the page containing the SQL query source construction 
   import uniqePageid [id]  
 
   % Find the first statement of any SQL query source construction 
   replace [TopStatement*] 
      OCV [ObjectCVar] AsOp [AssignOp] SqlE [SqlExpr] ; 
      Rest [TopStatement*] 

   . . .   

   % Collect and expand SQL statement source 
   construct SQLE_Source [Expr] 
      SqlE [collectparameters] 
 
   % Create a unique id for the constructed SQL statement source 
   construct uniqeid [id] 
      _ [!] 
 
   % Replace the statement with an instrumented version 
   by 
      {  
         % Original statement 
         OCV AsOp SqlE;  
         % Added instrumentation statements     
         '$GLOBALS '[ "Sql_Source" '] '[ uniqeid '] '[ 0 '] = SQLE_Source ; 
         '$GLOBALS '[ "Sql_Source" '] '[ uniqeid '] '[ 1 '] = uniqePageid ; 
         '$GLOBALS '[ "Sql_index" '] = uniqeid ; 
      } 
      % And instrument any following SQL query source construction fragments 
      Rest [instrumSqlStmParts OCV uniqeid] 
end rule

Figure 6.8: The instrumentQueriesSource transformation rule

The instrumentQueriesSource rule captures each SQL statement and transforms it into its source by
collecting the statement fragments and manipulating them to keep any embedded variable unsubstituted

rule instrumentSQL 
   replace [Expr] 
      'mysql_query ( Q [Expr], R [Expr] ) 
   by 
      'mysql_query_track ( 'mysql_query, Q, R,        
         '$GLOBALS '[ "Sql_Source" '] '[ '$GLOBALS '[ "Sql_index" '] '], 
         '$GLOBALS '[ "Sql_index" '] ) 
end rule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: The instrumentSQL transformation rule

The instrumentSQL rule captures each SQL execution statement and transforms it into a call to an
instrumenting function that combines the globally constructed SQL statement source with it’s execution

instance

scattered in conditional statements and loops.

Binding SQL Statement Source with its Runtime Instances

In the previous subsection, we identified and globally instrumented SQL statement construc-

tion. We now identify and instrument the actual SQL execution points, combining the in-

stantiated SQL statements with the SQL statement source. The TXL rule instrumentSQL,



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 111

Page_ID Page_Name Page_Param Prev 

_ID

Page 

Type 

Page_Acc_Ts 

15 http://phpBB2/viewforum.php ?f=1&sid=01e7ff1f13225be3cb129f8 14 PHP 1239318861

17 http://phpBB2/viewtopic.php ?t=1&sid=01e7ff1f13225be3cb129f8 16 PHP 1239318876 

Table 6.1: Sample trace elements for the Server Pages database table

Var_ID Page 

ID 

HttpVar Name HttpVar Value HttpVar 

Type 

Assigned 

Var

HttpVar_Acc

Time

34 15 f 1 GET $forum_id 1239318862 

35 15 phpbb2mysql_data a:2:{s:11:"autologinid";s:0:"";s:6:"userid";i:-1;} COOKIE $sessiondata 1239318863 

36 15 phpbb2mysql_sid 01e7ff1f13225be3cb12b89857d3f9f8 COOKIE $session_id 1239318863 

Table 6.2: Sample trace elements for the Http Variables database table

Traces related to PageID 15, viewforum.php

shown in Figure 6.9, identifies calls to the mysql query PHP function and replaces them

with the instrumentation function mysql query track(). This function takes as parame-

ters the the original function’s SQL statement Q and database connection R, as well as

two additional instrumentation parameters: the SQL statement source, from the global ar-

ray "Sql Source" (mapped by the SQL statement unique identifier in the global variable

"Sql index"), and the SQL statement’s unique identifier.

Analyzing SQL Statement Sources

During runtime execution of the instrumented PHP application, the instrumentation func-

tion mysql query track() is called to insert trace elements into the Database Interaction

database table. This function invokes a TXL program that parses the SQL source state-

ment, identifying the statement type, the application variables and the database tables used

in the statement. It also identifies any PHP variables embedded in the SQL statement and

associates them with the syntactic part in which they are used. For example, the program

will identify whether a PHP variable is used in a WHERE clause or an ORDER BY clause.

The results of this analysis are also stored in the Database Interaction table so that

PHP variables can be directly linked to the run-time values and database interactions they

control.



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 112

SqlStm 
_ID 

Page 
ID 

Sql_Instance  EntityName SqlTransTime Sql_Source Sql_Parts 

2787 15 SELECT * FROM 
phpbb_config 

phpbb_config  1239318862 SELECT * FROM 
phpbb_config 

SelectStm  
SelectExpr * 

2788 15 SELECT * FROM 
phpbb_forums 
WHERE forum_id 
 = 1 

phpbb_forums  1239318863 SELECT * FROM 
phpbb_forums 
WHERE forum_id 
= $forum_id 

SelectStm 
WHERECLAUSEVAR$forum_id 
WhereExpr forum_id = $forum_id  
SelectExpr * 

2789 15 SELECT * FROM 
phpbb_themes 
WHERE  
themes_id = 1 

phpbb_themes  1239318864 SELECT * FROM 
phpbb_themes 
WHERE 
themes_id = 1 

SelectStm  
WhereExpr themes_id = 0  
SelectExpr * 

2813 17 UPDATE 
phpbb_topics SET 
topic_views = 
topic_views + 1 
WHERE topic_id 
 = 1 

phpbb_topics  1239318882 UPDATE 
phpbb_topics SET 
topic_views = 
topic_views + 1 
WHERE topic_id 
= $topic_id 

UpdateStm 
WHERECLAUSEVAR$topic_id 
WhereExpr topic_id = $topic_id SetList 
topic_views = topic_views + 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3: Sample trace elements for the Database Interactions database table

Traces related to PageIDs 15 and 17, viewforum.php and viewtopic.php

6.4 Evaluation

We have evaluated our approach by analyzing a production dynamic web application, Ph-

pBB 2.0 (a popular internet forum system) [90]. We use Web Application Testing In Ruby

(WATIR) [39, 169], a library used to script web browsers, to help automate the collection

of usage traces.

Tables 6.1, 6.2, and 6.3 show a subset of the results of one test case (visits to Page ID

15 and 17) for an anonymous user interacting with a PhpBB forum. The tables also show

some of the HTTP variables and database interactions generated by the visits. Based on

the Page ID values, these three tables are joined into a single view for ease of analysis.

In the tables we can see that the viewforum page, with Page ID 15, passes values to the

HTTP Get variable f and the HTTP Cookies variable sid. Table 6.2, HTTP Variables,

shows that the f Get variable is assigned to the $forum id PHP variable, and sid is as-

signed to the $session id PHP variable. Table 6.3, Database Interactions, shows some of the

SQL statements generated from this interaction. We can see that SQLStm ID 2788 uses the



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 113

 

Total lines of code   ~100k     
PHP pages  72     
HTML Pages  15     
Templates & formatting 
files 

109     

Database tables  30     
 

Filtered client pages  Utility pages visited Client pages generated All visited pages
20  180  50  230 

 

  No. of SQL statements SQL statements Use  
of HTTP Variables 

No. of Http Variables 

Statement \Variable type  SEL  INS  DEL  UPD  Where clause Others ALL  POST  GET COOKIE
All traces  115  0  0  1  14  3  51  0  15  35 
Index.php  22  0  0  0  2  0  8  0  0  8 
viewtopic.php  9  0  0  1  3  1  3  0  1  2 
viewforum.php  11  0  0  0  6  1  3  0  1  2 
 

Table 4 shows statistics for the scenario of Anynmouse user visiting the PhpBB forum.  It shows the number and the 
type of SQL statement executed during this interaction, the number of Sql statement that depends on user inputs, the 
location of the embedded PHP variable in the SQL statement, and the number and the type of the Http variable used 
during this interaction. This statistics is done also for three php pages. Table5, shows the total number of pages visited 
during this interaction as well as the number of filtered client pages that is stored and analyesd by our prototyping 
tool.  

 

 

 

 

 

 

 

 

 

 

 

 

Page
_ID 

Page_Name Page_Param Prev 
_ID 

Page 
Type 

Page_Acc_Ts 

Table 6.4: Trace statistics for anonymous user interactions with a PhpBB 2.0 forum

PHP variable $forum id to retrieve the forum information, while the other database inter-

actions shown for this page visit do not depend on user inputs to perform their transactions.

The Database Interactions table columns are populated as a result of the execution of the

instrumented application except the two columns, EntityName and SQl Parts, which come

from analysis of the SQL source statements using TXL. The column EntityName shows the

name of database tables that the SQL statements are performed on. Column Php Parts

shows three pieces of information, the SQL statement type (SelectStm, UpdateStm, and so

on), the embedded PHP variable and its syntactic location within the SQL statement (such

as the WHERE clause), and the statement’s WHERE and SELECT expressions. This example

illustrates the key benefit of our approach, linking the runtime instance of the query to the

elements used to assemble it including PHP variables and HTTP request variables.

Table 6.4 shows some statistics for the test scenario of an anonymous user visiting a

PhpBB forum. It shows the number and type of SQL statements executed during this

interaction, the number of SQL statements that depend on user inputs, the location of the

embedded PHP variables in the SQL statement, and the number and the type of the HTTP

variables used in the interaction. Table 6.4 shows the total number of pages visited during

this interaction as well as the number of filtered client pages stored and analyzed by our

tool. In the work described in this chapter, both the SQL query source and the runtime

SQL instances are collected at run time. In a new experiment we have shown how the SQL

source statements can be extracted statically by slicing the instrumentation aspect of an



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 114

 

While the tracing approach they used do not modify the analyzed source code , it is customized for  data 
intensive Java applications, and do not deal with the  case of constructing SQL statement form sequence 
of string concatenations scattered in different places in the code, and do not evaluate their approach in 
a production system. 

 

The authors focus on the analysis of dynamically generated SQL queries and particularly on the 
embedded SQL dynamic queries in Java programming language.  The authors apply aspect‐based tracing 
to dynamically extract specific information related to such queries and insert them into log files for 
further analysis.  

 

Approach  Static\ 
Dynamic 
Analysis 

Host language 
\Application 

Extendable  Client 
Application 
Source code 

Parsing tech. 

Instrumenting 
transformation  (WAFA)  

S\D  PHP \Web 
Applications 

Yes  Syntactic 
modification  

Island grammar 

Tracing Aspects                    D  Java  No  No modification   

Symbolic execution and 
inference rules    

S  PHP\Web 
Applications 

Yes  No modification  Independent 
parsers 

Control and flow 
analysis  

S  PL/SQL, COBOL, 
Visual Basic 

Yes  No modification  JJForester(Parser)
ANTLR(tokenizer) 

 

 

 

 

Applying static analysis for automated extraction of database interactions in web applications:  

(Ask about complexity) 

The authors propose an automatic static technique to extract database interaction points form web 
applications. The approach first identifies all program paths that includes a database interaction and 
slice them out as an interactions Control flow Graph (ICFG), then each interaction path is symbolically 
executed, and all possible interaction types are derived from the generated symbolic expression using 
inference rules. Evaluating the approach on a case study, the approach is able to extract 80% of the 
database interactions. 

The complexity of the extraction process is high as it is composed of 5 stages: 

Table 6.5: Related work comparisons

instrumented PHP application into a separate PHP program. When executed offline, this

program inserts the original SQL statement sources into the database. The runtime SQL

commands are then collected dynamically when the application is executed and related to

the original SQL statement sources as described in section 6.3.4. The dynamic approach of

this chapter adds an average overhead of approximately 70%, while the static optimization

reduces the average overhead to 30%.

6.5 Related Work

Several techniques have been proposed to support understanding and analysis of web appli-

cations using reverse engineering. A detailed study of the state of the art in this field can be

found in our recent survey [13]. To the best of our knowledge this is the first approach that

dynamically analyzes database interactions in combination with other web application basic

elements of information, such as pages, server environment variables, application variables

and session and cookie management functions. The combined information gained from all of

those sources provides a strong infrastructure that can serve many analysis tasks requiring

precise fined-grained information, such as web application security analysis.

The problems of identifying and analyzing database interactions have been previously

studied for standard systems. For instance, Cleve and Hainaut [51] use aspect-based tracing

to relate and extract the basic components of the dynamic SQL query. This includes the

basic dynamic query, the variable parts of the query, the query result, in addition to some



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 115

environment variable such as the class and the line number in which the query called. The

authors provide three kinds of post analysis of the trace elements after the program is

executed which include constant/variable identification, value-based dependency analysis

and static statement restructuring. However their approach works only with prepared

statements and does not handle the case where the SQL statement is constructed in string

variables and passed as a string to the database API. Their approach is also yet to be

evaluated on a production system.

Brink et al. [165] propose a tool for assessing the quality of database interactions in

standard applications. They first extracted embedded SQL statements using control and

dataflow analysis. The identification of SQL string literals are done using a standard Java

program that tokenizes the source program based on predefined SDF grammars. Then they

collected the identified parts in a query object which includes information about the recon-

structed query, its location, and name and type of variables required for the reconstructed

query. A post analysis is done over the extracted queries for quality assessment purposes.

This analysis is done for PL/SQL, COBOL, Visual basic, and Java. The authors’ aim is

to extract the queries for quality assessment, while our aim is to reverse engineer a web

application to gain a rich infrastructure that can support different kind of analysis including

quality assessment of database interactions. While the identification of SQL queries in this

work is similar to ours, using source transformation technology we combine the process of

parsing, pattern matching and flow analysis into a single coherent step, yielding a faster

and more flexible analysis with more accurate results.

Ngo and Tan [135] propose an automatic static technique to extract database interaction

points from web applications. The approach first identifies all program paths that include a

database interaction and slice them out as an interaction Control Flow Graph (ICFG), then

each interaction path is symbolically executed, and all possible interaction types are derived

from the generated symbolic expression using inference rules. Evaluating the approach on a

case study, the approach is able to extract 80% of the database interactions. The complexity



CHAPTER 6. FINE-GRAINED DYNAMIC ANALYSIS OF WEB APP. 116

of the extraction process is high as it is composed of 5 stages, and is affected by factors such

as number of the interaction paths (i-paths), and the length and complexity of each ipath.

The authors also do not specify how to handle SQL statements constructed from sequences

of string concatenations. Table 6.5 summarizes and compares related work.

6.6 Future Work and Conclusions

We have presented WAFA, an automated reverse engineering approach to recover fine-

grained interaction behavior of dynamic web applications. To the best of our knowledge,

our approach is the first one to extract the web application’s embedded SQL subsystem,

which includes both the original SQL statement source as well as corresponding execution

instances, and an analysis to attach it to both static host application variables and dynamic

server environment variables.

We used the fine-grained analysis described in this chapter to help construct an entity-

based sequence diagram. Chapter 8 elaborates on this in more detail. In the next chapter,

we will present a new instrumentation coverage approach to provide a measure for the

completeness of the dynamic analysis provided in this chapter.



Chapter 7

DWASTIC: Automating Coverage

Metrics For Dynamic Web

Applications

Building comprehensive test suites for web applications poses new challenges in software

testing. Coverage criteria used for traditional systems to assess the quality of test cases

are simply not sufficient for complex dynamic applications. As a result, faults in web

applications can often be traced to insufficient testing coverage of the complex interactions

between the components.

This chapter explains how DWASTIC (Dynamic Web ApplicationS Testing Instrumen-

tation Coverage) is used to augment the dynamic analysis, presented in Chapters 5 and 6,

with instrumentation for code coverage in order to decrease the number of false positives due

to an analysis that yields a model that only partially covers the code (leading to verification

of properties that may in fact not hold). The chapter presents a new set of coverage criteria

for web applications, based on page access, use of server variables, and interactions with the

database. Following an instrumentation transformation to insert dynamic tracking of these

117



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 118

aspects, a static analysis is used to automatically create a coverage database by extracting

and executing only the instrumentation statements of the program. The database is then

updated dynamically during execution by the instrumentation calls themselves. We have

evaluated the usefulness of our coverage criteria and the feasibility and precision of our

approach on the popular bulletin board web application PhpBB.

This chapter is structured as follows. Section 7.1 motivates our approach. Section 7.2

presents our proposed coverage metrics. Section 7.3 presents the details of our approach.

Section 7.4 presents an evaluation and an example that demonstrates our method on a real

system. Section 7.5 relates our efforts to previous work. Finally, Section 7.6 outlines our

conclusions and plans for future work.

7.1 Motivation

Testing is one of the most essential yet complex activities in web application development

and maintenance. The dynamic distributed structure of web applications poses new chal-

lenges to building comprehensive test suites. Users interact with application pages, pro-

viding various inputs that are used to instantiate the server environment variables. These

variables are then used to interact with the database back-end, retrieving information used

to dynamically construct new client pages to be sent back to the users.

Database interaction is the most critical part of this cycle, and often requires extensive

testing. For this reason, several approaches have been proposed to assess the correctness of

database interactions in standard database systems, for example Cabal and Tuya [37] and

Wilmor and Embury [171].

Coverage metrics have been proposed on different levels of granularity for SQL state-

ments either as an isolated component or as an embedded component in the whole system.

However, most of these approaches either do not provide automation for coverage assess-

ment, or do not consider other kinds of interactions. Our approach is specialized for web



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 119

applications, handling similar issues to those tailored for conventional database applications

while at the same time addressing the new challenges related to the distributed and dynamic

structure of web applications. We have implemented our approach in an extendable and

precise tool.

The contributions of this chapter are:

• A set of coverage criteria for the testing of dynamic web applications. This can be

used to assess thoroughness and the adequacy of test suites applied on different levels,

such as the page access level, the server environment variable level, and the database

level, as well as interactions between the levels.

• An extendable, automated approach and tool to instrument, collect and analyze the

coverage information. The tool also statically extracts and analyzes the embedded

SQL subsystems from dynamic web applications.

7.1.1 Web Application Testing

Our tool, called DWASTIC (Dynamic Web ApplicationS Testing Instrumentation Cover-

age), can be used to support any testing activity for web applications. It focuses the testing

efforts on the vulnerable parts of the code, which are most likely the source of web appli-

cation faults and attacks such as SQL injection. It also provides a direct way to trace the

part of the code that is not covered by test cases.

DWASTIC is an essential part of a framework aimed at testing the conformance of

dynamic web applications with role-based access control security policies [11] . In the

framework, a role-based access control (RBAC) security model is recovered from the dy-

namic web application using a combination of static and dynamic analysis techniques. This

chapter explains how DWASTIC is used to augment the dynamic analysis with instrumen-

tation for code coverage in order to decrease the number of false positives due to an analysis

that yields a model that only partially covers the code (leading to verification of properties



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 120

that may in fact not hold).

7.2 Web Application Coverage Metrics

In this section we propose three test coverage dimensions that are specifically tailored to web

applications: web application pages, server environment variables and database interactions.

These are not meant to replace traditional code coverage metrics, rather to augment them

to provide specific coverage measures for the client and database interaction aspects of

dynamic web applications as well. Our criteria subsume the criteria proposed for database

systems [171, 37] and include new measures that are specialized for web applications. The

concern in web application testing is whether the application as a whole behaves as specified,

and this cannot be determined without thorough testing of all three levels of interaction.

While the coverage criteria we propose can be used to support many different testing

activities, our specific aim is to provide a completeness measure for extracting an access

control security model from a web application under test. This requires that we ensure

coverage of all client pages that can be generated from the application, all database inter-

actions applied on application entities, and all user inputs passed to server pages or SQL

statements that can influence the dynamically constructed client pages. In the following

subsections we elaborate on our proposed criteria and how they can serve our aim.

7.2.1 Page Access Coverage

Page coverage measures the adequacy of test cases for ensuring that all server pages are

executed at least once and are running properly, the measure can be expressed as:

Page Coverage = #ofcov.Pages
total#applicationpages

The equation measures the ratio of executed server pages to the total number of the

application server pages.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 121

7.2.2 SQL Statement Coverage

SQL statement coverage measures the adequacy of test cases to ensure that all possible SQL

statements, including dynamically constructed ones, are tested at least once. These state-

ments are different from those which perform API calls to issue commands to the database,

such as mysql query($SQL Statment, db connect id) in PHP. Using the terminology intro-

duced by the database community, these API calls are called database interaction points.

Coverage based on database interaction points is not sufficient, as each specific database

interaction point can issue multiple forms of dynamically constructed SQL statement.

Our SQL statement coverage measure is done both on the level of the whole web appli-

cation and on the level of each individual server page. The measure based on the application

level can be expressed as:

SQL Stm Coverage= #ofcov.SQL Stm
total#oftheapplicationSQL Stms

The measure on the page level can be expressed as:

Page SQL Stm Coverage= #ofcov.SQL StmsinaPage
total#oftheSQL Stmsinapage

7.2.3 Server Environment Variables Coverage

Server environment variables are variables returned by HTTP forms on generated pages

using GET or POST. Server environment variables coverage measures the adequacy of test

cases to insure the coverage of all server environment variables at the level of the web

application, the individual server page level and the SQL statement level. The measure

based on the application level can be expressed as:

Server Env Var Cov.= #ofpopulatedServer Env V ar
total#oftheapplicationServer Env V ar

The measure for the page level can be expressed as:

Page Server Env Var Cov.= #ofcov.Server Env V arincov.Pages
total#ofServer Env V arinapage



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 122

PHP 
Grammar

InstrumentationGrammar

TXL 
Program

PHP 
Grammar

ExtractionGrammar

TXL 
Program

Initial Coverage
Database

Instrumentation Slice 
of PHP Application

Instrumented PHP 
Application

PHP Web 
Application

Instrumentation 
Rules

Grammar 
Overrides

Extraction
Rules

Grammar 
Overrides

PHP 
Program

Update 
Coverage  
Database

TXL

Instrument 
SQL Aspect

Extract & Add
DB Wrapper

Coverage 
DB

Execute
Instrumentation 

Slice

Program
TXL PHP

Execute Instrumented 
Application

PHP

Figure 7.1: DWASTIC Tool Architecture

And the measure for the SQL statement level can be expressed as:

SQL Server Env Var Cov.= #ofcov.SQL StmwithServer Env V ar
total#ofSQL StmwithServer Env V ar

In each case the equation measures the ratio of the number of server environment vari-

ables covered to the total number of variables usage on the different levels.

7.3 Constructing the Coverage Database

Figure 7.1 shows the architecture of our approach. An instrumentation transformation

is used to analyze the source code of the application, identifying and globally marking

instances of the coverage criteria and inserting appropriate calls to an instrumentation

coverage library developed in PHP. These instrumentation calls will update the coverage

database as the program is executed (Figure 7.1).

In order to insure that we have an accurate table of all of the instances to be covered, the

initial coverage database itself is automatically derived from the instrumented application.

This is done by slicing the instrumentation statements from the instrumented PHP code into

a separate PHP program augmented with database calls (Figure 7.1). As the augmented

slice is executed, the program builds the initial coverage database by adding a coverage

table entry to a global array as each instrumentation statement in the slice is executed.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 123

Server  Pages

Page_Ins_ID
Page_ID
«PK» Page_Name
«PK» Page_Param
«PK» Prev_PageID
Page_Acc_TS

Http Variables

«PK» HttpVar_ID
HttpVar_Name
HttpVar_Value
Assigned_Var
HttpVar_Type
HttpVar_Acc_Time
«FK» Page_Ins_ID

Sessions

«PK» Session_ID
Session_IP
Session_ST
Session_ET
«FK» Page_Ins_ID

Database Interactions

«PK» SqlStm_ID
Sql_Source
Sql_Instance
SqlType
EntityName
SQL_Parts
SqlTransTime
«FK» Page_Ins_ID

Cookies

«PK» Cookie_ID
Cookie_Name
Cookie_Value
Cookie_Path
Cookie_Domain
Cookie_Expire_T
Cookie_HttpOnly
Cookie_Secure
«FK» Page_Ins_ID

Dynamic Analsis View

Page_ID
Page_Name
Page_Param
HttpVar_Name
HttpVar_Value
HttpVar_Type
Assigned_Var
Sql_Stm
Sql_Source
EntityName
Php_param
SqlTransTime
Page_Ins_ID

AllSQL_Sources

«FK» SqlStm_ID
«FK» Page_Ins_ID
SQL_Source
SQL_Parts
Covered

AllHttpVars

«FK» HttpVar_ID
HttpVar_Name
HttpVar_Value
HttpVar_Type
«FK» Page_Ins_ID
Covered

AllPhpPages

«FK» Page_Ins_ID
Page_Name
Covered

1
- server  pages

*
- cookies

1- server  pages

*- http variables

1
- server  pages

*

- DB interactions

1 - server  pages

*

view

*

- sessions

1

1

- allphppages

*

- server  pages

1- http variables

*

- dynamic analsis view

1

- allhttpvars

1- http variables

1

- DB Interactions

*

- dynamic analsis view *

- database interactions

1

- allsql_sources

1
- cookies

*

- dynamic analsis view

Figure 7.2: Dynamic Analysis database model

During insertion, another transformation also analyzes the type of the SQL statement to

identify and insert its components into the database. The resulting arrays then become the

initial coverage tables in the database.

This slicing method is necessary in order to capture all instances of SQL statements

that will be dynamically constructed from string fragments, concatenations and function

calls before being passed to the database interface. If we were not to handle these cases,

a large fraction of the SQL database interactions would be missed, invalidating our data-

base interaction coverage metrics, and it would not be possible to accurately attach server

environment variables to the SQL statements that use them, invalidating our server envi-

ronment variable coverage metrics. The construction of the SQL SELECT statement from

fragments in a dynamic page from PhpBB 2.0 shown in Figure 7.4 is a typical example.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 124

PageIndex PageName Covered
324 C:WAMPWWWPHPBB2search.php 0
365 C:WAMPWWWPHPBB2viewforum.php 0
388 C:WAMPWWWPHPBB2viewonline.php 0
391 C:WAMPWWWPHPBB2viewtopic.php 0
421 C:WAMPWWWPHPBB2adminadmin_board.php 0
450 C:WAMPWWWPHPBB2adminadmin_disallow.php 0

Table 7.1: Example AllPhpPages coverage database table, tracking page coverage

The complete schema for our dynamic analysis database, including the coverage data-

base, is shown in Table 7.2. It is comprised of eight tables and one view. Three of the

tables, AllPHPPages, AllHttpVars and AllSQL Sources, are constructed to hold coverage

information and are initialized statically by our approach. During execution of the web

application, these tables are updated at each instrumentation call to track coverage of page

access, server environment variable access, and database SQL statement forms respectively.

Tables 7.1, 7.2 and 7.3 show examples of these coverage tables as initialized by our static

instrumentation slice.

The Server Pages table (Figure 7.2) is used to keep track of access to individual pages,

and is associated with the AllPHPPages table, which contains information about all of the

application pages, while the other tables contain information about the HTTP variables,

environment variables, cookies and database statements associated with each page, linked

using the Page Ins ID field. We combine the information from the various tables into a single

unified trace view in the Dynamic Analysis view. The AllHttpVars table is associated with

the HttpVars table and holds coverage information related to server environment variables.

The AllSQL Sources is associated with the Database Interactions table and holds coverage

information related to database interactions.

7.3.1 Instrumenting Web and SQL Aspects

We automatically analyze and add source code instrumentation to web application source

using TXL [55], a programming language designed for manipulating and experimenting with

programming language notations and features. TXL is a powerful source transformation



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 125

HttpIndex PageIndex Assigned_Var HttpName HttpType Covered

376 365 $forum_id f GET 0

377 365 $forum_id f POST 0

378 365 $forum_id forum GET 0

379 365 $start start GET 0

381 365 $mark_read mark POST 0

380 365 $mark_read mark GET 0

382 365 $tracking_forums _f COOKIE 0

383 365 $tracking_topics _t COOKIE 0

384 365 $tracking_topics _t COOKIE 0

385 365 $tracking_forums _f COOKIE 0

387 365 $topic_days topicdays POST 0

386 365 $topic_days topicdays GET 0

Table 7.2: Example AllHttpVars coverage database table, tracking server environment
variables coverage

SQL_index PageIndex SQL_Source Covered
366 365 SELECT * FROM phpbb_forums WHERE forum_id = $forum_id 0

367 365 SELECT MAX(post_time) AS last_post FROM phpbb_posts WHERE forum_id = $forum_id 0

372 365 SELECT g.group_id, g.group_name FROM phpbb_auth_access aa, phpbb_user_group ug, phpbb_groups g 
WHERE aa.forum_id = $forum_id  AND aa.auth_mod = 1 AND g.group_single_user = 0 AND g.group_type <> 
2 AND ug.group_id = aa.group_id AND g.group_id = aa.group_id GROUP BY g.group_id, g.group_name 
ORDER BY g.group_id

0

373 365 SELECT COUNT(t.topic_id) AS forum_topics FROM phpbb_topics t, phpbb_posts p WHERE t.forum_id = 
$forum_id  AND p.post_id = t.topic_last_post_id AND p.post_time >= $min_topic_time

0

374 365 SELECT t.*, u.username, u.user_id, u2.username as user2, u2.user_id as id2, p.post_time, p.post_username 
FROM phpbb_topics t, phpbb_users u, phpbb_posts p, phpbb_users u2 WHERE t.forum_id = $forum_id  AND 
t.topic_poster = u.user_id AND p.post_id = t.topic_last_post_id AND p.poster_id = u2.user_id AND 
t.topic_type = 2 ORDER BY t.topic_last_post_id DESC

0

Table 7.3: Example AllSqlsources coverage database table, tracking SQL statement cov-
erage

system that has been used in industrial applications involving millions of lines of source

code. The TXL processor takes as input a context-free grammar for the language to be

manipulated, parses the source program into a parse tree, and then recursively applies a set

of transformation rules, beginning with a main rule, until there are no remaining matches

in the parse tree. The transformation is completed by unparsing the transformed tree to

the new target source program.

While our process is presently targeted at PHP and MySQL, this lightweight TXL-

based process is adaptable in plug-and-play fashion to deal with any scripting language

and database engine as a source for transformation. Documents that include a mixture of



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 126

languages and technologies can be easily handled, usually by employing island grammars

[130][160], where the interesting elements, PHP code in our case, are considered islands, and

uninteresting elements, HTML code and other text in our case, are considered water. Using

island grammars simplifies the parsing process as interesting elements can be identified and

analyzed without parsing the whole document.

The instrumenting transformation process is used to serve two major purposes. The first

is to globally mark, for further static extraction and processing, the coverage information

on the level of page access, server environment variable access and database interactions,

and second is to insert appropriate calls to an instrumentation coverage library developed in

PHP to dynamically update the coverage database as the application under test is executed.

The following subsections provide the details of this process.

Instrumenting Page Access

In DWASTIC, the application sources are processed statically, one page a time. A set of

rooted transformation rules is applied on each page to mark, extract and analyze coverage

information. When a page is sent to DWASTIC for processing, the TXL main rule im-

ports the page’s full path name and generates a unique page identifier in the TXL global

variable uniqePageid, which will be used for any further analysis associated with this page.

The transformation rule instrumentPage (Figure 7.3) is then called to add dynamic instru-

mentation at the top of the page. The instrumentPage rule constructs a block of state-

ments in the PageIns variable, which includes adding a new entry to the PHP global array

$GLOBALS["PhpFileName"] to represent the current processed page name and unique ID. A

call to the coverage function IsCovered is added to track the page access at run time and to

update the entry for this page ID in the coverage database. Other statements added to the

PageIns block are used to assist in globally defining other PHP arrays associated with other

coverage information related to database interactions and server environment variables, as

well as a call to our PHP instrumentation coverage library sensfuncDBJan92009.php. The



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 127

rule instrumentPage InputFile [stringlit] 
  

   % Get global unique page id generated by the main rule 
   import uniqePageid [id] 
 
   % Transform the entire page exactly once 
   replace $ [Document] 
 

 PHPO [PHPOpenTag] 
 TopS [TopStatement*] 
 PHPC [PHPCloseTag] 
 

   % Insert page instrumentation and coverage code 
   by 
      PHPO 
      ‘{ 
         'global $Sql_index; 
         'global $PhpFileName; 
         'global $PhpFileIndex; 
         'global $Http_Source; 
         '$GLOBALS'['"PhpFileName"']'[uniqePageid'] = InputFile; 
         '$GLOBALS '["PhpFileIndex"']= uniqePageid; 
         ‘include_once(''sensfuncDBJan92009.php''); 
         'IsCovered '('$GLOBALS '['"PhpFileIndex"']'); 
      ‘} 
      TopS 
      PHPC 
end rule 
 Figure 7.3: The TXL instrumentPage rule adds page coverage instrumentation to the top

of each processed page

first few lines of Figure 7.4 show the result of adding page coverage instrumentation to the

search.php page.

Instrumenting Server Environment Variables

Each page is also transformed by a specialized TXL rule to identify server environment vari-

ables, replacing them with an instrumentation function which collects the server environ-

ment variable’s names, values, and the PHP variables which receive the values. This infor-

mation is passed as parameters to the instrumentation function HttpVar track(). The server

environment variables are also added to the PHP user defined global array $GLOBAL["Http Source"]

and passed as a parameter to the same function as well. When the application under test is

executed and the HttpVar track() function is called, the server environment variable access

information is inserted in the HttpVar table, and the coverage count for the accessed vari-

able is updated in the AllHttpVar coverage table. The $search id assignment statement in

Figure 7.4 shows an example in which $Http GET Vars [’search id’] has been identified,



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 128

instrumented, and added to the $GLOBAL ["Http Source"] coverage global array.

Instrumenting SQL Statement Sources

Identifying, extracting, and analyzing the dynamically constructed SQL statements in the

context of the overall web system is not a trivial process, and often requires a great deal

of complicated analysis using robust parsing, pattern matching, and control and data flow

analysis. SQL statements are often constructed inter-procedurally, using a combination

of string concatenation statements and host language statements that work together to

construct the text of the SQL statement. These combinations are not only constant strings,

but also include SQL statement fragments and host application variables.

In our approach, the most complex set of transformation rules is used to handle this

task, and is mainly composed of three parts: The first part is to identify the beginning of

dynamically constructed SQL statements. We do that by distinguishing string literals that

begin with the SQL keywords Select, Insert, Update, Delete, Create, Alter and Drop

using a separate TXL token class, and then use the parser to recognize concatenations built

from these strings. Our transformation targets assignment statements that use these strings

to build larger strings. Prior to the transformations, the code is normalized, replacing string

expressions in other statements with a temporary PHP variable and inserting an assignment

before the statement.

Once an assignment is found that uses one of the SQL keyword strings, other assign-

ments using the same PHP variable are also checked and instrumented. Each identified

statement is followed by a newly constructed assignment statement which is aimed at con-

structing the SQL sub strings in a user defined PHP global array entry, specifically created

by our transformation approach to hold the identified SQL strings, instead of the original

application variable. Our transformation process generates a unique identifier to associate

each newly identified SQL statement which will be used as index for the newly constructed

string in the global array.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 129

 
 
<?php 
 { 
    global $Sql_index; 
    global $PhpFileName; 
    global $PhpFileIndex; 
    global $Http_Source; 
    $GLOBALS ["PhpFileName"] [324] = "C:\WAMP\WWW\PHPBB2\search.php"; 
    $GLOBALS ["PhpFileIndex"] = 324; 
    include_once ('sensfuncDBJan92009.php'); 
    IsCovered ($GLOBALS ["PhpFileIndex"]); 
 } 
. . . 
 
$search_id = (isset ($HTTP_GET_VARS ['search_id'])) ? HttpVar_track ('O_CVar_$search_id', 'search_id', 
                     $HTTP_GET_VARS ['search_id'], $GLOBALS ["Http_Source"] [350] = array ('search_id', "GET",  
                                                                                   324, '$search_id'), 350, GET) : ''; 
. . .  
 
for ($i = 0; $i < count ($search_id_chunks); $i ++) 
{ 
  { 
  $where_sql = ($search_author == '' && $auth_sql == '') ? 'post_id IN ('.implode (', ', $search_id_chunks [$i]).')' 
                :'p.post_id IN ('.implode (', ', $search_id_chunks [$i]).')'; 
  $GLOBALS ["SqlParts"]['where_sql'] = ((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].' == \'\''))) ?  
                                        ('post_id IN (').('implode (String, $search_id_chunks[$i])').(')')  
                                        : ('p.post_id IN (').('implode (String, $search_id_chunks [$i])').(')')); 
  } 
  { 
   $select_sql = ($search_author == '' && $auth_sql == '') ? 'post_id' : 'p.post_id'; 
   $GLOBALS ["SqlParts"]['select_sql'] =((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].' == \'\'')))?  
                                          ('post_id') : ('p.post_id')); 
  } 
  { 
  $from_sql = ($search_author == '' && $auth_sql == '') ? POSTS_TABLE : POSTS_TABLE.' p'; 
  $GLOBALS ["SqlParts"]['from_sql'] = ((('($search_author == \'\' && '.$GLOBALS ["SqlParts"]['auth_sql'].' == \'\'' ))) ? 
                                       (POSTS_TABLE) : (POSTS_TABLE).(' p')); 
  } 
  if ($search_time) 
  { 
    { 
     $where_sql.= ($search_author == '' && $auth_sql == '') ? " AND post_time >= $search_time " : 
                   " AND p.post_time >= $search_time"; 
  $GLOBALS ["SqlParts"]['where_sql'].= ((('($search_author == \'\'  && '.$GLOBALS ["SqlParts"]['auth_sql'].' 
                              == \'\'' ))) ? (' AND post_time >= $search_time ') : (' AND p.post_time >= $search_time')); 
    } 
  } 
$sql = "SELECT ".$select_sql." FROM $from_sql WHERE $where_sql"; 
$GLOBALS ["Sql_Source"][334][0] = (('SELECT ').((''.$GLOBALS["SqlParts"]['select_sql'].'')).(('  
     FROM '.$GLOBALS["SqlParts"]['from_sql'].('  
     WHERE '.$GLOBALS["SqlParts"]['where_sql'].'')))); 
$GLOBALS ["Sql_Source"][334][1] = 324; 
$GLOBALS ["Sql_index"] = 334; 
} 
. . . 

if (! ($result = $db -> sql_query ($sql))){ 

   message_die (GENERAL_ERROR, 'Could not obtain post ids', '', __LINE__, __FILE__, $sql); } 

. . . 

?> 

 

 

 

Figure 7.4: Coverage instrumentation added by DWASTIC to the search.php dynamic
page of the PhpBB 2.0 application

Sections in boldface have been added by our instrumenting transformation to instrument coverage
for pages, server environment variables and SQL statements.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 130

function sql_query ($query = "", $transaction = FALSE) { 
. . . 
$this->query_result = mysql_query($query, $this->db_connect_id); 
      Transformed into 

$this -> query_result = mysql_query_track ($query, $this -> db_connect_id,
$GLOBALS ["Sql_Source"] [$GLOBALS ["Sql_index"]], $GLOBALS ["Sql_index"]); 
. . . 

Figure 7.5: DWASTIC instrumentation for the database interaction points of the
mysql4.php function of PhpBB 2.0

In the second part, while constructing the SQL statement source from string fragments

and concatenation statements, special care is given to the kind of the concatenated fragment,

so that we can retain the original PHP variable names rather than their run-time values

in the SQL statement text. This retains in our database the link between dynamically

generated SQL statements and the variables they use. Our approach distinguishes four

SQL fragment types: PHP constant variables, PHP variables, string expressions, and SQL

fragment variables. The final SQL statement is constructed by single quoting all fragment

types other than constant variables and SQL fragments, which are kept unquoted for later

substitution in the execution phase (Section 7.3.3).

The third part is to identify and instrument the application database interaction points.

At those points, the database interface call statement mysql query() is replaced with a call to

our instrumenting function mysql query track () as shown in Figure 7.5. The instrument-

ing function call takes both of the two versions of the SQL statement, the source statement

collected in the previous step and available globally at this point, and the execution in-

stance of that statement, both of which are then sent for storage at our instrumentation

database table Database Interactions. The instrumenting function then updates the cov-

erage database by incrementing the coverage count of the executed SQL source statement

in the ALLSQL Sources coverage table. Finally, it executes the original database interaction

statement. Figure 7.4 shows examples of database statement source fragments identified,

instrumented, and added to the $GLOBAL["SqlParts"] coverage global array.

Our methodology can capture, instrument, and correlate SQL source statements and



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 131

% Begin with PHP grammar 
include "php.grm" 
 
% Override to isolate coverage instrumentation parts 
redefine  Expr 
  [CoverageAspect] 
  |... 
end redefine 
 
% Custom grammar to identify coverage instrumentation parts 
define CoverageAspect 

'$GLOBALS'['"Sql_Source"']'[ [Expr?] '] '['0'] '= [SqlPartExpr]'; 
|'$GLOBALS'['"Sql_Source"']'[ [Expr?] '] '['1'] '= [Expr]'; 
|'$GLOBALS'['"Sql_Source"'] '[ [Expr?] ']'['0']  '.= [SqlPartExpr]'; 
|'$GLOBALS'['"PhpFileName"'] '[ [Expr?] '] '= [Expr]';      
|'$GLOBALS'['"Http_Source"'] '[ [Expr?] '] '= [Expr][NL] 

end define 
 
% Allow for output of coverage aspect only 
redefine program 

... 
|[CoverageAspect*] 

end redefine 
 
% Transform instrumented PHP program to its coverage aspect 
function main 

replace * [program] 
    P [program]      
 

% Use TXL grammatical type extraction to gather aspect fragments 
Construct CoverageInstrumentationAspect [CoverageAspect*] 
  _ [^ P] 
 

by 
   CoverageInstrumentationAspect  

end function 
 Figure 7.6: TXL program to identify and extract the coverage aspect of an instrumented

PHP program

the database interaction points even when they are spread over separate source files. There

is no need to combine the source files into a single processing unit, since the relation is done

using global arrays.

7.3.2 Extracting the Instrumentation Slice

Once the web application is instrumented for page access, server environment variables and

databases interactions as described above, the DWASTIC tool extracts the instrumenta-

tion slice from the application based on the grammatical patterns defined in Figure 7.6.

The patterns identify four kinds of assignment statements: the first three statements are

aimed at identifying instrumentation generated for collecting SQL statement sources from



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 132

their fragments using assignments or concatenation statements, the fourth pattern identifies

page access instrumentation statements, and the fifth pattern identifies server environment

variables instrumentation expressions.

Based on the grammatical patterns, the main transformation rule shown in Figure 7.6

extracts all instances of these instrumentation statements from the application source code,

and groups them into a single new file. This file is then automatically transformed into

a PHP program by enclosing it in PHP opening and closing tags, including a reference to

the application constants, and inserting call statements to PHP functions that insert the

coverage information collected in the global arrays into the coverage database as the initial

coverage tables. An elided view of the generated slice as a PHP program is shown in Figure

7.7.

7.3.3 Executing and Analyzing the Instrumentation slice

The extracted instrumentation slice PHP program constructed in the previous step uses

three global arrays, one for SQL statement sources, one for server environment variables,

and one for page access. When the slice program is executed, it populates the global

arrays with one instance of every SQL source statement, every server environment variable

access, and every page access that is instrumented in the application. This effectively builds

the coverage tables of each, which are then inserted as the initial tables of the coverage

database described in Figure 7.2. The SQL statement sources are analyzed upon insertion

to identify the basic query components, and to decide about any server environment variable

or application variable embedded in the statement and insert these details in the database

as well.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 133

<?php 
. . . 

 
$GLOBALS["PhpFileName"][467] = "C:\WAMP\WWW\PHPBB2\admin\admin_forums.php"; 
$GLOBALS["Http_Source"][512] = array ('mode', "POST", 467, '$mode'); 
$GLOBALS["Http_Source"][511] = array ('mode', "GET", 467, '$mode'); 
 . . . 
 
$GLOBALS["SqlParts"]['table'] = ((FORUMS_TABLE)); 
$GLOBALS["Sql_Source"][471][0] = ((('SELECT * FROM '  
                                   . $GLOBALS["SqlParts"]['table']))); 
$GLOBALS["Sql_Source"][471][1] = 467; 
$GLOBALS["Sql_Source"][471][0] .=  ((' WHERE $catfield = $cat')); 
$GLOBALS["Sql_Source"][471][0] .=  ((' ORDER BY $orderfield ASC')); 
$GLOBALS["Sql_Source"][472][0] = ((('UPDATE ' . $GLOBALS["SqlParts"]['table'] .  
                                   ' SET $orderfield = $i WHERE $idfield = ')). 
           ('$row [$idfield]')); 
$GLOBALS["Sql_Source"][472][1] = 467; 
$GLOBALS["Http_Source"][513] = array ('addforum', "POST", 467, ''); 
$GLOBALS["Http_Source"][514] = array (POST_FORUM_URL, "GET", 467, '$forum_id'); 
$GLOBALS["Sql_Source"][473][0] = (('SELECT * FROM ').(PRUNE_TABLE). 
                                 (' WHERE forum_id = $forum_id')); 
$GLOBALS["Sql_Source"][473][1] = 467; 
 . . . 
 
BuildAllPHPPagesTable ($GLOBALS ["PhpFileName"]); 
BuildAllHttpTable ($GLOBALS ["Http_Source"], $GLOBALS ["$PhpFileIndex"]); 
BuildAllSQLSourcesTable ($GLOBALS ["Sql_Source"]); 
 
?> 

  Figure 7.7: Part of the extracted instrumentation slice for PhpBB 2.0 augmented with data-
base insertion code

7.4 Evaluation

We have evaluated the effectiveness of our approach by analyzing a production dynamic web

applications PhpBB 2.0, with millions of installations, the world’s most popular internet

forum system. WATIR (Web Application Testing In Ruby) [39] [169], a scriptable library

to drive web browsers by clicking links, pressing buttons, and filling in forms, is used to

automate the collection of usage traces.

We now show some more detailed results for two specific test cases: an anonymous user

interacting with a PhpBB forum, and an Admin user visit. These two test cases are simple

interactions using only the hyperlinks, not including the population of forms. The complete

results are too large to include in this chapter, but the example data in the initial coverage



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 134

databases shown in Tables 7.1, 7.2, and 7.3 refer to a subset of the instrumentation points

available to be covered in these tests. Using the results from the two tests, we calculate

values for the metrics proposed in Section 7.2.2.

Table 7.4, shows the overall results for the Page Cov., the SQL Stm Cov., and the

Server Env Var Cov. metrics for each test. In the table, the Total is the total number

of instrumentation points in each of the categories. For example, the anonymous user test

covered 28 of the 69 total pages, while the Admin user test covered 56 of the 69 total pages.

Since the two example test cases do not include forms, neither all SQL statements nor all

environment variables are covered. We have manually confirmed that the Total number of

each coverage aspect extracted by our approach is equal to the actual number of aspects in

the code.

Table 7.5, shows the results for the Page Server Env Var Cov., the Page SQL Stm Cov.

metrics for two pages, Viewforum.php and Viewtopic.php. Even without form filling, the

Admin user covers more SQL statements and more variables because he can access more

links. Some examples are the new topic and post reply links.

Table 7.6, shows the results for the SQL Server Env Var Cov. metric for the same two

pages. This metric measures the number of SQL statements that reference server environ-

ment variables. Comparing Table 7.5 and Table 7.6, we find that the page Viewtopic.php

has 12 out of 13 SQL statements that reference server variables. The admin user test cases

covers 5 of them. This measure is essential for evaluating test cases for SQL statements

that use user input such as test cases for SQL injection.

Since the run-time instrumentation must update the coverage database, it imposes a

runtime penalty on the web application. Table 7.7 shows the runtime measure for 17 pages.

The second column (Non Instrumented Exec Time) indicates the time needed to execute the

original, uninstrumented page. The third column (Instrumented Exec Time) shows the time

needed to execute the instrumented page. The performance penalty of the instrumentation

ranges from non-existent (faq.php) up to about 50%. The average penalty is 32%, which is



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 135
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

3 825   SELECT * 
       FROM phpbb_users 
       WHERE user_id = 2 AND 
user_id <> ‐1    

SELECT * 
       FROM phpbb_users 
       WHERE ((is_integer ($user)) ? "user_id = $user" : 
"username = ".str_replace (String, String, $user)."") 
AND user_id <> ‐1 

1244592451   76 115 

 

Role  SQL Statements Coverage  Page Access Coverage Server Environment Variables  Coverage   
Anonymous 
User 

Covered  Total  %  Covered Total % Covered Total  % 
41  440  9.3%  28 69 40.0% 21 374  5.6%

Admin  123  440  28 %  56 69 81 % 68 374  18.2  %

Role  Page Name  SQL Statements Coverage Server Environment Variables  Coverage   
Anonymous 
User 
 

  Covered Total % Covered Total  % 
Viewforum.php  5  7 71.42% 1 12  8.33%
Viewtopic.php  4  13 30.76% 1 16  6.25%

Admin 
 

Viewforum.php  6  7 85.7% 5 12  41.6%
Viewtopic.php  6  13 46.2% 5 16  31.2%

Role  Page Name  Server Environment Variables  Coverage in SQL Statements
Anonymous 
User 
 

  Covered Total %
Viewforum.php  5 7 71.42% 
Viewtopic.php  3 12 25% 

Admin  Viewforum.php  6 7 85.7% 
Viewtopic.php  5 12 41.6% 

Table 7.4: Coverage metrics results for pages, server environment variables and SQL state-
ments at the application level for a sample test case

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

3 825   SELECT * 
       FROM phpbb_users 
       WHERE user_id = 2 AND 
user_id <> ‐1    

SELECT * 
       FROM phpbb_users 
       WHERE ((is_integer ($user)) ? "user_id = $user" : 
"username = ".str_replace (String, String, $user)."") 
AND user_id <> ‐1 

1244592451   76 115 

 

Role  SQL Statements Coverage  Page Access Coverage Server Environment Variables  Coverage   
Anonymous 
User 

Covered  Total  %  Covered Total % Covered Total  % 
41  440  9.3%  28 69 40.0% 21 374  5.6%

Admin  123  440  28 %  56 69 81 % 68 374  18.2  %

Role  Page Name  SQL Statements Coverage Server Environment Variables  Coverage   
Anonymous 
User 
 

  Covered Total % Covered Total  % 
Viewforum.php  5  7 71.42% 1 12  8.33%
Viewtopic.php  4  13 30.76% 1 16  6.25%

Admin 
 

Viewforum.php  6  7 85.7% 5 12  41.6%
Viewtopic.php  6  13 46.2% 5 16  31.2%

Role  Page Name  Server Environment Variables  Coverage in SQL Statements
Anonymous 
User 
 

  Covered Total %
Viewforum.php  5 7 71.42% 
Viewtopic.php  3 12 25% 

Admin  Viewforum.php  6 7 85.7% 
Viewtopic.php  5 12 41.6% 

Table 7.5: Coverage metrics results for server environment variables and SQL statements
at the page level for a sample test case

acceptable for a testing environment.

7.5 Related Work

Several approaches and coverage metrics have been proposed to assess the quality of test

cases aimed at ensuring the correctness of database interactions in standard database sys-

tems, for instance, Suárez-Cabal and Tuya [37] propose a coverage metric and a tool special-

ized for a subset of SQL SELECT statement in order to help improve test suites to detect

faults on the level of the isolated SQL SELECT statements in database application. A

coverage tree is built out from the SELECT Query conditions, where each path on the tree

corresponds to conditions that exist in the where or join clause of the query. The approach

is aimed at analyzing static SQL Select statements, while ours handles all SQL statements

including dynamically constructed ones.

Willmor and Embury [171] propose two test adequacy criteria for database applications.

The first criterion checks the coverage of the structural aspects of the database application.

This includes aspects such as the different types of operations, transaction statements,

and the entities represented in the database. The other criterion is a Define-use criterion,



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 136

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 

Role  SQL Statements Coverage  Page Access Coverage Server Environment Variables  Coverage   
Anonymous 
User 

Covered  Total  %  Covered Total % Covered Total  % 
41  440  9.3%  28 69 40.0% 21 374  5.6%

Admin  123  440  28 %  56 69 81 % 68 374  18.2  %

Role  Page Name  SQL Statements Coverage Server Environment Variables  Coverage   
Anonymous 
User 
 

  Covered Total % Covered Total  % 
Viewforum.php  5  7 71.42% 1 12  8.33%
Viewtopic.php  4  13 30.76% 1 16  6.25%

Admin 
 

Viewforum.php  6  7 85.7% 5 12  41.6%
Viewtopic.php  6  13 46.2% 5 16  31.2%

Role  Page Name  Server Environment Variables  Coverage in SQL Statements
Anonymous 
User 
 

  Covered Total %
Viewforum.php  5 7 71.42% 
Viewtopic.php  3 12 25% 

Admin  Viewforum.php  6 7 85.7% 
Viewtopic.php  5 12 41.6% 

SQL Execution instance  Extracted SQL Source Statement 
SELECT * 
       FROM phpbb_users 
       WHERE user_id = 2 AND user_id <> ‐1 

SELECT * 
       FROM phpbb_users 
       WHERE ((is_integer ($user)) ? "user_id = $user" :  
      "username =  ".str_replace (String, String, $user)."") AND user_id <> ‐1

Table 7.6: Coverage metrics results for pages and server environment variables at the SQL
statement level for a sample test case

Page Name Uninstrumen‐
ted  Exec. 
Time (sec.)

Instrumen‐
ted Exec. 
Time (sec.)

Performance 
degrada;on 
(percent)

h"p://localhost/phpBB2/index.php 2.172 3.11 30.2%

h"p://localhost/phpBB2/faq.php 1.328 1.328 0.0%

h"p://localhost/phpBB2/search.php 1 1.515 34.0%

h"p://localhost/phpBB2/memberlist.php 0.953 1.485 35.8%

h"p://localhost/phpBB2/groupcp.php 1.016 1.5 32.3%

h"p://localhost/phpBB2/profile.php?mode=register 2.14 3.156 32.2%

h"p://localhost/phpBB2/profile.php?mode=editprofile 2.031 3 32.3%

h"p://localhost/phpBB2/privmsg.php?folder=inbox 2 2.484 19.5%

h"p://localhost/phpBB2/login.php 2 2.984 33.0%

h"p://localhost/phpBB2/index.php 1.344 1.828 26.5%

h"p://localhost/phpBB2/search.php?search_id=unanswered 2.188 3.188 31.4%

h"p://localhost/phpBB2/index.php?c=1 1.328 1.796 26.1%

h"p://localhost/phpBB2/viewforum.php?f=1 1.453 2 27.4%

h"p://localhost/phpBB2/profile.php?mode=viewprofile&u=2 1.016 1.984 48.8%

h"p://localhost/phpBB2/viewtopic.php?p=10#10 1.031 1.985 48.1%

h"p://localhost/phpBB2/viewonline.php 0.953 1.484 35.8%

h"p://localhost/phpBB2/profile.php?mode=viewprofile&u=2 1.016 1.984 48.8%

Average: 31.9%

Table 7.7: Performance penalty of DWASTIC instrumentation on dynamic pages of PhpBB
2.0

which measures all of the possible database system operations define-use pairs. The metrics

proposed by Willmor and Embury are more comprehensive than Suárez-Cabal and Tuya

metrics, but both target traditional database applications and neither has evaluated the

effectiveness of their proposed metrics using a working tool. The coverage information

collected in our approach is sufficient to compute the coverage metrics proposed by Willmor

and Embury.

Halfond and Orso [93] propose a coverage criterion which measures the coverage of all

the possible SQL command forms that can be issued at each database interaction point.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 137

They describe a prototype tool DITTO which statically analyzes the application source

code, identifying database interaction points and the string variables containing the SQL

commands.

Java String Analysis (JVS) is used to build a character-based NDFA for each string

variable, which is converted into an SQL-level NDFA. The SQL NDFA represents a static

model of all SQL queries that can be generated. Their metric compares the number of

forms covered by the test cases to the total number of forms possible at each interaction

point. Our approach constructs exact versions of the SQL statement templates constructed

between define-use paths for a web application. It is easily extendable to web applications

implemented in any technology, while Halfond and Orso’s is limited to Java applications

and has limitations when collecting SQL statement fragments from external sources.

Smith et al. [156] propose two coverage metrics for SQL injection vulnerability testing.

The first metric measures the percentage of database interaction points (API calls) that

are tested at least once to the total number of identified database interactions points. The

second coverage metric measures the percentage of input variables tested at least once to

the total number of variables found in any target SQL statement. The database interaction

points and input variables are counted manually, and the instrumentation process is also

done manually. As mentioned earlier, their first metric does not consider all dynamically

constructed SQL statements. Also, our proposed coverage criteria not only cover input

variables used in SQL statements on the application level, but also at the page level, and

our instrumentation is automated using source transformations.

There are other approaches that are similar to ours, identifying, extracting and analyzing

database interactions. Cleve and Hainaut [51] use aspect-based tracing to relate and extract

the basic components of prepared statements. While the tracing approach used does not

modify the source code, it does not deal with the dynamically constructed SQL statements

using string concatenations scattered throughout the code that our slicing resolves. Their

approach is also yet to be evaluated on a production system.



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 138

Brink et al. [165] propose a tool for assessing the quality of database interactions in

standard applications. They extract embedded SQL statements using control and dataflow

analysis. The identification of SQL string literals are done using a standard Java program

that tokenizes the source program based on predefined SDF grammars. The purpose is to

extract the queries for quality assessment, while our purpose is to determine the coverage

of test cases.

Ngo and Tan [135] propose an automatic static technique to extract database interaction

points from web applications. The approach first identifies all program paths that include

a database interaction and then slices them out as an Interaction Control Flow Graph

(ICFG). Each interaction path is then symbolically executed, and all possible interaction

types are derived from the generated symbolic expression using inference rules. Evaluating

the approach on a case study, the approach is able to extract 80% of the database interac-

tions. The complexity of the extraction process is high, as it is composed of five stages, and

is affected by factors such as number of the interaction paths (i-paths), and the length and

complexity of each ipath. The authors also do not specify how to handle SQL statements

constructed from sequences of string fragments and concatenations, which is handled by

our instrumentation slice technique.

7.6 Conclusion

In this chapter, an original approach to automate coverage metrics for dynamic web appli-

cation has been proposed, implemented and evaluated. First, we proposed a set of coverage

criteria specialized for web application, which takes into consideration the complex and

distributed structure of this application. We demonstrated how a dynamic web applica-

tion written in PHP could be automatically instrumented using source transformations,

and that database SQL statements dynamically constructed from string fragments could

be handled using a source slicing technique to identify and build a coverage database. The



CHAPTER 7. AUTOMATING COVERAGE METRICS FOR WEB APP. 139

proposed coverage criteria and the automatic tool helps improve the quality of test cases

and focuss the testing efforts towards the application component interactions, which are

usually the source of many web applications vulnerabilities. The approach is being used to

provide a completeness measure for extracting an access control security model form web

application under test. The accuracy of the results is both hand verified and robust since

it is automatically back-checked at run time.

In the next chapter we will elaborate in more detail the role of DWASTIC, as well as

all the tools discussed in Chapters 4, 5 and 6, in our approach for RBAC security model

recovery.



Chapter 8

Recovering Role-Based Access

Control Security Models from

Dynamic Web Applications

In this chapter we present an approach to automatically construct a role-based access control

security model from the recovered structural and behavioural models presented in Chapter

5 and 6. We use TXL, a source transformation technology, to implement the automatic

model-to-model transformation and composition. The generated model is represented in

the UML 2.1 exchange format, XMI 2.1.

Based on the model-to-model transformation approach, we have also developed a tool

to automatically transform the semi-formal UML 2.1 security model into a formal one to

ease the process of verifying the system against security properties.

This chapter is organized as follows: We first motivate the need for a new methodology

and approach in Section 8.1. We give a high-level overview of the approach in Section 8.2,

and review how the other framework components contribute to the process of recovering the

security model in Sections 8.3, 8.4, and 8.5. Section 8.6 presents our approach to analyzing

140



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 141

the resulting security model, and Section 8.7 places our method in the context of other

work. Finally, Section 8.8 concludes the chapter and presents possible future work.

8.1 Motivation

According to the Model Driven Architecture (MDA) approach, the application specification

and development phases can be expressed using models, and transformation functions are

used to map between models as well as to automatically generate executable code [81].

Model transformation is of particular importance in this process. It maps source models

into new target models, or relates the source models to existing ones, thus enabling model

integration, platform-independent (PIM) to platform-specific model (PSM) mapping, re-

verse engineering, and platform migration. Transformations can be defined in terms of

meta-models of languages as well.

In this chapter, we apply source transformation technology using TXL to create a process

of model analysis and integration to construct the target security model. TXL [55] is a

programming language designed for manipulating and experimenting with programming

language notations and features. It has been used in many production applications with

transformations involving billions of lines of source code.

Even though TXL has been primarily used for the transformation of languages and de-

sign recovery, a new promising direction of bringing the transformation power of TXL to the

modeling world has recently been investigated [141, 119]. Researchers have been attracted

by the efficiency, robustness, and platform independence provided by this language. Such

transformations are applicable to large models, and even heterogeneous ones that integrate

components in a variety of languages.

Although the model transformation process accepts models as an input and generates

models as an output, and each of those conforms to a specific meta-model and reflects a

specific view of the system, TXL can handle the transformation process between source and



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 142

DWASTIC
XMI 2.0 

Grammar
Role

(Chapter7)
Grammar 
Overrides

0..n

PHP2XMI&
WAFA

(Chapters 5,6)

UML2.0
Sequence
Diagram

Entities
Constra

Even
on ent

Extraction  & Filtration Identify & 

UML2.0
ER

Data  Model

Entities 
Attributes & 

Relations

Secu
Resou

Match  & extract Map & Con

SQL2XMI
(Chapter4)

TXL Program

Extraction & 
Mapping Rules

ained
nts
ities

Constrained 
Permissions

Extract Map & Construct

0..n
UML2.0

ure 
rces 

nstruct

SecureUML
Model

Elements

SecureUML
Model

Combine and Construct

Figure 8.1: Tool Architecture

target models as long as they can be serialized into a text-based format. Fortunately, this

can be easily done by most of modeling tools, including ArgoUML and RSA, using XMI

export and import facility.

While modeling tools can handle different versions of XMI, making the process of model

transformation and model interchange between them a challenge, TXL’s robust grammar

easily adapts these variations. TXL grammars can be adapted to accept and manipulate a

wide range of XMI versions, and can generate multiple versions of the serialized models to

match a wide range of modeling tools.

8.2 Approach

Our approach comprises two main phases: the first phase uses an automated role mining

process for dynamic web applications, in which roles and related information, such as per-

missions, constraints, and resources are identified. This process is based on a combination

of static and dynamic analysis, and pattern matching to identify the RBAC security ele-

ments. In the previous chapters, we have developed four approaches and tools to support

this phase, and we provide a brief description of them here to better understand their role



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 143

Application 
Aspects 

Ref
No 

XMI Tag XMI Type XMI ID XMI additional Attributes 

Application 
behavioral 
modeling 

1 packagedElement  uml:Collaboration CollabID  

1.1 ownedBehavior  uml:Interaction InteractID  

Application 
Entities 

1.1.1 lifeline  uml:Lifeline LifelineID name=Entity Name  
represents=1.2  
coveredBy=1.1.2,1.1.3,1.1.4 

Entities 
Interactions 
Represented 
As send and 
receipt of 
messages 
during a 
specific period 
of time 

1.1.2 fragment  uml:MessageOccurrenceSpecification MOccID Covered=1.1.1 
Event= 3 or 4 
Message=1.1.4 

1.1.3 fragment  uml:BehaviorExecutionSpecification BehOccID Covered=1.1.1 
Start=1.1.2 
Finish=1.1.4 

1.1.4 fragment uml:ExecutionOccurrenceSpecification ExecOccID Covered=1.1.1 
Event=5 
Execution=1.1.3 

1.1.5 message  uml:Message MessID Name= constructed according 
to Table2 
messageSort=SynchCall 
reciveEvent=1.1.2 
sendEvent=1.1.2 

Actual 
interaction is 
represented as 
classes with 
operations as 
well. 

1.2 ownedAttribute  uml:Property ProbID Name= EntityName 
Type= 2 

2 packagedElement uml:Actor  or uml:Class ClassID Name= EntityName 
2.1 ownedOperation  uml:Operation OpID Name= same as message name 

 3 packagedElement uml:SendOperationEvent SOpID Name= Any Name 
Operation=2.1 

 4 packagedElement uml:ReceiveOperationEvent ROpID Name= Any Name 
Operation=2.1 

 5 packagedElement uml:ExecutionEvent ExecEvID Name= Any Name 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2: Mappings between Database trace model and UML SD meta-model

in the security model recovery process.

The second phase provides an automated model driven engineering approach to con-

struct a RBAC security model. This phase is based on model transformation and composi-

tion, and makes use of the structural and behavioral models recovered in the previous phase.

Figure 8.1 shows the architecture of our approach, and the following sections elaborate on

the approach in more detail.



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 144

Interaction Scenarios Send message Return message Sender  Receiver 
Page Access  Page_Name(Page_Param) Page_Name Browser 

Session 
Application 
Server 

Http Variable Retrieval HttpVar_Type(HttpVar_Name, ,AssignedVar, 
HttpVar_Value) 

HttpVar_Type(HttpVar_Name, 
HttpVar_Value,AssignedVar) 

Application 
Server 

Application 
Server 

Select operation Select(Page Name, Where_clause condition) Return(PageName, SelectExpr) Application 
Server 

Affected 
Entity 

Update Operation Update(Page Name, Where_clause condition) Return(PageName, SetList) Application 
Server 

Affected 
Entity 

Insert Operation Insert(Page Name, Assigned columns) Return(PageName,InsertedTuple) Application 
Server 

Affected 
Entity 

Delete Operation Delete(Page Name, Where_clause condition)  Application 
Server 

Affected 
Entity 

 
Figure 8.3: Interaction scenarios and messages encoding

8.3 Structural Model Recovery

In this phase we aim at recovering a data model of the application resources, as they

pertain to the users’ functional use of systems, applications and business processes. Data

models constitute one of the main sources of such information, and visualizing data models

facilitates the process of understanding the structure of the system, its basic entities and

their relationships. While UML is considered the standard for application modeling, there

is really no corresponding open standard for data modeling. Therefore, we have developed

an approach and a tool to bring the data model to the UML world, and thus our tool

enables the manipulation and integration of both data and application models using the

same UML-based tools in an interoperable way.

Our open tool (SQL2XMI), presented in Chapter 4, automatically transforms an SQL

DDL schema to a UML 2.1 ER diagram which can be visualized by any UML tool that sup-

ports XMI 2.1. Unlike other tools that reverse engineer to proprietary formats, SQL2XMI

explicitly aims at open and flexible portability, requiring only the SQL DDL schema and

targeting the official OMG XMI 2.1 UML representation. Figure 8.5, shows the meta-model

for the UML-ER data model.



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 145

In
te

ra
ct

io
n

1

B
ro

w
se

r 
S

e
ss

io
n

A
p

p
lic

a
tio

n
 s

e
rv

e
r

p
h

p
b

b
_f

o
ru

m
s

 p
h

p
b

b
_a

u
th

_a
cc

e
ss

 
p

h
p

b
b

_g
ro

u
p

s 
p

h
p

b
b

_u
se

r_
g

ro
u

p
 

p
h

p
b

b
_u

se
rs

 p
h

p
b

b
_a

u
th

_a
cc

e
ss

 
p

h
p

b
b

_g
ro

u
p

s 
p

h
p

b
b

_u
se

r_
g

ro
u

p

 p
h

p
b

b
_p

o
st

s 
p

h
p

b
b

_t
o

p
ic

s 
p

h
p

b
b

_u
se

rs

 p
h

p
b

b
_f

o
ru

m
s 

p
h

p
b

b
_t

o
p

ic
s

 p
h

p
b

b
_p

o
st

s 
p

h
p

b
b

_p
o

st
s_

te
xt

 p
h

p
b

b
_u

se
rs

p
h

p
b

b
_t

o
p

ic
s

1
: 

vi
e

w
fo

ru
m

(?
f=

2
)

1
.6

: 
vi

e
w

to
p

ic
(?

t=
3

)

1
.4

: 
S

e
le

ct
(v

ie
w

fo
ru

m
,t

 .
 f

o
ru

m
_i

d
 =

 $
fo

ru
m

_i
d

 a
n

d
 t

 .
 t

o
p

ic
_p

o
st

e
r 

=
 u

 .
 u

se
r_

id
 a

n
d

 p
 .

 p
o

st
_i

d
 =

 t
 .

 t
o

p
ic

_l
a

st
_p

o
st

_i
d

 a
n

d
 p

 .
 p

o
st

e
r_

id
 =

 u
2

 .
 u

se
r_

id
 a

n
d

 t
 .

 t
o

p
ic

_t
yp

e
 =

 2
)

1
.3

: 
S

e
le

ct
(v

ie
w

fo
ru

m
,a

a
 .

 f
o

ru
m

_i
d

 =
 $

fo
ru

m
_i

d
 a

n
d

 a
a

 .
 a

u
th

_m
o

d
 =

 1
 a

n
d

 g
 .

 g
ro

u
p

_s
in

g
le

_u
se

r 
=

 0
 a

n
d

 g
 .

 g
ro

u
p

_t
yp

e
  !

=
  2

 a
n

d
 u

g
 .

 g
ro

u
p

_i
d

 =
 a

a
 .

 g
ro

u
p

_i
d

 a
n

d
 g

 .
 g

ro
u

p
_i

d
 =

 a
a

 .
 g

ro
u

p
_i

d
)

1
.6

.3
: 

U
p

d
a

te
(v

ie
w

to
p

ic
,t

o
p

ic
_i

d
 =

 $
to

p
ic

_i
d

)

1
.2

: 
S

e
le

ct
(v

ie
w

fo
ru

m
,a

a
 .

 f
o

ru
m

_i
d

 =
 $

fo
ru

m
_i

d
 a

n
d

 a
a

 .
 a

u
th

_m
o

d
 =

 1
 a

n
d

 g
 .

 g
ro

u
p

_s
in

g
le

_u
se

r 
=

 1
 a

n
d

 u
g

 .
 g

ro
u

p
_i

d
 =

 a
a

 .
 g

ro
u

p
_i

d
 a

n
d

 g
 .

 g
ro

u
p

_i
d

 =
 a

a
 .

 g
ro

u
p

_i
d

 a
n

d
 u

 .
 u

se
r_

id
 =

 u
g

 .
 u

se
r_

id
)

1
.6

.2
: 

S
e

le
ct

(v
ie

w
to

p
ic

,p
 .

 t
o

p
ic

_i
d

 =
 $

to
p

ic
_i

d
 $

lim
it_

p
o

st
s_

tim
e

 a
n

d
 p

t 
. 

p
o

st
_i

d
 =

 p
 .

 p
o

st
_i

d
 a

n
d

 u
 .

 u
se

r_
id

 =
 p

 .
 p

o
st

e
r_

id
)

1
.1

: 
G

E
T

(f
,$

fo
ru

m
_i

d
,2

)

1
.5

: 
S

e
le

ct
(v

ie
w

fo
ru

m
,t

 .
 f

o
ru

m
_i

d
 =

 $
fo

ru
m

_i
d

 a
n

d
 t

 .
 t

o
p

ic
_p

o
st

e
r 

=
 u

 .
 u

se
r_

id
 a

n
d

 p
 .

 p
o

st
_i

d
 =

 t
 .

 t
o

p
ic

_f
ir

st
_p

o
st

_i
d

 a
n

d 
p

2
 .

 p
o

st
_i

d
 =

 t
 .

 t
o

p
ic

_l
a

st
_p

o
st

_i
d

 a
n

d
 u

2
 .

 u
se

r_
id

 =
 p

2
 .

 p
o

st
e

r_
id

 a
n

d
 t

 .
 t

o
p

ic
_t

yp
e

  !
=

  2
 $

lim
it_

to
p

1
.6

.1
.1

: 
S

e
le

ct
(v

ie
w

to
p

ic
,t

 .
 t

o
p

ic
_i

d
 =

 $
to

p
ic

_i
d

 a
n

d
 f

 .
 f

o
ru

m
_i

d
 =

 t
 .

 f
o

ru
m

_i
d

)

1
.1

.1
: 

S
e

le
ct

(v
ie

w
fo

ru
m

,f
o

ru
m

_i
d

 =
 $

fo
ru

m
_i

d
)

1
.6

.1
: 

G
E

T
(t

,$
to

p
ic

_i
d

,3
)

1
.6

.1
.1

.1
: 

R
e

su
lt(

vi
e

w
to

p
ic

,t
.t

o
p

ic
_i

d
, 

t.
to

p
ic

_t
itl

e
, 

t.
to

p
ic

_s
ta

tu
s,

 t
.t

o
p

ic
_r

e
p

lie
s,

 t
.t

o
p

ic
_t

im
e

, 
t.

to
p

ic
_t

yp
e

, 
t.

to
p

ic
_v

o
te

, 
t.

to
p

ic
_l

a
st

_p
o

st
_i

d
, 

f.
fo

ru
m

_n
a

m
e

, 
f.

fo
ru

m
_s

ta
tu

s,
 f.

fo
ru

m
_i

d
, 

f.
a

u
th

_v
ie

w
, 

f.
a

u
th

_r
e

a
d

, 
f.

a
u

th
_p

o
st

, 
f.

a
u

th

1
.6

.2
.1

: 
R

e
su

lt(
vi

e
w

to
p

ic
,u

.u
se

rn
a

m
e

, 
u

.u
se

r_
id

, 
u

.u
se

r_
p

o
st

s,
 u

.u
se

r_
fr

o
m

, 
u

.u
se

r_
w

e
b

si
te

, 
u

.u
se

r_
e

m
a

il,
 u

.u
se

r_
ic

q
, 

u
.u

se
r_

a
im

, 
u

.u
se

r_
yi

m
, 

u
.u

se
r_

re
g

d
a

te
, 

u
.u

se
r_

m
sn

m
, 

u
.u

se
r_

vi
e

w
e

m
a

il,
 u

.u
se

r_
ra

n
k,

 u
.u

se
r_

si
g

, 
u

.u
se

r

1
.3

.1
: 

R
e

su
lt(

vi
e

w
fo

ru
m

,g
.g

ro
u

p
_i

d
, 

g
.g

ro
u

p
_n

a
m

e
)

1
.6

.3
.1

: 
R

e
su

lt(
vi

e
w

to
p

ic
,t

o
p

ic
_v

ie
w

s 
=

 t
o

p
ic

_v
ie

w
s 

 +
  1

)

1
.5

.1
: 

R
e

su
lt(

vi
e

w
fo

ru
m

,t
.*

, 
u

.u
se

rn
a

m
e

, 
u

.u
se

r_
id

, 
u

2
.u

se
rn

a
m

e
 a

s 
u

se
r2

, 
u

2
.u

se
r_

id
 a

s 
id

2
, p

.p
o

st
_u

se
rn

a
m

e
, 

p
2

.p
o

st
_u

se
rn

a
m

e
 A

s 
p

o
st

_u
se

rn
a

m
e

2
, 

p
2

.p
o

st
_t

im
e

)

1
.4

.1
: 

R
e

su
lt(

vi
e

w
fo

ru
m

,t
.*

, 
u

.u
se

rn
a

m
e

, 
u

.u
se

r_
id

, 
u

2
.u

se
rn

a
m

e
 a

s 
u

se
r2

, 
u

2
.u

se
r_

id
 a

s 
id

2
, 

p
.p

o
st

_t
im

e
, 

p
.p

o
st

_u
se

rn
a

m
e

)

1
.2

.1
: 

R
e

su
lt(

vi
e

w
fo

ru
m

,u
.u

se
r_

id
, 

u
.u

se
rn

a
m

e
)

1
.1

.1
.1

: 
R

e
su

lt(
vi

e
w

fo
ru

m
,*

)

Figure 8.4: A sample UML2.0 Entity-level Sequence Diagram (SD) as generated by WAFA and
PHP2XMI



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 146

8.4 Behavioural Model Recovery

Exploring existing user permissions in current applications and systems is essentially one

of the critical steps in the role mining process. It requires a complex set of analyses tech-

niques including static analysis, pattern matching, data and control flow analysis, as well

as coverage analysis. Thus, we have developed (PHP2XMI), presented in Chapter 5, a

new reverse engineering tool aimed at recovering the permissions associated with each user

role and representing them as a behavioural model expressed as a UML sequence diagram.

Visualizing execution traces as a sequence diagram facilitates the process of understanding

the interaction behavior of the system, and helps us deduce the permissions for each user

role. The XMI 2.1 textual representation of the sequence model is analyzed and combined

with the XMI 2.1 representation of the ER model to construct a UML-based RBAC model,

which can be converted into a formal model to be checked for access control vulnerabilities

using a standard model checker. Thus, the PHP2XMI is an essential part of a our web

application RBAC conformance-testing framework.

The approach we use filters execution traces directly on insertion into the database,

automatically eliminating redundant information that may complicate the understanding

process. In PHP2XMI, the interaction elements in the resulting sequence diagram are the

user and the dynamic pages of a browser session, represented as lifelines, and the dynamic

transitions between the pages along with their parameters, represented as messages.

To help raise the recovered behavioural model into an entity-based sequence diagram,

we have developed (WAFA), presented in Chapter 6,an automated reverse engineering ap-

proach to recover a fine-grained interaction behavioural model from dynamic web appli-

cations. To the best of our knowledge, our approach is the first one to extract the web

application’s embedded SQL subsystem, which includes both the original SQL statement

source as well as corresponding execution instances, and an analysis to attach it to both

static host application variables and dynamic server environment variables.



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 147

Based on the fine-grained analysis performed by WAFA, which populates our instru-

mentation database with trace information, we automatically generate sequence diagrams

that conform to the UML2.1 meta-model, shown in Figure 8.5. We have defined mappings

between elements of the trace model stored in the instrumentation database and corre-

sponding UML 2.0 sequence diagram. The mappings better reflect our interest in capturing

user interactions with the dynamic web application as they affect the multiple tier of this

distributed system, such as the browser, the application server and the database back-end,

Figure 8.2 shows the mapping between the web application components and the UML 2.0

sequence diagram meta-model elements.

These interactions, when comprehensively covered, represent the set of permissions the

dynamic web application offers the users. To this end, the sequence diagram lifelines are

used to map the application’s secured resources, which are comprised of the application’s

pages as rendered in the browser, the application’s server environment, and the application’s

entities as stored in the application’s database back-end.

The diagram’s operations are used to map the different type of access allowable to

the user over the application’s secured resources. All aspects of this access are captured as

either operations’ parameters or constraints, and these include the access’s type, timestamp,

condition, return value, and unique id to identify the access’s relation with the source code

and the source page. Messages are used to present a combination of those values in a single

string which constitutes the message name. Figure 8.3 shows the different types of messages

constructed by our approach.

8.4.1 Instrumentation Coverage

Dynamic analysis often needs to be combined with a coverage measure in order to decrease

the number of false positives due to an analysis that yields a model that only partially

covers the code (leading to verification of properties that may in fact not hold). For this

purpose, we have developed (DWASTIC), presented in Chapter 7, a tool used to augment



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 148

the dynamic analysis with instrumentation for code coverage. The tool is based on our

newly proposed set of coverage criteria specialized for web application, which takes into

consideration the complex and distributed structure of this application. The tool can be

used to support any testing activity for web applications. It focuses the testing efforts on the

vulnerable parts of the code, which are most likely the source of web application faults and

attacks such as SQL injection. It also provides a direct way to trace the part of code that is

not covered by test cases. The approach is being used to provide a completeness measure for

extracting an access control security model form web application under test. The accuracy

of the results is both hand verified and robust since it is automatically back-checked at run

time.

8.5 SecureUML Model Construction

In the previous sections, we have discussed how SQL2XMI, WAFA and PHP2XMI help us to

recover the behavioural and structural models from web applications, and how DWASTIC

provides a measure for an acceptance rate of coverage for some representative users. At

this stage, our aim is to make use of the relevant elements from the two recovered models

to construct a RBAC security model that conforms to the SecureUML meta-model, shown

on Figure 8.5.

SecureUML is an implementation of the Model Driven Security approach, a special-

ization of Model Driven Architecture. It explicitly integrates security aspects into the

application’s models and provides support for model transformation. The approach has

been proposed to bridge the representation gap between the graphical languages used for

specifying the application’s design models, such as the UML, and the textual language used

to specify the security models. Therefore, it is built on a modular schema that comprises

three basic elements: a language for security policies specification, a language for design

models construction, and a dialect for defining integration points in the preceding languages.



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 149

<<Entity>>

<<Relation>>

<<Attribute>>

<<FK>><<PK>>

ownedAttribute

associationtype

memberEnd

0..n

2..n

0..n0..1

Name:  ColumnName
Type: ColumnID

Name: TableName

Our UML 2.0 ER Data Model

<<stereoty

SecureUML meta-model

Operation
(from Kernel)

1 *
SendOperationEvent

constraintParameter

ownedParameter **

Class
ownedOperation

Association class

<<stereotype>>

UML 2.0 Sequence 
diagram meta-model

preconditions

ype>>
*

*
*

+/owned
Element

+/owner
0..1

Element
(from Kernel)

+/ownedComment

0..1

Comment
(from Kernel)

NamedElement
(from Kernel)

name: String
visibility: VisibilityKind

(from Kernel)

Signal
(from Communications)

+/signature

TypeElement
(from Kernel)

Type
(from Kernel)

0..1

+/type

1 * SendSignalEvent

SendOperationEvent

0..1 0..1

MessageEnd

MessageEvent
(from Communications)

1

+start +finish

MessageOccurrence
Specification

Execution
Specification

ExecutionOccurrence
Specification

* *

ConnectableElement
(from InternalStructures)

ConnectorEnd
(from InternalStructures)

*

1

+/represents
0..1

*

ValueSpecification

2..*

Connector
(from InternalStructures) 0..1

*

+argument*

0..1 0..1

+send
Event

+receive
Event

Message
/messageKind: MessageKind
messageSort: MessageSort

Event
(from Communications)

1

Occurrence
SpecificationLifeline

Figure 8.5: UML2.0 Structural and behavioural meta-models and their mappings to SecureUML
meta-model

The abstract syntax for the security language (SecureUML) is based on RBAC. It defines a

meta-model that extends the RBAC with Authorization constraints to enable formal spec-

ification of access control policies that depend on dynamic aspects of the system, such as

the access date or the values of the system’s environment variables.

The modeling notation for SecureUML is based on a UML profile, which uses UML

stereotypes and tagged values to represent the abstract syntax elements expressed via the

meta-model schema. Users, groups, and roles are represented as classes with stereotypes

<<User >>, <<Group >>, <<Role >>respectively. Permission is represented as an



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 150

function main 
 
%import the name of the sequence diagram serialization from the Txl command arguments 
import TXLargs [repeat stringlit]   
    Input2Filename [stringlit] 
 
%read the file content and parse it to check conformance with SD meta-model 
construct BehavioralModelXMI [repeat XMItoken]  
      _ [read Input2Filename]           
       
%bound the main replacement with the ER diagram serialization 
replace [program]  
   ERModelXMI [repeat XMItoken]           
   
  % Collect all the entities involved in the behavioral interaction 
  construct collectAllEntites [repeat XMItoken] 
    BehavioralModelXMI [collect_AllEntites ] 
    import EntitiesName %[id*] 
    
 % filters the collected entities by removing repeating caused by views structure 
  construct UniqeEntitesName [id*] 
    EntitiesName [removeRepetitions] 
    import UniqeEntsName%[id*] 
 
% extracts the behavioral interactions performed on the application entities 
  construct secureUML [repeat XMItoken] 
    BehavioralModelXMI  [GenerateERDElements  ERModelXMI] 
    import Entitybehavior2 [repeat XMItoken]  
by 
     
 % combine results to construct the XMI2.1 SecureUML model  
     _[createXMIH][. Entitybehavior2][createXMIE] 
end function 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6: TXL main rule for PHP2SecureUML

association class with a <<permission >>stereotype.

Figure 8.5 shows the relationship between the UML-sequence diagram meta-model and

our UML 2.0 data meta-model. The entity element in the UML data meta-model cor-

responds to the class element of the sequence diagram meta-model via a stereotype rela-

tionship, represented as dotted line in the figure. Based on this relation, the structural

information for each entity in the sequence diagram can be pulled from the data model.

8.5.1 Entity Extraction and Filtration

The set of classes (Entities) in the sequence diagram is the actual representation of the

diagram’s lifelines and maps the application’s secure resources, which include: application

server, browser session, and database-backend entities. Based on source transformation



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 151

technology, in this step these elements are identified and filtered to remove any redundancies.

We have developed a TXL union grammar for XMI schemas, which enables the manipu-

lation of models that conform to the UML sequence diagram(SD), UML-based ER diagram

and SecureUML meta-models. Along with this grammar, the TXL process will accept as

input a serialization for both SD and ER models, as well as a set of rooted transformation

rules to enable the model’s manipulation, integration and transformation to help construct

the target security model.

The main TXL rule, shown in Figure 8.6, starts by searching for the set of secure

resources that are engaged in the interaction behavior modeled via SD. These elements are

represented abstractly as a set of classes, and graphically as a set of lifelines. Thus, the

TXL rule matches all SD classes’ elements and filters any redundant ones.

The redundancy occurs due to the fact that multiple secured resources which receive the

same set of actions have been represented as a single class, and modeled via a single Lifeline.

Yet the names of those resources have been combined in a single string which represents

the class name. Hence, the TXL rule performs a process of refactoring the combined string

to identify the name of all secure resources.

8.5.2 Entity Attribute and Relation Matching and Extraction

Once the set of secure resource elements engaged in interaction behavior has been identified,

the main TXL rule applies another rule on each of the identified elements. This subrule con-

sults the UML ER diagram to search for structural information relevant to those elements.

This includes the secure resource attributes and relations with other resources.

Conceptually, the TXL rule searches for all class elements with entities stereotype in the

ER model that match the ones identified from the previous section. It extracts the entities’

attributes elements, and associations with other entities in the identified set. The result of

this phase is an ER diagram for secure resources engaged in interactions within a specified

browsing session.



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 152

8.5.3 Constrained Event Identification and Extraction

The set of permissions allowed on each of the recovered entities (resources) is modeled

graphically as message receive events of the corresponding lifeline. Each recipient event

element in the sequence diagram meta-model is represented as an operation which may be

associated with parameters and constraints. A TXL rule, which receives as a parameter the

set of recovered resources, matches the elements of the serialized SD, and whenever a class

with the same resource name is matched, the set of all operations elements associated with

that class along with their parameters and constraints are identified and extracted.

The rule then constructs the meta-model elements of SecureUML to represent the re-

covered permissions. Each operation element and its parameters is mapped to a permission

action, and operation constraints are mapped to Authorization constraints. The rule con-

structs an association class to represent the set of recovered operations on a specific resource.

The Association class is marked as a permission stereotype to reflect its security semantics.

8.5.4 SecureUML Model Elements Construction

The previous steps have identified all the security elements necessary to construct the RBAC

security model. In this step, a UML 2.0 RBAC security model which conforms to the Se-

cureUML meta-model shown in Figure 8.5, is constructed. A set of transformation rules are

developed to construct the new security model, in which the extracted sequence diagram’s

operations are mapped into permissions, operation constraint into Authorization constraint,

and the ER data model as resources.

According to the SecureUML notation, the representation of resources is left open, so

that developers can decide later which elements of the system they consider secure and upon

which they want to apply access constraints. These elements are defined via a dialect. In

section 8.5.2, we have recovered secure-resources, and represented them as an ER diagram.

Also in section 8.5.3, we have recovered permissions-actions with authorization constraints,



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 153

parameters

{ ActionTimestamp }{ ActionTimestamp }

{ Action ID in code }

{ Page Name where the action is located }

{ Action Type }

{ Action precondition }Constraints

Association

Classes to 

represent

permissions

Application

Secure

resources-

represented

an UML-ER

model
{An Entity attributes}

Figure 8.7: RSA project explorer shows the SecurUML elements as recovered by our tool

and represented them as an association class with parameters and preconditions. In this

part, using another TXL rule, two association links are also created; one of them connects



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 154

Figure 8.8: A sample of a generated SecureUML model instance



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 155

include "XMI.grm" 
include "prolog.grm" 
redefine program 
   [repeat XMItoken] 
   [repeat Factdot] 
end redefine 
function main  
    replace [program]  
        SecureUML   [repeat XMItoken] 
        PrologFacts [repeat Factdot] 
    by 
    PrologFacts [GenerateEntitesFacts SecureUML] 
end function 

 
Security model analysis 

In this phase, we further support the model driven security approach by 
providing an analysis of the recovered SecureUML models via Prolog. First, A 
serialized SecureUML model is automatically transformed into Prolog. A set of 
mappings between each SecureUML meta-model constructs and Prolog Facts and 
rules is defined. Second, A set of Prolog queries is built to check for some 
specific RBAC security concerns in the target application. 
 
Figure \ref{} shows the TXL transformation process as applied in our tool. In 
our application we began by defining a grammar for the input SecureUML  
sterilization, and a second (override) grammar for our target Prolog format. 
The main grammatical form (called [program] in TXL) allows both, but expects 
the Prolog part to be empty on input and full on output, and vice-versa for 
the SecureUML part. We used the TXL producer-consumer translation paradigm to 
make a set of transformation rules to “produce” the Prolog output while 
“consuming” the SecureUML input. The transformation is started by the main 
rule, shown in Figure ref{}. TXL begins by parsing the SecureUML 
serialization, to insure its conformance with its meta-model (pattern 
variable SecureUML), with an initially empty Prolog output (pattern variable 
PrologFacts). The main rule replaces this entire input by constructing the 
Prolog output beginning with the empty PrologFacts and transforming it into 
the Prolog  representation of the input SecureUML model Starting with a main 
transformation subrule GenerateEntitesFacts. 
 
The automated transformation process starts by parsing the 
SecureUML serialization to insure its conformance with its meta-
model. A consume\produce  
 
   We present an extensible verification framework for verifying 
UML models for security requirements. In particular, it includes 
various plugins performing different security analyses on models 
of the security extension UMLsec of UML. Here, we concentrate on 
an automated theorem prover binding to verify security properties 
of UMLsec models which make use of cryptography (such as 
cryptographic protocols). The work aims to contribute towards 

Figure 8.9: TXL main rule for SecureUML2Prolog

the association class, stereotyped by permissions, with the entity (resource) affected by

the permission’s actions, and the second association-link connects the acting Role with the

constructed association class.

8.6 Security Model Analysis

In this phase, we use Prolog to analyze the recovered SecureUML models. Although there

are several available tools to transform from UML models into formal ones (e.g., UML2Alloy

[33], XMI2SMV [40]), thus providing model analysis and formal verification, there are none

that are both complete (supporting all the SecureUML meta-model mappings), and UML

2.0 compliant.

We have chosen Prolog as an analysis engine for its ability to handle large scale industrial

software models, as shown by Störrle [159]. In another recent study, Opoka et al. [47] have

shown that Prolog performance in model querying and analysis is higher than that provided

by the Object Constraint Language (OCL), which is originally designed for expressing con-

straints about a UML model. Therefore, Prolog allows for the implementation of a generic

and powerful querying approach for software models. Prolog syntax is less complicated than

the OCL and thus easier to understand, and the language is supported by many efficient

interpreters and tools such as the SWI Prolog. For a thorough comparison with other tools



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 156

function IsPermAction ownedAttrib [XMItoken*] EntityName [charlit] 
 
   deconstruct  ownedAttrib 
    '<'ownedOperation 'xmi:type'="uml:Operation" 'xmi:id'= AttribID [stringlit]    
               'name'= OpName [stringlit] 'precondition'= preconID [stringlit]'> 
   ownedAttrib1 [XMItoken*] 
 
   construct idOpName [id] 
     _[unquote OpName] 
 
   construct charOpName [charlit] 
     _[quote idOpName] 
 
   construct PermActionF [Factdot] 
    'permActionAssign '(EntityName', charOpName')'. 
 
   construct PermActionconst [Factdot*] 
     _[IsPermActionConst ownedAttrib1  EntityName ] 
 
  replace * [Factdot*] 
 
  by 
    PermActionF  
 
end function 

Figure 8.10: A sample TXL rule for generating permission facts from SecureUML meta-model
elements

and approaches for UML model analysis and checking one can refer to Störrle [159].

Thus, we have developed a SecureUML2Prolog, a tool by which a serialized SecureUML

model is automatically transformed into Prolog. A set of mappings between each Se-

cureUML meta-model constructs and Prolog Facts and Rules is defined, then, a set of

Prolog queries is built to check for some specific RBAC security concerns in the target

application. In our application we began by defining a grammar for the input SecureUML

serialization, and a second (override) grammar for our target Prolog format.

The main grammatical form (called [program] in TXL) allows both, but expects the

Prolog part to be empty on input and full on output, and vice-versa for the SecureUML part.

We used the TXL producer-consumer translation paradigm to make a set of transformation

rules to “produce” the Prolog output while “consuming” the SecureUML input.

The transformation is started by the main rule, shown in Figure 8.9. TXL begins by

parsing the SecureUML serialization, to insure its conformance with its meta-model (pattern

variable SecureUML), with an initially empty Prolog output (pattern variable PrologFacts).



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 157

 

 

Security model analysis 

Prolog Facts Facts Description 
 
Structural Facts ( ER diagram_based resources)  Facts to represent the application structural information (secure resources, their 

attributes and relations) 
 

entity(1,'phpbb_forums'). 
entity(1,'phpbb_auth_access'). 

entity( RoleNum , ResourceID): represents the applications secure resources. Gets as 
parameter the resource name. 

entityAttrib(1,'phpbb_users','username'). 
 

entityAttrib( RoleNum , EntityName, Attrib): represents the application resources 
attributes. Gets as parameter, the resource name and its attributes names 

entityAssociation(1,'phpbb_forums', 
'phpbb_auth_access','phpbb_auth_access(forum_id)'). 
 

entityAssociation( RoleNum, entityName,AssociationID1,AssociationID2(PK)):
represents relations between the applications resources. Gets as parameter, resource 
name, Relation’s ends names including key attribute(s).   

Role Facts 
 

Facts to represents the application roles and user assignments 
 

appRole(1,"Admin"). 
appRrole(2,"Anynmous"). 
user("Bob"). 
user("Alice"). 
 

appRole(RoleNum, RoleName): represent the application roles. Get as parameter the 
name of the role. 
 
user(username): represents the application users. Gets as parameter user names or id. 
 

userAssign("Bob",2). 
userAssign("Alice",1). 
 

userAssign( UserName, RoleNum): represents the assignment of users into roles. Gets 
as parameter the roles and users names 

Permissions Facts 
 

Facts to represent the application permissions, constraints and permission 
assignments. 

perm(1, 'Application serverPerm'). 
perm(1, 'phpbb_forumsPerm'). 
 

Perm( RoleNum , PermissionID): represents the application permissions. Gets as 
parameter the application permissions ID.  

permActionAssign(1, 'phpbb_forumsPerm', 
'Select(viewforum,forum_id = $forum_id)'). 
permActionAssign(1, 'phpbb_topicsPerm', 
   'Update(viewtopic,topic_id = $topic_id)'). 
 

permActionAssign( RoleNum , PermissionID, Action): represents the application
permission‐action assignments. Get as parameter, the permission ID, and the 
permission atomic actions. 

permResourceAssign(1,'phpbb_forumsPerm','phpbb_forums').
 

permResourceAssign( RoleNum , permissionID, ResourceID): represents the 
application permission‐resource assignment. Gets as parameter the permission ID and 
the resource ID. 

rolePermAssign(1, "Anynmous","phpbb_forumsPerm"). 
rolePermAssign(1, "admin","phpbb_forumsPerm"). 
 

rolePermAssign(  RoleNum , RoleID, PermID): represents the application Role‐
Permission assignment. Gets as parameter the permission ID and the Role ID. 
 

permActionConst(1, 'phpbb_forumsPerm',366, 
                                  'forum_id = $forum_id'). 
 

permActionConst( RoleNum , PermID, ActionIDInCode, Constraint):represents the 
application permission constraints. Gets as parameter the permission ID, Action 
identifier in code and action constraints. 

permActionType(1, 'phpbb_forumsPerm',366,'Select'). 
permActionType(1, 'phpbb_topicsPerm',404,'Update'). 
 

permActionType( RoleNum , PermID, ActionIDInCode, ActionType): represents the 
permission action types, whether they are read or write operations. 

Dynamic and contextual Facts 
 

Facts to represents environmental information such as executions timestamps, 
relevant server environment variables and so on. 

permActionTimeS(1, phpbb_forumsPerm',366,1249518435).
permActionInPage(1, 'phpbb_forumsPerm',366,365). 
PageNameID(1, 'viewforum2',"365"). 
PageParamID(1,'?f=1',"365"). 
 

permActionTimeS( RoleNum , PermID, ActionID, Timestamp): represents the 
application Action timestamp. Get as parameter the permission ID, the Action ID and 
the Actions’ execution time. 
permActionInPage( RoleNum,  PermID,ActionID,PageID) : represents the Action 
location in the code.  
PageNameID( RoleNum , PageName,PageID): relates the page name to its ID. 
PageParamID( RoleNum,  ParamName,PageID): relates pages to their parameters.  

HttpVarID(1,'f',54,'GETDT'). 
HttpVarAssign(1, 54,'$forum_id',1). 
HttpInPage(1, 54,365). 
 

Facts for the server environment variables: relates variable names to their type 
(VarType), value (VarValue), location in code( PageID), and the name of the related 
PHP variable (PhpVar). 
HttpVarID( RoleNum , VarName,VarID,VarType). 
HttpVarAssign( RoleNum , VarID,PhpVar,VarValue). 
HttpInPage( RoleNum , VarID,PageID). 

Return(1,'*',365). 
Return(1,'u.user_id, u.username',365). 

Return( RoleNum , ReturnAttribs,pageID): represents attributes returned from 
interacting with the secured resources. Gets as parameter the returned attributes, and 
the ID of the page that has this interaction. 

Figure 8.11: Prolog Facts generated for SecureUML model analysis



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 158

The main rule replaces this entire input by constructing the Prolog output beginning with

the empty PrologFacts and transforming it into the Prolog representation of the input

SecureUML model starting with a main transformation subrule GenerateEntitesFacts.

Figure 8.10 shows a rule for transforming an SecureUML permission’s action with condition

into the permActionAssign Prolog fact. Also, the construct PermActionconst generates

a Prolog fact for the action constraint. Figure 8.11 shows the resulting facts generated by

our tool.

8.7 Related Work

In recent years, language-based security has become an active area of research as it lever-

ages well established techniques provided by the program-analysis research community to

automatically detect security problems, a challenging task facing the security and privacy

research community. For access control, researchers have focused their efforts on solving

three basic challenges: to identify an application’s role requirement, to detect if an applica-

tion’s RBAC policy is restrictive or permissive, and to determine if an application’s RBAC

policy preserve consistent access to data.

Letarte and Merlo [118] use static analysis to extract a simple role model from PHP

code, and more specifically for database statements. The approach then checks if the

recovered model is restrictive or permissive for binary roles. The change of authorization

level in the code is modeled as an inter-procedural control flow graph with three type of

edges: positive-authorization represents the change in the security privilege to admin level,

negative -authorization represents the change to user level, and generic represents no change

in the security level. A predefined authorization pattern is used to identify the transfer of

control in the code and the change in the authorization level in the extracted model. The

approach is simple as it accounts only for two roles (admin vs. user) for which access

may or may not be granted to database statements. The model is entirely based on an



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 159

authorization pattern which is application dependent, and lacks any correspondence to the

source code.

Koved et al. [116] propose an approach to automatically compute the access rights

requirements at each program point in Java2.0 applications and specifically for mobile code

such as applets and servlets. The authors use context sensitive data and control flow analysis

to construct an Access right Invocation graph, which represents the authorization model of

the code. Consequently, this enables the identification of classes in each path that contain

a call to the java 2 security authorization subsystems.

Pistoia et al. [144] propose an approach to detect inconsistencies in an application’s

RBAC policy, and more specifically, any potential insufficiency or redundancy in the pol-

icy. They statically constructed a call graph to represent the flow of authorization in an

application, by over approximating methods-calls in the application and identifying access-

restricted methods. The graph forms the basis for several security analysis including de-

tecting if the application’s RBAC security policy is restrictive or permissive. Then, the

authors generate reports on code locations that have such inconsistencies and suggests a

replacement policy which can eliminate the vulnerabilities. The approach is implemented

as a part of IBM’s Enterprise Security Policy Evaluator and evaluated on a number of Java

EE applications.

Centonze et al. [42] have identified the need for checking the consistency of data and

resources when two methods access the same data in the same mode, but are not restricted

to the same role. They have introduced the concept of location-based RBAC policy and

correlate it to method-based RBAC via a location consistency property. Their aim is to

identify the implicit access of methods on data and to ensure the equivalence of access rights

on locations when either the location- or method- based RBAC policy have been employed.

The authors have implemented this approach in a tool called SAVE.

Mendling et al. [125] propose a meta-model based integration approach to enhance the

security features of Business Process Management Systems that operate via Web Services



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 160

(BPEL). The meta-model elements of web services’ BPEL, the defacto standard of web

services business process composition, are mapped into RBAC elements. Roles and partners

in BPEL, which represent the sets of operations that are carried out during a business

process, are mapped into RBAC roles. Activities, which provide a channel for an external

party to send a message to a BPEL, are mapped into RBAC permissions. The authors

developed an XSTL transformation script to extract roles and permissions from a BPEL

process definition based on the proposed mapping. The extracted information is stored

in XML, which can be imported into the tool xoRBAC that enables the definition and

enforcement of RBAC polices and constraints for web services.

In the area of web applications, many model-based testing techniques have been pro-

posed; however, the main focus is on testing structural, dynamic, or interaction aspects of

web applications rather than security testing or access control properties. A state of the

art discussion of these techniques can be found on our recent survey [13].

Several methods in the literature propose tools for the translation from UML diagrams

into formal models that can be checked using existing formal verification tools. Here, we

will review two methods as an example of methods used in the context of web application

verification. First, the Castelluccia et al. [40] and Sciascio et al. [73] use the Canollen model

in order to build a diagram for the web application, where the aim is to verify the design

of the application. In order to apply model-checking techniques to any model, it must be

formal, so in this work the authors implement a component, XMI2SMV, that converts UML

diagrams in XMI format into a Web Application Graph (WAG), where the WAG can itself

be translated into an SMV model which is given as input to the NuSMV model checker [50].

Second, in the Bordbar and Anastasakis method [33] the authors use the Alloy [107]

constraint solver to find bugs in the process of interaction between the user and the browser

in web applications. They designed a model translation tool, UML2Alloy, which maps from

their proposed UML diagram, Abstract Description of Interaction (ADI), which models the

interaction with the web application, to an Alloy model, which can then be verified using



CHAPTER 8. RECOVERING RBAC SECURITY MODELS FROM WEB APP. 161

the Alloy analyzer. Other sets of translation tools are discussed in [92].

8.8 Conclusions and Future Work

In this chapter we have presented an approach and a tool to recover a role-based access

control (RBAC) security model from dynamic web application. We used source transforma-

tion technology in PHP2SecureUML to implement the model-to-model transformation and

composition, and in SecureUML2Prolog to transform the recovered model into Prolog. The

resulting formal model can be used to check for RBAC security properties in the application

under test. In the next chapter, we will demonstrate the usefulness of our approach on the

process of analysis, testing and maintenance of web applications.



Chapter 9

Examples

In this chapter we demonstrate our framework on the analysis of PhpBB 2.0, a popular in-

ternet bulletin board system whose characteristics are summarized in Table 9.1. Good can-

didate systems to assess our approach are web applications that are open source, and built

using the combination of Apache server, PHP, and MySQL. Our framework is adaptable

to other technologies as well. The most important requirement is that the web application

should have some kind of permission system.

Because our approach is based on static and dynamic analysis, we require source code.

Our choice of the combination of PHP, MySQL, and Apache server is based on the popularity

of these technologies. According to (Netcraft) [134], Apache web server is the most deployed

web server on the internet with a 58.7% market share. PHP has been the most popular

server-side scripting language for years and is likely to remain so for some time. As of

April 2007, there were more than 20 million websites (domain names) using PHP [142].

MySQL as well is the fastest-growing database in the industry, with more than 10 million

active installations and 50,000 daily downloads [3]. The approach could be applied to other

technologies as well.

162



CHAPTER 9. EXAMPLES 163

 
Algorithm CollectFormInputs 
Input: The URL of the home page of a web application 
Output:   A spreadsheet with the application’s forms elements (ids, types,  and values) 
 
1. Create a new Spreadsheet: SpS 
2. Create a new internet Explorer (IE) instance: IE_ins 
3. Point the instance to the web application under test  
4. collect_formElements() 
5. collect all links in the current page: Lns 
6. navigate(Lns) 

 
7. function collect_formElements { 
8. for each Form element(FE): text field, button, radio button, 

hidden field  in the current page do { 
9. insert a new raw in SPS (FE name, FE ID, FE type, FE value) 
10. if the test case is  for a non Anonymous user then{ 
11.     if (a username text field) and ( a passward textfield) exist in the current page then 
12.      { username.value = registeredUser_username 
13.         passward.value = registeredUser_passward 
14.        if the login button exist 
15.          press the login button   }  } } 
16.    }% end function 
 
17. function navigate (Lns: list of links) 
18. for each link(I) in Lns do 
19. {  click link I 
20.    collect all links in the  page generated from link I: Lns2 
21.    collect_formElements 
22.     Navigate(Lns2) 
23. } 

 

Figure 9.1: The CollectFormInputs algorithm for collecting the application’s forms input
elements

Total lines of code  ~100k

PHP pages  72 

HTML Pages  15 

Templates & formatting files 109 

Database tables  30 

 

Role 
Filtered 
client 
pages 

Utility pages
visited 

Client  pages 
generated 

All  visited 
pages 

Anonymous user  29  1628 321  1994 

Registered User  98  1934 600  2534 
Admin User  135 2090 777  2867 

 
 
 

Table 9.1: Characteristics of the PhPBB2.0 application

9.1 Testing Scenarios

In this experiment, we examine three sets of users (roles): anonymous users, registered

users and the administrator. The web application under test is explored twice, once to

collect the application’s forms inputs, and a second time to do the actual navigation with

an automated form filling. We developed two Watir test cases to implement this automated

navigation and tailored these test cases for each of the three roles.



CHAPTER 9. EXAMPLES 164

Total lines of code  ~100k

PHP pages  72 

HTML Pages  15 

Templates & formatting files 109 

Database tables  30 

 

Role 
Filtered 
client 
pages 

Utility pages
visited 

Client  pages 
generated 

All  visited 
pages 

Anonymous user  29  1628 321  1994 

Registered User  98  1934 600  2534 
Admin User  135 2090 777  2867 

 
 
 

Table 9.2: Experiment statistics for the number of navigated and filtered pages 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Role  SQL Statements 
Coverage 

Page Access Coverage Server Environment Variables  
Coverage 

Anonymous User  Covered  Total  %  Covered Total % Covered Total  %

53  440  12% 30 69 43.4% 30 374  8 %

Registered User  75  440  17 % 34 69 49.3 % 75 374  20 %

Administrator  98  440  22% 39 69 56.5% 92 374  24.5%

Role  Page Name  SQL Statements Coverage Server Environment Variables  Coverage   

Anonymous 

User 

 

  Covered Total % Covered Total  % 

Viewforum.php  5  7 71.42% 1 12  8.33%

Viewtopic.php  4  13 30.76% 1 16  6.25%

Registered 

 user  

Viewforum.php  6  7 85.7% 5 12  41.6%

Viewtopic.php  6  13 46.2% 5 16  31.2%

Role  Page Name  Server Environment Variables  Coverage in SQL Statements

Anonymous 

User 

 

  Covered Total %

Viewforum.php  5 7 71.42% 

Viewtopic.php  3 12 25% 

Registered 

 user 

Viewforum.php  6 7 85.7% 

Viewtopic.php  5 12 41.6% 

Table 9.3: Experiment coverage information for SQL statements, pages and server environ-
ment variables

The first test case dynamically collects all the application’s form inputs, and creates

an Excel spreadsheet with entries for each of these inputs. Each row in the spreadsheet

includes fields for the input’s ID, name, type, and value. Figure 9.1 describes the algorithm

for this test case. The resulting spreadsheet is used later to fill the value field for each form

input.

The second Watir test case consults the spreadsheet created in the previous step to fill

the application’s input forms while navigating the application. The navigation process is

similar to that described in the algorithm shown in Figure 9.1, but instead of collecting

forms inputs, it searches for forms’ inputs ids in the navigated pages, then picks the values

of the matched fields from the spreadsheet and populates the form.

Tables 9.2, 9.3, 9.4 show some statistics about this experiment. Table 9.2 shows the

total number of pages visited by users in different roles as well as the number of filtered

client pages stored and analyzed by our approach.

Table 9.3 presents coverage information for the testing scenarios. This represents the

percentage of SQL statement coverage, the percentage of page access coverage and the

server environment variable coverage. Table 9.4 provides more detailed coverage information



CHAPTER 9. EXAMPLES 165

 
 

   SQL statements Coverage  SQL statements Use  
of HTTP Variables 

Server Environment Variables 
Coverage 

Statement\ 
Variable type 

SEL  INS  DEL UPD SEL INS DEL UPD ALL  POST  GET COOKIE

Anon.  user‐ 
All trace 

42/237  3/38  3/74 5/91 21 3 3 5 30/374  12/255  15/99 3/20

Register user‐ 
All trace 

71/237  5/38  4/74 15/91 43 5 4 15 75/374  39/255  21/99 15/20

Admin. user‐ 
All trace 

75/237  5/38  4/74 15/91 47 5 4 15 92/374  54/255  28/99 10/20

 

 
 

Table 9.4: More detailed coverage information for SQL statements, and server environment
variables

prolog query that computes the set difference of page access, server environment variable access 
and access to the application entities. 

Example: 

 
% computes role actions per page access 
rolePagesActions(RoleName,PageName, PageID, ActionID, RList):- 
                appRole(RoleNum, RoleName), 
        pageNameID(RoleNum,PageName,PageID),  
                return(RoleNum,RList,ActionID,PageID). 
                
% computes a set of actions’ lists for a specific role 
rolePagesActionsList(RoleName,Bag):-  
                 setof([PageName, ActionID, RList, PageID], 
         rolePagesActions(RoleName,PageName ,PageID,  
                 ActionID, RList) ,Bag). 
 
% computes actions’ set difference between two roles 
anonAccessAdmin_Actions(RoleName1,RoleName2):-    
                  rolePagesActionsList(RoleName1,Bag),                     
                  rolePagesActionsList(RoleName2,Bag2), 
                  remBag(Bag2,Bag,[],Result), 
                  printlists(Result). 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Prolog rules to check for unauthorized access on the application’ entities

based on the server environment variables accessed and SQL statement covered and SQL

statement’s use of the application variables.

In the following subsections we demonstrate three testing scenarios to illustrate how our

framework can be used for:

• Web application testing for unauthorized access.

• Web applications role-based access control maintenance.

• Web applications role-based access control reengineering.



CHAPTER 9. EXAMPLES 166

Role PID Page_Name
AnonUsingAdmin    145 modcp   
AnonUsingAdmin    225 posting  
AnonUsingAdmin    388 viewonline   
AnonUsingAdmin    794 adminindex

Table 9.5: Unauthorized pages access for a guest user attempting to access administrator’s
links

9.1.1 Testing for Unauthorized Access

Most web applications try to implement access control polices using obscurity, where links

to pages are not presented to unauthorized users. This method of protection is not sufficient

because attackers can attempt to access hidden URLs, knowing that sensitive information

and functions lie behind these URLs. In this testing scenario we show how our framework

can be used to check for unauthorized access to the application resources including pages,

server environment variables and entities. Specifically, we check whether an anonymous

user can access any unauthorized content of the PhpBB2.0 by allowing him to access all of

the links that an administrator can see when accessing the same forum.

To check for this capability, we first implement and run a Watir test case that dynami-

cally collects all the links and forms’ inputs in all the PhpBB 2.0 pages for the administrator

role, and stores them in an Excel spreadsheet. We excluded the administrator visits to the

administration panel which includes the forum’s management’s tasks. Second, using the

data collected in the spreadsheet, we run another Watir test case that uses this data to

navigate the forum as an anonymous user role. Third, the execution trace collected for the

anonymous user attempting to access administrator links and data is used by PHP2XMI

and WAFA to generate a sequence diagram to reflect this behaviour. We then used 2Se-

qureUML and SecureUML2Prolog to generate the SecureUML model and Prolog program

for this scenario.

Our goal is to compare the access control Prolog facts collected in this scenario with

those collected for a legitimate visit of an anonymous user to the forum. We run a Prolog



CHAPTER 9. EXAMPLES 167

PID P_Name P_Parameter Link Name PhpBB react 
code

18 faq    ?mode=bbcode    BBCode 3
109 index ?mark=forums    Mark all forums read 3
126 login ?logout=true , sid=fd3c29892f7b5aea4c2e0bf1b6e2b304    Log out [ alalfi ] 3
145 modcp ?f=2 , sid=0f206abbbc89963e0df82dcd77ad44f3    moderate this forum 2
145 modcp ?f=2 , start=0 , sid=0f206abbbc89963e0df82dcd77ad44f3    moderate this forum 2
145 modcp ?mode=ip , p=5 , t=3 , sid=fd3c29892f7b5aea4c2e0bf1b6e2b    View IP address of poster 2
145 modcp ?t=3 , mode=delete , sid=0f206abbbc89963e0df82dcd77ad4    Delete this topic 2
145 modcp ?t=3 , mode=lock , sid=fd3c29892f7b5aea4c2e0bf1b6e2b304    lock this topic 2
145 modcp ?t=3 , mode=move , sid=0f206abbbc89963e0df82dcd77ad44f3    Move this topic 2
145 modcp ?t=3 , mode=split , sid=fd3c29892f7b5aea4c2e0bf1b6e2b304    Split this topic 2
225 posting ?mode=delete , p=5 , sid=0f206abbbc89963e0df82dcd77ad4  Delete this post 2
225 posting ?mode=editpost , p=5    Edit/Delete this post 2
225 posting ?mode=newtopic , f=2    new topic 1
225 posting   ?mode=quote , p=5    Reply with quote 1
225 posting ?mode=reply , t=3    post reply 1
225 posting ?mode=smilies    view more Emoticons 3
257 privmsg    ?folder=inbox , mode=read , p=1    Inbox 1
257 privmsg ?folder=inbox , sid=fd3c29892f7b5aea4c2e0bf1b6e2b304    Log in to check your private 

messages
1

257 privmsg ?folder=outbox    Outbox 1257 privmsg ?folder outbox    Outbox 1
257 privmsg   ?folder=savebox    Savebox 1
257 privmsg  ?folder=sentbox    Sentbox 1
257 privmsg    ?mode=post    newpost 1
324 search    ?search_id=egosearch    View your posts 1
324 search    ?search_id=newposts    View posts since last visit 1
391 viewtopic  ?t=3 , start=0 , postdays=0 , postorder=asc , highlight=    3
391 viewtopic    ?t=3 , watch=topic , start=0 , sid=fd3c29892f7b5aea4c2e0bf1    Watch this topic for replies 3

794 adminindex   ?sid=fd3c29892f7b5aea4c2e0bf1b6e2b304    1

126 login ?redirect=admin/index.php , sid=67f7242f66b2f47a7651675e    Redirection

126 login ?redirect=posting.php , mode=newtopic , f=2    Redirection
126 login ?redirect=posting.php , mode=quote , p=5    Redirection
126 login ?redirect=posting.php , mode=reply , t=3    Redirection
126 login ?redirect=privmsg.php , folder=inbox , mode=post    Redirection
126 login ?redirect=privmsg.php , folder=inbox , mode=read , p=1    Redirection
126 login ?redirect=search.php , search_id=egosearch    Redirection
126 login ?redirect=search.php , search_id=newposts    Redirection

Table 9.6: Unauthorized pages access with parameters for a guest user attempting to access
administrator’s links. PhpBB react code: access redirected(1), error message(2),
access allowed(3)

query that computes the set differences of page access, server environment variable access,

and access to the application entities. Figure 9.2 shows a sample of Prolog queries used to

implement this goal, and query results are presented in Tables 9.5, 9.6, 9.7, 9.8.

After analyzing the results of the Prolog queries, we have determined that PhpBB 2.0

reacts to attempted access to unauthorized resources in three ways:



CHAPTER 9. EXAMPLES 168

PID P_Name Var_ID Http Var_Name Http Var_Value Http Var 
Type

18 faq    19 mode        bbcode    GETDT   
109 index 119 c    $viewcat    1 GETDT   
109 index 120 mark    $mark_read    forums    GETDT   
145 modcp 191 f    $forum_id    2 GETDT   
145 modcp 193 p    $post_id    5 GETDT   
145 modcp    200 t    $topic_id    3 GETDT   
145 modcp  209 confirm    $confirm        POSTDT   
145 modcp    210 start    $start    0 GETDT   
145 modcp    211 mode    $mode    ip    GETDT   
145 modcp 215 sid    $sid    0f206abbbc89963e0df82dcd77ad44f3    GETDT   
225 posting   235 mode    $ $var    delete    GETDT   
225 posting    238 p    $ $var    5 GETDT   
257 privmsg 306 p    $privmsg_id    1 GETDT   
257 privmsg  308 p    $privmsgs_id    1 GETDT   
319 profile   320 sid    $sid    fd3c29892f7b5aea4c2e0bf1b6e2b304    GETDT   
324 search   348 search_author    $search_author    alalfi    GETDT   
324 search   350 search_id    $search_id    egosearch    GETDT   
365 viewforum    380 mark    $mark_read    topics    GETDT   
391 viewtopic    413 postorder    $post_order    asc    GETDT   

Table 9.7: Unauthorized server’s environment variables access for a guest user attempting
to access administrator’s links

1. Attempted access to some pages is redirected to the login page. Examples are access

to the posting pages (255), privmsg pages (257), adminindex page (794), and the

search pages (324). The last eight entries in Table 9.6 show these redirections to the

login page.

2. Other pages are not properly protected, as they are not redirected to the login page. If

such pages are illegitimately accessed an error message is reflected back such as “invalid

session ID”. Access to the modcp (145) pages, shown in Table 9.6, are examples of

this case.

3. Some others are not protected at all, thus a guest user can access the pages and

execute all actions associated with them. Access to faq (18), index (109), and posting

(255) are examples of this case.

Table 9.7 shows the result of executing the Prolog set difference query on server envi-

ronment variables, and Figure 9.8 shows the result of executing the Prolog set difference



CHAPTER 9. EXAMPLES 169

PID P_Name Action 
ID

Action return‐value  Action_constraint Action alises

145 modcp    152 f.forum_id, f.forum_name, f.forum_topics    t . topic_id = $topic_id and f . forum_id = 
t . forum_id   

phpbb_topics t, phpbb_forums f   

145 modcp 157 forum_name, forum_topics    forum_id = $forum_id    phpbb_forums   
225 posting 226 *    forum_id = $forum_id    phpbb_forums   
225 posting   227 f.*, t.topic_status, t.topic_title, t.topic_type    t . topic_id = $topic_id and f . forum_id = 

t . forum_id   
phpbb_forums f, phpbb_topics t   

225 posting    228 f.*, t.topic_id, t.topic_status, t.topic_type, 
t.topic_first_post_id, t.topic_last_post_id, t.topic_vote, 
p.post_id, p.poster_id, t.topic_title, p.enable_bbcode, 
p.enable_html, p.enable_smilies, p.enable_sig, 
p.post_username, pt.post_subject, pt.post_text, 
pt.bbcode_uid, u.username, u.user_id, u.user_sig, 
u.user_sig_bbcode_uid   

p . post_id = $post_id and t . topic_id = p 
. topic_id and f . forum_id = p . forum_id 
and pt . post_id = p . post_id and u . 
user_id = p . poster_id   

phpbb_posts p, phpbb_topics t, 
phpbb_forums f, phpbb_posts_text 
pt, phpbb_users u   

225 posting   868 emoticon, code, smile_url    phpbb_smilies   
324 search 329 post_id    poster_id IN ($matching_userids)    phpbb_posts   
324 search   336 topic_id    topic_replies = 0 and topic_moved_id = 

0   
phpbb_topics   

324 search   341 pt.post_text, pt.bbcode_uid, pt.post_subject, p.*, 
f.forum_id, f.forum_name, t.*, u.username, u.user_id, 
u.user_sig, u.user_sig_bbcode_uid   

p . post_id IN ($search_results) and         
pt . post_id = p . post_id and f . forum_id 
=  p . forum_id and p . topic_id = t . 
topic_id and p . poster_id = u . user_id   

phpbb_forums f, phpbb_topics t, 
phpbb_users u, phpbb_posts p, 
phpbb_posts_text pt   

388 viewonline    389 forum_name, forum_id    phpbb_forums   

388 viewonline   390 u.user_id, u.username, u.user_allow_viewonline, 
u.user_level, s.session_logged_in, s.session_time, 
s.session_page, s.session_ip   

u . user_id =  s . session_user_id and        
s . session_time >= (time ()  ‐  300)   

phpbb_users u, phpbb_sessions s   

391 viewtopic   393 t.topic_id    t2 . topic_id = $topic_id and t . forum_id 
= t2 . forum_id and t . topic_moved_id = 
0 and t . topic_last_post_id > t2 . 
topic_last_post_id   

phpbb_topics t, phpbb_topics t2   

Table 9.8: Unauthorized SQL statement access for a guest user attempting to access an
administrator’s links

query on the application actions, entities and attributes.

9.1.2 Web application maintenance

Our framework can be used for web application role-based access control (RBAC) mainte-

nance purposes. For example, this can be useful when the testing engineer has identified

an access control security feature that is legitimacy permitted to a specific role and wants

to disable this feature. Our framework will help locate all the pages and database state-

ments that allow this feature as a step towards fixing the code to prevent this access. In

PhpBB 2.0, we have noticed than an anonymous user is allowed to see other users’ profile

information, a feature that may lead to a privacy violation for the forum members. We

executed a Prolog query that searches for profile information in all accesses represented in



CHAPTER 9. EXAMPLES 170

 

Testing senario2: Our framework can be used for  web application RBAC maintenance  
purposes. Particularly if the testing engineer has identified an access control security feature that 
is legitimacy permitted to a specific role and wants to disable this feature. Our framework will 
help locate all the pages and database statements that allow this feature as a step towards fixing 
the code to prevent this access. In PhpBB 2.0, we have noticed than an anonymous user is 
allowed to see other users profile information, a feature that may lead to some privacy violation 
for the forum members. We executed a prolog query that will search for profile information in all 
return facts in the recovered model of an Anonymous user. The query returns information an 
about the pages that permits such access, and it also identifies SQL statements that retrieves such 
information. Identifying the pages and SQL statements that allow this feature will help the 
software engineer to update the code to restrict the gust access for such features. 

% search for pages & actions that allows a user to access other users’ Emails 
anon_email_retrieved(PageID,PageName,ActionID,AcTS,RoleName):-         
     appRole(RolNum,RoleName), return(RolNum,SelList,ActionID,PageID),  
     split_string(SelList,', ',SelAtoms), 
    member(user_viewemail,SelAtoms), pageNameID(RolNum, PageName,PageID),  
     permActionTimeS(RolNum,_,ActionID,AcTS). 
 
% computes & prints the set of pages & actions collected by anon_email_retrieved  
anon_email_retrievedList(RoleName,Bag2):-    
     setof([PageID,PageName,ActionID,AcTS],  
      anon_email_retrieved(PageID,PageName,ActionID,AcTS ,RoleName),Bag), 
    printlists(Bag). 

 
 

 

 

 

 

 

 

 

 

 

Figure 9.3: Prolog rules to check for Guest access on other registered users’ profiles

the recovered model of a registered user. The query returns information on all availables

in the registered role that permit such access, and identifies SQL statements that retrieves

this information. Identifying the pages and SQL statements that allow this feature will

help the software engineer to update the code to restrict the guest access for such features.

Figure 9.3 shows a sample of the Prolog queries used to implement this goal, and Table 9.9

presents the result of executing these queries.

9.1.3 Web Applications Reengineering

In PhPBB 2.0, we have noticed that the administrator management tasks are protected by

providing a valid administrator username and password via a login page. Users who provide

such information can access all the forum management tasks afterwards. The way this is

implemented is by having all the role validation checked at the beginning of each restricted

page using a call to a “pagestart” function that implements the validation process based

on sessions information, after which it decides the level of access. After commenting out

such code in the “pagestart”, an anonymous user was able to access all the administrator

management pages, given that he knows the URL address for them. Figure 9.2 shows

the source code of the “pagestart” file and highlights the part of it that is responsible of

controlling the access.

To address this issue along with the fact that most web application’s access control



CHAPTER 9. EXAMPLES 171

PID Page_Name Action 
ID

Action return‐value Action_constraint Action alises

109 index

139 memberlist

257 privmsg

319 profile

324 search

126 login

145 modcp

391 viewtopic

225 posting

863  u.user_id, u.user_email, u.user_lang 

tw . topic_id = $topic_id and tw . 
user_id NOT IN ($userdata 
[user_id], ‐ 1, $row [ban_userid]) 
and tw . notify_status = 0 and u . 
user_id = tw . user_id

phpbb_topics_watch 
tw, phpbb_users u

140

 username, user_id, user_viewemail, 
user_posts, user_regdate, user_from, 
user_website, user_email, user_icq, 
user_aim, user_yim, user_msnm, 
user_avatar, user_avatar_type, 
user_allowavatar

user_id <> ‐ 1 ORDER BY 
$order_by 

phpbb_users

400

 u.username, u.user_id, u.user_posts, 
u.user_from, u.user_website, u.user_email, 
u.user_icq, u.user_aim, u.user_yim, 
u.user_regdate, u.user_msnm, 
u.user_viewemail, u.user_rank, u.user_sig, 
u.user_sig_bbcode_uid, u.user_avatar, 
u.user_avatar_type, u.user_allowavatar, 
u.user_allowsmile, p.*, pt.post_text, 
pt.post_subject, pt.bbcode_uid

 p . topic_id = $topic_id 
$limit_posts_time and pt . 
post_id = p . post_id and u . 
user_id = p . poster_id 

phpbb_posts p, 
phpbb_users u, 
phpbb_posts_text pt

Table 9.9: List of pages and actions that permits a user to access other user’s Email address

are implemented using obscurity, such applications need to be reengineered to employ a

strict security model not only on the level of page access but also on the level of server

environment variable access as well as access to application entities and attributes.

Our framework automatically generates a role-based security model for an existing web

application, which can then be reviewed by a security engineer either by accessing the vi-

sualized SecureUML model using any modeling tool that supports UML2.0 (such as RSA

[105]), or by exploring the Prolog representation for the generated security model. Either

way the security engineer can check for the absence of any legitimate access or the existence

of any unauthorized access to the web application under test. Since the recovered model

provides a fined-grained access information down to the level of the application’s entities’

attributes, the software engineer can explore the effect of a proposed update to the access



CHAPTER 9. EXAMPLES 172

<?php

if (! defined ('IN_PHPBB')) 
{
    die ("Hacking attempt"); 
}

define ('IN_ADMIN', true); 
include ($phpbb_root_path.'common.'.$phpEx); 
$userdata = session_pagestart ($user_ip, PAGE_INDEX); 
init_userprefs ($userdata); 

if (! $userdata ['session_logged_in']) 
{
    redirect (append_sid ("login.$phpEx?redirect=admin/index.$phpEx", true)); 
}
else
if ($userdata ['user_level'] != ADMIN) 
{
    message_die (GENERAL_MESSAGE, $lang ['Not_admin']); 
}
if ($HTTP_GET_VARS ['sid'] != $userdata ['session_id']) 
{
    redirect ("index.$phpEx?sid=".$userdata ['session_id']); 
}
if (! $userdata ['session_admin']) 
{
    redirect (append_sid ("login.$phpEx?redirect=admin/index.$phpEx&admin=1", true));
}

if (empty ($no_page_header)) 
{
    include ('./page_header_admin.'.$phpEx); 
}
ob_flush (); 

?>

Figure 9.4: PageStart.php file in PhpBB 2.0, code that control the access on adminstration
management pages is highlighted

model either by updating the security model directly or by updating the Prolog represen-

tation. Once the security model is revised to reflect the new access control requirements,

it can be used to restructure the application database schema, such that the security check

will be employed on each access of any of the application entities’ attributes based on the

role of the user accessing the application. The database access in the legacy web application

can be updated accordingly based on the new database restructuring. This will be possi-

ble by the unique numbering generated by our framework and associated with each SQL

statement and server environment variable located in any of the application’s server pages.



CHAPTER 9. EXAMPLES 173

9.2 Conclusions

This chapter presents a demonstration of our security analysis framework on one of the

medium-sized production applications, PhpBB 2.0. Specifically, we have illustrated the use

of our framework in security analysis, testing, maintenance and rengineering using PhpBB

2.0 as an example. In the next chapter, we present our vision for a future large scale

evaluation to better test the effectiveness of this work. We also discuss possible extensions

and adaption of the framework to address other security analysis tasks.



Chapter 10

Summary and Future Work

In this thesis, we focused on one of the most serious web application vulnerabilities, broken

access control. Current technologies such as anti-virus software programs and network

firewalls provide reasonably secure protection at the host and network levels, but not at the

application level. When network and host-level entry points are comparatively secure, public

interfaces of web applications become the focus of malicious software attacks. Attackers

often try to access unauthorized objects and resources other than URL pages in an indirect

way; for instance, using indirect access to back-end resources such as databases. The

consequences of these attacks can be very destructive, especially when the web application

allows administrators to remotely manage users and contents over the web. In such cases,

the attackers are not only able to view unauthorized content, but also to take over site

administration.

To protect against these types of attacks, we have designed and implemented a secu-

rity analysis framework for dynamic web applications. A reverse engineering process is

performed on an existing dynamic web application to extract a role-based access-control

security model. A formal analysis is applied on the recovered model to check access-control

security properties. This framework can be used to verify that a dynamic web application

conforms to access control polices specified by a security engineer.

174



CHAPTER 10. SUMMARY AND FUTURE WORK 175

Our approach makes use of Model Driven Engineering. It automatically constructs

a role-based access control security model from the recovered structural and behavioral

models. We use TXL, a source transformation technology, to implement the automatic

model-to-model transformation and composition. The generated model is represented in

the UML 2.1 exchange format, XMI 2.1.

Based on the model-to-model transformation approach, we have also developed a tool

to automatically transform the semi-formal UML 2.1 security model into a formal model to

ease the process of verifying the system against security properties. Our framework provides

a set of novel techniques for the analysis and modeling of web applications for the purpose

of security verification and validation. It is largely language independent, and based on

adaptable model recovery which can support a wide range of security analysis tasks and

systems.

Following are some of the key contributions of this research:

A comprehensive survey of modeling methods used in web site verification and

testing

Models are considered an essential step in capturing different system behaviors and

simplifying the analysis required to check or improve the quality of software. Verifi-

cation and testing of web software requires effective modeling techniques that address

the specific challenges of web applications. In our survey, based on a short catalogue

of desirable properties of web applications that require analysis, two different views of

the methods are presented: a general categorization by modeling level, and a detailed

comparison based on property coverage. To the best of our knowledge this is the

first study that provides a comprehensive review and comparative study of modelling

methods that are currently applied in the field of web application verification and

testing.



CHAPTER 10. SUMMARY AND FUTURE WORK 176

SQL2XMI: an automated transformation approach from an SQL (DDL) schema

to an open UML2.0-adapted class model

In the second part of this thesis we designed and implemented an automated transfor-

mation from an SQL (DDL) schema to an open XMI 2.1 UML-adapted class model.

The adapted model is a tailored UML class model to represent the basic ER diagram

components, including entities, attributes, relations, and primary keys. Our transfor-

mation technique with its tool, SQL2XMI, is a novel one in that it is open, non-vendor

specific, and targeted at the standard UML 2.1 exchange format, XMI 2.1. Although

comparable commercial transformations exist, they are closed technologies targeted

at formats tightly coupled to the vendor’s tools, hindering portability and preventing

users from choosing their preferred tools in the development process.

To bring our prototype tool to an industrial level, several improvements will be needed.

It must be generalized to handle SQL database schemas other than MySQL and XMI

2.x versions other than 2.1. Using TXL gives us the ability to integrate handling of

other implementations of the SQL standard quickly, simply by overriding the SQL

grammar to add the forms of each vendor’s specific extensions.

In Chapter 4, we have begun with just the MySQL implementation of the SQL data

definition language (DDL), leaving the improvement of the grammar file to include

the data manipulation part (DML) and support for other vendors’ implementations

to future work. Our transformation also does not yet take advantage of all of the

information available in the schema. Using a more comprehensive transformation rule

set, we hope to recover a richer ER model.

Finally, while in this work we have concentrated on reverse engineering an existing

MySQL schema to a UML entity relationship diagram, in the future we could use

the same technique in the forward engineering direction, using the same technology

to generate different SQL database implementations from an ER diagram designed



CHAPTER 10. SUMMARY AND FUTURE WORK 177

using any UML toolset that supports XMI 2.1 export.

Php2XMI and WAFA: An approach to automatically instrument, analyze and

model the dynamic behaviour of web applications

In the third part we designed and implemented an approach to automatically instru-

ment dynamic web applications using source transformation technology, and to recover

a sequence diagram from the execution traces generated by the resulting instrumen-

tation. Using an SQL database to store generated execution traces, our approach

automatically filters traces to reduce redundant information that may complicate

program understanding.

While our current implementation ignores any redundant traces, loops and condi-

tions in web applications can be easily detected and explicitly modeled. We are also

planning the integration of sequence diagrams from different sessions to generate one

complete sequence diagram for the entire web application.

Furthermore, we developed WAFA, an automated reverse engineering approach to

recover fine-grained interaction behavior of dynamic web applications. To the best of

our knowledge, our approach is the first one to extract the web application’s embedded

SQL subsystem, which includes both the original SQL statement source as well as

corresponding execution instances, and an analysis to attach it to both static host

application variables and dynamic server environment variables.

We are currently expanding the set of test cases for PhpBB and Moodle, and plan to

extend our evaluation to other PHP-based applications. Our approach is primarily

aimed at server side code, since we have been working with traditional PHP-based

web applications. AJAX requests can also be, and in many cases are, implemented

in PHP. When used with AJAX, our technique can be used to directly link HTTP

request variables to the database interactions of the AJAX request. This may help

in analysis of AJAX applications as well as traditional applications. Finally, we are



CHAPTER 10. SUMMARY AND FUTURE WORK 178

working on generalizing PHP2XMI and WAFA for use in testing other web application

vulnerabilities.

DWASTIC: An automated instrumentation coverage approach

The dynamic analysis is supported by our developed automated instrumentation cov-

erage approach to decrease the percentage of false positives. In support of this ap-

proach we proposed a set of new coverage metrics, specialized for dynamic web appli-

cations. In addition, we performed a great deal of analysis on the embedded database

interaction in the host application. This includes automated distilling of the SQL

embedded system, analyzing it, and modeling it as a part of the whole system.

As future work, we plan to extend the approach to handle other web technologies and

database engines and to evaluate it on a wide range of applications of different sizes.

We also plan to use DWASTIC to support other testing activities for web applications,

such as SQL injection and cross-site scripting analysis.

PHP2SecureUML and SecureUML2Prolog: an approach to automatically con-

struct a role-based access control security model

In the fourth part, making use of Model Driven Engineering, we automatically con-

structed a role-based access control security model from the recovered structural and

behavioral models. We use TXL to implement the automatic model to model trans-

formation and composition. The generated model is also represented in the UML 2.1

exchange format, XMI 2.1. In the last part, we developed, based on model-to-model

transformation approach, a tool to transform the semi-formal UML 2.1 security model

into a formal model represented in Prolog to ease the process of verifying the system

against security properties.

This Ph.D. dissertation work has thus far been aimed at automatically detecting security

vulnerabilities in dynamic web applications [11]. As future work I will extend my security



CHAPTER 10. SUMMARY AND FUTURE WORK 179

analysis framework to help improve attack tolerance of software systems. Critical informa-

tion systems are becoming more distributed and open, which increases their vulnerability

to attackers and calls for new methods and technologies to counter-attack and protect the

systems [147].

Attacks can target different levels of software such as the network, the host or the ap-

plication. Firewalls, anti-virus software, and intrusion detection systems act as preventive

anti-attack techniques. However, these are frequently targeted by attackers aiming to dis-

able these defenses so that future attacks go undetected. A survivable and dependable

system needs not only to detect the presence of attacks or faults, but also to function prop-

erly in the face of these faults, especially in mission-critical systems. At the same time,

these mission critical systems should also be able to survive faults that are random and

unpredictable in nature [124]. As a result, there is an urgent need for frameworks that

focus on integrating different security techniques to block, evade, and react to attacks, thus

improving system survivability [168].

In this future project, I will generalize my PhD framework to account for different kinds

of attacks. Source transformation technology [55] will be used to automatically transform

the system into a more attack-tolerant one [147]. A protection mechanism will be proposed

and modeled, and a set of testing techniques will be defined and applied to the proposed

protection system to ensure its feasibility.

I will start with hardening the application to evade the problem of broken access control,

then generalizing my technique to handle other security attacks. Most web application

access control policies are implemented using obscurity. Thus, such applications need to be

reengineered to employ a strict security model not only on the level of page access but also

on the level of server environment variable access and the application entities and attributes.

My PhD framework automatically generates a role-based access control (RBAC) security

model for an existing web application [11], which can then be reviewed by a security engineer

either by accessing the visualized SecureUML model on any modeling tool that supports



CHAPTER 10. SUMMARY AND FUTURE WORK 180

UML2.0 (such as RSA [105]) , or by accessing the Prolog representation for the generated

security model. Either way the security engineer can check the absence to any legitimate

access or the existence of any unauthorized access to the web application under test. As

the recovered model provides fined-grained access information down to the level of the

application entities’ attributes, the software engineer can decide on any update for this

RBAC model either by updating the security model directly or by updating the Prolog

representation of the security model.

When the security model is revised to reflect the new RBAC security requirements, it

can be used to restructure the application database schema such that the RBAC security

check will be employed on each access of any of the application entities attributes. My plan

is to leverage the same technique I used to develop SQL2XMI [8], a tool that constructs

UML2.0 ER diagram from an SQL scheme, to automatically restructure the schema, but

this time starting with the recovered security model as source of the transformation and

the RBAC secured SQL schema as a target. The resulting SQL schema represents the new

database restructuring which will assist in avoiding the RBAC security vulnerabilities in

the legacy web application.

My PhD framework creates links between the recovered security model elements and

the source code. These links will be used to reengineer the source code so that the database

access in the legacy web application can be updated accordingly to comply with the new

database restructuring.



Bibliography

[1] Object Management Group (OMG) , UML OCL2 Specification, version 2.0.

http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005, Date of Access (Oct 28,

2007).

[2] Object Management Group (OMG) , Unified Modeling Language: Superstructure.

http://www.omg.org/docs/formal/05-07-04.pdf, August 2005, Date of Access (Oct

28, 2007).

[3] MySQL, MySQL Market Share, http://www.mysql. com/why-mysql/marketshare/ ,

last access Nov 26, 2008.

[4] Rateb Abu-Hamdeh, James R. Cordy, and T. Patrick Martin. Schema translation

using structural transformation. In CASCON, pages 202–215, 1994.

[5] A.De Lucia, M.Giordano, G.Polese, G.Scanniello, and G.Tortora. Role based reengi-

neering of Web applications. In Proceedings of the Seventh IEEE International Sym-

posium on Web Site Evolution (2005), pages 103–110, USA.

[6] Gail-Joon Ahn and Hongxin Hu. Towards realizing a formal RBAC model in real

systems. In Volkmar Lotz and Bhavani M. Thuraisingham, editors, SACMAT, pages

215–224. ACM, 2007.

181



BIBLIOGRAPHY 182

[7] Gail-Joon Ahn and Ravi S. Sandhu. Role-based authorization constraints specifica-

tion. ACM Trans. Inf. Syst. Secur., 3(4):207–226, 2000.

[8] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. SQL2XMI: Reverse Engi-

neering of UML-ER Diagrams from Relational Database Schemas. In WCRE 2008,

Proceedings of the 15th Working Conference on Reverse Engineering, Antwerp, Bel-

gium, October 15-18, pages 187–191.

[9] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. A Survey of Analysis Models

and Methods in Website Verification and Testing. In Proceedings of the 7th Interna-

tional Conference on Web Engineering (ICWE), Como, Italy, pages 306–311, 2007.

[10] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. A Survey of Analysis Models

and Methods in Website Verification and Testing. Technical Report 2007-532, School

of Computing, Queen’s University, 2007.

[11] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. A Verification Framework for

Access Control in Dynamic Web Applications. In C3S2E, Canadian Conference on

Computer Science and Software Engineering, Montral, ACM International Conference

Proceeding Series, pages 109–113, 2009.

[12] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automated Reverse Engineer-

ing of UML Sequence Diagrams for Dynamic Web Applications. IEEE International

Conference on Software Testing Verification and Validation Workshop, 0:287–294,

2009.

[13] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Modeling methods for web

application verification and testing: State of the art. Software Testing, Verification

and Reliability, pages 265–296, 2009.



BIBLIOGRAPHY 183

[14] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. WAFA: Fine-grained Dy-

namic Analysis of Web Applications. In 11th IEEE International Symposium on Web

Systems Evolution (WSE 2009), 25-26 September 2009, Edmonton, Canada, pages

41–50, 2009.

[15] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automating Coverage Metrics

for Dynamic Web Applications. In CSMR 2010, (to appear).

[16] Khaled Alghathbar and Duminda Wijesekera. authUML: a three-phased framework

to analyze access control specifications in use cases. In FMSE ’03: Proceedings of the

2003 ACM workshop on Formal methods in security engineering, pages 77–86, New

York, NY, USA, 2003. ACM Press.

[17] M. Alpuente, D. Ballis, and M. Falaschi. Rule-based verification of Web sites. Int. J.

Softw. Tools Technol. Transf., 8(6):565–585, 2006.

[18] Maŕıa Alpuente, Demis Ballis, and Moreno Falaschi. A Rewriting-based Framework

for Web Sites Verification. Electr. Notes Theor. Comput. Sci, 124(1):41–61, 2005.

[19] Maŕıa Alpuente, Demis Ballis, Moreno Falaschi, Pedro Ojeda, and Daniel Romero.

A Fast Algebraic Web Verification Service. In Proceedings of the First International

Conference on Web Reasoning and Rule Systems, RR 2007, Innsbruck , Austria, June

7-8, Lecture Notes in Computer Science, pages 239–248. Springer, 2007.

[20] Maria Alpuente, Demis Ballis, Moreno Falaschi, and Daniel Romero. A Semi-

Automatic Methodology for Repairing Faulty Web Sites. In Proceedings of the Fourth

IEEE International Conference on Software Engineering and Formal Methods SEFM,

pages 31–40, Washington, DC, USA, 2006. IEEE Computer Society.

[21] Scott Ambler. A UML profile for data modeling. www.agiledata.org: Techniques for

Successful Evolutionary/Agile Database Development, 2006.



BIBLIOGRAPHY 184

[22] Scott Ambler. Agile database techniques. John Wiley and Sons, Indianapolis, Indiana,

USA, October 2003.

[23] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. UML2Alloy:

A Challenging Model Transformation. In Proceedings of the 10th International Confer-

ence on Model Driven Engineering Languages and Systems, MoDELS 2007, Nashville,

USA, September 30 - October 5, volume 4735 of Lecture Notes in Computer Science,

pages 436–450. Springer, 2007.

[24] Anneliese Amschler Andrews, Jeff Offutt, and Roger T. Alexander. Testing Web

applications by modeling with FSMs. Software and System Modeling, 4(3):326–345,

2005.

[25] Giuliano Antoniol, Massimiliano Di Penta, and Michele Zazzara. Understanding Web

Applications through Dynamic Analysis. In Proceedings of the 12th International

Workshop on Program Comprehension (IWPC 2004), 24-26 June, Bari, Italy, pages

120–131. IEEE Computer Society, 2004.

[26] Charles W. Bachman. Data structure diagrams. SIGMIS Database, 1(2):4–10, 1969.

[27] D. Ballis and D. Romero. Fixing Web Sites Using Correction Strategies. Proceedings

of the 2nd International Workshop on Automated Specification and Verification of

Web Systems, 2006. WWV ’06. , pages 11–18, Nov. 2006.

[28] David A. Basin. Model driven security. In First International Conference on Avail-

ability, Reliability and Security, ARES, April 20-22, Vienna University of Technology,

Austria.

[29] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In

Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of

Real-Time Systems: 4th International School on Formal Methods for the Design of



BIBLIOGRAPHY 185

Computer, Communication, and Software Systems, SFM-RT 2004, number 3185 in

LNCS, pages 200–236. Springer–Verlag, September 2004.

[30] Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini. WebUML: reverse engi-

neering of web applications. In Proceedings of the 2004 ACM Symposium on Applied

Computing SAC, Nicosia, Cyprus, pages 1662–1669, 2004.

[31] Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini. Webuml: reverse en-

gineering of web applications. In Hisham Haddad, Andrea Omicini, Roger L. Wain-

wright, and Lorie M. Liebrock, editors, SAC, pages 1662–1669. ACM, 2004.

[32] Michael Benedikt, Juliana Freire, and Patrice Godefroid. VeriWeb: Automatically

Testing Dynamic Web Sites. In Proceedings of the 11th International World Wide

Web Conference, Hawai, U.S.A., May 2002.

[33] Behzad Bordbar and Kyriakos Anastasakis. MDA and analysis of web applications.

In Proceedings of the Trends in Enterprise Application Architecture, volume 3888 of

Lecture Notes in Computer Science, pages 44–55. Springer, 2005.

[34] Marco Brambilla, Jordi Cabot, and Nathalie Moreno. Tool Support for Model Check-

ing of Web Application Designs. In Proceedings of the 7th International Conference

on Web Engineering (ICWE), Como, Italy, pages 533–538, 2007.

[35] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the Reverse Engineering

of UML Sequence Diagrams for Distributed Java Software. IEEE Trans. Software

Eng., 32(9):642–663, 2006.

[36] Lionel C. Briand, Yvan Labiche, and Y. Miao. Towards the Reverse Engineering of

UML Sequence Diagrams. In WCRE, pages 57–66, 2003.



BIBLIOGRAPHY 186

[37] Maŕıa José Suárez Cabal and Javier Tuya. Using an SQL coverage measurement

for testing database applications. In Proceedings of the 12th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, 2004, Newport Beach,

CA, USA, October 31 - November 6, pages 253–262, 2004.

[38] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, and Giuseppe A. Di Lucca.

Decomposing legacy systems into objects: an eclectic approach. Inf. & Soft. Tech.,

43(6):401–412, 2001.

[39] Canoo Engineering. Canoo WebTest, http://webtest.canoo.com, accessed 30 April

2009.

[40] Daniela Castelluccia, Marina Mongiello, Michele Ruta, and Rodolfo Totaro. WAVer:

A Model Checking-based Tool to Verify Web Application Design. Electr. Notes Theor.

Comput. Sci., 157(1):61–76, 2006.

[41] Paolina Centonze, Robert J. Flynn, and Marco Pistoia. Combining static and dynamic

analysis for automatic identification of precise access-control policies. In 23rd Annual

Computer Security Applications Conference (ACSAC 2007), December 10-14, 2007,

Miami Beach, Florida, USA, pages 292–303, 2007.

[42] Paolina Centonze, Gleb Naumovich, Stephen J. Fink, and Marco Pistoia. Role-based

access control consistency validation. In ISSTA, pages 121–132, 2006.

[43] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language (WebML):

a modeling language for designing Web sites. In Proceedings of the 9th international

World Wide Web conference on Computer networks, pages 137–157, Amsterdam, The

Netherlands, 2000. North-Holland Publishing Co.

[44] Daniel T. Chang. Integrating Rational Software Architect with Rational Data Archi-

tect. IBM developerWorks, 2007.



BIBLIOGRAPHY 187

[45] Jessica Chen and Xiaoshan Zhao. Formal Models for Web Navigations with Session

Control and Browser Cache. In Proceedings of the 6th International Conference on

Formal Engineering Methods and Software Engineering, ICFEM 2004, Seattle, WA,

USA, November 8-12, pages 46–60, 2004.

[46] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of data.

ACM Trans. Datab. Syst., 1(1):9–36, 1976.

[47] Joanna Chimiak Opoka, Michael Felderer, Chris Lenz, and Christian Lange. Query-

ing UML Models using OCL and Prolog: A Performance Study. Software Testing

Verification and Validation Workshop, IEEE International Conference on, 0:81–88,

2008.

[48] Eun-Hye Choi and Hiroshi Watanabe. Model Checking Class Specifications for Web

Applications. In Proceedings of the 12th Asia-Pacific Software Engineering Conference

(APSEC ), Taipei, Taiwan, pages 67–78, 2005.

[49] Sam Chung and Eric Hartford. Bridging the gap between data models and implemen-

tations: XMI2SQL. In AICT/ICIW, page 201, 2006.

[50] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.

NUSMV: A New Symbolic Model Checker. Proceedings of the International Jour-

nal on Software Tools for Technology Transfer STTT, 2(4):410–425, 2000.

[51] Anthony Cleve and Jean-Luc Hainaut. Dynamic Analysis of SQL Statements for

Data-Intensive Applications Reverse Engineering. In WCRE 2008, 15th Working

Conference on Reverse Engineering, pages 192–196, October 2008.

[52] Jorge Coelho and Mário Florido. VeriFLog: A Constraint Logic Programming Ap-

proach to Verification of Website Content. In Proceedings of the International Work-

shops on Advanced Web and Network Technologies, and Applications, APWeb 2006,



BIBLIOGRAPHY 188

Harbin, China, volume 3842 of Lecture Notes in Computer Science, pages 148–156.

Springer, 2006.

[53] Jorge Coelho and Mário Florido. Type-Based Static and Dynamic Website Verifica-

tion. In Proceedings of the International Conference on Internet and Web Applications

and Services (ICIW 2007), May 13-19, Le Morne, Mauritius, page 32. IEEE Com-

puter Society, 2007.

[54] J. Conallen. Modeling Web Application Architectures with UML. Communications

of the ACM, 42(10):63–71, 1999.

[55] James R. Cordy. The TXL source transformation language. Sci. Comput. Program.,

61(3):190–210, 2006.

[56] Maria Cuaresma and Nora Koch. Requirements Engineering for Web Applications -

A Comparative Study. J. Web Eng., 2(3):193–212, 2004.

[57] Joumana Dargham and Sukaina Al Nasrawi. FSM Behavioral Modeling Approach for

Hypermedia Web Applications: FBM-HWA Approach. In Proceedings of the Advanced

International Conference on Telecommunications and International Conference on

Internet and Web Applications and Services (AICT/ICIW 2006), 19-25 February,

Guadeloupe, French Caribbean, page 199. IEEE Computer Society, 2006.

[58] D.Basin, J.Doser, and T. Lodderstedt. Model driven security: from UML models

to access control infrastructures. ACM Transactions on Software Engineering and

Methodology, 15(1):39–91, 01 2006.

[59] Luca de Alfaro. Model Checking the World Wide Web. In Gérard Berry, Hubert

Comon, and Alain Finkel, editors, Proceedings of the 13th International Conference

on Computer Aided Verification, volume 2102 of Lecture Notes in Computer Science,

pages 337–349. Springer, July 18-22 2001.



BIBLIOGRAPHY 189

[60] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. MCWEB: A Model-

Checking Tool for Web Site Debugging. In Proceedings of the WWW Posters, Hong

Kong, page 8687, 2001.

[61] Andrea De Lucia, Carmine Gravino, Rocco Oliveto, and Genoveffa Tortora. Data

Model Comprehension: An Empirical Comparison of ER and UML Class Diagrams.

In ICPC, pages 93–102, June 2008.

[62] Olga De Troyer and C. J. Leune. WSDM: A User Centered Design Method for Web

Sites. Computer Networks, 30(1-7):85–94, 1998.

[63] Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou Zhou. A Verifier

for Interactive, Data-Driven Web Applications. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Baltimore, Maryland, USA, pages

539–550, 2005.

[64] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of

data-driven Web applications. Journal of Computer and System Sciences (JCSS),

73(3):442–474, 2007.

[65] Giuseppe A. Di Lucca and Massimiliano Di Penta. Considering Browser Interaction

in Web Application Testing. In Proceedings of the 5th International Workshop on

Web Site Evolution (WSE), pages 74–. IEEE Computer Society, 2003.

[66] Giuseppe A. Di Lucca and Massimiliano Di Penta. Integrating Static and Dynamic

Analysis to improve the Comprehension of Existing Web Applications. In Proceedings

of the Seventh IEEE International Symposium on Web Site Evolution WSE, pages

87–94, Washington, DC, USA, 2005. IEEE Computer Society.

[67] Giuseppe A. Di Lucca and Massimiliano Di Penta. Integrating Static and Dynamic

Analysis to improve the Comprehension of Existing Web Applications. In WSE 2005,



BIBLIOGRAPHY 190

7th IEEE International Workshop on Web Site Evolution, pages 87–94, September

2005.

[68] Giuseppe A. Di Lucca, Massimiliano Di Penta, Anna Rita Fasolino, and Porfirio

Tramontana. Supporting Web Application Evolution by Dynamic Analysis. In IWPSE

2005, 8th International Workshop on Principles of Software Evolution, pages 175–186,

September 2005.

[69] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing Web-based applications: The

state of the art and future trends. Information & Software Technology, 48(12):1172–

1186, 2006.

[70] Giuseppe A. Di Lucca, Anna Rita Fasolino, and Ugo de Carlini. Recovering class

diagrams from data-intensive legacy systems. In ICSM, pages 52–63, 2000.

[71] Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, and Giacomo Piscitelli.

Web Applications Design and Maintenance Using Symbolic Model Checking. In Pro-

ceedings the 7th European Conference on Software Maintenance and Reengineering

(CSMR 2003), 26-28 March, Benevento, Italy, pages 63–72. IEEE Computer Society,

2003.

[72] Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, and Giacomo Piscitelli.

AnWeb: a sytem for automatic support to web application verification. In Proceedings

of the 14th international conference on Software engineering and knowledge engineer-

ing, Ischia, Italy, pages 609–616, July 14-19 2002.

[73] Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, Rodolfo Totaro, and

Daniela Castelluccia. Design Verification of Web Applications Using Symbolic Model

Checking. In Proceedings of the 5th International Conference of Web Engineering,

ICWE, volume 3579 of Lecture Notes in Computer Science, pages 69–74. Springer,

July 27-29 2005.



BIBLIOGRAPHY 191

[74] Paloma Dı́az, Susana Montero, and Ignacio Aedo. Modelling hypermedia and web

applications: the Ariadne Development Method, . Information Systems, 30(8):649–

673, 2005.

[75] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II. Leverag-

ing User-Session Data to Support Web Application Testing. IEEE Transactions on

Software Engineering, 31(3):187–202, 2005.

[76] Mara Jos Escalona, Manuel Mejas, and Jess Torres. Methodologies to develop Web

Information Systems and Comparative Analysis. The European journal for the infor-

matics professional, III, Issue no. 3:25–36, June 2002.

[77] Juan de Lara Esther Guerra. Attributed typed triple graph transformation with

inheritance in the double pushout approach. Technical Report UC3M-TR-CS-06-01,

Universidad Carlos III de Madrid, 2006.

[78] Paolo Falcarin and Marco Torchiano. A dynamic analysis tool for extracting UML 2

sequence diagrams. In ICSOFT (1), pages 171–176, 2006.

[79] Federal Information Processing Standards. Publication 184, Integration Definition for

Information Modeling (IDEFIX), http://www.itl.nist.gov/fipspubs/idef1x.doc.

[80] Joachim Fischer, Eckhardt Holz, Martin von Löwis, and Andreas Prinz. SDL-2000:

A Language with a Formal Semantics. In Proceedings of Rigorous Object-Oriented

Methods, ROOM 2000, York, UK, 2000.

[81] David Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley & Sons, Inc., New York, NY, USA, 2002.

[82] FrontEndART Software Ltd. Columbus/CAN 3.5, http://www.frontendart.

com/products col.php.



BIBLIOGRAPHY 192

[83] G.Antoniol, M.Di Penta, and M.Zazzara. Understanding Web applications through

dynamic analysis. In Proceedings of the 12th IEEE International Workshop on Pro-

gram Comprehension(2004)., pages 120–129, USA.

[84] Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM - A Model-Based Ap-

proach to Hypertext Application Design. ACM Trans. Inf. Syst., 11(1):1–26, 1993.

[85] Davor Gornik. UML data modeling profile. Technical report, IBM Rational Software

Whitepaper TP 162 05/02, 2003.

[86] Pieter Van Gorp. UML profile for data modeling, http://www.fots.

ua.ac.be/˜pvgorp/research/datamodelingprofile/, 2007.

[87] Carl Gould, Zhendong Su, and Premkumar T. Devanbu. Static checking of dynami-

cally generated queries in database applications. In 26th International Conference on

Software Engineering (ICSE 2004), 23-28 May, Edinburgh, United Kingdom, pages

645–654, 2004.

[88] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias

Felleisen. Modeling Web Interactions. In Proceedings of the 12th European Sympo-

sium on Programming Languages and Systems, ESOP 2003, Warsaw, Poland, April

7-11, volume 2618 of Lecture Notes in Computer Science, pages 238–252. Springer,

2003.

[89] Jonathan Gross and Jay Yellen. Handbook of Graph Theory . Taylor and Francis,

April 17, 2007.

[90] PhpBB Group. PhpBB, http://www.phpbb.com/, last access June 27, 2007.



BIBLIOGRAPHY 193

[91] Esther Guerra, Daniel Sanz, Paloma Dı́az, and Ignacio Aedo. A Transformation-

Driven Approach to the Verification of Security Policies in Web Designs. In Proceed-

ings of the 7th International Conference on Web Engineering (ICWE), Como, Italy,

pages 269–284, 2007.

[92] Maria Encarnación Beato Gutiérrez, Manuel Barrio-Solórzano, Carlos Enrique Cuesta

Quintero, and Pablo de la Fuente. UML automatic verification tool with formal

methods. Electr. Notes Theor. Comput. Sci, 127(4):3–16, 2005.

[93] William G. J. Halfond and Alessandro Orso. Command-Form Coverage for Testing

Database Applications. In 21st IEEE/ACM International Conference on Automated

Software Engineering (ASE 2006), 18-22 September, Tokyo, Japan, pages 69–80, 2006.

[94] William G. J. Halfond and Alessandro Orso. Preventing SQL injection attacks using

AMNESIA. In 28th International Conference on Software Engineering (ICSE 2006),

Shanghai, China, May 20-28, pages 795–798, 2006.

[95] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A survey of trace exploration

tools and techniques. In CASCON, pages 42–55, 2004.

[96] Minmin Han and Christine Hofmeister. Modeling and verification of adaptive naviga-

tion in web applications. In Proceedings of the 6th International Conference on Web

Engineering, ICWE 2006, Palo Alto, California, pages 329–336, 2006.

[97] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8(3):231–274, June 1987.

[98] David Harel. Statecharts: A Visual Formulation for Complex Systems. Sci. Comput.

Program., 8(3):231–274, 1987.



BIBLIOGRAPHY 194

[99] Ahmed E. Hassan and Richard C. Holt. Architecture recovery of web applications.

In Proceedings of the 24th International Conference on Software Engineering ICSE,

pages 349–359, New York, NY, USA, 2002. ACM Press.

[100] May Haydar, Alexandre Petrenko, and Houari A.Sahraoui. Formal Verification of Web

Applications Modeled by Communicating Automata. In Proceedings of the Formal

Techniques for Networked and Distributed Systems - FORTE, volume 3235 of Lecture

Notes in Computer Science, pages 115–132. Springer, September 27-30 2004.

[101] BrickHost: Web Hosting and Data Backup. phpScheduleIt,

http://www.php.brickhost.com/index.php, last access July 5, 2007.

[102] Yao-Wen Huang, Chung-Hung Tsai, Tsung-Po Lin, Shih-Kun Huang, D. T. Lee, and

S. Y Kuo. A testing framework for Web application security assessment. Computer

Networks, 48(5):739–761, 08 2005.

[103] Yao-Wen Huang, Fang Yu, and Christian Hang and. Securing web application code

by static analysis and runtime protection. In Stuart I. Feldman, Mike Uretsky, and

Marc Najork and, editors, Proceedings of the 13th international conference on WWW,

pages 40–52. ACM, 2004.

[104] IBM Corp. Rational Data Architect Version 7.0,http://www-

306.ibm.com/software/data/integration/rda/.

[105] IBM Corporation. Rational Software Architect Version 7.0, http://www-

306.ibm.com/software/awdtools/architect/ swarchitect/.

[106] Sanctum Inc. Web Application Security Testing AppScan 3.5., http :

//www.sanctuminc.com, last access September 5, 2007.

[107] Daniel Jackson. Alloy: A New Technology for Software Modelling. In Proceedings

of the 8th International Conference on Tools and Algorithms for the Construction



BIBLIOGRAPHY 195

and Analysis of Systems, TACAS 2002, Grenoble, France, April 8-12, volume 2280 of

Lecture Notes in Computer Science, page 20. Springer, 2002.

[108] Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systä. Constructing

Usage Scenarios for API Redocumentation. In ICPC, pages 259–264, 2007.

[109] Rick Kazman, Liam O’Brien, and Chris Verhoef. Architecture reconstruction guide-

lines. Technical Report CMU/SEI-2002-TR-034, Carnegie Mellon University, 2003.

[110] J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science, Vol-

umes 1 (Background: Mathematical Structures) and 2 (Background: Computational

Structures), S. Abramsky & DOV M. Gabbay & T.S.E. Maibaum (Eds.), Clarendon,

volume 2. 1992.

[111] Alexander Knapp and Gefei Zhang. Model Transformations for Integrating and Vali-

dating Web Application Models. In Modellierung 2006, 22.-24. März 2006, Innsbruck,

Tirol, Austria, volume 82 of LNI, pages 115–128. GI, 2006.

[112] N. Koch. A Comparative Study of Methods for Hypermedia Development. Technical

Report 9905, LudwigMaximilians -Universitt Mnchen, November 1999.

[113] N. Koch and A. Kraus. The expressive Power of UML-based Web Engineering. 2nd

Int. Workshop on Web-oriented Software Technology, Ma’laga, Spain , 2002, 105-119.

[114] E. Korshunova, Marija Petkovic, M. G. J. van den Brand, and Mohammad Reza

Mousavi. CPP2XMI: Reverse Engineering of UML Class, Sequence, and Activity

Diagrams from C++ Source Code. In WCRE, pages 297–298, 2006.

[115] E. Koutsofios and S.C. North. Drawing graphs with dot. Technical report, AT&T

Bell Laboratories, Murray Hill, NJ, USA, September 1991.

[116] Larry Koved, Marco Pistoia, and Aaron Kershenbaum. Access rights analysis for

Java. In OOPSLA, pages 359–372, 2002.



BIBLIOGRAPHY 196

[117] David Chenho Kung, Chien-Hung Liu, and Pei Hsia. An Object-Oriented Web Test

Model for Testing Web Applications. In Proceedings of the 24th International Com-

puter Software and Applications Conference COMPSAC,Taipei, Taiwan., pages 537–

542, 2000.

[118] Dominic Letarte and Ettore Merlo. Extraction of Inter-procedural Simple Role Priv-

ilege Models from PHP Code. In WCRE, pages 187–191, 2009.

[119] Hongzhi Liang and Jürgen Dingel. A Practical Evaluation of Using TXL for Model

Transformation. In Software Language Engineering, First International Conference,

SLE 2008, Toulouse, France, September 29-30. Revised Selected Papers, pages 245–

264, 2008.

[120] Daniel R. Licata and Shriram Krishnamurthi. Verifying Interactive Web Programs.

In Proceedings of the IEEE International Conference on Automated Software Engi-

neering, pages 164–173. IEEE Computer Society, 2004.

[121] GNU Public License. ATutor, Web-based Learning Content Management System,

http://www.atutor.ca/, last access July 5, 2007.

[122] GNU Public License. Moodle, course management system (CMS),

http : //docs.moodle.org/en/About Moodle, last access July 5, 2007.

[123] Giuseppe A. Di Lucca, Anna Rita Fasolino, and Porfirio Tramontana. Reverse engi-

neering Web applications: the WARE approach. Journal of Software Maintenance,

16(1-2):71–101, 2004.

[124] J. McDermott, A. Kim, and Judith N. Froscher. Merging paradigms of survivability

and security: stochastic faults and designed faults. In Proceedings of the New Security

Paradigms Workshop, Ascona, Switzerland (NSPW), pages 19–25, 2003.



BIBLIOGRAPHY 197

[125] Jan Mendling, Mark Strembeck, Gerald Stermsek, and Gustaf Neumann. An Ap-

proach to Extract RBAC Models from BPEL4WS Processes. In 13th IEEE Inter-

national Workshops on Enabling Technologies (WETICE 2004), Infrastructure for

Collaborative Enterprises, 14-16 June 2004, Modena, Italy, pages 81–86, 2004.

[126] Matthias Merdes and Dirk Dorsch. Experiences with the development of a reverse en-

gineering tool for UML sequence diagrams: a case study in modern Java development.

In PPPJ, pages 125–134. ACM, 2006.

[127] Huaikou Miao and Hongwei Zeng. Model Checking-based Verification of Web Applica-

tion. In Proceedings of the 12th International Conference on Engineering of Complex

Computer Systems (ICECCS 2007), 10-14 July, Auckland, New Zealand, pages 47–55.

IEEE Computer Society, 2007.

[128] B. Michael, F. Juliana, and G. Patrice. Veriweb: automatically testing dynamic web

sites. In Proceedings of 11th International WWW Conference, Honulolu., May 2002.

[129] Leon Moonen. A Generic Architecture for Data Flow Analysis to Support Reverse En-

gineering. In M.P.A. Sellink, editor, Proceedings of the Second International Workshop

on the Theory and Practice of Algebraic Specifications (ASF+SDF’97), Electronic

Workshops in Computing, Amsterdam, November 1997. Springer-Verlag.

[130] Leon Moonen. Generating Robust Parsers Using Island Grammars. In WCRE 2001

Proceedings of the Eighth Working Conference on Reverse Engineering, Suttgart, Ger-

many, 2-5 October, pages 13–, 2001.

[131] Leon Moonen. Lightweight Impact Analysis using Island Grammars. In IWPC 2002,

10th International Workshop on Program Comprehension, pages 219–228, June 2002.

[132] Robert J. Muller. Database design for smarties: using UML for data modeling. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.



BIBLIOGRAPHY 198

[133] MySQL. MySQL 3.23, 4.0, 4.1 Reference Manual,

http://dev.mysql.com/doc/refman/4.1/en/create-table.html.

[134] Netcraft Ltd. November 2008 web server sur-

vey, http://news.netcraft.com/archives/2008/11/19/ novem-

ber 2008 web server survey.html , last access Nov 26, 2008.

[135] Minh Ngoc Ngo and Hee Beng Kuan Tan. Applying static analysis for automated

extraction of database interactions in web applications. Information & Software Tech-

nology, 50(3):160–175, 2008.

[136] No Magic, Inc. MagicDraw UML, http://www.magicdraw.com.

[137] Object Management Group (OMG). Request For Proposal Information Manage-

ment Metamodel (IMM), http://www.omg.org/docs/ab/05-12-02.pdf. Technical re-

port, 2005.

[138] Object Management Group (OMG). OMG Unified Modeling Language (OMG UML),

Superstructure, V2.1.2, http://www.omg.org/docs/formal/07-11-01.pdf. Technical re-

port, 2007.

[139] Object Management Group (OMG). UML Profile Catalog,

http://www.omg.org/technology/documents/profile catalog.htm. Technical report,

2008.

[140] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass Testing of Web Appli-

cations. In Proceedings of the 15th International Symposium on Software Reliability

Engineering (ISSRE 2004), 2-5 November, Saint-Malo, Bretagne, France, pages 187–

197. IEEE Computer Society, 2004.

[141] Richard Paige and Alek Radjenovic. Towards Model Transformation with TXL. In

First International Workshop York, UK, 2003, pages 163–177, 2003.



BIBLIOGRAPHY 199

[142] PHP Group. PHP usage Stats for April 2007, http://www.php.net/usage.php, last

access June 27, 2007.

[143] Marco Pistoia, Satish Chandra, Stephen J. Fink, and Eran Yahav. A survey of static

analysis methods for identifying security vulnerabilities in software systems. IBM

Systems Journal, 46(2):265–288, 2007.

[144] Marco Pistoia, Robert J. Flynn, Larry Koved, and Vugranam C. Sreedhar. Inter-

procedural analysis for privileged code placement and tainted variable detection. In

ECOOP, pages 362–386, 2005.

[145] William J. Premerlani and Michael R. Blaha. An approach for reverse engineering of

relational databases. Commun. ACM, 37(5):42–49, 134, 1994.

[146] Open Web Application Security Project. The Top Ten Most Critical Web Applica-

tion Security Vulnerabilities,http://www.owasp.org/documentation/topten, last ac-

cess June 27, 2007.

[147] Shangping Ren, Yue Yu, Kevin A. Kwiat, and Jeffrey J. P. Tsai. A Coordination

Model for Improving Software System Attack-Tolerance and Survivability in Open

Hostile Environments. IJDSN, 3(2):175–199, 2007.

[148] F. Ricca and P. Tonella. Analysis and Testing of Web Applications. In ICSE 2001,

23rd International Conference on Software Engineering, pages 25–34, 2001.

[149] Filippo Ricca and Paolo Tonella. Building a Tool for the Analysis and Testing of Web

Applications: Problems and Solutions. In Proceedings of the Tools and Algorithms for

the Construction and Analysis of Systems Genova,Italy, volume 2031, pages 373–388,

2 - 6 April 2001.



BIBLIOGRAPHY 200

[150] Filippo Ricca and Paolo Tonella. Web Site Analysis: Structure and Evolution. In

Proceedings of the International Conference on Software Maintenance, pages 76–86,

2000.

[151] Peter Rob and Carlos Coronel. Database Systems: Design Implementation And Man-

agement. Course Technology, fifth edition edition, January 2004.

[152] Daniel Schwabe and Gustavo Rossi. An object oriented approach to Web-based ap-

plications design. Theor. Pract. Object Syst., 4(4):207–225, 1998.

[153] Arjan Seesing and Alessandro Orso. InsECTJ: a generic instrumentation framework

for collecting dynamic information within Eclipse. In ETX, pages 45–49, 2005.

[154] Zhong sheng Qian, Huaikou Miao, and Tao He. An Approach to Modeling Hypermedia

Web Applications. In Proceedings of the Grid and Cooperative Computing (GCC),

Urumchi, Xinjiang, China, pages 847–854, 2007.

[155] Darius Silingas and Saulius Kaukenas. Applying UML for relational data modeling,

http://www.magicdraw.com/ files/articles/Sep04%20Applying%20UML%20for%20

Relational%20Data%20Modeling.htm, 2004.

[156] Ben Smith, Yonghee Shin, and Laurie Williams. Proposing SQL statement coverage

metrics. In Proceedings of the Fourth International Workshop on Software Engineering

for Secure Systems, SESS 2008, Leipzig, Germany, May 17-18, pages 49–56, 2008.

[157] Eunjee Song, Shuxin Yin, and Indrakshi Ray. Using UML to model relational database

operations. Comput. Stand. Interfaces, 29(3):343–354, 2007.

[158] R. S.Sandhu, E. J.Coyne, H. L.Feinstein, and C. E.Youman. Role-based access control

models. Computer, 29(2):38, February 1996.



BIBLIOGRAPHY 201

[159] Harald Störrle. A prolog-based approach to representing and querying software engi-

neering models. In Proceedings of the VLL 2007 workshop on Visual Languages and

Logic in Coeur d’Aléne, Idaho, USA, 23rd September, pages 71–83, 2007.

[160] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. Robust multilingual parsing

using island grammars. In CASCON 2003, Conference of the Centre for Advanced

Studies on Collaborative Research, pages 266–278, October 2003.

[161] Joe Abboud Syriani and Nashat Mansour. Modeling Web Systems Using SDL. In

Adnan Yazici and Cevat Sener, editors, Proceedings of the 18th International Sympo-

sium Computer and Information Sciences - ISCIS, volume 2869 of Lecture Notes in

Computer Science, pages 1019–1026. Springer, November 3-5 2003.

[162] Toby J. Teorey, Dongqing Yang, and James P. Fry. A logical design methodology

for relational databases using the extended entity-relationship model. ACM Comput.

Surv., 18(2):197–222, 1986.

[163] Paolo Tonella and Filippo Ricca. Dynamic Model Extraction and Statistical Analysis

of Web Applications. In Proceedings of the International Workshop on Web Site

Evolution, pages 43–52. IEEE Computer Society, 2002.

[164] Paolo Tonella and Filippo Ricca. A 2-Layer Model for the White-Box Testing of Web

Applications. In Proceedings of the International Workshop on Web Site Evolution,

pages 11–19. IEEE Computer Society, 2004.

[165] Huib van den Brink, Rob van der Leek, and Joost Visser. Quality Assessment for

Embedded SQL. In SCAM 2007, 7th IEEE International Working Conference on

Source Code Analysis and Manipulation, pages 163–170, September 2007.

[166] Arie van Deursen and Tobias Kuipers. Building Documentation Generators. In ICSM,

pages 40–49, 1999.



BIBLIOGRAPHY 202

[167] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wolstenholme. Mod-

eling Software with Finite State Machines: A Practical Approach. Auerbach Publica-

tions, 2005.

[168] H. Q. Wang, D. X. Liu, D. Xu, Y. Y. Lan, X. Y. Li, and Q. Zhao. A Holistic Approach

to Survivable Distributed Information System for Critical Applications. In Parallel

and Distributed Processing and Applications, Third International Symposium, ISPA

2005, Nanjing, China Proceedings (ISPA), pages 713–724, 2005.

[169] WatirCraft. WATIR, http://wtr.rubyforge.org, accessed 30 April 2009.

[170] Adrian Wiesmann, Andrew van der Stock, and Mark. A Guide to Building Secure Web

Applications and Web Services. Open Web Application Security Project, OWASP,

2005.

[171] D. Willmor and S. M. Embury. Exploring Test Adequacy for Database Systems. In

Proceedings of the 3rd UK Software Testing Research Workshop (UKTest 2005), pages

123–133, September 2005.

[172] Marco Winckler and Philippe A. Palanque. StateWebCharts: A Formal Description

Technique Dedicated to Navigation Modelling of Web Applications. In Proceedings of

the 10th International Workshop on Interactive Systems. Design, Specification, and

Verification, DSV-IS 2003, Funchal, Madeira Island, Portugal, June 11-13, Lecture

Notes in Computer Science, pages 61–76. Springer, 2003.

[173] Ye Wu and Jeff Offutt. Modeling and Testing Web-based Applications. Technical

report, George Mason University, 2002.

[174] Hongji Yang and William C. Chu. Acquisition of entity relationship models for

maintenance-dealing with data intensive programs in a transformation system. J.

Inf. Sci. Eng., 15(2):173–198, 1999.



BIBLIOGRAPHY 203

[175] Shuxin Yin and Indrakshi Ray. Relational Database Operations Modeling with UML.

In AINA ’05: Proc. 19th Intl. Conference on Advanced Information Networking and

Applications, pages 927–932, 2005.

[176] Hongwei Zeng and Huaikou Miao. Auto-Generating Test Sequences for Web Applica-

tions. In Proceedings of the 7th International Conference on Web Engineering, ICWE

2007, Como, Italy, July 16-20, volume 4607 of Lecture Notes in Computer Science,

pages 301–305. Springer, 2007.


