
Power of Non-Uniformity in Proof Complexity

by

Steven Perron

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2009 by Steven Perron

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l’édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-58984-7
Our file Notre référence
ISBN: 978-0-494-58984-7

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.
.

AVIS:

L’auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l’Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.

Abstract

Power of Non-Uniformity in Proof Complexity

Steven Perron

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2009

As the title indicates, this thesis is concerned with the strength of non-uniformity in proof

complexity. The non-uniform part is there because we look at quantified propositional

proof systems. With these proof systems we are interested in the minimum size of proofs

that prove a family of tautologies. Like circuits, these proofs are not necessarily easy to

construct. We measure the strength of a proof system by characterizing which families

of tautologies have polynomial-size proofs in the proof system.

The proof systems we examine were first introduced by Kraj́ıcek and Pudlák [23],

but have only received limited attention since then. These systems are called Gi and G∗i .

Gi is the propositional version of Gentzen’s LK with cut formulas restricted to formulas

with i− 1 quantifier alternations, and G∗i is the treelike version of Gi.

We look at the strength of these proof systems in three ways. The first is to compare

them with bounded arithmetic. We find the weakest theory that can prove that a given

proof system is sound. The second method is to compare proof systems with respect

to computational complexity. We determine the complexity of finding a witness for the

outermost existential quantifiers of a formula given a proof of that formula. The final

method is to compare the proof systems to each other. This is done using the notion of

p-simulations. An important tool in all of this work is an adaptation of the Herbrand

theorem for the propositional setting. Most proof-theoretic proofs of the Herbrand theo-

rem require cut-elimination which causes the size of the proof to increase exponentially.

ii

We adapt the statement of the theorem and the proof to avoid this increase.

We finish by defining new proof systems that meet given requirements. The goal is

to determine where proof systems get their strength. In all cases, it comes down to the

eigenvariables. The strength of a proof system that allows quantifiers in the cut formulas

is determined by the difficulty of witnessing the eigenvariables.

iii

Acknowledgements

I would like to thank my parents for raising me to be the person I am today. I want to

thank my supervisor Stephen Cook for guiding me through the research and preparation

for this thesis. I also thank my supervisory committee for many useful suggestions at the

checkpoints. I also want to thank Phuong Nguyen for taking time to discuss some of the

ideas surrounding the topics of this thesis. I should not leave out the reviewers of the

papers I wrote that became part of this thesis. As well, very little would have been done

without the financial support of NSERC and the University of Toronto. Finally, I want

to thank God for all He has done for me.

iv

Contents

I Basics 1

1 Introduction 2

1.1 Outline of results in Part II . 6

1.2 Outline of the results in Part III . 13

2 Basic Definitions and Notations 16

2.1 Two-Sorted Computational Complexity 16

2.2 Bounded Arithmetic . 18

2.3 The Quantified Propositional Calculus 22

2.3.1 Propositional Translations . 25

2.3.2 Truth Definition . 27

II The Fragments of G 35

3 Proof Theory for G 36

3.1 Basic Constructions . 36

3.2 Herbrand Theorem for G∗i . 40

3.2.1 Witnessing for G∗1 . 41

3.2.2 Witnessing for G∗i . 54

4 Polynomial Simulations 59

v

4.1 GPV ∗i And G∗i . 59

4.2 Gi And G∗i . 61

4.3 Collapse of Bounded Arithmetic and Quantified Proof Systems 68

5 Reflection Principles 73

5.1 Reflection Principles For the Fragments of G 73

5.2 New Axiomatization of V ∞ . 81

6 Computational Complexity and G 84

6.1 Witnessing Complex Formulas . 85

6.2 Witnessing Simple Formulas . 88

III Defining New Proof Systems 95

7 A Proof System for L 96

7.1 A Universal Theory For L Reasoning . 96

7.2 Definition of GL∗ . 98

7.3 Proving The Reflection Principles . 99

7.3.1 Witnessing ΣCNF (2) Formulas 100

7.3.2 Witnessing GL∗ Proofs . 107

8 A Proof System for NL 110

8.1 Definition of GNL∗ . 110

8.2 NL and Bounded Arithmetic . 111

8.2.1 Theories for NL . 111

8.2.2 Starred Theories . 113

8.2.3 Equivalence of the Theories . 114

8.2.4 Connection Between V NL and V NL∗ 126

8.3 Propositional Translations of V KI . 129

vi

8.4 Reflection Principles . 130

9 A Proof System for TV i 132

9.0.1 Propositional Translations . 133

9.0.2 The GPV ∗i (c) reflection principles 137

A Min Cut/Max Flow Theorem 140

Bibliography 143

vii

Part I

Basics

1

Chapter 1

Introduction

In this thesis, we investigate the strength of quantified propositional proof systems. The

motivation for this investigation comes from its connection with computational complex-

ity and bounded arithmetic. These systems are often viewed as the non-uniform versions

of the fragments of bounded arithmetic.

Computational complexity is the area of computer science that is concerned with

finding the minimum resources needed to compute a function (or to decide if a given

input is in a set). The main concept is that of a complexity class. Problems are clas-

sified according to the resources needed to solve the problem. Some examples of these

complexity classes are

AC0 (TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ P ⊆ PH. (1.0.1)

AC0 is the set of problems that can be solved by polynomial-size, constant-depth

circuits with unbounded fan-in.1 The class TC0 is the same as AC0 except threshold

gates can now be used. NC1 is the set of problems that can be solved with polynomial-

size, logarithmic-depth circuits with fan-in 2. The class L is the set of problems that

1In this thesis, we are interested in the uniform version. So, unless stated otherwise, circuits class are
DLogtime-uniform.

2

Chapter 1. Introduction 3

can be solved on a deterministic Turing machine using logarithmic space. NL is the

same except the Turing machine is now non-deterministic. P is the set of problems

that can be solved in polynomial-time on a Turing machine. Finally, PH refers to the

polynomial-time hierarchy.

There are many problems that we know are in one class, and we believe they are not

in a smaller class. However, it is difficult to prove. In fact, except for the first inclusion,

none of the inclusions in (1.0.1) are known to be proper. We are unable to separate TC0

from PH despite all of the research over the past 30 years.

With this in mind, it might be useful to find other ways of looking at these prob-

lems. One such alternative is bounded arithmetic. The area is called bounded arithmetic

because we are considering logical theories of arithmetic where induction is limited to for-

mulas where every quantifier is bound by some term. For example, existential quantifiers

are of the form ∃x < t, which means there exists an x less than t. Bounded arithmetic

was first introduced by Parikh in [32]. In that paper, he introduced the theory that is

now commonly known as I∆0. This theory was studied from a logical perspective, but

also in connection with computational complexity. (We will not mention exactly what

the connection is until we get to the theories that we use throughout the thesis.) A

few years later, Cook introduced the theory PV as a way of capturing polynomial-time

reasoning [7]. Later, Buss introduced his theory S2 with its fragments [4]. S2 is a theory

that is typically associated with PH. Then by restricting the induction axiom in S2,

we get theories that we can associate with the levels of the PH. Buss’s theories have

become the standard theories for bounded arithmetic, but unfortunately the language of

S2 does not lend itself to defining nice theories for complexity classes smaller than P . So

when Cook and Nguyen decided to define theories for the smaller classes, they used the

two-sorted language of Zambella [41].

This language has two sorts: numbers and binary strings. It includes basic arithmetic

for the numbers and a length function for the strings. As well, we are able to check if

Chapter 1. Introduction 4

the ith bit of a string is 0 or 1. The ΣB
0 formulas are the formulas with any number

of bounded number quantifiers, but no string quantifiers. We can define a number of

theories that correspond to the complexity classes above

V 0 (V TC0 ⊆ V NC1 ⊆ V L ⊆ V NL ⊆ TV 0 ⊆ V ∞. (1.0.2)

The theory V 0 is the base theory. It includes axioms that define addition, multipli-

cation, and the other functions in the language [8]. On top of that, it includes compre-

hension for ΣB
0 formulas. The other theories below TV 0 are defined by taking V 0 and

adding an axiom that says a function that is complete for the corresponding complexity

class is total [11]. TV 0 is V 0 plus an appropriate induction scheme. V ∞ is the same

as V 0 except it has comprehension for all bounded formulas. These theories are defined

more formally in Chapter 2.

Each of these theories is associated with their corresponding complexity class by a

witnessing theorem. For example, if TV 0 proves ∃Xφ(X, Y), where φ is ΣB
0 or ΣB

1 , then

there is a polynomial-time computable function F (Y) such that φ(F (Y), Y) is true [8].

In the other direction, TV 0 can prove that every function in P is total [8]. This gives us

the connection between the theory and the complexity class.

Using the witnessing theorems, we can connect the provability of certain theorems

with complexity classes. One example is Fermat’s Little Theorem: If N (encoded as a

string) is a prime, then AN−1 ≡ 1(modN) for 1 ≤ A < N (as a string again). If this

can be proved in TV 0, then this will lead to a randomized polynomial-time algorithm

that factors integers [11]. This is interesting because it is generally believed that no such

algorithm exists, and, in fact, the security of the RSA encryption algorithm depends on

it. So, this example says that Fermat’s Little Theorem is provable with polynomial-time

concepts only if RSA is insecure.

Another interesting example is the min-cut/max-flow theorem. Think of a graph that

Chapter 1. Introduction 5

represents a network of computers. The maximum transfer speed from one computer to

another is determined by the capacities of the cables connecting these computers. So

given a network, we might want to determine this value. An obvious upper bound is a

cut. If we can find a set of cables that, if cut, separate the two computers in question,

then any transfer of information must pass through these cables. So we cannot have more

than these cables allow. The min-cut/max-flow theorem says that, in fact, the maximum

flow is equal to the minimum cut. It is possible to prove this theorem in V NL; however,

if this theorem is provable in V L, then L = NL. (See Appendix A for more information

on this result.) The central idea is that we can define a decision based on the statement of

the theorem, and that problem is complete for NL. The corresponding decision problem

is, given a directed graph with integer capacities and a valid flow, is the flow a maximum

flow?

These are just two examples that show that proof complexity is closely connected to

computational complexity. Another part of proof complexity is to look at propositional

proof complexity. In this setting, we are no longer interested in finding the axioms needed

to prove a formula. In fact, from the completeness theorem, we know that every tautology

is provable using a very simple set of axiom schemes. Instead we are interested in the

minimum size of a proof of a tautology. Proof systems are defined by giving the axioms

and rules of inferences. Then we examine the size of proofs in a given proof system. The

two most common proof systems are resolution and Frege proof systems. There have

been a number of non-trivial lower bounds for resolution, but no super-polynomial lower

bounds are known for Frege.

This line of research is motivated by a result of Cook and Reckhow: there exists a

polynomially-bounded proof system if and only if NP = coNP [13]. This result led to

the search for lower-bounds in different proof systems. As in computational complexity,

there has been limited success.

As research continued, a connection between bounded arithmetic and propositional

Chapter 1. Introduction 6

proof complexity was found. The first example was in [7], where Cook showed that, if PV

proves a formula φ, then that formula can be translated into a polynomial-size family

of propositional formulas that have polynomial-size extended-Frege proofs. A similar

connection exists between I∆0(R) and bounded-depth Frege [33]. For the two-sorted

theories, there are similar results. For example, if V NC1 proves a ΣB
0 formula φ, then

there are polynomial-size Frege proofs of the translation of φ. This connection is not

just one sided. For the other direction, the theory can prove that its corresponding proof

system is sound. So, if you have uniform2 proofs of the translation of a ΣB
0 formula φ in

a proof system, then the corresponding theory proves φ. This has led to the view that

the proof system is the non-uniform version of the theory.

For the two-sorted theories, this connection only exists for the ΣB
0 formulas, but it is

fair to wonder about formulas with bounded string quantifiers. To take care of this, we

move into quantified propositional proof systems. For now, we can think of a ΣB
i formula

as a bounded formula with i − 1 alternations in the string quantifiers. A more formal

definition is given in the next chapter.

1.1 Outline of results in Part II

In [23], Kraj́ıcek and Pudlák introduced the quantified propositional proof system G

and its fragments. These fragments have close connections with bounded arithmetic and

computational complexity. In particular, the collapse of PH, V ∞, and the fragments

of G are all related [23, 24, 22, 28]. Even with these close connections to important

open problems in logic and computer science, little work has been done investigating the

fragments of G. The goal of this thesis is to take a closer look at these proof systems.

The proof system G is the sequent calculus for quantified propositional formulas. A Σq
i

formula is a quantified propositional formula with at most i − 1 quantifier alternations

2The uniformity that we use here is very strong. The proofs have to be more than constructable, but
the theory must be able to prove that the construction is correct.

Chapter 1. Introduction 7

starting with ∃ on the outside. Following Morioka, the proof system Gi is defined by

restricting G to proofs where all cut formulas are Σq
i and G∗i is the treelike version of Gi

[10, 29]. Note that originally Gi and G∗i were defined by restricting all formulas, not just

cut formulas, to Σq
i formulas [23, 22].

For those unfamiliar with these proof systems, you can think of Gi as a proof system

where any lemma you use to prove a theorem is in the ith level of PH. The proof system

G∗i is the same except each lemma can be used only once.

When G∗i was first considered in [26], it was used to axiomatize V i. For this reason

G∗i has informally been described as the non-uniform version of V i. (V i is the restriction

of V ∞ to comprehension on ΣB
i formulas). This axiomatization comes from the close

connection between the ΣB
i theorems of V i and G∗i proofs of Σq

i formulas [22]. Every

bounded theorem of V i can be translated into a family of quantified propositional for-

mulas that have polynomial-size G∗i proofs. As well, V i can prove that G∗i is sound when

proving Σq
i formulas. So, if V 1 can prove that there exists G∗i proofs of the translation

of a ΣB
i formula φ, then V i proves φ.

The same can be said for Gi and TV i. When Gi was first introduced in [23], it was

viewed as TV i from a different perspective. The idea was to cast questions about TV i

in a more combinatorial setting.

In Part II, we intend to examine the strength of these proof systems. Since these

proof systems are complete, we do not measure the strength of a proof system by what it

can prove as in bounded arithmetic. Instead, we measure the strength of a proof system

by determining which families of tautologies have polynomial-size proofs in that proof

system. This idea leads to three ways of exploring these proof systems.

The first way to measure the strength of a proof system is to look at its witnessing

problems. The problem is, given a proof of a Σq
i formula and values for the free vari-

ables, find values for the outermost existential quantifiers that satisfy the formula. We

are interested in finding the complexity of this function for different proof systems and

Chapter 1. Introduction 8

Σq
4 FP Σp

3 [wit, O(log n)] † FP Σp
3 [wit, O(log n)] † FP Σp

3 [wit, O(log n)] † FP Σp
3 [wit, O(log n)] †

Σq
3 FP Σp

2 [wit, O(log n)] † FP Σp
2 [wit, O(log n)] † FP Σp

2 [wit, O(log n)] FP Σp
2 †

Σq
2 FPNP [wit, O(log n)] FPNP † FPNP PLSNP

Σq
1 FP PLS PLS † CPLS †

G∗1 G1 G∗2 G2

Σq
4 FP Σp

3 [wit, O(log n)] FP Σp
3 † FP ΣP

3 PLSΣp
3

Σq
3 FP ΣP

2 PLSΣp
2 PLSΣp

2 † CPLSΣp
2 †

Σq
2 PLSNP † CPLSNP † CPLS † ??

Σq
1 CPLS † ?? ?? ??

G∗3 G3 G∗4 G4

Table 1.2: Complexity of the Witnessing Problem for Gi and G∗i . Observe the patterns
that exists along the diagonals. The results marked with † indicate those that improve
on previous results.

different values of i. A lot of work has been done on this problem in [29]. Some of our

results are summarized in Table 1.2. As the table indicates, we improved on the results

in [29] by proving that the Σq
j witnessing problem for G∗i is complete for FPΣp

j−1 [wit, log]

when j ≥ i+2. Previously, it was known to be in the class, but not known to be hard for

the class. An important observation is that, if i > j > k, then we cannot see a difference

between G∗j and G∗k for Σq
i formulas. That is, we are unable to differentiate between

G∗j and G∗k using the witnessing theorem. The other interesting observation is that the

complexity of witnessing a G∗i proof of a complex formula is harder than it is for V i. In

the uniform setting, only a constant number of calls the oracle is needed while, in the

non-uniform setting, a logarithmic number is needed.

In order to try to differentiate between the proof systems at this level, we also look

at these problems in an alternative model of computation: interactive computations [20].

This was a model that was first introduced as a way of looking at witnessing in bounded

arithmetic [24]. In this model, there are two people, the student and the teacher. The

job of the student is to find the witness and he can get help from the teacher. As the

capabilities of the student and teacher change, we are able to capture witnessing for the

different proof systems. In this model, we find that the difference between G∗j and G∗k is

Chapter 1. Introduction 9

the capability of the student.

We also take a look at the witnessing problems for simple formulas. That is, we want

to witness G∗i or Gi proofs of Σq
j formulas when j < i. Unfortunately, we are not able

to completely determine the complexity of these problems, but we make some progress.

First, we prove that Gi is p-equivalent to G∗i+1 for Σq
i+1 formulas. As well, we observe that

the witnessing problem for the proof systems is related to witnessing in the corresponding

theory of bounded arithmetic. We are able to use the results in [25] to solve the Σq
i−1

witnessing problem for Gi and G∗i+1. The idea is to extend the class polynomial local

search (PLS). In PLS, we are essentially looking for a sink in a very large directed acyclic

graph. Colour PLS (CPLS) is the same except we are searching for a sink that meets

some special property.

As well, we use this connection to give a new proof of the results of Kraj́ıcek, Skelley,

and Thapen. The intent is that this new proof may be able to generalize to the rest of

the witnessing problems.

The second way of examining the strength of these proof systems is to compare them

to each other. This is done using the standard idea of a p-simulation. These results

are summarized in Figure 1.1, and should be contrasted with the corresponding results

concerning the theories (See Figure 1.2). The first result in this direction is to compare

extended-Frege and G∗1. In [22], it was shown that extended-Frege is p-equivalent to

G∗1 with respect to quantifier-free formulas. This means that, when proving quantifier-

free formulas, G∗1 only needs to cut quantifier-free formulas and extension formulas. This

raises the question of whether or not this holds when G∗1 is used to prove more complicated

formulas. We define a quantified version of extended-Frege called GPV ∗, and prove

that GPV ∗ and G∗1 are p-equivalent with respect to all prenex formulas. This result is

surprising because the class of formulas that GPV ∗ can cut is much less expressive than

the class of formulas that G∗1 can cut. As well, this result does not fit with the view that

GPV ∗ corresponds to TV 0 and G∗1 with V 1. This is because V PV is a strict sub-theory

Chapter 1. Introduction 10

G∗1

G1

G∗2

G2

G∗3

G3

G∗4

G4

Σq
2 Σq

3 Σq
4

GPV ∗ GPV ∗2 GPV ∗3 GPV ∗4

. . .

Figure 1.1: Summary of Simulations: An arrow from proof system P1 to proof system P2

indicates that P2 p-simulates P1. A label on the arrow means the simulation holds with
respect to that class of formulas. Dashed arrows indicate the new results given in this
thesis.

V 1

TV 1

V 2

TV 2

V 3

TV 3

V 4

TV 4

ΣB
2 ΣB

3 ΣB
4

. . .

Figure 1.2: Summary of Conservation Results: An arrow from theory T1 to theory T2

indicates that T2 is conservative over T1. A label on the arrow means holds for that class
of formulas only.

of V 1 assuming PH does not collapse [24]. We can generalize the definition of GPV ∗

to a proof system GPV ∗i by allowing it to cut formulas of the form ∃x[x ↔ A], where

A is a Σq
i−1 formula. Then we can show that GPV ∗i is p-equivalent to G∗i for prenex

formulas. The interesting observation is that there is a simulation that is possible in the

non-uniform setting that is not possible in the uniform setting.

We also take a look at Gi and G∗i+1. If we used the connections with bounded arith-

metic as a guide, we would expect G∗i+1 to be a strictly stronger proof system than Gi.

This is because G∗i+1 is associated with V i+1 and Gi with TV i. Again, TV i is a strict

sub-theory of V i+1 assuming PH does not collapse [24]. If we were to make this assump-

Chapter 1. Introduction 11

tion, we would be wrong. Nguyen showed that G∗i+1 is not stronger than Gi [30]. This

was done by showing that, under an appropriate complexity assumption, G∗i+1 does not

simulate Gi or even cut-free G for Σq
i+2 formulas. As well, we prove that Gi is stronger

than G∗i+1, which is surprising. This is done by showing that Gi p-simulates G∗i+1 for all

quantified propositional formulas, not just Σq
i formulas as in [22].

The third way of examining G∗i is to find the weakest fragment of V ∞ that can prove

that G∗i is sound. So, we are looking for a theory that proves that, if there is a G∗i

proof of a formula, then that formula is valid. Informally, this gives an upper bound on

the reasoning power of G∗i . The idea is that if a theory T proves that a proof system

P is sound and T proves that there are P proofs of the propositional translation of a

formula φ, then T proves φ. This is the important idea that was used when Gi was

first introduced [23]. Then these results lead to new axiomatizations of the theories of

bounded arithmetic. Informally, this can be viewed as applying uniformity to the proof

systems.

In [22], it was shown that V 1 proves that G∗1 is sound with respect to Σq
1 formulas.

However, assuming PH does not collapse, V 1 does not prove thatG∗1 is sound with respect

to Σq
3 formulas [29]. This result seems to indicate that, as the quantifier complexity of

the formulas we are proving grows, the reasoning power of G∗1 grows beyond any finite

level of V ∞. In fact, the same proof also shows that, assuming PH hierarchy does not

collapse, TV i does not prove that G∗1 is sound with respect to Σq
i+2 formulas; however,

we show that V i+1 proves that G∗i+1 is sound with respect to Σq
i+2 formulas. Informally

this means that the reasoning power of G∗1 relative to Σq
i+2 formulas is not stronger than

the reasoning power of V i+1. These results are summarized in Table 1.3.

We then use these results to see what happens if we apply some type of uniformity to

these proofs systems. We do this by looking at a theory that is axiomatized by V 1 plus

statements stating that a proof systems is sound. In [23], Kraj́ıcek and Pudlák were able

to prove that V ∞ can be axiomatized by V 1 plus axioms stating Gi is sound relative to

Chapter 1. Introduction 12

Σq
6 V 5 V 5 V 5 V 5 V 5 TV 5

Σq
5 V 4 V 4 V 4 V 4 TV 4 TV 5

Σq
4 V 3 V 3 V 3 TV 3 TV 4 TV 5

Σq
3 V 2 V 2 TV 2 TV 3 TV 4 TV 5

Σq
2 V 1 TV 1 TV 2 TV 3 TV 4 TV 5

Σq
1 TV 0 TV 1 TV 2 TV 3 TV 4 TV 5

G∗1 G∗2 G∗3 G∗4 G∗5 G∗6

Table 1.3: Summary Of Reflection Principles: The entries indicate that weakest theory
that is known to prove the proof system is sound with respect to the class of formulas.

Σq
i formulas, for all i ≥ 1. We show that the same is true when Gi is replaced by G∗1.

In fact, we can replace Gi by the cut-free version of G∗. This is a surprising result for

two reasons. The first reason is that the cut-free version of G∗ is a strictly weaker proof

system that G∗1; however, when we apply uniformity to these proof systems we get the

same theory. The second reason this is surprising is that it captures all of V ∞. Since we

associated G∗1 with V 1, we expected to get a theory that was closely related to V 1.

At the same time, we are able to give a new axiomatization of TV i and V i. We can

axiomatize TV i by V 1 plus an axiom stating G∗i+1 (or Gi) is sound with respect to Σq
i+1

formulas, and V i as V 1 plus an axiom stating G∗i is sound with respect to Σq
i+1 formulas

From these axiomatizations, we get a corollary that if V ∞ collapses to V i, then, for

j > i, G∗i p-simulates G∗j for Σq
i+1 formulas (see [23]). Note that this result holds for

Σq
i+1 formulas only, but it is fair to ask if this result can be improved. We partly answer

this question. We show that if V i = V ∞, then G∗i+3 p-simulates G∗j (j > i + 3) for all

quantified propositional formulas. We take a stronger proof system, but the simulation

holds for every formula not just Σq
i+1 formulas. The idea is that, if V i = V ∞, then V i

proves that Σp
i+3 = Πp

i+3 = PH [6]. So, every Σq
j formula can be turned into an equivalent

Σq
i+3 formula.

The main tool used is the proofs of some of these theorems is a witnessing theorem

in the style of the KPT witnessing theorem [24]. The original KPT witnessing theorem

describes how hard it is to witness ΣB
i+3 theorems of TV i, for i ≥ 0. This theorem has

Chapter 1. Introduction 13

been used to prove that the collapse of the V ∞ hierarchy implies the collapse of PH

[24], and to show that certain weak theories do not prove the ΣB
1 replacement scheme,

relative to some complexity assumptions [12]. In this thesis, we adapt the statement of

the KPT witnessing theorem to G∗i , and then prove it. The main difficulty is that proofs

of the KPT witnessing theorem rely on the cut-elimination theorem, which unfortunately

causes the size of the proof to increase exponentially. We must avoid this increase, so we

have to find a way to work around cut formulas.

1.2 Outline of the results in Part III

In the third part, we are interested in finding ways of defining new proof systems that

meet certain desired properties. The goal is to better understand the source of the

strength of the proof systems.

For the most part, proof systems have been defined by changing the set of formulas

that can be cut. The intuition was that, if we change the cut formulas, we change the

strength of the proof system. However, recall that GPV ∗ (quantified extended-Frege) and

G∗1 are p-equivalent. It does not matter if the proof system can cut every Σq
1 formula, or

just the simple formulas of GPV ∗. This raises the question of where the strength of these

proof systems comes from. If it is not just the cut formulas, what is it? In [34], it was

observed that the source is the eigenvariables. In the quantifier rules ∃-left and ∀-right

(given in next chapter), there is a free-variable in the upper sequent that gets quantified.

This is an eigenvariable. In [34], a proof system for logarithmic-space reasoning is defined

by restricting the use of eigenvariable. In particular, the free variables in non-Σq
0 formulas

cannot be eigenvariables. This proof system was calledGL∗. We explore this proof system

a little further. In that work, it was shown that ΣB
1 theorems of V L can be translated

into a family of tautologies that have polynomial-size GL∗ proofs. However, it was not

shown that V L can prove that GL∗ is sound. This was later shown in [35], and we give

Chapter 1. Introduction 14

this result here too. The main idea is to formalize an algorithm that finds a satisfying

assignment to a given CNF (2) formula if one exists. A CNF (2) formula is a CNF

formula where no variable appears more than twice in the formula.

Then to prove the reflection principle, we define a logarithmic-space function that

witnesses every eigenvariable in the proof. This is not possible in GPV ∗ unless L = P ,

for the eigenvariables can be used to simulate circuits.

To see if this observation holds more generally, we define proof system GNL∗ in

a similar fashion to GL∗. We start with a set of formulas that can be witnessed in

NL. These are the ΣKrom formulas, and they are based on the descriptive complexity

characterization of NL given in [15]. Then GNL∗ is obtained from G∗1 by restricting cuts

to ΣKrom formulas where no free variable is an eigenvariable.

As with other proof systems, we then prove a connection between GNL∗ and V NL by

proving the reflection principles for GNL∗ and translating theorem of V NL. Proving the

refection principle is essentially the same as proving the reflection principle for GL∗. The

only difference is the function that witnesses the eigenvariables is now a non-deterministic

logarithmic-space function.

The translation theorem involves the main ideas of the GL∗ case, but the style of

the proof is changed. In [34, 35], the translation theorem for GL∗ is proved in a proof

theoretic way. We start with a proof and change it to get what we want. For the GNL∗,

we use a model theoretic construction. We start with V NL and restrict the use of the

axioms. Using model theoretic arguments, we prove that we can do this restriction. This

corresponds to the normal form that we want.

Even if the style of the proof changes, the main difficulty remains the same: the need

to formalize a proof that the NL functions are closed under composition. This is only

true because NL is closed under complement. This means we must formalize a proof

of the Immerman-Szelepcsenyi Theorem. This was done in [9, 18], but the proof was

complicated. We redid the proof in a different way, so that we can say that it is provable

Chapter 1. Introduction 15

in the restricted theory mentioned above.

The proof systems GL∗ and GNL∗ show how we can define a proof system that

change the strength of the Σq
1 proofs; however, it is still unclear how this affects the more

complicated formulas. We pursue this line of reasoning by trying to define a proof system

that is truly a non-uniform version of TV i.

Earlier we mentioned that bounded-depth Frege is the non-uniform version of I∆0(R).

We want to find a proof system that has the same connection with TV i. The proof

system G∗i+1 meets some of the qualifications. In particular, every theorem of TV i can be

translated into a family of polynomial-size G∗i+1 proofs. On the other hand, TV i proves

the Σq
i+1 reflection principle, but, assuming PH does not collapse, it does not prove the

Σq
i+2 reflection principle. This gives an indication that we want to restrict G∗i+1.

To understand how to restrict it, we look at the witnessing theorem. Comparing the

witnessing theorems for TV i and for G∗i+1, we notice that for TV i the “student-teacher”

game has a constant number of rounds before the student is guaranteed to win; however,

for G∗i+1 there is potentially a polynomial number of rounds. This gives an indication

that, if we can somehow restrict G∗i+1 to reduce the number of rounds to a constant, this

may give us a proof system that truly corresponds to TV i.

In fact, this is what we do, except, for technical reasons, we use GPV ∗i+1. First

we observe that the number of rounds corresponds to certain special uses of ∀-right

and ∃-left–the rules with eigenvariables. Once this is done, we have a family of proof

systems that correspond to TV i in the same way that bounded-depth Frege corresponds

to I∆0(R). Namely, for any bounded formula φ, if TV i proves there exists GPV ∗i+1(c)

proofs of the translation of φ, then TV i proves φ. As well, the translation theorem still

holds: every theorem of TV i can be translated into a family of tautologies that have

polynomial-size GPV ∗i+1(c) proofs.

Chapter 2

Basic Definitions and Notations

2.1 Two-Sorted Computational Complexity

We use two-sorted computational complexity. The two sorts are numbers and binary

strings (aka finite sets). The numbers are intended to range over the natural numbers

and will be denoted by lower-case letters. For example, i, j, x, y, and z will often be

used for number variables; r, s, and t will be used for number terms; and f , g and h will

be used for functions that return numbers. The strings are intended to be finite strings

over {0, 1} with leading 0’s removed. Since the strings are finite, they can be thought of

as sets where the ith bit is 1 if i is in the set. The strings will be denoted by uppercase

letters. The letters X,Y , and Z will often be used for string variables.

We assume that people are familiar with the basic complexity classes L, NL, P and

NP . We will only describe the definitions that are not be so conventional. For those

unfamiliar with these complexity classes, you can get all of the necessary background for

these classes in any introductory text on the subject ([38] is one example).

The first unconventional feature is the format of the input. The inputs are a series

of numbers represented in unary and a series of strings over {0, 1} with leading zeros

removed. The idea being that the strings are the objects of interest and the numbers are

16

Chapter 2. Basic Definitions and Notations 17

just auxiliary. For example, in the graph connectivity problem, the graph is encoded as

a string, but the nodes s and t are given as numbers. The idea is that the size of the

graph is what really determines the size of the instance.

We are also interested in the polynomial-time hierarchy (PH). The ith level of the

polynomial-time hierarchy (denoted Σp
i) is defined as NPΣp

i−1 for i ≥ 1 and Σp
0 = P .

Then

PH =
∞⋃
i=0

Σp
i .

We say that PH collapses if there is an i such that PH = Σp
i . This is fairly standard,

but is not always covered in undergraduate level courses.

For functions, we say a number function f(~x, ~X) is in FC, where C is a complexity

class, if there is a polynomial p such that f(~x, ~X) < p(~x, | ~X|), and the relation f(~x, ~X) =

y is in C. A string function F (~x, ~X) is in FC if the size of F (~x, ~X) is bounded by a

polynomial and if the relation

R(i, ~x, ~X) ≡ the ith bit of F (~x, ~X) is 1

is in C.

The function classes can be defined by talking about output tapes, but this is equiv-

alent. As well, for non-deterministic classes like NL, defining functions using an output

tape is not as elegant.

As you may have already noticed from Table 1.2, we also consider complexity classes

that have non-standard use of oracles. These should be mentioned here, but we will not

go into formal definitions. If we ask an oracle if something exists, then the standard

oracle response is a yes or no answer. However, it is also possible to consider a model

where the oracle answers with a witness. For example, if an oracle is asked if a formula

is satisfiable, it would answer with a satisfying assignment if one exists. As well, we may

consider the possibility of restricting the use of the oracle. This leads to the following

Chapter 2. Basic Definitions and Notations 18

complexity classes.

Definition 2.1.1. Let f : N → N be a function and let n refer to the size of the

input. The complexity class FPA[wit, f] is the set of functions that can be computed in

polynomial-time with at most f(n) calls to an oracle A that returns a witness.

We are particularly interested in the cases when f(n) is sub linear. For example, we

look at f(n) ∈ O(1) and f(n) ∈ O(log n). These classes were originally defined for their

association with bounded arithmetic (see [21, 36] for two examples.)

As you may have noticed in the introduction, these are many results that hold under

the assumption that PH does not collapse. This assumption is relevant via the following

theorem:

Theorem 2.1.2 (Theorem 8.7 [29]). If FPΣp
i [wit, O(1)] = FPΣp

i [wit, O(log n)], then

PH = Σp
i+1.

2.2 Bounded Arithmetic

We will use two-sorted theories of bounded arithmetic. We follow the presentation in

[8, 11]. As with two-sorted computational complexity, the two sorts are numbers and

binary strings (aka finite sets).

The base language is

L2
A = {0, 1,+,×, <,=,=2,∈, ||} .

The constants 0 and 1 are number constants. The functions + and × take two numbers

as input and return a number–the intended meanings are the obvious ones. The language

also includes two binary predicates that take two numbers: < and =. The predicate =2

is meant to be equality between strings, instead of numbers. In practice, the 2 will not be

written because which equality is meant is obvious from the context. The membership

Chapter 2. Basic Definitions and Notations 19

predicate ∈ takes a number i and a string X. It is meant to be true if the ith bit of X is

1 (or i is in the set X). This will also be written as X(i). The final function |X| takes a

string as input and returns a number. It is intended to be the number of bits needed to

write X when leading zeros are removed (or the least upper bound of the set X). The

set of axioms 2BASIC is the set of defining axioms for L2
A.

We use ∃X < b φ as shorthand for ∃X[(|X| < b) ∧ φ]. The shorthand ∀X < b φ

means ∀X[(|X| < b) ⊃ φ]. The set ΣB
0 = ΠB

0 is the set of formulas whose only quantifiers

are bounded number quantifiers. For i > 0, the set ΣB
i is the set of formulas of the form

∃ ~X < ~tφ where φ is a ΠB
i−1 formula. For i > 0, the set ΠB

i is the set of formulas of the

form ∀ ~X < ~tφ where φ is a ΣB
i−1 formula.

Now we can define the two main axiom schemes:

ΣB
i -comp: ∃X ≤ b∀i < b[X(i)↔ φ(i)],

ΣB
i -string-ind: [φ(∅) ∧ ∀X[φ(X) ⊃ φ(S(X))]] ⊃ φ(Y)

where φ(i) is a ΣB
i formula, and, for ΣB

i -COMP, φ does not contain X, but may contain

other free variables. The constant ∅ is the empty string, and the function S(X) interprets

X as a binary number and adds 1 to it. Note that we still view ΣB
i -string-ind as a formula

over L2
A. We simply replace the instances of ∅ and S(X) by their ΣB

0 bit-definition.

We can now define two hierarchies of theories.

Definition 2.2.1. The theory V i is axiomatized by the 2BASIC axioms plus ΣB
i -comp.

The theory TV i is axiomatized by the 2BASIC axioms, ΣB
0 -comp, and ΣB

i -string-ind.

For i > 0, V i corresponds to Si2, and TV i corresponds to T i2 in that they are RSUV-

isomorphic [11].

Another theory we often use is V PV , a universal theory with a function symbol for

every polynomial-time function. The function symbols have the following defining axioms

based on Cobham’s Theorem:

Chapter 2. Basic Definitions and Notations 20

Definition 2.2.2 (PV function symbols). The language LFP is the smallest set satisfying

the following:

1. LFP includes L2
A ∪ {pd, CHOP}.

2. For each open formula φ(z, ~x, ~X) over LFP and term t = t(~x, ~X) over L2
A, there is

a string function Fφ,t and a number function fφ,t in LFP .

3. For each triple G,H, t, where G(~x, ~X) and H(y, ~x, ~X,Z) are functions in LFP and

t(y, ~x, ~X) is an L2
A term, there is a function FG,H,t in LFP .

The 2BASIC axioms define the function symbols in L2
A. The rest of the function symbols

have the following defining axioms:

• pd(0) = 0, x 6= 0 ⊃ pd(x) + 1 = x

• CHOP (X, y)(i)↔ i < y ∧X(i)

• Fφ,t(~x, ~X)(i)↔ i < t(~x, ~X) ∧ φ(i, ~x, ~X)

• i < fφ,t(~x, ~X) ⊃ ¬φ(i, ~x, ~X)

• fφ,t(~x, ~X) < t(~x, ~X) ⊃ φ(fφ,t(~x, ~X), ~x, ~X)

• FG,H,t(0, ~x, ~X) = G(0, ~x, ~X)

• FG,H,t(y + 1, ~x, ~X) = CHOP (H(y, ~x, ~X, FG,H,t(y, ~x, ~X)), t(y, ~x, ~X))

The theory V PV is axiomatized by quantifier-free equivalents of the 2BASIC axioms,

induction on all open ΣB
0 (LFP) formulas, and the defining axioms for all of the LFP

function symbols. See [8, 11] for more information on V PV .

Another scheme of formulas we use is the ΣB
i -MAX scheme:

[∃x < b φ(x)] ⊃ ∃x < b[φ(x) ∧ ∀y < b(x < y ⊃ ¬φ(y))]

Chapter 2. Basic Definitions and Notations 21

where φ is ΣB
i . This scheme essentially says that, if there exists a value for x less than b

that satisfies φ(x), then there exists a maximum x less than b that satisfies φ(x). It can

be shown that ΣB
i -MAX is provable in V i ([11], Corollary 5.8).

From time to time, we will use function symbols that are not in L2
A. The first is

X(i, j) ≡ X(〈i, j〉), where 〈i, j〉 = (i + j)(i + j + 1) + 2j is the pairing function. It can

be thought of as a two dimensional array of bits. The second is the row function. The

notation we use is X [i]. This functions returns the ith row of the two dimensional array

X. In the same way, we can also describe three dimensional arrays. We also want to

pair strings. So if X = 〈Y1, Y2〉, then X [0] = Y1 and X [1] = Y2. Note that, if we add

these functions with their ΣB
0 defining axioms to the theory V i, we get a conservative

extension. They can also be used in the induction axioms [8]. This means that, if there is

a V i proof of a formula that uses these functions, there is a V i proof of the same formula

that does not use these functions.

These theories are interesting because of their connection with computational com-

plexity. This is done by looking at which functions are definable in the theory.

Definition 2.2.3. A string function F (X) is ΣB
i -definable in a theory T if and only if

there is a ΣB
i formula φ(X, Y) such that

Y = F (X)↔ φ(X, Y)

and T proves

∀X∃!Y φ(X, Y).

To define a search problem (multi-function) the only the first condition is used.

Then the important results are the witnessing theorems for V i and TV i.

Theorem 2.2.4. • A function F is ΣB
i+1-definable in V i+1 if and only if F is in

FPΣp
i [4].

Chapter 2. Basic Definitions and Notations 22

• A function F is ΣB
i+1-definable in TV i if and only if F is in FPΣp

i [2].

• A search problem P is ΣB
i+1-definable in TV i+1 if and only if P is in PLSΣp

i [3].

• A function F is ΣB
i+1-definable in V i if and only if F is in FPΣp

j−1 [wit, log] [21].

• For j > i + 1, a function F is ΣB
j -definable in TV i or V i if and only if F is in

FPΣp
j−1 [wit, O(1)] [36].

2.3 The Quantified Propositional Calculus

We are also interested in quantified propositional proof systems. The proof systems we

use were originally defined in [23], and then they were redefined in [10, 29], which is the

presentation we follow.

The set of connectives are {∧,∨,¬, ∃,∀,>,⊥}, where > and ⊥ are constants for true

and false, respectively. Formulas are built using these connectives in the usual way. We

will often refer to formulas by the number of quantifier alternations.

Definition 2.3.1. The set of formulas Σq
0 = Πq

0 is the set of quantifier-free propositional

formulas. For i > 0, the set of Σq
i (Πq

i) formulas is the smallest set of formulas that

contains Πq
i−1 (Σq

i−1) and is closed under ∧, ∨, existential (universal) quantification, and

if A ∈ Πq
i (A ∈ Σq

i) then ¬A ∈ Σq
i (¬A ∈ Πq

i).

The first proof system, from which all others will be defined, is the proof system G.

This proof system is a sequent calculus based on Gentzen’s system LK. The system

G is essentially the DAG-like, propositional version of LK. A sequent is two series of

formulas, which we will write as

Γ→ ∆.

The intended meaning is if every formula in Γ is true then at least one of the formulas in

∆ is true. In a G proof, a sequent is derived from other sequents using one of the rules

of inference:

Chapter 2. Basic Definitions and Notations 23

• Weakening rules:

Γ→ ∆
A,Γ→ ∆

Γ→ ∆
Γ→ ∆, A

• Exchange rules:

Γ1, A,B,Γ2 → ∆
Γ1, B,A,Γ2 → ∆

Γ→ ∆1, A,B,∆2

Γ→ ∆1, B,A,∆2

• Contraction rules:

A,A,Γ→ ∆
A,Γ→ ∆

Γ→ ∆, A,A
Γ→ ∆, A

• ¬ introduction rules:

Γ→ ∆, A
¬A,Γ→ ∆

A,Γ→ ∆
Γ→ ∆,¬A

• ∧ introduction rules:

A,B,Γ→ ∆
A ∧B,Γ→ ∆

Γ→ ∆, A Γ→ ∆, B
Γ→ ∆, A ∧B

• ∨ introduction rules:

A,Γ→ ∆ B,Γ→ ∆
A ∨B,Γ→ ∆

Γ→ ∆, A,B
Γ→ ∆, A ∨B

A rule of special interest is the cut rule. This rule is not needed to have a complete proof

system, but it is used to make proofs shorter. For this reason, it plays a special role in

proof complexity. The cut rule is

A,Γ→ ∆ Γ→ ∆, A
cut

Γ→ ∆

In this rule, we call A the cut formula. There are also four rules that introduce quantifiers:

Chapter 2. Basic Definitions and Notations 24

A(x),Γ→ ∆
∃-left ∃zA(z),Γ→ ∆

Γ→ ∆, A(B)
∃-right

Γ→ ∆,∃zA(z)

A(B),Γ→ ∆
∀-left ∀zA(z),Γ→ ∆

Γ→ ∆, A(x)
∀-right

Γ→ ∆,∀zA(z)

These rules have conditions on them. In ∃-left and ∀-right, the variable x must not

appear in the bottom sequent. In these rules, x is called the eigenvariable. In the other

two rules, the formula B must be a Σq
0 formula, and no variable that appears free in B

can be bound in A(z).

The initial sequents of G are sequents of the form → >, ⊥ →, or x → x, where x is

any propositional variable. A G proof is a series of sequents such that each sequent is

either an initial sequent or can be derived from previous sequents using one of the rules

of inference. The proof system Gi is G with cut formulas restricted to Σq
i formulas.

We define G∗ as the treelike version of G. So, a G∗ proof is a G proof where each

sequent is used as an upper sequent in an inference at most once. A G∗i proof is a G∗

proof in which cut formulas are prenex Σq
i . In [29], it was shown that, for treelike proofs,

it did not matter if the cut formulas in G∗i were prenex or not. So when we construct G∗i

proofs the cut formulas will not always be prenex, but that does not matter.

To make proofs simpler, we assume that all treelike proofs are in free-variable normal

form.

Definition 2.3.2. A parameter variable for a G∗i proof π is a variable that appears

free in the final sequent of π. A proof π is in free-variable normal form if (1) every

non-parameter variable is used as an eigenvariable exactly once in π, and (2) parameter

variables are not used as eigenvariables.

Note that, if a proof is treelike, we can always put it in free-variable normal form by

simply renaming variables. In fact, V PV proves that every treelike proof can be put in

free-variable normal form.

Chapter 2. Basic Definitions and Notations 25

A useful property of these proof systems is the subformula property. It can be shown

in VPV that every formula in a G∗i proof is an ancestor (and therefore a subformula) of

a cut formula or a formula in the final sequent. This is useful because it tells us that any

non-Σq
i formula in a G∗i proof must be an ancestor of a final formula.

2.3.1 Propositional Translations

There is a close connection between the theory V i and the proof system G∗i . You can

think of G∗i as the non-uniform version of V i. This idea might not make much sense at

first until you realize you can translate a V i proof into a polynomial-size family of G∗i

proofs. The translation that we use is described in [8, 10]. It is a modification of the

Paris-Wilkie translation [33]. Given a ΣB
i formula φ(~x, ~X) over the language L2

A, we want

to translate it into a family of propositional formulas ||φ(~x, ~X)||[~m;~n], where the size of

the formulas is bounded by a polynomial in ~m and ~n. The formula ||φ(~x, ~X)||[~m;~n] is

meant to be a formula that is a tautology when φ(~x, ~X) is true in the standard model

whenever xi = mi and |Xi| = ni. If φ(~x, ~X) is true in the standard model for all ~x and

~X, then every ||φ(~x, ~X)||[~m;~n] is a tautology.

The variables ~m and ~n will often be omitted since they are understood. The free

variables in the propositional formula will be pXi
j for j < ni − 1. The variable pXi

j is

meant to represent the value of the jth bit of Xi; we know that the nith bit is 1, and for

j > ni, we know the jth bit is 0. The definition of the translation proceeds by structural

induction on φ.

Suppose φ is an atomic formula. Then it has one of the following forms: s = t, s < t,

Xi(t), or one of the trivial formulas ⊥ and >, for terms s and t. Note that the terms

s and t can be evaluated immediately. This is because the exact value of every number

variable and the size of each string variable is known. Let val(t) be value of the term t.

In the first case, we define ||s = t|| as the formula >, if val(s) = val(t), and ⊥,

otherwise. A similar construction is done for s < t. If φ is one of the trivial formulas,

Chapter 2. Basic Definitions and Notations 26

then ||φ|| is the same trivial formula. So now, if φ =syn Xi(t), let j = val(t). Then the

translation is defined as follows:

||φ|| =syn

pXi
j if j < ni − 1

1 if j = n1 − 1

0 if j > n1 − 1

Now for the inductive part of the definition. Suppose φ =syn α ∧ β. Then

||φ|| =syn ||α|| ∧ ||β||.

When the connective is ∨ or ¬, the definition is similar. If the outermost connective is a

number quantifier bound by a term t, let j = val(t). Then the translation is defined as

||∃y ≤ t, α(y)|| =syn

j∨
i=0

||α(y)||[i]

||∀y ≤ t, α(y)|| =syn

j∧
i=0

||α(y)||[i]

||∃Y ≤ t, α(Y)|| =syn ∃pY0 , . . . ,∃pYm−2,

j∨
i=0

||α(Y)||[i]

||∀Y ≤ t, α(Y)|| =syn ∀pY0 , . . . ,∀pYm−2,

j∧
i=0

||α(Y)||[i]

Now we are able to state the translation theorem for V i and G∗i .

Theorem 2.3.3 ([22, 29]). Let i > 1. Suppose V i ` φ(~x, ~X), where φ is a bounded

formula. Then V 1 proves there are polynomial-size G∗i proofs of the family of tautologies

||φ(~x, ~X)||[~m;~n].

This is the two-sorted version of the translation theorems from Section 9.2 in [22],

Chapter 2. Basic Definitions and Notations 27

and was proved in [11]. Note that the same theorem holds for TV i−1 in place of V i since

TV i−1 is a sub-theory of V i.

This type of theorem is the standard way of proving that the reasoning power of the

proof system is as least as strong as that of the theory. One way of viewing this is by

looking at the complexity of the witnessing functions. The theorem above tells us that

witnessing theorems of V i is at least as hard as witnessing G∗i proofs. The idea is that to

witness a theorem of V i φ(X) for a given X, we can construct a G∗i proof of ||φ(X)||[; |X|]

in polynomial-time. Then we can witness φ with a given input by witnessing this proof.

2.3.2 Truth Definition

In order to reason about the proof systems in the theories, we must be able to reason

about quantified propositional formulas. We follow the presentation in [22, 23].

Formally formulas will be coded as strings, but we will not distinguish between a

formula and its encoding. So if F is a formula, we will use F as the string encoding the

formula as well. The method of coding a formula can be found in [10]. The encoding of

an assignment A will be a set of pairs 〈i, 0〉 and 〈i, 1〉 which mean that the variable xi is

assigned false and true, respectively.

The truth definition we give will be more complicated than usual, but this is because

we want to be able to write the definition as a formula in the language of bounded

arithmetic. To this end, the main part of the definition will be contained in two formulas:

eval∃i (E,A,X, F) and eval∀i (E,A, Y, F). The formula eval∃i (E,A,X, F) is intended to be

a formula that says E is an evaluation that shows that the Σq
i formula F is true or the

Πq
i formula F is false. The formula is evaluated by structural induction. For example, if

F ≡ F1∧F2, then E is a combination of an evaluation of F1 and F2. The base case of this

induction is when we reach a Πq
i−1 formula or a Σq

i−1 formula. At this point, we resort

to an induction on i. In essence, we have a simultaneous induction on the structure of

F (taken care of by E) and on the quantifier complexity. The formula eval∀i (E,A, Y, F)

Chapter 2. Basic Definitions and Notations 28

is similar. The main difference is that E is supposed to be an evaluation showing a Πq
i

formula is true or a Σq
i formula is false.

Given a Σq
i formula F , an evaluation of that formula will be a series of lines. Each

line will consist of a truth value and a subformula of F . Plus each line will have to be

consistent with previous lines. For example, if there is a line saying F1 ∨F2 is true, then

there is an earlier line saying F1 is true or a line saying F2 is true. With this in mind, we

have the following definition.

Definition 2.3.4. Let F be the encoding of a formula where all quantified variables are

distinct, and different than the free variables. We recursively define A |=i F . If F is a

Σq
i formula, then

A |=i F ≡ ∃X∃E eval∃i (E,A,X, F) ∧ ∃n < |E|, E[n] = 〈>, F 〉,

where eval∃i (E,A,X, F) is a formula saying that E is a series of lines assigning truth

values to subformulas of F and X assigns values to the outermost even existential quan-

tifiers and the outermost odd universal quantifiers. An even quantifier is one that is in

the scope of an even number of ¬, and an odd quantifier is one that is in the scope of an

odd number of ¬. More formally eval∃i (E,A,X, F) is the conjunction of the following.

Note that we do not give the bounds on the quantified variables, but the reader can fill

in what they should be. As well, the quantification over the subformulas of F is written

as quantification over string variables (i.e. ∀F1); however, this can be replaced by quan-

tifying over the position in F where these formulas appear. This turns it into a number

quantifier.

• For every line l, if the outermost connective of the formula is ∧ and the formula is

true, then there are earlier lines j1, j2 saying both the left subformula F1 and the

Chapter 2. Basic Definitions and Notations 29

right subformula F2 are true.

∀l∀F1∀F2∃j1∃j2,

E[l] = 〈>, F1 ∧ F2〉 ⊃ E[j1] = 〈>, F1〉 ∧ E[j2] = 〈>, F2〉

Note that the case of ∨ with a false formula is handled the same way.

• For every line l, if the outermost connective of the formula is ∧ and the formula

is false, then there is an earlier line j saying one of the left subformula F1 or right

subformula F2 is false.

∀l∀F1∀F2∃j,

E[l] = 〈⊥, F1 ∧ F2〉 ⊃ E[j] = 〈⊥, F1〉 ∨ E[j] = 〈⊥, F2〉

Note that the case of ∨ with a true formula is handled the same way.

• For every line l, if the outermost connective of the formula is ¬ and the formula is

true, then there is a previous line j saying the subformula is false.

∀l∀F1∃j,

E[l] = 〈>,¬F1〉 ⊃ E[j] = 〈⊥, F1〉

Note that this is the only case where the truth value changes, so the truth value

can also be viewed as the parity of the number of negations that were passed to

reach this subformula.

• For every line l, if the outermost connective of the formula is ∃ and the formula is

true, then there is a previous line j with a witness for the quantifier and X gives

Chapter 2. Basic Definitions and Notations 30

us that value.

∀l∀F1∃j,

E[l] = 〈>,∃xnF1(xn)〉 ⊃ (E[j] = 〈>, F1(xn)〉 ∧ (〈n, 0〉 ∈ X ∨ 〈n, 1〉 ∈ X))

Note that the case of ∀ with a false formula is handled the same way.

• For every line l, if the outermost connective of the formula is ∃ and the formula is

false, then the formula is a Σq
i−1 formula, and it is false according to |=i−1.

∀l∀F1,

E[l] = 〈⊥,∃ynF1(yn)〉 ⊃ ∃ynF1(yn) ∈ Σq
i−1 ∧ (X ∪ A) |=i−1 ∃ynF1(yn)

This is the base case in the structural induction, and this is the point at which we

invoke the induction on the quantifier complexity. Note that the case of ∀ with a

true formula is handled the same way.

• For every line l, if the formula is a single variable, then the truth value is consistent

with A.

∀l,

E[l] = 〈>, xn〉 ⊃ 〈xn, 1〉 ∈ A

∧E[l] = 〈⊥, xn〉 ⊃ 〈xn, 0〉 ∈ A

If F is a Πq
i formula, then

A |=i F ≡ ∀Y ∀E eval∀i (E,A, Y, F) ⊃ ∃nE[n] = 〈>, F 〉

Chapter 2. Basic Definitions and Notations 31

where eval∀i (E,A, Y, F) is almost the same as eval∃i except Y now gives a truth value for

the even universally-quantified variables and the odd existentially-quantified variables.

Notice that in eval∃i if the outermost connective is ∀ and we want to falsify it, then it

is treated like ∃. The connectives ∧ and ∨ are also treated the same when we are trying

to satisfy one and falsify the other. When we see a ∀ and we want to satisfy the formula,

we know the quantifier complexity of the formula has dropped. Therefore, we can get

the value of this formula recursively. If we are looking at a Σq
0 formula the recursive case

never comes up.

For a Σq
i formula, we are saying there is an evaluation of the formula that says it is

true. For a Πq
i formula, we are saying that all evaluations of the formula say it is true.

This is an important difference since a Σq
i formula is false if there is no evaluation of the

formula, but a Πq
i formula would be true.

For i > 0, this gives a ΣB
i definition for A |=i F and, for i = 0, it has a ΣB

0 (PV)

definition in V PV . If F is a Πq
i formula, the definition is ΠB

i .

Given a formula F ≡
∧n
i=0 Fi, there is a PV function Parse∧(F, j) that outputs

Fmin(j,n). The same goes for ∨ in place of ∧. The theory V PV proves the Tarski conditions

for the truth definition.

Lemma 2.3.5 (Tarski’s Conditions). V PV proves the following

1. (A |=i F1 ∧ F2)↔ (A |=i F1 ∧ A |=i F2)

2. (A |=i F1 ∨ F2)↔ (A |=i F1 ∨ A |=i F2)

3. (A |=i F)↔ (∀j ≤ |F | A |=i Parse∧(F, j)) (where F ≡
n∧
j=0

Fj and F ∈ Πq
i)

4. (A |=i F)↔ (∃j ≤ |F | A |=i Parse∨(F, j)) (where F ≡
n∨
j=0

Fj and F ∈ Σq
i)

5. (A |=i ¬F)↔ ¬(A |=i F)

6. (A |=i ∃~xF (~x))↔ ∃X(A ∪X |=i F (~x)) (for F ∈ Σq
i)

Chapter 2. Basic Definitions and Notations 32

7. (A |=i ∀~xF (~x))↔ ∀X(A ∪X |=i F (~x)) (for F ∈ Πq
i)

8. (A |=i F)↔ (A |=i−1 F) (for F ∈ Σq
i−1 ∪ Πq

i−1).

Proof. (1) Suppose A |=i F1 ∧ F2 and the formula is Σq
i , then there is an evaluation

of this formula. This evaluation would contain the line (>, F1 ∧ F2). Therefore this

evaluation would also contain lines of the form (>, F1) and (>, F2). This means we have

evaluations of F1 and F2. Suppose A |= F1 ∧ A |= F2. Then there exist evaluations of

these formulas. An evaluation for F1∧F2 is obtained from these evaluations by combining

these evaluations and adding a new line using ΣB
0 -COMP. If the formula is Πq

i , the proof

is similar.

(2) The same way as (1).

(3) Suppose A |=i F is false and ∀j ≤ |F | A |=i Parse∧(F, j) is true, where F ≡
n∧
j=0

Fj.

Let Fm be the formula
m∧
j=0

Fj. This means Fm ≡ Fm−1 ∧ Fm. By the first assumption,

there is an evaluation of F ≡ F n with a line 〈⊥, F 〉. If there is a line in the evaluation of

the form 〈⊥, Fm+1〉, then there is a line 〈⊥, Fm〉. Note that 〈⊥, Fm〉 cannot appear in a

line by the second assumption. So it follows by induction that there is a line saying that

F 1 ≡ F1 is false, but this contradicts the second assumption.

Now suppose ∀j ≤ |F | A |=i Parse∧(F, j) is false. Then there exists an evaluation of

Fj, for some j, with a line 〈⊥, Fj〉. To this evaluation we can append the lines 〈⊥, Fm〉

for j ≤ m ≤ n using ΣB
0 -COMP. This shows that A |=i F is false.

Note that the proof of (3) does not work if F is a Σq
i formula since A |=i F could

be false because there is no evaluation of F . There is not necessarily an evaluation that

shows F is false.

(4) This is the dual of (3).

(5) We assume F is a Πq
i formula. The case where F is a Σq

i formula is essentially

the same. Suppose (A |=i ¬F). Then there exists an evaluation of F with a line

〈>,¬F 〉. This means the evaluation also has a line 〈⊥, F 〉, proving ¬(A |=i F). Suppose

Chapter 2. Basic Definitions and Notations 33

¬(A |=i F). There there exists an evaluation of F with line 〈⊥, F 〉. The line 〈>,¬F 〉

can be appended to this evaluation, proving (A |=i ¬F).

(6) This follows directly from the ∃X in the definition of |=i.

(7) This is the dual of (6).

(8) This follows directly from the recursive nature of the definition.

The importance of the Tarski conditions is that they give us the ability to say that a

formula if true if and only if it evaluates to true. This is best stated in the propositional

proof systems. Consider the formula A |=i F (~x), where A codes an assignment and F is

a formula over the variables ~x. If we take the propositional translation of this formula,

then we get a formula with free variables for the bits of the string A and F . In this

case we are dealing with a specific formula, we can replace the bits of the formula F by

its actual encoding. As for A, it is supposed to be a string that codes the assignment

to ~x. We can replace the variables that are the bits of A by formulas that encode the

assignment to ~x given ~x. For example, we replace pAi,0 by ¬xi (if xi is assigned false, then

A(i, 0) is true). Using this, we get the following lemma.

Lemma 2.3.6. V 1 proves that there are polynomial-size G∗i proofs of

B(~x)↔ C(~x),

where ~B(~x) is the propositional translation of A |=i F (~x) with the variables for A re-

placed by formulas coding ~x as an assignment and the variables for F are replaced by the

constants that code C.

Proof. Structural induction on C using the fact that V 1 proves the Tarski condition for

the true definition (which translates into polynomial-size G∗1 proofs). See Lemma 9.3.15

in [22] for a similar lemma.

Chapter 2. Basic Definitions and Notations 34

Valid formulas (or tautologies) are defined as

TAUTi(F) ≡ ∀A, (“A is an assignment to the variables of F” ⊃ A |=i F)

This truth definition can be extended to define the truth of a sequent. So, if Γ→ ∆

is a sequent of Σq
i ∪ Πq

i formulas, then

(A |=i Γ→ ∆) ≡“there exists a formula in Γ that A does not satisfy”

∨ “there exists a formula in ∆ that A satisfies”

Another important formula we will use is the reflection principle for a proof system.

We define the Σq
i reflection principle for a proof system P as

Σq
i -RFN(P) ≡ ∀F∀π, (“π is a P proof of F” ∧ F ∈ Σq

i) ⊃ TAUTi(F)

This formula essentially says that, if there exists a P proof of a Σq
i formula F , then F is

valid. Another way of putting it is to say that P is sound when proving Σq
i formulas.

The usefulness of the reflection principles is found in the connection with bounded

arithmetic. This is demonstrated in the following theorem.

Theorem 2.3.7. • V i proves Σq
i -RFN(G∗i) [26].

• The ΣB
i consequences of V i can be axiomatized by V 1 + Σq

i -RFN(G∗i) [26].

This tells us a lot about the complexity of the witnessing problem for G∗i . Essentially

the complexity of witnessing a G∗i proof of a Σq
i formula is no harder than witnessing

a ΣB
i theorem of V i. This is because the existential part of the reflection principle is a

witness to the formula that is being proved.

Part II

The Fragments of G

35

Chapter 3

Proof Theory for G

3.1 Basic Constructions

In this section, we want to give a few simple results that hopefully will allow the reader

to become familiar with the proof systems. These constructions are not new. They have

come up in many proof theoretic proofs in different settings. The first result shows how

we can remove a connective from the formula being proved. Note that we only mention

connectives on the right, but there are corresponding connectives for the formulas on the

left side of the sequent.

Lemma 3.1.1. Let π be a G∗i proof of a sequent

Γ→ ∆, A. (3.1.1)

1. If A ≡ B ∧ C and D be B or C, then there exists a G∗i proof π′, where |π′| < |π|,

of the sequent

Γ→ ∆, D.

36

Chapter 3. Proof Theory for G 37

2. If A ≡ B ∨ C, then there exists a G∗i proof π′, where |π′| < |π|, of the sequent

Γ→ ∆, B, C.

3. If A ≡ ¬B, then there exists a G∗i proof π′, where |π′| < |π|, of the sequent

B,Γ→ ∆

4. If A ≡ ∀xB(x), then there exists a G∗i proof π′, where |π′| < |π|, of the sequent

Γ→ ∆, B(q)

where q is any variable that does not appear in Γ or ∆.

Proof. Each of these is proved the same way. They can be proved by induction on the

depth of the proof. For example, consider 4 above. If the last inference in π does not have

A as the principal formula, then π can be constructed using the same rule of inference

with the sequent obtained from the induction hypothesis. If A was the principal formula,

then the upper sequent in the last inference is

Γ→ ∆, B(q).

This is the sequent we want. If we want q to be a different variable, we can replace every

instance of q in the proof by the desired variable.

Observe that in the above proof we did not include a case for ∃. This is because this

case is actually not as simple. Consider an ∃-right inference:

Γ→ ∆, B(C)

Γ→ ∆, ∃xB(x)

Chapter 3. Proof Theory for G 38

The formula C could contain variables that are later used as eigenvariables. If we ignore

this rule–which is essentially what was done in the proof above–the later ∀-right rules or

∃-left rules may no longer meet the eigenvariable condition. This is an important issue

in our adaptation of the Herbrand theorem we prove later.

Note that we do not add to the proof. For example, in the ∀ case, we do not add a

proof of ∀xB(x)→ B(q) and cut ∀xB(x) because it does not work. This is because it is

possible that this formula is not Σq
i and cannot be cut in G∗i . This is an important point

because certain constructions that work in settings where every formula can be cut may

not work here.

The next construction that is very often used is the substitution of formulas for free

variables.

Lemma 3.1.2. Let π be a G∗i proof of a sequent

Γ(x)→ ∆(x),

and let C be any Σq
0 formula that does not mention any of the eigenvariables π. Then

there is a G∗i proof of

Γ(C)→ ∆(C)

those size is polynomial in the size of C and π.

Proof. Again this is done by induction on the depth of the proof. For the base case, we

have a proof of x→ x, which becomes a proof of C → C. Every other case follows easily

by induction.

Note that this proof may not work if C is not Σq
0, for, if π has a Σq

i cut formula that

contains x, then, when x is replaced by C, the cut formula may not longer be Σq
i .

The final construction has to do with witnessing a single variable in a formula.

Chapter 3. Proof Theory for G 39

Lemma 3.1.3. Let B(q) be a Σq
i or Πq

i formula. Then there exists polynomial-size G∗i

proofs of the sequents

e↔ B(⊥), B(e)→ ∀qB(q)

e↔ B(>),∃qB(q)→ B(e)

Proof. The proof for the two sequents are essentially the same, so we only give the

construction for the first one. Informally, the reason the first sequent is true is that we

are picking a value for e that makes B(e) false if possible. So, if B(⊥) is false, we make

e false, otherwise we make e true, which is the only other possible value.

First, it is possible to get cut-free proofs of the following four sequents.

e, B(e)→ B(>)

B(e)→ B(⊥), e

e, B(>)→ B(e)

B(⊥)→ B(e), e

This can be shown by simultaneous structural induction on the formula B(e).

We use this in the following derivation:

q, B(>)→ B(q) B(⊥)→ B(q), q
Cut q

B(⊥), B(>)→ B(q)
∀-right

B(⊥), B(>)→ ∀qB(q)

So to finish proving this lemma, all we need are proofs of the sequents

e↔ B(⊥), B(e)→ B(⊥)

e↔ B(⊥), B(e)→ B(>)

We prove the first one as follows:

e, e ⊃ B(⊥)→ B(⊥) B(e)→ B(⊥), e
Cut e

e ⊃ B(⊥), B(e)→ B(⊥)
Weakening and ∨-left

e↔ B(⊥), B(e)→ B(⊥)

Chapter 3. Proof Theory for G 40

The second one is proved as follows:

B(e)→ e, B(⊥) B(⊥) ⊃ e, B(⊥)→ e
Cut B(⊥)

B(⊥) ⊃ e, B(e)→ e e, B(e)→ B(>)
Cut e

B(⊥) ⊃ e, B(e)→ B(>)

Note that the only cut formulas are e, B(⊥), and B(>); therefore, the proof is a G∗i

proof.

3.2 Herbrand Theorem for G∗i

In bounded arithmetic, a useful tool has been the KPT witnessing theorem [24]. In the

simplest case, the KPT witnessing theorem describes how to witness the ΣB
2 theorems of

V PV . The original theorem was more general, but we state it here for the simplest case.

Theorem 3.2.1 (KPT Witnessing [24]). Suppose V PV proves

∀X∃Y ∀Zφ(X, Y, Z),

where φ is a ΣB
0 formula. Then there exists a finite sequence of LFP function symbols

F1, F2, . . . , Fk such that

V PV `∀X∀W φ(X,F1(X),W [1])

∨ φ(X,F2(X,W [1]),W [2])

...

∨ φ(X,Fk(X,W
[1],W [2], . . . ,W [k−1]),W [k])

Informally, this can be viewed as an interactive computation between a student, who

runs in polynomial time, and an all-knowing teacher. Given a value for X, the student’s

goal is the find a witness for ∃Y ∀Zφ(X, Y, Z). The student starts by computing F1(X).

If that is not a witness, the teacher responds with a counter example W [1]. Using that

Chapter 3. Proof Theory for G 41

the student makes a second guess by computing F2. The teacher responds with W [2],

and this process continues.

Our goal is to get a similar theorem for G∗1, and to extend this to G∗i . The rest of

this section is organized as follows. We start by stating the analog of the above theorem

for G∗1. Using this as a starting point, we then define the concepts needed to prove this

theorem. Our presentation will be based on a proof of the Herbrand Theorem. We then

prove an analog of the Herbrand Theorem for G∗1, and as a corollary we get a proof of the

KPT Witnessing Theorem for G∗1. In the second subsection, we explain how to generalize

the Herbrand Theorem for G∗1 so it works for G∗i .

3.2.1 Witnessing for G∗1

In adapting the KPT Witnessing Theorem for G∗1, the first obstacle comes in the state-

ment of the theorem. The theory V PV has access to function symbols that correspond

to the polynomial-time functions, but, in G∗1, there are no function symbols. To fix this,

we use the idea of an extension cedent from [11].

Definition 3.2.2. An extension cedent is a series of formulas of the form

e1 ↔ E1, e2 ↔ E2, . . . , en ↔ En

such that Ei is a Σq
0 formula that does not mention the variables ei, ei+1, . . . , en. We say

that ei depends on a variable q if Ei mentions q or Ei mentions a variable that depends

on q.

Observe that an extension cedent is really a description of a circuit, and that polynomial-

size circuits are the nonuniform version of polynomial-time functions. So extension ce-

dents replace the functions.

Theorem 3.2.3 (KPT Witnessing for G∗1). There exists a LFP (polynomial-time) func-

tion F such that V PV proves the following. Let π be a G∗1 proof of a prenex Σq
2 formula

Chapter 3. Proof Theory for G 42

A(~p) ≡ ∃~x∀~yB(~x, ~y, ~p), where B(~x, ~y, ~p) is a Σq
0 formula with all free variables shown.

Then, given π, F outputs a G∗0 proof of a sequent Λ→ Θ where

1. Θ is a series of n formulas of the form B(~ei, ~qi, ~p), where ~ei ∈ E and 0 ≤ i < n

2. Λ is an extension cedent defining a new set of variables E in terms of ~q0, . . . , ~qn−1

and ~p,

3. ~ei does not depend on ~qj, for j ≥ i, and

4. ~qi and ~qj are disjoint when i 6= j.

This theorem will be proved later as Theorem 3.2.10. Before we prove this theorem,

notice that this is similar to the KPT Witnessing theorem for V PV . The row W [i]

corresponds to ~qi, and Fi corresponds to the circuits defining ~ei. The major difference

is that the number of rounds in the student-teacher game is not constant; it can grow

polynomially in the size of the proof.

One way of proving the KPT Witnessing Theorem is to observe that it is a corollary

to the Herbrand Theorem. So the idea behind our proof is to adjust the proof-theoretic

proof of the Herbrand Theorem. See [5] Section 3 for an outline of the proof we use as

a model. The main difference between our proof and that proof is that cut elimination

cannot be used since it causes an exponential increase in the size of the proof. To get

around this problem, we use the idea in [11] to prove that extended-Frege p-simulates

G∗1. The Σq
1 cut formulas are turned into Σq

0 cut formulas by witnessing the existential

quantifiers with extension variables.

We prove the Herbrand Theorem for all Σq
i formulas, but before we can state the

general theorem, we need a few definitions. The first one has more to do with notation.

The q variables come from the eigenvariables in the G∗1 proof. To make it easier to refer

to these variables, we use the following notation:

Notation. Let π be a G∗ proof. Then the set Qπ will be the set of variables that are used

as eigenvariables in π. If S is a sequent in π, then Qπ,S will be the set of variables that

Chapter 3. Proof Theory for G 43

are used as eigenvariables in the subproof of π ending with S. We will refer to Qπ,S as

QS when π is understood.

Note that π is treelike, and, if it is in free-variable normal form and S is derived from

S1 and S2, then QS = QS1 ∪QS2 , and QS1 ∩QS2 = ∅.

The general witnessing theorem will be for G∗1 proofs of any formula A. In the end,

we want a G∗0 proof of a sequent Λ→ A∗, where A∗ is an instance of of an ∨-expansion

of A defined below.

From now on we assume quantifiers do not appear in the scope of a ¬. If we did not

assume this, we would have to add a separate cases for when quantifiers appear in the

scope of an odd number of quantifiers and an even number.

Definition 3.2.4 (∨-expansion). An ∨-expansion of a formula A is any formula that can

be obtained from A by a finite number of applications of the following rule:

If A∗ is an ∨-expansion of A and B is a non-Σq
0 subformula of A∗,

then replacing B by B ∨B′, where B′ is B with renamed quantified

variables, in A∗ yields another ∨-expansion of A.

(α)

Note that A is an ∨-expansion of A.

An ∨-expansion is used as to handle formulas that are not prenex. The definition

comes from [5].

Definition 3.2.5 ((Q,E)-instance). Let Q and E be disjoint sets of variables. A (Q,E)-

instance of a formula A is a quantifier-free formula A′ obtained from A by replacing

universally-quantified variables by distinct variables in Q and existentially-quantified

variables by distinct variables in E, and deleting the quantifiers.

Example 3.2.6. If

A ≡ B1 ∧ ∃x[B2(x) ∧ ∀yB3(x, y)]

Chapter 3. Proof Theory for G 44

and B2(x) is not a Σq
0 formula, then

A∗ ≡ B1 ∧ ∃x[(B2(x) ∨B′2(x)) ∧ (∀yB3(x, y) ∨ ∀y′B3(x, y′))],

where B′2(x) is B2(x) with the quantifier variables renamed, is an ∨-expansion of A.

This can be seen by replacing B2(x) and ∀yB3(x, y). We renamed the copy of y to y′

to emphasis it is now a different quantified variable. If q1, q2 ∈ Q and e ∈ E, then the

formula

B1 ∧ [(B2(e) ∨B2(e)) ∧ (B3(e, q1) ∨B3(e, q2))]

is a (Q,E)-instance of A∗, but

B1 ∧ [(B2(e) ∨B2(e)) ∧ (B3(e, q1) ∨B3(e, q1))]

is not because y and y′ were replaced by the same variable.

For another example, consider a prenex formula

∃~x1∀~y1 . . . ∃~xn∀~ynB(~x1, ~y1, . . . , ~xn, ~yn),

where B is a Σq
0 formula. Then an instance of an ∨-expansion of this formula is a formula

of the form

B(~e1,1, ~q1,1, . . . , ~e1,n, ~q1,n) ∨ . . . ∨B(~em,1, ~qm,1, . . . , ~em,n, ~qm,n).

So in Theorem 3.2.3, the disjunction of the formulas in Θ is a (Qπ, E)-instance of A.

Because of this, Theorem 3.2.3 is simply a special case of the Herbrand Theorem for G∗1

below.

Observe that in Theorem 3.2.3, there is an ordering on the variables. Namely the

variables ~qi come before the variables ~qi+1. We could also extend this ordering to include

Chapter 3. Proof Theory for G 45

the extension variables. An extension variable would have to be larger than every variable

it depends on. For the general case, we want something similar. To make the proof

simpler, we will use ≺ to refer to this ordering. The ordering ≺ orders the eigenvariables

Q and the extension variables E. Then A∗ will be more than a (Q,E)-instance; it will

be a (Q,E,≺)-instance.

Definition 3.2.7. (Q,E,≺)-instance Let B be a (Q,E)-instance of a formula A, and let

≺ be an ordering on Q ∪ E. Then B is a (Q,E,≺)-instance of A if z1 ≺ z2 whenever

z2 replaces a quantified variable that is in the scope of the quantified variable that z1

replaced.

Example 3.2.8. Take A∗ from the previous example. Then

B ≡ B1 ∧ [(B2(e) ∨B2(e)) ∧ (B3(e, q1) ∨B3(e, q2))]

is a (Q,E)-instance of A∗. If B is a (Q,E,≺)-instance, then we know that e ≺ q1 and

e ≺ q2 since ∀y and ∀y′ are in the scope of the ∃x. Note that it does not matter if q1 ≺ q2

or if q2 ≺ q1 since ∀y is not in the scope of ∀y′ and vice versa.

The idea of an instance is essentially the witnessing substitution from [5]. Now we

are prepared to state the general theorem.

Theorem 3.2.9 (Herbrand Theorem for G∗1). There exists a LFP function F such that

V PV proves the following. Let π be a G∗1 proof of A. Then, given π, F outputs a G∗0

proof of a sequent Λ→ A∗ and a partial ordering ≺ of the variables Qπ ∪E, where E is

a set of variables that do not appear in π, with the following properties:

• Λ is an extension cedent defining the variables in E in terms of Qπ and the free

variables of A;

• for e ∈ E, if e depends on a variable p ∈ Qπ ∪ E, then p ≺ e; and

Chapter 3. Proof Theory for G 46

• A∗ is a (Qπ, E,≺)-instance of an ∨-expansion of A

Proof. The G∗0 proof that we are looking for will be constructed by changing π one sequent

at a time starting with the initial sequents and working our way down. To simplify this

construction, we use the “multiplicative” form of two hypothesis rules instead of the

“additive” form. For example, the multiplicative form of ∧-right is

Γ1 → ∆1, A Γ2 → ∆2, B
Γ1,Γ2 → ∆1,∆2, A ∧B

We use this form instead of the more standard form

Γ→ ∆, A Γ→ ∆, B
Γ→ ∆, A ∧B

This is something that was also done in [5]. The advantage of the multiplicative form is

that, except for the principal formula, each formula in the bottom sequent has a single

parent in the upper sequents. So, in essence, we have removed implicit contractions. We

also ignore the order of the formulas in the sequents. So a sequent is a pair of multi-sets.

One set for the left side of the sequent, and one set for the right side.

Let S be any sequent in π. By the subformula property of G∗1, S is of the form

Γ→ ∆,Ω,

where Γ and ∆ are possibly empty sets of Σq
1 formulas that are not ancestors of the final

formula and Ω is a possibly empty set of formulas that are ancestors of the final formula.

Recall that we are assuming there are no quantifiers in the scope of any ¬. We want to

define a LFP function that outputs a G∗0 proof of a sequent

S ′ ≡ Λ,Γ′ → ∆′,Ω′,

and a partial ordering ≺ on QS ∪ E where

Chapter 3. Proof Theory for G 47

1. Γ′ is obtained from Γ by replacing each formula ∃~zD(~z) by D(~q), where D is Σq
0

and ~q ∈ QS. (We use different ~q for different formulas.)

2. ∆′ is obtained from ∆ be replacing each formula ∃~zD(~z) by D(~e), where D is Σq
0

and ~e ∈ E. (We use different ~e for different formulas.)

3. Λ is an extension cedent defining E in terms of QS and the free variables of S;

4. for e ∈ E, if e depends on a variable p ∈ QS ∪ E, then p ≺ e;

5. Ω′ is obtained from Ω by replacing each formula B by a (QS, E,≺)-instance of an

∨-expansion of B; and

6. each q ∈ QS appears in at most one formula in Γ′, ∆′, and Ω′.

Note that ≺ is only defined on the extension variables and eigenvariables used so far.

Initially, ≺ is an ordering where nothing is comparable. As we move down the proof, we

order the variables.

The proof is done by induction on the depth of S in the proof π. If we let S be the

final sequent, we get a proof of the theorem since Qπ = QS, and conditions 3-5 are the

conditions we need for the theorem. Also, note that the induction hypothesis can be

stated as a ΣB
0 (LFP) formula (is a polynomial-time predicate) by saying that the output

of the function F on the first i sequents of π meets all of the conditions. This means the

induction can be carried out in V PV .

The description of F is done in cases. There is a separate case for each rule of

inference. The construction is similar to the proof that extended-Frege p-simulates G∗1

(Theorem 7.48 of [11]). The difference is that the variables need to be ordered.

When the last inference is the ∨, ∧, ¬ introduction rules, the same rule can be applied

in the G∗0 proof we are constructing. In the case of the single parent rules, the ordering

stays the same. For the two parent rules, the new ordering is the union of the two

ordering obtained from the induction hypothesis with the parents. Note that if there are

Chapter 3. Proof Theory for G 48

two parents, then eigenvariables and the extension variables in the two dijoint subproofs

are disjoint since π is in free-variable normal form. From this, it is a simple exercise to

check that the induction hypothesis still holds. The same would go for weakening. The

other cases are more involved, and are given below.

Inductive Case 1: S is inferred using cut

Suppose

S ≡ Γ1,Γ2 → ∆1,∆2,Ω1,Ω2

and that it is derived from

S1 ≡ ∃~xD(~x),Γ1 → ∆1,Ω1

and

S2 ≡ Γ2 → ∆2, ∃~xD(~x),Ω2,

where D(~x) is a Σq
0 formula. By induction, we have a G∗0 proof of the sequents

S ′1 ≡ Λ1(~q), D(~q),Γ′1 → ∆′1,Ω
′
1

with an ordering ≺1 on QS1 ∪ E1 and

S ′2 ≡ Λ2,Γ
′
2 → ∆′2, D(~e),Ω′2

with an ordering ≺2 on QS2 ∪ E2. In this case, we let

S ′ ≡ Λ2,Λ1(~e),Γ′1,Γ
′
2 → ∆′1,∆

′
2,Ω

′
1,Ω

′
2.

Since π is in free-variable normal form, the eigenvariables and extension variables from

the proofs of S1 and S2 are disjoint. The new ordering is done by extending the old

orderings and making the variables from the proof of S2 smaller than those from the

Chapter 3. Proof Theory for G 49

proof of S2. That is, p1 ≺ p2 is true if any of the following conditions hold:

• p1 ≺1 p2,

• p1 ≺2 p2, or

• p1 ∈ QS2 ∪ E2 and p2 ∈ QS1 ∪ E1.

We can prove S ′ by taking the proof of S ′1 and replacing ~q with ~e. Because the proofs

are treelike, the substitution does not cause any problems. We can then do the cut with

S ′1 and S ′2.

We now look at each part of the induction hypothesis to be sure it still holds. Prop-

erties 1 to 3 are obvious.

Let us prove property 4. Suppose e ∈ E = E1∪E2 depends on p ∈ QS ∪E. If e ∈ E2,

then e also depends on p in S ′2 since Λ2 did not change. So, by induction with S2, p ≺2 e

and, therefore, p ≺ e. Now suppose e ∈ E1. If p ∈ QS2 ∪E2, then p ≺ e. If p 6∈ QS2 ∪E2,

then e depends on p in Λ1(~q) since ~e ∈ E2. So, by induction with S1, we get p ≺1 e,

which implies p ≺ e.

Property 5 follows directly form the induction hypothesis. Property 6 follows from

the induction hypothesis and the fact that QS1 and QS2 are disjoint.

Inductive Case 2: S is inferred using ∀-right (or ∃-left)

Suppose

S ≡ Γ→ ∆, ∀yD(y),Ω

and it is derived from

S1 ≡ Γ→ ∆, D(q),Ω.

By induction with S1, there exists a sequent S ′1 and an ordering ≺1 satisfying the in-

duction hypothesis. In S ′1, there is a formula D∗(q) that is a (QS1 , E,≺1)-instance of an

∨-expansion of D(q). That same formula is also a (QS, E,≺)-instance of an ∨-expansion

of ∀yD(y) now that q is part of QS.

Chapter 3. Proof Theory for G 50

The construction for this case is fairly simple. We let S ′ be the same as S ′1, and the

ordering ≺ is the same as ≺1 except q is now smaller than everything in QS1 ∪ E. That

is, q is the smallest variable of all variables ordered so far.

For exists-left, the construction is the same.

Inductive Case 3: S is inferred using ∃-right

Suppose

S ≡ Γ→ ∆,∃xD(x),Ω

and it is derived from

S1 ≡ Γ,→ ∆, D(F),Ω,

where F is a Σq
0 formula.

By induction, we have

S ′1 ≡ Λ,Γ′ → ∆′, D∗(F),Θ

and the ordering ≺1 on QS1 ∪ E. Note that we use D∗(F) in place of D(F) because it

is possible that D(F) had quantifiers that have already been removed. Since F is a Σq
0

formula, it would still be intact since (α) does not change Σq
0 formulas. There are two

cases to consider. If D(F) is an ancestor of the final formula then D∗(F) is an instance

of an ∨-expansion of D(F). If D(F) is not an ancestor of the final formula, then D∗(F)

is D(F) with the existential quantifiers replaced by extension variables. In either case,

D∗(F) is a Σq
0 formula. The sequent S ′ will be the sequent

e↔ F,Λ,Γ′ → ∆′, D∗(e),Θ,

where e is a new extension variable. As for the ordering ≺, it is defined by extending ≺1

by making e the minimum element. Note that QS = QS1 .

Let S ′2 be

e↔ F,D′(F)→ D∗(e).

Chapter 3. Proof Theory for G 51

It is easy to derive S ′2. Then it is possible to derive S ′ from S ′1 and S ′2 by cutting D∗(F),

which is a Σq
0 formula.

We now look at each part of the induction hypothesis to be sure it still holds. It is

easy to see that properties 1 to 3 and property 6 still hold.

For property 4, if e, the new extension variable, depends on p, then p must appear

in F , which is part of S1. This means that p 6∈ QS ∪ E. So, property 4 holds for e. For

other variables, it holds directly from the induction hypothesis.

For property 5, the only instance that changed is D∗(F), assuming ∃xD(x) is not

a Σq
1 formula. Since e replaced the outermost quantifier, e does not have to be larger

than any variable, and it is smaller than every variable that replaced inside variables.

Therefore D∗(e) is a (QS, E,≺)-instance of an ∨-expansion of ∃xD(x).

Inductive Case 4: S is inferred using contraction-right

Suppose

S ≡ Γ→ ∆, D,Ω

and it is derived from

S1 ≡ Γ→ ∆, D,D,Ω.

We look at two different cases: D is a Σq
1 formula, D is not Σq

1.

For the first case, let D be ∃~xD′(~x), where D′(~x) is a Σq
0 formula, then, by induction

with S1, we have

S ′1 ≡ Λ,Γ′ → ∆′, D′(~e1), D′(~e2),Ω′

with the ordering ≺1 on QS1 ∪E. We now have two witnesses for D, and we need to pick

the one that works. So, in this case, we let

S ′ ≡ . . . , e3
i ↔ [(D′(~e1) ∧ e1

i) ∨ (¬D′(~e1) ∧ e2
i)], . . . ,Λ,Γ

′ → ∆′, D′(~e3),Ω′,

where ~e3 are new extension variables. The ordering ≺ is defined as ≺1 with ~e3 added as

Chapter 3. Proof Theory for G 52

the maximum elements so far.

Now we look at each part of the induction hypothesis to be sure it still holds. For

properties 1 to 3, notice that the initial part of S ′ is part of the extension cedent and it

defines the new variables ~e3. With this observation, it is easy to see that properties 1 to 3

still hold. Now to look at property 4. Since ~e3 are the largest elements in the ordering ≺,

anything they depend on must be incomparable or smaller. So property 4 holds for ~e3.

For other extension variables, it holds directly from the induction hypothesis. Property 5

follows directly from the induction hypothesis since Ω did not change. Property 6 follows

directly from the induction hypothesis.

For the second possibility, assume that D is not a Σq
1 formula. Then by induction

with S1 we get

S ′1 ≡ Λ,Γ′ → ∆′, D∗1, D
∗
2,Ω

′

where D∗1 and D∗2 are (QS1 , E,≺1)-instances of an ∨-expansion of D. Then we let

S ′ ≡ Λ,Γ′ → ∆′, D∗1 ∨D∗2,Ω′

which can be obtained from S ′1 using ∨-right. Notice that D∗1 ∨D∗2 is also a (QS, E,≺)-

instance of an ∨-expansion of D, and, since the ordering is not changed, the induction

hypothesis still holds.

Inductive Case 5: S is inferred using contraction-left

Suppose

S ≡ D,Γ→ ∆,Ω

and it is derived from

S1 ≡ D,D,Γ,→ ∆,Ω.

The formula D must be a Σq
1 formula and an ancestor of a cut formula. Let it be of

the form ∃xF (x), where F (x) is a Σq
0 formula. For now, we assume that D has a single

Chapter 3. Proof Theory for G 53

existential quantifier, but the construction easily generalizes. By induction with S1, there

exists a sequent S ′1 of the form

Λ(q1, q2), F (q1), F (q2),Γ′ → ∆′,Ω′

with an ordering ≺. Without loss of generality, assume that q1 ≺ q2. Then, we let

S ′ ≡ Λ(q1, q1), F (q1),Γ′ → ∆′,Ω′

The ordering will remain the same.

To prove S ′, we take the proof of S ′1, replace every instance of q2 by q1, and then

contract the two copies of F (q1). The substitution can be done because the proof is

treelike.

We now look at each part of the induction hypothesis to be sure it still holds. It is

easy to see that properties 1 to 3 hold.

Property 4 follows from the induction hypothesis. Note that, if a variable depended

on q2, it now depends on q1, but that is fine since q1 is smaller.

Property 5 holds since Ω did not change.

From this, we are able to prove the witnessing theorem (Theorem 3.2.3). We will

restate it here.

Theorem 3.2.10 (KPT Witnessing for G∗1). There exists a LFP (polynomial-time) func-

tion F such that V PV proves the following. Let π be a G∗1 proof of a prenex Σq
2 formula

A(~p) ≡ ∃~x∀~yB(~x, ~y, ~p), where B(~x, ~y, ~p) is a Σq
0 formula with all free variables shown.

Then, given π, F outputs a G∗0 proof of a sequent Λ→ Θ where

1. Θ is a series of n formulas of the form B(~ei, ~qi, ~p), where ~ei ∈ E and 0 ≤ i < n

2. Λ is an extension cedent defining a new set of variables E in terms of ~q0, . . . , ~qn−1

and ~p,

Chapter 3. Proof Theory for G 54

3. ~ei does not depend on ~qj, for j ≥ i, and

4. ~qi and ~qj are disjoint when i 6= j.

Proof. By the Herbrand theorem above, there is a proof of Λ → A∗, where A∗ is a

(Qπ, E,≺)-instance of an ∨-expansion of A. We need to show how to get Θ from A∗.

The first observation we make is that A∗ is of the from

B(~e1, ~q1, ~p) ∨ . . . ∨B(~en, ~qn, ~p).

This is true because the rule (α) gives multiple copies of B, which all remain in tact since

B is a Σq
0 formula, combined using ∨. This means that A∗ is essentially the Θ we want.

Without loss of generality, we can assume that, if i < j, then the smallest variable in

~qi is smaller than the smallest variable in ~qj. This implies that ~ei does not depend on ~qj

for j ≥ i. This is because every variable in ~ei is smaller than every variable in ~qi since

we have a (Qπ, E,≺)-instance.

The final observation is that if ~qi and ~qj contain a common variable then ~ei and

~ej must be the same. Otherwise, if ~ei and ~ej are different, then an application of (α)

must have occurred that would make part of ~ei and ~ej correspond to different existential

variables. Since the universal variables are in the scope of these existential variables, ~qi

and ~qj would correspond to different quantifiers making them disjoint.

If we have that ~qi and ~qj are not disjoint, we are able to replace ~qj by ~qi everywhere

in the proof. Then we can contract the two copies of B(~ei, ~qi).

3.2.2 Witnessing for G∗i

In the statement of the original KPT witnessing theorem for V PV , polynomial-time

functions are used to find the possible witnesses; however, for TV i, the KPT witnessing

theorem uses functions in FPΣp
i . Corresponding to that we will generalize the definition

of an extension cedent to allow oracles from the other levels of the polynomial hierarchy.

Chapter 3. Proof Theory for G 55

Definition 3.2.11 (i-extension cedent). An i-extension cedent is a series of formulas of

the form

e1 ↔ E1, e2 ↔ E2, . . . , en ↔ En

such that Em is a Σq
i ∪ Πq

i formula that does not mention the variables

em, em+1, . . . , en.

Note that an extension cedent is the same as a 0-extension cedent.

As with G∗i , we are able to prove the analogue of the KPT witnessing theorem for

G∗i .

Theorem 3.2.12 (KPT Witnessing for G∗i). There exists a LFP (polynomial-time) func-

tion F such that V PV proves the following. Let π be a G∗i proof of a prenex Σq
i+1 formula

A(~p) ≡ ∃~x∀~yB(~x, ~y, ~p), where B(~x, ~y, ~p) is a Σq
i−1 formula with all free variables shown.

Then, given π, F outputs a G∗i−1 proof of a sequent Λ→ Θ where

1. Θ is a series of formulas of the form B(~ei, ~qi, ~p), where ~ei ∈ E

2. Λ is an (i − 1)-extension cedent defining a new set of variables E in terms of

~q1, . . . , ~qn and ~p,

3. ~ei does not depend on ~qj, for j ≥ i, and

4. ~qi and ~qj are disjoint.

Again, we will prove a more general theorem. To be able to the handle formulas that

are not prenex, we use the idea of an i-expansion.

Definition 3.2.13 (i-expansion). The same as an ∨-expansion except that B must be

a non-(Σq
i ∪ Πq

i) formula instead of a non-Σq
0 formula.

Definition 3.2.14 ((i, Q,E,≺)-instance). An (i, Q,E,≺)-instance of a formula A is

the same as a (Q,E,≺)-instance of A except that Σq
i ∪ Πq

i subformulas of A are not

Chapter 3. Proof Theory for G 56

changed. That is, the quantifiers that appear in the i innermost blocks of quantifiers are

not replaced.

Note that a (i, Q,E,≺)-instance of a formula will always be a Σq
0(Σq

i) formula.

Example 3.2.15. Let A be the formula ∃~x∀~y∃~zB(~x, ~y, ~z), where B is a Σq
0 formula. Then

a (1, Q,E,≺)-instance of A would be ∃~zB(~e, ~q, ~z) and a (2, Q,E,≺)-instance would be

∀~y∃~zB(~e, ~y, ~z).

Theorem 3.2.16 (Herbrand Theorem for G∗i). For each i > 0, there is a LFP function F

such that V PV proves the following. Let π be a G∗i proof of A. Then, given π, F outputs

a G∗i−1 proof of a sequent Λ→ A∗ and a partial ordering ≺ of the variables Qπ∪E, where

E is a set of variables that do not appear in π, with the following properties:

• Λ is a (i− 1)-extension cedent defining the variables in E in terms of Qπ and the

free variables of A;

• for e ∈ E, if e depends on a variable p ∈ Qπ ∪ E, then p ≺ e; and

• A∗ is an (i− 1, Qπ, E,≺)-instance of an (i− 1)-expansion of A.

Before we prove this theorem, we should note that it does not seem like we can

improve the complexity of the extension cedent. For, if the (i−1)-extension cedent could

be replaced by a (i−2)-extension cedent, this could be used to show that G∗i−1 p-simulates

G∗i for prenex formulas. The proof would be similar to the proof of Theorem 4.1.2.

Proof of Theorem 3.2.16. The proof is almost the same as in the G∗1 case. The quantifier

complexity of the cut formulas is reduced by witnessing the outermost block of existential

quantifiers with extension variables. The only difference is that we can no longer skip

all of the quantifier introduction rules. Some will have to be added. For example, if we

have a cut formula ∃~x∀~yC(~x, ~y), then we will replace ~x by extension variables, but we

still add ∀~y to the formula.

Chapter 3. Proof Theory for G 57

This construction can be described more formally. As before, each sequent S in π can

be divided into three parts: Γ which contains all of the formulas on the left-hand side;

∆, which contains the formulas on the right-hand side that are ancestors of cut formulas;

and Ω, which contains the ancestors of the final formula on the right-hand side. Note

that by the subformula property, we know that Γ and ∆ contain only Σq
i formulas. For

each sequent S ≡ Γ→ ∆,Ω in π, we construct a G∗i−1 proof of a sequent

S ′ ≡ Λ,Γ′ → ∆′,Ω′,

and a partial ordering ≺ on QS ∪ E where

1. Γ′ is obtained from Γ by replacing each non-Σq
i−1 formula ∃~zD(~z) by D(~q), where

D is Πq
i−1 and ~q ∈ QS. (We use different ~q for different formulas.)

2. ∆′ is obtained from ∆ by replacing each non-Σq
i−1 formula ∃~zD(~z) by D(~e), where

D is Πq
i−1 and ~e ∈ E. (We use different ~e for different formulas.)

3. Λ is an (i− 1)-extension cedent defining E;

4. for e ∈ E, if e depends on a variable p ∈ QS ∪ E, then p ≺ e;

5. Ω′ is obtained from Ω by replacing each formula B by an (i− 1, QS, E,≺)-instance

of an (i− 1)-expansion of B; and

6. each q ∈ QS appears in at most 1 formula in Γ′, ∆′, and Ω′.

The construction is the same as in Theorem 3.2.9 except for the need to add a few new

cases. If ∃-right is applied with a Σq
i−1 principal formula or ∀-left is applied with a Πq

i−1

principal formula, the same inference can be used in the G∗i−1 proof we are constructing.

We must also consider when S is derived using ∃-left with a Σq
i−1 principal formula and

when S is derived using ∀-right with a Πq
i−1 principal formula. Both cases are handled

in the same way, so we only describe the latter.

Chapter 3. Proof Theory for G 58

Suppose

S ≡ Γ→ ∆,∀qD(q),Ω

and it is derived from

S1 ≡ Γ→ ∆, D(q),Ω

where D(q) is Πq
i−1. By induction, we have a G∗i−1 proof of S ′1, where

S ′1 ≡ Λ(q),Γ′ → ∆′,Ω′, D(q).

We know q does not appear in Γ′ or ∆′ since it was used as an eigenvariable, but it is

still possible that the extension variables depend on it, in which case it would appear in

Λ.

The first step is to replace q by a new extension variable e. This gives

Λ(e),Γ′ → ∆′,Ω′, D(e). (3.2.1)

We then derive

e↔ D(⊥), D(e)→ ∀qD(q). (3.2.2)

See Lemma 3.1.3 in the previous section for this construction. We finish by deriving

e↔ D(⊥),Λ(e),Γ′ → ∆′,Ω′,∀qD(q)

by cut with sequents (3.2.1) and (3.2.2) and cut formula D(e).

The ordering is changed by adding e as the smallest element. Note that, since D(q)

is in S1, D(⊥) does not contain any extension variables or eigenvariables in QS. With

this fact in mind, we can see all of the conditions in the induction hypothesis follow.

Chapter 4

Polynomial Simulations

4.1 GPV ∗i And G∗i

We now move on to applications of the Herbrand Theorem for G∗1. The first application

deals with a seemingly weaker proof system.

Definition 4.1.1. For i ≥ 0, the proof system GPV ∗i+1 is G∗i+1 in which cut formulas are

restricted to Σq
i formulas or formulas of the form ∃x[x ↔ A], where A is a Σq

i formula

that does not mention x. The proof system GPV ∗ will refer to GPV ∗1 .

At first glance, it seems like GPV ∗ would be a weaker proof system than G∗1 because

the cut formulas are less expressive. The cut formulas in GPV ∗ can be trivially witnessed,

but the cut formulas in G∗1 are NP-hard. Nevertheless, it can be shown that GPV ∗ and

G∗1 are p-equivalent for prenex formulas. One direction is easy since every GPV ∗ proof

is a G∗1 proof, so all that is left is to prove the other direction.

Theorem 4.1.2. V PV proves that GPV ∗i p-simulates G∗i for prenex formulas.

Proof. We will prove the theorem for the case when i = 1. The general case is essentially

the same. Let π be a G∗1 proof of a formula A of the form

∀~y0∃~x1∀~y1 . . . ∃~xn∀~ynB(~y0, ~x1, ~y1, . . . , ~xn, ~yn),

59

Chapter 4. Polynomial Simulations 60

where B is a Σq
0 formula. By the Theorem 3.2.9, V PV proves that there exists a G∗0

proof π′ of a sequent Λ → A∗ and a total ordering ≺ of the variables Qπ ∪ E meeting

the conditions of the theorem. Since A is in prenex form, we know that A∗ is of the form∨m
i=0B(~qi,0, ~ei,1, ~qi,2, . . . , ~ei,n, ~qi,n). From this we are able to get a proof of Λ→ Θ where

Θ ≡ B(~q0,0, ~e0,1, ~q0,2, . . . , ~e0,n, ~q0,n), . . . , B(~qm,0, ~em,1, ~qm,2, . . . , ~em,n, ~qm,n)

by deriving A∗ → Θ and cutting A∗.

We describe an algorithm that takes as input π′ and ≺. The algorithm extends π′

into a GPV ∗ proof of A. At any stage, π′ will be a proof of a sequent Λ′ → Θ′, where

Λ′ is a subsequence of Λ and Θ′ is a sub-series of Θ with some quantifiers added. The

algorithm has four steps:

Step 1: Add as many existential quantifiers to the formulas

in Θ′ as possible using ∃-right rules such that the formula is still a subformula of A.

Step 2: Use contraction to combine as many formulas in

Θ′ as possible.

Step 3: Find the largest variable that is mentioned in

Λ′ or Θ′.

Step 3a: If it is an extension variable e,

apply ∃-left to the formula e↔ E

with e as the eigenvariable. Then

cut the formula ∃e[e↔ E] after

deriving → ∃e[e↔ E].

Step 3b: If it was an eigenvariable q in π,

then apply ∀-right with q as the

eigenvariable.

Step 4: Repeat steps 1 to 3 until there is no change.

Chapter 4. Polynomial Simulations 61

At first, it may not be obvious that this algorithm works. For example, it is not

obvious that the eigenvariable restriction for ∃-left or ∀-right rules in Step 3 is met. To

show that the eigenvariable restriction is met, we make two observations. First, if p is

the largest variable in Λ′ and Θ′, then no extension variable can depend on p. Otherwise,

that variable would be larger than p. Second, if we are in Step 3 and p is the largest

variable in Λ′ and Θ′, then p cannot be mentioned in Θ′ unless it is in Qπ; otherwise p

would be an extension variable and have been used as the target formula in an ∃-right

rule in Step 1. If this is not the case, an eigenvariable that appears to the right of p is

still present, and this variable must be larger than p. For the same reason, we know that

there cannot be two formulas in Θ with p replacing a universal variable that have not

been contracted yet. This means the eigenvariable restriction is met in Step 3.

When the algorithm is done, we will have a proof of the formula we want. Notice

that Λ′ would be empty because every extension variable has been removed. Also, Θ′

would be the single formula A since every formula in Θ would have every quantifier added

by now, and would have been contracted to a single formula. We know the algorithm

eventually stops because we continually reduce the number of variables in π′.

4.2 Gi And G∗i

As has already been mentioned, for i > 0, Gi is commonly connected with the theory

TV i and G∗i+1 is commonly connected with V i+1. Since the two theories have the same

ΣB
i+1 theorems, it was natural that the two proof systems are p-equivalent when proving

Σq
i+1 formulas. However, we want to extend this to more general formulas. In [30], it was

shown that one direction is probably not possible. Namely that, under an appropriate

complexity assumption, there is a family of Σq
i+2 formulas for which G∗i+1 does not p-

simulate Gi. Here we prove that Gi p-simulates G∗i+1 for all formulas.

The proof is based on the proof of Kraj́ıcek that depth d, DAG-like PK can p-simulate

Chapter 4. Polynomial Simulations 62

depth d + 1, treelike PK (Proposition 1.4 in [19]). The observation of the similarity

between the two theorems is due to Toni Pitassi.

Definition 4.2.1 (The i-Substitution Rule). The i-substitution rule is

A1(p), . . . , Am(p),Γ→ ∆, B1(p), . . . , Bn(p)

A1(C), . . . , Am(C),Γ→ ∆, B1(C), . . . , Bn(C)

where C is a quantifier-free formula, A1, . . . , Am, B1, . . . , Bn are Σq
i ∪Πq

i formulas, and p

does not appear in the bottom sequent.

Lemma 4.2.2. For i > 0, G∗i p-simulates the i-substitution rule.

Proof. The proof is the same as the proof of Lemma 2.1 in [23]. We will describe how to

do the simulation for the case where there is one A and B. The general case is done the

same way.

Suppose we have a derivation of

A(p),Γ→ ∆, B(p). (4.2.1)

We want to derive

A(C),Γ→ ∆, B(C).

First we derive

p↔ C,A(C)→ A(p),

and cut this with (4.2.1), where A(p) is the cut formula. This gives

p↔ C,A(C),Γ→ ∆, B(p). (4.2.2)

Then we derive

p↔ C,B(p)→ B(C),

Chapter 4. Polynomial Simulations 63

and cut this with (4.2.2), where B(p) is the cut formula. This gives

p↔ C,A(C),Γ→ ∆, B(C). (4.2.3)

We then apply ∃-left to this sequent with p as the eigenvariable, and then cut ∃p[p↔ C]

after deriving → ∃p[p↔ C].

Theorem 4.2.3. For i > 0, Gi p-simulates G∗i+1.

Proof. At a high level, this proof is done by carefully applying one step of cut-elimination

to each cut formula. The increase in the size of the proof in the cut-elimination theorem

comes from repeating part of the proof multiple times. We avoid this increase by creating

a DAG-like proof.

Let π be a G∗i+1 proof. The reason π is not a Gi proof is that it would contain cut

formulas that are not Σq
i or Πq

i . We can assume these formulas are Σq
i+1 and are of the

form

∃x1 . . . ∃xnC(x1, . . . , xn),

where C is Πq
i . We can assume this because, in [29], Morioka proved that any G∗i+1 proof

can be transformed into a G∗i+1 proof where the cut formulas are prenex. We need to turn

these cut formulas into Πq
i cut formulas. To do this, we change all of the non-(Σq

i ∪ Πq
i)

formulas that are ancestors of these cut formulas. These formulas are of the form

∃xl . . . ∃xnC(D1, . . . , Dl−1, xl, . . . , xn), (4.2.4)

where Dj is a Σq
0 formula for j < l, and C(~x) is a Πq

i formula. Note that, if this formula

is on the left side of a sequent, then the formula Di is a single variable, and that variable

eventually get used as an eigenvariable in an ∃-left rule. From now on, we will assume all

formulas of the form (4.2.4) are ancestors of cut formulas. Those that are not are simply

ignored.

Chapter 4. Polynomial Simulations 64

The construction will be done inductively. We start with the first sequent in π and

work our way down the proof. For each sequent S ≡ Γ→ ∆ in π, we give a Gi proof π′

of a sequent S ′ ≡ Γ′ → ∆′ where

1. Γ′ is obtained from Γ by replacing every formula of the form (4.2.4) by

C(D1, . . . , Dl−1, x
C
l , . . . , x

C
n),

2. ∆′ is obtained from ∆ by removing every formula of the form (4.2.4),

3. the sequent

C(D1, . . . , Dl−1, x
C
l , . . . , x

C
n)→

can be used as an axiom if and only if ∆ contains a formula of the form (4.2.4).

For example, if S is the sequent

∃x2, x3C1(q1, x2, x3),Γ→ ∆,∃x3, x4C2(D1, D2, x3, x4),

S ′ would be

C1(q1, x
C1
2 , xC1

3),Γ→ ∆,

and when we prove S ′, we are allowed to use

C2(D1, D2, x
C2
3 , xC2

4)→

as an axiom. In essence, we are saying, if we can derive

C2(D1, D2, x
C2
3 , xC2

4)→,

we can prove S ′. Note that, when we get to the final sequent, no formula is an ancestor

of a cut formula. Therefore, if S is the final formula in π, S ′ = S and the only initial

Chapter 4. Polynomial Simulations 65

sequents are of the form x→ x. So this will give us a proof of the theorem.

The construction of π′ is given inductively. There is a separate case for each rule of

inference. Most cases are simple and are left to the reader. The only cases we will give

are cut, ∃-left, and ∃-right.

Cut: Suppose S ≡ Γ→ ∆ is derived from S1 and S2 using cut. Let the cut formula be

∃~xC(~x). By induction with S1, we have a Gi proof π′1 of

S ′1 ≡ C(~xC),Γ′ → ∆′.

By induction with S2, we have a Gi proof π′2 of Γ′ → ∆′ using the axiom C(~xC) →.

Notice that π′2 is a proof of the sequent we want, but it uses an axiom we are no longer

able to use. However, π′1 gives us a derivation of this axiom, with a few extra formulas.

The first step in the construction of π′ is to add Γ′ to the left and ∆′ to the right of

every sequent in π′2. This makes the axiom we want to remove Ci(~x
i),Γ′ → ∆′, which is

the final sequent π′1. So, π′ is π′1 followed by the new π′2. Note that the axiom would have

been used once for every time ∃xn was introduced in the original proof. Each of these

formulas would later be contracted into the single cut formula. However, since we are

constructing a DAG-like proof, we do not need to repeat π′1 multiple times. This gives a

proof of Γ′,Γ′ → ∆′,∆′, from which we can derive Γ′ → ∆′ using contraction.

∃-left: Suppose S is

∃xj . . . ∃xnC(q1, . . . , qj−1, xj, xj+1, . . . , xn),Γ→ ∆,

and it was derived from S1

∃xj+1 . . . ∃xnC(q1, . . . , qj−1, qj, xj+1, . . . , xn),Γ→ ∆.

Chapter 4. Polynomial Simulations 66

By induction with S1, we get a Gi proof of

C(q1, . . . , qj−1, qj, x
C
j+1, . . . , x

C
n),Γ′ → ∆′.

Since qj was used as an eigenvariable, it only appears in that one formula. Therefore we

can replace qj by xCj using the i-substitution rule. This gives us π′.

∃-right: Suppose S is

Γ→ ∆,∃xj . . . ∃xnC(D1, . . . , Dj−1, xj, xj+1, . . . , xn),

and it was derived from S1

Γ→ ∆,∃xj+1 . . . ∃xnC(D1, . . . , Dj−1, Dj, xj+1, . . . , xn).

First assume j < n. That is we had at least one quantifier already. By induction

with S1, we get a Gi proof of Γ′ → ∆′ using the axiom

C(. . . , Dj, . . .)→ . (4.2.5)

We cannot use this axiom anymore. Instead, we use the axiom

C(. . . , xCj , . . .)→

and derive (4.2.5) using the i-substitution rule.

If j = n, the construction is a little different. By induction with S1, we get a Gi proof

of

Γ′ → ∆′, C(. . . , Dn−1, Dn). (4.2.6)

Chapter 4. Polynomial Simulations 67

To construct π′, we take the axiom we can now use,

C(. . . , Dn−1, x
C
n)→,

and derive

C(. . . , Dn−1, Dn)→

using the i-substitution rule. Then we cut with (4.2.6).

Contraction: Suppose that S is

Γ→ ∆, A,

and that it was derived from

Γ→ ∆, A,A.

Then by induction with the upper sequent, there is a Gi proof of

Γ′ → ∆′, A′, A′.

Here A′ is the formula that is obtained from A, and, since this transformation is de-

terministic, both A’s will be transformed into the same A′. When we can obtain S ′ by

applying contraction to this sequent.

Upper bound on the size: We will find the upper bound on the size of the proof in

two steps. First we will count the number of sequents in the new proof. Then we will

get an upper bound on the size of each sequent. To keep the analysis simple, we will

consider the i-substitution as a single step. We have already shown that Gi p-simulates

Gi with the i-substitution rule.

To count the number of sequents, we will count the number of sequents we add in

each step of the induction. In all of the rules except for cut and ∃-right, there is one new

sequent. For ∃-right, there are at most two new sequents. For cut, we introduce sequents

Chapter 4. Polynomial Simulations 68

when doing the contractions at the end of that step. This would correspond to at most

|Γ|+ |∆| new sequents. Totaling this we get that the number of formulas in π is an upper

bound on the number of sequents in the new proof.

To find the maximum size of each sequent, the key observation is that each formula

in a sequent corresponds to a distinct formula in the original proof (not necessarily in the

corresponding sequent). So if a formula appears twice in a squent that is because that

formula appears at least twice in the original proof. So again, the upper bound on the

number of formulas in a sequent is the number of formulas that appear in the original

proof.

4.3 Collapse of Bounded Arithmetic and Quantified

Proof Systems

In this section, we explore some consequences of the collapse of V ∞ for the fragments

of G. The results come from looking at the relations between bounded arithmetic and

quantified propositional proof systems.

Some results of this type have already been obtained. One example is the following.

Theorem 4.3.1 (Infered From Theorem 9.3.17 [22]). If TV i+1 is ΣB
i conservative over

TV i, then Gi p-simulates Gi+1 with respect to Σq
i formulas.

This result is a corollary to the translation theorem and the fact that TV i+1 proves

Σq
i -RFN(Gi+1) (in fact the Σq

i+1-RFN(Gi+1)). The construction relies on Gi cutting the

translation of Σq
i -RFN(Gi+1). Because of this, the proof cannot be generalized to show

that Gi p-simulates Gi+1 for more complex formulas.

The result we prove finds a way around this. By increasing the complexity of the cut

formulas, we can show that a simulation holds for all quantified formulas. Our result is

the following:

Chapter 4. Polynomial Simulations 69

Theorem 4.3.2. For i > 0, if TV i = V i+1, then, for all j ≥ 0, G∗i+3 p-simulates G∗j

with respect to all quantified propositional formulas.

The significance of this result should be understood as a way of expanding the search

for a theorem that separates TV i from V i+1. Currently, if we want to separate the

theories, we must find a theorem that can be stated as a formula in the language of

bounded arithmetic. This means it can be stated as a relation in the PH. If we translate

this into a family of quantified propositional formulas, then we are looking for a family of

polynomial-size Σq
j formulas from some fixed j. However, Theorem 4.3.2 says any family

of quantified propositional formulas that shows that G∗i does not p-simulate G∗i+1 can be

used to separate TV i and V i+1. The formulas need not be polynomial-size or have a fixed

number of quantifier alternations. This opens the door to a family of tautologies that

express a PSPACE property. For example, we can consider formulas that talk about

winning strategies in the games that are PSPACE-complete.

The proof of the theorem uses ideas in the proof of the following.

Theorem 4.3.3 (Corollary 7.4 [23]). For i > 0, if TV i proves that NP = coNP , then

Gi is a polynomially-bounded proof system relative to Σq
i formulas.

The idea is that, if NP = coNP , then every quantified boolean formula is equivalent

to a Σq
1 sentence, which has a short proof if it evaluates to true.

In our case, if TV i = V i+1, then TV i proves that Σp
i+3 = Πp

i+3 [6]. This means that

TV i proves that every ΠB
i+3 formula is equivalent to a ΣB

i+3 formula. In particular, TV i

would prove that the truth definition for Πq
i+3 formulas is equivalent to a ΣB

3 formula.

Using the translation theorem, with appropriate extra work, we then get polynomial-size

G∗i+3 proofs that every Πq
i+3 formula is equivalent to a Σq

i+3 formula, and vice versa.

Now given a G∗j proof, for j > i+3, we can reduce the quantifier complexity of the cut

formulas by replacing every maximal Σq
i+3 (Πq

i+3) formula by its equivalent Πq
i+3 (Σq

i+3)

formula. This can be done by cutting Σq
i+3 or Πq

i+3 formulas.

Chapter 4. Polynomial Simulations 70

Recall the truth definition given in Section 2.3.2.

(A |=i F) ≡ “F is a Σq
i formula that is satisfied by the assignment A”.

When F is a Σq
i formula, this is a ΣB

i formula. We want to show that, if TV i = V i+1, then

|=i+3 can be defined by a ΠB
i+3 formula. The main tool in proving this is the following.

Theorem 4.3.4 (Lemma 7 [6]). If TV i = V i+1 and F codes a Σq
i+3 (Πq

i+3) formula, there

is a ΠB
i+3 (ΣB

i+3) formula ψ(A,F) such that TV i proves

(A |=i+3 F)↔ ψ(A,F)

The idea is that, if TV i = V i+1, then PH collapses to Σp
i+3 = Πp

i+3 (Lemma 7 [6]).

This collapse is provable in TV i. The theorem above is simply a special case where we

are using the Σp
i+3 relation (A |=i+3 F) and finding an equivalent Πp

i+3 definition. We can

now use this result and the translation theorem to construct polynomial-size G∗i+3 proofs

that every Σq
i+3 is equivalent to a Πq

i+3 formula, and vice versa.

Lemma 4.3.5. If TV i = V i+1, then V 1 proves that there is a polynomial p(n) such that

for every Σq
i+3 (Πq

i+3) formula F (~x) there is a Πq
i+3 (Σq

i+3) formula F ′(~x) and a G∗i+3

proof of F (~x)↔ F ′(~x) of size less than p(|F |).

Proof. Assume TV i = V i+1, and fix F . Suppose F is a Σq
i+3 formula. The proof is

essentially the same when F is a Πq
i+3 formula. By Lemma 4.3.4, there is a TV i proof of

(A |=i+3 F)↔ ψ(A,F)

where ψ is a ΠB
i+3 formula. Then by the translation theorem (Theorem 2.3.3), there is a

polynomial-time constructable G∗i+1 proof of

B(~x)↔ F ′(~x) (4.3.1)

Chapter 4. Polynomial Simulations 71

where B(~x) is the translation of (A |=i+3 F) as in Lemma 2.3.6, and F ′(x) is the trans-

lation of ψ(A,F). Since we are dealing with a specific F , the only free variables in the

formulas are those for the assignment A, which are replaced by formulas that code x as

an assignment. Note that F ′(x) is a Πq
i+3 formula since ψ is a ΠB

i+3 formula.

By Lemma 2.3.6, there is a polynomial-size G∗i+3 proof of

F (~x)↔ B(~x) (4.3.2)

Combining the proofs of (4.3.1) and (4.3.2), with appropriate manipulation, we get a

proof of

F (~x)↔ F ′(~x).

See Section 3.1 for how these manipulations are done.

We can now prove the main theorem of this section

Theorem 4.3.6 (Theorem 4.3.2). For i > 0, if TV i = V i+1, then, for all j ≥ 0, G∗i+3

p-simulates G∗j with respect to all quantified propositional formulas.

Proof. Let j ≥ i + 3. We will show that G∗j p-simulates G∗j+1. Then we get a proof of

the theorem by composing these simulations.

Let π be a G∗j+1 proof. We can assume that all of the cut formulas are prenex Σq
j+1

[29]. We will show how to reduce the quantifier complexity of a non-Σq
j cut formula by

one. We then get a proof of the theorem by repeating this process for every non-Σq
j cut

formula.

Let one of the cut formulas in π be ∃~x∀yC(~x, y), where C is a Πq
j formula. By Lemma

4.3.5, there is a G∗j proof π1(~x) of

∀yC(~x, y)↔ C ′(~x),

where C ′ is a Σq
j formula. Note that TV i = V i implies TV j = V j, so the conditions of

Chapter 4. Polynomial Simulations 72

the lemma apply.

Now we start to change π. First replace ∃~x∀yC(~x, y) by ∃~xC ′(~x). This turns the cut

formula into a Σq
j formula. As well, replace every ancestor of this cut formula of the form

∃xl . . . ∃xm∀yC(B1, . . . Bl−1, xl, . . . , xm, y)

by

∃xl . . . ∃xmC ′(B1, . . . Bl−1, xl, . . . , xm).

If there is an ancestor that does not have the ∀y quantifier added yet, that formula is

not replaced. This leaves a valid proof except for inferences of the form

Γ→ ∆, C(~B, q)

Γ→ ∆, C ′(~B)

or

C(~q, B),Γ→ ∆

C ′(~q),Γ→ ∆

These are the inferences where the universal quantifier ∀y is added. This can be

turned into a valid proof as follows:

Γ→ ∆, C(~B, q)

Γ→ ∆,∀yC(~B, y)

... π1(~B)

∀yC(~B, y)→ C ′(~B)

Γ→ ∆, C ′(~B)

Note that we implicitly used some transformations to π1(~B) that are described in Section

3.1. The other invalid inferences can be fixed in the same manner.

Chapter 5

Reflection Principles

5.1 Reflection Principles For the Fragments of G

We can also use the Herbrand Theorem to prove reflection principles. Proving reflection

principles is the standard method of assessing the strength of a proof system relative to a

theory. For example, the Σq
1 reasoning of G∗1 is not stronger than the ΣB

1 reasoning of V 1

because V 1 proves Σq
1-RFN(G∗1) [22]. Our goal is to find the weakest fragment of V ∞ that

proves Σq
i -RFN(G∗1). In [29], it was shown that TV 0 does not prove Σq

2-RFN(G∗1) unless

the polynomial-time hierarchy collapses. Using the same ideas, it is possible to show

that TV i does not prove Σq
i+2-RFN(G∗1), for i ≥ 0, unless the polynomial-time hierarchy

collapses. This still leaves open whether or not V i proves Σq
i+1-RFN(G∗1) for i ≥ 1. We

prove that, in fact, it does.

We first prove the simplest case. Namely, that V 1 proves (prenex Σq
2)-RFN(G∗1). The

proof serves as a template for the general case, which we prove right after.

Theorem 5.1.1. V 1 proves (prenex Σq
2)-RFN(G∗1).

Proof. Let π be a G∗1 proof of a prenex Σq
2 formula A. So A is of the form

∃~x∀~yB(~x, ~y, ~p),

73

Chapter 5. Reflection Principles 74

where B is a Σq
0 formula. In this formula, ~p is all of the free variables in A, and should

be understood as being implicitly universally quantified. We want to prove in V 1 that,

given values for ~p, there exist values for ~x that witness the formula.

By the KPT witnessing theorem for G∗1 (Theorem 3.2.3), V 1 proves that there is a

G∗0 proof of a sequent

S ≡ Λ→ Θ,

meeting the conditions of the theorem.

Let

ψ(m,Λ,Θ, P) ≡

∃E ∃Q “E is a truth assignment to the extension variables”

∧ “Q is a truth assignment to the eigenvariables”

∧ ∀i < m (P ∪ E ∪Q) |=0 ¬B(~ei, ~qi, ~p)

∧ (P ∪ E ∪Q) |=0 Λ

This formula says that there exists assignments E and Q that satisfy Λ and make the

first m formulas in Θ false. It is easy to bound the size of E and Q. This means that ψ

is equivalent to a ΣB
1 formula.

Using ΣB
1 -MAX, we find the maximum value m0 for m that satisfies ψ given values

for Λ,Θ, and P . Then ~em0+1 are the witnesses we are looking for, which we now prove.

First note that ψ(0) is true. We can set Q to the assignment that sets everything to

false, and compute E that satisfies Λ. Also note that m0 < n since it is not possible the

falsify all of the formulas in Θ. This would violate the Σq
0-RFN(G∗0), which is provable

in V 1. This means that ~em0+1 exists.

Let E and Q be witnesses for ψ(m0). For the sake of contradiction assume ~em0+1 is

not a witness for ∃~x∀yB(~x, ~y, ~p). Change Q so that ~qm0+1 are assigned values falsifying

B(~em0+1, ~qm0+1, ~p). We can then change E so that Λ is satisfied. Since ~ej, for j ≤ m0 +1,

Chapter 5. Reflection Principles 75

does not depend on ~qm0+1, their values stay the same. This means we now have E and

Q making the first m0 + 1 formula in Θ false, violating our choice of m0.

Theorem 5.1.2. V i ` Σq
i+1-RFN(G∗i).

Proof. Suppose we have a G∗i proof π of a Σq
i+1 formula A. By Theorem 3.2.16 (Herbrand

Theorem), we can find a G∗i−1 proof of an instance of an ∨-expansion of A, with an

ordering ≺. The ordering will not be just any ordering that meets the conditions of the

theorem, but will be the specific ordering constructed in the proof of that theorem. We

choose this ordering because we want to be able to infer something about π from the

order of the variable.

In particular, let q1 and q2 be two distinct eigenvariables in π. Start at the inferences

where these variables are used as eigenvariables and move down the proof to the first

place where they meet. We can ask which rule was used in that inference. There are three

possibilities. The first possibility is a ∀-right (or ∃-left). In this case, the eigenvariable

for this ∀-right inference is either q1 or q2, and one variable precedes the other in the

ordering. This can be easily observed from the ∀-right case in the proof of Theorem

3.2.16.

The second possibility is the cut rule. In this case, one of the variables is less than

the other as well. The final possibility is ∧-right (or ∨-left). In this case, q1 and q2 are

incomparable.

There is one final observation to make. Suppose we have a proof of ∀y1A(y1) ∧

∀y2B(y2), and the instance we get from the construction in the Herbrand Theorem is

A(q1) ∧ B(q2). Then we know that q1 and q2 are incomparable. This is because the

meeting place for these two eigenvariables is the rule that introduced the ∧ between A

and B.

At this point, we are prepared to move on to the proof of this theorem. Let A∗ be

the ∨-expansion of A, and let A′ be the instance of A∗. Then, by Lemma 5.1.3 below,

all we need to do is prove A∗ is valid in order to prove the reflection principle.

Chapter 5. Reflection Principles 76

To explain how this is done, we start with a simplified example. Suppose A∗ is of the

form
n∨
i=0

∃~xi
mi∧
j=0

∀~yi,jBi,j(~xi, ~yi,j)

and A′ is
n∨
i=0

mi∧
j=0

Bi,j(~ei, ~qi,j).

The first thing to note is that ~qi,j is incomparable with ~qi,j′ for j 6= j′. The second thing

to note is that we can assume that if i < i′ then ~qi′,j′ 6≺ ~qi,j. If this were not true, the

first observation would be violated. To show that A∗ is valid, we give a student-teacher

algorithm that witnesses the formula. The student starts by assigning false to every

q-variable. Using Λ, the student finds an assignment for the extension variables, and

presents this to the teacher as a possible witness to A∗. If it is, we are done. If not, the

teacher replies with an assignment to the q-variables that prove it is false. In particular,
m0∧
j=0

B0,j(~e0, ~q0,j) is false. This means there exists a j where B0,j is false. The student the

adjust his assignment to ~q0,j to match the teachers response. At this point, the student

has values for ~e0 and ~q0,j that make B0,j false. From now on, we will be careful not make

changes to the q-variable that will cause ~e0 to change value (we will explain why this is

true later). So what the student has done is fix B0,j to false. As well, since B0,j will

always be false from now on,
m0∧
j=0

B0,j(~e0, ~q0,j) will always be false as well. We can say

this has also be fixed to false. Note that the value of B0,j′ , for j′ 6= j, does not matter

anymore. So we can now call it irrelevant. The student now uses this new assignment to

the q-variables to get a new assignment to the extension variables. The teacher responds,

and the student does the same thing except 1 is used in place of 0. This continues until

either the student has a witness for A∗ or an assignment satisfying Λ and falsifying A′,

but the latter is not possible. So A∗ must be valid. Note that the prenex case given

above is a special case of this where mi = 1 for all i.

The general case is essentially the same except there is more than one
∨

in the

Chapter 5. Reflection Principles 77

formula. However, the general idea is the same. In each round, the student will make

progress on one of the
∨

. The difficult part is to formalize this algorithm in such a way

that the proof of correctness can be carried out in the theory. The algorithm is formalized

as follows. We define a ΣB
i formula φ(l) that says the student-teacher game can last for

l rounds. Then assuming that A∗ is not valid, we show by induction on l that the game

can last long enough for the student to have an assignment to the variables that satisfy

Λ and falsify A′. However, this violates the Σq
i−1 reflection principle for G∗i−1, which is

provable in V i.

To define φ(l), we must describe how the student picks the block in each round.

We start with a little notation. In the previous case, a block of quantifiers was ~qi. In

this theorem, we put all of the universal quantifiers that are in the scope of the same

existential quantifiers in one group. For example, if

A∗ ≡ (∃x1(∀y1B ∨ ∀y2B)) ∧ ∃x2(∀y3C ∧ ∃x3∀y4D)

then there are three groups of quantifiers. The variables y1 and y2 form one group since

they are both in the scope of x1 and no other variables. The variable y3 forms the second

group. It cannot be in the same group as y4 because it is not in the scope of x3. The final

group is y4. We order the groups of universal variables by a minimal variable according

to ≺ in the group. The smallest variable would be one corresponding to the outermost

quantifiers. It is possible that there is more than one minimal, but that does not matter.

Pick any one.

If B∗ is a subformula of A∗, we will use B′ to be the corresponding subformula in A′.

Let B∗n(~x) be the minimal subformula of A∗ that contains all of the universal quantifiers

corresponding the nth block of universal quantifiers. The ~x are the existentially quantified

variables where B∗n is in the scope of that quantifier. We will use ~en to refer to the

extension variables that replace ~x. Then B′n(~en, ~qn) is the corresponding subformula in

Chapter 5. Reflection Principles 78

A′.

In each round, the student starts with an assignment to the eigenvariables. In the first

round, any assignment will do. The student uses this assignment to get an assignment

to the extension variables that satisfies Λ. This latter assignment is given to the teacher

as a possible witness to A∗. The teacher responds with a counter example. Under the

assumption that A∗ is false, the teacher can always respond.

Let i0, . . . , in be the list of blocks that were chosen in the first n rounds. The idea is

that the student has values for ~eim and ~qim that make B′im false, and the student will not

change ~eim . So, as before, it is possible to say that B′im has been fixed to false. We can

then extend this idea of being fixed to false to other subformulas of A′. If B′ ≡ D1 ∨D2

and both D1 and D2 are fixed to false, then B′ is fixed to false. If B′ ≡ D1 ∧ D2 and

D1 is fixed to false, then B′ is fixed to false and D2 and all of its subformulas are now

irrelevant.

In round n+ 1, the student picks in+1 to be the smallest value such that

• B′in+1
is neither fixed to false nor irrelevant,

• the counter-example provided by the teacher says B′in+1
is false, and

• if ~qj ≺ ~ein+1 , then B′j is either fixed to false or irrelevant.

The first condition guarantees that the student is making progress on one of the
∧

. The

second condition is there because we want to fix B′in+1
to false, so the student must choose

a formula he knows to be false. The third condition guarantees that ~ein+1 will not be

changed by a choice is an later round.

Then ψ(n) can be defined as ψ(n) ≡ ∃i0, . . . , in∃E ∃Q ∃C

1. ∀m ≤ n “Q[m] is a truth assignment to the eigenvariables.”

2. ∧∀m ≤ n “Q[m] differs from Q[m+1] only in the assignment to the im block.”

Chapter 5. Reflection Principles 79

3. ∧∀m ≤ n “E[m] is a truth assignment to the extension variables.”

4. ∧ “E[i] and Q[i] satisfy Λ.”

5. ∧∀m ≤ n “C [m] is a counter-example proving E[m] is not a witness for A∗”

6. ∧∀m ≤ n “im meets the conditions described above.”

All that remains is to prove the induction step. Given i0, . . . , in, how do we know

there is always an appropriate in+1?

First consider a tree where the root of the tree is labeled with A′. The leaves are

labeled with B′n. The internal nodes are labeled with subformulas of A′. The edge are

done in the obvious way. We say a formula B′ is involved in making A′ false if every

node in the path from A′ to B′ in this tree is labeled with a false formula.

To prove that an appropriate in+1 always exists we construct a sequence j1, j
′
1, j2, j

′
2, . . .

as follows. The value of j1 is the minimum value such that B′j1 meets the first two con-

ditions that in+1 must meet and is involved in making A′ false. If no such value exists,

then A′ would would be fixed to false, but that is not possible.

Then, given jm, j′m is a value such that ~qj′m ≺ ~ejm , B′j′m is not fixed to false or irrelevant,

and the teacher did not prove that B′j′m is false. This value must exist otherwise jm would

be an appropriate value for in+1.

Given j′m, the value jm+1 is obtained by finding the minimal superformula of B′j′m that

is involved in making A∗ false. That is, go up the tree from B′j′m until you find the last

possible formula that is true, and go up one more. This formula must be of the form

D1 ∧ D2 where B′j′m is a subformula of say D1. Then choose jm+1 to be the minimum

value such that B′jm+1
is a subformula of D2 that is involved in making A∗ false, and is

neither fixed to false or irrelevant. If no such value exists, D2 would be fixed to false and

B′j′m would be irrelevant, so jm+1 exists.

Since this sequence continues forever, it must repeat at some point. Let j1, j
′
1, j2, j

′
2, . . . , jl+1

such a sequence up to the point where is begins to repeat (i.e. jl+1 = j1). Further as-

Chapter 5. Reflection Principles 80

sume this sequence is of minimum length. To get a contradiction, we look at the original

proof π of A. For each jm (j′m), there is a subproof of π that is the minimal proof that

contains all of the ∀-right rules that introduced ~qjm (~qj′m). This gives us 2l subproofs.

Since ~ejm depends on ~qj′m , the corresponding subproofs must meet with a cut or one is a

subproof of the other. See the comments at the beginning of this proof. The subproof

that corresponds to j′m and jm+1 must be joined by an ∧-right inference. This would be

the ∧-right inference that introduced the ∧ in D1 ∧D2 used in the construction above.

If we used the same inference to join two different pairs, we would be able to shorten

the sequence. For example, if the same ∧-right rule is used to join the proof of the pairs

(j′m,jm+1) and (j′l,jl+1). Start with j′m. Find the D1 ∧ D2 as the algorithm describes.

Then j′m is in D1 and jm+1 is in D2. Since j′l and jl+1 meet at the same connective, j′l is

in either D1 or D2 and jl+1 is in the other.

If jl+1 is in D2, then jm+1 = jl+1 since in both cases we chose the minimum values

meeting some conditions. Since we have a repeated value, it is obvious how to reduce

the size of the sequence.

If j′l is in D2, then j′l meets jm+1 at some point in D2. Since jm+1 is involved in

making A∗ false, this formula is false. However, this contradicts the assumption that D2

is the maximal superformula of Bj′l
that is true. This means the two pairs cannot meet

at the same connective.

This gives 2l proofs that are joined in 2l different places, but that is not possible in

a tree-like proof.

Lemma 5.1.3. V i proves that, if A∗ is an ∨-expansion of a Σq
i+1 formula A, then

σ |=i+1 A
∗ ↔ σ |=i+1 A.

Proof. Done by induction on the number of applications of (α) (Definition 3.2.4) used

to obtain A∗ from A. The tricky part is the setup the induction so that is can be carried

Chapter 5. Reflection Principles 81

out in V i.

Let

A = A∗1, A
∗
2, . . . , A

∗
n = A∗

be a series of formulas such that A∗i+1 is obtained from Ai with one application of (α).

Assume A is true. From the truth definition, there is a ΠB
i formula that says that X is

a witness for A and E is the evaluation of A that proves it. Assuming A is true, such

an X and E exists. Define a polynomial-time function that given X and E and i will

produce a witness and evaluation for A∗i . We prove this function is correct by induction

on i. When i = n, this function gives us a witness and evaluation for A∗, which means

A∗ is true.

The other direction is done in a similar manner.

5.2 New Axiomatization of V ∞

In this section, we will strengthen a result from [23]. In that paper, Kraj́ıcek and Pudlák

showed that V ∞ can be axiomatized by V 1 +{Σq
i -RFN(Gi) | i ∈ N}. A similar proof can

be used to prove that V ∞ can be axiomatized by V 1 + {Σq
i -RFN(G∗i) | i ∈ N}. In this

section, we show that V ∞ can also be axiomatized by V 1 + {Σq
i -RFN(CFG∗) | i ∈ N},

where CFG∗ is the cut-free version of G∗. Note that CFG∗ is a weaker proof system

than any of the other fragments of G including G∗0.

Just a bit of notation. If A is a formula with free variables ~p, then ∃A, called the

existential closure of A, is the formula ∃~pA.

Lemma 5.2.1. V 1 proves

Σq
i+1-RFN(CFG∗)↔ Σq

i+1-RFN(G∗i).

Proof. The if direction is easy since a CFG∗ proof is also a G∗i proof. The only if direction

Chapter 5. Reflection Principles 82

is not as easy. Assume Σq
i+1-RFN(CFG∗), and argue in V 1. Given a G∗i proof π of a

Σq
i+1 formula A, we change it into a CFG∗ proof of a formula

B ≡ A ∨
n∨
j=1

∃(Cj ∧ ¬Cj),

where C1, . . . , Cn are all of the cut formulas in π.

This is done by first replacing each cut by

Γ→ ∆, C
C,Γ→ ∆

Γ→ ∆,¬C
Γ→ ∆, C ∧ ¬C
Γ→ ∆,∃(C ∧ ¬C)

The sequents in the rest of the proof are changed to include ∃(Ci∧¬Ci). Note that none

of the inferences are affected by adding this formula. The only problem could be the

eigenvariable restriction in ∃-left and ∀-right inferences; however, since the new formula

does not have any free variables, there is no problem. At the end of the proof, the A is

combined with the new formulas using ∨-right inferences.

Since the cut formulas are Σq
i formulas, B is a Σq

i+1 formula. By Σq
i+1-RFN(CFG∗),

B is true, and, since ∃(Ci ∧ ¬Ci) cannot be true, A must be true. This can be done in

V 1 since it proves the Tarski conditions for the truth definition.

Corollary 5.2.2. V ∞ = V 1 + {Σq
i -RFN(CFG∗) | i ∈ N}.

Proof. Follows from the lemma above, Kraj́ıcek and Pudlák’s axiomatization of V ∞, and

the fact that Σq
i+1-RFN(G∗i) implies Σq

i -RFN(G∗i)

On a similar note, we are able to axiomatize TV i and V i in terms of the reflection

principles.

Theorem 5.2.3. Let i > 0. Then

• V i = V 1 + Σq
i+1-RFN(G∗i) = V 1 + Σq

i+1-RFN(CFG∗), and

Chapter 5. Reflection Principles 83

• TV i = V 1 + Σq
i+1-RFN(G∗i+1).

Proof. Let T = V 1 + Σq
i+1-RFN(G∗i) First we want to show that V i ⊆ T . This follows

from the fact that V i proves Σq
i+1-RFN(G∗i) (Theorem 5.1.2) and it is an extension of V 1.

We also need to show that T ⊆ V i. Since V i can is axiomatized by ΣB
i+1 formulas,

we need to show that every ΣB
i+1 theorem of V i is provable in T . From the translation

theorem (Theorem 2.3.3), we have that if V i proves φ then G∗i has polynomial-size proofs

of the translation of φ. Then the fact that T proves φ follows from the following claim:

Claim 5.2.4 (Lemma 3.3 [23]). T proves the following: If φ is a ΣB
i+1 formula and for all

~m,~n there is G∗i proof of ||φ(~x, ~X)||[~m;~n], then T proves ∀ ~X < ~nφ(~m, ~X).

V 1 + Σq
i+1-RFN(G∗i) = V 1 + Σq

i+1-RFN(CFG∗) follows from Lemma 5.2.1.

TV i = V 1 + Σq
i -RFN(G∗i) is proved in the same way as the first equality.

Chapter 6

Computational Complexity and G

One of the most informative ways of understanding the strength of a theory of bounded

arithmetic is to look at it from a computational complexity perspective. As was men-

tioned earlier, many theories of bounded arithmetic have a corresponding complexity

class. This correspondence was made using the witnessing theorems. If two theories are

the same, then their corresponding complexity classes are the same. In our work, we will

do the same, but for the fragments of G. The specific problem is to find the complexity

class for which the following problem is complete: Given a G∗i proof of a Σq
j formula,

find a witness for the outermost existential quantifiers. We call this problem Wit[G∗i ,Σ
q
j].

Note that this is not necessarily a function, but it is a total search problem. The reason

is that there is not always a unique witness.

To make things easier, we will use ΣB
j (T) to refer to the set of search problems that

are ΣB
j definable in the theory T .

An initial guess would be that Wit[G∗i ,Σ
q
j] is closely related to the ΣB

j (V i). This is

because we typically view G∗i as the non-uniform version of V i. As a matter of fact, it is

true for j ≤ i+ 1.

Theorem 6.0.5. Let j ≤ i+ 1. Then Wit[G∗i ,Σ
q
j] is complete for ΣB

j (V ∗i).

Proof. First let π be a G∗i proof of a Σq
j formula. Then to find a witness for the formula,

84

Chapter 6. Computational Complexity and G 85

find a witness for the ΣB
j formula Σq

j-RFN(G∗i), which is a theorem of V i (Theorem 5.1.2).

This shows that Wit[G∗i ,Σ
q
j] ∈ ΣB

i (V i).

Let φ(X) be a ΣB
j theorem of V i. Then, given X, φ can be witnessed by witnessing

||φ||[|X|]. We can get a G∗i proof of ||φ||[|X|] in polynomial time by the translation

theorem (Theorem 2.3.3). This shows that Wit[G∗i ,Σ
q
j] is hard for ΣB

j (V i).

You may now be wondering if this also holds for j > i+ 1, and, in fact, Morioka was

able to show that it is unlikely to hold.

Theorem 6.0.6 (Theorem 2.24, Theorem 8.8 in [29]). Let j > i + 1. If Wit[G∗i ,Σ
q
j] ∈

ΣB
j (V i), then PH collapses.

The remainder of this chapter is divided into two sections: one for when j > i + 1

and one for when j ≤ i+ 1.

6.1 Witnessing Complex Formulas

In this section, we want to determine the exact complexity of Wit[G∗i ,Σ
q
j] when j > i+1.

We look at these problems because they have been the main tool used to get conditional

separations in bounded arithmetic and these proof systems. For example, the KPT

witnessing theorem is used to show that V ∞ does not collapse unless PH collapses as

well.

We can look at this problem from two perspectives. First we will show a negative

result. We show that the complexity of witnessing complex formulas, using the standard

notion of oracle Turing Machines, does not depend on the proof system being used but

only on the complexity of the formula being proved. As a result, witnessing problems for

these proof systems cannot be used to separate them when proving complex formulas.

With this in mind, we change our model of computation to a two player system. The

players are a student and a teacher who responds to questions from the student. Then

Chapter 6. Computational Complexity and G 86

we can characterize the witnessing problem by the complexity of the student and the

complexity of the questions asked.

In the standard model of computation, Morioka did some work in this area already

[29]. He was able to show that Wit[G∗i ,Σ
q
j] ∈ FPΣp

j−1 [Wit, log] and that Wit[G∗i ,Σ
q
j] is

hard for FPΣp
j−1 [Wit,O(1)] = ΣB

j (V i). This gives a range for the complexity.

Previous results in this thesis make it easy to prove that Wit[G∗i ,Σ
q
j] is in fact complete

for the upper-end of this range.

Theorem 6.1.1. When j > i+ 1, Wit[G∗i ,Σ
q
j] is complete for FPΣp

j−1 [Wit, log].

The proof of this theorem is divided into two two parts. First we must show that

Wit[G∗i ,Σ
q
j] is in FPΣp

j−1 [Wit, log]. It was already mentioned that Morioka showed the

problem is in the class, but we can prove it a different way. Using the Herbrand theorem

for G∗i , we get a different proof.

Lemma 6.1.2. When j > i+ 1, Wit[G∗i ,Σ
q
j] is in FPΣp

j−1 [Wit, log]

Proof. Let π be a G∗i proof of a Σq
j formula ∃~xA(~x, ~p). By the Herbrand Theorem for G∗i

(Theorem 3.2.16), there is a proof π′ of a sequent of the form

Λ→ A∗

meeting the conditions of that theorem. Informally, this gives us an interaction between

a student and a teacher. The number of rounds is polynomial in the size of the proof.

Our algorithm asks queries of the from “Can the teacher respond to the first i queries of

the student?” (a Σp
j−1 query). Using binary search, the algorithm finds the first round

in which the teacher cannot respond. The use of binary search ensures we only make a

logarithmic number of queries. Since these are witness queries, the oracle responds to the

final query of the student with the witness we want. See Theorem 5.1.2 for the reason

this is true.

Chapter 6. Computational Complexity and G 87

The other part of the problem is to show that the problem is hard for the class.

Lemma 6.1.3. When j > i+ 1, Wit[G∗i ,Σ
q
j] is hard for FPΣp

j−1 [Wit, log] with respect to

polynomial-time many-one reductions.

Proof. We use a reduction similar to the reduction in Lemma 5.2.1 to reduce Wit[G∗j−1,Σ
q
j]

to Wit[G∗i ,Σ
q
j]. From the translation theorem (Theorem 2.3.3), we already know that

Wit[G∗j−1,Σ
q
j] is hard for FPΣp

j−1 [Wit, log]. Given a G∗j−1 proof of a Σq
j formula B, we

construct a cut-free proof of B
∧
∀(Ci∧¬Ci), where C0, . . . , Cn are all of the cut formulas

in the original proof (see Lemma 5.2.1 for this construction). Then witnessing this proof

gives us a witness for B.

In this last proof, we see why the complexity of the witnessing problem does not

change as long as i < j. The work of the student can be incorporated in the oracles.

When i = j − 1, the student will determine if a cut formula is true or false on his own.

However, the construction in the proof shows how the student can pass that work on to

the teacher. Informally, this can be thought of as the student not doing the work, but

simply getting an answer from the teacher. In order to distinguish between G∗i and G∗i+1,

we need a model of computation where the teacher will not answer any question, but

only certain pointed questions. This leads to the following definition.

Definition 6.1.4. Let C1 and C2 be two complexity classes such that C1 ⊂ C2. A

STUDENT-TEACHER(C1,Π
q
i) Turing Machine is a polynomial-time Turing Machine

with two oracle tapes. The input is a quantified propositional sentence A. One oracle

tape answers yes/no queries in C1. The other takes as input a partial instance of A

that is a Πq
j formula, j ≤ i, and returns a counter-example to the outermost universal

quantifiers if the formula is false. This idea comes from [20].

Then a family of quantified propositional formulas Φ is in STUDENT-TEACHER(C1,Π
q
i)

if there is a STUDENT-TEACHER(C1,Π
q
i) Turing Machine that witnesses every formula

in Φ.

Chapter 6. Computational Complexity and G 88

Informally, this can be viewed as student-teacher computations. The complexity class

C1 corresponds to the intelligence of the student, and the second complexity class refers

to the questions to the teacher. In this model, a student cannot pass off the work to the

teacher by asking the teacher for a counter-example to a different formula. We believe

this model corresponds better to the witnessing problem for G∗i .

Theorem 6.1.5. Let Φ be a family of Σq
j formulas. Then if G∗i has polynomial-size proofs

of the formulas in Φ, then Φ is in STUDENT-TEACHER(ΣP
i−1,Π

q
j−1).

Proof. Follows directly from the Herbrand Theorem for G∗i (Theorem 3.2.16). See The-

orem 5.1.2 for how to set up the queries.

6.2 Witnessing Simple Formulas

As has already been mentioned, witnessing G∗i proofs of simple formulas is complete for

the set of problems definable in V i. This gives us one characterization of Wit[G∗i ,Σ
q
j]

for j < i. On its own, this is not very informative. However, if we combine this with

characterizations of the search problems that are definable in V i, we get some insight into

the proof systems. For example, in [25], the ΣB
1 theorems of V 3 are characterized using

an extension of polynomial local search (PLS). More recently in [39], the ΣB
1 theorems

of V i are characterized using a statement about winning strategies in games. As well,

in [37], the ΣB
1 theorems of V i are characterized by a different type of principle about

playing a game on multiple boards at the same time.

In this section, we reprove the result from [25]. The proof we use is different and is

based on the Herbrand Theorem for G∗i . The idea is that this proof may generalize to

witnessing any class of formulas in V i.

The first step is to define the complexity class we are using. The complexity class

is an extension of the class PLS, which stands for polynomial local search. Generally,

you can think of the input to a PLS problem is a large directed, acyclic graph. The

Chapter 6. Computational Complexity and G 89

graph is given by a polynomial time function that given a node will output a neighbor

if one exists. The problem is to find a sink in this graph. One way of finding a sink is

to start with a particular node, and keep following the neighbor function until you reach

a sink. However, since the size of the graph is exponential in the size of the input, this

is an exponential time and polynomial space algorithm. On the other hand, we could

non-deterministically guess a node and check if it is a sink, and, if it is, output that node.

The complexity comes from the difficulty of telling whether this problem has at least one

output for every input.

In [25], PLS was generalized to CPLS, colour PLS, in order to characterize the

ΣB
1 consequences of TV 2. This is the class we use except we allow the use of an oracle.

Informally, the input to a CPLS is a large directed, acyclic graph where each node is

colored with a number of colours. You are told that, as you follow the neighbor function,

you do not reach any new colours. You can easily find a colour for the sinks, but not the

other node. The problem is to find a colour for a given node. One way of doing this is to

start at the given node, and follow the neighbor function until we reach a sink. Then the

colour of that sink will also be a colour of the original node. Again this is exponential

time. You can also non-deterministically guess a colour.

Definition 6.2.1 (CPLSA). Let w be the input to the problem. Then a problem in

CPLSA is defined by

• a neighbor function N(v, w) (given as a P TM),

• a leaf relation L(v, w) (given as a P TM),

• a colour relation C(v, c, w) (given as a PA TM),

• a function e(v, w) that colours leaves (given as a PA TM), and

• a source node a.

The output is one of the following

Chapter 6. Computational Complexity and G 90

1. a non-leaf node v with a neighbor that is not smaller than v (¬L(v, w)∧N(v, w) ≥

v),

2. a node whose neighbor has a colour that the nodes does not have (∀c ¬C(v, c, w)∧

∃c C(N(v, w), c, w)),

3. a leaf that is not properly colored (L(v, w) ∧ ¬C(v, e(v, w), w)), or

4. a colour for the source node a (C(a, c, w)).

We then get the following characterization of the theorems of TV i.

Theorem 6.2.2. For i ≥ 1, a problem is ΣB
i definable in TV i+1 if and only if the problem

is in CPLSΣp
i−1.

Proof of the if direction. Suppose we have a problem in CPLSΣp
i−1 . This problem is

defined by saying

∃V ∃C[“one of conditions 1-4 is satisfied”].

This is a ΣB
i formula since all of the functions and relations are in PΣp

i−1 . So now we

must prove that V and C always exist. In TV i+1, suppose the source node does not have

a colour (i.e. assume 4 is not possible). Find the minimum node V that does not have a

colour. This is ΠB
i -STRING-MIN. If V is a leaf, then we have a leaf that is not properly

colored (condition 3 is true). If it is not a leaf, then either N(V) is not smaller than V

(condition 1) or N(V) has a colour that V does not have (condition 2).

Proof of the only if direction. This direction is more difficult; however, with the tools

we have available, it is not too difficult. We will give the proof for the special case when

i = 1, but the proof easily generalizes. Suppose TV 2 proves a ΣB
1 formula φ(X). Then,

by the translation theorem (Theorem 2.3.3), there are polynomial-size G∗3 proofs of the

translation of this formula. So to witness φ, we must find a witness for these G∗3 proofs.

Chapter 6. Computational Complexity and G 91

Let π be a G∗3 proof of a Σq
1 formula ∃~xA(~x), where A is Σq

0. By the Herbrand Theorem

for G∗3 (Theorem 3.2.16), there is a G∗2 proof π′ of a sequent

Λ′1 → ∃~xA(~x)

meeting the conditions of that theorem. Let E1 be the set of extension variables defined

by Λ′1. Recall that Λ′1 is a series of formulas of the form

e↔ ∀~x∃~yE(~x, ~y) (6.2.1)

where E is a Σq
0 formula. Note that the Herbrand Theorem says that the formula defining

e is a ΣB
2 formula, but it is a simple task to change this to a ΠB

2 , which we use in this

case.

Now apply the Herbrand Theorem to π′. This gives us a G∗1 proof of a sequent

Λ1,Λ2 → ∃~xA(~x),

where Λ2 is the new extension cedent and Λ1 is obtained from Λ′1. Let E2 be the set of

extension variables defined by Λ2 and let ≺ be the ordering of the variables. Now Λ1 is

now a series of formulas of the form

¬e ⊃ ∀~y¬E(~q, ~y) ∧ e ⊃ ∃~yE(~e′, ~y),

where ~e′ ∈ E2. This formula was obtained from (6.2.1) by witnessing the outermost

∀ quantifiers by new extension variables, and replacing the outermost ∃ quantifies by

eigenvariables. The formulas in Λ2 are of the form

e↔ ∃~yE(~y)

Chapter 6. Computational Complexity and G 92

where E is a Σq
0 formula. The algorithm searches for values for the eigenvariables and

extension variables that satisfy Λ1 and Λ2. Once this is done, we can get a witness for

∃~xA(~x) using the G∗1 witnessing algorithm.

In our CPLS algorithm, a node is given by a tuple (σE1 , σE2 , σ∃, σQ). The assignment

σE1 is an assignment to E1, σE2 is an assignment to E2, and σQ is an assignment to the

eigenvariables. Finally, σ∃ is an assignment to the existential quantifier in Λ1 and Λ2.

The nodes can be ordered using a lexicographic order for the assignments, where smaller

variables, according to ≺, are written first. So now to define the different parts of the

CPLS problem that witnesses this proof.

We define three different types of colours. First, a colour is a witness for ∃~xA(~x).

Second, for variables e ∈ E2, consider the defining formula

e↔ ∃~yE(~y)

from Λ2. This is equivalent to

(e ⊃ ∃~yE(~y)) ∧ (¬e ⊃ ∀~y¬E(~y)).

Setting e to false implies ∀~y¬E(~y), so, when e is assigned false, a colour is an assignment

to ~y that proves this is false. The assignment σ∃ assigns values ~v to the existentially

quantified ~y. When e is assigned true, a colour is an assignment ~v′ larger than ~v such

that ¬E(~v′). Informally, if we assign ~y the value ~v, then we are saying that, for all values

larger than ~v, E is false. A colour is a counter-example that proves this is not true.

Third, there are colours for variables e ∈ E1. Consider the defining formula for e in

Λ1:

(e ⊃ ∃~yE(~e′, ~y)) ∧ (¬e ⊃ ∀~y¬E(~q, ~y)),

where ~e′ ∈ E2. A colour is essentially the same as before. If e is true, then a colour is

Chapter 6. Computational Complexity and G 93

proof that ∀~y¬E(~q, ~y) is false. If e is false, then a colour is an assignment ~v′ larger than

the current assignment to ~y such that E(~e′, ~v′).

The neighbor function finds an extension variable that does not have an appropriate

value yet, and makes some progress in the search for an appropriate value. So, the first

thing this function does is find, if it can, the smallest eigenvariable e ∈ E2 such that

e ⊃ E(~v) is not satisfied by the current set of assignments, where ∃~yE(~y) is the formula

defining e in Λ2 and ~v is the assignment σ∃ assigns to ~y. If ~v is not the lexicographically

smallest assignment, the neighbor is the assignment where ~v is given the next smallest

assignment. It is a simple task to verify that this does not add any colours. If ~v is the

lexicographically smallest assignment, the neighbor will

• assign e the value false,

• assign true to every e′ ∈ E2 larger than e,

• σ∃ will assign true to every variable.

The idea is that if ~v is the smallest assignment, then we must have checked every possible

assignment to ~y. This means that ∀~y¬E(~y) is true. We reset the value for e′ because it

may depend on e, in which case, we may need to change its value. For the same reason,

we reset the σ∃ to restart our searches. Note that we do not need to change σE1 . If

e′′ ∈ E1 is true, then we reset the search, so no new colours could exists. If e′′ is false,

then the defining formula for e′′, ∀~y¬E(~q, ~y) does not mention any variables in E2 and

will therefore not change.

If the algorithm is unable to find an appropriate e ∈ E2, then it searches for an

e ∈ E1 such that e ⊃ E(~e′, ~v) is not satisfied by the current assignments. If ~v, is not

the lexicographically smallest assignment, then the function sets it to the next smallest.

Otherwise, the neighbor will

• assign e the value false,

Chapter 6. Computational Complexity and G 94

• set ~q to the current value of ~e′,

• assign true to every variable in E1 larger than e,

• assign true to every variable in E2, and

• σ∃ will assign true to every variable.

The idea is similar to the first case. The main difference is the change to ~q. This is

done because, if ~v is the smallest assignment, then we must have checked every possible

assignment to ~y. This means that ∀~y¬E(~e′, ~y) is true. So we set ~q to ~e′ so that ∀~y¬E(~q, ~y)

will be true as well.

If we cannot find an appropriate e ∈ E1, then this assignment is a leaf. For leaves, we

must be able to find a colour. This is done in polynomial time using the Σq
1 witnessing

algorithm for G∗1 (Theorem 2.3.7 and 2.2.4). The assignments we use are given by σ∃,

σE1 , σE2 , and σQ. This covers all of the free variables as well as all of the existentially

quantified variables on the left side of the sequent. Since the current node is a leaf, we

know we have appropriate witnesses for these variables. The output of the algorithm is

a witness for ∃~xA(~x) or a counter example for ¬e ⊃ ∀~y¬E for some extension variables

e. In either case, it is a colour.

The source node is the lexicographically largest assignment. So, all of the extension

variables, eigenvariables, and existential quantifiers are assigned true. Note that the only

possible colours for the source node are witnesses for ∃~xA(~x). The output to the CPLS

algorithm has to be a colour for the source, which gives us a witness for ∃~xA(~x).

Part III

Defining New Proof Systems

95

Chapter 7

A Proof System for L

In this part of the thesis, we will be defining new proof systems. The idea is that the

restrictions are meant to show where the strength of the proof systems actually comes

from. The first example is GL∗. This was first defined in [34]. In that work, the

translation theorem was proved, but the reflection principles were not proved. That will

be done now. We begin by giving the definition necessary for this section, then we prove

the main result.

7.1 A Universal Theory For L Reasoning

One way to get a theory for L is to define a universal theory with a language that contains

a function symbol for every function in FL. Then, we get a theory for L by taking the

defining axioms for these functions. This is the idea behind the theory PV and V 0. In

our case, we characterize the FL functions using Lind’s characterization [27]. We will

only give the definitions. For a more thorough exposition see Chapter 9 in [11].

In the next definition, we define the set of function symbols in LFL and give their

intended meaning.

Definition 7.1.1. The language LFL is the smallest language satisfying

96

Chapter 7. A Proof System for L 97

1. L2
A∪{pd,min} is a subset of LFL and have defining axioms 2BASIC, and the axioms

pd(0) = 0 (7.1.1)

pd(x+ 1) = x (7.1.2)

min(x, y) = z ↔ (z = x ∧ x ≤ y) ∨ (z = y ∧ y ≤ x) (7.1.3)

2. For every open formula α(i, ~x, ~X) over LFL and term t(~x, ~X) over L2
A, there is a

string function Fα,t in LFL with bit defining axiom

Fα,t(~x, ~X)(i)↔ i < t(~x, ~X) ∧ α(i, ~x, ~X) (7.1.4)

3. For every open formula α(z, ~x, ~X) over LFL and term t(~x, ~X) over L2
A, there is a

number function fα,t in LFL with defining axioms

fα,t(~x, ~X) ≤ t(~x, ~X) (7.1.5)

z < t(~x, ~X) ∧ α(z, ~x, ~X) ⊃ α(fα,t(~x, ~X), ~x, ~X) (7.1.6)

z < fα,t(~x, ~X) ⊃ ¬α(z, ~x, ~X) (7.1.7)

4. For every number function g(~x, ~X) and h(y, ~x, ~X, p) in LFL and term t(y, ~x, ~X) over

L2
A, there is a number function fg,h,t(y, ~x, ~X) with defining axioms

fg,h,t(0, ~x, ~X) = min(g(~x, ~X), t(~x, ~X)) (7.1.8)

fg,h,t(y + 1, ~x, ~X) = min(h(y, ~x, ~X, f(y, ~x, ~X)), t(~x, ~X)) (7.1.9)

The last scheme is called p-bounded number recursion. The p-bounded number re-

Chapter 7. A Proof System for L 98

cursion is equivalent to the log-bounded string recursion given in [27]. The other schemes

come from the definition of LFAC0 in [8].

It is not difficult to see every function in LFL is in FL. The only point we should

note is that the intermediate values in the recursion are bounded by a polynomial in the

size of the input. This means, if we store intermediate values in binary, the space used

is bounded by the log of the size of the input. So the recursion can be simulated in L.

To show that every FL function has a corresponding function symbol in LFL, note that

the p-bounded number recursion can be used to traverse a graph where every node has

out-degree at most one.

V L is defined over the language LFL. This ensures there is a function symbol for

every function in FL. As for the axioms, V L has the defining axioms for every function

in FL, and a modified version of the 2BASIC axioms. B14 is removed because of the

existential quantifier. It is replaced with the two defining axioms 7.1.1 and 7.1.2, which

can be used to prove B14. Now we define V L.

Definition 7.1.2. V L is the theory over the language LFL with B1-B13 plus 7.1.1; 7.1.2;

axiom 7.1.4 for each string function Fα,t in LFL; axioms 7.1.5, 7.1.6, and 7.1.7 for each

number function fα,t in LFL; axioms 7.1.8 and 7.1.9 for each number function fg,h,t in

LFL; and open(LFL)-IND.

An open formula is a formula that does not have any quantifiers.

The important part of this theory is the it really is a universal version of V L.

Theorem 7.1.3. V L is a conservative extension of V L.

7.2 Definition of GL∗

In this section, we will define the proof system we wish to explore. This proof system is

be defined by restricting cut formulas to a set of formulas that can be evaluated in L.

Chapter 7. A Proof System for L 99

Alone that is not enough to change the strength of the proof system, so we also restrict

the use of eigenvariables.

The first step is to define a set of formula that can be evaluated in L. These formula

will be bases on CNF (2) formulas. A CNF (2) formula is a CNF formula where no

variable has more than two occurrences in the entire formula. It was shown in [17] that

determining whether or not a given CNF (2) formula is satisfiable is complete for L.

Based on this we get the following definition:

Definition 7.2.1. The set of formulas ΣCNF (2) is the smallest set

1. containing Σq
0,

2. containing every formula ∃~z, φ(~z, ~x) where (1) φ is a quantifier-free CNF formula∧m
i=1Ci and (2) existence of a z-literal l in Ci and Cj, i 6= j, implies existence of

an x-variable x such that x ∈ Ci and ¬x ∈ Cj or vice versa, and

3. closed under substitution of Σq
0 formulas that contain only x-variables for x-variables.

Definition 7.2.2. GL∗ is the propositional proof system G∗1 with cuts restricted to

ΣCNF (2) formulas in which every free variable in a non-Σq
0 formula is a parameter

variable.

The restriction on the free variables in the cut formula might seems strange, but it is

necessary. If we did not have this restriction, then the proof system would be as strong

as G∗1. This is demonstrated by the connection between GPV ∗ and G∗1 (Theorem 4.1.2).

7.3 Proving The Reflection Principles

In this section, we show that GL∗ does not capture reasoning for a higher complexity

class. This is done by proving, in V L, that GL∗ is sound. This idea comes from [7],

where Cook showed that PV proves extended-Frege is sound, and [23], where Kraj́ıcek

and Pudlák showed T i2 proves Gi is sound for i > 0.

Chapter 7. A Proof System for L 100

We will actually show that V L proves GL∗ is sound. The idea behind the proof is

to give an LFL function that witnesses the quantifiers in the proof. Then we prove,

by ΣB
0 (LFL)-IND, that this functions witness every sequent, including the final sequent.

Therefore the formula is true.

We start by giving an algorithm that witnesses ΣCNF (2) formulas in L when the

formula is true. This algorithm is the algorithm given in [17] with a few additions to

find the satisfying assignment. We describe an LFL function that corresponds to this

algorithm and prove it correct in V L. We then use this function to find an LFL function

that witnesses GL∗ proofs, and prove it correct in V L.

7.3.1 Witnessing ΣCNF (2) Formulas

Let ∃~zA(~x, ~z) be a ΣCNF (2) formula. We will describe how to find a witness for this

formula. We assume that A is a CNF formula. That is, the substitution of the Σq
0

formulas has not happened. The general case is essentially the same.

The first thing to take care of is the encoding of A. We will not go through this in

detail. Suffice it to say that parsing a formula can be done in TC0 [10], and, as long

as we are working in a theory that extends TC0 reasoning, we can use any reasonable

encoding. We will refer to the ith clause of A as CA
i . A clause will be viewed as a set

of literals. A literal is either a variable or its negation. So we will write l ∈ CA
i to mean

that the literal l is in the ith clause of A. Since the parsing can be done in TC0, these

formulas can be defined by ΣB
0 (LFL) formulas. An assignment will also be viewed as a

set of literals. If a literal is in the set, then that literal is true. So an assignment X

satisfies a clause C if and only in X ∩ C 6= ∅.

Given values for ~x, we first simplify A to get a CNF (2) formula. We will refer to

the simplified formula as F . This can be done using the LFL function defined by the

following formula:

l ∈ CF
i ↔ l ∈ CA

i ∧X ∩ CA
i = ∅,

Chapter 7. A Proof System for L 101

where X is the assignment to the free variables. From the definition of a ΣCNF (2)

formula, V L can easily prove that F now encodes a CNF (2) formula. In fact, it can be

shown that no literal appears more than once. A satisfying assignment to this formula

is the witness we want. Mark Braverman gave an algorithm for finding this assignment

[1], but we use a different algorithm that is easier to formalize.

Before we describe the algorithm that finds this assignment, we go through a couple

of definitions. First, a pure literal is a literal that appears in the formula, but its negation

does not. Next the formula imposes an order on the literals. We say a literal l1 follows a

literal l2 if the clause that contains l1 also contains l2, and l1 is immediately to the right

of l2, circling to the beginning if l2 is the last literal. More formally:

follows(l1, l2, F)↔ ∃i, l1 ∈ CF
i ∧ l2 ∈ CF

i ∧ ∀l3(l2 < l3 < l1 ⊃ l3 6∈ CF
i)

∧ ∀l3(l3 < l1 < l2 ⊃ l3 6∈ CF
i)

∧ ∀l3(l1 < l2 < l3 ⊃ l3 6∈ CF
i)

Note that if a clause contains a single literal then that literal follows itself. Also, note

that literals are coded by numbers and l1 < l2 means the number coding l1 is less then

the number coding l2.

To find the assignment to F , we will go through the literals in the formula in a very

specific order. Starting with a literal l that is not a pure literal, the next literal is the

literal that follows l:

next(l1, F) = l2 ↔ follows(l2, l1, F).

Note that if l1 is a pure literal, then there is no next literal, so we simply define it to

be itself. The important distinction is that next gives an ordering of the literals in a

formula, and follows orders the literal in a clause. When F is understood, we will not

mention F in next and follows.

The algorithm that finds the assignment works in stages. At the beginning of stage

Chapter 7. A Proof System for L 102

i, we have an assignment that satisfies the first i − 1 clauses. Then, in the ith stage,

we make local changes to this assignment to satisfy the ith clause as well. At a high

level, to satisfy the ith clause, we start with the first literal in the ith clause, and assign

that literal to true. The clause that contains this literal’s negation may have gone from

being satisfied to being unsatisfied. So we now go to the next literal, which is in this

other clause. We continue this until we get to a point where we know the other clause is

satisfied. We need to be able to do this in L. Algorithm ?? shows how to do this. At any

Algorithm 1 Algorithm for Stage i

Set l1 to the first literal in clause i.
repeat

Assign true to l1.
set l2 := next(l1)
while l2 is not the complement of l1 do

Assign true to l2
set l2 := next(l2)
If l2 is a pure literal, assign true to l2, and stage i is done.
If l1 and l2 are in the same clause, stage i is done.

end while
Assign true to l1. {This statement is redundant, but it is included to emphasis that
l1 is true.}
set l1 := next(l1)

until l1 is the first literal in clause i
At this point we know the formula is unsatisfiable.

point in the algorithm, the only information we need are the values of l1 and l2, so this

is in L. Note that we do not store the assignment on the work tape, but on a write-only,

output tape. What is not obvious is why this algorithm works.

The next lemma can be used to show that the both loops will eventually finish.

Lemma 7.3.1. For all literals l, there exists a t > 0 such that after t applications of

next to l, we get to l or a pure literal.

Proof. Let next0(l) = l and nextt+1(l) = next(nextt(l)). Since next has a finite range,

there exist a minimum i and t such that nexti(l) = nexti+t(l). Suppose this is not a

pure literal. If i > 0, then next(nexti−1(l)) = next(nexti+t−1(l)). However, this implies

Chapter 7. A Proof System for L 103

nexti−1(l) = nexti+t−1(l) since next is one-to-one when not dealing with pure literals.

This violates our choice of i. Therefore i = 0, and l = next0(l) = nextt(l).

The implies the inner loop will halt, because, if it does not end earlier, l2 will eventu-

ally equal l1 which both will be in the same clause. For the outer loop, if the algorithm

does not halt for any other reason, l1 will eventually return to the first literal in the ith

clause.

The next lemma plays a small role in the proof of correctness.

Lemma 7.3.2. Suppose the algorithm fails at stage i and that nextt(l′) = l, where l′ is

the first literal in clause i. Then, for every literal in the same clause as l, there is a t′

such that nextt
′
(l′) equals that literal.

Proof. To prove this lemma, we will show that there exists a t′ that equals the literal

that follows l. Then by continually applying this argument, you get that every literal in

the clause is visited.

Let l′ be the first literal in the ith clause. Then, after going through the outer loop

t times, l1 = l. Since the algorithm fails, the inner loop will finish because l2 = l1. This

means there is a t′ such that nextt
′
(l′) = l. Then nextt

′+1(l′) is the literal that follows

l.

Theorem 7.3.3. If the algorithm fails, the formula is unsatisfiable.

Proof. This is proved by contradiction. Let F be a CNF (2) formula and A be an

assignment that satisfies it. Assume that the algorithm fails. From this we can defined

a function from the set of variables to the set of clauses as follows:

f(i) = j ↔ (xi ∈ CF
j ∧ xi ∈ A) ∨ (¬xi ∈ CF

j ∧ ¬xj ∈ A).

Informally, if f(i) = j then clause Cj is true because of the variable xi. Since the formula

is satisfied, this function is onto the set of clauses. Also, since F is CNF (2), no literal

Chapter 7. A Proof System for L 104

appear more than once. So f is indeed a function because if f(i) = j and f(i) = j′ then

the literal xi or ¬xi is in both CF
j and CF

j′ .

Now we will use the assumption that the algorithm fails to find a way to restrict f

so that it violates the PHP . Suppose the algorithm fails at stage i. Let l be first literal

in clause i. We then define sets of variables V a as follows:

V a =
{
xn : ∃b < a nextb(l) = xn ∨ nextb(l) = ¬xn

}
.

We also defined sets of clauses W t as follows:

W a = {Cn : ∃x ∈ V a(x ∈ Cn ∨ ¬x ∈ Cn)} .

Note that for a large enough a, say |F |, if Cn is in W a, then every variable that appears

in Cn is in W a by 7.3.2. We show by induction on a that |V a| < |W a|.

For a = 1, |V a| = 1. If l is a pure literal or l and ¬l are in the same clause, then the

algorithm would succeed. Otherwise |W a| = 2.

For the inductive case, suppose |V a| < |W a|. Let l′ = nexta+1(l). If l′ is not a new

variable, then |V a+1| = |V a| < |W a| = |W a+1|. If l′ is a new variable, then l
′

must be in

a new clause. For, if this was not the case, the algorithm would succeed. To see this, let

l1 be the most recent literal in the same clause as l′. We know l1 is not l
′
since l′ is a new

variable. Then eventually l2 will become next(l′), which is in the same clause as l1. The

inner loop will not end because l2 becomes the complement of l1 since that would mean

next(l1) is more recent.

This gives |V a+1| = |V a|+ 1 < |W a|+ 1 = |W a+1|.

If we restrict f to V |F |, then f is a function from V |F | that is onto W |F | violating the

PHP .

Theorem 7.3.4. If the algorithm succeeds, then, for all i, the assignment given at the

end of stage i satisfies the first i clauses of F .

Chapter 7. A Proof System for L 105

Proof. The proof is done by induction on i. For i = 0, the statement holds since there

are no clauses to satisfy. As an induction hypothesis, suppose the statement holds for i.

Then we will show if the algorithm ever visits one of the literals in clause n, then that

clause is satisfied.

Consider clause n, where n ≤ i+1. Find the last point in the algorithm that either l1

or l2 was in clause n, and let l be that literal. First, it is possible that when the algorithm

ends l2 is in clause n. If l2 is a pure literal, then l2 is set to true, satisfying the clause.

Otherwise, l1 and l2 are in the same clause. In this case, l1 is true since it was assigned

true. If l2 ever became l1, the algorithm would exit the inner loop, so l1 could never have

been assigned true.

Second, we consider the possibility that l2 was not in clause n when the algorithm

ended. Then we claim that l is true, and, therefore, clause n is satisfied. Suppose for a

contradiction that it is not. Then at some later point l was assigned true. This could

happen in one of three places. First is if l1 = l and we are at the beginning of the outer

loop. However, l2 would be set to next(l) right after, which is in clause n. This means

we did not find the last occurrence of a literal in clause n as we should have. A similar

argument can be used in the other two places.

We now turn to formalizing this algorithm. For this, we define an LFL function f(i, t)

that will return the value of l1 and l2 after t steps in stage i. This is done using number

recursion. In the following let f(c, t) = 〈l3, l4〉:

f(i, 0) = 〈l1, l2〉 ↔l1 = min
l
l ∈ CF

i ∧ l2 = next(l1)

f(c, t+ 1) = 〈l1, l2〉 ↔φ1 ⊃ l1 = next(l3) ∧ l2 = next(l1)

∧¬φ1 ∧ φ2 ⊃ (l1 = l3 ∧ l2 = l4)

∧¬φ1 ∧ ¬φ2 ⊃ (l1 = l3 ∧ l2 = next(l4))

Chapter 7. A Proof System for L 106

where

φ1 ≡ l3 = l4

φ2 ≡ (sameClause(l3, l4) ∨ pureLiteral(l4))

The formulas φ1 and φ2 are the conditions that are used to recognize when the inner

loop ends. The first formula is when the loop ends and we have to continue with the

outer loop. The second formula is when the stage is finished. In the formula version, we

do not stop if the algorithm fails. Instead we view the algorithm as failing if after |F |2

steps, φ2 was never true. We use this value since |F | is an upper bound on the number

of literals in F and current state of the algorithm is determined by a pair of literal. In

the following, any reference to time has the implicit bound of |F |2.

The final step is to extract the assignment. The assignment is done by finding the

last time a variable is assigned a value. This means we must be able to determine when a

variable is assigned a value. To do this, observe that a literal is assigned true just before

the next function is applied to that literal. With this is mind we get the following:

Assigned(i, t, l)↔ ∃l′,f(i, t) = 〈next(l), l′〉 ∨ f(i, t) = 〈l′, next(l)〉

So Assigned(i, t, l) means that l was assigned true during the tth step of stage i. Then

we can get the assignment as follows:

l ∈ Assignment(i, F)↔c = max
c
∃t Assigned(c, t, l)

∧t = max
t
Assigned(c, t, l)

∧c′ = max
c′
∃t′ Assigned(c, t′, l)

∧t′ = max
t′

Assigned(c′, t′, l)

∧(c > c′ ∨ (c = c′ ∧ t > t′))

Chapter 7. A Proof System for L 107

The idea is the value of a variable is the last value that was assigned to it.

The V L proof that this algorithm is correct is the essentially the same as the proofs

of Theorem 7.3.3 and Theorem 7.3.4, which can be formalized in V L. This gives the

following.

Theorem 7.3.5. V L proves that, if the algorithm fails, the formula is unsatisfiable.

Theorem 7.3.6. V L proves that, if the algorithm succeeds, then, for all i, Assignment(i, F)

gives a satisfying assignment to the first i clauses of F .

7.3.2 Witnessing GL∗ Proofs

Let π be a GL∗ proof of a Σq
1 formula ∃~zP (~x, ~z), and let A be an assignment to the

parameter variables. We assume π is in free variable normal form (Definition 2.3.2).

Let Γi → ∆i be the ith sequent in π. We will prove by induction that for any

assignment to all of the free variables of Γi and ∆i, a function Wit(i, π, A) will find at

least one formula that satisfies the sequent.

There are two things to note. By the subformula property, every formula in Γi is

ΣCNF (2), which means it can be evaluated. Also, we need an assignment that gives

appropriate values to the non-parameter free variables that could appear. To take care of

this second point, we extendA to an assignmentA′ as follows:

1: Given a non-parameter free variable y, find the ∃-left inference in π that uses y as an

eigenvariable. Let z be the new bound variable and let F be the principal formula.

2: Find the descendant of F that is used as a cut formula. Let F ′ be the cut formula.

Note that F is a subformula of F ′, and, because of the variable restriction on cut

formulas, every free variable in F ′ is a parameter variable.

3: Assign y the value that Assignment(F ′, A) assigns z.

The reason for this particular assignment will become evident in the proof of Lemma

7.3.7.

Chapter 7. A Proof System for L 108

We can now define Wit(i, π, A′), which witnesses Γi → ∆i. Wit will go through

each formula in the sequent to find a formula that satisfies the sequent. ΣCNF (2)

formulas are evaluated using the algorithm described in the previous section. We will

now focus our attention on other Σq
1 formulas, which must appear in ∆i. Each Σq

1

formula F =syn ∃~zF ∗(~z) in ∆ is evaluated by finding a witness to the quantifiers as

follows:

1: Find a formula F ′ in π that is an ancestor of F , is satisfied by A′, and is a Σq
0 formula

of the form F ∗(z1/B1, . . . , zn/Bn), where each Bi is Σq
0

2: zi is assigned > if A′ satisfies Bi, otherwise it is assigned ⊥

3: if no such F ′ exists, then every bound variable is assigned ⊥.

Lemma 7.3.7. For every sequent Γi → ∆i in π, Wit(i, π, A′) finds a false formula in Γi

or a witness for a formula in ∆i.

Proof. We prove the theorem by induction on the depth of the sequent. For the base

case, the sequent is an axiom, and the theorem obviously holds. For the inductive step,

we need to look at each rule. We can ignore ∀-left and ∀-right since universal quantifiers

do not appear in π.

We will now assume all formulas in Γi are true and all ΣCNF (2) formulas in ∆i as

false. So we need to find a Σq
1 formula in ∆i that is true.

Consider cut. Suppose the inference is

F,Γ→ ∆ Γ→ ∆, F
Γ→ ∆

First suppose F is true. By induction, with the upper left sequent, Wit witnesses one of

the formulas in ∆. Then the corresponding formula in the bottom sequent is witnessed

by Wit. This is because the ancestor of the formula in the upper sequent that gives

the witness is also an ancestor of the corresponding formula in the lower sequent. If F

is false, it cannot be the formula that was witnessed in the upper right sequent, and a

similar argument can be made.

Chapter 7. A Proof System for L 109

Consider ∃-right. Suppose the inference is

Γ→ ∆, F (B)

Γ→ ∆,∃zF (z)

First suppose F (B) is Σq
0. If it is false, we can apply the inductive hypothesis, and,

by an argument similar to the previous case, prove one of the formulas in ∆ must be

witnessed. If F (B) is true, then Wit will witness ∃zF (z) since F (B) is the ancestor that

gives the witness. If F (B) is not Σq
0, then we can apply the inductive hypothesis, and,

by the same argument, find a formula that is witnessed.

The last rule we will look at is ∃-left. Suppose the inference is

F (y),Γ→ ∆

∃zF (z),Γ→ ∆

To be able to apply the inductive hypothesis, we need to be sure that F (y) is satisfied.

If ∃zF (z) it true, then we know F (y) is satisfied by the construction of A′: the value

assigned to y is chosen to satisfy F (y) if it is possible. Otherwise, ∃zF (z) is false, and

we do not need induction.

For the other rules the inductive hypothesis can be applied directly and the witness

found as in the previous cases.

Theorem 7.3.8. V L proves GL∗ is sound for proofs of Σq
1 formulas.

Proof. The functions Assignment and Wit are in FL and can be formalized in V L. A

function that finds A′, given A, can also be formalized since it in V L. The final thing

to note is that the proof of Lemma 7.3.7 can be formalized in V L since the induction

hypothesis can be express as a ΣB
0 (LFL) formula and the induction carried out.

The reason this proof does not work for a larger proof system, say G∗1, is because

Assignment cannot be formalized for the larger class of cut formulas. Also, if the variable

restriction was not present, we would not be able to find A′ in L, and the proof would,

once again, break down.

Chapter 8

A Proof System for NL

In the previous chapter, we defined a proof system that was meant to capture reasoning

for L. The method that was used seems like it could be generalized to other complexity

classes. In this chapter, we do the same type of construction for NL. The main contri-

butions of this section include a formalization of the Immerman-Szelepcsenyi Theorem in

bounded arithmetic and a formalization of the reduction from 2-SAT to the complement

of directed graph reachability. Both of these have been done in [18], but we present them

in a simpler way. As well, for the reduction, there was an error in [18] which we fix.

8.1 Definition of GNL∗

As with GL∗, we want to restrict the cut formulas to a class of formulas that can be

witnessed in NL. The class of formulas we defined are called the ΣKrom. The definition

is derived from Grädel’s descriptive complexity characterization of NL in [15].

Definition 8.1.1. The set of ΣKrom formulas are formulas of the form

∃z1, . . . ,∃znφ(~z, ~x),

such that φ(~z, ~x) is a quantifier free formula of the form
∧n
i=0Ci, where each Ci is the

110

Chapter 8. A Proof System for NL 111

disjunction of at most 2 z-literals and a Σq
0 formula that does not mention any z-variable.

Definition 8.1.2. The proof system GNL∗ is the proof system G∗ with cuts restricted

to ΣKrom formulas, and no non-Σq
0 cut formula contains a free variable that is an

eigenvariable.

8.2 NL and Bounded Arithmetic

8.2.1 Theories for NL

As with GL∗, we start with a theory known to capture reasoning for NL. We look at two

theories that have already been considered, and a third that has not been considered.

The first theory we will look at was first studied in [31]. The idea was to take V 0 and add

an axiom that says there exists an output to a function that is complete for NL under

AC0 reductions.

The function that Nguyen used takes as input a graph with nodes {0, . . . , a} and edge

relation E. The output of the function is a string Z such that Z(k, i) is true if and only

if there is a path of length at most k from 0 to i in the input graph. This is stated in the

LC axiom:

∃Z ≤ 〈a, a〉, ψLC(a,E, Z), where

ψLC =syn∀i ≤ a(Z(0, i)↔ i = 0)

∧∀w, x ≤ a(Z(w + 1, x)↔ (Z(w, x) ∨ ∃y ≤ a(Z(w, k) ∧ E(y, x))))

∧∀w, x < |Z|(w > a ∨ x > a ⊃ ¬Z(w, a))

Definition 8.2.1. The theory V NL is axiomatized by V 0 plus every instance of the LC

axiom where E is replaced by a ΣB
0 formula.

Originally, the axiomatization of V NL did not include the substitution of ΣB
0 formulas

for E in the LC axiom; however, this axiomatization is obviously equivalent since V 0

includes ΣB
0 -comp, and, for our purposes, it is useful.

Chapter 8. A Proof System for NL 112

The second theory was first studied in [18]. The idea was to use the descriptive

complexity characterization of NL to define the theory. In [15], NL was described as the

set of problems that can be defined by ΣB
1 -Krom-formulas.

Definition 8.2.2. A formula is a ΣB
1 -Krom-formula if it is

1. of the form

∃Z1 . . . ∃Zn∀x1 < t1 . . . ∀xm < tmφ(~a, ~x, ~B, ~Z),

where φ is a CNF formula in which no clause contains more that two Z-literals

(formulas of the form Zi(t) or ¬Zi(t)) or mentions |Z|i, or

2. is an instance of a formula of the form 1 in which ΣB
0 formulas have replaced the

free string variables.

Definition 8.2.3. The theory V −Krom is V 0 plus comprehension for every ΣB
1 -Krom-

formula.

This axiomatization is again slightly different from that in [18]: we include ΣB
0 -comp,

and we substitute ΣB
0 -formulas for free string variables in ΣB

1 -Krom-formula. However,

since the original V −Krom can prove ΣB
0 -comp (see Corollary 5.2.2 [18]), the two

axiomatizations are equivalent.

The third theory V KI has not been considered. The idea for this theory comes from

the fact that V i, for i > 0, can be axiomatized with ΣB
i -ind instead of ΣB

i -comp. In

certain circumstances, the axiomatization with induction is more useful. For example, in

theG∗i−V i translation theorem, the induction axiom is used in place of the comprehension

axiom to keep the quantifier complexity of the formulas down.

Definition 8.2.4. V KI is the theory axiomatized by V 0 plus ΣB
1 -Krom-ind.

Chapter 8. A Proof System for NL 113

8.2.2 Starred Theories

When we are doing propositional translations, there is a very strong restriction on the

free variables that can appear in the cut formulas. As it turns out, this restriction can

be mimicked in the theory by restricting the use of the axioms.

Let T be a theory axiomatized by V 0 + A, where A is a set of formulas. Suppose

φ(X) ∈ A. It is understood that T proves ∀Xφ(X). The free variable X is implicitly

universally quantified. We “shrink” T to a theory T ∗ where there is no implicit quantifier

on φ. Instead, we will assume φ(X) holds for certain strings in the universe, not all.

Definition 8.2.5. Let T be a theory over the language L that is axiomatized by V 0 +A.

Then

1. L∗ is the language L with new string constants Ci for i ≥ 0,

2. A∗ is the set of formulas obtained from A be replacing the free variable Xi by Ci,

for i ≥ 0, in every formula in A, and

3. T ∗ is the theory over the language L∗ axiomatized by V 0 +A∗.

Note that, in the above definition, we assume there is a countable number of string

variables, which we identify as X0, X1, X2, For the purpose of this definition there

are no other string variables. We also assume that A is closed under term substitution.

So, if φ(Xi) is in A, then so is φ(Xj), for every j. This assumption is not necessary for

the definition, but it is needed for some of the results later on.

This restriction on the axioms is meant to correspond to the restriction on the free

variables in cut formulas. For example, if we have an anchored V KI∗ proof of a formula

φ(C0), then the cut formulas are instances of axioms and there for the only free string is

the constant C0. If any of the other constants appear, then it can be replace by C0 and

we still get a valid proof. So if we translate this proof, the only free variables in the cut

formulas are those that correspond to C0.

Chapter 8. A Proof System for NL 114

At this point, it is worth reminding the reader that all of the theories V −Krom,

V KI, and V NL have axiom schemes where we can replace string variables by a ΣB
0

formula. This is important when we are using the starred version of these theories.

8.2.3 Equivalence of the Theories

In this section, we want to prove that the three theories defined in the previous section

are the same. We must do this carefully because there are certain properties of the proof

that we will use later. We divide the proof into the separate parts.

Theorem 8.2.6. V KI ⊆ V −Krom, and V KI∗ ⊆ V −Krom∗.

Proof. We need to prove ΣB
1 -Krom-ind from ΣB

1 -Krom-comp. In [11], it was shown that

V 0 proves X-ind. To prove induction for a ΣB
1 -Krom-formula φ(i), just note that there

is an X such that X(i) ↔ φ(i) for all i ≤ b, by ΣB
1 -Krom-comp. So induction on i for

X(i) implies induction on i for φ(i).

Note that we only use one instance of the comprehension axiom scheme, and that the

free variables are the same as the free variables in the induction scheme we are proving.

Therefore the same construction works for the starred theories as well.

The proof that V NL ⊆ V KI uses ideas from the Immerman-Szelepcsenyi Theorem

([16, 40]). The idea is that we will count the number of nodes reachable from node 0 in a

graph. Once this is done in V KI, we can determine whether or not a node is reachable

by checking if it is one of the nodes we counted.

To do this in V KI, we construct a ΣB
1 -Krom-formula φ(c, a, E) that is true if the

number of reachable nodes in the graph of E with a nodes is at most c. Then by

finding the minimum value for c that satisfies φ(c, a, E), we can pick our which nodes are

reachable.

We now want to define φ(c, a, E) in such a way that it is a ΣB
1 -Krom-formula. The

idea is to formalize the following algorithm. Initialize a counter to 0. For each node in

Chapter 8. A Proof System for NL 115

the graph, check if it is reachable from node 0. This check is done by looking at a set of

nodes that contain 0 and is closed under reachability. If the current node is not in this

set, then the node is not reachable and we move on to the next node. If the current node

is in the set, then the node may be reachable, so we increment the counter and move on

to the next node. Notice that it is possible that we count a node that is not reachable,

but it is not possible that we miss a node that is reachable. This means the value of the

counter at the end of the algorithm is at least the number of reachable nodes.

To formalize this algorithm, we use a counting array Z(c, i, j). The c is the counter,

and i is the current node. The third index is used to code the set described in the

algorithm. So Z [c,i] = {j : Z(c, i, j)} is a set of nodes. This set will either be empty

(meaning we do not use this value for the counter), or will contain 0 and be closed under

reachability. This done as follows:

ρ1 ≡ ∀c0∀i ≤ a∀j1∀j2[Z(c0, i, j1) ∧ E(j1, j2) ⊃ Z(c0, i, j2)]

[Z(c0, i, j, u, v) ⊃ Z(c0, i, j, 0, 0)]

Now that we have checked if a particular node is reachable, we now must make sure

that we count properly. To find the number of nodes we have counted so far we look for

the largest c such that Z [c,i] contains 0. To make this value easier to spot, we force Z [c0,i]

to contain 0 whenever Z [c0+1,i] contains 0:

ρ2 ≡ ∀c0∀i[Z(c0 + 1, i, 0) ⊃ Z(c0, i, 0)].

Next we want to be sure that the counter does not decrease when we move on to the

next node. This is done as follows:

ρ3 ≡∀c0∀i∀[Z(c0, i, 0) ⊃ Z(c0, i+ 1, 0)]

Chapter 8. A Proof System for NL 116

If we find that the current node (i) is possibly reachable, we want to be sure that we

increment the counter:

ρ4 ≡∀c0∀i[Z(c0, i, i) ⊃ Z(c0 + 1, i+ 1, 0)]

We need to deal with the beginning and end. To initialize the algorithm, we want

to make sure that Z [0,0] contains 0. As well, at the end, we want to make sure that we

have counted c nodes. Note that the last node is a− 1. So to check the total number of

nodes counted we check the value after we have checked this node. To accomplish this,

we include

ρ5 ≡ Z(0, 0, 0) ∧ Z(c, a, 0) ∧ ¬Z(c+ 1, a, 0).

Putting all of this together we get

φ(c, a, E) ≡ ∃Z, ρ1 ∧ ρ2 ∧ ρ3 ∧ ρ4 ∧ ρ5

Note that we have not included the bounds for the quantifiers, but we because the

graphs has a nodes there is an appropriate bound for every quantifier.

In order to count the exact number of reachable nodes, we must find the minimum

value for c such that φ(c, a, E) is true. This follows by induction on ¬φ(c, a, E). For

c = 0, ¬φ(0, a, E) is true, since the node 0 is always reachable. As well, φ(a, a, E) is true

since there are only a nodes in the graph and we can claim that every node is reachable.

So by induction with ¬φ(c, a, E) there is a value for c0 such that φ(c0, a, E) is false and

φ(c0+1, a, E) is true. For this to work we must be able to prove induction on the negation

of ΣB
1 -Krom-formulas.

Lemma 8.2.7. Let φ(i) be a ΣB
1 -Krom-formula. Then V KI proves

¬φ(0) ∧ ∀i < b[¬φ(i) ⊃ ¬φ(i+ 1)] ⊃ ¬φ(b).

Chapter 8. A Proof System for NL 117

Proof. This can be done the standard way. That is, induction on i for ¬φ(i) is equivalent

to induction on i for φ(b− i), which is a ΣB
1 -Krom-formula.

Theorem 8.2.8. V NL ⊆ V KI, and V NL∗ ⊆ V KI∗

Proof. To prove the theorem, we must prove the LC axiom in V KI. So consider an

a and E as in the axiom. The LC axiom says there exists a string that is the set of

reachable nodes in the layered graph E ′, defined as

E ′(〈d, i〉, 〈d′, j〉)↔ (E(i, j) ∨ i = j) ∧ d′ = d+ 1.

Let c0 be the minimum value such that φ(c0, n, E
′) is true, where n is the number of

nodes in the graph of E ′. Let Z be a witness for φ. Then define

Y (d, i)↔ ∃c [Z(c, 〈d, i〉, 0) ∧ ¬Z(c+ 1, 〈d, i〉, 0) ∧ Z(c, 〈d, i〉, 〈d, i〉)].

The idea is that we are looking at the point where we checked if 〈d, i〉 is reachable. If the

algorithm determined it is reachable, then we include it. If not, then we do not include

it.

We now claim that Y is a witness for the LC axiom. If Y is not a witness, it is

because we counted a node that is not reachable. We can then change Z to not count

this node and show that φ(c0 − 1, n, E ′) is true. However, this contradicts our choice of

c0.

It is possible to show this more formally, but we leave it to the reader.

For the starred theories, observe that the only time the induction is used is on the

formula ¬φ(c0, n, E
′). The only free string variable is E ′, which can be defined by a ΣB

0

formula whose free variables are the free variables of the instance of the LC axiom we

are proving. In the case of the starred theories, E ′ can be defined in terms of the string

constants and no other strings. Therefore, this induction axiom can be carried out in

Chapter 8. A Proof System for NL 118

V KI∗.

For the final inclusion, we show that V −Krom ⊆ V NL. This involves proving

the ΣB
1 -Krom-comp axiom scheme in V NL. To do this, we reduce the evaluation of a

ΣB
1 -Krom-formula to a question of reachability in undirected graphs. This was done in

Theorem 5.5.1 [18], but there was a slight error, so we will give a new proof that fixes

this mistake.

Lemma 8.2.9. Let c = 〈〈0, 2〉, 〈0, 2〉〉. For every ΣB
1 -Krom-formula φ(~a, ~A), there exists

a ΣB
0 -formula φ′(i, j,~a, ~A) such that

V NL ` φ(~a, ~A)↔ ∃Q[Cond(t, Q, φ′) ∧ ¬Q(0, c)],

where

Cond(b,Q, φ′) =syn ∀i, j, k ≤ b[Q(i, i) ∧ (Q(i, j) ∧ φ′(j, k,~a, ~A) ⊃ Q(i, k))].

Proof. Let

φ ≡ ∃Z∀x(ψ(x, Z)),

where ψ is the CNF formula in which, for all i, clause i is of the form

1. Z(ti1) ∨ Z(ti2) ∨ ψi,

2. Z(ti1) ∨ ¬Z(ti2) ∨ ψi, or

3. ¬Z(ti1) ∨ ¬Z(ti2) ∨ ψi.

Note that we are assuming there is only one existentially quantified string variable and

one universally quantified number variable. The case where there are more is essentially

the same.

The reduction involves the construction of the implication graph for φ. The nodes in

the graph are the literals that correspond to the bits of Z. So there is a node for Z(i)

Chapter 8. A Proof System for NL 119

and for ¬Z(i). There is a (directed) edge from one literal to another if there is a clause

that says the first literal implies the other.

As before, literals will be coded as pairs 〈i, v〉. The pair corresponds to Z(i) when

v = 0 and ¬Z(i) when v = 1. We use l to refer to a literal, and l will be the negation

of l. As well, Positive(l) and Negative(l) are predicates that are true when l is positive

and negative, respectively. Then the clauses above can be viewed at sets. For example,

if clause i has form 1, then

C(i, x) =

{〈ti1(x), 0〉, 〈ti2(x), 0〉} if ¬ψi(x)

{>} otherwise

Since ψ is a fixed formula, C(i, x) can be defined by a ΣB
0 formula.

The set of edges for the implication graph can be defined as follows:

E(l1, l2)↔ ∃i∃x(l1 ∈ C(i, x) ∧ l2 ∈ C(i, x))

Claim 8.2.10. V NL proves that φ is false if and only if there exists an l such that there

is a path in E from l to l and then back to l.

Assuming this is true, we finish the proof by defining a graph φ′ where there is a path

from 0 to c = 〈〈0, 2〉, 〈0, 2〉〉 if and only if φ is false. Each node in this graph is a pair of

literals. To start the path, there is an edge from 〈0, 0〉 to 〈l1, l1〉 for any positive literal

l1. This corresponds to guessing a literal to check. From this point on, we are looking

for a path from l1 to l1. The second node in the pair is used to search for this path. If

this path is found (that is we reach 〈l1, l1〉, then we go to 〈l1, l1〉 to start looking for a

Chapter 8. A Proof System for NL 120

path back to l1. If this path is found we go node c. This is formalized as follows:

φ′(〈l1, l′1〉, 〈l2, l′2〉) ≡ (l1 = 0 ∧ l′1 = 0 ∧ l2 = l′2 ∧ Positive(l2))

∨ (l1 = l2 ∧ E(l′1, l
′
2))

∨ (l1 = l
′
1 ∧ Positive(l1) ∧ l2 = l1 ∧ l′2 = l1)

∨ (l1 = l
′
1 ∧Negative(l1) ∧ 〈l2, l′2〉 = c)

It is a simple task to prove that the following claim is true.

Claim 8.2.11. V 0 proves that node c is reachable from node 0 in φ′ if and only if there is

a literal l such that there is a path from l to l and back to l in E.

The two claims together imply the theorem.

To complete the proof of the theorem above, we still need to prove the first claim.

Proof of Claim 8.2.10. For one direction, let l = 〈i, 0〉 be a literal such that there is a

path from l to l and then back to l in E. Let Z be a possible witness for φ. If Z(i) is

true, then, by induction on the length of the path from l to l, there is an edge from a

literal l1 to l2 such that l1 is true and l2 is false. This corresponds to a clause in φ that

is false proving that Z is not a witness. Similarly, if Z(i) is false, then, using the path

from l to l, Z is not a witness for φ.

For the other direction, assume that no such l exists. Let E∗(i, j) be the string that

represents the transitive closure of E. V NL proves that E∗ exists using an instance of

the LC axiom with a string that is ΣB
0 definable in terms of E. The first observation to

make is that for every literal l1 and l2,

E∗(l1, l2)↔ E∗(l2, l1).

Chapter 8. A Proof System for NL 121

This can be easily proved from the fact that

E(l1, l2)↔ E(l2, l1).

Now we need to define a string Z that is a witness for φ. To do this, we will define

a set A of literals. Then Z(i) is true if 〈i, 0〉 is in A. That is A will be the set of true

literals.

To start the assignment, notice that if there is a path from l to l, then l is forced to

be true. We can identify literal that are forced to be true as follows:

Forced(l) ≡ E∗(l, l).

Then an unforced literal is one where neither it nor it negation are forced:

Unforced(l) ≡ ¬Forced(l) ∧ ¬Forced(l).

This gives us the assignment for certain variables, but there are still other variables that

we must assign values to. For a literal l, we find the smallest literal l′ that, if we assign

false to l′, then l is forced to have a value. Then we assign l that value. This can be

formalized as follows:

l ∈ A↔ Forced(l) ∨ ∃l′[¬Forced(l)

∧ l′ = min
l′

(Unforced(l′) ∧ (E∗(l, l′) ∨ E∗(l′, l)))

∧ E∗(l′, l)]

First we want to show that A is a valid assignment. That is, exactly one of l and l is

Chapter 8. A Proof System for NL 122

in A. For a contradiction, assume that l ∈ A and l ∈ A. Let

l1 = min
l′

(Unforced(l′) ∧ (E∗(l, l′) ∨ E∗(l′, l)))

l2 = min
l′

(Unforced(l′) ∧ (E∗(l, l′) ∨ E∗(l′, l)))

Then we can show that l1 = l2 because a literal that forces l to be true forces l to be

false (recall E∗(l, l1)↔ E∗(l1, l)). Since both l and l are in A, we know that E∗(l1, l) and

E∗(l1, l). The latter implies E∗(l, l1). However, this means that l1 is forced to be true

(E∗(l1, l) and E∗(l, l1)), contradicting the choice of l1. Similarly, if neither l nor l are in

A, there is a contradiction.

Now to show that this assignment indeed witnesses φ. Suppose, for the sake of

contradiction, it does not. Let C(i, x) be the clause that is not satisfied. That is,

C(i, x) = {l1, l2} where l1 /∈ A and l2 /∈ A. Let

l′1 = min
l′

(¬Forced(l′) ∧ (E∗(l1, l
′) ∨ E∗(l′, l1)))

l′2 = min
l′

(¬Forced(l′) ∧ (E∗(l2, l
′) ∨ E∗(l′, l2)))

Since l1 is true, we have that l′1 implies l1. Since l1 and l2 are in the same clause l1 implies

l2. Together this means that l′1 forces l2 to be false. So by the choice of l′2, we have that

l′1 ≥ l′2. Using a similar argument, l′2 ≥ l′1. This means that l′1 = l′2. However, as before,

we are able to show that l′1 is forced, which contradicts the choice of l′1.

Lemma 8.2.12. Let c = 〈〈0, 2〉, 〈0, 2〉〉. For every ΣB
1 -Krom-formula φ(~a, ~C) with no

free string variable (only the string constants ~C), there exists a ΣB
0 -formula φ′(i, j,~a, ~C)

such that

V NL∗ ` φ(~a, ~C)↔ ∃Q[Cond(t, Q, φ′) ∧ ¬Q(0, c)],

Chapter 8. A Proof System for NL 123

where

Cond(b,Q, φ′) =syn ∀i, j, k ≤ b[Q(i, i) ∧ (Q(i, j) ∧ φ′(j, k,~a, ~C) ⊃ Q(i, k))].

Proof. The proof is the same as the proof of the previous lemma. The only time the LC

axiom is used in that proof is in the proof of claim 8.2.10, but the free string variables

can be defined by ΣB
0 formulas with no free string variables.

Theorem 8.2.13. V −Krom ⊆ V NL, and V −Krom∗ ⊆ V NL∗.

Proof. Because of Lemma 8.2.9, we only need to prove comprehension for ΣB
1 -Krom-

formulas of the form

ψ(x) =syn ∃Q[Cond(t, Q, φ(x)) ∧ ¬Q(0, c)],

where the term t may contain x and φ(x) is a ΣB
0 -formula. Note that φ contains two free

variables other than x which are used in Cond for the edge relation. These two variables

will be referred to as i and j. The formula ψ(x) says that there is no path from 0 to c in

the graph with nodes {0, . . . , t} and edge relation φ(i, j, x). We need to prove

∃Y ≤ b∀x < b[Y (x)↔ ψ(x)]

in V NL.

We begin by defining a graph E(i, j) by

E(〈i1, j1〉, 〈i2, j2〉)↔(i1 = 0 ∧ j1 = 0 ∧ j2 = 0 ∧ i2 ≤ t(b))

∧(i1 = i2 ∧ j2 ≤ t(i1) ∧ φ(j1, j2, i1)).

In this formula, E is a graph with a copy of the graph of φ for the different values of x.

Node 〈i, j〉 belongs to the copy of the graph of φ when x = i. Let Z be the string that

Chapter 8. A Proof System for NL 124

exists by the LC axiom with E. Then we can define Y as

Y (x)↔ Z(〈b, t(b)〉, 〈x, c〉).

The idea is that the node 〈x, c〉 is reachable from 0 in E if and only if there is a path

from 0 to c in the graph of φ(i, j, x).

For the starred theories, the proof is essentially the same. We use Lemma 8.2.12

in place of Lemma 8.2.9. The only other use of the LC axiom is with E, which is ΣB
0

definable in terms of the free variables of ψ.

Immerman-Szelepcsenyi Theorem in V KI∗

We still need to establish the connection between V KI and V KI∗. An important step

in this connection will be a proof that FNL is closed under composition. In order to

prove this, we must be able to show that NL is closed under complement. This is

the Immerman-Szelepcsenyi theorem that first appeared in [16, 40]. Later, Kolokolova

showed how this theorem could be formalized in V −Krom [18]. We should like to do

something similar to what she did; however, we want to formalize it in the starred theory

V KI∗. In a model of V KI∗, there are certain strings that cannot be used in the induction

axiom. Because of this, we cannot prove the theorem for all strings, but we will prove it

for certain strings.

Theorem 8.2.14. Let M be a model of V KI∗, and let E be a string such that

∀i, j ≤ aE(i, j)↔ φ(i, j),

where φ is a ΣB
0 formula with no free string variables but may contain the string constants.

Then there exists a string E ′ and a number c0 such that

∀l, i, j < a′E ′(i, j)′ ↔ φ′(i, j),

Chapter 8. A Proof System for NL 125

where φ′ has no free string variables, and there is a path from 0 to n in the graph of E

if and only if there is a path from 0 to 〈n, c0, a+ 1, 0〉 in the graph of E ′.

Proof. The proof of Theorem 8.2.8, and the preceding text, explains how to find a c0

that is the number of nodes reachable from 0 in the graph of φ(i, j). This was done in

V KI, but the same construction works in V KI∗ when φ does not have any free string

variables (only the string constants). To check if node n is reachable, we simply need to

find c0 nodes other than n that are reachable, and we want to do this for all n at the

same time.

A node in φ′ will be a tuple 〈n, c, i1, i2〉. The n will refer to the nodes we want to

avoid, the c is the number of nodes we have counted so far, i1 is the current node we are

checking, and i2 is the current node in the path from 0 to i1. So now to describe φ′.

Starting at node 0 the first step is to pick the node we want to avoid:

α1(〈n, c, i1, i2〉, 〈n′, c′, i′1, i′2〉) ≡ (n = c = i2 = i2 = 0 ∧ c′ = i′1 = i′2 = 0).

For each n, c and i1, we will try to guess a path in φ from 0 to i1:

α2(〈n, c, i1, i2〉, 〈n′, c′, i′1, i′2〉) ≡ (n = n′ ∧ c = c′ ∧ i1 = i′1 ∧ φ(i2, i
′
2)).

If a path is found and the current node is not n, we want to move on to the next node

and increase the counter:

α3(〈n, c, i1, i2〉, 〈n′, c′, i′1, i′2〉) ≡ (i2 = i1 6= n ∧ n = n′ ∧ c+ 1 = c′ ∧ i1 + 1 = i′1 ∧ i′2 = 0).

At any time, we want to be able to move on to the next node without increasing the

counter:

α4(〈n, c, i1, i2〉, 〈n′, c′, i′1, i′2〉) ≡ (n = n′ ∧ c = c′ ∧ i1 + 1 = i′1 ∧ i′2 = 0).

Chapter 8. A Proof System for NL 126

Then we let

φ′(〈n, c, i1, i2〉, 〈n′, c′, i′1, i′2〉) ≡ α1 ∧ α2 ∧ α3 ∧ α4.

In this graph, there is a path from 0 to 〈n, c0, a+1, 0〉 if and only if node n is not reachable

in the graph of φ. If this was not true, then, in a similar manner to the proof of Theorem

8.2.8, we could show that c0 is not the number of reachable nodes as it is supposed to

be.

8.2.4 Connection Between V NL and V NL∗

We will now show why the starred theories can be useful. We do this by showing the

connection between V NL and V NL∗.

Theorem 8.2.15. Let φ(X0, . . . , Xn) be a ΣB
1 formula. Then V NL proves φ(X0, . . . , Xn)

if and only if V NL∗ proves φ(C0, . . . , Cn).

Proof. First to prove the ⇐= direction. This is the easy direction. We prove the contra-

positive. Suppose V NL does not prove φ(X0, . . . , Xn). Then there exists a model M of

V NL such that φ(X0, . . . , Xn) is false. Expand M to a model of V NL∗ by interpreting

the constants Ci as the string assigned to Xi in an assignment that falsifies φ. Call the

expanded model M∗. Then M∗ is a model of V NL∗ that shows that V NL∗ does not

prove φ(C0, . . . , Cn).

The =⇒ direction is more difficult. Once again we will prove the contrapositive.

Suppose V NL∗ does not prove φ(C0, . . . , Cn). Then let M∗ be a model of V NL∗ where

φ(C0, . . . , Cn) is false. Let M∗ be the string universe of M∗. We will construct a model

of V NL with the same number universe asM∗ and whose string universe M is such that

Ci ∈ M , for all i ≥ 0, and M ⊆ M∗. Then, if we assign Xi the string Ci, the formula

φ(X0, . . . , Xn) is false inM. This is because φ is a ΣB
1 formula: If there are strings that

witness φ in M , then there are strings that witness φ in M∗, which, by assumption, is

not true. So now to actually construct M .

Chapter 8. A Proof System for NL 127

The set of strings M is defined in three stages. First

M1 =
{
Y : ∀i < m(Y (i)↔ φ(i, ~n, ~S), where φ ∈ ΣB

0 and m,n ∈M∗ and ~S ∈ ~C
}

This set corresponds to taking the closure of the constants under ΣB
0 -COMP. That is,

M1 is the set of all strings that can be constructed from the constants C0, C1, . . . using

ΣB
0 -COMP.

The second step is to close M1 under the LC axiom. So,

M2 = {Y : ψLC(s, E, Y) where s ∈M∗ and E ∈M1 } .

The final step is to close M2 under ΣB
0 -COMP.

M3 =
{
Y : ∀i < m(Y (i)↔ φ(i, ~n, ~S), where φ ∈ ΣB

0 and m,n ∈M∗ and ~S ∈M2

}

Then we let M = M3.

The modelM is obtained by restrictingM∗ to the strings in M , and this is a model

of V NL. The ΣB
0 -comp axioms also hold since M3 is obtained by taking the closure

under ΣB
0 -COMP. By Lemma 8.2.16 below, M satisfies the LC axiom.

Lemma 8.2.16. Let M be the model constructed in the theorem above with string uni-

verse M . Then, ∀E∀a∃ZψLC(a,E, Z) is true.

Proof. Fix E and a. First suppose E ∈M1. Since E is defined by a ΣB
0 formula with no

free string variables, a witness for the LC axiom exists in M∗, and it would be included

in M by the definition of M2.

Now suppose E ∈M −M1. Then

E(i, j)↔ φ(i, j, ~s, ~S)

Chapter 8. A Proof System for NL 128

for some ΣB
0 formula φ and ~S ∈ M2. Without loss of generality, assume that ~s is empty

and that ~S is a single variable S ∈M2.

This construction proceeds in a similar manner to the corresponding theorem in [35].

In that paper, the author showed how to compose two branching programs. Here we

show how to compose two labeled graphs.

Definition 8.2.17 (labeled graph). A labeled graph is a complete directed graph where

each edge is labeled with a ΣB
0 formula. The formula is intended to tell you whether or

not the corresponding edge is in the graph.

The first graph we start with is G0 where the edge (u, v) is labeled with φ(u, v, S).

Using DeMorgan’s Law, we can assume that for each label negations appear only on

atomic formulas. As with the construction in [35], we now want to change G0 one label

at a time so that every label is an atomic formula or the negation of an atomic formula.

We describe how this is done in one case. Other cases are left to the reader.

Suppose the graph Gi has an edge (u, v) labeled with ∀a ≤ bα(a). Then Gi+1 is

constructed by adding b new nodes call them {u, v}1, . . . , {u, v}b. Then (u, {u, v}1) is

labeled with α(0), ({u, v}i, {u, v}i+1) is labeled with α(i) for i < b, and ({u, v}b, v) is

labeled with α(b). The label for (u, v) becomes ⊥, and all other new edges are labeled

with ⊥. Notice that there is a path between u and v if and only if ∀a ≤ bα(a). As well,

given the reachability matrix for Gi+1 we can obtain the reachability matrix for Gi using

ΣB
0 -COMP.

When this is done we obtain a labeled graph G where every label is an atomic formula

or the negation of one. We are interested in labels of the form S(t1, t2) or ¬S(t1, t2) for

some terms t1, t2. These are the labels we must change in order to define E ′. Since

S ∈ M2, there exists an E1 ∈ M1 such that ψLC(a1, E1, S). By Theorem 8.2.14, there

exists an E2 ∈ M1 such that, if ψLC(a2, E2, S
′), then S(m,n) ↔ ¬S ′(0, t(m,n)) for an

appropriate term t (note that we are ignoring the constant c0, but it is there implicitly).

A new graph G′ is obtained from G by making two changes: (1) every node labeled

Chapter 8. A Proof System for NL 129

with S(t1, t2) is replaced with a copy of the graph of E1 and (2) every node labeled with

¬S(t1, t2) is replaced with a copy of the graph of E2. This graph can be described by a

ΣB
0 formula using only the string variables E1 and E2, which are both in M1. Then E ′ is

the string defined by this formula.

We know that E ′ ∈ M1, and there exists Z ′ ∈ M2 such that ψLC(a′, E ′, Z ′). Then,

from the construction of E ′, we can construct a ΣB
0 formula that extracts the list of

reachable nodes in E using Z ′. This is the witness Z that we want. Since Z ′ is in M2, Z

is in M3.

8.3 Propositional Translations of V KI

Theorem 8.3.1. Suppose V KI ` ∃Zφ(~x, ~X,Z). Then there exist polynomial size GNL∗

proofs of ||∃Zφ(~x, ~X,Z)||[~n; ~m].

Proof. By Theorems 8.2.6, 8.2.8, 8.2.13, and 8.2.15, V KI∗ ` ∃Zφ(~x, ~C, Z). Let π be an

anchored V KI∗ proof of this formula. Set ~n and ~m. We show, by induction on the depth

of π, how to translate π into a GNL∗ proof π′ where the size of the proof is polynomial

in ~n and ~m. Note that we can assume that, if the string constant Ci appears in the proof,

it appears in the final sequent. If not, we can simply replace Ci by a different constant

that does. This can be done since the axioms of V KI∗ are closed under substitution of

one constant for another.

The base case is easy since the axioms used in the proofs are all axioms of V 0. The

inductive step is divided into cases: one case for each rule. Most of the rules are handled

the same way they are in other proofs of this type. See Chapter 7 of [11] for an example.

The only two that require comment are the induction rule and the cut rule.

Suppose the last rule of inference is

Γ, φ(i)→ φ(i+ 1),∆

Γ, φ(0)→ φ(t),∆

Chapter 8. A Proof System for NL 130

By induction, there are GNL∗ proofs π′i of ||Γ, φ(i) → φ(i + 1),∆||. Let n = val(t).

The proofs π′0, . . . , π
′
n are combined by repeated cutting to get π′. This is similar to the

proof of the V 0 translation theorem in [11]. The formula φ(i) is a ΣB
1 -Krom-formula with

no free string variables. These formulas translate into ΣKrom formulas where the free

variables correspond to the constants in the language of V KI∗, which appear in the final

sequent.

The other case to consider is cut. Because π is anchored, the cut formula must be an

axiom of V 0 or a descendant of a principal formula used in an induction inference. In the

first case, standard methods can be used to make the cut formula Σq
0 (see [10] for details).

In the second case, the cut formula must a ΣB
1 -Krom-formula with no free string variables.

This formula translates to a ΣKrom formula where the only free variables correspond to

the constants, so the corresponding propositional formula can be cut to form π′.

8.4 Reflection Principles

As with other proof systems, we would like to be able to prove that the proof system

is sound in the theory. This proof is essentially the same as the proof that V L proves

the reflection principle for GL∗. See Section 7.3.2. The only thing that will change from

that proof is that instead of witnessing ΣCNF (2) formulas we have to witness ΣKROM

formulas.

To witness ΣKROM formulas, we formalize the algorithm used to witness ΣB
1 -Krom-

formula (Theorem 8.2.9). Since the method is the exact same, we will not repeat the

construction, only state the result. As well, we will not formally define the theory V NL.

It is a universal theory with a function symbol for each function in FNL. This language

is referred to as LFNL. It is similar to V L (Section 7.1). For a complete exposition, see

Chapter 9 of [11].

Lemma 8.4.1. Let ∃~zA(~x, ~z) be a ΣKROM formula, where A is the quantifier-free

Chapter 8. A Proof System for NL 131

portion of the formula. Then there is a LFNL function F such that V NL proves

X ∪ F (X,A) |=0 A↔ X |=1 ∃~zA(~x, ~z).

Then using the same proof as Theorem 7.3.8, we can prove the following.

Theorem 8.4.2. V NL ` Σq
1-RFN(GNL∗).

Chapter 9

A Proof System for TV i

The point of this section is to understand how to restrict the strength of a proof system

when it is proving formulas with high quantifier complexity. As we saw in Sections 6.1

and 5.1, we cannot distinguish G∗i and G∗i+1 by looking at the witnessing problem or

the reflection principles for complex formulas. In order to better understand what is

happening, we define a family of proof systems that has the same strength as TV i, even

for complex formulas.

Comparing the KPT witnessing theorem for TV i and for G∗i+1, we notice that for

TV i the “student-teacher” game has a constant number of rounds before the student is

guaranteed to win; however, for G∗i+1 there is potentially a polynomial number of rounds.

This gives an indication that, if we can somehow restrict G∗i+1 to reduce the number of

rounds to a constant, this may give us a proof system that truly corresponds to TV i.

Definition 9.0.3 (Repeatition of Definition 4.1.1). For i ≥ 0, the proof system GPV ∗i+1

is G∗i+1 in which cut formulas are restricted to Σq
i formulas or formulas of the form

∃x[x↔ A], where A is a Σq
i formula that does not mention x. The proof system GPV ∗

will refer to GPV ∗1 .

Definition 9.0.4. A GPV ∗i (c) proof is a GPV ∗i proof where on any branch there are at

most c ∀-right inferences where the principal formula ceases to be Σq
j for j ≥ i.

132

Chapter 9. A Proof System for TV i 133

This restriction comes from a careful examination of the Herbrand Theorem for G∗i

(Theorem 3.2.9). The idea is to find the places in that construction where new groups

of quantifiers are introduced, and to limit those instances to a constant number. The

reason we restrict GPV ∗i instead of G∗i is that we would not be able to prove the reflection

principle. This will become evident in the proof, but we rely on the fact that if we are

cutting a Σq
i formula in a GPV ∗i proof, then we know the cut formula ∃z[z ↔ A] is true.

That is not the case with G∗i .

Another way of viewing the restriction is to limit the number of groups of quantifiers

introduced along any branch to a constant. Recall the definition of a group as given in

the proof of Theorem 5.1.2. Two universal quantifiers are in the same group if they are

in the scope of the same existential quantifiers.

We claim that the family of proof systems {GPV ∗i (c) : c ≥ 0} corresponds to TV i in

the following sense: (1) TV i proves Σq
j-RFN(GPV ∗i (c)) for all j, c ≥ 0, and (2) for every

theorem φ of TV i, there exists a c such that φ can be translated into a family of valid

QPC formulas that have polynomial-size GPV ∗i (c) proofs.

9.0.1 Propositional Translations

Before we prove the translation theorem, we want to give an alternate axiomatization of

TV i that is useful for the translation. As was mentioned in Section 2.2, TV i is defined

by V 0 plus ΣB
i -string-ind, repeated here to remind the reader:

[φ(∅) ∧ ∀X[φ(X) ⊃ φ(S(X))]] ⊃ φ(Y).

For the translation, it will be easier to axiomatize TV i using V 0 plus the ΣB
i -bit-recursion:

∃X∀i < y(X(i)↔ φ(i,X<i))

Chapter 9. A Proof System for TV i 134

where φ(i, Y) is a ΣB
i formula that does not mention X, and Y = X<i means |Y | ≤ i

and Y (j)↔ X(j) for j < i. As with ΣB
i -string-ind, we should think of the axiom as an

L2
A formula where the chop function (X<i) is replaced by its ΣB

0 definition.

Theorem 9.0.5 (Theorem 3.12 [8]). TV i = V 0 + ΣB
i -bit-recursion.

Note that the proof of this theorem is based on a similar proof in the single-sorted

setting (Theorem 8 [2]).

Lemma 9.0.6. There are polynomial-size GPV ∗i+1(0) proofs of the sequent

→ ∃z[z ↔ A],

where A is a Σq
i formula that does not mention z.

Proof. Begin by proving

A→ >↔ A

and

→ ⊥↔ A,A.

Proofs of these sequents can be shown to exist by structural induction on A. By applying

∃-right to these sequents, we get proofs of

A→ ∃z[z ↔ A]

and

→ ∃z[z ↔ A], A.

Then we get the sequent we want by cutting A.

Theorem 9.0.7 (TV i-GPV ∗i+1(c) Translation Theorem). If TV i proves φ(~x, ~X), then

there exists a c such that there are polynomial-size GPV ∗i+1(c) proofs of ||φ(~x, ~X)||[~m;~n].

Chapter 9. A Proof System for TV i 135

Proof. Take a TV i proof π of φ. Let c be the number of ∀-right inferences in π where

the principal formula ceases to be ΣB
j , for j > i. The proof is similar to the proofs of

other translation theorems. The main difference to how we handle the ΣB
0 -bit-recursion

axiom and the need to keep track of the number of special inferences in the propositional

proof. To take care of these special inferences, we need to state the induction hypothesis

carefully.

For each sequent S in π, let cS be the number of ∀-right rules in the subproof ending

with S where the principal formula ceases to be ΣB
j , for j > i. We prove by induction

on the depth of S that there is are polynomial-size GPV ∗i (cS) proofs of the translation

of S. There is a separate case for each rule of inference. Most rules can be simulated

using the corresponding rule in the propositional proof system, so we only mention the

few rules that need extra work.

Axioms: It is known how to prove the translation of the 2BASIC axioms. It is a simple

exercise to prove the translation of ΣB
0 -bit-recursion axiom using Lemma 9.0.6.

Cut: Since the proof is anchored, the cut formula in the TV i proof is an axiom. If

it is one of the 2BASIC axioms, then the rule is simulated by cutting the translation of

the cut formula.

Otherwise, the cut formula is an instance of the ΣB
i -bit-recursion axiom. Note that

ΣB
0 -COMP is a special instance of the recursion scheme where φ does not mention X<i.

The inference is of the form

∃X ≤ t∀i < tψ(i,X),Γ→ ∆ → ∃X ≤ t∀i < tψ(i,X)

Γ→ ∆

where

ψ(i,X) ≡ X(i)↔ φ(i,X<i).

Let Am,n ≡ ||ψ(i,X)||[m;n] and Bn ≡
val(t)∧
m=0

Am,n. Note that Bn is ||∀i < tψ(i,X)||[;n].

Informally, the formula Am,n is saying the size of X is n and the mth bit has the

correct value (given the bits 0 to m− 1). The formula Bn (n ≤ val(t)) says that the size

Chapter 9. A Proof System for TV i 136

of X is n and all of the bits have the correct value.

Now consider the formula Bval(t)+1. Because of the chop function the formulas

Am,val(t)+1 do not reference the leading 1 bit that is assumed to exist in X. In fact,

the formula Bval(t)+1 says that the variables pX0 , . . . , p
X
val(t)−1 satisfy the recursion. Then,

if i is the largest value such that pXi is true, Bi+1 is true since i+ 1 would be the size of

the string representing the first val(t) bits. This means we are able to show the following:

Bval(t)+1 ⊃
val(t)∨
n=0

Bn. (9.0.1)

Now to continue the proof of the cut case. By induction with the upper-left sequent

in the inference given above, we get a polynomial-size GPVi+1(cS) proof of

∃x0 . . . ∃xval(t)
val(t)∨
n=0

Bn, ||Γ|| → ||∆||.

By Lemma 3.1.1, this can be changed into a proof of

val(t)∨
n=0

Bn, ||Γ|| → ||∆||

without increasing the size. Cutting with (9.0.1), we get a proof of

Bval(t)+1, ||Γ|| → ||∆||.

We can now apply the construction of Lemma 3.1.1 to get a proof of

A0,val(t)+1, . . . , Aval(t)−1,val(t)+1, ||Γ|| → ||∆||.

Now observe thatA0,val(t)+1, . . . , Aval(t),val(t)+1 is an extension cedent defining x0, . . . , xval(t),

and this can be removed as follows. For each xi starting with i = val(t) and working our

Chapter 9. A Proof System for TV i 137

way down, apply ∃-left with xi as the eigenvariable, and then cut its defining formula.

Note that this construction does not add any new special inferences.

string ∀-right, string ∃-left: The construction is the same as the V 1−G∗1-translation

theorem. The only point that should be made is that there is a new special ∀-right

inference in the GPV ∗i proof if and only if the current rule in the TV i proof is a special

∀-right inference.

9.0.2 The GPV ∗i (c) reflection principles

Recall the proof of the Σq
j+1 reflection principles for G∗i in V i. That proof was done by first

using the Herbrand Theorem for G∗i to get an interactive computation that witnesses the

final formula. Then, using the maximization principle, we prove that there is a maximum

number of rounds that the teacher can respond.

The reflection principles for GPV ∗i+1(c) are proved in the same way. The difference

is that for G∗i there must be a polynomial number of rounds in the interactive compu-

tation; however, for a GPV ∗i+1(c) proof of a Σq
j formula, there are at most c rounds with

potentially a polynomial number of queries per round.

This is all informal, so at this point we will make the idea of the number of rounds

more concrete. In the KPT witnessing theorem for G∗i , there is an ordering ≺ on the

extension variables E and the eigenvariables Q. Even though ≺ is a total ordering, it does

not have to be, so we change it to a partial ordering meeting the necessary conditions.

This ordering can be used to impose a partial ordering on the blocks of eigenvariables.

See Theorem 5.1.2 for the definition of a block. We will say that a block of quantifiers

is in round 1 if it is a minimal block, and, for r > 1, a block of quantifiers is in round r

if all smaller blocks are in round r − 1. We say that ≺ has r rounds if every block is in

round r. Note that we are using the convention that if a block is in round r then it is

also in every round r′ > r.

We are now able to extend the Herbrand Theorem to say something about the number

Chapter 9. A Proof System for TV i 138

of rounds.

Theorem 9.0.8. V PV proves the following. Let π be a GPV ∗i (c) proof of a Σq
j formula

A, and assume that π is in free-variable normal form. Then there exists a G∗i proof of a

sequent Λ → A∗ and a partial ordering ≺ of the variables Qπ ∪ E, where E is a set of

variables that do not appear in π, with the following properties:

• Λ is an i-extension cedent defining the variables in E;

• for e ∈ E, if e depends on a variable p ∈ Qπ ∪ E, then p ≺ e;

• A∗ is an i-instance relative to ≺ of an ∨-expansion of A; and

• ≺ has c rounds.

Proof. The proof is almost the same as the proof of Theorem 3.2.16 for G∗i+1. The only

difference is that we add an extra point in the induction hypothesis: ≺ has cS rounds

where cS is the maximum number of ∀-right instances introducing a new block along any

branch on the proof of the sequent S.

Except for cut, all of the cases in the construction stay the same. It is important to

notice that, in all of the binary inferences except for cut, the blocks from the two proof

can remain incomparable. This means the blocks remain in the same round.

The only rule that needs to be discussed is cut. If the cut formula is a Σq
i formula,

then the construction is the same as before. We can cut the formula in the new proof.

The variables from the left and right subproofs can remain incomparable, so the blocks

remain the the same round they we in before.

If the cut formula is not Σq
i , then it must be of the form ∃z[z ↔ B], where B is Σq

i

and does not mention z. The inference has the form

∃z[z ↔ B],Γ→ ∆,Ω Γ→ ∆,∃z[z ↔ B],Ω

Γ→ ∆,Ω

Chapter 9. A Proof System for TV i 139

By induction with the upper left sequent, we have a proof π of a sequent

Λ, q ↔ B,Γ′ → ∆′,Ω′,

with an ordering ≺. This is the exact sequent we want except that the eigenvariable q

must be replaced with a new extension variable e. The ordering is changed by putting e

in the same place as q. As well, since we have the exact same blocks as before, the blocks

remain in the same round as before.

Using this version of the witnessing theorem, we can prove the reflection principles

for GPV ∗i (c) in TV i.

Theorem 9.0.9. TV i proves Σq
j-RFN(GPV ∗i (c)) for all j ≥ 0 and c ≥ 0.

Proof. Take a GPV ∗i (c) proof π of a formula A. By the theorem above, there is a G∗i

proof of a sequent Λ → Θ′ and an ordering ≺ meeting the conditions of the theorem.

Let A∗ be the ∨-expansion of A.

We define a formula ψ(i,≺,Λ,Θ) that says there are values for the eigenvariables and

extension variables that satisfy Λ and falsify the formulas associated with the groups of

quantifiers in the first i rounds. See Theorem 5.1.2 to see how formulas are associated

with blocks.

We can prove in TV i that ψ(0,≺,Λ,Θ) is true. By Σq
i+1-RFN(G∗i), ψ(c,≺,Λ,Θ) is

false. Note that since c is a constant, we can prove by “brute force induction” in TV i

that there is a maximum value for m < c that satisfies ψ regardless of the quantifier

complexity of A∗.

Then we reason that one of the guesses in round m + 1 must be a witness for A∗.

Then, by Lemma 5.1.3, A is true too.

Appendix A

Min Cut/Max Flow Theorem

In the introduction, we mentioned that a motive for looking at bounded arithmetic was

the ability to connect theorems with complexity classes. This area of research is also

called bounded reverse mathematics. The idea is to try to find the minimum set of

axioms needed to prove a theorem. In this section, we will informally go through the

reverse mathematics of the Min Cut/Max Flow Theorem. The idea is to familiarize the

reader with this type of work.

Consider a directed graph G with two special nodes s and t. Each edge is labeled

with a positive number that we refer to as the capacity. In our case, we will assume the

numbers are all positive integers. This graph could be modeling a number of things. For

now think of it as a network of computers. The edges represent cables connecting the

computers and the number is the maximum number of bits of information the cable can

transfer in a second.

A flow from s to t is a labeling of the edges with numbers such that each edge is label

with a number smaller than its capacity. The inflow for a vertex is the sum of the values

on the edges entering this vertex. The outflow is the same except with outgoing edges.

The net flow for a vertex is its inflow minus its outflow. A valid flow from s to t is a flow

where every vertex other than s and t has net flow equal to 0. The value of the flow is the

140

Appendix A. Min Cut/Max Flow Theorem 141

net flow of s. A flow could be used to model the transfer of information from computer

s to computer t. Every other computer passes information on as it receives it. Finding

a maximum valid flow corresponds to finding the maximum amount of information that

can be passed from s to t in a second. These types of problems come up in many different

situations and are important.

An (s,t)-cut is a set of verticies that contains s but not t. The weight of a cut is the

sum of the capacities of the edges that go from C to V −C where V is the set of vertexes

in the graph. In terms of flows, you can think of a cut as a bottle neck for the flow. So

a minimum cut gives an upper-bound on the maximum flow.

The interesting part of the Min Cut/Max Flow Theorem is that the value of a maxi-

mum flow equals the weight of a minimum cut. This was first proved in [14]. We can show

that this theorem can be formalized in V NL. Note that this does not involve proving

that there exists a maximum flow. In fact, we do not believe that V NL proves that there

exists a maximum flow since the problem of finding a maximum flow is P -complete. All

we are proving is that, if there exists a maximum flow, there is a minimum cut with the

same value.

We start by showing that the value of a cut cannot be smaller than the value of a

flow. In fact, we show something stronger. Let C be a cut in a graph G = (E, V) and

F be a valid flow in that graph. Then the net flow for the cut is the sum of the flow on

edges leaving C minus the sum of the flow on the edges entering C. Then we can show

the following:

Lemma A.0.10. V NL proves that, for any cut, the net flow of the cut equals the value

of the flow.

Proof. Let F be the flow and C be the cut. Define W as

W [i] = {s} ∪ {u ∈ C : u < i}

Appendix A. Min Cut/Max Flow Theorem 142

for i ≤ n, where n is the number of vertexes in the graph. Then note that W [i] = C and

that this can be done using ΣB
0 -COMP. We prove by induction on i that the net flow of

the cut W [i] equals the value of the flow. This induction hypothesis involves sums, which

can be done in TC0, so the induction can be carried out in V NL.

For the base case, note that W [0] = {s}. So the net flow of this cut is the net flow of

s, which is the value of the flow.

Assume the induction hypothesis holds for i. If W [i] = W [i+1], then the induction

hypothesis holds for i + 1. If W [i] 6= W [i+1], then W [i+1] = {i} ∪W [i]. In this case, the

theorem holds because the net flow of i is 0. We leave the details to the reader.

We now look at the other direction. This can be formalized as a ∀ΣB
1 formula as

follow:

∀G∀s∀t∀F∃F ′∃C,“if F is a valid flow, then

(1) C is a cut that equals the flow or

(2) F ′ is a larger flow.”

(A.0.1)

Theorem A.0.11. V NL proves (A.0.1).

Proof. The idea is to formalize the Ford-Fulkerson proof of this theorem [14]. It is also

given in most introductory graph theory texts. Given G and F , we can define a new

graph G′ with the same vertexes. There is an edge from u to v in G′ if the edge from

u to v in G is not at full capacity or if the edge from v to u in G has non-zero flow. A

path from s to t in this new graph represents a way to increase the flow. This will give

us F ′. If there is no path from s to t in G′, then the set of nodes reachable from s in G′

defines a cut C in G. Every edge leaving C must be at full capacity; otherwise, we could

reach a node outside C. Similarly every edge entering C must have 0 flow. So the value

of the flow equals the net flow on this cut (Lemma A.0.10). With what was said earlier,

the net flow of this cut equals the value of the cut.

Appendix A. Min Cut/Max Flow Theorem 143

The graph G′ can be defined by ΣB
0 -COMP. The set of nodes reachable from s in G′

can be determined in V NL using the LC axiom.

This is mildly interesting, but the key to bounded reverse mathematics is proving that

V NL is the weakest theory that can prove this theorem. We do not prove this exactly,

but we give an indication that this is the case.

Theorem A.0.12. If V L proves (A.0.1), then L = NL.

Proof. To do this, we will show how to solve the directed graph reachability problem in L

assuming V L proves the theorem. If V L proves (A.0.1), then there is a logspace function

that, given a graph and a valid flow, returns either a larger flow, or cut with the same

value. This follows from the V L witnessing theorem.

Given a graph G with nodes s and t, we want to determine if there is a path from s

to t. Let F be the empty flow Using the function above, we can in logspace find either a

larger flow (s and t are connected), or a cut with value 0 (s and t are not connected).

This concludes this proof. Hopefully this gives of idea of the significance of this type

of result.

Bibliography

[1] Mark Braverman. Witnessing SAT(2) and NAE-SAT(2) in L. 2003.

[2] Buss. Axiomatizations and conservation results for fragments of bounded arithmetic.

In CMWLC: Logic and Computation: Proceedings of a Workshop held at Carnegie

Mellon University. Contemporary Mathematics Volume 106, American Mathemati-

cal Society, 1990.

[3] Sam Buss and Jan Krajicek. An application of boolean complexity to separation

problems in bounded arithmetic. Proceedings of the London Mathematical Society,

69:1–27, 1994.

[4] Samuel Buss. Bounded arithmetic. PhD thesis, Princeton University, Princeton,

New Jersey, 1985.

[5] Samuel R. Buss. On Herbrand’s theorem. Lecture Notes in Computer Science,

960:195–209, 1995.

[6] Samuel R. Buss. Relating the bounded arithmetic and polynomial time hierarchies.

Annals of Pure and Applied Logic, 75(1-2):67–77, 1995.

[7] S. A. Cook. Feasibly constructive proofs and the propositional calculus, 1975.

[8] Stephen Cook. Theories for Complexity Classes and their Propositional Translations,

pages 175–227. Quaderni di Matematica. 2003.

144

Bibliography 145

[9] Stephen Cook and Antonina Kolokolova. A second-order theory for NL. In LICS

’04: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science,

pages 398–407, Washington, DC, USA, 2004. IEEE Computer Society.

[10] Stephen Cook and Tsuyoshi Morioka. Quantified propositional calculus and a

second-order theory for NC1. Archive for Math. Logic, 44(6):711–749, August 2005.

[11] Stephen Cook and Phuong Nguyen. Foundations of proof complex-

ity: Bounded arithmetic and propositional translations. Available from

http://www.cs.toronto.edu/˜sacook/csc2429h/book, 2006.

[12] Stephen Cook and Neil Thapen. The strength of replacement in weak arithmetic.

ACM Trans. Comput. Logic, 7(4):749–764, 2006.

[13] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional

proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

[14] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal

of Mathematics, 8:399 – 404, 1956.

[15] Erich Grädel. Capturing complexity classes by fragments of second-order logic.

Theor. Comput. Sci., 101(1):35–57, 1992.

[16] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.

Comput., 17(5):935–938, 1988.

[17] J. Johannsen. Satisfiability problem complete for deterministic logarithmic space,

2004.

[18] Antonina Kolokolova. Systems of Bounded Arithmetic from Descriptive Complexity.

PhD thesis, University Of Toronto, 2005.

[19] Jan Krajíček. Lower bounds to the size of constant-depth propositional

proofs. J. Symb. Logic, 59(1):73–86, 1994.

Bibliography 146

[20] Jan Kraj́ıcek. No Counter-Example Interpretation and Interactive Computation,

pages 287–293. Logic from Computer Science. Springer-Verlag, 1992.

[21] Jan Kraj́ıcek. Fragments of bounded arithmetic and bounded query classes. Trans-

actions of the American Mathematical Society, 338:587–598, 1993.

[22] Jan Kraj́ıcek. Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Cambridge University Press, 1995.

[23] Jan Kraj́ıcek and Pavel Pudlák. Quantified propostitional calculi and fragments of

bounded arithmetic. Zeitschr. f. math. Logik und Grundlagen d. Math., 36:29–46,

1990.

[24] Jan Kraj́ıcek, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the poly-

nomial hierarchy. Ann. Pure Appl. Logic, 52(1-2):143–153, 1991.

[25] Jan Kraj́ıcek, Alan Skelley, and Neil Thapen. NP search problems in low fragments

of bounded arithmetic. The Journal of Symbolic Logic, 72(2):649–672, 2007.

[26] Jan Kraj́ıcek and Gaisi Takeuti. On induction-free provability. Annals of Mathe-

matics and Artificial Intelligence, 6:107–126, 1992.

[27] John C. Lind. Computing in logarithmic space. Mac Technical Memorandom 52,

September 1974.

[28] Alexis Maciel and Toniann Pitassi. Conditional lower bound for a system of constant-

depth proofs with modular connectives. In LICS, pages 189–200. IEEE Computer

Society, 2006.

[29] Tsuyoshi Morioka. Logical Approaches to the Complexity of Search Problems: Proof

Complexity, Quantified Propositional Calculus, and Bounded Arithmetic. PhD the-

sis, University Of Toronto, 2005.

Bibliography 147

[30] Phuong Nguyen. Separating dag-like and tree-like proof systems. In LICS ’07:

Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science,

pages 235–244. IEEE Computer Society, 2007.

[31] Phuong Nguyen and Stephen A. Cook. Theories for TC0 and other small complexity

classes. Logical Methods in Computer Science, 2(1), 2006.

[32] Rohit Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic,

36:494–508, 1971.

[33] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. Methods in

Mathematical Logic, Lecture Notes in Mathematics 1130:317–340, 1985.

[34] Steven Perron. GL∗: A propositional proof system for logspace. Master’s thesis,

University Of Toronto, 2005.

[35] Steven Perron. Quantified propositional logspace reasoning. Available from

http://arxiv.org/abs/0801.4105., 2008.

[36] Chris Pollett. Structure and definability in general bounded arithmetic theories.

Annals of Pure and Applied Logic, 100(1-3):189–245, 1999.

[37] Pavel Pudlák. Fragments of bounded arithmetic and the lengths of proofs. 2007.

[38] Michael Sipser. Introduction to the Theory of Computation, Second Edition. Course

Technology, February 2005.

[39] Alan Skelley and Neil Thapen. The provably total search problems of bounded

arithmetic. Available from http://www.math.cas.cz/̃thapen/, 2008.

[40] Robert Szelepcsenyi. The method of forcing for nondeterministic automata. Bulletin

of the European Association for Theoretical Computer Science, 33:96–100, 1987.

Bibliography 148

[41] Domenico Zambella. Notes on polynomially bounded arithmetic. The Journal of

Symbolic Logic, 61(3):942–966, 1996.

