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Abstract

In wireless communication systems, transmitted signals are corrupted by fading as well as noise.

The receiver can benefit from the estimates of fading channels to detect the transmitted symbols.

However, in practical wireless systems channel information cannot be estimated perfectly at the

receiver. Therefore, it is crucial to examine the effect of channel estimation error on the structure

and performance of the receivers. In the first part of the thesis, we study single-user systems with

single-antenna reception over fading channels in the presence of Gaussian-distributed channel es-

timation error. By using the statistical information of the channel estimation error, we will derive

the structure of maximum-likelihood receivers for a number of different modulation formats and

then analyze their performance over fading channels. In the second part of the thesis, we consider

the uplink of multi-user wireless systems with multi-antenna reception. For conventional diver-

sity combining techniques such as maximal ratio combining and optimum combining we analyze

the performance degradation due to imperfect channel estimates in the presence of multiple inter-

fering users for several fading channels. By investigating the probability density function of the

output signal-to-interference ratio, we will derive analytical expressions for several performance

measures such as the average signal-to-interference ratio, outage probability and average bit-error

probability. These expressions quantify performance degradation due to channel estimation error.

ii
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Chapter 1

Introduction

Digital wireless systems have been growing in popularity, complexity and capabilities over the

last decade, and there are now mobile as well as fixed wireless networks, proprietary as well as

standardized systems, personal area networks as well as metropolitan area networks. Each of these

systems has unique requirements and constraints, but they share at least one key feature: Digital

signals should be transmitted over physical channels, which are usually subject to fading.

Multi-path fading is one of the most common phenomena in wireless systems. It is due to

the constructive and destructive combination a number of multi-paths received at the receiver with

random attenuations and delays. This type of fading affects the signals transmitted through wire-

less channels and causes the short-term signal variations. There are various models to describe

statistical behavior of this phenomenon. Two common models are Rayleigh and Rice fading chan-

nels. The Rayleigh distribution models multi-path fading with no line-of-sight (LOS) while Rice

distribution models fading channel in the presence of LOS.

The fading channels that information is transmitted over may change over time, or the band-

width occupied by these channels may be large enough that the frequency response of the channel

varies over that range. We call the former class of channels time-selective fading channels, while

the latter is called frequency-selective or inter-symbol-interference (ISI) channels. Channels can

be both time- and frequency-selective. In this thesis, we consider flat (non-frequency-selective)

1
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fading channels, also known as multiplicative fading, and hence ISI is not present.

There has been great interest in the structure of optimum receivers for detection of digital

signals transmitted over a flat fading in the presence of additive white Gaussian noise (AWGN) for

last decades. To detect transmitted symbols, two types of receivers, coherent and noncoherent, are

conventionally considered in the literature [1], [2]:

Coherent Receiver It attempts to estimate the channel and use this estimate as if it is the true

channel. In other words, the design of coherent receivers is based on the assumption that the

channel estimate is error-free.

Non-Coherent Receiver For this type of receiver no attempt is made to estimate the channel, and

hence, the receiver does not use any channel estimate.

The structure of the mentioned conventional receivers in communication systems has been inves-

tigated in the literature [1], [2]. For coherent reception, when the channel information is precisely

known at the receiver, maximum-likelihood (ML) detection in AWGN channels is achieved by

passing the received signals through a matched filter in the case of binary antipodal signalling or

through a pair of matched filters in the case of binary orthogonal signalling. For non-coherent re-

ception, when it is not possible for the receiver to perform channel estimation, and thus no channel

estimate is available at the receiver, the ML detector in AWGN channels is the envelope detector

or square-law detector. The performance of these detectors has been studied in both non-faded and

fading channels [1]-[6].

In practical wireless systems, the channels cannot be estimated exactly. Several channel estima-

tion techniques such as minimum mean-square error (MMSE) estimation [9]-[10] or pilot-symbol-

assisted modulation (PSAM) [11] are considered in the literature. In the presence of complex

Gaussian fading channels (Rayleigh and Rician fading channels), these channel estimation tech-

niques have been shown to result in complex Gaussian channel estimate and channel estimation

error. In PSAM, pilot symbols are inserted periodically into the data sequence at the transmitter.
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Then, the receiver extract the received signals due to pilot symbols and interpolates them to esti-

mate the channel state. Several interpolation filters have been studied in the literature. In MMSE

estimation, the channel estimate is derived from the received signal due to pilot symbols such that

the mean square of estimation error is minimized.

In general, Gaussian-distributed channel estimation error emerges mainly when an MMSE es-

timator is used for channel estimation in the Bayesian linear model [8]. A Gaussian estimation

error was also assumed in [46], [48] for the case when pilot and data channels are separated in fre-

quency or time such that the magnitude of the correlation coefficient between them is not unity. In

this thesis, channel estimation errors are assumed to be circularly symmetric Gaussian distributed

and independent from the channel estimates. We will see that these assumptions result in channel

estimates which are correlated with the true channels to an extent measured by the correlation co-

efficient ρ. This type of channel estimate is referred to in the literature as noisy channel estimates

or noisy side information as well [89].

In the presence of channel estimation error, coherent receiver may not be optimum anymore.

If the statics of error are available at the receiver, then these statistics can be used to design a new

structure for the receiver to get a better performance than conventional receivers. As explained

in Section 1.1, in this thesis, for Gaussian channel estimation error, we use statical information

of channel estimation error to design new types of receiver for single-user systems with single-

antenna reception in fading channel.

In wireless communication systems, in addition to fading, interference from other users is

another major reason for performance degradation. In urban area, interference is more severe due

the large number of base stations and mobile users. Co-channel interference (CCI) is one of the

major types of interference which is generated in a cellular system due to frequency re-use, i.e.

from the cells that use the same frequencies. Number of receive antennas is usually only two or at

most four, so in a wireless system the number of interferers most probably exceeds the number of

antennas, as assumed in the most parts of this thesis.

In this thesis, we study several performance measures of wireless systems in fading channels in
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the presence of multiple interfering users. Some key measures of performance related to practical

communication system design are as follows:

Average Signal-to-interference-plus noise Ratio (SINR) It is a vital performance measure of a

communication system. This performance measure is usually measured at the output of the

receiver and indicates the overall quality of the system. For wireless communication system

due to the presence of fading, the instantaneous SINR is a random variable. Therefore, a

more suitable metric to assess the system performance is the average SINR which can be

obtained by averaging the SINR over the probability density function (PDF) of fading, or

equivalently over the PDF of SINR.

Outage Probability It is another important measure of performance to calculate the quality of

service provided by wireless systems over fading channels and is defined as the probability

that SINR falls below a certain threshold.

Average Bit Error Probability (BEP) It is one of the most informative indicators about the per-

formance of the system. This measure can be obtained by averaging the conditional (on the

fading) BEP over fading statistics.

Spatial diversity, as provided by multiple antennas, is one of the best-known methods to combat

fading. Multiple antennas at the receiver provide the receiver with replicas of the same information

bearing signals over independently fading channels [1], [26], [27], [28], which is known as receive

diversity. Diversity combining is a very effective method to overcome the problem of fading, in

which the received signals at each antenna are combined and weighted appropriately to improve

the performance of the system. In the uplink (mobile to base station) of wireless communication

systems, multi-antenna receivers can also combat CCI as well as fading by combining the received

signals appropriately [28]. In this thesis, we study two conventional diversity combining methods:

maximal-ratio combining (MRC) and optimum combining (OC).

MRC It is a well-known diversity combining technique to combat the effect of fading [26]. The

maximal ratio combiner applies weights which are proportional to the signal-to-noise ratio
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(SNR) of each branch and then combines the weighted signals. Therefore, the reduction in

fading is obtained by increasing the signal level at each antenna branch based on the level of

SNR at that branch. For fading channels with AWGN, in the absence of interference MRC

realizes an ML receiver [27], [6]. MRC is also optimal from the standpoint of maximizing

the SNR at the output of the combiner in noise-limited systems [26], [6]. When the power of

noise at different antennas are the same, the MRC weight vector is the desired user’s channel

vector. In this case, MRC is also called channel-matched combining [29]. In this thesis,

for the systems with noise it is assumed that the power of noise at different branches are

the same, and hence, the MRC vector is the desired user’s channel vector. For interference-

limited systems, where the power of the interference is much greater than the thermal noise

power so that the effect of the noise can be neglected, we also use the desired user’s channel

vector as the MRC vector.

OC As mentioned above, in cellular wireless systems, interfering users are a major limiting factor.

MRC ignores interference and just combats fading by maximizing the desired signal power.

In other words, MRC treats interference from other users as Gaussian noise. Therefore,

MRC is optimal in systems with no interference. However, a multiple-antenna receiver

can be used to combat interference as well. In the presence of interference, a multi-antenna

receiver can apply OC technique. This combining technique is a well-known method in space

diversity reception that combines and weights the received signals to combat both fading and

interference [61], [62], [6, Ch. 11]. This method maximizes the SINR at the output of the

combiner [61], [62]. It is shown in [30] that a significant increase in the capacity of the

system can be achieved by using OC. The OC vector is actually an MMSE vector, i.e., it

is equal to the inverse of the interference covariance matrix multiplied by the desired user’s

channel. The OC is the ML receiver when the transmitted signals of interfering users as

well as the additive noise are Gaussian-distributed. To implement OC, the receiver needs

knowledge of both the desired user’s channel as well as the interference covariance matrix,

which is a function of the interfering users’ channels. So, OC needs the knowledge of the
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desired user’s channel as well as interfering users’ channels. However, MRC requires only

the desired user’s channel information at the receiver. Therefore, OC is a more complex

diversity combining technique compared with MRC.

The above mentioned combining techniques are based on the assumption that channel estimates

at the receivers are perfect. Therefore, it is crucial to examine the effect of channel estimation error

on these diversity combining techniques. As explained in Section 1.2, in this thesis, we analyze the

performance degradation due to imperfect channel estimates in the presence of multiple interfering

users for multi-antenna reception in the uplink of interference-limited systems. By investigating

the PDF of the output signal-to-interference ratio (SIR), we will derive analytical expressions for

different performance measures such as the average SIR, outage probability and average BEP.

These expressions quantify performance degradation due to channel estimation error.

In this thesis, we present several theoretical results to assess the performance of wireless sys-

tems. These analytical results give insight into the system performance and guide the researchers

and engineers to design their systems and to evaluate the performance of such systems. We use

several mathematical results such as quadratic forms of Gaussian random variables and hyper-

geometric functions to facilitate performance analysis.

The structure of thesis is as follows:

1.1 Single-User Single-Antenna Reception

In Chapter 2, we study single-user systems with single-antenna reception over fading channels in

the presence of Gaussian-distributed channel estimation error. We propose the structure of ML

receivers for several modulation formats. Then, we analyze the performance of derived receivers

over fading channels.

In AMGN channels, the matched filter is the ML receiver front-end when the channel is pre-

cisely estimated at the receiver. However, in the presence of channel error the matched filter may

not be the ML receiver. If the statistical information of the channel estimation error is available at



1.1. SINGLE-USER SINGLE-ANTENNA RECEPTION 7

the receiver, this information can be used to design new types of receivers.

This new ML receiver can result in better performance compared with the matched filter since

the latter is optimal only if the channel estimate is perfect. The receiver that models estimation

error probabilistically can outperform the optimum non-coherent receiver, the square-law detector,

as well, since the square-law detector does not use any channel estimate at all. Fig. 1.1 shows the

central role played by channel state information in receiver design.

In [7], Viterbi studied the case when a phased-locked loop is used to estimate the phase of the

channel resulting in a Tikhonov-distributed phase error. It was shown that the optimum detector

for binary signals over an AWGN channel is a linear combination of the optimum coherent detec-

tor and optimum noncoherent detector. The derived optimum detector is known as the partially

coherent detector in the literature, and its average BEP in AWGN channels was obtained in [7] in

integral forms. An overview of partially coherent communication is presented in [2].

For MMSE channel estimators, the performance of M-ary phase-shift keying (M-PSK) signals

as well as M-ary quadrature amplitude modulated (M-QAM) signals are studied in [9] for Rayleigh

fading channels and in [10] for Rician fading channels. In these two papers, a key assumption is

the orthogonality between the channel estimate and the channel estimation error. Their work has

been extended in [12] to remove the orthogonality condition. The PDFs of the receiver decision

variables for Rayleigh and Rician fading channels were derived. These PDF’s were used to eval-

uate error probabilities of 16-QAM with channel estimation errors. In [13], the average BEP of

M-QAM signals are examined in Rayleigh fading channels with PSAM channel estimation. The

exact average BEP of 16-QAM signals with PSAM has been derived in [14] for Rayleigh fad-

ing channels. The average symbol error probability of arbitrary two-dimensional signalling with

MMSE channel estimators and PSAM are derived in [15] for Rayleigh fading channels and in [16]

for Rician fading channels.

The ML detection of binary antipodal signals with Gaussian channel estimation error is studied

in [17] when the receiver is equipped with multiple antennas. The ML receiver for single-antenna

reception in AWGN channels is a matched filter that is matched to the channel estimate.
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Figure 1.1: Structure of optimum receiver versus channel state information
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Orthogonal modulation, such as orthogonal frequency-shift keying, is another important type

of modulation. In Section 2.1, we derive the structure of the ML receiver for orthogonal binary

signals in the presence of Gaussian-distributed channel estimation error and AWGN for single-

antenna reception. We will see that the ML receiver is a linear combination of the matched filter and

square-law detector, i.e., optimum coherent and noncoherent receivers, respectively. We will derive

an exact theoretical expression for the average BEP of the proposed ML detector in Rayleigh fading

channels. It is known that when the channels are perfectly estimated at the receiver, antipodal

modulation outperforms orthogonal signalling. However, we show that in the presence of channel

estimation error, orthogonal signalling may have a better performance than antipodal modulation

under a certain condition and we express this condition precisely.

We then study two special applications where Gaussian-distributed channel estimation error

arises: first quasi-static Rayleigh fading channels with pilot symbols and the MMSE channel es-

timator, and second, time-varying Rayleigh fading channels modeled with an autoregressive (AR)

process of order one. In both cases, we will show that the channel estimation error is Gaussian,

and hence, the receiver derived for the general case of Gaussian estimation error can be applied.

We analyze the performance of the proposed receiver for these special cases by using the results

derived for the general case of Gaussian estimation error.

In [20]-[21], the time-varying channel is also modeled by an AR process of order one, and it

is shown that the ML receiver for orthogonal signals is a linear combination of the matched filter

and square-law detector. An upper bound for the average BEP of this ML receiver is calculated

in [20]-[21] by using this fact that the average BEP of the mentioned receiver is less than the

minimum of average BEPs of coherent and non-coherent receivers. The main difference between

that work and this thesis is that the results of this thesis, including the structure of the proposed

receiver and the average BEP expressions, are derived for the general case of Gaussian-distributed

channel estimation error and not only for time-varying fading channels. Moreover, we present an

exact closed-form expression of the average BEP of the ML receiver for orthogonal modulation in

time-varying fading channels.
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In Section 2.2, we will derive the structure of the ML receiver for quadrature phase-shift key-

ing (QPSK) signals in the presence of Gaussian channel estimation error and AWGN for single-

antenna reception. We will see that the ML receiver is a matched filter matched to the channel

estimate. We will derive an exact expression for the average BEP of this receiver in Rayleigh

fading channels. Then, the performance of the receiver is analyzed for a special case where Gaus-

sian channel estimation error arises: MMSE channel estimation with pilot symbols in quasi-static

Rayleigh fading channels.

1.2 Multi-User Multiple-Antenna Reception

1.2.1 Maximal Ratio Combining

The performance of MRC in the presence of multiple interferers is analyzed in Chapter 3 for both

cases of perfect and imperfect channel estimates.

Perfect Channel Estimates

In Section 3.1, we will derive the exact average BEP expression of binary phase-shift keying

(BPSK) signals in Rayleigh fading channels for MRC in the presence of multiple interfering users

and AWGN.

The performance of MRC in the presence of multiple interferers is studied in [31]–[45] for

different types of fading channels when the desired user’s channel is estimated perfectly at the

receiver. The summary of those papers is shown in Table 1.1. As explained in this table, in [31]-

[35] and [41]-[42], the PDF of the output SINR and the outage probability are studied for MRC

when the desired user and interfering users experience independent fading channels. In the case of

correlated fading channels, the outage probability of MRC is studied in [36]–[38]. The details of

these references are described in Table 1.2.

The PDF of the output SINR can also be used to find the average BEP for MRC by using

the conventional PDF-based method [39]–[43]. The main idea behind this method is to find the
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References Main Derivations
[31]–[35] and
[41]-[42]

The PDF of the output SINR and the outage probability for several types of
independent fading channels

[36]–[38] Outage probability for several types of correlated fading channels
[39]–[43] Average bit-error probability by using the conventional PDF-based method

Table 1.1: Summary of literature review of MRC with perfect channel estimates and multiple
interferers.

BEP conditioned on channel realizations of both the desired user and interfering users and then

averaging the conditional BEP over the joint distribution of fading channels of all users in order

to obtain the average BEP. However, both finding the BEP conditioned on the fading channels

of all users as well as integrating that conditional BEP over the joint PDF of fading channels of

all users are complicated processes. Therefore, to simplify the procedure of deriving the average

BEP expression, in the PDF-based method it is assumed that the interference-plus-noise term at

the output of the combiner conditioned on fading channels of all users is circularly symmetric

Gaussian distributed. We will see that based on this assumption, the BEP conditioned on the

fading channels of all users can be obtained in a straightforward manner, as a function of just

the output SINR. Therefore, in the PDF-based method deriving the expression for the average BEP

starts with deriving the PDF of the output SINR, and then, the average BEP is derived by averaging

the mentioned conditional BEP, which is a function of just SINR, over the PDF of SINR.

The conventional PDF-based method suffers from two issues: First, finding the PDF of SINR

is a complicated process since SINR is a function of fading channels of the desired user and all

interfering users. The second issue is that the average BEP derived by this method is only exact

when the interference-plus-noise term conditioned on fading channels of all users can be assumed

to be circularly symmetric Gaussian distributed. As we will see, this assumption is only valid

either when the transmitted symbols of interfering users are circularly symmetric Gaussian dis-

tributed or when the number of interfering users is infinite. However, in practice we deal with

cases where the number of interfering users is finite and transmitted symbols are not Gaussian

distributed. Therefore, the average BEP derived by the conventional method can be seen only as

an approximation.
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References Main Derivations
[31] First the authors derive the PDF of the output SINR for MRC in the presence of

arbitrary number of equal-power co-channel interference as well as noise when
users fade independently with Rayleigh statistic. Then, they obtain the outage
probability of MRC for a dual antenna system in the presence of at most three
unequal-power co-channel interferers.

[32] The results of [31] are extended and closed-from expressions are derived for the
outage probability of MRC in the presence of an arbitrary number of interferers
with equal or distinct powers.

[41] The PDF of the output SIR is derived for an interference-limited system with
equal-power interferers for independent Rician/Rayleigh channels, where the
desired user is subject to Rician fading while the interfering users experience
Rayleigh fading. Then, the PDF expression is used to derive an expression for
the average BEP of BPSK signals for Rayleigh fading channels .

[33] The PDF expression in [41] is used to obtain expressions of the outage probabil-
ity.

[34] In the presence of co-channel interferers with arbitrary powers, the outage
probability expressions are derived for an interference-limited system in Ri-
cian/Rayleigh environment as well as Nakagami/Rayleigh environment.

[35] The results of [42] are generalized and the outage probability of MRC is derived
for Nakagami/Nakagami model when co-channel interferers have arbitrary pow-
ers and fading parameters.

[36] In the case of correlated Rayleigh fading channels for both desired user and in-
terfering users, the outage probability of MRC is studied in [36] for equal-power
co-channel interferers.

[37] In the case of correlated Rayleigh fading channels for both desired user and inter-
fering users, the outage probability of MRC is studied in [36] for unequal-power
co-channel interferers.

[38] The outage probability expression of MRC is derived in an interference-limited
system when the desired user’s channel vector has a general fading distribution
with arbitrary spatial correlation and interfering users have equal powers with
i.i.d Rayleigh fading.

[42] The outage probability of MRC is derived in the presence of noise and equal-
power and independent interferers when both the desired user and interfering
users are subject to Nakagami fading (Nakagami/Nakagami model). The conven-
tional PDF-based method has also been used to derive expressions for the average
BEP.

[43] The conventional PDF-based method has been used to derive expressions for the
average BEP for Rician/Rayleigh fading model where the desired user is subject
to Rician fading while the interferers experience Rayleigh fading.

Table 1.2: Detailed literature review of MRC with perfect channel estimates and multiple interfer-
ers.
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In this thesis, for deriving the average BEP we propose a new method which is different from

the PDF-based approach. We use the decision variable at the output of the maximal ratio combiner

conditioned on the fading channel of the desired user only rather than the channels of all users. We

derive an exact expression for the average BEP of MRC when the transmitted signals have BPSK

modulation and the desired signal and interferers fade independently with Rayleigh statistics. We

will see that this approach helps us find an exact expression for the BEP conditioned on channel

realization of the desired user. Then, an exact closed-from expression for the average BEP can be

derived by averaging the conditional BEP.

We will see that the exact expression of the average BEP in the presence of interference can

be obtained from the expression for the average BEP of MRC in single-user systems (with AWGN

and no interference) by replacing the average SNR per channel with the ratio of the desired signal’s

power to the total power of the interfering users plus noise. We will study the difference between

the results of the PDF-based method and exact results and will find that this difference is consid-

erable for a smaller number of interfering users. The results of the proposed exact method can be

easily generalized to M-PSK modulation.

The performance of MRC is studied in [44] by using the moment generating functions of the

decision variables at the output of the combiner. In that paper, a closed-form expression is de-

rived for the average BEP of MRC in the presence of multiple interferers where the channels are

subject to Rician fading and the transmitted signals have BPSK modulation. However, the com-

plexity of the derived expression increases exponentially with the number of users, and hence, that

expression is overwhelmingly complicated in the presence of a large number of interferers. There-

fore, approximate expressions, which are much simpler for performance evaluation, have been

provided. In [45], Zhang and Beaulieu have derived explicit expressions for the outage probability

and average BEP of MRC for BPSK signals when the channel vector of the desired user as well

as the channel vectors of interfering users are modeled by correlated Rayleigh fading. However,

the analysis of that paper is performed when the correlation coefficient between different branches

is neither equal to zero nor one. In other words, [45] has not considered the case of independent
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fading channels, the case that we will study in this thesis.

Imperfect Channel Estimates

In Section 3.2, we analyze the performance of MRC by deriving exact closed-from expressions

of the average SINR and the average BEP for binary differential phase-shift keying (DPSK) and

binary non-coherent frequency-shift keying (NCFSK) signals.

When there are no interfering users in the system, the effect of weighting errors on the perfor-

mance of MRC is studied in [46]–[58]. The details of these references are described in Table 1.3.

In the presence of interfering users, performance analysis of MRC with channel estimation

error is more demanding. In the presence of multiple equal-power interferers, the PDF and the

outage probability of the output SINR are calculated in [59] for MRC in flat Rayleigh fading

channels with Gaussian channel estimation errors and AWGN. The results of [59] are extended in

[60] to the case of unequal-power interferers.

In this thesis, we use the PDF expression in [59] for performance analysis of MRC in an

interference-limited system with equal-power interferers. First, for the case when the AWGN can

be ignored, i.e., an interference-limited system, we simplify the PDF in [59], which was derived

in the presence of AWGN. Then, we use the simplified PDF to derive simplified expression for

the outage probability in interference-limited systems. The simplified PDF is also used to derive

analytical expressions for the average BEP of different modulation formats in interference-limited

systems. We will quantify the performance improvement of MRC as the correlation between the

exact and estimated channels increases and will show that this improvement is more substantial

when there is a larger number of antennas at the receiver.

1.2.2 Optimum Combining

Performance analysis of OC in the presence of channel estimation errors with multiple interferers

is lacking in the literature. In Chapter 4, we analyze the impact of channel estimation errors on
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References Main Derivations
[46] The effect of channel estimation error on the performance of MRC is studied

by Bello and Nelin. They showed that in frequency selective Rayleigh fading
channels, a pilot tone which is separated in frequency from data results in a
Gaussian-distributed channel estimation error. They derived closed-form expres-
sions for the PDF of the output SNR and the average BEP of both coherent and
non-coherent binary orthogonal detections.

[47] Proakis has studied the performance of MRC when channels are estimated by
using pilot tones. He has derived closed form expressions for the average BEP of
MRC for M-PSK signals in Rayleigh fading channels with AWGN.

[48] For Gaussian channel estimation errors, the PDF of the SNR at the output of
maximal ratio combiner is derived as a function of correlation between the actual
channel and its estimate in Rayleigh fading channels.

[49] Tomiuk et al. have used the PDF expression in [48] to obtain the average BEP for
DPSK signals. Their analysis is based on the concept that the average BEP can be
obtained by averaging the conditional BEP for an AWGN channel (conditioned
on the SNR) over the PDF of SNR.

[50] The authors have used the same concept of averaging the conditional symbol
error probability over the distribution of SNR to find the average symbol error
probability of hybrid selection/maximal ratio combining for both differential and
coherent demodulations in the presence of Gaussian channel estimation error.

[51] The authors have shown that in the presence of channel estimation error coherent
demodulation of certain modulation formats, e.g. BPSK, yields conditional error
probabilities that are not functions of the output SNR, and hence, averaging the
conditional probability over the distribution of the SNR at the output of the com-
biner does not result in the exact average probability of error. They have shown
that for coherent demodulations with imperfect channel estimates averaging the
conditional probability over the distribution of the output SNR results in a lower
bound of true average probability of error. They have also derived the exact ex-
pression of the average BEP for BPSK signals on independent and identically
distributed fading channels with Gaussian weighting errors.

[52] Ma et al. have shown that in the presence of weighting errors the PDF expression
in [48] cannot be used to derive exact expressions of the average BEP for coherent
demodulations such as M-PSK.

[53]-[58] The performance of MRC is studied for several types of fading channel and mod-
ulation in the presence of channel estimation errors.

Table 1.3: Literature review of MRC with imperfect channel estimates and no interfering users.
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References Main Derivations
[65] Shah and Haimovich have derived closed-form expressions for the PDF and the

mean of the SIR, as well as the outage probability and the average bit-error prob-
ability for binary phase-shift keying, in terms of hypergeometric functions over a
flat Rayleigh-fading environment.

[41] The PDF and the mean of the output SIR are derived for Rician/Rayleigh fading.
[66] The authors give the expressions for the moments of SIR and the outage proba-

bility for interference-limited systems and Rician/Rayleigh fading environment.
[67] By simplifying the hypergeometric functions in the PDF expression of [41], sim-

plified expressions are found for the outage probability.
[68] The outage probability of optimum combining in the presence of corre-

lated Rayleigh interferers and arbitrarily faded desired signal is studied for
interference-limited systems.

Table 1.4: Literature review of OC with perfect channel estimates and multiple interferers in
interference-limited systems.

the performance of OC with multiple interferers when channel estimation errors are assumed to be

circularly symmetric Gaussian distributed and independent from the channel estimates.

The performance of OC with a single interferer is studied in [61]-[64] for Rayleigh fading

environments. The performance analysis of OC in the presence of multiple interferers is more

demanding and has been investigated extensively when the channel is known perfectly at the re-

ceiver. As described in Table 1.4, the performance of the optimum combiner in interference-limited

systems is studied in [41], [65]-[68] for several types of fading.

OC performance in the presence of thermal noise and multiple interferers has also been studied

when the receiver knows the channel exactly. Monte Carlo simulations [62], upper bounds [69]-

[71], exact expressions [72]-[78], and approximate expressions [79]-[84] have been presented for

several performance measures of OC. As explained in Table 1.5, performance analysis in [78]-[82]

is done by finding the distribution of the output SINR for flat Rayleigh fading channels.

In all the above-mentioned papers, channel information is assumed to be estimated perfectly

at the receiver. The impact of estimation error of the interference covariance matrix on the per-

formance of OC is studied in [87] for sample matrix inversion method and reduced-rank array

processing when the desired user’s channel is perfectly estimated. In [88], the authors have in-

vestigated the effect of imperfect estimation of the desired user’s channel on the BEP of OC for
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References Main Derivations
[78] By using statistical analysis, an exact closed-form expression is derived for the

link reliability, i.e., the probability that the output SINR is greater than a given
threshold.

[79] Approximate expressions for the PDF of the SINR and then for the outage prob-
ability are derived in the presence of multiple equal-power interferers when the
number of interferers is less than the number of antenna elements.

[80] An approximate cumulative distribution function of the output SINR, in the case
of multiple equal-power interferers, is presented.

[81]–[82] The authors have investigated the distribution of the output SINR with an arbi-
trary number of interferers. They have found an approximate PDF expression for
the SINR of a system with more antenna elements than interferers with unequal-
power interferers. When the number of interferers is larger than the number of
antennas, upper and lower bounds on the PDF of SINR are derived for equal-
power interferers.

[85] The authors have derived exact expressions for the PDF of the output SINR and
outage probability with a Rayleigh faded desired signal in the presence of corre-
lated equal-power Rayleigh interferers and noise.

[86] The performance of OC in a Rician/Rayleigh environment in the presence of
interference and noise is investigated.

Table 1.5: Literature review of OC with perfect channel estimates in the presence of multiple
interferers and thermal noise.

binary phase-shift keying signals when perfect knowledge of the interference covariance matrix

is available at the receiver. In this thesis, we study the impact of channel estimation error on the

performance of OC when both the desired user’s channel estimate as well as interfering users’

channel estimates are imperfect.

The distribution of the output SIR is a crucial discovery which makes it possible to obtain some

other important measures of performance such as the average SIR and outage probability. As we

will see, Gaussian distributed channel estimation errors would result in jointly Gaussian true and

estimated channels which is an important outcome that makes it possible to perform statistical

analysis of the output SIR. To facilitate the statistical analysis of the output SIR and derive closed-

form expressions, we assume that our system is interference-limited. Our next assumption is that

the interfering users have equal received signal powers, which is valid for instance when these

users are at the same distance from the receiver or when power control is used.

In Section 4.2, first we use multivariate statistical analysis [90]-[92] to derive the PDF of SIR at
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the output of the optimum combiner over flat Rayleigh fading channels. Then, in Section 4.3, we

will use that PDF expression to obtain analytical expressions for various measures of performance

such as the moments of SIR, the outage probability, and the average BEP for binary DPSK or

binary NCFSK modulations. These expressions are useful tools for studying the performance of the

system instead of using time-consuming Monte Carlo simulations. We will study the performance

improvement of OC as the correlation between the true and estimated channels increases and will

find that this improvement becomes more significant as the number of antennas at the receiver

increases.

The statistical analysis of the output SIR of Section 4.2 is performed when both the desired user

and interfering users are subject to Rayleigh fading. In Section 4.4, we generalize those results and

derive the PDF expression of the output SIR for a Rician/Rayleigh fading environment. In the

Rician/Rayleigh fading model, the desired user is subject to Rician fading while the interferers

experience Rayleigh fading. In other words, it is assumed that there is a LOS between the desired

user and its base station while for interfering users there is no LOS. Using multivariate statistical

analysis, an exact closed-form expression is derived for the PDF of the output SIR. The theoretical

result is verified by Monte Carlo simulations as well. The analysis in Section 4.4 is valid for

the same conditions stated in Section 4.2, i.e. for interference-limited systems with Gaussian

distributed channel estimation errors. We assume that the interferers have equal power and the

number of interferers exceeds or is equal to the number of antennas.

1.2.3 Maximal Ratio Combi ning versus Optimum Combining

Given error-free channel information, the relative performance of MRC and OC in the presence

of multiple interferers has been extensively studied in [62], [41], [67], [6]; not surprisingly, it was

found that OC outperforms MRC for all considered modulation formats and fading distributions.

In Section 4.5, we compare the performance of MRC with OC in the presence of channel

estimation error. For this performance comparison, we use the expressions derived in Sections 3.2

and 4.3. Fig. 1.2 shows the approach we will use for performance comparison. We will discover
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that in the presence of channel estimation errors MRC can outperform OC, especially for small

values of the correlation coefficient between true and estimated channels. Moreover, we will also

observe that as the number of antennas increases there is a larger range of correlation coefficients

over which MRC performs better than OC. These results allow researchers to execute tradeoff

studies among MRC and OC to determine the better choice in the presence of channel estimation

error.
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Figure 1.2: Diversity combining with imperfect channel estimates



Chapter 2

Detection with Imperfect Channel Estimates

This chapter contains two main sections. The analysis of this chapter is for single-antenna transmit-

ters and receivers. In the first section, we present the ML receiver structure for binary orthogonal

signals in the presence of Gaussian-distributed channel estimation error and additive white Gaus-

sian noise. We find that the ML receiver for binary orthogonal signals is a linear combination of a

matched filter and envelope detector, which are ML receivers for ideal coherent reception and non-

coherent reception, respectively. The exact average bit error probability of the proposed receiver

is derived for flat Rayleigh fading channels. We compare the performance of the ML receiver for

orthogonal modulation with the one for antipodal signalling in the presence of channel estimation

error and find the conditions under which orthogonal modulation results in better performance.

The performance of the proposed receiver is analyzed in both quasi-static fading and time-varying

fading channels.

In the second section, we derive the structure of the ML receiver for QPSK signals in the pres-

ence of Gaussian-distributed channel estimation error and additive white Gaussian noise. We find

that the ML receiver is a matched filter which is matched to the channel estimate. In other words,

for Gaussian-distributed channel estimation error whether we use channel estimation statistics or

not, the structure of ML receiver is the same. We derive the exact expression of the average bit

error probability of this receiver in flat Rayleigh fading channels. The performance of the receiver

21
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Figure 2.1: Structure of ML receivers with Gaussian channel estimation error
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is analyzed in quasi-static channels with pilot symbols and an MMSE channel estimator. We also

compare the performance of QPSK signalling with BPSK in the presence of channel estimation

error.

The above-mentioned discussion about the structure of ML receivers in the presence of Gaus-

sian channel estimation error is summarized in Fig. 2.1.

2.1 Maximum-likelihood Detection of Binary Signals

In this section, we derive the structure of the ML receiver for orthogonal binary signals in the

presence of Gaussian-distributed channel estimation error and AWGN for single-antenna reception.

We derive an exact expression for the average BEP of the proposed ML detector in Rayleigh fading

channels.

We then study two special cases where Gaussian-distributed channel estimation error arises:

first quasi-static Rayleigh fading channels with pilot symbols and the MMSE channel estimator,

and second, time-varying Rayleigh fading channels modeled with an AR process of order one.

2.1.1 System Model

We consider transmitting binary signals over flat fading channels. For binary antipodal signalling,

the received baseband signal r can be written as

r = hs + n (2.1)

where s is the transmitted signal which is either s1 =
√

Eb or s2 = −√Eb, and Eb is the energy per

bit. The fading channel is denoted by h, and complex AWGN n is distributed as n ∼ CN(0, 2σ2
n)

where CN(m, 2σ2) denotes a circularly symmetric Gaussian distribution for a complex random

variable with mean m and variance 2σ2.

For binary orthogonal signalling, e.g. orthogonal frequency-shift keying, the baseband received
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vector r is

r = hs + n (2.2)

where the transmitted signal vector s is either s1 =
(√

Eb, 0
)

or s2 =
(
0,
√

Eb

)
, and h denotes the

fading channel. We assume that the same channel coefficient applies to both dimensions, which

is valid for flat fading channels. The vector n = (n1, n2) is the complex AWGN vector, where

independently distributed n1 and n2 are the first and second elements of vector n, respectively, and

n1, n2 ∼ CN(0, 2σ2
n).

The analysis in this chapter is valid for all orthogonal modulations where each symbol has the

same energy Eb. Therefore, the analysis does not include on-off keying (OOK) modulation since

in OOK one symbol has zero energy while the other has 2Eb. In other words, for OOK it is not

possible to have s1 and s2 as described above.

Throughout this section, channel h is assumed to be Rayleigh with variance 2σ2
h, i.e. h ∼

CN(0, 2σ2
h). The received SNR per bit γb for both antipodal and orthogonal modulations is defined

as γb = Eb|h|2
2σ2

n
, and thus, the average SNR per bit γ̄b is equal to

γ̄b = E (γb) =
Eb

2σ2
n

E
(|h|2) =

Ebσ
2
h

σ2
n

(2.3)

where E(.) denotes the statistical expectation.

To detect the transmitted bits, the channel h must be estimated at the receiver. The channel

estimation error is defined as

e = h− ĥ (2.4)

where ĥ is the channel estimate. The channel estimation error e is assumed to be circularly sym-

metric Gaussian with variance 2σ2
e , i.e. e ∼ CN (0, 2σ2

e). The channel estimate ĥ is also circularly
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symmetric Gaussian distributed with variance 2σ2
ĥ
, i.e. ĥ ∼ CN(0, 2σ2

ĥ
). Channel estimation er-

ror e and channel estimate ĥ are assumed to be mutually independent which is valid for MMSE

estimation in which the estimate and the error are orthogonal [8]. Note that since ĥ and e are inde-

pendent, from (2.4) we have σ2
e = σ2

h − σ2
ĥ
, and ĥ and h are jointly circularly symmetric Gaussian

distributed with the correlation coefficient ρ which can be written as

ρ =
E

(
h∗ĥ

)

(√
2σh

) (√
2σĥ

) =
σĥ

σh

=
1

σh

√
σ2

h − σ2
e (2.5)

For ideal coherent reception we have ĥ = h, and thus from (2.4) e = 0 and σ2
e = 0, and from

(2.5) we get ρ = 1. On the other hand, if the channel estimation is so poor that ρ → 0, the reception

will be non-coherent, and from (2.5) σ2
e = σ2

h.

Throughout this section it is assumed that channel estimation error e is independent of the ther-

mal noise during transmission of data symbols, i.e. error e is independent of noise n in antipodal

signalling and of noise n in orthogonal signalling. We will show in Subsection 2.1.5 that this

assumption is valid for both quasi-static and time-varying channels.

2.1.2 Maximum-likelihood Receiver Structure

In this subsection, first we review the ML detection of binary antipodal signals in the presence of

Gaussian channel estimation error, which is described in [17]. Then, we propose the structure of

the ML receiver for binary orthogonal modulation with Gaussian channel estimation error.

Antipodal Signalling

In this part, we review the structure of ML receiver for binary antipodal signals with single-antenna

reception, which is derived by You et al. in [17].

In antipodal signalling, if s1 =
√

Eb is transmitted the received signal r from (2.1) and (2.4) is

r = hs1 + n = ĥs1 + es1 + n =
√

Ebĥ +
√

Ebe + n =
√

Ebĥ + n′ (2.6)
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where n′ is defined as

n′ =
√

Ebe + n (2.7)

Since independent random variables e and n are circularly symmetric Gaussian distributed, n′

in (2.7) is also circularly symmetric Gaussian distributed and we have

n′ ∼ CN
(
0, 2

(
Ebσ

2
e + σ2

n

))
(2.8)

Similarly, if s2 = −√Eb is transmitted, from (2.1) and (2.4) the received signal r can be written

as

r = hs2 + n = ĥs2 + es2 + n = −
√

Ebĥ−
√

Ebe + n = −
√

Ebĥ + n′′ (2.9)

where n′′ is defined as

n′′ = −
√

Ebe + n (2.10)

and since independent random variables e and n are circularly symmetric Gaussian distributed we

get

n′′ ∼ CN
(
0, 2

(
Ebσ

2
e + σ2

n

))
(2.11)

Based on the ML criterion, the decision rule is

pr

(
r|ĥ, s1

) ŝ=s1

≷
ŝ=s2

pr

(
r|ĥ, s2

)
(2.12)

From (2.6), the left-hand side of (2.12) can be written as

pr

(
r|ĥ, s1

)
= pn′

(
r −

√
Ebĥ

)
=

1

2π (Ebσ2
e + σ2

n)
exp


−

∣∣∣r −√Ebĥ
∣∣∣
2

2 (Ebσ2
e + σ2

n)


 (2.13)

in which we have used the fact that, from (2.8), n′ ∼ CN (0, 2 (Ebσ
2
e + σ2

n)).
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Similarly, from (2.9), the right-hand side of (2.12) can be written as

pr

(
r|ĥ, s2

)
= pn′′

(
r +

√
Ebĥ

)
=

1

2π (Ebσ2
e + σ2

n)
exp


−

∣∣∣r +
√

Ebĥ
∣∣∣
2

2 (Ebσ2
e + σ2

n)


 (2.14)

in which we have used the fact that, from (2.11), n′′ ∼ CN (0, 2 (Ebσ
2
e + σ2

n)).

Therefore, from (2.13) and (2.14), the decision rule in (2.12) can be expressed as

∣∣∣r −
√

Ebĥ
∣∣∣
2 ŝ=s1

≶
ŝ=s2

∣∣∣r +
√

Ebĥ
∣∣∣
2

(2.15)

which reduces to

Re
{

ĥ∗r
} ŝ=s1

≷
ŝ=s2

0 (2.16)

where Re {·} indicates the real part of a complex number. The decision rule (2.16) is stated in [17,

eq. (16)].

The receiver in (2.16) is a coherent receiver that treats the estimated channel as the true channel,

i.e. just a matched filter that is matched to the channel estimate. The knowledge of σ2
e is not

needed to implement the receiver in (2.16). However, as we will show in the following, σ2
e is a

vital parameter in designing the ML receiver for orthogonal modulation.

Orthogonal Signalling

In this part, we derive the structure of the ML receiver for binary orthogonal signals.

In orthogonal signalling, if s1 = (
√

Eb, 0) is transmitted the received vector r from (2.2) and

(2.4) can be written as

r = hs1 + n =
(
ĥ + e

)
s1 + n =

(√
Ebĥ +

√
Ebe + n1, n2

)
=

(√
Ebĥ + n′1, n2

)
(2.17)
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where n′1 is defined as

n′1 =
√

Ebe + n1 (2.18)

Since independent random variables e and n1 are circularly symmetric Gaussian distributed,

n′1 in (2.18) is also circularly symmetric Gaussian distributed, i.e. n′1 ∼ CN (0, 2 (Ebσ
2
e + σ2

n)).

On the other hand, if s2 = (0,
√

Eb) is transmitted, from (2.2) and (2.4) the received vector r

is

r = hs2 + n =
(
ĥ + e

)
s2 + n =

(
n1,

√
Ebĥ +

√
Ebe + n2

)
=

(
n1,

√
Ebĥ + n′2

)
(2.19)

where n′2 is defined as

n′2 =
√

Ebe + n2 (2.20)

and n′2 ∼ CN (0, 2 (Ebσ
2
e + σ2

n)) since independent random variables e and n2 are circularly sym-

metric Gaussian distributed.

Based on the ML criterion, the decision rule is

pr1,r2

(
r1, r2|ĥ, s1

) ŝ=s1

≷
ŝ=s2

pr1,r2

(
r1, r2|ĥ, s2

)
(2.21)

where r1 and r2 are the first and second elements of the vector r, respectively, and ŝ denotes the

estimate of the transmitted vector s.

From (2.17), the left-hand side of (2.21) can be written as

pr1,r2

(
r1, r2|ĥ, s1

)
= pn′1,n2

(
r1 −

√
Ebĥ, r2|ĥ

)
= pn′1

(
r1 −

√
Ebĥ

)
pn2 (r2) (2.22)

in which we have used the fact that n′1 in (2.18) and n2 are mutually independent, and both are

independent of ĥ.

Since n′1 ∼ CN (0, 2 (Ebσ
2
e + σ2

n)) and n2 ∼ CN (0, 2σ2
n), equation (2.22) can be expressed
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as

pr1,r2

(
r1, r2|ĥ, s1

)
=

1

(2π)2 σ2
n (Ebσ2

e + σ2
n)

exp


−

∣∣∣r1 −
√

Ebĥ
∣∣∣
2

2 (Ebσ2
e + σ2

n)
− |r2|2

2σ2
n


 (2.23)

Similarly, from (2.19), the right-hand side of (2.21) can be expressed as

pr1,r2

(
r1, r2|ĥ, s2

)
= pn1,n′2

(
r1, r2 −

√
Ebĥ|ĥ

)
= pn1 (r1) pn′2

(
r2 −

√
Ebĥ

)
(2.24)

Now, since n1 ∼ CN (0, 2σ2
n) and n′2 ∼ CN (0, 2 (Ebσ

2
e + σ2

n)), expression (2.24) is the same

as

pr1,r2

(
r1, r2|ĥ, s2

)
=

1

(2π)2 σ2
n (Ebσ2

e + σ2
n)

exp


−|r1|2

2σ2
n

−

∣∣∣r2 −
√

Ebĥ
∣∣∣
2

2 (Ebσ2
e + σ2

n)


 (2.25)

By substituting (2.23) and (2.25) in (2.21), the ML decision rule can be expressed as

∣∣∣r1 −
√

Ebĥ
∣∣∣
2

Ebσ2
e + σ2

n

+
|r2|2
σ2

n

ŝ=s1

≶
ŝ=s2

|r1|2
σ2

n

+

∣∣∣r2 −
√

Ebĥ
∣∣∣
2

Ebσ2
e + σ2

n

(2.26)

which can be simplified to

√
Ebσ

2
e

2σ2
n

|r1|2 + Re
{

ĥ∗r1

} ŝ=s1

≷
ŝ=s2

√
Ebσ

2
e

2σ2
n

|r2|2 + Re
{

ĥ∗r2

}
(2.27)

Therefore, in contrast to the ML receiver for binary antipodal modulation in (2.16), the ML

receiver for binary orthogonal signals in (2.27) is not just a coherent receiver that treats the esti-

mated channel as the true channel. In fact, the ML receiver in (2.27) is a linear combination of the

matched filter receiver and the square-law detector, the ML receivers for coherent and non-coherent

detection approaches, respectively. The combining weights depend on σ2
e .

In the extreme case of purely coherent reception (ĥ = h), we have e = 0 and σ2
e = 0, and thus,
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the receiver in (2.27) simplifies to

Re {h∗r1}
ŝ=s1

≷
ŝ=s2

Re {h∗r2} (2.28)

which is the matched filter receiver, as expected.

In the other limiting case of non-coherent reception (σ2
e = σ2

h), σ2
ĥ

= 0 and ĥ = 0, and (2.27)

reduces to

|r1|2
ŝ=s1

≷
ŝ=s2

|r2|2 (2.29)

which is the square-law detector, as expected.

Note that in order to implement (2.27), σ2
e should be available at the receiver. In Subsection

2.1.5, we investigate the decision rule (2.27) in both quasi-static and time-varying fading channels.

In that subsection, we will derive analytical expressions for σ2
e , and then the ML receiver structure

can be obtained by substituting the derived σ2
e in (2.27).

2.1.3 Average Bit Error Probability Performance

In this subsection, we analyze the performance of the receivers (2.16) and (2.27) in Rayleigh fading

channels for equiprobable transmitted signals. First, we review the derivation of the average BEP

expression of receiver (2.16) for antipodal modulation which is presented in [17] and [51]. Then,

we derive the exact closed-form expression of the average BEP of the ML receiver (2.27) for

orthogonal signalling. The average BEP expressions in this subsection are general and functions

of σ2
e and γ̄b. In Subsection 2.1.5, we will study quasi-static and time-varying channels as two

special cases.

Antipodal Signalling

In this part, we review the derivation of the average BEP expression for the receiver in (2.16),

which was presented in [17] and [51].
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For equiprobable transmitted bits, the BEP of antipodal signalling is equal to the BEP when s1

is transmitted. Therefore, the BEP conditioned on ĥ can be written as

Pb

(
E|ĥ

)
= Pb

(
E|ĥ, s = s1

)
= P

(
ŝ = s2|ĥ, s = s1

)
= P

(
Re

{
ĥ∗r

}
< 0|ĥ, s = s1

)
(2.30)

From (2.6), the output of the matched filter when s1 is transmitted is equal to

ĥ∗r =
√

Eb

∣∣∣ĥ
∣∣∣
2

+ ĥ∗n′ =
√

Eb

∣∣∣ĥ
∣∣∣
2

+ z (2.31)

where z is defined as

z = ĥ∗n′ (2.32)

and from (2.8) is distributed as

z ∼ CN

(
0, 2

∣∣∣ĥ
∣∣∣
2 (

Ebσ
2
e + σ2

n

))
(2.33)

Now, from (2.31) and (2.33), we get

Re
{

ĥ∗r
}
∼ N

(√
Eb

∣∣∣ĥ
∣∣∣
2

,
∣∣∣ĥ

∣∣∣
2 (

Ebσ
2
e + σ2

n

))
(2.34)

where N(m, σ2) denotes a normal distribution for a real random variable with mean m and variance

σ2.

Now, from (2.34), the error probability in (2.30) can be expressed as

Pb(E|ĥ) = Q




√√√√ Eb

∣∣∣ĥ
∣∣∣
2

Ebσ2
e + σ2

n


 = Q

(√
2γε

)
(2.35)
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where Q(x) is the Gaussian Q-function defined as

Q(x) =
1√
2π

∫ ∞

x

exp
(
−t2

2

)
dt (2.36)

and the effective SNR γε is defined as

γε =
Eb

∣∣∣ĥ
∣∣∣
2

2 (Ebσ2
e + σ2

n)
(2.37)

To compute the average BEP, we average the conditional BEP in (2.35) over the PDF of γε.

Since ĥ is circularly symmetric Gaussian distributed, γε in (2.37) is Rayleigh distributed and its

PDF is given by

fγε (γε) =
1

γ̄ε

exp
(
−γε

γ̄ε

)
(2.38)

where

γ̄ε = E (γε) =
Eb (σ2

h − σ2
e)

Ebσ2
e + σ2

n

=
γ̄b (σ2

h − σ2
e)

γ̄bσ2
e + σ2

h

(2.39)

where the average SNR γ̄b is defined in (2.3).

Now, from (2.35) and (2.38), the average BEP can be written as

Pb(E) =

∫ ∞

0

Pb(E|γε)pγε(γε)dγε =

∫ ∞

0

1

γ̄ε

exp
(
−γε

γ̄ε

)
Q

(√
2γε

)
dγε

By using [6, eq. (5.6)], the average BEP of the ML receiver for antipodal binary signals can be

computed as

Pb(E) =
1

2

(
1−

√
γ̄ε

1 + γ̄ε

)
=

1

2

(
1−

√
(σ2

h − σ2
e) γ̄b

σ2
h + σ2

hγ̄b

)
(2.40)

The expression (2.40) is stated in [17, eq. (38)] and [51, eq. (23)].
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In purely coherent reception (σ2
e = 0) , expression (2.40) simplifies to

Pb(E) =
1

2

(
1−

√
γ̄b

1 + γ̄b

)
(2.41)

which is a well-known result [1, eq. (14.3-7)].

As a sanity check, for non-coherent reception (σ2
e = σ2

h), the average BEP expression in (2.40)

reduces to

Pb(E) =
1

2
(2.42)

The result in (2.42) is expected since when there is no channel information available at the

receiver, there is no basis for the decision for antipodal signals. In other words, when σ2
e = σ2

h, we

get σ2
ĥ

= 0 and ĥ = 0, and thus from (2.16) there is no basis for a decision.

Orthogonal Signalling

In this part, we derive the average BEP expression of the proposed receiver in (2.27).

First, we rewrite the decision rule in (2.27) as

|r′1|2
ŝ=s1

≷
ŝ=s2

|r′2|2 (2.43)

where

r′1 =

√
Ebσ

2
e

σ2
n

r1 + ĥ (2.44)

and

r′2 =

√
Ebσ

2
e

σ2
n

r2 + ĥ (2.45)

For binary orthogonal signals modeled in (2.2), the BEP when transmitted signals s1 and s2

are equiprobable is equal to the BEP when s1 is transmitted. So, from (2.43) we have

Pb

(
E|ĥ

)
= Pb

(
E|ĥ, s1

)
= P

(
|r′2| > |r′1| |ĥ, s1

)
(2.46)
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If s1 is transmitted, from (2.17) we get

r1|ĥ, s1 =
√

Ebĥ + n′1 ∼ CN
(√

Ebĥ, 2
(
Ebσ

2
e + σ2

n

))
(2.47)

and

r2|ĥ, s1 = n2 ∼ CN
(
0, 2σ2

n

)
(2.48)

Since n′1 and n2 are independent, random variables r1|ĥ, s1 and r2|ĥ, s1 in (2.47) and (2.48)

are also independent.

Now, from (2.47) and (2.48), if s1 is transmitted random variables r′1 and r′2 in (2.44) and (2.45)

conditioned on ĥ are distributed as

r′1|ĥ, s1 ∼ CN

(
ĥ (Ebσ

2
e + σ2

n)

σ2
n

,
2Ebσ

4
e (Ebσ

2
e + σ2

n)

σ4
n

)
(2.49)

and

r′2|ĥ, s1 ∼ CN

(
ĥ,

2Ebσ
4
e

σ2
n

)
(2.50)

Since r1|ĥ, s1 and r2|ĥ, s1 in (2.47) and (2.48) are independent, from (2.44) and (2.45) ran-

dom variables r′1|ĥ, s1 and r′2|ĥ, s1 are also independent. Therefore, |r′1| |ĥ, s1 and |r′2| |ĥ, s1 are

mutually independent as well. Now, from (2.49) and (2.50), |r′1| |ĥ, s1 and |r′2| |ĥ, s1 are Rician

distributed. The probability that in a pair of independent Rice random variables one is greater

than another is computed in [4, App. A] in terms of Q(x, y), the first-order Marcum’s Q-function,

defined as

Q(x, y) =

∫ ∞

y

t exp
(
−t2 + x2

2

)
I0(xt)dt (2.51)

and I0(.) denotes the zeroth-order modified Bessel function of the first kind.
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So, by using the results in [4, App. A], the conditional BEP in (2.46) is equal to

Pb(E|ĥ) =
ζ2

1 + ζ2
(1−Q (µ

√
γo, λ

√
γo)) +

1

1 + ζ2
Q (λ

√
γo, µ

√
γo) (2.52)

where γo is defined as

γo =
γ̄b

∣∣∣ĥ
∣∣∣
2

γ̄bσ2
e + 2σ2

h

(2.53)

and λ, µ and ζ are defined as

λ =
σ2

h

γ̄bσ2
e

; µ =
γ̄bσ

2
e + σ2

h

γ̄bσ2
e

; ζ =
1

σh

√
γ̄bσ2

e + σ2
h (2.54)

where γ̄b is defined in (2.3).

To derive the average BEP, the conditional BEP in (2.52) should be averaged over the PDF of

γo. Since ĥ is circularly symmetric Gaussian distributed, γo in (2.53) has an exponential distribu-

tion [93, p. 190] with the following PDF

fγo (γo) =
1

γ̄o

exp
(
−γo

γ̄o

)
, γo ≥ 0 (2.55)

where

γ̄o = E (γo) =
2γ̄bσ

2
ĥ

γ̄bσ2
e + 2σ2

h

=
2γ̄b (σ2

h − σ2
e)

γ̄bσ2
e + 2σ2

h

(2.56)

Now, by integrating (2.52) over the PDF in (2.55), the average BEP can be written as

Pb(E) =

∫ ∞

0

Pb (E|γo) fγo(γo)dγo

=
ζ2

1 + ζ2

(
1−

∫ ∞

0

1

γ̄o

exp
(
−γo

γ̄o

)
Q (µ

√
γo, λ

√
γo) dγo

)

+
1

1 + ζ2

∫ ∞

0

1

γ̄o

exp
(
−γo

γ̄o

)
Q (λ

√
γo, µ

√
γo) dγo (2.57)
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The integral terms in (2.57) can be calculated by using the results in [6, eqs. (5.50)-(5.53)], and

(2.57) can be simplified to

Pb(E) =
1

2


1− (1 + ζ2) (µ2 − λ2) γ̄o

2
+ ζ2 − 1

(1 + ζ2)
√(

1 + (λ2 + µ2) γ̄o

2

)2 − λ2µ2γ̄2
o


 (2.58)

By substituting (2.54) and (2.56) in (2.58), the average BEP of the ML receiver for binary

orthogonal signals can be expressed as

Pb(E) =
1

2

(
1−

√
γ̄b (γ̄bσ2

e + 2 (σ2
h − σ2

e))

(γ̄b + 2) (γ̄bσ2
e + 2σ2

h)

)
(2.59)

In the extreme case of σ2
e = 0 (perfectly coherent reception), expression (2.59) simplifies to

Pb(E) =
1

2

(
1−

√
γ̄b

2 + γ̄b

)
(2.60)

which is identical to [1, eq. (14.3-8)], the average BEP of the coherent receiver, as expected.

For the other limiting case of σ2
e = σ2

h (noncoherent reception), (2.59) reduces to

Pb(E) =
1

2

(
1− γ̄b

2 + γ̄b

)
=

1

2 + γ̄b

(2.61)

which is equal to [1, eq. (14.3-12)], the average BEP for noncoherent reception.

2.1.4 Performance Comparison

In this subsection, we compare the performance of orthogonal signalling with antipodal modulation

in the presence of Gaussian channel estimation error. By comparing (2.59) with (2.40), orthogonal

signalling has smaller average BEP than antipodal signalling if

1

2

(
1−

√
γ̄b (γ̄bσ2

e + 2 (σ2
h − σ2

e))

(γ̄b + 2) (γ̄bσ2
e + 2σ2

h)

)
<

1

2

(
1−

√
(σ2

h − σ2
e) γ̄b

σ2
h (1 + γ̄b)

)
(2.62)
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which can be simplified to

σ2
e >

σ2
h

1 + 0.5γ̄b

, (2.63)

otherwise, antipodal modulation has smaller average BEP.

It is evident from (2.63) that for σ2
e = 0 (coherent reception) antipodal modulation has a better

performance than orthogonal signalling while for σ2
e = σ2

h (non-coherent reception) orthogonal

signals result in a smaller average BEP, as expected. In fact, (2.63) gives the threshold of σ2
e

beyond which orthogonal signalling leads to a better performance.

2.1.5 Gaussian Channel Estimation Error Scenarios

In Subsections 2.1.2 and 2.1.3, we studied the structure and performance of the ML receivers for a

general case when the variance of Gaussian-distributed error is given by 2σ2
e . This variance is used

to express the receiver structure in (2.27) and average BEP expressions in (2.40) and (2.59). In this

subsection, we study the structure and performance of ML receivers for two special cases: quasi-

static and time-varying fading channels. First, we show that in both cases the estimation error

is Gaussian-distributed, and then, we find the variance of error analytically. Subsequently, the

structure of the ML receiver for orthogonal signalling as well as the average BEP for antipodal and

orthogonal signals will be obtained by substituting the derived variance of error into the expressions

(2.27), (2.40) and (2.59), respectively. The summary of the mentioned applications with Gaussian

channel estimation error is shown in Fig. 2.1.

Quasi-Static Fading Channel

In a quasi-static fading channel, the channel remains constant during a whole frame of symbols but

varies independently from frame to frame. In order to estimate this type of channel, predetermined

symbols (pilot symbols) are transmitted over the channel. Note that in quasi-static fading channels

the channel during transmission of pilot symbols in a frame is the same as the channel during
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Figure 2.2: Applications with Gaussian channel estimation error
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transmission of data symbols in that frame. The received signals during this training period are

used to estimate the channel, and the estimate is used in the rest of the frame in which data symbols

are transmitted. We use an MMSE channel estimator in this subsection. The number of pilot

symbols and data symbols in each frame are denoted by K and M , respectively.

We study the performance of the ML receivers in (2.16) and (2.27) when multiple pilot sym-

bols are transmitted during the training period. For antipodal signalling, we assume that the pilot

symbols are
√

βs1 =
√

βEb where the scalar β is the ratio of the power of the pilot symbol to the

power of data symbol. The pilot symbols are assumed to be transmitted over K symbol intervals,

and hence, the K × 1 observed vector during transmission of K pilot symbols can be expressed as

x =
√

βEbh1K + η (2.64)

where the channel h is fixed during the whole frame, 1K denotes a K × 1 vector of ones, and

the vector η is the AWGN during transmission of pilot symbols. The vector η is assumed to be

independent from channel h and also independent from n in (2.1), the noise during transmission

of data symbols. We assume that η ∼ CNK (0, 2σ2
nIK) where CNp(θ,Φ) denotes a complex

Gaussian distribution for a p-dimensional complex random vector with mean θ and covariance

matrix Φ, and IK is the K ×K identity matrix.

Note that the model (2.64) can also be used for orthogonal signalling when pilot symbols are
√

βs1 =
(√

βEb, 0
)

and the observed vector x consists of first elements of the received signal

vectors.

In the following, we will derive the MMSE channel estimate as a function of the observed

vector x in (2.64) and then calculate the variance of the channel estimation error. We will show

that the channel estimate ĥ and estimation error e satisfy the conditions mentioned for the model

in (2.4), i.e. ĥ and e are circularly symmetric Gaussian distributed and mutually independent.

The observed vector in (2.64) is of the form of the Bayesian linear model described in chapter
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10 of [8]. Therefore, by using theorems 10.3 and 11.1 of [8], the MMSE channel estimate is

ĥ = E (h|x) = ChxC−1
xxx (2.65)

where matrices Chx and Cxx are defined as

Chx = E
(
hxH

)
; Cxx = E

(
xxH

)
(2.66)

By substituting (2.64) in (2.66), we get

Chx = 2
√

βEbσ
2
h1

H
K (2.67)

and

Cxx = 2βEbσ
2
h1K×K + 2σ2

nIK = 2βEbσ
2
h

(
1K×K +

1

βγ̄b

IK

)
(2.68)

where 1K×K denotes a K ×K matrix of ones.

By applying the matrix inversion Lemma [19], the inverse of the matrix Cxx in (2.68) can be

written as

C−1
xx =

γ̄b

2Ebσ2
h

(
IK − βγ̄b

1 + Kβγ̄b

1K×K

)
(2.69)

Now, by substituting (2.67) and (2.69) in (2.65) we get

ĥ =

√
βγ̄b√
Eb

1H
K

(
IK − βγ̄b

1 + Kβγ̄b

1K×K

)
x =

√
βγ̄b√

Eb (1 + Kβγ̄b)
1H

Kx (2.70)

Expression (2.70) shows how the channel estimate ĥ should be computed at the receiver as a

function of the observed vector x in (2.64).

To facilitate calculating the variance of channel estimation error and to show that the derived

channel estimate and the channel estimation error are independent and Gaussian distributed, we
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rewrite the channel estimate ĥ as a function of h and η by substituting (2.64) in (2.70) to obtain

ĥ =

√
βγ̄b√

Eb (1 + Kβγ̄b)
1H

K

(√
βEbh1K + η

)
=

Kβγ̄b

1 + Kβγ̄b

h +

√
βγ̄b√

Eb (1 + Kβγ̄b)
1H

Kη (2.71)

From (2.71), the channel estimation error is equal to

e = h− ĥ =
1

1 + Kβγ̄b

h−
√

βγ̄b√
Eb (1 + Kβγ̄b)

1H
Kη (2.72)

Equation (2.72) shows that e is caused by η (the noise during transmission of pilot symbols),

and hence, e is independent of the AWGN during transmission of data signals. Note that ĥ and

e in (2.71) and (2.72) are circularly symmetric Gaussian distributed since h and the elements of

vector η are circularly symmetric Gaussian distributed and mutually independent. Also note that ĥ

and e are jointly circularly symmetric Gaussian distributed since from (2.71) and (2.72) any linear

combination of ĥ and e is also circularly symmetric Gaussian distributed. Now, it can be seen from

(2.71) and (2.72) that E
(
ĥ∗e

)
= 0, i.e. random variables ĥ and e are uncorrelated, and hence

independent. Therefore, ĥ and e satisfy the conditions mentioned for the model in (2.4).

Now, from (2.72), σ2
e is equal to

σ2
e =

1

2
E

(|e|2) =
1

2

(
2σ2

h

(1 + Kβγ̄b)
2 +

2Kβγ̄2
b σ

2
n

Eb (1 + Kβγ̄b)
2

)
=

σ2
h

1 + Kβγ̄b

(2.73)

From (2.73), the variance of channel estimation error decreases as K or β or γ̄b increases, as

expected.

Now, from (2.16), for antipodal signals the ML receiver for s[m], the mth data symbol, is

Re
{

ĥ∗r[m]
} ŝ[m]=s1

≷
ŝ[m]=s2

0 for m = 1, . . . , M (2.74)

where r[m] is the received signal when s[m] is transmitted, ŝ[m] is the mth estimated data symbol

and ĥ is given by (2.70).



2.1. MAXIMUM-LIKELIHOOD DETECTION OF BINARY SIGNALS 42

By substituting (2.73) in (2.40), the average BEP of the ML receiver (2.74) during the whole

frame of M data symbols can be written as

Pb(E) =
1

2

(
1−

√
Kβγ̄b√

1 + (Kβ + 1)γ̄b + Kβγ̄2
b

)
(2.75)

For K = 0, the average BEP in (2.75) is 0.5, i.e. the BEP expression in (2.42) for non-coherent

reception, as expected. For one-symbol observation (K = 1), when β = 1 the expression (2.75)

simplifies to

Pb(E) =
1

2

(
1− γ̄b

1 + γ̄b

)
=

1

2 (1 + γ̄b)
(2.76)

which is equal to the average BEP of binary DPSK [1, eq. (14.3-10)]. In other words, with only

one pilot symbol the BEP of DPSK can be achieved. Therefore, for K > 1 a better performance

than DPSK modulation is expected, which shows how efficient the MMSE estimator is. Note that

as K → ∞, the expression (2.75) reduces to the expression in (2.41), the average BEP of purely

coherent reception for antipodal signalling.

For binary orthogonal signals, by substituting (2.73) in (2.27), the ML receiver for the mth data

symbol, s[m], has the following structure for m = 1, . . . , M

γ̄b

2
√

Eb (1 + Kβγ̄b)
|r1[m]|2 + Re

{
ĥ∗r1[m]

} ŝ[m]=s1

≷
ŝ[m]=s2

γ̄b

2
√

Eb (1 + Kβγ̄b)
|r2|2 [m] + Re

{
ĥ∗r2[m]

}

(2.77)

where r1[m] and r2[m] are the first and second elements of the received vector, respectively, when

s[m] is transmitted, ŝ[m] is the estimate of s[m], and ĥ is given by (2.70).

By substituting (2.73) in (2.59), the average BEP of the ML receiver in (2.77) over the whole

frame of M data symbols can be written as

Pb(E) =
1

2

(
1−

√
2Kβ + 1γ̄b√

4 + 4(Kβ + 1)γ̄b + (2Kβ + 1) γ̄2
b

)
(2.78)
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For K = 0, expression (2.78) reduces to (2.61), the average BEP for non-coherent reception.

On the other hand, as K → ∞, (2.78) converges to the expression (2.60), the average BEP for

purely coherent reception, as expected.

To compare antipodal modulation with orthogonal modulation, by substituting (2.73) in (2.63)

we find that orthogonal signalling has a better performance than antipodal if

σ2
h

1 + Kβγ̄b

>
σ2

h

1 + 0.5γ̄b

(2.79)

which can be simplified to

Kβ < 0.5 (2.80)

Note that the condition in (2.80) is unlikely to be met in practice since K ≥ 1, and usually β is

at least equal to one in practical applications.

The result in (2.80) can also be obtained by comparing (2.75) and (2.78).

Time-Varying Fading Channels

Now, consider time-varying fading channels where the channel does not remain constant over a

whole frame. It is assumed that each frame consists of a training sequence and M data symbols

and the channel estimate at the end of each training period is perfect. The results of this subsection

can be easily generalized to the case when the channel estimate at the end of a training sequence

is subject to Gaussian error. The channel estimate obtained in the training period prior to data

transmission is then used to obtain estimates of channels during transmission of data symbols. As

we will see, channel estimation error here is caused by time variations of the channel, in contrast

to quasi-static fading channels.

A well-known model to represent a time-varying process is the autoregressive (AR) model

[19]. In an AR model of order P , the current realization of the channel can be obtained from P

previous channel realizations and a sample of a white random process. AR models have been used

in the literature to simulate time-varying fading channels [20]-[23]. In this subsection, we model
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time variation of the fading channel with autoregressive process of order one for simplicity. The

results of this subsection can be extended to higher orders of the AR model as well.

In [20]-[21], an AR model of order one has also been used to model the time-varying channel.

In those papers, it is shown that for orthogonal signals the ML receiver is a linear combination of

the matched filter and square-law detector, but only an upper bound for the average BEP of this

receiver is derived. In this subsection, we verify the optimality of the mentioned receiver, and in

addition obtain an exact closed-form expression for its average BEP by using the results for the

general case of Gaussian channel estimation error.

In discrete time, the channel coefficient at the end of the training sequence is denoted by h[0],

and channels for data symbols in the next M intervals are denoted by h[m] for m = 1, . . . ,M

where M is again the number of data symbols in a frame. In Rayleigh fading channels, h[m] ∼
CN(0, 2σ2

h) for m = 0, . . . ,M . By modeling the time-varying fading channel with an AR process

of order one, we get

h[m] = αh[m− 1] + w[m] for m = 1, . . . , M (2.81)

where w[m] is a white Gaussian random process with w[m] ∼ CN (0, 2σ2
h (1− α2)), and w[m]

is independent of h[0]. The real scalar parameter α determines the channel variation rate and

0 ≤ α ≤ 1. As α decreases channel variation rate increases, i.e. when α = 0, the random process

h[m] is white, while α = 1 corresponds to quasi-static channels. The value of α, in practice, is

very close to one and can be determined by the Doppler spread and transmission bandwidth [24].

We assume that α is known at the receiver. The model in (2.81) is also known as the first-order

Gauss-Markov model in the literature [24].

From (2.81), h[m] can be written in terms of h[0] as

h[m] = αmh[0] + w′[m] for m = 1, . . . , M (2.82)
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where

w′[m] = w[m] + αw[m− 1] + α2w[m− 2] + . . . + αm−1w[1] for m = 1, . . . , M (2.83)

Since w[m] is a white random process with w[m] ∼ CN (0, 2σ2
h (1− α2)), w′[m] in (2.83) is

distributed as w′[m] ∼ CN (0, 2σ2
h (1− α2m)). Note that since random process w[m] in (2.81) is

assumed to be independent of h[0], random process w′[m] in (2.83) is also independent of h[0]

The channel h[0], i.e the channel at the end of the training period prior to data transmission, is

assumed to be estimated perfectly at the receiver. Now, from (2.82), based on the MMSE criterion

ĥ[m], the estimate of h[m], can be written as

ĥ[m] = E (h[m]|h[0]) = αmh[0] for m = 1, . . . , M (2.84)

in which we have used the assumption that w′[m] in (2.82) is independent of h[0]. Equation (2.84)

shows how the receiver should estimate the channel for the mth data symbol based on h[0].

Now, from (2.84) and (2.82), the channel estimation error is equal to

e[m] = h[m]− ĥ[m] = w′[m] for m = 1, . . . ,M (2.85)

From (2.84) and (2.85), ĥ[m] and e[m] are circularly symmetric Gaussian distributed and mu-

tually independent, and hence, the conditions mentioned for the model in (2.4) are satisfied. Now,

from (2.85) we get

σ2
e [m] =

1

2
E

(|e[m]|2) = σ2
h

(
1− α2m

)
for m = 1, . . . , M (2.86)

Equation (2.86) indicates that the estimation error is caused by time variations of the channel

as reflected in α, and hence, e is independent from the noise during transmission of data symbols.

As channel variation vanishes (α → 1), the estimation error converges to zero. Note that as time
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index m increases, the variance of channel estimation error increases. This is expected since the

correlation between h[m] and h[0] decreases as m increases.

For antipodal signalling, from (2.16), the ML receiver for the mth data symbol, s[m], is

Re
{

ĥ∗[m]r[m]
} ŝ[m]=s1

≷
ŝ[m]=s2

0 for m = 1, . . . , M (2.87)

where r[m] is the received signal when s[m] is transmitted, ŝ[m] is the estimate of s[m], and ĥ[m]

is given by (2.84). By substituting (2.86) in (2.40), the average BEP of the ML receiver in (2.87)

for the mth data symbol is equal to

Pb[m] =
1

2

(
1− αm

√
γ̄b

1 + γ̄b

)
for m = 1, . . . , M (2.88)

Now, from (2.88), the average BEP during the whole frame of data for antipodal signals is

Pb(E) =
1

M

M∑
m=1

Pb[m] =
1

2

(
1− α− αM+1

M (1− α)

√
γ̄b

1 + γ̄b

)
(2.89)

which is equal to the result in [20, eq. 10]. Note that as γ̄b → ∞, the expression (2.89) converges

to the following error floor

lim
γ̄b→∞

Pb(E) =
1

2

(
1− α− αM+1

M (1− α)

)
(2.90)

For orthogonal signals, by substituting (2.86) in (2.27), the structure of the ML receiver for the

mth data symbol, s[m], for m = 1, . . . , M can be written as

γ̄b (1− α2m)

2
√

Eb

|r1[m]|2 + Re
{

ĥ∗[m]r1[m]
} ŝ[m]=s1

≷
ŝ[m]=s2

γ̄b (1− α2n)

2
√

Eb

|r2[m]|2 + Re
{

ĥ∗[m]r2[m]
}

(2.91)

where r1[m] and r2[m] are the first and second elements of the received vector, respectively, when

s[m] is transmitted, ŝ[m] is the estimate of s[m], and ĥ[m] is given by (2.84). Equation (2.91) is
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identical to the receiver in [20, eq. 15].

In [20]-[21], only an upper bound for the average BEP of the receiver (2.91) was obtained. The

derivation of the bound is based on that the receiver (2.91) performs better than the best of coherent

and non-coherent receives for any α and m. As the quality of the channel estimate degrades with

m, non-coherent receiver will outperform coherent receiver after m reaches a threshold, Mt. For

m less than Mt, the BEP of coherent receiver is used while for m greater than Mt BEP of non-

coherent receiver is used. Then those BEPs are averaged over m.

However, in this subsection, we derive the exact average BEP of (2.91). By substituting (2.86)

in (2.59), the exact average BEP of the receiver (2.91) for the mth data symbol can be written as

Pb[m] =
1

2

(
1−

√
γ̄b (γ̄b (1− α2m) + 2α2m)

(γ̄b + 2) (γ̄b (1− α2m) + 2)

)
for m = 1, . . . , M (2.92)

Now, from (2.92), the average BEP of orthogonal signals over a whole frame of data is equal

to

Pb(E) =
1

M

M∑
m=1

Pb[m] =
1

2

(
1− 1

M

√
γ̄b

γ̄b + 2

M∑
m=1

√
γ̄b (1− α2m) + 2α2m

γ̄b (1− α2m) + 2

)
(2.93)

Note that in contrast to the average BEP of antipodal signals in (2.89), there is no error floor

for the average BEP of orthogonal signals in (2.93). Therefore, it is expected that for a large

enough γ̄b, orthogonal modulation outperforms antipodal signalling in terms of the average BEP.

This statement can also be verified by the following explanation.

By substituting (2.86) in (2.63), for the mth data symbol orthogonal modulation outperforms

antipodal signalling if

1− α2m >
1

1 + 0.5γ̄b

, (2.94)

which can be written as

γ̄b >
2α2m

1− α2m
(2.95)
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From (2.95), for the mth data symbol orthogonal signalling performs better than antipodal

modulation if the average SNR is greater than a threshold. Therefore, we expect that for orthogonal

modulation the average BEP over time would be smaller than antipodal signalling if γ̄b is larger

than a threshold. The numerical results in the next subsection also confirm this remark.

2.1.6 Numerical Results

In this subsection, we study the performance of the ML receivers presented in the previous subsec-

tions for flat Rayleigh fading channels.

First, the ML receivers are examined in quasi-static fading channels when an MMSE channel

estimator is applied at the receiver with pilot symbols, as explained in Subsection 2.1.5. Figs. 2.3

and 2.4 show the average BEP of the receivers in (2.16) and (2.77) versus the average SNR γ̄b

for binary antipodal and orthogonal signals, respectively, by both theory (expressions (2.75) and

(2.78)) and simulation. The curves are plotted for different numbers of pilot symbols K when β,

the ratio of the power of the pilot symbol to the power of data symbol, is equal to one. The Monte

Carlo simulations are performed until 104 samples of errors are observed for each data point. It is

evident that the analytical results match precisely the Monte Carlo simulations. The average BEP

of coherent receiver for antipodal signals in (2.41) as well as the average BEP of non-coherent and

coherent receivers for orthogonal signals in (2.60) and (2.61) have also been added for comparison

in Figs. 2.3 and 2.4, respectively. It is clear that the performance of the receivers improve as the

number of pilot symbols K increases, as expected.

The average BEP of antipodal and orthogonal modulations in quasi-static fading channels are

compared in Fig. 2.5 for different values of Kβ. As can be seen, for Kβ < 0.5 orthogonal sig-

nalling has a better performance while for Kβ > 0.5 antipodal modulation outperforms orthogonal

signalling. For Kβ = 0.5, both modulations have a same average BEP. These results are expected

from (2.80).

Now, we present numerical results for the performance of the receivers (2.16) and (2.91) in

time-varying fading channels modeled by (2.81). The average BEP of ML receivers for antipodal
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Figure 2.3: Average BEP versus the average SNR for binary antipodal signals in quasi-static fading
channels for different numbers of K when β = 1.
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Figure 2.4: Average BEP versus the average SNR for binary orthogonal signals in quasi-static
fading channels for different numbers of K when β = 1.
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Figure 2.5: Comparison of the average BEP of antipodal signals with orthogonal signals in quasi-
static fading channels for different values of Kβ.

and orthogonal signals are plotted versus γ̄b in Figs. 2.6 and 2.7, respectively, by both analytical

expressions in (2.89) and (2.93) and simulation results. The results are shown for different values

of α when the number of data symbols in a frame is M = 50. The Monte Carlo simulations are

performed until 105 samples of errors are observed for each data point. As can be seen, analytical

results coincide exactly with Monte Carlo simulations. We observe that the performance of the

receivers improve as the channel variation rate decreases, i.e. α increases. It is evident from Fig.

2.6 the ML receiver for antipodal modulation results in an error floor as γ̄b → ∞. The error floor

from Fig 2.6 for α = 0.997 is 3.64 × 10−2, for α = 0.999 is 1.25 × 10−2, and for α = 0.9999 is

1.27 × 10−3. These results can also be obtained by equation (2.90). We see that the error floor is

very sensitive to α. Our analysis highlights the importance of applying the appropriate value of α

when predicting the performance of a communication system in a fading channel, as even small

model mismatches can lead to substantial differences in results.

The performance of the ML receivers in time-varying fading channels is compared in Fig.
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Figure 2.6: Average BEP versus the average SNR for binary antipodal signals in time-varying
fading channels for different values of α when M = 50.
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Figure 2.7: Average BEP versus the average SNR for binary orthogonal signals in time-varying
fading channels for different values of α when M = 50.
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Figure 2.8: Comparison of the average BEP of antipodal signals with orthogonal signals in time-
varying fading channels for different values of α when M = 50.

2.8 for different values for α when M = 50. It is evident that the ML receiver for orthogonal

signalling outperforms the antipodal one for α = 0.9999 when γ̄b > 25.65 dB, for α = 0.999

when γ̄b > 15.55 dB, and for α = 0.99 when γ̄b > 4.62 dB. Therefore, as channel variation rate

increases, i.e. α decreases, there is a larger range of γ̄b where orthogonal signaling results in a

lower average BEP compared with antipodal modulation. This observation can also be justified by

equation (2.95) derived in the last subsection.

2.2 Maximum-likelihood Detection of QPSK Signals

Up to this point in this chapter, we have only considered binary modulation formats. In this section,

we extend the analysis to include QPSK signals. We derive the structure of ML receiver for QPSK

signals in the presence of Gaussian channel estimation error and AWGN for single-antenna recep-

tion. We derive an exact closed-form theoretical expression for the average BEP of this receiver

in Rayleigh fading channels. Then, the performance of the receiver is analyzed for a special case
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where Gaussian-distributed channel estimation error arises, which is an MMSE channel estimator

with pilot symbols, as in Subsection 2.1.5.

The system model of this section is similar to Section 2.1. For QPSK signalling, the transmitted

baseband symbol s is chosen from the set of {s1, s2, s3, s4} where s1 =
√

Eb + j
√

Eb, s2 =

−√Eb + j
√

Eb, s3 = −√Eb − j
√

Eb, s4 =
√

Eb − j
√

Eb, and Eb is the energy per bit again.

2.2.1 Maximum-likelihood Receiver Structure

From (2.4), the received signal r in (2.1) can be expressed as

r =





√
Ebĥ(1 + j) + n(1) if s = s1

√
Ebĥ(−1 + j) + n(2) if s = s2

√
Ebĥ(−1− j) + n(3) if s = s3

√
Ebĥ(1− j) + n(4) if s = s4

(2.96)

where

n(i) =





√
Ebe(1 + j) + n if i = 1

√
Ebe(−1 + j) + n if i = 2

√
Ebe(−1− j) + n if i = 3

√
Ebe(1− j) + n if i = 4

(2.97)

Since e and n are circularly symmetric Gaussian distributed and mutually independent, n(i)’s

in (2.97) are also circularly symmetric Gaussian distributed, and we get

n(i) ∼ CN
(
0, 2

(
2Ebσ

2
e + σ2

n

))
for i = 1, 2, 3, 4 (2.98)

Based on the ML criterion, ŝ, the estimate of the transmitted symbol s, is

ŝ = si if i = arg
{

max
i

pr

(
r|ĥ, si

)}
(2.99)
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where pr

(
r|ĥ, si

)
is the conditional probability of the received signal r given ĥ when si is trans-

mitted. These conditional probabilities from (2.96) and (2.98) are

pr

(
r|ĥ, si

)
=





A exp

(
−|r−

√
Ebĥ(1+j)|2

2(2Ebσ2
e+σ2

n)

)
if i = 1

A exp

(
−|r−

√
Ebĥ(−1+j)|2

2(2Ebσ2
e+σ2

n)

)
if i = 2

A exp

(
−|r−

√
Ebĥ(−1−j)|2

2(2Ebσ2
e+σ2

n)

)
if i = 3

A exp

(
−|r−

√
Ebĥ(1−j)|2

2(2Ebσ2
e+σ2

n)

)
if i = 4

(2.100)

where A is a constant equal to A = (2π (2Ebσ
2
e + σ2

n))
−1.

Now, from (2.99) and (2.100), the receiver estimates the transmitted symbol as

ŝ =





s1 if Re
{

ĥ∗r
}

> 0 and Im
{

ĥ∗r
}

> 0

s2 if Re
{

ĥ∗r
}

< 0 and Im
{

ĥ∗r
}

> 0

s3 if Re
{

ĥ∗r
}

< 0 and Im
{

ĥ∗r
}

< 0

s4 if Re
{

ĥ∗r
}

> 0 and Im
{

ĥ∗r
}

< 0

(2.101)

where Re{.} and Im{.} denote the real part and the imaginary part of a complex number, respec-

tively.

Therefore, the ML receiver for QPSK modulation in (2.101) like the receiver for BPSK signals

in (2.16) is a matched filter that is matched to the channel estimate. However, the receiver (2.16)

needs only to calculate Re
{

ĥ∗r
}

while the receiver (2.101) should compute both Re
{

ĥ∗r
}

and

Im
{

ĥ∗r
}

.

2.2.2 Average Bit Error Probability Performance

In this subsection, we analyze the performance of the receiver (2.101) in Rayleigh fading channels

for equiprobable transmitted signals. We derive the exact closed-form expression of the average
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BEP of the receiver (2.101). The derived average BEP expression in this subsection is general and

is a function of σ2
e and γ̄b. In Subsection 2.2.3, we will study an MMSE estimator with pilot signals

as a special case.

We consider QPSK signals when Gray code bit mapping [1], [6] is applied. In this mapping,

nearest neighboring symbols correspond to bit groups that differ by only one bit. Therefore, for

QPSK signals if we denote two consecutive bits by a1 and a2, the transmitter maps these two bits

to the following symbols which be will be transmitted over the channel

s =





s1 if a1 = 0 and a2 = 0

s2 if a1 = 0 and a2 = 1

s3 if a1 = 1 and a2 = 1

s4 if a1 = 1 and a2 = 0

(2.102)

For QPSK signals the BEP when transmitted symbols are equiprobable is equal to the BEP

when s1 is transmitted. Note that when s = s1, from (2.102) if ŝ = s2 or ŝ = s4 the bit estimates

are incorrect with a probability of 1
2
, while if ŝ = s3, the bit error probability is 1. Therefore, the

BEP conditioned on ĥ can be written as

Pb

(
E|ĥ

)
= Pb

(
E|ĥ, s = s1

)

=
1

2
P

(
ŝ = s2|ĥ, s = s1

)
+ P

(
ŝ = s3|ĥ, s = s1

)
+

1

2
P

(
ŝ = s4|ĥ, s = s1

)

(2.103)

From (2.96), the output of the matched filter when s1 is transmitted is equal to

ĥ∗r =
√

Eb

∣∣∣ĥ
∣∣∣
2

(1 + j) + ĥ∗n(1) =
√

Eb

∣∣∣ĥ
∣∣∣
2

(1 + j) + z (2.104)

where z is defined as

z = ĥ∗n(1) (2.105)
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and from (2.98) is distributed as

z ∼ CN

(
0, 2

∣∣∣ĥ
∣∣∣
2 (

2Ebσ
2
e + σ2

n

))
(2.106)

Now, from (2.104) and (2.106), we get

Re
{

ĥ∗r
}
∼ N

(√
Eb

∣∣∣ĥ
∣∣∣
2

,
∣∣∣ĥ

∣∣∣
2 (

2Ebσ
2
e + σ2

n

))
(2.107)

and

Im
{

ĥ∗r
}
∼ N

(√
Eb

∣∣∣ĥ
∣∣∣
2

,
∣∣∣ĥ

∣∣∣
2 (

2Ebσ
2
e + σ2

n

))
(2.108)

where N(m, σ2) denotes a normal distribution for a real random variable with mean m and variance

σ2. Note that the random variables Re
{

ĥ∗r
}

and Im
{

ĥ∗r
}

in (2.107) and (2.108) are independent

since z in (2.104) is circularly symmetric Gaussian distributed.

Now, from (2.101), (2.107) and (2.108) we get

P
(
ŝ = s2|ĥ, s = s1

)
= P

(
ŝ = s4|ĥ, s = s1

)
= Q

(√
2γε

)(
1−Q

(√
2γε

))
(2.109)

and

P
(
ŝ = s3|ĥ, s = s1

)
= Q2

(√
2γε

)
(2.110)

where Q(x) is defined in (2.36) and γε is defined as

γε =
Eb

∣∣∣ĥ
∣∣∣
2

2 (2Ebσ2
e + σ2

n)
(2.111)
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By substituting (2.109) and (2.110) in (2.103), the conditional BEP can be expressed as

Pb(E|ĥ) = Q
(√

2γε

)
(2.112)

To derive the average BEP, the conditional BEP in (2.112) should be averaged over the PDF of

γε. Since ĥ is circularly symmetric Gaussian distributed, γε in (2.111) has an exponential distribu-

tion [93, p. 190] with the following PDF

fγε (γε) =
1

γ̄ε

exp
(
−γε

γ̄ε

)
, γε ≥ 0 (2.113)

where

γ̄ε = E (γε) =
2Ebσ

2
ĥ

2 (2Ebσ2
e + σ2

n)
=

γ̄bσ
2
ĥ

2γ̄bσ2
e + σ2

h

=
γ̄b (σ2

h − σ2
e)

2γ̄bσ2
e + σ2

h

(2.114)

Now, by integrating (2.112) over the PDF in (2.113), the average BEP can be written as

Pb(E) =

∫ ∞

0

Pb(E|γε)fγε(γε)dγε =

∫ ∞

0

1

γ̄ε

exp
(
−γε

γ̄ε

)
Q

(√
2γε

)
dγε (2.115)

By using [6, eq. (5.6)], the integral term in (2.115) can be computed as

Pb(E) =
1

2

(
1−

√
γ̄ε

1 + γ̄ε

)
=

1

2

(
1−

√
(σ2

h − σ2
e) γ̄b

σ2
h + (σ2

h + σ2
e) γ̄b

)
(2.116)

Note that from (2.40) and (2.116) for a given σ2
e , BPSK results in a lower average BEP com-

pared with QPSK when σ2
e 6= 0 and σ2

e 6= 1. However, we will see in the next subsection that for

QPSK signals an MMSE channel estimator results in a smaller σ2
e compared with BPSK provided

that both modulations use the same number of pilot symbols as well as the same ratio of power of

pilot symbol to the power of data symbol. This result leads to almost the same average BEP by

both modulations when γ̄b À 1.
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For ideal coherent reception (σ2
e = 0), expression (2.116) reduces to

Pb(E) =
1

2

(
1−

√
γ̄b

1 + γ̄b

)
(2.117)

which is a well-known result [1, eq. (14.4-41)] and is identical to the average BEP of ideal coherent

BPSK in (2.41).

In noncoherent reception (σ2
e = σ2

h), the average BEP expression in (2.40) simplifies to

Pb(E) =
1

2
(2.118)

as expected.

2.2.3 MMSE Channel Estimator

In this subsection, we study the performance of the receiver in (2.101) for the special case of

quasi-static flat Rayleigh fading channels when an MMSE channel estimator is employed at the

receiver with pilot symbols. As mentioned before, in a quasi-static fading channel, the channel

remains constant during a whole frame of symbols but varies independently from frame to frame.

By using an MMSE estimator, the received signals during the training period are used to estimate

the channel, and then, this estimate is used in the rest of the frame.

For QPSK signalling, we assume that the pilot symbols are
√

βs1 =
√

βEb + j
√

βEb where

the scalar β is again the ratio of the power of the pilot symbol to the power of data symbol.

Pilot symbols are transmitted over K symbol intervals, and hence, the observed vector during

transmission of pilot symbols can be expressed as

x =
√

βEb(1 + j)h1K + η (2.119)

where the vector η is distributed as η ∼ CNK (0, 2σ2
nIK) and is independent of noise n and

channel h.
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Similar to (2.65) in Section 2.1, the MMSE channel estimate is

ĥ = E (h|x) = ChxC−1
xxx (2.120)

where matrices Chx and Cxx are defined as

Chx = E
(
hxH

)
; Cxx = E

(
xxH

)
(2.121)

By substituting (2.119) in (2.121), we get

Chx = 2
√

βEbσ
2
h(1− j)1H

K (2.122)

and

Cxx = 4βEbσ
2
h1K×K + 2σ2

nIK = 4βEbσ
2
h

(
1K×K +

1

2βγ̄b

IK

)
(2.123)

where 1K×K denotes a K ×K matrix of ones.

By using the matrix inversion Lemma , the inverse of the matrix in (2.123) can be written as

C−1
xx =

γ̄b

2Ebσ2
h

(
IK − 2βγ̄b

1 + 2Kβγ̄b

1K×K

)
(2.124)

Now, by substituting (2.122) and (2.124) in (2.120), the MMSE channel estimate is equal to

ĥ =

√
βγ̄b(1− j)√

Eb

1H
K

(
IK − 2βγ̄b

1 + 2Kβγ̄b

1K×K

)
x =

√
βγ̄b(1− j)√

Eb (1 + 2Kβγ̄b)
1H

Kx (2.125)

Expression (2.125) shows how the MMSE estimator should compute the channel estimate ĥ as

a function of x in (2.119).

By substituting (2.119) in (2.125), ĥ can be rewritten as

ĥ =

√
βγ̄b(1− j)√

Eb (1 + 2Kβγ̄b)
1H

K

(√
βEb(1 + j)h1K + η

)
=

2Kβγ̄b

1 + 2Kβγ̄b

h +

√
βγ̄b(1− j)√

Eb (1 + 2Kβγ̄b)
1H

Kη

(2.126)
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and hence, the channel estimation error is equal to

e = h− ĥ =
1

1 + 2Kβγ̄b

h−
√

βγ̄b(1− j)√
Eb (1 + 2Kβγ̄b)

1H
Kη (2.127)

From (2.127), channel estimation error e is caused by η (the noise during transmission of pilot

symbols), and hence, e is independent of the AWGN during transmission of data signals. Note that

since h and the elements of vector η are circularly symmetric Gaussian distributed and mutually

independent random variables ĥ and e in (2.126) and (2.127) are circularly symmetric Gaussian

distributed. It can also be seen from (2.126) and (2.127) that E
(
ĥ∗e

)
= 0, i.e. ĥ and e are

orthogonal, and hence, are independent. Therefore, ĥ and e satisfy the conditions mentioned for

the model in (2.4).

Now, from (2.127), σ2
e is equal to

σ2
e =

1

2
E

(|e|2) =
1

2

(
2σ2

h

(1 + 2Kβγ̄b)
2 +

4Kβγ̄2
b σ

2
n

Eb (1 + 2Kβγ̄b)
2

)
=

σ2
h

1 + 2Kβγ̄b

(2.128)

We can see that σ2
e for QPSK modulation in (2.128) is smaller than that of BPSK in (2.73) of

Section 2.1. In fact, for γ̄b À 1, σ2
e in (2.128) is half of (2.73). However, we will show later that

BPSK and QPSK modulations result in approximately the same average BEP when γ̄b À 1.

By substituting (2.128) in (2.116), the average BEP of the receiver in (2.101) can be expressed

as

Pb(E) =
1

2

(
1−

√
2Kβγ̄b√

1 + 2(Kβ + 1)γ̄b + 2Kβγ̄2
b

)
(2.129)

For one-symbol observation (K = 1), when β = 1 the expression (2.129) reduces to

Pb(E) =
1

2

(
1−

√
2γ̄b√

1 + 4γ̄b + 2γ̄2
b

)
(2.130)

which is equal to the average BEP of differential quadrature phase-shift keying (DQPSK) [6, eq.
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(8.210)]. Therefore, with only one pilot symbol the BEP of DQPSK can be obtained, which shows

again how effective an MMSE channel estimator is. As K →∞, expression (2.129) converges to

(2.117), the average BEP of the ideal coherent reception.

Performance Comparison of BPSK and QPSK

In this part, we compare the performance of ML receivers of BPSK and QPSK for large average

SNR (γ̄b À 1) when an MMSE channel estimator is used with pilot symbols, as described in

Subsection 2.1.5 and this Subsection. The performance comparison is performed by using average

BEP expressions in (2.75) and (2.129).

For γ̄b À 1, by using the Taylor series, the average BEP expression of BPSK in (2.75) can be

approximated as

Pb(E) ≈ Kβ + 1

4Kβγ̄b

for γ̄b À 1 (2.131)

For QPSK signals, the average BEP expression in (2.129) when γ̄b À 1 by using the Taylor

series is approximately equal to

Pb(E) ≈ Kβ + 1

4Kβγ̄b

for γ̄b À 1 (2.132)

Therefore, from (2.131) and (2.132), BPSK and QPSK modulations result in approximately

the same average BEP for γ̄b À 1 when in both modulations an MMSE channel estimator is used

with the same value of Kβ. The numerical results in the next section verify this result.

2.2.4 Numerical Results

In this subsection, we study the performance of the receiver in (2.101). We consider quasi-static

flat Rayleigh fading channels when an MMSE channel estimator is applied at the receiver with

pilot symbols, as explained in Subsection 2.2.3.
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Figure 2.9: Average BEP versus the average SNR for QPSK signals for different numbers of K
when β = 1.

Fig. 2.9 shows the average BEP of the receivers in (2.101) versus the average SNR γ̄b for

QPSK signals by both theory (expressions (2.129)) and Monte-Carlo simulation. The curves are

plotted for different numbers of pilot symbols K when β, the ratio of the power of the pilot symbol

to the power of data symbol, is equal to one. The Monte Carlo simulations are performed until 104

samples of errors are observed for each data point. It is evident that the analytical result matches

precisely the Monte Carlo simulations. The average BEP of ideal coherent QPSK in (2.117) has

also been added for comparison in Fig 2.9. The performance of the ML receiver improves as the

number of pilot symbols K increases, as expected.

The average BEP’s of BPSK and QPSK modulations are compared in Fig. 2.10 by using

theoretical expressions (2.75) and (2.129) for different numbers of K when β = 1. For small

values of γ̄b, QPSK has a slight advantage over BPSK in terms of the average BEP. However, it is

clear from the figure that for γ̄b À 1 QPSK and BPSK have almost the same average BEP, which

is expected from (2.131) and (2.132).
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Figure 2.10: Comparison of the average BEP of BPSK signals with QPSK signals for different
numbers of K when β = 1.

2.3 Summary

In the first section of this chapter, we derived the ML receiver for binary orthogonal signals in the

presence of Gaussian channel estimation error. The ML receiver is a linear combination of the

matched filter and the square-law detector. An exact closed-form expression was derived for the

average BEP of the proposed ML receiver in Rayleigh fading channels. It was shown that in the

presence of channel estimation error if a certain condition is satisfied then orthogonal modulation

outperforms antipodal signalling, and we stated that condition analytically. We also analyzed the

performance of the proposed ML receiver for two special cases of fading channels: first quasi-static

Rayleigh fading channels with an MMSE channel estimator, and second, time-varying Rayleigh

fading channels modeled with an AR process. In both cases, we proved that the channel estimation

error is Gaussian, and hence, the receiver proposed for the general case of Gaussian estimation

error can be used for these cases.

In the second section, we derived the ML receiver for QPSK signals in the presence of Gaussian
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channel estimation error. We found that the ML receiver is a matched filter which is matched to

the channel estimate. An exact closed-form expression is derived for the average BEP of the ML

receiver of QPSK signals in Rayleigh fading channels. We also analyzed the performance of the

ML receiver of QPSK signals for the special case of quasi-static Rayleigh fading channels with

an MMSE channel estimator. It was found that in quasi-static Rayleigh fading channels with an

MMSE channel estimator, both BPSK and QPSK modulations result in almost the same average

BEP for high enough average SNR.

2.4 List of Publications

The material of this chapter can be found in the following papers:

• A. A. Basri and T. J. Lim, “Optimum detection of binary signals in Rayleigh fading channels

with imperfect channel estimates,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM

2006), pp. 1-5, Nov.- Dec. 2006.

• A. A. Basri and T. J. Lim, “Binary demodulation in Rayleigh fading with noisy channel

estimates – Detector structures and performance,” to appear in Proc. IEEE Veh. Technol.

Conf. (VTC-2008 Spring).



Chapter 3

Maximal Ratio Combining in the Presence

of Multiple Interferers

In the last chapter, we studied single-antenna transceivers with imperfect channel estimates. In

this chapter, multi-antenna receivers are assumed, with the spatial dimension used for multi-user

interference suppression. The design of the base station receiver on the uplink of a wireless network

that experiences multi-user interference, either from other cells or non-orthogonal users within a

cell, is our exclusive focus.

This chapter comprises two main sections. In the first section, we examine the performance

of the maximal ratio combining technique in the uplink of wireless communication systems in the

presence of multiple interferers when channel estimates at the receiver are perfect. We derive an ex-

act closed-form expression for the average BEP of binary phase-shift keying signals over Rayleigh

fading channels. In the second section, the performance of MRC is studied when the channel es-

timates are subject to Gaussian-distributed channel estimation error. For this case, closed-form

expressions for several performance measures, such as the outage probability and average bit-error

probability, are derived.

65
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3.1 Maximal Ratio Combining with Perfect Channel Estimates

In this section, we study the performance of MRC in the presence of multiple interferers and

additive white Gaussian noise with perfect channel estimates and binary phase-shift keying signals.

3.1.1 System Model

We consider the uplink (mobile to base station) of a wireless communication systems where there

is one desired user transmitting with one antenna over a flat fading channel, and L other interfering

users are also each transmitting over flat fading channels with one antenna, as shown in Fig. 3.1.

The receiver is equipped with N antenna elements. The N × 1 baseband received signal vector r

is given by

r =
√

P0h0d0 +
L∑

j=1

√
Pjhjdj + n (3.1)

where d0 and dj are independent transmitted symbols of the desired and the jth interfering users,

respectively. We assume that the transmitted symbols are equiprobable with BPSK modulation, i.e

d0, . . . , dL ∈ {−1, +1}. The N × 1 circularly symmetric Gaussian vectors h0 and hj correspond

to the flat Rayleigh fading channels for the desired user and the jth interferer and are mutually

independent. It is assumed that the antennas at the receiver are far enough apart so that the fading

coefficients at different antennas are independent, i.e. E[hhH ] = E[hjh
H
j ] = 2IN , where IN is an

N ×N identity matrix, and the factor 2 comes from the real and imaginary parts of the channels.

Therefore, h0 ∼ CNN(0, 2IN) and hj ∼ CNN(0, 2IN) where CNp(η,Φ) denotes a complex

multivariate normal distribution for a p-dimensional random vector with mean η and covariance

matrix Φ [91]. P0 and Pj correspond to the received signal powers of the desired user and the

jth interfering user, respectively. The vector n represents the AWGN and n ∼ CNN (0, 2σ2
nIN),

where σ2
n is the noise variance per real dimension.

In MRC, the array combining weight vector is equal to the desired user’s channel, h0. There-

fore, if h0 can be estimated perfectly at the receiver, from (3.1), the decision variable at the output
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of the maximal ratio combiner can be written as

z = hH
0 r =

√
P0h

H
0 h0d0 + zin (3.2)

where zin is the interference-plus-noise term at the output of the combiner and is equal to

zin =
L∑

j=1

√
Pjh

H
0 hjdj + hH

0 n (3.3)

From (3.2) and (3.3), the SINR γ at the output of the maximal ratio combiner can be expressed

as

γ =
P0

(
hH

0 h0

)2

hH
0

(
L∑

j=1

Pjhjh
H
j + 2σ2

nIN

)
h0

(3.4)

3.1.2 Performance Analysis

In this section, we investigate the average BEP of BPSK signals at the output of the maximal

ratio combiner. First, we review the conventional PDF-based method and then derive an exact

expression for the average BEP by using the proposed method.

PDF-Based Method

The PDF-based method is based on the following two-step procedure: First, find the BEP condi-

tioned on h0,h1, . . . , hL and then average the result over the joint distribution of h0,h1, . . . , hL.

In other words, the average BEP Pb(E) can be derived by

Pb(E) =

∫
· · ·

∫
Pb(E|h0,h1, . . . , hL)fh0,h1,...,hL

(h0, h1, . . . , hL)dh0dh1 · · · dhL (3.5)
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Figure 3.1: Uplink of single-input-multiple-output wireless systems
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where Pb(E|h0, h1, . . . , hL) is the conditional BEP for a given set of fading channels h0,h1, . . . , hL,

and fh0,h1,...,hL
(h0,h1, . . . , hL) is the joint PDF of h0,h1, . . . , hL.

To calculate the conditional BEP Pb(E|h0,h1, . . . , hL) note that when transmitted signals d0 =

−1 and d0 = +1 are equiprobable the BEP is equal to the BEP when d0 = −1 is transmitted, and

hence, from (3.2) we have

Pb (E|h0,h1, . . . , hL) = Pb (E|h0,h1, . . . , hL, d0 = −1) = P (< (z) > 0|h0,h1, . . . , hL, d0 = −1)

= P
(−

√
P0h

H
0 h0 + zR

in > 0|h0,h1, . . . , hL

)
(3.6)

where zR
in is the real part of zin in (3.3).

Calculating the conditional BEP in (3.6) is difficult since it requires conditioning on all the

interfering bits, and thus, its computational complexity increases exponentially in the number of

users [18, pp. 113-114]. Moreover, the conditional BEP in (3.6) would be a complicated function

of fading channels of all users, i.e. h0, h1, . . . , hL, and therefore, integrating that complex condi-

tional BEP over the joint PDF of h0, h1, . . . , hL would be a very difficult process in order to obtain

the average BEP. Therefore, in the literature to find a simple expression for the conditional BEP in

(3.6) it is assumed that zin|h0,h1, . . . , hL is circularly symmetric Gaussian distributed [41]–[43].

We will see that based on this assumption, the conditional BEP in (3.6) can be expressed as a

function of just γ in (3.4), and then, the average BEP can be obtained by averaging the conditional

BEP over the PDF of γ.

So, if we assume that zin in (3.3) conditioned on h0,h1, . . . , hL is distributed as

zin|h0,h1, . . . , hL ∼ CN

(
0,hH

0

(
L∑

j=1

Pjhjh
H
j + 2σ2

nIN

)
h0

)
(3.7)

then the distribution of zR
in|h0,h1, . . . , hL is

zR
in|h0,h1, . . . , hL ∼ N

(
0,

1

2
hH

0

(
L∑

j=1

Pjhjh
H
j + 2σ2

nIN

)
h0

)
(3.8)
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where N(η, σ2) denotes a normal distribution for a real random variable with mean η and variance

σ2 [93].

Now, from (3.8), the conditional BEP in (3.6) can be expressed in terms of γ in (3.4) as

Pb (E|h0,h1, . . . , hL) = Q
(√

2γ
)

(3.9)

where the Gaussian Q function is defined in (2.36).

Therefore, assumption (3.7) has made it possible to derive a simple expression for the condi-

tional BEP in (3.9) as a function of just γ. So, to find the average BEP, we should integrate (3.9)

over the PDF of γ. Finding the PDF of γ is not an easy procedure itself since γ in (3.4) is a func-

tion of fading channels of all users, i.e. h0,h1, . . . , hL. Now, from (3.9), the average BEP can be

written as

Pb(E) =

∫ ∞

0

Pb(E|γ)fγ(γ)dγ =

∫ ∞

0

Q
(√

2γ
)

fγ(γ)dγ (3.10)

where Pb(E|γ) is the conditional error probability for a given γ, and fγ(γ) is the PDF of γ.

Note that from (3.3), assumption (3.7) is only valid for two cases: either when the transmitted

symbols of the interfering users, dj’s for j = 1, . . . , L, are circularly symmetric Gaussian dis-

tributed, i.e. dj ∼ CN(0, 1) for j = 1, . . . , L, or when the number of interfering users goes to

infinity and then the central limit theorem can be applied (as explained in [41]). However, in prac-

tice we deal with the case where the number of users is finite and the transmitted symbols are not

Gaussian distributed. Therefore, in practice the average BEP expression in (3.10), which is derived

with assumption (3.7), can be viewed only as an approximate result.

The PDF-based method has been used in [41]–[43]. For independent Rayleigh fading channels

and BPSK signals the authors in [41] have found the PDF of SIR at the output of the maximal

ratio combiner when the system is interference-limited and interfering sources have equal powers.

Then, they have used (3.10) to find the approximate expression for the average BEP of MRC in

[41, eq. (47)]. Their results have been generalized to other types of fading in [42], [43].
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Exact Method

In this section, we propose a new method for deriving the exact average BEP of BPSK signals for

MRC based on the decision variable at the output of the combiner conditioned only on the fading

channel of the desired user. This method is again a two-step procedure, but the conditional BEP in

the first step is conditioned on h0 and not on h0, h1, . . . , hL. We will find that the distribution of

interference-plus-noise term in (3.3) conditioned on the fading channel of the desired user is ex-

actly Gaussian, which helps us find an exact expression for the conditional BEP. Then, we average

this conditional BEP to get an exact expression for the average BEP. We will see that in contrast to

the PDF-based method explained in the last part, in the proposed method there is no need to find

the PDF of the output SINR in (3.4).

The conditional BEP Pb(E|h0) when transmitted signals d0 = −1 and d0 = +1 are equiproba-

ble is equal to the BEP when d0 = −1 is transmitted, and hence from the decision variable in (3.2)

we have

Pb (E|h0) = Pb (E|h0, d0 = −1) = P (< (z) > 0|h0, d0 = −1) = P
(
−

√
P0h

H
0 h0 + zR

in > 0|h0

)

(3.11)

where zR
in is the real part of zin in (3.3).

To determine the conditional BEP in (3.11), we first need to find the distribution of zR
in con-

ditioned on h0. Note that since random vectors hj’s for j = 1, . . . , L are distributed as hj ∼
CNN (0, 2IN) and h0 is independent from hj’s for j = 1, . . . , L, we get

√
Pjh

H
0 hj|h0 ∼

CN
(
0, 2Pjh

H
0 h0

)
for j = 1, . . . , L. Now, since for BPSK signals dj ∈ {−1, +1}, the distri-

bution of
√

Pjh
H
0 hjdj|h0 conditioned on dj can be written as

√
Pjh

H
0 hjdj|h0, dj ∼ CN

(
0, 2Pjh

H
0 h0 |dj|2

)
= CN

(
0, 2Pjh

H
0 h0

)
for j = 1, . . . , L (3.12)
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We can see from (3.12) that the PDF of
√

Pjh
H
0 hjdj|h0 conditioned on dj is not a func-

tion of dj . Therefore,
√

Pjh
H
0 hjdj|h0 is independent from dj , and thus, the distribution of

√
Pjh

H
0 hjdj|h0 conditioned on dj is equal to the distribution of

√
Pjh

H
0 hjdj|h0 itself. So, from

(3.12) we have

√
Pjh

H
0 hjdj|h0 ∼ CN

(
0, 2Pjh

H
0 h0

)
for j = 1, . . . , L (3.13)

Now, since hj’s for j = 1, . . . , L are independent, from (3.13) we get

L∑
j=1

√
Pjh

H
0 hjdj|h0 ∼ CN

(
0, 2hH

0 h0

L∑
j=1

Pj

)
(3.14)

and therefore, zin in (3.3) conditioned on h0 is distributed as

zin|h0 ∼ CN

(
0, 2hH

0 h0

(
σ2

n +
L∑

j=1

Pj

))
(3.15)

From (3.15), the distribution of zR
in|h0 is

zR
in|h0 ∼ N

(
0,hH

0 h0

(
σ2

n +
L∑

j=1

Pj

))
(3.16)

The result in (3.16) is a crucial outcome which shows that the distribution of zR
in|h0 is exactly

Gaussian. Therefore, from (3.16), the conditional BEP in (3.11) is precisely

Pb (E|h0) = Q
(√

2γε

)
(3.17)

where γε in (3.17) is given as

γε =
P0h

H
0 h0

2

(
σ2

n +
L∑

j=1

Pj

) (3.18)

and the Q function is defined in (2.36).
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Note that in contrast to the conditional BEP expression of the PDF-based method in (3.9) which

was derived under the assumption of (3.8), the expression in (3.17) is exact since (3.16) is exact.

Now, to derive the exact expression of the average BEP, we should average the conditional BEP

in (3.17) over the PDF of γε. To proceed with obtaining the PDF of γε, from (3.18) we have

γε =
P0

2

(
σ2

n +
L∑

j=1

Pj

)
N∑

k=1

|h0,k|2 (3.19)

where h0,k is the kth element of vector h0. Since it is assumed that h0,k ∼ CN(0, 2) we get

|h0,k|2 ∼ χ2
2 where χ2

n denotes a chi-square distribution with n degrees of freedom [93]. Note that

the degrees of freedom for |h0,k|2 is equal to two because the complex Gaussian random variable

h0,k consists of two independent Gaussian random variables (the real part and the imaginary part)

each with unit variance. Now
N∑

k=1

|h0,k|2 in (3.19) is a summation of N independent chi-square

random variables. It is known that if independent random variables x1 and x2 are distributed as

x1 ∼ χ2
ν1

and x2 ∼ χ2
ν2

, then the sum x1 + x2 has a distribution of χ2
ν1+ν2

[93, p. 260]. Therefore,
N∑

k=1

|h0,k|2 ∼ χ2
2N , and hence, γε in (3.19) has the following PDF

fγε (γε) =
NNγN−1

ε

(N − 1)! (γ̄ε)
N

exp
(
−Nγε

γ̄ε

)
, γε ≥ 0 (3.20)

where

γ̄ε = E (γε) =
NP0

σ2
n +

L∑
j=1

Pj

(3.21)

Now, the average BEP can be obtained by averaging the conditional BEP in (3.17) over the

PDF of γε in (3.20) as

Pb(E) =

∫ ∞

0

Pb (E|γε) fγε (γε) dγε =

∫ ∞

0

Q
(√

2γε

) NNγN−1
ε

(N − 1)! (γ̄ε)
N

exp
(
−Nγε

γ̄ε

)
dγε(3.22)
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The integral in (3.22) can be calculated by using the result in [1, eq. (14.4-15)] as

Pb(E) =
1

2N

(
1−

√
γ̄c

1 + γ̄c

)N N−1∑

k=0

1

2k




N − 1 + k

k




(
1 +

√
γ̄c

1 + γ̄c

)k

(3.23)

where γ̄c is defined as

γ̄c =
γ̄ε

N
=

P0

σ2
n +

L∑
j=1

Pj

(3.24)

which is the ratio of the desired signal’s power to the summation of the interfering users’ powers

plus the power of the noise.

Note that the expression in (3.23) is equal to the result derived in [1, eq. (14.4-15)] for the

single-user systems (with AWGN and no CCI) where the average SNR per channel is replaced

by γ̄c in (3.24). The expression in (3.23) is also mentioned in [62] and [79] for the average BEP

of MRC in the presence of CCI. In those papers, the authors have replaced the average SNR per

channel by the ratio of the desired signal’s power to the total power of interference plus noise to

obtain what appeared to be an approximation of the average BEP of MRC (in [62] for the single-

interferer case and in [79] for the case of multiple equal-power interferers). However, we have

shown in this section that actually the expression in (3.23) is the exact expression of the average

BEP of BPSK signals for MRC when fading channels of users are independent with Rayleigh

statistics. In other words, replacing the average SNR per channel of the expression in [1, eq. (14.4-

15)] (which is derived for the single-user case) by the ratio of the desired user’s power to the total

power of the interfering users plus noise in (3.24) gives an exact expression of the average BEP.

The proposed exact method has several advantages over the PDF-based method explained ear-

lier. First, finding the PDF of SINR is a complicated task, but for the exact method there is no

need to find the PDF of γ in (3.4). Second, the result of the exact method is valid in the presence

of thermal noise with either equal-power or unequal-power interferers. However, the results of the

PDF-based method in [41] is limited to the case of interference-limited systems, i.e. σ2
n = 0, with
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equal-power interferers, i.e. Pj’s for j = 1, . . . , L are equal. Finally, the result of the PDF-based

method is only exact when the assumption (3.7) is valid which is not the case in practical systems,

for example for a system with finite L and BPSK modulated signals. However, the result in (3.23)

is precise and no approximation is involved.

The results of the proposed exact method can be easily generalized to M-PSK modulation. In

M-PSK, the transmitted symbols are chosen from the set of
{

exp
(

j2πm
M

) |m = 0, 1, . . . ,M − 1
}

where M is the number of points in the signal constellation. So, for these types of signals the

magnitude of the transmitted symbols is also unity, i.e. |dj|2 = 1 for j = 1, . . . , L, and hence,

formulas (3.12) and (3.13) can be applied again. Therefore, the distribution of interference-plus-

noise term conditioned on the fading channel of the desired user would be Gaussian as well, and

the exact expressions for the conditional BEP and average BEP can be similarly obtained.

3.1.3 Numerical Results

In this section, we present a set of numerical results for the average BEP of BPSK signals for MRC

in the presence of CCI. The fading channels of different users are assumed to be independent with

Rayleigh statistics.

The average BEP is studied in Fig. 3.2 by both theory (expression (3.23)) and simulation for

a system with equal-power interferers, i.e. Pj = PI for j = 1, . . . , L where PI is a constant.

The average BEP in Fig. 3.2 is plotted versus P0/PI (the power of the desired user to the power

of one interferer) for different numbers of interfering users L when the number of antennas is

N = 3. The power of the noise is assumed to be equal to the power of one of the interfering

users, i.e. σ2
n = PI . We can see that as L increases the average BEP also increases, as expected.

The Monte Carlo simulations are performed until 105 samples of errors are observed for each data

point. Theoretical results in Fig. 3.2 match precisely the Monte Carlo simulations, which verifies

the derived analytical expression in (3.23).

In Fig. 3.3, we compare the average BEP expression derived by the conventional PDF-based
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Figure 3.2: Average BEP versus P0/PI for different numbers of interfering users in a system with
equal-power interferers when N = 3 and σ2

n = PI .

0 2 4 6 8 10 12 14 16 18 20

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

P
0
/P

I
 (dB)

A
ve

ra
ge

 B
E

P

L=1 (exact)
L=1 (PDF−based)
L=3 (exact) 
L=3 (PDF−based) 
L=6 (exact)
L=6 (PDF−based)
L=12 (exact)
L=12 (PDF−based)
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method in [41, eq. (47)] with expression (3.23). Since the results in [41] are obtained for interference-

limited systems with equal-power interferers, we consider the case where σ2
n = 0 and Pj = PI for

j = 1, . . . , L, where PI is a constant. In Fig. 3.3, we have shown the average BEP versus P0/PI

for different numbers of interfering users L when the number of antennas is N = 6. As we can see,

for L = 1 there is a large gap between the the approximate result of the PDF-based approach and

the exact expression. However, it is evident that as the number of interfering users increases the

difference between the exact and approximate results decreases. This is because with increasing

numbers of interfering users the distribution of zin in (3.3) conditioned on h0, h1, . . . , hL con-

verges to a Gaussian distribution by the Central Limit Theorem, and hence, the assumption (3.7)

in the PDF-based method becomes increasingly accurate.

3.2 Maximal Ratio Combining with Imperfect Channel Esti-

mates

In this section, we analyze the performance of MRC in the presence of channel estimation errors

and multiple interferers in a flat Rayleigh fading environment. We assume that the system is

interference-limited, i.e. the power of noise can be neglected, and the interfering users have equal

power. The PDF of the signal-to-interference-plus-noise ratio at the output of the maximal ratio

combiner has been derived in prior work [59], assuming Gaussian channel estimation errors. We

use that PDF to derive analytical expressions for a number of important performance measures such

as the outage probability and the average bit error probability for different modulation formats

in interference-limited systems. These expressions are useful tools to examine the performance

degradation of MRC in the presence of channel estimation error.

3.2.1 System Model

We consider the uplink of a wireless communication system in the presence of L interferers.

The receiver is equipped with N antenna elements, and N ≤ L. The system is assumed to be
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interference-limited and all the interferers are received with the same average power. Note that

these assumptions are different from the ones in Section 3.1. The N × 1 baseband received signal

vector r is given by

r =
√

PDhd +
L∑

j=1

√
PIhjdj (3.25)

where d and dj are independent transmitted symbols of the desired and the jth interfering users,

respectively, each with zero mean and unit variance. The N × 1 circularly symmetric Gaussian

vectors h and hj correspond to the flat Rayleigh fading channels for the desired user and the jth

interferer, and are mutually independent. It is assumed that receiver antennas are far enough apart

so that the fading coefficients at different antennas are independent, i.e. E[hhH ] = E[hjh
H
j ] =

2IN . Received signal powers PD and PI correspond to the desired and the interfering users,

respectively.

When the desired user’s channel vector h can be estimated perfectly, the combining weight

vector of MRC is equal to h. However, since in practice the receiver cannot estimate the channels

without error, diversity combining is based on the estimated channels. Therefore, the weight vector

of MRC is the desired user’s channel estimate vector, and we have

umrc = ĥ (3.26)

where ĥ denotes the channel estimate vector for the desired user.

From (3.25) and (3.26), the output of the combiner can be written as

z = (umrc)H r =
√

PDĥ
H

hd +
L∑

j=1

√
PIĥ

H
hjdj (3.27)
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Now, from (3.27) the SIR γmrc at the output of the maximal ratio combiner can be written as

γmrc =
PDĥ

H
hhHĥ

PIĥ
H

(
L∑

j=1

hjh
H
j

)
ĥ

(3.28)

The channel estimation error vector for the desired user is defined as

e = h− ĥ (3.29)

The vector e in (3.29) is assumed to be circularly symmetric Gaussian distributed and inde-

pendent from the channel estimate vector ĥ. Channel estimate vector ĥ is also assumed to be

circularly symmetric Gaussian distributed. These assumptions are valid for an MMSE estimator

in the Bayesian linear model, where the channel estimation error is circularly symmetric Gaussian

distributed and the estimate and the error are orthogonal [8]. The elements of the error vector e

are assumed to be independent. Hence, we have E[eeH ] = diag(2σ2
1, . . . , 2σ

2
N) where 2σ2

k is the

variance of ek, the kth element of the channel estimation error vector e. Similarly, the elements

of the channel estimate vector ĥ are independent, and from (3.29), the variance of ĥk, the kth el-

ement of the vector ĥ, is 2(1 − σ2
k). Since h and e are circularly symmetric Gaussian distributed

and mutually independent, we can find from (3.29) that ĥ and h are jointly circularly symmetric

Gaussian vectors, and the correlation coefficient between the kth elements of h and ĥ, hk and ĥk

respectively, can be written as

ρk =
E

(
ĥ∗khk

)
√

E
(|hk|2

)
E

(∣∣∣ĥk

∣∣∣
2
) =

√
1− σ2

k (3.30)

Throughout this section, we assume that for all elements the correlation coefficients are equal,

i.e. ρk = ρ ∀ k. This assumption is reasonable because all the channels are estimated under the

same conditions using the same method.
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3.2.2 Performance Analysis

In this section, we analyze the performance of MRC in the presence of Gaussian-distributed chan-

nel estimation error.

In the presence of Gaussian-distributed channel estimation error, the PDF of γmrc is derived in

[59] and for interference-limited systems can be expressed as

fγmrc (γmrc) =

(
PD

PI

)L N−1∑
j=0

(
N−1

j

)
(1− ρ2)N−1−j (ρ2)

j
(γmrc)j

B(j + 1, L)
(

PD

PI
+ γmrc

)j+L+1
(3.31)

where the beta function B(p, q) is defined in (A.3) and (A.4) in Appendix A.

Now, we use the PDF expression in (3.31) to derive analytical expressions for the outage prob-

ability and average BEP of MRC.

Outage Probability

From (3.31), the outage probability of γmrc for a certain threshold, say γ0, is

Pout =

∫ γ0

0

fγmrc (γmrc) dγmrc

=

(
PD

PI

)L N−1∑
j=0

(
N−1

j

)
(1− ρ2)N−1−j (ρ2)

j

B(j + 1, L)

∫ γ0

0

(γmrc)j

(
PD

PI
+ γmrc

)j+L+1
dγmrc (3.32)

From (A.5), the integral term in (3.32) can be written in terms of the incomplete beta function

as

∫ γ0

0

(γmrc)j

(
PD

PI
+ γmrc

)j+L+1
dγmrc =

B γ0
PD
PI

+γ0

(j + 1, L)

(
PD

PI

)L
(3.33)
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Now, from (3.33), the outage probability expression in (3.32) can be simplified to

Pout =
N−1∑
j=0

(
N−1

j

)
(1− ρ2)N−1−j (ρ2)

j

B(j + 1, L)
B γ0

PD
PI

+γ0

(j + 1, L)

=
N−1∑
j=0

(
N − 1

j

)
(1− ρ2)N−1−j

(
ρ2

)j
I γ0

PD
PI

+γ0

(j + 1, L) (3.34)

where the regularized incomplete beta function Iw(a, b) is defined in (A.6) and can be evaluated

directly in MATLAB.

Average Bit Error Probability

To evaluate this important measure of performance for our multi-user system in the presence of

channel estimation errors, first we should find the BEP conditioned on the true and estimated fading

channels of all users. Then, the conditional BEP should be averaged over the joint distribution of

the true and estimated channels of all users which is an enormously complicated process. But if the

conditional BEP can be expressed as a function of SIR, then we can easily average the conditional

BEP over the PDF of SIR to get the average BEP instead of sophisticated averaging over the joint

PDF of the true and estimated channels.

Now, we show that in the presence of channel estimation errors, the conditional BEP for co-

herent modulation formats is not a function only of SIR, but for non-coherent modulation formats,

e.g. binary DPSK and binary NCFSK, it is just a function of SIR.

In this section, we assume that the interference component of z in (3.27) conditioned on ĥ

and hj’s is circularly symmetric Gaussian distributed. The Gaussian interference assumption can

be justified by Cramér’s central limit theorem [100] as the number of interfering users goes to

infinity1. Therefore, the channel in (3.27) conditioned on ĥ, h and hj’s resembles an AWGN

channel, with unknown phase. The unknown phase is due to imperfect channel estimation of h

at the receiver resulting in ĥ
H

h having non-zero phase. If coherent antipodal binary phase-shift

1Cramér’s central limit theorem is one variation of the cental limit theorem in which the assumption of identically
distributed random variables is abandoned in favor additional restrictions.
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keying modulation is used, the slicer input would be <{z}, the real part of z, and the resulting

conditional BEP will not be determined only by γmrc defined in (3.28). However, for binary DPSK

and NCFSK signals, the BEP in an AWGN channel with unknown phase is a function only of SNR

[1]. Therefore, the BEP conditioned on ĥ, h and hj’s for binary DPSK and binary NCFSK is a

function only of γmrc in (3.28) and can be expressed as

Pb

(
E|ĥ, h, h1, . . . , hL

)
= Pb (E|γmrc) =

1

2
exp (−αγmrc) (3.35)

where

α =





1, for binary DPSK

1
2
, for binary NCFSK

(3.36)

Now, by averaging the conditional BEP in (3.35) over the PDF of SIR in (3.31), the average

BEP of MRC can be written as

Pb(E) =

∫ ∞

0

Pb(E|γmrc)fγmrc(γmrc)dγmrc

=

(
PD

PI

)L N−1∑
j=0

(
N−1

j

)
(1− ρ2)N−1−j (ρ2)

j

B(j + 1, L)

∫ ∞

0

(γmrc)j exp (−αγmrc)

2
(

PD

PI
+ γmrc

)j+L+1
dγmrc (3.37)

From (A.4), the average BEP expression of MRC in (3.37) can be simplified to

Pb(E) =
1

2Γ(L)

N−1∑
j=0

(
N − 1

j

)
(1− ρ2)N−1−j

(
ρ2

)j
Γ(j + L + 1)U

(
j + 1, 1− L,

αPD

PI

)
(3.38)

where the confluent hypergeometric function U(a, b, x) is defined in (A.7) and can be evaluated

either directly using Mathematica, or by using the exponential integral functions [98, eq. (5.1.4)]

in MATLAB.
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Figure 3.4: Outage probability of MRC versus the square of correlation coefficient for different
numbers of antennas when γ0 = 5 dB and L = 6.

3.2.3 Numerical Results

In this section, we present a set of numerical results for the outage probability and the average BEP

of MRC and OC with imperfect channel estimates when the number of interferers is L = 6, and

PD/PI = 10.

The outage probability of MRC for threshold γ0 = 5 dB is plotted in Fig. 3.4 versus the square

of the correlation coefficient for different numbers of antennas, N , by both theory (expression

(3.34)) and simulation. We can see that except for N = 1, the outage probability decreases as

ρ increases, and this improvement is more significant when there is a larger number of antennas

at the receiver. For instance, as ρ2 increases from 0.9 to 1, the outage probability decreases from

0.1037 to 6.72 × 10−2 for N = 5, while it only improves from 0.5582 to 0.5305 for N = 2.

Theoretical results in Fig. 3.4 match precisely the Monte Carlo simulations, which verifies the

derived analytical expression in (3.34).

Fig. 3.5 shows the theoretical and simulation results of the average BEP of MRC against ρ2
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Figure 3.5: Average BEP of MRC versus the square of correlation coefficient for DPSK signals
and N = 1, . . . , 5 when L = 6.

for DPSK signals with several values of N . For the theoretical results we have used expression

(3.38) with α = 1. We observe again that the performance improvement due to increasing ρ is

more substantial with a larger number of antennas. For example, as ρ2 increases from 0.9 to 1, the

analytical average BEP decreases only from 8.06 × 10−2 to 6.95 × 10−2 when N = 2, whereas it

decreases significantly from 8.57× 10−3 to 5.25× 10−3 for N = 5. Although the average BEP in

(3.38) is derived under the Gaussian distributed interference assumption, we can see a very good

match between the theory and simulation in Fig. 3.5.

3.3 Summary

In the first section of this chapter, we examined the performance of MRC technique in the uplink

of wireless communication systems in the presence of multiple interferers and AWGN when the

fading channels are perfectly estimated. An exact closed-form expression of the average BEP for



3.3. SUMMARY 85

BPSK signals is derived when the the fading channels of different users are assumed to be inde-

pendent from each other with Rayleigh statistics. The derivation is based on the decision variable

at the output of the combiner conditioned on the fading channel of the desired user. We found that

by conditioning only on the fading channel of the desired user, the distribution of interference-

plus-noise term is exactly Gaussian, which results in exact expressions for the conditional BEP

and average BEP. Moreover, the proposed method is much less complex than the conventional

PDF-based technique since there is no need to find the PDF of the SINR. We found that the exact

expression of the average BEP in the presence of CCI can be obtained from the expression for the

average BEP of MRC in single-user systems (with AWGN and no CCI) by replacing the average

SNR per channel with the ratio of the desired signal’s power to the total power of the interfering

users plus noise. We studied the difference between the results of the PDF-based method and ex-

act results and found that this difference is considerable in the presence of a smaller number of

interfering users. The results of the proposed exact method can be easily generalized to M-PSK

modulation as well since for this type of modulation the distribution of interference-plus-noise

term conditioned on the fading channel of the desired user is also exactly Gaussian.

In the second section of this chapter, we investigated the performance of MRC in the presence

of circularly symmetric Gaussian-distributed channel estimation errors and multiple interferers

over Rayleigh fading channels for interference-limited systems with equal-power interferers. We

derived analytical expressions for the outage probability and the average BEP of MRC for binary

DPSK and NCFSK signals. These expressions are useful tools for performance analysis and easier

to compute than time-consuming Monte Carlo simulations. We studied the performance improve-

ment of MRC as the correlation between the true and estimated channels increases and found that

this improvement is more substantial when there is a larger number of antennas at the receiver. The

derived expressions in this section will be used in Chapter 4 to compare the performance of MRC

with OC in the presence of multiple interferers and Gaussian-distributed channel estimation errors.
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with multiple cochannel interferers and Rayleigh fading,” in Proc. IEEE Int. Conf. on

Commun. (ICC 2007), pp. 1102-1107, Jun. 2007.

• A. A. Basri and T. J. Lim, “Performance of maximal ratio and optimum combining with

channel estimation errors and multiple interferers in Rayleigh fading channels,” in Proc.

IEEE Veh. Technol. Conf. (VTC-2006 Fall), pp. 1345-1349, Sep. 2006.



Chapter 4

Optimum Combining in the Presence of

Multiple Interferers

In this chapter, we investigate the effect of imperfect channel estimation on the performance of OC

in the uplink of wireless communication systems. We consider the same setup as in the previous

chapter, i.e. space diversity reception in a flat Rayleigh fading channel in the presence of multiple

interferers and channel estimation errors. The word ”optimum” in OC accurately describes this

receiver only when the channel estimates and true channel coefficients are equal – however, we

continue to use the term OC in the presence of estimation errors in order not to introduce another

term into the lexicon, with the understanding that the noisy estimates are used directly in place

of the true coefficients. It is assumed that the channel estimation errors are circularly symmetric

Gaussian distributed. We assume that the interferers have equal powers and the number of inter-

ferers is no less than the number of antenna elements. The main contribution of this chapter is

applying multivariate statistical analysis to derive an exact closed-form expression for the PDF of

the output SIR in terms of hypergeometric functions. This PDF expression is then utilized to ob-

tain expressions for the moments of SIR, outage probability and the average bit error probability.

The analytical expressions are verified by Monte Carlo simulations and are useful for studying the

impact of imperfect channel estimation on the receiver performance. Clearly, the performance of

87
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OC is expected to improve as the correlation between the true and estimated channels increases–

our analysis shows quantitatively that this improvement becomes more significant as the number

of antennas at the receiver increases.

4.1 System Model

Similar to Section 3.2, we consider the uplink of a single-input-multiple-output wireless communi-

cation system in the presence of L interferers. We assume that each interfering user has one antenna

and the receiver is equipped with N antenna elements. The system is assumed to be interference-

limited and all the interferers are received with the same average power. The baseband received

signal vector r is given by

r =
√

PDhd +
L∑

j=1

√
PIhjdj (4.1)

where d and dj are independent symbols with zero mean and unit variance for the desired and

the jth interfering users, respectively. The N × 1 circularly symmetric Gaussian vectors h and

hj correspond to the flat Rayleigh fading channels for the desired user and the jth interferer and

are mutually independent. It is assumed that receiver antennas are far enough apart so that the

fading coefficients at different antennas are independent. Therefore, h ∼ CNN(0, 2IN) and hj ∼
CNN(0, 2IN). Received signal powers PD and PI correspond to the desired and the interfering

users, respectively. Denoting the N × 1 array combining weight vector as u, the output of the

combiner can be written as

zout = uHr =
√

PDuHhd +
L∑

j=1

√
PIu

Hhjdj (4.2)
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and hence, the SIR γ at the output of the combiner is

γ =
PDuHhhHu

PIuH

(
L∑

j=1

hjh
H
j

)
u

(4.3)

where the superscript H denotes the Hermitian transposition, i.e. transposition combined with

complex conjugation. It can be seen that if the number of antennas at the receiver is greater than

the number of interferers, i.e. N > L, then the denominator of (4.3) can be driven to zero in the

case of perfect channel estimation, and hence, the interference vanishes completely. Throughout

this chapter we assume that L ≥ N , and hence a linear zero-forcing receiver cannot be found.

The receiver performs channel estimation in order to determine u. It is assumed that the chan-

nel estimation error is Gaussian distributed and independent from the channel estimate. Therefore,

we have

hj = ĥj + ej (4.4)

where mutually independent error vectors ej’s are assumed to be circularly symmetric Gaussian

distributed and independent from the estimated channels ĥj’s [48]. This assumption is valid for

MMSE estimation in which the estimate and the error are orthogonal [8]. Moreover, channel

estimate vectors ĥj’s are mutually independent and circularly symmetric Gaussian distributed [48]

which is also true when MMSE channel estimation is used [8]. The elements of the error vector

ej are assumed to be independent, and hence, we have E[eje
H
j ] = diag(2σ2

1j, . . . , 2σ
2
Nj) where

2σ2
kj is the variance of ekj , the kth complex element of the channel estimation error vector ej .

Similarly, the elements of the estimated channel vector ĥj are independent, and the variance of

ĥkj , the kth element of the vector ĥj , is 2(1 − σ2
kj). Since hj and ej are circularly symmetric

Gaussian distributed and mutually independent, we can find from (4.4) that ĥj and hj are jointly

circularly symmetric Gaussian vectors, and the correlation coefficient between the kth elements of
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hj and ĥj , hkj and ĥkj respectively, can be written as

ρkj =
E

(
ĥ∗kjhkj

)
√

E
(|hkj|2

)
E

(∣∣∣ĥkj

∣∣∣
2
) =

√
1− σ2

kj (4.5)

Note that since E |hkj|2 = E
∣∣∣ĥkj

∣∣∣
2

+ E |ekj|2, then E |ekj|2 ≤ E |hkj|2 = 2, and so σ2
kj =

1
2
E |ekj|2 ≤ 1. We see that the channel estimation model in (4.4) results in jointly circularly

symmetric Gaussian distributed true and estimated channels, which is a crucial consequence that

enables us to perform statistical analysis of the output SIR.

The same arguments hold for the true and estimated channels of the desired user. In other

words,

h = ĥ + e (4.6)

where ĥ and e are the desired users’ channel estimate and channel estimation error vectors, re-

spectively. The kth elements of h and ĥ, hk and ĥk respectively, are jointly circularly symmetric

Gaussian distributed with correlation coefficient ρk.

Throughout this chapter we assume that all the correlation coefficients are the same, i.e. ρk =

ρkj = ρ ∀ k, j. This assumption is reasonable if all the channels are estimated using the same type

of estimator. Therefore, from (4.5), the channel estimate vectors are distributed as

ĥ ∼ CNN(0, 2ρ2IN ) and ĥj ∼ CNN(0, 2ρ2IN ), (4.7)

and for channel estimation error vectors we have

e ∼ CNN

(
0, 2

(
1− ρ2

)
IN

)
and ej ∼ CNN

(
0, 2

(
1− ρ2

)
IN

)
. (4.8)
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To simplify the following analysis without loss of generality, we define vectors s and sj’s as

s =
ĥ

ρ
and sj =

ĥj

ρ
(4.9)

Note that from (4.7) and (4.9), vectors s and sj’s are distributed as

s ∼ CNN(0, 2IN) and sj ∼ CNN(0, 2IN) (4.10)

If the channels can be estimated without error at the receiver, the OC vector is a function of h

and hj’s, the true channels of all users. However, in the presence of channel estimation errors the

receiver performs diversity combining based on its channel estimates. In other words, the optimum

combiner uses channel estimates ĥ and ĥj’s instead of true channels h and hj’s. So, in this case,

the OC vector would be only a function of channel estimates ĥ and ĥj’s (or equivalently vectors s

and sj’s) and can be written as [62]

uoc =

(
L∑

j=1

ĥjĥ
H

j

)−1

ĥ

∥∥∥∥∥∥

(
L∑

j=1

ĥjĥ
H

j

)−1

ĥ

∥∥∥∥∥∥

=

(
L∑

j=1

sjs
H
j

)−1

s

∥∥∥∥∥∥

(
L∑

j=1

sjs
H
j

)−1

s

∥∥∥∥∥∥

=
R−1s∥∥R−1s

∥∥ (4.11)

where ‖.‖ denotes the norm of a vector, and the matrix R is defined as

R =
L∑

j=1

sjs
H
j (4.12)

By substituting (4.11) in (4.3), the SIR γoc at the output of the optimum combiner is given by

γoc =
PDsHR−1hhHR−1s

PIsHR−1

(
L∑

j=1

hjh
H
j

)
R−1s

(4.13)



4.2. STATISTICAL ANALYSIS 92

4.2 Statistical Analysis

In this section, we derive the exact expressions for the PDF of γoc in (4.13) as well as the moments

of γoc and the outage probability. A list of mathematical functions used in this chapter is given in

Appendix A.

To obtain the PDF of γoc, first we derive its PDF conditioned on channel estimates. Then the

conditional PDF will be utilized to obtain the PDF of γoc.

4.2.1 Conditional SIR Distribution

To derive the conditional distribution of γoc, first we present a Theorem for the conditional PDF of

γ in (4.3), i.e. the SIR at the output of the combiner with an arbitrary combining vector u. Then,

we use that Theorem for the conditional PDF of γoc as a special case.

Theorem 4.1 LPI

PD
γ conditioned on channel estimates s, s1, ..., sL, for all u such that ‖u‖2 = 1

and when |ρ| < 1, has a distribution of

LPI

PD

γ|s, s1, ..., sL ∼ F
′′
2,2L(λ1, λ2) (4.14)

where the symbol F
′′
ν1,ν2

(δ1, δ2) denotes a doubly noncentral F-distribution with ν1, ν2 degrees of

freedom and non-centrality parameters δ1, δ2 [97]. Non-centrality parameters λ1 and λ2 in (4.14)

can be expressed as

λ1 =
ρ2

1− ρ2
uHssHu, (4.15)

and

λ2 =
ρ2

1− ρ2
uHRu (4.16)

where the matrix R is defined in (4.12).
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From (4.14), the conditional PDF of γ can be written as

fγ(γ|s, s1, ..., sL) = fγ (γ|λ1, λ2) = e−(λ1+λ2
2 )

∞∑
j=0

∞∑

k=0

c(γ, j, k)λj
1λ

k
2 (4.17)

where

c(γ, j, k) =

(
PD

PI

)k+L
γj

(
PD

PI
+ γ

)j+k+L+1

2j+kB(1 + j, L + k)j!k!
, (4.18)

and the beta function B(p, q) is defined in (A.3) in Appendix A.

Proof: From (4.4), we have hj = ĥj + ej = ρsj + ej . Since channel estimation error vector

ej is independent from the channel estimates s, s1, . . . , sL, we get

fhj
(hj|s, s1, . . . , sL) = fej

(hj − ρsj|s, s1, . . . , sL) = fej
(hj − ρsj) (4.19)

Now, since from (4.8) ej ∼ CNN (0, 2 (1− ρ2) IN), from (4.19) we have

hj|s, s1, . . . , sL ∼ CNN

(
ρsj, 2

(
1− ρ2

)
IN

)
(4.20)

As mentioned before, the diversity combining vector u is a function of estimated channel

vectors. Therefore, u|s, s1, . . . , sL is a deterministic vector, and from (4.20), we obtain

uHhj|s, s1, . . . , sL ∼ CN
(
ρuHsj, 2

(
1− ρ2

)
uHu

)
= CN

(
ρuHsj, 2

(
1− ρ2

))
(4.21)

in which we have used the assumption that uHu = 1.

The equation (4.21) can also be written as

uHhj√
1− ρ2

∣∣∣s, s1, . . . , sL ∼ CN

(
ρ√

1− ρ2
uHsj, 2

)
(4.22)
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If a p-dimensional random vector g has a multivariate normal distribution Np(m, Ip), then gHg

is distributed as a noncentral chi-square with p degrees of freedom and non-centrality parameter

δ = mHm [91, p. 60]. This distribution is denoted by χ2
p(δ) [90], [91] or χ′p

2(δ) [97] in the

literature. In this Thesis, we use χ2
p(δ) to denote this distribution. So, from (4.22), we obtain

ϕj =
uHhjh

H
j u

1− ρ2

∣∣∣s, s1, . . . , sL ∼ χ2
2

(
ρ2

1− ρ2
uHsjs

H
j u

)
(4.23)

The degrees of freedom for the noncentral chi-square variable in (4.23) is equal to two be-

cause the complex Gaussian random variable in (4.22) consists of two independent Gaussian ran-

dom variables (the real part and the imaginary part) each with unit variance. Note that ϕj’s for

j = 1, . . . , L are independent since channel estimation error vector ej’s for j = 1, . . . , L are

independent. Now, to proceed with deriving the PDF of γ in (4.3), we define ψ as

ψ =
L∑

j=1

ϕj =
1

1− ρ2
uH

(
L∑

j=1

hjh
H
j

)
u

∣∣∣∣∣s, s1, . . . , sL (4.24)

From (4.24) and (4.23), we see that ψ is a summation of L independent noncentral chi-square

random variables. Therefore, ψ in (4.24) is distributed as

ψ ∼ χ2
2L

(
ρ2

1− ρ2
uH

(
L∑

j=1

sjs
H
j

)
u

)
= χ2

2L

(
ρ2

1− ρ2
uHRu

)
= χ2

2L(λ2) (4.25)

where λ2 is given by (4.16).

The equation (4.23) is written for the jth interfering user. A similar relation is also valid for

the desired user, and we have

ϕ =
uHhhHu

1− ρ2

∣∣∣∣∣s, s1, . . . , sL ∼ χ2
2

(
ρ2

1− ρ2
uHssHu

)
= χ2

2(λ1) (4.26)

where λ1 is given by (4.15). Note that random variables ϕ and ψ in (4.26) and (4.24) are indepen-

dent since the channel estimation error vector of the desired user, e, is independent of the channel
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estimation error vectors of the interfering users, ej’s.

If random variables x1 and x2 are independent and x1 ∼ χ2
ν1

(δ1) and x2 ∼ χ2
ν2

(δ2), then

x′ = x1/ν1

x2/ν2
has the doubly noncentral F-distribution of F

′′
ν1,ν2

(δ1, δ2) [97, p. 480]. Since independent

random variables ϕ and ψ in (4.26) and (4.25) are distributed as ϕ ∼ χ2
2(λ1) and ψ ∼ χ2

2L(λ2), the

distribution of LPI

PD
γ conditioned on s, s1, . . . , sL is

LPI

PD

γ|s, s1, . . . , sL =
L uHhhHu

uH

(
L∑

j=1

hjh
H
j

)
u

∣∣∣∣∣s, s1, . . . , sL =
ϕ/2

ψ/(2L)
∼ F

′′
2,2L(λ1, λ2) (4.27)

as stated in (4.14), and therefore, the conditional PDF of γ is given by (4.17) [97, p. 499].

The following Corollary is an immediate result of Theorem 4.1.

Corollary 4.1 The conditional LPI

PD
γoc given channel estimates s, s1, ..., sL when |ρ| < 1, has a

distribution of

LPI

PD

γoc
∣∣s, s1, ..., sL ∼ F

′′
2,2L(λoc

1 , λoc
2 ) (4.28)

where

λoc
1 =

ρ2

1− ρ2

(
sHR−1s

)2

sHR−2s
, (4.29)

and

λoc
2 =

ρ2

1− ρ2

sHR−1s

sHR−2s
(4.30)

Moreover, the conditional PDF of γoc can be written as

fγoc (γoc|s, s1, ..., sL) = fγoc (γoc|λoc
1 , λoc

2 ) = e
−

(
λoc
1 +λoc

2
2

) ∞∑
j=0

∞∑

k=0

c (γoc, j, k) (λoc
1 )j(λoc

2 )k (4.31)
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where c(γoc, j, k) is given by (4.18).

Proof: By substituting (4.11) in (4.15) and (4.16), the expressions of λoc
1 and λoc

2 can be

derived as shown in (4.29) and (4.30). Then, by substituting (4.29) and (4.30) in (4.17) and (4.18),

the PDF expression in (4.31) will be reached.

4.2.2 SIR Distribution

In the last subsection, we obtained the analytical expression of conditional PDF fγoc (γoc|λoc
1 , λoc

2 )

in (4.31). In this subsection, we use that conditional PDF to derive the PDF of γoc. In order

to do this, first we express λoc
1 and λoc

2 in terms of auxiliary random variables with well-known

distributions, and then, we average the conditional PDF in (4.31) over the joint distribution of

these auxiliary random variables.

First, note that matrix R in (4.12) can be written as

R = XXH = (s1, . . . , sL) (s1, . . . , sL)H (4.32)

where X = (s1, . . . , sL) is an N × L random matrix, and L ≥ N . The columns of X are inde-

pendent, and each column is a complex multivariate normal vector with zero mean and covariance

matrix 2IN , i.e. sj ∼ CNN(0, 2IN). Therefore, the matrix R has a complex Wishart distribution

with L degrees of freedom and covariance matrix 2IN [90], [91] denoted by

R ∼ CWN(L, 2IN) (4.33)

where the subscript on CW shows the size of the matrix R.

To proceed with expressing λoc
1 and λoc

2 in terms of random variables with well-known distri-

butions, first we present the following Lemmas which are similar to the Theorems in [92, Ch. 3].

Those Theorems in [92, Ch. 3] are stated for the real Wishart distribution and can be generalized

for the complex Wishart distribution by using the results in [99] as follows:
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Lemma 4.1 Let S ∼ CWp(n, 2Ip) and Γ(p×p) be a constant unitary matrix, i.e. ΓHΓ = ΓΓH =

Ip. Then ΓHSΓ ∼ CWp(n, 2Ip).

Lemma 4.2 Let S ∼ CWp(n, 2Ip) and S = TT H where T = (tij) is an upper triangular matrix

with positive diagonal elements. Then tij’s for 1 ≤ i ≤ j ≤ p are independently distributed,

t2ii ∼ χ2
2(n−p+i) for 1 ≤ i ≤ p, and tij ∼ CN(0, 2) for 1 ≤ i < j ≤ p.

Lemma 4.3 Let S ∼ CWp(n, 2Ip) and partition S as S =




S11 S12

S21 S22


 where S11 and S22

are q × q and (p− q)× (p− q) matrices, respectively. Then S22 ∼ CWp−q(n, 2Ip−q).

Lemma 4.4 Let S ∼ CWp(n, 2Ip) and x ∼ CNp(0, 2Ip) be independent. Then,

n− p + 1

p
xH(CHC)−1x ∼ F2p,2(n−p+1) (4.34)

where S = CCH , the matrix C being nonsingular, and Fp,q is the F-distribution with p and q

degrees of freedom.

Now, we present the following Theorem for the complex Wishart distribution, which is similar

to Theorem 3.3.29 in [92] proved for the real Wishart distribution.

Theorem 4.2 If A ∼ CWp(n, 2Ip), and b is a constant p× 1 complex vector, and b 6= 0, then we

have
bHA−1b

bHA−2b
= θξ (4.35)

and (
bHA−1b

)2

bHA−2b
= bHbθ (4.36)

where θ and ξ are independent random variables. The PDFs of θ and ξ are not functions of b, and

θ ∼ beta(n− p + 2, p− 1) and ξ ∼ χ2
2(n−p+1) (4.37)
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where beta(p, q) denotes the beta distribution with parameters p and q [97], and χ2
n indicates the

chi-square distribution with n degrees of freedom [93].

Proof: The proof of this theorem is similar to that of Theorem 3.3.29 in [92]. From Lemma

4.1, for A ∼ CWp(n, 2Ip) and any unitary matrix Γ(p× p) we have ΓHAΓ ∼ CWp(n, 2Ip). Let

V = (vij) = ΓHAΓ, and choose matrix Γ =

(
(bHb)−

1
2 b Γ1

)
where Γ1 is a p × (p − 1)

matrix. Then A−1 = ΓV −1ΓH ,A−2 = ΓV −2ΓH , and we get

bHA−1b = bHbv11 (4.38)

and

bHA−2b = bHb

p∑
j=1

∣∣v1j
∣∣2 (4.39)

where V −1 = (vij). So, from (4.38) and (4.39) we get

bHA−1b

bHA−2b
=

v11

p∑
j=1

∣∣v1j
∣∣2

(4.40)

Now, let V = TT H , where T is an upper triangular matrix with positive diagonal elements

and partition T as

T =




t11 tH

0 T 22


 (4.41)

and hence,

V =




t211 + tHt tHT22
H

T 22t T22T22
H


 (4.42)
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where tH = (t12, . . . , t1p), and T 22 is a (p− 1)× (p− 1) upper triangular matrix. Then,

T−1 =




t−1
11 −t−1

11 tHT−1
22

0 T−1
22


 (4.43)

and V −1 can be written as

V −1 =
(
TT H

)−1
=




t−2
11 t−2

11 tHT−1
22

−t−2
11

(
T H

22

)−1
t

(
T 22T

H
22

)−1
+ t−2

11

(
T H

22

)−1
ttHT−1

22


 (4.44)

From (4.40) and (4.44), we have

bHA−1b

bHA−2b
=

t−2
11

t−4
11 + t−4

11 tH
(
T H

22T 22

)−1
t

=
t211

1 + tH
(
T H

22T 22

)−1
t

(4.45)

From Lemma 4.2, t11, t and T 22 are independent, t211 ∼ χ2
2(n−p+1) and t ∼ CNp−1(0, 2Ip−1).

From (4.42) by using Lemma 4.3, T 22T
H
22 ∼ CWp−1(n, 2Ip−1). Therefore, from Lemma 4.4 we

get n−p+2
p−1

tH
(
T H

22T 22

)−1
t ∼ F2(p−1),2(n−p+2), and hence [93], 1

1+tH(T H
22T 22)

−1
t
∼ beta (n− p + 2, p− 1).

So, (4.45) can be written as
bHA−1b

bHA−2b
= θξ (4.46)

where

θ =
1

1 + tH
(
T H

22T 22

)−1
t
∼ beta(n− p + 2, p− 1) and ξ = t211 ∼ χ2

2(n−p+1) (4.47)

and random variables θ and ξ are independent. Equations (4.46) and (4.47) are stated in (4.35) and

(4.37).

Now to derive (4.36), from (4.38) and (4.39) we have

(
bHA−1b

)2

bHA−2b
=

bHb (v11)
2

p∑
j=1

∣∣v1j
∣∣2

(4.48)
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From (4.44), equation (4.48) can be written as

(
bHA−1b

)2

bHA−2b
=

bHbt−4
11

t−4
11 + t−4

11 tH
(
T H

22T 22

)−1
t

=
bHb

1 + tH
(
T H

22T 22

)−1
t

(4.49)

So, from (4.47) and (4.49) we get

(
bHA−1b

)2

bHA−2b
= bHbθ (4.50)

as expressed in (4.36).

The next Corollary, which results from Theorem 4.2, expresses random variables λoc
1 and λoc

2

in terms of random variables with well-known distributions.

Corollary 4.2 Non-centrality parameters λoc
2 and λoc

1 in (4.30) and (4.29) can be written as

λoc
2 =

ρ2

1− ρ2
xy (4.51)

and

λoc
1 =

ρ2

1− ρ2
xz (4.52)

where x, y and z are independent random variables, and

x ∼ beta(L−N + 2, N − 1), (4.53)

y ∼ χ2
2(L−N+1) (4.54)

and

z ∼ χ2
2N (4.55)
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Proof: Since the vector s and the matrix R are independent, and R ∼ CWN(L, 2IN), the

random variables λoc
2 and λoc

1 in (4.30) and (4.29) conditioned on s, according to (4.35) and (4.36)

in Theorem 4.2, can be written as

λoc
2 |s =

ρ2

1− ρ2
(x|s)(y|s) (4.56)

and

λoc
1 |s =

ρ2

1− ρ2
sHs(x|s) (4.57)

where x|s and y|s are independent random variables and from (4.37) are distributed as

x|s ∼ beta(L−N + 2, N − 1) and y|s ∼ χ2
2(L−N+1) (4.58)

Now, from (4.56) and (4.57), we get

λoc
2 =

ρ2

1− ρ2
xy (4.59)

and

λoc
1 =

ρ2

1− ρ2
sHsx (4.60)

In order to find the distribution of x and y , note that from (4.58), the PDF’s of x|s and y|s
are not functions of s, and hence, random variables x and y are independent of s. Therefore, from

(4.58), x and y are distributed as

x ∼ beta(L−N + 2, N − 1) and y ∼ χ2
2(L−N+1) (4.61)

as defined in (4.53) and (4.54). Also note that x and y are independent since the joint distribution

of x and y can be written as fxy(x, y) =
∫

fxy(x, y|s)fs(s)ds =
∫

fx(x|s)fy(y|s)fs(s)ds =
∫

fx(x)fy(y)fs(s)ds = fx(x)fy(y)
∫

fs(s)ds = fx(x)fy(y).
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By defining

z = sHs (4.62)

non-centrality parameter λoc
1 in (4.60) can be written as

λoc
1 =

ρ2

1− ρ2
xz (4.63)

Since from (4.10) s ∼ CNN(0, 2IN), random variable z in (4.62) is distributed as

z ∼ χ2
2N (4.64)

as defined in (4.55). Note that since random variables x and y are independent from s, they are

also independent from z in (4.62).

Now, from Corollary 4.2, we can rewrite the conditional PDF in (4.31) according to the fol-

lowing Corollary.

Corollary 4.3 The conditional PDF in (4.31) can be expressed in terms of random variables x, y

and z in (4.53)-(4.55) as

fγoc (γoc|x, y, z) = e
− ρ2(xz+xy)

2(1−ρ2)

∞∑
j=0

∞∑

k=0

c(γoc, j, k)

(
ρ2

1− ρ2

)j+k

xj+kzjyk (4.65)

where c(γoc, j, k) is given by (4.18).

Proof: The expression in (4.65) can be directly obtained by substituting (4.51) and (4.52) in

(4.31).

Now, we can derive the PDF of γoc as stated in the following Theorem.

Theorem 4.3 The PDF of γoc for |ρ| < 1 can be expressed as

fγoc(γoc) =
L (1− ρ2)

L−N+2

(
PD

PI
+ γoc

)L+1

(
PD

PI

)L

F2

[
L−N + 2, N, L−N + 1; 1, L;

ρ2γoc

PD

PI
+ γoc

,

PD

PI
ρ2

PD

PI
+ γoc

]

(4.66)
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where F2[a, b, b′; c, c′; v, w] is the Appell hypergeometric function defined as [94]

F2[a, b, b′; c, c′; v, w] =
∞∑

j=0

∞∑

k=0

(a)j+k(b)j(b
′)k

(c)j(c′)k

vj

j!

wk

k!
(4.67)

and the Pochhammer symbol (a)j is defined in (A.2) in Appendix A.

Proof: The PDF expression in (4.66) can be obtained by integrating the conditional PDF in

(4.65) over the joint distribution of x, y and z in (4.53)-(4.55). Since according to Corollary 4.2

random variables x, y and z are independent, from (4.65) the PDF of γoc can be written as

fγoc(γoc) =

∫ ∫ ∫
fγoc (γoc|x, y, z) fx(x)fy(y)fz(z)dxdydz

=
∞∑

j=0

∞∑

k=0

c(γoc, j, k)

(
ρ2

1− ρ2

)j+k

×
∫ 1

0

xj+k

(∫ ∞

0

e
− ρ2xz

2(1−ρ2) zjfz(z)dz

)(∫ ∞

0

e
− ρ2xy

2(1−ρ2) ykfy(y)dy

)
fx(x)dx

(4.68)

where the PDFs of x, y, and z in (4.53)-(4.55) are [93]

fx(x) =
Γ(L + 1)

Γ(L−N + 2)Γ(N − 1)
xL−N+1(1− x)N−2, 0 ≤ x ≤ 1 (4.69)

fy(y) =
yL−N

2L−N+1Γ(L−N + 1)
e−y/2, y ≥ 0 (4.70)

and

fz(z) =
zN−1

2NΓ(N)
e−z/2, z ≥ 0 (4.71)

where the Gamma function Γ(·) is defined in (A.1) in Appendix A.
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The integral term in (4.68) can be calculated as [96, eqs. (3.381.4), (3.197.4)]

∫ 1

0

xj+k

( ∫ ∞

0

e
− ρ2xz

2(1−ρ2) zjfz(z)dz

)( ∫ ∞

0

e
− ρ2xy

2(1−ρ2) ykfy(y)dy

)
fx(x)dx

= 2j+k(N)j(L−N + 1)k

∫ 1

0

(
1− ρ2

1 + ρ2(x− 1)

)j+k+L+1

xj+kfx(x)dx

=
2j+k(L−N + 2)j+k(N)j(L−N + 1)k

(L + 1)j+k

(
1− ρ2

)L−N+j+k+2

(4.72)

Now, by substituting (4.18) and (4.72) in (4.68), we get

fγoc(γoc) =
(1− ρ2)

L−N+2

(
PD

PI
+ γ

)L+1

(
PD

PI

)L ∞∑
j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)kρ
2(j+k)(γoc)j

(
PD

PI

)k

(L + 1)j+kB(j + 1, k + L)j!k!
(

PD

PI
+ γoc

)j+k

(4.73)

From (A.4) and (A.2), the expression in (4.73) can be simplified to

fγoc(γoc) =
L (1− ρ2)

L−N+2

(
PD

PI
+ γoc

)L+1

(
PD

PI

)L

×
∞∑

j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)k

(1)j(L)kj!k!

(
ρ2γoc

PD

PI
+ γoc

)j (
PD

PI
ρ2

PD

PI
+ γoc

)k

(4.74)

which results in (4.66).

The infinite series in (4.67) is convergent for |v|+ |w| < 1 [94]. Therefore, for |ρ| < 1 the PDF

expression in (4.66) is convergent since
∣∣∣∣ ρ2γoc

PD
PI

+γoc

∣∣∣∣ +

∣∣∣∣
PD
PI

ρ2

PD
PI

+γoc

∣∣∣∣ = |ρ2| < 1.

For |ρ| = 1, the PDF of γoc is obtained in [65, eq. (13)] and can be expressed as

fγoc(γoc) =

(
PD

PI

)L−N+1

(γoc)N−1

B(N,L−N + 1)
(

PD

PI
+ γoc

)L+1
(4.75)
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Note that for ρ = 0, the PDF expression in (4.74) can be simplified to

fγoc(γoc) =
L

(
PD

PI

)L

(
PD

PI
+ γoc

)L+1
for ρ = 0 (4.76)

Expression (4.76) shows that for ρ = 0 the PDF of SIR is not a function of N , the number of

antennas.

Now, we study the PDF expression in (4.74) for the special case of N = 1. To simplify the

PDF expression for N = 1, we use the following equation [95, eq. (1.4.9)]

∞∑
j=0

∞∑

k=0

g(j + k)
vj

j!

wk

k!
=

∞∑

l=0

g(l)

l!
(v + w)l (4.77)

where g(j + k) is a function of the sum of the indices of summation only, not involving them

separately. From (4.77), the expression (4.74) for N = 1 can be written as

fγoc(γoc) =
L (1− ρ2)

L+1

(
PD

PI
+ γoc

)L+1

(
PD

PI

)L ∞∑
j=0

∞∑

k=0

(L + 1)j+k

j!k!

(
ρ2γoc

PD

PI
+ γoc

)j (
PD

PI
ρ2

PD

PI
+ γoc

)k

=
L (1− ρ2)

L+1

(
PD

PI
+ γoc

)L+1

(
PD

PI

)L ∞∑

l=0

(L + 1)l

l!

(
ρ2γoc

PD

PI
+ γoc

+

PD

PI
ρ2

PD

PI
+ γoc

)l

=
L (1− ρ2)

L+1

(
PD

PI
+ γoc

)L+1

(
PD

PI

)L ∞∑

l=0

(L + 1)l

l!

(
ρ2

)l for N = 1 (4.78)

To simplify the expression (4.78) further, we use the Taylor series (1 − v)−a =
∞∑

j=0

(a)j

j!
vj to

obtain

fγoc(γoc) =
L (1− ρ2)

L+1

(
PD

PI
+ γoc

)L+1

(
PD

PI

)L (
1− ρ2

)−(L+1)
=

L
(

PD

PI

)L

(
PD

PI
+ γoc

)L+1
for N = 1 (4.79)

Expression (4.79) shows that for N = 1 the PDF of SIR is not a function of ρ. This result can
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be justified as follows: For N = 1 no diversity combining is possible, and hence, channel estimates

at the receiver cannot be used to perform any type of combining. Therefore, the quality of channel

estimates, as measured by |ρ|, has no impact on the SIR and its PDF.

Note that (4.79) is the same expression as (4.76). Therefore, we have

fγoc(γoc) =
L

(
PD

PI

)L

(
PD

PI
+ γoc

)L+1
for N = 1 or ρ = 0 (4.80)

Note that since from (4.80) the PDF expression for N = 1 is the same for all ρ’s, the expression

(4.80) should be equal to the result with perfect channel estimation (ρ = 1) when N = 1, and

indeed (4.80) is identical to the expression for the PDF of SIR in the case of perfect channel

estimation in (4.75) when N = 1.

4.3 Performance Analysis

In this section, we use PDF expression (4.66), or equivalently (4.73) , to derive analytical ex-

pressions for other measures of performance such as the moments of SIR, outage probability and

average bit error probability.

4.3.1 Moments of SIR

The nth moment of γoc when |ρ| < 1, from (4.73), can be written as

E ((γoc)n) =
(
1− ρ2

)L−N+2
(

PD

PI

)L ∞∑
j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)kρ
2(j+k)

(
PD

PI

)k

(L + 1)j+kj!k!B(j + 1, k + L)

×
∫ ∞

0

(γoc)j+n

(
PD

PI
+ γoc

)j+k+L+1
dγoc (4.81)

From (A.3), the integral term in (4.81), for n < k + L can be written in terms of the beta
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function:

∫ ∞

0

(γoc)j+n

(
PD

PI
+ γoc

)j+k+L+1
dγoc =

B(j + n + 1, k + L− n)(
PD

PI

)k+L−n
(4.82)

When n ≥ k + L, the integral term in (4.81) is infinite since the order of the denominator is

not greater than the order of the numerator plus one.

By substituting (4.82) in (4.81), and from (A.4) and (A.2), the expression of the nth moment

of γoc for |ρ| < 1 when n < L can be simplified to

E ((γoc)n) =
Γ(n + 1)Γ(L− n) (1− ρ2)

L−N+2

Γ(L)

(
PD

PI

)n

×
∞∑

j=0

∞∑

k=0

(L−N + 2)j+k(N)j(n + 1)j(L−N + 1)k(L− n)kρ
2(j+k)

(L + 1)j+k(1)j(L)kj!k!
(4.83)

and is infinite for n ≥ L.

Now, from (4.83), when |ρ| < 1 the nth moment of γoc for n ≥ L is infinite, and for n < L

can be expressed as

E ((γoc)n) =
Γ(n + 1)Γ(L− n) (1− ρ2)

L−N+2

Γ(L)

(
PD

PI

)n

×F 1:2;2
1:1;1




L−N + 2 : N,n + 1 ; L−N + 1, L− n ;

ρ2, ρ2

L + 1 : 1 ; L ;




(4.84)

where the Gamma function Γ(·) is defined in (A.1) in Appendix A, and the Kampé de Fériet
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function F 1:2;2
1:1;1




a : b1, b2 ; c1, c2 ;

v, w

α : β ; γ ;




is defined as [94]

F 1:2;2
1:1;1




a : b1, b2 ; c1, c2 ;

v, w

α : β ; γ ;




=
∞∑

j=0

∞∑

k=0

(a)j+k(b1)j(b2)j(c1)k(c2)k

(α)j+k(β)j(γ)k

vj

j!

wk

k!
(4.85)

and is convergent if max (|v|, |w|) < 1. Therefore, for |ρ| < 1 the expression (4.84) is convergent

since max (|ρ2|, |ρ2|) = |ρ2| < 1.

When |ρ| = 1, from (4.75), (A.3) and (A.4), the nth moment of SIR for n < L−N + 1 can be

written as

E
(
(γoc)n

)
=

(
PD

PI

)L−N+1

B(N,L−N + 1)

∫ ∞

0

(γoc)N+n−1

(
PD

PI
+ γoc

)L+1
dγoc

=

(
PD

PI

)L−N+1

B(N,L−N + 1)
B(N + n, L−N + 1− n)

(
PD

PI

)N+n−L−1

=
Γ(n + N)Γ(L−N + 1− n)

(
PD

PI

)n

Γ(N)Γ(L−N + 1)
(4.86)

and is infinite when n ≥ L−N + 1.

The expression (4.86) is equivalent to [66, eq. (21)] when the desired user is subject to Rayleigh

fading, i.e. when the parameter D in [66, eq. (21)] is equal to zero. For n = 1, expression (4.86)

reduces to [65, eq. (14)].
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From (4.77), the expression (4.83) for N = 1 can be simplified to

E ((γoc)n) =
Γ(n + 1)Γ(L− n) (1− ρ2)

L+1

Γ(L)

(
PD

PI

)n ∞∑
j=0

(n + 1)j

j!

(
ρ2

)j
∞∑

k=0

(L− n)k

k!

(
ρ2

)k

=
Γ(n + 1)Γ(L− n) (1− ρ2)

L+1

Γ(L)

(
PD

PI

)n (
1− ρ2

)−(n+1) (
1− ρ2

)−(L−n)

=
Γ(n + 1)Γ(L− n)

Γ(L)

(
PD

PI

)n

for N = 1 (4.87)

Note that for ρ = 0, the expression in (4.83) can also be simplified to expression (4.87).

Therefore, the nth moment of γoc for ρ = 0 or N = 1 can be simplified to

E ((γoc)n) =
Γ(n + 1)Γ(L− n)

Γ(L)

(
PD

PI

)n

for N = 1 or ρ = 0 (4.88)

which is equivalent to the expression of the nth moment of SIR in the case of perfect channel

estimation in (4.86) when there is only one antenna at the receiver (N = 1). For n = 1, (4.88)

becomes

E(γoc) =
PD

PI(L− 1)
for N = 1 or ρ = 0 (4.89)

Therefore, from (4.89), we observe that as ρ goes to zero, the average SIR falls to the level

attained when there is only one antenna, regardless of the actual number of antennas, N . Moreover,

for N = 1 the average SIR is independent of the value of ρ.
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4.3.2 Outage Probability

From (4.73), the outage probability when |ρ| < 1 can be written as

Pout =

∫ γ0

0

fγoc(γoc)dγoc

=
(
1− ρ2

)L−N+2
(

PD

PI

)L ∞∑
j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)kρ
2(j+k)

(
PD

PI

)k

(L + 1)j+kj!k!B(j + 1, k + L)

×
∫ γ0

0

(γoc)j

(
PD

PI
+ γoc

)j+k+L+1
dγoc (4.90)

From (A.5), the integral term in (4.90) can be written in terms of the incomplete beta function:

∫ γ0

0

(γoc)j

(
PD

PI
+ γoc

)j+k+L+1
dγoc =

B γ0
PD
PI

+γ0

(j + 1, k + L)

(
PD

PI

)k+L
(4.91)

By substituting (4.91) in (4.90), the outage probability when |ρ| < 1 can be simplified to

Pout =
(
1− ρ2

)L−N+2
∞∑

j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)kρ
2(j+k)

(L + 1)j+kj!k!B(j + 1, k + L)
B γ0

PD
PI

+γ0

(j + 1, k + L)

=
(
1− ρ2

)L−N+2
∞∑

j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)kρ
2(j+k)

(L + 1)j+kj!k!
I γ0

PD
PI

+γ0

(j + 1, k + L)

(4.92)

where the regularized incomplete beta function Iw(a, b) is defined in (A.6).

From (A.3) and (A.5), we see that for real p and q the B(p, q) and Bw(p, q) are real and non-

negative, and Bw(p, q) is always less than or equal to B(p, q) for 0 ≤ w ≤ 1. Hence, from (A.6),

0 ≤ Iw(p, q) ≤ 1 for 0 ≤ w ≤ 1 when p and q are real. Therefore, the infinite summation in (4.92)

is upper bounded by

UBPout =
(
1− ρ2

)L−N+2
∞∑

j=0

∞∑

k=0

(L−N + 2)j+k(N)j(L−N + 1)k

(L + 1)j+k

(ρ2)
j

j!

(ρ2)
k

k!
(4.93)
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Each term in (4.92) is less than or equal to the corresponding term in (4.93). The expression

(4.93) is equal to (4.83) when n = 0. We showed in the last section that (4.83) is convergent for

|ρ| < 1. So, (4.93) is convergent when |ρ| < 1, and thus the outage probability expression in (4.92)

is convergent as well for |ρ| < 1. Note that (4.93) is actually equal to one since from (4.83) for

n = 0 we have E
(
(γoc)0) = E(1) = 1. Moreover, since from (A.3), (A.5) and (A.6), I1(a, b) = 1

∀ a, b, the expression (4.93) is equal to the outage probability when γ0 → ∞ which is equal to

one as well.

When |ρ| = 1, from (4.75), (A.5) and (A.6), the outage probability can be expressed as

Pout =

(
PD

PI

)L−N+1

B(N, L−N + 1)

∫ γ0

0

(γoc)N−1

(
PD

PI
+ γoc

)L+1
dγoc

=

(
PD

PI

)L−N+1

B(N, L−N + 1)
B γ0

PD
PI

+γ0

(N, L−N + 1)

(
PD

PI

)N−L−1

= I γ0
PD
PI

+γ0

(N,L−N + 1) (4.94)

It can be shown by using [98, eq. (26.5.24)] that the expression (4.94) is equivalent to the

outage probability expression in [67, eq. (9)].

For N = 1, from (4.79), the outage probability expression can be simplified to

Pout = L

(
PD

PI

)L ∫ γ0

0

1(
PD

PI
+ γoc

)L+1
dγoc = 1−

(
PD

PI

PD

PI
+ γ0

)L

for N = 1 (4.95)

Note that from (A.6), the integral term in (4.95) can also be expressed in terms of the regular-

ized incomplete beta function:

Pout = LB γ0
PD
PI

+γ0

(1, L) =
1

B(1, L)
B γ0

PD
PI

+γ0

(1, L) = I γ0
PD
PI

+γ0

(1, L) for N = 1 (4.96)

For ρ = 0, expression (4.92) can also be simplified to (4.96). Therefore, from (4.95) and (4.96),
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the outage probability expression for N = 1 or ρ = 0 can be written as

Pout = 1−
(

PD

PI

PD

PI
+ γ0

)L

= I γ0
PD
PI

+γ0

(1, L) for N = 1 or ρ = 0 (4.97)

The result in (4.97) is equivalent to the expression of outage probability in the case of perfect

channel estimation in (4.94) when N = 1, as expected.

4.3.3 Average Bit Error Probability

Similar to Subsection 3.2.2, if we assume that the interference in (4.2) conditioned on u and hj’s

is complex Gaussian, then the BEP conditioned on u, h and hj’s for binary DPSK and binary

NCFSK is a function only of γ defined in (4.3), and can be expressed as

Pb (E|u, h, h1, . . . , hL) = Pb (E|γ) =
1

2
exp (−αγ) (4.98)

where

α =





1, for binary DPSK

1
2
, for binary NCFSK

(4.99)

The average BEP can be obtained by averaging the conditional BEP in (4.98) over the PDF of

SIR. Therefore, from (4.74) and (4.98), the average BEP when |ρ| < 1 can be written as

Pb(E) =

∫ ∞

0

Pb(E|γoc)fγoc(γoc)dγoc

= L
(
1− ρ2

)L−N+2
(

PD

PI

)L ∞∑
j=0

∞∑

k=0

ρ2(j+k)
(L−N + 2)j+k(N)j(L−N + 1)k

(
PD

PI

)k

(1)j(L)kj!k!

×
∫ ∞

0

(γoc)jexp(−αγoc)

2
(

PD

PI
+ γoc

)j+k+L+1
dγoc (4.100)
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From (A.7) and (A.2), the expression of the average BEP for binary DPSK and binary NCFSK

in (4.100) when |ρ| < 1 can be simplified to

Pb(E) = L
(
1− ρ2

)L−N+2
∞∑

j=0

∞∑

k=0

ρ2(j+k)(L−N + 2)j+k

2(L)kj!k!
(N)j(L−N + 1)k

×U

(
j + 1, 1− k − L,

αPD

PI

)
(4.101)

From (A.7), for real a, b and x the U(a, b, x) is real and nonnegative. Moreover, 0 ≤ exp(−xt) ≤
1 for real nonnegative x when t ≥ 0. Therefore, from (A.3) and (A.4), for real a, b and x we have

0 ≤ U(a, b, x) =
1

Γ(a)

∫ ∞

0

ta−1exp(−xt)

(1 + t)1+a−b
dt

≤ 1

Γ(a)

∫ ∞

0

ta−1

(1 + t)1+a−b
dt

=
1

Γ(a)
B(a, 1− b) for a > 0 and b < 1

=
Γ(1− b)

Γ(a− b + 1)
for a > 0 and b < 1 (4.102)

From (4.102), we get 0 ≤ U
(
j + 1, 1− k − L, αPD

PI

)
≤ Γ(k+L)

Γ(j+k+L+1)
, and hence, from (A.2),

the expression (4.101) is upper bounded by

UBPb(E) =
(
1− ρ2

)L−N+2
∞∑

j=0

∞∑

k=0

(L−N + 2)j+k

2(L + 1)j+k

(N)j(L−N + 1)k
(ρ2)

j

j!

(ρ2)
k

k!
(4.103)

From (4.93) and (4.103), note that UBPb(E) = 1
2
UBPout . We showed in the last section that

UBPout is convergent for |ρ| < 1. Therefore, (4.103) is convergent when |ρ| < 1, and hence the

average BEP expression in (4.101) is also convergent for |ρ| < 1.

When |ρ| = 1, from (4.75) and (4.98), the average BEP for binary DPSK and binary NCFSK
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can be expressed as

Pb(E) =

(
PD

PI

)L−N+1

B(N, L−N + 1)

∫ ∞

0

(γoc)N−1 exp(−αγoc)

2
(

PD

PI
+ γoc

)L+1
dγoc

=
Γ(L + 1)

2Γ(L−N + 1)
U

(
N,N − L,

αPD

PI

)
(4.104)

4.3.4 Numerical Results

In this section, we present a set of numerical results for several performance measures of OC in

the presence of channel estimation errors. These results are obtained for an interference-limited

system over flat Rayleigh fading channels with multiple equal power interferers. We consider

different numbers of receive antennas N and interfering users L when the power of the desired

user to the power of an interfering user is PD/PI = 10. It is apparent from (4.5) that when

the channel estimation error variance decreases, the correlation between the exact and estimate

channels increases. Therefore, to find the effect of channel estimation errors, the performance of

OC is examined for different correlation coefficients in this section.

In Figs. 4.1 and 4.2, we verify the analytical expression derived for the PDF of SIR in (4.66).

The PDF of the output SIR is plotted by both the analytical expression and Monte Carlo simulation

for ρ = 0.8, N = 6 and L = 6 in Fig. 4.1, and for ρ = 0.8, N = 8 and L = 8 in Fig. 4.2. The

number of samples used by the simulations is 100000 in Fig. 4.1 and 200000 in Fig. 4.2. It is clear

that the theoretical results match the simulation ones.

Figs. 4.3 and 4.4 show the effect of correlation coefficient on the PDF of SIR. The PDF’s

are plotted in Fig. 4.3 for N = 6 and L = 6, and in Fig. 4.4 for N = 2 and L = 6 by using

expressions (4.66) and (4.75) for different correlation coefficients. We can see in both figures that

SIR has a better chance to take on larger values as the correlation between the exact and estimated

channels increases. However, it is evident that for larger values of SIR the gap between different

PDF curves in Fig. 4.4 (for N = 2) is smaller in comparison with the PDF curves in Fig. 4.3 (for

N = 6). Therefore, the PDF of SIR is more sensitive to channel estimation error when there are
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Figure 4.1: Probability density function of the output SIR for ρ = 0.8, N = 6 and L = 6 by using
both analytical and simulation results.
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Figure 4.2: Probability density function of the output SIR for ρ = 0.8, N = 8 and L = 8 by using
both analytical and simulation results.
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Figure 4.3: Effect of the correlation coefficient on the probability density function of the output
SIR for N = 6 and L = 6.

more antennas at the receiver.

In Fig. 4.5 and 4.6, the PDF of SIR is shown for several correlation coefficients when L = 8.

The curves are plotted for N = 8 in Fig. 4.5 and for N = 2 in Fig. 4.6 by using the expressions in

(4.66) and (4.75). The PDF curves again shift to the right as the correlation coefficient increases.

For larger values of SIR, the gap between different PDF curves in Fig. 4.5 (for N = 8) is also

larger in comparison with the curves in Fig. 4.6 (for N = 2), which shows again as the number

of receive antenna increases the performance of OC becomes more sensitive to channel estimation

error.

The average SIR is plotted versus the square of the correlation coefficient in Fig. 4.7 for

different numbers of antennas, N , by both theory (expressions (4.84) and (4.86) for n = 1) and

simulation when L = 6. We can see that except for N = 1, the average SIR increases as the

correlation coefficient increases, and this performance improvement is more significant with a

larger number of antennas at the receiver. For instance, as ρ2 increases from 0.9 to 1, the average
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Figure 4.4: Effect of the correlation coefficient on the probability density function of the output
SIR for N = 2 and L = 6.

SIR increases from 18.76 to 50 for N = 5, while it only improves from 4.53 to 5 in the case of

N = 2. The theoretical results in Fig. 4.7 match precisely Monte Carlo simulations, which verifies

the derived expression in (4.84) for n = 1.

Fig. 4.8 shows the outage probability for threshold γ0 = 5 dB against the square of the corre-

lation coefficient with N as the parameter by using both analytical expressions (expressions (4.92)

and (4.94)) and simulation when L = 6. We observe again that performance improvement due to

the increase of the correlation coefficient is more considerable when there is a larger number of

antennas. For example, as ρ2 increases from 0.9 to 1, the outage probability decreases only from

0.4876 to 0.4428 when N = 2, whereas it decreases significantly from 5.01× 10−2 to 3.84× 10−3

for N = 5. The analytical and simulation results in Fig. 4.8 match exactly as well, which verifies

the analytical expression derived in (4.92).

In Figs. 4.9 and 4.10, the outage probability of OC is plotted versus the SIR threshold γ0

for various correlation coefficients. The curves are plotted for N = 6 and L = 6 in Fig. 4.9,
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Figure 4.5: Effect of the correlation coefficient on the probability density function of the output
SIR for N = 8 and L = 8.
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Figure 4.6: Effect of the correlation coefficient on the probability density function of the output
SIR for N = 2 and L = 8.
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Figure 4.7: Average SIR versus the square of the correlation coefficient for different numbers of
antennas when L = 6.
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Figure 4.8: Outage probability versus the square of the correlation coefficient for different numbers
of antennas when γ0 = 5 dB and L = 6.
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and for N = 3 and L = 6 in Fig. 4.10 by using the analytical expressions in (4.92) and (4.94).

It is apparent that for a given SIR threshold, increasing the correlation coefficient reduces the

outage probability. We can see that increasing the correlation coefficient does not lower the outage

probability for N = 3 in Fig. 4.10 compared with the case of N = 6 in Fig. 4.9. For instance, for

threshold γ0 = 5 dB, as ρ increases from 0.9 to 1, the outage probability decreases from 0.148 to

1.92 × 10−4 for N = 6, while it only decreases from 0.286 to 0.154 in the case of N = 3. As an

another example, for the outage probability Pout = 7× 10−2, when ρ increases from 0.9 to 1, SIR

threshold changes 10.2 dB, while the improvement is only 2.8 dB for N = 3. Therefore, we again

see that with more antennas at the receiver the performance improvement due to better channel

estimation is more significant.

The theoretical and simulation results for the average BEP are plotted versus the square of the

correlation coefficient in Fig. 4.11 for DPSK signals and for different number of antennas, N ,

when L = 6. For theoretical results, the expressions (4.101) and (4.104) are used with α = 1. The

curves show that the decrease of the average BEP due to the increase of the correlation coefficient

is more substantial with a larger N . For instance, as ρ2 increases from 0.9 to 1, the analytical result

of the average BEP decreases dramatically from 5.3 × 10−3 to 3.5 × 10−4 for N = 5, while it

only decreases from 6.9 × 10−2 to 5.55 × 10−2 when N = 2. Although the theoretical results for

the average BEP are derived under the Gaussian distributed interference assumption, we can see a

very good match between the theory and simulation from the figure.

In Fig. 4.12, the effect of thermal noise on the performance of the system is examined by using

Monte Carlo simulation when the power of noise is 0.5PI , ρ = 0.8, N = 3 and L = 6. We can see

that our analytical result in interference-limited systems is very close to the result for the systems

with low power thermal noise.

Note that analytical expressions in (4.66), (4.84), (4.92), and (4.101) contain infinite sum-

mations. To evaluate these expressions, we have to generate a sufficient number of terms in the

summations. The number of terms is incremented until the last term is smaller than a threshold.

We observe that fortunately not too many terms are needed for convergence and calculation of
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Figure 4.9: Outage probability versus the threshold γ0 with the correlation coefficient as the pa-
rameter when N = 6 and L = 6.

0 5 10 15
10

−2

10
−1

10
0

Threshold γ
0
 (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y 

P
ou

t

ρ=0
ρ=0.6
ρ=0.8
ρ=0.9
ρ=1

Figure 4.10: Outage probability versus the threshold γ0 with the correlation coefficient as the
parameter when N = 3 and L = 6.
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and L = 6 when the power of noise is 0.5PI .



4.4. STATISTICAL ANALYSIS IN RICIAN/RAYLEIGH FADING CHANNELS 123

these expressions numerically in MATLAB. Therefore, although these expressions contain infinite

summations, they can be evaluated with finite complexity. For example, to compute the average

SIR in Fig. 4.7 for N = 5, L = 6 and ρ2 = 0.5, only about 150 terms are needed to calculate

the average SIR expression in (4.84) such that the last term in (4.84) is less than 10−4. As another

example, note from Fig. 4.9 that for N = 6, L = 6, ρ = 0.97, and threshold γ0 = 2.5 dB, the out-

age probability is about 10−2. Therefore, to evaluate the outage probability for this case by Monte

Carlo simulation, at least 104 samples of SIR should be simulated (to observe at least 100 SIR sam-

ples less than the given threshold). However, we find that to compute the theoretical expression of

the outage probability in (4.92) for this case numerically only 200 terms are adequate such that the

last term in (4.92) is less than 10−6, which shows how efficient the analytical expressions are in

comparison with the Monte Carlo simulations. Therefore, the derived theoretical expressions are

very efficient alternatives to time-consuming Monte Carlo simulations in performance evaluation.

4.4 Statistical Analysis in Rician/Rayleigh Fading Channels

The statistical analysis in Section 4.2 is performed for the case when the channel of the desired

user as well as the channels of interfering users are subject to Rayleigh fading. In this section, we

generalize the results of Section 4.2 to a Rician/Rayleigh fading environment where the desired

user is subject to Rician fading while the interferers experience Rayleigh fading.

The assumption of Rayleigh fading for both the desired and interfering users is reasonable for

macro-cellular (medium to large cell) systems since the distance between the mobile station and the

base station is large enough that the line-of-sight (LOS) component can be ignored for the desired

user. For micro-cellular systems, especially for urban and indoor micro-cellular system configura-

tions, the interferers from distant co-channel cells can be characterized by Rayleigh distributions

as well since it is unlikely that a LOS exists between a co-channel interferer and the desired user’s

base station. However, since the cell size is smaller in these systems, the desired user and the

base station are not far enough apart to ignore the LOS component [101], [102], and Rayleigh
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fading may not be a good model for the channel between the desired user and the base station.

Therefore, the desired user experiences Rician fading implying the presence of a LOS within the

micro-cell while the interferers are subject to Rayleigh fading indicating the absence of a LOS

between co-channel cells of a micro-cellular system. This model describes the Rician/Rayleigh

fading environment explained in [103], [104].

The analysis in this section is valid for interference-limited systems with Gaussian distributed

channel estimation errors. We assume that the interferers have equal power, and the number of

interferers exceeds or is equal to the number of antennas. Using multivariate statistical analysis,

we derive an exact closed-form expression for the PDF of the output SIR. The theoretical result is

verified by Monte Carlo simulations.

4.4.1 System Model

We consider again the uplink (mobile to base station) of a wireless communication system in the

presence of L interferers. The receiver is equipped with N antenna elements, and N ≤ L. The

system is assumed to be interference limited, and all the interferers are received with the same

average power. The N × 1 baseband received signal vector r is given by

r =
√

PDhd +
L∑

j=1

√
PIhjdj (4.105)

where d and dj are independent symbols with zero mean and unit variance for the desired and

the jth interfering users, respectively. The complex Gaussian distributed vectors h and hj corre-

spond to the flat Rician and Rayleigh fading channels for the desired user and the jth interferer,

respectively, and are mutually independent. We indicate the mean vector of the desired channel by

m representing the LOS vector. It is assumed that the receiver antennas are far enough apart, so

the fading coefficients at different antennas are independent. Therefore, h ∼ CNN(m, 2IN ) and

hj ∼ CNN(0, 2IN ) where CNp(η,Φ) denotes a complex multivariate normal distribution for a

p-dimensional random vector with mean η and covariance matrix Φ, and IN is an N ×N identity
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matrix. Received signal powers PD and PI correspond to the desired and the interfering users,

respectively.

Similar to Section 4.1, we assume that channel estimation error vectors are circularly symmet-

ric Gaussian distributed. In other words, similar to (4.8) we have

e ∼ CNN

(
0, 2

(
1− ρ2

)
IN

)
and ej ∼ CNN

(
0, 2

(
1− ρ2

)
IN

)
. (4.106)

where e and ej are the channel estimation error vectors of the desired user and the jth interferer,

respectively, and ρ is the correlation coefficient between the true and estimated channels.

Now, from (4.106), the channel estimate vectors are distributed as

ĥ ∼ CNN(m, 2ρ2IN) and ĥj ∼ CNN(0, 2ρ2IN) (4.107)

where ĥ and ĥj denote the estimated channel vectors of the desired user and the jth interferer,

respectively.

In this section, we assume that ρ 6= 0, and to simplify the following analysis without loss of

generality, we define

s =
ĥ

ρ
and sj =

ĥj

ρ
(4.108)

Note that from (4.107) and (4.108), vectors s and sj’s are distributed as

s ∼ CNN

(
m

ρ
, 2IN

)
and sj ∼ CNN(0, 2IN) (4.109)

As mentioned in Section 4.1, the normalized OC vector based on s and sj’s can be written as

uoc =
R−1s∥∥R−1s

∥∥ (4.110)
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where ‖.‖ denotes the norm of a vector, and the matrix R in (4.110) is again defined as

R =
L∑

j=1

sjs
H
j (4.111)

and similar to Section 4.1, the SIR γoc at the output of the optimum combiner can be written as

γoc =
PDsHR−1hhHR−1s

PIsHR−1

(
L∑

j=1

hjh
H
j

)
R−1s

(4.112)

4.4.2 Statistical Analysis

In order to derive the PDF of γoc, similar to Section 4.2 first we obtain the PDF of γoc conditioned

on the channel estimates.

To get the conditional distribution of SIR, we use Corollary 4.1 mentioned in Section 4.2. The

results of that Corollary is still valid in this section because Corollary 4.1 (or Theorem 4.1 from

which Corollary 4.1 is derived) is based on the assumption that channel estimation errors of the

desired user and interfering user are circularly symmetric Gaussian distributed, and we know from

(4.106) that channel estimation errors in this section are circularly symmetric Gaussian distributed,

like channel estimation errors in (4.8) in Section 4.2.

As demonstrated in Corollary 4.1, the PDF of γoc conditioned on s, s1, ..., sL for |ρ| < 1 can

be written as

fγoc(γoc|s, s1, ..., sL) = e
−

(
λoc
1 +λoc

2
2

)

×
∞∑

j=0

∞∑

k=0

(
PD

PI

)k+L

(γoc)j

(
PD

PI
+ γoc

)j+k+L+1

2j+kB(1 + j, L + k)j!k!
(λoc

1 )j(λoc
2 )k

(4.113)
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where non-centrality parameters λoc
1 and λoc

2 are defined as

λoc
1 =

ρ2

1− ρ2

(
sHR−1s

)2

sHR−2s
, (4.114)

and

λoc
2 =

ρ2

1− ρ2

sHR−1s

sHR−2s
(4.115)

Now, we obtain the PDF of γoc from the conditional PDF found in (4.113). In order to find

fγoc(γoc), similar to Section 4.2 first we express non-centrality parameters λoc
1 and λoc

2 in terms of

random variables with well-known distributions.

Note that the matrix R in (4.111) depends only on sj’s, the interfering users’ fading channels,

and does not depend on s, the desired user’s channel. Moreover, in this section similar to Section

4.2 , it is assumed that the interferers are subject to Rayleigh fading, i.e. sj ∼ CNN(0, 2IN).

Therefore, R in (4.111) has the same distribution as R in (4.12) since in both cases the interferers

experience Rayleigh fading. So, similar to Section 4.2, matrix R in (4.111) has a complex Wishart

distribution with L degrees of freedom and covariance matrix 2IN denoted by

R ∼ CWN(L, 2IN) (4.116)

Now, similar to Corollary 4.2 in Section (4.2), we can use Theorem 4.2 (which was presented

for complex Wishart distributions) to derive the following result.

Lemma 4.5 Non-centrality parameters λoc
2 and λoc

1 in (4.115) and (4.114) can be written as

λoc
2 =

ρ2

1− ρ2
xy (4.117)
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and

λoc
1 =

ρ2

1− ρ2
xz (4.118)

where x, y and z are independent random variables, and

x ∼ beta(L−N + 2, N − 1), (4.119)

y ∼ χ2
2(L−N+1) (4.120)

and

z ∼ χ2
2N

(
mHm

ρ2

)
(4.121)

where χ2
ν(δ) denotes a noncentral chi-square distribution with ν degrees of freedom and non-

centrality parameter δ [97].

Proof: The proof of this Lemma is similar to that of Corollary 4.2 in Section (4.2). Since the

vector s and the matrix R are independent, and R ∼ CWN(L, 2IN), the random variables λoc
2 and

λoc
1 in (4.115) and (4.114) conditioned on s, according to (4.35) and (4.36) in Theorem 4.2, can be

written as

λoc
2 |s =

ρ2

1− ρ2
(x|s)(y|s) (4.122)

and

λoc
1 |s =

ρ2

1− ρ2
sHs(x|s) (4.123)

where x|s and y|s are independent random variables and from (4.37) are distributed as

x|s ∼ beta(L−N + 2, N − 1) and y|s ∼ χ2
2(L−N+1) (4.124)
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Now, from (4.122) and (4.123), we get

λoc
2 =

ρ2

1− ρ2
xy (4.125)

and

λoc
1 =

ρ2

1− ρ2
sHsx (4.126)

From (4.124), the PDF’s of x|s and y|s are not functions of s, and hence, random variables x

and y are independent of s. Therefore, from (4.124), x and y are distributed as

x ∼ beta(L−N + 2, N − 1) and y ∼ χ2
2(L−N+1) (4.127)

as defined in (4.53) and (4.54). Random variables x and y are independent since the joint distribu-

tion of x and y can be written as fxy(x, y) =
∫

fxy(x, y|s)fs(s)ds =
∫

fx(x|s)fy(y|s)fs(s)ds =
∫

fx(x)fy(y)fs(s)ds = fx(x)fy(y)
∫

fs(s)ds = fx(x)fy(y).

By defining random variable z as

z = sHs (4.128)

non-centrality parameter λoc
1 in (4.126) can be written as

λoc
1 =

ρ2

1− ρ2
xz (4.129)

To find the distribution of z in (4.128), we use the property that if a p-dimensional real random

vector g has a multivariate normal distribution of Np(η, Ip), then gHg ∼ χ2
p(η

Hη) [91]. Now,

since from (4.109) s ∼ CNN

(
m
ρ
, 2IN

)
, each complex element of vector s consists of two inde-

pendent unit variance Gaussian random variables (the real part and the imaginary part), and hence,

random variable z in (4.128) is distributed as

z ∼ χ2
2N

(
mHm

ρ2

)
(4.130)
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as defined in (4.121). Note that since random variables x and y are independent from s, they are

also independent from z in (4.128).

Corollary 4.4 The conditional PDF in (4.113) can be expressed in terms of random variables x,

y and z in (4.119), (4.120) and (4.121) as

fγoc(γoc|x, y, z) = e
− ρ2(xz+xy)

2(1−ρ2)

∞∑
j=0

∞∑

k=0

(
PD

PI

)k+L

(γoc)j

(
PD

PI
+ γoc

)j+k+L+1

2j+kB(1 + j, L + k)j!k!

×
(

ρ2

1− ρ2

)j+k

xj+kzjyk (4.131)

Proof: The expression (4.131) can be directly derived by substituting (4.117) and (4.118) in

(4.113).

Theorem 4.4 The PDF of γoc in (4.112) for 0 < |ρ| < 1 can be expressed as

fγoc(γoc) =
L (1− ρ2)

L+1
(

PD

PI

)L

e
−mHm

2ρ2

(
PD

PI
+ γoc

)L+1

×
∞∑

j=0

∞∑

k=0

∞∑

l=0

∞∑
p=0

(L + 1)j+k+l+p(L + 1)j+k(L−N + 2)j+k(N)j+l

(L + 1)j+k+l(L + 1)j+k+p(1)j(L)k(N)lj!k!l!p!

×(L−N + 1)k(N − 1)p

(
ρ2γoc

PD

PI
+ γoc

)j (
PD

PI
ρ2

PD

PI
+ γoc

)k(
(1− ρ2)mHm

2ρ2

)l(
ρ2

)p

(4.132)

where the Gamma function Γ(·) and the Pochhammer symbol (a)j are defined in (A.1) and (A.2) in

Appendix A, respectively.

Proof: The PDF expression in (4.132) can be derived by integrating the conditional distri-

bution expression in (4.113) over the distributions of independent random variables x, y and z in

(4.119), (4.120) and (4.121).

Similar to the PDF expression (4.66) in Section 4.2, the PDF expression in (4.132) can also be

stated in terms of hypergeometric series, and is convergent when 0 < |ρ| < 1.
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Figure 4.13: Probability density function of the output SIR for ρ = 0.6, N = 3, L = 6 and
m =

√
2× 13 by using both analytical and simulation results.

For m = 0, i.e. when the desired user is subject to Rayleigh fading, the expression in (4.132)

reduces to the PDF expression in (4.66), as expected.

4.4.3 Numerical Results

In this section, a set of numerical results is presented when N = 3, L = 6 and PD/PI = 10. We

assume that m =
√

2×13 which corresponds to the Rician factor of unity [105] since the variance

of each complex element of h is equal to 2, and 13 denotes a 3× 1 vector of ones.

In Fig. 4.13, we verify the theoretical expression (4.132) derived for the PDF of SIR. The PDF

of the output SIR is shown for ρ = 0.6 by using both the analytical expression and Monte Carlo

simulation of 200,000 samples. We can see that the theoretical result matches the simulated one.

Fig. 4.14 shows the PDF curves for several correlation coefficients by analytical expression

(4.132). For ρ = 1, i.e. when channel estimates are error-free, we use the PDF expression in [66,

eq. (16)] with the parameter D equal to D = mHm
2

. Although the theoretical expression in (4.132)
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Figure 4.14: Effect of the correlation coefficient on the probability density function of the output
SIR for N = 3, L = 6 and m =

√
2× 13.

contains infinite summations, fortunately not too many terms are needed to converge, and hence,

the expression can be evaluated with finite complexity. For example, for ρ = 0.3 we observed that

almost 20,000 terms are needed on average to calculate (4.132) numerically. It is clear from Fig.

4.14 that the SIR has a higher probability of taking on larger values as the correlation coefficient

increases.

As mentioned before, the PDF of SIR can be used to investigate other measures of performance

such as the outage probability, i.e. the probability that the SIR is less than or equal to a given

threshold. For example, from Fig. 4.14, we can find that as the correlation between the exact and

estimated channels increases, the outage probability decreases since the PDF curves shift to the

right.
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4.5 Performance Comparison of MRC with OC

In this section, we compare the performance of MRC and OC over Rayleigh fading channels with

imperfect channel estimates. We use the expressions derived for the performance of MRC and OC

in this chapter and the last chapter to compare the performance of these two combining techniques.

We present a set of numerical results for the comparison of MRC with OC when the number of

interferers is L = 6, and PD/PI = 10. In Figs. 4.15 and 4.16 MRC and OC are compared by using

the analytical results derived for the outage probability and the average BEP for DPSK signals. As

we can see, for N = 1 both combiners have the same performance as expected, and for N = 2 OC

has a better performance than MRC for almost all ρ. But as N increases, there are some ranges of

ρ where MRC outperforms OC. From Fig. 4.15, the outage probability of MRC is less than OC’s

for N = 3 when ρ2 < 0.39, for N = 4 when ρ2 < 0.60, and for N = 5 when ρ2 < 0.76. It is also

evident from Fig. 4.16 that MRC surpasses OC in terms of BEP in some cases. The average BEP

of MRC is less than OC’s for N = 3 when ρ2 < 0.57, for N = 4 when ρ2 < 0.73, and for N = 5

when ρ2 < 0.84. Thus, in contrast to the error-free channel estimation case, MRC can surpass OC

especially for small values of ρ. Moreover, as N increases, there is a larger range of ρ where MRC

outperforms OC.

Therefore, we observe that MRC can have a better performance than OC especially when

the correlation between the true and estimated channels is low. This fact can be justified by the

following intuitive explanation: The MRC vector depends only on the channel estimate vector

of the desired user while the OC vector is a function of both the desired user’s channel estimate

vector and interfering users’ channel estimate vectors. Therefore, when the channel estimator at

the receiver performs poorly, MRC can outperform OC.

4.6 Summary

In this chapter, we investigated the performance of OC in the presence of circularly symmetric

Gaussian distributed channel estimation errors with multiple equal-power interferers. The analysis
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Figure 4.15: Analytical outage probability of MRC and OC versus the square of correlation coef-
ficient for different numbers of antennas when γ0 = 5 dB and L = 6 .
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Figure 4.16: Analytical average BEP of MRC and OC versus the square of correlation coefficient
for DPSK signals and N = 1, . . . , 5 when L = 6.
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is performed over flat Rayleigh fading channels when the system is interference-limited and the

number of interferers is no less than the number of antennas. We derived an exact closed-form ex-

pression for the PDF of the output SIR by using multivariate statistical analysis. Then, we utilized

this PDF expression to derive analytical expressions for some important measures of performance

such as the moments of SIR, the outage probability and the average bit error probability for bi-

nary differential phase-shift keying and non-coherent frequency-shift keying modulations. The

analytical results were verified by Monte Carlo simulations. These expressions are useful tools

for performance analysis instead of time-consuming Monte Carlo simulations. We quantified the

performance improvement as the correlation between the exact and estimated channels increases

and showed that this improvement is more substantial when there is a larger number of antennas at

the receiver.

We also examined the distribution of the SIR at the output of the optimum combiner for a

Rician/Rayleigh fading environment in the presence of circularly symmetric Gaussian distributed

channel estimation errors. We quantified the effect of the correlation coefficient between the exact

and estimated channels on the PDF of SIR and derived an exact closed-form expression for the

PDF of SIR. The analytical expression was verified by Monte Carlo simulations.

Finally, we compared the performance of MRC and OC in the presence of channel estimation

errors with multiple interferers over Rayleigh fading channels when the system is interference-

limited. We discovered that in the presence of channel estimation errors MRC can outperform OC,

especially for small values of the correlation coefficient. Moreover, as the number of antennas

increases there is a larger range of correlation coefficients over which MRC outperforms OC.
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The material of this chapter can be found in the following papers:

• A. A. Basri and T. J. Lim, “Optimum combining with channel estimation errors in the pres-

ence of multiple interferers in flat Rayleigh fading,” to appear in IEEE Trans. Commun.
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• A. A. Basri and T. J. Lim, “Optimum combining in Rician/Rayleigh fading environment

with channel estimation errors,” in Proc. IEEE 23rd Biennial Symposium on Commun., pp.

274-278, May - Jun. 2006.

• A. A. Basri and T. J. Lim, “Performance of optimum combining with imperfect channel

estimates,” in Proc. IEEE Wireless Commun. & Networking Conf. (WCNC 2006), vol. 3,

pp. 1338-1343, Apr. 2006.

• A. A. Basri and T. J. Lim, “Output SIR distribution of optimum combining in Rayleigh

fading channels with channel estimation errors,” in Proc. IEEE Int’l Conf. Wireless and

Mobile Computing, Networking and Comms. (WiMob’2005), vol. 1, pp. 15-22, Aug. 2005.



Chapter 5

Conclusions

In the first section of Chapter 2, we derived the structure of ML receiver for binary orthogonal sig-

nals in the presence of Gaussian-distributed channel estimation error and additive white Gaussian

noise. We found that the ML receiver for binary orthogonal signals is a linear combination of a

matched filter and envelope detector. The exact average BEP of the proposed receiver is derived

for flat Rayleigh fading channels. We compared the performance of the ML receiver for orthog-

onal modulation with the one for antipodal signalling in the presence of channel estimation error

and found the conditions under which orthogonal modulation results in better performance. The

performance of the proposed receiver was analyzed in both quasi-static fading and time-varying

fading channels.

In the second section of Chapter 2, we derived the ML receiver for QPSK signals in the pres-

ence of Gaussian channel estimation error. We found that the ML receiver is a matched filter

which is matched to the channel estimate. An exact closed-form expression is derived for the av-

erage BEP of the ML receiver of QPSK signals in Rayleigh fading channels. We also analyzed the

performance of the ML receiver of QPSK signals for the special case of quasi-static Rayleigh fad-

ing channels with an MMSE channel estimator. It was found that in quasi-static Rayleigh fading

channels with an MMSE channel estimator, both BPSK and QPSK modulations result in almost

the same average BEP for high enough average SNR.
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In the first section of Chapter 3, we examined the performance of the maximal ratio com-

bining technique in the uplink of wireless communication systems in the presence of multiple

interferers when channel estimates at the receiver are perfect. We derived an exact closed-form

expression for the average BEP of BPSK signals over Rayleigh fading channels. In the second

section of Chapter 3, the performance of MRC is studied when the channel estimates are subject

to Gaussian-distributed channel estimation error. For this case, closed-form expressions for sev-

eral performance measures, such as the outage probability and average bit-error probability, are

derived. We studied the performance improvement of MRC as the correlation between the true and

estimated channels increases and found that this improvement is more substantial when there is a

larger number of antennas at the receiver.

In Chapter 4, we investigated the effect of imperfect channel estimation on the performance of

OC in the uplink of wireless communication systems. We considered space diversity reception in

a flat Rayleigh fading channel in the presence of multiple interferers and channel estimation er-

rors. The main contribution of this chapter was applying multivariate statistical analysis to derive

an exact closed-form expression for PDF of the output SIR in terms of hypergeometric functions.

This PDF expression was then utilized to obtain expressions for the moments of SIR, outage prob-

ability and the average bit error probability. We quantified the performance improvement as the

correlation between the exact and estimated channels increases and showed that this improvement

is more substantial when there is a larger number of antennas at the receiver.

We also examined the distribution of the SIR at the output of the optimum combiner for a

Rician/Rayleigh fading environment in the presence of circularly symmetric Gaussian distributed

channel estimation errors. We quantified the effect of the correlation coefficient between the exact

and estimated channels on the PDF of SIR and derived an exact closed-form expression for the

PDF of SIR. The analytical expression was verified by Monte Carlo simulations.

We compared the performance of MRC and OC in the presence of channel estimation errors

with multiple interferers over Rayleigh fading channels when the system is interference-limited.
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We discovered that in the presence of channel estimation errors MRC can outperform OC, espe-

cially for small values of the correlation coefficient. Moreover, as the number of antennas increases

there is a larger range of correlation coefficients over which MRC has performance better than OC.



Appendix A

Mathematical Functions

1. The Gamma function is defined as [98, eq. (6.1.1)]

Γ(p) =

∫ ∞

0

tp−1e−tdt, (<{p} > 0) (A.1)

where the symbol < indicates the real part. For positive integer p, we have Γ(p) = (p − 1)!

[98, eq. (6.1.6)].

2. The Pochhammer symbol (a)j is defined as [98, eq. (6.1.22)]

(a)j =
Γ(a + j)

Γ(a)
(A.2)

and for positive integers a and j it can be simplified to (a)j = (a+j−1)!
(a−1)!

.

3. The beta function B(p, q) is defined as [98, eq. (6.2.1)]

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt =

∫ ∞

0

tp−1

(1 + t)p+q
dt, (<{p} > 0,<{q} > 0) (A.3)

The beta function in (A.3) can also be written in terms of Gamma function [98, eq. (6.2.2)]:

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
(A.4)
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Therefore, from (A.4), for positive integers p and q we get B(p, q) = (p−1)!(q−1)!
(p+q−1)!

.

4. The incomplete beta function Bw(p, q) is defined as [98, eq. (6.6.1)]

Bw(p, q) =

∫ w

0

tp−1(1− t)q−1dt =

∫ w
1−w

0

tp−1

(1 + t)p+q
dt, 0 ≤ w ≤ 1 (A.5)

5. The regularized incomplete beta function Iw(p, q) is defined as [98, eqs. (6.6.2), (26.5.1)]

Iw(p, q) =
Bw(p, q)

B(p, q)
(A.6)

and B(p, q) and Bw(p, q) are defined in (A.3) and (A.5), respectively.

6. The confluent hypergeometric function U(a, b, x), also known as Ψ(a, b, x), defined as [96,

eq. (9.211.4)], [98, eq. (13.2.5)]

U(a, b, x) =
1

Γ(a)

∫ ∞

0

ta−1exp(−xt)

(1 + t)1+a−b
dt, (<{x} > 0,<{a} > 0) (A.7)

where the Gamma function Γ(p) is defined in (A.1).
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