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Abstract 

High-frequency (20-60 MHz) ultrasound images are sensitive to variations in tissue 

microanatomy that accompany tumour growth, but the relationships between high-

frequency ultrasound backscattering and tumour microstructure are incompletely un

derstood. A parallel 3-D ultrasound simulator and a tissue microanatomical model are 

developed to investigate these relationships. The simulator runs on computer clusters 

and uses a 3-D formulation of a k-sp&ce method to compute wavefront propagation. 

An allocation algorithm is introduced to divide the computation of each scan line 

between a group of cluster nodes and employ multiple groups to compute individual 

lines concurrently. The simulator achieves an error as low as 0.57%. An aperture pro

jection technique is introduced to simulate imaging with a focused transducer using 

reduced computation grids. This technique is applied to synthesize B-mode images 

of a tissue-mimicking phantom. The execution time of an image using 20 nodes is 

18.6 hours, compared to a serial execution time of 357.5 hours. 

The microanatomical model treats tissue as a population of stochastically po

sitioned cells, where each cell is represented as a spherical nucleus surrounded by 

cytoplasm. The model is employed to represent the microstructure of healthy mouse 

liver and an experimental liver metastasis that are analyzed using DAPI- and H&E-

stained histology specimens digitized at 20 x magnification. For each simulated tissue, 

the spatial organization of cells is controlled by a Gibbs-Markov point process tuned 

to reproduce the number density and distribution of centre-to-centre spacing of nuclei 

in the DAPI-stained slides of the corresponding experimental tissue specimen. 

The ultrasound simulator is used to synthesize B-mode images of the simulated 

healthy and tumour tissues. The first-order speckle statistics of the images of each 

simulated tissue are compared with corresponding experimental images. The simu

lations show good matching between the images of the simulated healthy tissue and 

images of healthy liver. Moreover, good matching is achieved between the images of 

the simulated tumour and matching experimental images when acoustic properties 
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are used that are different from the values assumed for healthy tissue. These simula

tions suggest that changes in the first-order speckle statistics that accompany tumour 

progression are related to variations in tissue acoustic and microstructural properties. 

Keywords: high-frequency ultrasound, imaging simulation, tissue microstructure, 

numerical methods, Gibbs-Markov point process, stereology, parallel computing, par

allel speedup and efficiency, ultrasound speckle statistics, small animal imaging, can

cer imaging 
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Chapter 1 

Introduction 

1.1 Overview 

High-frequency (20-60 MHz) ultrasound imaging is an attractive modality to non-

invasively study cancer biology and anti-cancer therapy in preclinical models. Sub

stantial progress has been made toward using high-frequency ultrasound scanners 

to track tumour growth and treatment response in small animal research. How

ever, the relationships between high-frequency ultrasound backscattering and tissue 

microanatomy are complex and incompletely understood. Investigating these rela

tionships would extend the use of high-frequency ultrasound imaging to provide in

formation about tumour microstructure that complement conventional metrics such 

as tumour size and shape. 

This thesis presents a three-dimensional (3-D) parallel ultrasound simulator and 

a 3-D computational model of tissue microanatomy to contribute to research to re

late high-frequency ultrasound backscattering to tissue acoustic and microstructural 

properties. To develop the 3-D ultrasound simulator, a two-dimensional (2-D) numer

ical method, called the fc-space method, that computes acoustic propagation in a fluid 

medium is extended to support 3-D computations. The 3-D simulator is implemented 

to run on a cluster of computers to enable high-frequency ultrasound imaging sim-
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ulations with short running time. The tissue model describes tissue microstructural 

properties that are hypothesized to be major determinants of high-frequency ultra

sound scattering. Accurate estimates of these properties are obtained for a healthy 

mouse liver and an experimental mouse liver metastasis specimen using stereological 

techniques adopted from materials science. The tissue model, which is also run on 

a computer cluster, is configured to produce simulated healthy and tumour tissues 

with microstructural properties that match the values estimated for the healthy and 

cancerous liver specimens. The parallel 3-D simulator is used to synthesize ultrasound 

images of the simulated healthy and tumour tissues when the acoustic properties as

signed for the simulated tumour are and are not the same as the values assumed for 

healthy tissue. The first-order speckle statistics of the synthesized images of the sim

ulated healthy and tumour tissues are compared with matching experimental images. 

To provide background for the material present in the thesis, this chapter first 

reviews the first-order wave equations that describe one-dimensional (1-D) linear 

acoustic propagation in a lossless homogeneous fluid medium, which is a simplified 

form of the 3-D linear acoustic propagation in an inhomogeneous fluid medium with 

frequency-dependent absorption solved by the proposed 3-D ultrasound simulator. 

Existing 3-D ultrasound simulators many of which use simplifying assumptions to 

reduce the simulation complexity, are reviewed for comparison with the fc-space sim

ulator. Parallel computing technology employed by the proposed 3-D ultrasound 

simulator and the tissue model to enable full 3-D imaging simulations is discussed in

cluding parallel computing systems and programming models. The stereological tech

niques used to estimate the morphological properties included in the tissue model for 

the healthy and cancerous liver specimens are summarized. Previous studies of high-

frequency ultrasound scattering are reviewed. The thesis hypothesis and objectives 

are stated, followed by an outline of the subsequent thesis chapters. 



Propagating 
/ w a v e 

Cubic particle 

Ax ^ / 

Fig. 1.1: Plane wave propagating in a fluid medium along the x axis and a small cubic 
particle in the medium. The pressure, p, and velocity, u, fields are shown at the two 
faces of the particle perpendicular to the axis of propagation. The size of the particle 
is exaggerated to facilitate visualization. 

1.2 The wave equation 

A derivation of the one-dimensional (1-D) linear acoustic wave equation in a loss

less homogeneous fluid medium is presented based on the formulation given in [1]. 

Since longitudinal propagation is the most significant type of acoustic propagation 

in soft tissue at mega-Hertz frequencies, shear propagation is not included in the 

derivation. 

Consider a 1-D wave in a fluid medium propagating along the x axis and a cubic 

particle in the medium aligned such that two of its faces are perpendicular to the 

propagation axis. The particle has a length Ax, a face area a, and dimensions much 

smaller than the wavelength of the propagating wave. A schematic representation of 

the 1-D wave and the particle is given in Fig. 1.1, where the size of the particle is 

exaggerated to facilitate visualization. 

The conservation of mass law states that the time rate of change of the particle 
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mass is equal to the net mass per unit time entering the particle. The mass per unit 

time leaving the particle through a small surface element is equal to the product of 

the mass density, p(x), at the centre of the element, the area of the element, and the 

dot product of the outward normal unit vector of the element and the local velocity 

of the medium particles, u(x), at the centre of the element [2]. The net mass leaving 

the particle per unit time is accordingly equal to the integral over the particle surface 

of the mass per unit time leaving through a small surface element. Since the wave is 

propagating along the x axis, variations in the spatially varying quantities, including 

u(x) and p(x), are only considered along the propagation axis. Therefore, the net 

mass per unit time entering the particle can be written as — a[(p(x + Ax)u(x + Ax) — 

p(x)u(x)], where x and x + Ax are the x coordinates at the two faces of the particle 

perpendicular to the propagation axis. The conservation of mass law applied to the 

particle can be written as: 

-a[(p(x + Ax)u(x + Ax) - p(x)u(x)\ = —— (1.1) 

where m is the mass of the particle and t is time. Eq. 1.1 can be written as a partial 

differential equation by expressing the particle mass as the product of the particle 

volume and mass density, dividing both sides by the volume of the particle, and taking 

the limit as Ax and At approach 0 to obtain: 

d(pu) _ dp 
dx ~ dt { ] 

The propagation of the wave produces perturbation to the steady state value of 

the mass density in the absence of the wave. Therefore, the mass density can be 

expressed as p = po + pi, where po and pi are the steady state value of the mass 

density and the time-varying acoustic contribution to the density, respectively. The 

value of pi is equal to po^p, where the constant K is the compressibility of the fluid 

medium and p is the pressure field produced by the acoustic wave above the steady 

state value of the pressure in the absence of the wave. For imaging applications, the 



amplitude of the acoustic waves is small, and hence the perturbations of p, u, and p 

are small. A linear approximation neglects the second- and higher-order terms that 

include products of two or more instances of pi, p, u, du/dx, or du/dt. By expressing 

p as the sum of po and pi and using the linear approximation, Eq. 1.2 can be written 

as: 
du dp 
Yx = ~Km ( L 3 ) 

For a plane wave in a fluid, the compressibility of the medium is related to the 

Lgitudinal speed, c, of the wave 

law of Eq. 1.3 can be expressed as: 

longitudinal speed, c, of the wave by K = -^. Therefore, the conservation of mass 

du = _J_dp 

dx poc2 dt 

Newton's second law requires the net force, F, acting on the particle to be equal to 

the time rate of change of the particle momentum, ™t • Since the dimensions of the 

particle are much smaller than the wavelength, variations in the mass density within 

the particle are small, and hence the density within the particle can be approximated 

as a single time-varying quantity, p. By evaluating the time rate of change of the 

particle momentum using the chain rule for differentiation, substituting the particle 

velocity, u, for the partial derivative of the particle position with respect to time, and 

expressing the particle mass as the product of the particle volume and mass density, 

Newton's second law can be written as: 

_, . .du du. /n ,_. 
F = paAx(- + u-) (1.5) 

The net force acting on the particle is equal to the difference between the forces 

applied on the two particle faces perpendicular to the propagation axis. Since the 

magnitude of the force per unit area is equal to the pressure, the net force acting on 

the particle can be expressed as F = a(p{x) — p(x + Ax)). Newton's force law can 

be written as a partial differential equation by expressing the net force, F, in Eq. 1.5 

in terms of a and p{x), dividing both sides by the volume of the particle, and taking 



the limit as Ax approaches 0: 

-i-^+«|) ™ 
Using the linear approximation employed in Eq. 1.3, Eq. 1.6 can be written as: 

Eq. 1.4 and Eq. 1.7 are called the coupled 1-D first-order linear acoustic wave 

equations in a homogeneous lossless fluid medium and they explicitly describe the 

coupling between the pressure and particle velocity fields. The mathematical formu

lation of these equations is similar to the coupled 3-D first-order linear acoustic wave 

equations in a lossless fluid medium with spatially varying sound speed and mass 

density used in chapter 2 to extend the &-space method to enable 3-D computations. 

The 1-D second-order wave equation can be derived by taking the partial temporal 

derivative of Eq. 1.4 and the partial spatial derivative of Eq. 1.7, and then combining 

the two equations to obtain a second-order partial differential equation that describes 

pressure field propagation: 
d2p 1 82p _ 

d^-^W~° (L8) 

Eq. 1.8 is the 1-D second-order linear acoustic wave equation commonly used in 

engineering and applied physics literature. 

1.3 3-D simulation of ultrasound imaging 

Realistic 3-D ultrasound imaging studies involve computing large-scale simulations 

with propagation volumes on order of hundreds of wavelengths. Computing full 3-D 

simulations with such propagation volumes require extensive processing and memory 

resources that exceed the capabilities of contemporary serial computers. To reduce the 

computational complexity of the simulation, many 3-D ultrasound simulators employ 

simplifying assumptions such as axisymmetric propagation and the Born approxima

tion [3]. Axisymmetric propagation assumes a symmetric propagation medium and 
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ultrasound source. This assumption is used in a commercial software package, called 

Wave2500* [4], in which the properties of the propagation medium are not allowed 

to change as a function of the angular dimension of the cylindrical coordinate system 

when the radial and height dimensions are fixed. Moreover, the ultrasound source is 

assumed to be symmetric with respect to the angular dimension. 

In the Born approximation, the scattered field is assumed to be weak compared to 

the incident field, and hence an echo signal can be computed as a linear superposition 

of echoes from independent scatterers. This approximation is valid for a weakly 

scattering medium that contains scatterers of small size compared to the incident 

wavelength and mass density and compressibility close to the background. The Born 

approximation is used in [5, 6] to compute 3-D scattered fields. 

The use of simplifying assumptions in 3-D ultrasound simulators might restrict 

the application of these simulators to a specific set of problems that satisfies the 

assumptions. To enable fast and accurate 3-D large-scale simulations without sim

plifying assumptions, it is necessary to combine efficient numerical methods, which 

obtain high accuracy and stability using minimal computational resources, with the 

use of parallel and distributed systems. 

1.4 Parallel Computing 

Preclinical imaging problems intended to be studied using the software tools de

veloped in this thesis involve using the stochastic tissue model to create simulated 

tissue volumes on the order of tens or hundreds of wavelengths and computing acous

tic propagation in these volumes using the 3-D ultrasound simulator. The running 

time of such studies on serial computers varies between a few weeks and a few months. 

The long running time limits the use of this software in imaging research. 

"The axisymmetric simplifying assumption has been relaxed in a newer version of this software 

called Wave3000 (http://www.cyberlogic.org). 

http://www.cyberlogic.org
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To overcome this problem, parallel and distributed systems offer powerful comput

ing resources to run the proposed tissue model and ultrasound simulator to carry out 

imaging simulations with short running time. Two important classes of parallel and 

distributed systems are symmetric multiprocessing (SMP) systems and distributed-

memory computer clusters. A SMP system is a group of processors that share the 

same computer bus and global memory. The processors of a SMP system run identical 

operating system copies and collaborate to execute parallel applications. The shared 

address space of a SMP system enables the processors to communicate by writing to 

and reading from the shared memory [7, 8]. Parallel applications can be developed 

for SMP systems using programming standards that support shared address space 

such as the Open Multi-Processing (OpenMP) [9] standard. In this thesis, the term 

shared-memory computer clusters refers to the SMP systems. 

A distributed-memory computer cluster is a group of independent computers that 

communicate with each other via a high-speed communication network or networks. 

The computers have their own processors and local memories and they work together 

as a single system to execute parallel applications [7]. The interactions between the 

computers of a distributed-memory cluster are accomplished using the message pass

ing model [10]. In this model, computational tasks running on different computers 

communicate by sending and receiving messages. The transfer of messages between 

tasks requires cooperative operations to be performed by each task, i.e., a send op

eration on the sending computer must have a matching receive operation on the 

receiving computer. One programming standard that supports the message passing 

model is the Message Passing Interface (MPI) [11] standard that provides a rich set 

of messaging primitives to develop parallel programs for distributed-memory clusters. 

Since the intra-computer bus speed is much higher than the speed of the interconnec

tion network, obtaining high performance on a distributed-memory cluster requires 

consideration of the inter-computer communication overhead that occurs when tasks 

allocated to different computers exchange data. Hence, there is a tradeoff between 
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the speedup gained through parallelization and the overhead of inter-computer com

munication. 

Developing parallel applications for distributed-memory clusters, in which each 

processing node has its own address space, is more difficult than shared-memory 

clusters. On the other hand, the number of processors supported by distributed-

memory clusters is more scalable than shared-memory clusters. Distributed-memory 

clusters have good performance-to-cost ratio and provide a low-cost alternative to 

dedicated parallel machines such as shared-memory clusters [12]. In this thesis, the 

ultrasound simulator is implemented to run on distributed-memory clusters and the 

tissue model is run on shared-memory clusters. 

1.5 Quantifying tissue microstructure 

Several studies have suggested that cell nuclei are significant determinants of high-

frequency ultrasound scattering in tissue [13-15]. Therefore, accurate estimation of 

the volume fraction and sizes of the nuclei in the tissue is crucial for developing tissue 

computational models for high-frequency ultrasound simulations. Stereology, defined 

as estimating features of a 3-D structure using random 2-D sections or projections [16], 

provides techniques to quantify the volume fraction and size distribution of the nuclei 

based on tissue histology slides. 

The nuclear volume fraction is defined as the sum of all nuclei volumes in the 

tissue divided by the total tissue volume. The volume fraction of the nuclei can be 

related to the nuclear area fraction in a random 2-D plane through the tissue using 

the stereological method presented in [17]. To derive the relationship between the 

volume and area fractions, consider a cubic volume in the tissue with a length I and 

a random parallel plane through the volume (Fig. 1.2). Assume that z is the spacing 

between the plane and one of the two faces of the tissue volume parallel to the plane. 

The nuclear area fraction of the plane at spacing z can be written as -jf-, where A(z) 
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Cubic tissue 
volume 

Fig. 1.2: A 2-D plane through a cubic tissue volume of length I. The nuclear area 
fraction of the plane is the sum of the areas of intersection between the nuclei in the 
tissue volume and the 2-D plane divided by the area of the plane. The nuclear area 
fraction of the plane varies as a function of the position, z, of the plane relative to 
one of the two parallel faces of the tissue volume. 

is the total area of intersection between the plane and the nuclei. If the position, z, 

of the plane is chosen from a uniform distribution between 0 and I, then the expected 

value, A(a), of the nuclear area fraction of the plane computed over the entire domain 

of z can be written as: 

^ = jf^y<fe (1-9) 
where y is the probability of choosing a plane with a position between z and z + dz. 

Since the integration J0 A(z)dz is equal to the sum of nuclei volumes in the tissue 

cube, the expected value, A(a), of the nuclear area fraction in a random plane through 

the tissue cube is equal to the nuclear volume fraction of the tissue cube. Therefore, 

the nuclear volume fraction of the tissue is equal to the average nuclear area fraction 

computed from random 2-D planes through the tissue. 

The average nuclear area fraction can be estimated using randomly chosen his

tology slides from the tissue. However, the total area of the nuclei measured with 

the microscope from a tissue histology slide of a finite thickness is based on a planar 
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projection of nuclei sections within the slide, which overestimates the intersection 

between the nuclei and the 2-D surface of the slide. This artefact is called Holmes 

effect [18]. The Holmes effect can be corrected by employing histology slides of small 

thickness and applying a correction factor that depends on the average nucleus diam

eter and the thickness of the slides. 

The distribution of the nuclei sizes in the tissue can be estimated from the sizes of 

the nuclei sections observed in the tissue histology slides using the Schwartz-Saltykov 

method [19]. The Schwartz-Saltykov method is briefly described here based on de

tailed mathematical formulation presented in [19]. To apply the Schwartz-Saltykov 

method, the nuclei are assumed to have spherical shape and be randomly distributed 

in the tissue. Moreover, the nuclei are assumed to have ip discrete diameter values 

between ^ ^ and Dmax, with an increment of ^ a a L , where Dmax is the measured 

maximum diameter of the nuclei sections in the histology slides. The value of ip is 

usually between 7 and 15 depending on the required estimation accuracy. The nuclei 

sections are classified into ip groups such that the ith group includes nuclei sections 

of diameters between (i — 1 )^"* and i DrTx. Since the nuclei sections from the ith 

group can only be produced by nuclei of diameters greater than or equal to i^jf^, 

the measured number of nuclei sections from the ith group per unit area, denoted as 

Na(i), can be written as: 

Na(i) = Y,Na(i,j) (1.10) 

where Na(i,j) is the number of nuclei sections from the ith group per unit area 

produced by nuclei of diameter j DrTx. It can be shown that a nucleus section from the 

ith group in a tissue slab can be produced by a nucleus of diameter j^T^ only when 

the perpendicular distance between the centre of the nucleus and the 2-D surface of 

the tissue slab is between ^ r v O ' 2 — {i — l)2 and ^py/j2 — i2 on both sides of the 

slab. Hence, the total tissue volume containing the centres of the nuclei of diameter 

j^r- that produce nuclei sections from the ith group in one unit area of the histology 
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slide is equal to ^T^(y/j2 — {i — l)2 — y/j2 —i2). If Nv(j) is the number of nuclei of 

diameter j^P*- per unit volume of tissue, then Na(i,j) can be expressed as: 

Na(i,j) = Nv(j)^(Vf - (t - l)2 - y/f^P) (1-11) 

Varying i in Eq. 1.10 between 1 and ip and substituting Eq. 1.11 for Na(i,j) lead 

to V> independent equations with ip unknowns, A^(l), Nv(2), ..., Nv(ip), and ip mea

sured quantities, iVa(l), Na(2), ..., Na(ip). Hence, the distribution of nuclei diameters 

per unit volume of tissue can be estimated from the measured distribution of nuclei 

sections per unit area of the histology slides. 

More recent methods have been developed to estimate the size distribution of 

particles with non-spherical shapes such as [20]. In this thesis, the nuclei are assumed 

to be approximately spherical, and hence the nuclear size distribution is quantified 

using the Schwartz-Saltykov method. 

1.6 High-frequency ultrasound scattering models 

High-frequency ultrasound scattering in tissue has been studied by numerous re

search groups who suggested various approaches to model ultrasound backscattering. 

For example, Mamou et al. [21] proposed a 3-D computational model of tissue mi-

crostructure derived from histology data to estimate ultrasound scattering sources. 

The model was constructed by mapping tissue microscopic structures to correspond

ing acoustic impedance values. The mapping process was achieved by fixing, slicing, 

and staining a tissue volume to obtain a group of adjacent 2-D histology slides in 

which each colour corresponds to a specific tissue type. The 2-D histology slides were 

digitized, aligned, and processed to construct a 3-D impedance matrix of the tissue 

volume. The model was used to estimate the mean scatterer size and acoustic concen

tration, defined as the product of the number density of scatterers and the square of 

the difference between the impedance of the scatterer and the surrounding medium, 
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of two mammary tumours. The estimation is carried out by deriving an analytical 

formula to compute the backscattered intensity based on the impedance-based model, 

and then fitting a form factor to the power spectrum of the medium computed by 

dividing the backscattered intensity by the fourth power of the wave number. The 

form factor is a model that represents the frequency-dependent backscattered inten

sity from a medium that contains an ensemble of identical scatterers. Comparisons 

with experimental ultrasound data showed good matching between the scatterer size 

estimated from the 3-D impedance-based model and the scatterer size estimated from 

experimentally measured ultrasound echoes. However, significant deviation was ob

served between the acoustic concentration estimated from the impedance-based model 

and the acoustic concentration obtained with ultrasound data. 

Other studies suggested simulation-based scattering models that emphasized cells 

and nuclei as dominant scattering sites at high frequency. This approach is used 

by Hunt et al. [22], who proposed idealized 1-D and 2-D scattering models to study 

high-frequency ultrasound scattering in a homogeneous medium containing identical 

point-like cells configured to produce various regular and random spatial arrange

ments. Simulations performed with these models predicted significant correlation 

between high-frequency ultrasound backscattering and the randomization of cell po

sitions. The assumption that high-frequency ultrasound scattering is correlated with 

the structural properties of cellular-scale features agrees with the empirical study by 

Czarnota et al. [13], which indicated that the significant change in the amplitude of 

high-frequency ultrasound backscattered signals that accompanies apoptosis in cell 

ensembles and tissue is related to condensation and fragmentation of the nucleus. 

To study the change of ultrasound backscattering associated with apoptosis, the 2-D 

model of [22] was extended in [14] to include nucleus morphology by representing each 

cell as a group of scatterers that approximate the nucleus structure. The extended 

2-D model was used to carry out high-frequency ultrasound scattering simulations us

ing different configurations that mimic the cell and nucleus structural variations that 
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occur during different stages of apoptosis. The simulations suggested that the change 

in ultrasound backscattering during apoptosis is dominated by the morphology and 

spatial arrangement of the nucleus. 

The concept that cells and nuclei are dominant scattering sites at high-frequency 

was employed by Doyle et al. [15], who presented a 3-D simulation scattering model 

that treats tissue microstructure as a group of spherical cells embedded in an ex

tracellular matrix, where each cell is represented as a spherical nucleus surrounded 

with homogeneous cytoplasm. High-frequency ultrasound scattering simulations were 

performed using the 3-D model with several hundred cells configured to produce a 

variable ratio of cell to nucleus diameter and various spatial arrangements includ

ing configurations that mimic single cells and tissue microstructural variations as

sociated with malignant processes. In these simulations, 3-D acoustic propagation 

was computed using a multiple-scattering method [23] without incorporating atten

uation. The simulations suggested that high-frequency ultrasound scattering from 

single cells is dominated by the size of the nuclei, which agrees with the empirical 

results reported by Taggart et al. [24], who studied ultrasound backscattering from 

cells and isolated nuclei. Moreover, the simulations suggested that both cellular- and 

tissue-scale microstructural variations associated with malignant processes produce 

significant changes in the spectra of high frequency ultrasound backscattered signals. 

Oelze and O'Brien [25] presented a scattering model that treats the cell as a 

nucleus surrounded with cytoskeleton. The model, which is distinguished by including 

scattering from the cell cytoplasm, was used to estimate the average scatterer size of 

two tumours derived from different cell lines. The estimated scatterer size of both 

tumours suggested that high-frequency ultrasound scattering is dominated by cells or 

microstructures on the order of cell size. 
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1.7 Hypothesis and objectives 

The hypothesis of this thesis is that simulations of high-frequency ultrasound 

imaging can be used in combination with a computational model of tissue microstruc-

ture to relate variations in tissue acoustic and microstructural properties to character

istics of high-frequency ultrasound images of healthy tissue and experimental tumours. 

Three research objectives are defined to investigate this hypothesis: 

1. Develop and evaluate a parallel ultrasound simulator that enables 3-D high-

frequency ultrasound imaging simulations with short running time. 

2. Develop and evaluate a 3-D computational model that describes tissue mi-

crostructure based on stereological analyses of histology data. 

3. Employ the ultrasound simulator and the tissue model to relate acoustic and 

microstructural properties of healthy and cancerous murine tissues to exper

imentally measured first-order speckle statistics of high-frequency ultrasound 

images. 

1.8 Thesis outline 

The thesis objectives defined above are presented separately in the following three 

chapters. These chapters are followed by a conclusion chapter that briefly discusses 

possible future directions for the research project presented in this thesis. A summary 

of each chapter is presented below. 

1.8.1 Chapter 2 

Chapter 2 describes the development and testing of a parallel 3-D simulator for 

B-mode ultrasound imaging simulations. The simulator is developed based on a 3-D 

formulation of a 2-D numerical method that computes acoustic propagation in a fluid 
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medium. The 3-D simulator, which computes the propagation of a single wavefront, 

is implemented to run on distributed-memory computer clusters. An allocation al

gorithm is introduced to divide the computation of each scan line among a group 

of cluster nodes and use multiple groups to compute independent lines concurrently. 

The accuracy of the simulator is analyzed using example calculations of ultrasonic 

propagation and attenuation in the 30-50 MHz band. The parallel efficiency of the 

simulator is evaluated for various combinations of number of scan lines and number 

of cluster nodes. An aperture-projection technique is introduced to simulate imag

ing with a focused transducer using reduced computation grids. The feasibility of 

3-D imaging simulations using parallel computing is demonstrated by carrying out a 

B-mode imaging simulation with a tissue-mimicking phantom. 

1.8.2 Chapter 3 

Chapter 3 introduces a 3-D computational model of tissue microanatomy for high-

frequency ultrasound imaging simulations. The model treats tissue microstructure 

as a group of stochastically positioned spherical cells embedded in a homogeneous 

extracellular matrix, where each cell consists of a spherical nucleus surrounded by ho

mogeneous cytoplasm. The model is separately used to represent the microstructure 

of a healthy mouse liver and an experimental mouse liver metastasis specimen that 

are analyzed using stereological techniques to estimate the nuclear volume fraction 

and size distribution. The spatial organization of cells in the model is controlled by 

a stochastic point process. The parameters of the stochastic process are tuned to 

accurately reproduce the average number density and distribution of centre-to-centre 

spacing of nuclei in the histology slides of the corresponding experimental tissue speci

men. The structural properties included in the model are hypothesized to be the most 

significant determinants of high-frequency ultrasound backscattering. 
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1.8.3 Chapter 4 

The parallel 3-D ultrasound simulator is employed to synthesize high-frequency 

ultrasound B-mode images of simulated healthy and tumour tissues configured using 

the tissue model to reproduce the microstructure of healthy mouse liver and an ex

perimental mouse liver metastasis, respectively. Ultrasound propagation is computed 

in the simulated healthy tissue using acoustic properties of tissue microanatomy re

ported in previous studies. Since tumour growth is expected to change the acoustic 

properties of tissue microstructure, various combinations of sound speed and mass 

density values are tested for the simulated tumour, where one of these combinations 

match the values assumed for healthy tissue. The first-order speckle statistics of the 

B-mode images synthesized for each simulated tissue are compared with matching 

experimental B-mode images. 

1.8.4 Chapter 5 

Chapter 5 contains a summary of the materials covered in chapters 2 through 4, 

discusses future directions for the research presented in the thesis, and concludes the 

thesis. 
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Chapter 2 

Distributed Three-Dimensional 

Simulation of B-mode Ultrasound 

Imaging Using a First-Order 

fc-Space Method 

A shortened version of this chapter has been accepted for publication in Physics 

in Medicine and Biology* with author list M. I. Daoud and J. C. Lacefield. 

2.1 Introduction 

Many ambitious applications have been identified for detailed simulations of ultra

sound image formation [1-3]. For example, simulations have the potential to suggest 

new insights into the physical interactions of ultrasound and tissue, leading to im

proved methods of tissue characterization and automated image analysis and enabling 

*© 2009 Institute of Physics. Reprinted, with permission, from Physics in Medicine and Bi

ology (http://www.iop.org/journals/PMB), "Distributed Three-Dimensional Simulation of B-mode 

Ultrasound Imaging Using a First-Order fc-Space Method" by M. I. Daoud and J. C. Lacefield. 
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correlations to be identified between the morphological and functional information de

picted in medical images and the underlying biological processes. It has even been 

suggested that such computations could be employed to perform "patient-specific 

imaging" [3], in which information gleaned from medical images is integrated with 

other clinical data from a patient to improve the sensitivity and specificity of medical 

diagnosis. However, relatively limited progress has been made toward this vision [3]. 

Computational complexity remains a major barrier to this type of research, be

cause ultrasound imaging problems involve large-scale simulations with propagation 

distances on the order of hundreds of wavelengths, and hence require extensive com

putational resources and long running times. Therefore, many ultrasound simulators 

employ techniques to reduce the complexity of a simulation, such as computing two-

dimensional (2-D) propagation only or using simplifying assumptions to carry out 

three-dimensional (3-D) simulations. The simulator used most commonly for medical 

ultrasound research is Field II [4], which computes B-mode images by superimpos

ing spatial impulse responses to a population of point scatterers. A 3-D imaging 

simulation can be completed in a few hours using Field II [5], but the spatial im

pulse responses are computed using the Rayleigh integral and so assume propagation 

through a homogeneous medium. To perform accurate and fast 3-D simulations with

out simplifying assumptions, it is necessary to combine efficient numerical methods, 

which attain high accuracy and stability using minimal computational resources, with 

the use of parallel and distributed systems. Efficient parallel computation is espe

cially crucial in view of the number of pulse-echo acquisitions that must be simulated 

to synthesize an image. 

The majority of ultrasound simulation methods can be classified into four main 

groups: finite-difference methods, finite-element methods, pseudospectral methods, 

and &-space methods [6, 7]. In finite-difference and finite-element methods, the com

putations to propagate the acoustic field at each point involve only nearby points. 

Pseudospectral and &-space methods, which are both considered spatial-frequency 
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spectral methods, use points from the entire computation grid to propagate the acous

tic field. Pseudospectral methods approximate temporal derivatives using numerical 

techniques such as finite-difference methods, which introduce numerical dispersion 

errors. The A;-space methods are distinguished from pseudospectral methods by the 

inclusion of a temporal correction term that minimizes the numerical dispersion. The 

combination of these two features permits fc-space methods to achieve high numer

ical accuracy with much coarser spatial grids and time steps than are needed for 

finite-difference or finite-element computations [6, 7]. Use of coarse spatial grids does 

require low-pass filtering of the medium, in which case any high-spatial-frequency 

components of scattering will not be included in the computation. 

One formulation of a ft-space method is the algorithm developed by Mast et al. [6] 

based on second-order wave equations. Two-dimensional [6] and 3-D [8] simulations 

have been demonstrated using the second-order &-space method. The second-order 

method was subsequently extended to a formulation based on coupled first-order 

equations [9] that has been used for 2-D simulations of focus aberration [10] and 

photoacoustics [7]. Neglecting errors introduced by discrete evaluation of the Fourier 

transform and the limits imposed by machine precision, both &-space methods are 

essentially exact for homogeneous propagation media and provide high accuracy and 

stability for weakly inhomogeneous media, such as soft tissue. The advantages of the 

first-order A;-space method relative to the second-order method are that the first-order 

method includes frequency-dependent attenuation and supports the use of perfectly 

matched layer (PML) absorbing boundary conditions. The perfectly matched layers 

reduce the wrap-around artefacts that occur in the second-order formulation as a re

sult of the periodic boundary conditions imposed by the discrete spectral evaluation 

of spatial derivatives. The PML boundary conditions enable the use of smaller com

putation grids, because otherwise the grid must be much larger than the region of 

interest to avoid wrap-around artefacts. The ability to minimize the size of the com

putation grid is crucial for large imaging simulations involving computation of many 
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scan lines. In this thesis, the first-order &-space method is extended to compute 3-

D propagation of total pressure [11]. A 3-D formulation of the first-order fc-space 

method was developed separately to calculate scattered pressure propagation [12]. 

The 3-D total-pressure solver is employed in all simulations presented in this thesis. 

Although the fc-space methods achieve high accuracy using coarse temporal and 

spatial steps, they still require large memory and processing resources as well as long 

running times to carry out large-scale imaging simulations that involve multiple scan 

lines. For example, a typical B-mode imaging problem would involve computation of 

128 scan lines, where in each scan line an ultrasound pulse with a Gaussian envelope, a 

centre frequency of fc, and —6-dB bandwidth of 0.6/c, is propagated in a 3-D medium 

with a background sound speed CQ and a volume of 250Ax250Ax250A, where A is the 

wavelength at the centre frequency. Assume that the pulse is transmitted from a 

transducer located on the top of the medium, and the simulation is run until the 

scattered waves from the entire medium are received by the transducer. The &-space 

methods described above require 4 grid points per minimum wavelength to ensure a 

reasonable accuracy. For a pulse with a Gaussian envelope and —6-dB bandwidth 

of 0.6/c, the maximum frequency, which is used to calculate the 4 grid points per 

minimum wavelength spatial step, is assumed to be 1.773/c corresponding to the 

upper -40-dB frequency of the pulse spectrum. Therefore, each scan line requires a 

3-D computation grid of 5.57xl09 points. Using a time step size of 0.071^-, which 

corresponds to a Courant-Friedrichs-Lewy (CFL) number [13] of 0.5, the simulation 

requires around 7100 time steps, or 3.95xl013 grid-point evaluations, to compute 

each scan line. Assuming that the computation to update each grid point requires 

40 floating-point operations, then the simulation involves 2.02 xlO17 floating-point 

operations. Hence, the running time of this simulation on serial computers, with 

typical performance of several Gflops, is on the order of hundreds of days. Moreover, 

the simulation of each line requires the storage of multiple memory buffers, each with 

a size on the order of gigabytes for single-precision computations. 
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A computation of this size demands the use of parallel and distributed systems. 

One approach to parallel computation is to use dedicated parallel machines that 

usually employ fine-grained partitions, meaning the computation is spread over many 

processors. A low cost alternative to dedicated parallel machines is to use computer 

clusters [14]. In general, computer clusters have a good performance-to-cost ratio, and 

therefore tend to be a more accessible method of high-performance computing for most 

users. Therefore, this chapter presents a parallel 3-D implementation of the first-order 

/c-space method that runs on a distributed-memory computer cluster. The challenge 

of using a distributed-memory cluster is that the communication overhead between the 

nodes of a cluster is usually higher than that of dedicated parallel machines. Hence, 

efficient parallelization on computer clusters requires minimizing the communication 

overhead by assigning coarse partitions of dependent computations to a relatively 

small number of processors. 

In the following sections, the first-order k-spa.ce method is extended to compute 

three-dimensional propagation of the total pressure field. Moreover, this chapter 

presents an analysis of the computational resources necessary for a single 3-D &-space 

computation, including the trade-off between numerical accuracy and computational 

complexity in simulating acoustic propagation and linear frequency-dependent atten

uation over a broad bandwidth, and the parallel efficiency and speedup gained by 

using different numbers of processors in a cluster. For imaging simulations that re

quire computation of many scan lines, it is more efficient to distribute the scan lines 

between cluster nodes rather than partitioning the simulation grid of individual scan 

lines. Multiple scan lines can then be computed concurrently [15]. However, when 

simulations are extended to three dimensions, the memory requirements quickly be

come too large to permit a scan line to be computed using a single processor on 

contemporary parallel systems. Therefore, this chapter also introduces an allocation 

algorithm to most efficiently divide the computation of each scan line among groups of 

processors of close communication and use multiple groups of processors to compute 

http://k-spa.ce
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independent scan lines concurrently. To further economize computational resources, 

an aperture-projection algorithm is presented that permits the computations to be 

limited to a small field of view around the region of interest. Finally, an imaging 

simulation is conducted to demonstrate the feasibility of large-scale 3-D simulations 

using parallel computing. Images are synthesized in reasonable running times by min

imizing the grid size using the aperture-projection technique and the results of the 

accuracy analysis and then distributing the computational tasks between the proces

sors using the allocation algorithm. The imaging simulation demonstrates that the 

effects of computing 3-D, rather than 2-D, propagation can be recognized in B-mode 

images synthesized using this approach. 

2.2 Theory 

2.2.1 3-D first-order fc-space method 

In this section, the first-order &-space method is reviewed and formalized to com

pute three-dimensional propagation of the total pressure field based on the derivation 

scheme employed in [9] for the 2-D first-order fc-space method. 

The first-order &-space method solves coupled first-order linear acoustic wave 

equations in a lossless fluid medium with spatially variable sound speed and mass 

density, which are given by [16]: 

du(r, t) 
Vp(r, t) = -p[r) 

V.u(r,t) = - -

dt 

(2.1) 

1 dp(r, t) 
p(r)c(r)2 dt 

where p(r, t) is the total pressure field, u(r, t) is the velocity field, p(r) is the spatially 

dependent mass density, c(r) is the spatially dependent sound speed, and r represents 

a 3-D spatial vector coordinate (x,y,z). 
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The spatial derivatives in Eq. 2.1 can be evaluated accurately using the Fourier 

transform [17]: 

^ i l = ^ - i { i ^ { $ ( r , t ) } } (2.2) 

where £ denotes x, y, or z, the function $(r, t) can be any bandlimited signal, & is 

the 3-D spatial Fourier transform, ^"_1 is the inverse spatial Fourier transform, and 

(kx,ky,kz) are the 3-D components of the spatial frequency k that are defined such 

that k2 = k\ + k^ + k\. The assumption of bandlimited acoustic fields is justified 

since typical ultrasound pulses have bandlimited spectra. The temporal derivatives 

in Eq. 2.1 can be approximated using a finite-difference scheme: 

dHr,t) _ $(r,f + A * / 2 ) - $ ( r , t - A t / 2 ) 
dt ~ At l ' J 

where At is the time step. However, this finite-difference approximation of temporal 

derivatives introduces significant dispersion errors. 

Since each equation in Eq. 2.1 evaluates coupled temporal and spatial derivatives, 

the first-order &-space method uses Eq. 2.3 to evaluate the temporal derivative and 

employs a set of operators, called the first-order A;-space operators, to both accu

rately evaluate the spatial derivative using the Fourier transform and correct for the 

error introduced by the discrete evaluation of the temporal derivative. Following the 

derivation scheme in [9], it can be shown that the 3-D first-order &-space operators 

can be expressed as: 

J § ^ = ^- 1{^c^A C / 2^nc(c 0Atfc/2)^{$(r , t )}} 

(2.4) 

| t | l l = ^{ik,e-ik^sinc(c«tek/2)&{$>{r,t)}} 

where ( denotes x, y, or z, A£ is the spatial step along the C-coordinate, sinc(a;) 

= sin(#)/:r, CQ is the sound speed in the background medium, and sinc(coA£fc/2) 

is the temporal correction term. The exponential coefficients in Eq. 2.4 indicate 
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that the first-order &-space operators shift the function $(r, t) by half spatial steps 

before evaluating the spatial derivatives and applying the temporal correction terms. 

For instance, the operator <9$(r, t)/d^M^ x evaluates the derivative of $(r, t) with 

respect to x and applies the temporal correction term after performing a spatial shift 

of — Ax/2. Hence, the (coAt)~ and (coAi)+ operators must be combined in a way 

that cancels out the introduced spatial shifts. 

Using Eq. 2.3 and Eq. 2.4, the first-order &-space method equivalent to Eq. 2.1 

can be written as: 

At p(r<) d^At)+( 

p(r,t + At) -p(r,t) _ M M 2 V- duc(r*,t+) 
At ~ P{r)C[r) 2^ a(coAt)-̂ -

C={x,y,z} 

(2.5) 

where ux(r,t), uy(r,t), and uz(r,t) are the x, y, and z components of the velocity 

field, rx = (x + Ax/2,y,z), ry — (x,y + Ay/2,z), and rz = (x,y,z + Az/2), and 

t+ — t + At/2 and t~ — t — At/2. As discussed in [9], this fc-space method is not 

subject to any dispersion error for the case of a homogeneous medium, i.e. p(r)=p0 

and c(r)—co, and provides high accuracy for weakly scattering media. 

2.2.2 Relaxation absorption and perfectly matched layers 

Frequency-dependent attenuation and perfectly matched layer (PML) boundary 

conditions are incorporated into the 2-D first-order fc-space method [9] based on the 

procedure presented in [18] for a finite-difference method. The frequency-dependent 

attenuation is accurately modeled using an Nth-order relaxation model in which the 

compressibility is written as [19]: 

«(r, t) = KcoCrWt) + ^ ^e-^H(t) (2.6) 
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where Hoo(r) is the compressibility as frequency approaches infinity and is equal to 

l/[p(r)c(r)2}, 5(t) is the Dirac delta function, and H(t) is the Heaviside step function. 

To obtain a specific value of the attenuation coefficient, appropriate values must be 

selected for n(r), the relaxation time for the ith-order relaxation process, and Kj(r), 

the modulus for the ith-order relaxation process. 

The PML medium, which is an artificial region that surrounds the propagation 

medium to provide absorbing boundary conditions, is incorporated in the first-order 

&-space method using nonphysical equations that introduce large direction-dependent 

attenuation in the PML region without producing significant reflections from the PML 

medium [20]. Direction-dependent attenuation is modeled by decomposing the total 

pressure field into artificial components associated with each spatial dimension. 

The resulting 3-D acoustic field equations that incorporate relaxation absorption 

and PML boundary conditions are given by [9, 18]: 

P ( r ) ( ^ l + adr)udr,t))=-^l (2.7) 

<r, t) . ( * & 2 + orfrtorfr, 0 ) = - ^ ( 2 .8 ) 

Separately substituting each of the three spatial dimension variables for £ yields six 

coupled first-order propagation equations. In Eq. 2.8, p(r,t) — px(r,t) + py(r,t) + 

pz{r, t) is an artificial decomposition of the scalar p(r, i) into x, y, and z components, 

respectively, n(r,t) is the compressibility given in Eq. 2.6, * denotes the convolu

tion in time, and ax(r), ay(r), and az(r) are dispersionless attenuation parameters 

introduced to produce nonphysical attenuation in the PML region. 

The values of the dispersionless attenuation parameters ax(r), ay{r), and az(r) 

are computed using: 

Mr), forC<M c 

adr) = \ Mr), for C > Lc - Mc (2.9) 

0, otherwise 
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• 
Propagation 

medium 

I I PML 

Fig. 2.1: The simulation grid divided into two parts showing the configuration of the 
dispersionless attenuation parameters, where Lx, Ly, and Lz are the dimensions of 
the simulation grid including the propagation medium and the PML region, and Mx, 
My, and Mz are the dimensions of the PML region. 

where the functions fx, fy, and fz return the values of ax(r), ay(r), and az(r), 

respectively, within the PML region and Mx, My, and Mz are the dimensions of the 

PML region as shown in Fig. 2.1. The dispersionless attenuation parameters are 

set to zero within the physical propagation medium, so the propagation equations 

constructed using Eq. 2.7 and Eq. 2.8 can describe the acoustic propagation in the 

PML region and the propagation medium. 

The explicit evaluation of the temporal convolution in Eq. 2.8 leads to an in

efficient algorithm. Following the simplifying procedure used in [18] and [9], the 

equations that involve temporal convolution can be converted to a system of simul

taneous differential equations that do not include convolution. The simplification is 

achieved by introducing an artificial state variable for each relaxation process. The 

state variable that corresponds to the ith-order relaxation process is given by [9]: 

, e-t/n(r) 
(2.10) 

The equation that describes the dynamics of the state variables can be written as [18]: 

(2.11) 
dSKr,t) 1 rf, , p c M) 

at 



31 

Based on the simplifying procedure described in [9], Eq. 2.8 can be expressed as: 

at 

where 

+ »dr)pdr,t)= - ^ (^^-f:^Hr)SHr,t)\ (2.12) 

"U^t^ + ^r) (2-13) 

and 

* ) = T7TV - «i(0«c(r) (2-14) 
Ti\r) 

The continuous field equations of the 3-D first-order &-space method can be con

structed from Eq. 2.7, Eq. 2.11, and Eq. 2.12 that advance the velocity, state variable, 

and total pressure fields, respectively. Discrete formulation of these equations can be 

achieved by using the time-staggered discretization procedure given in [9], which is 

based on the procedure presented in [18] for the finite-difference method, and em

ploying the first-order &-space operators, given in Eq. 2.4, to evaluate the spatial 

derivatives and apply the temporal correction terms. Hence, the discrete field equa

tions are given by: 

ux(r
x,t+) = e -"*( r *) A t /V Q * ( r * ) A t / : V(r x ,0 

At Mpx{r,t) + py(r,t) + p,(r,t)), 
p(rx) d(°°At)+x 

Uy{r\t+) = e-^>A t /vQ* ( r V ) A t /X(ry ,n 
At ,d(px(r, t) + py{r, t) + pz{r, t)), 

uz(r
z,t+) = e-

a'<r*>A*/2[e-tt*<r*>A*/2Mr*,r) 

_ At (d(px(r,t)+py{r,t)+pz(r,t)) 

P(r*y d^M+z n 

(2.15a) 
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px{r,t + At) = e-^r)At/2[e-^{r)At/2px(r,t) 

- ^ % S F ? - E ^ ) ^ ( ^ + ) } ] «oo(f) d(CoAt^ x 
t=i 

py(r, t + At) = e-^r)M/2[e-^r)At/2py(r, t) 

%(|S?-E*»«i)] ftoo(?") cXc<,At) y 
i = i 

p,(r , t + At) = e-^M>2[e-^At/2pz{r,t) 

%<%££-£*«*(*«•>}] ^oo(r) d(c°At) 
i = l 

(2.15b) 

At At A / 

T i ( r ) 

At At A t 
5f(r,i+) = e ~ ^ > [e ^ « 5 f ( r , r ) + -—py(r,t)] (2.15c) 

At At A t 
5? ( r , «+ )=e ^ [ e 5 ^ 5 ? ( r , r ) + —Pz{r,t)\ 

Equation 2.15 employs 3-D staggered-space and staggered-time schemes in which the 

temporal and spatial sampling of the total pressure and velocity fields are config

ured as shown in Fig. 2.2. The state variables are evaluated using staggered-time 

and regular-spatial schemes similar to that of the velocity and total pressure fields, 

respectively. This 3-D staggered scheme is equivalent to the 2-D staggered scheme 
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(t) 

u2(x,y,z 

ux(x-Ax/2,y,z) 
w 

p(t+At) 
• 

• uy(x,y+Ay/2,z) 

-Az/2) 

p(x,y,z) ux(x+Ax/2,y,z) 

• uy(x,y-Ay/2,z) 

(a) 

p(t+2At) p(t+3At) 
* • • 

u()(t+At/2) u(.) (t+3At/2) u(.) (t+5At/2) u() (t+7At/2) 

(b) 

Fig. 2.2: (a) Staggered-space and (b) staggered-time sampling configuration of the 
total pressure and velocity fields. 

used in [9]. The (coAt)~ and (cc,At)+ operators are combined in a way that satisfies 

the sampling layout of the acoustic fields. 

The use of the staggered-space and staggered-time configurations along with the 

temporal correction factor improve the stability and accuracy of the first-order k-

space method given in Eq. 2.15. This A;-space method enables an exact temporal 

iteration without dispersion for homogenous propagation media, and provides high 

accuracy for weakly scattering media, such as soft tissue. Moreover, this method 

provides unconditional numerical stability for media with c(r) < CQ, where Co is the 

sound speed used to compute the temporal correction factor [9]. 

Equation 2.15 requires evaluation of 4 forward and 6 inverse spatial Fourier trans

forms at each time step. The 3-D spatial Fourier transform is therefore the most 

significant computational task in a 3-D A;-space simulation. The algorithm also re-
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quires sufficient memory to store 12 field variables (i.e., 3-D pressure and particle 

velocity fields plus state variables for relaxation absorption) and about 15 acoustic 

parameters (e.g., density and compressibility plus parameters for relaxation absorp

tion and perfectly matched boundary layers) at each point on the computation grid. 

2.3 Parallel implementation 

A distributed-memory computer cluster is a group of m nodes, where each node 

has its own processor and memory. The nodes are connected by an interconnection 

network and are assumed to have comparable performance. In this chapter, the phrase 

computer clusters refers specifically to distributed-memory clusters. 

Executing an application on a computer cluster requires decomposing the appli

cation into a set of parallel tasks and assigning each task to one of the nodes in the 

cluster. Typically, the interactions between tasks are accomplished using the mes

sage passing model [21], in which tasks running on different nodes communicate by 

sending and receiving messages. Since the intra-node bus speed is much higher than 

the speed of the interconnection network, there is a tradeoff between the speedup 

gained through parallelization and the inter-node communication overhead that oc

curs when tasks allocated to different nodes exchange data. An efficient distribution 

of the tasks of a parallel application between the nodes of a computer cluster is one 

that minimizes the total running time, or parallel execution time, of the application. 

2.3.1 Parallel simulation of a single scan line 

Temporal propagation of the acoustic fields using Eq. 2.15 depends upon the local 

values of the fields and the values returned by the &-space operators at each grid point. 

Computing the &-space operators given in Eq. 2.4 involves computing the 3-D spatial 

Fourier transform of the acoustic fields, updating the transformed fields at each spatial 

frequency, and computing the 3-D inverse spatial Fourier transform of the updated 
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fields. All computations of the first-order ft-space method, except the transforms 

between the spatial domain and the spatial frequency domain, are performed locally 

at each grid point without interacting with other points. Local evaluation in the 

spatial frequency domain is possible under the assumption of linear propagation, 

such that the pressure and velocity fields at a particular spatial frequency depend 

only the properties of the medium and the histories of the fields at that frequency. 

Global evaluation of the wave equation on the entire computation grid is enabled 

using the 3-D spatial Fourier transforms such that each point in the spatial frequency 

domain includes contributions from all grid points in the spatial domain, and vice 

versa. 

Our parallel implementation of the first-order A;-space method partitions the 3-D 

simulation grid evenly along one of the spatial dimensions and assigns each partition 

to one of the nodes in the cluster. Partitioning the grid enables large-scale simu

lations by employing the memory and processing resources of multiple nodes, and 

even distribution of the grid among nodes improves the computation efficiency by 

reducing the idle time of the nodes. One-dimensional (1-D) decomposition simpli

fies coarse partitioning of the grid, compared to 2-D and 3-D decompositions, and 

therefore helps minimize inter-node communications that take place during spatial 

Fourier transforms. The 3-D spatial Fourier transforms are evaluated using a paral

lel implementation of a fast Fourier transform (FFT) library, FFTW [22], that runs 

on computer clusters using the Message Passing Interface (MPI) [23] standard. The 

FFTW library uses 1-D decomposition. The number of grid partitions must be less 

than or equal to the number of available nodes. Given the grid sizes of realistic imag

ing simulations and the number of nodes of typical clusters, it is worth noting that 

running a single scan line on multiple nodes should always reduce the running time 

of the simulation. 
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2.3.2 Parallel simulation of multiple scan lines 

In ultrasound imaging simulations that require computation of many scan lines, 

an efficient parallelization is achieved by computing multiple scan lines concurrently. 

However, a fixed number of nodes in a cluster produces a tradeoff between the number 

of nodes allocated to a single scan line and the number of scan lines run concurrently. 

Since the scan lines are independent from each other, running multiple scan lines 

concurrently does not introduce additional communication overhead, and hence im

proves the efficiency of the simulation. On the other hand, assigning multiple nodes 

to a single scan line reduces the simulation efficiency because data transfer operations 

between nodes take place at each simulation step. Allocation of multiple nodes to run 

single scan lines is required when the simulation involves large computation grids in 

order to ensure sufficient memory and processing resources. In the unusual case where 

the number of available nodes is greater than the number of scan lines, allocation of 

multiple nodes to single scan lines reduces the total running time of the simulation. 

The dynamic scan-line allocation algorithm outlined in Fig. 2.3 was developed to 

achieve efficient parallel imaging simulations. The inputs of the algorithm are 77, £, 

and /?, which are the minimum number of nodes to be allocated for a single scan 

line, the total number of scan lines, and the number of grid points along the direction 

of 1-D decomposition, respectively. The value of rj is chosen based on the memory 

and processing requirements of simulating a single scan line and should be an integer 

factor of the computation grid size along the decomposition dimension. The buffer Q 

stores a group of scan lines. The functions used in the algorithm are: 

- Number_Of_Available_Nodes(): a function that returns the number of avail

able nodes in the cluster. 

- Load_Scan_Lines(n): a function that returns n scan lines from the pool of 

unexecuted scan lines. 

- FindJnteger_Multiple(nl,n2): a function that returns the largest integer 
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Distribute_Scan_Lines (4, r), /3) 

£' = € 

while 4 > 0 and Number_Of_Avai]ableJModes() > »7 do 

m = Number_Of_Available_Nodes() 

if 1^-1 < «' then 

Q = Load-ScanJUnes(L^J) 

7 = remainder{ ^ - } 

while Size(Q) > 0 do 

1? = Find Jnteger_Multiple(/3, r? + 7) 

7 = J? + 7 — 1? 

Assign _Nodes(Q,tf) 

end while 

else 

Q = Load_ScanXines(£ ) 

7 = remainder{ ^V} 

while Size(Q) > 0 do 

1? = FindJnteger_Multiple(,3, [^-J + 7) 

7 = L ^ J + 7 - t f 

Assign JSTodes(Q,tf) 

end while 

i' = 0 

end if 

end while 

Fig. 2.3: An algorithm for distributing the scan lines between the nodes of a cluster. 
The [J operator denotes rounding down to the nearest integer. 

that is smaller than n2 and divides n\ evenly. 

- Assign JNodes(Q,n): a function that assigns n nodes to execute one scan line 

in Q. The executed scan line is removed from Q. 

This allocation algorithm assigns the largest possible number of scan lines to the 

available nodes in a way that satisfies the constraint of a user-specified minimum 

number of nodes per single scan line and reduces the idle time of the nodes. The 

computation gird of each scan line is distributed equally between its assigned group 
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of nodes. When nodes become available, the algorithm iteratively allocates new scan 

lines to the available nodes. Therefore, this algorithm enables efficient scheduling of 

scan lines on a cluster for all combinations of number of scan lines, number of cluster 

nodes, and minimum number of nodes per scan line. 

Consider an example imaging simulation with six scan lines run on a cluster of 

eight nodes, and assume that the simulation grid size of each scan line is 512x512x512 

points and the minimum number of nodes per scan line is two. At the beginning of the 

simulation, the allocation algorithm loads four scan lines for simulation and assigns 

two nodes to run each scan line. When the simulation of the first four scan lines is 

completed, the algorithm assigns four nodes to run each of the two remaining scan 

lines. 

2.4 Numerical methods 

Test computations were carried out to identify the best combination of spatial and 

time step sizes to achieve accurate B-mode imaging simulations while also reducing 

the computational complexity. An important finding in [9] is that the 2-D first-order 

/c-space method achieves accurate computations using a grid spacing of four points 

per minimum wavelength and a time step chosen such that the CFL number [13], 

defined as CFL = ^r, is equal to 0.5. The example computations described in the 

following sections evaluate whether those guidelines for choosing a grid spacing and 

time step, which are hereafter referred to as the typical &-space configuration, remain 

applicable when the &-space method is used to compute 3-D propagation of the total 

pressure in the high-frequency band and a Gaussian spatial filter, rather than the half-

band filter employed in [9], is used to smooth the acoustic properties of the medium. 

These example computations provide a framework for analyzing the computational 

complexity of a realistic B-mode imaging simulation based on a consideration of the 

complexity of a single fc-space simulation. Additional calculations are then performed 
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to determine the most efficient allocation of parallel computing resources for B-mode 

imaging simulations. Moreover, an aperture-projection algorithm is presented that 

permits the computations to be limited to a small field of view around the focus. An 

example imaging simulation is performed to demonstrate the feasibility of fast 3-D 

imaging simulations using the aperture-projection algorithm and parallel computing. 

A 3-D Gaussian filter provides a practical means, compared to the half-band 

filter, for smoothing the propagation media of imaging simulations in order to reduce 

numerical artefacts that can result from applying the ft-space method to a medium 

that contains discontinuities. In this chapter, spatially-dependent sound speed and 

mass density are smoothed using the Gaussian filter given by: 

* (jfe) = e-
a2k2 (2.16) 

This filter, which is applied in the spatial frequency domain, reduces numerical er

rors associated with medium discontinuities without introducing significant blurring 

artefacts when a = ^ . 

The incident pulse used in sections 2.4.1, 2.4.2, and 2.4.3 is a plane wave with 

a Gaussian envelope, a centre frequency of 40 MHz, and —6-dB bandwidth of 24 

MHz. This is a typical frequency spectrum used for the focused pulses employed for 

small-animal imaging in preclinical research. The maximum frequency of the incident 

pulse, which is used to calculate the size of the spatial step, is taken as 70.9 MHz, 

corresponding to the upper -40-dB frequency of the pulse spectrum. 

The dispersionless attenuation parameters of the PML boundary conditions are 

set to increase smoothly from the inner surface to the outer surface of the PML 

region using equation (27) in [9]. The maximum PML absorption per grid point 

is fixed at 3 Np and the thickness of the PML region is set to 10 points. These 

settings produce boundary reflection and transmission coefficients less than -100 dB 

for normally incident waves. 
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2.4.1 Analysis of numerical accuracy and computational com

plexity: Propagation calculations 

A benchmark calculation is performed in which the total field after forward scat

tering from a fluid sphere of diameter 0.24 mm (~6A) is computed and compared with 

an analytical solution [24]. The sphere, which is located at the origin, has the acoustic 

properties of fat (c =1.478 mm/fis and p — 0.950 g/cm3) [25] and is embedded in a 

water background at body temperature (c = 1.524 mm/jus and p — 0.993 g/cm3) [25]. 

The size of the sphere is comparable to the size of the smallest tumour detectable 

using 3-D high-frequency ultrasound imaging [26]. The centre of the incident pulse 

is initially located at y0 — —0.3 mm and the pulse is propagated along the positive 

y (axial) direction. The total pressure field is recorded at 45 observation points ex

tending 0.48 mm along the x (lateral) coordinate, with the central point placed at 

x = 0, y = 0.24, and z = 0 mm. 

The accuracy of the simulation is evaluated using the frequency-domain L2 error 

given by: 
llPnurn PexactW ir. , ™\ 

e ~ \w, \\ \ZA') 
\\y exact \\ 

where || || is the L2 norm of a matrix [27] and pnum
 a n d pexact are matrices composed of 

all computed frequency components of the total pressure recorded at the observation 

points using the &-space method and the analytical solution, respectively. 

The results are presented as graphs of L2 error as a function of the computational 

complexity of the simulation. Two graphs are constructed. One graph shows the effect 

of varying the grid spacing from 2 to 12 points per minimum wavelength, incrementing 

by multiples of 2, while also adjusting the time step to maintain a fixed CFL number 

of 0.5. The second graph shows the effect of varying the time step such that the 

CFL number ranges from 0.1 to 1.3 in increments of 0.1, while maintaining a fixed 

spatial step of 4 points per minimum wavelength. The computational complexity is 

normalized by the complexity of a simulation using the typical choices of spatial and 
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time steps for the first-order &-space method. Therefore, the normalized complexity 

is directly proportional to the total number of points in the 3-D grid multiplied 

by the number of temporal iterations. The analysis thus shows the joint effect on 

accuracy and computational complexity of deviating from the typical recommended 

grid spacing and time step. For all results reported in this chapter, an isotropic 

spatial step is used, i.e. Ax = Ay = Az. For the range of CFL numbers examined in 

this study, the &-space method did not suffer from any numerical instability, which 

agrees with the theoretical unconditional stability of this method for a medium with 

c(r) < Co [6, 9]. 

2.4.2 Analysis of numerical accuracy and computational com

plexity: Attenuation calculations 

Computational complexity is also analyzed by studying the effect of the com

plexity on the fidelity with which the relaxation absorption model simulates linear 

frequency dependence of attenuation in the high-frequency band. Four attenuation 

coefficients are modeled: 0.695, 0.869, 1.040, and 0.805 dB/cm/MHz, which match 

the acoustic attenuation of bovine liver, myocardium, and kidney [28], and whole 

cells [29], respectively in the high-frequency band. For each attenuation coefficient, 

the incident pulse is propagated in a homogeneous medium with the sound speed and 

mass density of water at body temperature. Other sound speeds and densities are 

not examined since their values do not affect the attenuation results. 

Linear frequency dependence of attenuation is approximated using the relaxation 

absorption model with two processes. The parameters of the relaxation processes 

are determined using a curve fitting procedure that minimizes the mean squared 

error between the desired linear frequency-dependent absorption and the analytical 

relaxation absorption as a function of frequency given by [19]: 
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Table 2.1: Relaxation absorption parameters to model frequency-dependent 
absorption 

Liver 

Myocardium 

Kidney 

Whole Cells 

a 

(dB/cm/MHz) 

0.695 

1.040 
0.869 

0.805 

n 
(ns) 

2.1 

2.2 

2.1 

2.1 

T2 

(ns) 

21 

22 
21 

21 

«1 

(Xl0-4«oo) 

62 

93 

77 

71 

«2 

(xl0-4Koo) 
73 

108 

91 
84 

</r 
(mm/jus) 

[1.5171, 1.5214] 

[1.5139, 1.5203] 
[1.5154, 1.5208] 

[1.5161, 1.5210] 

The values of c(/) are shown as a closed interval with the lower and upper end-

points computed at 9.1 and 70.9 MHz, respectively. 

v ^ ftjQ") N2 , /V^ 2nfKi{r)Ti(r) ^Q.S-IO.S foist 

The curve fitting procedure is run over all frequency components within -40 dB from 

the centre frequency in the pulse spectrum. The values of the relaxation parameters 

for each medium are listed in Table 2.1. The range of the analytical frequency-

dependent sound speed [19], c(f), of each medium is computed for all frequency 

components within -40 dB from the centre frequency in the pulse spectrum and is 

also presented in Table 2.1. Within this frequency range, c(/) is a monotonically 

increasing function of frequency. 

The incident pulse is propagated using a spatial step size of four points per mini

mum wavelength and two CFL numbers, 0.5 and 0.25, which correspond to the typical 

computational complexity denned in section 2.4.1 and double the typical complexity, 

respectively. The simulated relaxation absorption is measured by computing the ratio 

of pressure spectra received at ten observation points located along the propagation 

axis, where the distance between two successive points is 0.054 mm. The analytical 

(equation 2.18) and simulated relaxation absorptions are compared with the desired 

linear frequency-dependent absorption by plotting the difference between the desired 
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absorption and the relaxation absorptions as a function of frequency. 

2.4.3 Parallel simulation performance 

The reduction of execution time achieved by distributing the computational tasks 

of the fc-space method between a group of cluster nodes is evaluated. This evaluation 

uses fixed spatial and time steps corresponding to the typical configuration of CFL 

number equal to 0.5 and 4 grid points per minimum wavelength. The spatial and 

time steps are set to 5.21 /xm and 1.71 ns, respectively. 

To evaluate the performance of computing a single scan line in parallel, the inci

dent pulse is propagated along the y direction in a homogeneous medium with the 

acoustic properties of fat. The simulation is run for 1000 time steps, which allows the 

pulse to travel 2.5 mm. The 3-D computation grid is composed of N^xN^xN^; points, 

where Nx, Ny, and N^ are the number of grid points along the x, y, and z directions. 

In this test, the values of Nx and Ny are fixed at 512 points and the value of Nz is 

varied between 16 and 512 points, incrementing by multiples of two. The number of 

nodes used is varied from 1 to 64, incrementing by multiples of two. The execution 

times of the parallel and serial simulations are reported as means of four simulation 

trials. 

The measured execution times for single scan lines are used to compute the serial 

and parallel execution times of B-mode simulations with the number of scan lines 

varied from 4 to 512, incrementing by multiples of two, and the minimum number of 

nodes per scan line set to 1, 2, 4, 8, or 16. Parallel execution times are computed 

assuming 64 nodes are available, each scan line uses a 512 x 512 x 512 grid, and the 

scan lines are allocated according to the algorithm introduced in section 2.3.2. 

The speedup and efficiency [30] are used to evaluate the performance of parallel 

computing . The speedup is the ratio of the execution time of the serial simulation 

to that of the parallel simulation. The efficiency is the ratio of the speedup to the 

number of nodes used. 
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Connective 
tissue 

Fig. 2.4: A schematic representation of a tissue-mimicking phantom composed of an 
infinite-length cylinder of diameter 1.7 mm with acoustic properties of connective 
tissue containing two internal spheres of diameters 0.5 and 0.4 mm with acoustic 
properties of fat and is surrounded by a background medium with acoustic properties 
of water at body temperature. The orientation of the x, y, and z axes are as shown 
in the figure, but the origin is located inside the phantom as described in the text. 

2.4.4 B-mode imaging simulations 

An example B-mode imaging simulation of a tissue-mimicking phantom is carried 

out to demonstrate the feasibility of 3-D imaging studies using parallel computing. 

The phantom (Fig. 2.4) is composed of an infinite-length cylinder of diameter 1.7 

mm with acoustic properties of connective tissue (c = 1.550 mm/yus and p = 1.040 

g/cm3) [31] containing two internal spheres of diameters 0.5 and 0.4 mm with acoustic 

properties of fat. The cylinder is surrounded by a background medium with acoustic 

properties of water at body temperature. The axis of the cylinder is aligned along the 

z-axis (elevation) and the centres of the spheres are located on the xy plane (2 = 0). 

Random scatterers are added to the cylinder and the spheres as random fluctuations 

in compressibility using a Gaussian random variable with rms amplitude of 1% and 

5% of their compressibility, respectively. Attenuation is ignored in this simulation. 

We wish to simulate imaging with a highly focused circular transducer with a 

2.3-mm diameter, a 6.0-mm focal distance, a 40-MHz centre frequency, and —6-dB 

bandwidth of 24 MHz, which are similar to the specifications of the VisualSonics 
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RMV706 transducer (VisualSonics Inc., Toronto, Canada). Calculating propagation 

from the transducer to the focal zone would require a very large grid. The grid size 

can be reduced as follows by determining an equivalent aperture near the focal zone 

of the transducer and restricting the &-space simulation to a field of view around the 

focus. The lateral resolution (LR) and depth of field (DOF) of a transducer can be 

approximated by [32, 33]: 

LR = \^- (2.19) 

DOF = 3A(^) 2 (2.20) 

where F is the focal distance of the transducer and D is the transducer diameter. 

These equations can be used to specify a smaller aperture with a shorter focal distance 

that provides the same spatial resolution and depth of field as the modeled transducer. 

In this thesis, this approach is referred to as aperture projection. Equations 2.19 and 

2.20 indicate that aperture projection involves simply matching the /-number (^) 

of the modeled transducer and the wavelength of the transmitted pulse. Therefore, 

the B-mode imaging simulations are performed using a projected aperture with a 

0.47 mm diameter, a 1.23 mm focal distance, and the same centre frequency as the 

previous simulations. The projected aperture is located in a plane at y — —1.23 mm 

so the focus will be on the long axis of the cylindrical phantom. The focus is located 

on the xz plane (y — 0) and the pulse bandwidth is also the same as the previous 

simulations. 

A set of parallel B-mode image planes are obtained at various z coordinates. 

Each image is composed of 65 scan lines that are equally-spaced by 40 //m along the 

x direction. The simulation of each scan line is carried out using a computation grid 

of 128x512x128 points, a spatial step of 5 /jm, and a time step of 1.64 ns (CFL = 

0.5). Each B-mode image is computed using 20 nodes, such that the first 60 scan 

lines are simulated by allocating two nodes for each scan line, while the simulation of 

the last five scan lines is performed using four nodes for each scan line. 
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2.4.5 Computer cluster specifications 

The serial and parallel ultrasound simulations presented in this study are run 

on a computer cluster in SHARCNET (http://www.sharcnet.ca). Each node has an 

Opteron single core 2.4 GHz processor, 32 GB memory, Quadrics Elan4 interconnects, 

and runs the HP XC 3.1 Linux-based system. Groups of four processor nodes are in 

close communication, so computations using four or fewer nodes have minimal inter-

node communication overhead. 

2.5 Numerical results 

2.5.1 Analysis of numerical accuracy and computational com

plexity: Propagation calculations 

Accuracy results of the fluid sphere benchmark problem are presented in Fig. 2.5 

as a function of the computational complexity normalized by the complexity of a 

simulation using the typical &-space configuration of CFL number equal to 0.5 with 

4 grid points per minimum wavelength. Fig. 2.5(a) shows the joint effect on the L2 

error and the computational complexity when the spatial step is fixed at 4 points 

per minimum wavelength and the time step is varied. The complexity is inversely 

proportional to the time step because Ax is held constant. The L2 error at a nor

malized complexity of 1 is 2.6%, which is judged to be sufficient accuracy for B-mode 

imaging simulations. The L2 error increases rapidly when a time step coarser than 

the typical configuration, corresponding to normalized complexity less than 1, is used. 

On the other hand, the additional reduction in L2 error achieved by using finer time 

steps than the typical configuration is small relative the corresponding increase in the 

complexity. 

Fig. 2.5(b) shows the joint effect on the L2 error and the computational complexity 

when the spatial step is varied from the typical configuration of 4 grid points per 

http://www.sharcnet.ca
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Fig. 2.5: Frequency-domain L2 error of the 3-D &-space method as a function of 
normalized computational complexity when (a) the CFL number is varied between 
0.1 and 1.3 and the spatial step is set to 4 points per minimum wavelength, and (b) 
the CFL number is set to 0.5 and the spatial step is varied between 2 and 12 points 
per minimum wavelength. 

minimum wavelength while also adjusting the time step to maintain CFL number 

equal to 0.5. Normalized complexity is plotted using a logarithmic scale in Fig. 2.5(b) 

for ease of visualization of the data points. Since the CFL number is proportional 

to |H, to hold CFL constant when the spatial step is increased by a factor of a, the 

time step must also be scaled by a, which scales the number of temporal iterations 

by -. Since an isotropic spatial step is used, the number of spatial grid points is 

inversely proportional to (Ax)3, so a large range of complexity values are covered in 

Fig. 2.5(b) because the complexity is effectively proportional to (Aa;)-4. Again, the 

L2 error increases rapidly when the normalized complexity is reduced below 1. Note 

that the minimum normalized complexity for a homogeneous medium is ^ , which 

corresponds to 2 grid points per minimum wavelength. The additional reduction 

in L2 error achieved by using finer spatial sampling than the typical configuration is 

very small relative to the corresponding increase in the complexity. Since the memory 

requirements also increase proportionally to , A 3 , the use of finer spatial sampling 

may also be limited by the available memory resources of the cluster. If a spatial 

V. 

0.08 

0.06 
l-H 
O 

J 0.04 
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step finer than 4 points per minimum wavelength is required to preserve the features 

of the medium that otherwise will be lost during the discretization process, then 

the A;-space method achieves a very small L2 error when sufficient memory resources 

are available. For example, an error value of 0.57% is achieved using 12 points per 

minimum wavelength and a CFL number of 0.5, which corresponds to a normalized 

complexity of 81. 

The relationship between the numerical accuracy of the 3-D first-order A;-space 

method and spatial and time steps that can be induced from Fig. 2.5 agrees with 

Figs. 3 and 4 in [9] and Figs. 2 and 3 in [6] that characterize the numerical accuracy 

of computing scattering from a fluid cylinder using the 2-D first-order &-space method 

and the second-order &-space method, respectively. The three methods achieve a low 

error value on the order of 3% using a CFL number of 0.5 and four points per minimum 

wavelength. 

2.5.2 Analysis of numerical accuracy and computational com

plexity: Attenuation calculations 

The difference between the desired linear frequency-dependent absorption and the 

analytical (equation 2.18) and simulated relaxation absorptions is shown in Fig. 2.6 

for liver, kidney, myocardium, and whole cells with acoustic properties given in Ta

ble 2.1. The analytical curves show that the second-order relaxation absorption model 

does not produce exactly linear frequency dependence of absorption, so the simulated 

absorption obtained in a &-space computation should not be expected to exhibit per

fectly linear frequency dependence either. The curves for CFL numbers of 0.25, which 

correspond to computational complexity two times greater than the typical &-space 

configuration, closely match the frequency dependence of the analytical relaxation 

absorption model. Even though the absorption obtained using the typical A;-space 

configuration (CFL = 0.5) exhibits greater deviation from linear frequency depen-
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Fig. 2.6: Difference between the desired linear frequency-dependent absorption and 
the analytical and simulated relaxation absorptions for (a) liver, (b) kidney, (c) my
ocardium, and (d) whole cells with acoustic properties given in Table 2.1. 

dence, this performance is judged satisfactory for B-mode imaging simulations. The 

discrepancy between relaxation absorption simulated at CFL numbers of 0.25 and 

0.5 is at most 1.28 dB/cm at frequencies between 30 and 50 MHz where most of the 

pulse energy is concentrated. Note that 1 cm is a long propagation distance at 30 to 

50 MHz. 
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Fig. 2.7: Performance results achieved by partitioning the simulation grid of a single 
scan line. Speedup (dashed lines) and efficiency (solid lines) as functions of (a) the 
number of grid points along the z-axis with Na 

the number of nodes for a 512x512x512 grid. 
N, 512 using 16 nodes, and (b) 

2.5.3 Parallel simulation performance 

Fig. 2.7(a) shows both the speedup and efficiency of simulating a single scan line 

in parallel as functions of grid size when the number of nodes is fixed at 16. The 

speedup and efficiency increase as the size of the simulation grid increases. Using 

16 nodes, the maximum speedup of 14.88 ± 0.14 and efficiency of 0.930 ± 0.009 are 

achieved with the largest simulation grid (512x512x512 points). 

The average speedup and efficiency of a single scan line with respect to number of 

nodes are shown in Fig. 2.7(b) for the case when the grid size is fixed at 512x512x512 

points (i.e., computational complexity held constant). When the size of the simulation 

grid is fixed, the speedup value increases as the number of nodes increases, but the 

efficiency tends to decrease as the number of nodes increases. This observation can 

be explained by the fact that, as the number of nodes increases, the computation grid 

is distributed among a larger number of nodes, leading to greater values of speedup, 

but the resulting higher communication overhead decreases the efficiency. Using a 

512x512x512 point grid, the maximum speedup of 47.52 ± 2.93 is obtained using 
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the maximum number of nodes tested (64), while the maximum efficiency of 0.961 ± 

0.010 is achieved using two nodes. 

The overall speedup values of B-mode imaging simulations are presented in Ta

ble 2.2 when the available number of nodes is equal to 64. Each cell in Table 2.2 

shows the speedup of computing a B-mode image composed of the number of scan 

lines shown in the leftmost column when the minimum number of nodes per single 

scan line is equal to the value in the top row. When the product of the number of 

scan lines and the minimum number of nodes per single scan line is less than the total 

number of nodes, all scan lines can be run concurrently. In this case, the minimum 

number of nodes per single line does not affect the speedup because the scan-line allo

cation algorithm assigns a number of nodes greater than the user-specified minimum 

to each scan line. As the number of scan lines increases, the computation grid of each 

individual line is assigned to fewer nodes, leading to greater values of efficiency for 

each scan line and hence greater values of overall speedup. 

As the number of scan lines increases further such that the number of available 

nodes is less than or equal to the product of the number of scan lines and the minimum 

number of nodes per scan line, the number of scan lines that can be run concurrently 

depends only on the user-specified minimum number of nodes per single line. This 

scenario applies to most B-mode imaging simulations unless the number of available 

nodes is very large. In this case, the overall speedup for a B-mode simulation is equal 

to the number of available nodes multiplied by the efficiency of computing a single 

scan line. For example, consider the effect of increasing the total number of scan 

lines from 4 to 8 when the minimum number of nodes per line is 16 and the number 

of available nodes is 64 as in Table 2.2. In the former case, all four lines execute 

concurrently with an efficiency of 0.930, so the overall speedup is 64 x 0.930 = 59.52. 

In the latter case, the total parallel execution time doubles (i.e., lines 1-4 execute 

concurrently, then lines 5-8 execute concurrently). Since the serial execution time 

also doubles when computing 8 lines compared to 4 lines, the total speedup achieved 



Table 2.2: Speedup values of B-mode image simulations 
Number of 
scan lines 

4 
8 
16 
32 

>64 

Minimum number of nodes per 
1 

59.52 
60.72 
61.17 
61.52 

64 

2 
59.52 
60.72 
61.17 
61.52 
61.52 

4 
59.52 
60.72 
61.17 
61.17 
61.17 

8 
59.52 
60.72 
60.72 
60.72 
60.72 

scan line 
16 

59.52 
59.52 
59.52 
59.52 
59.52 

by the parallel cluster relative to the serial computer is unchanged. 

2.5.4 B-mode imaging simulations 

The simulated B-mode images for the tissue mimicking phantom are shown in 

Fig. 2.8, where each panel presents a B-mode image plane obtained at a different 

elevation along the z-axis. The B-mode images show realistic 3-D refraction artefacts 

that appear as shadow regions below the spherical lesions. These artefacts are pro

duced by the change in direction of the wave at the top and bottom of each lesion when 

the wave is obliquely incident to the sphere. Such 3-D artefacts cannot be obtained 

using 2-D simulations. The serial execution time required to compute each B-mode 

image was 357.50 hours, compared to the parallel execution time of 18.61 hours using 

20 cluster nodes. These results suggest that the parallel 3-D ft-space method can be 

used to perform realistic 3-D imaging studies with short running times. 

2.6 Discussion 

This chapter explores the issue of whether fully 3-D simulations of ultrasound 

imaging are practical using current computer technology. Tabei et al. [9] have shown 

that the 2-D total-pressure solver version of the first-order &-space method achieves 

high numerical accuracy using the typical configuration of CFL number equal to 

0.5 with spatial sampling of 4 points per minimum wavelength when the propaga-
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(d) (e) (f) 

(g) 00 

Fig. 2.8: Simulated B-mode images of a 3-D tissue mimicking phantom containing 
two spherical lesions of diameters 0.5 and 0.4 mm acquired when the focus of the 
transducer is located at x = 0, y = 0, and (a) z — 0, (b) z — 0.05, (c) z — 0.10, (d) 
z = 0.15, (e) z = 0.20, (f) z = 0.25, (g) z = 0.30, and (h) z = 0.35 mm. Panels 
(e) and (f) contain a shadow region with reduced brightness indicated with a white 
arrow. Scale bar = 0.5 mm. 

tion medium is filtered using a half-band filter. The first-order fc-space method is 

extended in section 2.2 to compute 3-D total pressure propagation. Numerical eval

uations presented in section 2.5.1 show that the 3-D total-pressure solver with the 

typical configuration of spatial and time steps achieves a low error value of 2.6% 



54 

when the medium is filtered using a Gaussian filter. A Gaussian filter provides a 

practical method for smoothing the propagation medium in an imaging simulation, 

which typically includes structures with irregular geometries. Furthermore, section 

2.5.1 demonstrates that the increase in computational complexity that results from 

using spatial and time steps finer than the typical configurations can be dramatic, 

especially when a grid spacing finer than 4 points per minimum wavelength is chosen. 

Moreover, using a finer grid spacing than the typical configuration greatly increases 

the memory requirements of a 3-D &-space simulation. Even when the typical con

figuration is used, the memory requirements for computing a single scan line in 3-D, 

as illustrated by the example outlined in the section 2.1, still exceed the capabili

ties of most contemporary serial computers and thus make a parallel implementation 

necessary. 

In the context of B-mode imaging simulations, parallel computing provides the 

added benefit of enabling several scan lines to be computed concurrently. Parallel 

performance results summarized in Table 2.2 demonstrate that the most efficient use 

of parallel computing resources is to partition the computation grid for a single scan 

line among the smallest group of nodes that provides sufficient memory and employ 

multiple groups of nodes to run independent pulse-echo simulations concurrently. The 

parallel efficiency results shown in Fig. 2.7(b) for a single scan line demonstrate that 

the efficiency is high (close to 1) when four or fewer nodes are used, but the efficiency 

begins to decrease when more than four nodes are used. This result is attributed 

to the architecture of the interconnection network, in which the communication cost 

among each group of four processors is lower than the inter-group communication 

cost. The dynamic scan-line allocation algorithm introduced in Fig. 2.3 performs 

the recommended allocation automatically when the user sets the minimum number 

of nodes per scan line equal to the smallest number of nodes with sufficient total 

memory. High efficiency was achieved in the B-mode simulations in part because it 

was possible to allocate a minimum of only two nodes per scan line. 
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If simulated images with a small field of view are sufficient for the user's applica

tion, the size of the computation grid can be further reduced by using the aperture-

projection technique outlined in section 2.4.4. This approach was applied to synthe

size the images in Fig. 2.8. Each of those images, which consist of 65 scan lines, was 

synthesized in about 19 hours using a 20-node cluster with large memory (32 GB 

per node) in which the minimum number of nodes per scan line is set to two. The 

benefits of computing 3-D wave propagation, illustrated in Fig. 2.8 by the refraction 

artefacts from the spherical lesions, can be appreciable even in a small field of view 

simulation. 

The linear frequency dependence of attenuation modeled in this paper is an ap

proximation that is commonly used at clinical frequencies. Maruvada et al. [28] have 

shown that this approximation can be extended to the high-frequency band. As at 

clinical frequencies, a more accurate treatment of attenuation would include an fx 

frequency dependence, where 1 < x < 2 [34]. More complicated frequency depen

dence can be obtained in the &-space method by including higher order processes in 

the relaxation absorption model. Each additional relaxation process would require 

storage of three additional state variables and the associated medium parameters at 

each grid point as well as additional operations to update the pressure field at each 

time step. 

Viewed collectively, the results presented in this chapter demonstrate that fully 

3-D simulations of ultrasound imaging are practical provided the application does 

not require synthesis of a large number of images with fields of view comparable to a 

complete B-mode image. A reduced field of view should be perfectly acceptable for 

applications such as developing lesion detection or classification algorithms. Other 

applications, such as simulations of aberration and aberration correction, where it is 

essential to compute propagation over the entire distance from the transducer to the 

imaging target, can be performed using the 3-D &-space method, but the number of 

scan lines computed concurrently would be substantially restricted. In such cases, 
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the user may face a choice between synthesizing only a small number of images or 

reverting to calculations of 2-D propagation to reduce the grid size. 

The B-mode execution times reported in this paper were achieved using a spatial 

step of about 4 points per minimum wavelength. Some applications may require finer 

spatial sampling to better preserve the detailed features of the medium. Quantitative 

high-frequency scattering simulations using models of the cellular-scale microstructure 

of tissue (e.g., chapter 3 of this thesis) are one example of an application where the 

spatial step may be dictated by the characteristics of the medium rather than the 

minimum requirements for ft-space propagation accuracy. 

2.7 Conclusion 

This chapter extends the first-order &-space method to compute 3-D acoustic 

propagation and explores practical issues related to the use of the &-space method for 

3-D ultrasound imaging simulations. The importance of 3-D simulations is illustrated 

by the refraction artefacts obtained in the B-mode images of Fig. 2.8. An algorithm 

was introduced to automatically allocate scan lines to the nodes of a computer clus

ter. Effective use of the scan-line allocation algorithm requires consideration of the 

computational resources available at each node. The parallel performance results 

demonstrate that 3-D simulations of B-mode imaging are most practical when the 

number of scan lines computed concurrently can be maximized. The finite resources 

of each cluster node impose a trade-off between the spatial step size, the dimen

sions of the field of view, and the running time of the simulation. Therefore, when 

determining the numerical accuracy desired for a specific application, the available 

computational resources, the desired field of view, and the spatial sampling necessary 

to preserve important features of the medium should be considered. 
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Chapter 3 

Stochastic Modeling of Normal and 

Tumour Tissue Microstructure for 

High-Frequency Ultrasound 

Imaging Simulations 

The content of this chapter has been accepted for publication in IEEE Transactions 

on Biomedical Engineering* with author list M. I. Daoud and J. C. Lacefield. 

3.1 Introduction 

The ongoing development of high-resolution imaging technologies promises to ad

vance the study of cancer biology and treatment in small-animal tumour models. 

Small-animal cancer models are imaged using many modalities [1], including high-

frequency (20-60 MHz) ultrasound [2]. Preliminary progress has been made toward 

*© 2009 IEEE. Reprinted, with permission, from IEEE Transactions on Biomedical Engineering, 

"Stochastic Modeling of Normal and Tumor Tissue Microstructure for High-Frequency Ultrasound 

Imaging Simulations" by M. I. Daoud and J. C. Lacefield. 
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using high-frequency ultrasound backscatter to quantify morphological variations of 

tissue microstructure that differentiate tumours derived from different cell lines [3] and 

accompany anti-cancer treatment responses [4]. Establishing relationships between 

tissue microstructure and high-frequency ultrasound backscattering would provide ad

ditional information about tumour growth and treatment response that complement 

conventional metrics such as tumour size and shape. 

Previous studies have suggested that high-frequency ultrasound scattering in tis

sue can be predicted using scattering models that emphasize the morphology and 

spatial organization of cells and nuclei. For example, Baddour et al. [5] proposed an

alytical scattering models of single cells and showed that the high-frequency scattering 

response of a single cell can be computed by modeling the cell as a sphere. An ideal

ized two-dimensional (2-D) scattering model proposed by Hunt et al. [6] treats tissue 

microstructure as a population of nuclei embedded in a homogeneous medium, with 

each nucleus represented as a group of point-like scatterers. Simulations performed 

with this model suggest that high-frequency backscattering from cell ensembles is 

correlated with the positions and structure of the nuclei. The assumption that the 

nuclei are the major scattering source at high frequency agrees with empirical results 

reported by Taggart et al. [7], which indicate that high-frequency backscattering from 

cell ensembles is dominated by the size of the nuclei. These concepts were combined 

by Doyle et al. [8], who proposed a three-dimensional (3-D) scattering model that 

represents tissue microstructure as an aggregation of spherical cells embedded in an 

extracellular matrix, where each cell is represented as a spherical nucleus surrounded 

with cytoplasm. This 3-D model was used to carry out high-frequency ultrasound 

scattering simulations with several hundred cells configured to produce random, clus

tered, and ordered cell packing with a variable ratio of cell diameter to nucleus diam

eter. The simulations show correlation between high-frequency ultrasound scattering 

and the spatial organization and internal structure of the cells. 

This paper extends the foregoing concepts by developing tissue models for fu-
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ture high-frequency ultrasound simulations in which simulated tissue is configured to 

quantitatively match histology data. A 3-D stochastic tissue model is presented that 

describes tissue microstructure based on stereological analyses of histology slides. The 

model is employed to represent healthy mouse liver and experimental liver metastasis 

specimens. Similar to the scattering model of Doyle et al. [8], tissue is treated as a 

population of spherical cells embedded in a homogeneous extracellular matrix. Each 

cell consists of a spherical nucleus surrounded by homogeneous cytoplasm. The ratio 

of cell diameter to nucleus diameter and the volume fraction and size distribution of 

nuclei estimated by stereological analysis are incorporated into the model. The 3-D 

spatial organization of cells is described by a Gibbs-Markov point process similar to 

the 2-D point process employed in [9] to model the spatial arrangement of red blood 

cells. The parameters of the Gibbs-Markov process are tuned to accurately repro

duce the observed 3-D spatial arrangement of nuclei. Nuclear spatial arrangement 

is characterized using three spatial organization descriptors adopted from materials 

science [10] that are computed based on the 2-D spatial arrangement of nuclei sec

tions in random histology slides through the tissue. The descriptors quantify the 

number density of nuclei, the deviation of the spatial arrangement of nuclei from a 

uniform distribution, and the separation between directly neighbouring nuclei. The 

model is run on a parallel computing facility to reduce the running time needed to 

create relatively large simulated tissue volumes. A preliminary version of this work 

has appeared in [11]. 

Other researchers have studied ultrasound scattering in tissue using analytical 

scattering models with tissue structural data extracted directly from histology [12,13]. 

An alternative approach is to perform ultrasound simulations using simulated tissues 

generated with the proposed stochastic model configured to match the microstructural 

properties of a particular tissue specimen. One advantage of the stochastic model is 

that the number and dimensions of the simulated tissues are not limited by the 

available tissue specimen as long as a representative sample is analyzed. Moreover, 
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the stochastic model enables at least two potentially important types of studies. First, 

simulations can be performed to determine the importance of including or ignoring 

particular microstructural properties in ultrasound scattering calculations. Second, 

the stochastic tissue model can be used to investigate the effect on high-frequency 

ultrasound scattering of varying individual structural properties while the other model 

parameters are set to match a particular tissue specimen and held constant. 

3.2 Materials and methods 

3.2.1 Experimental characterization of tissue microstructure 

Normal murine liver tissue and liver metastasis specimens were analyzed to de

termine their structural properties. The normal liver specimen was obtained from 

a healthy wildtype C57BL/6 mouse (Harlan, Indianapolis, IN). The tumour speci

men was obtained from an experimental liver metastasis model prepared by injecting 

B16F1 murine melanoma [14] cells into the mesenteric vein of a C57BL/6 mouse 

as described in [15]. The metastasis model was monitored with 3-D ultrasound as 

described in [15] and sacrificed to obtain histology slides when tumours were ~ 1 

mm diameter. Animal experiments were performed in accordance with a protocol 

approved by the University of Western Ontario Animal Use Subcommittee. 

Mouse liver tissue was fixed in 10% neutral buffered formalin, embedded in paraf

fin, and sliced into 3-/xm thick histology slices. Three randomly chosen histology 

slides from the normal liver specimen were stained with 4',6-diamidino-2-phenylindole 

(DAPI) to highlight the nuclei (Fig. 3.1(a)). Thirteen randomly located 0.43x0.32 

mm2 fields of view were obtained from the three DAPI-stained slides using an Ax-

iovert 200M microscope (Carl Zeiss, Oberkochen, Germany) with 20 x magnification 

(the microscope field of view was much smaller than the tissue section on any one 

slide). The same procedure was applied to three histology slides from the experimental 



65 

metastasis specimen to obtain five fields of view from the interior of a single tumour. 

The fields of view of the experimental metastasis specimen are chosen to avoid any 

visibly necrotic regions because this tumour model undergoes liquefactive necrosis, 

so such regions produce negligible ultrasound backscatter and are easily interpreted 

by visual inspection of B-mode images [15]. The thirteen DAPI images of the normal 

liver specimen and the five DAPI images of the experimental metastasis specimen 

contained comparable numbers of nuclei (on the order of a few thousand) that, as 

will be discussed later, provided representative samples of each tissue specimen. The 

histology slides were restained with hematoxylin and eosin (H&E, Fig. 3.1(b)) to high

light the boundaries of both cells and nuclei. The H&E-stained slides were digitized 

using the Axiovert 200M to obtain fields of view that approximately matched the 

DAPI images. The DAPI and H&E were manually aligned via rigid registration with 

Adobe Photoshop CS2 (Adobe Systems Incorporated, San Jose, California). The dig

itized DAPI images were processed semi-automatically with CellProfiler [16] and then 

manually by a human operator to segment nuclei sections. Image J [17] was employed 

to compute the areas and the centre coordinates of the segmented nuclei sections. 

The areas of nuclei in the digitized DAPI images are greater than the real areas 

of nuclei observed in the matching H&E images due to blurring artefacts in the 

DAPI images. However, segmenting the H&E images is a challenging task due to the 

relatively high variability of staining intensity in both the nuclei and background. In 

this study, the areas of nuclei are estimated using the segmented DAPI images after 

correcting for the blurring artefact. The correction is performed by multiplying the 

area of each segmented nucleus by a scaling factor computed for the DAPI image 

from which the nucleus was segmented. The scaling factor is defined as the sum of 

the areas of 50 randomly chosen nuclei in a DAPI image divided by the sum of the 

areas of the same nuclei in the matching H&E image. 

Two types of structural properties are used to evaluate tissue microstructure: 

morphological properties and the spatial organization of cells and nuclei within the 
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(a) (b) 

Fig. 3.1: Digitized images at 20 x magnification of healthy mouse liver stained with 
(a) DAPI and (b) H&E. Scale bar = 30 /mi. 

tissue volume. The morphological properties are the volume fraction (Vv) of the 

nuclei, the size distribution of the nuclei, and the maximum ratio of cell diameter 

to nucleus diameter. The nuclear volume fraction is defined as the sum of all nuclei 

volumes in the tissue divided by the total tissue volume. The volume fraction of the 

nuclei is estimated from the nuclear area fraction in random sections through the 

tissue using the stereological analysis technique [18] described in section 1.5. The 

nuclear area fraction is computed from the segmented nuclei in the DAPI images 

after correcting for the Holmes effect [19]. The nuclear size distribution, which is the 

histogram of nuclei diameters normalized by the total number of nuclei, is estimated 

from the sizes of the nuclei observed in the DAPI images using the Schwartz-Saltykov 

method [20] summarized in section 1.5 with nine groups of nuclei sizes. The maximum 

ratio of cell diameter to nucleus diameter is estimated from the H&E-stained slides by 

analyzing 50 cells that are relatively large with respect to the size of their nuclei. The 

nuclear size distribution parameter enables the simulated tissue to include a range 
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of nuclei sizes, the combination of the nuclear size distribution and nuclear volume 

fraction determines the number of nuclei in a tissue volume, and the maximum ratio 

of nuclear to cell size enables the size of each cell to be chosen from an assumed 

distribution independently from the size of its nucleus. 

The spatial organization of cells and nuclei, meaning the positions of the cells and 

nuclei within the larger tissue volume, is quantified using three descriptors of the 2-D 

spatial arrangement of nuclei computed in random planes through the tissue: the 

K-function, the radial distribution function, and the nearest neighbour distribution 

function [21]. Only nuclei were analyzed in this paper because we assumed cells and 

nuclei have the same centre positions, although the model could easily be modified to 

relax this assumption. The K-function, k(r), is the expected number of nuclei centres 

within a distance r from the centre of an individual nucleus. The radial distribution 

function, g(r), is defined such that the expected number of nuclei centres within a ring 

from r to r + dr away from the centre of an arbitrary nucleus is equal to the product 

of the average number of nuclei per unit area of tissue, the area of the ring, and g[r). 

The nearest neighbour distribution function, p(r), is defined such that the probability 

density function p(r)dr is equal to the probability that one or more nuclei centres exist 

within a ring from r to r+dr away from the centre of an arbitrary nucleus and no nuclei 

centres are closer than r from that nucleus. The K-function characterizes the average 

number density of nuclei over a range of volumes surrounding an individual nucleus. 

The radial distribution function tests for the presence of cell clustering because a 

value of g(r) greater than one indicates that the ring from r to r + dr contains more 

nuclei than would be expected if the nuclei were spread uniformly within the tissue. 

The two functions are related by g(r) = 2n^N ^ j^ , where NA is the average number 

of nuclei per unit area, so k(r) also includes the effects of clustering. However, both 

functions are used in the analysis because g(r) shows clearly any deviations from a 

uniform spatial distribution, while such deviations are difficult to interpret directly 

from k(r). Finally, p(r) shows the average spacing between adjacent cells. 
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In this study, the centre coordinates of the segmented nuclei are used to evaluate 

the local K-function, radial distribution function, and nearest neighbour distribution 

function for each individual field of view in the DAPI images. The value of r is 

varied from 0 to 65.93 t̂m to evaluate the K-function and from 0 to 62.46 /̂ m to 

evaluate the radial distribution and nearest neighbour distribution functions. In both 

cases, an increment, dr, of 3.47 /̂ m is employed. Following [10], the maximum value 

of r used to compute the spatial descriptors is on the order of ten times the 6.4-

ixva. diameter that is the average diameter of both healthy liver and liver metastasis 

nuclei. The increment, dr, was approximately half the average nucleus diameter. The 

spatial descriptors are computed using nuclei whose centres are farther than 65.93 //m 

from the edges of the field of view. The mean and standard deviation of k(r), g(r), 

and p(r)dr for each type of tissue are computed from the local spatial descriptors 

obtained from the individual fields of view. Approximately 3000 nuclei in each type 

of tissue were analyzed to compute the spatial descriptors, nuclear volume fraction, 

and nuclear size distribution. This number of nuclei is comparable to the number of 

spherical particles used to analyze the microstructure of polymer materials in [10]. 

3.2.2 Modeling the spatial arrangement of cells 

The 3-D coordinates of cell centres are modeled as a realization of a Gibbs-Markov 

point process [22] similar to the 2-D point process employed in [9] to represent the 

spatial arrangement of red blood cells. For a tissue with a fixed number of cells, 

M, the arrangement of cell centres can be expressed as a vector X = {xl,..., % } , 

where icf is the centre coordinate of the ith cell. The Gibbs-Markov point process 

employed in our model assigns an energy to a configuration of cell positions, X, based 

on inter-cell interactions: 

M j-1 

j=2 i=\ 
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where U(X) is the energy of X and 9(i,j) is the pair potential that describes posi

tive and negative energies resulting from hypothetical repulsive and attractive forces, 

respectively, between the ith and jth cells. Configurations of cell centres that have 

low energy are preferred to configurations with greater energy. Therefore, the spa

tial arrangement of cells is controlled by the form and parameter values of the pair 

potential function 6(i,j). 

The model is designed to produce non-overlapping cells and to produce cell cluster

ing if clustering is appropriate. Overlapping cells are avoided by using a pair potential 

function that assigns high positive (repulsive) energy to overlapping cells. For tumour 

tissue, cell clustering is modeled by defining a spherical attractive zone around each 

cell and employing a pair potential function that returns negative (attractive) energy 

for cells with overlapping attractive zones. An empirical pair potential formula that 

satisfies these two requirements is: 

*(M) = VreA—rrt1^ bi+bj - v^r'TMiJ) (3-2) 
Oi + bj Ci + Cj 

where Vrep is the maximum repulsive energy between two overlapping cells, || 

is the distance between the centres of the ith and j th cells, bt and bj are the radii of 

the zth and jth cells, Vatt is the maximum attractive energy between two cells with 

overlapping attractive zones, c* and Cj are the radii of the attractive zones of the zth 

and jth cells, I(y) is the indicator function that returns 1 if the positive real number 

y is less than 1 and 0 otherwise, and <p(i,j) is the intersection volume between the 

attractive zones of the ith and j th cells normalized by the volume of the smallest cell 

included in the simulated tissue. The magnitude of Vrep must be much greater than 

Vatt to ensure that the repulsive energy of significantly overlapping cells dominates 

their attractive energy. 
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3.2.3 Synthesis of simulated tissue 

A 3-D simulated tissue is initialized by creating a population of uniformly dis

tributed cells within a periodic cuboid. The number of cells and the distribution of 

nuclei sizes are chosen to match the measured nuclear volume fraction and size distri

bution. The ratio of cell diameter to nucleus diameter for each cell is independently 

selected from a uniform distribution between 1 and the maximum ratio of cell to 

nucleus diameter. The magnitude of Vrep is set to ~2xl05 times greater than VaU-

The exact value of Vrep/Vatt is not important provided Vrep >> Vatt-

The Metropolis sampler [23] is used to create a realization, X, of the Gibbs-

Markov point process based on the procedure presented in Section II-C of [9]. In 

this procedure, the initial configuration of cell centres is iteratively altered to create 

a sequence of provisional cell arrangements that asymptotically reaches a realization 

of the Gibbs-Markov point process. Each step of the iterative procedure involves 

randomly selecting one cell and stochastically moving it a small distance from its 

initial position within the 3-D volume. If the energy, U(X), decreases by more than 

a random threshold when the selected cell is moved, the selected cell is assigned the 

new position; otherwise the cell is returned to its previous position. The random 

threshold is altered at each step. Given M cells, the Metropolis sampler is run for 

320M steps, which is assumed sufficient to enable each run of the model to reach a 

different random realization of the Gibbs-Markov point process. 

The computational complexity of the tissue model can be reduced by employing 

the fact that, at each step of the Metropolis sampler, the difference in energy before 

and after moving the selected cell depends only on the change in energy for that single 

cell, so the computation oiU(X) after moving a cell is restricted to updating the pair 

potentials associated with that cell. This reduction of computational complexity is 

crucial in view of the fact that the total number of cell pairs in simulated tissue 

volumes needed for realistic 3-D imaging simulations can be extremely large. To 

further reduce the running time of the tissue model, the Metropolis sampler is run 
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on a shared-memory parallel computing facility using the OpenMP [24] programming 

model. 

Graphical representations of 3-D simulated tissues are created using the OpenGL 

(http://www.opengl.org) standard. The functions provided by OpenGL can produce 

both full 3-D visualization of the simulated tissue and 2-D slices through the tissue. 

3.2.4 Tuning the model 

The tissue model was separately configured to represent the microstructures of the 

healthy liver and experimental metastasis specimens. The volume of the simulated 

tissue was set to 450 jum x 450 /xm x 192 /xm. To simulate healthy liver tissue, the 

maximum ratio of cell to nucleus diameter, denoted as (3max, was set equal to the value 

estimated from the healthy liver slides. The model was then tuned by varying the ratio 

of the attractive zone diameter to nucleus diameter, denoted as a, and computing the 

K-function, radial distribution function, and nearest neighbour distribution function 

in a random 450 ^m x 450 /jm x 3 /mi slab through the simulated tissue. The use 

of a single representative slab through the simulated tissue, instead of multiple slabs, 

for tuning reduces the human intervention required. The thickness of the slabs used 

to tune the model matched the thickness of the histology slides. During the tuning 

process, four values of a were tested: 0, 2.5, 3, and 3.5, where 2.5 was chosen because 

it was the measured value of (3max. Initial empirical testing revealed that the average 

spatial distribution of nuclei changed very little when a was varied between 0 and 

Pmax- Large values of a produce visibly greater cell clustering than was observed in 

the healthy liver specimens, so the tuning process was limited to a values that were 

only modestly greater than /3max. The value of a that produced the greatest number 

of matching points between the radial distribution function of the simulated tissue 

and the mean ± standard deviation of g(r) of the healthy liver specimen was chosen. 

The radial distribution function was found to to be most sensitive to the tuning 

parameters, so this approach also yielded good agreement between the experimental 

http://www.opengl.org
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and simulated K-function and nearest neighbour distribution function. 

The values of both a and (3max were tuned to represent the experimental metas

tasis. Tuning both a and f3max was required to model the metastasis to compensate 

for the fact that the non-uniform shape of tumour cells degrades the accuracy of rep

resenting cells as spheres. Eleven values of (3max were tested, ranging from 0.5 less 

than its measured value of 1.5 to 0.5 greater than its measured value in increments of 

0.05. Six values of a were tested for each value of j3max: 0, /?TOax, 1.5, 2.0, 2.5, and 3.0, 

where (3max is the maximum ratio of cell to nucleus diameter employed in the current 

tuning trial. More values of both a and /3max were tested for the metastasis than for 

the healthy liver because the metastasis model proved more challenging to tune. The 

combination of a and f3max that produced the closest agreement between the radial 

distribution functions of the simulated tumour and the experimental metastasis was 

chosen, where agreement was assessed in the same manner as for the healthy liver. 

To test the accuracy of using a single tissue slab to tune the model, the mean 

K-function, radial distribution function, and nearest neighbour distribution function 

computed on ten slabs through the simulated healthy and tumour tissues were com

pared with those of the healthy liver specimen and experimental metastasis, respec

tively. The comparison was performed by counting the number of matching points 

between the mean spatial descriptors of each simulated tissue and the mean ± stan

dard deviation of the spatial descriptors of the corresponding experimental specimen. 

The volume of each slab was the same as the slabs used to tune the model, and the 

spacing between two successive slabs was fixed at 45 jum. 

The variability of the spatial organization of the simulated healthy tissue was 

compared to that of the healthy liver specimen by computing the standard deviations 

at each sample of r in the K-functions, radial distribution functions, and nearest 

neighbour distribution functions of ten slabs through the simulated healthy tissue 

and of all thirteen experimental healthy liver micrographs. The same procedure is 

employed to compare the variability of ten slabs through the simulated tumour tissue 
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to the five experimental liver metastasis micrographs. The model variability was 

evaluated using the same simulated tissue slabs that were employed to evaluate the 

tuning accuracy. 

3.2.5 Model scalability for imaging simulations 

A simulated tissue volume of 1.0 mm x 1.0 mm x 1.0 mm with the structural prop

erties of healthy liver was constructed to demonstrate the feasibility of synthesizing 

tissue volumes that are sufficiently large for use in 3-D imaging simulations. For ex

ample, such a tissue volume could be employed to perform high-frequency ultrasound 

imaging simulations with lesions of sizes that match the sizes of the smallest tumours 

detected using a high-frequency ultrasound scanner [15]. The large tissue model was 

separately synthesized using 20 and 40 processors of a SGI Altix shared-memory clus

ter at the Shared Hierarchical Academic Research Computing Network (SHARCNET, 

http://www.sharcnet.ca). The cluster has 128 Itanium2 1.6 GHz processors, 256 GB 

of global shared memory, and runs the SUSE Linux Enterprise Server 10.1 system 

and the SGI ProPack 5 high performance computing environment. The total time 

required to initialize the model and run the Metropolis sampler was recorded for each 

number of processors used. 

3.3 Results 

3.3.1 Healthy mouse liver 

The measured nuclear volume fraction and maximum ratio of cell diameter to 

nucleus diameter of the healthy liver tissue are equal to 0.073 and 2.5, respectively. 

The measured distribution of nuclei sizes is shown as a normalized histogram in 

Fig. 3.2(a); the mean ± standard deviation of nucleus diameter is 6.72 ± 2.28 fim. 

The tuning procedure using single tissue slabs produces the highest number of 

http://www.sharcnet.ca
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Fig. 3.2: Comparison of experimental and simulated microstructures of healthy mouse 
liver, (a) Histogram of the measured nuclear size distribution of healthy mouse liver; 
(b)-(d) 2-D descriptors of the spatial arrangement of nuclei centres in healthy murine 
liver slides and simulated healthy tissue slabs: (b) K-function, k(r), (c) radial distri
bution function, g(r), and (d) the probability density function p(r)dr associated with 
the nearest neighbour distribution function, p(r), are plotted as functions of distance, 
r, from an arbitrary nucleus centre. Error bars indicate mean ± standard deviation 
of curves measured in thirteen digitized micrographs of the healthy liver specimen. 

matching points between the 2-D spatial descriptors through the simulated liver tissue 

and the healthy liver when a is set to 0. The mean K-function, radial distribution 

function, and nearest neighbour distribution function computed on ten slabs through 

the tuned model are compared with those of the healthy liver specimen in Fig. 3.2(b), 
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Fig. 3.2(c), and Fig. 3.2(d), respectively. The K-functions of the simulated liver tissue 

and the healthy liver specimen are nearly identical. The mean K-function of the 

simulated liver and the liver tissue are separated by less than one standard deviation 

of the experimental data for all but one of the 20 values of r tested. The radial 

distribution function of the simulated tissue lies within one standard deviation of the 

mean radial distribution function of the liver specimen at 16 out of the 19 values of 

r analyzed. The difference between the nearest neighbour distribution function of 

the simulated tissue and the healthy liver tissue is less than one standard deviation 

at 17 out of the 19 values of r analyzed. These results demonstrate that the 3-D 

spatial arrangement of cells in the simulated liver tissue is very similar to that in the 

healthy liver specimen. The similarity of the simulated tissue to the liver specimens is 

illustrated by the schematic diagram of nuclei sections in a 250 yum x 250 /j,m x 3 //m 

slab through the simulated liver tissue and a comparable DAPI image of a healthy 

liver specimen in Fig. 3.3. 

The standard deviations of the K-function, radial distribution function, and near

est neighbour distribution function evaluated for ten simulated tissue slabs are com

pared with those for the thirteen healthy liver micrographs in Fig. 3.4(a), Fig. 3.4(b), 

and Fig. 3.4(c), respectively. The variability of the simulated tissue's spatial descrip

tors is generally less than the variability of the spatial descriptors of the healthy liver 

specimen. 

The total running time required to initialize and synthesize a sample simulated 

healthy tissue of volume 1.0 mm x 1.0 mm x 1.0 mm is 34.7 days using 20 processors 

and 19.6 days using 40 processors. This sample tissue contains 3.6 xlO5 cells, and 

hence the Metropolis sampler is run for 1.2xlO8 steps to create a random realization 

of the Gibbs-Markov point process. 



76 

(a) (b) 

Fig. 3.3: (a) A 250 //m x 250 ^m x 3 //m slab through the simulated liver tissue 
showing nuclei sections and (b) a comparable digitized DAPI-stained histology slide 
of a healthy mouse liver. The dark blue circles in (a) represent the size and positions 
of cell nuclei in the simulated tissue. Scale bar = 30 ̂ um. 

3.3.2 Experimental liver metastasis 

The measured values of nuclear volume fraction and maximum ratio of cell to 

nucleus diameter in the experimental liver metastasis are 0.179 and 1.5, respectively. 

The nuclear size distribution of the tumour specimen is shown in Fig. 3.5(a); the 

mean ± standard deviation of nucleus diameter is 6.09 ± 2.15 fim. 

The number of matching points between the spatial descriptors computed on a 

single slab through the simulated tumour tissue and the experimental liver metas

tasis is maximized when the model a and (3max are set to 2.0 and 1.4, respectively. 

The mean K-function, radial distribution function, and nearest neighbour distribu

tion function computed on ten slabs through the tuned model are compared with 

those of the experimental liver metastasis specimen in Fig. 3.5(b), Fig. 3.5(c), and 

Fig. 3.5(d), respectively. The K-function of the simulated tumour lies within one 

standard deviation of the mean K-function of the experimental metastasis for all but 
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Fig. 3.4: Variability of experimental and simulated micro-structures of healthy mouse 
liver. Standard deviation of the (a) K-function, k(r), (b) radial distribution function, 
g(r), and (c) nearest neighbour distribution function, p(r), computed on thirteen 
digitized micrographs of the healthy liver specimen and ten simulated healthy tissue 
slabs are plotted as functions of distance, r, from an arbitrary nucleus centre. 

one of the 20 values of r tested. The difference between the radial distribution func

tion of the simulated tumour and the experimental liver metastasis is less than one 

standard deviation at 15 out of the 19 values of r analyzed. The nearest neighbour 

distribution function of the simulated tumour lies within one standard deviation of 

the mean nearest neighbour distribution function of the experimental metastasis at 

18 out of the 19 values of r tested. The general similarity of the simulated tumour to 
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Fig. 3.5: Comparison of experimental and simulated microstructures of a murine 
B16F1 liver metastasis, (a) Histogram of the measured nuclear size distribution of 
the experimental liver metastasis; (b)-(d) 2-D descriptors of the spatial arrangement 
of nuclei centres in liver metastasis micrographs and simulated tumour slabs: (b) K-
function, k(r), (c) radial distribution function, g(r), and (d) the probability density 
function p(r)dr associated with the nearest neighbour distribution function, p(r), 
are plotted as functions of distance, r, from an arbitrary nucleus centre. Error bars 
indicate mean ± standard deviation of curves measured in five digitized micrographs 
of the liver metastasis specimen. 

the experimental metastasis is illustrated by the schematic diagram of nuclei sections 

in a 250 fj,m x 250 //m x 3 /im slab through the simulated tumour and a comparable 

DAPI image of a liver metastasis specimen in Fig. 3.6(a) and Fig. 3.6(b), respectively. 
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(c) 

Fig. 3.6: (a) A 250 //m x 250 fim x 3 /j,m slab through the simulated tumour 
tissue showing nuclei sections such that each nucleus is represented as a dark blue 
circle, (b) a comparable digitized DAPI-stained histology slide from the interior of 
an experimental B16F1 metastasis in mouse liver, and (c) a schematic representation 
of the DAPI image in (b) such that each nucleus is modeled as a circle with the 
same centre coordinates as the nuclei in the DAPI image and an area equal to the 
product of the nucleus area in the DAPI image and a scaling factor to correct for 
DAPI blurring. Scale bar = 30 ^m. 
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To facilitate visual comparison between the simulated tumour slab and the DAPI im

age, a schematic representation of the DAPI image is shown in Fig. 3.6(c). This 

representation is created by modeling each nucleus as a circle with the same centre 

coordinates as the segmented nuclei in the DAPI image. The circular representations 

of the nuclei each have an area equal to the product of the segmented nucleus area in 

the DAPI image and the scaling factor described in section 3.2.1 that compensates 

for blurring in the DAPI image. The simulated and experimental tumours are similar 

in that they both contain a higher number density of cell nuclei than the simulated 

and experimental healthy tissues and the simulated and experimental tumours both 

exhibit visible local clustering of nuclei. The most striking difference between the 

simulated and experimental tumours is that the global spatial distribution of nuclei 

is more heterogeneous in the experimental specimen. For example, the nuclei are 

densely packed in the centre of the DAPI image, have intermediate number density 

in the top left of the image, and lower number density in the bottom right of the 

image. The number density of nuclei in the simulated tumour is more consistent even 

with the inclusion of local clustering. 

The mean radial distribution function of the liver metastasis specimen exhibits a 

peak of g(r) — 1.47 at r = 6.94 /im, which is higher than the peak of g(r) = 1.15 

at r = 13.88 /zm in the healthy liver specimen. The radial distribution function of 

the liver metastasis specimen is greater than one for r values greater than or equal 

to 3.47 //m, while the radial distribution function of the healthy liver oscillates above 

and below one for r values greater than or equal to 27.76 ^m. 

The standard deviations of the K-function, radial distribution function, and near

est neighbour distribution function evaluated on ten simulated tumour slabs are 

compared with those of the five experimental metastasis micrographs in Fig. 3.7(a), 

Fig. 3.7(b), and Fig. 3.7(c), respectively. The standard deviation of each spatial de

scriptor of the experimental liver metastasis is greater than that of the simulated 

tumour for all values of r analyzed. The variability of the spatial descriptors is also 
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Fig. 3.7: Variability of experimental and simulated microstructures of a murine B16F1 
liver metastasis. Standard deviation of the (a) K-function, k(r), (b) radial distribution 
function, g(r), and (c) nearest neighbour distribution function, p(r), computed on 
five digitized micrographs of the liver metastasis specimen and ten simulated tumour 
tissue slabs are plotted as functions of distance, r, from an arbitrary nucleus centre. 

generally higher for the experimental metastasis than for the healthy liver specimen. 

3.4 Discussion 

In the process of developing the tissue model, it was important to consider the 

accuracy of the stereological techniques used to compute the nuclear volume fraction 
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and size distribution and tune the spatial arrangement of cells. The nuclear volume 

fraction can be estimated from the nuclear area fraction in 2-D sections through the 

tissue. However, the actual nuclear area fraction is smaller than the projected nuclear 

area fraction of the DAPI-stained slides because the slides have a finite thickness. The 

difference between the actual 2-D area fraction and the projected area fraction is called 

the Holmes effect [19]. The actual nuclear area fraction can be reliably estimated from 

the projected nuclear area fraction when the thickness of the DAPI slides is equal to 

or less than the average nucleus diameter [18]. Therefore, the 3-^m thickness of the 

DAPI slides was chosen to be smaller than the average nucleus diameter of both the 

healthy liver specimen and the experimental metastasis specimen, which are equal to 

6.72 and 6.09 /mi, respectively. 

The stereological techniques used to estimate the nuclear size distribution and 

correct for the Holmes effect assume the nuclei are spherical. These techniques achieve 

high accuracy when they are applied to the healthy liver specimen because the healthy 

nuclei are approximately spherical. On the other hand, the non-uniform shape of 

the tumour nuclei degrades the accuracy of the nuclear volume fraction and size 

distribution estimated for the experimental liver metastasis. 

The Schwartz-Saltykov method [20] that was used to estimate the nuclear size 

distribution samples the continuous distribution of nuclei diameters using discrete 

diameter bins. The method assumes all nuclei in each bin have the same diameter. 

The accuracy with which the nuclear size histogram estimated with the Schwartz-

Saltykov method matches the continuous nuclear size distribution improves when 

a large number of bins are used. In this paper, the Schwartz-Saltykov method is 

implemented with nine bins. This discretization agrees with the general guidelines 

for the Schwartz-Saltykov method that suggest using 7 to 15 bins to estimate the size 

distribution of spherical particles [20]. 

The accuracy of the model depends on the feasibility of tuning the spatial orga

nization of nuclei to obtain a 3-D distribution that matches the distribution in the 
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corresponding tissue specimen. Direct estimation of the 3-D positions of cell nuclei 

is a challenging task because it is difficult to obtain a complete set of histology slices 

at the 3-/um thickness needed for stereology and because it is difficult to register the 

slices to perform a 3-D reconstruction. Therefore, it is more practical to use stere-

ological techniques to characterize the 3-D spatial organization of nuclei in tissue 

based on measurements of the 2-D distribution of nuclei in sample histology slides. 

For consistency, the same technique was used to characterize the spatial arrangement 

of nuclei in the 3-D simulated tissues based on sample 2-D slabs from the simulated 

tissues. The spatial arrangement of nuclei in the 3-D simulated tissues is tuned to 

obtain good agreement between the nuclear spatial distribution in sample 2-D slabs 

through the simulated tissue and the 2-D histology slides as shown in Fig. 3.2 and 

Fig. 3.5. Such agreement implies reasonable matching between the 3-D nuclear spatial 

arrangement in the simulated tissues and the tissue specimens. This tuning procedure 

is similar to the procedure employed in [10] using sample 2-D planes to compare the 

3-D spatial arrangement of spherical particles in a simulated polymer microstructure 

with an experimentally determined polymer microstructure. 

The model parameters obtained from the tuning process provide some insight 

about the microstructure of the experimental specimens and about the ability of 

the model to reproduce that microstructure. The healthy tissue results reported in 

Section 3.3.1 show good agreement between the nuclear spatial distribution in the 

simulated healthy tissue and that in the healthy liver specimen when the model's a is 

set to zero and f3max is set to the maximum ratio of cell to nucleus diameter estimated 

for the healthy liver specimen. The use of an a value of zero implies that there is 

no clustering between adjacent cells in the healthy liver specimen. The matching 

between the model's /3max and the corresponding value estimated for the healthy liver 

indicates that the cells in the healthy liver specimen can accurately be represented as 

spheres of similar volumes. 

The tumour tissue results presented in Section 3.3.2 show reasonable matching 
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between the average nuclear spatial arrangement in the simulated tumour tissue and 

the experimental metastasis specimen when the model's a is set to 2.0 and /3max is 

set to 1.4. The model uses a f3max smaller than the value of 1.5 estimated for the 

experimental metastasis specimen to compensate for the non-uniform shape of tumour 

cells. At equal values of (3max, the non-uniformly shaped cells produce denser cell 

packing than the packing achieved in the model when cells are represented as spheres. 

The use of an a value greater than f3max ensures that, for all cells, the attractive zone 

in the pair potential extends beyond the repulsive zone, which is necessary to enable 

the model to produce cell clustering. The amount of cell clustering increases as the 

difference between a and fimax increases. The tuning result (a = 2.0, (3max — 1.4) 

indicates that substantially greater cell clustering is observed in the experimental 

metastasis than in the healthy liver, where a = 0. 

The higher cell clustering and packing in the experimental metastasis specimen 

compared to the healthy liver specimen is further demonstrated by the measured 

morphological and spatial organization descriptors presented in Section 3.3.1 and 

Section 3.3.2. The nuclear volume fraction of the metastasis specimen is approxi

mately 2.5 times greater than the healthy liver specimen. The mean K-function and 

radial distribution function of the experimental metastasis specimen is higher than 

the healthy liver specimen for all tested values of r, which indicates that, at a given 

distance from a particular cell, both the number of neighbouring cells and the incre

mental increase in the number of neighbouring cells with increasing r are higher in 

the tumour tissue compared to the healthy tissue. The peak of the nearest neigh

bour distribution function is narrower and shifted toward r = 0 for the experimental 

metastasis specimen compared to the healthy liver specimen, which implies smaller 

average spacing between adjacent cells in the metastasis compared to the healthy 

liver. 

Significant deviations between the radial distribution function of the experimental 

metastasis specimen and that of the simulated tumour tissue (Fig. 3.5(c)) are observed 
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at r values of 0 and 6.94 /im, in which the difference between the two functions is equal 

to —0.35 and 0.29, respectively, where the negative value indicates that the model 

g(r) is higher than the experimental g(r) at r = 0. The heterogeneity in nuclear 

spacing observed visually in the experimental metastasis slides at 20 x magnification, 

in which the smallest nuclei (diameter ~ 1.2 //m) tend to occur mostly in sparsely 

populated areas, might be the source of the deviation at r = 0. The model allows 

two nuclei smaller than dr to be separated by less than dr, but this arrangement is 

observed less frequently in the experimental micrographs. The high value of the radial 

distribution function at r — 6.94 ftm is caused by the closely packed, non-uniform 

cells observed in the experimental metastasis specimen; such a high cell packing is 

not obtained in the spherical-cell model even when a f3max value of 1.4, which allows 

unrealistically small spacing of neighbouring nuclei, is used. 

The tissue model employed in this paper does not include other anatomical struc

tures such as blood vessels. Therefore, the spatial arrangement of nuclei in the sim

ulated tissues is generally less variable than the corresponding experimental tissue 

specimens. This lower variability in the simulated tissues is demonstrated by the 

lower standard deviations of the spatial descriptors of the simulated healthy tissue 

compared to the liver specimen (Fig. 3.4) and of the simulated tumour tissue com

pared to the experimental metastasis specimen (Fig. 3.7). 

Abnormal growth of cells in a tumour presumably increases the structural hetero

geneity of the experimental metastasis compared to the experimental healthy liver. 

The high heterogeneity of the metastasis specimen is not fully described by the model 

parameters, which explains the consistently higher standard deviations of all three 

spatial descriptors of the experimental metastasis compared to the simulated tumour 

tissue. This result is consistent with the visible differences in the global spatial dis

tribution of nuclei in the simulated and experimental tumours shown in Fig. 3.6. The 

standard deviation of the spatial descriptors of the simulated healthy tissue and the 

healthy liver specimen are closer because the healthy liver is more homogeneous. 
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Fixing the healthy and cancerous liver specimens shrinks the tissue due to the 

dehydration process. Since the nucleus is mainly composed of DNA and protein, the 

shrinkage artefact is not expected to significantly affect the estimated values of nuclear 

size distribution, but the measured spacings between the nuclei and diameters of the 

cells are expected to be smaller than they are in the liver specimens before formalin 

fixing. 

Implementing the tissue model on a shared-memory computer cluster reduces the 

cost of inter-processor communications compared to a distributed-memory cluster. 

Therefore, the running time of the model is expected to be inversely proportional to 

the number of processors used. This expectation was confirmed by the comparison 

of the running time required to initialize and synthesize a 1 mm x 1 mm x 1 mm 

simulated healthy tissue, which was 19.6 days using 40 processors compared to 34.7 

days using 20 processors. The extensive number of iterations of the Metropolis sam

pler used to simulate the spatial arrangement of cells and nuclei is responsible for the 

high computational complexity of the tissue model. The importance of including the 

spatial organization of cells and nuclei in high-frequency ultrasound scattering studies 

has been demonstrated at 50 MHz by Hunt et al. [25]. For simulations where it is 

sufficient to describe cell and nuclei spatial arrangement using approximate formulas, 

the tissue model can be readily modified to produce simulated tissues with much 

shorter running times by positioning the cells using an assumed probability density 

function rather than running the Metropolis sampler. 

3.5 Conclusion 

A 3-D stochastic tissue model is proposed that incorporates microscopic structural 

properties representing morphological and spatial variations, such as cell number den

sity, cell and nucleus size, and cell clustering and packing, that are hypothesized to 

be significant determinants of high-frequency ultrasound backscattering. The nu-
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clear volume fraction and distribution of nuclei sizes are quantified using stereological 

techniques and the spatial organization of nuclei is quantified using three spatial de

scriptors adopted from materials science. These descriptors effectively characterize 

differences in nuclear spatial arrangement between healthy liver and experimental 

liver metastasis. The spatial descriptor functions demonstrate quantitatively that 

the experimental metastasis is more heterogeneous than healthy liver and is charac

terized by substantial cell clustering. The proposed model accurately reproduces the 

microstructure of the relatively homogeneous healthy liver. The model also accurately 

reproduces the average cell clustering observed in the metastasis, but it is less able to 

reproduce the heterogeneity of the metastasis because it assumes spherical cells and 

does not include any other anatomical structures. The model is nevertheless expected 

to be useful in combination with ultrasound simulators that compute 3-D acoustic 

propagation and scattering to investigate relationships between tissue microanatomy 

and high-frequency backscattering, since published studies indicate that cell nuclei 

are a prominent source of scattering in the 20-60 MHz band. 
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Chapter 4 

Three-Dimensional Computational 

Modeling of High-Frequency 

Ultrasound Imaging of a Mouse 

Liver Metastasis Model 

The content of this chapter is in preparation to be submitted to IEEE Transactions 

on Biomedical Engineering with author list M. I. Daoud and J. C. Lacefield. 

4.1 Introduction 

High-frequency (20-60 MHz) ultrasound imaging can be used to detect tissue 

microanatomical changes that occur during tumour growth [1] and anti-cancer treat

ment response [2] in preclinical cancer models. Investigating the relationships between 

high-frequency ultrasound backscattering and tissue microanatomy is a challenging 

problem that would extend the use of high-frequency ultrasound imaging to provide 

information about tumour microstructure. Spectral analyses [3] of high-frequency 

ultrasound backscattered signals were used to obtain preliminary estimates of the 

92 
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microstmcture of skin tissue [4], various tumour types [5], and the microscopic varia

tions associated with cell death [6] and anti-cancer radiotherapy [7] in cell ensembles. 

An alternative approach to relate high-frequency ultrasound scattering to tissue mi

croanatomy is to use ultrasound scattering models that solve the forward scattering 

problem, defined as computing acoustic scattering given a description of the incident 

wave and the propagation medium. 

Several scattering models have been reported in the literature that suggest the 

morphology and spatial organization of cells and nuclei as the main determinants of 

ultrasound scattering at the high-frequency band. For example, Baddour et al. [8] 

showed that the high-frequency scattering response of a single cell can be predicted 

using analytical models that treat the cell as a sphere. Idealized one-dimensional 

and two-dimensional (2-D) scattering models proposed by Hunt et al. [9] represented 

tissue microstructure as a group of weakly scattering point-like nuclei embedded in a 

lossless homogeneous medium. The 2-D scattering model of [9] was extended in [10] 

to include morphological properties of the nucleus by representing each nucleus as 

a group of point-like scatterers. Simulations performed with these models suggest 

that variations of the spatial arrangement and structure of nuclei can significantly 

change the characteristics of high-frequency ultrasound backscattering. These con

cepts were combined by Doyle et al. [11], who presented a three-dimensional (3-D) 

scattering model that treats tissue microstructure as a group of spherical cells embed

ded in an extracellular matrix, where each cell is represented as a spherical nucleus 

surrounded with cytoplasm. High-frequency ultrasound scattering simulations were 

performed using the 3-D model with several hundred cells configured to produce a 

variable ratio of cell to nucleus diameter and various spatial arrangements of cells. In 

these simulations, 3-D acoustic propagation was computed using a multiple-scattering 

method [12] without incorporating attenuation. The simulations showed that high-

frequency ultrasound scattering in tissue may be correlated with the structure and 

spatial organization of cells and nuclei. 
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Ultrasound scattering models derived from histology data are crucial to validate 

modeling results because histology-based models enable simulations performed with 

the scattering models to be compared with matching experimental ultrasound mea

surements. This approach was used by Mamou et al. [13], who presented a 3-D compu

tational tissue model that was constructed by mapping tissue microscopic structures 

to corresponding acoustic impedance values. The mapping process was achieved by 

fixing, slicing, and staining a tissue volume to obtain a group of adjacent 2-D histology 

slides in which each colour corresponds to a specific tissue type. The 2-D histology 

slides were digitized, aligned, and processed to construct a 3-D impedance matrix 

of the tissue volume. The impedance-based tissue model was used to estimate the 

average scatterer size and acoustic concentration of two mammary tumours. The es

timation is performed by deriving an analytical formula to compute the backscattered 

intensity based on the impedance matrix. Comparisons with ultrasound data showed 

good matching between the estimated scatterer size and the scatterer size obtained 

ultrasonically. However, significant deviation was observed between the estimated 

acoustic concentration and the acoustic concentration obtained with ultrasound data. 

An alternative approach to study high-frequency ultrasound scattering in tissue 

based on histology data is to carry out ultrasound scattering simulations using simu

lated tissue volumes with microscopic morphological and spatial arrangement statis

tics that match experimental tissue specimens. Such simulated tissue volumes can 

be created using the 3-D stochastic tissue model [14] proposed by Daoud and Lace-

field. To use the stochastic tissue model to create a simulated tissue volume with 

the microstructural properties of a given tissue specimen, random histology slides 

obtained from the specimen were stained to highlight cells and nuclei. The stained 

slides were digitized at 20 x magnification and analyzed to estimate morphological 

properties that include the nuclear volume fraction, the size distribution of nuclei, 

and the maximum ratio of cell to nucleus diameter. The simulated tissue volume 

was initialized by creating a population of uniformly distributed cells embedded in 
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a homogeneous extracellular matrix, where each cell was represented as a spherical 

nucleus surrounded by homogeneous cytoplasm. The nucleus size, cell size, and the 

total number of cells in the tissue volume were determined based on the morpho

logical properties estimated for the specimen. The 3-D spatial arrangement of cells 

in the tissue volume was controlled by a Gibbs-Markov point process. The param

eters of the Gibbs-Markov process were tuned to accurately reproduce the spatially 

varying number density and centre-to-centre spacing of cells in the tissue specimen. 

The spatial arrangement of cells in both the tissue specimen and the simulated tissue 

was characterized using spatial descriptors adopted from materials science. The tis

sue model was used in [14] to create simulated healthy and tumour tissues with the 

structural properties of normal and cancerous murine liver specimens, respectively. 

In this paper, the phrase simulated tissues will refer specifically to simulated tissues 

created with the stochastic tissue model. 

Large-scale high-frequency ultrasound scattering simulations with propagation 

volumes on the order of tens or hundreds of wavelengths require 3-D ultrasound 

simulators that achieve high accuracy with reasonable running time. One ultrasound 

simulator that enables accurate and fast acoustic propagation in large-scale tissue vol

umes is the parallel 3-D simulator presented in [15, 16]. The parallel simulator uses a 

3-D formulation of a &-space method [17] to compute linear propagation of the total 

pressure in fluid media. This &-space method solves first-order wave equations, and 

hence multiple scattering is implicitly incorporated. Acoustic propagation obtained 

using the first-order &-space method with coarse spatial and time steps is exact for 

homogenous media and highly accurate for weakly scattering inhomogeneous media 

such as soft tissue. Linear frequency-dependent absorption is included in the simula

tor using a second-order relaxation model [18]. The implementation of the simulator 

supports parallel computing using distributed-memory computer clusters, and hence 

large-scale simulations can be performed with short running times. The simulator was 

used in [19] to perform B-mode imaging simulations with a focused high-frequency 
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transducer. The simulated B-mode images showed realistic 3-D refraction artefacts 

that cannot be obtained using 2-D simulations. These artefacts demonstrate the im

portance of computing 3-D ultrasound propagation to achieve realistic simulations. 

Other studies [9-11, 20, 21] have suggested that the microstructural features in

corporated in the stochastic tissue model, including the cell number density, the cell 

and nucleus sizes, and the spatial arrangement of cells, are major determinants of 

high-frequency ultrasound scattering in tissue. However, the accuracy of ultrasound 

scattering models that include only these structural features has not been investigated. 

This paper explores the issue of whether ultrasound simulations performed using the 

stochastic tissue model can estimate high-frequency ultrasound scattering in normal 

and cancerous murine liver tissues. The study is carried out by computing high-

frequency ultrasound scattering in simulated healthy and tumour tissues configured 

using the stochastic model to match the microstructure of healthy mouse liver and an 

experimental liver metastasis, respectively. Ultrasound propagation in the simulated 

tissues is performed using the parallel 3-D ultrasound simulator and the computed 

backscattered signals are processed to synthesized B-mode images of each simulated 

tissue. The complexity of the simulation is reduced by assigning the extracellular 

matrix the acoustic properties of cell cytoplasm, and hence tissue microstructure is 

treated as a population of nuclei embedded in homogeneous background. The simu

lations show good matching between the first-order speckle statistics of the B-mode 

images synthesized for the simulated healthy tissue and experimental B-mode im

ages of healthy murine liver. Reasonable matching is achieved between the first-order 

speckle statistics of the synthesized B-mode images of the simulated tumour and ex

perimental images of the matching liver metastasis when nucleus sound speed and 

mass density values are used that are different from the values assumed for healthy 

tissue. 
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4.2.1 Experimental ultrasound imaging 

An experimental liver metastasis model was prepared by injecting 3 x 105 B16F1 

murine melanoma [22] cells into the mesenteric vein of a female C57BL/6 mouse 

(Harlan, Indianapolis, IN) as described in [23] to target the liver. Tumour growth was 

monitored with 3-D high-frequency ultrasound as descried in [23]. When tumours of 

^1 mm diameter were observed, the part of the abdominal wall that covers a tumour 

located at the liver surface was removed, and the liver lobe that includes the tumour 

was imaged. Animal experiments were performed in accordance to the Canadian 

Council on Animal Care under a protocol approved by the University of Western 

Ontario Animal Use Subcommittee. 

Ultrasound imaging was carried out using a Vevo 770 (VisualSonics, Toronto, 

Canada) high-frequency ultrasound scanner. A previous generation of this ultrasound 

system was described in [24]. The scanner employed a VisualSonics RMV704 scanhead 

that has a mechanically-scanned, single-element, spherically focused transducer with 

a 6.0-mm focal distance, a 3.0-mm aperture diameter, a 40-MHz centre frequency, 

a /-number of 2.0, and a measured [25] —6-dB fractional bandwidth of 80%. The 

resolution at the focus is 40 (axial) x 80 (lateral) x 80 (elevation) pm3 with a 1.5-

mm depth of field. The axial direction is along the axis of the ultrasound beam, the 

lateral direction is perpendicular to the axis of the ultrasound beam, and the elevation 

direction is along the out of plane axis. The transducer was positioned such that the 

region of interest could be defined that extended from 0.14 to 0.29 mm above the 

focus across the width of the tumour. The same scanning set-up was used to image 

a healthy region of the liver. Parallel 2-D B-mode images with a 8.0 x 8.0 mm2 

field of view were acquired by stepping the transducer in 31.8-/xm intervals along 

the elevation dimension. A 3-D B-mode image of volume 8.0 x 8.0x 4.0 mm3 was 

reconstructed from the 2-D images using the algorithm described in [26]. Each voxel 
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in the 3-D B-mode image has a size of 15.6 x 15.6x 31.8 fim3 and a gray level value 

between 0 and 255. 

4.2.2 Modeling tissue microstructure 

Tissue specimens were obtained from the region of interest of the liver metastasis 

model's imaged tumour and a healthy C57BL/6 mouse's liver to simulate their mi-

crostructures using the stochastic tissue model summarized in the introduction and 

described fully in [14]. Each tissue specimen was analyzed as described in section 

II. A in [14] to determine its microstructural properties, including the nuclear volume 

fraction, size distribution of nuclei, ratio of cell to nucleus diameter, and spatial ar

rangement of nuclei within the tissue. A simulated healthy tissue and a simulated 

tumour with the microstructural properties of the healthy liver specimen and the 

experimental metastasis specimen, respectively, were synthesized as described in sec

tions II.C and II.D in [14]. Similar to [14], each simulated tissue included nine groups 

of nuclei with diameters between 1.2 and 10.8 /xm, with an increment of 1.2 yum. 

The volume of each simulated tissue is 720 x 600 x 600 /xm3, which provides a 

reasonable propagation volume to perform high-frequency B-mode imaging simula

tions. The stochastic tissue model was run on 64 nodes of a shared-memory computer 

cluster. 

Cell cytoplasm in both simulated tissues is assigned a sound speed that matches 

the value of a whole cell, 1535 m/s [20], and a mass density of 1044 kg/m3 [27]. 

The sound speed and mass density of nuclei in the simulated healthy tissue are set 

to 1503 m/s [20] and 1430 kg/m3 [28]. Eight combinations of nucleus sound speed 

and mass density are tested for the simulated tumour that are between the values 

assumed for healthy tissue nuclei, (1503 m/s, 1430 kg/m3), and values close to cell 

cytoplasm, (1531 m/s, 1092 kg/m3), with an increment of (4.0 m/s, —48.3 kg/m3). 

The complexity of the simulated tissues is reduced by assigning the extracellular 

matrix the acoustic properties of cell cytoplasm. Therefore, tissue microstructure is 
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treated as a population of nuclei embedded in a homogeneous background. 

4.2.3 Ultrasound imaging simulation 

The parallel 3-D ultrasound simulator described briefly in the introduction and 

presented fully in [15, 16] was used to simulate ultrasound pulse-echo acquisitions. 

Computing round-trip ultrasound propagation over the actual 6-mm distance from 

the transducer to the focal zone at each scan line simulation would require extensive 

computational resources. The simulation complexity was reduced using the aper

ture projection technique presented in [19] that restricts the simulation to a field of 

view around the focus. The reduction of the field of view is achieved by modeling 

the VisualSonics RMV704 transducer as a small spherically focused aperture with a 

short focal distance of 0.472 //m and an /-number, a centre frequency, and —6-dB 

fractional bandwidth that match the modeled transducer. The incident pulse used 

in the simulation has a Gaussian envelope that is low-pass filtered using a finite im

pulse response filter based on the window method with a cut-off frequency of 32 MHz 

to avoid overlap between the positive and negative frequencies of the incident pulse 

that otherwise occurs due to the large bandwidth employed. A scan line is computed 

by transmitting the incident pulse from the projected aperture into the propagation 

medium and recording the echoes received by the aperture as a radio-frequency (RF) 

signal. Matching the /-number and centre frequency enables the projected aperture 

to have the same lateral and elevation resolution and depth of field as the RMV704 

transducer [19]. The axial resolution of a focused spherical transducer is inversely 

proportional to the bandwidth [24], and hence matching the bandwidth allows the 

projected aperture to have the same axial resolution as the modeled transducer. 

Four parallel B-mode image planes are obtained for the simulated healthy tissue 

when the centre of the transducer is located at z (elevation) coordinates of 0.138, 

0.246, 0.354, and 0.462 mm. Each image is composed of 13 scan lines that are equally-

spaced by 36 JJLID. along the x (lateral) dimension. Similar images are separately 
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obtained for the simulated tumour using each combination of nucleus sound speed 

and mass density tested. The scan lines are acquired when the projected aperture 

is located in a plane at y (axial) = —0.46 mm so that the focus will be on the xz 

plane (y — 0). The field of view of each scan line extends 0.492 mm along the axial 

dimension, which approximates the axial range of the B-mode images of the regions 

of interest of the healthy liver and experimental metastasis. 

The simulation of each scan line is performed using a computation grid of 256 x 

512 x 256 points with a spatial step of 1 /xm. The fc-space method employed by 

the simulator requires four points per minimum wavelength, or a spatial step of 

4.7 jum for the incident pulse described above in a background medium with the 

sound speed of cell cytoplasm, to carry out accurate imaging simulations [19]. The 

fine spatial step of 1 /xm is required to achieve a small discretization error between 

0.5% and 9.5% of the diameter of each nucleus that is produced by representing the 

nine nuclei groups using a finite number of voxels. The time step is set to 0.326 

ns based on the recommended configuration [19] of the £:-space method to perform 

realistic imaging simulations. Accuracy analysis reported in [19] suggests that the 

ultrasound simulator with the spatial and time step configurations employed in this 

study achieves a propagation error smaller than 0.6%. The ultrasound simulator 

is configured to model linear frequency-dependent absorption with the absorbtion 

coefficient of a whole acute myeloid leukemia cell [29] of 0.805 dB/cm/MHz [20]. 

The simulated B-mode images are synthesized by processing the RF scan lines 

through envelope detection, logarithmic compression, and quantization in a manner 

similar to the Vevo 770 scanner. The logarithmic compression and signal quantization 

of the Vevo 770 scanner are described by [30]: 

DG = 369.36 \n(EV) + 371.86 (4.1) 

where EV is the normalized envelope of an RF scan line and DG is an 11-bit digital 

output signal. 
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A B-mode image is synthesized in the Vevo 770 scanner by linearly mapping the 

values of its scan lines' DG signals, which have an absolute range of [0, 2047], to 

gray level values with an absolute range of [0, 255]. This display dynamic range 

compression is applied to create the simulated B-mode images after multiplying the 

RF signals of all scan lines by a scaling factor. The scaling factor is required to 

compensate for the gains of the transducer and the receive electronics that are not 

included in the simulation. The value of the scaling factor is computed such that the 

nominal maximum gray level value observed in the experimental B-mode images of 

both the healthy liver and the experimental metastasis matches the maximum gray 

level value of all synthesized B-mode images. 

4.2.4 B-mode image analysis 

The four synthesized B-mode images of the simulated healthy tissue are compared 

using first-order speckle statistics with six B-mode images of a healthy region in the 

mouse's liver. The out-of-plane spacing between B-mode images is 127.2 yam for the 

experimental images and 108 fxm for the simulated images. These spacings ensure 

independent B-mode images because they are coarser than the elevational resolution 

of the Vevo 770 scanner. Similar statistical comparisons are separately performed 

between each set of four B-mode images synthesized for the simulated tumour using 

different combinations of nucleus sound speed and mass density tested and the same 

four B-mode regions of interest of the experimental metastasis. 

The four synthesized B-mode images of the simulated healthy tissue are sampled 

using a grid with 62.1 jum axial spacing and 108 /mi lateral spacing to obtain 25 

independent samples from each image. Sample spacing coarser that the ultrasound 

imaging resolution is employed to obtain pixels from independent scattering sites. 

A histogram with 13 gray level bins, which have mean gray level values between 10 

and 250 with an increment of 20, is computed for each set of 25 pixels. The mean 

histogram of the simulated healthy tissue is computed by averaging the pixel counts 
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of the corresponding four B-mode images' histograms at each gray level bin. Similar 

averaged histograms are computed for each set of four B-mode images synthesized for 

the simulated tumour. 

The six B-mode images of the healthy liver are sampled using a grid with 62.5 

/zm axial spacing and 109.4 //m lateral spacing to obtain a sample of 50 pixels from 

each image. The four B-mode images of the liver metastasis are sampled in a similar 

manner to obtain 80, 40, 29, and 11 pixels, respectively, from the region of interest of 

the imaged tumour. The variable number of pixels obtained from the B-mode images 

of the experimental metastasis is due to the spherical shape of the tumour. The pixels 

obtained from the liver metastasis are arranged into four groups of 40 pixels each by 

dividing the pixels of the first B-mode image into two groups and combining the pixels 

of the last two images into one group. A histogram with 13 gray level bins, similar to 

the histograms of the simulated B-mode images, is computed for each 40-pixel group. 

The mean ± standard deviation histograms of gray levels in the healthy liver and 

the tumour region of interest are determined by computing the average and standard 

deviation of the pixel counts of the corresponding histograms of the 40-pixel groups 

at each gray level bin. 

4.3 Results 

4.3.1 Healthy mouse liver 

The averaged gray level histogram of the synthesized B-mode images of the sim

ulated healthy tissue is compared in Fig. 4.1(a) with the mean ± standard deviation 

histogram of the B-mode images of the healthy liver. The mean ± standard deviation 

gray level values of the histograms of the simulated and experimental images are 150 

± 26.5 and 148 ± 27.9, respectively. The normalized occurrence in each gray level 

bin for the simulated healthy tissue lies within one standard deviation of the mean 
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normalized occurrence data for the experimental images for all of the 13 gray level 

bins computed. The gray-level histograms for the simulated and experimental images 

have the same number of gray level bins with non-zero counts. Fig. 4.1(a) demon

strates that the first-order speckle statistics of the simulated healthy tissue is similar 

to the healthy liver. An example 328 //m x 453 //m experimental B-mode image of 

healthy liver and a comparable synthesized B-mode image of the simulated healthy 

tissue are shown in Fig. 4.1(b) and Fig. 4.1(c), respectively. For display purposes, 

the example simulated B-mode images presented here are axially downsampled and 

linearly interpolated across the lateral dimension to obtain a 15.5 x 15.5 //m2 pixel 

size that approximates the pixel size of the experimental images of 15.6 x 15.6 fxm2. 

4.3.2 Experimental liver metastasis 

The averaged gray level histogram of the B-mode images synthesized for the sim

ulated tumour with nucleus sound speed and mass density that match the values 

assumed for healthy tissue is compared in Fig. 4.2(a) with the mean ± standard de

viation histogram of the experimental images of the liver metastasis. The mean ± 

standard deviation gray level values of the histograms of the simulated and experi

mental images are 145.9 ± 25.8 and 107.1 ± 28.5, respectively. Substantial deviation 

is observed between the histograms of the simulated and experimental tumour im

ages, where the normalized occurrence in each gray level bin for the simulated images 

lies within one standard deviation of the mean normalized occurrence data for the 

experimental images for only 7 out of the 13 gray level bins analyzed. The highest 

gray level bin with non-zero counts for the experimental and simulated tumours is 

located at 190, which is lower than the highest gray level bin with non-zero counts, 

at 210, observed for the simulated healthy tissue and the healthy liver. Example 

328 //m x 453 /zm B-mode images of the liver metastasis and the simulated tumour 

with the acoustic properties assumed for healthy tissue are shown in Fig. 4.2(b) and 

Fig. 4.2(c), respectively. 
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Fig. 4.1: Comparison of experimental B-modes images of healthy murine liver tissue 
and synthesized B-mode images of simulated healthy tissue, (a) Gray level histograms 
of six B-mode images of healthy liver tissue and four synthesized B-mode images of 
simulated healthy tissue; (b) an experimental B-mode image of healthy liver; (c) a 
synthesized B-mode image of simulated healthy tissue. Error bars indicate mean 
± standard deviation of the gray level histograms of the six experimental B-mode 
images. Scale bar = 94 jum. 

The number of matching normalized occurrence counts between the gray level 

histogram of the images of the simulated tumour and the mean ± standard deviation 

of the histogram of the experimental metastasis is maximized when the nucleus sound 

speed and mass density of the simulated tumour are set to 1527 m/s and 1140.5 kg/m3. 
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Fig. 4.2: Comparison of experimental B-modes images of a liver metastasis and sim
ulated B-mode images synthesized for a simulated tumour with the nucleus sound 
speed and mass density values assumed for healthy tissue, (a) Gray level histograms 
of four B-mode images of an experimental liver metastasis and four B-mode images 
synthesized for a simulated tumour using the acoustic properties assumed for healthy 
tissue; (b) an experimental B-mode image of an experimental liver metastasis; (c) 
a B-mode image synthesized for a simulated tumour using the acoustic properties 
assumed for healthy tissue. Error bars indicate mean ± standard deviation of the 
gray level histograms of the four experimental B-mode images. Scale bar = 94 /j,m. 

The averaged histogram of the B-mode images synthesized for the simulated tumour 

using the optimized nucleus sound speed and mass density values is compared in 

Fig. 4.3(a) with the mean ± standard deviation histogram of the experimental B-mode 
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Fig. 4.3: Comparison of experimental B-modes images of a liver metastasis and sim
ulated B-mode images synthesized for a simulated tumour using nucleus sound speed 
and mass density of 1527 m/s and 1140.5 kg/m3 that are different from the values 
assumed for healthy tissue, (a) Gray level histograms of four B-mode images of an 
experimental liver metastasis and four B-mode images synthesized for a simulated tu
mour using nucleus acoustic properties different from the values assumed for healthy 
tissue; (b) an experimental B-mode image of an experimental liver metastasis; (c) 
a B-mode image synthesized for a simulated tumour using nucleus acoustic proper
ties different from the values assumed for healthy tissue. Error bars indicate mean 
± standard deviation of the gray level histograms of the four experimental B-mode 
images. Scale bar = 94 ^m. 
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images of the liver metastasis. The mean ± standard deviation gray level values of 

the histograms of the simulated and experimental images are 99.6 ± 27.2 and 107.1 ± 

28.5, respectively. The normalized occurrence in each gray level bin for the simulated 

tumour lies within one standard deviation of the mean normalized occurrence data 

for the experimental metastasis for 11 of the 13 bins computed. The peak of the 

histogram of the simulated tumour images is located at a gray level bin of 110 that 

is close to the peak of the histogram of the experimental images at 90. Fig. 4.3(a) 

demonstrates that the first-order speckle statistics obtained for the simulated tumour 

with acoustic properties different from the values assumed for healthy tissue is very 

similar to the experimental metastasis. An example 328 //m x 453 //m experimental 

B-mode image of the liver metastasis and a comparable synthesized B-mode image of 

the simulated tumour are shown in Fig. 4.3(b) and Fig. 4.3(c), respectively. 

4.4 Discussion 

In the process of modeling high-frequency ultrasound scattering in tissue, it is 

crucial to compute accurate ultrasound propagation with a simulation arrangement 

that approximates the experimental scanning set-up. The ultrasound simulator em

ployed in this study computes linear acoustic propagation in a fluid medium and uses 

a relaxation model to include linear frequency-dependent absorption. The simulator 

provides high modeling accuracy because the incorporated physical processes are the 

major determinants of high-frequency ultrasound propagation in tissue. The fine spa

tial and time spacings of 1 jxm and 0.326 ns enable a low propagation error of less than 

1%, which is judged sufficient for B-mode imaging simulations. The representation 

of the spherical nuclei using 1-/Ltm3 isotropic voxels produces a discretization error 

between 0.5% for the largest nuclei and 9.5% for the smallest nuclei. Finer spatial 

steps are avoided because the computational resources required by the ultrasound 

simulator are inversely proportional to the fourth power of the spatial step size [19]. 
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The healthy liver and the experimental metastasis are imaged such that the regions 

of interest are located above the transducer's focus within the focal zone to avoid the 

large drop in B-mode images brightness observed below the focus. Small regions of 

interest are used in the analysis to reduce the effect of tissue-scale structures, such as 

liver lobules and blood vessels, and the heterogeneity of the experimental metastasis 

that are not included in the stochastic tissue model [14]. The experimental scanning 

set-up is modeled by employing the aperture projection technique of [19] to compute 

scan lines with fields of view that approximate the axial range of the B-mode images of 

the regions of interest of the healthy liver and experimental metastasis. One difference 

between the experimental and simulated B-mode images is the number of scan lines 

per unit distance, where the lateral spacing between the simulated scan lines is equal 

to 36 /an compared to a spacing of 21.2 ^m between the lines of the experimental 

images [25]. 

The ultrasound simulator and the tissue model have high computational complex

ity, and therefore only four simulated B-mode images of small size are synthesized 

to study high-frequency ultrasound scattering in each tissue specimen. The simu

lated tissues used in the analyses do not include a simulated tumour surrounded with 

simulated healthy tissue, which mimics the anatomy of the liver of the metastasis 

mouse model, because at each simulation run the tissue model can be tuned to match 

the average microstructural properties of only one type of tissue specimen (liver or 

metastasis). 

Ultrasound simulations performed using the simulated healthy and tumour tissues, 

in which tissue is treated as a population of spherical nuclei embedded in a background 

with the acoustic properties of cytoplasm, provide some information about high-

frequency ultrasound scattering in tissue. The simulation results presented in Fig. 4.1 

show good matching between the first-order speckle statistics of the synthesized B-

mode images of the simulated healthy tissue and experimental B-mode images of a 

healthy region in the mouse's liver. The good matching between the first-order speckle 
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statistics of the simulated and experimental images is consistent with the hypothesis 

that cell nuclei are major sources of high-frequency ultrasound scattering in tissue. 

Moreover, these results agree with the empirical study of [20] that showed correlation 

between ultrasound backscattering from cell ensembles and the sizes of the nuclei. 

The simulated tumour results presented in Fig. 4.2 show substantial deviation 

between the gray level histogram of the B-mode images synthesized for the simulated 

tumour using the nucleus sound speed and mass density assumed for healthy tissue 

and the histogram of the experimental metastasis. This result shows that model

ing the number density, size distribution, and spatial arrangement of nuclei does not 

fully describe tissue microscopic variations that determine the characteristics of ultra

sound B-mode images of an experimental metastasis. However, the histograms of the 

simulated tumour and the experimental metastasis have the same highest gray level 

bin with non-zero counts, at 190, that is lower than the highest gray level bin with 

non-zero counts, at 210, obtained for the simulated and experimental healthy tissues. 

This reduction in the amplitude of the backscattered ultrasound signals is produced 

by the difference in microstructural properties of the healthy liver and experimental 

metastasis [14]. 

Good agreement is shown in Fig. 4.3 between the first-order speckle statistics of 

the synthesized B-mode images of the simulated tumour and the experimental images 

of the liver metastasis when the tumour tissue nuclei are assumed to have sound speed 

and mass density values of 1527 m/s and 1140.5 kg/m3 that are not equal to the values 

of 1503 m/s and 1430 kg/m3 assumed for healthy tissue nuclei. The difference between 

the acoustic properties assumed for tumour tissue nuclei and the values assumed for 

cell cytoplasm, 1535 m/s and 1044 kg/m3, is smaller than the difference between 

the acoustic properties assumed for healthy tissue nuclei and cell cytoplasm. These 

simulations suggest that changes in both the acoustic and microstructural properties 

of tissue are responsible for variations in first-order speckle statistics between healthy 

liver and the experimental metastasis. 
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Since the simulated healthy and tumour tissue model includes only cell nucleus 

and cytoplasm, the effect of other cellular-scale structures such as cell membranes and 

extracellular matrix is not included in the simulations. Anatomic structures such as 

liver lobules and blood vessels are not incorporated in the tissue model, and hence the 

spatial arrangement of nuclei in the simulated tissues is presumably less structured 

than the experimental tissues. 

Visual comparison between the synthesized B-mode images of the simulated healthy 

and tumour tissues and the experimental images of the healthy region in the mouse's 

liver and the liver metastasis, respectively, show less structured patterns in the sim

ulated images than the experimental images. This difference in image texture might 

be due to the cellular- and tissue-scale structures that are not included in the simu

lated tissues. Moreover, abnormal structural variations in the healthy region of the 

metastasis model's liver might be the source of some structured patterns in the ex

perimental images of the liver tissue. Such abnormal variations are not included in 

the simulated healthy tissue that is configured to match the microstructure of a liver 

specimen obtained from a healthy mouse. 

4.5 Conclusion 

Ultrasound scattering simulations have been performed using simulated healthy 

and tumour tissues that are configured to produce the number density, size distri

bution, and spatial arrangement of nuclei in healthy liver and an experimental liver 

metastasis specimen. The results show good agreement between the first-order speckle 

statistics of the synthesized B-mode images of the simulated healthy tissue and exper

imental images of healthy liver. This agreement is consistent with the hypothesis that 

the nuclei are major sources of high-frequency ultrasound scattering. Moreover, the 

results show good matching between the first-order speckle statistics of the B-mode 

images synthesized for the simulated tumour and images of the experimental metas-



I l l 

tasis when nucleus sound speed and mass density values are used that are different 

from the values assumed for healthy tissue. These simulations suggest that changes 

in both tissue acoustic and microstructural properties are responsible for variations 

in the first-order speckle statistics of high-frequency ultrasound B-mode images that 

accompany tumour growth. 
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Chapter 5 

Summary and Future Work 

5.1 Summary 

A three-dimensional (3-D) parallel ultrasound simulator and a 3-D computational 

model of tissue microstructure were developed to investigate the relationships be

tween tissue microanatomy and high-frequency ultrasound backscattering. Prelim

inary simulations have been performed to demonstrate the feasibility of using this 

software to relate first-order speckle statistics of ultrasound B-mode images to acous

tic and structural properties of tissue microanatomy. The research contributions and 

results described in each chapter of this thesis are summarized below. 

5.1.1 Chapter 2: Distributed three-dimensional simulation 

of B-mode ultrasound imaging using a first-order k-

space method 

A parallel ultrasound simulator is presented based on a 3-D formulation of a k-

space method that incorporates relaxation absorption and nonreflecting boundary 

conditions. The simulator, which runs on distributed-memory computer clusters, 

partitions the computation grid of a single scan line between a group of cluster nodes 
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and employs multiple groups of nodes to compute independent lines concurrently. The 

accuracy of the simulator is demonstrated by computing scattering from a fluid sphere 

and comparing the results with a matching analytical solution. Accuracy results show 

that the simulator, with a coarse spatial step of four points per wavelength and a 

CFL number of 0.5, achieves a low error value of 2.6% when the medium is filtered 

using a Gaussian filter. An aperture-projection technique is presented to minimize 

the computational resources of imaging simulations with a focused transducer by 

restricting the simulation to a small field of view around the focus. This technique 

is employed to synthesize B-mode images of a tissue-mimicking phantom that show 

realistic 3-D refraction artefacts. Parallel computing using 20 nodes reduced the 

execution time for each image to 18.6 hours, compared to a serial execution time of 

357.5 hours. The results demonstrate that fully 3-D imaging simulations are practical 

using contemporary computing technology. 

5.1.2 Chapter 3: Stochastic modeling of normal and tumour 

tissue microstructure for high-frequency ultrasound im

aging simulations 

A 3-D microanatomical model is introduced in which tissue is treated as a pop

ulation of stochastically positioned spherical cells consisting of a spherical nucleus 

surrounded by homogeneous cytoplasm. The model is used to represent the mi

crostructure of healthy mouse liver and an experimental liver metastasis. Normal 

and cancerous tissue specimens stained with DAPI and H&E are digitized at 20 x 

magnification and analyzed to specify values of the model parameters. The spatial 

organization of cells is controlled in the model by a Gibbs-Markov point process whose 

parameters are tuned to maximize the similarity of experimental and simulated tissue 

microstructure, which is characterized using three descriptors of nuclear spatial ar

rangement adopted from materials science. The model can accurately reproduce the 



119 

microstructure of the relatively homogeneous healthy liver and the average cell clus

tering observed in the experimental metastasis, but it is less effective at reproducing 

the spatial heterogeneity of the experimental metastasis. The tissue microstructural 

properties included in the model are hypothesized to be significant determinants of 

ultrasound scattering in the high-frequency band. 

5.1.3 Chapter 4: Three-dimensional computational model

ing of high-frequency ultrasound imaging of a mouse 

liver metastasis model 

The 3-D ultrasound simulator is used to synthesize B-mode images of simulated 

healthy and tumour tissues configured with the tissue model to match the microstruc

ture of either health mouse liver or an experimental mouse liver metastasis. In these 

simulations, tissue microstructure is treated as a population of spherical nuclei sur

rounded by homogeneous cytoplasm. The first-order speckle statistics of the sim

ulated images are compared with matching experimental images. The simulations 

show good matching between the first-order speckle statistics of the images synthe

sized for the simulated healthy tissue and experimental images of healthy murine liver. 

Furthermore, good matching is achieved between the first-order speckle statistics of 

the simulated tumour and experimental images of the corresponding liver metastasis 

when nucleus sound speed and mass density values are used that are different from 

the values assumed for healthy tissue. These preliminary results suggest that vari

ations in the first-order speckle statistics between healthy and cancerous tissue are 

related to changes in tissue acoustic and microstructural properties. 
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The preliminary scattering results reported in chapter 4 characterize the first-

order speckle statistics of the B-mode images synthesized for the simulated healthy 

and tumour tissues using the 3-D ultrasound simulator. The analyses can be extended 

to include comparison between the spatial distribution of the gray level values in the 

simulated B-mode images and the matching experimental images. The second-order 

analyses can be performed using a co-occurrence matrix [1] that can be computed 

for a B-mode image at predefined axial and lateral offsets, Q and <;, respectively, such 

that the element in its ith row and j t h column characterizes the joint probability of 

occurrence of gray levels % and j at two different pixels separated by axial spacing, g, 

and lateral spacing, <;, where the values of i and j are between 0 and 255. Therefore, 

the co-occurrence matrix is a discrete function analogous to the autocorrelation func

tion [2] used in ultrasound signal processing. Co-occurrence matrices with various 

offsets can be computed for the images synthesized for each simulated tissue, and 

then the matrices can be analyzed to extract second-order features. The features 

of each simulated tissue can be compared with corresponding features computed for 

B-mode images of the matching experimental tissue specimen. 

The high-frequency ultrasound scattering simulations presented here can be ex

tended to use spectral analysis [3] to compare the radio-frequency (RF) signals ac

quired using the 3-D ultrasound simulator for the simulated healthy and tumour 

tissues with matching experimental RF signals. Such a comparison is crucial in view 

of the ability of high-frequency ultrasound scanners to provide quantitative estimates 

of tissue microanatomy based on spectral analysis of backscattered ultrasound sig

nals [4, 5] to complement conventional B-mode images. 

The 3-D ultrasound simulator computes linear acoustic propagation in an inhomo-

geneous fluid medium, and hence it does not incorporate nonlinear and shear propa

gations. Linear propagation is a valid approximation for imaging studies because the 
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amplitude of the waves transmitted by ultrasound scanners is relatively small. Ultra

sound shear propagation in fluid-like soft tissue at mega-Hertz frequencies is highly 

attenuated and therefore can be neglected. However, some studies suggest that sub

stantial elastic scattering of high-frequency ultrasound can occur in single cells [6] and 

tissue microanatomy [7]. Extensions of the mathematical formulation of the A;-space 

method as suggested in [8] to include nonlinear and shear propagation can enable 

the use of the ultrasound simulator to perform scattering simulations that include 

elastic properties of tissue microanatomy and support applications in which nonlin

ear propagation is crucial, such as tissue harmonic imaging and contrast-enhanced 

imaging. 

The ultrasound simulator and the stochastic tissue model can be used to study the 

effect on high-frequency ultrasound backscattering of varying individual microstruc-

tural properties. Such studies can be performed by computing ultrasound scattering 

in simulated tissues produced by varying the features under investigation and setting 

the other structural properties to match a particular tissue type. In addition, such 

studies could involve adding more cellular- and tissue-scale features to the cell nu

clei, cytoplasm, and extracellular compartments included in the present tissue model. 

Such extensions would enable investigation of the contributions of cellular-scale fea

tures such as the cytoskeleton [9] by assigning different acoustic properties to the cy

toplasm and extracellular compartments. Tissue-scale features such as blood vessels, 

liver lobules, and the acellular necrotic regions observed in the B16F1 experimental 

metastases could be added by including geometrically defined structures in the tissue 

model (e.g., treating blood vessels as a branching network of hollow cylinders). The 

high heterogeneity of the experimental metastasis could be incorporated by using 

the present tissue model as a component of a high-order stochastic process modeling 

the heterogeneity. These modifications should also enable the tissue model to mimic 

tumour types other than the experimental liver metastasis studied here. 

The above discussion has focused on the applicability of the ultrasound simulator 
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and the tissue model to study scattering in the high-frequency (20-60 MHz) range. 

The present software could also be used as the basis for simulations at lower ultra

sound frequencies. Simulations at acoustic microscopy frequencies > 100 MHz may 

require the inclusion of additional subcellular detail in the tissue model. 

If the suggested extensions of the tissue model and the ultrasound simulator are 

fully implemented, the simulation software can be used to propose metrics based on 

high-frequency ultrasound backscattering to characterize tumour growth. Histology 

slides obtained from tumours at different stages of progression would be analyzed to 

determine their microstructural properties, and the tissue model would be separately 

configured to represent the microstructure of each tumour. The acoustic properties of 

each tumour would be estimated by using the ultrasound simulator to compute high-

frequency ultrasound scattering in the simulated tumour with various combinations 

of acoustic properties of tissue microanatomy, and selecting the combination that 

maximizes the matching between the simulated ultrasound backscattered signals and 

corresponding experimental ultrasound signals. The simulated ultrasound backscat

tered signals computed using the optimized acoustic properties of each simulated 

tumour and matching experimental ultrasound signals would be analyzed to deter

mine characteristics of high-frequency ultrasound backscattering that are sensitive to 

specific variations in tissue acoustic and microstructural properties that accompany 

tumour growth. The same approach can be applied to propose high-frequency ultra

sound metrics to characterize anti-cancer treatment response and biological processes 

related to cancer such as invasion and apoptosis. 

5.3 Closing 

The parallel 3-D ultrasound simulator and the stochastic tissue model provide 

a computational framework to study high-frequency ultrasound scattering in tissue. 

Preliminary ultrasound scattering simulations reported in this thesis demonstrate that 
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the software can be used to relate the first-order speckle statistics of B-mode images of 

healthy and cancerous mouse liver to tissue acoustic and microstructural properties. 

Extensions of the software as described above could enable better understanding of 

the relationships between tissue microanatomy and characteristics of high-frequency 

ultrasound backscattering. 



References 

124 

[1] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image 

classification," IEEE Trans. Syst. Man and Cybern., vol. 3, no. 6, pp. 610-21, 

1973. 

[2] R. F. Wagner, M. F. Insana, and D. G. Brown, "Statistical properties of radio-

frequency and envelope-detected signals with applications to medical ultrasound," 

J. Opt. Soc. Am. A, vol. 4, no. 5, pp. 910-22, 1987. 

[3] F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, 

"Relationship of ultrasonic spectral parameters to features of tissue microstruc-

ture," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 34, pp. 319-329, 

1987. 

[4] M. L. Oelze, W. D. O'Brien Jr, J. P. Blue, and J. F. Zachary, "Differentiation and 

characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using 

quantitative ultrasound imaging," IEEE Trans. Med. Imaging, vol. 23, pp. 764-71, 

2004. 

[5] M. C. Kolios, G. J. Czarnota, M. Lee, J. W. Hunt, and M. D. Sherar, "Ultrasonic 

spectral parameter characterization of apoptosis," Ultrasound Med. Biol, vol. 28, 

pp. 589-97, 2002. 

[6] R. E. Baddour and M. C. Kolios, "The fluid and elastic nature of nucleated 

cells: implications from the cellular backscatter response," J. Acoust. Soc. Am., 

vol. 121, pp. EL16-22, 2007. 

[7] T. E. Doyle, K. H. Warnick, and B. L. Carruth, "Histology-based simulations 

for the ultrasonic detection of microscopic cancer in vivo," J. Acoust. Soc. Am., 

vol. 122, pp. EL210-6, 2007. 



125 

[8] T. D. Mast, L. P. Souriau, D.-L. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, 

"A &-space method for large-scale models of wave propagation in tissue," IEEE 

Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 2, pp. 341-54, 2001. 

[9] M. L. Oelze and W. D. O'Brien Jr, "Application of three scattering models 

to characterization of solid tumors in mice," Ultrason. Imaging, vol. 28, no. 2, 

pp. 83-96, 2006. 



Appendix A 

Permissions to Reproduce 

Published Work 

126 



Permissions/IOPP To 
Sent by: Jill Membrey 

06/08/200914:36 boc 

Subject Re: Fw: Including the paper (PMB/304775/PAP/220999) in 
my thesis 

Johnathan Keen/Joumals/IOPP 
— Forwarded by Johnathan Keen/Joumals/IOPP on 05/08/200917:03 — 

"Mohammad Oaoud" 
To 

04/08/200918:40 „ . , L . 
Subject including the paper (PMB/304775/PAP/220999) in my thesis 

Dear Editor , 

I am planning to use the paper entitled "Distributed three-dimensional 
simulation of B-mode ultrasound imaging using a first-order k-space 
method" (Article ID: PMB/304775/PAP/220999) that is accepted for 
publication in Physics in Medicine and Biology (PMB) as a chapter of my 
PhD thesis. Since the copyright of the paper has been transferred to PMB, 
I am wondering if you can send me an email stating that I can include the 
paper in my thesis. 

Thank your 
Mohammad Daoud 

Mohammad Daoud, M.A.Sc. 
PhD Candidate, 
Electrical and computer Eng. Dept. 
The University of western Ontario 
Imaging Research Laboratories 
Robarts Research Institute 
100 Perth Drive, P.O. Box 501B 
London, On, Canada N6A 5K8 
Ph.: 

PERMISSION TO REPRODUCE AS REQUESTED 
IS GIVEN PROVIDED THAT: 

(a) oho eeneant U£_UIM mill In) i n I'IVII i i mil 
(b) the source of the material including author/editor, 

title, date and publisher is acknowledged.* 

IOP Publishing Ltd 
Dirac House ,-
Temple Back . / ^ / n _ 
BRISTOL . Pj.OJ. V.X.. . . . 
BS1 6BE Date Rights & Permissions 

* Please include the IOP Copyright line, mention the journal's homepage at: 



128 

www.iop.org/journals/pmb 

and provide a link back to the article's abstract on our website from the 
electronic 
version of your thesis (if applicable). 

Thank you. 

http://www.iop.org/journals/pmb


Subject: Re: Including the manuscript (TBME-00192-2009.R1) in my thesis 
From: 
Date: Tue, August 4, 2009 3:13 pm 

To: 
Cc: 

Priority: Normal 
Options: View Full Header | View Printable Version | View as HTML 

Dear Mohammad Daoud: 

We are happy to grant you this permission to reprint this IEEE copyrighted paper in your thesis and, if you 
wish, to have it placed on your university's website. We have only two requirements that must be satisfied 
before we can consider this permission final: 

(1) The following copyright/credit notice must appear prominently on the first page of the reprinted 
paper, with the appropriate details filled in: © [year] IEEE. Reprinted, with permission, from [IEEE 
publication title, paper title, and author names] 

(2) Additionally, if your thesis is to appear on the university's website, the following message should be 
displayed at the beginning of die credits or in an appropriate and prominent place on the website: This 
material is posted here with permission of the IEEE. Such permission of the TEEE does not in any way 
imply IEEE endorsement of any of the [university's namej's products or services. Internal or personal use 
of this material is permitted. However, permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for resale or redistribution must be obtained 
from the IEEE by writing to pubs-permissions@.ieee.org.Bv choosing to view this material, you agree to all 
provisions of the copyright laws protecting it. 

If applicable, University Microfilms, Inc. or ProQuest may supply single copies of the dissertation. 

To complete the permission process, could you please send this email back with the name of your 
university? 

Thank you. 

Sincerely, 

Jacqueline Hansson 

IEEE Intellectual Property Rights Coordinator 
IEEE Intellectual Property Rights Office 
445 Hoes Lane 
Piscataway, NJ 08855-1331 USA 
+1 
+ 1 
e-mail: 
IEEE Fostering technological innovation and excellence for the benefit of humanity 

From: "Mohammad Daoud" 
To: 
Date: 08/04/09 02:01 PM 
Subject: Including the manuscript (TBME-00192-2009.R1) in my thesis 

Dear Mr. Henson, 

I am planning to use the paper entitled "Stochastic Modeling of Normal and Tumor Tissue Microstructure 
for High-Frequency Ultrasound Imaging Simulations" (manuscript ID: TBME-00192-2009.R1) by M. I. 
Daoud and J. C. Lacefield that is accepted for publication in IEEE TBME as a chapter of my PhD thesis. 



130 

Since the copyright of the paper has been transferred to IEEE TBME, T am wondering if you can send me 
an email stating that I can include the paper in my thesis. 

Thank you, 
Mohammad I. Daoud 

Mohammad Daoud, M.A.Sc. 
PhD Candidate, 
Electrical and computer Eng. Dept. 
The University of Western Ontario 
Imaging Research Laboratories 
Robarts Research Institute 
100 Perth Drive, P.O. Box 5015 
London, On, Canada N6A 5K8 
Ph.: 



Vita 

NAME 

PLACE OF BIRTH 

DATE OF BIRTH 

EDUCATION 

PhD Candidate 2005 - 2009 
Department of Electrical and Computer Engineering 
The University of Western Ontario, London, ON, Canada 
Advisor: Dr. James C. Lacefield 
Thesis: Development and validation of parallel three-
dimensional computational models of ultrasound propagation 
and tissue microstructure for preclinical cancer imaging 

Master of Applied Science 2003 - 2005 
Department of Electrical and Computer Engineering 
Concordia University, Montreal, QC, Canada 
Advisor: Dr. Nawwaf Kharma 
Thesis: A hybrid heuristic-genetic scheduling algorithm for 
task scheduling on heterogeneous computing systems 

Bachelor of Applied Science 1996 - 2001 
Department of Electrical Engineering 
An-Najah National University, Nablus, Palestine 
Advisor: Dr. Raed Al-Qadi 
Graduation Project: A computer controlled robot arm 

FELLOWSHIPS AND AWARDS 

Postgraduate Scholarship-Doctorate, Natural Sciences and Engineering Research 
Council of Canada (NSERC), 2007-2009 (CND$21,000/yr). 

Outstanding Presentation in Graduate Symposium 2007, Department of Electri
cal and Computer Engineering, The University of Western Ontario, London, ON, 
Canada, 2007. 

Ontario Graduate Scholarship (OGS)-declined, 2007-2008 (CND$15,000/yr). 

Mohammad Ibrahim Daoud 



132 

Strategic Training Program in Cancer Research and Technology Transfer, Canadian 
Institute of Health Research (CIHR) and The University of Western Ontario, 2006-
2008 (CND$23,600/yr). 

Western Engineering Scholarship, The University of Western Ontario, 2005-2009, 
(CND$8,500 for 2005-2006, CND$4,500 for 2006-2007, CND$9,685 for 2007-2008, 
CND$9,906 for 2008-2009). 

Graduate Studies Scholarship, Hani Qaddumi Scholarship Foundation, Jordan, 2003-
2005, (CND$20,000/yr). 

First Prize, Graduation Project Competition, Department of Electrical Engineering, 
An-Najah National University, Palestine, 2001. 

Tuition Scholarship, An-Najah University, Palestine, 1997-2001, (US$500/yr). 

RESEARCH EXPERIENCE 

Graduate Student - Doctorate Aug. 2005 - Present 
Imaging Research Laboratories 
Robarts Research Institute, London, ON, Canada 

Programmer Analyst Aug. 2004 - May 2005 
SoftSim Technologies Inc., Longueuil, QC, Canada 

Graduate Student - Master of Applied Science Jan. 2003 - Jan. 2005 
Department of Electrical and Computer Engineering 
Concordia University, Montreal, QC, Canada 

TEACHING A N D PROFESSIONAL EXPERIENCE 

Teaching Assistant - Programming Fundamentals Jan. 2009 - Apr. 2009 
Department of Electrical and Computer Engineering Sep. 2007 - Dec. 2007 
The University of Western Ontario, London, ON, Canada Sep. 2006 - Dec. 2006 

Sep. 2005 - Dec. 2005 

Teaching Assistant - Programming Methodology Jan. 2004 - Apr. 2004 
Department of Electrical and Computer Engineering 
Concordia University, Montreal, QC, Canada 

Cisco Certified Network Associate Instructor Sep. 2001 - Mar. 2002 
Cisco Networking Academy 
An-Najah National University, Nablus, Palestine 

Network Engineer Mar. 2002 - Jan. 2003 
Palestine Telecommunications Co., Nablus, Palestine 



133 

JOURNAL REVIEWING 
Referee, IEEE Transactions on Computers, 2008 - Present. 

Referee, Journal of Parallel and Distributed Computing, 2006 - Present. 

PROFESSIONAL SOCIETY MEMBERSHIPS 

Student Member, Institute of Electrical and Electronics Engineers (IEEE), 2004 -
Present. 

Student Member, IEEE Engineering in Medicine and Biology Society, 2009 - Present. 

Student Member, IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, 
2006 - Present. 

Member, IEEE Engineering in Medicine and Biology Society Student Chapter, The 
University of Western Ontario, 2006 - Present. 

Student Member, International Society for Optical Engineering (SPIE), 2009 -
Present. 

EXTRACURRICULAR ACTIVITIES 

Judge, 39th Annual London District Science &; Technology Fair, London, ON, 
Canada, 2009. 

External Communications Coordinator, IEEE Engineering in Medicine and Biology 
Society (EMBS) Student Chapter, The University of Western Ontario, London, ON, 
Canada, 2006 - Present. 

Member of the Social Committee, Network of Imaging Students, Robarts Research 
Institute, London, ON, Canada, 2006 - Present. 

Website Administrator, Network of Imaging Students, Robarts Research Institute, 
London, ON, Canada, 2006 - Present. 

Website Administrator, Second Annual Canadian Student Conference on Biomed
ical Computing (CSCBC 2007), The University of Western Ontario, London, ON, 
Canada, 2007. 

PUBLICATIONS AND CONTRIBUTIONS 

Refereed Journal Papers 

Published and Accepted: 

[1] M. I. Daoud and J. C. Lacefield, "Stochastic modeling of normal and tumor tis
sue microstructure for high-frequency ultrasound imaging simulations," IEEE TYans. 



134 

Biomed. Eng., In Press. 

[2] M. I. Daoud and J. C. Lacefield, "Distributed three-dimensional simulation of 
B-mode ultrasound imaging using a first-order A;-space method," Phys. Med. Biol, 
In Press. 

[3] J. C. Tillett, M. I. Daoud, J. C. Lacefield, and R. C. Waag, "A A;-space method 
for acoustic propagation using coupled first-order equations in three dimensions," 
J. Acoust. Soc. Am., In Press. 

[4] M. I. Daoud and N. Kharma, "A high performance algorithm for static task 
scheduling in heterogeneous distributed computing systems," J. Parallel Distrib. 
Comput, vol. 68(4), pp. 399-409, 2008. 

Submitted: 

[5] Y.-T. Shen, M. I. Daoud, and J. C. Lacefield, "Computational models of dis
tributed aberration in ultrasound breast imaging," IEEE Trans. Ultrason. Ferro-
electr. Freq. Control, submitted Oct. 2008. 

[6] M. I. Daoud and N. Kharma, "A hybrid heuristic-genetic algorithm for task 
scheduling in heterogeneous processor networks," Applied Soft Computing, submit
ted Apr. 2008. 

Refereed Conference Papers 

[1] M. I. Daoud and J. C. Lacefield, "Stochastic modeling of tissue microstructure 
for high-frequency ultrasound imaging simulations," SPIE Medical Imaging 2009, 
Proc. SPIE, vol. 7262, 72620P, Lake Buena Vista, FL, USA, Feb. 7-12, 2009 
(Podium Presentation). 

[2] M. I. Daoud and J. C. Lacefield, "Efficient three-dimensional simulation of 
ultrasound imaging using a parallel &-space method," 31st Canadian Medical and 
Biological Engineering Conference (CMBEC31), Montreal, QC, Canada, Jun. 11-
13, 2008 (Four Page Paper, Podium Presentation). 

[3] M. I. Daoud and J. C. Lacefield, "Parallel three-dimensional simulation of ultra
sound imaging," 22nd International Symposium on High Performance Computing 
Systems and Applications (HPCS 2008), Proc. 22nd Intl. Symp. High Perform. 
Comp. Sys. Appl, pp. 146-152, Quebec City, QC, Canada, Jun. 9-11, 2008 
(Podium Presentation). 

[4] M. I. Daoud, Y.-T. Shen, and J. C. Lacefield, "A scalable parallel implementa
tion of a &-space method for large-scale ultrasound imaging simulations," 2006 IEEE 
International Ultrasonics Symposium, Proc. 2006 IEEE Intl. Ultrason. Symp., pp. 
2194-2197, Vancouver, BC, Canada, Oct. 3-6, 2006 (Poster Presentation). 



135 

[5] M. I. Daoud and N. Kharma, "An efficient genetic algorithm for task scheduling 
in heterogeneous distributed computing systems," 2006 IEEE Congress on Evolu
tionary Computation (CEC 2006), Proc. 2006 IEEE Cong. Evol. Comp., pp. 
3258-3265, Vancouver, BC, Canada, Jul. 16-21, 2006 (Podium Presentation). 

[6] M. I. Daoud and N. Kharma, "Efficient compile-time task scheduling for hetero
geneous distributed computing systems," 12th International Conference on Parallel 
and Distributed Systems (ICPADS), Proc. 12th Intl. Conf. Para. Dist. Sys., vol. 
1, pp. 11-22, Minneapolis, MN, USA, Jul. 12-15, 2006 (Podium Presentation). 

[7] M. Daoud and N. Kharma, "GATS 1.0: a novel GA-based scheduling algorithm 
for task scheduling on heterogeneous processor nets," 2005 Genetic and Evolutionary 
Computation Conference (GECCO 2005), Proc. 2005 Gene. Evol. Comp. Conf., 
vol. 2, pp. 2209-2210, Washington, DC, USA, Jun. 25-29, 2005 (Poster Presenta
tion). 

[8] M. Daoud, N. Kharma, A. Haidar, and J. Popoola, "Ayo, the Awari player, or 
how better representation trumps deeper search," 2004 IEEE Congress on Evolu
tionary Computation (CEC 2004), Proc. 2004 IEEE Cong. Evol. Comp., vol. 1, 
pp. 1001-1006, Portland, OR, USA, Jun. 19-23, 2004 (Podium Presentation). 

Refereed Conference Abstracts 

[1] J. C. Lacefield, M. I. Daoud, S. Z. Pinter, L. A. Wirtzfeld, and A. Fenster 
"Tools for planning and performing longitudinal cancer studies in mice using high-
frequency ultrasound," 34th International Symposium on Ultrasonic Imaging and 
Tissue Characterization, Ultrason. Imaging, vol. 31, pp. 74, Arlington, VA, USA, 
Jun. 10-12, 2009 (Invited Podium Presentation). 

[2] M. I. Daoud and J. C. Lacefield, "Stochastic modeling of murine liver mi
croanatomy for high-frequency ultrasound imaging simulations," 6th International 
Conference on Ultrasonic Biomedical Microscanning, Malibu, CA, USA, Sep. 23-26, 
2008 (Podium Presentation). 

Selected Seminar, Symposium, and Workshop Presentations 

[1] M. I. Daoud and J. C. Lacefield, "Three-dimensional computer simulations to 
analyze high-frequency ultrasound B-mode images of preclinical tumour models," 
London Imaging Discovery Forum (LID), London Convention Centre, London, ON, 
Canada, Jun. 5, 2008 (Poster Presentation). 

[2] M. I. Daoud, "Distributed three-dimensional simulation of B-mode ultrasound 
imaging," 2008 Graduate Symposium, Department of Electrical and Computer En-



136 

gineering, The University of Western Ontario, London, ON, Canada, May 28-29, 
2008 (Podium Presentation). 

[3] M. I. Daoud and J. C. Lacefield, "Three-dimensional modeling of ultrasound 
imaging," Robarts Research Day, Robarts Research Institute, London, ON, Canada, 
Mar. 27, 2008 (Poster Presentation). 

[4] M. I. Daoud and J. C. Lacefield, "Three-dimensional computational modeling 
of preclinical ultrasound cancer imaging," Dept. of Oncology Research & Educa
tion Day, The Schulich School of Medicine & Dentistry, The University of Western 
Ontario, London, ON, Canada, Jun. 22, 2007 (Poster Presentation). 

[5] M. I. Daoud and J. C. Lacefield, "Enhancing tumour evaluation in preclinical 
cancer models using high-frequency ultrasound imaging," London Imaging Discov
ery Forum (LID), London Convention Centre, London, ON, Canada, Jun. 16, 2007 
(Poster Presentation). 

[6] M. I. Daoud, Y.-T. Shen, and J. C. Lacefield, "Parallel implementation of 
a &-space method for large-scale ultrasound imaging simulations," Second Annual 
Canadian Student Conference on Biomedical Computing, London, ON, Canada, 
Mar. 16-18, 2007 (Poster Presentation). 


