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ABSTRACT 

Decision Field Theoretical Analysis and Modelling of Dynamic Route Choice 

Deliberation Process 

Hoda M. Talaat 

Doctor of Philosophy 

Graduate Department of Civil Engineering 

University of Toronto 

2008 

Intelligent Transportation Systems applications require a thorough understanding 

of drivers' route choice behaviour in a complex network under real-time information. 

This research attempts to describe and model route choice behaviour at the disaggregate 

individual level and from a psychological decision-making process perspective. We base 

our proposed behavioural route choice theory and model of the drivers' mental 

deliberation process on the scientifically-sound Decision Field Theory (DFT). DFT is a 

process-oriented modelling ground of individuals' decision making that simulates the 

evolution of preferences during deliberation. 

Laboratory experiments are conducted that expose human subjects to realistic 

network and traffic conditions while monitoring and recording their route choices under 

varying experimental conditions. Recorded data are used for analyzing drivers' route 

choices and for the development and calibration of a DFT-based route choice theory and 

framework. A simple "mixed reality" simulator is developed to serve as an 

experimentation platform. The mixed reality platform enables a driver to use a PC-based 

steering device to navigate through a microscopic simulation model of the waterfront 

portion of downtown Toronto. Analysis results reveal the significance of the impacts of 
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some situational factors (e.g. information content, information reliability, and inertia 

effects), and some personal factors (e.g. gender differences), on drivers' route choice 

attitudes. 

Estimation of the DFT route choice model parameters is performed based on the 

experimental observations. Genetic algorithms are used as the optimization tool to 

calibrate model parameters and minimize the discrepancy between model output and 

observed behaviour. The developed DFT model is used to study the impact of time 

pressure constraints on drivers' compliance behaviour. Variations in impact trends are 

estimated with varying information characteristics (form and reliability). 

Finally, an alternative structural-oriented parameter estimation methodology is 

adopted for comparative purposes. In the structural-oriented methodology, the 

deliberation time dimension is completely ignored during the estimation of the model 

parameters. Analysis results reveal the superiority of the process-oriented DFT route 

choice model in improving the credibility of route choice predictions. Furthermore, the 

developed DFT model contributes to enhancing the understanding of the impact and the 

influence mechanisms of personal/situational factors on drivers' route choice attitudes. 
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1 INTRODUCTION 

Prolonged daily periods of traffic congestion waste time and money and degrade 

both the environment and our quality of life. Transportation planners attempt to meet 

increasing travel demands through a hierarchy of strategies: (1) supply management, (2) 

demand management, and (3) land-use management. Common supply management 

strategies were traditionally focussed on the expansion of the transportation network 

capacity, such as, for instance, building new highways. Capacity expansion, however, 

failed to keep pace with sharp increases in demand, resulting in widely spreading 

congestion and raising concerns about the long-term sustainability of this approach. Over 

the past two decades, focus has dramatically shifted from myopic capacity expansion to 

more sustainable alternatives, such as demand and land use management and the use of 

technology to improve real-time supply management. Increased congestion and pollution, 

coupled with fiscal and space constraints, are empowering this paradigm shift in dealing 

with transportation problems. The focus on using modern technologies in transportation 

management gave rise to Intelligent Transportation Systems (ITS). ITS are concerned 

with the application of emerging information technology to transportation systems in 

order to improve their efficiency, reliability, and safety. As information technologies and 

advances in communications continue to revolutionize all aspects of our lives, real-time 

control of our transportation network becomes more viable. The implementation of such 

advanced systems is steadily becoming a reality that will reshape the way people, 

vehicles, and technology interact. 

Intelligent Transportation System applications require a thorough understanding 

of drivers' route choice behaviour in a complex network, and possibly under real-time 

information. Dynamic traffic assignment, dynamic route guidance, flow prediction, and 

adaptive traffic control are but a few examples of such applications. Both the aggregate 

route choice behaviour of the population (e.g. user equilibrium) or disaggregate 

behaviour (e.g. how an individual driver perceives and reacts to real-time information) 

are of interest. The success of ITS applications depends on the accuracy and reliability of 

network condition assessment, prediction, information dissemination, and control 

formulation, possibly in real time. The predictive accuracy of disseminated information 
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and formulated control strategies require realistic understanding and representation of 

drivers' route choices, which motivates the current research. 

1.1 PROBLEM STATEMENT 

At the disaggregate level, drivers' route choices are inspired by a number of 

interrelated psychological/cognitive processes. Our focus is on the mental deliberation 

process that leads to the selection of a travel route. The deliberation process refers to a 

psychological process whereby drivers trade-off between attributes of the choice 

alternatives under prevailing personal/situational conditions and constraints. This process 

is often complicated by uncertainty and limited time before a choice has to be made. In 

the route choice literature, modelling of the deliberation process is usually addressed 

from two perspectives: microeconomics and behavioural perspectives. The 

microeconomic perspective adopts utility-based choice models to represent the trade-off 

between the choice situation attributes. The utility-maximization principle has, 

historically, been the conventional decision rule of most route choice modelling 

frameworks. This is in spite of the fact that it has been repeatedly questioned as a realistic 

basis for travel-choice modelling. This is mainly due to its underlying normative 

assumptions regarding decision-makers' rationality, perfect knowledge, and infinite 

processing capabilities (Algers, 1998; Stern, 1998). Alternatively, the behavioural 

perspective realizes the need for modelling the psychological process of mental 

deliberation preceding a choice selection. This modelling approach attempts to closely 

mimic the actual mental deliberation process, thereby potentially enhancing the realism 

and the credibility of drivers' route choice models. 

The behavioural perspective of route choice has been the focus of several research 

studies throughout the past decade. However, there remains a lack of a realistic 

explanatory representation of the psychological process underlying drivers' choice 

decisions. The structural-oriented modelling approach of the deliberation process has 

been the focus of most existing modelling frameworks. The structural approach attempts 

to formulate a relationship between inputs (choice situation attributes) and outputs 

(choices), paying little attention to understanding/modelling the underlying psychological 

process. The generalization of this type of model is questionable, as it might result in 
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severe mis-predictions (Stern, 1998). Drivers' choices are performed within a challenging 

choice environment characterized by uncertainties and time pressure constraints. The 

dynamic nature of the choice environment entails a shift of focus from the structural-

oriented modelling approach to a process-oriented one. From a process-oriented 

modelling perspective, choices are direct outputs of a psychological process. Prediction 

of a process output entails the theoretical abstraction of the process itself: understanding 

how decisions are made and how they evolve with time. As such, there is a need to 

develop a scientifically sound behavioural route choice theory that could explain the 

cognitive mechanisms of deliberation during the route choice process. It's noteworthy 

that the need for this detailed level of modelling is recognized within traffic operations 

and short-term transportation planning activities. 

1.2 MOTIVATION 

On one hand, drivers' route choice decisions are the outcome of complex 

deliberation processes involving uncertainty. Uncertainty is a typical characteristic of any 

traffic network, even under real-time congestion information. There is uncertainty on the 

demand side as well as the supply side of the network. Moreover, there is another 

dimension of uncertainty within traffic information sources. The reliability of 

disseminated information is never guaranteed. 

On the other hand, choice decisions are not instantaneous but rather time-

consuming (Busemeyer and Townsend, 1993). The direct influence of the length of a 

deliberation process on choice decisions cannot be ignored. Drivers are commonly faced 

with divergence decisions while driving. The length of the deliberation process is 

restricted to a time frame prior to tentative bifurcation or divergence points. Available 

time frames might vary according to many factors, such as driver familiarity with the 

network geometry, daily traffic conditions, and the timing and location of information 

dissemination. Limited deliberation time frames pressure drivers to make choices 

possibly before their preferences mature to a satisfactory level. 

In formulating our behavioural perspective of the dynamic route deliberation 

process, this research has been inspired and influenced by recent advances from the field 

of psychology. Of particular interest to us is the time-dependent psychological and 
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mental process of preference formation in an uncertain and time-pressed choice 

environment. Of direct relevance to our perspective in this research is the sound and well 

established Decision Field Theory (DFT), which forms the theoretical basis for modelling 

the psychological process underlying drivers' route choice decisions. DFT, developed by 

Busemeyer and Townsend (1993), is a dynamic behavioural theory that is able to capture 

the psychological process involved in general choice decisions under uncertain 

conditions. DFT is one of a few process-oriented behavioural decision theories that 

explicitly accounts for varying degrees of uncertainty as well as time pressure in a 

unified, scientifically sound framework. 

1.3 OBJECTIVES 

This research aims to establish a process-oriented modelling approach for the 

deliberation process underlying drivers' route choices. The modelling framework is 

founded on the basis of DFT abstraction of decision-making. A DFT route choice model 

is the general objective of this research. The following is a list of the more specific 

research objectives: 

1. Design a DFT Route Choice Model Conceptual Framework 

a. Develop a base-case modelling framework for drivers' pre-trip and en-

route deliberation processes based on the foundation of DFT (with no 

information provision). This entails the definition of: (1) process 

schematic, (2) decision variables, and (3) decision parameters. 

b. Develop an integration framework for information provision within the 

base-case modelling framework. The provision of traveller information 

and route guidance is central to ITS and requires an accurate 

representation of drivers' choices. Therefore, the representation of 

information provision within our DFT modelling framework is necessary. 

2. Develop an Operational DFT Route Choice Model 

a. Develop a low-cost "mixed reality" infrastructure that serves as an 

experimental platform for capturing the route choice behaviour of test 

subjects in a controlled lab setting. In the mixed reality environment, a 

human subject is allowed to "route" a vehicle in a microscopic traffic 
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simulation model of an actual physical network. The virtual reproduction 

of the choice environment increases the realism of the simulated driving 

experience and route choice behaviour. 

b. Experimentally observe, capture, and analyze test subjects' route choice 

behavioural patterns. One approach to such analysis is to conduct a set of 

in-lab simulated driving experiments using human subjects in the mixed 

reality environment for the purpose of data collection. The experimental 

data enable the investigation of the impact of different personal/situational 

factors on drivers' route choice attitudes. 

c. Estimate the DFT route choice model parameters based on the 

experimental results. Parameter estimation requires the development of an 

optimization approach to solve for the model parameters that minimize the 

discrepancy between the model output and actual observed behaviour. 

3. Analysis and Benchmarking 

a. Use the DFT model to analyze the dynamics of deliberation by studying 

the effect of time pressure constraints on route choices. This analysis uses 

the DFT model to generate simulated route choice scenarios under varying 

time constraints. 

b. Benchmark the performance of the developed process-oriented DFT route 

choice model against the more traditional structural-oriented parameter 

estimation approach. 

1.4 SCOPE 

The following section briefly outlines the research scope along a number of 

dimensions. Specific details are discussed in respective chapters. 

1.4.1 Conceptual Framework 

DFT is adopted as a theoretical foundation for modelling drivers' pre-trip and en-

route deliberation processes. Deliberation is a trade-off between perceived attributes of 

the choice alternatives. Choice alternatives are outputs of a choice set formulation 

process. Modelling of the choice set formulation process is beyond the scope of this 
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research and hence, is not addressed in our modelling framework. Choice alternatives are 

treated as external inputs to our route choice model. 

In real life, drivers' perceptions of the choice alternative attributes are 

continuously updated based on day-to-day experiences, day-specific experiences, and 

available current information sources. A complex learning process underlies the 

cumulative long-term experience with alternatives. Current observation of the 

surrounding environment and available information about the rest of the system are 

amalgamated with the learnt perception to influence the decision process. While 

information-based updates (descriptive and prescriptive information) are explicitly 

addressed in our modelling framework, learning-based updates are limited. Detailed 

modelling of this learning process, although intriguing and important, is outside our 

research scope. In this research, we only expose each of the subjects of our experiments 

to a relatively short 'learning' session before they embark on the actual experiments. The 

purposes of the learning session are: (1) to allow the subjects to first familiarize 

themselves with the experimental setup, and (2) for the subjects to 'learn' about the 

network, its geometrical and traffic conditions, and the reliability of the provided 

information. As such, drivers' experience-based perception updates are assumed to have 

reached a steady state where they perceive the average statistics of travel patterns and 

information reliability. 

In summary, the scope of our DFT route choice model conceptual framework is 

restricted to modelling drivers' deliberation processes in two choice contexts (pre-trip, 

and en-route) and under three information-related scenarios (no information, descriptive 

information, and prescriptive information). No attempts have been made to elaborately 

model drivers' learning processes or choice-set formation processes. Moreover, drivers 

are assumed to want, seek, and use traveller information when available. If they opt not 

to, their behaviour is assumed to be covered under the case of no information. 

1.4.2 Mixed Reality Experimental Platform 

A low-cost mixed reality experimental platform is developed by integrating a 

microscopic traffic simulator with a driving simulator. In such a mixed reality 

environment, actual human subjects can experience a driving experiment while the 
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surrounding roads, traffic levels, and congestion evolution are modelled and controlled 

using a microscopic simulator in a full-scale network model. The objective is to enhance 

the realism and credibility of in-lab simulated route choice experiments under various 

ITS applications. This is achieved by integrating an externally controlled driving 

capability into the widely used Paramics microscopic traffic simulator. The scope of this 

work is limited to vehicle routing control (lane changes and turning at bifurcations). No 

attempt has been made yet to control longitudinal driving tasks such as acceleration and 

braking, which are left to the car-following model of the microscopic simulation model. 

1.4.3 Laboratory Experiments 

In-lab simulated route choice experiments are conducted for route choice data 

collection. A set of experiments is designed for this purpose. A limited sample size of 30 

subjects is used due to the difficulty of obtaining volunteer test subjects and the length of 

time required for each subject to repeat the experiments hundreds of times, which is the 

nature of such experiments. The sample of drivers is homogenous in terms of age group, 

education level, and driving experience. Experimentation is focused on recurrent-type 

trips (e.g. work or school trips). Variable message signs communication technology is 

used as the tool for information dissemination. Only two types of information forms are 

considered: descriptive (level of congestion) and prescriptive (route recommendation) 

forms. 

1.4.4 Operational Model 

An operational version of the DFT route choice model is realized by estimating 

model decision parameters using the experimental observations. The adopted parameter 

estimation methodology is based on the use of aggregate observations (i.e. estimate the 

optimal model parameters that reproduce the aggregate observed behaviour of the 

sample). Observed data are categorized into a number of homogenous groups. Aggregate 

observations from each group are used to estimate group-specific parameters. Given the 

limited sample size, estimated parameter values are considered prototypical values for 

each class of drivers. As such, the developed operational model is only a limited-scale 

prototype of the envisioned one. Further wider-scope experimentation is required to 

enable the development of a generic, full-fledged DFT route choice model. 
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1.5 THESIS ORGANIZATION 

This thesis is organized into 9 chapters. Chapter 2 summarizes the review of the 

literature on the route choice modelling problem. The problem is abstracted into a 

number of interrelated processes. Each of the abstracted processes is discussed, in 

relevance to the main modelling streams of route choice literature. Based on a thorough 

review of relevant literature, a synthesis of the major route selection contributing factors 

is presented. Chapter 3 presents the conceptual DFT framework of the route choice 

process. A base-case framework, with "no information" provision, is first discussed. An 

integration framework, for descriptive and prescriptive traffic information is then 

proposed. 

Chapters 4 and 5 are concerned with laboratory experimentation. Chapter 4 

presents the development details of the mixed reality experimental platform. The details 

of the design of experiments are discussed in Chapter 5. Assessment of drivers' route 

choice patterns, based on experimental observations, is undertaken in Chapter 6. Chapter 

7 describes the estimation of the route choice model parameters. An investigation of the 

impact of the deliberation-time dimension on drivers' route choice modelling is the focus 

of Chapter 8. In this chapter, the added value of adopting a process-oriented modelling 

framework is benchmarked. Finally, Chapter 9 summarizes the conclusions of this 

research and proposes directions for future work. 
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2 BACKGROUND AND LITERATURE REVIEW 

2.1 PRECIS 

Drivers' route choice behaviour evolves from several interrelating cognitive 

processes. The simultaneous interaction of these processes within the available time 

constraints influences and ultimately gives rise to drivers' choice decisions. 

Understanding and modelling drivers' route choices entails the explanation of the 

underlying psychological processes. Four main processes are abstracted in this context: 

(1) decision-making, (2) learning, (3) information acquisition, and (4) 

experience/information integration processes. An overview of the relevant previous 

modelling efforts in light of these processes is presented in this chapter. Being the subject 

of this research, an increased focus is devoted to the decision-making process in terms of 

modelling approaches and perspectives. Based on this review, a vision of modelling 

needs is synthesized. 

On the other hand, drivers' route choice behaviour is influenced by many 

internal/external factors. Modelling of drivers' decision-making processes mandates a fair 

knowledge of the main contributing factors. As such, based on a thorough review of 

relevant literature, a synthesis of the main contributing factors is discussed. 

2.2 OVERVIEW OF ROUTE CHOICE BEHAVIOUR 

Drivers' route choices are outcomes of complex interactions of several 

psychological processes. Drivers make their choices through a mental deliberation 

process that includes a trade-off between the perceived attributes of available alternatives. 

Drivers form perceptions about these attributes based on previous experiences, day-

specific experiences, and, in many cases, traffic information sources. Driver 

characteristics (such as socioeconomic/demographic characteristics and risk attitude), and 

trip-specific characteristics (such as trip purpose and arrival time constraints) influence 

the operation of the underlying psychological processes and the resulting choices. On the 

other hand, drivers' route choices are performed within a unique choice environment. The 

complexity of the choice environment stems from several contributing factors, the most 

prominent of which are uncertainty and time pressure. In addition, situational conditions 
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(such as incidents and delays), and environmental conditions (such as weather-related 

obstructions) further impact drivers' perceptions of the decision attributes. The highly 

intertwined aspects of the overall route choice behaviour mandate the abstraction of the 

main underlying processes/factors for understanding and modelling purposes. Figure 2.1 

illustrates an abstract representation of the main contributing processes/factors and their 

interrelations. 

During the past decade, understanding and modelling of route choice behaviour 

have been the focus of numerous research efforts. In the following sections the main 

research streams are discussed, in relevance to the abstracted processes. Nonetheless, 

being the focus of this research, a more vigorous discussion is devoted to the deliberation 

part of the decision-making process. A synthesis of the main contributing factors to the 

operation of all discussed processes is then presented. 
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2.3 DECISION-MAKING PROCESS 

The decision-making process refers to a mental process whereby individuals 

trade-off between perceived attributes of alternative courses of action. This process 

begins when an individual is confronted with a choice situation and ends when a final 

decision is reached. Deliberation is based on up-to-the-moment formulated perceptions of 

the different attributes/aspects of the choice situation. Modelling drivers' decision­

making process embeds the challenging task of modelling human behaviour. The human 

being is portrayed by Algers (1998) as "an agent driven by psychological factors in a 

system of economic relations and restrictions in a spatial context." As such, many 

disciplines, such as economics, psychology, sociology, and engineering, attempt to model 

individuals' decision-making process from different perspectives. 

The decision-making process could be further divided into two sub-processes: a 

choice-set formulation, and a deliberation process. Choice-set formulation constitutes the 

initial stage in the choice process wherein drivers establish their choice alternatives. The 

outcome of any decision-making process is a choice of a certain alternative among a 

number of available ones. Thus, appropriate specification of available alternatives is 

essential to any modelling approach. The available routes between a given Origin 

Destination (OD) pair are the natural alternatives of a route choice situation. However, 

feasible paths between any OD pair are numerous and probably not all are perceived by 

all drivers (Cascetta et al., 2002). In addition, it is unrealistic to assume that drivers 

consider a large number of alternative routes simultaneously (Khattak et al, 1995). As 

such, a behaviourally realistic choice-set formulation model is of prominent importance 

in modelling drivers' decision-making processes. In the literature, choice-set generation 

models are rarely explicitly specified and are calibrated based on indirect information 

(Cascetta et al., 2002). Cascetta et al. (2002) presented a simplified taxonomy of the 

different approaches adopted in the literature for route choice-set generation. In the 

referenced study, a utility-based explicit choice-set generation model is proposed. Initial 

calibration results are also reported. 

The second stage in the decision-making process is concerned with mental 

deliberation. The deliberation process involves the evaluation of different courses of 

action, generated in the initial step, based on formulated perceptions. Generally, this 
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process is addressed in the literature from two perspectives: microeconomic theory and 

behavioural decision theory. An overview of these two perspectives is presented in the 

following sections. 

2.3.1 Microeconomic Theory 

Microeconomic Theory (MET) represents decision making as a rational 

evaluation of the economic consequences of different courses of action. An expected-

utility function is adopted to quantify these consequences. Decision-makers are assumed 

to possess perfect knowledge of the choice situation. Decisions are made based on a 

utility-maximization principle. As such, choices are predicted based on an understanding 

of risk attitudes and budget restrictions (Garling et al., 1998). 

Random utility theory was then introduced to capture the differences between 

individual consumers through the incorporation of a random term. Most conventional 

route choice models fall under the category of random utility-based models (for example: 

Daganzo and Sheffi, 1982; Ben-Akiva et al., 1984; Cascetta et al., 1996; and Abdel-Aty 

and Abdalla, 2000). The utility of each alternative contains a systematic component 

corresponding to the choice attributes and a random-error term corresponding to 

unobserved attributes, taste variations, measurement errors, imperfect information, etc. It 

is assumed that each individual attempts to maximize her/his utility. A maximum-

likelihood approach is typically used to estimate the coefficients of the various attributes. 

There is a fairly large variety of random utility-based models with different 

assumptions regarding the correlation between random residuals (Cascetta, 2001). The 

simplest of these are the Multinomial Logit (MNL) models, assuming no correlation 

between residuals. In spite of this unrealistic assumption, MNL models are still used in 

some modelling frameworks due to their simplicity and ease of use. To overcome the 

simplified assumption of the MNL models, other utility-based models, such as Nested-

Logit, Cross-Nested Logit, and Probit models, were proposed. 

In the literature, MET has been repeatedly questioned as a basis for travel choice 

modelling. This is to a large extent because of its inability to model the choice process 

itself rather than formulating a relationship between input and output variables (Algers, 

1998). The embedded normative assumptions (rationality, perfect knowledge, infinite 
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processing capabilities), within the utility-based modelling framework, are behaviourally 

unrealistic. In addition, the adequacy of a single random term for encapsulating the 

different sources of ambiguity, randomness, and uncertainty is questionable (Stern, 

1998). 

In an attempt to incorporate behavioural components within MET, some 

extensions and modifications are proposed (Algers, 1998). One of the main 

modifications, adopted for modelling route choice decisions, is the bounded-rationality 

principle (Mahmassani et al, 1986 and Mahmassani and Chang, 1987). Departing from 

the formal utility-maximization paradigm, the bounded-rationality principle implies that 

for a route switch to be made (in pre-trip route selection and en-route path switching), 

expected travel time savings have to exceed a threshold value (user-indifference band). 

This value is individual/situational specific. The transportation research group at Texas 

Austin, under the supervision of H. Mahmassani, adopted the bounded-rationality 

principle as a governing criterion in drivers' pre-trip and en-route choices in several 

studies (Hu and Mahmassani, 1997; Mahmassani and Liu, 1999; Mahmassani and Jou, 

2000; and Srinivasan and Mahmassani, 2000). The bounded-rationality principle was also 

adopted as a behavioural component of drivers' route choice in the simulation-based 

Dynamic Traffic Assignment (DTA) software DYNASMARTX-DTA (Mahmassani, 

2001). 

Along the same line of research, Adler et al. (1993) adopted conflict assessment 

and resolution theories in their utility-based modelling of en-route choice behaviour. 

Drivers are assumed to be rational, trying to satisfy a set of goals. A utility function 

defines the degree of goal attainment for each alternative route. Responses are motivated 

by conflict arousal due to unexpected changes in the choice environment. An individual-

specific degree to tolerate conflict, among other factors, stimulates responses. 

2.3.2 Behavioural Decision Theory 

Behavioural Decision Theory (BDT), drawn from psychology and behavioural 

science, is introduced as an alternative perspective for modelling drivers' choice 

decisions. BDT, as defined by Algers (1998), "refers to an empirical approach to the 

study of human decision making with the goal of describing and understanding how 
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people actually make decisions." Similar to MET, BDT proposes that a good decision is 

one that satisfies the decision-maker's objectives. However, the question remains whether 

individuals make good decisions (Algers, 1998). To answer this question, a number of 

decision theories have emerged in an attempt to explain the choice mechanism from a 

behavioural perspective. Various modelling approaches have been adopted. 

2.3.2.1 BDT Modelling Approaches 

In the following brief overview, the different modelling approaches are classified 

along a set of orthogonal dimensions (Busmeyer and Townsend, 1993; Svenson, 1998; 

and Stern, 1998): 

1. Modelling Strategy 

a. Structural Approach: concerned with formulating a relationship between 

information about alternatives (decision inputs) and the choice between 

them (decision output) (Stern, 1998). This approach models the final 

decision while paying little attention to the cognitive process leading to 

that decision. 

b. Process Approach: concerned with modelling the cognitive process 

underlying choice decisions. This approach attempts to explain how 

decisions are made and how they evolve over time (Stern, 1998). 

c. Prospect Approach: concerned with a two-phase decision process: 

editing and evaluation phases. In the editing phase, possible decision 

outcomes are ordered based on some heuristic. A reference is set to 

distinguish between losses and gains. In the evaluation phase, a value is 

computed for every alternative, based on its potential outcome with 

respective to perceived probabilities of occurrences (Kahneman and 

Teverky, 1979). This approach ignores the time component and, hence, 

lies in between the structural and the process approaches (Stern, 1998). 

2. Incorporating. Uncertainty 

a. Risk-less Approach: decision-makers are certain about the outcomes of 

their choices. 

b. Risky Approach: there exist levels of uncertainty in perceived outcomes. 
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3. Representation of Preference Relations 

a. Deterministic Approach: output preference relations are either true or 

false for any alternative action (Busmeyer and Townsend, 1993). 

b. Stochastic Approach: output preference relations are represented by 

probability functions (Busmeyer and Townsend, 1993). 

4. Behavioural Assumptions 

a. Normative Approach: specifies how decisions should be made with 

respect to rational behaviour. 

b. Prescriptive Approach: maintains the rationality assumption; however, it 

does consider the mechanisms in which individuals evaluate and integrate 

information (Stern, 1998). 

c. Descriptive Approach: attempts to abstract the psychological process 

underlying choice decisions with no prior assumptions. 

5. Time Factor Incorporation 

a. Static Approach: assumes that decisions are made instantaneously, based 

on collective perceptions of different attributes/aspects of the choice 

situation. Thus, choices are independent of the deliberation time frame. 

b. Sequential Approach: assumes that final decisions are the last of a series 

of successive decisions, each changing the situation for the next decision 

(Stern, 1998). Such decisions are made sequentially in time. 

c. Dynamic Approach: this approach realizes the dynamic nature of the 

decision-makers' choice environment. During deliberation, the decision 

maker's preferences dynamically fluctuate with time. Choices depend on 

the level of preferences at the decision time. As such, this approach 

attempts to model the evolution in the decision-maker's preference 

relations over the deliberation time. Final decisions are, therefore, a direct 

output of the modelled evolution. 
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2.3.2.2 MET from a BDT Perspective 

For a long time, modelling of the decision-making process has been viewed from 

the MET (utility-based) perspective. If we may map the utility-based modelling approach 

onto the BDT dimensions, it could be regarded as structural, riskless, deterministic, 

normative, and static modelling approach. Random utility-based models further capture 

the stochastic aspects of decision making. While MET have been strongly refuted as 

behavioural decision theories, they are still used in benchmarking many of the emerging 

BDTs, especially the structural-oriented ones (Svenson, 1998). In contrast to MET, this 

research is seeking a BDT-based route choice modelling approach that is process-based, 

risky, stochastic, descriptive, and dynamic, as will be discussed in the remainder of this 

dissertation. 

2.3.2.3 Further Behavioural Improvements of Route Choice Models 

Within the route choice modelling arena, numerous improvements of the 

behavioural credibility of route choice models have been proposed and researched. 

Different modelling methodologies have been adopted in this regard. These approaches, 

although varying in the underlying core methodology, all depart to varying extents from 

the traditional MET. They share a common target, which is to produce more 

behaviourally realistic route choice models. In the sections that follow, the main research 

streams are identified and summarized. 

• Rule-based Methodology 

A decision strategy is defined by Payne et al. (1993) as "a sequence of mental and 

effector (actions on the environment) operations used to transform the initial state of 

knowledge into a final goal state of knowledge." Decision-makers are realized to have 

limited processing capacities, and they attempt to make their decisions within some 

internal (such as effort) and external (such as time) constraints (Ben-Akiva et al., 1991). 

As such, the rule-based modelling methodology assumes that drivers resort to heuristics 

(such as rules of thumb) to perform route choice decisions (Lotan and Koutsopoulos, 

1993). The complexity of the process is, thus, a result of the simultaneous consideration 

of multiple simple rules rather than a single sophisticated one. The operations in the rule-
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based decision strategies are represented by a sequence of productions of the form "IF 

(condition 1...condition n), THEN (action 1...action m) (Payne et ah, 1993). The 

adopted rules are based on common sense and intuitive behaviour. 

Based on these concepts, Lotan and Koutsopoulos (1993 and 1999) adopted an 

approximated reasoning framework to model drivers' route choice behaviour. Their 

modelling framework assumes that a driver's decision-making process could be 

represented by the logic of fuzzy perceptions and inference rales based on approximate 

reasoning. The core of the model is a set of if-then rales in which several rules contribute 

to the final decision. An if-then rule is composed of a condition part and an action part. 

The condition part deals with the driver's perceptions of the choice situation attributes. 

The action part is choice related. Both conditions and actions can include linguistic labels 

(such as; "if route x is very bad, I'll probably take route y"). The developed model can 

handle fuzzy data, incorporate linguistic rales, and facilitate flexible rale interpretations. 

Based on changing network conditions, rale consequences are adjusted through an 

approximate reasoning mechanism. All the adjusted rale consequences are then applied 

in parallel, resulting in a final attractiveness of each alternative. The final attractiveness 

of each of the alternatives is then compared and the most attractive alternative is chosen. 

Nakayama and Kitamura (2000a) adopted a rule-based modelling framework of 

drivers' route choice decisions. Their model represents drivers' decision making as a 

production system in which a set of if-then rules is compiled. These rales are 

continuously revised by applying genetic algorithms operations. The condition portion of 

their if-then rules is composed of a set of binary bits. The condition implied by the bits is 

checked against the data in the memory to determine whether a certain rule would be 

activated or not. Finally, if more than one rale is activated, the one that has previously 

provided the best instructions is selected. This selection is based on an inferiority 

indicator, which is updated after each choice decision. 

Peeta and Yu (2004) developed a hybrid probabilistic-possibilistic model of 

drivers' route choice behaviour. The use of the rule-based methodology, within this 

approach, is limited to producing quantitative values for qualitative-type variables. 

Qualitative variables are those with linguistic labels and subjective interpretations. 

Choice decisions are, however, based on a utility-based discrete choice model. 
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In addition to the above rule-based models, several other similar modelling efforts 

have been reported (for examples see Pang et ah, 1999). In general, the rule-based 

methodology, with its underlying fuzzy logic, addresses the uncertainty and vagueness in 

many traffic and transportation models (Teodorovic, 1994). As such, rule-based 

approaches could be classified as a risky, stochastic decision-making modelling 

approach. However, the lack of a cognitive explanatory mechanism of the decision­

making process and the inability to account for the direct influence of the deliberation 

time dimension in choice decisions render these models to be undesirably structural, 

prescriptive, and static models. 

• Reinforcement Learning 

Drivers' route choice behaviour is viewed, by some researchers, from a strict 

learning perspective. Drivers are, therefore, assumed to update their choices, rather than 

their perceptions of the choice attributes, based on past experiences. A Reinforcement 

Learning (RL) methodology is proposed to model drivers' overall route choice behaviour. 

Learning could be defined as a change in behaviour as a result of past experience, and, 

hence, a learning system should have the ability to improve its behaviour with time 

(Abdulhai and Kattan, 2003). Within a RL framework, a driver is perceived as an agent 

whose goal is to make a certain trip from a specific origin to a specific destination with 

minimal travel time. The agent is expected to learn about its environment through 

repeated experiences, evaluating the consequences of daily choices and reinforcing the 

value of past good choice that are likely to maximize choice rewards. 

Along the lines of a similar learning approach, Ozabay et ah (2001) proposed a 

stochastic Learning Automata (LA) framework to model driver's route choice behaviour. 

LA is considered a class of RL systems (Sutton and Barto, 1998). LA is concerned with 

unsupervised learning, where agents learn from their interaction with the environment. In 

their study, drivers' route choice probabilities are directly updated on the basis of 

received information and previous experiences. Ozbay et ah (2002) extended this model 

to account for the departure time choice dimension. 
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While drivers' route choice behaviour includes learning, the deliberation part 

cannot be neglected. The use of RL methodology in a stand-alone fashion would have the 

shortcoming of ignoring the deliberation side of the overall process. Choices are direct 

outcomes of a learning process. The resulting models are, therefore, structural-oriented. 

In addition, the reward maximization principle inherent to RL methodologies implies the 

rationality assumption in a prescriptive sense. A static characteristic of this modelling 

methodology, from the deliberation perspective, is also quite evident. 

• Artificial Neural Networks (ANN) 

ANN are simplified electronic models of the central nervous system. They are 

networks of highly interconnected computing elements that can respond to inputs and to 

learn from previous experiences. ANN are founded on the basis of learning, 

generalization, and abstraction to solve complex problems with non-algorithmic solutions 

(Tveter, 1998). ANN are primarily used for tasks including pattern recognition and 

classification and, hence, are mainly used for traffic pattern recognition within the traffic 

operations domain (Lyons and Hunt, 1993). 

ANN were introduced as a modelling framework for traveller-related choice 

behaviour by Lyons and Hunt (1993). ANN are used to map attributes of alternatives to 

drivers' choices. However, this approach did not receive much attention, as it was 

perceived to be less representative of drivers' decision-making process than rule-based 

models (Stern et al, 1998). ANN adopt an extremely structural-oriented modelling 

approach, as they mainly relate inputs and outputs through a black-box-type regressive 

relationship. 

• Prospect Theory 

Prospect Theory (Kahneman and Tversky, 1979) is one of the most recognized 

decision theories in contemporary behavioural-decision research (Svenson, 1998). The 

theory departs from the dominant utility-maximization principle to a more behaviourally 

realistic ground. In Prospect theory, decisions are made in two stages. First is an editing 

stage in which information is simplified and restructured. Second is an evaluation stage in 

which decision-makers consider the probabilities of different choice outcomes. Risk 
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attitude is varied with respect to the choice frame. A concave value function is assumed 

for gains, while a convex, steeper, one is assumed for losses. Small probabilities are 

overestimated and higher ones are underestimated. 

Based on a simulated driving experiment, Katsikopoulos et al. (2002) found that 

drivers' route choice behaviour is consistent with the Prospect Theory interpretations 

(Bogers et al., 2005). A risk-averse attitude is revealed when choosing among routes with 

average travel time less than a reference one. Alternatively, a risk-seeking attitude is 

revealed when the average travel time of alternative routes is more than the reference 

one. 

The contribution of the Prospect Theory of decision making is valuable in shifting 

modellers' focus from the typical structural-oriented modelling frameworks to the 

direction of a process-oriented one. Though it is not considered as a process-oriented 

modelling approach, it represents an essential intermediate ground. It explicitly addresses 

the uncertainty of the choice environment (i.e. risky). It does not presume rationality of 

decision makers, reflecting a descriptive modelling approach. However, it still lacks the 

vital representation of the deliberation time dimension, and, hence, it is static. In addition, 

a deterministic-type choice constitutes the model output (Busmeyer and Townsend, 

1993). 

2.3.3 A Vision for Modelling Needs 

It is evident that the MET approach to route choice modelling is dominant in the 

literature. It is equally evident that improving the behavioural credibility of modelling 

drivers' route choice decisions has been the focus of extensive research throughout the 

past decade. Although several modelling attempts have departed from the formal utility-

maximization paradigm and adopted more behaviourally realistic frameworks, there 

remains a lack of an explanatory mechanism of the decision process itself. In addition, 

most of these modelling frameworks adopt a static modelling approach of choice 

decisions as they fail to account for the direct effect of deliberation times on final 

decisions. As such, we realize the need for a scientifically sound behavioural decision 

theory that attempts to abstract the deliberation process rather than focusing on 

formulating a relationship between inputs and outputs. This need motivates crossing the 
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engineering borders to the behavioural science arena, seeking an appropriate ground for 

modelling drivers' route selection processes. The target is a theoretical framework with 

the following properties: 

1. Process-oriented: reflecting the cognitive process under which decisions are 

made and evolve over time. 

2. Risky: reflecting the uncertainty under which drivers make their choices. 

3. Stochastic: reflecting the high variability of human preferences. 

4. Descriptive: reflecting a realistic representation of the evolution of individual 

drivers' decision processes without a normative assumption about their behaviour. 

5. Dynamic: reflecting the direct influence of the deliberation time on the choice 

process. This is of significant importance, as most drivers' choice decisions are 

made under time pressure constraints. 

Stern (1998) pointed out the need for a scientifically sound behavioural decision 

theory for modelling drivers' choices in general. Although he did not develop a 

mathematical model, Stern proposed this direction for future research. He suggested the 

investigation of the Decision Field Theory (DFT) to model choices made by drivers in 

congested networks. DFT, developed by Busemeyer and Townsend (1993), aims to 

understand the motivational and cognitive mechanism that guide the deliberation process 

involved in making decisions under uncertainty. DFT provides a formal description of the 

dynamic evolution of preferences during deliberation. While Stern's (1998) study was not 

specifically addressing drivers' route choice decisions, it broadly highlighted some of the 

main factors influencing drivers' choice decisions in general and their implications within 

a decision-based theoretical framework. The strength of DFT stems from its ability to 

incorporate all of the above-mentioned characteristics (process, risky, stochastic, 

descriptive, and dynamic) in a seamless framework. Details of DFT theoretical structure, 

strengths, and appropriateness to the problem in hand are discussed in the next chapter. 
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2.4 LEARNING PROCESS 

The decision making aspects and the learning aspects of route choice are highly 

intertwined, both in reality and in the modelling literature. One can think of route choice 

as perhaps one coin with two sides, a learning process side and a decision making side. 

To the extent possible, we try to delineate the two processes and understand the aspects 

of both sides. The preceding section summarized the efforts in the literature that are 

more focused on the decision making aspect of route choice. To complete the picture, the 

following section summarizes the efforts in the literature that are more focused on the 

learning aspects of route choice. As can be expected, there is considerable overlap 

between modelling the decision making and learning aspects of the route choice process. 

2.4.1 Learning Process Overview 

Drivers' choices are performed in an uncertain dynamic environment. The 

dynamic evolution of traffic conditions is realized from day-to-day as well as within each 

day. Accordingly, choices are contingent upon outcomes from previous experiences. By 

repeatedly experiencing the same choice situation, drivers learn about their environment, 

forming perceptions about the values of relevant attributes. 

Drivers' learning processes can be divided into two learning horizons: short-term 

and long-term. Within the short-term time frame, drivers continuously update their 

perceptions about different aspects of the choice situation. These updates include: 

• perception of available alternatives, 

• expectations regarding the attributes of those alternatives, 

• expectations about the levels of uncertainty in the choice environment, 

• perceptions about available sources and forms of information, and 

• expectations regarding the accuracy level of available information 

sources. 

The short-term updates are usually performed on two levels: day-to-day and day-

specific. From day-to-day, drivers update their historical perception of attributes of the 

choice situation. This experience is formulated on the basis of the outcomes of their 

previous-day choices together with the acquired (on the previous day) information-based 

knowledge of unchosen alternatives (Kaysi, 1992). Drivers' day-specific perceptions are 
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formulated by combining historical perceptions with current ones. Current perceptions 

are based on unfolding traffic conditions (such as incidents, delays, etc.) as well as day-

specific information updates. Day-specific information updates are discussed later in this 

chapter. 

From a long-term perspective, drivers update their choice-related strategies in an 

attempt to improve their choice outcomes (Arentze and Timmermans, 2005). Within our 

abstraction of the choice processes, these strategies include: 

• Information acquisition strategies 

• Experience/Information integration strategies 

• Decision-making strategies 

Long-term learning is concerned with the formulation of the underlying 

mechanisms of the abstracted choice processes. Updates, in this sense, refer to major re­

structuring of adopted strategies. In other words, while the short-term learning 

perspective is focused on updating the values of some variables within each of the 

processes frameworks, the long-term one is dedicated to revising the frameworks 

themselves. 

2.4.2 A Glance at Some Learning Process Modelling Efforts 

Modelling the evolution of drivers' perceptions of the choice situation attributes has 

been the focus of extensive research during the past decade. One of the first modelling 

attempts was that of Horowitz (1984), where a mean perceived travel cost was estimated 

as the weighted average of those of previous time periods. Travel time variability was not 

addressed in this early modelling endeavour. Perception updating in the context of 

probability theory is traditionally done utilizing the well-known Bayesian approach 

(Kaysi, 1992; Jha et al., 1998; Arentze and Timmermans 2003a; and Chen and 

Mahmassani, 2004). 

Nakayama and Kitamura (2000a) assumed that drivers learn and reason 

inductively based on the framework proposed by Holland et al. (1986). Their model 

defines route choices by a set of if-then rules, as in a production system (Newell and 

Simon, 1972). Learning is represented through genetic algorithm operations. Learning is 

concerned with updating (revising) the adopted set of rules based on an inferiority 
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indicator. The inferiority indicator is used to evaluate the performance of each rule based 

on past experiences. Induction implies that a rule that has performed well is a good one. 

Peeta and Yu (2004) proposed a framework for updating drivers' perceptions 

within their hybrid probabilistic-possibilistic route choice model. In their hybrid model, 

drivers' perceptions of decision variables are represented by a membership function. 

Drivers' choices are based on a set of if-then rules. As such, the day-to-day updating 

mechanism is focussed on updating the associated membership functions as well as the 

adopted if-then rules. Day-specific updates, on the other hand, are concerned with minor 

adjustments of the weights associated with the adopted if-then rules, based on situational 

conditions. 

Arentze and Timmermans (2003b) proposed a conceptual framework for 

modelling learning and adaptation, using reinforcement learning. In their model, they 

assumed that: "individuals may forget about their experience in particular situations as a 

function of time and the characteristics of the event itself (Arentze and Timmermans, 

2005). The developed reinforcement learning framework is focussed on the evaluation of 

choice alternatives (i.e., rewards of actions). 

2.5 INFORMATION ACQUISITION 

Both the decision making aspect and learning aspects of the route choice process 

rely on having "information" about the road network and traffic conditions. This 

information can be based on actual experience with the alternatives over time or can be 

explicitly provided on demand by an exogenous information source. For simplicity, 

traveler information often refers to the latter type. Advancements in communication 

technologies continuously offer new opportunities for traffic information provision. The 

techniques for providing drivers with improved information include Variable Message 

Signs (VMS), traffic information broadcasting, pre-trip electronic route planning, on­

board navigation systems, and electronic dynamic route guidance systems. Information 

available to drivers, through different information sources, can be divided into three main 

categories: historical information, current information, and predictive information (Ben-

Akiva et al., 1991). Apparently, the most useful type of information, while extremely 

difficult to obtain, is the predictive type. Predictive information is based on projected 
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traffic conditions, which in turn are dependent on drivers' responses to the provided 

information. 

Drivers' decisions to acquire traffic information depend, to a great extent, on the 

characteristics of the provided information. Information accuracy and timeliness are the 

two most important attributes in this regard (Khattak et al., 1991). Kaysi (1992), in his 

proposed framework for modelling driver-dynamic behaviour, characterizes the driver as 

"interacting with his choice environment, seeking and acquiring information from various 

sources, processing this information and then selecting from among available 

alternatives." Accordingly, the first step for the incorporation of information provision 

into any route choice modelling framework should be based on a realistic representation 

of drivers' information acquisition. Drivers must first decide to acquire traffic 

information before they start processing it. An information acquisition model needs to 

describe (1) how drivers seek to obtain traffic information, (2) from which sources, and 

(3) in what form. 

Kaysi (1992) suggests that drivers' decisions to acquire external information are 

dependent on three sets of factors. The first set is concerned with the individual's 

characteristics, such as processing capabilities, and concern with the optimality of the 

choice. The second set is related to elements of the choice environment, such as time 

pressure, current traffic conditions, and difficulty of choice situation. The third set is 

information dependent, taking into consideration information source reliability, perceived 

cost of obtaining information, and perceived value of the provided information. 

In the route choice literature, most existing modelling frameworks do not pay 

much attention to modelling drivers' decisions to acquire traffic information. Most 

existing models with information provision representation are focussed on modelling the 

integration between experience-based and information-based perceptions (as will be 

discussed in the next section). However, the availability of traffic information does not 

guarantee its consideration by drivers. Moreover, the increasing number of traffic 

information sources, with various information characteristics, manifests the need for 

further understanding and modelling of drivers' information acquisition mechanisms. 
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2.6 EXPERIENCE/INFORMATION INTEGRATION 

2.6.1 Process Overview 

Drivers' knowledge of the network is represented by their perceptions of 

accumulated travel experiences together with available exogenous information received 

from Advanced Traveller Information Systems (ATIS) sources. In the context of 

experience/information integration, many concepts and hypotheses are discussed in 

relevant literature. Schofer et al. (1997) suggest that, even in the presence of 

information, drivers tend to incorporate their own knowledge and perception of the traffic 

network in their route choices. Fujii and Kitamura (2000) discussed two 

experience/information integration related concepts: state dependence and information 

effect. The concept of state dependence represents the situation in which anticipated 

travel time for future trips is affected by that of past ones; future anticipation is 

influenced by anticipation held in the past. On the other hand, the information effect 

refers to the correlation between anticipated and actual travel times under high predictive 

ability. Nonetheless, a driver's predictive ability is expected to be influenced by the 

amount and quality of acquired information. It is important also to mention that the 

ability to predict travel times is bounded, which implies that the information effect may 

not always be significant (Fujii and Kitamura, 2000). 

Lotan and Koutsopoulos (1993) proposed three hypotheses regarding choice 

behaviour in the presence of information. They mainly differ in the way new information 

is integrated with existing knowledge. The simultaneous approach does not differentiate 

among the types of inputs that affect the decision process. All the factors that affect the 

final choice are fed simultaneously into the decision mechanism. No a priori distinction 

between existing knowledge and new information is undertaken. The two-stage approach 

assumes a sequential process. At the first stage, existing knowledge is updated based on 

acquired information. At the second stage, decisions are made based on updated 

perceptions, Finally, the default approach assumes that a default behavioural pattern 

exists and is changed only if the new information provided differs substantially from 

existing knowledge. 
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2.6.2 A Glance at Some Modelling Efforts 

Perception updates, experience-based as well as information-based, are 

represented in most route choice models through a unified update mechanism. As such, 

information-based updates are seamlessly incorporated in many Bayesian-based learning 

models (Kaysi, 1992; and Jha et ah, 1998). Bayesian updating is concerned with the 

estimation of a final level of knowledge (posterior information) based on an initial level 

(prior information), given the availability of new information (Kaysi, 1992). Assumptions 

regarding the updating interval, amount of memory recall, and saliency of recent versus 

old experience vary among different models. 

Peeta and Yu (2004) investigated the adaptability of their hybrid probabilistic-

possibilistic route choice model to incorporate information provision. In their proposed 

framework, they assumed that drivers are not likely to change their if-then rules or 

perceptions of choice attribute en-route. However, en-route choice behaviour is assumed 

to be more sensitive to situational factors. As such, the within-day adjustments are 

restricted to the weights allocated to drivers' choice-set rules to capture information 

influences. 

Mahmassani and Liu (1999) incorporate information updates in their multinomial 

probit model of drivers' departure time and route switching decisions. Updates are based 

on perceived accuracy of disseminated information. Mahmassani and Srinivasan (2003) 

used a dynamic kernel logit model to estimate the effect of various information-related 

attributes on drivers' route choice behaviour. Information form (i.e. descriptive, and 

prescriptive information), correctness and completeness are proven to play a significant 

role in this regard. A significant difference is estimated between drivers' perceptions of 

over-estimation errors compared to under-estimation ones. 

In the default behaviour route choice model proposed by Lotan and Koutsopoulos 

(1999), knowledge of traffic conditions is divided into two categories: old knowledge and 

new knowledge. Old knowledge (OK) constitutes the drivers' perception before the need 

to make a route choice decision is initiated. New knowledge (NK), on the other hand, is 

the data acquired and received afterwards, either through observations or traffic 

information. The default behaviour is, hence, restated as follows: "Discount old 

knowledge when it is incompatible with new knowledge, and discount new knowledge 
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when it is compatible with old knowledge." To measure the degree of compatibility 

between OK and NK, some compatibility measures are defined based on the adopted 

fuzzy logic framework. Estimated compatibility measures are then used to establish new 

and old knowledge discount rules through the proposed approximate reasoning route 

choice model framework. 

2.7 A SYNTHESIS OF CONTRIBUTING FACTORS 

Based on the published literature on route choice modelling and the literature in 

behavioural choice modelling, we attempt to create a synthesis of the major factors that 

affect route choice. The operation of various cognitive processes within drivers' route 

choice behaviour is influenced by many internal (personal) and external (situational) 

factors. Considerable research efforts have been exerted to try to capture the main 

contributing factors in this regard (for example, Antonisse et al, 1989; Kaysi, 1991; 

Mannering and Barfield, 1994; Khattak et al, 1995; Ayland and Bright 1995; Abdel-Aty 

et al, 1995; Abdel-Aty et al, 1998; and Peeta and Yu, 2004). Identified factors can be 

grouped under four main categories: (1) driver characteristics, (2) trip characteristics, (3) 

choice environment characteristics, and (4) information provision characteristics (refer to 

Figure 2.1). The following categories of factors are expected to influence drivers' route 

choice decisions: 

1. Driver characteristics 

• Demographic characteristics such as age and gender. 

• Socioeconomic characteristics such as income level. 

• Personality profiles such as risk attitude (risk-averse vs. risk-seeking 

attitude). 

2. Trip characteristics 

• Trip Origin and Destination (OD); different OD pairs entail different 

levels of network familiarity for a given driver. 

• Trip purpose: recurrent trips such as to work or school vs. occasional trips 

such as for shopping. 

• Trip specific constraints such as arrival time flexibility. 
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3. Choice environment characteristics 

• Traffic network attributes: available alternative routes, characteristics of 

alternative routes (travel time, length, road type, road hierarchy, pavement 

condition, complexity, and scenery), and variability of traffic patterns on 

alternative routes. 

• Situational constraints such as time pressure constraints. 

• Situational conditions: remaining trip length, unfolding traffic patterns, 

delays, and incidents. 

• Environmental conditions such as weather conditions. 

4. Information provision characteristics 

• Information source: available sources and perceived cost of each 

information source (time, effort, and money). 

• Information attribute: information form (descriptive and/or prescriptive), 

accuracy, completeness, and timeliness. 

2.8 SUMMARY 

Modelling of drivers' route choice behaviour entails the abstraction of the 

underlying psychological/cognitive processes. Four processes are considered in this 

regard: (1) decision-making process, (2) learning process, (3) information acquisition 

process, and (4) experience/information integration process. The decision-making process 

is further divided into choice-set formulation and mental deliberation. A choice-set 

formulation model is concerned with the identification of a number of choice alternatives 

for the route choice problem. While a large number of feasible alternative routes could be 

depicted for an OD pair, drivers usually consider a subset of these routes (Khattak et ah, 

1995). In the literature, choice-set generation models are rarely explicitly specified and 

are calibrated based on indirect information (Cascetta et al., 2002). 

The deliberation process, on the other hand, is addressed in route choice literature 

from two modelling perspectives: Microeconomic Theory (MET) and Behavioural 

Decision Theory (BDT). MET represents the deliberation process as a rational evaluation 

of the economic consequences of different courses of actions. A utility-based modelling 
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framework is adopted for that purpose. Most conventional route choice models lie under 

the utility-based modelling arena (for example, Daganzo and Sheffi, 1982; Ben-Akiva et 

al, 1984; Cascetta et al., 1996; and Abdel-Aty et al., 1997). The utility-maximization 

principle is the most widely adopted decision rule. However, the behavioural credibility 

of the utility-based modelling frameworks has been repeatedly questioned (Algers, 1998, 

and Stern, 1998). In an attempt to incorporate a behavioural component within utility-

based frameworks, some extensions and modifications are undertaken (such as the 

bounded-rationality principle proposed by Mahmassani et al. 1986). 

The need for a behavioural perspective of modelling route choice has been 

realized by many researchers in this domain. As such, a shift of modelling focus from 

MET to BDT has been repeatedly proposed. A number of modelling approaches are 

adopted. One of the major modelling streams, in this regard, is the rule-based one ( 

examples include, Pang et al., 1995; Lotan and Koutsopoulos, 1993; and Nakayama and 

Kitamura, 2000). The rule-based methodology recognizes the fact that individuals have 

limited processing capacity. As such, drivers are assumed to base their decisions on a set 

of simple if-then rules. The adopted rules are based on common sense and intuitive 

behaviour. Other modelling streams include reinforcement learning, artificial neural 

networks, and prospect theory interpretations. 

Although several modelling attempts have departed from the formal utility-

maximization paradigm and adopted more behaviourally realistic frameworks, there 

remains a lack of an explanatory mechanism of the decision process. Modelling of 

drivers' choices is mainly perceived from a structural-oriented perspective wherein a 

relationship is formulated between a set of inputs and outputs without a realistic 

understanding of the underlying psychological process. The deliberation time dimension 

seems to have been completely ignored. As such, the need for a scientifically sound 

decision theory that is: (1) process-oriented, (2) risky, (3) stochastic, (4) descriptive, and 

(5) dynamic, is evident, which is the motivation of this research. 

Drivers' perceptions of the choice situation attributes are continuously updated 

through learning as well as experience/information integration. Perception updating in the 

context of probability theory is commonly modelled using a Bayesian approach (for 

example, Kaysi, 1992; Jha et al., 1998; and Arentze and Timmermans 2003b). 
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Nonetheless, a number of other modelling approaches have been adopted in route choice 

literature (for example, Nakayama and Kitamura, 2000; Lotan and Koutsopoulos, 1999; 

and Peeta and Yu, 2004). An implicit assumption underlying most existing modelling 

frameworks of drivers' experience/information perception integration is that drivers seek 

to acquire traffic information. The availability of different information sources, with 

different service characteristics (cost, accuracy, timeliness, etc.) entail the explicit 

representation of drivers' information acquisition mechanisms. 

Finally, the operations of all abstracted psychological/cognitive processes are 

significantly impacted by the characteristics of the: (1) decision-maker, (2) intended trip, 

(3) choice environment, and (4) disseminated information. The assessment of the level of 

impact of different individual/situational factors is, therefore, important for an enhanced 

understanding/modelling of drivers' route choices. 
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3 DFT ROUTE CHOICE MODEL CONCEPTUAL FRAMEWORK 

3.1 PRECIS 

The success of ITS applications depends on the accuracy and reliability of 

network condition assessment, prediction, information dissemination and control 

formulation, possibly in real time. The predictive accuracy of disseminated information 

and formulated control strategies require a realistic understanding and representation of 

the complex behavioural process of drivers' route choices. This behavioural process is 

characterized by several interacting sub-processes, at the core of which lies a mental 

deliberation process. In formulating our behavioural perspective of the dynamic route 

choice deliberation process, this research has been inspired and influenced by recent 

advances from the field of psychology and behavioural decision theories. Of particular 

interest to us is the time-dependent psychological and mental process of preference 

evolution in an uncertain and time-pressed choice environment. Of direct relevance to 

this perspective is the well established Decision Field Theory (DFT), which forms the 

theoretical basis for modelling the psychological process underlying drivers' route choice 

decisions. 

DFT, founded by Busemeyer and Townsend (1993), is a dynamic behavioural 

theory that is mainly developed to capture the psychological process involved in general 

choice decisions under uncertain conditions. In this chapter, we discuss the rationale 

behind adopting DFT, and its relevance to the problem in hand. A theoretical 

background of DFT is presented. The conceptual framework for our route choice decision 

model is, then, defined. 

Three choice situations are discussed that vary in the level of traveller information 

presented to the driver, namely; no information, descriptive information (congestion 

states) and prescriptive information (specific route guidance). The no information case is 

presented first in more detail as a base-case, followed by the modifications required to 

incorporate information integration. Due to the highly intertwined elements of the theory 

and resulting model framework, an overly simplified application is presented, not for the 

purpose of applying the framework but for the purpose of understanding it. 
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3.2 CONCEPTUAL MODEL SCOPE 

Drivers' route choice behaviour is abstracted into a number of interrelated 

cognitive processes: decision-making, learning, information acquisition, and 

experience/information integration. The decision-making process is further divided into 

two stages: choice-set formulation and deliberation. The scope of this research is focused 

on modelling the deliberation component of the decision-making process. 

Deliberation is concerned with the mental process involving the trade-off between 

perceived attributes of the choice alternatives. Drivers' choice sets are outputs of a 

choice-set formulation model. Within our modelling scope, no attempt is made for 

modelling the choice-set generation mechanism. A pre-defined choice set is, however, 

required as an input for the operation of our route choice decision model. 

On the other hand, drivers' perceptions about choice attributes are formulated by 

integrating experience-based and information-based perceptions. An integration 

framework is, hence, developed for two traffic information forms: descriptive and 

prescriptive information. The integration is based on perceived reliability of disseminated 

information. The specific source of information and the means of information 

dissemination (e.g. variable message signs, in-vehicle navigation device, etc) are 

irrelevant to the specifics of the model. Drivers are simply assumed to acquire this 

information and only focus on how the acquired information is mentally processed. The 

specifics of the drivers' information acquisition mechanism are not explicitly addressed 

within our conceptual model. 

While information-based perceptions could be formulated in a relatively short 

time, experience-based perceptions are outputs of a long term learning process. For our 

current modelling scope, the experience-based perception is assumed to have reached a 

mature stable state; where drivers' perceive the correct statistics and trends of traffic 

conditions. No attempt is made for modelling the learning side of drivers' route choice 

behaviour. 

3.3 DFT: BASIC CONCEPT 

DFT, founded by Busemeyer and Townsend (1993), aims to understand and explain 

the motivational and cognitive processes underlying choice decision in uncertain choice 

33 



environments. The deliberation process is summarized by Busemeyer and Townsend 

(1993) as follows: 

"When confronted with a difficult personal decision, the decision maker tries to 

anticipate and evaluate all of the possible consequences produced by each course of 

action. For a real decision, a vast number of consequences are retrieved from a rich and 

complex associative memory process. Obviously, all of these consequences cannot be 

retrieved and evaluated all at once. Therefore, the decision maker must undergo a slow 

and time-consuming process of retrieving, comparing and integrating the comparisons 

over time. No action is taken until the preference for one action becomes strong enough 

to goad the decision maker into an action. " 

DFT provides a formal description of the dynamic evolution of preferences during 

deliberation. An uncertain (risky) deliberation process, as schematically represented in 

Figure 3.1, is generally concerned with the choice between alternative courses of actions 

with uncertain consequences. The available options may differ in one or more attribute, 

and the values of the attributes depend on the expected state of nature following the 

choice of an action. The basic intuition underlying DFT is that the decision-maker's 

attention is expected to fluctuate between different attributes and anticipated states of 

nature during deliberation in a sequential fashion (Diederich, 1997). Accordingly, the 

evolution of the decision-maker's preference for each option during deliberation is based 

on the integration of a stream of comparisons of evaluations of alternative options, based 

on some attributes, over time. 

Action 

4 Alternative 1 

L Alternative 2 

* Alternative n 

State 1 

State 2 

State m 

Attribute 1 

Attribute 2 

Attribute k 

Figure 3.1 Schematic Representation of a General Choice Situation 
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3.4 PLAUSIBILITY OF DFT FOR BEHAVIOURAL ROUTE CHOICE MODELLING 

3.4.1 DFT: a Leading Behavioural Decision Theory 

DFT is a process-oriented behavioural decision theory that attempts to abstract the 

deliberation process based on a realistic representation of the underlying motivational and 

cognitive mechanisms. The main contribution of the DFT to enhancing the understanding 

of the psychology of deliberation, as presented by the founders, is depicted in Table 3.1 

(Busemeyer and Townsend, 1993). The table provides a classification of decision 

theories according to two attributes; deterministic versus probabilistic and static versus 

dynamic. Deterministic theories base choice decisions on binary-type preference 

relations. A preference relation could be either true or false for any pair of actions. 

Probabilistic theories recognize the stochastic nature of the deliberation process. As such, 

choice decisions are based on probability functions, mapping actions' pairs into the 

closed interval [0, 1]. Static theories ignore the time dimension, assuming that the 

preference relations or probability functions are independent of the deliberation time 

frames. Dynamic theories describe the changes in preference relations or probability 

functions with time. DFT attempts to extend previous decision theories to better capture 

the probabilistic and dynamic nature of decision making. 

Table 3.1 Classification of Decision Theories (Busemeyer and Townsend, 1993) 

Category 
Deterministic 

Probabilistic 

Static 
• Expected Utility 

Theory 
• Rank-dependent 

utility Theory 
• Prospect Theorya 

• Random Utility 
Theory 

Dynamic 

• Dynamics of action 
• Affective Balance 

Theoryc 

• Decision Field Theory 

a Prospect Theory is developed by Kahneman and Tversky (1979) 
b Dynamics of action is a theory of motivation developed by Atkinson, and Birch, (1970) 
c Affective balance theory is developed by Grossberg, and Gutowski, (1987) 
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On the other hand, the strength of a behavioural decision theory could be 

evaluated based on its explanatory capabilities of central empirical findings from the 

multi-alternative preferential choice literature (Roe et ah, 2001). In this context, three 

main effects are depicted; (1) the similarity effect, (2) the attraction effect (Huber et ah, 

1982), and (3) the compromise effect. In the following, a brief description of each of 

theses empirical findings is presented, (Roe et ah, 2001); 

1. Similarity Effect: produced by adding a new option that is similar to one of 

the options in the original choice set. This results in a reduction in the 

probability of choosing the similar option more than dissimilar ones. The 

similarity effect violates the independence between irrelevant alternatives 

property, disqualifying the entire class of simple scalable models. 

2. Attraction Effect: produced by adding a new option that is dominated by 

one of the other options in the choice set. This causes an increase in the 

probability of choosing the dominant option. The attraction effect violates 

a general principle adopted by a large class of random utility models 

called the regularity principle. The regularity principle implies that the 

addition of a new option decreases the probabilities of choosing all other 

options. 

3. Compromise effect: produced by adding a new option that lies between 

two competing extreme options. This causes the compromise to be chosen 

more frequently than either of the extremes. 

A number of decision theories have attempted to provide explanations of some of 

these empirical findings through their theoretical frameworks (Roe et ah, 2001). Tversky 

(1972) developed the Elimination by Aspect (EBA) model to explain the similarity effect. 

However, the EBA model adopts the regularity principle, and thereby, cannot explain the 

attraction effect (Roe et ah, 2001). Tversky and Simonson (1993) developed a context-

dependent advantage model to account for attraction and compromise effects. However, 

as proven by Roe et ah (2001), the model cannot account for the similarity effect. 

Alternatively, the multi-alternative DFT is the first attempt to account for all three effects 

within a unified theoretical framework. For a comprehensive analysis of DFT 
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explanations of the three effects as well as their complex interactions, the reader is 

referred to Roe et al. (2001). 

Moreover, the superiority of the DFT in modelling the deliberation processes is 

further illustrated by benchmarking its performance to other well-established decision 

theories. In a cross-validation type experimental study, DFT is compared to five major 

theories of decision-making under uncertainty: rank-dependent utility, simple scalability 

theories, probabilistic regret theory, EBA theory, and random walk choice model 

(Busemeyer and Townsend, 1993). For each comparison, an important qualitative 

property is identified to discriminate between the two theories. Results of the 

comparative analysis favoured the DFT over-all comparison theories. As such, the DFT is 

identified as a leading decision-making theory in the behavioural science arena. 

3.4.2 DFT from a Driver Choice Behaviour Perspective 

The dynamic nature of drivers' choice behaviour together with the uncertainty of the 

choice environment and the high variability of human preferences motivated the adoption 

of DFT as a theoretical foundation of our framework. DFT offers a sound theoretical 

ground for modelling the psychological process underlying drivers' choice decisions. Our 

rationale is based on the following: 

• DFT adopts a process-oriented modelling approach that is capable of 

abstracting the psychological process that inspires drivers' choices. The 

advantages of modelling the process itself, rather than blindly focussing on the 

outcomes, are quite evident. 

• DFT is developed mainly for explaining and modelling the deliberation 

process involved in decision-making under uncertainty. As drivers' route 

choice decisions are often made under high degrees of uncertainty, DFT 

seems quite appropriate. 

• The dynamic nature of DFT reflects its ability to incorporate the direct 

influence of time pressure in choice decisions. This capability is well-suited to 

the problem of route choice, particularly under information, as drivers' route 

choice decisions are usually made under time constraints. 
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• The stochastic nature of the DFT accounts for the high variability found in 

human preferences. The need for a shift of focus from the deterministic view 

of the decision-making process to the probabilistic one is recognized by 

earlier modelling attempts and is maintained in the DFT approach. 

3.5 DFT THEORETICAL BACKGROUND 

DFT is developed based on psychological principles drawn from two different lines 

of psychology, approach-avoidance theories of motivation (Atkinson and Birch, 1970) 

and information processing theories of choice time (Laming, 1968). While DFT was 

primarily applied to binary choice decisions, it was extended afterward to account for 

multiple-attribute, multiple-alternative decision-making (Diederich, 1997, Roe et al, 

2000). 

The theoretical foundation of DFT is presented in a series of seven incremental 

stages that are mathematically derived from the two mentioned lines of theories. The 

evolution of each incremental stage stemmed from the development of an enhancement 

of the previous stage to produce a more general theory. The enhanced theory incorporates 

a better representation of one or more fundamental properties in the decision-making 

process (Stern, 1999). The series began with the traditional Deterministic Subjective 

Expected Utility (SEU) theory, followed by six incremental stages; Random Subjective 

SEU theory, Sequential SEU theory, Random Walk SEU theory, Linear Systems SEU 

theory, Approach-Avoidance SEU theory and finally DFT. A detailed description of the 

development stages is provided by Busemeyer and Townsend (1993). 

3.5.1 DFT Basic Theoretical Structure 

DFT provides an abstraction of the dynamic evolution of the decision-maker's 

preferences throughout the deliberation process. The core idea is that the decision-maker 

sequentially integrates comparisons of available options based on different attributes, 

under different expected states of nature, over time. The deliberation process starts at 

t=0, when the choice situation is presented to the decision-maker and ends at t=To, when 

a decision is reached. Choice decision and deliberation time length are direct outputs of 

the modelled process (Busemeyer and Diederich, 2002). 

38 



During the deliberation process, the decision-maker's preference strength toward 

each option, at any point in time, is denoted Pj(t). The column vector P(t) represents the 

preference state for all alternative options at time t. Throughout the deliberation process, 

the evolution of the decision-maker's preference strength toward each alternative, from 

time t to time t+h (where h is an arbitrary small time unit), is modelled using the 

following linear difference Equation (Busemeyer and Diederich, 2002; Roe et ah, 2001): 

P(t + h)=SP(t)+V(t + h) (3.1) 

The preference state at z time units could be given by expanding equation 3.1 as follows: 

P(t)= P(zh) = ^^Vizh-M + S'PiO) (3.2) 

Where: 

1. Preference state P(t)\ (n*l) column vector representing the preference state at 

time t. Pj(t) is the preference strength of alternative i (where i= 1 to n, n is the 

number of alternatives). P(0) represent the initial preference state; a residual bias 

accumulated from past experiences. 

2. Feedback S: (n*n) matrix representing the integration factors. The feedback 

matrix provides memory of the previous preference state for a given alternative as 

well as the influence of one alternative on another. The Eigenvalues of the 

feedback matrix are restricted to be less than 1 in magnitude to ensure system 

stability. Accordingly, the effect of the feedback matrix decays toward zero as the 

lag increases in value. 

a. Diagonal elements (self-connections/feedback): provides memory of the 

previous preference state for a specific alternative. Having a self-feedback 

loop allows the preference state of an option to grow or decay over time. 

A zero value indicates the absence of any memory of previous states. 

Alternatively, a value of one assumes perfect memory of the previous 

state. 
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b. Off-diagonal elements (interconnections): captures the influence of one 

alternative on another. Competitive influences are produced by negative 

values. A zero value mitigates any competitive influences. In the case 

where all interconnections values are set to zeros, then alternatives do not 

compete but rather grow or decay independently and in parallel. 

3. Valance V(t): (n*l) column vector representing the momentary evaluation of the 

choice situation at time t. Vj(t) represents the momentary advantage or 

disadvantage of option i in comparison to other options based on the attribute 

under consideration (where i= 1 to n). The valance vector is composed of the 

product of three matrices described in Equation 3.3 (Busemeyer and Diederich, 

2002; Roe et al, 2001). 

Vft) = CMW(t) + eft) (3.3) 

Where: 

a. Payoff M: (n*r) matrix representing the payoffs of each of n alternatives 

on each of r attribute/state combinations (r= m states* k attributes, refer to 

the schematic in Figure 3.1). Each row represents the payoffs for one 

alternative. Each column represents the payoffs for a specific attribute 

under a certain state of nature. The payoffs are subjective quantitative 

values of the perceived attribute-specific gains/losses. 

b. Weight W(t): (r*l) column vector containing weights corresponding to 

each column of M, representing the joint effect of the importance of an 

attribute and the probability of a state. The matrix product MWft), is a 

vector of weighted average values of each option, based on momentary 

evaluations at time t. 

c. Contrast C: (n*n) matrix to compare the weighted evaluations of each 

option produced by the product of MWft), (d,— 1, C,/= -l/(n-l), where n is 

the number of alternatives). 

d. Error term s(t): (n*l) column vector representing a residual effect of 

secondary unconsidered attributes. 
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3.5.2 Distributional Assumptions 

An important basic assumption underlying DFT is that the weight vector W(t) 

changes during the deliberation process according to a stationary stochastic process 

(Busemeyer and Diederich, 2002). This change represents the fluctuations in the 

decision-maker's attention to attributes and states over time. While the decision-maker's 

attention is expected to fluctuate from one state to another according to the anticipated 

probability of occurrence of each state, the fluctuation in-between attributes is based on a 

process distributional assumption. Two main assumptions have been proposed in this 

regard. 

The first assumption was proposed by Diederich (1997), who developed a multi-

attribute version of DFT. The stochastic changes in weights over time are modelled using 

a Markov chain process (Busemeyer and Diederich, 2002). For example, assume a choice 

case with 2 attributes. W(t) is assumed to be a mixture of 2 sub-processes, Wrft) and 

W2(t), which are individually identically distributed (iid) over time. In a route choice 

context, for instance, a number of alternate routes could be compared on the basis of two 

attributes; travel time and the number of signalized intersections along the route. At any 

particular time during deliberation, the attention process may be operating on the basis of 

one of these sub-processes. Let us assume the decision-maker's attention is focussed on 

Wi(t), i.e. travel time for example. During the next moment, from time t to t+h, attention 

either continues to operate under Wi(t) with a probability rtu or switches to W2(t) 

(number of signals) with a probability Kn = 1-KU. Similarly, if attention is operating on 

the basis of W2(t) at time t, then during the next moment attention may continue to 

operate under W2O) with probability 7122 or switch with probability %2\- Based on the 

Markov chain-process modelling approach, Diederich (1997) presents a detailed 

mathematical derivation of a closed-form solution from the DFT basic theoretical 

structure (Equation 3.1). 

On the other hand, Roe et al. (2001) simply assumed that the weights are 

identically and independently distributed over time based on a simple Bernoulli process. 

Accordingly, attention is assumed to shift from one attribute to another in an all-or-none 

manner based on fixed probabilities (KJ, K2-I- iti, in the two attributes example). These 

probabilities reflect the significance of each attribute in the decision-making process. 
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Thus, at any point in time, the decision-maker's attention is focussed towards only one 

attribute. For the two attributes example, assume that the decision-maker's attention is 

focussed on attribute 1. Then, a value is to be assigned to the weight of attribute 1 (based 

on its units and payoffs significance) and the weight of attribute 2 is to be set to zero. The 

Bernoulli process is a special case of the more general Markov process. A summary of 

the mathematical derivation of a closed-form solution based on the Bernoulli process is 

presented by Busemeyer and Diederich (2002). 

Alternatively to the mathematical derivations, the fluctuation in decision-maker's 

attention in-between attributes could be modelled using computer simulations (Roe et al, 

2001). Based on the Bernoulli assumption, and with the incorporation of the anticipated 

probability of occurrence of different states of nature, a state/attribute combination could 

be stochastically generated at each time step. Accordingly, at any time point, all entries in 

the weight vector are to be set to zero except for the one corresponding to the chosen 

state/attribute combination. Momentary evaluations (valance) and overall preference 

states could, hence, be estimated from the DFT basic theoretical structure (Equations 3.1 

and 3.3). 

3.5.3 Decision Rules 

Choice decisions are direct outputs of the evolution of the decision-maker's 

preference strengths over time. Therefore, the length of the deliberation duration up till 

the decision time is paramount to the process outcome. Decision times could be either 

externally imposed or internally controlled. Two stopping rules are used in this context; 

fixed stopping time, and optional stopping time (Roe et ah, 2001). Figure 3.2 illustrates 

the two stopping rules for a hypothetical choice situation between three alternatives (A, B 

andC). 

1- Fixed stopping time: the stopping time To is predetermined. The preference state 

is assumed to evolve in an unconstrained manner until a designated time point. At 

this point the option with the greatest preference value is chosen. 

2- Optional stopping time: the decision maker determines when to stop according to 

a preference threshold bound (0). When the preference strength of one of the 

options exceeds this threshold, this option is directly chosen. It is noteworthy that 
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a decision-maker threshold bound is not fixed but rather varies according to the 

choice situation and time constraints. 

Figure 3.2 Decision Rules of a Hypothetical Choice Situation 

As can be drawn from Figure 3.2, deliberation time directly affects the decision 

process outcome. For instance, if the decision time is externally fixed to 40 (seconds), 

alternative C would be chosen, which happened to have the highest preference at that 

instant. If the deliberation process, however, is allowed to mature with no binding 

external time constraints, preference of alternative B would evolve to exceed the decision 

maker's preference threshold and hence alternative B would be chosen. 

Figure 3.2 is a vivid depiction of DFT in action, illustrating the capabilities of the 

framework in capturing the decision making process. Under severe time constraints, 

decision makers can make 'wrong' decisions, opting for an inferior choice at a "high 

preference" moment. Preference of that inferior choice could be made artificially and 

momentary high by the choice environment (e.g. using certain sales and marketing tactics 

to persuade a consumer to buy a certain product). If allowed more time to think and 

deliberate, a more mature decision may evolve. The characteristics of the decision 

making process illustrated in Figure 3.2 are of direct relevance to route choice behaviour 

where drivers often make time-constrained choices in an uncertain choice environment, 

which is discussed next. 
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3.6 DFT ROUTE CHOICE DECISION MODEL CONCEPTUAL FRAMEWORK: BASE CASE 

In this section, the above theoretical framework is applied to establish a 

behavioural route choice theory and modelling framework. The same framework is 

adopted for both pre-trip and en-route deliberation processes. The base case of the 

discussed framework is focused first on a common route choice situation with no explicit 

traveller information provision. This experience-based deliberation is considered the base 

case upon which different traffic-related traveller information is later integrated. As such, 

a "no information" situation is assumed throughout the presented route choice decision 

modelling framework. Information integration details are discussed after. 

3.6.1 Behavioural Route Choice Model Schematic 

The deliberation model architecture could be fully described through the 

definition of three main elements; alternatives, states, and attributes (refer to the 

schematic in Figure 3.1). For the route choice problem, the following elements are 

defined. 

3.6.1.1 Alternatives 

The output of any deliberation process is a choice of a certain alternative among a 

number of available ones. For the route choice problem alternatives are, naturally, routes 

connecting an Origin-Destination (OD) pair. For each OD pair, a number of alternative 

routes are perceived by each driver as tentative ones (whole routes for pre-trip choice 

decisions and partial ones for en-route choice decisions). As the scope of our route choice 

model is limited to modelling the deliberation process, candidate alternative routes are to 

be defined using a separate choice-set generation model. Alternate routes can be defined 

by the modeller, generated by a simple procedure such as k-shortest paths, or adopting an 

elaborate route choice set generation procedure such as the one suggested by Cascetta, 

(2002). In all cases, the pre-defined route alternatives are external inputs to our route 

choice model. 

To ensure a realistic representation of the deliberation process, an upper limit is to 

be defined for the number of alternative routes in a driver's choice set. There is evidence 

in the route choice literature suggesting that drivers consider only a small number of 

alternative routes. The field survey conducted by Cascetta et al. (2002) revealed that only 
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a small number of users considered sets with more than two alternatives. Stephanedes et 

al. (1989) found that less than 3% of the commuters in Minneapolis-St. Paul considered 

more than two alternatives, and if they did, it was under unusual circumstances such as 

severe weather conditions. Arslan and Khisty (2005) have limited the number of 

alternative routes to three in their hybrid route choice model. Based on these findings, 

limiting the number of alternatives to a maximum of three, is considered reasonable. 

3.6.1.2 States 

The uncertainty of drivers' choice environment reflects a risky choice situation 

where drivers anticipate a number of possible scenarios and act upon them. As drivers' 

perception of the choice situation is dependent on the anticipated state of nature 

following the choice decision, specification of the possible states and their probabilities 

of occurrence are necessary in this context. Each state has to describe the entire choice 

situation. 

The variability of traffic conditions and states could be reasonably represented 

through the definition of a number of congestion levels for each alternative route, based 

on historical statistical data, which are common in practice. Anticipated states are then 

defined through the combination of anticipated congestion levels for the alternative 

routes. To limit the possible combinations to a practical number, congestion levels for 

each alternative route are restricted to a maximum of three coarse levels, high (H), 

medium (M), and low (L). This coarse categorization is considered to be realistic from a 

cognitive perspective. It has been proven that there are threshold values for perceiving 

differences in attribute values (Kaysi, 1992). This implies that individuals can only 

perceive differences when they are beyond a value referred to as the 'Just-Noticeable-

Difference' level. 

To further clarify the notion of a state, imagine a hypothetical route choice 

situation where a driver is to choose between two alternative routes. Assume that two 

congestion levels are defined for each alternative route (H, and L). As such, four possible 

anticipated states could be realized (State 1: HH, State 2: HL, State 3: LH, and State 4: 

LL). Figure 3.3 displays the schematic representation of this hypothetical choice 

situation. 
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3.6.1.3 Attributes 

During the deliberation process, drivers compare and trade-off alternatives based 

on expected payoffs of some attributes. Throughout the past decade, extensive research 

has been focussed on the analysis of factors influencing drivers' route choice decisions. 

While considered attributes could differ from one driver to another, specification of a set 

of measurable attributes is obviously essential. Travel time is naturally considered by all 

modelling attempts as the primary trade-off aspect in route choice decisions (for example: 

Ben-Akiva et al, 1991; Lotan and Koutsopoulos, 1993; Jha et ah, 1998; and Mahmassani 

and Liu, 1999). However, significant influences are reported for other attributes, namely: 

travel time reliability, travel distance, route hierarchy, and route complexity (Antonisse et 

al, 1989; Khattak et ah, 1995; Ayland and Bright 1995; Abdel-Aty et al., 1995; and 

Peeta and Yu, 2004). 

Travel time uncertainties are already represented in our modelling framework 

through the definition of anticipated congestion states and their combinations. Travel 

distance is an important aspect and is easily quantifiable, and hence, its incorporation as a 

trade-off attribute is viable. Route hierarchy and route complexity are realized to be very 

much related. A freeway is mostly perceived to be less complicated than a surface street 

(fewer turning manoeuvres and no traffic lights). Accordingly, a single attribute is 

considered for both aspects; referred to as freeway-usage attribute. In sum, for the 

proposed model, three attributes are considered; Travel Time (TT), Distance (D) and 

Freeway usage (F), as shown in Figure 3.3 for the case of two routes and two congestion 

levels. 

) 
Action <T 

g Route 1 < 

* Route 2 

A State 1:HH A 

L State 2: HL * 

> State 3: LH 

* State 4: LL 

* T T 

• D 

F 

Figure 3.3 Route Choice Model Schematic of a hypothetical choice situation (Base case) 
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3.6.2 Route Choice Model Decision Variables 

Decision variables are simply quantitative representations of the choice situation 

(independent variables). Two sets of decision variables are required for the operation of 

DFT route choice decision models; Anticipated State Probabilities {ASPit i=l to m states), 

and attributes' payoffs (Mmatrix in Equation 3.3). 

3.6.2.1 Anticipated State Probabilities (ASPs) 

Drivers form expectations about anticipated congestion levels for different 

alternative routes based on previous experiences with the traffic network. A probability 

value [0, 1] is, accordingly, assigned to each anticipated congestion state. Anticipated 

congestion states are global states, representing congestion levels of all alternative routes. 

Obviously, the sum of ASPs must sum up to unity 

ASPs represent drivers' perception of anticipated traffic conditions. This 

perception is continuously updated based on day-to-day and day-specific learning. As our 

modelling scope is limited to the deliberation process, experience-based ASPs are 

assumed to have reached a stable steady state (fixed values) prior to engaging in the 

current decision process. In the absence of an elaborate learning model, historical 

statistical data could be used to estimate these probabilities. 

3.6.2.2 Attribute Payoffs (M matrix) 

Deliberation is a trade-off between different attributes of the choice alternatives. 

A quantitative representation of expected gains/losses on each attribute is, therefore, 

required. The payoff matrix (M) is formulated based on the payoffs of each considered 

attribute under each considered state. As the defined states of nature are congestion-

based, only TT payoffs are to vary, for the same alternative, from one state to another. 

Both D & F are unique for each route, irrespective of congestion states. For the 

hypothetical choice situation between two alternative routes with two congestion levels, 

the general form of its M matrix is as follows; 

*, _ "^HHITT\ ™ H H I D i ™ H H I F \ ™HIITT\ ™ HL1D\ "^HLIF\ "^LHITTX ™ L H I D l ^" LHI F\ '"LLITJX *"LLIDl "*U,IF\ 

."^•HHITTI "4HH/D2 MHH/F2 M HL/1T2 MHLID2 MHLIP2 MLH/TT2 MLHID2 MLH/F2 m hLITr2 Mu/D2 MLLIF2^ 

(3.4) 
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The perceived significance of attribute payoffs is expected to vary with trip-

specific characteristics. Trip length is a main actor in this context. A 5 minute increase in 

trip travel time is perceived differently for a 10 minute trip compared to a 1 hour trip. The 

same applies to the distance and the freeway usage attributes. To account for this 

significant effect, Relative payoffs are considered for our modelling framework, as 

follows (where, i denotes an alternative, and j denotes a state); 

ExpectedTT,, 
1. Travel Time Payoff TTtJ = — '- (3.5) 

*• •* Shortest 

~. ~ r*. ~ Map basedD, 
2. Distance Payoff D„ = — — (3.6) 

Map _basedDshortest 

i v T> *P JT Freeway_Lengtht 

3. Freeway usage Payoff Ftj = (3.7) 
Map _basedDi 

Where 

• Expected TTtf, represents driver's expectation of trip travel time using 

route i under congestion state j . 

• TT shortest', the shortest possible travel time among all alternative routes. 

• Map_based £>,; Map-based distance length of route i. 

• Mapbased Dshortest* the shortest Map-based distance length among all 

alternative routes. 

• FreewayJLengtht; the distance length of the freeway portion of route i. 

While specification of the payoffs of the distance and the freeway usage attributes 

is simply based on the network geometry, this task is more challenging for the travel time 

attribute. The uncertainties in the route choice decision-making process are mainly 

related to travel time expectations. The stochastic nature of the choice environment is 

represented through expectations about travel time gains/losses. Within our modelling 

framework, travel time uncertainties are captured through the definition of the anticipated 

congestion states. Learning is, therefore, focussed on updating drivers' perception about 

the probabilities of these anticipated states. However, specification of an expected travel 

time for each congestion state is assumed to be deterministic to keep the complexity of 

the model to a manageable level. As such, expected travel time payoffs, under each 
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anticipated congestion state, are fixed to the mean travel times obtained from field 

measurements. The minimum of all estimated Expected TT values is recognized as the 

shortest TT. 

3.6.3 Route Choice Model Decision Parameters 

A single modelling framework is adopted for both pre-trip and en route-choice 

contexts. This entails the same number and structure of decision parameters. Nonetheless, 

parameter values may differ from process to another. In the following sections, each 

decision parameter is defined in relation to each choice context. 

3.6.3.1 Initial Preference State P(0) 

The concept of the usual or normal route is often introduced in pre-trip route 

choice literature as the one that is chosen most of the time as long as there is no need for 

divergence (Khattak et al., 1995). Many researchers have viewed the route choice 

problem from this perceptive, where they attempt to model the probability of divergence 

from the usual route rather than the choice from a number of alternative routes (Lotan 

and Koutsopoulos, 1999; and Abdel-Aty and Abdallah, 2004). Coinciding with the usual 

route concept, DFT route choice modelling framework attempts to handle drivers' 

intuitive preference toward one of the available options by specifying an initial 

preference state. This initial preference represents the accumulation of experiences over 

a long period of time and an underlying learning process. The initial preference state 

parameter, therefore, is inherently dynamic over long spans of time. However, in the 

short term, it is not unreasonable to assume the initial preference to be static, at least for 

modelling purposes. As such, within our modelling framework, drivers' experiences are 

assumed to have reached a mature steady state. 

It is evident that the initial preference concept in DFT nicely captures the usual 

route concept found in the pre-trip route choice literature. Equally importantly, however, 

it also captures another key concept known as "inertia", in the en-route decisions context. 

Inertia mainly refers to the drivers' intuitive tendency to remain on their current route and 

not to divert unless there is an actual need for divergence (Srinivasan and Mahmassani, 

2000). In this sense, and in the en-route decision context, the initial preference concept in 

DFT is a direct representation of the inertia concept. Drivers are expected to have 
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intuitive bias towards their current route, based on which the deliberation starts. Payoffs 

expectations have to gradually mount before their preference shifts to alternate routes. 

This captures the need for compelling payoffs, and deliberation time frames, before a 

divergence becomes likely. 

From a modelling perspective, the initial preference state is a column vector 

composed of initial preference strengths. Initial preference strengths are quantitative 

representations of drivers' intuitive level of bias toward each of the available options. 

Personal factors are expected to influence the set levels of bias. For example, a risk-

seeker type driver is expected to have lower attachment to their usual/current routes 

compared to a risk-averse one. In addition, situational factors such as weather conditions 

and trip purpose are also expected to play an important role in the drivers' willingness to 

divert from their usual/current routes. 

3.6.3.2 Weight Vector W(t) 

The continuously changing weight vector represents the psychological fluctuation 

in the decision-maker's attention from one attribute to another and from one state to 

another, during the deliberation process. A Bernoulli-type distributional assumption is 

adopted to model the fluctuation in drivers' attention (refer to section 3.5.2 for theoretical 

background). This means that at any point in time, the driver's attention in expected to be 

focussed on only one attribute under one expected state of nature. Mathematically, this 

could be interpreted as assigning a value (Wj), where j represents a state/attribute 

combination, while setting all the other elements in the vector W to a zero value. The 

assigned value is a reflection of the significance of the payoff of the considered attribute. 

This entails the specification of an attribute weight for each considered attribute. 

Attribute weights are simply used for the normalization of the payoffs of different 

attributes. For the hypothetical example of a choice between two alternative routes with 

two congestion levels, the general form of the weight vector is as follows; 

" =\"HH/TT "HHID "HHIF "HLITT "HLID "HLIF "LHITT ''IHID "LH/F "UITT "LLID "LLIFI 

(3.8) 

A computer-simulation approach, based on the DFT basic theoretical structure, is 

to be adopted for modelling the fluctuation of decisions-makers' attention. Attributes 
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attention probabilities (it) are to be used for modelling the switch from one attribute to 

another. This probability represents the chance of a certain attribute getting the focus at 

any deliberation time step. Accordingly, attention probabilities for all attributes must 

sum up to unity. The more important an attribute is to the decision process, the higher its 

allocated attention probability. 

Furthermore, ASPs are used to model the fluctuation in between congestion states 

(refer to section 3.6.2.1 for further details). Thus, at any point in time, only one 

state/attribute combination is stochastically generated. Only the respective element on the 

weight vector will retain its attribute-specific value, while the rest will have zero values. 

In sum, two sets of decision parameters are to be specified for the weight vector; 

attribute weights (Wj's) and attribute attention probabilities (iti's), where i=l to k 

considered attributes. Both sets of parameters are expected to be individual-specific. 

Based on the value of these parameters, the fluctuation of decision-makers' attention in-

between states and attributes could be modelled using the adopted Bernoulli-type 

distributional assumption. 

3.6.3.3 Feedback Matrix S 

The integration of comparisons of different attributes on different states of nature 

over time is mathematically achieved through a feedback matrix. The feedback matrix is 

composed of self-connections (diagonal elements) and interconnections (off-diagonal 

elements). While the self-connections provide a memory level of previous preference 

states, the interconnections account for the competitive influence between alternatives. 

Individual-specific values for the self-connections and the interconnections values are to 

be specified. 

3.6.3.4 Error Term 

As no model can include all considered attributes for all drivers, a random 

component or error term is considered. The random component is a residual term that is 

assumed to follow a normal probability distribution N(0,aE) (Roe et ah, 2001). 
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3.6.3.5 Termination Parameter 

Based on the specifics of the route choice environment, a different stopping rule 

and the related decision parameter are to be specified. The optional stopping rule is to be 

adopted in unconstrained route choice decisions. Unconstrained deliberation time frames 

are mostly common in pre-trip choice decisions, where the deliberation time is internally 

controlled by decision-makers and extended until one of the alternatives satisfies a 

preference threshold. On the other hand, in many en-route choice situations, an externally 

imposed stopping time terminates the deliberation process even before it matures. An 

example could be approaching a bifurcation point on a freeway, where a decision must be 

made regardless of the level of maturity of the deliberation process. Accordingly, an 

externally imposed stopping time rule is more suitable when modelling en-route choice 

decisions, under time pressure constraints. 

For the optional stopping rule, an upper preference threshold bound (6) is to be 

defined. The preference threshold (6) is the level of preference that terminates the 

deliberation process when reached by any of the available alternatives, i.e., if the driver 

preference to a given alternative peaks beyond this threshold, the corresponding route is 

taken, regardless of the length of deliberation time. This bound is expected to be 

individual-dependent as it may vary according to the driver's characteristics, such as age, 

gender, and personal profile. In addition, it is also expected to be situational-dependent as 

decision makers could alter their level of acceptance according to the prevailing 

conditions, such as weather conditions, and trip purpose. The different levels of 

individuals' decision thresholds reflect an adaptation of decision strategies based on 

choice-specific conditions. 

3.6.4 Simple Illustrative Example 

A simplified, hypothetical, and numerical example of the proposed DFT route 

choice modelling framework is presented in this section. Application of the framework to 

the example case of two routes and two congestion levels is used. The objective of this 

section is to further clarify the basics of the DFT route choice theory and model using a 

relatively easy to follow numerical example. A driver is faced with a route choice 
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situation, where she has to make a route choice without explicit traffic information. The 

driver's decision is based on her prior experience and perception of the traffic network. 

3.6.4.1 Schematic Representation 

Two alternative routes are available to the decision maker to choose from. The 

anticipated congestion levels on any route are broadly categorized into two levels High 

(i.e. congested) or Low (i.e. not congested), abbreviate by (H and L). Accordingly, there 

are four possible states of nature following the choice decision; HH, HL, LH, and LL. 

The trade-off between the two alternative routes is based on three choice attributes; 

Travel Time (TT), Distance (D), and Freeway usage (F), as previously discussed. The 

schematic representation of this choice situation is similar to the example presented in 

Figure 3.3. 

3.6.4.2 Decision Variables 

Decision variables are categorized into two sets of variables; the Anticipated State 

Probabilities (ASPs) and the attribute payoff (M) matrix. ASPs are an abstraction of the 

driver's experience-based perception of congestion probabilities. For our choice example 

there exist 4 possible states, as mentioned previously. The following ASPs are assumed 

for illustration; 

• ASPHH= 0.3 

• ASPHL= 0.3 

• ASPur 02 

• ASPLL= 0.2 

The payoff matrix (M), on the other hand, is a 2*12 matrix (2 alternative routes 

and 12 state/attribute combinations). The matrix is composed of payoffs of all attributes, 

under all states of nature, for both choice alternatives. Absolute values of the D and F 

attributes are estimated from the network geometry. However, for the TT attribute, mean 

TT estimates are to be obtained for each congestion level. Based on the adopted payoffs 

representation (Equations 3.5, 3.6, and 3.7), absolute attributes values are transformed 

into payoffs as depicted in table 3.2. 
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Table 3.2 Illustrative Example Attributes Values 

Attributes 

TT H 
L 

D 
F 

Route 1 
Absolute 

value 

20min 
10 min 

1500 m 
1500 m 

Payoff 
value 

2.00 
1.00 
1.50 
1.00 

Route 2 
Absolute 

value 

22min 
12 min 

1000 m 
800 m 

Payoff 
value 

2.20 
1.20 
1.00 
0.80 

3.6.4.3 Decision Parameters 

The following illustrative assumptions are considered for the values of the decision 

parameters; 

1. No initial bias toward any option is pre-assumed; P(0)= [0 0]T. 

2. The same level of significance of attribute payoffs is considered for all three 

attributes but with different impact directions; Wrf=-\0, WD= -10, Jf>=10. Both 

TT and D attributes are naturally assumed to have a negative impact, and hence, 

negative weight parameters. However, a positive sign is considered for F, 

assuming that drivers prefer driving on freeways. 

3. Travel time is considered the most salient attribute with attention probability 7TTT 

of 0.4, while 7io and TCF are both set to 0.3. 

4. For the feedback parameters, self-connections (So) are set to 0.95, reflecting a 

high memory level, which is realistic in choice decisions within short time frames. 

On the other hand, preferences for each option is assumed to evolve 

independently, setting all interconnections (Sy, i*j) to a zero value. 

5. The error term s(t) e N(0, 2). 

6. For the deliberation model with optional stopping rule, two values of 9 are 

considered for comparison; a high value (9i= 25) and a low value (92= 15). 

7. For the deliberation model with externally imposed deliberation time frames, two 

time frames are considered for comparison; a tight time frame (TD= 15 sec) and a 

relaxed one (TD= 90 sec). 

54 



3.6.4.4 Deliberation Process Evolution 

A step-by-step evaluation of the evolution of the driver's preference is performed, 

based on the DFT route choice modelling framework. A time step of 1 second is 

assumed. The following is a summary of the choice situation, in DFT terminologies; 

P(0) = 

C = 
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• s(t)eN(0,2) 

The evolution of the driver's preference with time is estimated using Equations 

3.1 and 3.3 as follows; 

Att=0 

P(0) = 
0 

0 

55 



Att=l 

1. Randomly choose a state/attribute combination based on pre-specified 

probabilities (ASPs, n's) -> State HH, TT attribute. 
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The above process is repeated every second and the evolution of the driver's 

preference strength is estimated as illustrated above. Figure 3.4 shows an insightful 

depiction of the mental deliberation process and the resulting preference evolution in the 

mind of the decision maker. The driver started with no preference bias towards any of the 
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alternatives. Throughout the process, the driver's attention or focus oscillates among the 

different attributes and their associated payoffs, under the uncertain states of nature. The 

driver's preference initially oscillates back and forth between the two options before it 

later matures in the direction of favouring route 1 over route 2. Terminating the 

deliberation process is either performed by externally imposing stopping time, or by 

specifying an upper preference threshold. 
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Figure 3.4 Illustrative Example Results 

The direct influence of time pressure and preference threshold constraints can be 

clearly seen in Figure 3.4. A low preference threshold or a short deliberation time frame 

may result in an immature and possibly wrong decision. Relaxing the time pressure 

constraint is expected to result in a better, well-informed choice decision. Similarly, 

increasing the preference threshold assures a better decision, but requires longer thinking 

time. These simple results reinforce our intuition about the value of the proposed DFT 

approach for route choice modelling. In real life route choice situations, drivers often 

make wrong or 'regrettable' route choices, opting for an inferior route at high-preference 

moment. This situation primarily arises if the decision time is tightly constrained before 

an impending bifurcation or if the driver's preference threshold is impatiently low. The 

odds of choosing the wrong route may also increase if the level of uncertainty in the 
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traffic states increases as in the case of unfamiliar drivers. If the driver is allowed more 

time to think and deliberate and/or if the level of certainty is improved, more mature 

decision may evolve. One possible way to enhance the quality of the driver's decisions is 

though the provision of accurate traffic information, which is discussed next. 

3.7 INTEGRATION OF TRAFFIC INFORMATION 

The success of ITS applications depends on the accuracy and reliability of 

network condition assessment, prediction, information dissemination and control 

formulation, possibly in real time. Advanced Traveller Information Systems (ATIS) is an 

ITS sub-domain that aims to reduce traffic congestion through the dissemination of 

various forms of traveller and traffic information to drivers. Advancements in navigation 

and communication technologies are increasingly expanding ATIS possibilities. The 

usefulness of disseminated information and formulated control strategies require realistic 

understanding and representation of the complex behavioural process of drivers' 

utilization of and response to such information. This motivates the incorporation of ATIS 

in the proposed DFT route choice model framework. For our modelling attempt, two 

forms of traffic information are considered; descriptive information and prescriptive 

information. Descriptive information is typically a subjective display of traffic conditions 

on alternative routes (such as route A moving well and route B moving slowly). On the 

other hand, prescriptive information explicitly recommends to the driver to take a certain 

route (such as take route B). The following sections outline how we envision to expand 

the DFT route choice model to include both types of ATIS. 

3.7.1.1 Descriptive Information Deliberation Model 

Descriptive information usually gives an overview of current or predicted traffic 

conditions on various alternative routes. The route choice model architecture for the 

descriptive information case is conceptually similar to the no information one but with 

frequent short term updates of the anticipated system states based on the disseminated 

information. In other words, descriptive information is integrated into the basic DFT 

route choice model framework by updating the ASPs according to information content. 

Information reliability is expected to play the key role in this updating process. Drivers 

weight their experience more heavily if they do not trust the disseminated information 
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and vice versa. The following reliability-based weighting scheme (Equation 3.9, where 

i=l to m states) is considered for the integration of experience and information 

perceptions. 

ASPj= (1-Winf0)* (Experience-basedASP),+ Winf0 *(Information-basedASP),(3.9) 

Where; 

• Experience-based ASP; represents the driver's perception of the possibility of 

encountering a specific congestion state, based on previous travel experiences (the 

same probabilities adopted in the base case with no information provision). 

• Information-based ASP; a binary probability (either 0 or 1), representing the 

disseminated information content. The congestion state described by the 

disseminated information takes a probability value of 1, while all other ASPs are 

of zero values. This probability can be further diluted if the driver has low trust in 

the accuracy of the provided information, in which case the driver assigns a lower 

value to PFjnfo-

• Winf0; an information weight reflecting the driver's confidence in disseminated 

information. 

In summary, the integration of the descriptive information provision into the route 

choice model framework is achieved through the manipulation of ASPs. This entails the 

addition of one new decision parameter to the modelling framework; Winf0. While the 

driver's confidence in disseminated information is expected to dynamically evolve with 

time, Winfo can be reasonably assumed static in the short term. As such, specification of a 

weighting scheme, within our modelling framework, is based on the driver's current 

perception of information reliability. Modelling of the evolution of drivers' confidence in 

disseminated information is beyond the scope of this research. 
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3.7.1.2 Prescriptive Information Deliberation Model 

Prescriptive information could be offered to drivers in the form of explicit advice 

to take a certain route. Presently, dynamic route guidance is typically based on current 

traffic conditions. Nonetheless, research in the arena of dynamic predictive route 

guidance is rapidly evolving, possibly shaping the upcoming generation of route guidance 

systems. As travel time is the most common attribute in dynamic route choice behaviour, 

most prescriptive information is based on minimizing travel times either at the user level 

or system wide. Unlike descriptive information, prescriptive information does not provide 

drivers with a complete picture of the choice situation. It rather recommends a specific 

route from the set of alternatives. As such, a different information integration 

methodology is proposed. 

Under prescriptive information, the concept of driver "compliance" is introduced 

to the route choice process (Srinivasa and Mahmassani, 2000). Compliance is to act 

according to the conveyed advice. The integration of the prescriptive information 

provision within our DFT framework is approached from the compliance perspective. 

Although compliance is an attribute of the decision maker rather than the alternative, one 

can envisage a 'compliance recommendation' as an attribute of the alternative, to which 

the decision maker assigns a weight. In other words, only one of the available alternative 

routes has the advantage or 'attribute' of being recommended by the information source 

for the driver to possibly comply with. This route-specific advantage is introduced to the 

modelling framework through the incorporation of a fourth trade-off aspect, named as the 

compliance recommendation (C) attribute, as shown in Figure 3.5. The payoff of such an 

attribute is represented through a binary value (1 or 0) indicating whether this alternative 

is the one recommended by the disseminated information (payoff value of 1) or not 

(payoff value of 0). Accordingly, an advantage is granted to the recommended route; 

having a non-zero C payoff value. 
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Figure 3.5 Schematic Representation of a Deliberation Situation with Prescriptive 

Information Provision 

The incorporation of a new trade-off attribute in the deliberation process entails 

expanding the deliberation model decision variables/parameters as well. For the decision 

variables, the payoffs of the C attribute are to be included in the payoffs M matrix. For 

the hypothetical choice situation between two routes with two congestion levels, the M 

matrix is modified as follows; 

M _ M«Him Mnnim Mmm Mmicx MHum M„llDl MHLIFn MHua Mwlm MLHim MWIFI Mmm M^,^ MUID, M^in Mum 

MuHITTZ Mm!D2 MHHiF2 Mm/C2 Mmint ^ HU D2 ^HLIFl MHLIC2 MLHITT2 M' LH ID2 M' LH IF2 M' LH IC2M' LLITT2 MLLID2 M' LL 

(3.11) 

The recommendation of one of the routes by the information system has an 

implicit urge to the driver to comply. However, the driver is not forced to, and hence 

may not, comply. The driver's willingness to comply depends on many factors including 

her level of trust in the system's recommendation. The driver, therefore, can assign a 

lower weight to the compliance recommendation attribute if the system's 

recommendation is not deemed trustful. This is captured in the model via the 

incorporation of two additional parameters of the C attribute; attribute weight (Wc) and 

attention probability {7tc). Drivers' compliance attitude is expected to vary based on their 

perceptions of the reliability of disseminated information. The variation in perceptions is 

reflected in the corresponding variation in the values of the compliance-related 

parameters. 
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3.8 FROM CONCEPT TO A DFT MODEL 

The development of an operational DFT route choice model requires the 

specification of the model decision variables and decision parameters. Decision variables 

represent drivers' perception of the traffic network attributes. Within our modelling scope 

the model decision variables are estimated from the characteristics of traffic network 

under consideration (network geometry, historical statistical traffic patterns, disseminated 

information reliability and content). 

A crucial step in the development of any operational model is the estimation of 

the model parameters. Estimation of the parameters of any model is performed on the 

basis of sample observations from the modelled phenomenon. In the transportation 

research arena, three types of data are generally considered; stated preferences, revealed 

preferences, and laboratory experimental data. In stated-preference-type surveys, drivers 

are asked to state their route choices for an imaginary trip with specific characteristics, 

given some contextual information (Khattak et ah, 1995; and Abdel-Aty et al., 1997). 

This classical data collection technique is recognized as a simple, cost-effective, and 

time-saving one. Nonetheless, significant discrepancies between stated and revealed 

behaviour are increasingly recognized, questioning the credibility of stated-preference-

type data (Bonsall, 1993). 

At the other end of the spectrum, actual revealed behaviour can be directly 

monitored through field experiments. Field data could be collected at two levels; 

aggregate and individual levels. At the aggregate level, route choice trends are estimated 

from traffic counts. The individual level, on the other hand, focuses on individual drivers 

recording their choice decisions on a trip-by-trip basis (a log of route choices is 

maintained). While the credibility of this type of collected data is higher, other important 

issues arise. Real life route choice decisions are performed in real traffic networks, where 

we have no control over external sources of impacts on the decision process. Having a 

wide range of influencing factors is expected to challenge the efforts for identifying the 

main ones. In addition, in an uncontrolled setting, varying any of the choice environment 

characteristics is infeasible, and hence, testing the impact of the decision variables is very 

hard to achieve. Moreover, specific to the DFT route choice modelling framework, 

choice behaviour need to be monitored at a very fine level. In addition to choice 
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decisions, deliberation times are of paramount interest to us. This entails a precise 

monitoring of individuals' deliberation processes, which would be very challenging to 

capture in a real-life setting. 

Laboratory simulated route choice experiments have been recognized as a cost-

effective route choice data collection technique (for example: Koutsopoulos et al., 1994; 

Adler et al, 1993; Bonsall et al, 1997; Mahmassani and Liu, 1999; and Bogers et al., 

2005). Simulated route choice experiments are mainly computer-based simulations of 

real life trips. Subjects are recruited to perform route choice decisions for a designed set 

of experimental trips. As such, the experimenter maintains the required control over the 

testing setup, in terms of network structure, traffic conditions, information 

dissemination...etc. Accordingly, the assessment of the impact of various factors is 

viable, as responses are associated with triggering factors (Koutsopoulos et al., 1994). In 

addition, in a laboratory environment, detailed observations (such as deliberation time 

frames) could be easily recorded. From a credibility perspective, based on empirical 

results, Bonsall et al. (1997) concluded that a well-designed route choice simulator could 

replicate real life route choice attitude with high degree of accuracy. Generally, 

computer-simulations are perceived to generate near-realistic behaviour, and are thereby, 

proposed to be used; 

• "to simulate real-world decision-making environments, and to record the 

behaviour of human subjects interacting with this simulated environment, 

• to aid in calibrating models of decision-making behaviour, and 

• to permit simulations of decision-making behaviour in a large variety of 

contexts." (Koutsopoulos et al., 1994) 

For our purposes of this research, the route choice experiments are envisioned to 

satisfy the following desirable characteristics: 

1. Capture a defined set of personal and situational factors that are expected to 

influence the route choice decision-making process. 

2. Enable the representation of different forms and contents of traffic information. 

3. Allow for monitoring and recording deliberation time frames for each choice 

decision. 
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4. Be as realistic as possible. 

Accordingly, laboratory simulated route choice experiments are recognized as a 

cost-effective, promising tool for the intended route choice data collection. The 

laboratory setting offers a high degree of control over the choice environment as well as 

observed measures. Nonetheless, the realism of the experimental environment and hence 

the credibility of the observed behaviour need to be properly addressed. The perceived 

realism of simulated experiments plays a main role in stimulating realistic attitudes, and 

hence, increasing the credibility of collected data. As such, the next chapter is focussed 

on the development of a mixed reality simulation environment that enhances the 

credibility of our simulated route choice experiments. The developed mixed reality 

simulator combines the benefits of testing human subjects in a driving simulator and the 

fidelity of detailed network and traffic representation in microscopic traffic simulation 

platforms. 
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4 DEVELOPING A LOW COST MIXED REALITY PLATFORM 

FOR ROUTE CHOICE EXPERIMENTATION 

4.1 PRECIS 

Advances in computing and communication technologies over the past two 

decades have created ample new opportunities for transportation system modelling and 

analysis. A number of new tools and methods have emerged that allow fairly complex 

representation, modelling and analysis of traffic networks. In this chapter, we present the 

development details of a new low cost mixed reality platform for traffic analysis. The 

platform is based on two emerging and rapidly maturing technologies; microscopic traffic 

simulators and driving simulators. Microscopic traffic simulation models offer virtual 

reproduction of full-scale traffic networks with individual vehicle/driver resolution. 

Advanced traffic simulators are fairly realistic in terms of the level of the network 

geometrical details, vehicle characteristics and driving (car following) characteristics. 

However, relevant behavioural aspects, such as route choice behaviour, are often 

rudimentary or heavily constrained with theoretical and statistical assumptions. 

Alternatively, driving simulators allow for direct testing of human subjects and capturing 

their behaviour and choices. However, the virtual driving environment is typically a 

fairly rudimentary representation of the road network and traffic conditions, focusing on 

the immediate surroundings of the test vehicle. To realize the benefits of both traffic 

simulators and driving simulators, the platform developed in this research integrates both 

tools to create a mixed reality traffic analysis environment, using very low cost hardware. 

In such an environment, a human subject can choose and externally "steer" a vehicle that 

is embedded in a microscopic traffic simulation model of an actual physical network. 

Using this platform, the realism of actual human behaviour can be captured in an 

environment that comprehensively reproduces the actual road network configuration and 

traffic details that the driver can relate to. The objective is to enhance the credibility of 

in-lab simulated route choice experiments, which is a cornerstone in our route choice 

model development. 

This chapter starts by elaborating on the motivation behind the development of 

the mixed reality system. Some of the valuable contributions in advancing in-lab 
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simulated route choice experimental tools are then highlighted. Next, we discuss the 

development details of the mixed reality platform in terms of requirement analysis, 

system architecture and system implementation. Finally, the capabilities and limitations 

of the developed platform are summarized. Software development and programming 

assistance was provided by the Toronto ITS Centre (refer to Talaat et al, 2008). 

4.2 MOTIVATION 

Microscopic traffic simulation emerged more than two decades ago, but recently 

reached unprecedented levels of maturity, sophistication and usefulness. Advanced 

microscopic traffic simulation could be considered a breakthrough in modelling traffic at 

very high levels of resolution. Individual vehicles/drivers are modelled with temporal 

resolution of a fraction of a second and spatial coverage of hundreds of square kilometres 

of dense networks. Central to the operation of a microscopic traffic simulation model are 

several sub-models, most notably, a car-following, a lane-changing and a route choice 

model. Assumptions underlying drivers' response, rationality and cognitive behaviour, 

among other factors, directly impact the performance of these models and hence the 

accuracy of the overall micro-simulation model (Miska et al., 2004). Thus, increasing the 

behavioural credibility and realism of such models would enable a virtual reality 

reproduction of mixed traffic in a road network. 

Driving simulators are mainly developed to expose human subjects to a realistic 

driving experience in terms of visualization, motion, and reaction inducing stimuli, all in 

a controlled and safe off-road environment. Driving simulators are recognized as a useful 

data collection technique in two main research domains; road safety research and ITS 

applications. A wide range of driving simulators is commercially available for these types 

of analysis with varying levels of sophistication and cost (for example: Simcreator, 2007; 

DriveSafety, 2007; Autosim, 2007; and Scaner2, 2007). In its simplest form there are the 

game-type Personal-Computer-based simulators with or without a steering wheel. On the 

higher end of the spectrum, driving simulators can utilize full-fledged vehicle cabins 

resting on a mobile base and equipped with high resolution virtual reality visualization 

technologies. The mobile base replicates the motion sensation of a real vehicle for the 

driver to be fully engaged in the driving experience both bodily and visually. A number 
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of research institutes currently host high-fidelity driving simulators with full-reality 

interfaces (for example: University of British Columbia, 2007; University of Guelph, 

2007; University of Leeds , 2007; and University of Iowa, 2007). 

Although driving simulators can excel in replicating the immediate environment 

of the subject vehicle, they are usually very limited in replicating realistic traffic 

networks of the size and detail level that microscopic traffic simulators could achieve. In 

most commercially available driving simulators, the representation of the road network is 

usually fairly rudimentary and focussed on the immediate surroundings of the subject 

vehicle. The surrounding environment is restricted to one of a few predefined 

hypothetical environments such as "urban," "rural," "freeway" "arterial" and so on. The 

movement of the surrounding traffic is also scenario-based such as "light traffic," "heavy 

traffic," "cars only," "cars and trucks," etc. The designer of an experiment selects both 

the broad nature of the surrounding environment and the density of traffic surrounding 

the subject vehicle. Therefore, only fairly fictitious scenarios could be tested due to the 

lack of a realistic representation of a full-scale real-life traffic network with properly 

calibrated realistic traffic conditions. 

Neither microscopic traffic simulators alone nor driving simulators alone are 

adequate for certain complex ITS research topics. For instance, route choice decisions are 

significantly influenced by the very specifics of the surrounding environment, most 

notably, the realism of both the driving experience and the network being navigated 

through. As such, testing drivers' attitudes towards ITS applications such as Advanced 

Traveller Information Systems (ATIS) is a major research arena that requires testing of 

human subjects in a "mixed reality environment." Mixed reality, in our context, means a 

testing environment that has three main features: [1] a real human subject making route 

choice decisions in response to the perceived environment, [2] ability to execute the 

decisions, such as changing route using a steering device, and [3] realistic driving 

episodes such as a typical morning commute in an existing real town surrounded by 

typical congestion levels. To realize these features, we integrate a driving device into a 

microscopic traffic simulator. In such a mixed reality environment, actual human 

subjects can experience a driving experiment in a driving simulator-type environment, 

while all surrounding roads, traffic levels and congestion evolution are modelled and 
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controlled using a microscopic simulator in a full-scale network model. The objective is 

to enable credible evaluation of route choice behaviour under various ITS applications. 

In summary, micro-simulation models offer detailed reproduction of full-scale 

traffic networks but lack the "behavioural realism" of actual human drivers. On the other 

hand, driving simulators use human subjects but lack "traffic realism." Establishing a 

two-way link between a traffic simulator and a driving simulator is realized to gain the 

best of both environments. From the specific perspective of route choice analysis, the 

realism of the choice environment is expected to play the largest role in stimulating 

realistic route choice behaviour under time pressure and uncertainty of the decision inputs 

and consequences. The uncontrolled evolution of traffic conditions within the real-time 

microscopic simulations contributes to enhancing the realism of the simulated choice 

environment. The impact of a single driver's response on the evolution of traffic 

conditions will likely be insignificant. However, the real-time evolution of traffic 

conditions around the driver enhances the realism of the driving experiment. In addition, 

the developed platform is intended to be generic enough to enable the concurrent testing 

of multiple drivers in future extensions. 

The scope of this work is limited to vehicle routing control. No attempt has been 

made yet to control driving tasks such as acceleration and braking which are left to the 

car-following model of the microscopic simulation model as will be explained later in 

this chapter. It is noteworthy that the consequences of the driver's decision depend on the 

characteristics of the network, the prevailing traffic conditions, and the driver's 

familiarity with both (amongst other factors of less relevance to our scope). 

4.3 BACKGROUND OF EXPERIMENTAL ROUTE CHOICE SIMULATORS 

Over the past two decades, researchers have recognized the capabilities of 

laboratory simulated route choice experiments as a non-traditional data collection 

technique to evaluate the effectiveness of ATIS. Thus, efforts on the development of such 

experimental simulators have been increasingly significant. While it is not feasible to 

discuss all of these valuable contributions within our premise, some of the main streams 

of efforts are briefly highlighted. 
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One of the early attempts of an in-lab simulated route choice experiment 

involved the development of an interactive route-choice simulator IGOR, at the 

University of Leeds (Bonsall, 199L>. IGOR runs on a personal computer where subjects 

select and update their routes at successive isolated intersections. Only a plan view of the 

intersection and some contextual information are provided to the subject, with no 

representation of surrounding traffic. IGOR provides subjects with feedback in the form 

of engine sound with duration proportional to the time required to traverse the chosen 

link and a pitch proportional to the traversing speed. As successors to IGOR, TRAVSIM 

and VLADIMIR are both PC-based route-choice simulators, developed, at the University 

of Leeds (Firmin and Bonsall, 1996; and Bonsall et al., 1997). Both simulators exhibit 

enhanced functionality on top of the base one. Koutsopoulus et al. (1994), developed a 

PC-based driving simulator, with a 2-D graphical user interface, to test drivers' behaviour 

in response to traffic information. Abdel-Aty and Abdalla (2004) used OTESP, an 

interactive windows-based travel simulator as a data collecting tool to investigate drivers' 

divergence behaviour from their normal route. Another valuable contribution in 

advancing laboratory experimental route choice simulations is a dynamic multiple-user 

interactive route choice simulator, developed on top of the mesoscopic traffic simulator 

DYNASMART (Chen and Mahmassani, 1993). The uniqueness of this simulator stems 

from its ability to handle multiple users in real time in a dynamic environment. Along the 

same line of research, many route choice simulators with different levels of sophistication 

in terms of their user interface and network representation have been developed (for 

example: Vaughn et al., 1993; Iida, 1992; and Kantowitz et ah, 1995). Realistic traffic 

networks with advanced visualization techniques contributed to a more realistic 

reproduction of the choice environment adding credibility to the quality of collected data. 

However, the macroscopic representation of traffic conditions and the lack of a visual 

display of surrounding traffic limit the simulation experiment to a set of choice decisions 

rather than a fuller driving experience. 

Along a parallel stream of efforts, some advanced route choice simulators offer 

participants a graphical display of a simulated driving experience with a representation of 

surrounding traffic. FASTCARS, is an interactive PC-based simulator that is designed to 

collect route choice data in a game setting (Adler et al., 1993). The simulated trip is 
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graphically displayed through a bird's-eye view of the test network. While surrounding 

traffic scenarios are pre-specified and limited to the vicinity of the subject vehicle, the 

microscopic graphical display of individual vehicles offers participants a more tangible 

representation of congestion scenarios. Another similar contribution is a simulation 

experiment conducted in Europe to assess the impacts of in-vehicle navigation systems 

(Ayland and Bright, 1991). A computer game is used for experimentation providing a 3-

D display of the traffic network with fictitious representation of surrounding traffic. 

Drivers are to control the movements of their vehicles using a game-type joystick. 

Researchers at Delft University of Technology developed TSL, an interactive traveller 

simulator that is designed to capture adaptive travel choices (pre-trip and en-route 

choices, departure time choices, the decision to acquire traffic information...etc) (TSL, 

2007). An accelerated operation reduces the experiment duration, allowing for an 

increased sample size of observations within a limited experimentation time frame. 

While the aforementioned valuable contributions differ in their level of 

sophistication and representation of the choice environment, they all lack the desired 

integration of human subjects, full-fledged networks, realistic traffic, and their 

microscopic interactions. The potential of the intended integration has been recently 

recognized by some researchers for various ITS-related applications. Jenkins, M. and Rilett 

(2005) attempted to develop a two-way communication channel between two 

commercially available traffic and driving simulators. VISSIM, microscopic traffic 

simulation software (VISSIM, 2007), was integrated with DriveSafety driving simulator 

(DriveSafety, 2007). The interaction between the two sides required a two-way real time 

exchange of information between both simulators. Communication delays reportedly 

precluded the development of the required two-way communication; however, a one-way 

communication flow of information was established. Data are sent from the traffic 

simulator to the driving simulator to control the generation and movements of 

surrounding vehicles; however, the driving simulator maintained primary control over the 

subject vehicle. Maroto et al. (2006) developed a real-time microscopic simulation model 

that is specially designed for use within a driving simulator environment. Nonetheless, 

the simulation is limited to a reduced zone in the vicinity of the driven vehicle. Sarvi et 

al. (2004), integrated a driving capability into FMCSP, a simulation model of freeway 
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merging behaviour. The developed system, enables testing of a driver's merging 

behaviour in a simulated freeway merging environment. 

4.4 MIXED REALITY SYSTEM OVERVIEW 

Our objective is to integrate a driving tool in the form of a steering system into 

Paramics, a commercially available and widely used microscopic traffic simulator 

(Paramics, 2007). Paramics is a suite of high performance cross-linked traffic models that 

interact to simulate traffic systems behaviour in virtual replicas of physical roadway 

networks. Paramics models traffic microscopically at the individual driver/vehicle level 

utilizing a set of interacting sub-models such as car-following, lane-changing, gap-

acceptance, and vehicle routing models. Paramics Programmer offers users access to 

lower level aspects of the traffic network and most of the simulation related sub-models 

through an Application Programming Interface (API). The API allows the modeller to 

design and code "plug-ins" that implement a typical tasks such as override default vehicle 

behaviour or provide context-sensitive information to the driver. 

The developed system enables a driver to externally control the lateral and 

routing movements of a single vehicle of choice (driven vehicle) in a simulated network 

using a PC-input device such as a steering wheel, Figure 4.1. Longitudinal control of the 

driven vehicle, as well as control of all other vehicles are both internally controlled by 

Paramics. This system enables realistic assessment of the human subject's route choice 

behaviour in response to ATIS, while driving in a virtual replica of an actual traffic 

network characterized by uncertainties, complex interactions and time pressure 

constraints. 

4.5 REQUIREMENT ANALYSIS 

This section describes the requirement analysis phase of the low cost mixed 

reality platform, i.e. what needs to be developed, why, and the best approach to do so. 

Subsequent sections will describe how the required components are developed. 

71 



b) A Steering Manoeuvre within the 
Mixed Reality System 

Figure 4.1 Mixed Reality System in Action 

4.5.1 Input-capturing from an External Device 

In reality, drivers' routing decisions are translated into "actions" through the 

manipulation of a steering wheel. For our mixed reality system, the main input device is 

an external steering wheel which is used to control the lateral movement of the driven 

vehicle within the virtual road network. For this external "action" to be depicted by the 

micro-simulator, an input capturing (IC) application is required to facilitate the flow of 

external control from attached input device to Paramics. 

The most direct implementation of an IC application for our driving system is 

perhaps through the development of an IC Paramics API plug-in. This approach, 

however, was deemed unfeasible and was hence precluded due to the following reasons: 

Paramics API plug-ins are C-based DLL files, allowing the developer to use only 

Paramics API or Windows API. Paramics API does not provide functions that could 

enable the direct manipulation of externally attached devices. On the other hand, while 

Windows API does provide the capability to manage inputs from external input devices, 

it uses an asynchronous input model to handle these inputs. Windows interrupt handler 

converts interrupts (such as keyboard inputs) from various input devices into messages 
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and sends them to the appropriate application to be stored into its message queue. In each 

application, a message loop goes over all messages in its message queue, translates them 

and then dispatches them to all its windows. Each of the application windows, then, 

executes the conveyed message through a local window handler, referred to as a window 

procedure. As such, in order to use Windows APIs to handle inputs from input devices, 

we need to overwrite Paramics window procedure, which we have no access to. 

Accordingly, a separate stand-alone IC application has to be developed outside Paramics 

to handle input devices. 

4.5.2 Vehicle Control and Traveller Information Display in Paramics 

Unlike all vehicles in the simulation model which are internally controlled by 

Paramics, the driven vehicle has to be externally controlled. Overriding Paramics routing 

model for the driven vehicle is the main task to be achieved through the development of a 

"vehicle control" Paramics API plug-in. The vehicle control plug-in receives subject 

routing directions from the IC application and acts upon them. This "act" is simply a lane 

change or a turning movement of the driven vehicle in the virtual traffic network, 

according to the driver's routing choice. 

Assessment of drivers' responses to ATIS is one of the main research applications 

that motivated our development of this tool. Therefore, controlling traveller 

information/guidance provided to test subjects during the simulation is another task to be 

manipulated through Paramics API plug-ins. Accordingly, an "information provision" 

plug-in, that could identify network conditions and disseminate respective 

descriptive/prescriptive information to test subjects, is required. 

4.5.3 Inter-Process Communication 

The development of a separate stand-alone IC application outside Paramics 

requires an Inter-Process Communicator (IPC). IPC regulates the flow of information 

from IC application to Paramics in a timely manner. IPC consists of shared memory that 

is visible to both applications and an interface. Since Paramics plug-ins are programmed 

in C and the IC is coded in object oriented C++, two different interfaces are to be 

developed. The first interface, written in C++, takes input from the IC application and 
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stores it in the shared memory. The second interface, then, reads inputs in the shared 

memory and passes it to the Paramics vehicle control plug-in. 

4.5.4 Graphical Display to the Driver 

The final requirement of our driving tool is the graphic representation of the road 

network, general traffic and the particular driven vehicle. Paramics provides many 

simulation visualization options such as plan view, 3D view and in-vehicle view. Thus, 

the only missing features are the on-screen identification of the driven vehicle to the 

driver controlling the steering wheel and tracking this vehicle on display as it progresses 

through the network. These features are to be added to the default Paramics graphical 

display system. These added features can be easily handled by developing another 

Paramics API plug-in - a graphical display plug-in. 

4.6 SYSTEM ARCHITECTURE 

The designed system architecture is based on three basic components that have 

been identified in the requirement analysis phase; Input Capturing (IC), Inter-Process 

Communicator (IPC), and several Paramics API plug-ins. The designed system 

architecture is depicted in Figure 4.2. At each simulation time-step, which is user-

specified in Paramics, the system progresses through a sequence of events. First, the IC 

reads the driver's input from the steering device and translates this input into simple 

action code (move right, move left or do nothing). Second, the IC commands the IPC to 

write this input in the shared memory that is accessible to both the steering device and the 

traffic simulator simultaneously. Third, a Paramics API plug-in commands the IPC to 

read the action from the shared memory. IPC reads the input and sends it to the API plug-

in. Finally, the API plug-in overrides the default lane-changing and route-choice 

algorithm of the subject vehicle, changes the driven vehicle position on the road and 

displays the new position on screen. As the driver is navigating and progressing through 

the network, the system displays different forms of traveller information. Information is 

generated by an "Information provision" API plug-in. 
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Figure 4.2 Mixed Reality System Architecture 

4.7 SYSTEM IMPLEMENTATION 

4.7.1 Input Capturing 

The input-capturing component is further divided into two sub-components: an IC 

application and a translator. While the IC application is concerned with depicting any 

external act from the attached input device, the translator is concerned with interpreting 

this act into a routing direction. Details of the development and operation of these two 

sub-models are presented next. 

4.7.1.1 Input-capturing Application 

The IC application is a set of objects and functions that translate an external act 

on an attached input device to one or more numeric values. These values can be binary 

values in case of a keyboard-input device or a continuous number in case of a steering 

wheel, ranging from -1 at the most left to +1 at the most right and so on. To facilitate the 

development of this type of application, Microsoft's standard protocol for communication 

with input devices was used. 

Directlnput Library, developed by Microsoft, is the most widely used library that 

enables direct communication between input devices and operating systems. A 

Directlnput implementation consists of a tree of objects. At its root, the "Directlnput 

Object" supports the IDirectInput8 Component Object Model (COM) interface. Only one 
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Direct Object is to be defined for each IC application. For each externally attached 

device, a "Directlnput Device Object" is consequently defined. Each Directlnput Device 

Object in turn has some device specific-objects, which are individual controls or switches 

such as keys, buttons and axes. 

Directlnput works directly with the input device, and as such, it either suppresses 

or ignores Windows/Operating System mouse and keyboard messages. It also ignores 

mouse and keyboard settings made by the user in the Control Panel. It does, however, use 

the calibration set for a joystick or other game controller. This main feature ensures the 

speed and accuracy of the readings from input devices. 

After creating a Directlnput Root Object, enumeration of devices is performed for 

both the keyboard left and right keys as well as the steering wheel game-type device. As 

such, test subjects have the option to choose either of these two input devices. In each 

simulation time step, values of Directlnput Devices' individual objects are updated based 

on external acts. For the keyboard device, a value of plus or minus 1 is assigned to the 

pressed key in the keyboard device. While for the steering wheel an axis value ranging 

from -1 for the most left to 1 for the most right is updated. 

The operation of the IC application is actually more challenging than it first 

seems. This is due to the fact that the IC application must continuously receive inputs 

from the attached device even if the IC application window is not the active window. 

This is simply because the simulator's window is always the active window while the 

subject is driving. Therefore, a so-called "SetCooperativeLevel" function is used to set 

the IC application focus to the back end. It is worth mentioning that this kind of solution 

must be handled with extreme caution because it violates the security rules of the 

operating system (interacting with a window other than the front-active one). 

4.7.1.2 Input Translator 

Outputs from IC applications are then processed by a translator to determine a 

movement direction. Only one of three movement directions are depicted, either move 

right, left or do-nothing. This coarse categorization of movement directions is then 

manipulated by the vehicle control plug-in to fine tune the respective routing decision. 
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The translator task is trivial for the keyboard left and right keys device, but the 

driver's sense of driving might not be as realistic as on a steering wheel. As for the 

steering wheel-type device, the axis range is categorized into three sub-ranges for each 

direction of movement. The translator's task is simple enough that it could have been 

incorporated into the IC application. However, a stand-alone sub-component is useful in 

the long term for future research; if and when longitudinal control of vehicle speed and 

acceleration is required. 

4.7.2 Three PARAMICS API Plug-ins 

4.7.2.1 Vehicle Control Plug-in 

Paramics API is used to override internal default routing sub-models, allowing 

external control of the driven vehicle's routing decisions. At the beginning of each 

simulation time-step, one of three possible user inputs are obtained from IPC; turn right, 

turn left, or do nothing. Using a simple algorithm, Figure 4.3, the driven vehicle is 

allowed to change its current lane or link in the graphical display of the virtual traffic. 

The algorithm is designed to capture and display users routing decisions. A simple lane-

changing logic is adopted just to allow for the execution of routing decisions. The 

algorithm is based on the ability of the driver to fine-tune her/his routing directions 

through the display of her/his next exit number, prior to turning. Exits, at each 

intersection, are numbered in an anticlockwise direction. 

To avoid confusing routing steering actions and unintended wheel steering, link 

change decisions are restricted to a "decision zone." The decision zone is a pre-defined 

distance upstream of each intersection where the driver is expected to make his route 

decision; i.e., next-link decision. If the user is outside the decision zone, the steering 

manoeuvre is simply ignored. Decision zones are long enough so as not to interfere with 

the deliberation process. 

The main challenge facing the development of the vehicle control plug-in is 

handling the "do nothing" input scenario within the "decision zone." One of the trivial 

interpretations of the "do nothing" input could be simply "move straight," just like in 

real-life driving experiences. However, Paramics APIs provide no access to the network 

geometry and thus depicting a "straight" exit in a complex traffic network is difficult to 
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achieve. In addition, in an experimental setting, a "do nothing" input could be, 

alternatively, interpreted as an unwillingness to divert from the current route, regardless 

of its alignment. As such, our mixed reality system adopted what we call "default-route 

benchmarking." Prior to starting a simulated driving experience, drivers are to specify a 

set of possible alternative routes to their destination. These routes are marked by our 

system as "tentative default routes." While drivers proceed from one link to another, their 

current route is continuously identified by the system and marked as the "current default 

route." When approaching an intersection, the next exit of the current default route is 

initially marked for turning. Left and right turning movements are referenced from the 

default exit. 

Figure 4.3 Vehicle Control Algorithm 
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4.7.2.2 Traveler Information Provision Plug-in 

A simple information provision interface is developed to generate and disseminate 

traffic condition information and guidance to subjects while driving. The type of 

disseminated information and its accuracy are user-specified. Descriptive information 

provides test subjects with quick reports on traffic conditions on all alternative routes; 

using high-level description such as route x moving well, route y moving slowly...etc. 

On the other hand prescriptive information recommends the current fastest route to the 

subject's destination in an explicit manner. Guidance is provided to the drivers in the 

form of a text message that appears on the simulation window beside the driven vehicle. 

The accuracy of the disseminated information can be manipulated through the 

specification of a variable reliability level. The specified reliability level is interpreted by 

our system as a probability of providing correct information to the test subject. Other 

types of messages such as status and warning messages are also provided to the subjects 

during the simulation. 

4.7.2.3 Graphical Display Plug-in 

A bird's-eye view window focussing on the driven vehicle and its close vicinity is 

displayed to drivers. To avoid visualization confusion of the driven vehicle with 

surrounding traffic, our system identifies the driven vehicle with a circle drawn on top of 

the driven vehicle itself and moves along with the subject vehicle during the entire 

simulation. 

4.7.3 Inter-Process Communicator and Shared Memory 

A shared memory protocol along with an inter-processes communicator is 

designed to allow the IC application and Paramics plug-ins to link to each other properly 

without communication delays. Two separate interfaces are required for the 

implementation of IPC; one written in C++ at the IC application end and the other written 

in C at the Paramics plug-ins end. 

Typically, each process created in Windows has its own local memory. This local 

memory holds process-specific data/variables that are not accessed by any other process. 

Alternatively, when a process wants to communicate with another, a common area in the 

memory called shared/global memory is created. This global memory is referred to in 
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Windows, as HANDLE. In order to ensure the integrity of shared data, concurrent access 

to shared data should be restricted. This means that at any point in time, only one process 

is given access to the shared memory. As such, kernel provides a mechanism, called 

"mutual exclusion" or "mutex object," to ensure exclusive access to the shared memory 

resource. Using a mutex object, each process has to follow three steps to access the 

shared memory. First, it has to hold the mutex object; locking the shared area. Then, it 

writes/reads data to be communicated into the shared area. Finally, it has to release the 

mutex object to allow other processes to access the shared area. 

In our system, a shared memory is developed to facilitate communication between 

the IC component and Paramics plug-ins. The CreateFileMapping Windows API is used 

to create the HANDLE in a certain location in memory, traditionally at OxFFFFFFFF. 

This location cannot be occupied by any other process local memory. To ensure data 

integrity, the CreateMutex API is used to create the mutex object. In addition, the 

waitformultipleobject API is used to handle the mutex events by enforcing a process 

waiting time. The waiting time for each process is dependent on releasing mutex events 

at the other process end. 

After the HANDLE is created, IPC operates in a closed cycle where it asks the IC 

component to hold the mutex object and to write its inputs in the shared memory. When 

the mutex object is released, IPC asks Paramics plug-ins to hold the mutex object and 

read these inputs. Paramics then releases the mutex object and the IPC asks the IC 

component to write its inputs again in the shared memory, and so on until the end of the 

simulation experiment. Figure 4.3 summarizes this sequence of events. 

80 



sd Class Model J ~ 

PARAMICS 

Process 

communicator 

IPC PARAMfCS IPC input 

Capturing (C++) 

input Capturing 
Process 

communicator 

Open Handle 

Create HANDLE in certain Location In Memory with certain size 

E=i 

63 
wait for second instance (infinity) 

P 
Open Handle 

createEvent that second instance available 

Errop Create the Handle with same information P 
JitError== ERROR ALREADY EXISTS]: 

5^ 
uunte(characteO 

readC&character) 

"*0 
* waitSuwess* wart tor mutex 

P 
pf waitSuccess]: read for the HANDLE 

P 
pf JwaitSuoces]: the time out Error 

F 

; wait success* wait for Mutex (1 mille second) 

f [if waitSuccess]: write to the HANDLE 

5P 

jifJwaitSuccess]; the time out Error 

P 

Close Handle 

Figure 4.4 Shared Memory Sequence Diagram 

81 



4.8 MIXED REALITY SYSTEM CAPABILITIES AND LIMITATIONS FOR USE 

In summary, the developed mixed reality system is a traffic analysis platform that 

is intended to enable credible evaluation of drivers' route choice behaviour within a 

controlled-lab setting. In such an environment, a human subject could be exposed to a 

pseudo-realistic driving experiment such as in a driving simulator but navigating through 

a real network such as a known city and surrounded by a realistic representation of actual 

traffic such as in microscopic simulation models. The developed platform offers the 

opportunity to monitor drivers' route choice decisions while maintaining control over 

external factors such as traffic conditions, disseminated information type and reliability. 

In conclusion, the mixed reality system capabilities (not including the microscopic traffic 

simulator capabilities) and limitations are: 

Mixed Reality System Capabilities 

• External control of the routing decisions of the test vehicle using a PC-input 

device: a steering wheel or a keyboard. This added feature allows a subject to 

navigate her/his vehicle in terms of routing decisions within a realistic traffic 

network. 

• External control of the lane-changing manoeuvres of the test vehicle using a PC-

input device: a steering wheel or a keyboard. Maintaining control over all lateral 

movements, including lane changing, enhance the realism of the simulated driving 

experience and hence contribute to the quality of collected data. 

• User-defined information provision/guidance interface. Information type as well 

as reliability could be easily manipulated through the developed information 

provision interface. 

• Monitoring and measurement of deliberation times and resulting choices. The 

platform allows the analyst to measure the time that the driver takes to make a 

route choice, measured from the instant the driver receives relevant information to 

the instant a decision is executed. 
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Mixed Reality System Limitations for use 

• Longitudinal control of test vehicle, in terms of speed, acceleration/deceleration is 

internally performed by the car following model of the micro-simulator. 

• All movements of surrounding traffic and congestion evolution are modelled and 

controlled by the micro-simulator. 

• Interpretation of routing directions is referenced to a pre-specified default route: 

"default route benchmarking." As Paramics APIs have no access to the network 

geometry, a "do-nothing" input scenario within a decision zone is interpreted as a 

desire to continue on or unwillingness to divert from the current route. A 

"right/left" input is referenced from the default route exit. The display of the next 

exit number, prior to turning, precludes any possible misconception that might 

occur in this regard. 

83 



5 IN-LAB R O U T E CHOICE EXPERIMENTAL DESIGN AND 

SETUP 

5.1 PRECIS 

An experimental procedure is designed to collect route choice data in a laboratory 

setting. While the factors influencing drivers' routing decisions are numerous, an 

experimentation scope is defined for the intended analysis. A real-life traffic network in 

the heart of downtown Toronto is used as a test network. Manipulation of traffic 

conditions is performed to match variations in the real-life environment. Traffic 

information is communicated to test subjects through a Variable Message Sign (VMS). 

The mixed reality traffic analysis platform, presented in chapter 4, is used as the 

experimentation tool. Subjects are asked to navigate a vehicle through the microscopic 

reproduction of the test network while given various descriptive and prescriptive traffic 

information. Routing decisions and deliberation time frames are recorded. For 

complementary and comparative purposes, a more classical map-based point-and-click 

route choice experimental procedure is also used. Experimentation is conducted in three 

successive phases: an information/tutorial session, a learning session, and actual 

experimentation sessions. This chapter presents detailed description of the 

experimentation setup in terms of test network, experimental tools, sample size, and 

experimentation phases. 

5.2 EXPERIMENTATION OVERVIEW 

In-lab simulated route choice experiments are designed to monitor and record 

route choice behaviour data for analysis and calibration purposes. Subjects are asked to 

perform routing decisions in a simulated driving environment, under different 

information scenarios, while their reactions are monitored and recorded. Observed 

measures are to be used in the assessment of route choice behavioural patterns as well as 

in the estimation of DFT route choice model parameters. As such, the experimental setup 

is outlined to serve these purposes. 
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Drivers' route choice behaviour is influenced by many personal and situational 

factors. Socioeconomic, demographic, and personality-related attributes are all personal 

factors that impact route choice behaviour. On the other hand, the choice context (pre-trip 

vs. en-route), information-related characteristics (such as information dissemination 

technique, information timeliness, information form, and information reliability), time 

pressure, trip purpose, and weather conditions are all examples of situational factors that 

are expected to influence the route selection process. 

Incorporation of all contributing factors in drivers' route choice behaviour within 

the experimental setup is unfeasible. However, some of the main factors are considered 

for investigation. In the following, the broad lines of the experimentation scope are 

highlighted. Further detailed discussions on some experimentation aspects are presented 

in subsequent sections of this chapter. 

1. Homogenous sample; a homogenous sample of drivers of 30 participants is 

envisioned. Subjects' recruitment is mainly focused on graduate and 

undergraduate students at the University of Toronto, primarily because of 

their relative availability and willingness to spend long hours conducting the 

experiments. The sample is homogenous in terms of age, educational level, 

income level, and driving experience. Nonetheless, personality-related 

attributes are variable. An effort was made to make the sample size as large as 

feasible, given the time consuming nature of each test. 

2. Recurrent Trips; recurrent trips represent the main trip type within a traffic 

network. Recurrent trips are those performed on a regular basis (such as work 

trips, and school trips.), and hence the network and typical traffic patterns are 

familiar to the driver. The focus of our analysis is limited to recurrent-type 

trips. The experimentation environment is set up to simulate a recurrent-type 

trip in three ways. First, subjects (students) are informed about the intended 

purpose of their simulated trip; a school trip. Second, a major traffic corridor 

leading to downtown Toronto (near the university campus) is adopted as the 

test network. Finally, although subjects are generally familiar with the city 

and this particular main corridor, they are further familiarized with the test 

network through a pre-experimentation learning session. Familiarity with the 
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network layout, traffic conditions and information provision characteristics 

are main components of recurrent-type trips. 

3. VMS Information Dissemination; VMS display of traffic information is used 

throughout the route choice experiments. The effect of varying 

communication technologies (e.g. VMS vs. In-vehicle navigation device) on 

drivers' behaviour isn't addressed within our analysis scope. The test network 

has a VMS on the main corridor, and a similar setup was reproduced in the 

model. 

4. Two forms of information provision; during the experimental trips, 

disseminated traffic information takes one of two forms: a descriptive and a 

prescriptive form. Descriptive information provides test subjects with reports 

on traffic conditions on alternative routes, using high-level description of 

congestion states. On the other hand, prescriptive information recommends 

the current fastest route to the test subject in an explicit manner. Both types of 

information are disseminated with varying levels of accuracy or reliability. 

5. Two information reliability levels; drivers compliance to disseminated 

information is mostly based on their level of confidence in information 

content. Information reliability is, hence, a key feature in this context. 

Information reliability level represents the probability of disseminating correct 

information to drivers. While it is not feasible to test a wide spectrum of 

reliability levels within a limited sample size of participants, two pre-specified 

reliability levels are considered: 0.6 and 0.8 reliability levels. 

6. Non-obstructing weather conditions; the effect of weather conditions on 

drivers' route choice behaviour is not considered within our experimental 

scope. Accordingly, no weather-related obstructions are perceived by test 

subjects. 

7. Steady-State perception of traffic conditions; drivers update their perceptions 

of traffic conditions through day-to-day learning as well as day-specific 

learning. As the focus of our research scope is restricted to modelling the 

decision-making process and not the learning process, drivers are allowed to 

learn about the network, typical traffic conditions, and the reliability of 
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provided information if any. This day-to-day learning is achieved in the 

experimental setup through a large number of pre-experimentation learning 

trips. After the learning trips, drivers' familiarity with the test environment is 

assumed to have reached steady state. On the other hand, imposing 

restrictions on day-specific perceptions updates is more challenging. In an 

attempt to address this challenge, congestion levels on subsequent route 

segments are varied independently. As such, a congested route segment does 

not have any significant impact on the congestion level of subsequent 

segment. Subjects are informed about the independence of congestion levels 

of successive segments of the alternative routes. Furthermore, subjects are 

informed that disseminated information content is only relevant to the route 

segments of alternative routes beyond the upcoming decision node. No 

influence of current experienced traffic conditions is, accordingly, considered. 

5.3 TEST NETWORK 

5.3.1 Network Layout 

The test network is part of the Gardiner/Lakeshore major corridor on the 

waterfront of downtown Toronto, eastbound from the Humber Bridge to Spadina 

Avenue, as shown in Figure 5.1. This is the main traffic corridor leading to downtown 

Toronto from the western suburbs. While the Gardiner is a high-speed freeway with 

limited access, Lakeshore is a parallel surface arterial with lower speed and a series of 

traffic lights. However, when the Gardiner is heavily used, Lakeshore can be an 

appealing alternative. For the selected test stretch, there is a transfer point from the 

Gardiner to Lakeshore and vice versa, offering drivers an opportunity to divert, if they so 

choose. The length of the test portion of the Gardiner Expressway is 8.340 km divided 

into 4.415 km, and 3.925 km, before and after the diversion point. The Lakeshore 

alternative, on the other hand, is 8.432 km, with the decision node at 5.208 km from its 

beginning. 
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Figure 5.1 Test Network Layout 

5.3.2 Experimental Traffic Patterns 

Traffic conditions on alternative routes are stochastically controlled using pre-

specified congestion probabilities. Each of the alternative routes is divided into two 

sections: before and after the divergence point. Each section can be in one of two possible 

congestion levels: congested or uncongested. While the uncongested level represents a 

free-flow traffic scenario, the congested one represents travel times at capacity, both with 

stochastic variations around a mean value. The adoption of such extreme traffic 

conditions is targeted to avoid misconceptions during the learning phase of the 

experiments. The learning phase, as will be discussed in detail in later sections, is 

targeted to formulate the subjects' perception about traffic patterns. More distinguishable 

congestion levels are easier/faster to grasp. In the following, the manipulation of 

congestion levels in terms of travel times and probabilities of occurrence is discussed in 

detail. 
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5.3.2.1 Travel Times Setup 

A travel time distribution is defined for each route section, under each congestion 

level. Normal probability distributions are assumed. As such, a mean value and a 

Coefficient of Variation (CV) are specified for each route section, under each congestion 

level. The adoption of a travel time probability distribution is targeted to enhance the 

realism of the simulated experimental trips. It is unrealistic for a driver to encounter 

exactly the same travel experience on repeated trips. While the stochastic nature of 

micro-simulation runs would implicitly introduce some dispersion on experienced travel 

times, this dispersion is limited to minor traffic stream interactions. This limited effect 

could be insignificantly perceived by subjects. As such, the introduction of an externally 

imposed dispersion (through pre-specified CVs) is considered. 

Mean values of the adopted travel time distributions are specified based on a 

classical Greenshields-type traffic flow model. However, traffic stream interactions, 

within each experimental trip, are captured and represented by the microscopic traffic 

simulator. Greenshield's traffic flow model assumes a linear speed-density relationship 

(Equation 5.1). Based on extensive micro-simulation runs of the test network, free flow 

travel times are identified for all route sections. The free-flow travel times are used as the 

uncongested mean travel times. On the other hand, the relationship between the free-flow 

speed (Uf) and the critical speed at capacity (U0) (presented in Equation 5.2) is used to 

define the congested mean travel times. Accordingly, the mean values of the congested 

travel times are set to be twice the free flow values. Table 5.1 presents the adopted 

values, for all route sections. 

U=UKWKj)K (5.1) 

U0=Uf/2 (5.2) 

Where: 

• U; speed ( km/hr) 

• Uf; free-flow speed 

• K; density (veh/km) 

• KJ; jam density 

• U0; speed at capacity 
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Table 5.1 Test Network Mean Travel Times 

Congestion 
Level 

Congested 
Uncongested 

Gardiner Mean TT 
(m ns) 

S e d 
6.2 
3.5 

Sec 2 
5.8 
3.1 

Lakeshore Mean TT 
(mins) 

S e d 
8.5 
4.5 

Sec 2 
7.5 
3.5 

Travel time distribution CVs are realized through the definition of three 

dispersion degrees; a high, a medium, and a low degree. Allocation of a dispersion degree 

to a route section is based on its type as well as its congestion level. While congested 

freeway sections are considered the highest with respect to travel time dispersion degrees, 

uncongested freeway sections are expected to be the lowest in this regard. As such, either 

a high or a low dispersion degree is considered for the Gardiner route sections, based on 

trip-specific congestion levels. As for the surface street alternative, traffic signals are 

expected to contribute the most to travel time variations, decreasing the impact of 

congestion-induced variations. Accordingly, as a reasonable simplification, a medium 

dispersion degree is considered for both sections of Lakeshore, under both congestion 

levels. 

Specification of a CV value for each dispersion degree is performed on the basis 

of minimizing the overlap between travel time distributions of different congestion levels, 

for each route section. The more the overlap, the more difficult it is to identify different 

congestion levels, in the learning phase. A minimal overlap is targeted to facilitate the 

learning phase and to ensure correct perceptions of traffic patterns. Table 5.2 presents the 

selected CVs for each route section, under each congestion level. 

Table 5.2 Test Network Travel Time Distributions Coefficients of Variations 

Congestion 
Level 

Congested 
Uncongested 

Gardiner CV (%) 
S e d 

5 
1 

Sec 2 

5 
1 

Lakeshore CV (%) 
S e d 

2 
2 

Sec 2 

2 
2 
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5.3.2.2 Congestion Level Probabilities 

In each experimental trip, traffic is generated according to trip-specific congestion 

levels. Four congestion levels need to be defined prior to starting each experimental trip; 

2 routes with two sections per route. Trip-specific congestion levels are stochastically 

generated based on pre-specified probabilities. Congestion level probabilities are selected 

on the basis of maintaining the real-life competitiveness frame between the two 

alternative routes. Table 5.3 presents the chosen probabilities. 

Table 5.3 Test Network Congestion Levels Probabilities 

Congestion 
Level 

Congested 
Uncongested 

Gardiner 
Sec1 

0.6 
0.4 

Sec 2 
0.6 
0.4 

Lakeshore 
Sec1 

0.4 
0.6 

Sec 2 
0.4 
0.6 

5.3.3 Information Provision 

The assessment of the impacts of traffic information characteristics on drivers' 

route choice attitudes is one of the main objectives motivating the undertaken 

experimental analysis. Two information related attributes are addressed within our 

experimental scope: information form and information reliability. A VMS information-

dissemination technology is adopted throughout the experimental analysis. In a 

simulated trip, two routing decisions are to be made: a pre-trip decision on where to start 

the trip and an en-route decision on whether to divert or not. For pre-trip decisions, 

information is displayed on screen, at the beginning of each experimental trip. En-route 

information is presented in the form of a text message that appears beside the driven 

vehicle on the visual display of the simulated experimental trip. En-route information is 

disseminated at approximately 1100 m from the decision node (based on the guidelines 

provided by the Ministry of Transportation of Ontario, Canada, for operations of 

changeable message signs) 

With respect to information type, information is disseminated to subjects in two 

forms: a descriptive and a prescriptive form. In the following a detailed description of the 

content of each information form, for each routing decision, is presented: 
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1. No information; subjects are not provided with any source of traveller 
information. 

2. Descriptive information; subjects are provided with expected congestion 

levels on each of the alternative route sections in the form of "route x, 

section i, is moving well/slow." In pre-trip choice situations, information 

content covers both sections of both routes. En-route information content 

considers only the second half of each route (beyond the divergence 

point). 

3. Prescriptive information; a specific advice to take the faster route is 

displayed to the driver, in the form of "Take the Gardiner" or "Take 

Lakeshore." The recommendation is based on the comparison between 

travel times of available alternative routes. In pre-trip choice situations, 

the disseminated advice is based on whole-route travel times. However, 

travel times of the second portion of the trip are only considered in the en-

route context. 

Current real life applications of ATIS are mostly based on instantaneous rather 

than predicted traffic conditions. As such, by the time drivers pass through a given route 

segment, the previously provided information might no longer be valid. The collective 

responses of other drivers to disseminated information could significantly alter evolving 

traffic patterns. Information reliability can also be affected by numerous other factors 

such as surveillance (detection) method, communication lag and other. Even predicted 

information, if available, can be inaccurate and dependant on the prediction method. 

Therefore, information reliability, or lack of, is always a concern. The assessment of the 

impact of various levels of information reliability on route choice behaviour is, hence, 

investigated. Reliability levels, within our analysis, refer to the probability of providing 

correct information to drivers. Accordingly, disseminated information content during an 

experimental trip is not always correct, but rather stochastically reliable based on pre-

specified reliability levels. It is important to highlight that the information reliability level 

is fixed for each subject throughout her/his experimental trips. 

While reliability levels may vary, theoretically, from 0 to 1, only two levels are 

considered, for practicality and due to the limited sample size of participants. The chosen 
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levels are intended to be on the reliable side (above 0.5) for the information to be of some 

utility. As such, subjects are divided into two groups, as follows: 

• Group 1; with an information reliability level of 0.6 

• Group 2; with an information reliability level of 0.8 

5.4 EXPERIMENTAL TOOLS 

Two sets of route choice experiments are designed, using the same network but 

with two different methods or tools. The first method is a map-based one, where subjects 

perform their routing decisions for an imaginary trip on a computer screen with map view 

of the test network using mouse clicks. The second procedure is an application of the 

mixed reality system, where subjects navigate their vehicles through a microscopic 

simulation model of a real traffic network and actually experience the consequences of 

their decisions, possibly getting stuck in severe and lengthy congestion. If the driver 

chooses a badly congested route, she/he will be behind the steering wheel for a long time 

until congestion clears, the same way as in real life. 

The reason for varying the testing procedure is two fold. The first objective is to 

obtain a reasonably large sample size within the limited feasible experimentation time 

frame. While mixed reality testing procedure has the advantage of more realistically 

reproducing the choice environment, it is challenging in terms of time consumption. 

Real-time simulations of a fairly large number of experimental trips are time demanding. 

As such, a point-and-click map-based testing procedure is also used to augment the 

sample size. The map-based testing procedure is restricted, though, to pre-trip routing 

decisions. The rationale is based on the intuitively lower value of reproducing the details 

of the choice environment in pre-trip route choice contexts. 

Another objective for varying the testing method is to compare and evaluate the 

impact of each method on the quality of experimental results. The main question is: does 

the virtual reproduction of the choice environment in the mixed reality simulator improve 

over crudely asking the user to state her/his choice using a map? A comparative analysis 

between data generated using both testing procedures is conducted to answer this 

question. Details of both experimental procedures are discussed in the following sections. 

93 



5.4.1 Map-based Method 

The map-based experimental procedure adopts a traditional macroscopic level 

framework. An interactive Windows-based computer program is developed for this 

purpose. Each trip starts with a map display of the test network and trip-specific 

information. Figure 5.2 displays a screen shot of a map-based experimental trip. 

Information type is randomly generated for each trip. Information content is 

stochastically reliable. Subjects are asked to perform pre-trip route choices for the 

imaginary trip starting from the Humber Bridge to Spadina Avenue given the displayed 

information. Choices are in the form of a mouse click on a tab with the chosen route 

name. The chosen route as well as the Deliberation Time (DT) is recorded for each trip. 

The deliberation time is recorded starting from the display of a trip-specific information 

scenario until a choice is made (a mouse click). At the end of each trip, a feedback 

window displaying trip travel time and travel distance appears on screen. The displayed 

travel time is stochastically generated given congestion level probabilities and travel time 

distributions. 

Figure 5.2 Map-based Experiment Interface 
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5.4.2 Mixed Reality Experimental Method 

In a microscopic simulation model of the Gardiner/Lakeshore corridor, test 

subjects are asked to drive their vehicles eastbound from the Humber Bridge to Spadina 

Avenue, using the developed mixed reality platform (discussed in detail in chapter 4). 

The microscopic reproduction of the test network is provided by the Toronto ITS Centre. 

The model is only part of a full scale microscopic model of the waterfront area in 

downtown Toronto, developed by former researchers at the Toronto ITS Centre. 

Prior to starting the simulation, subjects are required to specify a pre-trip route 

choice under the "no information" scenario. This pre-trip choice is used by the mixed 

reality system as the driver's default route. Using the steering wheel, subjects navigate 

the driven vehicle through the test network and throughout the simulated trip. Figure 5.3 

shows a snapshot of the mixed reality simulator-driver interface, with a circle 

superimposed on the subject vehicle. At approximately 1100 m from the diversion point, 

subjects receive information with a random type (descriptive or prescriptive) and a 

stochastically reliable content. To enhance the realism of the simulated experiment, the 

microscopic simulation is adjusted to be visualized in real time; where a simulated 

minute of traffic takes an actual clock minute. Accordingly, the experiment duration is 

actually the trip travel time which can range from 6 to 16 minutes. 

(k t t jam ft* M » - - N » 

Figure 5.3 Mixed-Reality Simulator-driver Interface 
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The variation of different congestion levels within the microscopic traffic 

simulator is achieved through the development of a traffic control API Plug-in. The main 

task of the developed plug-in is to stochastically generate trip-specific traffic conditions. 

As mentioned previously, a congestion level is defined for each route section based on 

pre-specified congestion probabilities. Generating trip-specific congestion levels is 

discussed in the following: 

• Uncontested Levels; represent the basic traffic conditions scenario. 

Default low demand levels are pre-specified to allow for a free-flow 

travel environment. The stochastic nature of the microscopic simulation 

model induces the required limited dispersion (low and medium degrees) 

in trip-travel times. To maintain control over experimental traffic 

conditions, routing of the background traffic is pre-defined. As such, 

surrounding vehicles are not allowed to divert from one route to the other, 

but rather, forced to stick to their pre-defined routes. 

• Congested Levels; an incident is introduced at a certain time/location of 

the congested route section. The incident is designed to fully block the 

road segment for a few minutes. The incident duration is adjusted to fit 

the pre-specified travel time probability distributions of congested route 

sections. OD demands are slightly adjusted to ensure the independence of 

traffic conditions of successive route segments. The main objective of the 

OD demand adjustments is to avoid traffic spill-over from congested 

route segments to uncongested ones. Similar to the uncongested levels, 

routing of the background traffic is fixed to a pre-defined scenario to 

preserve trip-specific traffic conditions. 

A data set of pre-trip/en-route choice decisions and deliberation times is recorded 

for each simulated trip. While the identification of routing decisions is performed through 

the continuous monitoring of the driven vehicle's current link, the deliberation time 

identification is more challenging. Subjects are asked to start their deliberation process 

once the disseminated information is displayed on screen. Subjects are also asked to 

press a decision button on the steering wheel, once they reach a decision. The time 
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elapsed from the information display until the press of the decision button is recorded by 

the system as the deliberation time. 

5.5 EXPERIMENTATION SAMPLE SIZE 

As mentioned previously, the purpose of the intended experimental analysis is 

two fold. First, observed data are to be used for the assessment of route choice 

behavioural patterns, under both testing procedures (independently and comparatively). 

Second, observed choice measures are to be used in the estimation of the DFT route 

choice model parameters. As such, subjects are introduced to different information 

scenarios, while their choice measures (chosen option, and DT) are recorded. Due to the 

probabilistic nature of the decision-making process, aggregate choice measures for each 

subject are estimated from identical choice situations. Choice percentages and Mean 

Deliberation Times (MDTs), under each information scenario, are the experimental 

observed measures. Obviously, the more the number of experimental trips per 

information scenario, the more representative the observed measures are. Nonetheless, a 

feasible sample size needs to be defined. 

Specification of a reasonable number of experimental trips per information 

scenario is based on sensitivity analysis. A simulation-based sensitivity analysis is 

performed on the dispersion of aggregate choice measures (choice percentages and 

MDTs) with respect to different numbers of repeated deliberation experiments. The 

simulation of the base-case deliberation process is conducted based on the DFT route 

choice conceptual model, using assumed parameter values. Under each considered 

number of repeated deliberations, choice percentages and MDTs are estimated 

repetitively (50 independent times). A CV is then estimated for each observed measure 

under each number of repeated deliberations. Figure 5.4 presents the sensitivity-analysis 

results. 

A significant decrease in estimated CVs is noticeable around 10 repeated 

deliberations. The decrease continues till it reaches a minimal level at 10 000 repeated 

deliberations. A reasonable range is identified between 10 and 50 repeated deliberations. 

Specification of an appropriate number of experimental trips per information scenario, 

within this range, is dependent on experimentation time frame limitations. While a map-
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based experimental trip takes a couple of seconds to perform, a mixed reality-based trip is 

time-demanding. Each simulated experimental trip takes from 6 to 16 minutes to 

complete, depending on trip-specific circumstances. As such, a higher number of map-

based experimental trips is considered. 
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Figure 5.4 Sensitivity of Aggregated Choice measures to the number of deliberation 

repetitions 

Accordingly, each subject is asked to perform a set of 400 map-based trips 

divided as follows: 

• 10% under no information 

• 25% under prescriptive information, with stochastically reliable content, 

based on trip-specific traffic conditions and information reliability level. 

• 65% under descriptive information, with stochastically reliable content, 

based on trip-specific traffic conditions and information reliability. 

As for the mixed reality experimental trips, a limited number of 40 trips per 

subject is conducted. Each trip is composed of a pre-trip decision under the "no-

information" scenario and an en-route decision with either a descriptive or a prescriptive 

information form, on a random basis. The content of disseminated information is based 

on trip-specific traffic conditions and information reliability. 
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5.6 A WALK-THROUGH THE EXPERIMENTATION PHASES 

5.6.1 Information Session 

The information session is a tutorial and information exchange session, between 

the experimenter and test subjects. The experimenter provides test subjects with a brief 

overview of the purpose of the intended experimental analysis. Information related to the 

experimental scope, setup, and tools are communicated to test subjects. On the other 

hand, subjects are asked to communicate some relevant personal information through a 

pre-experimentation questionnaire (a copy of the questionnaire is provided in appendix 

A). The questionnaire is divided into the following four sections: 

• Section 1: Socio-economic/Demographic Attributes. Collects subject's age, 

gender, occupation, education level and income level. 

• Section 2: Personality Attributes. Collects subject's attitudes toward adventure 

and discovery through a test of 6 simple questions. The adopted test is the same 

test used in a survey of route choice behaviour conducted by Khattak et al. 

(1995). A risk index is estimated for each subject, based on a scoring system. 

Alternative answers for each question are given a score from 0 to 4 in an 

ascending order; starting with 0 for option (i). The risk index, for each subject, is 

estimated to be the sum of scores of all 6 questions. High risk index indicates a 

risk-seeking type of personality. 

• Section 3: Route Choice Attributes. Collects subject's perceptions of the 

significance of the three considered attributes (travel time, distance, and freeway 

usage) as criteria for routing decisions. 

• Section 4: Driving Experiences. Collects information regarding real-life driving 

experiences in terms of years of experience, familiarity with VMS information 

dissemination and real-life familiarity with the test network. 

5.6.2 Learning Session 

After completing the information session, a learning session is mandatory with 

two objectives: a) getting subjects familiar with the experimental setup and b) 

formulating their perception of travel times, congestion levels and information reliability 

for the test network. For the first objective, subjects are introduced to the map-based and 
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the mixed- reality experimental procedures. A number of trial trips, at the subject's 

request, are conducted using both testing procedures. Subjects are asked to take as much 

time as they want to familiarize themselves with both testing tools. 

For the second objective, a set of 150 learning trips are conducted. The first 100 

learning trips are designed to enable the subject to form a clear perception of traffic 

patterns. As such, subjects are not provided with any source of traveller information 

during those trips. Afterwards, 50 learning trips with randomly varying information type 

and stochastically reliable content are designed to familiarize subjects with information 

accuracy levels. To speed up the experimentation process, the 150 learning experiments 

are conducted using the map-based procedure with a feedback of travel time for each 

performed trip. However, subjects are informed that traffic patterns and information 

characteristics are identical for both testing procedures and that the use of the map-based 

procedure is only for expediency and convenience purposes. Conducting 150 learning 

experiments using the mixed reality simulator would have been unrealistically time 

consuming and tiring for the subjects and was hence ruled out as an option. 

5.6.3 Actual Experimentation Sessions 

A number of sessions are scheduled for conducting actual experimental trips 

using both testing procedures. The first session is devoted to the map-based testing 

procedure, where each subject is asked to perform a set of 400 map-based experimental 

trips. A second series of sessions is devoted to the mixed reality experiments. A set of 40 

mixed reality trips are to be conducted. Test subjects are asked to budget approximately 

10 hours for the mixed reality experiments, possibly spanned over a number of sessions 

as desired. Prior to starting this phase of the experimentation, subjects are reminded of 

the scope and seriousness of the intended experimental analysis. 
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6 ANALYSIS OF EXPERIMENTAL ROUTE CHOICE 

BEHAVIOURAL PATTERNS 

6.1 PRECIS 

The developed experimental platforms and setup are used to monitor and record 

drivers' route choice behaviour under varying conditions. Subjects are recruited to 

perform the designed laboratory route choice experiments. Two sets of experiments are 

performed by each subject. The first set of experiments is performed on an interactive 

map-based route choice simulator that allows subjects to choose one of the routes 

displayed on a map without actually having to drive the routes. The second set of 

experiments is performed on the developed mixed reality platform which allows for a 

more realistic choice environment and directly exposes drives to the consequences of 

their decisions. The collected experimental data serve two purposes; to analyse and assess 

patterns in route choice behaviour, and to calibrate the DFT route choice model. This 

chapter is devoted to identifying and analyzing route choice behavioural trends for both 

sets of experiments, independently as well as comparatively. The scope of the 

independent analysis is limited to the assessment of the impact of a set of key situational 

and personal factors on subjects' pre-trip and en-route choice behaviour. A comparative 

analysis is then devoted to the assessment of the potential of each testing method as a 

route choice data collection tool. Finally, a summary of concluding remarks on main 

findings is presented. 

6.2 PARTICIPATION IN LABORATORY EXPERIMENTS 

Students are recruited at the University of Toronto to perform the laboratory 

experiments. Experimentation is conducted in the ITS center and test-bed at the 

University of Toronto. As a participation incentive, a compensatory gift of $75 is granted 

upon completion of the roughly 10 hours of experiments. Participants are graduate and 

undergraduate students in the Department of Civil Engineering. The total number of 

participants is 30. All participants have prior driving experience. 

An overview of the profiles of participating subjects, based on the questionnaire 

results, is presented in the following; 
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1. Socioeconomic/Demographic Profiles 

• Age group, 20-30 years old 

• Gender split, 22 males and 8 females 

• Occupation, 14 undergraduate students and 16 graduate students 

• Annual income level, all below $40,000, with 60% below $20,000 

2. Personality Profiles 

Based on the scoring system discussed in section 5.6.1, a risk index is estimated 

for each subject. Estimated values range from 10 to 22. Figure 6.1 summarizes the 

frequency distribution of risk scores in the sample. 
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Figure 6.1 Participant questionnaire-based risk-index frequency distribution 

3. Route Choice Preference Attributes 

• The importance of each of the choice attributes (travel time, distance, and 

freeway usage) varies from one person to another. Subjects were asked 

how frequently they consider each of the attributes in their decision 

making. Figure 6.2 summarizes subjects' frequency distributions for each 

of the three attributes. 
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As expected, travel time is observed to be the most saliently considered 

attribute in route choice decision-making processes. While travel time is 

incorporated as a decision attribute by all participants, it is never 

considered solely. 

Freeway usage and travel distance seem to be relatively less important 

compared to travel time. 

While all drivers perceive an increase in travel time or distance to be on 

the negative side, freeway usage perception varies across drivers. Some 

drivers intuitively prefer taking a freeway, while others prefer the surface 

street. Based on the questionnaire results, a preference for using freeways 

is stated by 67% of the participants. A preference to using the surface 

street is stated by 16% of participants. The remaining 16% are neutral. 
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Figure 6.2 Participants' stated levels of consideration of route choice attributes 

4. Driving experience 

• All participants have prior driving experience of less than 10 years. The 

number of experienced years varies as follows: 

i. 36% have less than 2-year experience 

ii. 30% have driving experience between 2 and 5 years 

iii. 33% have more than 5 years of driving experience. 
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• Most participants are familiar with VMSs as an information dissemination 

technology (87%). 

• Only 50% of the participants previously drove on the real-life version of 

the tested routes. 

6.3 MAP-BASED PRE-TRIP EXPERIMENTAL ANALYSIS 

Map-based experiments are concerned with pre-trip decisions only. Subjects are 

asked to perform pre-trip route choice decisions for the imaginary trip along the 

Gardiner/Lakeshore corridor of downtown Toronto, starting from the Humber Bridge to 

Spadina Avenue, given the displayed information. The chosen route as well as the 

deliberation time is recorded for each trip. 

6.3.1 Preliminary Data Filtering 

The recorded data inevitably contain noise and outliers due to possible distraction 

of the test subjects during some experiments. The first step in the analysis is therefore to 

identify and remove possible outliers to avoid skewing the analysis. The credibility of the 

data recorded from a simulated trip is assessed based on the time taken to make a 

decision. In the map-based procedure, the recorded deliberation time is simply the time 

elapsed from the display of an information scenario until the subject makes a choice by 

clicking on the chosen-route tab. Excessively long time frames are attributed to possible 

loss of focus or possible external distractions. Data from such trips are disqualified and 

removed from further analysis. For this purpose, an outlier analysis is performed with 

respect to deliberation time, for each subject independently. Trips with deliberation times 

within 3a from the subject's mean deliberation time (MDT) value are considered 

credible. Values outside this boundary are extracted as outliers. 

Qualified results of the map-based experimental procedure for each subject are 

grouped under 12 information scenarios (with respect to form and content). Table 6.1 

summarizes the categorization of information scenarios. For each subject, under each 

scenario, Gardiner-choice percentage (the number of trips where the Gardiner is chosen 

relative to the total number of trips, %G) and MDT are calculated. Under the scenario 

column in Table 6.1, each scenario is assigned an abbreviated "name" to be used in the 

rest of the analysis. All descriptive information scenario names start with the letter D (for 

104 



descriptive) followed by an indication of the congestion level on the Gardiner and an 

indication of the congestion level on Lakeshore. Prescriptive scenario names start with P, 

followed by an indication of which route was recommended. 

Table 6.1 Map-based Experiment, Pre-Trip Information Scenario Categorization 

Information 
Type 

a o 
"3 
a 

in
f 

> 

£ 
o 

Q 

Prescriptive 
information 

No information 

Information Content 
Disseminated Section-based 

Congestion Statesa 

Gar< 
Seel 

H 
H 
H 
H 
H 
L 
H 
H 
L 
L 
H 
L 
L 
L 
L 
L 

iner 
Sec 2 

H 
H 
H 
H 
L 
H 
L 
L 
H 
H 
L 
H 
L 
L 
L 
L 

Lakeshore 
Seel 

H 
H 
L 
L 
H 
H 
H 
L 
H 
L 
L 
L 
H 
H 
L 
L 

Sec 2 
H 
L 
H 
L 
H 
H 
L 
H 
L 
H 
L 
L 
H 
L 
H 
L 

Combined Route-
Based Congestion 

Statesb 

Gardiner 
H 

H 

H 

M 

M 

M 
L 

L 
L 

Lakeshore 
H 

M 

L 

H 

M 

L 
H 

M 
L 

Take Gardiner 
Take Lakeshore 

Drive Safely 

Scenario 
Abbreviation 

DHH 

DHM 

DHL 

DMH 

DMM 

DML 
DLH 

DLM 
DLL 
PG 
PLS 

No-info 
aH denotes a high travel time (congested), L denotes a low travel time (uncongested) 
bM denotes a combined medium congestion level (for an entire route), resulting from the 
combination of a congested section and an un-congested one. 
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6.3.2 Decision-Factor Analysis 

Drivers' route choices are outcomes of a decision-making process. This process 

itself stems from the interaction between personal profiles and situational factors. The 

scope of our factor analysis is focused on key personal/situational factors. Based on the 

experimental setup, three information-related situational factors are varied through the 

map-based testing procedure, namely: information form, information content and 

information reliability level. As such, the impacts of these three factors on the decision 

process are investigated. On the other hand, although the sample of subjects in this study 

is homogeneous in terms of many personal attributes such as age, income etc., key 

personal attributes of interest vary. In particular, the impacts of gender and risk attitudes 

on route choice behaviour are analyzed. 

The analysis of the level of influence of each factor is performed in two steps. 

First, general behavioural observations are drawn from the aggregate measures of the 

investigated factors. Afterwards, the statistical significance of these observations is 

assessed through a set of Analysis of Variances (ANOVA) tests. All conducted ANOVA 

tests are performed under a 95% confidence interval, unless stated otherwise. ANOVA 

assumptions are maintained within the conducted analysis. A basic introduction to 

ANOVA and a summary of the complete ANOVA testing results are presented in 

appendix B. 

6.3.2.1 Information Impact 

Data from the map-based experimental procedure are reduced to two measures 

per scenario for each subject; %G and MDT. The calculated measures are then grouped 

with respect to the reliability of disseminated information (group 1 with 0.6 reliability 

levels, and group 2 with 0.8 reliability). The mean of the choice percentages and 

deliberation times for each group of participants under each information scenario is 

presented in Table 6.2. 
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Table 6.2 Map-based Experiment, Mean Observed Route Choice Measures Categorized 

by Information Reliability Level 

Information 
Scenario 

No-info 
PG 
PLS 
DHH 
DHM 
DHL 
DMH 
DMM 
DML 
DLH 
DLM 
DLL 

Group 1 (0.6 
reliability) 

%G 
88.3 
92.8 
57.3 
89.1 
53.0 
33.6 
88.2 
86.8 
48.6 
95.4 
92.0 
84.3 

MDT (sec) 
1.5 
1.5 
1.8 
2.1 
2.2 
2.0 
2.3 
2.4 
2.3 
1.9 
1.8 
1.7 

Group 2 (0.8 
reliability) 

%G 
88.4 
95.0 
30.9 
85.2 
31.3 
16.2 
87.5 
85.1 
28.9 
96.5 
95.7 
88.4 

MDT (sec) 
1.5 
1.3 
1.7 
2.0 
2.2 
2.0 
2.1 
2.1 
2.1 
1.7 
1.6 
1.6 

Preliminary Observations: 

• Subjects tend to have an intuitive preference to take the Gardiner Expressway. 

This is reflected in the high choice percentage of the Gardiner under the No-info 

scenario (88%). This result reinforces and quantifies the notion that freeways are 

generally preferred to parallel surface streets. 

• The stochastic nature of the decision-making process is manifested as a change in 

preferences is depicted between experimental trips, under the No-info scenario. 

While subjects' were more inclined to use the Gardiner (in about 88% of the 

trips), they choose Lakeshore on an occasional basis. This result challenges the 

assumption, underlying some route choice models (for example see Lotan, T. and 

Koutsopoulos, 1999), of a blindly default type of route choice behaviour, under 

normal conditions, in the absence of information. 

• Gardiner choice percentages vary across scenarios. This means that subjects 

change preference, with various levels, under different information scenarios. 

• A positive impact of information provision is generally observed, for both 

reliability groups. This indicates that drivers make use of the provided 
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information to augment their typical choice tendencies, in both cases when the 

information supports or oppose their default tendencies (under no information). 

Gardiner choice percentages increase above the base-line value (no-info scenario 

value) when the provided information substantially supports taking the Gardiner 

(PG, DLH, and DLM). A decrease in Gardiner choice percentages is also 

noticeable in information scenarios that support taking the Lakeshore alternative 

(PLS, DML, DHL), and thereby challenge or oppose subjects' intuitive 

preference. 

• DHM, on the other hand, seems to be perceived as a neutral information scenario 

in the sense that perceived travel times are equal for both routes. A decrease in 

Gardiner choice percentage to somewhere in the middle-third percentage (30-

60%) is observed for this scenario. 

• While the rest of the information scenarios support taking the Gardiner (DHH, 

DMH, DMM, DLL), travel time gains aren't significantly considerable. Choice 

percentages for these scenarios are in the vicinity of the "no-information" 

scenario. 

• Even though the variation in the reliability level between group 1 and 2 is not 

substantial (20%), the level of information reliability seem to alter the influence 

on behaviour and compliance. 

• MDT varies, to various extents, across information scenarios. Deliberation times 

seem to be generally longer when any information is provided that needs to be 

mentally processed and acted upon. Deliberation times also seem to be generally 

longer when the choice is less obvious, for instance when both routes are 

congested (DHH). 

Statistical Significance 

With the above general preliminary observations in mind, a set of ANOVA tests 

are conducted to examine the statistical significance and gain meaningful insights from 

the experimental results. The main objective of these tests is to estimate the significance 

of information scenarios and information reliability in influencing subjects' route choice 

behaviour. The first set of tests is performed with respect to Gardiner choice percentages 
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(Lakeshore choice percentage is simply the remainder of 100%). A two-way ANOVA 

(with replications) test is conducted on choice percentages under the 12 information 

scenarios for the 2 levels of information reliability. Results of this test indicate the 

significance of information scenarios as well as the reliability level in altering choice 

percentages. However, no interaction is reported. In another words, disseminated 

information has a direct influence on choice percentages with different levels for different 

reliability groups. Yet, the impact direction is similar for both reliability groups. 

To identify the significance of each information scenario independently, choice 

percentages of each information scenario are compared to the No-info scenario for each 

group of participants. Out of the 11 information scenarios, 4 scenarios significantly 

influences subjects' choice behaviour; PLS, DHL, DML, and DHM. The 4 scenarios 

challenge subjects' intuitive preference to take the Gardiner either by supporting taking 

Lakeshore (first 3 scenarios) or by indicating that they both have similar travel times (4th 

scenario). This indicates that the influence of information scenario is only significant 

when the displayed information is quite different than expected. Similar results are 

estimated for both information reliability groups, with different confidence levels (all 

more than 95%). As expected, as information reliability increases, the confidence level 

increases. The apparent route choice behavioural trend coincides with literature stating 

that drivers make their decisions based on conflict arousal resulting from unexpected 

changes in the environment that conflict with their prior experiences and expectations 

(Adleretal., 1993). 

The second set of ANOVA tests are performed with respect to MDT. Results of 

the 2-way ANOVA test (for the 2 groups under the 12 information scenarios) indicate the 

significance of information scenarios in varying deliberation time frames. However, the 

impact of reliability level on MDT is less evident (significant only under 87% confidence 

interval), and no interaction is reported. 

To gain further insight into the impact of information scenarios on MDT, each 

information scenario is compared to the no information case. Six out of 11 information 

scenarios have significant impact on MDT; DHH, DHM, DHL, DMH, DMM, DML. The 

six scenarios are descriptive ones reflecting a tendency of a more demanding decision­

making process when disseminated information does not involve specific guidance. Five 
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of the six information scenarios (DHH, DHM, DMH, DMM, and DML) represent a tight 

choice situation, where significant travel time gains are not readily perceived, and hence 

requiring longer decision time. In the remaining scenario (DHL), although the 

alternatives are clearly distinct, the information content substantially challenges or 

contradicts the subjects' intuitive preference to take the Gardiner, also resulting in longer 

deliberation times. 

6.3.2.2 Gender Impact 

The second dimension in this investigation is concerned with the assessment of 

gender differences in route choice trends. For this purpose, measures for each subject are 

clustered by gender. For choice percentages, data clustering is performed within each 

reliability group independently, due to the significant impact of information reliability on 

choice percentages. On the other hand, as the significance of information reliability in 

MDT is less evident, gender classification of MDT is performed on the entire data set. 

Tables 6.3 and 6.4 present the choice percentages and MDT for each of the clusters, 

under each information scenario. 

Table 6.3 Map-based Experiment, %G categorized by Gender and Reliability Level 

Information 
Scenario 

No-info 
PG 
PLS 
DHH 
DHM 
DHL 
DMH 
DMM 
DML 
DLH 
DLM 
DLL 

Group 1 (0.6 reliability) 
Males 

88.3 
98.7 
57.7 
92.1 
50.1 
33.4 
89.1 
91.2 
46.4 
97.7 
96.4 
88.0 

Females 
88.3 
69.3 
55.8 
77.2 
64.5 
34.5 
84.6 
69.2 
57.7 
86.5 
74.4 
69.4 

Group 2 (0. 
Males 

93.9 
92.8 
36.4 
86.9 
38.0 
18.5 
86.5 
87.6 
33.0 
95.3 
94.3 
90.0 

8 reliability) 
Females 

77.5 
99.4 
19.9 
81.7 
18.1 
11.7 
89.4 
80.0 
20.6 
98.7 
98.6 
85.3 
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Table 6.4 Map-based Experiment, MDT (sec) categorized by Gender 

Information 
Scenario 

No-info 
PG 
PLS 
DHH 
DHM 
DHL 
DMH 
DMM 
DML 
DLH 
DLM 
DLL 

Mean MDT (sec) 
Males Females 

1.5 
1.4 
1.7 
2.1 
2.1 
1.9 
2.0 
2.1 
2.0 
1.7 
1.5 
1.6 

1.5 
1.6 
1.9 
2.0 
2.6 
2.4 
2.8 
2.7 
2.8 
2.1 
2.2 
1.8 

Preliminary Observations: 

• Under lower reliability level (group 1), disseminated information tends to have a 

stronger positive influence on choice percentages for males. This is the case for 

both supporting and opposing information scenarios. A considerable increase in 

the Gardiner choice percentage is observed for PG, DLH, and DLM, while a 

decrease is observed for PLS, DML, and DHL. A different trend of information 

influence is observed for female participants. While a positive influence on choice 

percentages is observed in challenging information scenarios (PLS, DHL), 

supporting information scenarios induce a negative impact that is not readily 

explainable. The negative impact is noticed in the decreased Gardiner choice 

percentage for all Gardiner-supporting information scenarios (PG, DHH, DMH, 

DMM, DLH, DLM, and DLL), with different levels. Information, in such cases, 

may be introducing a factor of confusion in light of the higher uncertainty. 

• As for group 2, under more reliable information, both males and females reveal 

similar behavioural trends with respect to information scenarios. A positive 

influence could be observed for supporting and opposing information scenarios. 

Nonetheless, females' choice percentages illustrate an increased level of 

appreciation of disseminated information when compared to males. 
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• In the presence of information, females' MDT is higher than their corresponding 

males' MDT. The apparent increase in MDT is more vivid in descriptive 

information scenarios where a specific recommendation is not provided. 

Statistical Significance 

To test the statistical significance of gender impact, 2-way ANOVA tests are 

conducted between male and female choice percentages under the 12 information 

scenarios, for each reliability group independently. Group 1 results show no significant 

main effects of gender differences on choice percentages. In other words, the average 

choice percentages of males or females (under all information scenarios collectively) are 

not significantly different. However, an interaction effect is reported. This means that the 

effect of gender differences on choice percentages varies under different information 

scenarios; differences are scenario specific. This result verifies the preliminary 

observation regarding the differences in the direction of influence of the Gardiner-

supporting information scenarios among males and females under reduced information 

reliability. 

A series of one-way ANOVA tests are performed to identify the scenarios with 

significantly different choice trends. Four information scenarios reported significant 

differences: PG, DMM, DLH, DLM. All 4 scenarios clearly support taking the Gardiner. 

This outcome verifies the preliminary observation of the differences in information 

influence direction between males and females in case of supporting information 

scenarios. 

On the other hand, no main or interaction effects are reported for the gender factor 

within group 2. Choice trends for both males and females are estimated to be equivalent. 

The apparent increase in female compliance percentages is not proven to be significant 

within the conducted analysis. 

Finally, a 2-way ANOVA test is conducted on MDT for males and females under 

the 12-information scenario for the entire data set. The observed increase in female MDT 

in descriptive information scenarios is estimated to be insignificant. 
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6.3.2.3 Impact of Risk Attitude 

Drivers' personal characteristics may influence their route choice decisions. One 

of the personality dimensions that may play a main role in influencing drivers' 

deliberation behaviour is the "risk attitudes." Risk-averse drivers are naturally more 

cautious in their choice decisions, unlike risk-takers. In our experimental analysis, 

subjects' risk attitudes are assessed through the estimation of a risk index for each 

subject. A higher risk index indicates a more risk-taking attitude. Details of the 

estimation procedure are previously discussed in section 5.6.1. The effect of risk attitude, 

represented by the risk index, is the focus of this step of the analysis. Estimated risk 

indices range from 10 to 22 units. Subjects' route choice measures are clustered into two 

classes with respect to their risk indices. An arbitrary value of 15 is set as the upper 

boundary for the lower class. Table 6.5 presents the aggregate choice percentages for 

each risk class, under each information scenario, under two information reliability levels. 

Table 6.6 presents the aggregate MDT for each risk class, under each information 

scenario, for the entire data set. 

Table 6.5 Map-based Experiment, %G categorized by Risk Index and Reliability Level 

Information 
Scenario 

No-info 
PG 
PLS 
DHH 
DHM 
DHL 
DMH 
DMM 
DML 
DLH 
DLM 
DLL 

Group 1 (0 
Class 1 

Risk Index 
(10-15) 

92.5 
89.6 
53.2 
88.2 
55.8 
29.1 
86.7 
85.8 
48.4 
95.4 
91.1 
80.9 

.6 reliability) 
Class 2 

Risk Index 
(16-22) 

80.0 
99.2 
65.6 
91.1 
47.5 
42.6 
91.2 
88.7 
49.0 
95.6 
93.8 
91.1 

Group 2 (0.8 reliability) 
Class 1 

Risk Index 
(10-15) 

98.8 
98.3 
35.6 
94.7 
43.5 
11.3 
91.2 
95.9 
23.2 
98.7 
98.4 
96.0 

Class 2 
Risk Index 

(16-22) 
81.5 
92.6 
31.2 
78.2 
26.7 
17.4 
85.2 
78.7 
32.8 
94.8 
94.2 
85.0 
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Table 6.6 Map-based Experiment, MDT (sec) categorized by Risk Index 

Information 
Scenario 

No-info 
PG 
PLS 
DHH 
DHM 
DHL 
DMH 
DMM 
DML 
DLH 
DLM 
DLL 

Class 1 
Risk Index 

(10-15) 
1.5 
1.5 
1.9 
2.2 
2.4 
2.3 
2.5 
2.5 
2.6 
2.0 
2.0 
1.8 

Class 2 
Risk Index 

(16-22) 
1.5 
1.3 
1.6 
2.0 
2.0 
1.7 
2.0 
2.0 
1.9 
1.6 
1.4 
1.5 

Preliminary Observations: 

• A slight decrease in the Gardiner choice percentage - under No-info scenario - is 

observed for Class 2 (with a higher risk index), for both reliability levels. This 

result indicates that risk-takers may be more willing to explore alternate, less 

attractive, routes. 

• Within group 1 (lower information reliability), choice percentages reflects a 

slightly increased level of influence of disseminated information on choice 

behaviour of Class 2, under most information scenarios. Subjects with a higher 

risk index tend to comply more with disseminated information, when information 

reliability is relatively low. 

• Alternatively, within group 2, a slight decrease in the level of information 

influence could be observed for risk Class 2, under most information scenarios. 

Under increased reliability level, subjects with a lower risk index are more willing 

to comply with disseminated information. 

• Class 1, reveals a generally increased MDT when compared to Class 2. This could 

be interpreted as a more cautious kind of behaviour; a tendency to deliberate 

longer to make more mature decisions. 
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Statistical Significance 

Preliminary observation trends match expected ones in terms of the revealed 

cautious attitude of Class 1 relative to Class 2. However, the observed differences are not 

statistically significant. The two-way ANOVA tests on choice percentages reveal no main 

or interaction effect for both reliability levels. In addition, results of a one-way ANOVA 

test performed on choice percentages of the No-info scenario for each risk class indicates 

no significant impact. Moreover, for MDT, the main effect of the risk class is significant 

only under 86% confidence interval, with no interaction. 

The insignificant influence of the risk factor, based on the adopted categorization 

of the estimated risk indices, may have several possible causes. First, the estimated risk 

index may not fully capture subjects' actual risk attitudes due to the over-simplicity of the 

conducted personality test. In addition, stated preferences may differ from revealed 

attitudes. Another cause may be related to the experimental sample characteristics. The 

homogeneity of the sample of participants, not only from a socioeconomic, and 

demographic perspectives, but also from a personality profile one, resulted in a narrow 

span of estimated risk indices. Estimated indices range from 10 to 22, while they may 

range, theoretically, from 0 to 24. As such, the assessment of the impact of personality-

related characteristics in route choice behaviour could be captured more accurately with a 

cross-sectional type sampling methodology. Moreover, a more sophisticated personality 

assessment test could be more insightful; comprehensively capturing personality 

attitudes. 

6.4 MIXED REALITY EN-ROUTE EXPERIMENTAL ANALYSIS 

Results of the mixed reality experiment are used to portray subjects' en-route 

diversion behaviour under information. All subjects started the experimental trip based on 

their personal preference with no informational influence. Prior to reaching the available 

diversion point, subjects receive descriptive/prescriptive traffic information. The 

disseminated information is concerned with the second part of the trip; starting from the 

diversion point until the destination. Choices and deliberation times for both pre-trip (no 

information) and en-route (with information) decisions are recorded for each simulated 

trip. The analysis conducted in this section is focussed on en-route divergence behaviour. 

115 



Pre-trip choices are consulted to determine drivers' pre-diversion routes. This piece of 

information is needed for the assessment of the resistance to divergence attitude, as will 

be explained in detail in section 6.4.2.2. 

6.4.1 Data Filtration 

An outlier analysis is performed to extract possible sources of noise in the 

recorded data. Similar to the map-based experimental data filtration, trips with en-route 

deliberation times exceeding their mean value, for each subject, with more than 3a, are 

disqualified. En-route deliberation times are recorded starting from the display of en-

route information until the press of the decision button on the steering wheel, as 

explained in section 5.4.2. An extensively increased deliberation time could be due to 

subject's distraction; where she/he forgets to press the decision button in time. 

During each trip, subjects receive one of six possible en route-information 

scenarios. Table 6.7 summarizes all en route-information scenarios. Trips starting from 

the Gardiner are separated from those starting on Lakeshore to capture the effect of the 

current route on divergence behaviour, i.e. potential propensity of the driver to stay on 

the current route, exhibiting some reluctance to diverge. Accordingly, en route-choice 

percentages and MDT are estimated for each subject, for each current route and for each 

en-route information scenario. 

Table 6.7 Mixed Reality Experiment, En-route Information Scenarios Categorization 

Information 
Type 

Descriptive 
Information 

Prescriptive 
information 

No information 

Information Contenta 

Disseminated Section-based 
Congestion States 

Gardiner Sec 2 
H 
H 
L 
L 

Lakeshore Sec 2 
H 
L 
H 
L 

Take Gardiner 
Take Lakeshore 

Drive Safely 

Scenario 
Abbreviation 

DHH 
DHL 
DLH 
DLL 
PG 
PLS 

No info 
aH denotes a high travel time (congested state), L denotes a low travel time (uncongested 
state) 
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6.4.2 Decision-Factor Analysis 

Similar to pre-trip route choice behaviour, en-route diversion behaviour is 

expected to be influenced by situational as well as personal factors. The focus of this 

section is to identify the impact trends of some of the key factors and to estimate their 

level of significance. Three main streams of factors are investigated within our analysis. 

The first one is concerned with disseminated information in terms of its form, content and 

reliability level. The second stream is related to the "inertia effect". (Srinivasa and 

Mahmassani, 2000). While making an en-route decision, drivers seem to prefer to 

continue their trip on the pre-selected route, thereby resisting diversion recommendations. 

This is translated to an initial bias towards the current route before the deliberation 

process starts. Finally, the third stream of decision-factor analysis is focused on the 

personal dimensions. The scope of this stream is limited to the assessment of gender-

related differences in en-route choice attitudes. Risk attitude, represented through risk 

indices, is disregarded in this phase of the analysis based on the results obtained from the 

previous phase (refer to section 6.3.2.3). 

The statistical significance of all observed patterns is evaluated based on ANOVA 

testing results. All conducted ANOVA tests are performed under 95% confidence level, 

unless stated otherwise. Tabulation of results is presented in appendix B. 

6.4.2.1 Information Impact 

The assessment of the influence of disseminated information on divergence 

behaviour is conducted by categorizing experimental measures based on information 

scenarios and information reliability groups. Trips staring on the Gardiner constitute the 

larger portion of data (about 78%), with a fair representation of all information scenarios. 

On the contrary, the representation of information scenarios on trips starting from 

Lakeshore is limited. Thus, continuing on or diverting from the Gardiner Expressway is 

used as the basis of the analysis of information impacts. Table 6.8 presents the aggregate 

categorized measures for each information scenario under each reliability level. 
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Table 6.8 Mixed Reality Experiment, Mean Observed En-route Choice Measures 

Categorized by Information Reliability Level 

Information 
Scenario 

PG 
PLS 
DHH 
DHL 
DLH 
DLL 

Group 1 (0.6 reliability) 
%G 

92.9 
41.7 
91.1 
40.6 
100 
100 

MDT (sec) 
7.5 
4.6 
4.9 
4.4 
4.2 
5.5 

Group 2 (0.8 reliability) 
%G 

94.8 
39.2 
93.6 
24.2 
97.0 
97.9 

MDT (sec) 
10.5 
8.3 
8.9 

10.8 
7.5 
9.4 

Preliminary Observations: 

• The influence of information content in varying Gardiner choice is evident for 

both reliability groups. This clearly shows that drivers make use of the provided 

information to alter their default choice. 

• The impact of reliability level on choice percentages is noticeable only in the 

DHL case. The descriptive information in this case represents an opposing 

information scenario, in which case more reliable information is more trustful and 

hence acted upon. 

• A substantial impact of information reliability on varying deliberation time frames 

could be observed. The higher the reliability level the more elaborate the 

deliberation process. 

• The impact of information content on varying deliberation time frames is not 

apparently observed. 

Statistical Significance 

A repeated measure 2-way ANOVA test is performed on the Gardiner choice 

percentages to investigate information significance. This is performed for both reliability 

groups under different information scenarios. The significance of information content in 

varying choice percentages is reported to be statistically significant. However, the impact 

of the 20% difference in information reliability level is estimated to be insignificant in 

varying subjects' diversion attitudes. A reduced sensitivity of choice percentages to 

information reliability in the en-route choice context is, thus, revealed. This could be 
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related to the influence of another important factor: the "inertia effect." The inertia effect 

is simply the intuitive tendency of most drivers to continue on the same route. The 

interaction between compliance and inertia is significantly recognized in route choice 

literature as the primary factor driving en-route diversion behaviour (Sirinivasan and 

Mahmassani, 2000). 

The impact of information scenario and information reliability in varying 

deliberation time frames, reported a different statistical significance trend. While 

information reliability has a substantial impact on MDT, no significant effect of 

information content or interaction is reported. The evident increase in MDT under higher 

information reliability levels reflects a tendency to perform a more serious deliberation 

process. The accountability of disseminated information stimulates subjects' willingness 

to make better choice decisions by undertaking an elaborate decision-making process. 

6.4.2.2 Impact of Resistance to Diversion 

Most drivers intuitively prefer to stay on their current route, unless there is an 

actual need for diversion. Individual drivers assess the need for diversion based on the 

magnitude of the perceived gain from diversion. The effect of the current route on choice 

percentages for identical information scenarios is investigated to analyze the resistance 

trend. Each of the following four scenarios are tested independently: PG, PLS, DHH, and 

DHL. The remaining 2 scenarios are disregarded during the analysis due to an 

insufficient number of observations resulting from the stochastic nature of the 

experiment. Aggregate choice percentages for the four information scenarios categorized 

by the current route are presented in Table 6.9. 

Table 6.9 Mixed Reality Experiment, En-route %G Categorized by Current Route 

Information 
Scenario 

PG 
PLS 
DHH 
DHL 

Current Route 
Gardiner 

94.5 
45.2 
89.6 
34.9 

Lakeshore 
70.7 
15.2 
36.8 
29.4 
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Preliminary Observations: 

• Reduced Gardiner choice percentages are noticeable for trips starting on 

Lakeshore, for all information scenarios. This reflects a tendency to resist 

diversion, as higher percentages of drivers choose the Gardiner if they are already 

on it, compared to lower percentages choosing the Gardiner if they start on 

Lakeshore, given the same information (note that all the percentages in Table 6.9 

are %G). 

• A considerable difference in choice percentages is observed for PG, PLS, and 

DHH. However, the difference is less for DHL. 

Statistical Significance 

A set of one-way ANOVA tests is conducted to assess the significance of 

diversion-resistant behaviour for each information scenario separately. Testing results 

report a significant difference in choice percentages between trips starting on the 

Gardiner and those staring on Lakeshore for 3 information scenarios; PG, PLS, and DHH. 

In other words, subjects tend to resist diversion when perceived travel-time gains are 

minimal (DHH) or unknown (PG, PLS). On the other hand, when the perceived gain is 

substantial (DHL), the influence of the current route on choice percentages diminishes to 

an insignificant level. These results are consistent with the bounded-rationality principle 

in the route choice literature (Chen and Mahmassani, 1993). The bounded-rationality 

principle states that drivers divert only when the perceived travel-time gains, from 

diversion, exceeds a certain threshold level. 

6.4.2.3 Gender Impact 

Investigating gender differences in diversion behaviour is conducted based on 

data categorization by gender. The reduced level of significance of information reliability 

groups on choice percentages precluded the need for creating separate categories for 

information reliability levels. However, for MDT, data are categorized separately for 

different information reliability groups. Similar to information significance investigation, 

data for trips starting on the Gardiner are only used for the intended analysis. Tables 6.10 

and 6.11 present the aggregate categorical measures for both %G and MDT, respectively. 

120 



Table 6.10 Mixed Reality Experiment, En-Route %G Categorized by Gender 

Information 
Scenario 

PG 
PLS 
DHH 
DHL 
DLH 
DLL 

Males 
%G 

94.9 
51.8 
92.7 
40.5 

98 
99 

Females 
%G 

92.6 
24.2 
93.6 
18.7 
100 
100 

Table 6.11 Mixed Reality Experiment, En-Route MDT categorized by Gender 

Information 

Scenario 
PG 
PLS 
DHH 
DHL 
DLH 
DLL 

Group 1 (0.6 
reliability) 

Males 
8.6 
5.6 
5.3 
4.5 

4 
6 

Females 
3.5 
1.2 
3.2 
3.8 
3.3 
3.5 

Group 2 (0.8 
reliability) 

Males 
12.5 
9.0 
8.1 

11.0 
9.1 

11.7 

Females 
5.5 
6.5 

10.6 
10.4 
4.5 
4.6 

Preliminary Observations: 

• Females' choice percentages reflect an increased level of impact of disseminated 

information on their diversion attitudes, for opposing information scenarios 

(DLH, DHL). 

• A slight increase in deliberation time frames could be observed for males relative 

to females under a reduced reliability level (group 1). 

• The variation between males' and females' MDT is more considerable under an 

increased reliability level. 

Statistical Significance 

The impact of information content in diversion trends of both males and females 

is assessed using a repeated measures 2-way ANOVA. Testing results, on choice 

percentages, report no main or interaction effect for the gender factor. However, a 

significant impact of gender differences, in varying deliberation time frames, is reported 
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under the reduced information reliability level (sub-group 1). The reduced sensitivity of 

diversion behaviour to the gender factor reflects the dominating impact of situational 

factors, represented by information provision and current route, over personal profiles, 

represented only by the gender dimension. 

6.5 COMPARATIVE ASSESSMENT: MIXED REALITY VS MAP-BASED EXPERIMENTAL 

RESULTS 

At this point in the analysis, observed route choice trends from both the pre-trip 

map-based and the en-route mixed reality experimental results could be logically 

interpreted and related to route choice literature. No severe unexplained deviations are 

encountered. The final step in this investigation is an assessment of the effect of the 

experimental procedure on test results. Subjects' route choice attitudes are compared 

under identical situational conditions for both experimental procedures. For this purpose, 

pre-trip choice decision measures from both testing procedures under No-info scenarios 

are compared. As the same test network, with identical traffic patterns, is adopted for 

both testing procedures, similar choice trends should be expected. However, the precision 

of the two methods in quantifying those trends is of interest. Figures 6.4 and 6.5 present 

the results of the choice percentages and MDTs for all subjects using both testing 

procedures. 
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Figure 6.4 Map-based vs. Mixed Reality MDT 

Two observations could be clearly depicted from the above figures. First, results 

from the mixed reality experiment reveal a lower level of preference toward selecting the 

Gardiner compared to results from the map-based one. Second, the deliberation time 

frames in the mixed reality experiment are higher than their corresponding map-based 

ones. 

Two one-way ANOVA tests are conducted to verify these preliminary 

observations statistically. The first is a comparison between choice percentages for pre-

trip decisions under No-info scenarios from both experimental procedures. A significant 

difference is reported between the two testing procedures with respect to choice 

percentages. The second test, performed on MDT, reports an absolute significant 

difference. The substantial increase in deliberation times under the mixed reality 

experiment manifests a desire to make more careful/serious decisions compared to the 

map-based experiment. In a mixed reality environment, consequences of a choice will be 

directly experienced. If a driver makes a bad choice, she/he will have to endure 

congestion and spend actual clock time behind the wheel. The significant decrease in the 

Gardiner route choice percentage is also a direct outcome of a more mature deliberation 

process that challenges the thoughtless propensity of sticking to the same choice without 

actually deliberating. 
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In summary, results of the experimental analysis indicate that map-based 

experimental route choice analysis captures the general route choice patterns in a 

qualitative sense. However, exposing subjects to a simulated driving experience within 

the mixed reality experimental procedure reproduced more credible quantitative results. 

The virtual reproduction of the choice environment, in addition to the tangible 

consequences of choice decisions contribute to a more serious testing environment. 

Nonetheless, real-time simulations of a large number of experimental trips are very time-

consuming, both for participants as well as researchers. Scheduling and conducting of the 

above experiments required several months of dedicated focus. As such, obtaining large 

sample sizes within the mixed reality environment is a challenge. 

6.6 CONCLUDING REMARKS ON EXPERIMENTAL ROUTE CHOICE RESULTS 

The analysis of route choice behavioural patterns estimated from the conducted 

laboratory experiments reveals significant insights that could be grouped into two levels. 

The first level is concerned with the assessment of decision patterns for each choice 

context (pre-trip and en-route) independently. Results of the map-based experiment are 

used for the analysis of pre-trip choice behaviour. The relatively large number of map-

based experimental trips, with a considerable representation of all information scenarios, 

assists in the distinction of various behavioural patterns. A significant information impact 

in terms of form, content and reliability is reported for pre-trip choice decisions. 

Subjects' pre-trip choices are significantly altered when receiving traffic information that 

substantially challenges their expectations. A considerable sensitivity of choice attitudes 

to the limited variation in information reliability (20%) is observed. In addition, the 

impact of gender differences in varying choice patterns is significantly observed only 

under the reduced reliability level. 

En-route diversion behaviour, observed from the mixed reality experiment, 

reveals other insights. The significant impact of information content and current route 

dominate all other investigated factors. The interaction between compliance and inertia 

impacts subjects' diversion behaviour. The trade-off is based on the significance of 

perceived gains from diversion. Minimal and unknown travel time gains stimulate a 

resistance to diversion attitude, reflecting a bounded-rationality type of behaviour. 
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The second level of analysis is focussed on the assessment of the value of the 

experimental procedures as data collecting tools. Three main conclusions are drawn from 

this analysis: 1) the testing procedure (mixed reality vs. conventional map based) has a 

significant impact on experimental results, 2) map-based testing procedure is capable of 

portraying a generic picture of route choice behaviour and is thus suited for qualitative 

high level assessments, and 3) mixed reality platform has a potential to enhance the 

realism of in-lab simulated route choice experiments, hence improving the credibility of 

collected data. 
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7 DFT ROUTE CHOICE MODEL PARAMETER ESTIMATION 

7.1 PRECIS 

The focus of this chapter is on estimating the values of the DFT route choice 

model parameters. Route choice observations collected from the simulated driving 

experiments (discussed in chapters 5, 6, and 7) are used for calibration. Estimation of 

model parameters is based on the minimization of prediction errors using Genetic 

Algorithms (GA) as an optimization tool. Predictions are based on computer simulation 

of route choice behaviour using the DFT model. As such, a GA-based optimization 

platform is developed in this research to serve as the parameter estimation tool. A 

detailed description of the adopted estimation methodology is presented. Finally, 

estimated results and insights conclude this chapter. 

7.2 GA: AN EVOLUTIONARY APPROACH FOR PARAMETER ESTIMATION 

Estimation of DFT route choice model parameters is formulated as an 

optimization problem that involves minimization of errors between predicted and 

observed measures (Diederich, 2003, Diederich and Busemeyer, 1999). While observed 

measures (choice probabilities and MDTs) are collected through in-lab simulated route 

choice experiments, model-based choice prediction can be achieved using two different 

approaches. The first approach is based on closed-form analytical prediction. In this 

approach, predictions are outputs of formulas mathematically drived from the basic DFT 

structure based on some approximating assumptions (Busemeyer and Townsend, 1993, 

Diederich, 1997 and Busemeyer and Diederich, 2000). The second approach relies on 

simulation, where predicted measures are outputs of a computer-simulation of the 

deliberation process (Roe et al., 2001). While mathematical formulas are more tangible to 

deal with, the power of the simulation-based approach relies on its preservation of all of 

the theoretical model characteristics. Simulating the deliberation process limits the 

amount of lost information during mathematical approximations. With the current 

advancements in computer-based simulations, the simulation-based approach is deemed 

more appropriate for prediction purposes of the problem in hand. However, classical 

optimization techniques are not suited to deal with simulation-based optimization 
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problems. Therefore, a non-classical evolutionary-based optimization technique is 

considered for the simulation-based parameter estimation problem. 

Evolutionary Algorithms (EA) are search algorithms that mimic the natural 

fitness-based selection process that is well known in evolutionary theories. EA rely on the 

concept of survival of the fittest (or most optimum) to guide a randomly generated 

population of solutions towards improvement. As each new generation of solutions is 

created, bits and pieces of the fittest members of the previous generations are reused and 

recombined (Goldberg, 1989). 

Genetic algorithms (GA) are one of the basic forms of EA. GA were first 

investigated by John Holland (1975) at the University of Michigan. Further studies were 

carried out by his students (for example, De Jong, 1975 as indicated by Whitley, 1994). 

For the purpose of parameter estimation, GA are used as function optimizers. The 

strength of GA as a stochastic search-optimization technique stems from its global 

searching perspective. Many classical optimization methods transfer from a single point 

in the decision space to the next using some transition rule. These point-to-point methods 

can be trapped in false peaks in multimodal search spaces. Alternatively, GA works from 

a rich database of points simultaneously, climbing many peaks in parallel. GA operations 

are not based on gradient information. Thus, they are highly applicable to problems 

having non-differentiable functions, as well as functions with multiple local optima 

(Whitley, 1994). 

The application of GA within many transportation optimization problems reports 

advantages in dealing with non-convexity, locality and complexity of such problems 

(Kattan, 2004). The adopted simulation-based approach for DFT route choice prediction 

features a complex and multi-dimensional solution space. As such, the adoption of GA as 

an optimization tool for model parameters estimation is considered. 
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7.3 GA-BASED PARAMETER ESTIMATOR PLATFORM 

The specifics of the problem in hand require the development of a tailored GA-

based optimization tool. A computer program is coded in a Visual Basic environment for 

this purpose. A basic GA architecture is adopted. Classical GA operations are considered. 

For a comprehensive description of the basic GA operations in addition to more 

sophisticated GA implementations the reader is referred to Goldberg (1989). 

The conceptual DFT route choice modelling framework describes three 

deliberation models: no information, descriptive information and prescriptive information 

models. Each deliberation model has its own schematic, decision variables and decision 

parameters. Accordingly, three different versions of the GA-based optimization program 

are developed. This section presents an overview of the adopted optimization platform. 

7.3.1 GA Architecture 

The fundamental structure of all GAs can be described through the following 

simplified algorithm: 

BEGIN 

Generate a new population of solutions 

While terminating conditions are not met DO 

Evaluate the solutions 

Select the better solutions 

Recombine solutions using genetic operators 

END 

The procedures involved in: population generation, selection of best solutions, 

and re-combinations using genetic operations, vary tremendously across various genetic 

algorithms. Figure 7.1 illustrates the GA procedure for estimating DFT route choice 

model parameters. The following sections discuss each procedure in further detail. 
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7.3.2 GA Implementation 

7.3.2.1 Problem Encoding 

This step translates a solution into a "string" or "chromosome" that can be 

manipulated by the GA. Binary encoding is utilized in the GA. Binary encoding allows 

relatively simple genetic manipulations of the chromosome to take place. Each 

chromosome represents an entire solution. Each chromosome is divided into a number of 

stretches (bit sets) corresponding to the number of parameters to be estimated. The 

developed architecture allows the selection of various bit encodings for each parameter 

(128, 256, 512, and 1024 encodings). Larger bit encodings divide the solution space into 

smaller search intervals but tend to increase computational complexity. Figure 7.2 

presents an example of a 128 bit encoding of GA chromosome. 
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Figure 7.2 GA Chromosome 

7.3.2.2 Population Initialization 

Genetic algorithms work with a population of solutions. The initial population is a 

completely randomized set of solutions that lie within the feasible solution space. The 

developed architecture allows various population sizes to be manipulated. Larger 

population sizes tend to increase computational complexity. Smaller sizes run the risk of 

entrapment in local minima. 

7.3.2.3 Parent Selection 

Genetic algorithms rely on concepts of survival of the fittest. Based on this 

concept, more optimal solutions have higher chances of selection during the population's 

evolution. A Roulette-Wheel selection procedure is adopted. Each of the population 

solutions (chromosomes) is represented on the roulette wheel through a sector that is 

proportional to its estimated fitness value. Selection of parent chromosomes is undertaken 

using "stochastic sampling with replacement" (Whitley, 1994). The process of solution 

evaluation can be as straightforward as calculating a simple formula or as complicated as 

running a simulation experiment. The GA-based parameter estimation runs a deliberation 

process simulation to evaluate the fitness of each solution as described in later sections. 
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7.3.2.4 Genetic Operator 

After candidate parents are selected they are manipulated using genetic operators. 

Crossover operators exchange genes between parent chromosomes, hence, produce 2 new 

solutions. Random single-point crossover is used in the GA. 

Figure 7.3 illustrates how this crossover takes place. 

Parent A 

Parent B 

< 

1 1 0 1 0 

0 1 1 1 1 
1 

Crossover Point 

i 

0 

0 

Offspring 1 

Offspring 2 

1 1 0 1 1 0 

0 1 1 1 0 0 

Figure 7.3 Example of a Single Point Crossover with a Binary Encoding 

In addition to crossover, mutation is commonly used as a genetic operator. 

Mutation involves the random alteration of a bit value in the chromosome. The main 

motivation for using mutation is to allow for the exploration of new areas in the solution 

space, and hence, preventing premature convergence. Small population sizes, in 

particular, are more prone to getting trapped in false peaks (Whitley, 1994). 

7.3.2.5 Evaluating the New Solutions 

Crossover and mutation create a new population of solutions. Each solution must 

be evaluated to ensure that: 

• It is not worse than the worst solution in the population, and 

• It is a feasible solution (i.e., it does not violate any of the optimization constraints). 

If both conditions are met, the new solutions are introduced into the population by 

replacing the worst solutions. This ensures a relatively quick conversion rate of the 

algorithm. Solution evaluation is based on estimation of a fitness function. The fitness 

function is a quantification of the predictive accuracy of the DFT route choice model 

based on the set of parameter values being evaluated. As such, the evaluation of a 

solution point is achieved in three steps: (1) deliberation-processes simulation, (2) 

objective-function evaluation, (3) fitness-function evaluation, described in the following 

sections. 
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1. Deliberation processes simulation 

Prediction of route choice percentages and MDTs for each of the information 

scenarios, shown in Table 7.1, is performed through repeated simulations. For each set of 

model parameters being evaluated, i.e. for each chromosome, several simulations are 

performed to produce the choice percentages and MDTs statistics under each scenario. 

The number of repeated simulations is user-defined. Specification of the appropriate 

number of repeated simulations is a trade-off between accuracy and computational 

complexity. As the operation of GA is based on population evaluation rather than point 

evaluation, increased number of simulations per information scenario dramatically 

increases the computational complexity. On the other hand, a very small number of 

simulations jeopardizes the accuracy of the estimation process and precludes 

convergence. 

Specification of an appropriate number of simulation runs, for the problem in 

hand, is performed on a compromise basis. Results of the sensitivity analysis, on the 

variability of route choice measures with varying numbers of simulation runs, presented 

in section 5.5, report a significant decrease in estimated variability beyond 50 simulations 

(refer to figure 5.4). Based on observed computational time frames of a set of preliminary 

GA runs, 100 simulations per information scenario are used. For instance, under 

descriptive information, the total number of simulations in the calibration process = 

number of information scenarios (i.e. 4) x number of simulations per scenario (i.e. 100) x 

number of chromosomes per generation x number of generations to convergence, not 

including inferior and infeasible chromosomes. 

The simulation of a deliberation process is simply a second-by-second estimation 

of the evolution of decision-maker preferences based on the theoretical abstraction of 

DFT. The conceptual framework of each deliberation process is adopted for the 

simulation purpose. While decision variables (Anticipated State Probabilities, ASPs, and 

Attribute Payoffs, M) values are pre-defined through the experimental setup, decision 

parameters are determined by the GA optimization (refer to equation 3.1). 

At each time step, the decision maker integrates his previous evaluations with his 

instantaneous one. The instantaneous evaluation is based on the payoffs of a 

stochastically-chosen attribute under a stochastically-defined congestion state. A time-
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step value of one second is considered throughout the simulation process. A choice 

decision and a decision time are determined through either an upper-threshold bound or 

an externally imposed decision time, based on the adopted decision rule. Outputs of the 

simulation module are predicted route choice percentages and MDTs for each parameter 

set (chromosome) for each information scenario of the deliberation model in hand. 

Table 7.1 En-route Information Scenarios Categorization 

Information 
Type 

Descriptive 
Information 

Prescriptive 
information 

No information 

Information Contenta 

Disseminated Section-based 
Congestion States 

Gardiner Sec 2 
H 
H 
L 
L 

Lakeshore Sec 2 
H 
L 
H 
L 

Take Gardiner 
Take Lakeshore 

Drive Safely 

Scenario 
Abbreviation 

DHH 
DHL 
DLH 
DLL 
PG 
PLS 

No info 
aH denotes a high travel time (congested state), L denotes a low travel time (uncongested 
state) 
b This table is a reproduction of Table 6.7 

2. Objective function 

Parameter estimation is based on the minimization of prediction errors. Thus, a 

formulation of prediction error has to be defined. Prediction errors are represented in two 

dimensions: choice percentages and MDTs. As both measures are different in units, an 

overall percentage-based error is considered. 

Evaluation of the prediction accuracy of a specific solution point (chromosome) is 

based on the estimation of the Mean Absolute Percent Error (MAPE) (equation 7.1). 

MAPE averages all errors from all information scenarios within the deliberation model 

under investigation. Errors in choice percentages and MDTs are given equal weight in the 

MAPE calculation. Averaging of prediction errors (difference between DFT model 

outputs and the mixed-reality experiment results) from different information scenarios is 

based on a weighted scheme. Observed measures, for each information scenario, are 
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based on data recorded from a set of experimental trips in the mixed-reality simulator 

with identical information scenarios. Due to the stochastic nature of the experiments, the 

number of experimental trips conducted in the mixed-reality simulator under each 

information scenario is different. The significance of observed measures is dependent on 

the size of the respective data set. As the number of experiments increase, the power of 

observed measures is expected to increase as well. As such, prediction errors from each 

information scenario are weighted based on its corresponding sample size relative to the 

total sample size of the deliberation model in hand. 

• A l i i 1 \MDT.jcled(i)-MDTobsen,ed(i)\ 
M4^ = X^n^*%G^,^(0-%Go W e ,(0+{* J P = ^ ° ' '3(7.1) 

M 2 ' ' ' 2 MDTobserved(i) 

N. 
w , = - ^ - (7.2) 

Where: 

• n, is the number of information scenarios of the deliberation model under 

investigation 

• %Gpredicted(i)5 is the Gardiner-predicted choice percentage under 

information scenario i. 

• %G0bserved(i), is the Gardiner-observed choice percentage under 

information scenario i. 

• MDTpredictedO), is the predicted mean deliberation time under information 

scenario i 

• MDTobserved(i), is the observed mean deliberation time under information 

scenario i. 

• wt, weight assigned to the estimation error of information scenario i. 

• Nj, is the number of conducted mixed-reality simulated route choice 

experiments under information scenario i, from which observed measures 

are estimated. 

• NT, total number of conducted in-lab simulated route choice experiments 

for the deliberation model under investigation. 
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3. Fitness function 

The fitness of a solution point (chromosome) reflects its goodness or adequacy. 

As the prediction error decreases, the solution fitness increases. Thus, a simple 

transformation of the MAPE to its reciprocal value is adopted as a measure of fitness. 

7.3.2.6 Termination Criteria 

Termination of the optimization process is based on two criteria: degree of 

population convergence, and number of generations. The degree of population 

convergence at a given generation is measured by the difference between the objective 

function values of the best and the worst solutions of the population, as a percentage from 

the best value. The optimization process is terminated when the population converges to a 

pre-defined threshold. The value of the convergence threshold is user-defined. 

Alternatively, an upper bound to the number of GA generations is defined to terminate 

the optimization process, in case the population did not converge to the pre-defined 

threshold. 

7.4 DETAILED DESCRIPTION OF THE PARAMETER ESTIMATION METHODOLOGY 

Estimation of the route choice model parameters is based on data collected from 

the mixed reality experiments. Based on the significant impact of the testing procedure on 

experimental results (discussed in Chapter 6), map-based results are excluded and only 

mixed reality experimental observations are considered. Given the homogenous and 

limited sample size of test drivers, however, estimated parameter values are considered 

potential values for a specific class of drivers. Further generalization of the model to all 

classes of drivers will require wider-scope experimentation, which is beyond the scope of 

this research. 
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7.4.1 Mapping Experimental Setup to the Route Choice Model Conceptual 

Framework 

The conceptual framework of our route choice model, discussed in chapter 3, 

outlines the abstraction of three deliberation processes: a basic case with no information, 

a descriptive information case, and a prescriptive guidance one. The three processes are 

represented in the mixed reality route choice experiments. In the pre-trip choice situation, 

drivers have to choose between the Gardiner (G) and Lakeshore (LS), without 

information provision. En-route deliberation processes are concerned with the choice 

situation at the decision node with either descriptive or prescriptive information 

provision. As such, the following three deliberation models are considered: (1) Pre-trip 

No Information Deliberation model (PN-model), (2) En-route Descriptive-Information 

Deliberation model (ED-model), and (3) En-route Prescriptive- Information Deliberation 

model (EP-model). The operation of each model entails the definition of a schematic 

representation, decision variables, and decision parameters as described in the following 

sections. 

7.4.1.1 Schematic Representations 

In the PN-model three congestion levels are perceived for each of the two 

alternative routes (H, M, and L). The combination of congestion levels results in nine 

possible anticipated congestion states for each choice/action. Figure 7.4 displays the 

schematic representation of the PN-model. 

State 1.HH ^-*- D 

State 2: HM \ F 

State 3: HL 

State 4: MH 

State 5: MM 

State 6: ML 

State 7: LH 

State 8: LM 

State 9: LL 

Figure 7.4 PN-model Schematic Representation 

Action 

LS 
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En-route deliberation models are concerned only with the second half of the trip. 

According to the experimental setup, only 2 congestion levels are perceived for the 

second portion of the trip (H, and L). As such, both en-route deliberation models 

incorporate four possible congestion states. However, the number of considered 

attributes varies depending on the type of disseminated information. Only the basic 

choice attributes (Travel Time (TT), Distance (D), and Freeway usage (F)) are considered 

for the ED-model. A fourth attribute (Compliance (C)) is added to the EP-model. Figure 

7.5 and Figure 7.6 display the schematics of both en-route deliberation models. 

Action <T 

G, 2nd half t 

LS, 2nd half 

4 State 1:HH £\ 

L State 2: HL * 

*• State 3: LH 

* State 4: LL 

* TT 

*• D 

F 

Figure 7.5 ED-model Schematic Representation 
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Figure 7.6 EP-model Schematic Representation 

7.4.1.2 Decision Variables 

Decision variables, on the other hand, are abstract representations of the 

experimental setup in terms of attribute payoffs (M) and anticipated state probabilities 

(ASPs). Attribute absolute values are based on the experimental setup (section 5.3). 

Attribute payoffs are estimated using payoff formulations (sections 3.6.2.2, and 3.7.1.2). 

Mean values of travel time distributions, for different congestion states are used for the 

estimation of the travel time attribute payoff. Distances and freeway usage attribute 
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payoffs are directly estimated from the test network characteristics. Table 7.2 and Table 

7.3 present the absolute and the payoff values for pre-trip and en-route decision 

attributes, respectively. 

Table 7.2 DFT Route Choice Model Pre-trip Decision Attribute Values 

Attribute 

TT 
H 
M 
L 

D 
F 

G 
Absolute 

value 
12.00 min 
9.30 min 
6.60 min 

8340.00 m 
8340.00 m 

Payoff 
value 

1.82 
1.41 
1.00 
1.00 
1.00 

LS 
Absolute 

value 
16.00 min 
12.00 min 
8.00 min 

8432.00 m 
0.00 m 

Payoff 
value 

2.42 
1.82 
1.21 
1.01 
0.00 

Table 7.3 DFT Route Choice Model En-route Decision Attribute Values 

Attribute 

TT H 
L 

D 

-n
 

Ca 

G 
Absolute 

value 
5.80 
3.10 

3925.00 
3925.00 

1or 

Payoff 
value 

1.87 
1.00 
1.22 
1.00 

0 

LS 
Absolute 

value 
7.50 
3.50 

3224.00 
0.00 

Oor 

Payoff 
value 

2.42 
1.13 
1.00 
0.00 

1 

compliance attribute is considered only in EP-model. 

Experience-based anticipated congestion level probabilities are directly estimated 

from the experimental traffic condition controls. A probability value is assigned to each 

congestion level of each alternative route (for the pre-trip choice context: Prob-Hit Prob-

Mu Prob-U where Prob-Hj+ Prob-M^ Prob-Lrl, v=\ to 2 alternatives). Table 7.4 and 

Table 7.5 present anticipated congestion level probabilities for each alternative route, for 

pre-trip and en-route deliberation models, respectively. Based on the experimental setup, 

anticipated congestion level probabilities for all route sections are manipulated 

independently. As such, ASPs are estimated by combining the corresponding anticipated 

congestion level probabilities (ASPHH=Prob-Hi*Prob-H2, ASPHL=Prob-H1*Prob-

L2...etc). On the other hand, Information-based anticipated congestion level probabilities 

are direct translations of the content of descriptive information. 
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Table 7.4 Pre-trip Anticipated Congestion Level Probabilities 

Congestion 
Level 

H 
M 
L 

Experience-based 
Probability 

G 
0.36 
0.48 
0.16 

LS 
0.16 
0.48 
0.36 

Table 7.5 En-route Anticipate 

Experience-based Probability 
Information-
Based 
Probabilitya 

a Information-

DHH 
DHL 
DLH 
DLL 

jased congestion pr 

;d Congestion Level Probabilities 

G 
H 

0.6 
1 
1 
0 
0 

obabilities 

L 
0.4 

0 
0 
1 
1 

LS 
H 

0.4 
1 
0 
1 
0 

> are considered on 

L 
0.6 

0 
1 
0 
1 

y in ED-
model. 

7.4.1.3 Decision Parameters 

Decision parameters are the subject of the calibration process. A GA-based 

parameter estimation technique is adopted as described earlier in this chapter. Parameter 

estimation is based on the minimization of predicted versus observed choice measures. 

Table 7.6 summarizes the decision parameters that need to be estimated for each of the 

three considered deliberation models. 
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Table 7.6 DFT Route Choice Model Decision Parameters 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

PN-model 

WTT, Travel Time weight 

WD, Distance weight 

WF, Freeway Usage weight 

7ITT, Travel Time attention probability 

7TD, Distance attention probability 

7Cp, Freeway Usage attention probability 

Po(0), Gardiner initial preference strength 

PLS(O), Lakeshore initial preference strength 

Sji, i=l to 3. Self-connections (diagonal elements 

ED-modei 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

WTT 

WD 

WF 

TtTT 

7CD 

7tF 

PG(0) 

PLS(O) 

Sjj 

EP-model 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

WTT 

WD 

WF 

71TT 

7tD 

WF 

PG(0) 

PLS(O) 

Sii 

of feedback matrix) 

10. Sy, i=l to 3, j=l to 3, i*j. Interconnections (off- 10. Sy 10. Sii 

diagonal elements of feedback matrix) 

11.9, Threshold bond 11.9 11.9 

12. GE, Residual error probability distribution 12. aE 12. ae 

parameter. 

13. Winfo
a 13. Wcb 

14. Ttc
b 

a Information weight in congestion state perception 
b Compliance attribute 

7.4.2 Data Aggregation 

Each individual is different and hence the estimation of subject-specific 

parameters could be considered the ideal theoretical approach to adopt. This entails the 

availability of a fairly large number of choice observations for each subject under each 

information scenario. Obtaining a large set of observations through real time simulations 

is very time-consuming and hence is beyond our experimental scope. Moreover, even 

with subject-specific parameters an aggregation methodology is required for 

generalization purpose. A large cross-sectional-type sample is required for this type of 

analysis. 
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Alternatively, the adopted parameter estimation methodology is based on the use 

of aggregate observations. Observed data are categorized into a number of homogenous 

groups. Aggregate observations from each group are used to estimate group-specific 

parameters. Data categorization is based on the results of the statistical analysis, 

presented in Chapter 6. Three factors are reported to have significant impacts on pre-trip 

and/or en-route choices: information characteristics, gender differences and inertia effect. 

The categorization of observed data is summarized in Figure 7.7. Data are 

grouped into two main groups: males and females. Each group is further divided into two 

sub-groups: sub-group 1 with 0.6 information reliability level, and sub-group 2 with 0.8 

information reliability level. Within each sub-group, observations from different 

deliberation situations are separated (pre-trip, en-route descriptive information, and en-

route prescriptive information situations). Moreover, within each deliberation situation, 

observations are categorized according to information scenarios. For pre-trip choice 

decisions, only one information scenario (no information) is available through the mixed 

reality experimental data. As for en-route decisions, there are two information forms 

(descriptive and prescriptive) with six information scenarios (DHH, DHL, DLH, DLL, 

PG, PLS). Trips starting from the Gardiner are only used for en-route parameter 

estimations, as it represents the largest portion of data with a representation of all 

scenarios. 

A data set for estimation and another for testing are extracted from each cluster of 

observations, with a ratio of 3:1 respectively. The only exception for the 

estimation/testing categorization is sub-group 1 of the female group. The limited sample 

size for this sub-group precluded the extraction of a testing set. Finally, choice 

percentages and MDTs are estimated, as dependent variables, for each sub-set of 

observations. Based on the above categorization methodology, decision parameters are 

estimated, for each sub-group, for each deliberation model (PN-model, ED-model, and 

EP-model). Within each deliberation model, different information scenarios represent 

different decision variables (different independent variables). 
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Figure 7.7 Observed Data Categorization for Parameter Estimation 
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7.4.3 Parameter Estimation Assumptions 

7.4.3.1 General Assumptions 

The following assumptions are adopted throughout the parameter estimation 

procedure for all deliberation models: 

• Since there are only two choice options, initial preference strengths (Pi(0) and 

P2(0)) are substituted by a single value representing the initial preference 

strengths difference (AP). Based on the experimental observations, the pre-

deliberation bias consistently takes the Gardiner side for the "no information" pre-

trip choice decisions as well as for the en-route divergence decisions. 

Po(0)= AP 

• Based on many psychological studies, the values of the self-connections (Su) of 

the feedback matrix are assumed to be positive and equal (Diederich, 2003, 

Busemeyer and Diederich, 2002, and Roe et al., 2001). 

Sn € [0,1] 

Sll=S22=S33 

• Interconnection values (Sij) are assumed to be negative and equal for all 

alternatives combinations (Roe et al., 2001). 

S u e [-1,0] 

Sll=S22=S33 

• Based on DFT literature, the Eigen values of the feedback matrix (S) are restricted 

to less than 1 to ensure system stability (Busemeyer and Diederich, 2002). 

• Attribute attention probabilities (rc's) are assumed to be time invariant (Diederich, 

2003). 

• The residual error is neglected during the simulation of all deliberation processes 

within the GA-based parameters estimation. The GA estimation procedure 

focuses on searching for the optimal parameters despite the noise in the aggregate 

observations. Incorporation of a random error term within this approach may 

magnify the noise, distracting the search for an optimal solution. 
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7.4.3.2 Within Gender Group Assumptions 

The following assumptions are considered during the estimation of sub-group 

decision parameters, within each gender group. These assumptions impose some 

reasonable restricting similarities on estimated parameters. This in turn, reduces the 

number of parameters that need to be estimated. Figure 7.8 summarizes the assumed 

restricting similarities using a colouring scheme. 

• Attribute weights (WTT, WD, and WF) are assumed to be constant across all 

deliberation models of both information reliability sub-groups. Attribute weights 

are concerned with the normalization of attribute payoffs relative to their 

significance for the decision-maker. The significance of the values of attribute 

payoffs are expected to be more individual-specific than situational-specific. 

• Attribute attention probabilities (7ITT, ^D, and TIF) of PN-model and ED-model are 

assumed equal for both information reliability sub-groups. Attribute attention 

probabilities reflect the relative importance of considered attributes to the 

decision-maker. The more important the attribute is, the more likely it comes into 

focus at any point in time. Attribute attention probabilities must sum up to unity 

for any deliberation model. Both PN-and ED-models consider the same attributes 

(TT, D, and F), whereas an EP-model considers a forth one (C). 

• Feedback matrix (S) is assumed to be constant across all deliberation models of 

the same gender group. The feedback matrix provides memory of previous states 

as well as competition between alternatives. Feedback rates are expected to be 

individual-specific. 

• The entire gender group data are aggregated for the PN-model. Sub-group 

categorization is based on information reliability. With no information provision, 

no sub-group categorization is required. 
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Figure 7.8 Within Group Assumed Restricting Parameter Similarities 

7.4.4 Multilevel Step-wise Parameter Estimation Framework 

The methodology adopted in estimating deliberation model parameters has two 

main dimensions. First, there is the within-deliberation-model dimension; concerned with 

the estimation of parameters for a specific deliberation model. A multilevel (a sub-group 

level, and a group level) estimation approach is adopted for that purpose. Second, the 

between-deliberation-model dimension; where assumed similar value parameters are 

transferred from one deliberation model to the other in a step-wise approach. Figure 7.9 

presents the overall estimation framework. The same estimation framework is adopted for 

both gender groups, independently. The following sections discuss the details of the 

adopted framework. 
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7.4.4.1 Within Deliberation Model Dimension 

Estimation of decision parameters within each deliberation model of a gender 

group is the focus of this section. As discussed previously, each group is further divided 

into two sub-groups, according to their information reliability level. Based on the pre­

defined assumptions, a number of decision parameters are assumed to be equal for both 

sub-groups (refer to Figure 7.8). As such, the estimation of decision parameters for both 

sub-groups of a given gender group needs to be performed concurrently in a parallel 

manner. The large number of parameters that need to be estimated within a parallel-

estimation procedure magnifies the problem solution space. To reasonably limit the 

solution space and thereby guide the GA-based search to a near-optimum solution, a 

multilevel estimation approach is adopted. In the multilevel approach, parameter 

estimation is performed on two levels: (1) a sub-group level, and (2) a group level. In the 

following sections, each level of estimation is discussed in detail. Figure 7.10 presents a 

schematic of the adopted multilevel estimation approach. It should be noted that the 

scope of the multilevel estimation approach is restricted to each deliberation model 

independently. Interactions between deliberation models are discussed afterwards. 

1. Sub-group level parameter estimation 

In the sub-group, parameter estimation level, the best estimated solution and a 

feasible solution space are defined for the decision parameters of the deliberation model. 

This is performed independently for each sub-group. Only the general estimation 

assumptions (discussed in section 7.4.3.1) are considered during this level of estimation. 

Group-restricting similarities are overlooked at this point. The estimation procedure 

adopts a GA-based coarse-to-fine search procedure. The coarse-to-fine search is 

concerned with defining an upper and a lower bounding value for each of the model 

parameters. A series of extensive runs of the GA estimator is conducted within varying 

parameter solution space boundaries. Boundary manipulation starts from a wider range 

and moves toward a narrower one. Subsequently, the best solution is identified within the 

defined boundaries. A feasible solution space is then restricted to the vicinity of the best-

estimated solution. 
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Figure 7.10 Multi-level Parameter Estimation Approach 

2. Group level parallel parameter estimation 

The group-level parameter estimation is concerned with the concurrent estimation 

of sub-group decision parameters within a combined search space. To achieve this 

simultaneous estimation, the GA estimator runs in parallel for both sub-groups. A parallel 

run is achieved based on the following criteria. 

• A unified population; each solution point includes values of decision parameters 

for both sub-groups. 

• Parallel simulations; estimation of predicted observations is performed through 

the simulation of the underlying deliberation process. This is performed for each 

sub-group, based on its respective parameters in the solution under consideration. 
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Outcomes of this step are a set of predicted observations for each sub-group, 

under each information scenario. 

• Overall evaluation; a unified MAPE is estimated for each solution under 

investigation. The overall MAPE is the average of both sub-group MAPEs, 

weighted by the number of experiments observed for each sub-group. 

Within the parallel estimation procedure, the increased dimension of the problem 

solution space challenges the efficient search for a near-optimal solution. Imposing 

reasonable restrictions on the problem-solution space is necessary. Restrictions are 

reasoned from two perspectives: number of parameters to be estimated and boundaries of 

each parameter value. 

First, with respect to the number of parameters to be estimated, the pre-specified 

within-group assumptions, discussed in section 7.4.2.2, initially impose some restricting 

similarities between some of the group parameters. However, to investigate a further 

reduction in the number of unique parameters, a comparison is performed between the 

best solutions estimated for both sub-groups, through the sub-group estimation level. 

Other than the pre-assumed similarities, if the values of a certain parameter are estimated 

to be the same (within 10%) for both sub-groups, the two parameters are assumed to be 

one, and hence, reducing the number of total parameters. 

The second perspective in limiting the problem solution space is concerned with 

the solution space boundaries. The performance of the parallel GA estimator relies on the 

localization of the solution space. As such, the boundaries of the group-level solution 

space are restricted to the envelope of the feasible solution spaces of the sub-group 

estimation level. 

7.4.4.2 Between Deliberation Models Dimension 

Until this point, each deliberation model is handled independently (i.e. different 

models for PN, ED, and EP). Pre-assumed restricting similarities between the parameters 

of the different deliberation models is not yet addressed. The parallel estimation 

procedure is limited to the sub-groups of each deliberation model. Extending this parallel 

estimation procedure to account for the similarities between deliberation models is 
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computationally challenging. The computational complexity of such a problem is beyond 

the scope of our analysis. However, a step-wise estimation approach is adopted to 

account for the deliberation models' restricting similarities. In the step-wise approach, 

parameters with assumed similar values are transferred from one deliberation model to 

the other. It is important to note that the adopted approach is applied to both gender 

groups independently. No similarities are pre-assumed between gender groups. 

The first step in the step-wise estimation procedure is concerned with the 

estimation of the ED-model parameters. The selection of this model as a starting point is 

based on the availability of observed measures for a number of respective information 

scenarios (4 descriptive information scenarios, compared to 2 prescriptive and 1 no 

information). The increased number of situational scenarios adds to the credibility of 

estimated results. Through the multilevel estimation approach, model parameters are 

estimated for ED-model (step 1). Values of common parameters (same color shade in 

Figure 7.7) are then transferred to EP-model, where a multilevel estimation procedure is 

to be performed (step 2). It is important to emphasize that the values of the transferable 

parameters are fixed to their pre-estimated values (in step 1) throughout the two levels of 

estimation of EP-model parameters (step 2). Finally, the third step is concerned with PN-

model. After fixing pre-estimated parameters from the other deliberation models, the rest 

of the model's unique parameters are estimated. Only a group estimation level is 

conducted for the PN-model, as information reliability sub-divisions are irrelevant in a 

"no information" scenario. 

To further reduce the number of parameters to be estimated in steps 2 and 3, an 

investigation of revealed similarities is undertaken. Revealed parameter matches are 

identified within each deliberation model as well as between deliberation models. 

Parameter values obtained at the sub-group estimation level for each step are compared to 

the estimated results at the previous step(s). Parameters with values within 10% of each 

other are unified as discussed next. 
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7.5 PARAMETER ESTIMATION RESULTS 

7.5.1 Revealed Restricting Similarities 

The following similarities between parameter sets are revealed during the 

estimation procedure. The parameters that are found similar (values within 10%) are 

unified into one parameter. Figure 7.11 presents the sequential flow of parameters from 

one step to the other, based on both pre-assumed and revealed results. 

• Initial preference strength difference (AP) of ED-model and EP-model 

are similar, for both information reliability sub-groups. 

• Attribute attention probabilities (njj, TCD> TIF> and 7ic), under EP-model, 

are similar for both information reliability sub-groups. 
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Figure 7.11 Step-wise Flow of Parameters Based on Pre-specified and Revealed 

Restricting Similarities 
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7.5.2 Estimated DFT Route Choice Model Parameters 

Estimation of the deliberation models' parameters is conducted based on the 

above adopted methodology. General assumptions, pre-specified within group 

assumptions, and revealed restricting similarities are all considered during the course of 

estimation as detailed earlier. The developed GA-based optimization platform is used 

throughout the estimation procedure as the estimation tool. Based on extensive testing as 

well as common practices cited in the literature, the following GA variables are specified: 

• Initial Population size= 500 

• Cross-over rate= 0.7 

• Mutation rate= 0.02 

• Max number of generation= 400 

• Convergence Threshold^ 10% 

For each model, parameter estimation is based on the minimization of MAPE of 

the predicted (from the model) versus the observed (from the mixed reality experiments) 

aggregated measures for the estimation data set. Figure 7.12 presents a sample of a GA 

run convergence chart. 

100 150 200 250 

Generation Number 
400 

Figure 7.12 GA Convergence Chart 
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After completing the estimation process, MAPE is calculated for the test data set. 

The MAPE of the test data is used as an indicator of the performance adequacy of the 

estimated parameters. Table 7.7 presents the estimated models' parameter values for all 

data groups together with the calculated MAPEs for both estimation and testing data sets. 

Details of observed versus predicted measures for each deliberation model of each gender 

group are presented in Appendix C. 
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7.5.3 Insights into Parameter Estimation Results 

7.5.3.1 Within-Group Insights 

The following is a discussion of revealed within-group variations in estimated 

parameter values. The objective is to enhance our understanding of the characteristics of 

the deliberation processes underlying route choice decisions. The representations of 

situational factors within the deliberation process parameters are the focus of this 

analysis. While estimated parameter values for the two gender groups are different, the 

general trends for the within-group variations are revealed to be similar. Thus, a unified 

discussion is presented. 

/. Attribute Weights 

• Estimated attribute weights have logical signs. Travel time and travel 

distance exert negative impacts as travellers logically prefer faster and 

shorter routes. Compliance attribute exerts a positive impact (0.79, and 

1.12 for male sub-groups, 4.78, and 9.38 for female subgroups). 

Expectations for the freeway usage attribute are not well established; some 

drivers might favour taking the freeway while others may alternatively 

prefer the surface street. The aggregate perception within our conducted 

parameter estimation reveals a preference to take the freeway (a positive 

freeway usage weight; 2.45 for males and 0.7 for females). The increased 

preference to use the freeway coincides with the stated preference 

questionnaire results, discussed in section 5.2. 

• The travel time attribute payoff is the most significantly perceived one 

(with the highest attribute weight). 

• The impact of information reliability level is quite clear in altering the 

compliance weight (Wc). As information reliability increases, the 

confidence in provided recommendations increases and so does the weight 

allocated to the compliance attribute. 
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Feedback Matrix 

• The self-connection (Sii) values are estimated to be sub-unity (0.65 for males, 

and 0.69 for females). This means that even though the deliberation time 

frame is limited, there is a decaying effect of instantaneous preferences with 

time. Nonetheless, the decaying rate is limited. 

• Estimated negative values for the inter-connection (Sy) elements of the 

feedback matrix reveal the competitive nature between choice alternatives 

(-0.3 for males, and -0.18 for females). 

Attribute Attention Probabilities 

• In the absence of specific prescriptive guidance, travel time is significantly the 

most salient attribute of all. This is reflected in an attention allocation 

probability of 0.71 compared to 0.14 and 0.15 for travel distance and freeway 

usage respectively, for the male ED-model as an example. The estimated 

order of significance of attributes, based on attention allocation probabilities, 

coincides with the stated preference questionnaire results. However, the 

precedence of the travel time attribute is much more pronounced in revealed 

observations. 

• In the presence of en-route prescriptive information, the compliance attribute 

appears in the picture taking over a significant portion of the decision-maker's 

attention. The attention allocation is almost divided between travel time (0.42 

for males, and 0.5 for females) and compliance (0.48 for males, and 0.38 for 

females), leaving minimal consideration to other attributes. 

• Within EP-model, attribute attention probabilities are estimated to be equal for 

both information reliability sub-groups (revealed restricting similarities). This 

means that the impact of information reliability on drivers' compliance is 

manifested only in the value of the compliance weight. However, compliance 

attention probabilities are not affected. 
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4. Information Weight 

• A variation in the information weights of ED-model is revealed with the 

change in information reliability level (for example from 0.23 to 0.45 for 

males). The higher the information reliability level, the larger its influence on 

drivers' perceptions. 

5. Initial Preference Difference 

• Initial preference differences for both en-route deliberation models, for both 

sub-groups, are revealed to be similar (2.71 for males, and 1.88 for females). 

This means that decision-makers' en-route initial bias is formulated based on 

past experiences, with no specific impacts of disseminated information 

characteristics. 

• The estimated en-route initial preference difference is higher in magnitude 

than the pre-trip one (2.71 vs. 2.13 for males and 1.88 vs. 0.48 for females). 

This could be related to the "inertia effect;" where the en-route pre-

deliberation bias to continue on the chosen route exceeds the pre- trip one. 

6. Threshold Bound 

• The impact of information characteristics in altering estimated threshold 

bounds is significant. Figure 7.13 and Figure 7.14 display the variations in 

threshold bounds for different deliberation models for male and female 

groups, respectively. While both en-route deliberation processes start from the 

same level of initial bias, their decision-making thresholds are substantially 

different. The ED-model is observed to have higher estimated threshold 

bounds compared to the EP-model. Explicit guidance advice is perceived to be 

less mentally demanding. In addition, information reliability is another 

dimension that has a direct impact on threshold bounds. Higher reliability 

levels stimulate more serious/cautious deliberation processes and hence 

increased threshold bounds. 

• The estimated threshold bound for PN-model is considerably lower than the 

en-route ones. This trend reveals two insights: 
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o In the absence of information, during recurrent trips, drivers do not 

undertake a long deliberation process prior to starting each trip. This 

could be related to the default choice type behaviour in route choice 

literature (Lotan, T. and Koutsopoulos, 1999). The default choice 

behaviour is simply the inclination to make the same choice, each 

time, in the absence of conflicting information. 

o The choice context has a direct impact on the deliberation processes. 

During en-route choice decisions with VMS descriptive or prescriptive 

information provision, drivers are triggered to think for sometime prior 

to reaching the decision node. However, in pre-trip decisions with no 

information, drivers start their trip and do not waste time undergoing a 

long deliberation process with uncertain outcomes, as there is no new 

information to think about. 
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7.5.3.2 Berween-Group Insights 

While the general variation trends in estimated parameters values within each 

gender group are estimated to be similar, the estimated values of corresponding 

parameters and variations levels are different. In this section, parameter values and 

variation levels are discussed for the two gender groups, from a comparative perspective. 

1. Attribute Weights 

Estimated weights for travel time, and compliance attributes for the female group 

are significantly higher than their corresponding values for the male group (Figure 7.15). 

The higher values reflect an amplified influence of travel time gains and information 

source recommendations on females' route choice decision-making process. 

Alternatively, a lower value of the freeway usage attribute weight is estimated for the 

female group. A reduced impact of freeway usage consideration is, hence, revealed. 
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2. Feedback Matrix 

Comparable values are estimated for the self-connection (Su) (0.65, and 0.69 for 

males and females respectively). However, the competitiveness between alternatives is 

more pronounced within the male group. This is represented by the higher value of 

interconnection (Sjj). 

3. Attribute Attention Probabilities 

In general, reasonably comparable values are estimated for all attribute attention 

probabilities for the male and the female groups. However, a slight decrease in the 

attention probability allocated to the freeway usage attribute is estimated for the female 

group. 

4. Information Weights 

While descriptive information consideration increases as information reliability 

level increases for both gender groups, the magnitude of the increase in Wjnf0 is different. 

Estimated Wjnf0 values, for the male group, reveal an increased sensitivity to the 

reliability of disseminated descriptive information, compared to the females (Figure 

7.16). Males tend to lose confidence in disseminated information more vigorously. 
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Figure 7.16 Estimated Information Weights 

5. Initial Preference Difference 

An increased level of initial bias is estimated for the male group for both pre-trip 

and en-route deliberation models. However, the estimated sensitivity of AP to the choice 

context is more pronounced in the female group (Figure 7.17). A considerable increase in 

the level of initial preference difference is revealed for the female group in en-route 

deliberation models, compared to the pre-trip one. 
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Figure 7.17 Estimated Initial Preference Differences 
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6. Threshold Bound) 

Estimated values of threshold bounds vary from males to females in multiple 

dimensions. In an attempt to gain insight into the variation trend, estimated threshold 

values for each deliberation model are compared separately. 

• In the ED-model, a slight decrease in the value of 0 could be depicted for both 

sub-groups of the female group (Figure 7.18). Nonetheless, the sensitivity to 

information reliability level is similar for both gender groups. 

• In the EP-model, a more pronounced sensitivity to information reliability is 

estimated for the female group (Figure 7.19). A lower value of 9 for sub-group 1 

and a higher value for sub-group 2 magnify the difference. 

• Finally for the PN-model, the estimated value of 0 for the female group is higher 

than the male one. This reflects a more cautious behaviour in habitual choice 

situations with no information provision. 

25 

TJ 20 
c 
3 
o 
m 15 
;o 
o 
-5 10 
a> 

Sub-group 1 (R=0.6) Sub-group 2 (R=0.8) 

Reliability Group 

nM • Linear (M) Linear (F) 

Figure 7.18 Estimated Threshold Bounds for ED-model 
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7.6 SUMMARY OF MAIN FINDINGS 

Estimation of DFT route choice model parameters is conducted using a multilevel 

step-wise GA-based estimation procedure. Parameter estimation is based on the 

minimization of the differences between predicted and observed choice measures. 

Observed data are categorized into a number of data sets. Aggregate choice percentages 

and MDTs are estimated for each data set, under different information scenarios. 

Predicted measures are obtained through repeated computer-based simulations of each 

deliberation situation using the DFT model. Parameter estimation results report a MAPE 

ranging from 0.03% to around 10%, for the estimation data. An increased MAPE is 

estimated from the test data set, ranging from around 7% to 25%. It is noteworthy that the 

small sample size of the test data may have contributed to the larger errors ranges. 

Nevertheless, results from both the estimation and testing data sets are very encouraging. 

These positive results from the DFT model and the diversity of insights it offers certainly 

warrant further future experimentation and further testing. In the following, a brief recap 

of the main findings is presented. 

Consistent with the literature and intuitive expectations, the trade-off between 

alternative routes is mostly based on travel time savings. The role of travel distance and 

freeway usage attributes is less influential. While estimated attribute attention 

probabilities, for both gender groups, are almost similar, a considerable variation is 
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observed in estimated attribute weights. Except for the freeway usage attribute, lower 

values of attribute weights are estimated for the male group. 

Neither information form nor its reliability level impacts the value of the en-route 

initial preference bias. However, different values are estimated for each gender group. A 

lower level of bias is estimated for the female group. As such, the level of initial bias is 

revealed to be dependent on the decision-makers' accumulated experiences with no 

information influence. 

The impacts of information reliability level within ED-models are manifested in 

the values of two parameters: information weight and threshold bound. As information 

reliability increases the information weight increases. A similar trend is estimated for the 

threshold bound. As the information reliability level increases, decision-makers perceive 

the deliberation process more seriously by increasing their threshold bounds. The level of 

impact of the variation in information reliability on estimated threshold bounds is 

revealed to be similar for both gender groups. However, an increased level of impact is 

estimated for the male group with respect to the information weight. 

On the other hand, within EP-models, the impacts of information reliability levels 

are limited to the compliance weight and the threshold bound. No impact is estimated on 

the attribute attention probabilities, including the compliance one. An increase in the 

values of both impacted parameters is estimated with the increase in the reliability of 

disseminated information. An increased level of impact is estimated for the female group 

for both parameters. This reflects that, in the presence of specific advice, females exhibit 

an increased sensitivity to the reliability of disseminated information. 

Finally, the impact of the deliberation environment in varying deliberation model 

parameters is clearly observed in the different values of estimated threshold bounds. 

Within the en-route choice context, increased threshold bounds values are estimated for 

ED-models compared to EP-models. This indicates that the deliberation processes under 

descriptive information provision are perceived to be more challenging. On the other 

hand, estimated threshold bounds for PN-models are considerably less than en-route 

ones. This decrease could be interpreted in two dimensions. First, habitual choice attitude 

is common in recurrent trips. This attitude is increasingly manifested in the absence of 

information. Second, in the pre-trip deliberation context, travellers seem to start their trip 

164 



with little deliberation. While en-route, with information provision, traveller consume 

time deliberating the pros and cons of alternatives. 
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8 SENSITIVITY ANALYSIS OF ROUTE CHOICE TO 

DELIBERATION DYNAMICS 

8.1 PRECIS 

One of the main motivations for adopting DFT as a theoretical framework for 

modelling drivers' route choice behaviour is its ability to capture the dynamics of the 

choice process. The direct impact of the deliberation time dimension on altering choice 

decisions is of significant importance in route choice modelling. Choice decisions could 

be reversed under time pressure constraints. The time pressure constraint means that the 

available deliberation time frame is shorter than what the driver needs for making an 

unconstrained decision. Within DFT abstraction of the route choice deliberation process, 

drivers make their choices when their preference strength exceeds a threshold bound for a 

specific alternative. If the available deliberation time is less than what they need, the 

choice process is cut off with a premature decision prior to reaching that bound. The 

imposed interruption of the deliberation process could, therefore, result in different 

choice decisions. 

The focus of this chapter is on analyzing the impact of the deliberation time 

dimension on choice decisions. Simulated time pressure constraints are imposed on 

drivers' en-route deliberation processes using the developed DFT model. The impact 

trend is subsequently analyzed. For comparison purposes, an alternative structural-

oriented parameter estimation approach is investigated. Results of the structural-oriented 

estimation approach are compared to the process-oriented DFT approach. Conclusions on 

the significance of the added value of a process-oriented modelling approach are, finally, 

discussed. 

8.2 SIMULATED TIME PRESSURE CONSTRAINT 

The impact of time pressure constraints is quite evident in en-route choice 

decisions. The en-route deliberation process is restricted to the available time frame prior 

to the divergence point. Traffic information could be disseminated to drivers through 

different technologies. Some of which, such as radio reports, could reach a driver just 

before the diversion node. This results in much reduced deliberation time frames. 
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Therefore, the potential of various traffic communication technologies in disseminating 

useful and usable traffic information can significantly vary. As such, there is a need for 

enhancing our understanding of the impact of time pressure constraints on drivers' 

compliance behaviour. 

Within the scope of our experimental analysis, traffic information is disseminated 

to subjects through a VMS. The location of the VMS is well before the divergence node, 

relaxing the time pressure to allow for a fully informed decision process. Accordingly, 

the full deliberation process is captured until the unconstrained thresholds are reached. In 

the calibrated DFT model, shorter deliberation times can be imposed and the impact of 

which can be assessed. In this section, simulated route choice data are used to assess 

drivers' compliance attitudes under time constraints. 

8.2.1 Simulation Scope 

Generation of route choice data under time pressure constraints is based on the 

simulation of the deliberation processes, in accordance with the developed DFT route 

choice model. This analysis utilizes estimated en-route decision parameters for the male 

group only. Choice percentages are estimated for two information scenarios: DHL and 

PLS. Each of the two scenarios represents a challenging situation, where disseminated 

information opposes drivers' intuitive biases to take the Gardiner Expressway. Different 

choice percentages are estimated for different information reliability sub-groups. 

Simulation of the deliberation process is a second-by-second estimation of the 

evolution of drivers' preference strengths toward each of the alternative routes. In an un­

constrained deliberation process, decisions are made based on the first preference 

strength exceeding the upper-threshold bound. Under a time pressure constraint, the 

deliberation process is limited to a specific deliberation frame. If a decision is not reached 

within the specified frame, the alternative with the highest preference strength, at the 

deliberation time limit, is chosen. Experimentally observed mean deliberation time 

frames range from 4.5 to 16 seconds. A time pressure of 3, 6, and 9 seconds are 

externally imposed to restrict the deliberation process. Choice percentages are based on 

100 repeated simulations of the respective deliberation processes. Choice percentages of 

the base case (with no time pressure constraint) are preserved for comparison purposes. 
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8.2.2 Time Pressure Impact on Compliance Behaviour 

Sub-group choice percentages are estimated for each information scenario, under 

each considered time frame. As the adopted information scenarios are both challenging 

(favouring the Lakeshore), compliance rates are estimated to be the Lakeshore choice 

percentages. Figures 8.1 and 8.2 present the estimated sub-groups' compliance rates, for 

the descriptive and prescriptive information scenarios. 

A completely different behavioural trend is revealed under different information 

scenarios. Descriptive information provides drivers with network conditions (congestion 

levels) and it is up to the driver to make a decision. The incorporation of descriptive 

information into the decision-making process is, thus, time-consuming. Under tight time-

pressure constraints, the degree of influence of disseminated information in route choice 

behaviour is less pronounced. Longer deliberation time frames allow for more elaborate 

deliberation processes. Under a higher perceived information reliability level, compliance 

rates increase with the relaxation of the time pressure constraint. As the information 

reliability level decreases, drivers' perception of the significance of provided descriptive 

information decreases. The reduced confidence in provided information discourages 

drivers from undertaking elaborate deliberation processes, regardless of the available 

time frame. Compliance rates are, therefore, lower in value and less influenced by time 

pressure levels under the reduced reliability level. The practical implication of this 

finding is that if travellers are not provided with sufficiently accurate information and 

sufficiently long time to deliberate it, they are less likely to comply. The DFT model 

captures and quantifies this trend as shown in Figure 8.1. 

On the other hand, prescriptive information provides drivers with a route choice 

recommendation/decision rather than a plain description of the choice situation. Unlike 

descriptive information, perceived gains from prescriptive information isn't quite clear. 

An optimistic interpretation could assume that the provided recommendation is based on 

a substantial travel time gain. Alternatively, minimal travel time gains are also possible. 

Under tight-time pressure constraint, drivers are more inclined to adopt the 

explicit advice, as there is no time for further deliberation. As the deliberation time frame 

increases, a more elaborate deliberation process that incorporates the consideration of all 

possible expectations of travel time gains and information reliability is undertaken, 
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possibly magnifying uncertainty. As such, a decrease in compliance rates is estimated 

with increased deliberation time frames, for both information reliability sub-groups. 

Nonetheless, under reduced reliability, compliance rates are lower, in general, and the 

effect of time pressure constraints are less pronounced (significant only under extremely 

tight situations). 

Compliance 
Rate (%) 

no limit 

Deliberation time limit (sec) O Sub-group 1(0.6) 

a Sub-group 2 (0.8) 

Figure 8.1 Compliance rates under DHL 

no limit 

Deliberation time limit (sees) D Sub-group 1 (0.6) 

• Sub-group 2 (0.8) 

Figure 8.2 Compliance rates under PLS 
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8.3 STRUCTURAL-ORIENTED VS. PROCESS-ORIENTED PARAMETER ESTIMATION 

Estimation of DFT route choice model parameters is based on the minimization of 

prediction errors. From a process-oriented modelling perspective, prediction errors are 

not solely concerned with choice decisions. They also include the time taken to reach this 

decision. Accordingly, MAPE, incorporating choice percentages and MDT, is an 

appropriate measure of prediction errors. As such, the developed DFT route choice model 

is realized as a process-oriented decision model, both conceptually (theoretical 

framework) and operationally (experimental-based calibration). In the process-oriented 

DFT model the cognitive/psychological mechanisms underlying the deliberation process 

are explicitly represented. 

At this point of our research, a persistent conceptual question lingers; how 

different would the results be if we adopt a structural-oriented modelling approach? In a 

structural-oriented modelling approach, a relationship is to be formulated between the 

decision inputs and outputs with minimal consideration of the underlying deliberation 

process. In an attempt to answer the preceding question, we use the DFT model but a 

structural-oriented parameter estimation methodology in our investigation. While the 

same DFT route choice model conceptual framework is preserved, the time dimension is 

ignored during the parameter estimation process. Ignoring the time dimension during the 

estimation process focuses the model on the resulting choice percentage while 

disregarding the dynamics of the decision process, i.e. reduces the DFT model to a 

structural one. The following sections present the re-estimation details, results and 

significances. 

8.3.1 Structural-oriented Re-estimation of the DFT Model Parameters 

The re-estimation of the DFT model parameters is performed for the male group 

using a structural-oriented estimation methodology. The new estimation methodology is 

similar to the previous one in terms of estimation assumptions, restricting similarities, 

and estimation approaches. The developed GA-based estimator is also used in the re-

estimation. However, the new estimation methodology primarily differs in its formulation 

of the prediction error. A modified formulation of MAPE is adopted, reducing the 

prediction measures to choice decisions only (Equations 8.1 and 8.2). As such, evaluation 
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of the performance of the calibrated model is based only on its ability to accurately 

predict choice percentages under different information scenarios, without consideration 

of the MDTs. 

Modified _MAPE = j > , *\%Gpredicled(i)-%Gobserved(i)\ (8.1) 

N-
w, =—'- (8.2) 

' NT 

Where: 

• n, is the number of information scenarios of the deliberation model under 

investigation 

• %Gpredicted(i), is the Gardiner predicted choice percentage under 

information scenario i. 

• %Gobserved(i), is the Gardiner observed choice percentage under 

information scenario i. 

• w,, weight assigned to the estimation error of information scenario i. 

• Nj, is the number of conducted in-lab simulated route choice experiments 

under information scenario i, from which observed measures are 

estimated. 

• NT, total number of conducted in-lab simulated route choice experiments 

for the deliberation model under investigation. 

In re-estimating the model, (1) estimated values for the feedback matrix 

parameters are preserved from the process-oriented estimation results, and (2) revealed 

restricting similarities from the process-oriented estimation results are also preserved. 

Table 8.1 presents the values of the re-estimated parameters together with their original 

values (process-oriented results). Table 8.2 presents the MAPEs for the estimation and 

the testing data sets, from both estimation approaches. While the structural-oriented 

estimation approach is based on the Modified-MAPE, the original MAPE is the real 

indicator of the model prediction capabilities. Details of observed versus predicted 

measures for each deliberation model of the male group, under the structural-oriented 

estimation approach, are presented in appendix C. 

171 



M
od

el
 

P
ar

am
et

er
s 

W
T

 

W
D

 

W
F 

W
c 

Si
i 

S,
i 

7t
T

T
 

%
D

 

7t
F 

Jt
C

 

W
in

f0
 

A
P 

0 

S
tr

uc
tu

ra
l-

or
ie

nt
ed

 P
ar

am
et

er
 E

st
im

at
io

n 
E

D
-m

od
el

 
S

ub
­

gr
ou

p 
1 

(R
=

0.
6)

 
-1

3.
31

 
-1

6.
57

 
6.

61
 

N
A

 0.
65

 
-0

.3
0 

0.
65

 
0.

14
 

0.
21

 
N

A
 0.

41
 

2.
83

 
22

.1
5 

S
ub

­
gr

ou
p 

2 
(R

=
0.

8)
 

-1
3.

31
 

-1
6.

57
 

6.
61

 
N

A
 

0.
65

 
-0

.3
0 

0.
65

 
0.

14
 

0.
21

 
N

A
 

0.
81

 
2.

83
 

5.
75

 

E
P

-m
od

el
 

S
ub

­
gr

ou
p 

1 
(R

=
0.

6)
 

-1
3.

31
 

-1
6.

57
 

6.
61

 
5.

28
 

0.
65

 
-0

.3
0 

0.
36

 
0.

03
 

0.
11

 
0.

51
 

N
A

 
2.

83
 

12
.6

8 

S
ub

­
gr

ou
p 

2 
(R

=
0.

8)
 

-1
3.

31
 

-1
6.

57
 

6.
61

 
9.

53
 

0.
65

 
-0

.3
0 

0.
36

 
0.

03
 

0.
11

 
0.

51
 

N
A

 
2.

83
 

17
.5

2 

P
N

-
m

od
el

 
-1

3.
31

 
-1

6.
57

 
6.

61
 

N
A

 
0.

65
 

-0
.3

0 
0.

65
 

0.
14

 
0.

21
 

N
A

 
N

A
 

2.
36

 
3.

70
 

P
ro

ce
ss

-o
ri

en
te

d 
P

ar
am

et
er

 E
st

im
at

io
n 

E
D

-m
od

el
 

S
ub

­
gr

ou
p 

1 
(R

=
0.

6)
 

-9
.0

5 
-5

.6
7 

2.
45

 
N

A
 

0.
65

 
-0

.3
 

0.
71

 
0.

14
 

0.
15

 
N

A
 

0.
23

 
2.

71
 

14
.2

 

S
ub

­
gr

ou
p 

2 
(R

=
0.

8)
 

-9
.0

5 
-5

.6
7 

2.
45

 
N

A
 

0.
65

 
-0

.3
 

0.
71

 
0.

14
 

0.
15

 
N

A
 

0.
45

 
2.

71
 

23
.6

7 

E
P

-m
od

el
 

S
ub

­
gr

ou
p 

1 
(R

=
0.

6)
 

-9
.0

5 
-5

.6
7 

2.
45

 
0.

79
 

0.
65

 
-0

.3
 

0.
42

 
0.

03
 

0.
07

 
0.

48
 

N
A

 
2.

71
 

12
.3

3 

S
ub

­
gr

ou
p 

2 
(R

=
0.

8)
 

-9
.0

5 
-5

.6
7 

2.
45

 
1.

12
 

0.
65

 
-0

.3
 

0.
42

 
0.

03
 

0.
07

 
0.

48
 

N
A

 
2.

71
 

15
.3

84
31

 

P
N

-
m

od
el

 
-9

.0
5 

-5
.6

7 
2.

45
 

N
A

 
0.

65
 

-0
.3

 
0.

71
 

0.
14

 
0.

15
 

N
A

 
N

A
 

2.
13

 
5.

55
 



Table 8.2 Structural-oriented vs Process-oriented MAPEs 

Deliberation 
Model 

ED 
EP 
PN 

Structural-oriented Estimation 
Modified-MAPE 
(without MDT) 

Estimation 
0.02% 
0.01% 
0.00% 

Test 
12.10% 
7.10% 
9.50% 

Original MAPE 
(with MDT) 

Estimation 
23.60% 
32.70% 
23.00% 

Test 
25.30% 

35.2 
27.00% 

Process-oriented 
Original MAPE 

(with MDT) 
Estimation 

7.40% 
10.45% 
0.03% 

Test 
22.90% 
14.60% 
19.90% 

Re-estimation results reveal considerable differences in estimated parameter 

values as well as performance indicators. The performance of the structural model, based 

on the modified MAPE without MDT, is misleadingly superior to the process oriented 

one. Substantially low values of the Modified-MAPEs are estimated ranging from 0 to 

0.02%. Reasonably low testing error values are also estimated for the Modified-MAPE, 

ranging from 7 to 12%. However, if the structural model is evaluated based on errors in 

predicting both choice percentages and deliberation times, the performance substantially 

deteriorates, well below the performance of the process model. This clearly indicates that 

while the structural model can more accurately "fit" choice percentages, it is challenged 

to capture the underlying behavioural process. The elimination of the MDT from the 

error function seems to have simplified fitting the model to the choice percentage data. 

The importance of capturing the behavioural deliberation process has been qualitatively 

and quantitatively demonstrated in the previous chapters and hence cannot and should not 

be ignored. 

Figure 8.3 further illustrates the incapability of the structural model to capture the 

deliberation process and MDT. The major inconsistencies between predicted and 

observed deliberation time frames using the structural model reveal a reduced credibility 

in predicting the deliberation process. Predicted deliberation time frames are, in most 

cases, significantly lower than actual observations. For sub-group 2, unrealistically small 

deliberation time frames of less than 2 seconds are estimated for many choice situations. 

In another words, the model is able to predict correct choice decisions for the data set in 

hand but for the wrong reasons, possibly assuming infinite mental processing capabilities 

of the drivers. As such, the generalization of this type of model could result in mis­

predictions. The potential gains of adopting a process-oriented estimation approach are, 
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accordingly, revealed. Further insights into the differences between estimated parameter 

values using both estimation approaches, and their implications, are discussed in the 

following section. 

No Info PG PLS DHH DHL 

Info Scenario 

DLH DLL 

• Actual observations l Process-oriented • Structural-oriented 

a) Sub-group 1 (R=0.6) 

Q 

No Info PG PLS DHH DHL DLH DLL 

Info Scenario 

rj Actual observations Process-oriented l Structural-oriented 

b) Sub-group 2 (R=0.8) 

Figure 8.3 Estimated Vs Actual MDTs 
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8.3.2 Comparison of Structural-oriented vs. Process-oriented Model Parameters 

Prediction of drivers' route choice decisions is one of the main objectives of 

developing route choice models. However, the contribution of estimated parameters 

values is not limited to reproducing choice percentages in a black-box manner. 

Enhancing our understanding of the role of different actors in the deliberation process is 

of equivalent importance, if not more important. The representation of different 

situational/personal factors and the sensitivity of the deliberation process to changes in 

the choice environment are all captured through the estimated values of the model 

parameter. Thus, differences in estimated parameter values don't only mean different 

choice predictions but also different implications. As such, the level of impact of the 

estimation approach on parameter values is investigated in this section. Only pronounced 

variations are discussed. 

1. Attribute Weights 

A general increase in attribute weights is depicted under the structural-oriented 

estimation approach (Figure 8.4). The increase in attribute weights reflect a tendency to 

make near- instantaneous choice decisions. Lower attribute weights allow for a smoother 

evolution of preference strengths, and hence, a more elaborate deliberation process. A 

trend variation is depicted. While the travel time weight is the highest in magnitude under 

the process-oriented estimation approach, travel distance takes over in the structural-

oriented approach, which is not only counter-intuitive but also contradicts the stated 

preferences of the test subjects. Moreover, an increased sensitivity of the compliance 

weight to different levels of information reliability is depicted under the structural-

oriented estimation approach. 

2. Information Weight 

An increased influence of descriptive information on drivers' perceptions of 

anticipated congestion states is depicted under the structural-oriented estimation 

approach. Figure 8.5 displays the estimated differences in information weights. A 

substantial increase in Winf0, to almost double its original value, is depicted. The 
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increased differences between estimated sub-group values, reflects an increased 

sensitivity to information reliability. 

Figure 8.4 Structural-oriented vs Process-oriented Attributes Weights 
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0 t g r ° u ^ 
v ' 2 (R=0.8) 

Reliability Group 

J*y 

n Process-oriented 

m Structural-oriented 

Structural-oriented 

7 Process-oriented 

Figure 8.5 Structural-oriented vs Process-oriented Information Weights 

3. Threshold Bound 

A substantially different impact trend of information characteristics on threshold 

bounds is revealed under the two estimation approaches (Figure 8.6). Under the process-

oriented estimation approach, increased information reliability levels result in increased 

threshold bounds. In addition, descriptive information provision requires a higher 
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threshold bound than prescriptive one. Moreover, higher threshold bounds are estimated 

for en-route informed deliberation models compared to the no information pre-trip one. 

A completely different impact trend is revealed under the structural-oriented 

estimation approach. A reversed trend is estimated for the impact of information 

reliability on ED-model threshold bounds; a lower value of 0 is estimated for the higher 

reliability level sub-group. In addition, the impact of information form (descriptive vs 

prescriptive), for sub-group 2, is also reversed. 

D Sub-group 1 (R=0.6) 
m Sub-group 2 (R=0.8) 

25 

20 

Threshold 1 5 

Bound 10 

5 

0 Sub-group 2 (R=0.8) 
Sub-group 1 (R=0.6) 

PN-
model 

Deliberation Model 

a) Structural-oriented Estimation Approach 

• Sub-group 1 (R=0.6) 

"Sub-group2 (R=0.8) 

. Sub-group 2 (R=0.8) 
Sub-group 1 (R=0.6) 

PN-
model 

Deliberation Model 

b)Process-oriented Estimation Approach 

Figure 8.6 Structural-oriented vs Process-oriented Threshold Bounds 
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8.4 THE PROCESS-ORIENTED MODELLING APPROACH: IS IT WORTH THE EFFORT? 

The debate between advocates of structural-oriented and process-oriented 

modelling approaches of the decision-making process has long been argued in the route 

choice literature (Polak, 1998). While the structural approach is more tractable and easily 

implemented, it is myopic as it fails to account for the behavioural deliberation process 

itself. It is hence, vulnerable to mis-predictions. On the other hand, the process approach 

offers a descriptive mechanism of the cognitive process underlying drivers' choice 

decisions. As such, it could theoretically be regarded as an ideal approach of modelling 

choice decisions. However, as this approach delves into perceptual and cognitive 

processes, testing and calibrating these types of models are realized to be a profound 

undertaking. 

This research is motivated by the potential usefulness of the process-oriented 

modelling approach of drivers' route choice decision-making process. The uncertainties 

in the choice environment together with the dynamic nature of the deliberation process 

inspired the adoption of the DFT as the route choice model theoretical background. 

Estimation of model parameters is achieved through data collected from laboratory-

simulated route choice experiments in an enhanced mixed-reality environment. The 

mixed reality simulation platform is designed, especially, for that purpose. Still, 

extensive experimentation, with a large cross-sectional-type sample of drivers, under 

different experimental controls, is necessary for the development of a full-fledged version 

of the DFT route choice model. Prior to undertaking this further research step, an 

assessment of the added-value of the developed process-oriented route choice model is 

essential. There is no point in further increasing modelling complexity without a sensible 

level of potential gain. 

The value of a calibrated route choice model, as we see it in this research, is two 

fold. First, a credible route choice model is capable of accurately predicting drivers route 

choice decisions. Route choice predictions for a population of drivers in a traffic network 

are directly translated into link flows. Link-flow predictions are key inputs to most 

transportation operational and planning activities. Hence the need for prediction accuracy 

is vital. Second, a wealth of information is encapsulated inside the values of estimated 

route choice model parameters. The sensitivity of parameter values to different 
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situation/personal factors significantly contributes to an increased understanding of the 

process we are modelling. Based on an enhanced realistic understanding of the route 

choice decision-making process, effective operational techniques to influence drivers' 

route choice decisions could be achieved. 

In terms of prediction accuracy, the potential gains of the developed operational 

process-oriented model are revealed when compared to a structural-oriented one (based 

on the original MAPE indicators). The structural-oriented estimation results reveal 

accurate choice predictions in terms of choice percentages alone. However, a severe 

deterioration in the model performance is depicted when the time dimension is 

incorporated. Estimated deliberation time frames, within the structural approach, are 

unrealistic and significantly different from observed ones. 

Alternatively, in the process-oriented modelling approach, internally/externally 

imposed deliberation time frames are key determinants of final choice decisions. 

Situational factors (such as information form, information reliability, and choice context) 

and personal factors (such as gender) interact to formulate drivers' internally imposed 

limits on the deliberation time frames. The choice environment plays its role in allocating 

a feasible time frame for the undertaken deliberation process. Based on the conducted 

experimental/sensitivity analysis, significant impacts of the internally and externally 

imposed deliberation time frames in compliance behaviour are revealed. Figure 8.7 

presents a simulated second-by-second preference evolution throughout an en-route 

deliberation process, based on a random simulated run of the calibrated DFT route choice 

model (ED-model, male group, sub-group 2, under DHL). The impact of time pressure on 

reversing choice decisions can be clearly observed. 

From a process-understanding perspective, reversed impact trends of 

situational/personal factors on decision parameter values are revealed under the 

structural-oriented estimation approach, compared to the process-oriented one. Higher 

values of attribute weights, within the structural approach, reflect a tendency to achieve 

unrealistic instantaneous choice decisions. A false magnified sensitivity of decision 

parameters to information reliability is estimated. Reversed impact trends of situation 

factors on the formulation of the internally imposed deliberation frames are revealed. 
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Figure 8.7 Preference Evolution Chart 

In conclusion, the process-oriented modelling approach significantly contributes 

to increasing the credibility of the modelling process. More accurate, generalized 

predictions are envisioned from a full-fledged version of the developed DFT route choice 

model. An enhanced understanding of the underpinnings of the decision-making process 

is a natural outcome of a process-oriented model. Results from this research vividly 

indicate the potential payoff from further investigating process-oriented models. 
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9 CONCLUSIONS AND RECOMMENDATIONS 

9.1 PRECIS 

This chapter presents a brief summary of the overall research effort and a review 

of the main conclusions. The conclusions are discussed in four dimensions. First, the 

main findings of the experimental analysis of drivers' route choice patterns are appraised. 

Second, a discussion of the main conclusions of the route choice model parameter 

estimation results is presented. Third, the sensitivity of the deliberation process to time 

pressure constraints is reviewed. Finally, and in light of our findings, we step back and 

examine the big picture: reassessing the value of adopting a process-oriented modelling 

approach for drivers' route choices. Afterwards, we highlight the contributions of this 

research. The chapter concludes with recommendations for future research. 

9.2 SUMMARY 

The objective of this research is to understand and model the deliberation process 

underlying drivers' route choices. This objective is motivated by the profound need to 

enhance the understanding of drivers' route choice behaviour, at the disaggregate 

individual level. This understanding is essential for many ITS applications. In 

formulating our behavioural perspective of the dynamic route deliberation process, our 

focus is on the time-dependent psychological and mental process of preference formation 

in an uncertain and time-pressed choice environment. This perspective is inspired by 

recent advances from the field of decision-making psychology. 

First, a thorough literature review of the adopted modelling approaches for 

drivers' route choices is undertaken. The utility-maximization principle has, historically, 

been the conventional decision rule of most route choice modelling frameworks. Several 

modelling attempts have departed from the formal utility-maximization paradigm and 

adopted more behaviourally realistic frameworks. However, there remains a lack of a 

realistic representation of the dynamic deliberation process involved in route choices. 

Modelling of drivers' choices is mainly perceived from a structural-oriented perspective; 

where a relationship is formulated between a set of inputs (choice situation attributes) and 

outputs (choices) without a realistic understanding of the underlying psychological 
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process. As such, the need for a process-oriented modelling perspective of drivers' route 

choices is realized. 

We propose a theoretical framework for route choice modelling based on 

Decision Field Theory (DFT) from the field of psychology. DFT founded by Busemeyer 

and Townsend (1993) aims to understand and explain the motivational and cognitive 

processes underlying choice decision in uncertain choice environments. DFT provides a 

formal description of the dynamic evolution of preferences during deliberation. Based on 

the theoretical background of DFT, a route choice modelling framework is formulated for 

pre-trip and en-route choice decisions. Three choice situations are discussed that vary in 

the level of traveller information presented to the driver, namely; no information, 

descriptive information (congestion states) and prescriptive information (specific route 

guidance). For each of the three cases, a DFT route choice model is defined through: (1) a 

schematic representation, (2) decision variables, and (3) decision parameters. 

In order to facilitate comprehensive and realistic route choice experimentation 

that allows for capturing the deliberation process, we developed a low cost but useful 

mixed-reality simulation testbed. The mixed reality simulator integrates a driving device 

(steering wheel) into Paramics, a microscopic traffic simulation platform. The developed 

system enables a driver to externally control the lateral and routing movements of a 

single vehicle of choice (driven vehicle) in a simulated network using a steering wheel. 

The designed system architecture is based on three basic components; Input Capturing 

(IC), Inter-Process Communication (IPC), and several Paramics API plug-ins. IC is 

concerned with depicting external acts on the attached driving device; translating them 

into movement directions. A number of Paramics API plug-ins' are coded to: (1) override 

Paramics default lane-changing and route choice models for the driven vehicle, (2) allow 

for traveller information dissemination, and (3) control the driver/simulator interface. 

Finally, a shared memory protocol along with an inter-process communicator is designed 

to allow IC application and Paramics plug-ins to communicate without delays. 

An experimental procedure is designed to collect route choice data in a laboratory 

setting. The test network is part of the Gardiner/Lakeshore major corridor on the 

waterfront of downtown Toronto. Manipulation of traffic conditions is performed to 

maintain the real life competitiveness between the two alternative routes; Gardiner 
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Expressway and Lakeshore Blvd. Different information provision scenarios are adopted 

(different forms, and different information reliability levels).Two sets of route choice 

experiments are designed, using the same network but with two different tools. The first 

tool is a map-based one, where subjects perform their routing decisions for an imaginary 

trip on a computer screen with map view of the test network using mouse clicks. On the 

other hand, the second set is performed on the developed mixed reality platform, where 

subjects navigate their vehicles in a microscopic reproduction of the test network. 

The developed experimental platforms and setup are used to monitor and record 

drivers' route choice behaviour under varying conditions. The captured behaviour is 

thoroughly analyzed based on ANOVA testing. The analysis of route choice behavioural 

patterns estimated from the conducted laboratory experiments are grouped into two 

levels. The first level is concerned with the assessment of decision patterns for each 

choice context (pre-trip and en-route) independently. Results of the map-based 

experiment are used for the analysis of pre-trip choice behaviour. The analysis is focused 

on the assessment of the impact of some key personal/situation factors on drivers' route 

choices, namely; information dissemination, gender, and risk attitude. En-route choice 

behaviour is, alternatively, observed from the mixed-reality driving experiment. The 

second level is concerned with the assessment of the value of the experimental 

procedures (map-based vs. mixed-reality) as data collecting tools. A comparative analysis 

is, hence, undertaken. Route choice attitudes are compared under identical situational 

conditions for both experimental procedures. 

Given the demonstrated superiority of the mixed reality simulator in capturing the 

route choice decision process, recorded data are used to calibrate the DFT model. 

Estimation of model parameters is based on the minimization of prediction errors using 

Genetic Algorithms (GA) as an optimization tool. A GA parameter estimation platform is 

designed for the problem in hand. Predictions are based on computer simulation of route 

choice behaviour using the DFT model. Observed measures (choice percentages and 

MDTs) are aggregated based on: gender group, information reliability level sub-group, 

deliberation situation, and information scenario. Deliberation situations include: Pre-trip 

No information (PN), En-route Descriptive information (ED), and En-route Prescriptive 

(EP). As such, decision parameters are estimated, for each sub-group, for each 
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deliberation model (PN-model, ED-model, and EP-model). Within each deliberation 

model, different information scenarios represent different decision variables (different 

independent variables). A multilevel step wise estimation methodology is adopted. While 

the multilevel approach is concerned with the within-group similarities in parameters 

values, for a specific deliberation model, the step wise approach focuses on the between-

deliberation model similarities. Estimation results are subsequently synthesized to capture 

within-group, and between-groups variations in estimated parameter values. 

A sensitivity analysis of route choice behaviour to the dynamics of the 

deliberation process is conducted, with attention focused on deliberation time. The 

calibrated DFT route choice model (for the male group) is used to simulate drivers' 

compliance attitudes under different frames of time constraints. Two information 

scenarios are examined; DHL and PLS. Sub-group choice percentages are estimated for 

each information scenario, under each considered time frame. As the adopted information 

scenarios are both challenging (favouring the Lakeshore), compliance rates are estimated 

to be the Lakeshore choice percentages. 

Finally, an assessment of the added-value of the developed process-oriented route 

choice model is conducted by benchmarking its performance against a structural-oriented 

version of the model. The structural-oriented version is realized by re-estimating the DFT 

model parameters based on choice percentages, with no time dimension. Ignoring the 

dynamics of the decision process during the estimation process reduces the DFT model to 

a structural one. 

9.3 CONCLUSIONS 

The following sections discuss the main findings of this research. 

9.3.1 Experimental Analysis 

Experimental data from the map-based and mixed reality experiments are 

analyzed independently as well as comparatively. Conclusions from the statistical 

analysis are summarized with respect to: (1) route choice behavioural patterns, and (2) 

potential of experimentation tools. 
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/. Route Choice Behavioural Patterns 

Results of the map-based experiment are used for the analysis of pre-trip choice 

behaviour. The following are the main findings: 

• Under no information provision, an intuitive preference to use the expressway is 

revealed (in about 88% of the trips). However, a change in drivers' preferences is 

depicted in an occasional basis (in the remaining 12%). This finding strengthens 

the notion of a stochastic decision-making process. 

• Information content has a significant impact on drivers' route choices. Drivers' 

pre-trip choices are significantly altered when receiving traffic information that 

substantially challenges their expectations. This finding coincides with earlier 

route choice literature pertaining to assumptions of bounded-rationality, and 

conflict assessment and resolution theories. 

• A significant impact of the variation of information reliability (from 0.6 to 0.8 

reliability levels) is observed on drivers' pre-trip route choices. This implies that 

pre-trip choices are sensitive to slight variations in information accuracy. 

• Gender differences play a significant role in drivers' responses to disseminated 

traffic information. This impact is more pronounced under the reduced 

information reliability level. As the reliability level increases, gender impact 

diminishes. 

Mixed reality experimental results are used for the analysis of en-route diversion 

decisions. The following are the main findings: 

• Information content has a significant impact on drivers' en-route diversion 

decisions. Bounded-rationality behaviour is, however, revealed in divergence 

decisions. Drivers partially resist divergence when perceived travel time gains are 

not considerable. The interaction between compliance and inertia control drivers' 

diversion attitudes. 

• The impacts of gender differences, and information reliability, are less perceived 

in en-route diversion decisions. The significant impacts of compliance and inertia 

on drivers' divergence decisions dominate all other investigated factors. 
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2. Benefits of the Mixed Reality Experimentation Tool 

Results of the conducted statistical analysis highlight the significant impact of the 

adopted testing procedure in route choice experimental observations. The following can 

be concluded: 

• Map-based testing procedure is capable of portraying a generic picture of route 

choice behaviour and is thus well-suited for qualitative high-level assessments. 

No severe unexplained deviations of the map-based procedure results are 

encountered in relevance to previous findings in route choice literature. 

• The mixed reality experimental platform has a potential to enhance the realism of 

in-lab simulated route choice experiments and hence improves the credibility of 

collected data. The virtual reproduction of the choice environment, and the 

tangible consequences of choice decisions contribute to a more serious testing 

environment. Nonetheless, obtaining large sample sizes within the mixed reality 

environment is a challenge. 

9.3.2 Operational DFT Route Choice Model 

Estimation of DFT route choice model parameters is performed based on a multi­

level step-wise estimation methodology. Aggregate observed measures for a number of 

data groups are used. A GA-based parameter estimation platform is used as an 

optimization tool. The main conclusions are: 

• The potential of the adopted DFT modelling framework in replicating subjects' 

route choice attitudes is revealed through the estimated low prediction errors. 

Parameter estimation results report Mean Absolute Percent Error (MAPE) ranging 

from 0.03% to around 10%, for the estimation data. 

• From a qualitative perspective, testing results are considered adequate; with 

MAPE ranging from around 7% to 25%. The small sample size of the test data set 

indicates a need for larger samples. 

• Travel time attribute is considered the most salient attribute for all data groups. 

The role of travel distance and freeway usage attributes, in the route choice 

decision-making process, is less influential. 
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• Drivers' initial preference biases are revealed to be based on their experience-

based perceptions of the choice situation attributes. Neither information type nor 

its reliability level impact the value of estimated initial preference biases. 

• The impacts of information reliability levels within ED-models are manifested in 

the values of two parameters: information weight and threshold bound. As 

information reliability increases, the values of both parameters increase. The 

increase in estimated threshold bounds reflect a more serious deliberation process; 

an attempt to make more mature decisions. 

• The impacts of information reliability levels within EP-models are observed in the 

values of the compliance weight and the threshold bound parameters. No impact 

is estimated on the attribute attention probabilities, including the compliance 

attribute. The increase in information reliability level results in an increase in the 

values of both affected parameters. 

• A variation in the value of estimated threshold bounds is revealed under different 

choice situations (ED, EP, and PN-models). The highest value is estimated for 

ED-models. The explicit advice to take a certain route (in EP-models) results in a 

decrease in estimated threshold bounds. Threshold bound values decreased 

considerably in pre-trip choices with no information provision. The absence of 

traffic information together with the urge to start the trip encourages drivers to 

adopt partially habitual choice attitudes. 

• The following gender differences are observed in estimated model parameters: 

a. Higher attribute weights are revealed for the female group for the travel time 

and compliance attributes. An increased consideration of travel time gains and 

information recommendations are, hence, revealed for the female group. 

Alternatively, a lower value of the freeway usage attribute weight is estimated 

for the female group. This reflects a reduced significance of the payoff of the 

freeway usage attribute on females' decision-making process. 

b. An increased level of bias in initial preferences is estimated for the male 

group for both pre-trip and en-route deliberation models. However, an 

increased sensitivity of the level of bias to the choice context (pre-trip vs en-

route) is revealed for the female group. 
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c. An increased sensitivity of the information weight parameter of ED-models to 

information reliability is observed for the male group. Males tend to lose 

confidence in disseminated descriptive-type information more vigorously. 

d. An increased sensitivity of the compliance attention probabilities and the 

threshold bounds, of EP-models, to information reliability is observed for the 

female group. In the presence of specific advice, the impact of information 

reliability is more pronounced in the females' route choice attitudes. 

9.3.3 Dynamics of Route Deliberation 

Time pressure constraint is a common situational factor that has a significant 

impact on drivers' route choice attitudes. As such, a sensitivity analysis on drivers' 

compliance behaviour to variations in deliberation time frames is undertaken. The 

developed DFT route choice model is used to generate simulated route choice data. En-

route simulated route choice data, under information scenarios that opposed drivers' 

inclinations, is adopted. The following are the main findings: 

• A significant impact of time pressure constraints on compliance behaviour is 

estimated for both descriptive and prescriptive information scenarios. 

• Completely different behavioural trends are revealed under different information 

scenarios. Under the descriptive information scenario, increased compliance rates 

are estimated with the relaxation of the time pressure constraint. This trend is 

observed under higher perceived information reliability level. As the information 

reliability level decreases, compliance rates are lower, and less sensitive to time 

pressure constraints. The practical implication of this finding is that if travellers 

are not provided with sufficiently accurate information and sufficiently long time 

to deliberate it, they are less likely to comply. 

• A reversed behavioural trend is revealed under prescriptive information. Under 

tight time pressure constraint, drivers are more inclined to comply with explicit 

advice, as there is no time for further deliberation. As such, a decrease in 

compliance rates is estimated with increased deliberation time frames. 

Information impacts are more pronounced under increased reliability levels. 
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9.3.4 Process-oriented vs Structural-oriented Route Choice Modelling 

The dynamic nature of the route choice deliberation process is one of the main 

aspects motivating the adoption of a process-oriented modelling framework. For 

comparative analysis, a structural-oriented parameter estimation methodology is adopted 

to re-estimate the conceptual model parameters of the male group. The main conclusions 

are: 

• Re-estimation results reveal considerable differences in estimated parameter 

values as well as performance indicators. The performance of the structural 

model, based on the modified MAPE without MDT, is misleadingly superior to 

the process oriented one. Substantially low values of the Modified-MAPEs are 

estimated ranging from 0 to 0.02%. Reasonably low testing error values are also 

estimated for the Modified-MAPE, ranging from 7 to 12%. However, when the 

structural model is evaluated based on errors in predicting both choice 

percentages and deliberation times, the performance substantially deteriorates 

(MAPE ranging from 23 to 33% for estimation data, and 25% to 35% for test 

data), well below the performance of the process model. 

• Major inconsistencies between predicted and observed deliberation time frames 

are estimated using the structural model. This reveals a reduced credibility in 

predicting the deliberation process. As such, the generalization of this type of 

model could result in mis-predictions. 

• From a process-understanding perspective, significantly different (often reversed) 

impact patterns of situational/personal factors are estimated under the structural 

estimation methodology, compared to the process one. The main differences are 

highlighted in the following: 

a. Higher values of attribute weights are estimated for the structural-oriented 

model. The increase in attribute weights reflects a tendency to achieve 

unrealistic instantaneous choice decisions. 

b. A magnified sensitivity of information reliability in varying information 

weights is estimated for the structural-oriented ED-model. 

c. A substantially different trend for impact of information characteristics (form, 

and reliability) on the value of estimated threshold bounds is observed. 
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CONTRIBUTIONS 

The following is a brief summary of the main contributions of this research: 

1. Developing a process-oriented conceptual framework for drivers' route 

deliberation processes (pre-trip and en-route). The developed conceptual 

framework is founded on the basis of DFT theoretical abstraction of the decision­

making process. DFT, developed by Busemeyer and Townsend (1993), is one of a 

few process-oriented behavioural decision theories that explicitly accounts for 

varying degrees of uncertainty as well as time pressure in an integrated 

scientifically sound framework. The developed framework is targeted to model 

how decisions are made and how preferences evolve with time. To the best of the 

author's knowledge, the developed route choice model is the first modelling 

attempt that explicitly addresses the dynamics of the decision-making process by 

incorporating the deliberation time dimension into its framework. 

2. Developing an integrated framework for information provision within a process-

oriented route choice modelling framework. The developed conceptual 

framework accounts for descriptive and prescriptive information provision. The 

product is a set of process-oriented deliberation models that abstract drivers' 

decision-making processes in three information related scenarios: no information, 

descriptive information, and prescriptive information scenarios. 

3. Developing an operational version of DFT route choice model. Decision 

parameters are estimated for the adopted conceptual framework for PN, ED, and 

EP-models. Estimation of the model parameters is based on experimental 

observations from a limited, homogenous, sample size of drivers. An elaborate 

estimation procedure using modern evolutionary optimization techniques was 

developed for model calibration. 

4. Enhancing the understanding of the impact of time pressure constraints on 

drivers' compliance attitudes, under descriptive and prescriptive information 

provision. Based on the developed operational DFT route choice model, simulated 

route choice observations are adopted to analyze the sensitivity of drivers' 

compliance attitude to varying levels of time pressure. Variations in impact trends 

are estimated with varying information characteristics (form, and reliability). To 
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the best of the author's knowledge, this research is the first attempt to analyse the 

effect of time pressure in drivers' compliance behaviour. 

5. Developing a simple mixed reality infrastructure for experimental analysis of 

route choice behaviour under various ITS applications. The developed platform 

allows a test driver to navigate a vehicle through a microscopic reproduction of a 

full scale traffic network. This is achieved through the integration of a PC-

steering device into Paramics microscopic traffic simulator. Experimental controls 

(traffic patterns, information provision...etc.) are user-defined. Detailed 

observations, such as network conditions (travel times, congestion states...etc.), 

and drivers' responses (choices and deliberation times) are seamlessly recorded. 

This platform offers a credible cost-effective data collection ground for drivers' 

route choice behaviour. The developed platform is realized to enhance the 

realism of in-lab simulated route choice experiments and hence improve the 

credibility if collected data. 

6. Enhancing the understanding of the influences of traffic information 

characteristics on drivers' route choice behaviour. Using the experimental 

observations, the statistical significance of the impacts of information 

characteristics (form, content, and reliability) on drivers' route choice attitudes are 

evaluated. 

7. Enhancing the understanding of the differences between structural-oriented and 

process-oriented models. The value of process-oriented models is clearly 

established. 

9.5 RECOMMENDATIONS 

This research identifies a potentially very useful direction for future research in 

route choice modelling. Despite the achievements in this research, ample room exists for 

future enhancements and expansions. The following are a few thoughts on the 

envisioned future extensions of our work: 

1. Understanding and modelling of the variation trend of drivers' initial preference 

biases under different situational conditions (different perceived traffic patterns). 

Drivers' deliberation processes start from certain levels of initial biases. The 
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effects of these levels on the deliberation processes outcomes are, in many cases, 

significant. Drivers' initial preference biases are revealed to be experience-

dependent with no information influences. As such, estimated levels are expected 

to be influenced by perceived attributes of the choice situation. This influence 

mechanism needs to be properly understood and modelled. 

2. Further understanding and modelling of the variation trend of drivers' threshold 

bounds with situational conditions. Different levels of threshold bounds are 

estimated for each driver, under various choice scenarios (choice context, and 

information characteristics). Threshold bounds are the termination parameters of 

the internally controlled deliberation processes. Thus, understanding and 

modelling of the influences of situational conditions in the formulation of drivers' 

threshold bounds is of prominent importance in the development of a generic DFT 

route choice model. 

3. Further understanding and modelling of the impact of different information 

reliability levels on relevant DFT route choice model parameters. A significant 

variation of estimated values of some parameters is revealed for the considered 

two information reliability levels (0.6 and 0.8). Other reliability levels are to be 

tested in an attempt to identify an impact trend. 

4. The assessment of the impact of time pressure constraints on drivers' route choice 

attitudes based on experimental observations. The intended analysis is envisioned 

to be based on a set of simulated driving experiments where subjects are to 

receive traffic information at different time spots prior to diversion. 

5. The assessment of the impact of different information communication 

technologies on drivers' route choice behaviour (auditory vs. visual display, on­

board navigation system vs. VMS). 

6. The assessment of the credibility of laboratory collected route choice data based 

on a comparative analysis between experimentally observed vs. real-life route 

choice behavioural patterns. Diversion rates from field data could be used to 

perform this type of analysis. 

7. Analysis of drivers' route choice behaviour under different choice scenarios with 

respect to the payoffs of the decision attributes. A representation of various 
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combinations of the payoffs of the choice attributes is essential in the calibration 

of a generic full-fledged DFT route choice model. The experimental analysis 

undertaken in this research is based on route choice observations for the adopted 

test network. The test network is composed of two alternative routes. The 

variation in the payoff of the distance attribute, between the two routes, is limited 

to 22%. Testing a wide spectrum of variations of payoffs is necessary for 

obtaining generic results. 

8. Developing a generic operational DFT route choice model, where a probability 

distribution is defined for each of the model parameters, for each identified 

homogenous group of drivers (with the considerations of recommendations 1, 2, 

3, 4, and 5). Parameters distributions need to be related to different 

personal/situation factors (such socio-economic characteristics, information 

characteristics, choice context ...etc). The operation of the generalized DFT route 

choice model is envisioned through sampling the model parameters from 

estimated parameters distributions, given drivers' characteristics and situational 

conditions. Estimation of parameters distributions should be based on wide-scope 

experimentation. A large cross-sectional type sample of drivers is envisioned for 

this purpose. Drivers' route choices are to be monitored for a number of different 

experimental controls (different OD pairs with different experimental setups). 

9. Benchmarking the performance of the developed DFT route choice model against 

a classical logit route choice model. The incorporation of the deliberation time 

dimension within a logit model could be attained by specifying narrow ranges of 

deliberation time frames (deliberation time bins) and dividing the route choice 

data accordingly. A different logit model is to be calibrated for each deliberation 

time range. The differences or indifferences between calibrated models would 

shed light into the significance of the impact of the deliberation time dimension 

on drivers' decision-making process. The added-value of the developed process-

oriented model could, hence, be assessed. 

10. Extending the developed mixed reality platform to include longitudinal control 

(such as speed and acceleration) of the driven vehicle. A game-type pedal is to be 

used as an input device to capture longitudinal control actions by the driver of the 
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subject vehicle. These actions will override the internal car-following model in 

Paramics, only for the driven vehicle. This extension is intended to enable wider 

research utility of the developed system. 

11. Integrating the developed route deliberation model with a process-oriented model 

of drivers' learning process (day-to-day and day-specific learning). The decision 

making aspects and the learning aspects of route choice are highly intertwined 

both in reality and in the modelling literature. One can think of route choice as 

perhaps one coin with two sides; a learning process side and a decision making 

side. A comprehensive process-oriented route choice model should be based on 

seamlessly integrated decision/learning models. As such, a process-oriented 

learning model should focus on updating the values of the DFT decision variables 

(Anticipated states probabilities, ASPs; and payoffs, M) based on previous/current 

experiences. The interaction between the DFT model and the learning one needs 

to be cyclic; where outputs of each model are inputs to the other. 

12. Integrating the developed route deliberation model with process-oriented models 

of driver choice-set formulation, and information-acquisition processes. A 

comprehensive process-oriented route choice model is envisioned as a final 

product. 
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ID Code 

Socioeconomic/Demographic Characteristics 

1. Age 
i) 18-29 
ii) 30-39 
iii) 40-49 
iv) 50-59 
v) 60+ 

2. Gender 
i) Male 
ii) Female 

3. Occupation/Education 
i) Graduate Student 
ii) Undergraduate Student 

4. Income 
i) U p to $20,000 
ii) $20,000 - $40,000 
iii) $40,000 - $60,000 
iv) $60,000 - $80,000 
v) $80,000-$100,000 
vi) $100,000+ 



ID Code 

Personality factor: Adventure and Discovery Attitude 

1. I like discovering new routes to get someplace 
i) Strongly Disagree 
ii) Disagree 
iii) Neutral 
iv) Agree 
v) Strongly Agree 

2. I sometimes do things just to see if I can 
i) Strongly Disagree 
ii) Disagree 
iii) Neutral 
iv) Agree 
v) Strongly Agree 

3. I am willing to take risks to avoid traffic delays 
i) Strongly Disagree 
ii) Disagree 
iii) Neutral 
iv) Agree 
v) Strongly Agree 

4. I like exploring new places 
i) Strongly Disagree 
ii) Disagree 
iii) Neutral 
iv) Agree 
v) Strongly Agree 

5. I am not afraid of getting lost in Toronto 
i) Strongly Disagree 
ii) Disagree 
iii) Neutral 
iv) Agree 
v) Strongly Agree 

6. I would rather take a little longer to use a route I know well 
i) Strongly Agree 
ii) Agree 
iii) Neutral 
iv) Disagree 
v) Strongly Disagree 
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ID Code 

Route Choice Attitude 

When I choose my route 

1. I focus on travel times of alternative routes 
i) Only 
ii) Mostly 
iii) Occasionally 
iv) Not at all 

2. I focus on travel distances of alternative routes 
i) Only 
ii) Mostly 
iii) Occasionally 
iv) Not at all 

3. I focus on whether its a freeway or a surface street 
i) Only 
ii) Mostly 
iii) Occasionally 
iv) Not at all 

4. I prefer taking a freeway than a surface street 
i) Disagree 
ii) Neutral 
iii) Agree 

209 



ID Code 

Driving Experiences 
1. How long have you been driving? 

i) Not at all 
ii) Less than 2 years 
iii) From 2 to 5 years 
iv) From 5 to 10 years 
v) More than 10 years 

2. While driving, are you familiar with receiving traffic information from variable 
message signs? 
i) No 
ii) Yes 

3. Did you drive before on the Gardiner Corridor? 
i) No 
ii) Yes 

If yes: How often? 

i) Just once or twice 
ii) From time to time 
iii) A lot 

4. Did you drive before on the Lakeshore Blvd? 
i) No 
ii) Yes 

If yes: How often? 

i) Just once or twice 
ii) From time to time 
iii) A lot 
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B.l ANOVA BASICS 

B.l.l Introduction 

ANOVA is a classical versatile technique for obtaining causal inferences from the 

measurements of a controlled experiment (Weiss, 2006). ANOVA is applied on 

experimental measures to assess the effect of a set of defined factors on a response 

variable of interest. ANOVA is built on the ground of testing the hypothesis of the 

equality of means of two or more populations. The underlying method is based on 

partitioning the total variance of the variable of interest into its components (systematic 

and random components). The effect of the significantly contributing factors would 

appear on the systematic component, while insignificant contributions are within the 

random component. 

In our research, ANOVA is consulted to assess the significance of a set of 

personal/situational factors on route choice behaviour. Two experimental measures are 

adopted as response variables; Gardiner choice percentages (%G), and Mean Deliberation 

Time (MDT). Two analysis layouts are consulted; one-way ANOVA, and two-way 

ANOVA with replications. In the following sections, basic overviews of both layouts are 

presented. 

B.1.2 One-way ANOVA 

One way ANOVA is concerned with testing the effect of some factor A in a 

response variable y. Lets assume that an experiment is performed where different 

measurements of the response variable y is measured repeatedly (i times) under m 

different levels of factor A (Ai to Am). As such, yjj is the 1th observation under treatment 

Aj. Resulting measurements from such an experiment could be tabulated as shown in 

Table B.l. 
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Table B. 1 One Way ANOVA Experimental Layout 

A, 
yn 
yu 

Yn,l 

A2 

y2i 

A3 

y3i 

• • • • Am 

ym i 

yn,m 

The response variable could be represented by: 

Where, 

(4.: is the population mean 

8: is factor effect 

e: represent random variations N(0, a2) 

To assess whether factor A is significant or not, we shall test the following hypothesis; 

H0: Sx = S2 = ....5m = 0 

Hi: 8X,S2 ,....5m aren't all zeros 

Testing the above hypothesis is summarized in Table B.2. Given That; 

Source Of 
Variation 

Between 
samples 

Within 
Samples 
Total 

Table B. 2 One-way ANOVA Analysis 

Sum of 
Sguare 

SA 

SE 

SD 

Degrees of 
Freedom 

m-1 

n-m 
n-1 

Mean 
Square 

m-1 

n-m 

F-ratio 
Test 

SA/(m-\) 

SE (n - m) 



Accordingly, Ho is rejected under (100- a) % confidence interval if: 

• V O - 1 ) _ 
—*— > Fm-1, n-m;a 
5fi (n - w) 

In other words, Ho is rejected if the probability (P-value) corresponding to the 

calculated F-value, under the respectable degrees of freedom, is larger than the specified 

significance level (a). If Ho is rejected, this means that there is, indeed, a significant 

effect of factor A in the response variable y, under the specified confidence interval. 

B.1.3 Replicated Two-way ANOVA 

Two way ANOVA tests, in general, are concerned with testing the effects of two 

factors A and B on a response variable y. Results from theses tests report the significance 

of the independent effect of each of the tested factors on the response variable. In many 

research cases, investigating the interaction between factors could be of interest. The 

interaction between factors is simply the significance of specific combinations of 

different levels of both factors. The addition of this analysis dimension mandate 

increasing the amount of collected data. Replicated two-way ANOVA tests are, therefore, 

consulted. Table B.3 presents a general layout of a replicated two-way ANOVA 

experiment, where for each combination of the ith level of factor A and the j t h level of 

factor B, there exist t observations yp (k= 1 to t). 

The response variable could be represented by: 

Where, 

\x: is the population mean 

8: is factor effect 

s: represent random variations N(0, a2) 
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Table B. 3 Two-Way ANOVA Experimental Layout 

Ai 

. . . . 

Ai 

• • •• 

A„ 

B i 

ym 

yin 

• • • • 

ym 

ym 

• t • • 

ymi 

ynit 

B2 

yi2i 

ynt 

• * • • 

ym 

yat 

• • •• 

yn2i 

yn2t 

Bi 

ym 

ym 

• • •• 

y«i 

yiit 

* • •• 

ynjl 

Ynit 

• • •• 

• • •• 

• • •• 

• • •• 

• • •• 

• • •• 

Bm 

yimi 

yimt 

• • •• 

yimi 

yimt 

. . . . 

ynml 

ynmt 

Three hypotheses could, then, be evaluated. 

First: To assess whether factor A is significant or not, we shall test the following 

hypothesis; 

Ho: Su = S2. = ....£„. = 0 

Hi: Su,S2t,....Sn, aren't all zeros 

Second: To assess whether factor B is significant or not, we shall test the following 

hypothesis; 

H0:S.l=S.2=....S.m=0 

Hi: £.j, S,2 ,....S,m aren't all zeros 

Third: To assess whether the interaction between factors A and B is significant or not, 

we shall test the following hypothesis; 

H0: A,, = A,2 = ....Xnm = 0 

Hi: Xlx,\2,....Xnm aren't all zeros. 
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Testing the above hypotheses are summarized in Table B.4. Given That; 

t 

m t 

7=1 4=1 

n t 

r-7.=EE^ 
(=1 k=\ 

n m t 

i=l ; = i i = i 

n m t 

B-YLY* ijk 
i=\ 7=1 A=l 

n m T C 

1=1 7=1 * w / M 

n m T 2 

5(70 = 5S 

1=1 7=1 

G2 

nmt 

Source Of 
Variation 

Factor A 

Factor B 

Interaction 

Error 
Total 

Table B. 4 One-way ANOVA Analy 

Sum of 
Square 

SA 

SB 

SI 

SE 

S(Y2) 

Degrees of 
Freedom 

n-1 

m-1 

(n-l)(m-l) 

nm(t-l) 
nmt-1 

Mean 
Square 

n-\ 

sB 
m-\ 
s, 

(/i-l)(w-l) 

sE 
nm(t -1) 

sis 

F-ratio Test 

nm(t - l)SA 

(n-l)SE 

nmit - \)SB 

(m-l)SE 

nm{t - l)S, 

(n-l)(m-l)SE 



Ho, of each of the three stated hypotheses, is rejected if the probability (P-value) 

corresponding to the calculated F-value, under the respectable degrees of freedom, is 

larger than the specified significance level (a). 
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