
Empirical Analysis
of Algorithms for Block-Angular

Linear Programs

by

Jiarui Dang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Management Sciences

Waterloo, Ontario, Canada, 2007

c°Jiarui Dang 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Jiarui Dang

ii

Abstract

This thesis aims to study the theoretical complexity and empirical performance of decom-

position algorithms. We focus on linear programs with a block-angular structure. Decom-

position algorithms used to be the only way to solve large-scale special structured problems,

in terms of memory limit and CPU time. However, with the advances in computer tech-

nology over the past few decades, many large-scale problems can now be solved simply by

using some general purpose LP software, without exploiting the problems’ inner structures.

A question arises naturally, should we solve a structured problem with decomposition, or

directly solve it as a whole? We try to understand how a problem’s characteristics in-

fluence its computational performance, and compare the relative efficiency of algorithms

with and without decomposition. Two comparisons are conducted in our research: first,

the Dantzig-Wolfe decomposition method (DW) versus the simplex method (simplex); sec-

ond, the analytic center cutting plane method (ACCPM) versus the interior point method

(IPM). These comparisons fall into the two main solution approaches in linear program-

ming: simplex-based algorithms and IPM-based algorithms. Motivated by our observations

of ACCPM and DW decomposition, we devise a hybrid algorithm combining ACCPM and

DW, which are the counterparts of IPM and simplex in the decomposition framework, to

take the advantages of both: the quick convergence rate of IPM-based methods, as well as

the accuracy of simplex-based algorithms. A large set of 316 instances is incorporated in

our experiments, so that different dimensioned problems with primal or dual block-angular

structures are covered to test our conclusions.

iii

Acknowledgements

It has been a long journey for me to do this PhD, and I have not been successful alone.

I first would like to thank my supervisors, Professor Fuller and Professor Sundarraj, for

their support and guidance throughout these years. Some people say that doing research

is like working in a tunnel: when you see a beam of light, the end is right in front of you;

but when you are still digging in the dark and do not see where it leads to, it can be quite

frustrating. I had a difficult time at the beginning of my research, where I could not see

the future and was unsure about my work. It was the invaluable advice and supportive

comments from my supervisors that encouraged me and helped me out of my depression.

Confidence and persistence are the most important things that I have learned from my

research experience.

I would like to take this chance to thank Professor Elhedhli, who has research interests

related to ours, and who kindly helped me when I encountered difficulties during the

experiments. Without his suggestions, I could have remained stuck on one point for a long

time. I also want to express my gratitude to my committee members, Professor Calamai,

Professor Anjos, and Professor Hooker, for reviewing my research papers and giving helpful

feedback.

My special thanks go to Professor McKay. I worked as his teaching assistant for three

years. In his class, I learned a lot about research methods and teaching techniques.

Family and friends give sparkles to my life. I treasure the moments that I have spent

with you, and you strengthen all facets of my life. I affectionately thank my husband,

parents, and brother, for supporting me throughout my academic pursuits.

iv

Contents

1 Introduction 1

1.1 Decomposition or Not . 2

1.2 A Hybrid Solution Approach Combining ACCPM and DW 4

1.3 Our Contributions and Structure of the Thesis 4

2 Structured Problems and Methodology 7

2.1 Structured Problems for Linear Programming 7

2.2 Examples of Block Angular Structure . 8

2.2.1 Stochastic Financial Model (Dual Block-Angular) 8

2.2.2 Multicommodity Network Flow Model (Primal Block-Angular) . . . 10

2.3 Overview of Methodology . 13

2.3.1 Theoretical vs. Empirical Analysis 14

2.3.2 Experimental Design . 15

2.3.3 Data Analysis Techniques . 16

2.3.4 Multivariate Regression . 16

2.4 Measuring the Instance . 17

3 Algorithms and Notations 21

3.1 Simplex Based Algorithms . 21

3.1.1 Simplex and Revised Simplex Method 22

3.1.2 Dantzig-Wolfe Decomposition Method 22

3.2 Interior Point Based Algorithms . 23

3.2.1 Introduction to Interior Point Method 23

v

3.2.2 Non-differentiable Optimization . 25

3.2.3 ACCPM for Block-Angular Structured Problems 27

3.3 Comparison of Simplex and IPM . 29

4 With and Without Decomposition - DW vs. Simplex 31

4.1 Average Behavior of Simplex . 31

4.1.1 Bounds for Number of Iterations 32

4.1.2 Number of Arithmetic Operations at Each Iteration 37

4.1.3 Average Complexity of Simplex . 38

4.2 Average Behavior of DW . 40

4.2.1 Number of Outer Iterations . 41

4.2.2 Complexity at Each Iteration . 44

4.2.3 Average Complexity of DW . 45

4.3 Relative Efficiency: DW vs. Simplex . 48

4.3.1 Overview of Data . 49

4.3.2 Regression Models . 53

4.3.3 Prediction . 54

4.4 Preliminary Conclusions . 56

5 With and Without Decomposition - ACCPM vs. IPM 67

5.1 Complexity Analysis for ACCPM vs. IPM 68

5.1.1 Complexity of IPM . 68

5.1.2 Complexity of ACCPM with Multiple Cuts 69

5.1.3 Relative Complexity of ACCPM vs. IPM 73

5.2 Empirical Analysis for ACCPM vs. IPM 78

5.2.1 Limitations of Theoretical Analysis 78

5.2.2 Empirical Analysis on IPM . 79

5.2.3 Empirical Analysis on ACCPM . 83

5.2.4 Empirical Analysis on the Ratio - Relative Efficiency 84

5.3 Preliminary Conclusions . 90

vi

6 A Hybrid Solution Approach Combining ACCPM and DW 101

6.1 Introduction . 101

6.2 Preliminaries . 103

6.2.1 Dantzig-Wolfe Decomposition Method 104

6.2.2 Analytic Center Cutting Plane Method 105

6.2.3 Weighted Primal Newton Method 108

6.3 The Hybrid Approach . 109

6.3.1 Solving the Constructed Master Problem 109

6.3.2 The Weighted Dantzig-Wolfe Decomposition Method 110

6.3.3 Switch Criteria . 113

6.3.4 Recovering a Basis . 114

6.3.5 Description of the Hybrid Solution Algorithm 116

6.4 Numerical Results . 117

6.4.1 Stochastic Financial Model . 118

6.4.2 Multicommodity Network Flow Model 123

6.4.3 Discussion . 124

6.5 Conclusions . 127

7 Implementation Issues 133

7.1 Software . 133

7.1.1 MATLAB . 133

7.1.2 CPLEX . 135

7.1.3 GAMS . 136

7.2 Hardware . 137

7.3 Floating Point Arithmetic for Large-Scale Computing 138

7.4 Implementation of ACCPM in Decomposition 139

7.4.1 Pseudo Code of ACCPM . 139

7.4.2 Penalty Weighted Technique . 141

7.4.3 Dynamic Update of M . 141

8 Concluding Remarks and Future Research 145

vii

A Problem Characteristics 147

B Some Source Codes 159

B.1 Calling CPLEX in MATLAB . 159

B.2 Generating Pseudo Blocks (MPS) by GAMS 168

B.3 Converting Free MPS Format to Standard 171

C Weights in Robust Regression 177

C.1 Robust Regression: DW vs. Simplex . 177

C.2 Robust Regression: ACCPM vs. IPM . 177

D Correlation Among Dimensional Parameters 187

D.1 Correlation Matrix for Financial Model . 187

D.2 Correlation Matrix for Multicommodity Model 187

viii

List of Tables

2.1 Stochastic Financial Problem Characteristics (16 out of 100) 11

2.2 The Four Types of Problems by Mnetgen 13

2.3 Multicommodity Network Flow Problem Characteristics (24 out of 216) . . 19

3.1 Comparison of Simplex and IPM . 30

4.1 Simplex Number of Iterations . 33

4.2 Regression Results for Simplex Iteration Counts 58

4.3 Regression Results for Simplex CPU Time 59

4.4 Regression Results for DW Number of Proposals 60

4.5 Regression Results for DW CPU Time . 61

4.6 Regression Results for The Ratio of DW vs. Simplex 62

4.7 Robust Regression Results for Random Prediction Tests 63

4.8 Prediction Experiments on Randomly Chosen Financial Problems 63

4.9 Prediction Experiments on Randomly Chosen Multicommodity Problems . 64

4.10 Robust Regression Results for Extrapolation Tests 64

4.11 Extrapolation Experiments on the Financial Problems 65

4.12 Extrapolation Experiments on the Multicommodity Problems 65

5.1 Regression Results for IPM Iteration Counts 92

5.2 Regression Results for IPM CPU Time . 93

5.3 Regression Results for ACCPM Total Number of Cuts 94

5.4 Regression Results for ACCPM CPU Time 95

5.5 Regression Results for the Ratio of ACCPM vs. IPM 96

ix

5.6 Robust Regression Results for Random Prediction Tests 97

5.7 Prediction Experiments on Random Chosen Financial Problems 97

5.8 Prediction Experiments on Random Chosen Multicommodity Problems . . 98

5.9 Robust Regression Results for Extrapolation Tests 98

5.10 Extrapolation Experiments on Financial Problems 99

5.11 Extrapolation Experiments on Multicommodity Problems 99

6.1 Stochastic Financial Problem Convergence Properties 120

6.2 Stochastic Financial Problem Runtime and Proposals/cuts Added 121

6.3 Multicommodity Network Flow Problem Convergence Properties 129

6.4 Multicommodity Network Flow Problem Runtime and Proposals/cuts Added130

6.5 Influence of Switch Flag for the Hybrid Approach 131

7.1 Different Weighting Strategies . 142

7.2 Dynamic Update of M . 143

A.1 Stochastic Financial Problem Characteristics 147

A.2 Multicommodity Network Flow Problem Characteristics 151

C.1 Weights in Random Prediction on RDW/Simplex (Financial) 178

C.2 Weights in Random Prediction on RDW/Simplex (Multicommodity) 179

C.3 Weights in Extrapolation on RDW/Simplex (Financial) 180

C.4 Weights in Extrapolation on RDW/Simplex (Multicommodity) 181

C.5 Weights in Random Prediction on RACCPM/IPM (Financial) 182

C.6 Weights in Random Prediction on RACCPM/IPM (Multicommodity) 183

C.7 Weights in Extrapolation on RACCPM/IPM (Financial) 184

C.8 Weights in Extrapolation on RACCPM/IPM (Multicommodity) 185

D.1 Correlation Matrix for 100 Financial Problems 188

D.2 Correlation Matrix for 216 Multicommodity Problems 188

x

List of Figures

2.1 Stochastic Financial Model with Dual Block-angular Structure 10

2.2 Multicommodity Network Flow Model with Primal Block-angular Structure 12

4.1 Simplex Number of Iterations vs. Number of Rows 33

4.2 Simplex log(number of iterations) vs. log(m) 34

4.3 Simplex log(CPU time) vs. log(m) . 38

4.4 Simplex CPU Time vs. n and m0% . 40

4.5 DW Number of Outer Iterations vs. Number of Linking Constraints 42

4.6 DW Number of Proposals vs. m0%, h . 42

4.7 DW CPU Time vs. (m0 + h) . 46

4.8 Ratio (DW/Simplex) vs. m0% and h . 49

4.9 Ratio (DW/Simplex) vs. m0% and h . 50

4.10 Ratio (DW/Simplex) vs. Number of Assets and Number of Scenarios . . . 51

4.11 Ratio (DW/Simplex) of Multicommodity Problems with 128 and 256 Nodes 51

4.12 Ratio (DW/Simplex) of Multicommodity Problems with 64 Nodes 52

5.1 IPM number of iterations vs. number of columns for Both Models 80

5.2 IPM CPU vs. number of columns for Financial and Multicommodity Models 82

5.3 IPM log(CPU) vs. log(n) for Financial and Multicommodity Model 82

5.4 CPU Time vs. Number of Assets and Number of Scenarios (Financial Model) 85

5.5 Ratio (ACCPM vs. IPM) and Surface Map for Financial Model 86

5.6 Cutaway view for the Ratio (Financial Model) 86

5.7 CPU Time vs. m0% and h (Multicommodity Model) 87

5.8 Ratio (ACCPM vs. IPM) for Multicommodity Model 87

xi

6.1 Tailing Effect of ACCPM on Financial Prob.6 - LB and UB 119

6.2 Tailing Effect of ACCPM on Financial Prob.6 - Relative Duality Gap . . . 119

6.3 CPU Time of ACCPM vs. DW on Multicommodity Model 125

6.4 Effect of Varying the Percentage of Linking Constraints on Relative Efficiencies125

xii

Chapter 1

Introduction

For over 50 years, Operations Research (OR) has been using linear programming models

to aid decision-making. The problem size that can be solved has increased dramatically

with the impressive development of computer technologies. Today, a variety of commercial

software is available to solve general linear programs, but they still have a capacity limit for

constraints and variables [28]. Unfortunately, many application formulations may greatly

exceed the existing limit. There are two types of approaches available to deal with this

issue [13]: the first is to partition the overall problem into manageable subproblems, linked

by means of a hierarchical interactive system, and the second is to devise specialized

algorithms, called decomposition algorithms, to exploit the structure of the problem. The

first approach is not applicable for a lot of problems with a monolithic structure. The

second approach is the most commonly used alternative to treat the problem as a unit.

In this thesis, we focus mainly on the Dantzig-Wolfe decomposition method (DW), one of

various available decomposition algorithms.

Another method used in our analysis is the Analytic Center Cutting Plane Method

(ACCPM), which is a new and promising algorithm with good performance in both theory

and practice. ACCPM uses ideas from Interior Point Methods (IPMs) to calculate analytic

centers. This step also dominates the computational effort at each iteration. Moreover, due

to the dual equivalence between Lagrangian relaxation and Dantzig-Wolfe decomposition,

ACCPM applied in decomposition can be viewed as one variant of the DW algorithm.

1

2 Empirical Analysis of Decomposition for LP

1.1 Decomposition or Not

The advent of decomposition methods has solved the insufficient memory problem in com-

puting solutions to some large models, and hence avoided the requirement of an expensive

super computer. Decomposition methods also make it possible to use parallel comput-

ing with affordable multi-processors. However, although decomposition methods have the

aforementioned advantages, their theoretical complexity and practical performance are of-

ten not satisfactory. Convergence can be proven, but the convergence rate is usually slow.

In addition, nowadays, due to the breakthrough of software and hardware development,

personal computers today have much larger processing abilities which were unimaginable

in the past. So, do we really need decomposition? A common accepted argument is that

for very large-scale applications, decomposition algorithms would hopefully outperform

standard methods. But, how large is really large? How does one measure the scale of an

instance? Are there any other factors impacting the computational effort? There have

been no clear answers to these questions at present, although the complexity of decompo-

sition has long been a concern by researchers. We will try to answer these questions in this

thesis.

Based on some conclusions available in the literature, we intend to give a complete

picture of the complexity of decomposition algorithms. We will then compare the com-

plexity of decomposition algorithms against the complexity of direct solution approaches.

In particular, we will consider block-angular structured linear programs, whose size can be

measured by dimensions, such as the number of linking constraints, the number of blocks,

and the number of rows and columns in each block. Therefore, the complexity of a problem

can be described as a function of its dimensional parameters, to indicate the relationship

between a problem’s size and its computational effort. We try to give a few conclusions

that are helpful for decision making, i.e., for a specific structured problem, whether or not

to use decomposition.

Two comparisons are conducted in our analysis: DW versus simplex (simplex-based

algorithms, with and without decomposition), and ACCPM versus IPM (IPM-based algo-

rithms, with and without decomposition). Both comparisons are discussed according to

some theoretical conclusions and then tested empirically.

The theoretical analysis on the first comparison, DW vs. simplex, is based on simplex

Introduction 3

methods. Since simplex has a well known exponential worst-case complexity, which rarely

occurs in practice, it is not suitable to analyze in the worst-case. However, with a much

better average performance, simplex is still a competitive algorithm for linear programming.

Note that it is not statistically ‘average’, but a widely accepted ’average-case observed

performance’, which can reflect the real performance of the simplex method. We will use

results from the average-case to analyze the overall complexity for both DW and simplex.

The theoretical analysis on the second comparison, ACCPM vs. IPM, is based on

interior point theories. There are some previous results available on the complexity of

ACCPM with multiple cuts, but we have gone further by analyzing the complexity of

ACCPM applied in decomposition, taking into account the complexity of subproblems.

All the results in this part are from the worst-case estimates.

Besides the theoretical analysis, we also do plenty of experiments to test our conclusions.

Empirical analysis is as important as the theoretical ones in Operations Research, if not

more. Researchers like McGeoch [65][66][67] and Hooker [49] strongly suggest empirical

analysis, because there is a huge gap between theory (abstract model) and practice (physical

artifact). A lot of assumptions, which are often untrue in the real world, have been made

to build an ideal mathematical model. Sometimes a worst-case theoretical result of an

algorithm cannot tell us how exactly it works in practice. Unfortunately, few people have

realized this. We still see some papers with propositions, proofs, conclusions, and then a

last page containing numerical results. This kind of approach is not enough because a few

examples may not be able to represent the whole picture, and many other factors count as

well.

To overcome the limit of theoretical analysis, several encouraging methods have been

suggested by empirical studies. Statistical models are one type of these methods. Based

on the numerical results, we used regression analysis to test our theoretical conclusions.

A regression model can be built by examining the influence of each parameter, e.g., the

more linking constraints a problem has, the more computational effort a decomposition

method usually requires. However, due to the joint contribution of various dimensional

parameters, a good model can become quite difficult to develop. Under such circumstances,

a pure empirical analysis approach is adopted, i.e., putting theoretical results aside, testing

all available problems with specific dimensional parameters, and then developing tentative

4 Empirical Analysis of Decomposition for LP

regression models by observing the tendency shown in data.

Empirical analysis usually requires a large amount of samples in order to be convincing.

Instead of randomly choosing testing problems, we use a large set of test problems to make

the analysis systematic. Our computational tests employ many block-angular problems

with deliberately chosen variations in the dimensional parameters such as the number of

linking constraints, the number of blocks, and the number of variables and constraints in

each subproblem.

1.2 A Hybrid Solution Approach Combining ACCPM

and DW

Convergence speed and accuracy are both important criteria in choosing an algorithm. Yet,

in linear programming, these two criteria appear to be in conflict for the two main solution

approaches: the simplex method and interior point methods (IPMs). The analytical center

cutting plane method (ACCPM), which can be viewed as an IPM-based decomposition

approach, has superior global convergence properties, but its main feature, staying away

from the boundary, prevents it from producing an exact optimal solution. Conversely,

the simplex-based Dantzig-Wolfe decomposition method (DW) achieves greater accuracy

because it can reach the vertices of the feasible region. In this thesis, we propose a hybrid

solution approach that seeks to combine the advantages of both. We start with ACCPM,

and then switch to DW after a few iterations (usually when the current point is sufficiently

close to the optimal solution). There is little computational effort required for the switch.

Experiments indicate that for large problems, the hybrid approach appears to have both

accuracy and a fast convergence rate.

1.3 Our Contributions and Structure of the Thesis

Our contributions are three-fold. First, we analyze how a problem’s structure impacts

its computational effort, deduce theoretical complexity conclusions on both decomposition

and non-decomposition methods, and then empirically test them with rigorously designed

Introduction 5

experiments. This study aims to provide useful information for decision making, e.g., for

a specific structured problem, solving it by decomposition or solving it as a whole, using

serial or parallel computing, how to design the experiment architecture, and even predicting

an algorithm’s performance on a given problem. Second, while IPM has been involved in

the DW algorithm (see [81], [63], and [87]), a hybrid method combining ACCPM and

DW is a new attempt, and has not been proposed in the literature. Several techniques,

such as the weighted versions of ACCPM [24] and DW, the constructed master problem

[24], and a variant of warm-start recovery, are incorporated and make the hybrid approach

competitive. Third, in order to provide full-scale numerical results, our computational

tests involve primal and dual block-angular structured problems with various dimensional

parameters.

The present exposition is not meant to be exhaustive, as algorithms as well as research

methods are versatile, and real-world problems are greatly varied. The rest of the thesis is

organized as follows:

Chapter 2 is composed of related basic principles. First, structured linear programming

problems are introduced, particularly the block-angular structure, along with its applica-

tions. Then, a few solution methods are briefly introduced. Two main categories are

covered: simplex-based and IPM-based methods. The theoretical and empirical analysis,

the regression analysis, and experimental design are also discussed in this chapter.

Chapter 3 addresses detailed algorithms and notations. There are two main categories:

one, simplex-based algorithms, including simplex, revised simplex method, and its ap-

plication in large-scale systems, the Dantzig-Wolfe decomposition method; two, interior

point methods and their application in decomposition, ACCPM. A comparison of these

two prime solution methods is outlined from different perspectives.

Chapters 4 and 5 analyze the relative efficiency of with and without decomposition

using two comparisons. Chapter 4 considers the first comparison: DW versus simplex, in

the average case. We briefly recall the observed behavior and simplex-based algorithms,

and then examine the real performance of both simplex and DW over the test problems.

Chapter 5 considers the second comparison: ACCPM versus IPM, in the worst case. We

first analyze the complexity of ACCPM and IPM, based on some results from the literature.

We try to give a whole picture of the complexity for ACCPM applied in decomposition, and

6 Empirical Analysis of Decomposition for LP

then investigate the influence by each dimensional parameter that describes the problems

structure. A few conclusions are made on the complexity analysis, and are tested by

experiments.

Empirical studies are outlined in Chapters 4 and 5. We test our preliminary conclusions

by solving the sample problems, with and without decomposition. Instead of including a

‘last page empirical results’ section, we design some statistical models to make our discus-

sion more convincing. In addition, exploratory data analysis is performed in our discussion.

That is, we observe the computational results, which can possibly provide some hints to

build a regression model. This method is particularly effective for complex data analysis.

When we coded ACCPM and DW in MATLAB, we realized that convergence and

accuracy appear to be in contradiction, which is the motivation for us to devise a hybrid

decomposition approach to take advantages of both. This hybrid algorithm is presented in

Chapter 6, and numerical experiments show promising results.

Chapter 7 summarizes the implementation issues, including software and hardware, as

well as strategies in large-scale computing. In particular, we propose two techniques used

in our ACCPM code: penalty weight factors and the dynamic update of the traditional

big M .

In the last chapter, we make concluding remarks and anticipate our future research.

Chapter 2

Structured Problems and

Methodology

In this chapter, we briefly introduce the block-angular structure and two real-world appli-

cations, as well as the research methods used in this thesis.

2.1 Structured Problems for Linear Programming

Large-scale problems are usually quite sparse. In this context, structure means the pattern

of zero and nonzero coefficients in the constraint matrices. Several structural forms reap-

pear frequently in real-world applications [13]. The special structures of these problems

can be exploited by decomposition algorithms.

Our work focuses on linear programs with a block-angular structure. Consider a prob-

lem with the form of

min cT1 x1+ cT2 x2+ · · ·+ cThxh

s.t. A1x1+ A2x2+ · · ·+ Ahxh = b

B1x1 = d1

B2x2 = d2

· · · · · ·
Bhxh = dh

xl ≥ 0, l = 1, 2, · · · , h

(2.1)

7

8 Empirical Analysis of Decomposition for LP

where Al ∈ Rm0×nl , and b ∈ Rm0×1; each block Bl ∈ Rml×nl, dl ∈ Rml×1, cl ∈ Rnl×1,

and the variables xl ∈ Rnl×1. Denote A = [A1, A2, · · · , Ah], x =

⎡⎢⎢⎢⎢⎣
x1

x2
...

xh

⎤⎥⎥⎥⎥⎦, c =
⎡⎢⎢⎢⎢⎣
c1

c2
...

ch

⎤⎥⎥⎥⎥⎦,

B =

⎡⎢⎢⎢⎣
B1

B2

· · ·
Bh

⎤⎥⎥⎥⎦, and d =
⎡⎢⎢⎢⎢⎣
d1

d2
...

dh

⎤⎥⎥⎥⎥⎦. The problem becomes

min cTx (2.2)

s.t. Ax = b (2.3)

Bx = d (2.4)

x ≥ 0 (2.5)

Notice that in this problem, there are many zeros in the coefficients, and the remaining

nonzeros occur in clusters. The system of equations (2.4) can be separated into h com-

pletely independent subsystems, while constraints (2.3) act as a linkage between these

smaller blocks. This special pattern is called primal block-angular structure.

2.2 Examples of Block Angular Structure

Many problems arising in application have a block-angular structure. In this thesis, we

include two models (316 instances) for the numerical experiments.

2.2.1 Stochastic Financial Model (Dual Block-Angular)

We consider a two-stage stochastic portfolio problem based on a multistage model in [29].

The problem can be viewed as an event tree. For simplicity, we assume that each node

occurs with the same probability. The root node represents time point 0, where win is the

amount of initial funds, and n is the number of assets. Every stage is a decision process:

all assets are sold and then re-invested at the next stage. Transaction cost is ignored here,

Structured Problems and Methodology 9

because although it is important in financial analysis, it does not affect the computational

properties. Us and V s are evaluated at end leaf nodes (stage 2) as surplus and deficit. If

there is a surplus (U) above the expected return (wout), the investment is successful, so

a bonus scalar is assigned to multiply the Us in the objective function. On the contrary,

deficit (V) is not desirable, so a penalty scalar multiplies the V s in the objective function.

We use the same bonus and penalty scalars (5 and −20 respectively) as [29].
A two-stage stochastic problem can be formulated as

max
L2P
l2=1

5U l2 − 20V l2

s.t. win = C
l0 +

nP
i=1

X l0
i , l0 = 1

rcC
a(l1) +

nP
i=1

pl1i X
a(l1)
i = C l1 +

nP
i=1

X l1
i , l1 = 1, · · · , L1

rcC
a(l2) +

nP
i=1

pl2i X
a(l2)
i = wout + U

l2 − V l2, l2 = 1, · · · , L2

Ca(lt), X
a(lt)
i , U l2 , V l2 ≥ 0,

(2.6)

where i is the index for assets (i = 1, 2, · · · , n), t is the index for stages (t = 1, 2), lt is

the node index in stage t, a(lt) represents the immediate ancestor of node lt, and Lt is

the total number of nodes in stage t . Variable C lt is the amount of cash in stage t, and

variable X lt
i is the amount of money invested in asset i in stage t. Parameter rc represents

the rate of return for cash, and plti represents the rate of return for asset i in stage t. We

set rc ∈ [0.8, 1.2] and plti ∈ [0.8, 1.2] in our experiments.
The stochastic financial model has a dual block-angular structure as shown in Fig-

ure 2.1, where the horizontal axis represents the row count, the vertical axis represents the

column count, and nz stands for the number of nonzeros. Consequently, the dual problem

of (2.6) has a primal block angular structure as in (2.1). The first stage variables C l0 and

X l0
i correspond to the linking constraints in the dual problem, and the remaining variables

C l1 , X l1
i , V

l2 and U l2 correspond to L1 blocks of constraints in the dual problem. Since

there are h branchings at each node, L1 = h, and L2 = h
2.

There are only two parameters that determine the problem dimensions: the number of

assets (n) and the number of scenarios (h). The dual of the stochastic financial problem

(2.6) has h2+h+1 variables and 2h2+nh+h+n+1 constraints, of which n+1 are linking

10 Empirical Analysis of Decomposition for LP

0 50 100 150 200 250 300

0

20

40

60

80

100

nz = 1520

Figure 2.1: Stochastic Financial Model with Dual Block-angular Structure

constraints. Thus, the number of linking constraints is only determined by the number

of assets, and is independent of the number of scenarios. As is known, in a stochastic

problem, the more scenarios, the more accurate is the model. We can address the problem

accurately, with a lot of scenarios, and not affect the number of linking constraints. This

is a very nice feature for decomposition algorithms.

We include 100 test problems from this model in our experiments, with n from 10 to 100,

h from 10 to 100, and stepsize 10. Table 2.1 shows the problem characteristics of 16 of them,

with all combinations of n and h equal to 10, 40, 70, and 100. In the table, m0 represents

the number of linking constraints, and m0% is the percentage of linking constraints to all

constraints. rows and cols 1 stand for the total number of rows and columns in the whole

model. nz and nz% are the number of non-zeros and their percentage in the whole model.

The last two columns, rows and cols, represent the number of rows and columns in each

subproblem. All the h subproblems are of the same size. For more information on all the

100 test problems, see Table A.1 in Appendix A for more information.

2.2.2 Multicommodity Network FlowModel (Primal Block-Angular)

The multicommodity network flow problem is a typical model with a primal block-angular

structure (see Figure 2.2). Several different commodities share the same transportation

network, and are shipped simultaneously from their respective sources to destinations,

1Refers to rows and columns in primal block angular structure (dual formulation).

Structured Problems and Methodology 11

Table 2.1: Stochastic Financial Problem Characteristics (16 out of 100)

Prob. n h m0 rows m0% cols nz nz% rows cols

1 10 10 11 321 3.43% 111 1,531 4.30% 31 11

2 10 40 11 3,651 0.30% 1,641 21,691 0.36% 91 41

3 10 70 11 10,581 0.10% 4,971 65,251 0.12% 151 71

4 10 100 11 21,111 0.05% 10,101 132,000 0.06% 211 101

5 40 10 41 651 6.30% 111 5,161 7.14% 61 11

6 40 40 41 4,881 0.84% 1,641 72,121 0.90% 121 41

7 40 70 41 12,711 0.32% 4,971 216,000 0.34% 181 71

8 40 100 41 24,141 0.17% 10,101 438,000 0.18% 241 101

9 70 10 71 981 7.24% 111 8,791 8.07% 91 11

10 70 40 71 6,111 1.16% 1,641 123,000 1.22% 151 41

11 70 70 71 14,841 0.48% 4,971 368,000 0.50% 211 71

12 70 100 71 27,171 0.26% 10,101 744,000 0.27% 271 101

13 100 10 101 1,311 7.70% 111 12,421 8.54% 121 11

14 100 40 101 7,341 1.38% 1,641 173,000 1.44% 181 41

15 100 70 101 16,971 0.60% 4,971 519,000 0.62% 241 71

16 100 100 101 30,201 0.33% 10,101 1,050,000 0.34% 301 101

with the total flow of each arc not exceeding its capacity.

Given a directed graph G(N,A), with N representing the set of nodes (|N | = n), and
A representing the set of arcs in the network (|A| = m), a multicommodity network flow
problem can be formulated as follows

min
P
k

P
ij

ckijx
k
ij (2.7)

s.t.
P
j

xkij −
P
j

xkji = b
k
i ∀i, k (2.8)

0 ≤ xkij ≤ ukij ∀i, j, k (2.9)P
k

xkij ≤ uij ∀i, j (2.10)

xkij ≥ 0, (2.11)

12 Empirical Analysis of Decomposition for LP

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

nz = 1754

Figure 2.2: Multicommodity Network Flow Model with Primal Block-angular Structure

where k = 1, 2, · · · , h is the index of commodities, node i and j ∈ N , and arc (i, j) ∈ A.
The constraint (2.8) represents the flow conservation with bki as net supply of commodity

k at node i, (2.9) limits the individual capacity by commodity for each arc, and (2.10) is

the mutual capacity. With h commodities, n nodes, and m0 out of m arcs having mutual

capacities, the problem has m× h variables and n× h+m× h+m0 constraints, of which

m0 of them are linking constraints crossing the h subproblems.

We obtain the data from the well-known Mnetgen generator [30][14]. The number of

nodes n ∈ {64, 128, 256}, and the number of commodities h ∈ {4, 8, · · · , n} as Mnetgen
can only generate problems with h ≤ n. For each pair of (n, h), 12 problems are randomly
generated. They can be classified into four groups. Six of them are of more arcs among

the same number of nodes in the network (dense),with m/n ≈ 8; the other six are of

sparse network with m/n ≈ 3. In terms of the number of arcs with mutual capacities,

six of the problems are hard with 80% arcs having mutual capacity constraints (linking

constraints), among which 30% are high cost; the other six are easy with 40% of arcs

having mutual capacity and 10% are high cost. The combination of the two features make

the four groups [14], as shown in Table 2.2. Within each group, the three problems have

similar structure, and 30%, 60%, and 90% of arcs respectively have individual capacity

constraints, which can be viewed as upper bounds for variables. Other arcs are treated

as having infinite individual capacity (value Inf in MATLAB). Therefore, the percentage

of arcs with individual capacity does not affect the problem size in this sense. However,

Structured Problems and Methodology 13

Table 2.2: The Four Types of Problems by Mnetgen

Type Sparse Dense

Easy I III

Hard II IV

[14] indicates that within each group of three, the difficulty of problems decreases as this

percentage increases, because ‘the number of tight mutual constraints tends to diminish’.

Table 2.3 summarizes the problem characteristics for this model. It only contains 24

out of the 216 problems: the first 12 (n = 64, h = 4) and last 12 (n = 256, h = 256)

problems. For each pair of (n, h), problem 1-3 are type I, 4-6 are type II, 7-9 are type III,

and 10-12 are type IV. In the table, row0 is the original number of all the constraints, rows

is the number of constraints excluding the individual capacity ones in (2.9) because they

are treated as upper bounds for the variables in our codes, m0% is the percentage of linking

constraints to all the constraints rows (not including the individual capacity constraints),

cols is the number of columns, nz is the number of non-zeros in the coefficient matrix,

and nz% is the percentage of non-zeros. The last two columns in Table 2.3 provide the

average number of rows (not including the individual capacity constraints) and columns

for the subproblems. Within each block, the number of rows equals the number of nodes

(n); theoretically, the number of columns equal the number of arcs (m), but the actual

number of the columns is quite different when Mnetgen generates problems. So, rows and

cols show the average number of rows and columns of the blocks. For more information on

all the 216 test problems, see Table A.2 in Appendix A.

2.3 Overview of Methodology

This section surveys methodological issues that arise in our research on evaluating opti-

mization algorithms.

14 Empirical Analysis of Decomposition for LP

2.3.1 Theoretical vs. Empirical Analysis

To study the performance of algorithms, there are two possible approaches: theoretical and

empirical. The former, also known as analytical or deductive analysis, has fully developed

into a science [49]. Many brilliant results have been discovered by this approach in scholarly

publications. The empirical analysis, on the other hand, has long been considered ‘lowbrow

or unsophisticated’ [49] and has not gained as much attention as it deserves. However, the

conclusions drawn from the widespread analytical method do not tell us how an algorithm

really works in practice, both in the worst case and in the average case, because the proof

is usually based on a simplified algorithm with strong assumptions.

It is easy to understand that worst-case complexity bounds are not much guide in prac-

tice. Moreover, theoretical average-case analysis also has plenty of limitations. In fact,

average-case analysis is more difficult than worst-case [16]. Instead of giving a bound,

average-case analysis needs to sample from the infinite population, and examines the av-

erage performance of every problem in the sample space [83]. It is virtually impossible

to obtain a statistical average. Researchers have to assume a certain kind of distribution

pattern, which may not be representative of real world applications.

Therefore, empirical analysis has been proposed as an alternative research method to

address these problems [49]. As a method based on computational experiments, empirical

analysis can sidestep the unrealistic assumptions and focus on typical problems. The

advantages of an empirical science can be summarized as [49]:

1. It does not rely on proving hard worst-case and average-case theorems.

2. Unlike worst-case analysis, it can focus on typical problems.

3. Unlike average-case analysis, it need not restrict itself to a simple and unrealistic

distribution of random problems.

In OR, a famous example of the unrepresentative worst-case analysis is for the simplex

method [18]. Although it has an exponential complexity bound, its empirical performance

is so efficient that it once discouraged the development of other methods in 1950-60s [81].

Even today, the simplex method is still a major solution approach for linear programming.

Structured Problems and Methodology 15

Due to the huge gap between its theoretical worst-case analysis and practice, people es-

timate simplex’s performance by average-case analysis. Borgwardt [12] has studied the

average behavior of simplex in a probabilistic manner. His analysis explains why simplex

takes polynomial time to reach optimality in practice, yet some probabilistic assumptions

are involved inevitably. Some other average-case observations are also available in the

literature. These studies provide valuable information for the practical performance of

simplex, and we will discuss them in detail Chapter 4.

IPM-based algorithms have polynomial worst-case complexity, which does not deviate

from their practical performance as much as simplex-based algorithms. In Chapter 5, since

most of the conclusions in the literature are worst-case complexity bounds, in the theo-

retical analysis part, we also compare ACCPM and IPM in the worst-case. The following

empirical analysis then will address the observed average case.

2.3.2 Experimental Design

In fact, numerical results, which is part of empirical analysis, have already been involved

in most research papers. However, there is still a long way to go before empirical analysis

is improved to be a science: the computational testing is quite informal and needs more

rigorously set principles of experimental design [42][66][67].

In this thesis, we try to understand how a problem’s characteristics influence an algo-

rithm’s performance. More specifically, we describe the performance as a function of the

dimensional parameters, i.e.,

performance = f(dimensional parameters), (2.12)

where performance, usually known as responses, can be the number of iterations, the

number of arithmetic operations, CPU time, and the relative efficiency of with and without

decomposition; the dimensional parameters, which are the factors, include m0, h, and

msub×nsub. In addition, we also use m = m0+hmsub and n = hnsub as the total number of

rows and columns for the entire problem when investigating the direct solution approaches.

On both the comparisons discussed in Chapter 4 and 5, basically, we first examine the

performance of algorithms theoretically, and then test the conclusions by numerical data

collected in our experiments.

16 Empirical Analysis of Decomposition for LP

2.3.3 Data Analysis Techniques

To address the performance functions (2.12), we conduct experiments on a large set of test

problems. To analyze the testing results in hand, the next task is to build a regression

model. Basically, there are two ways to develop a model upon which regression analysis

can be facilitated. First, deduce a model from theoretical analysis. For instance, based

on the simplex tableau process, given m inequalities and n variables, there are in total

m + n columns including slack variables. If you suppose that, on average, half of them

have negative reduced cost in the initial tableau [83], then the total number of updates,

i.e., , the number of iterations, is related to (m+ n).

However, sometimes it is hard to get an explicit formula this way - too many uncertain

factors involved. Then, there arises the second method, known as heuristic use of experi-

mentation [49], which uses experiments to suggest hypotheses and then these hypotheses

may someday be proven. In such situations, we observe the graphical relationships ob-

tained by experiments, and try developing models on related parameters, based on curve

shapes. A similar technique, Exploratory Data Analysis, is used in [47] to address the

complex joint-effect by multiple factors in nonlinear optimization routines. This kind of

hypothetical model, which is suggested by experimental analysis, might be proved by theory

someday in the future, or it might still not be proved after a long time, as ‘our questions

about program performance and behavior far outstrip our ability to obtain answers by

purely analytical means [68]’.

2.3.4 Multivariate Regression

Statistical methods are highly recommended in empirical science to evaluate the results

[49]. After building tentative models, we validate (accept or reject) and revise them using

regression analysis. In addition to the values of model coefficients, a regression also returns

some statistical parameters providing further information. For example, r2, the coefficient

of determination, shows how good a fit is; meanwhile, a low r2 can be attributed to big

residuals, which suggests the possibility of uncovered parameters in the model; the p value

from a two-sided t-test (H0: the coefficient is zero) helps to exclude irrelevant parameters.

We will use these statistical parameters in our analysis below.

Structured Problems and Methodology 17

We did the multivariate regression analysis in MATLAB by the method of ordinary

least squares (function regstats). For the prediction tests in Chapter 4 and 5, we used the

robust regression method (function robustfit) to limit the influence of extreme outliers by

assigning reduced weights to them.

2.4 Measuring the Instance

We intend to examine the performance of algorithms for problems with a given size. There-

fore, we first need to characterize a problem’s size. A lot of analysis on theoretical com-

plexity for linear programming attempts to obtain a suitable measure, and try to make it

more relevant to the computational effort than the existing measures [78].

The most straightforward way is by m and n, i.e., , the number of rows (equalities) and

columns2. Many studies are based on this measurement. However, as mentioned earlier,

large-scale problems are usually sparse, and the huge volume of zeros in the coefficients

greatly affects the complexity. In practice, LP models usually have fewer than 10 nonzeros

per column, independent of the number of rows [62]. In such a case, m by n cannot

appropriately reflect the problem size. The density of nonzeros in the coefficients is an

important factor to consider as well.

There is another well-known measurement: the input length, which is the actual num-

ber of bits needed to store the data on a computer, and usually denoted by L. For example,

the first polynomial time algorithm [53] for linear programming problems achieved a com-

plexity bound of O(n4L), where n is the number of variables, and L is the input length,

i.e., the number of 0’s and 1’s needed to write the problem data in binary form. Later

on, Karmarkar’s algorithm [51] achieved a better complexity bound of O(n3.5L). To some

extent, this single parameter, input length, contains the information of the problem di-

mensions as well as the nonzero density. In addition, it is usually preferable to use only

one parameter to specify a problem’s size. Therefore, the input length is widely used in

complexity analysis. However, sometimes L can be ambiguous too. For example, how to

represent a problem greatly affects its input length [83].

Both (m, n) and L indicate the overall size of a problem. For linear programs with

2The number of columns includes slack and surplus variables when converting inequalities to equalities.

18 Empirical Analysis of Decomposition for LP

a block-angular structure, more parameters need to be employed to represent the inner

structure. Therefore, we use four parameters to measure the test problems (see Section

2.1): m0 represents the number of linking constraints; h stands for the number of blocks

in the system; ml and nl are the number of rows and columns within the l
th block. In

our experiments, both models have evenly sized blocks3. This is also true in some other

applications. So we denote the subproblem dimensions by msub × nsub in general. We also
denote m0% as the percentage of linking constraints to all the constraints. We will see in

the later discussion that this parameter plays an important role for the complexity of these

special structured problems.

3The stochastic financial model has strictly equal-sized subproblems, while the size of the blocks in

the multicommodity network flow model are approximately the same (< 5% variance), and we take the

average size of them.

Structured Problems and Methodology 19

Table 2.3: Multicommodity Network Flow Problem Characteristics (24 out of 216)

Prob. m m0 rows0 rows m0% cols nz nz% rows cols

1 196 84 1060 340 24.71% 720 1,754 0.7165% 64 180

2 200 79 1056 335 23.58% 721 1,721 0.7125% 64 180

3 189 85 1063 341 24.93% 722 1,773 0.7201% 64 181

4 194 146 1123 402 36.32% 721 1,982 0.6838% 64 180

5 201 167 1143 423 39.48% 720 2,039 0.6695% 64 180

6 203 157 1135 413 38.02% 722 1,997 0.6697% 64 181

7 520 195 1988 451 43.24% 1,537 3,653 0.5270% 64 384

8 528 207 2002 463 44.71% 1,539 3,684 0.5170% 64 385

9 532 227 2019 483 47.00% 1,536 3,726 0.5022% 64 384

10 537 433 2228 689 62.85% 1,539 4,335 0.4088% 64 385

11 522 410 2205 666 61.56% 1,539 4,288 0.4184% 64 385

12 524 407 2200 663 61.39% 1,537 4,270 0.4190% 64 384

205 822 315 250,851 65,851 0.48% 185,000 439,940 0.0036% 256 723

206 825 316 250,872 65,852 0.48% 185,020 441,570 0.0036% 256 723

207 824 314 250,870 65,850 0.48% 185,020 440,750 0.0036% 256 723

208 836 673 251,309 66,209 1.02% 185,100 519,760 0.0042% 256 723

209 827 685 251,421 66,221 1.03% 185,200 523,080 0.0043% 256 723

210 827 682 251,248 66,218 1.03% 185,030 522,400 0.0043% 256 723

211 2,186 831 426,567 66,367 1.25% 360,200 856,740 0.0036% 256 1,407

212 2,174 880 426,596 66,416 1.33% 360,180 864,590 0.0036% 256 1,407

213 2,143 825 426,411 66,361 1.24% 360,050 857,050 0.0036% 256 1,406

214 2,188 1,769 427,345 67,305 2.63% 360,040 1,010,500 0.0042% 256 1,406

215 2,178 1,772 427,358 67,308 2.63% 360,050 1,011,900 0.0042% 256 1,406

216 2,204 1,802 427,398 67,338 2.68% 360,060 1,015,400 0.0042% 256 1,406

Chapter 3

Algorithms and Notations

In this chapter, detailed algorithms and notations will be presented on both simplex-

based and interior-point-based methods, including basic principles of the simplex method

and interior point methods (IPM), as well as their counterparts in decomposition: the

Dantzig-Wolfe decomposition method (DW) and the analytic center cutting plane method

(ACCPM).

3.1 Simplex Based Algorithms

The simplex method was the first method developed to solve linear programs. When we

analyze whether or not to use decomposition, the comparison between DW and simplex

is one alternative, while the comparison between ACCPM and IPM is another alterna-

tive. Algorithms related to the former analysis are briefly introduced in this section, and

algorithms related to the latter will be introduced in the next section.

21

22 Empirical Analysis of Decomposition for LP

3.1.1 Simplex and Revised Simplex Method

Ignoring its special structure, problem (2.2) to (2.5) can be viewed as a general linear

program

min cTx

s.t. Ax = b

x ≤ 0,
(3.1)

where A =

"
A

B

#
and b =

"
b

d

#
. Consequently, the dimensions of (3.1) can be represented

as m×n, where m = m0+
hP
l=1

ml, and n =
hP
l=1

nl. Therefore, when considering the problem

as a whole, there are m equalities and n variables altogether1.

Linear programs can be converted to the standard form, and then solved by simplex.

Working on the tableaus, the simplex method visits the extreme points one by one. At

each iteration, one basic feasible solution is replaced by another, and hence a new tableau

is formed. This is the so-called standard simplex method. For more details, see [84]. Notice

that only a small part of the tableau has actually been changed from one iteration to the

next, so the revised simplex method works directly from the original data, and finds new

solutions without any reference to tableaus [16].

Problem (3.1) can be solved by the direct solution approach - simplex. However, the

simplex method itself has a number of variants available. It is commonly accepted that

the steepest edge is the most efficient pivoting rule to date [82]. Some leading solvers, such

as CPLEX, adopt this pivoting rule. Incidentally, the simplex solver in MATLAB employs

the smallest subscript rule, which is also known as the least index rule [10].

3.1.2 Dantzig-Wolfe Decomposition Method

The special structure of (2.1) can be exploited by decomposition algorithms, for example,

the DW method. Geometrically, any point in the feasible region of a linear program can

be represented as a convex combination of the extreme points and extreme rays. Thus, the

1Table 2.1 and 2.3 show the actual number columns according to the models. We convert all inequalities

to equalities when doing regression analysis, i.e., , n includes slack and surplus variables.

Algorithms and Notations 23

original problem can be converted into an equivalent full master problem as follows

min
αil

hP
l=1

P
i∈Il∪Jl

αil(c
T
l x

i
l)

s.t.
hP
l=1

P
i∈Il∪Jl

αil(Alx
i
l) = bP

i∈Il
αil = 1, l = 1, 2, · · · , h

αil ≥ 0, i ∈ Il ∪ Jl, l = 1, 2, · · · , h

(3.2)

where Il represents the set of extreme points from subproblem l, and Jl is the set of extreme

rays from subproblem l. The full master problem has fewer rows but many more columns

than the original problem. In fact, the number of columns in (3.2) is usually astronomical.

Fortunately, nobody really works on the full master problem. Instead, DW uses a technique

called column generation [16], and starts with a subset of Il and Jl.

Extreme points and extreme rays are generated by subproblems. The lth subproblem

can be described as

min (cTl − πTAl)xl − μl

s.t. Blxl = dl

xl ≥ 0, l = 1, 2, · · · , h
(3.3)

where π is the vector of dual variables corresponding to the linking constraints, and π can

be obtained as a byproduct when solving the restricted master problem. It will then be

passed to the subproblems (3.3). Next, subproblems return proposals (extreme points or

extreme rays) to the restricted master problem. A new iteration begins again.

3.2 Interior Point Based Algorithms

In this section, we briefly introduce the principles of interior point methods (IPM) and the

analytic center cutting plane method (ACCPM).

3.2.1 Introduction to Interior Point Method

In mid 1980s, IPM was proposed by Karmarkar [51] as a new solution method. It was

considered a significant improvement in the optimization field - there was a front-page

24 Empirical Analysis of Decomposition for LP

New York Times article titled ”Breakthrough in Problem Solving” on November 19, 1984.

As implied by its name, IPM finds an optimal solution by moving through the interior of

the feasible region. Even in the worst-case, IPM still has a polynomial time complexity.

In fact, the idea of moving inside the feasible region dates back to work in 1955 [31],

and was also proposed by several other researchers simultaneously [82]. It was shown in

[82] that Karmarkar’s search direction is equivalent to projected Newton barrier methods

with an appropriate choice of parameters. Nowadays IPM applications are quite different

from Karmarkar’s original projective method, but the key concept remains highly valuable

[82].

There are three main types of IPM: the affine scaling algorithm, the potential reduction

algorithm, and the path following algorithm. The last one, the path following algorithm,

has the best known time complexity and good performance in practice [5]. This method

has been widely employed in commercial IPM solvers, especially for large scale problems.

Moreover, the concept of analytic center is also derived from this method.

There are three crucial building blocks for path following methods [62]: First, con-

vert constrained problems to unconstrained ones by Lagrange’s method; second, eliminate

the nonnegativities (x ≥ 0) by Fiacco and McCormick’s barrier method; then, solve the
unconstrained problem by Newton’s method. Consider a problem with barrier terms

min cTx− u
nP
j=1

log xj

s.t. Ax = b

(3.4)

and its dual problem

max b
T
y + u

nP
j=1

log sj

s.t. A
T
y + s = c

(3.5)

where u is a positive barrier parameter. Given u, the solution x(u) is a function of u. Ac-

cording to Karush-Kuhn-Tucker (KKT) conditions, the necessary and sufficient conditions

for the point x(u) to be an optimal solution of problem (3.4) and (3.5) are the following

Algorithms and Notations 25

system of equations (due to duplication):

Ax(u) = b

A
T
y(u) + s(u) = c

X(u)S(u)e = eu,

(3.6)

where x(u), y(u), X(u), and S(u) are functions of u, e is a vector with all ones, and X and

S are square diagonal matrices with diagonal elements of x and s.

The path following algorithms solve the system of nonlinear equations (3.6) by Newton’s

method. At each iteration, we reduce the value of u. Fiacco and McCormick [27] have

proved that x(u)→ x∗ as u→ 0. Incidentally, when u→∞, the minimizer (3.4) becomes

min −
nP
j=1

log xj

s.t. Ax = b

(3.7)

The optimal solution to problem (3.7) corresponds to the analytic center of the feasible set

[5]. The definition to the analytic center will be discussed with more details in the next

section.

3.2.2 Non-differentiable Optimization

Although it can be applied to linear programming, as one of the cutting plane meth-

ods, ACCPM originated from solving non-differentiable optimization (NDO) problems. To

fully understand ACCPM, we first recall a generic cutting plane algorithm. Consider the

following non-differentiable problem [25]

min f(x)

s.t. g(x) ≤ 0,
(3.8)

where f and g are real-valued, continuous, nondifferentiable, and convex functions. Con-

vexity implies that there is at least one supporting hyperplane to f at every point x0. The

equation for the supporting hyperplane is given by

y = f(x0) + ξf0 (x− x0), (3.9)

26 Empirical Analysis of Decomposition for LP

where ξf0 (x − x0) is one of the subdifferential set ∂f(x) of f at x0. For ease of notation,
we assume (only in this section) that all subgradients are row vectors. Since a supporting

hyperplane gives an underestimate of f , the subgradient inequality

f(x0) + ξf0 (x− x0) ≤ f(x) (3.10)

can be used to approximate f by the maximum of a set of piecewise linear functions.

Therefore, given a set of points xi, i ∈ If and their corresponding subgradients ξfi , f can
be tangentially approximated by

f̄(x) = max
i∈If

{f(xi) + ξfi (x− xi)} (3.11)

Equation (3.11) implies that f̄(x) ≤ f(x) for any index set If . Larger sets will give

better approximations. The same techniques can be applied to g, and hence g can be

approximated by

ḡ(x) = max
j∈Jg

{g(xj) + ξgj (x− xj)}, (3.12)

where ξgj is a subgradient of g at point xj, j ∈ Jg. Thus, problem (3.8) can be approximated
by

min max
i∈If

{f(xi) + ξfi (x− xi)}

s.t. max
j∈Jg

{g(xj) + ξgj (x− xj)} ≤ 0,
(3.13)

which is equivalent to

min γ

s.t. f(xi) + ξfi (x− xi) ≤ γ, ∀i ∈ If
g(xj) + ξgj (x− xj) ≤ 0, ∀j ∈ Jg

(3.14)

Problem (3.14) becomes a linear program that is easier to solve than the original one.

However, this is only an approximation of the original problem (3.8), and will get better

as more constraints are added. The nondifferentiability is eliminated at the cost of having

a large number of constraints. To deal with this problem, cutting plane methods only use

a subset of the constraints and generate the rest as needed. In fact, they solve series of

relaxed master problems with the similar form of (3.14). The master problem at the kth

iteration is a relaxation of (3.8) because:

Algorithms and Notations 27

1. by convexity of g, {x : max
j∈Jg

{g(xj) + ξgj (x− xj)} ≤ 0} contains {x : g(x) ≤ 0};

2. by convexity of f , max
i∈If

{f(xi) + ξfi (x− xi)} ≤ f(x) for all x ∈ {x : g(x) ≤ 0}.

This relaxation gets tighter when more points are added. In addition, for the cutting plane

method, any feasible point gives an upper bound, and a lower bound can be given either by

the optimal solution of the relaxed master problem, or by evaluating the dual problem. As

for the stopping criterion, the algorithm will stop if the duality gap, which is the difference

between the current best upper and lower bounds, drops below a certain pre-determined

threshold. For more details, see [25] and [26].

3.2.3 ACCPM for Block-Angular Structured Problems

Cutting plane methods were proposed independently by Kelley [52], Cheney and Goldstein

[15] as a solution approach for non-differentiable optimization. They solve constrained

convex problems by approximating convex functions with the subgradients. They have

stable numerical properties, and can be applied to linear programming as well as integer

programming. There are several variants for cutting plane methods. For details, see [26].

The core difficulty with cutting plane methods is to calculate the centers of polyhedrons.

For example, finding the gravity center itself can be as expensive as solving the original

problem [25]. Therefore, an analytic center was defined [79][80], and the corresponding

cutting plane method is called Analytic Center Cutting Plane Method (ACCPM).

When applied to the decomposition area [34], ACCPM can be viewed as the dual equiv-

alent of the Dantzig-Wolfe decomposition (DW) method. Rather than passing marginal

prices as DW method does, ACCPM passes central prices from the master problem to the

oracles (subproblems). This property enables ACCPM to achieve a better convergence rate

because a center price contains more information of all the cuts (proposals) accumulated

so far [35].

Recall a problem with a block-angular structure discussed in section 2. After we intro-

28 Empirical Analysis of Decomposition for LP

duce artificial variables to the linking constraints, the restricted master problem becomes

min
αil

hP
l=1

P
i∈Il∪Jl

αil(c
T
l x

i
l) +M

T
1 x

− +MT
2 x

+

s.t.
hP
l=1

P
i∈Il∪Jl

αil(Ax
i
l)− x− + x+ = bP

i∈Il
αil = 1, l = 1, 2, · · · , h

αil ≥ 0, x+ ≥ 0, x− ≥ 0, i ∈ Il ∪ Jl, l = 1, 2, · · · , h

(3.15)

where M1 and M2 are both m0 × 1 vectors.
Adding a proposal in the primal space is equivalent to adding a cut to the dual space.

The dual problem of (3.15) is

max bTπ +
hP
l=1

μl (3.16)

s.t. (Alx
i
l)
Tπ + μl ≤ cTl xil, i ∈ Il, l = 1, 2, · · · , h (3.17)

(Alx
j
l)
Tπ ≤ cTl x

j
l , j ∈ Jl, l = 1, 2, · · · , h (3.18)

−M1 ≤ π ≤M2 (3.19)

The penalty parameters M1 and M2 in the primal master problem (3.15) become box

constraints (3.20) in the dual master problem. These box constraints, together with a lower

bound (LB), make the ACCPM localization set (refer to (3.20)) bounded. An extreme

point in the primal space corresponds to an optimality cut like (3.17) in the dual space,

and an extreme ray to a feasibility cut like (3.18). Consider the following polyhedron

F =
©
(π,μ) : bTπ + μ ≥ LB, μ ≤ cTl xil − (Alxil)Tπ, 0 ≤ cTl x

j
l − (Alx

j
l)π, −M1 ≤ π ≤M2

ª
i ∈ Il, j ∈ Jl, l = 1, 2 · · ·h.

(3.20)

Clearly, F contains the optimal solution of system (3.16) to (3.19). F is defined as the

localization set. The pair (π,μ), i.e., , the dual price vectors π and μ, will be sent to the

subproblems.

Algorithms and Notations 29

For ease of notation, we introduce the following symbols

s0 = bTπ + μ− LB
sil = cTl x

i
l − (Alxil)Tπ − μ, if i ∈ Il, l = 1, 2 · · ·h

sil = cTl x
i
l − (Alxil)Tπ, if i ∈ Jl, l = 1, 2 · · ·h

σ+j = πj +M
j
1 , j = 1, 2 · · ·m0

σ−j =M j
2 − πj, j = 1, 2 · · ·m0

(3.21)

If I 6= φ, which, together with the box constraints −M1 ≤ π ≤ M2, ensures that F is

bounded. We assume that the interior of F is not empty. The analytic center (π,μ) is

then defined as the maximizer of

ϕ = ln s0 +
hX
l=1

X
i∈Il∪Jl

ln sil +
m0X
j=1

ln
¡
σ+j σ

−
j

¢
(3.22)

3.3 Comparison of Simplex and IPM

Both simplex and IPM are still active in application, and competitive with each other.

Currently they act as the two main solution methods for linear programming. Table 3.1

compares simplex and IPM2 in terms of several criteria3.

There has been an intense competition between simplex and interior point methods for

a long time, but there is still no clear conclusion about which is the winner. Nemhauser

argues that the best simplex algorithms are now competitive with the best IPM algorithms

[74]. In Chapter 6, we will present a hybrid decomposition method that combines ACCPM

and DW, which are the counterparts of IPM and simplex, respectively.

2Here the interior point method refers to the primal-dual path following method.
3This table is mostly from [50]. Some other papers are also referenced, including [7], [62], [32], [17],

and [39].

30 Empirical Analysis of Decomposition for LP

Table 3.1: Comparison of Simplex and IPM

Simplex IPM

Geometrical Jumping from vertex In the interior of

Characteristics to vertex on the the feasible region

boundary of the

feasible set

Degeneracy The generated optimal Converge to the analytic center

basic solution is not and produces a strictly

strictly complementary complementary pair of solutions

Computational No dominating step; Cholesky factorization

Effort Require many iterations, usually dominates;

each of which is very fast A small number of iterations,

and the number of

iterations grows slowly

with problem size

Worst-case Exponential Polynomial

Complexity

Initialization Two phases; Require a positive

Take advantage if from vector to start with

an advanced starting point

Warm Start Easy to re-start Not efficient in re-starting

Sensitivity Analysis Strong Weak

Chapter 4

With and Without Decomposition -

DW vs. Simplex

The famous Klee-Minty [54] example has shown that in the worst case, the simplex method

could visit every vertex before attaining optimality, which means an exponential complexity

bound. In fact, it has been found that for any method that seems useful to some problems,

other problems can be constructed to make that method very unsatisfactory [56]. However,

the worst case of simplex almost never happens in solving real-world problems. In this

chapter, we briefly review the studies on the efficiency of simplex-based algorithms, and

compare them with the results of our experiments. This is far from a comprehensive

literature review, instead, we just try to give the reader a picture about how simplex has

been observed to behave in practice.

For each conclusion drawn from general problems, we provide some numerical results

to test if it still holds for problems with a block-angular structure. We investigate the

complexity of both simplex and DW, and then compare their relative efficiency, which is

defined as the CPU time of DW over the CPU time of simplex.

4.1 Average Behavior of Simplex

Both the simplex method and the Dantzig-Wolfe decomposition method are iterative pro-

cesses. Therefore, the complexity can be factored as the number of iterations times the

31

32 Empirical Analysis of Decomposition for LP

computational effort needed for each iteration.

4.1.1 Bounds for Number of Iterations

It is well known that although simplex has an exponential complexity bound, its practical

behavior is much better. Reported in [21], with m < 50 and n < 200, the number of

iterations is usually less than 3m/2 and only rarely going to 3m. These empirical findings

were obtained very early, but later studies on larger problems are in striking agreement

with them [16]. Bixby [6] tested CPLEX 1.0 on Netlib problems, 80% of which require less

than 3m iterations1. This behavior is summarized in [82] as ‘the remarkable fact’ that the

primal simplex method typically requires a number of iterations between 2 and 3 times the

number of constraints.

We now examine if this conclusion still holds for problems with a block-angular struc-

ture. Figure 4.1 shows the number of iterations2 vs. the number of rows. The dotted lines in

the figure are ‘two times’ and ‘three times’ the number of rows, respectively. Figure 4.1(a)

reveals the number of iterations over the number of rows on the stochastic financial model,

and Figure 4.1(b) is for the multicommodity network flow model3.

More statistical data are summarized in Table 4.1, where f stands for the stochastic

financial problems, m(with) stands for the multicommodity network flow problems with

individual capacity constraints counted as the number of rows, and m(without) stands for

multicommodity problems with individual capacity constraints treated as upper bounds.

For the stochastic financial model (solved by MATLAB), since five problems did not con-

verge due to degeneracy, we only collected results for the remaining 95 test problems. There

are 79 out of 95 (83.16%) problems that required less than or equal to 3m iterations, 61

out of 95 (64.21%) problems are less than or equal to 2m, with a mean 1.96, a maximum

5.90, and a minimum 0.39 times m. For the multicommodity model (solved by CPLEX), if

the individual capacity constraints are treated as upper bounds: 126 out of 216 (58.33%)

1The remaining problems are ‘unbalanced’ with n >> m, and the ratio of iterations to rows can be as

big as 469.1. If taking the upper and lower bounds into consideration, the values down to 1.2 and under.
2In this thesis, the number of iterations refers to the total number of iterations including Phase I and

Phase II for both simplex and DW.
3For the multicommodity model, the individual capacity for each arc is treated as upper bound in the

code, but counted among the number of rows in this figure.

DW vs. Simplex 33

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

10

12
x 10

4

of rows

of

 it
er

at
io

ns

(a). Financial Model − Simplex by MATLAB

of iterations
2 times # of rows
3 times # of rows

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

5

of rows

of

 it
er

at
io

ns

(b). Multicommodity Model − Simplex by CPLEX

of iterations
2 times # of rows
3 times # of rows

Figure 4.1: Simplex Number of Iterations vs. Number of Rows

problems converged less than 3m iterations, 95 out of 216 (43.98%) problems are less than

2m, with a mean 4.17, a maximum 15.62, and a minimum 0.78 times m. If the individual

capacity constraints are counted as the number of rows: there are 216 out of 216 (100%)

problems that required less than 3m iterations, 201 out of 216 (93.06%) problems are less

than 2m, with a mean 0.83, a maximum 2.48, and a minimum 0.24 times m.

Table 4.1: Simplex Number of Iterations

Problem
Total # of # of problems with iterations iterations / rows

problems ≤ 3m (%) ≤ 2m (%) mean max min

f 95 79 83.16% 61 64.21% 1.96 5.90 0.39

m(without) 216 126 58.33% 95 43.98% 4.17 15.62 0.78

m(with) 216 216 100% 201 93.06% 0.83 2.48 0.24

Notice that Figure 4.1(b) shows a vertical distribution pattern, which implies that the

number of iterations required to converge varies greatly even on problems with the same

number of rows. This vertical pattern does not seem obvious in Figure 4.1(a) because

for the multicommodity model, several same sized problems are generated with different

density, while for the stochastic model, there are no two models with exactly the same

overall dimensions but different inner structures.

We use regression analysis to further examine the dependence of the number of simplex

34 Empirical Analysis of Decomposition for LP

5 6 7 8 9 10 11
5

6

7

8

9

10

11

12

log(# of rows)

lo
g(

of

 it
er

at
io

ns
)

(a). Financial Model − Simplex by MATLAB

5 6 7 8 9 10 11 12
5

6

7

8

9

10

11

12

13

14

log(# of rows)

lo
g(

of

 it
er

at
io

ns
)

(b). Multicommodity Model − Simplex by CPLEX

Figure 4.2: Simplex log(number of iterations) vs. log(m)

iterations on problem characteristics. Taking logarithms of both the horizontal and vertical

axes in Figure 4.1 can help to disperse the points that are clustered near the origin -

see Figure 4.2. The linear trends in Figure 4.2 suggest the regression model (4.1) for

the relation between simplex iteration counts and the number of rows. The regression

results are summarized in Table 4.2 on page 58 for both the financial and multicommodity4

problems. The p values reveal the significance levels of the variables. A low value of pmeans

that the corresponding independent variable has a low probability to be zero, and hence is

statistically significant. We take 5% as the significance level in our analysis, i.e., if p > 0.05,

the corresponding variable is considered insignificant. Notice that we keep a constant in a

model as usual, even though the p value is big.

iter = eαmβ (4.1)

After taking logarithms, our experiments, as shown in Figure 4.2 (a) and (b), show

linear trends for both test problems, but are somewhat scattered. Furthermore, the vertical

cluster pattern appears again in Figure 4.2. All the phenomena imply that for problems

with a block-angular structure, the number of rows and columns is not enough information

to estimate the performance. This is easy to understand: with the same m and n, the

4For all the regression results in this thesis, the multicommodity problems’ individual capacity con-

straints are treated as upper bounds, and hence not counted among the number of rows.

DW vs. Simplex 35

inner structure can be different. Therefore, for special-structured problems, we introduce

more parameters to examine their computational effort5.

iter = eαmβ(m0%)
γ (4.2)

In model (4.2), the percentage of linking constraints (m0%) is employed so that the

inner structure can be embodied to some extent. Regression results in Table 4.2 show that

model (4.2) is a better fit than model (4.1) as the r2 for both test problems are improved.

The very low value of the p value also suggests that inner structure indicator, m0%, is

indispensable. In the same vein, we can try another variable, nz%, in the regression

model (4.3).

iter = eαmβ(nz%)γ (4.3)

Regression results in Table 4.2 show that adding nz% can improve the fit on test sets

f and m. Intuitively, both m0% and nz% can indicate the density of nonzero elements in

the problem matrix. For model (4.1), adding m0% seems a better choice than adding nz%.

We checked the F -values for the entry of m0% and nz%, and all of them made statistically

significant (95%) improvements on r2.

The earlier studies that we have reviewed suggest that the number of iterations depends

more on m than n. In such cases, even if n appears, it is just a complementary condition,

e.g., in the ‘unbalanced’ situation. To address the minor influence by n, [16] indicates that

for a fixed number of rows, the typical number of iterations increases with the logarithm

of n.

Besides the row-oriented observations, other researchers estimate the simplex iteration

counts in relation to the number of columns. Vanderbei [83] used a heuristic statistical

method to relate the number of simplex iterations to the number of columns, given that

degeneracy does not arise. The reason is that from the perspective of simplex dynamics,

if assuming half of the variables in the initial tableau are with negative reduced cost

(for minimization problem), then half of the variables amount of tableau updates will

be required. Therefore, the number of columns can be used to estimate the number of

5The correlation matrices among the dimensional parameters for both test models are provided in

Appendix D.

36 Empirical Analysis of Decomposition for LP

iterations. By taking logarithms, a nice linear model in [83] was obtained based on 69

problems. Similar to the analysis in [83] (pp. 185-190), we build a regression model

iter = eαnβ (4.4)

Again, adding inner-structure variables m0% and nz% respectively in model (4.4) leads to

better fits (see Table 4.2).

iter = eαnβ(m0%)
γ (4.5)

iter = eαnβ(nz%)γ (4.6)

Table 4.2 summarizes the results for all the regression models in this section. The

first three models, (4.1) to (4.3), estimate iter based on m, and models (4.4) to (4.6)

are based on n. The two sets are analogous to each other: adding m0% or nz% can

evidently improve the r2, which embodies the fitting level of a regression model, but the

difference between adding m0% and adding nz% is not big. Coefficient α corresponds to

the constant in the regression models. Coefficient β takes positive values, implying that

the number of iterations required by simplex increases with the total number of rows or

columns, which is consistent with what we expected. Similarly, coefficient γ takes positive

values, which means that iter increases with m0% or nz%. Our results also show that for

the test problems, the column-oriented regression models are slightly better fits than the

row-oriented ones.

Since for block-angular structured problems, the inner structure matters, we can further

try using the four inner structure parameters, m0, h, msub, and nsub, to build a regression

model

iter = eαmβ
0h

γmδ
subn

²
sub (4.7)

These four basic parameters can fully depict a block-angular structured problem. Other

parameters such as m0%, nz%, m, and n can be derived from them. Model (4.7) has the

highest r2 value in all regression results in Table 4.2. For the financial problems, although

the p value suggests that β (for m0) is 22.52% likely to be redundant, we still keep the

DW vs. Simplex 37

variable in order to be consistent with discussions about DW decomposition. In fact, it

is quite surprising to see that m0 is insignificant in the regression model, as it seems an

important parameter for block-angular structured problems and our above discussion has

just shown that adding m0% is a plus to improve fittings. This conflict can probably be

explained by the actual problem characteristics. Recall Tables 2.1 and 2.3 in Section 2.2.

The financial problems contain very low m0% (up to 8.54%), so that we can say that all

of them are sparse in terms of the percentage of linking constraints. In such low levels

of m0%, the linking constraints did not make the problems more difficult to solve, and

parameter β even takes a negative value. Conversely, the multicommodity problems have

a larger range of m0% (from 2.13% to 62.85%). As a result, variable m0 is significant in

the regression model (4.7).

For real-world problems, the number of rows and the number of columns are usually

related to their economic interpretations, and so are the number of rows and columns in

each block. For example, the block dimensions of the stochastic model (dual formulation;

primal block-angular structure) are (2h+ n+1× (h+1)), where h represents the number
of scenarios and n is the number of assets. Due to this kind of relation, researchers usually

use only one of them, rows or columns, to analyze algorithms’ performance. However,

variables msub and nsub in the regression model (4.7) are both significant. Moreover, one

of each even takes a negative value on test problems f and m, respectively. We have not

been able to find a plausible explanation for this phenomenon yet.

Readers may have noticed that the regression analysis is done separately on the two

sets of test problems (f and m in Table 4.2), and the results are quite model dependent.

According to the coefficients of determination, r2, equations (4.1) to (4.6) are better fits

for the multicommodity problems than the financial problems. Coefficients α, β, γ, δ, and

² take different values on problem f and m, but suggest a similar tendency.

4.1.2 Number of Arithmetic Operations at Each Iteration

Generally speaking, the number of iterations as a criterion is not enough to assess the

efficiency of algorithms. One example is the different pivoting rules of simplex. Although

it usually requires fewer iterations by the largest increase rule than by the largest coefficient

rule, the former takes more time to execute [16]. In this light, the computational effort at

38 Empirical Analysis of Decomposition for LP

5 6 7 8 9 10 11
−2

0

2

4

6

8

10

12

log(# of rows)

lo
g(

C
P

U
)

(a). Financial Model − Simplex by MATLAB

5 6 7 8 9 10 11 12
−6

−4

−2

0

2

4

6

8

10

12

log(# of rows)

lo
g(

C
P

U
)

(b). Multicommodity Model − Simplex by CPLEX

Figure 4.3: Simplex log(CPU time) vs. log(m)

each iteration also counts.

From an implementation point of view, Chvatal in [16] estimates that given n ≥ m, the
standard simplex method requires mn/4 arithmetic operations per iteration on average,

and for the revised simplex method, the figure is 32m + 10n per iteration. He further

concludes that on large sparse problems, the revised simplex method usually takes less

time than the standard simplex method for an iteration.

The per iteration computing time is influenced not only by the nonzero density of a

problem, but also by computer construction, e.g., whether data are stored in memory

or in peripheral devices matters greatly. Nevertheless, the total computing time is the

most realistic criterion for choosing between algorithms. Therefore, we skip this part of

per-iteration analysis, and move on to investigate the overall complexity of simplex.

4.1.3 Average Complexity of Simplex

Ideally, the overall complexity equals the number of iterations times the effort for each iter-

ation. However, it is almost impossible to obtain a rigorous theoretical average estimation

for simplex. In practice, CPU time is used to simulate the average complexity. We also

conducted experiments over a large set of test problems to observe the average behavior of

simplex.

Figure 4.3 shows the simplex CPU time vs. the number of rows on both test prob-

DW vs. Simplex 39

lem sets (taking logarithms on both axes). Similar to Section 4.1.1, we see the scattered

linear distribution patterns again. We then build the following regression models to fur-

ther address the simplex average complexity as a function of the problems’ dimensional

parameters.

CPU = eαmβ(m0%)
γ (4.8)

CPU = eαmβ(nz%)γ (4.9)

Models (4.8) and (4.9) are row-oriented simplex CPU estimations, with m0% and nz%

respectively to further address problems’ inner structures. Accordingly, models (4.10) and

(4.11) are column-oriented simplex CPU estimations. All the regression results in this

section are summarized in Table 4.3. Comparing (4.8) with (4.10), and (4.9) with (4.11),

we can conclude that the column-oriented models have better fits than the row-oriented

models.

CPU = eαnβ(m0%)
γ (4.10)

CPU = eαnβ(nz%)γ (4.11)

Figure 4.4 illustrates how simplex CPU time varies by the number of columns and the

percentage of linking constraints. The mesh plane in the figure is based on the regression

results of (4.10), and the dots in the figures represent the test problems. Only a few test

problems have high percentage of linking constraints, so the upper part of the plane is

blank.

Model (4.12) is completely based on the four basic inner-structure variables. According

to the results in Table 4.3, the r2 wins over all other models. However, some high p values

occur in this model. For test set f , besides the constant, m0 becomes insignificant again.

For test set m, dimensions of subproblems seem redundant here. When looking at the

problem formulation, we see that the number of arcs for each commodity is almost fixed,

which means that the size of each block is the about same. In this sense, the overall size of

the problems as well as the simplex CPU time probably mainly depends on h, the number

40 Empirical Analysis of Decomposition for LP

0
1

2
3

4
5

x 10
4

0

0.05

0.1
0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

of columns

(a). Financial Model − Simplex by MATLAB

m
0
%

C
P

U
 T

im
e

0
1

2
3

4
5

x 10
5

0

0.2

0.4

0.6

0.8
0

1

2

3

4

5

6

x 10
5

of columns

(b). Multicommodity Model − Simplex by CPLEX

m
0
%

C
P

U
 T

im
e

Figure 4.4: Simplex CPU Time vs. n and m0%

of blocks. But, it is still unclear to us why msub and nsub appear significant in model (4.7)

in Table 4.2.

CPU = eαmβ
0h

γmδ
subn

²
sub, (4.12)

More than half of the models in Table 4.3 achieve r2s with 0.9 and higher values, which

implies that on problems with a block-angular structure, it is a good way to measure

simplex CPU time by the overall size (m or n together with a density indicator (m0% or

nz%). More intuitively in 3D plots, Figure 4.4 shows the relation of simplex CPU time to

the number of columns and the percentage of linking constraints. Notice that only a small

portion of the test problems have a high percentage of linking constraints, which is a nice

feature for decomposition algorithms that we will discuss next.

4.2 Average Behavior of DW

The task to estimate the average complexity of DW in a explicit form is more difficult than

simplex. Although it is guaranteed to take a finite number of iterations to converge, few

theoretical bounds have been derived [1].

DW vs. Simplex 41

4.2.1 Number of Outer Iterations

Following the thinking thread of simplex, we can analyze the average complexity of DW

from a tableau’s perspective. Assume there are h subproblems, and each has Cmsub
nsub

basic

solutions at most. Thus, the full master problem has up to hCmsub
nsub

possible columns,
1

nsub
2nsub ≤ Cmsub

nsub
≤ 2nsub, and this number reaches a maximum when msub = nsub/2 [83].

Taking an average of the upper and lower bounds, and assuming there are half of the

columns with negative reduced cost [83] and h proposals are returned from subproblems,

DW requires
2nsub/nsub + 2

nsub

4
(4.13)

outer iterations on average. Apparently, this deductive value is exponential, but is most

likely too big according to experience. Indeed, although DW can be understood as a large

simplex tableau, the calculation of reduced cost is done separately by subproblems, rather

than by considering all the columns in the full master problem. The technique, column

generation, is the key of the DW method. Therefore, the estimation (4.13) is not realistic

at all.

Similar to the aforementioned average behavior of simplex, we can assume that the

outer iterations required in DW to reach an optimal solution is const ∗ (m0 + h), i.e., a

constant value times the number of rows in the master problem. In the simplex counterpart,

this constant has been observed to be 2 ∼ 3, consequently, it should be 2/h ∼ 3/h for DW
given h proposals are returned at each iteration. However, from a tableau perspective, the

full master problem is extremely ‘unbalanced’, in terms of the number of rows versus the

number of columns. In this sense, the value of const should be bigger than 2 ∼ 3. We then
examine this constant in a form of const ∗ (m0 + h)/h, from numerical experiments.

Figure 4.5 shows the number of DW outer iterations vs. the number of constraints

(m0 + h) in the master problem. For the financial problems in Figure 4.5 (a), the ‘2 ∼ 3
times number of rows’ rule seems to hold. The multicommodity problems in Figure 4.5 (b)

appear to need more iterations to converge as quite a few points exceed the 3(m0 + h)/h

line.

Next, we try to build regression models to address the DW convergence properties.

Usually, we test a theoretical conclusion by numerical results. In a complex case such as

the DW decomposition algorithm, there is no explicit form to describe its complexity, so

42 Empirical Analysis of Decomposition for LP

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

(m
0
+h)/h

D
W

 #
 o

f o
ut

er
 it

er
at

io
ns

(a). Financial Model − DW by MATLAB

DW outer iterations
2(m

0
+h)/h

3(m
0
+h)/h

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

(m
0
+h)/h

D
W

 #
 o

f o
ut

er
 it

er
at

io
ns

(b). Multicommodity Model − DW by CPLEX

DW outer iterations
2(m

0
+h)/h

3(m
0
+h)/h

Figure 4.5: DW Number of Outer Iterations vs. Number of Linking Constraints

0
0.02

0.04
0.06

0.08

0

50

100
0

50

100

150

200

250

300

m
0
%

(a). Financial Model − DW by MATLAB

h

D
W

 to
ta

l #
 o

f p
ro

po
sa

ls

0
0.2

0.4
0.6

0.8

0

100

200

300
0

2

4

6

8

x 10
4

m
0
%

(b). Multicommodity Model − DW by CPLEX

h

D
W

 to
ta

l #
 o

f p
ro

po
sa

ls

Figure 4.6: DW Number of Proposals vs. m0%, h

DW vs. Simplex 43

we use the heuristic method [49] to suggest a model and examine the joint effect of multiple

parameters [47]. For example, Figure 4.6 gives us helpful hints on how the number of DW

outer iterations increases with the percentage of linking constraints and the number of

blocks.

If DW is viewed as a big simplex tableau, the total number of proposals in DW cor-

responds to the number of iterations in simplex. Consequently, the number of DW outer

iterations equals the number of proposals divided by the number of blocks, given that

each subproblem returns one proposal per iteration. However, this assumption is not true

because after a few iterations, some of the subproblems will have nonnegative objective

values and stop returning proposals to the master problem. We actually built some re-

gression models to predict the number of DW outer iterations, but obtained poor results.

Therefore, the total number of proposals is used in our regression analysis as the indicator

of DW convergence properties.

If the number of proposals required in DW is to some extent related to the number of

rows in the master problem, we suggest that m0% and nz% may provide valuable comple-

mentary information for the test problems with a block-angular structure. Equations (4.14)

and (4.15) are built for DW as row-oriented regression models, where (m0+h) is the num-

ber of rows in the master problem, and #prop stands for the total number of proposals

required to achieve optimality.

#prop = eα(m0 + h)
β(m0%)

γ (4.14)

#prop = eα(m0 + h)
β(nz%)γ (4.15)

Equations (4.16) and (4.17) are column-oriented regression models. Notice that n is

the number of columns in the original problem, rather than the columns in the DW master

problem, which is #prop itself. When DW is understood as a big simplex tableau, n seems

reasonable to use to estimate the number of tableau updates, which is also the number of

proposals required in DW.

#prop = eαnβ(m0%)
γ (4.16)

#prop = eαnβ(nz%)γ (4.17)

44 Empirical Analysis of Decomposition for LP

Model (4.18) is developed based on the four inner structure variables. Regression results

in this section are all summarized in Table 4.4. For the row-oriented models (4.14) and

(4.15), the r2s are less than 0.9, but variables are all significant. For the column-oriented

models, (4.16m) reaches a good r2, (4.17m) is slightly worse than (4.15m), and the variable

m0% and nz% appear redundant in both (4.16f) and (4.17f). Models (4.14f) to (4.17f)

suggest consistent conclusions: the number of DW outer iterations increases with problems’

size but decreases with density.

Among all the models in Table 4.4, model (4.18) has the highest r2 value, but also with

severely high p values. Parameter β takes positive values on both f and m, which suggests

that the more linking constraints, the more outer iterations required in DW. Parameter γ

is positive in (4.18m), which implies that #prop increases with h. However, the negative γ

in (4.18f) is hard to explain: a higher h value usually leads to a bigger problem, but why

is #prop less? These kinds of unexpected numerical results can probably be explained by

the complex joint-effect of multiple variables. As discussed earlier, variables in real-world

applications sometimes relate to each other. Therefore, for the overlapping part between

variables, a regression analysis takes the one that results in higher r2. Notice that nsub is

significant in (4.18f) but not in (4.18m), while β and γ are significant in (4.18m) but not

in (4.18f).

#prop = eαmβ
0h

γmδ
subn

²
sub (4.18)

4.2.2 Complexity at Each Iteration

As a decomposition algorithm, DW involves more factors that influence its complexity

properties than simplex, so the analysis becomes more difficult. In a parallel computing

environment, the per iteration complexity of DW is measured by the sum of the effort

of solving the master problem and the maximum effort of subproblems. The work of

solving the master problem and subproblems is alternate, and seldom overlaps [43]. Notice

that we simulate an ideal parallel computing, i.e., factors such as overhead incurred each

time, and the inter-processor communication are left out. The relative effort between the

master and subproblems depends on their sizes. For most problems in our experiments,

the dominating work in DW is to solve the restricted master problem. On the 216 test

problems from the multicommodity model, 99.82% of the CPU time was consumed on

DW vs. Simplex 45

solving master problems. On the 100 test problems from the financial model, this figure is

35.22% because the average problem size is smaller than the multicommodity problems.

Unlike simplex, the DW restricted master problem’s size varies during a solution pro-

cess. Using the column generation technique, proposals are added gradually to the re-

stricted master problem. Therefore, the number of columns in the master problem keeps

increasing, and so does the effort needed to solve the master problem at each iteration. At

the kth iteration, the dimensions of the restricted master problem is (m0+ h) by kh, given

that all the h subproblems are of negative objective values. However, this assumption is

not true especially near the end of the procedure, as some of the subproblems already

have nonnegative objective values and stop returning proposals. It is difficult to know in

advance the actual number of proposals added per iteration.

At each iteration, solving the restricted master problem is a simplex process. As is

known, simplex-type algorithms find an optimal solution by moving along the outside

edges of the feasible region. Different starting points lead to big variances in the number of

iterations. Although the warm start technique contributes largely to the success of simplex

[11], it also makes it difficult to estimate the per iteration complexity for DW.

In our experiments, we collected separately the CPU time for solving the master prob-

lem and subproblems, as well as the number of inner iterations. However, due to the

aforementioned difficulties, we do not conduct detailed empirical analysis on the DW per

iteration complexity. Rather, we will look at the overall CPU time in the next section.

4.2.3 Average Complexity of DW

We measure the average DW behavior by its CPU time from our experiments. Figure 4.7

provides an overall picture of DW CPU time vs. the number of rows in the master problem.

The scattered linear distribution of the points appears here again, which tells us that

besides (m0 + h), some other variables play a role as well.

As a decomposition algorithm, DW is assumed to be implemented in a cluster with h+1

processors. One of the processors solves the master problem, and the rest h processors are

assigned to the h subproblems. Therefore, when we consider DW CPU time, h seems an

important variable in a regression model because theoretically, the more subproblems in a

problem, the more processors to share the workload of solving the problem. Similar to the

46 Empirical Analysis of Decomposition for LP

3 3.5 4 4.5 5 5.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log(m
0
+h)

lo
g(

C
P

U
)

(a). Financial Model − DW by MATLAB

4 4.5 5 5.5 6 6.5 7 7.5 8
−6

−4

−2

0

2

4

6

8

10

12

14

log(m
0
+h)

lo
g(

C
P

U
)

(b). Multicommodity Model − DW by CPLEX

Figure 4.7: DW CPU Time vs. (m0 + h)

previous discussions, it is reasonable to assume that the overall size parameters, such as

(m0 + h) and n, as well as the density indicators, such as m0% and nz%, have influences

on DW CPU time. We then build regression models as follows

CPU = eα(m0 + h)
βhγ (4.19)

Equation (4.19) is a simple model that examines the influence of (m0 + h) and h, i.e., the

number of rows in the DW restricted master problem and the number of blocks. Notice

that h appears twice in the model, but the regression results in Table 4.5 show that there

is no redundancy for test set m, and according to the p value, h is slightly redundant for

test set f .

Since the analysis is mainly on large sparse linear programs, it is natural to add one

more density indicator, and the above model becomes

CPU = eα(m0 + h)
βhγ(nz%)δ (4.20)

Model (4.20) improves r2 on the financial problems, but does not improve r2 on the mul-

ticommodity problems. Moreover, variable nz% seems redundant for the latter.

Next, we try a few column-oriented models. Equation (4.21) examines DW CPU time

over the total number of columns of a problem and the number of blocks. Particularly for

block-angular structured problems, we add variable m0% into the model, and this yields

DW vs. Simplex 47

Equation (4.22).

CPU = eαnβhγ (4.21)

CPU = eαnβhγ(m0%)
δ (4.22)

Surprisingly, although the r2 values are quite improved on test sets f and m, h seems

redundant in model (4.22), probably because m0% contains part of the information that h

provides.

Lastly, we build a regression model based on the four inner structure variables.

CPU = eαmβ
0h

γmδ
subn

²
sub (4.23)

Regression results are summarized in Table 4.5. For models (4.19) and (4.20), DW CPU

time increases with the number of rows in the master problem as well as to h. Adding nz%

makes a considerable improvement on the fitting of (4.19f), but not much on (4.19m). For

models (4.21) and (4.22), DW CPU time increases with the total number of columns but

decreases with h. Adding m0% improves the fit on both test sets.

Readers may have noticed that there are two different conclusions on h. For (4.19) and

(4.20), little information of the overall problem is given, and h to some extent indicates the

problem size. On the contrary, (4.21) and (4.22) contain the overall number of columns,

h then divides the problem into several processors. Therefore, the ‘increasing’ and ‘de-

creasing’ with h do not really conflict. It all depends on the way the regression models are

built.

The inner-structure based regression model (4.23) achieves the highest r2 in Table 4.5,

although with a few redundant variables. According to the results, DW takes more CPU

time if a problem has more linking constraints or more blocks. The subproblem dimen-

sions, msub and nsub, take opposite signs for both test sets. In the solution process of a

decomposition algorithm, the dimensions of blocks affect the load balancing between the

master processor and subproblem processors. Intuitively, if we assume that msub and nsub

increase proportionally, which is not unusual in application, then any one of msub or nsub

is capable to represent the effort required for a subproblem.

48 Empirical Analysis of Decomposition for LP

4.3 Relative Efficiency: DW vs. Simplex

Decomposition algorithms have been developed for several decades, but they are not widely

adopted in practice. Ho and Loute [45] concluded about 20 years ago that it was unlikely

that decomposition could generally be significantly more efficient than simplex, based on

their experiments where DW only outperformed simplex on 2 out of the 30 test problems.

We will see whether this conclusion still holds in today’s computing environments.

It is generally believed that if a problem has a special structure, it should be exploited.

Yet, with the rapid development of computer technology, the answer is not so definite.

In the 1950’s, a problem with the order of 50 by 100 was considered large-scale [48],

whereas modern computers can handle problems with millions of constraints or variables

[8]. Today’s capacity of problem solving was unthinkable in the past. Both memory and

CPU have been greatly advanced, and consequently, decomposition seems unnecessary in

some cases.

However, besides reducing dimension, decomposition has other motivations such as

partitioning heterogeneous problems, decentralizing complex multilevel models, and paral-

lelizing computations [61]. On very large-scale problems, it is a wise solution to implement

decomposition algorithms over a cluster of affordable processors [29][4] compared to a su-

per computer, which is usually prohibitively expensive. The key is to determine whether

a problem is worth calling decomposition. Conventionally, decomposition algorithms are

considered advantageous for solving large problems, but this argument itself is quite vague:

how big is truly big?

Due to the difficulty of giving a rigorous complexity formula for either simplex or DW

practically, people use CPU time to measure the complexity of them. By comparing the

relative efficiency of DW and simplex over a set of different sized problems, we try to find

out when the direct solution approach is more efficient, and when decomposition algorithms

would outperform. A ratio is defined as

R =
CPUDW
CPUsimplex

(4.24)

According to our experiments, R ∈ (5.09× 10−5, 0.21) for the financial problems, and
R ∈ (0.1026, 298.37) for the multicommodity problems.

DW vs. Simplex 49

0
0.02

0.04
0.06

0.08

0

50

100
0

0.05

0.1

0.15

0.2

0.25

m
0
%

(a). Financial Model − Ratio by MATLAB

h

R
at

io
 −

 D
W

 v
s.

 S
im

pl
ex

0
0.2

0.4
0.6

0.8

0

100

200

300
0

50

100

150

200

250

300

m
0
%

(b). Multicommodity Model − Ratio by CPLEX

h

R
at

io
 −

 D
W

 v
s.

 S
im

pl
ex

Figure 4.8: Ratio (DW/Simplex) vs. m0% and h

4.3.1 Overview of Data

We first take an overview of the numerical results. Figure 4.8 reveals the ratio vs. m0%

and h on both test models. Since some of the stems are too short to observe, we take

logarithms on the ratios6, as shown in Figure 4.9. It is commonly believed that higher

m0% leads to more computational effort for decomposition algorithms. In a distributed

computing environment, more blocks (h) means there would be more processors to solve

a problem, i.e., the workload is shared. Figure 4.8 (a) and (b) confirm these intuitive

conclusions: the ratio, R, increases with m0% and decreases with h. More specifically, for

problems with lower m0% and higher h, decomposition algorithms (DW in this case) are

more advantageous than direct solution methods (simplex). Most of the test problems have

a low percentage of linking constraints, but for those with higher m0%, the ratios increase

suddenly. Results from both test models suggest a similar tendency, but the ranges of R

on each model vary greatly - see the scales of the vertical axes in Figure 4.8 (a) and (b).

The difference can be attributed to the two different solvers used on each model, and this

issue will be discussed below.

We can also examine R in the financial model over its economic interpretations. Basi-

cally, more assets lead to more linking constraints, and the number of scenarios also means

the number of blocks. Figure 4.10 reveals the ratio vs. the number of assets and scenarios,

6To avoid negative values for the ratios, we take log(R+ 1).

50 Empirical Analysis of Decomposition for LP

0
0.02

0.04
0.06

0.08

0

50

100
0

0.05

0.1

0.15

0.2

m
0
%

(a). Financial Model − Ratio by MATLAB

h

lo
g(

1+
R

)
−

 D
W

 v
s.

 S
im

pl
ex

0
0.2

0.4
0.6

0.8

0

100

200

300
0

1

2

3

4

5

6

m
0
%

(b). Multicommodity Model − Ratio by CPLEX

h

lo
g(

1+
R

)
−

 D
W

 v
s.

 S
im

pl
ex

Figure 4.9: Ratio (DW/Simplex) vs. m0% and h

which are the only two variables in the financial model. For problems with fewer scenarios,

the ratios are high; for the majority of other problems, the ratios are quite low.

The multicommodity model is difficult to address visually as it contains more variables,

which have joint effects on the solution time. We then examine the data by groups.

Figures 4.11 (a) and (b) provide pictures of the relative efficiency on problems with 128

and 256 nodes, respectively. The smaller problems require little solving time, and hence a

few upper lines in the figures fluctuate a lot. Ignore them when looking at the figure.

As mentioned in Section 2.2.2, for each pair of (n, h), 12 problems are generated by

MNETGEN. Recall the way that the 12 problems are generated, and recall the four-type

category. Put simply, problems from type I to type IV gradually become more and more

complicated to solve, i.e., denser7. From the behavior of the 12 problems on each pair of

(n, h), together with the variance in their structures, we try to find a clue about how the

size parameters influence the ratio R.

Looking at Figure 4.11 horizontally, we see that the curves rise a bit (except the upper

ones that fluctuate too much), which implies that DW takes longer than simplex when

a problem is more dense. Looking vertically, we get 12 groups of points identified by

their problem number. The problems with the same number (e.g., there are six and seven

7Here, we loosely use the word ‘denser’ to indicate the situation where the network has more arcs, and

more arcs have mutual capacity constraints.

DW vs. Simplex 51

0
20

40
60

80
100

0

50

100
0

0.05

0.1

0.15

0.2

0.25

of assets

(a). Financial Model − Ratio by MATLAB

of scenarios

R
at

io
 −

 D
W

 v
s.

 S
im

pl
ex

0
20

40
60

80
100

0

50

100
0

0.05

0.1

0.15

0.2

0.25

of assets

(b). Financial Model − Ratio by MATLAB

of scenarios

R
at

io
 −

 D
W

 v
s.

 S
im

pl
ex

Figure 4.10: Ratio (DW/Simplex) vs. Number of Assets and Number of Scenarios

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Problem No.

R
at

io
: C

P
U

dw
 /

C
P

U
si

m
pl

ex

(a). Multicommodity Model (128 nodes) − Ratio by CPLEX

(128,4)
(128,8)
(128,16)
(128,32)
(128,64)
(128,128)

0 2 4 6 8 10 12
0

50

100

150

200

250

300

Problem No.

R
at

io
: C

P
U

dw
 /

C
P

U
si

m
pl

ex

(b). Multicommodity Model (256 nodes) − Ratio by CPLEX

(256,4)
(256,8)
(256,16)
(256,32)
(256,64)
(256,128)
(256,256)

Figure 4.11: Ratio (DW/Simplex) of Multicommodity Problems with 128 and 256 Nodes

52 Empirical Analysis of Decomposition for LP

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Problem No.

R
at

io
: C

P
U

dw
 /

C
P

U
si

m
pl

ex

(a). Multicommodity Model (64 nodes) − Ratio by CPLEX

(64,4)
(64,8)
(64,16)
(64,32)
(64,64)

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Problem No.

R
at

io
: C

P
U

dw
 /

C
P

U
si

m
pl

ex

(b). Multicommodity Model (64 nodes) − Ratio by MATLAB

(64,4)
(64,8)
(64,16)
(64,32)
(64,64)

Figure 4.12: Ratio (DW/Simplex) of Multicommodity Problems with 64 Nodes

problems No.1 in (a) and (b), respectively) have similar structures but various number of

commodities. Those with higher h reside in lower positions. It is easy to understand that

the more subproblems, the more processors to divide the workload, which is also a major

advantage of decomposition in parallel computing. It is worth noting that dimensions are

not the only factors that determine CPU time. The three problems generated for each

(n, h) pair are supposed to have similar structures, yet the number of iterations and the

CPU time vary a lot sometimes. This is probably due to the real shape of the feasible

polyhedron - the facets, edges, and vertices can be different [82]. At present, this issue is

still an open topic to address.

Inevitably, examining an algorithm becomes examining its implementation. To address

the influence of different solvers, we did another set of experiments. As mentioned earlier,

all the test problems in the multicommodity model are solved by CPLEX. We now solve

some of them (smaller problems with 64 nodes) with another solver. A MATLAB built-

in revised simplex code, with the smallest-subscript rule, is adopted and modified for

warm start purposes. In this case, both the direct solution approach (simplex) and the

decomposition algorithm (DW) call this code, so that their relative efficiency is comparable.

Figure 4.12 reveals the ratios on test problems for both solvers. The overall tendencies

of (a) and (b) are consistent. When the transportation network is denser and there are more

linking constraints, DW is less advantageous. This agrees with what we have expected.

DW vs. Simplex 53

Comparing Figure 4.12 (a) with (b), we see the difference between the two groups of trend

lines. Most of the curves in (a) are quite flat, while those in (b) show a clearer rising

tendency. As a leading software package, CPLEX already takes advantages of the sparse

matrices when doing Cholesky factorizations. In this sense, the simple revised simplex

code at MATLAB seems more suitable for comparing with and without decomposition.

However, the MATLAB solver is unbearably slow for larger problems such as the problems

with 128 and 256 nodes in this model. So CPLEX is still used for all of the multicommodity

problems.

4.3.2 Regression Models

Next, we discuss the ratios by regression analysis. When we compare simplex and DW,

since the former solves the problem as a whole unit, and the latter explores the inner

structures, our first model comes naturally

R = eα(m0%)
βhγ, (4.25)

where m0% to some extent represents the problem’s decomposability, and h means the

number of processors involved. Regression results are shown in Table 4.6. We expect the

regression analysis on the ratios to be difficult. Ratio R involves information of the DW

and simplex CPU time, as well as the distributed computing issues. The r2 for test set f is

surprisingly good, yet for test set m, r2 is very low. For reference purposes, we also provide

the regression results on multicommodity problems with 64 nodes (m∗), which were solved
by the simplex solver in MATLAB. Evidently, model (4.25) achieves a much better fit on

m∗ than m, but m0% is insignificant here. According to the results of (4.25), we can see

that the regression analysis is model dependant: a parameter’s value and significance level

are different on the three test sets. For example, parameter β takes positive values on

test set m and m∗, which implies that larger m0% leads to relatively worse performance

of DW. However, β is negative on test set f , probably because all the problems in f have

very low m0%, and hence within this range (< 8%), a few more linking constraints do not

harm DW’s efficiency.

Our next regression model (4.26) takes into account the number of rows in the master

problem (from the DW CPU time side), the total number of columns (from simplex side),

54 Empirical Analysis of Decomposition for LP

and the nonzero density of the problem. Regression fitting is still good for test set f , and

no variable is redundant in this model. Although some variables have high p value for test

set m and m∗, fitting is better for both of them than model (4.25).

R = eα(m0 + h)
βnγ(nz%)δ (4.26)

In the factor (m0 + h), h corresponds to the number of convexity constraints in the

DW master problem. However, parameter h seemingly plays a bigger role especially in

decomposition. So, the next model tries using m0 and h as separate variables

R = eαmβ
0n

γhδ (4.27)

The r2s for the three test sets are all improved.

Lastly, we build a model purely based on the four basic inner structure variables

R = eαmβ
0h

γmδ
subn

²
sub (4.28)

There are redundancies on all the test sets, but the r2s for (4.28) are the highest in Table 4.6.

4.3.3 Prediction

In the previous section, we have built several models for the ratio R by using regression

analysis. These models show the relative efficiency of DW and simplex, i.e., with and

without decomposition. The results can hopefully provide helpful information for users

to estimate, for a given problem, which solution approach would be faster, and hence

determine what method to use. Next, we will investigate whether these results are reliable

to be used as guidance in practice. In this section, we use robust regression to re-assess the

parameters in the aforementioned models. The results will be slightly different from those

by using the ordinary least squares regression because the effect of outliers are reduced

to minimum by assigning small weights to them. It is commonly believed that robust

regression can lead to a better fit especially for prediction purposes [64].

Random Prediction Due to space limitations, we only test the prediction ability on

one regression model, with some of the test problems. We first randomly select ten test

DW vs. Simplex 55

problems from the stochastic financial model and from the multicommodity network flow

model. Then, the rest of the test problems are used as data for the robust regression.

We choose regression model (4.28) to test. Since msub and nsub seem redundant with each

other sometimes in our previous discussion, we further modify the model as

R = eαmβ
0h

γnδsub (4.29)

The robustfit function in MATLAB uses an iteratively reweighted least squares algorithm,

with the weights at each iteration calculated by applying the bisquare function to the

residuals from the previous iteration. This algorithm gives lower weight to points that do

not fit well. The results are less sensitive to outliers in the data as compared with ordinary

least squares regression [64]. The robust regression results are given in Table 4.7. The

weights assigned to the variables on both test sets are provided in Tables C.1 and C.2 on

page 177.

Table 4.8 shows the validation of model (4.29) on financial problems. Based on the

observed and predicted data, we evaluate the errors in two ways: one, if the observed

and predicted results suggest the same pick (simplex or DW), the pick% takes value 1,

otherwise, 0; two, we examine the percentage of errors defined as |R̂−R|
R
%. For each test

problem, a 95% confidence interval for R̂ is also provided in the table. Experiments show

that pick% is 100% for the 10 randomly chosen financial problems. Similarly, Table 4.9

shows the results on 10 multicommodity problems, for which pick% is 90% valid. On the

other hand, the errors measured as |R̂−R|
R
% are very large - averaging 43% and 97% for the

two types of model. Evidently, a correct choice (in the pick% sense) can usually be made,

even with a model that has huge prediction errors (in the |R̂−R|
R
% sense).

Extrapolation Our analysis aims at large-scale problems, so the ability of model extrap-

olation is important. Meanwhile, we want the test problems to be solved in a reasonable

period of time. Therefore, rather than generating new larger problems, we pick the largest

10 problems from the current sets f and m as the ones to be tested, and use the rest to

do the robust regression. Again, we test the inner-structure regression model (4.29). The

regression results are given in Table 4.10. The weights assigned to the variables on both

test sets are provided in Tables C.3 and C.4 in Appendix C.

56 Empirical Analysis of Decomposition for LP

The extrapolation tests are summarized in Tables 4.11 and 4.12. In both tables, the

problems are arranged in ascending order in terms of n. We obtained 100% accuracy of

pick% on the 20 problems from both test sets.

4.4 Preliminary Conclusions

In our experiments, we actually tried many more regression models, but only reported

some of the representative ones in this thesis. We obtained satisfactory fits over the current

regression models, but there still could be better ones that we did not build. To sum up,

we give the following preliminary conclusions drawn from our experiments:

1. Sparse problems are not significantly easier for the simplex method to solve in terms

of the 3m bound.

2. On problems with a block-angular structure, n is as important as m for simplex.

3. For examining a block-angular structured problem’s complexity, its inner structure

matters. Parameters such asm0% and nz% are beneficial complements in a regression

model to predict the number of iterations or CPU time of simplex or DW.

4. Regression results tend to be model dependent and implementation (solver) depen-

dent. Putting aside the economic interpretations, both the test-problem models have

block-angular structures. However, the regression results from the two models are

not completely consistent, which means that the conclusions are difficult to generalize

for all block-angular structured linear programs.

5. The number of blocks and the percentage of linking constraints are significant when

considering the relative efficiency of with and without decomposition.

6. The four ‘inner structure’ parameters, m0, h, msub and nsub are easy to use, and have

good regression results on all the models. Although some of them seem redundant

(with high p values), the r2 of these models still outperform almost all other models.

7. Some unexpected signs in the regression analysis are due to interactions and collinear-

ity among variables.

DW vs. Simplex 57

8. Several variants of simplex have already involved advances in sparsity techniques [75].

It is more difficult for decomposition algorithms to significantly outperform simplex

even for problems with a special structure.

9. Prediction and extrapolation tests on selected regression models reveal high accuracy,

which suggests that empirical analysis is a viable way in practice to predict the

relative efficiency of DW and simplex based on problem characteristics.

58 Empirical Analysis of Decomposition for LP

Table 4.2: Regression Results for Simplex Iteration Counts

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)*

eαmβ f
0.1580 1.0369

0.7765
(0.7576)

(4.1) m
-1.6470 1.3268

0.8618

eαmβ(m0%)
γ f

-1.0569 1.4112 0.4181
0.8240

(4.2) m
-3.9876 1.7970 0.6811

0.9315

eαmβ(nz%)γ f
-1.2282 1.4366 0.4355

0.8227

(4.3) m
-3.2429 3.0283 1.7051

0.8666

eαnβ f
0.3652 0.9825

0.7576
(0.4893)

(4.4) m
-2.5652 1.2511

0.9473

eαnβ(m0%)
γ f

-1.3290 1.4704 0.5495
0.8278

(4.5) m
-3.8540 1.4870 0.4190

0.9809

eαnβ(nz%)γ f
-1.5701 1.5078 0.5785

0.8264
(0.0054)

(4.6) m
-3.7319 2.2267 1.1075

0.9712

eαmβ
0h

γmδ
subn

²
sub f

16.4160 -0.3691 6.7092 29.9476 -34.2685
0.8803

(0.2251)

(4.7) m
-3.1616 0.6325 1.0922 -0.3038 1.0721

0.9828

*Most variables have very low p values, and here we only indicate those with p ≥ 0.05.

DW vs. Simplex 59

Table 4.3: Regression Results for Simplex CPU Time

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)

eαmβ(m0%)
γ f

-15.6688 3.0130 0.7808
0.9441

(4.8)
m

-23.2181 3.3986 1.6058
0.8947

eαmβ(nz%)γ f
-15.9991 3.0634 0.8165

0.9433

(4.9)
m

-25.5331 10.6416 8.3689
0.8123

eαnβ(m0%)
γ f

-16.2372 3.1367 1.0593
0.9473

(4.10)
m

-22.5771 2.7605 1.0640
0.9219

eαnβ(nz%)γ f
-16.7167 3.2128 1.1196

0.9465

(4.11)
m

-21.8575 4.2963 2.4236
0.8909

eαmβ
0h

γmδ
subn

²
sub f

4.7207 0.1259 8.8941 33.4388 -37.7261
0.9668

(0.1750) (0.7025)

(4.12)
m

-20.1835 2.3226 1.7855 0.0521 0.2610
0.9396

(0.8038) (0.3658)

60 Empirical Analysis of Decomposition for LP

Table 4.4: Regression Results for DW Number of Proposals

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)

eα(m0 + h)
β(m0%)

γ f
-0.2920 0.7664 -0.3288

0.8579
(0.2713)

(4.14)
m

-7.2457 2.0255 -0.7729
0.8817

eα(m0 + h)
β(nz%)γ f

-0.1354 0.7338 -0.3328
0.8576

(0.6094)

(4.15)
m

-6.4911 1.1902 -0.8345
0.8801

eαnβ(m0%)
γ f

0.2101 0.5054 -0.0157
0.8448

(0.3906) (0.7131)

(4.16)
m

-6.5444 1.5729 0.6670
0.9029

eαnβ(nz%)γ f
0.2089 0.5066 -0.0140

0.8448
(0.4144) (0.7573)

(4.17)
m

-6.0039 2.4610 1.4346
0.8603

eαmβ
0h

γmδ
subn

²
sub f

-3.7150 0.0045 -0.8269 -4.9796 6.9350
0.8647

(0.9776)(0.1286)(0.1410)

(4.18)
m

-5.3933 1.3552 0.9538 0.0656 0.1337
0.9198

(0.6307)(0.4765)

DW vs. Simplex 61

Table 4.5: Regression Results for DW CPU Time

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)

eα(m0 + h)
βhγ f

-7.7068 1.5926 0.0906
0.8953

(0.0754)

(4.19)
m

-26.0247 4.2161 0.7879
0.8745

eα(m0 + h)
βhγ(nz%)δ f

-6.6605 1.0687 1.0777 0.4844
0.9223

(4.20)
m

-25.6836 4.3762 1.0293 0.2836
0.8752

(0.2674)

eαnβhγ f
-9.9164 2.4003 -3.1405

0.8263

(4.21)
m

-30.1159 4.4103 -3.0658
0.7758

eαnβhγ(m0%)
δ f

-7.4563 1.3533 -0.4246 0.6522
0.9164

(0.2025)

(4.22)
m

-25.6363 3.5398 -0.0180 2.5267
0.8637

(0.9548)

eαmβ
0h

γmδ
subn

²
sub f

-2.9415 0.2278 1.7106 8.9980 -9.3636
0.9251

(0.0522)(0.1147)

(4.23)
m

-25.2577 3.8158 1.1263 0.2554 -0.0326
0.8859

(0.4491)(0.9440)

62 Empirical Analysis of Decomposition for LP

Table 4.6: Regression Results for The Ratio of DW vs. Simplex

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)

eα(m0%)
βhγ

f
4.3059 -1.0181 -4.3211

0.9431

m
1.9448 1.5817 0.8382

0.4030
(4.25)

m∗ -0.6577 0.1113 -0.8252
0.6869

(0.5572)

eα(m0 + h)
βnγ(nz%)δ

f
8.3541 2.4397 -3.6970 -1.4222

0.9353

m
-4.2694 2.1065 -0.7645 0.0508

0.6077
(4.26) (0.8651)

m∗ 2.6075 0.4976 -0.6785 0.4411
0.7362

(0.1767)(0.4201)

eαmβ
0n

γhδ
f

3.9978 -0.9636 1.0628 -4.4761
0.9438

m
-5.0498 1.4364 -0.0858 -0.5699

0.6299
(4.27) (0.7218)

m∗
3.1098 0.7216 -1.2917 0.2867

0.7412
(0.4451)

eαmβ
0h

γmδ
subn

²
sub

f
-7.2443 0.0642 -7.0808 -23.705927.5393

0.9510
(0.8321)

m
-5.0741 1.4932 -0.6592 0.2034 -0.2935

0.6312
(4.28) (0.4074)(0.3848)

m∗
-7.70E13 0.6860 -0.9202 1.85E13 -1.2597

0.7353
(0.4227) (0.4227)

∗These problems were solved by the simplex solver in MATLAB.

DW vs. Simplex 63

Table 4.7: Robust Regression Results for Random Prediction Tests

Problem
Regression Coefficients p values for

dof∗
α β γ δ α β γ δ

f 4.8389 -0.8554 -3.1161 0.6154 < 0.05 < 0.05 < 0.05 0.2966 81

m -5.3063 1.4127 -0.6683 -0.0166 < 0.05 < 0.05 < 0.05 0.9478 202

*Degrees of freedom for error

Table 4.8: Prediction Experiments on Randomly Chosen Financial Problems

Problem Observed Predicted 95% CI for R̂ errors

n h R pick R̂ dpick lb ub |R̂−R|
R
% pick%

70 10 7.24E-02 DW 4.34E-02 DW 2.81E-02 6.72E-02 40.02% 1

80 90 7.44E-05 DW 8.84E-05 DW 7.31E-05 1.07E-04 18.80% 1

100 20 4.35E-03 DW 4.93E-03 DW 3.59E-03 6.76E-03 13.28% 1

80 30 5.95E-04 DW 1.75E-03 DW 1.47E-03 2.07E-03 193.22% 1

20 70 4.05E-04 DW 4.75E-04 DW 3.93E-04 5.74E-04 17.20% 1

40 100 1.61E-04 DW 1.12E-04 DW 9.33E-05 1.34E-04 30.49% 1

100 30 1.04E-03 DW 1.55E-03 DW 1.25E-03 1.92E-03 47.99% 1

100 10 8.13E-02 DW 3.77E-02 DW 2.03E-02 6.99E-02 53.67% 1

50 10 4.29E-02 DW 5.04E-02 DW 3.65E-02 6.96E-02 17.40% 1

90 90 8.36E-05 DW 8.14E-05 DW 6.67E-05 9.94E-05 2.63% 1

Average 43.47% 100%

64 Empirical Analysis of Decomposition for LP

Table 4.9: Prediction Experiments on Randomly Chosen Multicommodity Problems

Problem Observed Predicted 95% CI for R̂ errors

n h No. R pick R̂ dpick lb ub |R̂−R|
R
% pick%

64 32 5 1.18 simplex 0.57 DW 0.41 0.79 51.94% 0

256 8 3 1.04 simplex 3.82 simplex 2.83 5.15 267.45% 1

128 4 5 7.57 simplex 5.81 simplex 4.40 7.67 23.25% 1

128 64 9 1.74 simplex 1.57 simplex 1.27 1.94 9.91% 1

64 16 8 1.04 simplex 1.27 simplex 1.04 1.54 21.90% 1

256 8 6 2.78 simplex 10.45 simplex 8.36 13.06 276.42% 1

128 8 9 2.00 simplex 6.55 simplex 5.22 8.23 227.68% 1

256 64 5 4.15 simplex 2.63 simplex 2.14 3.22 36.68% 1

256 64 4 2.90 simplex 2.59 simplex 2.12 3.18 10.67% 1

128 128 8 1.92 simplex 1.08 simplex 0.83 1.41 43.65% 1

Average 96.95% 90%

Table 4.10: Robust Regression Results for Extrapolation Tests

Problem
Regression Coefficients p values for

dof∗
α β γ δ α β γ δ

f 4.7313 -0.9813 -3.4524 0.9576 < 0.05 < 0.05 < 0.05 0.0673 81

m -4.4299 1.4402 -0.7050 -0.1721 < 0.05 < 0.05 < 0.05 0.4957 202

*Degrees of freedom for error

DW vs. Simplex 65

Table 4.11: Extrapolation Experiments on the Financial Problems

Problem Observed Predicted 95% CI for R̂ errors

n h R pick R̂ dpick lb ub |R̂−R|
R
% pick%

10 100 2.63E-04 DW 3.28E-04 DW 2.14E-04 5.03E-04 25.08% 1

80 90 7.44E-05 DW 7.48E-05 DW 6.14E-05 9.11E-05 0.48% 1

20 100 2.39E-04 DW 1.79E-04 DW 1.35E-04 2.38E-04 24.99% 1

90 90 8.36E-05 DW 6.85E-05 DW 5.57E-05 8.43E-05 18.06% 1

30 100 2.88E-04 DW 1.26E-04 DW 1.01E-04 1.58E-04 56.26% 1

40 100 1.61E-04 DW 9.86E-05 DW 8.08E-05 1.20E-04 38.79% 1

60 100 1.07E-04 DW 7.05E-05 DW 5.80E-05 8.57E-05 34.26% 1

80 100 1.47E-04 DW 5.62E-05 DW 4.56E-05 6.93E-05 61.85% 1

90 100 8.40E-05 DW 5.14E-05 DW 4.13E-05 6.40E-05 38.80% 1

100 100 1.84E-04 DW 4.75E-05 DW 3.78E-05 5.97E-05 74.23% 1

Average 37.28% 100%

Table 4.12: Extrapolation Experiments on the Multicommodity Problems

Problem Observed Predicted 95% CI for R̂ errors

n h No. R pick R̂ dpick lb ub |R̂−R|
R
% pick%

256 128 8 9.21 simplex 2.08 simplex 1.45 2.98 77.43% 1

256 128 10 5.32 simplex 5.71 simplex 3.89 8.39 7.46% 1

256 128 12 18.48 simplex 5.70 simplex 3.88 8.37 69.16% 1

256 128 11 22.06 simplex 5.80 simplex 3.94 8.53 73.73% 1

256 256 9 5.51 simplex 1.09 simplex 0.72 1.64 80.26% 1

256 256 7 2.43 simplex 1.10 simplex 0.73 1.66 54.71% 1

256 256 8 4.16 simplex 1.19 simplex 0.80 1.79 71.29% 1

256 256 10 6.05 simplex 3.26 simplex 2.12 5.03 46.05% 1

256 256 11 7.13 simplex 3.27 simplex 2.12 5.04 54.14% 1

256 256 12 8.21 simplex 3.35 simplex 2.17 5.18 59.18% 1

Average 59.34% 100%

Chapter 5

With and Without Decomposition -

ACCPM vs. IPM

In the previous chapter, we have compared the relative efficiency between the Dantzig-

Wolfe decomposition method (DW) [20] and the simplex method. In this chapter, we

do the comparison through another approach: we compare ACCPM (Analytic Center

Cutting Plane Method) versus IPM (Interior Point Method). ACCPM [34] is a relatively

new method based on IPM. ACCPM with multiple cuts can be viewed as the dual problem

of DW. Therefore, comparing the complexity of ACCPM and IPM means comparing with

and without decomposition in the IPM-based algorithms.

Based on the conclusions from the literature, we first deduce the complexity of ACCPM

and IPM, respectively, over problems with a block-angular structure. The relative efficiency

obtained by this kind of theoretical analysis has many limitations. For example, most of

the conclusions provide complexity bounds, which implies a worst-case analysis. Users

actually care more about the real behavior of an algorithm on various problems. However,

average-case analysis is even more difficult than worst-case [16], as it is virtually impossible

to get a statistical average from sample problems. In addition, a theoretical proof often

makes strong assumptions, which are not true in practice. Therefore, empirical analysis

has gained more attention in recent years (see [65] [49], and [66]).

Different from some papers’ ‘last-page’ numerical results, we use a large set of test

problems with both primal and dual block-angular structures to test our conclusions, i.e.,

67

68 Empirical Analysis of Decomposition for LP

the theoretical relative efficiency of ACCPM vs. IPM. By this way, the gap between theory

and practice can be clearly identified. We try to provide helpful information for decision

making such as which solver (algorithm) to choose.

5.1 Complexity Analysis for ACCPM vs. IPM

In this section, we analyze the theoretical complexity of ACCPM and IPM. Our study

is based on some conclusions by other researchers, and we focus mainly on the worst-

case complexity bounds. Compared to the simplex-based algorithms, IPM as well as its

counterpart in decomposition framework, ACCPM, have polynomial complexity for both

the average and the worst case.

Both IPM and ACCPM are iterative process. Therefore, the complexity can be factored

as the number of iterations times the computational effort needed for each iteration.

5.1.1 Complexity of IPM

As discussed earlier, the path following method is the most efficient IPM variant, based on

which ACCPM is developed. Given a problem with m equalities and n variables, the path

following method needs at most

O
¡√
n log(ε0/ε)

¢
(5.1)

iterations to reduce the duality gap from ε0 to ε [5]. In an observed average case, the

primal-dual path following algorithm needs

O (logn log(ε0/ε)) (5.2)

iterations [5]. However, no satisfactory explanation has been achieved for this behavior yet

[5].

For IPMs, Newton’s method is used to solve an unconstrained optimization problem. To

get a Newton’s direction, we need to solve a linear system of equations. At each iteration,

this work involves

O
¡
m2n+m3

¢
(5.3)

ACCPM vs. IPM 69

arithmetic operations [62].

The total complexity for solving a problem equals the number of iterations times the

complexity per iteration. Therefore, for a block-angular structured problem withm0 linking

constraints and h blocks of ms × ns, the complexity for solving it as a whole requires

Fipm = O
¡
(hms +m0)

2 · hns + (hms +m0)
3
¢
·O
³p

hns log(ε0/ε)
´

(5.4)

arithmetic operations in total.

5.1.2 Complexity of ACCPM with Multiple Cuts

The studies on the complexity of ACCPM with multiple cuts were initiated by Ye [85].

Goffin and Vial [38] confirmed and further expanded Ye’s analysis. We first review some

important conclusions in the literature, and then apply these complexity conclusions to

the special case - problems with a block-angular structure.

Important Conclusions

Ye [85] first analyzed the complexity of ACCPM with multiple cuts, and proved that AC-

CPM with multiple cuts added at each iteration is still ‘a fully polynomial approximation

algorithm’. Following Ye’s study, Goffin and Vial [38] further proved the complexity for

the recovery of a new analytic center, and proposed a feasibility restoration direction. For

a problem with m inequalities and n variables (m < n), their conclusions are as follows:

1. Recovery of a new analytic center [38]

The number of Newton steps to compute an updated analytic center is bounded by

O (p log(p+ 1)) , (5.5)

where p is the number of new cuts added by the oracle(s). In fact, the value of p

may vary over iterations, and it is more precise to denote it as pk. Notice that this

complexity result is only dependent on the number of new cuts per iteration, which

means that the dimension parameters m and n are irrelevant here.

70 Empirical Analysis of Decomposition for LP

2. Convergence results [85][38]

The number of cuts generated is at most

O

µ
p2n2

ε2

¶
, (5.6)

where p is the maximum number of cuts generated at any given iteration, and ε is

the duality gap, also known as the final precision.

In these studies, the multiple cuts generated by the subproblem(s) are used as given,

i.e., how the cuts are generated is out of consideration. Actually, for a generic convex

optimization problem, the query points can be generated randomly, and more query points

lead to more accurate approximations of the original functions. However, when ACCPM

is used in decomposition, these query points are passed from the subproblems, i.e., the

optimal solutions of the subproblems. This means that the effort required to solve the sub-

problems do impact the overall algorithm. Therefore, we need to consider the complexity

for both the master problem and the subproblem in a decomposition context.

Complexity of Master Problem

For a problem with a block-angular structure, assuming that each subproblem returns one

proposal at each iteration, the number of Newton steps to recover a new analytic center is

bounded by

O (h log(h+ 1)) , (5.7)

where h is the number of blocks in the problem. The value v corresponds to the number

of inner iterations for solving the master problem per outer iteration.

Since usually we have m ≤ n, according to (5.3), the total number of arithmetic opera-
tions per iteration is O (n3). However, in ACCPM, there are many more constraints (cuts)

than variables in the master problem, and the complexity becomes O (m3) in this case.

Therefore, the computational cost of one Newton step at the kth iteration is bounded by

O
¡
(2m0 + kh)

3
¢
, (5.8)

where 2m0+kh is the total number of rows in the master problem at the k
th iteration (see

(3.17) to (3.19) on page 28), and 2m0 corresponds to the initial box constraints.

ACCPM vs. IPM 71

According to (5.7) and (5.8), the number of arithmetic operations of the master problem

at the kth iteration can be calculated as

F kaccpm,M = O
¡
(2m0 + kh)

3 · h log(h+ 1)
¢
. (5.9)

According to (5.6), the number of cutting planes generated throughout the algorithm

is at most

v = O

µ
h2(m0 + h)

2

ε2

¶
. (5.10)

Since we assume that each subproblem generates one proposal per iteration, there are

totally h cuts added per iteration. Then, the number of outer iterations is at most

v0 = v/h = O

µ
h(m0 + h)

2

ε2

¶
. (5.11)

Summing up F kaccpm,M from all the v0 iterations, the overall complexity of the master

problem is bounded by

Faccpm,M = O

⎛⎝ dv0eX
k=1

(2m0 + kh)
3 · h log(h+ 1)

⎞⎠ . (5.12)

For simplicity of notations, we use v0 as an integer, and ignore its magnitude symbol. So,

the ACCPM master problem complexity becomes

Faccpm,M = O

⎛⎜⎝h log(h+ 1)
h(m0+h)

2

ε2X
k=1

(8m3
0 + 12m

2
0kh+ 6m0k

2h2 + k3h3)

⎞⎟⎠ . (5.13)

In an O-notation [77], only the term with the highest power is kept. Ignoring all the

constant coefficients, we obtain

O

⎛⎜⎝h log(h+ 1)
⎡⎢⎣m3

0 ·
h(m0 + h)

2

ε2
+m2

0h ·
h2(m0 + h)

4

ε4
+

h(m0+h)
2

ε2X
k=1

(m0k
2h2 + k3h3)

⎤⎥⎦
⎞⎟⎠
(5.14)

72 Empirical Analysis of Decomposition for LP

According to the results of sum of squares and sum of cubes

1 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6,
1 + 23 + · · ·+ n3 = n2(n+ 1)2/4,

(5.15)

we obtain

O

µ
h log(h+ 1)

∙
m3
0 ·
h(m0 + h)

2

ε2
+m2

0 ·
h3(m0 + h)

4

ε4
+m0 ·

h5(m0 + h)
6

ε6
+
h7(m0 + h)

8

ε8

¸¶
(5.16)

as the total complexity of the master problem for the entire ACCPM solving process.

Usually, in the O-notation, only the term with the highest power is kept, but we now keep

the full equation of (5.16) for further discussion.

Complexity of Subproblems

In a distributed computing environment with one subproblem assigned to each node, the

CPU time for solving all the subproblems equals the time for solving the biggest one, i.e.,

CPUsub = max(CPUsub(l)), l = 1, 2 · · ·h. Therefore, supposing the biggest subproblem
has dimensions ms × ns, it needs, from (5.1) and (5.3),

F kaccpm,sub = O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
(5.17)

arithmetic operations to solve the subproblems per outer iteration.

The Overall Complexity of ACCPM

Summing up the complexity for both the master problem and the subproblems, we obtain

Faccpm = Faccpm,M + Faccpm,sub = Faccpm,M + v
0F kaccpm,sub

= O
³
h log(h+ 1)

h
m3
0 · h(m0+h)2

ε2
+m2

0 · h
3(m0+h)4

ε4
+m0 · h

5(m0+h)6

ε6
+ h7(m0+h)8

ε8

i´
+O

³
h(m0+h)2

ε2

´
·O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
(5.18)

ACCPM vs. IPM 73

5.1.3 Relative Complexity of ACCPM vs. IPM

We can use (5.4) and (5.18) to define

R = Faccpm/Fipm

=

O
³
h log(h+ 1)

h
m3
0 · h(m0+h)2

ε2
+m2

0 · h
3(m0+h)4

ε4
+m0 · h

5(m0+h)6

ε6
+ h7(m0+h)8

ε8

i´
+O

³
h(m0+h)2

ε2

´
·O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
O((hms+m0)2·hns+(hms+m0)3)·O(

√
hns log(ε0/ε))

(5.19)

as the relative efficiency of ACCPM vs. IPM. Clearly, R is a complicated expression. In

the following sections, we will discuss this ratio under different circumstances.

Notice that the ratio of worst-case complexities for ACCPM and IPM does not lead to

a worst-case R. Instead, in order to understand the behavior of R, Faccpm and Fipm should

be estimated based on accurate computational models. Unfortunately, such models do

not exist. However, it is widely believed that the worst-case results for ACCPM and IPM

are much closer to experience than for the simplex method. Therefore, we conduct the

following ratio analysis only for the purpose of generating plausible hypotheses about the

behavior of the true ratio. We will then test the hypotheses on various numerical examples.

Influence of the Number of Linking Constraints - m0

On block-angular structured problems, it is widely believed that the more linking con-

straints, the more computational effort needed for decomposition algorithms to solve them.

In this section, we examine the influence on R of the number of linking constraints. Di-

viding both the numerator and denominator by h8m8
s, (5.19) becomes

O

µ
h log(h+ 1)

∙
1

ε2h2m2
s

³
m0

hms

´3³
m0+h
hms

´2
+ h

ε4m2
s

³
m0

hms

´2³
m0+h
hms

´4
+ h4

ε6ms

m0

hms

³
m0+h
hms

´6
+ h7

ε8

³
m0+h
hms

´8¸¶
+O

µ
1

ε2h5m6
s

³
m0+h
hms

´2¶
·O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
O

µ
ns
h5m6

s

³
m0

hms
+ 1
´2
+ 1

h5m5
s

³
m0

hms
+ 1
´3¶

·O
¡√
hns log(ε0/ε)

¢
(5.20)

Let k0 =
m0

hms
represent the percentage of linking constraints to nonlinking constraints.

74 Empirical Analysis of Decomposition for LP

Then the ratio R becomes

O

µ
h log(h+ 1)

∙
k30

ε2h2m2
s

³
k0 +

1
ms

´2
+

hk20
ε4m2

s

³
k0 +

1
ms

´4
+ h4k0

ε6ms

³
k0 +

1
ms

´6
+ h7

ε8

³
k0 +

1
ms

´8¸¶
+O

µ
1

ε2h5m6
s

³
k0 +

1
ms

´2¶
·O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
O
³

ns
h5m6

s
(k0 + 1)

2 + 1
h5m5

s
(k0 + 1)

3
´
·O
¡√
hns log(ε0/ε)

¢
(5.21)

If we keep increasing the number of linking constraints (m0), k0 will become infinitely

large. Therefore, the complexity of ACCPM will increase by a rate of O(k80), while the

complexity of IPM will only increase byO(k30). That is, when the ratio of linking constraints

to nonlinking (k0) is high, ACCPM (the decomposition approach) will be slower than IPM

(the direct approach - solving the problem as a whole). This is compatible with what

people have expected.

Conversely, we consider a problem with very few linking constraints, i.e., k0 → 0.

According to (5.21), we have

R1 =
Faccpm
Fipm

=
Faccpm,M + Faccpm,sub

Fipm
=
O
³
log(h+1)h13

ε8m2
s

´
+O

¡
1
ε2
(ns +ms)

√
ns log(ε0/ε)

¢
O
¡
(ns +ms)

√
hns log(ε0/ε)

¢
(5.22)

The equation (5.22) looks too complicated to provide any hints. Notice that the second

term of the numerator has a similar form with the denominator. Surprisingly, even k0 → 0,

ACCPM can still be quite costly due to the large power over h (the first term in the

numerator) compared with IPM. However, if the number of blocks (h) is small enough

with respect to ms and ns, which is not unusual in practice, ACCPM can hopefully be

faster. Therefore, we can assume that Faccpm,M ≤ Faccpm,sub, i.e.,

O

µ
log(h+ 1)h13

ε8m2
s

¶
≤ O

µ
1

ε2
(ns +ms)

√
ns log(ε0/ε)

¶
, (5.23)

and hence

O
¡
h13 log(h+ 1)

¢
≤ O

¡
ε6
¡
m2
sns +m

3
s

¢√
ns log(ε0/ε)

¢
, (5.24)

Without loss of generality, we assume that ms ≤ ns. Ignoring the predetermined parame-
ters ε and ε0, inequality (5.24) becomes

h13 log(h+ 1) ≤ C1n3.5s , (5.25)

ACCPM vs. IPM 75

where C1 is a constant to replace the O-notation. This inequality approximately suggests

the relationship between h and ns. Given h satisfies inequality (5.24), together with the

assumption k0 → 0, the ratio R1 tends to O
³

1√
h

´
. This indicates that when the percentage

of linking constraints is low, ACCPM (decomposition) will be more advantageous than IPM

(direct solution approach) with an increasing h, as long as h is in some moderate interval,

i.e., satisfying (5.25).

It is worth noting that (5.25) actually means at each outer iteration, the computational

effort is dominated by subproblems. At a given iteration, the master problem’s number of

columns is determined by h, and the number of rows is m0 + h. As a result, when h is

smaller, the size of the master problem is smaller. This explains why we have Faccpm,M ≤
Faccpm,sub. If considering Faccpm,M ≥ Faccpm,sub, which is common in practice, it is difficult
to deduce ratio R from (5.22) to a succinct formula.

If we implement ACCPM on a single computer, the ratio becomes

R1 =
O
³
log(h+1)h13

ε8m2
s

´
+O

¡
h
ε2
(ns +ms)

√
ns log(ε0/ε)

¢
O
¡
(ns +ms)

√
hns log(ε0/ε)

¢ (5.26)

In equation (5.26), the second term of the numerator itself (the sum of the subproblems’

complexity in ACCPM) is greater than the denominator (the complexity of IPM), which

means that theoretically, the complexity bound of ACCPM will never beat the complexity

bound of IPM in a serial computing environment.

Generally speaking, decomposition methods are computationally complicated. In the-

ory, only in a parallel computing environment, when the linking constraints are very few,

and the number of blocks is not too big, can decomposition be faster than solving the

problem as a whole. Of course, a main advantage of decomposition lies in dealing with the

insufficient memory problem, but this is another issue.

This conclusion also indicates that for a block-angular structured problem, if there are

many blocks, i.e., exceeding the inequality ((5.25)), combining some of them may lead to

better performance of decomposition.

76 Empirical Analysis of Decomposition for LP

Influence of the Size of Subproblems - ms&ns

Recall (5.18). If ms keeps increasing, it will be overwhelmingly bigger than all other

parameters. Then the complexity of ACCPM becomes

Faccpm = O

µ
h8 log(h+ 1) · (m0 + h)

8

ε2

¶
+O

µ
h(m0 + h)

2

ε2

¶
·O
¡
m3.5
s log(ε0/ε)

¢
(5.27)

Notice that only the second term of the above expression contains ms. Therefore, if ms is

big enough, the second term will be more costly than the first one, i.e.,

O

µ
h8 log(h+ 1) · (m0 + h)

8

ε2

¶
≤ O

µ
h(m0 + h)

2

ε2
·m3.5

s log(ε0/ε)

¶
(5.28)

Assuming m0 < h and ignoring ε0 and ε, inequality (5.28) can be further simplified as

h13 log(h+ 1) ≤ C2m3.5
s , (5.29)

where C2 is a constant to remove the O-notation.

Therefore, whenms keeps increasing, the computational effort of ACCPM is dominated

by the subproblems. According to (5.18), the complexity of ACCPMwill eventually become

Faccpm = O

µ
h(m0 + h)

2

ε2

¶
·O
¡
m3.5
s log(ε0/ε)

¢
(5.30)

Furthermore, the assumption, m0 ≤ h, mentioned in (5.29), is important for decomposition
algorithms to be advantageous. With this assumption, the complexity of ACCPM will be

Faccpm = O

µ
h3m3.5

s

ε2
log(ε0/ε)

¶
(5.31)

Meanwhile, as ms increases, the complexity of IPM will become

Fipm = O
³
h3m3

s

p
hms log(ε0/ε)

´
(5.32)

As a result, the ratio becomes

R2 = (5.31)/(5.32) = O

µ
1√
h

¶
(5.33)

ACCPM vs. IPM 77

Similarly, when increasing ns, we get the same result on the ratio

R2 = O

µ
1√
h

¶
, (5.34)

and the corresponding limitation for h is

h13 log(h+ 1) ≤ C3n3.5s , (5.35)

where C3 is a constant to remove the O-notation.

These results tell us that when one of the subproblems is big (ms or ns increases), the

relative efficiency of ACCPM vs. IPM is inversely proportional to
√
h, given h satisfies

inequality (5.29) or (5.35).

Influence of the Number of Blocks - h

Consider a problem with a large number of blocks, i.e., h is very big. Then, according to

(5.18), the complexity of ACCPM will become

Faccpm = O

µ
h8 log(h+ 1) · (m0 + h)

8

ε8

¶
+O

µ
h(m0 + h)

2

ε2

¶
·O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
(5.36)

In the above equation, the first term represents the complexity of the master problem

during all the iterations, and the second term is the complexity of the subproblems. If h

keeps increasing, the first term will be more costly as it has a higher order over h, i.e.,

O

µ
h8 log(h+ 1) · (m0 + h)

8

ε8

¶
≥ O

µ
h(m0 + h)

2

ε2

¶
·O
¡
(m2

sns +m
3
s)
√
ns log(ε0/ε)

¢
,

(5.37)

which means that the computational effort is dominated by the master problem now. Since

h ≥ m0, with a further assumption ns ≥ ms, this expression becomes

h13 log(h+ 1) ≥ C3n3.5s , (5.38)

where C3 is a constant to remove the O-notation. Given (5.38) holds, the ACCPM com-

plexity can be denoted as

Faccpm = O

µ
h8 log(h+ 1) · (m0 + h)

8

ε8

¶
(5.39)

78 Empirical Analysis of Decomposition for LP

According to (5.4), as h increases, the complexity of IPM will become

Fipm = O
¡
h7 log(ε0/ε)

¢
(5.40)

Therefore, the relative efficiency ratio can be calculated as

R3 = (5.39)/(5.40) = O
¡
h9 log(h+ 1)

¢
(5.41)

This result indicates that when h keeps increasing and eventually becomes big enough to

satisfy (5.38), ACCPM results in huge computational effort, and it is a better choice to

solve the problem as a whole by IPM.

5.2 Empirical Analysis for ACCPM vs. IPM

5.2.1 Limitations of Theoretical Analysis

In the previous section, we deduced the complexity of ACCPM and IPM on problems with

a block-angular structure. However, there are a few inevitable drawbacks in theoretical

analysis:

1. Worst case vs. average case. All the complexity conclusions are from the worst-case,

which may not be able to represent an algorithm’s real performance. In fact, even

the average-case analysis cannot tell us how an algorithm really works in practice.

There is a gap between theory and practice.

2. A number of assumptions are made to build the ideal mathematical models. For

example, the conclusions in Section 5.1.2 assume that all the cuts are ‘central’, which

is not true in real implementation.

3. Decomposition algorithms are usually implemented in distributed systems. In our

discussion, we assume that the master problem is assigned to one processor, and each

subproblem is assigned to one processor as well. In fact, it is very difficult to have

plenty of processors to satisfy such an assumption. For example, the Flexor system in

the University of Waterloo only has 52 processors. In our analysis, we also ignore the

communication overhead, while in practice, that is an important factor to consider

when evaluating algorithms’ performance.

ACCPM vs. IPM 79

4. The models are analyzed in extreme cases. For example, when we consider a problem

with fewer linking constraints, we assume that the ratio k0 = m0/hms tends to zero;

when we consider a problem with many blocks, we let h be infinity. Then, some

conclusions are drawn based on these unreal extreme assumptions.

5. All the constants C1 through C5 in the theoreticalO-notation are neglected. However,

having a parameter tend to infinity is only a mathematical concept, which never

happens in real life. Therefore, if some parameter is quite big but not enough to

‘tend to infinity’, those constants will count.

6. Some other factors are omitted in our theoretical analysis, such as the density of the

coefficient matrix. There are also some other factors which affect the overall perfor-

mance but are too hard to be addressed. For example, some problems do not have

a huge size, but result in poor convergence of an algorithm [82]. Another example

is that we often estimate the effort to solve a problem based on their dimensions,

but with a warm start, the complexity can be greatly reduced. The mystery of

optimization has not been completely figured out yet.

5.2.2 Empirical Analysis on IPM

In order to better investigate algorithms’ performance, we do empirical analysis over a

large set of test problems.

IPM Number of Iterations

We first test the theoretical conclusions of IPM using empirical methods. Figure 5.1 shows

the number of iterations in response to the number of columns for both models. The dots

in the figure represent observed results, and the curve is based on the regression model

(5.42) below. As discussed before, IPM has an observed average behavior of log(n), where

80 Empirical Analysis of Decomposition for LP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

12

14

16

18

20

22

24

26

28

30

of columns

of

 it
er

at
io

ns

(a). Financial Model − IPM

0 2 4 6 8 10

x 10
4

10

15

20

25

30

35

40

45

of columns

of

 it
er

at
io

ns

(b). Multicommodity Model − IPM

Figure 5.1: IPM number of iterations vs. number of columns for Both Models

n is the total number of columns1. Therefore, we build the following regression model

Iter = α+ β log(n) (5.42)

Regression results are summarized in Table 5.1 on page 92. The regression analysis

is done separately on three test sets: f represents the financial problems, m stands for

the multicommodity problems, and b means both. Under each coefficient in the table,

there is a corresponding p value, which is obtained from a two-sided t-test with the null

assumption H0: the coefficient is zero. We use 5% as the significance level, i.e., if p < 5%,

the null assumption is rejected; otherwise, a p value more than 5% means an insignificant

parameter in the regression model. The coefficient of determination, r2, which reveals the

goodness of fitting, is also provided in the table. Big residuals will lead to a poor r2, which

suggests uncovered parameters in the model.

The results in Table 5.1 are quite model dependent. Firstly, according to r2s, (5.42) is

a bad fit on test set f , but is very good on test set m. No parameters seem redundant on

both of them. If we arbitrarily put the two test sets together (denoted as b), the regression

results are still poor. Notice that although α has a high p value on set b, we still keep it in

the model because it is a constant. Secondly, a negative β appears on set f , which is quite

1See equation (5.2). The parameters ε0 and ε are ignored here for two reasons: one, there is little we

can do about the initial duality gap as we use the artificial variables as the first starting point; two, the

final precision is a constant in our experiments.

ACCPM vs. IPM 81

unexpected. People commonly believe that the larger the problem is, the more iterations it

needs. Since the r2 on set f is as low as 0.16, the regression model seems inappropriate and

does not tell us much. In addition, recall the problem characteristics in Table 2.1. Notice

that all the financial problems have very low m0% (up to 8%). Therefore, the negative β

may imply that when the problem is sparse, the number of iterations is very insensitive to

the scale.

Due to the poor fit of (5.42) on f , we try a model with m0%

Iter = eαnβm0%
γ (5.43)

The r2 of test set f is considerably improved, although still not ideal.

Similarly, we try another model with nz%

Iter = eαnβnz%γ (5.44)

The r2 of test set f is further improved to 0.5575, while the r2 for test set m is as high as

0.9250.

Next, we use the four independent inner-structure parameters, m0, h, ms and ns, to

do the regression. The r2s reach the highest values for both f and m in Table 5.1. For

(5.45m), only the parameter ns seems redundant.

Iter = eαmβ
0h

γmδ
sn
²
s (5.45)

IPM CPU Time

Next, we examine how IPM’s CPU time varies with a problem’s dimensions. Figure 5.2

shows the CPU time of IPM vs. the number of columns in a problem. Since the points

seem scattered, Figure 5.3 takes logarithms on both axes.

The first regression model that we test is the same as the one in the previous analysis

of iteration counts

CPU = α+ β log(n) (5.46)

Regression results in this section are provided in Table 5.2 on page 93. Model (5.46) has

very low r2s on both sets f and m, as well as the set with putting the two together.

Accordingly, we try another model with m0%

82 Empirical Analysis of Decomposition for LP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

50

100

150

200

250

300

of columns

C
P

U
 T

im
e

(s
ec

on
ds

)

(a). Financial Model − IPM

0 2 4 6 8 10

x 10
4

−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

of columns
C

P
U

 T
im

e
(s

ec
on

ds
)

(b). Multicommodity Model − IPM

Figure 5.2: IPM CPU vs. number of columns for Financial and Multicommodity Models

6 7 8 9 10 11
−2

−1

0

1

2

3

4

5

6

log(# of columns)

lo
g(

C
P

U
 T

im
e)

(a). Financial Model − IPM

6 7 8 9 10 11 12
−2

0

2

4

6

8

10

log(# of columns)

lo
g(

C
P

U
 T

im
e)

(b). Multicommodity Model − IPM

Figure 5.3: IPM log(CPU) vs. log(n) for Financial and Multicommodity Model

ACCPM vs. IPM 83

CPU = eαnβm0%
γ (5.47)

In the regression results for both test sets f andm, r2s are significantly improved. Similarly,

we look at another following model with nz%, and the regression results show good fits for

both sets.

CPU = eαnβnz%γ (5.48)

Lastly, we try the regression model with the inner-structure parameters

CPU = eαmβ
0h

γmδ
sn
²
s (5.49)

The r2s for both f and m are the highest in Table 5.2.

5.2.3 Empirical Analysis on ACCPM

ACCPM Convergence

Recall the theoretical bound (5.6), which suggests that the number of cuts that ACCPM

requires is determined by the number of cuts generated per iteration (h in our case), the

number of columns (n), and the tolerance (ε). Ignoring the constant ε, our first regression

model is then built based on this conclusion

#prop = eαhβnγ (5.50)

Regression results are summarized in Table 5.3 on page 94, where r2s show that

model (5.50) fits well on both test sets f and m, but the variable h seems redundant.

Both β and γ take positive values, but are much less than ‘2’ of (5.6), which is the worst-

case complexity.

Taking into consideration m0% and nz%, the following two regression models further

improved r2 on both sets f and m than (5.50).

#prop = eαhβnγ(m0%)
δ (5.51)

#prop = eαhβnγ(nz%)δ (5.52)

84 Empirical Analysis of Decomposition for LP

Taking the block-angular structure into mind, we can try another with the four inner-

structure parameters

#prop = eαmβ
0h

γmδ
sn
²
s (5.53)

The r2s of models (5.53f) and (5.53m) are the highest in Table tab:accpm.prop.

ACCPM CPU Time

Similarly, we introduce the following regression model to estimate the ACCPM CPU time

in response to the number of blocks and the number of columns

CPU = eαhβnγ (5.54)

The regression results in this section are summarized in Table 5.4. With m0% or nz%,

the fit can be somewhat improved by models (5.55) and (5.55)

CPU = eαhβnγ(m0%)
δ (5.55)

CPU = eαhβnγ(nz%)δ (5.56)

Next, we try a regression model based on the four inner-structure parameters.

CPU = eαmβ
0h

γmδ
sn
²
s (5.57)

The r2 of (5.57f) and (5.57m) are good, but not the best in the table. Moreover, a few

variables are redundant according to the p values.

5.2.4 Empirical Analysis on the Ratio - Relative Efficiency

Overview of Data

As mentioned earlier, there are only two parameters in the stochastic financial model: the

number of assets and the number of scenarios. This enables us to observe its performance

by 3D figures.

On the stochastic financial problems, Figure 5.4 reveals the CPU time of ACCPM and

IPM, respectively. Both the surfaces in the figures increase along the number of assets as

ACCPM vs. IPM 85

0
20

40
60

80
100

0

50

100
0

5

10

15

20

25

of scenarios

(a). ACCPM

of assets

C
P

U
 T

im
e

0
20

40
60

80
100

0

50

100
0

50

100

150

200

250

300

of scenarios

(b). IPM

of assets

C
P

U
 T

im
e

Figure 5.4: CPU Time vs. Number of Assets and Number of Scenarios (Financial Model)

well as the number of scenarios. If we look at the scale of the vertical axes, we see that

the CPU time of IPM, the direct solution approach, increases more than ACCPM, the

decomposition approach. Similarly, Figure 5.5 shows how the ratio of ACCPM vs. IPM

varies along the two parameters using a mesh plot as well as a contour plot. Figure 5.6

is the cutaway views of Figure 5.5, so that we can see how the ratio varies along one

parameter with another fixed.

The multicommodity model has more than two parameters, and hence is more difficult

to visualize. We choose two parameters, m0% and h, to do the 3D plottings. The reason

that we choose these two parameters is that for problems with a block-angular structure, the

percentage of linking constraints has long been considered important; when we evaluate the

relative efficiency of ACCPM and IPM, the number of h means the number of processors,

which affects the decomposition solution time.

Figure 5.7 shows the CPU time of ACCPM and IPM, respectively. Generally speaking,

the higher h, the bigger the problem; the higher m%, the denser the problem. Therefore,

the two planes indicating ACCPM and IPM solution time increase with both h and m0%.

Similarly, Figure 5.8 reveals the tendency of the ratio (ACCPM/IPM) along m0% and

h. Most of the stems in the figure are short, but we still can tell that with higher m0%,

ACCPM takes longer than IPM.

86 Empirical Analysis of Decomposition for LP

0
20

40
60

80
100

0

50

100
0

0.5

1

1.5

2

2.5

3

of scenarios# of assets

R
at

io
 −

 A
C

C
P

M
 v

s.
 IP

M

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Figure 5.5: Ratio (ACCPM vs. IPM) and Surface Map for Financial Model

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

of scenarios

R
at

io
 −

 A
C

C
P

M
 v

s.
 IP

M

(a)

 10 assets
 20 assets
 30 assets
 40 assets
 50 assets
 60 assets
 70 assets
 80 assets
 90 assets
 100 assets

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

of assets

R
at

io
 −

 A
C

C
P

M
 v

s.
 IP

M

(b)

 10 scenarios
 20 scenarios
 30 scenarios
 40 scenarios
 50 scenarios
 60 scenarios
 70 scenarios
 80 scenarios
 90 scenarios
 100 scenarios

Figure 5.6: Cutaway view for the Ratio (Financial Model)

ACCPM vs. IPM 87

0
0.2

0.4
0.6

0.8

0

50

100

150
0

1

2

3

4

5

x 10
4

m
0
%

(a). ACCPM

of commodities

C
P

U
 T

im
e

0
0.2

0.4
0.6

0.8

0

50

100

150
0

1000

2000

3000

4000

5000

m
0
%# of commodities

C
P

U
 T

im
e

(a). IPM

Figure 5.7: CPU Time vs. m0% and h (Multicommodity Model)

0
0.2

0.4
0.6

0.8

0

50

100

150
0

1000

2000

3000

4000

5000

6000

m
0
%# of commodities

R
at

io
 −

 A
C

C
P

M
 v

s.
 IP

M

Figure 5.8: Ratio (ACCPM vs. IPM) for Multicommodity Model

88 Empirical Analysis of Decomposition for LP

Regression Analysis on R

It is difficult to build regression models on the ratio of ACCPM and IPM as there are

more factors involved. After observing the tendencies shown in the figures in the previous

section, we first test the following regression model

R = eα(m0%)
βhγ (5.58)

Regression results are summarized in Table 5.5 on page 96. For the test set f , both β and

γ take negative values, while for the test set m, they both take positive values. We have

expected positive m0% and negative h, implying that the ratio is proportional to m0% but

inversely proportional to h. That is, the higher m0%, the less advantageous decomposition

algorithms; the bigger h, the faster decomposition algorithms.

When examining the ratio R, we recall what factors would influence the CPU time of

ACCPM and IPM, respectively, so that we can find a clue to build regression models. In

addition to m0% and h, n seems important to the complexity of IPM. We then introduce

the following model

R = eαhβnγ(m0%)
δ (5.59)

The r2s for both f and m are somewhat improved, but still not ideal.

Our next regression model contains (m0+h), n, andm0%, which represent the number of

rows of the master problem, the total number of columns, and one of the density indicators.

R = eα(m0 + h)
βnγ(m0%)

δ (5.60)

This model achieves higher r2s, but also results in more redundancy.

Similarly, we can use nz% to replace m0%

R = eα(m0 + h)
βnγ(nz%)δ, (5.61)

and the fitting results are almost the same as (5.60).

Lastly, we try a regression model with the inner-structure parameters

R = eαmβ
0h

γmδ
sn
²
s (5.62)

The r2s are comparable with the results of other models in the table, but the redundancy

is severe, especially for test set f .

ACCPM vs. IPM 89

Prediction

In this section, we investigate whether these regression results are reliable to be used as

guidance in practice. We use robust regression to re-assess the parameters in model (5.63).

It is commonly believed that robust regression can lead to a better fit especially for pre-

diction purposes.

R = eαmβ
0h

γnδs (5.63)

Random Prediction We randomly select ten test problems from the stochastic financial

model and from the multicommodity network flow model. Then, the rest of the test

problems are used as data for the robust regression. The robust regression results are

given in Table 5.6. The weights assigned to the variables on both test sets are provided in

Tables C.5 and C.6 on page 182.

In Section 5.1.3, we have obtained the ratio of ACCPM and IPM: theoretically, with

a certain dimensional parameter tending to infinity, R tends to 1√
h
. As mentioned before,

in such cases, one parameter becomes overwhelmingly big so that other parameters can be

neglected, which is unrealistic. An algorithm’s performance on real-world problems is often

difficult to analyze as there are complex joint-effect involved. Comparing regression results

in Table 5.6, we see that γ takes negative values on both test sets, which is consistent with

the theoretical conclusion, 1√
h
. However, other parameters are significant, too.

Table 5.7 shows the validation of model (5.63) on financial problems. Based on the

observed and predicted data, we evaluate the errors in two ways: one, if the observed and

predicted results suggest the same pick (simplex or DW), the pick% takes value 1, other-

wise, 0; two, we examine the percentage of errors defined as |R̂−R|
R
%. Experiments show

that pick% is 100% for the 10 randomly chosen financial problems. Similarly, Table 5.8

shows the results on 10 multicommodity problems, for which pick% is 90% valid.

Extrapolation Our analysis aims at large-scale problems, so the ability of model extrap-

olation is important. Meanwhile, we want the test problems to be solved in a reasonable

period of time. Therefore, rather than generating new larger problems, we pick the largest

10 problems from the current sets f andm respectively as the ones to be tested, and use the

90 Empirical Analysis of Decomposition for LP

rest to do the robust regression. Again, we test the inner-structure regression model (5.63).

The regression results are given in Table 5.9. The weights assigned to the variables on both

test sets are provided in Tables C.7 and C.8 on page 184.

The extrapolation tests are summarized in Tables 5.10 and 5.11. In both tables, the

problems are arranged in ascending order in terms of n. We obtained 100% accuracy of

pick% on the 20 problems from both test sets.

5.3 Preliminary Conclusions

We tried many regression models in our experiments, and only reported some of the rep-

resentative ones in this thesis. In order to analyze numerical results, building appropriate

regression models is crucial but difficult. For most of the models, we obtained satisfactory

fits, but there still could be better ones that we did not try. We summarize this chapter

with the following points:

1. On sparse problems with a block-angular structure, the traditional overall dimension,

n, together with the density indictors, m0% or nz%, generate satisfactory models.

2. Regression results tend to be model dependent. This is probably due to the difference

of actual characteristics between the two test sets. For example, m0% of the financial

problems are all low, in which case the coefficient of m0% in a regression model may

take a value with an opposite sign as we expected.

3. The number of blocks h frequently appear redundant when considering the relative

efficiency of with and without decomposition (ACCPM vs. IPM), which confirms

that IPM is insensitive to the problem size. That is, although many (h) processors

are used by ACCPM, the speedup factor to IPM is not significant.

4. The four ‘inner-structure’ parameters, m0, h, ms and ns are easy to use, and have

good regression results on all the models. However, on some models, the redundancy

is severe. Mathematically, the four inners-structure parameters are independent, but

in practice, they usually have economic implications, and this kind of correlation

most likely occurs between the block dimensions ms and ns. In this case, we can

ACCPM vs. IPM 91

keep one of them in the regression model. For example, in the prediction analysis,

there was no redundancy in the models.

5. Prediction and extrapolation tests on selected regression models reveal high accuracy,

which proves that empirical analysis is a viable way in practice to predict the relative

efficiency of ACCPM and IPM based on problem characteristics.

6. To some extent, our empirical results agree with the theoretical conclusions. But

evidently, the empirical results can provide more realistic and reliable information

for evaluating an algorithm’s performance.

92 Empirical Analysis of Decomposition for LP

Table 5.1: Regression Results for IPM Iteration Counts

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)*

α+ β log(n)
f

26.0409 -1.0885
0.1615

m
1.2525 0.1965

0.9193

(5.42)
b

1.0519 1.9756
0.1988

(0.6590)

eαnβm0%
γ f

2.8318 0.0779 0.1555
0.4757

(5.43) m
1.2718 0.1928 -0.0065

0.9198

eαnβnz%γ f
1.9576 0.4875 -0.9479

0.5575

(5.44) m
1.3101 0.1314 -0.0774

0.9250
(0.4214)

eαmβ
0h

γmδ
sn
²
s f

5.5154 -0.2631 0.7715 7.2347 -7.7373
0.6496

(5.45) m
1.2223 0.0721 0.1843 0.1304 0.0418

0.9360
(0.1351)

*Most variables have very low p values, and here we only indicate those with p ≥ 0.05.

ACCPM vs. IPM 93

Table 5.2: Regression Results for IPM CPU Time

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)*

α+ β log(n)
f

-194.1474 27.0763
0.2999

m
-2783 342.1

0.2488

(5.46)
b

-1690.6 207.5
0.1487

eαnβm0%
γ f

-10.3231 2.3436 1.5716
0.9351

(5.47) m
-17.4491 2.4638 0.9664

0.9195

eαnβnz%γ f
-11.0865 2.4711 1.6775

0.9381

(5.48) m
-16.5897 4.2050 2.7294

0.9002

eαmβ
0h

γmδ
sn
²
s f

-10.0684 0.6609 0.6976 7.6868 -5.7601
0.9598

(0.3127) (0.0753) (0.2313)

(5.49) m
-17.0444 1.3548 1.5600 -0.1525 1.3620

0.9198
(0.5813)

*Most variables have very low p values, and here we only indicate those with p ≥ 0.05.

94 Empirical Analysis of Decomposition for LP

Table 5.3: Regression Results for ACCPM Total Number of Cuts

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)*

eαhβnγ f
0.2248 0.1049 0.4332

0.9569
(0.2522) (0.3149)

(5.50) m
-3.0701 0.1296 0.9257

0.8805
(0.1405)

eαhβnγ(m0%)
δ f

-0.4280 -0.6157 0.7110 -0.1730
0.9684

(5.51) m
-0.9645 1.0434 0.5422 0.6486

0.9206

eαhβnγ(nz%)δ f
-0.3713 -0.6391 0.7079 -0.1879

0.9684
(0.0612)

(5.52) m
-2.7367 0.3240 1.3608 0.7088

0.8924

eαmβ
0h

γmδ
sn
²
s f

-3.7413 0.1205 -0.8499 -6.7832 8.5199
0.9748

(0.0539)

(5.53) m
-1.8732 0.8956 0.9930 0.2296 -0.2581

0.9320

*Most variables have very low p values, and here we only indicate those with p ≥ 0.05.

ACCPM vs. IPM 95

Table 5.4: Regression Results for ACCPM CPU Time

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)*

eαhβnγ f
-12.5381 -6.1016 4.0774

0.8022

(5.54) m
-21.6393 -3.5039 4.1874

0.7694

eαhβnγ(m0%)
δ f

-8.5867 -1.7393 2.3957 1.0475
0.9494

(5.55) m
-13.9862 -0.1828 2.7933 2.3575

0.9113
(0.5064)

eαhβnγ(nz%)δ f
-8.8961 -1.5557 2.3985 1.1485

0.9522

(5.56) m
-20.5623 -2.8759 5.5927 2.2893

0.8026

eαmβ
0h

γmδ
sn
²
s f

-7.6286 0.9437 -0.1386 1.0981 0.0784
0.9495

(0.7819) (0.7245) (0.9820)

(5.57) m
-15.3815 0.4369 3.4591 0.1303 -0.0722

0.9678
(0.4640) (0.7246)

*Most variables have very low p values, and here we only indicate those with p ≥ 0.05.

96 Empirical Analysis of Decomposition for LP

Table 5.5: Regression Results for the Ratio of ACCPM vs. IPM

Regression Test α β γ δ ²
r2

Model Set (p value for each coefficient)*

eα(m0%)
βhγ f

1.6593 -0.4053 -1.4385
0.7001

(5.58) m
5.5405 1.4388 0.1459

0.6473
(0.3707)

eαhβnγ(m0%)
δ f

5.4004 1.4288 -1.4019 -0.0288
0.7843

(0.7591)

(5.59) m
1.2400 -0.9476 0.7385 1.0021

0.6799
(0.3101)

eα(m0 + h)
βnγ(m0%)

δ f
4.4798 -1.1001 -0.0230 0.1953

0.7894
(0.9178) (0.1781)

(5.60) m
0.2712 4.0777 -2.5847 -1.1350

0.8578
(0.6218)

eα(m0 + h)
βnγ(nz%)δ f

4.4088 -1.1703 0.0438 0.2418
0.7905

(0.8567) (0.1308)

(5.61) m
1.2384 2.8876 -2.6677 -1.3291

0.8484

eαmβ
0h

γmδ
sn
²
s f

2.4398 0.2829 -0.8362 -6.5887 5.8385
0.7930

(0.2833) (0.1941) (0.2561) (0.1511) (0.2543)

(5.62) m
1.6629 2.1042 -1.1231 0.2828 -1.4342

0.7845
(0.0894) (0.3480)

*Most variables have very low p values, and here we only indicate those with p ≥ 0.05.

ACCPM vs. IPM 97

Table 5.6: Robust Regression Results for Random Prediction Tests

Problem
Regression Coefficients p values for

dof∗
α β γ δ α β γ δ

f 3.8045 -0.1060 -0.4444 -0.6564 < 0.05 0.1091 < 0.05 < 0.05 86

m 2.8707 2.0201 -1.0399 -1.4009 < 0.05 < 0.05 < 0.05 < 0.05 118

*Degrees of freedom for error

Table 5.7: Prediction Experiments on Random Chosen Financial Problems

Problem Observed Predicted 95% CI for R̂ errors

n h R pick R̂ dpick lb ub |R̂−R|
R
% pick%

80 90 9.85E-02 ACCPM 8.13E-02 ACCPM 7.53E-02 8.77E-02 17.45% 1

100 20 5.19E-02 ACCPM 2.58E-01 ACCPM 2.27E-01 2.93E-01 396.41% 1

80 30 1.81E-01 ACCPM 2.12E-01 ACCPM 1.98E-01 2.27E-01 17.02% 1

20 70 1.13E-01 ACCPM 1.38E-01 ACCPM 1.27E-01 1.50E-01 22.47% 1

40 100 1.16E-01 ACCPM 8.50E-02 ACCPM 7.88E-02 9.16E-02 26.94% 1

100 30 1.89E-01 ACCPM 1.93E-01 ACCPM 1.77E-01 2.10E-01 1.98% 1

100 10 2.96E-01 ACCPM 4.01E-01 ACCPM 3.14E-01 5.13E-01 35.69% 1

50 10 6.96E-01 ACCPM 5.90E-01 ACCPM 5.18E-01 6.71E-01 15.26% 1

90 90 1.08E-01 ACCPM 7.88E-02 ACCPM 7.27E-02 8.55E-02 26.84% 1

10 50 1.99E-01 ACCPM 2.17E-01 ACCPM 1.93E-01 2.44E-01 9.19% 1

Average 56.92% 100%

98 Empirical Analysis of Decomposition for LP

Table 5.8: Prediction Experiments on Random Chosen Multicommodity Problems

Problem Observed Predicted 95% CI for R̂ errors

n h No. R pick R̂ dpick lb ub |R̂−R|
R
% pick%

128 32 2 3.73 IPM 3.39 IPM 2.59 4.45 8.93% 1

64 64 10 17.67 IPM 14.03 IPM 10.32 19.08 20.58% 1

128 128 2 2.67 IPM 0.82 ACCPM 0.57 1.19 69.16% 0

128 4 1 69.35 IPM 33.03 IPM 24.34 44.83 52.37% 1

64 64 7 7.05 IPM 3.08 IPM 2.44 3.90 56.24% 1

128 64 3 1.17 IPM 1.55 IPM 1.12 2.13 32.61% 1

128 4 9 162.57 IPM 69.96 IPM 48.12 101.72 56.97% 1

64 16 2 3.61 IPM 4.70 IPM 3.52 6.27 30.07% 1

128 16 4 21.50 IPM 29.03 IPM 24.69 34.14 35.05% 1

128 64 2 2.42 IPM 1.74 IPM 1.28 2.35 28.21% 1

Average 39.02% 90%

Table 5.9: Robust Regression Results for Extrapolation Tests

Problem
Regression Coefficients p values for

dof∗
α β γ δ α β γ δ

f 4.5602 -0.0539 -0.2661 -0.9703 < 0.05 0.3861 0.0700 < 0.05 86

m 2.9678 2.0586 -1.0669 -1.4370 < 0.05 < 0.05 < 0.05 < 0.05 118

*Degrees of freedom for error

ACCPM vs. IPM 99

Table 5.10: Extrapolation Experiments on Financial Problems

Problem Observed Predicted 95% CI for R̂ errors

n h R pick R̂ dpick lb ub |R̂−R|
R
% pick%

90 90 1.08E-01 ACCPM 7.45E-02 ACCPM 6.82E-02 8.14E-02 30.83% 1

30 100 1.04E-01 ACCPM 8.35E-02 ACCPM 7.64E-02 9.12E-02 20.03% 1

100 90 8.58E-02 ACCPM 7.21E-02 ACCPM 6.58E-02 7.91E-02 16.00% 1

40 100 1.16E-01 ACCPM 7.99E-02 ACCPM 7.37E-02 8.65E-02 31.32% 1

50 100 1.02E-01 ACCPM 7.68E-02 ACCPM 7.10E-02 8.31E-02 24.79% 1

60 100 1.10E-01 ACCPM 7.40E-02 ACCPM 6.83E-02 8.02E-02 32.97% 1

70 100 8.97E-02 ACCPM 7.15E-02 ACCPM 6.57E-02 7.78E-02 20.30% 1

80 100 1.02E-01 ACCPM 6.92E-02 ACCPM 6.33E-02 7.56E-02 32.16% 1

90 100 6.99E-02 ACCPM 6.70E-02 ACCPM 6.11E-02 7.36E-02 4.09% 1

100 100 7.45E-02 ACCPM 6.51E-02 ACCPM 5.90E-02 7.17E-02 12.58% 1

Average 22.51% 100%

Table 5.11: Extrapolation Experiments on Multicommodity Problems

Problem Observed Predicted 95% CI for R̂ errors

n h No. R pick R̂ dpick lb ub |R̂−R|
R
% pick%

128 64 7 5.41 IPM 5.67 IPM 4.06 7.93 4.83% 1

128 64 12 9.24 IPM 22.25 IPM 15.46 32.02 140.84% 1

128 64 10 9.50 IPM 22.79 IPM 15.80 32.87 139.90% 1

128 64 11 12.21 IPM 23.79 IPM 16.43 34.45 94.84% 1

128 128 9 10.33 IPM 2.59 IPM 1.73 3.88 74.89% 1

128 128 8 10.79 IPM 2.67 IPM 1.79 3.99 75.22% 1

128 128 7 8.04 IPM 2.86 IPM 1.92 4.26 64.47% 1

128 128 11 14.31 IPM 11.21 IPM 7.31 17.18 21.71% 1

128 128 12 11.89 IPM 11.30 IPM 7.36 17.34 4.94% 1

128 128 10 13.17 IPM 11.04 IPM 7.21 16.91 16.17% 1

Average 63.78% 100%

Chapter 6

A Hybrid Solution Approach

Combining ACCPM and DW

6.1 Introduction

Convergence speed and accuracy are important goals for the design of an algorithm. Yet, in

linear programming, these two goals create a dilemma for anyone making a choice between

the two main solution approaches: the simplex method and interior point method (IPM).

Proposed by Karmarkar [51], IPMs take polynomial time to find a near-optimal solution.

This is undoubtedly an advantage compared to the simplex method with exponential worst-

case complexity. IPMs move inside the feasible region, and repel the current point away

from the boundaries of the feasible region. This enables IPMs to make considerable progress

in the next iteration [5], but also limits the accuracy of the final solution. The simplex

method, in contrast, can reach an optimal corner point and hence achieve better accuracy.

For years, researchers have been intrigued by the possibility of combining the two methods

(e.g., [8][58][3][59]). The attempts usually run IPM first, and then simplex, in the hopes

of making significant progress at the beginning as well as being able to reach a precise

solution. This is also the motivation of our research.

Large-scale real-world problems often have special structures that can be well exploited

by decomposition algorithms. Sometimes, decomposition can be the only way to deal

with huge problems in terms of memory limit and solution time. Dantzig-Wolfe (DW)

101

102 Empirical Analysis of Decomposition for LP

decomposition [20][22] is a method that has been widely used to solve problems with a

block-angular structure, which is also the focus of this chapter. The DW method can

be understood as an extension of the simplex method, and therefore it inherits both the

benefits and drawbacks of simplex.

When looking at the DW master problem from the dual space, we observe that it has

an analogous form with cutting plane methods. Adding a proposal to the primal master

problem is equivalent to adding a cut to the dual space. By choosing different points

to generate cuts, different variants of cutting plane methods have been proposed. The

earliest one, Kelley’s cutting plane method [52], corresponds exactly to the dual DWmaster

problem. The main difficulty with cutting plane methods lies in the calculation of the

centers of polyhedrons. For example, calculating the gravity center can be more expensive

than the optimization problem itself [24]. To overcome this difficulty, an analytic center

was defined [79][80] and was proved to be highly efficient. The analytic center cutting plane

method (ACCPM) uses concepts from interior point literature, and its convergence rate is

very insensitive to the problem scale [41]. ACCPM can also be applied to the decomposition

area [34]. It has good performance in practice due to the fact that, compared to the

marginal price in DW, a central price embodies the information of all the cuts (proposals)

accumulated up to that point [35].

While ACCPM has good convergence properties, its accuracy is still not ideal. On some

test problems in [57], ACCPM could barely reach a 10−3 relative precision. Researchers

have been trying to improve the algorithm, by using methods such as the partial Lagrangian

relaxation and column elimination [4]. These techniques can help control the size of the

master problem, and make the algorithm more efficient. However, in some situations,

the convergence rate is not satisfactory: in [4], the ACCPM variant takes hundreds, even

thousands, of iterations to reach a final solution with a 10−5 relative precision. In contrast,

on the same problems, it only takes about 1/10 of those iterations to reach a moderate

10−3 precision.

In this chapter, we try to improve the accuracy of ACCPM by combining IPM and

simplex in the decomposition context. That is, we propose a hybrid of ACCPM and DW,

which act as the decomposition counterparts of IPM and simplex, respectively. We use a

weighted primal Newton method to calculate the analytic center in a carefully constructed

Hybrid Decomposition Method 103

ACCPM master problem [24], and then adopt a weighted version of DW after effecting the

switch. With this combination of methods, the coefficient matrix for the DW restricted

master problem is readily available during the whole process. Thus, relative to other

ACCPM variants, our proposed hybrid approach is simple in idea, and can be implemented

without much additional effort. Furthermore, we present, for the first time, a warm start

procedure for the weighted DW algorithm.

Our contributions are twofold. First, while IPM has been involved in variants of the

DW algorithm (see [81], [63], and [87]), a hybrid method combining ACCPM and DW is

a new attempt, and has not been proposed in the literature. Several techniques, such as

the weighted versions of ACCPM [24] and DW, the constructed master problem [24], and

a variant of warm-start recovery, are incorporated, in order to make the hybrid approach

competitive. Second, in order to provide full-scale numerical results, our computational

tests entail different sized problems with both primal and dual block angular structures.

Our results throw light into how the hybrid method compares with ACCPM with respect

to solution accuracy, and with DW in terms of handling degeneracy. We also discuss some

factors that appear to influence the hybrid algorithm’s performance.

6.2 Preliminaries

In order to illustrate the hybrid algorithm, we use a slightly different system of notations

in this chapter.

104 Empirical Analysis of Decomposition for LP

6.2.1 Dantzig-Wolfe Decomposition Method

Consider a primal block-angular linear program

min cT1 z1+ cT2 z2+ · · ·+ cTh zh

s.t. A1z1+ A2z2+ · · ·+ Ahzh = b

B1z1 = d1

B2z2 = d2
. . .

...

Bhzh = dh

zl ≥ 0, l = 1, 2, · · · , h.

(6.1)

We denote the dimension of vector b bym0, which is also the number of linking constraints.

We use h for the number of blocks in the system. The Dantzig-Wolfe decomposition method

removes those complicated linking constraints so that the rest can be solved as separate,

smaller subproblems. Geometrically, any point in the feasible region of a linear program can

be represented as a convex combination of the extreme points and extreme rays. Applying

this fact to the subproblems, the original problem can be converted into an equivalent

full master problem, which has fewer rows than (6.1) but usually many more columns. In

practice, DW uses column generation [16], and works on a restricted master problem

min
αil

hP
l=1

P
i∈Il∪Jl

αil(c
T
l z

i
l)

s.t.
hP
l=1

P
i∈Il∪Jl

αil(Alz
i
l) = bP

i∈Il
αil = 1, l = 1, 2, · · · , h

αil ≥ 0, i ∈ Il ∪ Jl, l = 1, 2, · · · , h

(6.2)

where Il represents the set of current extreme points from the lth subproblem, and Jl is

the set of extreme rays. The lth subproblem (oracle), l = 1, 2, · · · , h, can be described as

min (cTl − πTAl)zl − μl

s.t. Blzl = dl

zl ≥ 0,
(6.3)

Hybrid Decomposition Method 105

where π and μ (μ = [μ1,μ2, · · · ,μh]T) are the dual vectors of (6.2) corresponding to
the linking and convexity constraints, respectively . Dual variables π and μ obtained as

byproducts when solving the restricted master problem (6.2) are passed to the subproblems

(6.3), which in turn return proposals to the restricted master problem. Then, a new

iteration begins again.

6.2.2 Analytic Center Cutting Plane Method

In order to implement ACCPM, we need to add some artificial variables, z− and z+, to

the canonical restricted master problem (6.2), and this yields:

min
αil

hP
l=1

P
i∈Il∪Jl

αil(c
T
l z

i
l) +M

T
1 z

− +MT
2 z

+

s.t.
hP
l=1

P
i∈Il∪Jl

αil(Alz
i
l)− z− + z+ = bP

i∈Il
αil = 1, l = 1, 2, · · · , h

αil ≥ 0, z+ ≥ 0, z− ≥ 0, i ∈ Il ∪ Jl, l = 1, 2, · · · , h

(6.4)

where M1 and M2 are both m0 × 1 vectors.
Adding proposals in the primal space is equivalent to adding cuts in the dual space.

The dual problem of (6.4) is

max bTπ +
hP
l=1

μl (6.5)

s.t. (Alz
i
l)
Tπ + μl ≤ cTl zil , i ∈ Il, l = 1, 2, · · · , h (6.6)

(Alz
j
l)
Tπ ≤ cTl z

j
l , j ∈ Jl, l = 1, 2, · · · , h (6.7)

−M1 ≤ π ≤M2 (6.8)

The penalty coefficientsM1 andM2 in the primal master problem (6.4) become the bounds

for box constraints (6.8) in the dual master problem. These box constraints, together with

a lower bound (LB), make the ACCPM localization set (a polyhedron defined to contain

the optimal solution of system (6.5)∼(6.8); see [34] for details) bounded. An extreme point
in the primal space corresponds to an optimality cut given by (6.6) in the dual space, and an

106 Empirical Analysis of Decomposition for LP

extreme ray corresponds to a feasibility cut given by (6.7). To denote the above problems

in a simple form, we define

Am =

"
· · ·Alzil · · · · · ·Alzjl · · · −E E

Econv 0 0 0

#
, (6.9)

where E is an m0×m0 identity matrix corresponding to the artificial variables, and Econv

corresponds to the coefficients of the convex combination constraints. Let |I| =
hP
l=1

|Il| and

|J | =
hP
l=1

|Jl| denote the total number of extreme points and extreme rays so far generated

from the subproblems. Am then hasm0+h rows and |I|+|J |+2m0 columns altogether. We

further define xm =
£
· · ·αil · · ·α

j
l · · · , z−T , z+T

¤T
, cm =

£
· · · cTl zil · · · cTl z

j
l · · · , MT

1 ,M
T
2

¤T
,

ym =

"
π

μ

#
, and bm =

"
b

e

#
, where e is an h× 1 vector with all ones, i ∈ Il, j ∈ Jl, and

l = 1, 2, · · · , h. Now the primal restricted master problem with artificial variables (6.4)

can be restated as
min cTmxm

s.t. Amxm = bm

xm ≥ 0
(6.10)

Similarly, the dual master problem becomes

max bTmym

s.t. ATmym ≤ cm
(6.11)

Our discussion above points to how DW and ACCPM are similar to each other in

respect of receiving proposals from the subproblems and passing price information from the

master. However, they differ in the type of price that is passed. DW sends marginal prices

corresponding to the optimal solution of the restricted master problem, while ACCPM

passes central prices by solving for analytic centers from the following problem, which is

derived from (6.11) (for details, see [24]).

max
©
ϕD(s) : A

T
mym ≤ cm

ª
, (6.12)

where ϕD, the potential function in the dual space, is given by

ϕD(s) = ln s0 +

|I|+|J|+2m0X
i=1

ln si, (6.13)

Hybrid Decomposition Method 107

where s0 = bTmym − LB, s = cm − ATmym (s has elements {si, i = 1, 2, · · · , |I| + |J | +
2m0}). Sometimes, a proposal is repeatedly generated from a subproblem. It can be

proved [36] that adding such a repeated proposal is equivalent to assigning a weight υi to

the corresponding ln term in the potential function (6.13). This gives rise to the following

weighted dual potential function

ϕD(s) = υ0 ln s0 +

|I|+|J|+2m0X
i=1

υi ln si (6.14)

We use the weighted version of ACCPM in our experiments, and define υ0 =
|I|+|J |+2m0P

i=1

υi

to balance the first term with the proposals added in the following iterations [36]. The

weighted Lagrangian function of (6.12) and (6.14) is

L(xm, ym, s) =

⎧⎨⎩υ0 ln s0 +

|I|+|J |+2m0X
i=1

υi ln si + x
T
m(cm −ATmym − s)

⎫⎬⎭ . (6.15)

The first order optimality conditions of (6.15) are

∂L
∂s
: υi

si
− xim = 0, i = 1, 2, · · · , |I|+ |J |+ 2m0,

∂L
∂ym

: υ0
s0
bm −Amxm = 0, xm > 0,

∂L
∂xm

: ATmym + s = cm, s > 0.

(6.16)

Similar to [24], we define

x0 = υ0/s0, ex = " x0
xm

#
, ec = " −LB

cm

#
, es = " s0

s

#
,

eυ = [· · · , υi, · · ·]T , i = 0, 1, 2, · · · , |I|+ |J |+ 2m0,ey = ym, eA = [−bm, Am] ,
(6.17)

and let eS be the diagonal matrix of es. Then, the optimality conditions can be re-written
as eSex = eυ,eAex = 0, ex > 0eATey + es = ec, es > 0 (6.18)

108 Empirical Analysis of Decomposition for LP

The system of equations (6.16) is now converted to a standard form in (6.18). This problem

has a similar form with the ‘alternative master problem’ in [63], the solution of which is a

point located between the analytic center and the optimum. Next, we will use the primal

Newton method to solve (6.18).

6.2.3 Weighted Primal Newton Method

An analytic center can be calculated by primal, dual, or primal-dual Newton methods.

Among these, the primal Newton method is necessary for the version of ACCPM we used

because dual feasibility is not guaranteed to be recovered after cutting a huge portion in

the dual space. That is, ACCPM needs a feasible point to start with at every iteration,

and only the primal feasibility, eAex = 0, can be perfectly recovered after adding cuts [24].
Next, we continue in the same vein as Section 6.2.2 and introduce the weighted (to deal

with proposal-repetition) version of the primal Newton method.

Upon definition, an analytic center can be obtained [24] by maximizing the weighted

primal potential function

max
n
ϕP (ex) : eAex = 0, ex > 0o , (6.19)

where ϕP (ex) = −ecTex+ |I|+|J |+2m0P
i=0

eυi ln exi. If we write out the Lagrangian function of (6.19),
and take the first order derivatives, we obtain exactly the same optimality conditions as

(6.18).

Denote eN as the diagonal matrix of eυ and eX as the diagonal matrix of ex. The weighted
damped primal Newton steps [24] can be described as follows:

Initialize:eAex = 0, ex > 0
A centering parameter 0 < θ < 1

An initial value of kq(ex)k > θ

While kq(ex)k > θ,

1. ey(ex) = (eA eN−1 eX2 eAT)−1 eA eN−1 eX2ec

Hybrid Decomposition Method 109

2. es(ex) = ec− eAT ey(ex)
3. q(ex) = eυ 1

2 − eN− 1
2 eXes(ex)

4. dex = eN− 1
2 eXq(ex)

5. If kq(ex)k > 1, then
stepsize β ∈ argmax {ϕP (ex+ βdex) : ex+ βdex > 0}

6. Else

β = 1

7. ex = ex+ βdex
End While

6.3 The Hybrid Approach

To motivate the hybrid approach, we observe that the matrix needed in the DW restricted

master problem (6.10) is always readily available when updating the ACCPM master prob-

lem with more cuts (proposals) - Am is a submatrix of eA. This is the key for easy switching.
6.3.1 Solving the Constructed Master Problem

The construction of the tilde denoted system (6.17) allows us to provide a compact repre-

sentation of Newton’s method. Nevertheless, at the time of switch, we need to recover a

good feasible solution to problem (6.10) from ex. This feasible solution is the starting point
in a basis recovery scheme described in section 6.3.4. Our first proposition shows how a

feasible solution to the DW restricted master problem can be recovered from a solution

to (6.18). The proposition also gives current upper and lower bounds (CUB and CLB),

which will be used to update the current best upper and lower bounds (UB and LB) on

the optimal value of the original problem.

110 Empirical Analysis of Decomposition for LP

Proposition 1. At iteration k, if exk = " exk0exkm
#
denotes a feasible solution to problem

(6.18), and we assume that all the artificial variables are zero, then a feasible solution to

the DW restricted master problem (6.10) is exkm/exk0, CUB to problem (6.1) is (ckm)
Texkm/exk0,

and CLB is UB+
hP
l=1

£
(cTl − (πk)TAl)zkl − μkl

¤
, where πk and μkl are dual variables from the

most recent master problem and zkl is the current proposal returned from the l
th subproblem.

Proof. Since exk is a feasible solution to (6.18) at the current iteration, it satisfies eAkexk = 0.
According to the definitions of the tilde variables (6.17), we have£
−bm, Akm

¤ " exk0exkm
#
= 0, i.e., Akmexkm = bmexk0, i.e., Akm exkmexk0 = bm,

implying that exkm/exk0 is feasible for the restricted master problem (6.10), which is a restate-
ment of (6.4). In turn, since all the artificial variables are zero1, (ckm)

Texkm/exk0, the objective
value of the restricted master problem (6.10), can act as an upper bound of the original

minimization problem (6.1). A lower bound, which comes from the subproblems, is the

same as in the classical DW method: CLB is the current best upper bound (UB) plus the

sum of subproblems’ objectives.

It is worth noting that in the DW method, the series of CUB is monotonically non-

increasing, because we keep adding new proposals to the restricted master problem from

one iteration to the next, and solve it to optimality for an upper bound. In ACCPM, a

CUB comes from a feasible center point, so it is not optimal, and not monotonic anymore.

6.3.2 The Weighted Dantzig-Wolfe Decomposition Method

As mentioned earlier, we use the weighted primal Newton method to solve the ACCPM

master problem. This means that a repeated proposal will not be added to the master

problem matrix eA. Instead, its weight in eN will be increased by one. Therefore, the weights
1Compared to the classical DW master problem (6.2), problem (6.10) contains some artificial variables.

However, given the original problem is feasible, after a few iterations, these artificial variables in a solution

to (6.10) will be zero valued (more precisely, very close to zero, in an IPM context), and hence the solution

can be used to update CUB to the original problem.

Hybrid Decomposition Method 111

(υi) only appear in the potential function given in (6.19), while eA, as well as Am, contain
unique proposals.

The weighted technique can help reduce the size of the master problem, and hence

improve the computational efficiency. The effort for checking repetition can be ignored

compared to other dominating calculations. Since we already have a mechanism to rec-

ognize repetition of proposals in ACCPM, and it takes little CPU time, after the switch,

it seems natural to adopt the weighted technique in DW as well. We have devised a

weighted DW that uses only unique proposals. Denoting N as the diagonal matrix of

υ = {υi, i = 1, 2, · · · , |I| + |J | + 2m0}, a weighted DW restricted master problem can be

defined as
min (N ∗ cm)Txm

(Am ∗N)xm = bm
xm ≥ 0

(6.20)

Usually, standard DW algorithms do not deal with the repeated proposal issue. They

rather add every proposal satisfying a certain rule2, and then purge (drop) a portion of the

proposals after a few iterations [46].

Denote aim as the ith column of matrix Am, c
i
m as the ith element of vector cm, and

αi as the ith element of variable xm. At the k
th iteration, assume that a same proposal

is returned from the same subproblem. When this repeated proposal is added into the

restricted master problem, we denote the new column in Am as a
i0
m, the new element in cm

as ci
0
m, and the new element in variable xm as α

i0 . A standard DW master problem, with

one repeated proposal, can be described as

min
£
· · · cim · · · ci

0
m · · ·

¤ £
· · ·αi · · ·αi0 · · ·

¤T
s.t.

£
· · · aim · · · ai

0
m · · ·

¤ £
· · ·αi · · ·αi0 · · ·

¤T
= bm£

· · ·αi · · ·αi0 · · ·
¤
≥ 0

(6.21)

While we also employed the standard DW method for our DW code, for our hybrid

implementation, we only store unique proposals. The next proposition shows that the

weighted DW method is equivalent to the standard one.

2For example, the most common rule for a minimization problem: proposals from subproblems with

negative reduced cost.

112 Empirical Analysis of Decomposition for LP

Proposition 2. After the switch, the weighted DW restricted master problem (6.20) is

equivalent to that of the standard DW method (6.21), and CUB in the successive iterations

can be updated by (N ∗ cm)Txm.

Proof. To show the equivalence for υi = 2, since a
i
m = a

i0
m and c

i
m = c

i0
m, the standard DW

restricted master problem (6.21) becomes

min
£
· · ·+ cim(αi + αi

0
) + · · ·

¤
s.t.

£
· · ·+ aim(αi + αi

0
) + · · ·

¤
= bm£

· · ·αi · · ·αi0 · · ·
¤
≥ 0

(6.22)

Defining αi
00
= αi+αi

0

2
, we have

min
£
· · ·+ 2cimαi

00
+ · · ·

¤
s.t.

£
· · ·+ 2aimαi

00
+ · · ·

¤
= bm£

· · ·αi00 · · ·
¤
≥ 0

(6.23)

The left multiplication of cm by N and the right multiplication of Am by N as shown in

(6.20) give the proper weights to the master problem, as deduced in (6.22) and (6.23). Any

feasible solution to (6.21) corresponds to a feasible solution to (6.20) of equal objective

value. A similar argument works in the other direction. Therefore, the standard and

weighted DW methods are equivalent to each other. Then, a feasible solution of (6.20)

can be used to update CUB as (N ∗ cm)Txm. The proof easily extends to the case where
υi > 2.

The success of simplex in practice is mainly attributed to the warm start strategy [11].

Evidently, warm start also plays an important role in DW decomposition. After adding

new proposals, the restricted master problem starts with the same basis as that of the

previous iteration, treating all the new columns as nonbasic variables equal to zero, and

then searches for entering pivots. For a weighted version, the difficulty lies in restoring the

basic variables because if there is any column in the basis being repeated at the current

iteration, its weight will be changed, and therefore the basic variables from the previous

iteration are not feasible any more. The next proposition shows a warm start technique

for the weighted DW method.

Hybrid Decomposition Method 113

Proposition 3. If the superscript k denotes the iteration index and subscript B stands for

basic, then in the weighted DW method, a starting basis at iteration k + 1 can be obtained

by (W ∗ xkmB), where W is a diagonal matrix whose diagonal elements are given as follows

wi =

(
υi

υi+1
, if the ith basic variable is repeated

1, otherwise

)
, i = 1, 2, · · · ,m0 + h, (6.24)

and its objective function value equals the objective value at iteration k.

Proof. At iteration k, if none of the new proposals returned from subproblems are repeated,

or if the proposal repetitions are only in the nonbasic variables, we can proceed to iteration

k+1 and do a warm start with xkmB as in the classical DW method (all the elements in W

are ones). Otherwise, assume that the ith basic variable has just been repeated, and the

corresponding diagonal elements of Nk
B andW are υi and wi, respectively. Substituting the

adjusted basic variables xk+1mB =W ∗xkmB into the weighted DW restricted master problem,

we have

(AkmB ∗Nk+1
B)xk+1mB = AkmB ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

υ1
. . .

υi + 1
.. .

υm0+h

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

υi
υi+1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xkmB

= AkmB ∗Nk
Bx

k
mB = bm

(6.25)

Similarly, the objective

(Nk+1
B ∗ ckmB)Txk+1mB = (ckmB)

T (Nk+1
B)T (WxkmB) = (c

k
mB)

T (Nk+1
B W)xkmB

= (Nk
B ∗ ckmB)TxkmB

(6.26)

Thus, W ∗ xkmB is a feasible solution to problem (6.20) at iteration k+1 and the objective
value remains the same, thereby showing the proposition.

6.3.3 Switch Criteria

Different switch criteria can be employed in our hybrid algorithm. The most straightfor-

ward one is to use the relative duality gap, which generally measures the progress of an

114 Empirical Analysis of Decomposition for LP

algorithm. At the beginning, the gap could be huge due to the initial upper and lower

bounds. The gap then reduces quickly as deep cuts are added in ACCPM [37]. However,

a slow-down or even a long tail may occur to ACCPM at the end of the calculation. We

can set a user supplied parameter εs (e.g., εs = 0.1), and switch to DW when the relative

duality gap falls below this small value.

The second possible switch criterion comes from measuring the contribution of the sub-

problems. Our experiments reveal that in the last few iterations, there tends to be very

few new cuts generated from the subproblems. This is especially the case for sparse prob-

lems. For the stochastic financial test problems, the average repetition rate of proposals is

75.5%. Merle, Goffin, and Vial [71] also reported the repeated proposal phenomenon, and

proposed an improved algorithm ‘ACCPM+’ calling both ACCPM and Kelley’s method

to solve the master problem at each iteration. Since we use the weighted ACCPM, at

every iteration, we already check whether a proposal is repeated. Therefore, the second

switch criterion is based on the number of new cuts: if there is nothing new at all in the

current iteration, which means that all subproblems return repeated proposals, switch to

DW. Notice that the lack of new proposals at the current iteration does not mean that

new ones will not be generated thereafter, but in fact, new cuts appear very sporadically

even if there are, and it does not hurt to switch right away.

Although we have not implemented them, other switch criteria are possible. For ex-

ample, one can set an arbitrary number ks, then after iteration ks, the hybrid algorithm

switches from DW to ACCPM. The total number of proposals (cuts) already added can

also act as a switch indicator.

6.3.4 Recovering a Basis

The crossover iteration has long been considered the main difficulty for hybrid algorithms.

Megiddo [69] proposed a strongly polynomial time procedure to find an optimal (both

primal and dual) basis from an interior point solution. This method was used and slightly

modified in [8] and [9]. Andersen and Ye [3] designed an IPM-based search direction to

recover a basis in any iteration of IPM.

At the crossover, we first need to create a weighted DW master problem from (6.18).

Furthermore, artificial variables are eliminated (purification) at this time (see (6.27) on

Hybrid Decomposition Method 115

page 126). IPM is then used to solve the purified restricted master problem, which is

counted as one iteration of the whole procedure, and the current best upper bound is also

updated. As mentioned earlier, by passing central prices [35], ACCPM can reduce the

number of iterations. On the other hand, an analytic center, which is a geometric center

of the localization set to maximize the product of the distance to every edge, is only a

feasible but not optimal point to the restricted master problem, and we use it to update

the upper bound in ACCPM. At the crossover, the restricted master problem is solved to

optimality by IPM, and therefore the upper bound can usually be improved a lot.

Next, we identify a basis with which the DW master problem can start right after

the switch. In MATLAB, the IPM solver, lipsol, returns a primal-dual pair of solution,

so that it is easy to check the complementary slackness conditions. We loosely follow

Megiddo’s idea, with the focus on the primal basis recovery. The procedure is described

in the following pseudo code (for details, see [69]):

1. Set zero tolerance parameters

εb = 10
−4 for choosing basic variables

ε0 = 10
−6 for the zero tolerance of dual slack variables

2. Select the positive variables, xmj > εb, and take the corresponding columns in Am as

a candidate basis

3. If the columns in the candidate basis are linearly dependent3, then

increase the value of εb and go back to step (2)

End If

4. While the candidate basis has more rows than columns

If there are columns in Am with sj ≤ ε0 available
4, then

3In MATLAB, this step was actually implemented as: if the candidate basis has more columns than

rows | | the columns in the candidate basis are linearly dependent, where the logical operator ‘| |’ stands
for a short-circuit OR operation. That is, if the first operand (‘more columns than rows’), which is easy

to check, is true, the second operand (‘columns linearly dependent’), which is computationally expensive,

will not be evaluated.
4If sj = 0, then the corresponding dual constraint is binding, which is a property of basic variables, by

complementary slackness. That is why we consider adding these columns first.

116 Empirical Analysis of Decomposition for LP

If such a column is linearly independent of the candidate basis, then

add it to the candidate basis

End If

Else

add a linearly independent column with sj > ε0 to the candidate basis

End If

End While

We now have distinguished the potential basic/nonbasic variables, and obtained a non-

singular basis. This basis is not optimal for the current restricted master problem, but

close to it. Restoring the current basis to an optimal basis can be expensive, especially for

highly degenerate problems [9]. We find in the experiments that using the near-optimal

basis itself as a warm start for DW yields good results. The near-optimal basis is only used

at the iteration right after the crossover. It lies in the middle of the whole hybrid algo-

rithm, and there would be a number of DW master problem tableau updates afterwards.

Therefore, using a near-optimal basis has little influence on the global convergence or the

final precision in this case. In addition, the computation time of identifying a near-optimal

basis is so little that it can be ignored.

6.3.5 Description of the Hybrid Solution Algorithm

We start with an initial primal feasible point ex0 (eAex0 = 0), initial lower and upper bounds,
and with the switch-flag set to FALSE. We first go with ACCPM, and then switch to DW

when the switch flag meets the chosen criterion. The hybrid algorithm can be described as:

While relative duality gap > ε

1. If switch-flag is FALSE, then

use primal Newton method (Section 2.3) to solve for an analytic center

-pass central price to subproblems

Else

solve the weighted DW restricted master problem (Sections 3.1 and 3.2)

Hybrid Decomposition Method 117

-pass dual price to subproblems

End If

2. Update upper bound (UB)

3. Solve subproblems

If a proposal is repeated, then

increase the weight of that column by one

Else

add a new column (a cut in the dual space)

End If

4. Update lower bound (LB)

5. Check if switch-flag should be changed to TRUE (Section 3.3)

If yes, then perform basis recovery (Section 3.4), End If

End While

6.4 Numerical Results

The codes for ACCPM, the hybrid approach, and DW were all written in MATLAB. We

modified the simplex code in MATLAB so that a warm start can be initiated for the master

problem and subproblems in DW, as well as for the master problem and subproblems in the

hybrid approach (i.e., after the switch). To keep a consistent IPM approach in ACCPM,

the subproblems are solved by lipsol, which is an IPM based solver in MATLAB5 and does

not support warm start.

We ran the test problems on a Sun Blade 2500 workstation with UNIX operating system.

The CPU time of solving a problem is the sum of the time for the master problem, the

5Using IPM to solve subproblems means that the extreme points and rays are all approximate, but not

exact. However, experiments show that this has little influence on the overall accuracy of ACCPM. In

fact, the major numerical difficulty that ACCPM encounters lies in the large-sized master problem.

118 Empirical Analysis of Decomposition for LP

total time of subproblems, and the time for recovery (ACCPM only)6. Time for loading

data and preprocessing is not included. When the relative duality gap falls below a small

tolerance ε, which is set to 10−6, the algorithms stop. However, for ACCPM, which is

unable to achieve this tolerance on any of our problems, if it cannot make any further

improvement (e.g., less than 10−8) over the duality gap, the algorithm stops.

6.4.1 Stochastic Financial Model

The test results are organized under three headings: convergence (accuracy and number

of iterations), timing (CPU time), and degeneracy issues.

Convergence

For the stochastic financial model, Table 6.1 reveals the convergence properties of ACCPM,

the hybrid approach, and DW. For ACCPM, iter1% is the number of iterations it takes

to reach 1% relative duality gap; iter is the total number of iterations when ACCPM

eventually reaches the relative duality gap (precision) shown in the next column gapaccpm.

For the hybrid approach, itera is the number of iterations with ACCPM, iterd is the

iterations with DW, and gaphyb represents the final precision reached. Similarly, under the

columns labeled DW, iterdw is the number of iterations for Dantzig-Wolfe decomposition

to reach a precision of gapdw.

According to Table 6.1, the IPM based algorithm, ACCPM, converges rapidly at the

beginning: it takes only 5.4 iterations on average to reach a 1% duality gap. Unfortunately,

it slows down when pursuing a better accuracy. None of them could reach a relative duality

gap of 10−6 or lower.

Figure 6.1 shows the typical convergence behavior of ACCPM (we randomly chose test

problem 6 for illustration). In Figure 6.1 (a), ACCPM starts with a huge gap between the

initial upper bound and lower bound. The two lines come quite close after just a couple

of iterations. Figure 6.1 (b) is an amplified figure from the 4th iteration to the end, from

which we can see the slow-down tendency.

6After adding new cuts, we need to recover a new feasible point as a starting point for the next iteration.

This also acts as a warm start in ACCPM.

Hybrid Decomposition Method 119

Figure 6.1: Tailing Effect of ACCPM on Financial Prob.6 - LB and UB

1 2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10
x 10

4

Iteration

U
pp

er
 a

nd
 lo

w
er

 b
ou

nd
s

(a). All iterations

UB
LB

4 5 6 7 8 9

99.9

100

100.1

100.2

100.3

100.4

100.5

100.6

100.7

100.8

Iteration

U
pp

er
 a

nd
 lo

w
er

 b
ou

nd
s

(b). From the 4th iteration onwards

UB
LB

Figure 6.2: Tailing Effect of ACCPM on Financial Prob.6 - Relative Duality Gap

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iteration

R
el

at
iv

e
du

al
ity

 g
ap

(a). All iterations

4 5 6 7 8 9
0

1

2

3

4

5

6

7

8
x 10

−3

Iteration

R
el

at
iv

e
du

al
ity

 g
ap

(b). From the 4th iteration onwards

120 Empirical Analysis of Decomposition for LP

Table 6.1: Stochastic Financial Problem Convergence Properties

Prob. n h
ACCPM Hybrid DW

iter1% iter gapaccpm itera iterd gaphyb iterdw gapdw

1 10 10 6 12 4.02E-05 5 1 4.32E-09 5 2.49E-15

2 10 40 4 7 1.72E-04 3 1 1.27E-11 3 -1.11E-14

3 10 70 5 6 2.55E-04 3 1 2.36E-10 3 1.02E-13

4 10 100 5 10 3.11E-04 3 1 1.58E-10 3 1.32E-14

5 40 10 8 13 3.39E-04 6 1 4.49E-09 5 8.68E-16

6 40 40 5 9 2.25E-04 3 1 3.03E-12 3 -3.60E-14

7 40 70 4 10 2.83E-04 3 1 3.11E-14 3 4.66E-14

8 40 100 5 13 5.06E-04 3 1 9.14E-11 3 2.06E-14

9 70 10 7 16 7.34E-05 8 1 9.68E-11 10 2.02E-16

10 70 40 6 10 5.85E-04 4 1 5.35E-12 5 -7.68E-14

11 70 70 5 10 5.19E-04 3 1 2.30E-13 3 1.07E-13

12 70 100 4 7 6.96E-04 3 1 1.20E-11 3 1.32E-14

13 100 10 7 13 1.58E-04 8 1 1.27E-11 9 4.32E-16

14 100 40 5 10 2.68E-04 3 1 2.10E-09 3 1.83E-14

15 100 70 5 8 8.33E-04 3 1 1.45E-10 3 5.36E-14

16 100 100 5 9 5.64E-04 3 1 6.64E-09 3 1.11E-13

Figure 6.2 (a) shows the relative duality gap (for problem 6) during the whole solving

process. Figure 6.2 (b), which amplifies the interval of the 4th ∼ 9th iteration, clearly

indicates that toward the end, ACCPM could hardly make a 0.1% improvement from one

iteration to the next. In fact, after the 9th iteration, ACCPM can still continue but can

make little progress as measured by the relative duality gap. If allowed to proceed, we

observed that it continues for about 200 more iterations and finally crashes in MATLAB.

This tailing effect of ACCPM also occurred in the experiments of [4], wherein one of the

test problems took 218.8 seconds to reach a relative duality gap of 0.026, while spending

2,239.8 seconds to reach 10−3.

Because the proposals are frequently repeated, we use the second switch criterion in

this model: when there is no new proposal returned from any subproblem at the current

Hybrid Decomposition Method 121

iteration, switch to the Dantzig-Wolfe decomposition method. In this case, just one more

iteration after the switch, all the test problems immediately reach a precision below 10−6

(more specifically, between 10−8 and 10−13).

Originally, we devised the hybrid algorithm as an improvement of ACCPM. Since it

involves DW, the numerical results of DW are also included in Tables 6.1 (and also in

Table 6.2, below) for comparison purposes. DW has excellent convergence performance:

for most of the problems, it takes only three iterations including phase I to reach an

optimum.

Table 6.2: Stochastic Financial Problem Runtime and Proposals/cuts Added

CPU time (seconds) Repetition in ACCPM

Prob. n h ACCPM0 ACCPM Hybrid DW
total unique r%

(10−2) (10−4) (< 10−6) (< 10−6)

1 10 10 2.34 4.83 0.64 0.45 120 31 74.17%

2 10 40 9.01 16.06 8.60 9.97 280 80 71.43%

3 10 70 25.32 30.47 22.45 21.50 420 140 66.67%

4 10 100 48.00 99.33 54.79 50.04 1,000 200 80.00%

5 40 10 7.30 13.21 2.23 1.65 130 42 67.69%

6 40 40 36.46 66.79 15.08 16.13 360 80 77.78%

7 40 70 77.97 199.94 56.41 56.45 700 140 80.00%

8 40 100 187.30 504.48 152.63 124.25 1,300 200 84.62%

9 70 10 11.67 25.76 3.45 2.01 160 45 71.88%

10 70 40 113.17 200.11 29.02 33.17 400 88 78.00%

11 70 70 209.21 425.63 72.67 72.75 700 140 80.00%

12 70 100 320.54 570.63 196.57 153.66 700 200 71.43%

13 100 10 17.81 31.88 4.90 1.45 130 37 71.54%

14 100 40 141.87 293.55 28.81 31.93 400 80 80.00%

15 100 70 382.32 621.82 111.98 113.32 560 140 75.00%

16 100 100 675.29 1,237.90 340.32 383.91 900 200 77.78%

Average 141.60 271.40 68.78 67.04 516.25 115.19 75.50%

122 Empirical Analysis of Decomposition for LP

Timing

Timing data (in seconds) are given in Table 6.2. Notice that the proposal repetition rate

(r%) in the last column of Table 6.2 is as high as 80% for ACCPM. The number of total

cuts added during an ACCPM solution procedure is large, but the unique ones are much

less. This means that from a geometric perspective, the restricted master problem has

obtained most of the extreme points (rays) it needs to reach the optimal solution a long

time ago, yet the nature of ACCPM prevents it from approaching the boundaries of the

feasible region, and it has to repeat some proposals again and again to raise the weights so

that it can finally reach an acceptable near-optimal solution. This explains why the hybrid

approach has a lower CPU time than ACCPM does, and takes only one more step after

switching to DW to attain a good precision.

Notice that the hybrid approach seems always faster than ACCPM. Since this is at-

tributable to the long-tail issue, for applications that do not require extreme accuracy, it

may be inappropriate to count the total time after ACCPM has slowed down near the

optimal solution. To include such cases, ACCPM0 in Table 6.2 provides the CPU time for

ACCPM to reach a 1% relative precision.

As discussed above, DW converges quickly on the test problems, but it does not entirely

outperform the hybrid in terms of solution time. This is because although the number of

iterations is small, the average time for each iteration may be longer. The DW CPU time

is slightly better than the hybrid CPU time on average, but generally speaking, they are

comparable to each other.

Degeneracy

The test problems of the financial model are quite sparse. Generally speaking, all the

three decomposition algorithms converge quickly on them. Yet, DW, as well as simplex,

are occasionally prone to suffer from degeneracy, especially for large sparse problems.

Once simplex passes the degenerate point, it can perform well [8]. In our experiments,

some problems (not reported here) solved by DW kept cycling until hitting the maximum

number of iterations allowed (100, 000). In the hybrid algorithm, the early ACCPM steps

usually help pass the degenerate points for the later DW steps, and we did not observe any

cycling here. Incidentally, we observed in our experiments that after re-scaling, DW could

Hybrid Decomposition Method 123

possibly work fine on the previously degenerate problems. In contrast, an ill-conditioned

problem does affect ACCPM, but mainly on the accuracy that it could ever attain, and

cycling was not observed. In this sense, ACCPM and IPM are more reliable than DW and

simplex.

6.4.2 Multicommodity Network Flow Model

Convergence

For the multicommodity network flow problems, Table 6.3 reveals the convergence proper-

ties of ACCPM, the hybrid approach, and DW. The proposal repetition rate for this model

is only 22.20% on average, which is much lower than that of the financial model. There-

fore, the first switch criterion is adopted here: when the relative duality gap is less than

εs, εs = 0.1, switch to DW. Compared to the one-more-step results in the financial model,

multicommodity problems need more iterations after switching to DW perhaps because

they are complicated with more linking constraints. Again, we see that both the hybrid

and DW accomplish comparable accuracy, measured by the relative duality gap, which is

much smaller than that of ACCPM. On average, DW takes 17.52% more iterations than

the hybrid method.

Timing

Table 6.4 shows the CPU time (in seconds) and the number of proposals (cuts)7 added for

the three algorithms. The two columns under ACCPM0 are the CPU time and the number

of cuts added for ACCPM when reaching a 1% relative duality gap.

Unlike the financial model, some of the problems here contain a high percentage of

linking constraints which makes them quite difficult to solve. Table 6.4 indicates that

generally, DW tends to be faster than ACCPM for smaller problems, while for larger ones,

ACCPM appears more advantageous than DW, although we must point out its significantly

lower accuracy. In comparing the hybrid algorithm with the other two, we see that on

average, the hybrid is 11.16% faster and at least two digits more accurate than ACCPM;

7The number of cuts refers to the number of unique ones for ACCPM and the hybrid algorithm; it is

the total number of proposals for DW as the DW code does not check for repetition.

124 Empirical Analysis of Decomposition for LP

the hybrid is 55.68% faster than DW and reaches almost the same accuracy. We then

conclude that the hybrid approach, which combines the two decomposition algorithms, is

competitive with the better CPU time of ACCPM or DW, on any sized problems. Further,

since the weighted version of both ACCPM and DW are used in the hybrid approach, its

number of proposals added during the whole procedure is less than that of the traditional

DW method (see Table 6.4). This is helpful to control the size of the master problem, as

larger matrix will lead to expensive computational effort, significant round-off error, and

digit loss.

6.4.3 Discussion

According to our experiments, there are some other issues that affect the three decompo-

sition algorithms and their relative efficiencies.

The Role of Linking Constraints

From the above numerical results, we found that the percentage of linking constraints

greatly influences the performance of the algorithms. According to Tables 2.1 and 2.3, all

the financial problems contain very low m0% (< 8%), while the multicommodity problems

have a larger range ofm0% (from 2.13% to 62.85%). Therefore, we use the multicommodity

model to assess the impact of variations in m0%.

Figure 6.3 illustrates the relative efficiency of ACCPM vs. DW, measured asCPUaccpm/CPUdw

on the vertical axis, versus m0% on the horizontal axis. The points reveal an increasing

overall tendency, i.e., DW is more efficient than ACCPM for a larger percentage of m0.

In fact, among the three algorithms, ACCPM suffers the most from a higher m0%, DW

behaves the best in such situations, and the hybrid approach is somewhere between them

(see Figure 6.4).

Why does ACCPM take so long when m0% is high? Let us recall the ACCPM master

problem (6.4). Compared to the classical DW restricted master problem (6.2), (6.4) has

some artificial variables added to the linking constraints so that the localization set in

the dual space can be bounded. For example, for prob.4, which has the highest m0%

of nearly 70% (see Table 2.3), there will be 2 ∗ m0 = 866 artificial variables added in

Hybrid Decomposition Method 125

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

m
0
%

C
P

U
ac

cp
m

 v
s.

 C
P

U
dw

Figure 6.3: CPU Time of ACCPM vs. DW on Multicommodity Model

Figure 6.4: Effect of Varying the Percentage of Linking Constraints on Relative Efficiencies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

m
0
%

C
P

U
hy

b v
s.

 C
P

U
ac

cp
m

(a). Hybrid vs. ACCPM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

m
0
%

C
P

U
hy

b v
s.

 C
P

U
dw

(b). Hybrid vs. DW

126 Empirical Analysis of Decomposition for LP

the ACCPM master problem, while in the whole solution procedure, only 45 proposals

are added from the subproblems. The huge number of artificial variables leads to a huge

matrix eA and then expensive computational effort for ACCPM. DW, instead, can remove
those artificial variables in phase I after 4 iterations, and in the next 13 phase II iterations,

it works with a much smaller coefficient matrix. This provides a plausible explanation as

to why ACCPM’s performance is relatively poor when dealing with problems with a high

percentage of linking constraints.

In the implementation of the hybrid approach, we can usually leave out the artificial

variables after the switch. Define

Adw =

"
· · ·Alzil · · · · · ·Alzjl · · ·
Econv 0

#
, (6.27)

which is the coefficient matrix of problem (6.2). Adw is a submatrix of Am, and Am is

further a submatrix of eA, see (6.9) and (6.17). Without the Ms, both efficiency and

accuracy can be improved. However, the feasibility of (6.2) is not guaranteed at the time

of switch. Fortunately, the infeasible case rarely happens as we do the switch at quite a late

stage. At this time there are usually enough proposals in the restricted master problem to

make (6.2) feasible. Even if we do the switch earlier, it is easy to check if all the artificial

variables are zero (or very close to zero in IPM).

Switch Time

A switch flag does not affect the hybrid’s final precision, but only controls when the switch

happens. On 20 multicommodity network flow problems, Table 6.5 compares how εs influ-

ences the convergence properties of the hybrid approach. It is easy to see from Table 6.5

that, when εs = 0.1, it takes more iterations with DW; and when εs = 0.001, it takes more

iterations with ACCPM. The total numbers of iterations for the three εs values are almost

the same.

Theoretically, we should go with ACCPM as far as possible for quick convergence

purpose, and then go with a few DW iterations for accuracy. However, in practice, the long-

tail problem of ACCPM negatively impacts its efficiency when close to optimal. Switching

to DW before the slow-down might make it faster.

Hybrid Decomposition Method 127

For the hybrid approach, switching to DW too early is usually not favored in terms of

CPU time (except for problems with large m0%), convergence (avoiding degeneracy), and

the feasibility of problem (6.2). On the other hand, switching too late will cause long-tail

in ACCPM. The key is to choose a balance point depending on actual situations.

6.5 Conclusions

Generally speaking, simplex-based algorithms may encounter degeneracy, but are excellent

at precision; IPM-based algorithms have polynomial worst-case complexity, but will never

reach an exact solution. The hybrid decomposition approach that we present in the paper

aims to take the best qualities from both ACCPM and DW: start by going through the

interior of the polyhedron (dual space) to quickly reach a feasible point close to the op-

timum, recover this inner point to a nearby corner point (primal space), then move from

vertex to vertex to achieve better accuracy.

In fact, accuracy was the initial motivation and main pursuit when we started working

on the hybrid algorithm, because the IPM-based ACCPM sometimes has trouble ever

attaining a satisfactory solution. By doing a few DW iterations near the end, the hybrid

approach can keep the good convergence rate of ACCPM, as well as reach the same level of

accuracy as DW. Furthermore, due to the dual equivalence, in any ACCPM iteration, all

the information needed for the weighted DW restricted master problem is available from

the primal Newton coefficient matrix. Therefore, very little effort is required at the switch

to recover a near-optimal basis.

The superior convergence rate of early ACCPM iterations, noticed in the literature,

may be counteracted by its tailing effect toward the end. Therefore, as shown in Table 6.5,

the convergence properties of the hybrid approach are not sensitive to the precise choice of

a switch flag: experiments with εs ranging from 0.001 to 0.1 yield similar average iteration

counts.

Experiments with two types of block-angular test models show promising results for

the hybrid approach. It is always more accurate, and usually faster than ACCPM. For the

larger problems tested (i.e., those requiring at least hundreds of seconds of solution time),

our hybrid algorithm appears to outperform DW as well, in terms of both convergence rate

128 Empirical Analysis of Decomposition for LP

and solution time. It is well known that DW (simplex) is faster than ACCPM (IPM) for

smaller problems, and ACCPM (IPM) is faster for larger ones. Our tests indicate that the

hybrid is competitive with the better of ACCPM and DW, regardless of problem size. In

addition, degeneracy issues associated with classical DW are not observed in the proposed

method. We, therefore, conclude that the hybrid approach is a potentially robust and

reliable alternative to consider when solving block-angular linear programs.

According to the experiments, ACCPM seems undesirable when a problem has a high

percentage of linking constraints, maybe because a huge number of artificial variables have

to be added in the master problem. Despite this, it is unclear as to how the artificial

variables could be removed in ACCPM as in DW. Even after plenty of iterations and

with many cuts added in, the localization set in the dual space might still be unbounded

without the box constraints. Moreover, checking the boundedness itself is very expensive

if not impossible. Had an efficient way existed to eliminate the artificial variables for

ACCPM, one could expect a significant improvement for large, complicated problems.

Decomposition algorithms are inherently suited to parallel computing. A cluster of

inexpensive computers can solve subproblems in parallel and handle large-scale problems

with millions of variables and constraints [29]. Since this research represents the first

attempt at an ACCPM-DW hybrid, we did the experiments on a single workstation (i.e., a

serial computing paradigm). Thus, for future research, it would be more representative of

decomposition to conduct the experiments in a parallel computing environment. This will

not affect the accuracy of the algorithms, but the time will be quite different due to the

parallel solutions of subproblems and factors such as processor communications and load

balancing.

Hybrid Decomposition Method 129

Table 6.3: Multicommodity Network Flow Problem Convergence Properties

Prob n h
ACCPM Hybrid DW

iter1% iter gapaccpm itera iterd gaphyb iterdw gapdw

1 64 4 8 11 7.41E-05 6 4 -3.13E-16 11 0*

2 64 4 15 22 7.78E-05 9 17 1.37E-16 30 1.37E-16

3 64 4 8 12 6.03E-05 5 6 -4.33E-16 10 0

4 64 4 8 17 8.45E-05 6 9 0 15 0

5 64 8 6 9 4.86E-05 5 4 1.46E-16 6 3.65E-16

6 64 8 10 17 7.68E-05 6 11 4.77E-16 17 -2.98E-16

7 64 8 11 21 8.57E-05 7 21 0 27 0

8 64 8 10 19 9.58E-05 7 14 -1.26E-16 22 -3.13E-16

9 64 16 6 8 8.50E-05 4 5 -1.32E-16 9 -4.95E-16

10 64 16 12 20 7.44E-05 8 14 8.16E-16 21 0

11 64 16 8 16 5.83E-05 6 13 3.61E-16 19 -4.51E-16

12 64 16 14 32 9.93E-05 8 21 -3.49E-06 47 -2.60E-16

13 64 32 8 11 5.80E-05 5 8 9.78E-07 12 9.30E-07

14 64 32 11 16 7.33E-05 7 11 9.99E-07 19 1.81E-07

15 64 32 7 13 8.47E-05 5 10 4.98E-07 17 1.81E-07

16 64 32 17 30 9.77E-05 9 29 9.80E-07 46 7.79E-07

17 64 64 7 11 5.90E-05 5 7 0 13 2.08E-07

18 64 64 9 16 4.18E-05 7 8 -2.17E-16 16 7.25E-07

19 64 64 8 15 7.43E-05 5 14 6.11E-07 23 4.91E-07

20 64 64 19 32 7.24E-05 11 29 6.26E-07 54 4.49E-07

21 64 64 21 34 7.01E-05 13 32 2.45E-07 60 9.58E-07

22 64 64 17 31 8.59E-05 9 34 7.32E-07 57 9.59E-07

23 128 8 15 30 6.27E-05 7 30 4.97E-07 44 1.12E-07

24 128 16 17 40 9.67E-05 6 57 8.06E-07 74 8.79E-07

25 128 32 14 27 9.79E-05 7 28 9.70E-07 46 9.36E-09

26 128 32 16 37 8.83E-05 8 51 7.36E-07 70 5.94E-07

*0 means a value < eps (machine precision, about 10−16).

130 Empirical Analysis of Decomposition for LP

Table 6.4: Multicommodity Network Flow Problem Runtime and Proposals/cuts Added

CPU time (seconds) # of cuts (proposals)

n h ACCPM0 ACCPM Hybrid DW ACCPM ACCPM0 Hybrid DW

10−2 10−4 < 10−6 < 10−6 unique unique unique total

64 4 4.63 6.69 2.09 1.37 33 30 30 35

64 4 24.55 39.43 9.61 4.24 73 57 84 107

64 4 25.20 43.12 9.00 3.37 35 29 36 33

64 4 197.72 540.46 63.09 4.62 45 28 38 50

64 8 5.34 8.45 3.54 1.78 44 41 45 40

64 8 19.40 39.88 8.27 4.31 100 75 94 104

64 8 66.05 146.78 22.30 11.56 123 88 142 171

64 8 379.78 794.80 135.69 15.37 121 79 133 156

64 16 8.45 11.66 5.06 4.60 87 82 87 107

64 16 36.26 73.66 22.45 14.43 242 182 258 285

64 16 41.49 106.36 26.45 19.49 191 125 215 257

64 16 405.60 1,208.20 185.20 102.67 380 223 419 611

64 32 25.88 37.78 13.83 12.29 260 237 278 273

64 32 57.87 104.75 34.68 41.09 426 347 372 519

64 32 64.30 151.54 44.29 44.45 307 218 328 435

64 32 707.15 1,823.00 982.69 1,225.90 805 523 1,011 1,293

64 64 49.09 89.84 32.37 37.71 506 428 502 1,306

64 64 91.61 223.72 87.94 111.04 707 570 710 863

64 64 122.58 343.12 141.28 288.61 734 506 822 1,222

64 64 1,651.10 4,561.90 4,928.70 12,142.00 1,699 1,212 2,102 3,022

64 64 1,809.60 4,905.00 6,862.50 18,806.00 1,959 1,343 2,382 3,512

64 64 1,090.90 3,734.10 5,507.00 13,248.00 1,674 1,087 2,071 3,149

128 8 156.25 403.62 88.66 49.29 213 120 255 327

128 16 683.05 2,369.30 674.72 697.95 575 272 825 1,088

128 32 303.74 859.20 564.09 806.41 748 448 890 1,303

128 32 888.24 3,581.10 2,827.90 4,832.90 1,081 512 1,648 2,106

Average 342.92 1,007.98 895.52 2,020.44 506.46 340.85 606.81 860.54

Hybrid Decomposition Method 131

Table 6.5: Influence of Switch Flag for the Hybrid Approach

Prob
εs = 0.1 εs = 0.01 εs = 0.001

itera iterd itertot itera iterd itertot itera iterd itertot

1 5 5 10 7 3 10 9 1 10

2 9 1 10 10 1 11 12 1 13

3 5 5 10 7 3 10 11 1 12

4 6 10 16 8 9 17 13 3 16

5 5 4 9 7 4 11 8 2 10

6 6 12 18 9 5 14 12 2 14

7 7 19 26 11 17 28 17 9 26

8 7 17 24 11 10 21 17 6 23

9 4 5 9 6 3 9 7 1 8

10 9 13 22 13 10 23 17 5 22

11 7 15 22 10 8 18 15 5 20

12 9 30 39 15 31 46 25 13 38

13 5 8 13 8 5 13 10 4 14

14 7 11 18 11 7 18 13 4 17

15 5 10 15 7 12 19 10 7 17

16 8 29 37 16 17 33 25 10 35

17 5 7 12 7 5 12 9 3 12

18 7 9 16 9 5 14 12 4 16

19 6 15 21 11 10 21 14 6 20

20 11 29 40 18 19 37 26 11 37

Average 19.35 19.25 19

Chapter 7

Implementation Issues

7.1 Software

Five algorithms are involved in our experiments: DW, ACCPM, the hybrid method, sim-

plex, and IPM. The first three decomposition codes are relatively complicated, while the

other two codes, which are direct solution approaches, are much easier.

There are a few DW implementations available in the literature (e.g., [44][43][46]),

but the size of our test problems exceeds their solving capacities. An ACCPM software

package [40] is also available from Logilab1 for research purposes, but is not flexible for

decomposition applications. Therefore, we wrote all the codes by ourselves.

7.1.1 MATLAB

MATLAB is a high-level language for technical computing. Although it is not as efficient

as low-level languages, such as C and FORTRAN, its easy-to-use environment enables

ideas to be quickly implemented. Therefore, we chose MATLAB to be the main tool in

our work for its quick implementation and powerful manipulation of matrices. All of the

aforementioned five algorithms were developed and executed in MATLAB (version 7.0).

However, due to efficiency reasons, some of these MATLAB codes further call other solvers

(see Section 7.1.2).

1http://blogs.unige.ch/hec/logilab/templeet.php/projects.en.html

133

134 Empirical Analysis of Decomposition for LP

In MATLAB, linprog is a comprehensive linear programming solver. Users can spec-

ify one of the solution methods by changing the properties of linprog. The large-scale

method is based on lipsol2, which is a linear interior-point solver [86] and uses a variant

of Mehrotra’s predictor-corrector algorithm [70], a primal-dual interior-point method. For

medium-scale linear programming problems, linprog uses a variant of the well-known sim-

plex method [19]. Both the lipsol and simplex solvers ignore any user-supplied starting

points.

When comparing the relative efficiency between DW and simplex in Chapter 4, for

the direct solution approach (simplex), we call linprog to solve the problem as a whole,

and for the decomposition approach (DW), we call linprog to solve both the master and

subproblems.

However, we realized that in our experiments, the DW solution time was surprisingly

long. Borchers once pointed out that the success of simplex in practice is mainly attributed

to the warm start strategy [11]. Evidently, warm start is crucial for DW, too. The solver

not supporting a starting point does not hurt the efficiency of the simplex method because

a problem needs to be solved from phase I anyways. On the contrary, for DW, no allowed

starting point means no warm start at all, and this made the DW solution time very

uncompetitive. Therefore, we modified the MATLAB simplex solver to facilitate a warm

start for both the DW master and subproblems. Warm start greatly improved DW’s

computational efficiency. For example, at the last iteration of a test problem, it used to

take more than 8, 000 inner iterations to solve the master problem from scratch, but only

took about 15 inner iterations with a warm start point from the previous iteration.

Another problem from the MATLAB simplex solver is that the iteration count that

the solver returns does not include the number of iterations in Phase I. The Mathworks

explains that this is because for the simplex method, phase I procedure is only to find a

feasible initial point. This is undoubtedly correct in terms of the functionality of phase I,

but in terms of performance evaluation, the effort put in phase I cannot be ignored. On

our 100 stochastic financial test problems, there are 784, 819 phase I iterations in total and

994, 920 phase II iterations. The former accounts for about half of the total number of

iterations as well as CPU time, and hence is not negligible. We then modified the simplex

2http://www.caam.rice.edu/ zhang/lipsol/

Implementation Issues 135

solver again to obtain the total number of iterations in simplex (phase I + phase II).

Theoretically, DW, as a simplex based algorithm, stops when all the reduced costs are

positive (for a minimization problem). But in practice, researchers often use another stop

criterion, the relative duality gap, which can show the progress of each iteration. When

the relative duality gap is small enough, the current solution is considered a satisfactory

solution. We also use this stopping criterion in our DW code: when the relative duality

gap falls below a predetermined small tolerance ε, ε = 10−6, the algorithm stops.

When comparing the relative efficiency between ACCPM and IPM in Chapter 5, for

the direct solution approach (IPM), we call the lipsol based MATLAB solver to solve

the problem as a whole, and for ACCPM, lipsol is only used to solve the subproblems.

The ACCPM master problem is solved by the primal Newton method; see Section 7.4 for

details.

7.1.2 CPLEX

The MATLAB simplex solver is based on the revised simplex method, with the smallest

subscript pivoting rule. It has difficulties dealing with large problems, so the most efficient

optimization software package, CPLEX (version 10.1), is also adopted in our experiments.

CPLEX can automatically detect a problem’s characteristics, and then determine a solution

method, including primal simplex, dual simplex, primal-dual simplex, network simplex, etc.

To avoid confusion, we set the solution method property as primal simplex.

CPLEX has considerably better computing efficiency than MATLAB. It can be faster

than the MATLAB simplex solver by a factor of over 1, 000, which allows us to finish

solving large problems in a reasonable period of time. However, CPLEX involves many

advanced techniques, which, on one hand makes it highly efficient, and on the other hand

affects our experiments in a negative way. For example, given a block-angular structured

problem, we need to compare the relative efficiency of the direct solution approach vs.

decomposition (simplex vs. DW), but the Cholesky factorization in CPLEX already takes

advantage of the special structure even in the direct approach. In addition, since MATLAB

cannot call CPLEX directly, we have to write a C++ code3, which is called by MATLAB,

3The code was initially written by Musicant[73], and was designed for CPLEX 6.5. Because some

callable libraries have changed in higher versions of CPLEX, we modified the corresponding part in Musi-

136 Empirical Analysis of Decomposition for LP

to further call CPLEX solvers. This kind of process causes a huge amount of data transfer,

and hurts the decomposition efficiency greatly as MATLAB needs to do the C++ call and

then CPLEX, for the master problem as well as for all the subproblems at every iteration.

Finally, CPLEX uses the steepest-edge pivoting rule, which has been proven to be very

efficient. Consequently, taking DW as a big simplex tableau, a counterpart of the steepest-

edge rule should also be employed here. However, DW still uses the simple ‘most-negative’

reduced cost rule in our experiments. In this sense, the MATLAB solver makes the two

approaches more comparable, although it is far less efficient.

Due to the trade-offs between the MATLAB and CPLEX solvers, we constructed two

sets of codes: MATLAB based simplex and DW codes4, and CPLEX based codes5. For

smaller instances, we try to use the MATLAB based codes, but for larger instances, we have

to use the CPLEX based codes. For the numerical results in Chapter 4, unless otherwise

specified, problems of the financial model are solved by MATLAB (linprog) based codes,

and problems of the multicommodity model are solved by CPLEX based codes.

7.1.3 GAMS

GAMS (the General Algebraic Modeling System) is a modeling language and optimization

solver. The algebraic feature makes it convenient to handle large, complex, one-of-a-kind

problems. For example, the 100 stochastic financial test problems can be generated by

embedded loops of n and h, the number of assets and the number of scenarios, each from

10 to 100 with a step of 10.

In our experiments, we did not use GAMS as a solver, instead, we only used it to

generate test problems. Therefore, it is important for GAMS to be compatible with other

software. By a solver named MPSWRITE [33], GAMS can output problems in MPS

(Mathematical Programming System), which is a standard input format adopted by most

commercial codes.

Since we solve each test problem by both solution approaches, the direct and decom-

cant’s code. In addition, we also expanded the code in order to support a warm start. See Appendix B.1

for details.
4The DW code calls linprog (modified) for both the master and subproblems.
5The DW code calls CPLEX for both the master and subproblems.

Implementation Issues 137

position, we need to generate these problems in two different forms. It is easy to generate

an overall MPS file by MPSWRITE for the direct solution approach. For decomposition

algorithms, we generate a series of MPS files, each of which contains a pseudo-block, i.e.,

a block together with its corresponding linking constraints part,

min cTk xk

s.t. Akxk = b

Bkxk = dk, k = 1, 2 · · ·h
xk ≥ 0

(7.1)

Yet, these problems do not have any economic interpretations. Rather, they only provide

input data, such as Ak, Bk, dk, and ck, in a convenient way for future calculations.

However, the default output name from MPSWRITE is ‘gams.mps’, which cannot be

easily changed. As a result, if you generate series of MPS files in a loop, the current one

will erase the previous one, and in the end, only the last one remains. After consulting

with GAMS, we used the CONVERT utility instead. The gams code to generate series of

MPS files for problems with a block-angular structure is provided in Appendix B.2.

The output MPS files are a free format variation of the MPS format, which is compatible

with CPLEX but not MATLAB. We need to convert them into the standard MPS format

(see Appendix B.3). Since MATLAB does not support MPS format, we further converted

them into .mat files (MATLAB binary data format) by a library in lipsol.

As for the multicommodity problems, we first tried generating some undirected flow

test problems. However, it is difficult to ensure that the problems generated are ‘realistic’

- even the famous generator, Mnetgen [2], was once criticized as ‘too easy’ because the

solution time with different solvers tend to decrease as the size increases [76][55]. This

problem was fixed in the newer enhanced version of Mnetgen generator [30][14], which was

recoded in C++. We adopted this generator in our experiments.

7.2 Hardware

All the test problems were executed on a Sun Blade 2500 workstation running the Unix

Operating System. On any given problem, we collect the CPU time for the direct solution

approaches, i.e., simplex and IPM.

138 Empirical Analysis of Decomposition for LP

As for decomposition, i.e., DW and ACCPM, it is well known that decomposition

algorithms are inherently suited to distributed computing. Our university has a distributed

system, flexor, with 52 CPUs in total6. Unfortunately, it is impossible for us to reserve the

system for a fairly long time. In addition, the number of processors in the cluster is not

enough for our experiments: our biggest test problem has as many as 256 blocks. In this

case, if implemented in flexor, multiple subproblems will have to be assigned to each node,

which makes the algorithm performance study more complex.

Due to the above reasons, we do a simulation of parallel computing for the empirical

analysis, assuming that there are plenty of processors in the cluster. Therefore, the CPU

time of solving a problem by decomposition is defined as an estimate of solution time in a

distributed environment that has one machine for each subproblem, and another processor

for the master problem. More specifically, a DW/ACCPM CPU time is collected as the

sum of the time for the master problem and the maximum time of subproblems, because

when the processor for the master problem is busy, the other processors for subproblems are

usually idle, and vice versa [43]. Time for loading data and preprocessing is not included.

7.3 Floating Point Arithmetic for Large-Scale Com-

puting

Most technical computing environments including MATLAB use floating-point arithmetic,

which involves a finite set of numbers with finite precision [72]. By default, variables in

MATLAB are in the IEEE double precision format, where a real number is expressed in

a binary system. In a solution process, a floating-point number is obtained by truncating,

rather than rounding. Most of the time, one can use MATLAB effectively without consid-

ering these details, but for large-scale computing, accumulated roundoff error caused by

truncating leads to poor results.

Due to the large size of our test problems, we encountered great numerical difficul-

ties in our experiments. Therefore, special attention needs to be paid when dealing with

large-scale problems. For example, when solving a system of linear equations, instead of

6http://www.math.uwaterloo.ca/mfcf/computing-environments/HPC/flexor/hardware.html

Implementation Issues 139

computing inverses of matrices, one can use the back slash and forward slash operators in

MATLAB for better efficiency and accuracy; to avoid big digit loss in calculation, one can

use scale factors to adjust rows and columns in the coefficient matrix of a problem.

In practice, floating-point arithmetic greatly affects scientific computing. We will dis-

cuss more on this topic in Section 7.4.

7.4 Implementation of ACCPM in Decomposition

In this section, we briefly discuss some implementation issues of ACCPM in MATLAB.

7.4.1 Pseudo Code of ACCPM

In short, the ACCPM algorithm can be illustrated as the steps in the following pseudo

code:

1. Preallocate and initialize variables

2. Load data

3. Preprocess

4. While the relative duality gap > tolerance

(a) Solve the weighted master problem (primal Newton method);

Update the current best upper bound;

(b) Solve subproblems;

Update the current best lower bound;

(c) Correct roundoff error;

(d) Recover primal feasibility;

(e) Update big M7.

7In equation (3.19) on page 28 of Chapter 3 , we used M1 and M2 to emphasize that the lower and

upper bounds of the box constraints can be two different values, but in the implemention of ACCPM, we

use −M ≤ π ≤M .

140 Empirical Analysis of Decomposition for LP

End While

For large problems, preallocating arrays can improve program performance and memory

usage. Next, we load and preprocess problems. The while loop is the main part of this

algorithm. Put simply, we do this loop (one iteration) until the relative duality gap, defined

as |UB−LB||LB|+1 , is less than the predetermined small tolerance.

At each iteration, we solve the weighted master problem based on ideas from IPM

theory. More specifically, the primal Newton method is used to solve for a search direc-

tion, and the step size is determined by the ‘bi-section’ technique [84]. When solving the

subproblems, we distinguish whether a proposal (cut) is repeated: if yes, increase its corre-

sponding weight by one; if no, add a new column in the restricted master problem. Next,

we recover a primal feasible solution as the start point for the next iteration. For details,

see [24].

To deal with the aforementioned roundoff error in floating-point computing, we em-

ployed a few special techniques in our codes.

First, we normalized extreme rays. It is worth noting that when solving subproblems,

if extreme rays occur, the MATLAB solver returns a flag to indicate the unboundedness,

and returns a big-valued vector, which often causes numerical difficulties. Therefore, we

normalize all the extreme ray vectors, i.e., we use Vray
||Vray|| for future calculations.

Second, we used force-out factors in the master problem. Theoretically, a primal New-

ton step in the master problem, denoted as ∆ex, satisfies eA∆ex = 0, but practically, this

primal feasibility is often violated due to gradually accumulated roundoff error. Once the

direction ∆ex is not feasible to the master problem, a false upper bound will be generated,
and then it is possible that the ACCPM code fails to solve the original problem. Therefore,

we check the primal feasibility at every inner iteration in the master problem. We force the

primal Newton method to stop if infeasibility occurs, use the current, still feasible point to

update the upper bound, and then continue to solve the subproblems. On 100 test prob-

lems of the stochastic financial model, there were 431 out of 682 (63.2%) iterations forced

out of the primal Newton loop; on 132 test problems of the multicommodity network flow

problem, 1057 out of 2512 (42.1%) iterations were forced out.

Third, we corrected roundoff errors. Besides the inner feasibility check, we also try

to fix the roundoff error after a few iterations. Denote the error vector as err = | eAex|.

Implementation Issues 141

If the maximum element in err, i.e., max(err), is greater than 10−4, then adjust the

corresponding artificial variables in ex by the amount of err. We call this process correcting
roundoff error. After the correction, we usually have | eAex| < 10−10. On 100 test problems of
the stochastic financial model, 471 out of 682 (69.1%) iterations called the roundoff-error-

correction process; on 132 test problems of the multicommodity network flow problem, the

figures were 1474 out of 2512 (58.7%).

7.4.2 Penalty Weighted Technique

When implementing ACCPM, we realized that on many test problems, there were no new

cuts added over the last few iterations. In other words, all the cuts were repeated at that

time. Algebraically, adding a repeated cut is equivalent to increasing its weight by one.

Then, for constantly repeated cuts, can we push it more to improve ACCPM’s convergence?

Recall that in the ACCPM master problem, a weighting mechanism does not affect a

solution’s primal feasibility. Therefore, we tried three different weighting strategies: the

first is the ordinary one, N = N + 1, denoted as w1; the second, N = 2 ∗ N , denoted as
w2; the third, if N = 1, N = N + 1, else N = N2, denoted as w3. The numerical results

are shown in Table 7.1. We call the second and third weighting techniques ‘penalty’ as the

weights are increased more if a cut is repeated.

At times, a penalty weight can accelerate the ACCPM code, but on average, the three

weighting mechanisms are comparable.

7.4.3 Dynamic Update of M

The ACCPM code involves many parameters, among which M plays an important role in

the process. M is supposed to have a big value. In the ACCPM master problem (primal

space), M is associated with the artificial variables, so the big value of M , which is >> ec,
makes the artificial variables to be zero whenever possible. If M tends to infinity, the

artificial variables tend to zero. In this sense, the bigger the M , the more accurate the

results. However, for floating-point arithmetic, big M leads to some tiny-valued variables,

and hence the problem becomes ‘badly scaled’. People usually choose a value that is mod-

erately bigger than all other coefficients. Unfortunately, in some cases, it is very difficult to

142 Empirical Analysis of Decomposition for LP

Table 7.1: Different Weighting Strategies

Prob.
of iterations CPU time Duality gap

w1 w2 w3 w1 w2 w3 w1 w2 w3

1 12 10 10 0.94 1.01 0.71 4.02E-05 8.21E-05 1.84E-04

2 7 10 9 0.74 1.04 0.93 1.72E-04 1.18E-04 1.25E-04

3 6 9 7 1.13 1.57 1.24 2.55E-04 1.74E-04 2.17E-04

4 10 14 9 3.02 4.08 2.79 3.11E-04 3.37E-04 5.15E-04

5 13 11 10 3.56 1.81 3.41 3.39E-04 2.93E-04 3.29E-04

6 9 9 8 2.86 2.98 2.65 2.25E-04 2.33E-04 3.28E-04

7 10 7 10 6.06 4.48 6.12 2.83E-04 3.72E-04 3.59E-04

8 13 12 10 11 10.44 8.49 5.06E-04 3.78E-04 6.39E-04

9 16 13 10 5.64 4.89 4.66 7.34E-05 6.18E-04 5.90E-04

10 10 9 10 18.32 21.12 27.76 5.85E-04 4.42E-04 6.35E-04

11 10 9 8 12.52 11.61 10.57 5.19E-04 3.08E-04 4.74E-04

12 7 7 12 14.51 14.48 22.68 6.96E-04 1.01E-03 4.75E-04

13 13 16 13 7.91 8.74 7.09 1.58E-04 1.19E-04 6.91E-04

14 10 11 9 14.22 14.98 12.71 2.68E-04 3.75E-04 3.66E-04

15 8 11 8 18.88 25.15 18.96 8.33E-04 5.52E-04 7.74E-04

16 9 9 8 32.25 30.84 28.02 5.64E-04 1.13E-03 8.97E-04

Average 10.19 10.44 9.44 9.60 9.95 9.92 3.64E-04 4.09E-04 4.75E-04

estimate the scale of all other coefficients, especially for decomposition algorithms, where

the coefficients in the master problem do not have explicit economic interpretations. To

overcome this problem, some researchers try to gradually updateM during the process, so

that a better estimation can be made. For example, see [60].

Recall the ACCPM master problem in the dual space, whereM corresponds to the box

constraints, −M ≤ ey ≤ M . As one of the cutting plane methods, ACCPM approaches

an optimal solution by generating more and more cuts. In other words, with more and

more cuts added, the feasible region becomes smaller and smaller, and eventually shrinks

to a satisfactory solution. Therefore, the feasible region from the current iteration contains

all the feasible solutions in the next iteration, i.e., eyk ⊇ eyk+1. This feature enables us to

Implementation Issues 143

Table 7.2: Dynamic Update of M

Prob.
of iterations CPU time Duality gap Mdyn

103 105 dyn 103 105 dyn 103 105 dyn

1 7 7 7 0.44 0.5 0.59 5.47E-04 2.25E-04 2.95E-04 93

2 5 6 5 0.58 0.77 0.6 1.79E-04 8.17E-04 8.80E-04 99

3 5 5 4 0.96 1.14 0.86 2.55E-04 3.60E-04 6.37E-04 100

4 6 5 5 1.87 1.98 1.69 4.60E-04 7.18E-04 7.53E-04 100

5 9 9 9 1.61 1.59 1.47 5.29E-04 7.23E-04 9.64E-04 86

6 7 6 6 2.33 2.57 2.16 5.81E-04 8.43E-04 1.94E-04 98

7 6 14 6 3.87 9.71 3.74 9.01E-04 1.60E-03 5.05E-04 100

8 8 5 7 6.7 5.3 6.39 9.72E-04 6.51E-04 6.55E-04 100

9 10 11 10 3.8 5.32 4.24 7.57E-04 7.90E-04 7.84E-04 59

10 7 10 11 7.07 10.61 9.48 7.45E-04 2.91E-03 1.06E-02 97

11 6 5 5 8.09 7.35 6.55 7.76E-04 6.32E-04 7.43E-04 99

12 6 6 7 12.74 14.54 12.58 6.98E-04 4.64E-03 9.63E-04 100

13 8 10 10 5.56 8.13 6.68 9.99E-04 8.04E-04 8.26E-04 41

14 6 8 7 9.2 12.59 9.92 9.88E-04 3.62E-03 7.62E-04 97

15 7 6 6 16.67 17.42 14.09 8.36E-04 9.37E-04 6.96E-04 99

16 5 17 6 19.73 67.42 21.38 8.51E-04 2.33E-03 7.44E-04 100

Average 6.75 8.13 6.94 6.33 10.43 6.40 6.92E-04 1.41E-03 1.31E-03 91.75

estimate Mk+1, the box constraints, according to eyk. Table 7.2 compares the influence by
different M values: M = 103, M = 105, and M with dynamically updated values. By

dynamic updating, it means that starting with M = 105, Mk+1 = 2||eyk||. The constant,
2, can be any other user specified values. The last column in Table 7.2 shows the actual

value of M at the end of the process.

We can see that M = 103 generates better results than M = 105. In fact, with bigger

values, such asM = 108, some test problems failed to achieve a satisfactory solution. With

the dynamic updating technique, for problems that are difficult to estimate solution range,

we can start with a big value ofM , without worrying about the numerical problems caused

by the big value, as M will automatically become a moderate number according to the

144 Empirical Analysis of Decomposition for LP

problem coefficients. As shown in the last column of Table 7.2, M started as 105, but was

much smaller in the end.

Chapter 8

Concluding Remarks and Future

Research

We try to understand how algorithmic performance varies in response to dimensional pa-

rameters. A few preliminary conclusions have been drawn based on our experiments. Most

of the regression models have strong explanatory capability. However, the conclusions are

quite different between the two test problem classes. Although the models have different

economic interpretations, both have block-angular structures. Therefore, it seems that

any general predictions for all models will require more information than just the dimen-

sional parameters of the block diagonal structure. For now, we have to be content with

predictions for instances within a class of models.

We have shown that empirical analysis can provide us valuable hints on how algorithms

would behave in practice, and hence help us choose the right solver for a given problem. For

problems that need to be solved repeatedly, people can use historical data to aid future

choice of algorithms. Our work is just an attempt of empirical analysis applied in the

optimization field. It is our hope that this work motivates further studies along the same

lines, so that more people can realize that empirical science is as important as deductive

analysis.

In the future, if time permits, this kind of empirical analysis can be conducted with more

numerical examples, which have been collected in several libraries accessible to researchers.

For example, about ten multicommodity network flow models in various applications are

145

146 Empirical Analysis of Decomposition for LP

collected and well documented in a university website1. For more rigorous experimental

design to evaluate algorithms’ performance, one can also generate their own test problems,

so that the characteristics can be flexibly controlled.

We wrote all the codes in MATLAB (calling modified linprog and CPLEX) for quick

implementation, but the tradeoff is the efficiency. Generally speaking, for scientific com-

puting, MATLAB is not as fast as the low level languages, such as C/C++ and FORTRAN.

In addition, developing an efficient general-purpose decomposition code is a worthy goal

to work toward.

As a new and promising solution method, ACCPM has good convergence rate, but its

accuracy is not ideal. We try to improve our implementation of ACCPM by a few tech-

niques, including the hybrid decomposition approach, different weighting strategies, and

the dynamic update ofM . In addition to these, for large-scale applications, dropping some

cuts once in a while can reduce the size of the master problem, but it is computationally

expensive to do the redundancy check itself [23]. Therefore, this is still an open topic.

In our experiments, we used a single server, and simulated a parallel computing paradigm.

In a real parallel computing environment, more factors such as the overhead, inter com-

munications between processors, and load balancing need to be carefully addressed.

1http://www.di.unipi.it/optimize/Data/MMCF.html

Appendix A

Problem Characteristics

Table A.1: Stochastic Financial Problem Characteristics

Prob. n h m0 rows m0% cols nz nz% rows cols

1 10 10 11 321 3.43% 111 1,531 4.30% 31 11

2 10 20 11 1,031 1.07% 421 5,651 1.30% 51 21

3 10 30 11 2,141 0.51% 931 12,371 0.62% 71 31

4 10 40 11 3,651 0.30% 1,641 21,691 0.36% 91 41

5 10 50 11 5,561 0.20% 2,551 33,611 0.24% 111 51

6 10 60 11 7,871 0.14% 3,661 48,131 0.17% 131 61

7 10 70 11 10,581 0.10% 4,971 65,251 0.12% 151 71

8 10 80 11 13,691 0.08% 6,481 84,971 0.10% 171 81

9 10 90 11 17,201 0.06% 8,191 107,290 0.08% 191 91

10 10 100 11 21,111 0.05% 10,101 132,210 0.06% 211 101

11 20 10 21 431 4.87% 111 2,741 5.73% 41 11

12 20 20 21 1,241 1.69% 421 10,061 1.93% 61 21

13 20 30 21 2,451 0.86% 931 21,981 0.96% 81 31

14 20 40 21 4,061 0.52% 1,641 38,501 0.58% 101 41

15 20 50 21 6,071 0.35% 2,551 59,621 0.38% 121 51

16 20 60 21 8,481 0.25% 3,661 85,341 0.27% 141 61

Continued on next page

147

148 Empirical Analysis of Decomposition for LP

Table A.1 — continued from previous page

Prob. n h m0 rows m0% cols nz nz% rows cols

17 20 70 21 11,291 0.19% 4,971 115,660 0.21% 161 71

18 20 80 21 14,501 0.14% 6,481 150,580 0.16% 181 81

19 20 90 21 18,111 0.12% 8,191 190,100 0.13% 201 91

20 20 100 21 22,121 0.09% 10,101 234,220 0.10% 221 101

21 30 10 31 541 5.73% 111 3,951 6.58% 51 11

22 30 20 31 1,451 2.14% 421 14,471 2.37% 71 21

23 30 30 31 2,761 1.12% 931 31,591 1.23% 91 31

24 30 40 31 4,471 0.69% 1,641 55,311 0.75% 111 41

25 30 50 31 6,581 0.47% 2,551 85,631 0.51% 131 51

26 30 60 31 9,091 0.34% 3,661 122,550 0.37% 151 61

27 30 70 31 12,001 0.26% 4,971 166,070 0.28% 171 71

28 30 80 31 15,311 0.20% 6,481 216,190 0.22% 191 81

29 30 90 31 19,021 0.16% 8,191 272,910 0.18% 211 91

30 30 100 31 23,131 0.13% 10,101 336,230 0.14% 231 101

31 40 10 41 651 6.30% 111 5,161 7.14% 61 11

32 40 20 41 1,661 2.47% 421 18,881 2.70% 81 21

33 40 30 41 3,071 1.34% 931 41,201 1.44% 101 31

34 40 40 41 4,881 0.84% 1,641 72,121 0.90% 121 41

35 40 50 41 7,091 0.58% 2,551 111,640 0.62% 141 51

36 40 60 41 9,701 0.42% 3,661 159,760 0.45% 161 61

37 40 70 41 12,711 0.32% 4,971 216,480 0.34% 181 71

38 40 80 41 16,121 0.25% 6,481 281,800 0.27% 201 81

39 40 90 41 19,931 0.21% 8,191 355,720 0.22% 221 91

40 40 100 41 24,141 0.17% 10,101 438,240 0.18% 241 101

41 50 10 51 761 6.70% 111 6,371 7.54% 71 11

42 50 20 51 1,871 2.73% 421 23,291 2.96% 91 21

43 50 30 51 3,381 1.51% 931 50,811 1.61% 111 31

44 50 40 51 5,291 0.96% 1,641 88,931 1.02% 131 41

Continued on next page

Problem Characteristics 149

Table A.1 — continued from previous page

Prob. n h m0 rows m0% cols nz nz% rows cols

45 50 50 51 7,601 0.67% 2,551 137,650 0.71% 151 51

46 50 60 51 10,311 0.49% 3,661 196,970 0.52% 171 61

47 50 70 51 13,421 0.38% 4,971 266,890 0.40% 191 71

48 50 80 51 16,931 0.30% 6,481 347,410 0.32% 211 81

49 50 90 51 20,841 0.24% 8,191 438,530 0.26% 231 91

50 50 100 51 25,151 0.20% 10,101 540,250 0.21% 251 101

51 60 10 61 871 7.00% 111 7,581 7.84% 81 11

52 60 20 61 2,081 2.93% 421 27,701 3.16% 101 21

53 60 30 61 3,691 1.65% 931 60,421 1.76% 121 31

54 60 40 61 5,701 1.07% 1,641 105,740 1.13% 141 41

55 60 50 61 8,111 0.75% 2,551 163,660 0.79% 161 51

56 60 60 61 10,921 0.56% 3,661 234,180 0.59% 181 61

57 60 70 61 14,131 0.43% 4,971 317,300 0.45% 201 71

58 60 80 61 17,741 0.34% 6,481 413,020 0.36% 221 81

59 60 90 61 21,751 0.28% 8,191 521,340 0.29% 241 91

60 60 100 61 26,161 0.23% 10,101 642,260 0.24% 261 101

61 70 10 71 981 7.24% 111 8,791 8.07% 91 11

62 70 20 71 2,291 3.10% 421 32,111 3.33% 111 21

63 70 30 71 4,001 1.77% 931 70,031 1.88% 131 31

64 70 40 71 6,111 1.16% 1,641 122,550 1.22% 151 41

65 70 50 71 8,621 0.82% 2,551 189,670 0.86% 171 51

66 70 60 71 11,531 0.62% 3,661 271,390 0.64% 191 61

67 70 70 71 14,841 0.48% 4,971 367,710 0.50% 211 71

68 70 80 71 18,551 0.38% 6,481 478,630 0.40% 231 81

69 70 90 71 22,661 0.31% 8,191 604,150 0.33% 251 91

70 70 100 71 27,171 0.26% 10,101 744,270 0.27% 271 101

71 80 10 81 1,091 7.42% 111 10,001 8.26% 101 11

72 80 20 81 2,501 3.24% 421 36,521 3.47% 121 21

Continued on next page

150 Empirical Analysis of Decomposition for LP

Table A.1 — continued from previous page

Prob. n h m0 rows m0% cols nz nz% rows cols

73 80 30 81 4,311 1.88% 931 79,641 1.98% 141 31

74 80 40 81 6,521 1.24% 1,641 139,360 1.30% 161 41

75 80 50 81 9,131 0.89% 2,551 215,680 0.93% 181 51

76 80 60 81 12,141 0.67% 3,661 308,600 0.69% 201 61

77 80 70 81 15,551 0.52% 4,971 418,120 0.54% 221 71

78 80 80 81 19,361 0.42% 6,481 544,240 0.43% 241 81

79 80 90 81 23,571 0.34% 8,191 686,960 0.36% 261 91

80 80 100 81 28,181 0.29% 10,101 846,280 0.30% 281 101

81 90 10 91 1,201 7.58% 111 11,211 8.41% 111 11

82 90 20 91 2,711 3.36% 421 40,931 3.59% 131 21

83 90 30 91 4,621 1.97% 931 89,251 2.07% 151 31

84 90 40 91 6,931 1.31% 1,641 156,170 1.37% 171 41

85 90 50 91 9,641 0.94% 2,551 241,690 0.98% 191 51

86 90 60 91 12,751 0.71% 3,661 345,810 0.74% 211 61

87 90 70 91 16,261 0.56% 4,971 468,530 0.58% 231 71

88 90 80 91 20,171 0.45% 6,481 609,850 0.47% 251 81

89 90 90 91 24,481 0.37% 8,191 769,770 0.38% 271 91

90 90 100 91 29,191 0.31% 10,101 948,290 0.32% 291 101

91 100 10 101 1,311 7.70% 111 12,421 8.54% 121 11

92 100 20 101 2,921 3.46% 421 45,341 3.69% 141 21

93 100 30 101 4,931 2.05% 931 98,861 2.15% 161 31

94 100 40 101 7,341 1.38% 1,641 172,980 1.44% 181 41

95 100 50 101 10,151 0.99% 2,551 267,700 1.03% 201 51

96 100 60 101 13,361 0.76% 3,661 383,020 0.78% 221 61

97 100 70 101 16,971 0.60% 4,971 518,940 0.62% 241 71

98 100 80 101 20,981 0.48% 6,481 675,460 0.50% 261 81

99 100 90 101 25,391 0.40% 8,191 852,580 0.41% 281 91

100 100 100 101 30,201 0.33% 10,101 1,050,300 0.34% 301 101

Problem Characteristics 151

Table A.2: Multicommodity Network Flow Problem

Characteristics

n h m m0 rows0 rows m0% cols nz nz% rows cols

1 64 4 196 84 340 24.71% 720 1,754 0.7165% 64 180

2 64 4 200 79 335 23.58% 721 1,721 0.7125% 64 180

3 64 4 189 85 341 24.93% 722 1,773 0.7201% 64 181

4 64 4 194 146 402 36.32% 721 1,982 0.6838% 64 180

5 64 4 201 167 423 39.48% 720 2,039 0.6695% 64 180

6 64 4 203 157 413 38.02% 722 1,997 0.6697% 64 181

7 64 4 520 195 451 43.24% 1,537 3,653 0.5270% 64 384

8 64 4 528 207 463 44.71% 1,539 3,684 0.5170% 64 385

9 64 4 532 227 483 47.00% 1,536 3,726 0.5022% 64 384

10 64 4 537 433 689 62.85% 1,539 4,335 0.4088% 64 385

11 64 4 522 410 666 61.56% 1,539 4,288 0.4184% 64 385

12 64 4 524 407 663 61.39% 1,537 4,270 0.4190% 64 384

13 64 8 200 83 595 13.95% 1,433 3,448 0.4044% 64 179

14 64 8 192 72 584 12.33% 1,433 3,388 0.4048% 64 179

15 64 8 198 104 616 16.88% 1,437 3,626 0.4096% 64 180

16 64 8 195 147 659 22.31% 1,435 3,978 0.4207% 64 179

17 64 8 203 163 675 24.15% 1,439 4,007 0.4125% 64 180

18 64 8 191 148 660 22.42% 1,437 3,980 0.4197% 64 180

19 64 8 541 231 743 31.09% 3,004 7,319 0.3279% 64 376

20 64 8 557 230 742 31.00% 3,006 7,207 0.3231% 64 376

21 64 8 531 212 724 29.28% 3,002 7,176 0.3302% 64 375

22 64 8 561 447 959 46.61% 3,006 8,375 0.2905% 64 376

23 64 8 553 435 947 45.94% 3,000 8,367 0.2945% 64 375

24 64 8 532 425 937 45.36% 3,000 8,419 0.2995% 64 375

25 64 16 187 67 1,091 6.14% 2,872 6,766 0.2159% 64 180

Continued on next page

152 Empirical Analysis of Decomposition for LP

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

26 64 16 208 79 1,103 7.16% 2,865 6,865 0.2172% 64 179

27 64 16 199 78 1,102 7.08% 2,865 6,845 0.2168% 64 179

28 64 16 202 148 1,172 12.63% 2,866 7,830 0.2331% 64 179

29 64 16 185 140 1,164 12.03% 2,865 7,875 0.2361% 64 179

30 64 16 193 163 1,187 13.73% 2,833 8,050 0.2394% 64 177

31 64 16 515 206 1,230 16.75% 5,501 13,121 0.1939% 64 344

32 64 16 522 201 1,225 16.41% 5,501 13,170 0.1954% 64 344

33 64 16 529 216 1,240 17.42% 5,500 13,190 0.1934% 64 344

34 64 16 514 393 1,417 27.74% 5,506 15,195 0.1948% 64 344

35 64 16 520 411 1,435 28.64% 5,511 15,388 0.1946% 64 344

36 64 16 497 391 1,415 27.63% 5,507 15,291 0.1962% 64 344

37 64 32 208 84 2,132 3.94% 5,738 13,935 0.1139% 64 179

38 64 32 200 73 2,121 3.44% 5,743 13,632 0.1119% 64 179

39 64 32 187 71 2,119 3.35% 5,737 13,663 0.1124% 64 179

40 64 32 200 151 2,199 6.87% 5,736 15,761 0.1250% 64 179

41 64 32 201 157 2,205 7.12% 5,748 15,990 0.1262% 64 180

42 64 32 196 171 2,219 7.71% 5,756 16,545 0.1295% 64 180

43 64 32 525 218 2,266 9.62% 11,002 26,695 0.1071% 64 344

44 64 32 550 222 2,270 9.78% 11,004 26,530 0.1062% 64 344

45 64 32 537 218 2,266 9.62% 11,019 26,663 0.1068% 64 344

46 64 32 520 418 2,466 16.95% 11,017 30,890 0.1137% 64 344

47 64 32 511 398 2,446 16.27% 11,006 30,439 0.1131% 64 344

48 64 32 509 404 2,452 16.48% 11,000 30,569 0.1133% 64 344

49 64 64 211 89 4,185 2.13% 11,490 27,798 0.0578% 64 180

50 64 64 199 79 4,175 1.89% 11,489 27,372 0.0571% 64 180

51 64 64 217 92 4,188 2.20% 11,490 27,758 0.0577% 64 180

52 64 64 201 160 4,256 3.76% 11,495 32,099 0.0656% 64 180

53 64 64 192 154 4,250 3.62% 11,458 32,143 0.0660% 64 179

Continued on next page

Problem Characteristics 153

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

54 64 64 198 166 4,262 3.89% 11,509 32,688 0.0666% 64 180

55 64 64 521 206 4,302 4.79% 22,012 52,457 0.0554% 64 344

56 64 64 517 195 4,291 4.54% 22,009 52,616 0.0557% 64 344

57 64 64 509 186 4,282 4.34% 22,018 51,887 0.0550% 64 344

58 64 64 539 437 4,533 9.64% 22,048 61,777 0.0618% 64 345

59 64 64 522 424 4,520 9.38% 22,039 62,125 0.0624% 64 344

60 64 64 511 405 4,501 9.00% 22,004 61,519 0.0621% 64 344

61 128 4 388 165 677 24.37% 1,441 3,493 0.3581% 128 360

62 128 4 391 168 680 24.71% 1,441 3,504 0.3576% 128 360

63 128 4 386 158 670 23.58% 1,442 3,485 0.3607% 128 361

64 128 4 378 305 817 37.33% 1,442 4,055 0.3442% 128 361

65 128 4 379 307 819 37.49% 1,440 4,053 0.3437% 128 360

66 128 4 383 312 824 37.86% 1,440 4,055 0.3417% 128 360

67 128 4 1,017 398 910 43.74% 3,000 7,216 0.2643% 128 750

68 128 4 1,010 410 922 44.47% 3,000 7,224 0.2612% 128 750

69 128 4 989 398 910 43.74% 3,000 7,222 0.2645% 128 750

70 128 4 993 805 1,317 61.12% 3,003 8,456 0.2138% 128 751

71 128 4 1,011 818 1,330 61.50% 3,001 8,428 0.2112% 128 750

72 128 4 997 799 1,311 60.95% 3,000 8,402 0.2136% 128 750

73 128 8 392 163 1,187 13.73% 2,884 6,983 0.2040% 128 361

74 128 8 396 160 1,184 13.51% 2,880 6,945 0.2037% 128 360

75 128 8 388 166 1,190 13.95% 2,884 7,018 0.2045% 128 361

76 128 8 392 304 1,328 22.89% 2,886 8,027 0.2094% 128 361

77 128 8 391 313 1,337 23.41% 2,882 8,045 0.2088% 128 360

78 128 8 384 303 1,327 22.83% 2,886 8,044 0.2100% 128 361

79 128 8 1,066 440 1,464 30.06% 6,004 14,489 0.1648% 128 751

80 128 8 1,084 442 1,466 30.15% 6,004 14,439 0.1640% 128 751

81 128 8 1,075 468 1,492 31.37% 6,005 14,591 0.1629% 128 751

Continued on next page

154 Empirical Analysis of Decomposition for LP

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

82 128 8 1,092 848 1,872 45.30% 6,002 16,672 0.1484% 128 750

83 128 8 1,076 860 1,884 45.65% 6,004 16,754 0.1481% 128 751

84 128 8 1,089 851 1,875 45.39% 6,006 16,701 0.1483% 128 751

85 128 16 404 161 2,209 7.29% 5,761 13,828 0.1087% 128 360

86 128 16 410 166 2,214 7.50% 5,770 13,900 0.1088% 128 361

87 128 16 414 183 2,231 8.20% 5,769 14,051 0.1092% 128 361

88 128 16 387 316 2,364 13.37% 5,760 16,242 0.1193% 128 360

89 128 16 383 315 2,363 13.33% 5,775 16,300 0.1195% 128 361

90 128 16 390 318 2,366 13.44% 5,769 16,241 0.1190% 128 361

91 128 16 1,154 455 2,503 18.18% 12,001 28,813 0.0959% 128 750

92 128 16 1,154 469 2,517 18.63% 12,008 28,935 0.0957% 128 751

93 128 16 1,138 487 2,535 19.21% 12,006 29,132 0.0957% 128 750

94 128 16 1,122 887 2,935 30.22% 12,000 33,530 0.0952% 128 750

95 128 16 1,123 933 2,981 31.30% 12,007 33,834 0.0945% 128 750

96 128 16 1,114 911 2,959 30.79% 12,002 33,686 0.0949% 128 750

97 128 32 399 150 4,246 3.53% 11,538 27,456 0.0560% 128 361

98 128 32 400 156 4,252 3.67% 11,528 27,509 0.0561% 128 360

99 128 32 405 158 4,254 3.71% 11,521 27,497 0.0561% 128 360

100 128 32 413 325 4,421 7.35% 11,527 32,131 0.0631% 128 360

101 128 32 412 313 4,409 7.10% 11,527 31,898 0.0628% 128 360

102 128 32 413 325 4,421 7.35% 11,525 32,051 0.0629% 128 360

103 128 32 1,178 462 4,558 10.14% 24,009 57,390 0.0524% 128 750

104 128 32 1,127 447 4,543 9.84% 24,030 57,545 0.0527% 128 751

105 128 32 1,138 463 4,559 10.16% 24,005 57,866 0.0529% 128 750

106 128 32 1,147 918 5,014 18.31% 24,002 67,113 0.0558% 128 750

107 128 32 1,173 945 5,041 18.75% 24,002 67,172 0.0555% 128 750

108 128 32 1,141 906 5,002 18.11% 24,007 66,983 0.0558% 128 750

109 128 64 388 158 8,350 1.89% 23,038 55,360 0.0288% 128 360

Continued on next page

Problem Characteristics 155

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

110 128 64 394 160 8,352 1.92% 23,050 55,392 0.0288% 128 360

111 128 64 381 151 8,343 1.81% 23,046 55,346 0.0288% 128 360

112 128 64 412 338 8,530 3.96% 23,020 64,935 0.0331% 128 360

113 128 64 406 331 8,523 3.88% 23,012 64,872 0.0331% 128 360

114 128 64 397 323 8,515 3.79% 23,040 64,833 0.0330% 128 360

115 128 64 1,184 482 8,674 5.56% 48,018 115,020 0.0276% 128 750

116 128 64 1,154 457 8,649 5.28% 48,033 115,320 0.0278% 128 751

117 128 64 1,138 455 8,647 5.26% 48,009 115,520 0.0278% 128 750

118 128 64 1,182 947 9,139 10.36% 48,019 134,770 0.0307% 128 750

119 128 64 1,201 967 9,159 10.56% 48,004 134,820 0.0307% 128 750

120 128 64 1,171 936 9,128 10.25% 48,015 134,360 0.0307% 128 750

121 128 128 396 159 16,543 0.96% 46,004 110,390 0.0145% 128 359

122 128 128 399 158 16,542 0.96% 46,033 110,170 0.0145% 128 360

123 128 128 388 151 16,535 0.91% 46,040 109,990 0.0144% 128 360

124 128 128 412 338 16,722 2.02% 46,016 130,130 0.0169% 128 360

125 128 128 401 325 16,709 1.95% 46,034 129,460 0.0168% 128 360

126 128 128 407 336 16,720 2.01% 46,065 130,340 0.0169% 128 360

127 128 128 1,221 502 16,886 2.97% 98,035 235,900 0.0143% 128 766

128 128 128 1,224 486 16,870 2.88% 98,032 234,020 0.0142% 128 766

129 128 128 1,212 479 16,863 2.84% 98,034 234,180 0.0142% 128 766

130 128 128 1,213 968 17,352 5.58% 98,038 275,780 0.0162% 128 766

131 128 128 1,223 975 17,359 5.62% 98,015 275,200 0.0162% 128 766

132 128 128 1,204 979 17,363 5.64% 98,017 277,010 0.0163% 128 766

133 256 4 771 297 1,321 22.48% 2,900 6,939 0.1811% 256 725

134 256 4 783 303 1,327 22.83% 2,901 6,933 0.1801% 256 725

135 256 4 784 309 1,333 23.18% 2,901 6,946 0.1796% 256 725

136 256 4 774 628 1,652 38.02% 2,900 8,154 0.1702% 256 725

137 256 4 784 635 1,659 38.28% 2,902 8,145 0.1692% 256 726

Continued on next page

156 Empirical Analysis of Decomposition for LP

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

138 256 4 785 636 1,660 38.31% 2,901 8,154 0.1693% 256 725

139 256 4 2,007 805 1,829 44.01% 6,000 14,428 0.1315% 256 1,500

140 256 4 2,034 795 1,819 43.71% 6,003 14,335 0.1313% 256 1,501

141 256 4 2,022 822 1,846 44.53% 6,000 14,397 0.1300% 256 1,500

142 256 4 2,027 1,650 2,674 61.71% 6,000 16,906 0.1054% 256 1,500

143 256 4 2,013 1,616 2,640 61.21% 6,001 16,837 0.1063% 256 1,500

144 256 4 2,023 1,633 2,657 61.46% 6,000 16,857 0.1057% 256 1,500

145 256 8 796 327 2,375 13.77% 5,800 13,975 0.1015% 256 725

146 256 8 797 332 2,380 13.95% 5,802 14,019 0.1015% 256 725

147 256 8 793 319 2,367 13.48% 5,801 13,982 0.1018% 256 725

148 256 8 795 648 2,696 24.04% 5,804 16,375 0.1047% 256 726

149 256 8 806 651 2,699 24.12% 5,801 16,349 0.1044% 256 725

150 256 8 794 651 2,699 24.12% 5,802 16,410 0.1048% 256 725

151 256 8 2,152 919 2,967 30.97% 12,002 29,064 0.0816% 256 1,500

152 256 8 2,194 904 2,952 30.62% 12,000 28,974 0.0818% 256 1,500

153 256 8 2,168 891 2,939 30.32% 12,007 28,937 0.0820% 256 1,501

154 256 8 2,187 1,787 3,835 46.60% 12,005 33,854 0.0735% 256 1,501

155 256 8 2,179 1,761 3,809 46.23% 12,002 33,808 0.0740% 256 1,500

156 256 8 2,165 1,764 3,812 46.28% 12,007 33,850 0.0740% 256 1,501

157 256 16 804 326 4,422 7.37% 11,609 27,964 0.0545% 256 726

158 256 16 799 331 4,427 7.48% 11,606 28,036 0.0546% 256 725

159 256 16 795 331 4,427 7.48% 11,600 28,026 0.0546% 256 725

160 256 16 824 650 4,746 13.70% 11,603 32,355 0.0588% 256 725

161 256 16 820 649 4,745 13.68% 11,614 32,363 0.0587% 256 726

162 256 16 850 674 4,770 14.13% 11,604 32,380 0.0585% 256 725

163 256 16 2,252 920 5,016 18.34% 24,004 58,016 0.0482% 256 1,500

164 256 16 2,316 950 5,046 18.83% 24,007 57,895 0.0478% 256 1,500

165 256 16 2,271 931 5,027 18.52% 24,005 57,826 0.0479% 256 1,500

Continued on next page

Problem Characteristics 157

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

166 256 16 2,275 1,801 5,897 30.54% 24,006 67,090 0.0474% 256 1,500

167 256 16 2,325 1,868 5,964 31.32% 24,009 67,134 0.0469% 256 1,501

168 256 16 2,308 1,842 5,938 31.02% 24,000 67,106 0.0471% 256 1,500

169 256 32 820 336 8,528 3.94% 23,213 55,974 0.0283% 256 725

170 256 32 817 332 8,524 3.89% 23,217 55,913 0.0283% 256 726

171 256 32 812 337 8,529 3.95% 23,202 56,020 0.0283% 256 725

172 256 32 812 639 8,831 7.24% 23,200 64,454 0.0315% 256 725

173 256 32 810 649 8,841 7.34% 23,204 64,666 0.0315% 256 725

174 256 32 837 653 8,845 7.38% 23,222 64,434 0.0314% 256 726

175 256 32 2,347 947 9,139 10.36% 48,013 115,560 0.0263% 256 1,500

176 256 32 2,318 937 9,129 10.26% 48,004 115,760 0.0264% 256 1,500

177 256 32 2,327 958 9,150 10.47% 48,008 115,790 0.0264% 256 1,500

178 256 32 2,331 1,860 10,052 18.50% 48,008 133,810 0.0277% 256 1,500

179 256 32 2,318 1,849 10,041 18.42% 48,011 134,260 0.0279% 256 1,500

180 256 32 2,314 1,829 10,021 18.25% 48,005 133,790 0.0278% 256 1,500

181 256 64 811 318 16,702 1.90% 46,438 110,970 0.0143% 256 726

182 256 64 836 338 16,722 2.02% 46,404 111,150 0.0143% 256 725

183 256 64 827 334 16,718 2.00% 46,447 111,430 0.0144% 256 726

184 256 64 794 649 17,033 3.81% 46,406 130,720 0.0165% 256 725

185 256 64 808 655 17,039 3.84% 46,425 130,520 0.0165% 256 725

186 256 64 801 646 17,030 3.79% 46,435 130,520 0.0165% 256 726

187 256 64 2,318 944 17,328 5.45% 96,006 231,100 0.0139% 256 1,500

188 256 64 2,330 912 17,296 5.27% 96,037 228,970 0.0138% 256 1,501

189 256 64 2,362 966 17,350 5.57% 96,017 230,960 0.0139% 256 1,500

190 256 64 2,336 1,867 18,251 10.23% 96,012 268,700 0.0153% 256 1,500

191 256 64 2,334 1,865 18,249 10.22% 96,006 268,770 0.0153% 256 1,500

192 256 64 2,320 1,842 18,226 10.11% 96,059 268,950 0.0154% 256 1,501

193 256 128 805 298 33,066 0.90% 92,800 219,700 0.0072% 256 725

Continued on next page

158 Empirical Analysis of Decomposition for LP

Table A.2 — continued from previous page

n h m m0 rows0 rows m0% cols nz nz% rows cols

194 256 128 821 309 33,077 0.93% 92,873 220,000 0.0072% 256 726

195 256 128 815 310 33,078 0.94% 92,819 220,320 0.0072% 256 725

196 256 128 812 653 33,421 1.95% 92,833 260,700 0.0084% 256 725

197 256 128 813 658 33,426 1.97% 92,853 260,530 0.0084% 256 725

198 256 128 810 657 33,425 1.97% 92,854 260,860 0.0084% 256 725

199 256 128 2,297 885 33,653 2.63% 192,080 456,330 0.0071% 256 1,501

200 256 128 2,388 928 33,696 2.75% 192,100 457,940 0.0071% 256 1,501

201 256 128 2,347 942 33,710 2.79% 192,070 460,780 0.0071% 256 1,501

202 256 128 2,342 1,873 34,641 5.41% 192,010 538,330 0.0081% 256 1,500

203 256 128 2,359 1,892 34,660 5.46% 192,040 538,580 0.0081% 256 1,500

204 256 128 2,358 1,870 34,638 5.40% 192,020 536,630 0.0081% 256 1,500

205 256 256 822 315 65,851 0.48% 185,000 439,940 0.0036% 256 723

206 256 256 825 316 65,852 0.48% 185,020 441,570 0.0036% 256 723

207 256 256 824 314 65,850 0.48% 185,020 440,750 0.0036% 256 723

208 256 256 836 673 66,209 1.02% 185,100 519,760 0.0042% 256 723

209 256 256 827 685 66,221 1.03% 185,200 523,080 0.0043% 256 723

210 256 256 827 682 66,218 1.03% 185,030 522,400 0.0043% 256 723

211 256 256 2,186 831 66,367 1.25% 360,200 856,740 0.0036% 256 1,407

212 256 256 2,174 880 66,416 1.33% 360,180 864,590 0.0036% 256 1,407

213 256 256 2,143 825 66,361 1.24% 360,050 857,050 0.0036% 256 1,406

214 256 256 2,188 1,769 67,305 2.63% 360,040 1,010,500 0.0042% 256 1,406

215 256 256 2,178 1,772 67,308 2.63% 360,050 1,011,900 0.0042% 256 1,406

216 256 256 2,204 1,802 67,338 2.68% 360,060 1,015,400 0.0042% 256 1,406

Appendix B

Some Source Codes

B.1 Calling CPLEX in MATLAB

/***

* Program: cplexwarm_mex.c *

* Calling CPLEX in MATLAB with a warm start point *

* Designed for CPLEX 10.1 *

* Originally coded by David R. Musicant (musicant@cs.wisc.edu) *

* Modified by Jiarui Dang (jrdang@gmail.com) *

* This software is free for academic and research use only. *

***/

#include "/.software/share/cplex/cplex101/include/ilcplex/cplex.h"

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include "mex.h"

#define MINIMIZE 1

#define MANDATORY_ARGS 5

159

160 Empirical Analysis of Decomposition for LP

#define MAX_ITER_DEFAULT 10000

/* Input arguments */

#define C_IN 0

#define A_IN 1

#define B_IN 2

#define L_IN 3

#define U_IN 4

#define LE_IN 5

#define GE_IN 6

#define MI_IN 7

#define OP_IN 8

#define PRE_CSTAT_IN 9

#define PRE_RSTAT_IN 10

/* Output arguments */

#define OBJ_OUT 0

#define X_OUT 1

#define PI_OUT 2

#define STAT_OUT 3

#define CSTAT_OUT 4

#define ITER_OUT 5

#define RSTAT_OUT 6

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

/* MATLAB memory structures */

const mxArray *c,*A,*b,*l,*u,*le,*ge,*maxIterPtr,*optPtr,*pre_cstat,*pre_rstat;

/* Return arguments */

double *matlpstat,*objval,*x,*pi,*cstat,*itcnt,*rstat;

Some Source Codes 161

/* Other declarations */

char *sense,errorMsg[255];

int rows,cols,maxIter,*matbeg,*matcnt,*matind,opt;

double *c_ptr,*b_ptr,*matval,*l_ptr,*u_ptr,*slack,*dj,*pre_cstat_ptr,*pre_rstat_pt

int matrixSize,status,i,j,le_size,ge_size,m,n,netfind;

double *le_ptr = NULL,*ge_ptr = NULL;

int *istat,lpstat,*jstat,method;

CPXENVptr env;

CPXLPptr lp = NULL;

/* Assign pointers to MATLAB memory stuctures */

c = prhs[C_IN];

A = prhs[A_IN];

b = prhs[B_IN];

l = prhs[L_IN];

u = prhs[U_IN];

pre_cstat = prhs[PRE_CSTAT_IN];

pre_rstat = prhs[PRE_RSTAT_IN];

/* Get an mxArray’s real data elements */

c_ptr = mxGetPr(c);

b_ptr = mxGetPr(b);

l_ptr = mxGetPr(l);

u_ptr = mxGetPr(u);

rows = mxGetM(b);

cols = mxGetM(c);

pre_cstat_ptr = mxGetPr(pre_cstat);

pre_rstat_ptr = mxGetPr(pre_rstat);

162 Empirical Analysis of Decomposition for LP

int pre_c_stat[cols], pre_r_stat[rows];

/* Build the matrix of coefficients, taking sparsity into account. */

if (mxIsSparse(A)){

/* Sparse */

matbeg = mxGetJc(A); /* beginnings of each column */

matcnt = (int*)mxCalloc(cols,sizeof(int)); /* # of entries in each col */

for (i = 0; i < cols; i++)

matcnt[i] = matbeg[i+1] - matbeg[i];

matind = mxGetIr(A); /* row locations */

matval = mxGetPr(A); /* actual coefficients */

} else {

/* Dense */

m = mxGetM(A);

n = mxGetN(A);

matbeg = (int*)mxCalloc(n,sizeof(int));

matcnt = (int*)mxCalloc(n,sizeof(int));

matind = (int*)mxCalloc(m*n,sizeof(int));

matval = mxGetPr(A);

for (j = 0; j < n; j++) {

matbeg[j] = j*m;

for (i = 0; i < m; i++)

matind[j*m + i] = i;

matcnt[j] = m;

}

}

/* Initialize all constraints to be equality constraints (default). */

sense = (char*)mxCalloc(rows,sizeof(char));

for(i = 0; i < rows; i++)

Some Source Codes 163

sense[i] = ’E’;

/* If "<=" constraints given, set them up. */

if(nrhs > MANDATORY_ARGS){

le = prhs[LE_IN];

le_ptr = mxGetPr(le);

le_size = mxGetM(le);

for(i = 0; i < le_size; i++)

sense[(int)(le_ptr[i]-1)] = ’L’;

}

/* If ">=" constraints given, set them up. */

if(nrhs > MANDATORY_ARGS + 1){

ge = prhs[GE_IN];

ge_ptr = mxGetPr(ge);

ge_size = mxGetM(ge);

for(i = 0; i < ge_size; i++)

sense[(int)(ge_ptr[i]-1)] = ’G’;

}

/* Set up maximum number of iterations */

if (nrhs > MANDATORY_ARGS + 2) {

maxIterPtr = prhs[MI_IN];

maxIter = (int)mxGetScalar(maxIterPtr);

} else

maxIter = MAX_ITER_DEFAULT;

/* Set up optimizer */

if (nrhs > MANDATORY_ARGS + 3) {

optPtr = prhs[OP_IN];

opt = (int)mxGetScalar(optPtr);

164 Empirical Analysis of Decomposition for LP

} else

opt = 0;

/* Output to MATLAB */

plhs[OBJ_OUT] = mxCreateDoubleMatrix(1,1,mxREAL);

plhs[X_OUT] = mxCreateDoubleMatrix(cols,1,mxREAL);

plhs[PI_OUT] = mxCreateDoubleMatrix(rows,1,mxREAL);

plhs[STAT_OUT] = mxCreateDoubleMatrix(1,1,mxREAL);

plhs[CSTAT_OUT] = mxCreateDoubleMatrix(cols,1,mxREAL);

plhs[ITER_OUT] = mxCreateDoubleMatrix(1,1,mxREAL);

plhs[RSTAT_OUT] = mxCreateDoubleMatrix(rows,1,mxREAL);

objval = mxGetPr(plhs[OBJ_OUT]);

x = mxGetPr(plhs[X_OUT]);

pi = mxGetPr(plhs[PI_OUT]);

matlpstat = mxGetPr(plhs[STAT_OUT]);

cstat = mxGetPr(plhs[CSTAT_OUT]);

istat = (int*)mxCalloc(cols,sizeof(int));

itcnt = mxGetPr(plhs[ITER_OUT]);

rstat = mxGetPr(plhs[RSTAT_OUT]);

jstat = (int*)mxCalloc(cols,sizeof(int));

/* Open CPLEX environment */

env = CPXopenCPLEX(&status);

if (!env) {

printf(CPXgeterrorstring(env,status,errorMsg));

mexErrMsgTxt("\nCould not open CPLEX environment.");

}

/* Create CPLEX problem space */

lp = CPXcreateprob(env, &status, "matlab");

Some Source Codes 165

if (!lp) {

printf(CPXgeterrorstring(env,status,errorMsg));

CPXcloseCPLEX(&env);

mexErrMsgTxt("\nCould not create CPLEX problem.");

}

/* Copy LP into CPLEX environment */

status = CPXcopylp(env, lp, cols, rows, MINIMIZE, c_ptr, b_ptr, sense,

matbeg, matcnt, matind, matval, l_ptr, u_ptr, NULL);

if (status) {

printf(CPXgeterrorstring(env,status,errorMsg));

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

mexErrMsgTxt("\nCould not copy CPLEX problem.");

}

/* Set iteration limit. */

status = CPXsetintparam(env, CPX_PARAM_ITLIM, maxIter);

if (status) {

printf(CPXgeterrorstring(env,status,errorMsg));

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

mexErrMsgTxt("\nCould not set number of iterations.");

}

/* Now copy the basis */

status = CPXsetintparam (env, CPX_PARAM_ADVIND, CPX_ON);

if (status) {

fprintf (stderr,

"Failure to turn on screen indicator, error %d.\n", status);

CPXfreeprob(env,&lp);

166 Empirical Analysis of Decomposition for LP

CPXcloseCPLEX(&env);

}

/* convert real number to iteger */

for (i=0; i < cols; i++)

pre_c_stat[i] = pre_cstat_ptr[i];

for (i=0; i < rows; i++)

pre_r_stat[i]= pre_rstat_ptr[i];

status = CPXcopybase (env, lp, pre_c_stat, pre_r_stat);

/* status = CPXcopystart (env, lp, pre_c_stat, pre_r_stat,

NULL, NULL, NULL, NULL);*/

if (status) {

fprintf (stderr, "Failed to copy the basis.\n");

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

}

/* Perform optimization depending on the optimizer */

netfind=0;

if (opt==0) method = CPX_ALG_PRIMAL;

if (opt==1) status = CPX_ALG_BARRIER;

if (opt==2) status = CPXhybnetopt(env,lp,netfind);

if (opt==3) status = CPXhybbaropt(env,lp,netfind);

status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, method);

/* status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_AUTOMATIC);

status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_BARRIER);

status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_DUAL); */

if (status) {

fprintf (stderr,

Some Source Codes 167

"Failed to set the optimization method, error %d.\n", status);

}

status = CPXlpopt(env,lp);

if (status) {

printf(CPXgeterrorstring(env,status,errorMsg));

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

mexErrMsgTxt("\nOptimization error");

}

/* Obtain solution */

status = CPXsolution(env, lp, &lpstat, objval, x, pi, NULL, NULL);

*matlpstat = lpstat;

if (status) {

printf(CPXgeterrorstring(env,status,errorMsg));

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

mexErrMsgTxt("\nFailure when retrieving solution.");

}

/* Get status of columns */

status = CPXgetbase(env, lp, istat, jstat);

if (status) {

printf(CPXgeterrorstring(env,status,errorMsg));

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

mexErrMsgTxt("\nUnable to get basis status.");

}

/* Copy int column values to double column values */

168 Empirical Analysis of Decomposition for LP

for (i=0; i < cols; i++)

cstat[i] = istat[i];

for (i=0; i<rows; i++)

rstat[i]=jstat[i];

/* Get iteration count */

*itcnt = (double)CPXgetitcnt(env,lp);

/* printf ("Iteration count = %d\n\n", CPXgetitcnt (env, lp));

printf("check index: %d, %d \n", CPXgetnumcols(env,lp), CPXgetnumrows(env,lp)); */

/* Clean up problem */

CPXfreeprob(env,&lp);

CPXcloseCPLEX(&env);

}

B.2 Generating Pseudo Blocks (MPS) by GAMS

* Stochastic Portfolio Management(Dual block-angular)

* User needs to set the number of assets and senarios

* Expected returns are generted with random numbersf [0.8,1.2]

* Generate series of pseudo blocks in MPS format

OPTION RESLIM = 10000;

OPTION ITERLIM = 25000;

OPTION LIMROW = 0;

OPTION LIMCOL = 0;

OPTION SOLPRINT = OFF;

Some Source Codes 169

SETS

S Scenarios

/

$offlisting

$include s.csv

$onlisting

/

A Assets

/

$offlisting

$include a.csv

$onlisting

/;

ALIAS (S,O);

SCALARS

RC Cash rate of return /1.05/

WI Initial capital /50/

WF Goal /55/;

TABLE P(S,A) Asset rates of return

$offlisting

$ondelim

$include p.csv

$offdelim

$onlisting

PARAMETERS

170 Empirical Analysis of Decomposition for LP

P_s(A);

VARIABLES

EU

POSITIVE VARIABLES

C Cash Period 0

X(A) Asset Period 0

C1_s Cash Period 1

Y_s(A) Asset Period 1

U_s(O) Surplus Period 2

V_s(O) Deficit Period 2;

EQUATIONS

OBJECTIVE Calculating the expectation of the utility function

G Balance of Financial Flows Period 0

H_s Balance of Financial Flows Period 1

L_s(O) Balance of Financial Flows Period 2;

OBJECTIVE.. EU=E=SUM(O,5*U_s(O)-20*V_s(O));

G.. C+SUM(A,X(A)) =L= WI;

H_s.. -RC*C-SUM(A,X(A)*P_s(A)) =L= -C1_s-SUM(A,Y_s(A));

L_s(O).. -RC*C1_s-SUM(A,Y_s(A)*P(O,A)) =L= -WF-U_s(O)+V_s(O);

MODEL PORT /ALL/;

file mpsopt /convert.opt/;

option lp=convert;

PORT.optfile=1;

Some Source Codes 171

loop(S,

P_s(A) = P(S,A);

* Generates an mps file for each subproblem called ’sub*.mps’

put mpsopt "cplexmps port" card(S):0:0 "_sub" ord(S):0:0 ".mps";

putclose mpsopt;

Solve PORT using lp maximizing EU;

);

B.3 Converting Free MPS Format to Standard

%%

% Converting free mps format files to standard mps %

% MATLAB .m code %

% Input: cplexmps.mps (free MPS format) %

% Output: stand.mps (industrial standard MPS format) %

%%

fid=fopen(’cplexmps.mps’, ’rt’);

rows={}; columns={}; rhs={}; bounds={};

numrows=0; numcols=0; numrhs=0; numbds=0;

tag=0;

while 1

tline = fgetl(fid);

if ~ischar(tline), break, end

172 Empirical Analysis of Decomposition for LP

[first, rest] = strtok(tline);

switch first %indicator lines

case ’NAME’

filename=strtrim(rest);

case ’ROWS’

tag=1;

disp(first);

case ’COLUMNS’

tag=2;

disp(first);

case ’RHS’

tag=3;

disp(first);

case ’BOUNDS’

tag=4;

disp(first);

case ’ENDATA’

break;

otherwise

switch tag %data lines

case 1 %rows

numrows=numrows+1;

rows{end+1}=strtrim(first);

rows{end+1}=strtrim(rest);

case 2 %columns

[two, three] = strtok(rest);

numcols=numcols+1;

columns{end+1}=strtrim(first);

columns{end+1}=strtrim(two);

Some Source Codes 173

columns{end+1}=strtrim(three);

case 3 %rhs

[two, three] = strtok(rest);

numrhs=numrhs+1;

rhs{end+1}=strtrim(first);

rhs{end+1}=strtrim(two);

rhs{end+1}=strtrim(three);

case 4 %bounds

[two, three] = strtok(rest);

[three, four]=strtok(three);

numbds=numbds+1;

bounds{end+1}=strtrim(first);

bounds{end+1}=strtrim(two);

bounds{end+1}=strtrim(three);

bounds{end+1}=strtrim(four);

otherwise

end

end

end

fclose(fid);

fid=fopen(’stand.mps’, ’wt’); %industrial standard MPS format

fprintf(fid, ’NAME ’);

fprintf(fid, ’%s\n’, filename);

fprintf(fid, ’ROWS\n’);

for i=1:numrows %data of rows

fprintf(fid, ’ %s %s\n’,rows{2*i-1},rows{2*i});

end

fprintf(fid, ’COLUMNS\n’); %data of columns

174 Empirical Analysis of Decomposition for LP

for i=1:numcols

fprintf(fid, ’ %s’,columns{3*(i-1)+1});

for j =1:(10-length(columns{3*(i-1)+1}));

fprintf(fid, ’ ’);

end

fprintf(fid,columns{3*(i-1)+2});

for j=1:(10-length(columns{3*(i-1)+2}))

fprintf(fid, ’ ’);

end

fprintf(fid, ’%s\n’, columns{3*i});

end

fprintf(fid, ’RHS\n’); %data of rhs

for i=1:numrhs

fprintf(fid, ’ %s’,rhs{3*(i-1)+1});

for j =1:(10-length(rhs{3*(i-1)+1}));

fprintf(fid, ’ ’);

end

fprintf(fid,rhs{3*(i-1)+2});

for j=1:(10-length(rhs{3*(i-1)+2}))

fprintf(fid, ’ ’);

end

fprintf(fid, ’%s\n’, rhs{3*i});

end

fprintf(fid, ’BOUNDS\n’); %data of bounds

for i=1:numbds

fprintf(fid, ’ %s’,bounds{4*(i-1)+1});

fprintf(fid, ’ %s’,bounds{4*(i-1)+2});

for j =1:(10-length(bounds{4*(i-1)+2}));

fprintf(fid, ’ ’);

Some Source Codes 175

end

fprintf(fid,bounds{4*(i-1)+3});

for j=1:(10-length(bounds{4*(i-1)+3}))

fprintf(fid, ’ ’);

end

fprintf(fid, ’%s\n’, bounds{4*i});

end

fprintf(fid, ’ENDATA\n’);

fclose(fid);

Appendix C

Weights in Robust Regression

C.1 Robust Regression: DW vs. Simplex

C.2 Robust Regression: ACCPM vs. IPM

177

178 Empirical Analysis of Decomposition for LP

Table C.1: Weights in Random Prediction on RDW/Simplex (Financial)

col. 1-20 21-40 41-60 61-80 81-85

0.88 0.9986 0.9997 0.9911 0.9541

0.9997 0.9469 0.8933 0.9867 0.9832

0.999 0.9805 0.9957 0.991 0.6456

0.9963 0.5695 0.9344 0.9788 0.9936

0.9735 0.9748 0.9755 0.9133 0.5487

0.9566 0.9832 0.9726 0.7323

0.9754 0.9868 0.9567 0.9885

0.9863 0.9961 0.6896 0.8523

0.9853 0.8123 0.9992 0.741

0.9801 0.9727 0.9997 0.7802

0.9907 0.9977 1 0.6698

0.9968 0.965 0.9138 0.9696

0.9077 0.9931 0.9301 0.9139

0.8632 0.7476 0.8497 0.9598

0.8846 0.8552 0.9746 0.8483

0.9299 0.8632 0.877 0.9758

0.916 0.9186 0.993 0.8432

0.7778 0.9683 0.9972 0.8363

0.9807 0.9646 0.8559 0.9641

0.8186 0.9523 0.915 0.9654

Weights in Robust Regression 179

Table C.2: Weights in Random Prediction on RDW/Simplex (Multicommodity)

col. 1-30 31-60 61-90 91-120 121-150 151-180 181-206

0.7997 0.9997 0.9883 0.9472 1 0.8355 0.9017

0.7608 0.9936 0.9817 0.9726 0.9895 0.9988 0.9179

0.8231 0.8708 0.8352 0.9997 0.9566 0.9968 0.8742

0.7741 0.8306 0.9691 0.9993 0.9925 0.9988 0.9348

0.8303 0.975 0.9959 1 0.9999 0.9469 0.9778

0.8758 0.8722 0.9566 0.9997 0.999 0.9452 0.8416

0.9995 0.7963 0.9826 0.9508 0.9966 0.8993 0.939

0.9945 0.8161 0.9192 0.9964 0.992 0.8842 0.9944

0.9281 0.9741 0.8797 0.9875 0.8147 0.9093 0.929

0.9684 0.9783 0.9932 0.999 0.8401 0.7204 0.899

0.8971 0.9377 0.9828 1 0.9269 0.8136 0.8321

0.9258 0.9536 0.9932 0.9916 0.993 0.9137 0.9937

0.8267 0.9578 0.998 0.9952 0.9612 0.9334 0.9188

0.9998 0.7572 0.9958 0.999 0.8975 0.9738 0.9404

0.905 0.8367 0.9954 0.987 0.8249 1 0.946

0.91 0.7938 0.8689 0.9684 0.9492 0.9985 0.9836

0.9055 0.9411 0.9183 0.9358 0.8752 0.981 0.952

0.9428 0.9218 0.8687 0.9957 0.9597 0.9192 0.9418

0.9914 0.9875 0.9273 0.9967 0.916 0.8512 0.9954

0.9874 0.9971 0.8577 0.9975 0.9226 0.949 0.9726

0.9945 0.9934 0.9996 0.997 0.9968 0.9714 0.9815

0.9502 0.9982 0.9801 0.9978 0.9996 0.9732 0.9357

0.9413 0.9983 0.9865 0.9806 0.9398 0.99 0.879

0.986 0.9988 0.9307 0.9757 0.968 0.9391 0.9908

0.6637 0.957 0.975 0.9973 0.9781 0.974 0.9809

0.9237 0.9341 0.9985 0.9829 0.8331 0.9829 0.9715

0.7704 0.8245 0.7887 0.9739 0.7569 0.8534

0.9171 0.9738 0.798 0.9652 0.951 0.9082

0.8859 0.9608 0.8564 0.9999 0.5594 0.8594

0.9253 0.948 0.9527 0.9911 0.8257 0.9925

180 Empirical Analysis of Decomposition for LP

Table C.3: Weights in Extrapolation on RDW/Simplex (Financial)

col. 1-20 21-40 41-60 61-80 81-85

0.9277 0.9434 0.8639 0.9622 0.9835

0.9999 0.9728 0.9999 0.9994 0.9811

0.9978 0.6596 0.9013 0.9774 0.9608

0.998 0.9617 0.9491 0.6849 0.7649

0.9793 0.9702 0.9959 0.9476 0.9996

0.9584 0.9738 0.9648 0.8165

0.9761 0.9867 0.6986 0.9693

0.9864 0.9522 0.9995 0.9212

0.9856 0.998 0.9939 0.8433

0.9798 0.9781 0.9942 0.8451

0.9978 0.9987 0.8777 0.9671

0.9127 0.8198 0.8925 0.9362

0.8661 0.9094 0.8013 0.9452

0.9136 0.918 0.9579 0.9074

0.9517 0.9591 0.8863 0.9952

0.9965 0.9715 0.989 0.7955

0.9063 0.9714 1 0.7819

0.8296 0.9781 0.9125 0.877

0.881 0.9748 0.8816 0.9904

0.9988 0.9947 0.9714 0.9584

Weights in Robust Regression 181

Table C.4: Weights in Extrapolation on RDW/Simplex (Multicommodity)

col. 1-30 31-60 61-90 91-120 121-150 151-180 181-206

0.8184 0.9996 0.9636 0.7963 0.987 0.915 0.9958

0.7793 0.9969 0.951 0.8056 0.9788 0.95 0.9527

0.8415 0.9926 0.9846 0.8643 0.9708 0.963 0.9835

0.7966 0.8576 0.9852 0.9575 1 0.795 0.9961

0.8525 0.8143 0.9972 0.9521 0.9933 0.7104 0.9763

0.8958 0.9708 0.8114 0.9767 0.9999 0.9311 0.9721

0.9999 0.8765 0.9709 0.9999 0.9778 0.5629 0.7971

0.9922 0.7982 0.9969 0.9988 0.9615 0.8345 0.863

0.9166 0.8183 0.9584 0.9999 0.9335 0.8444 0.8043

0.9598 0.9792 0.983 0.9997 0.9835 0.9969 0.9792

0.8798 0.9697 0.9175 0.9489 0.999 0.994 0.8584

0.9116 0.9832 0.8765 0.9959 1 0.9997 0.8782

0.8402 0.9356 0.9938 0.9927 0.9977 0.9199 0.8964

0.9997 0.9521 0.9835 1 0.9935 0.918 0.9522

0.918 0.9566 0.9938 0.9988 0.8132 0.8623 0.9882

0.9244 0.742 0.9968 0.9952 0.8264 0.8478 0.8611

0.9204 0.8262 0.9939 0.9978 0.9194 0.8774 0.9533

0.955 0.7808 0.9965 0.9967 0.9935 0.6639 0.9863

0.9922 0.9427 0.8729 0.9894 0.9716 0.8274 0.8841

0.9849 0.9225 0.9228 0.9714 0.9125 0.9258 0.7655

0.9931 0.9891 0.9122 0.9391 0.8415 0.9444 0.9645

0.9416 0.9984 0.8693 0.9965 0.9322 0.9801 0.9936

0.9318 0.9952 0.9292 0.9974 0.8472 0.9991 0.9696

0.9822 0.9965 0.858 0.9964 0.9447 0.9957 0.9585

0.6675 0.9989 0.9995 0.9996 0.9208 0.9621 0.9994

0.9316 0.9994 0.9789 0.9928 0.9274 0.8815 0.9532

0.7778 0.9589 0.9859 0.9958 0.8939 0.8005

0.9276 0.9326 0.9242 0.9874 0.995 0.9215

0.897 0.8183 0.972 0.9832 0.9999 0.9506

0.9361 0.974 0.9988 0.9995 0.8875 0.953

182 Empirical Analysis of Decomposition for LP

Table C.5: Weights in Random Prediction on RACCPM/IPM (Financial)

col. 1-20 21-40 41-60 61-80 81-90

0 0.9855 0.9715 0.6246 0.9998

0.5637 1 0.8408 0.9943 0.9962

0.7234 0.9908 0.9938 0.9896 0.9987

0.9889 0.9092 0.7785 0.9646 0.9282

0.9716 0.9942 0.9328 0.9963 0.9725

0.9388 0.8158 0.8644 0.9238 0.9846

0.9998 0.9344 0 0.7024 0.9504

0.9947 0.9326 0 0 0.9264

0.6577 0.7182 0.982 0.948 0.9641

0.4027 0.9901 0.9158 0.9983 0.9865

0.809 0.9465 0.9088 0.9587

0.9994 0.9828 0.9943 0.9975

0.9472 0.8869 0.9375 0.9795

0.9758 0.9986 0.9899 0.7248

0.6848 1 0.5906 0

0.9984 0.8425 0.7048 0.9827

0.9253 0.8319 0.601 0.9599

0.9727 0.8382 0.9952 0.8261

0.9933 0.9825 0.904 0.9335

0.9927 0.899 0.9991 0.9897

Weights in Robust Regression 183

Table C.6: Weights in Random Prediction on RACCPM/IPM (Multicommodity)

col. 1-20 21-40 41-60 61-80 81-100 101-120 121-122

0.9735 0.8956 0.9818 0.8637 0.9322 0.8182 0.9905

0.972 0.901 0.9522 1 0.9489 0.9894 0.9997

0.9349 0.9572 0.9946 0.7646 0.9919 0.9826

0.9578 0.9351 1 0.7075 0.9983 0.9529

0.9709 0.984 0.8263 0.0712 0.8183 0.9917

0.935 0.9908 0.8822 0.1386 0.7992 0.9993

0.9901 0.9906 0.8925 0.3909 0.6693 0.9978

0.9914 0.952 0.7808 1 0.9885 1

0.9995 0.9682 0.785 1 0.9991 0.8793

0.903 0.9254 0.7961 0.9458 0.9982 0.9295

0.9743 0.8986 0.8966 0.8913 0.989 0.8782

0.968 0.8719 0.9306 0.8862 0.9996 0.7647

0.9621 0.967 0.9993 0.9671 0.9949 0.8434

0.9044 0.9976 0.8967 0.9792 0.9845 0.996

0.8955 0.9578 0.9319 0.9727 0.8847 0.999

0.9989 0.9911 0.963 0.9999 0.8949 0.9723

0.999 0.9902 0.9726 0.4254 0.8889 0.838

0.9906 0.9996 0.9683 0.4619 0.9125 0.7117

0.9835 0.9578 0.9609 0.607 0.8088 0.7168

0.9377 0.9998 0.6075 0.9775 0.8424 0.9952

184 Empirical Analysis of Decomposition for LP

Table C.7: Weights in Extrapolation on RACCPM/IPM (Financial)

col. 1-20 21-40 41-60 61-80 81-90

0 1 0.9746 0.5458 0.9915

0.6576 1 0.8847 0.999 0.9994

0.7523 0.966 0.9731 0.9708 0.8816

0.9855 0.9991 0.8481 0.9849 0

0.985 0.9903 0.9991 0.9993 0.9975

0.9887 0.9161 0.6866 0.8315 0.9556

0.9754 0.9818 0.8709 0 0.9896

0.9849 0.8547 0 0.9469 0.9559

0.9924 0.9696 0 0.9602 0.8971

0.4215 0.719 0.9794 1 0.8558

0.5148 0.9743 0.9121 0.9753

0.8761 0.9198 0.9128 0.9997

0.998 0.9759 0.9985 0.9454

0.9269 0.8784 0.9563 0.8204

0.9754 0.9999 0.9989 0

0.6898 0.9977 0.4504 0.9473

0.9178 0.7645 0.4542 0.9782

0.9975 0.7338 0.988 0.8512

0.9696 0.9008 0.8782 0.9547

0.9987 0.8012 0.9966 0.9689

Weights in Robust Regression 185

Table C.8: Weights in Extrapolation on RACCPM/IPM (Multicommodity)

col. 1-20 21-40 41-60 61-80 81-100 101-120 121-122

0.9661 0.8831 0.9996 0.9179 1 0.9825 0.9995

0.9647 0.9128 0.9794 0.9735 0.4357 0.8764 0.9679

0.9226 0.9655 0.9504 0.9522 0.4732 0.8901

0.9665 0.9449 0.9943 0.6239 0.6202 0.8842

0.9789 0.9837 1 0.8783 0.976 0.9084

0.9174 0.9878 0.8112 0.9991 0.9284 0.79

0.9934 0.9902 0.871 0.7764 0.9451 0.8256

0.9868 0.9924 0.8818 0.7198 0.9815 0.8003

0.998 0.9455 0.7636 0.8932 0.989 0.9861

0.9187 0.9621 0.7665 0.0788 0.9969 0.9774

0.9827 0.9189 0.7801 0.1499 0.805 0.9894

0.9774 0.8909 0.8913 0.4099 0.7845 0.9822

0.9566 0.8621 0.9265 0.9999 0.6482 0.9516

0.8959 0.9591 0.9991 0.9998 0.9836 0.9917

0.8828 0.9953 0.8818 0.9389 0.9975 0.9984

0.9998 0.9488 0.887 0.9 0.9961 1

0.9971 0.9898 0.9242 0.8953 0.9872 0.7376

0.986 0.9883 0.9915 0.9728 0.998 0.7531

0.9867 0.9992 0.9627 0.9827 0.9998 0.821

0.9278 0.9581 0.9722 0.9766 0.9938 0.9946

Appendix D

Correlation Among Dimensional

Parameters

D.1 Correlation Matrix for Financial Model

D.2 Correlation Matrix for Multicommodity Model

187

188 Empirical Analysis of Decomposition for LP

Table D.1: Correlation Matrix for 100 Financial Problems

corr. h m0 m m0% n nz% msub nsub

h 1 0 0.96 -0.7 0.97 -0.7 0.89 0.95

m0 0 1 0.19 0.19 0.14 0.17 0.45 0.32

m 0.96 0.19 1 -0.6 1 -0.6 0.95 0.97

m0% -0.7 0.19 -0.6 1 -0.6 1 -0.6 -0.6

n 0.97 0.14 1 -0.6 1 -0.6 0.93 0.96

nz% -0.7 0.17 -0.6 1 -0.6 1 -0.6 -0.6

msub 0.89 0.45 0.95 -0.6 0.93 -0.6 1 0.99

nsub 0.95 0.32 0.97 -0.6 0.96 -0.6 0.99 1

Table D.2: Correlation Matrix for 216 Multicommodity Problems

corr. h m0 m m0% n nz% msub nsub

h 1 0.2 0.96 -0.6 0.89 -0.5 0.32 0.23

m0 0.2 1 0.32 0.18 0.43 -0.4 0.61 0.86

m 0.96 0.32 1 -0.5 0.94 -0.4 0.48 0.38

m0% -0.6 0.18 -0.5 1 -0.4 0.56 -0.1 0.1

n 0.89 0.43 0.94 -0.4 1 -0.4 0.44 0.48

nz% -0.5 -0.4 -0.4 0.56 -0.4 1 -0.5 -0.5

msub 0.32 0.61 0.48 -0.1 0.44 -0.5 1 0.79

nsub 0.23 0.86 0.38 0.1 0.48 -0.5 0.79 1

Bibliography

[1] I. Alder and A. Ulkucu. On the number of iterations in Dantzig-Wolfe decomposition.

In D. M. Himmelblau, editor, Decomposition of large scale problems, pages 181—187,

North-Holland, Amsterdam, 1973.

[2] A. Ali and J. L. Kennington. Mnetgen program documentation. Technical report

77003, Department of Industrial Engeneering and Operations Research, Southern

Methodist University, Dallas, 1977.

[3] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms for linear

programming. Management Sci., 42(12):1719—1731, 1996.

[4] F. Babonneau, O. D. Merle, and J.-P. Vial. Solving large-scale linear multicommodity

flow problems with an active set strategy and proximal-accpm. Oper. Res., 54(1):184—

197, 2006.

[5] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Sci-

entific, Belmont, MA, 1997.

[6] R. E. Bixby. Implementing the simplex method: the initial basis. ORSA J. Comput.,

4:267—284, 1992.

[7] R. E. Bixby. Solving real-world linear programs: a decade and more of progress. Oper.

Res., 50(1):3—15, 2002.

[8] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very

large-scale linear programming: a case study in combining interior point and simplex

methods. Oper. Res., 40(5):885—897, 1992.

189

190 Empirical Analysis of Decomposition for LP

[9] R. E. Bixby and M. J. Saltzman. Recovering an optimal basis from an interior point

solution. Oper. Res., 15(4):169—178, 1993.

[10] R. G. Bland. New finite pivoting rules for the simplex method. Math. Oper. Res.,

2:103—107, 1977.

[11] B. Borchers and J. E. Mitchell. Using an interior point method in a branch-and-bound

algorithm for integer programming. Rensselaer Polytechnic Institute, Troy, N. Y.,

1992.

[12] K. H. Borgwardt. The Simplex Method:a probabilistic analysis. Springer-Verlag, 1980.

[13] S. P. Bradley, A. C. Hax, and T. L. Magnanti. Applied Mathematical Programming.

Addison-Wesley Publishing Company, 1977.

[14] P. Cappanera and A. Frangioni. Symmetric parallelization of a cost-decomposition

algorithm for multicommodity flow problems. INFORMS J. Comput., 15(4):369—384,

2003.

[15] E. W. Cheney and A. A. Goldstein. Newton’s method for convex programming and

Tchebycheff approximation. Numeriche Mathematik, 1:253—268, 1959.

[16] V. Chvatal. Linear Programming. W.H. Freeman and Company, New York/San

Francisco, 1983.

[17] D. K. D. and J. M. Wilson. Developments in linear and integer programming. JSTOR:

Journal of the Operational Research Society, 53(10):1065—2072, 2002.

[18] G. B. Dantzig. Maximization of a linear function of variables subject to linear in-

equalities. In T. C. Koopmans, editor, Activity analysis of production and allocation,

pages 488—499, Wiley, New York, 1951.

[19] G. B. Dantzig, A. Orden, and P. Wolfe. The generalized simplex method for mini-

mizing a linear form under linear inequality restraints. Pacific J. Math., 5:183—195,

1955.

Correlation Among Dimensional Parameters 191

[20] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper. Res.,

8:101—111, 1960.

[21] G. B. Danzig. Linear programming and extensions. Princeton University Press, Prince-

ton, New Jersey, 1963.

[22] G. B. Danzig and P. Wolfe. The decomposition algorithm for linear programs. Econo-

metrica, 29:767—778, 1961.

[23] S. Elhedhli. Interior-point decomposition methods for integer programming: theory

and application. PhD thesis, Faculty of Management, McGill university, 2001.

[24] S. Elhedhli and J.-L. Goffin. The integration of an interior-point cutting plane method

within a branch-and-price algorithm. Math. Program., 100(A):267—294, 2004.

[25] S. Elhedhli, J.-L. Goffin, and J.-P. Vial. Nondifferentiable optimization: Cutting

plane methods. In C. Floudas and P. Pardalos, editors, Encyclopedia of Optimization,

Kluwer Academic Publishers, 2001.

[26] S. Elhedhli, J.-L. Goffin, and J.-P. Vial. Nondifferentiable optimization: Introduction,

applications and algorithms. In C. Floudas and P. Pardalos, editors, Encyclopedia of

Optimization, Kluwer Academic Publishers, 2001.

[27] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential unconstrained

minimization techniques. John Wiley and Sons, New York, 1968.

[28] R. Fourer. 2003 software survey: linear programming. OR/MS Today, December

2003:34—43, 2003.

[29] E. Fragniere, J. Gondzio, and J.-P. Vial. Building and solving large-scale stochastic

programs on an affordable distributed computing system. Ann. Oper. Res., 99:167—

187, 2000.

[30] A. Frangioni and G. Gallo. A bundle type dual-ascent approach to linear multicom-

modity min cost flow problems. INFORMS J. Comput., 11(4):370—393, 1999.

192 Empirical Analysis of Decomposition for LP

[31] K. R. Frisch. The logarithmic potential method of convex programming. Technical

report, University Institute of Economics, Oslo, Norway, 1955.

[32] K. Fukuda and T. Terlaky. On the existence of short admissible pivot sequences.

PUMA: Mathematics of Optimization, 10(4):431—488, 2000.

[33] GAMS. Mpswrite, 2000. http://www.gams.com/solvers/mpswrite.pdf.

[34] J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimiza-

tion with the projective algorithm. Management Sci., 38(2):284—302, 1992.

[35] J.-L. Goffin, A. Haurie, J.-P. Vial, and D. L. Zhu. Using central prices in the decom-

position of linear programs. European J. Oper. Res., 64:393—409, 1993.

[36] J.-L. Goffin and J.-P. Vial. On the computation of weighted analytic centers and dual

ellipsoids with the projective algorithm. Math. Program., 60:81—92, 1993.

[37] J.-L. Goffin and J.-P. Vial. Shallow, deep and very deep cuts in the analytic cen-

ter cutting plane method. Technical report, Logilab technical report, University of

Geneva, Switzerland, 1996.

[38] J.-L. Goffin and J.-P. Vial. Multiple cuts in the analytic center cutting plane method.

SIAM J. Optim, 11(1):805—867, 2000.

[39] J. Gondzio. Warm start of the primal-dual method applied in the cutting-plane

scheme. Math. Program., 83:125—143, 1998.

[40] J. Gondzio, O. d. Merle, R. Sarkissian, and J.-P. Vial. Accpm a library for convex

optimization based on an analytic center cutting plane method. Technical report,

Logilab, 1996.

[41] J. Gondzio, R. Sarkissian, and J.-P. Vial. Using an interior point method for the

master problem in a decomposition approach. European J. Oper. Res., 101:577—587,

1997.

[42] H. J. Greenberg. Computational tesing: why, how and how much. ORSA J. Comput.,

2(1):94—97, 1990.

Correlation Among Dimensional Parameters 193

[43] J. K. Ho, T. C. Lee, and R. P. Sundarraj. Decomposition of linear programs using

parallel computation. Math. Program., 42:391—405, 1988.

[44] J. K. Ho and E. Loute. An advanced implementation of the Dantzig-Wolfe decompo-

sition algorithm for linear programming. Math. Program., 20(1):303—326, 1981.

[45] J. K. Ho and E. Loute. Computational experience with advanced implementation of

decomposition algorithms for linear programming. Math. Program., 27:283—290, 1988.

[46] J. K. Ho and R. P. Sundarraj. DECOMP: an implementation of Dantzig-Wolfe de-

composition for linear programming. Spring-Verlag New York Berlin Heidelberg, 1989.

[47] D. C. Hoaglin, V. Klema, and S. C. Peters. Exploratory data analysis in a study

of the performance of nonlinear optimization routines. ACM Trans. Math. Software,

8(2):145—162, 1982.

[48] A. J. Hoffman, M. Mannos, D. Sokolowsky, and N. Wiegmann. Computational expe-

rience in solving linear programs. J. SIAM, 1:17—33, 1953.

[49] J. N. Hooker. Needed: an empirical science of algorithms. Oper. Res., 42(2):201—212,

1994.

[50] T. Illes and T. Terlaky. Pivot versus interior point methods: Pros and cons. European

J. Oper. Res., 140:170—190, 2002.

[51] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-

torica, 4:373—395, 1984.

[52] J. E. Kelley Jr. The cutting plane method for solving convex programs. J. SIAM,

8:703—712, 1960.

[53] L. G. Khachiyan. A polynomial algorithm in linear programming (russian). Doklady

Akademii Nauk SSSR, 244(5):1093—1096, 1979.

[54] V. Klee and G. J. Minty. How good is the simplex algorithm. In O. Shisha, editor,

Inequalities-III, New York, 1972. Academic Press.

194 Empirical Analysis of Decomposition for LP

[55] S. Kontogiorgis, R. D. Leone, and R. R. Meyer. Alternating directions splitting for

block angular parallel optimization. J. Optim. Theory Appl., 90(1):1—29, 1996.

[56] T. C. Koopmans, editor. Activity analysis of production and allocation. Wiley, New

York, 1951.

[57] T. Larsson and D. Yuan. An augmented Lagrangian algorithm for large scale multi-

commodity routing. Comput. Optim. Appl., 27(2):187—215, 2004.

[58] R. Levkotitz and G. Mitra. Experimental investigations in combining primal dual

interior point method and simplex based LP solvers. Ann. Oper. Res., 58:19—38, 1995.

[59] H. Luh and R. Tsaih. An efficient search direction for linear programming problems.

Comput. Oper. Res., 29:195—203, 2002.

[60] I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’s predictor-

corrector interior-point method for linear programming. SIAM J. Optim., 2(3):435—

449, 1992.

[61] P. Mahey. Decomposition methods for mathematical programming. In P. M. Pardalos

and M. G. C. Resende, editors, Handbook of applied optimization, pages 337—351, New

York, 2002. Oxford Univeristy Press, Inc.

[62] R. Marstern, R. Subramanian, M. Saltzman, I. Lustig, and D. Shanno. Interior point

methods for linear programming: Just call Newton, Lagrange, and Fiacco and Mc-

cormick. Interfaces, 20(4):105—116, 1990.

[63] R. K. Martinson and J. Tind. An interior point method in Dantzig-Wolfe decompo-

sition. Comput. Oper. Res., 26:1195—1216, 1999.

[64] The MathWorks. MATLAB documentation. http://www.mathworks.com/access/

helpdesk/help/techdoc/.

[65] C. C. McGeoch. Analyzing algorithms by simulation: variance reduction techniques

and simulation speedups. ACM Comput. Surveys, 24(2):195—212, 1992.

Correlation Among Dimensional Parameters 195

[66] C. C. McGeoch. Toward an experimental method for algorithm simulation. INFORMS

J. Comput., 8(1):1—15, 1996.

[67] C. C. McGeoch. Experimental analysis of algorithms. Notice of the AMS, 48(3):304—

311, 2001.

[68] C. C. McGeoch. Experimental analysis of optimization algorithms. In P. M. Pardalos

and M. G. C. Resende, editors, Handbook of applied optimization, pages 1044—1052,

New York, 2002. Oxford Univeristy Press, Inc.

[69] N. Megiddo. On finding primal- and dual-optimal bases. ORSA J. Comput., 3:63—65,

1991.

[70] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM

J. Optim, 2:575—601, 1992.

[71] O. D. Merle, J.-L. Goffin, and J.-P. Vial. On improvements to the analytic center

cutting plane method. Comput. Optim. Appl., 11:37—52, 1998.

[72] C. B. Moler. Numerical computing with MATLAB. Society for Industrial and Applied

Mathematics, Philadelphia, 2004.

[73] D. R. Musicant. Matlab/cplex mex-files, 2000.

www.cs.wisc.edu/∼musicant/data/cplex/.

[74] G. L. Nemhauser. The age of optimization: solving large-scale real-world problems.

Oper. Res., 42(1):5—13, 1994.

[75] W. Orchard-Hays. Advanced linear-programming computing techniques. McGraw-Hill,

New York, 1968.

[76] G. Schultz and R. Meyer. An interior-point method for block-angular optimization.

SIAM J. Optim., 1(4):583—682, 1991.

[77] R. Sedgewick. Algorithms. Addison-Wesley, 1988.

196 Empirical Analysis of Decomposition for LP

[78] J. N. Singh and D. Singh. Interior-point methods for linear programming: a review.

Internat. J. Math. Ed. Sci. Tech., 33(3):405—423, 2002.

[79] G. Sonnevend. An analytical center for polyhedrons and new classes of global al-

gorithms for linear smooth, convex programming. In Lecture Notes in Control and

Information Sciences 84, pages 866—876, New York, 1985. Springer.

[80] G. Sonnevend. Applications of the notion of analytic center in approximation estima-

tion problem. J. Comput. Appl. Math., 28:349—358, 1989.

[81] M. J. Todd. A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear pro-

gramming algorithm. Oper. Res., 38(6):1006—1018, 1990.

[82] M. J. Todd. The many facets of linear programming. Math. Program. Ser. B, 91:417—

436, 2002.

[83] R. J. Vanderbei. Linear programming: foundations and extensions. Kluwer’s interna-

tional series. Kluwer Academic Publishers, Boston/London/dordrecht, 1998.

[84] W. L. Winston. Operations research: applications and algorithms. PWS-Kent Pub.

Co, Boston, 1991.

[85] Y. Ye. Complexity analysis of the analytic center cutting plane method that uses

multiple cuts. Math. Program., 78:85—104, 1997.

[86] Y. Zhang. Solving large-scale linear programs by interior-point methods under the

MATLAB environment. Technical report, Department of Mathematics and Statistics,

University of Maryland, Baltimore County, Baltimore, MD, 1995.

[87] G. Zhao. Interior-point methods with decomposition for solving large-scale linear

programs. J. Optim. Theory Appl., 102(1):169—192, 1999.

