
Opposition-Based

Differential Evolution

by

Shahryar Rahnamayan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2007

c©Shahryar Rahnamayan 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Shahryar Rahnamayan

ii

Abstract

Evolutionary algorithms (EAs) are well-established techniques to approach those prob-

lems which for the classical optimization methods are difficult to solve. Tackling problems

with mixed-type of variables, many local optima, undifferentiable or non-analytical func-

tions are some examples to highlight the outstanding capabilities of the evolutionary algo-

rithms. Among the various kinds of evolutionary algorithms, differential evolution (DE) is

well known for its effectiveness and robustness. Many comparative studies confirm that the

DE outperforms many other optimizers. Finding more accurate solution(s), in a shorter

period of time for complex black-box problems, is still the main goal of all evolutionary

algorithms.

The opposition concept, on the other hand, has a very old history in philosophy, set

theory, politics, sociology, and physics. But, there has not been any opposition-based con-

tribution to optimization. In this thesis, firstly, the opposition-based optimization (OBO)

is constituted. Secondly, its advantages are formally supported by establishing mathemati-

cal proofs. Thirdly, the opposition-based acceleration schemes, including opposition-based

population initialization and generation jumping, are proposed. Fourthly, DE is selected as

a parent algorithm to verify the acceleration effects of proposed schemes. Finally, a com-

prehensive set of well-known complex benchmark functions is employed to experimentally

compare and analyze the algorithms. Results confirm that opposition-based DE (ODE)

performs better than its parent (DE), in terms of both convergence speed and solution

quality.

The main claim of this thesis is not defeating DE, its numerous versions, or other opti-

mizers, but to introduce a new notion into nonlinear continuous optimization via innovative

metaheuristics, namely the notion of opposition. Although, ODE has been compared with

six other optimizers and outperforms them overall.

Furthermore, both presented experimental and mathematical results conform with each

other and demonstrate that opposite points are more beneficial than pure random points

iii

for black-box problems; this fundamental knowledge can serve to accelerate other machine

learning approaches as well (such as reinforcement learning and neural networks). And

perhaps in future, it could replace the pure randomness with random-opposition model

when there is no a priori knowledge about the solution/problem.

Although, all conducted experiments utilize DE as a parent algorithm, the proposed

schemes are defined at the population level and, hence, have an inherent potential to be

utilized for acceleration of other DE extensions or even other population-based algorithms,

such as genetic algorithms (GAs). Like many other newly introduced concepts, ODE and

the proposed opposition-based schemes still require further studies to fully unravel their

benefits, weaknesses, and limitations.

iv

Acknowledgements

First of all, special thanks go to my cousin, Jila Roshanzamir, who is my best friend as

well, for her endless and unbelievable pure kindness. Without her wide spread supports,

this work would have never been possible.

No need to say, without my dear parents appreciation and encouragement, this work

was not accomplishable. During this program, my father passed away. However, I could

feel his attendance in my oral defense. I wish peace for his sprit and solace.

I would like to express the deepest thanks to my supervisors, Professor Hamid R.

Tizhoosh and Professor Magdy M.A. Salama, for their continuous support and guidance.

I have learned many academics and ethics matters from them.

Thanks to my thesis committee members for their constitutive comments and guidelines

for the current and also future work.

I would like to thank all anonymous referees for their detailed and valuable comments

on my published papers which helped me to improve the quality of this work. In particular,

thanks to K. Price, the father of DE, for showing his impression about this work which

encouraged me to go further and do my best.

I would like to thank Dr. Seyed Zia Al Din Sadr Al Ashrafi for offering beneficial

knowledge about the footprint of the opposition in various sciences.

My thanks go to one-by-one of the colleagues and the staffs at the Systems Design

Engineering Department, Vicky Lawrence in particular, for her kindly unlimited help to

solve any sort of student problems.

I am thankful for the financial support from the Canadian Institute of Health Research

(CIHR) Fellowship, the Ontario Graduate Scholarship (OGS), the University of Waterloo

President’s Graduate Scholarship, and the Faculty of Engineering Graduate Scholarship.

Finally, I would like to thank all my friends who did whatever they could to help me

to accomplish this work.

v

To All Human Rights Activists

in general

and

Mother Tongue Education Activists

in particular

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Scope and Objectives . 7

1.3 Outline of the Thesis . 8

2 Differential Evolution (DE): A Short Review 10

2.1 Introduction . 11

2.2 Why Differential Evolution? . 11

2.3 DE Algorithm . 15

2.4 A Numerical Example for DE . 19

2.5 Handling Integer and Discrete Variables 22

2.6 Boundary Constraints Handling . 23

2.7 DE’s Variants and Notations . 23

2.8 Summary . 26

3 Opposition-Based Optimization 27

3.1 Introduction . 28

3.2 Opposite Points in Continuous Space . 28

3.2.1 Definitions . 28

3.2.2 Uniqueness . 29

3.3 Opposition-Based Optimization (OBO) . 30

3.3.1 Definitions, theorems, and proofs 30

3.3.2 How much better is the opposite point? 40

3.4 Empirical Verification . 46

vii

3.5 Summary . 48

4 Opposition-Based Differential Evolution (ODE) 49

4.1 Introduction . 50

4.2 Opposition-Based Acceleration Schemes . 50

4.2.1 Opposition-based population initialization 53

4.2.2 Opposition-based generation jumping 54

4.3 Opposition-Based Differential Evolution 56

4.4 Summary . 60

5 Empirical Study and Analysis 61

5.1 Introduction . 62

5.2 Benchmark Test Suite . 62

5.3 Comparison Strategies and Metrics . 66

5.4 Parameter Settings . 67

5.5 Experimental Studies . 68

5.5.1 Experiment series 1: comparison of DE and ODE 69

5.5.2 Experiment series 2: influence of dimensionality 71

5.5.3 Experiment series 3: contribution of opposite points 73

5.5.4 Experiment series 4: effect of population size 74

5.5.5 Experiment series 5: effect of various mutation operators 79

5.5.6 Experiment series 6: proper setting of jumping rate Jr 82

5.5.7 Experiment series 7: comparison with DE and FADE 85

5.5.8 Experiment series 8: comparison with Adaptive LEP and Best Lévy 86

5.5.9 Experiment series 9: comparison with FEP and CEP 88

5.6 Enhancement Directions . 91

5.7 A Sample Application . 91

5.8 Summary . 92

6 Image Thresholding Using micro-ODE 94

6.1 Introduction . 95

6.2 Proposed Image Thresholding Approach 96

6.3 Experimental Verifications . 97

6.4 Comparison of micro-DE and micro-ODE 102

viii

6.5 Summary . 104

7 Conclusions and Future Work 106

7.1 Conclusions . 107

7.2 Contributions . 109

7.3 Future Work . 110

A List of Bound Constrained Global Optimization Test Functions 113

B Enhancement Directions for ODE 136

B.1 Quasi-Oppositional Differential Evolution (QODE) 137

B.1.1 Quasi-opposition theorem . 137

B.1.2 Experimental validation . 139

B.2 ODE with Variable Jumping Rate (ODEVJR) 141

B.2.1 Investigated jumping rate models 143

B.2.2 Empirical results . 144

B.3 Summary . 147

ix

List of Tables

1.1 Footprints of opposition in different fields 3

3.1 Probabilities table after adding computations of Group1-Group3 37

3.2 Probabilities of shown four cases in Figure 3.6 39

3.3 Probabilities, final result . 40

3.4 Numerical results generated by Algorithm 2 46

3.5 Comparison of experimental and mathematical results 48

3.6 Comparison of experimental and mathematical results for α = 0.75 48

5.1 Comparison of DE and ODE . 70

5.2 Comparison of DE and ODE for dimension sizes D/2 and 2D 73

5.3 Comparison of DE, ODE, and RDE (f1 − f29) 75

5.4 Continued from Table 5.3 (f30 − f58) . 76

5.5 Comparison of DE and ODE (Np = 50) . 77

5.6 Comparison of DE and ODE (Np = 200) 78

5.7 The summarized results from Table 5.1, Table 5.5, and Table 5.6 79

5.8 Comparison of DE and ODE for three other mutation strategies (f1 − f29) 80

5.9 Continued from Table 5.8 (f30 − f58) . 81

5.10 The summarized results from Tables 5.1, 5.8, and 5.9 82

5.11 Optimal jumping rate for all test functions 84

5.12 Comparison of DE, ODE, and Fuzzy Adaptive DE (FADE) 87

5.13 Comparison of ODE, Adaptive LEP, and Best Lévy 89

5.14 Comparison of ODE with FEP and CEP 90

6.1 Thresholding results of proposed approach 101

6.2 Results of objective assessment for test images 102

x

6.3 Comparison of micro-DE and micro-ODE on thresholding of test images . 104

A.1 Data for Multi-Gaussian Problem . 132

B.1 Comparison of DE, ODE, and QODE . 142

B.2 Comparison of DE, ODE, ODE (TVJR1), and ODE (TVJR2) 145

B.3 Pairwise comparison of DE, ODE, ODE (TVJR1), and ODE (TVJR2) . . 146

xi

List of Figures

1.1 Opposition concept embedded in the Yin-Yang symbol 4

1.2 Greek classical elements . 4

1.3 Theater Hall example . 6

1.4 Classification scheme of optimization methods 8

2.1 Publications on Differential Evolution (DE) 15

2.2 Illustration of one generate-and-test cycle for DE 16

2.3 A pictorial example for the binary crossover in the DE 18

2.4 A numerical example for DE . 21

2.5 A pictorial example of the violation by the mutation operation 24

2.6 A pictorial example for the exponential crossover in the DE 25

3.1 Illustration of a point and its corresponding opposite 29

3.2 Illustration of increasingly monotone g . 32

3.3 All possible situations of xr and xs for a black-box optimization 34

3.4 Similar events are in the same group . 36

3.5 Illustration of why the inequality α > 1/2 holds 38

3.6 Four possible sub-cases when xr and xs are in the same interval 39

3.7 The e7 is selected to calculate an impact boundary for the α 41

3.8 Situations which min|xs − xr| ≥ |x− xs| 42

3.9 Situations which min|x− xs| ≥ |xr − xs| 43

4.1 A general scheme for population-based optimization algorithms 52

4.2 A finalized general scheme for population-based optimization algorithms . 53

4.3 Opposition-based initialization and generation jumping 55

4.4 A pictorial example to show the opposition-based generation jumping . . . 56

xii

4.5 A real example for the opposition-based generation jumping 57

4.6 Opposition-Based Differential Evolution (ODE) 58

5.1 Some sample 3-D maps for 2-D functions 63

5.2 Continued from Figure 5.1. 64

5.3 Sample convergence graphs (DE vs. ODE) 71

5.4 Graphs of success performance (SP) vs. jumping rate 85

6.1 A sample thresholded image . 97

6.2 Graphical illustration of dissimilarity vs. thresholding value 99

6.3 Continued from Figure 6.2 . 100

B.1 Quasi-opposite region in a one dimensional space 137

B.2 Quasi-opposite region in a two-dimensional space 138

B.3 Jumping rate diagrams . 144

xiii

List of Acronyms
ACO ant colony optimization

AR acceleration rate

CEP classical evolutionary programming

CGA continuous GA

CI confidence interval

DE differential evolution

EP evolutionary programming

FADE fuzzy adaptive differential evolution

FEP fast evolutionary programming

FS free search

GAs genetic algorithms

NFC number of fitness function calls

OBL opposition-based learning

OBO opposition-based optimization

ODE opposition-based DE

PSO particle swarm optimization

QODE quasi-oppositional DE

SADE self-adaptive differential evolution

SP success performance

SR success rate

Std Dev standard deviation

VTR value to reach

xiv

Chapter 1

Introduction

God created suffering and heartache, so that joy might be known as their op-

posite. Hidden things become manifest through their opposites. But God has

no opposite; so he remains hidden. Light is known as the opposite of darkness.

But God’s light has no opposite. Thus we cannot know him through our eyes.

– Rumi (1207 – 1273) in “Masnawi”

1

2 Chapter 1. Introduction

We are witness of the rapidly growing application of the population-based algorithms to

solve real-world nonlinear complex problems. The computational time of these algorithms

depend directly on the dimensionality and complexity of the problem. Although, compared

to traditional methods, these algorithms are more applicable to real-world problems, they

suffer from low convergence speed. So far, many attempts have been conducted to make

them as fast as possible. Recently a new direction has been opened for this purpose, namely

employing the opposition concept to make population-based algorithms faster.

1.1 Motivation

The footprints of the opposition concept can be observed in many areas around us. This

concept has sometimes been labeled by different names. Opposite particles in physics,

antonyms in languages, complement of an event in probability, antithetic variables in sim-

ulation, opposite proverbs in culture, absolute or relative complement in set theory, subject

and object in philosophy of science, good and evil in animism, opposition parties in politics,

theses and antitheses in dialectic, opposition day in parliaments, and dualism in religions

and philosophies are just some examples to mention (Table 1.1 contains more examples

and corresponding details). The Yin-Yang symbol in ancient Chinese philosophy is proba-

bly the oldest opposition concept which was expressed by human kind (Figure 1.1). Black

and white represent yin (receptive, feminine, dark, passive force) and yang (creative, mas-

culine, bright, active force), respectively. This symbol reflects the twisted duality of all

things in nature, namely, receptive vs. creative, feminine vs. masculine, dark vs. bright,

and finally passive vs. active forces. Even Greek classical elements to explain patterns in

nature (Figure 1.2) mention the opposition concept, namely, fire (hot and dry) vs. water

(cold and wet), earth (cold and dry) vs. air (hot and wet). Cold, hot, wet, dry present the

pair-wised opposite characteristics of these four elements.

It seems that without using the opposition concept, the explanation of different entities

1.1 Motivation 3

Table 1.1: Footprints of opposition in different fields.

Example Field Description

Opposite
Particles/

Elements
Physics

Such as magnetic poles (N and S), opposite polarities (+
and −), electron-proton in an atom, action-reaction forces in
Newton’s third law, and so on.

Antonyms Language
A word that means the opposite of another word (e.g.,
hot/cold, fast/slow, top/down, left/right, day/night, on/off).

Antithetic
Variables

Simulation
Antithetic (negatively correlated) pair of random variables
used for variance reduction.

Opposite
Proverbs

Culture

Two proverbs with the opposite advice or meaning (e.g., The
pen is mightier than the sword. Actions speak louder than
words.); proverb or its opposite pair offers an applicable so-
lution based on specific situation or condition.

Complements Set theory
a) Relative complement (B − A = {x ∈ B|x 6∈ A}), b) Ab-
solute complement (Ac = U − A, where U is the universal
set).

Opposition
Party

Politics
A political party or organized group opposed to the govern-
ment.

Inverter Digital design
Output of the inverter gate is one if input is zero and vice
versa.

Opposition
Day

Legislation
A day in the parliament in which small opposition parties
are allowed to propose the subject for debate (e.g., Canada’s
parliament has 25 opposition days).

Dualism
Philosophy
and Religion

Two fundamental principles/concepts, often in opposition to
each other; such as “Yin” and “Yang” in Chinese philosophy
and Taoist religion (Figure 1.1), “subject” and “object” in
philosophy of science, “good” and “evil” in animism, “ahura”
and “ahriman” in Zarathustra.

Dialectic Philosophy

An exchange of “theses” and “antitheses” resulting in a “syn-
thesis” (e.g. in Hinduism, these three elements are creation
(Brahma), maintenance of order (Vishnu) and destruction or
disorder (Shiva)).

Classical
Elements Archetype

A set of archetypal classical elements to explain patterns in
nature (e.g., the Greek classical elements are Fire (hot and
dry), Earth (cold and dry), Air (hot and wet), and Water
(cold and wet), Figure 1.2).

if-then-else Algorithm
if condition then statements [else elsestatements], the else
statements are executed when the opposite of the condition
happens.

Complement
of an Event

Probability P (A′) = 1− P (A).

Revolution
Socio-
political

A significant Socio-political change in a short period of time.

4 Chapter 1. Introduction

Fig. 1.1: Opposition concept embedded in the Yin-Yang symbol or Taijitu in ancient
Chinese philosophy.

Fig. 1.2: Greek classical elements to explain patterns in nature are Fire (hot and dry),
Earth (cold and dry), Air (hot and wet), and Water (cold and wet).

around us is hard and maybe even impossible. In order to explain an entity or a situation

we sometimes explain its opposite instead. In fact, opposition often manifests itself in a

balance between completely different entities. For instance, the east, west, south, and north

can not be defined alone. The same is valid for cold and hot and many other examples.

Extreme opposites constitute our upper and lower boundaries. Imagination of the infinity

is vague, but when we consider the limited, it then becomes more imaginable because its

opposite is definable.

Sometimes, we apply the opposition concept in our regular life unconsciously. Let us

look at a simple example (see Figure 1.3). Suppose police officers want to arrest somebody

in a Theater Hall. There are two seat groups (A and B) and entrance doors (a−k), on one

side (Figure 1.3(a)). The seat position of the target person is unknown (like the position

1.1 Motivation 5

of the solution in a black-box optimization problem) and only two officers are available. If

the first officer selects the door a, which door should be selected by the second one? What

happens if the first officer selects the door b? If just one officer is available which door

should be selected by him/her? For the last case since there is no opposite for one officer,

entering from the middle door (f) supports the highest accessibility.

Let us consider the same example but this time a Theater Hall with entrance doors

on all four sides (Figure 1.3(b)). Now, let us repeat the same questions for this situation.

Increase the number of officers (like individuals in a population-based optimization method)

and repeat the same questions. When officer one selects the door h, the second officer

usually selects d. Why are the other doors not selected instead? It seems that even

when we increase the number of officers the opposition pattern for covering the doors is

still followed (e.g., north-west door is selected versus south-east door). These are officers’

intuitive decisions in different situations, and perhaps they are unaware of the concept of

the opposition but they apply it in order to cover the search space more efficiently.

For the first time, the concept of opposition-based learning (OBL), in its earlier simple

form, was introduced by Tizhoosh [2005b]. Then, it was applied to accelerate reinforce-

ment learning [Tizhoosh 2005c, 2006]. The main idea behind OBL is the simultaneous

consideration of an estimate and its corresponding opposite estimate (i.e., guess and oppo-

site guess) in order to achieve a better approximation for the current candidate solution.

As an advantage of opposite versus random points, purely random resampling or selection

of solutions from a given population, has a higher chance of visiting or even revisiting

unproductive regions of the search space.

Finding the more accurate solution(s) in a shorter period of time for complex nonlinear

problems, is the main goal of all optimization metaheuristics and still widely open to

research. All of these facts encourage us to employ the opposition concept to accelerate

optimization techniques.

In this study, the population-based algorithms, differential evolution in particular, is

6 Chapter 1. Introduction

(a) Theater Hall with entrance doors on one side.

(b) Theater Hall with entrance doors on all four sides.

Fig. 1.3: Theater Hall example.

1.2 Scope and Objectives 7

selected to be accelerated using the opposition concept. The main reason for selecting

differential evolution is its high ability to find precise solutions for the mixed-typed black-

box global optimization problems [Feoktistov 2006]. The population-based algorithms are

computationally expensive and hence their acceleration is widely appreciated. Among the

various evolutionary algorithms [Bäck 1996; Bäck et al. 1997; Schwefel 2003], Differential

Evolution (DE) is well known for its effectiveness and robustness. Frequently reported

studies demonstrate that the DE outperforms many other optimizers over both benchmark

functions and real-world applications.

1.2 Scope and Objectives

The research in this thesis concentrates on the acceleration of the population-based al-

gorithms in general, and the differential evolution algorithm in particular. According to

the proposed classification scheme for optimization methods by Feoktistov [2006] (Fig-

ure 1.4), DE is a population-based nonlinear continuous global optimization algorithm.

The optimization branch in focus of this research is highlighted by bolded arrows. The

classical DE has been extended to tackle the mixed-type variable optimization problems

[Lampinen and Zelinka 1999b]. The population-based branch covers a wide range of fami-

lies, such as genetic algorithms (GAs) [Goldberg 1989], particle swarm optimization (PSO)

[Angeline 1998], ant colony optimization (ACO) [Dorigo and Stützle 2004], differential evo-

lution [Storn and Price 1997b], and free search (FS) [Penev and Littlefair 2005]. The focus

of this research is on bound-constraints differential evolution algorithms.

The main objectives of this research are: 1) constituting the framework of the opposition-

based optimization and corresponding definitions, theorems, and mathematical proofs

which demonstrate why integration of the opposition concept is valuable in optimization, 2)

proposing the opposition-based acceleration schemes for the population-based algorithms,

3) accelerating differential evolution by proposed opposition-based schemes, 4) benchmark-

8 Chapter 1. Introduction

ing and parameter analysis of the ODE by employing a comprehensive test suite of global

optimization problems, 5) proposing possible enhancement directions for ODE. More de-

tails about the related contributions are provided in the final chapter.

Fig. 1.4: A simple classification scheme of optimization methods [Feoktistov 2006]. Accord-
ing to this classification, DE is a population-based nonlinear continuous global optimization
method. Opposition-based DE (ODE) is the enhanced version of the DE by the opposition
concept. The optimization branch in focus of this research is highlighted by bolded arrows
and boxes.

1.3 Outline of the Thesis

Chapter 2 explains the differential evolution algorithm and the main reasons to select it as a

parent evolutionary algorithm to implement the proposed opposition-based schemes. Also,

1.3 Outline of the Thesis 9

this chapter reviews some studies, which compare DE to other well-known optimizers.

It can be skipped if the reader is familiar with DE and its frequently reported higher

performance on benchmark functions and real-world applications.

Chapter 3 covers the details of the opposition-based optimization and corresponding

definitions, theorems, and proofs. This chapter presents answers to questions concerning

why and how far the opposite points are more valuable than additionally generated random

points. In order to support the mathematical computations, they are compared to the

experimental results as well.

Chapter 4 presents the general schemes of the opposition-based algorithm. Then, these

schemes are embedded inside differential evolution to introduce ODE. The overall features

of the aforementioned schemes are explained in details.

Chapter 5 contains the empirical study and analysis of the proposed opposition-based

differential evolution. A comprehensive set of experimental series, including parameter

and comparative studies, are conducted in this chapter. ODE is compared with six other

evolutionary optimizers.

Chapter 6 includes a new optimization-based image thresholding algorithm. It also

compares micro-DE and micro-ODE on thresholding of test images. Finally, the conclu-

sions, contributions, and future works all are addressed in Chapter 7.

Chapter 2

Differential Evolution (DE): A Short

Review

Differential Evolution, deriving from population-based metaheuristics, inherits

all the best properties of its ancestors: global methods of nonlinear continu-

ous optimization, approximate methods of combinatorial optimization, mixed-

variables handling, and so on. In addition, it provides stochastic optimization

principles, distributed searchers, and universal heuristics. All this makes the al-

gorithm a general-purpose optimizer, remaining, with all this going on, simple,

reliable, and fast.

– Vitaliy Feoktistov, 2006 in “Differential Evolution: In Search of Solutions”

10

2.1 Introduction 11

2.1 Introduction

Differential evolution (DE) is a population-based optimization algorithm. The invention

of the DE algorithm goes back to Genetic Annealing by Kenneth Price [1994] and solving

the Chebyshev polynomial fitting problem by him and Rainer Storn. In order to solve

Chebyshev problem in continuous space, they modified the genetic annealing algorithm

from bit-string to floating-point encoding and consequently switched from logical opera-

tors to arithmetic ones. During experiments, they discovered the differential mutation to

perturb the population of vectors. They also noticed that by using differential mutation,

discrete recombination, and pair-wise selection, there is no need to apply annealing mech-

anism; it was removed completely and DE was born. Results of this achievement were

reported in the ICIS technical report in 1995 [Storn and Price 1995]. DE was published in

the Dobb’s Journal [Price and Storn 1997] and then in the Journal of Global Optimization

[Storn and Price 1997b]. By this way, DE’s capacity and advantages were introduced to

the optimization community. Comprehensive history and development of DE is presented

in literature [Feoktistov 2006].

2.2 Why Differential Evolution?

It is important to note why DE was selected as a parent algorithm in this thesis. Simplicity

of the DE is the first reason on this track. The compactness of the algorithm and easy-to-

understand steps, both impress any researcher or practitioner to work with the DE.

Working directly with the continuous variables (arithmetic operators instead of logical

operators) is the second attraction feature for this evolutionary algorithm. Unlike many bi-

nary versions of the genetic algorithm, DE works with the floating-point numbers; encoding

and decoding of the variables (which can be the source of inaccuracy) are removed. Conse-

quently, this feature makes DE scalable for high dimensional problems and also time and

12 Chapter 2. Differential Evolution (DE): A Short Review

memory efficient. DE’s steps are described using simple numerical and pictorial examples

in Section 2.3.

DE does not need a probability density function (PDF) to adapt the control parameters

(unlike most Evolutionary Strategies [Schwefel 1995; Fathi and Hildebrand 1997]) or any

probability distribution pattern for the mutation (dissimilar to the genetic algorithm or

evolutionary programming). DE’s different mutation and crossover schemes separate it

from other evolutionary algorithms. Section 2.7 explains different DE variants.

The ability of the handling mixed integer, discrete, and continuous variables using some

straightforward approaches makes DE more realistic for a wide range of real-world appli-

cations [Lampinen and Zelinka 1999a,b]. Discrete variables can be assumed as a subset of

integer variables. The main advantage of DE, during working with the integer variables,

is that it internally works on continuous space and only switches to the integer space dur-

ing the evaluation of the objective function. This characteristic supports higher accuracy

compared to some other well-known algorithms (e.g., GAs) which perform in the reverse

manner. More details about handling mixed-type variables are provided in Section 2.5.

Extensions of classical DE are capable of handling boundary constraints and also non-

linear function constraints which both are commonly required in the real-world problems.

This case is covered in Section 2.6.

Most importantly, many comparative studies report the higher robustness, convergence

speed, and solution quality of the DE. This is true over benchmark functions and also

real-world applications. A comprehensive performance study is provided in Benchmarking

Differential Evolution chapter in [Price et al. 2005]. In this chapter, they first compare DE

to 16 other optimizers against five well-known thirty-dimensional test functions (namely,

Rosenbrock, Ackley, Griewangk, Rastrigin, and Schwefel). For this study, DE’s 16 com-

petitors are:

• Evolutionary programming with adaptive Lévy mutations (ALEP) [Lee and Yao 2004]

2.2 Why Differential Evolution? 13

• Attractive and repulsive particle swarm optimization (arPSO)

[Vesterstroem and Thomsen 2004]

• Cooperative co-evolutionary genetic algorithm (CCGA)

[Bergh and Englebrecht 2004]

• Classical evolutionary programming (CEP) [Yao et al. 1999]

• Conventional evolutionary programming with adaptive mutations (CEP/AM)

[Chellapilla 1998]

• Classical evolution strategies (CES) [Yao and Liu 1997]

• Cooperative particle swarm optimization (CPSO-S6) [Bergh and Englebrecht 2004]

• Evolutionary optimization (EO) [Angeline 1998]

• Fast evolution programming (FEP) [Yao et al. 1999]

• Fast evolutionary strategies (FES) [Yao and Liu 1997]

• Hybrid taguchi-genetic algorithm (HTGA) [Tsai et al. 2004]

• Orthogonal genetic algorithm (OGA) [Leung and Wang 2001]

• Particle swarm optimization (PSO) [Angeline 1998]

• Quantum evolutionary algorithm with rotation (QEA/R) [Han and Kim 2004]

• Simple evolutionary algorithm (SEA) [Vesterstroem and Thomsen 2004]

• Stochastic genetic algorithm (StGA) [Tu and Lu 2004].

14 Chapter 2. Differential Evolution (DE): A Short Review

Then, they explored previously conducted eight benchmark-function-based comparative

studies (namely, unconstraint optimization [Storn and Price 1997b; Paterlini and Krink

2004; Vesterstroem and Thomsen 2004; Ali and Törn 2004], multi-constraints nonlin-

ear optimization [Lampinen 2004], mixed-variable optimization [Lampinen and Zelinka

1999b], multi-objective optimization [Kukkonen and Lampinen 2004], noisy-function op-

timization [Krink et al. 2004]) and also eleven application-oriented performance compar-

ison studies (namely, multi-sensor fusion [Joshi and Sanderson 1999], earthquake relo-

cation [Bohuslav and Michal 2001], DC operating point analysis for nonlinear circuits

[Crutchley and Zwolinski 2004], estimation of heat transfer parameters in a trickle-bed

reactor [Babu and Sastry 1999], aerodynamic optimization [Rogalsky et al. 1999], image

registration [Salomon 2001], identifying induction motor parameters [Ursem and Vadstrup

2004], optimization of neural networks [Fischer et al. 1999; Plagianakos et al. 2001], and

optimization of carbon and silicon cluster geometry [Ali and Törn 2000; Chakraborti et al.

2002]). Finally, they concluded as follows:

“[...] DE may not always be the fastest method, it is usually the one that

produces the best results, although the number of cases in which it is also the

faster is significant. DE also proves itself to be robust, both in how control

parameters are chosen and in the regularity with which it finds the true op-

timum. [...] As these researchers have found, DE is a good first choice when

approaching a new and difficult global optimization problem is defined with

continuous and/or discrete parameters. ”

Although, DE is almost in its infancy (approx. 10 years old) and is being improved

step-by-step, because of above mentioned reasons, it has established itself as a universal

optimization tool. The sharp growing of the publications on DE confirms this fact clearly

(see Figure 2.1).

2.3 DE Algorithm 15

Fig. 2.1: Publications on Differential Evolution (based on information extracted from
Google’s Scholar service).

2.3 DE Algorithm

Differential Evolution is a population-based directed search method [Price 1999]. Like other

evolutionary algorithms, it starts with an initial population vector, which is randomly

generated when no preliminary knowledge about the solution space is available. Each

vector of the initial population can be generated as follows [Price et al. 2005]:

Xi,j = aj + randj(0, 1)× (aj − bj); j = 1, 2, ..., D, (2.1)

where D is the problem dimension; aj and bj are the lower and the upper boundaries of

the variable j, respectively. rand(0, 1) is the uniformly generated random number in [0, 1].

A sample initial population for ODE is shown in Figure 2.2(a).

Let us assume that Xi,G(i = 1, 2, ..., Np) are candidate solution vectors in generation G

(Np : population size). Successive populations are generated by adding the weighted differ-

ence of two randomly selected vectors to a third randomly selected vector. For classical DE

16 Chapter 2. Differential Evolution (DE): A Short Review

(a) Population initialization for DE (Np =
9). Contour lines for f(x1, x2) are shown
by ellipses.

(b) Generating difference vector Xc −Xb.
b and c are the randomly selected indices.

(c) Generating Xa,G + F (Xc,G −Xb,G). a
is the third randomly selected index.

(d) After the crossover if the generated
vector has lower objective value; it will be
replaced with the vector 0.

Fig. 2.2: Illustration of one generate-and-test cycle for DE (starting from vector 0).

2.3 DE Algorithm 17

(DE/rand/1/bin)1, the mutation, crossover, and selection operators are straightforwardly

defined as follows:

Mutation - For each vector Xi,G in generation G a mutant vector Vi,G is defined by

Vi,G = Xa,G + F (Xc,G −Xb,G), (2.2)

where i = {1, 2, ..., Np} and a, b, and c are mutually different random integer indices

selected from {1, 2, ..., Np}. Further, i, a, b, and c are different so that Np ≥ 4 is required.

F ∈ [0, 2] is a real constant which determines the amplification of the added differential

variation of (Xc,G −Xb,G). Larger values for F result in higher diversity in the generated

population and lower values cause faster convergence. Figures 2.2(b) and 2.2(c) illustrate

vector representation of the (Xc,G −Xb,G) and Xa,G + F (Xc,G −Xb,G), respectively.

Crossover - DE utilizes the crossover operation to generate new solutions by shuffling

competing vectors and also to increase the diversity of the population. For the classical

DE (DE/rand/1/bin), the binary crossover (shown by ‘bin’ in the notation) is utilized. It

defines the following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (2.3)

Uji,G =

 Vji,G if randj(0, 1) ≤ Cr ∨ j = k,

Xji,G otherwise.
(2.4)

Cr ∈ (0, 1) is the predefined crossover rate, and randj(0, 1) is the jth evaluation of a

uniform random number generator. k ∈ {1, 2, ..., D} is a random parameter index, cho-

sen once for each i to make sure that at least one parameter is always selected from the

1This notation is explained in section 2.7.

18 Chapter 2. Differential Evolution (DE): A Short Review

mutated vector, Vji,G. Most popular values for Cr are in the range of (0.4, 1) [Das et al.

2005a]. Figure 2.3 presents a pictorial example for the binary crossover.

Fig. 2.3: A pictorial example for the binary crossover in DE (k = 7).

Selection - This is an approach which must decide which vector (Ui,G or Xi,G) should

be a member of next (new) generation, G + 1. For a minimization problem, the vector

with the lower value of objective function is chosen (greedy selection).

This evolutionary cycle (i.e., mutation, crossover, and selection) is repeated Np (popu-

lation size) times to generate a new population. These successive generations are produced

until meeting the predefined termination criteria. Algorithm 1 presents the details of the

classical DE algorithm. Starting point for the mutation, crossover and selection is indicated

by the comments in the algorithm. The algorithm terminates when the best achieved fit-

ness value (BFV) is smaller than the value to reach (VTR), or the number of fitness

function calls (NFC) exceeds predefined maximum number of function calls (MAXNFC).

2.4 A Numerical Example for DE 19

Termination strategy can be defined differently based on the problem nature, application,

or the purpose of the experiment. Limiting the number of generations, the execution time,

or checking some statistics of the population (e.g., diversity or the improvement rate) are

some commonly used termination criteria.

2.4 A Numerical Example for DE

In order to illustrate the steps of the DE algorithm a typical numerical example is presented

here [Onwubolu and Babu 2004]. Figure 2.4 shows the procedure of generating one vector

for the next generation. The objective function is f(X) = x1 + x2 + x3 + x4 + x5 and the

dimension size, population size, mutation constant, and crossover constant are 5, 6, 0.8 and

0.5, respectively. The procedure is similar to generate the rest of the next population’s

vectors. As seen, the current generation G has six individuals, Np = 6; and each individual

contains five parameters, D = 5 (X(x1, x2, x3, x4, x5)). Cost value for each individual is

calculated by f(X) and is shown in the top cell of the corresponding vector. For the

first target vector (individual 1), three mutually different vectors are selected randomly

(individuals 2,4, and 6). Then, the noisy vector is calculated as follow:

noisy vector = individual 6+ F×(individual 2 − individual 4)

Consequently, with the crossover of the noisy vector and target vector the trial vector is

generated. Parameters 1 and 5 are selected from noisy vector and the rest from the target

vector. Now, in selection step, the cost value of the trial vector and the target vector is

compared and the vector with the lower cost value (target vector here) is selected and

copied to the next generation G+1.

20 Chapter 2. Differential Evolution (DE): A Short Review

Algorithm 1 Differential Evolution (DE). P0: Initial population, Np: Population size,
V : Noise vector, U : Trial vector, D: Problem dimension, BFV: Best fitness value so far,
VTR: Value-to-reach, NFC: Number of function calls, MAXNFC: Maximum number of
function calls, F: Mutation constant, rand(0, 1): Uniformly generated random number,
Cr: Crossover rate, f(·): Objective function, P ′: Population of the next generation.

1: Generate uniformly distributed random population P0

2: while (BFV > VTR and NFC < MAXNFC) do
3: //Generate-and-Test-Loop
4: for i = 0 to Np do
5: Select three parents Xa, Xb, and Xc randomly from current population where

i 6= a 6= b 6= c
//Mutation

6: Vi ← Xa + F × (Xc −Xb)
//Crossover

7: for j = 0 to D do
8: if rand(0, 1) < Cr then
9: Ui,j ← Vi,j

10: else
11: Ui,j ← Xi,j

12: end if
13: end for

//Selection
14: Evaluate Ui

15: if (f(Ui) ≤ f(Xi)) then
16: X ′i ← Ui

17: else
18: X ′i ← Xi

19: end if
20: end for
21: X ← X ′

22: end while

2.4 A Numerical Example for DE 21

Fig. 2.4: A numerical example [Onwubolu and Babu 2004] to illustrate the classical DE
(DE/rand/1/bin) for minimizing a simple objective function, f(X) = x1+x2+x3+x4+x5.

22 Chapter 2. Differential Evolution (DE): A Short Review

2.5 Handling Integer and Discrete Variables

DE works directly with floating-point variables, but by applying some minor modifications

it is able to handle integer variables as well. One of the common ways is simply using

the integer variables during evaluation of the objective function and leaving other parts

unchanged [Onwubolu and Babu 2004]. Following rules present this approach:

f(yj); j = 1, ..., D

yj =

 xj xj is a continuous variable,

INT(xj) xj is an integer variable.
(2.5)

or

yj =

 xj xj is a continuous variable,

ROUND(xj) xj is an integer variable.
(2.6)

Converting a continuous number to the integer can be performed by INT(·) or ROUND(·)
functions. INT(·) truncates the real part of the continuous number and ROUND(·) returns

the closest integer number. If the INT(·) is the conversion case, Eq. 2.1 should be replaced

with the following equation because of truncation effect of INT(·) function:

Xi,j = aj + randj(0, 1)× (aj − bj + 1), j = 1, 2, ..., D. (2.7)

Through this method, DE internally searches a superset of the solution space instead,

because the integer numbers are the subset of the continuous numbers. This feature in-

creases the population diversity and the robustness of the algorithm as well.

In order to handle discrete variables, the method performs similar to the integer case,

but this time the indices of the discrete numbers are used as integer variables and during

2.6 Boundary Constraints Handling 23

the objective function evaluation, instead of the integer value of the indices, the discrete

value of the variables is substituted.

2.6 Boundary Constraints Handling

DE’s mutation operator can expand the search space to the outside of the predefined

boundaries. For unconstraint boundary problems it can be an advantage, because even

solutions, which are outside the boundaries, can be explored. But, in the revers sense, for

the boundary constraint problems this phenomenon should be prevented. An example of

the violation by the mutation operation is presented in Figure 2.5. Two approaches are

commonly applied to prevent this violation [Onwubolu and Babu 2004] (a) generating a

new random value (re-initialization) for the parameters which violate the boundary con-

straints or (b) re-performing the mutation operation to achieve a vector with no violating

parameter. The first approach can be faster than the second one in overall, because the

second method sometimes needs more than one time repeating the mutation to obtain an

acceptable vector.

2.7 DE’s Variants and Notations

Classical DE (DE/rand/1/bin) was explained in the previous sections. There are other

DE variants which are indicated by the notation DE/a/b/c [Mezura-Montes et al. 2006].

In this notation, ‘a’ specifies the vector which should be mutated; it can be the best

vector (‘best’) of the current population or a randomly selected one (‘rand’). ‘b’ is reserved

for the number of difference vectors which participate in the mutation (1 or 2) and ‘c’

denotes the applied crossover scheme, binary (‘bin’) or exponential (‘exp’). Figure 2.6

presents a pictorial example for the exponential crossover. Crossover procedure starts from

a randomly selected parameter (j = 3 in this example), and copies the parameters of the

24 Chapter 2. Differential Evolution (DE): A Short Review

Fig. 2.5: An example of the violation by the mutation operation from the prede-
fined boundary constraints. u1 (marked by ‘∗’) is located outside the box shown by
[x1,min, x1,max], [x2,min, x2,max].

Uji,G to Vji,G, until the first occurance of rand(0, 1) > Cr; then the remaining parameters

from Xji,G are inherited by Vji,G.

As an example, DE/best/2/exp specifies a DE scheme with exponential crossover and

the following mutation:

Vi,G = Xbest,G + F (Xa,G −Xb,G) + F (Xc,G −Xd,G), (2.8)

where Xbest,G is the best vector in the population. Xa,G, Xb,G, Xc,G, and Xd,G are four

different randomly selected vectors (a 6= b 6= c 6= d) from the current population.

Other studies have been conducted to enhance the performance of the classical DE

algorithm, e.g, adaptively determining DE control parameters. The fuzzy adaptive dif-

ferential evolution algorithm (FADE) was introduced by Liu and Lampinen [2005]. They

2.7 DE’s Variants and Notations 25

Fig. 2.6: A pictorial example for the exponential crossover in DE.

employed a fuzzy logic controller to set the mutation and crossover rates. In the same di-

rection, Brest et al. [2006] proposed self-adaptive differential evolution (SADE). Teo [2006]

proposed a dynamic population sizing strategy based on self-adaptation and Ali and Törn

[2004] introduced auxiliary population and automatic calculating of the amplification fac-

tor, F , for the difference vector.

Other researchers have experimented with multi-population ideas. Tasoulis et al. [2004]

proposed parallel DE where they assign each subpopulation to a different processor node.

Shi et al. [2005] partitioned high-dimensional search spaces into smaller spaces and used

multiple cooperating subpopulations to find the solution. They called this method coop-

erative co-evolutionary differential evolution.

Hybridization with different algorithms is another direction for improvement. Sun et al.

[2005] proposed a new hybrid algorithm based on a combination of DE and estimation of

distribution algorithm. This technique uses a probability model to determine promising

regions in order to focus the search process on those areas. Noman and Iba [2005] incor-

26 Chapter 2. Differential Evolution (DE): A Short Review

porated local search into the classical DE. They employed fittest individual refinement

which is a crossover-based local search. Fan and Lampinen [2003] introduced a new local

search operation, trigonometric mutation, in order to obtain a better trade-off between

convergence speed and robustness. Kaelo and Ali [2006] employed reinforcement learning

and different schemes for generating fitter trial points. For more details about DE exten-

sions, variants, and species the reader is referred to literature [Onwubolu and Babu 2004;

Price et al. 2005; Feoktistov 2006].

2.8 Summary

In this chapter, the main reasons to select DE as a parent algorithm as well as its classical

version were briefly discussed. Different DE variants with respect to its mutation strategy

and crossover procedure, were explained and illustrated with some numerical and pictorial

examples. Methods to handle integer/discrete variables and also applying the boundary

constraints, were reviewed shortly.

According to the reported results from many comparative studies, DE presents itself as

a strong candidate to be a universal optimizer. Rapidly growing publications strengthen

this hope. DE works directly with the continuous space but its extended versions are

capable to tackle mixed-type variable problems. Its capability to handle the constraint

functions as well as multiobjective problems attracts more researchers and practitioners.

DE’s simplicity is another important advantage which helps us to implemented it by

very compact algorithms. The presented DE algorithm in this chapter (Algorithm 1) is

utilized as a parent algorithm for introducing any other enhanced version.

Chapter 3

Opposition-Based Optimization

What is wanted is not the will to believe, but the wish to find out, which is

the exact opposite.

– Bertrand Russell

Mathematics is a study which, when we start from its most familiar portions,

may be pursued in either of two opposite directions.

– Bertrand Russell in “Introduction to Mathematical Philosophy”

27

28 Chapter 3. Opposition-Based Optimization

3.1 Introduction

In this chapter definitions, theorems, and proofs related to opposite points and the oppo-

sition - based optimization are presented. The benefit of the opposite points (compared

to independent random inputs) in one dimensional space is investigated through a math-

ematical proof. Then, this proof is extended to D-dimensional space. Furthermore, the

probability of the opposite points being closer to the solution is calculated mathematically

and verified experimentally; both results support each other. The main concern of the

presented proofs is black-box optimization problems. Finally, this chapter wants to answer

the following question, in general form: Why are opposite points valuable?

3.2 Opposite Points in Continuous Space

3.2.1 Definitions

Definition 3.1 Let x be a real number in an interval [a, b] (x ∈ [a, b]); the opposite of x,

denoted by x̆, is defined by

x̆ = a + b− x. (3.1)

Figure 3.1 (top) illustrates x and its opposite x̆ in interval [a, b]. As seen, x and x̆ are

located in equal distance from the interval’s center (|(a + b)/2− x| = |x̆− (a + b)/2|) and

the interval’s boundaries (|x− a| = |b− x̆|) as well.

This definition can be extended to higher dimensions by applying the same formula to

each dimension [Tizhoosh 2005b].

Definition 3.2 Let P (x1, x2, ..., xD) be a point in D-dimensional space, where x1, x2, ..., xD

are real numbers and xi ∈ [ai, bi] , i = 1, 2, ..., D. The opposite point of P is denoted by

P̆ (x̆1, x̆2, ..., x̆D) where

3.2 Opposite Points in Continuous Space 29

Fig. 3.1: Illustration of a point and its corresponding opposite in one, two, and three
dimensional spaces.

x̆i = ai + bi − xi. (3.2)

Figure 3.1 illustrates a sample point and its corresponding opposite point in one, two,

and three dimensional spaces.

3.2.2 Uniqueness

Theorem 3.1 (Uniqueness) Every point P (x1, x2, ..., xD) in the D-dimensional space

of real numbers with xi ∈ [ai, bi] has a unique opposite point P̆ (x̆1, x̆2, ..., x̆D) defined by

x̆i = ai + bi − xi , i = 1, 2, 3, ..., D.

30 Chapter 3. Opposition-Based Optimization

Proof - Let us consider, without loss of generality, the two space corners a1 and b1 for the

one dimensional case. According to the opposite point definition, we have |x−a1| = |x̆−b1|
or |x̆− a1| = |x− b1|. Now, assume that a second point x′ is also opposite of x. Then, we

should have |x−a1| = |x′− b1| or |x′−a1| = |x− b1|. This, however, means x′ = x̆. Hence,

x̆ is unique.

3.3 Opposition-Based Optimization (OBO)

Now, after the definition of the opposite points we are ready to define Opposition-Based

Optimization (OBO).

Definition 3.3 Let P (x1, x2, ..., xD), a point in a D-dimensional space with xi ∈ [ai, bi]

(i = 1, 2, 3, ..., D), be a candidate solution. Assume f(x) is a fitness function which is used

to measure candidate optimality. According to opposite point definition, P̆ (x̆1, x̆2, ..., x̆D) is

the opposite of P (x1, x2, ..., xD). Now, if f(P̆) ≥ f(P), then point P can be replaced with

P̆ ; otherwise we continue with P . Hence, the point and its opposite point are evaluated

simultaneously to continue with the fitter one [Tizhoosh 2005b].

This definition of OBO is making two fundamental assumptions. First, one of the

candidate or the opposite candidate is always closer to the solution, and second, considering

the opposition is more beneficial than generating additional random solutions and taking

the best among them.

Empirical evidence for these claims will be provided in section 3.4. However, prior to

providing experimental results, we also want to provide mathematical proofs.

3.3.1 Definitions, theorems, and proofs

Definition 3.4 Euclidean distance between two points P (p1, p2, ..., pD) and Q(q1, q2, ..., qD)

in a D-dimensional space is defined by

3.3 Opposition-Based Optimization (OBO) 31

d(P, Q) =‖ P, Q ‖=

√√√√ D∑
i=1

(pi − qi)2. (3.3)

It can be simplified as follows for a one-dimensional space:

d(P, Q) =‖ P, Q ‖= |p− q|. (3.4)

Theorem 3.2 (First Opposition Theorem) For any (unknown) function y = f(x)

(x ∈ [a, b]) with global optimum at xs (xs 6= (a+b)
2

), the estimate solution x and its opposite

x̆, we have

Pr (|x̆− xs| < |x− xs|) = 1/2, (3.5)

where Pr(·) is the probability function. It means candidate solution and its opposite have

the equal chance to be closer to the solution.

Proof - We have Pr(x̆ ∈ [a, (a + b)/2]|x > (a + b)/2) = 1 and Pr(x̆ ∈ [(a + b)/2, b]|x <

(a + b)/2) = 1. If xs 6= (a + b)/2, then Pr(|x̆− xs| < |x− xs|) = 1/2. For xs = (a + b)/2,

then Pr(|x̆− xs| = |x− xs|) = 1.

Now, lets focus on the second assumption of OBO. Suppose the random variables

x1, x2, ... are continuous independent random variables representing the system inputs.

Suppose the performance of the system for given inputs xi is a monotone function g(xi).

We wish to compare the performance of a system with independent inputs with one using

opposition-based inputs. In particular, we wish to maximize some measure of performance

g(x) over possible inputs x. The following theorem shows the benefit of the opposite inputs,

compared to random inputs.

Theorem 3.3 (Second Opposition Theorem) For increasingly monotone g,

Pr (g(xr) < max{g(x), g(x̆)}) = 3
4
, where x is the first random guess; x̆ is the opposite

32 Chapter 3. Opposition-Based Optimization

point of x; and xr is the second random guess.

Fig. 3.2: Illustration of increasingly monotone g, interval boundaries, candidate and oppo-
site candidate solutions.

Proof - Let us prove Pr (g(xr) > max{g(x), g(x̆)}) = 1−Pr (g(xr) < max{g(x), g(x̆)}) =

1
4

instead (see Figure 3.2),

Pr (g(xr) > max{g(x), g(x̆)}) = Pr
(
x < (a+b)

2

)
×Pr

(
x̆ > (a+b)

2

)
×Pr

(
xr > (a+b)

2

)
×

Pr (xr > x̆) + Pr
(
x > (a+b)

2

)
×Pr

(
x̆ < (a+b)

2

)
×Pr

(
xr > (a+b)

2

)
×Pr(xr > x) = 1

2
× 1×

1
2
× 1

2
+ 1

2
× 1× 1

2
× 1

2
= 1

8
+ 1

8
= 1

4
.

Following results are obtained from this theorem:

1. Pr (g(x) > g(xr)) = 3
4
× 1

2
= 3

8
= 0.375

2. Pr (g(x̆) > g(xr)) = 3
4
× 1

2
= 3

8
= 0.375

3. Pr (g(xr) > g(x) ∧ g(xr) > g(x̆)) = Pr (g(xr) > max{g(x), g(x̆)}) = 1
4

= 0.25

Hence, by assuming g is a monotone function, the opposite point has 12.5% (0.375 −
0.25 = 0.125) higher chance to have a higher g value compared to the second random guess.

3.3 Opposition-Based Optimization (OBO) 33

For the following central opposition theorems (one and D-dimensional), no assumption

regarding the g function will be made.

Theorem 3.4 (Central Opposition Theorem for One-Dimensional Space)

Assume

(a) y = f(x) (x ∈ [a, b]) is an unknown function with at least one solution xs ∈ [a, b]

for f(x) = α; the solution can be anywhere in our search space (i.e., a black-box

optimization problem),

(b) x is the first uniform random guess and xr is the second uniform random guess in

[a, b]; candidate solutions should be uniform random numbers because all points have

the same chance to be the solution,

(c) Opposite of x ∈ [a, b] is defined as x̆ = a + b− x,

Then Pr (|x̆− xs| < |xr − xs|) > Pr (|xr − xs| < |x̆− xs|).
In other words, the probability that the opposite point is closer to the solution is higher

than probability of a second random guess.

Proof - In order to prove this theorem, we follow an exhaustive proof by covering all

possible situations. Lets say, N different points over the interval [a, b] divide it to N + 1

sub-intervals. So, three points (x 6= (a + b)/2 6= x̆) divide the interval [a, b] to four

sub-intervals [a, x], [x, (a + b)/2], [(a + b)/2, x̆], and [x̆, b]. The solution xs and the second

random guess xr can form 16 (4× 4) different ways/combinations in the above mentioned

four sub-intervals. Figure 3.3 illustrates all possible situations for a black-box optimization

problem. We will call each situation an event. Therefore, we have 16 possible events (ei,

i = 1, 2, ..., 16). The probability of all events is equal because the solution (xs), the first

random guess (x), and the second random guess (xr) can appear anywhere in the interval

[a, b] for a black-box optimization problem. Hence,

34 Chapter 3. Opposition-Based Optimization

Pr(ei) =
1

16
, i = 1, 2, . . . , 16. (3.6)

Fig. 3.3: All possible situations of xr and xs for a black-box optimization problem.

In order to establish an exhaustive proof, we start to calculate the following correspond-

ing probabilities for each event:

px= probability of x being the closest to the solution xs among {x, x̆, xr},

pr= probability of the second random guess xr being the closest to the solution xs

among {x, x̆, xr},

3.3 Opposition-Based Optimization (OBO) 35

px̆= probability of the opposite point x̆ being the closest to the solution xs among

{x, x̆, xr}.

Obviously we have

px + px̆ + pr = 1. (3.7)

Now, all events are categorized into following four groups (see Figure 3.1):

1. Group1 = {e2, e3, e4, e5, e12, e13, e14, e15}, (x, x̆ ∈ [xs, xr]).

At least one of x or x̆ is located between the xs and xr.

2. Group2 = {e8, e9}, (min |xs − xr| ≥ |x− xs|) ∨ (min |xs − xr| ≥ |x̆− xs|).

Minimum distance between xs and xr is greater than distance between xs and x/x̆.

3. Group3 = {e7, e10}, (xs ∈ [x, (a + b)/2]) ∧ (xr ∈ [(a + b)/2, x̆]) or vice versa.

4. Group4 = {e1, e6, e11, e16}, xr and xs are in the same interval.

In order to complete our table of probabilities step by step, the corresponding proba-

bilities (px,pr, and px̆) are calculated for each group as follows:

Group1: {e2, e3, e4, e5, e12, e13, e14, e15}
When x ∈ [xs, xr] and it is closer to solution than x̆, then x is clearly the closest to

the solution (events: e2, e3, e4, and e5, Figure 3.1). Hence px = 1. Similarly, the same

logic can be applied to x̆ (events: e12, e13, e14, and e15, Figure 3.1). For these cases the

entries can be inserted into the table of probabilities (Table 3.1). Newly added values are

highlighted in boldface.

Group2: {e8, e9}
(1) If min |xs − xr| ≥ |x− xs|, so obviously px = 1, applicable to e8.

36 Chapter 3. Opposition-Based Optimization

Fig. 3.4: Similar events are in the same group.

(2) Similarly, if min |xs − xr| ≥ |x̆− xs|, then obviously px̆ = 1, applicable to e9.

These cases are completed in Table 3.1.

Group3: {e7, e10}
Events e7 and e10 are similar cases (Figure 3.1). Let us assume px = α for event e7, so

we have pr = 1 − α because px + px̆ + pr = 1 and px̆ = 0. Analogously, for event e10, we

have px̆ = α, pr = 1 − α, and px = 0. We can complete our table for another two events

(e7 and e10), see Table 3.1.

3.3 Opposition-Based Optimization (OBO) 37

Table 3.1: Probabilities table after adding computations of Group1, Group2, and Group3

(left to right, respectively).

event pxi
pri

px̆i
pxi

pri
px̆i

pxi
pri

px̆i

e1 - - - - - - - - -
e2 1 0 0 1 0 0 1 0 0
e3 1 0 0 1 0 0 1 0 0
e4 1 0 0 1 0 0 1 0 0
e5 1 0 0 1 0 0 1 0 0
e6 - - - - - - - - -
e7 - - - - - - α (1− α) 0
e8 - - - 1 0 0 1 0 0
e9 - - - 0 0 1 0 0 1
e10 - - - - - - 0 (1− α) α
e11 - - - - - - - - -
e12 0 0 1 0 0 1 0 0 1
e13 0 0 1 0 0 1 0 0 1
e14 0 0 1 0 0 1 0 0 1
e15 0 0 1 0 0 1 0 0 1
e16 - - - - - - - - -

Now, let us have a preliminary estimate for α. Similar to the reason which was men-

tioned for Group2 , we can conclude

α > 1/2. (3.8)

If min |xr − xs| ≥ |x − xs|, so obviously px = 1, this case happens with a probability

of at least 1/2 when xs is in the interval [x, k] (the half of the interval [x, (a + b)/2]), see

Figure 3.5.

Group4: {e1, e6, e11, e16}
For this group, xr and xs are in the same interval. We just need to solve one of them.

38 Chapter 3. Opposition-Based Optimization

Fig. 3.5: Illustration of why the inequality α > 1/2 holds. k is the center of the interval
[x, (a + b)/2].

Lets select event e1; this case can be decomposed to four possible sub-cases, presented in

Figure 3.6. For these sub-cases, the probabilities are given in Table 3.2. (note the recursive

definition of the event (1b)). In order to calculate p1x, let

p1x = 1/4× p1x + 1/4× α⇒ p1x = α/3. (3.9)

We know p(ei) = 1/16 (Eq. 3.6), so

px1 = 1/16× α/3⇒ p1x = α/48. (3.10)

And finally

pr1 = 1− px1 = 1− α/48 = (48− α)/48. (3.11)

Now, we are ready to complete our table (see Table 3.3). According to our final prob-

abilities table, we have

px =
16∑
i=1

p(ei)pxi
= (5 + 25α/24)/16. (3.12)

3.3 Opposition-Based Optimization (OBO) 39

Fig. 3.6: Four possible sub-cases when xr and xs are in the same interval.

Table 3.2: Probabilities table of shown four cases in Figure 3.6.

event p1xi
p1ri

p1x̆i

1a 0 1 0
1b p1x p1r 0
1c 0 1 0
1d α (1− α) 0

pr =
16∑
i=1

p(ei)pri
= (6− 50α/24)/16. (3.13)

px̆ =
16∑
i=1

p(ei)px̆i
= (5 + 25α/24)/16. (3.14)

Now, let us investigate when px̆ > pr:

(px̆ > pr)⇔
5 + 25α

24

16
>

6− 50α
24

16
(3.15)

40 Chapter 3. Opposition-Based Optimization

Table 3.3: Probabilities table, final result.

event pxi
pri

px̆i

e1 (α/48) (48− α)/48 0
e2 1 0 0
e3 1 0 0
e4 1 0 0
e5 1 0 0
e6 (α/48) (48− α)/48 0
e7 α (1− α) 0
e8 1 0 0
e9 0 0 1
e10 0 (1− α) α
e11 0 (48− α)/48 (α/48)
e12 0 0 1
e13 0 0 1
e14 0 0 1
e15 0 0 1
e16 0 (48− α)/48 (α/48)

(5 + 25α/24), (6− 50α/24), (5 + 25α/24)

or

(px̆ > pr)⇔ α > 24/75 (3.16)

This is confirmed with α > 1/2 (Eq. 3.8).

3.3.2 How much better is the opposite point?

Now we want to calculate an impact boundary for α and estimate the value of px, px̆, and

pr. In the following two steps, we will find the lower and the upper boundaries for α.

Step 1. Calculating a lower boundary for α – Without loss of generality, we select

e7 to find the impact interval for α (Figure 3.7).

3.3 Opposition-Based Optimization (OBO) 41

Fig. 3.7: The e7 is selected to calculate an impact boundary for the α.

As mentioned before, if min |xs − xr| ≥ |x− xs|, so obviously px = 1. As illustrated in

Figure 3.8, we have

px|min|xs−xr |≥|x−xs|
= lim

N→∞

N∑
i=1

Psi
× Pri

. (3.17)

Psi
and Pri

denote the probability of the presence of the solution and the second random

guess in the shown intervals.

px|min|xs−xr |≥|x−xs|
= lim

N→∞

(
1

21
× 1

20
+

1

22
× 1

21
+

1

23
× 1

22
+ ... +

1

2(N+1)
× 1

2N

)
(3.18)

px|min|xs−xr |≥|x−xs|
= lim

N→∞

(
1

21
+

1

23
+

1

25
+ ... +

1

2(2N+1)

)
(3.19)

This equation presents infinite geometric series; such series converge if and only if the

absolute value of the common ratio is less than one (|r| < 1). For these kinds of series we

have

lim
N→∞

N∑
k=1

ark = lim
N→∞

a(1− rN+1)

1− r
=

a

1− r
. (3.20)

Hence

42 Chapter 3. Opposition-Based Optimization

px|min|xs−xr |≥|x−xs|
=

4

6
. (3.21)

Fig. 3.8: Situations which min|xs − xr| ≥ |x− xs|.

So, we receive

4

6
≤ α. (3.22)

Step 2. Calculating an upper boundary for α – Analogously, If min |x−xs| ≥ |xs−xr|,
then pr = 1. So, as illustrated in Figure 3.9, we have

pr|min|x−xs|≥|xs−xr |
= lim

N→∞

N∑
i=1

Psi
× Pri

(3.23)

pr|min|x−xs|≥|xs−xr |
= lim

N→∞

(
1

22
× 1

21
+

1

23
× 1

22
+

1

24
× 1

23
+ ... +

1

2(N)
× 1

2(N−1)

)
(3.24)

3.3 Opposition-Based Optimization (OBO) 43

pr|min|x−xs|≥|xs−xr |
= lim

N→∞

(
1

23
+

1

25
+

1

27
+ ... +

1

2(2N−1)

)
(3.25)

Again, we are faced with infinite geometric series and by reusing the Eq. 3.20, we have

pr|min|x−xs|≥|xs−xr |
=

1

6
. (3.26)

Fig. 3.9: Situations which min|x− xs| ≥ |xr − xs|.

Finally, we have

α ≤ (1− pr|min|x−xs|≥|xs−xr |
) =

5

6
, (3.27)

px|min|xs−xr |≥|x−xs|
≤ α ≤ (1− pr|min|x−xs|≥|xs−xr |

), (3.28)

or

4

6
≤ α ≤ 5

6
. (3.29)

44 Chapter 3. Opposition-Based Optimization

By establishing this boundaries for α and considering Eq.s 3.12 - 3.14, we have

205

576
≤ px = px̆ ≤

845

2304
. (3.30)

or

0.36 ≤ px = px̆ ≤ 0.37. (3.31)

And also

307

1152
≤ pr ≤

83

288
. (3.32)

or

0.27 ≤ pr ≤ 0.29. (3.33)

Hence, the opposite of x (x̆) has a higher chance to be closer to the solution, xs, com-

pared to the second random guess, xr, in a one-dimensional solution space.

The center of the interval [4
6
, 5

6
] for α is 9

12
or 0.75. By substituting this mean value in

Eq.s 3.12 - 3.14, we receive

px = px̆ = 0.3613 and pr = 0.2773. (3.34)

Central opposition theorem can be extended to higher dimensions, following theorem

addresses this extension.

Theorem 3.5 (Central Opposition Theorem for D-Dimensional Space)

Assume

(a) y = f(X) is an unknown function with X(x1, x2, x3, ..., xD), xi ∈ [ai, bi], i = 1, 2, 3, ...,D

and at least one solution at Xs(xs1 , xs2 , xs3 , ..., xsD
), xsi

∈ [ai, bi], i = 1, 2, 3, ...,D,

3.3 Opposition-Based Optimization (OBO) 45

(b) X is the first uniform random guess and Xr(xr1 , xr2 , xr3 , ..., xrD
) is the second uniform

random guess in the solution space,

(c) The opposite point of X(x1, x2, ..., xD) is defined by X̆(x̆1, x̆2, ..., x̆D) where

x̆i = ai + bi − xi, i = 1, 2, 3, ..., D.

Then Pr
(
‖X̆, Xs‖ < ‖Xr, Xs‖

)
> Pr

(
‖Xr, Xs‖ < ‖X̆, Xs‖

)
, where ‖ · ‖ denotes

the Euclidean distance.

Proof - We have

Pr
(
‖X̆, Xs‖ < ‖Xr, Xs‖

)
> Pr

(
‖Xr, Xs‖ < ‖X̆, Xs‖

)
=

Pr

(√
D∑

i=1

(x̆i − xsi
)2 <

√
D∑

i=1

(xri
− xsi

)2

)
> Pr

(√
D∑

i=1

(xri
− xsi

)2 <

√
D∑

i=1

(x̆i − xsi
)2

)
According to the Central Opposition Theorem for one-dimensional space we have

Pr (|x̆− xs| < |xr − xs|) > Pr (|xr − xs| < |x̆− xs|) . (3.35)

That is true for each dimension in the solution space, so

Pr (|x̆i − xsi
| < |xri

− xsi
|) > Pr (|xri

− xsi
| < |x̆i − xsi

|) , i = 1, 2, 3, ..., D (3.36)

Hence

Pr

(√
D∑

i=1

(x̆i − xsi
)2 <

√
D∑

i=1

(xri
− xsi

)2

)
> Pr

(√
D∑

i=1

(xri
− xsi

)2 <

√
D∑

i=1

(x̆i − xsi
)2

)
,

and the Central Opposition Theorem is also valid for a D-dimensional space.

46 Chapter 3. Opposition-Based Optimization

Table 3.4: Numerical results generated by Algorithm 2 (µ: Mean, σ: Standard deviation,
CI: Confidence interval).

px px̆ pr

µ 0.3617 0.3617 0.2767
σ 0.0048 0.0048 0.0045

95% CI (0.3616, 0.3618) (0.3616, 0.3618) (0.2766, 0.2767)

3.4 Empirical Verification

In this section, the aforementioned mathematical proofs are experimentally verified and

the usefulness of the opposite numbers in higher dimensional spaces is investigated. For

this propose, three random points in a D-dimensional space are generated (n times), called

X, Xs, and Xr. Then, the number of times (out of n) which X, X̆, or Xr is the closest

to the randomly generated solution Xs (measured by Euclidean distance) is counted and

finally the probability of the closeness of each point is calculated (px, px̆, and pr). In

conducted experiments, n is chosen a large number in order to have an accurate estimation

for probability values. The proposed method for this empirical verification is presented in

Algorithm 2. As shown, there are two nested loops, the outer one to feed dimensions and

the inner one to handle n trials for each dimension.

The experiments have been conducted for different dimensions ranging from D= 1 to

D=10, 000. In order to attain reliable results, the number of trials n was set to 1, 000, 000.

Results are summarized in Table 3.4.

Results analysis - The mean µ (across all dimensions), standard deviation σ, and

95% confidence interval (CI) of px, px̆, and pr have been calculated for the results of

dimensions D=1, 2, 3, ..., 10, 000. Low standard deviations and short confidence intervals

show that the probabilities remain the same for all investigated dimensions. The probability

3.4 Empirical Verification 47

Algorithm 2 Calculate px, px̆, and pr experimentally.

1: Dmax ← 10, 000
2: n← 1, 000, 000
3: for D = 1 to Dmax do
4: for R = 1 to n do
5: Generate three random points X, Xs, Xr in the D-dimensional space, [ai, bi] =

[−1, 1] for i = 1, 2, 3, ..., D
6: Calculate the opposite point of X (X̆)
7: Calculate the Euclidean distance of X, X̆, and Xr from Xs (dX , dX̆ , dr)
8: if (dX < dX̆) ∧ (dX < dr) then
9: cx ← cx + 1 //x is the closest to the solution

10: else if (dX̆ < dX) ∧ (dX̆ < dr) then
11: cx̆ ← cx̆ + 1 //x̆ is the closest to the solution
12: else if (dr < dX) ∧ (dr < dX̆) then
13: cr ← cr + 1 //xr is the closest to the solution
14: end if
15: end for
16: px ← cx/n
17: px̆ ← cx̆/n
18: pr ← cr/n
19: end for

of opposite point px̆ (0.3617) is 0.085 higher than the probability of a second random

guess pr (0.2767). As shown in Table 3.5, interestingly, experimental results conform with

established theorems.

Additional experiments (not presented here) showed that α = 0.75 is a proper value (a

similar experimental method presented in this section is used to simulate e7 and calculate α,

see Figure 3.7). Using this empirical value in Eq.s 3.12 - 3.14, a more accurate comparison

between theoretical and experimental probabilities can be provided (see Table 3.6). As

seen, the probabilities are almost the same.

48 Chapter 3. Opposition-Based Optimization

Table 3.5: Comparison of experimental and mathematical results.

px px̆ pr

Mathematical computation (0.3559, 0.3667) (0.3559, 0.3667) (0.2664, 0.2881)
Experimental results 0.3617 0.3617 0.2767

Table 3.6: Comparison of experimental and mathematical results for α = 0.75.

px px̆ pr

Mathematical computation (α = 0.75) 0.3613 0.3613 0.2773
Experimental results 0.3617 0.3617 0.2767

3.5 Summary

This chapter established mathematical proofs and provided experimental evidence to verify

the advantage of opposite points, compared to additional random points when dealing

with high-dimensional problems. Both experimental and mathematical results conform

with each other; opposite points are more beneficial than additional independent random

points. Therefore we can conclude that the opposition-based optimization can be utilized

to accelerate searching methods since considering the pair P and P̆ has apparently a higher

fitness probability than pure randomness.

Chapter 4

Opposition-Based Differential

Evolution (ODE)

Therefore, the foundation of the creation was (based) upon opposites. Nec-

essarily, we are battling because of loss and gain.

– Rumi (1207 – 1273) in “Masnawi”

49

50 Chapter 4. Opposition-Based Differential Evolution (ODE)

4.1 Introduction

This chapter discusses how opposition-based optimization can be employed to accelerate

population-based algorithms. In this direction, the opposition-based population initial-

ization and generation jumping schemes are proposed. Simplicity and universality of the

schemes are two main characteristics. The proposed schemes are utilized to introduce the

opposition-based differential evolution (ODE). The acceleration of the DE algorithm is

targeted by integration of the static opposite points in the initialization step and dynamic

ones in the generation jumping. As it will be mentioned later, the considerable portion

of the acceleration is obtained by generation jumping. The opposition-based initialization

just provides fitter points for the start. The proposed schemes work at the population level

and, for this reason, can be investigated for extension of other population-based algorithms

as well.

4.2 Opposition-Based Acceleration Schemes

Generally speaking, in order to utilize the advantages of the opposition-based optimization

to accelerate population-based algorithms, many schemes can be suggested and investi-

gated. But, it seems that considering the following features during the design of these

schemes are crucial:

Generality - Proposing general schemes makes it easy to use OBO for a wider range of

population-based optimization methods. Tailored schemes would obviously be more

rigid for generalization. Manipulating the internal operators of the optimizer leads to

lower generality, although, the customized schemes can result a higher performance.

Simplicity - This feature is always desirable. Simplicity supports a higher understand-

ability, and makes any design easy to implement and modify. Also, in practical

environments, the simple schemes are widely appreciated.

4.2 Opposition-Based Acceleration Schemes 51

Problem Independency - Proposed schemes have to be universal and capable to solve a

wider range of optimization problems. By equipping the parent optimizer with the

opposition-based schemes, it should not be specialized to solve a group of specific

problems (e.g., unimodal). This case is experimentally verifiable by applying the

algorithm to solve various global optimization problems. In other words, the proposed

schemes should not reduce the universality of the parent optimizer to solve different

problems.

Effectiveness - It should be taken into consideration that the evaluation of opposite

points need more function calls and should be controlled smartly to prevent loosing

the benefits through extra computations. Overall, the extra function calls should be

reasonable and bring a benefit to the optimization process. The benefit can be faster

convergence, higher robustness, or higher solution quality. Furthermore, improving

one of these features should not affect the other benefits. During the experimental

verification of the proposed algorithm, different measures are employed to investigate

each criterion individually.

Any population-based optimization algorithm has two main phases, namely, population

initialization and evolutionary generating of the new population; a general scheme is shown

in Figure 4.1 (A). Three possible stages (marked by gray blocks in Figure 4.1 (B)) are

recognizable to employ opposition-based optimization to accelerate the parent algorithm.

These three stages are:

(1) During population initialization

(2) During population evolution, and

(3) After population evolution

As mentioned before, the evolutionary algorithms are categorized according to the

employed evolutionary operators in their population evolution phase. So, any manipulation

52 Chapter 4. Opposition-Based Differential Evolution (ODE)

in this phase reduces the generality of the proposed scheme. Exactly for this reason (to

work at the population level), two stages, (1) and (3), are considered to employ OBO

to accelerate the parent algorithm. Figure 4.2 presents the finalized general scheme for

this proposal; through this way, two external blocks are selected and one internal block

is removed. These two blocks are called opposition-based population initialization and

opposition-based generation jumping, respectively. In the following subsections, the details

about each block are provided.

Fig. 4.1: (A) A general scheme for population-based optimization algorithms, (B) Three
possible stages (marked by gray blocks) to employ OBO to accelerate (A).

4.2 Opposition-Based Acceleration Schemes 53

Fig. 4.2: In order to support generality for the opposition-based scheme two external blocks
are chosen ,(1) and (3), to employ OBO. The internal one (2) was removed (see Figure 4.1
(B)).

4.2.1 Opposition-based population initialization

According to author’s best knowledge, random number generation, in absence of a priori

knowledge, is the commonly used method to create an initial population. But, as mentioned

before, by utilizing OBO we can obtain fitter starting candidates even when there is no a

priori knowledge about the solution(s). Block (1) from Figure 4.3 shows the implementation

of opposition-based population initialization. Following steps explain that procedure:

step 1. Initialize the population P(Np) randomly,

step 2. Calculate opposite population by

OPi,j = aj + bj − Pi,j, (4.1)

54 Chapter 4. Opposition-Based Differential Evolution (ODE)

i = 1, 2, ..., Np ; j = 1, 2, ..., D.

where Pi,j and OPi,j denote the jth variable of the ith population and the opposite-

population vector, respectively.

step 3. Select the Np fittest individuals from the set {P ∪ OP} as the initial population.

According to the above procedure, 2Np function evaluations are required instead of Np

for the regular random population initialization. But, by the opposition-based initializa-

tion, the parent algorithm can start with the fitter initial individuals instead, and this is a

one-time cost.

4.2.2 Opposition-based generation jumping

By applying a similar approach to the current population, the evolutionary process can be

forced to jump to a fitter generation. Based on a jumping rate Jr (i.e. jumping probability),

after generating new populations by mutation, crossover, and selection, the opposite popu-

lation is calculated and the Np fittest individuals are selected from the union of the current

population and the opposite population. As a difference to opposition-based initialization,

it should be noted here that in order to calculate the opposite population for generation

jumping, the opposite of each variable is calculated dynamically. That is, the maximum

and minimum values of each variable in the current population ([MINp
j , MAXp

j]) are used to

calculate opposite points instead of using variables’ predefined interval boundaries ([aj, bj]):

OPi,j = MINp
j + MAXp

j − Pi,j, i = 1, 2, ..., Np; j = 1, 2, ..., D. (4.2)

By staying within variables’ static boundaries, it is possible to jump outside of the

already shrunken search space and lose the knowledge of the current reduced space (con-

verged population). Hence, we calculate opposite points by using variables’ current inter-

val in the population ([MINp
j , MAXp

j]) which is, as the search does progress, increasingly

4.2 Opposition-Based Acceleration Schemes 55

Fig. 4.3: New blocks are illustrated by gray boxes. Block (1): Opposition-based initial-
ization, Block (3): Opposition-based generation jumping (Jr: jumping rate, rand(0, 1):
uniformly generated random number, Np: population size). Block (2) is removed.

smaller than the corresponding initial range [aj, bj]. Block (3) from Figure 4.3 indicates

the implementation of opposition-based generation jumping.

A pictorial example is presented in Figure 4.4 to exhibit opposition-based generation

jumping procedure in 2D space. ‘S’ indicates location of the solution. Dark and light circles

present the points and the opposite points, respectively. As seen, in the resulted population

(shown by the current P), the average distance of the selected candidates (which contains

some original points and the opposite of some others) from the solution is smaller than it

was for population (P) and opposite population (OP), individually.

56 Chapter 4. Opposition-Based Differential Evolution (ODE)

Fig. 4.4: A pictorial example to show the opposition-based generation jumping in 2D space
(Np = 8).

Furthermore, a real example for the opposition-based generation jumping in 2D space

(Np = 1000) is presented in Figure 4.5. The P, OP, {P ∪ OP}, and the selected individuals

after the population jumping are shown for some objective functions.

4.3 Opposition-Based Differential Evolution

Now, everything is ready to build opposition-based differential evolution (ODE). Simi-

lar to all population-based optimization algorithms, two main phases are distinguishable

for the classical DE, namely, population initialization and producing new generations.

DE is chosen as a parent algorithm for the proposed general scheme and the mentioned

opposition-based population initialization and generation jumping are embedded inside

DE, to increase the convergence speed. Corresponding flowchart and pseudo-code for the

4.3 Opposition-Based Differential Evolution 57

Fig. 4.5: A real example for the opposition-based generation jumping in 2D space
(Np = 1000). Top to bottom, left to right: P, OP, {P ∪ OP}, the selected individuals

after the jumping for the following objective functions f1(x) =
√

(x1 − 0.5)2 + (x2 − 0.5)2,

f2(x) =
√

(x1 − 0.75)2 + (x2 − 0.5)2, f3(x) =
√

(x1 − 1)2 + (x2 − 0.5)2, f4(x) =√
(x1 − 1)2 + (x2 − 1)2.

58 Chapter 4. Opposition-Based Differential Evolution (ODE)

proposed approach (ODE) are given in Figure 4.6 and Algorithm 3, respectively. Block (1)

from Figure 4.6 and steps 2-7 in Algorithm 3 show the implementation of opposition-based

initialization and block (3) and steps 27-34 show the implementation of opposition-based

generation jumping for ODE. The remaining tasks are DE’s regular steps.

Fig. 4.6: Opposition-Based Differential Evolution (ODE).

4.3 Opposition-Based Differential Evolution 59

Algorithm 3 Pseudo-code for Opposition-Based Differential Evolution (ODE). P0: Initial
population, OP0: Opposite of initial population, P : Current population, OP : Opposite
of current population, D: Problem dimension, [aj, bj]: Range of the j-th variable, Jr:
Jumping rate, minp

j/maxp
j : Minimum/maximum value of the j-th variable in the current

population. Steps 2-7 and 27-34 are implementations of opposition-based population
initialization and opposition-based generation jumping, respectively.

1: Generate uniformly distributed random population P0

//Begin of Opposition-Based Population Initialization
2: for i = 0 to Np do
3: for j = 0 to D do
4: OP0i,j ← aj + bj − P0i,j

5: end for
6: end for
7: Select Np fittest individuals from set the {P0, OP0} as initial population P0

//End of Opposition-Based Population Initialization
//Begin of DE’s Evolution Steps

8: while (BFV > VTR and NFC < MAXNFC) do
9: for i = 0 to Np do

10: Select three parents Pi1 , Pi2 , and Pi3 randomly from current population where i 6= i1 6= i2 6= i3
11: Vi ← Pi1 + F × (Pi2 − Pi3)
12: for j = 0 to D do
13: if rand(0, 1) < Cr then
14: Ui,j ← Vi,j

15: else
16: Ui,j ← Pi,j

17: end if
18: end for
19: Evaluate Ui

20: if (f(Ui) ≤ f(Pi)) then
21: P ′

i ← Ui

22: else
23: P ′

i ← Pi

24: end if
25: end for
26: P ← P ′

//End of DE’s Evolution Steps
//Begin of Opposition-Based Generation Jumping

27: if rand(0, 1) < Jr then
28: for i = 0 to Np do
29: for j = 0 to D do
30: OPi,j ← MINp

j + MAXp
j − Pi,j

31: end for
32: end for
33: Select Np fittest individuals from set the {P,OP} as current population P
34: end if

//End of Opposition-Based Generation Jumping
35: end while

60 Chapter 4. Opposition-Based Differential Evolution (ODE)

4.4 Summary

A general opposition-based scheme for population-based algorithms is proposed in this

chapter. The details for opposition-based population initialization and generation jumping

are provided, and, these two new blocks are embedded inside classical DE to introduce

the opposition-based DE. In the proposed scheme, evolutionary part of the algorithm is

kept untouched to support a higher generality. The rate of generation jumping can be

controlled by the jumping rate (Jr) and each block (initialization and generation jumping)

works independently. Opposition-based population initialization provides fitter individuals

to start; and the opposition-based generation jumping forces the population to jump and

continue with a fitter generation. Both newly embedded blocks should accelerate the

convergence rate of the DE. Experimental results will support this expectation. Discussion

about the control parameter (Jr) will be provided later.

Chapter 5

Empirical Study and Analysis

The strongest arguments prove nothing so long as the conclusions are not ver-

ified by experience. Experimental science is the queen of sciences and the goal

of all speculation.

– Roger Bacon (c. 1214–1294)

61

62 Chapter 5. Empirical Study and Analysis

5.1 Introduction

Similar to other evolutionary algorithms and due to stochastic nature, a strong conver-

gence proof for differential evolution does not exist [Feoktistov 2006]. It means that even

two different versions of DE cannot be compared mathematically, such that experimental

comparison is required (unlike deterministic algorithms which can be compared through

algorithm complexity analysis). Like many other studies in this field, a comprehensive

benchmark test suite is employed to empirically analyze the ODE. Nine experimental se-

ries have been designed and conducted. In subsections 5.5.7-5.5.9, ODE is compared with

six other evolutionary algorithms. Convergence speed, success rate, and solution quality

are three core measures in the following studies.

5.2 Benchmark Test Suite

A comprehensive set of benchmark functions, including 58 different global optimization

problems, has been employed for performance verification of the proposed approach (al-

though utilizing a much smaller set of benchmark functions for this purpose is commonly

acceptable, e.g. [Koumousis and Katsaras 2006]). The definition of the benchmark func-

tions and their global optimum(s) are listed in Appendix A. Generally, following charac-

teristics are desirable to provide a comprehensive test suite:

Selecting well-known test functions: All 58 functions are frequently used bench-

mark problems in global optimization field. However, there is no unique standard

test set; researchers usually use a subset of well-known functions to validate their

work. Generally, the size of the test suite is between 5 and 25 functions.

Some sample 3-D maps for 2-D functions from the selected test suite are presented

in Figures 5.1 and 5.2.

5.2 Benchmark Test Suite 63

(a) f1 (1st De Jong) is unimodal, scalable,
convex, and easy function.

(b) f4 (Rosenbrock’s Valley) is unimodal,
scalable, non-convex, and hard function.
The minimum is inside a long, narrow,
parabolic shaped flat valley

(c) f5 (Rastrigin’s Function) is highly mul-
timodal. The location of the minima are
regularly distributed.

(d) f6 (Griewangk’s Function) has many
regularly distributed local minima and
hard to locate global minimum.

Fig. 5.1: Some sample 3-D maps for 2-D functions selected from the test suite.

64 Chapter 5. Empirical Study and Analysis

(a) f8 (Ackley’s Problem), the number of
local minima is unknown.

(b) f11 (Easom Function) is unimodal and
the global minimum has a small area rela-
tive to the search space.

(c) f18 (Michalewicz Function) has n! local
minima. Steepness of the valleys or edges
makes it a hard optimization problem.

(d) f32 (Schaffer’s Function 6) is multi-
modal and symmetric.

Fig. 5.2: Continued from Figure 5.1.

5.2 Benchmark Test Suite 65

Modality: With a simple, but not exact definition, all benchmark functions can

be categorized in three groups:

1) Unimodal functions (functions with one global optimum, e.g., Figures 5.1(a),

5.1(b), and 5.2(b)),

2) Multimodal functions with a few local optima (e.g., Figure 5.1(d)),

3) Multimodal functions with many local optima (e.g., Figures 5.1(c), 5.2(a), 5.2(c),

and 5.2(d)).

In general, escaping from local optima to find the global optimum is a challenging

task for any optimizer. Generally speaking, the multimodal functions are harder than

unimodal ones, but the functions’ shape can affect the hardness of the problem even

for a unimodal function. As an example, Rosenbrock’s Valley (Figure 5.1(b)) and

Easom Function (Figure 5.2(b)) are unimodal functions, but both are difficult; for

the first one the minimum is inside a long, narrow, parabolic shaped flat valley and

for the second one the global minimum has a small area relative to the search space

(small basin).

In our test suite, 23 of functions are unimodal, 18 are multimodal with a few (smaller

than 10) local optima, and 17 are highly multimodal functions.

Scalability: Possessing 20 scalable functions in our test set provides the opportu-

nity to validate the proposed approach for different dimensions. On the other hand,

scalable functions are usually separable (means the parameters can be optimized

individually). In revers manner, non-scalable functions tend to be nonseparable.

Majority of the functions in our test suite are nonseparable functions, which are

challenging for any optimization contest.

Wide dimension size: The dimensions of the test functions are distributed mostly

between 2 and 60. In the conducted dimensionality study, 49 low dimensional func-

66 Chapter 5. Empirical Study and Analysis

tions (D ≤ 10) and 49 high dimensional functions (D > 10) have been tested.

Including eccentric solution problems: Sometimes, algorithms are biased to-

ward the center of the searching space. Hence, they perform better with the functions

which the solution is in the center of the search space. To prevent biased results, 33

of the functions have the optimal solutions not located in the center of search space.

Complex structures: Existence of small attraction basins, saddle points, steep

edges, padding with noise, distributed local optima around the global optimum,

and lack of useful information on function’s global structure (e.g., flat structure) are

some examples which make optimization much more challenging. For each mentioned

source of complexity, there is at least one representative in the test suite.

5.3 Comparison Strategies and Metrics

We compare the convergence speed of DE and ODE by measuring the number of func-

tion calls (NFC) which is the most commonly used metric in literature [Price et al. 2005;

Vesterstroem and Thomsen 2004; Hrstka and Kučerová 2004; Suganthan et al. 2005]. A

smaller NFC means higher convergence speed. The termination criterion is to find a value

smaller than the value-to-reach (VTR) before reaching the maximum number of function

calls MAXNFC. VTR is selected as a very small value (e.g. 10−8) to guarantee high ac-

curacy. In order to minimize the effect of the stochastic nature of the algorithms on the

metric, the reported number of function calls (NFC) for each function is the average over

50 trials. In order to compare convergence speeds, we use the acceleration rate (AR) which

is defined as follows, based on the number of function calls for the two algorithms DE and

ODE:

AR =
NFCDE

NFCODE

, (5.1)

5.4 Parameter Settings 67

where AR > 1 means ODE is faster.

The number of times, for which the algorithm succeeds to reach the VTR for each test

function is measured as the success rate (SR) [Suganthan et al. 2005]:

SR =
number of times reached VTR

total number of trials
. (5.2)

SR is a commonly used metric to quantify the robustness of the algorithms.

Further, the average acceleration rate (ARave) and the average success rate (SRave) over

n test functions are calculated as follows:

ARave =
1

n

n∑
i=1

ARi, (5.3)

SRave =
1

n

n∑
i=1

SRi. (5.4)

These two average metrics help us to have an overall comparison for the entire test suite;

other measures such as number of solved (SR 6= 0) problems and number of problems for

which the algorithm shows better results than other competitor(s) are taken to account

for this purpose.

5.4 Parameter Settings

Parameter settings for all conducted experiments are as follows unless a change is mentioned

(the same setting has been used in literature cited after of each parameter):

• Population size, Np = 100 [Brest et al. 2006; Yao et al. 1999; Lee and Yao 2004]

• Differential amplification factor, F = 0.5 [Storn and Price 1997a; Ali and Törn 2004;

Liu and Lampinen 2005; Brest et al. 2006; Rahnamayan and Dieras 2007]

68 Chapter 5. Empirical Study and Analysis

• Crossover probability constant, Cr = 0.9 [Storn and Price 1997a; Ali and Törn 2004;

Liu and Lampinen 2005; Brest et al. 2006; Rahnamayan and Dieras 2007]

• Jumping rate constant, Jr = 0.3 (discussed in subsection 5.5.6)

• Mutation strategy: DE/rand/1/bin (classic version of DE) [Storn and Price 1997a;

Price et al. 2005; Onwubolu and Babu 2004; Brest et al. 2006; Sun et al. 2005]

• Maximum number of function calls, MAXNFC = 106 [Rahnamayan et al. 2006f]

• Value to reach, VTR= 10−8 [Suganthan et al. 2005]

In order to maintain a reliable and fair comparison, (a) the parameter settings are the

same as above for all experiments, unless we mention new settings to serve the purpose

of that parameter study, (b) for all conducted experiments, the reported values are the

average of the results for 50 independent runs, and the last and also more important

one, (c) needless to say, extra fitness evaluations required for the opposite points (both in

population initialization and also generation jumping phases) are counted as well.

5.5 Experimental Studies

A comprehensive set of experiments has been conducted and they are categorized as fol-

lows. In subsection 5.5.1, DE and ODE are compared in terms of convergence speed and

robustness. The effect of problem dimensionality is investigated in subsection 5.5.2. The

contribution of opposite points to the achieved acceleration results is demonstrated in

subsection 5.5.3. The effect of population size is studied in subsection 5.5.4. Compari-

son of DE and ODE over different mutation operators is performed in subsection 5.5.5.

Discussion about the control parameter, jumping rate, is covered in subsection 5.5.6. And

finally, ODE is compared with DE, Fuzzy Adaptive DE (FADE), Adaptive LEP, Best Lévy,

5.5 Experimental Studies 69

Fast Evolutionary Programming (FEP), and Classical Evolutionary Programming (CEP)

in subsections 5.5.7-5.5.9.

5.5.1 Experiment series 1: comparison of DE and ODE

First of all, we need to compare the parent algorithm, DE, with ODE in terms of conver-

gence speed and robustness. The results for solving 58 benchmark functions (see Appendix

A) are given in Table 5.1. The best result for the number of function calls (NFC) and the

success rate (SR) for each function are highlighted in boldface. The average success rates

(SRave) and the average acceleration rate (ARave) on 58 test functions are shown in the

last row of the table.

ODE outperforms DE on 40 test functions (69% of problems) while DE surpasses ODE

on 15 functions (26% of problems). Over the remaining 3 functions (5% of cases) they

perform the same. Except for f4, the rest of 14 functions are low-dimensional functions

(D≤ 10). Average acceleration rate (ARave) is 1.44 which means ODE is on average 44%

faster than DE. While the average success rate (SRave) for both is equal to 0.86, both

algorithms fail to solve f13, f26, and f27; in addition, DE fails to solve f51 and ODE is

unsuccessful on f4. Some sample graphs for the performance comparison between DE and

ODE are given in Figure 5.3. These curves (best solution vs. number of function calls)

show that ODE converges faster than DE toward the optimal solution.

Results analysis - With the same control parameter settings for both algorithms and

fixing the jumping rate for the ODE (Jr = 0.3), their success rates are comparable while

ODE shows better convergence speed than DE (44% faster overall). Jumping rate is an

important control parameter which, if optimally set, can achieve even better results; the

discussion about this parameter is covered in subsection 5.5.6.

70 Chapter 5. Empirical Study and Analysis

Table 5.1: Comparison of DE and ODE. D: Dimension, NFC: Number of function calls, SR:
Success rate, AR: Acceleration rate. The last row of the table presents the average success
rates (SRave) and the average acceleration rate (ARave). The best results are highlighted
in boldface. AR> 1 means ODE performs faster.

DE ODE DE ODE
F D NFC SR NFC SR AR F D NFC SR NFC SR AR

f1 30 87748 1 47716 1 1.83 f30 2 1016 1 996 1 1.02
f2 30 96488 1 53304 1 1.81 f31 30 411164 1 337532 1 1.22
f3 20 177880 1 168680 1 1.05 f32 2 7976 1 5092 1 1.56
f4 30 403112 1 − 0 − f33 5 2163 0.88 2024 1 1.07
f5 10 328844 1 70389 0.76 4.67 f34 5 38532 1 16340 1 2.36
f6 30 113428 1 69342 0.96 1.64 f35 2 2052 1 1856 1 1.11
f7 30 25140 1 8328 1 3.01 f36 2 8412 1 5772 1 1.46
f8 30 169152 1 98296 1 1.72 f37 2 5284 1 4728 1 1.12
f9 2 4324 1 4776 1 0.90 f38 2 5280 1 4804 1 1.10
f10 4 16600 1 19144 1 0.87 f39 2 3780 1 3396 1 1.11
f11 2 8016 1 6608 1 1.21 f40 2 2424 1 2152 1 1.13
f12 3 3376 1 3580 1 0.94 f41 10 19528 1 15704 1 1.24
f13 6 − 0 − 0 − f42 2 4780 1 4684 1 1.02
f14 2 5352 1 4468 1 1.20 f43 3 6852 1 8484 1 0.81
f15 30 101460 1 70408 1 1.44 f44 3 7036 1 6172 1 1.14
f16 100 3608 1 3288 1 1.09 f45 2 3256 1 3120 1 1.04
f17 4 549850 0.04 311800 0.12 1.76 f46 3 6184 1 5472 1 1.13
f18 10 191340 0.76 213330 0.56 0.90 f47 2 2976 1 2872 1 1.03
f19 30 385192 1 369104 1 1.04 f48 4 1108 1 1232 1 0.90
f20 2 4884 1 5748 1 0.85 f49 2 5232 1 5956 0.92 0.88
f21 30 187300 1 155636 1 1.20 f50 4 379900 1 250260 0.20 1.52
f22 30 570290 0.28 72250 0.88 7.89 f51 10 − 0 16681 0.84 −
f23 30 41588 1 23124 1 1.80 f52 10 14968 1 15104 1 0.99
f24 30 818425 0.12 470359 1 1.78 f53 2 7888 1 4272 1 1.85
f25 4 13925 0.80 15280 0.60 0.91 f54 4 8856 1 7504 1 1.18
f26 4 − 0 − 0 − f55 9 78567 0.24 97536 0.56 0.81
f27 4 − 0 − 0 − f56 10 37824 1 24260 1 1.56
f28 4 4576 1 4500 1 1.02 f57 2 30704 1 55980 0.76 0.55
f29 2 10788 1 11148 1 0.97 f58 4 16600 1 19144 1 0.87

SRave(DE) = 0.86, SRave(ODE) = 0.86, ARave = 1.44

5.5 Experimental Studies 71

(a) f1, ODE is 1.83 times faster. (b) f2, ODE is 1.81 times faster.

(c) f6, ODE is 1.64 times faster. (d) f8, ODE is 1.72 times faster.

Fig. 5.3: Sample convergence graphs (best solution vs. number of function calls).

5.5.2 Experiment series 2: influence of dimensionality

In order to investigate the effect of the problem dimensionality, the same experiments are

repeated for D′=D/2 and D′=2D for each scalable function in our test set. All control

parameters remain unchanged. Results for D/2 and 2D are illustrated in Table 5.2 for 40

test functions.

According to the obtained results, ODE surpasses DE on 34 test functions while DE

72 Chapter 5. Empirical Study and Analysis

outperforms ODE on 2 functions (f4(D=15) and f18(D=5)). Both algorithms are unable to

solve f4(D=60), f19(D=60), f22(D=60), and f51(D=20) before meeting the maximum number of

function calls. The average acceleration rate is equal to 1.73, meaning that ODE per-

forms 73% faster than DE. The average success rate for DE and ODE are 0.82 and 0.81,

respectively.

For 11 functions (f1, f2, f6, f7, f8, f15, f16, f18, f21, f41, and f56), the acceleration rate

(AR) increases as the dimensionality grows. ODE achieves more desirable results for all

but 4 of the functions (f3, f5, f23, and f31) where no improvement can be observed. An

interesting effect for f18 is that for dimensions 5 and 10 (for D= 10 see Table 5.1), DE

performs better than ODE; but when the dimension is increased to 20, ODE shows better

results in terms of NFC and SR. Furthermore, DE cannot solve f24 for D= 60, but ODE

solves it in 35% of the trials.

At the bottom of the Table 5.2, the average success rates and the average acceleration

rates for functions with D/2, 2D are presented. For functions with dimension of D/2,

the overall success rate for DE is 4% higher than ODE’s (0.98 vs. 0.94) and the overall

acceleration rate is 1.67. For functions with dimension of 2D, overall success rate of DE

and ODE are almost the same (0.66 vs. 0.67, respectively). But this value is smaller than

what we had observed for D/2. For this case the overall acceleration rate is 1.81.

Results analysis - Decreasing of the overall success rate for DE and ODE was pre-

dictable because if we double the problem dimension, algorithms are sometimes unable to

solve the problem before reaching the maximum number of function calls (which is a fixed

number for all experiments). But as seen, ODE performs better for high dimensional prob-

lems. The higher average acceleration rate has been achieved for functions with dimension

2D.

5.5 Experimental Studies 73

Table 5.2: Comparison of DE and ODE for dimension sizes D/2 and 2D for all scalable
functions of the test suite. At the bottom of the table, the average success rates and the
average acceleration rates for functions with D/2, 2D, and for both (overall) are presented.
The best values of NFC and SR for each case are highlighted in boldface.

DE ODE DE ODE
F D NFC SR NFC SR AR F D NFC SR NFC SR AR

f1 15 39920 1 27860 1 1.43 f18 5 18575 0.96 20067 0.96 0.93
60 156552 1 93720 1 1.67 20 288300 0.35 253910 0.55 1.14

f2 15 43268 1 30956 1 1.40 f19 15 87856 1 86372 1 1.02
60 178308 1 108960 1 1.64 60 − 0 − 0 −

f3 10 49188 1 45284 1 1.09 f21 15 83324 1 78916 1 1.06
40 835316 1 795476 1 1.05 60 330172 1 246552 1 1.34

f4 15 135452 1 − 0 − f22 15 129276 1 51932 1 2.49
60 − 0 − 0 − 60 − 0 − 0 −

f5 5 46964 1 20252 1 2.32 f23 15 18248 1 13252 1 1.38
20 817000 0.08 412240 0.16 1.98 60 73756 1 56708 1 1.30

f6 15 108360 0.96 75018 0.88 1.44 f24 15 372000 1 258650 1 1.44
60 194612 1 127490 0.72 1.53 60 − 0 795575 0.35 −

f7 15 13776 1 7264 1 1.90 f31 15 265872 1 216880 1 1.23
60 45276 1 8620 1 5.25 60 440320 1 398956 1 1.10

f8 15 80520 1 58300 1 1.38 f41 5 8060 1 7220 1 1.12
60 295172 1 188332 1 1.57 20 46216 1 27736 1 1.55

f15 15 45726 1 39236 1 1.17 f51 5 45237 0.76 6776 1 6.68
60 180260 0.84 121750 0.60 1.48 20 − 0 − 0 −

f16 50 3628 1 3296 1 1.10 f56 5 11524 1 9848 1 1.17
200 3680 1 3264 1 1.13 20 179040 1 55616 1 3.22

D/2, SRave(DE) = 0.98, SRave(ODE) = 0.94, ARave = 1.67
2D, SRave(DE) = 0.66, SRave(ODE) = 0.67, ARave = 1.81

Overall, SRave(DE) = 0.82, SRave(ODE) = 0.81, ARave = 1.73

5.5.3 Experiment series 3: contribution of opposite points

In this section, we want to verify that the achieved acceleration rate is really due to

utilizing opposite points and not due to additional sampling. For this purpose, all parts

of the proposed algorithm are kept untouched and instead of using opposite points for the

population initialization and the generation jumping, uniformly generated random points

are employed. In order to have a fair competition for this case, exactly like what we

underwent for opposite points, the predefined boundaries of variables ([aj, bj]) and the

current interval (dynamic interval, [MINp
j , MAXp

j]) of the variables are used to generate

new random points.

74 Chapter 5. Empirical Study and Analysis

After this modification (using additional random numbers instead of opposite numbers),

the random version of ODE (called RDE) is introduced. Now, we are ready to apply this

algorithm to solve our test problems. All control parameters are kept the same to have a

fair comparison. Results for the current algorithm are presented in Table 5.3 (f1 − f29)

and Table 5.4 (f30− f58); also the results of DE and ODE (from Table 5.1) are repeated in

these tables to ease the comparison among these three competitors (DE, ODE, and RDE).

Two acceleration rates are reported in the last row of the Table 5.4, ARODE = NFCDE

NFCODE
and

ARRDE = NFCDE

NFCRDE
compare DE with ODE and RDE, respectively.

As seen, ODE outperforms DE and RDE on 40 functions. DE performs better than

ODE and RDE on 15 functions. The RDE can outperform DE (but not ODE) on just 3

functions f17, f22, and f35 (emphasized in boldface under the ARRDE column). The aver-

age acceleration rate (DE vs. RDE) is 0.87; which means the RDE is 13% slower than its

parent algorithm. The average success rate is almost the same for all of them (0.86, 0.86,

and 0.87 for DE, ODE, and RDE, respectively).

Results analysis - Just by replacing the opposite numbers with additional random

numbers - while the random numbers are generated uniformly in the variables dynamic

intervals and the rest of the proposed algorithm is kept untouched - the average acceleration

rate has dropped from 1.44 (ARODE) to 0.87 (ARRDE) which is a 57% reduction in speed.

This clearly demonstrates that the achieved improvements are due to usage of opposite

points, and that the same level of improvement cannot be achieved via additional random

sampling. We had already demonstrated both mathematically and experimentally why

opposite numbers are more beneficial than pure random numbers (see chapter 3).

5.5.4 Experiment series 4: effect of population size

In order to investigate the effect of the population size, the same experiments (conducted

in section 5.5.1 for Np = 100) are repeated for N ′p = Np/2 and N ′p = 2Np. The results for

5.5 Experimental Studies 75

Table 5.3: Comparison of DE, ODE, and RDE. The best result is highlighted in boldface
(f1 − f29).

DE ODE RDE
F D NFC SR NFC SR ARODE NFC SR ARRDE

f1 30 87748 1 47716 1 1.83 115096 1 0.76
f2 30 96488 1 53304 1 1.81 126780 1 0.76
f3 20 177880 1 168680 1 1.05 231152 1 0.77
f4 30 403112 1 − 0 − 506596 1 0.80
f5 10 328844 1 70389 0.76 4.67 501875 0.96 0.66
f6 30 113428 1 69342 0.96 1.64 149744 1 0.76
f7 30 25140 1 8328 1 3.01 29096 1 0.86
f8 30 169152 1 98296 1 1.72 222784 1 0.76
f9 2 4324 1 4776 1 0.90 4904 1 0.88
f10 4 16600 1 19144 1 0.87 21712 1 0.76
f11 2 8016 1 6608 1 1.21 8248 1 0.97
f12 3 3376 1 3580 1 0.94 3652 1 0.92
f13 6 − 0 − 0 − − 0 −
f14 2 5352 1 4468 1 1.20 6292 1 0.85
f15 30 101460 1 70408 1 1.44 138308 1 0.73
f16 100 3608 1 3288 1 1.09 3924 1 0.92
f17 4 549850 0.04 311800 0.12 1.76 381840 0.16 1.44
f18 10 191340 0.76 213330 0.56 0.90 306900 0.60 0.62
f19 30 385192 1 369104 1 1.04 498200 1 0.77
f20 2 4884 1 5748 1 0.85 6192 1 0.79
f21 30 187300 1 155636 1 1.20 244396 1 0.76
f22 30 570290 0.28 72250 0.88 7.89 285108 1 2.00
f23 30 41588 1 23124 1 1.80 54316 1 0.77
f24 30 818425 0.12 470359 1 1.78 − 0 −
f25 4 13925 0.80 15280 0.60 0.91 17038 0.96 0.82
f26 4 − 0 − 0 − − 0 −
f27 4 − 0 − 0 − − 0 −
f28 4 4576 1 4500 1 1.02 5948 1 0.77
f29 2 10788 1 11148 1 0.97 11588 1 0.93

Np = 50 and Np = 200 are given in Tables 5.5 and 5.6, respectively. In order to discuss

the population size, the overall results of three tables (Table 5.1, Table 5.5, and Table 5.6)

are summarized in Table 5.7.

For Np = 50, the average success rate for DE and ODE is 0.79 and 0.77, respectively

(DE performs marginally better than ODE). But, DE fails to solve 9 functions while ODE

fails on 7. ODE outperforms DE on 35 functions; this number is 15 for DE. The average

acceleration rate is 1.05 for this case (AR=60.16 for f33 is excluded as an exceptional case

in order to avoid non-representative statistics). By carefully looking at the results, we can

76 Chapter 5. Empirical Study and Analysis

Table 5.4: Continued from Table 5.3 (f30 − f58).

DE ODE RDE
F D NFC SR NFC SR ARODE NFC SR ARRDE

f30 2 1016 1 996 1 1.02 1084 1 0.94
f31 30 411164 1 337532 1 1.22 927230 0.24 0.44
f32 2 7976 1 5092 1 1.56 8332 1 0.96
f33 5 2163 0.88 2024 1 1.07 2904 0.96 0.74
f34 5 38532 1 16340 1 2.36 46080 1 0.84
f35 2 2052 1 1856 1 1.11 2016 1 1.02
f36 2 8412 1 5772 1 1.46 10860 1 0.77
f37 2 5284 1 4728 1 1.12 5448 1 0.97
f38 2 5280 1 4804 1 1.10 5540 1 0.95
f39 2 3780 1 3396 1 1.11 3820 1 0.98
f40 2 2424 1 2152 1 1.13 2400 1 1.00
f41 10 19528 1 15704 1 1.24 23156 1 0.84
f42 2 4780 1 4684 1 1.02 4924 1 0.97
f43 3 6852 1 8484 1 0.81 8488 1 0.81
f44 3 7036 1 6172 1 1.14 7396 1 0.95
f45 2 3256 1 3120 1 1.04 3308 1 0.98
f46 3 6184 1 5472 1 1.13 6676 1 0.93
f47 2 2976 1 2872 1 1.03 3200 1 0.93
f48 4 1108 1 1232 1 0.90 1388 1 0.80
f49 2 5232 1 5956 0.92 0.88 5768 1 0.91
f50 4 379900 1 250260 0.20 1.52 528632 1 0.72
f51 10 − 0 16681 0.84 − − 0 −
f52 10 14968 1 15104 1 0.99 18328 1 0.82
f53 2 7888 1 4272 1 1.85 9148 1 0.86
f54 4 8856 1 7504 1 1.18 10632 1 0.83
f55 9 78567 0.24 97536 0.56 0.81 103330 0.56 0.76
f56 10 37824 1 24260 1 1.56 46800 1 0.80
f57 2 30704 1 55980 0.76 0.55 37696 1 0.81
f58 4 16600 1 19144 1 0.87 21344 1 0.78

Ave. 0 .86 0 .86 1.44 0.87 0.87

recognize that when the population size is reduced from 100 to 50, four functions (namely,

f3, f5, f19, and f31) for which ODE has outperformed DE, are now (for population size 50)

solved faster by DE. However, this was predictable because the dimension of those functions

are 20, 10, 30, and 30, respectively, and Np = 50 is a small population size to solve these

functions. Many authors have proposed 10D as a proper value for the population size

[Liu and Lampinen 2005; Storn 1996]. On the other hand, as we know, ODE reduces the

population diversity by its selection method. For small population size, we need to reduce

the jumping rate in order to control the diversity reduction. Here, the jumping rate was

5.5 Experimental Studies 77

Table 5.5: Comparison of DE and ODE (Np = 50).

DE ODE DE ODE
F D NFC SR NFC SR AR F D NFC SR NFC SR AR

f1 30 32548 1 25293 0.92 1.29 f30 2 628 1 522 1 1.20
f2 30 36126 1 28889 0.92 1.25 f31 30 85136 1 94082 0.88 0.90
f3 20 81630 1 88272 1 0.92 f32 2 3806 1 2830 1 1.34
f4 30 − 0 − 0 − f33 5 64009 0.60 1064 1 60.16
f5 10 94627 0.60 170200 0.24 0.57 f34 5 16400 0.96 11282 1 1.45
f6 30 42543 0.80 36426 0.76 1.17 f35 2 1046 1 1036 1 1.00
f7 30 8984 1 3600 1 2.50 f36 2 3920 1 3074 1 1.28
f8 30 63180 1 52930 0.80 1.19 f37 2 2664 1 2480 1 1.07
f9 2 2248 1 2378 1 0.95 f38 2 2786 1 2444 1 1.14
f10 4 8456 0.96 54136 0.84 0.16 f39 2 1956 1 1776 1 1.10
f11 2 3924 1 3378 1 1.16 f40 2 1275 1 1116 1 1.14
f12 3 1856 1 1796 1 1.03 f41 10 9246 1 7554 1 1.22
f13 6 − 0 − 0 − f42 2 2408 1 2370 1 1.02
f14 2 2588 1 2366 1 1.09 f43 3 3512 1 4018 1 0.87
f15 30 37065 0.80 32513 0.84 1.14 f44 3 3534 1 3180 1 1.11
f16 100 1826 1 1782 1 1.02 f45 2 1734 1 1654 1 1.05
f17 4 − 0 − 0 − f46 3 3162 1 2916 1 1.08
f18 10 217870 0.20 219790 0.20 0.99 f47 2 1618 1 1528 1 1.06
f19 30 162700 1 185882 1 0.88 f48 4 564 1 776 1 0.73
f20 2 2614 1 2804 1 0.93 f49 2 2809 0.84 3308 0.88 0.91
f21 30 64960 1 63734 1 1.02 f50 4 − 0 364300 0.08 −
f22 30 − 0 − 0 − f51 10 − 0 136290 0.28 −
f23 30 15688 1 12658 1 1.24 f52 10 7160 1 7262 1 0.99
f24 30 − 0 − 0 − f53 2 4230 1 2580 1 1.64
f25 4 8866 0.72 77539 0.52 0.11 f54 4 4462 1 3998 1 1.12
f26 4 − 0 − 0 − f55 9 271620 0.40 182956 0.36 1.48
f27 4 − 0 − 0 − f56 10 18874 1 12714 1 1.48
f28 4 2472 0.96 2316 1 1.06 f57 2 14550 0.92 69472 0.60 0.21
f29 2 10420 1 10884 1 0.96 f58 4 8456 0.96 54136 0.84 0.16

SRave(DE) = 0.79, SRave(ODE) = 0.77, ARave = 1.05

kept the same (= 0.3) for all population sizes.

As mentioned before, for Np = 100, DE and ODE show an equal average success rate

(SR= 0.86), and they fail to solve an equal number of functions (n(SR=0) = 4). But, ODE

outperforms DE on 40 functions, whereas DE outperforms ODE on 15 functions. The

average acceleration rate is 1.44 for this case.

For Np = 200, ODE outperforms DE on all mentioned measures (0.86, 6, and 39 vs.

0.82, 7, and 15, respectively); and the average acceleration rate is 1.86. As shown in the last

two rows of Table 5.7, ODE performs better than DE in terms of all performance measures.

78 Chapter 5. Empirical Study and Analysis

Table 5.6: Comparison of DE and ODE (Np = 200).

DE ODE DE ODE
F D NFC SR NFC SR AR F D NFC SR NFC SR AR

f1 30 234912 1 103968 1 2.26 f30 2 1808 1 1792 1 1.01
f2 30 259096 1 116360 1 2.23 f31 30 − 0 811075 0.28 −
f3 20 488544 1 412808 1 1.18 f32 2 15784 1 9152 1 1.72
f4 30 809424 1 − 0 − f33 5 4192 1 3832 1 1.09
f5 10 983900 0.04 149800 1 6.57 f34 5 80864 1 27568 1 2.93
f6 30 307880 1 155800 0.88 1.98 f35 2 3824 1 3728 1 1.03
f7 30 71864 1 17144 1 4.19 f36 2 17320 1 10784 1 1.60
f8 30 457848 1 211768 1 2.16 f37 2 10272 1 9032 1 1.14
f9 2 8200 1 9200 1 0.89 f38 2 10336 1 9024 1 1.15
f10 4 34400 1 37688 1 0.91 f39 2 7104 1 6512 1 1.09
f11 2 15800 1 12496 1 1.26 f40 2 4320 1 3488 1 1.24
f12 3 6632 1 7104 1 0.93 f41 10 39976 1 31448 1 1.27
f13 6 − 0 − 0 − f42 2 8920 1 8712 1 1.02
f14 2 10264 1 7648 1 1.34 f43 3 13664 1 16384 1 0.83
f15 30 280280 1 173000 1 1.62 f44 3 13256 1 12080 1 1.10
f16 100 6832 1 6304 1 1.08 f45 2 6376 1 6056 1 1.05
f17 4 513930 0.08 − 0 − f46 3 11776 1 10656 1 1.11
f18 10 498090 0.84 448140 0.88 1.11 f47 2 5872 1 5424 1 1.08
f19 30 − 0 927440 0.84 − f48 4 1904 1 2424 1 0.79
f20 2 9824 1 10368 1 0.95 f49 2 10184 1 11840 1 0.86
f21 30 526280 1 368048 1 1.43 f50 4 747848 1 788810 0.88 0.95
f22 30 987800 0.04 144368 1 6.84 f51 10 − 0 27220 1 −
f23 30 111792 1 48304 1 2.31 f52 10 30304 1 31056 1 0.98
f24 30 − 0 − 0 − f53 2 15216 1 8392 1 1.81
f25 4 25896 0.92 30757 0.92 0.84 f54 4 17088 1 14760 1 1.16
f26 4 − 0 − 0 − f55 9 174620 0.36 272170 0.44 0.64
f27 4 − 0 − 0 − f56 10 71760 1 49088 1 1.46
f28 4 8856 1 8512 1 1.04 f57 2 49816 1 6896 1 7.22
f29 2 20768 1 22008 1 0.94 f58 4 33720 1 37240 1 0.91

SRave(DE) = 0.82, SRave(ODE) = 0.86, ARave = 1.68

Results analysis - According to the results of section 5.5.1 and 5.5.2, for the majority

of functions, ODE performs better when the dimension of the scalable problems increases.

On the other hand, for higher dimensional problems a larger population size should be

employed (e.g. Np = 10D). According to results of this section, ODE performs better for

larger population sizes.

5.5 Experimental Studies 79

Table 5.7: The summarized results from Table 5.1, Table 5.5, and Table 5.6. nDE and
nODE are the number of functions for which DE outperforms ODE and vice versa. nSR=0

is the number of unsolved functions by the algorithm (SR= 0).

DE ODE
Np SRave nSR=0 nDE SRave nSR=0 nODE ARave

50 0.79 9 16 0.77 7 35 1.05
100 0.86 4 15 0.86 4 40 1.44
200 0.82 7 15 0.86 6 39 1.86∑

20 46 17 114
Ave. 0.82 0.83 1.45

5.5.5 Experiment series 5: effect of various mutation operators

More than ten mutation strategies have been developed for DE [Storn and Price 1997a;

Price et al. 2005; Feoktistov 2006]. Although, many researchers report results for one of

these mutation strategies, most works [Storn and Price 1997a; Brest et al. 2006; Sun et al.

2005] use the standard one, namely DE/rand/1/bin, as we did. In this study, three other

well-known mutation strategies, namely, DE/rand/1/exp, DE/rand/2/exp, and DE/rand/

2/bin are selected to investigate the effect of the mutation operator. The results are

presented in Table 5.8 (for f1 − f29) and Table 5.9 (for f30 − f58). The overall results of

these two tables and Table 5.1 (for DE/rand/1/bin) are summarized in compact form in

Table 5.10 to ease the comparison.

For all mutation strategies, ODE performs better than DE by looking at the total num-

ber of function calls, average success rate, number of solved functions, number of functions

for which ODE outperforms DE, and the average acceleration rate.

Results analysis - According to the Table 5.10, the best mutation strategy for

DE and also for ODE is the DE/rand/1/bin. This confirms choosing mutation strat-

egy DE/rand/1/bin as a standard operator by other researchers [Storn and Price 1997a;

Brest et al. 2006; Sun et al. 2005]. Furthermore, it is noticeable that the average ac-

80 Chapter 5. Empirical Study and Analysis

T
ab

le
5.

8:
C

om
p
ar

is
on

of
D

E
an

d
O

D
E

on
th

re
e

d
iff

er
en

t
m

u
ta

ti
on

st
ra

te
gi

es
(f

1
−

f 2
9
).

T
h
e

b
es

t
re

su
lt

of
ea

ch
m

u
ta

ti
on

st
ra

te
gy

is
em

p
h
as

iz
ed

in
b
o
ld

fa
ce

.
D

E
/
r
a
n
d
/
1
/
e
x
p

D
E
/
r
a
n
d
/
2
/
e
x
p

D
E
/
r
a
n
d
/
2
/
b
in

D
E

O
D

E
D

E
O

D
E

D
E

O
D

E
F

D
N

F
C

S
R

N
F
C

S
R

A
R

N
F
C

S
R

N
F
C

S
R

A
R

N
F
C

S
R

N
F
C

S
R

A
R

f
1

3
0

8
6
0
9
6

1
4
7
5
4
4

1
1
.8

1
6
7
5
1
4
8

1
7
4
6
5
2

1
9
.0

5
6
8
3
9
3
2

1
7
6
9
2
0

1
8
.8

9
f
2

3
0

9
5
8
4
0

1
5
3
6
1
2

1
1
.8

8
7
4
2
4
6
8

1
8
4
7
2
8

1
8
.7

6
7
4
1
9
0
8

1
8
4
9
0
4

1
8
.7

4
f
3

2
0

1
4
6
3
3
6

1
1
4
7
6
5
2

1
0
.9

9
7
8
1
6
8
0

1
3
9
3
6
5
2

1
1
.9

9
−

0
4
8
1
9
9
2

1
−

f
4

3
0

3
0
2
0
7
2

1
−

0
−

−
0

3
4
3
3
4
0

1
−

−
0

4
6
3
8
8
0

1
−

f
5

1
0

3
9
1
5
2
8

1
7
0
9
8
3

0
.9

2
5
.5

2
−

0
1
8
6
3
7
0

0
.7

2
−

−
0

1
7
2
8
6
0

0
.7

2
−

f
6

3
0

1
1
2
8
9
2

1
6
9
4
7
5

0
.9

6
1
.6

2
9
2
3
5
4
0

0
.1

6
1
2
6
3
7
0

0
.9

2
7
.3

0
2
9
9
6
8

1
2
9
7
6
0

1
1
.0

0
f
7

3
0

2
5
5
2
0

1
8
0
3
2

1
3
.1

8
2
9
6
0
2
8

1
1
1
3
1
6

1
2
6
.1

6
3
0
2
9
7
2

1
1
1
7
3
6

1
2
5
.8

1
f
8

3
0

1
6
8
4
6
8

1
9
8
3
9
2

1
1
.7

1
−

0
1
5
9
1
7
2

1
−

−
0

1
5
9
2
9
6

1
−

f
9

2
4
2
6
8

1
4
6
8
4

1
0
.9

1
5
5
1
2

1
5
7
1
2

1
0
.9

7
5
6
7
6

1
5
7
7
6

1
0
.9

8
f
1
0

4
1
7
0
2
0

1
1
9
2
1
6

1
0
.8

9
3
0
2
9
2

1
2
9
8
9
6

1
1
.0

1
−

0
−

0
−

f
1
1

2
8
0
5
2

1
6
4
6
4

1
1
.2

5
1
2
8
2
8

1
7
7
4
4

1
1
.6

6
1
2
9
1
6

1
7
4
0
4

1
1
.7

4
f
1
2

3
3
5
5
2

1
3
6
1
2

1
0
.9

8
4
3
5
2

1
4
1
4
6

1
1
.0

5
4
4
4
4
4

1
4
1
9
6

1
1
.0

6
f
1
3

6
−

0
−

0
−

−
0

−
0

−
−

0
−

0
−

f
1
4

2
5
2
3
6

1
4
2
6
0

1
1
.2

3
7
9
2
8

1
5
0
0
4

1
1
.5

8
8
0
2
0

1
4
9
2
0

1
1
.6

3
f
1
5

3
0

1
0
0
2
6
4

1
7
1
0
4
0

1
1
.4

1
9
4
8
9
2
0

0
.9

6
1
8
8
4
9
6

1
5
.0

3
9
6
3
7
4
0

0
.8

4
1
9
5
0
9
6

1
4
.9

4
f
1
6

1
0
0

3
4
9
6

1
3
1
4
8

1
1
.1

1
4
4
4
0

1
3
6
1
6

1
1
.2

3
4
5
8
8

1
3
7
2
4

1
1
.2

3
f
1
7

4
2
5
5
2
3
0

0
.2

0
−

0
−

−
0

−
0

−
−

0
−

0
−

f
1
8

1
0

1
8
9
8
3
0

0
.6

0
2
7
9
2
6
0

0
.3

2
0
.6

8
−

0
8
2
5
3
3
0

0
.0

8
−

−
0

−
0

−
f
1
9

3
0

3
3
1
8
6
4

1
3
3
1
0
4
0

1
1
.0

0
−

0
−

0
−

−
0

−
0

−
f
2
0

2
5
1
9
6

1
6
0
3
2

1
0
.8

6
9
6
2
8

1
1
0
0
5
2

1
0
.9

6
9
6
1
2

1
9
7
0
4

1
0
.9

9
f
2
1

3
0

1
8
5
1
7
6

1
1
5
5
5
7
2

1
1
.1

9
−

0
2
8
1
5
6
0

1
−

−
0

2
8
0
3
2
8

1
−

f
2
2

3
0

5
6
0
1
0
0

0
.0

8
7
1
2
9
6

0
.9

6
7
.8

6
−

0
9
7
8
2
4

1
−

−
0

9
8
3
8
0

1
−

f
2
3

3
0

4
1
1
1
2

1
2
3
0
2
4

1
1
.7

9
3
6
6
9
7
2

1
3
9
1
4
4

1
9
.3

7
3
6
6
8
5
2

1
3
8
5
5
2

1
9
.5

2
f
2
4

3
0

−
0

−
0

−
−

0
−

0
−

−
0

−
0

−
f
2
5

4
1
4
6
2
5

0
.9

6
8
5
5
0
7

0
.5

2
0
.1

7
1
8
9
2
1

0
.7

6
2
1
8
3
0

0
.4

0
0
.8

7
1
8
4
2
1

0
.7

6
1
0
4
8
9
0

0
.4

4
0
.1

8
f
2
6

4
−

0
−

0
−

−
0

−
0

−
−

0
−

0
−

f
2
7

4
−

0
−

0
−

−
0

−
0

−
−

0
−

0
−

f
2
8

4
4
8
0
0

1
4
3
6
8

1
1
.1

0
7
9
4
4

1
6
8
0
0

1
1
.1

7
8
0
3
2

1
6
8
3
2

1
1
.1

8
f
2
9

2
1
0
7
2
4

1
1
0
8
3
6

1
0
.9

9
1
5
2
8
0

1
1
4
6
4
4

1
1
.0

4
1
5
1
6
8

1
1
4
8
8
4

1
1
.0

2

5.5 Experimental Studies 81

T
ab

le
5.

9:
C

on
ti
n
u
ed

fr
om

T
ab

le
5.

8
(f

3
0
−

f 5
8
).

D
E
/
r
a
n
d
/
1
/
e
x
p

D
E
/
r
a
n
d
/
2
/
e
x
p

D
E
/
r
a
n
d
/
2
/
b
in

D
E

O
D

E
D

E
O

D
E

D
E

O
D

E
F

D
N

F
C

S
R

N
F
C

S
R

A
R

N
F
C

S
R

N
F
C

S
R

A
R

N
F
C

S
R

N
F
C

S
R

A
R

f
3
0

2
1
0
7
2

1
9
8
0

1
1
.1

0
1
2
4
0

1
1
1
0
8

1
1
.1

2
1
2
9
2

1
1
1
2
0

1
1
.1

5
f
3
1

3
0

3
6
5
4
9
2

1
2
8
7
3
3
0

0
.9

2
1
.2

7
−

0
6
5
3
6
0
0

0
.4

0
−

−
0

6
1
3
9
0
0

0
.2

4
−

f
3
2

2
8
0
0
4

1
4
8
5
6

1
1
.6

5
1
5
9
5
6

1
6
1
0
0

1
2
.6

2
1
4
8
4
8

1
5
7
7
6

1
2
.5

7
f
3
3

5
2
2
0
4

0
.9

6
2
0
6
8

1
1
.0

7
2
1
3
6

1
1
9
4
4

1
1
.0

9
2
1
0
8

1
1
8
9
6

1
1
.1

1
f
3
4

5
3
5
8
8
8

1
1
8
8
3
6

1
1
.9

0
1
3
1
7
5
6

1
2
2
9
6
8

1
5
.7

4
1
4
5
3
4
8

1
2
3
1
9
6

1
6
.2

6
f
3
5

2
2
0
5
2

1
1
9
5
2

1
1
.0

5
2
5
2
8

1
2
2
3
6

1
1
.1

3
2
4
9
2

1
2
1
4
4

1
1
.1

6
f
3
6

2
8
3
2
0

1
5
6
6
0

1
1
.4

7
1
5
9
0
4

1
6
6
8
0

1
2
.3

8
1
6
1
4
4

1
6
4
0
8

1
2
.5

2
f
3
7

2
5
3
2
0

1
4
6
6
8

1
1
.1

4
6
7
5
6

1
5
3
2
0

1
1
.2

7
6
5
8
8

1
5
2
5
2

1
1
.2

5
f
3
8

2
5
2
6
0

1
4
6
7
6

1
1
.1

2
6
6
3
6

1
5
3
0
4

1
1
.2

5
6
8
4
4

1
5
3
4
4

1
1
.2

8
f
3
9

2
3
7
3
6

1
3
2
8
8

1
1
.1

4
4
6
2
0

1
3
6
7
6

1
1
.2

6
4
7
8
4

1
3
7
8
0

1
1
.2

7
f
4
0

2
2
3
8
8

1
1
9
8
4

1
1
.2

0
2
9
6
0

1
2
2
9
2

1
1
.2

9
3
2
8
8

1
2
2
7
6

1
1
.4

4
f
4
1

1
0

1
9
4
5
2

1
1
5
4
5
2

1
1
.2

6
4
1
2
1
2

1
2
2
9
0
8

1
1
.8

0
4
1
4
4
0

1
2
3
1
0
0

1
1
.8

0
f
4
2

2
4
5
6
4

1
4
5
6
8

1
0
.9

9
6
0
0
0

1
5
3
8
4

1
1
.1

1
5
9
8
8

1
5
3
6
0

1
1
.1

2
f
4
3

3
6
8
9
2

1
7
8
6
8

1
0
.8

8
9
8
6
4

1
1
1
5
8
8

1
0
.8

5
9
5
9
2

1
1
1
4
8
0

1
0
.8

4
f
4
4

3
7
0
9
2

1
6
1
9
6

1
1
.1

4
9
1
6
0

1
7
2
0
8

1
1
.2

7
9
0
9
6

1
7
2
2
0

1
1
.2

6
f
4
5

2
3
2
9
2

1
3
1
6
8

1
1
.0

4
4
0
7
2

1
3
5
6
8

1
1
.1

4
4
0
6
4

1
3
5
6
8

1
1
.1

4
f
4
6

3
6
1
0
0

1
5
5
3
6

1
1
.1

0
8
3
0
4

1
6
7
4
8

1
1
.2

3
8
1
5
6

1
6
6
6
0

1
1
.2

2
f
4
7

2
3
0
1
6

1
2
9
2
4

1
1
.0

3
3
7
4
8

1
3
2
4
4

1
1
.1

6
3
7
0
8

1
3
1
4
4

1
1
.1

8
f
4
8

4
1
0
3
2

1
1
3
4
8

1
0
.7

6
8
9
2

1
1
2
4
4

1
0
.7

2
1
1
0
0

1
1
1
3
2

1
0
.9

7
f
4
9

2
5
3
4
3

0
.9

2
5
9
8
8

1
0
.8

9
7
3
4
4

1
8
5
0
4

1
0
.8

6
7
5
2
5

0
.9

6
8
4
9
6

1
0
.8

6
f
5
0

4
4
5
0
9
6
0

1
3
5
9
5
4
0

0
.1

6
1
.2

5
−

0
−

0
−

−
0

−
0

−
f
5
1

1
0

−
0

1
7
6
1
3

0
.9

2
−

−
0

2
3
3
8
5

0
.8

0
−

−
0

5
6
2
8
9

0
.7

4
−

f
5
2

1
0

1
5
0
2
8

1
1
5
1
4
0

1
0
.9

9
3
0
4
6
8

1
2
4
5
0
4

1
1
.2

4
3
0
4
9
6

1
2
4
4
4
0

1
1
.2

5
f
5
3

2
7
6
5
2

1
4
3
8
4

1
1
.7

5
1
3
2
8
0

1
5
1
9
2

1
2
.5

6
1
2
4
2
8

1
5
2
7
6

1
2
.3

6
f
5
4

4
8
7
5
6

1
7
6
2
4

1
1
.1

5
1
2
5
2
0

1
9
1
9
6

1
1
.3

6
1
2
6
6
4

1
9
3
1
6

1
1
.3

6
f
5
5

9
8
5
3
6
0

0
.2

0
1
6
3
2
8
0

0
.5

2
0
.5

2
3
0
1
5
1
0

0
.4

8
3
2
4
2
0
4

0
.6

8
0
.9

3
2
9
9
2
3
9

0
.3

2
2
7
9
3
1
0

0
.7

6
1
.0

7
f
5
6

1
0

3
7
8
6
0

1
2
4
9
7
2

1
1
.5

2
9
3
6
5
2

1
3
6
3
8
4

1
2
.5

7
9
0
7
6
4

1
3
8
0
1
6

1
2
.3

9
f
5
7

2
3
3
4
2
8

1
6
1
7
8

0
.9

2
5
.4

1
6
2
4
6
8

1
4
5
8
2
4

0
.9

6
1
.3

6
8
4
1
2
0

1
5
4
0
4

1
1
5
.5

6
f
5
8

4
1
6
8
8
8

1
1
8
3
5
2

1
0
.9

2
3
0
2
9
2

1
2
9
8
9
6

1
1
.0

1
2
9
8
2
4

1
3
1
1
6
8

1
0
.9

6

82 Chapter 5. Empirical Study and Analysis

Table 5.10: The summarized results from Tables 5.1, 5.8, and 5.9. ∑
NFCi is the total of

number of function calls (just for the functions which all 8 competitors could solve). nSR=0

is the number of unsolved functions (SR = 0). nDE and nODE are the number of functions
for which DE outperforms ODE and vice versa. N is the number of functions for which
the algorithm could outperform seven other algorithms. ARave is the average acceleration
rate.

DE ODE
Mutation Strategy

∑
NFCi SRave nSR=0 nDE N

∑
NFCi SRave nSR=0 nODE N ARave

DE/rand/1/bin 853, 979 0.86 4 15 7 656,274 0.86 4 40 14 1.42
DE/rand/1/exp 857, 672 0.86 5 17 8 743,584 0.85 6 37 16 1.51
DE/rand/2/exp 4, 865, 187 0.71 15 7 0 1,207,478 0.83 7 44 7 2.78
DE/rand/2/bin 4, 070, 189 0.69 17 8 1 1,119,580 0.81 9 41 2 3.03

celeration rate is even higher for other mutation strategies. For the mutation strategy

DE/rand/2/bin, the average acceleration rate 3.03 is the highest.

5.5.6 Experiment series 6: proper setting of jumping rate Jr

In the proposed algorithm, a new control parameter, Jr, is added to DE parameters (F ,Cr,

and Np). Although this parameter was fixed for all experiments, the performance of ODE

can vary for different Jr values. The jumping rate for our current study was set to Jr = 0.3

without any effort to find an optimal value. In some trials, we observed that a jumping

rate higher than 0.6 is not suitable for many functions and causes a premature convergence

or an unusual growing of the number of function evaluations. On the other hand, Jr = 0

means no usage of opposition. With this method, simply the mean value of the 0 and 0.6,

(Jr = 0.3), was selected for all conducted experiments as a default value.

In this section, we try to find an optimal jumping rate (Jrop) for each test function from

a discrete set of jumping rate values to answer the question whether a general recommen-

dation for Jr setting can be offered. Now, we are faced with this fundamental question: In

order to find the optimal jumping rate, should we look for the minimum number of function

5.5 Experimental Studies 83

calls (NFC) or the maximum success rate (SR)? Both measures are important factors in an

optimization process. So, two individual objectives should be considered simultaneously.

In order to combine these two measures, a new measure, called success performance (SP),

has been introduced as follows [Suganthan et al. 2005]:

SP =
mean (NFC for successful runs)

SR
. (5.5)

By this definition, the two following algorithms have equal performances (SP=100):

Algorithm A: mean (NFC for successful runs)=50 and SR=0.5,

Algorithm B: mean (NFC for successful runs)=100 and SR=1.

SP gives an equal importance weight to NFC and SR. But depending on different

applications each of them can be more important than other one. Sometimes success rate

is more crucial than convergence speed and vice versa. For our experiments, gathering

results for unsuccessful case is more time consuming because the algorithm should meet a

maximum number of function calls for termination.

Now, we repeat the conducted experiments in section 5.5.1 for Jr ∈ (0, 0.6] with a step

size of 0.1 (i.e. 50 trials per function per jumping rate value Jr ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}).
Due to space limitations, we do not show all results but just the obtained optimal value

for the jumping rate with respect to the success performance as given in Table 5.11.

As seen, the optimal values for the jumping rate are distributed over the discrete interval

(0, 0.6]. However, jumping rates of 0.3 and 0.6 occur more frequently than other values in

this table. Higher jumping rates mostly belong to the low dimensional functions and lower

ones to the high dimensional functions (but this is probably not a general phenomenon).

The average value of the obtained optimal jumping rates (J̄rop) is equal to 0.37 for our test

functions.

Some sample graphs (SP vs. Jr) are shown in Figure 5.4 to illustrate the effect of

jumping rate on success performance. The point specified by Jr = 0 indicates the success

84 Chapter 5. Empirical Study and Analysis

Table 5.11: Optimal jumping rate Jrop for all test functions with respect to the success
performance (SP) on interval (0, 0.6] with step-size of 0.1.

F D Jrop F D Jrop F D Jrop F D Jrop

f1 30 0.3 f16 100 0.5 f31 30 0.1 f46 3 0.6
f2 30 0.3 f17 4 0.3 f32 2 0.4 f47 2 0.6
f3 20 0.3 f18 10 0.2 f33 5 0.6 f48 4 0.6
f4 30 0.1 f19 30 0.2 f34 5 0.6 f49 2 0.1
f5 10 0.2 f20 2 0.1 f35 2 0.5 f50 4 0.1
f6 30 0.3 f21 30 0.5 f36 2 0.6 f51 10 0.2
f7 30 0.6 f22 30 0.2 f37 2 0.6 f52 10 0.3
f8 30 0.3 f23 30 0.3 f38 2 0.6 f53 2 0.6
f9 2 0.1 f24 30 0.3 f39 2 0.5 f54 4 0.6
f10 4 0.2 f25 4 0.3 f40 2 0.5 f55 9 0.6
f11 2 0.4 f26 4 − f41 10 0.6 f56 10 0.6
f12 3 0.1 f27 4 − f42 2 0.4 f57 2 0.5
f13 6 − f28 4 0.3 f43 3 0.1 f58 4 0.2
f14 2 0.5 f29 2 0.1 f44 3 0.5
f15 30 0.3 f30 2 0.6 f45 2 0.4

performance of the DE; the rest of points (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) show the success per-

formance of ODE. As mentioned before, we can observe a sharp increase in the SP for hard

functions (e.g. f5, f8, f22, f31, and f51) using higher jumping rates. Also, the SP decreases

for easy functions by increasing the jumping rate (see f7, f41, and f56). Almost a smooth

behavior for all functions is recognizable for Jr ∈ {0.1, 0.2, 0.3, 0.4} (it was observed even

for many functions whose graphs are not presented here). Hence, working in this interval

([0.1, 0.4]) could be reasonable for unknown optimization problems.

Results analysis - Like DE’s control parameters, optimal jumping rate should have

a problem-oriented value. The conducted experiments suggest the range of [0.1, 0.4] for an

unknown optimization problem. A first attempt can be conducted with Jr = 0.37 (J̄rop).

Furthermore, for high dimensional problems, a smaller jumping rate can be suggested.

5.5 Experimental Studies 85

Fig. 5.4: Graphs of success performance (SP) vs. jumping rate (Jr ∈ (0, 0.6] with step
size of 0.1) for sample functions. Jr = 0 shows the SP of the DE; the rest of points
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6) show the SP of the ODE.

5.5.7 Experiment series 7: comparison with DE and FADE

The primary purpose here is to introduce the notion of the opposition into the design and

implementation of the population-based algorithms, differential evolution in particular, and

demonstrate its benefits. Many other extensions of DE, if not all, can also be reconsidered

to incorporate the opposition concept. In this sense, ODE should be regarded as an

example and not as a competitor to other DE versions or other optimizers. However, in

the current section and the following two sections, in order to assess ODE’s performance,

it is compared to the parent algorithm (DE) and also to five other well-known evolutionary

optimizers in term of solution quality.

ODE is compared with the fuzzy adaptive differential evolution (FADE) method of

Liu and Lampinen [2005] in this section. FADE employs a fuzzy logic controller to set the

86 Chapter 5. Empirical Study and Analysis

mutation and crossover rates. Liu and Lampinen tested FADE for 10 well-known bench-

mark functions, of which we have 9 in our test set. The comparison strategy is different

for this experiment. The algorithms are run 100 times. Subsequently, for an equal (fixed)

number of function calls the average and standard deviation of the best solutions are calcu-

lated for the purpose of comparison. The same settings for parameters [Liu and Lampinen

2005] have been used in the current experiment to assure a fair comparison. The popu-

lation size is equal to 10D and instead of using the generation number for DE and ODE

an equal number of function evaluations has been used (Np ×#Gen.) as the termination

criteria (since in each generation the numbers of function calls for DE and ODE are not

equal). The dimension of the functions, corresponding generation numbers, and obtained

results (best mean and standard deviation of 100 runs) for DE, ODE, and FADE are given

in Table 5.12. Results for FADE are taken from [Liu and Lampinen 2005, Table 6, p. 459].

A two-tailed t-test at a 0.05 significance level has been used to compare results of ODE

against those of DE and FADE.

Results analysis - According to the t-test, ODE performs better than DE on 9 func-

tions (out of 16). There is no difference for the rest of functions. ODE surpasses FADE on

12 functions, and they perform the same on the rest. So, DE and FADE cannot show better

results than ODE even for one function. Although, the comparison of a non-adaptive al-

gorithm (ODE) to an adaptive one (FADE) is not fair but interestingly the results confirm

that ODE outstandingly performs not only better than DE but also better than FADE.

5.5.8 Experiment series 8: comparison with Adaptive LEP and

Best Lévy

Lee and Yao [2004] proposed an evolutionary programming (EP) algorithm using adaptive

as well as nonadaptive Lévy mutations. They called the approaches Adaptive LEP and

5.5 Experimental Studies 87

T
ab

le
5.

12
:

C
om

p
ar

is
on

of
D

E
,
O

D
E

,
an

d
F
u
zz

y
A

d
ap

ti
ve

D
E

(F
A

D
E

).
M

ea
n

b
es

t
an

d
st

an
d
ar

d
d
ev

ia
ti

on
(S

td
D

ev
)

of
10

0
ru

n
s

ar
e

re
p
or

te
d
.

F
or

D
E

an
d

O
D

E
,
eq

u
al

n
u
m

b
er

of
fu

n
ct

io
n

ca
ll
s

ar
e

u
se

d
in

st
ea

d
of

ge
n
er

at
io

n
n
u
m

b
er

s
(N

p
×

#
G

en
.)

.
T

w
o-

ta
il
ed

t-
te

st
is

u
se

d
to

co
m

p
ar

e
O

D
E

ag
ai

n
st

D
E

an
d

F
A

D
E

.
‘†

’
in

d
ic

at
es

th
at

th
e

t
va

lu
e

of
99

d
eg

re
e

of
fr

ee
d
om

is
si

gn
ifi

ca
n
t

at
a

0.
05

le
ve

l
of

si
gn

ifi
ca

n
ce

.
f m

in
in

d
ic

at
es

op
ti
m

al
m

in
im

u
m

of
th

e
fu

n
ct

io
n
.

D
E

O
D

E
F
A

D
E

F
f

m
in

D
#

G
en

.
M

ea
n

B
es

t
(S

td
D

ev
)

M
ea

n
B

es
t

(S
td

D
ev

)
M

ea
n

B
es

t
(S

td
D

ev
)

f
1

0
3

5
0

3
.4

9
×

1
0
−

7
(5

.1
2
×

1
0
−

7
)†

4
.7

9
×

1
0
−

8
(5

.8
1
×

1
0
−

8
)

1
.1

8
×

1
0
−

5
(1

.8
8
×

1
0
−

1
0
)†

5
0

5
0
0
0

1
.2

5
×

1
0
−

1
3

(4
.8

8
×

1
0
−

1
4
)†

1
.7

3
×

1
0
−

6
4

(1
.5

9
×

1
0
−

6
4
)

2
.3

5
×

1
0
−

1
0

(2
.9

7
×

1
0
−

2
1
)†

f
4

0
2

5
0

8
.0
×

1
0
−

3
(2

.9
3
×
×

1
0
−

2
)

4
.8
×
×

1
0
−

3
(1

.8
0
×
×

1
0
−

2
)

2
.2
×

1
0
−

3
(7

.7
3
×

1
0
−

5
)

5
0

7
0
0
0

5
.3

0
(9

.5
6
×

1
0
−

1
)†

5
.0

1
×

1
0
−

1
(8

.9
0
×

1
0
−

1
)

4
.1

6
×

1
0
+

1
(1

.8
2
×

1
0
−

2
)†

f
5

0
2

3
0
0
0

0
(0

)
0

(0
)

0
(0

)
5
0

1
0
0
0
0

3
.4

3
×

1
0
+

2
(0

.9
8
×

1
0
+

1
)†

6
.5

6
×

1
0
+

1
(6

.8
0
×

1
0
+

1
)

2
.5

8
×

1
0
+

2
(9

.1
7
×

1
0
+

1
)†

f
6

0
2

1
8
0

5
.1

9
×

1
0
−

4
(1

.9
×

1
0
−

3
)

1
.4

9
×

1
0
−

4
(1

.0
×

1
0
−

3
)

2
.4
×

1
0
−

3
(1

.2
0
×

1
0
−

5
)†

5
0

5
0
0
0

6
.1

3
×

1
0
−

1
1

(2
.0

2
×

1
0
−

1
1
)†

1
.5

3
×

1
0
−

6
2

(2
.3

8
×

1
0
−

6
2
)

5
.7

8
×

1
0
−

1
(3

.5
×

1
0
−

3
)†

f
8

0
3

5
0

1
.0

7
×

1
0
−

2
(7

.4
×

1
0
−

3
)†

4
.8
×

1
0
−

3
(3

.7
×

1
0
−

3
)

1
.5

6
×

1
0
−

1
(1

.2
0
×

1
0
−

2
)†

5
0

5
0
0
0

2
.3

3
×

1
0
−

6
(2

.3
3
×

1
0
−

6
)†

7
.0

2
×

1
0
−

1
5

(1
.6

6
×

1
0
−

1
5
)

5
.9
×

1
0
−

2
(1

.2
3
×

1
0
−

6
)†

f
1
1

−
1

2
8
0

−
1

(0
)

−
1

(0
)

−
0
.9

8
9
6

(1
.3
×

1
0
−

3
)†

f
2
3

0
5

3
0

0
(0

)
0

(0
)

0
(0

)
5
0

5
0
0
0

0
(0

)
0

(0
)

0
(0

)

f
2
4

0
3
0

5
0
0
0

5
.1
×

1
0
−

3
(9

.6
9
×

1
0
−

4
)†

8
.7

0
×

1
0
−

4
(3

.3
0
×

1
0
−

4
)

9
.1

6
(1

.5
0
×

1
0
−

1
)†

5
0

5
0
0
0

1
.6

4
×

1
0
−

2
(2

.4
×

1
0
−

3
)†

9
.0

4
×

1
0
−

4
(3

.4
1
×

1
0
−

4
)

1
.9

0
×

1
0
+

1
(2

.9
2
×

1
0
−

1
)†

f
4
2

3
2

5
0

3
(0

)
3

(0
)

3
.0

0
0
1

(3
.3

5
×

1
0
−

7
)†

88 Chapter 5. Empirical Study and Analysis

Best Lévy, respectively. For the first time, a Lévy mutation instead of Gaussian mutation

was employed in EP. According to the reported results, their algorithm performs better

than classical EP in the case of functions with many local optima. These EPs new versions

are tested for 14 benchmark functions, of which we have 12 in our test set. The comparison

strategy is the same as previous experiment. The same settings for generation numbers,

problem dimensions, and population size (Np = 100) [Lee and Yao 2004] have been uti-

lized. The dimension of the functions, corresponding generation numbers, and obtained

results (best mean and standard deviation of 50 runs 1) for ODE, Adaptive LEP and Best

Lévy are given in Table 5.13. Results for Adaptive LEP and Best Lévy are taken from

[Lee and Yao 2004, Table 3, p.12].

Results analysis - According to the t-test, ODE performs better than Adaptive LEP

and Best Lévy on 7 and 8 functions (out of 12), respectively. While, Adaptive LEP and

Best Lévy outperform ODE on 2 functions, individually. Over the rest of functions, the

results are the same with respect to two-tailed t-test.

5.5.9 Experiment series 9: comparison with FEP and CEP

The fast evolutionary programming (FEP) was proposed in [Yao et al. 1999] and was com-

pared to the classical evolutionary programming (CEP). A 23-function test suite was

utilized to compare the algorithms. Our test suite contains 17 of them. The results to

solve these 17 functions by ODE, FEP and CEP are presented in Table 5.14. In order to

support a fair comparison, the same settings for the generation numbers, problem dimen-

sions, and population size (Np = 100) [Yao et al. 1999] have been utilized. Results for FEP

and CEP are taken from [Yao et al. 1999, Table II-IV].

1The same setting as for Adaptive LEP and Best Lévy in [Lee and Yao 2004].

5.5 Experimental Studies 89

T
ab

le
5.

13
:

C
om

p
ar

is
on

of
O

D
E

,
A

d
ap

ti
ve

L
E

P
,
an

d
B

es
t

L
év

y.
M

ea
n

B
es

t
an

d
st

an
d
ar

d
d
ev

ia
ti

on
(S

td
D

ev
)

of
50

ru
n
s

ar
e

re
p
or

te
d
.

F
or

O
D

E
,

eq
u
al

n
u
m

b
er

of
fu

n
ct

io
n

ca
ll
s

ar
e

u
se

d
in

st
ea

d
of

ge
n
er

at
io

n
n
u
m

b
er

s
(N

p
×

#
G

en
.)

.
T

w
o-

ta
il
ed

t-
te

st
is

u
se

d
to

co
m

p
ar

e
O

D
E

ag
ai

n
st

A
d
ap

ti
ve

L
E

P
an

d
B

es
t

L
év

y.
‘†

’
in

d
ic

at
es

th
at

th
e

t
va

lu
e

of
49

d
eg

re
e

of
fr

ee
d
om

is
si

gn
ifi

ca
n
t

at
a

0.
05

le
ve

l
of

si
gn

ifi
ca

n
ce

.
‘‡

’
st

an
d
s

fo
r

n
eg

at
iv

e
t,

w
h
ic

h
m

ea
n
s

th
e

co
rr

es
p
on

d
in

g
al

go
ri
th

m
p
er

fo
rm

s
b
et

te
r

th
an

O
D

E
.
f m

in
in

d
ic

at
es

op
ti

m
al

m
in

im
u
m

of
th

e
fu

n
ct

io
n
.

O
D

E
A

d
a
p
ti
v
e

L
E

P
B

es
t

L
év

y
F

f
m

in
D

#
G

en
.

M
ea

n
B

es
t

(S
td

D
ev

)
M

ea
n

B
es

t
(S

td
D

ev
)

M
ea

n
B

es
t

(S
td

D
ev

)

f
1

0
3
0

1
5
0
0

4
.4

8
×

1
0
−

2
7

(7
.9

5
×

1
0
−

2
7
)

6
.3

2
×

1
0
−

4
(7

.6
×

1
0
−

5
)†

6
.5

9
×

1
0
−

4
(6

.4
×

1
0
−

5
)†

f
3

0
3
0

1
5
0
0

0
.3

7
(0

.3
5
)

0
.0

4
1

(0
.0

6
)‡

3
0
.6

3
(2

2
.1

1
)†

f
4

0
3
0

1
5
0
0

2
4
.8

9
(1

.2
0
)

4
3
.4

0
(3

1
.5

2
)†

5
7
.7

5
(4

1
.6

0
)†

f
5

0
3
0

1
5
0
0

6
6
.9

4
(2

7
.4

0
)

5
.8

5
(2

.0
7
)‡

1
2
.5

0
(2

.2
9
)‡

f
6

0
3
0

1
5
0
0

4
.4

4
×

1
0
−

4
(1

.8
×

1
0
−

3
)

2
.4
×

1
0
−

2
(2

.8
×

1
0
−

2
)†

1
.8
×

1
0
−

2
(1

.7
×

1
0
−

2
)†

f
8

0
3
0

1
5
0
0

4
.4

2
×

1
0
−

1
4

(3
.0

9
×

1
0
−

1
4
)

1
.9
×

1
0
−

2
(1

.0
×

1
0
−

3
)†

3
.1
×

1
0
−

2
(2

.0
×

1
0
−

3
)†

f
1
4
−

1
.0

3
1
6
2

2
3
0

−
1
.0

3
(2

.3
5
×

1
0
−

5
)

−
1
.0

3
1

(0
.0

)
−

1
.0

3
1

(0
.0

)

f
2
6
−

1
0
.1

5
3
2

4
1
0
0

−
1
0
.1

0
1
2

(1
.6

8
×

1
0
−

1
)

−
9
.5

4
(1

.6
9
)†

−
9
.9

5
(0

.9
9
)†

f
2
7
−

1
0
.4

0
2
9

4
1
0
0

−
1
0
.2

9
0
4

(7
.1

7
×

1
0
−

1
)

−
1
0
.3

0
(0

.7
4
)

−
1
0
.4

0
(1

.0
×

1
0
−

4
)‡

f
2
8
−

1
0
.5

3
6
4

4
1
0
0

−
1
0
.7

0
0
3

(3
.5

9
×

1
0
−

1
5
)

−
1
0
.5

4
(4

.9
×

1
0
−

5
)†

−
1
0
.5

4
(3

.1
×

1
0
−

3
)†

f
4
2

3
2

3
0

3
.0

0
0
1

(7
.7

7
×

1
0
−

5
)

3
.0

0
0

(0
.0

0
0
)

3
.0

0
0

(0
.0

0
0
)

f
4
6

0
3
0

1
5
0
0

7
.1

5
×

1
0
−

2
3

(2
.0

0
×

1
0
−

2
2
)

6
.0
×

1
0
−

6
(1

.0
×

1
0
−

6
)†

3
.0
×

1
0
−

5
(4

.0
×

1
0
−

6
)†

90 Chapter 5. Empirical Study and Analysis

T
ab

le
5.

14
:

C
om

p
ar

is
on

of
O

D
E

,
F
E

P
,
an

d
C

E
P
.
M

ea
n

B
es

t
an

d
st

an
d
ar

d
d
ev

ia
ti

on
(S

td
D

ev
)
of

50
ru

n
s
ar

e
re

p
or

te
d
.

F
or

O
D

E
,
eq

u
al

n
u
m

b
er

of
fu

n
ct

io
n

ca
ll
s

ar
e

u
se

d
in

st
ea

d
of

ge
n
er

at
io

n
n
u
m

b
er

s
(N

p
×

#
G

en
.)

.
T

w
o-

ta
il
ed

t-
te

st
is

u
se

d
to

co
m

p
ar

e
O

D
E

ag
ai

n
st

F
E

P
an

d
C

E
P
.
‘†

’
in

d
ic

at
es

th
at

th
e

t
va

lu
e

of
49

d
eg

re
e

of
fr

ee
d
om

is
si

gn
ifi

ca
n
t

at
a

0.
05

le
ve

l
of

si
gn

ifi
ca

n
ce

.
‘‡

’
st

an
d
s

fo
r

n
eg

at
iv

e
t,

w
h
ic

h
m

ea
n
s

th
e

co
rr

es
p
on

d
in

g
al

go
ri

th
m

p
er

fo
rm

s
b
et

te
r

th
an

O
D

E
.
f m

in
in

d
ic

at
es

op
ti

m
al

m
in

im
u
m

of
th

e
fu

n
ct

io
n
.

O
D

E
F
E

P
C

E
P

F
f

m
in

D
#

G
en

.
M

ea
n

B
es

t
(S

td
D

ev
)

M
ea

n
B

es
t

(S
td

D
ev

)
M

ea
n

B
es

t
(S

td
D

ev
)

f
1

0
3
0

1
5
0
0

4
.4

8
×

1
0
−

2
7

(7
.9

5
×

1
0
−

2
7
)

5
.7
×

1
0
−

4
(1

.3
×

1
0
−

4
)†

2
.2

0
×

1
0
−

4
(5

.9
×

1
0
−

4
)†

f
3

0
3
0

5
0
0
0

8
.8

5
×

1
0
−

1
1

(1
.6

2
×

1
0
−

1
0
)

1
.6
×

1
0
−

2
(1

.4
×

1
0
−

2
)†

5
.0
×

1
0
−

2
(6

.6
×

1
0
−

2
)†

f
4

0
3
0

2
0
0
0
0

2
4
.5

1
(1

.1
1
)

5
.0

6
(5

.8
7
)‡

6
.1

7
(1

3
.6

1
)‡

f
5

0
3
0

5
0
0
0

1
1
.6

1
(1

1
.6

7
)

4
.6
×

1
0
−

2
(1

.2
×

1
0
−

2
)‡

8
9
.0

(2
3
.1

)†

f
6

0
3
0

2
0
0
0

8
.8

6
×

1
0
−

4
(3

.5
5
×

1
0
−

3
)

1
.6
×

1
0
−

2
(2

.2
×

1
0
−

2
)†

8
.6
×

1
0
−

2
(0

.1
2
)†

f
8

0
3
0

1
5
0
0

4
.4
×

1
0
−

1
4

(3
.0

9
×

1
0
−

1
4
)

1
.8
×

1
0
−

2
(2

.1
×

1
0
−

3
)†

9
.2

(2
.8

)†

f
1
4
−

1
.0

3
1
6
2

2
1
0
0

−
1
.0

3
(4

.4
8
×

1
0
−

1
6
)

−
1
.0

3
(4

.9
×

1
0
−

7
)

−
1
.0

3
(4

.9
×

1
0
−

7
)

f
2
0

0
.3

9
8

2
1
0
0

3
.9

7
×

1
0
−

1
(2

.2
4
×

1
0
−

1
6
)

3
.9

8
×

1
0
−

1
(1

.5
×

1
0
−

7
)

3
.9

8
×

1
0
−

1
(1

.5
×

1
0
−

7
)

f
2
1

0
3
0

2
0
0
0

1
.9

7
×

1
0
−

1
1

(1
.2

9
×

1
0
−

1
1
)

8
.1
×

1
0
−

3
(7

.7
×

1
0
−

4
)†

2
.6
×

1
0
−

3
(1

.7
×

1
0
−

4
)†

f
2
2

0
3
0

5
0
0
0

8
.2

3
×

1
0
−

2
(0

.5
3
)

0
.3

(0
.5

)†
2
.0

(1
.2

)†

f
2
3

0
3
0

1
5
0
0

0
(0

)
0

(0
)

5
7
7
.7

6
(1

1
2
5
.7

6
)†

f
2
4

0
3
0

3
0
0
0

1
.4
×

1
0
−

3
(5

.8
8
×

1
0
−

4
)

7
.6
×

1
0
−

3
(2

.6
×

1
0
−

3
)

1
.8
×

1
0
−

3
(6

.4
×

1
0
−

3
)

f
2
5

0
.0

0
0
3
0
7

4
4
0
0
0

1
.9

5
×

1
0
−

4
(3

.5
2
×

1
0
−

4
)

5
.0
×

1
0
−

4
(3

.2
×

1
0
−

4
)

4
.7
×

1
0
−

4
(3

.0
×

1
0
−

4
)

f
2
6
−

1
0
.1

5
3
2

4
1
0
0

−
1
0
.0

0
0
8

(0
.7

1
)

−
5
.5

2
(1

.5
9
)†

−
6
.8

6
(2

.6
7
)†

f
2
7
−

1
0
.4

0
2
9

4
1
0
0

−
1
0
.2

9
0
4

(0
.7

1
)

−
5
.5

2
(2

.1
2
)†

−
8
.2

7
(2

.9
5
)†

f
2
8
−

1
0
.5

3
6
4

4
1
0
0

−
1
0
.7

0
0
3

(3
.5

8
×

1
0
−

1
5
)

−
6
.5

7
(3

.1
4
)†

−
9
.1

0
(2

.9
2
)†

f
4
2

3
2

1
0
0

3
.0

(0
)

3
.0

2
(0

.1
1
)

3
.0

(0
)

5.6 Enhancement Directions 91

Results analysis - As seen in Table 5.14, ODE outperforms FEP and CEP on 9

and 11 functions (out of 17) while FEP and CEP just on 2 and 1 functions present better

results than ODE, respectively. Over the rest of functions, they perform almost the same.

5.6 Enhancement Directions

Further attempts are conducted to introduce the following two enhancement directions for

ODE. The reader is refereed to Appendix B for comprehensive details.

First, instead of the opposite points, quasi-opposite points are suggested to be used.

A quasi-opposite point is a randomly generated point between the center of search inter-

val and the opposite point. This new extension is called quasi-oppositional DE (QODE)

[Rahnamayan et al. 2007c]. The QODE employs exactly the same schemes of ODE for

population initialization and generation jumping. A test suite with 15 benchmark func-

tions has been employed to compare performance of DE, ODE, and QODE experimentally.

QODE presents promising results.

Second, a time varying jumping rate (TVJR) model for ODE has been proposed

[Rahnamayan et al. 2007a]. According to this model, the jumping rate changes during

the evolution based on the number of function evaluations. Results confirm that a higher

jumping rate is more desirable during the exploration than during the exploitation.

5.7 A Sample Application

In order to introduce a sample application of ODE, a new optimization-based image thresh-

olding approach is proposed (see Chapter 6) [Rahnamayan et al. 2006a]. Then micro-DE

and micro-ODE (DE and ODE with very small population size, Np = 5) have been com-

pared over thresholding of 16 test images. The results confirm that the micro-DE is accel-

erated 13% just by employing the opposition-based population initialization. Furthermore,

92 Chapter 5. Empirical Study and Analysis

the proposed thresholding approach is compared with the Kittler method.

5.8 Summary

The results of the conducted empirical studies in this chapter can be summarized as follows:

• DE and ODE were compared for different problem dimensions (D/2, D, and 2D);

the results confirm that ODE performs better over high dimensional and scalable

problems. For these kinds of problems a large population size is required. On the

other hand, ODE performs better with larger population sizes. These two facts

support each other and make ODE more suitable for higher dimensional problems.

Further study is required to solidify this statement.

• By replacing opposite points with uniformly generated random points in the same

variable range, the acceleration rate was reduced by 57%. Therefore, the contribution

of opposite points to the acceleration process was confirmed and was not reproducible

by additional random sampling.

• DE and ODE were compared for different population sizes (Np/2, Np, and 2Np).

ODE performed better for larger population sizes, which is usually required for higher

dimensional problems. In order to achieve better results for smaller population sizes,

low jumping rates are suggested.

• Comparison of DE and ODE over various mutation strategies was also conducted. For

all mutation strategies, ODE performed superior to DE with respect to the number

of function calls, average success rate and other performance measures, such as the

number of unsolved functions.

• The influence of the jumping rate was studied and the range [0.1, 0.4] was recom-

mended for an unknown optimization problem. Most of the functions presented a

5.8 Summary 93

reliable acceleration improvement and almost a smooth behavior in this interval. Al-

though, the optimal jumping rate can be somewhere out of this range, higher jumping

rates are generally not recommended.

• ODE was compared with five other optimizers (other than the classical DE) in terms

of solution accuracy. Its competitors were Fuzzy Adaptive DE (FADE), Adaptive

LEP, Best Lévy, Fast Evolutionary Programming (FEP), and Classical Evolutionary

Programming (CEP). Overall, ODE accomplished better than its six competitors.

Although, comparison of the non-adaptive algorithm (ODE) with the adaptive ones

(FADE and LEP) may not be fair.

• By employing a comprehensive set of benchmark functions, the parent algorithm

(DE) and ODE were compared on 462 optimization exercises during the seven ex-

periment series. Overall, ODE presented promising results in terms of convergence

speed and solution accuracy while the robustness was almost the same as DE’s.

• By replacing opposite points with quasi-opposite points and utilizing lower jumping

rates, the promising results were obtained (see Appendix B). Results of applying DE,

ODE, and QODE to solve 30 test problems show that QODE outperforms DE and

ODE on 22 functions. But still, further investigations are compulsory to have a solid

conclusion about QODE’s capabilities.

• As another enhancement direction for ODE, the time varying jumping rate was pro-

posed and two behaviorally reverse versions (linearly decreasing and increasing func-

tions) were compared with the constant setting (see Appendix B). The results confirm

that the linearly decreasing jumping rate performs better than constant setting and

also than linearly increasing policy.

Chapter 6

Image Thresholding Using

micro-ODE

The first is when an opposite has been defined through its opposite, e.g. good

through evil: for opposites are always simultaneous by nature. Some people

think, also, that both are objects of the same science, so that the one is not

even more intelligible than the other. One must, however, observe that it is

perhaps not possible to define some things in any other way, e.g. the double

without the half, and all the terms that are essentially relative: for in all such

cases the essential being is the same as a certain relation to something, so that

it is impossible to understand the one term without the other, and accordingly

in the definition of the one the other too must be embraced. One ought to learn

up all such points as these, and use them as occasion may seem to require.

– Aristotle (322 – 384 BC)

94

6.1 Introduction 95

6.1 Introduction

In many image processing applications, the crucial role of the image thresholding can be

observed (e.g., medical image processing [Rahnamayan et al. 2005a]). Numerous thresh-

olding techniques have already been proposed [Sezgin and Sankur 2004; Cheng et al. 2001;

Tizhoosh 2005a; Rahnamayan et al. 2006h]. However, almost all of them are application-

or domain-oriented solutions, suffering from lack of universality. Therefore, this research

field is still open to investigation and introduction of new robust and universal techniques.

In this chapter, a new thresholding technique is proposed which generates correspond-

ing binary image by minimizing the dissimilarity between the input and the output im-

ages. Hence, the grey-level input image itself is directly used to measure the quality of

the threshoded image; thus, this method can be introduced as a candidate for universal

thresholding. DE is employed as an optimizer in the mentioned minimization exercise.

By this way, the thresholding task is changed to an optimization problem. In order to

solve this problem, the DE is employed with a very small population size (Np = 5), called

micro-DE. A small population size results a shorter computation time which is a crucial

factor for the image processing tasks to make them suitable for online applications (e.g.,

robotics or production line control).

After comprehensive evaluation of more than 40 image thresholding techniques, Sezgin

and Sankur [2004] concluded that the Kittler [Sezan 1985] is the best overall perform-

ing method. For this reason, and like many other thresholding works [Tizhoosh 2005a],

the proposed method is compared with the Kittler. In the final part of this chapter, as

a case study, the micro-DE and micro-ODE (micro-DE equipped with opposition-based

initialization) are compared in terms of convergence speed and robustness.

Organization of this chapter is as follows: The proposed image thresholding approach

is presented in section 6.2. Experimental investigation is presented in section 6.3. The

micro-DE and micro-ODE are compared in section 6.4. Finally, the chapter is summarized

96 Chapter 6. Image Thresholding Using micro-ODE

and concluded in section 6.5.

6.2 Proposed Image Thresholding Approach

When we are comparing the input grey-level image and corresponding thresholded version

we perceptually map darker pixels in the input image to the black pixels in the thresholded

image and lighter ones to the white pixels. With this method, we subjectively measure the

quality of the thresholding. The same procedure happens even for a person who knows

nothing about image processing concepts. We will have a high quality thresholded image

when the mentioned similarity is high, or in other words, the dissimilarity is low. So, the

thresholding task can be understood as an optimization problem. Before describing the

new approach, the objective function for this optimization exercise should be defined.

Objective function - For an M ×N input grey-level image, I (normalized in [0, 1]),

and the corresponding thresholded image, B(T) ∈ {0, 1}, with the threshold value T, the

objective function f(T) is defined as follows:

f(T) =
M∑
i=1

N∑
j=1

|Iij −B(T)ij|. (6.1)

Minimization of this objective function means minimizing the dissimilarity between the

input image and the thresholded image (see Figure 6.1).

In order to solve this one-dimensional minimization problem, the DE with very small

population size (Np = 5), micro-DE, is utilized. The pseudo-code representation of the

proposed thresholding approach is shown in Algorithm 4.

6.3 Experimental Verifications 97

Fig. 6.1: A sample image to show that darker and lighter pixels in input grey-level image
are matchable with black and white pixels in the thresholded image. In order to maximize
the matching level, the dissimilarity between these two images, f(T), should be minimized.

Algorithm 4 Proposed Thresholding Approach (micro-DE version)

1: Random population initialization, P0

2: Calculate objective value (dissimilarity measure) for each individual in the population
//DE’s evolution steps

3: while (satisfying termination criteria) do
4: Mutation
5: Crossover
6: Selection
7: end while
8: Thresholding input image with the found optimal value of thresholding level, Top

6.3 Experimental Verifications

In order to investigate the performance of the new approach, 16 hard-to-threshold images

were selected; all images are frequently used in the image processing literature [Tizhoosh

2005a; Sezgin and Sankur 2004].

The following micro-DE control parameters are set for all conducted experiments with

no attempt to achieve their optimal values.

• Population size, Np = 5

• Differential amplification factor, F = 0.9

98 Chapter 6. Image Thresholding Using micro-ODE

• Crossover probability constant, Cr = 0.9

• Strategy: DE/rand/1/bin

• Maximum function calls, NFCMAX=200 (300 for image no. 9)

Threshold results of applying the proposed approach are presented in Table 6.1. As

shown, also corresponding ground-truth image (created manually) and the result of the

Kittler method are given for comparison. By visual evaluation, the new approach, at least

over ten of the images (image no. 1,3,4,6,7,8,11,13,15,16) shows better results than Kittler.

For all images, plot of objective function f(T) versus thresholding value T is presented

in Figures 6.2 and 6.3. Furthermore, the result for the different thresholding values is

given on each curve. Asymmetric shapes, flat surfaces, and also steep edges in the plotted

graphs show that the objective function can be challenging although it is a one-dimensional

problem.

A wide range of image quality measures have been proposed by image processing re-

searchers [Winkler 2000; Wang and Bovik 2002; Martens and Meesters 1998]. In this

section, results of Kittler and the proposed approach are compared by reference-based

objective assessment. Reference or ground-truth images have been manually prepared to

serve as gold/ideal thresholded image for each test image. To compare two binary images,

Misclassification Error (ME) [Sezgin and Sankur 2004; Yasnoff et al. 1977] can be a rea-

sonable and straightforward measure to use. It calculates the percentage of foreground

pixels which have been assigned wrongly to background and vice versa:

ME =
|BO ∩ FT |+ |FO ∩BT |

|BO|+ |FO|
, (6.2)

where BO, FO, BT , and FT are the background and foreground pixels of the ground-

truth image and the background and foreground pixels of the test image, respectively. | · |
denotes the cardinality of the set.

6.3 Experimental Verifications 99

Fig. 6.2: Graphical illustration of dissimilarity (objective function, f(T)) vs. thresholding
value (T). The thresholding results are presented on the curves.

100 Chapter 6. Image Thresholding Using micro-ODE

Fig. 6.3: Continued from Figure 6.3.

6.3 Experimental Verifications 101

Table 6.1: Thresholding results. Input image, corresponding manually created ground-
truth (gold) image, result of Kittler method, and result of the proposed approach (micro-
DE).

no. Image Gold Kittler micro-DE no. Image Gold Kittler micro-DE

1 9

2 10

3 11

4 12

5 13

6 14

7 15

8 16

By utilizing this error measure, the similarity index η can be defined as follows:

η = (1−ME)× 100%. (6.3)

102 Chapter 6. Image Thresholding Using micro-ODE

Table 6.2 summarizes the results of objective assessment for 16 test images. Results

of the Kittler and new method are compared with the gold image. The best result, in

each case has been indicated in boldface. According to the mentioned similarity index, the

Kittler shows better results for 5 cases; micro-DE performs better for 10 cases; and for one

case the results is almost the same (results with difference less than 1% are considered the

same).

Table 6.2: Results of objective assessment for 16 test images. The best result in each case
has been highlighted in boldface. η is the similarity index.

no. ηK ηmicro-DE no. ηK ηmicro-DE

1 89.88 97.85 9 93.47 82.45
2 99.44 98.40 10 98.32 84.48
3 77.84 79.85 11 78.19 91.18
4 41.49 96.14 12 99.83 99.57
5 92.83 90.05 13 28.14 99.25
6 52.98 57.78 14 97.16 49.76
7 81.80 93.87 15 48.68 97.97
8 72.78 99.68 16 83.07 98.56

6.4 Comparison of micro-DE and micro-ODE

In order to accelerate micro-DE, it is equipped with opposition-based initialization (micro-

ODE). Because of the very small population size and also small number of required function

calls to solve the objective function, the opposition-based generation jumping is not embed-

ded in micro-ODE. Algorithm 5 presents pseudo-code for micro-ODE. The only difference

between micro-DE and micro-ODE is on the population initialization. The first one uses

the random initialization and the second one utilizes the opposition-based initialization.

The minimum values for the objective function, fmin, for each image (kept from the

6.4 Comparison of micro-DE and micro-ODE 103

Algorithm 5 Proposed Thresholding Approach (micro-ODE version)

1: Random population initialization, P0

2: for i = 0 to Np do
3: for j = 0 to D do
4: OP0i,j ← aj + bj − P0i,j

5: end for
6: end for
7: Select Np fittest individuals from set the {P0, OP0} as initial population P0

8: Calculate objective value (dissimilarity measure) for each individual in the population
//DE’s evolution steps

9: while (satisfying termination criteria) do
10: Mutation
11: Crossover
12: Selection
13: end while
14: Thresholding input image with the found optimal value of thresholding level, Top

micro-DE experiments), is used as value to reach (VTR) to compare convergence rate and

robustness of micro-DE and micro-ODE. All control parameters are the same as before.

The results of 100 trials per image for both algorithms are summarized in Table 6.3. Micro-

ODE performs faster for 13 images. Both algorithms have the same NFCs for two images.

For thresholding of 16 images, micro-DE needs 875 function calls while this number is 761

for micro-ODE (13% convergence rate improvement). The success rate is almost the same

for both (0.98 vs. 0.99).

104 Chapter 6. Image Thresholding Using micro-ODE

Table 6.3: Comparison of micro-DE and micro-ODE. Reported NFCs are the average over
100 trials for each image. The smaller NFC in each case has been indicated in boldface.

micro-DE micro-ODE
no. VTR=fmin NFC SR NFC SR

1 3402 45 1 36 0.98
2 7160 44 1 37 1
3 10820 47 1 34 1
4 17385 41 0.98 29 1
5 5321 84 0.94 58 1
6 15335 77 1 75 0.94
7 8727 74 0.94 64 0.98
8 26117 58 1 54 1
9 18825 25 1 21 1
10 5944 40 1 30 1
11 11730 62 1 62 1
12 2929 43 1 43 1
13 3932 40 1 36 1
14 20088 64 0.98 66 0.98
15 19761 59 0.98 50 1
16 12123 72 1 66 0.98

Overall 875 0.98 761 0.99

6.5 Summary

In this chapter, an optimization-based image thresholding approach has been introduced.

micro-DE segmented the image into two classes by minimizing the dissimilarity between

input grey-level image and binary (thresholded) image. The proposed approach was com-

pared with a well-known method, the Kittler, through an objective assessment. Results

confirmed that the proposed approach is superior to the Kittler algorithm over the selected

test set.

The most important part of the proposed approach is the definition of the objective

6.5 Summary 105

function. As seen, micro-DE, as an optimizer, minimizes the dissimilarity between grey-

level image and thresholded image. This dissimilarity is measured by pixel-by-pixel com-

parison of the binary and normalized grey-level images. The main drawback is that employ-

ing an evolutionary algorithm (DE) to threshold image shows a higher computational time.

Employing the DE with a small population size (micro-DE) was in this direction to make

computation time shorter. Furthermore, micro-DE was accelerated 13% by embedding

opposition-based population initialization while the success rate remaind the same.

Chapter 7

Conclusions and Future Work

Reasoning draws a conclusion, but does not make the conclusion certain, unless

the mind discovers it by the path of experience.

– Roger Bacon

Most creative work is a process of people passing ideas and inspirations from

the past into the future and adding their own creativity along the way.

– Joichi Ito

106

7.1 Conclusions 107

7.1 Conclusions

Finding more accurate solution(s) in a shorter period of time for complex problems is the

main goal of all evolutionary algorithms. Although the opposition concept has a very old

history in other sciences, that is the first time that this concept is employed to enhance

population-based algorithms. Conclusions for this attempt can be summarized as follows:

Results are promising, however, the opposition-based optimization is still in its infancy.

Results confirm that the opposition concept has the potential to play a positive role in

optimization. But, it is important to mention that the current study constitutes the

first step of this newly opened direction. Like many other new concepts, opposition-based

optimization needs further studies to shed light on its benefits, weaknesses, and limitations.

In fact, the main claim is not defeating DE or any of its numerous versions but to introduce

a new notion into optimization via metaheuristics; this is the notion of opposition.

As a key point, the performance of the opposition-based optimization is directly depended

on how often and how many opposite points are evaluated. Any individual evaluation costs

a function call. So, a smartly controlled opposition concept is highly advised to prevent

overwhelming of the acceleration benefits by the extra computation load for evaluating

opposite points.

Generally speaking, the high convergence speed and robustness are two conflicting ob-

jectives. A trade-off between the fastness and robustness is essential in evolutionary opti-

mization. These are very similar to the exploration and exploitation. Although, there is

no rigid boundary between them. The optimal division of the search time between these

two steps is a challenging task and problem-oriented.

The optimal control parameters are problem-oriented such that developing a self-adaptive

or adaptive algorithm is a valuable attempt. Many studies confirm that for population-

based algorithms the optimal parameters are problem-oriented. Running limited trials to

108 Chapter 7. Conclusions and Future Work

determine desirable parameters is a common approach (if not a practical way for time con-

suming objective functions). For this reason, the self-adaptive/adaptive control parameter

setting would be a valuable improvement.

Introducing an extra control parameter is not appreciated. For ODE, the jumping rate

is added to DE’s three parameters. Having more control parameters makes the optimal

parameter setting and analysis harder.

Higher jumping rates are not recommended because it causes the fast decreasing of

the population diversity and so premature convergence, in particular for the multimodal

problems. Indeed, the generation jumping makes the exploration time shorter which is

directly caused by the jumping rate. For high dimensional problems with small population

size a rather small jumping rate is recommended.

The benefits of opposition-based optimization are not the same for different problems.

This is due to using fix settings for the parameters instead of the optimal ones and/or

the different characteristics of each problem (e.g., modality, dimension, surface features,

separability of the variables and so on). Similar to all optimization approaches, ODE does

not present a consistent behavior over different problems. However, in overall and over the

employed benchmark test suite, ODE performed better than classical DE and five other

evolutionary optimizers.

The proposed opposition-based schemes are general enough to be applied to other pop-

ulation - based algorithms. The opposition-based schemes work at the population level

and leave the evolutionary part of the algorithms untouched. This generality gives higher

flexibility to these schemes to be embedded inside other population-based algorithms for

further investigation.

Standard benchmark test suite and also benchmarking methodologies are required. With-

out any unified test platform and comparison methodology, the concrete judgment among

the competitors is virtually impossible. This shortage can be addressed by the optimization

community. Although, figuring out all aspects of an optimizer by applying it on one test

7.2 Contributions 109

suite (even a very comprehensive one), seems impossible, it nevertheless supports unified

comparative studies.

7.2 Contributions

The author first started to work on image processing [Rahnamayan et al. 2005a,b,c,d,e,f,g,

2006a,h; Kachouie et al. 2006] but when he was faced with computational time problem

of the population-based algorithms, he focused on accelerating them and finally his studies

has led to the following contributions.

• A general scheme of opposition-based population initialization is proposed to accel-

erate evolutionary algorithms [Rahnamayan et al. 2006b; Rahnamayan 2006]. For

the first time the opposition concept was employed to accelerate an optimizer.

• A framework for the opposition-based evolutionary algorithm is suggested to accel-

erate the convergence rate [Rahnamayan et al. 2006g]. The opposition-based gener-

ation jumping is employed to achieve a higher acceleration rate.

• The opposition-based differential evolution (ODE) is introduced [Rahnamayan et al.

2006d,e] and a comprehensive set of experiments is conducted to verify its efficiency.

The thesis main contribution will appear in IEEE Transactions on Evolution-

ary Computation [Rahnamayan et al. 2006f].

• As the thesis’ second major contribution, mathematical proofs confirming experi-

mental verifications are presented [Rahnamayan et al. 2006c, 2007b] to show why

opposite numbers are beneficial. The achieved results could be valuable not only for

the optimization area but also in the machine learning or soft computing research

areas.

110 Chapter 7. Conclusions and Future Work

• A new image thresholding approach is proposed and it was compared with the Kittler

method. The proposed approach outperforms Kittler method in overall. Further-

more, the results confirm that the micro-ODE is faster than micro-DE because of

opposition-based population initialization.

• The opposition-based DE with variable jumping rate (ODEVJR) is suggested to

enhance ODE’s performance [Rahnamayan et al. 2007a] (see Appendix B). In the

first version of ODE, a constant value for jumping rate is used. For the ODEVJR,

two types of time variable jumping rate are investigated (linearly increasing and

decreasing functions). Results confirm that a higher jumping rate is more desirable

during the exploration than during the exploitation phase.

• The quasi-oppositional DE (QODE) is introduced as a potential extension for ODE

[Rahnamayan et al. 2007c] (see Appendix B). The QODE employs exactly the same

schemes of ODE for population initialization and generation jumping; just instead of

opposite the quasi-opposite individuals are utilized. Furthermore, the mathematical

proofs are provided to support the current extension.

• DE is enhanced by local tuning of the fittest individual. A local search approach

has been embedded inside the classical DE. By this way, the method gives an ex-

tra chance to local improvement of the best individual in the current population

[Jonasson and Rahnamayan 2006].

7.3 Future Work

OBO opens a fresh perspective in the population-based algorithms to accelerate optimiza-

tion process. Because of this novelty, many studies can be conducted to extend, enhance,

or apply the proposed schemes and algorithms. Some of these directions are as follows:

7.3 Future Work 111

• Generalizing ODE to handle constrained functions and multi-objective optimization -

For most practical applications, we are faced with constraint functions and also with

multi-objective problems. So far, there are many approaches for handling constraints

in DE and also for multi-objective optimization using DE. All of these proposals can

be borrowed and investigated to generalize ODE to solve multi-objective constrained

problems.

• Employing proposed opposition-based schemes to accelerate DE’s enhanced versions or

other population-based algorithms - The proposed opposition-based schemes for pop-

ulation initialization and generation jumping are general enough and can be utilized

to accelerate DE’s extended versions (such as self-adaptive DE [Brest et al. 2006],

fuzzy adaptive DE [Liu and Lampinen 2005]) or other population-based algorithms

(e.g., GAs and PSO). However, the introduction of the opposition-based version of

other algorithms still remains widely open to research (such as the opposition-based

continuous GA (CGA) or opposition-based free search (FS) [Penev and Littlefair

2005]).

• Extending opposition-based optimization to non-continuous (discrete/interger) spaces

- Continuous opposition-based optimization was considered in this study. One obvi-

ous extension can be working with discrete variables instead of continuous ones. As

it was mentioned before, DE (and similarly ODE) can work with discrete variables

easily, but further experiments are required to figure out the performance of ODE

on these sort of problems (e.g., combinatorial problems).

• Developing adaptive/self-adaptive ODE - Adaptive setting of the control parameters

for any optimizer is widely appreciated. The proposed idea in [Brest et al. 2006] for

self-adaptive setting of Cr and F can be used to set Jr.

The opposition-based optimization is simple to implement and open to be used in

many different ways for different purposes. This study is a starting point in this direction

112 Chapter 7. Conclusions and Future Work

to confirm the potentials and motivate other researchers in optimization and machine

learning fields to engage with the opposition concept.

Appendix A

List of Bound Constrained Global

Optimization Test Functions

All algorithms that search for an extremum of an objective function perform

exactly the same, according to any performance measure, when averaged over

all possible objective functions.

– David H. Wolpert and William G. Macready in “No-free-lunch theorem”

113

114 Chapter A. List of Bound Constrained Global Optimization Test Functions

• 1st De Jong [Onwubolu and Babu 2004]

f1(X) =
n∑

i=1

xi
2,

with− 5.12 ≤ xi ≤ 5.12,

min(f1) = f1(0, ..., 0) = 0.

Unimodal, scalable, convex, and easy function.

• Axis Parallel Hyper-Ellipsoid

f2(X) =
n∑

i=1

ixi
2,

with− 5.12 ≤ xi ≤ 5.12,

min(f2) = f2(0, ..., 0) = 0.

Unimodal, scalable, convex, and easy function.

• Schwefel’s Problem 1.2

f3(X) =
n∑

i=1

(
i∑

j=1

xj

)2

,

with− 65 ≤ xi ≤ 65,

min(f3) = f3(0, ..., 0) = 0.

Unimodal and scalable function.

115

• Rosenbrock’s Valley [Moré et al. 1981]

f4(X) =
n−1∑
i=1

[
100(xi+1 − x2

i)
2 + (1− xi)

2
]
,

with− 2 ≤ xi ≤ 2,

min(f4) = f4(1, ..., 1) = 0.

This function is known as the Banana function. It is a non-convex unimodal classic

optimization problem. Locating the minimum is very challenging for many optimizers,

because the optimum is inside a long, narrow, parabolic shaped flat valley.

• Rastrigin’s Function [Storn and Price 1997b]

f5(X) = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi)),

with− 5.12 ≤ xi ≤ 5.12,

min(f5) = f5(0, ..., 0) = 0.

This function is highly multimodal and the location of the minima is regularly dis-

tributed.

• Griewangk’s Function [Onwubolu and Babu 2004]

f6(X) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√

i

)
+ 1,

with− 600 ≤ xi ≤ 600,

min(f6) = f6(0, ..., 0) = 0.

This function has many regularly distributed local minima and hard to locate global

minimum.

116 Chapter A. List of Bound Constrained Global Optimization Test Functions

• Sum of Different Power

f7(X) =
n∑

i=1

|xi|(i+1),

with− 1 ≤ xi ≤ 1,

min(f7) = f7(0, ..., 0) = 0.

This is a unimodal scalable function.

• Ackley’s Problem [Storn and Price 1997b]

f8(X) = −20 exp

−0.2

√√√√ n∑
i=1

x2
i

n

− exp


n∑

i=1

cos(2πxi)

n

+ 20 + e,

with− 32 ≤ xi ≤ 32,

min(f8) = f8(0, ..., 0) = 0.

The number of local minima is unknown.

• Beale Function

f9(X) = [1.5− x1(1− x2)]
2 + [2.25− x1(1− x2

2)]
2 + [2.625− x1(1− x3

2)]
2,

with− 4.5 ≤ xi ≤ 4.5,

min(f9) = f9(3, 0.5) = 0.

117

• Colville Function

f10(X) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2 +

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),

with− 10 ≤ xi ≤ 10,

min(f10) = f10(1, 1, 1, 1) = 0.

• Easom Function [Michalewicz 1996]

f11(X) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2),

with− 100 ≤ xi ≤ 100,

min(f11) = f11(π, π) = −1.

This function is unimodal and the global minimum lays in a narrow area relative to the

search space.

• Hartmann Function 1 [Dixon and Szegö 1978]

f12(X) = −
4∑

i=1

αi exp

(
−

3∑
j=1

Aij(xj − Pij)
2

)
,

with 0 ≤ xi ≤ 1,

min(f12) = f12(0.114614, 0.555649, 0.852547) = −3.86278.

where:

118 Chapter A. List of Bound Constrained Global Optimization Test Functions

α =
[

1 1.2 3 3.2
]
, A =


3 10 30

0.1 10 35

3 10 30

0.1 10 35

 , P =


0.36890 0.11700 0.26730

0.46990 0.43870 0.74700

0.10910 0.87320 0.55470

0.03815 0.57430 0.88280

 .

It has four local minima.

• Hartmann Function 2 [Dixon and Szegö 1978]

f13(X) = −
4∑

i=1

αi exp

(
−

6∑
j=1

Bij(xj −Qij)
2

)
,

with 0 ≤ xi ≤ 1,

min(f13) = f13(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573) = −3.32237.

where:

α =
[

1 1.2 3 3.2
]
, B =


10 3 17 3.05 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 ,

Q =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 .

It has four local minima.

119

• Six Hump Camel Back Function [Dixon and Szegö 1978; Michalewicz 1996]

f14(X) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2,

with− 5 ≤ xi ≤ 5,

min(f14) = f14(0.0898,−0.7126)/(−0.0898, 0.7126) = −1.0316285.

This problem has six local minima, two of them are global.

• Levy Function

f15(X) = sin2(3πx1) +
n−1∑
i=1

(xi − 1)2(1 + sin2(3πxi+1)) + (xn − 1)(1 + sin2(2πxn)),

with− 10 ≤ xi ≤ 10,

min(f15) = f15(1, ..., 1) = 0.

This function has approximately 15n local minima.

• Matyas Function

f16(X) = 0.26(x2
1 + x2

2)− 0.48x1x2,

with− 10 ≤ xi ≤ 10,

min(f16) = f16(0, 0) = 0.

This function is unimodal.

• Perm Function

f17(X) =
n∑

k=1

[
n∑

i=1

(ik + 0.5)((
1

i
xi)

k − 1)

]2

,

with− n ≤ xi ≤ n,

min(f17) = f17(1, 2, 3, ..., n) = 0.

120 Chapter A. List of Bound Constrained Global Optimization Test Functions

This function is unimodal.

• Michalewicz Function [Onwubolu and Babu 2004]

f18(X) = −
n∑

i=1

sin(xi)(sin(ix2
i /π))2m,

with 0 ≤ xi ≤ π, m = 10,

min(f18(n=2)
) = −1.8013, min(f18(n=5)

) = −4.687658, min(f18(n=10)
) = −9.66015.

This function is multimodal and more difficult for larger m.

• Zakharov Function

f19(X) =
n∑

i=1

x2
i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

,

with − 5 ≤ xi ≤ 10,

min(f19) = f19(0, ..., 0) = 0.

This function is unimodal.

• Branin Problem [Dixon and Szegö 1978]

f20(X) = a(x2 − bx2
1 + cx1 − d)2 + e(1− f) cos(x1) + e,

with − 5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15

where a = 1, b =
5.1

4π2
, c =

5

π
, d = 6, e = 10, f =

1

8π

min(f20) = f20(−π, 12.275)/(−π, 2.275)/(9.42478, 2.475) = 0.3979.

It has three minima.

121

• Schwefel’s Problem 2.22

f21(X) =
n∑

i=1

|xi|+
n∏

i=1

|xi|,

with − 10 ≤ xi ≤ 10,

min(f21) = f21(0, ..., 0) = 0.

This function is unimodal.

• Schwefel’s Problem 2.21

f22(X) = max
i
{|xi|, 1 ≤ i ≤ n},

with − 100 ≤ xi ≤ 100,

min(f22) = f22(0, ..., 0) = 0.

This function is unimodal.

• Step Function

f23(X) =
n∑

i=1

(bxi + 0.5c)2,

with − 100 ≤ xi ≤ 100,

min(f23) = f23(−0.5 ≤ xi < 0.5) = 0.

This function has steep edges and flat surfaces which makes optimizers prone to get

stuck on those areas.

122 Chapter A. List of Bound Constrained Global Optimization Test Functions

• Noisy Quartic Function

f24(X) =
n∑

i=1

ix4
i + random[0, 1),

with − 1.28 ≤ xi ≤ 1.28,

min(f24) = f24(0, ..., 0) = 0.

This is an easy unimodal function which is padded with uniform noise.

• Kowalik’s Function

f25(X) =
11∑
i=1

[
ai −

x1(b
2
i + bix2)

b2
i + bix3 + x4

]2

,

with − 5 ≤ xi ≤ 5,

min(f25) = f25(0.19, 0.19, 0.12, 0.14) = 0.0003075.

where: a=[0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235

0.0246], b−1=[0.25 0.5 1 2 4 6 8 10 12 14 16].

This function is multimodal (with a few local minima).

123

• Shekel 5 Problem [Dixon and Szegö 1978]

f26(X) = −
5∑

i=1

1
4∑

j=1

(xj − aij)2 + ci

,

where

aij =



4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7


,

ci =
[

0.1 0.2 0.2 0.4 0.4
]
,

with 0 ≤ xj ≤ 10,

min(f26) = f26(4, 4, 4, 4) ≈ −10.1499.

The number of local minima is five.

124 Chapter A. List of Bound Constrained Global Optimization Test Functions

• Shekel 7 Problem [Dixon and Szegö 1978]

f27(X) = −
7∑

i=1

1
4∑

j=1

(xj − aij)2 + ci

,

where

aij =



4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3


,

ci =
[

0.1 0.2 0.2 0.4 0.4 0.6 0.3
]
,

with 0 ≤ xj ≤ 10,

min(f27) = f27(4, 4, 4, 4) ≈ −10.3999.

The number of local minima is seven.

125

• Shekel 10 Problem [Dixon and Szegö 1978]

f28(X) = −
10∑
i=1

1
4∑

j=1

(xj − aij)2 + ci

,

where

aij =



4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3.6 7 3.6



,

ci =
[

0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5
]
,

with 0 ≤ xj ≤ 10,

min(f28) = f28(4, 4, 4, 4) ≈ −10.5319.

The number of local minima is ten.

• Tripod Function

f29(X) = p(x2)(1 + p(x1)) + |(x1 + 50p(x2)(1− 2p(x1)))|+ |(x2 + 50(1− 2p(x2)))|,

with − 100 ≤ xi ≤ 100,

min(f29) = f29(0,−50) = 0,

126 Chapter A. List of Bound Constrained Global Optimization Test Functions

where p(x) = 1 for x ≥ 0 otherwise p(x) = 0.

This function is a non-continuous multimodal function. Optimizers are prone to be

trapped in its two local minima.

• 4th De Jong [Onwubolu and Babu 2004]

f30(X) =
n∑

i=1

ixi
4,

with− 1.28 ≤ xi ≤ 1.28,

min(f30) = f30(0, ..., 0) = 0.

This is an easy unimodal function.

• Alpine Function

f31(X) =
n∑

i=1

|xi sin(xi) + 0.1xi|,

with− 10 ≤ xi ≤ 10,

min(f31) = f31(0, ..., 0) = 0.

This function is multimodal and not symmetrical.

• Schaffer’s Function 6

f32(X) = 0.5 +
sin2

√
(x2

1 + x2
2)− 0.5

1 + 0.01(x2
1 + x2

2)
2

,

with− 10 ≤ xi ≤ 10,

min(f32) = f32(0, 0) = 0.

This function is multimodal.

127

• Pathological Function [Onwubolu and Babu 2004]

f33(X) =
n−1∑
i=1

(
0.5 +

sin2
√

(100x2
i + x2

i+1)− 0.5

1 + 0.001(x2
i − 2xixi+1 + x2

i+1)
2

)
,

with− 100 ≤ xi ≤ 100,

min(f33) = f33(0, ..., 0) = 0.

This function is multimodal and extremely complex.

• Inverted Cosine Wave Function (Masters) [Onwubolu and Babu 2004]

f34(X) = −
n−1∑
i=1

(
exp

(
−(x2

i + x2
i+1 + 0.5xixi+1)

8

)
cos

(
4
√

x2
i + x2

i+1 + 0.5xixi+1

))
,

with− 5 ≤ xi ≤ 5,

min(f34) = f34(0, ..., 0) = −n + 1.

This function is multimodal.

• Aluffi-Pentini’s Problem [Aluffi-Pentini et al. 1985]

f35(X) = 0.25x4
1 − 0.5x2

1 + 0.1x1 + 0.5x2
2,

with− 10 ≤ xi ≤ 10,

min(f35) = f35(−1.0465, 0) = −0.3523.

The number of local minima is two.

• Becker and Lago Problem [Price 1977]

128 Chapter A. List of Bound Constrained Global Optimization Test Functions

f36(X) = (| x1 | −5)2 + (| x2 | −5)2,

with− 10 ≤ xi ≤ 10,

min(f36) = f36(±5,±5) = 0.

This function has four minima.

• Bohachevsky 1 Problem [Bohachevsky et al. 1986]

f37(X) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7,

with− 50 ≤ xi ≤ 50,

min(f37) = f37(0, 0) = 0.

The number of local minima is not known.

• Bohachevsky 2 Problem [Bohachevsky et al. 1986]

f38(X) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3,

with− 50 ≤ xi ≤ 50,

min(f38) = f38(0, 0) = 0.

The number of local minima is unknown.

• Camel Back-3 Three Hump Problem [Dixon and Szegö 1975]

f39(X) = 2x2
1 − 1.05x4

1 +
1

6
x6

1 + x1x2 + x2
2,

with− 5 ≤ xi ≤ 5,

min(f39) = f39(0, 0) = 0.

129

The number of local minima is three.

• Dekkers and Aarts Problem [Dekkers and Aarts 1991]

f40(X) = 105x2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−5(x2

1 + x2
2)

4,

with− 20 ≤ xi ≤ 20,

min(f40) = f40(0,±15) = −24777.

It has three local minima.

• Exponential Problem [Breiman and Cutler 1993]

f41(X) = exp

(
−0.5

n∑
i=1

x2
i

)
,

with− 1 ≤ xi ≤ 1,

min(f41) = f41(0, ..., 0) = 1.

This is a unimodal function.

• Goldstein and Price Problem [Dixon and Szegö 1978]

f42(X) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)],

with− 2 ≤ xi ≤ 2,

min(f42) = f42(0,−1) = 3.

The number of local minima is four.

130 Chapter A. List of Bound Constrained Global Optimization Test Functions

• Gulf Research Problem [Moré et al. 1981]

f43(X) =
99∑
i=1

[
exp

(
−(ui − x2)

x3

x1

)
− 0.01× i

]2

,

where ui = 25 + [−50 ln(0.01× i)]
1

1.5

with 0.1 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 25.6, 0 ≤ x3 ≤ 5,

min(f43) = f43(50, 25, 1.5) = 0.

• Helical Valley Problem [Wolfe 1978]

f44(X) = 100

[
(x2 − 10θ)2 +

(√
(x2

1 + x2
2)− 1

)2
]

+ x2
3,

where θ =

 1
2π

arctan x2

x1
, if x1 ≥ 0

1
2π

arctan x2

x1
+ 1

2
, if x1 < 0

with − 10 ≤ xi ≤ 10,

min(f44) = f44(1, 0, 0) = 0.

This is a steep-sided valley which follows a spiral shaped path.

• Hosaki Problem [Benke and Skinner 1991]

f45(X) = (1− 8x1 + 7x2
1 −

7

3
x3

1 +
1

4
x4

1)x
2
2 exp (−x2),

with 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 6,

min(f45) = f45(4, 2) ≈ −2.3458.

The number of local minima is two.

131

• Levy and Montalvo 1 Problem [Levy and Montalvo 1985]

f46(X) =
π

n

(
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

)
,

where yi = 1 +
1

4
(xi + 1),

with − 10 ≤ xi ≤ 10,

min(f46) = f46(−1,−1, ...,−1) = 0.

The number of local minima is approximately 5n.

• McCormick Problem [McCormick 1982]

f47(X) = sin(x1 + x2) + (x1 − x2)
2 − 3

2
x1 +

5

2
x2 + 1,

with − 1.5 ≤ x1 ≤ 4,−3 ≤ x2 ≤ 3,

min(f47) = f47(−0.547,−1.547) ≈ −1.9133.

The number of local minima is two.

• Miele and Cantrell Problem [Wolfe 1978]

f48(X) = (exp(x1)− x2)
4 + 100(x2 − x3)

6 + tan4(x3 − x4) + x8
1,

with − 1 ≤ xi ≤ 1,

min(f48) = f48(0, 1, 1, 1) = 0.

The number of local minima is unknown.

132 Chapter A. List of Bound Constrained Global Optimization Test Functions

Table A.1: Data for Multi-Gaussian Problem

i ai bi ci di

1 0.5 0.0 0.0 0.1
2 1.2 1.0 0.0 0.5
3 1.0 0.0 -0.5 0.5
4 1.0 -0.5 0.0 0.5
5 1.2 0.0 1.0 0.5

• Multi-Gaussian Problem [Benke and Skinner 1991]

f49(X) =
5∑

i=1

ai exp
(
−((x1 − bi)

2 + (x2 − ci)
2)/d2

i

)
,

with − 2 ≤ xi ≤ 2,

min(f49) = f49(−0.01356,−0.01356) ≈ 1.29695.

This function has five local minima and a saddle point.

• Neumaier 2 Problem

f50(X) =
n∑

k=1

(
bk −

n∑
i=1

xk
i

)2

,

for n=4 b = (8, 18, 44, 114),

with 0 ≤ xi ≤ n,

min(f50) = f51(1, 2, 2, 3) = 0.

This a unimodal function.

133

• Odd Square Problem

f51(X) = −
(

1.0 +
0.2d

(D + 0.1)

)
cos(Dπ) exp

(
−D

2π

)
,

where d =

√√√√ n∑
i=1

(xi − bi)2, D =
√

n(max|xi − bi|),

and b = (1, 1.3, 0.8,−0.4,−1.3, 1.6,−2,−6, 0.5, 1.4, 1,

1.3, 0.8,−4,−1.3, 1.6,−0.2,−0.6, 0.5, 1.4)

with − 15 ≤ xi ≤ 15

min(f51) = f51(b) ≈ −1.143833.

The number of local minima, as a function of n, is unknown. There are many solutions

near b.

• Paviani Problem [Himmelblau 1972]

f52(X) =
10∑
i=1

[
(ln(xi − 2))2 + (ln(10− xi))

2
]
−

(
10∏
i=1

xi

)0.2

,

with 2 ≤ xi ≤ 10,

min(f52) = f52(9.351, 9.351, ..., 9.351) = −45.778.

This a unimodal function.

• Periodic Problem [Price 1977]

f53(X) = 1 + sin2 x1 + sin2 x2 − 0.1exp(−x2
1 − x2

2),

with − 10 ≤ xi ≤ 10,

min(f53) = f53(0, 0) = 0.9.

The number of local minima is 50.

134 Chapter A. List of Bound Constrained Global Optimization Test Functions

• Powell’s Quadratic Problem [Wolfe 1978]

f54(X) = (x1 + 10x1)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4,

with − 10 ≤ xi ≤ 10,

min(f54) = f54(0, 0, 0, 0) = 0.

This a unimodal function but it is difficult to find the minimum with higher accuracy.

• Price’s Transistor Modeling Problem [Price 1977]

f55(x1, x2, ..., x9) = γ2 +
4∑

k=1

(
α2

k + β2
k

)
,

where

αk = (1− x1x2)x3{exp[x5(g1k − g3kx7 × 10−3 − g5kx8 × 10−3)]− 1} − g5k + g4kx2,

βk = (1− x1x2)x4{exp[x6(g1k − g2k − g3kx7 × 10−3 − g4kx9 × 10−3)]− 1} − g5kx1 + g4k,

γ = x1x3 − x2x4,

gik =



0.485 0.752 0.869 0.982

0.369 1.254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823


,

with − 10 ≤ xi ≤ 10,

min(f55) = f55(0.9, 0.45, 1, 2, 8, 8, 5, 1, 2) = 0.

The number of local minima is unknown.

135

• Salomon Problem [Salomon 1995]

f56(X) = 1− cos(2π ‖ x ‖) + 0.1 ‖ x ‖,

where ‖ x ‖=

√√√√ n∑
i=1

x2
i ,

with − 100 ≤ xi ≤ 100,

min(f56) = f56(0, 0, ..., 0) = 0.

The number of local minima, as a function of n, is unknown. Its landscape is like a

pond with ripples.

• Schaffer 2 Problem [Michalewicz 1996]

f57(X) = (x2
1 + x2

2)
0.25(sin2(50(x2

1 + x2
2)

0.1) + 1),

with − 100 ≤ xi ≤ 100,

min(f57) = f57(0, 0) = 0.

The number of local minima is unknown.

• Wood’s Function

f58(X) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2 +

10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1),

with − 10 ≤ xi ≤ 10,

min(f58) = f58(1, 1, 1, 1) = 0.

This function has a saddle point.

Appendix B

Enhancement Directions for ODE

Non-violent resistance implies the very opposite of weakness. Defiance combined

with non-retaliatory acceptance of repression from one’s opponents is active, not

passive. It requires strength, and there is nothing automatic or intuitive about

the resoluteness required for using non-violent methods in political struggle and

the quest for Truth.

– Mahatma Gandhi, 1936

The opposite of love is not hate, it’s indifference.

– Elie Wiesel

136

B.1 Quasi-Oppositional Differential Evolution (QODE) 137

B.1 Quasi-Oppositional Differential Evolution (QODE)

In this section, the effects of replacing opposite numbers with quasi-opposite numbers in

the ODE are investigated. We call the new method QODE which employs exactly the same

schemes of ODE for population initialization and generation jumping. As we know, the

middle point of the search interval has the highest accessability to cover the search space.

But the middle point for the whole population is a unique point and cannot be replaced

with opposite numbers in the ODE algorithm. For this reason and as an option, a random

point between middle point and opposite point can be replaced with opposite number.

Figure B.1 and Figure B.2 show the interval and region which are used to generate these

points in one-dimensional and two-dimensional spaces, respectively.

Fig. B.1: Illustration of x and its opposite x̆. The quasi-opposite point, x̆q, is generated
in the interval [M, x̆].

B.1.1 Quasi-opposition theorem

Mathematically, we can prove that for a black-box optimization problem, the quasi-opposite

point x̆q has a higher chance than opposite point x̆ to be closer to the solution. The theorem

can be formulated as follows:

Theorem B.1 (Quasi-Opposition Theorem) Given a guess x, its opposite x̆ and quasi-

opposite x̆q, and given the probability function Pr(·), we have

Pr (|x̆q − xs| < |x̆− xs|) > 1/2, (B.1)

138 Chapter B. Enhancement Directions for ODE

Fig. B.2: For a two-dimensional space, the point P and its opposite P̆ . The quasi-opposite
point, P̆ q, is generated in that gray area.

where xs is the solution for a black-box optimization problem.

Proof Assume that the solution xs is in one of these intervals: [a, x], [x, M], [M, x̆], [x̆, b]

([a, x] ∪ [x, M] ∪ [M, x̆] ∪ [x̆, b] = [a, b]). We investigate all cases:

• xs ∈ [a, x] ∨ xs ∈ [x̆, b] - According to the definition of opposite point, intervals [a, x]

and [x̆, b] have the same length, so the probability that the solution is in interval

[a, x] or [x̆, b] is equal (x−a
b−a

= b−x̆
b−a

). Now, if the solution is in interval [a, x], definitely,

it is closer to x̆q and in the same manner if it is in interval [x̆, b] it would be closer to

x̆. So, until now, x̆q and x̆ have the equal chance to be closer to the solution.

• xs ∈ [M, x̆] - For this case x̆q and x̆ have the equal chance to be closer to the solution.

• xs ∈ [x, M] - For this case, obviously, x̆q is closer to the solution than x̆.

Now, we can conclude that, in overall, x̆q has a higher chance to be closer to the solution

than x̆, because for the first two cases they had equal chance and just for last case ([x, M])

x̆q has a higher chance to be closer to the solution.

B.1 Quasi-Oppositional Differential Evolution (QODE) 139

This proof is for a one-dimensional space, but it can be extended to D-dimensions

(similar to Central Opposition Theorem). As proved in one dimensional space, quasi-

opposite points have a higher chance to be closer to the solution than opposite points

and that is true for all individual dimensions in a D-dimensional space; hence the quasi-

opposite points have a higher chance in D-dimensional space to be closer to the solution

than opposite points. Now the quasi-oppositional optimization can be defined. That is

very similar to the OBO (see section 3.3, page 30).

Definition B.1 (Quasi-Oppositional Optimization) Let P (x1, x2, ..., xD) be a point

in a D-dimensional space (i.e. a candidate solution) and P̆ q(x̆q
1, x̆

q
2, ..., x̆

q
D) be a quasi-

opposite point (see figure B.2). Assume f(·) is a fitness function which is used to measure

the candidate’s fitness. Now, if f(P̆ q) ≥ f(P), then point P can be replaced with P̆ q;

otherwise we continue with P . Hence, we continue with the fitter one.

As mentioned before, QODE and ODE have the same population initialization and

generation jumping schemes, the only difference is that the opposite points are replaced

with quasi-opposite points. Algorithm 6 presents all details for the QODE.

B.1.2 Experimental validation

A set of 15 well-known scalable benchmark functions (chosen from the main test suite),

which contains 7 unimodal and 8 multimodal functions, has been selected for performance

verification of QODE. Furthermore, test functions with two different dimensions (D and

2D) have been employed in the conducted experiments. By this way, the classical differen-

tial evolution (DE), opposition-based DE (ODE), and quasi-oppositional DE (QODE) are

compared on 30 minimization exercises. The 13 functions (out of 15) have an optimum

in the center of search space. To make it asymmetric, the search space for all of these

functions is shifted as follows:

140 Chapter B. Enhancement Directions for ODE

Algorithm 6 Quasi-Oppositional Differential Evolution (QODE)

1: Generate uniformly distributed random population P0

2: //Quasi-oppositional initialization
3: for i = 0 to Np do
4: for j = 0 to D do
5: OP0i,j ← aj + bj − P0i,j //Calculating opposite point
6: Mi,j ← (aj + bj)/2 //Calculating middle point
7: if (P0i,j < Mi,j) then
8: QOP 0i,j ←Mi,j + (OP 0i,j −Mi,j)× rand(0, 1) //Calculating quasi-opposite point

9: else
10: QOP 0i,j ← OP 0i,j + (Mi,j −OP 0i,j)× rand(0, 1) //Calculating quasi-opposite point

11: end if
12: end for
13: end for
14: Select n fittest individuals from set the {P0, QOP0} as initial population P0

15: //DE’s regular steps
16: while (BFV > VTR and NFC < MAXNFC) do
17: for i = 0 to Np do
18: Select three parents Pi1 , Pi2 , and Pi3 randomly from current population where i 6= i1 6= i2 6= i3
19: Vi ← Pi1 + F × (Pi2 − Pi3)
20: for j = 0 to D do
21: if (rand(0, 1) < Cr) then
22: Ui,j ← Vi,j

23: else
24: Ui,j ← Pi,j

25: end if
26: end for
27: Evaluate Ui

28: if (f(Ui) ≤ f(Pi)) then
29: P ′

i ← Ui

30: else
31: P ′

i ← Pi

32: end if
33: end for
34: P ← P ′

35: //Quasi-oppositional generation jumping
36: if (rand(0, 1) < Jr) then
37: for i = 0 to Np do
38: for j = 0 to D do
39: OPi,j ← MINp

j + MAXp
j − Pi,j //Calculating opposite point

40: Mi,j ← (MINp
j + MAXp

j)/2 //Calculating middle point

41: if (Pi,j < Mi,j) then
42: QOP i,j ←Mi,j + (OP i,j −Mi,j)× rand(0, 1) //Calculating quasi-opposite point

43: else
44: QOP i,j ← OP i,j + (Mi,j −OP i,j)× rand(0, 1) //Calculating quasi-opposite point

45: end if
46: end for
47: end for
48: Select n fittest individuals from set the {P, QOP} as current population P
49: end if
50: end while

B.2 ODE with Variable Jumping Rate (ODEVJR) 141

If O.P.B.: −a ≤ xi ≤ a and fmin = f(0, ..., 0) = 0

then S.P.B.:−a + a
2
≤ xi ≤ a + a

2
,

where O.P.B. and S.P.B. stand for Original Parameter Bounds and Shifted Parameter

Bounds, respectively.

Setting control parameters - Parameter settings for all conducted experiments in

this section are as before (Np = 100, F = 0.5, Cr = 0.9, JrODE
= 0.3, MAXNFC = 106, and

VTR= 10−8). Just a new jumping rate for QODE, JrQODE
, is set to 0.05. It is set to a

smaller value (JrQODE
= 1

6
JrODE

), because the trials showed that the higher jumping rates

can rapidly reduce the diversity of the population and cause a premature convergence. This

was predictable for QODE, because instead of an opposite point, a random point between

middle point and the opposite point is utilized and hence the variable’s search interval is

prone to be shrunk very fast. A complementary study is required to determine an optimal

value/interval for QODE’s jumping rate.

Results - Results of applying DE, ODE, and QODE to solve 30 test problems are

given in Table B.1. As seen, QODE outperforms others (DE and ODE) on 22 functions,

while ODE surpasses DE and QODE on 6 functions and DE can just outperform ODE

and QODE on one function. DE performs slightly better than ODE and QODE in terms

of average success rate (0.90, 0.88, and 0.86, respectively).

B.2 ODE with Variable Jumping Rate (ODEVJR)

In this section, a time varying jumping rate (TVJR) model for opposition-based differential

evolution (ODE) has been investigated. According to this model, the jumping rate changes

during the evolution based on the number of function evaluations. The same test suite

142 Chapter B. Enhancement Directions for ODE

Table B.1: Comparison of DE, ODE, and QODE. D: Dimension, NFC: Number of function
calls (average over 50 trials), SR: Success rate, SP: Success performance.

DE ODE QODE
F D NFC SR SP NFC SR SP NFC SR SP

f1 30 86072 1 86072 50844 1 50844 42896 1 42896
60 154864 1 154864 101832 1 101832 94016 1 94016

f2 30 95080 1 95080 56944 1 56944 47072 1 47072
60 176344 1 176344 117756 1 117756 105992 1 105992

f3 20 174580 1 174580 177300 1 177300 116192 1 116192
40 816092 1 816092 834668 1 834668 539608 1 539608

f5 10 323770 0.96 337260 75278 0.92 81823 181100 1 181100
20 811370 0.08 10142125 421300 0.16 2633125 615280 0.16 3845500

f6 30 111440 0.96 116083 74717 0.92 81214 100540 0.80 125675
60 193960 1 193960 128340 0.68 188735 115280 0.68 169529

f7 30 18760 1 18760 10152 1 10152 9452 1 9452
60 33128 1 33128 11452 1 11452 14667 0.84 17461

f8 30 168372 1 168372 100280 1 100280 82448 1 82448
60 294500 1 294500 202010 0.96 210427 221850 0.72 308125

f15 30 101460 1 101460 70408 1 70408 50576 1 50576
60 180260 0.84 215000 121750 0.60 202900 98300 0.40 245800

f18 10 191340 0.76 252000 213330 0.56 380900 247640 0.48 515900
20 288300 0.35 824000 253910 0.55 461700 193330 0.68 284300

f19 30 385192 1 385192 369104 1 369104 239832 1 239832
60 − 0 − − 0 − − 0 −

f21 30 183408 1 183408 167580 1 167580 108852 1 108852
60 318112 1 318112 274716 1 274716 183132 1 183132

f23 30 40240 1 40240 26400 1 26400 21076 1 21076
60 73616 1 73616 64780 1 64780 64205 1 64205

f31 30 386920 1 386920 361884 1 361884 291448 1 291448
60 432516 1 432516 425700 0.96 443438 295084 1 295084

f41 10 19324 1 19324 16112 1 16112 13972 1 13972
20 45788 1 45788 31720 1 31720 23776 1 23776

f56 10 37260 1 37260 26108 1 26108 18944 1 18944
20 176872 1 176872 57888 1 57888 40312 1 40312

SRave 0.90 0.88 0.86

(used for QODE) has been employed to compare performance of DE and ODE with variable

jumping rate settings.

Generally speaking, parameter control in evolutionary algorithms (EAs) can be per-

formed in following three ways [Eiben and Hinterding 1999]: Deterministic, adaptive, and

self-adaptive. The first one uses a predefined rule to modify the parameter value without

gaining any feedback from the evolution process. The second one changes the parameter

value based on the information which receives from the search process. The third one

B.2 ODE with Variable Jumping Rate (ODEVJR) 143

utilizes the same evolutionary approach not only to solve the problem but also to opti-

mize own control parameters by encoding some strategic parameters inside the population

[Rudolph 2001; Hildebrand et al. 1999].

The proposed idea in this section is similar to Das et al. work [2005b]. They utilized

time varying approach for setting of the scale factor F in differential evolution (DE), which

can be considered as a deterministic approach according to the mentioned categorization.

B.2.1 Investigated jumping rate models

For opposition-based differential evolution (ODE), a constant value for jumping rate was

used. Here, two types of varying jumping rates are investigated (linearly increasing and

decreasing functions). Three proposed settings for Jr are as follows:

• Jr (constant)= Jrave ,

• Jr(TVJR1) = (Jrmax − Jrmin
)×

(
MAXNFC−NFC

MAXNFC

)
,

• Jr(TVJR2) = (Jrmax − Jrmin
)− (Jrmax − Jrmin

)×
(

MAXNFC−NFC
MAXNFC

)
,

where Jrave , Jrmax , and Jrmin
are the average, maximum, and minimum jumping rates,

respectively. MAXNFC and NFC are the maximum number of function calls and the current

number of function calls, respectively.

In order to support a fair comparison between these three different jumping rate set-

tings, the average jumping rate should be the same for all of them. Obviously, we should

have Jrave =
(Jrmax+Jrmin)

2
. Following values for these parameters are selected: Jrave = 0.3

and Jrmin
= 0 (no jumping), so Jrmax = 0.6. Figure B.3 shows the corresponding diagrams

(jumping rate vs. NFCs) for three following settings:

• Jr(constant) = 0.3,

144 Chapter B. Enhancement Directions for ODE

• Jr(TVJR1) = 0.6×
(

MAXNFC−NFC
MAXNFC

)
,

• Jr(TVJR2) = 0.6− 0.6×
(

MAXNFC−NFC
MAXNFC

)
.

Fig. B.3: Jumping rate vs. NFCs for Jr(ODE) = 0.3, Jr(TVJR1) = 0.6×
(

MAXNFC−NFC
MAXNFC

)
,

and Jr(TVJR2) = 0.6− 0.6×
(

MAXNFC−NFC
MAXNFC

)
.

Jr(TVJR1) represents higher jumping rate during exploration and lower jumping rate

during exploitation (fine-tuning); Jr(TVJR2) performs exactly in reverse manner. By these

settings, we can investigate effects of generation jumping during optimization process.

B.2.2 Empirical results

The test set and all parameter settings are the same as for QODE. The only difference is

the maximum number of function calls, which is 2×105 for f1, f2, f3, f6, f8, f15, f21; 5×105

for f5, f18, f19, f31; and 5×104 for f7, f23, f41, f56. Results of applying DE, ODE (Jr = 0.3),

ODE (TVJR1), and ODE (TVJR2) to solve 15 test problems are given in Table B.2. As

seen, ODE (TVJR1) delivers best success performance (SP) for 13 benchmark functions,

while this number for DE, ODE (Jr = 0.3), and ODE (TVJR2) is 0, 1, and 1, respectively.

B.2 ODE with Variable Jumping Rate (ODEVJR) 145

T
ab

le
B

.2
:

C
om

p
ar

is
on

of
D

E
,
O

D
E

(J
r

=
0.

3)
,
O

D
E

(T
V

J
R

1)
,
an

d
O

D
E

(T
V

J
R

2)
.

D
:
D

im
en

si
on

,
N

F
C

:
N

u
m

b
er

of
fu

n
ct

io
n

ca
ll
s

(a
ve

ra
ge

ov
er

50
tr

ia
ls

),
S
R

:
S
u
cc

es
s

ra
te

,
S
P

:
S
u
cc

es
s

p
er

fo
rm

an
ce

.

D
E

O
D

E
(J

r
=

0
.3

)
O

D
E

(T
V

J
R

1
)

O
D

E
(T

V
J
R

2
)

F
D

N
F
C

S
R

S
P

N
F
C

S
R

S
P

N
F
C

S
R

S
P

N
F
C

S
R

S
P

f
1

3
0

8
7
7
4
8

1
8
7
7
4
8

4
7
7
1
6

1
4
7
7
1
6

4
2
3
0
0

1
4
2
3
0
0

6
6
3
0
5

1
6
6
3
0
5

f
2

3
0

9
6
4
8
8

1
9
6
4
8
8

5
3
3
0
4

1
5
3
3
0
4

4
5
7
2
0

1
4
5
7
2
0

7
2
9
9
0

1
7
2
9
9
0

f
3

2
0

1
7
7
8
8
0

1
1
7
7
8
8
0

1
6
8
6
8
0

1
1
6
8
6
8
0

1
5
9
7
7
5

1
1
5
9
7
7
5

1
7
5
4
6
0

1
1
7
5
4
6
0

f
5

1
0

3
2
8
8
4
4

1
3
2
8
8
4
4

6
5
0
5
6

0
.6

4
1
0
1
6
5
0

5
9
0
6
3

0
.8

0
7
3
8
2
9

1
3
6
0
7
0

1
1
3
6
0
7
0

f
6

3
0

1
1
3
4
2
8

1
1
1
3
4
2
8

6
4
9
2
0

0
.7

5
8
6
5
6
0

6
3
5
9
4

0
.9

0
7
0
6
6
0

8
6
2
3
5

1
8
6
2
3
5

f
7

3
0

2
5
1
4
0

1
2
5
1
4
0

8
3
2
8

1
8
3
2
8

6
0
8
0

1
6
0
8
0

1
4
1
7
5

1
1
4
1
7
5

f
8

3
0

1
6
9
1
5
2

1
1
6
9
1
5
2

9
8
2
9
6

1
9
8
2
9
6

8
8
3
5
5

1
8
8
3
5
5

1
1
7
0
9
5

1
1
1
7
0
9
5

f
1
5

3
0

1
0
1
4
6
0

1
1
0
1
4
6
0

7
0
4
0
8

1
7
0
4
0
8

6
5
2
4
7

0
.9

5
6
8
6
8
1

8
2
2
4
5

1
8
2
2
4
5

f
1
8

1
0

2
1
5
2
6
0

0
.5

6
3
8
4
3
9
3

1
6
8
4
7
0

0
.7

6
2
2
1
6
7
1

1
8
8
4
4
0

0
.6

5
2
8
9
9
0
8

3
7
9
6
6
0

0
.6

0
6
3
2
7
6
7

f
1
9

3
0

3
8
5
1
9
2

1
3
8
5
1
9
2

3
6
9
1
0
4

1
3
6
9
1
0
4

3
8
9
9
5
5

1
3
8
9
9
5
5

3
6
0
5
9
5

1
3
6
0
5
9
5

f
2
1

3
0

1
8
7
3
0
0

1
1
8
7
3
0
0

1
5
5
6
3
6

1
1
5
5
6
3
6

1
4
6
7
9
5

1
1
4
6
7
9
5

1
6
7
6
8
5

1
1
6
7
6
8
5

f
2
3

3
0

4
1
5
8
8

1
4
1
5
8
8

2
3
1
2
4

1
2
3
1
2
4

2
0
2
9
0

1
2
0
2
9
0

2
9
1
6
5

1
2
9
1
6
5

f
3
1

3
0

4
1
1
1
6
4

1
4
1
1
1
6
4

3
3
7
5
3
2

1
3
3
7
5
3
2

3
2
6
3
5
0

1
3
2
6
3
5
0

3
7
7
4
2
5

1
3
7
7
4
2
5

f
4
1

1
0

1
9
5
2
8

1
1
9
5
2
8

1
5
7
0
4

1
1
5
7
0
4

1
4
2
7
0

1
1
4
2
7
0

1
7
7
3
5

1
1
7
7
3
5

f
5
6

1
0

3
7
8
2
4

1
3
7
8
2
4

2
4
2
6
0

1
2
4
2
6
0

2
1
4
0
0

1
2
1
4
0
0

2
8
7
1
0

1
2
8
7
1
0

S
R

a
v
e

0
.9

7
0
.9

4
0
.9

5
0
.9

7

146 Chapter B. Enhancement Directions for ODE

Table B.3: Pairwise comparison of DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE
(TVJR2). Given number in each cell shows for how many functions the algorithm in
each row outperforms the corresponding algorithm in each column. The last column shows
the total numbers (number of cases which the algorithm outperforms other competitors).

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2) Total
DE - 0 1 1 2

ODE (Jr = 0.3) 15 - 2 12 29
ODE (TVJR1) 14 13 - 14 41
ODE (TVJR2) 14 3 1 - 18

Pairwise comparison of these algorithms is presented in Table B.3. The given number

in each cell indicates for how many functions the algorithm in each row outperforms the

corresponding algorithm in each column. The last column of the table shows the total num-

bers (number of cases which the algorithm outperforms other competitors); by comparing

these numbers, the following ranking is obtained: ODE (TVJR1) (best), ODE (Jr = 0.3),

ODE (TVJR2), and DE.

The average success rate (shown in the last row of the Table B.2) for DE and ODE

(TVJR2) is marginally better than the other two competitors.

B.3 Summary 147

B.3 Summary

In this Appendix, the quasi-oppositional DE (QODE), an enhanced version of the opposition-

based differential evolution (ODE), was introduced. Both algorithms (ODE and QODE)

use the same schemes for population initialization and generation jumping. But, QODE

uses quasi-opposite points instead of opposite points. The presented mathematical proof

confirms that these points have a higher chance than opposite points to be closer to the so-

lution. Experimental results, conducted on 30 - eccentric minimum - test problems, clearly

show that QODE outperforms ODE.

As another enhancement direction, the time varying jumping rate for opposition-based

differential evolution was proposed and two behaviorally reverse versions (linearly decreas-

ing and increasing functions) were compared with the constant setting. The results show

that the linearly decreasing jumping rate performs better than constant setting and also

than linearly increasing policy. This means that generation jumping in the exploration

time is more desirable than during exploitation. Because we are faced with shrunken

search space during the fine-tuning, and the jumping of the individuals may not be advan-

tageous (because the point and the opposite-point are very close together). There is no

exact border between exploration and exploitation stage. Hence, the gradual behavior for

the decreasing and increasing functions are proposed.

The proposed jumping rate function utilizes the maximum number of function calls

(MAXNFC) which may not be exactly known for the black-box optimization problems; this

can be regarded as a disadvantage for this method. Adaptive setting of the jumping rate

can be a desirable solution.

Bibliography

Ali, M. and Törn, A. 2000. Optimization of carbon and silicon cluster geometry for

tersoff potential using differential evolution. In Computational Chemistry and Molecular

Biology : Local and Global Approaches, C.A. Floudas and P.M. Pardalos (Eds.), Kluwer

Academic Publisher. 287–300.

Ali, M. and Törn, A. 2004. Population set-based global optimization algorithms:

Some modifications and numerical studies. Journal of Computers and Operations Re-

search 31(10), 1703–1725.

Aluffi-Pentini, F., Parisi, V., and Zirilli, F. 1985. Global optimization and stochas-

tic differential equations. Journal of Optimization Theory and Applications 47, 1–16.

Angeline, P. J. 1998. Evolutionary optimization versus particle swarm optimization:

Philosophy and performance differences. In Proceedings of the 7th International Confer-

ence on Evolutionary Programming VII. Springer-Verlag, London, UK, 601–610.

Babu, B. and Sastry, K. 1999. Estimation of heat transfer parameters in a tricklebed

reactor using differential evolution and orthogonal collocation. Computers and Chemical

Engineering 23, 327–339.

Bäck, T. 1996. Evolutionary Algorithms in Theory and Practice : Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford University Press Inc., USA.

148

BIBLIOGRAPHY 149

Bäck, T., Hammel, U., and Schwefel, H.-P. 1997. Evolutionary computation: Com-

ments on the history and current state. IEEE Transactions on Evolutionary Computa-

tion 1(1), 3–17.

Benke, K. and Skinner, D. 1991. A direct search algorithm for global optimization of

multivariate functions. The Australian Computer Journal 23, 73–85.

Bergh, F. V. D. and Englebrecht, A. 2004. A cooperative approach to particle

swarm optimization. Journal of IEEE Transactions on Evolutionary Computation 8(3),

225–239.

Bohachevsky, M., Johnson, M., and Stein, M. 1986. Generalized simulated anneal-

ing for function optimization. Technometrics 28, 209–217.

Bohuslav, R. and Michal, K. 2001. Differential evolution algorithm in the earthquake

hypocenter location. Pure and Applied Geophysics 158, 667–693.

Breiman, L. and Cutler, A. 1993. A deterministic algorithm for global optimization.

Mathematical Programming 58, 179–199.

Brest, J., Greiner, S., Bošković, B., Mernik, M., and Žumer, V. 2006. Self-

adapting control parameters in differential evolution: A comparative study on numer-

ical benchmark problems. Journal of IEEE Transactions on Evolutionary Computa-

tion 10(6), 646–657.

Chakraborti, N., De, P., and Prasad, R. 2002. Genetic algorithms based structure

calculations for hydrogenated silicon clusters. Materials letters 55(1), 20–26.

Chellapilla, K. 1998. Combining mutations operators in evolutionary programming.

Journal of IEEE Transactions on Evolutionary Computation 2, 91–96.

150 BIBLIOGRAPHY

Cheng, H., Jiang, X., Sun, Y., and Wang, J. 2001. Color image segmentation:

advances and prospects. Journal of Pattern Recognition 34, 2259–2281.

Crutchley, D. and Zwolinski, M. 2004. Globally convergent algorithms for DC oper-

ating point analysis for nonlinear circuits. Journal of IEEE Transactions on Evolutionary

Computation 7(1), 2–10.

Das, S., Konar, A., and Chakraborty, U. 2005a. Improved differential evolution

algorithms for handling noisy optimization problems. In Proceedings of IEEE Congress

on Evolutionary Computation Conference. Napier University, Edinburgh, UK, 1691–

1698.

Das, S., Konar, A., and Chakraborty, U. 2005b. Two improved differential evolution

schemes for faster global search. In Proceedings of the 2005 conference on Genetic and

evolutionary computation (GECCO-2005). Washington DC, USA, 991–998.

Dekkers, A. and Aarts, E. 1991. Global optimization and simulated annealing. Math-

ematical Programming 50, 367–393.

Dixon, L. and Szegö, G. 1975. Towards Global Optimization. North Holland, New

York.

Dixon, L. and Szegö, G. 1978. Towards Global Optimization. Vol. 2. North Holland,

New York.

Dorigo, M. and Stützle, T. 2004. Ant Colony Optimization. MIT Press, USA.

Eiben, A. and Hinterding, R. 1999. Paramater control in evolutionary algorithms.

IEEE Transactions on Evolutionary Computation 3(2), 124–141.

Fan, H.-Y. and Lampinen, J. 2003. A trigonometric mutation operation to differential

evolution. Global Optimization 27(1), 105–129.

BIBLIOGRAPHY 151

Fathi, M. and Hildebrand, L. 1997. Model-free optimization of fuzzy rule-based sys-

tems using evolution strategies. IEEE Transactions on Systems, Man, and Cybernetics,

Part B 27(2), 270–277.

Feoktistov, V. 2006. Differential Evolution: In Search of Solutions. Springer, USA.

Fischer, M., Reismann, M., and Hlavackova-Schindler, K. 1999. Parameter

estimation in neural spatial interaction modelling by a derivative free global optimization

method. In Proceedings of the IV Intnational Conference on geocomputation. Mary

Washington College, Fredericksburg, VA, USA.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Han, K.-H. and Kim, J.-H. 2004. Quantume-inspired evolutionary algorithms with a

new termination criterion, H gate, and two phase scheme. Journal of IEEE Transactions

on Evolutionary Computation 8(2), 156–169.

Hildebrand, L., Reusch, B., and Fathi-Torbaghan, M. 1999. Directed mutation:

A new self-adaptation for evolution strategies. In Proceedings of the Congress on Evo-

lutionary Computation (CEC-1999), IEEE Publications. Vol. 2. Washington, DC, USA,

1550–1557.

Himmelblau, D. 1972. Applied Nonlinear Programming. McGraw-Hill, New York.

Hrstka, O. and Kučerová, A. 2004. Improvement of real coded genetic algorithm

based on differential operators preventing premature convergence. Journal of Advance

in Engineering Software 35, 237–246.

Jonasson, E. and Rahnamayan, S. 2006. Differential evolution with fittest individual

local tuning. In Proceedings of 10th World Multi Conference on Systemics, Cybernetics

and Informatics (WMSCI-2006). Orlando, USA.

152 BIBLIOGRAPHY

Joshi, R. and Sanderson, A. 1999. Minimal representation multisensor fusion using dif-

ferential evolution. Journal of IEEE Transactions on Evolutionary Computation 29(1),

63–76.

Kachouie, N., Fieguth, P., and Rahnamayan, S. 2006. An elliptical level set method

for automatic TRUS prostate image segmentation. In Proceedings of 6th IEEE Inter-

national Symposium on Signal Processing and Information Technology (ISSPIT-2006).

Vancouver, Canada, 191–196.

Kaelo, P. and Ali, M. M. 2006. Probabilistic adaptation of point generation schemes

in some global optimization algorithms. Optimization Methods and Software 27(3), 343–

357.

Koumousis, V. and Katsaras, C. 2006. A saw-tooth genetic algorithm combining the

effects of variable population size and reinitialization to enhance performance. Journal

of IEEE Transactions on Evolutionary Computation 10(1), 19–28.

Krink, T., Filipie, B., and Fogel, G. 2004. Noisy optimization problems - a particular

challenge for differential evolution? In Proceedings of the 2004 IEEE World Congress

on Computational Intelligence (CEC-2004). Piscataway, NJ, USA, 332–339.

Kukkonen, S. and Lampinen, J. 2004. An extension of generalized differential evolution

for multi-objective optimization with constraints. In Proceedings of Parallel Problem

Solving from Nature - PPSN VIII, Springer-Verlag LNCS. Vol. 3242. 752–761.

Lampinen, J. 2004. A constraint handling approach for the differential evolution. In

Proceedings of the 2002 IEEE World Congress on Computational Intelligence (CEC-

2002). Vol. 2. Birmingham, UK, 752–761.

Lampinen, J. and Zelinka, I. 1999a. Mechanical Engineering Design Optimization by

Differential Evolution. McGraw-Hill, London (UK).

BIBLIOGRAPHY 153

Lampinen, J. and Zelinka, I. 1999b. Mixed variable non-linear optimization by differ-

ential evolution. In Proceedings of Nostradamus-99, 2nd International Prediction Con-

ference. Technical University of Brno, Zlin, Czech Republic, 45–55.

Lee, C. Y. and Yao, X. 2004. Evolutionary programming using mutations based on the

lévy probability distribution. Journal of IEEE Transactions on Evolutionary Computa-

tion 8(1), 1–13.

Leung, Y.-W. and Wang, Y. 2001. An orthogonal genetic algorithm with quantiza-

tion for global numerical optimization. Journal of IEEE Transactions on Evolutionary

Computation 5(1), 41–53.

Levy, A. and Montalvo, A. 1985. The tunneling algorithm for the global minimization

of functions. Society for Industrial and Applied Mathematics 6, 15–29.

Liu, J. and Lampinen, J. 2005. A fuzzy adaptive differential evolution algorithm. Journal

of Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(6), 448–

462.

Martens, J. and Meesters, L. 1998. Image dissimilarity. Signal Processing 70, 1164–

1175.

McCormick, G. 1982. Applied Nonlinear Programming, Theory, Algorithms and Appli-

cations. John Wiley and Sons, New York.

Mezura-Montes, E., Velázquez-Reyes, J., and Coello, C. A. C. 2006. A com-

parative study of differential evolution variants for global optimization. In Proceedings of

the 2006 conference on Genetic and evolutionary computation (GECCO-2006). Seattle,

Washington, USA, 485–492.

Michalewicz, Z. 1996. Genetic Algorithms+Data Structures=Evolution Programs.

Springer-Verlag, Berlin/Heidelberg/New York.

154 BIBLIOGRAPHY

Moré, J., Garbow, B., and Hillstrom, K. 1981. Testing unconstrained optimization

software. ACM Transaction on Mathematical Software 7, 17–41.

Noman, N. and Iba, H. 2005. Enhancing differential evolution performance with local

search for high dimensional function optimization. In Proceedings of the 2005 conference

on Genetic and evolutionary computation (GECCO-2005). Washington DC, USA, 967–

974.

Onwubolu, G. C. and Babu, B. 2004. New Optimization Techniques in Engineering.

Springer, Berlin, New York.

Paterlini, S. and Krink, T. 2004. High performance clustering with differential evo-

lution. In Proceedings of the 2004 IEEE World Congress on Computational Intelligence

(CEC-2004). Piscataway, NJ, USA, 2004–2011.

Penev, K. and Littlefair, G. 2005. Free search - a comparative analysis. Information

Sciences 172(1-2), 173–193.

Plagianakos, V., Magoulas, G., Nousis, N., and Vrahatis, M. 2001. Training

multilayer networks with discrete activation functions. In Proceedings of INNS-IEEE

Int. joint Conf. on neural networks. Vol. 4. Washington DC, USA, 2805–2810.

Price, K. 1994. Genetic annealing. Dr. Dobb’s Journal 220, 127–132.

Price, K. 1999. An Introduction to Differential Evolution. McGraw-Hill, London (UK).

Price, K. and Storn, R. 1997. Differential evolution: Numerical optimization made

easy. Dr. Dobb’s Journal 220, 18–24.

Price, K., Storn, R., and Lampinen, J. 2005. Differential Evolution : A Practical

Approach to Global Optimization, 1st ed. Springer-Verlag, Berlin/Heidelberg/Germany.

BIBLIOGRAPHY 155

Price, W. 1977. Global optimization by controlled random search. Computer Journal 20,

367–370.

Rahnamayan, S. 2006. A new initialization scheme for evolutionary optimization meth-

ods. In Proceedings of 10th World Multi Conference on Systemics, Cybernetics and

Informatics (WMSCI-2006). Orlando, USA.

Rahnamayan, S. and Dieras, P. 2007. Efficiency competition on N-queen problem:

DE vs. CMA-ES. Submitted to the IEEE Congress on Evolutionary Computation (CEC-

2007), Singapore.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2005a. Automated snake initial-

ization for the segmentation of the prostate in ultrasound images. In Proceedings of

International Conference on Image Analysis and Recognition (ICIAR-2005), Springer

Lecture Notes in Computer Science Series. Toronto, Canada, 930–937.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2005b. Learning image filtering

from a gold sample based on genetic optimization of morphological processing. In Pro-

ceedings of 7th International Conference on Adaptive and Natural Computing Algorithms

(ICANNGA-2005), SpringerComputerScience. Coimbra, Protugal, 478–481.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2005d. Optimization of object

extraction based on one user-prepared sample. Presented at 5th Annual MOPTA Con-

ference, Modeling and Optimization: Theory and Applications, University of Windsor,

Windsor, Canada.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2005e. Recognition of subjective ob-

jects based on one gold sample. In Proceedings of 5th WSEAS International Conference

on Signal, Speech and Image Processing. Corfu, Greece, 309–314.

156 BIBLIOGRAPHY

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2005f. Robust object segmenta-

tion using genetic optimization of morphological processing chains. In Proceedings of

5th WSEAS International Conference on Signal, Speech and Image Processing. Corfu,

Greece, 248–253.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006a. Image thresholding using dif-

ferential evolution. In Proceedings of the International Conference on Image Processing,

Computer Vision, and Pattern Recognition (IPCV-2006). Las Vegas, USA, 244–249.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006b. A novel population initial-

ization method for accelerating evolutionary algorithms. Elsvier Journal on Computers

and Mathematics with Applications (in press).

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006c. Opposite of random number

instead of second random number. Presented at 6th Annual MOPTA Conference, Mod-

eling and Optimization: Theory and Applications, University of Waterloo, Waterloo,

Canada.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006d. Opposition-based differential

evolution algorithms. In Proceedings of the IEEE World Congress on Computational

Intelligence (CEC-2006). Vancouver, BC, Canada, 7363–7370.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006e. Opposition-based differential

evolution for optimization of noisy problems. In Proceedings of the IEEE World Congress

on Computational Intelligence (CEC-2006). Vancouver, BC, Canada, 6756–6763.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006g. Opposition-based evolution-

ary algorithms. Presented at 6th Annual MOPTA Conference, Modeling and Optimiza-

tion: Theory and Applications, University of Waterloo, Waterloo, Canada.

BIBLIOGRAPHY 157

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2006h. Weighted voting-based

robust image thresholding. In Proceedings of 13th IEEE International Conference on

Image Processing (ICIP-2006). Atlanta, GA, USA, 1129–1132.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2007a. Opposition-based differential

evolution (ODE) with variable jumping rate. In Proceedings of IEEE Symposium on

Foundations of Computational Intelligence (FOCI-2007). Honolulu, Hawaii, USA, 81–

88.

Rahnamayan, S., Tizhoosh, H., and Salama, M. 2007c. Quasi-oppositional differen-

tial evolution (QODE). Submitted to the IEEE Congress on Evolutionary Computation

(CEC-2007), Singapore.

Rahnamayan, S., Tizhoosh, H., and Salama, M. Dec. 2006f. Opposition-based dif-

ferential evolution (ODE). Journal of IEEE Transactions on Evolutionary Computation

(in press).

Rahnamayan, S., Tizhoosh, H., and Salama, M. March 2007b. Opposition versus

randomness in soft computing techniques. Revised version submitted to the Elsevier

Journal on Applied Soft Computing .

Rahnamayan, S., Tizhoosh, H., and Salama, M. Oct. 2005g. Towards incomplete

object recognition. Journal of World Scientific and Engineering Academy and Society,

Transactions on Systems 4(10), 1725–1732.

Rahnamayan, S., Tizhoosh, H., and Salama, M. Sep. 2005c. Learning robust object

segmentation from user-prepared samples. Journal of WSEAS Transactions on Com-

puters 4(9), 1163–1170.

158 BIBLIOGRAPHY

Rogalsky, T., Derksen, R., and Kocabiyic, S. 1999. Differential evolution in aero-

dynamic optimization. In Proceedings of the 46th Annual Conference of the Canadian

Aeronautics and Space Institute. Montreal, Canada, 29–36.

Rudolph, G. 2001. Self-adaptive mutations may lead to premature convergence. IEEE

Transactions on Evolutionary Computation 5(4), 410–414.

Salomon, M. 2001. Etude de la parallelisation de methodes heuristiques d’optimisation

combinatoire. application au recalage d’images medicales. Ph.D. thesis, Universite Louis

Pasteur, Strasbourg, France.

Salomon, R. 1995. Reevaluating genetic algorithms performance under coordinate rota-

tion of benchmark functions. BioSystems 39(3), 263–278.

Schwefel, H.-P. 1995. Evolution and Optimization Seeking. John Wiley & Sons, New

York.

Schwefel, H.-P. 2003. Computational Intelligence: Theory and Practice. Springer-

Verlag New York, USA.

Sezan, M. 1985. A peak detection algorithm and its application to histogram-based image

data reduction. Journal of Computer Vision, Graphics, Image Processing 29, 47–59.

Sezgin, M. and Sankur, B. 2004. Survey over image thresholding techniques and

quantative performance evaluation. Journal of Electronic Imaging 13(1), 146–165.

Shi, Y.-J., Teng, H.-F., and Li, Z.-Q. 2005. Cooperative co-evolutionary differential

evolution for function optimization. In Proceedings of First International Conference in

Advances in Natural Computation (ICNC-2005). Changsha, China, 1080–1088.

BIBLIOGRAPHY 159

Storn, R. 1996. On the usage of differential evolution for function optimization. In

Proceedings of Biennial conference of the North American fuzzy information processing

society. Berkeley, California, USA, 519–523.

Storn, R. and Price, K. 1997a. Differential evolution- a simple and efficient heuristic for

global optimization over continuous spaces. Journal of Global Optimization, Kluwer 11,

341–359.

Storn, R. and Price, K. 1997b. Differential evolution: A simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization 11, 341–

359.

Storn, R. and Price, K. March 1995. Differential evolution - a simple and efficient

adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012,

ICSI.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A.,

and Tiwari, S. May 2005. Problem definitions and evaluation criteria for the cec 2005

special session on real-parameter optimization. Tech. Rep. 2005005, Kanpur Genetic

Algorithms Laboratory, IIT Kanpur, Nanyang Technological University, Singapore And

KanGAL.

Sun, J., Zhang, Q., and Tsang, E. P. 2005. DE/EDA: A new evolutionary algorithm

for global optimization. Journal of Information Sciences 169, 249–262.

Tasoulis, D., Pavlidis, N., Plagianakos, V., and Vrahatis, M. 2004. Paral-

lel differential evolution. In Proceedings of the Congress on Evolutionary Computation

(CEC-2004), IEEE Publications. Vol. 2. 2023–2029.

Teo, J. 2006. Exploring dynamic self-adaptive populations in differential evolution. Soft

Computing - A Fusion of Foundations, Methodologies and Applications 10(8).

160 BIBLIOGRAPHY

Tizhoosh, H. 2005a. Image thresholding using type II fuzzy sets. Journal of Pattern

Recognition 38, 2363–2372.

Tizhoosh, H. 2005b. Opposition-based learning: A new scheme for machine intelligence.

In Proceedings of the International Conference on Computational Intelligence for Mod-

elling Control and Automation (CIMCA-2005). Vienna, Austria, 695–701.

Tizhoosh, H. 2005c. Reinforcement learning based on actions and opposite actions.

In Proceedings of the International Conference on Artificial Intelligence and Machine

Learning (AIML-2005). Cairo, Egypt.

Tizhoosh, H. 2006. Opposition-based reinforcement learning. Journal of Advanced Com-

putational Intelligence and Intelligent Informatics 10(3), 578–585.

Tsai, J.-T., Liu, T.-K., and Chou, J.-H. 2004. Hybrid taguchi-genetic algorithm for

global numerical optimization. Journal of IEEE Transactions on Evolutionary Compu-

tation 8(4), 365–377.

Tu, Z. and Lu, Y. 2004. A robust stochastic genetic algorithm for global numerical

optimization. Journal of IEEE Transactions on Evolutionary Computation 8(5), 456–

470.

Ursem, R. and Vadstrup, P. 2004. Parameter identification of induction motors using

differential evolution. Applied Soft Computing 4(1), 49–64.

Vesterstroem, J. and Thomsen, R. 2004. A comparative study of differential evolu-

tion, particle swarm optimization, and evolutionary algorithms on numerical benchmark

problems. In Proceedings of the Congress on Evolutionary Computation (CEC-2004),

IEEE Publications. Vol. 2. San Diego, California, USA, 1980–1987.

Wang, Z. and Bovik, A. 2002. A universal image quality index. Journal of IEEE Signal

Processing Letters 9(3), 81–84.

BIBLIOGRAPHY 161

Winkler, S. 2000. Vision models and quality metrics for image processing applications.

Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland.

Wolfe, M. 1978. Numerical Methods for Unconstrained Optimization. Van Nostrand

Reinhold Company, New York.

Yao, X. and Liu, Y. 1997. Fast evolution strategies. In Evolutionary Programming VI,

P. J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. Eberhart, Eds. Springer, Berlin,

151–161.

Yao, X., Liu, Y., and Lin, G. 1999. Evolutionary programming made faster. Journal

of IEEE Transactions on Evolutionary Computation 3(2), 82–102.

Yasnoff, W., Mui, J., and Bacus, W. 1977. Error measures for scene segmentation.

Journal of Pattern Recognition 9, 217–231.

