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Abstract

The focus of this thesis is on reliable finite element simulations using mesh adap-
tivity based on a posteriori error estimation. The accuracy of the error estimator
is a key step in controlling both the computational error and simulation time. The
estimated errors guide the mesh adaptivity algorithm toward a quasi-optimal mesh
that conforms with the solution specific features. The simulation time is controlled
by minimizing the needed computational resources iteratively through adaptive mesh
refinement.

Analysis of existing local a posteriori error estimation techniques is the focus of
the first part of this thesis. The Element Residual Method (ERM) is analyzed and
numerically tested in comparison to the Zienkiewicz-Zhu (ZZ) error estimator. Steady
state flow (diffusion) problems, elasticity problems and advection-diffusion problems
are used as numerical test cases. It is shown that the ERM provides better error
estimation in comparison to the ZZ error estimator, as the ERM accounts for all terms
of the solution residual in the domain interior and on the domain boundary. However,
it is observed that the ERM does not produce reliable results for problems solved on
very coarse meshes and for problems with points of singularity or boundary layers in
the solution. This is attributed to the averaging assumption used for prescribing an
artificial boundary condition on the local problems. This assumption is only correct
for problems with smooth solution and when the sharp layers and solution specific
features are completely resolved by the mesh.

To overcome the limitations of the ERM, a new framework for error estimation
based on the variational multiscale method is proposed. The basic idea of evaluat-
ing the residual equation locally is coupled with the Variational Multiscale Method
(VMS), to design a general framework for local error estimation. The VMS introduces

a decomposition of the solution into a resolved components (captured by the mesh)
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and an unresolved component (subgrid scales). The VMS decomposition produces a
natural variational formulation of the unresolved scale (error). This fine scale vari-
ational equation is localized to derive different local error estimation techniques. A
new Subdomain Residual Method (SRM) is developed using a partition of unity as
the localization operator. The subdomain estimator is flux free and does not intro-
duce artificial boundary conditions to the local problems. It is easy to implement
and efficiently provides both upper and lower bound of the error in the energy norm.
Numerical results show that the proposed SRM outperforms the ERM and produces

very sharp error estimation on coarse meshes.
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Chapter 1
Thesis Summary

1.1 Introduction

The topics discussed in this chapter are essential for understanding, deriving and
implementing multiscale a posteriori error estimation techniques. These topics are
presented for completeness. This chapter starts by stating the motivation for the
thesis and objectives, followed by a short introduction to the finite element method.
Different a posteriori error estimation techniques for the finite element method are
presented followed by an introduction to the variational multiscale method and its
relation to stabilization techniques for advection-diffusion problems. A brief review
of different adaptive mesh refinement techniques employed in the numerical studies
is provided. Finally, a summary of the papers included in this thesis is presented

followed by the concluding remarks and some suggested ideas for future research.

1.1.1 Context and motivation

Numerical simulation is an integral part of modern engineering design practice and
accordingly, the reliability of the numerical simulation plays a key role in the adequacy
and competitiveness of the engineering product. Reliable computational methods
are those capable of quantifying and controlling the errors in the numerical solution
by adapting the available resources. With this definition in mind, the reliability of
the numerical simulation contributes both to the quality of the products and to the
production cost by shortening the development cycle.

Many engineering and physical processes are modelled using a set of Partial Dif-
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ferential Equations (PDEs). These PDEs are discretized over the domain of interest
with the aid of numerical methods, such as the Finite Difference Method (FDM), the
Finite Element Method (FEM) and the Finite Volume Method (FVM). The resulting
system of linear or nonlinear equations can be solved directly or iteratively. The so-
lution of many practical problems may exhibit sharp interfaces, moving fronts and /or
points of singularity. These special situations render reliability assessment based on
convergence studies using globally refined discretization (meshes) ineffective.

Development of reliable simulation techniques is tightly related to the concepts
of verification and validation. According to Roache [1], verification corresponds to
assessing the quality of the numerical solution by quantifying the errors in the com-
putational model, while validation corresponds to checking the mathematical model
and how well it describes the physics of the problem (equations, boundary condition,
etc.). Verification of the computational model should precede the validation step, or
any comparison with physical experiments. The current work focuses on verification
of the computational model, which is a key step in the engineering design process.
The validation step is usually addressed by the design engineer or by using model
adaptivity techniques [2].

In this thesis the focus falls on developing reliable a posterior: error estimation
techniques that can be used to quantify the errors in the computational model and
to guide a mesh adaptivity iteration. Different classes of partial differential equations
are studied to provide the insight and experience necessary to form the kernel of a

multiphysics simulation toolbox.

1.1.2 Thesis objectives and scope

In the context of verification and validation, the interest is in the verification of
the numerical results. One wants to evaluate the errors due to discretization, with
the ultimate goal of providing an error bound on the calculated results. This goal
can be achieved through two steps: i) error estimation and, ) simulation reliability
improvement. Error estimation for a given mathematical model is a way to obtain

2
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an assessment of the accuracy of a specified output provided by a numerical method.
Solving a problem reliably means being able to produce a solution that meets a
prescribed tolerance by controlling the estimated error (due to discretization) using
mesh adaptivity.

The problems dealt with in this thesis are limited to two classes of linear PDEs: dif-
fusion equations and advection-diffusion equations. Error estimation techniques are
limited to energy norm error estimates, which are needed to produce quasi-optimal
meshes by mesh adaptivity. Moreover, energy norm error estimates play an essen-
tial role in error estimation in quantities of interest to obtain bounds for different

functional outputs.

1.1.2.1 The main objectives of this thesis are:

> Evaluate and analyze implicit a posteriori error estimation techniques for steady-

state flow problems, elasticity problems and advection-diffusion problems.
> Identify deficiencies with implicit a posteriori error estimation techniques.

> Propose a framework for local error estimation based on a numerical realization
of the variational multiscale method. The framework should be a generalization
of residual based error estimation techniques and should advance the under-
standing on how the solution captured by a certain mesh interacts with subgrid

scales.

> Formulate new error estimation techniques based on the proposed framework.
These error estimation techniques should be local, inexpensive to compute and
minimal with respect to the assumptions being made. The goal for the devel-
oped error estimator is to outperform the state-of-the-art local implicit error

estimation techniques.

> Implement and test the proposed local error estimation techniques within a

mesh adaptivity algorithm on relevant test problems.

3
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1.2 The finite element method

The finite element method is a well established mathematical method for solving
PDEs. The finite element method can be used to solve steady-state elliptic problems
as well as transient parabolic and hyperbolic problems. One of the major advantages
of the finite element method over other numerical methods includes the ability to
handle complex domains. A complete treatment of the subject can be found in many
references (3, 4, 5, 6, 7].

To introduce the Galerkin finite element method, a simple elliptic equation is
considered. The problem domain € is a bounded domain in R? with a Lipschitz-
continuous boundary 0f) composed of a Dirichlet portion I', and Neumann portion
I'y, where 0Q =T'pUT'y and I'pNI'y = @. The PDE under consideration is written
in an abstract format as:

Find wu such that:
Lu =f in Q

U = Up on FD (11)
g—z =g on Iy
where Lu = — A u is the linear second order differential operator, f € Lo({2) is the

prescribed loading function and n is the outward unit normal vector to I'y. The
boundary data up and g are assumed to be sufficiently smooth. Using standard norm
notation for Sobolev and Hilbert spaces, as in Reference [4], and equipped with scalar

L? inner product (.,.), the Galerkin weak formulation of Equation 1.1 can be written

as:
Find u € U such that
(1.2)
B(u,v) = (f,v) +{g,v)ry, Vv €V
where U is the trial space and V is the test space defined as:
U=fue H(Q)ul, =up}, V={ve H'(@: v, =0} (L3)

and B(u,v) = [, (Vu-Vv), (f,v) = [, f v and (g,v) = [ g v. H'(Q) denotes
4
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the standard Sobolev space. The bilinear B is bounded; i.e., there exists a constant
M such that |B(u,v)| < M|lu|lv|lvllv, Yu,v € V; and V-elliptic; i.e., there exists a
constant ¢ such that B(v,v) > co||v||?,, Yv € V.

The functions v and v are approximated by simpler functions u, and v, belonging
to a finite dimensional space V, C V defined by a mesh size parameter h, correspond-
ing to the domain discretization. The discretized domain contains a set of partitions
T, of the domain  with a set of nodes N, and edges &, [5]. The partitions are
either triangles or convex quadrilaterals with the number of elements defined by the
cardinality of the set of partitions |7|. Similarly, the number of edges and nodes are
|€x] and |NV,]. An element in the mesh is denoted by K, an edge is denoted by E and

a mesh node (vertex) is denoted by N. The discretized domain 2, is defined as

o= J K (1.4)

KeT,
The discretized domain €y, is called the geometric interpolation of {2 and does not nec-
essarily coincide with Q. Figure 1.1 shows a sample triangular discretization (mesh)
of a curved domain with different levels of geometric representations. In the rest of
the presentation, 73 is said to be a mesh of the domain {2 neglecting the geometrical
error in representing the boundaries. Conforming partitions satisfy the following set

of conditions [5]:

1. For all K;, K; € T}, and (i # j), the intersection of the two elements K; and K

is either empty, a common edge or a common vertex.

2. For all K € T, there exists a constant v* such that %f{‘ < v*, where hg is the
diameter of the minimal ball circumscribed around K (for simplicity the longest
edge is used) and pg is the diameter of the biggest ball contained in K. This

definition is usually referred to as shape regular discretization.

Given the domain discretization, a subspace V;, C V is defined using the lowest
order linear triangular or bilinear rectangular elements. The basis of this space is

5
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Figure 1.1: Two triangular meshes of a curved domain

the hat functions defined by the nodal values ¢;(z;) = ;;. Formally, for a triangular

discretization 7, the approximation space V}, is defined as:
VhZ{UhEHl(Q) N VYK €T, vhlkelP’l(K)} (15)

where P!(K) is the space of polynomials of degree at most 1 on the triangle K. For

a discretization into a set of quadrilaterals the approximation space is defined as:
V;l={UhEH1(Q) AN VK €7, ’Uh|K€Q1(K)} (16)

where Q' (K) is the space of polynomials of complete degree 1 on the mesh element
K.
Replacing © and v by their approximations u, and v, in Equation 1.2 while using

the same space V}, for both the test and trial functions, leads to the Galerkin finite
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element formulation:

Find uy € V}, such that

(1.7)
B(up, vn) = (f,vn) + (g, Va)ry Yo, € Vi

Numerically, the approximation space is expressed in terms of the basis functions

IVl IWhl

un =) eiti(a) v = dids(x) (1.8)

By back-substitution of u; and v, values into the discretized weak formulation, the

following system of algebraic equation can be reached

|Nal

D B¢ i) ci= (05, ), §=12..,|Nl. (1.9)
i=1

The coefficients ¢; (i = 1,2, ..,|NV}|) are evaluated by solving the resulting system of
equations. The selection of the basis functions ¢; as hat functions results in a sparse

system of equations with easy to evaluate coefficients.

1.3 A posteriori error estimation techniques

A posteriori error estimates provide a measure to assess the solution accuracy and
to drive a mesh adaptation process. A posterior: error estimates rely on a sound
mathematical theory that has been developed over the last two decades. A review of
the subject can be found in [8, 9, 10] and the references therein. Generally speaking,
different classifications of error estimators exist. For instance, error estimators can
be classified as residual or recovery type. Other classifications include explicit versus
implicit, and element based versus patch based.

For the simple boundary value problem defined by Equation 1.1, the error in the
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finite element solution wy, is defined as:
e=1u—up (1.10)

A priori error estimation for the finite element method of order p shows that the norm

of the error |le|| = \/B(e, e) is related to mesh size by [4]:
lell < C(u) h? (1.11)

where C(u) depends on the unknown solution u. This constant makes a priori esti-
mates impractical to evaluate.
A posteriori error estimates use the residual of the finite element solution Ry (us)

to evaluate the error. This residual is defined as

Ru(v) = (f,v) + (g? v)ry — Blup, v) Yo eV (1.12)
where it is related to the error e by

Rin(v) = B(u,v) — Blup,v) = Ble,v) Vv €V (1.13)
Putting v = vy, as vy € V}, C V in the previous equation one gets,

Ra(vn) = B(u, vs) — Blun, ) = {(f, o) + (9, >} - {(f, u) + (9, >} 0
(1.14)

This equation yields the Galerkin orthogonality property of the error where Ry (vy) =
B(e,vy) =0 for all v, € V},. Equation 1.13 is a global equation of the error e, which
can be evaluated by solving a new problem on the same domain {2 as the original
problem. To overcome the orthogonality property, the approximation space of the

test function v must be larger than V} used for the initial finite element solution.
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This leads to an extrapolation method where the problem is solved again using a
globally refined mesh or a higher order approximation.

The main goal of an a posteriori error estimator is to divide the global residual
problem into a set of local decoupled problems that are approximated explicitly or
implicitly. The global error is then evaluated as the sum of the local errors in a certain
norm [10].

In Equation 1.13, if the integration domain is divided into a set of elements, then

one can rewrite the residual equation as
Be,v) = Z {/fv+ / gv—/Vuh-Vv} (1.15)
Keh g OKNT y K

where K is the boundary of the mesh element K. By integrating by parts and some

re-arrangements, one obtains

Ble,w)= > /'r'u+ > /Rv (1.16)

KeTy E€ &y

where 7 = f + Auy is the element residual and R, the edge residual, is defined as:

ng . {(Vur)x — (Vup) e} on E C (0K NOK')
g~ 2n on EC (0K NTy)

ong

R= (1.17)

where K and K’ are two adjacent elements sharing an edge £ and ng denotes a unit
outward normal vector to the edge E. The residual equation in the form of Equation
1.16 is the basis for the derivation of different error estimation techniques. In the fol-
lowing subsections, different error estimation techniques will be briefly reviewed. The
review will cover explicit, recovery and residual error estimation techniques. Other
error estimation techniques based on adjoint problem, error estimation in quantities

of interest or error estimation based on the complementary energy are not considered.
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1.3.1 Explicit error estimates

Explicit estimators were first introduced by Babuska and Rheinboldt [11] as an
efficient method to obtain an estimation of the error. Mathematical manipulation
of Equation 1.16 with the aid of Clément interpolation II : V — V}, are performed
to obtain an explicit formula for the error norm. The Clément type interpolation

operator I, : V — V}, has the following properties [12]:,

Yv eV, MyveV, (1.18)
v = o]l o) < C vl m e (1.19)
I = Iovl| oy < C R0l ey (1.20)

where C is a constant, P(K) is a patch of elements having a common edge or common
vertex with the element K € 7y, P(FE) is a patch of elements having a common vertex
with the edge E € &, and hg = |E| is the edge length. Ly(-) and H'(:) are the
standard L, and Sobolev norms, respectively. From the Galerkin orthogonality and

substituting II;e for v in Equation 1.16, one obtains

Ble,Tlye) = Y /r Mhe+ Y /R e =0 (1.21)

KEThK EGShE

Replacing v by e in Equation 1.16 and then subtracting the previous equation results

lel? = Be.e) = 3 /T(e—Hhe)+ ) /R(e—Hhe) (1.22)

KEThK EeghE

in

Applying the Cauchy-Schwarz inequality (i.e. (u,v) < ||ul|L,l|v||z,) one obtains

Blee)< 3 {HruLz(K) ||<e—nhe>||L2<K>}+ 3 {HRHLM) ||<e—nhe>||L2<E>}

K e7, E € &,
(1.23)

10
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Using the Clément interpolation properties listed above results in

Ble,e) <Cy > {||T||L2(K) hK||€||H1(1>(K))}+Cz > {||R||L2(E) h}3/2”e”H1(’P(E))}

K e T, E €&,

(1.24)
From the special case of Cauchy-Schwarz inequality (3" a:3;) < (3. a2)V2(3 52)V2,
where «; denote the entries ||e| g1 (p(k)) and |le]|g1(p(z)) and B; denote the entries

Irllox) hi and || R,z h}s/g, one gets

1/2
ue||2=6<e,e>snenm{cl S Il K+ Co S IR s hE} (1.25)

KETh EESh

Squaring both sides and using the coercivity (V-ellipticity) of the bilinear, one gets

e = Blee) < {C0 3 Wl 1+ G X MRl hf (120
K eTy E €&,
This explicit error estimator is computed locally using the element residual and edge

residuals (Equation 1.17).

1.3.2 Recovery error estimates

For many practical problems, the gradient of the finite element solution is of more
interest than the solution itself. For example, in elasticity problems stress and strain
fields are often more important than the displacement field. However, the gradient
of the finite element solution is a discontinuous field. Having a jump in the solution
gradient is one known type of element residual at the boundaries that has been treated
extensively in the post-processing and visualization of the finite element results. Post-
processing can be done explicitly by simple averaging of the discontinuous field to
obtain a continuous one or it can be done implicitly by solving a local problem based
on surface fitting. Error estimation based on recovery techniques approximates the

error as the difference between the smoothed gradient field to the untreated gradient

11
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field resulting from the original finite element solution. The error in the finite element

solution using the energy norm is evaluated as
2
Jel? = 19 ~ Vanlyey = [ (V=) (127
Q

However, the true gradient is not known and a recovered gradient Gj(u;) using the
recovery operator G, : Vi — V;, x V}, is assumed to be a good approximation of Vu.

In that case, the estimated error norm is evaluated as
2
lefl* = n* = / (gh(uh) - VUh) (1.28)
Q

The properties of the operator G, are a key factor in the accuracy of the estimator.
The recovery operator should satisfy the following three properties: i) consistency, i)
locality and i) linearity and boundedness [10]. The recovery operator is consistent
if

Gn(Iyw) =TI, Vo on K Vv e PPYYP(K)) (1.29)

where II;, is a nodal interpolation operator into the finite element space V,, P(K) the
patch associated with an element K, and w is assumed to belong to the polynomial
space of the order p+1. The recovery operator Gy, is local if the value of the recovered
gradient Gy, (v) at a point p(z,y) € K depends only on values of Vv sampled on P(K).
The operator G, is bounded if there exists a constant C, independent of the mesh

size h, such that
Gk (i)l Lo (i) < ClIVURIlLoery YK E€T, Vo€V, (1.30)

The properties of the recovery operator G(Il,u) imply that it is inexpensive to com-
pute and that it provides a good approximation of Vu if u is a smooth function.

Given that the solution itself u is unknown, the recovery operator is applied to u

12
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instead of the solution interpolant II,u. In some special cases, Vu,, converges towards
V(II,u) faster than it does towards Vu. This property is called the superconvergence
phenomenon and it is present if the following condition holds for positive constant

C(u) and 7 € (0, 1] that are independent of the mesh size h
||Vuh - V(Hhu)HLZ(Q) S C’(u) hp+T (131)

where p is the order of the finite element (compare to Equation 1.11). Superconver-
gence occurs in special cases and a survey of superconvergence results can be found
in [13].

The most well known recovery type error estimator was developed by Zienkiewicz
and Zhu [14, 15], and it is based on the superconvergent patch recovery. The accuracy
of the solution gradient Vu, at some points inside the finite elements is exceptionally
accurate (superconvergent). These accurate gradients are used to reconstruct (re-
cover) a continuous gradient field Gj,(uy), which is an accurate approximation to the
exact solution gradient Vu. Midpoints of one-dimensional elements or the barycen-
ters of first order triangular elements are example of these optimal points. Using the
solution at these points to feed a local least-squares fitting problem will result in a
superconvergent recovered gradient field.

For problems in R?, a linear approximation of the gradient over a patch of ele-
ments has the form p(z,y) = ap + a1 + axy. The local discrete least-squares fitting

coefficients (a;’s) that recover the x component of the gradient field are given by:

mo2 % X Y > Oun(z;y;)/0
J Qg J

;
Yxp 2w x| e | = | 27 Ounlzsyy)/0x (1.32)
J 7 2

J
DY Ty 2 Y ) \® >y Oun(z;,y;)/ 0z
J J J

J

where m = ; 1 1s the total number of sampling points. This results from minimizing
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the squared sum of the difference between the recovered gradient p and the solution

gradient at the superconvergent points dup(x;,y;)/0x.

1.3.3 Residual error estimates

Residual error estimation techniques involve solving a set of local problems and
thus are classified as implicit methods. Error estimation based on residuals is consid-
ered to be the most accurate a posteriori error estimate because it accounts for all
terms in the residual equation and because it is constant free. All residual type esti-
mators are based on localizing Equation 1.13. The domain type of the local problem

defines the estimator.

1.3.3.1 Element residual method

In the Element Residual Method (ERM), the residual is localized over each mesh
element and local element based problems with Neumann boundary conditions are
evaluated. The weak formulation of the ERM starts from Equation 1.13 over an
element

Bg(e,v) = (f,v)x — Bk (up,v) +(gu,v)ox Vv €V (1.33)

where By is a restriction of the bilinear over an element K, (.,.)k is a restriction
of the L? norm over the element K, and g, is the exact normal flux acting on the
element boundary K. On an edge F C 0K, the flux is specified as g,|p = ng . (Vu).
As the exact solution is not known, the boundary flux is approximated by averaging
the finite element gradients at the element boundaries. The Neumann boundary term

Jerm|E = gu|E 1s specified as:

Ing . {(Vun)k + (Vup)g} on EC (BKNOK')ANE ¢ 9Q
Jermle = ng. (Vg on E C (KNTp) (1.34)
g on EC (0KNTy)
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The local problems are solved using an enriched space V;, where second order bubble
functions are usually used as the basis functions. Bubble functions are functions
with compact support, where each bubble has a value in the interior of an entity but
vanishes on the exterior of the entity [10]. For a reference quadrilateral element K,
with the local coordinates (—1 < £ < 1,—1 < ¢ < 1), the edge bubble functions are
given by x1 = 0.5(1 — 22)(1 — ); x2 = 0.5(1 + T)(1 — §2); x3 = 0.5(1 — 72)(1 + 7);
x4 = 0.5(1 — Z)(1 — 42); and the element interior bubble function is given by x5 =
(1 —z2)(1 — y2) [10]. Figures 1.2 and 1.3 show a plot of edge bubble functions and

element interior bubble function on a reference quadrilateral element, respectively.

(a) (b) (c) (d)

Figure 1.2: Edge bubble functions for a reference quadrilateral element

Figure 1.3: Interior bubble function for a reference quadrilateral element

For a reference triangular element K, with the barycentric (area) coordinates
)/\\1, )/\\2,/(3, the bubble functions are given by, x; = 4/@/\3; X2 = 4)/\\1)/\;; X3 = 4&)2\2;
X1 = 27;1/(\2)/\;. Figure 1.4 shows a plot of bubble functions for a reference triangular
element. The local errors are evaluated over each element and denoted as ex. The
bubble space is defined as V, = span {)/\:}, where \; denotes the different bubble
functions. The ERM weak formulation with the boundary conditions specified by
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(a) (b) (c) (d)

Figure 1.4: Bubble functions for a reference triangular element

Equation 5.23 is:

Find ex € V, such that (1.35)
By (ex,vp) = (f, vp)k — Br(Un, Ub) + (Jerm, Ub)ox Vo, €V, .

The local error estimator 7x on an element K is defined as nx = {BK(EK,E?K)}I/ 2

and the global error is estimated as the sum of local element contributions as

el ~n={ ¥ ni}m (1.36)

KeT,,

The solvability of the local Neumann problem is not guaranteed unless the edge fluxes
are in equilibrium. Flux equilibration is also needed for the estimator to be an upper
bound of the error (given that local problems are solved exactly). Different techniques
for flux equilibration can be found in [16, 17, 18, 19]. Flux equilibration is difficult to
implement for three dimensional problems and is rarely applied for practical problems
[20, 21].

1.3.3.2 Subdomain residual methods

The idea of approximating the residual equation over a nodal based patch in the
Subdomain Residual Method (SRM) goes back to the work of Babuska and Rheinboldt
[22]. Recently, four different variations of the SRM have been proposed [23, 24, 25, 26].
All formulations of SRM start from the global residual Equation 1.13 and use a
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partition of unity ¢, which is the first order Lagrangian basis function at node N.

A partition of unity has the following property

Y ew=1 (1.37)
NeN,
Inserting the summation value of a partition of unity into the residual equation one

gets,

B(e,v) = Ru(v) = Ra(v Y o) (1.38)
NeN,

If the residual is assumed linear then

Ble,v) =Ra(v Y on)= > Ru(v¢n) (1.39)

NeN;, NeN,,
Assuming the linearity of the operator B, a set of |A,| global problems needs to be
solved. The general form of an SRM estimator requires the solution of the following

problem for each N € N,

Find ey € V such that

(1.40)
B(en,v) = Ri(v ¢n) Yo €V

where, the total error e is the sum of the contributions of errors ey resulting from
each problem. Solving these | V| global problems is as complex as solving the global
residual equation.

In the Babuska and Rheinboldt formulation [22], a localization assumption is in-
troduced where the error due to the residual Ry, (v ¢y) is assumed to vanish outside
the patch P(INV) defined as the patch of elements having a common node N. This re-
sulted in transforming the set of problems defined by Equation 1.40 into a set of local
problems instead of global ones. The resulting SRM formulation is: for all N € N,

solve the following equation subjected to homogenous Dirichlet boundary conditions
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[22]:
Find ep(N) € Vsra such that

(1.41)
B(epny,v) = Ru(v on) Vv € Vspu

Solving the local problems in an enriched space using the finite element method
results in an approximation of the error denoted by ep(n). The global error estimator

is evaluated as the sum of local patch contributions.

1/2
~ ~ 1/2
lel| =~ n = { > mzv} where v = {B(Ep), épy) } (1.42)
neN
Numerically this estimator significantly underestimates the errors due to the artificial
homogeneous boundary conditions prescribed on the local problem boundaries.
In the SRM formulation by Prudhomme et al. [25], the bilinear B in Equation 1.40

is replaced by Bggras that corresponds to each node N and is defined as

BSRMl(u, U) = /QDN(V’U, . V'U) (143)
Q

While this bilinear definition is artificial, it leads to localizing the global problems
defined by Equation 1.40 into a set of local problems because the bilinear vanishes
outside the support of pn. Zero Neumann boundaries are imposed on each local
problem boundary. The resulting SRM formulation is: for all N € N, solve the

following equation subjected to homogenous Neumann boundary conditions [25]:

Find ep(N) € Vsra such that

Bsrui(epwy,v) = /SON(ve’P(N) -Vv) = Rp(v ¢n) Vv € Vsrum
Q

(1.44)

The solution of these problems is defined up to a constant and some condition on the

approximation space Vgga is specified to fix the constant. For an interior node, the
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solution space is defined as:

VSRMl(P(N)) = {’U I~ Cl('P(N)) : /P(N)’U YN = O} (1.45)

while for a boundary node, the solution space is defined as:
Vsrm1(P(N)) = {v € CY{P(N)):v=00ndP(N)N BQ} (1.46)

Each patch based problem is approximated using h-refinement (element division) or
p-refinement (higher order interpolation) and the solution is denoted ep(yy. The

global estimated error is calculated as

1/2
lell = n = { Z BSRMl(g’P(N)ag’P(N))} (1.47)

NEeN,

If the local problems are solved exactly, the estimated error norm 7 is an upper
bound for the exact error. If one denotes by p, the order of the finite element used
to calculate the solution u; and p. to be the extra order used to calculate the local

errors ep(y), the following relaxed upper bound property is obtained [25]

H€||2 S Z {BSRMl(g'P(N),g’P(N))} +2 inf Hu — ’U” Yv € Vph+pe (148)

cVPh +re
NeN, v

In the SRM formulation proposed by Morin et al. [24], the norm used correspond-
ing to the mesh node N is defined as:

Bsrmz(u,v) = [ Vu- V(v ¢y) (1.49)
/

Morin et al. also integrated the right hand side residual term in Equation 1.40 to

produce the flux jumps across the sides of the triangulation. A condition for the
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approximation space is set such that for an interior node,

Vsrm2(P(N)) = {v € HY(P(N)) : /’P(N) v oy =0 and /73(N) |Vo|2pon < oo}
(1.50)

while for a boundary node the solution space is defined as

Verma(P(N)) = {v € HY(P(N)):v=00n dP(N)NON and / IVullony < oo}

o (1.51)

The special condition fP( MU PN = 0 affects the computation of the error field and
cannot be achieved by adding a convenient constant [24].

Carstensen et al. [23] proposed an SRM estimator based on solving an interface

problem over a nodal based patch. For each node N € N, the local problem is defined
by

Find EP(N) € VSRMB such that:

Bsrms(epy,v) =/ on(f + Dup) v —/ on Jlev Vv € Vspm

P(N) ECAKeP(N)
(1.52)

where the bilinear is defined as in Equation 1.43 and J|g is the edge residual on an
edge F C 0K NOK’, defined by

Jg= nE[(Vuh)K — (Vuh)K/] (1.53)

The approximation space of the local problems used in Equation 1.52 has a constraint

of the form fp( M= 0. The estimated error norm is defined as

"= / ‘PN{VGP(N)'WP(N)} (1.54)
NENh P(N)

This error estimator provides an asymptotic upper and lower bound of the exact error
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as following,

lell < n* < 3 C*|lel® (1.55)

where the constant C is evaluated by solving an eigenvalue problem over each patch.

More recently another variation of the SRM was proposed by Parés et al. [26],
in which the calculated errors from different patches are summed over each element
before calculating the error norm. The norm of the sum of the errors is used instead
of the sum of the norms. The error estimator is based on solving Equation 1.39 using
the standard energy norm. After obtaining an approximate solution ep(ny over each

patch, the error over each element is calculated as

ek =) Epwy (1.56)

N;COK
The estimated error field €k is discontinuous and the global estimate > .. |lex || is
an upper bound of the error norm ||e||, assuming an accurate solution of the local
problems is obtained. To ensure the solvability of the problem, the residual term in
the right hand side of Equation 1.39 is replaced by Ry(¢n (v —I,v)), where II, is a

projection operator from V to V.

1.4 The variational multiscale method

In this section, the two-level Variational MultiScale (VMS) method is presented
according to Hughes [27, 28]. The variational multiscale method is a procedure for
deriving numerical methods capable of capturing the subgrid scales while solving for
the coarse scale degrees of freedom only. The VMS is based on the fundamental
concept of the scale decomposition, where the solution space is split into coarse and
fine parts. This is formalized as an overlapping sum decomposition of the solution
space V into a coarse scale subspace V, C V and fine scale subspace V; C V, such
that

V=V.eV; (1.57)
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The space V. is the standard finite element space, however the fine scale space Vj is
infinite. Introducing this decomposing into Equation 1.2, one obtains the following

two variational equations: find u, € V, and us € V; such that

B(uc, ve) + Bug, ve) = (f, ve) + (9, Ve)ry Vv, €V, (1.58)
B(uc,vs) + Bluy, vs) = (f,v5) + (9, vf)ry Vg €Vy (1.59)

Neglecting the term B(uy,v.) in Equation 1.58 reduces the equation to the standard
finite element formulation, where u, = wu.. Equation 1.59 is related to the global
residual equation used in deriving different error estimation techniques. In the VMS,
it is suggested to approximate the fine scale solution u; analytically in terms of the
coarse scale solution to obtain a more accurate coarse scale variational equation.
This procedure can be regarded as a static condensation of the fine scale degrees of
freedom.

The fine scale components are driven by the residual of the coarse scale solution as
shown in Equation 1.59. This relation between fine and coarse scales is abstracted in
the form of an integral operator S to relate the fine scale components to the residual

of the coarse scales, such that [28]:
W = S(LT— f) (1.60)

where Lu — f is the residual of the coarse scale solution and § is an integral operator
depending on the fine scale Green’s function of the adjoint problem [27]. Using this

formula for the second term in Equation 1.59, one gets after integrating by parts:
B(u,7) + (S(Lu — f),L'0) = (f,v) (1.61)

where L* is a linear differential operator. For diffusion dominated problems, the

term (S(Lu — f), L*7) is neglected, while for advection diffusion equations, neglect-
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ing the subgrid energy results in physical unrealistic oscillations in the coarse scale
solution. For advection diffusion equations with the linear operator L defined as,
Lu=—-eAu+a-Vu, with € > 0 as the diffusivity constant and a as the velocity

field, Equation 1.61 can be written as
B(u,v) + ST (4,v) = (f,v) (1.62)

In which the stabilization operator S7 can have many forms depending on the sta-

bilization method. Common stabilization methods are

ST1(@v) = Y dx(-eAu+a-Vu—f, a-Vi)k (1.63)
KeTy

STy, v) = » dx(-eAu+a-Va—f,a -Vo—ecAv)k (1.64)
KeTp,

ST3(m,v)= Y dx(-eAu+a-Vu—f,a-Vi+eAv)k (1.65)
KeTy,

where the subscript K denotes an element of the mesh, dx is the stabilization coef-
ficient and the bilinear (.,.)x is restricted by integration over element K. The term
ST, corresponds to the Streamline Upwind Petrov Galerkin (SUPG) stabilization
method [29], ST, corresponds to the Galerkin Least Squares (GSL) stabilization
method [30] and ST, is referred to as the Unusual Stabilized Finite Element Method
(USFEM) [31].

The stabilization parameter dx is a very important factor for the convergence of
the stabilization method. This parameter controls the proper amount of artificial
diffusion in the streamline direction to account for the subgrid energy. For simple
problems in R!, with the help of the exact solution of a reference problem, an optimal

value of the parameter df is found according to [29]

hx 1
6K = m (coth(PeK) — PeK) (166)
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where hg is the nodal spacing and Peg is the element Peclet number defined as
Peg = (a hx)/(2 €). For problems in RY, a generic definition of the stabilization

parameter over a mesh element K is [31]

hk
0 = §(Pe 1.67
2fal, 70 (167
my |lallp, hx
Pey = Mk %lp MK .
ex o (1.68)
Per 0< Per <1
§(Pek) = R (1.69)
1 1 S PEK
N 1/p
lall, = (Zmi)p) 1 <p<oo (1.70)
i=1
(1
mg = m1n{§,2 C’K} (1.71)

The constant Ck depends on the finite element order and satisfies the inequality

Cr Y hilldvlg < Vollf Yo e W, (1.72)
K

1.5 Mesh adaptivity algorithms

Initial meshes used in the finite element method are usually designed to conform
with the problem boundaries and to satisfy certain geometric quality measures. These
geometric mesh quality measures are suitable for problems with smooth solutions. In
these cases, global mesh refinement can be used to control the errors. For problems
with special features, (i.e. points of singularity or sharp layers) smaller nodal spacing
is required in parts of the domain where the solution gradient is high. Quasi-optimal
meshes, where the nodal spacing is conforming with solution features, can be obtained
by local mesh refinement techniques.

Adaptive algorithms are either based on h-adaptivity, where mesh elements are

divided without changing the order of interpolation over the element, or r-adaptivity,
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where mesh nodes are moved to obtain denser meshes where needed, or p-adaptivity,
where higher order basis functions are used over the elements with large errors. The
current work is limited to h-adaptivity where the estimated errors in the finite element
solution are used to guide a mesh adaptivity process. Algorithm 1 shows a general

mesh adaptivity iteration.

Algorithm 1: General framework for adaptive mesh refinement algorithm

Data: initial mesh (73g), boundary conditions, problem dependent constants,
error tolerance in the global energy norm (7,), maximum number of
iteration (imaz)

Result: estimated error in the global energy norm 7, solution u;

10

while i < i,,,, do

— Solve the problem on the mesh 7;; and denote the solution by wu;

B(ui, vhi) = (fs Vi) + (9, Vhi)Tp VUpi € Vi

— Estimate the local error ng in the solution u; over each
element K € T,

— Compute an estimate of the global error 77, as:

1
N = { Z 7}K2}2

KeTy;

- IF N < Thol B:R.:E:AI(7

— Deduce from mesh 7;; and the local error indicators g a new
discretization Zp;q

—1+—1+1

end

The initial step of mesh adaptivity is a marking step, where elements with large
errors are flagged for refinement. This step is followed by the actual mesh modifica-
tion. Different marking strategies exist to equidistribute the error over the problem

domain. In mathematical terms, it is desirable to produce a mesh with a solution
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u;4+1 such that:

2
VK € Thiyq, Nk’ =~ % where 1y is calculated using u;41
hi+1

This objective is usually achieved iteratively by refining a subset of the mesh elements
at each iteration. A maximum error marking strategy depends on a positive threshold

©,, where the set of marked elements for refinement M is defined as
M={K eT,:nx > [0, * max nk] } (1.73)
KeTy

For the case of both adaptive refinement and coarsening, two constants ©., O, such
that 0 < 6, < O, < 1 are used to define the coarsening and refinement thresholds,
respectively. If few mesh elements have significantly larger errors than the rest of
the domain, the maximum error marking strategy might lead to refining only few
elements at each iterations. This corresponds to an increased number of adaptivity
iterations.

Another marking strategy where a certain percentage of the mesh elements are
marked at each iteration can be used. This strategy is referred to as the sorting
strategy, where the mesh elements are sorted according to the estimated errors and
then all the element exceeding the (1 — ©,)* percentile are marked for refinement.
For example, if it is desired to mark 10% of the elements, then the elements corre-
sponding to nx > 71—e,) are marked for refinement, where n_e,) is defined as the

(1 —©,)th = 90 percentile.

1.5.1 Mesh modification techniques

Local mesh refinement can produce conforming or non-conforming meshes. In
conforming meshes the intersection of two mesh elements is either empty, a common
edge or a common vertex. Non-conforming meshes contain hanging nodes that can

be either eliminated by further subdivision of the neighboring elements or they can
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be constrained during the numerical solution. Figure 1.5 shows the local refinement
of triangular mesh starting by element marking (left sub-figure), actual refinement
by subdivision (center sub-figure) and then elimination of hanging nodes (right sub-

figure).

@ Regular node

@ Hanging node (constrained or eliminated)
Figure 1.5: Different steps of the mesh refinement algorithm

For triangular meshes elements, there exists a large amount of literature concerning
adaptive mesh refinement. Ideally local mesh refinement should not produce mesh
elements with very large or very small angles. Generally speaking, a triangle can
be divided into four, three or two sub-triangles. Regular refinement (red-refinement)
where each triangle is divided into four similar sub-triangles preserves the geometrical
properties of the original triangulation but introduces hanging nodes. On the con-
trary, dividing a triangle into three or two sub-triangles may produce sub-triangles
with smaller angles. To avoid that kind of geometrical mesh quality deterioration,
Rivara [32] introduced the longest edge bisection algorithm, where triangles are di-
vided only across their longest edge (bisected). Neighboring triangles with hanging
nodes are then bisected until there is no remaining hanging nodes. Because each
triangle and its descendants are repeatedly bisected across their longest edges, the

minimum angle in the adapted mesh is at least one-half the smallest angle in the

27



Ph.D. Thesis - A.H. ElSheikh 7 McMaster - Civil Engineering

original triangulation [33]. Rivara [34, 35] introduced different modifications to the
bisection algorithm with the same minimum angle bound.

Another algorithm used for producing conforming meshes is based on regular re-
finement [36] where all the triangles marked for refinement are divided into four
sub-triangle. Then all resulting non-conforming triangular elements with two hang-
ing nodes are divided by regular division. This process is repeated until every triangle
has no hanging nodes or only one hanging node. Then a mask division is applied by
dividing the set of triangles with one hanging node into two triangles. These elements
are deleted before the next refinement iteration. A review of different refinement al-
gorithms, including the newest node bisection algorithm (divide the edge opposite to
the newest node), can be found in [37].

The modified longest edge bisection (red-blue-green refinement), as detailed in [8],
is employed in parts of this study. The following three patterns of element refinement

are defined

Definition 1.5.1. Triangular element refinement of K € 7, with edges F,, Ey, F5 €
&y and 0K = E1 U E3 U E3 and E; the longest edge falls in one of three classes:

1. A Red-refinement of K is performed by dividing the triangle K into four similar
sub-triangles obtained by connecting the midpoints of the edges F4, Es, E5.

2. A Blue-refinement of K is performed by dividing the triangle K into three sub-
triangles. First K is bisected along the longest edge E; followed by dividing
one of the sub-triangles along the edge E5 or Fs.

3. A Green-refinement of K is performed by dividing the triangle K into two
sub-triangles obtained by bisecting the triangle along the longest edge F;.

Figure 1.6 illustrates the different refinement patterns. All elements marked for
refinement are divided using red-refinement followed by conformity enforcement iter-

ation. If an element has two hanging nodes and none of them is on the longest edge,
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then the element is regularly (red) refined. Other triangles having hanging nodes are

either blue refined or green refined.

[
Lo

(b) Blue (c) Green

Figure 1.6: Triangle refinement patterns

Regular refinement can be generalized to quadrilateral element adaptivity. The
algorithm is slightly modified to allow hanging nodes that are subsequently con-
strained during the numerical simulation. Only one hanging node is allowed on each
edge to produce a one level non-conformal mesh. Figures 1.7 and 1.8 show the se-
quence of refinement steps from left to right for both triangular and quadrilateral
meshes, respectively. The first step is the marking of an element followed by the
actual refinement and then additional elements are refined to maintain the level one

non-conformity condition.

¢ Regular node * Regular node ¢ Regular node
@ Constrained node ® Constrained node ® Constrained node
(a) (b) (c)

Figure 1.7: Triangular mesh refinement maintaining one level non-
conformal elements
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¢ Regular node * Regular node * Regular node

@ Constrained node @ Constrained node ® Constrained node
(a) (b) (c)

Figure 1.8: Quadrilateral mesh refinement maintaining one level non-
conformal elements

1.5.2 Design of a mesh database

The complexity of mesh adaptive techniques and the additional requirements of
the error estimation, mesh adaptation and re-solution cycles, make the software devel-
opment of mesh management tools a complex problem. A new approach to scientific
computing based on formal methods was proposed by ElSheikh et al. in [38] for the
design of mesh generation systems. The proposed method is easily extendable to
adaptive finite element systems.

In ElSheikh et al. [38], the use of software design documents, semi-formal software
specifications and modular decomposition is promoted. Software design documents
are a set of separate documents targeting different stages of the software design pro-
cess. Formal methods are collections of mathematical notations and techniques for
describing and analyzing software systems. A semi-formal language is introduced for
writing the software design documents. This mathematical way of defining/modeling
the software eases the process of analyzing the software correctness. Modular decom-
position is the process of dividing the software into a set of modules which are small,
easy to understand with as much independence as possible to achieve the flexibil-

ity for expected changes. In the proposed framework, a sample design specification
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document is summarized for a two dimensional unstructured mesh generation and
adaptivity database. The introduced techniques are applicable to a wide class of

numerical simulation software systems.

1.6 Summary of papers
1.6.1 PaperI

Assessment of two a posteriori error estimators for FEM. Part I: Steady-state flow,
Submitted.
This paper presents a numerical evaluation of two a posteriori error estimation tech-
niques for steady-state flow problems. The Element Residual Method (ERM) and
the superconvergent patch recovery technique attributed to Zienkiewicz-Zhu (ZZ) are
presented in a unified mathematical framework. The initial finite element solution
is obtained using three different meshes representing different classes of structured
and unstructured discretizations. The two estimators are tested numerically using
four different problems. For problems with smooth solutions, the error estimators
are evaluated on a sequence of uniformly refined meshes, while for problems with
non-smooth solutions an adaptive mesh refinement iteration is utilized. The quality
of the estimators is evaluated by comparting the effectivity index (efficiency index)
of the estimated errors. The effectivity index is defined as the ratio of the estimated

error to the exact error.

1.6.2 Paper II

Assessment of two a posteriori error estimators for FEM. Part II: Elasticity, Sub-
mitted.
This paper forms the second part of a two-part paper on the evaluation of local a
posteriori error estimation for FEM. The problem formulation presented in Part I
(Paper 1) is extended to account for the coupled field problems appearing in elasticity

problems. The performance of the two error estimators, ERM and ZZ, is tested nu-
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merically using four practical engineering problems, where the ratio of the estimated
errors by both methods to the exact error is compared. For problems that possess
areas with stress concentration or points of singularity, a mesh adaptation based on
the error estimates is used to improve the convergence rates of the finite element

solution.

1.6.3 Paper III

Numerical investigation of the reliability of a posteriori error estimation for ad-
vection diffusion equations, Accepted in Communications in Numerical Methods in
Engineering.

Error estimation for advection-diffusion equations based on ERM is investigated nu-
merically. The finite element formulation for advection-diffusion equations suffers
from physically unrealistic oscillations for advection dominant problems. The Stream-
line Upwind Petrov Galerkin (SUPG) method is used to stabilize the finite element
solution and to stabilize the local ERM problems. Error estimation using the stabi-
lized element residual method and using ZZ patch recovery is performed on a number
of test problems. In this study, the estimated errors are compared to the exact er-
rors using three different error norms to study the effect of the norm used on the
accuracy of the estimated errors. The estimated errors are also used to drivé a mesh
adaptivity iteration and the adapted meshes are evaluated qualitatively, in terms of
conformity to the sharp layers in the solution and in terms of the dependency on the

wind direction.

1.6.4 Paper IV

A posteriori error estimation based on numerical realization of the variational mul-
tiscale method, Submitted.
In this paper, a general framework for designing different local error estimators is
presented. The general framework is based on a numerical realization of the Varia-

tional MultiScale method (VMS). The VMS introduces a space decomposition into
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resolved components (captured by the mesh) and unresolved components (subgrid
scale). Using this decomposition in the finite element variational formulation, a fine
scale variational equation is obtained. This equation is localized with a general lo-
calization function to derive a generic equation for local error estimation techniques.
The properties of the generic error equation are studied theoretically to obtain a
practical upper bound and lower bound for the error in the energy norm. The El-
ement Residual Method (ERM) is obtained by using an element based localization
function and a new Subdomain Residual Method (SRM) is developed based on using
a partition on unity as the localization function. This new SRM formulation is flux-
free and straight forward to implement. Numerical evaluation of the proposed SRM

estimation is performed on elliptic second order PDEs.

1.7 Conclusions

Significant computational benefits are realized by reliable error estimation and
mesh adaptivity. Providing an explicit error calculation for the calculated results and
then adapting the mesh to satisfy a certain user-defined tolerance is a very powerful
verification method. Adaptive simulation enables the discovery of possible drawbacks
in the computational method and is an essential step before and during model eval-
uation. The creation of quasi-optimal meshes using mesh adaptivity algorithms has
significant economical impact because it reduces the necessary computer simulation
time. The following subsection presents the main contributions of this thesis followed

by a brief list of future research directions.

1.7.1 Main conclusions

> Based on the analysis of local a posteriori error estimation for elliptic second or-
der PDEs modeling steady-state flow problems and elasticity problems (Papers

I and II), the following conclusions are drawn:

1. The ERM provides a more reliable error estimation with an effectivity
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index close to the optimal value of unity in comparison to the ZZ error
estimator. As the mesh is refined, higher quality solutions are obtained

and the estimated errors using the ERM approach the exact error value.

2. For steady-state flow problems with data oscillation in the load term, or
discontinuity in the boundary, the ERM significantly outperforms ZZ in
estimating the errors. This deficiency in the ZZ method is attributed to
the heuristic nature of the recovery operator, which completely neglects the
problem formulation and boundary specification. ERM has the advantage
of approximating the residual equation and thus yielding a more accurate

error estimation.

3. The unbalanced flux applied on the boundary of the local problems in the
ERM reduces the reliability of the method on coarse meshes. However, by
combining the ERM with a mesh adaptivity process, one can produce op-
timal meshes with self-equilibrated local problems. This provides reliable
error estimation with an effectivity index close to unity achieved after only

few adaptivity iterations.

4. An adaptive algorithm combined with the ERM error estimator can be
developed to solve steady-state flow problems with a pre-specified error

tolerance in the energy norm.

> Based on the investigation of local error estimation techniques for advection

diffusion equations (Paper III), the following conclusions are drawn:

1. It was shown that effectivity indices close to unity will only be attained
if the sharp layers are completely resolved by the mesh. While this is a
significant limitation of error estimation techniques based on solving local
problems, these local error estimators still manage to guide the adaptivity

process to obtain meshes that resolved the sharp layers.
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2. The use of the stability norm instead of the standard weighted energy
norm has shown some advantages numerically. In the case of internal
layers, measuring the errors in stability norm has resulted in effectivity
indices closer to the optimal unit value. Adapted meshes that are guided
by the estimated errors using the ERM measured in the stability norm

were less dependent on the wind direction.

3. A refinement criteria based on the sorting strategy is recommended for
problems with local discontinuities or points of singularity to reduce the

number of mesh adaptivity iterations.

> A new general framework for error estimation is developed based on the varia-
tional multiscale method and different localization techniques (Paper IV). The
developed framework is used to derive the element residual methods and a new
subdomain residual method. According to this study, the following conclusions

are made:

1. The developed framework does not impose any assumptions about the
error except for neglecting coarse scale error components. This framework
is generic and can be extended to different classes of problems and it can

be used to derive different local error estimation techniques.

2. The proposed subdomain error estimator solves local problem over nodal
based patches subjected to a zero flux boundary condition. It avoids er-
ror locality assumptions or artificial boundary specification. This results
in superior numerical performance on coarse meshes where the averaging

assumption in the ERM is not valid.

3. The developed subdomain error estimator provides a continuous approx-
imation of the fine scale solution that enables computing a lower bound
error estimation. This lower bound error is shown to be very sharp nu-

merically. This continuous error field can also be used visually to show the
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quality of the results and the relative magnitude of the errors to the solu-
tion values. Moreover, the distribution of the calculated subgrid solutions
is a strong indicator of the optimality of the mesh to a certain problem.
Optimal meshes have a uniform distribution of the subgrid solution over
the problem domain, which correspond to smaller nodal spacing at the

sharp features in the solution.

1.7.2 Future research

The following extensions are suggested to the current research for future work:

> The proposed subdomain error estimator was tested on steady-state flow prob-
lems. Extending this error estimator to coupled field problems like elasticity
problems would be of great practical interest. Extension to advection-diffusion
equations should benefit from the stability of the estimator with enlarging the
approximation space. Unlike the ERM, using adaptive solution techniques for
solving the local problems might be used as a way to resolve the length scale of

the sharp layers.

> The formulation of the error estimator for three dimensional problems is straight
forward. However, the implementation is much more demanding. For three
dimensional problems, flux-equilibration for the ERM is particularly complex
and the advantages of the flux-free subdomain method should be even more

pronounced.

> For many practical problems the interest is in an integral (functional) of the
solution. Examples of output functionals are the displacement at a point, the
average stress close to a point or the force integral over a certain boundary of
the domain like the drag or lift forces. Energy norm error estimates can be
used within the framework of goal-error oriented adaptivity to obtain bounds

on these linear output functionals. The energy norm for the primal (original)
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problem and the dual problem (corresponding to the output of interest) are
weighted together using the parallelogram identity to provide an upper and
lower bounds for the error in the desired functional. The ERM was used within
the goal oriented framework with some success [39]. It would be of great inter-
est to investigate the performance of the proposed subdomain error estimator
instead of the ERM, as it provides uniformly accurate error estimation across

the different error scales.

Extending the work to nonlinear problems is another research direction. For
nonlinear problems, a series of linear problems is solved within an iterative
scheme (i.e Newton-Raphson or similar algorithms). Local implicit error esti-
mators can be employed on the linearized equations around the finite element

solution.

Bibliography

[1] P. J. Roache, Verification and Validation in Computational Science and

Engineering. Albuquerque, NM: Hermosa Publishers, 1998.

[2] J. T. Oden and S. Prudhomme, “Estimation of modeling error in computational

mechanics,” J. Comput. Phys., vol. 182, no. 2, pp. 496-515, 2002.

[3] B. Szabo and 1. Babuska, Finite Element Analysis. New York: J. Wiley & Sons,

1991.

[4] S. C. Brenner and L. R. Scott, The mathematical theory of finite element

methods, vol. 15 of Texts in Applied Mathematics. New York: Springer-Verlag,
second ed., 2002.

[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 40 of

Classics in Applied Mathematics. Philadelphia: SIAM, 2002.

[6] K. J. Bathe, Finite Element Procedures. Prentice-Hall, 1997.

37



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Volume 1:

Basic Formulation and Linear Problems. London: McGraw-Hill, 1989.

R. Verfiirth, A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques. Advances in Numerical Mathematics,

Wiley-Teubner, 1996.

I. Babuska and T. Strouboulis, The Finite Element Method and Its Reliability.
Oxford University Press, 2001.

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite

Element Analysis. John Wiley & Sons, 2000.

I. Babuska and W. C. Rheinboldt, “Analysis of optimal finite-element meshes
in R',” Math. Comp., vol. 33, no. 146, pp. 435-463, 1979.

A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159 of
Applied Mathematical Sciences. New York: Springer-Verlag, 2004.

M. Kiizek and P. Neittaanméki, “On superconvergence techniques,” Acta Appl.
Math., vol. 9, no. 3, pp. 175-198, 1987.

O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a
posteriori error estimates. I. The recovery technique,” Internat. J. Numer.

Methods Engrg., vol. 33, no. 7, pp. 1331-1364, 1992.

0. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a
posteriori error estimates. II. Error estimates and adaptivity,” Internat. J.

Numer. Methods Engrg., vol. 33, no. 7, pp. 1365-1382, 1992.

P. Ladeveze and D. Leguillon, “Error estimate procedure in the finite element
method and applications,” SIAM J. Numer. Anal., vol. 20, no. 3, pp. 485-509,
1983.

38



Ph.D. Thesis - A.H. ElSheikh ~ McMaster - Civil Engineering

[17] D. W. Kelly, “The self-equilibration of residuals and complementary a
posteriori error estimates in the finite element method,” Internat. J. Numer.

Methods Engrg., vol. 20, no. 8, pp. 1491-1506, 1984.

[18] R. E. Bank and A. Weiser, “Some a posteriori error estimators for elliptic
partial differential equations,” Math. Comput., vol. 44, no. 170, pp. 283-301,
1985.

[19] M. Ainsworth and J. T. Oden, “A unified approach to a posteriori error
estimation using element residual methods,” Numer. Math., vol. 65, no. 1,
pp. 23-50, 1993.

[20] V. John, “A numerical study of a posteriori error estimators for
convection-diffusion equations,” Comput. Methods Appl. Mech. Engrg., vol. 190,
no. 5-7, pp. 767-781, 2000.

[21] S. Prudhomme, J. T. Oden, T. Westermann, J. Bass, and M. E. Botkin,
“Practical methods for a posteriori error estimation in engineering

applications,” Internat. J. Numer. Methods Engrg., vol. 56, no. 8,
pp. 1193-1224, 2003.

[22] 1. Babuska and W. C. Rheinboldt, “Error estimates for adaptive finite element
computations,” SIAM J. Numer. Anal., vol. 15, no. 4, pp. 736-754, 1978.

[23] C. Carstensen and S. A. Funken, “Fully reliable localized error control in the
FEM,” SIAM J. Sci. Comput., vol. 21, no. 4, pp. 1465-1484, 1999/00.

[24] P. Morin, R. H. Nochetto, and K. G. Siebert, “Local problems on stars: a
posteriori error estimators, convergence, and performance,” Math. Comp.,

vol. 72, no. 243, pp. 1067-1097, 2003.

[25] S. Prudhomme, F. Nobile, L. Chamoin, and J. Oden, “Analysis of a

subdomain-based error estimator for finite element approximations of elliptic

39



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

[26]

[27]

28]

[29]

[30]

[31]

[32]

problems,” Numer Methods Partial Differential Equations, vol. 20, no. 2,
pp. 165-192, 2004.

N. Parés, P. Diez, and A. Huerta, “Subdomain-based flux-free a posteriori error
estimators,” Comput. Methods Appl. Mech. Engrg., vol. 195, no. 4-6,
pp. 297-323, 2006.

T. J. R. Hughes, “Multiscale phenomena: Green’s functions, the
Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the
origins of stabilized methods,” Comput. Methods Appl. Mech. Engrg., vol. 127,
no. 1-4, pp. 387-401, 1995.

T. J. R. Hughes, G. R. Feij6o, L. Mazzei, and J.-B. Quincy, “The variational
multiscale method—a paradigm for computational mechanics,” Comput.

Methods Appl. Mech. Engrg., vol. 166, no. 1-2, pp. 3-24, 1998.

A. N. Brooks and T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis on the
incompressible Navier-Stokes equations,” Comput. Methods Appl. Mech.
Engrg., vol. 32, no. 1-3, pp. 199-259, 1982.

T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, “A new finite element
formulation for computational fluid dynamics. VIII. The Galerkin/least-squares
method for advective-diffusive equations,” Comput. Methods Appl. Mech.
Engrg., vol. 73, no. 2, pp. 173-189, 1989.

L. P. Franca, S. L. Frey, and T. J. R. Hughes, “Stabilized finite element
methods. I. Application to the advective-diffusive model,” Comput. Methods
Appl. Mech. Engrg., vol. 95, no. 2, pp. 253-276, 1992.

M.-C. Rivara, “Mesh refinement processes based on the generalized bisection of

simplices,” SIAM J. Numer. Anal., vol. 21, no. 3, pp. 604-613, 1984.

40



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

[33] I. G. Rosenberg and F. Stenger, “A lower bound on the angles of triangles
constructed by bisecting the longest side,” Math. Comp., vol. 29, pp. 390-395,
1975.

[34] M.-C. Rivara, “Algorithms for refining triangular grids suitable for adaptive
and multigrid techniques,” Internat. J. Numer. Methods Engrg., vol. 20, no. 4,
pp- 745-756, 1984.

[35] M.-C. Rivara, “New longest-edge algorithms for the refinement and/or
improvement of unstructured triangulations,” Internat. J. Numer. Methods

Engrg., vol. 40, no. 18, pp. 3313-3324, 1997.

[36] R. E. Bank and A. H. Sherman, “An adaptive, multilevel method for elliptic
boundary value problems,” Computing, vol. 26, no. 2, pp. 91-105, 1981.

[37] W. F. Mitchell, “A comparison of adaptive refinement techniques for elliptic
problems,” ACM Transactions on Mathematical Software, vol. 15, no. 4,

pp. 326-347, 1989.

[38] A. H. ElSheikh, S. Smith, and S. E. Chidiac, “Semi-formal design of reliable
mesh generation systems,” Adv. Eng. Softw., vol. 35, no. 12, pp. 827-841, 2004.

[39] J. T. Oden and S. Prudhomme, “Goal-oriented error estimation and adaptivity
for the finite element method,” Comput. Math. Appl., vol. 41, no. 5-6,
pp. 735-756, 2001.

41



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

Chapter 2

Assessment of two a posteriori error estimators for
FEM. Part I: Steady-state flow

A .H. ElSheikh, S.E. Chidiac and S. Smith

ABSTRACT

A two-part paper evaluates the application of local a posteriori error estimation to steady-
state flow problems (Part I) and elasticity problems (Part II). A posteriori error estimation
for the finite element (FE) method is a functional tool for assessing the quality of the finite
element results. This paper introduces two error estimators, the Zienkiewicz-Zhu (ZZ) and
the Element Residual Method (ERM), within a general mathematical framework. These
error estimators are used as drivers for a mesh adaptation process. Four steady-state flow
problems using Poisson equation are included to compare the two error estimators and to
demonstrate the functional use of a posteriori error estimators for obtaining FE solutions
with a pre-specified error tolerance. Of the two methods, the ERM is shown to be more

reliable in comparison to the ZZ estimator.

KEY WORDS: Adaptivity, A Posteriori Error Estimation, Element Residual Method, Finite

Element Method, Steady-state flow, Zienkiewicz-Zhu patch recovery
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2.1 Introduction

The finite element (FE) method is a well-established method for solving Partial
Differential Equations (PDEs). The accuracy of the FE solution, which is defined as
the amount of agreement between the FE results and the exact solution of the math-
ematical model primarily depends on the discretization errors. Our goal is to provide
a comprehensive numerical evaluation of the Zienkiewicz-Zhu (ZZ) [1, 2] method and
the Element Residual Method (ERM) [3] for local a posteriori estimation methods.

The development of a posteriori error estimation techniques for the linear finite
elements started in the late 70’s and the early 80’s [4, 5, 6, 7]. Most of the developed
error estimation methods were concerned with global estimation of the error and
were generally used as an essential ingredient for mesh adaptivity algorithms. More
recently, in the mid 90’s, techniques for developing a posteriori error estimation in
the so called “quantities of interest” were introduced [8, 9, 10]. Estimating error in
the quantities of interests is based on the well known reciprocal theorem used in the
construction of influence lines in structural analysis [11]. The quantity of interest is
used to formulate a dual problem, which have to be solved globally. The errors in
both the original problem (primal) and the dual problem are weighted to produce the
error in the quantity of interest. The estimation of the errors locally either by explicit
formulation of the residual [8] or based on energy norms [10] is an essential step in
estimating the errors in the quantities of interest and the reliability of the local error
estimation is therefore a major contributing factor in the final accuracy of the error
in the quantities of interest.

This paper presents the variational formulation of steady-state flow problems fol-
lowed by the underlying theory of a posteriori error estimation based on the error
residual equation of the finite element method. The performance of ERM and ZZ
error estimators is evaluated numerically using four steady-state flow problems with
both smooth and non-smooth solution. The problems are solved using structured and

non-structured meshes with different configuration that are uniformly and adaptively
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refined.

2.2 Preliminaries

A steady-state flow problem over a bounded domain €2 in R? is considered. The
boundary Jf) is piecewise smooth and composed of a Dirichlet portion I'p and a
Neumann portion I'y, where 9 = I'p UT'y. The corresponding PDE can be written
in an abstract format as:

Find u such that,
Lu =f, over ()

u =0, on Ip (2.1)

ouf/on =g, on [y
where L is a linear symmetric second order differential operator of the form Lu = —Au
and g is the prescribed values of the normal flux on the Neumann portion of the
boundary I'y. Using standard norm notation in Hilbert spaces [12], the weak form

of the problem can be written as:
Find u € U such that: B(u,v) = (f,v)+(g,v) Vv €V (2.2)

in which U is the trial space and V is the test space defined as V = {v € HY(Q) : v =
0 over I'p} and H'(Q2) denotes the usual Sobolev space. The bilinear B is defined on
U xV as B(u,v) = [ Vu- Vo dQ. The right side terms in Eq. (2.2) are defined as
(f,v) = [ f vdQand (g,v) = [ g v dl'y. The existence of the solution of Eq. (2.2)
is proven by the Lax-Milgram Lemma [13].

2.3 A posteriori error estimation

A posteriori error estimation is based on approximating the residual of the weak
formulation [14, 15]. This is usually done by enriching the trial space by employing

more basis functions. This can be achieved by refining the initial mesh (h-refinement)
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or by increasing the order of the approximation over the finite elements (p-refinement).

Using Eq. (2.2), the finite element solution u;, satisfies
B(Uh, ’Uh) = (f, Uh) + (g, Uh> Yo, €V, CV (23)

The error in the solution of Eq. (2.3) is e = u — uy,, where u is the exact solution and

up, is the finite element solution. Using the value of e in Eq. (2.2) one gets,
B(e,v) = B(u,v) — B(uy,v) = (f,v) + (g,v) — B(up, v) (2.4)

Dividing the integration domain into a set of /V elements, the error equation becomes

B(e,v):é{!fv—l— / gv—!Vuh-Vv} (2.5)

ayNCy

Integrating by parts and rearranging Eq. (2.5) yields

B(e,v):Z{/rv+ / Ruv— / {%Jv} (2.6)

=1

Q o Ny o —T'y
where:
T = f+ Auy, (Element term)
R =g-— %} on 0 NIy (Boundary term)

[auh/an} =ng - (Vup)e +ny - (V) (Edge term)

where the elements k and k' correspond to two elements sharing a common edge.
Equation (2.6) is the general equation for evaluating errors in FE method. It contains
all the potential sources of discretization error, namely the element interior residual,
the inter-element and boundary residual terms.

The goal of a posteriori error estimator is to solve the global residual equation in

an efficient way [15, 16]. This is achieved by localizing Eq. (2.6) over an element or

45



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

a point based patch. This results in a set of decoupled equations that are simpler to
evaluate than the global equation. In the following sections, two different approaches

are presented to localize the global error equation, namely the ZZ error estimator and
the ERM.

2.4 Recovery Based Error Estimators

Recovery based error estimators use the gradient of the finite element approxima-
tion instead of the solution itself. This stems from the fact that the weak formulation
imposes C? continuity on the unknown u which yields a continuous flow field but
the flux field has inter-element jumps. Having a jump in the flux field is one type
of element residual at the boundaries, which has been treated extensively in the
post-processing of many FE packages by either averaging the gradient to obtain a re-
covered gradient from the FE solution or by using a least square based approximation
to obtain a continuous function derivative.

Recovery type error estimators operates under the premise that smoothed function
derivative is more accurate than the untreated gradient resulting from the finite ele-
ment solution. The difference between the two gradients can be used to approximate

the error as following:

lell? = = / (G lun] — Vg (2.7)
Q

where Gp,[uy] is the recovered gradient reconstructed from the finite element solution
up. Substituting v = e in Eq. (2.4) and using the definition of the bilinear B, the

error norm is evaluated as:

lell®> = B(e,e) = B(u — up,u — up,) = /|Vu — Vuy|? (2.8)
Q

In this case, the recovery operator Gy[uy] is used to approximate the exact gradient.
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The accuracy of this type of error estimator depends completely on the choice of that
operator.

The most well known recovery type error estimator is the Zienkiewicz-Zhu error
estimator. It is based on gradient recovery by solving local least square problems over
discrete patches [1, 2]. The method is relatively easy to incorporate into finite element
codes and is independent of the problem formulation. The gradient is sampled at the
centroid of the elements because of the superconvergence properties of gradient at

these points [17, 18, 19].

2.5 Implicit Residual type Error Estimators

Implicit residual type error estimators, which are based on approximating the resid-
ual equation as a set of local problems, accounts for all types of residuals appearing
in Eq. (2.6). The domain of the local problem determines the type of a residual error
estimator. The residual problem can be solved over one element or over a patch of
elements in the element residual method (ERM) and the sub-domain residual meth-
ods (SRM) [20, 21], respectively. This paper focuses on the element residual method
where a set of local problems with Neumann boundary conditions are solved. These

local problems are formulated as:

0
Bi(e,v) = Fyp(v) — By(un, v) + / < ﬂ> v (2.9)
3nk
ok
where By, is a restriction of the bilinear over an element k, Fy(v) the load term defined

as (f,v), and integrated over the element k, and nj the normal vector to each edge

of the element k. The Neumann boundary terms in Eq. (2.9) are specified as:

Loy {(Vup)k + (Vup)y} on 0k Nk

O
<ﬁ> = ng . (V?Lh)k on 0k N FD (210)
8nk

g on 0kNIy
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To obtain the exact error, the test space v € V}, in Eq. (2.9) is chosen such that
Vi={ve H'(k) : v=00ndkNTIp} (2.11)

Bubble functions are used to approximate both the trial and test space of the local
residual problems [15]. Accordingly, edge bubbles are employed to account for the
edge residuals (edge flux jump), and element bubbles to account for the local element
residual. For a reference triangular element % with functions A1, A2, Az, the barycentric
(area) coordinates, the edge bubble functions x1, X2, X3 are given by x1 = 4 g As,
X2 =4 A1 Az, X3 =4 A\ A9, and the interior element bubble function x4 is defined as:
X4 = 27 A1 Az A3. Establishing a solution for Eq. (2.9) is not guaranteed unless the
edge fluxes are in equilibrium. For coarse meshes, the equilibrium condition tends to
be violated and a least square method is used to solve this problem. Flux equilibration

was not enforced in this study.

2.6 Numerical Examples

The performance of ZZ and ERM error estimators are assessed using four numerical
experiments. The Method of Manufactured Solutions (MMS) [22] is used to build the
steady-state flow problems. The engineering problems corresponding to steady-state
flow are of the form,

Find u such that:
—Au =f on 2 (2.12)

where the load function f is set such that the equation satisfies the desired exact
solution. To simplify the presentation of the results, the quality of the estimates is
measured in terms of the efficiency index. The efficiency index (EI) is the ratio of the

calculated error using the a posteriori error estimator to the exact error in the energy

le = ( [ v+ v
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The first three problems are defined over the domain © = (0,1) x (0,1) and three
different initial meshes are used. Figure 2.1 plots the three coarse meshes with 25, 41

and 44 degrees of freedom for meshes 1, 2 and 3, respectively.
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(a) Mesh 1 (b) Mesh 2

Figure 2.1: Different meshes used for problem P1, P2 and P3

2.6.1 Steady-state flow problem P1

The load function f for the first steady-state flow problem is sct such that the

exact solution is defined as:

u = sin(anz) sin(any) (2.13)

A homogeneous Dirichlet boundary condition is specified at the boundaries of problem
domain. This problem is solved using four different values of a using initial meshes
1, 2 and 3. Figure 2.2 shows a 3D plot of the exact solution fora =2 and a =4. A
sequence of uniformly refined meshes are used to study the behavior of both the ZZ
and ERM error estimators for different mesh resolutions. The Efficiency Indices of the
estimated errors are listed in Tables 2.1, 2.2 and 2.3 for Mesh 1, 2 and 3, respectively.
For coarse meshes, the ZZ estimator tends to underestimate the errors while the ERM
estimator overestimates the error. This trend increases as a increases, where the mesh

is not capable of capturing the solution features. As the mesh is refined, both the
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ERM and ZZ estimated error norms are in good agreement with the exact error. The
results show that ZZ estimator overestimates the errors when refining Mesh 1 and
underestimates the errors when refining Mesh 2 and 3. The efficiency index of the
ERM is more consistent for the three different meshes, and as the mesh is refined
the ERM efficiency index is asymptomatically exact for all meshes and values of the

parameter a.
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Figure 2.2: Plot of the exact solution of problem P1 with different values
for the parameter a

Table 2.1: Efficiency indices for estimated errors using ZZ and ERM for
problem P1 mesh 1 - uniform refinement

a=1 a=2 a=3 a=4
# nodes 77 ERM 77 ERM YA/ ERM 77 LERM
25 0.6487 | 1.1191 | 0.4876 | 1.4684 | 0.3357 | 1.6532 | 0.2558 | 1.8142
81 0.8738 | 1.0263 | 0.7933 | 1.1234 | 0.6772 | 1.2947 | 0.5501 | 1.4882
289 0.9990 | 1.0062 | 0.9726 | 1.0266 | 0.9299 | 1.0652 | 0.8732 | 1.1248
1089 1.0601 | 1.0015 | 1.0527 | 1.0062 | 1.0405 { 1.0144 | 1.0235 | 1.0266
4225 1.0895 | 1.0004 | 1.0876 | 1.0015 | 1.0844 | 1.0034 | 1.0798 | 1.0062
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Table 2.2: Efficiency indices for estimated errors using ZZ and ERM for
problem P1 mesh 2 - uniform refinement

a=1 a=2 a=3 a=+4
# nodes 77 ERM 77 ERM 77 ERM 77 ERM
41 0.6129 | 1.0805 | 0.5201 | 1.2290 | 0.4595 | 1.4301 | 0.8924 | 0.7434
145 0.7550 | 1.0248 | 0.7314 | 1.0744 | 0.6871 | 1.1572 | 0.6387 | 1.2551
545 0.8147 | 1.0062 | 0.8101 | 1.0203 | 0.7959 | 1.0467 | 0.7813 | 1.0790
2113 0.8417 | 1.0015 | 0.8409 | 1.0052 | 0.8368 | 1.0123 | 0.8332 | 1.0212
8321 0.8543 | 1.0003 | 0.8542 | 1.0013 | 0.8530 { 1.0031 | 0.8522 | 1.0054

Table 2.3: Efficiency indices for estimated errors using ZZ and ERM for
problem P1 mesh 3 - uniform refinement

a=1 a=2 a=3 a=4
#nodes| ZZ |ERM | zZ | ERM | 2Z | ERM | ZZ | ERM
44 | 0.6165 | 1.1203 | 0.6060 | 1.2801 | 0.5352 | 1.4590 | 0.5663 | 1.4644
157 | 0.7445 | 1.0643 | 0.7387 | 1.1257 | 0.7450 | 1.1799 | 0.6768 | 1.2756
503 | 0.8147 | 1.0307 | 0.8222 | 1.0532 | 0.8588 | 1.0675 | 0.8208 | 1.1076
2305 | 0.8505 | 1.0147 | 0.8652 | 1.0229 | 0.9117 | 1.0254 | 0.8876 | 1.0398
9089 | 0.8679 | 1.0072 | 0.8859 | 1.0104 | 0.9349 | 1.0103 | 0.9160 | 1.0157

2.6.2 Steady-state flow problem P2

The load function f for the second steady-state flow problem is set such that the

exact solution is
w=0.005 22 (1 — z)2 1% 42 (1 — y)? 1) (2.14)

A homogeneous Dirichlet boundary condition is specified at the boundaries of problem
domain. Figure 2.3-a shows a 3D plot of Eq. (2.14). Similar to the first problem, a
sequence of uniformly refined meshes are used to study the behavior of the two error
estimators over three different meshes. The results presented in Table 2.4 confirm

the good performance of the ERM in estimating the exact errors independently from
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the mesh configuration. The ERM overestimates the errors for coarse meshes and
successfully converges to the correct errors on the refined meshes. On the other
hand, the results of the ZZ estimator slowly converge to the exact error with mesh
refinement. On the most refined meshes, the errors in estimated errors by ERM are
7%, 5% and 5% in comparison to 30%, 28% and 17% for those estimated by ZZ on

mesh 1, 2 and 3, respectively.

Table 2.4: Efficiency indices for estimated errors using ZZ and ERM for
problem P2 on different meshes - uniform refinement

Mesh 1 Mesh 2 Mesh 3
#nodes| ZZ | ERM |#nodes| 7Z | ERM |#nodes| 2Z | ERM

25 0.0893 | 0.8853 41 0.3801 | 1.2927 44 0.3800 | 1.4410
81 0.3939 | 1.2448 145 0.4864 | 1.1816 157 0.5310 | 1.2207
289 0.5962 | 1.0814 545 0.5352 | 1.2268 593 0.6723 | 1.1847
1089 0.5912 | 1.1231 2113 0.6268 | 1.1371 2305 0.7609 | 1.1137
4225 0.6909 | 1.0700 8321 0.7200 | 1.0637 9089 0.8269 | 1.0517

2.6.3 Steady-state flow problem P3

Building on the success of tested error estimators, a 2D problem over the domain
Q= (0,1) x (0,1) is built such that the exact solution exhibits local features that are
hard to capture using a uniform mesh. The load function f in Eq. (2.12) is set such
that the exact solution is

u = sin(5rzxy)e*ty (2.15)

A homogeneous Dirichlet boundary condition is specified at the boundaries with x = 0
or ¥y = 0 and homogeneous Neumann BC is specified on the rest of the boundary.
Figure 2.3-b shows the 3D-plot of the exact solution defined by Eq. (2.15). Table 2.5
lists the efficiency indices for both ZZ and ERM error estimators of the three different
meshes. The estimated errors using ERM on coarse meshes is far better than the ones

using the ZZ estimator. In some cases, an apparent deterioration of the quality of
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estimated errors with global mesh refinement is observed as in the case of mesh 1
using 25 and 81 nodes. The errors in the estimated errors using ERM on mesh 1
with 25 nodes is 5% and 20% for the refined mesh with 81 nodes. At the coarse level,
it is apparent that some of the solution features were missed which resulted in the
underestimation of the error over parts of the domain. As the mesh is refined, these

special features are captured and the estimated errors asymptotically converge to the

exact error with further refinement.

Table 2.5: Efficiency indices for estimated errors using ZZ and ERM for

problem P3 on different meshes - uniform refinement

Mesh 2

#nodes‘ 77 1 ERM

1.0522
1.1977
1.0595
1.0096

Mesh 1

# nodes | ZZ | ERM
25 | 0.1413
81 | 0.5153
289 | 0.8352
1089 | 1.0156
4225 | 1.0930

1.0010

41
145
545

2113
8321

0.3856
0.6635
0.8371
0.9188
0.9544

1.1383
1.1265
1.0432
1.0079
0.9994

1.2538
1.1240
1.0648
1.0271
1.0111

Mesh 3

#nodes | ZZ | ERM
44 | 0.3650
157 | 0.6594
593 | 0.8327
2305 | 0.9396
9089 | 0.9908

(a) Problem P2

il
: “‘3\\\\“3\\\\\\\\\\

il

1 0

X

(b) Problem P3

Figure 2.3: Plot of the exact solution of problem P2 and P3
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2.6.4 Steady-state flow problem P4

This problem is defined by Laplace equation and solved over the domain 2, which
is a part of a circle centered at (0,0) and defined by Q@ = {(r,8): 0>r>1,0>6 >
kw/4}; where r and 6 are the polar coordinates and k is a parameter that defines the
size of the domain. The exact solution of this problem possesses local features that
are hard to capture using a uniform mesh. The load function f in Eq. (2.12) is set

such that the exact solution is

u(r, §) = r2/* sin(2—k0) (2.16)
A homogeneous Dirichlet boundary condition is specified at the boundaries with 8 = 0
and Neumann BC are forced on the rest of the boundary.

Table 2.6 shows the efficiency indices for both ZZ and ERM error estimators for
the cases, Kk = 1, 3 and 5. For the case kK = 1, the solution is smooth and estimated
error on the globally refined mesh is accurate. For the cases k = 3 and & = 5, the flux
of the solution exhibits a singular solution at the point (0,0). In this case, uniform
refinement is not capable of adequately capturing the point of singularity. Although,
the efficiency index of the ERM still outperforms the ZZ estimator on all the meshes
used, it fails to estimate the error with an efficiency index close to one even with large
number of DOF (more than 10,000) using uniform refinement. This result shows the
limitations of uniform refinement for certain class of problems that possess solution

specific features or points of singularity. In the following subsection, the estimated

errors are employed to guide a mesh adaptivity process for problems P2, P3 and P4.

2.6.5 Adaptively refined meshes

The objective of adapting the FE mesh using the estimated errors is to equidis-
tribute the errors over all the mesh elements. It is achieved by refining a set of
elements with error value more than a pre-specified fraction of the maximum element

error in each step (0.4 in the current study).
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Table 2.6: Efficiency indices for estimated errors using ZZ and ERM for
problem P4 on different meshes - uniform refinement

k=1 k=3 k=5
#nodes| ZZ | ERM |#nodes| ZZ | ERM |#nodes| 2ZZ | ERM
21 | 06316 1.0336 | 53 |05146 [0.8334| 81 | 0.5137 | 0.7210
70 | 0.8429 | 1.0772 | 191 | 0.5806 | 0.8126 | 296 | 0.5495 | 0.7309
255 | 0.9645 | 1.0481 | 725 | 0.6107 | 0.8106 | 1131 | 0.5768 | 0.7470
973 | 1.0202 | 1.0262 | 2825 | 0.6250 | 0.8118 | 4421 | 0.5904 | 0.7585
3801 | 1.0620 | 1.0137 | 11153 | 0.6323 | 0.8132 | 17481 | 0.5977 | 0.7658

Figure 2.4 shows the adapted meshes after 16 iterations using ERM as adaptivity
driver for problems P2 and P3 starting from mesh 1. The adapted meshes show a
smaller nodal spacing at the location of the exponential peak for problem P2 and
the wave layers for problem P3. For problem P4, the adapted meshes are plotted
in Fig. 2.5 with the parameter k£ equal to 1, 3 and 5. For £ = 1, the solution is
smooth and the error distribution is uniform over the problem domain. This results
a uniformly refined mesh even with local mesh refinement allowed. For the cases of
k = 3 and 5, larger errors exist close to the point of singularity, which force local
refinement to equidistribute the errors especially for relatively coarse meshes.

Figure 2.6 shows the efficiency index of the estimated error for problem P2 on the
three different meshes using the ERM and ZZ error estimators as adaptivity drivers.
For all the six cases, the efficiency index of the estimated errors using the ERM
outperforms the ZZ estimator. The oscillation of the ERM efficiency index after the
first few iterations is attributed to capturing features of the solution that were not
resolved by the second order bubbles. Once the distribution of the errors becomes

almost uniform over the domain, the ERM performs as an upper bound of the error.

Figure 2.7 shows similar results for problem P3. The ERM error estimator is

clearly shown to yield accurate error estimation, particularly the case of Mesh 1 with
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(a) Problem P2 (b) Problem P3

Figure 2.4: Adapted meshes for problem P2 and P3 (after 16 iterations
using ERM driven adaptivity on mesh 1)
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Figure 2.5: Adapted meshes for problem P4 (after 12 iterations using
ERM driven adaptivity)

ERM derived adaptivity. Again, the ERM estimator produces better error estimation
than the ZZ estimator for the six presented cases for problem P3.

Figure 2.8 presents the global efficiency index for the different variations of problem
P4. For the case of kK = 1, the adaptive mesh refinement produces meshes that capture
the solution features. ERM yields accurate error estimation with only 100 nodes. The

same conclusion can be drawn for the case k = 3, while for the case with k = 5, the
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mesh size requirement is almost doubled. Estimated errors by the ERM on meshes
with size of 200 nodes acts as an upper-bound and are asymptotically exact with
further mesh refinement. For all cases, the efficiency index does not reach one because
of the strong singularity of the solution derivative which contributed significantly to

the norm used for measuring the errors.

2.7 Conclusions

In this work, the performance of two local error estimation techniques for the finite
element method was evaluated. From the results of the numerical experiments, the

following conclusions are drawn:

1. The ERM provides a reliable error estimation with an efficiency index close to
the optimal value of unity in comparison to the ZZ error estimator. As the
mesh is refined, higher quality solutions are obtained and the estimated errors

using the ERM approach the exact error value.

2. For steady-state flow problems with data oscillation in the load term or disconti-
nuity in the boundary, the ERM significantly outperforms the ZZ in estimating
the errors. This deficiency in the ZZ method is attributed to the heuristic
nature of the recovery operator which completely neglects the problem formula-
tion. ERM has the advantage of approximating the residual equation and thus

yields a more accurate error estimation.

3. The unbalanced flux applied on the boundary of the local problems in the ERM
reduces the reliability of the method on coarse meshes. However, by combining
the ERM with a mesh adaptivity process, this procedure produces optimal
meshes with a self-equilibrated local problems and provides a reliable error
estimation with an efficiency index close to unity achieved after few adaptivity

iterations.
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Figure 2.8: Global Efficiency Index of adapted meshes for problem P4
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4. An adaptive algorithm combined with the ERM error estimator can be devel-

oped to solve steady-state flow problems with a pre-specified error bound

In Part II of this article series, the performance of both error estimators using elas-

ticity problems is further evaluated.
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Chapter 3

Assessment of two a posteriori error estimators for
FEM. Part II: Elasticity

A H. ElSheikh, S. Smith and S.E. Chidiac

ABSTRACT

This paper forms the second part of a two-part paper on the evaluation of local a posteriori
error estimation for FEM. The first part provided an assessment of the error estimators to
stead-state flow problems, whereas this second part deals with elasticity problems. Problem
formulation presented in Part I is extended to account for the coupled displacement field
appearing in elasticity problems. The two error estimators, the element residual method
(ERM) and Zienkiewicz-Zhu patch recovery technique (ZZ) are used as drivers for a mesh
adaptation process. The results demonstrate the advantages of employing a posteriori error
estimators for obtaining finite element solutions with a pre-specified error tolerance. Of
the two methods, the ERM is shown to produce adapted meshes that are similar to those
adapted by the exact error. Furthermore, the ERM provides higher quality estimates of the

error in the global energy norm when compared to the ZZ estimator.

KEY WORDS: Adaptivity, A Posteriori Error Estimation, Element Residual Method, Finite

Element Method, Elasticity, Zienkiewicz-Zhu patch recovery
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3.1 Introduction

The finite element method is an optimal method for solving elasticity problems
appearing in structural mechanics. It is optimal in the sense of minimizing the total
potential energy of the system. Over the past decades a large amount of work has
been done on error estimation for elasticity problems employing Zienkiewicz-Zhu (ZZ)
error estimator [1, 2] and element residual method (ERM) [3, 4, 5]. However, the
published results for the two methods were presented in different contexts. The
77 was expressed using engineering notations and received wide acceptance in the
engineering community, while the ERM was mostly presented in a mathematical
context using functional analysis notations. To date no comprehensive analysis using
both methods on practical problems exist where practitioners can appreciate the
merits of the two methods. Moreover, the research community continued focus on
the mathematical proofs has curbed the accessibility of error estimation technology
by practicing engineers.

This paper begins by presenting the formulation of 2D elasticity problems using
Lagrangian finite elements. The theoretical basis of the Zienkiewicz-Zhu (ZZ) error
estimator and the Element Residual Method (ERM) is briefly reviewed and concisely
formulated so that it can be applied to elasticity problems in a unified way. The
performance of the two error estimators is tested numerically using four practical
engineering problems. The problems are solved on a sequence of uniformly refined
meshes to evaluate the efficiency of the error estimators. For those problems that
possess areas with stress concentration or points of singularity, a mesh adaptation
based on the error estimates is then applied to improve the convergence rates of the

finite element solution.

3.2 Formulation of plane elasticity problems

We consider an elasticity problem defined over a bounded domain € in R? with

a Lipschitz-continuous boundary composed of a Dirichlet portion I'p and Neumann
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portion I'y where, 02 = I'pUI'y and I'pNIT'y = @. It is required to find the displace-
ment field u = [ul, uQ]T, stress tensor components o;; and strain tensor components
gij for 4,7 = 1,2 at any point x = [z, .rg]T in the domain. Three equations relates

these unknowns, the force equilibrium equation,

2
aO’ij

61:j

+f=0inQandi=1,2 (3.1)
j=1
where, f; are the body force components of the force field f = [f;, fo]7. The second

and third equations are the linear kinematic equation and the material constitutive

equation formulated as:

1(0u; Ou; 2
0= o\aw, T am,) 0T 2l ey (3.2

where, ¢ is the dirac-delta function and A, p are the Lamé constants. The boundary

conditions I'p ; and I'y; for ¢ = 1,2 are prescribed as:

u;(X) = up;, onI'p andi=1,2 (3.3)

2
Zoijnj = g;, on'y andi=1,2 (3.4)
j=1

Using the previous relations, the Lamé-Navier’s equation can be derived as:

2 2
Bzui 0 8’U,k
A — ; = 0in Q d:=1,2 .
M; o2 + (A + M)Bazi ; o2, + f inQ and (3.5)
For plane stress, Lamé constants can be expressed by Young’s modulus £ and Pois-
son’s ration v as: pu = E/2(1+v), A = Ev/1—v? and for plane strain, u =
E/2(1+v), A= Ev/(1 — 2v)(1 + v). Using standard norm notation for Sobolev and

Hilbert spaces and equipped with scalar L? inner product (.,.), the weak formulation

66



Ph.D. Thesis - A.H. ElSheikh ) 7 McMaster - Civil Engineering

of Eq. (3.5) can be written as:

Find u € U such that

(3.6)
B(u,v) = (f,v) + (g V)ry YW eV

where U is the displacement trial space and V is the test space and the different terms

are defined as:

Buv)= [ow-=v) . €)= [tv, @y = [y @D

Q Iy

where, f is the load vector and g the boundary traction vector. For isotropic materials,
the constitutive relation is simplified and written in vector format as o(u) = C e(u).

In which the stress and stain field is defined as:

oc=1[0y 013 0y 0O ]Ta £ = [ €11 €12 €21 E22 ]T (3.8)

with the following definition of the material stiffness matrix C,

[ A+ 00 X
0 1) 0
0 o 0
A0 0 At op

In order to provide a general formulation for any system of two coupled variables, the
present formulation was selected instead of the more general form by eliminating the
repeated rows and using a 3 X 3 matrix with the corresponding engineering strain.

This allows an easy extension of the theory presented in Part I to elasticity problems.
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The strain vector €(u), is expressed as:

[ 5 [ 5
2 | 9o1 ]
Buy E)

Ozo Uy

oe: = Bu (3.10)
Oz
o

| 5l L O

Ug

‘Q; Ex”m =

Q

x2

where the differential operator B acts on the displacement field u. Using this defini-

tion, the bilinear form of the linear elasticity problem is formulated as:

B(u,v) = / (Bu)"C(Bv) (3.11)
Q

Projecting the solution into the current domain discretization, corresponds to the

approximation of u by u, and v by vy and follows directly from the variational

formulation presented in Eq. (3.6).

Find uy, € Uy such that

(3.12)
B(up, vn) = (f,vh) + (8, Vh)ry Vvh € Vp

3.3 A Posteriori Error Estimation

In the following subsections, the formulation of both ZZ Method and the ERM
is presented for elasticity problems in R?. All the notations are consistent with the

previous presentation in Part I.

3.3.1 Recovery Based Error Estimators

The finite element solution of elasticity problems using first order Lagrangian el-
ements results in a continuous displacement field with discontinuous stresses across
element boundaries. This discontinuity in the stress field is expected because the
weak form of the force equilibrium equation is solved instead of the strong (origi-
nal) equation. The continuity requirements of the stress field is only applied in the
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weak sense (under the integral). Zienkiewicz and Zhu [1] proposed a method for re-
covering a continuous stress field by solving least square problems over a patch of
elements. This recovered field is assumed to be more accurate than the discontinuous
stress field. Based on that assumption, the error is estimated/calculated using the
recovered stress field instead of the exact stress field in the error equations.

In general, for coupled problems in R?, four least square problems need to be solved
to recover two continuous derivatives of both components of the field. This is true
for elasticity problems as well, but because of the special properties of the coupling
matrix C where the second and the third rows are identical, only three components
of the derivative need to be recovered. This is the same reason why the constitutive
matrix for plane elasticity can be reduced to a 3 X 3 matrix with the corresponding
reduction of the stresses into the three stress o,4, oy, Yzy-

The mathematical formulation of the error takes the following form:

le|> = |ju — un||* = B(u — up,u — uy) =~ /(Gh[uh] —Bu)TC(Gy[up] — Bu) (3.13)

Q

where G,[uy] is the recovered gradient reconstructed from the finite element solution
up. The global error is then approximated as the sum of local element contributions,

as follows:
N

Jef? = 3 { (Gulu] - B CulGifun] - Bu (3.14)

k=1
where N is the total number of elements and the recovery operator Gjluy] is based

on solving local least square problems.

3.3.2 Implicit Residual type Error Estimators

In the Element Residual Method, errors are approximated by solving the residual
equations using higher order basis functions. The global residual equation is localized
into a set of element based problems and the total error is calculated as the sum of each

element contribution [3]. One advantage of this approach is that local problems will
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reflect the properties of the elasticity problem under consideration and is formulated

as:

Bi(e,v) = (f,v) — Be(up, v) + / (te) v (3.15)
ok

where the subscript & indicates the restriction of the integration over an element k,

ty the average traction on each edge of an element £k and is defined as:

Lny (b +t,) on dkNOK
(bre) = 7y ty on 8kNTp (3.16)
g on JkN FN

in which t, is the traction on the Neumann part of the problem boundary. Each
average traction (t;) has two components corresponding to the two displacement
components u;, u,. After calculating the errors by solving IV problems corresponding
to N elements, the global error is calculated according to:

N N

el =" Bi(e,e) = Y {(Be)zck(Be)k} (3.17)
k=1 k=

1

3.4 Numerical Examples

Four elasticity problems are solved to evaluate the performance of both ZZ and
ERM on a series of uniformly refined meshes. The errors are measured in the global
energy norms. The ratio of the estimated error based on ERM or ZZ to the exact

error is called the efficiency index of the error estimator.

3.4.1 Elasticity problem E1

This engineering problem describes the stress distribution in an infinite plate with
a hole in the middle. Due to the symmetry of both the problem domain and loading

configuration only one quarter of the domain needs to be solved. Essential boundary
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conditions are applied on the lines of symmetry, while traction boundary conditions
representing far field effects are applied on the rest of the boundary using the exact

values given by in [6]:

2 4
Oze =1 — % (g cos(20) + cos(49)> + ;—;4 cos(46)
r? (1 3rt
oy = T i3 cos(26) — cos(46) | — 2R cos(40) (3.18)
r? (3 . : 3rt .
Oy = ~ 3 (5 sin(26) + sm(49)> + SR sin(46)

where 8 is the angle from a point to the z axis, r the radius of the hole and R the
distance from the point of evaluation to the center of the hole. Figure 3.1 shows a

schematic plot of the model used as well as the initial mesh.

7‘E\ S -
) .
!

I !
b —_—
a \ - T

‘ —
1 o NN T_.
1 .

R
Figure 3.1: Schematic figure and initial mesh for problem E1

The estimated error in the global energy norm using the ERM and ZZ method
is shown in Fig. 3.2 along with the the exact errors referred to as H! error. Due
to the smoothness of the solution, convergence rate of errors in the energy norm is
of order O(h). The ERM method overestimates the errors for coarse meshes while

the ZZ method underestimates the error in the global norm. With the global mesh
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Figure 3.2: Results on uniformly refined meshes for problem E1

refinement, the errors estimated using ERM gains more accuracy and the efficiency
index asymptotically approaches one, while the ZZ goes from underestimating the
errors to overestimating the error as the mesh gets more refined. The efficiency index
for ZZ is 1.15 even with meshes of 5000 nodes while the corresponding efficiency index

for ERM is 1.04.

3.4.2 Elasticity problem E2

An L-Shaped plane elastic body with a unit thickness is analyzed for internal
stress. The geometry and boundary conditions of the problem are shown in Fig. 3.3.
The plate is loaded using traction forces that satisfies the exact solution according to
Reference [6]. The stress components used to load the body along the sides AB, BC,
CD and FA are:

o, = ArPD((2 - QLA+ 1))cos((A —1)8) — (A + 1)cos((A — 3)8))
oy = ArATD((2 4+ QLA + 1))cos((A — 1)8) + (A — L)cos((A — 3)8)) (3.19)
Ty = AOTU((A = D)sin((A = 3)8) + Q(A + 1)sin((A — 1)8))

(
(
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Figure 3.3: Schematic figure and initial mesh for problem E2

where @ = 0.543075579 and A = 0.544483737 is the solution of sin(Af)+ Asin(f) =0
with 8 = 37” The solution of this problem yields a singular stress component at the
reentrance point £ corresponding to the position where » = 0. The influence of this
singularity on the convergence rate is evaluated using uniform mesh refinement.

In Fig. 3.4-a, the exact error in the energy norm is plotted against the number of
nodes. A sequence of meshes generated by dividing each element into four elements in
a uniform refinement process. This global refinement produces an order of convergence
proportional to O(h%3) due to stress singularity at point E. The estimated errors
on uniform meshes are found to be not reliable as illustrated by an efficiency index
of 0.85 for the ERM and 0.65 for the ZZ error estimator plotted in Fig. 3.4-b. The
refined mesh fails to capture the singularity because the singularity is localized at
a length scale much smaller than the globally refined element size. These results
demonstrate that it is not feasible nor practical to obtain a globally refined mesh
capable of capturing this singularity. Improvements in the order of convergence, due

to mesh adaptivity are explained later in this paper.
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Figure 3.4: Results on uniformly refined meshes for problem E2

3.4.3 Elasticity problem E3

The third engineering problem models a center-cracked plate. Due to symmetry,
only half of the domain is solved using the appropriate boundary conditions, as shown
in Fig. 3.5-a. The normalized dimensions used are W/a=5 and h/a=25, where h the
height of the plate, W the width of the plate and a the crack length. The crack tip
produces a \/i; singularity. The maximum stress near the crack tip is expressed in

terms of the stress intensity factor K. For the current loading configuration
K; = 113(1) Oy V21T = oyy/Ta (3.20)

The stress intensity factor is calculated from the finite element results based on an
approximation of the displacement gradient near the crack tip using the displacement
correlation method [7]. The initial mesh is plotted in Fig. 3.5-b, where no special
consideration is made around the crack tip to show how the mesh adaptivity process
will capture the singularity.

The calculated error in the global energy norm is shown in Fig. 3.5-c. The con-

vergence rate is also of order O(h%?) due to stress singularity at the crack tip. The
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Figure 3.5: Initial mesh and results on uniformly refined meshes for prob-
lem E3

Table 3.1: Stress intensity factor (SIF) for problem E3 on uniformly refined
meshes

# nodes SIF

65 0.85625
219 1.11418
797 1.26810
3033 1.34506

Exact SIF | 1.12099

stress intensity factor (SIF) is compiled in Table 3.1. For the initial mesh, SIF is
far below the exact result and as the mesh size increases, the SIF is overestimated.
Again, the results reveal that uniform mesh refinement fails to capture the correct SIF
within a reasonable mesh size. The match of the result for the second globally refined
mesh process is regarded as a transition from underestimating the SIF to meshes that

overestimate the SIF.

75



Ph.D. Thesis - A.H. ElSheikh McMasterr—#C%ivil Er@rgqrg

3.4.4 Elasticity problem E4

This problem simulates a plate under plane-strain. The geometry is based on
similar model in [8] where the lower boundary is restrained in the y-direction and the
left boundary is restrained in the z-direction. A traction load is imposed on the right
boundary as shown in Fig. 3.6, where all dimensions are in SI units and ¢ = 100N/m.
The errors are calculated by comparison to a reference solution on a very fine mesh

with 74046 nodes.
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(a) Problem geometry (b) Initial mesh

Figure 3.6: Problem E4 geometry and initial mesh

In Fig. 3.7-a, the exact error in the energy norm is plotted against the number of
nodes for a sequence of uniformly refined meshes. Due to the singularity of the stress
at the corners, the errors are underestimated by both error estimators. The efficiency
index of the estimated error using ERM performs slightly better than the ZZ method
but still underestimates the error by a ratio of 0.7 for the most refined mesh as shown

in Fig. 3.7-b.
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Figure 3.7: Results on uniformly refined meshes for problem E4

3.5 Mesh adaptivity

The errors estimated according to the ERM and ZZ provide valuable information
that can guide a mesh adaptation process. To optimize the number of nodes or
unknowns for a given discretization error, only regions with high local errors are
marked for refinement. A set of elements with an error value more than a pre-
specified fraction of the maximum element error is marked for refinement. Because of
the existence of a singularity in the solution for problems E2 and E3, elements close
to the singular points will have relatively large error in comparison to the rest of the
domain. To overcome this problem, the refinement fraction was set to 0.2 for all of
the four problems to allow a more aggressive refinement than just a few elements that
are close to the singular point. This decision results in fewer refinement iterations.

Figure 3.8 shows the adapted meshes for problem E1 using the two error estimators
as well as the exact error calculated using the exact analytical solution. The error
distribution is concentrated close to the hole where the stress concentration exists.
Another reason for the relative large error values around the hole in comparison to the
rest of the domain is the approximation of the curved boundary by linear elements.

It can be observed that the implemented refinement algorithm corrects the boundary
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t

representation errors by projecting the newly inserted nodes during mesh refinement
to the correct position on the curved boundary. The performance of the two error
estimators on adapted meshes is shown in Fig. 3.9. The efficiency indices for the
ERM start by overestimating the errors and asymptotically approach the optimal
uniformly refined meshes shown in Fig. 3.2, because of the smoothness of the solution

value of one with m

of this problem. In comparison

the error and then overestimates the error with mesh adaptation. The ZZ efficiency

index does not converge to the optimal value of one.

Figure 3.10 plots the exact errors in the energy norm on different meshes generated
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Figure 3.10: Convergence of the global error for problem E1 using different
adaptivity drivers

by different refinement criteria. Due to the uniformity of the errors and smoothness
of the solution, uniform refinement outperforms adaptive refinement in reducing the
errors in the global norm. The results also show no significant difference between
ERM and ZZ in comparison to each other, or in comparison to the mesh adapted
according to exact errors obtained using the analytical solution.

For problem E2, Figures 3.11 and 3.12 show the adapted meshes using different
refinement criteria after 10 and 15 iterations, respectively. The singularity of the
solution is detected after a few mesh adaptation steps as mesh density gets higher
at the re-entrant point. The mesh adapted according to ZZ is less refined over the
domain with more refined elements at the singular point. This shows that the errors
at elements close to the singular point are much higher than over the rest of the
domain and thus most of the elements are not marked for refinement given that the
local error is less than 0.2 of the maximum element error. Meshes adapted according
to the element residual method are very close to those adapted by the exact errors.
This supports the claim that the distribution of errors detected by ERM is similar
to that of the exact errors. In regard to the efficiency of the estimated error in the

global norm, the ERM method outperforms the ZZ on all the meshes even when the
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Figure 3.12: Adapted meshes using different adaptivity drivers for prob-
lem E2 - After 15 iterations

meshes are generated by the ZZ error estimator, as shown in Figure 3.13. The results
show that the ERM method is reliable in estimating the errors on meshes with a
few hundred nodes. Using the ERM both for adaptation and estimating the error is
shown to outperform the estimation on meshes generated by the exact error. This is
attributed to the fact that the calculated errors and the adapted meshes both try to
minimize the traction imbalance in local element by element problem, as well as the
error in the energy norm. Minimizing the local problem traction imbalance increases

the accuracy of the estimated errors.
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Figure 3.13: Efficiency indices of the estimated errors using different adap-
tivity drivers for problem E2

Figure 3.14 shows the effect of the mesh adaptation on the reduction of the error
in the energy norm. Due to the singularity, all adapted meshes by ERM, ZZ and
the exact error, clearly outperform uniform mesh refinement in the error reduction.
For coarser meshes, the ERM yields superior results in comparison with ZZ error

estimator in reducing the errors.

— @ — ERM-Agdaplivity
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— Exact error-Adaptivity
—&— Uniform Refinement |
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# Nodes

Figure 3.14: Convergence of the global error for problem E2 using different
adaptivity drivers

Figures 3.15 and 3.16 show the adapted meshes for problem E3 using ZZ and
ERM, respectively. Both error estimates succeeded in capturing the singularity at

the crack tip even with the initial coarse mesh. Visual inspection of the adapted
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meshes provides qualitative comparison. For this problem, the stress intensity factor
needs to be calculated for a quantitative comparison. Figure 3.17 shows the stress
intensity factor calculated using the results obtained from uniformly adapted meshes,
mesh adapted using ZZ and ERM error estimator and the exact value of the SIF.
The ERM based adaptivity manages to predict the SIF with an error of 2%, while
SIF computed on the same mesh size produced by uniform adaptivity or ZZ error
estimator is found to be significantly larger than the analytical value. Figure 3.18,
part a and b shows, the convergence rates of the global error norm. Even with the

presence of the singularity, the optimal O(h) rate of convergence was achieved after

a few mesh adaption steps.
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Figure 3.15: Adapted meshes for problem E3 using the ZZ error estimator
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Figure 3.16: Adapted meshes for problem E3 using the ERM error esti-
mator
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Figure 3.17: Stress Intensity factors using different adaptivity drivers for
problem E3
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Errors in Diffenet Norms
Errors in Diffenet Norms
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Figure 3.18: Convergence of the global error norm for problem E3

Figure 3.19 shows the adapted meshes for problem E4 using ZZ and ERM, re-
spectively after 8 iterations. Both error estimates succeeded in capturing the corner
singularity, but computed exact error on the mesh produced by the ERM method is
65% of the mesh refined by the ZZ estimator. That reduction corresponds to the mesh
size of 6069 nodes and 3570 nodes for the ERM produced mesh and the ZZ driven
mesh, respectively. Figure 3.20 shows the efficiency index of the estimated errors on
ERM and 7ZZ adapted meshes. Mesh adaptivity improved the efficiency index from
the 0.7 corresponding to uniform refinement, to approximately 0.85 for the maximum
mesh size of 16000.

3.6 Conclusions

In this work, the performance of the element residual method and the ZZ error
estimator has been investigated for elasticity problems. Two parameters are of great
interest when evaluating a posteriori error estimator, the ratio of the estimated errors
to the exact error (efficiency index) and the ability of the estimated errors to guide
a mesh adaptation process for producing optimal meshes that minimize the global

error. On the basis of the results obtained for all the elasticity problems tested, the
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Figure 3.20: Efficiency indices of the estimated errors using different adap-

tivity drivers for problem E4

following conclusions are drawn:

1. Uniform mesh refinement is only adequate for problems with smooth solutions.

2. The produced meshes using ERM adaptivity are very close to those adapted

using the exact error. This shows that ERM yields a distribution of errors that

is similar to that of the exact error.
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3. In general, ERM yields superior error estimation in comparison with ZZ and
the difference is most significant for coarser meshes. Also, the ERM converges
steadily to the exact error with adaptive mesh refinement, while the ZZ goes
from underestimating the errors to over estimating the errors in most of the

cases.

4. Solutions based on ERM adaptivity is capable of predicting the SIF with an
error of 2%, while solutions based on ZZ adaptivity or uniform mesh refinement

yield erroneous results for SIF.

5. An adaptive algorithm combined with the ERM error estimator can be devel-
oped to reliably solve engineering problems that possess singularities with a

pre-specified error bound.
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Chapter 4

Numerical investigation of the reliability of a
posteriori error estimation for advection diffusion
equations

A H. ElSheikh, S. Smith and S.E. Chidiac

ABSTRACT

A numerical investigation of the reliability of a posteriori error estimation for advection
diffusion equations is presented. The estimator used is based on the solution of local prob-
lems subjected to Neumann boundary conditions. The estimated errors are calculated in a
weighted energy norm, a stability norm and an approximate fractional order norm in order
to study the effect of the error norm on both the effectivity index of the estimated errors
and the mesh adaptivity process. The reported numerical results are in general better than
what is available in the literature. The results reveale that the reliability of the estimated
errors depends on the relation between the mesh size and the size of local features in the
solution. The stability norm is found to have some advantages over the weighted energy
norm in terms of producing effectivity indices closer to the optimal unit value, especially
for problems with internal sharp layers. Meshes adapted by the ERM measured in the
stability norm conform to the sharp layers and are shown to be less dependent on the wind

direction.

KEY WORDS: Adaptive Finite Element; A Posteriori Error Estimates; Advection Diffusion

Equations; Error Norm
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4.1 Introduction

Reliable error estimation for the finite element method has been the focus of in-
tense research during the past decade. A review of the subject can be found in [1, 2, 3]
and the references therein. A posteriori error estimators provide a measure to assess
the accuracy of the solution and to drive a mesh adaptation process. Error estima-
tion techniques can generally be divided into implicit and explicit methods. Explicit
methods use approximate formulas to estimate the residual in the element interior
and on the element boundaries [4, 5]. These formulas contain problem dependent
constants that can be determined by solving a dual problem over the problem do-
main [6, 7, 8. On the other hand, implicit a posteriori error estimation methods
are based on solving the residual equation. The residual equation is localized over a
single element, as in the element residual method (ERM) [9, 10] or over a patch of
elements [4, 11, 12] to avoid solving a global equation.

Theoretical aspects of a posteriori error estimation for advection-diffusion equa-
tions can be found in [13, 14, 15]. Numerical studies of the accuracy of local error
estimators for this class of problem can be found in [16, 17, 18]. The first study
[16] uses different variations of implicit and explicit error estimators. A gradient
based error indicator, explicit residual estimator (three variations), Galerkin element
residual method (ERM), stabilized element residual method and the Zienkiewicz-Zhu
(ZZ) patch recovery were tested [16]. It was concluded that none of the considered
local error estimators worked satisfactorily in all test problems. A potential reason
for this shortcoming can be attributed to a priori limit on the maximum mesh size
(number of nodes), even though the test problems had very sharp features. This
decision can result in an insufficient number of elements being available to resolve
the sharp layers. In the second study [17], the stabilized ERM estimator, ZZ patch
recovery and an explicit residual estimator were evaluated numerically. The results
showed that the effectivity index of the estimated error never approaches unity with

mesh refinement, except for one of the test problems that used the element residual
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method. In the third study [18], an error estimator based on solving local Poisson
problems with Neumann boundary conditions was investigated. Again, the reported
numerical results showed that the effectivity indices of the estimated errors are far
from unity on both uniformly and adaptively refined meshes.

The focus of this paper is not to present a new error estimator for advection-
diffusion equations, instead we are interested in the numerical performance error
estimation based on solving local Neumann problems. The stabilized element residual
method for a posteriori error estimation is presented along with an error estimation
technique attributed to Zienkiewicz and Zhu (ZZ)[19, 20]. In order to investigate the
quality of the element residual error estimator, the estimated errors are compared
to the exact errors. The comparison is carried out using three different error norms
to study the effect of the norm used on the accuracy of the estimated errors. The
estimated errors are also used to drive a mesh adaptivity iteration and the adapted
meshes are evaluated qualitatively, in terms of conformity to the sharp layers in
the solution and in terms of dependency on the wind direction. Thé numerical test
problems will be limited to two dimensional problems discretized into first order
quadrilateral finite elements. To our knowledge, no such investigation has been carried
out using different error norms.

The outline of the paper is as follows: In section 2, the Galerkin finite element
formulation for advection diffusion equations is presented. Stability issues of this
formulation for advection dominant problems are highlighted and the details of the
Streamline Upwind Petrov Galerkin (SUPG) stabilization technique are presented.
In section 3, a detailed description of the stabilized element residual method for a
posteriori error estimation is presented, along with the three different error norms
used for computing the global error norm. In section 4, the details of the numerical
test problems are presented, followed by the computational results in section 5. The

concluding statements are drawn in section 6.
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4.2 Linear advection diffusion equations

Advection dominated equations describe a wide variety of physical phenomena
of special interest in engineering and applied physics. Fluid dynamics, contaminant
transport and many other engineering problems rely on solving this type of equations.
We consider the scalar linear advection diffusion problem over a bounded domain
in R? with a Lipschitz-continuous boundary 92 composed of a Dirichlet portion I'p
and Neumann portion I'y, where 0 =T'p UI'y and I'p NI'y = @. The PDE under

consideration is written in an abstract format as:

Lu =f in £

u =up on Ip (4.1)
5% = on I'y

where u denotes the unknown concentration, L is a linear second order differential
operator of the form Lu := —e A u + a- Vu, € > 0 is the diffusivity constant,
a € L*(0)? is the velocity field and f € Ly(Q) is the prescribed load function. The
boundary data up and g are assumed to be sufficiently smooth and n denotes the
outward unit normal vector to I'y. Using standard norm notation for Sobolev and
Hilbert spaces as in Reference [21] and equipped with scalar L? inner product (.,.),

the weak formulation of Equation (4.1) can be written as:

Find u € U such that

(4.2)
B(u,v) = (f,v)+(g,v)ry, Yv €V

where U = {u € H(Q) : u|r, = up} is the trial space, V = {v € H() : v|r, = 0}
is the test space. The bilinear B is defined as B(u,v) := [, (eVu-Vv+a- Vu v),
(f,v) = [qf v is the L*inner product and (g,v)r, = [, g v is the boundary

integral term.
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4.2.1 Failure of the standard Galerkin method

In the Galerkin finite element method both the solution and the test functions
are approximated using a finite dimensional subspace of V. Using the space V}, C V
defined by a mesh size parameter h and spanned by continuous piecewise polynomials,

the Galerkin discrete weak formulation is:

Find u, € V}, such that

(4.3)
B(uh, 'Uh) = (f, Uh) “+ (g, Uh)l"N V’Uh c Vh

where uy, is the finite element solution. Existence of a solution for equation (4.3) with
an estimated error bound is based on Lax-Milgram Lemma, where the bilinear B is
required to be bounded and V-elliptic. Formally, there should exist two constants,

a > 0and 0 < M < oo such that:
alllfy, < B(v,v),  B(w,v) < M|lv|lvlwllv (4.4)
If these two conditions are satisfied, the error bound can be written as
M
— < — inf - .
lu —unlly < — inf Jlu—willy - (49)

The method is successful if M/a = 1, which is the case for elliptic equations like the
Poisson equation. For advection dominated problems the ratio M/« is proportional
to ||al|cc/€, which makes the error in the right hand side of Equation (4.5) very large
for small values of €. The ratio of the velocity to the diffusivity is commonly related to
the mesh size using the local Peclet number defined as P. = ||a||w,x hr/2 €, where hy
is the mesh diameter for an element K. If the value of P, is greater than 1, oscillations
appears in the numerical solution because the data advection is not captured by the

mesh length scale.
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4.2.2 Petrov-Galerkin methods

In order to eliminate the unphysical oscillations that might appear in the Galerkin
finite element solution, a consistent stabilization technique is used. Artificial diffusion
terms that vanish for the exact solution are added to the Galerkin weak formulation.
Streamline Upwind Petrov Galerkin (SUPG) method is one of the commonly used
stabilization techniques. SUPG falls in the class of Petrov-Galerkin methods, where
the test and trial functions belongs to different spaces. The SUPG uses a modified
test function defined by w := é(a - Vv) + v, where ¢ is a stabilization parameter.
For first order approximations, the stabilization contributions are only defined inside
the element interiors because the modified test function is discontinuous along the

element edges. A general stabilized discrete variational formulation is

Find u, € V}, such that

B(up,vy) + Z/K O R(up)P(un) = (f,vn) + (g, vn)ry Yo, €V, (4.6)
K
where J; is a locally defined stabilization parameter and R{uy) is the residual of the
strong PDE defined as R(up,) := —¢ Au, +a- Vu, — f. For the SUPG method,
the term P(vy) is defined as (a - Vuv,). The Galerkin least squares (GLS) method
follows the general Equation (4.6) with P(v,) defined as the residual of the equation
without the loading term, P(vy) := —e A v, +a- Vu,,. For first order finite elements,
both the SUPG and GLS yield the same formulation because the second derivative
term —e A vy, vanishes. A very important factor for the convergence of both the
SUPG and GLS methods is the selection of the stabilization parameter dx. This
parameter controls the right amount of artificial diffusion in the streamline direction.
In the current study, a general definition of the stabilization parameter following [22]

is used:

hic w be (14 4) P>1
= , Wwhere w:=
2 ||all o 5 0 P, <1

Ok : (4.7)
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4.3 A posteriori error estimation

The error in the finite element solution wuy, is defined as e = u — u;, , where u is
the exact solution. Substituting the value of u = u;, + e in Equation (4.2) results the

global residual equation
B(e,v) = (f,v) + (g,v)ry — B(up,v) (4.8)

In the previous equation, if v is selected such that v € V,, the residual will vanish.
This shows that the error field e can be evaluated by solving the global residual
equation, but the approximation space has to be larger than V}, used for the finite
element solution. This leads to an extrapolation method where the problem is solved
again using a globally refined mesh or using a higher order finite elements.

The main goal of practical a posteriori error estimator is to approximate the so-
lution of the global residual Equation (4.8) in a numerically efficient way [1, 3]. Lo-
calizing this equation over an element or a point based patch of elements results in
a set of decoupled problems, which are much cheaper to evaluate. In this case, the
global error is evaluated as the sum of the local contributions. In the following sub-
section, the details of SUPG stabilized ERM [10] for a posteriori error estimation are

presented.

4.3.1 Stabilized element residual method
In this paper, the focus will be on the Element Residual Method (ERM) where

a set of local problems with Neumann boundary conditions are solved. Substituting
u = up, + e in the original problem (strong form) and localizing it over each element

K, one gets:

—elANe+a-Ve=f+eAu,—a-Vu, over each mesh element K (4.9)
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The boundary conditions of Equation (4.9) have to be carefully specified. For the ele-
ment edges intersecting with the problem Neumann boundary the boundary condition
is specified as

Oe ouy,

E—=¢g—& 4.10
on 7 On (4.10)
The remaining boundaries of the element are expressed as Neumann boundaries that
depend on the exact solution u. For each (non-boundary) edge i of the element K,

the boundary condition is:

Oe ou Ouy,

E — =¢ —€
Ong; Ong; Ong;

(4.11)

where ng; is the outward unit normal vector to the edge ¢ of the element K. As the
exact solution is not known, it is postulated that the average flux over the element
edges is a good approximation of the exact flux. This is expressed as follows:

ou 1

Ao S g i {(Vup)k + (Vur) g} on 0K NOK' (4.12)

where the elements K and K’ share the (non-boundary) edge . Equation (4.9) and
the corresponding boundary conditions can be solved using the finite element method
to calculate an approximation of the error over each element denoted as e;,. The ERM

weak formulation is:

Find e, € V, such that

B (€, vo) = (f,vo) k — Br(un, vp) + /8 <

8K

anKi> Up V’Ub eV

where By is a restriction of the bilinear over an element K, (.,.)x is a restriction

of the L? norm over the element K and V} is the approximation space for the local
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problem. The Neumann boundary term in Equation (4.13) is specified as:

du e ng . {(Vun)k + (Vun) e} on 0K NOK = Edge i ¢ 00
E<ah>= 5nKi.(Vuh)K on@KﬂFD
Ng;
g on 0K Ny

(4.14)
Second order bubble functions are used as the basis functions of the approximation
space V. Bubble functions are functions with compact support, where each bubble
has a value in the interior of an entity but vanishes on the exterior of the entity
[3]. For a reference quadrilateral element K , with the local coordinates (-1 < 2 <
1,—1 < ¢ < 1), the edge bubble functions are given by x; = 0.5(1 — z2)(1 — ¥y);
x2 = 0.5(1 +2)(1 — 32); x3 = 0.5(1 — 32)(1 + 7); x4 = 0.5(1 — 2)(1 — 42); and the
element interior bubble function is given by x5 = (1 — 72)(1 — 42).
The solution of the local problems is stabilized using the SUPG method. The
formulation of the stabilized element residual method starts from Equation (4.13), by

adding the SUPG consistent stabilization term

- ~ ou
BK(eb,vb)—l—/ 5KP(U},)Rh(€b) = (f, ’Ub)K—BK(Uh,Ub)-I—/g <8nh-> Up Yu, €'V,
K oK Ki
(4.15)
where Ry (€) is the residual of Equation (4.9) defined as Ry(e;) = —¢ A ey + a-
Ve, — f—elAup+a-Vu, and P(vy) = (a- Vu,). After some rearrangement and the
elimination of the second derivative terms, a simplified stabilized ERM formulation

as in [16] is obtained:

BK(E(,,’U(,) + /k(SK(a . V'éb) (a . V’Ub) = (f, vb)K + /K (5Kf (a . va) - BK(Uh, Ub)

_ /KéK(a-Vuh) (a- Vo) +ls < Oun > w Yo, €Vy  (4.16)

81’11{1'

Establishing a numerical solution for Equation (4.16) is not guaranteed unless the
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edge fluxes are under equilibrium. Ainsworth and Oden [10] proposed a method to
equilibrate the edge fluxes while maintaining the consistency condition of the flux
across the element boundaries. This flux equilibration method is difficult to imple-

ment and is rarely applied in practice [16, 23].

4.3.2 The choice of an error norm

The norm used for measuring errors depends on the problem at hand. While a
standard energy norm exists for the elliptic operator, such a standard norm does not
exist for the advection diffusion equation. The argument presented by Kunert in [24]
is adopted, where different norms reflect different modelling background and research
purposes. The available literature [16, 17, 18, 25] on the effectivity of local error
estimation techniques was based on using a single norm in each study. In this study,
three different error norms are investigated. The first is the weighted energy norm

defined as:
1/2
fullen = (ENVUll? ) + lelZ0) " (4.17)

This error norm is a special case of the error norm used for reaction diffusion equations
with the reaction coeflicient set to one. This norm is referred to as the energy norm in
the rest of this paper. This error norm was the norm of choice in previous numerical
studies [16, 17]). The second error norm considered is the stability norm introduced

by Brezzi, et al. in [26]. This norm is defined as:

1/2
Jullsn = (EIIVUII%2<9) +) hila- VUH%?(T)) (4.18)
K

where hy is the diameter of an element K. This mesh-dependent norm arises in the
analysis of the streamline diffusion finite element method, and the analysis of the
residual-free bubble method [26]. The third error norm employed is a special case of

the natural norm for coercive and non-symmetric operators introduced by Sangalli in
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[25], with the reaction term set to zero

1/2 1/2
el n = (el oy + alllulllye) = (ellulidy o) + lalliul?, ) (4.19)

The fractional order semi-norm is approximated by an Ly norm. This norm will be
referred to in the rest of this paper as an approximate fractional order norm.

In addition to error estimation by ERM, computational results of an error estimator
based on patch recovery techniques attributed to Zienkiewicz and Zhu are included.
The ZZ estimator is based on gradient recovery by solving local least square problems
over discrete patches [19, 20]. The ZZ error estimator is relatively easy to implement
and is independent of the problem formulation. The error calculated by the ZZ patch

recovery is measured in the following unweighted energy norm,

[ullune = (| V2ell200) (4.20)

4.4 Numerical test problems

Three test problems with analytical solutions are used to evaluate the effectivity
indices of the estimated errors and to investigate the effect of using different error
norms on mesh adaptivity. The exact solution of these problems exhibit sharp layers
on the interior or the boundary of the problem domain. The first problem is adopted
from [18], while the second and third problems are similar to problems 5.2 and 5.3 in
Reference [16], respectively.

The first problem AD1 is governed by Equation (4.1) and defined over the domain
1 = (-1,1) x (—1,1). The problem is assumed to have a constant velocity vector
a = (0,1) and a zero loading function f. The essential boundary condition I'p, = 92

satisfies the following exact solution:

) ) ™
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(a) AD1 (¢ = 107%) (b) AD2 (e = 1072%) (c) AD3 (¢ = 1079)

Figure 4.1: Exact solution plot for problems AD1, AD2 and AD3

The second problem AD2 is defined over the domain Q = (0, 1) x(0, 1) and governed
by Equation (4.1) with a constant velocity vector a = (2, 3). The essential boundary
condition I'p = 9N and the loading function f are chosen such that the exact solution

is:

2z — 2 3y—3 21 —
u=zy? —y? ezp( :EE )—xezp( yE >+exp<m> (4.22)

£

The third problem AD3 is similar to AD2, except the loading function f and the

essential boundary condition are chosen such that the exact solution is:

w=162(1—2)y(l - y) (1/2+arctan [2veT (1/16 ~ (z - 1/2)° — (y — 1/2) )])

T
(4.23)
Three dimensional plots of the exact solution for problems AD1, AD2 and AD3
are shown in Figure 4.1. The solution for AD1 exhibits a sharp boundary layer at
the boundary y = 1, while the solution for AD2 exhibits two sharp boundary layers
at y = lorxz = 1. For problem AD3, the exact solution exhibits a sharp circular
internal layer.
Two additional problems, without analytical solutions, adopted from [17] will be

used to investigate the effect of using different error norms on the mesh adaptivity
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process. Problem AD4 is defined over the square domain £ = (0,1) x (0,1), with
a spatially varying velocity vector a = (y, —z) and zero loading function. Dirichlet
boundary condition is prescribed on the inflow part of the boundary defined by = =

0 or y = 1 such that:
u=1 for =0 and y <0.7 and u =0 otherwise (4.24)

On the outflow boundary, homogeneous Neumann boundary conditions are prescribed.
Problem AD5 is similar to problem AD4 except that the velocity vector is set to
a = (1,0) and the inflow part of the Dirichlet BC is defined as:

u=1 for =0 and |y—0.5| <0.05 and u =0 otherwise (4.25)

Similar to problem AD4, homogeneous Neumann boundary conditions are prescribed
at the outflow part of the boundary. A three dimensional plots of the solution for

problem AD4 and AD5 using a very fine mesh are shown in Figure 4.2.

(a) AD3 (; =107%) (b) AD4 (¢ = 107%)

Figure 4.2: Exact solution plot for problems AD4 and AD5

The quality of the estimates are measured in terms of the effectivity index. The
effectivity index (EI) is the ratio of the estimated error to the exact error, both

measured in the same norm. Each test problem has a parameter ¢ that controls the
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width of the sharp layer. Smaller values of € imply more advection in the problem
and thus more difficulty in both solving the problem and in estimating the errors.
The solution scheme with adaptive mesh refinement was implemented within the

open-source libMesh finite element library [27].

4.5 Computational results

A posteriori error estimation results are used to guide the mesh adaptivity process.
The objective of this adaptation is to equidistribute the errors over the entire problem
domain. This objective is achieved by refining, in each adaptivity step, a set of
elements that have error values exceeding a pre-specified fraction of the maximum
elemental error.

Problem AD1: Figure 4.3 shows the effectivity indices of the estimated errors
using different error norms. Two values for the parameter ¢ are used. In the first
case with ¢ = 1073, the effectivity index shows an asymptotic behavior that ap-
proaches unity as the mesh is refined. The fractional order norm and the energy
norm (weighted) produced almost identical effectivity indices and their corresponding
curves overlap in Figures 4.3 and 4.4. This is attributed the insignificant differences
between the two norms for the case of a unit velocity vector. For coarse meshes,
the ERM and ZZ error estimators, regardless of the norm used, tend to underesti-
mate the error. This is attributed to the fact that the solution was not resolved by
these meshes. While the SUPG method produces a stable solution, the accuracy of
the solution close to the boundary layer is lost. With mesh refinement, the ERM
outperforms the ZZ in the accuracy of the estimated errors. In Figure 4.3-(b), the
effectivity index of the estimated error is plotted against the mesh size for the case of
e = 10~%. The error estimator is only accurate for mesh sizes larger than 10° because
this mesh resolves the solution at the boundary layer. The stability norm performs
slightly better in estimating the errors on the adapted meshes.

To gain a better understanding of the performance of the error estimator, the
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Figure 4.4: Zoom in view of the effectivity indices plot for problem AD1
with ¢ = 10~

results plotted in Figure 4.3-(b) are plotted again using a different scale in Figure
4.4. In part a, the mesh is very coarse and the boundary layer is localized over a few
mesh elements. Thus the estimated errors in the global norm are relatively accurate,
but this scenario is not guaranteed to occur in every problem. With mesh refinement,

as shown in Figure 4.4-(b), the effectivity index is deteriorating because the solution
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(a) ERM - Energy norm (b) ERM - Stability norm (c) ZZ - Adaptivity

Figure 4.5: Adapted meshes for Problem AD1 after 10 adaptivity itera-
tions (¢ = 107%)

close to the boundary layer is not properly resolved due to the damping effect of the
stabilization parameter. The quality of the estimated errors improves with further
mesh refinement and the effectivity index approaches the optimal unit value as shown
in Figure 4.3-(b). It can be seen that for sharp boundary layers, the estimated errors
are only accurate when the mesh resolves these layers. This is to be expected as the
ERM uses second order bubble functions to approximate the error, while the exact
solution exhibits exponential boundary layers. To obtain accurate error estimation
for smaller values of € much larger mesh sizes with smaller nodal spacing are needed.
The previous analysis explains the results of example 2 in Reference [17], where a
reduction in the effectivity index with mesh refinement was observed for the case
of € = 1071%. The adapted meshes for problem AD1 after 10 adaptivity iterations
(e = 107*) are shown in Figure 4.5. Adapted meshes using ERM measured in the
stability norm are sharper in the middle of the boundary layer, where the solution
value is small. On the other hand, the mesh obtained by ZZ adaptivity showed some
dependency on the magnitude of the solution gradient.

Problem AD2: The effectivity indices of the estimated errors are shown in Fig-
ure 4.6. Initially, for coarse meshes, the ERM underestimated the errors but with

further refinement the effectivity index approached unity. The different norms used
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to measure the errors did not produce significantly different results in the effectivity
index. It is worth mentioning that the energy norm produced almost the same results

are the fractional order norm. The adapted meshes are plotted in Figure 4.7 after
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Figure 4.6: Effectivity indices for problem AD2 (Adapted by ERM mea-
sured in the stability norm)

8 adaptivity iterations. Again, the ERM measured in the stability norm produced
meshes with an overall better distribution of mesh density that conforms with the
solution boundary layers. The ZZ estimator, as for problem ADI1, produced a re-
fined mesh that depends on the magnitude of the solution gradient and subsequently
resulted in a fine mesh where the two boundary layers intersects.

Problem AD3: For this problem, the effectivity indices of the estimated errors
are plotted in Figure 4.8. The effectivity index for the stability norm was significantly
closer to the optimal unit value for both ¢ values of 107¢ and 1078, Figure 4.9 shows
the adapted meshes using the different adaptivity drivers. The mesh adapted using
the ERM measured in the stability norm was symmetric and showed no affect of
the wind direction. In contrast to that, the mesh adapted by the ZZ patch recovery
method did not reflect the symmetry of the exact solution.

Problem AD4: The adapted meshes are shown in Figure 4.10 and Figure 4.11
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(a) ERM - Energy norm (b) ERM - Stability norm (c) ZZ - Adaptivity

Figure 4.7: Adapted meshes for Problem AD?2 after 8 adaptivity iterations
(e =1073)
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Figure 4.8: Effectivity indices for problem AD3 (Adapted by ERM mea-
sured in the stability norm)

corresponding to € = 1073 and & = 1075, respectively. Both the meshes adapted by
the ERM measured in the energy norm and the stability norm captured the singularity
at the inflow boundary for € = 1073 as well as around the internal layer for the case of
£ = 1075. Meshes adapted according to the ERM managed to eliminate the oscillation
around the internal layer, even without using a shock capturing scheme. However,

the mesh adapted by ZZ failed to capture this higher order phenomena at the shock
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Figure 4.10: Adapted meshes for Problem AD4 after 7 adaptivity itera-
tions (¢ = 1073)

Problem AD35: The solution for this problem exhibits two discontinuities at the
inflow boundary which are reflected in the adapted meshes shown in Figure 4.12.
Meshes adapted by ERM measured in the stability norm are slightly better than
those produced by ZZ or ERM measured in the energy norm. The magnitude of the
calculated errors close to the points of discontinuities are much larger than in the

rest of the domain, which resulted in marking few elements for refinement at each
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Figure 4.11: Adapted meshes for Problem AD4 after 10 adaptivity itera-
tions (e = 107%)

adaptivity iteration. This resulted in an increased number of adaptivity iterations to
attain a certain level of error in the global norm.

Another marking scheme referred to as the sorting strategy is used for this problem:.
The sorting strategy is based on sorting the mesh elements according to the estimated
local errors and refining a certain percentage of the mesh elements with the largest
error norm. This strategy resulted in fewer mesh adaptivity iterations. Figure 4.13
shows the adapted meshes using the sorting strategy, where 10% of the mesh elements
are marked for refinement at each adaptivity iteration. The adapted meshes after 10
adaptivity iterations have a relatively similar distribution inside the problem domain.
Using a more aggressive refinement scheme, especially when the starting mesh is very
coarse might result in a mesh that is affected by the wind direction as for example
6.2 in Reference [16].

4.6 Conclusions

In this work, error estimation for advection diffusion equations was numerically
investigated. Three different error norms were employed to measure the error norm.
The errors were estimated by solving local element based problems subjected to Neu-

mann boundary condition and using ZZ patch recovery. The presented results are
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Figure 4.13: Adapted meshes for Problem ADS5 after 10 adaptivity itera-
tions using the sorting strategy (¢ = 1073)

generally better than what have been reported in the literature with respect to the
effectivity indices, because of the use of more adaptivity iterations with a mesh size
depending on the local feature of the problem solution. It was shown that effectivity
indices close to unity will only be attained if the sharp layers are completely resolved
by the mesh. While this is a great limitation of the error estimation techniques based
on solving local problems, these error estimators managed to guide the adaptivity
process to obtain meshes that were able to resolve the sharp layers.

The use of the stability norm instead of the standard weighted energy norm has

108



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

shown some advantages numerically. For problem AD1 and AD2, the adapted meshes
using the stability norm were more conforming to the sharp layers in the solution. In
the case of internal layers, measuring the errors in stability norm resulted in effectivity
indices closer to the optimal unit value. Adapted meshes guided by ERM measured
in the stability norm were less dependent on the wind direction. A refinement criteria
based on the sorting strategy where a constant percentage of the mesh elements are
refined at each iteration was tested for problem ADS5. This strategy is recommended
for problems with local discontinuities or points of singularity in order to reduce the

number of mesh adaptivity iterations.
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Chapter 5

A posteriori error estimation based on numerical
realization of the variational multiscale method

A H. ElSheikh, S.E. Chidiac and S. Smith

ABSTRACT

This paper presents a numerical realization of the variational multiscale method with the
objective of providing a reliable and easy to implement local error estimation technique.
The variational multiscale framework provides a systematic approach of solution scale de-
composition into coarse scales captured by the mesh and fine or subgrid scales. In the
proposed work, the coarse scale errors in the finite element solution are neglected in com-
parison to the fine scale errors. The fine scale variational equation is then localized using a
general localization function over an element, or a patch of elements, to develop local error
estimation technique. Based on the proposed framework, a consistent formulation of a new
subdomain error estimator is derived, without the necessity of introducing an error locality
assumption. The new subdomain error estimator is evaluated numerically within a mesh
adaptivity algorithm and it is shown to produce very sharp error estimates that outperform

the element residual method estimates.

KEY WORDS: Adaptive Finite Element; A Posteriori Error Estimates; Poisson Equation,
Variational Multiscale Method
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5.1 Introduction

Mathematical modelling of many physical phenomena arising in engineering ap-
plications leads to partial differential equations (PDE’s). These PDEs are often nu-
merically solved using the finite element method because of its modularity, ease of
implementation and its strong theoretical foundation. Given the value of the finite
element method, an understanding of potential sources of errors in the solution is
critical. One of the major sources of error in the finite element solution is the dis-
cretization error. Fortunately, adaptive mesh refinement based on a posteriori error
estimates offers an effective method to estimate and control the discretization error.

Reliable error estimation for the finite element method has been the focus of intense
research during the past decade [1, 2, 3]. A posteriori error estimation techniques can
generally be divided into implicit and explicit methods. Explicit methods use approx-
imate formulas to estimate the residual in the element interior and on the element
boundaries [4, 5]. These formulas contain problem dependent constants that can be
determined by solving a dual problem over the problem domain [6, 7, 8. On the
other hand, implicit a posteriori error estimation methods are based on approximat-
ing the solution of the residual equation. The residual equation is localized over a
single element, as in the element residual method (ERM) [9, 10], or over a patch of
elements, as in the subdomain residual methods (SRM) [4, 11, 12]. The localization
is introduced to avoid having to solve a global equation, as in extrapolation methods.

In this paper, a general framework for error estimation based on a numerical real-
ization of the Variational MultiScale (VMS) method is proposed. In the VMS frame-
work [13], the solution space is decomposed into resolved components (captured by
the mesh) and unresolved components (subgrid scale). This decomposition provides
a simple way to derive a variational formulation for both resolved and unresolved
scales. Different localization techniques can be applied to the fine scale variational
formulation to derive different local error estimators. The proposed framework is

used to derive a new flux-free subdomain residual method for patch based error es-
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timation. This new Hux-free estimator has some similarity to the subdomain error
estimator presented in [11], but the new estimator is conceptually different and eas-
ier to implement. In comparison to existing SRM formulations, no assumptions are
introduced regarding the error norm for measuring the errors, as in the SRM formu-
lation presented in [12], or regarding the boundary conditions of the local problems,
as in the SRM formulation presented in [4]. The localization effect on the calculation
of the unresolved scales is observed to be minimal, as demonstrated in the numerical
examples.

This paper starts with a simple problem formulation followed by a brief review
of the VMS method. A general framework for local error estimation based on the
variational multiscale decomposition is introduced. In addition, some theoretical
properties of the estimated errors using the proposed framework are presented. The
element residual method is then derived from the general framework. A new flux-free
error estimator that is sharp and provides a quasi-upper bound of the exact error in
the energy norm is then introduced. The last section demonstrates the reliability of

the proposed SRM through numerical examples.

5.2 Problem setup
A linear elliptic problem defined by

Lu =f in Q

U =1Up on I'p (5.1)
g—z =g on I'y

is considered, where  is a bounded domain in R? with a Lipschitz-continuous bound-
ary 02 composed of Dirichlet portion I'p and Neumann portion 'y where 91 =
I'puUulyand T'pNI'y = &. Lu = — A wu is a linear second order differential operator
and f € Ly(Q) is the prescribed loading function. The boundary data up and g are

assumed to be sufficiently smooth and n denotes the outward unit normal vector to
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I'y. Using standard norm notation for Sobolev and Hilbert spaces as in Reference
[14] and equipped with scalar L? inner product (.,.), the Galerkin weak formulation

of Equation (5.1) can be written as

Find u € V = H}(f) such that

(5.2)
B(u,v) = (f,v) + (g,v)ry Yo €V

where the bilinear B is defined as B(u,v) = [, (Vu-Vv), (f,v) = [, f v is the
L2-inner product and {g,v) = fFN g v is the boundary integral term.

To specify a Galerkin finite element formulation for (5.2), a shape regular dis-
cretization [15] of the domain (2 into a set of triangular partitions 7; with a set of
nodes N}, and edges &, is introduced. The number of elements is given by the car-
dinality of the set of partitions |73|. Each pair of partitions in 7}, is either disjoint
or intersects at a common edge or a common vertex. A finite dimensional space
Vi C V is defined over the discretization 7, with a nonuniform size parameter h,
called the element diameter and defined by the diameter of the minimal ball circum-
scribed around the mesh element. Defining V), using polynomials of degree at most 1

on each element K € 7, the first order Galerkin finite element formulation is

Find u, € V), such that

(5.3)
B(up,vp) = (f,vn) + (g, vn)ry ~ Vun €V,

The discretization error e is defined as e = u — uy, where u is the exact solution and
uy, is the finite element solution. A standard way to measure the error is through the
energy norm defined as ||ul| = y/B(u, u). The residual of the finite element solution

uy, is defined as
Ru(v) = (f,v) — Blup,v) + (g,v)ry, = Ble,v) Yv €V (5.4)

The Galerkin orthogonality property follows directly as B(e, vy) = Ry (vy) =0, Yo, €
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Vi. Implicit a posteriori error estimation techniques are based on approximating the

solution of Equation (5.4) efficiently [3].

5.3 The variational multiscale method

In this section the two level variational multiscale method according to Hughes
[13, 16] is presented. The VMS is based on the fundamental concept of scale decom-
position, where the solution is decomposed into coarse scale and fine scale components.
The fine scale components are defined as the components neglected after projecting
the solution space into a finite dimension space defined by the domain discretization
(mesh). For advection dominated equations, the solution tends to oscillate when the
fine scale components are neglected. To overcome this oscillation in the solution, a
stabilization method is commonly incorporated in the finite element formulation to
account for the subgrid energy.

The overlapping sum decomposition of the solution space V into a coarse scale

subspace V. C V and fine scale subspace V; C V is formalized as
V=V.eV; (5.5)

A similar decomposition is introduced for the solution test and trial functions u =
U. + uy and u = v, + vy, where u,,v. € V. and uy,vy € V;. Using this space
decomposition in the Galerkin weak formulation presented in Equation (5.2) yields

the following two scale variational equation: Find u. € V. and uy € V; such that

B(UC, /Uc) + B(uf, 'Uc) = (fa 'Uc) + <g7 UC>FN v Ve € ‘/C (56)
B(uc,vs) + Blug,vp) = (f,v5) + {9, vf)ry Vvp €Vy (5.7)

When the term B(uy,v.) in Equation (5.6) is neglected, the standard finite element
formulation is obtained, with w. corresponding to u, in Equation (5.3). Equation

(5.7) is the global residual equation that can be solved globally to obtain a reference
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estimation of the error.

5.4 A general framework for implicit local error estimation

The goal of error estimation techniques is to estimate the error field e by approx-
imating the residual Equation (5.4) without solving a global problem. The error in
the Galerkin finite element solution u;, has two components: coarse scale and fine
scale errors. Using a mesh dependent projection operator Il : V' — V},, the coarse
scale error field is defined as e, = Il u — u, and the fine scale error is defined as
ef = u — Ilyu. It is postulated that fine scale errors dominate the error norm. For
problems with small subgrid energy contributions the contribution of Vey is expected
to be much larger than Ve, and thus dominate the error norm. For problems where
the contribution of the subgrid energy is large, neglecting the term B(uy,v.) in the
VMS formulation might result in physically unrealistic oscillations in the solution u,.
Stabilization techniques are usually applied to eliminate the oscillations as in the case
of advection diffusion equations. Once a stable coarse scale solution is obtained, the
coarse scale errors can be neglected in comparison to the fine scale errors. Moreover,
the most successful local error estimation technique based on the ERM implicitly
neglects the errors at the mesh nodes, where only edge bubbles and element interior
bubbles are employed to solve the local element problem [3]. Based on that postula-
tion, a practical objective is set for the proposed framework to estimate the fine scale
error reliably.

Accordingly, the finite element solution uy is assumed to be a good approximation
of u. and a special form of the global residual equation can be obtained. Replacing

u, with u, and uy with e in Equation (5.7) yields,
Bles,vp) = (f,v5) + (g, vp)ry — Blun,vp)  Vup €V (5.8)

In the proposed framework, the focus is on solving Equation (5.8) locally. To obtain

a consistent formulation, a localization function 1 is applied to the strong equation
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corresponding to Equation (5.8). The corresponding global residual equation is de-
rived by multiplying the strong equation by the fine scale test function v¢, and then
by applying Green’s theorem. At this level, a localization function 1 is introduced as

follows:

(—A(up +€5),v5) = (f, v5) = Global Strong Equation
(—A(up +ef),vp ) = (f, vy ) = Localized Equation using 9

where, the coarse scale error in uy, is neglected. Integrating by parts results in

Beg,vs ) = (f,vf ¥) — Blun,vg ¥) + (9, v5 ¥)ry Vo € Vs (5.9)

The localization functions 1 can have different forms. For example, it can have a
unit value over the problem domain €2 to obtain the global residual equation. If ¥ is
defined over one element with a unit value and vanishes everywhere else in the domain,
the ERM formulation is obtained. If the localization function is set as a partition
of unity then a consistent formulation of the subdomain residual method (SRM)
is obtained. After selecting the localization function %y, other technical problems
such as the boundary conditions and the solvability of local problems have to be
addressed. In the following subsections, the properties of the proposed framework are
presented followed by a consistent derivation of the element residual method and a

new subdomain residual method for a posteriori error estimation.

5.4.1 Upper bound property of the estimator

Theorem 5.4.1. Let es be the estimated error by the proposed framework, e the exact
error and Il e the projection of the exact error to the local subspace defined by the

finite element discretization, the following inequality holds:
2
llesll® > llel® = [Tell (5.10)
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Proof
Given the properties of the approximation space decomposition of V = II,V & V4,

one can substitute vy = v — IIyv in the fine scale residual equation and get
B(ef, ’Uf) = Rh(l}f) —— B(Bf,’l) — Hh’l)) = Rh(v — Hh’l)) (511)

Replacing v by the exact error e, as both functions are continuous functions, Equation
(5.11) becomes

B(es, e —Ilne) = Rp(e — IIhe) = Rp(e) — Ru(Ilre) (5.12)

By using the Galerkin orthogonality property, the residual of the nodal projection of
the exact error vanishes (Rp(Ilpe) = Rp(vy) = 0). Substitution of Ry(e) = B(e,e) =
|lel|? in Equation (5.12) yields

Bles. e — ie) = |le)|? (5.13)
Employing this result in the following expansion,
(e — Thhe) — e = ll(e = Te) |2 + les|® — 2B(es e~ Tlhe) 20 (5.14)

yields,
I(e = The) I + llesll” — 2llel|* > 0 (5.15)

Rearranging Equation (5.15), one gets
llesll” > 2[lelf* — [I(e — Mxe)|? (5.16)
Expansion of the last term in the right hand side results

eI > 2l - (||e||2 T [ Tel? - 2B(e,nhe>) (5.17)
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The term B(e, Il5e) vanishes because of the Galerkin orthogonality. This yields,
llesl® > llell* — | nel|® (5.18)

The theorem demonstrates that any error estimator that is based on approximating
the fine scale error only is a theoretical upper bound for the term ||e||> — ||Ixe||®. This
implies that ||ef|| is a sharp estimator of the exact error norm [|e|| when the norm of the
coarse scale errors [|IT,e||® is small. Different localization techniques in Equation (5.9)
result in different approximation of e; denoted as e,,, where m refers to the localization
method used. The estimated error field e, might be discontinuous and thus the error
norm ||e,,|| might over estimate the exact error norm ||e,,||. The computed error is

denoted by e, and is practically approximated using a finite dimension space.

5.4.2 Lower bound property of the estimator

Estimation of a lower bound to the error norm can be done using a continuous
approximation of the error field [17]. A postprocessing approach using the potentially
discontinuous upper bound error field ¢, is used to produce a continuous error field.
The quality of the lower bound estimate depends on the quality of the upper bound

error estimate as well as the smoothing operator used to derive a continuous error
field.

Theorem 5.4.2. For any continuous field &, the following lower bound property holds

[17):

R (£)2
Rald) < e (519)
€]
Proof (according to Ref. [17])
Using the following expansion
0 < Jle = AE[I* = llell® + A*llg]* — 2AB(e, §) (5.20)
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where A is a constant. For a continuous field &, B(e, ) = Rx(§). Using this property

in the above expansion one obtains the lower bound property,
2AR(€) — MIIEN" < lel® (5.21)

This equation is valid for any value of A\. To obtain a sharp lower bound estimate,
an optimal value of A that maximizes the right hand side is used. Differentiating
the left hand side and setting the result to zero, one obtains an optimal value of
A = Ru(€)/|I€]*. Back-substitution of the optimal A value results in the lower bound

estimate.

5.5 A variational multiscale element residual method

The localization function v is defined over the mesh element K € 7}, as ¥ = 1
and vanishes over all other mesh elements. This results in a number of decoupled
local problems corresponding to the number of mesh elements. The formalization of
the method follows Equation (5.9) as

Bles, vy ¥x) = (f,v5 ¥K) + <8(ug—:ef—)avf wK> — B(un,vp ¥)  (5.22)
E Ecéy

where ng denotes a unit normal vector to the edge E. Figure 5.1 shows a plot of
the localization function ¥g. All the terms in Equation (5.22) are evaluated locally
over the element K because of the properties of 1. A local uniform refinement
over each element can be used to obtain an approximation space for solving the local
problems, as shown in Figure 5.1 (b). The boundary integral term resulting from
the integration by parts needs special treatment as it depends on the unknown exact

solution u = uy + e. This boundary term is usually approximated by averaging the
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(a) Localization function (b) Discretization of the local problem

Figure 5.1: Localization and discretization of the ERM

flux from two adjacent elements as

ng - {(Vup)k + (Vup) g} on E C (0K NOK)

(5.23)
on E C (0K NTy)

KL =

where K and K’ are two adjacent elements sharing the edge E. In the current
formulation, the fine scale errors at the Dirichlet boundary (0K NT'p) are applied as
an essential boundary condition for the local problem.

The detailed calculation of the upper bound error estimates starts by solving a set

of local problems

Find eerm € V5 such that
(5.24)

Bx (eerm»vs) = (f,vf)k — B (un,vg) + (g|g, v5)Bcox  Yuy € Vi

where e.,,, is the error field approximated by the ERM and the subscript K denotes
a restriction of the bilinear and the loading term over an element K. An approximate
space Vyy, is defined by a locally refined discretization of each element and the error

evaluated in the space Vi, C V; is denoted by €e.,,. The local error norm ng is
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evaluated as

Nk = {BK (germa germ) }1/2 (525)

and the global error in the energy norm is calculated as the sum of the local contri-

Nerm = { > n?{}m (5.26)

KeT,

butions as

The solvability of the local problems is guaranteed iff the boundary fluxes are bal-
anced. Flux equilibration methods have been proposed in [10, 18] to correct the
weights used in averaging the edge flux jumps. However, flux equilibration is difficult
to implement and rarely applied for practical problems [19]. It should be noted that
the estimated error norm is a guaranteed upper bound of the exact error iff the local
problems are solved exactly and flux equilibration is applied. The analysis of the
asymptotic exactness of the error estimate can be found in [10] and is beyond the
scope of the current work.

Obtaining a lower bound error estimate from the ERM is based on smoothing
the discontinuous error field €., by averaging the errors over each mesh edge. This
smoothing operation is sufficient to produce a lower bound of the error norm, but
the quality of such an estimate is poor. The poor performance is attributed to the
introduction of artificial deformation of the error field by averaging the error at the
mesh edges, while keeping the error values in the element interior unchanged. Fol-
lowing the work in [19], local problems described by Equation (5.24) and subjected
to Dirichlet boundary conditions are solved to obtain an improved continuous error
field. The Dirichlet boundary values are the averaged error on each mesh edge. The
newly calculated element interior error field and the averaged edge errors are used to

calculate a lower bound estimate using Equation (5.19).
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5.6 A variational multiscale subdomain residual method

The first subdomain residual method (SRM) was introduced by Babuska and
Rheinboldt [20]. The residual was decomposed using a partition of unity and lo-
cal problems were formulated over nodal based patches with homogeneous essential
boundary conditions. The error field was assumed to be local due to the locality of the
residual term after the decomposition. This assumption is not valid on coarse meshes,
or if the problem has any multiscale features [21]. The performance of that SRM for-
mulation was found to significantly underestimate the errors. Recently, four different
variations of the subdomain error estimation techniques were proposed [11, 12, 22, 23].
The major differences between these methods are in the definition of the bilinear used
to calculate the error and the boundary conditions of the local problems. Addition-
ally, constraints were specified on the approximation space of the local problems to
eliminate zero energy modes. Published numerical results [12, 24] show that sub-
domain based error estimation techniques are not as reliable as the ERM, with the
exception of the work of Parés et al. [23] where the estimator is claimed to be as
sharp as the ERM.

In the current work, the subdomain residual estimate is obtained by defining the
localization function v in Equation (5.9) as a partition of unity ¥ = ¢y, corresponding
to the mesh node N € N,,. The localization function is applied before the integration
by parts to produce a consistent bilinear form in contrast to the bilinear used in other
SRM formulations [12, 22]. The SRM is formulated as a number of overlapping local
problems defined over a nodal based patches where P(N) denotes the set of mesh
elements containing the node N. Each problem is defined as:

Find e, € Vy such that

By (€srm> V5 o) = (f, 05 o8 )pvy — B(un, v5 o) pvy+

0
<“(1gl + e),fvf <PN> VUf c Vf (527)
ng ECP(N)
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(a) Internal patch (b) Boundary patch

Figure 5.2: Localization function ¢ used in the subdomain error estimator

(a) Internal patch (b) Boundary patch

Figure 5.3: Discretization of the local problem

The integral term over the edges E C P(IN) vanishes on the interior edges of the
patch because the exact solution u = (up, + €) is continuous. It also vanishes on the
boundary edges because it is multiplied by the partition of unity ¢ . This results in a
flux-free consistent formulation for the SRM. The solution space of the local problem
is obtained by h-refinement for each patch. Figure 5.2 shows a plot of a partition
of unity for internal and boundary nodal based patches and Figure 5.3 shows the

corresponding h-refinement mesh for each patch with two levels of local refinement.
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The discretized form of the local problems at an internal node is defined as

Bp(n)(€srm, Vs on) = (f,vy ‘PN)P(N) — B(up, vy <PN)P(N) VYvg € Vip (5.28)

where €., is the error field approximated by the SRM and the subscript P(N)
denotes a restriction over the patch. For the case of boundary nodes the externally
specified Neumann conditions are applied on I'y N 9P(N) and the exact error in
the finite element solution ey = up — uy, is enforced on the Dirichlet portion of the
boundary condition I'p N P(N). For internal patches with a zero flux boundary
condition, zero energy modes are eliminated by obtaining a solution in the space
Vi = V — I,V (see remark 3.1 in [22]). By eliminating the constraints on the
solution space, the implementation of the proposed estimator becomes much simpler
than the other subdomain methods [11, 12].

On triangular meshes, the current estimator evaluates the error field over each
element three times corresponding to the three nodal patches. There are alternative
methods to compute the error field; the simplest one is to calculate the error norm
using the bilinear B(€gpy, €srm) from each patch and then divide the result by the
number of partitions of unity spanning over the element (three for triangular meshes).
In that case, the discontinuity of the error field is accounted for implicitly without
the need to store a discontinuous error field. If one denotes the error field calculated
using the SRM formulation corresponding to the nodal problem N as €,,.,n~, the local

error norm is then evaluated as

Ni = { ZNC@K BK(gSTva gsrmN) }1/2
ZNCBK 1

(5.29)

and the global error in the energy norm is calculated from

Nsrm = Nk v (5.30)
P

KeTy,
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To calculate a lower bound for the error norm, a continuous error field is evaluated
by smoothing the solution from the patch based problems. A partition of unity is
used to weigh the error field resulting from each patch solution and the summation of
the contributions from each patch results in a continuous field. Since the continuous
error field is efficiently evaluated, a lower bound estimate of the error norm can be

obtained using Equation (5.19).

5.7 Application to Poisson equations

The proposed ERM and SRM are evaluated numerically for Poisson type equations.
Four test problems are formulated using Equation (5.1), where the load function f and
the boundary data are set such that the solution satisfies the desired exact solution.
For all four test problems, the procedure adopted to calculate the errors is as follows:
(i) The upper bound ERM estimate, denoted ERM-up, is calculated using Equation
(5.24). The local contributions are collected following Equations (5.25) and (5.26).
(ii) The lower bound ERM estimate, denoted ERM-lo, is calculated by first recovering
a continuous error field from e, and then using the general lower bound formula
of Equation (5.19). (iii) The solution of the local problems is done by introducing an
h-refinement of the local domain. The symbol RL is used to refer to the refinement
level. Each triangle is refined to 16 triangles in the case of RL = 2 and 64 triangles
in the case of RL = 3. (iv) The upper bound SRM estimate, denoted SRM-up,
is calculated using Equations (5.28), (5.29) and (5.30). (v) The lower bound SRM
estimate, denoted SRM-lo, is calculated using a continuous error field obtained by
postprocessing €,.n,. The continuous error field is plugged into the general lower
bound estimate defined by Equation (5.19).

The quality of the upper bound estimates is measured by the effectivity index (EI)
which is the ratio of the estimated error norm to the exact error norm. A value close
to unity indicates an accurate error estimation. Another index denoted by p is used

for measuring the quality of both the upper and lower bound error estimates. The
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~
0

o
0

(a) Initial mesh (b) Sol. on initial mesh  (c) 4 it. to global refinement

Figure 5.4: Problem P1 - Initial mesh and finite element solution

index p is defined as

timated
. {es imated error 1} « 100%

exact error

Test problem P1
The first test problem is defined over the domain 2 = (0, 1) x (0, 1) with the loading

function f set such that the exact solution is
Uezact = SIn(27z) sin(2my) (5.31)

Figure 5.4 shows the initial mesh and the finite element solution on the initial mesh
and on a fine mesh obtained by four iterations of global mesh refinement. The exact
solution is smooth and symmetric and the initial mesh is unstructured. The initial
mesh only captures the main features of the solution, as shown in Figure 5.4 (b).
Table 5.1 shows the index p for the estimated errors using the SRM and the ERM.
For the case of RL = 2, the subdomain method produces a very high quality upper
bound error estimate with p = 1.88%, for the coarse mesh. The ERM for the same
case overestimates the errors by 28%. On refined meshes, the subdomain method
slightly underestimates the exact error by about 1%. The quality of the SRM lower

bound estimate contains 3 — 5% error. The quality of the ERM estimator is also
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Table 5.1: Problem P1 - Effectivity indices for the estimated errors in
terms of the index p

# nodes RL=2 RL =3
SRM-up | SRM-lo | ERM-up | ERM-lo | SRM-up | SRM-lo | ERM-up | ERM-lo
27 1.883 | -5.335 | 28.461 | -10.988 | 3.539 | 2708 | 44523 | -14.006
8 | -0799 | -4289 | 9908 | -6.718 | -0.311 | -1.907 | 18599 | -8.279
321 | -0967 | -3954 | 3745 | -4.632 | -0.858 | -1.660 | 10.691 | -4.639
1217 | -0.798 | -3.796 | 2.087 | -3.970 | -0.777 | -1.523 | 8.668 | -3.416
4737 | -0676 | -3.733 | 1.627 | -3.736 | -0.669 | -1464 | 8.140 | -2.987

evident and converges to the exact value with mesh refinement. This is attributed to
the solution smoothness, which means that the averaging technique used to calculate
the boundary conditions of the local problems is valid.

On coarse meshes, the subdomain estimator is very accurate considering that the
finite element solution only represents the main features of the exact solution. On
the refined meshes, the observed small deviations of the SRM-up and SRM-lo from
the exact error norm are attributed to using a finite dimension space for solving the
local problems and to the ratio of the coarse scale error norm defined as B(Il,e, I e)
to the total exact error norm B(e, €). One can study the effects of the approximation
space by comparing the effectivity indices using RL = 2 and RL = 3.

The use of three levels of local refinement (RL = 3) results in sharper SRM-up
and SRM-lo error estimates. Mesh refinement resultes in a slight enhancement of the
quality of the SRM upper bound estimate. For the initial coarse mesh, the estimated
error field tends to be discontinuous which yields some over-estimation in the error
norm, while for finer meshes, the amount of deviation from the exact error is mostly
attributed to neglecting the coarse scale errors. The quality of the lower bound error
norm improves with expanding the approximation space because of the increased
continuity of the error field.

For the ERM expanding the approximation space corresponds to an increased

deviations from the exact errors especially for the upper bound estimate. This is

130



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

Exact SRM ERM

Figure 5.5: Plot of the error field for problem P1 on the initial mesh
(RL=2)

attributed to the averaging technique used to approximate the boundary fluxes. The
artificial boundary conditions contain spurious modes that are magnified when en-
larging the approximation space. The results from this smooth problem provide a
strong evidence that the proposed subdomain estimator behaves as expected from
the theory and produces very sharp results on coarse meshes in comparison to the
ERM.

For a better understanding of the performance of the two estimators, the estimated
error fields used to calculate the lower bound error norm are plotted along with the
exact errors in Figure 5.5. The subdomain method resulted in an error field that
strongly resembles the exact error field in all parts of the domain, while the ERM
generally over estimates the errors with major deviation from the exact error over the
triangular element with two Dirichlet boundary conditions. This special configuration
of the local problem with two prescribed boundary conditions and the third boundary
approximated using an averaging technique results in a strongly unequilibrated local
problem. For most of the interior mesh elements, the averaging technique results in
better approximation because the errors in the boundary term cancels each other,
which is not the case for the corner element.

The histogram of the local effectivity indices of the upper bound error estimates is

shown in Figure 5.6. The subdomain method produces local effectivity indices in the
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# Elements
N
# Elements
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Effectivity index Effectivity index

Figure 5.6: Histogram of local effectivity indices for problem P1 using the
initial mesh (RL = 2)

range of 0.8 to 1.2, which is of very high equality for a coarse mesh. ERM produces
local effectivity indices in the range of 0.5 to 3. The large variation in the value of
the local effectivity raises question about the quality of the information used for mesh
adaptivity based on the ERM.

The histograms of local effectivity indices for the SRM and ERM after two global
mesh refinement iterations are plotted in Figure 5.7. For the subdomain method,
the local EI is bounded between 0.8 and 1.2 but the distribution has two peaks at
the effectivity indices of 0.9 and 1.2. These two peaks are attributed to the local
distribution of the coarse scale errors. The distribution for the ERM estimated errors
is similar to a normal distribution, with a peak at a local effectivity index of 1. This
distribution is favorable as it shows that most elements have an effectivity index close
to unity. The good performance of the ERM is again attributed to the smoothness
of the problem solution.

The effectivity indices of the local estimated error norms using SRM and ERM
are plotted against the magnitude of the error norm using a logarithmic scale in
Figure 5.8. The histogram of the exact error norm for each element is also included

to show the number of element corresponding to each error norm level. Each element
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Figure 5.7: Histogram of local effectivity indices for problem P1 after two
global mesh refinement iterations (RL = 2)
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Figure 5.8: Problem P1 - Distribution of local effectivity indices against
the exact local error norm. Solution obtained after two global refinement
iterations (RL = 2)
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Figure 5.9: Problem P1 - Distribution of local effectivity indices against
the exact local error norm. Solution obtained after four global refinement
iterations (RL = 2)

corresponds to a dot on the graph with the coordinates indicating the exact error
for an-element against the effectivity index of the element error norm. The SRM
local effectivity indices plotted in Figure 5.8 are bounded between 0.8 and 1.2, which
indicates the good behavior of the method, independent of the scale of the error
norm. On the other hand, ERM produces error norms that are dependent on the
error magnitude, with low quality local estimates for elements with small error norms.
Figure 5.9 confirms the reliable behavior of the subdomain method in comparison to
the ERM on a much finer mesh.

It should be noted that effectivity indices for 10% of the elements with the lowest
exact error norm are not included in the histogram plots, such as Figures 5.6 and

5.7, because these elements do not contribute significantly to the global error norm.
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However, for the local effectivity comparisons against the exact error norm as plotted

in Figures 5.8 and 5.9, the elements with small exact error norms are included.

Test problem P2
This problem is defined over the domain © = (0, 1) x(0, 1) with the loading function

f set such that the exact solution is
Uegaet = 0.005 22 (1 — z)? (107%) 42 (1 — ¢)? 10V (5.32)

Figure 5.10 shows the finite element solution on the initial mesh and on the adapted
meshes after two and four adaptivity iteration. The corresponding meshes are plotted
in Figure 5.11. The solution exhibits a localized exponential peak that is hard to
capture efficiently using uniform mesh refinement.

It should be noted that the SRM is used to guide the mesh adaptivity for problems
P2, P3 and P4. The SRM is selected to drive the adaptivity because of the quality
of the estimator, as demonstrated throughout this paper. Adaptive mesh refinement
is done by the red-blue-green refinement detailed in [1]. Elements are marked for
refinement using the sorting strategy, where mesh elements are sorted according to the
estimated error norm, then all the element exceeding the (70)™ percentile are marked
for refinement. This corresponds to refining at least 30% of the mesh elements at each
adaptivity iteration. The global effectivity indices of the estimated errors using SRM
and ERM are listed in Table 5.2. For very coarse meshes, the advantage of the SRM
over the ERM is evident. The index p has a value of 2.5% for the subdomain upper
bound estimate and —9.6% for the lower bound estimate. Solving local problems
with a larger approximation space (RL = 3) resulted in a p index equals to 7.5%
and —4.3% for the upper and lower bound error estimates, respectively. This result
shows that the accuracy of the lower bound increases with enlarging local problems
approximation space, while the upper bound error norm might overestimate the exact

errors due to the increased discontinuity of the error field. The quality of the estimated
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(a) Initial mesh (b) Two adaptive iterations (c) Four adaptive iterations

Figure 5.10: Finite element solution of problem P2 on different meshes
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Figure 5.11: Adapted meshes for problem P2

errors using the SRM improves significantly with adaptive mesh refinement. However,
the ERM produces error norms that have a relatively large value of the index p.
Figure 5.12 shows a plot of the exact error in the finite element solution on the
initial mesh and the corresponding estimated error fields by the SRM and the ERM.
The error field approximated by the SRM captures all the features of the exact so-
lution and the error values are almost exact, while the ERM produces results close
to the exact error field, but with slight overestimation. The histogram of the local
effectivity indices of the estimated errors on the initial mesh are shown in Figure 5.13.
The SRM upper bound estimates slightly underestimate the exact error norm on most

of mesh elements, while the ERM significantly overestimates the error norm for a few
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Table 5.2: Problem P2 - Effectivity indices for the estimated errors in
terms of the index p

# nodes RL=2 RL=3

SRM-up | SRM-lo | ERM-up | ERM-lo | SRM-up | SRM-lo | ERM-up | ERM-lo
97 2454 | -9645 | 15.000 | -14.956 | 7.539 | -4.320 | 28690 | -16.158
49 20524 | -10.856 | 19.047 | -19.118 | 2.440 | -4.152 | 31.892 | -20.025
96 2036 | -7.017 | 13.473 | -12.530 | 0603 | -2.752 | 25.543 | -14.045
194 2821 | -4.894 | 14583 | -9.923 | -1.265 | -2.106 | 26.935 | -12.686
425 2751 | -5.015 | 15.161 | -11.742 | -1.517 | -2.577 | 28.133 | -15.912
944 1.941 | -5117 | 13.040 | -11.608 | -1.351 | -2.716 | 25.065 | -16.021

Exact SRM ERM

Figure 5.12: Estimated versus exact error field plot for problem P2 solved
using the initial mesh (RL = 2)

mesh elements. On such a coarse mesh, both error estimators are not expected to
produce very reliable results, but the behavior of the ERM is undesirable because it
inflates the estimated global error norm artificially due to overestimating the errors
over just a few mesh elements.

The histogram of local effectivity indices after two adaptive mesh refinement iter-
ations is plotted in Figure 5.14. The SRM produces upper bound estimates in the
range of 0.7 to 1.3 of the exact error norm. The distribution is similar to a normal
distribution with the peak slightly below the optimal effectivity index value of one.
The ERM produces good error estimation for most of the mesh elements but the

estimated error norms for a few mesh elements are almost twice the exact value.
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Figure 5.13: Histogram of local effectivity indices for problem P2 using
the initial mesh (RL = 2)

The quality of the estimated errors are further assessed in relation to the magnitude
of the exact error norm. Figure 5.15 shows a plot of the exact error norm on a
logarithmic scale against the local effectivity index after two adaptive mesh refinement
iterations. The SRM shows superior results in comparison to the ERM with an almost
uniform distribution of the local effectivity index across the different error norm scales.
The ERM upper bound error estimate tends to be less accurate for elements with a
small error norm. Results on adapted meshes after five iterations are shown in Figures
5.16 and 5.17. A narrower histogram of the SRM-up effectivity indices is observed in
comparison to those estimated by ERM-up, as shown in Figure 5.16. Moreover, the
distribution across the error norm scales is more uniform for the SRM-up than for

the ERM-up, as shown in Figure 5.17.

Test problem P3
The third test problem is also defined on the domain Q = (0, 1) x (0, 1), but in this
case more complex boundary conditions are used. The load function f is set such

that the exact solution is
u = sin(5mzy) e*Y (5.33)
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Figure 5.18: Finite element solution of problem P3 on different meshes

(a) Initial mesh (b) two adaptive iterations (c) four adaptive iterations

Figure 5.19: Adapted meshes for problem P3

A homogenecous Dirichlet boundary condition is specified at the boundaries with z = 0
or ¥ = 0 and a Neumann boundary condition that satisfies the exact solution is
specified on the rest of the domain boundary. The specified boundary conditions
makes it hard to obtain a correct solution at the corner with x = 1 and y = 1.
Figure 5.18 shows a 3D-plot of different finite element solutions using three different
discretization and Figure 5.19 shows the corresponding meshes. Table 5.3 lists the
index p values for the SRM and the ERM on six different meshes obtained by SRM
driven mesh adaptivity iteration. The estimated errors using the SRM on coarse
meshes are far better than those produced by the ERM estimator. In some cases, an
apparent deterioration of the quality of estimated errors using the SRM is observed

with mesh refinement. This deterioration only happens when the estimated error
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Table 5.3: Problem P3 - Effectivity indices for the estimated errors in
terms of the index p

# nodes RL =2 RL=3

SRM-up | SRM-lo | ERM-up | ERM-lo | SRM-up | SRM-lo | ERM-up | ERM-lo
27 6.182 | -14.214 | 37.463 | -25.550 | 11.173 | -12.530 | 56.987 | -28.209
51 | -1476 | -5533 | 28.883 | -17.310 | -0.141 | -3.207 | 45.910 | -21.309
122 | -3420 | -7.208 | 20.353 | -17.904 | -2.082 | -4.514 | 35306 | -22.404
300 | -3.838 | -9.189 | 14.808 | -19.183 | -2.941 | -6.280 | 30.753 | -24.514
697 | -4.403 | -8.268 | 15.669 | -16.395 | -3.328 | -5.183 | 30467 | -20.883
1581 | -3.571 | -7.210 | 14.509 | -15.385 | -2.564 | -4.962 | 28.164 | -20.570

norm falls between the exact error norm (||e]|*) and the theoretical upper bound of
the error estimator (||e||*> — ||T,e||*). The results from this problem confirm that
enlarging the approximation space used to solve the local problems increases the
quality of the lower bound SRM estimator and decreases the underestimation of the
upper bound whenever it exists. The estimated errors using the ERM are not as sharp
as the SRM. Moreover, the ERM requires more refined meshes to produce results that
are comparable to the SRM.

A plot of the estimated error field used to calculate the lower bound error norm
for the SRM and the ERM is shown in Figure 5.20. The results correspond to the
finite element solution on the initial mesh and using two levels of local refinement
for error estimation. Although, the magnitude of the coarse scale errors is large, the
SRM captures the oscillating nature of the errors without any significant differences
from the exact error. The ERM overestimates the error value in a few locations in
the domain, most notably close to the corner where r = 1 and y = 1. The histograms
of the local effectivity indices of the estimated errors are plotted in Figure 5.21. The
SRM error estimator again produces errors in the range from 0.7 to 1.3, which are
excellent results given that the finite element solution used for calculating the residual
is produced on coarse mesh and has large coarse scale errors. The ERM produces a

relatively overestimated errors on most of the elements and the effectivity index falls
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Exact SRM ERM

Figure 5.20: Estimated versus exact error field plot for problem P3 using
initial mesh (RL = 2)
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# Elements
# Elements

Effectivity index Effectivity index

Figure 5.21: Histogram of local effectivity indices for problem P3 on the
initial mesh (RL = 2)

in the range of 1 to 2. Figure 5.22 shows the histogram of the local effectivity indices
for both the SRM and the ERM after two adaptivity iterations. The distribution
of the histogram for SRM is almost centered at the optimal unit value while the
ERM again produced large effectivity indices for some mesh elements. Figure 5.23
shows the distribution of the local effectivity indices versus the error norm value on
a logarithmic scale. The subdomain method is consistent over all error scales and
the effectivity index is close to the optimal unit value, while the ERM overestimated

the errors in an unpredictable way. Further adaptive mesh refinement improves the
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Figure 5.22: Histogram of local effectivity indices for problem P3 after
two adaptive mesh refinement iterations (RL = 2)

accuracy of both the SRM and ERM but the superior performance of the SRM is still

evident as shown in Figures 5.24 and 5.25.

Test problem P4
The fourth test problem is defined over an L-Shaped domain bounded by (—1,1) x
(—1,1) after subtracting the lower right square domain (0,1) x (—1,0). The exact

solution u is defined in terms of the polar coordinates r, 8 as following
Uegaer = 72/ % sin(26/3) (5.34)

Essential boundary conditions satisfying the exact solution are set at the domain
boundary and a zero loading function f is prescribed. This solution exhibit a singu-
larity in the solution derivative at the cartesian coordinates (0,0). This singularity
is similar to corner stress singularities appearing in elasticity problems. Figure 5.26
shows the initial mesh and the adapted meshes for problem P4 after two and five
adaptivity iterations. Table 5.4 lists the effectivity indices of the estimated errors

using the SRM and the ERM on different meshes derived by adaptive mesh refine-
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Problem P3 - Distribution of local effectivity indices against
the exact local error norm.
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Figure 5.24: Histogram of local effectivity indices for problem P3 after
five adaptive mesh refinement iterations (RL = 2)
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Figure 5.25: Problem P3 - Distribution of local effectivity indices against
the exact local error norm. Solution obtained after five adaptive mesh
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Figure 5.26: Adapted meshes for problem P4
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Table 5.4: Problem P4 - Effectivity indices for the estimated errors in
terms of the index p

# nodes RL =2 RL =3
SRM-up | SRM-lo | ERM-up | ERM-lo | SRM-up | SRM-lo | ERM-up | ERM-lo

21 -16.811 -7.212 6.675 -12.127 | -14.405 -2.941 24.122 -14.260

39 -17.056 0.467 8.852 -6.250 -14.842 4.563 26.563 -9.884

74 -15.938 | 16.187 9.063 7.196 -13.843 | 20.383 25.983 1.020

159 -15.655 | 12.392 11.616 2.963 -13.595 | 16.005 28.273 -3.147
344 -15.084 | 23.038 13.008 11.098 | -13.103 | 26.742 29.686 3.303

756 -14.498 9.449 13.349 1.123 -12.595 12.890 29.915 -4.464
1595 -13.654 | 31.104 12.736 19.083 | -11.916 | 35.130 29.048 9.400

ment. The ERM-up estimate overestimates the exact error relative to the SRM-up
estimate. The subdomain method tends to underestimate the errors due to the in-
ability of the approximation space for the local patch problems to capture the subgrid
energy at the point of singularity. This failure in resolving the singularity results in
a consistent underestimated error norm. On the contrary, the ERM overestimated
the errors norm even without resolving the high solution gradient close to the point
of singularity. This is attributed to the overestimation of the errors in parts of the
domain corresponding to small error norms. The upper bound energy norm using
the SRM gains accuracy with enlarging the approximation space. It is also observed
that lower bound error estimation for this problem is not reliable and in many cases
exceeds the value of the upper bound. This undesirable behavior of the lower bound
is observed in both the ERM and the SRM.

The histograms of the local effectivity indices for the estimated error after two
mesh adaptivity iterations are shown in Figure 5.27. The SRM histogram on such
a coarse mesh is bounded between 0.6 and 1.6, while for the ERM the effectivity
indices for a few mesh elements exceed 2. This result confirms the pervious analysis
of how the ERM-up overestimates the error norm without resolving the subgrid scales.

Figure 5.28 shows the distribution of the effectivity index against the logarithm of the
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Figure 5.27: Histogram of local effectivity indices for problem P4 after
two adaptive mesh refinement iterations (RL = 2)

error norm. It is observed that a very few elements, which are close to the point of
singularity, have significantly larger (exact) error norms than the rest of the domain.
This discrepancy in the distribution of the error norm means that the global error
norm is strongly affected by the values of a very few elements close to the point of
singularity. For both the SRM and ERM, the effectivity indices for these elements are
close to 1. For the remaining mesh elements, the effectivity indices of the estimated
errors are more accurately estimated by the SRM than the ERM. Figure 5.29 shows
the histogram of the element effectivity indices after eight adaptive mesh refinement
iterations. The SRM histogram follows a normal distribution that is bounded for most
mesh elements between 0.7 and 1.1, while the ERM histogram is bounded between
0.5 and 2. Figure 5.30 displays the distribution of the element effectivity against the
error norm value. The distribution confirms the consistent high quality local error

estimation using the SRM in comparison to the ERM.

5.8 Discussion of the results and conclusions

A general framework for a posteriori error estimation based on a numerical realiza-

tion of the variational multiscale methods is presented. In the proposed framework
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Figure 5.28: Problem P4 - Distribution of local effectivity indices against
the exact local error norm. Solution obtained after two adaptive mesh
refinement iterations (RL = 2)
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Figure 5.29: Histogram of local effectivity indices for problem P4 after
eight adaptive mesh refinement iterations (RL = 2)
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Figure 5.30: Problem P4 - Distribution of local effectivity indices against
the exact local error norm. Solution obtained after eight adaptive mesh
refinement iterations (RL = 2)

different error estimators are derived using different localization functions applied to
the fine-scale equation of the VMS. The number of assumptions are kept minimal;
for instance, the proposed SRM error estimator formulation has only one assumption
related to neglecting the coarse scale error at the mesh nodes. Also, the proposed
framework is consistent with the standard element residual method. The specification
of the solution space as the fine scale Vi, C Vy C V —1II,V is reflected in a weaker
upper bound property of the estimator. However, forcing the errors to be zero at the
mesh nodes corresponds to balancing the residual with fine scale degrees of freedom
only. This may result in a slight overestimation of the estimator over the true exact
error. Based on the results of the numerical test problems, the following conclusions

regarding the performance of the proposed SRM formulation are drawn:
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1. The proposed SRM provides results comparable to the ERM, and in many
numerical test problems, is shown to outperform the ERM in terms of the

effectivity index both locally and globally.

2. The SRM formulation is flux free, and thus does not need flux equilibration.

Thus, it increases the reliability of the method on coarse meshes.

3. In some of the numerical test problems, the upper bound estimate using the
ERM is found to overestimate the errors while the SRM slightly underesti-
mates the exact error norm. This overestimation is neither guaranteed nor is
attributed to a consistent behavior of the ERM, as has been revealed by study-
ing the local effectivity indices. The ERM loses the upper bound property if the
boundary fluxes are not equilibrated. Numerical test results have shown that
the ERM might significantly overestimate the errors over some mesh elements
in an unpredictable manner, which results in an increased value of the global

error norim.

4. The SRM provides an effective way to calculate a sharp lower bound estimate
of the error norm without the need to solve an auxiliary set of local problems.
The continuous error field is shown to accurately represent the error field, if the

local problems are solved using adequate discretization.

5. The proposed error estimator is easy to implement without the need to store a
discontinuous error field as in the case of the SRM formulation presented in [23].
Moreover, the new estimator does not need to implement special constraints on

the solution space of the local problems, as in [11, 12, 22].

6. The presented SRM has a consistent effectivity over the entire problem domain
that is independent of the scale of the error. This significantly improve the

quality of the adapted meshes.
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The proposed framework can be easily extended to other problems, as it depends on
only two elements: the variational multiscale method, which is quite general, and on
a localization function of choice. This study has also shown that a partition of unity
is a good choice of the localization function for first order Lagrangian finite element

method.
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Abstract

A reliable mesh generation infrastructure is designed based on software engineering principles. Formal methods, software design
documents and clear modular decomposition criteria are introduced to improve the quality of mesh generation software. The design
document for a simple 2D mesh generation data structure is presented using a semi-formal specification. The proposed semi-formal
documentation system avoids any ambiguity during the software design process and will help in driving the software test cases. Using the
proposed software, design techniques result in a consistent software design that is easy to extend and modify.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Mesh generation is an essential component in many
numerical methods used for physical simulation. The
accuracy of the finite element and the finite volume methods
heavily depend on the mesh to be used for the discretization
process. The requirements of adaptive numerical methods
where mesh modification is needed to increase the accuracy
of the solution increases the design complexity of the mesh
generation toolboxes. Attempts have been made to improve
the design of mesh generators [3,16]. These attempts have
identified many of the mesh generation software require-
ments [3]. One of the major drawbacks of these attempts is a
high dependency on a specific implementation language,
which was C+ + in both cases. In the current practice
object oriented methods are usually confused with software
engineering principles. It should be clarified that object
oriented languages facilitate and encourage many software
engineering principles such as data abstraction, information
hiding, encapsulation, module generalization and template
implementation, but all these concept can be implemented
by any well-designed imperative language in combination
with disciplined programming practices.

* Corresponding author.

0965-9978/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2004.06.012

Instead of software specification many programs
substitue informal descriptions and comments throughout
the program code. Visual specification languages like
UML [10] can be used effectively for a pictorial
representation of architectural concepts, but these cannot
be used to specify mathematical operations or pre- and
post-conditions and they lack a mathematically rigorous
semantics [6]. This informal way of designing and
specifying software poses hardships on all the stages of
the software development process that follow. The ability
to verify and validate the correctness of the system is
missing because of the absence of a reference that
specifies the correct software behavior. As a consequence
of the above point, software reuse, maintainability and
extendability are extremely difficult within the current
mesh software development practices.

Recent work [5] suggests that software engineering
principles can help with these problems. Whereas Ref. [5]
takes a breadth approach and considers several stages of the
software cycle, the current work will take a more specific
perspective by incorporating three major ideas to improve
the quality of mesh generation software. These ideas are
formal methods, software design documents and a clear
modular decomposition criteria for mesh generation
software systems. Formal methods are collections of
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mathematical notations and techniques for describing
and analyzing systems [14]. This paper will embrace formal
methods as a particular method for increasing software
quality and will focus on the process of describing software
systems with formal methods. The process of analyzing the
software description can be done through the verification
process, which can be done deductively, or by testing. Some
tools like PVS can be used in the verification [17], but they
are hard to use and limited to simple data structures.

Software design documents are a set of separate
documents targeting different stages of the software design
process. In many cases, these documents are ambiguous or
not complete. Specification documents are important for
communicating ideas between different parts of the software
development team. In this paper, we suggest using a semi-
formal language for documenting mesh generation software
design so that we can be as specific as necessary.

The ultimate goal of any mesh generation software is to
be correct and this correctness is based on analyzing the
relation between the computer program p and the specifica-
tion s. This relation can appear in three different classes of
problems. If we are given the specification s and a program p
that satisfies these specification needed, then we are dealing
with a design problem. If both the specification s and
program p are given we can check whether p satisfies s and
hence we are dealing with a validation problem. The third
case is when we have a program p and we want to extract the
specification s of this program. In this case, we are dealing
with a reverse engineering problem. The previous three
problems may initially look different, but they have many
overlapping issues, such as the syntax and semantics to be
used and the underlying mathematics of the specification.

The last idea suggested for increasing the quality of the
meshing software is the use of a clear modular decompo-
sition criteria. Modular decomposition is the process of
dividing a big job into a set of jobs which are small, easy to
understand and as independent as possible. The decompo-
sition process may be based on different goals such as,
design generality, simplicity, efficiency or the flexibility for
certain changes. Identifying the criteria for decomposition
rules will result in software code that is consistent with the
targeted design.

This paper starts with defining the notation used to
specify software components semi-formally. A discussion
of the theoretical bases of modelling software systems as
state machine is also presented. A simple way for specifying
the Module State Machines (MSMs) by both defining the
Module Interface Specification (MIS) and the semantics of
the transition functions is outlined. The basic rules of
modular structure design of software system will be
discussed. Finally, a sample design specification document
of a 2D unstructured mesh generation data structure
followed by the specifications of the Delaunay insertion
algorithm is presented. This algorithm will show how to
apply the formal methods to this class of problem.

2. Notations

The semi-formal language used throughout this paper is
based on simple set notations and first-order logic. This
language has atomic types int, bool, char, string and real.
These atomic types can be used in tuples or collections. The
syntax used for tuples is (Typel, Type2,...,TypeN) with a
semantics of N elements of types Typel where I=1, 2,...,N.
Internal fields in the tuple can be referenced using the dot
notation. For example, if 7B is a tuple (var;: Typel, var,:
Type2) then the first field can be referenced as TB.var,.
Collections of elements are stored in containers, which may
be ordered or un-ordered collections with unlimited size.
For unordered collections without duplicate elements, the
syntax (Typel),,, is used for describing a set of Typel which
has no limit on the size, in the same sense as an abstract
datatype; that is, a set is a mathematical notion independent
of any concrete implementation.

One way for defining sets is by constructors that select all
the elements of some type that satisfy a given predicate. For
example, S= {x: intlODD(x)} is a predicate specification for
set S of all odd integers [15]. Ordered collections are
described by sequences with (Type2),., as a syntax for
sequences. Sequences are unlimited in size in the same
sense as an abstract datatype. Sequences are indexed using
conventional array notation: s={(s[0], s[1},....s[n—1]).
Adding elements to sequences is done be using the
appending symbol }|. Concatenation of two sequences
is done using the same symbol. The concatenation can be
done from the head or the tail of the sequence only. To
specify the size of a sequence, or set, a norm notation is
used; for example, |s| is used to show the size of the
collection s.

Simple prepositional logic operators will be used
throughout our specification language. Propositional vari-
ables with binary value of TRUE or FALSE are used, along
with simple formula including the boolean operators A, V
and —. First order quantifiers like V and 3 will be used as
prefix for formulas especially when dealing with sets and
sequences. A comprehensive introduction to prepositional
logic can be found in Ref. [8].

3. Modelling of meshing software

Modelling is the process of abstraction of the system
while preserving a limited number of original details. In this
process, the main properties of the system are highlighted to
allow better management of complex systems. Modelling
software system relies on the concept of state. The state of
software can be abstracted into a set of state variables. The
size of this set depends on the level of refinement of the
model. These state variables capture information about
certain steps in the executions path of the software. This
information may be the size and content of some data
structure or may be a flag for some condition. The set of
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state variables can be called initial, intermediate or final
state depending on the point of program execution. The
relation between the initial state and the final state is of great
importance because it can be used in defining both pre-
conditions and post-conditions, which are widely used in the
verification process.

A software system is composed of smaller pieces of
software called Modules. A module is a self-contained
work assignment for a programmer or programming team
[12]. A module can be modelled mathematically as a state
machine. A simple form of the formalism for this model
as a state machine is a tuple (S, so, I, O, T, E) [7] where
S is the set of states and sp is the initial state and s, & S,
I is a set of inputs, O is a set of outputs and 7 is the
transition function T: $*/—S and E is the output function
(E: S*I— 0). The domain of both T and E are S*I where
the * denotes the Cartesian product. This way of
description as MSMs [7] can provide an easy mathemat-
ical basis for specifying software modules. Comprehen-
sion of the state machine in relational form may be
tedious and time consuming. However, a simple method
for a complete description of the MSM can be done by
listing the state variables and specifying the interface of
access functions which change the state variables and
produce outputs. The state variables definition is done by
listing the name and type of each state variable. Access
function are defined by listing the name of the function
and types of the input and return values of the function.
A mathematical description of the semantics of each
function also needs to be given. This method of
specifying modules is referred to as a MIS.

4. The modular structure

The first step of designing any software system is to
decompose the software into a set of simpler problems
through what is called the modular decomposition process.
The five goals of modular decomposition as highlighted by
Parnas [12] are:

(1) Each module should have a simple structure that can be
understood by any programmer who is not a member of
the development team.

(2) Each module should be self-contained and the coupling
between modules should be minimized. This allows
changing the implementation of one module without
complete knowledge of other modules and without
affecting the behavior of other modules.

(3) The module interface should be flexible so that it can
accommodate internal changes of the module without
any external changes. Interface changes are avoided
because this would export the effect of internal module
changes into other modules.

(4) Ideally major changes in the software should be done as
a set of independent changes to individual modules.

(5) Understanding the functionality of each module should
be possible without knowing the internal details of the
module design.

The adopted module decomposition criteria are based on
the principles of information hiding, design for change and
stepwise refinement. According to information hiding
principle, details that are likely to change should be the
secrets of separate modules [13].

These ideas of Modular Decomposition can be applied
easily to the data structures used in the mesh generator. Any
data structure which is expected to change under any
circumstances should be hidden inside one module. The
access to the data inside this module is done through the set
of access functions of this module. This is done to reduce the
ripple effects when modifying or extending the program.
Drawbacks of extensive use of modularization are the
reduction of the efficiency of the whole software system and
an increase in the development time. The efficiency problem
can be reduced with inline access functions, which are
allowed by most modern compilers.

Flexible interfaces may be a challenge in the implemen-
tation phase, but generic programming through function
pointers and templates offers a solution to achieve the
needed flexibility. It should be noted that the level of
assumed generality should not be applied to every data
structure used in the program, based on the trade-off
between generality and efficiency. Certain assumptions
should be made on some major data structures and a
software design decision can be assumed that this data
structure will not change. If such decisions are made, a
detailed description of the reasons behind it should be
appended to the software design documentation.

Topological _Operation
/\
List Geometric_Operation
-
Triangle
I
Edge
]
Vertex

Handle_Server Geometric_Coordinate_system

l

Coordinate_system

Fig. 1. A hierarchy for the designed meshing data structure.

158



Ph.D. Thesis - A.H. ElSheikh

830
5. A simple 2D triangular mesh data structure

The purpose of the section is not to design a complete 2D
triangular mesh generator, but to demonstrate how the semi-
formal specification methodology outlined can be applied to
mesh generation software. The simplest modular decompo-
sition can be found by assigning a module to each of the
geometrical entities of vertex, edge and triangle. After
defining these basic entities, a module for storage of these
basic elements should be defined. A software design
decision should be made on whether to use the same
container structure for the three elements or not. After
defining the basic scts of data structures, the algorithms
applied on these data structures should be analyzed and
divided into modules. Simple geometric operations can be
contained in one module. The higher-level algorithms,
which are the core of the mesh generation algorithm, should
be localized in a set of independent modules because of the
possibility of changing the algorithms. It should be noted
that modular decomposition is not an easy job to be done in
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one step, instead a series of steps using stepwise refinement
is applied. The previous decomposition can be represented
by a uses hierarchy. We say that a module A uses a module B
if correct execution of B may be necessary for A to complete
its work [11]. Fig. 1 shows a uses hierarchy for the designed
mesh generation software. The level of the graph shows the
dependency where modules at the bottom use no other
modules and considered to be at level 0. Modules at level i
are the set of modules which use at least one module of level
i—1 and do not use any module at level higher than i —1.

The goals of our 2D mesh design can be summarized as
following:

(1) Having a separate and flexible representation for each
mesh entity. For instance, the representation of the
vertex, edge or triangle that can be easily modified or
extended to accommodate different mesh generation
algorithm requirements.

(2) Having a complete separation between the geometry or
physical data on the mesh and the topology or

Exported Constants
Exported Functions

Used External Functions NONE
Used External Data Types NONE
External Constants NONE
Type Definitions Handle = int

Handle_server = (Handle) e
MAX_SIZE: int

[ Exported Input Type Output Type | Exception
Function
HS_init Handle_server Handle server
HS_getHandle Handle_server Handle Server_Is_Full
HS_addHandle Handle_server, Handle | Handle_ server Server_Is_Full
Handle_Exists
HS_delHandle Handle_server, Handle | Handle_server | Handle Not_Exist

State Variables:
Function semantics:

NONE

Handle_server HS_init (s: Handle server)

Exception:

Output: s =s— {h}

Output: s={}

Handle HS_getHandle (s: Handle_server)
Exception: | s | > MAX_SIZE = Server_Is_Full
Output: h: Handle where h ¢ s

Handle_server HS_addHandle (s: Handle_server, h: Handle)
| s | > MAX SIZE = Server_Is_Full

Exception:
h € s = Handle Exists
Output: s U {h}

Handle_server HS_delHandle (s: Handle_server, h: Handle)
h ¢ s = Handle_Not_Exist

Fig. 2. Specifications of the Handle Server Module.
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connectivity information of the mesh. This is done to
ease the extension of the 2D mesh generator into surface
meshing.

(3) The mesh generator should be able to work with
different coordinate systems.

(4) A flexible data structure to store sets of vertices, edges
and triangles, which can be changed based on the
meshing algorithm requirements.

(5) The mesh generation can be done by different mesh
generation algorithms available in the literature with a
minimal amount of local changes.

The first step in our design is to define new datatypes.
For example, one new datatype is introduced because of
the need for each entity like the vertices, edges and

triangles to have a global index or Handle. Manipulating
the handle information through adding and deleting
elements is not simple because of the dynamic nature of
unstructured mesh generation, which allows both refine-
ment and coarsening. Adding and removing entities during
mesh generation makes the use of simple indexing
infeasible. To hide the information of how to deal with
indexing a Handle Server Module is defined to provide us
with unique index for each of the vertices, edges and
triangles. The access function of this module have a
variable of type Handle server within its input parameter to
provide the needed flexibility of the module to deal with
three different handle servers, one for the vertices and one
for edges and one for triangles. Fig. 2 shows the MIS of the
Handle Server Module.

NONE

Used External Functions
Used External Data Types: NONE
External Constants :  NONE

Type Definitions

CS_type = set of {2DC,2DP}
Coord.sys = tuple of (size: int, sym: CS_type )

Exported Constants NONE

Exported Functions :
Exported Input Type | Output Type | Exception
Function
CS_exists CS_type bool
CS_getsize CS_type int Coordsys_Not_Exist
CS_getcoordsys | CS_type Coord . sys Coordsys_Not_Exist
CS_getcoordtype | Coord_sys CS_type Coordsys_Not_Exist

State Variables:

polar coordinate system (r,6).
Function semantics:

bool CS_exists (c: CS_type)
Output:

int CS_getsize (c: CS-type)
Exception:
QOutput:

Coord-sys CS_getcoordsys (c: CS_type )
Exception:
Output:

CS_type CS_getcoordtype (cs: Coord_sys)
Exception:
Output:

Coord_tbl : (Coord_sys) set:= {(2,2DC),(2,2DP)}

Where 2DC stands for Cartesian coordinate system (z,y) and 2DP stands for

(3 ¢: CS_type | (i,c) € Coord_tbl)

= {3 ¢ CS_type | (i,c) € Coord-tbl)= Coordsys_Not_Exist
i: int where (i,¢) € Coord_tbl

- (3 ¢: CS_type | (i,c) € Coord_tbl)= Coordsys_Not_Exist
(i,c): Coord-sys where (i,c) € Coord-tbl

- (cs € Coord_tbl) = Coordsys_Not_Exist
c: CS_type where (i: int, ¢) = cs

Fig. 3. Specifications of the Coordinate System Module.
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For vertices, the handle should be combined with the
geometrical data in a tuple to completely define the
topology and physical information. The physical infor-
mation in simple applications is limited to the geometrical
data, which can be represented in many different ways. For
example, the coordinate system can be Cartesian or polar.
To hide the information of the coordinate system we used a
Coordinate System Module as shown in Fig. 3. This
module is pre-initialized with two coordinate systems,
namely 2D Cartesian and 2D Polar system. This module is
initialized at compilation time because of the need to
define some functions to manipulate each coordinate
system. The second layer of defining the geometric data
is hidden in the Geometric Coordinate System Module as
shown in Fig. 4. This module has the ability to manipulate
information based on the specified coordinate system. An
extension to this module is made by adding a set of
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functions for geometrical operations. Due to the large
number of these geometrical operations, a separate module
is defined for that purpose in Fig. 5.

Combining the handle and coordinate information for
vertices is done in the Vertex Module as shown in Fig. 6.
The edges can be represented explicitly as an element
connecting two vertices or it can be done implicitly as the
element separating two triangles. In our case, a two vertex
representation is assumed because we want to keep the
interface as intuitive as possible. Fig. 7 shows the MIS of
the Edge Module. The triangle elements can also be
represented in two ways: as three edges or by defining
three vertices. It is worth mentioning that the topology or
connectivity data is completely independent of whether the
mesh is embedded in 2D or in 3D space as a surface mesh.
Fig. 8 presents the MIS of the Triangle Module and its
access functions.

Used External Functions

Used External Data Types
External Constants
Type Definitions

NONE
NONE

Exported Constants NONE

Exported Functions

CS_type = set of {2DC,2DP}
Coord_sys = tuple of (size: int, sym: CS_type)

Geometry = (real) seq
Coordmate = tuple of (cs: Coord_sys, g: Geometry)

Function semantics:

Exception:

Output: (cs,g)

Exception:

Output: (cd.cs, g)

Output: cd.cs

Geometry GE_getgeom (cd: Coordinate)
Output: cd.g

Exported Input 'Iype Output Type | Exception
Function
GE_getCoord Coord_sys, Geometry | Coordinate Coord Not_Consitent
GE_setCoord Coordinate, Geometry | Coordinate Coord Not_Consitent
GE_getgeom Coordinate Geometry
GE_getCoordsys | Coordinate Coord_sys

State Variables: NONE

Coordinate GE_getCoord (cs: Coord_sys, g: Geometry)
= (cs.size = | g |) = Coord Not_Consistent

Coordinate GE_setCoord (cd: Coordinate, g: Geometry)
= (cd.cs.size = | g [) = Coord Not_Consistent

Coord sys GE_getCoordsys (cd: Coordinate)

Fig. 4. Specifications of the Geometric Coordinate System Module.
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Used External Functions : NONE
Used External Data Types: Coord.sys = (size: int, sym: CS_type)

:  Geometry = (real) seq

:  Coordinate = tuple of {cs: coordsys, g: Geometry)
External Constants :  NONE

Type Definitions :  NONE
Exported Constants :  NONE

Exported Functions

Exported Function

Input Type Output Type | Exception

GO_Compute.dist.

Coordinate,Coordinate | real

Coord Not_Consistent.

GO .S Linear

Coordinate,Coordinate, | bool
Coordinate

Coord Not_Consistent

GOIN_Circle

Coordinate,Coordinate,| bool
Coordinate,Coordinate

GOJIN_Triangle

Coordinate,Coordinate,| bool
Coordinate,Coordinate

GO_Check_orientation

Coordinate,Coordinate,| bool
Coordinate

GO_Check_EdgeEncroach

Coordinate,Coordinate,| bool
Coordinate

GO_Check_TriEncroach

Coordinate,Coordinate, | bool
Coordinate,Coordinate

GO_Get_EdgeMid

Coordinate,Coordinate | Coordinate

GO _GetCircumcenter

Coordinate,Coordinate,| Coordinate
Coordinate

State Variables:

NONE

Selected function semantics:

real GO_Compute_dist (cl: Coordinate, c2: Coordinate)

Exception:

Output:

- (GE _getCoordsys(cl)= GE _getCoordsys (c2)) =
Coord _Not_Consistent

If CS_getcoordtype{GE_getCoordsys(cl))=2DC
GE.-Compte dist2DC(cl.g,c2.g)

If CS_getcoordtype(GE_getCoordsys(c1))=2DP
GE_Compte_dist2DP(c1.g,c2.g)

Internal function semantics:
real GO_Compute_dist2DC (gl: Geometry, g2: Geometry)

Output:

Sart((g1[0]-g2[0])"2+(g1[1]-€2(1])"2)

real GO_Compute_dist2DP (gl: Geometry, g2: Geometry)

Output:

Sqrt(g1{0] "2+ g2[0]"2-2*g1[0]* g2{0}* cos(g2(1]-g1{1])}

Fig. 5. Excerpts from specifications of the Geometric Operation Module.

The next step is to define the container specifications of
each entity. A generic container specification is shown in
Fig. 9. A type variable, which may be a vertex, edge or
triangle is used in this specification. A specialization of this
list or container is done to have the VertexList and the
EdgeList and the TriangleList. Finally, a set of some
topological operation commonly used by unstructured mesh
generation algorithms are bundled in the Topological
Operation Module shown in Fig. 10.

6. Specifications of mesh generation algorithms

Mesh generation algorithms can be specified using the
developed infrastructure. Mesh generators usually needs
two types of relation between mesh entities. These
relations can be divided into incidence and adjacency
relations. Betri [2] formalized the definition of the
incidence relation into the relation of a subset. If a
mesh entity f is inside of another entity ¢ then f and ¢
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Used External Functions NONE

Used External Data Types
External Constants NONE
Type Definitions

Coordinate = tuple of (cs: coord_sys, g: Geometry)
Handle = int

Vertex = tuple of (hd: Handle, cd: Coordinate)

Exported Constants NONE
Exported Functions
Exported Input Type Output Type | Exception
Function
V_createVertex | Handle, Coordinate | Vertex
V_getHandle Vertex Handle
V _getCoord Vertex Coordinate
V_Compare Vertex, Vertex bool
V_setVertCoord | Vertex, Coordinate | Vertex

State Variables:
Function semantics:

NONE
Output: {(h,cd)

Handle V_getHandle (v: Vertex)
Output: v.hd

Coordinate V_getCoord (v: Vertex)
Output: v.ed

bool V_Compare (v1: Vertex, v2:Vertex)
Output: vl.hd = v2.hd

Output: (v.hd,ed)

Vertex V_createVertex (h: Handle, cd: coordinate)

Vertex V_setVertCoord (v: Vertex, cd: coordinate)

Fig. 6. Specifications of the Vertex Module.

are incident. For example, there is an incidence relation
between the start vertex of an edge and the edge itself. It
is clear that elements of the same topological dimension
are never incident, but they may have another type of
relation called adjacency relation. For example, we can
define that two edges are adjacent if they share the same
vertices. The incident relations are specified in the mesh
infrastructure sections, where a downward incidence
relation from elements with higher topological dimen-
sions are connected to elements with only 1D less in
the topological sense. Thus, triangles are defined in
terms of edge and edges are defined in terms of vertices.
On the other hand, the adjacency relation was identified
as being algorithm dependant. For example, Oct-tree
based mesh generators rely on parent/child adjacency
relations between entities of the same topological

dimension, while in Delaunay triangulation each triangle
needs to know the neighboring triangles through
the neighbor adjacency relation. Due to this dependency
of the adjacency relations on the mesh generation
algorithm, these relations are not defined in the mesh
infrastructure.

As an example of using the suggested semi-formal
documentation and specification style, a key operation of
a Delaunay mesh generation algorithm is specified.
Delaunay triangulation is one of the most common
algorithms for triangular mesh generation. These algor-
ithms are usually done incrementally, where an initial
large triangie that geometrically bounds all the domain is
defined. Following this, vertices along the boundaries are
inserted incrementally. Once all the boundary vertices are
inserted, boundary edges are recovered. The recovery is
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Type Definitions:
Exported Constants:
Exported Functions:

NONE

Used External Functions NONE

Used External Data Types Vertex = tuple of (hd: Handle, cd: Coordinate)
Handle = int

External Constants : NONE

Edge : tuple of (hd: Handle, v0: Vertex, vl: Vertex)

Exported Input Type Output Type | Exception
Function

E_createEdge Handle, Vertex, Vertex | Edge Edge_Not_Valid
E_getHandle Edge Handle

E_Compare Edge, Edge bool

E_getStart Edge Vertex

E_getEnd Edge Vertex

E_setEdge Edge, Vertex, Vertex Edge Edge_Not_Valid

State Variables:
Function semantics:

NONE

Exception:

Output: (h,v0,v1)

Handle E_getHandle (e: Edge)
Output: e.hd

bool E_Compare (el: Edge, e2: Edge)
Output: el.hd = e2.hd

Vertex E_getStart (e: Edge)
Output: e.v0

Vertex E_getEnd (e: Edge)

Output: evl

Exception:

Output: (e.hd,v0,v1)

Edge E_createEdge (h: Handle, v0: Vertex, v1: Vertex)
V_Compare(v0,v1) = Edge_Not_Valid

Edge E_setEdge (e: Edge, v0: Vertex, v1: Vertex)
V_Compare(v0,v1)= Edge Not_Valid

Fig. 7. Specifications of the Edge Module.

also done by inserting vertices along the missing
boundaries. Finally a mesh improvement by refinement
is done for all the triangles that do not meet a certain
quality measure. A new vertex is inserted at the
circumcenter of each triangle that fails the geometrical
quality predicate. A complete description of the Delaunay
refinement algorithms can be found in Ref. [18]. It is
clear from the previous description that vertex insertion
is the core step of this algorithm. This insertion should
maintain the validity of the Delaunay empty circumcenter

property of every triangle in the mesh. Fig. 11 introduces
the specifications of neighbor adjacency relation of the
mesh edges. This relation is needed for the Delaunay
refinement algorithms to identify adjacent triangles.
Additional adjacency relations can be defined in the
implementation process, but if any redundancy in the
stored information is introduced, validity checks
should also be added to avoid any inconsistency. A
pictorial representation of the Bower/Watson point
insertion algorithm [4,19] is shown in Fig. 12. In this

164



Ph.D. Thesis - A.H. ElSheikh McMaster - Civil Engineering

836 A.H. ElSheikh et al. / Advances in Engineering Software 35 (2004) 827-841
Used External Functions : NONE
Used External Data Types : Handle =int
:  Edge = tuple of (hd: Handle, v0: Vertex, v1: Vertex)

External Constants : NONE
Type Definitions: :  Triangle = tuple of (hd: Handle, €0: Edge, el: Edge, €2: Edge)
Exported Constants: NONE
Exported Functions:

Exported Input Type Output Type | Exception

Function

T_createTri Handle, Edge, Edge, | Triangle Triangle Not_Valid

Edge

T_getHandle Triangle Handle

T_Compare Triangle, Triangle bool

T _getE0 Triangle Edge

T_getEl Triangle Edge

T getE2 Triangle Edge

T _isEdge Triangle, Edge bool

T setTriangle Triangle, Edge, Edge, | Triangle Triangle Not_Valid

Edge

State Variables:
Function semantics:
Exception:

Output:

Output:

Output:

Edge T_getEO (t: Triangle)
Output:

Edge T_getEl (t: Triangle)
Output:

Edge T_getE2 (t: Triangle)
Output:

bool T_isEdge (t: Triangle,
Output:

Triangle T_createTri (h: Handle, e0: Edge, el: Edge, e2:Edge)

Handle T_getHandle (t: Triangle)

bool T_Compare (t1: Triangle, t2: Triangle)

Triangle T _setTriangle (t: Triangle, e0: Edge, el: Edge, €2: Edge)

NONE

E_Compare(e0.e1) V E_Compare(el,e2) v E_Compare(e2,e0)
= Triangle Not_Valid
(he0,el,€2)

t.hd

tl.hd = t2.hd

t.e0

t.el

t.e2

e: Edge)
E_Compare(t.e0,e) V E_Compare(t.el,e) V E_Compare(t.e2,e)

Exception: E_Compare(e0,el) V E_Compare(el,e2) V E_Compare(e2,e0)
= Triangle_Not_Valid
Output: (t.hd,e0,e1,e2)
Fig. 8. Specifications of the Triangle Module.
algorithm, whenever a new vertex is inserted all the vertices on the boundary of the resulting cavity.
the triangles where the new vertex falls within its Fig. 13 presents the specifications of point insertion as a
circumcircle (encroached) are deleted. The new cavity part of the Bower/Watson algorithm for Delaunay

is then triangulated by connecting

the new vertex to triangulations.
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External Constants
Type Definitions:
Exported Constants:

Used External Functions NONE
Used External Data Types Handle = int
Entity = a

where a is a type variable which
is one of three type Vertex, Edge or Triangle.
:  List = (Entity) set

NONE

NONE

MAX SIZE: int

Assumption: List is initialized before usage.
Exported Functions:
Exported Input Type Output Type | Exception
Function
L _size List int
L_addObj Entity, List List List Is_Full,
Obj_Exists
L_delObj Entity, List List Obj_Not_Exist
L_clear List List

State Variables:
Function semantics;

NONE

int L_size (I: list)

Output: 1]

List L_addObj (e: Entity, 1: List)

Exception:

Output: 1U {e}
List L_delObj (e: Entity , 1: List)

Exception:

Output: 1- {e}
List L_clear (1: List)

Output: 1={}

| 1| > MAXSIZE = List_Is_Full
3 el: Entity € 1 where el.hd = e.hd = Obj_Exists

e ¢ 1 = Obj Not_Exist

Fig. 9. Specifications of the List Module.

7. Extendability and scalability

The extendability of the introduced mesh generation
system is granted by our modularization. For example, Oct-
tree based meshing algorithms do not share many operations
with Delaunay based algorithms, but our meshing system
can be extended to Oct-tree algorithms in a straight forward
way. Oct-tree mesh generation requires a tree structure to
define the adjacency between the mesh entities. This tree
structure will be specified as a variation of the adjacency
relation module. The mesh generation algorithm can be
considered as a variation of the Delaunay insertion
algorithm where vertices are inserted incrementally with

different criterion to maintain the tree balancing. Once a
node is inserted inside a triangle that includes another
vertex, that triangle should be divided into a pre-specified
number of children followed by a tree-balancing step.
Boundary recovery will also depend on inserting new
vertices. This demonstrates that to adopt a completely
different mesh generation algorithm only two modules need
to be changed. These two modules are the adjacency
relation module and the mesh generation module.

The scalability of this meshing system is assumed to be
similar to the development of matrix analysis libraries
BLAS [9] and LAPACK [1]. The BLAS library provides
the basic vector and matrix operation on different data
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Used External Functions
Used External Data Types

NONE

Vertex

Handle_server = (Handle) set

Edge = (hd: Handle, v0: Vertex, v1: Vertex)
Triangle = (hd: Handle, €0: Edge, el: Edge, €2: Edge)
list = (Entity) set

= (hd: Handle, cd: Coordinate)

External Constants NONE

Type Definitions NONE

Exported Constants :  NONE

Selected Exported Functions :
Exported Function Input Type Output Type | Exception
TO_splitEdge Edge
TO InsVertOnEdge Vertex, Edge Vert_Not_OnEdge

State Variables:

TriangleList: list :

Selected Function semantics:

TOsplitEdge (e: Edge)
Transition:

v3hd_temp = HS_

EdgeList = L_add
EdgeList = L_add

VertexList: list :=(Vertex) set
EdgeList: list :=(Edge) set

Vhandle_server: Handle_server
Ehandle_server: Handle_server
Thandle_server: Handle_server

vl_temp = E_getStart(e: Edge)

v2_temp = E_getEnd(e: Edge)

cdl_temp = V_getCoord(v1_temp)

cd2_temp = V_getCoord(v2_temp)

cd3_temp = GO_GetEdgeMid(cd1_temp, cd2_temp)

Vhandle server =HS_addHandle(Vhandle_server, v3hd_temp)
v3_temp = V _createVertex(v3hd_temp,cd3_temp)
VertexList = L_addObj(v3.temp, VertexList)

elhd_temp = E_getHandle(e)

el_temp = E_createEdge(elhd_temp, v1_temp, v3_temp)
e2hd_temp = HS_getHandle(Ehandle_server)
Ehandle_server=HS_addHandle(Ehandle_server, e2hd_temp)
e2_temp = E_createEdge(e2hd_temp, v3_temp, v2_temp)

EdgeList = L_delObj(e,EdgeList)

=(Triangle) set

getHandle(Vhandle_server)

Obj(el_temp,EdgeList)
Obj{e2_temp,EdgeList)

Fig. 10. Specifications of the Topological Operation Module.

types and LAPACK provides high level routines for
different problems like the solution of linear equations,
singular value decomposition and many other problems.
The newly introduced mesh generation infrastructure is
similar in concept to the BLAS library and has been
divided into a storage scheme, topological and geometrical

operation at the lowest level. On top of this different mesh
generation algorithms can be developed. These algorithms
can interface cleanly with different storage and data access
schemes. Finally, the high level mesh based applications,
such as the finite element method can utilize the entire
infrastructure.
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Used External Functions
Used External Data Types

NONE

Handle = int

Edge = (hd: Handle, v0: Vertex, v1: Vertex)
EAdj_List = (hd0: Handle, hd1l: Handle) set

External Constants NONE

Type Definitions: NONE

Exported Constants: NONE

Assumption: AdjList is initialized before usage.

Exported Functions:
Exported Input Type Output Type | Exception
Function
EA _addpair Edge, Edge, EAdj List { EAdjList Edge_AlreadyIn_Pair]
EA delpair Edge, EAdj_List EAdj_List Edge_Not In_Pair
EA 1sAdj Edge, EAdj_List Bool
EA getAdj Edge, EAdj_List Edge Edge_Not_In_Pair
EA clear List List

State Variables: NONE

Function semantics:

Bool EA IsAdj (e: Edge, a: EAdj List)

Output: ( (€0.hd, hd:Handle) A (hd:Handle, e0.hd) ) € a )
EAajList EA_addPair (e0: Edge, el: Edge, a: EAdj.List)
Exception: ( EAdj_IsAdj(e0,a) v EAdjJsAdj(el,a))
= Edge.AlreadyIn Pair
Output: a U (e0.hd, el.hd) U (el.hd, €0.hd)
EAdjList EA_delEdge (e: Edge, a: EAdj_List)

Exception:
Output:

(e.hd, hd:Handle) ¢ a Vv (hd:Handle, e.hd) ¢ a = Edge NotIn_Pair
a — {(e.hd, hd:Handle),(hd:Handle, e.hd)}

Fig. 11. Specifications of the edge Adjacency List Module.

8. Conclusions

Using the specified 2D mesh generation infrastructure
reliable mesh generation software can be developed in a
simple way for any mesh generation algorithm. The clear
high level description of the basic entities of the mesh
and the complete separation between the topological and
geometrical information makes it easy to extend
and modify this tool. The high level of abstraction of

the containers as sets leaves the selection of an efficient
representation for storage of mesh entities until a decision
about the meshing algorithm is taken. This can be done in
the next step of specification refinement, or it can be left
for the implementation phase. The specification presented
can significantly help in avoiding any ambiguity during
the design process of mesh generation software. Writing
the design specifications in a formal way, which is
intended for humans and eventually for machine

Fig. 12. Bower/Watson point insertion algorithm.
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Used External Functions
Used External Data Types

NONE

Handle_server = (Handle) set

Vertex = (hd: Handle, ¢d: Coordinate)

Edge = (hd: Handle, v0: Vertex, v1: Vertex)

Triangle = (hd: Handle, €0: Edge, el: Edge, e2: Edge)
list = (Entity) set

EAdjlist = (hd0: Handle, hdl: Handle) set

External Constants NONE
Type Definitions NONE
Exported Constants : NONE
Selected Exported Functions :
Exported Function Input Type Output Type | Exception

D_InsVert Vertex

State Variables: VertexList: list :=(Vertex) set; EdgeList: list :=(Edge) set
TriangleList: list :=(Triangle) set

Vhandle server: Handle_server; Ehandle_server: Handle_server
Thandle_server: Handle_server

Selected Function semantics:

D_InsVert (v: Vertex)
Transition: Del TriList_temp = { t: Triangle | GO_Check_TriEncroach(
V_getCoord(E_getStart(t.e0)),V_getCoord(E_getStart(t.el)),

V_getCoord (E_getStart(t.e2)), V_getCoord(v) ) }
Del EdgeList_temp = { e: Edge | T-isEdge(t,e) A t € Del TriList_temp }

Replaced EdgeList temp = { e: Edge | e € Del_EdgeList_temp A
EA_getAdj(e) ¢ Del EdgeList_temp }

for all e € Replaced EdgeList_temp DO D_CreateTri(v, e: Edge)
EdgeList = EdgeList ~ { Del_EdgeList_temp - Replaced EdgeList_temp }
TriangleList = TriangleList — Del _TriList_temp

Internal function semantics:

D_CreateTri (v: Vertex, e: Edge)
Transition: elhd_temp = E_getHandle(e)
Ehandle_server=HS_addHandle(Ehandle_server, e2hd_temp)
el_temp = E_createEdge(elhd.temp, E_getStart(e), v)

e2hd_temp = HS_getHandle(Ehandle server)
Ehandle_server=HS_addHandle(Ehandle_server, e2hd.temp)
e2_temp = E_createEdge(e2hd_temp, E_getEnd(e) , v)

EdgeList = L_addObj(el_temp,EdgeList)
EdgeList = L_addObj(e2_temp, EdgeList)

thd_temp = HS_getHandle(Thandle_server)

Thandle server =HS_addHandle(Thandle server, thd_temp)
t_temp = T_createTri(thd_temp, e, el_temp ,e2_temp)
TriangleList = L_addObj(t-temp, TriangleList)

Fig. 13. Excerpts from Delaunay vertex Insertion Module.

verification is considered by the authors as a very reliable
method. Identifying exception cases early and defining the
proper action to be taken protects the software design
from major changes at the testing stages. The complete

specification with all exception cases defined will
significantly help in driving test cases to check the
correctness of the final product as well as for testing each
module separately.
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