
THE EXQUIRES
(EXTENSIBLE QUANTITATIVE IMAGE RESAMPLING)

TEST SUITE: IMPACT OF THE DOWNSAMPLER,
DIFFERENCE METRIC, TEST IMAGE, RESAMPLING RATIO

AND COLOUR SPACE ON UPSAMPLER RANK

BY

ADAM TURCOTTE

T h e s i s s u b m i t t e d i n p a r t i a l f u l f i l m e n t

OF THE REQUIREMENTS FOR THE DEGREE OF
M a s t e r o f S c i e n c e (M S c) o f C o m p u t a t i o n a l S c i e n c e s

S c h o o l o f G r a d u a t e S t u d i e s
L a u r e n t i a n U n i v e r s i t y

S u d b u r y , O n t a r i o

© A d a m T u r c o t t e , 2 0 1 2

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-91873-9

Our file Notre reference
ISBN: 978-0-494-91873-9

NOTICE:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

Image re-enlargement tests are used to evaluate the accuracy of image resampling methods.

In such tests, an image is reduced (downsampled), enlarged back to the original width and

height, and the difference between the re-enlargement and the original is measured. The

smaller the difference, the better the resampling method is deemed to be.

The Extensible Quantitative Image RESampling test suite, written for this thesis, is

used to perform re-enlargement tests and analyze the results. EXQUIRES is FLOSS

(Free/Libre and Open Source Software), its Python code is transparent, and tests performed

with it are self-documenting. Additional image enlargement methods, image difference

metrics and test images can be plugged in. A number of image difference metrics based on

the sRGB, XYZ and L*C*h colour spaces are included, and an improved algorithm for the

computation of the MSSIM (Mean Structural SIMilarity) metric is implemented.

EXQUIRES can compute aggregate rankings. It is used to rank sixty four filters as

natural image reconstructors. In addition, EXQUIRES can compute Spearman cross

correlations, and the impact of various factors is assessed with them.

Commonly used image difference metrics are far from being in perfect agreement. If,

for example, XYZ RMSE, that is, Root Mean Square Error based on differences in the XYZ

linear light colour space, is the chosen image difference metric, the top ranked upsampling

methods are Nohalo face split subdivision with Locally Bounded Bicubic finish (Nohalo-

LBB), Hamming-windowed Sine 4 (Hamming 4), Cosine-windowed Sine 3 (Cosine 3),

Hann 4 and Lanczos 4. With sRGB RMSE, top ranks go to Nohalo-LBB, Bartlett 2, two

variants of Kaiser 3, and Bohman 3. In fact, the Spearman rank correlation of these two

standard metrics is only 0.510.

The choice of downsampler is also found to have significant impact. Here is an extreme

example: Upsampler rankings are almost reversed if downsampling is performed with near

est neighbour decimation instead of box filtering. When downsampling with nearest neigh

bour, the top methods are Mitchell-Netravali, bilinear, Nohalo-LBB, Hann 2 and Elliptical

Weighted Averaging (EWA) Robidoux, all methods with mild or non-existent halos. On

the other hand, when downsampling with effective low pass filters, top ranks go to Welch

4, Cosine 4, Lanczos 4, Hamming 4 and EWA Catmull-Rom, all with significant haloing.

The above ranks and cross-correlations were obtained with de-noised high quality dig

ital photographs and one archival scan stored in 16-bit sRGB and downsized as well as

re-enlarged through linear light. Strong evidence is given that the choice of colour space

through which the enlargement is performed deserves careful consideration. For example,

re-enlarging sRGB images obtained by downsampling through linear light is better done

by filtering sRGB values directly, but re-enlarging sRGB images obtained by downsam

pling sRGB pixel values directly is better done through linear light. With all downsamplers

included, Hamming 4, Bartlett 4, Hann 4, Lanczos 3 and Cosine 3 are top ranked in both

mixed toolchains. The mixed toolchains actually produce highly correlated rankings.

These results make clear that the experimental set up has a large impact on rankings.

For example, it is expected that adding noise or compression artifacts, or using different

types of test images (black on white typeset text, for example), would completely change

the results.

To my friends and family for inspiring me to go far,

and to my supervisor for giving me a direction to travel.

Acknowledgements

Without the assistance of Dr. John Cupitt of Imperial College, London, and Anthony

Thyssen of Griffith University, this thesis would be very different. Their willingness to

add needed features to the VIPS and ImageMagick image processing libraries and their

answers to my countless questions contributed greatly to the quality of the EXQUIRES

test suite. Cristy and Glenn Randers-Pehrson also deserve thanks for tirelessly improving

ImageMagick.

I am extremely grateful to everyone on the advisory committee for their guidance. I

would especially like to thank my supervisor, Dr. Nicolas Robidoux, for providing me

with an overwhelming amount of support and investing considerable time and effort into

this research, and my co-supervisor, Dr. Ralf Meyer, for taking the time to answer my

questions and for providing me with some excellent suggestions. Without their assistance,

this thesis would not have been possible. I would also like to thank Dr. Julien Dompierre

and Dr. Torsten Moller for providing useful feedback regarding the organization of the

thesis and other helpful revision comments.

I would like to thank those who contributed digital photographs to the

16bit840x840images test bank: Jean-Frangois Avon, Anthony Barnett, Dr. John Cupitt,

Jana Duncan, Dr. Minglun Gong, Holly Graham, Henry Ho, Dr. Kirk Martinez, Michael

Mure, Mukund Sivaraman and Luiz E. Vasconcellos.

Furthermore, I would like to thank Mark Thompson of Laurentian University, Alexan

dre Prokoudine, editor of Libre Graphics World, and Dr. Kirk Martinez of the University of

Southampton for providing computer hardware on which to run EXQUIRES prototypes.

Even though the research I performed on Jacobian adaptivity in the course of my Mas

ters is not included in this thesis, I would like to thank 0yvind Kolas, lead developer of the

GEGL image compositing library, for his assistance in implementing it.

Finally, I am grateful for an NSERC Alexander Graham Bell Canada Graduate Schol

arship, for an Ontario Graduate Scholarship, for Google Summer of Code 2010 funding

awarded to GIMP (GNU Image Manipulation Program), as well as for the financial sup

port provided by Laurentian University.

Contents

Abstract iii

Acknowledgements v

Table of contents vii

List of figures xii

List of tables xiii

1 Introduction 1

1.1 Image resam pling.. 1

1.2 Quantitative evaluation of image resampling m ethods.................................. 1

1.3 What is m iss in g ? .. 3

1.4 Statement of p u rp o se .. 4

2 Previous work 7

2.1 Re-enlargement (a.k.a. reconstruction) t e s t s ... 7

2.2 Rotation t e s t s 13

2.3 Sub-pixel translation te s ts .. 15

2.4 Frequency response t e s t s .. 16

2.5 Subjective t e s t s ... 18

2.6 Discussion.. 19

vii

3 Methodology 20

3.1 Correlation between rankings of the same items under different conditions . 20

3.1.1 Computation of the Spearman rank correlation.......................................22

3.1.2 Kendall’s rank correlation .. 23

3.2 Analysis of the Dumic, Grgic & Grgic d a ta .. 24

3.2.1 Overall upsampler r a n k s .. 25

3.2.2 Impact of the error m etric... 27

3.2.3 Impact of the resampling r a t i o .. 28

3.2.4 Impact of the downsampler.. 33

3.2.5 Impact of the test image ... 34

3.2.6 Conclusions... 35

4 Experimental setup 36

4.1 Key issues: alignment, colour spaces and accuracy.. 36

4.2 Image geometry conventions: “align (image) comers” vs “align (comer

pixel) centres” ... 37

4.2.1 Index-based pixel lo c a tio n .. 37

4.2.2 Resizing with “align centres” ... 38

4.2.3 Resizing with “align comers” ... 39

4.2.4 Align comers is the convention used in this version of EXQUIRES . 40

4.3 Linear light (“physical”) vs sRGB (“perceptual”) resam pling..........................41

4.3.1 The ICC sRGB v2 profile with the Perceptual rendering intent is

used in this version of EXQUIRES...44

4.4 Computation accuracy.. 46

4.5 Tested resampling ratios...48

4.6 Test im a g e s ... 49

4.7 Tested downsampling m ethods... 55

viii

4.7.1 Box filtering... 55

4.7.2 Gaussian filtering... 56

4.7.3 EWA (Elliptical Weighted Averaging) Lanczos (Jinc-windowed

Jinc) 3-lobe filtering .. 56

4.7.4 Lanczos (Sinc-windowed Sine) 3-lobe filte rin g 56

4.7.5 Nearest neighbour interpolation with averaged ties 57

4.8 Tested upsampling methods... 58

4.8.1 Standard interpolatory linear tensor methods...59

4.8.2 Novel interpolatory linear filtering m eth o d s...................................... 63

4.8.3 Standard non-interpolatory linear tensor m ethods..................................64

4.8.4 Standard interpolatory EWA (Elliptical Weighted Averaging) linear

filtering m e th o d s .. 65

4.8.5 Standard non-interpolatory EWA linear filtering m ethods................. 67

4.8.6 Novel non-interpolatory EWA linear filtering methods 68

4.8.7 “Extra” (“external”) upsampling method te s te d 73

4.9 Image difference m e tr ic s .. 74

4.9.1 Metrics based on sRGB differences ... 74

4.9.2 Metrics based on XYZ differences.. 76

4.9.3 Metrics based on CMC 1:1 AE distances .. 77

5 Implementation 80

5.1 Streamlined computation of the SSIM (Structural SIMilarity) index 80

5.1.1 Mathematical specification of S S IM ... 80

5.1.2 Refactored computation for M atlab.. 82

5.1.3 SSIM index map computation with input overwriting........................ 83

5.1.4 Threaded local demand-driven pipelined computation for VIPS . . . 84

5.2 Technical overview of the EXQUIRES test su ite .. 86

ix

5.2.1 Reading and writing configuration files ... 86

5.2.2 Generating and reporting image comparison d a t a 87

5.2.3 Parsing command line arguments... 90

5.2.4 Code quality... 91

5.2.5 Documentation... 92

6 Results 93

6.1 Major caveat regarding upsampler ra n k in g s ..93

6.2 Overall upsampler ranks (linear light toolchain and RM SE)......................... 95

6.2.1 Overall ranks (all downsamplers included).. 96

6.2.2 Overall ranks excluding the results of re-enlarging images obtained

with nearest neighbour downsampling...100

6.2.3 Overall ranks based on the results of re-enlarging images obtained

with nearest neighbour downsampling...102

6.3 Impact on upsampler ranks of various factors ...I l l

6.3.1 Impact on upsampler ranks of downsampler c h o ic eI l l

6.3.2 Impact on upsampler ranks of the resampling ratio 112

6.3.3 Impact on upsampler ranks of test image choice............................113

6.4 Impact on upsampler ranks of the choice of error m etric...................................115

6.5 Impact on upsampler ranks of filtering sRGB values without converting to

and from linear light..121

6.6 Don’t assume that enlarging through linear light is b e t te r124

6.6.1 Re-enlarging images obtained by linear light downsampling 124

6.6.2 Re-enlarging images obtained by direct sRGB downsampling 125

7 Conclusions 128

A EXQUIRES modules: source code 131

x

A.l _Jnit p y ..131

A.2 aggregate.py... 131

A.3 com pare.py... 133

A.4 correlate.py... 141

A.5 database.py... 145

A.6 new.py.. 149

A.7 operations.py.. 157

A.8 parsing.py.. 165

A.9 progress.py ... 174

A. 10 report, p y .. 178

A. 11 ru n .p y ...180

A.12stats.py... 181

A .13 too ls,py .. 185

A. 14 update .py ... 186

B EXQUIRES examples: source code 190

B.l nohalo.cpp...190

C Refactored SSIM: source code 192

C.l ssimJndex_refactored.m .. 192

D EXQUIRES user manual 197

Bibliography 283

xi

List of Figures

4.1 Test image built into EXQUIRES... 50

4.2 Test images from the 16bit840x840images bank... 51

4.3 Test images from the 16bit840x840images bank... 52

4.4 Test images from the 16bit840x840images bank... 53

4.5 Test images from the 16bit840x840images bank... 54

xii

List of Tables

6.1 XYZ RMSE ranking of linear light upsampling methods as reconstructors

of images obtained by linear light downsampling (all downsamplers in

cluded). Filters with gradient discontinuities are in italics................................. 105

6.2 XYZ RMSE ranking of linear light upsampling methods as reconstructors

of images obtained by linear light downsampling with effective low pass

filters (nearest neighbour downsampling results not included). Filters with

gradient discontinuities are in italics... 106

6.3 XYZ RMSE ranking of linear light upsampling methods as reconstructors

of images obtained by linear light downsampling with nearest neighbour.

Filters with gradient discontinuities are in italics..107

6.4 XYZ RMSE of linear light upsampling methods as reconstructors of images

obtained by linear light downsampling (all downsamplers included). Filters

with gradient discontinuities are in italics...108

6.5 XYZ RMSE of linear light upsampling methods as reconstructors of im

ages obtained by linear light downsampling with effective low pass filters

(nearest neighbour downsampling not included). Filters with gradient dis

continuities are in italics...109

6.6 XYZ RMSE of linear light upsampling methods as reconstructors of im

ages obtained by linear light nearest neighbour downsampling. Filters with

gradient discontinuities are in italics... 110

xiii

6.7 Downsamplers Spearman rank correlation matrix. Cross-correlations

higher than .9 are in boldface...I l l

6.8 Ratios Spearman rank correlation matrix...112

6.9 Test images Spearman rank correlation matrix... 114

6.10 Metrics Spearman rank correlation matrix...118

6.11 Upsampler ranks by metric (part 1). Filters with gradient discontinuities are

in italics. Ranks in the top quartile are in boldface, in the bottom quartile,

in italics...119

6.12 Upsampler ranks by metric (part 2)...120

6.13 XYZ RMSE ranking of sRGB upsampling methods as reconstructors of

images obtained by linear light downsampling. Filters with gradient dis

continuities are in italics...122

6.14 XYZ RMSE of sRGB upsampling methods as reconstructors of images

obtained by linear light downsampling (all downsamplers included). Filters

with gradient discontinuities are in italics...123

6.15 XYZ RMSE ranking of linear light and sRGB upsampling methods as re

constructors of images obtained by linear light downsampling. Enlarge

ment by direct filtering of sRGB values is shown in italics; roman font

indicates enlargement through linear light.. 126

6.16 XYZ RMSE ranking of linear light and sRGB upsampling methods as re

constructors of images obtained by downsampling by direct filtering of

sRGB values. Enlargement by direct filtering of sRGB values is shown

in italics; roman font indicates enlargement through linear light....................... 127

xiv

1 Introduction

1.1 Image resampling

Image resampling essentially consists of combining known pixel values so as to obtain new

pixel values at locations where none are provided (between the original pixel locations, as

in image enlargement), or to obtain a pixel value suitable for different viewing conditions

(as in image reduction). It is performed when zooming in on a digital photograph on a

tablet or computer screen, watching a classic sitcom in HD (high definition), registering

(aligning) two medical images taken at different times with slightly different positioning

and state of the patient in order to compare them, using the software zoom in a digital cam

era, correcting lens distortion, warping a portrait for artistic purposes, assembling multiple

satellite views of the Earth or the Sun, producing image thumbnails, making an image fit a

browser window, processing one’s desktop so that it is shown within a computer monitor

taking into account the type and configuration of the screen’s physical pixels, etc.

A very large number of methods—both general purpose and specialized—have been

and are still being developed, which brings up a question: How does one measure the

quality of an image resampling method?

1.2 Quantitative evaluation of image resampling methods

Although one can test the suitability of an image resampling method for a specific task by

measuring its performance directly within the application, the quantitative evaluation of the

1

quality of a general purpose image resampling method is generally performed with one of

the following methods:

Re-enlargement (a.k.a. reconstruction) tests, in which a gold standard image—a ref

erence image labelled as “perfect” when computing errors— is first downsampled

(downsized, that is, reduced and shrunk, so that there are fewer pixels in all di

rections) with some filter (box filtering, for example), and then re-enlarged to its

original size with the evaluated resampling method, at which point the original and

re-enlarged images are compared [1-18]

Rotation tests, in which a gold standard image is repeatedly rotated with the evaluated

resampling method in such a way that the total rotation angle adds up to an exact

multiple of 90 degrees, after which the overall rotation is exactly undone and crop

ping performed on both the result and original image before comparing them to min

imize the impact of the abyss (pixels that lie outside of the extent of the gold standard

image) [1, 19-26]

Sub-pixel translation tests, in which a gold standard image is repeatedly translated in

such a way that the total translation is an exact multiple of the inter-pixel distance

both horizontally and vertically, following which the overall translation is exactly

undone before cropping and comparing [1, 21, 22, 25-27]

Frequency response tests, in which the frequency response of the filters is measured [1,

28-32], Such tests do not directly measure the performance of an image resampling

method, since they do not involve “real” images. The same can be said of plotting

the impulse response and, to a lesser extent, of evaluating the results of enlarging

“archetypal” shapes (diagonal interfaces etc) [32], They are nonetheless informative.

Neil Dodgson lists additional instances of such tests in Appendix A of [33].

2

Given that the above references are not exhaustive, it appears that such quantitative

comparisons of image resampling methods will continue to be performed and published

regularly. For this reason, they are a worthy topic of investigation.

With the exception of frequency response tests, these quantitative evaluation methods

follow similar procedures:

Step 1. Geometrically transform the gold standard image (step omitted in the rotation and

translation tests)

Step 2. Geometrically transform the result with the evaluated image resampling filter

Step 3. “Exactly” undo the overall geometrical transformation (omitted in

re-enlargement tests)

Step 4. Crop the result and the gold standard image (usually omitted in re-enlargement

tests)

Step 5. Compare the result with the gold standard image using one or more image differ

ence metrics.

The quality of image resampling methods can also be evaluated using scores given

by human evaluators, that is, using subjective, as opposed to quantitative, measures of

quality. Qualitative testing and the related issue of how quantitative testing gives rankings

that correlate with subjective evaluation are topics which are not directly addressed by this

thesis.

1.3 What is missing?

After reading many articles that compare image resampling methods, one cannot help but

be struck by the lack of standardization of testing methods, which makes it impossible to

3

reproduce and validate the data or compare another method using the same testing proce

dure.

Test images are often unavailable and badly documented; Code implementing the tested

methods is not made available, which not only makes direct testing of novel methods diffi

cult, but also leaves undocumented design specifics like boundary handling; and so on.

The lack of standardization is especially surprising given the methodological common

ality exhibited by published testing approaches. In addition, novel methods are generally

only compared to a few classical ones, making the nearly invariable top ranking for the

authors’ own highly questionable.

A more subtle issue with such quantitative testing also becomes apparent, namely the

implicit assumption that similarly structured but nonetheless different tests give method

rankings that are directly comparable and consequently allow one to draw “universal” con

clusions from their results. Leaving aside the issue that very few methods are generally

compared in published articles, would different testing parameters—ratios, angles, test im

ages, image difference metrics, colour spaces, image formats etc.—have changed the rank

ing? In other words, are rankings stable with respect to the particulars of the experimental

setup?

1.4 Statement of purpose

The primary aim of this thesis is to foster the following standards in comparative image

resampling method evaluation:

• reproducibility

• standardization

• meta-analysis.

4

The secondary goals of this thesis are to rank a large number of image resampling methods

and, more importantly, to measure the impact of various experimental design parameters

on results, in particular, on the rankings themselves. This work yielded an unexpected

insight, namely that image resampling results are affected in nontrivial ways by colour

space choice.

The EXQUIRES (Extensible Quantitative Image RESampling) test suite, specifically

written for this thesis, is the method through which these goals have been achieved. By

virtue of being FLOSS (Free/Libre and Open Source Software), EXQUIRES provides a

transparently defined test bed for image resampling methods, documented down to the

most minute detail thanks to the use of well documented open source software and copyfree

image data distributed via the Internet. A large number of image resampling methods are

included, and a system is provided for hooking up external resampling programs in order

to test them against the built in ones. In other words, EXQUIRES can be used as a standard

quantitative test for the accuracy of image resampling methods.

Re-enlargement tests were chosen because they are the most commonly used. However,

EXQUIRES would be a good starting point for a test suite that performs rotation or sub

pixel translation tests. In addition, almost trivial modifications would allow EXQUIRES to

perform re-enlargement tests in which blur, noise or JPEG compression artifacts are added

to the downsampled images, for the purpose of evaluating the reconstruction power of

upsamplers with blemished, as opposed to “clean”, images. (Blurring essentially consists

of applying local averaging to the image in order to remove high frequency detail. JPEG is

the most commonly used image compression method.)

Yet, EXQUIRES does not force researchers into a one size fits all comparative test

because it is highly customizable. A key feature of EXQUIRES is that it makes it easy to

set up and unambiguously document alternate testing procedures so as to allow third parties

to reproduce and extend them. That is, far from enforcing a rigid standard, EXQUIRES

allows anyone to define his or her own test procedure, automatically documented by way

5

of EXQUIRES’ Python-based scripting.

EXQUIRES also provides a platform for evaluating the impact of test specifics on rank

ings. For example, it can be used to evaluate the impact of using a different image difference

metric. This meta-analysis capability is arguably even more important than documenting

and standardizing the attribution of ranks to resampling methods because it allows one to

estimate the stability of the ranks with respect to specific changes in the experimental setup.

In order to illustrate EXQUIRES’ capabilities, this thesis contains both image resam

pling method rankings obtained with several carefully chosen experimental setups, and

analyses of the correlation of the rankings obtained with varying experimental factors. Al

though these results are important in and by themselves, the reader should keep in mind that

they are but illustrations of EXQUIRES’ capabilities. That is: the tool is more important

than the results.

EXQUIRES makes it possible to compare resampling methods against many other

methods, aggregating results generated using many ratios, downsamplers, image differ

ence metrics, and test images, all this using a transparently defined but nonetheless fully

customizable methodology involving clearly written and documented free/libre and open

source code. In addition, EXQUIRES facilitates the analysis of the impact of the testing

configuration on results, a seldom discussed topic of investigation [11, 16].

6

2 Previous work

This chapter summarizes some of the many publications that contain a comparison of image

resampling methods.

2.1 Re-enlargement (a.k.a. reconstruction) tests

In order to test how an image resampling method performs when enlarging an image, one

must have an image to compare against the result. For this reason, it is common practice

to first reduce the original image in some way, then re-enlarge this reduced image using

various resampling methods. The images can be reduced by several factors that define the

ratio of the original width and height to the width and height of its downsampled version,

using several methods, and the re-enlargements can be compared to the original images

using any number of image difference metrics.

When testing a novel image resampling method, especially one focused on enlarging

images, some form of this procedure is typically employed. This section describes several

articles that involve performing a re-enlargement test.

Jia-Guu Leu developed a technique for enlarging images that maintains the sharpness

of step edges while reducing aliasing and blurring [2]. Testing was performed as follows:

First, six test images were reduced by several factors (2, 3, and 4) using neighbour aver

aging (nearest neighbour). Then the downsampled images were re-enlarged and the results

produced by the proposed method were compared against nearest neighbour and bilinear

interpolation. The comparison was performed using mean squared error (MSE) and mean

7

absolute error (MABSE), which appears to be the same as the average absolute error (AAE)

used in this thesis, but using an uncommon acronym. It was concluded, based on the quan

titative results and from visual inspection, that the proposed method produces better results.

Guoping Qiu developed a new technique for upsampling images that involves creat

ing an image pyramid from common interpolation methods, designing a vector quantizer

called the interresolution look-up table (IRLUT), and using this look-up table to obtain

an enlarged image from the lower resolution image data [3]. The idea is to use this ap

proach with pre-existing methods of enlarging images in order to improve the quality of

the produced images. Four grayscale test images were reduced by a factor of 2 and 4, and

these images were re-enlarged using bilinear and bicubic interpolation, Burt and Adelson’s

Gaussian filtering [34], and a wavelet filter pair, as proposed by Villasenor et al. [35]. The

reductions were performed by the same method that performed the re-enlargements, so

there is no standard technique for downsampling, and the reductions and enlargements by

a factor of 4 were achieved by reducing and enlarging twice by a factor of 2. The results

produced by each upsampling method were compared against the IRLUT versions in terms

of MSE and signal-to-noise ratio (SNR), which showed that the look-up table approach

improves the results of each method.

Morse and Schwartzwald developed a technique for smoothing upsampled images us

ing level-set reconstruction [4], They low-pass filtered and reduced three test images by a

factor of 3 using an unspecified method. Then they re-enlarged the images using nearest

neighbour, bilinear, and bicubic interpolation, and applied their smoothing technique to the

bicubic result. They used the MSE and mean contour curvature metrics for each individual

colour channel to assess the quality of the images produced by each upsampler, and con

cluded that their technique improves the bicubic results and produces images that are more

visually appealing.

Chen et al. proposed a fast method that analyzes the local image structure and partitions

it into homogeneous and edge areas [8]. First, they reduced six grayscale images and three

8

colour images by a factor of 2 and 4 using an unspecified method. They then re-enlarged the

downsampled images and compared the results produced by their method against nearest

neighbour (called zero-order in their article), bilinear, and bicubic interpolation, as well

as the new edge-directed interpolation (NEDI) [36] method. They used the peak signal-

to-noise ratio (PSNR) as a metric and determined that their method produces results with

an objective quality similar to NEDI. Since they aimed to create a fast method, and their

method is more suited to real-time image interpolation than NEDI, achieving similar PSNR

values was considered a success.

Dong et al. proposed a non-local iterative back-projection (NLIBP) algorithm for en

larging images [15]. They applied a Gaussian point spread function (which smooths images

and blurs them) to four natural test images and downsampled them by a factor of 2 using an

unspecified method. Then they re-enlarged the downsampled images and compared the re

sults produced by their method against bicubic interpolation, iterative back projection (IBP)

[37], and bilateral filter based IBP (BFIBP) [38] using the PSNR metric. They concluded

that NLIBP outperforms all of the other methods.

Chung et al. proposed a fractal-based technique for enlarging images [5]. First, they

downsampled seven test images by a factor of 2 using an unspecified method. Then they

re-enlarged the downsampled images and compared, using the PSNR metric, the results

produced by their method against bicubic and bilinear interpolation, a parametric cubic

convolution method proposed by Han and Baek [39], and a conventional fractal method

[40]. They concluded that their method is a better reconstructor than the other methods.

Su and Willis developed an image interpolation method based on data-dependent tri

angulation of lower resolution images [7], In order to improve performance, they imple

mented an OpenGL version of their method that allows for real-time image reconstruction.

They chose to downsample the test images using a Gaussian filter in order to reduce arti

facts. They reduced 20 images by a factor of 2 and compared the results of two versions

of their method against nearest neighbour, bilinear, and bicubic interpolation, as well as

9

NEDI, using the MSE for each individual colour channel. They performed a statistical t-

test on the results and determined that no significance could be read into them. Regardless,

by visual inspection, they concluded that their method produces good results.

Muresan and Parks developed an adaptively quadratic (AQua) image interpolation

method based on optimal recovery and on analysis of the local image behaviour to de

termine the quadratic signal class [6]. They applied low-pass filtering and decimation by a

factor of 2 to five test images, and compared the results produced by six versions of their

proposed method against sub-pixel edge localization, as well as edge-directed, bicubic, and

Bayesian interpolation, using the PSNR metric. They concluded that AQua interpolation

performs better than the other methods, and suggested that it introduces fewer artifacts

around edges.

Luming Liang developed a convolution-based image interpolation method [13], A sin

gle test image was reduced by five different factors (1.5, 2, 2.5, 3, and 3.5) using bilinear

downsampling, then re-enlarged using Keys and osculatory adaptive rational interpolation,

and six versions of the proposed method. The comparison of the upsampled images was

performed using the PSNR metric, and it was concluded that the proposed method improves

the visual quality of the enlarged images to some extent.

Robidoux et al., including the author of this thesis and his primary supervisor, have

developed several image resampling methods, including an exact area method using natural

biquadratic histosplines (EANBQH) [14] and an edge-adaptive method called Nohalo [16].

The testing performed for the EANBQH article used the earliest prototype of

EXQUIRES. Ten images were downsampled by seven integer factors (2, 3, 4, 5, 6, 7,

and 8) and six fractional factors (8/7, 7/6, 6/5, 5/4, 4/3, and 3/2) using box filtering. The

image enlargement method EANBQH was compared to box filtering, two bicubic spline

implementations using the Scilab SI VP package [41], and 12 methods implemented by

the ImageMagick image processing library (Blackman, Catmull-Rom, Hamming, Hann,

Hermite, Kaiser, Lagrangian, Lanczos 3, Mitchell-Netravali, Parzen, Triangle, and Welch)

10

[42]. The RMSE, AAE (average absolute error), MAE (maximum absolute error), and

MSSIM (mean structural similarity) metrics were used, and EANBQH was shown to ob

tain better objective results than the other methods. Although the EANBQH article identi

fies the tested geometry convention with a slightly different terminology, this convention is

consistent with the one used by EXQUIRES (see §4.2).

The second article describes a version of Nohalo that uses bilinear interpolation as a

finishing method. (A different version of Nohalo that uses locally bounded bicubic (LBB)

interpolation as a finishing method is tested in the present thesis. See §4.8.7.1.) The resam

pling factors of the EANBQH article were considered, and seven more integer factors (8,

10,12,13,14,15, and 16) were added. The same upsampling methods as the EANBQH ar

ticle were tested, except that the ImageMagick Triangle method was replaced by a bilinear

interpolation implementation from the image processing library VIPS (Virtual Image Pro

cessing System) [43], an additional SIVP bicubic spline implementation was added, and

two more ImageMagick methods (Bessel and Gaussian) were tested. However, the image

geometry convention was switched to the other most common one, as discussed in §4.2.

Nohalo ranked highest for all tests in terms of RMSE and near the top for the other metrics.

It was concluded that Nohalo is accurate and produces pleasant enlargements of natural

images.

Miravet and Rodriguez proposed a method for upsampling images based on neural pro

cessing of local image representations [9]. First, two sequences of 25 grayscale satellite

images were reduced by a factor of 2 using an unspecified method. They re-enlarged

the downsampled images and compared the results produced by the proposed method

against their previously proposed method MLP-PNN (Multi-Layer Perceptron - Proba

bilistic Neural Network) and nearest neighbour interpolation in terms of root mean squared

error (RMSE), both with and without the addition of Gaussian noise. In both tests, their

method achieved the lowest RMSE values. Coupled with their own visual inspection, they

concluded that the proposed method improves noise rejection and image definition.

11

Meijering et al. proposed a convolution-based method of image reconstruction using a

class of Sinc-approximating symmetrical piecewise nth-order polynomial kernels [1]. They

used 16 test images and computed the MSE for enlargements produced with linear inter

polation, and cubic, quintic, and septic convolution. The original images were low-pass

filtered and downsampled with an unspecified method by a ratio of 4 before upsampling

with the various interpolation methods. In addition to the re-enlargement tests, they per

formed subpixel translation and rotation tests, and used MSE to assess the quality of the

resampling methods. Septic convolution produced the lowest error values in all cases, but

the authors cautioned that the choice of method should be application-sensitive due to the

computational cost.

Based on an article by Roussos and Maragos [44], Pascal Getreuer proposed an image

interpolation method that makes use of tensor-driven diffusion [18]. While several images

are discussed in the article, error data is only shown for a single image, which is reduced

by applying a Gaussian convolution and downsampling by a factor of 4. The proposed

method is compared against bicubic interpolation, a fractal zooming method from the Gen

uine Fractals software package (now called Perfect Resize) [45], Fourier zero-padding with

deconvolution, TV minimization [46], and contour stencils [47]. The PSNR and MSSIM

metrics were used to compare the resulting re-enlargements with the original, and the pro

posed method achieved the best results for both metrics.

The article by Amanatiadis and Andreadis presents an overview of evaluation methods

for image interpolation methods and describes several different image transformation pro

cedures for obtaining images to compare with the original image [48]. In addition to the

procedure used in this thesis, they describe upsampling an image before downsampling and

using successive rotations as alternative approaches. As a demonstration, they performed

some simple tests with nearest neighbour, bilinear, and bicubic interpolation, and showed

with PSNR and RMSE that bicubic interpolation produces the best results, quantitatively

speaking.

12

Dumic et al. performed a re-enlargement test with the goal of determining which factors

have the greatest influence on image quality [11]. The factors they considered are the

downsampling methods, error metrics, and contents of the test images. Without performing

an in-depth data analysis, they concluded that the choice of downsampler has the most

impact on the quality of the re-enlarged images. Further analysis of their results is presented

in §3.2.

2.2 Rotation tests

Rotation tests involve repeatedly rotating an image with the same resampling method until

the total rotation angle reaches a multiple of 90°, then undoing the rotation and cropping

the result in order to reduce the impact of the abyss (the region outside of the image) when

comparing against the original image. This section describes several articles that involve

rotation tests.

Unser et al. developed a convolution-based method optimized for image rotation [19].

They used three test images and performed 16 successive rotations of 22.5°. Using RMSE,

they compared the results of several version of their method against nearest neighbour and

bilinear interpolation, Keys cubic, cubic spline, and several 2-pass and 3-pass separable

filters. They concluded, both in terms of speed and quality, that the higher-order versions

of their algorithm are superior to all the standard high-quality methods they were familiar

with.

Larkin et al. developed a fast Fourier method optimized for image rotation [20]. They

used a small grayscale image of the Mona Lisa, applied zero padding in the real and Fourier

space, then rotated the image twice by 45°. Rather than using an error metric, they simply

subtracted the resulting image from a version of the original that was transposed by 90°. In

the unpadded region, the difference was found to be exactly zero.

In addition to the re-enlargement test described in the previous section, Meijering et al.

13

also performed a rotation test on their convolution-based method [1], where the test images

were rotated by 15° by each method, then rotated back to their original position using the

same method. The ranks for each method are the same as those for the re-enlargement test.

They also used rotation tests in their comparison of Sinc-approximating kernels [21], spline

interpolation and other convolution-based methods [22], and a more comprehensive com

parison of convolution-based methods [25], all in terms of interpolating medical images.

In all, 126 different kernels were evaluated, including a variety of piecewise polynomial

kernels (nearest neighbour, bilinear, Lagrange, generalized convolution, and B-spline), and

several windowed Sine kernels (Bartlett, Blackman, Blackman-Harris, Bohman, Cosine,

Gaussian, Hamming, Hann, Kaiser, Lanczos, Rectangular, and Welch). For these articles,

they used two different sets of rotation angles: the sequence of 0.7°, 3.2°, 6.5°, 9.3°, 12.1°,

15.2°, 18.4°, 21.3°, 23.7°, 26.6°, 29.8°, 32.9°, 35.7°, 38.5°, 41.8°, and 44.3° [21, 25], and

16 rotations of 22.5° each [22]. They used a collection of metrics to compare the results to

the original images: MSE [1], RMSE [21, 22, 25], largest absolute error (LAE) [22], which

is referred to as maximum absolute error (MAE) in this thesis, and root peak square error

(RPSE) [25], which is not referred to by any of the other articles mentioned in this chapter.

They concluded that spline interpolation is the preferred method, with cubic convolution

resulting in a significant reduction in interpolation errors when compared against linear in

terpolations. While better results are obtained with higher-degree spline methods, they are

computationally expensive.

Thevenaz et al. authored two articles on image interpolation and resampling: one mak

ing use of a circular pattern and a human subject as test images [23], and the other making

use of both of these as well as a CT scan [24]. Both articles involve rotating the test im

ages 15 times by 24° and using SNR to compare the results against the original images.

The tested resampling methods are nearest neighbour and bilinear interpolation, Keys cu

bic [49], methods by Alan R Schaum [50], Ismail German [51], Neil A. Dodgson [30],

Meijering et al. [1], and Blu et al. [52], as well as several windowed Sine (Bartlett, Dirich-

14

let, Hamming, and Hann) and spline methods. In the first article, the best SNR results

were obtained by the sextic version of the optimal maximal order and minimum support

(O-MOMS) method [52]. However, the authors conlcuded that the lack of regularity of

O-MOMS methods makes them less suitable than B-splines for edge detection and other

problems involving the computation of integrals. In the second article, the authors advo

cate the use of B-splines once again, and they go on to suggest that the MOMS class of

functions—such as B-splines, Schaum [50], and O-MOMS [52]—provide the best com

promise between speed and quality.

Nehab and Hoppe are responsible for a comparison of several resampling methods [26].

They performed 31 successive rotations by an angle of 27r/31 about the centre of a set of

four test images, taken from the Kodak Lossless True Color Image Suite [53], and an

artificial image created by a radial function. They used the MSSIM index to compare the

results produced by nearest neighbour and linear interpolation, as well as Catmull-Rom,

Hamming, Lanczos, Mitchell-Netravali, and methods by Alan P. Schaum [50], Blu et al.

[54, 55], Condat et al. [56], and Dalai et al. [57], The top three methods were O-MOMS

with degree 5 [55], B-spline with degree 5, and O-MOMS with degree 3 [55].

2.3 Sub-pixel translation tests

Sub-pixel translation tests involve repeatedly translating an image, with a fixed resampling

method, so that the total translation is an exact multiple of the inter-pixel distance (both

horizontally and vertically), then undoing the translation and cropping before comparing

the result with the original image. This section describes several articles that involve per

forming a sub-pixel translation test.

In the previous sections, several articles by Meijering et al. were mentioned. In addi

tion to the aforementioned tests, all of these articles also involve sub-pixel translation tests.

They performed a translation by (0.4,0.7) pixels [1], as well as a set of horizontal transla

15

tions by the following distances: 0.01, 0.04, 0.07, 0.11, 0.15, 0.18, 0.21, 0.24, 0.26, 0.29,

0.32, 0.35, 0.39, 0.43, 0.46, and 0.49 (totalling 4.0 pixels) [21, 22, 25]. In all cases, the

same images, resamplers, and metrics were used as in the previous tests. Furthermore, re

gardless of the type of test being performed, the authors concluded that spline interpolation

provided the best trade-off between speed and accuracy.

In addition to the rotation test described in the previous section, Nehab and Hoppe also

performed a sub-pixel translation test [26]. They performed 32 successive translations—

cycling over the set {(0.5,0.5), (0.5, —0.5), (—0.5, —0.5), (—0.5,0.5)}—on the four Kodak

test images and the artificial radial image. Once again, MSSIM was used to compare the

results obtained using the same resampling methods as the rotation test. Interestingly, the

top methods for this test are the same as for the rotation test.

Ellis Freedman studied the impact of resampling on medical imagery by translating

several images 15/32 of a pixel to the left, then back 15/32 of a pixel to the right and

subtracting the result from the original [27]. He compared the constant modulation transfer

function (CMTF) interpolation method against a standard cubic convolution. No metrics

are used, but by visual inspection alone, it is clear that CMTF introduces less error.

2.4 Frequency response tests

James F. Blinn provides an overview of the Fourier transform and convolution theorem for

image processing, as well as a discussion of frequency response issues [28]. Frequency re

sponse tests involve measuring the frequency response of the method in question, meaning

that they do not directly measure the performance of an image resampling method, since

they do not involve “real” images. Regardless, they are still informative. This section de

scribes several articles that involve frequency response tests. Because they are completely

different from the other tests described in this chapter and this thesis, they will not be

discussed in detail.

16

Ken Turkowski describes several popular filters—box, tent, Gaussian, and Sine—and

shows the frequency response of several versions of the filters [29]. In particular, he shows

the frequency response for several decimation ratios, and provides filter coefficients for

various phases and decimation ratios. Furthermore, he analyzes these filters in terms of

their stopband and passband response.

Neil A. Dodgson has written a highly comprehensive technical report on image resam

pling [33] and has proposed a quadratic image interpolation method [30]. By comparing the

stopband and passband response of several methods, it was determined that the proposed

method has a frequency response better than linear interpolation, but inferior to Catmull-

Rom.

In addition to re-enlargement, rotation, and sub-pixel translation tests, Meijering et

al. also performed a frequency response test [1]. They compared the kernels of the four

lowest-order interpolators to their corresponding ideal interpolation kernels. Using the total

square error (distance) of the spectra with respect to the spectrum of the Sine function, they

concluded that cubic, quintic, and septic convolution are, respectively, a 33.9%, 36.4%, and

39.2% improvement over linear interpolation. Furthermore, quintic and septic convolution

are only, respectively, a 3.8% and 8.0% improvement over cubic convolution.

Amir Said proposed several kernels for image interpolation and resizing and derived

parameters for approximating popular interpolation kernels, namely Lanczos, Blackman-

Harris, Cubic B-spline, and Mitchell-Netravali [31]. The differences between these ap

proximations and the original kernels are established by measuring the frequency response

and computing the difference between several images resized with the kernels by way of

the PSNR metric.

Chantal Racette’s Master’s thesis includes chapters discussing the frequency response

of several linear filters, as well as relative minimax polynomial approximations of the 2-

lobe and 3-lobe versions of Lanczos [32], Also included is Scilab code that computes the

frequency response of decimation by a factor of n performed with various filters.

17

2.5 Subjective tests

Since viewer experience is the true test of an image resampling method’s performance,

one might opt to supplement the aforementioned objective tests with subjective testing, in

which a group of people (possibly image processing experts) evaluate methods based on

how visually appealing their output is. This section describes several articles that involve

subjective tests.

Mitchell and Netravali developed a family of cubic filters defined by two parameters:

B and C (equivalent to the a parameter of the Keys family of filters) [58]. They assembled

a group of image processing experts to help classify the types of artifacts that are found in

images enlarged by this family of filters and concluded that setting B and C to 1/3 gives

very good results results. This cubic filter is now known as the Mitchell-Netravali filter.

Wang et al. developed the Structural SIMilarity (SSIM) index, which is an image metric

based on the idea that the Human Visual System (HVS) is tuned to extract structural infor

mation from a scene [59]. They conducted a subjective test using a collection of JPEG and

JPEG2000 images. These images were viewed by a small group of people who were asked

to assign a quality rating to each image. Then they compared their metric against PSNR,

the Samoff model, and the Universal Quality Index (UQI) [60]—an earlier metric based

on the concept of structural similarity—using several non-linear and variance-weighted

regressions to map between the subjective data and the objective metric data. Most no

tably, they used the Spearman rank-order correlation coefficient as a measure of prediction

monotonicity.

More recently, Xu et al. published a paper that deals with the use of online crowdsourc

ing for subjective image quality assessment [61]. This technique makes use of

HodgeRank, which is a framework for decomposing paired comparison data. They used

several images from the I VC [62] and LIVE [63] image databases, which contain reference

images and various distorted versions of those images. For each reference image they used,

18

they also selected 15 distorted versions of the image. Subjects were presented with a series

of image pairs, and were asked to decide which looked better. It was concluded that online

HodgeRank is an effective way of studying large-scale subjective image quality assessment

on the Internet.

2.6 Discussion

In each of the articles described in this chapter, various tests are performed. Generally, these

tests are not described in sufficient detail to be reproducible. In addition, there is a lack of

standardization. Image metrics are used rather haphazardly (for example, not all articles

use the same definition of PSNR), which makes comparing results difficult, and none of the

articles explicitly state which colour space is used when performing the resampling steps.

Furthermore, there is never any mention of the image geometry convention that is used.

Another shortcoming of the tests performed in these articles is the tendency to compare

proposed, novel, image resampling methods against low quality interpolation methods,

such as nearest neighbour, bilinear, and bicubic. Furthermore, the authors rarely identify

which type of bicubic interpolation they are comparing against.

19

3 Methodology

The quantitative methodology used by EXQUIRES to rank image resampling methods is

both standard and formally simple: Reduce the dimensions of carefully chosen gold stan

dard images (images considered to be flawless), re-enlarge with the filters that are to be

ranked, measure the deviation between the re-enlargement and the original with some im

age difference metric, and rank in decreasing order of deviation. The specifics of the rank

ing experiment are discussed in the next chapter and in the EXQUIRES user manual and

source code, reproduced in Appendices.

Besides its emphasis on detailed documentation and open distribution, EXQUIRES im

proves on earlier quantitative image resampling evaluation testing with its use of the Spear

man correlation to measure the agreement and disagreement between rankings obtained

with different experimental setups.

The Spearman rank correlation |64J is defined in the first section of this chapter. In

the second section, we use the small data set found in a published study of the impact of

various factors on image resampling data to illustrate its use to analyze and summarize the

results of an image reconstruction study.

3.1 Correlation between rankings of the same items under different

conditions

The Spearman rank correlation specifically measures whether two alternate rankings of the

same set of items agree, disagree, or are effectively “disconnected” [65]. In the present

20

thesis, the Spearman rank correlation is used to study the agreement between rankings

derived under different conditions.

Generally, a correlation coefficient is a quantitative measure of the agreement (or dis

agreement) between two related datasets, usually expressed by a real number in the interval

[—1,1]. A positive value of the correlation coefficient indicates that ranks within the first

ranking tend to increase as the ranks increase within the second ranking (and vice versa),

whereas a negative value of the correlation coefficient indicate that ranks within the first

ranking tend to decrease as the ranks, within the second ranking, increase. For example,

a rank correlation of 1 indicates a perfect positive correlation, meaning that the ranks ob

tained by items are exactly the same within the two rankings, and a rank correlation of —1

indicates perfect negative correlation, meaning that the first ranking lists items from last

to first within the second ranking. A correlation of 0 suggests that there is no correlation,

meaning that the rank of an item within the first ranking generally gives no information

on the rank within the second ranking. Thus, a near zero value, positive or negative, of

the rank correlation, indicates that the ranks within the two rankings are weakly correlated.

The strength of the correlation is greater for values further away from zero.

The Spearman rank correlation is used by Z. Wang et al. to measure the correlation be

tween the mean SSIM (Structural SIMilarity) index—an error metric they developed—and

similarity scores derived from human subject perceptual studies [66]. The EXQUIRES test

suite makes use of several error metrics which are completely different from one another.

Regardless, it is often useful to aggregate the errors from these widely different metrics

to give an overall assessment of each upsampler’s ability to reconstruct the gold standard

images. Even when the errors are not aggregated, ranks allow one to compare results more

easily. As a result, the raw error data is first converted to ranks.

In this thesis, resampling filters are ranked under different conditions: using different

test images, different downsamplers, different resampling ratios, different image difference

metrics etc. Rank correlations provide a quantitative measure of whether rankings obtained

21

under different conditions agree. Consequently, rank correlations can be used to assess the

sensitivity of the rankings with respect to changes in the experimental setup.

It is expedient to summarize this information with correlation matrices. In such a ma

trix, every row represents one possibility among a set of conditions used to derive rankings.

For example, every row may correspond to a test image. The columns represent the same

conditions, in the same order. Then, every entry of the correlation matrix shows the rank

correlation between the ranking obtained under the condition that corresponds to the row,

and the ranking obtained under the condition that corresponds to the column. Since a rank

ing obtained with a certain condition (with a certain test image, for example) is perfectly

correlated with the ranking obtained with the same condition, correlation matrices have a

diagonal of ones. Since the correlation between a first ranking and a second ranking is the

same as the correlation between the second ranking and the first, the matrix is symmetric

about its main diagonal.

Matrix entries near 1 indicate that the corresponding row and column conditions give

rise to rankings that are in general agreement. Otherwise—when the corresponding ma

trix entry is close to zero or negative—the rankings obtained under different conditions

disagree. A large number of matrix entries that are far from 1 consequently indicates a

high sensitivity of the rankings with respect to changes in the experimental condition under

consideration.

3.1.1 Computation of the Spearman rank correlation

Given the results of two different measures of quality e, and /* applied to the same set of

upsamplers (where i is a key that identifies each upsampler), the Spearman rank correlation

is computed as follows.

First, the upsamplers are independently ranked from best to worst with respect to each

of the two quality measures. Fractional ranks are used: ties are resolved by assigning to

22

all tied upsamplers the average rank they would obtain if the ties were resolved arbitrarily

(where N is the number of upsamplers considered) regardless of whether or not there are

ties.

Let r* (resp. st), for i = 1 , N, be the fractional rank of the ith upsampler with

respect to the et quality measurements (resp. /*). Then, the Spearman rank correlation is

In other words, the Spearman rank correlation is the Pearson’s correlation (product-moment

coefficient) of the associated fractional ranks [68],

In this thesis, et and /* are often aggregated error measures or mean SSIM indexes, or

even averaged fractional ranks when several different quality measures are aggregated.

3.1.2 Kendall’s rank correlation

Z. Wang also uses Kendall rank correlation [69] when evaluating the performance of SSIM

[66]. The Kendall rank correlation is a better choice for measuring rank correlation strength:

As noted at the StatsDirect website, while Spearman’s rank correlation is a satisfactory tool

for testing the null hypothesis of independence between two variables, Kendall’s rank cor

relation provides a better measure of the strength of the dependence [70, 71]. For this

reason, a welcome addition to EXQUIRES would be a tool that computes Kendall’s rank

correlation. Its computation is, unfortunately, more complex.

without affecting the ranks of the other upsamplers. This is sometimes called “ 1 2.5 2.5

4” ranking [67]. Fractional ranking guarantees that the average of all ranks is (N + l) /2

23

3.2 Analysis of the Dumic, Grgic & Grgic data

Hidden Influences on Image Quality when Comparing Interpolation Methods, by Emil Du

mic, Sonja Grgic and Mislav Grgic [11], contains just enough data to compute somewhat

meaningful Spearman rank correlations. In this chapter, this data is used to illustrate the

analysis process, namely the computation of overall ranks, and the computation of Spear

man rank correlations.

The three upsamplers compared by Dumic et al. are

• bilinear

• global cubic spline interpolation

• TVCIOJ 8 wavelet filtering.

They are compared using four error metrics,

• SNR (Signal to Noise Ratio), in which the f2-error is normalized by the (2-norm

(RMS norm) of the original image

• PSNR (Peak Signal to Noise Ratio, the peak being the maximum possible pixel

value), which we convert to normalized i 2 (RMSE) error for our aggregate rank com

putations computations

• PQS (Picture Quality Scale)

• SSIM (Structural SIMilarity index)

three resampling ratios,

• 2

• 4

• 8

24

three downsampling methods,

• bilinear

• global cubic spline interpolation

• TVC10-18 wavelet filtering

and four 2048x2048 test images,

• Andromeda

• Train

• Tree

• Roof.

Dumic et al. do not specify what colour space(s) the images belong to. In particular,

they do not state whether the pixel values can be understood as linear light, and whether

MSSIM is computed using luminance or luma (which roughly means luminance, a measure

of instensity, based on a nonphysical colour space [72, 73]).

3.2.1 Overall upsampler ranks

To compute overall upsampler ranks, we first aggregate, for each upsampler, the errors

obtained with each quality metric across all ratios, downsamplers, and images. We then

aggregate the ranks obtained with each quality metric to obtain overall ranks representative

of all metrics, ratios, downsamplers and images.

25

Aggregating SNR errors by simple averaging (for simplicity), we obtain

SNRbjiinear

(17.13 + 17.25 + 17.43 + 12.53 + 12.38 + 12.85 +

1 28.16 + 28.94 + 29.84 + 22.61 + 22.54 + 23.57 +

36 19.80 + 20.20 + 20.42 + 15.77 + 15.56 + 16.24 +

v 28.95 + 29.65 + 30.52 + 23.55 + 23.50 + 24.54 +

= 19.01,

SN R spline = 19.66,

SN R waveiet = 19.68.

1 7 .1 3 ,1 7 .2 5 , . . . , 18.73 are the thirty six SNRs obtained by the re-enlargements performed

with the bilinear upsampler. The SNRs for the spline and wavelet upsamplers are obtained

likewise from the corresponding groups of thirty six SNRs.

Although, as discussed in the article, the average SNRs for spline and wavelet up-

sampling are close, we ignore this near tie and assign a rank of 3 to bilinear, 2 to spline

interpolation, and 1 for wavelet filtering. (Higher SNRs are better.)

The aggregate normalized £2 errors, derived from the article’s reported PSNRs by taking
P S N R100 times the square root of the average of 10 nr~, are

R M SEbilinear = 7.678, R M SE spline = 7.648, and RM SEwavelet = 7.567,

leading to the same ranks since lower C2 errors (which correspond to higher PSNRs) are

better.

The aggregate PQS errors, obtained by simple averaging of the individual PQS errors,

are

PQSbilinear = 1-255, P Q Sspline = 1.849, and P Q S wavelet = 1.873,

leading to the same ranks since higher PQSs are better.

26

7.87 + 7.8 + 8.61+

17.14 + 17.00 + 18.21+

13.19 + 13.02 + 13.96+

17.65 + 17.51 + 18.73

The aggregate SSIM errors, obtained by simple averaging, are

SSIMbilinear = .8269, SSIMSpHne = .8273, and SSIMwavelet = .8296,

leading, again, to the same ranks since higher SSIMs are better.

Since the aggregate ranks are exactly the same across all metrics, the overall ranking of

the tested upsampling methods is

overall rank 1: TVC10_18 wavelet filtering

overall rank 2: global cubic spline interpolation

overall rank 3: bilinear

in agreement with the discussion given by Dumic et al.

3.2.2 Impact of the error metric

The above makes clear that when aggregating data over all ratios, downsamplers and im

ages, upsampler ranks are the same irregardless of the considered metric. For this reason,

the data presented by Dumic et al. suggests that, when ranking upsampling methods as

reconstructors in the context of a re-enlargement test, it makes no difference which metric

is used, since aggregate ranks obtained with SNR, PSNR (or, equivalently, MSE or l 2),

PQS and SSIM are perfectly correlated, and the metric rank correlation matrix P between

the various metrics is a perfect

' i i i i '

metric

\ /

1 1 1 1

1 1 1 1

1 1 1 1

Dumic et al. state that “Usage of only PSNR or SNR as image quality measures can lead to

wrong conclusions when comparing interpolation methods for different test images.” This

27

statement is not borne out their data, since our analysis shows that the aggregate rankings

derived from the data of Dumic et al. are the same for all four considered image difference

metrics. (We will see that our own data suggests that the choice of image difference metric

has a significant impact on rankings. In other words, our own data validates the above

statement of Dumic et al.)

3.2.3 Impact of the resampling ratio

In order to evaluate whether the resampling ratio influences upsampler rank, we aggregate

an upsampler’s error data across all metrics, downsamplers and images, keeping results

corresponding to different ratios separate.

Because they are not directly comparable, we aggregate results obtained with different

quality metrics by averaging the corresponding ranks. We first aggregate the data corre

sponding to each ratio and metric across downsamplers and test images:

1 / 17.13 + 17.25 + 17.43 + 28.16 + 28.94 + 29.84+ \
SN R bilinear,2 = - = 24.02,

LZ \ 19.80 + 20.20 + 20.42 + 28.95 + 29.65 + 30.52 J
SNR.pUne.2 = 25.45,

SNRwavelet.2 = 25.39.

Averaged ranks may, or may not, be ranks themselves, so we convert these average errors

to fractional ranks:

rankbninear,2,SNR 3, rankSpiine,2 ,sn r 1> r^iikwaveiet 2,SNR — 2.

(Fractional ranks are most appropriate because we eventually compute Spearman rank cor

relations.) Note that these partial ranks are not the same as the overall ranks shown at the

end of §3.2.1.

Likewise,

SNRbilinear.4 — 18.80, SNRspijne,4 = 19.37, SNRwavelet.4 = 19.40,

28

so that the ratio 4 partial SNR ranks are

rankbiiinear,4,sNR 3, rankSpi;ne4SNR = 2, rankwave|et!4iS\'R 1,

and

SNRbilinear,8 = 14.22, S N R ^ ^ g = 14.15, SNRwavelet,8 = 14.26,

so that the ratio 8 partial SNR ranks

rankbiiinear,8,SNR = 2, rankspline 8isNR = 3, rankwavejet.8,snr = 1-

We now proceed to aggregating the data generated with the other metrics, and convert

ing them to ranks.

First, ^2 (by way of PSNR data from Dumic et al.). Given that

RMSEbiHnear,2 = 4.222, RMSEspline,2 = 3.753, RMSEwavelet,2 = 3.734,

the £2 ranks with ratio 2 are

r a n k b iiin ear.2 ,R M SE = 3, r a n k sp iinei2,R M SE — 2, rankwavR|et 2 , r .m s e — 1-

Similarly,

R M SEbiiinear,4 = 7.074, R M SEspiinei4 = 6.883, R M SEwaveiet,4 = 6.846,

so that

rankbiiinear 4jRMSE = 3, rankgpijne^RMSE = 2, rankwave]etj4,rmse = 1»

and

RMSEbiiinear 8 = 10.44, RMSEsp]ine 8 = 10.68, RMSEwaveiet,8 = 10.53,

so that

rankbiiinear, 8,r m s e 1? r a n k spiinei8 ,r m s e 3, r a n k waveiet,8,RMSE — 2.

29

We now aggregate PQS errors. Given that

PQSbilinear,2 “ 4.333, PQSspline 2 = 4.690, PQSwaveiet 2 = 4.747,

the PQS ranks with ratio 2 are

ra n k b ilm e a r ,2 ?PQS = 3> ^ ^ ^ ^ sp lin e ,2 ,PQS = 2 , m n k ^ v e ig t ^ .P Q S 1*

Similarly,

PQ^bilinear,4 = 2.600, PQSspline 4 = 3.445, PQSwavelet 4 = 3.436,

so that

rankbiiinear,4,PQS = 3, rankspline,4ipQs = 1, rankwaveiet,4,pQs = 2,

and

PQSbi.inear.s = -3.168, PQSspHne,8 = -2.587, PQSwaveletj8 = -2.563,

so that

rankbiiinear,8,PQS 3, rankspbne,8,PQS 2, rankwave|e4t8,PQS 1 ■

Finally, we aggregate SSIM errors. Given that

SSIMbiiinear,2 = -9363, SSIMspline,2 = .9493, SSIMwavelet>2 = .9492,

the SSIM ranks with ratio 2 are

rankbiiinear,2,ssiM = 3, r a n k spiine>2,ssiM = P r a n k waveiet!2,ssiM = 2.

Also,

SSIMbiiinear,4 = -8329, SSIMspline,4 = .8353, SSIMwavelet,4 = .8375,

30

so that

rankbiiinear,4,ssiM = 3, rankSp]inei4sgi\4 = 2, rankwaveiet4,ssi\[k

and

SSIM bilinear,8 = -7117, SSIM spline,8 = .6974, SSIM wavelet,8 = .7023,

so that

r a n k bi]inear,8,SSIM 1» I'a .llkSp|jIU>,8,ssim — 3, rankwaveiet,8,ssiM 2.

The second major step is the aggregation of results across metrics by averaging the

corresponding ranks:

rankbiimear,2 = - (3 + 3 -t- 3 + 3) = 3,
1rankspijne)2 — — (1 + 2 -|- 2 + 1) — 1.5,

i ankwaVeiet,2 — ^ (2 + 1 + 1 + 2) 1.5.

Since spline and wavelet are tied, this gives the following fractional ranks:

rankbiiinear,2 — 3, rankspiin e 2 — 1.5, rankwaveiet 2 1.5.

Proceeding likewise with the ranks obtained by ratio 4 resampling:

rankbiiinear,4 = — (3 + 3 + 3 4- 3) = 3,

rankspiine,4 — (2 + 2 + 1 + 2)= 1.75,
1

rankwaveiet,4 — - (14-1 + 2 + 1) — 1.25,

so that

rankbiiinear,4 — 3, rankspiine,4 2, rankwave]e(4 1.

31

With ratio 8,

railkbilinear,8 - (2 + 1 + 3 + 1)
4

rankspijnei8 — - (3 + 3 + 2 + 3)

7 (1 + 2 + 1 + 2)
4

rankwaveiet a

1.75,

2.75,

1.5,

so that

rankbiiinear,8 2, r£iiikSp]jne g 3, rankwaveiett8 — 1.

W e are fin a lly ready to co m p u te S p earm an rank correla tion s b e tw e e n the v a r io u s re

sa m p lin g ratios.

(3 - 2)(3 - 2) + (1.5 - 2)(2 - 2) + (1.5 - 2)(1 - 2)
Qo 4 — —;........... — —

y/ ((3 - 2)2 + (1.5 - 2)2 + (1.5 - 2)2) ((3 - 2)2 + (2 - 2)2 + (1 - 2)2)

= .866,

P2,8 = 0,

P4,8 = -5,

yielding a ratio rank correlation matrix equal to

/ \

V /

1 .866 0

ratio .866 1 .5

0 .5 1

(Comment: When there is no tie, there is a shortcut formula for Spearman rank correlations.

We do not use the shortcut to illustrate the general case.) The choice of resampling ratio

consequently appears to have a very strong impact on upsampler method ranking, so much

so that the rankings obtained with the smallest and largest ratios are perfectly uncorrelated.

That is: Based on their data, resampling ratio is a strong “hidden influence” which appears

to have escaped the notice of Dumic et al. (Our own data does not suggest that resampling

ratio has that large an impact.)

32

3.2.4 Impact of the downsampler

T h is tim e, w e a g gregate , k eep in g resu lts o b ta in ed w ith d ifferen t d o w n sa m p lers sep arate .

1 / 1 7 .1 3 + 1 2 .5 3 + 7 .8 7 + 2 8 .1 6 + 22 .61 + 1 7 .1 4 + \
SNRbilinear,bilinear = ~TZ I I = 1 8 .7 0 ,

u \ 1 9 .8 0 + 1 5 .7 7 + 1 3 .1 9 + 2 8 .9 5 + 23 .55 + 1 7 .6 5)

SNRgpiine^ilinear 1 9 .4 3 ,

S N R wavelet ,bili near = 1 9 .4 0 ,

so that

rankbilinear,bilinear,SNR = 0 , ran k Spiin ebilinear,SNR = 1> ra.nkwaveiet,bilinear.SNR = 2.

P ro ceed in g as b e fo re , w e ob ta in th e S p earm an rank correla tion s b e tw e e n th e v a r io u s

d ow n sa m p lers ,

__________(3 - 2) (2 - 2) + (2 - 2) (3 - 2) + (1 - 2) (1 - 2)__________
Pbilinear,spline - ^ _ 2) 2 + (2 „ 2) 2 + (1 _ 2) 2) ((2 ^ 2)2 + (3 _ 2) 2 + (1 _ 2) 2)

-5 Pspline, wavelet.

Pbilinear,wavelet !•

y ie ld in g a d o w n sa m p ler rank co rre la tio n m atrix eq u a l to

/ 1 .5 1 '

P downsampler =: .5 1 .5

+ 5 1 /

T h is su g g e s ts s ig n ifica n t d ep en d en ce o f the ran k in g on d ow n sa m p ler c h o ic e (in a cco rd a n ce

w ith the c o n c lu s io n s o f D u m ic e t a l.) , e v e n th o u g h the o v era ll rankings o b ta in e d w ith b ilin

ear d o w n sa m p lin g and w a v e le t d o w n sa m p lin g are p er fec tly correlated . T h e ou tlier , c u b ic

B -sp lin e sm o o th in g u sed as a d o w n sa m p ler , is q u ite blurry com pared to th e o th er tw o d o w n -

sa m p lin g m eth o d s, lea d in g o n e to p o sit that the b lu rrin ess o f the d o w n sa m p le r m a y b e an

33

important factor. (Given that all the downsamplers considered by Dumic et al. are decent

low pass filters, and that their data is sparse, this pretty much agrees with the conclusion

we will draw from our own data.)

3.2.5 Impact of the test image

This time, we aggregate keeping results obtained with different test images separate.

SNRbilinear, Andromeda

= ^ (17.13 + 17.25 + 17.43 + 12.53 + 12.38 + 12.85 + 7.87 + 7.8 + 8.61) = 12.65,

SNRgpijne,Andromeda = 13.12,

SNRwavelet,Andromeda 13.16,

so that

r&nkbilinear,Andromeda,SNR ^^“̂ spline,Andromeda,SNR 2, rankwave)et,Andromeda,SNR 1>

SNRbilJnear,Train 23.11, SNRspijne/rrain — 24.022, SN R wavelet,Train — 24.017

(note that spline and wavelet are extremely close to being tied), so that

rankbilinear,Train,SNR 3, rankSpbne,Train,SNR 1» 1"R N k wave je [r ai 11. S \ I{ 2.

Also,

SNRbiiinear.Tree = 16.46, SNRspijne,Tree = 16.73, SNRwaveie^Tree = 16.82,

so that

rankbilinear,Tree,SNR ~ 3, rankgpbne,Tree,SNR 2, rankwavelet,Tree,SNR 1»

and

SNRbilinear.Roof = 23.84, SNRgpbne.Roof = 24.75, SNR^v^et.Roof = 24.74

34

p . = 1 im age —

(again, spline and wavelet are extremely close to being tied), so that

rankbHinear,Roof,SNR = 3, rankSpiine R00f SNR = 1» rankwaveiet Roof SNR 7 2.

Proceeding as before, we eventually obtain that the only non-unit Spearman rank cor

relations are those involving the Roof image, for example,

P A ndrom eda, Roof = - 8 6 6 ,

yielding the image rank correlation matrix

^ 1 1 1 .866 ^

1 1 1 .866

1 1 1 .866

y .866 .866 .866 1 j

Given that many of the deviations from the overall ranks were near ties, this suggests weak

dependence of the upsampler rankings on test image choice, in agreement with Dumic et

al. (This agrees with the conclusions we will draw from our own data.)

3.2.6 Conclusions

Keeping in mind that the following conclusions are based on sparse data, and that in some

cases different ranks were obtained by almost identical results, Spearman rank correlations

based on aggregated data from Dumic et al. suggest that the choice of resampling ratio has

a strong influence on upsampler ranking, the choice of downsampler a significant influence,

the choice of test image a minor influence, and the choice of quality metric no influence

whatsoever.

The meta-conclusion is that Spearman rank correlation matrices are a powerful and con

cise way of summarizing the agreement and disagreement between rankings obtained with

different parameter choices for a reconstruction study of the accuracy of image upsampling

methods.

35

4 Experimental setup

Sir Isaac Newton said, ’’Indeed rays, properly expressed, are not coloured.”
SPDs [(spectral power distributions)] exist in the physical world, but colour
exists only in the eye and the brain. (Charles Poynton [73])

4.1 Key issues: alignment, colour spaces and accuracy

Before proceeding to a detailed specification of the experimental set up, we discuss two

important issues which users should consider carefully before extending or modifying

EXQUIRES and which matter to anyone using reconstruction tests to evaluate image re

sampling methods.

In §4.2, we discuss image geometry in the context of resizing images. This issue is im

portant because misalignment leads to reconstruction errors which should not be attributed

to the tested resampling filters themselves. Consequently, a careful specification of the ge

ometrical transformations used for the reconstruction test is extremely important. Without

meeting this specification, or changing it all around in a uniform way, plugging “external”

image resampling programs into EXQUIRES gives meaningless results unless, perchance,

the alignment happens to match.

Another important issue is the choice of colour space used for the gold standard images

and the re-enlargement results, as well as, internally, by the resampling filters themselves,

both in the downsampling and the upsampling stage. Within EXQUIRES, three colour

spaces are used: sRGB, linear RGB with sRGB primary colours, and XYZ. Experimental

setup issues related to colour spaces are discussed in §4.3.

36

In the context of an image resampling test suite, another issue is worth mentioning:

computation accuracy. This is discussed in §4.4.

The remainder of the chapter is devoted to less critical test configuration features.

4.2 Image geometry conventions: “align (image) corners” vs “align

(corner pixel) centres”

Since a key component of the EXQUIRES test suite involves comparing re-enlarged images

with a gold standard image, it is important that the pixels at each location in these images

are aligned with one another. If the images are misaligned, the errors are meaningless,

because alignment errors overwhelm sampling errors.

While there are many methods of specifying the geometrical correspondence between

an image and a resized version of the image, there are two that are most commonly used:

“align (comer pixel) centres” and “align (image) comers”. This section defines the method

being used with the EXQUIRES test suite (“align corners”) and discusses the most common

alternative (“align centres”) for contrast.

4.2.1 Index-based pixel location

Throughout this thesis, the pixels of an m x n image (with m columns and n rows, that is,

with a width of m pixels and height of n pixels) are indexed as follows: The top left pixel

has index (0,0), the bottom right pixel has index (m — 1, n — 1). Enlarging one of these

images produces a new image with a width of M pixels and height of N pixels.

It is convenient to associate the pixel with index (i, j) with the position (i, j) in a Carte

sian plane with second axis pointing down. A key component of image resizing is then the

specification of the geometrical correspondence between locations within the plane original

that corresponds to the m x n image and locations within its M x N version.

37

4.2.2 Resizing with “align centres”

The forward affine transformation T : R2 —> K2 from the input image plane to the output

image plane is

This forward transformation is the only affine transformation that matches the coordinates

of comer pixels. In other words, T is specified by

Nearest neighbour image interpolation works well with “align centres” because, invari

ably, some input and output sampling positions are exact matches. In fact, all the output

sampling positions match input sampling positions when reducing an (r x M + 1) x (s x

N + 1) image to M x N, with r and s positive integers. Nearest neighbour then boils down

to skipping consecutive groups of r rows and s columns (“decimating”).

When (m — 1)/(M — 1) is an integer, downsizing by filtering with the “align centres”

convention is such that all sampling locations within the output image correspond exactly to

pixel locations within the input image. In other words, downsampling is then equivalent to

convolution followed by decimation. Likewise, if (M — l) /(m -1) is an integer, enlarging

by filtering is such that the positions of the sampling locations within the output image

correspond to a small set of positions relative to pixel locations within the input image. In

other words, upsampling is then equivalent to applying a small number of convolutions and

assembling the output image from decimated versions of the various results.

Of the two image geometry conventions, “align centres” is the best for enlarging, be

cause no extrapolation occurs with it in this situation, and consequently the impact of the

T(0,0) = (0, 0),

T(m — 1,0) = (M — 1,0),

T(0, n — 1) = (0, iV — 1),

T(m — l ,n — 1) = (M — 1, N — 1).

38

abyss is minimized. However, “align centres” is generally not as good as “align comers”

when reducing size, because it gives more weight to boundary pixels than interior pixels,

and because the abyss has more impact on boundary pixels with the former convention.

A prototype of the EXQUIRES test suite using the “align centres” geometry is dis

cussed by Robidoux et al. [16].

4.2.3 Resizing with “align corners”

The forward “align comers” affine transformation T is constructed so that

The geometrical basis of this choice is as follows: Interpreting pixels as unit squares

centred at the corresponding index, the top left comer of the top left pixel is located at

(—1/2, —1/2) (since its centre is located at (0,0)), the top right comer of the top right pixel

of the input image is located at (m — 1/2, —1/2) (since its centre is located at (m — 1,0)),

etc.

is the only affine transformation that matches the outer comers of the comer pixels. When

resizing images, the inverse of this affine transformation is used for reverse look up by

ImageMagick [74].

Box filtering works well with “align comers” because, when reducing an (r x M) x

(s x N) image to M x N with r and s positive integers, it boils down to averaging groups

of r x s pixels.

39

When m / M is an integer, downsizing by filtering with the “align comers” convention

is such that the positions of the sampling locations within the output image correspond to

a small set of positions relative to pixel locations within the input image. Consequently,

downsampling is then equivalent to convolution followed by decimation. Likewise when

M / m is an integer, in which case upsampling is equivalent to applying a small number

of convolutions and assembling the output image from decimated versions of the various

results.

Of the two main image geometry conventions, “align comers” is the best one for reduc

ing images, because output image sampling positions correspond to interior input sampling

positions, and consequently the impact of the abyss is minimized: The sampling positions,

as measured in the input image, “creep inward” when reducing size with the “align cor

ners” image geometry convention. In addition, with “align comers”, the weights used with

boundary pixels are smaller than those used with interior pixels.

When enlarging, “align comers” is less desirable than “align centres” because sampled

positions “creep outward”, and extrapolation is necessary near the boundary. As a result,

boundary pixels are weighted more than interior ones, and the abyss has more of an impact

on the enlarged image.

4.2.4 Align comers is the convention used in this version of EXQUIRES

The current version of EXQUIRES uses the “align comers” convention, like its very first

prototype [14]. It would not be a huge endeavour to modify EXQUIRES so that it uses the

other convention, like its second prototype [16].

40

4.3 Linear light (“physical”) vs sRGB (“perceptual”) resampling

Because they concern engineering solutions to psychovisual and technical problems, colour

space issues are much more complex than the uninitiated can imagine. We will, therefore,

only discuss issues relevant to an educated use of the EXQUIRES test suite, without at

tempting to provide definitions applicable outside of the confines of an image reconstruc

tion suite. More comprehensive discussions are found in [72, 73,75].

A raster image consists of rows of pixels, which are discrete locations at which colour

is specified.

Color is the perceptual result of light in the visible region of the spectrum,
having wavelengths in the region of 400 nm to 700 nm, incident upon the
retina. (Charles Poynton [73])

Thus, there are two main components to colour: A strictly physical component, which di

rectly relates to the spectral power distribution of light (which describes “how much” of

each wavelength the light contains), and a perceptual component, which relates to the sen

sory reaction triggered by the light incident to the retina of a human viewer. Consequently,

there are two main types of colour representations: “linear light” colour spaces are closely

associated with the “physical” component of colour, and “perceptual” colour spaces are

more closely associated with the psychovisual system.

Although special purpose colour systems, like CMYK (Cyan-Magenta-Yellow-Black,

primarily used in printing systems that use black in addition to coloured inks) or RGBA

(in which “A” stands for the transparency, or “alpha,” channel) have more than three colour

channels, and “true grayscale” images (without transparency) only need one “colour” chan

nel, colour is satisfactorily specified with three numbers. For this reason, most colour

spaces use three coordinates [73].

In the XYZ colour space, each of the coordinates is associated with the response of one

of the three type of photoreceptor cone cells to incoming light [73]. The XYZ colour space

41

is the standard linear light (physical) colour used to describe colours perceptible to human

beings [73].

The ubiquitous sRGB is a perceptual colour space. In the sRGB colour space, the three

coordinates relate to the primary colours red (“R”), green (“G”) and blue (“B”). However,

the relationship between the three sRGB component coordinates and incident light power

is not linear. Instead, sRGB colour coordinates are such that changing the value of one of

the coordinates (very approximately) has the same visual impact regardless of the initial

value [76].

The linear RGB with sRGB primaries colour space is a linear (physical) version of the

sRGB colour space.

What makes the XYZ and linear RGB with sRGB primary colours “linear” or “physi

cal” is that the colour channel values each approximate a weighted average of light inten

sities over a range of wavelengths. Indeed, X, Y and Z are defined as weighted integrals

of the spectral power distribution /(A) [77]. Linear RGB with sRGB primaries can be

understood two different ways. Linear RGB with sRGB primaries can be obtained from

sRGB by undoing its defining nonlinear transformation (which is approximately a power

law often called “gamma encoding” or “gamma correction”). Alternately, linear RGB can

be obtained by applying a linear transformation to XYZ colour values [76]. This latter def

inition makes clear that linear RGB with sRGB primaries inherits its linearity from XYZ,

and actually, that it can itself be described as an integral of /(A) with different weighting

functions. Warning: There are subtleties having to do with mismatches in the ranges of

colours contained in the XYZ and sRGB colour spaces and the issue of white point choice

(“What is white?” [73]).

In a typical image processing toolchain, pixel values are combined, linearly and nonlin-

early, as well as clamped, at several stages of the toolchain that extends from the captured

real world scene to the final image. In particular, one of many consequences of the clamp

ing is that nominally linear filters are invariably used within a nonlinear context: clamping

42

to a range is a nonlinear operation. (The only filters with respect to which this observation

may be deemed somewhat irrelevant are those which do not produce overshoots and un

dershoots like nearest neighbour, bilinear, B-spline smoothing, and Gaussian blur.) In this

respect, it should be noted that the sRGB colour space covers a somewhat small subset of

the colours perceptible by human beings, that is, it strongly clamps the captured scene (see

Wikipedia user Spigget’s chart, which shows the sRGB colour space as it fits inside XYZ

[78]).

Another source of nonlinearity within the toolchain is the use of perceptual colour

spaces. The sRGB colour space, as well as, for example, the Lab colour spaces—Hunter

Lab and CIE 1976 L*a*b* among them—are the result of applying a nonlinear transforma

tion to linear light coordinates [73]. Since the results of averaging are affected by nonlinear

transformations, so are, generally, the results of filtering, in particular, the results of re

sampling. For example, averaging sRGB colour values directly generally gives a lower

(darker) result than averaging through linear RGB—that is, converting the values to linear

RGB, averaging in this colour space, and converting back the average to sRGB—because

the transformation from sRGB to linear RGB is convex. As a result, even simple resampling

methods like bilinear interpolation give different results in these two alternate toolchains.

Two versions of every upsampling method and downsampling method are tested in the

plain vanilla version of the EXQUIRES suite:

Plain (sRGB) version: The “plain” version of each upsampling method takes 16-bit sRGB

pixel values literally. Since the test images are sRGB, no colour space transformation

is performed at any point within the resampling, and “linear” filtering and averaging

is performed even though sRGB is a nonlinear colour space.

Linear light (linear RGB or XYZ) version: In the “linear light” toolchain, the resam

pling method is applied to a linear light version of the image using the standard

three step procedure [74]:

43

1. the 16-bit sRGB input images are converted to a linear light colour space (16-bit

linear RGB with sRGB primaries for all methods except Nohalo-LBB, which

uses XYZ)

2. resampling is performed using the linear light pixel values

3. the linear light enlargement is converted back to 16-bit sRGB.

In the current version of EXQUIRES, “ Jinear” is used to distinguish the linear light ver

sions of operations from those that take sRGB values as is, versions identified with the

“_srgb” suffix.

“Which colour space?” is a question that needs to be asked at every step of the testing

procedure, from the conversion of raw image data performed inside or outside of the dig

ital camera, to the storage format of the gold standard image and the images produced at

various stages of the toolchain, to the colour space used internally by the resampling fil

ters, to the colour space used by each image difference metric. In addition, the mechanism

used to convert from one colour space to another needs to be specified, since some of the

transformations are not reversible, and the accuracy of the conversion software affects the

accuracy of the results.

4.3.1 The ICC sRGB v2 profile with the Perceptual rendering intent is used in this

version of EXQUIRES

In the present context, a colour profile is an encoded specification of the mapping that

converts between two colour spaces [79], (They are also used to map colours stored within

a digital image to colours displayed or produced by a specific device or group of devices,

like a computer monitor or a printer [79].) Rendering intents are colour profile options used

to mitigate subjective side effects [75,79]. Given that different colour spaces have different

gamuts, meaning that the range of physical combinations of wavelenghts they contain are

different, truncation (“clamping to the gamut”) is involved, in particular when so-called

44

raw digital capture images, or the result of processing a raw image in a format that is not

overly lossy, are converted to sRGB, a fairly “small” colour space. For this reason, the

choice of profile is especially significant in the context of the production of the test image

bank [80],

The ICC is the International Colour Consortium of vendors of hardware and software

which perform colour management [79]. The EXQUIRES test suite is standardized so that

all test and derived images are produced with the ubiquitous ICC sRGB v2 profiles with

Perceptual rendering intent, or with formulas taken from the specification of the sRGB

colour space and built into ImageMagick. By virtue of being uncommon, sRGB v4 profiles

are not used even though they have several advantages over v2, notably more accurate

inverse transformations [81]. (sRGB v4 profiles are getting wider support, however, so

they may be a good choice for a future version of EXQUIRES [82].)

Raw digital photograph processing tools like Photivo [83] and RawTherapee [84] allow

one to choose both the profile used to perform the conversion to sRGB, and the so-called

rendering intent option used within the profile, which in our context affects the way colour

values that fall outside of sRGB are forced into it. (The reader should note that legacy

profiles produced by hardware vendors often implemented rendering intents in somewhat

arbitrary ways.)

Whenever the VIPS image processing library had to perform a conver

sion into or out of sRGB, either the sRGB.icm profile distributed with its

GUI (Graphical User Interface) NIP2 (New Image Processor 2) [85] or the

s R G B _ I E C 6 1 9 6 6 - 2 - l _ b l a c k _ s c a l e d . i c c profile, downloaded directly from the

ICC 181], was used. According to the ICC, black scaled profiles are represen

tative of the majority of v2 profiles in current use [81]. It turns out that the

s R G B _ I E C 6 1 9 6 6 - 2 - l _ b l a c k _ s c a l e d . i c c profile gives identical results to the

sRGB. icm distributed with NIP2 when used with the Perceptual rendering intent; con

sequently, the distinction is moot.

45

With ImageMagick, the internal conversion machinery between linear RGB with sRGB

primaries and sRGB is used instead of one based on ICC profiles. This machinery is in

dependent of the rendering intent. (Future versions of EXQUIRES may also use the “al

gebraic” or “formulaic” approach for VIPS operations, since VIPS recently acquired this

capability.)

In any case, once an image has been converted to sRGB, the difference between the

algebraic or various profile approaches for converting back to linear RGB or XYZ is not

as significant, since this conversion mostly involve colours already in the sRGB colour

space. The distinction is much more significant in the other direction, in particular, when

converting from raw digital camera output to sRGB, that is, from a “large” colour space to

a relatively “small” one.

Perceptual rendering intent was chosen for three reasons [86]. First, it minimizes clip

ping of out of gamut colours. Such clipping greatly changes the local geometrical character

of rendered images, which is quite undesirable given that box filtering is the most com

monly used downsampling method in the context of re-enlargement. Second, Perceptual is

the most reversible of the rendering intents, and the linear light toolchains involve conver

sion into and out of sRGB. The third reason is that the Perceptual rendering intent is the

most commonly used.

4.4 Computation accuracy

When one states that, say, the Lanczos filter is tested, what is really being tested is a spe

cific implementation of the Lanczos filter (in this thesis, the one obtained using a recent

release of version 6 of the ImageMagick image processing library [42] compiled with float

ing point intermediate result storage instead of the more common 16-bit unsigned integer

storage, with colour space conversions performed with internal implementations of the al

gebraic formulas defining the relationship between sRGB and linear RGB colours instead

46

of colour profiles). Given this, there is an implicit assumption that the implementation is

precise enough to accurately represent the “infinite precision” result of filtering with the

“ideal” Lanczos filter applied to “infinite precision” data resulting from error free colour

conversions, and that the boundary handling specific to the implementation does not overly

affect results. (This last issue could be mitigated by cropping before using image differ

ence metric, with the unfortunate side effect that poor boundary handling becomes invisi

ble.) With respect to accuracy issues, note that ImageMagick performs filtering and colour

space conversions with (fairly dense) LUTs (Look Up Tables), while the tested “external”

method from the image processing library VIPS (Virtual Image Processing System) [43],

namely Nohalo-LBB, uses a more precise LUT-free double precision computation system,

but an arguably less accurate colour space conversion system that relies on colour profiles.

(Bleeding edge VIPS can perform the transformations using “algebraic” approaches, but

this enhancement was not done in time to be used to derive the results of this thesis.)

We believe that the various implementations of the filters, colour space transformations,

and image difference metrics used to produce the data are sufficiently accurate not to influ

ence the rankings, but we have not directly measured their accuracy. In particular, colour

space conversions are at the top of the list of EXQUIRES components that should be revis

ited [87]. On the other hand, our decision to use sRGB gold standard test images, and our

reliance on widely used colour space conversion tools, make the tests more representative

of common “real world” toolchains.

47

4.5 Tested resampling ratios

The remaining sections of this chapter list specific ingredients of the EXQUIRES test suite

as configured for this thesis.

Seven downsampling ratios are used to downsample the original test images: 2, 3, 4,

5, 6, 7 and 8. The same ratios are used to re-enlarge the downsampled version back to full

size, namely 840 x 840. 840 was chosen because it is the LCM (Least Common Multiple) of

the tested ratios. Since the “align comers” image geometry convention is used throughout,

the smaller images have sizes 420x420 (ratio 2), 280x280 (ratio 3), 210x210 (ratio 4),

168x 168 (ratio 5), 140x 140 (ratio 6), 120x 120 (ratio 7) and 105x 105 (ratio 8).

48

4.6 Test images

The results of this thesis are obtained by re-enlarging reduced versions of seventeen copy-

free test images. These test images are 840x840 colour images stored in 16-bit TIFF with

the s R G B _ I E C 6 1 9 6 6 - 2 - l _ b l a c k _ s c a l e d . i c c ICC profile (or equivalent) used

with Perceptual rendering intent [81].

EXQUIRES includes one such copyfree test image, w a v e . t i f , shown in Figure 4.1.

The wave image is a cropped and downsampled version of a high quality Library of

Congress scan of an ancient woodblock print (the copyist is anonymous) of Hokusai Kat

sushika’s Kanagawa oki nami ura (The great wave off shore of Kanagawa) [88].

The test image bank 16bit840x840images [80], specifically assembled for this thesis

by Robidoux et al., contains sixteen additional copyfree images. These additional images

are shown in Figures 4.2-4.5. Every one is a carefully downsampled version of a digi

tal photograph taken with a high quality Digital Single Lens Reflex camera. Details of

their capture, processing and copyfree licensing are found in the accompanying documen

tation [80]. A copy of the wave image is also included with the 16bit840x840images test

bank. Thus, the results of this thesis are based on the seventeen images distributed with

16bit840x840images.

49

(a) wave (author: Hokusai Katsushika/anonymous (Li

brary of Congress scan))

Figure 4.1: Test image built into EXQUIRES.

50

(a) apartments (author: Henry Ho) (b) baby (author: Minglun Gong)

(c) boy (author: John Cupitt)

, £r>>;
/VPSs. A

(d) cabins (author: Anthony Barnett)

Figure 4.2: Test images from the 16bit840x840images bank.

51

(a) cat (author: Luiz E. Vasconcellos) (b) curios (author: Jean-Fran£ois Avon)

(c) dragon (author: Michael Mure) (d) footbridge (author: Jana Duncan)

Figure 4.3: Test images from the 16bit840x840images bank.

52

(a) frog (author: Luiz E. Vasconcellos) (b) garland (author: Mukund Sivaraman)

(c) horse (author: Kirk Martinez) (d) man (author: Holly Graham)

Figure 4.4: Test images from the 16bit840x840images bank.

53

(a) paint (author: Anthony Barnett) (b) shed (author: Jana Duncan)

(c) tower (author: Jana Duncan) (d) wreck (author: Anthony Barnett)

Figure 4.5: Test images from the 16bit840x840images bank.

54

4.7 Tested downsampling methods

Five downsampling methods, each with two variants, are used by the current version of

EXQUIRES. In the following, code for both linear light downsampling and “direct sRGB”

downsampling is shown. EXQUIRES can do both. In the current version of EXQUIRES,

all downsampling is performed with ImageMagick 6 [42, 74, 89]. Unix shell syntax is

given. (To use on Windows systems, see [90].) Within Python, the syntax is slightly

different; see EXQUIRES’ source code (Appendix A.6).

4.7.1 Box filtering

Linear light box filtering mimics scene recapture with a mosaic of contiguous square digital

sensors larger than those used to capture the original image [14]. When downsampling

while preserving the aspect ratio, box filtering basically consists of averaging square groups

of pixel values.

The sRGB “b o x _ s r g b ” downsampler and the linear light “b o x _ l i n e a r ” downsam-

pler are obtained with

box_srgb:

c o n v e r t i n p u t . t i f \

- f i l t e r Box \

- r e s i z e nxn - s t r i p o u t p u t . t i f

boxJinear:

c o n v e r t i n p u t . t i f - c o l o r s p a c e RGB \

- f i l t e r Box \

- r e s i z e nxn - c o l o r s p a c e sRGB - s t r i p o u t p u t . t i f

where n is the width = height of the reduced version of the image.

55

4.7.2 Gaussian filtering

Gaussian filtering is another low pass filter. We use a = 1/2, the default ImageMagick

value, recommended by Craig DeForest [91]. The standard tensor approximation of the

filter and default truncation extent, are used.

The gaussianjsrgb and gaussianJinear downsamplers are obtained by replacing

“Box ” by “G a u s s i a n ” in the calls of §4.7.1.

4.7.3 EWA (Elliptical Weighted Averaging) Lanczos (Jinc-windowed Jinc) 3-lobe fil

tering

In addition to the fact that the Fourier transform of the Jinc radial function is the character

istic function on a disc, there is accumulating empirical evidence that Jinc-windowed Jinc

3-lobe is a very good low pass filter.

The ewa Janczos3_srgb and ewa Janczos3 Jinear downsamplers are obtained by re

placing “Box - r e s i z e ” by “L a n c z o s - d i s t o r t R e s i z e ” in the calls of §4.7.1.

4.7.4 Lanczos (Sinc-windowed Sine) 3-lobe filtering

Lanczos is a low pass filter oft recommended for producing sharp looking natural image

reductions and thumbnails.

The lanczos3_srgb and lanczos3Jinear downsamplers are obtained by replacing

“Box” by “L a n c z o s ” in the calls of §4.7.1.

Note that with this filter—actually, with any tensor (- r e s i z e) filter with negative

weights—it is imperative to use a version of ImageMagick compiled in HDRI mode, other

wise the results are clipped between the two orthogonal passes. HDRI ImageMagick uses

float buffers, so that no clipping occurs in intermediate stages of the computation.

56

4.7.5 Nearest neighbour interpolation with averaged ties

We also test nearest neighbour interpolation. The spirit of nearest neighbour is that the

colour of the input pixel nearest to the sampling location is chosen. This, of course, leaves

open the question of how to resolve ties (when two or more input pixel locations are equally

close).

When downsampling with the “align comers” convention by an exact even ratio in one

or both directions, all sampled pixel locations are equidistant to two or four input pixel

locations, that is, there are ties with respect to the nearest neighbour criterion. Since ties

are not resolved randomly by ImageMagick, we do not use the ImageMagick version of

nearest neighbour sampling, namely P o i n t , in order to prevent alignment issues (resolv

ing ties top-left, for example, has the effect of translating the entire image by a sub-pixel

distance in this direction). Instead, we use an ImageMagick command with the effect of

averaging the pixel values of the nearest pixels when there are more than one. Note that

this command will have the desired behaviour—nearest neighbour when there is only one

nearest neighbour, and average the nearest neighbours when there are several—only when

downsampling by exact factors of the input width and height. The correct behaviour is

based on the values returned by bilinear interpolation when one is sampling at original

pixel locations (when both the horizontal and vertical downsampling ratios are odd) or at

locations equidistant from the two or four nearest neighbours.

The nearestjsrgb and nearestJinear downsamplers are obtained by replacing

“Box - r e s i z e ” by “T r i a n g l e - i n t e r p o l a t i v e - r e s i z e ” in the calls of §4.7.1.

57

4.8 Tested upsampling methods

This chapter gives brief descriptions and code for the tested upsampling methods. Given

that this thesis is primarily about the process of comparing upsampling methods, not about

the methods themselves, the descriptions are terse. More details are given when the method

is novel. In any case, detailed calls to the relevant libraries are provided, so that both the

method and its implementation are unambiguously documented.

The image enlargement methods included in the base version of the test suite are all

ImageMagick methods [42]. ImageMagick has a rich catalogue of resampling methods, all

implemented with the “align comers” convention. (Some of the methods can be used with

arbitrary image geometry conventions with fairly complex calls.) Methods can be further

customized by changing the values of parameters that allow, among other things, “stretch

ing” the support of the filters. Besides “baseline” methods (nearest neighbour, bilinear), the

test suite includes a sampling of the best standard methods implemented in ImageMagick.

Windowed Sine methods are tested with all implemented windowing methods. In addition,

a number of novel methods, formulated by Thomas TheuBl, Helwig Hauser and Eduard

Groller (§4.8.2.1), one by Anthony Thyssen (§4.8.6.2), one by Henry Ho (§4.8.6.4), and

several by Nicolas Robidoux and collaborators (§4.8.2.2, 4.8.6.1, 4.8.6.3, 4.8.6.5, 4.8.6.6

and 4.8.6.7), are included.

Tested ImageMagick methods fall into two broad categories:

• tensor (a.k.a. 2-pass, a.k.a. orthogonal) methods, in which image enlargement is per

formed by applying a “ID” resampling method twice (once horizontally, and once

vertically)

• Elliptical Weighted Averaging (EWA) methods, in which enlargement is done using

weights that depend on the Euclidean distance from the sampling location.

When the aspect ratio is preserved, the support of a tensor filter is a square, and the support

58

of an EWA filter is a disc. EWA methods are particularly suited for texture mapping and

image warping; They actually were invented to perform perspective transformations [92].

This thesis is likely the first academic publication in which EWA methods are carefully

tested in the context of image enlargement.

To illustrate the extensibility of the EXQUIRES test suite with respect to the addition

of “arbitrary” upsamplers, we also test a non-ImageMagick method, namely the VIPS [43]

library’s implementation of Nohalo-LBB (“no halo” face split subdivision with Locally

Bounded Bicubic finishing scheme). The novel Nohalo-LBB method, developed by N.

Robidoux and collaborators, is discussed last (in §4.8.7.1).

4.8.1 Standard interpolatory linear tensor methods

4.8.1.1 Nearest neighbour

Nearest neighbour is the only tested upsampling method for which the sRGB and linear

light versions are identical: With nearest neighbour, at least in principle, no arithmetic

is performed on the pixel values. Consequently, it should not matter whether the nearest

neighbour look up is performed with sRGB or linear light values, since the latter are con

verted back to sRGB at the end. The error introduced by converting between sRGB and

linear light should be very small with 16-bit images. As a sanity check (to ensure that the

same basic result is obtained), we test both nearest neighbour versions.

In ImageMagick, the nearest neighbour upsampling filter is called “Point” [93]. Con

sequently, the sRGB and linear light nearest neighbour enlargement operations are

nearest_srgb:

c o n v e r t i n p u t . t i f \

- f i l t e r P o i n t \

- r e s i z e 840x840 - s t r i p o u t p u t . t i f

59

nearest Jinear:

c o n v e r t i n p u t . t i f - c o l o r s p a c e RGB \

- f i l t e r P o i n t \

- r e s i z e 840x840 - c o l o r s p a c e sRGB - s t r i p o u t p u t . t i f

4.8.1.2 Bilinear

In ImageMagick, the bilinear upsampling filter is called “Triangle” [93]. Consequently, the

sRGB (bilinear_srgb) linear light bilinear (bilinear Jinear) enlargement operations are

obtained by replacing “P o i n t ” by “T r i a n g l e ” in the calls shown in §4.8.1.1.

4.8.1.3 Cubic Hermite

In terms of visual quality, tensor filtering (= interpolation) with cubic Hermite (with null

nodal slopes) is not very good. It is included for the sake of completeness, and because it

is one of the few standard halo-free methods.

In ImageMagick, the cubic Hermite (with null end slopes) filter is called “Hermite”

[93], so that cubicJiermite-srgb and cubicJiermiteJinear are obtained by replacing

“P o i n t ” by “H e r m i t e ” in the calls of §4.8.1.1.

4.8.1.4 Catmull-Rom

In ImageMagick, the Catmull-Rom filter is called “Catrom” [93], The catmulLrom_srgb

and catmull-romJinear calls are obtained by replacing “P o i n t ” by “C a t r o m ” in

§4.8.1.1.

60

4.8.1.5 Lanczos 2-, 3- and 4-lobe

In ImageMagick, the Lanczos (Sinc-windowed Sine) 2-lobe filter is called “Lanczos2”

[93]. The lanczos2jsrgb and lanczos2Jinear calls are obtained by replacing “P o i n t ” by

“L a n c z o s 2 ” in §4.8.1.1.

The Lanczos 3-lobe filter is called “Lanczos” [93]. The lanczos3_srgb and lanc-

zos3Jinear calls are obtained by replacing “P o i n t ” by “L a n c z o s ” in §4.8.1.1.

Lanczos 4-lobe is obtained by setting the number of lobes. The lanc-

zos4_srgb and lanczos4Jinear calls are obtained by replacing “P o i n t ” by

“L a n c z o s - d e f i n e f i l t e r : l o b e s = 4 ” in §4.8.1.1.

4.8.I.6 Other windowed-Sinc filters

We test nine windowed Sines besides Lanczos: Bartlett-, Bohman-, Blackman-, Cosine-,

Hamming-, Hann-, Kaiser-, Parzen- and Welch-windowed Sine. In addition, three sets of

parameters for the Kaiser windowing function are used. Blackman, Hamming and Hann are

generally considered to be the best choices for digital signal processing [93, 94], although

it is unclear how relevant such recommendations are with respect to image resampling.

Cosine windowing is recommended by Meijering et al. [95].

“Bartlett” is the name given to the “Mexican hat” (linear interpolation basis) function

when used as a windowing function, and “Parzen” is the name given to the uniform cubic

B-spline in the same context.

The Hamming and Kaiser window functions are not continuous by virtue of not van

ishing at the edge of the window, although Kaiser’s discontinuity is minuscule when the

parameter 5 is large. Such discontinuities lead to slope discontinuities when the images

are greatly enlarged, and lead to unsightly artifacts. So does the slope discontinuity at the

centre of the support of the Bartlett window function.

Closely related to the Hamming windowing function, the Hann windowing function

61

is often incorrectly called “Hanning.” The Welch window is sometimes incorrectly called

“Welsh” [93, 96]. This is the case within older versions of ImageMagick.

A slightly different type of call is generally used to use windowed Sine filters other than

Cosine, Lanczos and Welch [93], owing to the fact that the default number of lobes for the

other windows is four instead of three.

4.8.1.7 Cosine- and Welch-windowed Sine 2-, 3- and 4-lobe

The sRGB and linear light Cosine and Welch-windowed Sine enlargement operations are

obtained by substituting the window name for “L an c zo s” in §4.8.1.5.

4.8.1.8 Bartlett-windowed Sine 2-, 3- and 4-lobe

The sRGB and linear light Bartlett-windowed Sine 2-lobe enlargement op

erations bartlett2_srgb and bartlett2Jinear are obtained by replacing

“P o i n t ” by “B a r t l e t t - d e f i n e f i l t e r : l o b e s = 2 ” in §4.8.1.1. The

bartlett3_srgb and bartlett3Jinear calls are obtained by replacing “P o i n t ” by

“B a r t l e t t - d e f i n e f i l t e r : l o b e s = 3 ” in §4.8.1.1. Because four is the default

number of lobes in ImageMagick for windowed Sine methods other than Cosine, Lanczos

and Welch, bartlett4_srgb and bartlett4Jinear are obtained by replacing “P o i n t ” by

“B a r t l e t t ” in §4.8.1.1.

4.8J.9 Blackman-, Bohman-, Hamming-, Hann- and Parzen-windowed Sine 2-, 3-

and 4-lobe

These windowed Sine methods are obtained by following the recipe given in §4.8.1.8 for

Bartlett-windowed Sine 2-, 3- and 4-lobe, replacing “B a r t l e t t ” by the corresponding

window function name.

62

4.8.2 Novel interpolatory linear filtering methods

4.8.2.1 Kaiser-windowed Sine 2-, 2- and 4-lobe

Kaiser is a parameterized family of window functions. We use the values of the parameter

ft computed by Thomas TheuBl, Helwig Hauser and Eduard Groller by matching Taylor

series coefficients [971.

In ImageMagick, the sRGB and linear light Kaiser-windowed Sine

2-lobe enlargement operations kaiser2jsrgb and kaiser2Jinear are ob

tained by replacing “P o i n t ” by “K a i s e r - d e f i n e f i l t e r : l o b e s = 2

- d e f i n e f i l t e r : k a i s e r - b e t a = 5 . 3 6 ” in §4.8.1.1. The

kaiser 3 jsrgb and kaiser3Jinear calls are obtained by re

placing “P o i n t ” by “K a i s e r - d e f i n e f i l t e r : l o b e s = 3

- d e f i n e f i l t e r : k a i s e r - b e t a = 8 . 93” in §4.8. 1.1. kaiser4jsrgb

and kaiser4Jinear are obtained by replacing “P o i n t ” by

“K a i s e r - d e f i n e f i l t e r : k a i s e r - b e t a = 1 2 . 1 5 ” in §4.8.1.1.

Warning: There are two different Kaiser window parameters called “a ” in the litera

ture and used in published software. The Kaiser /3 parameter used by ImageMagick, and

consequently in EXQUIRES, is equal to n times the smaller of the two versions of the pa

rameter a. Equivalently, ImageMagick’s 8 is exactly equal to the larger of the two versions

of the parameter a.

4.8.2.2 KaiserSoft- and KaiserSharp-windowed Sine 2-, 3- and 4-Iobe

Using a back of the envelope computation involving the Nyquist frequency, N. Robidoux

formulated two (rather obvious) rules of thumb setting the value of the Kaiser j3 parameter

in terms of the number of Sine lobes (which is equal to half the window width) [98].

The “KaiserSharp” rule of thumb sets 8 to the minimum possible number of sampling

63

points contained in the ID window when enlarging times the relevant Nyquist frequency

(1/2), times 7r, and the “KaiserSoft” rule of thumb sets 3 to the maximum possible number

of sampling points contained in the ID window when enlarging times Nyquist times 7r. In

other words,

for KaiserSoft. These values are based on yet another rule of thumb stating that ft/ tt is the

bin number of the edge of the main lobe of the frequency response [99].

The KaiserSharp and KaiserSoft ft values bracket the values recommended by Thomas

TheuBl et al. and used to set the key parameter of the “plain” Kaiser-windowed Sines

kaisersharp2jsrgb and kaisersharp2_linear upsampling are obtained by replacing

“5 .3 6 ” by “4 .7 1 2 3889803846899”, kaisersharp3jsrgb and kaisersharp3Jinear

by replacing “8 .9 3 ” by “7 . 853981633974483”, and kaisersharp4_srgb and kaiser-

sharp4Jinear by replacing “12 .1 5 ” by “10 . 99557428756427 6” in §4.8.2.1. Like

wise, kaisersoft2_srgb and kaisersoft2Jinear are obtained by replacing “5 .3 6 ”

by “6 .2831853071795865”, kaisersoft3_srgb and kaisersoft3Jinear by replacing

“8 . 93 ” by “9 .4247779607693797”, and kaisersoft4_srgb and kaisersoft4 Jinear by

replacing “12 .15 ” by “ 12 .5 6 6 3 7 0 6 1 4 3 5 9 1 7 3 ”.

4.8.3 Standard non-interpolatory linear tensor methods

4.8.3.1 Quadratic B-spline smoothing

In ImageMagick, the quadratic B-spline smoothing filter is called “Quadratic” [93], The

quadratic b spline_srgb and quadratic b spline linear calls are obtained by replacing

(2(# of lobes) — 1) = 7r (# of lobes

for KaiserSharp, and

/3 — 7r(# of lobes)

(§4.8.2.1).

64

“P o i n t ” by “Q u a d r a t i c ” in §4.8.1.1.

4.8.3.2 Cubic B-spline smoothing

In ImageMagick, the cubic B-spline smoothing filter is called “Spline” [93]. The cu-

bic_bjspline_srgb and cubicJb_splineJinear calls are obtained by replacing “P o i n t ” by

“S p l i n e ” in §4.8.1.1.

4.8.3.3 Mitchell-Netravali cubic spline

The Mitchell-Netravali filter, under the name “Mitchell”, is the default ImageMag

ick filter for tensor resizing [93]. Consequently, mitchell_netravali_srgb and

mitchell_netravaliJinear are obtained by removing “- f i l t e r P o i n t ” from the calls

of §4.8.1.1.

4.8.4 Standard interpolatory EWA (Elliptical Weighted Averaging) linear filtering

methods

Elliptical Weighted Averaging [100] uses filter kernels very differently than tensor filtering.

When enlarging, an EWA (cylindrical) kernel is obtained from the ID kernel by rotating it

around its centre, that is, by turning a function of x into a function of r, the distance from

the centre. In other words, the EWA ellipses are discs when enlarging (if the aspect ratio is

preserved).

In ImageMagick, one resizes with Elliptical Weighted Averaging instead of tensor filter

ing by replacing “- r e s i z e ” by “ - d i s t o r t R e s i z e ” [74], The- d i s t o r t R e s i z e

operation was added to ImageMagick v6.6.9-2. Note that, for a number of versions there

after, using - d i s t o r t R e s i z e to produce TIFF images added an empty alpha (trans

parency) channel, overwriting the existing one. In the case of input images without an

alpha channel, this can be fixed by inserting “- a l p h a Of f ” before “- s t r i p ” in all the

65

commands that use - d i s t o r t R e s i z e [100]. This is not an issue with recent enough

ImageMagick 6 and in ImageMagick 7.

We do not know of any high quality interpolatory EWA upsampling filter, which is why

only two are tested: teepee and Hermite. (There is some evidence that blending the two

filters may give an EWA filter which is better than both.)

4.8.4.1 EWA Teepee

EWA Teepee filtering, that is, with a cone of radius 1, is called ‘Triangle” in ImageMagick,

due to the fact that slicing the “teepee” gives the “Mexican hat”, the basis function for linear

filtering and interpolation, the graph of which is an isosceles triangle with a height of 1 and

width of 2. The sRGB and linear light EWA enlargement with the teepee kernel are given

by

ewateepeejsrgb:

c o n v e r t i n p u t . t i f \

- f i l t e r T r i a n g l e \

- d i s t o r t R e s i z e 840x840 - s t r i p o u t p u t . t i f

ewa.teepee Jinear:

c o n v e r t i n p u t . t i f - c o l o r s p a c e RGB \

- f i l t e r T r i a n g l e \

- d i s t o r t R e s i z e 840x840 \

- c o l o r s p a c e sRGB - s t r i p o u t p u t . t i f

In terms of visual quality, EWA Teepee does not give satisfactory results when upsam

pling. It is currently the downsampling component of the GEGL resampler NoHalo [101],

used by GIMP (GNU Image Manipulation Program).

66

4.8A.2 EWA Hermite

In terms of visual quality, EWA Hermite is probably not a great method.

In ImageMagick, the EWA Hermite filter is called “Hermite” like its tensor counter

part. Upsampling with ewa_hermite_srgb and ewa Jiermite Jinear is obtained by replac

ing “T r i a n g l e ” by “H e r m i t e ” in the calls of §4.8.4.1.

4.8.5 Standard non-interpolatory EWA linear filtering methods

4.8.5.1 EWA quadratic B-spline smoothing

In ImageMagick, the EWA quadratic B-spline smoothing filter is called “Quadratic”

like its tensor counterpart. Upsampling with ewa.quadratic_b_splinejsrgb and

ewa_quadratic_bjsplineJinear is obtained by replacing “T r i a n g l e ” by “Q u a d r a t i c ”

in the calls of §4.8.4.1.

4.8.5.2 EWA cubic B-spline smoothing

In ImageMagick, the EWA cubic B-spline smoothing filter is called “Cubic” like its tensor

counterpart. Upsampling with ewa_cubic_b_spline_srgb and ewacubic_b_spline Jinear

is obtained by replacing “T r i a n g l e ” by “S p l i n e ” in the calls of §4.8.4.1.

4.8.5.3 EWA Jinc-windowed Jinc (Jinc Lanczos) 2-, 3- and 4-lobe

In ImageMagick, the Jinc-windowed Jinc 2-lobe EWA filter is called “Lanczos2” like its

Sine-windowed Sine tensor counterpart [93]. Upsampling with ewaJanczos2_srgb and

ewaJanczos2Jinear is obtained by replacing “T r i a n g l e ” by “L a n c z o s 2 ” in the calls

of §4.8.4.1.

The Jinc-windowed Jinc 3-lobe EWA filter is called “Lanczos” like its Sinc-

windowed Sine tensor counterpart [93], Upsampling with ewaJanczos3_srgb and

67

ewaJanczos3Jinear is obtained by replacing “T r i a n g l e ” by “L a n c z o s ” in the calls

of §4.8.4.1.

Upsampling with ewaJanezos4jsrgb and ewaJanczos4Jinear is obtained by replac

ing “T r i a n g l e ” by “L a n c z o s - d e f i n e f i l t e r : l o b e s = 4 ” in §4.8.4.1.

4.8.6 Novel non-interpolatory EWA linear filtering methods

With the exception of EWA Mitchell-Netravali, a method most likely first used by An

thony Thyssen of Griffith University, who initially programmed EWA resampling into Im

ageMagick with the assistance of Fred Weinhaus, and EWA Catmull-Rom, a method most

likely first used by Henry Ho although it was described by Anthony Thyssen in the Im

ageMagick documentation, the novel EWA methods presented in this section are due to N.

Robidoux.

4.8.6.1 EWA Robidoux (Keys cubic with a = 113/(58 + 216\/2))

The Robidoux Keys cubic is the default ImageMagick filter for EWA distortion and re

sizing [93]. Consequently, ewa_robidouxjsrgb and ewa_robidoux Jinear are obtained by

removing “- f i l t e r T r i a n g le ” from the calls of §4.8.4.1.

The Robidoux EWA filter is the unique Keys cubic with the following property: When

upsampling (actually, when not downsampling) an image with pixel values constant on

rows (or columns), the output image’s pixel values at positions that correspond to original

pixel locations are unchanged. This property can be summarized as follows: The Robidoux

EWA filter is interpolatory on images that are constant row-wise (or column-wise).

Here is a more concrete definition of the Robidoux cubic spline: When upsampling (not

downsampling) and evaluating the reconstructed surface at an output pixel location that

corresponds exactly to an input pixel location, the (positive) coefficients of the input values

immediately left, right, top and bottom are twice as large as the (negative) coefficients of

68

the four input pixel values that are closest in the four diagonal directions (NE, NW, SW and

SE) [102].

The way things work out, Robidoux is close to Mitchell-Netravali: Robidoux is the

Keys cubic with a « .3109, Mitchell-Netravali with a « .3333 [93]. EWA Robidoux is

the downsampling component of the GEGL resampling filter LoHalo [103], used by GIMP

(GNU Image Manipulation Program); sigmoidized tensor Mitchell-Netravali is LoHalo’s

upsampling component.

4.8.6.2 EWA Mitchell-Netravali (Keys cubic with a — 1/3)

Until it was displaced by Robidoux, the default ImageMagick filter for EWA distortion

and resizing was the Mitchell-Netravali cubic. EWA with Mitchell-Netravali as a radial

weighting function was determined to be a good method by Anthony Thyssen of Griffith

University based on visual comparison with the results produced with a number of alterna

tive kernels.

Upsampling with ewajnitchell_netravali_srgb and ewa jnitchell_netravaliJinear is

obtained by replacing “T r i a n g l e ” by “M i t c h e l l ” in §4.8.4.1.

4.8.6.3 EWA RobidouxSharp (Keys cubic with a = 7/(2 + 12y/2))

Upsampling with ewa robidoux_sharp _srgb and ewajrobidoux_sharp Jinear is obtained

by replacing “T r i a n g l e ” by “R o b i d o u x S h a r p ” in the calls of §4.8.4.1.

With a as .3690, RobidouxSharp is, like Robidoux, close to Mitchell-Netravali. On the

map of BC-splines [93], Robidoux is closer to B-spline smoothing than Mitchell-Netravali;

RobidouxSharp is closer to Catmull-Rom.

Among Keys cubics, the RobidouxSharp EWA filter is characterized by the follow

ing minimax property: It minimizes the maximum possible deviation between the input

image’s values and those at corresponding positions in the output image. (The key mathe

69

matical assumption is that pixel values are bounded.) In other words, the RobidouxSharp

EWA filter is as close to being interpolatory as a Keys EWA filter can be [104],

There are several alternate, but equivalent, characterizations of the RobidouxSharp cu

bic. Some can be formulated concisely in terms of “no-op” resampling, that is, resizing

an image to the exact same size (with the same alignment and image geometry conven

tion). The first characterization of the RobidouxSharp filter in terms of no-op is that it

is the Keys cubic for which the corresponding no-op EWA resampling operation is clos

est to the identity in (linear) operator norm. Equivalently, the matrix representation of

EWA RobidouxSharp no-op resampling is the closest to the identify matrix in t\ matrix

norm. (Abyss issues are ignored in these characterizations.) A less abstract characteriza

tion: When sampling at an output location that corresponds exactly to an input location

(and not downsampling), the sum of the weights corresponding to locations other than the

input location under consideration is exactly 0. By symmetry, this means that the (positive)

weights of the nearest pixels to the left, right, top and bottom are exactly as large as the

(negative) weights of the four closest pixels in the diagonal direction. Yet another charac

terization: When sampling at an input pixel location without downsampling, the weight of

the original input pixel in the weighted sum is exactly 1 [105].

4.8.6.4 EWA CatmuU-Rom

Upsampling with ewa.catmull_romjsrgb and ewa_catmull_romJinear is obtained by re

placing “T r ia n g le ” by “C atrom ” in the calls of §4.8.4.1.

EWA CatmuU-Rom was apparently first seriously considered by Henry Ho, who sug

gested, in the Retouching forum of Digital Photography Review, that it being strongly

sharpening would allow one to skip the commonly used USM (Un-Sharp Mask) sharp

ening step when reducing images [106]. Catmull-Rom as an EWA filter had earlier been

mentioned by Anthony Thyssen, who showed its cardinal basis function without discussing

70

whether it was useful [107, 108].

4.8.6.5 EWA LanczosRadiusN (Jinc-windowed Jinc N-Iobe with support shrunk to

radius N)

These methods were proposed by N. Robidoux in an ImageMagick Forum post [109].

EWA LanczosRadius2 is obtained from plain vanilla EWA Lanczos 2 by shrink

ing its support so that it is a disk of radius exactly 2. Upsampling with

ewaJanczos_radius2_srgb and ewaJanczosjradius2Jinear is obtained by replacing

“T r i a n g l e ” by “L a n c z o s R a d i u s - d e f i n e f i l t e r : l o b e s = 2 ” in §4.8.4.1.

EWA LanczosRadius3 is obtained from EWA Lanczos by shrinking its support

so that it is a disk of radius exactly 3. Upsampling with ewaJanczos_radius3_srgb

and ewa Janczos_radius3 Jinear is obtained by replacing “T r i a n g l e ” by

“L a n c z o s R a d i u s ” in §4.8.4.1. Three lobes is the default.

EWA LanczosRadius4 is obtained from EWA Lanczos 4 by shrinking its support

so that it is a disk of radius exactly 4. Upsampling with ewaJanczosjradius4_srgb

and ewa Janczos_radius4 Jinear is obtained by replacing “T r i a n g l e ” by

“L a n c z o s R a d i u s - d e f i n e f i l t e r : l o b e s = 4 in §4.8.4.1.

4.8.6.6 EWA LanczosNSharp (Jinc-windowed Jinc N-lobe with support shrunk to

preserve vertical and horizontal lines)

There is a filter called “Lanczos2Sharp” in ImageMagick, derived by applying meth

ods similar to those used to derive RobidouxSharp, but with respect to preservation of

vertical and horizontal lines, as was the case for the Robidoux filter. The built-in Im

ageMagick method (currently) has a slightly different blur factor than the one recom

mended now by N. Robidoux: The built-in method uses blur = 0.9549963639785485,

and the current recommendation is 0.9580278036312191. Upsampling with

71

ewaJanczos2sharp_srgb and ewa lanczos2sharplinear is obtained by replacing

“T r i a n g l e ” by “L a n c z o s 2 - d e f i n e f i l t e r : b l u r = . 9 5 8 0 2 7 8 0 3 6 3 1 2 1 9 1 ”

in §4.8.4.1.

Analogous to Lanczos2Sharp, there is a “LanczosSharp” built into ImageMagick.

The built-in ImageMagick method (currently) has a slightly different blur factor than the

one currently recommended by N. Robidoux, who revised the objective function used

to optimize the blur parameter: The built-in method uses blur = 0.9812505644269356,

and the value used in the test suite is 0.9891028367558475 [110]. Upsampling

with ewaJanczos3sharp_srgb and ewaJanczos3sharpJinear is obtained by replacing

“T r i a n g l e ” b y “L a n c z o s - d e f i n e f i l t e r : b l u r = . 9 8 9 1 0 2 8 3 6 7 5 5 8 4 7 5” in

§4.8.4.1.

Upsampling with ewaJanczos4sharp_srgb and ewa!anczos4sharplinear is ob

tained by replacing “T r i a n g l e ” by “L a n c z o s - d e f i n e f i l t e r : l o b e s = 4

- d e f i n e f i l t e r : b l u r = . 9 8 7 0 3 9 5 0 8 3 2 9 8 2 6 3 ” in §4.8.4.1.

4.8.6.7 EWA LanczosNSharpest (Jinc-windowed Jinc N-lobe with support shrunk

to make it almost interpolatory)

EWA Lanczos2Sharpest is derived by applying methods similar to those used to de

rive RobidouxSharp. Specifically, Lanczos2Sharpest uses a deblur which minimizes

the deviation from being interpolatory in a minimax sense, in the context of pixel

values bound to a finite range [111]. Upsampling with ewaJanczos2sharpestJsrgb

and ewa Janczos2sharpest Jinear is obtained by replacing “T r i a n g l e ” by

“L a n c z o s 2 - d e f i n e f i l t e r : b l u r = 0 . 8 8 8 2 6 4 2 1 5 0 8 5 4 0 3 4 7 ” in §4.8.4.1.

Lanczos3 Sharpest is the 3-lobe version of Lanc-

zos2Sharpest. Upsampling with ewaJanczos3sharpest_srgb and

ewaJanczos3sharpestJinear is obtained by replacing “T r i a n g l e ” by

72

“L a n c z o s - d e f i n e f i l t e r : b l u r = 0 . 8 8 5 4 9 0 6 1 7 0 1 7 6 4 ” in §4.8.4.1.

Lanczos4Sharpest is the 4-lobe version of Lanczos2Sharpest. Upsampling

with ewalanczos4sharpest jsrgb and e walanczos4sharpest Jinear is obtained

by replacing “T r i a n g l e ” by “L a n c z o s - d e f i n e f i l t e r : l o b e s = 4

- d e f i n e f i l t e r : b l u r = 0 . 8 8 4 5 1 0 0 2 3 3 8 5 8 5 1 4 1 ” in §4.8.4.1.

4.8.7 “Extra” (“external”) upsampling method tested

Only one non-ImageMagick resampling method, namely Nohalo-LBB, is tested in the stan

dard version EXQUIRES. It is included primarily as an example of hooking up external

resampling programs to the test suite.

4.8.7.1 Nohalo with Locally Bounded Bicubic (LBB) finishing scheme

A wrapper, which replicates the top row and left column before resampling and crops

afterwards, is required in order to ensure that the same image geometry convention is used

by Nohalo-LBB and the ImageMagick methods. This C++ wrapper is included in the

EXQUIRES distribution, but it is not installed by default. See Appendix B for the code

listing.

Nohalo-LBB is a nonlinear method with two components: The first stage of Nohalo-

LBB, namely Nohalo, is a nonlinear face split subdivision method described in [16, 32] and

originally formulated by N. Robidoux with the assistance of several collaborators, includ

ing the author of this thesis. The second stage, LBB, which stands for Locally Bounded

Bicubic, is a nonlinear interpolation scheme formulated by N. Robidoux based on a method

of Brodlie et al. [112]. Although it is briefly discussed in [32], the best documentation

about LBB is found in the VIPS [113] and GEGL source code listings [101] for the Nohalo-

LBB method. (The GEGL method, under the name NoHalo, is called through GIMP (GNU

Image, Manipulation Program) menus related to resampling.)

73

4.9 Image difference metrics

An image difference metric takes two images as inputs and returns a number that gives

an indication of how similar or different the images are. In the context of this thesis,

image difference metrics are used to measure how accurately an upsampler managed to

reconstruct the original image from a downsampled version.

Throughout this chapter, it is assumed that two MxN sRGB images, named x and y, are

compared. Since one of the two is considered as being the “reference image”, the norm of

the difference is often called the “error”. The indices i and j represent the row and column

of the pixel being compared, and the index k represents the colour channel being compared

(of which there are three).

In addition, some of the metrics discussed in this chapter are variants of one another.

In order to ensure that there is no misunderstanding, the variants of the various metrics are

defined separately.

4.9.1 Metrics based on sRGB differences

For these error norms, the pixel values of the sRGB images x and y are taken literally.

sRGB £\ error

The £i error is also known as the Average Absolute Error (AAE). It is given by

3 M N

N M 3

i = 1 j = 1 fc=l

sRGB £2 error

The i 2 error is also known as Root Mean Squared Error (RMSE). It is given by

3 M N

N M 3

74

sRGB £4 error

The £ 4 error norm has rarely, if ever, been used in image processing. It gives more weight

to extreme differences than the earlier error norms, without singling out the largest one. It

is given by

srgb4 (z,y) \
N M 3

! :Y [hi'k ’ •3MJV ^

sRGB £ 0 0 error

The £oo error is also known as the Maximum Absolute Error (MAE). It is given by

srgb^Ov,y) = max \xlJtk - yhJ,k\ .
l < i < N , l < j < M , l < k < 3

Mean SSIM (Structural SIMilarity) index

We have performed extensive refactoring of the computation of the standard SSIM index.

For this reason, the discussion of the image difference metric is postponed to the next

chapter.

Blurred sRGB £x, £2, £ 4 and £ 0 0 errors

Blurring an image involves averaging pixels locally, for example, to remove noise or to

smooth out the image. The “blurred” metrics bluri, blur2, blur4 and blur^ are obtained

by applying the corresponding £p metrics to the results of converting to luma (specifically,

sRGB grayscale, a pixel by pixel weighted average of the three sRGB colour channels

unconverted to linear light), blurring the input images, and cropping exactly like when

computing the mean SSIM index. The reason for the inclusion of such nonstandard metrics

into the suite is to estimate how much of the mean SSIM index ranking comes from the

steps other than the “product of cross correlations” term.

75

Note that future versions of EXQUIRES are likely to base the blurp metrics on the X YZ

colour space, and omit cropping, only keeping SSIM’s Gaussian blur.

4.9.2 Metrics based on XYZ differences

Created by the International Commission on Illumination (known as the CIE, which stands

light (meaning physical) colour space that is a good model of the colours that are percepti

ble by the human visual system.

For these error norms, the pixel values of the sRGB images x and y are converted

to linear light, specifically the XYZ colour space, the resulting linear light images being

written x and y. The above formulas are then used on these linear light images.

XYZ i\ error

The (i-norm of the difference between the two images in the XYZ colour space is

for “Commission Internationale de l’Eclairage”) in 1931, the XYZ colour space is a linear

3 M N

N M 3

i = 1 j = 1 k=1

XYZ £2 error

The ^2-norm of the difference in the XYZ colour space is

3 M N

XYZ i 4 error

The 4̂-norm of the difference in the XYZ colour space is

3 M N

76

XYZ loo error

The loo-norm of the difference in the XYZ colour space is

xyz0O(x,y) = ma*. \xiJtk - .
l < i < N , l < j <M , l< k <3

4.9.3 Metrics based on CMC 1:1 AE distances

AE is a common notation for the distance between two colours within a so-called perceptu

ally uniform colour space. Often used for colour tolerancing, perceptually uniform colour

spaces are generally constructed so that there is a distance r (the “threshold of perceptibil

ity”) such that if

AE (colour i, colour2) < r,

the two colours are generally indistinguishable, and if

AE(colouri,colour2) > r ,

they can be perceived as being different.

The CMC l:c quasimetrics were formulated for the purpose of colour tolerancing by

the Colour Measurement Committee of the Society of Dyers and Colourists [114, 115].

These quasimetrics approximate the magnitude of the perceived deviation from a reference

colour. Based on the CIE L*C*h (Lightness, Chroma and Hue) colour space, which itself is

based on the CIE L*a*b* (very approximately) perceptually uniform colour space [73], the

CMC l:c quasimetrics are defined by fairly complex formulas that result from modeling the

Human Visual System [114, 116]. The 1 and c parameters are used to change the weighting

of the lightness (“1”) and chroma (“c”) components relative to hue. CMC 2:1 (“two units of

lightness error are equivalent to one unit of hue error”), for example, gives less weight to

lightness deviations than CMC 1:1 (“one unit of lightness error for each unit of hue error”).

The CMC l:c quasimetrics can be symmetrized by exchanging the roles of the modified

colour and the reference colour and averaging the two results [117]. We use AEcmc, the

77

symmetrized version of CMC 1:1 with I = h = 1, values recommended for threshold of

perceptibility measurements [115].

CMC 2:1 is recommended for graphics work by Steve Upton [118]. It is however not

clear whether CMC 2:1 leads to a better image difference metric. One may also question

whether symmetrizing the metric is the best option when there is a golden standard to

compare to, as is the case in EXQUIRES. In any case, given that CMC 2:1 was not available

through the VIPS library when EXQUIRES was being developed (it is now [119]), we use

the built-in symmetrized CMC 1:1 VIPS implementation.

Within the image processing library VIPS, CMC 1:1 colour differences are computed

by taking the Euclidean distance after conversion to a custom colour space constructed

from L*C*h for this purpose [116,119]. In terms of coordinates in this custom colour space

constructed from scratch by Dr. John Cupitt based on the original quasimetric formulas, the

formulas for the various image difference metrics used in EXQUIRES would look just like

the previous ones (except cmcoo) [120, 121]. We prefer, however, to make the connection

to the CMC colour distance explicit.

In the following, the L*C*h images derived from the x and y images being compared

are written x and y.

CMC 1:11\ error

The /^-norm based on the AE CMC 1:1 colour distance is

j N M

Cn’C ,(l' !/) = M N c m c (^ i , j i V i j) '
i = 1 j = 1

78

CMC 1:1 £2 error

The £o-norm based on the AE CMC 1:1 colour distance is

cmc2 (:x,y)
\

1 N MEE<ae cmc y%,3))M N
i = 1 j = 1

CMC 1:1 £4 error

The -norm based on the AE CMC 1:1 colour distance is

cmc 4(x,y) =
\ EE (AEcmc(xid,ytJ))4M N

i = 1 j = 1

CMC 1:1 £oo error

The £^-norm based on the AE CMC 1:1 colour distance is

cmcoc(x,y)= max AEcmc(xiJ , yid).
l < i < N , l < j < A f

79

5 Implementation

5.1 Streamlined computation of the SSIM (Structural SIMilarity) in

dex

The SSIM (Structural SIMilarity) index, introduced in 2003 by Wang et al. [59], is a widely

used image comparison method producing a one-channel pseudo-image indicative of local

differences, the SSIM index map, from which an overall similarity score, the mean SSIM

index, is derived.

Early versions of the test suite used to compute the results discussed by Robidoux et

al. in [14, 16] were unfriendly to use because of the large runtimes of the computation of

the SSIM index. For this reason, considerable effort has been devoted to streamlining its

computation. The standard computation of the SSIM index involves five Gaussian blurs and

17 in-place floating-point operations (flops) per pixel. (Note that we count multiply-add as

one flop.) In this chapter, the linearity of convolution and algebraic refactoring are used to

reduce the flop count by 20%. We also reduce the memory footprint of the computation.

Informal Matlab and VIPS (Virtual Image Processing System) benchmarking confirmed

the benefits.

5.1.1 Mathematical specification of SSIM

This section summarizes the most commonly used formulation of the SSIM Structural

SIMilarity) index map (a one channel pseudo-image with pixel values in (—1 , 1]) and the

80

MSSIM (Mean SSIM) index (a real number in the same interval) [59].

When dealing with colour images, each image is first converted to grayscale luma by

taking a linear combination of sRGB values. (Although the original specification of SSIM

[59] suggests that luminance—that is, a linear combination of linear light colours—should

be used to compute the grayscale versions of the images to be compared, it appears that

luma is now standard [122].) The following description assumes that the transformation of

the original colour images to luma (or luminance) has already been performed.

Let x and y be the two W x H grayscale images to be compared, with pixel values in

the interval [0, L\. The SSIM index map s, a centred grayscale image with slightly reduced

dimensions (W —10) x (H —10), has pixel values given by

0 4 + My + Cl) (<r2 + <t \ + c2) ’

where arithmetic is performed pixel by pixel. The centred (W —10) x (H — 10) images

appearing on the right-hand side of (5.1) are

in terms of the local averaging operator E, which blurs using an 11 x 11 Gaussian convolu

tion mask with a= 1.5 so that, at pixel location (?', j),

(Note that the Gaussian blur a is a parameter of the blur operator, otherwise separate from

the <xs.) Division by zero is prevented by setting

s =
(2 /X xM y + C l) (2<Txy + c2)

(5.1)

M x = E (x) ,

My = E (y) ,

fTxy = E ((x — Mx)(y - M y)) ,

^ x = E ((x - M x) 2) >

a 2y = E ((y - *xy)2)

Cl = (KiL)2 = (0.01L) 2 and c2 = (K 2L)2 = (0.03L)2.

81

The mean SSIM index is the average of the SSIM index map s. It is a single number in

the interval (—1 , 1].

Algorithm 1 Refactored SSIM index map computation for Matlab (read-only input images)
{The read-only 2D arrays x and y contain grayscale input images.}

s 4- E(x) {blur}

t <- E(y) {blur}

u <— 2st + ci {2 x and +}

t -f- t — s { -}

s 4— 2E(xy) {(scaled) blur and x }

s 4- (s + (ci + c2) - u) u {x, - and +}

t 4 - t 2 + U { x and +}

u 4- E (x2 + y 2) {blur, 2 x and +}

S 4 S -j- ((l l + (Ci -f- C2) - t) t) {-4-, x, - and +}

5.1.2 Refactored computation for Matlab

Most SSIM implementations are direct translations of the proof-of-concept Matlab code

written by Zhou Wang [6 6]. There are two versions of the Matlab code: one that uses

automatic downsampling and one that does not [123, 124].

Nicolas Robidoux refactored the computation of the SSIM map three different ways,

and the author of this thesis checked that the implementations clone the original within

round off [125],

The first refactoring is shown in Algorithm 1. The linearity of the averaging operator

E allows one to compute a \ + cr2 with one single convolution (or two one-dimensional

convolutions, if the separability of Gaussian blur is taken advantage of). This reduces the

total number of blurred intermediate images down to four.

One can fold multiplicative constants into the blur masks, which makes them free.

82

Without overwriting the input images, one can rearrange the computation so that only

three (W— lO)x(H—10) and three W x H images are sufficient to store the inputs as well as

both intermediate and final results. In Algorithm 1, the three smaller images are called s, t

and u, and the extra larger image is defined implicitly by the arguments of the blur operator

E.

The per-pixel flop count of the refactored computation of the SSIM index map is four

times the cost of performing (scaled) Gaussian blur, plus 17 flops. Given that, if the sepa

rability of the Gaussian kernel is exploited, the cost of each blur is 20 multiply-adds and 2

multiplications per pixel with SSIM’s standard 11x11 Gaussian blur mask, the grand total

is 106 flops per pixel. (Without separability, the formal count is 4(121) +17 = 501 flops

per pixel.)

In the remainder of this section, we compare the refactored version to Z. Wang’s origi

nal.

The memory footprint of the original Matlab code corresponds to at least nine (W —

10)x (H—10) and three WxH images (“at least” nine because additional intermediate result

storage is triggered). Refactoring thus reduces the memory footprint of the computation by

at least 50%.

The original code uses five blur operations (one more than the refactored code) plus 20

flops per pixel (three more than the refactored code) so that the original code has 20% more

flops than the refactored one.

5.1.3 SSIM index map computation with input overwriting

If the input images are overwritten, three {W — 10)x (/ / —10) and two W x H images are

sufficient, the key being the computation of erxy and <x2 + er2 from E ((x ± y)2). See

Algorithm 2, in which every line corresponds to one Matlab assignment. This version is

implemented in the code shown in Appendix C.

83

Algorithm 2 Refactored SSIM index map computation with input overwriting for Matlab
{The 2D arrays x and y initially contain grayscale input images.}

x < - x - y { -}

y <- 2y + x { x and +}

t ^ E (x) {(scaled) blur}

x ^ x 2 {x}

x «— |E (x) {(scaled) blur}

s 4— ^=E(y) {(scaled) blur}

y y 2 {x}

y <r- |E (y) {(scaled) blur}

y ^ - y - x { - }

t -e-12 { x }

s «— s2 + (—ci) — t { x , — and +}

1 4— t — s { — }

S «- ((y + (ci + C2) + s)s) -f- ((y + (ci + c 2) + X - t) t) { t , 2 x , 2 - and 3 +}

5.1.4 Threaded local demand-driven pipelined computation for VIPS

In order to access the pipelining power of the VIPS library [43], the entire MSSIM com

putation is rewritten in Static Single Assignment (SSA) form as shown in Algorithm 3.

This pseudocode was written to take advantage of VIPS features accessible through C im

plementations. Without being an exact translation, EXQUIRES’ Python implementation,

shown in §A.3, is based on it.

84

Algorithm 3 Pipelined SSIM index map computation for VIPS
{The 2D arrays x and y contain grayscale input images.}

a 4— E(x) {blur}

b 4- E(y) {blur}

c 4- xy {x}

d 4— 2E(c) -f- (ci -f- C2) {(scaled) blur-add}

e 4— x2 {x}

f ^ y 2 {x}

g 4- e + f {+}

h 4- E(g) + (cj + c2) {blur-add}

i 4— ab {x}

j 4- b - a { -}

k 4— 2i T" C\ {multiply-add}

1 4- d - k { -}

m 4- j 2 {x}

n 4- lk {x}

0 4— m + k {+}

p 4— h — 0 { -}

q 4- po {x}

s 4— n -i- q M

85

5.2 Technical overview of the EXQUIRES test suite

This chapter briefly describes the implementation of the EXQUIRES test suite. It com

plements the User Manual found in Appendix D and the complete source code found in

Appendices A and B, which are based on release version O.9.9.3.

5.2.1 Reading and writing configuration files

The EXQUIRES test suite can be customized by the user through the use of a configuration

file. The reading and writing of configuration files is handled by the c o n f i g o b j [126]

Python module (specifically the Conf igOb j class), which enforces a format similar to

Windows . i n i files. Running e x q u i r e s - n e w produces a configuration file, defaulting

to p r o j e c t l . i n i if a project name is not provided. This file defines a collection of

images, downsamplers, resampling ratios, upsamplers, and comparison metrics to use with

e x q u i r e s - r u n and e x q u i r e s - u p d a t e .

Each section of the configuration file contains a list of key-value pairs of the form

k ey = v a l u e . For the [R a t i o s] section, k e y is the factor by which to reduce and

re-enlarge the images, and v a l u e is the size of the reduced image (based on an initial

width and height of 840 pixels).

For all other sections, k ey is a unique name to reference the v a l u e . For the

[Im ag es] section, v a l u e is the absolute path of the image. Forthe [D o w n sa m p le r s]

and [U p s a m p le r s] sections, v a l u e is the command to resize an image using a particu

lar resampler. These commands must make use of Python replacement fields, representing

the paths of the input and output images, the resampling ratio, and the reduced or enlarged

image size, respectively.

The [M e t r i c s] section is slightly different, since v a l u e is a comma-separated list

of three elements: the command to call the metric (making use of replacement fields that

represent the paths of the two images to compare), the command to aggregate a list of

86

results produced by the metric, and either 0 or 1 to represent the best-to-worst order (as

cending and descending, respectively).

When adding programs to the configuration file, users can make direct use of any pro

gram located in a directory specified in the system path, or provide the full path to the

program. In either case, the commands must make use of the aforementioned replacement

fields. As e x q u i r e s - r u n and e x q u i r e s - u p d a t e loop through the entries in the

configuration file, the replacement fields will be substituted with the values for the current

iteration.

Currently, the configuration files produced by e x q u i r e s -new include both linear and

sRGB resamplers. A future version will include option flags to specify the desired colour

space for upsamplers and downsamplers, since one may wish to investigate the effects of

downsampling using a particular class and upsampling using another particular class.

5.2.2 Generating and reporting image comparison data

The EXQUIRES test suite comes with two programs to generate image comparison data:

e x q u i r e s - r u n , which creates a new database file for the specified configuration, and

e x q u i r e s - u p d a t e , which will modify an existing database file when the configuration

is changed by the user. Also included are two programs to produce statistics from this

data: e x q u i r e s - r e p o r t , which produces tables of aggregate rankings for each metric

and merged ranks across a set of metrics, and e x q u i r e s - c o r r e l a t e , which produces a

Spearman cross-correlation matrix for the specified group of images, downsamplers, ratios,

or metrics.

Resampling images

As discussed in §5.2.1, calling e x q u i r e s - n e w generates a configuration file. The default

entries in the [D o w n sam p le rs] and [U p s a m p l e r s] sections correspond to the down-

87

samplers and upsamplers described in §4.7 and §4.8, respectively. These are ImageMagick

[42] commands that are executed by e x q u i r e s - r u n and e x q u i r e s - u p d a t e .

In order to reduce the storage footprint when calling e x q u i r e s - r u n or

e x q u i r e s - u p d a t e , the downsampled and upsampled images are deleted once they are

no longer required for computing comparison data. The main disadvantage of this approach

is that certain resampling tasks will be re-executed if e x q u i r e s - u p d a t e is called after

the [U p s a m p le r s] or [M e t r i c s] sections of the configuration file are modified. How

ever, modifying any other section of the configuration file will not result in any redundant

computation.

Comparing images

Once the downsampled images have been re-enlarged, the upsampled images can be

compared to the originals with user-provided image comparison metrics, or those de

fined in the M e t r i c s class, which computes metrics by driving VIPS [43] code. In

order to provide a framework for calling user-provided metrics, the default metrics are

executed by calling e x q u i r e s - c o m p a r e rather than directly accessing the methods

in the M e t r i c s class. Since the output of a metric must be inserted into a database,

s u b p r o c e s s . c h e c k _ o u t p u t is used to access the value returned by the metric.

Optionally, the user may directly compare a pair of images by running

e x q u i r e s - c o m p a r e and specifying the metric and paths to the images.

Reading and writing database tables

The reading and writing of database tables relies on s q l i t e 3 [127]. Each table represents

a particular combination of test image, downsampler, and resampling ratio. Each row rep

resents a particular upsampler, with the first column containing the name of the upsampler

and each subsequent column containing the comparison data for a particular metric. Since

88

using the table names to determine the image, downsampler, and ratio could lead to errors,

an additional table called TABLEDATA is used to associate each table with these pieces of

information.

Unfortunately, s q l i t e 3 does not support the full ALTER TABLE syntax [128]. In

particular, while it can be used to add columns to an existing table, it is incapable of remov

ing columns. Thus, whenever an existing table must be modified by e x q u i r e s - u p d a t e ,

a new table must be created with the same name, but with a modified set of columns.

First, the table is renamed using the b a c k u p _ t a b l e method of the D a t a b a s e class

and a new table is created with the old name and the columns specified in the current

configuration file. Then, for each upsampler, the relevant columns from the backup table

are returned as a dictionary, to which the results of calling any new metrics are added

before being inserted into the new table. Finally, the backup table is removed using the

d r o p _ b a c k u p method.

Once a suitable configuration file has been established, running e x q u i r e s - r u n will

perform all the downsampling, upsampling, and comparison steps.

The o p e r a t i o n s module has been written to ensure that the optimal num

ber of downsampling, upsampling, and comparison operations are performed when

e x q u i r e s - u p d a t e is used to modify an existing database.

Aggregating image comparison data

When the user calls e x q u i r e s - r e p o r t or e x q u i r e s - c o r r e l a t e , the image com

parison data contained in the database must be aggregated to produce the requested ranks

or Spearman cross-correlations. These aggregation methods can be called manually using

e x q u i r e s - a g g r e g a t e on any list of numbers. Several of the methods perform expo

nentiation and averaging on the list. In order to ensure that these operations are performed

efficiently, the NumPy numerical Python library [129] is used, which provides basic array

89

operations.

5.2.3 Parsing command line arguments

All EXQUIRES programs make use of the a r g p a r s e module [130] to handle com

mand line arguments. More specifically, the a r g p a r s e . A r g u m e n t P a r s e r class is ex

tended by E x q u i r e s P a r s e r , which is further extended by O p e r a t i o n s P a r s e r and

S t a t s P a r s e r .

Expanding wildcard characters

Wildcard characters are permitted when specifying images, downsamplers, upsamplers,

and metrics for e x q u i r e s - r e p o r t and e x q u i r e s - c o r r e l a t e . These arguments

are handled by L i s t A c t i o n , a customized a r g p a r s e . A c t i o n class included with

EXQUIRES. This class uses the f n m a t c h module [131] to match the patterns against

the most recently used configuration. If any argument containing a wildcard cannot be

expanded to match an entry in the configuration file, an a r g p a r s e . A r g u m e n t E r r o r

is raised to inform the user of the invalid argument.

Note that a backslash must be included when attempting to specify all valid arguments

(\ *), otherwise the shell will attempt to match filenames in the current directory instead of

entries in the configuration file.

Expanding numeric ranges

Hyphenated ranges are permitted when specifying resampling ratios for

e x q u i r e s - r e p o r t and e x q u i r e s - c o r r e l a t e . This option is handled by

R a t i o A c t i o n , a customized a r g p a r s e . A c t i o n class included with EXQUIRES

that is used by the S t a t s P a r s e r class (a customized E x q u i r e s P a r s e r) . If a

hyphen is located in one of the ratio arguments, the argument is expanded into the

90

specified range of integers. If any of the integers are not found in the configuration file, an

a r g p a r s e . A r g u m e n t E r r o r is raised to inform the user of the invalid argument.

Handling table sorting and correlation matrix anchors

When using e x q u i r e s - r e p o r t to produce a table of aggregate image comparison data,

it is possible to specify a metric that will determine the row ordering (based on its best-to-

worst convention as defined in the configuration file). This is handled by S o r t A c t i o n ,

a customized a r g p a r s e . A c t i o n class included with EXQUIRES that is used by the

S t a t s P a r s e r class.

Similarly, when using e x q u i r e s - c o r r e l a t e to produce a Spearman

cross-correlation matrix, it is possible to specify a row/column name that will be designated

as the topmost row and leftmost column. All remaining rows and columns will be sorted

according to the specified row/column. This is handled by A n ch o rA c t i o n , a customized

a r g p a r s e . A c t i o n class included with EXQUIRES that is used by the S t a t s P a r s e r

class.

Introspection

For the programs e x q u i r e s - a g g r e g a t e and e x q u i r e s - c o m p a r e , the i n s p e c t

module is used to return a list of the public methods defined in the A g g r e g a t e and

M e t r i c s classes, respectively. This ensures that each program will only accept METHOD

arguments that match the name of one of these public methods. If the user provides an

invalid argument, E x q u i r e s P a r s e r will produce an error that lists the valid options.

5.2.4 Code quality

The p e p 8 code style checker [132], which enforces the style conventions described in the

PEP 8 style guide for Python code [133], is used as a first pass to identify any obvious style

91

errors. This is accomplished by running p e p 8 * . py in the EXQUIRES package folder.

Once the package clears the first pass, py 1 i n t [134] is used to identify any source code

errors as well as good targets for refactoring. In addition, py l i n t enforces a style conven

tion that is more comprehensive than p e p 8 . As a result, it played a major role in developing

the current structure of EXQUIRES. Since version 0.9.8, running p y l i n t e x q u i r e s

yields a perfect score of 10.0.

5.2.5 Documentation

The EXQUIRES documentation is written in reStructuredText markup language [135],

which is part of the Docutils text processing system [136]. In addition to the . r s t

files that define the documentation, the docstrings within each Python module are writ

ten in reStructuredText. The docstrings are also used to display command line help mes

sages, so the reStructuredText markup must first be stripped. This is accomplished by

E x q u i r e s P a r s e r , a customized a r g p a r s e . A r g u m e n t P a r s e r class that formats

the docstrings using the regular expression module r e . More specifically, r e . s u b is used

to match certain patterns in the docstrings and replace them with alternatives that are more

suited for outputting to the terminal.

The documentation can be built using Sphinx [137], a popular Python documentation

generator. Using the included M a k e f i l e , it is possible to generate the documentation in

several formats, most notably PDF and HTML. The PDF user manual, which provides an

extensive overview of EXQUIRES version 0.9.9.3, is found in Appendix D. In addition, the

HTML-formatted documentation of the latest version of EXQUIRES is viewable online at

e x q u i r e s . ca .

92

6 Results

6.1 Major caveat regarding upsampler rankings

Despite their ubiquity (see the Introduction and Previous Work chapters), the upsampler

rankings produced by image re-enlargement tests should be taken with a very large grain

of salt, if only because they generally favour strongly sharpening methods at the expense

of methods that introduce fewer unpleasant artifacts, at least when filters with decent low

pass filtering are used to downsample. Many authors, in fact, stress the importance of vi

sual inspection, despite its subjectivity, in part because of the limitations of common image

metrics to measure perceptual differences [12, 16, 30, 33, 58, 59, 138, 139]. For exam

ple, Mitchell-Netravali cubic spline smoothing ranks very poorly overall in re-enlargement

tests which include low pass downsamplers, despite it striking a good balance between

sharpness and lack of artifacts, according to an early panel of experts [58]. In addition,

Mitchell-Netravali cubic spline smoothing has been the default ImageMagick filter for im

age resizing [93] for a long time, and its many users are generally satisfied with this choice.

In any case, it is probably safer to compare ranks for methods known to have similar visual

artifacts than to compare ranks for methods with completely different visual character.

The grain of salt may be better described as salt shaker when one takes into account the

considerable impact of several factors on the rankings [11, 16]. For example, we will see

that Mitchell-Netravali earns the top rank when downsampling is performed with nearest

neighbour decimation, a very poor low pass filter, even though all test images are de-noised.

Also keep in mind that the results of re-enlargement tests are only informative with

93

respect to applications in which no significant downsampling is performed: For example,

the rankings shown in this thesis provide no guidance with respect to the choice of a method

for thumbnail production.

94

6.2 Overall upsampler ranks (linear light toolchain and RMSE)

In this section, the reader will find three sets of rankings of sixty four image enlargement

methods. The first set could reasonably be construed to be representative of the overall

quality of a filter when used to enlarge high quality natural images. The additional two sets

of rankings are obtained by considering only part of the data: The second set only uses

the results of re-enlarging images obtained by downsampling with an effective low pass

filter, and the third set only uses the results of re-enlarging images obtained by downsam

pling with nearest neighbour. The “top five” methods within various categories are also

discussed.

Even though EXQUIRES has the capability to automatically average the fractional

ranks obtained by different metrics and use them to compute ranks representative of dif

ferent image difference measures, the overall ranks reported in the remainder of this thesis

only use xyz2 errors, that is, aggregated RMSE errors in the XYZ linear light (“physical”)

colour space, unless otherwise stated. In particular, all the ranks reported in this section are

based on XYZ RMSE. The main reason for only using one metric to derive overall ranks

is that some of the tested metrics give nearly reversed rankings, and one can question the

usefulness of aggregating rankings obtained with discordant criteria.

XYZ RMSE is arguably the most “physically neutral” metric considered in this thesis:

XYZ is a linear light space, so that RMSE is correlated with the total light energy contained

in the deviation from the gold standard image [73]. Even though XYZ is a linear (physical)

colour space,
The CIE X,Y,Z values contain information about the level of light absorp

tion by each of the 3 types of cone photoreceptors,

as stated by Zhang and Wandell [140]. For this reason, it is a linear light colour space well

suited to studies that concern the Human Visual System.

In addition, only results pertaining to linear light toolchains (downsampling and up-

sampling performed through linear RGB with sRGB primaries or XYZ) are considered for

95

the computation of overall ranks.

6.2.1 Overall ranks (all downsamplers included)

Overall ranks, based on all tested ratios, downsamplers and test images, are shown in Ta

ble 6.1 (tables are found at the end of this section). In this table, methods which introduce

slope discontinuities when an “infinite” enlargement ratio is used (methods which are not

“C1”, that is, not continuously differentiable) are indicated by italicizing their name. Note

however that the gradient discontinuities introduced by the Kaiser and, to a lesser extent,

Hamming filters are fairly small, to the extent of that one could deem them irrelevant even

with large enlargement ratios. The same can be said of the gradient discontinuities intro

duced by the Bartlett, EWA teepee, and bilinear filters when the ratio is small. In any case,

such discontinuities are only an issue when the enlargement ratio is large.

These ranks are derived from the aggregated XYZ RMSE errors shown in Table 6.4.

(Ranks are computed before rounding.) Each xyz2 error shown in Table 6.4 is obtained by

aggregating the results of re-enlarging, with 7 ratios, the results of downsampling, with 5

downsamplers, 17 840x840 sRGB images. In other words, each error can be understood

as the Euclidean distance between two 420-megapixel (7 x 5 x 17 x 840 x 840) colour

images in the XYZ colour space.

The top five methods are

1. Nohalo with Locally Bounded Bicubic finishing scheme (Nohalo-LBB)

2. 4-lobe Sine filtering with Hamming windowing (Hamming 4-lobe)

3. 3-lobe Sine filtering with Cosine windowing (Cosine 3-lobe)

4. 4-lobe Sine filtering with Hann windowing (Hann 4-lobe)

5. Lanczos 4-lobe (that is, 4-lobe Sine filtering with Sine windowing).

Because of the visual artifacts they introduce, Nicolas Robidoux generally does not

recommend methods that fail to be C1 for enlargement by a large factor [141]. Requiring

96

the filter to have a continuous gradient (to be “C1”) pushes Hamming out of the ranking:

1. Nohalo-LBB

3. Cosine 3-lobe

4. Hann 4-lobe

5. Lanczos 4-lobe

6. Lanczos 3-lobe.

Given that 4-lobe methods are often felt to introduce too much haloing—they “ring” three

times—this suggests that Cosine-windowed Sine 3 and Lanczos 3 are very good. Indeed,

Lanczos 3 is extremely popular.

If one further narrows the field to C1 methods with 3 lobes or less, that is, methods with

at most one halo, the top methods are

1. Nohalo-LBB

3. Cosine 3

6. Lanczos 3

8. Welch 3

16. Hann 3.

If one only considers C1 methods with 2 lobes or less, one gets

1. Nohalo-LBB

21. Welch 2

25. Cosine 2

31. EWA RobidouxSharp, an EWA method which uses a tuned Keys cubic spline

32. Lanczos 2, a fairly popular method.

It appears that the best (tensor) window function depends on the number of Sine lobes.

Cosine, Sine (Lanczos), Welch and Hamming generally do well.

97

Tensor (“orthogonal”) methods generally perform better than Elliptical Weighted Aver

aging methods. The top EWA methods, all C \ are

12. EWA LanczosSharpest 4

17. EWA LanczosSharpest 3

23. EWA Lanczos Radius 3

26. EWA Lanczos Radius 4

31. EWA RobidouxSharp.

(Note that the only windowing function tested with the Jinc filter was Jinc.)

It is possible that the top rank of Nohalo-LBB owes something to the fact that it is the

only tested method that resamples through the XYZ linear colour space instead of linear

RGB with sRGB primaries. (Note however that it produces an sRGB enlargement from

an sRGB input image, like the other methods.) In addition, it is the only tested nonlinear

method, as well as the only method which is not tested with an ImageMagick implemen

tation: The Nohalo-LBB program used for testing comes from the VIPS library. It is also

possible, although very unlikely, that the top rank obtained by Nohalo-LBB comes from a

different system used for colour space conversion, because the tested version uses a colour

profile. At least in principle, colour profiles are less accurate than the formulaic (algebraic)

approach used internally by ImageMagick. (VIPS now has the ability to use formulaic (al

gebraic) conversions from sRGB to XYZ, but this feature was not available in time when

EXQUIRES was programmed.) It is also possible that Nohalo-LBB’s top rank comes from

the fact that it does not use look up tables, like the ImageMagick implementations used to

test the other methods. In any case, it is the opinion of N. Robidoux that if the top rank

is undeserved, it is most likely a side effect of using a different linear light colour space:

XYZ instead of linear RGB with sRGB primaries, or a consequence of the choice of test

images and downsampling methods [142].

98

Rankings do not seem to be affected by the smoothness of the window function: In Ta

bles 6.1 and 6.2, italicized entries, which label methods that are not C1, appear throughout.

For example, Hamming-windowed Sine 4-lobe, a C° but not C1 method, is the top ranked

linear method; Cosine-windowed Sine 3-lobe, a C1 method, is just behind.

Generally, 4-lobe methods perform better than 3-lobe methods, which themselves per

form better than 2-lobe methods, which rank above methods which do not introduce haloing

(“1-lobe methods”). A notable exception is Cosine-windowed Sine 3-lobe, which actually

ranks above every other C1 method with the exception of Nohalo-LBB. Other exceptions

are Welch-windowed Sine 3 and all the EWA Lanczos methods except LanczosSharpest,

for which the top ranked variant is the 4-lobe version. 5- and 6-lobe data would be inter

esting to add to the comparison. Nohalo-LBB, which is essentially halo-free, gets the top

rank, even though it could be described as a 1-lobe method.

It does not make much difference whether one uses bilinear, quadratic B-spline or cubic

B-spline for tensor (orthogonal) smoothing or EWA smoothing: With each of them, the

EWA version ranks just above the tensor one. This is not the case for the Keys splines

with negative lobes tested in both tensor and EWA versions, namely Mitchell-Netravali

and Catmull-Rom: The rankings are quite different. (Note that the tested tensor and EWA

Lanczos methods are the same only by name: tensor Lanczos refers to Sine-windowed

Sine, EWA Lanczos to Jinc-windowed Jinc.)

The “sharp” version of the Kaiser window beats the other two versions of the Kaiser

window for all numbers of lobes, putting into question the optimality of the choice of /3

values advocated by TheuBl et al. [97]. It would be interesting to explore more choices of

the Kaiser ;3 parameter: It looks like smaller values than those tested may be better. Note

however that it is possible that the Kaiser window suggested by TheuBl et al. leads to less

visually offensive artifacts. No visual comparison was performed for this thesis. Also keep

in mind that rankings depend on the experimental set up. For example, the three variants

of the Kaiser window function appear in different orders in rankings computed with some

99

of the other image difference metrics.

6.2.2 Overall ranks excluding the results of re-enlarging images obtained with near

est neighbour downsampling

In this section, we revisit the overall ranks and errors, only including, this time around,

the results of re-enlarging images obtained by downsampling with a low-pass filter (box

filtering, Gaussian blur, Lanczos 3-lobe and Elliptical Weighted Averaging Lanczos 3-

lobe), leaving out the results of re-enlarging images obtained by downsampling with nearest

neighbour (not a low-pass filter by any means).

One could also argue that the inclusion of re-enlargements of small images produced

with nearest neighbour decimation adds balance to a set dominated by small images pro

duced with rather strong low-pass filters. For this reason, we present overall ranks obtained

both with (Tables 6.1 and 6.4) and without (Tables 6.2 and 6.5) nearest neighbour down-

sampling included. Note that in the following sections of the thesis, the results produced

with all downsamplers are always included. The present subsection is the only one in which

nearest neighbour downsampling results are excluded; the next subsection is the only one

in which the other downsamplers are excluded.

Let us revisit the “overall group rankings”. Methods that score within the top 5 irre-

gardless of the inclusion or exclusion of nearest neighbour results are in boldface; those

that rank in the bottom half when nearest neighbour results are included are in italics.

The top five methods are

1. Welch 4

2. Cosine 4

3. Lanczos 4

4. EWA Catmull-Rom

5. Hamming 4.

1 00

Although Welch 4 and Cosine 4 are not in the top five when nearest neighbour downsam

pling results are included, they are close: Welch 4 has rank 10, and Cosine 4 has rank 9.

EWA Catmull-Rom, on the other hand, has rank 49 when nearest neighbour downsampling

is included.

Requiring the filter to have a continuous gradient (to be “C1”), one gets

1. Welch 4

2. Cosine 4

3. Lanczos 4

4. EWA Catmull-Rom

6. Welch 3.

If one further narrows the field to C1 methods with 3 lobes or less, the top methods are

4. EWA Catmull-Rom

6. Welch 3

7. Cosine 3

10. Lanczos 3

12. EWA LanczosSharpest 3.

If one only considers C1 methods with 2 lobes or less, that is, methods with at most one

halo, one gets

4. EWA Catmull-Rom

21. Nohalo-LBB

23. Welch 2

26. Cosine 2

29. EWA RobidouxSharp

35. Lanczos 2.

101

Only three tested C1 methods with no haloing rank above bilinear interpolation, namely

Nohalo-LBB which goes from rank 1 to rank 21, and cubic Hermite and EWA cubic Her-

mite filtering, with unchanged low ranks.

The top EWA methods, all C1, are

4. EWA Catmull-Rom

8. EWA LanczosSharpest 4

12. EWA LanczosSharpest 3

18. EWA Lanczos Radius 4

19. EWA Lanczos Radius 3.

All in all, the rankings obtained with and without the re-enlargements of images ob

tained by nearest neighbour decimation are not very different. One stunning difference is

the high rank of EWA Catmull-Rom when the results with nearest neighbour downsampling

are excluded. This suggests that EWA Catmull-Rom has a very low rank as a reconstructor

of images downsampled with nearest neighbour decimation. This is verified in the next

subsection. Less stunning, but still noteworthy, is the significant change in the rank of

Nohalo-LBB. Less significant is that the top ranks are populated with 4-lobe windowed

Sine methods.

6.2.3 Overall ranks based on the results of re-enlarging images obtained with nearest

neighbour downsampling

The rankings based solely on nearest neighbour downsampling are extremely different from

the rankings based on the other downsamplers: Compare Tables 6.3 and 6.6 to Tables 6.2

and 6.5. Some methods rank near the bottom in both cases: nearest neighbour upsam

pling and tensor and EWA cubic B-spline smoothing. On the other hand, except for the

high ranking Nohalo-LBB, the top of the list is completely different: the highest ranked

102

4-lobe method is KaiserSoft (the lowest ranked tensor 4-lobe method when nearest neigh

bour downsampling results are excluded) at rank 30, while the top C1 4-lobe method is

Parzen-windowed Sine, which obtains rank 36 when only considering results with nearest

neighbour downsampling and ranks an unremarkable 20 otherwise. The top ranked 3-lobe

method is Parzen (cubic B-spline) windowed Sine, with rank 17 when nearest neighbour

results are included, rank 41 when excluded.

The overall top-ranked methods when re-enlarging small images obtained by nearest

neighbour decimation are Mitchell-Netravali (rank 55 when nearest neighbour downsam

pling results are excluded), bilinear (rank 59), Nohalo-LBB (top rank), Hann-windowed

Sine 2-lobe (rank 49), and EWA Robidoux (rank 50). Only considering C1 methods moves

Blackman-windowed Sine 2-lobe (rank 52) and Bohman-windowed Sine 2-lobe (rank 53)

into the top 5 when re-enlarging images downsampled with nearest neighbour. Except

for Nohalo-LBB, the top methods with nearest neighbour downsampling are unremarkable

when effective downsamplers are used.

The top 10 methods when re-enlarging images obtained with the better low-pass filters

pretty much show up in reverse order near the bottom of the nearest neighbour ranking. In

particular, EWA Catmull-Rom, the top ranked method with less than 4 lobes when nearest

neighbour downsampling results are excluded (rank 4), finds itself at the bottom when

only nearest neighbour downsampling results are considered (rank 63, just above nearest

neighbour upsampling). Another example: The rankings of the KaiserSoft, Kaiser and

KaiserSharp variants of Kaiser-windowed Sine filtering are reversed, without being at the

very bottom.

This near reversal of the rankings is confirmed by considering Spearman rank cor

relations: The correlation between the rankings shown in Table 6.2 (nearest neighbour

downsampling excluded) and Table 6.3 (only nearest neighbour downsampling) is —.580,

indicating quite a strong disagreement. (The correlation between Table 6.1 and Table 6.2

is .928, and between Table 6.1 and Table 6.3, —.426, indicating that the overall ranking

103

primarily reflects the results obtained with the effective low pass filtering downsamplers.)

The rather obvious observation that one can almost reverse the rankings obtained

through re-enlargement tests by substituting nearest neighbour downsampling for box fil

tering seems to have been first made explicitly by Robidoux et al. f 16]. That the rankings

are so drastically affected is especially noteworthy given that EXQUIRES uses a version

of nearest neighbour interpolation that resolves ties by averaging. (This implementation

was chosen to preserve alignment between the full size images and their reduced ver

sions.) As a result, EXQUIRES’ nearest neighbour decimation is closer to box filtering

than implementations typically used by image processing applications. For example, ra

tio 2 downsampling with EXQUIRES’ nearest neighbour is exactly identical to box filter

downsampling. The rankings would be even more different with a truly decimating nearest

neighbour downsampler.

It is noteworthy that the top ranked method, when re-enlarging images downsampled

with nearest neighbour decimation, is the popular Mitchell-Netravali. Because it is pos

sible that they are indicative of subjective quality, there may be value to re-enlargement

tests involving nearest neighbour downsampling, even though they probably should be re

ported separately since their results are so different to those obtained with decent low pass

downsamplers. In any case, the choice of upsampler should take the characteristics of input

images into account (a rather obvious statement): Images obtained by nearest neighbour

decimation are obviously very different from those obtained with, say, downsampling with

Lanczos filtering.

104

upsampler rank upsampler rank
nohalo 1 bartlett2 33

hamming4 2 catmull_rom 34
cosine3 3 kaisersharp2 35

hann4 4 parzen3 36
lanczos4 5 ewaJanczos2sharpest 37
lanczos3 6 ewaJanczos_radius2 38
bartlett4 7 ewa Janczos3 sharp 39

welch3 8 hamming2 40
cosine4 9 ewaJanczos4sharp 41
welch4 10 kaiser2 42

blackman4 11 ewaJanczos3 43
ewaJanczos4sharpest 12 ewa_mitchell_netravali 44

bartlett3 13 ewaJanczos4 45
bohman4 14 kaisersoft2 46

hamming3 15 ewaJanczos2sharp 47
hann3 16 hann2 48

ewaJanczos3sharpest 17 ewa_catmull _rom 49
parzen4 18 ewa_robidoux 50

kaisersharp4 19 ewaJanczos2 51
kaiser4 20 blackman2 52
welch2 21 bohman2 53

kaisersoft4 22 parzen2 54
ewaJanczos_radius3 23 mitchell _netravali 55

kaisersharp3 24 cubic-hermite 56
cosine2 25 ewa_hermite 57

ewaJanczos_radius4 26 ewaJeepee 58
blackman3 27 bilinear 59

kaiser3 28 ewa_quadratic _b_spline 60
bohman3 29 quadratic_b_spline 61

kaisersoft3 30 ewa_cubic_b_spline 62
ewa_robidouxsharp 31 cubic_b_spline 63

lanczos2 32 nearest 64

Table 6.1: XYZ RMSE ranking of linear light upsampling methods as reconstructors of
images obtained by linear light downsampling (all downsamplers included). Filters with
gradient discontinuities are in italics.

105

upsampler rank upsampler rank
welch4 1 kaisersoft3 33
cosine4 2 bartlett2 34

lanczos4 3 lanczos2 35
ewa_catmull_rom 4 ewa Janczos3 sharp 36

hamming4 5 catmull_rom 37
welch3 6 ewa_lanczos4 38
cosine3 7 kaisersharp2 39

ewaJanczos4sharpest 8 ewaJanczos3 40
hann4 9 parzen3 41

lanczos3 10 ewaJanczos2sharpest 42
bartlett4 11 ewa Janczos _radius2 43

ewa Janczos3 sharpest 12 hamming2 44
blackman4 13 kaiser2 45

bartlett3 14 ewa_mitchell _netravali 46
bohman4 15 ewaJanczos2sharp 47

hann3 16 kaisersoft2 48
hamming3 17 hann2 49

ewaJanczos_radius4 18 ewa_robidoux 50
ewaJanczosjradius3 19 ewaJanczos2 51

parzen4 20 blackman2 52
nohalo 21 bohman2 53

kaisersharp4 22 parzen2 54
welch2 23 mitchell _netravali 55
kaiser4 24 cubic-hermite 56

kaisersoft4 25 ewa_hermite 57
cosine2 26 ewaJeepee 58

kaisersharp3 27 bilinear 59
blackman3 28 ewa_quadratic_b_spline 60

ewa_robidouxsharp 29 quadratic_b .spline 61
bohman3 30 nearest 62

kaiser3 31 ewa_cubic_b_spline 63
ewaJanczos4sharp 32 cubic.b .spline 64

Table 6.2: XYZ RMSE ranking of linear light upsampling methods as reconstructors of
images obtained by linear light downsampling with effective low pass filters (nearest neigh
bour downsampling results not included). Filters with gradient discontinuities are in italics.

106

upsampler rank upsampler rank
mitchell jnetravali 1 kaiser4 33

bilinear 2 ewa_quadratic _b_spline 34
nohalo 3 kaisersharp4 35
hann2 4 parzen4 36

ewa_robidoux 5 welch2 37
kaisersoft2 6 quadratic_b_spline 38
ewaJeepee 7 ewaJanczos3 39
blackman2 8 ewaJanczos3sharp 40

bohman2 9 bohman4 41
kaiser2 10 hamming3 42

hamming2 11 hann3 43
ewa_lanczos2sharp 12 bartlett3 44

cubic _hermite 13 blackman4 45
ewaJanczos2 14 ewaJanczos_radius3 46

ewa_mitchell_netravali 15 ewaJanczos4 47
parzen2 16 ewaJanczos4sharp 48
parzen3 17 bartlett4 49

kaisersharp2 18 ewaJanczos_radius4 50
catmull_rom 19 lanczos3 51

kaisersoft3 20 ewaJanczos3sharpest 52
lanczos2 21 hann4 53

ewaJanczos_radius2 22 cosine3 54
bartlett2 23 hamming4 55
kaiser3 24 welch3 56

bohman3 25 ewaJanczos4sharpest 57
ewa_lanczos2sharpest 26 lanczos4 58

blackman3 27 cosine4 59
kaisersharp3 28 ewa_cubic_b-spline 60
ewaJiermite 29 welch4 61

kaisersoft4 30 cubic_b _spline 62
ewa_robidouxsharp 31 ewa-catmull_rom 63

cosine2 32 nearest 64

Table 6.3: XYZ RMSE ranking of linear light upsampling methods as reconstructors of
images obtained by linear light downsampling with nearest neighbour. Filters with gradient
discontinuities are in italics.

107

upsampler xyz2 upsampler xyz2
nohalo 4.9494 bartlett2 5.0083

hamming4 4.9581 catmull_rom 5.0124
cosine3 4.9610 kaisersharpl 5.0186

hann4 4.9610 parzen3 5.0209
lanczos4 4.9613 ewaJanczos2sharpest 5.0295
lanczos3 4.9614 ewaJanczos_radius2 5.0302
bartlett4 4.9614 ewaJanczos3sharp 5.0311

welch3 4.9621 hamming2 5.0316
cosine4 4.9635 ewaJanczos4sharp 5.0317
welch4 4.9655 kaiser2 5.0369

blackman4 4.9668 ewaJanczos3 5.0403
ewaJanczos4sharpest 4.9670 ewa_mitchell_netravali 5.0423

bartlett3 4.9683 ewaJanczos4 5.0435
bohman4 4.9683 kaisersoft2 5.0599

hamming3 4.9691 ewaJanczos2sharp 5.0606
hann3 4.9696 hann2 5.0617

ewa Janczos3 sharpest 4.9712 ewa-catmull _rom 5.0661
parzen4 4.9747 ewa_robidoux 5.0710

kaisersharp4 4.9760 ewaJanczos2 5.0945
kaiser4 4.9814 blackman2 5.1043
welch2 4.9825 bohman2 5.1147

kaisersoft4 4.9835 parzen2 5.1328
ewaJanczos_radius3 4.9857 mitchell_netravali 5.1537

kaisersharp3 4.9896 cubicJiermite 5.1726
cosine2 4.9904 ewaJiermite 5.1885

ewa Janczos _radius4 4.9925 ewaJeepee 5.1902
blackman3 4.9970 bilinear 5.2109

kaiser3 5.0007 ewa_quadratic_b .spline 5.3794
bohman3 5.0008 quadratic_b_spline 5.4171

kaisersoft3 5.0060 ewa.cubic-b-Spline 5.5966
ewa_robidouxsharp 5.0062 cubic_b_spline 5.6289

lanczos2 5.0082 nearest 5.7086

Table 6.4: XYZ RMSE of linear light upsampling methods as reconstructors of images
obtained by linear light downsampling (all downsamplers included). Filters with gradient
discontinuities are in italics.

108

upsampler xyz2 upsampler xyz2
welch4 4.7811 kaisersoft3 4.9079
cosine4 4.7846 bartlett2 4.9089

lanczos4 4.7909 lanczos2 4.9107
ewa_catmull_rom 4.7935 ewa Janczos3 sharp 4.9161

hamming4 4.7943 catmull_rom 4.9176
welch3 4.7948 ewaJanczos4 4.9198
cosine3 4.7990 kaisersharp2 4.9278

ewaJanczos4sharpest 4.8010 ewaJanczos3 4.9283
hann4 4.8059 parzen3 4.9313

lanczos3 4.8092 ewaJanczos2sharpest 4.9354
bartlett4 4.8108 ewaJanczos_radius2 4.9381

ewaJanczos3sharpest 4.8200 hamming2 4.9475
blackman4 4.8311 kaiser2 4.9551

bartlett3 4.8335 ewa_mitchell _netravali 4.9592
bohman4 4.8353 ewaJanczos2sharp 4.9840

hann3 4.8356 kaisersoft2 4.9870
hammingi 4.8358 hann2 4.9906

ewa Janczos _radius4 4.8498 ewa_robidoux 5.0012
ewa Janczos _radius3 4.8501 ewaJanczos2 5.0258

parzen4 4.8504 blackman2 5.0422
nohalo 4.8506 bohman2 5.0546

kaisersharp4 4.8532 parzen2 5.0734
welch2 4.8571 mitchelljnetravali 5.1109
kaiser4 4.8644 cubic_hermite 5.1257

kaisersoft4 4.8685 ewaJhermite 5.1306
cosine2 4.8767 ewaJeepee 5.1512

kaisersharp3 4.8796 bilinear 5.1817
blackman3 4.8928 ewa_quadratic_b_spline 5.3651

ewa_robidouxsharp 4.8973 quadratic_b .spline 5.4052
bohman3 4.8989 nearest 5.5229

kaiser3 4.8991 ewa_cubic_b .spline 5.5892
ewaJanczos4sharp 4.9043 cubic.b .spline 5.6228

Table 6.5: XYZ RMSE of linear light upsampling methods as reconstructors of images
obtained by linear light downsampling with effective low pass filters (nearest neighbour
downsampling not included). Filters with gradient discontinuities are in italics.

109

upsampler xyz2 upsampler xyz2
mitchell _netravali 5.3213 kaiser4 5.4241

bilinear 5.3260 ewa_quadratic _b _spline 5.4360
nohalo 5.3263 kaisersharp4 5.4394
hann2 5.3364 parzen4 5.4436

ewa_robidoux 5.3411 welch2 5.4554
kaisersoft2 5.3417 quadratic_b_spline 5.4644
ewaJeepee 5.3436 ewa_lanczos3 5.4653
blackman2 5.3456 ewaJanczos3sharp 5.4667

bohman2 5.3480 bohman4 5.4683
kaiser2 5.3515 hamming3 5.4699

hamming2 5.3548 hann3 5.4729
ewaJanczos2sharp 5.3559 bartlett3 5.4744

cubic_hermite 5.3560 blackman4 5.4762
ewaJanczos2 5.3607 ewaJanczos_radius3 5.4948

ewa_mitchell _netravali 5.3617 ewaJanczos4 5.5104
parzen2 5.3637 ewaJanczos4sharp 5.5120
parzen3 5.3646 bartlett4 5.5231

kaisersharp2 5.3666 ewaJanczos_radius4 5.5266
catmull_rom 5.3748 lanczos3 5.5286

kaisersoft3 5.3806 ewa_lanczos3sharpest 5.5349
lanczos2 5.3808 hann4 5.5384

ewaJanczos_radius2 5.3830 cosine3 5.5618
bartlett2 5.3875 hamming4 5.5651
kaiser3 5.3879 welch3 5.5817

bohman3 5.3892 ewa Janczos4sharpe st 5.5818
ewaJanczos2sharpest 5.3895 lanczos4 5.5911

blackman3 5.3938 cosine4 5.6224
kaisersharp3 5.4071 ewa.cubic_b _spline 5.6264
ewaJiermite 5.4141 welch4 5.6432

kaisersoft4 5.4191 cubic_b _spline 5.6530
ewa_robidouxsharp 5.4200 ewa.catmull_rom 6.0346

cosine2 5.4214 nearest 6.3979

Table 6.6: XYZ RMSE of linear light upsampling methods as reconstructors of images ob
tained by linear light nearest neighbour downsampling. Filters with gradient discontinuities
are in italics.

110

6.3 Impact on upsampler ranks of various factors

In this and the following sections, we analyze the impact of various factors on upsampler

rankings, extending the analysis performed on the data of Dumic et al. (§3.2) to our own.

The current section’s Spearman rank correlations are obtained by slicing the data used

to compute the overall ranks given in §6.2.1. Subsequent sections (§6.4-6.6) use additional

data.

6.3.1 Impact on upsampler ranks of downsampler choice

As seen in Table 6.7, the Spearman rank correlations of every pair of downsamplers is

above .942 except for the cross correlations involving nearest neighbour decimation. The

conclusion to be drawn is that the choice of downsampler does not matter much provided

it is a decent low-pass filter (which nearest neighbour decimation is not).

downsampler
box

filtering
Gaussian

blur

Lanczos
3-lobe

filtering

EWA
Lanczos
3-lobe

filtering

nearest
neighbour
decimation

box filtering 1 .964 .954 .947 -.531
Gaussian blur .964 1 .942 .971 -.615

Lanczos 3-lobe filtering .954 .942 1 .985 -.511
EWA Lanczos 3-lobe filtering .947 .971 .985 1 -.567
nearest neighbour decimation -.531 -.615 -.511 -.567 1

Table 6.7: Downsamplers Spearman rank correlation matrix. Cross-correlations higher
than .9 are in boldface.

I l l

6.3.2 Impact on upsampler ranks of the resampling ratio

As seen in Table 6.8, the Spearman rank correlation of every pair of downsampling ratios

is above .887. The conclusion to be drawn is that more than one downsampling ratio

should generally be used, taking into account the fact that low and high ratios are the least

correlated when choosing ratios to test, but that in any case the rankings obtained with

different ratios are fairly similar.

downsampling
ratio 2 4 3 6 8 5 7

2 1 .980 .966 .946 .920 .914 .887
4 .980 1 .989 .984 .968 .961 .936
3 .966 .989 1 .992 .979 .973 .952
6 .946 .984 .992 1 .993 .989 .972
8 .920 .968 .979 .993 1 .997 .987
5 .914 .961 .973 .989 .997 1 .993
7 .887 .936 .952 .972 .987 .993 1

Table 6.8: Ratios Spearman rank correlation matrix.

112

6.3.3 Impact on upsampler ranks of test image choice

As seen in Table 6.9, the Spearman rank correlations of every pair of test images is above

.728. The boy and shed images are the least correlated. In addition, if one takes the shed

image out, all cross-correlations are above .849 and, if one also excludes the cat image, all

correlations are above .887. The conclusion to be drawn is that the choice of test images

matters quite a bit, but that the rankings obtained with different test images are generally

somewhat similar.

This being said, note that all test images were obtained by careful downsampling of high

quality digital photographs and of an archival scan. We expect different types of images

(text, CG, destructively compressed, blurry, with significant chromatic aberration...) to

give very different rankings.

113

test image curios baby wave apartments dragon garland frog wreck man paint footbridge cabins tower horse cat boy shed

curios 1 .994 .991 .987 .987 .985 .983 .977 .974 .974 .973 .969 .963 .960 .954 .921 .811

baby .994 1 .986 .981 .984 .974 .978 .981 .974 .974 .979 .967 .966 .968 .963 .928 .829

wave .991 .986 1 .993 .998 .977 .978 .984 .945 .985 .960 .937 .933 .943 .974 .893 .839

apartments .987 .981 .993 1 .990 .981 .979 .968 .944 .983 .941 .930 .919 .923 .963 .898 .822

dragon .987 .984 .998 .990 1 .972 .976 .986 .940 .987 .959 .930 .928 .941 .979 .889 .848

garland .985 .974 .977 .981 .972 1 .989 .956 .964 .972 .953 .959 .947 .939 .928 .936 .782

frog .983 .978 .978 .979 .976 .989 1 .964 .960 .988 .958 .952 .945 .944 .940 .954 .810

wreck .977 .981 .984 .968 .986 .956 .964 1 .932 .976 .979 .935 .941 .966 .983 .887 .888

man .974 .974 .945 .944 .940 .964 .960 .932 1 .932 .956 .989 .980 .949 .894 .953 .731

paint .974 .974 .985 .983 .987 .972 .988 .976 .932 1 .949 .917 .916 .932 .972 .923 .857

footbridge .973 .979 .960 .941 .959 .953 .958 .979 .956 .949 1 .971 .982 .995 .940 .917 .839

cabins .969 .967 .937 .930 .930 .959 .952 .935 .989 .917 .971 1 .993 .968 .884 .942 .741

tower .963 .966 .933 .919 .928 .947 .945 .941 .980 .916 .982 .993 1 .983 .890 .937 .765

horse .960 .968 .943 .923 .941 .939 .944 .966 .949 .932 .995 .968 .983 1 .926 .914 .838

cat .954 .963 .974 .963 .979 .928 .940 .983 .894 .972 .940 .884 .890 .926 1 .849 .921

boy .921 .928 .893 .898 .889 .936 .954 .887 .953 .923 .917 .942 .937 .914 .849 1 .728

shed .811 .829 .839 .822 .848 .782 .810 .888 .731 .857 .839 .741 .765 .838 .921 .728 1

Table 6.9: Test images Spearman rank correlation matrix.

6.4 Impact on upsampler ranks of the choice of error metric

So far, all rankings and cross-correlations have been based solely on the XYZ RMSE (xyz2)

image difference metric. If another metric is used—XYZ AAE (xyzj) or MAXABS (xyzx)

or sRGB RMSE (srgb2) or MSSIM (mssim), for example—are the rankings similar, or are

they very different, indicating a strong dependence of the rank on the error measure? In

this chapter, we answer this question using, once again, a Spearman rank correlation ma

trix which shows the correlation of the rankings obtained with pairs of difference metrics:

Table 6.10.

Some metrics are in close agreement. For example, srgbj (AVGABS, the average of the

absolute value of the difference using sRGB pixel values) and srgb2 (RMSE using sRGB

pixel values) are almost perfectly aligned: their correlation is .993. On the other hand,

xyz2 (RMSE using XYZ pixel values) and cmcoo (MAX CMC 1:1 A E) are in near perfect

disagreement, with a correlation of —.783. This is not particularly surprising: oo-norms

(MAXABS) favour different methods than 2-norms (RMSE) because they tend to “punish”

methods on the basis of over- and undershoots without regard for much else. For this rea

son, the usefulness of MAXABS-type norms is highly questionable in the present context

because it basically only measures one type of deviation. In addition, the CMC 1:1 AE

distance between colours was designed to mimic perception in the context of manufactur

ing tolerance, whence the XYZ colour space is physically linear: one could say that these

metrics are very different by design.

With the chosen ordering, namely one based on the correlation with the xyz2 norm,

rank correlations are close to being monotone with respect to distance from the matrix

diagonal. This is reflected in the ranks shown in Tables 6.11-6.12. High ranks are generally

clustered near the diagonal; low ranks, away from it. (The rank table’s diagonal is slanted:

the combined Tables 6.11-6.12 have 64 rows and 17 columns.) In other words, different

metrics favour different groups of upsamplers. The one exception is the one nonlinear

115

filter tested, Nohalo-LBB, which takes first place with respect to fourteen of the seventeen

metrics.

Basically, metrics fall into three groups:

• xyz2, xyz4, xyz4, blurlt blur2, mssim, srgb4 and srgb2

• blur4, cmcx, srgb4, cmc2 and cmc4

• the MAXABS metrics srgb^, xyz^, blur^ and cm c^.

Within each group, the metrics are reasonably well correlated. However, metrics from

different groups are not, unless they are close to the transition from one group to the next.

Consider the more commonly used error metrics xyz2, xyzj, mssim, srgbj and srgb2. All of

them belong to the first group. As mentioned earlier, srgbj and srgb2 give nearly identical

rankings. Likewise, xyz2 and xyz2 (and, actually, xyz4) are in close agreement, with a

cross-correlation of .958. mssim is fairly close to srgbj (.948) and srgb2 (.943); it is more

loosely correlated with xyz2 (.818) and, especially, xyz2 (.672). This is not particularly

surprising given that mssim is based on luma, a luminance (light intensity) value obtained

by averaging sRGB colour values. The XYZ metric most correlated to the commonly used

sRGB-based metrics (including mssim) is based on the £j-norm (xyz,), followed by £4

(xyz4). The most distant pairs in the group of five are xyz2 and srgb2 (.510) and xyz2 and

srgb4 (.505). These results make clear that rankings should involve more than one metric:

a Spearman rank correlation of .5 or so does not indicate strong agreement. It also makes

clear that the colour space in which RMSE is computed matters a lot, even though it is

rarely, if ever, specified in publications that contain a quantitative comparison of image

resampling methods.

The blur metrics were included in EXQUIRES to investigate the dependence of the

MSSIM ranking on its blur and crop components (leaving out the “correlation” terms of

SSIM). Although one may be tempted to say “a fair amount” given that the cross-correlation

of blur2 with mssim is .872, the fact that the cross-correlations of mssim with srgbj and

116

srgb2 are even larger suggests that a key ingredient is SSIM’s formulation in terms of luma

(“sRGB luminance”). This, however, may only hold in the context of re-enlargement tests:

Images that result from enlargement are generally smoother (locally) and less noisy than

those for which SSIM was designed. Consequently, blurring and cropping have less of

an effect on them than they do on the types of images that SSIM was designed to eval

uate. (Note that the blur metrics will be based on the XYZ colour space instead of the

sRGB colour space in future releases of EXQUIRES, because averaging convolutions are

generally considered to be better performed in linear light [73, 143].)

Warning: The reported metric cross-correlations may depend strongly on the specifics

of the context in which they were measured, namely an image re-enlargement experiment.

Metric cross-correlations may, or may not, change significantly if the metrics are used to

measure JPEG compression artifacts, for example.

117

xyz2 xyzj xyz4 blurj blur2 mssim srgb2 srgbj blur4 cmcj srgb4 cmc2 cmc4 srgb^ xyz^ blur^ cmCoc

x y z 2 1 .958 .911 .831 .687

x v z j .958 1 .912 .919 .814

x y z 4 .911 .912 1 .810 .691

blurj .831 .919 .810 1 .948

b lu r2 .687 .814 .691 .948 1

m ss im .672 .818 .659 .824 .872

sr g b 2 .510 .663 .505 .701 .817

srgbj .505 .661 .494 .697 .811

blui-4 .224 .380 .217 .557 .750

cm cj .173 .338 .144 .381 .539

srg b 4 .035 .195 .040 .249 .434

c m c 2 - . 0 4 5 .111 - . 0 7 5 .156 .321

c m c 4 - . 2 9 4 - . 1 4 8 - . 3 1 1 - . 1 0 5 .061

srgboc - . 6 3 6 - . 5 1 9 - . 6 6 5 - . 4 7 1 - . 3 2 9

X.VZoc - . 6 9 8 - . 6 5 4 - . 6 1 5 - . 6 3 0 - . 5 2 9

b lu r ^ - . 7 5 7 - . 6 4 3 - . 7 8 3 - . 4 9 8 - . 3 5 0

cniCoc - . 7 8 3 - . 6 7 5 - . 8 0 0 - . 5 8 4 - . 4 1 7

Table

.672 .510 .505 .224 .173 .035

.818 .663 .661 .380 .338 .195

.659 .505 .494 .217 .144 .040

.824 .701 .697 .557 .381 .249

.872 .8 1 7 .811 .750 .539 .434

1 .943 .948 .738 .752 .634

.943 1 .993 .879 .877 .817

.948 .993 1 .877 .894 .812

.738 .879 .877 1 .861 .833

.752 .877 .894 .861 1 .939

.634 .817 .812 .833 .939 1

.555 .722 .740 .760 .956 .940

.291 .487 .501 .571 .809 .853

- . 1 3 4 .024 .034 .107 .339 .404

- . 4 1 7 - . 2 9 6 - . 3 0 1 - . 2 1 4 - . 0 5 4 .085

- . 2 7 8 - . 1 1 6 - . 1 0 1 .094 .224 .292

- . 2 1 8 - . 1 0 3 - . 0 9 0 .078 .246 .338

6.10: Metrics Spearman rank correlation

- . 0 4 5 - . 2 9 4 - . 6 3 6 - . 6 9 8 - . 7 5 7 - . 7 8 3

.111 - . 1 4 8 - . 5 1 9 - . 6 5 4 - . 6 4 3 - . 6 7 5

- . 0 7 5 - . 3 1 1 - . 6 6 5 - . 6 1 5 - . 7 8 3 - . 8 0 0

.156 - . 1 0 5 - . 4 7 1 - . 6 3 0 - . 4 9 8 - . 5 8 4

.321 .061 - . 3 2 9 - . 5 2 9 - . 3 5 0 - . 4 1 7

.555 .291 - . 1 3 4 - . 4 1 7 - . 2 7 8 - . 2 8 1

.722 .487 .024 - . 2 9 6 - . 1 1 6 - . 1 0 3

.740 .501 .034 - . 3 0 1 - . 1 0 1 - . 0 9 0

.760 .571 .107 - . 2 1 4 .094 .078

.956 .809 .339 - . 0 5 4 .224 .246

.940 .853 .404 .085 .292 .338

1 .940 .508 .127 .408 .437

.940 1 . 6 6 6 .354 .596 .629

.508 . 6 6 6 1 .683 .927 .949

.127 .354 .683 1 .643 .730

.408 .596 .927 .643 1 .965

.437 .629 .949 .730 .965 1

upsampler xyz2 xyz4 xyzj bluri blur2 mssim srgb, srgb2 blur4 cmci srgb4 cmc2 cmc4 srgb™ xyz«> blur oo cmcoo
nohalo 1 1 46 1 1 1 1 1 1 1 1 1 1 1 21 11 7

hamming4 2 4 7 13 32 27 36 34 47 42 53 47 55 60.5 58 59 60
cosine3 3 13 11 27 33 32 40 37 49 44 54 49 56 60.5 57 58 56

hann4 4 11 2 17 27 23 32 33 41 40 45 43 51 47 55 54 57
lanczos4 5 16 13 26 35 37 42 40 51 48 55 52 57 60.5 61 61 61
lanczos3 6 7 6 16 26 25 33 31 40 39 46 44 52 47 52 53 55
bartlett4 7 2 5 8 13 18 22 26 35 34 38 40 42 43 53 52 59

welch3 8 18 14 33 37 38 44 45 52 50 56 54 58 60.5 59 60 58
cosine4 9 20 18 31 39 40 47 46 55 51 57 56 59 60.5 62 62 63
welch4 10 24 24 36 42 44 48 47 56 53 58 58 60 60.5 63 63 64

blackman4 11 5 1 5 10 12 20 20 30 32 34 37 39 43 50 47 47
ewa J anczos4sharpest 12 21 23 14 29 34 39 41 44 49 51 48 54 52.5 54 48 62

bartlett3 13 3 12 4 2 6 13 15 25 26 30 31 36 43 51 44 49
bohman4 14 6 4 3 7 8 19 18 27 27 31 33 37 43 48 45 45

hamming3 15 9 3 11 11 15 21 21 28 31 32 35 38 43 47 46 46
hann3 16 8 9 10 17 17 26 22 31 33 36 39 40 47 45 43 44

ewa_lanczos3sharpest 17 17 26 6 21 26 34 35 38 41 47 45 47 52.5 56 39 53
parzen4 18 10 8 2 3 4 14 13 22 23 25 29 34 39 23 42 42

kaisersharp4 19 12 10 7 4 5 12 12 20 22 23 28 33 34.5 22 41 41
kaiser4 20 14 15 9 5 3 9 9 17 18 21 24 32 34.5 26 38 37
welch2 21 23 16 22 22 35 31 32 29 38 37 41 41 40 49 40 43

kaisersoft4 22 15 17 12 6 2 7 8 15 15 19 23 30 34.5 27 37 36
ewa.lanczosradius3 23 31 21 35 36 42 41 44 37 45 40 46 45 52.5 17 51 48

kaisersharp3 24 19 22 15 8 7 8 7 11 14 16 22 28 34.5 38 35 33
cosine2 25 27 20 19 18 29 25 25 21 30 27 32 35 34.5 46 36 38

ewa_lanczosradius4 26 38 19 40 41 49 46 48 43 52 48 51 49 52.5 20 56 54
blackman3 27 22 25 18 12 9 4 6 6 12 13 16 24 34.5 37 34 32

kaiser3 28 26 27 25 16 10 2 3 4 9 9 13 21 23 35 33 30
bohman3 29 25 28 21 14 11 6 4 5 10 11 15 23 34.5 40 32 31

kaisersoft3 30 29 30 28 20 13 3 5 3 6 6 10 16 23 33 31 28
ewajrobidouxsharp 31 30 35 23 19 28 27 28 19 29 26 30 31 34.5 44 29 34

Table 6.11: Upsampler ranks by metric (part 1). Filters with gradient discontinuities are in italics. Ranks in the top quartile are in

boldface, in the bottom quartile, in italics.

upsampler xyz2 xyz4 xyzi bluri blur2 mssim srgbj srgb2 blur4 cmci srgb4 cmc2 cmc4 s r g b o o xyzo? blur^ c m c o o

lanczos2 32 33 29 30 23 24 17 19 12 17 14 20 25 23 43 30 29
bartlett2 33 28 34 24 15 14 5 2 2 3 12 9 17 23 42 27 27

catmull_rom 34 32 31 32 25 19 11 11 9 11 7 11 14 23 41 28 26
kaisersharp2 35 34 36 37 30 20 15 14 10 8 5 8 11 23 36 26 20.5

parzen3 36 35 37 38 31 16 10 10 8 2 2 4 9 23 29 25 20.5
ewa_lanczos2sharpest 37 37 44 29 24 31 23 24 13 20 20 18 20 23 31 20 20.5

ewa_lanczosradius2 38 39 41 34 28 33 24 27 14 21 18 19 18 23 32 21 20.5
ewa_lanczos3 sharp 39 44 33 46 47 51 50 52 45 55 42 50 43 52.5 9.5 49 39

hamming2 40 36 40 39 34 21 16 16 16 4 3 5 8 23 25 19 20.5
ewa_lanczos4sharp 41 46 32 47 48 56 52 54 50 57 49 55 48 52.5 9.5 55 50

kaiser2 42 40 43 41 38 22 18 17 18 5 4 3 6 23 24 18 20.5
ewa_lanczos3 43 47 38 49 49 55 51 53 48 56 43 53 44 52.5 9.5 50 40

ewa_mitchell_netravali 44 41 42 42 40 39 30 30 23 25 15 17 12 23 39 23 20.5
ewa_lanczos4 45 49 39 50 51 58 56 57 54 58 52 57 53 52.5 9.5 57 51

kaisersoft2 46 42 49 43 43 30 28 23 24 7 10 2 2 12.5 19 15 16
ewa_lanczos2sharp 47 45 45 44 45 48 37 42 32 35 22 26 19 23 34 24 20.5

hann2 48 43 48 45 44 36 29 29 26 13 8 6 4 12.5 18 14 15
ewa_catmull_rom 49 52 58 60 60 45 60 59 62 62 63 64 64 60.5 64 64 52

ewa_robidoux 50 48 47 48 46 47 35 39 33 28 17 21 10 23 28 17 14
ewa_lanczos2 51 53 50 52 54 52 49 49 42 43 29 34 26 23 30 22 25

blackman2 52 50 51 51 50 41 38 36 34 16 24 7 3 12.5 15 13 11.5
bohman2 53 51 53 53 52 43 43 38 36 19 28 12 5 12.5 14 12 11.5

parzen2 54 54 54 54 53 46 45 43 39 24 35 14 7 12.5 13 9 10
mi tchel 1 _netraval i 55 57 52 57 57 54 55 55 57 46 33 36 22 12.5 16 7 13

cubic_hermite 56 55 56 56 56 50 53 51 53 37 39 27 13 7 7 8 6
ewa_hermite 57 56 59 55 55 53 54 50 46 36 50 25 15 6 12 10 9
ewaJeepee 58 58 55 58 58 57 57 56 58 47 41 38 27 8 6 6 5

bilinear 59 59 57 59 59 59 58 58 59 54 44 42 29 9 5 5 8
ewa_quadratic_b_spline 60 60 60 61 61 60 59 61 60 60 59 59 46 5 4 4 4

quadratic-b.spline 61 61 61 62 62 61 61 62 61 61 60 60 50 4 3 3 3
ewa_cubic_b_spline 62 63 62 63 63 62 63 63 63 63 61 62 61 3 2 2 2

cubic_b_spline 63 64 63 64 64 63 64 64 64 64 62 63 62 2 1 1 1
nearest 64 62 64 20 9 64 62 60 7 59 64 61 63 60.5 60 16 35

Table 6.12: Upsampler ranks by metric (part 2).

6.5 Impact on upsampler ranks of filtering sRGB values without con

verting to and from linear light

Still re-enlarging images obtained by downsampling through linear light, let us consider the

rankings obtained if one filters using sRGB values directly (without going through linear

light). If one compares the rank obtained by the same filter in both configurations, that

is, if one compares the ranks shown in Table 6.1 (through linear light) to those shown in

Table 6.13 (straight through sRGB), one sees that they are barely different. Indeed, the

Spearman rank cross-correlation between the two rankings is .984. The “straight through

sRGB” ranks are obtained from the XYZ RMSE errors obtained when enlarging straight

through sRGB, shown in Table 6.14. Interestingly, the popular Lanczos 3-lobe earns top

rank among C1 methods.

121

upsampler rank upsampler rank
hamming4 1 lanczos2 33

bartlett4 2 catmull_rom 34
lanczos3 3 kaisersharp2 35

hann4 4 parzen3 36
cosine3 5 ewaJanczos3sharp 37

lanczos4 6 ewaJanczos4sharp 38
welch3 7 ewaJanczos2sharpest 39

blackman4 8 ewa_lanczos_radius2 40
ewaJanczos4sharpest 9 hamming2 41

bartlett3 10 ewaJanczos3 42
bohman4 11 ewaJanczos4 43

cosine4 12 kaiser2 44
hamming3 13 ewa_mitchell_netravali 45

hann3 14 ewaJanczos2sharp 46
ewaJanczos3sharpest 15 kaisersoft2 47

welch4 16 hann2 48
parzen4 17 ewa_robidoux 49

kaisersharp4 18 ewaJanczos2 50
kaiser4 19 blackman2 51

ewaJanczos_radius3 20 ewa_catmull_rom 52
kaisers oft4 21 bohman2 53

welch2 22 parzen2 54
nohalo 23 mitchell_netravali 55

kaisersharp3 24 cubic_hermite 56
ewa Janczos _radius4 25 ewa_hermite 57

cosine2 26 ewaJeepee 58
blackman3 27 bilinear 59

bohman3 28 ewa_quadratic_b_spline 60
kaiser3 29 quadratic_b_spline 61

ewa_robidouxsharp 30 ewa_cubic_b _spline 62
kaisersoft3 31 cubic_b _spline 63

bartlett2 32 nearest 64

Table 6.13: XYZ RMSE ranking of sRGB upsampling methods as reconstructors of images
obtained by linear light downsampling. Filters with gradient discontinuities are in italics.

122

upsampler xyz2 upsampler xyz2
hamming4 4.9132 lanczos2 4.9664

bartlett4 4.9151 catmull_rom 4.9701
lanczos3 4.9156 kaisersharp2 4.9783

hann4 4.9158 parzen3 4.9809
cosine3 4.9168 ewa Janczos3 sharp 4.9849

lanczos4 4.9182 ewaJanczos4sharp 4.9864
welch3 4.9191 ewa_lanczos2sharpest 4.9882

blackman4 4.9200 ewaJanczos_radius2 4.9888
ewaJanczos4sharpest 4.9205 hamming2 4.9935

bartlett3 4.9211 ewaJanczos3 4.9946
bohman4 4.9214 ewa_lanczos4 4.9988

cosine4 4.9222 kaiser2 5.0000
hamming3 4.9225 ewa_mitchell _netravali 5.0014

hann3 4.9227 ewaJanczos2sharp 5.0214
ewaJanczos3sharpest 4.9232 kaisersoft2 5.0273

welch4 4.9255 hann2 5.0300
parzen4 4.9280 ewa_robidoux 5.0351

kaisersharp4 4.9294 ewaJanczos2 5.0582
kaiser4 4.9353 blackman2 5.0788

ewaJanczos_radius3 4.9375 ewa_catmull_rom 5.0872
kaisersoft4 4.9376 bohman2 5.0908

welch2 4.9379 parzen2 5.1107
nohalo 4.9438 mitchell _netravali 5.1344

kaisersharp3 4.9444 cubic_hermite 5.1575
ewa_lanczos_radius4 4.9455 ewa_hermite 5.1710

cosine2 4.9460 ewa .teepee 5.1780
blackman3 4.9529 bilinear 5.2038

bohman3 4.9572 ewa_quadratic_b _spline 5.3909
kaiser3 4.9572 quadratic_b _spline 5.4334

ewa_robidouxsharp 4.9598 ewa_cubic_b_spline 5.6289
kaisersoft3 4.9634 cubic-b -spline 5.6648

bartlett2 4.9656 nearest 5.7086

Table 6.14: XYZ RMSE of sRGB upsampling methods as reconstructors of images ob
tained by linear light downsampling (all downsamplers included). Filters with gradient
discontinuities are in italics.

123

6.6 Don’t assume that enlarging through linear light is better

Is it better to enlarge an sRGB image taking the sRGB values as is, or better to enlarge them

through linear RGB with sRGB primaries, that is, by first converting the sRGB values to

linear RGB, applying the resizing filter, and finally converting back to sRGB? (Note that in

the case of Nohalo-LBB, the linear light space is not linear RGB with sRGB primaries, it

is XYZ.)

If processing is performed in 8-bit from end to end, the answer is “Definitely not.”

The reason for this is that the conversion into and out of linear RGB is very lossy in 8-

bit. (Note that 8-bit output images can be produced from 8-bit input images with 16-bit or

floating point intermediate images. “Definitely not in 8-bit” concerns key stages within the

toolchain, not the input and output images.)

What if, however, the colour space conversions are performed so that the introduced

error is inconsequential, as is the case with EXQUIRES, in which stored results are 16-bit

and all calculations are performed in floating point? The surprising answer is: “If you use

a filter with negative lobes, don’t enlarge through linear RGB with sRGB primaries. Use

the sRGB values ’as is’.” At least if your image was not obtained by downsampling using

sRGB values directly, as is common for web images: If the image was obtained by down-

sampling sRGB values directly, you probably are better off enlarging through linear light.

The quantitative basis for these rather surprising conclusions (“If downsampling in linear

light, re-enlarge in sRGB; if downsampling in sRGB, re-enlarge in linear light.”) is pre

sented in the remainder of this chapter. Additional discussion is found in the ImageMagick

forum threads [144-146].

6.6.1 Re-enlarging images obtained by linear light downsampling

In Table 6.15, enlarging by filtering the sRGB values directly is indicated by italics, and a

roman font indicates enlargements through linear RGB with sRGB primaries.

124

Filtering sRGB values directly almost always leads to a smaller error than filtering

through linear light. There are five exceptions: EWA Catmull-Rom, and the tensor and

EWA quadratic and cubic B-spline smoothing filters, filters without negative lobes. Not

only do “sRGB” almost always rank above “linear light” enlargements, but their xyz2 errors

are significantly smaller: Compare Table 6.14 with Table 6.4.

6.6.2 Re-enlarging images obtained by direct sRGB downsampling

Many images, in particular those found on the web, are the result of downsizing by filtering

the sRGB values directly. For this reason, we separately consider the re-enlargement of

such images. The results are shown in Table 6.16.

In almost every case, re-enlarging the result of direct sRGB downsampling gives a more

accurate result if the enlargement is performed through linear light. There are only two

exceptions: nearest neighbour upsampling gives rise to a tie between its two variants (as

should be), and Nohalo-LBB, which uses XYZ instead of linear RGB with sRGB primaries.

125

upsampler rank upsampler rank upsampler rank
hamming4 / blackman4 44 ewaJanczos3sharp 87

bartlett4 2 ewa_lanczos4sharpest 45 hammingZ 88
lanczos3 3 bartlett3 46 ewa.lanczos4sharp 89

hann4 4 bohman4 47 ewa.robidoux 90
cosine3 5 hamming3 48 kaiser2 91

lanczos4 6 hann3 49 ewaJanczos3 92
welch3 7 catmulLrom 50 ewa_mitchell_netravali 93

blackman4 8 ewa.lanczos3sharpest 51 ewaJanczos4 94
ewaJanczos4sharpest 9 parzen4 52 ewaJanczos2 95

bartlett3 10 kaisersharp4 53 kaisersoft2 96
bohman4 11 kaisersharp2 54 ewaJanczos2sharp 97

cosine4 12 parzen3 55 hann2 98
hamming 3 13 kaiser4 56 ewa_catmull_rom 99

hann3 14 welch2 57 ewa_robidoux 100
ewa Janczos3 sharpest 15 kaisersoft4 58 blackman2 101

welch4 16 ewa Janczos3sha rp 59 ewa.catmull.rom 102
parzen4 17 ewa.lanczos_radius3 60 bohman2 103

kaisersharp4 18 ewaJanczos4sharp 61 ewa_lanczos2 104
kaiser4 19 ewaJanczos2sharpest 62 blackman2 105

ewaJanczos-radius3 20 ewaJanczos.radius2 63 parzen2 106
kaisersoft4 21 kaisersharp3 64 bohman2 107

welch.2 22 cosine2 65 parzen2 108
nohalo 23 ewaJanczos_radius4 66 mitchelljietravali 109

kaisersharp3 24 hamming2 67 mitchell_netravali 110
ewa Janczos.radius4 25 ewaJanczos3 68 cubicJtermite 111

cosine2 26 blackman3 69 ewaJiermite 112
nohalo 27 ewaJanczos4 70 cubic_hermite 113

blackman3 28 kaiser2 71 ewa Je epee 114
bohman3 29 kaiser3 12 ewaJiermite 115

kaiser3 30 bohman3 73 ewa.teepee 116
hamming4 31 ewa jmitchelljnetravail 74 bilinear 117

ewa.robidouxsharp 32 kaisersoft3 75 bilinear 118
cosine3 33 ewa_robidoux_sharp 76 ewa_quadratic_b .spline 119

hann4 34 lanczos2 77 ewa .quadratic Jbspline 120
lanczos4 35 bartlett2 78 quadratic _b_spline 121
lanczos3 36 catmull-rom 79 quadratic Jb spline 122
bartlett4 37 kaisersharp2 80 ewa_cubicJ> .spline 123

welch3 38 parzen3 81 ewaxubicJj spline 124
cosine4 39 ewa Janczos2sharp 82 cubic.b-spline 125

kaisersoft3 40 kaisersoft2 83 cubic Jbspline 126
welch4 41 ewaJanczos2sharpest 84 nearest 127.5

bartlett2 42 hann2 85 nearest 127.5
lanczos2 43 ewaJanczos_radius2 86

Table 6.15: XYZ RMSE ranking of linear light and sRGB upsampling methods as recon
structors of images obtained by linear light downsampling. Enlargement by direct filtering
of sRGB values is shown in italics; roman font indicates enlargement through linear light.

126

upsampler rank upsampler rank upsampler rank
hamming4 1 welch2 44 ewaJanczos2sharp 87

lanczos3 2 ewa_lanczos_radius4 45 kaisersoft2 88
hann4 3 blackman3 46 hann2 89

bartlett4 4 kaiser4 47 ewaJanczos3 90
cosine3 5 nohalo 48 kaiser2 91

lanczos4 6 kaisersoft4 49 ewa-mitchelljnetravali 92
welch3 7 kaiser3 50 ewaJanczos4 93

blackman4 8 bohman3 51 ewajrobidoux 94
bohman4 9 ewaJanczos-radius3 52 ewa.catmull.rom 95

cosine4 10 kaisersoft3 53 ewaJanczos2sharp 96
bartlett3 11 kaisersharp3 54 ewa_lanczos2 97

hann3 12 cosine2 55 kaisersoft2 98
hamming3 13 ewa_robidouxsharp 56 hann2 99
hamming4 14 lanczos2 57 blackman2 100

welch4 15 bartlett2 58 ewa-robidoux 101
lanczos3 16 ewaJanczos-radius4 59 bohman2 102

ewa.lanczos4sharpest 17 catmull-rom 60 ewa-catmulLrom 103
cosine3 18 blackman3 61 ewaJanczos2 104
parzen4 19 kaisersharp2 62 parzen2 105

bartlett4 20 bohman3 63 blackman2 106
hann4 21 kaiser3 64 mitchell_netravali 107

ewa_lanczos3sharpest 22 parzen3 65 bohman2 108
kaisersharp4 23 ewa-robidouxsharp 66 cubicJiermite 109

lanczos4 24 kaisersoft3 67 parzen2 110
welch3 25 bartlett2 68 ewa.teepee 111

cosine4 26 lanczos2 69 ewaJiermite 112
blackman4 27 ewaJanczos2sharpest 70 bilinear 113

hann3 28 ewa_lanczos_radius2 71 mitchell-netravali 114
ewa Janczos4sha rpest 29 hamming2 72 cubicJiermite 115

kaiser4 30 ewa.lanczos3sharp 73 ewaJiermite 116
bartlett3 31 catmull-rom 74 ewaJeepee 117

bohman4 32 ewa_lanczos4sharp 75 bilinear 118
welch4 33 kaiser2 76 ewa.quadratic _b .spline 119
welch2 34 ewa_lanczos3 77 quadratic.b .spline 120

ewaJanczos3sharpest 35 ewa_mitchell-netravali 78 ewa -quadratic J)spline 121
hamming3 36 kaisersharp2 79 quadratic J> -spline 122
kaisersoft4 37 parzen3 80 ewa.cubic.b .spline 123

nohalo 38 ewa_lanczos4 81 cubic.b .spline 124
ewa.lanczos_radius3 39 ewaJanczos2sharpest 82 ewajcubicJb spline 125

parzen4 40 ewa Janczos3 sharp 83 nearest 126.5
kaisersharp3 41 ewaJanczos-radius2 84 nearest 126.5

cosine2 42 ewaJanczos4sharp 85 cubic Jb spline 128
kaisersharp4 43 hamming2 86

Table 6.16: XYZ RMSE ranking of linear light and sRGB upsampling methods as recon
structors of images obtained by downsampling by direct filtering of sRGB values. Enlarge
ment by direct filtering of sRGB values is shown in italics; roman font indicates enlarge
ment through linear light.

127

7 Conclusions

EXQUIRES is a powerful platform on which to build a test suite measuring the accu

racy of various image resampling methods as well as the impact of various factors on the

results. It is Free/Libre and Open Source Software, extensible, highly configurable and

well-documented.

Results produced by EXQUIRES establish that the accuracy ranking of an upsampling

(“enlargement”) image filter depends strongly on the characteristics of the image being

enlarged.

When enlarging images which correspond to what one would expect from downsam

pling, through linear light, high quality sRGB digital photographs with a good quality low

pass filter, the most accurate results are likely to be obtained with Welch-, Cosine-, Sinc-

(Lanczos) and Hamming Sine 4-lobe filtering and with the novel Elliptical Weighted Av

eraging (EWA) with the Catmull-Rom cubic kernel. With such images, 4-lobe methods

generally rank higher than 3-lobe methods, which themselves rank higher than 2-lobe or

halo-free methods. In addition, tensor methods generally rank higher than EWA methods.

When enlarging images which correspond to what one would expect from downsam

pling high quality sRGB digital photographs with nearest neighbour interpolation, the

above methods are likely to give relatively inaccurate results. In fact, the rankings are

nearly reversed. With such images, Mitchell-Netravali cubic spline smoothing, bilinear

interpolation, the novel interpolation method Nohalo-LBB (Nohalo face split subdivision

with Locally Bounded Bicubic finishing scheme), Hann-windowed Sine 2-lobe filtering

128

and filtering with the novel EWA Robidoux tuned Keys cubic are likely to give the most

accurate results. When re-enlarging such images, no method with more than two lobes

shows up in the top quartile.

Although the rankings obtained with nearest neighbour are extremely different from the

rankings obtained with the other downsamplers, namely box filtering, Gaussian blur, tensor

Sinc-windowed Sine filtering and EWA Jinc-windowed Jinc 3-lobe filtering, the rankings

obtained with these other downsamplers are well correlated.

The above rankings are based on deviations measured with the RMSE (Root Mean

Square Error) in the XYZ linear light colour space. Although commonly used image dif

ference metrics give fairly well correlated rankings, the choice of difference metric sig

nificantly affects the rank of an image upsampler, to the extent that one can push most

image upsampling methods to a high rank with a “judicious” choice of image difference

metric. Only one upsampling method, namely Nohalo-LBB, manages to have a high rank

with respect to most image difference metrics, at least when results of re-enlarging images

obtained with all the downsamplers, including nearest neighbour, are considered.

The rankings are mostly independent of the choice of resampling ratio as well as of the

subject matter of test images, at least with the carefully downsampled high-quality digital

photographs and archival quality scan used for testing. Results obtained with different

types of image (text, computer graphics, poor quality...) would be interesting to compare.

Whether resampling is performed through linear light or directly using sRGB pixel val

ues has insignificant impact on rankings. However, re-enlarging an image downsampled

through linear light using the sRGB pixel values directly gives significantly more accurate

results than re-enlarging through linear light. Conversely, re-enlarging through linear light

an image downsampled using the sRGB pixel values directly gives significantly more ac

curate results. In other words, mixed “roundtrip” linear RGB/sRGB toolchains appear to

be more accurate than toolchains that resample both down and up using either linear light

or sRGB pixel values, at least when used to process and produce sRGB images. Interest

129

ingly, the popular Lanczos 3-lobe method rises to the top in both mixed toolchains among

methods which have a continuous gradient. Hamming-, Bartlett- and Hann-windowed Sine

4-lobe filtering, and Cosine-windowed 3-lobe filtering, also rank highly. This all suggests

that the choice of colour space through which to enlarge, in relation to the colour space of

the input image and output result, is a particularly worthy topic of investigation.

Given that 4-lobe methods rank highly in many of the tests, it would be interesting to

add 5- and 6-lobe windowed Sine to the suite, if only to see how the ranking of windowing

functions depends on the number of lobes. Besides testing additional upsampling methods,

it would also be interesting to measure the performance of the various methods when the

downsized images that are re-enlarged are JPEG compressed or otherwise “corrupted”.

Nonetheless, the topic most deserving of investigation is the interaction of resampling and

colour space choice, with careful consideration given to the machinery used to perform

colour space transformations.

130

A EXQUIRES modules: source code

The following code was written by Adam Turcotte with minor contributions from Nico

las Robidoux. In this and the following appendix, every source file of version 0.9.9.3 of

the EXQUIRES test suite is listed. An up-to-date version of the code is in the GitHub

repository [147].

#!/usr/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotta (adam.turcotta@gmail.com)
Nicolas Robidoux (nicolas.robidoux@gmail.com)
License: BSD 2-Clause License
#
This file is part of the
EXQUIRES (Extensible Quantitative Image RESampling) test suite
#

"""Package file for **EXQUIRES**.

 version = ' 0 . 9. 9.3'

A.2 aggregate.py

t!/usr/bin/env python
§ coding: utf-8
#
Copyright (c) 2012, Adam Turcotta (adam.turcotte@gmail.com)
Nicolas Robidoux (nicolas.robidoux@gmail.com)
§ License: BSD 2-Clause License
«
This file is part of the
EXQUIRES (Extensible Quantitative Iniage RESampling) test suite
#

’’""Aggregate a list of numbers using the specified method.
**Aggregators:*•

131

mailto:adam.turcotta@gmail.com
mailto:nicolas.robidoux@gmail.com
mailto:adam.turcotte@gmail.com
mailto:nicolas.robidoux@gmail.com

NAME DESCRIPTION

1_1 return the average
1_2 average the squares and return the square root
1_4 average the quads and return the fourth root
l_inf return the maximum

n it it

import inspect
import numpy
from exquires import parsing

class Aggregate(object):
"""This class provide various ways of aggregating error data.

:param values: numbers to aggregate
:type values: 'list of numbers '

It It II

def init (self, values):
"""Create a new :class: 'Aggregate' object."""
self.values = values

def 1_1(self):
"""Return the average.
•.return: the average
:rtype: 'float '

return numpy.average(self.values)
def 1_2(self):

"""Average the squares and return the square root.
:return: the square root of the average of the squares
:rtype: 'float '

return numpy.average(numpy.power(self.values, 2)) * * 0.5
def 1_4 (self) :

”""Average the quads and return the fourth root.

:return: the fourth root of the average of the quads
:rtype: 'float'

return numpy.average(numpy.power(self.values, 4)) ** 0.25
def l_inf(self):

"""Return the maximum.

:return: the maximum
:rtype: 'float '

return max(self.values)

def main() :
"""Run :ref: 'exquires-aggregate '.

132

Obtain a Hat of aggregation methods that can be called.
aggregators = []
methods = inspect.getmembers(Aggregate, predicate-inspect. ismethod)
for method in methods[1:]:

aggregators.append(method[0])
Define the command-line argument parser.
parser - parsing.ExquiresParser(descriptions doc)
parser.add_argument('method', metavar<'METHOD', choices=aggregators,

helps'the type of aggregation to use')
parser.add_argument(' values' , metavar='NUM', type=float, nargs='+',

helps'number to include in aggregation')
Attempt to parse the command-line arguments.
args * parser.parse_args()
Print the result with IS digits after the decimal.
aggregation = Aggregate(args.values)
print ' % . 15f' % getattr (aggregation, args.method) ()

if name == ' main ':
main ()

A.3 compare.py

! /usr/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotta (adam.turcotteggmail.com)
Nicolas Robidoux (nicolas.robidouxggmail.com)
License: BSD 2-Clause License
#
This file is part of the
EXQUIRES (Extensible Quantitative Image RESampling) test suite
#

"”"Print the result of calling a difference metric on two image files.
Difference Metrics:

NAME
HS33SSSS»S

DESCRIPTION

srgb_l :math: ’ \ell_l ' norm in sRGB colour space
srgb_2 .-math; '\ell_2 ' norm in sRGB colour space
srgb_4 :math: '\ell_4 ' norm in sRGB colour space
srgb_inf :math: '\ell_\infty' norm in aRGB colour space
cmc_l :math: ' \ell_l ' norm using the CMC (1:1) colour difference
cmc_2 .-math; '\ell_2' norm using the CMC(1:1) colour difference
cmc_4 .-math; '\ell_4' norm using the CMC(1:1) colour difference
cmc_inf .-math; '\ell_\infty ' norm using the CMC(1:1) colour difference
xyz_l .-math: '\ell_l ' norm in XYZ colour space
xyz_2 :math: '\ell_2 ' norm in XYZ colour space
xyz_4 :math: '\all_4 ' norm in XYZ colour apace
xyz_inf .math: '\ell_\infty ' norm in XYZ colour space
blur_l MSSIM-inspired :math: '\all_l ' norm
blur_2 MSSIM-inspired :math: ' \all_2 ' norm
blur_ 4 MSSIM-inspired :math: ' \ell_4 ' norm
blur_inf MSSIM-inspired :math: ' \ell_\infty ' norm
mssim Mean Structural Similarity Jndex (MSSIM)

import inspect

133

inport os
from math inport exp
from exquires import parsing

class Metrics(object):
"'"This class contains error metrics to be used on sRGB images.
The .-math: '\ell_l ', :math: '\ell_2 ', .math: '\ell_4 ', and :math: '\ell_\infty '
metrics are normalized by L, the largest possible pixel value of the input
images (the lowest is assumed to be 0) . The range of output for these
metrics is [0, 100].

The MSSIM metric produces output in the range [—1, 1], but it is unlikely
that a negative value will be produced, as the image features must differ
greatly. For instance, a pure white image cospared with a pure black image
produces a result slightly greater than 0.

The CMC and XYZ errors can be slightly outside the range [0, 100], but this
will not occur for most image pairs.

.. note::

By default, a .-class: 'Metrics' object is configured to operate on
16-bit images.

:param image1: first image to conpare (reference image)
:param image2: second image to conpare (test image)
:param L: highest possible pixel value (default=65535)
: type imagel: 'path '
: type image2: 'path '
-.type L: 'integer '

def init (self, imagel, image2, maxval=65535):
"""Create a new :class:'Metrics ' object."""
vipscc = inport ('vipsCC', globals(), locals(),

('VImage', 'VMask'], -1)
self.vmask = vipscc.VMask
self.iml = vipscc.VImage.VImage(imagel)
self.im2 • vipscc.VImage.VImage(image2)
self.maxval = maxval
self.srgb_profile = os.path.join(os.path.dirname(file),

'sRGB_IEC61966-2-l_black_scaled.icc')
self, intent = 1 t IM_INTENT_RELATIVE_COLORIMBTRIC

def srgb_l(self):
"""Compute .-math: '\ell_l ' error in sRGB colour space.

The equation for the :math: '\ell_l ' error, aka Average Absolute Error
(AAE), is

.. math::
:label: 1_1

\ell_l (x,y) m \\frac{l} (N) \sum_(i=l) '(M) /x_i - y_i/
where .-math: 'x ' and -.math: 'y' are the images to conpare, each
consisting of .-math: 'N' pixels.

:return: :math: '\ell_l ' error
:rtype: 'float '

diff = self. iml. subtract (self. im2) . abs () . avg() / self.maxval
return diff * 100

134

def srgb_2(self):
"""Compute :math: '\ell_2' error in sRGB colour space.

The equation for the :math: '\ell_2' error, aka Root Mean Squared Error
(RMSE), is

.. math;;
:label: 1_2

\ell_2 (x,y) = \sqrt{\ \frac{ 1) (N) \sum_ (i=l) ~ (N) (x_i - y_i)~2)

where :math: 'x' and :math: 'y' are the images to compare, each
consisting of .-math; 'N' pixels.
:return: .math: ' \ell_2 ' error
:rtype: 'float ’
It II II

diff * self.iml.subtract(self.im2).pow(2).avg() ** 0.5 / self.maxval
return diff * 100

def srgb_4(self):
"""Compute .-math; '\ell_4' error in sRGB colour space.
The equation for the .-math; '\ell_4' error is
.. math::

:label: 1_4

\ell_4 (x,y) « \sqrt [4] {\ \frac{l) {N} \sum_{i=l) ~{N) (x_i - y_i) ~4)

where :math: 'x ' and :math: 'y' are the images to compare, each
consisting of .-math; S ' pixels.

:return: :math: '\ell_4 ' error
.-rtype; 'float '

It II II

diff = self.iml.subtract(self.im2).pow(4).avg() ** 0.25 / self.maxval
return diff * 100

def srgb_inf(self):
"""Compute :math: '\ell_\infty' error in sRGB colour space.

The equation for the :math: '\ell_\infty' error, aka Maximum Absolute
Error (MAE), is

.. math::
:label: l_inf

\ell_\infty(x,y) = \max_(l \le i \le N) /x_i - y_i/
where .-math; 'x ' and .-math; 'y' are the images to compare, each
consisting of :math:'M' pixels.

:return: :math: '\ell_\infty' error
:rtype: 'float '

II II II

diff = self. iml. subtract (self. im2) . abs () .max () / self.maxval
return diff * 100

def mssim(self) :
"""Compute the Mean Structural Similarity Index (MSSIM) .

The equation for SSIM is
.. math::

135

.-label: saim

SSIM(x,y) = \\frac{ (2\mu_x\mu_y + C_l) (2\sigma_ (xy) + C_2))
{ (\mu_x~2 + \mu_y~2 + C_l) (\aigma_x~2 + \aigma_y~2 + C_2) }

where .-math; ' \au_*' and .-math: ' \mu_y' are the aampla means,
.-math; ' \sigma_x ' and .-math; '\aigma_y ' are the standard deviations, and
.-math: '\aigma_{xy) ' is the correlation coefficient between imagea
.-math; '* ’ and :math: 'y '.
Once the SSIM map ia computed, the border ia trimmed by 5 pixels and
the mean ia returned.
Thia version ia slightly more efficient than the method proposed by
Hang et. al. becauae it reduces the number of Gaussian blurs from 5 to
4.

. . note::

The imagea are converted to grayscale before applying
Gaussian blur. The grayscale conversion ia equivalent to taking
the Y channel in YIQ colour space.

:return: mean SSIM
:rtype: 'float '

It tt If

Compute the SSIM constants from the highest possible pixel value.
constl = (0.01 * self.maxval) ** 2
const_sum = constl + (0.03 * self.maxval) ** 2
Create the Gausaian blur mash.
blur = self,vmask.VDMask(ll, 1, 1-0, 0, _get_blurlist ())
Compute a mask for converting the image to grayscale.
Mote that the result is equivalent to the Y channel of YIQ.
rgb2gray « self.vmask.VDMask(3, 1, 1, 0, [0.299, 0.587, 0.114])
Convert the image to grayscale uaing Matlab'a approach.
iml_g » self.iml.recomb(rgb2gray)
im2_g = self.im2.recomb(rgb2gray)
Apply Gausaian blur to the grayscale imagea.
iml_b = iml_g.convsep(blur)
im2_b = im2_g.convsep(blur)
Compute the SSIM map.
tmpl = iml_g.multiply(im2_g).convsep(blur).lin(2, const_sum)
tmp2 » iml_g.pow(2) .add(im2_g.pow(2)) .convsep(blur) .lin(l, const_sum)
tmp3 » iml_b.multiply(im2_b).lin(2, constl)
tmp4 = im2_b.subtract(iml_b).pow(2).add(tmp3)
tmp5 » tmp3.multiply(tmpl.subtract(tmp3))
ssim = tmp5.divide(tmp2.subtract(tmp4).multiply(tmp4))
Crop the SSIM map and return the average.
return ssim.extract_area(5, 5,

iml_g.Xsize () - 10, iml_g. Ysize() - 10).avg()
def blur_l(self):

"""Compute MSSIM-inspired :math: '\ell_l' error.

This method performs the same greyacale conversion, Gauaaian blur, and
cropping as MSSIM, but returns the :math: '\ell_l ' error of the cropped
image.

See .-eg: '1_1 ' for details on how the blurred imagea are compared.

.. note::

136

The images are converted to grayscale before applying
Gaussian blur. The grayscale conversion is equivalent to taking
the Y channel in YIQ colour space.

: return: MSSIM-inspired :math: '\ell_l ' error
:rtype: 'float '

it it n

Create the Gaussian blur mask.
blur = self.vmask.VDMask(11, 1, 1-0, 0, _get_blurlist())
Compute a mask for converting the image to grayscale.
Note that the result is equivalent to the Y channel of YIQ.
rgb2gray = self.vmask.VDMask(3, 1, 1, 0, [0.299, 0.587, 0.114])
Convert the image to grayscale using Matlab's approach.
iml_g = self. iml.recomb(rgb2gray)
im2_g = aelf.im2.recomb(rgb2gray)
Apply Gaussian blur, crop the difference and return the 1_1 error.
diff *= iml_g. convsep (blur) . subtract (im2_g. convsep (blur))
crop = diff.extract_area(5, 5, iml_g.Xsize() - 10, iml_g. Ysize() - 10)
return (crop.abs().avg{) / self.maxval) • 100

def blur_2(self) :
"""Compute MSSIM-inspired .-math; '\ell_2' error.
This method performs the same greyscale conversion, Gaussian blur, and
cropping as MS SIM, but returns the :math: '\ell_2' error of the cropped
image.

See :eq: '1_2' for details on how the blurred images are compared.

.. note::

The images are converted to grayscale before applying
Gaussian blur. The grayscale conversion is equivalent to taking
the Y channel in YIQ colour space.

:return: MSSIM-inspired .math: ' \ell_2 ' error
:rtype: 'float '

II II II

Create the Gaussian blur mask.
blur = self.vmask.VDMask(11, 1, 1.0, 0, _get_blurlist())
Compute a mask for converting the image to grayscale.
Note that the result is equivalent to the Y channel of YIQ.
rgb2gray = self.vmask.VDMask(3, 1, 1, 0, [0.299, 0.587, 0.114])
Convert the image to grayscale using Matlab’s approach.
iml_g = self.iml.recomb(rgb2gray)
im2_g = self.im2.recomb(rgb2gray)
Apply Gaussian blur, crop the difference and return the 1_2 error.
diff = iml_g.convsep(blur).subtract(im2_g.convsep(blur))
crop = diff.extract_area(5, 5, iml_g.Xsize() - 10, iml_g.Ysize() - 10)
return (crop.pow(2).avg() *• 0.5 / self.maxval) * 100

def blur_4(self):
'""'Compute MSSIM-inspired .-math: '\ell_4' error.
This method performs the same greyscale conversion, Gaussian blur, and
cropping as MSSIM, but returns the :math: ' \ell_4 ' error of the cropped
image.

See :eq: '1_4 ' for details on how the blurred images are compared.

137

note:

The imagea are converted to grayscale before applying
Gausaian blur. The grayscale conversion is equivalent to taking
the Y channel in YIQ colour space.

:return: MSSIM-inspired :math: '\ell_4 ' error
:rtype: 'float '

II II II

Create the Gaussian blur mask.
blur * self.vmask.VDMask(ll, 1, 1.0, 0, _get_blurlist ())
Conpute a mask for converting the image to grayscale.
Note that the result is equivalent to the Y channel of YIQ.
rgb2gray = self.vmask.VDMask(3, 1, 1, 0, [0.299, 0.587, 0.114])
Convert the image to grayscale using Matlab'a approach.
iml_g = self.iml.recomb(rgb2gray)
im2_g = self.im2.recomb(rgb2gray)
Apply Gaussian blur, crop the difference and return the 1_4 error.
diff * iml_g.convsep(blur).subtract(im2_g.convsep(blur))
crop - diff.extract_area(5, 5, iml_g.Xsize() - 10, iml_g.Ysize() - 10)
return (crop.pow(4) .avg() ** 0.25 / self.maxval) * 100

def blur_inf(self):
"""Compute MSSIM-inspired .math: ' \ell_\infty ' error.
This method performs the same greyscale conversion, Gaussian blur, and
cropping as MSSIM, but returns the .-math; '\ell_\infty ' error of the
cropped image.

See :eq: 'l_inf' for details on how the blurred images are compared.

.. note::
The images are converted to grayscale before applying
Gaussian blur. The grayscale conversion is equivalent to taking
the Y channel in YIQ colour space.

.■return: MSSIM-inspired :math: '\ell_\infty ' error
:rtype: 'float '

II II II

Create the Gaussian blur mask.
blur = self.vmask.VDMask(11, 1, 1.0, 0, _get_blurlist ())
Compute a mask for converting the image to grayscale.
Mote that the result is equivalent to the Y channel of YIQ.
rgb2gray = self.vmask.VDMask(3, 1, 1, 0, [0.299, 0.587, 0.114])
Convert the image to grayscale using Matlab's approach.
iml_g « self. iml. recomb (rgb2gray)
im2_g *= self. im2. recomb (rgb2gray)
Apply Gaussian blur, crop the difference and return the l_inf error.
diff * iml_g.convsep(blur).subtract(im2_g.convsep(blur))
crop = diff.extract_area(5, 5, iml_g.Xsize() - 10, iml_g.Ysize() - 10)
return (crop.abs () . max() / self.maxval) * 100

def cmc_l (self) :
"""Compute :math: '\ell_l ' error in Uniform Colour Space (UCS) .
This method inports the images into Lab colour space, then calculates
delta-E CMC(1:1) and returns the average.

138

See :eq: '1_1 ' for details on how the standard .math: '\ell_l ' norm is
computed.

:return: :math: '\ell_l' error in Uniform Colour Space (DCS)
-.rtype: 'float '

labl = self.iml.icc_import(self.argb_profile, self.intent)
lab2 = self.im2.icc_inport(self.srgb_profile, self.intent)
return labl. dECMC_fromT.ah (lab2) . avg()

def cmc_2(self):
"""Conpute :math: '\ell_2 ' error in Uniform Colour Space (UCS) .
This method imports the images into Lab colour space, then calculates
delta-E CMC(1:1) and returns the .-math: '\ell_2' norm.

See :eq: '1_2 ' for details on how the standard .-math: '\ell_2' norm is
computed.

:return: :math: '\ell_2' error in Uniform Colour Space (UCS)
:rtype: 'float '

labl = self.iml.icc_import(self.srgb_profile, self.intent)
lab2 = self.im2.icc_import(self.srgb_profile, self.intent)
return labl .dECMC_fromLab(lab2) . pow(2) .avg() ** 0.5

def emc_4(self):
"""Conpute :math: '\ell_4' error in Uniform Colour Space (UCS).

This method imports the images into Lab colour space, then calculates
delta-E CMC(1:1) and returns the :math: '\ell_4' norm.

See :eq: '1_4 ' for details on how the standard :math: '\ell_4' norm is
computed.

:return: :math: '\ell_4 ' error in Uniform Colour Space (UCS)
:rtype: 'float '

labl = self.iml.icc_import(self.srgb_profile, self.intent)
lab2 = self.im2.icc_import(self.srgb_profile, self.intent)
return labl.dECMC_fromI,ab(lab2) .pow(4) .avg() *• 0.25

def cmc_inf(self) :
'"'"Conpute :math: ' \ell_\infty' error in Uniform Colour Space (UCS) .
This method inports the images into Lab colour space, then calculates
delta-E CMC(1:1) and returns the :math: '\ell_\infty' norm.

See :eq: 'l_inf' for details on how the standard .-math; '\all_\infty'
norm is conputed.
.-return; .-math; 1 \ell_ \ infty ' error in Uniform Colour Space (UCS)
:rtype: 'float '

labl » self.iml.icc_inport(self.srgb_profile, self.intent)
lab2 = self.im2.icc_inport(self.srgb_profile, self.intent)
return labl.d£CMC_fromLab (lab2).max()

def xyz_l(self):
"'"'Conpute :math: '\ell_l ' error in XYZ colour Space.
This method inports the images into XYZ colour space, then calculates
the :math: '\ell_l ' error.

139

See :eg; '1_1 ' for details on how the standard :math: '\eli_l ' norm is
computed.

:return: :math: ' \ell_l' error in XYZ Colour Space
-.rtype: 'float '

xyzl = self. iml. icc_import (self. srgb_profile, self. intent) . Lab2XYZ ()
xyz2 ■ self.im2.icc_import(self.srgb_profile, self. intent) . Lab2XYZ ()
return xyzl. subtract (xyz2) . abs() . avg()

def xyz_2(self):
"""Compute .-math: '\ell_2' error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates
the :math: '\ell_2' error.

See :eq: '1_2' for details on how the standard :math: '\ell_2' norm is
computed.

-.return: :math: '\ell_2' error in XYZ Colour Space
.•rtype; 'float '

tt It tt

xyzl = self. iml. icc_„import (self. srgb_profile, self, intent) .Lab2XYZ()
xyz2 = self.im2.icc_import(self.srgb_profile, self.intent) .Lab2XYZ()
return xyzl.subtract(xyz2),pow(2).avg() ** 0.5

def xyz_4(self):
"""Compute :math: '\ell_4 ' error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates
the -.math: ' \ell_4 ' error.

See :eq: '1_4 ' for details on how the standard :math: ' \ell__4 ' norm is
computed.

:return: :math: '\ell_4' error in XYZ Colour Space
:rtype: 'float '

II It It

xyzl = self.iml.icc_import(self.srgb_profile, self.intent).Lab2XYZ()
xyz2 * self.im2.icc import(self.srgb_profile, self .intent) .Lab2XYZ ()
return xyzl.subtract(xyz2).pow(4).avg() ** 0.25

def xyz_inf(self):
"""Compute :math: '\ell_\infty ' error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates
the :math: '\ell_\infty ' error.

See :eq: 'l_inf' for details on how the standard .-math: '\ell_\infty'
norm is computed.

:return: :math: '\ell_\infty ' error in XYZ Colour Space
:rtype: 'float '

xyzl = self.iml.icc_import(self.srgb_profile, self.intent).Lab2XYZ()
xyz2 - self.im2.icc_import(self.srgb_profile, self.intent).Lab2XYZ()
return xyzl.subtract (xyz2) .abs() ,max()

def _get_blurlist():
"""Private method to return a Gaussian blur mask.

.. note::

This is a private function called by :meth: ' "Metrics .blur_l ',

140

.moth: ' 'Metrics .blur_2 .-moth; ' 'Metrics. blur_4 ',
:meth: ''Metrics.blur_inf‘, and .moth; ' 'Metrics.maaim '.

§ Compute the raw Gausaian blur coefficients.
blur_sigma = 1.5
blur_divisor = 2 * blur_sigma • blur_sigma
rawblurl = exp(—1 / blur_divisor)
rawblur2 = exp(-4 / blur_divisor)
rawblur3 = exp(-9 / blur_divisor)
ra«rblur4 - exp (-16 / blur_di visor)
rawblurS = exp(-25 / blur_divisor)
Normalise the raw Gaussian blur coefficients.
rawblursum s rawblurl + rawblur2 + rawblur3 + rawblur4 + rawblur5
blur_normalizer = 2 * rawblursum + 1
blurO e l / blur_normalizer
blurl = rawblurl / blur_normalizer
blur2 = rawblur2 / blur_normalizer
blur3 • rawblur3 / blur_normalizer
blur4 « rawblur4 / blur_normalizer
blur5 = rawblur5 / blur_normalizer
Return the Gausaian blur mask as a list.
return [blur5, blur4, blur3, blur2, blurl,

blurO, blurl, blur2, blur3, blur4, blur5]

def main () :
" " "Run : ref: 'exquiras-conqparo ' "

Obtain a list of error metrics that can be called.
metrics = []
methods * inspect.getmembers(Metrics, predicate=inspect.ismethod)
for method in methods[1:]:

metrics.append(method[0])
Define the command-line argument parser.
parser = parsing.ExquiresParser(descriptions doc)
parser.add_argument('metric', type=str, metavar='METRIC', choices=metrics,

helps'the difference metric to use')
parser.add_argument(' image1' , typesstr, metavar*'IMAGE_1',

helps'the first image to compare')
parser.add_argument(' image2' , typesstr, metavars'ihage_2',

helps'the second image to compare')
parser.add_argument('-m', '— maxval', typesint, metavars' MAX_LEVEL',

default=65535,
helps'the maximum pixel value (default: 65535)')

Attempt to parse the command-line arguments.
args = parser.parse_args()
Attempt to call the chosen metric on the specified images.
vipscc s import ('vipsCC', globals(), locals (), ['VError'], -1)
try:

Print the result with IS digits after the decimal.
metric = Metrics(args.imagel, args.image2, args.maxval)
print '%.15f' % getattr (metric, args .metric) ()

except vipscc.VError.VError, error:
parser.error(str(error))

if name *= ' main ' :
main()

A.4 correlate.py

141

#!/usr/bin/env python
coding: utf-8
t
Copyright (c) 2012, Adam Turcotte (adam.turcotta@gmail.com)
§ Nicolas Robidoux (nicolas.robidoux@gmail.com)
License: BSD 2-Clause License
#
This file is part of the
t EXQUIRES (Extensible Quantitative Image Resampling) test suite
#

•""'Produce a Spearman's rank cross-correlation matrix for the specified group.

By default, the :option: '-M'/:option: ’— metric' option is selected.
You can select one of the following cross-correlation groups:

* : option: '-I '/.-option: ’— image'
* : option: '-D '/: option: '— down'
* : option: '-R '/: option: '— ratio'
* .-option: '-M'/:option: ’— metric'

You can also select which upsamplers to consider ithan computing the matrix
by using the -.option: '-U'/:option: '— up' option.
It II II

import argparse
import numpy

from exquires import database, parsing, stats

def _get_group_and_ranks(args):
"""Return the correlation group and ranks.
.. note::

This is a private function called by : func: '_print_matrix'.

.-param args:
:param args,dbase_file:
:param args.image:
:param args.down:
:param args.ratio:
:param args.up:
:param args .metric:
.-param args .metrics_d:
:param args.file:
:param args.digits:
-.param args. latex:
:param args.key:
.-type args:
-.type args.dbase_file:
-.type args. image:
-.type args. down:
-.type args. ratio:
.-type args. up:
-.type args .metric:
-.type args.metrics_d:
:type args.file:
:type args.digits:
:type args.latex:
.-type args. key:

arguments
database file
selected image names
selected downsampler names
selected ratios
selected upsampler names
selected metric names
all metric names
output file
number of digits to print
'True ' if printing a LaTeX-formatted table
key for the correlation group
: class: 'argparse. Namespace '
'path '
'list of strings '
'list of strings '
'list of strings '
'list of strings '
'list of strings '
'diet '
'path '
'integer'
'boolean '
'string'

:return:
:rtype:

the group and ranks
'string', 'list of lists'

142

mailto:adam.turcotta@gmail.com
mailto:nicolas.robidoux@gmail.com

Create a list of the sorting options for each metric.
metrics_desc « []
for metric in args.metric:

metrics_desc.append(int(args.metrics_d[metric][2]))
See if the config file has been poorly edited by the user.
if not (len(args.image) or len(args.down) or

len(args.ratio) or Xen(args.up) or len(args.metric)):
return

Open the database connection.
dbase = database.Database(args.dbase_file)
Determine which cross-correlation to perform.
group * getattr(args, args.key)
ranks « []
if args.key in ('image', 'down', 'ratio'):

Setup table arguments.
table_args = argparse.Namespace()
table_args.image * None
tableargs.down » None
table_args.ratio = None
for item in group:

Setup the tables to access.
setattr(table_args, args.key, [item])
agg_table = stats.get_aggregate_table(

dbase, args.up, args.metrics_d, dbase.get_tables(table_args)
)

if ranks:
col = stats. get_nverged_ranks (agg_table, metrics_desc, 0)
for i in range(0, len(args.up)):

ranks[i].append(col[i][1])
else:

ranks *= stats.get_merged_ranks (agg_table, metrics_desc, 0)
else: # Cross-correlation group is 'metric'

Get the rank table.
agg_table * stats.get_aggregate_table(

dbase, args.up, args.metrics_d, dbase.get_tables(args)
)
ranks = stats.get_ranks(agg_table, metrics_desc, 0)

Close the database connection.
dbase.close()
Return the group and ranks.
return group, ranks

def _print_matrix(args):
"""Print a cross-correlation matrix from aggregate image comparison data.
.. note::

This is a private function called by ;func; 'main'.
param
param
param
param
param
param
param
param
param
param

args
args
args
args
args
args
args
args.
args.
args.

dbase_file:
image:
.down:
ratio:
up:
metric:
metrics_d:
file:
digits:

arguments
database file
selected image names
selected dotmsampler names
selected ratios
selected upsamplor names
selected metric names
all metric names
output file
number of digits to print

143

:param args.latex:
:param args.key:
:param args.anchor:
■type args:
:type args.dbase_file:
■■type args.image:
•■type args.down:
'.type args.ratio:
:type args. up:
:type args.metric:
'.type args,metrics_d:
:type args.file:
■type args.digits:
:type args.latex:
'.type args.key:
'■type args. anchor:

'True' if printing a LaTeX-formatted table
key for the correlation group
row/column to order the matrix by
-.class: 'argparse. Namespace'
'path '

of strings'
of strings'
of strings'
of strings'
of strings'

'list
'list
'list
'list
'list
'diet '
'path '
'integer'
'boolean '
'string'
'string'

f Get the correlation group and ranks table.
group, ranks = _get_group_and_ranks(args)
Compute the correlation coefficient matrix.
matrix = numpy.identity(lan(group))
xbar = (len(args.up) + 1) * 0.5
for i, mrowl in enumarate(matrix):

for j, mrow2 in enumerate(matrix[i + 1:), i + 1):
Compute the numerator and denominator.
coeff * [0, 0, 0)
for row in (rank_row(1:] for rank_row in ranks]:

coeff[0] += (row[i] - xbar) * (row[j] - xbar)
coeff[l] +=■ (row[i] - xbar) ** 2
coeff[2] += (row[j] - xbar) ** 2

Compute the correlation coefficient.
mrowl[j] * mrow2[i] = (

coeff[0] / ((coeff[1] * coeff[2]) ** 0.5)
)

Deal with -a/— anchor option.
if args.anchor:

sort_order = matrix[group.index(args.anchor)].argsort ()[::-1]
group = [group[i] for i in sort_order]
matrix_sorted = numpy.identity(len(group))
for i, row in enumerate(sort_order):

for j, col in enumerate(sort_order):
matrix_sorted[i, j] = matrix[row, col]

matrix = matrix_sorted
Pass the coefficient matrix to the appropriate table printer.
if args.latex:

stats.print_latex(matrix, args, group, True)
else:

stats.print_normal(matrix, args, group, True)

def main() :
"""Run :ref: 'exquires-correlate '.

Parse the command-line arguments and print the cross-correlation matrix.

tt tt It

print matrix(parsing.StatsParser< doc , True).parse_args 0)
if name == ' main ' :

main ()

144

A.5 database.py

#//usr/bin/env python
coding: utf-8
*
Copyright (c) 2012, Adam Turcotta (adam.turcotta@gmail.com)
Nicolas Robidoux (nicolaa.robidoux@gmail.com)
License: BSD 2-Clause License
#
This fils is part of the
EXQUIRES (Extensible Quantitative Image Resampling) test suite
t
"""Provides an interface to the sqliteS image error database."""
import sqlite3

class Database:
"""This class provides an interface to the aqlite3 image error database.

The database stores error data computed by :ref: 'exquires-run' and
:ref: 'exquires-update'. This data is retrieved and used to compute the
output given by :ref: 'exquires-report ' and :ref: 'exquires-correlate '.

.-param dbase file: database file to connect to

.-type dbase file: 'path '

tt tt tt

def init (self, dbasefile):
"""Create a new :class:'Database ' object."""
self.dbase 3 sqlite3.connect(dbasefile,

detect_types=sqlite3.PARSEDECLTYPES)
self.dbase.row_factory = sqlite3.Row
self.dbase.text factory = str
self. sql_do ('CREATE TABLE IF NOT EXISTS TABLEDATA (name TEXT PRIMARY'

' KEY, image TEXT, downsampler TEXT, ratio TEXT)')
def sql_do(self, sql, params=()):

'"’"Perform an operation on the database and commit the changes.
:param sql: SQL statement to execute and commit
:param params: values to fill wildcards in the SQL statement
: type sql: 'string ’
■■type params: 'list of values'

self.dbase.execute(sql, params)
self.dbase.commit()

def create_table(self, name, metrics):
"""Private method used to create a new database table.
.. note::

This is a private method called by :meth: 'add table ' and
:meth: 'backup_table '.

:param name: name of the table to create
:param metrics: error metrics to compute (the table columns)
:type name: 'string'
.-type metrics: 'list of strings '

sql = 'CREATE TABLE (} (upsampler TEXT PRIMARY KEY' . format(name)

145

mailto:adam.turcotta@gmail.com
mailto:nicolaa.robidoux@gmail.com

for metric in metrics:
sql +* ' , {} DOUBLE'.format(metric)

sql += ')'
self.sql_do(sql)

def add_table(self, image, downsampler, ratio, metrics):
"'"'Add a new table to tha database.
Each table ia defined in the following way:

1. image, downsampler, and ratio define the table name
2. metrics define the columns of the table

To keep track of each table in terms of the image, down sampler, and
ratio that defines it, an entry is created in the TABLEDATA table.

:param image:
: param down sampler:
:param ratio:
:param metrics:
.-type image:
:type downsampler:
:type ratio:
.■type metrics:

name of the image
name of the downsampler
resampling ratio
names of the metrics
'string'
'string'
'string'
'list of strings '

.■return:
■ rtype:

the table name
'string'

Create table.
name * join([image, downsampler, ratio])
self. create_table(name, metrics)
Add table details to master table (TABLEDATA).
row = diet(name=name, image=image,

downsampler=downsampler, ratio=ratio)
self.insert('TABLEDATA', row)
self.dbase.commit()
return name

def backup_table(self, name, metrics):
"'"’Backup an existing image error table.
:param name: name of the table to backup
:param metrics: error metrics (columns) to backup
•.type name: 'string'
'.type metrics: 'list of strings '

:return: name of the backup table
: rtype: 'string'

backup_name = join([name, 'bak'])
self .sql_do('ALTER TABLE {} RENAME TO {)' .format (name, backup_name))
self. create_table(name, metrics)
return backup_name

def get_tables (self, args) :
'""'Return table names for these images, downsamplers, and ratios.
:param args:
:param args. image:
:param args.down:
:param args.ratio:
■■type args:
:type args.image:
■.type args. down:
:type args.ratio:

arguments
names of images
names of downsamplers
resampling ratios
:class: 'argparse.Namespace'
'list of strings '
'list of strings '
'list of strings '

:return: names of the tables

146

: rtype: 'list of strings '

t Start assembling an SQL query for the specified tables.
query = 'SELECT name FROM TABLEDATA WHERE ('
Append the image names,
if args.image:

for image in args.image:
query = ' join([query, 'image = \'{}\' OR' . format(image)])

query = ''.join([query.rstrip(' OR'), ')'])
Append the downsampler names.
if args.down:

if args.image:
query *= ' '. join([query, 'AND ('])

for downsampler in args.down:
downsampler_str = 'downsampler = \'{}\' OR' . format (downsampler)
query = ' '.join([query, downsampler_str])

query = ''.join([query.rstrip(' OR'), ')'])
Append the ratios,
it args.ratio:

if (args.image or args.down):
query « ' '.join([query, 'AND ('])

for ratio in args.ratio:
query = ' '. join ([query, 'ratio = \'{)V OR'. format (ratio)])

query = ''.join([query.rstrip(' OR'), ')'])
Return the table names.
return [table[0] for table in self.sql_fetchall(query)]

def drop_backup(self, name):
n""Drop a backup table once it is no longer needed.

:param name: name of the backup table to drop
'.type name: 'string'

II II II

self,sql_do('DROP TABLE {}'.format(name))
def drop_tables(self, images, downsanqolers, ratios):

"""Drop database tables.

All tables defined by any of the images, down samplers, or ratios are
dropped. The TABLEDATA table is updated to reflect these changes.

:param images: names of the images
: param down samplers: names of the downsamplers
:param ratios: resampling ratios
'.type images: 'list of strings'
:type downsamplers: 'list of strings'
: type ratios: 'list of strings '

II II It

if len(images) or len(downsamplers) or len(ratios):
query = 'SELECT name FROM TABLEDATA WHERE'
for image in images:

query = query + ' image = \'{}V OR' . format (image)
for downsampler in downsamplers:

query * query + ' downsampler = \'{}V OR' . format (downsampler)
for ratio in ratios:

query = query + ' ratio = \'{}V OR' .format(ratio)
query * query.rstrip(' OR')
cursor = self.dbase.cursor()
cursor.execute(query)
names « [(table[0],) for table in cursor.fetchall()]
Delete the rows from TABLEDATA and drop the tables by name.

147

self.dbase.executemany('DELETE FROM TABLEDATA WHERE name = ?' ,
names)

for name in names:
self.dbase.execute(' join(['DROP TABLE', name[0]]))

self.dbase.commit()
def sql_fetchall(self, sql, parama=()):

'"’"Fateh all rows for tha specified SQL query.
:param sql: SQL query to execute
:param params: values to fill wildcards in the SQL statement
■'type sql: ’string'
■.type params: 'list of values '

.-return: rows specified by the SQL query
:rtype: 'list of diets'

n n i t

cursor = self.dbase.execute(sql, params)
return cursor.fetchall()

def get errordata(self, table, upsampler, metrics_str):
’"’"Return a filtered row of error data.
For the upsampler row in the table, return a dictionary containing only
the error data for the specified metrics.
:param table: name of the table to query
:param upsampler: name of the upsampler (row) to acquire data from
:param metrics_str: metrics to return error data for (comma-separated)
:type table: 'string'
.-type upsampler: 'string'
:type metrics_str: 'string'

:return: the filtered row of error data
:rtype: 'diet '

sql ■ 'SELECT upsampler,{} FROM {} WHERE upsampler=\'{)\’'
query = sql.format(metrics_str, table, upsampler)
cursor = self.dbase.execute(query)
return diet(cursor.fetchone())

def insert(self, table, row):
"""Insert a single row into the table, or update if it exists.
:param table: name of the table
:param row: row data to insert
.-type table: 'string'
: type row: 'diet '

It If It

keys * sorted (row. keys ())
values = [row[v] for v in keys]
query = ' INSERT OR REPLACE INTO { } ((}) VALUES ({})'. format (

table, ', ' . join(keys), ', '.join('?' for i in range (len (values))))
self.dbase.execute(query, values)
self.dbase.commit()

def delete(self, table, upsampler):
"""Delete a row from the table.

-.param table: name of the table to delete from
:param upsampler: upsampler (row) to remove from the table
.'type table: 'string'
.-type upsampler: 'string'

It It II

query = 'DELETE FROM {) where upsampler = ?'.format(table)

148

self.dbase.execute(query, [upsampler])
self.dbase.commit()

def close(self):
"""Close the connection to the database."""
self.dbase.close()

A.6 new.py

§!/usr/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotte (adam.turcotte0grnail.com)
§ Nicolas Robidoux (nicolas.robidouxggmail.com)
License: BSD 2-Clause License
#
This file is part of the
EXQUIRES (Extensible Quantitative Image RESampling) teat suite
#

"""Generate a new project file to use with :ref: 'exquires-run '.

The project file is used to specify the following components of the suite:
* Images (sRGB TIFF I 16 bits/simple (48/pixel) / 840x840 pixels)
* Downsamplers
* Resampling Ratios
* Upsamplers
* Difference Metrics

For the specified project name and list of images, a default project file will
be created with the name : file:'PROJECT, ini ', where : file: 'PROJECT' is a name
specified using the .-option: '-p ' \ .-option: '— proj' option. If a name is not
specified, the default name is .-file: 'projectl'.

Use the : option: '-I' \: option: '— image' option to provide a list of images to
include in the project file. If no images are specified, a default image
(:file: 'wave.tif') is included in the project file.

Manually edit this file to customize your project.

II II II

from os import path
from configobj inport ConfigObj
from exquires import parsing

def _magick(method, **kwargs):
"" "Return an ImageMagick resize command as a string.

Blur and Kaiser beta values are passed as strings to avoid truncation.

.. note::

This is a private function called by ;func; add_defaultsdownsamplers ',
:func: '_std_int_lin_tensor_mtds_l ', :func: '_std_int_lin_tensor_mtds_2 ',
.-func: '_novel_int_lin_flt_mtds', :func: '_std_nonint_lin_tensor_mtds ',
:func: '_std_int_ewa_lin_flt_mtds ',
:func: '_std_nonint_ewa_lin_flt_mtds ', and
:func: '_novel_nonint_ewa_lin_flt_mtds '.

:param method: method to use with '-resize' or '-distort Resize '
.-param lin: 'True' if using a linear method

149

:param diat:
:param lobes:
:param blur:
:param beta:
.-type method:
: type lirt:
-.type diat:
-.type lobea:
-.type blur:
-■type beta:

:return:
: rtype:

'True ' if uaing a '-diatort Reaize ' method
number of lobea
blur value
beta value for Kaiaer method
'string'
'boolean '
'boolean '
'integer'
'string'
'string'

the ImageMagick command
'string'

Setup keyword arguments.
lin * kwargs.get ('lin', False)
dist » kwargs.get('dist', False)
interp « kwargs.got('interp', False)
lobes = kwargs.get('lobes', 0)
blur • kwargs.get('blur', None)
beta ■* kwargs.get{'beta', None)
Create and return command string.
cmd = 'convert {0}'
if lin:

cmd « ' '.join([cmd. '-colorspace RGB'])
if method:

cmd * ' '.join([cmd, '-filter', method])
if lobes:

cmd = ''.join([cmd, ' -define filter: lobes=' , str (lobes)])
if blur:

cmd = ''.joint[cmd, ' -define filter:blur=', blur])
if beta:

cmd = '’.join([cmd, ' -define filter :kaiser-betas', beta])
if interp:

cmd = ' '.joint[cmd, '-interpolative-resize {3}x{3}'])
elif dist:

cmd = ' '.join([cmd, '-distort Resize (3}x{3}'])
else:

cmd * ' '.join([cmd. '-resize {3}x{3}'])
if lin:

end = ' '.join([cmd, '-colorspace sRGB'])
return ' .join([cmd, strip {!)'])

_metric(method, aggregator, sort):
" "’’Return 3-element list defining a metric, an aggregator and

.. note::
Thia ia a private function called by :func: '_add_default_metrica'.

-.param method: image comparison metric (see :ref: 'exquires-compare')
-.param aggregator: data aggregator (aee : ref: ' exquires—aggregate ')
.-param sort:
:type method:
-.type aggregator:
.-type sort;
.return:
: rtype:

beat-to-vorat order ('O': aacending, '1': descending)
'string'
'string'
'integer'

metric, aggregator, and sort order
'Hat'

return [' '.join(['exquires-compare', method, '{0) {1}']),
' '.join(['exquires-aggragate', aggregator, '(0)']), sort]

150

def _add_default_images(ini, image):
"""Add the default images to the specified :file:'.ini' file.
.. note::

This is a private function called by :func: 'main'.

:param ini: the -.file: '.ini' file to modify
:type ini: :class: 'configobj .ConfigObj '

n i t it

Define the list of images to be resampled.
key « 'Imagea'
ini[key] ■ {}
ini.comments[key] = [

'TEST IMAGES' ,
'Images are 16-bit sRGB TIFFs with a width and height of 840 pixels.',
'Any images that are added must conform to this standard.'

]
for img in image:

ini[key][path.splitext(path.basename(img)) [0]] = path .abspath (img)

def _add_default_ratios(ini):
"""Add the default ratios to the specified :file:'.ini' file.

.. note::

This is a private function called by :func: 'main'.

.-param ini: the -.file: '.ini' file to modify
:type ini: :class: 'configobj.ConfigObj '

Define the list of resampling ratios to use.
ratios * 'Ratios'
ini[ratios] * {}
ini.comments[ratios] = [

", 'RESAMPLING RATIOS',
'The test images are downsampled to the specified sizes.
'Each size is obtained by dividing 840 by the ratio.'

]
ini[ratios]['2'] = '420'
ini[ratios]['3'] * '280'
ini[ratios]['4'] ■ '210'
ini [ratios] ['5'] = '168'
ini [ratios] ['6'] * '140'
ini[ratios]['7'] = '120'
ini[ratios]['8'] = '105'

def _add_default_downsamplers(ini):
"""Add the default downsamplers to the specified -.file: '.ini' file.

.. note::

This is a private function called by :func: 'main'.

:param ini: the :file: '.ini' file to modify
'.type ini: -.class: 'con figobj .Con figobj '

II H II

Define the list of downsamplers to use.
downs = 'Downsamplers'
ini[downs] * (}
ini.comments[downs] = [

", ' DOWNSAMPLING COMMANDS' ,
'To add a downsampler, provide the command to execute it.',

151

'The command can make use of the following replacement fields:’,
'{0} = input image',
'{1} = output image',
'{2} = downsampling ratio',
'{3} = downsampled size (width or height)',
'WARNING: Be sure to use a unique name for each downsampler. '

ini
ini
ini
ini
ini
ini
ini
ini
ini
ini

[downs
[downs
[downs
[downs
[downs
[downs
[downs
[downs
[downs
[downs

'box_srgb'] = _magick('Box')
'box_linear'] * _magick('Box', lin»True)
'gaussian_srgb'] » _magick('Gaussian')
'gaussian_linear'] » _magick('Gaussian', lin=True)
'ewa_lanczos3_srgb'] - _magick('Lanczos', dist=True)
'ewa_lanczos3_linear'] = _magick(' Lanczos', dist=True, lin=True)
'lanczos3_srgb'] « _magick('Lanczos')
'lanczos3_linear'] = _magick('Lanczos', lin=True)
'nearest_srgb'] = _magick('Triangle', interp=True)
'nearest_linear'] = _magick('Triangle', interp»True, lin*True)

def _std_int_lin_tensor_mtds_l(ini_ups):
"""Add the 1st part of the standard interpolatory linear tensor methods.
.. note::

This is a private function called by :func: '_add_default_upssuaplers'

:param ini_ups: upsamplera for the specified : file: ' .ini ' file
:type ini_ups: 'diet '

ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups

nearest_srgb'] * _magick('Point')
nearest_linear'] * _magick('Point', lin=True)
bilinear_srgb'] = _magick('Triangle')
bilinear_linear'] * _magick('Triangle', lin=True)
cubic_hermite_srgb'] “ _magick('Hermite')
cubic_hermite_linear'] = _magick('Hermite', lin=True)
catmull_rom_srgb'] = _magick('Catrom')
catmull_rom_linear'] * _magick('Catrom', lin=True)
lanczos2_srgb'] = _magick('Lanczos2')
lanczos2_linear'] * _magick('Lanczos2', lin=True)
lanczos3_srgb'] *
lanczos3_linear']
lanczos4 srgb'] *
lanczos4_linear']
bartlett2_srgb'] =
bartlett2_linear']
bartlett3_srgb'] ■
bartlett3_linear']
bartlett4_srgb'] =
bartlett4_linear']
blackman2_srgb'] *
blackman2_linear']
blackman3_srgb'] =
blackman3_linear']
blackman4_srgb'] *
blackman4_linear']
bohman2_srgb'] ■ _

_magick('Lanczos')
= _magick('Lanczos', lin=True)
_magick('Lanczos' , lobes*4)
= _magick('Lanczos', lobes=4, lin=True)
: _magick('Bartlett', lobes=2)
= _magick('Bartlett', lobes*2, lin=True)

: magick('Bartlett', lobes*3)
= _magick('Bartlett', lobes=3, lin=True)

; _magick('Bartlett')
* _magick('Bartlett', lin=True)

■ _magick('Blackman', lobes*2)
* _magick('Blackman', lobes=2, lin=True)

- _magick('Blackman', lobes=3)
» _magick('Blackman', lobes*3, lin*True)

: magick('Blackman')
= _magick('Blackman', lin=True)

magick('Bohman', lobes*2)
bohman2_linear') = _magick('Bohman', lobes=2, lin=True)
bohman3_srgb']
bohman3_linear']
bohman4_srgb'] =
bohman4_linear']

jmagick('Bohman', lobes=3)
• _magick('Bohman', lobes*3, lin=True)
_magick('Bohman')
* _magick('Bohman', lin*True)

def _std_int_lin_tensor_mtds_2(ini_ups):
’"'"Add the 2nd part of the standard interpolatory linear tensor methods.

note::

152

This is a private function called by : func: 'add_default upsamplers '

:param ini_ups: upsamplers for the specified :file: '.ini ' file
:type ini_ups: 'diet '

II II II

ini_ups['cosino2_srgb'] = _magick('Cosine', lobes*2)
ini_ups['cosine2_linear'] = _magick('Cosine', lobes*2, lin*True)
ini_ups['cosine3_srgb'] * _magick('Cosine')
ini_ups['cosine3_linear'] = magick('Cosine', lin=True)
ini_ups['cosine4_srgb'] = _magick('Cosine', lobes-4)
ini_ups['cosine4_linear'] - _magick('Cosine', lobea*4, lin=True)
ini_ups['hamming2_srgb'] * _magick('Hamming', lobes=2)
ini_ups['hamming2_linear'] = _magick('Hamming', lobes*2, lin=True)
ini_ups['hamming3_srgb'] = _magick('Hamming', lobes=3)
ini_ups['hamming3_linear'] = _magick('Hamming', lobes=3, lin*True)
ini_ups['hamming4_srgb'] « _magick('Hamming')
ini_ups['hamming4_linear'] = _magick('Hamming', lin*True)
ini_ups['parzen2_srgb'] - _magick('Parzen', lobes=2)
ini_ups ['parzen2_linear'] * _magick('Parzen', lobes*2, lin=True)
ini_ups['parzen3_srgb'] = _magick('Parzen', lobes=3)
ini_ups['parzen3_linear'] = _magick('Parzen', lobes*3, lin=True)
ini_ups['parzen4_srgb'] = _magick('Parzen')
ini_ups['parzen4_linear'] = _magick('Parzen', lin=True)
ini_ups [' welch2_srgb'] = _magick (' Welsh', lobes=*2)
ini_ups['welch2_linear'] = _magick('Welsh', lobes=2, lin=True)
ini_ups['welch3_srgb'] * _magick('Welsh')
ini_ups['welch3_linear'] = _magick('Welsh', lin=True)
ini_ups['welch4_srgb'] = _magick('Welsh', lobes=4)
ini_ups['welch4_linear'] > _magick('Welsh', lobes»4, lin=True)
ini_ups['hann2_srgb'] = _magick('Hanning', lobes»2)
ini_ups['hann2_linear'] = _magick(’Hanning', lobes*2, lin=True)
ini_ups['hann3_srgb'] « _magick('Hanning', lobes=3)
ini_ups['hann3_linear'] ” _magick ('Hanning', lobes=3, lin=True)
ini_ups['hann4_srgb'1 = _magick('Hanning')
ini_ups['hann4_linear'] = _magick('Hanning', lin=True)

def _novel_int_lin_flt_mtds(ini_ups):
"""Add the novel interpolatory linear filtering methods.

.. note::

This is a private function called by :func: ' add_default_upsamplers '.
:param ini_ups: upsamplers for the specified :file: '.ini ' file
:type iniups: 'diet'

II II II

ini_ups['kaiser2_srgb'] « _magick('Kaiser', lobes-2, beta=' 5.36')
ini_ups['kaiser2_linear'] = _magick('Kaiser', lobes«2, beta*'5. 36',

lin=True)
ini_ups['kaiser3_srgb'] = _magick('Kaiser', lobes=3, beta='8.93')
ini ups['kaiser3 1inear'] • _magick('Kaiser', lobes=3, beta*'8 . 93' ,

lin=True)
ini_ups['kaiser4_srgb'] = _magick('Kaiser', beta*’12.15')
ini_ups['kaiser4_linear'] = _magick('Kaiser', beta*'12.15', lin=True)
ini_ups['kaisersharp2_srgb'] * _magick('Kaiser', lbbes=2,

beta*'4.7123889803846899')
ini_ups['kaisersharp2_linear'] = _magick('Kaiser', lobes=2, lin*True,

beta*'4.7123889803846899')
ini_ups['kaisersharp3_srgb'] * _magick('Kaiser', lobes*3,

beta*'7.853981633974483')
ini_ups['kaisersharp3_linear'] * _magick('Kaiser', lobes*3, lin*True,

beta*'7.853981633974483')
ini_ups['kaisersharp4_srgb'] = _magick('Kaiser', beta*'10.995574287564276')
ini_ups['kaisersharp4_linear'] * _magick('Kaiser', lin*True,

beta*'10.995574287564276')

153

ini_ups['kaisersoft2_srgb'] = _magick('Kaiser' , lobes-2,
beta=' 6.2831853071795865')

ini_ups [' kaisersoft2_linear'] = _magick (' Kaiser' , lobes-2, lin-True,
beta-'6.2831853071795865')

ini_ups['kaisersoft3_srgb'] = magick('Kaiser', lobes-3,
beta-'9.4247779607693797')

ini_ups['kaisersoft3_linear'] - _magick('Kaiser', lobes-3, lin-True,
beta-'9.4247779607693797')

ini_ups['kaisersoft4_srgb'] = _magick('Kaiser', beta-'12.566370614359173')
ini_ups['kaisersoft4_linear'] - _magick('Kaiser', lin—True,

beta-'12.566370614359173')

def _std_nonint_lin_tensor_mtds(ini_ups):
"""Add the standard non-interpolatory linear tensor methods.

.. note::

This is a private function called by :func: '_add_default_upsamplers'.

.param ini_ups: upsamplera tor the specified :file: '.ini' file

.-type ini_ups: 'diet '

tt It It

ini_ups['quadratic_b_spline_srgb'] = _magick('Quadratic’)
ini_ups['quadratic_b_spline_linear'] = _magick('Quadratic', lin-True)
ini_ups['cubic_b_spline_srgb'] = _magick('Cubic')
ini__ups [' cubic_b_spline_linear'] » _magick (' Cubic' , lin-True)
ini_ups['mitchell_netravali_srgb'] - _magick(None)
ini_upst'mitchell_netravali_linear'] « _magick(None, lin-True)

def _std_int_ewa_lin_flt_mtds(ini_ups):
"""Add the standard interpolatory EWA linear filtering: methods.

.. note::

This is a private function called by :func: '_add_default_upsamplers '.

.-param ini_ups: upsamplers for the specified :file: '.ini' file

.-type ini_ups: 'diet '

tt It tt

ini_ups['ewa_teepee_srgb'] = _magick('Triangle', dist-True)
ini ups ['ewa__teep«e linear'] = _magick (' Triangle' , dist-True, lin-True)
ini_ups['ewa_hermite_srgb'] - _magick('Hermite', dist-True)
ini_ups['ewa_hermite_linear'] = _magick('Hermite', dist-True, lin-True)

def _std_nonint_ewa_lin_flt_mtds(ini_ups):
"""Add the standard non-interpolatory EWA linear filtering methods.

.. note::

This is a private function called by : func: '_add_default_upsamplers'.

:param ini_ups: upsamplers for the specified :file: '.ini' file
.-type ini_ups: 'diet '

ini_ups['ewa_quadratic_b_spline_srgb'] = _magick('Quadratic', dist-True)
ini_ups['ewa_quadratic_b_spline_linear'] = _magick('Quadratic', dist-True,

lin-True)
ini_ups['ewa_cubic_b_spline_srgb'] = _magick('Spline', dist-True)
ini_ups['ewa_cubic_b_spline_linear'] = _magick('Spline', dist-True,

lin-True)
ini_ups['ewa_lanczos2_srgb'] = _magick('Lanczos2', dist-True)
ini_ups['ewa_lanczos2_linear'] - _magick('Lanczos2', dist-True, lin-True)
ini_ups['ewa_lanczos3_srgb'] » _magick('Lanczos', dist-True)

154

ini_ups [' ewa_lancros3_.li.near'] = _magick (' Lanczos' , dist-True, lin>True)
ini_ups['ewa_lanczos4_srgb'] = _magic]c (' Lanczos' , lobes-4, dist-True)
ini_ups['ewa_lanczos4_linear'] « _magick('Lanczos', lobes=4, dist-True,

lin-True)

def _novel_nonint_ewa_lin_flt_mtds(ini_ups):
"""Add the novel non-interpolatory EWA linear filtering methods.

.. note::

This is a private function called by :func: '_add_default_upsamplers'.

:param ini_ups: upsamplers for the specified .-file: '.ini' file
■'type ini_ups: 'diet '

ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups

ini_ups
ini_ups
ini_ups
ini_ups
ini_ups
ini_ups

ini_ups
ini_ups

ini„ups
ini_ups

ini_ups
ini_ups

ini_ups
ini_ups

ini_ups

ini_ups

ewa_robidoux_srgb'] = _magick(None, dist-True)
ewa_robidoux_linear'] = _magick(None, dist-True, lin-True)
ewa_mitchell_netravali_srgb'] - _magick('Mitchell', dist-True)
ewa_mitchell_netravali_linear'] = _magick('Mitchell', dist-True,

lin-True)
ewa_robidouxsharp_srgb'] = _magick('RobidouxSharp', dist-True)
ewa_robidouxsharp_linear'] = _magick('RobidouxSharp', dist-True,

lin=True)
ewa_catmull_rom_srgb'] = ...magick ('Catrom', dist—True)
ewa_catraull_rom_linear'] = _magick ('Catrom', dist=True, lin=True)
ewa_lanczosradius2_srgb'] = _magick(' LanczosRadius', dist-True,

lobes=2)
ewa_lanczosradius2_linear'] » _magick('LanczosRadius', dist=True,

lobes-2,
lin=True)

ewa_lanczosradius3_srgb'] = _magick('LanczosRadius', dist=True)
ewa_lanczosradius3_linear'] = _magick('LanczosRadius' , dist=True,

lin-True)
ewa_lanczosradius4_srgb'J « _magick(' LanczosRadius', lobes=4,

dist-True)
ewa_lanczosradius4_linear'] = _magick('LanczosRadius' , lobes-4,

dist=True, lin=True)
ewa_lanczos2sharp_srgb'] = _magick('Lanczos2', dist=True,

blur-'.9580278036312191')
ewa_lanczos2sharp_linear'] = _magick('Lanczos2', dist-True,

blur-'.9580278036312191',
lin-True)

ewa_lanczos3sharp_srgb'] - _magick('Lanczos', dist-True,
blur-'.9891028367558475')

ewa_lanczos3sharp_linear'] = _magick('Lanczos', dist-True,
blur-'.9891028367558475',
lin-True)

ewa_lanczos4sharp_srgb'] - _magick('Lanczos', lobes-4, dist-True,
blur-'.9870395083298263')

ewa_lanczos4sharp_linear'] = _magick('Lanczos', lobes-4,
dist-True, lin-True,
blur-'.9870395083298263')

ewa_lanczos2sharpest_srgb'] = _magick('Lanczos2', dist-True,
blur-'.88826421508540347')

ewa_lanczos2sharpest_linear'] = _magick('Lanczos2', dist-True,
blur-'.88826421508540347'
lin-True)

ewa_lanczos3sharpest_srgb'] = _magick('Lanczos', dist-True,
blur-'.88549061701764')

ewa_lanczos3sharpest_linear'] - _magick('Lanczos', dist-True,
blur-'.88549061701764',
lin-True)

ewa_lanczos4sharpest_srgb'] - _magick('Lanczos', lobes-4,
dist-True,
blur-'.88451002338585141')

ewa_lanczos4sharpest_linear'] - _magick('Lanczos', lobes-4,
dist-True, lin-True,

155

blur*'.88451002338585141')

def _add_default_upsamplers(ini):
"""Add the default upsamplers to the specified -.file: '.ini' file.
. . note: :

This is a private function called by :func: 'main'.
.-param ini; the .-file; '.ini' file to modify
.-type ini; ;class: 'configobj .ConfigObj '
It tt II

§ Define the list of upsamplers to use.
upa * 'Upsamplers'
ini[ups] * O
ini.comments[ups] * [

", ' UPSAMPLING COMMANDS' ,
'To add an upsampler, provide the command to execute it.',
'The command can make use of the following replacement fields:',
'(0) * input image',
'(1) = output image',
'{2} * upsampling ratio',
'(3) * upsampled size (always 840)'

]

_std_int_lin_tensor_mtds_l(ini[ups])
_std_int_lin_tansor_mtds_2(ini[ups])
_novel_int_lin_flt_mtds(ini[ups])
_std_nonint_lin_tensor_mtds(ini[ups])
_std_int_ewa_lin_flt_mtds(ini[ups])
_std_nonint_ewa_lin_flt_mtds(ini[ups])
_novel_nonint_ewa_lin_flt_mtda(ini[ups])

def _add_default_metrics(ini):
"""Add the default metrics to the specified .-file; '.ini' file.
.. note::

This is a private function called by ;func; 'main'.
:param ini: the -.file: '.ini' file to modify
-.type ini: :class: 'configobj.ConfigObj '

Define the list of error metrics to use.
metrics * 'Metrics'
ini[metrics] = {)
ini.comments[metrics] * [

, 'IMAGE DIFFERENCE METRICS AND AGGREGATORS' ,
Each metric must be associated with a data aggregation method.',
To add a metric, you must provide the following three items:',
/
1. Error metric command, using the following replacement fields:
(0) * reference image',
(1) * test image',
/

2. Aggregator command, using the following replacement field:',
(0) * list of error data to aggregate',
3. Best-to-worst ordering, given as a 0 or 1:',
0 * ascending',
1 * descending'

1
ini[metrics]['srgb_l'] * _metric('srgb_l', '1_1'
ini[metrics]['srgb 2'] = _metric('srgb_2', '1_2'
ini[metrics]['srgb_4'] * _metric('srgb_4', '1_4'

0)
0)
0)

156

ini[metrics] 'srgb_inf'] s metric('srgb..inf' , 1 inf' / 0)
ini[metrics] 'cmc_l'] s ..metric (' cmc_l' , '1_1' / 0)
ini[metrics] 'cmc_2'] s _metric('cmc_2', '1.2' 0)
ini[metrics] 'cmc_4'] s ..metric (' cmc_4' , ' 1_4'/ 0)
ini[metrics] 'cmc_inf'] s _metric('cmc_inf' , '1-inf' , 0)
ini[metrics] 'xyz_l'] » ..metric (' xyz_l' , '1_1' 0)
ini[metrics] 'xyz_2'] s ..metric (' xyz_2' , '12' 0)
ini[metrics] ' xyz_4'] = ..metric (' xyz_4' , ' 1_4 / 0)
ini[metrics] 'xy*_inf'] s _metric('xyz_inf', 1. inf' , 0)
ini[metrics] 'blur_l'] = ..metric (' blur_l , '1_.1' , 0)
ini[metrics] 'blur_2'] = ..metric {’ blur_2 , '1..2' , 0)
ini[metrics] ' blur_4'] s ..metric (' blur_4 , '1..4’, 0)
ini[metrics] 'blur_inf'] s _metric (' blur..inf' l_inf f 0)
ini[metrics] 'mssim'] s _metric('mssim', ' 1_1 / 1)

def main() :
a a "RUn ■ ref: ' exqui re a—new1.

Create a project file to use with :ref: 'exquirea-run ' and
:ref: 'exquires-update '.

n t t tt

Construct the path to the default teat image.
this_dir = path.abspath(path.dirname(file))
wave = path.join(this_dir, 'wave.tif')
Define the command-line argument paraer.
parser s parsing.ExquiresParser(descriptions doc)
parser. add__a r gument (' -p' , ' — pro j' , metavar= ’ PROJECT' , typesstr,

helps'name of the project (default: projectl) ' ,
default®'projectl')

parser.add_argument(' -I', '— image', metavar='IMAGE', typesstr, nargs='+',
helps'the test images to use (default: wave.tif)',
defaults[wave])

Attempt to parse the command-line arguments.
args s parser .parse„args()
Create a new project file.
ini s ConfigObj ()
ini.filename s join([args.proj, 'ini'])
add.do fault images (ini, args. image)
_add_default_ratios(ini)
_add_default_downsamplers(ini)
_add_default_upsamplers(ini)
_add_default_metrics(ini)
Write the project file.
ini.write()

if name s» ' main ' :
main ()

A.7 operations.py

#!/uar/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotte (adam.turcotteggmail.com)
Nicolas Robidoux (nicolaa.robidoux@gmail.com)
License: BSD 2-Clause License
#
This file is part of the

157

mailto:nicolaa.robidoux@gmail.com

EXQUIRES (Extensible Quantitative Image RESampling) test suite
#

"""A collection of classes used to conpute image difference data.

The hierarchy of classes is as follows:

* :class: 'Operations' encapsulate a list of :class: 'Images'
* :class: 'Images' encapsulate a 'diet' of images
and a list of :class: 'Downsamplers '

* :class: 'Downsamplers ' encapsulate a 'diet ' of downsamplera
and a list of :class: 'Ratios '

* :class: 'Ratios' encapsulate a 'diet' of ratios and a list :class: 'Images'
* :class: 'Images' encapsulate a 'diet' of images and a 'diet' of metrics

These classes work together to downsample the master images, upsample the
downsampled images, and compare the upsampled images to the master images.
To perform the operations, call :meth: 'Operations.conpute '.

It II II

import os
import shutil
from subprocess import call, check_output
from exquires import database, progress, tools
pylint: disable-msg=R0903

class Operations(object):
"""A collection of Image objects to compute data with.

This class is responsible for calling all operations defined in the
specified project file when using :ref: 'exquires-run ' or
: ref: 'exquires-update '.

param images: images to downsample
'.type imagea: list of :class: 'Images'

tt It It

def init (self, images):
"""Create a new :class: 'Operations' object."""
self.images 31 images
self.len = sum(len(image) for image in self.images)

def len (self) :
"""Return the length of this :class: 'Operations' object.

The length of an :class: 'Operations ' object is the total number of
operations (downsampling, upsampling, and comparing) to be performed.

.■return: length of this -.class: 'Operations' object
: rtype: 'integer '

return self.len
def conpute(self, args, old=None):

"""Perform all operations.

:param args:
param args.prog:
:param args. dbase_file :
.■param args.pro j:
param args.silent:
.-param args .met_same:

arguments
name of the calling program
database file
name of the current project
'True' if using silent mode
unchanged metrics

158

.-param args.metrics: current metrics
:param args. config_file: current configuration file
:param args. config_bak: previous configuration file
-.param old: old configuration entries to be removed
:type args: :class: 'argparse.Namespace'
-.type args.prog: 'string'
-.type args.dbase_file: 'path '
.-type args .pro j: 'string'
:type args.silent: 'boolean '
.-type args.met_same: 'diet '
.-type args.metrics: 'diet '
.-type args. config_file: 'path '
: type args. config_bak: 'path '
.-type old: :class: 'argparse. Namespace'

H n t t

Setup verbose mode.
if not args.silent:

prg = prograss.Progress(args.prog, args.proj, len(self))
args.do_op * prg.do_op
cleanup = prg.cleanup
complete = prg.complete

else:
prg » []
args.do_op = lambda *a, **k: Nona
cleanup = lambda: None
complete = lambda: None

Backup any existing database file.
dbaseJbak = '.'.join([args.dbase_file, 'bak'])
if os.path.isfile(args.dbase_file):

shutil.copyfile(args.dbasefile, dbase_bak)
Open the database connection.
args.dbase = database.Database(args.dbase_file)
success = True
try:

Remove old database tables.
if old:

cleanup()
args.dbase.drop_tables(old.images,

old.downsamplers, old.ratios)
Create the project folder if it does not exist.
tools.create_dir(args.proj)
Compute for all images.
for image in self.images:

image. conpute (args)
except StandardError as std_err:

success » False
error * std_err

finally:
Remove the project directory and close the database.
shutil.rmtree(args.proj, True)
args.dbase.close()
if success:

Backup the project file.
shutil.copyfile(args.config_file, args.config_bak)
Delete the database backup.
if os.path.isfile(dbase_bak):

os.remove(dbase_bak)
Indicate completion and restore the console.
complete()
del prg

159

else:
Restore the previous database file.
os.remove(args.dbase_file)
if os.path.isfile(dbase_ba)c):

shutil.move(dbase_bak, args.dbase_file)
Restore the console
del prg
Print an error message.
print error

class Images(object):
"""This class calls operations for a particular set of images.

.-param images: images to downsample
:param downsamplers: downsamplers to use
:param same: 'True' if using unchanged images
'■type images: 'diet '
'■type downsamplers: list of :class: 'Downsamplers '
.-type same; 'boolean'

def init (self, images, downsamplers, same*False):
"""Create a new :class: 'Images ' object."""
self.images « images
self.downsamplers = downsamplers
self.same *= same
self.len a (len(self.images) *

sum (len (down) + down, ops for down in self .downsamplers))
def len (self):

"'"'Return the length of this :class:'Images ' object.
The length of an :class: 'Images' object is the number of images times
the sum of the lengths and the number of upsampling and comparison
operations of each :class: 'Downsamplers' object.
.-return; length of this :class: 'Images' object
: rtype: 'integer'

return self.len
def compute(self, args):

"""Perform all operations for this set of images.

:param args:
.param args. dbase_file:
:param args.dbase:
.-param args.proj:
-.param args. silent:
:param args.met_same:
-.param args.metrics:
:param args. do_op:
.-type args:
.-type args.dbase_file:
:type args.dbase:
.-type args .pro j:
:type args.silent:
'.type args.met_same:
:type args.metrics:
.-type args.do_op:

arguments
database file
connected database
name of the current project
'True' if using silent mode
unchanged laetrics
current metrics
updates the displayed progress
:class: 'argparse.Namespace'
'path '
:class: 'database.Database'
'string'
'boolean '
'diet '
'diet '
'function '

§ compute for all images.

160

for args.image in self-images:
Make a copy of the teat image.
if len (self) :

args.image_dir = tools.create_dir(args.proj, args. image)
args.master = os .path, join (args. image_dir, 'master.tif')
shutil.copyfile(self.images[args. image], args .master)

Compute for all downsamplers.
for downsampler in self.downsamplers:

downsampler.compute(args, self.same)
Remove the directory for this image.
if len(self):

shutil.rmtree(args.image_dir. True)

class Downsamplers(object):
"'"'This class calls operations for a particular set of downsamplers.

.-param downsamplers: downsamplers to use
:param ratios: ratios to downsample by
:param same: 'True ' if using unchanged downsamplers
:type downsamplers: 'diet '
:type ratios: list of :class: 'Ratios '
-.type same: 'boolean '

def init (self, downsamplers, ratios, same=False):
"""Create a new :class: 'Downsamplers ' object."""
self.downsamplers » downsamplers
self.ratios =* ratios
self.same ■ same
self.ops = len(self.downsamplers) * sum(rat.ops for rat in self.ratios)
self.len * (len(self.downsamplers) *

sum(len(rat) for rat in self.ratios)) if self.ops else 0
def len (self):

"""Return the length of this .-class: 'Downsamplers ' object.

The length of a :class: 'Downsamplers' object is the number of
downsamplers times the sum of the lengths of each :class: 'Ratios '
object.

.-return: length of this :class: 'Downsamplers' object
: rtype: 'integer'

return self.len
def compute(self, args, same):

"""Perform all operations for this set of downsamplers.

:param args:
:param args.dbase_file:
:param args.dbase:
: param args. pro j:
.-param args. silent:
:param args.met_same:
.-param args.metrics:
:param args .do_op:
:param args. image:
:param args. image_dir:
.-param args .master:
:param same:
-.type args:
: type args. dbase_file:
:type args.dbase:

arguments
database file
connected database
name of the current project
'True' if using silent mode
unchanged metrics
current metrics
updates the displayed progress
name of the image
directory to store results for this image
master image to downsample
'True' if possibly accessing an existing table
:class: 'argparse.Namespace'
'path '
:class: 'database.Database'

161

-.type args. proj: 'string'
-.type args.silent: 'boolean '
-.type args.mot_same: 'diet '
■type args.metrics: 'diet '
■type args. do_op: 'function
■type args. image: 'string'
■type args.image_dir: 'path '
-.type args .master: 'path '
■type same: 'boolean '

n tl It

is_same = self.same and same
Compute for all downsamplers.
for args.downsampler in self.downsamplers:

Create a directory for this downsampler if necessary.
if len (self) :

args.downsampler_dir = tools.create_dir(args.image_dir,
args. downsampler)

Compute for all ratios.
for ratio in self.ratios:

ratio.compute(args, self.downsamplers, is_same)
Remove the directory for this downsampler.
if len (self):

shutil.rmtree(args.downsampler_dir, True)

class Ratios(object):
"""This class calls operations for a particular set of ratios.
:param ratios: ratios to downsample by
:param upsamplers: upsamplers to use
:param same: 'True' if using unchanged ratios
:type ratios: 'diet '
:type upsamplers: list of :class: 'Upsamplers '
.-type same: 'boolean '

def init (self, ratios, upsamplers, same=False):
"""Create a new :class:'Ratios ' object."""
self.ratios » ratios
self.upsamplers “ upsamplers
self.same * same
self.ops - len(self.ratios) * sum(len(ups) for ups in self.upsamplers)
self.len » len(self.ratios) if self.ops else 0

def len (self):
"""Return the length of this :class: 'Ratios' object.

The length of a :class: 'Ratios' object is the number of ratios.

.-return: length of this -.class: 'Ratios' object
:rtype: ' integer '

return self.len
def compute (self, args, downsamplers, same):

"""Perform all operations for this set of ratios.

:param args:
:param args.dbase_file:
:param args.dbase:
: param args. pro j:
:param args.silent:

arguments
database file
connected database
name of the current project
'True ' if using silent mode

162

:param args. met_same: unchanged metrics
:param args.metrics: current metrics
:param args.do_op: updates the displayed progress
:param args. image: name of the image
.-param args.image_dir: directory to store results for this image
.-param args.master: Blaster image to downsample
:param args. downsampler: name of the downsampler
:param args.downsampler_dir: directory to store dowsampled images
.-param downsamplers: downsamplers to use
.-param same: 'True ' if accessing an existing
■type args: :class: 'argparse.Namespace'
■.type args. dbase_file: 'path '
■.type args. dbase: :class: 'database.Database '
■type args. proj: 'string'
-.type args.silent: 'boolean '
■.type args.met_same: 'diet '
■type args.metrics: 'diet '
■type args.do_op: 'function'
■type args. image: 'string'
■type args. image_dir: 'path '
■type args. master: 'path '
■.type args.downsampler: 'string'
■.type args.downsampler_dir: 'path '
■type downsamplers: 'diet '
■type same: 'boolean '

It It It

is_same = self.same and same
Compute for all ratios.
for args.ratio in self.ratios:

if len(self):
args.small = os.path.join(args.downsampler_dir,

join([args.ratio, 'tif']))
Create a directory for this ratio.
ratio_dir = tools.create_dir(args.downsampler_dir, args.ratio)
Downsample master.tif by ratio using downsampler.
{0} input image path (master)
(1) output image path (small)
(2) downsampling ratio
(3) downsampled size (width or height)
args.do_op(args)
call (

downsamplers[args.downsampler].format(
args.master, args.small,
args.ratio, self.ratios[args.ratio]

) . split ()
)

if is_same:
Access the existing database table.
args.table = join([args.image,

args.downsampler, args.ratio])
args.table_ba)c - args.dbase.backup_table(args .table,

args.metrics)
else:

Create a new database table.
args.table = args.dbase.add_table(

args.image, args.downsanpler, args.ratio, args.metrics)
Compute for all upsamplers.
for upsampler in self.upsamplers:

upsampler.compute(args, is_same)
Remove the directory for this ratio.
if len(self):

shutil.rmtree(ratio_dir, True)

163

Delete the backup table.
if is_same:

args.dbase.drop_backup(args.table_bak)

class (Jpsanplers (object) :
"""This class upsamples an image and compares with its master image.

:param upsamplers: upsamplers to use
-.param metrics; metrics to compare with
:param same: 'True' if using unchanged upsamplers
'.type upsamplers: 'diet '
'.type metrics: 'diet '
: type same; 'boolean '

def init (self, upsamplers, metrics, same=False);
"'"’Create a new : class: 'Upsamplers ' object."""
self.upsamplers = upsamplers
self.metrics * metrics
self.same = same
ops - len(self.metrics)
self.len = len(self.upsamplers) * (ops + 1) if ops else 0

def len (self):
"""Return the length of this :class: 'Upsamplers ' object.

The length of an :class: 'Upsamplers ' object is the number of upsampling
and comparison operations to perform.

:return: length of this :class: 'Upsamplers ' object
:rtype: 'integer'

return self.len
def compute(self, args, same):

"""Perform all operations for this set of ratios.
:param args:
:param args.dbase_file:
.-param args. dbase:
: param args. pro j:
:param args.silent:
:param args. met_same :
:param args.metrics:
;param args.do_op:
:param args.image:
;param args. image_dir :
.-param args .master:
:param args. downsampler:
:param args. downsampler_dir:
.-param args.ratio:
:param args.small;
.-param args .table:
:param args.tablebak:
:param same:
'.type args:
■.type args. dbase_ file:
.-type args.dbase:
'.type args. pro j:
:type args.silent:
-.type args.met_same:
'■type args .metrics :
'.type args.do_op:
:type args. image:

arguments
database file
connected database
name of the current project
'True' if using silent mode
unchanged metrics
current metrics
updates the displayed progress
name of the image
directory to store results for this image
master image to downsample
name of the downsampler
directory to store dowsampled images
resampling ratio
down sampled image
name of the table to insert the row into
name of the backup table (if it exists)
'True ' if accessing an existing table
:class: 'argparse.Namespace'
'path '
:class: 'database.Database '
'string'
'boolean '
'diet '
'diet '
'function'
'string'

164

:type args.image_dir:
:type args.master:
:type args. downsamp1 er :
: type args. downsaspler_dir:
:type args.ratio:
:type args.small:
:type args.table:
:type args.tablebak:
:type same:

'path '
'path '
'string'
'path '
'string'
'path '
'string'
'string'
'boolean

is_same • self.same and same and args.raat_sama
Compute for all upsamplers.
for upsampler in self.upsamplers:

row « {}
if is_same:

Access the existing table row.
row = args.dbase.get_error_data(args.table_bak, upsampler,

' , '.join(args.met_same))
if len(self):

if not is_same:
Start creating a new table row.
row ['upsampler'] - upsampler

Construct the path to the upsampled image.
large » os.path.join(

os.path.dirname(args.small), args.ratio,
join([upsampler, 'tif'])

)

Upsample ratio.tif back to 840 using upsampler.
{0} input image path (small)
{1} output image path (large)
(2) upsampling ratio
(3) upsampled size (always 840)
args.do_op(args, upsampler)
call(self.upsamplers[upsampler].format(

args.small, large, args.ratio, 840).split())
Compute for all metrics.
for metric in self.metrics:

Compare master.tif to upsampler.tif.
(0) reference image path (master)
(1) test image path (large)
args.do_op(args, upsampler, metric)
row[metric] » float(

check_output(
self.metrics[metric][0].format(args.master,

large) .split ()
)

)

Remove the upsampled image.
os.remove(large)

Add the new row to the table.
if row:

args.dbase.insert(args.table, row)

A.8 parsing.pv

#//usr/bin/env python
coding: utf-8
#

165

Copyright (c) 2012, Adam Turcot te (adam.tarcottaSgnail.com)
t Nicolas Robidoux (nicolas.robidouxSgmail.com)
t License: BSD 2-Clause License
#
This file is part of the
EXQ01RES (Extensible Quantitative Image RESampling) test suite
#

"""Classes and methods used for parsing arguments and formatting help text."""

import argparse
import os
import fnmatch
import re
import sys
from configobj import ConfigObj
from axquiras import tools
from exquires import version as VERSION

pylint: disable-msg“R0903

def _remove_duplicates(input_list):
'""’Remove duplicate entries from a list.
.. note::

This is a private function called by :meth: 'ListAction. call_
and :meth: 'RatioAction. call_

:param input_liat: list to remove duplicate entries from
.•type input_list: 'list of values'
:return: list with duplicate entries removed
:rtype: 'list of values '

unique * set()
return [x for x in input_list if x not in unique and not unique.add(x)]

def _format_doc(docstring):
"""Parse the module docstring and re-format all 'reST' markup.

.. note::

This is a private function called when creating a new
:class: 'ExquiresParser' object.

:param docstring: docstring to format
: type docstring: 'string '

:return: formatted docstring
: rtype: 'string '

It IT II

Deal with directives and LaTeX math symbols.
dirl =*= re. sub (r' : f ile: '', r'\033[4m', docstring)
dir2 = re.sub(r':\S+:'', r'\033[lm', dirl)
dir3 * re.sub('w , r'\033[0m', dir2)
dir4 = re.sub(r'\\infty', 'infinity', re.sub(r'Well', 'L', dir3))
Deal with list items.
iteml = re.sub(r' * ', u' \u2022 ', dir4)
Deal with bold formatting.
boldl = re.sub(r' *{2)', r' \033[lm', iteml)

166

bold2 * re.sub(r'~*{2}' , r'~\033[lm', boldl)
bold3 = re.sub(r'*{2) r'\033[0m bold2)
bold4 * re.sub(r'*{2), ' , r'\033[Om,', bold3)
bold5 = re.sub(r'*{2}.', r'\033[Om.', bold4)
return re.sub(r'*{2}$', r'\033[0m$', bold5)

class ExquiresParser(argparse.ArgumentParser):
"""Generic **EXQOIRES** parser.

:param description: docstring from the calling program
: type description: 'string '

def init (self, description):
"""Create a new ExquiresParser object."""
super(ExquiresParser, self). init (

version»VERSION, description=_format_doc(description),
formatter_class=lambda prog: ExquiresHelp(prog,

max_help_position=36)
)

def parse_args(self, args=None, nanespace<None):
"""Parse command-line arguments.

:param args: the command-line arguments
:param namespace: the namespace
: type args: 'string '
/type namespace: :class: 'argparse.Namespace'

:return: the parsed arguments
:rtype: :class:'argparse.Namespace '

tl It It

Get the raw command-line arguments
if args is None:

args *= sys.argv[l:]
Attempt to parse the command-line arguments.
try:

args * super(ExquiresParser, self).parse_args(args, namespace)
except argparse.ArgumentTypeError, error:

self.error(str(error))
Return the parsed arguments.
return args

class OperationsParser(ExquiresParser):
"""Parser used by :ref: 'exquires-run ' and :ref: 'exquires-update '.

:param description: docstring from the calling program
.-param update: 'True' if called by :ref: 'exquires-update '
: type description: 'string '
:type update: 'boolean '

def init (self, description, update*False):
"""Create a new OperationsParser object."""
super(OperationsParser, self). init (description)
self.add_argument('-s', '— silent', action®'store_true',

help®'do not display progress information')
self.add_argument('-p', '— proj', metavar®'PROJECT',

type®str, default®'projectl',
help®'name of the project (default: pro jectl)')

167

self.update s update
def parse_args(self, args=None, namespacesNone)

"""Parse the received arguments.
This method parses the arguments received by
:ref'exquires-update '.

:ref: ' exquires-run ' or

:param args: the command-line arguments
:param namespace: the namespace
'.type args: 'string'
:type namespace: :class: 'argparse.Namespace '
:return:
:rtype:

the parsed arguments
; class: 'argparse. Namespace '

Get the raw command-line arguments
it args is None:

args = sys.argv[1:]
Attempt to parse the command-line arguments.
args * super(OperationsParser, self).parse_args(args, namespace)
Construct the path to the configuration and database files.
args.dbasefile = join([args.proj, 'db'])
args.configfile * join([args.proj, 'ini'])
args.configjbak = '.'.join([args.config_file, 'bak'])
args.prog * self.prog
Report an error if the configuration file does not exist.
if not os.path.isfile(args.config_file):

self.error(' '.join(['unrecognized project:', args .proj]))
if self.update:

Determine if the database can be updated.
if not (os.path.isfile(args.config_bak) and

os.path.isfile(args.dbase_file)):
self.error(' '. join ([args.pro j, 'has not been run']))

else:
Create a new database file, backing up any that already exists.
if os.path.isfile(args.dbase_file):

os.rename(args.dbase_file, join([args.proj, 'db', 'bak']))
Return the parsed arguments.
return args

class StatsParser(ExquiresParser):
"""Parser used by :ref: 'exquires-report ' and :ref: 'exquires-correlate '

:param description: docstring from the calling program
:param correlate: 'True' if using :ref:'exquires-correlate'
'.type description: 'string'
'.type correlate: 'boolean '

def init (self, description, correlate-False):
"""Create a new StatsParser object.
super(StatsParser, self). init (description)
self.correlate » correlate
Output options.
self.add_argument('-1', '— latex', actions'store_true',

helps'print a LaTeX formatted table')
if not correlate:

168

group - self.add_mutually_exclusive_group()
group.add_argument(' -r', '— rank', action*'store_true' ,

help='print Spearman (fractional) ranks')
group.add_argument('-m', '— merge', action*'store_true' ,

help*'print merged Spearman ranks')
self,add_argument('-p', '— proj', metavar*'PROJECT', type=str,

action*ProjectAction,
help*'name of the project (default: projectl)')

self.add_argument('-f' , '— file', metavar*'FILE',
type*argparse.FileType(' w'), default*sys . stdout,
help*'output to file (default: sys.stdout)')

self.add_argument('-d' , '— digits', metavar*'DIGITS',
type*int, choices*range(1, 16), default*4,
help*'total number of digits (default: 4)')

if correlate:
Anchor option (sorting for exquires-correlate) .
self.add_argument(' -a', '— anchor', metavar*'ANCHOR', type*str,

action*AnchorAction, default*None,
help*'sort using this anchor (default: none)')

else:
Sort option.
self.add_argument('-s', '— sort', metavar*'METRIC', type*str,

action*SortAction, default*None,
help*'sort using this metric (default: first)')

Upsampler selection.
self.add_argument('-0', '— up', metavar*'METHOD',

type*str, nargs*'+', action*ListAction,
help*'upsamplers to consider (default: all)')

Determine if using exquires-report or exquires-correlate.
if correlate:

group = self.add_mutually_exclusive_group()
else:

group * self
Aggregation/correlation options.
group.add_argument('-I' , '— image', metavar*'IMAGE',

type*str, nargs*'t', action*ListAction,
help*'images to consider (default: all)')

group.add_argument('-D' , '— down', metavar*'METHOD',
type=str, nargs*'+', action*ListAction,
help*'downsamplers to consider (default: all)')

group.add_argument('-R', '— ratio', metavar*'RATIO',
type*str, nargs*'4', action*RatioAction,
help*'ratios to consider (default: all)')

group.add_argument(' —M' , '— metric', metavar*'METRIC',
type*str, nargs*'+', action*ListAction,
help*'metrics to consider (default: all)')

def parse_args(self, args*sys.argv[l:], namespace*None):
"""Parse the received arguments.

This method parses the arguments received by :ref : 'exquires-report ' or
:ref: 'exquires-correlate '.

:param args: the command-line arguments
:param namespace: the namespace
.-type args: 'string'
’.type namespace: :class: 'argparse.Namespace'

.■return: the parsed arguments
: rtype: : class: 'argparse. Namespace '

Deal with the -h/— help and -v/— version options.
help_or_version = False

169

for arg in args:
if arg in ('-h', '— help', '-v', '— version'):

help_or_version = True
break

if not help_or_version:
Deal with the -p/— proj option.
proj = False
for i, arg in enumerate(args, 1):

if arg in ('-p', '— proj'):
args.insert(0, args.pop(i))
args.insert(0, args.pop(i))
proj » True
break

if not proj:
args.insert(0, 'projectl')
args.insert(0, '— proj')

Setup the arguments to be parsed last.
if self.correlate:

Hake -a/— anchor the rightmost option.
flags = ('-a', '— anchor')

else:
Make -a/— sort the rightmost option.
flags = ('-s', '— sort')

for i, arg in enumerate(args):
if arg in flags:

args.append(args.pop(i))
args.append(args.pop(i))
break

Attempt to parse the command-line arguments.
args = super(StatsParser, self).parse_args(args, namespace)
Default to sorting by the leftmost column.
if not args.sort:

args.sort » args.metric(0)
Deal with the sort/metric options.
if not (self.correlate or args.merge) and args.sort not in args.metric:

args.metric.insert(0, args.sort)
args.showsort = False

Construct the path to the database file.
args.dbase_file = '.'.join([args.proj, 'db'])
Heed to prune the diet first so it matches the argument list.
args.metrics_d = tools.prune_metrics(args.metric, args,metrics_d)
Return the parsed arguments.
return args

class ExquiresHelp(argparse.RawDescriptionHelpFormatter):
"""Formatter for generating usage messages and argument help strings.

This class is designed to display options in a cleaner format than the
standard argparse help strings.

def _format_action_invocation(self, action):
'"'"Format the string describing the invocation of the specified action.
:param action: the parsing action
:type action: :class: 'argparse.Action '

:return: the formatted action invocation

170

:rtype: 'string'

if not action.option_strings:
metavar, = self._metavar_formatter(action, action .dest) (1)
return metavar

else:
parts - []
if action.nargs “•* 0:

If the Optional doesn't take a value, the format is:
—St — long
parts.extend(action.option_strings)

else:
If the Optional takes a value, the format is:
§ -s, — long ARGS
default ® action.dest.upper()
args_string » self._format_args(action, default)
option_strings *= action.option_strings[:]
last_option_string = option_strings.pop()
for option_string in option_strings:

parts.append(option_string)
parts.append('%s %s' % (last_option_string, args_string))

return ', '.join(parts)
def _fill_text(self, text, width, indent):

"""Fill action text with whitespace.

:param text: the text to display
:param width: line width
:param indent: indentation printed before the text
.-type text: 'string'
.'type width: 'integer'
.-type indent: 'string'

.■return: the formatted text
: rtype: 'string '

return join([indent + line for line in text.splitlines (True)])

class ProjectAction(argparse.Action):
"""Parser action to read a project file based on the specified name. """

def call (self, parser, args, value, option_string=None):
"""Parse the :option: '-p'/:option: '— project' option.

:param parser: the parser calling this action
:param args: arguments
:param values: values
:param option_string: command-line option string
•■type parser: .-class: 'ExquiresParser'
.-type args: :class: 'argparse.Rastespace '
-.type values: 'list of values'
.-type option_string: 'string'

:raises: :class: 'argparse.ArgumentError '

n n if

§ Construct the path to the configuation and database files.
proj_file « join([value, 'ini', 'bak'])
db_file = '.'.join([value, 'db'])
setattr(args, 'db_file', db_file)

Exit with an error if one of these files is missing.
if not (os.path.isfile(proj_file) and os.path.isfile(db_file)):

msg = ' '.join(['do \'exquires-run -p', value, 'V first'])

171

raise argparse. ArgumentTypeError(msg)

Read the configuration file last used to update the database.
config = ConfigObj(proj_file)
setattr(args, self.dest, value)
args.Image « config['Images'].keys()
args.down = config['Downsamplers'].keys()
args.ratio — config['Ratios'].keys()
args.up = config['Opsamplers'].keys()
args.metrics_d = config['Metrics']
args.metrics = config['Metrics'].keys()
args.metric = config['Metrics'].keys()
args.sort = None
args.showsort = True
args.merge = False
args.rank * Falsa
Set the default correlation key in case an anchor is specified.
args.key * 'metric'

class ListAction(argparse.Action):
"""Parser action to handle wildcards for options that support them.

When specifying aggregation options with exquires-report, this class
expands any wildcards passed in arguments for the following options:

* Images
* Downsamplers
* opsamplers
* Metrics

def call (self, parser, args, values, option_string=None):
"""Parse any option that supports lists with wildcard characters.

:param parser: the parser calling this action
:param args: arguments
:param values: values
:param option_string: command-line option string
:type parser: :class: 'ExquiresParser '
-.type args: :class: 'argparse.Namespace '
'.type values: 'list of values'
'■type option_string: 'string'

:raises: :class: 'argparse.ArgumentError '

value_list = getattr(args, self.dest)
matches = []
for value in values:

results = fnmatch.filter(value_list, value)
if not results:

tup * value, ', '.join([repr(val) for val in value_list])
msg = 'invalid choice: %r (choose from %s) ' % tup
raise argparse.ArgumentError(self, msg)

matches.extend(results)
Set the argument and possibly set the correlation key.
setattr(args, self.dest, _remove_duplicates(matches))
if self.dest is not 'up':

args.key > self.dest

class RatioAction(argparse.Action):
"”"Parser action to deal with ratio ranges."""

111

def call (self, parser, args, values, option_string=Hone)
" " "Parse the : opt ion: '-r'/: option : '— ratio' option.
.param parser:
:param args:
:param values:
:param option, string:
'■type parser:
:type args:
:type values:
:type option_string:

the parser calling this action
arguments
values
command-line option string
:class: 'ExquiresParser'
:class:'argparse.Samespace '
'list of values '
'string'

:raises: :class: 'argparse.ArgumentError '

II II II

matches = (]
for value in values:

Detect range.
nuns = value.split('-')
if len(nums) == 1:

if nums[0] not in args.ratio:
tup = value, ', join([repr(val) for val in args.ratio])
msg = 'invalid choice: %r (choose from %s)' % tup
raise argparse.ArgumentError(self, msg)

matches.append(int(nuns[0]))
elif len(nums) == 2:

value_range = range(int(nuns[0]), int(nums[1]) + 1)
for nun in value_range:

if str(num) not in args.ratio:
tup = value, ', '.joint[

repr(val) for val in args.ratio
])
msg = 'invalid choice: %r (choose from %s) ' % tup
raise argparse.ArgumentError(self, msg)

matches.extend(value_range)
else:

msg = 'format error in {)'.format(value)
raise argparse.ArgumentError (self, msg)

Set the argument and correlation key.
setattr(args, self.dest, _remove„duplicates(matches))
args.key = self.dest

class AnchorAction(argparse.Action):
"""Parser action to sort the correlation matrix."""

def call (self, parser, args, value, option_string=None):
"""Parse the :option: '-a'/:option: '— anchor' option.

:param parser:
:param args:
:param values:
:param option_string:
'.type parser:
'.type args:
’■type values:
'■type option_string:

the parser calling this action
arguments
values
command-line option string
:class: 'ExquiresParser'
:class: 'argparse.Namespace'
'list of values '
'string'

:raises: :class:'argparse.ArgumentError'

group = getattr(args, args.key)
if value not in group:

tup = value, ', '.join([repr(val) for val in group])
msg = 'invalid choice: %r (choose from %s)' % tup
raise argparse.ArgumentError(self, msg)

173

setattr(args, self.dest, value)

class SortAction(argparse.Action):
"""Parser action to sort the data by the appropriate metric.
def call (self, parser, args, value, option_string=None):

" " "parso the : option: '-a '/-.option: ’— sort' option.

:param parser: the parser calling this action
:param args: arguments
:param values: values
.param option_string: command-line option string
:type parser: :class: 'ExquiresParser'
•■type args: : class:'argparse. Namespace '
.-type values: 'list of values'
■■type option_string: 'string'

.■raises: .-class: 'argparse.ArgumentError'

if value not in args.metrics:
tup = value, ', join([repr(val) for val in args.metrics])
msg “ 'invalid choice: %r (choose from %s)' % tup
raise argparse.ArgumentError(self, msg)

setattr(args, self.dest, value)

A.9 progress.py

#!/usr/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotte (adam.turcotte8gmail.com)
Nicolas Robidoux (nicolas.robidoux8gmail.com)
License: BSD 2-Clause License
#
This file is part of the
EXQUIRES (Extensible Quantitative Image RESampling) test suite
#

" ""Display progress info for :ref: 'exquires-run ' and :ref: 'exquires-update '.

When the :option: '-s '/-.option: '— silent' option is not selected in
:ref: 'exquires-run ' or :ref: 'exquires-update ', the Progress class is used to
display the appropriate information.

import curses
import time

pylint: disable-msg=E1101
class Progress(object):

’"’"This class contains methods for displaying progress in exquires.

When :ref: 'exquires-run ' and :ref: 'exquires-update' are used without silent
mode enabled, this class is responsible for displaying information about
the downsampling, upsampling, and comparison steps and the total progress.

:param program: name of the program that is running
:param proj: name of the project being used
:param total_ops: total number of operations
.-type program: 'string'

174

:type proj: 'string'
■ type total_ops: 'integer'

def init (self, program, proj, total_ops):
"""Create a new Progress object."""
self.scr = curses.initscr()
curses.cbreak()
curses.noecho()
curses.curs_set(0)
self.program = program
self.proj ■ proj
self.total_ops - total_ops
self.num_ops <> 0

def dal (self):
"""Destruct this Progress object and restore the console."""
self.scr.keypad(0)
curses.echo()
curses.nocbreak()
curses.endwin()

def _table_top(self, line, label, content):
"""Draw the top row of the progress table.

This method draws the first row of the progress table, which
displays the project name. Three lines are used to draw this section
of the table.

.. note::

This is a private method called by
:meth: 'cleanup ', :meth: 'complete ', and :meth: 'do_op'.

. . warning: :

To display the updated progress table, the screen must be
refreshed by calling :meth:'self.scr.refresh '.

:param line: line number to start drawing at
:param label: label for this table entry
:param content: content for this table entry
: type line: 'integer '
: type label: 'string '
.-type content: 'string'

rt tt it

Top line.
self.scr.addch(line, 1, curses.ACS_ULCORNER)
for column in range(2, 14):

self.scr.addch(line, column, curses.ACS_HLINE)
self.scr.addch(line, 14, curses.ACS_TTEE)
for column in range(15, 56):

self.scr.addch(line, column, curses.ACS_HLINE)
self.scr.addch(line, 56, curses.ACS_URCORNER)
Content line.
self .scr .addch (line -I- 1, 1, curses .ACS_VI,INE)
self.scr.addstr(line + 1, 2, label)
self.scr.addch(line +1, 14, curses.ACS VLINE)
salf.scr.addstr(line + 1, 16, content)
self .scr. addch (line + 1, 56, curses .ACS_VI,INE)
Bottom line.
self.scr.addch(line + 2, 1, curses.ACS_LTEE)
for column in range(2, 14):

self.scr.addch(line + 2, column, curses.ACS_HLINE)
self.scr.addch(line + 2, 14, curses.ACS_PLUS)

175

for column in range(15, 56):
self.scr.addch(line + 2, column, curses.ACS_HLINE)

self.scr.addch(line + 2, 56, curses.ACS_RTEE)
def table_middle(self, line, label, content):

"""Draw one of the middle rows of the progress table.
This method draws one of the middle rows of the progress table.
Two lines are used to draw this section of the table.

.. note::

This is a private method called by
:meth: 'cleanup ', : math: 'complete', and -.math: 'do_op '.

warning: :

To display the updated progress table, the screen must be
refreshed by calling ;meth; 'self.scr.refresh'.

:param line: line number to start drawing at
:param label: label for this table entry
:param content: content for this table entry
;type line:
.-type label:
-.type content:

'integer'
'string'
'string'

Content line.
self.scr.addch(line, 1, curses.ACS_VLIHE)
self.scr.addstr(line, 2, label)
self.scr.addch(line, 14, curses,ACS_VLINE)
self.scr.addstr(line, 16, content)
self.scr.addch(line, 56, curses.ACS_VLINE)
Bottom line.
self.scr.addch(line + 1, 1, curses.ACS_LTEE)
for column in range(2, 14):

self.scr.addch(line + 1, column, curses.ACS_HLINE)
self.scr.addch(line + 1, 14, curses.ACS_PLUS)
for column in range(15, 56):

self.scr.addch(line + 1, column, curses.ACS_HLINE)
self.scr.addch(line + 1, 56, curses.ACS_RTEE)

def table„bottom(self, line, label, content):
"""Draw the bottom row of the progress table.

This method draws one of the middle rows of the progress table.
Two lines are used to draw this section of the table.

.. note::

This is a private method called by
:meth: 'cleanup', :meth: 'complete', and :oeth: 'do_op'.

.. warning::

To display the updated progress table, the screen must be
refreshed by calling -.met h: 'self .scr. refresh '.

.-param line:
:param label:
:param content:
:type line:
'.type label:
:type content:

line number to start drawing at
label for this table entry
content for this table entry
'integer '
'string'
'string'

n t t it

Content line.

176

salf.scr.addch(line, 1, curses.ACS_VLINE)
self.scr.addstr(line, 2, label)
self.scr.addch(line, 14, curses.ACS_VLINE)
self.scr.addstr(line, 16, content)
self.scr.addch(line, 56, curses.ACS_VLINE)
Bottom line.
self.scr.addch(line + 1, 1, curses.ACS_LLCORNER)
for column in range(2, 14):

self .scr. addch (line + 1, column, curses.ACS_HLINE)
self.scr.addch(line + 1, 14, curses.ACSJ3TEE)
for column in range(15, 56):

self.scr.addch(line + 1, column, curses.ACS HLINE)
self.scr.addch(line + 1, 56, curses.ACSLRCORNER)

def cleanup(self):
"""Indicate that files are being deleted."""
self.scr.clear()
self .scr. addstr (1, 1, self .program, curses .A_BOLD)
self. table_top(3, 'PROJECT', self.proj)
self. table_middle(6, 'PROGRESS', '0%')
self. tableJbottom(8, 'STATUS', 'DELETING OLD FILES')
self.scr.refresh()

def do_op(self, args, upsampler=None, matric=None):
"""Update the progress indicator.

* If no upsampler is specified, 'operation*downsampling'
* If an upsampler is specified, but no metric, 'operation^upsampling'
* If an upsampler and metric are specified, 'operation=comparing '

:param args:
.-param args. image:
:param args. downsampler:
:param args.ratio:
:param upsampler:
:param metric:
:type args:
.-type args. image:
'.type args. downsampler:
.-type args. ratio:
•■type upsampler:
.-type metric.-

arguments
image being processed
downsampler being used
resampling ratio being used
upsampler being used
mtetric being used
: class: 'argparse. Namespace '
'string'
'string'
'string'
'string'
'string'

percent * int(self.num_ops * 100 / self,total_ops)
self.num_ops +* 1
self.scr.clear()
self.scr.addstr(1, 1, self.program, curses.A_BOLD)
self. table_top(3, 'PROJECT', self.proj)
self. table_middle(6, 'PROGRESS', '()%'. format(percent))
if metric:

self._table_middle(8, 'STATUS', 'COMPARING')
elif upsampler:

self._table_middle(8, 'STATUS', 'UPSAMPLING')
else:

self._table_middle(8, 'STATUS', 'DOWNSAMPLING')
self. table_middle(10, 'IMAGE', args.image)
self. table_middle(12, 'DOWNSAMPLER', args.downsampler)
if metric:

self._table_middle(14, 'RATIO', args.ratio)
self. table_middle(16, 'UPSAMPLER', upsampler)
self. table_bottom(18, 'METRIC', metric)

elif upsampler:
self. table_middle(14, 'RATIO', args.ratio)
self. table_bottom(16, 'UPSAMPLER', upsampler)

177

else:
self. table_bottom(14, 'RATIO', args.ratio)

self. scr. ref resh ()
def complete(self):

"""Complete the progress indicator.
Call this method to indicate success once all operations have been
performed.

.. note::

The completion screen is displayed for a half second.
.. warning::

To restore the terminal after completion, destruct the
:class: 'Progress' object by calling 'del prg'
(where 'prg' is the object to destruct).

» n tt
self.scr.clear()
self.scr.addstr(1, 1, self.program, curses.AJBOLD)
self. table_top(3, 'PROJECT', self.proj)
self. table_middle(6, 'PROGRESS', '100%')
self. table_bottom(8, 'STATUS', 'COHPLETE')
self.scr.refresh()
time.sleep(0.5)

A. 10 reportpy

#//usr/bin/env python
coding: utf—8
#
Copyright (c) 2012, Adam Turcotte (adam.turcotte@gmail.com)
Nicolas Robidoux (nicolas.robidoux@gmail.com)
License: BSD 2-Clause License
#
This file is part of the
EXQUIRES (Extensible Quantitative Image Resampling) test suite
#

"""Print a formatted table of aggregate image difference data.

Each database table in the current project contains data for a single image,
downsampler, and ratio. Each row represents an upsampler and each column
represents a difference smtric. By default, the data across all rows and
columns of all tables is aggregated. Use the appropriate option flags to
aggregate across a subset of the database.

••Features:••

• .-option: ‘-R '/-.option '— ratio' supports hyphenated ranges
(for example, '1-3 S' gives '1 2 3 S')

* .option: ' -U'/: option: '— up', :option: '-I'/-.option: '— image',
.-option: '-D'/.-option: '— down’ and .-option: '-M' / -.option: '— metric '
support wildcard characters

ft tl tl

from operator import itemgetter
from exquires import database, parsing, stats

178

mailto:adam.turcotte@gmail.com
mailto:nicolas.robidoux@gmail.com

def _print_table(args):
"""Print a table of aggregate image comparison data.
Since the database contains error data for several images, downsamplers,
ratios, upsamplers, and metrics, it is convenient to be able to specify
which of these to consider. This method aggregates the data for each
relevant column in the appropriate tables.

.. note::

This is a private function called by :func: 'main'.

:param args: arguments
-.param args.dbase__file: database file
.-param args. image:
.-param args.down:
:param args.ratio:
:param args.up:
:param args.metric:
:param args .metrics_d:
.-param args. file:
.-param args. digits:
:param args.latex:
:param args.rank:
:param args.merge:
.-param args. sort:
:param args. show_sort:
.-type args:
.-type args.dbaae_file:
-.type args. image:
.-type args.down:
.-type args.ratio;
; type args. up:
.-type args.metric:
:type args.metrics_d:
.-type args. file:
.-type args.digits:
:type args.latex:
-.type args.rank:
-.type args .merge:
: type args.sort:
.-type args. show_sort:
It It II

Create a list of the sorting options for each metric.
metrics_desc * []
for metric in args.metric:

metrics_desc.append(int(args.metrics_d[metric][2]))
Determine the sort index.
reverse_index - args.metric.index(args.sort)
sortindex m reverse_index + 1

See if the config file has been poorly edited by the user.
if not (len(args.image) or len(args.down) or

len(args.ratio) or len(args.up) or len(args.metric)):
return

Open the database connection.
dbase = database.Database(args.dbase_file)
Get a list of table names to aggregate across.
tables = dbase.get_tables(args)
Get the table (list of lists) of aggregate image difference data.
printdata = stats.get_aggregate_table(dbase, args.up,

args .metrics_d, tables)
Close the database connection.

selected image names
selected downsampler names
selected ratios
selected upsampler names
selected metric names
all metric names
output file
number of digits to print
'True ' if printing a LaTeX-formatted table
'True ' if printing Spearman (fractional) ranks
'True' if printing merged Spearman ranks
metric to sort by
True ' if the sort column should be displayed
: class: 'argparse. Namespace '
'path '
'list of strings '
'list of strings '
'list of strings '
'list of strings '
'list of strings '
'diet '
'path '
'integer'
'boolean '
'boolean '
'boolean '
'string'
'boolean '

179

dbase. close ()
if args.rank:

Modify the table ao it contains Spearman ranks instead of data.
printdata = stats.get_ranks(printdata, metrics_desc, sort_index)

elif args.merge:
Modify the table so it contains merged ranks instead of data.
printdata = stats.get_merged_ranks(printdata, matrics_desc, 1)

else:
Sort by the specified index in the appropriate order.
printdata.sort(key*itemgetter(sort_index),

reverse=metrics_desc[reverse_index])
Add the table headers.
if args.merge:

header * ['upsampler’, 'rank']
else: ,

header = ['upsampler']
for metric in args.metric:

header.append(metric)
Remove the sort column if necessary.
if not args.show_sort:

header.pop(1)
for row in printdata:

row.pop(sort_index)
Pass the printdata to the appropriate table printer.
if args.latex:

stats.print_latex(printdata, args, header)
else:

stats.print_normal(printdata, args, header)

def mainQ :
'"'"Run :ref: ’exguires-report ’.
Parse the command-line arguments and print the aggregate data table.
rt tt it

_print_table (parsing. StatsParser (doc) .parse_args ())
if name == ' main ' :

main()

A. 11 run.py

#//usr/bin/env python
t coding: utf-8
*
t Copyright (c) 2012, Adam Turcotte (adam.turcotte8gmail.com)
Nicolas Robidoux (nicolas.robidoux@gmail.com)
License: BSD 2-Clause License
»
i This file is part of the
EXQUIRES (Extensible Quantitative Image RESanpling) test suite
#

"""Compute error data for the entries in the specified project file.
The project file is read to determine which images, downsamplers, ratios,
upsamplers, and metrics to use. If a database file already exists for this
project, it will be backed up and a new one will be created.

Each image will be downsampled by each of the ratios using each of the
down samplers. The down sampled images will then be upsampled back to their

180

mailto:nicolas.robidoux@gmail.com

original size (840x840) using each of the upsamplers. The upsampled images will
be compared to the original images using each of the metrics and the results
will be stored in the database file.

If you make changes to the project file and wish to only compute data for these
changes rather tlian recomputing everything, use :ref: 'exquires-update '.
To view aggregated error data, use :ref: 'exquires-report'.

II II II

from configobj import ConfigObj
from exquires import operations, parsing

daf _run(args):
"""Greats a new project database and populate it with computed data.
.. note::

This is a private function called by :func: 'main'.

:param args: arguments
:param args.config_file: current configuration file
:type args: :class:'argparse.Namespace '
:type args. config_ file: 'path'

II II II

§ Read the configuration file.
config = ConfigObj(args.config_file)
args.metrics = config['Metrics']
Perform operations.
operations.Operations(

[operations.Images(config[' Images'],
[operations.Downsamplers(config['Downsamplers'],
[operations.Ratios(config['Ratios'],
[operations.Upsamplers(config['Upsamplers'], args .metrics)])])])}

).compute(args)

def main () :
"""Run :ref: 'exquires-run '.

Create a database for the specified project file.

.. warning::

If a database already exists for this project, it will be overwritten.

tl II II

_run (parsing. OperationsParser (doc) . parse_args ())
if name »*■ ' main ' :

main()

A. 12 stats.py

#//usr/bin/env python
coding: utf-8
*
Copyright (c) 2012, Adam Turcotte (adam.turcotteSgmail.com)
§ Nicolas Robidoux (nicolas.robidouxSgmail.com)
License: BSD 2-Clause License
§

181

This file is part of the
EXQUIRES (Extensible Quantitative linage RESampling) test suite
#
nncollection of methods for producing statistical output."""

from operator inport itemgetter
from subprocess import check_output
import numpy

def _format_ceIl(call, digits):
"""Return a formatted version of this cell of the data table.
.. note::

This is a private function called by :func: 'print_normal'
and : func: 'print_latex '.

:param cell: cell to format
.-param digits: maximum number of digits to display
: type cell: 'string '
: type digits: 'integer '

:return: the formatted cell
: rtype; 'string '

It tl tl

try:
value * str(float(cell))
if value[0] is '0' :

return value[1:digits + 2]
elif value[0] is

if value[l] is '0':
return ''.join([', value[2:digits +3]])

return value(:digits + 2]
return value[:digits + 1]

except ValueError:
Cell is not a float.
return cell

def print_normal(printdata, args, header, matrix=False):
"""Print the processed data table with normal formatting.

:param printdata:
.-param args:
:param args.file:
:param args.digits:
-.param header:
.-param matrix:
.-type printdata:
.-type args:
:type args.tile:
.-type args. digits :
-.type header:
.-type matrix:

table of data to print
arguments
path to write the aggregated error table
maximum number of digits to display
table headings
'True' if printing a correlation matrix
'list of lists '
:class: 'argparse.Namespace '
'path '
'integer '
'list of strings '
'boolean '

II II II

Print the header.
if matrix:

index = 0
pad = [max((len(head) for head in header))]
print » args.file, ''.1just(pad[0]),

else:
index = 1
pad * [max(len(header[0]) , max(len(str(row[0])) for row in printdata))]
print » args.file, header[0].1just(pad[0]),

182

pad[l:] = [max(args.digits + 2, len(head)) for head in header[index:]]
for i, heading in enumerate(header[index:], 1):

print » args.file, heading.rjust(pad[i] + 1),
print » args.file
Print the remaining rows.
for j, row in enumerate(printdata):

Print the ceil for the left column.
if matrix:

print » args.file, header[j].1just(pad[0]),
else:

print » args.file, str(row[0]).1just(pad[0]),
Print the cells for the remaining columns.
for i, cell in enumerate(row[index:], 1):

print » args.file, _format_cell(
cell, args.digits).rjust(pad[i] + 1),

print » args.file

def print_latex(printdata, args, header, matrix=False):
"""Print the processed data table with LaTeX formatting.
:param printdata:
:param args:
:param args.file:
:param args. digits:
:param header:
:param matrix:
-.type printdata:
.-type args:
:type args.file:
-.type args. digits:
:type header:
.-type matrix:

table of data to print
arguments
path to write the aggregated error table
maximum number of digits to display
table headings
'True' if printing a correlation matrix
'list of lists '
:class: 'argparse.Namespace '
'path '
'integer '
'list of strings '
'boolean '

It H II
No padding is necessary since this is a LaTeX table.
print » args.file, 'Wbegin[table)[t]'
print » args.file, 'Wcentering'
print » args.file, 'Wbegin(tabular}((1||',
for dummy in range(len(printdata[0]) - 1):

print » args.file, 'r|',
print » args.file, '}'
print » args.file, 'Whline'
Print the header.
if matrix:

index = 0
else:

index * 1
print » args.file, header[0],

for heading in header[index:]:
print » args.file, ' t {}'.format(heading),

print » args.file, '\\\\'
print » args.file, 'Whline'
Print the remaining rows.
for j, row in enumerate(printdata):

Print the cell for the left column.
if matrix:

print » args.file, header[j],
else:

print » args.file, row[0],
Print the cells for the remaining columns,
for cell in row[index:]:

print » args.file, ' t O'.format(
_format_cell(cell, args.digits)

183

) ,
print » args.file, '\\\V

print » args.file, 'Whline'
print » args.file, ' Wend{ (tabular)}'
print >> args.file, '\\caption{(Insert a caption))'
print >> args.file, '\\label{(tab:tablel)}'
print >> args.file, '\\end{(table))'

def get_ranks(printdata, metrics_desc, sort_index):
"""Raturn a table of Spearman (Fractional) ranks based on a data table.

:param printdata: table of data to print
.param matrics_desc: list of Os and Is (where 1 is 'descending')
:param sort_index: index of the column to sort by
.-type printdata: 'list of lists'
.-type metrics_desc: 'list of integers'
.-type sort_index: 'integer'

:return: table of ranks
.-rtype; 'list of lists '

It tl tl

data - [x[:] for x in printdata]
for j in range(1, len(printdata[0])):

data. sort (lcey=itemgetter (j) , reverse=metrics desc [j - 1])
i = 0
end = len (printdata) - 1
while i <* end:

if i «= end or data[i] [j] != data[i + 1] [j] :
data[i][j] = i + 1
i +=» 1

else: # We have at least one tie.
matches <• 1
for)c in range (i + 2, len (printdata)) :

if data[i) [j] != data[k] [j] :
break

matches += 1
rank = i + 1 + matches * 0.5
for k in range(i, i + 1 + matches):

data[k][j] * rank
i +» matches + 1

data.sort(key=itemgetter(sort_index))
return data

def get_merged_ranks(printdata, metrics_desc, sort_index):
"""Return a table of merged Spearman ranks based on a data table.
:param printdata:
:param matrics_desc:
.-param sort_index:
.-type printdata:
.-type metrica_desc:
-.type sort_index;

table of data to print
list of Os and Is (where 1 is 'descending')
index of the column to sort by
'list of lists '
'list of integers'
'integer'

:return:
: rtype:

table of merged ranks
'list of lists '

t Gat the Spearman (Fractional) ranks.
data = get_ranks(printdata, metrics_desc, sort_index)
Combine the ranks into a single column.
for row in data:

row[l:] “ [numpy.average(row[1:])]

184

Convert the averages back into ranks.
return get_ranks(data, [0], sort_index)

daf get_aggregate_table(dbase, upeamplers, metrics_d, tables)
"""Return a table ot aggregate Image difference data.
.-param dbase:
:par am upsamplers;
.'param matrics_d:
:param tablas:
•type dbase:
.-type upsamplers:
.•type metrics_d:
'.type tables:

connected database
upsamplers (rows) of the table
metrics (columns) of the table in dictionary form
names of database tables to aggregate across
:class: 'database.Database '
'list of strings '
'diet '
'list of strings '

:return:
:rtype:

table of aggregate image difference data
'list of lists '

metrics » metrics_d.keys()
metrics_str = join(metrics)
aggregate_table = []
for upsampler in upsamplers:

datarow * [upsampler]
§ Create a new dictionary.
metric_lists - {}
for metric in metrics:

metric_lists[metric] = []
for table in tables:

row = dbase.get_error_data(table, upsampler, metrics_str)
for metric in metrics:

metric_lists[metric].append(row[metric])
for metric in metrics:

Aggregate the error data using the appropriate method.
metric_list » ' '.join(str(x) for x in metric_lists[metric])
met > metrics_d[metric][1].format(metric_list).split()
datarow.append(float(check_output(met)))

aggregate_table.append(datarow)
Return the table of aggregate image difference data.
return aggregate_table

A. 13 tools.py

#//usr/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotte (adam.turcotteggmail.com)
§ Nicolas Robidoux (nicolas.robidouxggmail.com)
License: BSD 2-Clause License
#
This file is part of the
t EXQOIRES (Extensible Quantitative Image RESampling) test suite
#

"""A collection of convenience methods.'""'

from collections inport OrderedDict
inport os

def prune_metrics(keys, metrics_d):
"'"’Prune a dictionary of metrics using a list of keys.

185

:param keys:
:param metrics_d:
:type keys:
.-type metrica_d:
:return:
: rtype:

keys to retain
metrics to prune
'list of strings '
'diet '

pruned metrics
'diet '

tl II II

result = OrderedDict()
for key in keys:

result[key] = metrics_d[key]
return result

def create_dir(base_dir, relative_dir«''):
"""Create a directory if it doesn't already exist and return it.

:param base_dir: base directory within which to create the directory
.-param relative_dir: directory to create inside the base directory
:type base_dir: 'path '
:type relative_dir: 'path'

:return: the created directory
: rtype: 'path'

II II II
directory = os.path.join(base_dir, relative_dir)
if not os.path.exists(directory):

os.makedirs(directory)
return directory

A.14 update.py

t!/usr/bin/env python
coding: utf-8
#
Copyright (c) 2012, Adam Turcotte (adam.turcotte@gmail.com)
Nicolas Robidoux (nicolas.robidoux@gmail.com)
License: BSD 2-Clause License
#
This file is part of the
EXQUIRES (Extensible Quantitative Image RESampling) test suite
#

"""Compute new error data for changes to the user-specified project file.

The project file is inspected to determine which changes have been made. Items
that have been removed will result in entries being removed from the database.
Items that have been changed or added will result in new data being computed
and added to the database file. If no changes have been made to the project
file, the database will not be updated.

If you wish to recompute all data based on your project file rather than simply
updating it with the changes, use :ref: 'exquires-run'.

To view aggregated error data, use :ref: 'exquires—report '.
It II II

import argparse
from configobj inport ConfigObj
inport exquires.operations as operations
inport exquires.parsing as parsing

186

mailto:adam.turcotte@gmail.com
mailto:nicolas.robidoux@gmail.com

def subtract(dictl, diet2):
'"’"Subtract dictionary 'diet2' from 'dictl' and raturn tha diffaranca.

This function craatas a new 'diet than iterates over 'dictl ' and adds
all entries that are not found in 'diet2 '.

.. note::

This is a private function called by : func: '_get_namespacas '.

:param diet2; dictionary to subtract from
:param dict2: dictionary to subtract
:type dictl: 'diet'
:typa diet2: 'diet '

:raturn:
: rtype:

dictl - dict2
'diet '

n i t n

result « {}
for key in dictl.keys():

if not key in dict2 or dictl[key] != dict2[key]:
result[key] = dictl[key]

return result

def _get_namespaces(config_file, config_bak):
"""Return all necessary configuration namespaces.

This function returns four namespaces that specify which images,
down samplers, ratios, upsamplers, and metrics to use when creating
or updating a project database:

* 'current ' — all entries in current project file
* 'new' — entries only in currenty project file
* 'old' — entries only in previous project file
* 'same' — entries common to both project files
.. note::

This is a private function called by : func: '_update '.

.-param config_file: current configuration file
:param config_bak: previous configuration file
.-type config_file: 'path'
'■type config_bak: 'path'

:return:
: rtype :

the current, new, old, and same namespaces
:class: 'argparse.Namespace'

If II II

Read the current configuration file.
current = argparse.Namespace()
config_current = ConfigObj(config_file)
current.images » config_current['Images']
current.ratios = config_current['Ratios']
current.downsamplers = config_current['Downsamplers']
current.upsamplers « config_current['Upsamplers']
current.metrics = config_current['Metrics']
Read the configuration file last used to update the database.
previous as argparse. Namespace ()
config_previous = ConfigObj(config_bak)
previous.images = config_previous['Images']
previous.ratios = config_previous['Ratios']
previous.downsamplers = config^previous['Downsamplers']

187

previous.upsamplers = config_previous['Upsamplers']
previous.metrics = config_previous['Metrics']
Construct dictionaries from the current and previous configurations.
new = argparse.Namespace{)
new.images • .subtract(current.images, previous.images)
new.ratios *= .subtract(current.ratios, previous.ratios)
new.downsamplers = .subtract (current .downsamplers, previous .downsamplers)
new. upsamplers * .subtract (current, upsamplers, previous . upsampler s)
new.metrics = .subtract(current.metrics, previous.metrics)
old = argparse.Namespace()
old. images ** .subtract(previous.images, current.images)
old.ratios » .subtract(previous.ratios, current.ratios)
old. downsamplers = subtract (previous. downsamplers, cur rent. downsamplers)
same “ argparse.Namespace()
same.images * .subtract(current.images, new.images)
same.ratios « .subtract(current.ratios, new.ratios)
same.downsamplers = .subtract (current.downsamplers, new.downsamplers)
same.upsamplers = .subtract (current .upsamplers, new.upsamplers)
same.metrics * .subtract(current.metrics, new.metrics)
Return the namespaces.
return current, new, old, same

def .update(args):
"""Update the database.

.. note::

This is a private function called by :func: 'main'.

:param args: arguments
:param args. config_fHe: current project file
:param args. config_bak: previous project file
:type args: :class: 'argparse.Namespace '
: type args. config_file: 'path '
: type args. config_bak: 'path '

It II II

Get the various namespaces for this project update.
current, new, old, same * .get.namespaces(args.config.file,

args.config.bak)
args.met.same = same.metrics
args.metrics = current.metrics
Define operations.
same.up.obj = operations.Upsamplers(same.upsamplers, new.metrics. True)
new.up.obj operations .Upsamplers (new.upsamplers, current, metrics)
current.up.obj = operations.Upsamplers(current.upsamplers, current.metrics)
same.rat.obj » operations.Ratios(same.ratios,

[same.up.obj, new.up.obj], True)
new.rat.obj = operations.Ratios(new.ratios, [current.up.obj])
current.rat.obj > operations.Ratios(current.ratios, [current.up.obj])
same.down.obj - operations.Downsamplers(same.downsamplers,

[same.rat.obj, new.rat.obj], True)
new.down.obj = operations .Downsamplers (new. downsamplers, [current, rat.obj])
current .down.obj = operations .Downsamplers (current .downsamplers,

[current.rat.obj])
same.img.obj > operations.Images(same.images,

[same.down.obj, new.down.obj], True)
new.img.obj = operations.Images(new.images, [current.down.obj])
operations.Operations([same.img.obj, new.img.obj]).compute(args, old)

def main () :
'"'"Run :ref: 'exquires-update'.
Update the project database based on changes to the project file.

188

.. note;;
If the update fails, the previous database will be restored.

II II II
update(parsing.OperationsParser(doc , True).parse_args ())

if name == ' main ' :
main ()

189

B EXQUIRES examples: source code

The following code was written by Adam Turcotte and Nicolas Robidoux. An up-to-date

version of this code is in the examples folder of the EXQUIRES GitHub repository [148].

B.l nohalo.cpp

/* Wrapper for VIPS Nohalo subdivision followed by LBS
• (locally bounded bicubic) interpolation resampler
*

* This program is a wrapper around the Nohalo implementation found in VIPS.
* Unfortunately, VIPS does not conform to the pixel alignment convention used in
* the EXQUIRES test suite. In order to alleviate this problem, the leftmost
* column of the image is duplicated and the topmost row of the resulting image is
* duplicated before performing the resampling step.
*

* Note: this program only supports aspect ratio preserving upsampling.
*

* Code written by Adam Turcotte with contributions by Nicolas Robidoux
*
* Published December 9, 2012
* /

finclude <vips/vips>
#include <cstdlib>
finclude <iostream>
using namespace vips;
using std::cout;
using std::endl;

int
main (int argc, char **argv)
<

// Check for correct number of command-line arguments
if (argc !■ 5) {

cout « "usage: nohalo image_in image_out enlargement_factor "
"(0: sRGB | 1: linear)" « endl;

return (1);
>
try {

// Define sRGB profile path and method name
char profile[] ■ "/usr/local/lib/python2.7/dist-packages"

"/exquires/sRGB_IEC 61966-2-l_black_scalad.icc";
char method[] * "nohalo";

190

// Read input image
Vlmage image_in (argv[l));

// Get ratio, size, and determine if we're using linear light
double ratio = atof (argv[3));
bool linear = atoi (argv[4]);
double dx = -0.5 * (ratio + 1);
int size » (int) (ratio * image_in.Xaize{) + 0.5);
// Inport from sRGB to XYZ if linear option selected
if (linear)

image_in = image_in.icc_import (profile, 1);
// Create the temporarily padded image
Vlmage col * image_in.extract_area (0, 0, 1, image_in.Ysize ()) ;
Vlmage added_col » col.lrjoin (image_in);
Vlmage row = added.col.extract area (0, 0, added_col.Xsize () , 1) ;
Vlmage padded = row.tbjoin (added_col);
// Prepare the output image
Vlmage image_out = padded.affinei (method, ratio, 0, 0,ratio,

dx, dx, 0, 0, size, size) ;
// Export from XYZ to sRGB if linear option selected
if (linear)

image_out = image_out.icc_export_depth (16, profile, 1);
// Write output image
image_out.write (argv[2]);

}
catch (VError £e) {

e.perror (argv[0));

return (0);

191

C Refactored SSIM: source code

The following code was written by Nicolas Robidoux and Adam Turcotte. It conforms to

the API (application programming interface) specified by the original SSIM programmer,

Zhou Wang.

C.l ssim .index .refactored, m

function [mssim, ssim.map] » ssim_index_refactored(imgl, Lag2, K, L, window)
| B S S S > a r s s s s s s 2 = a r a x s s e s r c s s & 3 = s z s s s r s s r s r s r s r s s s r s s r r s s s s s s s s r s s s s r = s s s s s
%
% Refactored SSIM Index, Version 2.0
% Modifications Copyright (c) 2011 Adam Turcotte and Nicolas Robidoux
%
% All Rights Reserved.
%
% Permission to use, copy, or modify this software and its documentation
% for educational and research purposes only and without fee is hereby
% granted, provided that this copyright notice and the original authors'
% names appear on all copies and supporting documentation. This program
% shall not be used, rewritten, or adapted as the basis of a commercial
% software or hardware product without first obtaining permission of the
% authors. The authors make no representations about the suitability of
% this software for any purpose. It is provided "as is" without express
% or implied warranty.
%
% See below for additional copyright notices.
%
% ---
%
% A. Turcotte is an M.Sc. candidate at the Department of Mathematics
% and Computer Science, Laurentian University, Sudbury, ON, Canada.
%
% N. Robidoux is an image processing and applied mathematics consultant.
%
* Last Modified: 2011-10-02
%
% ---
*
% This Mat lab code implements a refactored confutation of SSIM that
% requires one blur less (4 instead of 5), as well as fewer binary and
% unary operations. In addition, this version reduces memory usage with
% in-place functions. As a result, it runs faster and supports larger
% input images,
i
% Warning: To improve the argument parsing, the last two arguments of Z.

192

* Wang's version have been swapped: ' L' is now specified before
t 'window' (instead of after).
%
% Note: The above improvements only apply when the standard blur 'window'
% (11x11 Gaussian blur with sigma=1.5) is used. If you supply your
% own window the computation falls back to Z. Nang's version.
%

%SSIM Index, Version 1.0
%Copyright (c) 2003 Zhou Nang
%A11 Rights Reserved.
%
% The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
*%---
iPermission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
tgranted, provided that this copyright notice and the original authors'
inames appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
tauthors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%--
f
%This is an implementation of the algorithm for calculating the
tStructural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Nang, A. C. Bovik, H. R. Sheikh, and S. P. Simoncelli, "Image
iquality assessment: From error measurement to structural similarity"
HEBE Trans actios on Image Processing, vol. 13, no. 1, Jan. 2004.
%
tKindly report any suggestions or corrections to zhouwang@ieee.org
%
%---
%
% Input : (1) x : the first image being compared
% (2) y: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference), defualt value: K = [0.01 0.03]
% (4) L: dynamic range of the images, default: L = 255
% (5) window: local window for statistics (see the above
% reference) . default widnow is Gaussian given by
% window = fspecial ('gaussian', 11, 1.5);
%
%Output: (1) mssim: the mean SSIM index value between 2 images,
t If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If x » y, then mssim * 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(x) - size (window) + 1.
%
%Default Usage:
% Given 2 test images x and y, whose dynamic range is 0-255
%
% [mssim ssim_map] w ssim_index(x, y);
i
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];

193

mailto:zhouwang@ieee.org

% window = one s(8);
% L - 100;
% [mssim ss±m_map] = ssim_index (x, y, K, L, window) ;
f
%See the results:
%
% mssim %Gives the mssim value
% imshow (max (0, ssim_map) . ~4) % Shows the SSIM index map
%

if (nargin >= 2 £S nargin <a 4)
if (size(imgl) '= siza(img2))

mssim * -Inf;
s s immap = -Inf;
raturn;

end
[M N] = siza(imgl);
if ((M < 11) || (N < 11))

mssim •> -Inf;
ssim_map * -Inf;
return;

end
if (nargin == 2)

K(l) = 0.01; %
K(2) • 0.03; % default settings
L = 255; *

elseif (nargin == 3)
L » 255;
if (length (K) «= 2)

if (K(1) < 0 | | K(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;

end
else

mssim = -inf;
ssim_map = -Inf;
return;

end
elseif (nargin == 4)

if (length (K) == 2)
if (K(l) < 0 I I K(2) < 0)

mssim - -Inf;
ssim_map • -Inf;
return;

end
else

mssim * -Inf;
ssim_map = -Inf;
return;

end
end
Cl » (K(1)*L)"2;
C2 a (K(2) *L) "2;
if (C1<=0 I I C2<=0)

mssim a -Inf;
ssim_map a -inf;
return;

end
c2 a cl + C2;
x a double(imgl);
y a double(img2);

194

window = fspecial('gaussian', 11, 1.5);
window2 = 2*window;

if {Cl > 0 £ C2 > 0)
ssim_map = filter2(window, x, 'valid');
t * filter2(window, y, 'valid');
u = t - ssim_map;
t = 2 * (t .* ssim_map) + Cl;
ssim_map w filter2(window2, x .* y, 'valid');
ssim_map » (ssim_map + c2 - t) .* t;
u * u.~2 + t;
t « filter2(window, x.~2 + y.~2, 'valid');
ssim_map = ssim_map . / ((t + c2 - u) . » u) ;

else
numerator2
numeratorl
denominator1
numeratorl
numerator2
numerator2
denominatorl
denominator2
denominator2
aaim_map
index
saim_map(index)
index
aaim_map(index)

end
maaim » mean2(aaim_map);
return;

elaeif (nargin == 5)
if (aize(x) size(y))

maaim •> -Inf;
ssimmap = -Inf;
return;

end
[M N] = aize (x) ;
if (<M < 11) || (N < 11))

maaim = -Inf;
aaim_map = -Inf;
return;

end
[H W] = size(window);
if ((H*W) < 4 | | (H > M) || (W > N))

aaimindex b -inf;
ssim_map - -Inf;
return;

end
if (length(K) == 2)

if (K(l) < 0 | | K (2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;

end
else

ssim_index - -Inf;
saim_map = -Inf;
return;

* filter2(window, x, 'valid');
b filter2(window, y, 'valid');
= numeratorl - numerator2;
b 2 * (numeratorl .* numerator2) + Cl;
b filter2(window2, x .* y, 'valid');
b numerator2 + c2 - numeratorl;
* denominator1.*2 + numeratorl;
= filter2(window, x."2 + y.“2, 'valid');
= denominator2 + c2 - denominatorl;
= ones(aize(numerator2));
= (denominatorl > 0 & denominator2 > 0);
* (numeratorl(index).*numerator2(index)) ...

./(denominatorl(index).*denominator2(index)) ;
* (denominatorl >0) t (denominator2 <= 0);
= numeratorl(index)./denominatorl(index);

195

end
Cl = (K(1)*L) "2;
C2 = (K(2)*L) *2;
window » window/sum(sum(window));
x = double(x);
y = double(y);
mul ■ filter2(window, x, 'valid');
mu2 b filter2(window, y, 'valid');
mul_aq * mul.*mul;
mu2_sq = mu2.*mu2;
mul_mu2 b mul. *mu2;
sigmal_sq = £ilter2(window, x.*x, 'valid') - mul_sq;
sigma2_sq = filter2(window, y.*y, 'valid') - mu2_sq;
sigmal2 “ filter2(window, x.*y, 'valid') - mul_mu2;
if (Cl > 0 (C2 > 0)

ssim_map = ((2*mul_mu2 + Cl).*(2*sigmal2 + C2)) ...
./((mul_sq + mu2_sq + Cl).*(sigmal_sq + sigma2_sq + C2));

else
numeratorl = 2*mul_mu2 + Cl;
numerator2 = 2*sigmal2 + C2;
denominatorl = mul_sq t mu2_sq + Cl;
denominator2 = sigmal_sq + sigma2_sq + C2;
ssinjnap * ones(size(mul));
index b (denominatorl.*denominator2 > 0);
ssim_map(index) * (numeratorl(index).*numerator2(index)) ...

./(denominatorl(index).*denominator2(index)) ;
index = (denominatorl ~= 0) & (denominator2 bb 0);
ssim_map(index) = numeratorl(index)./denominatorl(index);

end
mssim = mean2(ssimmap);
return;

else
ssim_index = -Inf;
ssim_map b -Inf;
return;

end

196

D EXQUIRES user manual

An up-to-date online version of this manual is found at the EXQUIRES home [149].

197

The EXQUIRES (Extensible Quantitative Image
RESampling) Test Suite

Release 0.9.9.3

Adam Turcotte and Nicolas Robidoux

December 20, 2012

CONTENTS

1 About the EXQUIRES Test Suite I
1.1 What is E X Q U IR E S ? ... 2
1.2 Technical Notes ... 2

2 EXQUIRES Documentation S
2.1 Online Documentation.. 5
2.2 Building the Documentation... 5

3 Installing EXQUIRES 7
3.1 Basic Installation Instructions.. 7
3.2 Detailed Installation Instructions for Debian ... 7

3.2.1 Requirem ents.. 7
3.2.2 Installing ImageMagick from so u rce .. 7
3.2.3 Installing E X Q U IR E S .. 8
3.2.4 Installing latest EXQUIRES development b ran ch ... 9

4 Using EXQUIRES
4.) Usage O v e rv iew ...
4.2 Usage Instructions..

4.2.1 Obtaining suitable test images
4.2.2 Creating a new project f i l e
4.2.3 Customizing the project file
4.2.4 Computing the image comparison data
4.2.3 Updating the image comparison data .

11
11
11
12
12
13
16
17

i

4.2.6 Generating a table of aggregate image comparison table
4.2.7 Generating a Spearman's rank cross-correlation matrix
4.2.8 Manually comparing im a g e s ..
4.2.9 Manually aggregating d a t a ...

5 Programs
5.1 exquires-new ..
5.2 ex q u ires-ru n ..
5.3 exquires-update...
5.4 exquires-report...
5.5 exquires-correlate ..
5.6 cxquires-comparc...
5.7 exquires-aggregate..

6 Modules & Classes
6.1 The aggregate M o d u le ...

6.1.1 The Aggregate C lass..
6.2 The compare M odule..

6.2.1 The M e t r ic s C l a s s ...
6.3 The correlate M o d u le ...
6.4 The database M odule...

6.4.1 The D a ta b a s e C l a s s ..
6.5 The new M odule ...
6.6 The operations M o d u le ..

6.6.1 The Operations C la s s ..
6.6.2 The Tmaqes C la s s ..
6.6.3 The Downsamplers C l a s s ..
6.6.4 The R a t io s C la s s ..
6 .6 .5 T h e U p s a r r p l o r s C l a s s ..

6.7 The p a r s i n g M odule..
6.7.1 The ExquiresParser C lass.......................................
6.7.2 The OperationsParser C la s s
6.7.3 The SLat.sParser C la s s ...
6.7.4 The ExquiresHelp C l a s s ..
6.7.5 The Pro jectAction Class
6.7.6 The h is t .A c t io n C la s s ..
6.7.7 The R at io A c t.io n C la s s ...
6.7.8 The AnchorAction C l a s s ..
6.7.9 The Sort Act i on C la s s ..

ii

17
20
22
22

23
23
24
25
25
26
27
29

31
31
31
32
33
39
41
41
44
48
49
49
50
51
52
53
54
54
55
56
56
57
58
58
59

6.8 The p i o g r e s s Module . . .
6.8.1 The P r o g r e s s Class

6.9 The r e p o r t Module
6.10 The ru n M odule
6.11 The s t. a t. s M o d u le
6.12 The t o o l s M o d u le
6.13 The u p d a te Module

7 License Information

8 Changelog
8.1 Version 0 .9 .9 .3
8.2 Version 0 .9 .9 .2
8.3 Version 0.9.9.1
8.4 Version 0 .9 .9
8.3 Version 0 .9 .8 .3
8.6 Version 0 .9 .8 .2
8.7 Version 0.9.8.1
8.8 Version 0 .9 .8
8.9 Version 0 .9 .7

9 Todo

Python Module Index

Index

59
59
62
63
64
66
67

69
71
71
71
71
71
72
72
72
72
72

73
75
77

iii

>

CHAPTER

ONE

ABOUT THE EXQUIRES TEST SUITE

Website http://exquires.ca

PyPI http://pypi.python.org/pypi/cxquires

GitHub http://github.com/aturcotte/exquires

License BSD 2-Clause License

Authors Adam Turcotte and Nicolas Robidoux

1

http://exquires.ca
http://pypi.python.org/pypi/cxquires
http://github.com/aturcotte/exquires

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

1.1 What is EXQUIRES?

The EXQUIRES test suite (hereby referred to as EXQUIRES) is an open source framework for assessing the accuracy of image upsampling methods. EXQUIRES
can also be used to compare image difference metrics, or to measure the impact of various factors, including test image selection and properties, downsampler choice,
resizing ratio, etc.

An upsampler’s performance is based on its ability to reconstruct test images from various reduced versions. The downsampler used to reduce the images has an
influence on the re-enlargements, so any number of downsampling methods can be used. The difference between the re-enlargements and the orginal images is de
termined by using image comparison metrics. When viewing the comparison data, it is possible to aggregate across any combination of test images, downsamplers,
and resampling ratios.

EXQUIRES is fully extensible: External applications can be used alongside its own to compute downsampled and upsampled images as well as image difference
metrics. The following components of EXQUIRES are configurable:

• Test Images

• Resampling Ratios

• Downsampling Methods

• Upsampling Methods

• Difference Metrics

1.2 Technical Notes

EXQUIRES is written in Python (requiring version 2.7 or higher) and makes use of several modules, including the following:

• argparse - command-line argument parsing

• configobj — reading and writing . i n i files

• curses - displaying progress information

• fnmatch - handling wildcard characters

• inspect - listing a class' methods

• numpy - applying operations to lists of numbers

• re - handling arguments with hypenated ranges

• sqlite3 - database for storing image comparison data

• subprocess - calling external applications

2 Chapter 1. About the EXQUIRES Test Suite

The EXQUIRES (Extensible Quantitative Image BESamplIng) Test Suite, Release 0.9.9.3

• vipsCC - Python interface for VIPS

The following image processing applications are also used:

• ImageMagick - resampling images

• VIPS - computing image difference metrics

1.2. Technical Notes 3

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

Chapter 1. About the EXQUIRES Test Suite

CHAPTER

TWO

EXQUIRES DOCUMENTATION

2.1 Online Documentation

The documentation for the latest release version of EXQUIRES can be viewed online at http://exquires.ca.

2.2 Building the Documentation

The EXQUIRES documentation/website is built using Sphinx.

Before building the documentation, you must first perform the following tasks:

• Install Sphinx ($ sudo apt-get install python-sphinx)
• Install EXQUIRES

To produce the HTML documentation (same as the online documentation):

• From the d o c s directory, run: $ make h tm l

• This will produce HTML documentation in the _build/html / directory

• Open _build/html/index. html with your browser

To produce the PDF manual:

• From the docs directory, run: $ make latexpdf
• This will produce LaTeX files in the _build/latex directory and run them through pdflatex

5

http://exquires.ca

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

* Open e x q u i r e s . p d f to view the manual.

6 Chapter 2. EXQUIRES Documentation

CHAPTER

THREE

INSTALLING EXQUIRES

3.1 Basic Installation Instructions

EXQUIRES can be installed from PyPT using pip:

pip install -U exquires

Alternatively, download the source distribution from PyPT, unarchive, and run:

python setup.py install

3.2 Detailed Installation Instructions for Debian

T h e fo llo w in g instructions are for D eb ian /U b u n tu /M in t L inux. For o ther p latform s, the setup is gen era lly the sam e, w ith the excep tion o f in sta llin g system
dependencies.

3.2.1 Requirements

EXQUIRES requires IniageMagick 6.8.0-2 or newer, VIPS 7.24 or newer, Python 2.7, and the Python packages ConfigObj and NuniPy.

3.2.2 Installing ImageMagick from source

• Install dependencies on Debian/Ubuntu/Mint:

7

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

$ sudo apt-get install imagemagick 1ibmagick++-dev subversion

• Download and extract the ImageMagick source:

$ wget http://www.imagemagick.org/download/ImageMagick.tar.gz
$ tar xvfz ImageMagick.tar.gz

• Configure, compile and install ImageMagick:

$ cd ImageMagick-6.8.X-X
$ -n or rh-r.of ' -0 /" >\ K M-rra rch^nat i vo -Oi" ./configure — enable-hdri
$ make
$ sudo make install

• Configure the dynamic linker run-time bindings:

$ sudo ldconfig /usr/local/lib

• (Optional) Ensure that the correct version is now installed:

$ identify -version
$ pkg-config --modversion ImageMagick

• Updating ImageMagick development version:

$ cd ImageMagick-6.8.X-X
$ sudo make uninstall
$ make clean
$ svn update
$ •'-"-xavch-nnt ivo XVK‘iv :-"-rrarch-nct ive - 0 2 " ./configure — enable-hdri
$ make
$ sudo make install
$ sudo ldconfig /usr/local/lib

3.2.3 Installing EXQUIRES

• Install remaining dependencies:

$ sudo apt-get install python-pip python-configobj python-dev python-numpy python-vipscc libvips-tools

• Install EXQUIRES from PyPI using pip:

8 Chapter 3. Installing EXQUIRES

http://www.imagemagick.org/download/ImageMagick.tar.gz

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

$ sudo pip install -U exquires

3.2.4 Installing latest EXQUIRES development branch

• The latest development version can be installed from the GitHub repository:

sudo pip install ~e git + http://github.com/aturcotte/exquires.git#egg*=exquires

3.2. Detailed Installation Instructions for Debian 9

http://github.com/aturcotte/exquires.git%23egg*=exquires

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

10 Chapter 3. Installing EXQUIRES

CHAPTER

FOUR

USING EXQUIRES

4.1 Usage Overview

• Obtain suitable 16 bit 840x840 test images

• Use exquires-new (page 23) to create a new project file

• Modify the project file to suit your needs

• Use exquires-run (page 24) to compute the image difference data

• Use exquires-updute (page 25) to compute only the new data after editing the project file

• Use exquirex-repori (page 25) to produce tables of aggregated data

• Use exquires-airrelate (page 26) to produce Spearman’s rank cross-correlation matrices

4.2 Usage Instructions

EXQUIRES comes with several Programs (page 23), each including a - h i - - h e l p option to display usage information and a - v l — v e r s i o n option to display
the version number.

These five main programs ean be used to create and maintain a project, which can be specified with the -p i p r o j option:

• exquim-new (page 23)

• exquires-run (page 24)

11

The EXQUIRES (Extensible Quantitative image RESampling) Test Suite, Release 0.9.9.3

• exquires-update (page 25)

• exquires-report (page 25)

• exquires-correlaie (page 26)

These two programs are responsible for computing image differences and aggregating the results:

• exquires-compare (page 27)

• i'xquires-a^reyafe (page 29)

The following sections will explain how to make use of these programs to compute data and view aggregated results and cross-correlation matrices.

4.2.1 Obtaining suitable test images

EXQUIRES is designed to use sRGB TIFF images with 16 bits per sample (48 bits per pixel) and a width and height of 840 pixels. One image (w av e . t i f) is
included as a default selection.

A separate distribution of test images converted from RAW is available at http://www.imagemagick.Org/download/image-bank/l 6bit840x840images/. The examples
in this section make use of several images from this collection.

The easiest way to obtain a copy of the image bank is as follows:

S wget -r -nH — cut-dirs-O ftp://ftp.iraagemagick.org/pub/ImageMagick/image-bank/16bit840x840images/

4.2.2 Creating a new project file

A project file is a . i n i file that tells EXQUIRES which of the following to use:

• Images

• Resampling Ratios

• Downsamplers

• Upsamplers

• Difference Metrics

The basic syntax to create a new project using exquires-nem (page 23) is:

$ exquires-new

12 Chapter 4. Using EXQUIRES

http://www.imagemagick.Org/download/image-bank/l
ftp://ftp.iraagemagick.org/pub/ImageMagick/image-bank/16bit840x840images/

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

which will create the project file p r o j e c t l . i n i and include the image wave.tif along with a default collection of ratios, downsamplers. upsamplers, and metrics.

In order to specify a project name and a set o f test images, type one of the following:

$ exquires-new -p my_project -I my_images
$ exquires-new — proj my_project — image my_images

w here my_pro ject is a nam e to id en tify you r project and my_images is a list (w ild card s are supported) o f im ages w ith the fo llo w in g properties:

F ile F o r m a l TIFF

Colour Space sRGB

Bit Depth 16 bits/sample (48 bits/pixel)

Size 840x840 pixels

To demonstrate, we will create a new project example_proj using the 16bit840x840images collection:

$ exquires-new -p example_proj -I /path/to/16bit840x840images/images/*

4.2.3 Customizing the project file

Once a project file has been generated, you can manually edit il to suit your needs. For our example project example_proj, we have a project file
e x a m p le _ p ro j . i n i and we will look at each section in detail.

Images

This section lists the paths to the test images that will be used. We will keep this example project small by removing all but two of the I6bit840x840images,
apartments . tif and cabins . tif.
» /.v.v-v::.’
* -je.'-- a. ’V .' I * s ! \ , j.‘ * .".' I ' I s v : * / i d w i i t h rirri c . S 1C r : , \v j > .
* A n y i /.- .nge.s (i :d' n i t - r i d ' d^J v>u i d i n • (r . i s x r. d/icrVi i \d.
[Images]
a pa r t i n e n : . s ~ /pa 1 1; L 0 / 1 cbi t 8 4 0x84 0 l n . a g e y / i m a g e s / a p a r L inen l s . t i I

c a b i n s - / p a t h ' o 7 1 6 b i l b 4 0 x 8 40 i m a g e s ' i m a g e s / c a b i n s . I . i i

Notice that EXQUIRES has also assigned default names for these images, which you can also modify.

4.2. Usage Instructions 13

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Ratios

This section lists the resampling ratios and specifies the width and height of the downsampled image for each ratio. Here are the default ratios:

arnyic ' . i t ■ ’ ! :r i i ' ; e i 5 t e .?>.
J i s i a i ; , ;] R / 0 b y I h r c a l l s .

Downsampters

This section lists the downsampling methods that will be used to reduce each of the test images. We have edited our example project to include a small subset of
the defaults.

» PJ’itt'i.-i.VFi.jtiV
* Tc j J d j Jox i .C’ci::n\l e r , r : o \ i Be t h e c j mr n and t c e x e c u t e i t .
■* T h e ssrnni {fi::d cs : : k c ' . .so o I t h e h s l l o w l n p t o p 1 a s c r i c t l i d d o :
* ' 0 • ~ i t : p: ; t ~rnane
* - c u t pi : l • n;jq<?
« i . - dcwr.s, . in:p ! i n a r a t i o
* B ' \ ; - d o wr . s ; v rp ‘ c d y i r c i w : d : h c: h c i r p d)
* fv’A.^.Y,"' Id: r ■> ,t t;f> i an/t'' n.-T * p r o . i r h i o w t sarr . p! o r ,
[Downsaxnplsrs]
h c : > : _ s r q b - n . n a i r k <0; - f i l t . o r Box - r e t i r e * { 3 ; x <3) - s t r i p {!>
b o x _ l j n-.-a r ; i « iq: . : k <0* - : : o l o r , s p a c e RBB Box - r e s i z e - < 3) x { 3 } - c o l o r s p a c e sRGB {1)
i u o ! 0 : ; r _ ; > r g h m. - t q j rk <,) f i l t e r r o i i i ' : r e s : ? . e (3 ; X { 3) . s t r i p {1}
■ i e d r e s ; _ ! i n e - v i-i.'q ; ok i 0) r o l o i s p a c e RGB f i l t e r P o i n t , - r e s i z e ' 3 } x { 31 • c u 1 o r s p a c e sRGB si r i p { 1 }

Note that the ImageMagick commands in this example make use of numbered replacement fields to denote the command-line arguments. If you wish to add your
own downsampling method, you must use {0} and {1} to specify the input and output images, and either (2) or {3} (or both) to specify the size of the reduced image.

Also note that the methods suffixed with _srgb do not perform any colour space conversion within the resize operations, meaning that the sRGB images are
downsampled using linear averaging even though sRGB is a non-linear colour space. The methods suffixed with .linear convert the input image to linear RGB
with sRGB primaries before downsampling, then convert the result back to sRGB, using the ImageMagick command -colorspace. Such suffixes are useful because

* ' .’i t - ! t - s ! : ‘ i ,-,'c7r-.v .-t i -

x h a s h s i z r i s d i m m e d b y

[Ratios]

4 - 01.
:> - 163
6 - 14 0

- 10 0

8 - ICB

14 Chapter 4. Using EXQUIRES

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

they allow one to separately aggregate the results of only downsampling or upsampling using the two main “tracks” without having to list the methods individually.
In the same spirit if, for example, you were to program downsamplers or upsamplers that convert into and out of sRGB using ICC profiles, we would suggest that
you use something like the _icc suffix; if you were to go through the XYZ colourspace, we would suggest _xyz.

Upsamplers

This section lists the upsampling methods that will be used to re-enlarge each of the downsampled images, and makes use of the same replacement fields as the
Downsamplers section.

Since the purpose of EXQUIRES is to assess the accuracy of upsampling methods, you may wish to add your own method to see how it ranks alongside pre-existing
methods. For example, we can compare the Nohalo method with several Lanczos variations.

* . u i d i i v s . i i n p ' e f , v ^ V ' d c T : i e e e n j ; i , e : d T e tWtViif. r i t .

* : i ’ .; i > r i u u i e

* ' i : •• ■ >(. * l

* ' •••• upCAr.q t V J c i z e i i wc i ye)
[Upsamplers]
i a i . c z o z . 2 _ s r q b ~ ntaqicK. >01 i ; * t e r L a ; i c z c y 2 r e s i z e i 3 } x { 3'» s t r i p <1(
i d i : t z o i > 2 _ l i i ' . e d i ” n i r i n i c k fU; c c i t r s p c t c e RGB i i l t e r L a n c z o s L - r e s i z e { z ; x <-> f c o l o r s p a c e sRGB s t r i p { i -
i d r i c / o G 3 _ s r q c - m a q i c k < P I l o i t e r L a n c z o s r e s i z e s t r i p t 1 *
l a n c z o s 3 _ 1 i n e a r - x m i c k { 0 • c o l o r s p a c e RGB i ' i i t o r L a n c z o s r e s i z e > j) x < 3 - c o l o r s p a c e sRGB s t r i p {1*
n o h a i o _ s r q f c - n c h a l e < 3 } (I - \ 2 j 0
n o h a 1 i n o n r - n o h a i o - 0} i > ?) 1

The nohalo program is found in n o h a lo . cpp , which uses VIPS to resample the image (using a trick to produce a result that conforms to the proper pixel
alignment convention). For more information on this method, see example.

Metrics

This section lists the image comparison metrics that will be used to assess the accuracy of the re-enlarged images. Each metric is associated with an aggregator and
a best-to-worst ordering, as seen in the default settings.

* IKAC.E VI F FERE UCS M E T R I C * A S ? AGGREGATORS
* F e e h r x F :n . ■ oe j s s e , ■ ’ j r oc/ w : t r . j J j t j J a q : c q j t ic:; m e t h e d .
* ?'c e.dd ,5 n ^ r r i i , p e n m;:--* r r e v i d e t l;c f o ’. l e ^ i i n T h r e e i r e x x :
* / . F ' t ' - r n i e ? r : e i ' e e i m n d , : : i q T h e f e l i e w ' . n q r e p ‘ <i, r o e / f i e ’l c i e :

* ! ■ 1 - ' c t c r c n e - ’' irr.jcfe

4.2. Usage Instructions 15

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

ĉ/yreyri! e

* J - 1.iVc>Ctj;:t./i/.'g
[Metrics]
c r y b _ i - e x q u u r e c c o m p a r e <srgb_i
z i q b _ 2 . - c x q u i r e c c o . m p a r e s r q b _ 2
s i q b _ T = o x q j ^ r c s c o m p a r e s r q b _ 4
8 r q b _ l : t f - c x o . i i r c s - c o m p d r e s r q c .
cm; : _ l - cxq' . ; i vos-- . : :orrpar»‘> crrc__!

- e x q u i v r - s - o o m p a t e r . mc_r
r n n ^ ' l - - ^ x q u i r o . s - ' o r r . p ^ r c cmc_-:
< ' rno_i : ; f - n x q u i r 0 0 - c n r p a r o crrm
xy r _ I - ••'Xqi: 1 : •
xyr_/ -'xq-n 1 *

o x q m c
: > f exqu
1 - e x q j :

0 }

0 }

0 }

r:f
0 }

<*n
0 }

I; f

o ^mpa r '• x y z _
<•' xyz_

x y z ^ ' i o x q o . i ‘c c i ' p a t e x y z _
xy :< 1: i f e x q : i ; 1 e s c o m p a r e xy

- e x q j : r e s o :i p a r p h] ; n _ ' { (t
b l u : _ C “ e x q u i r e c l o m p a r e h l u r _ 2 <0
b i u r _ - i ~ s x q . i i e j c o m p a r e r) l :J i _ 4 {C
h'iur cit 1. ~ exquires compare biur_in.
my- i im ~ e x q u i r e s c o m p a r e m s u i m i0}

exqu
e x qu
ex q u

{ 1

r e s a g g r e g a t e
r e s a g g r e g a t e
r e s a g g r c q a c e

o x q u i r e s - a q n r e q

.1 U

r>xqui r o s - a a g r o g a f . o
e x q u : r o s - a q q r e q a t e 1_1
o x q u : r f - s - a q q r o q a t e]_•

•! \) , e x q u i r e s - a g q r e q a t . <
o x q u ' r e s - a q q r o q a t . c -
0x01:1 ros-duoi'i-qati . ' 1_1
e x q u i r e s a g g r e g a t e !_*

• I) , e x q u i r e s a g g r e g a t e
.) , e x q u ; r e s a q g r e q a ; e
.) , e x q u r r e s a g g i e g a i e 1
.) , e x q u i i e s a y g r e y a i e .
;) { I f , e x q u i r e s a y g r e y <

e x q u i r e s a g g r e g a t e i _ .

to i_
{0>,
{0,,
(0},
{ 0 ; ,

(0} ,
(01,
l_ir

_J u

•;o), 0

: 0},
(j
Q
U

t e i_
{ 0) ,

It:,

Note that these default metric definitions make use of exquires-rompure (page 27) and exqiurex-aggivgale (page 29). Also note that most of the metrics return an
error measure, meaning that a lower result is better. MSSIM, on the other hand, is a similarity index, meaning that a higher result is better.

For more information on the default metrics, see compa r e (page 32).

For m ore in form ation on the aggregation m eth od s, s ee aggregate (p age 31).

4.2.4 Computing the image comparison data

The basic syntax to run a project using exquires-run (page 24) is:

$ exquires-run

which will read the project file pro ject 1. ini, downsample the images by each ratio using each downsampler, re-enlarge the downsampled images using each
upsampler, and compute the difference using each metric.

You can specify the project name using one of the following:

16 Chapter 4. Using EXQUIRES

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

$ exquires-run -p my_project
$ exquires-run --proj my_project

where m y_pro j e c t is a name to identify your project.

By default, exquires-run (page 24) displays progress information. You can disable this output using one of the following:

$ exquires-run -s
$ exquires-run --silent

Warning: With large project files, this program can take an extremely long time to run. For slower machines, it is recommended to start with a small set of test
images. You can add additional images later and call exquires-updale (page 25) to compute the new data.

4.2.5 Updating the image comparison data

If you make changes to the project file al ter calling exquires-run (page 24). running it again will compute all data, including data for unchanged entries in the project
file. To compute only the new data rather than recomputing the entire data set, use exquires-updale (page 25), which supports the same options as exquires-run
(page 24).

See Computing the image comparison data (page 16) for more information.

4.2.6 Generating a table of aggregate image comparison table

Once the image difference data has been computed, you can generate various aggregations of the data and either display it in the terminal or write it to a file.

The basic syntax to print aggregated data using exquires-report (page 25) is:

$ exquires-report

which will read a backup o f the project file p r o j e c t 1 . i n i that was created the last time exquires-run (page 24) or exquires-updute (page 25) was called, select
the appropriate values from the database, aggregate the data, and print the results in tabular format to standard output.

As with the other programs, you can specify the project name using one of the following:

$ exquires-report -p my_project
$ exquires-report ---proj my_project

where m y_pro j e c t is a name to identify your project.

Normally, exquires-report (page 25) prints the data as a plaintext table. You may wish to include the results in a LaTeX document instead, which can be done using
one of the following:

4.2. Usage Instructions 17

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

$ exquires-report -1
$ exquires-report --latex

Likewise, exquires-repmt (page 25) normally shows the aggregated data when it prints the table. You can instead show the Spearman (fractional) ranks for each
upsampling method by using one of the following:

$ exquires-report -r
S exquires-report — rank

Furthermore, you can instead merge the Spearman (fractional) ranks across all specified metrics by using one of the following:

$ exquires-report -m
$ exquires-report — merge

Whether you display aggregated data or ranks, by default the upsamplers in the printed table will be sorted from best-to-worst according to the first metric specified.
If you wish to sort according to a different metric (including those that are not selected to be displayed), use one of the following:

$ exquires-report -s my_metric
$ exquires-report --sort my_metric

where m y _ m e tr ic is one of the metrics defined in the project file.

By default, exquires-rrport (page 25) prints the aggregated data to standard output. You can write the aggregated data to a file by using one of the following:

$ exquires-report -f my_file
$ exquires-report --file my_file

where m y_f i l e is the file you wish to write the data to.

When producing tables, exquires-report (page 25) will display 4 digits by default. You can select any number of digits between 1 and 16. For example, you can
change the number of digits to to 6 using one of the following:

$ exquires-report -d 6
$ exquires-report --digits 6

There are three components that determine which database tables to aggregate across: images, ratios, and downsamplers. By default, the image comparison data is
aggregated across all images, ratios, and downsampler. If you wish to aggregate over a subset of the database, use the following options.

You can specify the images to aggregate across by using one of the following:

$ exquires-report -I my_images
$ exquires-report --image m y _ i m a q e s

where m y_im ages is a list of images defined in the project file.

18 Chapter 4. Using EXQUIRES

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Note: The arguments passed to the - I / - - i m a g e option support wildcard characters.

You can specify the downsamplers to aggregate across by using one of the following:

$ exquires-report -D my_downsamplers
$ exquires-report --down my_downsamplers

where m y _ d o w n sam p le rs is a list of downsamplers defined in the project file.

Note: The arguments passed to the - D / - - d o w n option support wildcard characters.

You can specify the ratios to aggregate across by using one of the following:

$ exquires-report -R my_ratios
$ exquires-report --ratio my_ratios

where m y _ ra t i o s is a list of images defined in the project file.

Note: The arguments passed to the - R / - - r a t i o option support hyphenated ranges.

For example, to aggregate over the ratios 2 through 4 and 6 , type:

$ exquires-report -R 2 - 4 6

Regardless of which images, downsamplers, and ratios the data is aggregated across, the default behaviour is to display data for each upsampler and metric, with
each row representing an upsampler and each column representing a metric. If you wish to display only certain rows and columns, use the following options.

Y ou can sp ec ify the m etrics (co lu m n s) to d isp lay by u sin g on e o f the fo llow in g :

$ exquires-report ~M my_metrics
$ exquires-report --metric my„metrics

where m y _ m e tr ic s is a list of metrics defined in the project file.

Note: The arguments passed to the - M l - - m e t r i c option support wildcard characters.

For example, to only display data for the metrics prefixed with xyz_, type:

4.2. Usage Instructions 19

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

$ exquires-report -M xyz_*

You can specify the upsamplers (rows) to display by using one of the following:

$ exquires-report -U my_upsamplers
$ exquires-report --up my_upsamplers

where m y__upsam plers is a list of upsamplers defined in the project file.

Note: The arguments passed to the -U /— up option support wildcard characters.

For example, to only display data for the upsamplers suffixed with _srgb, type:

$ exquires-report -U *_srgb

4.2.7 Generating a Spearman’s rank cross-correlation matrix

In addition to using exquires-report (page 25) with the - r t - - r a n k or -m /--merge options, which produce tables of Spearman (fractional) ranks, you can use
exquires-correlate (page 26) to compute Spearman’s rank cross-correlation matrices for several different groups.

The basic syntax to print a cross-correlation matrix using exquires-correlate (page 26) is:

$ exquires-correlate

which will read a backup of the project file pro j e c t 1 . i n i that was created the last time exquires-run (page 24) or exquires-update (page 25) was called, select
the appropriate values from the database, aggregate the data, and print the cross-correlation matrix for all comparison metrics to standard output.

You can select which upsamplers to consider when computing the matrix by using the -U l— up option.

B y defau lt, the -M /— met ri c op tion is s e le c ted . Y ou can se lec t o n e o f the fo llo w in g cross-correla tion groups:

• - I /~ - im a g e

• -D l--dow n

• - R / - - r a t i o

• -Ml- m e t r i c

As with the other programs, you can specify the project name using one of the following:

$ exquires-correlate -p my_project
$ exquires-correlate — proj my_project

20 Chapter 4. Using EXQUIRES

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Normally, exquirvs-correlate (page 26) prints the cross-correlation matrix as a plaintext table. You may wish to include the results in a LaTeX document instead,
which can be done using one of the following:

$ exquires-correlate -1
$ exquires-correlate — latex

By default, exquires-correlate (page 26) prints the cross-correlation matrix to standard output. You can write the matrix to a file by using one of the following:

$ exquires-correlate -f my_file
$ exquires-correlate — file my_file

w here my_f i le is the file y ou w ish to w rite the data to.

When producing a matrix, exquires-correlate (page 26) will display 4 digits by default. You can select any number of digits between 1 and 16. For example, you
can change the number of digits to to 6 using one of the following:

$ exquires-correlate -d 6
$ exquires-correlate --digits 6

By default, the order of the rows and columns of the correlation matrix corresponds to the order they were passed to exquires-correlate (page 26). It is often useful
to sort the coefficients from best to worst based on a specific anchor row/column. You can specify the anchor using one of the following:

$ exquires-correlate -a my_anchor
$ exquires-correlate — anchor my_anchor

w here my_anchor is the anchor y ou w ish to use.

You can specify the upsamplers (rows) to consider in the computation by using one of the following:

$ exquires-correlate -U my_upsamplers
$ exquires-correlate — up iny_upsamplers

w here my_upsamplers is a list o f upsam plers d efined in the project file.

Note: The arguments passed to the - U /- -u p option support wildcard characters.

For example, to only consider data for the upsamplers suffixed with _srgb, type:

$ exquires-correlate -U *_srgb

4.2. Usage Instructions 21

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

4.2.8 Manually comparing images

The exquires-run (page 24) and exquires-update (page 25) programs compute data to be inserted into the database by calling exquires-compare (page 27) (see The
compare Module (page 32)).

You can call exquires-compare (page 27) directly on any pair of images with the same dimensions by using:

$ exquires-compare my_metric my_imagel my_image2

where m y_ im agel and m y_im age 2 are the images to compare and m y _ m e tr ic is one of the metrics described in The compare Module (page 32).

By default, exquires-compare (page 27) expects images with 16 bits per sample: each value is between 0 and 65535. You can change the maximum value from
65535 to anything you like. For example, to support images with 8 bits per sample (values between 0 and 255), type one of the following:

$ exquires-compare my_metric my_imagel my_image2 -m 255
$ exquires-compare my_jnetric my_imagel my_image2 --maxval 255

4.2.9 Manually aggregating data

The exqui res-report (page 25) program aggregates the image comparison data before printing it to standard output or writing it to a file by calling exquires-aggregate
(page 29).

You can call exquites-aggivgate (page 29) directly on any list of numbers by using:

$ exquires-aggregate my„method my_numbers

where m y_num bers is a list of numbers separated by spaces and m y_m ethod is one of the aggregation methods described in The aggregate Module (page 31).

For example, to return the average of a list of numbers, type:

S exquires-aggregate 1_1 1.2 2.4 3.6 4.8
3 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

and to find the maximum, type:

$ exquires-aggregate l_inf 1.2 2.4 3.6 4.8
4.800000000000000

22 Chapter 4. Using EXQUIRES

CHAPTER

FIVE

PROGRAMS

5.1 exquires-new

Syntax:

exquires-new [-hj f-vJ [-p PROJECT] [-1 IMAGE (IMAGE ...]]

Description:

Generate a new project file to use with exquires-run (page 24).

The project file is used to specify the following components of the suite:

• Images (sRGB TIFF I 16 bits/sample (48/pixel) I 840x840 pixels)

• Downsamplers

• R esam p lin g R atios

• Upsamplers

• Difference Metrics

For the specified project name and list of images, a default project file will be created with the name PROJECT .ini, where PROJECT is a name specified using
the -p:option:-/>ro/ option. If a name is not specified, the default name is p r o j e c t 1 .

Use the -I:option:-imuge option to provide a list of images to include in the project file. If no images are specified, a default image (wave .tif) is included in
the project file.

Manually edit this file to customize your project.

23

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Optional Arguments:

SHORT FLAG LONG FLAG ARGUMENTS DESCRIPTION
-h - - h e l p show this help message and exit
- v - - v e r s i o n show program's version number and exit
~ P - - p r o j PROJECT name of the project (default: project I)
- I - - im a g e IMAGEf IMAGE...] the test images to use (default: wave . t i f)

For additional usage instructions, see Obtaining suitable test images (page 12), Creating a new praject file (page 12), and Customizing the project file (page 13).

For technical information, see new (page 44).

5.2 exquires-run

Syntax:

exquires-run f-h] |-v] f-s] f-p PROJECT]

Description:

Compute error data for the entries in the specified project file.

The project file is read to determine which images, downsamplers, ratios, upsamplers, and metrics to use. If a database file already exists for this project, it will be
backed up and a new one will be created.

Each image will be downsampled by each of the ratios using each of the downsamplers. The downsampled images will then be upsampled back to their original
size (840x840) using each of the upsamplers. The upsampled images will be compared to the original images using each of the metrics and the results will be stored
in the database file.

I f you m ak e ch an ges to the project file and w ish to on ly com p u te data for th ese ch a n g es rather than recom pu ting everyth in g , use exquires-updale (p age 25).

To v ie w aggregated error data, u se exquires-report (p age 25).

Optional Arguments:

SHORT FLAG LONG FLAG ARGUMENTS DESCRIPTION
-h - - h e l p show this help message and exit
- v - - v e r s i o n show program’s version number and exit
- s - - s i l e n t do not display progress information
-p - p r o j PROJECT name of the project (default: project 1)

For additional usage instructions, see Computing the image comparison data (page 16).

For technical information, see ru n (page 63).

24 Chapter 5. Programs

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

5.3 exquires-update

Syntax:

exquiros-update [—h] [-v] I — s] [-p PROJECT]

Description:

Compute new error data for changes to the user-specified project file.

The project file is inspected to determine which changes have been made. Items that have been removed will result in entries being removed from the database.
Items that have been changed or added will result in new data being computed and added to the database file. If no changes have been made to the project file, the
database will not be updated.

If you wish to recompute all data based on your project file rather than simply updating it with the changes, use exquires-run (page 24).

To view aggregated error data, use exquires-report (page 25).

Optional Arguments:

SHORT FLAG LONG FLAG ARGUMENTS DESCRIPTION
-h - - h e l p show this help message and exit
- v - - v e r s i o n show program’s version number and exit
- s - - s i l e n t do not display progress information
~P - - p r o j PROJECT name of the project (default: project 1)

For additional usage instructions, see Updating the image comparison data (page 17).

For technical information, see u p d a te (page 67).

5.4 exquires-report

Syntax:

exquires-report [~h] (-v] [-1] [-r I -m] [-p PROJECT] [-f FILE]
[-d DIGITS] [-s METRIC] i-U METHOD [METHOD ...J]
[-1 IMAGE [IMAGE ...]] [-D METHOD [METHOD ...]]
[-R RATIO [RATIO ...]] [-M METRIC [METRIC ...]]

Description:

Print a formatted table of aggregate image difference data.

5.3. exquires-update 25

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Each database table in the current project contains data for a single image, downsampler, and ratio. Each row represents an upsampler and each column represents
a difference metric. By default, the data across all rows and columns of all tables is aggregated. Use the appropriate option flags to aggregate across a subset of the
database.

Optional Arguments:

SHORT FLAG LONG FLAG ARGUMENTS DESCRIPTION
- h - - h e l p show this help message and exit
“ V - - v e r s i o n show program’s version number and exit
- i - - l a t e x print a LaTeX formatted table
- r - - r a n k print Spearman (fractional) ranks
- m m e r g e print merged Spearman ranks
~ P - - p r o j PROJECT name of the project (default: project I)
- [- - f i l e FILE output to file (default: sys.stdout)
- d - - d i g i t s DIGITS total number of digits (default: 4)
- s - - s o r t METRIC sort using this metric (default: first)
- U - - u p METHOD [METHOD ...j upsamplers to consider (default: all)
- I - - i m a g e IMAGE 1 IMAGE...] images to consider (default: all)
- D - - d o w n METHOD [METHOD...] downsamplers to consider (default: all)
- R - - r a t i o RATIO [RATIO...] ratios to consider (default: all)
- M - - m e t r i c METRIC [METRIC...] metrics to consider (default: all)

Features:

• - R l - - r a t i o supports hyphenated ranges (ex. ‘2-4 6 ’ gives ‘2 3 4 6 ‘)

• - V I — up, - I t — im age, - D l — down and -M l— m e t r i c support wildcards

For additional usage instructions, see Generating a table o f aggregate image comparison table (page 17).

For technical information, see r e p o r t (page 62).

5.5 exquires-correlate

Syntax:

exquires-correlate [-h] [-v] [-1] [-p PROJECT) [-f FILE] [-d DIGITS]
[-U METHOD [METHOD ...]] [-1 IMAGE [IMAGE ...] I -D
METHOD [METHOD ...j 1 -R RATIO [RATIO ...] I -M
METRIC [METRIC ...33

26 Chapter 5. Programs

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Description:

Produce a Spearman’s rank cross-correlation matrix for the specified group.

By default, the -Ml - m e t r i c option is selected. You can select one of the following cross-correlation groups:

• - I ! — i m a g e

• -D l--d o w n

• -Ft/— r a t i o

• -M l— m e t r i c

You can also select which upsamplers to consider when computing the matrix by using the - U l- -u p option.

Optional Arguments:

SHORT FLAG LONG FLAG ARGUMENTS DESCRIPTION
- h - - h e l p show this help message and exit
- v - - v e r s i o n show program’s version number and exit
-1 - - l a t e x print a LaTeX formatted table
~P - - p r o j PROJECT name of the project (default: project 1)
- f - - f i l e FILE output to file (default: sys.stdout)
- d - - d i g i t s DIGITS total number of digits (default: 4)
-a - - a n c h o r ANCHOR sort using this anchor (default: none)
- u - - u p METHOD (METHOD...] upsamplers to consider (default: all)
- I - - im a g e IMAGE I IMAGE...] images to consider (default: all)
-D --d o w n METHOD (METHOD...] downsamplers to consider (default: all)
-R - - r a t i o RATIO (RATIO... (ratios to consider (default: all)
- M - - m e t r i c METRIC (METRIC...] metrics to consider (default: all)

For additional usage instructions, see Generating a Spearman v rank cmsx-correlation matrix (page 20).

For technical information, see c o r r e l a t e (page 39).

5.6 exquires-compare

Syntax:

exquires-compare [-hj [-v] [-m MAX_LEVEL] METRIC IMAGE_1 IMAGE_2

5.6. exquires-compare 27

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Description:

Print the result of calling a difference metric on two image files.

Difference Metrics:

NAME DESCRIPTION
srg b _ l norm in sRGB colour space
srgb_2 (2 norm in sRGB colour space
s rgb_4 f4 norm in sRGB colour space
sr g b _ in f Coo norm in sRGB colour space
cmc_l (\ norm in CMC(1:1) colour space
cmc_2 (2 norm in CMC(1:1) colour space
cmc_4 (4 norm in CMC(1:1) colour space
cmc_inf t x norm in CMC(1:1) colour space
xyz_l (i norm in XYZ colour space
xyz_2 (2 norm in XYZ colour space
xyz_4 (4 norm in XYZ colour space
x y z _ in f f x norm in XYZ colour space
b lu r _ l MSSIM-inspired t \ norm
blur_2 MSSIM-inspired (2 norm
blur_4 MSSIM-inspired (4 norm
b lu r _ in f MSSIM-inspired norm
mss im Mean Structural Similarity Index (MSSIM)

Positional Arguments:

ARGUMENT DESCRIPTION
METRIC the difference metric to use
1 M A G E J the first image to compare
I M A G E J 2 the second image to compare

Optional Arguments:

SHORT FLAG LONG FLAG ARGUMENTS DESCRIPTION
-h - - h e l p show this help message and exit
- v - - v e r s i o n show program’s version number and exit
-m - -m a x v a l MAXJ.EVEL the maximum pixel value (default: 65535)

For additional usage instructions, see Manually comparing images (page 22).

For technical information, see co m p are (page 32).

28 Chapter 5. Programs

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

5.7 exquires-aggregate

Syntax:

exquires-aggregate [-hj [-v] METHOD NUM [HUM ...J

Description:

Aggregate a list of values using the selected method.

Aggregators:

NAME DESCRIPTION
1 _ 1 return the average
1_2 average the squares and return the square root
1_4 average the quads and return the fourth root
l_inf return the maximum

Positional Arguments:

ARGUMENT DESCRIPTION
METHOD the type of aggregation to use
NUM number to include in aggregation

Optional Arguments:

SHORT FLAG LONG FLAG DESCRIPTION
-h - - h e l p show the help message and exit
- V - - v e r s io n show the program’s version number and exit

For additional usage instructions, see Manually comparing images (page 22).

For tech n ical in form ation, see compare (p age 32).

5.7. exquires-aggregate 29

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

30 Chapter 5. Programs

CHAPTER

SIX

MODULES & CLASSES

6.1 The aggregate Module

Aggregate a list of numbers using the specified method.

Aggregators:

NAME DESCRIPTION
1 _ 1 return the average
l_ 2 average the squares and return the square root
1_4 average the quads and return the fourth root
!_inf return the maximum

aggregate.main{)
Run exquires-aggregate (page 29).

6.1.1 The A ggregate Class

class a g g r e g a t e .Aggregate [values)
Bases: object

This class provide various ways of aggregating error data.

Param eters values (list o f numbers) - numbers to aggregate

1_1<>
Return the average.

31

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

Returns the average

R eturn type float

1_2 0
Average the squares and return the square root.

Returns the square root of the average of the squares

Return type float

1_ < <)
Average the quads and return the fourth root.

Returns the fourth root of the average of the quads

R eturn type float

l_inf()
Return the maximum.

Returns the maximum

Return type float

6.2 The compare Module

Print the result of calling a difference metric on two image files.

Difference Metrics:

32 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

NAME DESCRIPTION
srgb_l (j norm in sRGB colour space
srgb_ 2 (2 norm in sRGB colour space
srgb_4 (4 norm in sRGB colour space
srgb jn f f x norm in sRGB colour space
cmc_l fi norm using the CMC(1:1) colour difference
cmc_ 2 (2 norm using the CMC(1:1) colour difference
cmc_4 (4 norm using the CMC(1:1) colour difference
cmc_inf f.x norm using the CMC(1:1) colour difference
xyz_l norm in XYZ colour space
xyz_ 2 (2 norm in XYZ colour space
xyz_4 (4 norm in XYZ colour space
x y z jn f fac norm in XYZ colour space
blur_l MSSIM-inspired 11 norm
blur_ 2 MSSIM-inspired t 2 norm
blur_4 MSSIM-inspired (4 norm
b lu rjn f MSSIM-inspired (x norm
mssim Mean Structural Similarity Index (MSSIM)

c o m p a r e , _ g e t _ b l u r l i s t ()
Private method to return a Gaussian blur mask.

Note: This is a private function called by blur_l () (page 34), blur_2 () (page 34), blur_H () (page 35), biur_ir.f () (page 35), and mssim ()
(page 36).

c o m p a r e .m a in ()
Run exquires-compure (page 27).

6.2.1 The M etrics Class

class co m p are .M e t r i c s (imageI, image2, maxval=65535)
Bases: o b j e c t

This class contains error metrics to be used on sRGB images.

The (j, f 2, (j , and metrics are normalized by L, the largest possible pixel value of the input images (the lowest is assumed to be 0). The range of output
for these metrics is [0 , 1 0 0].

6.2. The compare Module 33

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

The MSSIM metric produces output in the range [-1, I], but it is unlikely that a negative value will be produced, as the image features must differ greatly.
For instance, a pure white image compared with a pure black image produces a result slightly greater than 0.

The CMC and XYZ errors can be slightly outside the range [0, 100], but this will not occur for most image pairs.

Note: By default, a Met rics (page 33) object is configured to operate on 16-bit images.

Parameters

• imagel {path) - first image to compare (reference image)

• image2 (path) - second image to compare (test image)

• L (integer) - highest possible pixel value (default=65535)

blur_l()
Compute MSSIM-inspired (i error.

This method performs the same greyscale conversion, Gaussian blur, and cropping as MSSIM, but returns the f i error of the cropped image.

See (6.2) for details on how the blurred images are compared.

Note: The images are converted to grayscale before applying Gaussian blur. The grayscale conversion is equivalent to taking the Y channel in YIQ
colour space.

Returns MSSIM-inspired l \ error

Return type float

blur_2()
Compute MSSIM-inspired (2 error.

This method performs the same greyscale conversion, Gaussian blur, and cropping as MSSIM, but returns the (2 error of the cropped image.

See (6.3) for details on how the blurred images are compared.

Note: The images are converted to grayscale before applying Gaussian blur. The grayscale conversion is equivalent to taking the Y channel in YIQ
colour space.

Returns MSSIM-inspired t 2 error

34 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Return type float

blur_4()
Compute MSSIM-inspired t 4 error.

This method performs the same greyscale conversion, Gaussian blur, and cropping as MSSIM, but returns the (4 error of the cropped image.

See (6.4) for details on how the blurred images are compared.

Note: The images are converted to grayscale before applying Gaussian blur. The grayscale conversion is equivalent to taking the Y channel in YIQ
colour space.

Returns MSSIM-inspired t4 error

Return type float

b l u r _ i n f ()
Compute MSSIM-inspired error.

This method performs the same greyscale conversion, Gaussian blur, and cropping as MSSIM, but returns the (x error of the cropped image.

See (6.5) for details on how the blurred images are compared.

Note: The images are converted to grayscale before applying Gaussian blur. The grayscale conversion is equivalent to taking the Y channel in YIQ
colour space.

Returns MSSIM-inspired error

Return type float

cmc_l()
Compute (i error in Uniform Colour Space (UCS).

This method imports the images into Lab colour space, then calculates delta-E CMC(1:1) and returns the average.

See (6.2) for details on how the standard (\ norm is computed.

Returns (\ error in Uniform Colour Space (UCS)

Return type float

6.2. The compare Module 35

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

cmc_ 2 ()
Compute f -2 error in Uniform Colour Space (UCS).

This method imports the images into Lab colour space, then calculates delta-E CMC(1:1) and returns the f 2 norm.

See (6 3) for details on how the standard f 2 norm is computed.

Returns f 2 error in Uniform Colour Space (UCS)

Return type float

c m c_ 4 ()
Compute (4 error in Uniform Colour Space (UCS).

This method imports the images into Lab colour space, then calculates delta-E CMC(1:1) and returns the f t norm.

See (6.4) for details on how the standard ('4 norm is computed.

Returns f t error in Uniform Colour Space (UCS)

Return type float

c m c _ in f ()
Compute t x error in Uniform Colour Space (UCS).

This method imports the images into Lab colour space, then calculates delta-E CMC(1:1) and returns the f x norm.

See (6.5) for details on how the standard f x norm is computed.

Returns f x error in Uniform Colour Space (UCS)

Return type float

mssim()
Compute the Mean Structural Similarity Index (MSSIM).

T h e eq u ation for S S IM is

S S IM (x ,y)
(2 (txHy + Ci)(2gxi, + C2)

+ n* + C i){a j -f <r‘y + C2)

where /ix and /iy are the sample means, ax and ay are the standard deviations, and rrxy is the correlation coefficient between images x and y.

Once the SSIM map is computed, the border is trimmed by 5 pixels and the mean is returned.

This version is slightly more efficient than the method proposed by Wang et. al. because it reduces the number of Gaussian blurs from 5 to 4.

(6. 1)

36 Chapter 6. Modules & Classes

The EXQUtRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Note: The images are converted to grayscale before applying Gaussian blur. The grayscale conversion is equivalent to taking the Y channel in YIQ
colour space.

Returns mean SSIM

Return type float

s r g b _ l ()
Compute (\ error in sRGB colour space.

The equation for the error, aka Average Absolute Error (AAE), is

where x and y are the images to compare, each consisting of N pixels.

Returns error

R eturn type float

srgb_2()
Compute (■> error in sRGB colour space.

The equation for the (2 error, aka Root Mean Squared Error (RMSE), is

where x and y are the images to compare, each consisting of N pixels.

R eturns f > error

Return type float

srgb_4()
Compute f'i error in sRGB colour space.

The equation for the (1 error is

where x and y are the images to compare, each consisting of N pixels.

(6 .2)

(6.3)

(6.4)

6.2. The compare Module 37

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Returns (4 error

Return type float

srgb_inf()
Compute t x error in sRGB colour space.

The equation for the error, aka Maximum Absolute Error (MAE), is

toc(x, y) = ^ tax^ \x, - j/, | (6.5)

where x and ;/ are the images to compare, each consisting of N pixels.

Returns error

Return type float

xyz_l()
Compute l \ error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates the error.

See (6.2) for details on how the standard 11 norm is computed.

Returns f i error in XYZ Colour Space

Return type float

xyz_2()
Compute f -2 error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates the (2 error.

See (6.3) for details on how the standard f 2 norm is computed.

Returns f 2 e rro r in XYZ C olour Space

Return type float

xyz_4()
Compute (\ error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates the (4 error.

See (6.4) for details on how the standard (4 norm is computed.

Returns (4 error in XYZ Colour Space

Return type float

38 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

xyz_inf()
Compute t x error in XYZ Colour Space.

This method imports the images into XYZ colour space, then calculates the 4 c error.

See (6.5) for details on how the standard 4*) norm is computed.

Returns 4 c error in XYZ Colour Space

Return type float

6.3 The c o r r e la te Module

Produce a Spearman’s rank cross-correlation matrix for the specified group.

By default, the -M /- -m et r i c option is selected. You can select one of the following cross-correlation groups:

• -I/--image

• - D l - - d o w n

• - R / — r a t i o

• - M l - - m e t r i c

You can also select which upsamplers to consider when computing the matrix by using the -U l- -u p option.

c o r r e l a t e ._get_group_and_ranks (urgs)
Return the correlation group and ranks.

Note: This is aprivate function called by _ p r i n t _ m a t r i x () (page40).

Parameters

• args (a r g p a r s e . N am espace) - arguments

• args.dbasejile (path) - database file

• args.image (list o f strings) - selected image names

• args.down (list o f strings) - selected downsampler names

• args.ratio (list o f strings) - selected ratios

• args.up (list o f strings) - selected upsampler names

6.3, The c o r r e l a t e Module 39

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

• args.metric (list o f strings) - selected metric names

• args.metrics_d (diet) - all metric names

• args.file (pa/fi) - output tile

• args.digits (integer) - number of digits to print

• argsJatex (boolean) - True if printing a LaTeX-formatted table

• args.key (string) - key for the correlation group

Returns the group and ranks

Return type siring, list o f lists

c o r r e l a t e . j p r i n t j n a t r i x (args)
Print a cross-correlation matrix from aggregate image comparison data.

Note: This is a private function calied by m ain () (page 41).

Parameters

• args (a r g p a r s e .N am espace) -arguments

• args.dbasejile (path) - database file

• args.image (list o f strings) - selected image names

• args.down (list o f strings) - selected downsampler names

• args.ratio (list o f strings) - selected ratios

• args.up (list o f strings) — selected upsampler names

• args.metric (list o f strings) - selected metric names

• args.metrics_d (diet) - all metric names

• args.file (path) - output file

• args.digits (integer) - number of digits to print

• argsJatex (boolean) - True if printing a LaTeX-formatted table

• args.key (string) - key for the correlation group

• args.anchor (string) - row/column to order the matrix by

40 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

correlate.main()
Run exquires-correlate (page 26).

Parse the command-line arguments and print the cross-correlation matrix.

6.4 The database Module

Provides an interface to the sqlite3 image error database.

6.4.1 The D atabase Class

class d a ta b a s e .Database (dbasefde)
This class provides an interface to the sqlite3 image error database.

The database stores error data computed by exquires-run (page 24) and exquires-update (page 25). This data is retrieved and used to compute the output
given by exquires-report (page 25) and exquires-correlate (page 26).

Parameters dbasefile {path) - database hie to connect to

.Database create.table {name, metrics)
Private method used to create a new database table.

Note: This is a private methodcalled by a d d . t a b l e () (page 41)and b a c k u p . t a b l e () (page42).

Parameters

• name (string) - name of the table to create

• metrics (list o f strings) - error metrics to compute (the table columns)

add.table {image, downsampler, ratio, metrics)
Add a new table to the database.

Each table is defined in the following way:

1. image, downsampler. and ratio define the table name

2. metrics detine the columns of the table

To keep track of each table in terms of the image, downsampler, and ratio that defines it, an entry is created in the TABLEDATA table.

6.4. The database Module 41

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Param eters

• image (string) - name of the image

• downsampler (string) - name of the downsampler

• ratio (string) - resampling ratio

• metrics (list o f strings) - names of the metrics

Returns the table name

R eturn type string

backup_table (name, metrics)
Backup an existing image error table.

Param eters

• name (string) - name of the table to backup

• metrics (list o f strings) - error metrics (columns) to backup

Returns name of the backup table

Return type string

close ()
Close the connection to the database.

delete (table, upsampler)
Delete a row from the table.

Param eters

• table (string) - name of the table to delete from

• upsam pler (string) - upsampler (row) to remove from the table

drop_backup (name)
Drop a backup table once it is no longer needed.

Param eters name (string) - name of the backup table to drop

drop_tables (images, downsamplers, ratios)
Drop database tables.

All tables defined by any of the images, downsamplers, or ratios are dropped. The TABLKDATA table is updated to reflect these changes.

Param eters

42 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

• images (list o f strings) - n am es o f the im ages

• downsamplers (list o f strings) - names of the downsamplers

• ratios (list o f strings) - resampling ratios

get_error_data (table, upsampler, metrics_str)
Return a filtered row of error data.

For the upsampler row in the table, return a dictionary containing only the error data for the specified metrics.

Parameters

• table (string) - name of the table to query

• upsampler (string) - name of the upsampler (row) to acquire data from

• metrics_str (string) - metrics to return error data for (comma-separated)

Returns the filtered row of error data

Return type diet

get_tables (args)
Return table names for these images, downsamplers, and ratios.

Parameters

• args (a r g p a r s e . N am espace) - arguments

• args.image (list o f strings) - names of images

• args.down (list o f strings) - names of downsamplers

• args.ratio (list o f strings) - resampling ratios

R e tu r n s n am es o f the tables

Return type list o f strings

insert (table, row)
Insert a single row into the table, or update if it exists.

Parameters

• table (string) - name of the table

• row (diet) - row data to insert

6.4. The database Module 43

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

«ql_do (sql, param s=())
Perform an operation on the database and commit the changes.

Parameters

• sql (string) - SQL statement to execute and commit

• params (list o f values) - values to fill wildcards in the SQL statement

sql_fetchall (sql, params=())
Fetch all rows for the specified SQL query.

Parameters

• sql (string) - SQL query to execute

• params (list o f values) - values to fill wildcards in the SQL statement

Returns rows specified by the SQL query

Return type list o f diets

6.5 The new Module

Generate a new project file to use with exqitires-run (page 24).

The project file is used to specify the following components of the suite:

• Images (sRGB TIFF I 16 bits/sample (48/pixel) I 840x840 pixels)

• Downsamplers

• R esam p lin g R atios

• Upsamplers

• Difference Metrics

For the specified project name and list of images, a default project file will be created with the name PROJECT .ini, where PROJECT is a name specified using
the - p : o p U o r \ : - p m j option. If a name is not specified, the default name is pro jectl.

Use the 1 :option:-intage option to provide a list of images to include in the project file. If no images are specified, a default image (wave. tif) is included in
the project file.

Manually edit this file to customize your project.

44 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Sutte, Release 0.9.9.3

new ._add_de£ault_downsamplers (ini)
Add the default downsamplers to the specified . i n i file.

Note: This is a private function called by ma i n () (page 48).

Param eters i n i (c o n f ig o b j .C o n f ig O b j) - th e . i n i file to modify

new ,_add_default_images (ini, image)
Add the default images to the specified . i n i file.

Note: This is a private function called by mai n () (page 48).

Param eters ini (c o n f ig o b j .C o n f ig O b j) - th e . i n i file to modify

n ew . _add_default_metrics (ini)
Add the default metrics to the specified . i n i file.

Note: This is a private function called by m ain () (page 48).

Param eters ini (c o n f ig o b j . C o n f ig O b j) - th e . i n i file to modify

new ,_add_de£ault_ratios (ini)
Add the default ratios to the specified . i n i file.

Note: T h is is a private function ca lled by ma i n () (p age 48).

Param eters ini (c o n f ig o b j .C o n f ig O b j) - th e . i n i file to modify

n ew ._add_default_upsamplers (ini)
Add the default upsamplers to the specified . i n i file.

Note: This is a private function called by m ain () (page 48).

6.5. The new Module 45

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Parameters ini (configobj .ConfigObj)-the .ini file to modify

new . _ m a g ic k (method, **kwargs)
Return an ImageMagick resize command as a string.

Blur and Kaiser beta values are passed as strings to avoid truncation.

Note: This is a private function called by _add_defaui t_downsamp] ers () (page 44), _st.d_int_lin_tensor_mt.ds_l () (page 47),
_std_int_lin_tensor_mtds_2 () (page 47), _novei_int_lin_f lt_rr.tds () (page 47), _std_r.onint_lin_tenscr_;rtds ()
(page 48), _std_int_ewa_lin_f it_mtds () (page 47), _std_nonint_ewa_lin_f lt_mtds () (page 48), and
_novel_noni nt_cwa_l in_f 1 t_mtds () (page 47).

Parameters

• method (string) - method to use with -resize or -distort Resize

• lin (boolean) - True if using a linear method

• dist (boolean) - True if using a -distort Resize method

• lobes (integer) - number of lobes

• blur (string) - blur value

• beta (string) - beta value for Kaiser method

Returns the ImageMagick command

Return type string

..metric (method, aggregator, sort)
Return 3 -e lem en t list d efin in g a m etric, an aggregator and a sort order.

Note: This is a private function called by _add_def ault_met r ics !) (page 45).

Parameters

• method (string) - image comparison metric (see exquires-tompare (page 27))

• aggregator (string) - data aggregator (see <txquires-aggregate (page 29))

• sort (integer) - best-to-worst order (0 : ascending, /: descending)

46 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Returns metric, aggregator, and sort order

R eturn type list

new ,_novel_int_lin_flt_mtd8 (i n i _ u p s)
Add the novel interpolatory linear filtering methods.

Note: This is a private function called by _add_defau’. L_upsamplers () (page 45).

Param eters inLups (diet) - upsamplers for the specified . ini file

n e w . _novel_nonint_ewa_lin_f lt_mtds (ini_ups)
Add the novel non-interpolatory EWA linear filtering methods.

Note: This is a private function called by _add_def auit_upsamplers () (page 45).

Parameters ini_ups (diet) - upsamplers for the specified . ini file

n e w . _atd_int_ewa_lin_flt_mtds (ini_ups)
Add the standard interpolatory EWA linear filtering methods.

Note: This is a private function called by _add_defauit_upsamplers () (page 45).

Parameters ini_ups (diet) - upsamplers for the specified . ini file

n e w ._std_int„lxn_tensor__mtds_l (in i_ itps)
Add the 1st part of the standard interpolatory linear tensor methods.

Note: This is aprivate function called by _add_default_upsamplers () (page 45).

Parameters ini_ups (diet) - upsamplers for the specified . i n i file

new ._std_int_lin_tensor_mtds_2 (ini_ups)
Add the 2nd part of the standard interpolatory linear tensor methods.

6.5. The new Module 47

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Note: This is a private function called by _ a d d _ d e f a u l t_ u p s a m p le r s () (page 45).

Parameters ini__ups (diet) - upsamplers for the specified . ini file

new. _std_nonint_awa_lin_f lt_mtds (ini_ups)
Add the standard non-interpolatory EWA linear filtering methods.

Note: This is a private function called by _ a d d _ d e f a u i t_ u p s a m p le r s () (page 45).

Parameters ini_ups (diet) - upsamplers for the specified . ini file

new ._std„nonint_lin_tensor_mtds (ini_ups)
Add the standard non-interpolatory linear tensor methods.

Note: This is a private function called by _ a d d _ d e f a u i t_ u p s a m p le r s () (page 45).

Parameters ini_ups (diet) - upsamplers for the specified .ini file

new.main()
R un exquires-new (p age 23).

Create a project file to use with exquires-run (page 24) and exquires-update (page 25).

6.6 The operations Module

A collection of classes used to compute image difference data.

The hierarchy of classes is as follows:

• O p e ra t i ons (page 49) encapsulate a list of Images (page 49)

• Images (page 49) encapsulate a diet of images and a list of Downsamplers (page 50)

• Downsamplers (page 50) encapsulate a diet of downsamplers and a list of R a t i o s (page 51)

• R a t io s (page 51) encapsulate a diet of ratios and a list Im ages (page 49)

• T mages (page 49) encapsulate a diet of images and a diet of metrics

48 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

These classes work together to downsample the master images, upsample the downsampled images, and compare the upsampled images to the master images. To
perform the operations, call O p e r a t io n s . co m p u te () (page 49).

6.6.1 The O perations Class

class o p e r a t i o n s .O p e r a t io n s (images)
Bases: object

A collection of Image objects to compute data with.

This class is responsible for calling all operations defined in the specified project file when using exquires-run (page 24) or exquiirs-iquiate (page 25).

Param eters images (list of Images (page 49)) - images to downsample

co m p u te (args, old=None)
Perform all operations.

Param eters

• args (argparse. Namespace) - arguments

• args.prog (siring) - name of the calling program

• args.dbasefile (path) - database file

• args.proj (string) - name of the current project

• args.silent (boolean) - True if using silent mode

• args.met_same (diet) - unchanged metrics

• args.metrics (diet) - current metrics

• args.config_file (path) - current configuration file

• args.config_bak (path) - previous configuration file

• old (a r g p a r s e . N am espace) - old configuration entries to be removed

6.6.2 The Images Class

class operat ions . Im a g e s (imetges. downsamplers, same=False)
Bases: object

This class calls operations for a particular set of images.

6.6. The operations Module 49

The EXQUIBES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Parameters

• images (diet) - images to downsample

• downsamplers (list of Downs amp 1 e r s (page 50)) - downsamplers to use

• same (boolean) - True if using unchanged images

c o m p u te {args)
Perform all operations for this set of images.

Parameters

• args (argparse. Namespace) - arguments

• args.dbase file (path) - database file

• args.dbase (database. Database (page 41))-connected database

• args.proj (string) - name of the current project

• args.silent (boolean) - True if using silent mode

• args.met_same (diet) - unchanged metrics

• args.metrics (diet) - current metrics

• args.do_op (function) - updates the displayed progress

6.6.3 The Downsamplers Class

class operations .D o w n sam p le rs (downsamplers, ratios. same=False)
Bases: object
This class calls operations for a particular set of downsamplers.

Param eters

• downsamplers (diet) - downsamplers to use

• ratios (list of Ra t. i o s (page 5 1))- ratios to downsample by

• same (boolean) - True if using unchanged downsamplers

c o m p u te (args. same)
Perform all operations for this set of downsamplers.

Param eters

50 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Teat Suite, Release 0.9.9.3

• args (a r g p a r s e . N am espace) - arguments

• args.dbase_file (path) - database file

• args.dbase (d a t a b a s e . D a ta b a s e (page 41))-connected database

• args.proj (string) - name of the current project

• args.silent (boolean) - True if using silent mode

• args.met_same (diet) - unchanged metrics

• args.metrics (diet) - current metrics

• args.do_op (function) - updates the displayed progress

• args.image (string) - name of the image

• args.image_dir (path) - directory to store results for this image

• args.master (path) - master image to downsample

• same (boolean) - True if possibly accessing an existing table

6.6.4 The R a tio s Class

class o p e r a t i o n s .R a t io s (ratios, upsamplers, same=Fa!se)
Bases: o b j e c t

This class calls operations for a particular set of ratios.

Parameters

• ratios (diet) - ratios to downsample by

• upsamplers (list of U p sa m p le rs (page 52)) - upsamplers to use

• same (boolean) - True if using unchanged ratios

com pute (args. downsamplers, same)
Perform all operations for this set of ratios.

Parameters

• args (a r g p a r s e . N am espace) - arguments

• args.dbase_file(pr//fi)- database file

6.6. The operations Module 51

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

• args.dbase (d a ta b a s e . D a ta b a s e (page 41)) - connected database

• args.proj (string) - name of the current project

• args.silent (boolean) - True if using silent mode

• args.met_.same (diet) - unchanged metrics

• args.metrics (diet) - current metrics

• args.do_op (function) - updates the displayed progress

• args.image (string) - name of the image

• args.image_dir (path) - directory to store results for this image

• args.master (path) - master image to downsample

• args.downsampler (string) - name of the downsampler

• args.downsampler_dir (path) - directory to store dowsampled images

• downsamplers (diet) - downsamplers to use

• same (boolean) - True if accessing an existing table

6.6.5 The Upsamplers Class

class opera t i o n s .Upsamplers (upsamplers, metrics, same-False)
Bases: o b j e c t

This class upsamples an image and compares with its master image.

Parameters

• upsamplers (diet) - upsamplers to use

• metrics (diet) - metrics to compare with

• same (boolean) - True if using unchanged upsamplers

compute (args, same)
Perform all operations for this set of ratios.

Parameters

• args (argparse. Namespace) - arguments

52 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

• args.dbase_file (path) - database file

• args.dbase (database. Database (page41))-connecteddatabase

• args.proj (string) - name of the current project

• args.silent (boolean) - True if using silent mode

• args.met_same (diet) - unchanged metrics

• args.metrics (diet) - current metrics

• args.do_op (function) - updates the displayed progress

• args.image (string) - name of the image

• args.image_dir (path) - directory to store results for this image

• args.m aster (path) - master image to downsample

• args.downsampler (string) - name of the downsampler

• args.downsampler_dir (path) - directory to store dowsampled images

• args.ratio (string) - resampling ratio

• args.small (path) - downsampled image

• args.table (string) - name of the table to insert the row into

• args.table_bak (string) - name of the backup table (if it exists)

• same (boolean) - True if accessing an existing table

6.7 The parsing Module

Classes and methods used for parsing arguments and formatting help text.

p a r s i n g ,_format_doc (doestring)
Parse the module doestring and re-format all reST markup.

Note: This is a private function called when creating anew F.xqui r e s P a r s e r (page 54) object.

Parameters doestring (string) - doestring to format

6.7. The parsing Module 53

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Returns formatted doestring

Return type string

p a r s i n g . _ r e m o v e _ d u p l ic a te s (input_list)
Remove duplicate entries from a list.

Note: This is a private function called by L is tA c t i o n . c a l l () (page 57) and R a t io.Act i o n . ca 1 1 (i (page 58).

Param eters in p u tjis t (list o f values) - list to remove duplicate entries from

Returns list with duplicate entries removed

R eturn type list o f values

6.7.1 The E x q u iresP arse r Class

class p a r s i n g .E x q u i r e s P a r s e r (description)
Bases: a r g p a r s e . A rg u ra e n tP a rs e r

Generic EXQUIRES parser.

Param eters description (siring) - doestring from the calling program

p a r s e _ a r g s (args=None, name space=None)
Parse command-line arguments.

Param eters

• args (string) - the command-line arguments

• namespace (a r g p a r s e .N am esp ace) - the namespace

Returns the parsed arguments

Return type a r g p a r s e . N am espace

6.7.2 The O p era tio n sP arse r Class

class p a r s i n g . O p e r a t i o n s P a r s e r (description, update-Fulse)
Bases: p a r s i n g . E x q u i r e s P a r s e r (page 54)

54 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

Parser used by exquires-nm (page 24) and cxquires-update (page 25).

Parameters

• description (string) - doestring from the calling program

• update (boolean) - True if called by exquires-update (page 25)

p a r s a _ a r g s (args=None, namespace=None)
Parse the received arguments.

This method parses the arguments received by e.xquires-rim (page 24) or :ref‘exquires-update‘.

Param eters

• args (string) - the command-line arguments

• namespace (a r g p a r s e . N am espace) - the namespace

Returns the parsed arguments

Return type a r g p a r s e . N am espace

6.7.3 The S ta tsP a rs e r Class

class p a r s i n g . S t a t s P a r s e r (description, correlate=False)
Bases: p a r s i n g . E x q u i r e s P a r s e r (page 54)

Parser used by exquires-report (page 25) and exquires-correlate (page 26).

Param eters

• description (string) - doestring from the calling program

• correlate (boolean) — True i f u sin g exquires-correlate (p age 26)

p a r s e _ a r g s (args=l'-b\ ‘htmV, '-d \ '_build/doctrees'7, ‘_build/html'l, namespace=None)
Parse the received arguments.

This method parses the arguments received by exquires-report (page 25) or exquires-correlate (page 26).

Parameters

• args (string) - the command-line arguments

• namespace (a rg p a r s e .N a m e s p a c e) - the namespace

Returns the parsed arguments

6.7. The parsing Module 55

The EXQUIRES (Extensible Quantitative tmage RESampllng) Test Suite, Release 0.9.9.3

Return type argparse. Namespace

6.7.4 The ExquiresHelp Class

class parsing .E x q u i r e s H e lp (prog, indent_increment=2, maxjielp_position=24, width=None)
Bases: argparse . RawDescript ionHelpFormatter

Formatter for generating usage messages and argument help strings.

This class is designed to display options in a cleaner format than the standard argparse help strings.

_ f i l l _ t e x t (text, width, indent)
Fill action text with whitespace.

Parameters

• text (string) - the text to display

• width (integer) - line width

• indent (string) - indentation printed before the text

Returns the formatted text

Return type string

_ f o r r a a t _ a c t io n _ i n v o c a t io n (action)
Format the string describing the invocation of the specified action.

Parameters action (argparse .Action) - the parsing action

Returns the formatted action invocation

Return type string

6.7.5 The Pro jectAction Class

class parsing.P r o j e c t A c t i o n (option_strings, dest, nargs=Notte, const=None, default=None, type=None, choices=None, required-False,
help=None, metavar=None)

Bases: argparse .Action

Parser action to read a project file based on the specified name.

 c a l l (parser, args, value, option_string=None)
Parse the - p / - - p r o j e c t option.

56 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

Parameters

• parser (Exqu i r e s p a r s e r (page 54)) - the parser calling this action

• args (a r g p a r s e . N am espace) - arguments

• values (list o f values) - values

• option ̂ string (siring) - command-line option string

Raises a r g p a r s e .A r g u m e n tE r r o r

6.7.6 The L is tA c tio n Class

class p a r s i n g . L is t A c t io n (oplion_strings, dest, nargs=None, const=None, default=None, iype=None, choices=None, required=False, help—None,
melavar=None)

Bases: argparse .Action

Parser action to handle wildcards for options that support them.

When specifying aggregation options with exquires-report, this class expands any wildcards passed in arguments for the following options:

•Images

•Downsamplers

•Upsamplers

•Metrics

 c a l l (parser, args, values, option_string=None)
Parse any option that supports lists with wildcard characters.

Param eters

• parser (E x q u i r e s P a r s e r (page 54)) - the parser calling this action

• args (a r g p a r s e .N am espace) - arguments

• values (list o f values)- values

• option_string (siring) - command-line option string

Raises a r g p a r s e .A rg u m e n tE r ro r

6.7. The parsing Module 57

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

6.7.7 The RatioAction Class

class parsing .R a t io A c t i o n (option_strings, dest, nargs=None, const=None, default-None, type=None, choices=None, required=False, heip=None,
melavar=None)

Bases: argparse.Action

Parser action to deal with ratio ranges.

 c a l l (parser, args, values, option_string=None)
Parse the - r / - - r a t i o option.

Parameters

• parser (ExquiresParser (page 54)) - the parser calling this action

• args (argparse. Namespace) - arguments

• values (list o f values) - values

• option_string (string) - command-line option string

Raises argparse.ArgumentError

6.7.8 The AnchorAction Class

class parsing .A n c h o rA c t io n (option_strings, dest, nargs=None, const=None, default-None, type=None, choues-None. required^False, help=None,
metavar=None)

Bases: argparse.Action

Parser action to sort the correlation matrix.

 c a l l (parser, args, value, option_strmg=None)
Parse the -a l - -a n c h o r option.

Parameters

• parser (E x q u i r e s P a r s e r (page 54)) — the parser calling this action

• args (a rg p a rse .Namespace) - arguments

• values (list o f values) - values

• option_string (string) - command-line option string

Raises argparse .ArgumentError

58 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

6.7.9 The SortAction Class

class p a r s i n g . S o r tA c t io n (option_strings, dest, nargs=None, const=None, default=None, type=None, ehoices=None, required=False, help—None,
metavar=None)

Bases: a r g p a r s e .A c t io n

Parser action to sort the data by the appropriate metric.

 call (parser, args, value, option_string=None)
Parse the - s / s o r t option.

Param eters

• parser (E xqu i resParser (page 54)) - the parser calling this action

• args (a r g p a r s e . N am espace) - arguments

• values (list o f values) - values

• option_string (string) - command-line option string

Raises a r g p a r s e .A rg u m e n tE r ro r

6.8 The p rogress Module

Display progress info for exquires-run (page 24) and exquires-update (page 25).

When the - s / — s i l e n t option is not selected in exquires-run (page 24) or exquires-update (page 25), the Progress class is used to display the appropriate
information.

6.8.1 The P r o g r e s s Class

class p r o g r e s s .P r o g r e s s (program, prvj, totul_ops)
Bases: o b j e c t

This class contains methods for displaying progress in exquires.

When exquires-run (page 24) and exquires-update (page 25) are used without silent mode enabled, this class is responsible for displaying information about
the downsampling, upsampling, and comparison steps and the total progress.

Param eters

• program (string) - name of the program that is running

6.8. The p ro g re s s Module 59

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

• proj {string) - name of the project being used

• total_ops (integer) - total number of operations

.Progress table.bottom (/me, label, content)
Draw the bottom row of the progress table.

This method draws one of the middle rows of the progress table. Two lines are used to draw this section of the table.

Note: This is a private method called by c le a n u p () (page 61), c o m p le te () (page 61), and d o_op () (page 61).

Warning: To display the updated progress table, the screen must be refreshed by calling s e l f . s c r . r e f r e s h ().

Param eters

• line (integer) - line number to start drawing at

• label (string) - label for this table entry

• content (string) - content for this table entry

.Progress table.middle (line, label, content)
Draw one of the middle rows of the progress table.

This method draws one of the middle rows of the progress table. Two lines are used to draw this section of the table.

Note: This is a private method called by c le a n u p () (page 61), c o m p le te () (page 61), and d o_op () (page6 l).

Warning: To display the updated progress table, the screen must be refreshed by calling s e l f . s c r . r e f r e s h ().

Parameters
• line (integer) - line number to start drawing at

• label (string) - label for this table entry

• content (string) - content for this table entry

.Progress table.top (line, label, content)
Draw the top row of the progress table.

This method draws the first row of the progress table, which displays the project name. Three lines are used to draw this section of the table.

60 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

Note: This is a private method called by c le a n u p () (page 61), c o m p le te () (page 61), and do_op () (page6 l).

Warning: To display the updated progress table, the screen must be refreshed by calling s e l f . s c r . r e f r e s h !) .

Param eters

• line (integer) - line number to start drawing at

• label (string) - label for this table entry

• content (string) - content for this table entry

cleanup()
Indicate that files are being deleted.

complete()
Complete the progress indicator.

Call this method to indicate success once all operations have been performed.

Note: The completion screen is displayed for a half second.

W arning: To restore the terminal after completion, destruct the P r o g r e s s (page 59) object by calling del prg (where prg is the object to destruct).

do_op (args, upsampler=None, metric=None)
Update the progress indicator.

•If no upsampler is specified, operation-downsampling

•If an upsampler is specified, but no metric, operation=upsampling

•If an upsampler and metric are specified, operiiiion-i omparing

Param eters

• args (a r g p a r s e . N am espace) - arguments

• argsJm age (string) - image being processed

• args.downsampler (string) - downsampler being used

• args.ratio (string) - resampling ratio being used

• upsam pler (string) - upsampler being used

6.8. The p ro g re s s Module 61

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

• metric (siring) - metric being used

6.9 The rep ort Module

Print a formatted table of aggregate image difference data.

Each database table in the current project contains data for a single image, downsampler, and ratio. Each row represents an upsampler and each column represents
a difference metric. By default, the data across all rows and columns of all tables is aggregated. Use the appropriate option flags to aggregate across a subset of the
database.

Features:

• -Adoption'-ratio' supports hyphenated ranges (for example, ‘1-3 5’ gives ‘1 2 3 5’)

• - U l - u p , -I/- - i m a g e , - D l - d o w n and - M l - - m e t r i c support wildcard characters

r e p o r t ._print_table (args)
Print a table of aggregate image comparison data.

Since the database contains error data for several images, downsamplers, ratios, upsamplers, and metrics, it is convenient to be able to specify which of these
to consider. This method aggregates the data for each relevant column in the appropriate tables.

Note: This is a private function called by ma i n () (page 63).

Parameters

• args (a r g p a r s e . Namespace) - arguments

• args.dbase_file (path) - database file

• args.image (list o f strings) - selected image names

• args.down (list o f strings) - selected downsampler names

• args.ratio (list o f strings) - selected ratios

• args.up (list o f strings) - selected upsampler names

• args.mctric (list o f strings) - selected metric names

• args.metrics d (diet) - all metric names

• args.file (path) - output file

62 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampllng) Test Suite, Release 0.9.9.3

• args.digits (integer) - number of digits to print

• args.latex (boolean) - True if printing a LaTeX-formatted table

• args.rank (boolean) - True if printing Spearman (fractional) ranks

• args.merge (boolean) - True if printing merged Spearman ranks

• args.sort (string) - metric to sort by

• args.show_sort (boolean) - True if the sort column should be displayed

r e p o r t.main()
Run exquires-report (page 25).

Parse the command-line arguments and print the aggregate data table.

6.10 The run Module

Compute error data for the entries in the specified project file.

The project file is read to determine which images, downsamplers, ratios, upsamplers, and metrics to use. If a database file already exists for this project, it will be
backed up and a new one will be created.

Each image will be downsampled by each of the ratios using each of the downsamplers. The downsampled images will then be upsampled back to their original
size (840x840) using each of the upsamplers. The upsampled images will be compared to the original images using each of the metrics and the results will be stored
in the database file.

If you make changes to the project file and wish to only compute data for these changes rather than recomputing everything, use exquires-update (page 25).

To view aggregated error data, use exquires-report (page 25).

run ,_run (args)
Create a new project database and populate it with computed data.

Note: This is a private function called by rna i n () (page 63).

Parameters

• args (a r g p a r s e . N am espace) - arguments

• args.eonfig_file (path) - current configuration file

6.10. The run Module 63

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

run.main()
Run exquires-run (page 24).

Create a database for the specified project file.

Warning: If a database already exists for this project, it will be overwritten.

6.11 The s t a t s Module

A collection of methods for producing statistical output.

stats ._format_cell (cell, digits)
Return a formatted version of this cell of the data table.

Note: This is a private function called by print_normal () (page 65) and print_iatex () (page 65).

Param eters

• cell (string) - cell to format

• digits (integer) - maximum number of digits to display

Returns the formatted cell

Return type string

stats . get_aggregate_table (dbase, upsamplers, metrics_d, tables)
Return a table of aggregate image difference data.

Param eters

• dbase (database . Database (page 41)) - connected database

• upsam plers (list o f strings) - upsamplers (rows) of the table

• metrics_d (diet) - metrics (columns) of the table in dictionary form

• tables (list o f strings) - names of database tables to aggregate across

Returns table of aggregate image difference data

Return type list o f lists

64 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

stats . g e t_ m e r g ed _ ra n k s (printdata, metricsjdesc, sortjndex)
Return a table of merged Spearman ranks based on a data table.

Parameters

• printdata (list o f lists) - table of data to print

• metrics_desc (list o f integers) - list of Os and Is (where 1 is ‘descending’)

• sortjndex (integer) - index of the column to sort by

Returns table of merged ranks

Return type list o f lists

stats .get_ranks (printdata, metricsjiesc, sortjndex)
Return a table of Spearman (Fractional) ranks based on a data table.

Param eters

• printdata (list o f lists) - table of data to print

• metrics_desc (list o f integers) - list of Os and ls(where 1 is ‘descending’)

• sortjndex (integer) - index of the column to sort by

Returns table of ranks

Return type list o f lists

stats . print .JLatex (printdata, args. header, matrix=False)
Print the processed data table with LaTeX formatting.

Parameters

• printdata (list o f lists) - table of data to print

• args (argparse . Namespace) - arguments

• args.file (path) - path to write the aggregated error table

• args.digits (integer) - maximum number of digits to display

• header (list o f strings) - table headings

• matrix (boolean) - True if printing a correlation matrix

stats . print__normal (printdata, args, header, m atrix-false)
Print the processed data table with normal formatting.

6.11. The atats Module 65

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

Parameters

• printdata (list o f lists) - table of data to print

• args (argparse .Namespace) - arguments

• args.file (path) - path to write the aggregated error table

• args.digits (integer) - maximum number of digits to display

• header (list o f strings) - table headings

• m atrix (boolean) - True if printing a correlation matrix

6.12 The t o o ls Module

A collection of convenience methods.

tools . c r e a t e _ d ir (base_dir, relative_dir=”)
Create a directory if it doesn’t already exist and return it.

Parameters

• base_dir (path) - base directory within which to create the directory

• reiative_dir (path) - directory to create inside the base directory

Returns the created directory

Return type path

tools .p r u n e _ m e tr ic s (keys, metrks_d)
Prune a dictionary of metrics using a list of keys.

Parameters

• keys (list o f strings) - keys to retain

• metrics_d (diet) - metrics to prune

Returns pruned metrics

Return type diet

66 Chapter 6. Modules & Classes

The EXQUIRES (Extensible Quantitative Image RESampling) Test Suite, Release 0.9.9.3

6.13 The update Module

Compute new error data for changes to the user-specified project file.

The project file is inspected to determine which changes have been made. Items that have been removed will result in entries being removed from the database.
Items that have been changed or added will result in new data being computed and added to the database file. If no changes have been made to the project file, the
database will not be updated.

If you wish to recompute all data based on your project file rather than simply updating it with the changes, use exquires-run (page 24).

To view aggregated error data, use exquires-report (page 25).

u p d a te ._get_n«uneapaces (configjile , config_bak)
Return all necessary configuration namespaces.

This function returns four namespaces that specify which images, downsamplers, ratios, upsamplers, and metrics to use when creating or updating a project
database:

•current - all entries in current project file

•new - entries only in currenty project file

•old - entries only in previous project file

•same - entries common to both project files

Note: This is a private function called by _update () (page 68).

Param eters

• configjile (path) - current configuration file

• config_bak (path) - previous configuration file

Returns the current, new, old, and same namespaces

R eturn type argparse. Namespace

u p d a te ,_subtract (dietI, dict2)
Subtract dictionary dici2 from diet I and return the difference.

This function creates a new diet, then iterates over dietl and adds all entries that are not found in dict2.

Note: This is a private function called by _ g e t _nam esp ac .es () (page 67).

6.13. The update Module 67

The EXQUIRES (Extensible Quantitative image RESampling) Test Suite, Release 0.9.9.3

Parameters

• diet I (diet) — dictionary to subtract from

• dict2 (diet) - dictionary to subtract

Returns diet I - dict2

Return type diet

update ._updote (args)
Update the database.

Note: This is a private function called by ma i ri () (page 68).

Param eters

• args (argparse .Namespace) - arguments

• args.config_file (path) - current project file

• args.config_bak (path) - previous project file

update.main()
Run exquires-update (page 25).

Update the project database based on changes to the project file.

Note: Tf the update fails, the previous database will be restored.

68 Chapter 6. Modules & Classes

CHAPTER

SEVEN

LICENSE INFORMATION

EXQUIRES is released under the BSD 2-Ciausc License as outlined below:

Copyright (c) 2012, Adam Turcotte and Nicolas Robidoux
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation a n d / o r other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

69

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

70 Chapter 7. License Information

CHAPTER

EIGHT

8.1 Version 0.9.9.3

• Fixed a bug in exquires-correlate

• Fixed docstring formatting for help messages

8.2 Version 0.9.9.2

• Replaced EANBQH example with Nohalo-LBB (Locally Bounded Bicubic)

8.3 Version 0.9.9.1

• Switched from ImageMagick 7 alpha to ImageMagick 6.8.0-2 (or newer)

• Improved EANBQH example

8.4 Version 0.9.9

• Added -a/-anchor option to exquires-correlate

• Added superior error handling

CHANGELOG

71

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

• Improved ralio parsing

• Reformatted documentation

8.5 Version 0.9.8.3

• Modified matrix formatting for exquires-conelate

8.6 Version 0.9.8.2

• Important bugfix for exquires-update

8.7 Version 0.9.8.1

• Added -l/—linear option to eanbqh.py

8.8 Version 0.9.8

• Major code revision (IQ/10 pylint score)

• Added Spearman’s rank cross-correlation

8.9 Version 0.9.7

• Initial public release

72 Chapter 8. Changelog

CHAPTER

NINE

TODO

The following features are planned for future versions of EXQUIRES:

• Add greater support for resuming from crashes:

- Currently, exquires-update (page 25) depends on a backup of your project file to determine how to modify the database.

- If exquires-update (page 25) is interrupted, the original database file is restored.

- Version 1.0 will retain the changes made to the database file and will be able to resume the update operation.

* Add report output formats:

- Currently, exquires-report (page 25) and exquires-correlute (page 26) can produce plaintext or latex output.

- Other formats will be added as demand arises.

• Add Kendall’s rank correlation:

- Currently, exquires-earrelale (page 26) produces cross-correlation matrices using Spearman’s rank correlation.

- Kendall’s rank correlation is more complicated than Spearman’s rank correlation, but the result is more informative, so it will eventually be added.

* Add unit tests:

- Every module should have a unit test written for it.

- Version 1.0 will introduce unit tests.

73

The EXQUIRES (Extensible Quantitative Image R ESam pling) Test Suite, Release 0.9.9.3

74 Chapter 9. Todo

a
a gg rega te , 31

c
compare, 32
c o r r e l a t e , 39

d
database , 41

n
new, 44

0
o p e r a t io n s , 48

P
p a rs i ng, 53
p ro g ress , 59

r
report, 62
run, 63

s
stats, 64

PYTHON MODULE INDEX

t
t o o l s , 66

u
update, 67

75

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

76 Python Module Index

Symbols
_Database create_table() (database.Database method), 41
_Progress table_bottom() (progress.Progress method), 60
_Progress table_middle() (progress.Progress method), 60
_Progress table_top() (progress.Progress method), 60
 call_() (parsing.AnchorAction method), 58
 call_() (parsing.ListAction method), 57
 call_() (parsing.ProjectAction method), 56
 call_() (parsing.RatioAction method), 58
 call_() (parsing.SortAction method), 59
_add_default_downsamp!ers() (in module new), 44
_add_default_images() (in module new), 45
_add_default_metrics() (in module new), 45
_add_default_ratios() (in module new), 45
_add_default_upsamplers() (in module new), 45
_fill_text() (parsing.KxquiresHelp method), 56
_format_actionJnvocation() (parsing.ExquircsHelp method), 56
_format_cell() (in module stats), 64
_format_doc() (in module parsing), 53
_get_blurlist() (in module compare), 33
_get_group_and_ranks() (in module correlate), 39
_get_namespaces() (in module update), 67
_magick() (in module new), 46
_metric() (in module new), 46
_novel_inl_linJll_mtds() (in module new), 47
_novel_nonint_ewa_lin_flt_mtds() (in module new), 47

_print_matrix() (in module correlate), 40
_print_table() (in module report), 62
_remove_duplicates() (in module parsing), 54
_run() (in module run), 63
_std_int_ewa_lin_flt_mtds() (in module new), 47
_std_int_lin_tensor_mtds_l () (in module new), 47
_std_int_lin_tensor_mtds_2() (in module new), 47
_std_nonint_ewa_lin_flt_mtds() (in module new), 48
_std_nonint_lin_tensor_mtds() (in module new), 48
_subtract() (in module update), 67
_update() (in module update), 6 8

A
add_table() (database.Database method), 41
Aggregate (class in aggregate), 31
aggregate (module), 31
A n ch orA ction (class in parsin g), 58

B
backup_table() (database.Database method), 42
blur_l() (compare.Metrics method), 34
blur_2() (compare.Metrics method), 34
blur_4() (compare.Metrics method), 35
blur_inf() (compare.Metrics method), 35

c
cleanupO (progress.Progress method), 61

The EXQUIRES (Extensible Quantitative Image RESamplIng) Test Suite, Release 0.9.9.3

closeO (database.Dalabase method), 42
cmc_l() (compare.Metrics method), 35
cmc_2() (compare.Metrics method), 35
cmc_4() (compare.Metrics method), 36
cmc_inf() (compare.Metrics method), 36
compare (module), 32
completeO (progress.Progress method), 61
computeO (operations.Downsamplers method), 50
compute() (operations.Images method), 50
computeO (operations.Operations method), 49
compute() (operations.Ratios method), 5 1
computeO (operations.Upsamplers method), 52
correlate (module), 39
create_dir() (in module tools), 6 6

D
Database (class in database), 41
database (module), 4 1
deleted (database.Database method). 42
do_op() (progress.Progress method), 61
Downsamplers (class in operations), 50
drop_backup() (database.Database method), 42
drop_tables() (database.Database method), 42

E
ExquiresHelp (class in parsing), 56
ExquiresParser (class in parsing), 54

G
get_aggregate_table() (in module stats), 64
get_error_data() (database.Database method), 43
get_merged_ranks() (in module stats), 65
get_ranks() (in module stats), 65
get_tables() (database.Database method), 43

Images (class in operations). 49
insertQ (database.Database method), 43

L
L l 0 (aggregate.Aggregate method), 31
1_2() (aggregate.Aggregate method), 32
L4() (aggregate.Aggregate method), 32
Linf() (aggregate.Aggregate method), 32
ListAction (class in parsing), 57

M
main() (in module aggregate), 31
main() (in module compare), 33
main() (in module correlate), 41
main() (in module new), 48
main() (in module report), 63
main() (in module run), 63
main() (in module update), 6 8

Metrics (class in compare), 33
mssim() (compare.Metrics method), 36

N
new (module), 44

o
Operations (class in operations), 49
operations (module), 48
OperationsParser (class in parsing), 54

P
p arse_args() (parsing.E xquiresParser m eth od), 54
parse_args() (parsing.OperationsParser method), 55
parse_args() (parsing.StatsParser method), 55
parsing (module), 5.3
printjatex() (in module stats), 65
print_normal() (in module stats), 65
Progress (class in progress), 59
progress (module), 59
ProjectAction (class in parsing), 56
prune_metrics() (in module tools), 6 6

78 Index

The EXQUIRES (Extensible Quantitative image RESampling) Test Suite, Release 0.9.9.3

R
RatioAction (class in parsing), 58
Ratios (class in operations), 51
report (module), 62
run (module), 63

s
SortAction (class in parsing), 59
sql_do() (database.Database method), 43
sql_fetchall() (database.Database method), 44
srgb_l() (compare.Metrics method), 37
srgb_2() (compare.Metrics method), 37
srgb_4() (compare.Metrics method), 37
srgb_inf() (compare.Metrics method), 38
stats (module), 64
StatsParser (class in parsing), 55

T
tools (module). 66

u
update (module), 67
Upsamplers (class in operations), 52

X
xyz_l() (compare.Metrics method), 38
xyz_2() (compare.Metrics method), 38
\ y / _ 4 () (com pare.M etrics m ethod), 38
xyz_inf() (compare.Metrics method), 38

Index 79

Bibliography

[1] Erik H. W. Meijering, Karel J. Zuiderveld, and Max A. Viergever. Image reconstruc
tion by convolution with symmetrical piecewise nth-order polynomial kernels. IEEE
Transactions on Image Processing, 8(2): 192-201, 1999.

[2] Jia-Guu Leu. Image enlargement based on a step edge model. Pattern Recognition,
33(12):2055-2073, Dec. 2000.

[3] Guoping Qiu. Interresolution look-up table for improved spatial magnification of
image. Journal o f Visual Communication and Image Representation, 11(4):360-
373, Dec. 2000.

[4] Bryan S. Morse and Duane Schwartzwald. Image magnification using level-set re
construction. In CVPR(l), pages 333-340. IEEE Computer Society, 2001.

[5] King-Hong Chung, Yik-Hing Fung, and Yuk-Hee Chan. Image enlargement using
fractal. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP
’03). 2003 IEEE International Conference on, volume 6, pages 273-276, Apr. 2003.

[6] D. Darian Muresan and Thomas W. Parks. Adaptively quadratic (AQua) image
interpolation. IEEE Transactions on Image Processing, 13(5):690-698, 2004.

[7] Dan Su and Philip Willis. Image interpolation by pixel-level data-dependent trian
gulation. Computer Graphics Forum, 23(2): 189-202, 2004.

[8] Mei-Juan Chen, Chin-Hui Huang, and Wen-Li Lee. A fast edge-oriented algorithm
for image interpolation. Image and Vision Computing, 23:791798, 2005.

[9] Carlos Miravet and Francisco B. Rodriguez. Accurate and robust image superres
olution by neural processing of local image representations. In Wtodzislaw Duch,
Janusz Kacprzyk, Erkki Oja, and Stawomir Zadrozny, editors, Proceedings o f the
15th International Conference on Artificial Neural Networks: Biological Inspira
tions - Part I, volume 3696 of ICANN 2005, pages 499-505, Berlin, Heidelberg,
2005. Springer-Verlag.

283

[10] Cheng-Hsiung Hsieh, Ren-Hsien Huang, and Ting-Yu Feng. One-dimensional grey
polynomial interpolators for image enlargement. In ACIS-ICIS, pages 450-456.
IEEE Computer Society, 2007.

[11] Emil Dumic, Sonja Grgic, and Mislav Grgic. Hidden influences on image qual
ity when comparing interpolation methods. In 15th International Conference on
Systems, Signals and Image Processing, IWSSIP 2008, pages 367-372, Bratislava,
Slovakia, Jun. 2008.

[12] Alain Hore, Francois Deschenes, and Djemel Ziou. A new super-resolution algo
rithm based on areas pixels and the sampling theorem of Papoulis. In Campilho and
Kamel [150], pages 97-109.

[13] Luming Liang. Image interpolation by blending kernels. IEEE Signal Processing
Letters, 15:805-808, 2008.

[14] Nicolas Robidoux, Adam Turcotte, Minglun Gong, and Annie Tousignant. Fast
exact area image upsampling with natural biquadratic histosplines. In Campilho and
Kamel [150], pages 85-96.

[15] Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. Nonlocal back-
projection for adaptive image enlargement. In ICIP, pages 349-352. IEEE, 2009.

[16] Nicolas Robidoux, Minglun Gong, John Cupitt, Adam Turcotte, and Kirk Martinez.
CPU, SMP and GPU implementations of Nohalo level 1, a fast co-convex antialias
ing image resampler. In Bipin C. Desai, Carson Kai-Sang Leung, and Olga Or-
mandjieva, editors, C3S2E, ACM International Conference Proceeding Series, pages
185-195. ACM, 2009.

[17] Pascal Getreuer. Linear methods for image interpolation. Image Processing On Line,
2011.

[18] Pascal Getreuer. Roussos-Maragos tensor-driven diffusion for image interpolation.
Image Processing On Line, 2011.

[19] Michael Unser, Philippe Thevenaz, and Leonid Yaroslavsky. Convolution-based
interpolation for fast, high-quality rotation of images. IEEE Transactions on Image
Processing, 4(10): 1371-1381, Oct. 1995.

[20] Keiran G. Larkin, Michael A. Oldfield, and Hanno Klemm. Fast fourier method for
the accurate rotation of sampled images. Optics Communications, 139(1 -3):99— 106,
Jun. 1997.

284

[21] Erik H. W. Meijering, Wiro J. Niessen, Josien P. W. Pluim, and Max A. Viergever.
Quantitative comparison of sine-approximating kernels for medical image interpo
lation. In Chris J. Taylor and Alan C. F. Colchester, editors, M1CCAI, volume 1679
of Lecture Notes in Computer Science, pages 210-217. Springer, 1999.

[22] Erik H. W. Meijering. Spline interpolation in medical imaging: Comparison with
other convolution-based approaches. In Moncef Gabbouj and Pauli Kuosmanen,
editors, Signal Processing X: Theories and ApplicationsProceedings o f EUSIP CO
2000, volume IV, page 19891996, Tampere, 2000. The European Association for
Signal Processing.

[23] Philippe Thevenaz, Thierry Blu, and Michael Unser. Interpolation revisited. IEEE
Transactions on Medical Imaging, 19(7):739-758, 2000.

[24] Philippe Thevenaz, Thierry Blu, and Michael Unser. Handbook o f Medical Imaging,
Processing and Analysis, chapter Image Interpolation and Resampling, pages 393-
420. Academic Press, San Diego CA, 2000.

[25] Erik H. W. Meijering, Wiro J. Niessen, and Max A. Viergever. Quantitative evalua
tion of convolution-based methods for medical image interpolation. Medical Image
Analysis, 5(2): 111-126, 2001.

[26] Diego Nehab and Hugues Hoppe. Generalized sampling in computer graphics. Tech
nical Report E022/2011 and MSR-TR-2011-16, IMPA and Microsoft Research, Feb.
2011.

[27] Ellis Freedman. Medical images, h t t p : / / r e m o t e s e n s i n g . p a g e . t l /
M e d i c a l - I m a g e s . htm, 2012.

[28] James F. Blinn. What we need around here is more aliasing. IEEE Computer Graph
ics and Applications, 9(1):75—79, January 1989.

[29] Ken Turkowski. Filters for common resampling tasks. In Andrew S. Glassner, editor,
Graphics Gems, pages 147-165. Academic Press Professional, Inc., San Diego, CA,
USA, 1990.

[30] Neil A. Dodgson. Quadratic interpolation for image resampling. IEEE Transactions
on Image Processing, 6(9): 1322-1326, 1997.

[31] Amir Said. A new class of filters for image interpolation and resizing. In IEEE
International Conference on Image Processing z(ICIP), pages 217-220. IEEE, 2007.

285

http://remotesensing.page.tl/

[32] Chantal Racette. Numerical analysis of diagonal-preserving, ripple-minimizing and
low-pass image resampling methods. Master’s thesis, Laurentian University, Sud
bury, Ontario, Canada, 2011. h t t p : / / a r x i v . o r g / a b s / 1 2 0 4 . 4734.

[33] Neil A. Dodgson. Image resampling. Technical Report UCAM-CL-TR-261, Uni
versity of Cambridge, Computer Laboratory, Aug. 1992.

[34] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact image
code. In Martin A. Fischler and Oscar Firschein, editors, Readings in computer
vision: issues, problems, principles, and paradigms, pages 671-679. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1987.

[35] John D. Villasenor, Benjamin Belzer, and Judy Liao. Wavelet filter evaluation for
image compression. IEEE Transactions on Image Processing, 4(8): 1053-1060, Au
gust 1995.

[36] Xin Li and Michael T. Orchard. New edge-directed interpolation. IEEE Transactions
on Image Processing, 10(10):1521—1527, October 2001.

[37] Michal Irani and Shmuel Peleg. Motion analysis for image enhancement: Reso
lution, occlusion, and transparency. Journal of Visual Communication and Image
Representation, 4:324-335, 1993.

[38] Shengyang Dai, Mei Han, Ying Wu, and Yihong Gong. Bilateral back-projection
for single image super resolution. In Proceedings o f the 2007 IEEE International
Conference on Multimedia and Expo, ICME 2007, July 2-5, 2007, Beijing, China,
pages 1039-1042. IEEE, 2007.

[39] Jong-Ki Han and Seung-Ung Baek. Parametric cubic convolution scaler for en
largement and reduction of image. IEEE Transactions on Consumer Electronics,
46(2):247-256, May 2000.

[40] Yuval Fisher. Fractal Image Comression: Theory and Application. Springer Verlag,
New York, NY, USA, 1995.

[41] Shiqi Yu, Jia Wu, Shulin Shang, and Vincent Etienne. SIVP-scilab image and video
processing toolbox, h t t p : / / s i v p . s o u r c e f o r g e . n e t / , 2011. Computer
package.

[42] John Cristy, Kelly Bergougnoux, Rod Bogart, John W. Peterson, Nathan Brown,
Mike Chiarappa, Thomas R. Crimmins, Troy Edwards, Jaroslav Fojtik, Francis J.
Franklin, Markus Friedl, Bob Friesenhahn, Michael Halle, David Harr, Christo
pher R. Hawks, Paul Heckbert, Peder Langlo, Rick Mabry, Catalin Mihaila, David

286

http://sivp.sourceforge.net/

Pensak, Chantal Racette, William Radcliffe, Glenn Randers-Pehrson, Paul Raveling,
Nicolas Robidoux, Leonard Rosenthol, Kyle Shorter, Lars Ruben Skyum, Alvy Ray
Smith, Eric Ray Lyons, Michael Still, Anthony Thyssen, Milan Votava, Fred Wein-
haus, and Alexander Zimmermann. ImageMagick. h t t p : / / i m a g e m a g i c k .
o rg , 2012. Computer program.

[43] Nicos Dessipris, Kirk Martinez, John Cupitt, Ruven Pillay, Steve Perry, Lars Raf-
felt, David Saunders, Jean-Philippe Laurant, Ahmed Abood, Helene Chahine, Joe
Padfield, Andrey Kiselev, Lev Serebryakov, Simon Goodall, Konrad Lang, Markus
Wollgarten, Jesper Friis, Tom Vajzovic, Chris Leick, Hans Breuer, Dennis Lubert,
Jose Manuel Menendez Garcia, Javier Alejandre Arenas, Juan Torres Arjona, Nico
las Robidoux, Chantal Racette, and Adam Turcotte. VIPS (Virtual Image Processing
System), h t t p : / /w w w . v i p s . e c s . s o t o n . a c . uk, 2011. Computer program.

[44] Anastasios Roussos and Petros Maragos. Vector-valued image interpolation by an
anisotropic diffusion-projection pde. In Proceedings o f the 1st international confer
ence on Scale space and variational methods in computer vision, SSVM’07, pages
104-115, Berlin, Heidelberg, 2007. Springer-Verlag.

[45] onOne Software. Perfect resize, h t t p : / /www. o n o n e s o f t w a r e . com, 2012.
Computer software.

[46] Francis Malgouyres and Frederic Guichard. Edge direction preserving image
zooming: A mathematical and numerical analysis. SIAM Journal o f Numerical Anal
ysis, 39(1): 1-37, January 2001.

[47] Pascal Getreuer. Image interpolation with geometric contour stencils. Image Pro
cessing On Line, 2011, 2011.

[48] Angelos Amanatiadis and Ioannis Andreadis. A survey on evaluation methods
for image interpolation. Measurement Science and Technology, 20(10): 104015.1-
104015.9, 2009.

[49] Robert G. Keys. Cubic convolution interpolation for digital image processing. IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(6): 1153-1160,
Dec. 1981.

[50] Alan P. Schaum. Theory and design of local interpolators. Computer Vision, Graph
ics, and Image Processing, 55(6):464—481, 1993.

[51] Ismail German. Short kernel fifth-order interpolation. IEEE Transactions on Signal
Processing, 45(5):1355-1359, May 1997.

287

[52] Thierry Blu, Philippe Thevenaz, and Michael Unser. Minimum support interpolators
with optimum approximation properties. In Proceedings of the 1998 IEEE Interna
tional Conference on Image Processing (ICIP’98), volume III, pages 242-245, Oct.
1998.

[53] Rich Franzen. Kodak lossless true color image suite. h t t p : / / r O k . u s /
g r a p h i c s / k o d a k / , 2002. Digital image collection.

[54] Thierry Blu, Philippe Thevenaz, and Michael Unser. MOMS: maximal-order inter
polation of minimal support. IEEE Transactions on Image Processing, 10(7): 1069-
1080, July 2001.

[55] Thierry Blu, Philippe Thevenaz, and Michael Unser. Linear interpolation revitalized.
IEEE Transactions on Image Processing, 13(5):710-719, May 2004.

[56] Laurent Condat, Thierry Blu, and Michael Unser. Beyond interpolation: optimal re
construction by quasi-interpolation. In Proceedings o f the 2005 IEEE International
Conference on Image Processing (ICIP’05), volume 1, pages 33-36, 2005.

[57] Marco Dalai, Riccardo Leonardi, and Pierangelo Migliorati. Efficient digital pre
filtering for least-squares linear approximation. In Luigi Atzori, Daniele D. Giusto,
Riccardo Leonardi, and Fernando Pereira, editors, Proceedings o f the 9th interna
tional conference on Visual Content Processing and Representation, volume 3893
of VLBV’05, pages 161-169, Berlin, Heidelberg, 2005. Springer-Verlag.

[58] Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer graphics.
SIGGRAPH Computer Graphics, 22(4):221-228, Jun. 1988.

[59] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image qual
ity assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600-612, 2004.

[60] Zhou Wang and Alan C. Bovik. A universal image quality index. IEEE Signal
Processing Letters, 9(3):81-84, March 2002.

[61] Qianqian Xu, Qingming Huang, and Yuan Yao. Online crowdsourcing subjective
image quality assessment. In Proceedings o f the 20th ACM international conference
on Multimedia, MM ’ 12, pages 359-368, New York, NY, USA, 2012. ACM.

[62] Patrick Le Callet and Florent Autrusseau. Subjective quality assessment IRC-
CyN/IVC database, 2005. h t t p : / /www. i r c c y n . e c - n a n t e s . f r / i v c d b / .

288

http://rOk.us/
http://www.irccyn.ec-nantes.fr/ivcdb/

[63] Hamid R. Sheikh, Zhou Wang, Lawrence Cormack, and Alan C. Bovik. LIVE image
quality assessment database release, 2008. h t t p : / / l i v e . e c e . u t e x a s . e d u /
r e s e a r c h / q u a l i t y / .

[64] Charles Spearman. The proof and measurement of association between two things.
The American Journal of Psychology, 15(1):72—101, Jan. 1904.

[65] Jerrold H. Zar. Spearman Rank Correlation. John Wiley & Sons, Ltd, 2005.

[66] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero R Simoncelli. The SSIM in
dex for image quality assessment, h t t p : / / e c e . u w a t e r l o o . c a / ~ z70wang/
r e s e a r c h / s s i m , Jan. 2012. SSIM website.

[67] Wikipedia. Ranking, h t t p : / / e n . w i k i p e d i a . o r g / w i k i / R a n k i n g , Jun.
2012.

[68] Karl Pearson. On further methods of determining correlation. Drapers’ company
research memoirs: Biometric series. Dulau and co., 1907.

[69] Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30(l/2):81—93,
Jun. 1938.

[70] Kendall’s rank correlation. w w w . s t a t s d i r e c t . c o m / h e l p /
n o n p a r a m e t r i c _ m e t h o d s / k e n d . htm, 2000. StatsDirect Statistical Software
online help.

[71] Spearman’s rank correlation. w w w . s t a t s d i r e c t . c o m / h e l p /
n o n p a r a m e t r i c _ m e t h o d s / s p e a r . htm, 2000. StatsDirect Statistical
Software online help.

[72] Charles A. Poynton. Gamma FAQ - Frequently Asked Questions about Gamma.
h t t p : / /www. p o y n t o n . com/notes /co lour_and_gam m a/Gam m aFAQ.
h tml , Dec. 2002. Typeset version: h t t p : / / w w w . p o y n t o n . c o m / P D F s /
GammaFAQ. pdf .

[73] Charles A. Poynton. Color FAQ - Frequently Asked Questions about Color, h t t p :
/ / www. p o y n t o n . c o m /n o te s /c o lo u r _ a n d _ g a m m a /C o lo r F A Q . h t m l ,
Nov. 2006. Typeset version: h t t p : / / w w w . p o y n t o n . c o m / P D F s /
ColorFAQ .pd f .

[74] Anthony Thyssen. ImageMagick v6 examples - resize or scaling (general tech
niques). h t t p : //www. im agem agick . o r g / U s a g e / r e s i z e , Oct. 2012. (on
line documentation).

289

http://live.ece.utexas.edu/
http://www.statsdirect.com/help/
http://www.statsdirect.com/help/
http://www.poynton.com/notes/colour_and_gamma/GammaFAQ
http://www.poynton.com/PDFs/
http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html
http://www.poynton.com/PDFs/

[75] Charles A. Poynton. Rehabilitation of gamma. In Bernice E. Rogowitz and
Thrasyvoulos N. Pappas, editors, Human Vision and Electronic Imaging HI, volume
3299 of Proceedings o f The International Society for Optical Engineering, pages
232-249. SPEE, 1998.

[76] Wikipedia. sRGB. h t t p : / / e n . w i k i p e d i a . o r g /w ik i /S R G B , Jan. 2013.

[77] Wikipedia. CIE 1931 colorspace, h t t p : / / e n . w i k i p e d i a . o r g / w i k i / C I E _
1 9 3 1 _ c o l o r _ s p a c e , Jan. 2013.

[78] Spigget. CIE chart with sRGB gamut, h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
F i l e : C i e _ C h a r t _ w i t h _ s R G B _ g a m u t _ b y _ s p i g g e t .p n g , Feb. 2007. File
from Wikimedia Commons.

[79] International Colour Consortium. ICC frequently asked questions, h t t p : / / w w w .
c o l o r . o r g / f a q s . x a l t e r , 2001.

[80] Nicolas Robidoux, Jean-Frangois Avon, Anthony Barnett, John Cupitt, Jana Duncan,
Minglun Gong, Holly Graham, Henry Ho, Kirk Martinez, Michael Mure, Mukund
Sivaraman, Adam Turcotte, and Luiz E. Vasconcellos. 16bit840x840images test
image bank, h t t p : / /www. im a g e m a g ic k . o r g / d o w n l o a d / i m a g e - b a n k /
1 6 b i t 8 4 0 x 8 4 0 i m a g e s , May 2012.

[81] International Colour Consortium. sRGB profiles, h t t p : / / w w w . c o l o r . o r g /
s r g b p r o f i l e s . x a l t e r , 2001.

[82] Nicolas Robidoux. sRGB v4 is gaining traction. Private communication, Jan. 2013.

[83] Contributorsofphotivo.org. Photivo. h t t p : / / p h o t i v o . o r g , 2011. Computer
program.

[84] Gabor Horvath and contributors. Rawtherapee. h t t p : / / r a w t h e r a p e e . com,
2011. Computer program.

[85] John Cupitt, Joe Padfield, Hans Breuer, Rich Lott, and Leo Davidson. NIP2 (New
Image Processor 2) Version 7.17. h t t p : / /www. v i p s . e c s . s o t o n . a c . u k /
i n d e x . p h p ? t i t l e = N ip 2 , 2010. Computer program.

[86] Nicolas Robidoux. Use Perceptual rendering intent across the board. Private com
munication, Apr. 2012.

[87] Nicolas Robidoux. Colour space conversions should be carefully checked. Private
communication, Feb. 2013.

290

http://en.wikipedia.org/wiki/
http://www
http://www.color.org/

[88] Hokusai Katsushika. Kanagawa oki nami ura (the great wave off shore of Kana-
gawa). h t t p : / /www . l o c . g o v / p i c t u r e s / r e s o u r c e / j p d .0 2 0 1 8 , 1826-
1833. High quality scan, by the Library of Congress, of a woodcut reproduction.

[89] John Cristy. MagickCore Image Resize Methods - Resize, h t t p : / /www.
i m a g e m a g i c k . o r g / a p i / M a g i c k C o r e / r e s i z e _ 8 c _ s o u r c e . h t m l ,
2011. Computer program.

[90] Anthony Thyssen. Usage under Windows, h t t p : / /www. i m a g e m a g i c k . o r g /
U s a g e /w in d o w s , Mar. 2012. Section of ImageMagick v6 Examples (online doc
umentation).

[91] Craig DeForest. On re-sampling of solar images. Solar Physics, 219:3-23, 2004.

[92] Paul S. Heckbert. Fundamentals of texture mapping and image warping. Master’s
thesis, University of California, Berkeley, CA, USA, Jun. 1989.

[93] Anthony Thyssen. ImageMagick v6 examples - resampling filters, h t t p : / / www.
i m a g e m a g i c k . o r g / U s a g e / f i l t e r , Oct. 2012. (online documentation).

[94] Steven W. Smith. The Scientist & Engineer’s Guide to Digital Signal Processing,
chapter 16. California Technical Pub., Mar. 1998.

[95] Erik H. W. Meijering, Wiro J. Niessen, and Max A. Viergever. The Sinc-
approximating kernels of classical polynomial interpolation. In Proceedings o f the
International Conference on Image Processing, ICIP 1999, pages 652-656, 1999.

[96] Nicolas Robidoux. The real name of the ’’parabola” window function
is ’’Welch”. h t t p : / / w w w . i m a g e m a g i c k . o r g / d i s c o u r s e - s e r v e r /
v i e w t o p i c . p h p ? f= 3 & t= 21637& p= 88743#p88743 , Aug. 2012. Im-
ageMagick Forums post.

[97] Thomas TheuBl, Helwig Hauser, and Eduard Groller. Mastering windows: improv
ing reconstruction. In Volviz, pages 101-108, 2000.

[98] Nicolas Robidoux. Variants of Kaiser Sinc-windowed Sine to be tested. Private
communication, May 2012.

[99] David P. Morgan. Surface Acoustic Wave Filters: With Applications to Electronic
Communications and Signal Processing. Academic Press, second edition, 2007.

[100] Anthony Thyssen. ImageMagick v6 examples - distorting images, h t t p : / / www.
im a g e m a g ic k . o r g / U s a g e / d i s t o r t s , Mar. 2012. (online documentation).

291

http://www.imagemagick.org/discourse-server/

[101] Nicolas Robidoux, Adam Turcotte, Chantal Racette, Anthony Thyssen, John Cupitt,
and 0yvind Kolas. GEGL (GEneric Graphics Library) NoHalo sampler Version
0 .2.0. h t t p : / / g i t . gnome . o r g / b r o w s e / g e g l / t r e e / g e g l / b u f f e r /
g e g l - s a m p l e r - n o h a l o . c, 2012. Computer program.

[102] Nicolas Robidoux. EWA Robidoux. Private communication, Aug. 2012.

[103] Nicolas Robidoux. GEGL (GEneric Graphics Library) LoHalo sampler Version
0 .2.0. h t t p : / / g i t . gnome . o r g / b r o w s e / g e g l / t r e e / g e g l / b u f f e r /
g e g l - s a m p l e r - l o h a l o . c, 2012. Computer program.

[104] Nicolas Robidoux. RE: BC-splines with 2C+B=1 are optimal for EWA
resampling. h t t p : / /www. im agem agick . o r g / d i s c o u r s e - s e r v e r /
v i e w t o p i c .p h p ? f= 2 2 & t= 1 9 8 2 3 & s ta r t = 15#p78921, Dec. 2011. Im-
ageMagick Forums post.

[105] Nicolas Robidoux. EWA RobidouxSharp. Private communication, Aug. 2012.

[106] Henry Ho. Re: The final version :). h t t p : / / f o r u m s . d p r e v i e w . c o m /
f o r u m s / r e a d . a s p ? f o r u m = l 0 0 6&message=41366 611, Apr. 2012. “What
about EWA Lagrange or Catrom instead of USM?”.

[107] Anthony Thyssen. Interpolated cylindrical filters. h t t p : / / w w w .
im a g e m a g ic k . o r g / U s a g e / f i l t e r / # c y l _ i n t e r p o l a t e d , Oct. 2012.
Section of ImageMagick v6 Examples - Resize or Scaling (online documentation).

[108] Nicolas Robidoux. Anthony Thyssen put the EWA Catmull-Rom cardinal basis
function on the Web as early as March 2011, maybe before. Private communication,
Oct. 2012.

[109] Nicolas Robidoux. Re: proper scaling of the Jinc filter for EWA use. h t t p :
/ / www.imagemagick. o r g / d i s c o u r s e - s e r v e r / v i e w t o p i c . p h p ? f =
2 2 & t= 1 9 6 3 6 & s id = 0 d fa c 6 3 2 9 f0 6 4 e c 2 7 2 8 0 5 2 9 4 7 b 6 0 2 e a 0 & s ta r t=
75#p7 9521, Dec. 2011. ImageMagick Forums post.

[110] Nicolas Robidoux. Re: proper scaling of the Jinc filter for EWA use.
h t t p : //www. im a g e m a g ic k . o r g / d i s c o u r s e - s e r v e r / v i e w t o p i c .
php? f= 22& t= 1 96 3 6& s ta r t= 6 0# p 79 4 75 , Dec. 2011. ImageMagick Forums
post.

[111] Nicolas Robidoux. Re: proper scaling of the Jinc filter for EWA use.
h t t p : / /w w w .im ag e m a g ick . o r g / d i s c o u r s e - s e r v e r / v i e w t o p i c .

292

http://forums.dpreview.com/
http://www
http://www.imagemagick.org/discourse-server/viewtopic.php?f=
http://www.imagemagick.org/discourse-server/viewtopic
http://www.imagemagick.org/discourse-server/viewtopic

p h p ? f= 2 2 & t= l9 6 3 6 & p = 8 4 2 3 8 # p 8 4238, Apr. 2012. ImageMagick Forums
post.

[112] Ken W. Brodlie, Petros Mashwama, and Sohail Butt. Visualization of surface data to
preserve positivity and other simple constraints. Computers & Graphics, 19(4):585—
594, Jul.-Aug. 1995.

[113] Nicolas Robidoux, Chantal Racette, John Cupitt, and Adam Turcotte. VIPS (Virtual
Image Processing System) Nohalo Version 7.22. h t t p : / / g i t h u b . c o m /
j c u p i t t / l i b v i p s / b l o b / m a s t e r / 1 i b v i p s / r e s a m p l e / n o h a l o . cpp,
2010. Computer program.

[114] Wikipedia. Color difference. h t t p : / / e n . w i k i p e d i a . o r g / w i k i / C o l o r _
d i f f e r e n c e , Jun. 2012.

[115] Roderick McDonald, editor. Colour Physics for Industry. Society of Dyers and
Colourists, 2nd edition, 1997.

[116] John Cupitt. VIPS (Virtual Image Processing System) conversion from LCh
to CMC. h t t p s : / / g i t h u b . c o m / j c u p i t t / l i b v i p s / b l o b / m a s t e r /
l i b v i p s / c o l o u r / L C h 2 U C S . c, 2012. Computer program.

[117] Wikipedia. Quasimetrics. h t t p : / / e n . w i k i p e d i a . o r g / w i k i / M e t r i c _
% 2 8 m a th e m a t i c s % 2 9 # Q u a s i m e t r i c s , Feb. 2013.

[118] Steve Upton. ColorFAQs - Delta-E - the color difference. CHROMiX Col-
orNews, 17, Feb. 2005. h t t p : / / w w w . c o l o r w i k i . c o m / w i k i / D e l t a _ E :
_ T h e _ C o l o r _ D i f f e r e n c e .

[119] John Cupitt. VIPS (Virtual Image Processing System) computation of
dE CMC. h t t p s : / / g i t h u b . c o m / j c u p i t t / l i b v i p s / b l o b / m a s t e r /
l i b v i p s / c o l o u r / d E C M C . c, 2012. Computer program.

[120] Frank J. J. Clarke, Roderick P. McDonald, and Bryan Rigg. Modification to the
JPC 79 colour-difference formula. Journal o f the Society o f Dyers and Colourists,
100(4): 128-132, 1984.

[121] John Cupitt. VIPS computation of CMC 1:1. Private Communication, Feb. 2013.

[122] Wikipedia. Structural similarity. h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
S t r u c t u r a l _ s i m i l a r i t y , Feb. 2012.

293

http://github.com/
http://en.wikipedia.org/wiki/Color_
https://github.com/jcupitt/libvips/blob/master/
http://en.wikipedia.org/wiki/Metric_
http://www.colorwiki.com/wiki/Delta_E
https://github.com/jcupitt/libvips/blob/master/
http://en.wikipedia.org/wiki/

[123] Zhou Wang. SSIM Index with automatic downsampling, Version 1.0. h t t p : / /
e c e . u w a t e r l o o . c a / ~ z 7 0 w a n g / r e s e a r c h / s s i m / s s i m . m, 2009. MAT-
LAB source code.

[124] Zhou Wang. SSIM Index, Version 1.0. h t t p : / / e c e . u w a t e r l o o . c a /
~ z 7 0 w a n g / r e s e a r c h / s s i m / s s i m _ i n d e x . r a , 2003. MATLAB source code.

[125] Nicolas Robidoux. Further refactoring of the computation of the Structural SIMilar-
ity Index. Private communication, Oct. 2011.

[126] Michael Foord and Nicola Larosa. ConfigObj 4 introduction and refer
ence. h t t p : //www. v o i d s p a c e . o r g . u k / p y t h o n / c o n f i g o b j . h t m l ,
Feb. 2010. Python module documentation.

[127] Gerhard Haring. sqlite3 — DB-API 2.0 interface for SQLite databases, h t t p : / /
d o c s . p y t h o n . o r g / l i b r a r y / s q l i t e 3 . h tm l , 2012. Python module docu
mentation.

[128] Hwaci. SQLite Query Language: ALTER TABLE, h t t p : / /www. s q l i t e .
o r g / l a n g _ a l t e r t a b l e . h tm l , 2012. Description of SQL syntax understood
by SQLite.

[129] Travis E. Oliphant. NumPy. h t t p : / / www.numpy . org, 2013. Website for the
NumPy Python module.

[130] Steven J. Bethard. argparse - Python command line parsing, h t t p : / / c o d e ,
g o o g le . c o m / p / a r g p a r s e , 2011. Website for the argparse Python module.

[131] Guido van Rossum. fnmatch — Unix filename pattern matching, h t t p : / / d o c s .
p y t h o n . o r g / l i b r a r y / f n m a t c h . h t m l , 2012. Python module documenta
tion.

[132] Johann C. Rocholl. pep8 - Python style guide checker, h t t p : / / p y p i . p y t h o n .
o r g / p y p i / p e p 8 , Jun. 2012. Python Package Index listing.

[133] Guido van Rossum and Barry Warsaw. PEP 8 - Style Guide for Python Code.
h t t p : / / w w w . p y t h o n . o r g / d e v / p e p s / p e p - 0 0 0 8 , Jul. 2001. Python En
hancement Proposal.

[134] Logilab. pylint. h t t p : //www. l o g i l a b . o r g /8 5 7 , 2012. Website of the Pylint
source code analyzer.

[135] DavidGoodger. reStructuredText. h t t p : / / d o c u t i l s . s o u r c e f o r g e . n e t /
r s t . h tml, Sep. 2010. Website for the reStructuredText markup syntax.

294

http://ece.uwaterloo.ca/
http://www.voidspace.org.uk/python/configobj.html
http://www
http://www.numpy
http://www.python.org/dev/peps/pep-0008
http://www
http://docutils.sourceforge.net/

[136] David Goodger. Docutils: Documentation Utilities, h t t p : / / d o c u t i l s .
s o u r c e f o r g e . n e t , Jun. 2012. Website for the Docutils text processing system.

[137] Georg Brandi. Sphinx 1.1.3 documentation, h t t p : / / s p h i n x . p o c o o . o r g ,
Mar. 2012. Python module documentation.

[138] Zhou Wang, Alan C. Bovik, and Ligang Lu. Why is image quality assessment so
difficult? In IEEE International Conference on Acoustics, Speech, and Signal Pro
cessing, volume 4, pages 3313-3316, 2002.

[139] Hamid R. Sheikh and Alan C. Bovik. Image information and visual quality. IEEE
Transactions on Image Processing, 15(2):430-444, Feb. 2006.

[140] Xuemei Zhang and Brian A. Wandell. Color image fidelity metrics evaluated using
image distortion maps. Signal Processing, 70(3):201-214, 1998.

[141] Nicolas Robidoux. Only use Cl methods to enlarge images by a large factor. Private
communication, Jul. 2012.

[142] Nicolas Robidoux. Why the top rank of Nohalo-LBB may be undeserved. Private
communication, Jan. 2013.

[143] Eric Brasseur. Gamma error in picture scaling, h t t p : / /www. 4p8 . c o m / e r i c .
b r a s s e u r / g a m m a , h tm l , Aug. 2007. Revised Apr. 2012.

[144] Nicolas Robidoux. Don’t use linear light when enlarging with Lanc-
zos et al. h t t p : / / w w w . i m a g e m a g i c k . o r g / d i s c o u r s e - s e r v e r /
v i e w t o p i c . p h p ? f = l & t = 2 1 4 2 2 , Jul. 2012. ImageMagick Forums post.

[145] Nicolas Robidoux. ’’Sigmoidal” minimization of resampling filter haloing.
h t t p : / /w w w . i m a g e m a g i c k . o r g / d i s c o u r s e - s e r v e r / v i e w t o p i c .
ph p ? f= 2 2 & t= 2 1 4 1 5 , Jul. 2012. ImageMagick Forums post.

[146] Nicolas Robidoux. Future of image enlargement? h t t p : / / w w w .
i m a g e m a g i c k . o r g / d i s c o u r s e - s e r v e r / v i e w t o p i c . p h p ? f = 2 2&t=
21435, Jul. 2012. ImageMagick Forums post.

[147] Adam Turcotte and Nicolas Robidoux. EXQUIRES GitHub code repository.
h t t p s : / / g i t h u b . c o m / a t u r c o t t e / e x q u i r e s . g i t , 2012.

[148] Adam Turcotte and Nicolas Robidoux. EXQUIRES examples GitHub code repos
itory. h t t p s : / / g i t h u b . c o m / a t u r c o t t e / e x q u i r e s / t r e e / m a s t e r /
e x q u i r e s / e x a m p l e s , 2012.

295

http://sphinx.pocoo.org
http://www.imagemagick.org/discourse-server/
http://www.imagemagick.org/discourse-server/viewtopic
http://www
https://github.com/aturcotte/exquires/tree/master/

[149] Adam Turcotte and Nicolas Robidoux, EXQUIRES online manual, h t t p :
/ / e x q u i r e s . ca, 2012.

[150] Aurelio C. Campilho and Mohamed S. Kamel, editors. Image Analysis and Recog
nition, 5th International Conference, IC1AR 2008, Povoa de Varzim, Portugal, June
25-27, 2008. Proceedings, volume 5112 of Lecture Notes in Computer Science.
Springer, 2008.

296

