
NUMERICAL ANALYSIS OF DIAGONAL-PRESERVING,
RIPPLE-MINIMIZING AND LOW-PASS

IMAGE RESAMPLING METHODS

BY

CHANTAL RACETTE

THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE (MSC) OF COMPUTATIONAL SCIENCES

SCHOOL OF GRADUATE STUDIES
LAURENTIAN UNIVERSITY

SUDBURY, ONTARIO

© CHANTAL RACETTE, 2011

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-87720-3

Our file Notre reference

ISBN: 978-0-494-87720-3

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Image resampling is a necessary component of any operation that changes the size of an

image or its geometry.

Methods tuned for natural image upsampling (roughly speaking, image enlargement)

are analyzed and developed with a focus on their ability to preserve diagonal features and

suppress overshoots. Monotone, locally bounded and almost monotone "direct" interpola­

tion and filtering methods, as well as face split and vertex split surface subdivision methods,

alone or in combination, are studied. Key properties are established by way of proofs and

counterexamples as well as numerical experiments involving ID curve and 2D diagonal

data resampling.

In addition, the Remez minimax method for the computation of low-cost polynomial

approximations of low-pass filter kernels tuned for natural image downsampling (roughly

speaking, image reduction) is refactored for relative error minimization in the presence

of roots in the interior of the interval of approximation and so that even and odd func­

tions are approximated with like polynomials. The accuracy and frequency response of

the approximations are tabulated and plotted against the original, establishing their rapid

convergence.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family and friends, for being there for me.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

There are many people who have helped make this thesis possible and to whom I am deeply

grateful. I would first like to thank my thesis supervisor, Dr. Nicolas Robidoux, for his

countless hours of work, his dedication and his patience. He was always available to answer

any question and gave me much good advice. His energy, enthusiasm and commitment

motivated me to continue working while his honesty and selfless support has made him the

best supervisor I could have hoped for.

I am grateful to my co-supervisor, Dr. Julien Dompierre, for always believing in me and

offering me his support and his help. I also thank Dr. Ralf Meyer for all his help through

the completion of this degree, from writing me a letter of recommendation to helping with

the choice of courses. His help has made this experience a lot smoother. I am thankful to

Dr. Richard Battels for taking the time to read this paper and for offering useful advice and

comments.

I also extend my gratitude to Dr. Fabrice Colin for taking the time to advise me on how

to approach certain mathematical problems.

I wish to thank Louise Rancourt, Aaron Langille, Mark Thompson and Linda Weber

for everything they did, from setting up a computer and desk for my use to keeping the

department running smoothly and helping me with the registration procedure. I am also

grateful to Dr. Kalpdrum Passi for his guidance and his help throughout my studies. His

devotion to the students make him an ideal department chair and made him a great graduate

coordinator.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Funding Acknowledgements

The author of this thesis was supported by an NSERC (National Science and Engineering

Research Council) Alexander Graham Bell Canada Graduate Scholarship, by an NSERC

Discovery Grant awarded to Dr. J. Dompierre, by a grant from the NIGMS (National In­

stitute of General Medical Sciences) Center for the Spatiotemporal Modeling of Cell Sig­

naling at the University of New Mexico awarded to Dr. N. Robidoux, and by Laurentian

University through a GTA (Graduate Teaching Assistantship) and Dr. Robidoux's profes­

sional allowance.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iii

Acknowledgements v

Funding Acknowledgements vi

Table of Contents vii

List of Figures xviii

List of Tables xxvii

Abbreviations xxix

1 Organizational Summary of the Thesis 1

2 Introduction 3

2.1 Digital Images 3

2.1.1 Raster Graphics 3

2.1.2 Vector Graphics 4

2.1.3 Digital Images Considered in this Thesis 4

2.2 Image Sampling and Quantization 5

2.3 Image Resampling 5

2.4 Subdivision Schemes 6

2.4.1 Novel Application of Subdivision Schemes to Natural Image Re­

sampling 6

2.4.2 Types of Subdivision Schemes 7

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.3 Face Split Subdivision 7

2.4.4 Vertex Split Subdivision 8

2.5 Image Resampling by Linear or Nonlinear Filtering 10

2.6 Approximating Filter Kernels for Fast Evaluation 10

2.6.1 Novel Relative Error Minimax Approximations of Filter Kernels

with Roots in the Interval of Approximation 12

2.7 Comparing Subdivision Methods to "Direct" Filtering Methods 12

2.8 Hybrid Image Resampling 13

2.9 Resampling Near and Through Image Boundaries: Abyss Policy 14

3 Desirable Properties of Image Resampling Methods 16

3.1 Interpolation 17

3.2 Co-monotonicity, Positivity and Local Boundedness 18

3.2.1 ID Co-monotonicity 18

3.2.2 2D Positivity and Local Boundedness 18

3.3 Co-convexity 19

3.3.1 ID Co-convexity 19

3.3.2 2D Co-convexity 20

3.4 Exactness on Linears 20

3.4.1 Exactness on Linears in ID 21

3.4.2 Exactness on Linears in 2D 21

3.5 Diagonal Preservation 21

3.5.1 Prior Work 21

3.5.2 Diagonal Preservation as Considered in this Thesis 22

3.5.3 Interpolation Conflicts with Strong Diagonal Preservation 23

4 Numerical Analysis of Interpolatory Nonlinear Face Split Subdivision

Methods 25

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Nohalo 25

4.1.1 Published Implementations 25

4.1.2 Nohalo ID 26

4.1.3 Nohalo 2D 31

5 Numerical Analysis of Smoothing Nonlinear Face Split Subdivision Methods 35

5.1 Snohalo 35

5.1.1 Published Implementations 36

5.1.2 Snohalo ID 36

5.1.3 Snohalo 2D 39

6 Numerical Analysis of Interpolatory Linear Filtering Methods 41

6.1 Catmull-Rom (CR) 41

6.1.1 Catmull-Rom (CR) ID 41

6.1.2 Catmull-Rom (CR) 2D 47

7 Numerical Analysis of Smoothing Linear Filtering Methods 49

7.1 Quadratic B-Splines 49

7.1.1 Quadratic B-Splines ID 49

7.1.2 Quadratic B-Splines 2D 52

8 Numerical Analysis of Smoothing Linear Vertex Split Subdivision Methods 54

8.1 Midedge Subdivision 55

8.1.1 Published Implementations 55

8.1.2 Midedge Subdivision ID 56

8.1.3 Midedge Subdivision 2D 57

9 Numerical Analysis of Smoothing Nonlinear Vertex Split Subdivision

Methods 60

9.1 Minmod Midedge Subdivision 60

9.1.1 Minmod Midedge Subdivision ID 60

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.1.2 Minmod Midedge Subdivision 2D 62

10 Numerical Analysis of Interpolatory Linear Vertex Split Subdivision

Methods 65

10.1 Centred Differences Vertex Split (CDVS) 65

10.1.1 Centred Differences Vertex Split (CDVS) ID 66

10.1.2 Centred Differences Vertex Split (CDVS) 2D 67

11 Numerical Analysis of Interpolatory Nonlinear Vertex Split Subdivision

Methods 69

11.1 Minmod Vertex Split (MVS) 69

11.1.1 Minmod Vertex Split (MVS) ID 69

11.1.2 Minmod Vertex Split (MVS) 2D 71

11.2 Reduced Overshoot Vertex Split (ROVS) 73

11.2.1 Reduced Overshoot Vertex Split (ROVS) ID 73

11.2.2 Reduced Overshoot Vertex Split (ROVS) 2D 76

12 Numerical Analysis of Nonlinear "Direct" Interpolation Methods 78

12.1 Monotonicity-Preserving (MP) 78

12.1.1 Monotonicity-Preserving (MP) ID 79

12.1.2 Monotonicity-Preserving (MP) 2D 82

12.1.3 Monotonicity-Preserving (MP) 2D with Null Cross-Derivatives . 83

12.1.4 Monotonicity-Preserving (MP) 2D with Centred Differences

Cross-Derivatives 85

12.1.5 Symmetrized Monotonicity-Preserving 87

12.2 Almost Monotonicity-Preserving (AMP) 88

12.2.1 Almost Monotonicity-Preserving (AMP) ID 88

12.2.2 Almost Monotonicity-Preserving (AMP) 2D with Null Cross-

Derivatives 90

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.2.3 Almost Monotonicity-Preserving (AMP) 2D with Centred Differ­

ences Cross-Derivatives 91

12.2.4 Symmetrized Almost Monotonicity-Preserving (AMP) 2D ... 92

12.3 MP (Harmonic Average) 93

12.3.1 MP (Harmonic Average) ID 93

12.4 Locally Bounded Bicubic (LBB) 93

12.4.1 Published Implementations 94

12.4.2 Locally Bounded Bicubic (LBB) 2D 94

13 Numerical Analysis of Nonlinear Face Split Hybrid Interpolation Methods 98

13.1 Nohalo Followed by Catmull-Rom (Nohalo-CR) 98

13.1.1 Nohalo Followed by Catmull-Rom (Nohalo-CR) ID 99

13.1.2 Nohalo Followed by Catmull-Rom (Nohalo-CR) 2D 100

13.2 Nohalo-LBB 100

14 Numerical Analysis of Linear Vertex Split Hybrid Interpolation Methods 102

14.1 Centred Differences Vertex Split Followed by Quadratic B-Spline

Smoothing (CDVSQBS) 102

14.1.1 Centred Differences Vertex Split Followed by Quadratic B-Spline

Smoothing (CDVSQBS) ID 102

14.1.2 Centred Differences Vertex Split Followed by Quadratic B-Spline

Smoothing (CDVSQBS) 2D 104

15 Numerical Analysis of Nonlinear Vertex Split Hybrid Interpolation Methods 107

15.1 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing

(MVSQBS) 107

15.1.1 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing

(MVSQBS) ID 107

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15.1.2 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing

(MVSQBS) 2D Ill

15.2 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline

Smoothing (ROVSQBS) 113

15.2.1 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline

Smoothing (ROVSQBS) ID 113

15.2.2 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline

Smoothing (ROVSQBS) 2D 115

16 Plots of the Results of Interpolating with AMP, Catmull-Rom, CDVSQBS,

LBB, MP, MP (Harmonic Average), MVSQBS and ROVSQBS 117

16.1 Cardinal Data 118

16.2 Heaviside Data 122

16.3 Soft Cardinal Data 126

16.4 Soft Heaviside Data 130

16.5 Non-Smooth Data 134

16.6 Sine Data 139

17 Spurious Diagonal Oscillations Introduced by AMP, Bicubic, Bilinear,

Catmull-Rom, CDVS, LBB, MP, MVS, ROVS and Variants 145

17.1 Oscillations Along Diagonals After One Subdivision: Setup 146

17.1.1 Hard Line Data 146

17.1.2 Hard Interface Data 147

17.1.3 Soft Line Data 149

17.1.4 Soft Interface Data 150

17.2 Variations Along Diagonals After One Subdivision: Summary of the Re­

sults 151

17.3 Oscillations Along Diagonals After Two Subdivisions: Setup 156

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.3.1 Hard Line Data 156

17.3.2 Hard Interface Data 157

17.3.3 Soft Line Data 158

17.3.4 Soft Interface Data 159

17.4 Variation Along Diagonals After Two Subdivisions: Summary of the Re­

sults 159

18 Introduction to the Remez Algorithm and Its Key Linear Equations 164

18.1 Theory 165

18.1.1 Polynomial Interpolation 165

18.1.2 Approximation 166

18.2 Methods 167

18.2.1 Remez Algorithm 167

18.2.2 Vandermonde Matrices 169

18.2.3 Vandermonde-like Matrices 170

18.3 Results 172

18.3.1 Cost 172

18.3.2 Accuracy 173

18.4 Conclusion 174

19 Literature Review: FIR Filter Design with Chebyshev and Minimax Meth­

ods 178

19.1 Background 178

19.2 Statement of the Problem 179

19.3 History 181

19.4 Literature Review 188

19.4.1 FIR Digital Filter Design Techniques Using Weighted Chebyshev

Approximation - Rabiner et al 188

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19.4.2 A Unified Approach to the Design of Optimum FIR Linear-Phase

Digital Filters - McClellan and Parks 190

19.4.3 A Comparison of Algorithms for Minimax Design of Two-

Dimensional Linear Phase FIR Digital Filters - Harris and

Mersereau 190

19.4.4 A Fast Procedure to Design Equiripple Minimum-Phase FIR Fil­

ters - Mian and Nainer 193

19.4.5 The Performance of an Algorithm for Minimax Design of Two-

Dimensional Linear Phase FIR Digital Filters - Charalambous . 193

19.4.6 Design of Almost Minimax FIR Filters in One and Two Dimen­

sions by WLS Techniques - Algazi et al 194

19.4.7 Design of FIR Filters in the Complex Domain - Chen and Parks 195

19.4.8 On the Design of Optimal Equiripple FIR Digital Filters for Data

Transmission Applications - Samueli 197

19.4.9 On the Design of FIR Filters by Complex Chebyshev Approxi­

mation - Preuss 198

19.4.10 Improvements of a Complex FIR Filter Design Algorithm - Schulist 199

19.4.11 A Weighted Least Squares Algorithm for Quasi-Equiripple FIR

and IIR Digital Filter Design - Lim et al 200

19.4.12 Optimal Design of FIR Filters with the Complex Chebyshev Error

Criteria - Burnside and Parks 201

20 Relative Error Minimax Polynomial Approximation of Smooth Functions

with Zeros in the Interval of Approximation 204

20.1 Even Polynomial Approximations of Even Functions 204

20.2 Minimizing the Relative Error when the Approximated Function Has

Roots in the Key Interval 206

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20.3 Future Directions: Minimax Polynomial Approximations with Positive

Coefficients 208

20.4 Accuracy of Relative Minimax Polynomial Approximations of Common

Filter Kernels 209

21 Frequency Response of Linear Filters 217

21.1 Comparing Filters in the Frequency Domain 217

21.2 Plotting ID Filtering and Downsampling Frequency Response 218

21.3 ID Filtering and Downsampling Frequency Response of Lanczos 3,

Lanczos 2, Catmull-Rom, Mitchell-Netravali, (Cubic) B-Spline Smooth­

ing, Tent and Box 220

22 ID Filtering and Downsampling Frequency Response of Relative Minimax

Filter Kernel Approximations 238

22.1 Frequency Response of Relative Minimax Polynomial Approximations

of Lanczos 2 239

22.2 Frequency Response of Relative Minimax Polynomial Approximations

of Lanczos 3 275

23 Conclusion 318

23.1 General Conclusions 319

23.2 Conclusions with a Narrower Scope 319

A Spurious Diagonal Oscillations After One and Two Subdivisions: Raw Data 322

A.l Hard Line: One Subdivision 322

A.2 Hard Interface: One Subdivision 328

A.3 Soft Line: One Subdivision 334

A.4 Soft Interface: One Subdivision 341

A.5 Hard Line: Two Subdivisions 348

A.6 Hard Interface: Two Subdivisions 358

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.7 Soft Line: Two Subdivisions 369

A.8 Soft Interface: Two Subdivisions 380

B C Implementation of the VSQBS (Midedge with Quadratic B-Spline

Smoothing) Hybrid Image Resampling Method for the GEGL Library 390

C Modified Boost C++ Library Minimax Code 405

C.l main.cpp 406

C.2 f.cpp 422

D Remez Algorithm: Scilab Implementation 427

E Frequency Response: Scilab Code 431

F Spurious Oscillations Along Diagonals: Matlab Code 461

F.l Oscillations.m 461

F.2 Bilinear 477

F.3 Bicubic 478

F.4 Lanczos 2 479

F.5 Lanczos 3 480

F.6 Nohalo 482

F.7 Snohalo 486

F.8 MP 486

F.9 AMP 499

F.10 CR 511

F.ll LBB 512

F.l2 Midedge 518

F.l3 Minmod Midedge 519

F.14 MVS 521

F.l5 Quadratic B-spline 522

F.l6 CDVS 524

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F.l7 ROVS 525

Bibliography 529

Index 542

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

7.1 Plot of the quadratic B-spline basis function 50

16.1 Plot of MP (Harmonic Average) = MP = AMP = LBB for cardinal data 118

16.2 Plot of MVSQBS = ROVSQBS for cardinal data 119

16.3 Plot of Catmull-Rom for cardinal data 120

16.4 Plot of CDVSQBS for cardinal data 121

16.5 Plot of MP (Harmonic Average) = MP = AMP = LBB for Heaviside

data 122

16.6 Plot of MVSQBS = ROVSQBS for Heaviside data 123

16.7 Plot of Catmull-Rom for Heaviside data 124

16.8 Plot of CDVSQBS for Heaviside data 125

16.9 Plot of MP (Harmonic Average) = MP = AMP = LBB for soft cardinal

data 126

16.10 Plot of MVSQBS = ROVSQBS for soft cardinal data 127

16.11 Plot of Catmull-Rom for soft cardinal data 128

16.12 Plot of CDVSQBS for soft cardinal data 129

16.13 Plot of MP (Harmonic Ave.) = AMP = MP = LBB for soft Heaviside

data 130

16.14 Plot of MVSQBS = ROVSQBS for soft Heaviside data 131

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.15 Plot of Catmull-Rom for soft Heaviside data 132

16.16 Plot of CDVSQBS for soft Heaviside data 133

16.17 Plot of MP = AMP = LBB for non-smooth data 134

16.18 Plot of MP (Harmonic Average) for non-smooth data 135

16.19 Plot of Catmull-Rom for non-smooth data 136

16.20 Plot of CDVSQBS = ROVSQBS for non-smooth data 137

16.21 Plot of MVSQBS for non-smooth data 138

16.22 Plot of Catmull-Rom for trigonometric data 139

16.23 Plot of CDVSQBS = ROVSQBS for trigonometric data 140

16.24 Plot of AMP for trigonometric data 141

16.25 Plot of MP = LBB for trigonometric data 142

16.26 Plot of MP (Harmonic Average) for trigonometric data 143

16.27 Plot of MVSQBS for trigonometric data 144

21.1 Frequency response of various standard filters when decimating by a

factor of 1 with zero phase 221

21.2 Frequency response of various standard filters when decimating by a

factor of 1 with half phase 222

21.3 Frequency response of various standard filters when decimating by a

factor of 2 with zero phase 223

21.4 Frequency response of various standard filters when decimating by a

factor of 2 with half phase 224

21.5 Frequency response of various standard filters when decimating by a

factor of 3 with zero phase 225

21.6 Frequency response of various standard filters when decimating by a

factor of 3 with half phase 226

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21.7 Frequency response of various standard filters when decimating by a

factor of 4 with zero phase 227

21.8 Frequency response of various standard filters when decimating by a

factor of 4 with half phase 228

21.9 Frequency response of various standard filters when decimating by a

factor of 5 with zero phase 229

21.10 Frequency response of various standard filters when decimating by a

factor of 5 with half phase 230

21.11 Frequency response of various standard filters when decimating by a

factor of 6 with zero phase 231

21.12 Frequency response of various standard filters when decimating by a

factor of 6 with half phase 232

21.13 Frequency response of various standard filters when decimating by a

factor of 7 with zero phase 233

21.14 Frequency response of various standard filters when decimating by a

factor of 7 with half phase 234

21.15 Frequency response of various standard filters when decimating by a

factor of 8 with zero phase 235

21.16 Frequency response of various standard filters when decimating by a

factor of 8 with half phase 236

22.1 Frequency response when decimating by a factor of 1: Lanczos 2 and

relative minimax polynomial approximations 239

22.2 Frequency response when decimating by a factor of 2: Lanczos 2 and

degree 8 relative minimax polynomial approximation 240

xx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.3 Frequency response when decimating by a factor of 2: Lanczos 2 and

degree 10 relative minimax polynomial approximation 241

22.4 Frequency response when decimating by a factor of 2: Lanczos 2 and

degree 12 relative minimax polynomial approximation 242

22.5 Frequency response when decimating by a factor of 2: Lanczos 2 and

degree 14 relative minimax polynomial approximation 243

22.6 Frequency response when decimating by a factor of 2: Lanczos 2 and

degree 16 relative minimax polynomial approximation 244

22.7 Frequency response when decimating by a factor of 3: Lanczos 2 and

degree 8 relative minimax polynomial approximation 245

22.8 Frequency response when decimating by a factor of 3: Lanczos 2 and

degree 10 relative minimax polynomial approximation 246

22.9 Frequency response when decimating by a factor of 3: Lanczos 2 and

degree 12 relative minimax polynomial approximation 247

22.10 Frequency response when decimating by a factor of 3: Lanczos 2 and

degree 14 relative minimax polynomial approximation 248

22.11 Frequency response when decimating by a factor of 3: Lanczos 2 and

degree 16 relative minimax polynomial approximation 249

22.12 Frequency response when decimating by a factor of 4: Lanczos 2 and

degree 8 relative minimax polynomial approximation 250

22.13 Frequency response when decimating by a factor of 4: Lanczos 2 and

degree 10 relative minimax polynomial approximation 251

22.14 Frequency response when decimating by a factor of 4: Lanczos 2 and

degree 12 relative minimax polynomial approximation 252

22.15 Frequency response when decimating by a factor of 4: Lanczos 2 and

degree 14 relative minimax polynomial approximation 253

xxi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.16 Frequency response when decimating by a factor of 4: Lanczos 2 and

degree 16 relative minimax polynomial approximation 254

22.17 Frequency response when decimating by a factor of 5: Lanczos 2 and

degree 8 relative minimax polynomial approximation 255

22.18 Frequency response when decimating by a factor of 5: Lanczos 2 and

degree 10 relative minimax polynomial approximation 256

22.19 Frequency response when decimating by a factor of 5: Lanczos 2 and

degree 12 relative minimax polynomial approximation 257

22.20 Frequency response when decimating by a factor of 5: Lanczos 2 and

degree 14 relative minimax polynomial approximation 258

22.21 Frequency response when decimating by a factor of 5: Lanczos 2 and

degree 16 relative minimax polynomial approximation 259

22.22 Frequency response when decimating by a factor of 6: Lanczos 2 and

degree 8 relative minimax polynomial approximation 260

22.23 Frequency response when decimating by a factor of 6: Lanczos 2 and

degree 10 relative minimax polynomial approximation 261

22.24 Frequency response when decimating by a factor of 6: Lanczos 2 and

degree 12 relative minimax polynomial approximation 262

22.25 Frequency response when decimating by a factor of 6: Lanczos 2 and

degree 14 relative minimax polynomial approximation 263

22.26 Frequency response when decimating by a factor of 6: Lanczos 2 and

degree 16 relative minimax polynomial approximation 264

22.27 Frequency response when decimating by a factor of 7: Lanczos 2 and

degree 8 relative minimax polynomial approximation 265

22.28 Frequency response when decimating by a factor of 7: Lanczos 2 and

degree 10 relative minimax polynomial approximation 266

xxii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.29 Frequency response when decimating by a factor of 7: Lanczos 2 and

degree 12 relative minimax polynomial approximation 267

22.30 Frequency response when decimating by a factor of 7: Lanczos 2 and

degree 14 relative minimax polynomial approximation 268

22.31 Frequency response when decimating by a factor of 7: Lanczos 2 and

degree 16 relative minimax polynomial approximation 269

22.32 Frequency response when decimating by a factor of 8: Lanczos 2 and

degree 8 relative minimax polynomial approximation 270

22.33 Frequency response when decimating by a factor of 8: Lanczos 2 and

degree 10 relative minimax polynomial approximation 271

22.34 Frequency response when decimating by a factor of 8: Lanczos 2 and

degree 12 relative minimax polynomial approximation 272

22.35 Frequency response when decimating by a factor of 8: Lanczos 2 and

degree 14 relative minimax polynomial approximation 273

22.36 Frequency response when decimating by a factor of 8: Lanczos 2 and

degree 16 relative minimax polynomial approximation 274

22.37 Frequency response when decimating by a factor of 1: Lanczos 3 and

relative minimax polynomial approximations 275

22.38 Frequency response when decimating by a factor of 2: Lanczos 3 and

degree 14 relative minimax polynomial approximation 276

22.39 Frequency response when decimating by a factor of 2: Lanczos 3 and

degree 16 relative minimax polynomial approximation 277

22.40 Frequency response when decimating by a factor of 2: Lanczos 3 and

degree 18 relative minimax polynomial approximation 278

22.41 Frequency response when decimating by a factor of 2: Lanczos 3 and

degree 20 relative minimax polynomial approximation 279

xxiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.42 Frequency response when decimating by a factor of 2: Lanczos 3 and

degree 22 relative minimax polynomial approximation 280

22.43 Frequency response when decimating by a factor of 2: Lanczos 3 and

degree 24 relative minimax polynomial approximation 281

22.44 Frequency response when decimating by a factor of 3: Lanczos 3 and

degree 14 relative minimax polynomial approximation 282

22.45 Frequency response when decimating by a factor of 3: Lanczos 3 and

degree 16 relative minimax polynomial approximation 283

22.46 Frequency response when decimating by a factor of 3: Lanczos 3 and

degree 18 relative minimax polynomial approximation 284

22.47 Frequency response when decimating by a factor of 3: Lanczos 3 and

degree 20 relative minimax polynomial approximation 285

22.48 Frequency response when decimating by a factor of 3: Lanczos 3 and

degree 22 relative minimax polynomial approximation 286

22.49 Frequency response when decimating by a factor of 3: Lanczos 3 and

degree 24 relative minimax polynomial approximation 287

22.50 Frequency response when decimating by a factor of 4: Lanczos 3 and

degree 14 relative minimax polynomial approximation 288

22.51 Frequency response when decimating by a factor of 4: Lanczos 3 and

degree 16 relative minimax polynomial approximation 289

22.52 Frequency response when decimating by a factor of 4: Lanczos 3 and

degree 18 relative minimax polynomial approximation 290

22.53 Frequency response when decimating by a factor of 4: Lanczos 3 and

degree 20 relative minimax polynomial approximation 291

22.54 Frequency response when decimating by a factor of 4: Lanczos 3 and

degree 22 relative minimax polynomial approximation 292

xxiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.55 Frequency response when decimating by a factor of 4: Lanczos 3 and

degree 24 relative minimax polynomial approximation 293

22.56 Frequency response when decimating by a factor of 5: Lanczos 3 and

degree 14 relative minimax polynomial approximation 294

22.57 Frequency response when decimating by a factor of 5: Lanczos 3 and

degree 16 relative minimax polynomial approximation 295

22.58 Frequency response when decimating by a factor of 5: Lanczos 3 and

degree 18 relative minimax polynomial approximation 296

22.59 Frequency response when decimating by a factor of 5: Lanczos 3 and

degree 20 relative minimax polynomial approximation 297

22.60 Frequency response when decimating by a factor of 5: Lanczos 3 and

degree 22 relative minimax polynomial approximation 298

22.61 Frequency response when decimating by a factor of 5: Lanczos 3 and

degree 24 relative minimax polynomial approximation 299

22.62 Frequency response when decimating by a factor of 6: Lanczos 3 and

degree 14 relative minimax polynomial approximation 300

22.63 Frequency response when decimating by a factor of 6: Lanczos 3 and

degree 16 relative minimax polynomial approximation 301

22.64 Frequency response when decimating by a factor of 6: Lanczos 3 and

degree 18 relative minimax polynomial approximation 302

22.65 Frequency response when decimating by a factor of 6: Lanczos 3 and

degree 20 relative minimax polynomial approximation 303

22.66 Frequency response when decimating by a factor of 6: Lanczos 3 and

degree 22 relative minimax polynomial approximation 304

22.67 Frequency response when decimating by a factor of 6: Lanczos 3 and

degree 24 relative minimax polynomial approximation 305

xxv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.68 Frequency response when decimating by a factor of 7: Lanczos 3 and

degree 14 relative minimax polynomial approximation 306

22.69 Frequency response when decimating by a factor of 7: Lanczos 3 and

degree 16 relative minimax polynomial approximation 307

22.70 Frequency response when decimating by a factor of 7: Lanczos 3 and

degree 18 relative minimax polynomial approximation 308

22.71 Frequency response when decimating by a factor of 7: Lanczos 3 and

degree 20 relative minimax polynomial approximation 309

22.72 Frequency response when decimating by a factor of 7: Lanczos 3 and

degree 22 relative minimax polynomial approximation 310

22.73 Frequency response when decimating by a factor of 7: Lanczos 3 and

degree 24 relative minimax polynomial approximation 311

22.74 Frequency response when decimating by a factor of 8: Lanczos 3 and

degree 14 relative minimax polynomial approximation 312

22.75 Frequency response when decimating by a factor of 8: Lanczos 3 and

degree 16 relative minimax polynomial approximation 313

22.76 Frequency response when decimating by a factor of 8: Lanczos 3 and

degree 18 relative minimax polynomial approximation 314

22.77 Frequency response when decimating by a factor of 8: Lanczos 3 and

degree 20 relative minimax polynomial approximation 315

22.78 Frequency response when decimating by a factor of 8: Lanczos 3 and

degree 22 relative minimax polynomial approximation 316

22.79 Frequency response when decimating by a factor of 8: Lanczos 3 and

degree 24 relative minimax polynomial approximation 317

xx vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

17.1 Variation along the diagonals for a hard line after one subdivision 152

17.2 Variation along the diagonals for a hard interface after one subdivision . 153

17.3 Variation along the diagonals for a soft line after one subdivision 154

17.4 Variation along the diagonals for a soft interface after one subdivision . 155

17.5 Variation along the diagonals for a hard line after two subdivisions . . . 160

17.6 Variation along the diagonals for a hard interface after two subdivisions 161

17.7 Variation along the diagonals for a soft line after two subdivisions . . . 162

17.8 Variation along the diagonals for a soft interface after two subdivisions . 163

18.1 Cost to solve a Vandermonde-like matrix 173

18.2 Cost to solve an upper Hessenberg matrix 173

18.3 Condition number and maximum residual when approximating jinc(yrx) 176

18.4 Condition number and maximum residual when approximating sin(Trx) 177

20.1 Maximum relative error for relative minimax polynomial approximations

of cos(7rx) on [—1,1] 210

20.2 Maximum relative error for relative minimax polynomial approximations

of sinc(7nc) on [— |] 211

20.3 Maximum relative error for relative minimax polynomial approximations

of sinc(7rx) on [—2, 2] 212

xxvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20.4 Maximum relative error for relative minimax polynomial approximations

of sinc(7rx) on [—3, 3] 213

20.5 Maximum relative error for relative minimax polynomial approximations

of sinc(7rz) on [—4,4] 214

20.6 Maximum relative error for relative minimax polynomial approximations

of Lanczos 2 on [—2,2] 215

20.7 Maximum relative error for relative minimax polynomial approximations

of Lanczos 3 on [—3,3] 216

xxviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abbreviations

AMP Almost Monotonicity-Preserving

CDVS Centred Differences Vertex Split

CDVSQBS Centred Differences Vertex Split with Quadratic B-Spline Finish

CR Catmull-Rom

FIR Finite Impulse Response

FLOSS Free Libre Open Source Software

GEGL GEneric Graphics Library

GIMP GNU Image Manipulation Program

GMP GNU Multiple Precision Arithmetic Library

GPU Graphics Processing Unit

IIR Infinite Impulse Response

LBB Locally Bounded Bicubic

MP Monotonicity-Preserving

MVS Minmod Vertex Split

MVSQBS Minmod Vertex Split with Quadratic B-Spline Finish

xxix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NIP2 New Image Processor 2

NTL Number Theory Library

QBS Quadratic B-Splines

ROVS Reduced Overshoot Vertex Split

ROVSQBS Reduced Overshoot Vertex Split with Quadratic B-Spline Finish

SIMD Single Instruction, Multiple Data

VIPS Virtual Image Processing System

VSQBS Vertex Split with Quadratic B-Spline Finish

WLS Weighted Least Squares

xxx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Organizational Summary of the Thesis

In the Introduction, the context (image resampling of so-called "natural" raster images) is

described, the main types of surface subdivision (vertex and face split) are defined, the most

common resampling type of method (filtering) is discussed, and two novel approaches to

the solution of applied image resampling problems are stated:

• the application of subdivision methods to the resampling of natural images, and

• the robust computation of relative error minimax polynomial approximations of filter

kernels over intervals with roots in their interior.

These novel approaches motivate the research project. The Introduction proceeds with a

discussion of methods of comparing subdivision- and filtering-based resampling methods

and concludes with the introduction of a third class of resampling methods, subdivision-

filtering hybrids.

Chapter 3 defines desirable properties of resampling methods in the context of image

upsampling (meaning enlargement, roughly speaking): interpolation, local boundedness,

co-convexity, exactness on linears and, last but not least, diagonal preservation.

In Chapters 4-15, various types of image resampling methods—some classical, but

most formulated by Dr. N. Robidoux—are mathematically analyzed and numerically com­

pared. The discussion of each subdivision scheme has two parts: an analysis of the ID

(curve reconstruction) version of the subdivision scheme, invariably defined from the 2D

(surface reconstruction) version by assuming image data constant in the horizontal (or,

equivalently, vertical) direction; and an analysis of the full 2D subdivision scheme.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 16 collects plots of the results of interpolating "ID" (curve) data with some of

the methods discussed in earlier chapters, and Chapter 17 summarizes diagonal preserva­

tion (or lack thereof) data.

In Chapter 18, the Remez method for the polynomial approximation of functions is

introduced, and a discussion of its key linear systems and their solution is given. The

following chapter, Chapter 19, reviews the relevant literature.

In Chapter 20, the accuracy of relative minimax polynomial approximations computed

with a customized version of the Boost C++ library's minimax package are shown. These

results demonstrate that a combination of several simple changes allows one to robustly

and accurately minimize the relative error when the approximated function has roots in the

interior (and endpoints) of the interval of approximation. In the following two chapters

(21-22), these approximations are evaluated in the frequency domain. Their frequency

responses, in the context of integer downsampling, are shown alongside the frequency re­

sponses of the approximated filter kernels.

Conclusions are presented in Chapter 23, following which appendices, a bibliography

and an index are found.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Introduction

2.1 Digital Images

A digital image is the numerical two-dimensional representation of a scene [58]. There are

two main types of digital images.

2.1.1 Raster Graphics

Also called bitmap images, raster images are the most common type of digital image. They

are "computer graphics in which an image is composed of an array of pixels arranged in

rows and columns" [58],

In greyscale images, each pixel value generally represents an intensity ranging from

black to white. Such an image can be represented by a matrix, with each entry a pixel

value in the range 0 (black) to 255 (white) for a typical 8-bit image format. Other ranges

are used, among them 0 to 65535 for 16-bit formats and 0. to 1. and 0. to 100. for floating

point formats. (Note that intermediate result images may have pixel values that fall outside

of these ranges, and that some standard image formats used for colour management use

negative colours as well as colours which are not visible to the human eye or reproducible in

print or on a terminal. In addition, image data structures are often used to store data which

does not correspond to light intensity; such pseudo-images often use altogether different

ranges of values.)

Colour images are similar. They generally have three channels, for example, one for

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the colour red (the "R" channel), one for green ("G"), and one for blue ("B"). The image

consists of the three colour values combined and can be understood as consisting of three

matrices, one for each colour channel.

Today's raster image formats often have an additional channel, reserved for trans­

parency information (the "alpha" channel). In addition, there are multi-band formats that

accommodate offset printing (CMYK is the most common). We will not address the special

needs of such image formats.

2.1.2 Vector Graphics

Vector graphics are different. Instead of storing a value (or a triple of values, in the case

of colour images) for every pixel location, geometrical objects (points, lines, vectors, etc.

[58]) are used to represent the image content, and pixel values are computed from this

information when the image is displayed.

Vector graphics have advantages over bitmap images, such as the ability "to render an

object at different sizes and to transform it in other ways without worrying about image

resolution and pixels" [58]. They are well suited for the generation and storage of com­

puter generated graphics. They are, however, not really suitable for the storage of digital

photographs and other so-called "natural images".

2.1.3 Digital Images Considered in this Thesis

Only raster graphics are considered in the present thesis. Thus, "digital image" invariably

refers to a raster image. In addition, we will only consider greyscale images. It is trivial to

extend the main results and methods to colour images by applying the greyscale method to

every channel.

Although the methods studied in this thesis are agnostic to image content, their primary

application is the resampling of natural images: (demosaiced) digital photographs and other

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

images which result from the digital capture of a "real life" scene.

2.2 Image Sampling and Quantization

To obtain a digital representation of a natural scene, the continuous view has to be converted

to digital form, that is, converted to a finite, although possibly large, number of bits of

information. This is accomplished through image sampling and quantization.

Sampling an image consists of choosing discrete points at which pixel values are eval­

uated to represent the image. Quantization consists of converting the intensity values to

numerical quantities (integer or floating point numbers). "Digitizing the coordinate values

is called sampling. Digitizing the amplitude values is called quantization." [47].

2.3 Image Resampling

Roughly speaking, image resampling consists of adding and/or removing pixels to or from

an image. Resampling is a key component of image resizing: increasing the size of an

image requires the addition of new pixel locations and values (upsampling); decreasing its

size requires their removal (downsampling) [47]. Typically, an upsampling method relies

on closed-form or recursive formulae to compute pixel values at new points located near

the original pixels. On the other hand, most downsampling methods use weighted averages

to combine many pixel values into one representative.

Although resampling is a key component of other processes—notably image rotation,

image warping, texture mapping, and sub-pixel translation—only image resizing is used to

compare image resampling methods in this thesis.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Subdivision Schemes

Subdivision is commonly used as a method of refining computer generated surfaces in 3D

graphics [69, 85]. A subdivision method basically "defines a smooth curve or surface as the

limit of a sequence of successive refinements... Each polygon is related to a successor by

a simple linear transformation that provides an increasingly accurate approximation to the

final limit curve" [128]. After a sufficient number of iterations, the approximating polygon

is generally so close to the limit curve or surface that it is used instead.

2.4.1 Novel Application of Subdivision Schemes to Natural Image Resampling

Because adding and removing pixels is analogous to refining or resampling a polygonal

surface, it makes sense to study the effectiveness of surface subdivision schemes in the

context of natural image resampling. In the case of resampling a greyscale image, one

wants to approximate the surface that represents the light intensity at every location, and

one understands subdivision as a process that takes a polygonal approximation of this a

priori unknown surface and produces from it a higher density approximation.

The author of this thesis does not know of publications discussing the application of

subdivision methods to the resampling of natural images other than her own Honours The­

sis [92] and an earlier conference proceedings article by N. Robidoux, M. Gong, J. Cupitt,

A. Turcotte and K. Martinez [105].

Desirable properties of subdivision methods in the context of natural image resam­

pling are different than when they are used to smooth the surface of computer generated

or somewhat coarsely sampled 3D solids. In this thesis, the mathematical properties of

existing subdivision methods in the context of natural image resampling are studied, and

new subdivision methods, tailored to this specific task, are formulated. Before this is done,

a general discussion of the main types of subdivision and image resampling methods must

be presented.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Types of Subdivision Schemes

Subdivision methods are generally classified according to four criteria: type of refinement,

type of mesh, approximating or interpolating, and degree of smoothness of the limit surface

[42, 131]. In addition to linear subdivision methods, we also consider nonlinear schemes;

this adds a fifth classifier.

In this thesis, only quadrilateral mesh schemes are considered. We study both approxi­

mating (all of them, actually, smoothing in character) and interpolating schemes, and both

face split and vertex split methods are formulated and analyzed.

In both face and vertex split methods, one subdivision doubles the image density. The

resulting alignment of the subdivided image with respect to the original is different for each

type of method: Face split methods produce double-density images aligned with the initial

image pixel locations; Vertex split methods produce double-density images "shifted" by

one quarter of the original inter-pixel distance.

2.4.3 Face Split Subdivision

Each step of a face split subdivision method gives a double-density mesh where each rect­

angle in the original mesh has been divided into four sub-rectangles. (In the case of the

most common types of raster images, the rectangles are actually squares. We only discuss

squares from now on.) Therefore, the new grid points are located on the vertical and hori­

zontal lines linking original points; in addition, there is a new point in the middle of each

original square [131]. The original grid points are kept. In the diagram shown in Eq. (2.1),

which represents the result of one face split step applied to a 5 x 5 input image, the orig­

inal pixel locations are indicated by "i/o" to emphasize the fact that these are both input

and output locations, and the additional pixel locations are indicated by "o" since they are

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output, but not input, locations.

i/o o i/o o i/o o i/o o i/o

o o o o o o o o o

i/o o i/o o i/o o i/o o i/o

o o o o o o o o o (2 . 1)

i/o o i/o o i/o o i/o o i/o

o o o o o o o o o

i/o o i/o o i/o o i/o o i/o

Thus, the pixel density of the output image resulting from one face split step is four times

the density of the input image since it is doubled in both directions.

The Catmull-Clark and Kobbelt schemes are examples of quadrilateral face split subdi­

vision methods.

2.4.4 Vertex Split Subdivision

In a vertex split subdivision method, each vertex is "split" into four new vertices: For each

original grid point, four new points are computed and placed to form a small box centred

around the original point. Basically, the new grid points form half-size squares centred

within the larger squares formed by the original points. In vertex split methods, unlike face

split methods, the original points are discarded at each step [131]. In the diagram shown

in Eq. (2.2), which represents the result of one vertex split step applied to a 5x5 input

image, the original pixel locations are indicated by "i" since they are input, but not output,

locations, and the pixel locations of the subdivision are indicated by "o" since they are

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output, but not input, locations.

i i i i i

oo oo oo oo

o o o o o o o o

i i i i i

oo oo oo oo

o o o o o o o o

i i i i i (2.2)

o o o o o o o o

oo oo oo oo

i i i i i

oo oo oo oo

o o o o o o o o

i i i i i

As is the case with face split, the pixel density of the output image resulting from one vertex

split step is four times the density of the input image since it is doubled in both directions.

However, the alignment of the output image with respect to the input image is different.

With face split subdivision, the original pixel locations are passed on from one subdivision

level to the next; with vertex split subdivision, they are not.

Examples of vertex split subdivision schemes are the Doo-Sabin and Midedge schemes.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Image Resampling by Linear or Nonlinear Filtering

Natural image resampling is usually not performed with a subdivision method. Instead, the

limit surface is computed at once as a weighted average of the original pixel values within

the so-called footprint of the filter, namely the relative locations of the pixels which enter

the computation of a surface point.

Examples of subdivision-free linear resampling methods include bilinear [111], near­

est neighbour [111], bicubic [111], including Lagrange, Catmull-Rom [75], and Mitchell-

Netravali [79], Gaussian smoothing [75], quadratic B-spline smoothing [57], and win­

dowed sine methods such as the popular Lanczos 2- and 3-lobe filtering methods [32].

Linear resampling filters are completely specified by a continuum function called the

filter kernel, a surface which represents the impulse response of the filter. The impulse

response of a filter is the result of applying the filter to cardinal data, a "Kronecker delta"

image with one single nonzero pixel value normalized to the value 1 (an "impulse" image).

Although typical filter kernels are continuous functions, discrete versions can be ob­

tained by sampling. Kernel sampling is implicitly or explicitly performed when filters are

used to resample images in such a way that the local alignment of the output is fixed with

respect to the original [126]. It is also performed when the filter is not computed exactly

whenever its value is needed, but instead representative values are precomputed and stored

in a lookup table (LUT). In both situations, coarse sampling often has undesirable side ef­

fects [126]. On the other hand, at very mild downsampling ratios, it sometimes improves

the relative performance of methods with inferior continuum frequency response [126].

2.6 Approximating Filter Kernels for Fast Evaluation

Filter kernels can be fairly complicated functions. The widely used Lanczos kernels involve

trigonometric functions. Jinc-windowed Jinc filter kernels, used for Elliptical Weighted

Averaging resampling, involve Bessel functions. Evaluating a filter kernel numerous times

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each output pixel computation can be costly when millions of pixels are involved. For

this reason, good approximations of computationally expensive filter kernels are needed.

Of course, essentially all functions are approximated when evaluated on a computer, al­

though this is harmless when the evaluation error is comparable to machine precision. What

we are considering here are cruder approximations just precise enough for the purpose of

image resampling in the context of 8- and 16-bit data and single precision computation,

brought back to the limelight thanks to the ubiquity of SIMD vector units (SSE, Altivec

etc.) and GPUs.

Lookup Tables (LUTs), that is, precomputed tables storing the values of the kernel at

relevant sampling positions, analogous to the mathematical tables of yore, are often used.

Unfortunately, accurate LUTs are, perforce, fairly large. Given that memory access is

considerably slower than floating point computation nowadays, direct formulaic approxi­

mations are sometimes competitive with LUTs. In fact, if one uses a polynomial of degree

high enough to approximate a function but nonetheless moderate, the speed of resampling

can be improved.

Sampling the continuous filter kernel of a linear filtering method can be understood

as defining a subdivision method. Thus, one can understand coarse sampling artifacts as

arising from the changed character of a filter when it is turned into a subdivision method.

This is another example of the porous boundary separating the land of filtering resampling

methods from the land of resampling by subdivision.

In this thesis, we consider the artifacts introduced by the combination of replacing a fil­

ter kernel by a polynomial approximation and sampling it for the purpose of downsampling

(with fixed local alignment of the decimated image with respect to the original). Specifi­

cally, the frequency response of the corresponding discrete operators are compared. This is

appropriate given that low pass filter kernels (or their key factors) were approximated.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.1 Novel Relative Error Minimax Approximations of Filter Kernels with Roots in

the Interval of Approximation

Many methods are used to produce polynomial or rational approximations of functions.

The most commonly used are based on the Remez algorithm. This algorithm is discussed

at length in this thesis, culminating in numerical experiments showing how the quality

Remez minimax code of the Boost C++ library [23] can be modified so that it reliably

produces useful approximations even when the approximated function has several roots in

the interval of interest.

These approximations are novel in that they minimize relative error (well enough given

the limitations of floating point computation) even though the interval of approximation

contains roots of the approximated function. The relative error was chosen over the abso­

lute error because preliminary tests showed that the frequency response of downsampling

operators was better preserved, for a given operation count, when it is minimized. Simi­

larly, preliminary tests suggested that there is little to be gained from the use of rational

function (quotient of polynomials) approximations; for this reason, only polynomial ap­

proximations are considered in this thesis.

2.7 Comparing Subdivision Methods to "Direct" Filtering Methods

One way of comparing subdivision and non-subdivision resampling methods is to compute

the limit surface obtained by repeated subdivision, and compare it to the surface obtained

by direct filtering. In a sense, the process of iterating and taking the limit converts a sub­

division method to a "direct" filtering method. This, however, assumes that subdivision is

performed until convergence, which is not necessarily the case. Some subdivision meth­

ods are actually constructed so as to produce an approximation of the limit surface directly

computed by a filtering method, in which case their primary purpose is to provide a com­

putationally efficient shortcut to the result of the corresponding linear filtering method, at

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

least in the generic case. For example, the Doo-Sabin subdivision method [131] was devel­

oped "by adapting the refinement techniques for the biquadratic uniform B-spline surface"

[62], and the limit of the Doo-Sabin subdivision method is locally the same as the result of

B-spline smoothing. Limit surfaces will not be considered in this thesis. (Limit curves are

discussed in the author's Honours Thesis [92].)

Another way of comparing subdivision and filtering methods is to consider them in the

context of the most common resizing tasks, namely enlargement and reduction by a power

of two. Within this context, the properties of all resampling methods are considered on

a somewhat equal footing, since one can emulate subdivision with a filtering method by

evaluating the reconstructed surface (only) at the subdivided pixel locations. Doing this

allows a direct comparison of the result of one or more steps of a subdivision method with

the result of a "direct" filtering method, more precisely, with a sampled approximation of

the "direct" method. In effect, the comparison is performed by converting each "direct"

method to a subdivision method by sampling the surface computed by the "direct" method

at relevant subdivision points. This is the approach used here.

2.8 Hybrid Image Resampling

Just as one can convert at once a filtering resampling method to a subdivision method

by sampling, one can convert a subdivision method to a method which corresponds to

a filtering method by performing one or more subdivision steps and applying a "direct"

filtering method to the result. A filtering method, consequently, is used as a "finishing

scheme" which short-circuits what could have been an infinite sequence of subdivisions of

the same type (although in principle they could be different).

One additional advantage of "finishing" the result of subdividing finitely many times

(once, actually, in this thesis) with a filtering method is that the latter be chosen so that

it minimizes the main artifacts introduced by the subdivision scheme. For example, one

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could match a strongly smoothing finishing scheme like cubic B-spline smoothing with an

overly aliased vertex split method like nearest neighbour in the hope that the combination

is "balanced." As such, an hybrid scheme can add up to more than the sum of its parts.

If the subdivision and finishing scheme are both linear, the resulting hybrid scheme is

actually a linear filtering method, completely determined by its impulse response. Con­

sequently, it can be implemented and discussed without making explicit its subdivision

component. It is also possible to "hide" the subdivision step within the implementation of

a nonlinear hybrid scheme. This may be computationally expedient, for example when the

implementation is demand driven in such a way that the subdivision computation cannot

be recycled over different output pixel locations (as is the case for several state-of-the-art

graphics libraries which are not dependent on GPUs).

The characteristics of the hybrid scheme are determined by both of its components,

and they can differ considerably from the characteristics of both the subdivision and fil­

tering schemes. The LBB (Locally Bounded Bicubic; see §12.4) finishing scheme was

constructed specifically for Nohalo subdivision. Conversely, the "interpolatory" vertex

split methods of Chapters 10 and 11 were explicitly formulated with quadratic B-spline

smoothing as target finishing scheme.

2.9 Resampling Near and Through Image Boundaries: Abyss Policy

The resampling methods described in this thesis assume that there are input pixel values

associated with locations "all around" the sampling location. This is clearly not the case

when the location where a pixel value is to be computed is close to or falls outside of the

extent of the input image.

This issue is not specific to resampling. For example, it also arises when one filters an

image without resampling it: What is one to do when the convolution mask extends past

the boundary of the image?

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This situation is handled in several state of the art graphics libraries—GEGL, Im-

ageMagick and VIPS, for example—with a so-called abyss policy. An abyss policy speci­

fies the values assigned to needed pixel locations that fall outside of the image. Commonly

used abyss policies include

Transparent black abyss policy: Missing pixel values are given a value of 0 in all chan­

nels. (A variant sets the abyss to a user-defined, but fixed, colour and transparency.)

Nearest neighbour abyss policy: Missing pixel values are assigned the value of the clos­

est boundary pixel.

Mirror abyss policy: Missing pixel values are obtained by reflecting the image pixel val­

ues about the closes image boundary.

Linear extrapolation abyss policy: Missing pixel values are obtained by linear extrapo­

lation.

One advantage of handling "past the boundary" pixel value lookup with an abyss policy is

that boundary conditions do not need to be implemented for individual methods: resam­

pling and filtering can be implemented as if the image was infinite.

In this thesis, linear extrapolation abyss policy is invariably used. This abyss policy

extends the property of being exact on linears (§3.4) from the interior of the image to the

entire plane.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Desirable Properties of Image Resampling Methods

This section discusses desirable properties of an "ideal" image resampling method. Al­

though many high quality resampling schemes fail to have one or more of these properties,

failing by "a lot" is generally a symptom that the visual results will have noticeable arti­

facts in some situations. For this reason, these properties are used to evaluate candidate

resampling methods and highlight their strengths and weaknesses.

Many other properties can be considered. In this thesis, we focus on properties most

important when the resampling operation does not have a strong downsampling component:

• interpolation, which correlates with perceived visual sharpness;

• co-monotonicity, positivity and local boundedness, which minimize haloing artifacts

caused by undershoots and oscillations near sharp features;

• diagonal preservation, which minimizes the staircasing artifacts (a.k.a. "jaggies")

which often occur near diagonal feature boundaries and lines; and

• exactness on linears, which implies that oscillations are not introduced when resam­

pling linear colour gradients, and also that smooth data is approximated accurately.

We also consider co-convexity, which is correlated with perceived smoothness. The dis­

cussion of frequency response is postponed to later chapters concerning minimax approxi­

mations of low pass filters and their key factors.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Interpolation

Resampling can be understood as sampling a surface derived from the input image data. If

this surface always goes through the original data points, the resampling method is said to

be interpolatory:

Definition 3.1.1. A resampling method is interpolatory if the output pixel values that cor­

respond to input pixel positions are exactly the same as the input pixel values.

As illustrated in the diagram shown in Eq. (2.1), face split methods produce subdi­

visions with pixel values assigned to the original data locations. If, at the original pixel

locations (labelled "i/o" in the diagram), the subdivision has the same value as the origi­

nal, it makes sense to call the face split method "interpolatory". Clearly, if one step of an

interpolatory face split subdivision method is interpolatory, then repeated application of the

subdivision method is too.

In the case of vertex split subdivision method, the reconstructed surface is never sam­

pled at the original pixel locations: In the diagram shown in Eq. (2.2), the "i" locations

are distinct from the "o" locations. For this reason, the "interpolatory/non-interpolatory"

duality is not directly applicable. One way of resolving this duality would be to consider

the limit surface obtained by repeated subdivision and determine whether this limit surface

goes through the input data points. Because limit surfaces are not a focus of this thesis,

this is not the approach taken here. Instead, a vertex split subdivision method will be said

to be interpolatory if it is possible to recover the original data points from the result of one

subdivision. This condition is equivalent to the mapping implied by the subdivision having

a left inverse. (In the case of linear vertex split subdivision methods, this is equivalent to

the mapping having a trivial nullspace.)

Interpolatory resampling methods include nearest neighbour [111], bilinear [111], bicu­

bic [111] and Catmull-Rom interpolation [47], and Lanczos (sinc-windowed sine) filtering

[32].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interpolatory subdivision methods include the face split Kobbelt scheme [131].

Non-interpolatory resampling methods include quadratic and higher-degree B-spline

smoothing [57], Mitchell-Netravali spline smoothing [79], Gaussian blur [75], and most El­

liptical Weighted Averaging methods [48, 52], Catmull-Clark [131] is a non-interpolatory

face split subdivision method. Vertex split subdivision methods are generally not interpo­

latory.

3.2 Co-monotonicity, Positivity and Local Boundedness

3.2.1 ID Co-monotonicity

ID data is monotone nondecreasing (resp. nonincreasing) if the values, taken in order, are

monotone nondecreasing (resp. nonincreasing). That is, each value is no smaller (resp. no

greater) than the previous one.

A I D r e s a m p l i n g m e t h o d i s co-monotone if resampling monotone nondecreasing (resp.

monotone nonincreasing) data results in output data with the same monotonicity.

Co-monotone resampling methods include nearest neighbour [111], bilinear [111], B-

spline smoothing [57], MP [61]. Midedge [131] is a co-monotone vertex split subdivision

method.

3.2.2 2D Positivity and Local Boundedness

In this thesis, the positivity and local boundedness of 2D resampling methods is studied

instead of monotonicity.

A resampling method preserves the positivity of an image if subdividing an input image

consisting of non-negative values results in an output image also consisting of non-negative

values. Often, the positivity of a method is established by showing that the result is in the

convex hull of the original data. This last property, stronger in general than positivity, is

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called local boundedness.

Locally bounded resampling methods include nearest neighbour [111], bilinear [111],

B-spline smoothing [57], Gaussian blur [75] and MP [61]. Midedge vertex split subdivision

is locally bounded [131].

When a resampling method is both ordinate shift invariant (such that adding a constant

to the data then resampling gives the same result as resampling and then adding the same

constant to the result) and ordinate reflexion invariant (such that multiplying the input by

—1 then resampling gives the same result as first resampling then multiplying the result by

—1), positivity is equivalent to local boundedness. Although this was not explicitly proven,

all methods considered in this thesis are both ordinate shift and ordinate reflexion invariant.

For this reason, positivity is often considered instead of local boundedness.

Smoothing methods (like quadratic or cubic B-spline smoothing or Gaussian blur) are

generally locally bounded. The interesting problem concerns the construction of locally

bounded methods which are not strongly smoothing.

3.3 Co-convexity

In this thesis, a somewhat limited co-convexity property is considered: We only verify that

convexity is preserved in the interior of regions in which the monotonicity is unchanging.

For example, we do not consider what happens near the extremum of a parabola because

of the change in monotonicity.

3.3.1 ID Co-convexity

A ID resampling method is co-convex if subdividing convex (resp. concave) data results in

output data with the same convexity.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1.1 Convexity of the Input Image

ID Data is convex (resp. concave) if the values, taken in order as the ordinates of points

with equidistant abscissa, are convex (resp. concave). There are many ways to check if a set

of values is convex (resp. concave): When drawing a straight line through any two points,

the values between these points must be on or below (resp. above) the line. Equivalently,

when the data is convex (resp. concave), the slopes—the first finite differences—between

neighbouring points are monotone increasing (resp. decreasing).

3.3.2 2D Co-convexity

If the ID version of a resampling method is co-convex, then the 2D version of the method

preserves the convexity of data which is constant on every row, or constant on every col­

umn. Although we do not consider this more general case, one could also consider the

preservation of convexity for 2D data with fixed convexity along every row and column.

3.4 Exactness on Linears

A resampling method is exact on linears if subdividing input image data taken from an

affine function (polynomial of degree at most 1, informally called "linears") results in an

output image whose data also correspond to values from the same affine function.

Standard resampling methods which are exact on linears include bilinear [111], the BC-

splines with 2C + B = 1 [79], including Catmull-Rom interpolation [47], and quadratic

and higher-degree B-spline smoothing [57]. Midedge subdivision is also exact on linears

[131].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.1 Exactness on Linears in ID

A ID resampling method is exact on linears if resampling an input image with data lying

on a straight line results in an output image with data also lying on the same straight line.

3.4.2 Exactness on Linears in 2D

A 2D resampling method is exact on linears if resampling an input image with data lying

on a plane results in an output image with data lying on the same plane. In this thesis, we

will define the plane by the equation z = ax + by + d.

3.5 Diagonal Preservation

3.5.1 Prior Work

Only relatively recently has diagonal preservation been considered explicitly as a desirable

property of resampling methods.

J. Peters and L.-J. Shiue Peters and Shiue [84] define ripple-free subdivision scheme as

follows:

A subdivision scheme is ripple-free in the direction d, if a control net with con­
stant first differences in the direction d results in a surface whose first derivative
in the direction d is constant.

They show that their subdivision scheme is ripple-free in horizontal, vertical and diagonal

directions, stating that it is unique among methods using 3x3 stencils. Peters and Shiue call

their method 4—3 subdivision since it can be used for transitioning from quadrilateral to tri­

angular sub-meshes. This method is a non-interpolatory face split subdivision scheme. The

bases for 4-3 subdivision consist of box-splines of degree four [84]. The resulting scheme

is very similar to the Catmull-Clark scheme [131]; the only difference is that presmoothing

is applied to the original data points. Stencils are given in Dodgson et al. [29].

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A framework for analyzing artifacts introduced by subdivision was developed by U. H.

Augsdorfer, N. A. Dodgson and M. A. Sabin [4]. These artifacts include ripples in the

horizontal, vertical and diagonal directions. The authors measure the magnitude of the fre­

quency response of the subdivision schemes after one subdivision and within the resulting

limit surface. They compare various methods, namely bilinear, bicubic B-splines, 4-3 box-

splines [84], 4-8 box-splines, and Kobbelt's interpolating box-splines, on the basis of the

magnitude of the artifacts they introduce, and conclude that 4-8 box-splines produce limit

surfaces with the best properties.

3.5.2 Diagonal Preservation as Considered in this Thesis

The ripple-free property studied in this thesis is limited to the two main diagonals (at angles

of 45 degrees measured from the coordinate axes).

Definition 3.5.1. An image is constant on diagonals if pixel values are constant along each

of its descending (main) diagonals, or constant along each of its rising diagonals.

Thus, if the pixel values of an image are Zij with i and j integers, the image is constant

on diagonals if one of the following relations holds for all relevant i and j: z l+ iJ+ i = z l t j

or Zi-^-ij—i zjj.

Definition 3.5.2. (One step of) a subdivision method is strongly diagonal-preserving if

subdividing an image constant on diagonals gives a subdivided image with the same prop­

erty.

If a subdivision method is strongly diagonal-preserving and is such that a subdividing

an input image which is constant along its columns (or rows) results in a subdivided image

also constant along its columns (or rows), then it is automatically ripple-free as considered

by Augsdorfer et al. [4]. It should be noted that "vertical/horizontal preservation" automat­

ically holds for tensor methods, that is, methods which can be implemented by applying a

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one-dimensional scheme in the horizontal direction, and then applying a one-dimensional

scheme in the vertical direction to the result (or vice versa).

Strong diagonal preservation is consequently a necessary, but not sufficient, condition

for being ripple-free. A weaker diagonal preservation is also studied in this thesis:

Definition 3.5.3. (One step of) a subdivision method is conditionally diagonal-preserving

(or weakly diagonal-preserving) if subdividing an image constant along diagonals gives a

subdivided image with the same property provided some reasonable conditions on the input

pixel values are satisfied.

3.5.3 Interpolation Conflicts with Strong Diagonal Preservation

The following theorem and corollaries were formulated and proven by Dr. N. Robidoux.

They make use of the following terminology: The primal grid has nodes at the regular

(h j) > h 3 e l o c a t i o n s w h i l e

(the) dual grid is a translated copy of the primal grid with nodes at the centres
of the cells of the primal grid

[104], In other words, the dual grid has nodes at the (i + \ , j + €E Z, locations.

Theorem 3.5.1 (Robidoux [100]). No subdivision method that computes values at dual

grid pixel locations (from primal grid pixel values) is simultaneously interpolatory and

strongly diagonal-preserving.

Proof. Suppose that such a method of computing values at dual nodes does exist. Consider

a dual node located at the intersection of a rising diagonal of ones and a descending diag­

onal of zeros. Because the method is interpolatory, the subdivided values at primal node

locations are 1 on the rising diagonal. Because the method is strongly diagonal-preserving,

the value at the dual node must also be 1. Applying the same argument to the descending

diagonal of zeros establishes that the dual node value must be 0. This is a contradiction. •

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above result makes clear that one must choose between a resampling method being

interpolatory and it being strongly diagonal-preserving. In the case of the two standard

image subdivision methods, this exclusive alternative is made explicit in the following

corollaries.

Corollary 3.5.1 (Robidoux [100]). No face split subdivision method is both interpolatory

and strongly diagonal-preserving.

Corollary 3.5.2 (Robidoux [100]). No vertex split subdivision method is such that taking a

weighted average of some group of post-subdivision pixel values gives a face split method

that is both strongly diagonal-preserving and interpolatory.

Consequently, subdivision-based methods discussed in this thesis fall in one of two

categories:

• sharp (interpolatory) but at best conditionally diagonal-preserving, and

• soft (smoothing, and consequently, not interpolatory) but (strongly) diagonal-

preserving.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Numerical Analysis of Interpolatory Nonlinear Face

Split Subdivision Methods

In this chapter, we consider single and multiple applications of a novel interpolatory face

split subdivision method, the Nohalo method.

4.1 Nohalo

Nohalo ("No halo") is a nonlinear interpolatory face split subdivision method originally

formulated by Dr. N. Robidoux. It is weakly diagonal-preserving [105]. A Matlab imple­

mentation is given in Appendix F.6.

As its name suggests, Nohalo subdivision suppresses haloing image resampling arti­

facts.

4.1.1 Published Implementations

The interpolatory hybrid scheme consisting of one step of Nohalo subdivision followed by

Locally Bounded Bicubic (LBB) interpolation (§12.4) is built into several FLOSS (Free

Libre Open Source Software) graphics libraries and image editing applications:

• VIPS (Virtual Image Processing System), where it is known as the Nohalo method

[107]. (The author of this thesis is one of the twenty five official authors of VIPS

Version 7.25 [28].)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• NIP2 (New Image Processor 2) [22], where it is currently known as the Upsharp

method [21]. NIP2 calls VIPS.

• GEGL (GEneric Graphics Library), where it is the non-downsampling component of

the Lohalo method [109]. (The author of this thesis is one of the sixty four official

authors of GEGL Version 0.1.6 [129].)

• GIMP if GEGL processing is enabled. (GEGL is in the process of replacing the

legacy GIMP compute engine.)

This Nohalo-LBB hybrid scheme was discussed at Libre Graphics Meeting 2011 [108].

A number of now obsolete methods with a Nohalo subdivision component were built

into VIPS, NIP2 and GEGL. The earliest Nohalo implementations, implementations for

VIPS and DirectX of a hybrid method consisting of one Nohalo subdivision followed by

bilinear interpolation, are discussed in [105].

4.1.2 Nohalo ID

Definition 4.1.1. Nohalo ID subdivision is defined as follows [105]: New values zi+± are
2

inserted halfway between the original ones according to the formula

Wli i
2 4

where rr i i is the minmod slope at the original data point with value zu namely

rrii = minmod(2:j+1 — Z{,Zi — i). (4.1)

The minmod function is defined as follows: If all its arguments have the same sign, it

returns the argument closest to zero; otherwise, it returns 0. Consequently,

s if st > 0 and |s| < |£|,

t if st > 0 and \t\ < | s | ,

0 otherwise.

minmod(s, t) — <

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.2.1 Co-monotonicity

Without proof, Nohalo subdivision was stated to have this property in [105].

Proposition 4.1.1 (Racette [92]). Nohalo subdivision preserves monotonicity.

Proof. Without loss of generality, consider monotone nondecreasing data Z{ so that zl+x-zl

and Zi — z(_i are nonnegative, with the consequence that

rrii < min (zi+i - zh z{ - 2,_i).

Elementary inequality manipulation establishes that the value zi+1 inserted between i and

i + 1 is in the interval

3Zi + Zj+1 Zi + 3zi+1

4 ' 4
£ [%i; ^t+l]

Since the values located at the original pixel locations are unchanged by Nohalo subdivi­

sion, monotonicity is preserved. •

4.1.2.2 Co-convexity

Conjecture 4.1.1 (N. Robidoux). Nohalo preserves the convexity of the original data.

This was erroneously stated to hold in [105].

Counterexample 4.1.1. Consider the increasing concave data {0,20,30,38,38}.

2 3 + 2 5 i / 2 0 + ̂ + 3 0 - 1 3 0 + 1 + 3 8 — § \ 3 n

Zi
~ 2 (—S—^ +

i—"J = -i<0

so that 22 is below the average of its post-subdivision neighbours. •

Throughout this thesis, the centred difference operator 5 is used. 5 f k , by definition, is

e q u a l t o / f c + i - f k _ i .

Nohalo is conditionally co-convex:

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proposition 4.1.2. One Nohalo subdivision preserves the concavity (resp. convexity) of

monotone data if and only if the third finite differences are nonnegative when the data is

nondecreasing, and nonpositive when the data is nonincreasing. That is: When the original

data is concave nondecreasing, the result of subdivision is concave if and only if

5 3 z l + i > 0 V i , (4 . 2)

that is, is and only if

-Z i - i + 3Zi - 3z i + i + z i + 2 > 0 Vi,

with reversed inequalities if the data is monotone nonincreasing or convex, but not both.

Proof. Assume concave nondecreasing data. (The other cases are similar.) Then, rrii =

Zi+i — Zi and rrii > m<i+i > 0.

The inserted points always respect the convexity condition with respect to the original

points:

Zi + z i + i rr i i ~ m i + i
Z<H 2 = 4 -°-

Now, consider the concavity condition at the original points with respect to the inserted

points:

Z i~k Zi+h Z i~ 1 ^z i + z i+1 m i- l ~~ m i+1
z L — z

4 8
2Zi Zi—i 2-i+l z i+2 z i+1 2-i 1 Zi—1 3Zi 3•Zj-fl "I" Zj^_2

= _ + _ __ _

is nonnegative if and only if Eq. (4.2) holds. •

This establishes that one Nohalo subdivision preserves the convexity of monotone

quadratic data (for which d3zi+i is identically 0). Roughly speaking, convexity is pre­

served "at third order".

Condition (4.2) basically means means that the curvature of the original data does not

increase as one approaches a local maximum or minimum (the data "straightens out as one

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approaches peaks and valleys"). Nohalo actually preserves convexity unconditionally near

minima and maxima, locations where the monotonicity changes unless the data becomes

constant: Suppose we have concave data with Zi no less than its neighbours so that the

minmod slope rrij = 0. Because the data is concave, rrii-i = zi — zl-\ andmi+i = zi+i~zi.

Because z{ is a local maximum,

3Zi -j- Zi—i 2Zi ~f* 2^2—1 Zi—j -I- Zi
Z 1 = > = .

l ~ 2 4 ~ 4 2

Constant monotonicity and convexity are generally assumed because this simplifies the

discussion.

Proposition 4.1.3. Two Nohalo subdivisions preserve the concavity of nondecreasing (resp.

the convexity of nonincreasing) data if and only if

53zi_i (resp. — 53zi_i) >2\52Zi\ VI (4.3)

Two Nohalo subdivisions preserve the convexity of nondecreasing (resp. the concavity of

nonincreasing) data if and only if

83zi+±(resp. —S3zi+ i) > 2 | (5 22,| Wi.

In the concave case, Condition (4.3) is equivalent to

—2j_i + 5zi — 7z i+1 + 3zj+2 •$! 0 Vz. (4.4)

Proof. Assume concave nondecreasing data. We show that if Eq. (4.2) holds for the origi­

nal data, then it holds for the result of the first subdivision if and only if Eq. (4.3) holds.

First, consider groups of four subdivided data points that begin with an original one:

- Zi + 3zi+i - 3zi+i + zi+|

/ Zi + 4Z i+1 — 2i+2\ 0 . (2i+1 + 42i+2 — z i+3

= = _ 2 , + H 5 4

%i+1 "I" z i+2 ^i+2 ^ q _ _ _ _ _

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case, the key inequality is always satisfied.

Now, consider groups that begin with an inserted point.

, 0 o , - Z i - 1 + 5 z i - 7 z i + i + 3 z i + 2 1
2j_l + 3 Zi 3 Zj+i + Zi+1 + 252zi+i) .

4 4

This quantity must be nonnegative for Condition (4.2) to be inherited. Because 52Zi is

nonpositive for concave data, this establishes necessity.

An unfortunate consequence of the above result is that two Nohalo subdivisions do

not preserve the convexity of second degree polynomial data (for which 52Zi ^ 0 but

S3zi+1 = 0). The following result establishes that, beyond two subdivisions, convexity

is not preserved for any function (if one considers straight lines as having no convexity

to preserve). These results strongly suggest that there is little to be gained from multiple

Nohalo subdivision. This motivated the search for a compatible high quality "finishing

scheme" and led to the development of the Nohalo-LBB (Locally Bounded Bicubic) hybrid

method.

Proposition 4.1.4. Nohalo subdivision preserves the convexity of monotone data beyond

the second subdivision if and only if the original data is affine (lies on a straight line).

Proof. Assume concave nondecreasing data.

First, consider groups of four points starting with an inserted point. For Eq. (4.4) to

hold for the subdivided data, we must have

Condition (4.3) implies Condition (4.2). This establishes sufficiency. •

- z { _ i + 5 Z i - 7 z i + i + 3 z i + 1

_ / Z j _ i + 4 Z j - z i + 1

V 4
Z j — i + 5 Z j - 7 z i + i + 3 z i + 2

4

_ 7 (Z i 4^+1 ~ Zj- t -2

V 4

+ S2Zi+i > 0.

+ 3 z i + \

(4.5)

In the case of groups starting with an original data point, we get:

-Z i + 52i+i - 7 z i + i + 3 z i + i
Zi 52i+i 4" 7Zi+2 3Zi+s ^

4 ~~

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, this quantity is already supposed < 0 to preserve the concavity of the second

subdivision. Thus, we must have — 5zi+i + 7zi+2 — 32j+3 = 0. Substituting in Condi­

tion (4.5)—remembering that the condition must hold for all i—we get S2zi+i > 0. Second

differences are, however, nonpositive because the data is assumed concave. Consequently,

they all vanish, which establishes that the original data lies on a straight line. Since No­

halo subdivision is exact on linears (§4.1.2.3), this last condition is both necessary and

sufficient. •

4.1.2.3 Exactness on Linears

Nohalo ID is exact on linears because Nohalo 2D is [105]. This is a direct consequence of

the fact that the minmod slopes (Eq. (4.1)) equal the slope of the straight line defining the

data.

4.1.3 Nohalo 2D

Definition 4.1.2. Nohalo 2D subdivision is a face split method (§2.4.3) defined as follows

[105]: The original pixel values are left unchanged, and new values are inserted at the

halfway points in the horizontal direction, halfway points in the vertical direction, and

diagonal halfway points:

3 , = ^ + *i+hj + ~ (4.6) *-r 2 ,j *
" 2 ' J 2

-.v
z i , j + z i , j + 1 , m i , j f A n \

2m+± = j 4 ' (}

z i , j z i , j + 1 " I " 2 i + l , i z i + l , j + l , m i , j ~ ™ i + l , j ~ m i + l , j + l
Z.̂ J+, = - +

mV, + mL, ,• - m?.,, -

where rri-j is the horizontal minmod slope at zhJ and is the vertical minmod slope at

Zi j (Eq. (4.1)).

y

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.3.1 Diagonal Preservation

A hard diagonal line is an archetypal raster image pattern which consists of one single

white line traversing the entire image at a 45 degree angle, on a black background. The

diagram in Eq. (17.1) shows such a hard line, together with the locations computed when

performing face split subdivision.. A soft diagonal line is a slightly blurred version of the

hard one: Two diagonal lines of medium grey flank the white line, one on each side. See

the diagram in Eq. (17.5). For convenience, in these patterns, white is defined by the pixel

value 1, and black is defined by the pixel value 0.

Hard and soft diagonal interfaces are defined similarly: these diagonal interfaces sep­

arate pure white and pure black domains. In these patterns, it was found expedient to use

the pixel value —1 for black. See the diagrams in Eqs. (17.3) and (17.7).

One Nohalo subdivision is diagonal-preserving for soft diagonal lines and interfaces

[105], as verified in Tables 17.3-17.4. For hard diagonal lines and interfaces, Nohalo does

no better than bilinear (Tables 17.1-17.2): In both cases, the maximum variation along a

diagonal is .50.

Two Nohalo subdivisions do not preserve soft or hard diagonal lines or interfaces. For

hard lines, the maximum variation is the same as for bilinear (.50). For hard interfaces,

the maximum variation is .76, which is quite a bit larger than bilinear's .50. For soft lines

and interfaces, however, the maximum variations are .03 and .06, respectively, which com­

pares advantageously to bilinear's .25 and is comparable to Lanczos 3's .03 and .05. See

Tables 17.5-17.8. This is strong evidence that multiple Nohalo subdivisions may not be

worthwhile. As a result, all current library implementations are hybrid schemes involving

only one subdivision step.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.3.2 Local Boundedness

Proposition 4.1.5. Nohalo 2D is locally bounded. Specifically, the values inserted by No­

halo 2D are in the convex hull of the nearest original data:

zi+id e [min (z i t j , z i + h j) ,max (z l t J , z l + l t j) } , (4.9)

z i J + 1 € [min (z i j , Z i j + i) , max (z i t j , z i J + 1)] , a n d (4.10)

£ [min (^ij, Zij+i,) max (•Zjj, Z i + i j) ^i+ij+i)] • (4.11)

Nohalo ID is also locally bounded.

Proof. First, consider Nohalo ID. We show that the new halfway values are between the

minimum and the maximum of the values at the nearest two original locations.

Four input values are used to compute a new Nohalo ID value: {zt_i, zi: zi+1, zi+1}.

The halfway value zi+i is calculated by averaging z{ plus the corresponding minmod slope

and zi+1 minus the corresponding minmod slope. Zi plus the corresponding minmod slope

is in Z i)
Zi + zi+ j

(or vice versa, that is, in
Zi + Zi+\

, Z i , if zi+i > Zi). zi+1 minus

its corresponding minmod slope is in

, . . 3Zi 2j-)-x Zi -f" 3Zi-f-i
therefore, is m

z i + z i + 1
') z i + 1 (or vice versa). Their average,

, ^ C [z t , z l + i] (or vice versa). Therefore, the new

value is in the convex hull of Zi and zl+] , and as such it is also between the minimum and

maximum of the two.

Nohalo 2D uses Nohalo ID to compute the values at horizontal and vertical midpoint

locations. Consequently, Eqs. (4.9)-(4.10) are proven. There remains to show that the new

values inserted in the middle of each square of four original points are at or between the

minimum and maximum of the four nearest original pixel values.

zi+ij+i is the average of the values at the corresponding midpoint of the planes pass­

ing through one of zitj, zlJ+1, zi+l j and zi+iJ+i, each with a gradient defined by the min­

mod slopes. The midpoint value on the plane that goes through zitj is between zitJ and

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Z t + i , j + z % , j +1 ̂ jjierefore; this value is in [min(^j, z i + i j , z i t j + i) , max (z i j , z i + i j , Zt,j+i)]>
Z

interval contained in [min^j, z i + h j , z i > j + i, 2i+lij+i), max^j, z i + i j , z i J + u z i + u + i) } . By

symmetry, this also holds for the values obtained with the other three planes. Since averag­

ing values in an interval gives a result in the same interval, Eq. (4.11) is proven. •

4.1.3.3 Exactness on Linears

Nohalo 2D is exact on linears [105]. This is a direct consequence of the fact that when the

data is affine, the minmod slopes are exactly the partial derivatives of the defining affine

function.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Numerical Analysis of Smoothing Nonlinear Face Split

Subdivision Methods

If a face split subdivision method does not keep the values at the original pixel locations

unchanged, it is not interpolatory.

In this chapter, we consider single and multiple applications of a novel interpolatory

face split subdivision method, the Snohalo method. Because, generally, the subdivisions it

produces are smoother than the original, we say that it is smoothing.

5.1 Snohalo

The Snohalo ("Smooth Nohalo") methods are nonlinear non-interpolatory face split sub­

division methods originally formulated by Dr. N. Robidoux. Snohalo methods are weakly

diagonal-preserving. Matlab implementations of the Snohalo smoothing and Nohalo sub­

division are found in Appendices F.7 and F.6.

Snohalo 1 subdivision—often abbreviated Snohalo subdivision in this thesis—consists

of Nohalo applied to the result of smoothing the original image with a five-point (three

in ID) convolution kernel chosen for its staircasing reduction properties. The amount of

presmoothing is controlled by the parameter 9. Usable values of 6 are in the interval [0, |].

If 0 = 0, there is no smoothing, and Snohalo reduces to plain Nohalo. 6 = 1 dials the default

amount of presmoothing. | is the largest value of 6 for which the centre smoothing weight

no less than the "outer" smoothing weights in 2D.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 1.5 consists of Snohalo 1 followed by Snohalo smoothing. In other words,

Snohalo 1.5 consists of smoothing with Snohalo smoothing, subdividing with Nohalo, and

finally smoothing the result of subdivision with Snohalo smoothing. Although one could

choose different values of the smoothing parameter 6 for each of the two applications of

Snohalo smoothing, we have only considered combinations involving one single value, the

same for both steps.

5.1.1 Published Implementations

A hybrid method based on Snohalo 1.5 was published in the same libraries as the Nohalo-

LBB hybrid discussed in §4.1.1. Snohalo 1.5 appeared under the name Snohalo in the VIPS

library and the name upsmooth in the NIP2 and GEGL libraries. Snohalo 1.5 was replaced

by a hybrid method based on the Midedge subdivision method (see §8.1). This Snohalo 1.5

hybrid had itself rendered Snohalo 1 hybrid implementations obsolete. All these hybrids

used bilinear interpolation as finishing scheme, a convenient choice for GPUs, for which

bilinear is generally a highly optimized built-in method.

5.1.2 Snohalo ID

Definition 5.1.1. Snohalo smoothing ID is defined as follows:

z, = (l-6)z,+e(ft±±Bi±ii±iy (5.1)

Unless otherwise stated, the smoothing parameter 8 is set to the value 1. That is, the

"standard" Snohalo smoothing is

Zi-1 + 6 Zi + 2i+x
Z. = . (5.2)

As mentioned earlier, Snohalo subdivision consists of smoothing with Snohalo smooth­

ing, and then subdividing with Nohalo (§4.1.2).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2.1 Co-monotonicity

Lemma 5.1.1. Snohalo smoothing ID preserves monotonicity.

Proof. Without loss of generality, suppose monotone nondecreasing data z,. Then,

_ - ^i+2 zi—1 "I" 5(Zj-|-i Zj)
Zi+i - Zi = > 0.

•

Proposition 5.1.1. Snohalo subdivision preserves monotonicity.

Proof. Snohalo subdivision consists of smoothing the values before applying Nohalo sub­

division. Both stages preserve monotonicity by Lemma 5.1.1 and Prop. 4.1.1. •

Likewise, arbitrary numbers of Snohalo or Snohalo 1.5 subdivisions preserve mono­

tonicity.

5.1.2.2 Co-convexity

Conjecture 5.1.1. Snohalo subdivision ID preserves the convexity of monotone data.

Counterexample 5.1.1. Consider the concave increasing data {20,30,38,44,44,44}. Ap­

plying Snohalo smoothing to the four central points, one gets {^p, 44}. Substi­

tuting these values into the left hand side of Condition (4.4), one gets

r3 1/ 119 0 151 0 173 , \ 9 ,
S Zh — — J —-—h 3 x —-— 3 x - -f" 44 j — t 0.

2 4 \ 4 4 4 J 4

Consequently, the concavity of the data is not preserved. •

Lemma 5.1.2. Snohalo smoothing ID preserves convexity.

Proof. Snohalo smoothing is the same as smoothing with quadratic B-splines (§7.1) then

sampling at appropriate locations. Since quadratic B-spline smoothing preserves convexity

(§7.1.1.3), so does Snohalo smoothing. •

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo ID is conditionally co-convex:

Proposition 5.1.2. Snohalo ID preserves the concavity of monotone nondecreasing data if

and only if

+ 8& Z z i + x _ +45 z i + i > 0 Vi. (5.3)

This condition is equivalent to

— Z i - 1 — 3 Z i - i + 14Z i — 1 4 : Z i + i + 3 Z j + 2 + Z j +3 > 0 VI

Inequalities are reversed if the data is monotone nonincreasing or convex, but not both.

Proof. As usual, suppose concave monotone nondecreasing data.

The smoothed data inherits the monotonicity and convexity of the original data. Con­

sequently, we only need to consider the Nohalo concavity preservation Condition (4.2)

applied to the smoothed data, that is, consider

—Zi-\ + 3Zi — 3zj-j-i + z^(-2 > 0.

Substituting Eq. (5.2) and simplifying, this becomes Condition (5.3). •

This establishes that one Snohalo subdivision ID preserves the convexity of monotone

nondecreasing quadratic data since, in that case, S 5 z i +1 and 5 3 z i + ± are both 0, and 8 z i + i >

0.

Condition (5.3) is not automatically inherited by subsequent subdivisions. Necessary

and sufficient conditions for concavity preservation when using two or more Snohalo sub­

divisions, or when applying Snohalo smoothing more than once, have not been determined,

5.1.2.3 Exactness on Linears

Proposition 5.1.3. Snohalo subdivision ID is exact on linears.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Because Nohalo is exact on linears (§4.1.2.3), all that is left is to show that Snohalo

smoothing is too. This is the case because it is a linear convolution with coefficient sum

equal to 1 so that it is exact on constant data, and because the coefficients are symmetric

about the point of application so that it is exact on odd, and consequently linear, data. •

5.1.3 Snohalo 2D

Definition 5.1.2. Snohalo smoothing 2D is defined as follows:

= (1 - 0) Z , J + 6 +*•>•-!+4^+ + . (5.4)

The "standard" Snohalo smoothing (with 9 = 1) thus corresponds to

Z i- i j + Z i j - i + 4 z i t j + z i + i j + Zjj+i
Z i j = . (5.5)

5.1.3.1 Diagonal Preservation

For any value of 9 , one Snohalo subdivision is diagonal-preserving for soft lines [101],

as verified for the parameter values 9 = 0 (Nohalo), § and 1 in Table 17.3. With the

default value 9 = 1, one Snohalo subdivision is also diagonal-preserving for hard lines

and interfaces [101], as verified in Tables 17.1-17.2. For soft interfaces, one Snohalo

subdivision has a maximum diagonal variation of .06, much smaller than bilinear's .25 and

comparable to Lanczos 3's .05 (Table 17.4).

Snohalo 1.5, which consists of smoothing, then subdividing, and then smoothing again,

is even better, at the expense of additional blur. See Tables 17.1-17.4.

Two Snohalo subdivisions do not preserve soft or hard diagonal lines or interfaces.

For hard lines and interfaces, the maximum variations are .01 and .05, much less than for

bilinear (.50) and Lanczos 3 (.23 and .22). For soft lines and interfaces, the maximum

variations are .02 and .05, respectively, much less than for bilinear and about the same as

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lanczos 3's .03 and .05. See Tables 17.5-17.8. This suggests that the payoff of multi­

ple Snohalo subdivisions is probably not sufficient to recommend it given the significant

amount of smoothing (unless possibly in situations in which overshoots are to be avoided

at all cost).

5.1.3.2 Local Boundedness

Proposition 5.1.4. Snohalo 2D is locally bounded.

Proof. Snohalo smoothing is locally bounded since it consists of taking a weighted average

of values (with positive coefficients). Nohalo 2D is locally bounded (§4.1.3.2). So is their

combination. •

5.1.3.3 Exactness on Linears

Proposition 5.1.5. Snohalo 2D is exact on linears.

Proof. The argument given in ID (Prop. 5.1.3) carries over. •

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Numerical Analysis of Interpolatory Linear Filtering

Methods

In this section, we consider a classical interpolation method, Catmull-Rom (Hermite bicu­

bic) interpolation. We consider its properties as an interpolation scheme (the usual use) and

through the face split subdivision method it defines.

6.1 Catmull-Rom (CR)

Catmull-Rom is a linear, interpolation method. It is neither strongly nor weakly diagonal-

preserving. A Matlab implementation is given in Appendix F.10.

6.1.1 Catmull-Rom (CR) ID

Definition 6.1.1. Given a set of points with values compute the centred difference slope

at each of these points as rrii = These slopes and the corresponding data points

are used to compute the cubic Hermite spline between each consecutive point.

A formula for the cubic Hermite spline in the interval (i , i -f 1) is

z (t) = (2 (t - i f - 3 (t - i f + l) Z i + ((£ - i f - 2 (t - i f + (t — i)) r r i i

+ (-2 (t - if + 3 (t - i)2) z i+1 + ((t - i f — { t — i f) m i + \ . (6.1)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.1.1 Local Boundedness of the Catmull-Rom Interpolation Method

It is well-known that Catmull-Rom splines are not locally bounded [127]. Following are

several examples in which local boundedness is violated.

Proposition 6.1.1. The maximum undershoot of the result of interpolating Heaviside data

with Catmull-Rom is —

Proof Consider data taken from the Heaviside function, {0,0,0,1,1,1} and the inter-

polant between the second and third points. With z0 = 0, z\ = 0, ra0 = 0 and mi — the

Hermite cubic spline is z(t) = \tz — \t2. The only interior extremum occurs at t = §, and

z{|) = —The other intervals do not contribute a lower minimum. •

Proposition 6.1.2. The absolute minimum of the result of interpolating soft Heaviside data

{0,0,0,0.5,1,1,1} with Catmull-Rom is —

Proof. Consider the Catmull-Rom interpolant between the second and third points. We

have zQ = 0, z\ = 0, m0 = 0, rrii = Putting these values into the formula for Hermite

cubic splines, we get the function z(t) = \t3 — \t2. Again, elementary calculus establishes

t h a t t h e m i n i m u m i n t h e i n t e r v a l b e t w e e n t h e s e c o n d a n d t h i r d p o i n t s i s z (|) = — a n d

that it is the absolute minimum. •

Now, consider data from the Cardinal function, namely {0, 0,0,1,0,0,0} and its inter­

polant between the second and third points, zq = 0, z\ — 0, mo = 0 and m\ = |, as for the

Heaviside data. So, the undershoot is — ^ and the overshoot is ~j.

Finally, consider the soft Cardinal data {0,0,0.5,1,0.5,0,0} and the interpolant be­

tween the first and second points. We have zq = 0, z\ = 0, mo = 0, mi = i, same as for

the soft Heaviside function. So, the undershoot is — ^ and the overshoot is

6.1.1.2 Co-monotonicity of the Catmull-Rom Interpolation Method

Since CR splines are not locally bounded (§6.1.1.1), CR is not co-monotone.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.1.3 Co-convexity of the Catmull-Rom Interpolation Method

Conjecture 6.1.1. Catmull-Rom preserves the convexity of the original data (in the con­

tinuous case).

Counterexample 6.1.1. Let the values of the data points be {15,29,41,43}. In this case,

z0 = 29, Z\ — 41, Trio — 13 and m\ = 7. Substituting in (6.1) and differentiating twice,

we obtain z"(t) = —241 + 6. There is an inflexion point at t = which is in (0,1),

which means that the convexity of the curve changes in the interval between the two points.

Therefore, convexity is not preserved. •

Proposition 6.1.3. Catmull-Rom preserves the concavity (resp. convexity) of the original

data (in the "continuous case") if and only if

S z i _ i + 2 5 z i , 3 2 S z i _ i + 6 z i , 3
2—- 2. < (resp. >) 6zi+1< (resp. >) 2. Vi. (6.2)

Proof. Dougherty [31] states that two conditions must be satisfied in order for cubic Her­

mite polynomials to preserve the convexity of the original data. The first condition is that

the derivative at a data point must be between the left and right slopes at that point. This is

obviously the case when using a Catmull-Rom slope since it is in fact the average of the left

and right slopes. The second condition is actually equivalent to Condition 6.2. Therefore,

all that is needed is to show that this condition is sufficient for convexity to be preserved.

The second derivatives of cubic Hermite splines are affine between consecutive grid

points. Therefore, the convexity can change at most once within an interval. As such, it is

sufficient to consider the convexity at the two endpoints of the interval and make sure it is

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same. Using formula (6.1) and differentiating it twice, we obtain

z " (t) = t (— 3-Zt-i + 92j — 9zi+\ 4- 3zi+2) + 2z{-i — 5zi + 4zi+i — Zi+2,

z (i) — 22j_x 5.Zj -j- 4zj-|-j •2^2 ~ 2 (zj 1) 3 (zi-1-1 ^) (^+2 ^t+i)

= -2<5^_i + 3 5zl+i -«5zi+|,

z"(i + 1) = <^_! - 3<bi+i + 2<5zi+|.

If the original data is monotone increasing and concave, we want

5zi+3 + 2
- 2 ^ _ i + 35zi+\ - 8zi+ 3 < 0, that is, 5zi+i < — -, and

2 2 2 2 ^

2 5zi+i + S z { _ i
8z{_ 1 - 3Szi+i + 2Szi+s < 0, that is, 8zi+i > 2-

2 2 2 2 q

•

6.1.1.4 Co-convexity of the Catmull-Rom Face Split Subdivision Method

Conjecture 6.1.2. Catmull-Rom preserves the convexity of the original data when it is used

to define one step of a face split subdivision method (in the "discrete" case).

Counterexample 6.1.2. Consider the concave increasing data {0,15,29,41,41}. The

value of an Hermite cubic spline at a midpoint is

Zi + zi+1 rrii - mi+i
= 2 + 8 '

Using centred differences slopes, this gives z| = ^ and zs = ~. Because

355 , 287 1
29 - — = ^ 0.

2 32

concavity does not hold for the subdivided data at the centre point. •

Proposition 6.1.4. Catmull-Rom preserves the concavity (resp. convexity) of the original

data when used as a face split subdivision scheme if and only if Mi

S4zi+i - 4 S2zi+i > (resp. <) 0. (6.3)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Let the values of the data points be Z{. Using the above formula, we compute

Zi %i+l 1 (Z{-1-1 1 %i+2 %i Z4 , 1 = h -
* i + v ~ 2 8 v 2 2

1 9 9 1

" 162i_1+ 162l+ 162i+1_ 162i+2'
1 9 9 1

2i+l ~ 16Zi + 16Zi+1 + 16Zi+2 ~ 16Zi+3'

Suppose that the data is monotone increasing and concave. The rest of the proof works

similarly for other cases:

Z i -f- j_j 1 (Z j - t - i Z j —] Zi+2 Zi
Z i , l —

2 8 V 2 2

= ̂ {{Zi - Zi-l) - (Zi+2 - 2i+l)) > 0.

Therefore, the midpoints always preserve the convexity with respect to the original points,

and overall convexity preservation hinges on convexity condition at the original points:

Indeed,

zj+!+z,+| 1 17 1 ,1
Z.+1 5 32*i-i - J* + jgZi+1 - J*i+2 + 32^+3 > o

if and only if (6.3) holds. •

Proposition 6.1.5. The convexity condition for the continuous case is stronger than the

convexity condition for the discrete case and in fact implies it. That is, the former is a

sufficient but not necessary condition for the latter.

Proof. If the convexity condition for the continuous case is satisfied, then all the points on

the continuous curve preserve the convexity of the original data. This includes the points

used in the discrete case. Therefore, the convexity is also preserved in the discrete case. If,

on the other hand, the convexity condition for the discrete case is satisfied, then we are sure

that the convexity is preserved by those points. However, there is no guarantee that the rest

of the points on the continuous curve also preserve the convexity. Therefore, the convexity

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

condition for the continuous case implies the one for the discrete case, but not necessarily

vice versa. Since (6.3) is clearly not equivalent to (6.2), "discrete" convexity preservation

is a necessary but not sufficient condition for "continuous" convexity preservation. •

6.1.1.5 Exactness on Linears

Catmull-Rom is a Keys bicubic, that is, a BC-spline satisfying the relation B + 2C = 1,

and consequently it is exact on linears in 1 and 2D [66, 79].

6.1.1.6 Subjective Evaluation of Interpolation Plots

The Catmull-Rom method gives visually pleasing results in the sense that the resulting

curves are nice and smooth. However, it has the tendency to overshoot or undershoot the

maximum and minimum data values, which is an undesirable property in the context of

image resampling. As such, it has been ranked among the last methods in Chapter 16. For

both hard and soft cardinal and Heaviside data, Catmull-Rom is ranked after all methods

except CDVS. Hard and soft cardinal data results are presented, respectively, in Fig. 16.3

and 16.11 while the hard and soft Heaviside results are presented, respectively, in Fig. 16.7

and 16.15. For the non-smooth data in Fig. 16.19, Catmull-Rom is not penalized as much

since its overshoot is not very noticeable. In this case, more weight is given to the smooth­

ness of the curve. It is ranked after all the MP methods as well as LBB but it gives a result

which is more pleasant than those obtained by vertex split methods followed by quadratic

B-spline smoothing. For the sine data in Fig. 16.22, Catmull-Rom has been ranked first. It

has a noticeable overshoot but this slight overshoot contributes a nice roundness to the top

of the curve instead of flattening it like the monotone methods do. Because mild overshoots

contribute to smoothness—and, in 2D, diagonal preservation—near extrema provided they

are not overly large, they are actually considered a positive feature in this particular context.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.2 Catmull-Rom (CR) 2D

Definition 6.1.2. Catmull-Rom interpolation 2D is simply an extension of the ID version

to two dimensions. This time, we are given a grid of points with values Zij. At each

of these points, we compute three slopes: the horizontal slope, the vertical slope and the

cross-derivative. These are given by the following formulae:

x _ zi+l,j ~
mi,j - 2

y _ z i , j + l ~ z i , j - 1
m i , j - 2

xy ^i,j — 1 zi+l,j+l zi—l,j+l zi+l,j — l "I" zi—l,j — l _ _ _ 4

These derivatives are then used to perform Hermite bicubic spline interpolation.

In the context of this thesis, Hermite bicubic spline interpolation was performed by

solving a system of equations. These equations were obtained by constraining the values

at the grid points as well as the corresponding horizontal slopes, vertical slopes, and cross-

derivatives [17].

Catmull-Rom face split subdivision 2D is simply obtained by evaluating the bicubic

surface at the face split pixel locations.

6.1.2.1 Diagonal Preservation

Catmull-Rom subdivision is not diagonal-preserving for hard and soft lines and interfaces.

It actually gives the exact same results as bicubic interpolation for such data (Appendix A).

The maximum variation for Catmull-Rom on hard lines and interfaces is .36 for both.

Bilinear has a maximum variation of .50 for both, while Lanczos 3 has maximum variations

of, respectively, .23 and .22. For soft lines and interfaces, the maximum variation for

Catmull-Rom is .11 while it is .25 for bilinear interpolation. Lanczos 3 has maximum

variations of, respectively, .03 and .05. These numbers do not change when these filters are

evaluated at the locations of the second face split subdivision's pixels.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, in all tested cases, Catmull-Rom has oscillations that are about halfway between

bilinear and Lanczos 3. In fact, Catmull-Rom oscillates just a little more than Lanczos

2, which is not surprising since it is considered to be a near equivalent (as a result of

comparisons in the frequency domain, among other things).

6.1.2.2 Local Boundedness

Since CR ID is not locally bounded (§6.1.1.1), neither is CR 2D.

6.1.2.3 Exactness on Linears

Catmull-Rom is exact on linears since it is a Keys bicubic [66, 79].

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Numerical Analysis of Smoothing Linear Filtering

Methods

In this section, we review the properties of a classical linear smoothing method, quadratic

B-spline smoothing,

7.1 Quadratic B-Splines

Quadratic B-spline smoothing is a linear but smoothing (hence non-interpolatory) filtering

method. A Matlab implementation is given in Appendix F.15.

In this thesis, quadratic B-spline smoothing is used as a finishing scheme for other

subdivision methods. Because its properties as a vertex split subdivision method are well

known (the Doo-Sabin surface subdivision scheme [62]), we only consider its properties

as an "interpolation" method, leaving aside consideration of its properties as a subdivision

method.

7.1.1 Quadratic B-Splines ID

Quadratic B-spline filtering is performed with the basis function [128]:

l - t 2 i f | i | < j

M K I - f) 2 M — i

0 otherwise.

B(t) =

B(t) is plotted in Fig. 7.1.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

1.5 -0.5 0.5 1.5 0 1 1

Figure 7.1: Plot of the quadratic B-spline basis function

A formula for the qua d r a t ic s p l i n e " i n t e r p o l a t i n g " t h e d a t a Z i i n t h e i n t e r v a l (i — 5 , 2 + 5)

is

z (t) = - (i - 1)) + Z i B (t - i) + z i + i B (t - (i + 1)) .

7.1.1.1 Co-monotonicity

This is a well-known property of quadratic B-splines: The proof is assigned as an exercise

in de Boor [24].

Proposition 7.1.1. Quadratic B-spline smoothing preserve the monotonicity of the original

data.

Proof. Consider nondecreasing data Zj. We show that monotonicity is preserved between

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zi and zl+i. In the first half of the interval, the spline is given by

^ ,2 Z1 1 \ (1 1 \ /l 3 1
z y x) — t I 2 Z i ~ l ~ Z i + 2 Z i + 1) V 2 Z i ~ l 22i+1 J \82i_1 4 Z i + 8^i+1

/ (x) = t (Z i - i — 2 2 j + Z j + i) + ̂ — - 2 j _ i + - 2 j + i ^ .

Consequently,

2'(°) = \(Zi+T- ~ ^-l) ^
0 and ^ Q) = ^+1 ~ *i ^ °"

Since both values are nonnegative and the derivative is affine, it is nonnegative throughout

the half interval. Consequently, monotonicity is preserved there. A similar argument shows

that monotonicity is preserved in the second half of the interval. Because the spline is

continuous, this establishes monotonicity over the whole interval. •

7.1.1.2 Local Boundedness

Proposition 7.1.2. Quadratic B-splines are locally bounded.

Proof. See de Boor [24]. •

7.1.1.3 Co-convexity

Proposition 7.1.3. Quadratic B-splines preserve the convexity of the original data.

Proof. Dr. N. Robidoux believes this to be well-known and provides the following proof

outline. (Uniform) quadratic B-spline smoothing is the result of applying uniform box

filtering to the result of linear spline interpolation. Both uniform box filtering and linear

spline interpolation are convexity preserving. •

7.1.1.4 Exactness on Linears

Proposition 7.1.4. Quadratic B-splines are exact on linears in ID.

Proof See de Boor [24], •

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.2 Quadratic B-Splines 2D

Quadratic B-splines in 2D are computed by finding the quadratic B-splines (§7.1.1) hori­

zontally then vertically (or, alternatively, vertically then horizontally). In other words, the

2D version is the tensor product [24] of the ID version with itself.

7.1.2.1 Positivity

Proposition 7.1.5. Quadratic B-splines preserve the positivity of the original data.

Proof. The quadratic B-spline basis function is nonnegative [24], Therefore, if we smooth

nonnegative input data with quadratic B-splines, we get nonnegative results. •

Because quadratic B-spline smoothing is also exact on linears (see below), it is actually

locally bounded.

7.1.2.2 Exactness on Linears

Proposition 7.1.6. Quadratic B-spline smoothing 2D is exact on linears.

Proof Consider a grid of points of horizontal and vertical distances of 1 starting at the

origin. Let the values of the points on the grid come from the plane defined by z = ax +

by + d. It is sufficient to show that the quadratic B-splines are exact on [l, f] x [l, |] :

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z (x) =

(< . + < 0 1 | - | + 3 (x + i) - (x + i)) | (j / - I

If 1 \ 2 1 / 3 X 2 '
+ (2a + ̂) I 2 \ — 2 / 2 v 2

+ <t + d>(K*-§) (_§ + 3(w+5) ~ (w + 5
3 / 1 \ / l x 2 '

+ (a + 6 + d) (- - + 3 ^ + - J - ^ + -

3 / 1 \ / l x 2 '

-2+ 3 \ V + 2 r \ V + 2

+ (2a + 6 + d)^(x-i) l + s f w + j j - l f + j

If 3 \ 2 1 f lx 2

+ (26 + rf} (- f x — - I

3 „ f 1 \ f l Y \ I f l x 2

+ (a + 2 b + d) ((- _ + 3 (* + - J - ̂ + 2 j j 2 v 2

I f 1 \ 2 1 / l x 2 '
+ {2a + 2b + d) ^ - ^ x - - J 2

= a x 4- b y + d ,

which is the equation of the original plane. Therefore, quadratic B-splines are exact on

linears in 2D. •

Dr. Robidoux points out that the 2D exactness on linears follows from the fact that 2D

B-spline filtering is the tensor product of an exact on linear ID method with itself.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Numerical Analysis of Smoothing Linear Vertex Split

Subdivision Methods

Unlike face split subdivision, vertex split subdivision does not define a value at the original

pixel locations. This is illustrated in the diagram shown in Eq. (17.2) (for a specific choice

of original data). For this reason, interpolatory versus non-interpolatory is not as obviously

defined for vertex split methods as it is for face split methods.

The following imperfect criterion is sufficient for our purposes. If one can (locally)

recover the original pixel values from the subdivided ones, we will say that the vertex split

method is interpolatory. Otherwise, it is not interpolatory, and if the subdivision method is

locally bounded, we will say that it is smoothing.

In this chapter and the following chapter, we study the properties of two smoothing

vertex split subdivision methods, Midedge subdivision and Minmod Midedge subdivision.

They are not interpolatory because subdividing the checkerboard image (the image with

pixel value equal to (—l)1"1"^ at pixel location (i, j)) with either of them results in the zero

image (all pixel values equal to 0). Given that the zero image is also the result of subdi­

viding a zero image, it clearly is impossible to recover the original pixel values from the

subdivision result.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 Midedge Subdivision

Midedge is a linear non-interpolatory vertex split subdivision method [131]. It was in­

dependently proposed by Peters and Reif [83] and Habib and Warren [49]. Midedge is

strongly diagonal-preserving (§8.1.3.1). A Matlab implementation of Midedge subdivision

is given in Appendix F.12.

8.1.1 Published Implementations

The non-interpolatory hybrid scheme consisting of one Midedge subdivision followed by

quadratic B-spline smoothing (QBS) is built into some FLOSS graphics libraries:

• VIPS (Virtual Image Processing Library), where it is known as the VSQBS (Vertex

Split with Quadratic B-Spline finish) method [93]. Based on object-oriented machin­

ery written by Dr. J. Cupitt, the VIPS implementation of VSQBS was written by the

author of this thesis. The version currently in the VIPS library is the result of further

improvements by Dr. N. Robidoux.

• NIP2 (New Image Processor 2), where it is currently known as the Upsmooth method

[21]. NIP2 calls VIPS.

In addition, the samplers Git branch of GEGL (GEneric Graphics Library) contains an

implementation of this hybrid method under the name nohalo (even though this implemen­

tation has nothing to do with the Nohalo subdivision method). Based on object-oriented

machinery written by O. Kolas and reusing some code snippets written by Dr. N. Robidoux

and collaborators, the author of this thesis wrote the first pass of the program shown in Ap­

pendix B. Before being merged with the master distribution, this program needs additional

work having to do, among other things, with making it Jacobian-adaptive according to the

recently revamped GEGL API (Application Programming Interface).

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1.2 Midedge Subdivision ID

In ID, Midedge subdivision boils down to vertex split subdivision by linear interpolation.

For this reason, the properties of the resulting scheme are easy to establish. A full discus­

sion is given in order to introduce the general approach in a simple case.

Given a set of points on the real line with ordinates the first stage of Midedge subdi­

vision consists of computing values for the midpoints by plain averaging:

Zi "4" Zi±i
zi±\ - 2 '

Averaging is performed a second time, this time with the original points as well as the

midpoints:

Z i + 2 i±|
zi± | g "

The final result consists of the points found resulting from this second averaging. They are

located at the quarter point locations and are equally spaced by half of the original distance,

so that the sampling rate is doubled.

Definition 8.1.1. The result of (one step of) Midedge subdivision in ID is

3zj + Z{± i _
zi± i = . (8.1)

8.1.2.1 Co-monotonicity

Proposition 8.1.1. Midedge ID preserves the monotonicity of the original data.

Proof. Suppose that the original data is monotone nondecreasing.

The following three Midedge ID subdivision results cover all needed cases:

3Z i — i -(- Z i ^ Z i -f- Z i — i 3Zi Zi^~\
z _ z . — and z , = _

1 4 4 1 4 4 4 4

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because

1 1
- Z i - 1 = 7 , (z i ~ z i ~ l) > 0 a n d 2 i + A - * i - l = t (* » + 1 ~ z i ~ l) ̂ 0 .

4 4 ^ 1 4 4 ̂

monotonicity is preserved. •

8.1.2.2 Co-convexity

Proposition 8.1.2. Midedge preserves the convexity of the original data.

Proof. Suppose that the original data is concave (resp. convex). Then,

_ Z*+4 Zi~4 — ^ Zi ^ Zi+1 — - (^Zi+1 Zi +
l+5 2 4 2 V 4 4 /

Z i +

= > (resp. <)0 and

_ M + M = * ~ _ 5+1Z* > (resp. <)0.
l"4 2 8 8 - F -

8.1.2.3 Exactness on Linears

Proposition 8.1.3. Midedge ID is exact on linears.

Proof. Suppose that the original data Zj is on the straight line z = mx + b. Then,

3 (m i + b) + (m (i ± 1) + b) (. 1 \
2 1 — 1—^ L L = m z ± - + 0

•

so that the subdivided data is also on z = mx + b. •

8.1.3 Midedge Subdivision 2D

In 2D, Midedge is similarly defined: First, a simple mean is used to find the values of the

midpoints along each vertical and horizontal line segment joining adjacent original pixel

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

locations:

_ zi,j + Zj,j-f 1 , _ Z j j + Z j + i j
Z<i t-4-— A <H1C1 i X 2 *•— •

Then, the original points are thrown away and the same thing is done again along the

diagonal line segments defined by the new points:

Zi+^,3 + Zi,j + k
Zi+\,3+\ ~ 2

The result of one subdivision consists of the last points found. They are located at the

quarter point locations between the horizontal and vertical lines formed by the original

points. Like the results of face split subdivision, they are equally spaced but by half of the

original distance; they are, however, shifted by ±| compared to the locations of the face

split pixels.

Definition 8.1.2. The result of (one step of) Midedge subdivision in 2D is

2 zij + zi±ij + Zij± i
zi±y±\ = 4 • (8-2)

8.1.3.1 Diagonal Preservation

Midedge is strongly diagonal-preserving [101]: Any image with pixel values constant on

diagonals, when subdivided, gives an image with pixel values constant on diagonals. This

holds for any number of subdivisions.

Proposition 8.1.4. Midedge subdivision is strongly diagonal-preserving.

Proof. Suppose the original data has constant values along the descending diagonals.

Consider the first stage of the subdivision, namely simple averaging along the horizontal

and vertical lines. Because the data is constant along diagonals,

z i , j + ̂ i+lj ^i+lj + l + ^i+lj ^i+nj+n + ^i+ra+lj+n -^i+n+lj+n+l ^i+n+l,j+n _ _ _ _. . . _ _ _ _ ,

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that is,

Zi+\,j + 5 ' ' ' Zi+n+^,j+n Zi+n+l,j+n+^'

This establishes that the result of the first stage is also constant along its descending diag­

onals.

The second stage of Midedge consists of averaging pairs of values along the diagonals

of the result of the first stage. Since the data is constant along the descending diagonals, the

averaging along descending diagonals that exist in the result of the first stage of Midedge

keeps these constant values unchanged. As far as the averaging along rising diagonals is

concerned, successive pairs of values used for averaging are the same as one moves along a

descending diagonal, because they come from a fixed pair of diagonals of the result of the

first stage. •

The strong diagonal preservation of Midedge is is verified in Tables 17.1-17.8.

8.1.3.2 Local Boundedness

Proposition 8.1.5. Midedge 2D is locally bounded.

Proof. The subdivision result (8.2) is a weighted average, with positive weights with unit

sum, of data values. •

8.1.3.3 Exactness on Linears

Proposition 8.1.6. Midedge 2D is exact on linears.

Proof. Consider data on the plane 2 = ax + by+d. By translation invariance, it is sufficient

to show that Midedge 2D is exact at the subdivision points closest to (0,0). Indeed,

1
(d) + ̂ { ± a + d) + ̂ (± b + d) = a + b + d.

•

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 Numerical Analysis of Smoothing Nonlinear Vertex

Split Subdivision Methods

9.1 Minmod Midedge Subdivision

Minmod Midedge is a non-interpolatory nonlinear vertex split subdivision method formu­

lated by Dr. N. Robidoux for its diagonal-preserving properties. It is strongly diagonal-

preserving (§9.1.2.1). Minmod Midedge is like plain Midedge (§8.1) except that the values

at the midpoints are found using minmod slopes (4.1) rather than by plain averaging. A

Matlab implementation of Minmod Midedge subdivision is given in Appendix F. 13.

9.1.1 Minmod Midedge Subdivision ID

Minmod Midedge ID first finds midpoints using the minmod slopes (4.1) at the xi±i loca­

tions, exactly like Nohalo subdivision. Then, the xt±i's are computed using Nohalo sub­

division applied to the original data points as well as the previously-computed midpoints.

This is exactly like applying Nohalo subdivision twice. Then, since Minmod Midedge is a

vertex split method, only the values at the quarter locations, zi±i, are kept.

Proposition 9.1.1. Minmod Midedge ID is the same as applying Nohalo subdivision twice

then removing the original data points as well as the midpoints, keeping only the zi±\.
4

The "simplified" formula that uses only the original points and their slopes is quite a

bit more complicated than for Midedge:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 9.1.1. Minmod Midedge is a nonlinear vertex split subdivision method defined

by

^ 3-Sj -f" Zi±j Tfli
Zj _i_ "" . _

4 4 8

, 1 • A (JL_ ^'±1 _ Zi , mi ~ ~ *»'~1 , _ mi-l + - minmod ± 1 - , ±
4 \ 2 4 ' 2 4

1 , / ^iil TTli ^j±l 2j+l ^i±l
—- mmmod ± 1 , h

4 V 2 4 ' 2 4

9.1.1.1 Co-monotonieity

Proposition 9.1.2. Minmod Midedge ID preserves the monotonicity of the original data.

Proof One Nohalo ID subdivision preserves monotonicity (§4.1.2.1). Consequently, so

do two subdivisions. •

9.1.1.2 Co-convexity

Conjecture 9.1.1. Minmod Midedge ID preserves the convexity of the original data.

Counterexample 9.1.1. Despite the connection to repeated Nohalo subdivision, a new

counterexample needs to be constructed, because Minmod Midedge "throws out" Nohalo

subdivision points.

Consider the concave increasing data {0,50,60,68}, starting at t = 0. Starting at t = |,

Minmod Midedge gives {44.875, 53,57.75,63.25}. The consecutive differences are 8.125,

4.75, and 5.5, which is not monotone. •

9.1.1.3 Exactness on Linears

Proposition 9.1.3. Minmod Midedge ID is exact on linears.

Proof. One Nohalo subdivision is exact on linears (§4.1.2.3). So are two. •

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.1.2 Minmod Midedge Subdivision 2D

Minmod Midedge in two dimensions is performed the same way as Midedge (§8.1.3), ex­

cept that the values of the midpoints are found using minmod slopes, first horizontally and

vertically (independently), and then diagonally. That is: First apply Nohalo ID horizontally

and vertically, then again along the diagonals using the results of the previous stage.

9.1.2.1 Diagonal Preservation

Minmod Midedge is strongly diagonal-preserving, as verified in Tables 17.1-17.8. This

holds for any number of subdivisions.

Proposition 9.1.4. Minmod Midedge subdivision is strongly diagonal-preserving.

Proof. Without loss of generality, suppose that the data is constant on descending diago­

nals, so that j 2--;^i j- 21 *-i. j i .j 1? and • i ,j—I •

Nohalo ID subdivision requires only four points to compute a midpoint: the values

used to compute zi+ ij are zh], 2i+lj, zl+2j}, and the values used to compute and

z i+u+1 are { z i + u - U z i + h j , z i + h j + i , z W t j + 2) . Consequently,

_ Z j j + Zj+lJ
i+y 2

minmod(zi+ij - z i t j , z i t j - z t _ h j) - minmod(2i+2,,? - z i + i t j , z i + l t j - z i t j)

4
— Zi+1'j Zi>i

2
minmod(zi+1|j - z i + 2 } j , z i d - z i + h j) - minmodfaj - z i + l i j , Z j - ij - z i d)

4

= zi+i,i+|-

A similar argument establishes that zi+1j+i = zi+|J+1. Therefore, values are constant

along descending diagonals after the first stage.

The proof proceeds essentially as for plain Midedge. •

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dr. N. Robidoux points out the following key elements of the above proof: If one uses

any ID method which is symmetrical with respect to reflexions about midpoints to perform

the "horizontal and vertical Midedge first stage", and such a symmetrical method is also

used for the "diagonal Midedge second stage", then the resulting vertex split method is

automatically strongly diagonal-preserving [103].

9.1.2.2 Local Boundedness

Proposition 9.1.5. Minmod Midedge 2D is locally bounded.

Proof. Minmod Midedge 2D is the same as applying Nohalo ID along the horizontal and

vertical lines, then applying Nohalo ID along the resulting double-density diagonal line,

and finally throwing away the original and intermediate pixel values. Since Nohalo ID is

locally bounded, so is Minmod Midedge 2D. •

9.1.2.3 Exactness on Linears

Proposition 9.1.6. Minmod Midedge 2D is exact on linears.

Proof Without loss of generality, consider the following points on the plane z = ax + by +

d:

(0,0, d) (1,0 ,a + d) (2,0,2a + d) (3,0,3 a + d)

(0,1, b + d) (1,1, a + b + d) (2,1, 2a + b + d) (3,1, 3a + b + d)

(0,2,2 b + d) (l,2,a + 26 + d) (2,2,2a + 26 + d) (3,2,3a + 2b + d)

(0,3,36 + d) (l,3,a + 36 + d) (2,3,2a + 3b + d) (3,3,3a + 36 + d) . (9.1)

The midpoint value at (|, l) computed by the first stage of Minmod Midedge is

— ((a + b 4- d) + (2a + 6 4- d)) — a ^7^ ^ ^

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so that the corresponding point is on the plane. By symmetry, all the other horizontal and

vertical midpoints are also on the plane. Repeating along diagonals, we obtain "quarter

points" on the original plane. •

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 Numerical Analysis of Interpolatory Linear Vertex

Split Subdivision Methods

In this and the following chapter, we study the properties of three interpolatory vertex split

methods: Centred Differences Vertex Split (CDVS), Minmod Vertex Split (MVS), and Re­

duced Overshoot Vertex Split (ROVS). They are interpolatory by virtue of the following

property: If one averages the values at the four subdivided pixels closest to an original

pixel, one recovers the original pixel value. This, in turn, holds because the corresponding

data points lie, symmetrically, on a plane that goes through the original data point. This

particular version of vertex split "interpolation" implies that combining such methods with

quadratic B-Spline smoothing yields hybrid methods which are interpolatory in the stan­

dard sense. In other words, MVS, CDVS and ROVS can be used to construct novel curve

and surface interpolation methods. They are discussed in the latter part of Chapter 13.

10.1 Centred Differences Vertex Split (CDVS)

Centred Differences Vertex Split is a linear, non-interpolatory, vertex split subdivision

method with a very small stencil (three points in ID, the standard five-point stencil (a

cross) in 2D). CDVS is neither strongly nor weakly diagonal-preserving. A Matlab imple­

mentation is given in Appendix F.16.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1.1 Centred Differences Vertex Split (CDVS) ID

Definition 10.1.1. CDVS is like Minmod Vertex Split (§11.1.1) except that centred differ­

ences are used instead of minmod slopes: Given data Z{, the centred differences slopes

Zi+1 Zi—1
mi - -

are found. New data zi+ i and z.i are then computed using the line with slope going
4 4

through z£

, mi
Z i±\ — Z i ^ ^ •

10.1.1.1 Co-monotonicity

Conjecture 10.1.1. CDVS ID preserves the monotonicity of the original data.

Counterexample 10.1.1. Consider the Heaviside data {0,0,0,1}. If we compute the val­

ues at t = \ and f, we obtain (0, -|,|}- Therefore, CDVS does not preserve the

monotonicity of the data. •

10.1.1.2 Co-convexity

Conjecture 10.1.2. CDVS ID preserves the convexity of the original data.

Counterexample 10.1.2. Suppose we have original data that is concave and monotone

increasing,

{0,20,30,38}.

After applying CDVS subdivision, we obtain, starting at t = |,

{16.25,23.75,27.75,32.25}.

The differences between these values are, respectively, 7.5, 4, 4.5. Therefore, convexity is

not preserved. •

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1.1.3 Exactness on Linears

Proposition 10.1.1. CDVS ID is exact on linears.

Proof. MVS is exact on linears (§11.1.1.3). When the data lies on a straight line, minmod

slopes are identical to centred differences slopes. •

10.1.2 Centred Differences Vertex Split (CDVS) 2D

CDVS 2D is performed like MVS 2D (§11.1.2) except that centred differences are used.

10.1.2.1 Diagonal Preservation

CDVS subdivision is not diagonal-preserving for hard and soft lines and interfaces, for any

number of subdivisions.

For one subdivision on hard lines and interfaces (Tables 17.1-17.2)), CDVS has max­

imum variations of, respectively, .75 and 2.0. This is a lot worse than bilinear's .50. For

soft lines and interfaces (Tables 17.3-17.4), CDVS is similar to bilinear. Bilinear has a

maximum variation of .25 for both types of data, as does CDVS.

Two CDVS subdivisions do not preserve diagonals either. For hard lines and inter­

faces (Tables 17.5-17.6), the results are worse than for bilinear. The maximum variations

are, respectively, .75 and 1.0, compared to bilinear's .50. With soft lines and interfaces

(Tables 17.7-17.8), the results are very similar to those obtained with bilinear. The maxi­

mum variations for CDVS are, respectively, .26 and .25, while bilinear gives a maximum

variation of .25 in both cases.

In summary, CDVS is never better than bilinear, and often a lot worse. Because of

these large oscillations, CDVS was combined with a strongly smoothing filtering finishing

scheme, namely quadratic B-spline smoothing, in the hope that the combination of the two

would produce an acceptable hybrid scheme. See §14.1.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1.2.2 Positivity

Conjecture 10.1.3. CDVS 2D preserves the positivity of the original data.

Counterexample 10.1.3. CDVS lDdoes not preserve the positivity of the data (§10.1.1.1).

•

10.1.2.3 Exactness on Linears

Proposition 10.1.2. CDVS 2D is exact on linears.

Proof. The ID argument carries over. •

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11 Numerical Analysis of Interpolatory Nonlinear Vertex

Split Subdivision Methods

11.1 Minmod Vertex Split (MVS)

MVS is a nonlinear interpolatory vertex split method with a very small stencil (three points

in ID, the five-point cross in 2D). It was formulated by Dr. N. Robidoux. MVS is nei­

ther strongly nor weakly diagonal-preserving [101]. A Matlab implementation is given in

Appendix F.14.

11.1.1 Minmod Vertex Split (MVS) ID

Definition 11.1.1. First, the minmod slope m* is found at each of original pixel location

(see Eq. (4.1)). The split ordinates zi± i are then defined by the line through (i, Zi) with

slope rrii. Thus, one step of Minmod Vertex Split subdivision is given by:

z1± <1U>

11.1.1.1 Co-monotonicity

Proposition 11.1.1. Minmod Vertex Split ID preserves the monotonicity of the original

data.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Without loss of generality, suppose that the zt's are monotone increasing.

rrii rrii
-*-S 4 • A = T z i + i ~ z t _ i = Z i + — ^ - Z i + — ^ = - ^ > 0, and

m i + i r r i i r n i + i + m ,
z i+l ~ z i+ i - ^ - — - Z i+1 - 2j -

> 2j+i — Z i — Zl+1—— (because both m i +1 and < zi+i — 2,)

2i+i — = - > 0.
2

Therefore MVS ID preserves monotonicity. •

11.1.1.2 Co-convexity

Conjecture 11.1.1. Minmod Vertex Split ID preserves the convexity of the original data.

Counterexample 11.1.1. Consider the convex increasing data {0,2,6,12}. After Minmod

Vertex Split, we obtain, starting at £ = f, {|,|,5,7}. The slope between the first two

points is | — | = 1, the slope between the next two points is 5 — | = § and the slope

between the last two points is 7 — 5 = 2 < §. Therefore, convexity is not preserved. •

Proposition 11.1.2. Minmod Vertex Split ID preserves the convexity of the original data if

and only if the original data is on a straight line.

Proof. Suppose that the data is concave monotone increasing. The minmod slopes at the

original points are rrii = zi+1 — Zi. Eq. (11.1) gives

, ^i+l Z % , . 2j-f2 ^i+1
Z i±\ ~ z i ̂ ^ and Z i+ i±i — 2j+i it - .

Consequently,

^»+§ Zi Zi+i Zi Z{+i 2j_j_2 Zi-f-i Zi+2 Zj+i
Z i+t =

3 , , 3
2 i+4 2 8 8 2 8 8 4

3 3
= - (Z i - 2 z i + l + z i + 2) = - 5 2 z i + 1 , and

Z i l + Z i + 3
z i-|-i ~~ g (z i 22i+i Zi+2) — g^ Zi+i.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For convexity to be preserved, both quantities must be nonpositive. So, we must have

62zi+1 = 0, which holds if and only if the data lies on a straight line. •

11.1.1.3 Exactness on Linears

Proposition 11.1.3. MVS ID is exact on linears.

Proof. Without loss of generality, consider the data {b, m + b, 2m + b , 3m + b} on the line

y — mx + b. Applying MVS to obtain the subdivided values at t = | and t = |, we obtain

m 5 , m 7
m 4- b + — = -m + b and 2m + b = -m + b,

4 4 4 4

as expected. •

11.1.2 Minmod Vertex Split (MVS) 2D

Definition 11.1.2. Given a grid of points with values z i t j , Minmod Ver tex Sp l i t is per­

formed by first finding the minmod vertical slope and the minmod horizontal slope m%

(Eq. (4.1)). These two slopes define a plane going through Zj. The four split points, with

values zi+i ,j., zi+1 -_±, z{_ i •, i, and z{_ i ,-_i, are taken from this plane:
' ^ v 4 4 4 4 4 4 4

(11.2)

Eq. (11.2) makes obvious the fact that averaging average the four split values recovers

the original one.

11.1.2.1 Diagonal Preservation

Minmod Vertex Split subdivision is not diagonal-preserving for hard or soft lines and in­

terfaces.

For one subdivision on hard lines and interfaces, MVS preserves all diagonals but one

(Tables 17.1-17.2). However, the oscillations along this, central, diagonal are unacceptably

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large: 1 and 2, respectively. For soft lines and interfaces, MVS does as badly or worse than

bilinear. Bilinear has a maximum variation of .25 for both types of data, whereas MVS has

maximum variations of, respectively, .25 and .50 (Tables 17.3-17.4).

Two MVS subdivisions do not preserve diagonals either. In all cases, MVS performs

a lot worse than bilinear. For hard lines and interfaces (Tables 17.5-17.6), the maximum

variations are, respectively, 1.0 and 2.0, compared to bilinear's .50 for each. With soft lines

and interfaces (Tables 17.7-17.8), the maximum variations for MVS are, respectively, .38

and .75, while bilinear has a maximum variation of .25 for each.

Because of these large oscillations, MVS was combined with a strongly smoothing

filtering finishing scheme. See §15.1.

11.1.2.2 Positivity

Proposition 11.1.4. Minmod Vertex Split 2D preserves the positivity of the original data.

Proof. Suppose nonnegative data. Because the minmod slope is bounded by the least of

the left and right slopes, the plane defined by the data point (i,j, zuj) and by these slopes

is between the horizontal plane and the plane going through (i, j, z.l<3), (i + 1 ,j, zl+ij) and

(i,j +1, zitj+1). The values taken from the plane are at the quarter point locations and thus

are between zitj and min(ztJ, zi+ij, zi>j+1). Since these values are all nonnegative, so is

the subdivided value. Therefore, positivity is preserved. •

11.1.2.3 Exactness on Linears

Proposition 11.1.5. MVS 2D is exact on linears.

Proof. Consider the grid data shown in (9.1), taken from the plane 2 = ax + by + d.

Consider subdivided value at the position (f, |). The horizontal slope at (1,1 ,a + b + d)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a and the vertical slope at the same point is b. Therefore, the value at (|, |) is

a b 5a + 56
a, b -\- d, — + — = jr d,

4 4 4

as expected. Other points are computed similarly, and all lie on the plane. •

11.2 Reduced Overshoot Vertex Split (ROVS)

Reduced Overshoot Vertex Split is a nonlinear interpolatory vertex split method with a very

small stencil (three points in ID, the five-point cross in 2D). ROVS is neither strongly nor

weakly diagonal-preserving. A Matlab implementation is given in Appendix F.17.

ROVS was formulated by Dr. N. Robidoux as an attempt to dampen the overshoots

of CDVS (§10.1) without making it locally bounded by clamping the centred differences

slopes just enough to guarantee that the value at a split vertex is in the convex hull of the

values at the three nearest original vertices when the triple is monotone, and only damping

slopes at extrema when they are large relative to local differences, in the spirit of the AMP

nonlinear bicubic method (§12.2).

11.2.1 Reduced Overshoot Vertex Split (ROVS) ID

Definition 11.2.1. ROVS ID consists of performing vertex split with the line through Zi

with slope rrii, where m, is obtained by clamping the centred difference slope

Zi+l %i—1 ™>i = ~
2

to the interval

—4min(2j + zi+i — 2m, 2M — Zj_i — Zi), 4min(2j_i 4- zt — 2m, 2M — Zi — zi+1) ,

(11.3)

where

rri = min(z i_ i , z t , z i + i) and M - m&x(zi-i,zi, zl+i).

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The clamping interval (11.3) is the largest one with the following property: If the centre

value zi is the median of the triple {zi-i, zu 2i+1}, using a slope in the interval guarantees

that the values split from zl do not overshoot the convex hull of the triple.

When Zi is not the median of the triple, the split values may overshoot the min or max

of {zi-i, Zi, zi+1}, but not by much. In that case, however, Zi is either the minimum or

the maximum of the triple. As discussed in [61], no monotonicity-preserving method can

be second order accurate near local minima and maxima. Thus, ROVS allows small over-

and undershoots exactly where needed to maintain accuracy and, consequently, perceptual

smoothness. We will see in §15.2 that allowing the split values, and consequently the

smoothed values, to minimally overshoot minima and maxima allows ROVSQBS to inherit

the smoothness and accuracy of CDVSQBS when the data is smooth without also inheriting

CDVSQBS' large "halos."

11.2.1.1 Co-monotonicity

Conjecture 11.2.1. ROVS ID preserves the monotonicity of the original data.

Counterexample 11.2.1. Suppose we have the monotone increasing data {0,1,2,10}. The

initial slopes at the second and third points are, respectively, 1 and |. The bounding interval

for the second point is [—12,4]. Since 1 belongs to this interval, we keep the initial slope.

The bounding interval for the third point is [—40,4]. Since | does not belong to this interval,

we instead set the slope at the third point equal to 4. Now if we apply the vertex split

subdivision using these points and these slopes, we obtain, starting at t — |, {§> f, 1,3},

which is clearly not monotone increasing. •

11.2.1.2 Co-convexity

Conjecture 11.2.2. ROVS ID preserves the convexity of the original data.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Counterexample 11.2.2. Consider the concave increasing data

{0,50,60,68}.

The centred differences slopes, starting at t = 1, are 30 and 9. Both belong to the required

intervals:

30 e [-280,40], and 9 E [-104,32].

After subdivision, we obtain, starting at t — |,

{42.5,57.5,57.75,62.25},

with simple differences equal to 15, 0.25 and 4.5. •

11.2.1.3 Local Boundedness

Conjecture 11.2.3. ROVS ID is locally bounded.

Counterexample 11.2.3. Consider the set of points with values {0,2,1}. The initial

Catmull-Rom slope at the second point is ̂ = I_ j^e ROVS bounding interval is [—8,4].

Since the initial slope belongs to this interval, we keep it as it is. If we now apply vertex

split subdivision, we obtain, at t = |, the value 2 + \\ = §, which is greater than 2, the

local maximum of the original points. •

11.2.1.4 Exactness on Linears

Proposition 11.2.1. ROVS ID is exact on linears.

Proof. Without loss of generality, consider data on the line y — rax + b, with m > 0. (The

m = 0 case is trivial.)

All centred differences are equal to m. The clamping interval is [—12m, 4m]. Conse­

quently, no clamping is done, and the vertex split stage uses the original straight line. •

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11.2.2 Reduced Overshoot Vertex Split (ROVS) 2D

ROVS 2D is performed the same way as MVS 2D (§11.1.2) but the slopes used are those

of ROVS ID (§11.2.1) considered in the horizontal and in the vertical directions.

11.2.2.1 Diagonal Preservation

ROVS gives the same results as MVS when applied to hard and soft lines and interfaces

(Appendix A). Therefore, it has the same diagonal preservation properties (or lack thereof)

as MVS (§ 11.1.2.1). See § 15.2 for an hybrid implementation which uses a strongly smooth­

ing finishing scheme.

11.2.2.2 Local Boundedness

Conjecture 11.2.4. ROVS 2D preserves the positivity of the original data.

Counterexample 11.2.4. Consider the following initial data:

0 10 0

10 1 0

0 0 0

The original centred differences slopes for the centre point are —5, both horizontally and

vertically. The interval in which this slope should belong is [—4,44]. Since —5 is smaller

than the lower bound, we set the vertical and horizontal slopes of the centre point equal to

-4. The value at (|, |) is therefore 1 + =£• + = -1. Therefore, the positivity is not

preserved. •

Since ROVS 2D is not positivity preserving, it is not locally bounded.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11.2.2.3 Exactness on Linears

Proposition 11.2.2. ROVS 2D is exact on linears.

Proof. As in ID, there is no clamping when the data is affine. As discussed in connection

to MVS 2D (§ 11.1.2.3), the subdivided points are then on the original plane. •

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12 Numerical Analysis of Nonlinear "Direct"

Interpolation Methods

In this chapter, we study the properties of nonlinear interpolation methods. All of them

are variants of Hermite (bi)cubic interpolation, each and every one constructed so as to

minimize overshoots and undershoots. They differ in the choice of slope limiter and/or

cross-derivative.

These methods were considered mostly in the search for a suitable finishing scheme

for Nohalo subdivision. The last method discussed in this chapter, the novel LBB (Locally

Bounded Bicubic) method, eventually was found to fit the bill.

12.1 Monotonicity-Preserving (MP)

Monotonicity-Preserving subdivision is a nonlinear interpolatory method. It is

neither strongly nor weakly diagonal-preserving. A Matlab implementation is given in

Appendix F.8. This method, due to Huynh [61], was based on his extension to higher-

order approximations of the necessary and sufficient condition for monotonicity found by

de Boor and Swartz [26].

Definition 12.1.1. Given a set of points with values z,, we first compute the MP slope at

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each of these points as follows:

Zi-)-i Zi— i
r r i i = minmod ^3 minmod (z i + i — Z i , Z i — Z i -1) ,

/ / \
= minmod (3 minmod &zi+^J , 2—^ - 1 . (12.1)

These slopes are then used in the Hermite cubic spline formula(6.1) to define the spline

between each pair of consecutive original points.

12.1.1 Monotonicity-Preserving (MP) ID

12.1.1.1 Co-monotonicity

Proposition 12.1.1. MP ID preserves the monotonicity of the original data.

Proof See Huynh [61]. •

Consequently, MP ID is locally bounded.

12.1.1.2 Co-convexity

Conjecture 12.1.1. MP ID preserves the convexity of the original data.

Counterexample 12.1.1. Consider the data {15,29,41,44}. The slopes at the second and

third points are, respectively, 13 and 7.5. Finding the cubic Hermite spline between the

second and third points, and differentiating twice, we obtain z"(t) = —2It + 5. This

function has a simple root at t = which is in (0,1). Therefore, there is a change in

convexity. •

Conjecture 12.1.2. MP ID, used as a face sp l i t subd iv i s ion me thod (the "d i scre te" case) ,

preserves the convexity conditionally.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Below, we present a partial proof, in need of further work, of this conjecture.

The midpoints are

Zi Zi+\ TTlj Tfli+i
= + 8 '

The midpoints always respect the convexity with respect to the old points because

Zi + zi+1 rrii - mi+i
Z; , 1 = .

l +5 2 8

Thus, the only question concerns the convexity at the original points with respect to the

inserted points:

z i+\ + z i+f -Zi + 2z i+1 - z i+2 , rri i+2 - rrii ~

2i+1 2 = S + 16 (12'2)

Without loss of generality, suppose that the data is concave monotone nondecreasing. Then,

minmod

Consequently, each slope is determined by the result of one minmod operation. Since two

slopes appear in Eq. (12.2), four different cases are possible.

In the first case, we have mi+2 = Zl+3 Zt+l and rrii = Zl+1 Zl~l. Substituting these

values in Eq. (12.2) equation, we get

Zi %i+2 1 ((Zi+3 %i+l \ (z i+1 z i—2

4 16 V\ 2
_ Zj-\ — 8Zj + 14zj+i — 8zj+2 + Zj+3

~ 32 '

In the second case, we have mi+2 = 3(zi+3 — zi+2) and rrii = 3{zi+i ~ Zi). Substituting

these values in the equation, we get

—Zj + 2z j + i — Z j + 2 3(zj+3 — Zi+2) — 3(^+1 — Zi) _ —Zi + bzi+i — 7^+2 + 3zj+3

16 16

In the third case, we have mi+2 = 3(zj+3 — zi+2) and rrii = This time, we

get

•Zi + 2Zi+i — Zi+2 3(2i+3 — Zi+2) — (2 l + 1
2

A ')

4 16
Zj - i - 8z j + 15z j+i - 14z i + 2 + 6z i + 3

32

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the fourth case, we have mi+2 =

key quantity is

Zj+3 ~ Zj+l

2
and m,i = Z{zi+\ — ^-1), so that the

4 16 VV 2
— 2-Zj + 92j+i — 82j+2 + 2j+3

32

((''+V+i)-3u+'-*-.))
Since the operative case can change when we move from set of points to the next, each

condition is not typically to be satisfied all the points. This makes it very complicated to

know whether or not the next subdivision still respects the convexity of the original data,

which is why this proof attempt is abandoned.

12.1.1.3 Exactness on Linears

Proposition 12.1.2. MP ID is exact on linears.

Proof. If the data is affine, all the first finite differences equal the slope m of the straight

line. Consequently all the MP slopes are

so that the corresponding cubic Hermite spline is the original straight line (like in §6.1.1.5).

12.1.1.4 Subjective Evaluation of Interpolation Plots

The MP method gives visually pleasing results with smooth curves. As such, it has been

ranked among the top methods in Chapter 16. For both hard and soft cardinal and Heaviside

data, MP is ranked first, along with AMP, MP (Harmonic Average) and LBB. For hard

cardinal and Heaviside data, the reason for putting these methods first is that they have

no overshoot or undershoot, they are smooth between points but not rounded where they

minmod (3 minmod(m, m), -(2m)

•

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be more angular, such as at the points where the data goes from 0 to 1. However,

in the case of hard cardinal data, it can be seen that they do not give a sharp point at

the maximum value, rounding it slightly, as it should. These methods also do not have

extraneous oscillations between points for hard data. For soft data, some oscillations can

be seen, but they are not as evident as with other methods. At the same time, the curve

retains its smoothness and the peak in the soft cardinal data is nicely rounded. Hard and soft

cardinal data results are presented, respectively, in Fig. 16.1 and 16.9 while the hard and soft

Heaviside results are presented, respectively, in Fig. 16.5 and 16.13. For the non-smooth

data in Fig. 16.17, MP is still ranked first along with AMP and LBB. This choice may seem

less obvious but from a completely subjective perspective, the result for MP seemed more

pleasant. It gives a smooth curve which is nicely rounded. MP (Harmonic Average), for

example, seems to flatten certain areas while MP seems to make them rounder. For the

sine data in Fig. 16.25 however, MP has been ranked among the worst methods. It only

performs better than MP (Harmonic Average) and MVSQBS. The main reason for this

ranking is that it flattens the peak of the curve more than some other methods. Otherwise,

it is nice and smooth, without the extraneous oscillations present with MVSQBS.

12.1.2 Monotonicity-Preserving (MP) 2D

A number of different MP 2D variants, distinguished by their defining cross-derivatives,

reduce to the above MP ID. In all cases, the bicubic Hermite interpolating surface between

four nearby pixel positions is defined by the four corner values, by the gradients defined by

the following directional derivatives, computed at each of the four corner pixel location,

rafj = minmod ^3 minmod (z l + i t J - z h j , z i t j - 2t_ij), 5

m y
i t j - minmod ^3 minmod (z i t j + 1 - z h J , z h j - z u j -1), ,

as well as by four collocated cross-derivatives.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.1.3 Monotonicity-Preserving (MP) 2D with Null Cross-Derivatives

This is the simplest reasonable extension of the MP method to 2D using the Hermite bicubic

formula. This choice of cross-derivatives is reasonable given that affine functions have null

cross-derivatives, which implies that hardwiring them to zero does not affect exactness on

linears.

Definition 12.1.2. In this MP variant (§12.1.2), all the cross-derivatives are set to zero.

12.1.3.1 Diagonal Preservation

Monotonicity-Preserving with null cross-derivatives subdivision is not diagonal-preserving

for hard and soft lines and interfaces. It performs the same as for bilinear for hard data after

one subdivision, and worse than it for two subdivisions. Its performance is between that of

bilinear and Lanczos 3 for soft data.

For hard lines and interfaces after one subdivision (Tables 17.1-17.2) and after two

subdivisions (Tables 17.5-17.6), MP Null has maximum variations of .50, the same as for

bilinear. For soft lines and interfaces after one subdivision (Tables 17.3-17.4) and two

subdivisions (Tables 17.7-17.8), MP Null has maximum variations of .19 while bilinear's

maximum oscillation is .25 and Lanczos 3's are .03 and .05.

12.1.3.2 Local Boundedness

Conjecture 12.1.3. The square surface patch supported by the convex hull of four nearby

input pixel locations, obtained by MP with null cross-derivatives, is contained between the

maximum and the minimum of the corner values of the patch.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Counterexample 12.1.2. Suppose we have the following initial data:

* 1 -10 *

1 1 0 -10

-10 0 1 10

* -10 10 *

The four corner values of the square patch under consideration are Z(0,o) = 1, Z(i,o) = 0,

2 (o , i) = 0 a n d z ^ i) = 1 . T h e c o r r e s p o n d i n g M P s l o p e s a r e r n * 0 Q j = 0 , m = — 3 ,

m(<0,1) = 3, j) = 3 and my
0 = 0, 0j = 3, rny

Q1^ — —3, fny^ ^ = 3. Substituting

into the bicubic Hermite spline formula, one gets a value at (0.25,0.25) equal to 1.06 >

max{0,1}. •

Conjecture 12.1.4. The surface patch obtained by MP with null cross-derivatives is con­

tained between the maximum and the minimum of all the values used to compute the patch.

Counterexample 12.1.3. Consider the following data:

* 0 10 *

0 0 1 10

10 1 0 0

* 10 0 *

The four corner values of the square patch under consideration are Z(o,o) — 0, Z(i,o) = 1.

2(0)i) = 1 and 2(1,1) = 0. The corresponding MP slopes are m*0)0) = 0, m*10) = 3,

m*0 = —3, !) = 0 and my
0 0) = 0, = —3, my

0 ^ = 3, ^ = 0. The value of

the bicubic Hermite interpolant at (0.5,0.5) is —0.25 < 0 = min{0,1,10}. •

Of course, this last counterexample could also have been used for the previous conjec­

ture. Presenting both documents the process by which the properties of this MP variant

where investigated.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.1.3.3 Exactness on Linears

Proposition 12.1.3. MP 2D with null cross-derivatives is exact on linears.

Proof. Consider the grid data shown in (9.1), taken from the plane z — ax + by + d. All

the horizontal slopes are equal to a and all the vertical slopes are equal to b while all the

cross-derivatives are equal to 0, like for CR 2D, which is exact on linears (§6.1.2.3). •

12.1.4 Monotonicity-Preserving (MP) 2D with Centred Differences Cross-

Derivatives

This is another variant of 2D MP formulated by Dr. N. Robidoux. Since setting cross-

derivatives to zero failed to give a particularly attractive scheme, he decided to try the more

accurate Catmull-Rom values.

Definition 12.1.3. In this MP variant (§12.1.2), the cross-derivatives are computed with

centred differences:

xy ^ij — 1 1 f Zi+l,j+l Zi—l,j+l —1
- 2 ~ 2 V 2 2 J

Zi-j-lj'+l Zi—l,j+l Zi+IJ — l ~f~ Zi—\ j_ \ _ _ .

12.1.4.1 Diagonal Preservation

Monotonicity-Preserving with centred differences cross-derivatives subdivision is not

diagonal-preserving for hard and soft lines and interfaces. Its performance is between that

of bilinear interpolation and Lanczos 3 for all cases.

For hard lines and interfaces after one subdivision (Tables 17.1-17.2) and after two sub­

divisions (Tables 17.5-17.6), MP Centred has maximum variations of .48 while bilinear's

maximum oscillation is .50 and Lanczos 3's are .23 and .22. For soft lines and inter­

faces after one subdivision (Tables 17.3-17.4) and two subdivisions (Tables 17.7-17.8),

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP Centred has maximum variations of .18 while bilinear's maximum oscillation is .25

and Lanczos 3's are .03 and .05.

12.1.4.2 Positivity

Conjecture 12.1.5. MP 2D with centred differences cross-derivatives preserves the posi­

tivity of the original data.

Counterexample 12.1.4. Suppose we have the following initial data:

20 0 10 0

0 0 1 10

10 1 0 0

0 10 0 20

The four corner values of the square patch under consideration are 2(o,o) = 0, 2(i0) = 1,

z(o,i) = 1 and 2(lil) = 0. The corresponding MP slopes are m*0 = 0, 0j = 3,

mfo,i) = ~3' m?i,i) = 0 and m(0,0) = °> m?i,0) = -3' ™(o,i) = 3' = °- The

cross-derivatives are m*jf0j = 0, = —1, ^ = —1 and = 0. We then apply

bicubic Hermite spline. Computing the value at (0.5,0.5) is —0.22.

Since all the values used were positive and we obtained a negative value, MP inter­

polation (and subdivision) with centred differences cross-derivatives followed by Hermite

bicubic splines does not preserve the positivity of the data. •

12.1.4.3 Exactness on Linears

Proposition 12.1.4. MP 2D with centred differences cross-derivatives is exact on linears.

Proof. Consider the grid data shown in Eq. (9.1), taken from the plane 2 = ax + by + d.

All the horizontal slopes are equal to a and all the vertical slopes are equal to b while all the

cross-derivatives are equal to 0. This is like CR 2D, which is exact on linears (§6.1.2.3). •

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.1.5 Symmetrized Monotonicity-Preserving

Symmetrized MP, a.k.a. MP Tensor, is the last of the 2D variants proposed by Dr. N. Ro-

bidoux based on the original MP method [61]. It consists of using ID MP in the horizontal

direction and then in the vertical direction, independently using ID MP in the vertical direc­

tion and then in the horizontal direction, and averaging the results. The averaging restores

the symmetry with respect to axis reordering which would be broken if only one of the two

sequences of ID interpolation was performed.

Because each step preserves monotonicity, the resulting scheme is automatically locally

bounded. Furthermore, it is automatically monotonicity-preserving for data constant on

rows, or constant on columns.

12.1.5.1 Diagonal Preservation

Symmetrized Monotonicity-Preserving subdivision is not diagonal-preserving for hard and

soft lines and interfaces. Its performance is between that of bilinear interpolation and Lanc­

zos 3 for all cases except two subdivisions of hard line data.

For hard lines after one subdivision (Table 17.1), MP results are identical to bilinear's.

For hard lines after two subdivisions (Table 17.5), MP results are similar to bilinear's in

the sense that they have the same maximum oscillation but MP has larger secondary os­

cillations. In both of these cases, each method has a maximum variation of .50. For hard

interfaces after both one subdivision (Table 17.2) and two subdivisions (Table 17.6), the

maximum variation is .38 for MP, whereas it is .50 for bilinear and .22 for Lanczos 3. For

soft lines and interfaces (Tables 17.3-17.4), the results are again between those for bilinear

and Lanczos 3. With soft lines and interfaces, for one subdivision (Tables 17.3-17.4) and

two subdivisions (Tables 17.7-17.8), the maximum variations for MP are, respectively, .19

and .09. For the same data types, the maximum variations for bilinear and Lanczos 3 are,

respectively, .25 for bilinear, and .03 and .05 for Lanczos 3.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.1.5.2 Continuity

Conjecture 12.1.6. Symmetrized MP-quadratic produces a C1 surface.

Although Dr. N. Robidoux believes this to be an immediate consequence of the chain

rule, the author of this thesis does not have a proof of this conjecture at this point.

12.2 Almost Monotonicity-Preserving (AMP)

Almost Monotonicity-Preserving (AMP) is a nonlinear interpolatory subdivision method.

It is neither strongly nor weakly diagonal-preserving. An implementation is given in Ap­

pendix F.9.

The AMP subdivision method was formulated by Dr. N. Robidoux [102],

12.2.1 Almost Monotonicity-Preserving (AMP) ID

Definition 12.2.1. Instead of the usual MP slopes (12.1), we use

rrii = minmod ^4 minmod(zi+i — Zi — 2i-i)> ' + 1 ^ •

in the cubic Hermite spline formula (6.1).

The factor of 4 in the slope limiter comes from the largest possible normalized end

slope of a monotone bicubic. Specifically, [0,4]2 is the bounding square of the region M

shown in Fig. 3 of [130]. ([0,3]2 is the largest square contained in the same region, leading

to the factor of 3 in (12.1).) Since this gives a necessary, but not sufficient, condition for

monotonicity, the resulting scheme is not monotonicity-preserving. Dr. N. Robidoux hoped

that loosening the usual factor of 3 would contribute to the smoothness of the result while

providing enough overshoot damping.

Research in AMP was suspended by the discovery of the LBB method (§12.4).

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.2.1.1 Co-monotonicity

Conjecture 12.2.1. AMP ID preserves the positivity of the data.

Counterexample 12.2.1. Consider the nonnegative data {0,0,1,10} and the AMP inter-

polant in the interval between the second and third points. The AMP slopes are, respec­

tively, mo — 0, mi = 4. Putting these values in the Hermite cubic spline formula together

with zo = 0, z\ — 1, we obtain the following formula for the interpolant:

z (t) = (2t3 - 3t2 + 1) 0 + (t3 - 2t2 + t) 0 + (-2t3 + 3t 2) 1 + (t 3 - t 2) 4

= t 2 (2 1 - 1) .

This function is negative for t € (0, |). For example, 2 (|) = — •

12.2.1.2 Co-convexity

Conjecture 12.2.2. AMP ID preserves the convexity of the original data.

Counterexample 12.2.2. Let the values of the data points be {15,29,41,43}. In this case,

z0 = 29, z\ — 41, m0 = 13 and mi = 7. Inserting those values in the equation for the

cubic Hermite spline and differentiating twice, we obtain z"(t) — —241 + 6. We have an

inflexion point at t = which is in (0,1), which means that the convexity of the curve

changes in the interval between the two points. Therefore, convexity is not preserved. •

12.2.1.3 Exactness on Linears

Proposition 12.2.1. AMP ID is exact on linears.

Proof. Without loss of generality, consider data taken from the line 2 = mx + b. All the

MP slopes are

minmod (4 minmod(m, m), m) = m.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Hermite spline turns out to be the same as for CR, which is exact on linears (§6.1.1.5).

•

12.2.1.4 Subjective Evaluation of Interpolation Plots

The AMP method gives the same results as MP (§12.1.1.4) for hard and soft cardinal and

Heaviside data as well as unsmooth data. The results can be found in Fig. 16.1, 16.9, 16.5,

16.13 and 16.17. For sine data, this method is ranked before Symmetrized MP. The result

can be seen in Fig. 16.25. The differences between the two graphs are not very obvious but

AMP does not flatten the peak as much as Symmetrized MP and, as such, tends to be more

visually pleasing.

12.2.2 Almost Monotonicity-Preserving (AMP) 2D with Null Cross-Derivatives

AMP 2D with null cross-derivatives is performed in a manner similar to MP 2D (§12.1.3)

with null cross-derivatives but with a slope limiter of four times the minmod slope instead

of the usual three.

12.2.2.1 Diagonal Preservation

AMP 2D with null cross-derivatives gives the same results as MP 2D with null cross-

derivatives (§12.1.3.1) for all cases and any number of subdivisions.

12.2.2.2 Positivity

Conjecture 12.2.3. AMP 2D with null cross-derivatives preserves the positivity of the data.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Counterexample 12.2.3. Suppose we have the following initial data:

0 0 10 0

0 0 1 10

10 1 0 0

0 10 0 0 .

The four corner values of the square patch under consideration are Z(0,o) = 0, Z(2,0) = 1,

2(o,i) = 1 and 2(1,1) = 0- The corresponding AMP slopes are m*0 ^ = 0, = 4,

12.2.3 Almost Monotonicity-Preserving (AMP) 2D with Centred Differences Cross-

Derivatives

AMP 2D with centred differences cross-derivatives is performed in a manner similar to

MP 2D (§12.1.4) with centred differences cross-derivatives but with a slope limiter of four

times the minmod slope instead of the usual three.

12.2.3.1 Diagonal Preservation

AMP with null cross-derivatives gives the same results as MP with null cross-derivatives

(§12.1.3.1) for all cases after one subdivision. After two subdivisions, there are minor

variations in some of the lesser oscillations, but the maximum variations are nonetheless

identical to MP's.

Conjecture 12.2.4. AMP 2D with centred differences cross-derivatives preserves the pos­

itivity of the data.

the corresponding Hermite spline at (0 .5 ,0 .5) i s —0.5 < 0.

= 4, = 0. The value of

•

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Counterexample 12.2.4. Consider the nonnegative data

0 0 10 0

0 0 1 10

10 1 0 0

0 10 0 0

The four corner values of the square patch under consideration are Z(0,o) = 0, Z(li0) = 1,

2(o,i) = 1 and 2(1,1) = 0. The corresponding AMP slopes are m*00^ = 0, = 4,

mfo,i) = ~ 4 > mfi,i) = 0 and m (o ,o) = m (i ,o) = _ 4 ' m (o , i) = 4 ' m (i , i) = T h e c r o s s "

derivatives are = —20, rn^Q^ = — 1, = — 1 and = —20. The value of

the corresponding bicubic Hermite spline at (0.5,0.5) is —1.09 <0. •

12.2.3.2 Exactness on Linears

Proposition 12.2.2. AMP 2D is exact on linears.

Proof. Consider the grid data shown in (9.1), taken from the plane 2 = ax + by + d. All

the horizontal slopes are equal to a and all the vertical slopes are equal to b while all the

cross-derivatives are equal to 0. This is the same case as for CR 2D, which is exact on

linears (§6.1.2.3). •

12.2.4 Symmetrized Almost Monotonicity-Preserving (AMP) 2D

Symmetrized AMP 2D, a.k.a. AMP Tensor, is performed in a manner similar to MP 2D

(§12.1.2) but with a slope limiter of four times the minmod slope instead of the usual three.

12.2.4.1 Diagonal Preservation

Symmetrized AMP gives the same results as Symmetrized MP (§12.1.5.1) for all cases and

any number of subdivisions.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.3 MP (Harmonic Average)

12.3.1 MP (Harmonic Average) ID

Definition 12.3.1. MP (Harmonic Average) ID is the method called "MP" in Scilab. It is

based on the DPCHIM Fortran code [39]. The slope at each point is the harmonic average

of the left and right slopes:

2 2 rriLmR
m i — T~i i~T = •

(— + —) mi + ma \ m L rrifiJ ^ IX

Hermite cubic splines are then used to compute the curve between two neighbouring points.

Analysis of this MP variant was not performed. It appears that, despite its inclusion in

Scilab and the Netlib library, this is an outdated method, made obsolete by the later method

MP of §12.1.

12.3.1.1 Subjective Evaluation of Interpolation Plots

The MP (Harmonic Average) method gives the same results as MP (§12.1.1.4) for hard

and soft cardinal and Heaviside data. The results can be found in Fig. 16.1, 16.9, 16.5 and

16.13. For both sine data and unsmooth data, this method is ranked after Symmetrized MP.

The results can be seen in Fig. 16.18 and 16.26. The differences between the two graphs

are not very obvious but MP (Harmonic Average) flattens the peaks more than plain MP

and, as such, is less pleasing visually.

12.4 Locally Bounded Bicubic (LBB)

Locally Bounded Bicubic subdivision is a nonlinear interpolatory method. It is

neither strongly nor weakly diagonal-preserving. A Matlab implementation is given in

Appendix F. 11.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LBB was formulated by Dr. N. Robidoux based on Butt and Brodlie [12] and Brodlie

et al. [8] who give formulae for bicubic interpolants constrained between predefined planes

under the assumption that the initial data satisfies the constraint. LBB is novel in that the

constraining planes are locally, as opposed to globally, defined and enforced.

12.4.1 Published Implementations

The C and C++ implementations of the Nohalo-LBB hybrid scheme discussed in §4.1.1

contain functions implementing LBB. In addition, the VIPS (Virtual Image Processing

Library) contains a stand-alone implementation under the name LBB [106]. The VIPS

implementation is called Upsize when called from NIP2.

12.4.1.1 Subjective Evaluation of Interpolation Plots

The LBB method gives the same results as MP (§12.1.1.4) for all data tested in the context

of this thesis.

12.4.2 Locally Bounded Bicubic (LBB) 2D

Definition 12.4.1. As usual, let x denote the horizontal direction and y denote the vertical

direction. In order to compute the slopes and cross-derivatives at a pixel location (i, j), we

only need to consider the set of values at the nine closest pixel locations, namely

^i , j = { z i — l,j+li z i , j+1) z i -1-1,j+1) z i— lji z i , j i — -+1 ,J — 1 } •

(An LBB variant in which Zi%i is the five-point "cross" {-Zij+i, 2j-i,j, z»j,

was programmed as well. At this point, it appears that this latter Zitj is not as good as the

former one, at least when LBB is used as a Nohalo finishing scheme. We will not discuss

this variant further.)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, let

rr i i j = min Z h J y

MhJ = max ZhJ, and

min(2jj ^iii j. t j

First, set the original slopes equal to the usual centred differences and then enforce

dz

dx
< 3dij and

dz

dy
< 3d i j

by clamping if necessary. Then, the centred differences cross-derivatives are clamped so

that the following conditions, involving the possibly clamped first derivatives in their right

hand sides, are satisfied:

d 2 z

dxdy

d 2 z

dxdy

d 2 z

dxdy

d 2 z

dxdy

> 3

< -3

< -3

> 3

dz dz

dx + dy

dz dz

dx dy

dz dz

dx dy

dz dz

dx dy

9 (Z{j ^i,j) i

+ 9 (Mi j — Zij),

+ 9 (Zi j — 1Tl i , j) ,

9 (Mij Zi,j) •

These (possibly) clamped first and cross-derivatives are then substituted in the usual bicubic

Hermite formula.

12.4.2.1 Diagonal Preservation

LBB does not preserve diagonals for hard and soft lines and interfaces.

After one subdivision, it has the same maximum variations as bilinear for both hard

lines and hard interfaces (Tables 17.1-17.2). For soft lines and interfaces (Tables 17.3-

17.4), LBB has maximum variations of .13 and .12. This is between bilinear's .25, and

Lanczos 3's .03 and .05.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Evaluated at the second face split subdivision pixel locations, LBB has the same max­

imum variations as bilinear for hard lines (Table 17.5). For a hard interface (Table 17.6),

with .52, it performs slightly worse than bilinear's .50. For soft lines and interfaces (Ta­

bles 17.7-17.8), LBB performs better than bilinear's .25 with, respectively, .11 and .12,

although not as well as Lanczos 3 (.03 and .05).

12.4.2.2 Positivity

Conjecture 12.4.1. LBB 2D preserves the positivity of the original data.

At this point, the author of this thesis does not have a complete proof of this conjecture. It

would appear to be a fairly immediate consequence of the properties of the bounded bicu-

bics discussed in Brodlie et al. [8], Butt and Brodlie [12]. However, because the clamping

bounds change on a pixel by pixel basis—and, in addition, the clamping bounds on the

cross-derivatives depend on the varying first derivatives—a careful tracking of the key in­

equalities is needed.

12.4.2.3 Co-convexity

Conjecture 12.4.2. LBB ID (obtained, as usual, by assuming data constant on columns, so

that there is no need to consider cross-derivatives) preserves the convexity of the original

data.

Counterexample 12.4.1. Consider the concave data {0,20,25,25} and the LBB inter-

polant between the second (t = 0) and third (t = 1) data points. At t = 0, the centred

difference slope is y. Since d0 = 5, and 12.5 < 15, we leave the slope as it is. At t = 1,

the centred difference slope is 3. Since d\ = 1, and 3 < 3, we leave the slope as it is.

With the Hermite cubic spline formula (6.1), we obtain z(t) = 20 + yi — 13£2 + y£3.

Differentiating twice, and finding the root, we get t = which is in (0,1). Therefore,

there is a change of convexity. •

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.4.2.4 Exactness on Linears

Proposition 12.4.1. LBB 2D is exact on linears.

Proof. Consider the grid data shown in Eq. (9.1), taken from the plane 2 = ax + by + d.

All the horizontal slopes are equal to a and all the vertical slopes are equal to b while

all the original cross-derivatives are equal to 0. Since all of these slopes satisfy the LBB

conditions, we end up with the same case as for CR 2D, which is exact on linears (§6.1.2.3).

•

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 Numerical Analysis of Nonlinear Face Split Hybrid

Interpolation Methods

In the following three chapters, the properties of some hybrid methods consisting of one

step of a subdivision scheme followed by filtering are studied. All the hybrid methods

considered in this thesis define an interpolation scheme.

In this chapter, the hybrid method consisting of one step of the nonlinear Nohalo face

split subdivision followed by linear interpolation with Catmull-Rom is discussed. Very

briefly, the successful Nohalo-LBB hybrid is also discussed. The scant amount of analysis

and comparative data presented for this method is in no way representative of its quality.

Instead, it is the direct result of it being a capstone method, and as such, a relatively late

arrival on the author's workbench.

In the following two chapters, hybrid methods consisting of one step of interpolatory

vertex split methods followed by linear smoothing with quadratic B-splines are considered.

13.1 Nohalo Followed by Catmull-Rom (Nohalo-CR)

Nohalo-CR is a nonlinear interpolatory method which was developed by Dr. N. Robidoux

It consists of the nonlinear face split method Nohalo (§4.1) followed by the linear interpola­

tion Catmull-Rom (§6.1) method. Matlab implementations of Nohalo subdivision followed

by Catmull-Rom are given in Appendices F.6 and F.10.

This method was made obsolete by the Nohalo-LBB hybrid discussed briefly at the end

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of this chapter (§13.2).

13.1.1 Nohalo Followed by Catmull-Rom (Nohalo-CR) ID

It consists of one Nohalo subdivision step (§4.1.2) followed by Catmull-Rom bicubic inter­

polation (§6.1.1) as a finishing scheme.

13.1.1.1 Co-monotonicity

Conjecture 13.1.1. Nohalo-CR ID preserves the monotonicity of the data.

Counterexample 13.1.1. Consider Heaviside data. After applying Nohalo subdivision,

we get soft Heaviside data, {0,0,0.5,1,1}. However, we know that Catmull-Rom has an

undershoot of — ^ between the first and second points (Prop. 6.1.2). Therefore, Nohalo-CR

ID does not preserve the monotonicity of the data. •

13.1.1.2 Co-convexity

Conjecture 13.1.2. Nohalo-CR preserves the convexity of the data.

Counterexample 13.1.2. Suppose we have the initial data {—20,0,10,18,20}. After No­

halo subdivision, we obtain, starting at t = |, {5.5,10,15.5,18}. Now we apply Catmull-

Rom. We compute the spline between the second and third points of the previous set and

obtain:

z{ t) = (2t 3 - 3t 2 + 1)10 + (t 3 - 2t 2 + t)5 + (—2t 3 + 3f2)15.5 + (t 3 - t 2)4, done

z"(t) = -12t + 5.

This second derivative has a root at t = which is in (0,1). Therefore, the convexity

changes between the third and fourth points. •

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13.1.1.3 Exactness on Linears

Proposition 13.1.1. Nohalo-CR ID is exact on linears.

Proof. We know that Nohalo ID is exact on linears (§4.1.2.3) and that CR ID is exact on

linears (§6.1.1.5). Therefore, one followed by the other is also exact on linears. •

13.1.2 Nohalo Followed by Catmull-Rom (Nohalo-CR) 2D

Nohalo-CR 2D is one Nohalo 2D subdivision (§4.1.3) followed by CR 2D (§6.1.2) as fin­

ishing scheme.

13.1.2.1 Positivity

Conjecture 13.1.3. Nohalo-CR 2D preserves the positivity of the original data.

Counterexample 13.1.3. Since Nohalo-CR ID does not preserve the positivity of the orig­

inal data (§13.1.1.1), then neither does Nohalo-CR 2D. •

13.1.2.2 Exactness on Linears

Proposition 13.1.2. Nohalo-CR 2D is exact on linears.

Proof. The ID argument carries over. •

13.2 Nohalo-LBB

This method is a combination of one Nohalo subdivision step (§4.1) finished with Locally

Bounded Bicubic (LBB) interpolation (§12.4). Additional details are found in the sections

devoted to its constituents.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13.2.0.3 Diagonal Preservation

Only the main (nine-point min/max LBB computation) variant was tested.

For hard lines and interfaces after one subdivision (Tables 17.1-17.2), Nohalo-LBB has

the same oscillations as bilinear. Their maximum variation is .50. After two subdivisions

(Tables 17.5-17.6), bilinear slightly outperforms Nohalo-LBB with a maximum variation

of .50 versus, respectively, .52 and .50.

For soft lines and soft interfaces after one subdivision (Tables 17.3-17.4), Nohalo-LBB

preserves diagonals perfectly. This is not quite the case after two subdivisions (Tables 17.7-

17.8). In both cases, however, Nohalo-LBB performs better than all the other methods with

maximum variations of, respectively, .03 and .02.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 Numerical Analysis of Linear Vertex Split Hybrid

Interpolation Methods

In this chapter, the hybrid method consisting of one step of the linear Centred Differences

Vertex Split subdivision scheme followed by linear smoothing with quadratic B-splines is

discussed.

14.1 Centred Differences Vertex Split Followed by Quadratic B-

Spline Smoothing (CDVSQBS)

CDVSQBS is a linear interpolatory method which was developed by Dr. N. Robidoux. It

consists of the linear vertex split method Centred Differences Vertex Split (§10.1) followed

by linear smoothing with quadratic B-splines (§7.1). Matlab implementations for Centred

Differences Vertex Split and quadratic B-spline smoothing are given in Appendices F.16

and F. 15.

14.1.1 Centred Differences Vertex Split Followed by Quadratic B-Spline Smoothing

(CDVSQBS) ID

Definition 14.1.1. CDVS ID (§10.1.1) is applied to the data, then the result is smoothed

using quadratic B-splines (§7.1.1) as finishing scheme.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14.1.1.1 Co-monotonicity

Conjecture 14.1.1. CDVSQBS ID preserves the positivity of the original data.

Counterexample 14.1.1. Consider Heaviside data {0,0,0,1,1,1}. We consider the inter-

polant between the second and third points. After vertex split, the four points closest fo

the original second and third points have ordinates {0,0, — |, |}. After quadratic B-spline

smoothing, we get the function

m I+3 ('+s) ~ ('+^ +
1 (t - I) 2

Lemma 14.1.1. The minimum in the interval between the second and third points is

Proof

m = ^ - | = o = * ' = ! - a n d / (12'

•

For Heaviside data, the undershoot of CDVSQBS ID is — — and the overshoot is

Therefore, CDVSQBS ID does not preserve the positivity of the original data. •

14.1.1.2 Co-convexity

Conjecture 14.1.2. CDVSQBS ID preserves the convexity of the original data.

Counterexample 14.1.2. Suppose we have initial data that is concave and monotone in­

creasing, {0,50,60,68,70,70}. After applying CDVS, we obtain, starting at t =

{57.5,57.75,62.25,66.75,69.25,69.75}. After applying QBS, we obtain, starting at t =

|, {58.28125,62.25,66.5,69}. The differences between these values are, respectively,

3.96875, 4.25, and 2.5. Therefore, the new data is not concave. •

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14.1.1.3 Exactness on Linears

Proposition 14.1.1. CDVSQBS ID is exact on linears.

Proof. CDVS ID is exact on linears (§10.1.1.3) and QBS ID is exact on linears (§7.1.1.4).

Therefore, CDVSQBS ID, which is one followed by the other, is also exact on linears. •

14.1.1.4 Subjective Evaluation of Interpolation Plots

The CDVSQBS method gives results which are very visually pleasing with smooth data.

However, like Catmull-Rom (§6.1.1.6), CDVSQBS tends to have large overshoots and un­

dershoots. As such, it has been ranked among the last methods in Chapter 16. It is ranked

last for both hard cardinal and hard Heaviside data. This is due mostly to the large over­

shoots and undershoots. The results can be seen in Fig. 16.4 and 16.8. The same applies

to the graphs obtained from CDVSQBS applied to both soft cardinal and soft Heaviside

data. The results can be seen in Fig. 16.12 and 16.16. For non-smooth data, CDVSQBS is

ranked second to last, before MVSQBS. In this case, the overshoots and undershoots are

reduced and the curve is nice and smooth. This can be seen in Fig. 16.20. Finally, for sine

data, CDVSQBS is ranked second. It gives a very smooth and pleasing curve, quite similar

to that obtained with Catmull-Rom. The result is presented in Fig. 16.23.

14.1.2 Centred Differences Vertex Split Followed by Quadratic B-Spline Smoothing

(CDVSQBS) 2D

This method is used by applying CDVS 2D subdivision (§10.1.2) followed by QBS 2D

smoothing (§7.1.2).

14.1.2.1 Diagonal Preservation

CDVSQBS does not preserve diagonals for hard and soft lines and interfaces.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDVSQBS performs better than bilinear and worse than Lanczos 3 for hard and soft

lines and interfaces for any number of subdivisions. For hard lines and interfaces, for

both one (Tables 17.1-17.2) and two subdivisions (Tables 17.5-17.6), CDVSQBS has a

maximum oscillation of .38, which is better than bilinear's .50, but not as good as Lanczos

3's .23 and .22. For soft lines and interfaces, for both one (Tables 17.3-17.4) and two

subdivisions (Tables 17.7-17.8), CDVSQBS has a maximum variation of .13. Again, this

is better than bilinear's .25 but worse than Lanczos 3's .03 and .05.

14.1.2.2 Positivity

Conjecture 14.1.3. CDVSQBS 2D preserves the positivity of the original data.

Counterexample 14.1.3. Suppose we have the following initial data:

0 0 0 0

0 0 1 0

0 0 0 0 .

Applying CDVS 2D subdivision, we obtain:

If we now apply QBS smoothing, we obtain, at point (|, |), the value

positivity is not preserved.

0 0 0 ± I 0

o _I I 1 1 I
u 8 8 8

o _I I 1 1 I
u 8 8 8

0 0 o I I 0

—|j|. Therefore,

•

14.1.2.3 Exactness on Linears

Proposition 14.1.2. CDVSQBS 2D is exact on linears.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. CDVS 2D is exact on linears (§10.1.2.3) and QBS 2D is exact on linears (§7.1.2.2).

Therefore, CDVSQBS 2D, which consists of applying one then the other, is also exact on

linears. O

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15 Numerical Analysis of Nonlinear Vertex Split Hybrid

Interpolation Methods

In this chapter, hybrid methods consisting of one step of a nonlinear interpolatory vertex

split method followed by linear smoothing with quadratic B-splines are discussed.

15.1 Minmod Vertex Split Followed by Quadratic B-Spline Smooth­

ing (MVSQBS)

MVSQBS is a nonlinear interpolatory method which was developed by Dr. N. Robidoux. It

consists of the nonlinear vertex split method Minmod Vertex Split (§11.1) followed by lin­

ear smoothing with quadratic B-splines (§7.1). Matlab implementations of Minmod Vertex

Split and quadratic B-spline smoothing are given in Appendices F.14 and F.15.

15.1.1 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing (MVSQBS)

ID

Regular MVS subdivision (§11.1.1) is performed, and quadratic B-spline smoothing is ap­

plied to the result (§7.1.1).

15.1.1.1 Co-monotonicity

Proposition 15.1.1. MVSQBS ID preserves the monotonicity of the original data.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Since MVS ID is co-monotone (§11.1.1.1) and QBS ID is also co-monotone

(§7.1.1.1), then so is MVSQBS. •

15.1.1.2 Co-convexity

Conjecture 15.1.1. MVSQBS ID preserves the convexity of the original data.

Counterexample 15.1.1. Let the data points have values {0,20,39,40}. The data is clearly

concave. After Minmod Vertex Split, we obtain, starting at i = |, {"^§r, ^|r, } • The

midpoint of the line between the first and third points is ~ (—!- + However,

W > Hr • Therefore convexity is not preserved. •

Proposition 15.1.2. MVSQBS ID preserves the concavity (resp. convexity) of the original

data when used as a vertex split subdivision method (in the "discrete ") if and only if

-S3zi+i > (resp. <)0 \fi. (15.1)
2 2

Proof. First we consider the convexity of the continuous function produced by quadratic

B-spline smoothing. Then, we only consider the discrete points obtained after one subdi­

vision. Let the data points have values 2j. Consider the following values, obtained after

Minmod Vertex Split: z^i, zi+i, -Zj+aj- We look at the curve obtained between

2j_i and zi+1 and the results apply to all other segments.

The first half of the curve (where, for simplicity, we have considered z - \ to have
4

abscissa t = 0), as well as its second derivative, is as follows:

. Mai±iti£ t t ?)') „

b i=4z { _ 3 - 8 ^ 1 + 4 2 ^ 1 .

The second half of the curve (where, for simplicity, we have considered zi+i to have ab-
4

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scissa t = 0), as well as its second derivative, is as follows:

(2 (t + i) - §) 2 (3 y \ (2 (i - |) + f) 2

b2 - 2i_i + 2i+! 3 + 6t - (2t + - + Zi+1 ,

b 2 =4z { _ l ~8z l + i +4z i + &.

Suppose the original data is monotone increasing and concave. The following works

s imilarly for other cases. This means that Vi, z* > 2t~1 2'+1. Alternatively, z^i — 2zt +

Zi+i < 0. The slopes at the original points are

TTi-j _ i Zi __ i,

rrit =

^i-i-2 ^i+1*

Using the formulae for Minmod Vertex Split, we get

Zv —
Z i~ l = + — 4 — ^

Zi+1 Zi
-2.- I = Zi -
- ? ~ l 4

^•i+l Zj
ZI+1 = ZI +

5 4
Z{+2

Zi+| - 2i+! 4 •

Substituting these values in b'[and b'̂ , we obtain

b'[= 3 (zi_! - 2zi + zi+i) < 0 (by definition of concavity),

b'2 = -^i + 2zi+i - Zi+2 > 0.

We see that in b\ the convexity is preserved but this is not the case in b2. Therefore, the con­

tinuous curve obtained from quadratic B-spline smoothing does not preserve the convexity

of the original data unless we are considering a straight line.

Now we consider only the discrete points which we have calculated after Minmod Ver­

tex Split and establish a condition for convexity to be preserved after they are smoothed by

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quadratic B-splines. We use the following formula to smooth the points:

„ 1 3 1
Z\ — g2»-l + ~^Zi + g2i+l-

It is sufficient to consider the two following cases:

Zi_3 + Z i + l 1 / x

~±~l 1 " M = 16 + 4Zi~l ~ l0Zi"* + 4*i+* +) '
Zi_i + Z i + 3 1 / X

~~^2—1" = i6 lZi-t+ 4Z{-$ ~l0Zi+1*+ 4z*+t+ Zi+iJ •

Supposing again that the data is concave and substituting the slopes and points as above, as

well as ignoring the constants, we obtain

- 17 (z i - Zi_ i) + 18 Oi+i - Zi) - (z i + 2 - z i + 1) = -17mi_i + 18mj - mi+1.

This value has to be negative for convexity to be preserved.

In the second case, we obtain the following, again substituting the slopes and points as

above:

- {Z i - Zi_ i) + 2(zi+i - Zi) - (z i + 2 - Z i + 1) = -TTii-i + 2rrii - rni+1.

Again, this value must be negative for convexity to be preserved. We now have two condi­

tions that must be met for convexity to be preserved. However, the second one is stronger

than the first and if it is met, then the first one is met as well.

m,i-i 4- rrii+i
Suppose the second condition is met, that is rrii < . Then,

/ rrii-1 + m,+i \
-17rrii-i + 18raj - 77Zi+i < 17T71j_i + 18 (J - mi+1

= —87rij_i + 8mi+i < 0.

Therefore it is sufficient and necessary that —rrii-i + 2rrii — mi+1 = —63zi+i < 0 for Min­

mod Vertex Split ID followed by quadratic B-spline smoothing to preserve the convexity

of the original data. •

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Condition (15.1) is exactly the same convexity preservation condition as holds for No­

halo ID subdivision. The consequence, however, is weaker because the corresponding

result for Nohalo involves the face split subdivision points, while the above result only

concerns the vertex split subdivision points.

15.1.1.3 Exactness on Linears

Proposition 15.1.3. MVSQBS ID is exact on linears.

Proof. MVSQBS ID is MVS ID followed by QBS ID. Since MVS ID is exact on linears

(§11.1.1.3) and QBS 1D is also exact on linears (§7.1.1.4), then so is their combination. •

15.1.2 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing (MVSQBS)

2D

This method is MVS 2D (§11.1.2) followed by QBS 2D smoothing (§7.1.2).

15.1.2.1 Subjective Evaluation of Interpolation Plots

The MVSQBS method gives results which are visually pleasing in terms of undershoot

and overshoot suppression. However, it performs miserably when the data is smooth. For

hard and soft cardinal and Heaviside data, MVSQBS has been ranked second, behind the

MP methods. They are not ranked first because they round off the peaks a lot more and

cause unnecessary oscillations. However, the results are still very smooth and thus visually

pleasing. The results can be seen in Fig. 16.2, 16.6, 16.10 and 16.14. For non-smooth data

as well as sine data, MVSQBS is ranked last. This is due to the extraneous oscillations that

appear between the original data points. The results can be seen in Fig. 16.21 and 16.27.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15.1.2.2 Diagonal Preservation

MVSQBS does not preserve diagonals for hard and soft lines and interfaces, for any number

of subdivisions.

MVSQBS performs worse than bilinear for hard data as well as soft interfaces after

two subdivisions. In the other cases, MVSQBS has results between those of Lanczos 3 and

bilinear. For hard lines and interfaces after one subdivision (Tables 17.1-17.2), MVSQBS

has the same oscillations as bilinear. Their maximal value is .50. For hard lines and inter­

faces after two subdivisions (Tables 17.5-17.6), MVSQBS performs worse than bilinear.

MVSQBS has maximum oscillations of, respectively, .55 and 1.06 while, in both cases,

bilinear's is .50.

For soft lines and interfaces after one subdivision (Tables 17.3-17.4), MVSQBS has a

maximum oscillation of .12 which is better than bilinear's .25 but worse than Lanczos 3's

.03 and .05. For soft lines after two subdivisions (Table 17.7), MVSQBS has a maximum

oscillation of .13. Again, this is better than bilinear's .25 and Lanczos 3's .03. Finally, for

soft interfaces after two subdivisions (Table 17.8), MVSQBS performs worse than bilin­

ear's .25 with a maximum oscillation of .26.

15.1.2.3 Positivity

Proposition 15.1.4. Minmod Vertex Split followed by quadratic B-spline smoothing pre­

serves the positivity of the original data in 2D.

Proof. Since MVS 2D preserves the positivity of the data (§11.1.2.2) and quadratic B-

spline smoothing also preserves the positivity of the data (§7.1.2.1), then one followed

by the other also preserves the positivity of the data. Therefore, MVSQBS preserves the

positivity of the data. •

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15.1.2.4 Exactness on Linears

Proposition 15.1.5. MVSQBS 2D is exact on linears.

Proof. MVS 2D is exact on linears (§11.1.2.3) and QBS 2D is exact on linears (§7.1.2.2).

Therefore, MVSQBS 2D, which is one followed by the other, is also exact on linears. •

15.2 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline

Smoothing (ROVSQBS)

ROVSQBS is a nonlinear interpolatory method. It consists of the nonlinear vertex

split method Reduced Overshoot Vertex Split (§11.2) followed by linear smoothing with

quadratic B-splines (§7.1). Matlab implementations for Reduced Overshoot Vertex Split

and quadratic B-spline smoothing are given in Appendices F.17 and F.15.

ROVSQBS was formulated by Dr. N. Robidoux.

15.2.1 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline Smoothing

(ROVSQBS) ID

ROVS (§11.2.1) is applied to the data points and the result is then finished off by smoothing

using quadratic B-splines (§7.1.1).

15.2.1.1 Co-monotonicity

Proposition 15.2.1. ROVSQBS ID preserves the monotonicity of the original data.

Proof. Since ROVS ID is co-monotone (§11.2.1.1) and QBS ID is also co-monotone

(§7.1.1.1), then so is ROVSQBS. •

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15.2.1.2 Local Boundedness

Conjecture 15.2.1. ROVSQBS ID is locally bounded.

Counterexample 15.2.1. Consider the set of points with values {0,2,1, —2}. The initial

Catmull-Rom slopes at the second and third points are, respectively, | and —2. The first

slope belongs to the corresponding bounding interval [-8,4] and the second slope also

belongs to its bounding interval [—4,20]. Therefore, we keep the initial slopes. The new

points after vertex split, starting at t = |, are {^, f }• Smoothing using QBS, we obtain,

for the second of the latter points, which is greater than the maximum value of 2. •

15.2.1.3 Co-convexity

Conjecture 15.2.2. ROVSQBS ID preserves the convexity of the original data.

Counterexample 15.2.2. Suppose we have initial data that is concave and monotone in­

creasing, {0,50,60,68,70, 70}. After applying ROVS subdivision, we obtain, starting at

t — |, {57.5, 57.75,62.25,66.75,69.25,70}. Now we apply QBS smoothing and obtain,

starting at t = |, {58.28125,62.25,66.5,69.03125}. The differences between these values

are, respectively, 3.96875, 4.25, and 2.53125. Therefore, convexity is not preserved. •

15.2.1.4 Exactness on Linears

Proposition 15.2.2. ROVSQBS ID is exact on linears.

Proof. ROVS ID is exact on linears (§11.2.1.4) and QBS ID is exact on linears (§7.1.1.4).

Therefore, ROVSQBS ID, which is one followed by the other, is also exact on linears. •

15.2.1.5 Subjective Evaluation of Interpolation Plots

The ROVSQBS method gives the same results as MVSQBS (§15.1.2.1) for hard and soft

cardinal and Heaviside data, and gives the same results as CDVSQBS (§14.1.1.4) for non-

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smooth and sine data. As such, it is an excellent scheme, because it appropriately changes

behaviour depending on whether smoothness or overshoot suppression is paramount.

15.2.2 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline Smoothing

(ROVSQBS) 2D

This method consists of one step of ROVS 2D subdivision (§11.2.2) followed by QBS 2D

smoothing (§7.1.2).

15.2.2.1 Diagonal Preservation

ROVSQBS does not preserve diagonals. For all tested data and any number of subdivi­

sions, ROVSQBS has the same maximum variations as MVSQBS (§15.1.2.2). As such, it

performs rather poorly in the diagonal preservation department.

15.2.2.2 Positivity

Conjecture 15.2.3. ROVSQBS 2D preserves the positivity of the original data.

Counterexample 15.2.3. Suppose we have the following initial data:

10 10 0 0

10 1 0 0

0 0 0 0

0 0 0 0

After ROVS 2D, we obtain:

3 10 0

1 - 1 0 0

0 0 0 0

0 0 0 0

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Smoothing the value at (f, |) using QBS 2D, we obtain -|f. Therefore, positivity is not

preserved. •

15.2.2.3 Exactness on Linears

Proposition 15.2.3. ROVSQBS 2D is exact on linears.

Proof. ROVS 2D is exact on linears (§11.2.2.3) and QBS 2D is exact on linears (§7.1.2.2).

Therefore, ROVSQBS 2D, which is ROVS 2D then QBS 2D, is also exact on linears. •

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 Plots of the Results of Interpolating with AMP,

Catmull-Rom, CDVSQBS, LBB, MP, MP (Harmonic

Average), MVSQBS and ROVSQBS

In this section, plots of the results of interpolating six different data sets on the real line

with the interpolatory methods AMP, Catmull-Rom, CDVSQBS, LBB, MP, MP (Harmonic

Average), MVSQBS and ROVSQBS are shown.

In every plot, circles mark the interpolated data points.

The plots are exactly aligned from one page to the next to facilitate comparison with a

document viewer (or by holding two pages up to a candle!). Within each data set, they are

presented in decreasing order of subjective quality, keeping in mind that, in image resam­

pling applications, large "bounce back" overshoots and overshoots lead to more noticeable

artifacts, namely halos, than second derivative discontinuities, and that needlessly steep

segments may contribute to aliasing.

The very first set of plots shows the result of interpolating cardinal data. Thus, in the

case of linear methods, they represent the cardinal basis functions (filter kernels).

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.1 Cardinal Data

The data interpolated in this series of plots is

y = {0, 0, 0, 1, 0, 0, 0}

for x = 0 , 1 , 2 , . . . , 6 .

0.8

0.6

0.4

0.2

oa

-0.2
2 5 6 0 1 3 4

Figure 16.1: Plot of MP (Harmonic Average) = MP = AMP = LBB for cardinal data

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2
3 5 0 1 2 4 6

Figure 16.2: Plot of MVSQBS = ROVSQBS for cardinal data

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

0(»-

-0.2
0 1 2 3 6 4 5

Figure 16.3: Plot of Catmull-Rom for cardinal data

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2
0 1 2 3 4 5 6

Figure 16.4: Plot of CDVSQBS for cardinal data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.2 Heaviside Data

The data used in this section is

y — {o, o, o, l, i, i}

for x — 0,1,2,..., 5. Heaviside data is an archetype for the interface between two regions.

0.8

0.6

0.4

0.2

-0.2
2 4 5 0 3

Figure 16.5: Plot of MP (Harmonic Average) = MP = AMP = LBB for Heaviside data

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

oa

-0.2
4 0 2 3 5 1

Figure 16.6: Plot of MVSQBS = ROVSQBS for Heaviside data

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0,4

0.2

0(>-

-0.2
3 1 2 5 0 4

Figure 16.7: Plot of Catmull-Rom for Heaviside data

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.6

0.4

0.2

-0.2
4 0 2 3 5 1

Figure 16.8: Plot of CDVSQBS for Heaviside data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.3 Soft Cardinal Data

The data used in this section is

y = {0, 0, 0.5, 1,0.5, 0, 0}

for x = 0,1,2,..., 6.

"Soft" data—data obtained, from example, by with face split subdivision performed

with bilinear applied to the corresponding "sharp" data—is especially relevant in the con­

text of image resampling because natural scenes captured with a digital camera a generally

somewhat soft, as a result, for example, of optical blur and the demosaicing process.

0.8

0.6

0.4

0.2

0C)-

-0.2
2 4 0 3 5 6 1

Figure 16.9: Plot of MP (Harmonic Average) = MP = AMP = LBB for soft cardinal data

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

0 (*

-0.2
0 3 1 2 4 5 6

Figure 16.10: Plot of MVSQBS = ROVSQBS for soft cardinal data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2

1

0.8

0.6

0.4

0.2

0

-0.2
2 3 4 5 6 0 1

Figure 16.11: Plot of Catmull-Rom for soft cardinal data

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2
0 1 2 3 4 5 6

Figure 16.12: Plot of CDVSQBS for soft cardinal data

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.4 Soft Heaviside Data

The data used in this section is

y = {0, 0, 0, 0.5, 1, 1, 1}

for x — 0,1,2,..., 6.

0.8

0.6

0.4

0.2

-0.2
1 2 3 4 5 6 0

Figure 16.13: Plot of MP (Harmonic Ave.) = AMP = MP = LBB for soft Heaviside data

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

oa

-0.2
0 3 4 6 2 5

Figure 16.14: Plot of MVSQBS = ROVSQBS for soft Heaviside data

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2
0 1 2 4 5 6 3

Figure 16.15: Plot of Catmull-Rom for soft Heaviside data

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

OC*

-0.2
0 3 4 5 2 6

Figure 16.16: Plot of CDVSQBS for soft Heaviside data

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.5 Non-Smooth Data

The data used in this section is

y = {0, 1, 0.5, 0, 0.25, 0.35, 0.8, 1, 0.95, 0.8, 0.55, 0.25, 0}

for x = 0,1, 2,..., 10.

0.8

0.6

0.4

0.2

-0.2
12 2 4 6 8 10 0

Figure 16.17: Plot of MP = AMP = LBB for non-smooth data

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

00

-0.2
4 6 10 12 0 2 8

Figure 16.18: Plot of MP (Harmonic Average) for non-smooth data

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2
6 0 2 4 8 10 1 2

Figure 16.19: Plot of Catmull-Rom for non-smooth data

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2
2 4 6 8 10 0 12

Figure 16.20: Plot of CDVSQBS = ROVSQBS for non-smooth data

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2

0.8

0.6

0.4

0.2

0

-0.2
0 2 8 10 12 4 6

Figure 16.21: PlotofMVSQBS for non-smooth data

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.6 Sine Data

The data used in this section is

J/ = sin(3,r^)

for x = 0,1, 2,..., 10.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

4 6 8 0 2 10

Figure 16.22: Plot of Catmull-Rom for trigonometric data

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

2 4 6 8 10 0

Figure 16.23: Plot of CDVSQBS = ROVSQBS for trigonometric data

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

1
2 4 6 8 10 0

Figure 16.24: Plot of AMP for trigonometric data

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

8 0 2 4 6 10

Figure 16.25: Plot of MP = LBB for trigonometric data

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

0 2 4 6 8 10

Figure 16.26: Plot of MP (Harmonic Average) for trigonometric data

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

2 4 6 10 0 8

Figure 16.27: Plot of MVSQBS for trigonometric data

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17 Spurious Diagonal Oscillations Introduced by AMP,

Bicubic, Bilinear, Catmull-Rom, CDVS, LBB, MP, MVS,

ROYS and Variants

In this chapter, we compare the spurious diagonal oscillations introduced by some of the

subdivision methods discussed in this thesis with those introduced by "direct" resampling

methods, hybrid or not.

As explained in the Introduction (§2.7), "direct" methods can be compared to subdivi­

sion methods by sampling the surface produced by the "direct" method at the subdivision

points, in effect deriving a subdivision method from the "direct" method by sampling. Be­

cause we consider both face split and vertex split methods, one should, in principle, do this

at both types of subdivision points. For the sake of brevity, we will only sample "direct"

methods at face split points, even hybrid methods derived from vertex split methods. Only

"pure" vertex split subdivision methods will be "sampled" at vertex split points.

It should be noted that it is less of an accomplishment for a non-interpolatory method

to introduce small oscillations, especially if it is strongly smoothing.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.1 Oscillations Along Diagonals After One Subdivision: Setup

17.1.1 Hard Line Data

The diagrams shown in Eqs. (17.1) and (17.2). describe the input data used to study the

resampling of an image with a sharp diagonal line. The input data is shown in boldface. In

the diagram shown in Eq. (17.1), asterisks indicate the interpolated value locations for the

face split subdivision methods, and a-k label the diagonal under consideration.

a b c d e f g h i j k

1 * 0 * 0 * 0 * 0 * 0

(17.1)
0 * 1 * 0 * 0 * 0 * 0

* * * * * * * * * * *

0 * 0 * 1 * 0 * 0 * 0

For example, the a diagonal is the diagonal of ones which alternate with asterisks indicating

face split subdivision pixel locations inserted in the middle of the "face". The b diagonal

only consists of inserted pixel locations, inserted along horizontal and vertical "edges" in

alternation.

In the diagram shown in Eq. (17.2), asterisks indicate the interpolated value locations

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the face split subdivision methods.

a b e d e f g h i j k

1 0 0 0 0 0

(17.2)
0 1 0 0 0 0

sje 5}< 2+c jjc sf: jjc *

0 0 1 0 0 0

The same diagonals, sampled at the same density and likewise labelled, are under consid­

eration for both face split and vertex split methods. However, the sampled locations are not

the same: they include input locations for face split methods, and they do not for vertex

split methods.

By symmetry, when performing only one subdivision with a face split method, diago­

nals that do not go through original pixel locations have constant values and consequently

vanishing variation. Similarly, when performing one subdivision with a vertex split method,

diagonals that do go through an original pixel location have vanishing variation. This holds

for all input data which is constant on diagonals, not only hard lines.

Results are shown in Table 17.1.

17.1.2 Hard Interface Data

The diagrams shown in Eqs. (17.3) and (17.4) describe the input data used to study the

resampling of an image with a hard interface. Face split locations are first, then the vertex

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

split locations are shown.

a b c d e f g h i j k

1 * 1 * 1 * 1 * 1 * 1

* * * * * * * * * * *

(17.3)
— 1 * 1 * 1 * 1 * 1 * 1

* * * * * * * * * * *

— 1 * — 1 * 1 * 1 * 1 * 1

a b e d e f g h i j k

1 1 1 1 1

* * * * * * * * * *

* * * * * * * * * *
(17.4)

- 1 1 1 1 1 1

* * * * * * * * * *

* * * * * * * * * *

- 1 - 1 1 1 1

Results are shown in Table 17.2.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.1.3 Soft Line Data

(17.5)

The diagrams shown in Eqs. (17.5) and (17.6) describe the input data used to study the

resampling of an image with a soft line.

a b c d e f g h i j k

1 * . 5 * 0 * 0 * 0 * 0

* * * * * * * * * * *

. 5 * 1 * . 5 * 0 * 0 * 0

* * : * * * * * * * * : *

0 * . 5 * 1 * . 5 * 0 * 0

a b e d e f g h i j k

1 . 5 0 0 0 0

* * * * * * * * * *

* * * * * * * * * *

. 5 1 . 5 0 0 0

* * * * * * * * * *

* * * * * * * * * *

0 . 5 1 . 5 0 0

(17.6)

Results are shown in Table 17.3.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.1.4 Soft Interface Data

The diagrams shown in Eqs. (17.7) and (17.8) describe the input data used to study the

resampling of an image with a soft interface.

a b c d e f g h i j k

0 * 1 * 1 * 1 * 1 * 1

* * * * * * * * * * *

(17.7)
— 1 * 0 * 1 * 1 * 1 * 1

* * * * * s i c * * * : * : *

— 1 * — 1 * 0 * 1 * 1 * 1

0

d e /

1

h

0
(17.8)

* * * * * * * * * *

- 1 - 1 0 1 1 1

Results are shown in Table 17.4.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.2 Variations Along Diagonals After One Subdivision: Summary of

the Results

In the following tables, methods evaluated at face split points have their results shown using

a roman font, and methods evaluated at vertex split points are shown in italics.

The distinction between interpolatory and non-interpolatory (smoothing, in this thesis)

methods is important. To highlight it, we show results for interpolatory methods first, above

a double line. The results for non-interpolatory methods are shown below the double line.

To further emphasize the distinction, we use boldface for the method names of interpolatory

methods.

The raw data for the table is shown in Appendix A, and the code used to generate it is

shown in Appendix F.

The above discussion also applies to the results shown in the following section con­

cerning diagonal variations after two subdivisions.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f g h i j k
Lanczos 3 .23 0 .20 0 .13 0 .05 0 .01 0 0
Lanczos 2 .33 0 .26 0 .07 0 0 0 0 0 0
Catmull-Rom .36 0 .25 0 .07 0 0 0 0 0 0
Bicubic .36 0 .25 0 .07 0 0 0 0 0 0
CDVSQBS .38 0 .25 0 .06 0 0 0 0 0 0
MP Centred .48 0 .25 0 .01 0 0 0 0 0 0
AMP Centred .48 0 .25 0 .01 0 0 0 0 0 0
Bilinear .50 0 .25 0 0 0 0 0 0 0 0
MVSQBS .50 0 .25 0 0 0 0 0 0 0 0
ROVSQBS .50 0 .25 0 0 0 0 0 0 0 0
MP Tensor .50 0 .25 0 0 0 0 0 0 0 0
AMP Tensor .50 0 .25 0 0 0 0 0 0 0 0
MP Null .50 0 .25 0 0 0 0 0 0 0 0
AMP Null .50 0 .25 0 0 0 0 0 0 0 0
LBB .50 0 .25 0 0 0 0 0 0 0 0
Nohalo .50 0 .25 0 0 0 0 0 0 0 0
Nohalo-LBB .50 0 .25 0 0 0 0 0 0 0 0
CDVS 0 .75 0 .25 0 0 0 0 0 0 0
MVS 0 1 0 0 0 0 0 0 0 0 0
ROVS 0 1 0 0 0 0 0 0 0 0 0

S nohalo 1 9=1 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 9=1 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 9=\ .11 0 ,06 0 0 0 0 0 0 0 0
Snohalo 1 9= | .17 0 .08 0 0 0 0 0 0 0 0
Snohalo 1.5 9=\ .27 0 .14 0 0 0 0 0 0 0 0
Snohalo 1 9=\ .33 0 .17 0 0 0 0 0 0 0 0
Midedge 0 0 0 0 0 0 0 0 0 0 0
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0

Table 17.1: Variation along the diagonals for a hard line after one subdivision

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f 8 h i j k
Lanczos 3 0 .22 0 .17 0 .10 0 0 0 0 0 0
Lanczos 2 0 .33 0 .18 0 .03 0 .04 0 .04 0 0
Catmull-Rom 0 .36 0 .13 0 .01 0 0 0 0 0 0
Bicubic 0 .36 0 .13 0 .01 0 0 0 0 0 0
MP Tensor 0 .38 0 0 0 0 0 0 0 0 0 0
AMP Tensor 0 .38 0 0 0 0 0 0 0 0 0 0
CDVSQBS 0 .38 0 .12 0 0 0 0 0 0 0 0
MP Centred 0 .48 0 .01 0 .01 0 0 0 0 0 0
AMP Centred 0 .48 0 .01 0 .01 0 0 0 0 0 0
Bilinear 0 .50 0 0 0 0 0 0 0 0 0 0
MVSQBS 0 .50 0 0 0 0 0 0 0 0 0 0
ROVSQBS 0 .50 0 0 0 0 0 0 0 0 0 0
MP Null 0 .50 0 0 0 0 0 0 0 0 0 0
AMP Null 0 .50 0 0 0 0 0 0 0 0 0 0
Nohalo 0 .50 0 0 0 0 0 0 0 0 0 0
LBB 0 .50 0 0 0 0 0 0 0 0 0 0
Nohalo-LBB 0 .50 0 0 0 0 0 0 0 0 0 0
MVS 2 0 0 0 0 0 0 0 0 0 0 0
ROVS 2 0 0 0 0 0 0 0 0 0 0 0
CDVS 2 0 .50 0 0 0 0 0 0 0 0 0

Snohalo 1 Q= 1 0 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 9=1 0 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 9= | 0 .11 0 0 0 0 0 0 0 0 0 0
Snohalo 1 0=§ 0 .17 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 9=| 0 .27 0 0 0 0 0 0 0 0 0 0
Snohalo 1 9=\ 0 .33 0 0 0 0 0 0 0 0 0 0
Midedge 0 0 0 0 0 0 0 0 0 0 0 0
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0 0

Table 17.2: Variation along the diagonals for a hard interface after one subdivision

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f g h i j k
Nohalo 0 0 0 0 0 0 0 0 0 0 0
Nohalo-LBB 0 0 0 0 0 0 0 0 0 0 0
Lanczos 3 .03 0 .02 0 .01 0 .02 0 .02 0 0
Lanczos 2 .08 0 .05 0 .06 0 .03 0 0 0 0
Catmull-Rom .11 0 .03 0 .05 0 .03 0 0 0 0
Bicubic .11 0 .03 0 .05 0 .03 0 0 0 0
MVSQBS .12 0 0 0 .06 0 0 0 0 0 0
ROVSQBS .12 0 0 0 .06 0 0 0 0 0 0
CDVSQBS .12 0 .03 0 .06 0 .03 0 0 0 0
LBB .13 0 0 0 .06 0 0 0 0 0 0
MP Centred .18 0 0 0 .09 0 0 0 0 0 0
AMP Centred .18 0 0 0 .09 0 0 0 0 0 0
MP Tensor .19 0 .05 0 .04 0 0 0 0 0 0
AMP Tensor .19 0 .05 0 .04 0 0 0 0 0 0
MP Null .19 0 0 0 .09 0 0 0 0 0 0
AMP Null .19 0 0 0 .09 0 0 0 0 0 0
Bilinear .25 0 0 0 .12 0 0 0 0 0 0
CDVS 0 .25 0 .13 0 .12 0 0 0 0 0
MVS 0 .25 0 .25 0 0 0 0 0 0 0
ROVS 0 .25 0 .25 0 0 0 0 0 0 0

Snohalo 1 9=1 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1 9= |
Snohalo 1 0=|

0 0 0 0 0 0 0 0 0 0 0 Snohalo 1 9= |
Snohalo 1 0=| 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 9=1 0 0 0 0 0 0 0 0 0 0 0
Snohalo 1.5 6= |
Snohalo 1.5 0=f

0 0 0 0 0 0 0 0 0 0 0 Snohalo 1.5 6= |
Snohalo 1.5 0=f 0 0 0 0 0 0 0 0 0 0 0
Midedge 0 0 0 0 0 0 0 0 0 0 0
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0

Table 17.3: Variation along the diagonals for a soft line after one subdivision

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f g h i j k
Nohalo 0 0 0 0 0 0 0 0 0 0 0
Nohalo-LBB 0 0 0 0 0 0 0 0 0 0 0
Lanczos 3 0 0 .02 0 .04 0 .05 0 .01 0 0
Lanczos 2 0 0 .08 0 .10 0 .03 0 .04 0 0
MP Tensor 0 0 .09 0 0 0 0 0 0 0 0
AMP Tensor 0 0 .09 0 0 0 0 0 0 0 0
Catmull-Rom 0 0 .11 0 .06 0 0 0 0 0 0
Bicubic 0 0 .11 0 .06 0 0 0 0 0 0
LBB 0 0 .12 0 0 0 0 0 0 0 0
MVSQBS 0 0 .12 0 0 0 0 0 0 0 0
ROVSQBS 0 0 .12 0 0 0 0 0 0 0 0
CDVSQBS 0 0 .12 0 .06 0 0 0 0 0 0
MP Centred 0 0 .18 0 0 0 0 0 0 0 0
AMP Centred 0 0 .18 0 0 0 0 0 0 0 0
MP Null 0 0 .19 0 0 0 0 0 0 0 0
AMP Null 0 0 .19 0 0 0 0 0 0 0 0
Bilinear 0 0 .25 0 0 0 0 0 0 0 0
CDVS 0 .25 0 .25 0 0 0 0 0 0 0
MVS 0 .50 0 0 0 0 0 0 0 0 0
ROVS 0 .50 0 0 0 0 0 0 0 0 0

Snohalo 1 0=| 0 0 .02 0 0 0 0 0 0 0 0
Snohalo 1.5 0=4

Snohalo 1.5 0=|
0 0 .02 0 0 0 0 0 0 0 0 Snohalo 1.5 0=4

Snohalo 1.5 0=| 0 0 .03 0 0 0 0 0 0 0 0
Snohalo 1.5 9=1 0 0 .04 0 0 0 0 0 0 0 0
Snohalo 1 0=| 0 0 .05 0 0 0 0 0 0 0 0
Snohalo 1 9=1 0 0 .06 0 0 0 0 0 0 0 0
Midedge 0 0 0 0 0 0 0 0 0 0 0
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0

Table 17.4: Variation along the diagonals for a soft interface after one subdivision

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.3 Oscillations Along Diagonals After Two Subdivisions: Setup

17.3.1 Hard Line Data

The diagrams shown in Eqs. (17.9) and (17.10) describe the input data used to study the

resampling of an image with a hard line. In the diagram shown in Eq. (17.9), asterisks

indicate the sampled locations for face split methods.

a b o d e f g h i j k l m n o p q

1 * * * 0 * * * 0 * * * 0 * * * 0

* * * * * * * * * * * * * * * * *
(17.9)

* * * * * * * * * * * * * * * ^jc *

* * * * * * * * * * * * * * * * *

0 * * * 1 * * * 0 * * * 0 * * * 0

In the diagram shown in Eq. (17.10), asterisks indicate the sampled locations for vertex

split methods. The same diagonals are under consideration for both face split and vertex

split methods.

a b c d e f g h i j k I m

1 0 0 0

* * * * * * * * * * * *

* * * * * * * * * * * * (17.10)

* * * * * * * * * * * *

* * * * * * * * * * * *

0 1 0 0

Results are shown in Table 17.5.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.3.2 Hard Interface Data

The diagrams shown in Eqs. (17.11) and (17.12) describe the input data used to study the

resampling of an image with a hard interface.

a b c d e f g h i j k i r n n o p q

— 1 * * * — 1 * * * — 1 * * * 1 * * * 1

(17.H)
jjc * * * * * * * * * * * * * * * *

— 1 * * * —1 * * * —1 * * * —1 * * * 1

a b c d e f g h i j k I m

-1 -1 -1 1

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

-1 -1 -1 -1

(17.12)

Results are shown in Table 17.6.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b c d e / 9 h i j k I m

.5 0

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

(17.13)

17.3.3 Soft Line Data

The diagrams shown in Eqs. (17.13) and (17.14) describe the input data used to study the

resampling of an image with a soft line.

a b c d e f g h i j k I m n o p q

1 * * * . 5 * * * 0 * * * 0 * * * 0

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

, 5 * * * 1 * * * . 5 * * * 0 * * * 0

a

1 . 5 0 0

(17.14)

.5 1 5 0

Results are shown in Table 17.7.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.3.4 Soft Interface Data

The diagrams shown in Eqs. (17.15) and (17.16) describe the input data used to study the

resampling of an image with a soft interface.

a b c d e f g h i j k l m n o p q

0 * * * 1 * * * 1 * * * 1 * * * 1

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

— 1 * * * 0 * * * 1 * * * 1 * * * 1

a b a d e f g h i j k I m

O i l

* * * * * * * * * * * *

* * * * * * *

(17.15)

* * * (17.16)

* * * * * * * * * * * *

* * * * * * * * * * * *

- 1 0 1 1

Results are shown in Table 17.8.

17.4 Variation Along Diagonals After Two Subdivisions: Summary of

the Results

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f g h i j k 1 m

Lanczos 3 .23 .16 .22 .15 .20 .14 .17 .11 .13 .08 .10 .05 .05

Lanczos 2 .33 .21 .24 .17 .26 .15 .13 .05 .07 .04 .03 .01 0

Catmull-Rom .36 .21 .24 .16 .25 .14 .13 .05 .07 .04 .03 .01 0

Bicubic .36 .21 .24 .16 .25 .14 .13 .05 .07 .04 .03 .01 0

CDVSQBS .38 .28 .41 .25 .25 .13 .15 .07 .06 .02 0 0 0

AMP Centred .48 .29 .26 .21 .25 .11 .06 .02 .01 0 0 0 0

MP Centred .48 .30 .26 .21 .25 .11 .06 .02 .01 0 0 0 0

Bilinear .50 .25 .18 .13 .25 .12 .06 0 0 0 0 0 0

AMP Null .50 .31 .27 .22 .25 .09 .05 0 0 0 0 0 0

MP Null .50 .31 .27 .22 .25 .09 .05 0 0 0 0 0 0

Nohalo-LBB .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0

LBB .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0

MP Tensor .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0

AMP Tensor .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0

Nohalo 2 .50 .38 .50 .32 .25 .06 0 0 0 0 0 0 0

MVSQBS .50 .38 .55 .32 .25 .06 0 0 0 0 0 0 0

ROVSQBS .50 .38 .55 .32 .25 .06 0 0 0 0 0 0 0

CDVS2 .38 .75 .75 .75 .24 .25 .25 .25 .06 .03 0 0 0

MVS 2 0 1.0 1.0 1.0 0 0 0 0 0 0 0 0 0

ROVS2 0 1.0 1.0 1.0 0 0 0 0 0 0 0 0 0

Snohalo 2 6=1 0 0 .01 0 0 0 .01 0 .01 0 0 0 0

Snohalo 2 .11 .09 .12 .07 .06 .01 .01 0 0 0 0 0 0

Snohalo 2 .27 .21 .27 .18 .14 .03 .01 0 0 0 0 0 0

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17.5: Variation along the diagonals for a hard line after two subdivisions

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f 8 h i j k 1 m

Lanczos 3 .10 .08 .14 .12 .17 .13 .21 .15 .22 .16 .22 .15 .21

Lanczos 2 .05 0 .07 .10 .18 .12 .20 .21 .33 .21 .28 .21 .33

Catmull-Rom .01 .01 .05 .08 .13 .10 .19 .21 .36 .22 .28 .22 .36

Bicubic .01 .01 .05 .08 .13 .10 .19 .21 .36 .22 .28 .22 .36

MP Tensor 0 0 0 0 0 0 .04 .12 .38 .29 .34 .29 .38

AMP Tensor 0 0 0 0 0 0 .04 .12 .38 .29 .34 .29 .38

CDVSQBS 0 0 .01 .03 .12 .16 .28 .22 .38 .34 .54 .34 .38

MP Centred 0 0 0 0 0 .01 .09 .21 .48 .36 .38 .36 .48

AMP Centred 0 0 0 0 0 .01 .10 .21 .48 .36 .38 .36 .48

Bilinear 0 0 0 0 0 0 .12 .25 .50 .25 .24 .25 .50

MP Null 0 0 0 0 0 0 .09 .19 .50 .37 .38 .37 .50

AMP Null 0 0 0 0 0 0 .09 .19 .50 .37 .38 .37 .50

LBB 0 0 0 0 0 0 .07 .19 .50 .37 .52 .37 .50

Nohalo-LBB 0 0 0 0 0 0 .07 .19 .50 .37 .52 .37 .50

Nohalo 2 0 0 0 0 0 0 0 .12 .50 .50 .76 .50 .50

MVSQBS 0 0 0 0 0 0 0 .12 .50 .63 1.06 .63 .50

ROVSQBS 0 0 0 0 0 0 0 .12 .50 .63 1.06 .63 .50

CDVS2 0 0 0 .06 .12 .50 .50 .50 .38 1.0 1.0 1.0 .38

MVS 2 0 0 0 0 0 0 0 0 0 2.0 2.0 2.0 0

ROVS2 0 0 0 0 0 0 0 0 0 2.0 2.0 2.0 0

Snohalo 2 0=1 0 0 0 0 .01 0 .03 0 .05 0 0 0 .05

Snohalo 2 0=§ 0 0 0 0 0 0 .02 .03 .11 .11 .16 .11 .11

Snohalo 2 0=\ 0 0 0 0 0 0 .01 .07 .27 .28 .42 .28 .27

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17.6: Variation along the diagonals for a hard interface after two subdivisions

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f g h i j k 1 m

Nohalo-LBB .01 0 .01 0 0 0 .01 0 .01 0 0 0 0

Nohalo 2 0 0 .03 0 0 0 .03 0 0 0 0 0 0

Lanczos 3 .03 .02 .02 .01 .02 .02 .01 .01 .01 0 .01 .02 .02

Lanczos 2 .08 .05 .05 .04 .05 .03 .02 .03 .06 .03 .04 .02 .03

Catmull-Rom .11 .07 .06 .03 .03 .02 .01 .03 .05 .03 .04 .02 .03

Bicubic .11 .07 .06 .03 .03 .02 .01 .03 .05 .03 .04 .02 .03

LBB .13 .08 .05 .02 0 .01 .04 .05 .06 .02 0 0 0

CDVSQBS .12 .09 .13 .07 .03 .03 .06 .04 .06 .05 .07 .04 .03

MVSQBS .12 .09 .13 .06 0 .06 .13 .07 .06 .02 0 0 0

ROVSQBS .12 .09 .13 .06 0 .06 .13 .07 .06 .02 0 0 0

MP Centred .18 .12 .06 .03 0 .01 .04 .06 .09 .03 .02 0 0

AMP Centred .18 .12 .06 .03 0 .01 .04 .06 .09 .03 .02 0 0

MP Null .19 .13 .08 .04 .01 .01 .04 .07 .09 .04 .02 0 0

AMP Null .19 .13 .08 .04 .01 .01 .04 .07 .09 .04 .02 0 0

MP Tensor .19 .13 .12 .06 .05 .02 .01 .04 .04 .01 0 0 0

AMP Tensor .19 .13 .12 .06 .05 .02 .01 .04 .04 .01 0 0 0

Bilinear .25 .13 .06 0 0 0 .03 .07 .12 .06 .03 0 0

CDVS2 .12 .24 .25 .26 .04 .13 .13 .12 .06 .12 .12 .12 .04

MVS 2 0 .12 .25 .38 0 .38 .25 .12 0 0 0 0 0

ROVS2 0 .12 .25 .38 0 .38 .25 .12 0 0 0 0 0

Snohalo 2 0=1 0 0 .01 0 .02 0 .01 0 .01 0 .01 0 0

Snohalo 2 0=| 0 0 .02 0 .01 0 .02 0 .01 0 0 0 0

Snohalo 2 9=| 0 0 .02 0 .01 0 .02 0 .01 0 .01 0 0

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17.7: Variation along the diagonals for a soft line after two subdivisions

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b c d e f g h i j k 1 m

Nohalo-LBB 0 0 .01 0 .01 0 0 0 0 0 0 0 0

Lanczos 3 0 0 0 .01 .02 .02 .04 .02 .04 .02 .05 .04 .05

Nohalo 2 0 0 .06 0 0 0 0 0 0 0 0 0 0

MP Tensor 0 0 .05 .08 .09 .02 0 0 0 0 0 0 0

AMP Tensor 0 0 .05 .08 .09 .02 0 0 0 0 0 0 0

Lanczos 2 0 .01 .04 .04 .08 .05 .08 .06 .10 .06 .05 .01 .05

Catmull-Rom 0 .01 .04 .06 .11 .07 .06 .04 .06 .03 .03 .01 0

Bicubic 0 .01 .04 .06 .11 .07 .06 .04 .06 .03 .03 .01 0

LBB 0 .01 .08 .10 .12 .04 .01 0 0 0 0 0 0

CDVSQBS 0 .06 .13 .10 .12 .10 .14 .07 .06 .02 0 0 0

MP Centred 0 .01 .08 .13 .18 .06 .03 0 0 0 0 0 0

AMP Centred 0 .01 .08 .13 .18 .06 .03 0 0 0 0 0 0

MP Null 0 .01 .08 .13 .19 .07 .04 0 0 0 0 0 0

AMP Null 0 .01 .08 .13 .19 .07 .04 0 0 0 0 0 0

Bilinear 0 0 .06 .13 .25 .12 .06 0 0 0 0 0 0

MVSQBS 0 .13 .26 .16 .12 .03 0 0 0 0 0 0 0

ROVSQBS 0 .13 .26 .16 .12 .03 0 0 0 0 0 0 0

CDVS2 0 .25 .25 .25 .12 .25 .25 .25 .06 .03 0 0 0

MVS 2 0 .75 .50 .25 0 0 0 0 0 0 0 0 0

ROVS2 0 .75 .50 .25 0 0 0 0 0 0 0 0 0

Snohalo 2 9=1 0 .01 .05 .03 .04 .01 .02 0 .01 0 0 0 0

Snohalo 2 9 0 .01 .06 .01 .02 .01 0 0 0 0 0 0 0

Snohalo 2 0=| 0 .01 .06 .03 .04 .01 .01 0 0 0 0 0 0

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17.8: Variation along the diagonals for a soft interface after two subdivisions

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18 Introduction to the Remez Algorithm and Its Key

Linear Equations

This chapter contains an introduction to the Remez algorithm which will be used to com­

pute polynomial approximations in Chapter 20.

Interpolation consists in finding a function which goes through a set of n + 1 given

collocation points [38]. Usually, the interpolating function is chosen to be a polynomial of

order n. Interpolation can be used to approximate a function when the collocation points

are values obtained from the function. In this case, the idea is to match the original function

as closely as possible. However, the collocation points must be chosen wisely and in some

cases must be quite numerous to obtain a good approximation. In general, polynomials are

only good in local approximations [25]. Otherwise, it is possible to obtain unwanted oscil­

lations or large errors [38]. One way to make use of this is by using spline interpolation. A

popular method consists of using cubic spline interpolation. The idea is that the domain on

which interpolation will be performed is divided into segments .Tj]. A cubic polyno­

mial is then found to approximate the function between each pair of points. In addition, the

polynomial coefficients are chosen in such a way that the function is twice differentiable

everywhere [38].

When approximation of a function is needed, rather than simply interpolation based

on given points, polynomial interpolation is not generally a good choice [25]. One of the

best-known methods for approximating a function is through the use of Taylor expansions.

For some functions, these approximations behave nicely but in other cases, they only give

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

local approximations and necessitate high degrees. In addition, Taylor expansions deal

with derivatives of functions but in some cases it may be useful to approximate a non-

differentiable function or a complicated function whose derivatives are not easy to compute.

Polynomial approximations of functions are especially important when they need to be

used by computers. In the past, large tables of values were given along with ways of inter­

polating between the values. Today, however, tables of values are smaller or non-existent

and the focus is more on the methods for approximating the function [16]. Functions may

be approximated in more than one way. There are analytic methods, which include the

afore-mentionned Taylor series, other power series and Pade rational approximants. An­

other type of method is similar to interpolation in that an approximation is built starting with

a discrete set of data points from the function. An example of such a method is the minimax

approximation method. This method uses interpolation methods but instead of allowing the

error to get larger as one gets farther from the collocation points, minimax methods try to

spread out the error evenly over the whole interval of approximation, thereby reducing the

maximum error [16]. An algorithm to find the minimax approximation was first published

in 1934 by Evgeny Yakovlevich Remez [40, 95, 96]. It is still used today.

18.1 Theory

18.1.1 Polynomial Interpolation

Interpolation and approximation of functions does not always involve solving a matrix.

However, for the purpose of this thesis, only methods involving matrices are considered.

A polynomial interpolation problem to approximate a function consists of finding a

polynomial function pn of degree n which passes through n + 1 collocation points. These

are given by (xj, f{xi)), i = 0,1,2, • • • , n [38]. Then, one must simply solve the system

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of equations given by

Co + C i X i + c 2 x f H b c n x " = f (x i)

Co + C 1 X 2 + c 2 x \ H h CnX2 = f (x 2)

Co + Cio;n+i + c2x^+1 H + cnxn
n+l = /(x„+i)

This gives the following matrix to solve.

X \

X 2

X t

X n

X i

/•*»' < JU O

1 Xn+1 xn+l X n+1

C0

Ci

C2

h

h

/1 n+1

This system is known as a Vandermonde matrix [38]. Vandermonde matrices are also found

in many applications other than interpolation, examples of which are Gaussian quadrature

and signal processing applications such as the discrete Fourier transform [41,46]. However,

the Vandermonde matrices are notoriously ill-conditioned [38]. As such, many papers have

been written exploring different methods for accurate and cost-efficient solutions.

In the case where the interpolation is performed using cubic splines, the system is re­

duced to a tridiagonal matrix. These are quite simple to solve using LU decomposition

[38], and therefore will not be further considered here.

18.1.2 Approximation

When approximating a function, one may obtain different approximations when using dif­

ferent methods. A valid concern is therefore how to determine which approximation is the

best. This concern arises even if one narrows the field by only considering polynomial

approximations.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Weierstrass Theorem that any real function f (x) continuous on [a, b] can be ap­

proximated by polynomials on this interval [72, 99, 124], Specifically, it states that for

every e > 0, there exists a polynomial p{x) (which depends on e) such that

I l / l I = m a x | / (x) | < e .
a<x<b

The norm defined in the left hand side of the above equation is known as the uniform norm;

it is also called the Chebyshev norm [99].

A theorem by P.L. Chebyshev which describes the concept of a polynomial of best

approximation and guarantees its existence. This theorem states that for any bounded

measurable function f(x) which is defined on [a, b], and for any integer n, there exists

a polynomial of degree at most n which has a smallest error in uniform norm among all the

polynomials of degree at most n [124].

Another theorem by Chebyshev gives a criterion that identifies a polynomial of best

approximation. This theorem states that for a polynomial pn(x) of degree n to be the poly­

n o m i a l o f b e s t a p p r o x i m a t i o n o f a b o u n d e d m e a s u r a b l e f u n c t i o n f (x) i n t h e i n t e r v a l [a , b] ,

it is necessary and sufficient that the difference f(x) — pn(x) attain its maximum at least

n + 2 times within the interval with alternating signs [124]. This is a strong theorem be­

cause it says that if such a polynomial can be found, then it has to be the best approximation

for the particular degree.

18.2 Methods

18.2.1 Remez Algorithm

The Remez algorithm was first published in 1934 by Evgeny Yakovlevich Remez. This

is a n a l g o r i t h m d e s i g n e d t o f i n d t h e p o l y n o m i a l o f b e s t a p p r o x i m a t i o n f o r a f u n c t i o n f (x)

[40, 95, 96]. There are two variations of the Remez algorithm, differing in the exchange

step [81]. The following is a simplified explanation of the second Remez algorithm. Ch-

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eney [15] gives a more formal explanation of both Remez algorithms and includes the

necessary theoretical background. The Remez algorithm is an iterative method for com­

puting coefficients for a polynomial such that the value of the error function is equal but

with alternating signs at n 4- 2 points in the given interval [123]. The algorithm starts with

an initial set of n + 2 points and then finds a polynomial such that the error at these n + 2

points is equal with alternating signs. However, this error value may not be the maximum.

The next step involves finding the points where the maximum magnitudes of the error func­

tion are attained. These points are then used as the collocation points in the next iteration

[123], There are two techniques that can be used here: either all the points are replaced by

the new points or the point closest to the one where the error is maximum is replaced by

the abscissa of the maximum [74].

The initial values chosen for this algorithm are usually chosen as Chebyshev nodes.

Without going into the details of the theory behind this, polynomial interpolation using

Chebyshev nodes is usually more stable than interpolation using equally-spaced points

[6, 24, 74]. Once the initial values are chosen, the following system of equations must be

solved.

c0 + C \ X \ + c 2 x \ H b Cnx\ — f(xi) - E

Co + C \ X 2 + c 2 x 2 H b cnx2 = f (x 2) -f E

Co + C\Xn+2 + C2x^+2 + • • • + CnX™+2 = f (x n + 2) + (— 1) n + 2 E

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This gives the following matrix system.

C o

1 X i x j • x \ 1 C l h

1 x \ • vn
j u 2 -1

(-l)H-1

C2
= h

1 X-n+2 xl+2 •
i-pTl

n+2 (~1)"+3

1

/n+2

This matrix is very similar to a Vandermonde matrix therefore it may be a good idea to first

look at how the latter are solved.

18.2.2 Vandermonde Matrices

There is much literature concerning the solution of Vandermonde systems [110]. Some

authors are concerned with finding LU or QR decompositions of such matrices [41], others

studied, for example, the block decomposition of Vandermonde matrices [122], while oth­

ers still tried to find accurate methods for computing the inverses of Vandermonde matrices

[33, 73]. In other articles, the concept of Vandermonde matrix is generalized to include

matrices which are similar to Vandermonde matrices but differ in some ways [27,41, 64].

There exist explicit formulae for solving the Vandermonde matrix and finding its in­

verse, and these are well known [33]. The Parker-Traub algorithm was originally proposed

for the computation of the inverse of the Vandermonde matrix and it was subsequently

generalized by Gohberg and Olshevsky [44].

Another algorithm on which many methods are based is the one proposed by Bjorck

and Pereyra in 1970 [94]. In their method, the authors suggest using a different polynomial

basis when creating the Vandermonde matrix. More specifically, they suggest using New­

ton polynomials instead of simple monomials. In their case, however, they were interested

in finding a bidiagonal LU decomposition of the inverse of the Vandermonde matrix but it

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is also possible to use this idea to solve the Vandermonde matrix directly, without finding

its inverse.

The Bjorck-Pereyra method was later used in conjunction with Schur functions to solve

the Vandermonde system more accurately and efficiently [67].

Even with all these proposed methods for solving Vandermonde systems, it seems that

simply changing the basis polynomial functions may be the best method. It is generally

recommended to use Newton polynomials as basis functions. The polynomial in Newton

representation is:

n k—1

P W = ~
k—0 i=0

[46]. By using the Newton representation of the interpolating polynomial, the following

matrix is obtained.

10 0 0

1 i j - i o 0 • • • 0

1 X 2 - X 0 { X 2 ~ X Q) (x 2 ~ X i) • • • 0

k-1

1 X n - X Q (x n - X Q) (x n - X i) • • • J J f a n - S t)

i=0

This is a lower triangular matrix and thus can be solved directly by forward substitution.

18.2.3 Vandermonde-like Matrices

Now back to the Vandermonde-like matrix that comes up when using the Remez algorithm.

It would be very nice if there was a way to use the properties of the Vandermonde matrix

to simplify the solution of this particular system. There is not much literature concerning

the solution of such Vandermonde-like matrices as the ones used in the Remez algorithm.

There was one method proposed by Gemignani in 1999 [41] which solved Vandermonde-

like matrices with low-rank changes. This method applies very nicely to the matrix in the

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Remez algorithm and this is even mentioned by the author. The method solves the system

by using the QR decomposition of the matrix and applying the results right away to find

the solution. It is an iterative method which appears to be cost and memory efficient.

However, perhaps it is possible to obtain a good answer that is also much simpler to

implement. Since a change of basis worked so well for Vandermonde matrices, it may

be worthwhile to try it with the Vandermonde-like matrix and see if it gives any special

structure that can simplify the problem.

1 0 0

1 x \ — x 0 0

1 X 2 - XO (x 2 - XQ)(X 2 - XI)

0

0

0

k- l

1 xn+2-x0 (xn+2-x0)(xn+2-x1) • • • J J (a : n + 2 - a : i) (- l) r

i—0

1 CO

-1 Ci /i

1 C2 = /2

c n fn+2

E

If the columns are rearranged, a lower Hessenberg matrix can be obtained.

1 1 0 0 0 E

-1 1 XI - XO 0 0 Co f i

1 1 X 2 - Xo (x 2 - o

1-
T

to
 1 0 Ci

= h

:
• t ; C2

(_l)n+3 1 Xn+2 £0 {%n- j-2 ~ -XO) { x N + 2-XI) •

k- l

• Y l {XN+2-XI)
; f n +2

_ i=0 Cn

By reversing the order of the rows and of the columns, the system is transformed into an

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

upper Hessenberg matrix, much easier to solve than the original Vandermonde-like matrix.

fc—1

W { x n + 2 ~ X i) • 1 <N + c - x 0) (x n + 2 ~ x i) %n+2 " - X o 1 (_ l) n + S
C j i

i=0
: ;

C2

fn+2

0 • • (x 2 - x 0) (x 2 - X i) x 2 - X o 1 1 Cl /2

0 0 X i - X o 1 -1 c0
. fl .

0 0 0 1 1 E

This upper Hessenberg matrix is almost triangular and can easily be factored into LU or

QR matrices to solve the system.

18.3 Results

18.3.1 Cost

With respect to the original Vandermonde matrix, it seems quite clear that the best method

for solving it is to use a change of base and use the Newton representation of the interpolat­

ing polynomial rather than its monomial representation. Then, backward substitution can

be used to solve the system directly. This algorithm has ^ flops [46] and has a cost of

0 (n 2) .

For the Vandermonde-like matrix that occurs in the case of the Remez algorithm, there

are many methods that may be used to solve the system. In this case, the matrix is (n -f

2) x (n + 2) b u t t o s i m p l i f y t h e c a l c u l a t i o n s , l e t m = n + 2 . T h e r e f o r e , t h e m a t r i x i s m x m .

The cost of using each of the different afore-mentioned methods for solving this matrix are

regrouped in the following tables. The results in Table 18.1 are for the Vandermonde-like

matrix in monomial base [41, 46] and the results in Table 18.2 are for the same matrix but

after it has been transformed into an upper Hessenberg matrix [46].

The Gemignani algorithm as well as transforming the Vandermonde-like matrix to an

upper Hessenberg matrix are the most cost-effective methods of solving the system.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 18.1: Cost to solve a Vandermonde-like matrix

Method Cost

LU factorization 0 (m 3)

Householder QR factorization O (m3)

Givens QR factorization 0(m3)

Gemignani algorithm 0 (m 2)

Table 18.2: Cost to solve an upper Hessenberg matrix

Method Cost

LU factorization 0 (m 2)

Givens QR factorization 0{m?)

18.3.2 Accuracy

Some explicit formulae for computing bounds on the error in max norm are given for the

LU and Householder QR factorizations of regular matrices with no special structure [46].

However, nothing is given that deals with the particular structure of upper Hessenberg ma­

trices, or even for the Givens QR factorization. Gemignani gave numerical results to show

the accuracy of his method [41]. Since it would be difficult to reproduce the conditions in

which Gemignani's numerical results were obtained, the LU and Givens QR methods only

are compared with respect to accuracy. This is done through numerical results.

Let

f (x) = jinc(7nr) = —^—- = J 2 (thc) + JQ(7 TX) [48].

The last step was done in order to avoid division by zero. For the initial values of x , the

Chebyshev nodes are computed on the interval [0,3]. (Dr. Robidoux points out that, gen-

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

erally, the regions of interest for Bessel functions and derived quantities like jinc have a

Bessel root as endpoint, and these roots are irrational. For this reason, an approximation of

the jinc function on the interval [0,3] is not particularly useful from a practical standpoint.

For demonstration purposes, this is irrelevant.) The right-hand-side vector consists of the

values of f(x) at these points. Both the LU decomposition and the Givens QR decompo­

sition are computed for the same resulting upper Hessenberg matrix. In order to compare

the accuracy of the methods when solving the system Vc = /, the maximum residual, that

is the maximum value of |/ — Vc\ is found. Both of these methods have been implemented

in Scilab [115]. To give an idea of the accuracy of these methods, they are also compared

to the internal '\' operator in Scilab, which is generally considered to be accurate. The

numerical results are presented in Table 18.3, where n is the degree of the approximating

polynomial.

A second numerical experiment was done to compare the accuracy of the same three

methods. This time, f(x) = sin(7ra:). The approximation is performed on the interval [0,1]

and the initial x values are once again chosen to be the Chebyshev nodes. The results are

shown in Table 18.4.

18.4 Conclusion

Many methods for solving Vandermonde-like systems were compared, first in terms of cost

and then in terms of accuracy. With respect to the cost in flops, it was obvious that using

a Newton polynomial representation instead of the usual monomial representation and re­

arranging the matrix to obtain an upper Hessenberg matrix was the most effective method.

Afterwards, one could solve this system using either LU factorization, Givens QR factor­

ization or the method proposed by Gemignani [41]. The first two were compared to each

other and to the Scilab internal operator '\' to determine which was most accurate. The

results are presented in Table 18.3 and Table 18.4. From these results, it is determined that

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the solution of the Hessenberg matrix using LU decomposition consistently gives a more

accurate result than the one using Givens QR factorization. The latter sometimes seems to

give a smaller error but overall, LU decomposition is better. An interesting observation is

that for degrees higher than about 16, the Scilab operator starts losing accuracy. In those

cases, both homemade methods surpass it.

The LU decomposition was chosen as the best method to solve the transformed matrix

that occurs when using the Remez algorithm. The Remez algorithm was implemented in

Scilab using this method (see Appendix D). The algorithms used for the LU decomposition,

the forward substitution and the backward substitution are all the standard ones [46]. Note

that this implementation was not designed to be maximally cost- and space-effective but

rather clear and accurate. With a few modifications, it may be modified to use less memory

and be faster. Applying the Remez algorithm is more than simply solving a matrix. There

is also a step where the abscissa of the maximum error values are found and then used

in the next iteration. This step, however, concerns numerical methods rather than matrix

computations. As such, it was omitted from this discussion, although it is included in the

Scilab implementation. In order to find the abscissa of the maximum error values, the

midpoint method was used on the error function and again on its derivative although there

must be more effective methods to perform this step.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 18.3: Condition number and maximum residual when approximating jinc(7ra;)

Degree Condition LU Scilab '\' Givens QR

1 3.424e+00 5.551e-17 5.551e-17 5.551e-17

2 1.148e+01 1.943e-16 1.804e-16 3.192e-16

3 4.043e+01 4.025e-16 4.718e-16 5.967e-16

4 1.360e+02 8.743e-16 8.188e-16 6.314e-16

5 4.461e+02 8.188e-16 9.992e-16 2.096e-15

6 1.452e+03 9.298e-16 8.604e-16 2.415e-15

7 4.713e+03 1.291e-15 5.412e-16 1.985e-15

8 1.531e+04 1.908e-15 8.951e-16 2.692e-15

9 4.977e+04 7.043e-16 9.437e-16 1.589e-15

10 1.621e+05 1.533e-15 1.318e-15 2.179e-15

11 5.284e+05 2.602e-15 3.504e-15 1.464e-15

12 1.725e+06 1.520e-15 2.699e-15 3.587e-15

13 5.642e+06 3.983e-15 3.33le-15 8.535e-15

14 1.847e+07 3.803e-15 1.672e-15 4.372e-15

15 6.054e+07 1.376e-15 3.851e-15 3.428e-15

16 1.986e+08 5.607e-15 1.846e-06 3.754e-15

17 6.524e+08 8.493e-15 8.761e-07 7.369e-15

18 2.145e+09 6.883e-15 1.565e-06 1.155e-14

19 7.058e+09 7.848e-15 6.703e-06 6.800e-15

20 2.324e+10 3.678e-15 6.110e-06 2.275e-14

25 9.097e+12 7.390e-15 2.660e-04 1.645e-14

30 3.608e+15 8.535e-15 9.342e-04 1.664e-14

40 7.953e+19 8.330e-14 1.000e+00 1.583e-14

50 3.242e+25 1.290e-08 1.000e+00 4.130e-07

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 18.4: Condition number and maximum residual when approximating sin(7rx)

Degree Condition LU Scilab '\' Givens QR

1 3.792e+00 2.776e-17 2.776e-17 1.388e-16

2 1.572e+01 2.220e-16 2.220e-16 5.967e-16

3 7.191e+01 2.220e-16 2.220e-16 2.498e-16

4 3.006e+02 3.955e-16 5.551e-17 5.551e-16

5 1.308e+03 5.551e-16 5.551e-16 6.661e-16

6 5.444e+03 6.661e-16 3.331e-16 5.827e-16

7 2.310e+04 4.996e-16 2.220e-16 8.603e-16

8 9.557e+04 4.44 le-16 3.331e-16 6.939e-16

9 3.996e+05 5.274e-16 2.220e-16 1.100e-15

10 1.645e+06 5.551e-16 5.551e-16 5.135e-16

11 6.814e+06 3.331e-16 6.800e-16 6.939e-16

12 2.794e+07 1.332e-15 2.220e-16 1.707e-15

13 1.150e+08 6.106e-16 1.736e-15 7.216e-16

14 4.700e+08 3.331e-16 7.340e-13 1.145e-15

15 1.926e+09 6.106e-16 8.744e-13 2.220e-16

16 7.850e+09 3.331e-16 2.55 le-11 1.221e-15

17 3.206e+10 9.298e-16 1.020e-09 9.437e-16

18 1.304e+l 1 9.506e-16 4.863e-10 1.041e-15

19 5.31 le-4-11 7.980e-16 1.910e-l 1 9.298e-16

20 2.157e+12 7.494e-16 1.999e-10 1.027e-15

25 2.392e+15 8.049e-16 7.580e-09 1.360e-15

30 5.141e+17 6.66 le-16 1.713e-10 7.772e-16

40 3.624e+22 3.044e-15 5.457e-10 6.281e-15

50 1.395e+29 1.201e-10 1.895e-10 1.165e-09

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19 Literature Review: FIR Filter Design with Chebyshev

and Minimax Methods

This chapter presents a brief review of the literature concerning FIR (Finite Impulse Re­

sponse) filter design using Chebyshev and minimax method. A survey of some of the

important methods and improvements are presented, along with a brief description.

19.1 Background

A Finite Impulse Response (FIR) filter is a digital filter whose values become null after a

finite amount of time. The impulse response of a filter is the result of applying a signal

consisting of a single maximal non-zero value. By contrast, Infinite Impulse Response

(IIR) filters are digital filters whose values stretch out to infinity. In this chapter, the focus

will be on FIR filter design methods. The frequency response of an FIR digital filter is a

function, usually complex, of the frequency after normalization [14].

There are many reasons for designing FIR filters. They have many applications in signal

processing, including image processing, geophysical data processing, radar data processing

[13], nearly linear-phase filtering, and equalization [10]. They are very attractive for such

applications because of certain properties they possess [91]. For instance, they can have

exactly linear phase, they do not pose the same stability problems as IIR filters, and they

can be quite easy to design [13], due to the many efficient methods available [77]. In fact,

during the 70's and 80's, many researchers have given some thought to the problem of de-

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signing optimum (in the Chebyshev sense) FIR filters [13, 78], both in the one-dimensional

and two-dimensional cases. Most of this research has been focused on the design of linear-

phase FIR filters [78], since this can be an important characteristic [13], though it not

always required and may be unwanted [78],

Many different solutions to the classical problem of FIR filter design in one or more

dimensions have been proposed [1]. Some very powerful and computationally efficient

algorithms have been developed, particularly for the linear-phase case [78]. When there

are constraints in the time domain, linear programming is one of the popular techniques for

FIR filter design [112]. Other techniques have also been considered for the various cases.

Researchers have also been interested in the design of filters with certain behaviours in two

or more bands [88].

An example where filters with constraints in the time domain are useful is in the sections

of data communication systems responsible for transmitting and receiving. The transmit

filter must constrain the spectrum of the transmitted data so it fits into bandlimited channels

while the receive filter must reject the noise that is outside of the band and maximize the

signal-to-noise ratio [112]. In this case, there are constraints in the time domain since the

impulse response of the transmit and receive filters have zero-crossings at uniform distances

from one another; such filters are known as Nyquist filters [112].

19.2 Statement of the Problem

The design and realization of a digital filter can be separated into five steps [91]. The

first step consists of choosing the technique that will be used for the design of the filter

and writing the desired filter specifications mathematically. The next step is a key step

where the ideal filter is approximated by solving the problem to find the coefficients which

minimize an error function. The third step consists of choosing the structure to realize the

filter and then quantizing the filter coefficients so that they have a fixed length. The fourth

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

step is quantizing the lengths of the filter variables and the fifth step is the verification that

the resulting filter really does meet the desired specifications [91]. The literature that will

be reviewed here will focus on the second step, which consists in solving the approximation

problem.

The basic idea of the problem under consideration is finding an approximation of an

ideal frequency response [51,77]. Usually its magnitude is approximated, but the phase can

also be considered [88]. There are various minimization criterion which can be used, the

most common being the Chebyshev error criterion and the weighted least squares (WLS)

error criterion. Basically, the frequency response of an ideal filter is known and the idea is

to obtain an optimal approximation of this frequency response such that the error function

is minimized [10, 71], which can then be converted back into the time domain to obtain a

digital filter. This approximation can be done in one dimension, where it is generally easy,

or in two dimensions, where the functions are generally complex and the problem become

more computationally intensive.

In the two-dimensional case, the problem can be reformulated in the case where the

filter is exactly linear phase, that is, when it has symmetric real coefficients. In this case,

one can use the Chebyshev error criterion and solve the problem as a real approximation

problem [1, 14], The approximating function can then be written as a weighted sum of

cosine functions [77].

If, however, the filter to be approximated is not linear-phase, then the approximation

problem becomes complex [14]. These problems tend to be more computationally inten­

sive but there may also be advantages to solving the complex approximation problem. One

of its most important features is that by minimizing the error function, both the weighted

magnitude error and the phase error are reduced simultaneously [88]. However, the com­

plex approximation problem can also be seen as a real approximation problem that is non­

linear, if that is preferred, since the norm of the error function can be rewritten as the usual

norm of a complex number, that is, the square root of the sum of the squares of the real and

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imaginary parts of the error function [10].

The Chebyshev (or minimax) error criterion is often used because it corresponds to

minimizing the extremal error over all frequencies [71]. Minimizing the Chebyshev norm

leads the error function to have an equiripple behaviour, where all the extrema of the er­

ror function have the same value [88]. This is a well-known fact. On the other hand,

the weighted least squares (WLS) design method minimizes the weighted integral of the

squared error function [1,71].

Therefore, the approximation step of FIR filter design basically consists of finding the

values of the coefficients of the impulse response such that the Chebyshev norm of the

error, or the weighted least squares error, is minimized, where the error function is defined

as the weighted difference between the ideal filter which is being approximated and the

resulting approximating function. [14, 51, 88].

19.3 History

There have been many attempts at solving the FIR filter design problem. Many researchers

have considered solutions to the problem and tried to improve on the previously-developed

methods. Such improvements included convergence speed, computational complexity, nu­

merical stability, and maximal filter size. Here, a brief look will be taken at some of the

major developments in solving the FIR filter design problem.

One of the first methods used to solve the approximation problem was the method of

windowing [91]. In its earlier stages, this consisted simply in taking the Fourier series of

the ideal frequency response and truncating it to the required length. An advantage of this

method was that the least squares error was minimized but a disadvantage was that the

Chebyshev error was not. In fact, the Gibbs phenomenon could cause this error to be quite

large [91].

Later on, the technique of windowing was refined such that the Fourier series was not

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simply truncated. Rather, its coefficients were multiplied by a time-limited window. This

method was developed to reduce the Gibbs phenomenon that had previously caused the

Chebyshev error to be large [91]. Many windows were developed and used. Some of the

more popular ones included the Kaiser [63], the Hamming [7], and the Dolph-Chebyshev

[30] windows. An advantage of this method was that the windowing technique was analyt­

ical rather than iterative like most of the other methods for FIR filter design [91].

In 1961, Lawson [68] described a new iterative method to solve this approximation

problem. This algorithm became fundamental for finding optimal approximations in the

Chebyshev sense [14], This algorithm works on the idea that the best approximation in the

Chebyshev sense is a weighted Lp approximation, where the weighting is unknown [10].

This algorithm recursively finds this weighting function as well as the extremal set [14] and

eventually converges to the optimal approximation in the Chebyshev sense [10]. However,

the algorithm seems to have a slow convergence rate [14] and, worse, it often stops before

reaching the optimal solution. This seems to happen when the weighting function becomes

zero at certain points. Methods have been proposed to deal with this problem and they

typically get the algorithm to restart [10], Due to this need to restart the algorithm, the

convergence of the method is more difficult to show [10].

A few years later, the frequency sampling method was published by Gold and Jordan

[45]. This technique has been applied to a variety of problems, including band-pass and

low-pass filters [77]. Basically, this method works by fixing values for the coefficients

of the discrete Fourier transform everywhere except in the transition bands. These values

are then optimized using an algorithm that minimizes a weighted approximation error [91].

However, disadvantages with this method are that the result is not optimal in the Chebyshev

sense, and it is also not possible to specify the frequencies at the edge of the bands [77].

This is a linear programming problem where there are few variables but many constraints

[91]. This method was improved upon by Rabiner et al. [90].

In 1970, Herrmann [53] developed the first method for the design of optimal FIR filters

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the Chebyshev sense [91]. His method was based on the assumption that there was an

equiripple property of the optimal low-pass filter in each band. Then, he simply fixed the

amount of ripples in the bands and this led to some nonlinear equations, which could then

be solved. In this case, Herrmann used an iterative descent method [91]. At the same

time, Herrmann and Schuessler [54] described a way for going from equiripple linear-

phase designs to equiripple minimum-phase designs. This way, they ended up with half the

original degree [78]. Filters developed using Herrmann's method had the disadvantage of

being rather small. Their size was limited to 40 [91].

The next year, Herrmann's method was improved upon by Hofstetter et al. [56], who

made it possible to design longer filters. They developed another algorithm for solving the

nonlinear equations, instead of using the iterative descent method like Herrmann. Their

new algorithm was similar to the Remez exchange algorithm [91]. The resulting filters

were optimum in the Chebyshev sense but belonged to a restricted class of such filters

[77]. These were called extraripple filters, or maximal ripple filters. Extraripple filters have

only one more ripple than the minimum need for optimality [91]. One disadvantage of this

method, as well as of Herrmann's method is that the cutoff frequencies of the bands cannot

be specified beforehand [91].

Regarding the design of linear phase FIR filters in two dimensions, one of the simplest

algorithms was a windowing method published by Huang in 1972 [60]. However, this

method was not optimal in any sense [13],

The same year, Parks and McClellan [82] showed that the Remez algorithm [95] was

a good method for computing best approximations in the Chebyshev sense [77, 91]. They

approximated an ideal frequency response for a low-pass filter in the pass-band and the

stop-band using the Remez exchange algorithm[91]. This method has been used to design

linear phase FIR filters.

Around the same time, Rabiner [89] proposed an alternative to the method using the

Remez exchange algorithm. He demonstrated that linear programming could also be used

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to obtain optimal approximations in the Chebyshev sense [91]. In fact, one can design

the same filter using both the Remez algorithm and linear programming [77]. There is a

difference between the two, however. An advantage of linear programming is that it is

flexible and can be used to design filters of various shapes [91]. On the other hand, the

Remez algorithm requires much less time to perform, and thus can design longer filters

[77],

Hu and Rabiner [59] then proposed a method whereby linear programming is directly

applied to the FIR filter design problem. This method consists of applying linear program­

ming in a straightforward manner [13, 51], It has been deemed a slow method [13] but can

design a filter for a small circularly symmetric impulse response in about an hour [51],

In 1973, McClellan [76] proposed another method for the design of equiripple linear-

phase FIR filters. This is a relatively simple method for designing two-dimensional filters.

An appropriate polynomial mapping is applied to a one-dimensional ideal filter to then

obtain a two-dimensional filter [51]. The result is equiripple but it is not always optimal in

the Chebyshev or minimax sense [13]. Another disadvantage is that the magnitude function

must be carefully chosen since they cannot all be approximated well [51]. However, there

are advantages to this method. It is easy to use to design FIR filters and the results usually

have efficient implementations [51].

The same year, Fisher [37] proposed using the Lawson algorithm [68] for approxima­

tions in the complex frequency domain. However, this method seems to not have worked

very well [14].

Then, Mueller [80] considered the design of FIR Nyquist digital filters using an eigen­

value problem. He presented a numerical solution to this problem [112].

Later, Burris [11] worked on the method of Herrmann and Schuessler [54] and decided

to generalize it. His method consisted of solving for the roots of a polynomial and factoring

these roots in a suitable manner to get the minimum-phase counterpart [78].

Fiasconaro [36] studied the method proposed by Hu and Rabiner [59] and wanted to

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improve on the amount of time required to solve the approximation problem. He decided

to propose an adaptive algorithm in which the solution from each iteration was optimized

using linear programming. However, this method still required a fair amount of time [51].

The descent algorithm was applied to the FIR filter design problem by Kamp and Thi-

ran [65] and by Hersey and Mersereau [55] in an independent fashion. They managed to

improve on the time required for the solution of the approximation problem, but the filter

footprint was still limited to about 15 x 15 because of the computational complexity of

the method [51]. Harris [50] also developed a similar ascent minimax algorithm. There

were also numerical difficulties encountered in the implementation of these algorithms

[13]. These difficulties were due to degeneracy in the reference functions [13].

There were also researchers who described the approximation problem and some of

the theory behind it. Rivlin and Shapiro [97, 98] focused on a demonstration that the best

least squares approximation using a good weighting function is the same as an optimal

approximation in the Chebyshev sense [14]. At this point, if the weighting function is

known along with the set of extrema, then the optimal complex minimax approximation

can be found using least squares [14].

In 1978, Barrodale et al. [5] suggested using a Taylor expansion to linearize the approx­

imation problem and then using a previously-published algorithm to solve it. However, the

solution obtained can have a large error since the Taylor expansion is not accurate [14].

They then suggested the use of a perturbation method to get a better approximation. This

method was not very reliable and could fail even for small problems [14],

Instead of trying to approximate both the real and imaginary parts of FIR filters, Stei-

glitz [118] proposed separate approximations for these. However, a disadvantage of this

method is that the errors for the magnitude and for the phase are not adjustable [14].

Around the same time, Glashoff and Roleff [43] and Streit and Nuttall [120] indepen­

dently suggested that the approximation problem be discretized and converted from the

complex domain to the real domain. Glashoff and Roleff solved the linear real problem

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and used that solution as an initial vector for the Newton-Raphson method [14]. However,

it is not guaranteed that the Newton-Raphson iteration will converge if the initial guess is

not a good one [14]. Streit and Nuttall had a set of overdetermined linear equations and

used a linear programming algorithm directly to solve them [14], They minimized the error

only on a grid, and the grid density could be manipulated to reduce the error [10]. An ad­

vantage of their method was that their linear programming algorithm was stable and there

was no need for an initial vector. However, it did take a long time to compute large filters

[14].

A few years later, Lim and Parker [70] showed that it is valid to used the weighted least

squares method for designing large FIR filters when the coefficient space is discrete [71],

Later, Cortelazzo and Lightner [18] published a method for designing FIR and IIR

filters that could approximate either the magnitude, the phase, or the group delay of an

ideal filter [14], However, this method was time-consuming and only worked well when

the FIR filter was no longer than ten [14].

In 1987, Saramaki and Neuvo [113] developed an algorithm which used the Parks-

McClellan method to optimize in the frequency domain while at the same time optimizing

in the time domain by solving linear equations [112]. This is an iterative method to de­

sign equiripple FIR Nyquist filters and may need some modifications depending on the

application. It seems to be well-behaved numerically and is a good alternative to linear

programming [112],

The same year, Chen and Parks [14] presented a method similar to that of Streit and

Nuttall. Their method used finitization, which adds a certain amount of error to the final

solution [10]. Another disadvantage is that the method can be slow and use a lot of memory

space when the filter length grows [10]. However, it can give pretty accurate solutions when

used to design filters of length up to 50 [10].

Later, Tang [121] developed an iterative method which did not involve finitization. The

approximation problem was solved by simply using a simplex algorithm for linear pro-

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gramming directly [10]. This method can be used to design FIR filters with arbitrarily

small Chebyshev errors [10].

Preuss [87, 88] then published an interpolating method which is also iterative. An ad­

vantage of this method is that its convergence is fast when compared to linear programming

methods [10]. However, it can be numerically unstable and it is not known whether it al­

ways converges to the optimal solution [10].

Preuss' method was improved upon by Schulist [114] in 1990. He made the method

faster and dealt with some of the numerical instability problems [10]. Schulist also showed

that it is possible to add linear constraints to the problem when using linear programming

methods but this has not been shown to be the case for interpolating methods [10].

Tang's simplex algorithm was applied by Alkairy et al. [2, 3] to FIR filter design.

They used Tang's method for the starting and then solved the linear equations by taking

the inverse of the matrix [10]. The memory requirements, convergence speed, as well as

accuracy were all greatly improved by this method. As such, longer filters could now be

designed [10].

A method different from the previous ones was proposed by Potchinkov and Reemtsen

[86] in 1992. They formulated the FIR filter design problem as a quadratic problem, thus

not requiring any linearization [10]. It is a fact that quadratic programming is more com­

putationally intense than linear programming, but since there is no need for linearization,

it is possible that the method allows for faster convergence [10]. Potchinkov and Reemtsen

have designed filters that had lengths of up to 300.

Tseng [125] decided to reconsider Lawson's algorithm for FIR filter design and im­

proved on the implementation of the method as well as on its tendency to stop prematurely

[10].

In 1993, Burnside and Parks [9] published a multiple exchange linear programming

method based on the simplex algorithm. They improved the starting method and the step

where the linear equations are solved by finding an inverse matrix [10]. Their method was

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also generalized so it can be used to design complex FIR filters. It is numerically stable

and relatively fast [10].

19.4 Literature Review

19.4.1 FIR Digital Filter Design Techniques Using Weighted Chebyshev Approxima­

tion - Rabiner et al.

In their paper, Rabiner et al. [91] discuss various optimal methods for obtaining the solution

of the FIR design approximation problem. In this case, optimality is in the Chebyshev

sense. They start out by explaining that the alternation theorem is very powerful since it

gives necessary and sufficient conditions for the optimal Chebyshev solution. The Remez

exchange algorithm is based on this theorem and is an efficient method for solving the

approximation problem. However, the alternation theorem is only valid when the basis

functions satisfy the Haar condition; that is, each subset of n vectors is linearly independent

[15]. Unfortunately, in two dimensions, these basis functions no longer satisfy the Haar

condition. As such, it is then impossible to find the optimal solution based on the alternation

theorem.

When the filter is required to have the maximum number of extremal frequencies, it

is possible to get a unique optimal filter. Such filters are called maximal ripple filters, or

extraripple filters in the case of low-pass filters. In order to obtain a maximal ripple filter,

one first gets a set of nonlinear equations by requiring the error function to attain a certain

error value at the same time as having a zero derivative. These equations can be solved by

iteration using optimization techniques. However, the maximum error value is fixed and

therefore is not minimized. Also, the method does not give freedom to specify where the

band edges will be, instead selecting where these will be. Another iterative method was

proposed for designing such filters, this one based on the idea of obtaining a polynomial

with chosen values at the extrema. This method starts with an initial guess of the location

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of these extrema and then obtains a polynomial using Lagrange interpolation. Then, the

extrema of this polynomial are found and another iteration begins. This is reminiscent of

the Remez multiple exchange algorithm. The algorithm will converge independently of the

initial estimate, but certain estimates may require more or less iterations than others. As

with the previous method, it is still not possible to specify the filter band edge frequencies

beforehand.

Other techniques such as linear programming can also be used to solve this approxi­

mation problem. Linear programming is much slower than the Remez algorithm, however,

since it is basically a single exchange method, whereas the latter is a multiple exchange

method. On the other hand, when constraints are added to the time domain, the Remez

algorithm is not useful anymore and linear programming becomes the method of choice.

When designing low-pass filters, for example, there are constraints in both the time and

frequency domains at the same time. In this case, linear programming works well. Another

example where the linear programming method surpasses the Remez algorithm is in the

design of interpolation filters with some null coefficients. In this case, the Haar condition

is not satisfied and thus the alternation theorem cannot be applied.

Designing FIR filters in two dimensions is typically much more difficult than design­

ing such filters in one dimension. Some techniques have been extended from one to two

dimensions but for most techniques this does not work very well. The Remez algorithm

has not been extended to two dimensions as of 1975 and there are no efficient methods

for the design of two-dimensional optimal FIR filters. The problems with extending the

Remez algorithm to two dimensions are that first, the Haar condition is not satisfied in two

dimensions and thus the alternation theorem cannot be applied, and secondly, that there is

no way of ordering the extrema such that the error sign changes from point to point. For

now, linear programming seems to be the best method to use, but it is limited to low-order

filters.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19.4.2 A Unified Approach to the Design of Optimum FIR Linear-Phase Digital Fil­

ters - McClellan and Parks

In this article, McClellan and Parks [77] discuss a method for designing FIR linear-phase

digital filters where each possible case is reduced to an appropriate form for using the

Remez exchange algorithm. Basically, they show that there are four possible cases and that

each can be modified and then solved using the Remez algorithm. Until this moment, only

certain types of filters could be designed using the Remez algorithm, and all others had to

use linear programming, which tends to be slower.

Once all cases can be reduced to the one case which is solvable using the Remez al­

gorithm, it is possible to approximate band-pass filters, band-stop filters, Hilbert-transform

filters, differentiator filters, and any arbitrary filter using this algorithm. Now that the theory

shows that all cases can be reduced to a simple one, a more compact method can be found

to compute the optimal approximation. They state that there is only a need for an algorithm

which will approximate using cosine functions, since this is the case to which all others

can be reduced. They also provide a Fortran program which is based on this idea. Such a

program takes in an input, formulates this input into the wanted approximation problem,

solves this problem with the Remez algorithm, and calculates the impulse response from

these results. This method can be used for the design of FIR linear-phase digital filters.

19.4.3 A Comparison of Algorithms for Minimax Design of Two-Dimensional Linear

Phase FIR Digital Filters - Harris and Mersereau

In this paper, Harris and Mersereau [51] compare two iterative FIR linear-phase digital

filter design techniques which both use multiple-exchange ascent algorithms, and present

a new algorithm which reduces the amount of iterations required for such algorithms. The

first method was developed by Kamp and Thiran and the second by Hersey and Mersereau.

Both of these methods are faster than linear programming techniques.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

They propose three reasons for the reexamination of the ascent algorithms. The first

reason is that ascent algorithms result in optimal filters in the Chebyshev sense. The sec­

ond reason is that filters with any magnitude specification can be approximated using this

method since it is general. The third reason is that the optimal results from the ascent

algorithm can then be used as a basis for applying the McClellan method.

The new algorithm they present is more efficient than both the Kamp and Thiran, and

the Hersery and Mersereau algorithms. It uses the beginning of the Hersey-Mersereau

method but also adds in some useful features of the other algorithm. This method is to be

used for two-dimensional linear phase FIR digital filters.

Harris and Mersereau then explain that the algorithms they will compare are all iterative

and guaranteed to converge, and that it is thus important to know when to stop. They present

some theorems of approximation theory which basically tell how to recognize when the best

approximation has been obtained.

The ascent algorithm is a well-known method used for finding approximations on dis­

crete sets of points which are optimal in the Chebyshev sense. The discrete sets are usually

simply samples of the continuous function taken on a Cartesian grid. This grid must be

dense enough. If there are transition bands in the filter, the samples must include points

along the edges of such bands. The basic idea of the ascent algorithm is to make a se­

quence of best approximations on sets of points, changing these points such that the norm

of the error is monotonically increasing. The solution with the maximum norm on sets of

points will be the same as the solution with the minimum norm on the whole discrete set.

First, an initial set of points is chosen. Then, a best approximation is calculated, the error

function is evaluated at all the points, and the maximum norm is found. If the point with

maximum norm is already in the chosen set of points, the algorithm ends. Otherwise, it is

exchanged with another point and the next iteration begins with the new set of points. This

is also called the single-exchange ascent algorithm. This algorithm, however, can be slow

to converge since only one point is exchange at each iteration. The search for the largest

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

error takes the most time. A suggestion is to replace more than one point at a time.

The method of Kamp and Thiran is designed to find local maxima of the error function

in little time. They suggest starting at one of the reference points and moving horizontally

while looking for a local maximum. Once the maximum is found, one can move vertically

to find another local maximum. This continues until a local maximum is found both hor­

izontally and vertically at the same time. The same thing is done for each reference point

and the results are added to the set of reference points. If this method fails, then the overall

maximum error is found, as in the original ascent algorithm. If a single point is found, it

is exchanged as previously but if more than one local maximum is found, they replace the

reference points with the greatest errors. A best approximation is only computed once per

iteration.

The method of Hersey and Mersereau is based on the first Remez algorithm. In this

method, they use a sparse grid of points which contains the reference points from the pre­

vious iteration. At each iteration, they find local maxima and add them to the set while

removing those that have a small error. They then use the single-exchange algorithm to de­

termine the best approximation on this grid of points. This approximation is used to search

for the local maxima of the error function over the whole set of points. The local maxima

are then added to the grid of points and the next iteration starts. Originally, the search over

the whole set of points was simply an exhaustive search but they later added a variation

of the search part of the Kamp and Thiran algorithm, allowing the search to also include

diagonals.

The new algorithm proposed in this paper is the method of steepest ascent. It is like

the Hersey-Mersereau algorithm, but the exchange section is modified such that the worst

error points on the sparse grid are exchanged for points in the reference set of points. This

leads to more calculations and more complex method but it also converged faster since less

exchanges have to be performed. This is particularly useful for high-order filters.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19.4.4 A Fast Procedure to Design Equiripple Minimum-Phase FIR Filters - Mian

and Nainer

Here, Mian and Nainer [78] give a method for designing equiripple minimum-phase FIR

filters. This method is based on that of Herrmann and Schuessler [54], but avoids finding

roots of polynomials, which posed a problem in the original method. They accomplish

this by using cepstral deconvolution with the FFT. This method is useful in cases where

linear-phase is not required or may be undesirable. Instead, they design minimum-phase

filters and reduce the filter length as well as the sensitivity of the coefficients to quantization

errors.

The method of Herrmann and Shuessler [54] allows transformation of an equiripple

linear-phase design into an equiripple minimum-phase design. However, a difficulty with

this method is that roots of high-order polynomials have to be taken to be factored suit­

ably in order to obtain the minimum-phase design. Mian and Nainer instead suggest an

approach whereby the search for polynomial roots is avoided. They show that by using

a basic property of the complex cepstrum, the factorization problem can be solved sim­

ply by computing two FFT's, some complex logarithms and some other relatively simple

operations. It is known that numerical deconvolution can pose certain difficulties but the

authors state that through experience, cepstral deconvolution works well and accurately in

this particular case.

19.4.5 The Performance of an Algorithm for Minimax Design of Two-Dimensional

Linear Phase FIR Digital Filters - Charalambous

In his paper, Charalambous [13] studies the problem of designing linear phase FIR filters in

two dimensions using the minimax error criterion. He uses one of his previous algorithms

for minimax optimization and modifies the original problem into a sequence of weighted

least squares problems. The least squares functions are then minimized using the conjugate

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unconstrained algorithm from Powell. Charalambous states that his method converges to

the optimal solution and that there are no degeneracy problems.

The algorithm from Powell was chosen to be used in Charalambous' method because

of some of its advantages. It needs only a few operations to get its direction of search and

also looks at any symmetry that may be found in the optimization problem. Therefore, the

algorithm does not need to search the whole space to get the optimal solution. This is a

very useful property to have when the problem becomes larger.

19.4.6 Design of Almost Minimax FIR Filters in One and Two Dimensions by WLS

Techniques - Algazi et al.

Algazi et al. [1] present a method for designing one- and two-dimensional FIR filters using

weighted least squares techniques rather than the usually-preferred minimax method. They

state that the minimax method can be computationally intensive, particularly when dealing

with two-dimensional problems. They suggest the use of iterative WLS methods, even in

the one-dimensional case. These methods are then generalized for use in two dimensions.

The authors note that there is a relation between WLS and Chebyshev approximations

and use this result for designing minimax filters using the WLS approach. In one dimen­

sion, it is shown that the result is exactly the same for both methods. They then extend it to

two dimensions, obtaining an efficient and simple design technique.

WLS design consists of finding an optimal filter where the weighted least squares are

minimized. On the other hand, minimax design consists in minimizing the error in the

Chebyshev sense by choosing proper filter coefficients. Both techniques are iterative. The

Remez algorithm, which is used for minimax design, cannot be extended to two dimen­

sions, however, since it depends on the alternation theorem which does not apply to two

dimensions. Instead, iterative ascent algorithms have been used but have been deemed

computationally slow.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algazi et al. recall the Lawson algorithm, which was used to find Chebyshev approx­

imations by finding limits of sequences of weighted Lp approximations. The authors note

that choosing p = 2 gives a link between the WLS and Chebyshev approximations. Law-

son's algorithm can be applied as is to the one-dimensional problem and it will always

converge, usually rather quickly. However, there is a difficulty with Lawson's algorithm

when some values unintentionally vanish after an iteration. In this case, the solution is not

optimal on the whole space but rather on a subset of the space.

This method can also be used for designing FIR filters in two dimensions. However,

there is no proof that the result is actually a minimax FIR filter. The lack of proof is related

to the impossibility for the Remez algorithm to be extended to two dimensions. Lawson's

algorithm is quite simple to implement and the results obtained in one dimension are opti­

mal therefore it can be a good alternative to other techniques which are more computation­

ally complex. The authors also note that in two dimensions, Chebyshev approximations are

minimax but not equiripple since all the local extrema of the error do not typically reach

the same maximum or minimum value.

Now that they described an iterative method for designing FIR filters using WLS tech­

niques, they then modify the algorithm in order to make the weights depend on the error

from the previous iteration. They change the weights at each iteration instead of waiting

for the algorithm to converge before changing the weights according to Lawson's method.

However, they remind the readers that this method still does not guarantee that the result

will be a minimax approximation.

19.4.7 Design of FIR Filters in the Complex Domain - Chen and Parks

In this article, Chen and Parks [14] take a look at the design of FIR digital filters using

the Chebyshev error criterion, and where the frequency response is complex-valued. They

basically transform the complex problem into a real problem, then use linear programming

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to solve it. They also add some more constraints which allow the phase and group delay

to be weighted. The idea is that they want to design filters which do not have exactly

linear phase. They mention that minimum phase FIR filters can introduce delay distortion

if the delay is not constant over all frequencies. For this reason, they determine that they

approximation problem to be solved must be complex. In order to solve this problem, they

use the method of Glashoff and Roleff [43] and Streit and Nuttall [120] and apply it to

the design of FIR filters before extending it to the design of FIR filters whose error in the

pass-band group delay is small.

They remark that the linear complex problem can be seen as a nonlinear real optimiza­

tion problem. Further, they introduce a simple transformation which converts this nonlinear

problem into a linear optimization problem. They end up with a semi-infinite program, or

Haar program, where there is a finite number of variables with an infinite number of con­

ditions. The authors mention two methods for solving this type of problem. The first one

applies an algorithm by Fahlander which is designed principally for this type of problem.

The second method consists of using a modified simplex method. This involves finding the

minimax solution of an overdetermined system of linear equations. They consider this last

approach and give a design procedure to be followed. The first step is to change the origi­

nal problem from the complex domain to the real domain, thus getting an overdetermined

system of linear equations. The second step consists of using linear programming to find a

solution optimal in the Chebyshev sense. In order to solve this problem, the authors use an

algorithm which applies a modified simplex method to the dual problem. This particular

method does not need an initial estimate and always converges. They also note that their

results have nearly equiripple errors for the magnitude, the phase and the group delay.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19.4.8 On the Design of Optimal Equiripple FIR Digital Filters for Data Transmis­

sion Applications - Samueli

Samueli [112] presents an improved algorithm based on linear programming, which is to

be used to design equiripple FIR Nyquist filters as well as equiripple FIR transmit and

receive matched filters. Nyquist filters are defined as having an impulse response with

uniformly spaced zero-crossings. The transmit and receive matched filters can be used for

data transmission and are actually a Nyquist filter when they are cascaded, therefore this

method also applies to them. The basic method consists of a linear programming section

to compute a Nyquist filter whose frequency response is nonnegative, then a section where

spectral factorization is used to obtain the nonlinear phase transmit and receive filters.

The transmit and receive filters used in data communication systems have constraints

in the time domain. Linear programming is typically the method of choice when dealing

with such constraints. However, there is usually a need for the frequency points to form

a dense grid, which can lead to numerical ill-conditioning problems. Samueli proposes

a modification to the linear programming method whereby he avoids this necessity for

a dense grid. He states that technically, the linear program could be solved with only

one inequality constraint per extremal frequency of the stop-band response. However, the

location of these frequencies is not known beforehand. The author suggests that an iterative

method be used to find these locations and thus reduce the amount of constraints. After

each iteration, the frequency grid points are chosen so that they are located at the extrema

of the stop-band response. He notes that this is similar to the Remez exchange algorithm.

In order to find these extrema, he uses Newton's method and searches for the zeros of the

derivative of the frequency response. These are then used as the grid points for the next

iteration. The extremal frequencies are then used to get the constraints on the maximum

and minimum stop-band responses, alternatively evaluated. The algorithm stops when the

change in extrema is small enough. The author cannot guarantee that this algorithm will

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

always converge but his many numerical examples lead him to think it is very reliable.

The next step consists of taking the spectral factorization of the polynomial obtained

at the previous step. There are many methods which can be used for this step, including

brute-force polynomial root-finding techniques. Some tricks to reduce the computational

complexity of this step are also given. In the case of minimum and maximum phase trans­

mit and receive matched filters, the author suggests using cepstral deconvolution in order

to avoid polynomial root-finding. This can be implemented using the FFT.

19.4.9 On the Design of FIR Filters by Complex Chebyshev Approximation - Preuss

Preuss [88] considers the problem of designing an FIR filter to approximate a complex-

valued function. This algorithm solves the complex problem directly, without first trans­

forming it into a real problem. The author minimizes the magnitude of the complex error

in the Chebyshev sense and uses a generalization of the Remez algorithm in order to do so.

The problem here is to approximate a complex-valued frequency response. The error

function is complex and incorporates the weighted approximation error of both the magni­

tude and the phase at the same time. The solution is the set of coefficients which minimize

this error in the Chebyshev sense. The minimized Chebyshev norm has an equiripple be­

haviour. However, in this case, the error function which is comprised of both the magnitude

error and the phase error is minimized. Therefore, the magnitude error and the phase error

by themselves do not end up having an equiripple behaviour, but are rather nearly equirip­

ple.

Since there is no true equiripple behaviour, the Remez algorithm cannot be used here.

However, it can be generalized to be applicable to the complex problem. This general­

ization can be simplified to the following four steps. The first step is to compute all the

extremal values of the error function as well as the frequencies corresponding to them. The

second step consists of choosing n + 1 points out of the previous ones to be used for the

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

next iteration. The third step is to calculate the complex deviations at these points. These

are then used as the basis for the fourth step, which is the design of an interpolating transfer

function using the previously-calculated points. Usually, the extremal points and the an­

gles of the error function change from one iteration to the next, and the differences become

smaller.

In the case of linear phase filters, this method would ignore the symmetry of the co­

efficients but would still end up giving the same solution as with the Remez algorithm.

However, since the symmetry property is not used, it would be more time-consuming than

simply using the Remez algorithm.

19.4.10 Improvements of a Complex FIR Filter Design Algorithm - Schulist

In this paper, Schulist [114] decided to take a look at the previously-presented Preuss algo­

rithm [88] and improved upon it by accelerating its convergence. The author also modifies

the way the interpolated transfer function is computed, using a Gaussian relaxation algo­

rithm rather than the Newton interpolation formula used by Preuss.

Schulist describes Preuss' algorithm, stating its many advantages, but not being satisfied

with its convergence. Preuss keeps the angles as entries for the interpolation part of his

algorithm and this is what makes it in a way a generalization of the Remez algorithm.

However, the chosen magnitudes are what affect the convergence, and this is what the

author wishes to work on.

The first improvement is in the calculation of the magnitudes of the error function.

Instead of prescribing these values, he writes a set of linear equations where the unknowns

are the coefficients of the transfer function as well as the error magnitude. He then solves

for the error magnitude only, using Cramer's rule. This gives a complex number, and its

magnitude is then taken. In the case where the error function has more extremal points

than required, the author solves the overdetermined system of linear equations by using a

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gaussian relaxation method. Again, he only solves for the error magnitude.

The second improvement concerns finding the impulse response by interpolation.

Preuss used Newton's formula with a chosen set of points which had the largest deviations.

Schulist decides to use all the extremal points and uses a Gaussian relaxation algorithm

again to solve the overdetermined system of linear equations. He then obtains a polyno­

mial where the deviations are minimized in the mean squared sense. In the case of nonlinear

filters, this method worked very well. However, it sometimes failed for nearly or exactly

linear-phase filters. In this case, the author recommends using the Newton interpolation

formula instead.

19.4.11 A Weighted Least Squares Algorithm for Quasi-Equiripple FIR and IIR

Digital Filter Design - Lim et al.

Lim et al. [71] present a new iterative algorithm for the design of FIR filters using a

least squares frequency response weighting function. The results have quasi-equiripple

behaviour.

They compare the weighted least squares method to the Remez exchange algorithm

and linear programming, stating that the former is well known and is easy to implement.

Another advantage of the WLS method over the others is that the optimal solution can be

obtained analytically. Observations have shown that WLS designs tend to also be optimal

in the minimax sense, though a formal proof of this has not been done. Basically, whether

the WLS design is also optimal in the minimax sense depends on the way in which the nec­

essary weighting function is obtained, A new method for obtaining this weighting function

is presented by the authors, who also state that the results will have an equiripple behaviour.

Frequency responses of linear phase FIR filters can be approximated as a sum of

trigonometric functions multiplied by coefficients. The error between the approximation

and the desired functions can be found on a dense grid of frequencies and a set of linear

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equations can be formed from there. The weighted least squares technique consists of solv­

ing a vector equation for the error and minimizing it. The optimal solution can be found

analytically but this is not the case for finding the least squares weighting function needed

to get a solution which is optimal in the minimax sense. Therefore, iterative methods are

used.

The new algorithm proposed by Lim et al. is based on Lawson's algorithm and intro­

duces an envelope function of the error function. This envelope function is used instead

of the error function itself in order to avoid some of the problems that Lawson's algorithm

encounters when certain values vanish. The envelope function will never be zero. There is

also a parameter in the function which can be modified to improve the convergence speed.

The initial function needed to start the iteration can be set equal to the envelope function

of the filter. This can be obtained by rectangular windowing of the Fourier series of the ideal

frequency response. The parameter which can be modified and affects the convergence

speed can be set by trial and error. There is no analytical method for determining the value

that will make the algorithm converge the fastest. The authors state that their algorithm has

about the same complexity as Lawson's algorithm.

The algorithm can terminate when one of several conditions are met. One can set the

number of iterations to be completed or quasi-equiripple behaviour can be checked as well.

This algorithm can be used in the design of FIR filters where the phase and the magnitude

are arbitrarily prescribed.

19.4.12 Optimal Design of FIR Filters with the Complex Chebyshev Error Criteria

- Burnside and Parks

In their article, Burnside and Parks [10] describe an algorithm which is a variation on the

simplex algorithm. It can be used to design FIR filters that approximate complex-valued

frequency responses. This method has also been used to design filters of length 1000.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The complex approximation problem can be seen as a nonlinear real approximation

problem, and can even be reformulated as a linear approximation problem. In this case, an

exact parametrization is used, and there is no need to worry about approximation errors.

The linear program related to this problem is a continuous, semi-infinite program. It has

an uncountable set of constraint parameters. This linear program can be reformulated as

a dual linear program, which is related to the primal problem. The authors state some

advantages to using the dual formulation rather than the primal formulation. First, the

dimension of the constraints is reduced. It is also known that this type of problem has a

strong duality property. Therefore, once one solution is found, the other one is very easy

to find as well. Another advantage is that the dual variables are Lagrange multipliers of the

active constraints at the solution point. Using this property lets one analyze the sensitivity

of the solution very easily.

The new algorithm is as follows. The first step is to find a basic feasible solution.

The authors compare three methods for choosing the starting point: the conventional ar­

tificial variable method, a method by Cuthbert, and a method by Tang. The latter is too

ill-conditioned for their use, and Cuthbert's method does not let them add more linear con­

straints, therefore, they settle on the artificial variable method. In the second step, they

calculate the primal and dual variables. Then, the third step consists of pricing a fine grid

of constraints. This step is different than in the standard simplex algorithm. They use a

partial pricing algorithm for this step. This algorithm first solves the linear program for

choosing the best pricing for the variables, calculating the error function related to the so­

lution and, if the algorithm has not converged yet, restarting another iteration with values

redefined to take into account the local maxima of the weighted error function. This is ba­

sically a multiple exchange method because each block iteration ends up exchanging all the

local extrema of the error function. At each iteration, the linear program uses the previous

solution as its basis. The authors, through experimentation, found that it is better to keep

all the additional constraints instead of dropping those that are inactive when new ones are

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

added. After the partial pricing, the nonbasic gradient pivoting rule is used to select the

columns of the matrix to be entered into the basis. The fourth step consists of generating

a column corresponding to the incoming variable. The fifth step is simply a ratio test. The

authors used an anti-cycling method proposed by Steiglitz, which seems to work well for

this method.

This algorithm can be used to design both real- and complex-valued coefficient filters.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 Relative Error Minimax Polynomial Approximation

of Smooth Functions with Zeros in the Interval of

Approximation

In this section, we indicate the main techniques used to robustly compute relative error min­

imax approximations of common filter kernels over intervals with roots of the approximated

filter in its interior, even once symmetry has been used to cut the interval of approximation

in half. This is done in very a specific context: the high quality minimax program of the

Boost C++ library [23, 74].

Dr. N. Robidoux formulated these Remez tweaks.

20.1 Even Polynomial Approximations of Even Functions

Suppose that we want to approximate the real valued univariate function f (x) over the

interval [—b, b] with a polynomial (or rat ional function) p.

Filter kernels and their key factors are generally even. When they, or their constituents,

are not even, they generally are odd; An odd function can be converted to an even one by

dividing (or multiplying) by an odd power of x. (For later reference, note that if a function

is odd, this last modification does not affect relative error.) For this reason, we will only

consider the approximation of even functions.

Even functions, when approximated over an interval centred at the origin, should ideally

be approximated with polynomials which only contain even degrees. The Boost minimax

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program, however, produces approximations with, in principle, nonzero coefficients for

o d d p o w e r s o f x a s w e l l a s f o r e v e n p o w e r s o f x .

One could fix this in post-processing by symmetrizing the resulting polynomial p (x) ,

that is, by averaging p(x) and p(—x). Doing this, however, means that the error estimators

do not directly measure the absolute or relative error of intermediate results as they are

used in the end, since they will use unsymmetrized intermediate coefficients in their com­

putation. In addition, this solution requires the computation of twice as many coefficients,

since half of them will be sent to zero in post-processing.

There is a more elegant way to ensure that the approximating polynomials are as good

as even at every step. If one approximates f(y/y) over [0, b2], setting

p (x) = p { y 2) ,

with p the result of the modified minimax computation, directly gives an even polynomial

(or rational function) approximation such that p and p have the same max and relative max

errors over their respective intervals of computation. There is some small print: The square

root function computation must not introduce error which is comparable to the error in key

steps of the Remez computation. For functions worth approximating, like sine, jinc and

related functions, this is generally not the case.

Note: Although much of what follows is also applicable to the construction of approx­

imating rational functions, we will only consider polynomial approximations from now

on. In addition, we will only consider absolute relative error minimax approximations, not

(plain) absolute error minimax approximations. Preliminary testing established that relative

error minimization is more conducive to frequency response preservation.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20.2 Minimizing the Relative Error when the Approximated Function

Has Roots in the Key Interval

Unfortunately (but sensibly), minimax programs which allow relative error to be used in­

stead of maximum error generally assume that the function to be approximated does not

have roots in the interval of approximation. Although the Boost minimax program has a

workaround for the case in which the only root in the interval of approximation is located

at one of its extremities (standardized to the position x = 0), this is not sufficient for our

purposes, namely approximating functions with one or more zeros in the interior of [0, b) .

One advantage of the relative error over the (plain) maximum error is that it is invariant

under multiplication and division by accurately computed functions that introduce no new

roots, provided the "strength" of the matching roots of the rescaling function does not

overpower the function which is to be approximated. This, of course, presupposes that the

relative error is left undefined at roots of the approximated function /.

Consequently, instead of approximating f (x) directly, we approximate

fa) = M

where K is the number of roots in the interval of approximation (possibly including those

located at the endpoints), the are these roots' locations, and mk their multiplicities.

Because the divisor flfcLi (x ~ rk)mk can be considered to be computed exactly (without

significant truncation error), especially if high precision arithmetic is used for its

computation—and it is where it counts thanks for the use of the libraries GMP (GNU

Multiple Precision Arithmetic Library) [34] and NTL (Number Theory Library) [116] —

and this divisor is nonzero where / is nonzero, the relative error computed with it for /

is for all practical purposes identical to the relative error of the corresponding polynomial

approximation of /.

In addition, the reconstructed / automatically has roots at exactly the correct locations,

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and with the desired multiplicity.

There is only one last issue to address: The modified function f { x) , of course, is un­

defined at the roots rk. If these roots are located at likely Remez evaluation points—for

example, if one approximates cos(7rx) over [0,2] the r*'s are at | = 0.5 and | = 1.5—the

computation is likely to abort as a result of an illegal division by zero.

One could, of course, prevent this from happening by inserting a branch where the

modified function / is evaluated, and hardwiring its values at (and near) the roots of /.

Instead of branching, we use the following "dirty" trick.

The function cos(7rx), if computed accurately, has an infinite number of roots on the

real line: Every half-integer is a root. Given that half-integers are exactly representable in

floating point arithmetic, the corresponding modified function is undefined at every one of

these "likely" Remez evaluation points.

On the other hand, the function cos x , if computed accurately, has n o floating point root

on the real line! The reason for this is that its roots are the half-integer multiples of 7r,

that is, they are all irrational numbers, and consequently the roots of cos x are not exactly

representable in floating point arithmetic.

Consequently, the modified function / can be treated as if it has a non-vanishing denom­

inator by rescaling x so that the roots of the approximated function are irrational. Often,

rescaling by a power of the high precision 7r provided by the NTL library does the trick.

Provided the rescaling can be undone sufficiently accurately (and it can), there is no need

for branching and accurately computing the limit of / near roots of /. Again, this rescaling

does not affect the maximum relative error.

This last trick is certainly more than a bit "dodgy" and, in addition, probably unneces­

sary in many cases, but it appears to be useful, which is why we bring attention to it here.

In actual computations, it has never failed us. Computing the division by linear root factors

at a higher precision than the solution of the key linear system certainly adds a measure of

safety.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Again, some small print. It is possible that part of the success of the above approach

may be attributed to the fact that the approximated functions are themselves approximated

by polynomials or well-behaved rational functions near their roots. For example, we do not

pull values of trigonometric functions out of thin air: We call (unavoidably approximate)

libraries. Once the accuracy of the minimax solution is high enough that errors near roots,

for example, becomes significant, one should keep in mind the fact that the Remez code is

trying to adapt to a library implementation of the target function which is itself an approx­

imation. There are multiple implicit and explicit floating point precisions at play, and the

game is played close to some of the lower tolerances.

20.3 Future Directions: Minimax Polynomial Approximations with

Positive Coefficients

Roughly speaking, typical minimax approximations of filter kernels and their key factors

have polynomial coefficients which alternate in sign. Preliminary testing performed by

Dr. Robidoux suggests that by replacing the independent variable re by b — x, and keep­

ing the linear root factors separate from the polynomial actually computed by the Remez

program, one obtains relative minimax approximations with coefficients of a constant sign

past a certain accuracy threshold. The reason this works is that one then "expands" the

computed approximation around one of the roots of the approximated function instead of

what turns out to be, usually, its maximum. Given that constant sign polynomials can be

evaluated more accurately than the other kind because there is no cancellation error, one

hopes that this approach will yield higher accuracy single precision approximations.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20.4 Accuracy of Relative Minimax Polynomial Approximations of

Common Filter Kernels

The following functions were approximated using the modified Boost C++ library minimax

program shown in Appendix C:

C0S(7TX),

sin(7r:r)
sinc(7rx) =

'KX

Lanczos2(;c) = sinc(7r:r) sine > and

Lanczos3(x) = sinc(7ra:) sine •

Similar approximations, with precisions matching the various bit depths used to store in­

termediate results, are currently used by the image processing program ImageMagick [20].

They are found in the source code of the Resize program [19]. (The author of this thesis is

among the many authors of ImageMagick.)

The following tables present estimated maximum relative errors in various precisions

for each of approximated function. These errors were found using the built-in test func­

tion of the Boost library minimax program, evaluating the polynomial using four different

floating point precisions: float, double, long and the NTL precision. Float is standard single

precision (32 bits), double is standard double precision (64 bits), long is standard extended

precision (128 bits) and the precision used with the arbitrary precision NTL library was the

maximum handled by our computing platform, namely 2155 bits.

These results make clear that the approximations converge rapidly. In all cases, the

minimum relative error achieved when using machine numbers to evaluate the computed

polynomials is comparable to the corresponding machine epsilon (approximately le-07 for

single (float) precision and le-16 for double precision). Consequently, the polynomials are

accurate enough to replace the standard math library implementations, in particular when

8- and 16-bit images are filtered.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.1: Maximum relative error for relative minimax polynomial approximations of

cos(7rx) on [—1,1]

Degree Float Double Long NTL

4 4.185539e-04 4.185843e-04 4.185843e-04 4.185843e-04

6 1.947954e-06 1.908517e-06 1.908517e-06 1.908517e-06

8 5.369335e-08 5.365891e-09 6.365891e-09 5.365891e-09

10 4.426916e-08 1.024057e-ll 1.024050e-ll 1.024050e-ll

12 4.426916e-08 1.425382e-14 1.413997e-14 1.413992e-14

14 4.426916e-08 1.06369le-16 1.483316e-17 1.478430e-17

16 4.426916e-08 7.914744e-17 6.367835e-20 1.211265e-20

18 4.426916e-08 8.163299e-17 4.00319 le-20 7.986227e-24

20 4.426916e-08 8.163299e-17 4.035382e-20 4.329052e-27

22 4.426916e-08 8.163299e-17 4.035382e-20 1.963389e-30

24 4.426916e-08 8.163299e-17 4.035382e-20 7.560320e-34

26 4.426916e-08 8.163299e-17 4.035382e-20 2.502561e-37

28 4.426916e-08 8.163299e-17 4.035382e-20 7.197284e-41

30 4.426916e-08 8.163299e-17 4.035382e-20 1.815138e-44

32 4.426916e-08 8.163299e-17 4.035382e-20 4.046958e-48

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.2: Maximum relative error for relative minimax polynomial approximations of

sinc(7rx) on |]

Degree Float Double Long NTL

2 6.594782e-05 6.589472e-05 6.589472e-05 6.589472e-05

4 1.537064e-07 9.824723e-08 9.824723e-08 9.824723e-08

6 3.539321e-08 8.539241e-ll 8.539236e-ll 8.539236e-l 1

8 3.632800e-08 4.866524e-14 4.856105e-14 4.856100e-14

10 3.632800e-08 1.011793e-16 1.950343e-17 1.946805e-17

12 3.632800e-08 6.654869e-17 4.318614e-20 5.796912e-21

14 3.632800e-08 6.805602e-17 3.30468 le-20 1.332528e-24

16 3.632800e-08 6.805602e-17 3.30468 le-20 2.435940e-28

18 3.632800e-08 6.805602e-17 3.30468 le-20 3.625852e-32

20 3.632800e-08 6.805602e-17 3.30468 le-20 4.479547e-36

22 3.632800e-08 6.805602e-17 3.30468 le-20 4.66706 le-40

24 3.632800e-08 6.805602e-17 3.30468 le-20 4.15581 le-44

26 3.632800e-08 6.805602e-17 3.30468 le-20 3.199192e-48

28 3.632800e-08 6.805602e-17 3.30468 le-20 2.150258e-52

30 3.632800e-08 6.805602e-17 3.30468 le-20 1.27278 le-56

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.3: Maximum relative error for relative minimax polynomial approximations of

sinc(7rx) on [—2, 2]

Degree Float Double Long NTL

6 1.425363e-03 1.425366e-03 1.425366e-03 1.425366e-03

8 1.482876e-05 1.476734e-05 1.476734e-05 1.476734e-05

10 1.750109e-07 1.02795 le-07 1.02795 le-07 1.02795 le-07

12 6.139576e-08 5.173728e-10 5.173727e-10 5.173727e-10

14 5.613330e-08 1.978281e-12 1.978194e-12 1.978194e-12

16 5.613330e-08 6.100393e-15 5.953947e-15 5.953907e-15

18 5.613330e-08 1.461780e-16 1.456223e-17 1.449143e-17

20 5.613330e-08 1.079298e-16 1.017962e-19 2.913569e-20

22 5.613330e-08 1.064270e-16 5.330947e-20 4.922994e-23

24 5.613330e-08 1.064270e-16 5.052000e-20 7.091367e-26

26 5.613330e-08 1.064270e-16 5.052000e-20 8.813838e-29

28 5.613330e-08 1.064270e-16 5.052000e-20 9.550348e-32

30 5.613330e-08 1.064270e-16 5.052000e-20 9.102870e-35

32 5.613330e-08 1.064270e-16 5.052000e-20 7.692090e-38

34 5.613330e-08 1.064270e-16 5.052000e-20 5.802586e-40

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.4: Maximum relative error for relative minimax polynomial approximations of

sinc(7ra;) on [—3,3]

Degree Float Double Long NTL

8 3.896556e-03 3.89657 le-03 3.89657le-03 3.896571e-03

10 7.00717 le-05 7.001032e-05 7.001032e-05 7.001032e-05

12 9.361795e-07 8.694208e-07 8.694208e-07 8.694208e-07

14 1.103985e-07 7.97757 le-09 7.97757 le-09 7.977571e-09

16 9.525836e-08 5.663112e-ll 5.663 lOle-11 5.663101e-ll

18 7.972186e-08 3.215453e-13 3.213942e-13 3.213941e-13

20 7.792516e-08 1.669357e-15 1.494867e-15 1.494803e-15

22 7.792516e-08 2.29847 le-16 5.880179e-18 5.809685e-18

24 7.792516e-08 2.395164e-16 9.420793e-20 1.916892e-20

26 7.792516e-08 2.27876 le-16 1.001955e-19 5.440043e-23

28 7.792516e-08 2.278761e-16 8.223339e-20 1.342660e-25

30 7.792516e-08 2.278761e-16 8.07790 le-20 2.909397e-28

32 7.792516e-08 2.27876 le-16 8.07790 le-20 5.580647e-31

34 7.792516e-08 2.278761e-16 8.077901e-20 9.544275e-34

38 7.792516e-08 2.278761e-16 8.07790 le-20 1.464703e-36

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.5: Maximum relative error for relative minimax polynomial approximations of

sinc(7ra:) on [—4, 4]

Degree Float Double Long NTL

10 7.694707e-03 7.694687e-03 7.694687e-03 7.694687e-03

12 1.992570e-04 1.992063e-04 1.992063e-04 1.992063e-04

14 3.727800e-06 3.636234e-06 3.636234e-06 3.636234e-06

16 1.528947e-07 4.975408e-08 4.975408e-08 4.975408e-08

18 1.333840e-07 5.333079e-10 5.333078e-10 5.333078e-10

20 1.140123e-07 2.529567e-12 2.529364e-12 2.529363e-12

22 1.153787e-07 3.329803e-14 3.312977e-14 3.312966e-14

24 1.160932e-07 4.283715e-16 2.003014e-16 2.002212e-16

26 1.160932e-07 2.561466e-16 1.147737e-18 1.035230e-18

28 1.160932e-07 2.387065e-16 1.101967e-19 4.635935e-21

30 1.160932e-07 2.408858e-16 1.336076e-19 1.816834e-23

32 1.160932e-07 2.408858e-16 1.231846e-19 6.286779e-26

34 1.160932e-07 2.408858e-16 1.279385e-19 1.935638e-28

38 1.160932e-07 2.408858e-16 1.279385e-19 5.338746e-31

40 1.160932e-07 2.408858e-16 1.279385e-19 1.327007e-33

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.6: Maximum relative error for relative minimax polynomial approximations of

Lanczos 2 on [—2,2]

Degree Float Double Long NTL

8 2.976738e-03 2.97674 le-03 2.97674le-03 2.97674 le-03

10 4.774638e-05 4.769967e-05 4.769967e-05 4.769967e-05

12 5.931718e-07 5.333010e-07 5.333010e-07 5.333010e-07

14 6.345342e-08 4.444438e-09 4.444438e-09 4.444438e-09

16 6.325954e-08 2.88731 le-11 2.887298e-l 1 2.887298e-l 1

18 6.425965e-08 1.510835e-13 1.509427e-13 1.509426e-13

20 6.368929e-08 7.844046e-16 6.504637e-16 6.503924e-16

22 6.425965e-08 1.206126e-16 2.434396e-18 2.353636e-18

24 6.425965e-08 1.297885e-16 7.341860e-20 7.262802e-21

26 6.425965e-08 1.249886e-16 5.535667e-20 1.935260e-23

28 6.425965e-08 1.249886e-16 5.973492e-20 4.500524e-26

30 6.425965e-08 1.249886e-16 6.064956e-20 9.217962e-29

32 6.425965e-08 1.249886e-16 6.064956e-20 1.676072e-31

34 6.425965e-08 1.249886e-16 6.064956e-20 2.724287e-34

38 6.425965e-08 1.249886e-16 6.064956e-20 3.982782e-37

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20.7: Maximum relative error for relative minimax polynomial approximations of

Lanczos 3 on [—3,3]

Degree Float Double Long NTL

10 6.28591 le-03 6.285918e-03 6.285918e-03 6.285918e-03

12 1.488563e-04 1.487554e-04 1.487554e-04 1.487554e-04

14 2.581418e-06 2.493494e-06 2.493494e-06 2.493494e-06

16 1.761916e-07 3.149920e-08 3.149920e-08 3.149920e-08

18 1.179548e-07 3.132560e-10 3.132559e-10 3.132556e-10

20 1.140123e-07 2.529567e-12 2.529364e-12 2.529363e-12

22 1.179548e-07 1.719493e-14 1.696937e-14 1.696927e-14

24 1.179548e-07 3.221458e-16 9.640893e-17 9.631240e-16

26 1.179548e-07 2.458708e-16 5.807855e-19 4.692187e-19

28 1.179548e-07 2.305505e-16 8.889286e-21 1.985876e-21

30 1.179548e-07 2.305505e-16 1.067772e-19 7.375661e-24

32 1.179548e-07 2.305505e-16 1.006381e-19 2.424808e-26

34 1.179548e-07 2.305505e-16 1.020404e-19 7.109487e-29

38 1.179548e-07 2.305505e-16 1.020404e-19 1.871282e-31

40 1.179548e-07 2.305505e-16 1.020404e-19 4.447418e-34

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21 Frequency Response of Linear Filters

When constructing filters for digital image processing, it is sometimes be useful to work

in the frequency domain, especially when the filters are used with an operation with a

significant downsampling component. In the previous chapter (Chapter 20), the relative

minimax polynomial approximations of Lanczos 2 and Lanczos 3 were compared to the

original in the spatial domain. In the next chapter (Chapter 22), they will be compared

in the frequency domain through the frequency response of the discrete operator derived

from them by filtering and decimating at various downsampling ratios and phases. The

present chapter sets the stage for this last comparison, which confirms that the relative

error minimax approximations preserve the frequency response of the exact filters.

21.1 Comparing Filters in the Frequency Domain

First of all, how should filters for digital image processing be compared? There are various

methods but one of these is by converting everything to the frequency domain and com­

paring them to each other and to the ideal filter. This can be done by visual inspection.

For downsampling, the ideal filter—at least in principle—is the "brick wall" filter [35]. In

the frequency domain, it has a value of 0 dB until a sharp cutoff at the Nyquist frequency,

which is the inverse of the decimation ratio, where n is the decimation ratio [126].

Usually, when a filter is developed, it is in the spatial domain, rather than in the fre­

quency domain. There also needs to be some sort of test input to which each filter can be

applied in order for the results to be compared. Typically, the test input used is a single

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value equal to 1, which is padded on each side with as many zeros as necessary. This is

called an impulse and it is like sending just one value to the filter [117]. Basically, this

is the Dirac delta function in the continuous case and the Kronecker delta function in the

discrete case. This can be done in one or two dimensions; however, for the remainder of

this thesis, only the one-dimensional case will be considered.

The result of applying the filter to the test input described above is the impulse response

of the filter. Graphically, it would give the curve of the basis function for the filter, either

as a continuous function or as discrete points. In digital image processing, the filters are

all sampled so we only consider the discrete case. In the continuous case, the Fourier

transform would be applied to the function to get the corresponding one in the frequency

domain [117]. In the discrete case, it is recommended to take the z-transform of the given

points and sample on the unit circle [126]. This actually corresponds to using the Discrete-

Time Fourier Transform (DTFT) [119]. Doing this, the frequency spectrum of the filter

is obtained. The magnitude and the phase can then be extracted. In the following, the

magnitude will be used to compare the filters. Since the result of using the DTFT is a

continuous complex function, taking the magnitude simply consists of taking the magnitude

of the complex values. This then gives the expected frequency response.

21.2 Plotting ID Filtering and Downsampling Frequency Response

The data for the following frequency response plots was computed using the Scilab code

found in Appendix E. The basic idea was to take the z-transform after normalization of the

sampled impulse response of various resampling methods. This resulted in the frequency

spectrum for each method, from which the magnitude was also extracted. This magnitude

was then converted to decibels and plotted against the frequency. More details may be

found in Chapter 21.

In this context, the phase of the filter simply tells us where the output is situated with

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respect to the input samples. A zero phase indicates that the output is at the same location

as the middle input sample and a half phase indicates that the output is between two input

samples [126]. Other phases between zero and one half are also possible, and simply

indicate other positions of the output samples with respect to the input samples. A way of

visualizing how the zero and half phases were used here is to consider the impulse response

of the resampling methods. When decimating by 2, for example, we can divide the support

of the function into intervals of length such as [—5,0], [0, |], [|, l], and so on. For

a zero phase, we then consider the values at the end points of the intervals, for example

{ —0, l}. For a half phase, we consider the midpoints of each interval, for example

4' 4 }• The idea is similar for a decimation by n. We simply use intervals of length

~ instead, making sure that 0 is an endpoint, so as to frame the frequency response plot

within the Nyquist limits.

The frequency responses for the Box, Tent, Lanczos 2 and Lanczos 3 filters are shown

in Turkowski [126]. For comparison purposes (and to double check our methods), the

frequency responses for these methods were computed again for this thesis. We have added

plots for Catmull-Rom, Mitchell-Netravali, (cubic) B-Spline Smoothing. All are shown

below. The piece de resistance, however, is the comparison of the frequency responses of

relative minimax polynomial approximations of Lanczos 2 and 3 with the original found in

the next chapter (Chapter 22).

The plots have been aligned to facilitate direct comparisons. In every plot, the appro­

priate Nyquist frequency—and consequently the cutoff frequency of an "ideal" brick wall

low pass filter—is shown as a dark vertical line, and a dark horizontal line shows the am­

plification level which is indistinguishable from —00 when the filtering result is an 8-bit

integer "image".

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21.3 ID Filtering and Downsampling Frequency Response of Lanczos

3, Lanczos 2, Catmull-Rom, Mitchell-Netravali, (Cubic) B-Spllne

Smoothing, Tent and Box

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 1 (Pure Filtering, and Translation by

Zero Phase (Pure Filtering)

The interpolatory filters—Lanczos 3, Lanczos 2, Catmull-Rom, Tent and Box—all have a

gain of 0 dB (of course). The smoothing filters—Mitchell-Netravali and (cubic) B-Spline

smoothing—do not.

Frequency

00 ;o
c
to
O

Lanczos 3, 2 = CR = Tent = Box
Mitchell-Netravali

B-Splines

Figure 21.1: Frequency response of various standard filters when decimating by a factor of

1 with zero phase

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase (Translation by |)

When translating by |, all the considered filters, having a symmetrical kernel, have a gain

of —oo for unit frequency. Unit frequency corresponds to alternating 1/—1 data (the seesaw

mode).

Frequency

0.5 0
0

10

•20

30

•40

50

•60

Lanczos 3
Lanczos 2 = Catmull-Rom

Mitchell-Netravali
B-Splines

Tent

70

80

Figure 21.2: Frequency response of various standard filters when decimating by a factor of

1 with half phase

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 2

Zero Phase

Frequency

0 0.2 0.4 0.6 0.8 1
0

10

20

30

•40

50

60

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

70

80

Figure 21.3: Frequency response of various standard filters when decimating by a factor of

2 with zero phase

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase

Frequency

0 0.2 0.4 0.6 0.8 1

•20

CO "O

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent
Box

Figure 21.4: Frequency response of various standard filters when decimating by a factor of

2 with half phase

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 3

Zero Phase

Frequency

0.2 0.3 0.4 0.5 0 0.6
0

10

•20

30

•40

•50

60
Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent
Box

70

80

Figure 21.5: Frequency response of various standard filters when decimating by a factor of

3 with zero phase

225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase

Frequency

0.5 0 0.2 0.3 0.4 0.6
0

10

•20

30

•40

50

60

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

70

80

Figure 21.6: Frequency response of various standard filters when decimating by a factor of

3 with half phase

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 4

Zero Phase

o

-10

-20

-30

T3
^ -40
(0
O

-50

-60

-70

-80

Figure 21.7: Frequency response of various standard filters when decimating by a factor of

4 with zero phase

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency

0.1 0.2 0.3 0.4 0.5
— - i ! I i

\ ••• v \
\ V

-

\\
\ \
\\

\ \

K*\ **•
\ **» V, \ •,

\ \ \ *

\

~
\ 1

/ \ !\ r'\ \ \

- \u xCV
\M / W \ \

_ IIU \\

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

11 \\ 1 «

S<* f1 • 11 k >

1 \\ 1
! I\ I

Half Phase

Frequency

0 0.1 0.2 0.3 0.4 0.5
0

10

•20

30

40

50

60
Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent
Box

70

•80

Figure 21.8: Frequency response of various standard filters when decimating by a factor of

4 with half phase

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 5

Zero Phase

Frequency

0.05 0 0.15 0.25 0.35 0.4 0.2 0.3
0

10

•20

30

•40

50

•60
Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent
Box

70

80

Figure 21.9: Frequency response of various standard filters when decimating by a factor of

5 with zero phase

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

•20

•30

•40

50

60

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

70

80

Figure 21.10: Frequency response of various standard filters when decimating by a factor

of 5 with half phase

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 6

Zero Phase

Frequency

0.05 0.25 0 0.15 0.2 0.3
0

-10

-20

-30

-40

-50

-60

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

-70

-80

Figure 21.11: Frequency response of various standard filters when decimating by a factor

of 6 with zero phase

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase

Frequency

0 0.05 0.15 0.2 0.25 0.3
0

10

20

30

•40

50

60
Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent
Box

70

80

Figure 21.12: Frequency response of various standard filters when decimating by a factor

of 6 with half phase

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 7

Zero Phase

Frequency

0 0.05 0.1 0.15 0.2 0.25
0

10

20

•30

40

50

60
Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent
Box

70

80

Figure 21.13: Frequency response of various standard filters when decimating by a factor

of 7 with zero phase

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase

Frequency

0 0.05 0.15 0.2 0.25
0

10

20

30

•40

•50

60

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

70

80

Figure 21.14: Frequency response of various standard filters when decimating by a factor

of 7 with half phase

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by a Factor of 8

Zero Phase

Frequency

0.05 0 0.15 0.2 0.25
0

10

•20

30

40

50

60

Lanczos 3
Lanczos 2

Catmull-Rom
Mitchell-Netravali

B-Splines
Tent

70

80

Figure 21.15: Frequency response of various standard filters when decimating by a factor

of 8 with zero phase

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase

0.05

Frequency

0.1 0.15 0.2 0.25

CO T5

CO
0

-10

-20

-30

-40

-50

-60

-70

-80

- — • 1
v..

1 1 !

*****^<

sv

'\ \ N-.'
\ \ " \ \

-

\ \ \\ \\ *\

\ \ * ' \

- \ \ "V » \
\ \

,i,—, :

A \ \/ / \ <\ '' i
- \w y^X\ i

\ » ! \ A '• *. \ i
v\

M 1 %, \)
Lanczos 3 ii \ I \\ ; |
Lanczos2

11 < \ \ ; ;

Catmull-Rom !j
Mitchell-Netravali s X

* •• • .

B-Splines | % V' >
\ •

Tent s * ' , •
* •

Box | t '•« .
\ ,

» •
I »

Figure 21.16: Frequency response of various standard filters when decimating by a factor

of 8 with half phase

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation by Factors of 16,32 and 64

Discrete convolutions with large number of points are good approximations of the corre­

sponding continuous convolutions. Properly scaled, the frequency response plots for dec­

imation by 16, 32 and 64 are essentially identical to those for decimation by 8. This is

the case for the plots of the frequency responses of Lanczos 3, Lanczos 2, Catmull-Rom,

Mitchell-Netravali, (cubic) B-Splines, Tent and Box shown in this section; It is also the

case for the plots of the frequency responses of polynomial approximations of Lanczos 2

and Lanczos 3 shown in the next chapter, Chapter 22. For this reason, they are omitted.

(The code to generate the plots for these decimation ratios is in Appendix E.)

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22 ID Filtering and Downsampling Frequency Response

of Relative Minimax Filter Kernel Approximations

In this chapter, we show the frequency response plots of decimating with the relative er­

ror minimax approximations of Lanczos 2 on [—2,2] and Lanczos 3 on [—3,3] for which

maximum relative errors were shown in Tables 20.6 and 20.7. These confirm, in the fre­

quency domain, the effectiveness of the relative minimax approximation method discussed

in Chapter 20.

In the case of Lanczos 2, the frequency response plots are essentially indistinguishable

of the exact ones starting at degree 16; in the case of Lanczos 3, starting at degree 22.

Looking back at Tables 20.6 and 20.7, we observe that this is past the degrees at which the

maximum error of the relative minimax approximations, when evaluated with float (32 bit)

arithmetic, stalls. It is, actually, just before the double precision limit is reached. At this

point, we do not know if visible differences in the frequency response plots lead to visible

artifacts. We strongly doubt it.

Interestingly, although the frequency response of the corresponding polynomials are

noticeably different from those of the original functions, the frequency responses of the de­

gree 10 Lanczos 2 approximation and degree 20 Lanczos 3 approximation could be argued

to be as good, possibly better, than those of the "exact" Lanczos 2 and 3 filters.

The coefficients of the corresponding minimax approximations are found in the Ap­

pendix which computes their frequency response, namely Appendix E.

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.1 Frequency Response of Relative Minimax Polynomial Approxi­

mations of Lanczos 2

Only degrees of the approximating polynomial which give fairly high quality results are

shown. More were computed in Appendix E.

Decimation 1 (Pure Filtering, and Translation by |)

Frequency

0 0.5
0

-10

-20

-30

-40

-50

-60

Lanzos 2 (<|>=0) = All Deg.
Lanczos 2 {<(>=1/2) = Deg. 14+

Degree 8 (<j>=1/2)
Degree 10 f<j>=1 /2)
Degree 12 (<j>=1/2)

-70

-80

Figure 22.1: Frequency response when decimating by a factor of 1: Lanczos 2 and relative

minimax polynomial approximations

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 2

Degree 8

Frequency

0.8 0.6 0.4 0.2 0
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<|>=0)
Degree 8 (4>=0)

Lanczos 2 (<|>=1/2)
Degree 8 (<(>=1/2)

-80

Figure 22.2: Frequency response when decimating by a factor of 2: Lanczos 2 and degree

8 relative minimax polynomial approximation

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.6 0.8 0 0.2 0.4
0

-10

-20

-30

c -40

-50

-60

-70 Lanzos 2 {<(>=0)
Degree 10 (<j>=0)

Lanczos 2 (0=1/2)
Degree 10 (4>=1/2)

-80

Figure 22.3: Frequency response when decimating by a factor of 2: Lanczos 2 and degree

10 relative minimax polynomial approximation

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency

0 0.4 0.6 0.8 0.2
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<j>=0!
Degree 12 (<j>=0,

Lanczos 2 ($=1/2'
Degree 12 ($=1/2;

-80

Figure 22.4: Frequency response when decimating by a factor of 2: Lanczos 2 and degree

12 relative minimax polynomial approximation

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0.2 0.4 0.6 0.8 0
0

10

-20

-30

-40

-50

-60

-70 Lanzos 2 f(J>=0)
Degree 14 (<j>=0)

Lanczos 2 (<j>=1/2)
Degree 14 (<j>=1/2)

-80

Figure 22.5: Frequency response when decimating by a factor of 2: Lanczos 2 and degree

14 relative minimax polynomial approximation

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.2 0.4 0.6 0.8 1

-10

-20

-30

CQ "O
C -40
5
0

-50

-60

-70 Lanzos 2 (<|>=0)
Degree 16 (<j>=0)

Lanczos 2 (<t>=1/2)
Degree 16 (<}>=1/2)

-80

Figure 22.6: Frequency response when decimating by a factor of 2: Lanczos 2 and degree

16 relative minimax polynomial approximation

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 3

Degree 8

Frequency

0.5 0.6 0.3 0.4 0 0.2
0

10

-20

-30

TJ
a "40

-50

-60

-70 Larizos 2 «>=0)
Degree 8 (<j>=0)

Lanczos 2 («|>=1 /2)
Degree 8 (0=1/2)

-80

Figure 22.7: Frequency response when decimating by a factor of 3: Lanczos 2 and degree

8 relative minimax polynomial approximation

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.5 0.4 0.3 0
0

-10

-20

-30

-40

-50

-60

Lanzos 2 (0=0)
Degree 10 (<j>=0)

Lanczos 2 (<>= 1 /2)
Degree 10 (0=1/2)

-70

-80

Figure 22.8: Frequency response when decimating by a factor of 3: Lanczos 2 and degree

10 relative minimax polynomial approximation

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency

0.6 0.5 0.3 0.4 0 0.2
0

10

-20

-30

-40

-50

-60

-70 Lanzos 2 (<j>=0)
Degree 12 (<(>=0)

Lanczos 2 (<j>=1/2)
Degree 12 (tj>=1/2)

-80

Figure 22.9: Frequency response when decimating by a factor of 3: Lanczos 2 and degree

12 relative minimax polynomial approximation

247

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0.6 0.4 0.2 0.3 0
0

-10

-20

-30

-40

-50

-60

Lanzos 2 (0=0)
Degree 14 (<j>=0

Lanczos 2 (0=1/2
Degree 14 (0=1/2)

-70

-80

Figure 22.10: Frequency response when decimating by a factor of 3: Lanczos 2 and degree

14 relative minimax polynomial approximation

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0.6 0.5 0.3 0.4 0.2 0
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 2 (f=0)
Degree 16 (<j>=0)

Lanczos 2 (<f»=1 /2)
Degree 16 (<(>=1/2)

-80

Figure 22.11: Frequency response when decimating by a factor of 3: Lanczos 2 and degree

16 relative minimax polynomial approximation

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 4

Degree 8

Frequency

0.5 0.4 0.3 0 0.2
0

10

-20

-30

-40

-50

-60

Lanzos 2 (<|>=0)
Degree 8 (0=0)

Lanczos 2 (0=1/2)
Degree 8 (0=1/2)

-70

-80

Figure 22.12: Frequency response when decimating by a factor of 4: Lanczos 2 and degree

8 relative minimax polynomial approximation

250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.4 0.5 0.2 0.3 0
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 2 (<{>=0)
Degree 10 (<j>=0)

Lanczos 2 (<j>=1/2)
Degree 10 (<j>=1 /2)

-80

Figure 22.13: Frequency response when decimating by a factor of 4: Lanczos 2 and degree

10 relative minimax polynomial approximation

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency

0.1 0.2 0.3 0.4 0.5

-10

-20

-30

CD "D
7 -40
'«
o

-50

-60

-70

-80

1 1 i i 1

-

t\

- tj

Lanzos 2 (<|>=0)
Degree 12 (<j>=0) |

Lanczos 2 (<(i=1/2)
Degree 12 (<(>=1/2) 1

Figure 22.14: Frequency response when decimating by a factor of 4: Lanczos 2 and degree

12 relative minimax polynomial approximation

252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0.4 0.5 0.2 0.3 0
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 2 (<|>=0)
Degree 14 (<|>=0)

Lanczos 2 (0=1/2)
Degree 14 (<|>=1/2)

-80

Figure 22.15: Frequency response when decimating by a factor of 4: Lanczos 2 and degree

14 relative minimax polynomial approximation

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0.5 0.3 0.4 0.2 0
0

-10

-20

-30

r -40

-50

-60

-70 Lanzos 2 (<|>=0)
Degree 16 (<j>=0)

Lanczos 2 (<(>=1/2)
Degree 16 (<(>=1/2)

-80

Figure 22.16: Frequency response when decimating by a factor of 4: Lanczos 2 and degree

16 relative minimax polynomial approximation

254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 5

Degree 8

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-10

-20

-30

-50

-60

-70 Lanzos 2 (0=0'
Degree 8 (0=0;

Lanczos 2 (0=1/2'
Degree 8 (0=1/2;

-80

Figure 22.17: Frequency response when decimating by a factor of 5: Lanczos 2 and degree

8 relative minimax polynomial approximation

255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.35 0.4 0.25 0.3 0 0.05 0.2
0

-10

-20

-30

c -40

-50

-60

-70 Lanzos 2 (<j>=0)
Degree 10 (<j>=0)

Lanczos 2 (<(>=1/2)
Degree 10 (0=1/2)

-80

Figure 22.18: Frequency response when decimating by a factor of 5: Lanczos 2 and degree

10 relative minimax polynomial approximation

256

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency

0.35 0.4 0.25 0.3 0.2 0.05 0
0

10

-20

-30

-40

-50

-60

-70 Lanzos 2 (0=0)
Degree 12 (0=0)

Lanczos 2 (0=1/2)
Degree 12 (0=1/2)

-80

Figure 22.19: Frequency response when decimating by a factor of 5: Lanczos 2 and degree

12 relative minimax polynomial approximation

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0.25 0.35 0.4 0.15 0.3 0 0.05 0.2
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 2 (<j>=0)
Degree 14 (<j>=0)

Lanczos 2 (<|>=1/2)
Degree 14 («|)=1 /2)

-80

Figure 22.20: Frequency response when decimating by a factor of 5: Lanczos 2 and degree

14 relative minimax polynomial approximation

258

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0.35 0.4 0.15 0.25 0.2 0.3 0 0.05
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<>=0)
Degree 16 (<j>=0)

Lanczos 2 (0=1/2)
Degree 16 (<j>=1/2)

-80

Figure 22.21: Frequency response when decimating by a factor of 5: Lanczos 2 and degree

16 relative minimax polynomial approximation

259

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 6

Degree 8

Frequency

0.25 0.15 0.3 0.05 0.2 0
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<(>=0)
Degree 8 (<j>=0)

Lanczos 2 (0=1/2)
Degree 8 (0=1/2)

-80

Figure 22.22: Frequency response when decimating by a factor of 6: Lanczos 2 and degree

8 relative minimax polynomial approximation

260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.25 0.3 0.15 0.2 0 0.05
0

-10

-20

-30

-40

-50

-60

Lanzos 2 (0=0)
Degree 10 (<|>=0)

Lanczos 2 (0=1/2)
Degree 10 (0=1/2)

-70

-80

Figure 22.23: Frequency response when decimating by a factor of 6: Lanczos 2 and degree

10 relative minimax polynomial approximation

261

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency

0.3 0.15 0.2 .25 0 0.05
0

-10

-20

-30

a "40

-50

-60

-70 Lanzos 2 (<(>=0)
Degree 12 (<j»=0)

Lanczos 2 (<(>=1/2)
Degree 12 (<(>=1/2)

-80

Figure 22.24: Frequency response when decimating by a factor of 6: Lanczos 2 and degree

12 relative minimax polynomial approximation

262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3

-10

-20

-30

m -o
r -40
O

-50

-60

-70 Lanzos 2 (0=0'
Degree 14 (<j>=0

Lanczos 2(0=1/2
Degree 14 (<j>=112,

-80

Figure 22.25: Frequency response when decimating by a factor of 6: Lanczos 2 and degree

14 relative minimax polynomial approximation

263

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3

-10

-20 -

-30

"O
C -40

-50

-60

-70 Lanzos 2 (<(>=0)
Degree 16 (0=0)

Lanczos 2 (0=1/2)
Degree 16 (0=1/2)

-80

Figure 22.26: Frequency response when decimating by a factor of 6: Lanczos 2 and degree

16 relative minimax polynomial approximation

264

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 7

Degree 8

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

-50

-60

-70 Lanzos 2 (0=0)
Degree 8 (0=0)

Lanczos 2 (0=1/2)
Degree 8 (0=1/2)

-80

Figure 22.27: Frequency response when decimating by a factor of 7: Lanczos 2 and degree

8 relative minimax polynomial approximation

265

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.25 0.15 0.05 0
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<(>=0)
Degree 10 (<j>=0)

Lanczos 2 (0=1/2)
Degree 10 (<t>=1/2)

-80

Figure 22.28: Frequency response when decimating by a factor of 7: Lanczos 2 and degree

10 relative minimax polynomial approximation

266

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

-50

-60

-70 Lanzos 2 (0=0)
Degree 12 (0=0)

Lanczos 2 (0=1/2)
Degree 12 (0=1/2)

-80

Figure 22.29: Frequency response when decimating by a factor of 7: Lanczos 2 and degree

12 relative minimax polynomial approximation

267

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0.25 0.15 0.05 0.2 0
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<t>=0)
Degree 14 (<j>=0)

Lanczos 2 (<j>=1/2)
Degree 14 <<j>=1/2)

-80

Figure 22.30: Frequency response when decimating by a factor of 7: Lanczos 2 and degree

14 relative minimax polynomial approximation

268

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

m TJ
7 -40
CO

O

-50

-60

-70 Lanzos 2 (<j>=0)
Degree 16 (<j>=0)

Lanczos 2 (0=1/2)
Degree 16 (0=1/2)

-80

Figure 22.31: Frequency response when decimating by a factor of 7: Lanczos 2 and degree

16 relative minimax polynomial approximation

269

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 8

Degree 8

Frequency

0 0.05 0.1 0.15 0.2 0.25

-20

-30

m "O
e -40
ca

CD

-50

-60

-70 Lanzos 2 (<ji=0)
Degree 8 (<j>=0)

Lanczos 2 (<(>=1/2)
Degree 8 (4>=1/2)

-80

Figure 22.32: Frequency response when decimating by a factor of 8: Lanczos 2 and degree

8 relative minimax polynomial approximation

270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 10

Frequency

0.25 0.2 0.15 0.05 0
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 2 (<j>=0)
Degree 10 (<j>=0)

Lanczos 2 «>=1/2)
Degree 10 (<j>=1/2)

-80

Figure 22.33: Frequency response when decimating by a factor of 8: Lanczos 2 and degree

10 relative minimax polynomial approximation

271

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 12

Frequency
0.25 0.2 0.05 0

0

-10

-20

-30

-40

-50

-60

-70 Lanzos 2 (i|>=0)
Degree 12 (<j>=0)

Lanczos 2 (<t>=1/2)
Degree 12 (<j>=1/2)

-80

Figure 22.34: Frequency response when decimating by a factor of 8: Lanczos 2 and degree

12 relative minimax polynomial approximation

272

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14

Frequency

0.15 0.25 0 0.05 0.2
0

10

-20

-30

-40

-50

-60

-70 Lanzos 2 (<|>=0)
Degree 14 (<j>=0)

Lanczos 2 (((>=1/2)
Degree 14 (<|>=1/2)

-80

Figure 22.35: Frequency response when decimating by a factor of 8: Lanczos 2 and degree

14 relative minimax polynomial approximation

273

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.05 0.15 0.2 0.25
0

-10

-20

-30

-50

-60

-70 Lanzos 2 (<(>=0)
Degree 16 (<j>=0)

Lanczos 2 (<t>=1/2)
Degree 16 (<(>=1/2)

-80

Figure 22.36: Frequency response when decimating by a factor of 8: Lanczos 2 and degree

16 relative minimax polynomial approximation

274

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22.2 Frequency Response of Relative Minimax Polynomial Approxi­

mations of Lanczos 3

Decimation 1 (Pure Filtering, and Translation by |)

Frequency

0 0.5
0

-10

-20

-30

-50

-60

-70 Lanzos 3 (<)>=0) = All Deg.
Lanczos 3 (<)>=1/2)
Degree 14 (<j>=1/2)

Degrees 16+ (<j)=1/2)
-80

Figure 22.37: Frequency response when decimating by a factor of 1: Lanczos 3 and relative

minimax polynomial approximations

275

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 2

Degree 14

Frequency

0 0.2 0.4 0.6 0.8 1

CO
T3

e "40
as
O

Lanzos 3 (<|)=0)
Degree 14 (<j>=0)

Lanczos 3 {«j>=1/2)
Degree 14 (<j)=1/2)

Figure 22.38: Frequency response when decimating by a factor of 2: Lanczos 3 and degree

14 relative minimax polynomial approximation

276

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0 0.2 0.4 0.6
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<j>=0)
Degree 16 (<j>=0)

Lanczos 3 (<f>=1/2)
Degree 16 (<(>=1/2)

-80

Figure 22.39: Frequency response when decimating by a factor of 2: Lanczos 3 and degree

16 relative minimax polynomial approximation

277

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0.6 0 0.2 0.8
0

-10

-20

-30

-50

-60

-70 Lanzos 3 (<J>=0)
Degree 18 (<j>=0)

Lanczos 3 ((>=1/2)
Degree 18 (<j>=1/2)

-80

Figure 22.40: Frequency response when decimating by a factor of 2: Lanczos 3 and degree

18 relative minimax polynomial approximation

278

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

Frequency

0.4 0 0.2 0.6
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<|>=0)
Degree 20 (<j>=0)

Lanczos 3 (<f>=1 /2)
Degree 20 (<(>=1/2)

-80

Figure 22.41: Frequency response when decimating by a factor of 2: Lanczos 3 and degree

20 relative minimax polynomial approximation

279

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.2 0.6 0.4
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<j>=0)
Degree 22 (<)>=0)

Lanczos 3 (<l>=1/2)
Degree 22 {<j>=1 /2)

-80

Figure 22.42: Frequency response when decimating by a factor of 2: Lanczos 3 and degree

22 relative minimax polynomial approximation

280

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0.8 0.2 0.6 0
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<(>=0)
Degree 24 (<j>=0)

Lanczos 3 (0=1/2)
Degree 24 (<j>=1/2)

-80

Figure 22.43: Frequency response when decimating by a factor of 2: Lanczos 3 and degree

24 relative minimax polynomial approximation

281

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 3

Degree 14

Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<j>=0)
Degree 14 ((j>=0)

Lanczos 3 (<}>=1/2)
Degree 14 (<>=1/2)

-80

Figure 22.44: Frequency response when decimating by a factor of 3: Lanczos 3 and degree

14 relative minimax polynomial approximation

282

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0.2 0.4 0 0.3 0.5 0.6
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<(>=0)
Degree 16 (ij>=0)

Lanczos 3 (<j>=1/2)
Degree 16 (<j>=1/2)

-80

Figure 22.45: Frequency response when decimating by a factor of 3: Lanczos 3 and degree

16 relative minimax polynomial approximation

283

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0 0.2 0.3 0.4 0.5 0.6
0

10

-20

•30

40

-50

•60

70 Lanzos 3 (<J>=0)
Degree 18 (0=0)

Lanczos 3 <4>=1/2)
Degree 18 («j)=112)

•80

Figure 22.46: Frequency response when decimating by a factor of 3: Lanczos 3 and degree

18 relative minimax polynomial approximation

284

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

Frequency

0.5 0 0.2 0.3 0.4 0.6
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<(i=0)
Degree 20 (<j>=0)

Lanczos 3 (<t>=1/2)
Degree 20 (<>=1/2)

-80

Figure 22.47: Frequency response when decimating by a factor of 3: Lanczos 3 and degree

20 relative minimax polynomial approximation

285

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (ty=0]
Degree 22 (4>=0,

Lanczos 3 (<|>=1/2'
Degree 22 <0=112,

-80

Figure 22.48: Frequency response when decimating by a factor of 3: Lanczos 3 and degree

22 relative minimax polynomial approximation

286

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0.5 0.6 0 0.2 0.3 0.4
0

10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 24 (0=0)

Lanczos 3 (0=1/2)
Degree 24 (0=1/2)

-80

Figure 22.49: Frequency response when decimating by a factor of 3: Lanczos 3 and degree

24 relative minimax polynomial approximation

287

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 4

Degree 14

Frequency

0 0.2 0.3 0.5
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<|>=0)
Degree 14 (<j>=0)

Lanczos 3 (0=1/2)
Degree 14 (<j>=1/2)

-80

Figure 22.50: Frequency response when decimating by a factor of 4: Lanczos 3 and degree

14 relative minimax polynomial approximation

288

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0 0.1 0.2 0.3 0.4 0.5

-10

-20

-30

m TJ
^ -40
'ro

O

-50

-60

-70 Lanzos 3 (0=0)
Degree 16 (0=0)

Lanczos 3 (0=1/2)
Degree 16 (0=1/2)

-80

Figure 22.51: Frequency response when decimating by a factor of 4: Lanczos 3 and degree

16 relative minimax polynomial approximation

289

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0.2 0 0.5 0.3
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 18 (0=0)

Lanczos 3 (0=1/2)
Degree 18 (0=1/2)

-80

Figure 22.52: Frequency response when decimating by a factor of 4: Lanczos 3 and degree

18 relative minimax polynomial approximation

290

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

Frequency

0.4 0 0.2 0.3 0.5
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<{>=0)
Degree 20 (4>=0)

Lanczos 3(0=1/2)
Degree 20 (0=1/2)

-80

Figure 22.53: Frequency response when decimating by a factor of 4: Lanczos 3 and degree

20 relative minimax polynomial approximation

291

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.2 0.3 0.4 0.5
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 22 (0=0)

Lanczos 3 (0=1/2)
Degree 22 (0=1/2)

-80

Figure 22.54: Frequency response when decimating by a factor of 4: Lanczos 3 and degree

22 relative minimax polynomial approximation

292

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.2 0.3 0.4 0.5
0

10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 24 (<j>=0)

Lanczos 3 (0=1/2)
Degree 24 (0=1/2)

-80

Figure 22.55: Frequency response when decimating by a factor of 4: Lanczos 3 and degree

24 relative minimax polynomial approximation

293

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 5

Degree 14

Frequency

0.05 0 0.15 0.2 0.25 0.3 0.35 0.4
0

"v.
-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<|>=0)
Degree 14 (<j)=0)

Lanczos 3 (<|>=1/2)
Degree 14 (<|>=1/2)

-80

Figure 22.56: Frequency response when decimating by a factor of 5: Lanczos 3 and degree

14 relative minimax polynomial approximation

294

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-10

-20

-30

m "O
^ -40

CD (0

-50

-60 -

-70 Lanzos 3 (<j>=0)
Degree 16 (<j>=0)

Lanczos 3 (<f»=1/2)
Degree 16 (<j>=1/2)

-80

Figure 22.57: Frequency response when decimating by a factor of 5: Lanczos 3 and degree

16 relative minimax polynomial approximation

295

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0.15 i.25 0.35 0.4 0.05 0.2 0.3 0
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<j>=0)
Degree 18 (<j>=0)

Lanczos 3 (<|>=1/2)
Degree 18 (0=1/2)

-80

Figure 22.58: Frequency response when decimating by a factor of 5: Lanczos 3 and degree

18 relative minimax polynomial approximation

296

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

Frequency

0.15 0 0.05 0.2 0.35 0.25 0.3 0.4
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<)>=0)
Degree 20 (<|>=0)

Lanczos 3 (<(>=1/2)
Degree 20 (<j>=1/2)

-80

Figure 22.59: Frequency response when decimating by a factor of 5: Lanczos 3 and degree

20 relative minimax polynomial approximation

297

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.05 0.25 0.2 0.3 0.35 0.4
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<|>=0)
Degree 22 (<j>=0)

Lanczos 3 (<j»=1/2)
Degree 22 (<j>=1/2)

-80

Figure 22.60: Frequency response when decimating by a factor of 5: Lanczos 3 and degree

22 relative minimax polynomial approximation

298

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0.25 0.35 0.4 0.15 0.3 0 0.05 0.2
0

10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<]>=0)
Degree 24 (<j>=0

Lanczos 3 (<t>=1/2
Degree 24 (<j>=1 /2)

-80

Figure 22.61: Frequency response when decimating by a factor of 5: Lanczos 3 and degree

24 relative minimax polynomial approximation

299

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 6

Degree 14

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3

-20

-30

-50

-60 -

-70 Lanzos 3 (<|>=0)
Degree 14 (<j>=0)

Lanczos 3 (^=1/2)
Degree 14 (<j>=1/2)

-80

Figure 22.62: Frequency response when decimating by a factor of 6: Lanczos 3 and degree

14 relative minimax polynomial approximation

300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0 0.05 0.2 0.25 0.3
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<>=0>
Degree 16 (<j>=0)

Lanczos 3 (cj>=1/2)
Degree 16 (<(>=1/2)

-80

Figure 22.63: Frequency response when decimating by a factor of 6: Lanczos 3 and degree

16 relative minimax polynomial approximation

301

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0 0.05 0.15 0.25 0.2 0.3
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<|>=0)
Degree 18 (0=0)

Lanczos 3 (<)>= 1 /2)
Degree 18 (<j>=1/2)

-80

Figure 22.64: Frequency response when decimating by a factor of 6: Lanczos 3 and degree

18 relative minimax polynomial approximation

302

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

0.05 0.1

Frequency

0.15 0.2 0.25 0.3
! ""r—.—. i i i I

-

f\

-

l v \
/ \

- I \

Lanzos 3 {<>=0)
Degree 20 (<j>=0)

Lanczos 3 (<t>=1/2)
Degree 20 (<|>=1/2) ii 8 S •

Figure 22.65: Frequency response when decimating by a factor of 6: Lanczos 3 and degree

20 relative minimax polynomial approximation

303

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3
0

-10

-20

-30

-50

-60

-70 Lanzos 3 (<J>=0)
Degree 22 (0=0)

Lanczos 3 (0=1/2)
Degree 22 (0=1/2)

-80

Figure 22.66: Frequency response when decimating by a factor of 6: Lanczos 3 and degree

22 relative minimax polynomial approximation

304

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.15 0.2 0.25 0.3 0.05
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<j>=0)
Degree 24 (<j>=0)

Lanczos 3 (<|>=1/2)
Degree 24 (<j>=1/2)

-80

Figure 22.67: Frequency response when decimating by a factor of 6: Lanczos 3 and degree

24 relative minimax polynomial approximation

305

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 7

Degree 14

Frequency

0 0.05 0.15 0.2 0.25
0

-10

-20

-30

•o
c -40

-50

-60

-70 Lanzos 3 (<J>=0)
Degree 14 (0=0)

Lanczos 3 (<j>=1/2)
Degree 14 (<j>=1/2)

-80

Figure 22.68: Frequency response when decimating by a factor of 7: Lanczos 3 and degree

14 relative minimax polynomial approximation

306

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

m T3
Z -40
TO

CD

-50

-60

-70 - Lanzos 3 (<j>=0)
Degree 16 (<)>=0)

Lanczos 3 (<t>=1/2)
Degree 16 (4>=1/2)

-80

Figure 22.69: Frequency response when decimating by a factor of 7: Lanczos 3 and degree

16 relative minimax polynomial approximation

307

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

T>
S -40
CB
o

-50

-60

-70 Lanzos 3 (0=0)
Degree 18 (0=0)

Lanczos 3 (0=1/2)
Degree 18 (<j>=1/2)

-80

Figure 22.70: Frequency response when decimating by a factor of 7: Lanczos 3 and degree

18 relative minimax polynomial approximation

308

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

Frequency

0 0.05 0.15 0.2 0.25
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 {<j>=0'
Degree 20 (<j>=0;

Lanczos 3 (0=1/2'
Degree 20 (0=1/2;

-80

Figure 22.71: Frequency response when decimating by a factor of 7: Lanczos 3 and degree

20 relative minimax polynomial approximation

309

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.05 0.1 0.15 0.2 0.25
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 22 (0=0)

Lanczos 3 (0=1/2)
Degree 22 (0=1/2)

-80

Figure 22.72: Frequency response when decimating by a factor of 7: Lanczos 3 and degree

22 relative minimax polynomial approximation

310

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.05 0.15 0.2 0.25
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 24 (0=0)

Lanczos 3 (0=1/2)
Degree 24 (0=1/2)

-80

Figure 22.73: Frequency response when decimating by a factor of 7: Lanczos 3 and degree

24 relative minimax polynomial approximation

311

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Decimation 8

Degree 14

Frequency

0.05 0.15 0.2 0.25 0
0

-10

-20

-30

-50

-60

-70 Lanzos 3 (0=0'
Degree 14 (<j>=0;

Lanczos 3 (0=1/2'
Degree 14 (0=1/2,

-80

Figure 22.74: Frequency response when decimating by a factor of 8: Lanczos 3 and degree

14 relative minimax polynomial approximation

312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 16

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

CO "O
e "40
m
O

-50

-60

-70 Lanzos 3 (<]>=0)
Degree 16 (<|>=0)

Lanczos 3 (<f>=1/2)
Degree 16 (<j>=1/2)

-80

Figure 22.75: Frequency response when decimating by a factor of 8: Lanczos 3 and degree

16 relative minimax polynomial approximation

313

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 18

Frequency

0.15 0.25 0.2 0 0.05
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (0=0)
Degree 18 (0=0)

Lanczos 3 (0=1/2)
Degree 18 (<j>=1/2)

-80

Figure 22.76: Frequency response when decimating by a factor of 8: Lanczos 3 and degree

18 relative minimax polynomial approximation

314

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 20

Frequency

0 0.05 0.1 0.15 0.2 0.25
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 (<J>=0)
Degree 20 (<j>=0)

Lanczos 3 {<>=1/2)
Degree 20 (<j>=1/2)

-80

Figure 22.77: Frequency response when decimating by a factor of 8: Lanczos 3 and degree

20 relative minimax polynomial approximation

315

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 22

Frequency

0 0.05 0.2 i.25
0

-10

-20

-30

-40

-50

-60

-70 Lanzos 3 {((>=0)
Degree 22 (<j>=0)

Lanczos 3 (<|»=1/2)
Degree 22 (<j>=1/2)

-80

Figure 22.78: Frequency response when decimating by a factor of 8: Lanczos 3 and degree

22 relative minimax polynomial approximation

316

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 24

Higher-degree approximations have frequency response plots identical to those of the target

function.

Frequency

0 0.05 0.1 0.15 0.2 0.25

-10

-20

-30

CD •O
r -40
(o
<3

-50

-60

-70 Lanzos 3 (<!>=0)
Degree 24 (<j>=0)

Lanczos 3 (<(>=1/2)
Degree 24 (<j>=1/2)

-80

Figure 22.79: Frequency response when decimating by a factor of 8: Lanczos 3 and degree

24 relative minimax polynomial approximation

317

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23 Conclusion

There are two main types of research theses:

• Theses which implement, verify, and validate methods and ideas "known" ahead

of time to work well (based on the experience and preliminary testing or back of

the envelope computations of members of the thesis committee, for example) and,

consequently, which move an idea from concept to proof of concept, all the way to a

study of the performance of the "new" compared to the "old".

• Theses which are primarily exploratory, that is, which investigate the consequences

of new viewpoints or new approaches to solving a problem about which so little is

known (at least by the members of the thesis committee) that a positive outcome is

far from guaranteed, and "success" is as much about discovering what does not work

as discovering what does.

This is a thesis of the exploratory type. The conclusions to be drawn from its content are

consequently less clear-cut by virtue of not being essentially foregone. In addition, definite

conclusions about an image resampling method can only be drawn by resampling actual

images and evaluating the results. Although three of the novel methods discussed in this

thesis (Nohalo-LBB, LBB and Midedge with quadratic B-Spline smoothing) survived the

ongoing trial by fire implicit to their publication in widely distributed graphics libraries,

such testing was not directly performed for this thesis.

318

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23.1 General Conclusions

Diagonal preservation appears to be a fruitful design and evaluation criterion for image

resampling methods.

If one does not mind the large and far ranging undershoots and overshoots, the classical

method Lanczos 3 and, to a lesser extent, the classical Lanczos 2 and Catmull-Rom meth­

ods, are hard to beat in the diagonal preservation department, at least among interpolatory

methods. This is especially true for images with high frequency content.

Local boundedness, and similar properties of resampling schemes which fall short of

(co-)monotonicity, but which nonetheless limit undershoots and overshoots without too

much impact on smoothness, lead to promising methods.

When an interpolatory resampling method is desired, it appears that multiple subdivi­

sions (with a fixed subdivision method) do not bring significant benefits. Hybrid methods,

which combine one step of a subdivision method with a linear or nonlinear filtering method

used as a finishing scheme, appear to generally give better results. Things are not so clear

when a smoothing resampling method is desired.

Simple modifications of the Remez method allows one to construct accurate relative

error minimax polynomial approximations of functions with roots in the interior of the

interval of approximation. In addition, smooth even functions can be approximated with

even polynomials, and odd ones with odd polynomials. This allows one to produce low-

cost approximations of common low-pass filters.

23.2 Conclusions with a Narrower Scope

The novel nonlinear face split subdivision method Nohalo has a number of attractive prop­

erties. In particular, it is interpolatory, it preserves "soft" diagonals, it is monotone, and it

is conditionally convexity preserving. Combined with the novel Locally Bounded Bicubic

(LBB) interpolation method, it appears to be a good choice for images that are sub-critical,

319

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

meaning images without significant high frequency content or maximally sharp line and

interfaces. In contexts in which one does not want the reconstructed surface to undershoot

and overshoot, Nohalo-LBB is probably a top choice.

Variants of Nohalo involving multiple subdivisions do not appear to be worth the addi­

tional effort. Multiple subdivisions, in fact, appear to make things worse. This also holds,

more or less, for the related Snohalo method.

Snohalo, a novel nonlinear face split subdivision method which consists of Nohalo

combined with a custom smoother, would appear not to be worth it on balance, given

that it is not interpolator and that it is only conditionally diagonal-preserving. Although

Snohalo works well, linear or nonlinear diagonal-preserving Midedge vertex split methods

are strongly diagonal-preserving and it would appear likely that a pleasant yet less blurry

scheme of this type could be developed.

Combining a so-called interpolatory vertex split method with quadratic B-Spline

smoothing gives a hybrid scheme which is also interpolatory. The novel ROVSQBS (Re­

duced Oscillation Vertex Split subdivision with Quadratic B-Spline finish) hybrid method

is particularly interesting: As a ID interpolation scheme, it produces smooth results vi­

sually indistinguishable from the popular Catmull-Rom's when the data is smooth, and it

suppresses undershoots and overshoots when the data is not. Clearly, the current method

of extending such interpolatory vertex split/quadratic B-spline hybrid methods to a surface

interpolation method is not viable, because the resulting surface interpolation schemes are

marred by large spurious diagonal variations when applied to diagonal data. The one ex­

ception that confirms the rule is the novel CDVSQBS (Centred Differences Vertex Split

subdivision with Quadratic B-Spline finish) hybrid scheme. However, Catmull-Rom is

qualitatively similar and gives superior results.

Although it may be too early to emit such an opinion, it appears that overshoot mini­

mizing methods which rely on cubic splines generally give better results than those based

on quadratic splines.

320

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another possibly premature opinion is that extending MP (Monotonicity-Preserving)

types of methods to 2D by applying them a tensor way and averaging the results ob­

tained with the two possible ordering of the axes may be a good approach, notwithstanding

the high quality surface reconstructions produced by the novel Locally Bounded Bicubic

(LBB) method, a Hermite bicubic-based method.

321

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Spurious Diagonal Oscillations After One and Two

Subdivisions: Raw Data

A.l Hard Line: One Subdivision

Lanczos 3

a b c d e / 9 h i 3 k

1 .61 0 -.14 0 .02 0 0 0 0

.61 .77 .61 .20 -.14 -.13 .02 .05 0 -.01

0 .61 1 .61 0 -.14 0 .02 0 0

-.14 .20 .61 .77 .61 .20 -.14 -.13 .02 .05

0 -.14 0 .61 1 .61 0 -.14 0 .02

0

0

0

0

0

Lanczos 2

b c d e / 9 h i 3 k

1 .57 0 -.06 0 0 0 0 0 0 0

.57 .67 .57 .26 -.06 -.07 0 0 0 0 0

0 .57 1 .57 0 -.06 0 0 0 0 0

-.06 .26 .57 .67 .57 .26 -.06 -.07 0 0 0

0 -.06 0 .57 1 .57 0 -.06 0 0 0

322

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bicubic = Catmull-Rom

b c d e / 9 h i 3 k

1 .56 0 -.06 0 0 0 0 0 0 0

.56 .64 .56 .25 -.06 -.07 0 0 0 0 0

0 .56 1 .56 0 -.06 0 0 0 0 0

-.06 .25 .56 .64 .56 .25 -.06 -.07 0 0 0

0 -.06 0 .56 1 .56 0 -.06 0 0 0

CDVSQBS

b c d e / 9 h i 3 k

1 .56 0 -.06 0 0 0 0 0 0 0

.56 .62 .56 .25 -.06 -.06 0 0 0 0 0

0 .56 1 .56 0 -.06 0 0 0 0 0

-.06 .25 .56 .62 .56 .25 -.06 -.06 0 0 0

0 -.06 0 .56 1 .56 0 -.06 0 0 0

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives

b c d e / 9 h i 3 k

1 .50 0 0 0 0 0 0 0 0 0

.50 .52 .50 .25 0 -.01 0 0 0 0 0

0 .50 1 .50 0 0 0 0 0 0 0

0 .25 .50 .52 .50 .25 0 -.01 0 0 0

0 0 0 .50 1 .50 0 0 0 0 0

323

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bilinear = Nohalo = MP Tensor = AMP Tensor = LBB = MP with Null Cross-

Derivatives = AMP with Null Cross-Derivatives = MVSQBS = ROVSQBS

b c d e / 9 h i 3 k

1 .50 0 0 0 0 0 0 0 0 0

.50 .50 .50 .25 0 0 0 0 0 0 0

0 .50 1 .50 0 0 0 0 0 0 0

0 .25 .50 .50 .50 .25 0 0 0 0 0

0 0 0 .50 1 .50 0 0 0 0 0

CDVS

a b c d e / 9 h i 3 k

1 .25 0 0 0 0 0 0 0 0 0

.25 1 1 0 -.25 0 0 0 0 0 0

0 1 1 .25 0 0 0 0 0 0 0

0 0 .25 1 1 0 -.25 0 0 0 0

0 -.25 0 1 1 .25 0 0 0 0 0

MVS = ROYS

a b c d e / 9 h i 3 k

1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

324

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo, 6 — 1

a b c d e f g h i j k

.50 .44 .25 .06 0 0 0 0 0 0 0

.44 .50 .44 .25 .06 0 0 0 0 0 0

.25 .44 .50 .44 .25 .06 0 0 0 0 0

.06 .25 .44 .50 .44 .25 .06 0 0 0 0

0 .06 .25 .44 .50 .44 .25 .06 0 0 0

Snohalo 1.5, 6 = 1

b c d e / 9 h i 3 k

.47 .41 .25 .09 .02 0 O 0 0 0 0

.41 .47 .41 .25 .09 .02 0 0 0 0 0

.25 .41 .47 .41 .25 .09 .02 0 0 0 0

.09 .25 .41 .47 .41 .25 .09 .02 0 0 0

.02 .09 .25 .41 .47 .41 .25 .09 .02 0 0

Snohalo 1.5,8 = |

b c d e / 9 h i 3 k

.60 .44 .19 .06 .01 0 0 0 0 0 0

.44 .49 .44 .25 .06 .01 0 0 0 0 0

.19 .44 .60 .44 .19 .06 .01 0 0 0 0

.06 .25 .44 .49 .44 .25 .06 .01 0 0 0

.01 .06 .19 .44 .60 .44 .19 .06 .01 0 0

325

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo, 6 = |

b c d e / 9 h i 3 k

.67 .46 .17 .04 0 0 0 0 0 0 0

.46 .50 .46 .25 .04 0 0 0 0 0 0

.17 .46 .67 .46 .17 .04 0 0 0 0 0

.04 .25 .46 .50 .46 .25 .04 0 0 0 0

0 .04 .17 .46 .67 .46 .17 .04 0 0 0

Snohalo 1.5, 6 — |

b c d e / 9 h i 3 k

.77 .47 .11 .03 0 0 0 0 0 0 0

.47 .50 .47 .25 .03 0 0 0 0 0 0

.11 .47 .77 .47 .11 .03 0 0 0 0 0

.03 .25 .47 .50 .47 .25 .03 0 0 0 0

0 .03 .11 .47 .77 .47 .11 .03 0 0 0

Snohalo, 9 = |

b c d e / 9 h i 3 k

.83 .48 .08 .02 0 0 0 0 0 0 0

.48 .50 .48 .25 .02 0 0 0 0 0 0

.08 .48 .83 .48 .08 .02 0 0 0 0 0

.02 .25 .48 .50 .48 .25 .02 0 0 0 0

0 .02 .08 .48 .83 .48 .08 .02 0 0 0

326

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Midedge = Minmod Midedge

b c d e / 9 h i 3 k

.50 .50 .25 0 0 0 0 0 0 0 0

.50 .50 .50 .25 0 0 0 0 0 0 0

.25 .50 .50 .50 .25 0 0 0 0 0 0

0 .25 .50 .50 .50 .25 0 0 0 0 0

0 0 .25 .50 .50 .50 .25 0 0 0 0

327

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 Hard Interface: One Subdivision

Lanczos 3

b c d e / 9 h i 3 k

1 1.22 1 .95 1 .99 1 .99 1 .99 1

0 .78 1.22 1.17 .95 .90 .99 1 .99 .99 .99

-1 0 1 1.22 1 .95 1 .99 1 .99 1

1.22 -.78 0 .78 1.22 1.17 .95 .90 .99 1 .99

-1 -1.22 -1 0 1 1.22 1 .95 1 .99 1

Lanczos 2

b c d e / 9 h i 3 k

1 1.15 1 1.02 1 1.02 1 1.02 1 1.02 1

0 .67 1.15 1.18 1.02 1.03 1.02 1.04 1.02 1.04 1.02

-1 0 1 1.15 1 1.02 1 1.02 1 1.02 1

-1.15 -.67 0 .67 1.15 1.18 1.02 1.03 1.02 1.04 1.02

-1 -1.15 -1 0 1 1.15 1 1.02 1 1.02 1

Bicubic = Catmull-Rom

b c d e / 9 h i 3 k

1 1.12 1 1 1 1 1 1 1 1

0 .64 1.12 1.13 1 .99 1 1 1 1

-1 0 1 1.12 1 1 1 1 1 1

-1.12 -.64 0 .64 1.12 1.13 1 .99 1 1

-1 -1.12 -1 0 1 1.12 1 1 1 1

328

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP Tensor = AMP Tensor

a b c d e / 9 h i j k

1 1 1 1 1 1 1 1 1 1

0 .62 1 1 1 1 1 1 1 1

-1 0 1 1 1 1 1 1 1 1

-1 -.62 0 .62 1 1 1 1 1 1

-1 -1 -1 0 1 1 1 1 1 1

CDVSQBS

b c d e / 9 h i j k

1 1.12 1 1 1 1 1 1 1 1 1

0 .62 1.12 1.12 1 1 1 1 1 1 1

-1 0 1 1.12 1 1 1 1 1 1 1

-1.12 -.62 0 .62 1.12 1.12 1 1 1 1 1

-1 -1.12 -1 0 1 1.12 1 1 1 1 1

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives

a b c d e / 9 h i j k

1 1 1 1 1 1 1 1 1 1 1

0 .52 1 1.01 1 .99 1 1 1 1 1

-1 0 1 1 1 1 1 1 1 1 1

-1 -.52 0 .52 1 1.01 1 .99 1 1 1

-1 -1 -1 0 1 1 1 1 1 1 1

329

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bilinear = Nohalo = LBB = MP with Null Cross-Derivatives = AMP with Null Cross-

Derivatives = MVSQBS = ROVSQBS

a b c d e / g h i k

1 1 1 1 1 1 1 1 1

0 .50 1 1 1 1 1 1 1

-1 0 1 1 1 1 1 1 1

-1 -.50 0 .50 1 1 1 1 1

-1 -1 -1 0 1 1 1 1 1

MVS = ROVS

b c d e / 9 h i j k

1 1 1 1 1 1 1 1 1 1 1

-1 1 1 1 1 1 1 1 1 1 1

-1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 1 1 1 1 1 1 1 1

-1 -1 -1 1 1 1 1 1 1 1 1

CDVS

b c d

1 1 1

-.50 1 1.50

-1 .50 1

-1 -1 -.50

-1 -1.50 -1

e f g h i j k

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1.50 11111

.50 1 11111

330

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo, 6 = 1

b c d e / 9 h i k

.50 .88 1 1 1 1 1 1 1 1

0 .50 .88 1 1 1 1 1 1 1

-.50 0 .50 .88 1 1 1 1 1 1

-.88 -.50 0 .50 .88 1 1 1 1 1

-1 -.88 -.50 0 .50 .88 1 1 1 1

Snohalo 1.5, 6 = 1

a b c d e / 9 h i j k

.47 .81 .97 1 1 1 1 1 1 1 1

0 .47 .81 .97 1 1 1 1 1 1 1

-.47 0 .47 .81 .97 1 1 1 1 1 1

-.81 -.47 0 .47 .81 .97 1 1 1 1 1

-.97 -.81 -.47 0 .47 .81 .97 1 1 1 1

Snohalo 1.5, 6 = |

a b c d e / 9 h

.60 .88 .99 1 1 1 1

0 .49 .88 .99 1 1 1

-.60 0 .60 .88 .99 1 1

-.88 -.49 0 .49 .88 .99 1

-.99 -.88 -.60 0 .60 .88 .99

k

331

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo, 9 = §

a b c d e / 9 h i j k

.67 .92 1 1 1 1 1 1 1 1

0 .50 .92 1 1 1 1 1 1 1

-.67 0 .67 .92 1 1 1 1 1 1

-.92 -.50 0 .50 .92 1 1 1 1 1

-1 -.92 -.67 0 .67 .92 1 1 1 1

Snohalo 1.5,8 = \

a b c d e / 9

.77 .94 1 1 1 1

0 .50 .94 1 1 1

-.77 0 .77 .94 1 1

-.94 -.50 0 .50 .94 1

-1 -.94 -.77 0 .77 .94

h i j k

Snohalo, 9 = |

a b c d e / 9

.83 .96 1 1 1 1

0 .50 .96 1 1 1

-.83 0 .83 .96 1 1

-.96 -.50 0 .50 .96 1

-1 -.96 -.83 0 .83 .96

332

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Midedge

b c d e / 9 h i j k

.50 1 1 1 1 1 1 1 1 1 1

0 .50 1 1 1 1 1 1 1 1 1

-.50 0 .50 1 1 1 1 1 1 1 1

-1 -.50 0 .50 1 1 1 1 1 1 1

-1 -1 -.50 0 .50 1 1 1 1 1 1

Minmod Midedge

b c d e / 9 h i j k

.75 1 1 1 1 1 1 1 1 1 1

0 .75 1 1 1 1 1 1 1 1 1

-.75 0 .75 1 1 1 1 1 1 1 1

-1 -.75 0 .75 1 1 1 1 1 1 1

-1 -1 -.75 0 .75 1 1 1 1 1 1

333

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3 Soft Line: One Subdivision

Nohalo

i j k

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

12 0 0 0

Lanczos 3

a b c d e f g h

1 .88 .50 .12 0 0 0

.88 1 .88 .50 .12 0 0

.50 .88 1 .88 .50 .12 0

.12 .50 .88 1 .88 .50 .12

0 .12 .50 .88 1 .88 .50

a b c d e / g h i j k

1 .84 .50 .18 0 -.04 0 .01 0 0 0

.84 .97 .84 .52 .18 -.01 -.04 -.02 .01 .02 0

.50 .84 1 .84 .50 .18 0 -.04 0 .01 0

.18 .52 .84 .97 .84 .52 .18 -.01 -.04 -.02 .01

0 .18 .50 .84 1 .84 .50 .18 0 -.04 0

Lanczos 2

b c d e / 9 h i j k

1 .83 .50 .22 0 -.03 0 0 0 0 0

.83 .92 .83 .55 .22 .06 -.03 -.03 0 0 0

.50 .83 1 .83 .50 .22 0 -.03 0 0 0

.22 .55 .83 .92 .83 .55 .22 .06 -.03 -.03 0

0 .22 .50 .83 1 .83 .50 .22 0 -.03 0

334

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bicubic = Catmull-Rom

b c d e / 9 h i j k

1 .81 .50 .22 0 -.03 0 0 0 0

.81 .89 .81 .53 .22 .05 -.03 -.03 0 0

.50 .81 1 .81 .50 .22 0 -.03 0 0

.22 .53 .81 .89 .81 .53 .22 .05 -.03 -.03

0 .22 .50 .81 1 .81 .50 .22 0 -.03

MVSQBS = ROVSQBS

b c d e / 9 h i j k

1 .81 .50 .19 0 0 0 0 0 0 0

.81 .88 .81 .50 .19 .06 0 0 0 0 0

.50 .81 1 OO

.50 .19 0 0 0 0 0

.19 .50 .81 .88 oo

.50 .19 .06 0 0 0

0 .19 .50 00

1

T-H °o

.50 .19 0 0 0

CDVSQBS

b c d e / 9 h i j k

1 .81 .50 .22 0 -.03 0 0 0 0 0

.81 .88 .81 .53 .22 .06 -.03 -.03 0 0 0

.50 .81 1 .81 .50 .22 0 -.03 0 0 0

.22 .53 .81 .88 .81 .53 .22 .06 -.03 -.03 0

0 .22 .50 bo

1 .81 .50 .22 0 -.03 0

335

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LBB

b c d e / 9 h i j k

1 .81 .50 .19 0 0 0 0 0 0 0

.81 .87 .81 .50 .19 .06 0 0 0 0 0

.50 .81 1 .81 .50 .19 0 0 0 0 0

.19 .50 .81 .87 .81 .50 .19 .06 0 0 0

0 .19 .50 .81 1 .81 .50 .19 0 0 0

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives

b c d e / 9 h i j k

1 .81 .50 .19 0 0 0 0 0 0 0

.81 .82 .81 .50 .19 .09 0 0 0 0 0

.50 .81 1 .81 .50 .19 0 0 0 0 0

.19 .50 .81 .82 .81 .50 .19 .09 0 0 0

0 .19 .50 .81 1 .81 .50 .19 0 0 0

MP Tensor = AMP Tensor

b c d e / 9 h i j k

1 .81 .50 .19 0 0 0 0 0 0 0

.81 .81 .81 .55 .19 .04 0 0 0 0 0

.50 .81 1 .81 .50 .19 0 0 0 0 0

.19 .55 .81 .81 .81 .55 .19 .04 0 0 0

0 .19 .50 .81 1 .81 .50 .19 0 0 0

336

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP with Null Cross-Derivatives = AMP with Null Cross-Derivatives

b c d e / 9 h i j k

1 .81 .50 .19 0 0 0 0 0 0 0

.81 .81 .81 .50 .19 .09 0 0 0 0 0

50 .81 1 .81 .50 .19 0 0 0 0 0

.19 .50 .81 .81 .81 .50 .19 .09 0 0 0

0 .19 .50 .81 1 .81 .50 .19 0 0 0

Bilinear

b c d e / 9 h % j k

1 .75 .50 .25 0 0 0 0 0 0 0

.75 .75 .75 .50 .25 .12 0 0 0 0 0

.50 .75 1 .75 .50 .25 0 0 0 0 0

.25 .50 .75 .75 .75 .50 .25 .12 0 0 0

0 .25 .50 .75 1 .75 .50 .25 0 0 0

CDVS

b c d e / 9 h i j k

1 .75 .50 .12 0 0 0 0 0 0 0

.75 1 1 .50 .25 0 -.12 0 0 0 0

.50 1 1 .75 .50 .12 0 0 0 0 0

.12 .50 .75 1 1 .50 .25 0 -.12 0 0

0 .25 .50 1 1 .75 .50 .12 0 0 0

337

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MVS = ROVS

a b c d e f g h i j k

1 .75 .50 0 0 0 0 0 0 0 0

.75 1 1 .50 .25 0 0 0 0 0 0

.50 1 1 .75 .50 0 0 0 0 0 0

0 .50 .75 1 1 .50 .25 0 0 0 0

0 .25 .50 1 1 .75 .50 0 0 0 0

Snohalo, 6 = 1

b c d e / 9 h i 3 k

.75 .69 .50 .28 .12 .03 0 0 0 0 0

.69 .75 .69 .50 .28 .12 .03 0 0 0 0

.50 .69 .75 .69 .50 .28 .12 .03 0 0 0

.28 .50 .69 .75 .69 .50 .28 .12 .03 0 0

.12 .28 .50 .69 .75 .69 .50 .28 .12 .03 0

Snohalo, 8 = |

b c d e / 9 h i j k

.83 .75 .50 .23 .08 .02 0 0 0 0 0

.75 .83 .75 .50 .23 .08 .02 0 0 0 0

.50 .75 .83 .75 .50 .23 .08 .02 0 0 0

.23 .50 .75 .83 .75 .50 .23 .08 .02 0 0

.08 .23 .50 .75 .83 .75 .50 .23 .08 .02 0

338

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo, 6 = |

a b c d e f g h i j k

.92 .81 .50 .18 .04 .01 0 0 0 0 0

.81 .92 .81 .50 .18 .04 .01 0 0 0 0

.50 .81 .92 .81 .50 .18 .04 .01 0 0 0

.18 .50 .81 .92 .81 .50 .18 .04 .01 0 0

.04 .18 .50 .81 .92 .81 .50 .18 .04 .01 0

Snohalo 1.5,6 = 1

b c d e / 9 h i 3 k

.72 .66 .49 .30 .14 .05 .01 0 O 0 0

.66 .72 .66 .49 .30 .14 .05 .01 0 0 0

.49 .66 .72 .66 .49 .30 .14 .05 .01 0 0

.30 .49 .66 .72 .66 .49 .30 .14 .05 .01 0

.14 .30 .49 .66 .72 .66 .49 .30 .14 .05 .01

Snohalo 1.5,6 = |

a b c d e f

.81 .72 .50 .25 .10

.72 .81 .72 .50 .25

.50 .72 .81 .72 .50

.25 .50 .72 .81 .72

.10 .25 .50 .72 .81

g h i j k

.03 0 0 0 0 0

.10 .03 0 0 0 0

.25 .10 .03 0 0 0

.50 .25 .10 .03 0 0

.72 .50 .25 .10 .03 0

339

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 1.5, Q = \

a b c d e f g h i j k

.90 .80 .50 .19 .05 .01 0 0 0 0 0

.80 .90 .80 .50 .19 .05 .01 0 0 0 0

.50 .80 .90 .80 .50 .19 .05 .01 0 0 0

.19 .50 .80 .90 .80 .50 .19 .05 .01 0 0

.05 .19 .50 .80 .90 .80 .50 .19 .05 .01 0

Midedge

a b c d e / 9 h i j k

.75 .75 .50 .25 .12 0 0 0 0 0 0

.75 .75 .75 .50 .25 .12 0 0 0 0 0

.50 .75 .75 .75 .50 .25 .12 0 0 0 0

.25 .50 .75 .75 .75 .50 .25 .12 0 0 0

.12 .25 .50 .75 .75 .75 .50 .25 .12 0 0

Minmod Midedge

a b c d e / 9 h i j k

.88 .88 .53 .12 .03 0 0 0 0 0 0

.88 .88 .88 .53 .12 .03 0 0 0 0 0

.53 .88 .88 .88 .53 .12 .03 0 0 0 0

.12 .53 .88 .88 .88 .53 .12 .03 0 0 0

.03 .12 .53 .88 .88 .88 .53 .12 .03 0 0

340

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.4 Soft Interface: One Subdivision

Nohalo

b c d e / 9 h i j k

0 .75 1 1 1 1 1 1 1 1

-.75 0 .75 1 1 1 1 1 1 1

-1 -.75 0 .75 1 1 1 1 1 1

-1 -1 -.75 0 .75 1 1 1 1 1

-1 -1 -1 -.75 0 .75 1 1 1 1

Lanczos 3

b c d e / 9 h i j k

0 .61 1 1.08 1 .97 1 .99 1 .99 1

-.61 0 .61 .98 1.08 1.04 .97 .95 .99 .99 .99

-1 -.61 0 .61 1 1.08 1 .97 1 .99 1

-1.08 -.98 -.61 0 .61 .98 1.08 1.04 .97 .95 .99

-1 -1.08 -1 -.61 0 .61 1 1.08 1 .97 1

Lanczos 2

b c d e / 9 h i j k

0 .57 1 1.08 1 1.02 1 1.02 1 1.02 1

-.57 0 .57 .92 1.08 1.10 1.02 1.03 1.02 1.04 1.02

-1 -.57 0 .57 1 1.08 1 1.02 1 1.02 1

-1.08 -.92 -.57 0 .57 .92 1.08 1.10 1.02 1.03 1.02

-1 -1.08 -1 -.57 0 .57 1 1.08 1 1.02 1

341

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP Tensor = AMP Tensor

b c d e / 9 h

0 .62 1 1 1 1 1

-.62 0 .62 .91 1 1 1

-1 -.62 0 .62 1 1 1

-1 -.91 -.62 0 .62 .91 1

-1 -1 -1 -.62 0 .62 1

k

Bicubic = Catmull-Rom

b c d e / 9 h i j k

0 .56 1 1.06 1 1 1 1 1 1 1

-.56 0 .56 .89 1.06 1.06 1 1 1 1 1

-1 -.56 0 .56 1 1.06 1 1 1 1 1

-1.06 -.89 -.56 0 .56 .89 1.06 1.06 1 1 1

-1 -1.06 -1 -.56 0 .56 1 1.06 1 1 1

LBB

b c d e / 9

0 .62 1 1 1 1

-.62 0 .62 .88 1 1

-1 -.62 0 .62 1 1

-1 -.88 -.62 0 .62 .88

-1 -1 -1 -.62 0 .62

h i j k

342

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MVSQBS = ROVSQBS

a b c d e f g h i j k

0 .62 1 1 111111

-.62 0 .62 .88 1 1 1 1 1 1

-1 -.62 0 .62 1 1 1 1 1 1

-1 -.88 -.62 0 .62 .88 1 1 1 1

-1 -1 -1 -.62 0 .62 1 1 1 1

CDVSQBS

b c d e / 9 h i 3 k

0 .56 1 1.06 1 1 1 1 1 1 1

-.56 0 .56 .88 1.06 1.06 1 1 1 1 1

-1 -.56 0 .56 1 1.06 1 1 1 1 1

-1.06 -.88 -.56 0 .56 .88 1 1.06 1.06 1 1

-1 -1.06 -1 -.56 0 .56 1 1.06 1 1 1

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives

b c d e / 9 h i

0 .62 1 1 1 1 1 1

-.62 0 .62 .82 1 1 1 1

-1 -.62 0 .62 1 1 1 1

-1 -.82 -.62 0 .62 .82 1 1

-1 -1 -1 -.62 0 .62 1 1

k

343

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP with Null Cross-Derivatives = AMP with Null Cross-Derivatives

Bilinear

CDVS

b c d e / 9 h

0 .62 1 1 1 1 1

-.62 0 .62 .81 1 1 1

-1 -.62 0 .62 1 1 1

-1 -.81 -.62 0 .62 .81 1

-1 -1 -1 -.62 0 .62 1

a b c d e / 9 h i 3 k

0 .50 1 1 1 1 1 1 1 1

-.50 0 .50 .75 1 1 1 1 1 1

-1 -.50 0 .50 1 1 1 1 1 1

-1 -.75 -.50 0 .50 .75 1 1 1 1

-1 -1 -1 -.50 0 .50 1 1 1 1

a b c d e / 9 h i k

0 .75 1 1 1 1 1 1 1

-.75 0 .50 1 1.25 1 1 1 1

-1 -.50 0 .75 1 1 1 1 1

-1 -1 -.75 0 .50 1 1.25 1 1

-1 -1.25 -1 -.50 0 .75 1 1 1

344

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MVS = ROVS

b c d e / 9 h i 3 k

0 1 1 1 1 1 1 1 1 1

-1 0 .50 1 1 1 1 1 1 1

-1 -.50 0 1 1 1 1 1 1 1

-1 -1 -1 0 .50 1 1 1 1 1

-1 -1 -1 -.50 0 1 1 1 1 1

Snohalo, 0 = 1

b c d e / 9 h i j k

0 .67 .92 .98 1 1 1 1 1 1 1

-.67 0 .67 .94 .98 1 1 1 1 1 1

-.92 -.67 0 .67 .92 .98 1 1 1 1 1

-.98 -.94 -.67 0 .67 .94 .98 1 1 1 1

-1 -.98 -.92 -.67 0 .67 .92 .98 1 1 1

Snohalo 1.5, 9 = |

b c d e / 9 h i 3 k

0 .63 .90 .98 1 1 1 1 1 1 1

-.63 0 .63 .92 .98 1 1 1 1 1 1

-.90 -.63 0 .63 .90 .98 1 1 1 1 1

-.98 -.92 -.63 0 .63 .92 .98 1 1 1 1

-1 -.98 -.90 -.63 0 .63 .90 .98 1 1 1

345

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 1.5,6 = §

a b c d e / 9 h i j k

0 .53 .81 .95 .99 1 1 1 1 1

-.53 0 .53 .84 .95 .99 1 1 1 1

-.81 —.53 0 .53 .81 .95 .99 1 1 1

-.95 -.84 -.53 0 .53 .84 .95 .99 1 1

-.99 -.95 -.81 -.53 0 .53 .81 .95 .99 1

Snohalo 1.5,6 = 1

a b c d e / 9 h i 3 k

0 .45 .73 .91 .98 1 1 1 1 1

-.45 0 .45 .77 .91 .98 1 1 1 1

-.73 -.45 0 .45 .73 .91 .98 1 1 1

-.91 -.77 -.45 0 .45 .77 .91 .98 1 1

-.98 -.91 -.73 -.45 0 .45 .73 .91 .98 1

Snohalo, 6 = |

a b c d e / 9 h i 3 k

0 .58 .83 .96 1 1 1 1 1 1 1

-.58 0 .58 .88 .96 1 1 1 1 1 1

-.83 -.58 0 .58 .83 .96 1 1 1 1 1

-.96 -.88 -.58 0 .58 .88 .96 1 1 1 1

-1 -.96 -.83 -.58 0 .58 .83 .96 1 1 1

346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo, 6 = 1

b c d e / 9 h i j k

0 .50 .75 .94 1 1 1 1 1 1 1

-.50 0 .50 .81 .94 1 1 1 1 1 1

-.75 -.50 0 .50 .75 .94 1 1 1 1 1

-.94 -.81 -.50 0 .50 .81 .94 1 1 1 1

-1 -.94 -.75 -.50 0 .50 .75 .94 1 1 1

Midedge

b c d e / 9 h i j k

0 .50 .75 1 1 1 1 1 1 1 1

-.50 0 .50 .75 1 1 1 1 1 1 1

-.75 -.50 0 .50 .75 1 1 1 1 1 1

-1 -.75 -.50 0 .50 .75 1 1 1 1 1

-1 -1 -.75 -.50 0 .50 .75 1 1 1 1

Minmod Midedge

b c d e / 9 h i j k

0 .75 .94 1 1 1 1 1 1 1 1

-.75 0 .75 .94 1 1 1 1 1 1 1

-.94 -.75 0 .75 .94 1 1 1 1 1 1

-1 -.94 -.75 0 .75 .94 1 1 1 1 1

-1 -1 -.94 -.75 0 .75 .94 1 1 1 1

347

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.5 Hard Line: Two Subdivisions

Lanczos 3 Lanczos 2

s~ o

QH O

a, o

o o

s o

o

I—I tM CO I-H
o o o o

o
LO CO
o o

CO CO
o o

CM
o

oo
o

CM co
o o

LO
o

t-
o

CM
o

CO
o

t-
o

fr. o o o o o

o- o o o o o

ft, O O O o o

£ O O

CM
o

o

m
o o

10
CM O o /

co oo

co
o

t—
o

t-
o

r-
o

to
o

oo

TP

co CM

r—4
f

CT5
o

rH
l"

r-H
r

t-
CM

o

o

to
o

•"tf
o

t-
o

cn
o

CO
o

oo
o

a>
o

CM

f-
o

CO

CO
o

t-
o

r-
CM

T--t

r
cn

o

02
o

o
CM

CM

CM

CN IV

co

OS
oo

Oj

CO
o

r-
o

oo
o

CO

co
CM

t-lO

r-
oo

^ O IT— rH
CM CO O

00

f-
CM

t-
m

N-
00

<u t- o
CM M

CO O Ol
r— oo oo

<w r- r-
CM TT

CO CO tr-
CO 00 00

"O to CO f- t-t- CO t- co -e c—
m CO CO

co co co m

„ O) O)
^ 00 oo

CO ir­ es tr­io CM
t- co
oo oo

co r-co T}< t-
CM

-O tH

<3

OS i—I
oo co

t-
CM o .©

<s

t- t-
oo m

t-
CM

348

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bicubic = Catmull-Rom CDVSQBS

O o o o o

0 * 0 0 0 0 0

a, o o o o o

t—(1-H
O O O O o o

g o o o o o

s- o o o o o

Cr< O O O O O

a O O O O o

o o o o o o

g O o o o o

s °
CM TF o o o o o o

C3 CM CM o o o
f \ \

o
•"tf" t— CO o o o o
r f i" r

cm co as co o o o o
r r r r

-a o
^ en CM N-O O 1—I O

r r i" r

"3< co t-
•c~j O ® ® o

I I I

CT> 00
^ o o P 3 <=?

I I - I

CM co oo
o o
r r o 0. o

O H N lO ® O O rH CM
CM O r-1 ^ 1—11 ® r r ° ^

CO . O O- CM CO -g ,• O CM T}< LO
co . o *o >n> "5 co

-G O CM ^ LO

_ o "5 CM 00 T}< Oj • I—I T#| CO 00
00 r~) r-H LO CO Ol • rH Ttf CO OO

_ _ CO CO t}<
^ O CM LO 00 ^ ̂ ,-s 0 05 _, •*-» O CM LO OO <""l

CO CO 00 « (N ^ ffl N 00
O t— rH CO 0 'U CM t— CO OO OO

CO CO CO CO a LO CO CO CO LO
CO rH CM rH CO « LO CO CO CO LO

t}< 00 CO -rt< CO <-> 00 t— CO Tf CM
en co rH t— o w OO 00 CO t— CM

_ _. TJ< CO CO _
-O IH 00 LO CM O

_, CT5 CO o _ i—1 00 tO CM ©

349

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AMP with Centred Cross-Derivatives MP with Centred Cross-Derivatives

o O o o o o o o o o

o O o o o Cr o o o o o

a, o O o o o a o o o o o

o o o o o o o o o o o o

e o o o o o £ o o o o o

£ o o o o o £ o o o o o

'-•j o o
rH
o

1*

rH
o

f
o ••-j o o

r-H
o

f

rH
o

\

o

o o

-.
0
2
 rH

o
f

o -S£ o o

-.
0
2
 i

o
-

o

o o o o o •oj o o o o o

o .0
5 i-H i-H CD

1-H 05
t-H o .0

5
 rH rH rH o

t-H

o o
1-H .2

5

.4
0

.5
0 o .0
9

.2
5

.4
0

.5
0

C>5 o .1
6

.3
9

.6
1
 i-H

oo Csj o .1
7

.3
9
 r-H

CD
r-H
00

o
CT> r-H .5

0

1-H
00 rH <•-» o

a>
rH .5

0 i-H
00 tH

Hi cr> rH .3
5

.5
2

.6
7
 rH

00
CT>
tH .3

5

.5
2

.6
7 t-H

00

•e .5
0

.5
2

.5
2

.5
2

.5
0

.5
0

.5
1

.5
2

.5
2

.5
0

.8
1

.6
7

.5
2

.3
5

CT> i-H o rH
oo .6

7 r-H io .3
5

cn r-H

-o rH
i-H
00 .5
0

o>
rH o -o ft .8

1

.5
0

05 rH o

350

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bilinear MP with Null Cross-Derivatives = AMP

with Null Cross-Derivatives

s» 0 O 0 0 0 s- O O 0 0 0

Cy 0 O 0 0 0 O O 0 0 0

R. 0 O 0 0 0 a. O O 0 0 0

o 0 O 0 0 0 0 O O 0 0 0

£ 0 O 0 0 0 £ O O 0 0 0

£ 0 O 0 0 0 e O O 0 0 0

0 O 0 0 0 O O 0 0 0

-Sd 0 O 0 0 0 O O 0 0 0

O O 0 0 0 •^1 O O 0 0 0

0 .0
6 CM rH CT rH .2
5

* <s> O .0
5

.0
9

r-rH CT) rH

-£ 0 CN r-H .2
5

00
CO .5

0

-£ O .0
9

.2
5

.4
1

.5
0

0 CT> r-H OO
CO .5

6

.7
5 Oi O 1—H

IV rH
CD

H
OO

O .2
5

.5
0

.7
5

iH O

6
1

'

.5
0
 ^H

00 iH

.2
5

OO
CO .5

0

.6
2

.7
5 <u CT r-H .3
4

.5
0

.6
6 rH

00

"C .5
0

.5
0

.5
0

.5
0

.5
0

"TS .5
0

.5
0

.5
0

.5
0

.5
0

.7
5

.6
2

.5
0

.3
8

.2
5 r-H

00 .6
6

.5
0

.3
4 CT rH

-0 rH .7
5

.5
0

.2
5

0 rH .8
1

.5
0

.1
9

0

a <3

351

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nohalo-LBB = LBB MP Tensor = AMP Tensor

& o

a. o

o

e

-Sd

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

CT)
o

O O

o o

o o

o o

o o

o o

o o

o o

o o

TP CT

5- O

CM O

a o

o

s

-Sd

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

TP
o

o

o

o

o

o

o

o

o

o

CT o

o o

o o

o o

o o

o o

o o

o o

o o

O o

TP CT

CT>

o
LO I-H O

TP LO ^ o CT)

o
LO
CM o

LO

CJJ TP
TP

LO I-H co oo C3> O
TP

Tp
CO co oo

<u

o

o

CT)

CM
CO

O
LO

O
LO

00

00 CD

o

CT)

CT

CO
CO

O
LO

o
LO

oo

O r-H
r- oo

"<3 § O
lO

o
LO

o o
LO LO LO

o
LO

o
LO

o o
LO LO

CJ 00

oo

o
LO

o
LO

CM CT
CO I-H

CT)

Cj 00

-© rH

<3

O t-

00

o
LO

o
LO

CO CT
CO I-H

CT)

352

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nohalo 2 MVSQBS = ROVSQBS

s- o O o o o t. o o o o o

o o o o o o o o o o

a o o o o o a o o o o o

o o o o o o Q o o o o o

ff o o o o o £ o o o o o

£ o o o o o £ o o o o o

"—J o o o o o "•—a o o o o o

o o o o o o o o o o

's-i o o o o o o o o o o

• tSs o o .0
6 CM

r-H
CM
r-H

1 <si o o .0
6 i-H

rH
CM
rH

-e o .0
6

.2
5

.4
4

.5
0 o .0
6

.2
5

.4
4

.5
0

O) o CM
r-H .4

4

.7
5 00 00 Ol o rH

rH .4
4

.2
2 00 00

©
CN
i-H .5

0

.8
8 rH o CM

f-H .5
0 00 00 rH

CM
r-H .2

5

.5
0

.7
5

.8
8 <u CM

rH .7
7

.5
0

.7
8 00 00

"e .5
0

.5
0

.5
0

.5
0

.5
0

.5
0

.5
0

.5
0

.5
0

.5
0

o oo 00 .7
5

.5
0

.2
5 CM

rH
00 00 00 t> .5

0

.7
7

i-H

-o rH .8
8

.5
0 CM 1-H o -o rH 00 00 .5
0 CM

rH o

<3 e

353

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDVS2 MVS 2 = ROVS 2

o*

a.

o

Jd

CJi

o o o o o
o o o o o

o o o o o

o o o o o

o o o .0
3
 co

-

o o o CO
CD

co
o

\

o .0
3

co
o O o

o -.
0
3

-.
0
3

O o
i \ o O o o o

.0
3

.2
5

.2
5 CT!

rH 1
2

CM o o o o o
1 1 1 f a o o o o o

.0
3

.2
5

.2
5 CN

rH 05
rH

o o o o o o

1 1 1 f e O o o o o

o
CTJ
rH

CM
1-H o .2

5 £ o o o o o

1 1 •-o o o o o o

o CM
i-H

CT>
i-H .2

5

.5
0

o o o o o

.1
2

.7
5

rH rH .8
1

• ̂

o

o

o

o

o

o

o

o

o
o

03
r-H i-H

io
CM

CTl
r-H rH

-e o o o o o

rH rH o o o o o

25

rH
c*
i-H

lO
CN) rH

o i-H 1-H i-H rH

i-H rH o i-H rH rH rH

.5
0 rH

00 rH r-H .7
5 o rH rH rH rH

.8
1

.5
0

.2
5 CT>

rH .1
2

-o

o

rH

t-H

o

rH

o

rH

o

rH

o

354

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2, 6 = 1 Snohalo 2,6 = |

o

CM o

A, O

O O

O O

o o

o o

o o

o

o

o

o

©

o

o

o

CM
o

CM O

A, O

O

g

o

o

o o

o o

o o

o o

O O

o o

o o

o o

TH o o

o o TP
o

rH CM
o o

O O
Tp
o

05 o o CM TO
o o

t-H
o o

00
o

m •ie CM
o

LTD
o

CM
o

-*p <y>
o o

in in
CM o

CM CO
o o

05

TP
o

oo in O t—t io m CM co C-5 •<*> O lO CM O r-H
CM t-H CM CO

-g

Oi

G>
O

m

m in t-H CM

m m CM CO

in t-H
co

CM M
TP TP

-g o

cn

m CM

CM 00 CM CO

00 Tp
CO

t-H to
m m

to
CM

IO t-H
CO TP in b-TP 05

CO
TP
TP

to o
m co

m
<U CO

CM M TP TP o m Tp TP r—I OJ t—
CO CO TP

co
m m

13 Tp
m t-TP Tp LO i-H t-

TP
o>
TP

t— "3<
TP TP

in W TP r— in TP CM m ^ co to U m TP
m t-TP

03 rH
CO CO

- 5 m t-H
TP TP m w

CO CM
^ O -© zo to m TP

TP co 05

355

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2, 9 = \ Midedge 2

5~

&

a,
o

e

o
o

o

o

o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

O 3

©*

a,
o

s

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

r-H CO o o CO o

Jd O O o tM CO
o o -Si CO o CM

T-H CO
o o CO rH

O rH O o o lO
<N

CM CT3 o o oo co
T-H cm •» O co c<i

O T-H
IO
OJ

oo co

o
CT> LO
O CM

i-H •« o CM LO
T-H CM

00
CO

TP
TP

50
CT) O

oo
TP

r-H O
CO t— cn io oo

CM CO
TP
TP o

LO

co t-
CM T}< O l>

t- b-
lO
CM

00 TP
CO TP

o
LO

o
io

co
CM

TP CT5
CO

TP o
co t-

oo
CO

TP o
LO

o
LO

o lO

13 ^ CTs O
Tp LO

CT> B-
TP TP

•X ^3 TP
o o
LO LO

o
LO TP

TP 03
CO Tp

TP CO
CO CM O § o o

LO lO
TP
TP

oo
CO

•o o t—
f— TP

CO
CM -© kO

O TP
LO -*J<

00
CO

W

356

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Minmod Midedge 2

o o o o o

o o o o o

a. o o o o o

o o o o o o

s o o o o o

£ o o o o o

•--.a o o o o .0
2

o o o .0
2

.0
6

o o .0
2

.0
6

.2
5

o .0
2

.0
6

.2
5

.4
4

-e .0
2

.0
6

.2
5

.4
4 00

.0
6

.2
5

.4
4 00

.5
0

.2
5

.4
4 00

.5
0

.5
0

4) .4
4 00

.5
0

.5
0

.5
0

00

.5
0

.5
0

.5
0

.4
8

U .5
0

.5
0

.5
0 00

.4
4

•o .5
0

.5
0 00

.4
4

.2
5

53

357

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.6 Hard Interface: Two Subdivisions

Lanczos 3 ^ ^ ri _| r-H CN CO

CO CT> R-
OH 1—1 1—I <_? go LO

CN CD _ rvi rS 00 i—< CN O O

r-H 1—I t— _ rvi C73 r-H ^-1 lO O ^ 00
r-H "'II

-j . b- _ LO rHI
C r-H lo O • |

i—t CT3 ^ t— i-H 00 .
« - | ,• 7

OO t-
co
o

<M
CN

-i£
t-
LO

cn
oo

CO
o

1-H CM b-
CM CO CM o
r-H r-H r-H r-H

CO CT3

CM lO
CM CM r-H o
T-H r-H rH rH

LO cri

t-
o

LO
o r-o

co
CT>

LO
CT>

f-

5t>
co cr> co

oo
CT>
00 CT>

13
LO
CT>

o>
00

I I

o
OT

Tt1
CT3

I I

O a>

CTi Tf
CT>

TP CT3
I I

co CT3 03 CT>

358
-Q

CT>
CT>

CT3 CT>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lanczos 2

Reproduced with permission of the copyright owner.

rH

o
n

1.
15

 L
V

l

rH

CP

o
n

1.
08

.9
6

.8
3

.5
6

ft. 1.
15

.9
6

.6
7

.3
5 o

o

i
n

.8
3 m

CO
i-H

r -.
5

6

e rH .5
6 o

-.
5

6

rH
1

£ .5
6

i—H

-.
3

5

-.
8

3

-1
.1

7

o

-.
3

5

-.
6

7

-.
9

6

-1
.1

5

-.
5

6

-.
8

3

-.
9

6

-1
.0

8
 o

n
-

rH
i

-1
.1

7

-1
.1

5

-1
.1

0

rH
1

i-H
00
CN

CN (N to
rH

CM p
•«>5

rH

1

i-H

1

i-H

1

i-H

1

rH

1

-1
.1

5

-1
.2

2

-1
.1

8

-1
.1

2

-1
.0

2

o
i-H

to
1-H

CM
rH

Ci
C5

CO
p

rH

1

rH

I
t-H

1

i—l

1

rH

1

rH
t

-1
.0

2

-1
.0

2

-1
.0

3

rH
i

CM
O

co o CO o lO
p

CO
p

rH

1

rH

1

rH

1

r-H

1

i-H

1

-1
.0

2

-1
.0

3

-1
.0

3

-1
.0

4

-1
.0

2

CO
p

lO
O o CO

p
CO
o

rH

1

i-H

1
rH

1

rH
1

i-H

1

rH
i

8
0

1

1.
02

1.
03

rH
1

359

Further reproduction prohibited without permission.

Bicubic = Catmull-Rom MP = AMP

IV
o

CM
r-H

CO
1-H

t-H i-H i-H

tv
O1 o

CM
o CM 00 LO

CT) IV LO

CM
a. CM TF CO

CT) TO CO O

" g2 8 ̂ S
T—I ' " | |

LO C3
LO
LO

LO
LO rH

co oo co t--
f r

CO

CO TT< eo to CM CTJ
CM

-id
LO OO
LO IV

r r

CM CTi
CM O r-o

t-

CP
to
CT>

00
OO

00
IV

CN to

a oo oo CM to co CO

00
IV

CO co
IV
r-H

\

CM to

CM to
CM to TH

CM to tv
co co 00

IV

co
co CO to 00

00

-e

CO CM IV
rH rH rH O

1 i-H
1

i-H
1

i-H
1

CO rH IV oo
r-H CM rH p
rH T-H

1
rH

1
rH

1

<N r- CO
i-H rH rH p
rH

1
rH

1
rH

1
rH

1

IV 00 IV CO
p p p p
i-H

1
1-H

1
1-H

1
i-H

1

CTi
rH CT>

\

i-H
1

r-H
1

CT> 00 CT) CT)
CT>

r
CT)

r
CT)

f
CT)

CT) CTi rH CT) CT) rH

05 CT)

I I

CM 00 00 to to IV OO CT) 1—1

•

-c

O)

"<3

O

-O

360

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDVSQBS MP with Centred Cross-Derivatives

rH 1.
03

 Z
V

l

9
1

1

rH

C
O

T

1.
27

.9
4

.8
3

.6
2

CM Tf CM 00
A . 03 CO CM O

2 n oo N S O . oo CM CM •

CD

CM
CO

CM
CO

t-CM

OO CM

CO
00

CM
CO

00 CM
f \

CO oo

CM
CO cr>
I I

CT>

I I

IV
CM

iH
I

CO

CM

co o

CO CM CO
rH rH O
rH rH rH

I I

rH
I

CO CT> C3
en m
I-J p
i—4 r-H

I I

05

W I rj | |

I I I I

u 7 7 7 7

©<

a

CM
rH

OS
rH

CM
rH

CO
O rH

-c

rH

1
rH

1
rH

1
i-H

1
1 Oi

co
p

lO o CO
p rH t-H *<->

rH

1
rH

1
r-H

1
1 1

rH
l

rH

1
rH

1
rH

1
rH

i

rH
rH o rH rH rH

CJ

rH rH rH i-H rH

rH CM 00 CM
rH OJ 00 CO CO

O) CM CO
i-H IV ic CM o

00 CO a> CM 00 CO rH co
f i-H CO CM r

co
f

CM CM CO tH
1-H Cp o 1

CM Oi CO 00 CM Oi CM
1*

CO rH
CO rH

CM
1*

CO
1

co CM CTi
o CM

f
kO
r

r-
r

rH

1

CM 00 CM 1-H
CO
r

CO
i'

GO o> rH

1

rH 1 rH 1 i-H 1 i-H rH i
rH rH

rH
p i-H t-H 1 1 1-H I 1 1

I I

en O)

I I

I I

I I

I I I I

e

361

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AMP with Centred Cross-Derivatives Bilinear

rH

O T-H
O CM
CTi OO

CTs CM
t— LO

oo co
co CM

CO o

CO
CM CT5 eg
CO r-'

OO CM
co CO

co
CM o

CTi CM
I-H CO

f r

CM
co

00
CO

I I
CO CM
CM LO

r r
-se

CM OO CM
co co oo

t-

o CT3

©5

I I

I I I I

I
o
^H
I

I I

I I

T 7

i i

7 7

i i i i

CT3 CT>
I I

I I

I I I

7 7 7

^ rH fH

_ , OO lO CM o
O" RHI 00 T— CO LO

_ LO O LO _
A. rH m CM O

CM O
_ . CM LO r-H LO
0 r-H CO CM • •

S ̂ § O « ̂
I 1

_ LO CM
ra O CM CM CO 1—1

S » 1 I I I

LO O LO
^ 0 CM LO t- <—11

r r r 1

O CM LO 00 ,
„ LO co t— oo r_l

I I I I 1

•̂ 7 7 7 7 7

- 7 7 7 7 7

 ̂ 7 7 7 7 7
01 7 7 7 7 7

IH 1-H r-H r-H rH

 ̂ I I I I I

* > 7 7 7 7 7

 ̂ 7 7 7 7 7
g 7 7 7 7 7

•° 7 7 7 7 7
e

362

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP with Null Cross-Derivatives = AMP Nohalo-LBB = LBB

with Null Cross-Derivatives

i-H

i—f i—I t— CO
CT) 00 CD CO

R,
RH O oo to LO

CO

S- i-H

i—I

a, i-H

CO rH CO CO
CT> 00 t- CD

i—I o OO to LO <M

cj

-o

e

B- LO
CO CO

CTi CM
1-H CO

£ rH G O ®

LO t— CM O eg CO « - r ,•
LO O rH
co LO oo

I I
CO t"- 1-H r-H
CO CO 00 CT>

I I

I I

I I

T 7

7 7
rH t-H

I l

7 7

7 7

i i

7 7

7 7
r-H r-H

I I

I

I I

I I I

rH i-H rH

i i I

CO CM
CO LO CM CO
t— CM

« s co o •

LO CO
CM CO CO t—
® CM f f

LO O 1-H
CM LO 00

I

CM CO I-H CO
CO t— 00 CT>

I I

7 7

7 7

CJ

•O

<3

I I

I I

I I

363

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nohalo 2 MVSQBS - ROVSQBS

fr.

o*

a.

oo I-h m oo oo t—

oo o to _
oo m cm o

oo m '—« LO cO
00 CM

_ IO
LO _ T>-
b- o

IO
i? 22 w oo t— CO

-Si

O)

<u

m o
CM M

00
oo

I I
m I-H oo
t> oo oo

f \ \

I I

I I I I

7 7 7 7

7 7 7 7

7 7 7 7

7 7 7 7

7 7 7 7
rH r-H i-H rH

I I I I

rH

O i—I

-Sfi

oo
00

oo o
oo m

oo m b- b-

CN

oo b- CM CO
i-H in

_ co CM
in m r-H

00

I I

CM
rH

r
m oo b- b-

o
in

oo oo

oo oo

CD

u

-o

e

I I

I I I

I I

I I I

7 7 7

I

I I

m b-

- "5 m O •

364

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDVS2 MVS 2 = ROVS 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2, 9 — 1 Snohalo 2,9 = |

C5

CM CT3

OO

CM T-H
03 00

00

CT3 co

03 CM
co m

CT3
CO

C3
CO

f-

I-
CM

t-T}<

CM F-
M CM

t-
CM

CM

05
05

_ "3 f CT3

lO
05

O
CT3

_ 00 to
a, oo t—

_ 00 O t- o
co

00
00

lO

03

r-
CM

oo r-

o
CO

TV
CM

oo
o

o
CO

oo
CO

oo
CO

I-Tjt t-
CM CM

b-

I I RA ° S CO 00
CO o

00
co

o co

l>-
CM

r-
CM

t-
CM

CM
to

t-

f I

CT>
CO

o-
CM

t-

I I

CM m

03
co

oo

C3
co

I I

CT3
CO 00

f

oo
r i

CM 03

oo 03 t-
05

I I

00
S co

o

00
CO

co

t-"""
00 CM o

t-
CM

I I

o
CO

I I

00

o
co

C3

lO b-

00
00

00
t-

I I
lO

o CT3

lO
CJ3

00
00

lO CJ3

05
05

C3
co oo

I I

CM C3 oo
05

C3 C3 oo t- o CT3 lO 03 03 CT)

00

r
CM C3 CT3
I I

CT) G3 00
oo

lO 03
o>
03

CJ)
CM C3 00 03 CT3 CJ3

CJ)
lO CT3 05 03

05
03
03 05

05
I I

CT) CT3
SU I I

CJ CJ I I

-o •o

C3

I I I I

366

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2, 6 = | Midedge 2

00 CP CT2

A, cn

 ̂ 00
o oO

C £

TP
LO

-S£

•o»

00
oo

cyj
oo
CT>

oo
CTi OS

LO I-H
en oo

oo
o
LO

o co t- CM

T}<
LO

TP
LO

CM

CO
CM

O c-

00
00

LO
CTi

oo
00

o r-

CO
CM

CM

LO

t-

TP
LO

Tf
LO

t-
I I

o
CM

o
LO

00

Tp
CT>

oo 05

o
£v

00

LO
CT

00
CT)

00
00

en

00
CT)

T}< OO
CTI CT> rH i-H i-H
i" r I i i

I I

I I

I I I

7 7 7

7 7 7

7 7 7

7 7 i

-S£

LO t-

o

LO
CM

LO
CN

o
LO

LO b-

oo
oo

©i

<u

o

00 LO
00 t-

o
LO

LO
CM

LO
CM

iO
CM

O
LO

LO t—

oo
00

LO
CM

o
LO

LO b-
I I

oo
oo

I I I

7 7 7

7 7 7

7 7 7

7 7 7

7 7 7

©
m

OO LO O LO
00 T- LO CM

00 LO O LO
A 00 B- LO <M

LO
CM

O
LO

LO t>-

00
oo

LO
CM

o
in

LO t-

oo oo

367

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Minmod Midedge 2

OO TP
CTi CTi 00

CP
00 Tp
CTi CTi

T-H O
oo m

_ 00 Tp T-H
A CTi CT) 00

O _
LO O

TP CTI --H O
00 LO

o
LO

00
o to

o
LO 00

I I

o m
o
LO oo

f

TP
CTi

O
LO 00

f

TP
CTi

00
CT!

I I

o
LO oo

r
TJ<
CT)

00 CT)

oo
f

TP
CTi

00
CTi

I I I I

TP
CT)

00
CTi

I I

00
CT)

Ol

I I

<u I I

"53 I I

7 7
rH i-H

I I

368

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.7 Soft Line: Two Subdivisions

Nohalo-LBB Nohalo 2

O O o o o s- o o o o o
CP o o o o o cy o o o o o

a o o o o o a o o o o o
o o o o o o o o o o o o

S o o o o o £ o o o o o

s o o o rH o .0
3 £ o o o o CO p

o o o CO o CM rH o o o co p CM rH

o r-H p co p CO rH o CO o o CO p 05 p LO CM

o .0
3 CM T—l o CO .5
0 o .0
3 CM rH LO CM .5
0

CO o CO
r*H

O CO .5
0 o r-- .0
3 o* o LO CM o LO LO !>•

CM t-H O co o LO o oo 00 -ci CM rH .2
5 o

LO
LO
C-;

00 00

CJ) o CO o LO o
I>- .8

7

.9
7 Ol LO CM o

LO
LO rH

p .9
7

.5
0 o o- 00 00 .9
7

rH .5
0 LO

.8
8

.9
7

rH

o t- tv 00 .9
7

.9
9

.9
7 <u LO !>. rH

05 .9
7 i-H .9
7

oo 00 .9
7 r—H .9
7 00 oq "e 00

GO .9
7 r-H .9
7 00 00

u .9
7

.9
9

.9
7

.8
7 o t-. u .9
7 rH .9
7 rH

C5
LO

•O iH .9
7 00 00 o b- .5
0 -o rH .9
7 00 00 .7
5

.5
0

s C3

369

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lanczos 3 Lanczos 2

o

CM
o Cr1

EG CM
o o

CM
o

I I

o
CM
o o o ©, o

CM CO CO
o o o o

o
l"
o

10
o o

I I
o

CM -3< LO CO
o o o o
f r i' \

CM
o o o

(M CO
o o

oo
o

CM
o o o O

CM O o
f

co
o

o o o
l'

CD O
oo CO

o co co o *-< CM OJ

-Sd o
f

o t-
o

CO
o

00 CM
co

co

O
in

co o ^o co ^ co
O I—I CM CO

•«-» o O CM
H CM

co
CO

o
lO

t-o 00
co

o W oo
CO

o
I—I

00 Oi
CM CO

io
LO

oo
CO

oo
00

<N
LO

o
co oo CM

cj m
CO LO

CM co oo

r>. ^ OS CO
o
LO

Oi
CO

LO
00

co
OS CO

LO CM LO f— oo
00

co O)

oo
CO 00

CO Ci ^ §
oo co
CO 00

co 05

00 <U CO
00 Oi

00
Oi

CO
Oi

00 CD CO CO 1—I
oo o>

Oi
Oi

co
OS

^3 oo OS
r-
Oi Oi 00

•>» £5 ^3 oo
i—1 CM
Oi OS o>

CO
00

CO
o Oi

00
Oi Oi

CO
00

00
CO

co
u o>

OS r—I
OS Oi

co
00

00
CO

CO
Oi

Tf
00

00
co

o
in -O iH

e

CO CO
Oi 00

oo
CO

o
m

370

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bicubic = Catmull-Rom LBB

s~ o

Cn o

O
rH
O O CM O

CM
O

I I

ex o
CM O CO

o o
CO
o

I I

o o

e o

CM
o

CM
o

CM O

O

CO
o

IO
o

co
o

I I
co
o

I I

CO
o

ai
o

&>

a,
o

e

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

CO
o

co
o

O O

co
o CM

CM

co
CM

CM
CM

lO
co

CM O

co
o

CM
O

CO o

co
o

ca

CO
o

OS

xl<
co

CT5 o
CM
CM

in
co

O 10
co o as

co
o in

OS
o

CM T—
CM CO

CM CO
IO CO

CO
O

CO
RH CO

o co
m co

-c CM t- co
co m

OS
co 00 ̂ 2 CO O

co m
00 rH
co 00

®S co CM OS
in co 00 OS ®S CO

o 00
m co

CO
00 OS

o
m

CO rH
CO 00

TP
OS **-> §

CO 1—1
CO 00

TP
OS

CO QJ> co 00 t-
r- 00

co TP
os os

co
CD CO

00 co t>- 00 CO
OS OS

00
b- OS
00 00

t>- rH
00 00 "« 00

co t—
00 00

CO r-H
00 00

U OS
CO I>-
os 00

00 CO
C- CO

TP CJ OS
co co
os 00

00 CO
CO

-© rH

C3

Tp rH
OS 00

CO
CO

o
m -O rH

Tjl rH
os 00

CO O
co in

371

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDVSQBS MVSQBS = ROVSQBS

s- O O o o o

o O
»—H
o
l'

rH
o

f

i-H
o

\

a. o O
\ -.

0
3

-.
0
4

-.
0
3

o o
rH
o

l' -.
0
5

o

-.
0
4

O o o o o

£ o
rH
o

f -.
0
3

-.
0
4

o
Cr

a.

o

o

o

o

o

o

o

o

o

o

£
r-H
o

\ -.
0
7

rH o .0
3

.0
9

n

o o

o

o
o

o
o

o
o

o
o

-.
0
3

-

i—f
© .0

6 CO
i-H .2

2 £ o

o .0
2

0

.0
6

.0
2 co o

CN
rH .1

9
.0

5

-.
0
4

.0
3 CO

rH
os
rH .3

7

o .0
3 CM T—< rH .3
6

o .0
9

.2
2

.3
7 O
S

•»> o .0
5 CT>

rH .3
6

.5
0

* .0
9

.2
5

.3
4 r-H

to .6
4

.0
5

.2
5 o

CO .5
0

.6
4

-c .2
2

CO .5
3 rH rH

00 -e Oi
1-H .3

0

.5
0

.7
0 1-H oo

Os .3
7 T—1

lO
rH
t- .7

5

.9
5 os .3
6

.5
0

.7
0

.7
5

.9
5

O
S

.6
4 rH

00 .9
5

fm-i

O
S

.6
4

.8
1

.9
5

rH

<u .6
4 00

00 .8
6

.9
4

.9
5 0) .6
4 00

00 .8
6

.9
4

.9
5

"53
r-H
00 .8

6 oo
00 .8

6 rH
00 "53 i-H

00 .8
6

.8
8

.8
6 rH

CO

CJ .9
5

.9
4 co

00
00
00 .6

4

CJ .9
5

.9
4 CD

°9
oo
00 .6

4

-O rH .9
5

.8
1

.6
4

5
0

-o TH .9
5

.8
1

.6
4

5
0

372

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP with Centred Cross-Derivatives AMP with Centred Cross-Derivatives

O O o o o O O o o o

Cr o O o o o o o o o o

a. o o o o o a. o o o o o

o o o o o o o o o o o o

e o o o o o s o o o o o

£ o .0
2 CO p .0
5

.0
6 6 o .0
2

.0
3

.0
5

.0
6

— o CO O .0
9 <M

rH
o> 1—1 o .0

3

.0
9 CM

rH
o
rH

-sa o .0
5 CM

rH .2
3

.3
4 -se o .0
5 CM

rH .2
3 CO

o .0
6 o>

rH CO .5
0 o .0
6 C5

rH .3
4 O
S

•<s» .0
6 CT5

r-H .3
3

.5
0

.6
6

.0
6

rH .3
3 O in .6
6

-e Oi
r-H .3

3

.5
0

.6
9

.8
1 a>

rH
CO CO .5

0

.6
9 1-H 00

Cn CO .5
0

.6
8 rH oo .9
4 Oi CO .5
0 00 <q .8
1

.9
4

.5
0

.6
6 rH °o .9
4 TH

O
S

.6
6 rH 00 .9
4

r-i

<u .6
6

.7
5

oq
oo 00 .9

4 <u .6
6

.7
5

.8
4

.8
9

.9
4

-e rH 00 .8
2

.8
2

.8
4 rH 00 rH

oo .8
2

.8
2 00 rH 00

o .9
4 00 00 CM 00 .7
5

.6
6 u .9
4

.8
9

.8
2

.7
5

.6
6

-o rH .9
4 rH

oo .6
6 O

S

-o rH .9
4 rH

oo .6
6

.5
0

53 53

373

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP with Null Cross-Derivatives = AMP MP Tensor = AMP Tensor

with Null Cross-Derivatives

a.

o

fi

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

5-

Cr

a,

o

s

o
o

o

o

o

o o

o o

o o

o o

o o

o o
o o

o o

o o

o o
CM
o

TP
o

co
o

co
o

CM CO
o o

o
Oi
o

oo Oi rH Tp
o o o

o CO
o

00 CO
CM

TP
CO o (M O

O i-H
O Tp
CM CO

co
o

cn TP
co

o
lO •«-> o CO Oi

O r-H
o

CO lO

co o oo <—i co
O CN 00 LO CO

co
o

o co
CM CO

co co
LO CO

_ Oi CO O O rH
-c i—i co lo oo

CO LO
CO LO

CM rH l>- oo

_ TP rH O CM TP
CO LO t>- 00 Oi

1-̂ 05 CO
CO CM
LO t-

t— Tp
00 Oi

CD CO r-H Tp
^-s ko co oo oi "

o kO
co
CO 00

Tp
Oi

CO TP rH 00 Tp
^ CO t— 00 00 Oi

co
<U CO

LO
00

Oi
00

Tj<
Oi

"S3 00 00 00 00 00 "•*3 oo OO 00 00 00

TP oo T-H Tp CO
<-> Oi 00 OO i>- CO

Oi
00

i-H LO CO
00 S CO

Tp i—I CO O
Oi 00 CO \o -© iH

c3

TP r-H CO O
Oi 00 CO it}

374

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bilinear CDVS2

J- O o O o
CM g

O* O O O o (N g

_ _ CM CM _ _ ®« o O O o o

Cn

a.

o

s

o
o
o
o
o

o
o
o
o
o
co o

o
o
o
o
o

CO o

o
o
o
o
o
CT> o

o
o
o

o
o
CM

CM CM o o
f f

C* CM CM CO o i—i t-H o

CM o

o

CM CM

co o co o

S <0 / ®

CM

co
O CM CT>

-45 o> 02 O <-H

CM LO
CM

CM

LO
CM

^ 00
CO

o in

CM
CO

LO OO
CM CO

OO O
CO LO

O CM
LO CO

CM LO
CO t>-

Oi LO
CO t-

00
CM

00
CO

o
LO

CM
co

LO t-

00
00

00

LO
CM

00
CO

o
in

CM
CO

LO

00
00

00
00

-ifi o

CO
o

CD O

CM

10 05 CM

CM
in

<U CD

CO o

CM

LO
CM

co
co

CM
LO

0O
oo

CO
o

LO
CM

00
co

00

t—
co

CM

CM LO
*~H CM

co N
co m

00 t— Tjt co

CM LO
co i>

LO 00
t- 00

T}<
05

co o

LO LO LO r- t- LO f- LO LO t-
co o CM

« 28 r-H 10
00 t>

Oi
CD

CM
CO

TP 01 00
00

00 LO
00 l>

CM
CO

o
in rs ^ -Cs 05 00

00
LO N- co m

375

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MVS 2 ROVS2

s- 0 O 0 0 0 0 O 0 0 0

&1 0 O 0 0 0 0 O 0 0 0

RH 0 O 0 0 0 a, 0 O 0 0 0

o 0 O 0 0 0 0 0 O 0 0 0

e 0 O 0 0 0 s 0 O 0 0 0

S 0 O 0 0 0 £ 0 O 0 0 0

0 O 0 0 0 0 O 0 0 0

-se 0 O 0 0 0 -S£ 0 O 0 0 0

0 CM
r—4 .2

5 00
CO

O
S

0 r-H .2
5 t—H

CO .5
0

•<s> 0 .2
5

.3
8

.5
0

.6
2

0 .2
5

.3
8

.5
0

.6
9

-ts 0
00
CO .5

0

.6
2

.7
5

0
r-H
CO .5

0

.6
2

.7
5

0 .5
0

.6
2 to

.8
8

0 .5
0

.6
9

.7
5 00

00

.5
0

r-H r-H rH rH .5
0

rH r-H rH rH

<u .6
2 r-H r-H r-H r-H .6
9

r-H r-H rH rH

10
"CS

10

u 00 °o r-H rH r-H r-H 0
00
00 rH r-H i-H rH

-0 rH
00
00 .7
5

.6
2

.5
0

-Cs rH
00
00 .7

5

.6
9

.5
0

e e

376

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2,9 = 1 Snohalo 2,0 = \

o

° o

I—I <>J
o o

o
&< o

o o

o o

O O
o o

a, o o o CM LTD
o o a. o o o

o o 1—1 CM
o o

00
o o

i—I CM
o o

e o CM LO
o o

oo
O rH O O o cm m o o

CM
o

Tt< oo
o o

co o
rH CM

i—I CM
O O

T}< o O j-I

LO
o

OO
O r-H

o o CM CO CM LO
o o

o a

00
-Sd o

co o
r-H CM

CJ3 05 CM CO -56 CM O ^ o O r-H
N r-H
rH CO

 ̂ rH
O O CM CO <y> Oi CO T}1 iO <-> O o oi rH O CO LO

O •n> CM 05 Oi CM CO r-t O
LO CO rH CO rH O

LO t—

a cn> CO t}< o co
co co

os rH O
CO LO

o o
t— oo

CO rH O
LO CO

o
CO T- OS CO

o
LO

CM f-
00 00

C5 O CO
co co

o I- l> o
LO

o o
f- 00

t- o OO 05

o <JJ co o- o
CO

CM O b- t~ <u o f- CM b-
00 00

o t-
OS 00

co
"S3 co O CM t- t— O CO

B- CO -e 00 o 0O C5 o
00 00

« £ CM O t- t- b- o
CO CO

r-
y 00

O b-
05 00

CM O
00 t>

rv ^ O CO
r- co

O 05
CO TT* ^ 0

Oi
t- o
00 00

o o t- 10

377

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2, 9 — § Midedge 2

W O O O o o

Cri O O O O o

O O O O O

o< o o o o o

a, o o i—i co
o o a, o co

o

o o OJ LO
o o o o CO co

o o

s o rH CO
o o

LO O
O ?H £ O _ co

O o
CO (N
O r-H

<N LO
o o

OS LO O rH £ O CO TO
o o

OJ os

co
o

LO
o

LO LO <—I OJ co
o

to OJ
O i—I

os oo
i-H OJ

LO
-Si o

OS LO O RH co to
oi co

to -se o
OJ os 00 oo

01 co

LO lO
1—1 CM

to o
CO LO

OI
•*-> rH

os oo
rH OI

oo o
co m

LO
•« r-H

00 to
01 co

rH Tj!
LO to

os •«* 1—I 00 oo
01 CO

O OJ LO to

-£ OI to o
co LO

OJ
to t-

~ 00
OJ

00 o CO LO OI OS
to to

co
1—I Tt4

lO to
oo f— r*. 00

Os co
O OJ LO to

OS LO
to t-

o
m

T}< OJ
to 00 rH t> 00

o
in

OJ OS
CO to

LO m
r- t-

Tfl
<U CO t—

oo rH 00
oo t-

OJ
<U CO

OS LO
to t—

LO LO b- t-

-M ̂a 00
00

00 OJ "<3 §> LO LO t- t- lo os
t- to

00 O 00
00 r- T- CO

LO u t- LO LO t- t-
OS OJ
CO CO

-© oq

CS

00 OI t- t- TT O
co m rs 10

b-
LO OS
t— co

oi O
co in

378

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Minmod Midedge 2

s- o
Oi o
a, o

o o
o o

O O
o o
o o

O o

M o o

O o CO CO o o

l-H CM o o co co O i—l

eg co o o CO t-<—I tN

CM
O

co co O '—I i> co
CM iO

co o CO T—
H CM

CO Oi
LO t-

CO t— CO
CM LO

Oi to
t— 00

OI CM
CO OJ
LO b-

m oo
00 00

CO
m

O LO
t- 00

oo 00
00 00

<L> Oi t> LO 00
00 00

00 00
oo oo

LO
00

oo oo
00 00

00 LO
oo oo

0°
CJ 00

oo oo
00 00

LO Oi
00 f-

oo
00

00 LO
oo oo

oi co tv m

379

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.8 Soft Interface: Two Subdivisions

Nohalo-LBB Lanczos 3

rH .9
9

.9
9

.9
9

rH

O .9
9

.
9
7

.
9
7

.9
6

.
9
8

a. .9
9

.
9
7

.9
5

.
9
4

.
9
7

o

6
6

9
6

9
4

9
3

9
7

s rH .
9
8

.
9
7

.
9
7

rH

0
p

i-H i-H i-H rH rH 6 .
9
8

.
9
8

.9
9 TO

T

1.
04

m

n

rH

i-H

r-H

i-H

r-H

r-H

rH

i—H

rH

1-H

.
9
7

.9
9

1.
04
 9

0
1

1.
08

.
9
7

1.
01

1.
06
 6

0
1

1.
07

rH i—H r-H rH rH rH
TjH
o

oo
o o rH

•St

r-H

i-H

r-H

i-H

r-H

i-H 9
4

.9
9

7
5

.
9
4

• to

1.
04

1.
05

1.

^H

lO
p
r-H

i-H

00
00

i—H .9
9

.9
4

.
7
4

.

i-H 1.
08

1.
05

.
9
8

CO
00

rH
CD

rH .
9
4

.7
5 IV o 1.
07

.
9
8

.
8
3

i-H
CO .3

2

.9
4

.
7
4

.4
1

o
rH
TP
r

rH
Tf
00

i-H

.3
2

o

.7
5 IV o

rH

r -
.
7
5

-

oq
i-H
co .3

2

o

-
.
3
2

CJ r-H
rt; o

rH

f -
.
7
4

-

-
.
9
4

-

"*3
1-H
CD .

3
2

©

-
.
3
2

rH
CO
f

«© O
r-H

i* -
.
7
5

-

-
.
9
4

-

rH

l

.3
2

o

-
.
3
2

rH
CD

f -
.
8
4

e

1

o .3
2

i-H
CD 00 rH

t
I I

380

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nohalo 2 MP Tensor = AMP Tensor

S- rH i-H 1-H r-H rH
0< rH i-H i-H rH i—I

Si, r-H r-H rH r-H ,-H
0 r-H r-H r-H rH r-H

S l-H r-H r-H r-H rH

g ̂ rH rH rH rH

rH r—1 r-H rH rH

' ̂ rH i-H rH rH ^

i-H rH rH rH 0}

_ Tf m ̂ r-H rH rH ̂

rH O 01 r-H r—I OJ 00 lO

. , t}< m o _
Vfc~> rH CT> t*- m O

.. 1—1 ° , § <u Oi oq Ln o .

o m in CD to t̂ ~-TS m o
I I

_ O rH

« g O *> o?
I I I

o m ___,
~o o ^ ^ °? ^

I I I 1

e

rH i-H i-H i-H rH

f~H rH rH rH rH

1-H rH 1 I i I r-H

O rH rH rH r-H rH

£ rH rH rH rH r-l

i-H r-H i-H 1-H rH

"<T-i rH r-H rH rH rH

00 LO 00
•e* i-H i-H <3̂ <J) 00

. 00 1-H O CM -c 1-1 Oi Oi 00 CO

_ m o oi co rH 05 oq in co

 ̂ oo <M co _ s—> rH 00 CO CO O

CO 0O Tji CO CO 00 CO CO ©

CJ

(M
CO

CO
CO

CO co

CO
co

I I

CO
CO

CO CO
I I

CM CO

CN CO
I I

CO 00
oo

00
00

381

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lanczos 2 Bicubic = Catmull-Rom

rH

1
.0

3

1
.0

2

1
.0

3

i-H

CJH
CO
O

CO
p

LO
O

LO
O

CO
O

t-H t-H t-H i-H i-H

a,
CM
p

LO
O

CO
p p

CM
O

r-H r-H r-H i-H rH

o
CO
O

LO
o p

LO
o CM

O
r-H rH t-H i-H r-H

e 1-H

1
.0

3

1
.0

2

1
.0

2

rH

CO
p

t-
p

oo
p

o
rH

t-
O

rH rH rH rH r-H

—••a

1
.0

2

1
.0

8
 O

i
l

1
.1

3

00
O
rH

CM
O

o
rH

CO
rH

CO
rH

cn
p

rH rH rH rH rH

rH

1
.0

7

1
.0

8

1
.0

9

rH

•<s>

1
.0

7

1
.0

9

1
.0

4

.9
9 CO

00

1
.0

8

1
.0

4

.9
2

.7
9

.5
7

6
0

1

.9
9

.7
9

.5
7

.3
0

rH .8
3

.5
7

.3
0 o

.8
3

rH
CO

rH
CO o

o CO
f

.5
7

rH
CO o

t-H
CO

f -.
5
7

.3
0

o
i-H
CO

f -.
6
1

CO 00
r

•O o
o
CO .5

7

.8
3

r-i
1

382

rH rH i-H .9
9

i-H

o r-H r-H .9
9

.9
9

i-H

e rH rH rH i—H rH

£ rH
<N
O

CO
p p O

r—H i-H r-H rH

i-H
CO o CO

p
00 o

CO
p

rH rH r-H i-H

rH o
00
o O

CO
p

1-H i-H 1-H i-H

rH

1
.0

4

1
.0

6

1
.0

6

rH

*

1
.0

4

CO
p
r-H

.9
9 CO

P
rH
00

-e

1
.0

6

.9
9

.8
9

.7
5

.5
6

1
.0

6

.9
3

.7
5

.5
4

.2
9

rH rH
00 .5

6

.2
9 o

<u
rH
00 .5

8 o
CO o

-.
2
9

.5
6

.3
0 o

-.
3

0

-.
5
6

CJ .2
9

o

-.
3

0

-.
5
8

rH
00

f

-o o .2
9

.5
6

i-H
oo rH

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LBB CDVSQBS

s~

o

a.

o

£

-SFI

-e

T3

~©

rH i-H i-H i-H rH

Cr1 rH rH rH rH rH

O r-H i-H i-H r-H i-H

e rH rH rH rH rH
rH i-H 1-H i-H TH

1—H r-H i-H 1—H rH S i-H i-H

1
.0

2

1
.0

2

1
.0

2

i-H i-H r-H rH rH i-H

1
.0

2

1
.0

6

1
.0

9
 9

0
1

rH

1-H

r-H

r-H

r-H

r-H

rH

i-H

rH

rH
rH

1
.0

2

1
.0

9

rH

1
.0

8

1-H

1
.0

2
 9

0
1

1
.0

8

rH

i-H

t-H

i-H

Oi
CT3

rH

CO

rH

co
CT> .8

8
1

•<s>
1

.0
2

1
.1

4

00

.9
4

.8
3

i-H .9
6

.

00
00

00 o- .6
2

.

1
.0

6

00
Oi

00
00 .7

3

.5
6

r-H .9
3

00
!>• .5

8

.3
3

en

1
.0

8

.9
4

.7
3

.6
3

.2
7

rH .8
8

.6
2

.3
3

0 rH
CO
00 .5

6

.2
7

0

00
00 .6

6

.3
4

0

-.
3
3

.8
3

.5
0

.3
3

0

-.
2

7

.6
2

.3
4

0

-.
3

4

-.
6
2

.5
6

CO
CO 0

-.
3

3

-.
5
6

.3
3

0

-.
3

4

-.
6
6

-.
8

8

u .2
7

0

CO
CO

f -.
5
0

-.
8
3

0
CO
CO .6

2

00 00 rH
1 -0 O -.

27

-.
56

CO
00 rH

1 I I

383

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MP with Centred Cross-Derivatives = MP with Null Cross-Derivatives = AMP

AMP with Centred Cross-Derivatives with Null Cross-Derivatives

V. iH rH >—I r-H rH

r-H r-H r-H r-H r-H

ft, rH rH rH rH rH

O rH r-H t-H rH i-H

g rH r-H rH rH rH

g rH rH rH rH rH

 ̂ r-H t-H rH rH rH

rH t-H t-H i-H rH

t>- OS 00
1—11 oi Oi oo oo

, TJI CM to CM -c --1 Oi 00 CO

 ̂ Oi LO Tf CO O) H oo n w n

. . OO CM CO _ *"H 0O CO CO O

CO 00 rH _ CO CD 00 CO CO o •

Tf C<l
eg tp co co ^3 CD CO o ̂ ̂

Tfl T-H 00
CJ ?§ o n. «? «?

I I I

co eg oo ̂ Q CO CO 00 rH
I I I 1

e

 ̂ rH t-H r-H rH rH

&< r-H rH rH t-H t-H

ft. rH rH rH rH rH

0 rH rH rH t-H rH

£ rH rH rH rH rH

-Si rH rH rH rH rH

rH t—I t-H i—t rH

CD 00 Oi 00
i—1 OS Oi 00 00

co t-H LO ea "C rH 0-S 00 CD

_ OS LO CO 01 t-H oo O- LO 00

oo eg oo _ **-> rH oo CO 00 O

00 oo i-H co W 00 CD 00 O

"e

CJ

-o

CM Tf
co oo

CO
oo

00

Tt< t-H
CO CO

CO CM
co co

f l'

CM CO
I I

oo
oo

I I

00
00

384

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bilinear MVSQBS = ROVSQBS

1-1

o
00 1—1 LO
oo oo t—

oo io 00 t>- <M O
<0 LO

Oi r-H CM
00 to

Tp
TP

LO
CM

LO t- O LO
LO CM

LO o
LO

LO
CM

LO
CM

o
LO

LO
LO
CM

o
LO

u LO
CM

LO
CM

O
lO

I I

LO o

LO
CM

o
LO

LO

-se T-H

tH

Oi
Tp
Oi Oi

b-
Oi

00
00

LO
!>•

CM
to

O) TP
Oi

LO
t--

1>- oo
CM

Oi
CM
to

00
CM

V Oi LO TP o

oo
CM

•>* CM t—I TP
a to TP ©

CM
CO

I I

Oi

-o O
00 CM r-t
CM to Oi

r r r

385

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDVS2 MVS 2

a,

o i-H 1-H i—H ^H i-H

e rH rH rH .9
7

 C
O

I

g i—H rH t-H .9
7
 CO o .9

7

rH
rH rH rH rH

rH .9
7

.9
7

t-H i-H rH rH t-H rH

rH

1
.0

3

1
.0

3

i-H i-H

d
o

rH

t-H
i—H
1-H

t-H
i-H

rH

i-H

CO o lO
CM

to
CM

CM i-H .9
4 £ rH rH rH rH

iH i-H i-H i-H .9
4

£ rH rH t*H rH

co
o

LO
CM

io
CM

CO
O 8

8

rH rH rH i-H rH i-H i-H ^H

rH
CM
rH

CO © rH 75

rH rH rH rH

rH rH
rH rH rH rH

rH .9
4

00 00 .7
5

.5
0

.9
4

.7
5

.5
0

rH
CO o

rH

1-H

rH

LO

.5
0

1 rH

LO
CM

oo 00 .5
0

.2
5

o

-.
3
1

CD rH .5
0

,

.2
5

,

O

.7
5

rH
CO o

-.
2

5

-.
5
0

"t3 ^H .2
5 o -.
2

5

O .5
0 o

-.
3

1

-.
5
0

-.
7

5

CJ t-H o -.
2
5
 O

*o
1*

*o o
o in
f -.
7

5

-.
8

8

-.
9
4

-o o t-H
1

i-H
1

1

^H
1

e C3

lO
CM

O 10

lO N-

386

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ROYS 2 Snohalo 2,8 = 1

w
cy

a,

©

e

£

'Oi

Oi

"Q

cj

•O O

<3

LO

o
lO

oo
co

o

o
LO

LO
(M

oo
co

LO
CM

00
CO

o
LO

oo
CO

o
LO

I I
LO

I I

1-H rH rH rH i—I

&i rH rH rH r—I rH

», i-H ,-H ,-H ,-H ^H

O i-H i-H t-H i-H i-H

_ oo £ T—l 1—I 1-H 1—I

~o Oi CO
r-H t-H rH

oo CD '—1
rH rH <y) 05 Oi

Oi CO CO LO rH 05 OS OI 00

00 co I-H LO co 01 Oi CTl 00 l>

CO CO CO t>- cs Oi Oi 00 !>; CO

. 1-H CO T- LO LO »C Oi oq co

LO I>- LO O CO ®5 00 N- CO LO CM

CO CM LO CO _ •*-1 CO Tt1 CN O

CO CS CO LO CS co TIJ cs © •

_ LO LO
T3 £ £ © ̂ ̂

LO CO cs
O s O ̂ ̂ «j?

co LO cs eo
-o O ̂ ̂ ̂

t i l l

e

387

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snohalo 2,6 = | Snohalo 2,0 = |

 ̂ rH i-H rH rH ,H

Cr t-H i-H i-H i-H i-H

A, i-H "H rH rH rH

O rH rH rH rH rH

g rH rH ,-H rH

03 ̂ rH rH r-H rH

05 00 ̂ rH i—i 1—• C> C"}

O 00 iO
-S<e rH rH CT) Q3 JJJ

os oo m O '""i OS OS OS Oi

OJ 00 CO CS CM OS OJ OS OS 00

. co co cs co co Os OS OS 00 CD

in cs co os i-H Os os os oq CD TP

. O <N CO 1-H _ Oi oq cq TP O

CS 00 o _ ̂oq CD O j"-

o co CO O TP CO ^3 CO Tp O ̂

O 00 cs
o 3 o T

I I I

rH CO CS O ̂ 0 Tf CD 00 Oi
I I I f

e

K rH 1-H rH rH rH
i-H t-H 1—I rH rH

a. 1-H 1-H 1-H rH rH

O rH rH rH rH rH

05 S rH 1-H rH t—i gj

ra os oo H I I I I OS OS

os oo m — ̂ rH OJ 05 OS

os oo co o
-« 1—1 os os os os

Oi OO in O rH
•«-» Oi OS OS OS 00

oo co T-h m i-H
Os Os Os 00 b-

. in TH TP TP co
-c os os oq t>; in

_ O in TP os co
®i oi oq n 10 n

, rH 1-H CO CO __ ̂ 00 Is- m co O

co
*> £ S S3 o *j>

 ̂ co cs co S? a m co o *. .

CS CO i-H
CJ 8 O « « ̂

I I I

CO CO t-H lH
-o O n- ̂ 00

I I I !

C3

388

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Midedge 2 Minmod Midedge 2

s»

&1

a
©
g rH

TP 05

Cr*

a,
o

e

TP C5 oo
oo -se oo

cn

TP 00 >-H OI 00 i> 00 OJ m o>

TP oo m o> oo t> CM
CO

oo m OJ o>
00
oo

. TJ< oo M CM
-g OJ oo r— co

TP
TP

oo m
OJ OJ

oo
oo

co r-

oo in CM TP
OJ OO CO TP

m
CM

_ oo m oo
OJ CT> 00

CO t- CM m

IN CM TP LO
^ ̂ CO TP CM

in
05

00
oo

co C-g
m

CM TP
CO TP

m CO
m
CM oo co

00
CM
m

CM
in

m
CM

M TP
CM Tp "S3 co t- CM m

<M io co t̂ -
I I

u m
CM

m Tp
CM TP

CM
CO CM

LO

CM
m

co
IN-

oo oo
I I

»o
m
CM

TP
TP

CM
CO

in
o

CM
m

co t-
I I

00
oo

in
05

389

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B C Implementation of the VSQBS (Midedge with

Quadratic B-Spline Smoothing) Hybrid Image Resampling

Method for the GEGL Library

This implementation of the VSQBS method for the GEGL library is currently found in its

Git repository under the name gegl-sampler-nohalo.c:

http://git.gnome.org/browse/gegl/tree/gegl/buffer/

gegl-sampler-nohalo. c?h=samplers. The first pass of this code was written by

the author of this thesis.

/ * T h i s f i l e i s p a r t o f G E G L
*
* GEGL is free software; you can redistribute it and/or modify it
* u n d e r t h e t e r m s o f t h e G N U L e s s e r G e n e r a l P u b l i c L i c e n s e a s
* p u b l i s h e d b y t h e F r e e S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 o f
* t h e L i c e n s e , o r (a t y o u r o p t i o n) a n y l a t e r v e r s i o n .
*

* GEGL is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*

* You should have received a copy of the GNU Lesser General
* P u b l i c L i c e n s e a l o n g w i t h G E G L ; i f n o t , s e e
* < h t t p : / / w w w . g n u . o r g / l i e e n s e s / > .
*

* 2 0 0 9 (c) N i c o l a s R o b i d o u x , C h a n t a l R a c e t t e , A d a m T u r c o t t e ,
* O y v i n d K o l a s , E r i c D a o u s t a n d G e e r t J o r d a e n s .
*/

/*
* ================

390

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* NOHALO SAMPLER
* ================

*

* V e r t e x S p l i t Q u a d r a t i c B — S p l i n e s (V S Q B S) i s a b r a n d n e w
* m e t h o d w h i c h c o n s i s t s o f v e r t e x — s p I i t s u b d i v i s i o n , a
* s u b d i v i s i o n m e t h o d w i t h t h e (a s y e t u n k n o w n ?) p r o p e r t y t h a t
* d a t a w h i c h i s (l o c a l l y) c o n s t a n t o n d i a g o n a l s i s s u b d i v i d e d
* i n t o d a t a w h i c h i s (l o c a l l y) c o n s t a n t o n d i a g o n a l s , f o l l o w e d b y
* q u a d r a t i c B — S p l i n e s m o o t h i n g . B e c a u s e b o t h m e t h o d s a r e l i n e a r ,
* t h e i r c o m b i n a t i o n c a n b e i m p l e m e n t e d a s i f t h e r e i s n o
* s u b d i v i s i o n .
*

* A t h i g h e n l a r g e m e n t r a t i o s , V S Q B S i s v e r y e f f e c t i v e a t
* " m a s k i n g " t h a t t h a t t h e o r i g i n a l h a s p i x e l s u n i f o r m l y
* d i s t r i b u t e d o n a g r i d . I n p a r t i c u l a r , V S Q B S p r o d u c e s r e s a m p l e s
* w i t h o n l y v e r y m i l d s t a i r c a s i n g . L i k e c u b i c B - S p l i n e s m o o t h i n g ,
* h o w e v e r , V S Q B S i s n o t a n i n t e r p o l a t o r y m e t h o d . F o r e x a m p l e ,
* u s i n g V S Q B S t o p e r f o r m t h e i d e n t i t y g e o m e t r i c t r a n s f o r m a t i o n
* (e n l a r g e m e n t b y a s c a l i n g f a c t o r e q u a l t o I) o n a n i m a g e d o e s
* n o t r e t u r n t h e o r i g i n a l : V S Q B S e f f e c t i v e l y s m o o t h s o u t t h e
* i m a g e w i t h t h e c o n v o l u t i o n m a s k
*

* 1 /8

* 1 /8 1 /2 1 /8
* 1 /8
*

* w h i c h i s a f a i r l y m o d e r a t e b l u r (a l t h o u g h t h e c h e c k e r b o a r d m o d e
* i s i n i t s n u l l s p a c e) .
*

* I n t h e n o h a l o s a m p l e r , V S Q B S i s b l e n d e d w i t h b i l i n e a r w h e n a l l
* t h e s i n g u l a r v a l u e s o f t h e J a c o b i a n m a t r i x o f t h e
* t r a n s f o r m a t i o n w h i c h c a l l s t h e s a m p l e r a r e i n t h e i n t e r v a l
* (-1/2,2).

*

* B l e n d i n g V S Q B S w i t h a n i n t e r p o l a t o r y m e t h o d (h e r e , b i l i n e a r) i n
* a J a c o b i a n a d a p t i v e w a y e n s u r e s t h a t r e s a m p l i n g i s
* i n t e r p o l a t o r y f o r r o t a t i o n s (t h a t i s , t h e a b o v e b l u r i s n o t
* a c t i v e w h e n t h e t r a n s f o r m a t i o n i s a r o t a t i o n) . I n p a r t i c u l a r ,
* r e s a m p l i n g f o r t h e i d e n t i t y g e o m e t r i c t r a n s f o r m a t i o n i s
* e q u i v a l e n t t o t h e i d e n t i t y .
*

* A n a r t i c l e o n V S Q B S i s f o r t h c o m i n g .
*/

/ *
* A c k n o w l e d g e m e n t s : A d a m T u r c o t t e a n d E r i c D a o u s t ' s S n o h a l o

391

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* p r o g r a m m i n g f u n d e d b y G o o g l e S u m m e r o f C o d e 2 0 0 9 . N i c o l a s
* R o b i d o u x ' s r e s e a r c h o n N o h a l o f u n d e d i n p a r t b y a n N S E R C
* (N a t i o n a l S c i e n c e a n d E n g i n e e r i n g R e s e a r c h C o u n c i l o f C a n a d a)
* D i s c o v e r y G r a n t .
*

* N i c o l a s R o b i d o u x t h a n k s M i n g l u n G o n g , R a l f M e y e r , J o h n C u p i t t
* and Sven Neumann for useful comments and code.
*/

/ *
* FAST-PSEUDOJFLOOR is a floor replacement which has been found
* t o b e f a s t e r . I t r e t u r n s t h e f l o o r o f i t s a r g u m e n t u n l e s s t h e
* a r g u m e n t i s a n e g a t i v e i n t e g e r , i n w h i c h c a s e i t r e t u r n s o n e
* l e s s t h a n t h e f l o o r . F o r e x a m p l e :
*

* FAST-PSEUDOJFLOOR (0.5) = 0
*

* FAST-PSEUDO-FLOOR (0.) = 0
*

* FAST-PSEUDO-FLOOR(— .5) = -1
*

* a s e x p e c t e d , b u t
*

* FAST-PSEUDO-FLOOR(— 1 •) = -2
*

* The discontinuities of FASTJPSEUDO-FLOOR are on the right of
* n e g a t i v e n u m b e r s i n s t e a d o f o n t h e l e f t a s i s t h e c a s e f o r
* f l o o r .
*/

#def ine F A S T _ P S E U D O _ F L O O R (x) ((g in t) (x) - ((x) < 0 .))

enum
{

P R O P - O ,
P R O P - L A S T

} ;

s ta t i c vo id g e g l _ s a m p l e r _ n o h a l o _ g e t (G e g l S a m p l e r *
cons t gdouble
cons t gdouble

res tr i c t s e l f ,
a b s o l u t e . x ,
a b s o l u t e . y ,

vo id* res tr i c t o u t p u t) ;

s ta t i c vo id s e t . p r o p e r t y (GObject* g o b j e c t ,
guint p r o p e r t y _ i d ,

cons t GValue* v a l u e ,
GParamSpec* p s p e c) ;

392

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s ta t i c vo id g e t . p r o p e r t y (GObjec t*
gu int
GValue*
GParamSpec*

g o b j e c t ,
p r o p e r t y _ i d ,
v a l u e ,
p s p e c) ;

G - D E F I N E . T Y P E (G e g l S a m p l e r N o h a l o ,
g e g l _ s a m p l e r _ n o h a l o ,
G E G L - T Y P E . S A M P L E R)

s ta t i c vo id
g e g l _ s a m p l e r _ n o h a l o _ c l a s s _ i n i t (G e g l S a m p l e r N o h a l o C l a s s * k l a s s)

{
G e g l S a m p l e r C l a s s * s a m p l e r _ c l a s s = G E G L J S A M P L E R J C L A S S (k l a s s) ;
G O b j e c t C l a s s * o b j e c t . c l a s s = G _ O B J E C T _ C L A S S (k l a s s) ;
o b j e c t _ c l a s s — > s e t _ p r o p e r t y = s e t _ p r o p e r t y ;
o b j e c t . c l a s s — > g e t _ p r o p e r t y = g e t - p r o p e r t y ;
s a m p l e r . c l a s s - > g e t = g e g l _ s a m p l e r _ n o h a l o _ g e t ;

}

s ta t i c vo id
g e g l _ s a m p l e r _ n o h a l o _ i n i t (G e g l S a m p l e r N o h a l o * s e l f)
{

G E G L - S A M P L E R (s e l f) - > c o n t e x t _ r e c t . x = — 1 ;
G E G L J S A M P L E R (s e l f) - > c o n t e x t _ r e c t . y = - 1 ;
G E G L S A M P L E R (s e l f) — > c o n t e x t _ r e c t . w i d t h = 3 ;
G E G L J S A M P L E R (s e l f) - > c o n t e x t _ r e c t . h e i g h t = 3 ;
G E G L J S A M P L E R (s e l f) - > i n t e r p o l a t e _ f o r m a t =

b a b l . f o r m a t (" R a G a B a A f l o a t ") ;
}

/*

* THE STENCIL OF INPUT VALUES:
*

* P o i n t e r a r i t h m e t i c i s u s e d t o i m p l i c i t l y r e f l e c t t h e i n p u t
* s t e n c i l a b o u t d o s . t w o a s s u m e d c l o s e r t o t h e s a m p l i n g l o c a t i o n
* t h a n o t h e r p i x e l s (t i e s a r e O K) i n s u c h a w a y t h a t a f t e r
* r e f l e c t i o n t h e s a m p l i n g p o i n t i s t o t h e b o t t o m r i g h t o f
* d o s - t w o .
*

* The following code and picture assumes that the stencil
* r e f l e x i o n h a s a l r e a d y b e e n p e r f o r m e d . (X i s t h e s a m p l i n g
* l o c a t i o n .)
*

*

* (i x , i y — l) (i x + l , i y - I)

393

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i x - I , i y)
= dos.one

(i x - I , i y + 1)
= t r e . o n e

= uno.two

(i x , i y)
= d o s - t w o

X

(i x , i y + 1)
= t r e - t w o

= u n o . t h r

(i x + 1 , i y)
- d o s - t h r

(i x + 1 , i y + 1)
= t r e . t h r

The above input pixel values are the ones needed in order to
IMPLICITLY make available the following values , needed by
q u a d r a t i c B — S p l i n e s , w h i c h i s p e r f o r m e d o n (s h i f t e d) d o u b l e
d e n s i t y d a t a :

u n o . o n e _ / =
(i x — 1 / 4 , i y - 1 / 4)

X
d o s - o n e . l -
(i x - 1 / 4 , i y + 1 / 4)

o r X

t r e - o n e - 1 =
f i x — 1 / 4 , i y + 3 / 4)

uno .two A = uno .thr .1 =
(i x + 1 / 4 , i y - 1 / 4) (i x + 3 / 4 , i y - 1 / 4)

o r X
d o s - t w o - 1 =
(i x + 1 / 4 , i y + 1 / 4)

o r X

t r e - t w o - 1 =
(i x + 1 / 4 , i y + 3 / 4)

d o s - t h r - 1 -
(i x + 3 / 4 , i y + 1 / 4)

t r e - t h r . l =
(i x + 3 / 4 , i y + 3 / 4)

I n t h e c o e f f i c i e n t c o m p u t a t i o n s , w e f i x t h i n g s s o t h a t
c o o r d i n a t e s a r e r e l a t i v e t o d o s - t w o . 1 , a n d s o t h a t d i s t a n c e s
a r e r e s c a l e d s o t h a t d o u b l e d e n s i t y p i x e l l o c a t i o n s a r e a t a
d i s t a n c e o f 1 .

* A s f a r a s t h e b i l i n e a r c o m p o n e n t o f t h e s a m p l e r i s c o n c e r n e d ,
* t h e s a m p l i n g p o s i t i o n i s n o r m a l i z e d s o t h a t X i s i n t h e c o n v e x
* h u l l o f d o s - t w o , d o s - t h r , t r e . t w o a n d t r e - t h r .
* /

s ta t i c in l ine g f loat

394

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v s q b s _ b i l i n e a r _ m i x (cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t
cons t

{
cons t gdouble v s q b s = (

gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble
gdouble

f o u r . c . u n o . t w o
f o u r _ c _ u n o _ t h r
f o u r _ c _ d o s _ o n e
f o u r _ c _ d o s . t w o
f o u r _ c _ d o s _ t h r
f o u r _ c - t r e . o n e
f o u r _ c _ t r e _ t w o
f o u r . c . t r e _ t h r

c _ b o t _ r i t e ,

c _ b o t _ l e f t ,
c _ t o p _ l e f t ,
c _ t o p _ r i t e ,

t h e t a ,
u n o _ t w o ,
u n o . t h r ,
d o s _ o n e ,
d o s _ t w o ,
d o s _ t h r ,
t r e . o n e ,
t r e . t w o ,

t r e _ t h r)

f o u r . - C . . u n o . . t w o * u n o . _ t w o +
f o u r - C _ u n o _ t h r * u n o _ t h r +

f o u r -C. . d o s . . o n e * d o s . . o n e +
f o u r . - C . . d o s . . t w o * d o s . . t w o +
f o u r _ c _ d o s _ t h r * d o s _ t h r +
f o u r _ c _ t r e _ o n e * t r e . o n e +
f o u r - C _ t r e _ t w o * t r e _ t w o +
f o u r _ c _ t r e . t h r * t r e . . t h r) * 0 . 2 5 ;

cons t gdouble b i l i n e a r = c _ b o t _ r i t e * t r e . t h r +

c _ b o t _ l e f t * t r e . t w o +
c _ t o p _ r i t e * d o s . t h r +
C - t o p _ l e f t * d o s . t w o ;

cons t g f loat n e w v a l = b i l i n e a r + t h e t a * (v s q b s - b i l i n e a r

re turn n e w v a l ;

}

s ta t i c vo id
g e g l _ s a m p l e r _ n o h a l o _ g e t (G e g l S a m p l e r * res tr i c t s e l f ,

c o n s t g d o u b l e a b s o l u t e
c o n s t g d o u b l e a b s o l u t e

vo id* res tr i c t o u t p u t)

395

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
/ *

* N e e d e d c o n s t a n t s r e l a t e d t o t h e i n p u t p i x e l v a l u e p o i n t e r
* p r o v i d e d b y g e g l . s a m p l e r - g e t ~ p t r (s e l f , i x , i y) .
* p i x e l s - p e r . r o w c o r r e s p o n d s t o f e t c h . r e c t a n g I e . w i d t h i n
* g e g l s a m p l e r . g e t - p t r .
*/

cons t g in t c h a n n e l s = 4 ;
cons t g in t p i x e l s . p e r . r o w = 6 4 ;
cons t g in t r o w . s k i p = c h a n n e l s * p i x e l s _ p e r _ r o w ;

/ *
* e p s i l o n d e t e r m i n e s h o w f a r f r o m 1 t h e s i n g u l a r v a l u e s c a n b e
* b e f o r e w e s w i t c h o u t o f p u r e b i l i n e a r . I t s h o u l d b e s t r i c t l y
* p o s i t i v e b u t r e a s o n a b l y c l o s e t o 0 . 3 / 2 5 5 e n s u r e s t h a t u s i n g
* b i l i n e a r w h e n , i n t h e o r y , w e s h o u l d n o t , l e a d s t o p i x e l v a l u e
* d i f f e r e n c e s o f a t m o s t 1 w h e n d e a l i n g w i t h 8 b i t i m a g e s .
* (S o m e d i f f e r e n c e s o f 1 a r e u n a v o i d a b l e b e c a u s e o f r o u n d i n g .)
*/

cons t gdouble e p s i l o n = 3 . / 2 S 5 . ;

/ *
* The newval array will contain one computed resampled value
* p e r c h a n n e l :
*/

gf loat n e w v a l [c h a n n e l s] ;

/*

* C a l c u l a t e t h e b l e n d i n g p a r a m e t e r f r o m t h e s q u a r e s o f t h e
* s i n g u l a r v a l u e s o f t h e i n v e r s e J a c o b i a n m a t r i x :
* /

G e g l M a t r i x 2 * cons t i n v e r s e . j a c o b i a n = s e l f — > i n v e r s e _ j a c o b i a n ;

cons t gdouble J i n v _ 1 1 = * i n v e r s e . j a c o b i a n [0] [0] ;
cons t gdouble J i n v _ 1 2 = • i n v e r s e . j a c o b i a n [0] [1] ;
cons t gdouble J i n v . 2 1 = • i n v e r s e - j a c o b i a n [1] [0] ;
cons t gdouble J i n v . 2 2 = • i n v e r s e - j a c o b i a n [1] [1] ;

cons t gdouble J i n v . 1 1 _ s q = J i n v . l 1 * J i n v _ l 1 ;
cons t gdouble J i n v _ 1 2 - s q = J i n v . l 2 * J i n v _ l 2 ;
cons t gdouble J i n v . 2 1 - s q = J i n v _ 2 1 * J i n v . 2 1 ;
cons t gdouble J i n v . 2 2 _ s q = J i n v _ 2 2 * J i n v _ 2 2 ;

cons t gdouble s u m . . a l l - s q =

J i n v _ l l _ s q + J i n v _ 1 2 _ s q + J i n v _ 2 1 _ s q 4 - J i n v _ 2 2 _ s q ;
cons t gdouble d e t = J i n v . l 1 * J i n v _ 2 2 - J i n v _ 1 2 * J i n v _ 2 1 ;

396

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cons t gdouble t w i c e . d e t = d e t + d e t ;

cons t gdouble d i s c r . p r o d . l = s u m . a l l . s q + t w i c e . d e t ;
cons t gdouble d i s c r _ p r o d _ 2 = s u m _ a l l _ s q - t w i c e . d e t ;
cons t gdouble d i s c r = d i s c r . p r o d . l * d i s c r _ p r o d _ 2 ;
cons t gdouble d i s c r . s q r t = s q r t (d i s c r) ;

cons t gdouble s i g m a l . s q = (s u m . a l l . s q + d i s c r . s q r t) * 0
cons t gdouble t w i c e _ s i g m a 2 _ s q = s u m . a l l . s q - d i s c r . s q r t ;
cons t gdouble o n e _ o v e r _ s i g m a 2 _ s q = 2 . 1 t w i c e _ s i g m a 2 _ s q ;

/*

* Take the largest of the two singular values and their
* r e c i p r o c a l s :
* /

cons t gdouble t =
(s i g m a l _ s q > = o n e _ o v e r _ s i g m a 2 _ s q
? s i g m a l . s q : o n e _ o v e r _ s i g m a 2 _ s q) ;

i f (t < = 1 . + e p s i l o n) / * Pure bilinear */
{

cons t g in t i x = F A S T J P S E U D O J F L O O R (a b s o l u t e _ x) ;
cons t g in t i y = F A S T _ P S E U D O _ F L O O R (a b s o l u t e . y) ;

cons t g f loat* res tr i c t i n p u t . b p t r =
(g f loat*) g e g l . s a m p l e r _ g e t . p t r (s e l f , i x , i y) ;

cons t g f loat x = a b s o l u t e . x — i x ;
cons t g f loat y = a b s o l u t e . y — i y ;

/*

* B i l i n e a r w e i g h t s (N o t e : w = 1 — x a n d z = 1 — y) :
* /

cons t g f loat x . t i m e s . y = x * y ;
cons t g f loat w . t i m e s . y = y — x . t i m e s . y ;
cons t g f loat x . t i m e s . z = x - x . t i m e s . y ;
cons t g f loat w . t i m e s . z = l . f - (x + w . t i m e s . y) ;

gf loat n e w v a l O , n e w v a l l , n e w v a l 2 , n e w v a l 3 ;
gf loat n e w v a l O i , n e w v a l l i , n e w v a l 2 i , n e w v a l 3 i ;

n e w v a l O = * i n p u t . b p t r + + ;
n e w v a l l = * i n p u t . b p t r + + ;
n e w v a l 2 = * i n p u t . b p t r + + ;
n e w v a l 3 = * i n p u t _ b p t r + + ;

3 9 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n e w v a l O i
n e w v a l 1 i
n e w v a l 2 i
n e w v a ! 3 i

* i n p u t . b p t r + + ;
* i n p u t . b p t r + + ;
* i n p u t . b p t r + + ;
* i n p u t . b p t r ;

i n p u t . b p t r + = 1 + r o w . s k i p — 2 * c h a n n e l s ;

n e w v a l O * = w . t i m e s . z ;
n e w v a l l * = w . t i m e s . z ;
n e w v a l 2 * = w . t i m e s . z ;
n e w v a l 3 * = w . t i m e s . z ;

n e w v a l O i * = x . t i m e s . z ;
n e w v a l l i * = x . t i m e s . z ;
n e w v a l 2 i * = x . t i m e s . z ;
n e w v a l 3 i * = x . t i m e s . z ;

n e w v a l O + = w . t i m e s . y * * i n p u t . b p t r + + ;
n e w v a l l + = w . t i m e s . y * * i n p u t . b p t r + + ;
n e w v a l 2 + = w . t i m e s . y * * i n p u t . b p t r + + ;
n e w v a l 3 + = w . t i m e s . y * * i n p u t . b p t r + + ;

n e w v a l O i + = x . t i m e s . y * * i n p u t . b p t r + + ;
n e w v a l l i + = x . t i m e s . y * * i n p u t . b p t r + + ;
n e w v a l 2 i + = x . t i m e s . y * * i n p u t _ b p t r + + ;
n e w v a l 3 i + = x . t i m e s . y * * i n p u t _ b p t r ;

n e w v a l [0] = n e w v a l O + n e w v a l O i ;
n e w v a l [1] = n e w v a l l + n e w v a l l i ;
n e w v a l [2] = n e w v a l 2 + n e w v a l 2 i ;
n e w v a l [3] = n e w v a l 3 + n e w v a l 3 i ;

}
e l se /* Pure VSQBS or VSQBS blended with bilinear */
{

/*

* C a l c u l a t e t h e n e e d e d s h i f t s :
*/

cons t g in t i x _ 0 = F A S T _ P S E U D O _ F L O O R (a b s o l u t e . x + . 5) ;
c o n s t g i n t i y . O = F A S T J P S E U D O J L O O R (a b s o l u t e . y + . 5) ;

cons t g f loat* res tr i c t i n p u t . b p t r =
(g f loat*) g e g l _ s a m p l e r . g e t _ p t r (s e l f , i x . O , i y . O) ;

cons t gdouble x . O = a b s o l u t e . x — i x . O ;
cons t gdouble y _ 0 = a b s o l u t e . y — i y . O ;

398

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cons
cons

cons
cons

cons
cons

cons
s h

cons
s h

cons
cons
cons

cons
s h

cons
s h

cons
s

g int s i g n _ o f _ x _ 0 = 2 *
g i n t s i g n _ o f _ y _ 0 = 2 * (

x _ 0 > = 0 .
y . O > = 0 .)

g int s h i f t . f o r w _ 1 _ p i x = s i g n _ o f _ x _ 0 * c h a n n e l s ;
g i n t s h i f t . f o r w . l . r o w = s i g n _ o f _ y _ 0 * r o w . s k i p ;

g int s h i f t _ b a c k _ l _ p i x = — s h i f t . f o r w . l _ p i x ;
g int s h i f t - b a c k . 1 . r o w = — s h i f t _ f o r w _ l . r o w ;

g int u n o . t w o . s h i f t =
f t . b a c k . 1 . r o w ;

g int u n o . t h r . s h i f t =
f t . f o r w _ 1 _ p i x + s h i f t . b a c k . l . r o w ;

g int d o s . o n e . s h i f t = s h i f t . b a c k . l _ p i x ;
g int d o s . t w o . s h i f t = 0 ;
g int d o s _ t h r _ s h i f t = s h i f t . f o r w . 1 _ p i x ;

g int t r e . o n e . s h i f t =
f t . b a c k . l _ p i x + s h i f t . f o r w . l . r o w ;

g int t r e . t w o . s h i f t =
f t . f o r w . 1 . r o w ;

g int t r e . t h r . s h i f t =
h i f t . f o r w . l _ p i x + s h i f t . f o r w . l . r o w ;

cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble

cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble

a b s . x . O =
a b s . y . O =
t w i c e . a b s . x . O =
t w i c e . a b s . y . O =
X =

y
c e n t =
m i d =
l e f t =
t o p =
l e f t . p . c e n t =
t o p . p . m i d =
c e n t . p . r i t e =
m i d . p . b o t =
r i t e =

b o t :

f o u r . c . u n o . t w o
f o u r . c . d o s . o n e
f o u r . c _ d o s . t w o
f o u r _ c . d o s . t h r

s i g n . o f . x . O * x _ 0
s i g n _ o f _ y _ 0 * y _ 0
a b s . x . O + a b s . x . O
a b s . y . O + a b s . y . O
t w i c e . a b s . x . O + — 0 . 5 ;
t w i c e _ a b s _ y . O + - 0 . 5 ;
0 . 7 5
0 . 7 5
- 0 . 5
- 0 . 5
l e f t
t o p
1 . 0 -

1 . 0 -

1 . 0 -

1 . 0 -

= t o p
= l e f t
: l e f t .

c e n t
m i d

x * x
y * y
(x +
(y +

c e n t ;
m i d ;

l e f t ;
t o p ;
l e f t . p . c e n t
t o p . p . m i d ;

0 . 5 ;
0 . 5 ;

l e f t . p . c e n t ;
* t o p . p . m i d ;
p . c e n t + t o p . p . m i d

399

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c e n t _ p _ r i t e * t o p _ p _ m i d + r i t e ;
cons t gdouble f o u r _ c _ t r e _ t w o =

m i d _ p _ b o t * l e f t . p . c e n t + b o t ;
cons t gdouble f o u r _ c _ t r e _ t h r =

m i d _ p _ b o t * r i t e + b o t * c e n t _ p _ r i t e ;
cons t gdouble f o u r . c . u n o . t h r = t o p — f o u r . c . u n o . t w o ;
c o n s t g d o u b l e f o u r _ c _ t r e _ o n e = l e f t - f o u r _ c _ d o s _ o n e ;

i f (t > = 4 .) / * Pure VSQBS */
{

/*

* F i r s t c h a n n e l :
* /

n e w v a l [0] =
f o u r . - C _ u n o . t w o * i n p u t . b p t r [u n o . t w o . s h i f t +

f o u r _ c . u n o _ t h r * i n p u t _ b p t r [u n o _ t h r . s h i f t +

f o u r . . c . . d o s . o n e * i n p u t - b p t r [d o s . o n e . s h i f t +

f o u r . . c . . d o s . t w o * i n p u t . b p t r f d o s . t w o . s h i f t +

f o u r _ c _ d o s _ t h r * i n p u t _ b p t r [d o s _ t h r . . s h i f t +

f o u r _ c _ t r e . o n e * i n p u t . b p t r [t r e - o n e . . s h i f t +

f o u r - C _ t r e _ t w o * i n p u t . b p t r [t r e _ t w o . . s h i f t +

f o u r _ c _ t r e . t h r * i n p u t - b p t r [t r e . t h r . s h i f t)
* 0 . 2 5 ;

/*

* S h i f t i n p u t p o i n t e r b y o n e c h a n n e l :
*/

i n p u t . b p t r + + ;
/*

* Compute the second channel result:
* /

n e w v a l [1] =
(f o u r . c . u n o . t w o

f o u r . c . u n o . t h r
f o u r . c _ d o s . o n e
f o u r . c _ d o s . t w o
f o u r . c _ d o s _ t h r
f o u r . c _ t r e . o n e
f o u r . c _ t r e . t w o
f o u r _ c _ t r e _ t h r

* 0 . 2 5 ;
i n p u t . b p t r + + ;
n e w v a l [2] =

(f o u r . c . u n o . t w o
f o u r . c . u n o . t h r
f o u r . c _ d o s . o n e
f o u r . c _ d o s . t w o

* i n p u t - b p t r [u n o . t w o . s h i f t] +
* i n p u t . b p t r [u n o . t h r . s h i f t] +
* i n p u t . b p t r [d o s . o n e . s h i f t] +
* i n p u t . b p t r [d o s . t w o . s h i f t] +
* i n p u t . b p t r [d o s . t h r . . s h i f t] +
* i n p u t _ b p t r [t r e . o n e . s h i f t] +
* i n p u t - b p t r [t r e . t w o . s h i f t] +
* i n p u t _ b p t r [t r e . . t h r . s h i f t])

* i n p u t - b p t r [u n o - t w o . s h i f t] +
* i n p u t - b p t r [u n o _ t h r . s h i f t] +
* i n p u t . b p t r [d o s . o n e . s h i f t] +
* i n p u t . b p t r [d o s . t w o . s h i f t] +

400

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o u r . c _ d o s _ t h r * i n p u t . b p t r [d o s _ t h r . s h i f t] +
f o u r _ c _ t r e _ o n e * i n p u t . b p t r [t r e . o n e . s h i f t] +
f o u r . c . t r e . t w o * i n p u t - b p t r t t r e . t w o . s h i f t] +
f o u r . c . t r e . t h r * i n p u t - b p t r [t r e . t h r . s h i f t])

* 0 . 2 5 ;
i n p u t . b p t r + + ;
n e w v a l [3] =

(f o u r _ c _ u n o . t w o * i n p u t - b p t r [u n o . t w o . s h i f t] +
f o u r . c . u n o . t h r * i n p u t - b p t r [u n o _ t h r . s h i f t] +
f o u r . c . d o s . o n e * i n p u t _ b p t r [d o s . o n e . s h i f t] +
f o u r . c . d o s . t w o * i n p u t - b p t r [d o s . t w o . s h i f t] +
f o u r . c . d o s _ t h r * i n p u t - b p t r [d o s _ t h r . s h i f t] +
f o u r . c . t r e . o n e * i n p u t . b p t r [t r e . o n e . s h i f t] +
f o u r . c . t r e . t w o * i n p u t - b p t r [t r e . t w 0 . s h i f t] +
f o u r . c . t r e _ t h r * i n p u t - b p t r [t r e . t h r . s h i f t])

* 0 . 2 5 ;

}
e l se
{

/* Blend VSQBS with bilinear */

/*

* B i l i n e a r w e i g h t s (N o t e : w = 1
* /

x _ t i m e s _ y = a b s . x . O
w _ t i m e s _ y = a b s . y . O
x _ t i m e s _ z = a b s . x . O
w . t i m e s . z = 1 . — (

cons t gdouble
cons t gdouble
cons t gdouble
cons t gdouble

x and z = 1—y):

* a b s _ y _ 0 ;
— x . t i m e s . y ;
— x . t i m e s . y ;

a b s . x . O + w . t i m e s . y) ;

/ *
* B l e n d i n g c o e f f i c i e n t :
*/

cons t gdouble t h e t a = (1 . / 3 .) * (t — 1 .) ' >

/ *
* Channel by channel computation of the vsqbs/ bilinear
* b l e n d :
*/

n e w v a l [0] =
v s q b s . b i l i n e a r . m i x (f o u r . c . u n o . t w o ,

f o u r . c . u n o . t h r ,
f o u r . c _ d o s . o n e ,
f o u r . c . d o s . t w o ,
f o u r . c . d o s . t h r ,
f o u r _ c _ t r e . o n e ,
f o u r . c _ t r e . t w o ,
f o u r _ c _ t r e _ t h r ,
x . t i m e s . y ,

4 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w _ t i m e s _ y ,
x . t i m e s . z ,
w . t i m e s . z ,
t h e t a ,
i n p u t . b p t r [u n o _ t w o . s h i f t
i n p u t . b p t r [u n o . t h r . . s h i f t
i n p u t . b p t r [d o s . . o n e . s h i f t
i n p u t . b p t r [d o s . - t w o . s h i f t
i n p u t . b p t r [d o s . t h r . . s h i f t
i n p u t . b p t r [t r e . o n e . . s h i f t
i n p u t . b p t r [t r e _ t w o . . s h i f t
i n p u t . b p t r [t r e . . t h r . s h i f t

i n p u t . b p t r + + ;
n e w v a l [1] =

v s q b s _ b i l i n e a r _ m i x (f o u r _ c _ u n o _ t w o
f o u r _ c _ u n o _ t h r
f o u r _ c _ d o s _ o n e
f o u r _ c _ d o s _ t w o
f o u r _ c _ d o s _ t h r
f o u r _ c _ t r e _ o n e
f o u r _ c _ t r e _ t w o
f o u r _ c _ t r e _ t h r
x . t i m e s . y ,
w . t i m e s . y ,
x . t i m e s . z ,
w . t i m e s . z ,
t h e t a ,
i n p u t . b p t r [
i n p u t . b p t r [
i n p u t . b p t r [
i n p u t . b p t r [
i n p u t . b p t r [
i n p u t . b p t r [
i n p u t . b p t r [
i n p u t . b p t r [

u n o . t w o . s h i f t
u n o . t h r . s h i f t
d o s . o n e . s h i f t
d o s . t w o . s h i f t
d o s . t h r . s h i f t
t r e . o n e . s h i f t
t r e . t w o . s h i f t
t r e . t h r . s h i f t

i n p u t . b p t r + + ;
n e w v a l [2] =

v s q b s . b i l i n e a r . m i x (f o u r . c _ u n o . t w o ,
f o u r . c . u n o . t h r ,
f o u r . c _ d o s . o n e ,
f o u r . c _ d o s . t w o ,
f o u r _ c . d o s . t h r ,
f o u r _ c _ t r e _ o n e ,
f o u r _ c _ t r e _ t w o ,
f o u r _ c _ t r e _ t h r ,
x _ t i m e s _ y ,

) ;

4 0 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w . t i m e s . y ,
x . t i m e s . z ,
w . t i m e s . z ,
t h e t a ,
i n p u t . b p t r
i n p u t . b p t r
i n p u t . b p t r
i n p u t . b p t r
i n p u t . b p t r
i n p u t . b p t r
i n p u t . b p t r
i n p u t . b p t r

i n p u t . b p t r + + ;
n e w v a l [3] =

v s q b s . b i l i n e a r . m i x (f o u r . c . u n o . t w o ,
f o u r . c . u n o _ t h r ,
f o u r . c . d o s . o n e ,
f o u r . c . d o s . t w o ,
f o u r . c . d o s . t h r ,
f o u r . c . t r e . o n e ,
f o u r . c . t r e . t w o ,
f o u r . c . t r e . t h r ,
x . t i m e s . y ,
w . t i m e s . y ,
x . t i m e s . z ,
w . t i m e s . z ,
t h e t a ,
i n p u t . b p t r [u n o . t w o . s h i f t
i n p u t . b p t r [u n o . t h r . s h i f t
i n p u t . b p t r [d o s . o n e . s h i f t
i n p u t . b p t r [d o s . t w o . s h i f t
i n p u t . b p t r [d o s _ t h r . . s h i f t
i n p u t . b p t r [t r e . o n e . . s h i f t
i n p u t . b p t r [t r e . t w o . s h i f t
i n p u t . b p t r [t r e . . t h r . s h i f t

}
}

u n o . t w o . s h i f t] ,
u n o . t h r . s h i f t] ,
d o s . o n e . s h i f t] ,
d o s . t w o . s h i f t] ,
d o s . t h r . s h i f t] ,
t r e . o n e . s h i f t] ,
t r e . t w o . s h i f t] ,
t r e . t h r . s h i f t]) ;

/*

* S h i p o u t t h e a r r a y o f n e w p i x e l v a l u e s :
*/

b a b l . p r o c e s s (b a b l . f i s h (s e l f - > i n t e r p o l a t e . f o r m a t ,
s e l f - > f o r m a t) , n e w v a l , o u t p u t , 1) ;

}

s ta t i c vo id

4 0 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s e t . p r o p e r t y (GObject* g o b j e c t ,
guint p r o p e r t y _ i d ,

cons t GValue* v a l u e ,
GParamSpec* p s p e c)

{
G _ O B J E C T _ W A R N J N V A L I D _ P R O P E R T Y J D (g o b j e c t , p r o p e r t y - i d , p s p e c) ;

}

s ta t i c vo id
g e t - p r o p e r t y (GObject* g o b j e c t ,

guint p r o p e r t y . i d ,
GValue* v a l u e ,
GParamSpec* p s p e c)

{
G - O B J E C T . W A R N J N V A L I D . P R O P E R T Y J D (g o b j e c t , p r o p e r t y . i d , p s p e c) ;

}

4 0 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Modified Boost C++ Library Minimax Code

The following code is used to compute the coefficients of minimax polynomials for a given

function. It is also used to find the maximum absolute or relative approximation errors at

varying precisions.

The following program files were taken from the Boost C++ library [23] and modified

by Dr. N. Robidoux for the purpose of this research.

The NTL (Number Theory Library) and GMP (GNU Multiple Precision Arithmetic

Library) libraries are also used. The source code for the Boost libraries must then be

downloaded, and the files found below must replace the plain versions found in the source

code. Then, they must be compiled with something like

g++ -Wall -o minimax -I/PATH/ntl-5.5.2/include \

main.cpp f.cpp /PATH/nt1-5.5.2/src/nt1.a -lgmp

This must be done every time the main.cpp or f.cpp files are modified.

To run the code, the following is done in the Boost minimax folder: . /minimax. To

change the degree of the polynomial approximation, use order p q, where p is the de­

gree of the numerator and q is the degree of the denominator. To change which variant

is used, use variant c, where c is the numeric identifier of the variant. To change the

range, use range a b, where the range under consideration is [a, b]. The other param­

eters can also be modified but they are not useful in this case. To run the algorithm for n

steps, use step n. Once the steps are completed, use info to obtain the coefficients. To

compute various errors, one can use test m, test float m, test double m, and

test long m, where m is the number of points where the error will be checked.

405

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Depending on the function that is being approximated, the source code also needs to be

modified so that the range and "scaling" are set in a compatible manner.

C.l main.cpp

This is the modified main. cpp code used by the minimax function in the Boost library.

/ / (C) C o p y r i g h t J o h n M a d d o c k 2 0 0 6 .
/ / U s e , m o d i f i c a t i o n a n d d i s t r i b u t i o n a r e s u b j e c t t o t h e
/ / B o o s t S o f t w a r e L i c e n s e , V e r s i o n 1 . 0 . (S e e a c c o m p a n y i n g f i l e
/ / L I C E N S E . 1 . 0 . t x t o r c o p y a t
/ / h t t p : / / w w w . b o o s t . o r g / L I C E N S E _ i J) . t x t)

// NICOLAS ROBIDOUX has made several changes for speed/accuracy .

#define NICOLAS_SPEED

#def ine BOOST_UBLAS_TYPE_CHECK_EPSILON (
t y p e _ t r a i t s < r e a l _ t y p e > : : t y p e _ s q r t (
b o o s t : : m a t h : : t o o l s : : e p s i l o n < r e a l _ t y p e > ()))

#define BOOST_UBLAS_TYPE_CHECK_MIN (
t y p e . t r a i t s < r e a l _ t y p e > : : t y p e _ s q r t (
b o o s t : : m a t h : : t o o l s : : m i n _ v a l u e < r e a l _ t y p e > ()))

#define BOOST_UBLAS_NDEBUG

inc lude c b o o s t / m a t h / b i n d i n g s / r r . h p p >
namespace s t d {

us ing b o o s t : : m a t h : : n t l : : p o w ;
} / / w o r k a r o u n d f o r s p i r i t p a r s e r .
inc lude c b o o s t / m a t h / t o o l s / r e m e z . h p p >
inc lude c b o o s t / m a t h / t o o l s / t e s t . h p p >
inc lude c b o o s t / m a t h / s p e c i a l - f u n c t i o n s / b i n o m i a l . h p p >
#include Cboost / s p i ri t / core . hpp>
inc lude c b o o s t / s p i r i t / a c t o r . h p p >
inc lude c b o o s t / l e x i c a l - c a s t . h p p >
inc lude c i o s t r e a m >
inc lude C i o m a n i p >
inc lude c s t r i n g >
/ / f o r t e s t . m a i n
inc lude c b o o s t / t e s t / i n c l u d e d / t e s t . e x e c . m o n i t o r . h p p >

extern b o o s t : : m a t h : : n t l : : R R f (
cons t b o o s t : : m a t h : : n t l : : R R & x , in t v a r i a n t) ;

4 0 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

extern vo id s h o w _ e x t r a (
cons t b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l C b o o s t : : m a t h : : n t l : : RR>& n ,
const boost:: math :: tools :: polynomial cboost:: math :: ntl :: RR>& d ,
c o n s t b o o s t : : m a t h : : n t l : : R R & x . o f f s e t ,
cons t b o o s t : : m a t h : : n t l : : R R & y . o f f s e t ,
in t v a r i a n t) ;

us ing namespace b o o s t : : s p i r i t ;

boo l r e 1 _ e r r o r (t rue) ;
boo l p i n (fa l se) ;
in t o r d e r N (5) ;
in t o r d e r D (0) ;
/ / i n t t a r g e t - p r e c i s i o n =

b o o s t : : m a t h : : t o o l s : : d i g i t s c long double > () ;
in t t a r g e t - p r e c i s i o n = 1 2 8 ;
/ / i n t w o r k i n g . p r e c i s i o n = t a r g e t . p r e c i s i o n * 2 ;

in t w o r k i n g . p r e c i s i o n = 2155;
/ / i n t w o r k i n g . p r e c i s i o n = 1 0 2 4 ;
/ / i n t w o r k i n g . p r e c i s i o n = 1 2 8 ;
bool s t a r t e d (fa l se) ;
in t v a r i a n t (0) ;
in t s k e w (2 5) ;
in t b r a k e (50) ;
// NICOLAS: x.scale is used to scale by pi (via pi"2).
// Change back to 1 when running if this is not what you want:
b o o s t : : m a t h : : n t l : : R R x . o f f s e t (O) , y _ o f f s e t (0) , / / x . s c a l e (1) ;

x _ s c a l e (b o o s t : : m a t h : : c o n s t a n t s : : p i c b o o s t : : m a t h : : n t l : : R R > ()
* b o o s t : : m a t h : : c o n s t a n t s : : p i c b o o s t : : m a t h : : n t l : : R R > ()) ;

b o o s t : : m a t h : : n t l : : R R a (0) , / / NICOLAS: range to optimize over
b (
1 0 3 . 4 9 9 4 5 3 8 9 5 1 3 6 5 8 0 3 3 2 2 2 3 6 3 2 5 3 5 6 1 3 0 5 5 7 4 9 8 3 5 0 2 2 7 1 4 8 7 6 2 5 5 4 0 9 2 3 5 6 9 8 L /
x . s c a l e) ;

/ / u s u a l r a n g e t o o p t i m i z e o v e r :
/ / b o o s t : : m a t h : : n t l : : R R a (0) , b (l) ;

bool a u t o . o f f s e t . y (fa l se) ;

b o o s t : : s h a r e d . p t r c b o o s t : : m a t h : : t o o l s : : r e m e z _ m i n i m a x c
b o o s t : : m a t h : : n t l : : R R > > p . r e m e z ;

b o o s t : : m a t h : : n t l : : R R t h e . f u n c t i o n (cons t b o o s t : : m a t h : : n t l : : R R & v a l)
{
i fde f NICOLAS .SPEED

4 0 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

re turn f (v a l , v a r i a n t) ;
#e l se

re turn f (x _ s c a l e * (v a l + x . o f f s e t) , v a r i a n t) + y . o f f s e t ;
#cndi f

vo id s t e p _ s o m e (uns igned c o u n t)
{

t ry{
N T L : : R R : : S e t P r e c i s i o n (w o r k i n g - p r e c i s i o n) ;
i f (! s t a r t e d)
{

//
// If we have an automatic y—offset calculate it now:
/ /
i f (a u t o - o f f s e t . y)
{

b o o s t : : m a t h : : n t l : : R R f a , f b , f i n ;
f a = f (x _ s c a l e * (a + x . o f f s e t) , v a r i a n t) ;
f b = f (x _ s c a l e * (b + x . o f f s e t) , v a r i a n t) ;
f m = f (x _ s c a l e * ((a + b) / 2 + x . o f f s e t) , v a r i a n t) ;
y . o f f s e t = - (f a + f b + f m) / 3 ;

N T L : : R R : : S e t O u t p u t P r e c i s i o n (5) ;
s t d : : c o u t « " S e t t i n g a u t o — y — o f f s e t t o " «

y . o f f s e t « s t d : : e n d l ;

}
//
/ / T r u n c a t e o f f s e t s t o f l o a t p r e c i s i o n :
/ /
x . o f f s e t = N T L : : R o u n d T o P r e c i s i o n (x . o f f s e t . v a l u e () , 2 0) ;
y . o f f s e t = N T L : : R o u n d T o P r e c i s i o n (y . o f f s e t . v a l u e () , 2 0) ;
/ /
/ / C o n s t r u c t n e w R e m e z s t a t e m a c h i n e :
/ /
p . r e m e z . r e s e t (new b o o s t : : m a t h : : t o o l s : : r e m e z _ m i n i m a x <

b o o s t : : m a t h : : n t l : : R R > (
& t h e _ f u n c t i o n ,
o r d e r N , o r d e r D ,
a , b ,
p i n ,
r e l . e r r o r ,
s k e w ,
w o r k i n g . p r e c i s i o n)) ;

s t d : : c o u t « " M a x e r r o r i n i n t e r p o l a t e d f o r m : " «
s t d : : s e t p r e c i s i o n (3) « s t d : : s c i e n t i f i c «
b o o s t : : m a t h : : t o o l s : : r e a l _ c a s t <doubIe>(

4 0 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

p _ r e m e z - > m a x _ e r r o r ()) « s t d : : e n d l ;
//
/ / S i g n a l t h a t w e ' v e s t a r t e d :
/ /
s t a r t e d = t rue;

}
uns igned i ;
for (i = 0 ; i < c o u n t ; + + i)

{
s t d : : c o u t « " S t e p p i n g . . . " « s t d : : e n d l ;
p _ r e m e z - > s e t . b r a k e (b r a k e) ;
b o o s t : : m a t h : : n t l : : R R r = p _ r e m e z - > i t e r a t e () ;
N T L : : R R : : S e t O u t p u t P r e c i s i o n (3) ;
s t d : : c o u t
« " M a x i m u m D e v i a t i o n F o u n d :

" « s t d : : s e t p r e c i s i o n (3) « s t d : : s c i e n t i f i c
« b o o s t : : m a t h : : t o o l s : : r e a l _ c a s t <double > (
p _ r e m e z — > m a x _ e r r o r ()) « s t d : : e n d l

« " E x p e c t e d E r r o r T e r m :
" « s t d : : s e t p r e c i s i o n (3) « s t d : : s c i e n t i f i c
« b o o s t : : m a t h : : t o o l s : : r e a l _ c a s t<double>(
p _ r e m e z — > e r r o r _ t e r m ()) « s t d : : e n d l

« " M a x i m u m R e l a t i v e C h a n g e i n C o n t r o l P o i n t s :
" « s t d : : s e t p r e c i s i o n (3) « s t d : : s c i e n t i f i c
« b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < d o u b l e > (r) «
s t d : : e n d 1 ;

}
}
catch(cons t s t d : : e x c e p t i o n & e)
{

s t d : : c o u t « " S t e p f a i l e d w i t h e x c e p t i o n : " «
e . w h a t () « s t d : : e n d l ;

}

vo id s t e p (cons t char* , cons t char*)
{

s t e p . s o m e (1) ;
}

vo id s h o w (cons t char* , cons t char*)
{

N T L : : R R : : S e t P r e c i s i o n (w o r k i n g - p r e c i s i o n) ;
i f (s t a r t e d)
{

b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l < b o o s t : : m a t h : : n t l : : R R >

4 0 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n = p _ r e m e z - > n u m e r a t o r () ;
b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l < b o o s t : : m a t h : : n t l : : R R >

d = p _ r e m e z - > d e n o m i n a t o r () ;
s t d : : v e c t o r < b o o s t : : m a t h : : n t l : : R R > c n = n . c h e b y s h e v () ;
s t d : : v e c t o r C b o o s t : : m a t h : : n t l : : R R > c d = d . c h e b y s h e v () ;
/ / N I C O L A S W A N T S 6 0 d i g i t s :
/ / i n t p r e c = 2 + (t a r g e t . p r e c i s i o n * 3 0 1 0 L L) / 1 0 0 0 0 ;
i n t p r e c = 6 0 ;
s t d : : c o u t « s t d : : s c i e n t i f i c « s t d : : s e t p r e c i s i o n (p r e c) ;

N T L : : R R : : S e t O u t p u t P r e c i s i o n (p r e c) ;
b o o s t : : n u m e r i c : : u b l a s : : v e c t o r < b o o s t : : m a t h : : n t l : : R R >

v = p _ r e m e z — > z e r o _ p o i n t s () ;

s t d : : c o u t « " Z e r o s = { \ n " ;
uns igned i ;
for (i = 0 ; i < v . s i z e () ; + + i)

{
s t d : : c o u t « " " « v [i] « s t d : : e n d l ;

}
s t d : : c o u t « " } \ n " ;

v = p _ r e m e z - > c h e b y s h e v _ p o i n t s () ;
s t d : : c o u t « " C h e b y s h e v C o n t r o l P o i n t s = { \ n " ;
for (i = 0 ; i < v . s i z e () ; + + i)

{
s t d : : c o u t « " " « v [i] « s t d : : e n d l ;

}
s t d : : c o u t « " } \ n " ;

s t d : : c o u t « " X o f f s e t : " « x _ o f f s e t « s t d : : e n d l ;
s t d : : c o u t « " X s c a l e : " « x _ s c a 1 e « s t d : : e n d l ;
s t d : : c o u t « " Y o f f s e t : " « y . o f f s e t « s t d : : e n d l ;

s t d : : c o u t « " P = { " ;
for (i = 0 ; i < n . s i z e Q ; + + i)

{
s t d : : c o u t « " " « n [i] « " L , " « s t d : : e n d l ;

}
s t d : : c o u t « " } \ n " ;

s t d : : c o u t « " Q = { " ;
for (i = 0 ; i < d . s i z e () ; + + i)

{
s t d : : c o u t « " " « d [i] « " L , " « s t d : : e n d l ;

}
s t d : : c o u t « " } \ n " ;

4 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s t d : : c o u t « " C P = { " ;
for (i = 0 ; i < c n . s i z e () ; + + i)
{

s t d : : c o u t « " " « c n [i] « " L , " « s t d : : e n d l ;

}
s t d : : c o u t « " } \ n " ;

s t d : : c o u t « " C Q = { " ;
for (i = 0 ; i < c d . s i z e () ; + + i)

{
s t d : : c o u t « " " « c d [i] « " L , " « s t d : : e n d l ;

}
s t d : : c o u t « " } \ n " ;

s h o w _ e x t r a (n , d , x . o f f s e t , y . o f f s e t , v a r i a n t) ;

}
e l se
{

s t d : : c e r r « " N o t h i n g t o d i s p l a y " « s t d : : e n d l ;
}

}

vo id d o . g r a p h (uns igned p o i n t s)

{
N T L : : R R : : S e t P r e c i s i o n (w o r k i n g _ p r e c i s i o n) ;
b o o s t : : m a t h : : n t l : : R R s t e p = (b — a) / (p o i n t s — 1) ;
b o o s t : : m a t h : : n t l : : R R x = a ;
whi le (p o i n t s > 1)

{
N T L : : R R : : S e t O u t p u t P r e c i s i o n (1 0) ;
s t d : : c o u t « s t d : : s e t p r e c i s i o n (1 0) « s t d : : s e t w (3 0) «

s t d : : l e f t
« b o o s t : : l e x i c a l . c a s t < s t d : : s t r i n g > (x) «
t h e _ f u n c t i o n (x) « s t d : : e n d l ;

— p o i n t s ;
x + = s t e p ;

}
s t d : : c o u t « s t d : : s e t p r e c i s i o n (1 0) « s t d : : s e t w (3 0) «

s t d : : l e f t
« b o o s t : : l e x i c a l . c a s t < s t d : : s t r i n g > (b) «
t h e . f u n c t i o n (b) « s t d : : e n d l ;

}

vo id g r a p h (cons t char* , cons t char*)
{

4 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d o . g r a p h (3) ;
}

t emplate <c lass T>
vo id d o _ t e s t (T , cons t char* n a m e)
{

b o o s t : : m a t h : : n t l : : R R : : S e t P r e c i s i o n (w o r k i n g . p r e c i s i o n) ;
i f (s t a r t e d)
{

//

// We want to test the approximation at fixed precision:
/ / e i t h e r f l o a t , d o u b l e o r l o n g d o u b l e . B e g i n b y g e t t i n g
/ / t h e p o l y n o m i a l s :
/ /
b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l < T > n , d ;
b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l c b o o s t : : m a t h : : n t l : : R R > n r , d r ;
n r = p . r e m e z — > n u m e r a t o r () ;
d r = p . r e m e z — > d e n o m i n a t o r () ;
n = n r ;
d = d r ;

s t d : : v e c t o r < b o o s t : : m a t h : : n t l : : R R > c n l , c d l ;
c n l = n r . c h e b y s h e v () ;
c d l = d r . c h e b y s h e v () ;
s t d : : v e c t o r < T > c n , c d ;
for (uns igned i = 0 ; i < c n l . s i z e Q ; + + i)

{
c n . p u s h _ b a c k (b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (c n l [i])) ;

}
for (uns igned i = 0 ; i < c d l . s i z e () ; + + i)
{

c d . p u s h _ b a c k (b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (c d l [i])) ;
}
//
/ / W e ' l l t e s t a t t h e C h e b y s h e v c o n t r o l p o i n t s w h i c h i s w h e r e
// (in theory) the largest deviation should occur. For good
/ / m e a s u r e w e ' l l t e s t a t t h e z e r o s a s w e l l :
/ /
b o o s t : : n u m e r i c : : u b l a s : : v e c t o r c b o o s t : : m a t h : : n t l : : R R >

z e r o s (p . r e m e z — > z e r o _ p o i n t s ()) ,
c h e b (p . r e m e z — > c h e b y s h e v . p o i n t s ()) ;

b o o s t : : m a t h : : n t l : : R R m a x . e r r o r (0) , c h e b . m a x . e r r o r (0) ;

//
/ / D o t h e t e s t s a t t h e z e r o s :

4 1 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//
s t d : : c o u t « " S t a r t i n g t e s t s a t " «

n a m e « " p r e c i s i o n . . . \ n " ;
s t d : : c o u t «

" A b s c i s s a E r r o r (p o l y) E r r o r (C h e b) \ n " ;
for (uns igned i = 1; i < z e r o s . s i z e () ; + + i)
{

b o o s t : : m a t h : : n t l : : R R t r u e . r e s u l t =
t h e _ f u n c t i o n (z e r o s [i]) ;

T a b s i s s a = b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (z e r o s [i]) ;
b o o s t : : m a t h : : n t l : : R R t e s t . r e s u l t = n . e v a l u a t e (a b s i s s a) /

d . e v a l u a t e (a b s i s s a) ;
b o o s t : : m a t h : : n t l : : R R c h e b . r e s u l t =

b o o s t : : m a t h : : t o o l s : : e v a l u a t e . c h e b y s h e v (c n , a b s i s s a) /
b o o s t : : m a t h : : t o o l s : : e v a l u a t e . c h e b y s h e v (c d , a b s i s s a) ;

b o o s t : : m a t h : : n t l : : R R e r r , c h e b . e r r ;
i f (r e 1 . e r r o r)
{

e r r = b o o s t : : m a t h : : t o o 1 s : : r e 1 a t i v e _ e r r o r (
t e s t . r e s u l t , t r u e . r e s u l t) ;

c h e b . e r r = b o o s t : : m a t h : : t o o l s : : r e 1 a t i v e . e r r o r (
c h e b . r e s u l t , t r u e . r e s u l t) ;

}
e l se
{

e r r = f a b s (t e s t _ r e s u 1 1 — t r u e . r e s u l t) ;
c h e b . e r r = f a b s (c h e b . r e s u l t - t r u e . r e s u l t) ;

}
i f (e r r > m a x . e r r o r)

m a x . e r r o r = e r r ;
i f (c h e b _ e r r > c h e b . m a x . e r r o r)

c h e b . m a x . e r r o r = c h e b . e r r ;
s t d : : c o u t « s t d : : s e t p r e c i s i o n (6) « s t d : : s e t w (1 5) «

s t d : : l e f t « a b s i s s a « s t d : : s e t w (1 5) « s t d : : l e f t «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (e r r) «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (c h e b _ e r r) «
s t d : : e n d l ;

}
//
/ / D o t h e t e s t s a t t h e C h e b y s h e v c o n t r o l p o i n t s :
/ /
for (uns igned i = 1 ; i < c h e b . s i z e () ; + + i)

{
b o o s t : : m a t h : : n t l : : R R t r u e . r e s u l t = t h e . f u n c t i o n (c h e b [i]) ;
T a b s i s s a = b o o s t : : m a t h : : t o o l s : : r e a 1 _ c a s t < T > (c h e b [i]) ;
b o o s t : : m a t h : : n t l : : R R t e s t . r e s u l t = n . e v a l u a t e (a b s i s s a) /

4 1 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d . e v a l u a t e (a b s i s s a) ;
b o o s t : : m a t h : : n t l : : R R c h e b . r e s u l t =

b o o s t : : m a t h : : t o o l s : : e v a l u a t e . c h e b y s h e v (c n , a b s i s s a) /
b o o s t : : m a t h : : t o o l s : : e v a l u a t e _ c h e b y s h e v (c d , a b s i s s a) ;

b o o s t : : m a t h : : n t l : : R R e r r , c h e b . e r r ;
i f (r e l . e r r o r)
{

e r r = b o o s t : : m a t h : : t o o l s : : r e 1 a t i v e _ e r r o r (
t e s t . r e s u l t , t r u e . r e s u l t) ;

c h e b . e r r = b o o s t : : m a t h : : t o o l s : : r e l a t i v e . e r r o r (
c h e b . r e s u l t , t r u e . r e s u l t) ;

}
e l se
{

e r r = f a b s (t e s t . r e s u l t — t r u e . r e s u l t) ;
c h e b . e r r = f a b s (c h e b . r e s u l t — t r u e . r e s u l t) ;

}
i f (e r r > m a x . e r r o r)

m a x . e r r o r = e r r ;
s t d : : c o u t « s t d : : s e t p r e c i s i o n (6) « s t d : : s e t w (1 5) «

s t d : : l e f t « a b s i s s a « s t d : : s e t w (1 5) « s t d : : l e f t «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (e r r) «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (c h e b . e r r) «
s t d : : e n d l ;

}
s t d : : s t r i n g m s g = " M a x E r r o r f o u n d a t " ;
m s g + = n a m e ;
m s g + = " p r e c i s i o n = " ;
m s g . a p p e n d (6 2 — 1 7 - m s g . s i z e () , ' ') ;
s t d : : c o u t « m s g « s t d : : s e t p r e c i s i o n (6) « " P o l y : " «

s t d : : s e t w (2 0) « s t d : : l e f t «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (m a x . e r r o r) «
" C h e b : " « b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (
c h e b . m a x . e r r o r) « s t d : : e n d l ;

}
e l se
{

s t d : : c o u t «
" N o t h i n g t o t e s t : t r y c o n v e r g i n g a n a p p r o x i m a t i o n f i r s t ! ! ! "
« s t d : : e n d l ;

}
}

vo id t e s t _ f 1 o a t (cons t char* , cons t char*)
{

d o . t e s t (f loa t (0) , " f l o a t ") ;

4 1 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

vo id t e s t - d o u b l e (cons t char* , cons t char*)
{

d o _ t e s t (double (0) , " d o u b l e ") ;

}

vo id t e s t _ l o n g (cons t char* , cons t char*)
{

d o . t e s t ((long double) (0) , " l o n g d o u b l e ") ;

}

vo id t e s t _ a 1 1 (cons t char* , cons t char*)
{

d o . t e s t (f l oa t (0) , " f l o a t ") ;
d o . t e s t (double (0) , " d o u b l e ") ;
d o . t e s t ((long double) (0) , " l o n g d o u b l e ") ;

}

t emplate <c lass T>
vo id d o _ t e s t _ n (T , cons t char* n a m e , uns igned c o u n t)

{
b o o s t : : m a t h : : n t l : : R R : : S e t P r e c i s i o n (w o r k i n g _ p r e c i s i o n) ;
i f (s t a r t e d)
{

//
// We want to test the approximation at fixed precision:
/ / e i t h e r f l o a t , d o u b l e o r l o n g d o u b l e . B e g i n b y g e t t i n g
/ / t h e p o l y n o m i a l s :
/ /
b o o s t : : m a t h t o o l s : : p o l y n o m i a l < T > n , d ;
b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l c b o o s t : : m a t h : : n t l : : R R > n r ,
n r = p . r e m e z — > n u m e r a t o r () ;
d r = p . r e m e z — > d e n o m i n a t o r () ;
n = n r ;
d = d r ;

s t d : : v e c t o r < b o o s t : : m a t h : : n t l : : R R > c n l , c d l ;
c n l = n r . c h e b y s h e v () ;
c d l = d r . c h e b y s h e v () ;
s t d : : v e c t o r < T > c n , c d ;
for (uns igned i = 0 ; i < c n l . s i z e () ; + + i)

{
c n . p u s h _ b a c k (b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (c n l [i]))

}
for (uns igned i = 0 ; i < c d l . s i z e () ; + + i)

4 1 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
c d . p u s h _ b a c k (b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (c d l [i])) ;

}

b o o s t : : m a t h : : n t l : : R R m a x . e r r o r (0) , m a x . c h e b . e r r o r (0) ;
b o o s t : : m a t h : : n t l : : R R s t e p = (b - a) / c o u n t ;

//
/ / D o t h e t e s t s a t t h e z e r o s :
/ /
s t d : : c o u t « " S t a r t i n g t e s t s a t " «

n a m e « " p r e c i s i o n . . . \ n " ;
s t d : : c o u t «

" A b s c i s s a E r r o r (p o l y) E r r o r (C h e b) \ n " ;
for (b o o s t : : m a t h : : n t l : : R R x = a + s t e p ; x < = b ; x + = s t e p)

{
b o o s t : : m a t h : : n t l : : R R t r u e . r e s u l t = t h e . f u n c t i o n (x) ;
T a b s i s s a = b o o s t : : m a t h : : t o o l s : : r e a l _ c a s t < T > (x) ;
b o o s t : : m a t h : : n t l : : R R t e s t . r e s u l t = n . e v a l u a t e (a b s i s s a) /

d . e v a l u a t e (a b s i s s a) ;
b o o s t : : m a t h : : n t l : : R R c h e b . r e s u l t =

b o o s t : : m a t h : : t o o l s : : e v a l u a t e . c h e b y s h e v (c n , a b s i s s a) /
b o o s t : : m a t h : : t o o l s : : e v a l u a t e _ c h e b y s h e v (c d , a b s i s s a) ;

b o o s t : : m a t h : : n t l : : R R e r r , c h e b . e r r ;
i f (r e l . e r r o r)
{

e r r = b o o s t : : m a t h : : t o o 1 s : : r e l a t i v e _ e r r o r (
t e s t . r e s u l t , t r u e . r e s u l t) ;

c h e b . e r r = b o o s t : : m a t h : : t o o l s : : r e 1 a t i v e . e r r o r (
c h e b . r e s u l t , t r u e . r e s u l t) ;

}
e l se
{

e r r = f a b s (t e s t _ r e s u 1 1 — t r u e . r e s u l t) ;
c h e b . e r r = f a b s (c h e b . r e s u l t - t r u e . r e s u l t) ;

}
i f (e r r > m a x . e r r o r)

m a x . e r r o r = e r r ;
i f (c h e b _ e r r > m a x . c h e b . e r r o r)

m a x . c h e b . e r r o r = c h e b . e r r ;
s t d : : c o u t « s t d : : s e t p r e c i s i o n (6) « s t d : : s e t w (1 5) «

s t d : : 1 e f t «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t <double > (a b s i s s a) «
(t e s t . r e s u l t < t r u e . r e s u l t ? " - " : " ") «
s t d : : s e t w (2 0) « s t d : : l e f t «
b o o s t : : m a t h : : t o o l s : : r e a l _ c a s t <doub!e> (e r r) «

4 1 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b o o s t : : m a t h : : t o o l s : : r e a l . c a s t <double > (c h e b _ e r r) «
s t d : : e n d l ;

}
s t d : : s t r i n g m s g = " M a x E r r o r f o u n d a t
m s g + = n a m e ;
m s g + = " p r e c i s i o n =
/ / m s g . a p p e n d (6 2 — 1 7 — m s g . s i z e () , ' ') ;
s t d : : c o u t « m s g « " P o l y : " « s t d : : s e t p r e c i s i o n (6) «

/ / « s t d : : s e t w (1 5) « s t d : : l e f t «
b o o s t : : m a t h : : t o o l s : : r e a l . c a s t < T > (m a x . e r r o r) «
" C h e b : " « b o o s t : : m a t h : : t o o l s : : r e a l _ c a s t < T > (
m a x . c h e b . e r r o r) « s t d : : e n d l ;

}
e l se
{

s t d : : c o u t «
" N o t h i n g t o t e s t : t r y c o n v e r g i n g a n a p p r o x i m a t i o n f i r s t ! ! ! "
« s t d : : e n d 1 ;

}

vo id t e s t . n (uns igned n)

d o . t e s t _ n (b o o s t : : m a t h : : n t l : : R R () , " b o o s t : : m a t h : : n t l : : R R " , n) ;

vo id t e s t _ f l o a t _ n (uns igned n)

d o . t e s t . n (f l oa t (0) , " f l o a t " , n) ;

vo id t e s t . d o u b l e . n (uns igned n)

d o . t e s t . n (double (0) , " d o u b l e " , n) ;

vo id t e s t . l o n g _ n (uns igned n)

d o . t e s t . n ((long double) (0) , " l o n g d o u b l e " , n) ;

vo id r o t a t e (cons t char* , cons t char*)

i f (p . r e m e z)
{

p _ r e m e z - > r o t a t e () ;

4 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
e l se
{

s t d : : c e r r « " N o t h i n g t o r o t a t e " « s t d : : e n d l ;
}

}

vo id r e s c a l e (cons t char* , cons t char*)
{

i f (p . r e m e z)

{
p . r e m e z — > r e s c a l e (a , b) ;

}
e l se
{

s t d : : c e r r « " N o t h i n g t o r e s c a l e " « s t d : : e n d l ;

}
}

vo id g r a p h . p o l y (cons t char* , cons t char*)
{

in t i = 5 0 ;
b o o s t : : m a t h : : n t l : : R R : : S e t P r e c i s i o n (w o r k i n g _ p r e c i s i o n) ;
i f (s t a r t e d)
{

//
// We want to test the approximation at fixed precision:
/ / e i t h e r f l o a t , d o u b l e o r l o n g d o u b l e . B e g i n b y g e t t i n g
/ / t h e p o l y n o m i a l s :
/ /
b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l c b o o s t : : m a t h : : n t l : : R R > n , d ;
n = p . r e m e z — > n u m e r a t o r () ;
d = p . r e m e z — > d e n o m i n a t o r () ;

b o o s t : : m a t h : : n t l : : R R m a x . e r r o r (O) ;
b o o s t : : m a t h : : n t l : : R R s t e p = (b — a) / i ;

s t d : : c o u t « " E v a l u a t i n g N u m e r a t o r . . . \ n " ;
b o o s t : : m a t h : : n t l : : R R v a l ;
for (v a l = a ; v a l < = b ; v a l + = s t e p)

s t d : : c o u t « n . e v a l u a t e (v a l) « s t d : : e n d l ;
s t d : : c o u t « " E v a l u a t i n g D e n o m i n a t o r . . . \ n " ;
for (v a l = a ; v a l < = b ; v a l + = s t e p)

s t d : : c o u t « d . e v a l u a t e (v a l) « s t d : : e n d l ;
}
e l se

4 1 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s t d : : c o u t «
" N o t h i n g t o t e s t : t r y c o n v e r g i n g a n a p p r o x i m a t i o n f i r s t ! ! !
« s td : : endl ;

}

in t t e s t . m a i n (in t , char* [])
{

s t d : : s t r i n g l i n e ;
r e a l . p a r s e r c long double /* b o o s t : : m a t h : : n t l : : R R * / > cons t r r . p ;
whi le (s t d : : g e t l i n e (s t d : : c i n , l i n e))

{
i f (p a r s e (l i n e . c . s t r () , s t r _ p (" q u i t ") , s p a c e . p) . fu 11)

re turn 0 ;
i f (fa l se = = p a r s e (l i n e . c . s t r () ,
(

(s t r . p (" r a n g e ") [a s s i g n . a (s t a r t e d , fa l se)]
& & r e a l _ p [a s s i g n _ a (a)] & & r e a l _ p [a s s i g n _ a (b)])

s t r . p (" r e l a t i v e ") [a s s i g n _ a (s t a r t e d , fa l se)] [
a s s i g n _ a (r e l . e r r o r , t rue)]

s t r . p (" a b s o l u t e ") [a s s i g n . a (s t a r t e d , fa l se)] [
a s s i g n . a (r e l . e r r o r , fa l se)]

(s t r . p (" p i n ") [a s s i g n _ a (s t a r t e d , fa l se)]
& & s t r . p (" t r u e ") [a s s i g n . a (p i n , t rue)])

(s t r . p (" p i n ") [a s s i g n _ a (s t a r t e d , fa l se)]
& & s t r . p (" f a l s e ") [a s s i g n _ a (p i n , fa l se)])

(s t r _ p (" p i n ") [a s s i g n _ a (s t a r t e d , fa l se)]
& & s t r . p (" 1 ") [a s s i g n _ a (p i n , t rue)])

(s t r _ p (" p i n ") [a s s i g n _ a (s t a r t e d , fa l se)]
& & s t r . p (" 0 ") [a s s i g n _ a (p i n , fa l se)])

s t r . p (" p i n ") [a s s i g n _ a (s t a r t e d , fa l se)] [
a s s i g n . a (p i n , t rue)]

(s t r _ p (" o r d e r ") [a s s i g n _ a (s t a r t e d , fa l se)]
& & u i n t . p [a s s i g n . a (o r d e r N)]
& & u i n t . p [a s s i g n . a (o r d e r D)])

419

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(s t r . p (" o r d e r ") [a s s i g n . a (s t a r t e d , f a l s e)]
& & u i n t . p [a s s i g n . a (o r d e r N)])

(s t r _ p (" t a r g e t - p r e c i s i o n ") & & u i n t _ p [
a s s i g n . a (t a r g e t - p r e c i s i o n)])

(s t r _ p (" w o r k i n g — p r e c i s i o n ") [a s s i g n _ a (s t a r t e d , f a l s e)]
& & u i n t . p [a s s i g n . a (w o r k i n g . p r e c i s i o n)])

(s t r . p (" v a r i a n t ") [a s s i g n . a (s t a r t e d , f a l s e)]
& & i n t _ p [a s s i g n . a (v a r i a n t)])

(s t r . p (" s k e w ") [a s s i g n _ a (s t a r t e d , f a l s e)]
& & i n t . p [a s s i g n . a (s k e w)])

(s t r . p (" b r a k e ") & & i n t _ p [a s s i g n _ a (b r a k e)])

(s t r . p (" s t e p ") & & i n t . p f & s t e p . s o m e])

s t r . p (" s t e p ") [& s t e p]

s t r _ p (" p o l y ") [& g r a p h _ p o l y]

s t r . p (" i n f o ") [& s h o w]

(s t r _ p (" g r a p h ") & & u i n t . p [& d o _ g r a p h])

s t r . p (" g r a p h ") [& g r a p h]

(s t r _ p (" x — o f f s e t ") & & r e a l . p [a s s i g n . a (x . o f f s e t)])

(s t r . p (" x — s c a l e ") & & r e a l . p [a s s i g n . a (x . s c a l e)])

(s t r . p (" y - o f f s e t ") & & s t r _ p (" a u t o ") [
a s s i g n . a (a u t o . o f f s e t . y , t r u e)])

(s t r . p (" y - o f f s e t ")
& & r e a l . p [a s s i g n . a (y . o f f s e t)] [
a s s i g n . a (a u t o . o f f s e t . y , f a l s e)])

(s t r . p (" t e s t ") & & s t r . p (" f l o a t ")
& & u i n t _ p [& t e s t . f l o a t . n])

(s t r . p (" t e s t ") & & s t r _ p (" f l o a t ") [& t e s t _ f l o a t])

(s t r . p (" t e s t ") & & s t r . p (" d o u b l e ")

420

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& & u i n t _ p [& t e s t _ d o u b l e _ n])

(s t r _ p (" t e s t ") & & s t r _ p (" d o u b l e ") [& t e s t . d o u b l e])

(s t r _ p (" t e s t ") & & s t r . p (" l o n g ")
& & u i n t _ p [& t e s t _ l o n g _ n])

(s t r . p (" t e s t ") & & s t r . p (" l o n g ") [& t e s t . l o n g])

(s t r _ p (" t e s t ") & & s t r _ p (" a l l ") [& t e s t _ a l l])

(s t r . p (" t e s t ") & & u i n t _ p [& t e s t _ n])

i i
s t r _ p (" r o t a t e ") [& r o t a t e]

(s t r _ p (" r e s c a l e ") & & r e a l _ p [a s s i g n . a (a)]
& & r e a l _ p [a s s i g n _ a (b)]
& & e p s i l o n _ p [& r e s c a l e])

) , s p a c e . p) . f u 1 1)
{

s t d : : c o u t « " U n a b l e t o p a r s e d i r e c t i v e : \ " " «
l i n e « « s t d : : e n d l ;

}
e l s e
{

s t d : : c o u t « " V a r i a n t = " «
v a r i a n t « s t d : : e n d 1 ;

s t d : : c o u t « " r a n g e = [" «
a « " « b « « s t d : : e n d l ;

s t d : : c o u t « " R e l a t i v e E r r o r = " «
r e l . e r r o r « s t d : : e n d l ;

s t d : : c o u t « " P i n t o O r i g i n = " «
p i n « s t d : : e n d l ;

s t d : : c o u t « " O r d e r (N u m / D e n o m) = " «
o r d e r N « " / " « o r d e r D « s t d : : e n d l ;

s t d : : c o u t « " T a r g e t P r e c i s i o n = " «
t a r g e t . p r e c i s i o n « s t d : : e n d l ;

s t d : : c o u t « " W o r k i n g P r e c i s i o n = " «
w o r k i n g - p r e c i s i o n « s t d : : e n d l ;

s t d : : c o u t « " S k e w = " «
s k e w « s t d : : e n d l ;

s t d : : c o u t « " B r a k e = " «
b r a k e « s t d : : e n d l ;

s t d : : c o u t « " X O f f s e t = «
x . o f f s e t « s t d : : e n d l ;

421

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s t d : : c o u t « " X s c a l e = " «
x _ s c a 1 e « s t d : : e n d l ;

s t d : : c o u t « " Y O f f s e t = " ;
i f (a u t o _ o f f s e t _ y)

s t d : : c o u t « " A u t o (" ;
s t d : : c o u t « y . o f f s e t ;
i f (a u t o _ o f f s e t _ y)

s t d : : c o u t « ") " ;
s t d : : c o u t « s t d : : e n d l ;

}
}
r e t u r n 0 ;

}

C.2 f.cpp

This is the modified f . cpp code used by the minimax function in the Boost library. This

is the code that contains the functions to be approximated.

/ / (C) C o p y r i g h t J o h n M a d d o c k 2 0 0 6 .
/ / U s e , m o d i f i c a t i o n a n d d i s t r i b u t i o n a r e s u b j e c t t o t h e
/ / B o o s t S o f t w a r e L i c e n s e , V e r s i o n 1 . 0 . (S e e a c c o m p a n y i n g f i l e
/ / L I C E N S E . 1 . 0 . t x t o r c o p y a t
/ / h t t p : / / w w w . b o o s t . o r g / L I C E N S E - 1 _ 0 . t x t)

d e f i n e L 2 2
i n c l u d e c b o o s t / m a t h / b i n d i n g s / r r . h p p >
i n c l u d e c b o o s t / m a t h / t o o l s / p o l y n o m i a l . h p p >
i n c l u d e c b o o s t / m a t h / s p e c i a l _ f u n c t i o n s . h p p >
i n c l u d e c b o o s t / m a t h / s p e c i a l _ f u n c t i o n s / z e t a . h p p >
i n c l u d e c b o o s t / m a t h / s p e c i a l . f u n c t i o n s / e x p i n t . h p p >
i n c l u d e c b o o s t / m a t h / s p e c i a l - f u n c t i o n s / s i n e . h p p >
i n c l u d e c c m a t h >

b o o s t : : m a t h : : n 1 1 : : R R f (c o n s t b o o s t : : m a t h : : n t 1 : : R R & x , i n t v a r i a n t)
{

s t a t i c c o n s t b o o s t : : m a t h : : n t l : : R R t i n y =
b o o s t : : m a t h : : t o o l s : : m i n . v a l u e C b o o s t : : m a t h : : n t l : : R R > () * 6 4 ;

s t a t i c c o n s t b o o s t : : m a t h : : n t l : : R R p i e =
b o o s t : : m a t h : : c o n s t a n t s : : p i c b o o s t : : m a t h : : n t l : : R R > () ;

s t a t i c c o n s t b o o s t : : m a t h : : n t l : : R R p i e 2 = p i e * p i e ;
s w i t c h (v a r i a n t)
{

4 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c a s e 0 :
{

/ / N I C O L A S :

/ / L a n c z o s 2 o f t h e f o r m (1 — x " 2) (4 — x " 2)
/ / (p o l y w i t h o b t a i n e d c o e f s)
/ / M u s t b e u s e d w i t h x . s c a l e = h i g h p r e c i s i o n p i m a i n . c p p
/ / (n o t i n t e r a c t i v e l y o r h e r e) s o t h a t t h e p r e c i s i o n i s
/ / h i g h . T h e r e i s a s e c o n d s i d e e f f e c t t o d o i n g t h i n g s
/ / t h i s w a y : B e c a u s e p i i s i r r a t i o n a l , w e a v o i d d i v i s i o n
/ / b y z e r o w h e n e v a l u a t i n g t h e d e n o m i n a t o r a t w h a t
/ / c o r r e s p o n d s t o y = l a n d y - 2 . T h a t i s , l — y / p i e 2 i s v e r y
/ / u n l i k e l y t o t u r n o u t t o b e z e r o e x a c t l y .

/ / A l s o : a = 0 a n d b = 4 (i n m a i n . c p p o r i n t e r a c t i v e l y) .

/ / R e l a t i v e e r r o r i s t h e g o a l .

/ / T h i s w o r k s w e l l
b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : s i n c . p i (s q r t (y)))
*

(b o o s t : : m a t h : : s i n c . p i (s q r t (y) / 2))
/
((l - y / p i e 2) * ((4 - y / p i e 2) * (4 - y / p i e 2))) ;

}
c a s e 1 :
{

/ / N I C O L A S :

/ / S i n e a p p r o x i m a t i o n f o r x u p t o 3 .

/ / M u s t b e u s e d w i t h x . s c a l e = h i g h p r e c i s i o n p i ' 2 i n
/ / m a i n . c p p (s e e a b o v e) , a = 0 , b = 9 .

/ / R e l a t i v e e r r o r i s t h e g o a l .
b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : s i n c . p i (s q r t (y)))
/
((y / p i e 2 - 1) * (y / p i e 2 - 4) * (y / p i e 2 - 9)) ;

}

c a s e 2 :
{

423

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / N I C O L A S :

/ / S i n e a p p r o x i m a t i o n f o r x u p t o 4 .

/ / M u s t b e u s e d w i t h x . s c a l e = h i g h p r e c i s i o n p i * 2 i n
/ / m a i n . c p p (s e e a b o v e) , a = 0 , b = 1 6 .

/ / R e l a t i v e e r r o r i s t h e g o a l .

/ / T h i s w o r k s w e l l

b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : s i n c _ p i (s q r t (y)))
/
(

(y / p i e 2 - 1)
* (y / p i e 2 — 4)
* (y / p i e 2 - 9)
* (y / p i e 2 - 1 6)

) ;

c a s e 3 :
{

/ / N I C O L A S :

/ / L a n c z o s 3

/ / t o g e t a n s w e r o f t h e f o r m

/ / (x ~ 2 — 1) t i m e s (x " 2 — 4) t i m e s (x ' 2 — 9) t i m e s
/ / (x " 2 — 9) t i m e s (p o l y i n x * 2 w i t h o b t a i n e d
/ / c o e f f i c i e n t s)

/ / M u s t b e u s e d w i t h x . s c a l e = h i g h p r e c i s i o n p i m a i n . c p p
/ / (n o t i n t e r a c t i v e l y o r h e r e) s o t h a t t h e p r e c i s i o n i s
/ / h i g h . T h e r e i s a s e c o n d s i d e e f f e c t t o d o i n g t h i n g s
/ / t h i s w a y : B e c a u s e p i i s i r r a t i o n a l , w e a v o i d d i v i s i o n
/ / b y z e r o w h e n e v a l u a t i n g t h e d e n o m i n a t o r a t w h a t
/ / c o r r e s p o n d s t o y = l a n d y = 2 . T h a t i s , y / p i e 2 — l i s v e r y
/ / u n l i k e l y t o t u r n o u t t o b e z e r o e x a c t l y .

/ / A l s o : a = 0 a n d b = 9 (i n m a i n . c p p o r i n t e r a c t i v e l y) .

/ / R e l a t i v e e r r o r i s t h e g o a l .

424

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / T h i s w o r k s w e l l .

b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : s i n c . p i (s q r t (y)))
*
(b o o s t : : m a t h : : s i n c . p i (s q r t (y) / 3))
/
(

(y / p i e 2 - 1)
* (y / p i e 2 — 4)
* (y / p i e 2 — 9)
* (y / p i e 2 — 9)

) ;

c a s e 4 :
{

/ / N I C O L A S :

/ / S i n e a p p r o x i m a t i o n f o r x u p t o 1 / 2 .

/ / M u s t b e u s e d w i t h x . s c a l e = h i g h p r e c i s i o n p i " 2 i n
/ / m a i n . c p p (s e e a b o v e) , a = 0 , b = l / 4 .

/ / R e l a t i v e e r r o r i s t h e g o a l .
b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : s i n c . p i (s q r t (y))) ;

}

c a s e 5 :
{

/ / N I C O L A S :

/ / S i n e a p p r o x i m a t i o n f o r x u p t o 2 .

/ / M u s t b e u s e d w i t h x . s c a l e = h i g h p r e c i s i o n p i " 2 i n
/ / m a i n . c p p (s e e a b o v e) , a = 0 , b = 4 .

/ / R e l a t i v e e r r o r i s t h e g o a l .
b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : s i n c . p i (s q r t (y)))

425

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/
((y / p i e 2 - 1) * (y / p i e 2 - 4)) ;

}

c a s e 6 :
{

/ / C H A N T A L :

/ / c o s (% p i * x) f r o m — 1 t o I . U s e r a n g e [0 1] ,

b o o s t : : m a t h : : n t l : : R R y (x) ;
r e t u r n

(b o o s t : : m a t h : : c o s . p i (s q r t (y) / p i e))
/
(

(0 . 2 5 - y / p i e 2)
) ;

}
r e t u r n 0 ;

v o i d s h o w _ e x t r a (
c o n s t b o o s t : : m a t h : : t o o l s : : p o l y n o m i a l c b o o s t : : m a t h : : n t l : : R R > & n ,
const boost:: math :: tools :: polynomial cboost : : math :: ntl : : RR>& d ,
c o n s t b o o s t : : m a t h : : n t l : : R R & x . o f f s e t ,
c o n s t b o o s t : : m a t h : : n t l : : R R & y . o f f s e t ,
i n t v a r i a n t)

{
s w i t c h (v a r i a n t)
{
d e f a u l t :

/ / d o n o t h i n g h e r e . . .

>

}
}

426

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Remez Algorithm: Scilab Implementation

The following code was written by Chantal Racette.

The first function finds the coefficients of a minimax polynomial approximation of the

function / defined in the second function. It uses the Remez exchange algorithm, solving

the matrix system using LU decomposition.

In order to use this function, it must first be loaded via

exec (" \PATH\ remez LU. sci") and then run by calling it with

remez LU (deg, a, c, it), where deg is the degree of the approximation polyno­

mial, a and c are the bounds of the interval on which the function is to be approximated,

and it is the maximum number of iteration, in case the convergence is very slow.

f u n c t i o n p = remezLU (deg , a , c , i t)
/ / T h i s f u n c t i o n f i n d s a p o l y n o m i a l a p p r o x i m a t i o n o f d e g r e e d e g t o
/ / a f u n c t i o n f , d e f i n e d s e p a r a t e l y , u s i n g t h e R e m e z a l g o r i t h m
/ / o n t h e i n t e r v a l [a , c] w i t h i t i t e r a t i o n s .

// The number of points to use is two m o r e t h a n t h e
/ / d e g r e e w a n t e d .
n = d e g + 2 ;

// Compute the Chebyshev nodes .
x = z e r o s (n , 1) ;
f o r i = 1 : n

x (i) = — c o s ((2 * i — 1) * % p i / (2 * n)) ;
e n d
x 2 = 0 . 5 * (a + c) + 0 . 5 * (c - a) * x ;

/ / S t a r t t h e i t e r a t i o n .
f o r 1 = 1 : i t

/ / F i n d t h e r i g h t h a n d s i d e .
n o d e s = f (x 2) ;

427

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / S e t u p t h e m a t r i x t r a n s f o r m e d i n t o a n u p p e r H e s s e n b e r g
/ / m a t r i x b y u s i n g a N e w t o n p o l y n o m i a l b a s i s .
m a t r i c e = z e r o s (n , n) ;
f o r i = n — 1 : — 1 : 1

f o r j = n - 2 : — 1 : m a x (1 , i - 1)
m a t r i c e (i , j) = 1 ;
f o r k = 1 : n — j — 1

m a t r i c e (i , j) = m a t r i c e (i , j) * (x 2 (n — i + 1) — x 2 (k)) ;
e n d

e n d
e n d

/ / S e t u p t h e c o l u m n f o r t h e e r r o r t e r m .
a l t = o n e s (n , 1) ;
f o r i = 1 : n

a l t (n — i + 1) = (- 1) * (i + 1) * a l t (n - i + 1)
e n d
m a t r i c e (: , n) = a l t ;
m a t r i c e (: , n - 1) = o n e s (n , l) ;

/ / S e t u p t h e r i g h t h a n d s i d e .
b = z e r o s (n , 1) ;
f o r i = 1 : n

b (n - i + 1) = n o d e s (i) ;
e n d

/ / S o l v e t h e s y s t e m u s i n g p e r m u t e d L U d e c o m p o s i t i o n .
[P L U] = P e r m u t e d H e s s e n b e r g L U (m a t r i c e) ;
y t e m p = F o r w a r d S u b s t i t u t i o n R o w V e r s i o n (L , P * b) ;
p t e m p = B a c k w a r d S u b s t i t u t i o n R o w V e r s i o n (U , y t e m p) ;
e r r = p t e m p (n) ;
p = p t e m p ([n — 1 : - 1 : 1]) ;

/ / D e f i n e t h e a p p r o x i m a t i o n p o l y n o m i a l .
f u n c t i o n y = p o l y n (x , p)

y = 0 * o n e s (1 , l e n g t h (x)) ;
y = y + p (1) * o n e s (1 , l e n g t h (x)) ;
f o r i = 2 : n - l

b r a c k e t = 1 ;
f o r k = 1 : i - 1

b r a c k e t = b r a c k e t . * (x — x 2 (k) * o n e s (1 , l e n g t h (x))) ;
e n d
y = y + p (i) * b r a c k e t ;

e n d
e n d f u n c t i o n

428

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / F i n d t h e z e r o s o f t h e e r r o r f u n c t i o n u s i n g t h e
/ / m i d p o i n t m e t h o d .
z e r o = z e r o s (1 , n — 1) ;
f o r i = 1 : n — 1

f i r s t = x 2 (i) ;
l a s t = x 2 (i + 1) ;
t o 1 = 1 ;
w h i l e t o l > 1 0 " (- 6)

m i d = (f i r s t + l a s t) / 2 ;
t o l = a b s (m i d — f i r s t) ;
p o i n t s f = f ([f i r s t m i d l a s t]) ;
p o i n t s p = p o l y n ([f i r s t m i d l a s t] , p) ;
i f (p o i n t s f (2) — p o i n t s p (2)) * (p o i n t s f (1) - p o i n t s p (1)) > 0

f i r s t = m i d ;
e l s e

l a s t = m i d ;
e n d

e n d
z e r o (i) = m i d ;

e n d

/ / F i n d t h e a b s c i s s a o f t h e e x t r e m a u s i n g t h e m i d p o i n t
/ / m e t h o d o n t h e d e r i v a t i v e o f t h e e r r o r f u n c t i o n .
e x t = z e r o s (1 , n) ;
p o i n t s = z e r o s (1 , n + 1) ;
p o i n t s (1) = a ;
p o i n t s (n + 1) = c ;
p o i n t s ([2 : n]) = z e r o ;
f o r i = 1 ; n

f i r s t = p o i n t s (i) ;
l a s t = p o i n t s (i + 1) ;
t o l = 1 ;
w h i l e t o l > 1 0"(— 6)

m i d = (f i r s t + l a s t) / 2 ;
t o l = a b s (m i d — f i r s t) ;
p o i n t s f l = f ([f i r s t m i d l a s t]) ;
p o i n t s f 2 = f ([f i r s t + 1 0 A (— 2) m i d + l (T (- 2) . . .

l a s t + 1 0 A (- 2)]) ;
p o i n t s p l = p o l y n ([f i r s t m i d l a s t] , p) ;
p o i n t s p 2 = p o l y n ([f i r s t + 1 C T (— 2) . . .

mid +10"(—2) last+10*(-2)],p);
d e r f = (p o i n t s f 1 — p o i n t s f 2) ;
d e r p = (p o i n t s p 1 — p o i n t s p 2) ;
i f (d e r f (2) — d e r p (2)) * (d e r f (1) - d e r p (1)) > 0

f i r s t = m i d ;
e l s e

429

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l a s t = m i d ;
end

e n d
e x t (i) = m i d ;

e n d
e x t (l) = p o i n t s (1) ;
e x t (n) = p o i n t s (n + l) ;

/ / R e p l a c e t h e p o i n t s f o r t h e n e x t i t e r a t i o n ,
x 3 = x 2 ;
x 2 = e x t ;

/ / D i s p l a y t h e a l t e r n a t i n g e r r o r a s w e l l a s t h e
/ / m a x i m u m e r r o r o f t h e s o l u t i o n .
d i s p (e r r)
d i s p (m a x (a b s (b — m a t r i c e * p t e m p)))

e n d
e n d f u n c t i o n

The following function simply contains the function to be approximated.

f u n c t i o n f u n c = f (x)
f u n c = s i n (% p i * x) ;
I I f u n c = b e s s e l j (0 , % p i * x) + b e s s e I j (2 , % p i * x) ;

e n d f u n c t i o n

430

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E Frequency Response: Scilab Code

The following Scilab code was written by Chantal Racette.

Given an integer n, this code computes the frequency response of decimation by a fac­

tor of n performed with various filters: the Box filter, the Tent filter, the Lanczos 3 filter and

numerous minimax approximations, the Lanczos 2 filter and numerous minimax approx­

imations, the Catmull-Rom filter, the (cubic) B-Spline filter, and the Mitchell-Netravali

filter. (The minimax approximations were computed with the modified Boost C++ code

discussed in Appendix C.The frequency response is given for both zero-phase and half-

phase decimation. Results are converted to decibels and written to files in the / trap folder.

(An alternate destination may be specified by editing the following source code.)

To use this function within Scilab, it must first be loaded with

exec ("\PATH\Decimat ion7 . sci"). Then it can be called by typing

Decimat ion7 (n), where n is the desired integer decimation factor.

f u n c t i o n D e c i m a t i o n 7 (n)

s = 3 * n * 2 ;
f o r i = 1 : s

x l (i) = — 3 + (1 / n) * (i - 1) ;
x 2 (i) = — 3 + (1 / (2 * n)) + (l / n) * (i - l) ;

e n d

/ / B o x
f o r i = 1 : s

i f p m o d u l o (n , 2) = = 0
i f (x 2 (i) < — 0 . 5) | (x 2 (i) > 0 . 5)

b o x d e m i (i) = 0 ;
e l s e

b o x d e m i (i) = 1 / n ;

431

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e n d
e l s e

i f (x l (i) < — 0 . 5) | (x l (i) > 0 . 5)
b o x z e r o (i) = 0 ;

e l s e
b o x z e r o (i) = 1 / n ;

e n d
e n d

e n d

/ / T e n t - 1 - > 1
f o r i = 1 : s

i f (x l (i) < - l) | (x l (
t e n t l l (i) = 0 ;

e l s e i f x l (i)<=0
t e n t l l (i) = x 1 (i

e l s e i f x l (i) > 0
t e n t l 1 (i) = — x l (

e n d
e n d

s 111 = s u m (t e n 11 1);

f o r i = 1 : s
t e n t l z e r o (i) = t e n t l 1 (i) / s t l 1 ;

e n d

f o r i = 1 : s
i f (x 2 (i) < — 1) | (x 2 (i) > 1)

t e n t l 2 (i) = 0 ;
e l s e i f x 2 (i) < = 0

t e n t l 2 (i) = x 2 (i) + l ;
e l s e i f x 2 (i) > 0

t e n t l 2 (i) = — x 2 (i) + l ;
e n d

e n d

s 112 = s u m (t e n 112)

f o r i = 1 : s
t e n t l d e m i (i) = t e n t l 2 (i) / s 1 1 2 ;

e n d

/ / L a n c z o s 3
f o r i = 1 : s

i f (x 1 (i) = = 0)

432

i) > 1)

) + i ;

i) + i ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I a n 1 (i) = 1 ;
e l s e i f (x 1 (i) < — 3) | (x l (i) > 3)

l a n 1 (i) = 0 ;
e l s e

l a n l (i) = 3 * s i n (% p i * x l (i)) * s i n (% p i * x l (i) / 3) / (% p i ~ 2 * x l (i) ~ 2) ;
e n d

e n d

s i 1 = s u m (l a n 1) ;

f o r i = 1 : s
l a n z e r o (i) = l a n l (i) / s l l ;

e n d

f o r i = 1 : s
i f (x 2 (i) = = 0)

l a n 2 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

l a n 2 (i) = 0 ;
e l s e

l a n 2 (i) = 3 * s i n (% p i * x 2 (i)) * s i n (% p i * x 2 (i) / 3) / (% p i " 2 * x 2 (i) " 2) ;
e n d

e n d

s i 2 = s u m (l a n 2) ;

f o r i = 1 : s
l a n d e m i (i) = I a n 2 (i) / s l 2 ;

e n d

/ / L a n c z o s 3 a p p r o x i m a t i o n s — z e r o p h a s e
//**** order 10

f o r i = 1 : s
i f (x l (i) = = 0)

l a n 3 a p p 1 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

l a n 3 a p p 1 (i) = 0 ;
e l s e

l a n 3 a p p 1 (i) = (0 . 0 0 3 0 6 7 1 3 9 9 6 3 1 5 8 4 3 2 8 7 7 6 1 1 2 7 7 7 3 4 5 7 0 1 2 6 0 . . .
1 2 9 3 2 6 3 6 0 6 4 1 0 1 2 5 7 9 1 3 7 5 5 0 7 - 0 . 0 0 0 0 9 5 2 4 6 7 4 5 0 6 1 2 9 2 5 5 4 7 2 0 3 6 8 8 6 6 . . .
9 9 8 4 2 8 4 3 7 4 0 9 5 6 6 4 2 4 1 0 2 5 9 8 9 7 5 0 5 5 8 4 4 2 * (x l (i) * % p i) ~ 2) . . .
* (x l (i) ' 2 - l) * (x l (i T 2 - 4) * (x l (i) * 2 - 9) * (x l (i) " 2 - 9) ;

e n d
e n d

433

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s 1 3 1 = s u m (l a n 3 a p p 1) ;

f o r i = 1 : s
l a n 3 a p p 1 z e r o (i) = l a n 3 a p p 1 (i) / s 1 3 1 ;

e n d

/ / * * * * o r d e r 1 2

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 2 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 2 (i) = 0 ;
e l s e

I a n 3 a p p 2 (i) = (0 . 0 0 3 0 8 5 9 6 0 6 9 9 6 4 3 4 3 2 4 8 5 8 1 6 1 0 4 3 7 2 3 9 0 8 8 3 5 2 . . .
6 9 6 9 5 3 6 1 0 8 3 0 7 2 5 7 2 9 0 2 5 3 4 - 0 . 0 0 0 1 1 0 3 0 9 0 3 2 8 6 3 8 7 8 7 4 2 8 2 1 0 7 4 5 3 0 5 2 2 6 4 . . .
7 2 0 5 7 2 8 7 5 4 9 3 2 3 8 2 0 4 1 3 5 2 2 1 0 9 3 9 * (x l (i) * % p i) " 2 + 0 . 0 0 0 0 0 1 6 1 6 8 1 4 5 6 . . .
0 9 3 7 6 6 1 9 9 5 8 8 0 6 6 1 3 9 3 9 1 4 0 9 4 3 8 2 7 4 6 4 6 6 6 8 9 9 4 3 4 8 1 3 4 5 0 6 3 9 6 . . .
* (x l (i) * % p i) " 4) * (x l (i) ~ 2 - l) * (x l (i) ~ 2 - 4) * (x l (i) ' 2 - 9) * (x l (i) ' 2 - 9) ;

e n d
e n d

s l 3 2 = s u m (I a n 3 a p p 2) ;

f o r i = 1 : s
l a n 3 a p p 2 z e r o (i) = I a n 3 a p p 2 (i) / s 1 3 2 ;

e n d

/ / * * * * o r d e r 1 4

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 3 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 3 (i) = 0 ;
e l s e

I a n 3 a p p 3 (i) = (0 . 0 0 3 0 8 6 4 1 2 0 5 7 1 3 5 9 8 5 2 0 8 0 2 2 1 3 5 4 4 7 6 3 8 2 1 8 1 2 . . .
5 7 6 6 7 1 4 6 2 7 5 1 4 2 8 7 3 8 5 4 8 7 7 1 - 0 . 0 0 0 1 1 1 1 4 0 5 2 6 7 8 6 0 4 9 4 6 4 0 6 0 4 7 8 3 7 2 4 9 7 4 . . .
6 0 7 7 9 0 3 4 5 2 6 1 8 7 4 7 2 1 0 9 6 6 3 3 5 7 3 4 2 * (x l (i) * % p i) ' 2 + . . .
0 . 0 0 0 0 0 1 8 5 3 4 7 8 0 7 1 4 9 4 8 9 7 0 3 8 3 5 9 3 1 5 9 9 1 1 4 7 4 1 7 8 8 9 7 0 1 4 4 1 3 4 0 1 . . .
4 3 2 3 1 9 5 6 1 3 9 0 6 * (x l (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 0 0 1 7 1 1 1 0 5 1 1 9 4 8 3 0 6 6 2 8 7 2 5 3 3 5 . . .
3 8 3 6 2 5 9 0 2 9 1 5 2 3 8 3 8 6 2 9 4 2 2 5 6 7 3 8 5 5 5 6 5 0 8
* (x 1 (i) * % p i) ~ 6) * (x l (i) ~ 2 - l) * (x l (i) " 2 - 4) * (x l (i) " 2 - 9) * (x l (i) ' 2 - 9) ;

e n d
e n d

4 3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s 1 3 3 = s u m (I a n 3 a p p 3) ;

f o r i = 1 : s
l a n 3 a p p 3 z e r o (i) = I a n 3 a p p 3 (i) / s 1 3 3 ;

e n d

/ / * * * * o r d e r 1 6

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 4 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 4 (i) = 0 ;
e l s e

I a n 3 a p p 4 (i) = (0 . 0 0 3 0 8 6 4 1 9 6 5 5 8 6 6 6 6 3 8 5 0 3 5 9 5 3 9 2 2 7 1 9 5 9 7 5 9 4 . . .
1 6 6 0 9 8 7 3 7 0 5 4 2 9 4 4 0 6 4 8 8 1 8 8 - 0 . 0 0 0 1 1 1 1 6 5 8 0 4 8 7 4 6 4 2 1 6 1 1 2 1 8 9 0 0 8 7 5 4 9 0 . . .
6 4 6 3 9 0 8 2 1 3 7 1 6 1 2 7 9 6 1 1 1 6 6 7 6 3 2 9 9 * (x l (i) * % p i) ' 2 + . . .
0 . 0 0 0 0 0 1 8 6 6 9 8 0 2 4 8 2 5 2 6 4 6 2 8 0 3 7 6 6 6 9 1 2 8 4 2 8 0 6 7 6 3 4 6 5 6 5 9 2 . . .
7 8 9 7 8 1 5 0 2 9 6 1 9 0 3 6 3 * (x l (i) * % p i) ' 4 - . . .
0 . 0 0 0 0 0 0 0 1 9 4 4 9 4 3 4 5 5 4 1 4 7 2 9 6 3 5 0 1 1 9 9 5 1 1 8 2 1 7 2 5 4 8 7 2 2 5 4 8 . . .
6 4 5 0 2 7 8 4 0 1 7 4 6 6 8 7 1 7 * (x l (i) * % p i) ' 6 + . . .
0 . 0 0 0 0 0 0 0 0 0 1 2 7 4 9 9 5 1 4 0 1 6 5 3 8 8 4 8 1 9 1 9 7 4 8 3 9 0 6 7 9 8 4 1 4 4 5 2 4 . . .
2 9 1 5 0 7 6 7 1 9 6 9 8 5 4 2 8 2 9 2 * (x l (i) * % p i) ~ 8) * (x l (i) " 2 - 1) . . .
* (x l (i Y 2 - 4) * (x l (i) " 2 - 9) * (x l (i Y 2 - 9) ;

e n d
e n d

s 1 3 4 = s u m (I a n 3 a p p 4) ;

f o r i = 1 : s
l a n 3 a p p 4 z e r o (i) = I a n 3 a p p 4 (i) / s 1 3 4 ;

e n d

/ / * * * * o r d e r 1 8

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 5 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 5 (i) = 0 ;
e l s e

I a n 3 a p p 5 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 2 1 1 9 5 8 0 6 9 5 8 3 1 8 8 8 6 7 4 1 1 4 3 6 4 0 0 6 . .
2 0 9 4 0 4 8 9 5 4 3 9 5 0 8 5 4 6 7 9 6 0 3 - 0 . 0 0 0 1 1 1 1 6 6 3 1 0 6 4 4 5 4 3 5 3 1 1 9 7 4 3 3 8 2 6 0 8 7 6 2 0 . .
0 7 4 9 4 7 1 3 7 8 2 0 4 1 1 6 0 9 9 5 2 7 3 0 4 2 7 * (x l (i) * % p i) ' 2 + 0 . 0 0 0 0 0 1 8 6 7 4 1 3 6 1 5 7 3 5 . .
7 2 0 0 1 3 0 1 1 2 0 4 6 3 7 2 6 4 8 3 1 4 5 2 3 6 7 2 8 3 1 1 4 2 6 4 9 4 6 8 8 2 5 8 7 2 * (x l (i) * % p i) " 4 - . .
0 . 0 0 0 0 0 0 0 1 9 5 8 0 7 7 9 4 7 7 9 1 8 4 7 0 6 9 2 8 7 2 5 8 6 6 7 2 2 6 6 8 6 1 1 0 6 7 1 0 7 3 7 0 6 4 7 0 6 2 3 4 . .

435

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 5 6 9 1 3 9 * (x l (i) * % p i) " 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 3 8 5 4 2 0 4 6 0 7 3 5 1 7 6 7 9 9 2 2 2 2 0 0 2 . . .
8 1 6 4 1 7 7 9 9 7 8 8 9 9 7 4 0 3 1 5 3 7 5 9 0 2 4 0 2 3 5 6 5 * (x l (i) * % p i) " 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 . . .
0 7 1 5 8 5 4 8 0 4 4 8 6 1 7 7 0 7 1 6 5 8 0 4 1 8 7 7 3 7 3 2 5 9 0 9 0 7 1 1 0 9 3 4 7 9 6 9 9 3 1 9 5 5 8 5 8 7 7 4 6 . . .
* (x 1 (i) * % p i) ' 1 0) * (x l (i) ' 2 - l) * (x l (i) ' 2 - 4) * (x l (i) ' 2 - 9) * (x l (i) ~ 2 - 9) ;

e n d
e n d

s i 3 5 = s u m (l a n 3 a p p 5) ;

f o r i = 1 : s
l a n 3 a p p 5 z e r o (i) = I a n 3 a p p 5 (i) / s 1 3 5 ;

e n d

/ / * * * * O R D E R 2 0

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 6 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 6 (i) = 0 ;
e l s e

I a n 3 a p p 6 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 7 8 6 1 3 0 7 5 7 0 6 6 7 6 0 9 2 6 4 0 4 5 4 1 0 7 . . .
0 8 2 6 0 6 2 1 8 4 9 9 4 9 6 6 1 1 6 0 1 3 6 - 0 . 0 0 0 1 1 1 1 6 6 3 1 7 9 5 8 6 6 5 4 9 3 9 3 6 2 2 0 8 1 6 8 7 2 2 6 6 . . .
7 3 3 9 2 1 0 7 8 0 4 5 9 7 7 8 6 3 4 1 2 8 3 3 7 8 8 * (x l (i) * % p i) ' 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 7 8 1 2 . . .
9 8 5 1 8 7 7 5 1 4 2 4 4 1 1 9 4 4 2 4 5 0 8 0 0 0 9 7 5 8 0 7 6 0 0 9 9 0 0 7 2 5 1 0 6 0 8 3 3 . . .
* (x 1 (i) * % p i) " 4 — 0 . 0 0 0 0 0 0 0 1 9 5 8 5 0 1 5 9 6 6 4 5 8 9 8 0 9 9 5 6 9 3 7 3 8 8 1 1 0 0 4 0 1 3 2 4 5 . . .
3 7 1 0 2 7 7 8 9 6 4 7 9 2 2 4 8 2 7 8 9 6 * (x l (i) * % p i) ' 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 4 4 3 2 6 4 7 6 . . .
4 8 3 7 7 4 1 1 5 5 4 1 5 9 8 8 9 1 1 0 9 1 4 5 2 5 8 1 8 5 1 9 4 9 4 1 7 1 1 4 4 3 1 9 1 2 9 9 . . .
* (x l (i) * % p i) " 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 3 9 3 8 3 9 8 8 3 7 4 1 2 7 2 7 8 1 5 9 6 9 4 8 0 0 0 7 3 . . .
3 3 0 1 4 5 7 7 4 3 1 3 8 9 4 1 4 7 7 9 0 1 6 1 7 8 9 6 * (x l (i) * % p i) ' 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
3 1 6 4 0 6 4 8 5 1 8 9 6 8 4 7 1 6 5 4 6 3 6 4 3 7 7 5 8 4 4 1 3 6 3 8 2 7 6 6 0 0 3 3 7 4 1 0 6 9 5 2 8 9 7 0 9 8 7 7 . . .
* (x 1 (i) * % p i) ' 1 2) * (x l (i) ' 2 - 1) * (x l (i) ~ 2 - 4) * (x l (i) ' 2 - 9) * (x l (i) " 2 - 9) ;

e n d
e n d

s 1 3 6 = s u m (I a n 3 a p p 6) ;

f o r i = 1 : s
l a n 3 a p p 6 z e r o (i) = I a n 3 a p p 6 (i) / s 1 3 6 ;

e n d

/ / * * * * O R D E R 2 2

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 7 (i) = 1 ;

436

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)
I a n 3 a p p 7 (i) = 0 ;

e l s e
I a n 3 a p p 7 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 3 6 7 3 7 8 7 8 6 0 0 4 1 9 0 0 4 5 5 8 3 7 9 9 . . .

0 6 4 1 7 0 3 2 0 6 2 3 1 4 6 1 6 8 6 5 5 8 2 - 0 . 0 0 0 1 1 1 1 6 6 3 1 8 0 3 9 6 4 1 6 8 7 2 2 3 1 8 5 5 4 2 7 7 2 1 9 4 . . .
1 8 1 0 2 1 1 8 1 7 8 3 8 2 2 8 4 3 3 3 2 6 1 9 0 8 7 * (x l (i) * % p i) * 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 0 8 . . .
3 6 5 2 1 2 2 2 8 2 0 4 8 3 5 2 9 6 8 9 4 8 2 2 4 0 5 4 6 0 8 8 2 0 1 1 3 1 7 4 6 3 1 0 4 1 2 3 . . .
* (x 1 (i) * % p i) " 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 6 7 6 8 5 5 5 8 8 4 9 2 5 8 1 0 7 5 8 6 1 3 2 9 5 7 7 7 7 . . .
2 2 4 6 9 2 0 8 4 5 2 9 1 7 4 3 2 4 6 7 1 9 8 6 * (x l (i) * % p i) " 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 2 6 0 0 5 . . .
7 2 7 5 0 5 9 1 2 8 3 0 6 3 6 4 8 7 0 7 3 8 2 6 5 6 0 9 4 6 5 8 3 6 6 5 3 0 1 0 8 7 1 4 6 5 7 0 6 9 . . .
* (x 1 (i) * % p i) ' 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 6 9 2 9 1 6 1 5 6 3 0 4 8 8 5 7 6 3 6 9 7 2 7 5 3 9 9 4 3 . . .
5 5 8 7 3 9 8 9 4 5 9 0 5 4 5 6 6 9 4 1 0 3 1 5 9 1 5 9 1 * (x l (i) * % p i) " 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 3 5 2 5 7 5 4 4 6 3 6 3 9 6 9 6 1 6 0 0 1 5 1 0 5 4 4 9 1 4 1 8 3 5 1 4 5 2 1 0 6 5 5 2 8 1 7 9 5 2 9 8 2 4 8 6 2 3 4 9 . . .
* (x 1 (i) * % p i) " 1 2 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 4 7 2 6 6 1 4 3 6 8 5 2 4 7 1 6 9 2 9 7 8 8 0 . . .
6 3 0 9 5 4 7 5 2 4 1 6 7 9 6 9 1 9 5 6 2 8 0 4 3 5 8 1 0 3 8 0 6 * (x l (i) * % p i) * 1 4) * (x l (i) * 2 - 1) . . .
* (x l (i) * 2 - 4) * (x l (i) " 2 - 9) * (x l (i) A 2 - 9) ;

e n d
e n d

s 1 3 7 = s u m (I a n 3 a p p 7) ;

f o r i = 1 : s
l a n 3 a p p 7 z e r o (i) = I a n 3 a p p 7 (i) / s 1 3 7 ;

e n d

/ / * * * * O R D E R 2 4

f o r i = 1 : s
i f (x 1 (i) = = 0)

I a n 3 a p p 8 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 8 (i) = 0 ;
e l s e

I a n 3 a p p 8 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 4 1 9 4 5 5 8 2 5 9 3 4 8 0 0 7 1 3 7 9 6 2 3 . . .
8 1 4 3 5 6 4 6 1 8 4 0 9 9 7 6 1 3 0 0 4 4 8 5 - 0 . 0 0 0 1 1 1 1 6 6 3 1 8 0 4 0 3 5 5 3 1 1 3 4 3 0 8 1 6 1 9 2 7 4 4 . . .
5 1 9 9 8 3 5 4 5 2 3 1 1 3 4 8 4 6 4 4 9 8 0 9 8 1 5 6 * (x l (i) * % p i) ~ 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 . . .
2 4 5 4 4 1 4 1 3 2 2 0 4 6 8 2 4 8 8 8 3 7 7 4 9 5 6 6 2 2 3 7 6 4 7 5 3 0 3 2 6 1 8 6 5 7 8 0 2 5 8 . . .
* (x 1 (i) * % p i) " 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 7 4 0 3 0 7 0 8 1 0 7 1 4 1 3 6 9 7 9 2 4 7 0 9 4 0 . . .
1 6 4 4 8 0 2 7 6 9 1 8 1 2 7 1 8 5 9 3 7 9 6 0 1 * (x l (i) * % p i) " 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 0 . . .
2 6 6 4 5 0 7 0 7 0 4 5 7 3 3 6 8 4 8 1 1 0 0 7 6 2 0 4 2 6 3 2 5 4 6 8 0 9 3 1 7 0 4 4 6 7 7 2 9 0 9 . . .
* (x 1 (i) * % p i) " 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 6 9 6 6 5 0 1 7 7 0 3 6 5 8 4 7 9 4 5 7 2 3 6 0 0 3 . . .
6 4 4 5 4 5 8 2 9 9 5 2 5 7 9 3 6 2 4 6 6 1 9 7 8 4 4 1 3 1 * (x l (i) * % p i) ' 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 3 5 4 3 9 6 1 8 4 2 2 9 2 5 0 0 1 9 3 3 6 1 7 8 2 1 8 1 2 0 4 7 9 9 7 7 9 8 0 8 9 0 9 5 3 6 3 3 2 9 0 2 7 0 7 8 7 3 . . .
5 4 * (x l (i) * % p i) * 1 2 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 8 5 6 2 7 6 0 3 7 2 3 7 9 2 4 4 9 8 0 7 . . .
2 3 5 9 0 8 9 4 6 5 1 7 3 2 1 9 3 5 2 1 3 1 2 7 2 3 2 7 3 5 9 2 4 2 3 5 3 * (x l (i) * % p i) " 1 4 + . . .
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 8 5 6 9 0 0 4 1 9 6 9 4 1 4 9 8 6 6 9 0 9 1 2 5 7 9 4 7 7 4 0 2 5 6 0 9 9 6 . . .

437

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 7 4 9 5 7 4 9 0 4 2 5 7 4 4 0 5 2 1 5 * (x l (i) * % p i) ' l 6) * (x l (i) * 2 - l) * (x l (i) * 2 - 4) . . .
* (x l (i) ~ 2 — 9) * (x l (i) " 2 - 9) ;

e n d
e n d

s 1 3 8 = s u m (I a n 3 a p p 8) ;

f o r i = 1 : s
l a n 3 a p p 8 z e r o (i) = I a n 3 a p p 8 (i) / s 1 3 8 ;

e n d

//* * * *ORDER 26

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 3 a p p 9 (i) = 1 ;
e l s e i f (x l (i) < — 3) | (x 1 (i) > 3)

I a n 3 a p p 9 (i) = 0 ;
e l s e

I a n 3 a p p 9 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 4 1 9 7 5 1 6 3 8 2 1 3 9 2 6 3 9 4 3 1 9 5 5 3 . . .
1 7 0 0 0 0 6 8 5 1 0 9 5 6 4 8 6 0 2 7 7 7 9 - 0 . 0 0 0 1 1 1 1 6 6 3 1 8 0 4 0 3 6 0 4 6 0 8 7 6 7 5 0 5 2 9 7 4 2 2 8 1 . . .
8 1 4 7 7 8 1 2 9 5 7 3 4 3 6 9 2 1 4 8 7 7 2 6 1 8 8 * (x l (i) * % p i) * 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 2 4 . . .
6 9 2 7 0 7 9 8 2 2 9 7 2 9 3 3 8 8 2 2 3 6 2 0 5 9 7 2 1 6 8 6 0 8 2 5 3 8 3 8 2 5 0 9 5 6 9 6 9 . . .
* (x 1 (i) * % p i) ' 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 9 0 6 1 3 5 3 5 3 3 8 3 7 0 8 2 8 6 4 9 8 9 5 1 7 4 6 . . .
0 0 4 4 3 4 7 7 3 3 8 0 2 4 0 2 4 7 6 1 4 5 7 5 * (x l (i) * % p i) ' 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 1 1 9 . . .
7 0 3 0 2 0 2 8 2 8 6 2 9 1 3 3 5 0 1 1 5 9 5 0 3 3 4 8 3 5 8 6 8 1 5 3 4 7 7 1 0 2 2 3 5 3 6 2 4 . . .
* (x 1 (i) * % p i) * 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 7 2 6 0 6 6 4 4 8 8 1 9 9 3 4 2 6 6 5 1 4 7 1 0 7 5 2 . . .
3 0 7 5 6 7 9 0 1 7 3 7 3 1 8 1 5 0 1 1 7 7 9 0 2 5 2 0 5 * (x l (i) * % p i) " 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 3 5 4 4 5 0 9 2 5 6 1 0 4 1 3 1 6 2 0 5 9 2 3 3 7 3 8 3 2 4 9 9 5 9 4 3 3 4 6 6 2 7 9 2 4 5 8 5 3 8 0 6 2 5 3 0 7 2 4 6 . . .
• (x l (i) * % p i) " 1 2 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 4 5 1 0 2 0 4 6 1 4 8 9 6 1 2 6 0 6 8 2 3 0 7 . . .
4 5 6 7 2 5 0 9 3 6 2 7 8 0 3 7 7 5 6 5 2 2 1 1 3 1 7 1 5 4 7 6 2 9 * (x l (i) * % p i) ' 1 4 + 0 . 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 3 7 3 4 6 3 6 8 0 3 9 6 7 9 6 1 2 5 8 9 1 6 0 7 2 2 0 7 0 5 6 8 3 4 4 2 0 5 2 7 0 8 7 6 7 9 4 0 0 4 4 . . .
0 8 7 3 2 7 4 3 3 * (x l (i) * % p i) ~ 1 6 - 0 . 0 8 5 4 0 5 1 8 8 0 7 1 . . .
8 1 9 1 2 7 0 1 5 2 7 1 3 4 1 7 3 5 4 9 2 0 3 9 5 1 4 3 9 7 5 3 1 2 2 3 1 2 0 1 1 8 9 3 0 4 8 2 1 . . .
* (x 1 (i) * % p i) ' l 8) * (x l (i) " 2 — 1) * (x l (i) " 2 - 4) * (x l (i) " 2 — 9) * (x l (i) ' 2 — 9) ;

e n d
e n d

s 1 3 9 = s u m (I a n 3 a p p 9) ;

f o r i = 1 : s
l a n 3 a p p 9 z e r o (i) = I a n 3 a p p 9 (i) / s 1 3 9 ;

e n d

/ / L a n c z o s 3 a p p r o x i m a t i o n s - h a l f p h a s e

438

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / * * * * O R D E R 1 0

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 1 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 1 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 1 (i) = (0 . 0 0 3 0 6 7 1 3 9 9 6 3 1 5 8 4 3 2 8 7 7 6 1 1 2 7 7 7 3 4 5 7 0 1 2 6 0 1 . . .
2 9 3 2 6 3 6 0 6 4 1 0 1 2 5 7 9 1 3 7 5 5 0 7 - 0 . 0 0 0 0 9 5 2 4 6 7 4 5 0 6 1 2 9 2 5 5 4 7 2 0 3 6 8 8 6 6 9 9 8 4 2 8 . . .
4 3 7 4 0 9 5 6 6 4 2 4 1 0 2 5 9 8 9 7 5 0 5 5 8 4 4 2 * (x 2 (i) * % p i) " 2) * (x 2 (i) ' 2 - 1) . . .
* (x 2 (i) " 2 — 4) * (x 2 (i) " 2 - 9) * (x 2 (i) " 2 - 9) ;

e n d
e n d

s 1 3 1 = s u m (I a n 3 a p p 2 _ 1) ;

f o r i = 1 : s
I a n 3 a p p 2 _ l d e m i (i) = I a n 3 a p p 2 _ l (i) / s 1 3 1 ;

e n d

/ / * * * * o r d e r 1 2

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 2 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 2 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 2 (i) = (0 . 0 0 3 0 8 5 9 6 0 6 9 9 6 4 3 4 3 2 4 8 5 8 1 6 1 0 4 3 7 2 3 9 0 8 8 3 5 . . .
2 6 9 6 9 5 3 6 1 0 8 3 0 7 2 5 7 2 9 0 2 5 3 4 - 0 . 0 0 0 1 1 0 3 0 9 0 3 2 8 6 3 8 7 8 7 4 2 8 2 1 0 7 4 5 3 0 5 2 2 6 4 . . .
7 2 0 5 7 2 8 7 5 4 9 3 2 3 8 2 0 4 1 3 5 2 2 1 0 9 3 9 * (x 2 (i) * % p i) * 2 + 0 . 0 0 0 0 0 1 6 1 6 8 1 4 5 6 0 . . .
9 3 7 6 6 1 9 9 5 8 8 0 6 6 1 3 9 3 9 1 4 0 9 4 3 8 2 7 4 6 4 6 6 6 8 9 9 4 3 4 8 1 3 4 5 0 6 3 9 6 . . .
* (x 2 (i) * % p i) ~ 4) * (x 2 (i) ~ 2 - l) * (x 2 (i) ' 2 - 4) * (x 2 (i) ' 2 - 9) * (x 2 (i) * 2 - 9) ;

e n d
e n d

s 1 3 2 = s u m (I a n 3 a p p 2 _ 2) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 2 d e m i (i) = I a n 3 a p p 2 _ 2 (i) / s 1 3 2 ;

e n d

/ / * * * * o r d e r 1 4

for i = 1 : s

439

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f (x 2 (i) = = 0)
I a n 3 a p p 2 _ 3 (i) = 1 ;

e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)
I a n 3 a p p 2 _ 3 (i) = 0 ;

e l s e
I a n 3 a p p 2 _ 3 (i) = (0 . 0 0 3 0 8 6 4 1 2 0 5 7 1 3 5 9 8 5 2 0 8 0 2 2 1 3 5 4 4 7 6 3 8 2 1 8 1 . . .

2 5 7 6 6 7 1 4 6 2 7 5 1 4 2 8 7 3 8 5 4 8 7 7 1 - 0 . 0 0 0 1 1 1 1 4 0 5 2 6 7 8 6 0 4 9 4 6 4 0 6 0 4 7 8 3 7 2 4 9 7 4 . . .
6 0 7 7 9 0 3 4 5 2 6 1 8 7 4 7 2 1 0 9 6 6 3 3 5 7 3 4 2 * (x 2 (i) * % p i) ~ 2 + 0 . 0 0 0 0 0 1 8 5 3 4 7 8 0 7 . . .
1 4 9 4 8 9 7 0 3 8 3 5 9 3 1 5 9 9 1 1 4 7 4 1 7 8 8 9 7 0 1 4 4 1 3 4 0 1 4 3 2 3 1 9 5 6 1 3 9 0 6 . . .
* (x 2 (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 0 0 1 7 1 1 1 0 5 1 1 9 4 8 3 0 6 6 2 8 7 2 5 3 3 5 3 8 3 6 2 5 9 0 2 9 1 5 . . .
2 3 8 3 8 6 2 9 4 2 2 5 6 7 3 8 5 5 5 6 5 0 8 * (x 2 (i) * % p i) * 6) * (x 2 (i) ~ 2 — 1) * (x 2 (i) ~ 2 - 4) . . .
* (x 2 (i) " 2 — 9) * (x 2 (i) " 2 — 9) ;

e n d
e n d

s 1 3 3 = s u m (I a n 3 a p p 2 _ 3) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 3 d e m i (i) = I a n 3 a p p 2 _ 3 (i) / s 1 3 3 ;

e n d

/ / * * * * o r d e r 1 6

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 4 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 4 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 4 (i) = (0 . 0 0 3 0 8 6 4 1 9 6 5 5 8 6 6 6 6 3 8 5 0 3 5 9 5 3 9 2 2 7 1 9 5 9 7 5 9 . . .
4 1 6 6 0 9 8 7 3 7 0 5 4 2 9 4 4 0 6 4 8 8 1 8 8 - 0 . 0 0 0 1 1 1 1 6 5 8 0 4 8 7 4 6 4 2 1 6 1 1 2 1 8 9 0 0 8 7 5 4 9 0 . . .
6 4 6 3 9 0 8 2 1 3 7 1 6 1 2 7 9 6 1 1 1 6 6 7 6 3 2 9 9 * (x 2 (i) * % p i) ' 2 + 0 . 0 0 0 0 0 1 8 6 6 9 8 0 2 4 . . .
8 2 5 2 6 4 6 2 8 0 3 7 6 6 6 9 1 2 8 4 2 8 0 6 7 6 3 4 6 5 6 5 9 2 7 8 9 7 8 1 5 0 2 9 6 1 9 0 3 6 3 . . .
* (x 2 (i) * % p i) ' 4 - 0 . 0 0 0 0 0 0 0 1 9 4 4 9 4 3 4 5 5 4 1 4 7 2 9 6 3 5 0 1 1 9 9 5 1 1 8 2 1 7 2 5 4 8 7 . . .
2 2 5 4 8 6 4 5 0 2 7 8 4 0 1 7 4 6 6 8 7 1 7 * (x 2 (i) * % p i) ' 6 + 0 . 0 0 0 0 0 0 0 0 0 1 2 7 4 9 9 5 1 4 0 1 . . .
6 5 3 8 8 4 8 1 9 1 9 7 4 8 3 9 0 6 7 9 8 4 1 4 4 5 2 4 2 9 1 5 0 7 6 7 1 9 6 9 8 5 4 2 8 2 9 2 . . .
* (x 2 (i) * % p i) ' 8) * (x 2 (i V 2 - 1) * (x 2 (i) " 2 - 4) * (x 2 (i) " 2 - 9) * (x 2 (i) " 2 - 9) ;

e n d
e n d

s l 3 4 = s u m (I a n 3 a p p 2 _ 4) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 4 d e m i (i) = I a n 3 a p p 2 _ 4 (i) / s l 3 4 ;

e n d

440

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / * * * * O R D E R 1 8

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 5 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 5 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 5 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 2 1 1 9 5 8 0 6 9 5 8 3 1 8 8 8 6 7 4 1 1 4 3 6 4 0 . . .
0 6 2 0 9 4 0 4 8 9 5 4 3 9 5 0 8 5 4 6 7 9 6 0 3 - 0 . 0 0 0 1 1 1 1 6 6 3 1 0 6 4 4 5 4 3 5 3 1 1 9 7 4 3 3 8 2 6 0 8 7 6 . . .
2 0 0 7 4 9 4 7 1 3 7 8 2 0 4 1 1 6 0 9 9 5 2 7 3 0 4 2 7 * (x 2 (i) * % p /) * 2 + 0 . 0 0 0 0 0 1 8 6 7 4 1 3 6 1 . . .
5 7 3 5 7 2 0 0 1 3 0 1 1 2 0 4 6 3 7 2 6 4 8 3 1 4 5 2 3 6 7 2 8 3 1 1 4 2 6 4 9 4 6 8 8 2 5 8 7 2 . . .
* (x 2 (i) * % p i) " 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 0 7 7 9 4 7 7 9 1 8 4 7 0 6 9 2 8 7 2 5 8 6 6 7 2 2 6 6 8 6 1 1 . . .
0 6 7 1 0 7 3 7 0 6 4 7 0 6 2 3 4 5 5 6 9 1 3 9 * (x 2 (i) * % p i) ~ 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 3 8 5 4 2 0 4 6 . . .
0 7 3 5 1 7 6 7 9 9 2 2 2 2 0 0 2 8 1 6 4 1 7 7 9 9 7 8 8 9 9 7 4 0 3 1 5 3 7 5 9 0 2 4 0 2 3 5 6 5 . . .
* (x 2 (i) * % p i) ~ 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 7 1 5 8 5 4 8 0 4 4 8 6 1 7 7 0 7 1 6 5 8 0 4 1 8 7 7 3 7 3 2 . . .
5 9 0 9 0 7 1 1 0 9 3 4 7 9 6 9 9 3 1 9 5 5 8 5 8 7 7 4 6 * (x 2 (i) * % p i) ' 1 0) * (x 2 (i) " 2 - 1) . . .
* (x 2 (i Y 2 - 4) * (x 2 (i) ~ 2 - 9) * (x 2 (i) * 2 - 9) ;

e n d
e n d

s 1 3 5 = s u m (I a n 3 a p p 2 _ 5) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 5 d e m i (i) = I a n 3 a p p 2 _ 5 (i) / s 1 3 5 ;

e n d

/ / * * * * O R D E R 2 0

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 6 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 6 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 6 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 7 8 6 1 3 0 7 5 7 0 6 6 7 6 0 9 2 6 4 0 4 5 4 1 . . .
0 7 0 8 2 6 0 6 2 1 8 4 9 9 4 9 6 6 1 1 6 0 1 3 6 - 0 . 0 0 0 1 1 1 1 6 6 3 1 7 9 5 8 6 6 5 4 9 3 9 3 6 2 2 0 8 1 6 8 7 2 2 . . .
6 6 7 3 3 9 2 1 0 7 8 0 4 5 9 7 7 8 6 3 4 1 2 8 3 3 7 8 8 * (x 2 (i) * % p i) ' 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 7 8 . . .
1 2 9 8 5 1 8 7 7 5 1 4 2 4 4 1 1 9 4 4 2 4 5 0 8 0 0 0 9 7 5 8 0 7 6 0 0 9 9 0 0 7 2 5 1 0 6 0 8 3 3 . . .
* (x 2 (i) * % p i) ' 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 0 1 5 9 6 6 4 5 8 9 8 0 9 9 5 6 9 3 7 3 8 8 1 1 0 0 4 0 1 3 2 . . .
4 5 3 7 1 0 2 7 7 8 9 6 4 7 9 2 2 4 8 2 7 8 9 6 * (x 2 (i) * % p i) ' 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 4 4 3 2 6 4 . . .
7 6 4 8 3 7 7 4 1 1 5 5 4 1 5 9 8 8 9 1 1 0 9 1 4 5 2 5 8 1 8 5 1 9 4 9 4 1 7 1 1 4 4 3 1 9 1 2 9 9 . . .
* (x 2 (i) * % p i) " 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 3 9 3 8 3 9 8 8 3 7 4 1 2 7 2 7 8 1 5 9 6 9 4 8 0 0 0 7 . . .
3 3 3 0 1 4 5 7 7 4 3 1 3 8 9 4 1 4 7 7 9 0 1 6 1 7 8 9 6 * (x 2 (i) * % p i) ~ 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 3 1 6 4 0 6 4 8 5 1 8 9 6 8 4 7 1 6 5 4 6 3 6 4 3 7 7 5 8 4 4 1 3 6 3 8 2 7 6 6 0 0 3 3 7 4 1 0 6 9 5 2 8 9 7 0 9 8 7 7 . . .
* (x 2 (i) * % p i) ' 1 2) * (x 2 (i) ~ 2 - l) * (x 2 (i) ' 2 - 4) * (x 2 (i) ' 2 - 9) * (x 2 (i) ~ 2 - 9) ;

441

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e n d
e n d

s 1 3 6 = s u m (I a n 3 a p p 2 _ 6) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 6 d e m i (i) = I a n 3 a p p 2 _ 6 (i) / s 1 3 6 ;

e n d

/ / * * * * O R D E R 2 2

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 7 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 7 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 7 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 3 6 7 3 7 8 7 8 6 0 0 4 1 9 0 0 4 5 5 8 3 7 . . .
9 9 0 6 4 1 7 0 3 2 0 6 2 3 1 4 6 1 6 8 6 5 5 8 2 - 0 . 0 0 0 1 1 1 1 6 6 3 1 8 0 3 9 6 4 1 6 8 7 2 2 3 1 8 5 5 4 2 7 7 2 1 . . .
9 4 1 8 1 0 2 1 1 8 1 7 8 3 8 2 2 8 4 3 3 3 2 6 1 9 0 8 7 * (x 2 (i) * % p i) " 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 . . .
0 8 3 6 5 2 1 2 2 2 8 2 0 4 8 3 5 2 9 6 8 9 4 8 2 2 4 0 5 4 6 0 8 8 2 0 1 1 3 1 7 4 6 3 1 0 4 1 2 3 . . .
* (x 2 (i) * % p i) ' 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 6 7 6 8 5 5 5 8 8 4 9 2 5 8 1 0 7 5 8 6 1 3 2 9 5 7 7 7 7 . . .
2 2 4 6 9 2 0 8 4 5 2 9 1 7 4 3 2 4 6 7 1 9 8 6 * (x 2 (i) * % p i) * 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 2 6 0 0 5 . . .
7 2 7 5 0 5 9 1 2 8 3 0 6 3 6 4 8 7 0 7 3 8 2 6 5 6 0 9 4 6 5 8 3 6 6 5 3 0 1 0 8 7 1 4 6 5 7 0 6 9 . . .
* (x 2 (i) * % p i) ~ 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 6 9 2 9 1 6 1 5 6 3 0 4 8 8 5 7 6 3 6 9 7 2 7 5 3 9 9 4 3 . . .
5 5 8 7 3 9 8 9 4 5 9 0 5 4 5 6 6 9 4 1 0 3 1 5 9 1 5 9 1 * (x 2 (i) * % p i) ' 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 3 5 2 5 7 5 4 4 6 3 6 3 9 6 9 6 1 6 0 0 1 5 1 0 5 4 4 9 1 4 1 8 3 5 1 4 5 2 1 0 6 5 5 2 8 1 7 9 5 2 9 8 2 4 8 6 2 3 4 9 . . .
* (x 2 (i) * % p i) * 1 2 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 4 7 2 6 6 1 4 3 6 8 5 2 4 7 1 6 9 2 9 7 8 . . .
8 0 6 3 0 9 5 4 7 5 2 4 1 6 7 9 6 9 1 9 5 6 2 8 0 4 3 5 8 1 0 3 8 0 6 * (x 2 (i) * % p i) ' 1 4) . . .
* (x 2 (i) ~ 2 - l) * (x 2 (i) " 2 - 4) * (x 2 (i) A 2 - 9) * (x 2 (i) " 2 — 9) ;

e n d
e n d

s 1 3 7 = s u m (I a n 3 a p p 2 _ 7) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 7 d e m i (i) = I a n 3 a p p 2 _ 7 (i) / s 1 3 7 ;

e n d

/ / * * * * O R D E R 2 4

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 8 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 8 (i) = 0 ;

442

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e
I a n 3 a p p 2 _ 8 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 4 1 9 4 5 5 8 2 5 9 3 4 8 0 0 7 1 3 7 9 6 . . .

2 3 8 1 4 3 5 6 4 6 1 8 4 0 9 9 7 6 1 3 0 0 4 4 8 5 - 0 . 0 0 0 1 1 1 1 6 6 3 1 8 0 4 0 3 5 5 3 1 1 3 4 3 0 8 1 6 1 9 2 7 . . .
4 4 5 1 9 9 8 3 5 4 5 2 3 1 1 3 4 8 4 6 4 4 9 8 0 9 8 1 5 6 * (x 2 (i) * % p i) ~ 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 . . .
9 2 2 4 5 4 4 1 4 1 3 2 2 0 4 6 8 2 4 8 8 8 3 7 7 4 9 5 6 6 2 2 3 7 6 4 7 5 3 0 3 2 6 1 8 6 5 7 8 0 2 5 8 . . .
* (x 2 (i) * % p i) " 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 7 4 0 3 0 7 0 8 1 0 7 1 4 1 3 6 9 7 9 2 4 7 0 9 4 0 . . .
1 6 4 4 8 0 2 7 6 9 1 8 1 2 7 1 8 5 9 3 7 9 6 0 1 * (x 2 (i) * % p i) " 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 0 . . .
2 6 6 4 5 0 7 0 7 0 4 5 7 3 3 6 8 4 8 1 1 0 0 7 6 2 0 4 2 6 3 2 5 4 6 8 0 9 3 1 7 0 4 4 6 7 7 2 9 0 9 . . .
* (x 2 (i) * % p i) ' 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 6 9 6 6 5 0 1 7 7 0 3 6 5 8 4 7 9 4 5 7 2 3 6 0 0 3 . . .
6 4 4 5 4 5 8 2 9 9 5 2 5 7 9 3 6 2 4 6 6 1 9 7 8 4 4 1 3 l * (x 2 (i) * % p i y i O + 0 . 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 3 5 4 3 9 6 1 8 4 2 2 9 2 5 0 0 1 9 3 3 6 1 7 8 2 1 8 1 2 0 4 7 9 9 7 7 9 8 0 8 9 0 9 5 3 6 3 3 2 9 0 2 7 0 7 8 7 3 . . .
5 4 * (x 2 (i) * % p i) " 1 2 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 8 5 6 2 7 6 0 3 7 2 3 7 9 2 4 4 9 8 0 7 . . .
2 3 5 9 0 8 9 4 6 5 1 7 3 2 1 9 3 5 2 1 3 1 2 7 2 3 2 7 3 5 9 2 4 2 3 5 3 * (x 2 (i) * % p i y i 4 + 0 . 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 8 5 6 9 0 0 4 1 9 6 9 4 1 4 9 8 6 6 9 0 9 1 2 5 7 9 4 7 7 4 0 2 5 6 0 9 9 6 1 7 4 9 5 7 . . .
4 9 0 4 2 5 7 4 4 0 5 2 1 5 * (x 2 (i) * % p i) " 1 6) * (x 2 (i) ' 2 - 1) * (x 2 (i) ' 2 - 4) . . .
* (x 2 (i y i — 9) * (x 2 (i) " 2 — 9) ;

e n d
e n d

s 1 3 8 = s u m (I a n 3 a p p 2 _ 8) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 8 d e m i (i) = I a n 3 a p p 2 _ 8 (i) / s 1 3 8 ;

e n d

/ / * * * * O R D E R 2 6

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 3 a p p 2 _ 9 (i) = 1 ;
e l s e i f (x 2 (i) < — 3) | (x 2 (i) > 3)

I a n 3 a p p 2 _ 9 (i) = 0 ;
e l s e

I a n 3 a p p 2 _ 9 (i) = (0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 4 1 9 7 5 1 6 3 8 2 1 3 9 2 6 3 9 4 3 1 9 5 . . .
5 3 1 7 0 0 0 0 6 8 5 1 0 9 5 6 4 8 6 0 2 7 7 7 9 - 0 . 0 0 0 1 1 1 1 6 6 3 1 8 0 4 0 3 6 0 4 6 0 8 7 6 7 5 0 5 2 9 7 4 2 2 . . .
8 1 8 1 4 7 7 8 1 2 9 5 7 3 4 3 6 9 2 1 4 8 7 7 2 6 1 8 8 * (x 2 (i) * % p i) ' 2 + 0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 . . .
2 4 6 9 2 7 0 7 9 8 2 2 9 7 2 9 3 3 8 8 2 2 3 6 2 0 5 9 7 2 1 6 8 6 0 8 2 5 3 8 3 8 2 5 0 9 5 6 9 6 9 . . .
* (x 2 (i) * % p i) ' 4 - 0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 9 0 6 1 3 5 3 5 3 3 8 3 7 0 8 2 8 6 4 9 8 9 5 1 7 4 6 . . .
0 0 4 4 3 4 7 7 3 3 8 0 2 4 0 2 4 7 6 1 4 5 7 5 * (x 2 (i) * % p i) ' 6 + 0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 1 1 9 . . .
7 0 3 0 2 0 2 8 2 8 6 2 9 1 3 3 5 0 1 1 5 9 5 0 3 3 4 8 3 5 8 6 8 1 5 3 4 7 7 1 0 2 2 3 5 3 6 2 4 . . .
* (x 2 (i) * % p i) * 8 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 7 2 6 0 6 6 4 4 8 8 1 9 9 3 4 2 6 6 5 1 4 7 1 0 7 5 2 . . .
3 0 7 5 6 7 9 0 1 7 3 7 3 1 8 1 5 0 1 1 7 7 9 0 2 5 2 0 5 * (x 2 (i) * % p i y i O + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 3 5 4 4 5 0 9 2 5 6 1 0 4 1 3 1 6 2 0 5 9 2 3 3 7 3 8 3 2 4 9 9 5 9 4 3 3 4 6 6 2 7 9 2 4 5 8 5 3 8 0 6 2 5 3 0 7 2 4 6 . . .
* (x 2 (i) * % p i) ' 1 2 - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 4 5 1 0 2 0 4 6 1 4 8 9 6 1 2 6 0 6 8 2 3 0 . . .
7 4 5 6 7 2 5 0 9 3 6 2 7 8 0 3 7 7 5 6 5 2 2 1 1 3 1 7 1 5 4 7 6 2 9 * (x 2 (i) * % p i y i 4 + 0 . 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 3 4 6 3 6 8 0 3 9 6 7 9 6 1 2 5 8 9 1 6 0 7 2 2 0 7 0 5 6 8 3 4 4 2 0 5 2 7 0 8 7 6 7 9 4 0 . . .

443

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 4 4 0 8 7 3 2 7 4 3 3 * (x 2 (i) * % p i) ~ 1 6 - 0 . 0 8 5 4 0 5 1 8 . . .
8 0 7 1 8 1 9 1 2 7 0 1 5 2 7 1 3 4 1 7 3 5 4 9 2 0 3 9 5 1 4 3 9 7 5 3 1 2 2 3 1 2 0 1 1 8 9 3 0 4 8 2 1 . . .
* (x 2 (i) * % p i) ' 1 8) * (x 2 (i) " 2 — 1) * (x 2 (i) " 2 - 4) * (x 2 (i) ' 2 - 9) * (x 2 (i) ' 2 - 9) ;

e n d
e n d

s 1 3 9 = s u m (I a n 3 a p p 2 _ 9) ;

f o r i = 1 : s
I a n 3 a p p 2 _ 9 d e m i (i) = I a n 3 a p p 2 _ 9 (i) / s 1 3 9 ;

e n d

/ / L a n c z o s 2
for i = 1 : s

i f (x l (i) = = 0)
l a n 2 1 (i) = 1 ;

e l s e i f (x l (i) < — 2 1 x 1 (i) > 2)
l a n 2 1 (i) = 0 ;

e l s e
l a n 2 1 (i) = 2 * s i n (% p i * x l (i)) * s i n (% p i * x l (i) / 2) / (% p i " 2 * x l (i) " 2) ;

e n d
e n d

s 1 2 1 = s u m (l a n 2 1) ;

f o r i = 1 : s
l a n 2 z e r o (i) = l a n 2 1 (i) / s 1 2 1 ;

e n d

f o r i = 1 : s
i f (x 2 (i) = = 0)

l a n 2 2 (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

l a n 2 2 (i) = 0 ;
e l s e

l a n 2 2 (i) = 2 * s i n (% p i * x 2 (i)) * s i n (% p i * x 2 (i) / 2) / (% p i ~ 2 * x 2 (i) " 2) ;
e n d

e n d

s 1 2 2 = s u m (l a n 2 2) ;

f o r i = 1 : s
l a n 2 d e m i (i) = l a n 2 2 (i) / s 1 2 2 ;

e n d

/ / L a n c z o s 2 a p p r o x i m a t i o n s — z e r o p h a s e

444

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//****ORDER 8

f o r i = 1 : s
i f (x l (i) = = 0)

l a n 2 a p p 1 (i) = 1 ;
e l s e i f (x l (i) < — - 2) j (x 1 (i) > 2)

l a n 2 a p p 1 (i) = 0 ;
e l s e

l a n 2 a p p 1 (i) = (0 . 0 6 2 3 1 4 5 0 5 8 7 7 6 1 6 1 9 9 2 3 5 7 3 8 4 4 5 6 7 7 6 1 5 6 7 7 3 7 9 8 . . .
7 2 5 7 4 6 1 3 8 9 1 1 2 1 9 5 0 4 5 9 - 0 . 0 0 3 1 6 9 9 2 9 4 5 0 0 6 6 5 7 9 1 8 0 2 7 6 6 1 8 2 6 7 3 0 7 4 8 8 9 1 . . .
1 9 7 2 4 0 0 7 4 1 1 5 5 6 6 2 8 5 2 9 3 4 4 5 * (x 1 (i) * % p i) ' 2) * (1 - x l (i) ~ 2) . . .
* (4 - x l (i) * 2) * (4 - x l (i) " 2) ;

e n d
e n d

s l 2 a p p l = s u m (l a n 2 a p p l) ;

f o r i = 1 : s
l a n 2 a p p l z e r o (i) = I a n 2 a p p l (i) / s l 2 a p p l ;

e n d

/ / * * * * o r d e r 1 0

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 2 a p p 2 (i) = 1 ;
e l s e i f (x l (i) < — 2) | (x 1 (i) > 2)

I a n 2 a p p 2 (i) = 0 ;
e l s e

I a n 2 a p p 2 (i) = (0 . 0 6 2 4 9 7 0 1 8 9 1 2 8 3 9 9 9 5 0 3 1 9 7 4 4 0 8 6 1 4 2 6 7 0 1 3 8 2 2 1 . . .
2 7 6 0 9 6 3 5 6 9 9 2 0 8 9 8 1 0 3 6 - 0 . 0 0 3 5 0 9 1 8 8 7 1 5 9 2 4 8 0 0 1 1 2 2 1 1 7 7 7 7 6 2 3 3 9 9 6 6 2 9 . . .
4 6 5 7 8 4 2 9 9 6 9 8 1 8 4 3 6 2 1 7 5 1 0 2 * (x l (i) * % p i) " 2 + 0 . 0 0 0 0 8 2 7 9 0 5 2 6 0 3 8 2 8 4 . . .
2 0 9 8 1 2 3 3 1 3 6 4 0 3 6 2 2 8 5 5 1 4 1 4 3 4 1 8 9 6 4 0 6 3 2 0 5 1 8 2 4 4 9 1 4 . . .
* (x l (i) * % p i) " 4) * (1 - x l (i) ~ 2) * (4 - x l (i) ~ 2) * (4 - x l (i) " 2) ;

e n d
e n d

s l 2 a p p 2 = s u m (I a n 2 a p p 2) ;

f o r i = 1 : s
l a n 2 a p p 2 z e r o (i) = I a n 2 a p p 2 (i) / s l 2 a p p 2 ;

e n d

/ / * * * * o r d e r 1 2

445

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r i = l : s
i f (x l (i) = = 0)

I a n 2 a p p 3 (i) = 1 ;
e l s e i f (x l (i) < — 2) | (x l (i) > 2)

I a n 2 a p p 3 (i) = 0 ;
e l s e

I a n 2 a p p 3 (i) = (0 . 0 6 2 4 9 9 9 6 6 6 6 8 7 0 5 0 8 5 4 3 4 7 7 9 3 1 1 5 9 1 7 4 3 2 8 7 1 8 4 7 . . .
4 1 6 3 5 8 3 7 9 4 4 1 1 5 9 4 6 6 3 9 5 - 0 . 0 0 3 5 2 1 7 1 6 5 4 6 1 3 2 8 1 8 2 5 2 4 3 0 5 9 5 2 3 0 7 0 0 0 8 1 9 . . .
6 8 0 0 9 0 8 4 6 1 4 8 8 4 6 5 4 5 1 4 7 7 7 7 8 * (x l (i) * % p i) ~ 2 + 0 . 0 0 0 0 9 0 9 1 0 5 4 5 2 7 0 1 6 . . .
2 1 8 9 5 2 8 8 2 4 9 9 4 7 3 4 0 5 4 4 8 7 3 2 8 0 7 2 3 0 5 1 7 7 7 2 1 8 8 3 6 9 2 0 5 1 1 . . .
* (x 1 (i) * % p i) ' 4 - 0 . 0 0 0 0 0 1 3 3 0 5 9 0 4 5 5 6 5 6 5 6 6 2 7 8 5 9 7 3 6 8 3 4 1 9 8 8 6 1 9 4 7 3 . . .
1 0 5 6 1 2 6 2 5 4 5 7 5 5 5 2 6 4 1 0 9 8 1 * (x l (i) * % p i) " 6) * (1 - x l (i) " 2) . . .
* (4 — x l (i) " 2) * (4 — x l (i) * 2) ;

e n d
e n d

s l 2 a p p 3 = s u m (I a n 2 a p p 3) ;

f o r i = 1 : s
l a n 2 a p p 3 z e r o (i) = I a n 2 a p p 3 (i) / s l 2 a p p 3 ;

e n d

/ / * * * * o r d e r 1 4

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 2 a p p 4 (i) = 1 ;
e l s e i f (x l (i) < — 2) j (x 1 (i) > 2)

I a n 2 a p p 4 (i) = 0 ;
e l s e

I a n 2 a p p 4 (i) = (0 . 0 6 2 4 9 9 9 9 9 7 2 2 2 2 2 6 2 2 7 4 2 5 8 3 1 1 8 8 6 8 1 2 4 2 2 9 0 5 6 4 . . .
7 1 3 2 1 6 7 5 0 8 4 1 3 8 7 5 3 9 3 3 - 0 . 0 0 3 5 2 1 9 6 9 0 1 6 7 3 8 2 2 7 7 9 6 6 9 3 2 0 0 5 7 7 1 3 0 1 4 8 1 0 . . .
5 4 0 1 7 9 3 2 6 6 4 4 2 9 6 4 2 0 6 4 7 1 1 l * (x l (i) * % p i) " 2 + 0 . 0 0 0 0 9 1 2 1 7 5 8 3 0 2 0 7 8 2 . . .
5 9 4 9 7 0 8 3 0 5 2 3 7 2 9 7 6 3 1 6 1 1 8 4 8 1 4 3 4 9 7 7 7 1 2 6 3 2 9 8 9 8 9 5 4 7 . . .
* (x 1 (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 1 4 5 1 1 7 8 5 3 6 6 4 3 2 8 9 1 8 8 9 2 6 4 2 4 7 2 9 9 0 5 7 6 9 0 9 1 . . .
4 5 8 5 8 5 2 9 1 0 3 6 7 3 1 6 8 6 4 3 5 0 5 * (x l (i) * % p i) * 6 + 0 . 0 0 0 0 0 0 0 1 4 8 7 7 4 7 0 2 9 6 8 . . .
9 0 0 5 0 5 9 2 2 9 8 2 5 3 5 4 4 5 0 7 0 2 2 7 0 6 2 3 8 1 5 3 6 5 4 6 8 7 5 9 3 1 4 4 6 9 4 4 . . .
* (x l (i) * % p i) ' 8) * (l — x 1 (i) ~ 2) * (4 - x l (i) ~ 2) * (4 - x l (i) ~ 2) ;

e n d
e n d

s l 2 a p p 4 = s u m (I a n 2 a p p 4) ;

f o r i = 1 : s
l a n 2 a p p 4 z e r o (i) = I a n 2 a p p 4 (i) / s l 2 a p p 4 ;

e n d

446

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / * * * * O R D E R 1 6

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 2 a p p 5 (i) = 1 ;
e l s e i f (x l (i) < — 2) | (x 1 (i) > 2)

I a n 2 a p p 5 (i) = 0 ;
e l s e

I a n 2 a p p 5 (i) = (0 . 0 6 2 4 9 9 9 9 9 9 9 8 1 9 5 4 3 8 7 5 3 7 2 3 3 2 8 3 4 9 0 3 3 0 8 7 6 5 5 3 . . .
7 0 4 4 6 2 6 3 5 1 3 2 2 6 6 3 4 2 1 9 5 - 0 . 0 0 3 5 2 1 9 7 2 3 3 5 3 8 3 1 8 0 8 2 8 3 1 3 0 2 2 0 6 5 2 5 4 1 4 8 8 . . .
0 3 4 9 1 2 4 0 6 0 0 8 1 9 4 0 4 8 5 4 4 5 5 1 5 * (x l (i) * % p i) ' 2 + 0 . 0 0 0 0 9 1 2 2 4 0 5 2 4 3 5 2 7 . . .
8 0 5 2 8 1 9 7 8 9 4 9 7 8 5 1 2 0 1 1 2 9 3 0 1 3 4 1 5 1 1 9 8 3 7 4 5 0 7 9 6 7 6 2 6 1 3 . . .
* (x 1 (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 1 4 5 5 6 2 5 1 5 1 4 7 1 8 9 3 7 8 2 4 2 0 8 7 9 2 8 1 0 4 7 2 9 0 2 7 2 . . .
3 9 5 2 1 0 9 0 5 0 3 8 0 3 9 6 6 1 0 3 7 4 * (x l (i) * % p i) ~ 6 + 0 . 0 0 0 0 0 0 0 1 6 1 3 0 6 4 0 3 1 0 0 9 . . .
0 1 2 9 0 6 0 9 3 8 7 0 8 3 7 8 5 9 5 6 1 4 6 2 9 3 5 6 3 6 8 5 9 5 0 0 5 8 6 7 5 0 0 8 3 9 9 . . .
* (x 1 (i) * % p i) " 8 - 0 . 0 0 0 0 0 0 0 0 0 1 2 3 9 8 7 1 9 9 2 7 2 6 9 3 1 2 7 0 5 3 0 5 4 0 6 0 5 6 0 4 3 3 . . .
4 6 2 2 2 8 4 0 3 1 6 0 9 8 3 2 9 8 3 6 3 2 0 9 8 1 8 * (x l (i) * % p i) " 1 0) * (1 - x l (i) * 2) . . .
* (4 - x l (i) * 2) * (4 - x l (i) A 2) ;

e n d
e n d

s l 2 a p p 5 = s u m (I a n 2 a p p 5) ;

f o r i = 1 : s
l a n 2 a p p 5 z e r o (i) = I a n 2 a p p 5 (i) / s l 2 a p p 5 ;

e n d

/ / * * * * o r d e r 1 8

f o r i = 1 : s
i f (x l (i) = = 0)

I a n 2 a p p 6 (i) = 1 ;
e l s e i f (x l (i) < — 2) | (x l (i) > 2)

I a n 2 a p p 6 (i) = 0 ;
e l s e

I a n 2 a p p 6 (i) = (0 . 0 6 2 4 9 9 9 9 9 9 9 9 9 9 0 5 6 6 0 8 5 0 1 2 2 0 2 1 1 2 4 8 2 1 2 4 7 9 3 7 . . .
3 4 3 7 4 3 1 5 3 6 9 4 1 1 1 4 1 5 7 3 9 - 0 . 0 0 3 5 2 1 9 7 2 3 6 6 6 3 9 3 5 9 4 0 7 9 1 2 4 5 9 2 9 3 5 0 1 3 6 7 7 . . .
5 7 1 7 0 2 9 8 9 2 0 1 5 1 9 1 0 9 0 6 9 5 2 3 5 * (x l (i) * % p i) * 2 + 0 . 0 0 0 0 9 1 2 2 4 1 4 1 4 7 2 2 9 . . .
2 3 0 0 4 8 5 4 4 4 5 8 2 4 8 5 5 5 0 7 4 4 1 8 5 2 0 0 2 8 4 1 4 6 2 6 7 5 4 4 9 6 0 5 6 7 5 . . .
* (x 1 (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 1 4 5 5 7 1 8 4 6 0 6 2 9 0 2 5 5 4 8 6 6 7 5 0 0 1 5 6 0 8 1 5 5 3 1 5 5 . . .
5 5 4 4 6 7 7 1 0 3 2 6 1 3 6 7 0 7 1 7 4 3 8 * (x l (i) * % p i) ~ 6 + 0 . 0 0 0 0 0 0 0 1 6 1 7 5 0 1 4 7 0 4 1 . . .
0 6 3 9 5 2 1 3 5 9 4 1 7 4 7 6 0 9 5 4 1 5 9 0 3 5 6 0 6 3 5 1 8 0 3 1 2 1 0 7 7 4 5 7 4 4 3 6 . . .
* (x 1 (i) * % p i) ~ 8 - 0 . 0 0 0 0 0 0 0 0 0 1 3 3 7 4 0 3 3 4 0 3 6 9 2 8 3 6 2 3 1 5 3 4 1 0 4 7 0 9 6 6 0 5 . . .
5 0 8 6 4 7 9 6 6 0 8 1 5 7 3 7 4 1 7 6 0 1 5 5 0 0 3 * (x l (i) * % p i) ' 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 . . .
5 4 7 6 9 1 1 7 1 8 2 8 2 7 6 7 5 3 0 0 3 0 8 5 2 5 1 1 4 6 4 1 8 6 9 1 9 5 9 4 4 7 3 4 1 6 7 3 7 0 8 7 1 5 2 5 3 4 . . .

447

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* (x l (i) * % p i) ' 1 2) * (l - x l (i) ' 2) * (4 - x l (i) " 2) * (4 - x l (i) ' 2) ;
e n d

e n d

s l 2 a p p 6 = s u m (I a n 2 a p p 6) ;

f o r i = 1 : s

l a n 2 a p p 6 z e r o (i) = I a n 2 a p p 6 (i) / s l 2 a p p 6 ;
e n d

/ / L a n c z o s 2 a p p r o x i m a t i o n s - h a l f p h a s e

/ / * * * * O R D E R 8

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 2 a p p 2 _ l (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

I a n 2 a p p 2 _ 1 (i) = 0 ;
e l s e

I a n 2 a p p 2 _ l (i) = (0 . 0 6 2 3 1 4 5 0 5 8 7 7 6 1 6 1 9 9 2 3 5 7 3 8 4 4 5 6 7 7 6 1 5 6 7 7 3 7 . . .
9 8 7 2 5 7 4 6 1 3 8 9 1 1 2 1 9 5 0 4 5 9 - 0 . 0 0 3 1 6 9 9 2 9 4 5 0 0 6 6 5 7 9 1 8 0 2 7 6 6 1 8 2 6 7 3 0 7 4 8 8 . . .
9 1 1 9 7 2 4 0 0 7 4 1 1 5 5 6 6 2 8 5 2 9 3 4 4 5 * (x 2 (i) * % p i) ~ 2) * (1 - x 2 (i) * 2) . . .
* (4 — x 2 (i) A 2) * (4 — x 2 (i) * 2) ;

e n d
e n d

s l 2 a p p 2 _ l = s u m (I a n 2 a p p 2 _ l) ;

f o r i = 1 : s
I a n 2 a p p 2 _ l d e m i (i) = I a n 2 a p p 2 _ l (i) / s l 2 a p p 2 _ l ;

e n d

/ / * * * * O R D E R 1 0

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 2 a p p 2 _ 2 (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

I a n 2 a p p 2 _ 2 (i) = 0 ;
e l s e

I a n 2 a p p 2 _ 2 (i) = (0 . 0 6 2 4 9 7 0 1 8 9 1 2 8 3 9 9 9 5 0 3 1 9 7 4 4 0 8 6 1 4 2 6 7 0 1 3 8 2 . . .
2 1 2 7 6 0 9 6 3 5 6 9 9 2 0 8 9 8 1 0 3 6 - 0 . 0 0 3 5 0 9 1 8 8 7 1 5 9 2 4 8 0 0 1 1 2 2 1 1 7 7 7 7 6 2 3 3 9 9 6 6 . . .
2 9 4 6 5 7 8 4 2 9 9 6 9 8 1 8 4 3 6 2 1 7 5 1 0 2 * (x 2 (i) * % p i) ~ 2 + 0 . 0 0 0 0 8 2 7 9 0 5 2 6 0 3 8 2 . . .
8 4 2 0 9 8 1 2 3 3 1 3 6 4 0 3 6 2 2 8 5 5 1 4 1 4 3 4 1 8 9 6 4 0 6 3 2 0 5 1 8 2 4 4 9 1 4 . . .
* (x 2 (i) * % p i) ' 4) * (1 - x 2 (i) ' 2) * (4 - x 2 (i) ' 2) * (4 - x 2 (i) ' 2) ;

448

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e n d
e n d

s l 2 a p p 2 _ 2 = s u m (I a n 2 a p p 2 _ 2) ;

f o r i = 1 : s
I a n 2 a p p 2 _ 2 d e m i (i) = I a n 2 a p p 2 _ 2 (i) / s l 2 a p p 2 _ 2 ;

e n d

/ / * * * * o r d e r 1 2

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 2 a p p 2 _ 3 (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

I a n 2 a p p 2 _ 3 (i) = 0 ;
e l s e

I a n 2 a p p 2 _ 3 (i) = (0 . 0 6 2 4 9 9 9 6 6 6 6 8 7 0 5 0 8 5 4 3 4 7 7 9 3 1 1 5 9 1 7 4 3 2 8 7 1 8 . . .
4 7 4 1 6 3 5 8 3 7 9 4 4 1 1 5 9 4 6 6 3 9 5 - 0 . 0 0 3 5 2 1 7 1 6 5 4 6 1 3 2 8 1 8 2 5 2 4 3 0 5 9 5 2 3 0 7 0 0 0 8 . . .
1 9 6 8 0 0 9 0 8 4 6 1 4 8 8 4 6 5 4 5 1 4 7 7 7 7 8 * (x 2 (i) * % p i) * 2 + 0 . 0 0 0 0 9 0 9 1 0 5 4 5 2 7 0 . . .
1 6 2 1 8 9 5 2 8 8 2 4 9 9 4 7 3 4 0 5 4 4 8 7 3 2 8 0 7 2 3 0 5 1 7 7 7 2 1 8 8 3 6 9 2 0 5 1 1 . . .
* (x 2 (i) * % p i T 4 - 0 . 0 0 0 0 0 1 3 3 0 5 9 0 4 5 5 6 5 6 5 6 6 2 7 8 5 9 7 3 6 8 3 4 1 9 8 8 6 1 9 4 7 3 . . .
1 0 5 6 1 2 6 2 5 4 5 7 5 5 5 2 6 4 1 0 9 8 1 * (x 2 (i) * % p i) ' 6) * (1 - x 2 (i) ~ 2) . . .
* (4 - x 2 (i) " 2) * (4 — x 2 (i T 2) ;

e n d
e n d

s l 2 a p p 2 _ 3 = s u m (I a n 2 a p p 2 _ 3) ;

f o r i = 1 : s
I a n 2 a p p 2 _ 3 d e m i (i) = I a n 2 a p p 2 _ 3 (i) / s l 2 a p p 2 _ 3 ;

e n d

/ / * * * * o r d e r 1 4

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 2 a p p 2 _ 4 (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

I a n 2 a p p 2 _ 4 (i) = 0 ;
e l s e

I a n 2 a p p 2 _ 4 (i) = (0 . 0 6 2 4 9 9 9 9 9 7 2 2 2 2 2 6 2 2 7 4 2 5 8 3 1 1 8 8 6 8 1 2 4 2 2 9 0 5 . . .
6 4 7 1 3 2 1 6 7 5 0 8 4 1 3 8 7 5 3 9 3 3 - 0 . 0 0 3 5 2 1 9 6 9 0 1 6 7 3 8 2 2 7 7 9 6 6 9 3 2 0 0 5 7 7 1 3 0 1 4 8 . . .
1 0 5 4 0 1 7 9 3 2 6 6 4 4 2 9 6 4 2 0 6 4 7 1 1 l * (x 2 (i) * % p i) ~ 2 + 0 . 0 0 0 0 9 1 2 1 7 5 8 3 0 2 0 7 . . .
8 2 5 9 4 9 7 0 8 3 0 5 2 3 7 2 9 7 6 3 1 6 1 1 8 4 8 1 4 3 4 9 7 7 7 1 2 6 3 2 9 8 9 8 9 5 4 7 . . .
* (x 2 (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 1 4 5 1 1 7 8 5 3 6 6 4 3 2 8 9 1 8 8 9 2 6 4 2 4 7 2 9 9 0 5 7 6 9 0 9 1 . . .

449

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 5 8 5 8 5 2 9 1 0 3 6 7 3 1 6 8 6 4 3 5 0 5 * (x 2 (i) * % p i) * 6 + 0 . 0 0 0 0 0 0 0 1 4 8 7 7 4 7 0 2 9 6 8 . . .
9 0 0 5 0 5 9 2 2 9 8 2 5 3 5 4 4 5 0 7 0 2 2 7 0 6 2 3 8 1 5 3 6 5 4 6 8 7 5 9 3 1 4 4 6 9 4 4 . . .
* (x 2 (i) * % p i) " 8) * (1 — x 2 (i) ' 2) * (4 - x 2 (i) " 2) * (4 — x 2 (i) ~ 2) ;

e n d
e n d

s l 2 a p p 2 _ 4 = s u m (I a n 2 a p p 2 _ 4) ;

f o r i = 1 : s
I a n 2 a p p 2 _ 4 d e m i (i) = I a n 2 a p p 2 _ 4 (i) / s l 2 a p p 2 _ 4 ;

e n d

/ / * * * * O R D E R 1 6

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 2 a p p 2 _ 5 (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

I a n 2 a p p 2 _ 5 (i) = 0 ;
e l s e

I a n 2 a p p 2 _ 5 (i) = (0 . 0 6 2 4 9 9 9 9 9 9 9 8 1 9 5 4 3 8 7 5 3 7 2 3 3 2 8 3 4 9 0 3 3 0 8 7 6 5 . . .
5 3 7 0 4 4 6 2 6 3 5 1 3 2 2 6 6 3 4 2 1 9 5 - 0 . 0 0 3 5 2 1 9 7 2 3 3 5 3 8 3 1 8 0 8 2 8 3 1 3 0 2 2 0 6 5 2 5 4 1 4 . . .
8 8 0 3 4 9 1 2 4 0 6 0 0 8 1 9 4 0 4 8 5 4 4 5 5 1 5 * (x 2 (i) * % p i) " 2 + 0 . 0 0 0 0 9 1 2 2 4 0 5 2 4 3 5 . . .
2 7 8 0 5 2 8 1 9 7 8 9 4 9 7 8 5 1 2 0 1 1 2 9 3 0 1 3 4 1 5 1 1 9 8 3 7 4 5 0 7 9 6 7 6 2 6 1 3 . . .
* (x 2 (i) * % p i) " 4 - 0 . 0 0 0 0 0 1 4 5 5 6 2 5 1 5 1 4 7 1 8 9 3 7 8 2 4 2 0 8 7 9 2 8 1 0 4 7 2 9 0 2 7 2 . . .
3 9 5 2 1 0 9 0 5 0 3 8 0 3 9 6 6 1 0 3 7 4 * (x 2 (i) * % p i) ' 6 + 0 . 0 0 0 0 0 0 0 1 6 1 3 0 6 4 0 3 1 0 0 9 . . .
0 1 2 9 0 6 0 9 3 8 7 0 8 3 7 8 5 9 5 6 1 4 6 2 9 3 5 6 3 6 8 5 9 5 0 0 5 8 6 7 5 0 0 8 3 9 9 . . .
* (x 2 (i) * % p i) ~ 8 - 0 . 0 0 0 0 0 0 0 0 0 1 2 3 9 8 7 1 9 9 2 7 2 6 9 3 1 2 7 0 5 3 0 5 4 0 6 0 5 6 0 4 3 3 . . .
4 6 2 2 2 8 4 0 3 1 6 0 9 8 3 2 9 8 3 6 3 2 0 9 8 1 8 * (x 2 (i) * % p i) ' l 0) * (1 - x 2 (i) ' 2) . . .
* (4 — x 2 (i) " 2) * (4 — x 2 (i) " 2) ;

e n d
e n d

s l 2 a p p 2 _ 5 = s u m (I a n 2 a p p 2 _ 5) ;

f o r i = 1 : s
I a n 2 a p p 2 _ 5 d e m i (i) = I a n 2 a p p 2 _ 5 (i) / s l 2 a p p 2 _ 5 ;

e n d

/ / * * * * O R D E R 1 6

f o r i = 1 : s
i f (x 2 (i) = = 0)

I a n 2 a p p 2 _ 6 (i) = 1 ;
e l s e i f (x 2 (i) < — 2) | (x 2 (i) > 2)

I a n 2 a p p 2 _ 6 (i) = 0 ;

450

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e
I a n 2 a p p 2 _ 6 (i) = (0 . 0 6 2 4 9 9 9 9 9 9 9 9 9 9 0 5 6 6 0 8 5 0 1 2 2 0 2 1 1 2 4 8 2 1 2 4 7 9 . . .

3 7 3 4 3 7 4 3 1 5 3 6 9 4 1 1 1 4 1 5 7 3 9 - 0 . 0 0 3 5 2 1 9 7 2 3 6 6 6 3 9 3 5 9 4 0 7 9 1 2 4 5 9 2 9 3 5 0 1 3 6 . . .
7 7 5 7 1 7 0 2 9 8 9 2 0 1 5 1 9 1 0 9 0 6 9 5 2 3 5 * (x 2 (i) * % p i) * 2 + 0 . 0 0 0 0 9 1 2 2 4 1 4 1 4 7 2 . . .
2 9 2 3 0 0 4 8 5 4 4 4 5 8 2 4 8 5 5 5 0 7 4 4 1 8 5 2 0 0 2 8 4 1 4 6 2 6 7 5 4 4 9 6 0 5 6 7 5 . . .
* (x 2 (i) * % p i) ~ 4 - 0 . 0 0 0 0 0 1 4 5 5 7 1 8 4 6 0 6 2 9 0 2 5 5 4 8 6 6 7 5 0 0 1 5 6 0 8 1 5 5 3 1 5 5 . . .
5 5 4 4 6 7 7 1 0 3 2 6 1 3 6 7 0 7 1 7 4 3 8 * (x 2 (i) * % p i) " 6 + 0 . 0 0 0 0 0 0 0 1 6 1 7 5 0 1 4 7 0 4 1 . . .
0 6 3 9 5 2 1 3 5 9 4 1 7 4 7 6 0 9 5 4 1 5 9 0 3 5 6 0 6 3 5 1 8 0 3 1 2 1 0 7 7 4 5 7 4 4 3 6 . . .
* (x 2 (i) * % p i) ' 8 - 0 . 0 0 0 0 0 0 0 0 0 1 3 3 7 4 0 3 3 4 0 3 6 9 2 8 3 6 2 3 1 5 3 4 1 0 4 7 0 9 6 6 0 5 . . .
5 0 8 6 4 7 9 6 6 0 8 1 5 7 3 7 4 1 7 6 0 1 5 5 0 0 3 * (x 2 (i) * % p i) ' 1 0 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 . . .
5 4 7 6 9 1 1 7 1 8 2 8 2 7 6 7 5 3 0 0 3 0 8 5 2 5 1 1 4 6 4 1 8 6 9 1 9 5 9 4 4 7 3 4 1 6 7 3 7 0 8 7 1 5 2 5 3 4 . . .
* (x 2 (i) * % p i y i 2) * (l - x 2 (i) ' 2) * (4 - x 2 (i) ' 2) * (4 - x 2 (i) ~ 2) ;

e n d
e n d

s l 2 a p p 2 _ 6 = s u m (I a n 2 a p p 2 _ 6) ;

f o r i = 1 : s
I a n 2 a p p 2 _ 6 d e m i (i) = I a n 2 a p p 2 _ 6 (i) / s l 2 a p p 2 _ 6 ;

e n d

I I C a t m u l l — R o m
b = 0 ;
c = 0 . 5 ;
f o r i = 1 : s

i f (x l (i) > = — l) & (x 1 (i) < = l)
c r l (i) = (1 / 6) * (a b s (x l (i)) " 3 * (1 2 - 9 * b - 6 * c) + . . .

a b s (x l (i)) ~ 2 * (— 1 8 + 1 2 * b + 6 * c) + (6 - 2 * b)) ;
e l s e i f (x l (i) > = — 2) & (x l (i) < = 2)

c r l (i) = (1 / 6) * (a b s (x l (i)) ~ 3 * (— b — 6 * c) + . . .
a b s (x l (i)) " 2 * (6 * b + 3 0 * c) + a b s (x l (i)) * . . .

(— 1 2 * b — 4 8 * c) + (8 * b + 2 4 * c)) ;
e l s e

c r l (i) = 0 ;
e n d

e n d

s c r 1 = s u m (c r l) ;

f o r i = 1 : s
c r z e r o (i) = c r l (i) / s c r l ;

e n d

f o r i = 1 ; s
i f (x 2 (i) > = — l) & (x 2 (i) < = 1)

c r 2 (i) = (1 / 6) * (a b s (x 2 (i)) " 3 * (1 2 - 9 * b - 6 * c) + . . .

4 5 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b s (x 2 (i)) " 2 * (— 1 8 + 1 2 * b + 6 * c) + (6 — 2 * b)) ;
e l s e i f (x 2 (i) > = - 2) & (x 2 (i) < = 2)

c r 2 (i) = (1 / 6) * (a b s (x 2 (i)) ~ 3 * (— b — 6 * c) + . . .
a b s (x 2 (i)) A 2 * (6 * b + 3 0 * c) + a b s (x 2 (i)) * . . .

(— 1 2 * b — 4 8 * c) + (8 * b + 2 4 * c)) ;
e l s e

c r 2 (i) = 0 ;
e n d

e n d

s c r 2 = s u m (c r 2) ;

f o r i = 1 : s
c r d e m i (i) = c r 2 (i) / s c r 2 ;

e n d

/ / C u b i c B - S p l i n e
b = 1 ;
c = 0 ;
f o r i = 1 : s

i f (x l (i) > = — 1) & (x 1 (i) < = 1)
b s p l (i) = (1 / 6) * (a b s (x l (i)) * 3 * (1 2 — 9 * b — 6 * c) + . . .

a b s (x l (i)) " 2 * (— 1 8 + 1 2 * b + 6 * c) + (6 — 2 * b)) ;
e l s e i f (x l (i) > = — 2) & (x l (i) < = 2)

b s p l (i) = (1 / 6) * (a b s (x l (i)) " 3 * (— b — 6 * c) + . . .
a b s (x l (i)) ~ 2 * (6 * b + 3 0 * c) + . . .
a b s (x l (i)) * (— 1 2 * b - 4 8 * c) + (8 * b + 2 4 * c)) ;

e l s e
b s p l (i) = 0 ;

e n d
e n d

s b s p 1 = s u m (b s p l) ;

f o r i = 1 : s
b s p z e r o (i) = b s p l (i) / s b s p l ;

e n d

f o r i = 1 : s
i f (x 2 (i) > = — l) & (x 2 (i) < = 1)

b s p 2 (i) = (1 / 6) * (a b s (x 2 (i)) " 3 * (1 2 - 9 * b - 6 * c) + . . .
a b s (x 2 (i)) " 2 * (— 1 8 + 1 2 * b + 6 * c) + (6 - 2 * b)) ;

e l s e i f (x 2 (i) > = — 2) & (x 2 (i) < = 2)
b s p 2 (i) = (1 1 6) * (a b s (x 2 (i)) ~ 3 * (- b — 6 * c) + . . .

a b s (x 2 (i)) " 2 * (6 * b + 3 0 * c) + . . .
a b s (x 2 (i)) * (— 1 2 * b — 4 8 * c) + (8 * b + 2 4 * c)) ;

452

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e
b s p 2 (i) = 0 ;

e n d
e n d

s b s p 2 = s u m (b s p 2) ;

f o r i = 1 : s
b s p d e m i (i) = b s p 2 (i) / s b s p 2 ;

e n d

/ / M i t c h e l l — N e t r a v a l i
b = 1 / 3 ;
c = 1 / 3 ;
f o r i = 1 : s

i f (x l (i) > = — l) & (x l (i) < = 1)
m n l (i) = (1 / 6) * (a b s (x 1 (i)) " 3 * (1 2 — 9 * b - 6 * c) + . . .

a b s (x l (i)) A 2 * (— 1 8 + 1 2 * b + 6 * c) + (6 — 2 * b)) ;
e l s e i f (x l (i) > = - 2) & (x l (i) < = 2)

m n l (i) = (1 1 6) * (a b s (x 1 (i)) ~ 3 * (— b — 6 * c) + . . .
a b s (x l (i)) ~ 2 * (6 * b + 3 0 * c) + . . .
a b s (x l (i)) * (- 1 2 * b - 4 8 * c) + (8 * b + 2 4 * c)) ;

e l s e
m n l (i) = 0 ;

e n d
e n d

s m n l = s u m (m n l) ;

f o r i = 1 : s
m n z e r o (i) = m n l (i) / s m n l ;

e n d

f o r i = 1 : s
i f (x 2 (i) > = — l) & (x 2 (i) < = 1)

m n 2 (i) = (1 1 6) * (a b s (x 2 (i)) " 3 * (1 2 — 9 * b — 6 * c) + . . .
a b s (x 2 (i)) " 2 * (— 1 8 + 1 2 * b + 6 * c) + (6 - 2 * b)) ;

e l s e i f (x 2 (i) > = — 2) & (x 2 (i) < = 2)
m n 2 (i) = (1 1 6) * (a b s (x 2 (i)) ~ 3 * (— b - 6 * c) + . . .

a b s (x 2 (i)) * 2 * (6 * b + 3 0 * c) + . . .
a b s (x 2 (i)) * (— 1 2 * b - 4 8 * c) + (8 * b + 2 4 * c)) ;

e l s e
m n 2 (i) = 0 ;

e n d
e n d

453

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s m n 2 = s u m (m n 2) ;

f o r i = 1 : s
m n d e m i (i) = m n 2 (i) / s m n 2 ;

e n d

f = [0 : 1 / (1 1 1 3) : 2 * 1 1 1 2 / 1 1 1 3] ;

g b o x z e r o = 0 ;
f o r i = 1 : s

g b o x z e r o = g b o x z e r o + b o x z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

g b o x d e m i = 0 ;
f o r i = 1 : s

g b o x d e m i = g b o x d e m i + b o x d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
e n d

g t e n t l z e r o = 0 ;
f o r i = 1 : s

g t e n t l z e r o = g t e n t l z e r o + t e n t l z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

g t e n t l d e m i = 0 ;
f o r i = 1 : s

g t e n t l d e m i = g t e n t l d e m i + t e n t l d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
e n d

g l a n z e r o = 0 ;
f o r i = 1 : s

g l a n z e r o = g l a n z e r o + l a n z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

g l a n d e m i = 0 ;
f o r i = 1 : s

g l a n d e m i = g l a n d e m i + l a n d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
e n d

g l a n 3 a p p 1 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 1 z e r o = g l a n 3 a p p 1 z e r o + . . .
I a n 3 a p p l z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 3 a p p 2 z e r o = 0 ;

4 5 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r i = 1 : s
g l a n 3 a p p 2 z e r o = g l a n 3 a p p 2 z e r o + . . .

l a n 3 a p p 2 z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

g l a n 3 a p p 3 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 3 z e r o = g l a n 3 a p p 3 z e r o + . . .
l a n 3 a p p 3 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 3 a p p 4 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 4 z e r o = g l a n 3 a p p 4 z e r o + . . .
l a n 3 a p p 4 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 3 a p p 5 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 5 z e r o = g l a n 3 a p p 5 z e r o + . . .
l a n 3 a p p 5 z e r o (i) * c o s (% p i * t i * x l (i) * f) ;

e n d

g l a n 3 a p p 6 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 6 z e r o = g l a n 3 a p p 6 z e r o + . . .
l a n 3 a p p 6 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 3 a p p 7 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 7 z e r o = g l a n 3 a p p 7 z e r o + . . .
I a n 3 a p p 7 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 3 a p p 8 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 8 z e r o = g l a n 3 a p p 8 z e r o + . . .
l a n 3 a p p 8 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 3 a p p 9 z e r o = 0 ;
f o r i = 1 : s

g l a n 3 a p p 9 z e r o = g l a n 3 a p p 9 z e r o + . . .
l a n 3 a p p 9 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

455

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g l a n 3 a p p 2 _ 1 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 1 d e m i = g l a n 3 a p p 2 _ l d e m i + . . .
l a n 3 a p p 2 _ l d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 2 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 2 d e m i = g l a n 3 a p p 2 _ 2 d e m i + . . .
I a n 3 a p p 2 _ 2 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 3 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 3 d e m i = g l a n 3 a p p 2 _ 3 d e m i + . . .
l a n 3 a p p 2 _ 3 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 4 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 4 d e m i = g l a n 3 a p p 2 _ 4 d e m i + . . .
l a n 3 a p p 2 _ 4 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 5 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 5 d e m i = g l a n 3 a p p 2 _ 5 d e m i + . . .
I a n 3 a p p 2 _ 5 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 6 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 6 d e m i = g l a n 3 a p p 2 _ 6 d e m i + . . .
l a n 3 a p p 2 _ 6 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 7 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 7 d e m i = g l a n 3 a p p 2 _ 7 d e m i + . . .
l a n 3 a p p 2 _ 7 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 3 a p p 2 _ 8 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 8 d e m i = g l a n 3 a p p 2 _ 8 d e m i + . . .

456

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l a n 3 a p p 2 _ 8 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
end

g l a n 3 a p p 2 _ 9 d e m i = 0 ;
f o r i = 1 : s

g l a n 3 a p p 2 _ 9 d e m i = g l a n 3 a p p 2 _ 9 d e m i + . . .
l a n 3 a p p 2 _ 9 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 2 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 z e r o = g l a n 2 z e r o + l a n 2 z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

g l a n 2 d e m i = 0 ;
f o r i = 1 : s

g l a n 2 d e m i = g l a n 2 d e m i + l a n 2 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
e n d

g l a n 2 a p p 1 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 a p p 1 z e r o = g l a n 2 a p p 1 z e r o + . . .
l a n 2 a p p l z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 2 a p p 2 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 z e r o = g l a n 2 a p p 2 z e r o + . . .
l a n 2 a p p 2 z e r o (i) * c o s (% p i * « * . * / (' /) * /) ;

e n d

g l a n 2 a p p 3 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 a p p 3 z e r o = g l a n 2 a p p 3 z e r o + . . .
l a n 2 a p p 3 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 2 a p p 4 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 a p p 4 z e r o = g l a n 2 a p p 4 z e r o + . . .
l a n 2 a p p 4 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 2 a p p 5 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 a p p 5 z e r o = g l a n 2 a p p 5 z e r o + . . .

457

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l a n 2 a p p 5 z e r o (i) * c o s (% p i * n * x l (i) * f) ;
end

g l a n 2 a p p 6 z e r o = 0 ;
f o r i = 1 : s

g l a n 2 a p p 6 z e r o = g l a n 2 a p p 6 z e r o + . . .
l a n 2 a p p 6 z e r o (i) * c o s (% p i * n * x l (i) * f) ;

e n d

g l a n 2 a p p 2 _ l d e m i = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 _ l d e m i = g l a n 2 a p p 2 _ l d e m i + . . .
l a n 2 a p p 2 _ l d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 2 a p p 2 _ 2 d e m i = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 _ 2 d e m i = g l a n 2 a p p 2 _ 2 d e m i + . . .
l a n 2 a p p 2 _ 2 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 2 a p p 2 _ 3 d e m i = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 _ 3 d e m i = g l a n 2 a p p 2 _ 3 d e m i + . . .
l a n 2 a p p 2 _ 3 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 2 a p p 2 _ 4 d e m i = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 _ 4 d e m i = g l a n 2 a p p 2 _ 4 d e m i + . . .
l a n 2 a p p 2 _ 4 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 2 a p p 2 _ 5 d e m i = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 _ 5 d e m i = g l a n 2 a p p 2 _ 5 d e m i + . . .
l a n 2 a p p 2 _ 5 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g l a n 2 a p p 2 _ 6 d e m i = 0 ;
f o r i = 1 : s

g l a n 2 a p p 2 _ 6 d e m i = g l a n 2 a p p 2 _ 6 d e m i + . . .
l a n 2 a p p 2 _ 6 d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;

e n d

g c r z e r o = 0 ;

458

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r i = 1 : s
g c r z e r o = g c r z e r o + c r z e r o (i) * c o s { % p i * n * x l (i) * /) ;

e n d

g c r d e m i = 0 ;
f o r i = 1 : s

g c r d e m i = g c r d e m i + c r d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
e n d

g b s p z e r o = 0 ;
f o r i = 1 : s

g b s p z e r o = g b s p z e r o + b s p z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

g b s p d e m i = 0 ;
f o r i = 1 : s

g b s p d e m i = g b s p d e m i + b s p d e m i (i) * c o s (% p i * n * x 2 (i) * f) ;
e n d

g m n z e r o = 0 ;
f o r i = 1 : s

g m n z e r o = g m n z e r o + m n z e r o (i) * c o s (% p i * n * x l (i) * f) ;
e n d

gmndemi = 0;
f o r i = 1 : s

gmndemi = gmndemi + mndemi (i)* c o s (% p i * n * x 2 (i) * f) ;
e n d

f d = m o p e n (' / t m p / D e c i m a t i o n 1 . A l l D e m i e . t x t ' , ' a ') ;
m f p r i n t f (f d , " % / % f % f % f % f % f % f % / % f \ n " , f ' , . . .

2 0 * l o g l O (g b o x d e m i) ' , 2 0 * l o g l 0 (g t e n t l d e m i) ' , . . .
20* l o g l O (g l a n d e m i) ' , 2 0 * l o g l O (g l a n 2 d e m i) ' , . . .
20*l o g l O (g c r d e m i) ' , 2 0 * l o g l O (g b s p d e m i) ' , . . .
20* l o g l O (g m n d e m i) ') ;

m c l o s e (f d) ;

f d = m o p e n (' / t m p / D e c i m a t i o n 1 _ L a n 2 D e m i e . t x t a ') ;
m f p r i n t f (f d , " % / % f % f % f % f % f % f % f % f % f % f % f % f % f . . .

% f % f \ n " , / ' , 2 0 * l o g 1 0 (g l a n 2 a p p 2 - 1 d e m i) ' , . . .
20* l o g l O (g l a n 2 a p p 2 _ 2 d e m i) ' , 2 0 * l o g l O (g l a n 2 a p p 2 _ 3 d e m i) ' , . . .
20* l o g l O (g l a n 2 a p p 2 _ 4 d e m i) ' , 2 0 * l o g l O (g l a n 2 a p p 2 _ 5 d e m i) ' , . . .
20* l o g l O (g l a n 2 a p p 2 _ 6 d e m i) ') ;
m c l o s e (f d) ;

f d = m o p e n (' / t m p / D e c i m a t i o n l _ L a n 3 D e m i e . t x t ' , ' a ') ;

4 5 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m f p r i n t f (f d , " % / % f % f % f %
% f % f \ n " , / ' , 2 0 * l o g 1 0 (g l c
2 0 * I o g l 0 (g l a n 3 a p p 2 _ 2 d e m i) ' ,
2 0 * l o g l 0 (g l a n 3 a p p 2 _ 4 d e m i) ' ,
2 0 * I o g l 0 (g l a n 3 a p p 2 _ 6 d e m i) ' ,
2 0 * I o g l 0 (g l a n 3 a p p 2 _ 8 d e m i) ' ,
m c l o s e (f d) ;

e n d f u n c t i o n

% / % f % f % f % f % f % f % f % f . . .
n 3 a p p 2 _ / d e m i) ' , . . .
20* l o g l O (g l a n 3 a p p 2 _ 3 d e m i) ' , . . .
2 0 * l o g l O (g l a n 3 a p p 2 _ 5 d e m i) ' , . . .
2 0 * l o g l O (g l a n 3 a p p 2 _ 7 d e m i) ' , . . .
2 0 * l o g l 0 (g l a n 3 a p p 2 _ 9 d e m i) ') ;

460

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F Spurious Oscillations Along Diagonals: Matlab Code

The following Matlab code was written by Chantal Racette.

It computes variation along diagonals for various resampling schemes and image inputs.

F.l Oscillations.m

This is the main code, which takes in an "image" in the form of a matrix, as well as the

name of a resampling scheme, and returns the values after one subdivision. In order to get

the values after two or more subdivisions, one can simply store the results in a matrix and

use the latter as the input for the next subdivision. The resampling schemes programmed

for this function are bilinear interpolation, bicubic interpolation, Lanczos 2, Lanczos 3,

Nohalo, Snohalo (with any value for the smoothing parameter 0), MP, AMP, Catmull-

Rom, quadratic B-Spline smoothing, LBB, Midedge (under the name LDPSM), Minmod

Midedge (under the name MDPSM), MVS, MVSQBS, CDVS, CDVSQBS, ROVS, and

ROVSQBS. The appropriate functions are used to perform the actual subdivision calcula­

tions.

In order to use these functions in Matlab, they must be put in the current working

directory. Then, it is simply a matter of calling Oscillations (M, type) with M

replaced by the variable representing the input matrix, and type consisting of the name of

the resampling scheme ('bilinear', for example).

f u n c t i o n [T] = O s c i l l a t i o n s (M , t y p e , t h e t a)
% O S C I L L A T I O N S t a k e s i n a n " i m a g e " i n t h e f o r m o f a m a t r i x a n d
% r e t u r n s t h e v a l u e s a f t e r o n e s u b d i v i s i o n u s i n g o n e o f t h e
% f o l l o w i n g m e t h o d s :

461

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% — b i l i n e a r
% — b i c u b i c
% — L a n c z o s
% — L a n c z o s
% — N o h a l o
% — S n o h a l o
% -MP
% -AMP
% -CR
% — B S p l i n e
% -QBS
% -QBS2
% -LBB
% —MP with
% —MP with
% —AMP with
% —AMP with
% -LDPSM
% -MDPSM
% -MVS
% —MVSQBS
% -CDVS
% -CDVSQBS
% -ROVS
% -ROVSQBS

N u l l C r o s s — D e r i v a t i v e s
C e n t r e d C r o s s — D e r i v a t i v e s

N u l l C r o s s — D e r i v a t i v e s
C e n t r e d C r o s s — D e r i v a t i v e s

[m n] = s i z e (M) ;

m t = 2 * (m — 4) — 1 — 2 — 2 ;
n t = 2 * (n — 4) — 1 — 2 - 2 ;

T = z e r o s (m t , n t) ;
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) ~ = 0)

i n d i = (i + 1) / 2 ;
i n d j = (j + 1) / 2 ;
T (i , j) = M (2 + i n d i , 2 + i n d j) ;

e n d
e n d

e n d

i f s t r c m p (t y p e , ' b i l i n e a r ')
f o r i = l : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

462

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T (i , j) = D i a g o n a l s B i l i n e a r L i n e (. . .
[M((i + 1)/2 +2,j/2 + 2), ...
M ((i + l) / 2 + 2 , j / 2 + 3)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s B i l i n e a r L i n e (

[M(i / 2 + 2, (j + l)/2 +2), ...
M (i / 2 + 3 , (j + l) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s B i l i n e a r M i d (

[M (i / 2 + 2 , j / 2 + 2) . . .
M (i / 2 + 2 , j / 2 + 3) ; . . .
M (i / 2 + 3 , j / 2 + 2) M (i / 2 + 3 , j / 2 + 3)]) ;

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' b i c u b i c ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s B i c u b i c L i n e (. . .
[M((i +1)/2 +2, j/2 + 1), ...
M ((i + l) / 2 + 2 , j / 2 + 2) , . . .
M ((i + l) / 2 + 2 , j / 2 + 3) , M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s B i c u b i c L i n e (. . .

[M (i / 2 + 1 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 2 , (j + l) / 2 + 2) , . . .
M (i / 2 + 3 , (j + 1) / 2 + 2) , M (i / 2 + 4 , (j + l) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s B i c u b i c M i d (. . .

[M(1 2 + 1 , j / 2 + 1) M (i / 2 + 1 , j / 2 + 2)
M (1 2 + 1 , j / 2 + 3) M (i / 2 + 1 , j / 2 + 4) ;
M (/ 2 + 2 , j / 2 + 1) M (i / 2 + 2 , j / 2 + 2)
M (/ 2 + 2 , j / 2 + 3) M (i / 2 + 2 , j / 2 + 4) ;
M (1 2 + 3 , j / 2 + 1) M (i / 2 + 3 , j / 2 + 2) .
M (1 2 + 3 , j / 2 + 3) M (i / 2 + 3 , j / 2 + 4) ;
M (1 2 + 4 , j / 2 + 1) M (i / 2 + 4 , j / 2 + 2) .
M (1 2 + 4 , j / 2 + 3) M (i / 2 + 4 , j / 2 + 4)])

e n d
e n d

e n d

4 6 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e i f s t r c m p (t y p e , ' l a n c z o s 2 ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s L a n c z o s 2 L i n e (. . .
[M ((i + 1) / 2 +2, j /2 + 1) , . . .
M ((i + 1) / 2 + 2 , j 12 + 2) , . . .
M ((i + l) / 2 + 2 , j / 2 + 3) , M ((i + l) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s L a n c z o s 2 L i n e (. . .

[M (i / 2 + 1 , (j + l) / 2 + 2) , . . .
M (i / 2 + 2 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 3 , (j + l) / 2 + 2) , M (i / 2 + 4 , (j + l) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s L a n c z o s 2 M i d (. . .

[M(i / 2 + 1 , j / 2 + 1) M (i / 2 4 - 1 , j / 2 + 2)
M (i / 2 + 1 , j / 2 + 3) M (i / 2 + 1 , j / 2 + 4) ;
M (i / 2 + 2 , j / 2 + 1) M (i / 2 + 2 , j / 2 + 2) .
M (i / 2 + 2 , j / 2 + 3) M (i / 2 + 2 , j / 2 + 4) ;
M (i / 2 + 3 , j / 2 + 1) M (i / 2 + 3 , j / 2 + 2) .
M (i / 2 + 3 , j / 2 + 3) M (i / 2 + 3 , j / 2 + 4) ;
M (i / 2 + 4 , j / 2 + 1) M (i / 2 + 4 , j / 2 + 2) .
M (i / 2 + 4 , j / 2 + 3) M (i / 2 + 4 , j / 2 + 4)])

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' l a n c z o s 3 ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s L a n c z o s 3 L i n e (. . .
[M ((i + 1) / 2 + 2 , j / 2) , M ((i + l) / 2 + 2 , j / 2 + 1) , . . .
M ((i + l) / 2 + 2 , j / 2 + 2) , M ((i + l) / 2 + 2 , j / 2 + 3) , . . .
M ((i + l) / 2 + 2 , j / 2 + 4) , M ((i + l) / 2 + 2 , j / 2 + 5)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s L a n c z o s 3 L i n e (. . .

[M (i / 2 , (j + 1) / 2 + 2) , M (i / 2 + 1 , (j + l) / 2 + 2) , . . .
M (i / 2 + 2 , (j + 1) / 2 + 2) , M (i / 2 + 3 , (j + l) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2) , M (i / 2 + 5 , (j + l) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)

464

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T (i , j) = D i a g o n a l s L a n c z o s 3 M i d ([M (i 12 , j / 2)

e n d
e n d

M (/ 2 j / 2 + 1) M (i / 2 , j / 2 + 2)
M (/ 2 j / 2 + 3) M (i 12, j / 2 + 4)
M (n j / 2 + 5) ; M i / 2 + 1 , j / 2)
M (/ 2 + 1 , j 2 + 1 M (i 12 + 1 , j 12 + 2
M (/ 2 + 1 , j 2 + 3 M (i 12 + 1 , j 12 + 4
M (12 + 1 , j 2 + 5 ; M (i / 2 + 2 , j / 2)
M (12 + 2 , j 2 + 1 M (i / 2 + 2 , j 12 + 2
M (12 + 2, j 2 + 3 M (i / 2 + 2 , j 12 + 4
M (12 + 2, j 2 + 5 ; M (i / 2 + 3 , j / 2)
M (12 + 3 , j 2 + 1 M (i / 2 + 3 , j 12 + 2
M (12 + 3 , j 2 + 3 M (i / 2 + 3 , j 12 + 4
M (12 + 3 , j 2 + 5 ; M (i / 2 + 4 , j / 2)
M (12 + 4 , j 2 + 1 M (i / 2 + 4 , j 12 + 2
M (12 + 4 , j 2 + 3 M (i / 2 + 4 , j 12 + 4
M (12 + 4 , j 2 + 5 ; M (i / 2 + 5 , j / 2)
M (12 + 5 , j 2 + 1 M (i / 2 + 5 , j 12 + 2
M (12 + 5 , j 2 + 3 M (i / 2 + 5 , j 12 + 5
M (12 + 5 , j 2 + 4]) ;

e n d

e l s e i f s t r c m p (t y p e , ' n o h a l o ')
f o r i = l : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s N o h a l o ([M ((i + 1) / 2 + 2 , j / 2 + 1) , . . .
M ((i + l) / 2 + 2 , j / 2 + 2) , M ((i + l) / 2 + 2 , j / 2 + 3) , . . .
M ((i + l) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s N o h a l o ([M (i / 2 + 1 , (j + l) / 2 + 2) , . . .

M (i / 2 + 2 , (j + 1) / 2 + 2) , M (i / 2 + 3 , (j + l) / 2 + 2) , . . .
M (i / 2 + 4 , (j + l) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s N o h a l o M i d (. . .

[M(1 2 + 1 , j / 2 + 1) M (i / 2 • f 1 . j 2 + 2)
M (1 2 + 1 , j / 2 + 3) M (i / 2 + 1 , 1 2 + 4) ;
M (1 2 + 2 , j / 2 + 1) M (i / 2 + 2 , 1 2 + 2) •
M (1 2 + 2 , j / 2 + 3) M (i / 2 + 2 , 1 2 + 4) ;
M (1 2 + 3 , j / 2 + 1) M (i / 2 + 3 , 1 2 + 2) .
M (1 2 + 3 , j / 2 + 3) M (i / 2 + 3 , 1 2 + 4) ;
M (1 2 + 4 , j / 2 + 1) M (i / 2 + 4 , 1 2 + 2) •
M (1 2 + 4 , j / 2 + 3) M (i / 2 + 4 , 1 2 + 4)])

465

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end
end

end

e l s e i f s t r c m p (t y p e , ' s n o h a l o ')
M l = M ;
f o r i = 2:m-l

f o r j = 2 : n - l
M l (i , j) = D i a g o n a l s S n o h a l o M i d ([M (i — 1 , j) , M (i , j + 1) ,

M (i + 1 , j) , M (i , j — 1) , M (i , j)] , t h e t a) ;
e n d

e n d

T = z e r o s (m t , n t) ;
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) ~ = 0)

i n d i = (i + 1) / 2 ;
i n d j = (j + 1) / 2 ;
T (i , j) = M l (2 + i n d i , 2 + i n d j) ;

e n d
e n d

e n d

f o r i = 1 : m t
f o r j = 1 : n t

i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s N o h a l o ([M l ((i + 1) / 2 + 2 , j / 2 + 1) , . . .

M l ((i + 1) / 2 + 2 , j / 2 + 2) , M l ((i + 1) / 2 + 2 , j / 2 + 3) , . . .
M l ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) " = 0)
T (i , j) = D i a g o n a l s N o h a l o ([M l (i / 2 + 1 , (j + 1) / 2 + 2) , . . .

M l (i / 2 + 2 , (j + 1) / 2 + 2) , M l (i / 2 + 3 , (j + 1) / 2 + 2) , . .
M l (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s N o h a l o M i d (.

[M l (/ 2 + 1 , j / 2 + 1) M l (i / 2 + 1 , j / 2 + 2) . . .

M l (1 2 + 1 , j / 2 + 3) M l (i / 2 + 1 , j / 2 + 4) ;
M l (1 2 + 2 , j / 2 + 1) M l (i / 2 + 2 , j / 2 + 2)
M l (1 2 + 2 , j / 2 + 3) M l (i / 2 + 2 , j / 2 + 4) ;
M l (1 2 + 3 , j / 2 + 1) M l (i / 2 + 3 , j / 2 + 2)
M l (1 2 + 3 , j / 2 + 3) M l (i / 2 + 3 , j / 2 + 4) ;
M l (1 2 + 4 , j / 2 + 1) M l (i / 2 + 4 , j / 2 + 2)
M l (1 2 + 4 , j / 2 + 3) M l (i / 2 + 4 , j / 2 + 4)]) ;

466

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end
end

end

e l s e i f s t r c m p (t y p e , ' s n o h a l o l 5 ')
M l = M ;
f o r i = 2 : m - l

f o r j = 2 : n — 1
M l (i , j) = D i a g o n a l s S n o h a l o M i d ([M (i — 1 , j) , M (i , j + 1) , . . .

M (i + 1 , j) , M (i , j — 1) , M (i , j)] , t h e t a) ;
e n d

e n d

T 1 = z e r o s (2 * (m - 2) — 1 , 2 * (n - 2) - 1) ;
f o r i = l : 2 * (m - 2) — 1

f o r j = l : 2 * (n — 2) — 1
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) ~ = 0)

i n d i = (i + 1) / 2 ;
i n d j = (j + 1) / 2 ;
T l (i , j) = M l (1 + i n d i , 1 + i n d j) ;

e n d
e n d

e n d

f o r i = l : 2 * (m - 2) - l
f o r j = 1 : 2 * (n — 2) — 1

i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)
T 1 (i , j) = D i a g o n a l s N o h a l o (. . .

[M l ((i + 1) / 2 + 1 , j / 2 + 0) , M l ((i + 1) / 2 + l , j / 2 + 1) , . . .
M l ((i + 1) / 2 + 1 , j / 2 + 2) , M l ((i + 1) / 2 + 1 , j / 2 + 3)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T l (i , j) = D i a g o n a l s N o h a l o (. . .

[M l (i / 2 + 0 , (j + 1) / 2 + 1) , M l (i / 2 + 1 , (j + 1) / 2 + 1) , . . .
M l (i / 2 + 2 , (j + 1) / 2 + 1) , M l (i / 2 + 3 , (j + 1) / 2 + 1)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T 1 (i , j) = D i a g o n a l s N o h a l o M i d (. . .

[Ml (/ 2 + 0 , j / 2 + 0) M l (i / 2 + 0 , j / 2 + 1)
M l (12 + o , j / 2 + 2) M l (i / 2 + 0 , j / 2 + 3) ;
M l (12 + 1 , j / 2 + 0) M l (i 12 + 1 , j / 2 + 1) . . .

M l (12 + 1 , j / 2 + 2) M l (i / 2 + 1 , j / 2 + 3) ;
M l (12 + 2 , j / 2 + 0) M l (i / 2 + 2 , j / 2 + 1)
M l (12 + 2 , j / 2 + 2) M l (i / 2 + 2 , j / 2 + 3) ;
M l (12 + 3 , j / 2 + 0) M l (i / 2 + 3 , j / 2 + 1) . . .

M l (12 + 3 , j / 2 + 2) M l (i / 2 + 3 , j / 2 + 3)]) ;

467

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end
end

end

T = z e r o s (m t , n t) ;
f o r i = 3 : m t + 2

f o r j = 3 : n t + 2
T (i — 2 , j — 2) = D i a g o n a l s S n o h a l o M i d ([T 1 (i — 1 , j) , . . .

T l (i , j + l) , T 1 (i + 1 , j) , . . .
T 1 (i , j - 1) , T 1 (i , j)] , t h e t a) ;

e n d
e n d

e l s e i f s t r c m p (t y p e , ' m p ')
f o r i = l : m t

f o r j = 1 : n t
i f (m o d (i , 2) " = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s M P L i n e ([M ((i + 1) / 2 + 2 , j / 2 + 1) ,
M ((i + l) / 2 + 2 , j / 2 + 2) , M ((i + l) / 2 + 2 , j / 2 + 3) ,
M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s M P L i n e ([M (i 12 + 1 , (j + l) / 2 + 2) ,

M (i / 2 + 2 , (j + l) / 2 + 2) , M (i / 2 + 3 , (j + l) / 2 + 2) ,
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s M P M i d (. . .

[M(i 12 + 1 , j / 2 + 1) M (i / 2 + 1 . J 2 + 2)
M (i / 2 + 1 , j / 2 + 3) M (i / 2 + 1 , 12 + 4) ;
M (i / 2 + 2, j / 2 + 1) M (i / 2 + 2 , 12 + 2) .
M (i / 2 + 2, j / 2 + 3) M (i / 2 + 2 , 12 + 4) ;
M (i / 2 + 3, j / 2 + 1) M (i / 2 + 3 , 12 + 2) .
M (i / 2 + 3 , j / 2 + 3) M (i / 2 + 3 , 12 + 4) ;
M (i / 2 + 4 , j / 2 + 1) M (i / 2 + 4 , 12 + 2) .
M (i / 2 + 4 , j / 2 + 3) M (i / 2 + 4 , 12 + 4)])

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' a m p ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s A M P L i n e ([M ((i + 1) / 2 + 2 , j / 2 + 1) ,
M ((i + 1) / 2 + 2 , j / 2 + 2) , M ((i + 1) / 2 + 2 , j / 2 + 3) , .

468

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) " = 0)
T (i , j) = D i a g o n a l s A M P L i n e ([M (i / 2 + 1 , (j + l) / 2 + 2) , . . .

M (i / 2 + 2 , (j + 1) / 2 + 2) , M (i / 2 + 3 , (j + l) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s A M P M i d (. . .

[M(1 2 + 1 , j / 2 + 1) M (i / 2 + 1 , j / 2 + 2)
M (1 2 + 1 , j / 2 + 3) M (1 2 + 1 , j / 2 + 4) ;
M (1 2 + 2 , j / 2 + 1) M (1 2 + 2 , j / 2 + 2) .
M (1 2 + 2 , j / 2 + 3) M (1 2 + 2 , j / 2 + 4) ;
M (1 2 + 3 , j / 2 + 1) M (1 2 + 3 , j / 2 + 2) .
M (1 2 + 3 , j / 2 + 3) M (1 2 + 3 , j / 2 + 4) ;
M (1 2 + 4 , j / 2 + 1) M (/ 2 + 4 , j / 2 + 2) .
M (1 2 + 4 , j / 2 + 3) M (1 2 + 4 , j / 2 + 4)])

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' C R ')
f o r i = l : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s C R L i n e ([M ((i + 1) / 2 + 2 , j / 2 + 1) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 2) , M ((i + 1) / 2 + 2 , j / 2 + 3) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s C R L i n e ([M (i / 2 + 1 , (j + 1) / 2 + 2) ,

M (i / 2 + 2 , (j + 1) / 2 + 2) , M (i / 2 + 3 , (j + 1) / 2 + 2) ,
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s C R M i d (. . .

[M(i 12 H 1 , j / 2 + 1) M (12 + 1 , j / 2 + 2) . . .
M (i / 2 + 1 , j / 2 + 3) M (12 + 1 , j / 2 + 4) ;
M (i / 2 + 2 , j / 2 + 1) M (12 + 2 , j / 2 + 2) .
M (i / 2 + 2 , j / 2 + 3) M (/ 2 + 2 , j / 2 + 4) ;
M (i / 2 + 3 , j / 2 + 1) M (12 + 3 , j / 2 + 2) .
M (i / 2 + 3 , j / 2 + 3) M (12 + 3 , j / 2 + 4) ;
M (i / 2 + 4 , j / 2 + 1) M (12 + 4 , j / 2 + 2) .
M (i / 2 + 4 , j / 2 + 3) M (12 + 4 , j / 2 + 4)])

e n d
e n d

469

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

e l s e i f s t r c m p (t y p e , ' b s p l i n e ')
M l = M ;
f o r i = 2 : m - l

f o r j = 2 : n — 1
M l (i , j) = D i a g o n a l s B S p l i n e M i d ([M (i — 1 , j — 1) M (i — 1 , j) . . .
M (i - 1 , j + 1) ; M (i , j — 1) M (i , j) M (i , j + l) ; M (i + l , j - l) . . .
M (i + 1 , j) M (i + 1 , j + 1)]) ;

e n d
e n d

T = M l ([2 : m — 1 — l] , [2 : n — 1]) ;

e l s e i f s t r c m p (t y p e , ' q b s ')
M l = M ;
f o r i = l : m - l

f o r j = 1 : n — 1
M l (i , j) = D i a g o n a l s B i l i n e a r M i d (. . .

[M(i , j) M(i +1, j); M(i , j+1) M(i+ 1 , j + 1)]);
e n d

e n d

T = M l ([1 : m — 1] , [1 : n — 1]) ;

e l s e i f s t r c m p (t y p e , ' q b s 2 ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s Q B S 2 L i n e (. . .
[M((i +1)/2 +l,j/2 +2), ...
M ((i + l) / 2 + 2 , j / 2 + 2) , . . .
M ((i + l) / 2 + 3 , j / 2 + 2) ; . . .
M ((i + 1) / 2 + l , j / 2 + 3) , . . .
M ((i + l) / 2 + 2 , j / 2 + 3) , . . .
M ((i + 1) / 2 + 3 , j / 2 + 3)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) " = 0)
T (i , j) = D i a g o n a l s Q B S 2 L i n e (. . .

[M(i /2 + 2 , (j + 1) / 2 + 1) ,
M (i / 2 + 2 , (j + 1) / 2 + 2) ,
M (i / 2 + 2 , (j + 1) / 2 + 3) ;
M (i / 2 + 3 , (j + 1) / 2 + 1) ,
M (i / 2 + 3 , (j + 1) / 2 + 2) ,
M (i / 2 + 3 , (j + 1) / 2 + 3)]) ;

470

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s Q B S 2 M i d (. . .

[M (i / 2 + 2 , j / 2 + 2) M (i / 2 + 2 , j / 2 + 3) ; .
M (i / 2 + 3 , j / 2 + 2) M (i / 2 + 3 , j / 2 + 3)]) ;

e l s e
T (i , j) = D i a g o n a l s Q B S 2 S m o o t h i n g M i d (. . .

[M(i + 1 / 2 + 0 , j + 1) / 2 + 0) , .
M (i + 1 1 2 + 1 , j + 1) / 2 + 0) , .
M (i + 1 1 2 + 2 , j + 1) / 2 + 0) ; .
M (i + 1 1 2 + 0 , j + 1) / 2 + 1) , •
M (i + 1 1 2 + 1 , (+ 1) / 2 + 1) , • •
M (i + 1 1 2 + 2 , j + 1) / 2 + l) ; •
M (i + 1 1 2 + 0 , j + 1) / 2 + 2) , •
M (i + 1 1 2 + 1 > j + 1) / 2 + 2) , •
M (i + 1 1 2 + 2 , j + l) / 2 + 2)]) ;

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' I b b ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s L B B L i n e ([M ((i + l) / 2 + 2 , j / 2 + 1) , .
M ((i + 1) / 2 + 2 , j / 2 + 2) , M ((i + l) / 2 + 2 , j / 2 + 3) , . . .
M ((i + l) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ' = 0)
T (i , j) = D i a g o n a l s L B B L i n e ([M (i / 2 + 1 , (j + l) / 2 + 2) , . . .

M (i / 2 + 2 , (j + 1) / 2 + 2) , M (i / 2 + 3 , (j + l) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s L B B M i d (. . .

[M(i 12 + 1 , j / 2 + 1) M (12 + 1 , j / 2 + 2) . . .
M (i / 2 + 1 , j / 2 + 3) M (12 + 1 , j / 2 + 4) ;
M (i / 2 + 2 , j / 2 + 1) M (12 + 2 , j / 2 + 2) .
M (i / 2 + 2 , j / 2 + 3) M (12 + 2 , j / 2 + 4) ;
M (i / 2 + 3 , j / 2 + 1) M (12 + 3 , j / 2 + 2) .
M (i 12 + 3 , j / 2 + 3) M (12 + 3 , j / 2 + 4) ;
M (i / 2 + 4 , j / 2 + 1) M (12 + 4 , j / 2 + 2) •
M (i / 2 + 4 , j / 2 + 3) M (12 + 4 , j / 2 + 4)])

e n d
e n d

e n d

471

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e i f s t r c m p (t y p e , ' m p n u l l ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s M P L i n e (. . .
[M ((i + l) / 2 + 2 , j / 2 + 1) , . . .

M ((i + 1) / 2 + 2 , j / 2 + 2) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 3) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) " = 0)
T (i , j) = D i a g o n a l s M P L i n e (. . .

[M (i / 2 + 1 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 2 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 3 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T (i , j) = D i a g o n a l s M P N U L L M i d (. . .

[M(1 2 + 1 , j / 2 + 1) M (i / 2 + 1 , j / 2 + 2)
M (1 2 + 1 , j / 2 + 3) M (i / 2 + 1 , j / 2 + 4) ;
M (1 2 + 2 , j / 2 + 1) M (i / 2 + 2 , j / 2 + 2) .
M (1 2 + 2 , j / 2 + 3) M (i / 2 + 2 , j / 2 + 4) ;
M (1 2 + 3 , j / 2 + 1) M (i / 2 + 3 , j / 2 + 2) .
M (1 2 + 3 , j / 2 + 3) M (i / 2 + 3 , j / 2 + 4) ;
M (1 2 + 4 , j / 2 + 1) M (i / 2 + 4 , j / 2 + 2) •
M (i / 2 + 4 , j / 2 + 3) M (i / 2 + 4 , j / 2 + 4)])

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' m p c e n t r e d ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s M P L i n e (. . .
[M((i + 1)/2 +2, j/2 +1), ...

M ((i + 1) / 2 + 2 , j / 2 + 2) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 3) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) * = 0)
T (i , j) = D i a g o n a l s M P L i n e (. . .

[M (i / 2 + 1 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 2 , (j + 1) / 2 + 2) , . . .

472

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M (i / 2 + 3 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T(i , j) = DiagonalsMPCENTREDMid (...

[M(i/2 + 1 , 1 2 + 1) M (i / 2 + 1 . j 2 + 2)
M (i / 2 + 1 , 1 2 + 3) M (i / 2 + 1 , 1 2 + 4) ;
M (i / 2 + 2 , / 2 + 1) M (i / 2 + 2 , 1 2 + 2) .
M (i / 2 + 2 , 1 2 + 3) M (i / 2 + 2 , 1 2 + 4) ;
M (i / 2 + 3 , 1 2 + 1) M (i / 2 + 3 , 1 2 + 2) .
M (i / 2 + 3 , 1 2 + 3) M (i / 2 + 3 , 1 2 + 4) ;
M (i / 2 + 4 , 1 2 + 1) M (i / 2 + 4 , 1 2 + 2) .
M (i / 2 + 4 , 1 2 + 3) M (i / 2 + 4 , 1 2 + 4)])

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' a m p n u l l ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) ~ = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s M P 4 L i n e (. . .
[M((i + 1)/2 +2, j/2 +1), ...

M ((i + 1) / 2 + 2 , j / 2 + 2) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 3) , . . .
M ((i + 1) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) ~ = 0)
T (i , j) = D i a g o n a l s M P 4 L i n e (. . .

[M (i / 2 + 1 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 2 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 3 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T(i,j) = DiagonalsAMPNULLMid(...

[M(i/2 + 1 , J / 2 + 1) M (i / 2 + 1 . j 2 + 2)
M (i / 2 + 1 , j / 2 + 3) M (i / 2 + 1 , 1 2 + 4) ;
M (i / 2 + 2 , j / 2 + 1) M (i / 2 + 2 , 1 2 + 2) .
M (i / 2 + 2 , j / 2 + 3) M (i / 2 + 2 , 1 2 + 4) ;
M (i / 2 + 3 , j / 2 + 1) M (i / 2 + 3 , 1 2 + 2) .
M (i / 2 + 3 , j / 2 + 3) M (i / 2 + 3 , 1 2 + 4) ;
M (i / 2 + 4 , j / 2 + 1) M (i / 2 + 4 , 1 2 + 2) .
M (i / 2 + 4 , j / 2 + 3) M (i / 2 + 4 , 1 2 + 4)])

e n d
e n d

473

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

e l s e i f s t r c m p (t y p e , ' a m p c e n t r e d ')
f o r i = 1 : m t

f o r j = 1 : n t
i f (m o d (i , 2) " = 0) & & (m o d (j , 2) = = 0)

T (i , j) = D i a g o n a l s M P 4 L i n e (. . .
[M ((i + l) / 2 + 2 , j / 2 + 1) , . . .

M ((i + 1) / 2 + 2 , j / 2 + 2) , . . .
M ((i + l) / 2 + 2 , j / 2 + 3) , . . .
M ((i + l) / 2 + 2 , j / 2 + 4)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) " = 0)
T (i , j) = D i a g o n a l s M P 4 L i n e (. . .

[M (i / 2 + 1 , (j + 1) / 2 + 2) , . . .
M (i / 2 + 2 , (j + l) / 2 + 2) , . . .
M (i / 2 + 3 , (j + l) / 2 + 2) , . . .
M (i / 2 + 4 , (j + 1) / 2 + 2)]) ;

e l s e i f (m o d (i , 2) = = 0) & & (m o d (j , 2) = = 0)
T(i , j) = DiagonalsAMPCENTREDMid(. . .

[M(i / 2 + 1 , j / 2 + 1) M (i 12 + 1 . j 2 + 2)

M (i / 2 + 1 , j / 2 + 3) M (i / 2 + 1 , 12 + 4) ;

M (i / 2 + 2 , j / 2 + 1) M (i / 2 + 2 , / 2 + 2) •
M (i / 2 + 2 , j / 2 + 3) M (i / 2 + 2 , 12 + 4) ;
M (i / 2 + 3 , j / 2 + 1) M (i / 2 + 3 , 12 + 2) •

M (i / 2 + 3 , j / 2 + 3) M (i / 2 + 3 , 12 + 4) ;

M (i / 2 + 4 , j / 2 + 1) M (i / 2 + 4 , 12 + 2) .
M (i / 2 + 4 , j / 2 + 3) M (i / 2 + 4 , 12 + 4)])

e n d
e n d

e n d

e l s e i f s t r c m p (t y p e , ' l d p s m ')
T 1 = z e r o s (m t + l , n t + 1) ;
f o r i = 1 : 2 : m t

f o r j = 1 : 2 : n t
T 1 ([i : i + 1] , [j : j + 1]) = D i a g o n a l s L D P S M M i d (. . .

M ([(i + l) / 2 + 2 : (i + l) / 2 + 3] , [(j + l) / 2 + 2 : (j + l) / 2 + 3])) ;
e n d

e n d
T = T 1 ([1 : m t] , [1 : n t]) ;

e l s e i f s t r c m p (t y p e , ' m d p s m ')
T 1 = z e r o s (m t + l , n t + 1) ;
f o r i = 1 : 2 : m t

4 7 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r j = 1 : 2 : n t
T l ([i : i + l] , [j : j + l]) = D i a g o n a l s M D P S M M i d (. . .

M ([(i + l) / 2 + 0 : (i + l) / 2 + 5] , [(j + 1) / 2 + 0 : (j + 1) / 2 + 5])) ;
e n d

e n d
T = T 1 ([1 : m t] , [1 : n t]) ;

e l s e i f s t r c m p (t y p e , ' m v s ')
T 1 = z e r o s (m t + l , n t + 1) ;
f o r i = 1 : 2 : m t

f o r j = 1 : 2 : n t
T 1 ([i : i + 1] , [j : j + 1]) = D i a g o n a l s M V S M i d (. . .

M ([(i + 1) / 2 + 1 : (i + 1) / 2 + 4] , [(j + 1) / 2 + 1 : (j + 1) / 2 + 4])) ;
e n d

e n d
T = T 1 ([1 : m t] , [1 : n t]) ;

e l s e i f s t r c m p (t y p e , ' m v s q b s ')
T 1 = z e r o s (m t + 2 , n t + 2) ;
f o r i = 1 : 2 : m t + 2

f o r j = 1 : 2 : n t + 2
T l ([i : i + l] , [j : j + l]) = D i a g o n a l s M V S M i d (. . .

M ([(i + 1) / 2 + 1 : (i + 1) / 2 + 4] , [(j + 1) / 2 + 1 : (j + 1) / 2 + 4])) ;
e n d

e n d
T 2 = T 1 ([1 : m t + 2] , [1 : n t + 2]) ;

M l = T 2 ;
f o r i = 2 : m t + l

f o r j = 2 : n t + 1
M2(i , j) = DiagonalsB SplineMid (...

[M l (i — 1 , j — 1) M l (i — 1 , j) M l (i — 1 , j + 1) ; . . .
M l (i , j — 1) M l (i , j) M l (i , j + 1) ; . . .
M l (i + 1 , j — 1) M l (i + 1 , j) M l (i + l , j + l)]) ;

e n d
e n d

T = M 2 ([2 : m t + 1] , [2 : n t + 1]) ;

e l s e i f s t r c m p (t y p e , ' c d v s ')
T 1 = z e r o s (m t + l , n t + 1) ;
f o r i = 1 : 2 : m t

f o r j = 1 : 2 : n t
T 1 ([i : i + 1] , [j : j + 1]) = D i a g o n a l s C D V S M i d (. . .

M ([(i + 1) / 2 + 1 : (i + l) / 2 + 4] , [(j + 1) / 2 + 1 : (j + 1) / 2 + 4])) ;
e n d

475

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e n d
T = T 1 ([1 : m t] , [1 : n t]) ;

e l s e i f s t r c m p (t y p e , ' c d v s q b s ')
T 1 = z e r o s (m t + 2 , n t + 2) ;
f o r i = 1 : 2 : m t + 2

f o r j = 1 : 2 : n t + 2
T 1 ([i : i + 1] , [j : j + 1]) = D i a g o n a l s C D V S M i d (. . .

M ([(i + 1) / 2 + 1 : (i + 1) / 2 + 4] , [(j + 1) / 2 + 1 : (j + 1) / 2 + 4])) ;
e n d

e n d
T 2 = T 1 ([1 : m t + 2] , [1 : n t + 2]) ;

Ml = T2;
f o r i = 2 : m t + l

f o r j = 2 : n t + 1
M 2 (i , j) = D i a g o n a l s B S p l i n e M i d (. . .

[M l (i — 1 , j — 1) M l (i - l . j) M l (i — 1 , j + 1) ; . . .
M l (i , j - l) M l (i , j) M l (i , j + 1) ; . . .
M l (i + 1 , j — 1) M l (i + 1 , j) M l (i + 1 , j + 1)]) ;

e n d
e n d

T = M 2 ([2 : m t + 1] , [2 : n t + 1]) ;

e l s e i f s t r c m p (t y p e , ' r o v s ')
T 1 = z e r o s (m t + l , n t + 1) ;
f o r i = 1 : 2 : m t

f o r j = 1 : 2 : n t
T l ([i : i + 1] , [j : j + l]) = D i a g o n a l s R O V S M i d (. . .

M ([(i + 1) / 2 + 1 : (i + l) / 2 + 4] , [(j + 1) / 2 + 1 : (j + 1) / 2 + 4])) ;

e n d
e n d
T = T 1 ([1 : m t] , [1 : n t]) ;

e l s e i f s t r c m p (t y p e , ' r o v s q b s ')
T 1 = z e r o s (m t + 2 , n t + 2) ;
f o r i = 1 : 2 : m t + 2

f o r j = 1 : 2 : n t + 2
T l ([i : i + 1] , [j : j + l]) = D i a g o n a l s R O V S M i d (. . .

M ([(i + 1) / 2 + 1 : (i + 1) / 2 + 4] , [(j + 1) / 2 + 1 : (j + 1) / 2 + 4])) ;
e n d

e n d
T 2 = T 1 ([1 : m t + 2] , [1 : n t + 2]) ;

M l = T 2 ;

476

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r i = 2 : m t + l
f o r j = 2 : n t + 1

M 2 (i , j) = D i a g o n a l s B S p l i n e M i d (. . .
[M l (i — 1 , j — 1) M l (i — 1 , j) M l (i — 1 , j + 1) ; . . .

M l (i , j - l) M l (i , j) M l (i , j + 1) ; . . .
M l (i + 1 , j — 1) M l (i + 1 , j) M l (i + 1 , j + 1)]) ;

e n d
e n d

T = M 2 ([2 : m t + 1] , [2 : n t + 1]) ;

e l s e
e r r o r (' P l e a s e s e e t h e a v a i l a b l e s u b d i v i s i o n m e t h o d s ')

e n d

f d = f o p e n (' / t m p / R e s u l t s D e m i e s Q u a r t s H a r d I n t 2 . t x t ' , ' a ') ;
f p r i n t f (f d , ' \ n \ n \ n \ n ') ;
f p r i n t f (f d , ' % s \ n \ n ' , t y p e) ;
[r o w s c o l s] = s i z e (T) ;
x l = r e p m a t (' % 1 . 2 f & ' , 1 , (c o l s — 1)) ;
f p r i n t f (f d , [x l , ' % 1 . 2 f \ n '] , T ') ;
f c l o s e (f d) ;

e n d

F.2 Bilinear

These functions compute, respectively, the result of applying bilinear subdivision to a vec­

tor consisting of two values, and the result of applying bilinear subdivision to a grid con­

sisting of four values.

f u n c t i o n [p] = D i a g o n a l s B i l i n e a r L i n e (V)
% D I A G O N A L B I L I N E A R L I N E c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% b i l i n e a r s u b d i v i s i o n t o t h e i n p u t v a l u e s i n V . I t
% r e t u r n s t h e n e w v a l u e P .

a = V (1) ;
b = V (2) ;

p = 0 . 5 * (a + b) ;

e n d

All

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f u n c t i o n [p] = D i a g o n a l s B i l i n e a r M i d (M)
% D I A G O N A L S B I L I N E A R M I D c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% b i l i n e a r s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M . I t
% r e t u r n s t h e d o u b l e d e n s i t y g r i d D .

a = M (1 , 1) ;
b = M (1 , 2) ;
c = M (2 , 1) ;
d = M (2 , 2) ;

p = 0 . 2 5 * (a + b + c + d) ;

e n d

F.3 Bicubic

These functions compute, respectively, the result of applying bicubic subdivision to a vector

consisting of four values, and the result of applying bicubic subdivision to a grid consisting

of sixteen values.

f u n c t i o n [p] = D i a g o n a l s B i c u b i c L i n e (V)
% DIAGONALBICUBICLINE calculates the result of applying
% b i c u b i c s u b d i v i s i o n t o t h e i n p u t v a l u e s i n V . I t
% r e t u r n s t h e n e w v a l u e P .

a = V (1) ;
b = V (2) ;
c = V (3) ;
d = V (4) ;

p = — a / 1 6 + 9 * b / 1 6 + 9 * c / 1 6 — d / 1 6 ;

e n d

f u n c t i o n [p i] = D i a g o n a l s B i c u b i c M i d (M)
% DIAGONALBICUBICMID calculates the result of applying
% b i c u b i c s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M . I t
% r e t u r n s t h e n e w v a l u e P I .

a = M (1 , 1) ;
b = M (1 , 2) ;

478

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c = M (1 , 3) ;
d = M (1 , 4) ;
e = M (2 , 1) ;
f = M (2 , 2) ;
g = M (2 , 3) ;
h = M (2 , 4) ;
i = M (3 , 1) ;
j = M (3 , 2) ;
k = M (3 , 3) ;
1 = M (3 , 4) ;

m = M (4 , 1) ;
n = M (4 , 2) ;
o = M (4 , 3) ;
p = M (4 , 4) ;

p i = a / 2 5 6 - 9 * b / 2 5 6 - 9 * c / 2 5 6 + d / 2 5 6 - 9 * e / 2 5 6 + 8 1 * f / 2 5 6 + . . .
8 1 * g / 2 5 6 - 9 * h / 2 5 6 - 9 * i / 2 5 6 + 8 1 * j / 2 5 6 + 8 1 * k / 2 5 6 - . . .
9 * 1 / 2 5 6 + m / 2 5 6 - 9 * n / 2 5 6 - 9 * o / 2 5 6 + p / 2 5 6 ;

e n d

F.4 Lanczos 2

These functions compute, respectively, the result of applying Lanczos 2 subdivision to a

vector consisting of four values, and the result of applying Lanczos 2 subdivision to a grid

consisting of sixteen values.

f u n c t i o n [p i] = D i a g o n a l s L a n c z o s 2 L i n e (V)
% DIAGONALBICUBICLINE calculates the result of applying
% L a n c z o s 2 s u b d i v i s i o n t o t h e i n p u t v a l u e s i n V . I t
% r e t u r n s t h e n e w v a l u e P I .

a = V (1) ;
b = V (2) ;
c = V (3) ;
d = V (4) ;

s 3 _ o v e r _ 2 = s i n (3 * p i / 2) * s i n (3 * p i / 4) * 8 / (9 * p i * p i) ;
s l _ o v e r _ 2 = s i n (1 * p i / 2) * s i n (1 * p i / 4) * 8 / (p i * p i) ;

p i = s 3 _ o v e r _ 2 * (a + d) + s 1 _ o v e r . 2 * (b + c) ;

479

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

f u n c t i o n [p i] = Diagona l sLanczos2Mid(M)
% D I A G O N A L B I C U B I C L I N E c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% L a n c z o s 2 s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M . I t
% r e t u r n s t h e n e w v a l u e P I .

a = M(1 ,1)
b = M(1,2)
c = M(1 ,3)
d = M(1,4)
e = M(2 ,1)
f = M(2 ,2)
g = M(2 ,3)
h = M(2 ,4)
i = M(3 ,1)
j = M(3,2)
k = M(3 ,3)
1 = M(3,4)
m = M(4 ,1)
n = M(4 ,2)
0 = M(4 ,3)

P = M(4 ,4)

s3_over_2 = s i n (3* p i / 2)* s i n (3* p i / 4)* 8 / (9* p i * p i) ;
s l_over_2 = s i n (1 * p i / 2)* s i n (1 * p i / 4) * 8 / (p i * p i) ;

s3 = s3_over_2 * s3_over_2 ;
s31 = s3_over_2 * s l_over_2 ;
s i = s l_ove r_2 * s l_over_2 ;

p i = s3*a + s31*b + s31*c + s3*d + s31*e + s l* f + s l*g + s31*h
+ s31* i + s l* j + s l*k + s31*1 + s3*m + s31*n + s31*o + s3*p ;

e n d

F.5 Lanczos 3

These func t ions compute , r e spec t ive ly , t he r e su l t o f app ly ing Lanczos 3 subd iv i s ion to a

vec to r cons i s t ing o f s ix va lues , and the r e su l t o f app ly ing Lanczos 3 subd iv i s ion to a g r id

cons i s t ing o f th i r ty - s ix va lues .

480

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f u n c t i o n [p i] = Diagona l sLanczos3Line (V)
% D I A G O N A L B I C U B I C L I N E c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% L a n c z o s 3 s u b d i v i s i o n t o t h e i n p u t v a l u e s i n V . I t
% r e t u r n s t h e n e w v a l u e P I .

a = V(l) ;
b = V (2) ;
c = V(3) ;
d = V(4) ;
e = V(5) ;
f = V(6) ;

s5_over_2 = s i n (5* p i / 2)* s i n (5* p i / 6)* 1 2 / (25 * p i * p i) ;
s 3 _ o v e r _ 2 = s i n (3 * p i / 2) * s i n (3 * p i / 6) * 4 / (3 * p i * p i) ;
s l_over_2 = s i n (1 * p i / 2) * s i n (1 * p i / 6)* 1 2 / (p i * p i) ;

p i = s5_over_2*(a+f) + s3_over_2*(b+e) + s1_over_2*(c+d) ;

e n d

f u n c t i o n [p i] = Diagona l sLanczos3Mid(M)
% D I A G O N A L B I C U B I C L I N E c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% L a n c z o s 3 s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M . I t
% r e t u r n s t h e n e w v a l u e P I .

a = M(1 ,1)
b = M(1 ,2)
c = M(1 ,3)
d = M(1 , 4)
e = M(1 ,5)
f = M(1 ,6)
g = M(2 ,1)
h = M(2 ,2)
i = M(2 , 3)
j = M(2 ,4)
k = M(2 ,5)
1 = M(2 ,6)
m = M(3 ,1)
n = M(3 ,2)
0 = M(3 ,3)

P
= M(3 ,4)

q = M(3 ,5)
r = M(3 ,6)
s = M(4 ,1)
t

= M(4,2)
u = M(4 ,3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V = M (4 , 4)
w = M (4 , 5)
X = M (4 , 6)
y = M (5 , 1)
z = M (5 , 2)
A = M (5 , 3)
B = M (5 , 4)
C = M (5 , 5)
D = M (5 , 6)
E = M (6 , l)
F = M (6 , 2)
G = M (6 , 3)
H = M (6 , 4)
I = M (6 , 5)
J = M (6 , 6)

s5_over_2 = s i n (5* p i / 2)*s i n (5* p i / 6)*12 / (25 * p i * p i) ;
s 3 _ o v e r _ 2 = s i n (3 * p i / 2) * s i n (3 * p i / 6) * 4 / (3 * p i * p i) ;
s l _ o v e r _ 2 = s i n (1 * p i / 2) * s i n (1 * p i / 6) * 1 2 / (p i * p i) ;

s5 = s5_over_2 * s5_over_2 ;
s53 = s5_over_2 * s3_over_2 ;
s51 = s5_over_2 * s l_ove r_2 ;
s3 = s3_over_2 * s3_over_2 ;
s i = s l_ove r_2 * s l_over_2 ;
s31 = s3_over_2 * s l_ove r_2 ;

p i = s5*a + s53*b + s51*c + s51*d + s53*e + s5*f + . . .
s53*g + s3*h + s31* i + s31* j + s3*k + s53* l + . . .
s51*m + s31*n + s l*o + s l*p + s31*q + s51*r + . . .
s51*s + s31* t + s l*u + s l*v + s31*w + s51*x + . . .
s53*y + s3*z + s31*A + s31*B + s3*C + s53*D + . . .
s5*E + s53*F + s51*G + s51*H + s53*I + s5*J ;

e n d

F.6 Nohalo

These func t ions compute , r e spec t ive ly , t he r e su l t o f app ly ing Noha lo subd iv i s ion to a vec to r

cons i s t ing o f fou r va lues , and the r e su l t o f app ly ing Noha lo subd iv i s ion to a g r id cons i s t ing

o f s ix t een va lues .

482

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f u n c t i o n [p i] = Diagona l sNoha lo (V)
% DIAGONALSNOHALO calculates the result of applying Nohalo
% subdivision to the input values in V. It returns the new
% v a l u e P I .

a = V(l) ;
b = V(2) ;
c = V(3) ;
d = V(4) ;

mg = b -a ;
m = c — b ;
m d = d — c ;

i f mg*m <= 0
mb = 0 ;

e l s e i f a b s (m g) < a b s (m)
mb = mg;

e l s e
mb = m;

e n d

i f m*md <= 0
mc = 0;

e l s e i f a b s (m) < a b s (md)
mc = m;

e l s e
mc = md;

e n d

p i = 0 .5* (b+c) + 0 .25*(mb-mc) ;

e n d

f u n c t i o n [p i] = Diagona l sNoha loMid (M)
% DIAGONALSNOHALO calculates the result of applying Nohalo
% subdivision to the input values in M. It returns the new
% v a l u e P I .

a = M(1 ,D
b = M(1 , 2)
c = M(1 , 3)
d = M(1 , 4)
e = M(2 ,D
f = M(2 , 2)

8 = M(2 , 3)

483

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h = M(2 , 4) ;
i = M(3 , 1) ;
j = M(3 , 2) ;
k = M(3 , 3) ;
1 = M(3 , 4) ;
m = M(4 , 1) ;
n = M(4 , 2) ;
o = M(4 , 3) ;
p = M(4 , 4) ;

mxgl = f—e;
mxl = g - f ;
mxdl = h—g ;
mxg2 = j - i ;
mx2 = k—j ;
mxd2 = 1—k;
myh 1 = f—b ;
myl = j - f ;
mybl = n—j ;
myh2 = g—c ;
my2 = k -g ;
myb2 = o -k ;

i f mxgl*mxl <= 0
mxf = 0 ;

e l s e i f a b s (mxg l) < a b s (mxl)
mxf = mxgl ;

e l s e
mxf = mxl ;

e n d

i f mxl*mxdl <= 0
mxg = 0 ;

e l s e i f a b s (mxl) < a b s (mxd l)
mxg = mxl ;

e l s e
mxg = mxdl ;

e n d

i f mxg2*mx2 <= 0
mxj = 0 ;

e l s e i f a b s (mxg2) < a b s (mx2)
mxj = mxg2 ;

e l s e
mxj = mx2;

e n d

484

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f mx2*mxd2 <= 0
mxk = 0 ;

e l s e i f a b s (mx2) < a b s (mxd2)
mxk = mx2;

e l s e
mxk = mxd2 ;

e n d

i f myhl*myl <= 0
myf = 0 ;

e l s e i f a b s (myh l) < a b s (myl)
myf = myhl ;

e l s e
myf = myl ;

e n d

i f myl*mybl <= 0
myj = 0 ;

e l s e i f a b s (myl) < a b s (myb l)
myj = myl ;

e l s e
myj = mybl ;

e n d

i f myh2*my2 <= 0
myg = 0 ;

e l s e i f a b s (myh2) < a b s (my2)
myg = myh2 ;

e l s e
myg = my2;

e n d

i f my2*myb2 <= 0
myk = 0 ;

e l s e i f a b s (my2) < a b s (myb2)
myk = my2;

e l s e
myk = myb2 ;

e n d

p i = 0 .25*(f+g+j+k) + . . .
0 .125*(mxf - mxg + myf - myj + mxj - mxk + myg - myk) ;

e n d

485

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F.7 Snohalo

These func t ions compute , r e spec t ive ly , t he r e su l t o f app ly ing Snoha lo smooth ing to a vec to r

cons i s t ing o f th ree va lues , and the r e su l t o f app ly ing Snoha lo smooth ing to a g r id cons i s t ing

o f f ive va lues . These va lues fo rm a c ross on the 2D p lane and a re p rov ided in the fo rm a

vec to r . The f i r s t f ou r va lues a re the va lues o f the fou r po in t s o f the c ross , p rov ided in any

o rde r , and the f i f th va lue mus t be the cen t ra l va lue .

f u n c t i o n [p i] = Diagona l sSnoha loLine (V , t he t a)
% D I A G O N A L S S N O H A L O L I N E c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% S n o h a l o s m o o t h i n g t o t h e i n p u t v a l u e s i n V . I t r e t u r n s
% t h e n e w v a l u e P I .

a = V (1) ;
b = V(2) ;
y = V (3) ;

p i = ((a+b) /4 + y /2)* the ta + (1 —the ta)*y ;

e n d

f u n c t i o n [p i] = Diagona l sSnoha loMid (V , t he t a)
% D I A G O N A L S S N O H A L O M I D c a l c u l a t e s t h e r e s u l t o f a p p l y i n g
% S n o h a l o s m o o t h i n g t o t h e i n p u t v a l u e s i n V . I t r e t u r n s
% t h e n e w v a l u e P I .

a = V(l) ;
b = V(2) ;
c = V (3) ;
d = V(4) ;
y = V (5) ;

p i = ((a+b+c+d) /8 + y /2)* the ta + (1 — t he t a)*y ;

e n d

F.8 MP

These func t ions compute , r e spec t ive ly , t he r e su l t o f app ly ing MP subd iv i s ion to a vec to r

cons i s t ing o f fou r va lues , and the r e su l t o f app ly ing MP subd iv i s ion to a g r id cons i s t ing o f

486

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s ix t een va lues .

f u n c t i o n [p i] = Diagona l sMPLine (V)
% DIAGONALSMPLINE calculates the result of applying MP subdivision
% t o t h e i n p u t v a l u e s i n V . I t r e t u r n s t h e n e w v a l u e P I .

a = V(l) ;
b = V(2) ;
c = V(3) ;
d = V (4) ;

mg = b -a ;
m = c -b ;
md = d—c;
e rg = c - a ;
c rd = d—b ;

i f mg*m <= 0
mnb = 0 ;

e l se i f abs (mg) < abs (m)
mnb = mg;

e l se
mnb = m;

e n d

i f mnb*erg <= 0
mb = 0 ;

e l se i f abs (3*mnb) < 0 .5*c rg
mb = 3 * mnb ;

e l se
mb = 0 .5* e rg ;

e n d

i f m*md <= 0
mnc = 0 ;

e l se i f abs (m) < abs (md)
mnc = m;

e l se
mnc = md;

e n d

i f mnc*crd <= 0
mc = 0 ;

e l se i f abs (3*mnc) < 0 .5*c rd
mc = 3 * mnc ;

487

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e
mc = 0 .5*c rd ;

e n d

p i = 0 .5* (b+c) + 0 .1 25*(mb-mc) ;

e n d

f u n c t i o n [p i] = Diagona l sMPMid (M)
% DIAGONALSMPMID calculates the result of applying MP subdivision
% t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P I .

a = M(1 , 1) ;
b = M(1 , 2) ;
c = M(1 , 3) ;
d = M(1 , 4) ;
e = M(2 , 1) ;
f = M(2 , 2) ;
g = M(2 , 3) ;
h = M(2 , 4) ;
i = M(3 , 1) ;
j = M(3 , 2) ;
k = M(3 , 3) ;
I = M(3 , 4) ;
m = M(4 , 1) ;
n = M(4 , 2) ;
o = M(4 , 3) ;
p = M(4 , 4) ;

I I = Diagona l sMPLine ([a b c d]) ;
12 = Diagona l sMPLine ([e f g h]) ;
13 = Diagona l sMPLine ([i j k 1]) ;
14 = Diagona l sMPLine ([m n o p]) ;

q l = Diagona l sMPLine ([11 12 13 14]) ;

15 = Diagona l sMPLine ([a e i m]) ;
16 = Diagona l sMPLine ([b f j n]) ;
17 = Diagona l sMPLine ([c g k o]) ;
18 = Diagona l sMPLine ([d h 1 p]) ;

q2 = Diagona l sMPLine ([15 16 17 18]) ;

p i = 0 .5* (q l+q2) ;

e n d

488

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f u n c t i o n [p i] = Diagona l sMPCENTREDMid(M)
% D I A G O N A L S M P C E N T R E D M I D a p p l i e s M P s u b d i v i s i o n w i t h c e n t r e d
% c r o s s - d e r i v a t i v e s t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e
% n e w v a l u e P I .

a = M(1 , 1)
b = M(1 , 2)
c = M(1 ,3)
d = M(1 , 4)
e = M(2 ,1)
f = M(2 ,2)

8
= M(2 ,3)

h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)
0 = M(4 ,3)

P = M(4 ,4)

d
h
I

% a b c
% e f g
% i j k
% m n o

mcrfx = 0 .5* (g—e) ;
mcrgx = 0 .5* (h—f) ;
mcr jx = 0 .5 * (k—i) ;
mcrkx = 0 .5 * (1 — j) ;
mcr fy = 0 .5 * (j— b) ;
mcrgy = 0 .5 * (k—c) ;
mcr jy = 0 .5* (n—f) ;
mcrky = 0 .5* (o -g) ;
mcr fxy = 0 .25*(a—c+k—i)
mcrgxy = 0 .2 5 * (b—d+1 —j)
mcr jxy = 0 .25*(e—g+o-m)
mcrkxy = 0 .25*(f -h+p-n)

mgbx = b -- a
mdbx = c --b
mdcs = d -- c
mgfx = f -- e
mdfx = g-- f
mdgx = h--g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mgjx = j - i ;
mdjx = k - j ;
mdkx = 1 —k ;
mgnx = n -m;
mdnx = o -n ;
mdox = p—o ;

mgey = e—a ;
mdey = i— e ;
mdiy = m- i ;
mgfy = f —b ;
mdfy = j —f ;
mdjy = n - j ;
mggy = g -c ;
mdgy = k -g ;
mdky = o—k;
mghy = h—d ;
mdhy = 1 - h ;
mdly = p—1 ;

i f mgfx*mdfx <= 0
minmodfx = 0 ;

e l se i f abs (mgfx) < abs (mdfx)
minmodfx = mgfx ;

e l se
minmodfx = mdfx ;

end

i f mdfx*mdgx <= 0
minmodgx = 0 ;

e l se i f abs (mdfx) < abs (mdgx)
minmodgx = mdfx ;

e l se
minmodgx = mdgx ;

end

i f mgjx*mdjx <= 0
minmodjx = 0 ;

e l se i f abs (mgjx) < abs (mdjx)
minmodjx = mgjx ;

e l se
minmodjx = mdjx ;

end

i f mdjx*mdkx <= 0
minmodkx = 0 ;

490

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e i f a b s (mdjx) < a b s (mdkx)
minmodkx = mdjx ;

e l s e
minmodkx = mdkx ;

e n d

i f mgfy*mdfy <= 0
minmodfy = 0 ;

e l s e i f a b s (mgfy) < a b s (mdfy)
minmodfy = mgfy ;

e l s e
minmodfy = mdfy ;

e n d

i f mdfy*mdjy <= 0
minmodjy = 0 ;

e l s e i f a b s (mdfy) < a b s (mdjy)
minmodjy = mdfy ;

e l s e
minmodjy = mdjy ;

e n d

i f mggy*mdgy <= 0
minmodgy = 0 ;

e l s e i f a b s (mggy) < a b s (mdgy)
minmodgy = mggy ;

e l s e
minmodgy = mdgy ;

e n d

i f mdgy*mdky <= 0
minmodky = 0 ;

e l s e i f a b s (mdgy) < a b s (mdky)
minmodky = mdgy ;

e l s e
minmodky = mdky ;

e n d

i f minmodfx*mcr fx <= 0
mfx = 0 ;

e l s e i f a b s (3 * minmodfx) < a b s (0 .5 * mcr fx)
mfx = 3*minmodfx ;

e l s e
mfx = 0 .5* mcr fx ;

e n d

491

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f minmodgx* mcrgx <= 0
mgx = 0 ;

e l s e i f a b s (3*minmodgx) < a b s (0 .5* mcrgx)
mgx = 3*minmodgx ;

e l s e
mgx = 0 .5* mcrgx ;

e n d

i f minmodjx * mcr jx <= 0
mjx = 0 ;

e l s e i f a b s (3*minmodjx) < a b s (0 .5* mcr jx)
mjx = 3*minmodjx ;

e l s e
mjx = 0 .5* mcr jx ;

e n d

i f minmodkx*mcrkx <= 0
mkx = 0 ;

e l s e i f a b s (3* minmodkx) < a b s (0 .5* mcrkx)
mkx = 3* minmodkx ;

e l s e
mkx = 0 .5* mcrkx ;

e n d

i f minmodfy*mcr fy <= 0
mfy = 0 ;

e l s e i f a b s (3* minmodfy) < a b s (0 .5* mcr fy)
mfy = 3*minmodfy ;

e l s e
mfy = 0 .5* mcr fy ;

e n d

i f minmodgy*mcrgy <= 0
mgy = 0 ;

e l s e i f a b s (3*minmodgy) < a b s (0 .5* mcrgy)
mgy = 3*minmodgy ;

e l s e
mgy = 0 .5* mcrgy ;

e n d

i f minmodjy*mcr jy <= 0
mjy = 0 ;

e l s e i f a b s (3* minmodjy) < a b s (0 .5* mcr jy)
mjy = 3*minmodjy ;

e l s e
mjy = 0 .5 * mcr jy ;

492

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

i f minmodky*mcrky <= 0
mky = 0 ;

e l s e i f a b s (3*minmodky) < a b s (0 .5 * mcrky)
mky = 3*minmodky ;

e l s e
mky = 0 .5* mcrky ;

e n d

mfxy = mcr fxy ;
mgxy = mcrgxy ;
mjxy = mcr jxy ;
mkxy = mcrkxy ;

Ainv = [1 00000000000000 0; . . .
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ; . . .
-3 300 -2 -1 000000000 0; . . .
2 - 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ; . . .
0 0 0 0 0 0 0 0 - 3 3 0 0 - 2 - 1 0 0 ; . . .
0 0 0 0 0 0 0 0 2 - 2 0 0 1 1 0 0 ; . . .
- 3 0 3 0 0 0 0 0 - 2 0 - 1 0 0 0 0 0 ; . . .
0 000-3 0300000-2 0 -10 ; . . .
9 -9 -9963-6 -36-63-3422 1; . . .
-6 6 6 -6 -3 -3 3 3 -4 4 -2 2 -2 -2 -1 -1 ; . . .
2 0 - 2 0 0 0 0 0 1 0 1 0 0 0 0 0 ; . . .
0 0 0 0 2 0 - 2 0 0 0 0 0 1 0 1 0 ; . . .
-6 6 6 -6 -4 -2 4 2 -3 3 -3 3 -2 -1 -2 -1 ; . . .
4 -4 -4422-2 -22-22-2111 1] ;

vec = [f g j k mfx mgx mjx mkx mfy mgy mjy mky mfxy . . .
mgxy mjxy mkxy] ;

a lpha = Ainv* vec ' ;

p i = a lpha (l) + 0 .5*a lpha (2) + 0 .25* a lpha (3) + 0 .125* a lpha (4) . . .
+ 0 .5*a lpha (5) + 0 .5*0 .5* a lpha (6) + 0 .25 *0 .5 * a lpha (7) . . .
+ 0 .125*0 .5* a lpha (8) + 0 .25* a lpha (9) + 0 .5*0 .25* a lpha (10) . . .
+ 0 .25*0 .25* a lpha (1 1) + 0 .1 25 *0 .25 * a lpha (1 2) . . .
+ 0 .125* a lpha (1 3) + 0 .5*0 .125* a lpha (14) . . .
+ 0 .25*0 .125* a lpha (15) + 0 .125 *0 .125 * a lpha (1 6) ;

e n d

493

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f u n c t i o n [p i] = Diagona l sMPNULLMid(M)
% D 1 A G O N A L S M P N U L L M I D a p p l i e s M P s u b d i v i s i o n w i t h n u l l
% c r o s s — d e r i v a t i v e s t o t h e i n p u t v a l u e s i n M . I t r e t u r n s
% t h e n e w v a l u e P I .

a = M(1 , 1)
b = M(1 , 2)
c = M(1 , 3)
d = M(1 , 4)
e = M(2 ,1)
f — M(2 ,2)

8
= M(2 ,3)

h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)
o = M(4 ,3)

P = M(4 ,4)

% a b c
% e f 8
% i j k
% m n o

mcrfx = 0 .5* (g—e) ;
mcrgx = 0 .5* (h—f) ;
mcr jx = 0 .5 * (k—i) ;
mcrkx = 0 .5 * (1—j) ;
mcr fy = 0 .5* (j -b) ;
mcrgy = 0 .5* (k -c) ;
mcr jy = 0 .5* (n—f) ;
mcrky = 0 .5* (o—g) ;
mcr fxy = 0 .25 * (a—c+k—i) ;
mcrgxy = 0 .25*(b—d+1 — j) ;
mcr jxy = 0 .25*(e -g+o-m) ;
mcrkxy = 0 .25 * (f -h+p—n) ;

mgbx = b -- a
mdbx = c --b
mdcs = d -- c
mgfx = f -- e
mdfx = g-- f
mdgx = h--g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mgjx = j - i ;
mdjx = k - j ;
mdkx = 1 —k ;
mgnx = run ;
mdnx = o -n ;
mdox = p -o ;

mgey = e - a ;
mdey = i - e ;
mdiy = m- i ;
mgfy = f—b;
mdfy = j —f ;
mdjy = n - j ;
mggy = g -c ;
mdgy = k -g ;
mdky = o -k ;
mghy = h -d ;
mdhy = 1 —h ;
mdly = p—1 ;

i f mgfx*mdfx <= 0
minmodfx = 0 ;

e l se i f abs (mgfx) < abs (mdfx)
minmodfx = mgfx ;

e l se
minmodfx = mdfx ;

end

i f mdfx*mdgx <= 0
minmodgx = 0 ;

e l se i f abs (mdfx) < abs (mdgx)
minmodgx = mdfx ;

e l se
minmodgx = mdgx ;

end

i f mgjx*mdjx <= 0
minmodjx = 0 ;

e l se i f abs (mgjx) < abs (mdjx)
minmodjx = mgjx ;

e l se
minmodjx = mdjx ;

end

i f mdjx*mdkx <= 0
minmodkx = 0 ;

495

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e i f a b s (mdjx) < a b s (mdkx)
minmodkx = mdjx ;

e l s e
minmodkx = mdkx ;

e n d

i f mgfy*mdfy <= 0
minmodfy = 0 ;

e l s e i f a b s (mgfy) < a b s (mdfy)
minmodfy = mgfy ;

e l s e
minmodfy = mdfy ;

e n d

i f mdfy*mdjy <= 0
minmodjy = 0 ;

e l s e i f a b s (mdfy) < a b s (mdjy)
minmodjy = mdfy ;

e l s e
minmodjy = mdjy ;

e n d

i f mggy*mdgy <= 0
minmodgy = 0 ;

e l s e i f a b s (mggy) < a b s (mdgy)
minmodgy = mggy ;

e l s e
minmodgy = mdgy ;

e n d

i f mdgy*mdky <= 0
minmodky = 0 ;

e l s e i f a b s (mdgy) < a b s (mdky)
minmodky = mdgy ;

e l s e
minmodky = mdky ;

e n d

i f minmodfx*mcr fx <= 0
mfx = 0 ;

e l s e i f a b s (3* minmodfx) < a b s (0 .5 * mcr fx)
mfx = 3*minmodfx ;

e l s e
mfx = 0 .5 * mcr fx ;

e n d

496

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f minmodgx*mcrgx <= 0
mgx = 0 ;

e l se i f abs (3*minmodgx) < abs (0 .5* mcrgx)
mgx = 3*minmodgx ;

e l se
mgx = 0 .5* mcrgx ;

e n d

i f minmodjx*mcr jx <= 0
mjx = 0 ;

e l se i f abs (3* minmodjx) < abs (0 .5* mcr jx)
mjx = 3*minmodjx ;

e l se
mjx = 0 .5* mcr jx ;

e n d

i f minmodkx*mcrkx <= 0
mkx = 0 ;

e l se i f abs (3*minmodkx) < abs (0 .5* mcrkx)
mkx = 3* minmodkx ;

e l se
mkx = 0 .5* mcrkx ;

e n d

i f minmodfy*mcr fy <= 0
mfy = 0 ;

e l se i f abs (3*minmodfy) < abs (0 .5* mcr fy)
mfy = 3*minmodfy ;

e l se
mfy = 0 .5* mcr fy ;

e n d

i f minmodgy*mcrgy <= 0
mgy = 0 ;

e l se i f abs (3*minmodgy) < abs (0 .5* mcrgy)
mgy = 3*minmodgy ;

e l se
mgy = 0 .5* mcrgy ;

e n d

i f minmodjy*mcr jy <= 0
mjy = 0 ;

e l se i f abs (3*minmodjy) < abs (0 .5* mcr jy)
mjy = 3*minmodjy ;

e l se
mjy = 0 .5* mcr jy ;

497

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

i f minmodky*mcrky <= 0
mky = 0 ;

e l s e i f a b s (3*minmodky) < a b s (0 .5 * mcrky)
mky = 3*minmodky ;

e l s e
mky = 0 .5 * mcrky ;

e n d

mfxy = 0 ;
mgxy = 0 ;
mjxy = 0 ;
mkxy = 0 ;

Ainv = [1 00000000000000 0; . . .
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ; . . .
- 3 3 0 0 - 2 - 1 0 0 0 0 0 0 0 0 0 0 ; . . .
2 - 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ; . . .
0 0 0 0 0 0 0 0 - 3 3 0 0 - 2 - 1 0 0 ; . . .
0 0 0 0 0 0 0 0 2 - 2 0 0 1 1 0 0 ; . . .
- 3 0 3 0 0 0 0 0 - 2 0 - 1 0 0 0 0 0 ; . . .
0 000-3 0300000-2 0 -10 ; . . .
9 -9 -9963-6 -36-63-3422 1; . . .
-6 6 6 -6 -3 -3 3 3 -4 4 -2 2 -2 -2 -1 -1 ; . . .
2 0 - 2 0 0 0 0 0 1 0 1 0 0 0 0 0 ; . . .
0 0 0 0 2 0 - 2 0 0 0 0 0 1 0 1 0 ; . . .
-6 6 6 -6 -4 -2 4 2 - 3 3 -3 3 -2 -1 -2 -1 ; . . .
4 -4 -4422-2 -22-22-21 1 1 1] ;

vec = [f g j k mfx mgx mjx mkx mfy mgy mjy mky mfxy . . .
mgxy mjxy mkxy] ;

a lpha = Ainv*vec ' ;

p i = a lpha (l) + 0 .5*a lpha (2) + 0 .25* a lpha (3) + 0 .125 * a lpha (4)
+ 0 .5*a lpha (5) + 0 .5 *0 .5 * a lpha (6) + 0 .25*0 .5* a lpha (7) . . .
+ 0 .125*0 .5* a lpha (8) + 0 .25* a lpha (9) + 0 .5*0 .25* a lpha (1 0)
+ 0 .25*0 .25* a lpha (l 1) + 0 .1 25*0 .25* a lpha (1 2) . . .
+ 0 .125* a lpha (13) + 0 .5 *0 .125 * a lpha (14) . . .
+ 0 .25*0 .125* a lpha (15) + 0 .1 25*0 .125* a lpha (1 6) ;

498

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F.9 AMP

These functions compute, respectively, the result of applying AMP subdivision to a vector

consisting of four values, and the result of applying AMP subdivision to a grid consisting

of sixteen values.

f u n c t i o n [p i] = Diagona l sAMPLine (V)
% DIAGONALSAMPLINE calculates the result of applying AMP
% s u b d i v i s i o n t o t h e i n p u t v a l u e s i n V . I t r e t u r n s t h e
% n e w v a l u e P I .

a = V(1);
b = V(2) ;
c = V(3) ;
d = V(4) ;

mg = b -a ;
m = c -b ;
rad = d—c;
e rg = c - a ;
c rd = d -b ;

i f mg*m <= 0
mnb = 0 ;

e l se i f abs (mg) < abs (m)
mnb = mg;

e l se
mnb = m;

e n d

i f mnb*erg <= 0
mb = 0 ;

e l se i f abs (4*mnb) < 0 .5*c rg
mb = 4*mnb;

e l se
mb = 0 .5* e rg ;

e n d

i f m*md <= 0
mnc = 0 ;

e l se i f abs (m) < abs (md)
mnc = m;

e l se
mnc = md;

499

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

i f mnc*crd <= 0
mc = 0;

e l s e i f a b s (4 *mnc) < 0 .5*c rd
mc = 4* mnc ;

e l s e
mc = 0 .5* c rd ;

e n d

p i = 0 .5* (b+c) + 0 .125*(mb-mc) ;

e n d

f u n c t i o n [p i] = Diagona l sAMPMid (M)
% DIAGONALSAMPMID calculates the result of applying MP subdivision
% t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P I .

a = M(1 , 1) ;
b = M(1 , 2) ;
c = M(1 ,3) ;
d = M(1 , 4) ;
e = M(2 , 1) ;
f = M(2 , 2) ;
g = M(2 , 3) ;
h = M(2 , 4) ;
i = M(3 , 1) ;
j = M(3 , 2) ;
k = M(3 , 3) ;
1 = M(3 ,4) ;
m = M(4 , 1) ;
n = M(4 , 2) ;
o = M(4 , 3) ;
p = M(4 , 4) ;

11 = Diagona l sAMPLine ([a b c d])

12 = Diagona l sAMPLine ([e f g h])

13 = Diagona l sAMPLine ([i j k 1])

14 = Diagona l sAMPLine ([m n 0 P i)

q i = Diagona l sAMPLine ([11 12 13 4]) ;

1 5 = Diagona l sAMPLine ([a e i m])
1 6 = Diagona l sAMPLine ([b f j n])

17 = Diagona l sAMPLine ([c g k o])

18 = Diagona l sAMPLine ([d h 1 P])

500

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q2 = Diagona l sAMPLine ([15 16 17 18]) ;

p i = 0 .5* (q l+q2) ;

e n d

f u n c t i o n [p i] = Diagona l sAMPCENTREDMid(M)
% D I A G O N A L S A M P C E N T R E D M I D a p p l i e s A M P s u b d i v i s i o n w i t h
% c e n t r e d c r o s s - d e r i v a t i v e s t o t h e i n p u t v a l u e s i n M .
% I t r e t u r n s t h e n e w v a l u e P I .

a = M(1 ,1)
b = M(1 , 2)
c = M(1 , 3)
d = M(1 , 4)
e = M(2 ,1)
f = M(2 ,2)
g = M(2 ,3)
h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)
0 = M(4 ,3)

P
= M(4 ,4)

% a b c d
% e f g h
% i j k I
% m n o p

mcrfx = 0 .5* (g -e)
mcrgx = 0 .5* (h—f)
mcr jx = 0 .5* (k— i)
mcrkx = 0 .5* (1 —j)
mcr fy = 0 .5* (j— b)
mcrgy = 0 .5* (k—c)
mcr jy = 0 .5* (n - f)
mcrky = 0 .5* (o—g)
mcr fxy = 0 .25 * (a -c+k- i)
mcrgxy = 0 .25*(b -d+ l - j)
mcr jxy = 0 .25 * (e— g+o-m)
mcrkxy = 0 .25*(f -h+p-n)

501

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mgbx = b—a
mdbx = c -b
mdcs = d-c
mgfx = f - e
mdfx = g- f
mdgx = h-g
mgjx = j - i
mdjx = k- j
mdkx = 1-k
mgnx = n-m
mdnx = o—n
mdox = p-o

mgey = e—a
mdey = i—e
mdiy = m-i
mgfy = f-b
mdfy = j - f
mdjy = n- j
mggy = g-c
mdgy = k-g
mdky = o-k
mghy = h-d
mdhy = 1-h
mdly = p-1

if m gfx*mdfx <= 0
minmodfx = 0 ;

elseif abs(mgfx) < abs (mdfx)
minmodfx = mgfx ;

else
minmodfx = mdfx ;

end

i f mdfx*mdgx <= 0
minmodgx = 0 ;

elseif abs (mdfx) < abs(mdgx)
minmodgx = mdfx ;

else
minmodgx = mdgx ;

end

i f mgjx*mdjx <= 0
minmodjx = 0 ;

elseif abs (mgjx) < abs (mdjx)

502

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minmodjx = mgjx ;
e l s e

minmodjx = mdjx ;
end

if mdjx*mdkx <= 0
minmodkx = 0 ;

elseif abs (mdjx) < abs (mdkx)
minmodkx = mdjx ;

else
minmodkx = mdkx ;

end

i f mgfy*mdfy <= 0
minmodfy = 0 ;

elseif abs(mgfy) < abs(mdfy)
minmodfy = mgfy ;

else
minmodfy = mdfy ;

end

i f mdfy*mdjy <= 0
minmodjy = 0 ;

elseif abs (mdfy) < abs(mdjy)
minmodjy = mdfy ;

else
minmodjy = mdjy ;

end

i f mggy*mdgy <= 0
minmodgy = 0 ;

elseif abs(mggy) < abs (mdgy)
minmodgy = mggy ;

else
minmodgy = mdgy ;

end

i f mdgy*mdky <= 0
minmodky = 0 ;

elseif abs (mdgy) < abs(mdky)
minmodky = mdgy ;

else
minmodky = mdky ;

end

if minmodfx *mcr fx <= 0

503

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mfx = 0 ;
elseif abs(4* minmodfx) < abs (0 .5* mcr fx)

mfx = 4*minmodfx ;
else

mfx = 0 .5 * mcr fx ;
end

if minmodgx*mcrgx <= 0
mgx = 0 ;

elseif abs(4* minmodgx) < abs (0 .5 * mcrgx)
mgx = 4*minmodgx ;

else
mgx = 0 .5 * mcrgx ;

end

if minmodjx * mcr jx <= 0
m j x = 0 ;

elseif abs(4* minmodjx) < abs (0.5* mcr jx)
mjx = 4*minmodjx ;

else
mjx = 0 .5 * mcr jx ;

end

i f minmodkx*mcrkx <= 0
mkx = 0 ;

elseif abs(4*minmodkx) < abs (0 .5* mcrkx)
mkx = 4*minmodkx ;

else
mkx = 0 .5* mcrkx ;

end

if minmodfy*mcr fy <= 0
mfy = 0 ;

elseif abs(4* minmodfy) < abs (0 .5 * mcr fy)
mfy = 4*minmodfy ;

else
mfy = 0 .5 * mcr fy ;

end

if minmodgy*mcrgy <= 0
mgy = 0 ;

elseif abs (4* minmodgy) < abs (0 .5 * mcrgy)
mgy = 4*minmodgy ;

else
mgy = 0 .5* mcrgy ;

end

504

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f minmodjy * mcr jy <= 0
mjy = 0 ;

e l se i f abs (4* minmodjy) < abs (0 .5 * mcr jy)
mjy = 4*minmodjy ;

e l se
mjy = 0 .5* mcr jy ;

end

i f minmodky * mcrky <= 0
mky = 0 ;

e l se i f abs (4*minmodky) < abs (0 .5* mcrky)
mky = 4* minmodky ;

e l se
mky = 0 .5 * mcrky ;

end

mfxy = mcr fxy ;
mgxy = mcrgxy ;
mjxy = mcr jxy ;
mkxy = mcrkxy ;

Ainv = [1 00000000000000 0; . . .
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ; . . .
- 3 3 0 0 - 2 - 1 0 0 0 0 0 0 0 0 0 0 ; . . .
2 - 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ; . . .
0 0 0 0 0 0 0 0 - 3 3 0 0 - 2 - 1 0 0 ; . . .
0 0 0 0 0 0 0 0 2 - 2 0 0 1 1 0 0 ; . . .
- 3 0 3 0 0 0 0 0 - 2 0 - 1 0 0 0 0 0 ; . . .
0000 -3 0300000 -2 0 -1 0 ; . . .
9 -9 -9963-6 -36-63-3422 1; . . .
-6 6 6 -6 -3 -3 3 3 -4 4 -2 2 -2 -2 -1 -1 ; . . .
2 0 - 2 0 0 0 0 0 1 0 1 0 0 0 0 0 ; . . .
0 0 0 0 2 0 - 2 0 0 0 0 0 1 0 1 0 ; . . .
-6 6 6 -6 -4 -2 4 2 -3 3 -3 3 -2 -1 -2 -1 ; . . .
4 -4 -4422-2 -22-22-21 1 1 1] ;

vec = [f g j k mfx mgx mjx mkx mfy mgy mjy mky mfxy . . .
mgxy mjxy mkxy] ;

a lpha = Ainv*vec ' ;

p i = a lpha (l) + 0 .5*a lpha (2) + 0 .25* a lpha (3) + 0 .125* a lpha (4) . . .

505

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ 0 .5*a lpha (5) + 0 .5*0 .5* a lpha (6) + 0 .25*0 .5* a lpha (7) . . .
+ 0 .125*0 .5* a lpha (8) + 0 .25* a lpha (9) + 0 .5 *0 .25 * a lpha (10)
+ 0 .25*0 .25* a lpha (l 1) + 0 .1 25 *0 .25 * a lpha (12) . . .
+ 0 .125* a lpha (13) + 0 .5*0 .1 25* a lpha (14) . . .
+ 0 .25*0 . 125* a lpha (15) + 0 .125*0 .1 25* a lpha (1 6) ;

end

f u n c t i o n [p i] = Diagona l sAMPNULLMid(M)
% D I A G O N A L S A M P N U L L M I D a p p l i e s A M P s u b d i v i s i o n w i t h n u l l
% c r o s s — d e r i v a t i v e s t o t h e i n p u t v a l u e s i n M . I t r e t u r n s
% t h e n e w v a l u e P I .

a = M(1 , 1)
b = M(1 , 2)
c = M(1 , 3)
d = M(1 , 4)
e = M(2 ,1)
f = M(2 ,2)
g = M(2 ,3)
h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)
0 = M(4 ,3)

P
= M(4 ,4)

% a b c d
% e f g h
% i j k I
% m n o p

mcrfx =
mcrgx =
mcr jx =
mcrkx =
mcr fy =
mcrgy =
mcr jy =
mcrky =
mcr fxy =
mcrgxy =
mcr jxy =

0.5 * (g—e)
0 .5 * (h—f)
0 .5 * (k - i)
0 .5* (1 — j)
0 • 5 * (j —b)
0 .5 * (k -c)
0 .5 * (n - f)
0 .5 * (o -g)

0 .25 * (a—c+k—i)
0 .25 *(b—d+1—j)
0 .25 * (e—g+o-m)

506

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mcrkxy = 0 .25 * (f— h+p—n) ;

mgbx = b—a;
mdbx = c—b;
mdcs = d—c;
mgfx = f—e;
mdfx = g- f ;
mdgx = h-g ;
mgjx = j - i ;
mdjx = k- j ;
mdkx = 1 —k;
mgnx = n-m;
mdnx = o-n ;
mdox = p-o ;

mgey = e—a ;
mdey = i —e ;
mdiy = m- i ;
mgfy = f—b;
mdfy = j - f ;
mdjy = n - j ;
mggy = g-c;
mdgy = k -g ;
mdky = o—k ;
mghy = h—d ;
mdhy = 1 —h ;
mdly = p -1 ;

i f mgfx*mdfx <= 0
minmodfx = 0 ;

e l s e i f a b s (mgfx) < a b s (mdfx)
minmodfx = mgfx ;

e l s e
minmodfx = mdfx ;

e n d

i f mdfx*mdgx <= 0
minmodgx = 0 ;

e l s e i f a b s (mdfx) < a b s (mdgx)
minmodgx = mdfx ;

e l s e
minmodgx = mdgx ;

e n d

i f mgjx*mdjx <= 0
minmodjx = 0 ;

507

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l se i f abs (mgjx) < abs (mdjx)
minmodjx = mgjx ;

e l se
minmodjx = mdjx ;

e n d

i f mdjx*mdkx <= 0
minmodkx = 0 ;

e l se i f abs (mdjx) < abs (mdkx)
minmodkx = mdjx ;

e l se
minmodkx = mdkx ;

e n d

i f mgfy*mdfy <= 0
minmodfy = 0 ;

e l se i f abs (mgfy) < abs (mdfy)
minmodfy = mgfy ;

e l se
minmodfy = mdfy ;

e n d

i f mdfy*mdjy <= 0
minmodjy = 0 ;

e l se i f abs (mdfy) < abs (mdjy)
minmodjy = mdfy ;

e l se
minmodjy = mdjy ;

e n d

i f mggy*mdgy <= 0
minmodgy = 0 ;

e l se i f abs (mggy) < abs (mdgy)
minmodgy = mggy ;

e l se
minmodgy = mdgy ;

e n d

i f mdgy*mdky <= 0
minmodky = 0 ;

e l se i f abs (mdgy) < abs (mdky)
minmodky = mdgy ;

e l se
minmodky = mdky ;

e n d

508

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f minmodfx*mcr fx <= 0
mfx = 0 ;

e l s e i f a b s (4*minmodfx) < a b s (0 .5* mcr fx)
mfx = 4*minmodfx ;

e l s e
mfx = 0 .5* mcr fx ;

e n d

i f minmodgx*mcrgx <= 0
mgx = 0 ;

e l s e i f a b s (4*minmodgx) < a b s (0 .5 * mcrgx)
mgx = 4*minmodgx ;

e l s e
mgx = 0 .5* mcrgx ;

e n d

i f minmodjx*mcr jx <= 0
mjx = 0 ;

e l s e i f a b s (4*minmodjx) < a b s (0 .5 * mcr jx)
mjx = 4*minmodjx ;

e l s e
mjx = 0 .5 * mcr jx ;

e n d

i f minmodkx*mcrkx <= 0
mkx = 0 ;

e l s e i f a b s (4* minmodkx) < a b s (0 .5 * mcrkx)
mkx = 4*minmodkx ;

e l s e
mkx = 0 .5* mcrkx ;

e n d

i f minmodfy * mcr fy <= 0
mfy = 0 ;

e l s e i f a b s (4* minmodfy) < a b s (0 .5* mcr fy)
mfy = 4*minmodfy ;

e l s e
mfy = 0 .5* mcr fy ;

e n d

i f minmodgy*mcrgy <= 0
mgy = 0 ;

e l s e i f a b s (4*minmodgy) < a b s (0 .5* mcrgy)
mgy = 4* minmodgy ;

e l s e
mgy = 0 .5 * mcrgy ;

509

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

i f minmodjy * mcr jy <= 0
mjy = 0 ;

elseif abs(4* minmodjy) < abs (0 .5* mcr jy)
mjy = 4* minmodjy ;

else
mjy = 0 .5* mcr jy ;

end

i f minmodky*mcrky <= 0
mky = 0 ;

elseif abs(4*minmodky) < abs (0 .5* mcrky)
mky = 4*minmodky;

else
mky = 0 .5* mcrky ;

end

mfxy = 0 ;
mgxy = 0 ;
mjxy = 0 ;
mkxy = 0 ;

Ainv = [1 00000000000000 0; . . .
000010000000000 0; . . .
-3 300 -2 -1 000000000 0; . . .
2 - 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ; . . .
000000001000000 0; . . .
000000000000100 0; . . .
00000000-3 300-2-10 0; . . .
000000002 -2 001 10 0; . . .
-3 0300000-2 0 -10000 0; . . .
0 0 0 0 - 3 0 3 0 0 0 0 0 - 2 0 - 1 0 ; . . .
9 -9 -9963-6-36-63-3422 1; . . .
-6 6 6 -6 -3 -3 3 3 -4 4 -2 2 -2 -2 -1 -1 ; . . .
2 0 - 2 0 0 0 0 0 1 0 1 0 0 0 0 0 ; . . .
000020 -2 00000101 0; . . .
-6 6 6 -6 -4 -2 4 2 -3 3 -3 3 -2 -1 -2 -1 ; . . .
4 -4 -4422-2-22-22-21 1 1 1] ;

vec = [f g j k mfx mgx mjx mkx mfy mgy mjy mky mfxy
mgxy mjxy mkxy] ;

a lpha = Ainv* vec ' ;

510

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p i = a lpha(l) + 0 .5*a lpha(2) + 0 .25* a lpha (3) + 0 .125* a lpha (4) . . .
+ 0 .5*a lpha(5) + 0 .5*0 .5* a lpha (6) + 0 .25*0 .5* a lpha (7) . . .
+ 0 .125*0 .5* a lpha (8) + 0 .25* a lpha (9) + 0 .5*0 .25 * a lpha (10) . . .
+ 0 .25 *0 .25* a lpha (1 1) + 0 .125 *0 .25 * a lpha (12) . . .
+ 0 .125* a lpha(13) + 0 .5 *0 .125 * a lpha (14) . . .
+ 0 .25*0 .125* a lpha(15) + 0 .1 25*0 .125* a lpha (1 6) ;

end

F.10 CR

These functions compute, respectively, the result of applying Catmull-Rom subdivision to

a vector consisting of four values, and the result of applying Catmull-Rom subdivision to a

grid consisting of sixteen values.

function [p i] = Diagona l sCRLine (V)
% DIAGONALSCRLINE applies Catmull —Rom subdivision
% t o t h e i n p u t v a l u e s i n V . I t r e t u r n s t h e n e w v a l u e P I .

a = V (1) ;
b = V(2) ;
c = V (3) ;
d = V (4) ;

mb = 0 .5 * (c -a) ;
mc = 0 .5 * (d -b) ;

p i = 0 .5*(b+c) + 0 .1 25*(mb-mc) ;

end

function [p i] = Diagona l sCRMid (M)
% DIAGONALSCRMID applies Catmull—Rom subdivision
% t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P I .

a = M(1 , 1)
b = M(1 ,2)
c = M(1 ,3)
d = M(1 , 4)
e = M(2 ,1)
f = M(2 ,2)
g = M(2 ,3)

511

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)
o = M(4 ,3)
p = M(4 ,4)

11 = Diagona l sCRLine ([a b c d])
12 = Diagona l sCRLine ([e f g h])
13 = Diagona l sCRLine ([i j k 1])
14 = Diagona l sCRLine ([m n o p])

q l = Diagona l sCRLine ([11 12 13 14]) ;

15 = Diagona l sCRLine ([a e i m])
16 = Diagona l sCRLine ([b f j n])
17 = Diagona l sCRLine ([c g k o])
18 = Diagona l sCRLine ([d h 1 p])

q2 = Diagona l sCRLine ([15 16 17 18]) :

p i = 0 .5*(q l + q2) ;

end

F.ll LBB

These functions compute, respectively, the result of applying LBB subdivision to a vector

consisting of four values, and the result of applying LBB subdivision to a grid consisting

of sixteen values.

function [p i] = Diagona l sLBBLine (V)
% DIAGONALSLBBLINE applies LBB subdivision
% to t h e i n p u t v a l u e s i n V . I t r e t u r n s t h e n e w v a l u e P I .

a = V(1) ;
b = V(2) ;
c = V(3) ;
d = V(4) ;

512

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mb = 0 .5*(c—a) ;
mc = 0.5 *(d-b);

mini = min ([a , b , c]) ;
min2 = min ([b , c , d]) ;
max 1 = max ([a , b , c]) ;
max2 = max ([b , c , d]) ;

db = min([b -min l , max l -b]) ;
dc = min ([c—min2 , max2—c]) ;

if abs(mb) <= 3*db
mfb = mb;

else
mfb = s ign (mb)*3*db ;

end

if abs(mc) <= 3*dc
mfc = mc;

else
mfc = s ign (mc)*3* dc ;

end

p i = 0 .5*(b+c) + 0 .125*(mfb-mfc) ;

end

function [p i] = Diagona l sLBBMid(M)
% DIAGONALSLBBMID applies LBB subdivision
% to t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P I .

a = M (1 , 1)
b = M(1 , 2)
c = M(1 ,3)
d = M(1 , 4)
e = M(2 ,1)
f = M(2 ,2)
g = M(2 ,3)
h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)

513

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o = M(4 ,3);
p = M(4,4);

% a b c d
% e f 8 h
% i j k I
% m n o p

minf = min ([a , b , c , e , f , g , i , j , k]
maxf = max ([a , b , c , e , f , g , i , j »k]
ming = min ([b , c , d , f , g , h , n , o > p]
maxg = max ([b , c , d , f , g , h , n , o > P]
min j = min ([e , f , g , i , j , k ,m , n , o]
max j = max ([e , f , g , i , j , k ,m,n , o]
mink = min ([f , g , h , j , k , 1 , n , o > P l
maxk = max ([f , g , h , j , k , 1 , n , o > P l

d f = min ([f—minf maxf—f]) ;
dg = min ([g—ming maxg-g]) ;
d j = min ([j -min j max j - j]) ;
dk = min ([k—mink maxk—k]) ;

mfx i — 0 .5*(g—e)
mgxi = 0 .5*(h—f)
mjx i = 0 .5 *(k— i)
mkxi = 0 .5 * (I - j)
mfy i = 0 • 5 * (j —b)
mgyi = 0 .5*(k—c)
mjy i = 0 .5*(n—f)
mkyi = 0 .5*(o—g)
mfxy i = 0 .25*(a—c+k— i) ;
mgxyi = 0 .25*(b-d+l - j) ;
mjxy i = 0 .25*(e—g+o-m) ;
mkxyi = 0 .25 * (f—h+p-n) ;

i f abs (mfx i)<=3* d f
mfx = mfx i ;

else
mfx = sign (mfx i)*3* df ;

end

i f abs (mfy i)<=3* d f
mfy = mfy i ;

else
mfy = sign (mfy i)*3* df ;

end

514

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f abs(mgxi)<=3* dg
mgx = mgxi ;

else
mgx = sign (mgxi)*3*dg ;

end

i f abs(mgyi)<=3*dg
mgy = mgyi ;

else
mgy = sign (mgyi)*3*dg ;

end

i f abs(mjx i)<=3* d j
mjx = mjx i ;

else
mjx = sign (mjx i)*3* d j ;

end

i f abs(mjyi)<=3* d j
mjy = mjy i ;

else
mjy = sign (mjy i)*3* d j ;

end

i f abs(mkxi)<=3*dk
mkx = mkxi ;

else
mkx = sign (mkxi)*3* dk ;

end

i f abs(mkyi)<=3*dk
mky = mkyi ;

else
mky = sign (mkyi)*3* dk ;

end

i f abs(mfxyi)>=(3*abs(mfx+mfy) — 9* (f -minf))
mfxy l = mfxy i ;

else
mfxyl = (3*abs(mfx+mfy) -9*(f -minf)) ;

end

i f abs (mfxy 1)<=(-3*abs (mfx+mfy) + 9*(maxf—f))
mfxy2 = mfxy l ;

else

515

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mfxy2 = (-3*abs (mfx+mfy) + 9*(maxf - f)) ;
end

i f abs(mfxy2)<=(-3*abs(mfx-mfy) + 9*(f -minf))
mfxy3 = mfxy2 ;

else
mfxy3 = (-3*abs (mfx-mfy) + 9*(f -minf)) ;

end

i f abs(mfxy3)>=(3*abs(mfx—mfy) — 9* (maxf - f))
mfxy = mfxy3 ;

else
mfxy = (3* abs (mfx-mfy) — 9*(maxf - f)) ;

end

i f abs(mgxyi)>=(3*abs(mgx+mgy) - 9*(g-ming))
mgxyl = mgxyi ;

else
mgxyl = (3*abs(mgx+mgy) -9*(g-ming)) ;

end

i f abs(mgxyl)<=(-3*abs(mgx+mgy) + 9*(maxg-g))
mgxy2 = mgxyl ;

else
mgxy2 = (-3*abs (mgx+mgy) + 9*(maxg-g)) ;

end

i f abs (mgxy2)<=(-3*abs (mgx-mgy) + 9*(g -ming))
mgxy3 = mgxy2;

else
mgxy3 = (-3*abs(mgx—mgy) + 9*(g -ming)) ;

end

i f abs (mgxy3) >=(3* abs (mgx-mgy) -9*(maxg-g))
mgxy = mgxy3 ;

else
mgxy = (3* abs (mgx-mgy) -9*(maxg-g)) ;

end

i f abs(mjxyi)>=(3*abs(mjx+mjy) - 9*(j -min j))
mjxy l = mjxy i ;

else
mjxyl = (3*abs(mjx+mjy) -9*(j -min j)) ;

end

i f abs(mjxy l)<=(-3*abs(mjx+mjy) + 9*(maxj - j))

516

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mjxy2 = mjxy l ;
else

mjxy2 = (—3*abs (mjx+mjy) + 9*(max j - j)) ;
end

i f abs (mjxy2)<=(—3*abs (mjx—mjy) + 9* (j -min j))
mjxy3 = mjxy2 ;

else
mjxy3 = (-3*abs (mjx-mjy) + 9* (j -min j)) ;

end

i f abs(mjxy3)>=(3*abs(mjx— mjy)— 9*(maxj— j))
mjxy = mjxy3 ;

else
mjxy = (3* abs (mjx-mjy) — 9*(maxj - j)) ;

end

i f abs(mkxyi)>=(3*abs (mkx+mky) - 9*(k-mink))
mkxyl = mkxyi ;

else
mkxyl = (3* abs (mkx+mky) -9*(k-mink)) ;

end

i f abs (mkxyl)<=(-3*abs (mkx+mky) + 9*(maxk-k))
mkxy2 = mkxyl ;

else
mkxy2 = (— 3* abs (mkx+mky) + 9*(maxk-k)) ;

end

i f abs(mkxy2)<=(-3*abs(mkx-mky) + 9*(k -mink))
mkxy3 = mkxy2 ;

else
mkxy3 = (-3*abs (mkx-mky) + 9*(k -mink)) ;

end

i f abs(mkxy3)>=(3*abs(mkx-mky) -9*(maxk-k))
mkxy = mkxy3 ;

else
mkxy = (3* abs (mkx—mky) — 9*(maxk-k)) ;

end

A i n v = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; . . .
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ; . . .
- 3 3 0 0 - 2 - 1 0 0 0 0 0 0 0 0 0 0 ; . . .
2 - 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ; . . .
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ; . . .

517

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ; . . .
0 0 0 0 0 0 0 0 - 3 3 0 0 - 2 - 1 0 0 ; . . .
0 0 0 0 0 0 0 0 2 - 2 0 0 1 1 0 0 ; . . .
- 3 0 3 0 0 0 0 0 - 2 0 - 1 0 0 0 0 0 ; . . .
0 0 0 0 - 3 0 3 0 0 0 0 0 - 2 0 - 1 0 ; . . .
9 - 9 - 9 9 6 3 - 6 - 3 6 - 6 3 - 3 4 2 2 1 ;
- 6 6 6 -6 -3 -3 3 3 -4 4 -2 2 -2 -2 -1
2 0 - 2 0 0 0 0 0 1 0 1 0 0 0 0 0 ; . . .
0 0 0 0 2 0 - 2 0 0 0 0 0 1 0 1 0 ; . . .
-6 6 6 -6 -4 -2 4 2 -3 3 -3 3 -2 -1 -2
4 - 4 - 4 4 2 2 - 2 - 2 2 - 2 2 - 2 1 1 1 1] ;

vec = [f g j k mfx mgx mjx mkx mfy mgy . . .
mjy mky mfxy mgxy mjxy mkxy] ;

a lpha = Ainv*vec ' ;

p i = a l p h a (l) + 0 . 5 * a l p h a (2) + 0 . 2 5 * a l p h a (3) + 0 . 1 2 5 * a l p h a (4)
+ 0 .5*a lpha(5) + 0 .5*0 .5* a lpha (6) + 0 .25*0 .5* a lpha (7) . . .
+ 0 .1 25*0 .5* a lpha (8) + 0 .25* a lpha (9) + 0 .5*0 .25* a lpha (10)
+ 0 .25*0 .25* a lpha(l 1) + 0 .1 25*0 .25* a lpha (1 2) . . .
+ 0 .125* a lpha (1 3) + 0 .5*0 .125* a lpha (14) . . .
+ 0 .25*0 .125* a lpha(15) + 0 .125*0 .1 25* a lpha (1 6) ;

end

F.12 Midedge

This function computes the result of one Midedge subdivision, given a grid of four input

values. It basically computes the four values making up the "smaller" square inside the one

formed by the input.

function [p i] = Diagona l sLDPSMMid(M)
% DIAGONALSLDPSMMID applies linear DPSM subdivision
% t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P I .

a = M (1 , 1) ;
b = M(1 , 2) ;
c = M(2 ,1) ;
d = M(2 ,2) ;

p i = zeros(2 ,2) ;

518

- 1 ; . . .

- 1 ; . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p i (1 ,1) = 0 .5* a +
p i (1 ,2) = 0 .5*b +
p i (2 , 1) = 0 . 5 * c +
p i (2 , 2) = 0 . 5 * d +

end

0 .25*b + 0 .25*c ;
0 .25*a + 0 .25*d ;
0 .25*a + 0 .25*d ;
0 .25*b + 0 .25*c ;

F.13 Minmod Midedge

This function computes the result of one Midedge subdivision, given a grid of thirty-six

input values. It basically computes the four values making up the "smaller" square inside

the one at the centre of the input grid.

function [p i] = Diagona l sMDPSMMid (M)
% DIAGONALSMDPSMMID applies minmod DPSM subdivision
% t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P I .

oneone = M(1 1)
one two = M(1 2)
one th r = M(1 3)
onefou = M(1 4)
onef i v = M(1 5)
ones ix = M(1 6)
twoone = M(2 1)
twotwo = M(2 2)
t wo th r = M(2 3)
twofou = M(2 4)
twof i v = M(2 5)
twos ix = M(2 6)
t h r o n e = M(3 1)
t h r t w o = M(3 2)
t h r t h r = M(3 3)
t h r f o u = M(3 4)
t h r f i v = M(3 5)
t h r s i x = M(3 6)
fouone = M(4 1)
fou two = M(4 2)
f o u t h r = M(4 3)
foufou = M(4 4)
f o u f i v = M(4 5)
f o u s i x = M(4 6)

519

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f i vone = M(5 ,1)
f i v two = M (5 , 2)
f i v t h r = M(5 ,3)
f i v f o u = M(5 ,4)
f i v f i v = M(5 ,5)
f i v s i x = M(5 ,6)
s ixone = M(6 ,1)
s ix two = M(6 ,2)
s i x t h r = M(6 ,3)
s ix fou = M(6 ,4)
s i x f i v = M(6 ,5)
s i x s i x = M(6 ,6)

o n e s i x

t w o s i x

t h r s i x

f o u s i x

f i v s i x

s i x s i x

oneone onetwo onethr onefou
%

twoone twotwo

o n e f i v

t w o f i v t w o t h r t w o f o u
% xx
% t h r o n e t h r t w o x t h r t h r x t h r f o u x t h r f i v
% xx
% f o u o n e f o u t w o x f o u t h r x f o u f o u x f o u f i v
% xx
% f i v o n e f i v t w o f i v t h r f i v f o u f i v f i v

% s i x o n e s i x t w o s i x t h r s i x f o u s i x f i v

a l = Diagona l sNoha lo
a2 = Diagona l sNoha lo
b l = Diagona l sNoha lo
b2 = Diagona l sNoha lo
b3 = Diagona l sNoha lo
c l = Diagona l sNoha lo
c2 = Diagona l sNoha lo
d l = Diagona l sNoha lo
d2 = Diagona l sNoha lo
d3 = Diagona l sNoha lo
e l = Diagona l sNoha lo
e2 = Diagona l sNoha lo

p i = zeros(2 , 2) ;

o n e t h r t w o t h r t h r t h r f o u t h r])
one fou twofou th r fou foufou])
th rone th r two th r th r th r fou])
th r two th r th r th r fou th r f iv])
t h r t h r t h r f o u t h r f i v t h r s i x])
two th r th r th r fou th r f iv th r])
twofou th r fou foufou f iv fou])
fouone fou two fou th r foufou])
fou two fou th r foufou fouf iv])
f o u t h r f o u f o u f o u f i v f o u s i x])
t h r t h r f o u t h r f i v t h r s i x t h r])
t h r f o u f o u f o u f i v f o u s i x f o u])

pl (1 J) = Diagona l sNoha lo ([d l c 1 b2 a2])
p i (1 , 2) = Diagona l sNoha lo ([a l b2 c2 d 3])
pl(2 ,1) = Diagona l sNoha lo ([b l c l d2 e 2])
pl (2 , 2) = Diagona l sNoha lo ([e 1 d2 c2 b3])

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F.14 MVS

This function computes the result of applying MVS to a grid of sixteen points. It returns

the four values forming a smaller square inside the central one in the input grid.

function [p l] = Diagona l sMVSMid (M)
% DIAGONALSMVSMMID applies minmod vertex split subdivision
% t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e n e w v a l u e P l .

a = M (1 , 1)
b = M (1 , 2)
c = M(1 , 3)
d = M(1 , 4)
e = M(2 ,1)
f = M(2 ,2)
g = M(2 ,3)
h = M(2 ,4)
i = M(3 ,1)
j = M(3 ,2)
k = M(3 ,3)
1 = M(3 ,4)
m = M(4 ,1)
n = M(4 ,2)
0 = M(4 ,3)

P = M(4 ,4)

% a b e d
% e f g h
% i j k I
% m n o p

function [m] = Minmod(md,mg)
% T h i s c a l c u l a t e s t h e m i n m o d s l o p e .
i f mg*md <= 0

m = 0;
elseif abs(mg) <= abs(md)

m = mg;

else
m = md;

end
end

mfx = Minmod(g- f , f—e) ;
mfy = Minmod(f—j , b—f) ;

521

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mgx = Minmod (h-g, g—f)
mgy = Minmod (g-k, c-g)
m j x = M i n m o d (k — j , j — i)
m j y = M i n m o d (j — n , f — j)
m k x = M i n m o d (l — k , k — j)
m k y = M i n m o d (k - o , g - k)

p l = zeros (2 , 2) ;

p l (1 . 1)
p l (1 , 2)
p l (2 , 1)
p l (2 , 2)

f

8
j
k

0.25* mfx
0.25*mgx
0.25* mjx

0.25* mfy;
0.25*mgy;
0.25* mjy;

— 0.25* mkx + 0.25* mky;

end

F.15 Quadratic B-spline

These functions compute, respectively, the result of applying quadratic B-Spline smooth­

ing to a vector consisting of three values, and the result of applying quadratic B-Spline

smoothing to a grid consisting of nine values.

function [p l] = D i a g o n a l s B S p l i n e L i n e (V)
% DIAGONALSBSPLINELINE applies B— Spline smoothing
% t o t h e i n p u t v a l u e s i n V . I t r e t u r n s t h e n e w v a l u e P l ,

a = V (1) ;
b = V (3) ;
y = V (2) ;

p l = ((a + b) * 0 . 1 2 5 + y * 0 . 7 5) ;

end

function [p l] = D i a g o n a l s B S p l i n e M i d (M)
% DIAGONALSBSPLINEMID applies B-Spline smoothing
% t o t h e i n p u t v a l u e s i n V . I t r e t u r n s t h e n e w v a l u e P l .

a = M (1 , 1) ;
b = M (1 , 2) ;
c = M (1 , 3) ;
d = M (2 , 1) ;

522

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e = M (2 , 2) ;
f = M (2 , 3) ;
g = M (3 , 1) ;
h = M (3 , 2) ;
i = M (3 , 3) ;

1 1 = D i a g o n a l s B S p l i n e L i n e ([a b c]) ;
1 2 = D i a g o n a l s B S p l i n e L i n e ([d e f]) ;
1 3 = D i a g o n a l s B S p l i n e L i n e ([g h i]) ;

q l = D i a g o n a l s B S p l i n e L i n e ([1 1 1 2 1 3]) ;

1 4 = D i a g o n a l s B S p l i n e L i n e ([a d g]) ;
1 5 = D i a g o n a l s B S p l i n e L i n e ([b e h]) ;
1 6 = D i a g o n a l s B S p l i n e L i n e ([c f i]) ;

q 2 = D i a g o n a l s B S p l i n e L i n e ([1 4 1 5 1 6]) ;

p l = 0 . 5 * (q l + q 2) ;

end

function [p] = D i a g o n a l s Q B S 2 L i n e (M)
%DIAGONALSQBS2LINE calculates the result of applying QBS
% s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M .

a = M (1 , 1) ;
b = M (1 , 2) ;
c = M (1 , 3) ;
d = M (2 , 1) ;
e = M (2 , 2) ;
f = M (2 , 3) ;

% a b c
% d e f

p = (a + c + d + f) / 1 6 + 3 * (b + e) / 8 ;

end

function [p] = D i a g o n a l s Q B S 2 M i d (M)
%DIAGONALSQBS2MID calculates the result of applying QBS
% s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M .

a = M (1 , 1) ;
b = M (1 , 2) ;

523

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c = M (2 , 1) ;
d = M (2 , 2) ;

% a b
% c d

p = (a + b + c + d) / 4 ;

end

function [p] = D i a g o n a l s Q B S 2 S m o o t h i n g M i d (M)
%DIAGONALSQBS2SMOOTHINGMID calculates the result of applying QBS
% s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M .

a = M (1 , 1) ;
b = M (1 , 2) ;
c = M (1 , 3) ;
d = M (2 , 1) ;
e = M (2 , 2) ;
f = M (2 , 3) ;
g = M (3 , 1) ;
h = M (3 , 2) ;
i = M (3 , 3) ;

% a b c
% d e f
% g h i

p = 9 * e / 1 6 + 3 * (b + d + f + h) / 3 2 + (a + c + g + i) / 6 4 ;

end

F.16 CDVS

This function computes the result of applying CDVS to a grid of sixteen points. It returns

the four values forming a smaller square inside the central one in the input grid.

function [pl] = DiagonalsCDVSMid (M)
% DIAGONALSCDVSMID applies centred differences vertex split
% s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e
% n e w v a l u e P l .

a = M (1 , 1) ;

524

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b = M (1 , 2)
c = M (1 , 3)
d = M (1 , 4)
e = M (2 , 1)
f = M (2 , 2)
g = M (2 , 3)
h = M (2 , 4)
i = M (3 , 1)
j = M (3 , 2)
k = M (3 , 3)
1 = M (3 , 4)
m = M (4 , 1)
n = M (4 , 2)
o = M (4 , 3)

P = M (4 , 4)

% a b c d
% e f g h
% i j k I
% m n o p

mfx = 0 . 5 * (g-- e)
mfy = 0 . 5 * (b -- j)
mgx = 0 . 5 * (h -- f)
mgy = 0 . 5 * (c -- k)
mjx = 0 . 5 * (k --i)
mjy = 0 . 5 * (f -- n)
mkx = 0 . 5 * (1 --j)
mky = 0 . 5 * (g -- o)

p l = zeros (2 , 2) ;

p 1 (1 , 1) = f + 0 . 2 5 * m f x — 0 . 2 5 * m f y ;
p 1 (1 , 2) = g - 0 . 2 5 * m g x - 0 . 2 5 * m g y ;
p 1 (2 , 1) = j + 0 . 2 5 * m j x + 0 . 2 5 * m j y ;
p l (2 , 2) = k - 0 . 2 5 * m k x + 0 . 2 5 * m k y ;

end

F.17 ROVS

This function computes the result of applying ROVS to a grid of sixteen points. It returns

the four values forming a smaller square inside the central one in the input grid.

525

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function [pl] = DiagonalsROVSMid (M)
% DIAGONALSROVSVHEAPMID applies locally bounded vertex split
% s u b d i v i s i o n t o t h e i n p u t v a l u e s i n M . I t r e t u r n s t h e
% n e w v a l u e P l .

a = M (1 , 1)
b = M (1 , 2)
c = M (1 , 3)
d = M (1 , 4)
e = M (2 , 1)
f = M (2 , 2)
g = M (2 , 3)
h = M (2 , 4)
i = M (3 , 1)
j = M (3 , 2)
k = M (3 , 3)
1 = M (3 , 4)
m = M (4 , 1)
n = M (4 , 2)
0 = M (4 , 3)

P
= M (4 , 4)

% a b e d
% e f g h
% i j k I
% m n o p

m f x l = 0 5* g-- e)
m f y l = 0 5* b--j)
mgxl = 0 5* h-- f)
mgyl = 0 5* c-- k)
m j x l = 0 5* k -i)
mjy 1 = 0 5* f-- n)
mkxl = 0 5* 1--j)
mkyl = 0 5* g-- o)

m i n f x = min ([e , f , g]
m i n f y = min([b , f , j]
m i n g x = min ([f ,g , h]
m i n g y = min (t c , g . k]
m i n j x = min ([i , j , k]
m i n j y = min ([f , j ,n]
m i n k x = min ([j , k , 1]
m i n k y = min ([g , k , o]

526

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m a x f x = max (e , f , g])
m a x f y = max (b , f J 1)
maxgx = max (f > g , h])
maxgy = max(c , g , k])
m a x j x = max(i , j , k])
m a x j y = max(f . j > n])
maxkx = max (j , k , 1])
maxky = max (g , k , o])

b o u n d f x l = —4 *min ((f + g - 2 * m i n f x) , (2 * m a x f x -- f -- e))
b o u n d g x l = —4 *min ((g + h - 2 * m i n g x) , (2 * m a x g x --g-- f))
b o u n d j x l = - 4 *min ((j + k - 2 * m i n j x) , (2 * m a x j x -- j -- i))
b o u n d k x l = - 4 *min ((k + l - 2 * m i n k x) , (2 * m a x k x --k-- j))
b o u n d f y l = - 4 *min ((f + b - 2 * m i n f y) , (2 * m a x f y -- f -- j))
b o u n d g y l = - 4 *min ((c + g - 2 * m i n g y) , (2 * m a x g y --g-- k))
b o u n d j y l = - 4 *min ((j + f - 2 * m i n j y) , (2 * m a x j y --n-- j))
b o u n d k y l = —4 *min ((k + g - 2 * m i n k y) , (2 * maxky--o-- k))

b o u n d f x u = 4*min((f + e - 2 * m i n f x) , (2 * m a x f x -- f -- g))
b o u n d g x u = 4 *min ((g + f — 2 * m i n g x) , (2*maxgx--g-- h))
b o u n d j x u = 4 *min ((j + i - 2 * m i n j x) , (2 * m a x j x -- j -- k))

b o u n d k x u = 4 *min ((k + j - 2 * m i n k x) , (2 * m a x k x -- k -1))
b o u n d f y u = 4 *min ((f + j - 2 * m i n f y) , (2 * m a x f y -- f -- b))
b o u n d g y u = 4 *min ((g + k — 2 * m i n g y) , (2*maxgy--c-- g))
b o u n d j y u = 4 *min ((n + j - 2 * m i n j y) , (2 * m a x j y -- j -- f))
b o u n d k y u = 4 *min ((o + k - 2 * m i n k y) , (2 * m a x k y --k-- g))

function [m] = Slope(ml, boundl , boundu)
% D e t e r m i n e s w h e t h e r t h e s l o p e i s w i t h i n t h e b o u n d s .
i f (m l > = b o u n d l) & & (m l < = b o u n d u)

m = m l ;
e l s e i f (m l < b o u n d l)

m = b o u n d l ;
else

m = b o u n d u ;
end

end

mfx = Slope (mfxl
mfy = Slope (mfyl
mgx = Slope (mgxl
mgy = Slope (mgyl
mjx = Slope (mjxl
mjy = Slope (mjyl
mkx = Slope (mkx 1

b o u n d f x l , b o u n d f x u)
b o u n d f y l , b o u n d f y u)
b o u n d g x l , b o u n d g x u)
b o u n d g y l , b o u n d g y u)
b o u n d j x l , b o u n d j x u)
b o u n d j y l , b o u n d j y u)
b o u n d k x l , b o u n d k x u)

527

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mky = Slope (mkyl, boundkyl , boundkyu);

p l = zeros (

p l (1 . 1) = f

p l (1 . 2) = 8

p l (2 , 1) = j

p l (2 , 2) = k

end

i , 2) ;

+ 0 . 2 5 * m f x
- 0 . 2 5 * m g x
+ 0 . 2 5 * m j x
— 0 . 2 5 * m k x

— 0 . 2 5 * m f y ;
- 0 . 2 5 * m g y ;
+ 0 . 2 5 * m j y ;
+ 0 . 2 5 * m k y ;

528

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] V. Ralph Algazi, Minsoo Suk, and Chong-Suck Rim. Design of almost minimax

FIR filters in one and two dimensions by WLS techniques. IEEE Transactions on

Circuits and Systems, CAS-33(6):590-596, June 1986. ISSN 0098-4094.

[2] A. Alkairy, K. Christian, and J. Lim. Design of FIR filters by complex Cheby-

shev approximation. In Proceedings of the IEEE 1999 International Conference

on Acoustics, Speech and Signal Processing, volume 3, pages 1985-1988, Toronto,

Ontario, May 1991. ISBN 0-7803-0003-3.

[3] A. Alkairy, K. Christian, and J. Lim. Design and characterization of optimal FIR

filters with arbitrary phase. IEEE Transactions on Signal Processing, 41(2):559-

572, February 1993. ISSN 1053-587X.

[4] U. H. Augsdorfer, N. A. Dodgson, and M. A. Sabin. Artifact analysis on B-splines,

box-splines and other surfaces defined by quadrilateral polyhedra. Computer Aided

Geometric Design, 28(3): 177-197, March 2011. ISSN 0167-8396.

[5] I. Barrodale, L. M. Delves, and J. C. Masson. Linear Chebyshev approximation

of complex-valued functions. Mathematics of Computation, 32(143):853-863, July

1978.

[6] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation. SIAM

Review, 46(3):501—517,2004.

[7] R. B. Blackman and J. W. Tukey. The Measurement of Power Spectra: From the

Point of View of Communications Engineering. Dover Books on Engineering and

Engineering Physics. Dover Publications, New York, 1959.

[8] Ken Brodlie, Petros Mashwama, and Sohail Butt. Visualization of surface data to

preserve positivity and other simple constraints. Computers & Graphics, 19(4):585-

594, July-August 1995. ISSN 0097-8493.

[9] D. Burnside and T. W. Parks. Accelerated design of FIR filters in the complex

domain. In Proceedings of the IEEE 1993 International Conference on Acoustics,

529

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Speech and Signal Processing, volume 3, pages 81-84, Minneapolis, MN, USA,

April 1993. ISBN 0.7803-7402-9.

[10] Daniel Burnside and Thomas W. Parks. Optimal design of FIR filters with the com­

plex Chebyshev error criteria. IEEE Transactions on Signal Processing, 43(3):605-

616, March 1995. ISSN 1053-587X.

[11] F. E. Burris. Design of minimum-phase digital filters from linear-phase prototypes.

Electronic Letters, 10(6):69-70, March 1974. ISSN 0013-5194.

[12] S. Butt and K.W. Brodlie. Preserving positivity using piecewise cubic interpolation.

Computers & Graphics, 17(l):55-64, January-February 1993. ISSN 0097-8493.

[13] Christakis Charalambous. The performance of an algorithm for minimax design of

two-dimensional linear phase FIR digital filters. IEEE Transactions on Circuits and

Systems, CAS-32(10): 1016-1028, October 1985. ISSN 0098-4094.

[14] Xiangkun Chen and Thomas W. Parks. Design of FIR filters in the complex domain.

IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35(2):144-

153, February 1987. ISSN 0096-3518.

[15] Elliott W. Cheney. Introduction to Approximation Theory. AMS Chelsea Publishing,

Providence, Rhode Island, second edition, 1998.

[16] W. J. Cody. A survey of practical rational and polynomial approximation of func­

tions. SI AM Review, 12(3):400—423, July 1970.

[17] Wikipedia contributors. Bicubic interpolation, http://en.wikipedia.org/

wiki/Bicubic_interpolation, December 2011.

[18] G. Cortelazzo and M. R. Lightner. Simultaneous design in both magnitude and delay

of IIR and FIR filters based on multiple criterion optimization. IEEE Transactions

on Acoustics, Speech and Signal Processing, ASSP-32(5):949-967, October 1984.

ISSN 0096-3518.

[19] John Cristy. MagickCore Image Resize Methods - Resize. http: / / w w w .

imagemagick . org/api/MagickCore/resize_8c_source . html,

2011. Computer program.

[20] John Cristy, Kelly Bergougnoux, Rod Bogart, John W. Peterson, Nathan Brown,

Mike Chiarappa, Thomas R. Crimmins, Troy Edwards, Jaroslav Fojtik, Francis J.

Franklin, Markus Friedl, Bob Friesenhahn, Michael Halle, David Harr, Christo­

pher R. Hawks, Paul Heckbert, Peder Langlo, Rick Mabry, Catalin Mihaila, David

530

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

Pensak, Chantal Racette, William Radcliffe, Glenn Randers-Pehrson, Paul Raveling,

Nicolas Robidoux, Leonard Rosenthol, Kyle Shorter, Lars Ruben Skyum, Alvy Ray

Smith, Eric Ray Lyons, Michael Still, Anthony Thyssen, Milan Votava, Fred Wein-

h a u s , a n d A l e x a n d e r Z i m m e r m a n n . I m a g e M a g i c k . h t t p : / / i m a g e m a g i c k .

org/script / index. php, 2011. Computer program.

[21] John Cupitt. NIP2 (New Image Processor 2) type definitions Version 7.23.

g i t h u b . c o m / j c u p i t t / n i p 2 / b 1 o b / m a s t e r / s h a r e / n i p 2 / s t a r t /

_types . def, 2010. Computer program.

[22] John Cupitt, Joe Padfield, Hans Breuer, Rich Lott, and Leo Davidson. NIP2 (New

I m a g e P r o c e s s o r 2) V e r s i o n 7 . 1 7 . w w w . v i p s . e c s . s o t o n . a c . u k / i n d e x .

php?title=Nip2,2010. Computer program.

[23] Beman Dawes, David Abrahams, and Rene Rivera. Boost C++ Libraries, http:

//www .boost. org, 2011. Website for the Boost C++ Libraries.

[24] Carl de Boor. A Practical Guide to Splines. Number 27 in American Mathematical

Sciences Series. Springer-Verlag, New York, 1978. ISBN 3540903569.

[25] Carl de Boor and Amos Ron. Computational aspects of polynomial interpolation in

several variables. Mathematics of Computation, 58(198):705-727,1992.

[26] Carl de Boor and Blair Swartz. Piecewise monotone interpolation. Journal of Ap­

proximation Theory, 21(4):411-416, 1977.

[27] James Demmel and Plamen Koev. The accurate and efficient solution of a totally

positive generalized Vandermonde linear system. SI AM Journal on Matrix Analysis

and Applications, 27(1): 142-152, May 2005. ISSN 0895-4798.

[28] Nicos Dessipris, Kirk Martinez, John Cupitt, Ruven Pillay, Steve Perry, Lars

Raffelt, David Saunders, Jean-Philippe Laurant, Ahmed Abood, Helene Chahine,

Joe Padfield, Andrey Kiselev, Lev Serebryakov, Simon Goodall, Konrad Lang,

Markus Wollgarten, Jesper Friis, Tom Vajzovic, Hans Breuer, Dennis Lubert, Jose

Manuel Menendez Garcia, Javier Alejandre Arenas, Juan Torres Arjona, Nicolas

Robidoux, Chantal Racette, and Adam Turcotte. VIPS (Virtual Image Processing

System) Version 7.25. www. vips . ecs . soton. ac. uk, 2010. Computer pro­

gram.

[29] N. A. Dodgson, U. H. Augsdorfer, T. J. Cashman, and M. A. Sabin. Deriving box-

spline subdivision schemes. In Proceedings of the 13th IMA International Confer­

ence on Mathematics of Surfaces XIII, pages 106-123, Berlin, Heidelberg, 2009.

Springer-Verlag. ISBN 978-3-642-03595-1.

531

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://imagemagick
http://www.vips.ecs.soton.ac.uk/index

[30] C. L. Dolph. A current distribution for broadside arrays which optimizes the rela­

tionship between beam widths and side-lobe level. Proceedings of the IRE, 34(6):

335-348, June 1946. ISSN 0096-8390.

[31] Randall L. Dougherty, Alan Edelman, and James M. Hyman. Nonnegativity-

monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation.

Mathematics of Computation, 52(186):471—494, 1989. ISSN 00255718.

[32] Claude E. Duchon. Lanczos filtering in one and two dimensions. Journal of Applied

Meteorology, 18(8): 1016-1022, August 1979.

[33] A. Eisinberg and G. Fedele. On the inversion of the Vandermonde matrix. Applied

Mathematics and Computation, 174(2): 1384-1397, 2006. ISSN 0096-3003.

[34] Torbjorn Granlund et al. The GNU Multiple Precision Arithmetic Library, http:

//gmplib. org/, 2011. C Library.

[35] Hany Farid. Fundamentals of image processing, www.cs.dartmouth.edu/

farid/tutorials/f ip.pdf, Spring 2011. Course notes for CS 188/88 Fun­

damentals of Image Processing.

[36] J. G. Fiasconaro. Two-dimensional nonrecursive digital filters. In Thomas Huang,

editor, Picture Processing and Digital Filters, volume 6 of Topics in Applied Physics,

chapter 3, pages 69-129. Springer-Verlag, New York, 1979. ISBN 978-3-540-

09339-8.

[37] John David Fisher. Design of finite impulse response digital filters. PhD thesis, Rice

University, Houston, Texas, May 1973.

[38] Andre Fortin. Analyse numeriquepour ingenieurs. Presses internationales Polytech-

nique, Montreal, 2nd edition, 2001.

[39] F. N. Fritsch. DPCHIM: Piecewise cubic Hermite interpolation to monotone data.

http://www.netlib.Org/slatec/pchip/dpchim.f, 1992. Computer

program.

[40] V. T. Gavrilyuk. Generalization of the first polynomial algorithm of E. Ya. Re-

mez for the problem of constructing rational-fractional Chebyshev approximation.

Ukrainskii Matematicheskii Zhurnal, 16:575-585, 1961.

[41] Luca Gemignani. Fast QR factorization of low-rank changes of Vandermonde-like

matrices. Calcolo, 36(1):1—15,1999. ISSN 0008-0624.

532

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.netlib.Org/slatec/pchip/dpchim.f

[42] Ilya Gershgorin. Subdivision and project 2. www.cs.cmu.edu/afs/cs/

academic/class/154 62-sll/www/lec_slides/Subdivision.pdf,

April 2011. Course notes for CSD 15-462 Computer Graphics taught by Nancy

Pollard.

[43] K. Glashoff and K. Roleff. A new method for Chebyshev approximation of complex-

valued functions. Mathematics of Computation, 36(153):233-239, January 1981.

[44] Israel Gohberg and Vadim Olshevsky. The fast generalized Parker-Traub algorithm

for inversion of Vandermonde and related matrices. Journal of Complexity, 13(2):

208-234, June 1997. ISSN 0885-064X.

[45] B. Gold and Jr. K. L. Jordan. A direct search procedure for designing finite duration

impulse response filters. IEEE Transactions on Audio and Electroacoustics, AU-17

(1):33—36, March 1969. ISSN 0018-9278.

[46] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins

University Press, Baltimore, MD, USA, 3 edition, 1996. ISBN 0-8018-5414-8.

[47] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, third edition, 2007. ISBN 013168728X.

[48] Andreas Gustafsson. Interactive image warping. Master's thesis, Department of

Computer Science, Helsinki University of Technology, Helsinki, Finland, May 1993.

[49] Ayman Habib and Joe Warren. Edge and vertex insertion for a class of C1 subdivi­

sion surfaces. Computer Aided Geometric Design, 16(4):223-247, May 1999.

[50] D. B. Harris. Interactive procedures for optimal Chebyshev design of FIR digital

filters. Master's thesis, MIT, Cambridge, MA, February 1976.

[51] David B. Harris and Russell M. Mersereau. A comparison of algorithms for minimax

design of two-dimensional linear phase FIR digital filters. IEEE Transactions on

Acoustics, Speech and Signal Processing, ASSP-25(6):492-500, December 1977.

ISSN 0096-3518.

[52] Paul S. Heckbert. Fundamentals of texture mapping and image warping. Master's

thesis, University of California, Berkeley, CA, June 1989.

[53] O. Herrmann. Design of nonrecursive digital filters with linear phase. Electronic

Letters, 6(11):328—329, May 1970. ISSN 0013-5194.

[54] O. Herrmann and H. W. Schuessler. Design of nonrecursive digital filters with min­

imum phase. Electronic Letters, 6(11):329-330, May 1970. ISSN 0013-5194.

533

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[55] H. S. Hersey and R. M. Mersereau. An algorithm to perform minimax approximation

in the absence of the Haar condition. M.I.T. Research Laboratory of Electronics

Quarterly Progress Report, 114, July 1974.

[56] E. Hofstetter, A. Oppenheim, and J. Siegel. A new technique for the design of non-

recursive digital filters. In Proceedings of the 5th Annual Princeton Conference on

Information Sciences and Systems, pages 64-72, March 1971. Reprinted in IEEE

Press DSP Reprints, 1972, page 187.

[57] Hsieh Hou and H. Andrews. Cubic splines for image interpolation and digital filter­

ing. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(6):508-517,

December 1978. ISSN 0096-3518.

[58] Denis Howe. Free On-Line Dictionary Of Computing (FOLDOC). http://

f oldoc. org, June 2011. FOLDOC is a computing dictionary.

[59] J. V. Hu and L. R. Rabiner. Design techniques for two-dimensional digital fil­

ters. IEEE Transactions on Audio and Electroacoustics, AU-20(4):249-257, Oc­

tober 1972. ISSN 0018-9278.

[60] T. S. Huang. Two-dimensional windows. IEEE Transactions on Audio and Elec­

troacoustics, AU-20(l):80-90, March 1972.

[61] Hung T. Huynh. Accurate monotone cubic interpolation. Technical report, National

Aeronautics and Space Administration (NASA), Lewis Research Center, Cleveland,

Ohio, March 1991.

[62] Ken Joy. On-line geometric modeling notes: Doo-Sabin surfaces, www.es.

unc.edu/~dm/UNC/COMP258/LECTURES/Doo-Sabin.pdf, 2002. Lec­

ture notes for COMP258 Geometric and Solid Modeling taught by Dinesh Manocha.

[63] J. F. Kaiser. Digital filters. In F. F. Kuo and J. F. Kaiser, editors, Systems Analysis

by Digital Computer, chapter 7, pages 218-285. John Wiley and Sons, New York,

1966.

[64] Dan Kalman. The generalized Vandermonde matrix. Mathematics Magazine, 57(1):

15-21, January 1984.

[65] Y. Kamp and J. P. Thiran. Chebyshev approximation for two-dimensional nonrecur­

sive digital filters. IEEE Transactions on Circuits and Systems, CAS-22(3):208-218,

March 1975. ISSN 0098-4094.

534

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.es

[66] R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE

Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(6): 1153-1160,

December 1981. ISSN 0096-3518.

[67] Plamen Koev and James Demmel. Accurate and efficient matrix computations with

Vandermonde matrices using Schur functions, www-math. mit. edu/ -plamen/

talks /mit 0 2 . pdf, March 2002. Talk presented by Plamen Koev.

[68] C. L. Lawson. Contributions to the Theory of Linear Least Maximum Approxima­

tions. PhD thesis, University of California, Los Angeles, 1961.

[69] Antti Lehtinen. 3D Graphics. http://knol.google.eom/k/

3d-graphics, May 2011.

[70] Y. C. Lim and S. R. Parker. Discrete coefficient FIR digital filter design based upon

an LMS criteria. IEEE Transactions on Circuits and Systems, CAS-30(10):723-739,

October 1983. ISSN 0098-4094.

[71] Yong Ching Lim, Ju-Hong Lee, C. K. Chen, and Rong-Huan Yang. A weighted

least squares algorithm for quasi-equiripple FIR and IIR digital filter design. IEEE

Transactions on Signal Processing, 40(3):551-558, March 1992. ISSN 1053-587X.

[72] George G. Lorentz. Approximation of Functions. AMS Chelsea Publishing Se­

ries. American Mathematical Society, Providence, Rhode Island, 1986. ISBN

9780821840504.

[73] N. Macon and A. Spitzbart. Inverses of Vandermonde matrices. The American

Mathematical Monthly, 65(2):95-100, February 1958.

[74] John Maddock, Paul A. Bristow, Hubert Holin, Xiaogang Zhang, and Bruno

Lalande. The Remez method. http://www.boost.org/doc/libs/

1_3 6_0/libs/math/doc/sf_and_dist/html/math_toolkit/

backgrounders/remez . html, 2008. Description of the Remez algorithm

implemented in the Boost C++ Libraries.

[75] Steve Marschner. CS465 notes: Sampling and reconstruction. www.

cs.Cornell.edu/Courses/cs4 65/2004 fa/cvs/readings/

sampling-notes-v2.pdf, September 2004. Course notes for CS465:

Computer Graphics I taught by Steve Marschner.

[76] J. H. McClellan. The design of two-dimensional digital filters by transformations. In

Proceedings of the 7th Annual Princeton Conference on Information Sciences and

Systems, pages 247-251, Princeton, New Jersey, 1973.

535

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77] James H. McClellan and Thomas W. Parks. A unified approach to the design of

optimum FIR linear-phase digital filters. IEEE Transactions on Circuit Theory, CT-

20(6):697-701, November 1973. ISSN 0018-9324.

[78] Gian Antonio Mian and Alberto Pio Nainer. A fast procedure to design equiripple

minimum-phase FIR filters. IEEE Transactions on Circuits and Systems, CAS-29

(5):327—331, May 1982. ISSN 0098-4094.

[79] Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer graphics.

SIGGRAPH Computer Graphics, 22(4):221-228, June 1988. ISSN 0097-8930.

[80] K. H. Mueller. A new approach to optimum pulse shaping in sampled systems using

time-domain filtering. The Bell System Technical Journal, 52(5):723-729, May-

June 1973.

[81] Ricardo Pachon and Lloyd N. Trefethen. Barycentric-Remez algorithms for best

polynomial approximation in the chebfun system. Bit Numerical Mathematics, 49

(4):721-741,2009.

[82] T. W. Parks and J. H. McClellan. Chebyshev approximation for nonrecursive digital

filters with linear phase. IEEE Transactions on Circuit Theory, CT-19(2):189-194,

March 1972. ISSN 0018-9324.

[83] Jorg Peters and Ulrich Reif. The simplest subdivision scheme for smoothing poly-

hedra. ACM Transactions on Graphics, 16(4):420-431, October 1997. ISSN 0730-

0301.

[84] Jorg Peters and Le-Jeng Shiue. Combining 4- and 3-direction subdivision. ACM

Transactions on Graphics, 23(4):980-1003, October 2004. ISSN 0730-0301.

[85] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation. Addison-Wesley

Professional, 1st edition, April 2005.

[86] A. Potchinkov and R. Reemtsen. FIR filter design in the complex domain by a semi-

infinite programming technique, i. the method. Archiv fur Elektronik und Ubertra-

gungstechnik (AEU), 48:135-144, 1994.

[87] K. P. Preuss. A novel approach for complex Chebyshev approximation with FIR

filters using the Remez exchange algorithm. In Proceedings of the IEEE Inter­

national Conference on Acoustics, Speech and Signal Processing, pages 872-875,

April 1987.

536

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[88] Klaus Preuss. On the design of FIR filters by complex Chebyshev approximation.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5):702-712,

May 1989. ISSN 0096-3518.

[89] L. R. Rabiner. The design of finite impulse response digital filters using linear pro­

gramming techniques. Bell Systems Technical Journal, 51:1117-1198, July-August

1972.

[90] L. R. Rabiner, B. Gold, and C. A. McGonegal. An approach to the approximation

problem for nonrecursive digital filters. IEEE Transactions on Audio and Electroa-

coustics, AU-18(2):83—106, June 1970. ISSN 0018-9278.

[91] L. R. Rabiner, J. H. McClellan, and T. W. Parks. FIR digital filter design techniques

using weighted Chebyshev approximation. Proceedings of the IEEE, 63(4):595-610,

April 1975. ISSN 0018-9219.

[92] Chantal Racette. Construction, analysis and comparison of filters and interpolation

schemes for image resampling. Honours Thesis. Laurentian University, Sudbury ON

Canada, 2009.

[93] Chantal Racette, Nicolas Robidoux, and John Cupitt. VIPS (Virtual Image Process­

ing System) VSQBS Version 7.22. github . com/ jcupitt/libvips/blob/

master/libvips/resample/vsqbs . cpp, 2010. Computer program.

[94] Ake Bjorck and Victor Pereyra. Solution of Vandermonde systems of equations.

Mathematics of Computation, 24(112):893—903, October 1970.

[95] E. Ya. Remez. Fundamentals of numerical methods for Chebyshev approximations.

Naukova Dumka, 1969.

[96] E. Ya. Remez and V. T. Gavrilyuk. Computer development of certain approaches

to the approximate construction of solutions of Chebyshev problems nonlinearly

depending on parameters. Ukrainskii Matematicheskii Zhurnal, 12:324—338, 1960.

[97] T. J. Rivlin. The Chebyshev Polynomials. John Wiley and Sons, New York, 1974.

[98] T. J. Rivlin and H. S. Shapiro. A unified approach to certain problems of approxi­

mation and minimization. Journal of the Society for Industrial and Applied Mathe­

matics, 9(4):670-699, December 1961.

[99] Theodore J. Rivlin. An Introduction to the Approximation of Functions. Blaisdell

Publishing Company, Waltham, Massachusetts, 1969. ISBN 0-486-64069-8. Cor­

rected reprint by Dover Publications, Inc., New York, 1981.

537

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[100] Nicolas Robidoux. Can't have interpolatory and strongly diagonal preserving. Pri­

vate Communication, February 2010.

[101] Nicolas Robidoux. Where the resampling methods stand. Private Communication,

February 2010.

[102] Nicolas Robidoux. Graphes - ID, March 2010. Private Communication.

[103] Nicolas Robidoux. "Mid-edge" constant sur les diagonales, January 2010. Private

Communication.

[104] Nicolas Robidoux and Stanly Steinberg. A discrete vector calculus in tensor grids.

Computational Methods in Applied Mathematics (CMAM), 11(1):23—66, 2011.

[105] Nicolas Robidoux, Minglun Gong, John Cupitt, Adam Turcotte, and Kirk Martinez.

CPU, SMP and GPU implementations of Nohalo level 1, a fast co-convex antialias­

ing image resampler. In Bipin C. Desai, Carson Kai-Sang Leung, and Olga Or-

mandjieva, editors, C3S2E, ACM International Conference Proceeding Series, pages

185-195. ACM, 2009. ISBN 978-1-60558-401-0.

[106] Nicolas Robidoux, Chantal Racette, and John Cupitt. VIPS (Virtual Image Pro­

cessing System) LBB Version 7.22. git hub . com/ j cupitt/libvips/blob/

master/libvips/resample/lbb. cpp, 2010. Computer program.

[107] Nicolas Robidoux, Chantal Racette, John Cupitt, and Adam Turcotte. VIPS (Vir­

tual Image Processing System) Nohalo Version 7.22. git hub. com/ j cupitt/

libvips/blob/master/libvips/resample/nohalo.cpp,2010. Com­

puter program.

[108] Nicolas Robidoux, John Cupitt, Chantal Racette, Anthony

Thyssen, Adam Turcotte, and Frederick Weinhaus. Better and

faster image resizing and resampling. river-valley. tv/

better-and-faster-image-resizing-and-resampling, 2011.

Video of a Libre Graphics Meeting 2011 seminar. Producer: River Valley

Technologies, London and Trivandrum, India.

[109] Nicolas Robidoux, Adam Turcotte, Chantal Racette, Anthony Thyssen, John

Cupitt, and 0yvind Kolas. GEGL (GEneric Graphics Library) Lohalo sam­

pler Version 0.1.6. git. gnome . org/browse/gegl/tree/gegl/buf f er/

gegl-sampler-lohalo . c,2011. Computer program.

[110] Joseph J. Rushanan. On the Vandermonde matrix. The American Mathematical

Monthly, 96(10):921-924, December 1989. ISSN 0002-9890.

538

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[111] Johathan Sachs. Image resampling. ftp2.bmtmicro.com/dlc/

Resampling.pdf, 2001. This document is an advanced tutorial on resiz­

ing images with Picture Window.

[112] Henry Samueli. On the design of optimal equiripple FIR digital filters for data trans­

mission applications. IEEE Transactions on Circuits and Systems, 35(12): 1542—

1546, December 1988. ISSN 0098-4094.

[113] T. Saramaki and Y. Neuvo. A class of FIR Nyquist (Nth-band) filters with zero

intersymbol interference. IEEE Transactions on Circuits and Systems, CAS-34(10):

1182-1190, October 1987. ISSN 0098-4094.

[114] Matthias Schulist. Improvements of a complex FIR filter design algorithm. Signal

Processing, 20(1):81—90, May 1990. ISSN 0165-1684.

[115] Scilab. Scilab: The free software for numerical computation, www.scilab.org,

2011. Official website for Scilab.

[116] Victor Shoup. NTL: A library for doing number theory, http: / /www. shoup.

net/ntl/download. html, 2009. C++ Library.

[117] Steven W. Smith. The scientist and engineer's guide to digital signal processing,

1997.

[118] K. Steiglitz. Design of digital phase networks. IEEE Transactions on Acoustics,

Speech and Signal Processing, ASSP-29:171-176, April 1981.

[119] Richard M. Stern. 18-791 lecture #7: Frequency response of LSI sys­

tems. www.ece.emu.edu/~ee7 91/lectures/LI2/FreqResp.ppt,

September 2000. Course notes for Prof. Richard Stern's Digital Signal Processing I.

[120] R. L. Streit and A. H. Nuttall. A general Chebyshev complex function approximation

procedure and an application to beamforming. Journal of the Acoustical Society of

America, 72(1): 181—190, July 1982.

[121] Ping Tak Peter Tang. A fast algorithm for linear complex Chebyshev approxima­

tions. Mathematics of Computation, 51(184):721-739, October 1988.

[122] W. P. Tang and G. H. Golub. The block decomposition of a Vandermonde matrix

and its applications. BIT Numerical Mathematics, 21(4):505-517, 1981. ISSN 0006-

3835.

539

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.scilab.org

[123] SA Tawfik. Minimax approximation and Remez algorithm. http:

//www.math.unipd.it/~alvise/CS_2008/APPROSSIMAZIONE_

2009/MFILES/Remez .pdf, 2005. Part of the course notes for Alvise

Sommariva at Universita degli Studi di Padova.

[124] A. F. Timan. Theory of Approximation of Functions of a Real Variable. Dover Books

on Advanced Mathematics. Dover Publications, Oxford, England, 1994. ISBN

9780486678306.

[125] Ching-Yih Tseng. Further results on complex Chebyshev FIR filter design using a

multiple exchange algorithm. In Proceedings of the IEEE 1993 International Sym­

posium on Circuits and Systems, pages 343-346, May 1993. ISBN 0-7803-1281-3.

[126] Ken Turkowski. Filters for common resampling tasks. In Andrew S. Glassner, editor,

Graphics Gems, pages 147-165. Academic Press Professional, Inc., San Diego, CA,

USA, 1990. ISBN 0-12-286169-5.

[127] Christopher Twigg. Catmull-Rom splines. www.cs.cmu.edu/~4 62/

projects/assn2/assn2/catmullRom.pdf, March 2003. Notes for an as­

signment for 15-462 Computer Graphics taught by Nancy Pollard.

[128] Joe Warren and Henrik Weimer. Subdivision Methods for Geometric Design: A

Constructive Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1st edition, 2001. ISBN 1558604464.

[129] Calvin Williamson, Caroline Dahloff, Manish Singh, Jay Cox Daniel Rogers, Sven

Neumann, Michael Natterer, 0yvind Kolas, Philip Lafleur, Dominik Ernst, Richard

Kralovic, Kevin Cozens, Victor Bogado, Martin Nordholts, Geert Jordaens, Michael

Schumacher, John Marshall, Etienne Bersac, Mark Probst, Hakon Hitland, Tor

Lillqvist, Hans Breuer, Deji Akingunola, Bradley Broom, Hans Petter Jansson,

Jan Heller, dmacks@netscpace.org, Sven Anders, Hubert Figuiere, Sam Hoce-

var, yahvuu@gmail.com, Nicolas Robidoux, Ruben Vermeersch, Gary V. Vaughan,

James Legg, Henrik Akesson, Fryderyk Dziarmagowski, Ozan Caglayan, Tobias

Mueller, Nils Philippsen, Adam Turcotte, Danny Robson, Javier Jardon, Yakkov

Selkowitz, Kaja Liiv, Eric Daoust, Damien de Lemeny, Fabian Groffen, Vincent

Untz, Debarshi Ray, Stuart Axon, Kao, Barak Itkin, Michael Mure, Mikael Mag-

nusson, Patrick Horgan, Tobias Ellinghaus, Rasmus Hahn, Chantal Racette, John

Cupitt, Anthony Thyssen, Garry R. Osgood, Shlomi Fish, Jakub Steiner, and Tonda

Tavalec. GEGL (GEneric Graphics Library) Version 0.1.6. www. gegl. org, 2011.

Computer program.

540

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:dmacks@netscpace.org
mailto:yahvuu@gmail.com

[130] George Wolberg and Itzik Alfy. Monotonic cubic spline interpolation. Computer

Graphics International Conference, 0:188, 1999.

[131] Denis Zorin, Peter Schroder, T. Derose, L. Kobbelt, A. Levin, and W. Sweldens.

Subdivision for Modeling and Animation. In SIGGRAPH 2000 Course Notes, New

Orleans, Louisiana, USA, July 2000. Association for Computing Machinery (ACM).

541

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

4-3 Box-Spline, 22
4-8 Box-Spline, 22

Affine Function, 20

AMP, 88, 126
Cardinal Data, 118

Co-convexity, 89

Definition, 88, 90-92

Exactness on Linears, 89, 92

Hard Interface
One Subdivision, 156, 329, 330

Two Subdivisions, 159, 360, 362,

Hard Line

One Subdivision, 156, 323, 324
Two Subdivisions, 159, 350-352

Heaviside Data, 122

Matlab Code, 499

Positivity, 89-91

Sine Data, 141

Soft Heaviside Data, 130

Soft Interface
One Subdivision, 156, 342-344
Two Subdivisions, 159, 381, 384

Soft Line
One Subdivision, 156, 336, 337
Two Subdivisions, 159, 373, 374

AMP Null

Diagonal Preservation, 90, 91

AMP Slope, 88, 90-92

AMP Tensor
Diagonal Preservation, 92

Analytic Approximation Method, 165

Approximation, 164

Band-pass Filter, 182

Bicubic, 10, 17, 20

Hard Interface

One Subdivision, 156, 328
Two Subdivisions, 159, 360

Hard Line
One Subdivision, 156, 323

Two Subdivisions, 159, 349

Matlab Code, 478

Soft Interface
One Subdivision, 156, 342
Two Subdivisions, 159, 382

Soft Line
One Subdivision, 156, 335
Two Subdivisions, 159, 371

Bicubic B-Splines, 22

Bicubic Hermite Surface, 82

Bicubic Interpolation, 47
Bilinear, 10, 17-20, 22

Hard Interface

One Subdivision, 156, 330
Two Subdivisions, 159, 362

Hard Line
One Subdivision, 156, 324
Two Subdivisions, 159, 351

Matlab Code, 477
Soft Interface

One Subdivision, 156, 344
Two Subdivisions, 159, 385

Soft Line

One Subdivision, 156, 337
Two Subdivisions, 159, 375

Bilinear Interpolation, 36

Bitmap Image, 3

Box
Decimation by a Factor of 1

Half Phase, 222

542

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zero Phase, 221

Decimation by a Factor of 2
Half Phase, 224
Zero Phase, 223

Decimation by a Factor of 3
Half Phase, 226
Zero Phase, 225

Decimation by a Factor of 4

Half Phase, 228

Zero Phase, 227
Decimation by a Factor of 5

Half Phase, 230
Zero Phase, 229

Decimation by a Factor of 6

Half Phase, 232

Zero Phase, 231

Decimation by a Factor of 7
Half Phase, 234
Zero Phase, 233

Decimation by a Factor of 8
Half Phase, 236
Zero Phase, 235

Cardinal Data, 42
Catmull-Clark Scheme, 8
Catmull-Rom, 10, 17, 20,41

Cardinal Data, 120

Decimation by a Factor of 1
Half Phase, 222
Zero Phase, 221

Decimation by a Factor of 2

Half Phase, 224

Zero Phase, 223

Decimation by a Factor of 3

Half Phase, 226

Zero Phase, 225
Decimation by a Factor of 4

Half Phase, 228
Zero Phase, 227

Decimation by a Factor of 5

Half Phase, 230

Zero Phase, 229

Decimation by a Factor of 6

Half Phase, 232

Zero Phase, 231
Decimation by a Factor of 7

Half Phase, 234

Zero Phase, 233
Decimation by a Factor of 8

Half Phase, 236
Zero Phase, 235

Hard Interface
One Subdivision, 156, 328

Two Subdivisions, 159, 360
Hard Line

One Subdivision, 156, 323

Two Subdivisions, 159, 349
Heaviside Data, 124
Matlab Code, 511
Non-Smooth Data, 136
Sine Data, 139
Soft Cardinal Data, 128
Soft Heaviside Data, 132
Soft Interface

One Subdivision, 156, 342

Two Subdivisions, 159, 382

Soft Line

One Subdivision, 156, 335
Two Subdivisions, 159, 371

CDVS, 65, 67, 102, 104

Co-convexity, 66

Co-monotonicity, 66

Definition, 66

Diagonal Preservation, 67

Exactness on Linears, 67, 68

Hard Interface
One Subdivision, 156, 330

Hard Line
One Subdivision, 156, 324

Matlab Code, 524

Positivity, 68

Soft Interface
One Subdivision, 156, 344

Soft Line

543

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One Subdivision, 156, 337

CDVS 2
Hard Interface

Two Subdivisions, 159, 365

Hard Line
Two Subdivisions, 159, 354

Soft Interface

Two Subdivisions, 159, 386

Soft Line

Two Subdivisions, 159, 375
CDVSQB

Soft Interface
One Subdivision, 343

CDVSQBS

Cardinal Data, 121
Co-convexity, 103
Definition, 102, 104
Diagonal Preservation, 104

Exactness on Linears, 104, 105
Hard Interface

One Subdivision, 156, 329
Two Subdivisions, 159, 361

Hard Line

One Subdivision, 156, 323

Two Subdivisions, 159, 349
Heaviside Data, 125
Non-Smooth Data, 137
Overshoot, 103
Positivity, 103, 105
Sine Data, 140

Soft Cardinal Data, 129

Soft Heaviside Data, 133

Soft Interface
One Subdivision, 156
Two Subdivisions, 159, 383

Soft Line
One Subdivision, 156, 335

Two Subdivisions, 159, 372
Undershoot, 103

Centred Difference Slope, 41

Centred Differences, 66, 67, 85
Centred Differences Cross-Derivatives, 91

Chebyshev Error, 181

Chebyshev Error Criterion, 167, 180, 181

Chebyshev FIR Filter Design, 178, 179

Chebyshev Norm, 167

Chebyshev Theorem, 167

Co-convexity, 19, 20, 27-30, 37, 43, 44, 51,
57, 61, 66, 70, 74, 79, 89, 96, 99,

103, 108, 114

Co-monotonicity, 18, 27, 37, 42, 50, 56, 61,

66, 69, 74, 99, 107, 113

Colour Images, 3

Complex Frequency Domain, 184

Conditional Co-convexity, 27, 29, 38, 43,

44, 79

Conditionally Diagonal-Preserving, 23, 24
Convex Hull, 18, 33
Convexity, 19, 20
Cosine

Approximation Error

[-1,1], 210
CR, 90

Co-convexity, 43, 44

Co-monotonicity, 42

Definition, 41,47

Diagonal Preservation, 47

Exactness on Linears, 46, 48
Local Boundedness, 42,48
Overshoot, 42
Undershoot, 42

Cross-Derivative, 85

Cross-Derivatives, 83
Cubic B-Spline

Decimation by a Factor of 1

Half Phase, 222

Zero Phase, 221

Decimation by a Factor of 2
Half Phase, 224
Zero Phase, 223

Decimation by a Factor of 3
Half Phase, 226
Zero Phase, 225

Decimation by a Factor of 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Half Phase, 228

Zero Phase, 227
Decimation by a Factor of 5

Half Phase, 230
Zero Phase, 229

Decimation by a Factor of 6

Half Phase, 232

Zero Phase, 231
Decimation by a Factor of 7

Half Phase, 234

Zero Phase, 233

Decimation by a Factor of 8

Half Phase, 236

Zero Phase, 235
Cubic Hermite Spline, 41, 88

Descent Algorithm, 185

Diagonal Preservation, 21, 22, 32, 39, 47,
67, 69, 71, 76, 83, 85, 87, 95, 104,
112, 115

Matlab Code, 461

Digital Image, 4

Discrete Fourier Transform, 182

Discrete-Time Fourier Transform, 218
Dolph-Chebyshev Window, 182
Doo-Sabin, 9, 13
Downsampling Method, 5
Dual Grid Pixel Locations, 23

Equiripple, 181, 183, 184, 186

Equiripple Linear-Phase Design, 183

Equiripple Minimum-Phase Design, 183
Exactly Linear Phase, 178, 180
Exactness on Linears, 20, 21, 31, 34, 38,

40, 46, 48, 51, 52, 57, 59, 61, 63,
67, 68, 71, 72, 75, 77, 81, 85, 86,

89, 92, 97, 100, 104, 105, 111, 113,

114,116
Extraripple Filter, 183

Face Split, 7, 25, 31, 35, 98
Face Split Subdivision Method, 24

Filter Kernel, 10

Finishing Scheme, 13, 36, 49, 99, 100, 102,
113

Finite Differences, 28

FIR Filter, 178, 182-184, 186, 187

FIR Filter Design, 178, 179, 181, 182, 184,

187
Problem Statement, 179

FLOSS, 25, 55

Fourier Series, 181

Fourier Transform, 218
Frequency Response, 178, 180, 217, 218

Scilab Code, 431

Frequency Sampling Method, 182

Frequency Spectrum, 218
Magnitude, 218
Phase, 218

Gaussian Blur, 18,19
Gaussian Smoothing, 10

GEGL, 26, 36, 55
Gibbs Phenomenon, 181, 182
GIMP, 26

GMP, 405
GPU, 11, 14

Greyscale Image, 3

Hamming Window, 182
Hard Interface

One Subdivision
Face Split, 148
Vertex Split, 148

Two Subdivisions

Face Split, 157
Vertex Split, 157

Hard Line
One Subdivision

Face Split, 146

Vertex Split, 147
Two Subdivisions

Face Split, 156
Vertex Split, 156

Harmonic Average, 93
Heaviside Data, 42, 99, 103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hermite Bicubic Spline, 47

Hybrid Image Resampling, 14

Hybrid Methods, 98, 102, 107
Hybrid Scheme, 25

Ideal Filter, 180, 217

Ideal Frequency Response, 181, 183

IIR Filter, 178, 186

Image Quantization, 5

Image Resampling, 5
Image Resizing, 5, 13

Image Sampling, 5
Impulse, 217

Impulse Response, 10, 178, 179, 181,218

Interpolation, 164

Interpolator^ 17, 23-25, 41, 69, 73, 78, 88,

93,98, 102, 107, 113

Interpolatory Method, 17

Iterative Descent Method, 183

Jacobian-Adaptive, 55

Kaiser Window, 182
Keys Bicubic, 46, 48
Kobbelt, 22
Kobbelt Scheme, 8
Kronecker Delta, 10

Lagrange Interpolation, 10
Lanczos 2

Approximations, 431

Lanczos 2, 10, 17

Approximations

Error, 215, 217

Decimation by a Factor of 1

Approximations, 239

Half Phase, 222

Zero Phase, 221

Decimation by a Factor of 2
Degree 10, 241
Degree 12, 242
Degree 14, 243
Degree 16, 244

546

Degree 8, 240

Half Phase, 224

Zero Phase, 223
Decimation by a Factor of 3

Degree 10, 246
Degree 12, 247
Degree 14, 248
Degree 16, 249
Degree 8, 245
Half Phase, 226
Zero Phase, 225

Decimation by a Factor of 4

Degree 10, 251

Degree 12, 252

Degree 14, 253

Degree 16, 254

Degree 8, 250

Half Phase, 228

Zero Phase, 227

Decimation by a Factor of 5
Degree 10, 256
Degree 12, 257
Degree 14, 258
Degree 16, 259

Degree 8, 255

Half Phase, 230

Zero Phase, 229

Decimation by a Factor of 6
Degree 10, 261
Degree 12, 262
Degree 14, 263
Degree 16, 264
Degree 8, 260
Half Phase, 232

Zero Phase, 231

Decimation by a Factor of 7
Degree 10,266
Degree 12, 267
Degree 14,268
Degree 16, 269
Degree 8, 265
Half Phase, 234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zero Phase, 233

Decimation by a Factor of 8

Degree 10, 271

Degree 12, 272

Degree 14, 273

Degree 16, 274

Degree 8, 270

Half Phase, 236

Zero Phase, 235

Hard Interface
One Subdivision, 156, 328

Two Subdivisions, 159, 359

Hard Line
One Subdivision, 156, 322

Two Subdivisions, 159, 348

Matlab Code, 479

Soft Interface
One Subdivision, 156, 341

Two Subdivisions, 159, 382

Soft Line
One Subdivision, 156, 334

Two Subdivisions, 159, 370

Lanczos 3, 10, 17
Approximations, 431

Error, 216, 217
Decimation by a Factor of 1

Approximations, 275

Half Phase, 222

Zero Phase, 221

Decimation by a Factor of 2
Degree 14, 276
Degree 16, 277
Degree 18, 278
Degree 20, 279
Degree 22, 280
Degree 24, 281
Half Phase, 224

Zero Phase, 223

Decimation by a Factor of 3

Degree 14, 282

Degree 16, 283

Degree 18, 284

Degree 20, 285

Degree 22,286

Degree 24, 287

Half Phase, 226

Zero Phase, 225
Decimation by a Factor of 4

Degree 14, 288

Degree 16, 289

Degree 18, 290

Degree 20, 291

Degree 22, 292
Degree 24, 293
Half Phase, 228
Zero Phase, 227

Decimation by a Factor of 5

Degree 14, 294

Degree 16, 295

Degree 18,296

Degree 20, 297

Degree 22, 298
Degree 24, 299
Half Phase, 230

Zero Phase, 229
Decimation by a Factor of 6

Degree 14, 300

Degree 16, 301

Degree 18, 302

Degree 20, 303

Degree 22, 304
Degree 24, 305

Half Phase, 232

Zero Phase, 231
Decimation by a Factor of 7

Degree 14, 306

Degree 16, 307
Degree 18, 308

Degree 20, 309

Degree 22, 310

Degree 24, 311

Half Phase, 234

Zero Phase, 233

Decimation by a Factor of 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree 14, 312

Degree 16, 313

Degree 18, 314

Degree 20, 315

Degree 22, 316

Degree 24, 317

Half Phase, 236

Zero Phase, 235
Hard Interface

Two Subdivisions, 358

Hard Interface
One Subdivision, 156, 328
Two Subdivisions, 159

Hard Line

One Subdivision, 156, 322
Two Subdivisions, 159, 348

Matlab Code, 480

Soft Interface

One Subdivision, 156, 341
Two Subdivisions, 159, 380

Soft Line

One Subdivision, 156, 334

Two Subdivisions, 159, 370
Lawson Algorithm, 184, 187
LBB, 25,93, 126

Cardinal Data, 118

Co-convexity, 96
Definition, 94
Diagonal Preservation, 95

Exactness on Linears, 97

Hard Interface

One Subdivision, 156, 330

Two Subdivisions, 159, 363
Hard Line

One Subdivision, 156, 324
Two Subdivisions, 159, 352

Heaviside Data, 122

Matlab Code, 512

Non-Smooth Data, 134

Positivity, 96

Sine Data, 142

Soft Interface

One Subdivision, 156, 342
Two Subdivisions, 159, 383

Soft Line
One Subdivision, 156, 336

Two Subdivisions, 159, 371
LBB Slopes, 95
Limit Surface, 12
Linear, 41,49, 55, 65
Linear Interpolating Filtering Methods, 41

Linear Interpolation, 56

Linear Phase Filter, 183

Linear Programming, 179, 182-187

Linear Smoothing Filtering Methods, 49
Linear Subdivision Method, 7

Linear-Phase FIR Filter, 179, 184

Linears, 20
Local Boundedness, 18, 19, 33, 40, 42, 48,

51,59, 63,75, 83, 84, 114

Lohalo, 26

Lookup Table, 10, 11

Low-Pass Filter, 182, 183

Lower Hessenberg Matrix, 171

Maximal Ripple Filter, 183

Midedge, 9, 18-20, 36, 55-57, 60, 62

Co-convexity, 57
Co-mono tonicity, 56
Definition, 56, 58

Diagonal Preservation, 58

Exactness on Linears, 57, 59
Hard Interface

One Subdivision, 156, 333

Hard Line
One Subdivision, 156, 327

Local Boundedness, 59

Matlab Code, 518

Soft Interface
One Subdivision, 156, 347

Soft Line
One Subdivision, 156, 340

Midedge 2

Hard Interface

548

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two Subdivisions, 159, 367

Hard Line
Two Subdivisions, 159, 356

Soft Interface
Two Subdivisions, 159, 389

Soft Line
Two Subdivisions, 159, 378

Midedge-QBS Hybrid Scheme, 55

Minimax
Boost Library Code, 406

Scilab Code, 427

Minimax Algorithm, 185

Minimax Approximation Method, 165

Minimax Error Criterion, 181

Minimax FIR Filter Design, 178

Minmod Function, 26

Minmod Midedge, 60, 62
Co-convexity, 61
Co-monotonicity, 61
Definition, 61
Diagonal Preservation, 62
Exactness on Linears, 61, 63
Hard Interface

One Subdivision, 156, 333

Hard Line
One Subdivision, 156, 327

Local Boundedness, 63
Matlab Code, 519
Soft Interface

One Subdivision, 156, 347

Soft Line
One Subdivision, 156, 340

Minmod Midedge 2
Hard Interface

Two Subdivisions, 159, 368

Hard Line
Two Subdivisions, 159, 357

Soft Interface
Two Subdivisions, 159, 389

Soft Line
Two Subdivisions, 159, 379

Minmod Slope, 26, 31, 34, 60, 62, 66, 69,

71,90-92

Mitchell-Netravali, 10, 18
Decimation by a Factor of 1

Half Phase, 222
Zero Phase, 221

Decimation by a Factor of 2

Half Phase, 224

Zero Phase, 223
Decimation by a Factor of 3

Half Phase, 226

Zero Phase, 225
Decimation by a Factor of 4

Half Phase, 228
Zero Phase, 227

Decimation by a Factor of 5
Half Phase, 230
Zero Phase, 229

Decimation by a Factor of 6

Half Phase, 232

Zero Phase, 231
Decimation by a Factor of 7

Half Phase, 234

Zero Phase, 233
Decimation by a Factor of 8

Half Phase, 236

Zero Phase, 235
Monotonicity, 18, 79
MP, 19, 78, 126

Cardinal Data, 118

Co-convexity, 79

Continuity, 88

Definition, 79

Diagonal Preservation, 87
Exactness on Linears, 81, 85, 86

Hard Interface
One Subdivision, 156, 329, 330

Two Subdivisions, 159, 360, 361, 363

Hard Line
One Subdivision, 156, 323, 324
Two Subdivisions, 159, 350-352

Heaviside Data, 122

549

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local Boundedness, 83, 84

Matlab Code, 486
Positivity, 86
Scilab, 93
Sine Data, 142
Soft Heaviside Data, 130
Soft Interface

One Subdivision, 156, 342-344
Two Subdivisions, 159, 381, 384

Soft Line
One Subdivision, 156, 336, 337
Two Subdivisions, 159, 373, 374

MP (Harmonic Average)

Cardinal Data, 118

Definition, 93

Heaviside Data, 122

Non-Smooth Data, 135

Sine Data, 143
Soft Cardinal Data, 126
Soft Heaviside Data, 130

MP 2D with Centred Differences Cross-
Derivatives

Definition, 85
MP 2D with Null Cross-Derivatives

Definition, 83
MP Centred

Diagonal Preservation, 85

MP Null
Diagonal Preservation, 83

MP Slope, 78

Multiple Exchange, 187

MVS, 66, 67, 69, 76, 107, 111

Co-convexity, 70

Co-monotonicity, 69

Definition, 69, 71

Diagonal Preservation, 71

Exactness on Linears, 71, 72

Hard Interface
One Subdivision, 156, 330

Hard Line
One Subdivision, 156, 324

Matlab Code, 521

Positivity, 72

Soft Interface
One Subdivision, 156, 345

Soft Line
One Subdivision, 156, 338

MVS 2

Hard Interface
Two Subdivisions, 159, 365

Hard Line
Two Subdivisions, 159, 354

Soft Interface
Two Subdivisions, 159, 386

Soft Line

Two Subdivisions, 159, 376

MVSQBS, 115
Cardinal Data, 119
Co-convexity, 108
Co-monotonicity, 107
Definition, 107, 111
Diagonal Preservation, 112
Exactness on Linears, 111, 113
Hard Interface

One Subdivision, 156, 330

Two Subdivisions, 159, 364

Hard Line
One Subdivision, 156, 324

Two Subdivisions, 159, 353

Heaviside Data, 123

Non-Smooth Data, 138

Positivity, 112

Sine Data, 144

Soft Cardinal Data, 127

Soft Heaviside Data, 131

Soft Interface
One Subdivision, 156, 343

Two Subdivisions, 159, 385

Soft Line
One Subdivision, 156, 335
Two Subdivisions, 159, 372

Natural Image, 4
Nearest Neighbour, 10, 17-19

550

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Newton Polynomial Representation,

172,174
Newton-Raphson Method, 186
NIP2, 26, 36, 55
Nohalo, 25, 35, 60, 61

Co-convexity, 27-30

Co-monotonicity, 27

Definition, 26, 31

Diagonal Preservation, 32

Exactness on Linears, 31, 34

Hard Interface
One Subdivision, 156, 330

Hard Line
One Subdivision, 156, 324

Local Boundedness, 33

Matlab Code, 482

Soft Interface
One Subdivision, 156, 341

Soft Line
One Subdivision, 156, 334

Nohalo 2

Hard Interface
Two Subdivisions, 159, 364

Hard Line
Two Subdivisions, 159, 353

Soft Interface
Two Subdivisions, 381

Soft Line
Two Subdivisions, 159, 369

Nohalo-CR, 98, 99

Co-convexity, 99

Co-monotonicity, 99

Definition, 100

Exactness on Linears, 100
Positivity, 100

Nohalo-LBB
Hard Interface

One Subdivision, 156

Two Subdivisions, 159, 363

Hard Line
One Subdivision, 156
Two Subdivisions, 159, 352

>, Soft Interface
One Subdivision, 156
Two Subdivisions, 380

Soft Line

One Subdivision, 156

Two Subdivisions, 159, 369
Nohalo-LBB Hybrid Scheme, 25, 26, 30
Non-interpolatory, 18, 24, 35, 49, 55, 60, 65
Nonlinear, 25, 35, 60, 61, 69, 73, 78, 88, 93,

98, 102, 107, 113
Nonlinear Interpolatory Methods, 78
Nonlinear Subdivision Method, 7

NTL, 405
Null Cross-Derivatives, 90

Nyquist Filter, 179, 184, 186

One Subdivision
Face Split, 8

Vertex Split, 9
Optimal Approximation, 180, 182-185

Parks-McClellan Algorithm, 186

Plane, 21
Polynomial Approximations, 12
Polynomial Interpolation, 165
Polynomial of Best Approximation, 167,

182

Positivity, 18, 52, 68, 72, 76, 86, 89-91, 96,
100, 103, 105,112, 115

Primal Grid Pixel Locations, 23

QBS Smoothing, 102, 104, 107, 111, 113,

115

Quadratic B-Spline, 10, 13, 18-20

Basis Function, 49

Matlab Code, 522
Quadratic B-Splines, 37, 49

Co-convexity, 51
Co-monotonicity, 50
Definition, 49, 52
Exactness on Linears, 51, 52
Local Boundedness, 51
Positivity, 52

551

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Quadratic Programming, 187

Raster Image, 3
Remez Algorithm, 12, 167, 170, 175, 183,

184

Resampling Filter, 10, 13
Linear, 10

Ripple-Free, 21
ROVS, 113, 115

Co-convexity, 74

Co-monotonicity, 74

Definition, 76

Diagonal Preservation, 76

Exactness on Linears, 75, 77

Hard Interface
One Subdivision, 156, 330

Hard Line

One Subdivision, 156, 324

Local Boundedness, 75

Matlab Code, 525
Positivity, 76
Soft Interface

One Subdivision, 156, 345

Soft Line
One Subdivision, 156, 338

ROVS 2, 387
Hard Interface

Two Subdivisions, 159, 365

Hard Line
Two Subdivisions, 159, 354

Soft Interface
Two Subdivisions, 159

Soft Line
Two Subdivisions, 159, 376

ROVS Slope, 76

ROVSQBS

Cardinal Data, 119
Co-convexity, 114
Co-monotonicity, 113
Definition, 113, 115
Diagonal Preservation, 115
Exactness on Linears, 114, 116

Hard Interface

One Subdivision, 156, 330
Two Subdivisions, 159, 364

Hard Line

One Subdivision, 156, 324

Two Subdivisions, 159, 353
Heaviside Data, 123
Local Boundedness, 114
Non-Smooth Data, 137
Positivity, 115
Sine Data, 140

Soft Cardinal Data, 127

Soft Heaviside Data, 131

Soft Interface
One Subdivision, 156, 343
Two Subdivisions, 159, 385

Soft Line

One Subdivision, 156, 335
Two Subdivisions, 159, 372

Sharp, 24
SIMD, 11
Simplex Algorithm, 186, 187

Sine
Approximation Error

[-2, 2], 212
[-3,3], 213

[-4,4], 214

[-i |],211
Smoothing, 24
Snohalo, 35

Co-convexity, 37, 38
Co-monotonicity, 37
Diagonal Preservation, 39
Exactness on Linears, 38,40
Local Boundedness, 40
Matlab Code, 486

Snohalo 1, 35, 36
S n o h a l o 1 , 0 = 1

Hard Interface
One Subdivision, 156

Hard Line

552

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One Subdivision, 156

Soft Interface
One Subdivision, 156

Soft Line

One Subdivision, 156
Snohalo 1, 8 = |

Hard Interface

One Subdivision, 156

Hard Line
One Subdivision, 156

Soft Interface
One Subdivision, 156

Soft Line
One Subdivision, 156

Snohalo 1, 8 = |

Hard Interface
One Subdivision, 156

Hard Line
One Subdivision, 156

Soft Interface
One Subdivision, 156

Soft Line
One Subdivision, 156

Snohalo 1.5, 35, 36

Diagonal Preservation, 39
Snohalo 1.5, 8 = 1

Hard Interface

One Subdivision, 156, 331

Hard Line
One Subdivision, 156, 325

Soft Interface
One Subdivision, 156, 346

Soft Line

One Subdivision, 156, 339
Snohalo 1.5, 8 = |

Hard Interface
One Subdivision, 156, 332

Hard Line
One Subdivision, 156, 326

Soft Interface

One Subdivision, 156, 345

Soft Line

One Subdivision, 156, 340
Snohalo 1.5, 8 = |

Hard Interface

One Subdivision, 156, 331

Hard Line

One Subdivision, 156, 325
Soft Interface

One Subdivision, 156, 346

Soft Line

One Subdivision, 156, 339
S n o h a l o 2 , 8 = 1

Hard Interface
Two Subdivisions, 159, 366

Hard Line
Two Subdivisions, 159, 355

Soft Interface
Two Subdivisions, 159, 387

Soft Line

Two Subdivisions, 159, 377
Snohalo 2, 6 = |

Hard Interface
Two Subdivisions, 159, 367

Hard Line
Two Subdivisions, 159, 356

Soft Interface
Two Subdivisions, 159, 388

Soft Line
Two Subdivisions, 159, 377

Snohalo 2, 8 = §
Hard Interface

Two Subdivisions, 159, 366

Hard Line
Two Subdivisions, 159, 355

Soft Interface
Two Subdivisions, 159, 388

Soft Line
Two Subdivisions, 159, 378

Snohalo Smoothing, 35, 36

Co-convexity, 37

Co-monotonicity, 37

Definition, 36, 39
Snohalo, 8 = 1

553

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hard Interface

One Subdivision, 331

Hard Line
One Subdivision, 325

Soft Interface
One Subdivision, 347

Soft Line
One Subdivision, 338

Snohalo, 9 = |

Hard Interface
One Subdivision, 332

Hard Line
One Subdivision, 326

Soft Interface
One Subdivision, 345

Soft Line
One Subdivision, 339

Snohalo, 6 = |

Hard Interface
One Subdivision, 332

Hard Line
One Subdivision, 326

Soft Interface

One Subdivision, 346

Soft Line
One Subdivision, 338

Soft, 24
Soft Cardinal Data, 42

Soft Heaviside Data, 42, 99

Soft Interface
One Subdivision

Face Split, 150

Vertex Split, 150

Two Subdivisions

Face Split, 159
Vertex Split, 159

Soft Line
One Subdivision

Face Split, 149

Vertex Split, 149
Two Subdivisions

Face Split, 158

Vertex Split, 158
Spline Interpolation, 164
Strongly Diagonal-Preserving, 22-24, 55,

58, 60, 62
Subdivision Method, 6
Symmetrized MP-quadratic, 88

Taylor Expansion, 164, 185

Tent
Decimation by a Factor of 1

Half Phase, 222

Zero Phase, 221
Decimation by a Factor of 2

Half Phase, 224

Zero Phase, 223
Decimation by a Factor of 3

Half Phase, 226

Zero Phase, 225

Decimation by a Factor of 4
Half Phase, 228
Zero Phase, 227

Decimation by a Factor of 5
Half Phase, 230
Zero Phase, 229

Decimation by a Factor of 6

Half Phase, 232

Zero Phase, 231
Decimation by a Factor of 7

Half Phase, 234

Zero Phase, 233
Decimation by a Factor of 8

Half Phase, 236

Zero Phase, 235

Time-Limited Window, 182

Upper Hessenberg Matrix, 172, 174

Upsampling Method, 5

Upsharp, 26

Upsmooth, 36, 55

Vandermonde Matrix, 166, 169
Vandermonde-like Matrix, 170, 174
Vector Graphics, 4

554

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vertex Split, 7, 8, 24, 55, 56, 60, 61, 65, 69,

73
VIPS, 25, 36, 55, 94

VSQBS, 55

Weakly Diagonal-Preserving, 23, 25, 35
Weierstrass Theorem, 167

Windowing, 181-183

WLS Error, 181
WLS Error Criterion, 180

WLS Filter Design, 181

Z-Transform, 218

555

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

