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Abstract 

Image resampling is a necessary component of any operation that changes the size of an 

image or its geometry. 

Methods tuned for natural image upsampling (roughly speaking, image enlargement) 

are analyzed and developed with a focus on their ability to preserve diagonal features and 

suppress overshoots. Monotone, locally bounded and almost monotone "direct" interpola

tion and filtering methods, as well as face split and vertex split surface subdivision methods, 

alone or in combination, are studied. Key properties are established by way of proofs and 

counterexamples as well as numerical experiments involving ID curve and 2D diagonal 

data resampling. 

In addition, the Remez minimax method for the computation of low-cost polynomial 

approximations of low-pass filter kernels tuned for natural image downsampling (roughly 

speaking, image reduction) is refactored for relative error minimization in the presence 

of roots in the interior of the interval of approximation and so that even and odd func

tions are approximated with like polynomials. The accuracy and frequency response of 

the approximations are tabulated and plotted against the original, establishing their rapid 

convergence. 
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1 Organizational Summary of the Thesis 

In the Introduction, the context (image resampling of so-called "natural" raster images) is 

described, the main types of surface subdivision (vertex and face split) are defined, the most 

common resampling type of method (filtering) is discussed, and two novel approaches to 

the solution of applied image resampling problems are stated: 

• the application of subdivision methods to the resampling of natural images, and 

• the robust computation of relative error minimax polynomial approximations of filter 

kernels over intervals with roots in their interior. 

These novel approaches motivate the research project. The Introduction proceeds with a 

discussion of methods of comparing subdivision- and filtering-based resampling methods 

and concludes with the introduction of a third class of resampling methods, subdivision-

filtering hybrids. 

Chapter 3 defines desirable properties of resampling methods in the context of image 

upsampling (meaning enlargement, roughly speaking): interpolation, local boundedness, 

co-convexity, exactness on linears and, last but not least, diagonal preservation. 

In Chapters 4-15, various types of image resampling methods—some classical, but 

most formulated by Dr. N. Robidoux—are mathematically analyzed and numerically com

pared. The discussion of each subdivision scheme has two parts: an analysis of the ID 

(curve reconstruction) version of the subdivision scheme, invariably defined from the 2D 

(surface reconstruction) version by assuming image data constant in the horizontal (or, 

equivalently, vertical) direction; and an analysis of the full 2D subdivision scheme. 
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Chapter 16 collects plots of the results of interpolating "ID" (curve) data with some of 

the methods discussed in earlier chapters, and Chapter 17 summarizes diagonal preserva

tion (or lack thereof) data. 

In Chapter 18, the Remez method for the polynomial approximation of functions is 

introduced, and a discussion of its key linear systems and their solution is given. The 

following chapter, Chapter 19, reviews the relevant literature. 

In Chapter 20, the accuracy of relative minimax polynomial approximations computed 

with a customized version of the Boost C++ library's minimax package are shown. These 

results demonstrate that a combination of several simple changes allows one to robustly 

and accurately minimize the relative error when the approximated function has roots in the 

interior (and endpoints) of the interval of approximation. In the following two chapters 

(21-22), these approximations are evaluated in the frequency domain. Their frequency 

responses, in the context of integer downsampling, are shown alongside the frequency re

sponses of the approximated filter kernels. 

Conclusions are presented in Chapter 23, following which appendices, a bibliography 

and an index are found. 
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2 Introduction 

2.1 Digital Images 

A digital image is the numerical two-dimensional representation of a scene [58]. There are 

two main types of digital images. 

2.1.1 Raster Graphics 

Also called bitmap images, raster images are the most common type of digital image. They 

are "computer graphics in which an image is composed of an array of pixels arranged in 

rows and columns" [58], 

In greyscale images, each pixel value generally represents an intensity ranging from 

black to white. Such an image can be represented by a matrix, with each entry a pixel 

value in the range 0 (black) to 255 (white) for a typical 8-bit image format. Other ranges 

are used, among them 0 to 65535 for 16-bit formats and 0. to 1. and 0. to 100. for floating 

point formats. (Note that intermediate result images may have pixel values that fall outside 

of these ranges, and that some standard image formats used for colour management use 

negative colours as well as colours which are not visible to the human eye or reproducible in 

print or on a terminal. In addition, image data structures are often used to store data which 

does not correspond to light intensity; such pseudo-images often use altogether different 

ranges of values.) 

Colour images are similar. They generally have three channels, for example, one for 
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the colour red (the "R" channel), one for green ("G"), and one for blue ("B"). The image 

consists of the three colour values combined and can be understood as consisting of three 

matrices, one for each colour channel. 

Today's raster image formats often have an additional channel, reserved for trans

parency information (the "alpha" channel). In addition, there are multi-band formats that 

accommodate offset printing (CMYK is the most common). We will not address the special 

needs of such image formats. 

2.1.2 Vector Graphics 

Vector graphics are different. Instead of storing a value (or a triple of values, in the case 

of colour images) for every pixel location, geometrical objects (points, lines, vectors, etc. 

[58]) are used to represent the image content, and pixel values are computed from this 

information when the image is displayed. 

Vector graphics have advantages over bitmap images, such as the ability "to render an 

object at different sizes and to transform it in other ways without worrying about image 

resolution and pixels" [58]. They are well suited for the generation and storage of com

puter generated graphics. They are, however, not really suitable for the storage of digital 

photographs and other so-called "natural images". 

2.1.3 Digital Images Considered in this Thesis 

Only raster graphics are considered in the present thesis. Thus, "digital image" invariably 

refers to a raster image. In addition, we will only consider greyscale images. It is trivial to 

extend the main results and methods to colour images by applying the greyscale method to 

every channel. 

Although the methods studied in this thesis are agnostic to image content, their primary 

application is the resampling of natural images: (demosaiced) digital photographs and other 
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images which result from the digital capture of a "real life" scene. 

2.2 Image Sampling and Quantization 

To obtain a digital representation of a natural scene, the continuous view has to be converted 

to digital form, that is, converted to a finite, although possibly large, number of bits of 

information. This is accomplished through image sampling and quantization. 

Sampling an image consists of choosing discrete points at which pixel values are eval

uated to represent the image. Quantization consists of converting the intensity values to 

numerical quantities (integer or floating point numbers). "Digitizing the coordinate values 

is called sampling. Digitizing the amplitude values is called quantization." [47]. 

2.3 Image Resampling 

Roughly speaking, image resampling consists of adding and/or removing pixels to or from 

an image. Resampling is a key component of image resizing: increasing the size of an 

image requires the addition of new pixel locations and values (upsampling); decreasing its 

size requires their removal (downsampling) [47]. Typically, an upsampling method relies 

on closed-form or recursive formulae to compute pixel values at new points located near 

the original pixels. On the other hand, most downsampling methods use weighted averages 

to combine many pixel values into one representative. 

Although resampling is a key component of other processes—notably image rotation, 

image warping, texture mapping, and sub-pixel translation—only image resizing is used to 

compare image resampling methods in this thesis. 
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2.4 Subdivision Schemes 

Subdivision is commonly used as a method of refining computer generated surfaces in 3D 

graphics [69, 85]. A subdivision method basically "defines a smooth curve or surface as the 

limit of a sequence of successive refinements... Each polygon is related to a successor by 

a simple linear transformation that provides an increasingly accurate approximation to the 

final limit curve" [128]. After a sufficient number of iterations, the approximating polygon 

is generally so close to the limit curve or surface that it is used instead. 

2.4.1 Novel Application of Subdivision Schemes to Natural Image Resampling 

Because adding and removing pixels is analogous to refining or resampling a polygonal 

surface, it makes sense to study the effectiveness of surface subdivision schemes in the 

context of natural image resampling. In the case of resampling a greyscale image, one 

wants to approximate the surface that represents the light intensity at every location, and 

one understands subdivision as a process that takes a polygonal approximation of this a 

priori unknown surface and produces from it a higher density approximation. 

The author of this thesis does not know of publications discussing the application of 

subdivision methods to the resampling of natural images other than her own Honours The

sis [92] and an earlier conference proceedings article by N. Robidoux, M. Gong, J. Cupitt, 

A. Turcotte and K. Martinez [105]. 

Desirable properties of subdivision methods in the context of natural image resam

pling are different than when they are used to smooth the surface of computer generated 

or somewhat coarsely sampled 3D solids. In this thesis, the mathematical properties of 

existing subdivision methods in the context of natural image resampling are studied, and 

new subdivision methods, tailored to this specific task, are formulated. Before this is done, 

a general discussion of the main types of subdivision and image resampling methods must 

be presented. 
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2.4.2 Types of Subdivision Schemes 

Subdivision methods are generally classified according to four criteria: type of refinement, 

type of mesh, approximating or interpolating, and degree of smoothness of the limit surface 

[42, 131]. In addition to linear subdivision methods, we also consider nonlinear schemes; 

this adds a fifth classifier. 

In this thesis, only quadrilateral mesh schemes are considered. We study both approxi

mating (all of them, actually, smoothing in character) and interpolating schemes, and both 

face split and vertex split methods are formulated and analyzed. 

In both face and vertex split methods, one subdivision doubles the image density. The 

resulting alignment of the subdivided image with respect to the original is different for each 

type of method: Face split methods produce double-density images aligned with the initial 

image pixel locations; Vertex split methods produce double-density images "shifted" by 

one quarter of the original inter-pixel distance. 

2.4.3 Face Split Subdivision 

Each step of a face split subdivision method gives a double-density mesh where each rect

angle in the original mesh has been divided into four sub-rectangles. (In the case of the 

most common types of raster images, the rectangles are actually squares. We only discuss 

squares from now on.) Therefore, the new grid points are located on the vertical and hori

zontal lines linking original points; in addition, there is a new point in the middle of each 

original square [131]. The original grid points are kept. In the diagram shown in Eq. (2.1), 

which represents the result of one face split step applied to a 5 x 5 input image, the orig

inal pixel locations are indicated by "i/o" to emphasize the fact that these are both input 

and output locations, and the additional pixel locations are indicated by "o" since they are 
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output, but not input, locations. 

i/o o i/o o i/o o i/o o i/o 

o o o o o o o o o  

i/o o i/o o i/o o i/o o i/o 

o o o o o o o o o  ( 2 . 1 )  

i/o o i/o o i/o o i/o o i/o 

o o o o o o o o o  

i/o o i/o o i/o o i/o o i/o 

Thus, the pixel density of the output image resulting from one face split step is four times 

the density of the input image since it is doubled in both directions. 

The Catmull-Clark and Kobbelt schemes are examples of quadrilateral face split subdi

vision methods. 

2.4.4 Vertex Split Subdivision 

In a vertex split subdivision method, each vertex is "split" into four new vertices: For each 

original grid point, four new points are computed and placed to form a small box centred 

around the original point. Basically, the new grid points form half-size squares centred 

within the larger squares formed by the original points. In vertex split methods, unlike face 

split methods, the original points are discarded at each step [131]. In the diagram shown 

in Eq. (2.2), which represents the result of one vertex split step applied to a 5x5 input 

image, the original pixel locations are indicated by "i" since they are input, but not output, 

locations, and the pixel locations of the subdivision are indicated by "o" since they are 
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output, but not input, locations. 

i i i i i 

oo oo oo oo 

o o o o o o o o  

i i i i i 

oo oo oo oo 

o o o o o o o o  

i i i i i (2.2) 

o o o o o o o o  

oo oo oo oo 

i i i i i 

oo oo oo oo 

o o o o o o o o  

i i i i i 

As is the case with face split, the pixel density of the output image resulting from one vertex 

split step is four times the density of the input image since it is doubled in both directions. 

However, the alignment of the output image with respect to the input image is different. 

With face split subdivision, the original pixel locations are passed on from one subdivision 

level to the next; with vertex split subdivision, they are not. 

Examples of vertex split subdivision schemes are the Doo-Sabin and Midedge schemes. 
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2.5 Image Resampling by Linear or Nonlinear Filtering 

Natural image resampling is usually not performed with a subdivision method. Instead, the 

limit surface is computed at once as a weighted average of the original pixel values within 

the so-called footprint of the filter, namely the relative locations of the pixels which enter 

the computation of a surface point. 

Examples of subdivision-free linear resampling methods include bilinear [111], near

est neighbour [111], bicubic [111], including Lagrange, Catmull-Rom [75], and Mitchell-

Netravali [79], Gaussian smoothing [75], quadratic B-spline smoothing [57], and win

dowed sine methods such as the popular Lanczos 2- and 3-lobe filtering methods [32]. 

Linear resampling filters are completely specified by a continuum function called the 

filter kernel, a surface which represents the impulse response of the filter. The impulse 

response of a filter is the result of applying the filter to cardinal data, a "Kronecker delta" 

image with one single nonzero pixel value normalized to the value 1 (an "impulse" image). 

Although typical filter kernels are continuous functions, discrete versions can be ob

tained by sampling. Kernel sampling is implicitly or explicitly performed when filters are 

used to resample images in such a way that the local alignment of the output is fixed with 

respect to the original [126]. It is also performed when the filter is not computed exactly 

whenever its value is needed, but instead representative values are precomputed and stored 

in a lookup table (LUT). In both situations, coarse sampling often has undesirable side ef

fects [126]. On the other hand, at very mild downsampling ratios, it sometimes improves 

the relative performance of methods with inferior continuum frequency response [126]. 

2.6 Approximating Filter Kernels for Fast Evaluation 

Filter kernels can be fairly complicated functions. The widely used Lanczos kernels involve 

trigonometric functions. Jinc-windowed Jinc filter kernels, used for Elliptical Weighted 

Averaging resampling, involve Bessel functions. Evaluating a filter kernel numerous times 
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for each output pixel computation can be costly when millions of pixels are involved. For 

this reason, good approximations of computationally expensive filter kernels are needed. 

Of course, essentially all functions are approximated when evaluated on a computer, al

though this is harmless when the evaluation error is comparable to machine precision. What 

we are considering here are cruder approximations just precise enough for the purpose of 

image resampling in the context of 8- and 16-bit data and single precision computation, 

brought back to the limelight thanks to the ubiquity of SIMD vector units (SSE, Altivec 

etc.) and GPUs. 

Lookup Tables (LUTs), that is, precomputed tables storing the values of the kernel at 

relevant sampling positions, analogous to the mathematical tables of yore, are often used. 

Unfortunately, accurate LUTs are, perforce, fairly large. Given that memory access is 

considerably slower than floating point computation nowadays, direct formulaic approxi

mations are sometimes competitive with LUTs. In fact, if one uses a polynomial of degree 

high enough to approximate a function but nonetheless moderate, the speed of resampling 

can be improved. 

Sampling the continuous filter kernel of a linear filtering method can be understood 

as defining a subdivision method. Thus, one can understand coarse sampling artifacts as 

arising from the changed character of a filter when it is turned into a subdivision method. 

This is another example of the porous boundary separating the land of filtering resampling 

methods from the land of resampling by subdivision. 

In this thesis, we consider the artifacts introduced by the combination of replacing a fil

ter kernel by a polynomial approximation and sampling it for the purpose of downsampling 

(with fixed local alignment of the decimated image with respect to the original). Specifi

cally, the frequency response of the corresponding discrete operators are compared. This is 

appropriate given that low pass filter kernels (or their key factors) were approximated. 
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2.6.1 Novel Relative Error Minimax Approximations of Filter Kernels with Roots in 

the Interval of Approximation 

Many methods are used to produce polynomial or rational approximations of functions. 

The most commonly used are based on the Remez algorithm. This algorithm is discussed 

at length in this thesis, culminating in numerical experiments showing how the quality 

Remez minimax code of the Boost C++ library [23] can be modified so that it reliably 

produces useful approximations even when the approximated function has several roots in 

the interval of interest. 

These approximations are novel in that they minimize relative error (well enough given 

the limitations of floating point computation) even though the interval of approximation 

contains roots of the approximated function. The relative error was chosen over the abso

lute error because preliminary tests showed that the frequency response of downsampling 

operators was better preserved, for a given operation count, when it is minimized. Simi

larly, preliminary tests suggested that there is little to be gained from the use of rational 

function (quotient of polynomials) approximations; for this reason, only polynomial ap

proximations are considered in this thesis. 

2.7 Comparing Subdivision Methods to "Direct" Filtering Methods 

One way of comparing subdivision and non-subdivision resampling methods is to compute 

the limit surface obtained by repeated subdivision, and compare it to the surface obtained 

by direct filtering. In a sense, the process of iterating and taking the limit converts a sub

division method to a "direct" filtering method. This, however, assumes that subdivision is 

performed until convergence, which is not necessarily the case. Some subdivision meth

ods are actually constructed so as to produce an approximation of the limit surface directly 

computed by a filtering method, in which case their primary purpose is to provide a com

putationally efficient shortcut to the result of the corresponding linear filtering method, at 

12 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



least in the generic case. For example, the Doo-Sabin subdivision method [131] was devel

oped "by adapting the refinement techniques for the biquadratic uniform B-spline surface" 

[62], and the limit of the Doo-Sabin subdivision method is locally the same as the result of 

B-spline smoothing. Limit surfaces will not be considered in this thesis. (Limit curves are 

discussed in the author's Honours Thesis [92].) 

Another way of comparing subdivision and filtering methods is to consider them in the 

context of the most common resizing tasks, namely enlargement and reduction by a power 

of two. Within this context, the properties of all resampling methods are considered on 

a somewhat equal footing, since one can emulate subdivision with a filtering method by 

evaluating the reconstructed surface (only) at the subdivided pixel locations. Doing this 

allows a direct comparison of the result of one or more steps of a subdivision method with 

the result of a "direct" filtering method, more precisely, with a sampled approximation of 

the "direct" method. In effect, the comparison is performed by converting each "direct" 

method to a subdivision method by sampling the surface computed by the "direct" method 

at relevant subdivision points. This is the approach used here. 

2.8 Hybrid Image Resampling 

Just as one can convert at once a filtering resampling method to a subdivision method 

by sampling, one can convert a subdivision method to a method which corresponds to 

a filtering method by performing one or more subdivision steps and applying a "direct" 

filtering method to the result. A filtering method, consequently, is used as a "finishing 

scheme" which short-circuits what could have been an infinite sequence of subdivisions of 

the same type (although in principle they could be different). 

One additional advantage of "finishing" the result of subdividing finitely many times 

(once, actually, in this thesis) with a filtering method is that the latter be chosen so that 

it minimizes the main artifacts introduced by the subdivision scheme. For example, one 
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could match a strongly smoothing finishing scheme like cubic B-spline smoothing with an 

overly aliased vertex split method like nearest neighbour in the hope that the combination 

is "balanced." As such, an hybrid scheme can add up to more than the sum of its parts. 

If the subdivision and finishing scheme are both linear, the resulting hybrid scheme is 

actually a linear filtering method, completely determined by its impulse response. Con

sequently, it can be implemented and discussed without making explicit its subdivision 

component. It is also possible to "hide" the subdivision step within the implementation of 

a nonlinear hybrid scheme. This may be computationally expedient, for example when the 

implementation is demand driven in such a way that the subdivision computation cannot 

be recycled over different output pixel locations (as is the case for several state-of-the-art 

graphics libraries which are not dependent on GPUs). 

The characteristics of the hybrid scheme are determined by both of its components, 

and they can differ considerably from the characteristics of both the subdivision and fil

tering schemes. The LBB (Locally Bounded Bicubic; see §12.4) finishing scheme was 

constructed specifically for Nohalo subdivision. Conversely, the "interpolatory" vertex 

split methods of Chapters 10 and 11 were explicitly formulated with quadratic B-spline 

smoothing as target finishing scheme. 

2.9 Resampling Near and Through Image Boundaries: Abyss Policy 

The resampling methods described in this thesis assume that there are input pixel values 

associated with locations "all around" the sampling location. This is clearly not the case 

when the location where a pixel value is to be computed is close to or falls outside of the 

extent of the input image. 

This issue is not specific to resampling. For example, it also arises when one filters an 

image without resampling it: What is one to do when the convolution mask extends past 

the boundary of the image? 
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This situation is handled in several state of the art graphics libraries—GEGL, Im-

ageMagick and VIPS, for example—with a so-called abyss policy. An abyss policy speci

fies the values assigned to needed pixel locations that fall outside of the image. Commonly 

used abyss policies include 

Transparent black abyss policy: Missing pixel values are given a value of 0 in all chan

nels. (A variant sets the abyss to a user-defined, but fixed, colour and transparency.) 

Nearest neighbour abyss policy: Missing pixel values are assigned the value of the clos

est boundary pixel. 

Mirror abyss policy: Missing pixel values are obtained by reflecting the image pixel val

ues about the closes image boundary. 

Linear extrapolation abyss policy: Missing pixel values are obtained by linear extrapo

lation. 

One advantage of handling "past the boundary" pixel value lookup with an abyss policy is 

that boundary conditions do not need to be implemented for individual methods: resam

pling and filtering can be implemented as if the image was infinite. 

In this thesis, linear extrapolation abyss policy is invariably used. This abyss policy 

extends the property of being exact on linears (§3.4) from the interior of the image to the 

entire plane. 

15 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



3 Desirable Properties of Image Resampling Methods 

This section discusses desirable properties of an "ideal" image resampling method. Al

though many high quality resampling schemes fail to have one or more of these properties, 

failing by "a lot" is generally a symptom that the visual results will have noticeable arti

facts in some situations. For this reason, these properties are used to evaluate candidate 

resampling methods and highlight their strengths and weaknesses. 

Many other properties can be considered. In this thesis, we focus on properties most 

important when the resampling operation does not have a strong downsampling component: 

• interpolation, which correlates with perceived visual sharpness; 

• co-monotonicity, positivity and local boundedness, which minimize haloing artifacts 

caused by undershoots and oscillations near sharp features; 

• diagonal preservation, which minimizes the staircasing artifacts (a.k.a. "jaggies") 

which often occur near diagonal feature boundaries and lines; and 

• exactness on linears, which implies that oscillations are not introduced when resam

pling linear colour gradients, and also that smooth data is approximated accurately. 

We also consider co-convexity, which is correlated with perceived smoothness. The dis

cussion of frequency response is postponed to later chapters concerning minimax approxi

mations of low pass filters and their key factors. 
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3.1 Interpolation 

Resampling can be understood as sampling a surface derived from the input image data. If 

this surface always goes through the original data points, the resampling method is said to 

be interpolatory: 

Definition 3.1.1. A resampling method is interpolatory if the output pixel values that cor

respond to input pixel positions are exactly the same as the input pixel values. 

As illustrated in the diagram shown in Eq. (2.1), face split methods produce subdi

visions with pixel values assigned to the original data locations. If, at the original pixel 

locations (labelled "i/o" in the diagram), the subdivision has the same value as the origi

nal, it makes sense to call the face split method "interpolatory". Clearly, if one step of an 

interpolatory face split subdivision method is interpolatory, then repeated application of the 

subdivision method is too. 

In the case of vertex split subdivision method, the reconstructed surface is never sam

pled at the original pixel locations: In the diagram shown in Eq. (2.2), the "i" locations 

are distinct from the "o" locations. For this reason, the "interpolatory/non-interpolatory" 

duality is not directly applicable. One way of resolving this duality would be to consider 

the limit surface obtained by repeated subdivision and determine whether this limit surface 

goes through the input data points. Because limit surfaces are not a focus of this thesis, 

this is not the approach taken here. Instead, a vertex split subdivision method will be said 

to be interpolatory if it is possible to recover the original data points from the result of one 

subdivision. This condition is equivalent to the mapping implied by the subdivision having 

a left inverse. (In the case of linear vertex split subdivision methods, this is equivalent to 

the mapping having a trivial nullspace.) 

Interpolatory resampling methods include nearest neighbour [111], bilinear [111], bicu

bic [111] and Catmull-Rom interpolation [47], and Lanczos (sinc-windowed sine) filtering 

[32]. 
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Interpolatory subdivision methods include the face split Kobbelt scheme [131]. 

Non-interpolatory resampling methods include quadratic and higher-degree B-spline 

smoothing [57], Mitchell-Netravali spline smoothing [79], Gaussian blur [75], and most El

liptical Weighted Averaging methods [48, 52], Catmull-Clark [131] is a non-interpolatory 

face split subdivision method. Vertex split subdivision methods are generally not interpo

latory. 

3.2 Co-monotonicity, Positivity and Local Boundedness 

3.2.1 ID Co-monotonicity 

ID data is monotone nondecreasing (resp. nonincreasing) if the values, taken in order, are 

monotone nondecreasing (resp. nonincreasing). That is, each value is no smaller (resp. no 

greater) than the previous one. 

A I D  r e s a m p l i n g  m e t h o d  i s  co-monotone if resampling monotone nondecreasing (resp. 

monotone nonincreasing) data results in output data with the same monotonicity. 

Co-monotone resampling methods include nearest neighbour [111], bilinear [111], B-

spline smoothing [57], MP [61]. Midedge [131] is a co-monotone vertex split subdivision 

method. 

3.2.2 2D Positivity and Local Boundedness 

In this thesis, the positivity and local boundedness of 2D resampling methods is studied 

instead of monotonicity. 

A resampling method preserves the positivity of an image if subdividing an input image 

consisting of non-negative values results in an output image also consisting of non-negative 

values. Often, the positivity of a method is established by showing that the result is in the 

convex hull of the original data. This last property, stronger in general than positivity, is 
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called local boundedness. 

Locally bounded resampling methods include nearest neighbour [111], bilinear [111], 

B-spline smoothing [57], Gaussian blur [75] and MP [61]. Midedge vertex split subdivision 

is locally bounded [131]. 

When a resampling method is both ordinate shift invariant (such that adding a constant 

to the data then resampling gives the same result as resampling and then adding the same 

constant to the result) and ordinate reflexion invariant (such that multiplying the input by 

—1 then resampling gives the same result as first resampling then multiplying the result by 

—1), positivity is equivalent to local boundedness. Although this was not explicitly proven, 

all methods considered in this thesis are both ordinate shift and ordinate reflexion invariant. 

For this reason, positivity is often considered instead of local boundedness. 

Smoothing methods (like quadratic or cubic B-spline smoothing or Gaussian blur) are 

generally locally bounded. The interesting problem concerns the construction of locally 

bounded methods which are not strongly smoothing. 

3.3 Co-convexity 

In this thesis, a somewhat limited co-convexity property is considered: We only verify that 

convexity is preserved in the interior of regions in which the monotonicity is unchanging. 

For example, we do not consider what happens near the extremum of a parabola because 

of the change in monotonicity. 

3.3.1 ID Co-convexity 

A ID resampling method is co-convex if subdividing convex (resp. concave) data results in 

output data with the same convexity. 
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3.3.1.1 Convexity of the Input Image 

ID Data is convex (resp. concave) if the values, taken in order as the ordinates of points 

with equidistant abscissa, are convex (resp. concave). There are many ways to check if a set 

of values is convex (resp. concave): When drawing a straight line through any two points, 

the values between these points must be on or below (resp. above) the line. Equivalently, 

when the data is convex (resp. concave), the slopes—the first finite differences—between 

neighbouring points are monotone increasing (resp. decreasing). 

3.3.2 2D Co-convexity 

If the ID version of a resampling method is co-convex, then the 2D version of the method 

preserves the convexity of data which is constant on every row, or constant on every col

umn. Although we do not consider this more general case, one could also consider the 

preservation of convexity for 2D data with fixed convexity along every row and column. 

3.4 Exactness on Linears 

A resampling method is exact on linears if subdividing input image data taken from an 

affine function (polynomial of degree at most 1, informally called "linears") results in an 

output image whose data also correspond to values from the same affine function. 

Standard resampling methods which are exact on linears include bilinear [111], the BC-

splines with 2C + B = 1 [79], including Catmull-Rom interpolation [47], and quadratic 

and higher-degree B-spline smoothing [57]. Midedge subdivision is also exact on linears 

[131]. 
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3.4.1 Exactness on Linears in ID 

A ID resampling method is exact on linears if resampling an input image with data lying 

on a straight line results in an output image with data also lying on the same straight line. 

3.4.2 Exactness on Linears in 2D 

A 2D resampling method is exact on linears if resampling an input image with data lying 

on a plane results in an output image with data lying on the same plane. In this thesis, we 

will define the plane by the equation z = ax + by + d. 

3.5 Diagonal Preservation 

3.5.1 Prior Work 

Only relatively recently has diagonal preservation been considered explicitly as a desirable 

property of resampling methods. 

J. Peters and L.-J. Shiue Peters and Shiue [84] define ripple-free subdivision scheme as 

follows: 

A subdivision scheme is ripple-free in the direction d, if a control net with con
stant first differences in the direction d results in a surface whose first derivative 
in the direction d is constant. 

They show that their subdivision scheme is ripple-free in horizontal, vertical and diagonal 

directions, stating that it is unique among methods using 3x3 stencils. Peters and Shiue call 

their method 4—3 subdivision since it can be used for transitioning from quadrilateral to tri

angular sub-meshes. This method is a non-interpolatory face split subdivision scheme. The 

bases for 4-3 subdivision consist of box-splines of degree four [84]. The resulting scheme 

is very similar to the Catmull-Clark scheme [131]; the only difference is that presmoothing 

is applied to the original data points. Stencils are given in Dodgson et al. [29]. 
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A framework for analyzing artifacts introduced by subdivision was developed by U. H. 

Augsdorfer, N. A. Dodgson and M. A. Sabin [4]. These artifacts include ripples in the 

horizontal, vertical and diagonal directions. The authors measure the magnitude of the fre

quency response of the subdivision schemes after one subdivision and within the resulting 

limit surface. They compare various methods, namely bilinear, bicubic B-splines, 4-3 box-

splines [84], 4-8 box-splines, and Kobbelt's interpolating box-splines, on the basis of the 

magnitude of the artifacts they introduce, and conclude that 4-8 box-splines produce limit 

surfaces with the best properties. 

3.5.2 Diagonal Preservation as Considered in this Thesis 

The ripple-free property studied in this thesis is limited to the two main diagonals (at angles 

of 45 degrees measured from the coordinate axes). 

Definition 3.5.1. An image is constant on diagonals if pixel values are constant along each 

of its descending (main) diagonals, or constant along each of its rising diagonals. 

Thus, if the pixel values of an image are Zij with i and j integers, the image is constant 

on diagonals if one of the following relations holds for all relevant i and j: z l+ iJ+ i = z l t j  

or Zi-^-ij—i zjj. 

Definition 3.5.2. (One step of) a subdivision method is strongly diagonal-preserving if 

subdividing an image constant on diagonals gives a subdivided image with the same prop

erty. 

If a subdivision method is strongly diagonal-preserving and is such that a subdividing 

an input image which is constant along its columns (or rows) results in a subdivided image 

also constant along its columns (or rows), then it is automatically ripple-free as considered 

by Augsdorfer et al. [4]. It should be noted that "vertical/horizontal preservation" automat

ically holds for tensor methods, that is, methods which can be implemented by applying a 
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one-dimensional scheme in the horizontal direction, and then applying a one-dimensional 

scheme in the vertical direction to the result (or vice versa). 

Strong diagonal preservation is consequently a necessary, but not sufficient, condition 

for being ripple-free. A weaker diagonal preservation is also studied in this thesis: 

Definition 3.5.3. (One step of) a subdivision method is conditionally diagonal-preserving 

(or weakly diagonal-preserving) if subdividing an image constant along diagonals gives a 

subdivided image with the same property provided some reasonable conditions on the input 

pixel values are satisfied. 

3.5.3 Interpolation Conflicts with Strong Diagonal Preservation 

The following theorem and corollaries were formulated and proven by Dr. N. Robidoux. 

They make use of the following terminology: The primal grid has nodes at the regular 

( h j ) >  h 3  e  l o c a t i o n s  w h i l e  

(the) dual grid is a translated copy of the primal grid with nodes at the centres 
of the cells of the primal grid 

[104], In other words, the dual grid has nodes at the (i +  \ , j  +  €E Z, locations. 

Theorem 3.5.1 (Robidoux [100]). No subdivision method that computes values at dual 

grid pixel locations (from primal grid pixel values) is simultaneously interpolatory and 

strongly diagonal-preserving. 

Proof. Suppose that such a method of computing values at dual nodes does exist. Consider 

a dual node located at the intersection of a rising diagonal of ones and a descending diag

onal of zeros. Because the method is interpolatory, the subdivided values at primal node 

locations are 1 on the rising diagonal. Because the method is strongly diagonal-preserving, 

the value at the dual node must also be 1. Applying the same argument to the descending 

diagonal of zeros establishes that the dual node value must be 0. This is a contradiction. • 
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The above result makes clear that one must choose between a resampling method being 

interpolatory and it being strongly diagonal-preserving. In the case of the two standard 

image subdivision methods, this exclusive alternative is made explicit in the following 

corollaries. 

Corollary 3.5.1 (Robidoux [100]). No face split subdivision method is both interpolatory 

and strongly diagonal-preserving. 

Corollary 3.5.2 (Robidoux [100]). No vertex split subdivision method is such that taking a 

weighted average of some group of post-subdivision pixel values gives a face split method 

that is both strongly diagonal-preserving and interpolatory. 

Consequently, subdivision-based methods discussed in this thesis fall in one of two 

categories: 

• sharp (interpolatory) but at best conditionally diagonal-preserving, and 

• soft (smoothing, and consequently, not interpolatory) but (strongly) diagonal-

preserving. 
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4 Numerical Analysis of Interpolatory Nonlinear Face 

Split Subdivision Methods 

In this chapter, we consider single and multiple applications of a novel interpolatory face 

split subdivision method, the Nohalo method. 

4.1 Nohalo 

Nohalo ("No halo") is a nonlinear interpolatory face split subdivision method originally 

formulated by Dr. N. Robidoux. It is weakly diagonal-preserving [105]. A Matlab imple

mentation is given in Appendix F.6. 

As its name suggests, Nohalo subdivision suppresses haloing image resampling arti

facts. 

4.1.1 Published Implementations 

The interpolatory hybrid scheme consisting of one step of Nohalo subdivision followed by 

Locally Bounded Bicubic (LBB) interpolation (§12.4) is built into several FLOSS (Free 

Libre Open Source Software) graphics libraries and image editing applications: 

• VIPS (Virtual Image Processing System), where it is known as the Nohalo method 

[107]. (The author of this thesis is one of the twenty five official authors of VIPS 

Version 7.25 [28].) 
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• NIP2 (New Image Processor 2) [22], where it is currently known as the Upsharp 

method [21]. NIP2 calls VIPS. 

• GEGL (GEneric Graphics Library), where it is the non-downsampling component of 

the Lohalo method [109]. (The author of this thesis is one of the sixty four official 

authors of GEGL Version 0.1.6 [129].) 

• GIMP if GEGL processing is enabled. (GEGL is in the process of replacing the 

legacy GIMP compute engine.) 

This Nohalo-LBB hybrid scheme was discussed at Libre Graphics Meeting 2011 [108]. 

A number of now obsolete methods with a Nohalo subdivision component were built 

into VIPS, NIP2 and GEGL. The earliest Nohalo implementations, implementations for 

VIPS and DirectX of a hybrid method consisting of one Nohalo subdivision followed by 

bilinear interpolation, are discussed in [105]. 

4.1.2 Nohalo ID 

Definition 4.1.1. Nohalo ID subdivision is defined as follows [105]: New values zi+± are 
2 

inserted halfway between the original ones according to the formula 

Wli i 
2 4 

where rr i i  is the minmod slope at the original data point with value zu  namely 

rrii = minmod(2:j+1 — Z{,Zi — i). (4.1) 

The minmod function is defined as follows: If all its arguments have the same sign, it 

returns the argument closest to zero; otherwise, it returns 0. Consequently, 

s if st > 0 and |s| < |£|, 

t if st > 0 and \t\ < | s | ,  

0 otherwise. 

minmod(s, t) — < 
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4.1.2.1 Co-monotonicity 

Without proof, Nohalo subdivision was stated to have this property in [105]. 

Proposition 4.1.1 (Racette [92]). Nohalo subdivision preserves monotonicity. 

Proof. Without loss of generality, consider monotone nondecreasing data Z{ so that zl+x-zl 

and Zi — z(_i are nonnegative, with the consequence that 

rrii < min (zi+i - zh z{ - 2,_i). 

Elementary inequality manipulation establishes that the value zi+1 inserted between i and 

i + 1 is in the interval 

3Zi + Zj+1 Zi + 3zi+1 

4 ' 4 
£ [%i; ^t+l] 

Since the values located at the original pixel locations are unchanged by Nohalo subdivi

sion, monotonicity is preserved. • 

4.1.2.2 Co-convexity 

Conjecture 4.1.1 (N. Robidoux). Nohalo preserves the convexity of the original data. 

This was erroneously stated to hold in [105]. 

Counterexample 4.1.1. Consider the increasing concave data {0,20,30,38,38}. 

2 3 + 2 5  i / 2 0  +  ̂ + 3 0  -  1  3 0 +  1  + 3 8  — § \  3  n  

Zi 
~ 2 (—S—^ + 

i—"J = -i<0 

so that 22 is below the average of its post-subdivision neighbours. • 

Throughout this thesis, the centred difference operator 5  is used. 5 f k ,  by definition, is 

e q u a l  t o  / f c + i  -  f k _  i .  

Nohalo is conditionally co-convex: 
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Proposition 4.1.2. One Nohalo subdivision preserves the concavity (resp. convexity) of 

monotone data if and only if the third finite differences are nonnegative when the data is 

nondecreasing, and nonpositive when the data is nonincreasing. That is: When the original 

data is concave nondecreasing, the result of subdivision is concave if and only if 

5 3 z l + i > 0 V i ,  ( 4 . 2 )  

that is, is and only if 

-Z i - i  +  3Zi  -  3z i + i  +  z i + 2 > 0 Vi, 

with reversed inequalities if the data is monotone nonincreasing or convex, but not both. 

Proof. Assume concave nondecreasing data. (The other cases are similar.) Then, rrii = 

Zi+i — Zi and rrii > m<i+i > 0. 

The inserted points always respect the convexity condition with respect to the original 

points: 

Zi  +  z i + i  rr i i  ~  m i + i  
Z<H 2 = 4 -°-

Now, consider the concavity condition at the original points with respect to the inserted 

points: 

Z i~k Zi+h Z i~ 1 ^z i + z i+1 m i- l ~~ m i+1 
z L — z 

4 8 
2Zi Zi—i 2-i+l z i+2 z i+1 2-i 1 Zi—1 3Zi 3•Zj-fl "I" Zj^_2 

= _ + _ __ _ 

is nonnegative if and only if Eq. (4.2) holds. • 

This establishes that one Nohalo subdivision preserves the convexity of monotone 

quadratic data (for which d3zi+i is identically 0). Roughly speaking, convexity is pre

served "at third order". 

Condition (4.2) basically means means that the curvature of the original data does not 

increase as one approaches a local maximum or minimum (the data "straightens out as one 
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approaches peaks and valleys"). Nohalo actually preserves convexity unconditionally near 

minima and maxima, locations where the monotonicity changes unless the data becomes 

constant: Suppose we have concave data with Zi no less than its neighbours so that the 

minmod slope rrij = 0. Because the data is concave, rrii-i = zi — zl-\ andmi+i = zi+i~zi. 

Because z{ is a local maximum, 

3Zi -j- Zi—i 2Zi ~f* 2^2—1 Zi—j -I- Zi 
Z 1 = > = . 

l ~ 2  4 ~  4  2 

Constant monotonicity and convexity are generally assumed because this simplifies the 

discussion. 

Proposition 4.1.3. Two Nohalo subdivisions preserve the concavity of nondecreasing (resp. 

the convexity of nonincreasing) data if and only if 

53zi_i (resp. — 53zi_i) >2\52Zi\ VI (4.3) 

Two Nohalo subdivisions preserve the convexity of nondecreasing (resp. the concavity of 

nonincreasing) data if and only if 

83zi+±(resp. —S3zi+ i) > 2 | ( 5 22,| Wi. 

In the concave case, Condition (4.3) is equivalent to 

—2j_i + 5zi — 7z i+1  + 3zj+2 •$! 0 Vz. (4.4) 

Proof. Assume concave nondecreasing data. We show that if Eq. (4.2) holds for the origi

nal data, then it holds for the result of the first subdivision if and only if Eq. (4.3) holds. 

First, consider groups of four subdivided data points that begin with an original one: 

- Zi + 3zi+i - 3zi+i + zi+| 

/ Zi + 4Z i+1 — 2i+2\ 0 . (  2i+1 + 42i+2 — z i+3 

= = _ 2 , + H  5  4  

%i+1 "I" z i+2 ^i+2 ^ q _ _ _ _ _ 
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In this case, the key inequality is always satisfied. 

Now, consider groups that begin with an inserted point. 

,  0  o  ,  - Z i - 1  +  5 z i  -  7 z i + i  +  3 z i + 2  1  
2j_l + 3 Zi 3 Zj+i + Zi+1 + 252zi+i) . 

4 4 

This quantity must be nonnegative for Condition (4.2) to be inherited. Because 52Zi is 

nonpositive for concave data, this establishes necessity. 

An unfortunate consequence of the above result is that two Nohalo subdivisions do 

not preserve the convexity of second degree polynomial data (for which 52Zi ^ 0 but 

S3zi+1 = 0). The following result establishes that, beyond two subdivisions, convexity 

is not preserved for any function (if one considers straight lines as having no convexity 

to preserve). These results strongly suggest that there is little to be gained from multiple 

Nohalo subdivision. This motivated the search for a compatible high quality "finishing 

scheme" and led to the development of the Nohalo-LBB (Locally Bounded Bicubic) hybrid 

method. 

Proposition 4.1.4. Nohalo subdivision preserves the convexity of monotone data beyond 

the second subdivision if and only if the original data is affine (lies on a straight line). 

Proof. Assume concave nondecreasing data. 

First, consider groups of four points starting with an inserted point. For Eq. (4.4) to 

hold for the subdivided data, we must have 

Condition (4.3) implies Condition (4.2). This establishes sufficiency. • 

-  z { _  i  +  5 Z i  - 7 z i + i +  3 z i + 1  

_  /  Z j _  i  +  4 Z j  -  z i + 1  

V 4 
Z j — i  +  5 Z j  -  7 z i + i  +  3 z i + 2  

4 

_ 7 (Z i  4^+1 ~ Zj- t -2  

V 4 

+ S2Zi+i > 0. 

+  3 z i + \  

(4.5) 

In the case of groups starting with an original data point, we get: 

-Z i  +  52i+i - 7 z i + i  +  3 z i + i  
Zi 52i+i 4" 7Zi+2 3Zi+s ^ 

4 ~~ 

30 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



However, this quantity is already supposed < 0 to preserve the concavity of the second 

subdivision. Thus, we must have — 5zi+i + 7zi+2 — 32j+3 = 0. Substituting in Condi

tion (4.5)—remembering that the condition must hold for all i—we get S2zi+i > 0. Second 

differences are, however, nonpositive because the data is assumed concave. Consequently, 

they all vanish, which establishes that the original data lies on a straight line. Since No

halo subdivision is exact on linears (§4.1.2.3), this last condition is both necessary and 

sufficient. • 

4.1.2.3 Exactness on Linears 

Nohalo ID is exact on linears because Nohalo 2D is [105]. This is a direct consequence of 

the fact that the minmod slopes (Eq. (4.1)) equal the slope of the straight line defining the 

data. 

4.1.3 Nohalo 2D 

Definition 4.1.2. Nohalo 2D subdivision is a face split method (§2.4.3) defined as follows 

[105]: The original pixel values are left unchanged, and new values are inserted at the 

halfway points in the horizontal direction, halfway points in the vertical direction, and 

diagonal halfway points: 

3 , = ^ + *i+hj + ~ (4.6) *-r 2 ,j * 
" 2 ' J  2 

-.v 
z i , j  +  z i , j + 1  ,  m i , j  f A  n \  

2m+± = j 4 ' ( } 

z i , j  z i , j + 1  " I "  2 i + l , i  z i + l , j + l  ,  m i , j  ~  ™ i + l , j  ~  m i + l , j + l  
Z.̂ J+, = - + 

mV, + mL, ,• - m?.,, -

where rri-j is the horizontal minmod slope at zhJ and is the vertical minmod slope at 

Zi j (Eq. (4.1)). 

y 
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4.1.3.1 Diagonal Preservation 

A hard diagonal line is an archetypal raster image pattern which consists of one single 

white line traversing the entire image at a 45 degree angle, on a black background. The 

diagram in Eq. (17.1) shows such a hard line, together with the locations computed when 

performing face split subdivision.. A soft diagonal line is a slightly blurred version of the 

hard one: Two diagonal lines of medium grey flank the white line, one on each side. See 

the diagram in Eq. (17.5). For convenience, in these patterns, white is defined by the pixel 

value 1, and black is defined by the pixel value 0. 

Hard and soft diagonal interfaces are defined similarly: these diagonal interfaces sep

arate pure white and pure black domains. In these patterns, it was found expedient to use 

the pixel value —1 for black. See the diagrams in Eqs. (17.3) and (17.7). 

One Nohalo subdivision is diagonal-preserving for soft diagonal lines and interfaces 

[105], as verified in Tables 17.3-17.4. For hard diagonal lines and interfaces, Nohalo does 

no better than bilinear (Tables 17.1-17.2): In both cases, the maximum variation along a 

diagonal is .50. 

Two Nohalo subdivisions do not preserve soft or hard diagonal lines or interfaces. For 

hard lines, the maximum variation is the same as for bilinear (.50). For hard interfaces, 

the maximum variation is .76, which is quite a bit larger than bilinear's .50. For soft lines 

and interfaces, however, the maximum variations are .03 and .06, respectively, which com

pares advantageously to bilinear's .25 and is comparable to Lanczos 3's .03 and .05. See 

Tables 17.5-17.8. This is strong evidence that multiple Nohalo subdivisions may not be 

worthwhile. As a result, all current library implementations are hybrid schemes involving 

only one subdivision step. 
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4.1.3.2 Local Boundedness 

Proposition 4.1.5. Nohalo 2D is locally bounded. Specifically, the values inserted by No

halo 2D are in the convex hull of the nearest original data: 

zi+id e [min ( z i t j ,  z i + h j ) ,max ( z l t J ,  z l + l t j ) } ,  (4.9) 

z i J + 1  € [min ( z i j ,  Z i j + i ) , max ( z i t j ,  z i J + 1 ) ] ,  a n d  (4.10) 

£ [min (^ij, Zij+i, ) max (•Zjj, Z i + i j )  ^i+ij+i)] • (4.11) 

Nohalo ID is also locally bounded. 

Proof. First, consider Nohalo ID. We show that the new halfway values are between the 

minimum and the maximum of the values at the nearest two original locations. 

Four input values are used to compute a new Nohalo ID value: {zt_i, zi: zi+1, zi+1}. 

The halfway value zi+i is calculated by averaging z{ plus the corresponding minmod slope 

and zi+1 minus the corresponding minmod slope. Zi plus the corresponding minmod slope 

is in Z i )  
Zi + zi+ j 

(or vice versa, that is, in 
Zi + Zi+\ 

, Z i  , if zi+i > Zi). zi+1 minus 

its corresponding minmod slope is in 

, . . 3Zi 2j-)-x Zi -f" 3Zi-f-i 
therefore, is m 

z i  +  z i + 1  
' )  z i + 1  (or vice versa). Their average, 

, ^ C [ z t ,  z l + i ]  (or vice versa). Therefore, the new 

value is in the convex hull of Zi and zl+] , and as such it is also between the minimum and 

maximum of the two. 

Nohalo 2D uses Nohalo ID to compute the values at horizontal and vertical midpoint 

locations. Consequently, Eqs. (4.9)-(4.10) are proven. There remains to show that the new 

values inserted in the middle of each square of four original points are at or between the 

minimum and maximum of the four nearest original pixel values. 

zi+ij+i is the average of the values at the corresponding midpoint of the planes pass

ing through one of zitj, zlJ+1, zi+l j and zi+iJ+i, each with a gradient defined by the min

mod slopes. The midpoint value on the plane that goes through zitj is between zitJ and 
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Z t + i , j  +  z % , j +1 ̂ jjierefore; this value is in [min(^j, z i + i j ,  z i t j + i ) ,  max ( z i j ,  z i + i j ,  Zt,j+i)]> 
Z 

interval contained in [min^j, z i + h j ,  z i > j + i, 2i+lij+i), max^j, z i + i j ,  z i J + u  z i + u + i ) } .  By 

symmetry, this also holds for the values obtained with the other three planes. Since averag

ing values in an interval gives a result in the same interval, Eq. (4.11) is proven. • 

4.1.3.3 Exactness on Linears 

Nohalo 2D is exact on linears [105]. This is a direct consequence of the fact that when the 

data is affine, the minmod slopes are exactly the partial derivatives of the defining affine 

function. 
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5 Numerical Analysis of Smoothing Nonlinear Face Split 

Subdivision Methods 

If a face split subdivision method does not keep the values at the original pixel locations 

unchanged, it is not interpolatory. 

In this chapter, we consider single and multiple applications of a novel interpolatory 

face split subdivision method, the Snohalo method. Because, generally, the subdivisions it 

produces are smoother than the original, we say that it is smoothing. 

5.1 Snohalo 

The Snohalo ("Smooth Nohalo") methods are nonlinear non-interpolatory face split sub

division methods originally formulated by Dr. N. Robidoux. Snohalo methods are weakly 

diagonal-preserving. Matlab implementations of the Snohalo smoothing and Nohalo sub

division are found in Appendices F.7 and F.6. 

Snohalo 1 subdivision—often abbreviated Snohalo subdivision in this thesis—consists 

of Nohalo applied to the result of smoothing the original image with a five-point (three 

in ID) convolution kernel chosen for its staircasing reduction properties. The amount of 

presmoothing is controlled by the parameter 9. Usable values of 6 are in the interval [0, |]. 

If 0 = 0, there is no smoothing, and Snohalo reduces to plain Nohalo. 6 = 1 dials the default 

amount of presmoothing. | is the largest value of 6 for which the centre smoothing weight 

no less than the "outer" smoothing weights in 2D. 
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Snohalo 1.5 consists of Snohalo 1 followed by Snohalo smoothing. In other words, 

Snohalo 1.5 consists of smoothing with Snohalo smoothing, subdividing with Nohalo, and 

finally smoothing the result of subdivision with Snohalo smoothing. Although one could 

choose different values of the smoothing parameter 6 for each of the two applications of 

Snohalo smoothing, we have only considered combinations involving one single value, the 

same for both steps. 

5.1.1 Published Implementations 

A hybrid method based on Snohalo 1.5 was published in the same libraries as the Nohalo-

LBB hybrid discussed in §4.1.1. Snohalo 1.5 appeared under the name Snohalo in the VIPS 

library and the name upsmooth in the NIP2 and GEGL libraries. Snohalo 1.5 was replaced 

by a hybrid method based on the Midedge subdivision method (see §8.1). This Snohalo 1.5 

hybrid had itself rendered Snohalo 1 hybrid implementations obsolete. All these hybrids 

used bilinear interpolation as finishing scheme, a convenient choice for GPUs, for which 

bilinear is generally a highly optimized built-in method. 

5.1.2 Snohalo ID 

Definition 5.1.1. Snohalo smoothing ID is defined as follows: 

z, = (l-6)z,+e(ft±±Bi±ii±iy (5.1) 

Unless otherwise stated, the smoothing parameter 8 is set to the value 1. That is, the 

"standard" Snohalo smoothing is 

Zi-1 + 6 Zi + 2i+x 
Z. = . (5.2) 

As mentioned earlier, Snohalo subdivision consists of smoothing with Snohalo smooth

ing, and then subdividing with Nohalo (§4.1.2). 
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5.1.2.1 Co-monotonicity 

Lemma 5.1.1. Snohalo smoothing ID preserves monotonicity. 

Proof. Without loss of generality, suppose monotone nondecreasing data z,. Then, 

_ - ^i+2 zi—1 "I" 5(Zj-|-i Zj) 
Zi+i -  Zi = > 0. 

• 

Proposition 5.1.1. Snohalo subdivision preserves monotonicity. 

Proof. Snohalo subdivision consists of smoothing the values before applying Nohalo sub

division. Both stages preserve monotonicity by Lemma 5.1.1 and Prop. 4.1.1. • 

Likewise, arbitrary numbers of Snohalo or Snohalo 1.5 subdivisions preserve mono

tonicity. 

5.1.2.2 Co-convexity 

Conjecture 5.1.1. Snohalo subdivision ID preserves the convexity of monotone data. 

Counterexample 5.1.1. Consider the concave increasing data {20,30,38,44,44,44}. Ap

plying Snohalo smoothing to the four central points, one gets {^p, 44}. Substi

tuting these values into the left hand side of Condition (4.4), one gets 

r3 1/ 119 0 151 0 173 , \ 9 , 
S Zh — — J —-—h 3 x —-— 3 x - -f" 44 j — t 0. 

2 4 \ 4 4 4 J 4 

Consequently, the concavity of the data is not preserved. • 

Lemma 5.1.2. Snohalo smoothing ID preserves convexity. 

Proof. Snohalo smoothing is the same as smoothing with quadratic B-splines (§7.1) then 

sampling at appropriate locations. Since quadratic B-spline smoothing preserves convexity 

(§7.1.1.3), so does Snohalo smoothing. • 
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Snohalo ID is conditionally co-convex: 

Proposition 5.1.2. Snohalo ID preserves the concavity of monotone nondecreasing data if 

and only if 

+  8& Z z i + x _  +45 z i + i  > 0 Vi. (5.3) 

This condition is equivalent to 

—  Z i - 1  —  3 Z i - i  + 14Z i  —  1 4 : Z i + i  +  3 Z j + 2  +  Z j +3 >  0 VI 

Inequalities are reversed if the data is monotone nonincreasing or convex, but not both. 

Proof. As usual, suppose concave monotone nondecreasing data. 

The smoothed data inherits the monotonicity and convexity of the original data. Con

sequently, we only need to consider the Nohalo concavity preservation Condition (4.2) 

applied to the smoothed data, that is, consider 

—Zi-\ + 3Zi — 3zj-j-i + z^(-2 > 0. 

Substituting Eq. (5.2) and simplifying, this becomes Condition (5.3). • 

This establishes that one Snohalo subdivision ID preserves the convexity of monotone 

nondecreasing quadratic data since,  in that  case,  S 5 z i +1 and 5 3 z i + ±  are both 0,  and 8 z i + i  >  

0. 

Condition (5.3) is not automatically inherited by subsequent subdivisions. Necessary 

and sufficient conditions for concavity preservation when using two or more Snohalo sub

divisions, or when applying Snohalo smoothing more than once, have not been determined, 

5.1.2.3 Exactness on Linears 

Proposition 5.1.3. Snohalo subdivision ID is exact on linears. 
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Proof. Because Nohalo is exact on linears (§4.1.2.3), all that is left is to show that Snohalo 

smoothing is too. This is the case because it is a linear convolution with coefficient sum 

equal to 1 so that it is exact on constant data, and because the coefficients are symmetric 

about the point of application so that it is exact on odd, and consequently linear, data. • 

5.1.3 Snohalo 2D 

Definition 5.1.2. Snohalo smoothing 2D is defined as follows: 

= (1 -  0) Z , J  +  6  +*•>•-!+4^+ + . (5.4) 

The "standard" Snohalo smoothing (with 9 = 1 )  thus corresponds to 

Z i- i j  +  Z i j - i  +  4 z i t j  + z i + i j  +  Zjj+i 
Z i j  = . (5.5) 

5.1.3.1 Diagonal Preservation 

For any value of 9 ,  one Snohalo subdivision is diagonal-preserving for soft lines [101], 

as verified for the parameter values 9 = 0 (Nohalo), § and 1 in Table 17.3. With the 

default value 9 = 1, one Snohalo subdivision is also diagonal-preserving for hard lines 

and interfaces [101], as verified in Tables 17.1-17.2. For soft interfaces, one Snohalo 

subdivision has a maximum diagonal variation of .06, much smaller than bilinear's .25 and 

comparable to Lanczos 3's .05 (Table 17.4). 

Snohalo 1.5, which consists of smoothing, then subdividing, and then smoothing again, 

is even better, at the expense of additional blur. See Tables 17.1-17.4. 

Two Snohalo subdivisions do not preserve soft or hard diagonal lines or interfaces. 

For hard lines and interfaces, the maximum variations are .01 and .05, much less than for 

bilinear (.50) and Lanczos 3 (.23 and .22). For soft lines and interfaces, the maximum 

variations are .02 and .05, respectively, much less than for bilinear and about the same as 

39 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Lanczos 3's .03 and .05. See Tables 17.5-17.8. This suggests that the payoff of multi

ple Snohalo subdivisions is probably not sufficient to recommend it given the significant 

amount of smoothing (unless possibly in situations in which overshoots are to be avoided 

at all cost). 

5.1.3.2 Local Boundedness 

Proposition 5.1.4. Snohalo 2D is locally bounded. 

Proof. Snohalo smoothing is locally bounded since it consists of taking a weighted average 

of values (with positive coefficients). Nohalo 2D is locally bounded (§4.1.3.2). So is their 

combination. • 

5.1.3.3 Exactness on Linears 

Proposition 5.1.5. Snohalo 2D is exact on linears. 

Proof. The argument given in ID (Prop. 5.1.3) carries over. • 
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6 Numerical Analysis of Interpolatory Linear Filtering 

Methods 

In this section, we consider a classical interpolation method, Catmull-Rom (Hermite bicu

bic) interpolation. We consider its properties as an interpolation scheme (the usual use) and 

through the face split subdivision method it defines. 

6.1 Catmull-Rom (CR) 

Catmull-Rom is a linear, interpolation method. It is neither strongly nor weakly diagonal-

preserving. A Matlab implementation is given in Appendix F.10. 

6.1.1 Catmull-Rom (CR) ID 

Definition 6.1.1. Given a set of points with values compute the centred difference slope 

at each of these points as rrii = These slopes and the corresponding data points 

are used to compute the cubic Hermite spline between each consecutive point. 

A formula for the cubic Hermite spline in the interval ( i ,  i  -f 1) is 

z ( t )  =  ( 2 ( t  -  i f  -  3 ( t  -  i f  +  l )  Z i  +  ( ( £  -  i f  -  2 ( t  -  i f  +  ( t  —  i ) )  r r i i  

+ (-2 (t - if + 3 (t - i)2) z i+1 +  ( ( t  -  i f  —  { t  —  i f )  m i + \ .  (6.1) 

41 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



6.1.1.1 Local Boundedness of the Catmull-Rom Interpolation Method 

It is well-known that Catmull-Rom splines are not locally bounded [127]. Following are 

several examples in which local boundedness is violated. 

Proposition 6.1.1. The maximum undershoot of the result of interpolating Heaviside data 

with Catmull-Rom is — 

Proof Consider data taken from the Heaviside function, {0,0,0,1,1,1} and the inter-

polant between the second and third points. With z0 = 0, z\ = 0, ra0 = 0 and mi — the 

Hermite cubic spline is z(t) = \tz — \t2. The only interior extremum occurs at t = §, and 

z{|) = —The other intervals do not contribute a lower minimum. • 

Proposition 6.1.2. The absolute minimum of the result of interpolating soft Heaviside data 

{0,0,0,0.5,1,1,1} with Catmull-Rom is — 

Proof. Consider the Catmull-Rom interpolant between the second and third points. We 

have zQ = 0, z\ = 0, m0 = 0, rrii = Putting these values into the formula for Hermite 

cubic splines, we get the function z(t) = \t3 — \t2. Again, elementary calculus establishes 

t h a t  t h e  m i n i m u m  i n  t h e  i n t e r v a l  b e t w e e n  t h e  s e c o n d  a n d  t h i r d  p o i n t s  i s  z ( | )  =  — a n d  

that it is the absolute minimum. • 

Now, consider data from the Cardinal function, namely {0, 0,0,1,0,0,0} and its inter

polant between the second and third points, zq = 0, z\ — 0, mo = 0 and m\ = |, as for the 

Heaviside data. So, the undershoot is — ^ and the overshoot is ~j. 

Finally, consider the soft Cardinal data {0,0,0.5,1,0.5,0,0} and the interpolant be

tween the first and second points. We have zq = 0, z\ = 0, mo = 0, mi = i, same as for 

the soft Heaviside function. So, the undershoot is — ^ and the overshoot is 

6.1.1.2 Co-monotonicity of the Catmull-Rom Interpolation Method 

Since CR splines are not locally bounded (§6.1.1.1), CR is not co-monotone. 

42 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



6.1.1.3 Co-convexity of the Catmull-Rom Interpolation Method 

Conjecture 6.1.1. Catmull-Rom preserves the convexity of the original data (in the con

tinuous case). 

Counterexample 6.1.1. Let the values of the data points be {15,29,41,43}. In this case, 

z0 = 29, Z\ — 41, Trio — 13 and m\ = 7. Substituting in (6.1) and differentiating twice, 

we obtain z"(t) = —241 + 6. There is an inflexion point at t = which is in (0,1), 

which means that the convexity of the curve changes in the interval between the two points. 

Therefore, convexity is not preserved. • 

Proposition 6.1.3. Catmull-Rom preserves the concavity (resp. convexity) of the original 

data (in the "continuous case") if and only if 

S z i _ i + 2  5 z i , 3  2 S z i _ i + 6 z i , 3  
2—- 2. < (resp. >) 6zi+1< (resp. >) 2. Vi. (6.2) 

Proof. Dougherty [31] states that two conditions must be satisfied in order for cubic Her

mite polynomials to preserve the convexity of the original data. The first condition is that 

the derivative at a data point must be between the left and right slopes at that point. This is 

obviously the case when using a Catmull-Rom slope since it is in fact the average of the left 

and right slopes. The second condition is actually equivalent to Condition 6.2. Therefore, 

all that is needed is to show that this condition is sufficient for convexity to be preserved. 

The second derivatives of cubic Hermite splines are affine between consecutive grid 

points. Therefore, the convexity can change at most once within an interval. As such, it is 

sufficient to consider the convexity at the two endpoints of the interval and make sure it is 
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the same. Using formula (6.1) and differentiating it twice, we obtain 

z " ( t )  =  t ( — 3-Zt-i + 92j — 9zi+\ 4- 3zi+2) + 2z{-i — 5zi + 4zi+i — Zi+2, 

z (i) — 22j_x 5.Zj -j- 4zj-|-j •2^2 ~ 2 (zj 1) 3 (zi-1-1 ^) (^+2 ^t+i) 

= -2<5^_i + 3 5zl+i -«5zi+|, 

z"(i + 1) = <^_! - 3<bi+i + 2<5zi+|. 

If the original data is monotone increasing and concave, we want 

5zi+3 + 2 
- 2 ^ _ i  + 35zi+\ - 8zi+ 3 < 0, that is, 5zi+i < — -, and 

2 2 2 2 ^ 

2 5zi+i + S z { _ i  
8z{_ 1 - 3Szi+i + 2Szi+s < 0, that is, 8zi+i > 2-

2 2 2 2 q 

• 

6.1.1.4 Co-convexity of the Catmull-Rom Face Split Subdivision Method 

Conjecture 6.1.2. Catmull-Rom preserves the convexity of the original data when it is used 

to define one step of a face split subdivision method (in the "discrete" case). 

Counterexample 6.1.2. Consider the concave increasing data {0,15,29,41,41}. The 

value of an Hermite cubic spline at a midpoint is 

Zi + zi+1 rrii - mi+i 
= 2 + 8 ' 

Using centred differences slopes, this gives z| = ^ and zs = ~. Because 

355 , 287 1 
29 - — = ^ 0. 

2 32 

concavity does not hold for the subdivided data at the centre point. • 

Proposition 6.1.4. Catmull-Rom preserves the concavity (resp. convexity) of the original 

data when used as a face split subdivision scheme if and only if Mi 

S4zi+i - 4 S2zi+i > (resp. <) 0. (6.3) 
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Proof. Let the values of the data points be Z{. Using the above formula, we compute 

Zi %i+l 1 (Z{-1-1 1 %i+2 %i Z4 , 1 = h -
* i + v ~  2  8  v  2  2  

1 9 9 1 

" 162i_1+ 162l+ 162i+1_ 162i+2' 
1 9 9 1 

2i+l ~ 16Zi + 16Zi+1 + 16Zi+2 ~ 16Zi+3' 

Suppose that the data is monotone increasing and concave. The rest of the proof works 

similarly for other cases: 

Z i  -f- j_j 1 ( Z j - t - i  Z j  —  ] Zi+2 Zi 
Z i ,  l — 

2 8 V 2 2 

= ̂  {{Zi -  Zi-l) -  (Zi+2 - 2i+l)) > 0. 

Therefore, the midpoints always preserve the convexity with respect to the original points, 

and overall convexity preservation hinges on convexity condition at the original points: 

Indeed, 

zj+!+z,+| 1 17 1 ,1 
Z.+1 5 32*i-i - J* + jgZi+1 - J*i+2 + 32^+3 > o 

if and only if (6.3) holds. • 

Proposition 6.1.5. The convexity condition for the continuous case is stronger than the 

convexity condition for the discrete case and in fact implies it. That is, the former is a 

sufficient but not necessary condition for the latter. 

Proof. If the convexity condition for the continuous case is satisfied, then all the points on 

the continuous curve preserve the convexity of the original data. This includes the points 

used in the discrete case. Therefore, the convexity is also preserved in the discrete case. If, 

on the other hand, the convexity condition for the discrete case is satisfied, then we are sure 

that the convexity is preserved by those points. However, there is no guarantee that the rest 

of the points on the continuous curve also preserve the convexity. Therefore, the convexity 
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condition for the continuous case implies the one for the discrete case, but not necessarily 

vice versa. Since (6.3) is clearly not equivalent to (6.2), "discrete" convexity preservation 

is a necessary but not sufficient condition for "continuous" convexity preservation. • 

6.1.1.5 Exactness on Linears 

Catmull-Rom is a Keys bicubic, that is, a BC-spline satisfying the relation B + 2C = 1, 

and consequently it is exact on linears in 1 and 2D [66, 79]. 

6.1.1.6 Subjective Evaluation of Interpolation Plots 

The Catmull-Rom method gives visually pleasing results in the sense that the resulting 

curves are nice and smooth. However, it has the tendency to overshoot or undershoot the 

maximum and minimum data values, which is an undesirable property in the context of 

image resampling. As such, it has been ranked among the last methods in Chapter 16. For 

both hard and soft cardinal and Heaviside data, Catmull-Rom is ranked after all methods 

except CDVS. Hard and soft cardinal data results are presented, respectively, in Fig. 16.3 

and 16.11 while the hard and soft Heaviside results are presented, respectively, in Fig. 16.7 

and 16.15. For the non-smooth data in Fig. 16.19, Catmull-Rom is not penalized as much 

since its overshoot is not very noticeable. In this case, more weight is given to the smooth

ness of the curve. It is ranked after all the MP methods as well as LBB but it gives a result 

which is more pleasant than those obtained by vertex split methods followed by quadratic 

B-spline smoothing. For the sine data in Fig. 16.22, Catmull-Rom has been ranked first. It 

has a noticeable overshoot but this slight overshoot contributes a nice roundness to the top 

of the curve instead of flattening it like the monotone methods do. Because mild overshoots 

contribute to smoothness—and, in 2D, diagonal preservation—near extrema provided they 

are not overly large, they are actually considered a positive feature in this particular context. 
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6.1.2 Catmull-Rom (CR) 2D 

Definition 6.1.2. Catmull-Rom interpolation 2D is simply an extension of the ID version 

to two dimensions. This time, we are given a grid of points with values Zij. At each 

of these points, we compute three slopes: the horizontal slope, the vertical slope and the 

cross-derivative. These are given by the following formulae: 

x _ zi+l,j ~ 
mi,j - 2 

y  _  z i , j + l  ~  z i , j - 1  
m i , j  - 2 

xy ^i,j — 1 zi+l,j+l zi—l,j+l zi+l,j — l "I" zi—l,j — l _ _ _ 4 

These derivatives are then used to perform Hermite bicubic spline interpolation. 

In the context of this thesis, Hermite bicubic spline interpolation was performed by 

solving a system of equations. These equations were obtained by constraining the values 

at the grid points as well as the corresponding horizontal slopes, vertical slopes, and cross-

derivatives [17]. 

Catmull-Rom face split subdivision 2D is simply obtained by evaluating the bicubic 

surface at the face split pixel locations. 

6.1.2.1 Diagonal Preservation 

Catmull-Rom subdivision is not diagonal-preserving for hard and soft lines and interfaces. 

It actually gives the exact same results as bicubic interpolation for such data (Appendix A). 

The maximum variation for Catmull-Rom on hard lines and interfaces is .36 for both. 

Bilinear has a maximum variation of .50 for both, while Lanczos 3 has maximum variations 

of, respectively, .23 and .22. For soft lines and interfaces, the maximum variation for 

Catmull-Rom is .11 while it is .25 for bilinear interpolation. Lanczos 3 has maximum 

variations of, respectively, .03 and .05. These numbers do not change when these filters are 

evaluated at the locations of the second face split subdivision's pixels. 
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Thus, in all tested cases, Catmull-Rom has oscillations that are about halfway between 

bilinear and Lanczos 3. In fact, Catmull-Rom oscillates just a little more than Lanczos 

2, which is not surprising since it is considered to be a near equivalent (as a result of 

comparisons in the frequency domain, among other things). 

6.1.2.2 Local Boundedness 

Since CR ID is not locally bounded (§6.1.1.1), neither is CR 2D. 

6.1.2.3 Exactness on Linears 

Catmull-Rom is exact on linears since it is a Keys bicubic [66, 79]. 
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7 Numerical Analysis of Smoothing Linear Filtering 

Methods 

In this section, we review the properties of a classical linear smoothing method, quadratic 

B-spline smoothing, 

7.1 Quadratic B-Splines 

Quadratic B-spline smoothing is a linear but smoothing (hence non-interpolatory) filtering 

method. A Matlab implementation is given in Appendix F.15. 

In this thesis, quadratic B-spline smoothing is used as a finishing scheme for other 

subdivision methods. Because its properties as a vertex split subdivision method are well 

known (the Doo-Sabin surface subdivision scheme [62]), we only consider its properties 

as an "interpolation" method, leaving aside consideration of its properties as a subdivision 

method. 

7.1.1 Quadratic B-Splines ID 

Quadratic B-spline filtering is performed with the basis function [128]: 

l - t 2  i f | i | < j  

M K I - f ) 2  M  —  i  

0 otherwise. 

B(t) = 

B(t) is plotted in Fig. 7.1. 
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Figure 7.1: Plot of the quadratic B-spline basis function 

A formula for the qua d r a t ic  s p l i n e  " i n t e r p o l a t i n g "  t h e  d a t a  Z i  i n  t h e  i n t e r v a l  ( i  —  5 , 2  +  5 )  

is 

z ( t )  =  -  ( i  -  1 ) )  +  Z i B ( t  -  i )  +  z i + i B ( t  -  ( i  +  1 ) ) .  

7.1.1.1 Co-monotonicity 

This is a well-known property of quadratic B-splines: The proof is assigned as an exercise 

in de Boor [24]. 

Proposition 7.1.1. Quadratic B-spline smoothing preserve the monotonicity of the original 

data. 

Proof. Consider nondecreasing data Zj. We show that monotonicity is preserved between 
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Zi and zl+i. In the first half of the interval, the spline is given by 

^ ,2 Z1 1 \ ( 1 1 \ /l 3 1 
z y x )  —  t  I 2 Z i ~ l  ~  Z i  +  2 Z i + 1 )  V 2 Z i ~ l  22i+1 J \82i_1 4 Z i  + 8^i+1 

/ ( x )  =  t  ( Z i - i  —  2 2 j  +  Z j + i )  +  ̂  — - 2 j _ i  +  - 2 j + i ^  .  

Consequently, 

2'(°) = \(Zi+T- ~ ^-l) ^ 
0 and ^ Q) = ^+1 ~ *i ^ °" 

Since both values are nonnegative and the derivative is affine, it is nonnegative throughout 

the half interval. Consequently, monotonicity is preserved there. A similar argument shows 

that monotonicity is preserved in the second half of the interval. Because the spline is 

continuous, this establishes monotonicity over the whole interval. • 

7.1.1.2 Local Boundedness 

Proposition 7.1.2. Quadratic B-splines are locally bounded. 

Proof. See de Boor [24]. • 

7.1.1.3 Co-convexity 

Proposition 7.1.3. Quadratic B-splines preserve the convexity of the original data. 

Proof. Dr. N. Robidoux believes this to be well-known and provides the following proof 

outline. (Uniform) quadratic B-spline smoothing is the result of applying uniform box 

filtering to the result of linear spline interpolation. Both uniform box filtering and linear 

spline interpolation are convexity preserving. • 

7.1.1.4 Exactness on Linears 

Proposition 7.1.4. Quadratic B-splines are exact on linears in ID. 

Proof See de Boor [24], • 
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7.1.2 Quadratic B-Splines 2D 

Quadratic B-splines in 2D are computed by finding the quadratic B-splines (§7.1.1) hori

zontally then vertically (or, alternatively, vertically then horizontally). In other words, the 

2D version is the tensor product [24] of the ID version with itself. 

7.1.2.1 Positivity 

Proposition 7.1.5. Quadratic B-splines preserve the positivity of the original data. 

Proof. The quadratic B-spline basis function is nonnegative [24], Therefore, if we smooth 

nonnegative input data with quadratic B-splines, we get nonnegative results. • 

Because quadratic B-spline smoothing is also exact on linears (see below), it is actually 

locally bounded. 

7.1.2.2 Exactness on Linears 

Proposition 7.1.6. Quadratic B-spline smoothing 2D is exact on linears. 

Proof Consider a grid of points of horizontal and vertical distances of 1 starting at the 

origin. Let the values of the points on the grid come from the plane defined by z = ax + 

by + d. It is sufficient to show that the quadratic B-splines are exact on [l, f] x [l, |] : 
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z ( x )  =  

( < .  +  < 0 1  | - |  +  3 ( x  +  i ) - ( x  +  i )  )  | ( j / - I  

If 1 \ 2  1  /  3 X  2 '  
+ (2a + ̂ ) I 2 \ — 2 / 2 v 2 

+ <t + d>(K*-§) (_§ + 3(w+5) ~ (w + 5 
3  /  1 \  /  l x 2 '  

+  ( a  +  6  +  d ) ( - -  +  3 ^  +  - J - ^  +  -

3  /  1 \  /  l x 2 '  

-2+ 3 \ V + 2  r \ V + 2  

+ (2a + 6 + d)^(x-i) l + s f w + j j - l f + j  

If 3 \ 2 1  f lx 2 

+ (26 + rf} ( - f x — - I 

3 „ f  1 \  f  l Y \  I f  l x  2  

+  ( a  +  2 b  +  d )  (  (  - _ + 3 ( *  +  - J  -  ̂  +  2 j  j  2  v  2  

I f  1 \ 2  1  /  l x  2 '  
+ {2a + 2b +  d ) ^ - ^ x - - J  2  

=  a x  4- b y  +  d ,  

which is the equation of the original plane. Therefore, quadratic B-splines are exact on 

linears in 2D. • 

Dr. Robidoux points out that the 2D exactness on linears follows from the fact that 2D 

B-spline filtering is the tensor product of an exact on linear ID method with itself. 
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8 Numerical Analysis of Smoothing Linear Vertex Split 

Subdivision Methods 

Unlike face split subdivision, vertex split subdivision does not define a value at the original 

pixel locations. This is illustrated in the diagram shown in Eq. (17.2) (for a specific choice 

of original data). For this reason, interpolatory versus non-interpolatory is not as obviously 

defined for vertex split methods as it is for face split methods. 

The following imperfect criterion is sufficient for our purposes. If one can (locally) 

recover the original pixel values from the subdivided ones, we will say that the vertex split 

method is interpolatory. Otherwise, it is not interpolatory, and if the subdivision method is 

locally bounded, we will say that it is smoothing. 

In this chapter and the following chapter, we study the properties of two smoothing 

vertex split subdivision methods, Midedge subdivision and Minmod Midedge subdivision. 

They are not interpolatory because subdividing the checkerboard image (the image with 

pixel value equal to (—l)1"1"^ at pixel location (i, j)) with either of them results in the zero 

image (all pixel values equal to 0). Given that the zero image is also the result of subdi

viding a zero image, it clearly is impossible to recover the original pixel values from the 

subdivision result. 
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8.1 Midedge Subdivision 

Midedge is a linear non-interpolatory vertex split subdivision method [131]. It was in

dependently proposed by Peters and Reif [83] and Habib and Warren [49]. Midedge is 

strongly diagonal-preserving (§8.1.3.1). A Matlab implementation of Midedge subdivision 

is given in Appendix F.12. 

8.1.1 Published Implementations 

The non-interpolatory hybrid scheme consisting of one Midedge subdivision followed by 

quadratic B-spline smoothing (QBS) is built into some FLOSS graphics libraries: 

• VIPS (Virtual Image Processing Library), where it is known as the VSQBS (Vertex 

Split with Quadratic B-Spline finish) method [93]. Based on object-oriented machin

ery written by Dr. J. Cupitt, the VIPS implementation of VSQBS was written by the 

author of this thesis. The version currently in the VIPS library is the result of further 

improvements by Dr. N. Robidoux. 

• NIP2 (New Image Processor 2), where it is currently known as the Upsmooth method 

[21]. NIP2 calls VIPS. 

In addition, the samplers Git branch of GEGL (GEneric Graphics Library) contains an 

implementation of this hybrid method under the name nohalo (even though this implemen

tation has nothing to do with the Nohalo subdivision method). Based on object-oriented 

machinery written by O. Kolas and reusing some code snippets written by Dr. N. Robidoux 

and collaborators, the author of this thesis wrote the first pass of the program shown in Ap

pendix B. Before being merged with the master distribution, this program needs additional 

work having to do, among other things, with making it Jacobian-adaptive according to the 

recently revamped GEGL API (Application Programming Interface). 
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8.1.2 Midedge Subdivision ID 

In ID, Midedge subdivision boils down to vertex split subdivision by linear interpolation. 

For this reason, the properties of the resulting scheme are easy to establish. A full discus

sion is given in order to introduce the general approach in a simple case. 

Given a set of points on the real line with ordinates the first stage of Midedge subdi

vision consists of computing values for the midpoints by plain averaging: 

Zi "4" Zi±i 
zi±\ - 2 ' 

Averaging is performed a second time, this time with the original points as well as the 

midpoints: 

Z i  + 2 i±| 
zi± | g " 

The final result consists of the points found resulting from this second averaging. They are 

located at the quarter point locations and are equally spaced by half of the original distance, 

so that the sampling rate is doubled. 

Definition 8.1.1. The result of (one step of) Midedge subdivision in ID is 

3zj + Z{± i _ 
zi± i = . (8.1) 

8.1.2.1 Co-monotonicity 

Proposition 8.1.1. Midedge ID preserves the monotonicity of the original data. 

Proof. Suppose that the original data is monotone nondecreasing. 

The following three Midedge ID subdivision results cover all needed cases: 

3Z i — i  -(- Z i  ^ Z i  -f- Z i — i  3Zi Zi^~\ 
z _ z . — and z , = _ 

1 4 4 1 4  4 4  4 
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Because 

1 1 
-  Z i - 1  =  7 , ( z i  ~  z i ~ l )  >  0  a n d  2 i + A  -  * i - l  =  t ( * » + 1  ~  z i ~ l )  ̂  0 .  

4  4 ^  1  4  4  ̂  

monotonicity is preserved. • 

8.1.2.2 Co-convexity 

Proposition 8.1.2. Midedge preserves the convexity of the original data. 

Proof. Suppose that the original data is concave (resp. convex). Then, 

_ Z*+4 Zi~4 —  ^ Zi ^  Zi+1 —  -  ( ^Zi+1 Zi + 
l+5 2 4 2 V 4 4 /  

Z i +  

= > (resp. < )0 and 

_ M + M = * ~ _ 5+1Z* > (resp. < )0. 
l"4 2 8 8 -  F -

8.1.2.3 Exactness on Linears 

Proposition 8.1.3. Midedge ID is exact on linears. 

Proof. Suppose that the original data Zj is on the straight line z = mx + b. Then, 

3 ( m i  +  b )  +  ( m  ( i  ±  1) +  b )  ( .  1 \  
2 1 — 1—^ L L = m z ± - + 0 

• 

so that the subdivided data is also on z = mx + b. • 

8.1.3 Midedge Subdivision 2D 

In 2D, Midedge is similarly defined: First, a simple mean is used to find the values of the 

midpoints along each vertical and horizontal line segment joining adjacent original pixel 
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locations: 

_ zi,j + Zj,j-f 1 ,  _  Z j j  +  Z j + i j  
Z<i t-4-— A <H1C1 i X 2 *•— • 

Then, the original points are thrown away and the same thing is done again along the 

diagonal line segments defined by the new points: 

Zi+^,3 + Zi,j + k 
Zi+\,3+\ ~ 2 

The result of one subdivision consists of the last points found. They are located at the 

quarter point locations between the horizontal and vertical lines formed by the original 

points. Like the results of face split subdivision, they are equally spaced but by half of the 

original distance; they are, however, shifted by ±| compared to the locations of the face 

split pixels. 

Definition 8.1.2. The result of (one step of) Midedge subdivision in 2D is 

2 zij + zi±ij + Zij± i 
zi±y±\ = 4 • (8-2) 

8.1.3.1 Diagonal Preservation 

Midedge is strongly diagonal-preserving [101]: Any image with pixel values constant on 

diagonals, when subdivided, gives an image with pixel values constant on diagonals. This 

holds for any number of subdivisions. 

Proposition 8.1.4. Midedge subdivision is strongly diagonal-preserving. 

Proof. Suppose the original data has constant values along the descending diagonals. 

Consider the first stage of the subdivision, namely simple averaging along the horizontal 

and vertical lines. Because the data is constant along diagonals, 

z i , j  + ̂ i+lj ^i+lj + l + ^i+lj ^i+nj+n + ^i+ra+lj+n -^i+n+lj+n+l ^i+n+l,j+n _ _ _ _. . . _ _ _ _ , 
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that is, 

Zi+\,j + 5 ' ' ' Zi+n+^,j+n Zi+n+l,j+n+^' 

This establishes that the result of the first stage is also constant along its descending diag

onals. 

The second stage of Midedge consists of averaging pairs of values along the diagonals 

of the result of the first stage. Since the data is constant along the descending diagonals, the 

averaging along descending diagonals that exist in the result of the first stage of Midedge 

keeps these constant values unchanged. As far as the averaging along rising diagonals is 

concerned, successive pairs of values used for averaging are the same as one moves along a 

descending diagonal, because they come from a fixed pair of diagonals of the result of the 

first stage. • 

The strong diagonal preservation of Midedge is is verified in Tables 17.1-17.8. 

8.1.3.2 Local Boundedness 

Proposition 8.1.5. Midedge 2D is locally bounded. 

Proof. The subdivision result (8.2) is a weighted average, with positive weights with unit 

sum, of data values. • 

8.1.3.3 Exactness on Linears 

Proposition 8.1.6. Midedge 2D is exact on linears. 

Proof. Consider data on the plane 2 = ax + by+d. By translation invariance, it is sufficient 

to show that Midedge 2D is exact at the subdivision points closest to (0,0). Indeed, 

1 
( d )  +  ̂ { ± a  +  d )  +  ̂ ( ± b  +  d )  =  a  +  b  + d. 

• 
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9 Numerical Analysis of Smoothing Nonlinear Vertex 

Split Subdivision Methods 

9.1 Minmod Midedge Subdivision 

Minmod Midedge is a non-interpolatory nonlinear vertex split subdivision method formu

lated by Dr. N. Robidoux for its diagonal-preserving properties. It is strongly diagonal-

preserving (§9.1.2.1). Minmod Midedge is like plain Midedge (§8.1) except that the values 

at the midpoints are found using minmod slopes (4.1) rather than by plain averaging. A 

Matlab implementation of Minmod Midedge subdivision is given in Appendix F. 13. 

9.1.1 Minmod Midedge Subdivision ID 

Minmod Midedge ID first finds midpoints using the minmod slopes (4.1) at the xi±i loca

tions, exactly like Nohalo subdivision. Then, the xt±i's are computed using Nohalo sub

division applied to the original data points as well as the previously-computed midpoints. 

This is exactly like applying Nohalo subdivision twice. Then, since Minmod Midedge is a 

vertex split method, only the values at the quarter locations, zi±i, are kept. 

Proposition 9.1.1. Minmod Midedge ID is the same as applying Nohalo subdivision twice 

then removing the original data points as well as the midpoints, keeping only the zi±\. 
4 

The "simplified" formula that uses only the original points and their slopes is quite a 

bit more complicated than for Midedge: 
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Definition 9.1.1. Minmod Midedge is a nonlinear vertex split subdivision method defined 

by 

^ 3-Sj -f" Zi±j Tfli 
Zj _i_ "" . _ 

4 4 8 

, 1 • A ( JL_ ^'±1 _ Zi , mi ~ ~ *»'~1 , _ mi-l + - minmod ± 1 - , ± 
4 \ 2 4 ' 2 4 

1 , / ^iil TTli ^j±l 2j+l ^i±l 
—- mmmod ± 1 , h 

4 V 2 4 ' 2 4 

9.1.1.1 Co-monotonieity 

Proposition 9.1.2. Minmod Midedge ID preserves the monotonicity of the original data. 

Proof One Nohalo ID subdivision preserves monotonicity (§4.1.2.1). Consequently, so 

do two subdivisions. • 

9.1.1.2 Co-convexity 

Conjecture 9.1.1. Minmod Midedge ID preserves the convexity of the original data. 

Counterexample 9.1.1. Despite the connection to repeated Nohalo subdivision, a new 

counterexample needs to be constructed, because Minmod Midedge "throws out" Nohalo 

subdivision points. 

Consider the concave increasing data {0,50,60,68}, starting at t = 0. Starting at t = |, 

Minmod Midedge gives {44.875, 53,57.75,63.25}. The consecutive differences are 8.125, 

4.75, and 5.5, which is not monotone. • 

9.1.1.3 Exactness on Linears 

Proposition 9.1.3. Minmod Midedge ID is exact on linears. 

Proof. One Nohalo subdivision is exact on linears (§4.1.2.3). So are two. • 
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9.1.2 Minmod Midedge Subdivision 2D 

Minmod Midedge in two dimensions is performed the same way as Midedge (§8.1.3), ex

cept that the values of the midpoints are found using minmod slopes, first horizontally and 

vertically (independently), and then diagonally. That is: First apply Nohalo ID horizontally 

and vertically, then again along the diagonals using the results of the previous stage. 

9.1.2.1 Diagonal Preservation 

Minmod Midedge is strongly diagonal-preserving, as verified in Tables 17.1-17.8. This 

holds for any number of subdivisions. 

Proposition 9.1.4. Minmod Midedge subdivision is strongly diagonal-preserving. 

Proof. Without loss of generality, suppose that the data is constant on descending diago

nals, so that j 2--;^i j- 21 *-i. j i .j 1? and • i ,j—I • 

Nohalo ID subdivision requires only four points to compute a midpoint: the values 

used to compute zi+ ij are zh], 2i+lj, zl+2j}, and the values used to compute and 

z i+u+1 are { z i + u - U  z i + h j ,  z i + h j + i ,  z W t j + 2 ) .  Consequently, 

_ Z j j  + Zj+lJ 
i+y  2 

minmod(zi+ij - z i t j , z i t j  - z t _ h j )  - minmod(2i+2,,? - z i + i t j ,  z i + l t j  -  z i t j )  

4 
— Zi+1'j Zi>i 

2 
minmod(zi+1|j - z i + 2 } j ,  z i d  -  z i + h j )  - minmodfaj - z i + l i j ,  Z j - ij -  z i d )  

4 

= zi+i,i+|-

A similar argument establishes that zi+1j+i = zi+|J+1. Therefore, values are constant 

along descending diagonals after the first stage. 

The proof proceeds essentially as for plain Midedge. • 

62 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Dr. N. Robidoux points out the following key elements of the above proof: If one uses 

any ID method which is symmetrical with respect to reflexions about midpoints to perform 

the "horizontal and vertical Midedge first stage", and such a symmetrical method is also 

used for the "diagonal Midedge second stage", then the resulting vertex split method is 

automatically strongly diagonal-preserving [103]. 

9.1.2.2 Local Boundedness 

Proposition 9.1.5. Minmod Midedge 2D is locally bounded. 

Proof. Minmod Midedge 2D is the same as applying Nohalo ID along the horizontal and 

vertical lines, then applying Nohalo ID along the resulting double-density diagonal line, 

and finally throwing away the original and intermediate pixel values. Since Nohalo ID is 

locally bounded, so is Minmod Midedge 2D. • 

9.1.2.3 Exactness on Linears 

Proposition 9.1.6. Minmod Midedge 2D is exact on linears. 

Proof Without loss of generality, consider the following points on the plane z = ax + by + 

d: 

(0,0, d) (1,0 ,a + d) (2,0,2a + d) (3,0,3 a + d) 

(0,1, b + d) (1,1, a + b + d) (2,1, 2a + b + d) (3,1, 3a + b + d) 

(0,2,2 b + d) (l,2,a + 26 + d) (2,2,2a + 26 + d) (3,2,3a + 2b + d) 

(0,3,36 + d) (l,3,a + 36 + d) (2,3,2a + 3b + d) (3,3,3a + 36 + d) . (9.1) 

The midpoint value at (|, l) computed by the first stage of Minmod Midedge is 

— ( (a  +  b  4- d)  + (2a + 6 4- d) )  — a  ^7^ ^  ^  
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so that the corresponding point is on the plane. By symmetry, all the other horizontal and 

vertical midpoints are also on the plane. Repeating along diagonals, we obtain "quarter 

points" on the original plane. • 
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10 Numerical Analysis of Interpolatory Linear Vertex 

Split Subdivision Methods 

In this and the following chapter, we study the properties of three interpolatory vertex split 

methods: Centred Differences Vertex Split (CDVS), Minmod Vertex Split (MVS), and Re

duced Overshoot Vertex Split (ROVS). They are interpolatory by virtue of the following 

property: If one averages the values at the four subdivided pixels closest to an original 

pixel, one recovers the original pixel value. This, in turn, holds because the corresponding 

data points lie, symmetrically, on a plane that goes through the original data point. This 

particular version of vertex split "interpolation" implies that combining such methods with 

quadratic B-Spline smoothing yields hybrid methods which are interpolatory in the stan

dard sense. In other words, MVS, CDVS and ROVS can be used to construct novel curve 

and surface interpolation methods. They are discussed in the latter part of Chapter 13. 

10.1 Centred Differences Vertex Split (CDVS) 

Centred Differences Vertex Split is a linear, non-interpolatory, vertex split subdivision 

method with a very small stencil (three points in ID, the standard five-point stencil (a 

cross) in 2D). CDVS is neither strongly nor weakly diagonal-preserving. A Matlab imple

mentation is given in Appendix F.16. 
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10.1.1 Centred Differences Vertex Split (CDVS) ID 

Definition 10.1.1. CDVS is like Minmod Vertex Split (§11.1.1) except that centred differ

ences are used instead of minmod slopes: Given data Z{, the centred differences slopes 

Zi+1 Zi—1 
mi - -

are found. New data zi+ i and z.i are then computed using the line with slope going 
4 4 

through z£ 

, mi 
Z i±\ — Z i ^ ^ • 

10.1.1.1 Co-monotonicity 

Conjecture 10.1.1. CDVS ID preserves the monotonicity of the original data. 

Counterexample 10.1.1. Consider the Heaviside data {0,0,0,1}. If we compute the val

ues at t = \ and f, we obtain (0, -|,|}- Therefore, CDVS does not preserve the 

monotonicity of the data. • 

10.1.1.2 Co-convexity 

Conjecture 10.1.2. CDVS ID preserves the convexity of the original data. 

Counterexample 10.1.2. Suppose we have original data that is concave and monotone 

increasing, 

{0,20,30,38}. 

After applying CDVS subdivision, we obtain, starting at t = |, 

{16.25,23.75,27.75,32.25}. 

The differences between these values are, respectively, 7.5, 4, 4.5. Therefore, convexity is 

not preserved. • 
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10.1.1.3 Exactness on Linears 

Proposition 10.1.1. CDVS ID is exact on linears. 

Proof. MVS is exact on linears (§11.1.1.3). When the data lies on a straight line, minmod 

slopes are identical to centred differences slopes. • 

10.1.2 Centred Differences Vertex Split (CDVS) 2D 

CDVS 2D is performed like MVS 2D (§11.1.2) except that centred differences are used. 

10.1.2.1 Diagonal Preservation 

CDVS subdivision is not diagonal-preserving for hard and soft lines and interfaces, for any 

number of subdivisions. 

For one subdivision on hard lines and interfaces (Tables 17.1-17.2)), CDVS has max

imum variations of, respectively, .75 and 2.0. This is a lot worse than bilinear's .50. For 

soft lines and interfaces (Tables 17.3-17.4), CDVS is similar to bilinear. Bilinear has a 

maximum variation of .25 for both types of data, as does CDVS. 

Two CDVS subdivisions do not preserve diagonals either. For hard lines and inter

faces (Tables 17.5-17.6), the results are worse than for bilinear. The maximum variations 

are, respectively, .75 and 1.0, compared to bilinear's .50. With soft lines and interfaces 

(Tables 17.7-17.8), the results are very similar to those obtained with bilinear. The maxi

mum variations for CDVS are, respectively, .26 and .25, while bilinear gives a maximum 

variation of .25 in both cases. 

In summary, CDVS is never better than bilinear, and often a lot worse. Because of 

these large oscillations, CDVS was combined with a strongly smoothing filtering finishing 

scheme, namely quadratic B-spline smoothing, in the hope that the combination of the two 

would produce an acceptable hybrid scheme. See §14.1. 
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10.1.2.2 Positivity 

Conjecture 10.1.3. CDVS 2D preserves the positivity of the original data. 

Counterexample 10.1.3. CDVS lDdoes not preserve the positivity of the data (§10.1.1.1). 

• 

10.1.2.3 Exactness on Linears 

Proposition 10.1.2. CDVS 2D is exact on linears. 

Proof. The ID argument carries over. • 
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11 Numerical Analysis of Interpolatory Nonlinear Vertex 

Split Subdivision Methods 

11.1 Minmod Vertex Split (MVS) 

MVS is a nonlinear interpolatory vertex split method with a very small stencil (three points 

in ID, the five-point cross in 2D). It was formulated by Dr. N. Robidoux. MVS is nei

ther strongly nor weakly diagonal-preserving [101]. A Matlab implementation is given in 

Appendix F.14. 

11.1.1 Minmod Vertex Split (MVS) ID 

Definition 11.1.1. First, the minmod slope m* is found at each of original pixel location 

(see Eq. (4.1)). The split ordinates zi± i are then defined by the line through (i, Zi) with 

slope rrii. Thus, one step of Minmod Vertex Split subdivision is given by: 

z1± <1U> 

11.1.1.1 Co-monotonicity 

Proposition 11.1.1. Minmod Vertex Split ID preserves the monotonicity of the original 

data. 
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Proof. Without loss of generality, suppose that the zt's are monotone increasing. 

rrii rrii 
-*-S 4 • A = T z i + i  ~  z t _  i = Z i  +  — ^ - Z i  +  — ^  =  - ^ >  0, and 

m i + i  r r i i  r n i + i  +  m ,  
z i+l ~ z i+ i - ^ - — - Z i+1 - 2j -

> 2j+i — Z i  — Zl+1—— (because both m i +1 and < zi+i — 2,) 

2i+i — = - > 0. 
2 

Therefore MVS ID preserves monotonicity. • 

11.1.1.2 Co-convexity 

Conjecture 11.1.1. Minmod Vertex Split ID preserves the convexity of the original data. 

Counterexample 11.1.1. Consider the convex increasing data {0,2,6,12}. After Minmod 

Vertex Split, we obtain, starting at £ = f, {|,|,5,7}. The slope between the first two 

points is | — | = 1, the slope between the next two points is 5 — | = § and the slope 

between the last two points is 7 — 5 = 2 < §. Therefore, convexity is not preserved. • 

Proposition 11.1.2. Minmod Vertex Split ID preserves the convexity of the original data if 

and only if the original data is on a straight line. 

Proof. Suppose that the data is concave monotone increasing. The minmod slopes at the 

original points are rrii = zi+1 — Zi. Eq. (11.1) gives 

, ^i+l Z %  , . 2j-f2 ^i+1 
Z i±\ ~ z i  ̂  ^ and Z i+  i±i — 2j+i it - . 

Consequently, 

^»+§ Zi Zi+i Zi Z{+i 2j_j_2 Zi-f-i Zi+2 Zj+i 
Z i+t = 

3 , , 3 
2 i+4 2 8 8 2 8 8 4 

3 3 
=  - ( Z i -  2 z i + l  +  z i + 2 )  =  - 5 2 z i + 1 ,  and 

Z i l + Z i + 3  
z i-|-i ~~ g ( z i 22i+i Zi+2) — g^ Zi+i. 
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For convexity to be preserved, both quantities must be nonpositive. So, we must have 

62zi+1 = 0, which holds if and only if the data lies on a straight line. • 

11.1.1.3 Exactness on Linears 

Proposition 11.1.3. MVS ID is exact on linears. 

Proof. Without loss of generality, consider the data {b, m + b, 2m + b , 3m + b}  on the line 

y — mx + b. Applying MVS to obtain the subdivided values at t = | and t = |, we obtain 

m 5 , m 7 
m 4- b + — = -m + b and 2m + b = -m + b, 

4 4 4 4 

as expected. • 

11.1.2 Minmod Vertex Split (MVS) 2D 

Definition 11.1.2. Given a grid of points with values z i t j ,  Minmod  Ver tex  Sp l i t  is per

formed by first finding the minmod vertical slope and the minmod horizontal slope m% 

(Eq. (4.1)). These two slopes define a plane going through Zj. The four split points, with 

values zi+i ,j., zi+1 -_±, z{_ i •, i, and z{_ i ,-_i, are taken from this plane: 
' ^ v 4 4 4 4 4 4 4 

(11.2) 

Eq. (11.2) makes obvious the fact that averaging average the four split values recovers 

the original one. 

11.1.2.1 Diagonal Preservation 

Minmod Vertex Split subdivision is not diagonal-preserving for hard or soft lines and in

terfaces. 

For one subdivision on hard lines and interfaces, MVS preserves all diagonals but one 

(Tables 17.1-17.2). However, the oscillations along this, central, diagonal are unacceptably 
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large: 1 and 2, respectively. For soft lines and interfaces, MVS does as badly or worse than 

bilinear. Bilinear has a maximum variation of .25 for both types of data, whereas MVS has 

maximum variations of, respectively, .25 and .50 (Tables 17.3-17.4). 

Two MVS subdivisions do not preserve diagonals either. In all cases, MVS performs 

a lot worse than bilinear. For hard lines and interfaces (Tables 17.5-17.6), the maximum 

variations are, respectively, 1.0 and 2.0, compared to bilinear's .50 for each. With soft lines 

and interfaces (Tables 17.7-17.8), the maximum variations for MVS are, respectively, .38 

and .75, while bilinear has a maximum variation of .25 for each. 

Because of these large oscillations, MVS was combined with a strongly smoothing 

filtering finishing scheme. See §15.1. 

11.1.2.2 Positivity 

Proposition 11.1.4. Minmod Vertex Split 2D preserves the positivity of the original data. 

Proof. Suppose nonnegative data. Because the minmod slope is bounded by the least of 

the left and right slopes, the plane defined by the data point (i,j, zuj) and by these slopes 

is between the horizontal plane and the plane going through (i, j, z.l<3), (i + 1 ,j, zl+ij) and 

(i,j +1, zitj+1). The values taken from the plane are at the quarter point locations and thus 

are between zitj and min(ztJ, zi+ij, zi>j+1). Since these values are all nonnegative, so is 

the subdivided value. Therefore, positivity is preserved. • 

11.1.2.3 Exactness on Linears 

Proposition 11.1.5. MVS 2D is exact on linears. 

Proof. Consider the grid data shown in (9.1), taken from the plane 2 = ax + by + d. 

Consider subdivided value at the position (f, |). The horizontal slope at (1,1 ,a + b + d) 

72 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



is a and the vertical slope at the same point is b. Therefore, the value at (|, |) is 

a b 5a + 56 
a, b -\- d, — + — = jr d, 

4 4 4 

as expected. Other points are computed similarly, and all lie on the plane. • 

11.2 Reduced Overshoot Vertex Split (ROVS) 

Reduced Overshoot Vertex Split is a nonlinear interpolatory vertex split method with a very 

small stencil (three points in ID, the five-point cross in 2D). ROVS is neither strongly nor 

weakly diagonal-preserving. A Matlab implementation is given in Appendix F.17. 

ROVS was formulated by Dr. N. Robidoux as an attempt to dampen the overshoots 

of CDVS (§10.1) without making it locally bounded by clamping the centred differences 

slopes just enough to guarantee that the value at a split vertex is in the convex hull of the 

values at the three nearest original vertices when the triple is monotone, and only damping 

slopes at extrema when they are large relative to local differences, in the spirit of the AMP 

nonlinear bicubic method (§12.2). 

11.2.1 Reduced Overshoot Vertex Split (ROVS) ID 

Definition 11.2.1. ROVS ID consists of performing vertex split with the line through Zi 

with slope rrii, where m, is obtained by clamping the centred difference slope 

Zi+l %i—1 ™>i = ~ 
2 

to the interval 

—4min(2j + zi+i — 2m, 2M — Zj_i — Zi), 4min(2j_i 4- zt — 2m, 2M — Zi — zi+1) , 

(11.3) 

where 

rri = min( z i_ i ,  z t ,  z i + i )  and M - m&x(zi-i,zi, zl+i). 
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The clamping interval (11.3) is the largest one with the following property: If the centre 

value zi is the median of the triple {zi-i, zu 2i+1}, using a slope in the interval guarantees 

that the values split from zl do not overshoot the convex hull of the triple. 

When Zi is not the median of the triple, the split values may overshoot the min or max 

of {zi-i, Zi, zi+1}, but not by much. In that case, however, Zi is either the minimum or 

the maximum of the triple. As discussed in [61], no monotonicity-preserving method can 

be second order accurate near local minima and maxima. Thus, ROVS allows small over-

and undershoots exactly where needed to maintain accuracy and, consequently, perceptual 

smoothness. We will see in §15.2 that allowing the split values, and consequently the 

smoothed values, to minimally overshoot minima and maxima allows ROVSQBS to inherit 

the smoothness and accuracy of CDVSQBS when the data is smooth without also inheriting 

CDVSQBS' large "halos." 

11.2.1.1 Co-monotonicity 

Conjecture 11.2.1. ROVS ID preserves the monotonicity of the original data. 

Counterexample 11.2.1. Suppose we have the monotone increasing data {0,1,2,10}. The 

initial slopes at the second and third points are, respectively, 1 and |. The bounding interval 

for the second point is [—12,4]. Since 1 belongs to this interval, we keep the initial slope. 

The bounding interval for the third point is [—40,4]. Since | does not belong to this interval, 

we instead set the slope at the third point equal to 4. Now if we apply the vertex split 

subdivision using these points and these slopes, we obtain, starting at t — |, {§> f, 1,3}, 

which is clearly not monotone increasing. • 

11.2.1.2 Co-convexity 

Conjecture 11.2.2. ROVS ID preserves the convexity of the original data. 
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Counterexample 11.2.2. Consider the concave increasing data 

{0,50,60,68}. 

The centred differences slopes, starting at t = 1, are 30 and 9. Both belong to the required 

intervals: 

30 e [-280,40], and 9 E [-104,32]. 

After subdivision, we obtain, starting at t — |, 

{42.5,57.5,57.75,62.25}, 

with simple differences equal to 15, 0.25 and 4.5. • 

11.2.1.3 Local Boundedness 

Conjecture 11.2.3. ROVS ID is locally bounded. 

Counterexample 11.2.3. Consider the set of points with values {0,2,1}. The initial 

Catmull-Rom slope at the second point is ̂  = I_ j^e ROVS bounding interval is [—8,4]. 

Since the initial slope belongs to this interval, we keep it as it is. If we now apply vertex 

split subdivision, we obtain, at t = |, the value 2 + \\ = §, which is greater than 2, the 

local maximum of the original points. • 

11.2.1.4 Exactness on Linears 

Proposition 11.2.1. ROVS ID is exact on linears. 

Proof. Without loss of generality, consider data on the line y — rax + b, with m > 0. (The 

m = 0 case is trivial.) 

All centred differences are equal to m. The clamping interval is [—12m, 4m]. Conse

quently, no clamping is done, and the vertex split stage uses the original straight line. • 
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11.2.2 Reduced Overshoot Vertex Split (ROVS) 2D 

ROVS 2D is performed the same way as MVS 2D (§11.1.2) but the slopes used are those 

of ROVS ID (§11.2.1) considered in the horizontal and in the vertical directions. 

11.2.2.1 Diagonal Preservation 

ROVS gives the same results as MVS when applied to hard and soft lines and interfaces 

(Appendix A). Therefore, it has the same diagonal preservation properties (or lack thereof) 

as MVS (§ 11.1.2.1). See § 15.2 for an hybrid implementation which uses a strongly smooth

ing finishing scheme. 

11.2.2.2 Local Boundedness 

Conjecture 11.2.4. ROVS 2D preserves the positivity of the original data. 

Counterexample 11.2.4. Consider the following initial data: 

0 10 0 

10 1 0 

0 0 0 

The original centred differences slopes for the centre point are —5, both horizontally and 

vertically. The interval in which this slope should belong is [—4,44]. Since —5 is smaller 

than the lower bound, we set the vertical and horizontal slopes of the centre point equal to 

-4. The value at (|, |) is therefore 1 + =£• + = -1. Therefore, the positivity is not 

preserved. • 

Since ROVS 2D is not positivity preserving, it is not locally bounded. 
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11.2.2.3 Exactness on Linears 

Proposition 11.2.2. ROVS 2D is exact on linears. 

Proof. As in ID, there is no clamping when the data is affine. As discussed in connection 

to MVS 2D (§ 11.1.2.3), the subdivided points are then on the original plane. • 
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12 Numerical Analysis of Nonlinear "Direct" 

Interpolation Methods 

In this chapter, we study the properties of nonlinear interpolation methods. All of them 

are variants of Hermite (bi)cubic interpolation, each and every one constructed so as to 

minimize overshoots and undershoots. They differ in the choice of slope limiter and/or 

cross-derivative. 

These methods were considered mostly in the search for a suitable finishing scheme 

for Nohalo subdivision. The last method discussed in this chapter, the novel LBB (Locally 

Bounded Bicubic) method, eventually was found to fit the bill. 

12.1 Monotonicity-Preserving (MP) 

Monotonicity-Preserving subdivision is a nonlinear interpolatory method. It is 

neither strongly nor weakly diagonal-preserving. A Matlab implementation is given in 

Appendix F.8. This method, due to Huynh [61], was based on his extension to higher-

order approximations of the necessary and sufficient condition for monotonicity found by 

de Boor and Swartz [26]. 

Definition 12.1.1. Given a set of points with values z,, we first compute the MP slope at 
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each of these points as follows: 

Zi-)-i Zi— i 
r r i i  = minmod ^3 minmod ( z i + i  —  Z i , Z i  —  Z i -1) ,  

/ / \ 
= minmod ( 3 minmod &zi+^J , 2—^ - 1 . (12.1) 

These slopes are then used in the Hermite cubic spline formula(6.1) to define the spline 

between each pair of consecutive original points. 

12.1.1 Monotonicity-Preserving (MP) ID 

12.1.1.1 Co-monotonicity 

Proposition 12.1.1. MP ID preserves the monotonicity of the original data. 

Proof See Huynh [61]. • 

Consequently, MP ID is locally bounded. 

12.1.1.2 Co-convexity 

Conjecture 12.1.1. MP ID preserves the convexity of the original data. 

Counterexample 12.1.1. Consider the data {15,29,41,44}. The slopes at the second and 

third points are, respectively, 13 and 7.5. Finding the cubic Hermite spline between the 

second and third points, and differentiating twice, we obtain z"(t) = —2It + 5. This 

function has a simple root at t = which is in (0,1). Therefore, there is a change in 

convexity. • 

Conjecture 12.1.2. MP ID,  used  as  a  face  sp l i t  subd iv i s ion  me thod  ( the  "d i scre te"  case ) ,  

preserves the convexity conditionally. 
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Below, we present a partial proof, in need of further work, of this conjecture. 

The midpoints are 

Zi Zi+\ TTlj Tfli+i 
= + 8 ' 

The midpoints always respect the convexity with respect to the old points because 

Zi + zi+1 rrii - mi+i 
Z; , 1 = . 

l +5 2 8 

Thus, the only question concerns the convexity at the original points with respect to the 

inserted points: 

z i+\ + z i+f -Zi + 2z i+1  - z i+2  , rri i+2 - rrii ~ 

2i+1 2 = S + 16 (12'2) 

Without loss of generality, suppose that the data is concave monotone nondecreasing. Then, 

minmod 

Consequently, each slope is determined by the result of one minmod operation. Since two 

slopes appear in Eq. (12.2), four different cases are possible. 

In the first case, we have mi+2 = Zl+3 Zt+l and rrii = Zl+1 Zl~l. Substituting these 

values in Eq. (12.2) equation, we get 

Zi %i+2 1 ( (Zi+3 %i+l \  (z i+1 z i—2 

4 16 V\ 2 
_ Zj-\ — 8Zj + 14zj+i — 8zj+2 + Zj+3 

~ 32 ' 

In the second case, we have mi+2 = 3(zi+3 — zi+2) and rrii = 3{zi+i ~ Zi). Substituting 

these values in the equation, we get 

—Zj  + 2z j + i  — Z j + 2 3(zj+3 — Zi+2) — 3(^+1 — Zi) _ —Zi + bzi+i — 7^+2 + 3zj+3 

16 16 

In the third case, we have mi+2 = 3(zj+3 — zi+2) and rrii = This time, we 

get 

•Zi + 2Zi+i — Zi+2 3(2i+3 — Zi+2)  — ( 2 l + 1
2

A  ' )  

4 16 
Zj - i  -  8z j  +  15z j+i  -  14z i + 2  +  6z i + 3  

32 
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In the fourth case, we have mi+2 = 

key quantity is 

Zj+3 ~ Zj+l 

2 
and m,i = Z{zi+\ — ^-1), so that the 

4 16 VV 2 
— 2-Zj + 92j+i — 82j+2 + 2j+3 

32 

((''+V+i)-3u+'-*-.)) 
Since the operative case can change when we move from set of points to the next, each 

condition is not typically to be satisfied all the points. This makes it very complicated to 

know whether or not the next subdivision still respects the convexity of the original data, 

which is why this proof attempt is abandoned. 

12.1.1.3 Exactness on Linears 

Proposition 12.1.2. MP ID is exact on linears. 

Proof. If the data is affine, all the first finite differences equal the slope m of the straight 

line. Consequently all the MP slopes are 

so that the corresponding cubic Hermite spline is the original straight line (like in §6.1.1.5). 

12.1.1.4 Subjective Evaluation of Interpolation Plots 

The MP method gives visually pleasing results with smooth curves. As such, it has been 

ranked among the top methods in Chapter 16. For both hard and soft cardinal and Heaviside 

data, MP is ranked first, along with AMP, MP (Harmonic Average) and LBB. For hard 

cardinal and Heaviside data, the reason for putting these methods first is that they have 

no overshoot or undershoot, they are smooth between points but not rounded where they 

minmod ( 3 minmod(m, m), -(2m) 

• 
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should be more angular, such as at the points where the data goes from 0 to 1. However, 

in the case of hard cardinal data, it can be seen that they do not give a sharp point at 

the maximum value, rounding it slightly, as it should. These methods also do not have 

extraneous oscillations between points for hard data. For soft data, some oscillations can 

be seen, but they are not as evident as with other methods. At the same time, the curve 

retains its smoothness and the peak in the soft cardinal data is nicely rounded. Hard and soft 

cardinal data results are presented, respectively, in Fig. 16.1 and 16.9 while the hard and soft 

Heaviside results are presented, respectively, in Fig. 16.5 and 16.13. For the non-smooth 

data in Fig. 16.17, MP is still ranked first along with AMP and LBB. This choice may seem 

less obvious but from a completely subjective perspective, the result for MP seemed more 

pleasant. It gives a smooth curve which is nicely rounded. MP (Harmonic Average), for 

example, seems to flatten certain areas while MP seems to make them rounder. For the 

sine data in Fig. 16.25 however, MP has been ranked among the worst methods. It only 

performs better than MP (Harmonic Average) and MVSQBS. The main reason for this 

ranking is that it flattens the peak of the curve more than some other methods. Otherwise, 

it is nice and smooth, without the extraneous oscillations present with MVSQBS. 

12.1.2 Monotonicity-Preserving (MP) 2D 

A number of different MP 2D variants, distinguished by their defining cross-derivatives, 

reduce to the above MP ID. In all cases, the bicubic Hermite interpolating surface between 

four nearby pixel positions is defined by the four corner values, by the gradients defined by 

the following directional derivatives, computed at each of the four corner pixel location, 

rafj = minmod ^3 minmod ( z l + i t J  -  z h j ,  z i t j  -  2t_ij),  5  

m y
i t j  -  minmod ^3 minmod ( z i t j + 1 -  z h J ,  z h j  -  z u j -1),  ,  

as well as by four collocated cross-derivatives. 
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12.1.3 Monotonicity-Preserving (MP) 2D with Null Cross-Derivatives 

This is the simplest reasonable extension of the MP method to 2D using the Hermite bicubic 

formula. This choice of cross-derivatives is reasonable given that affine functions have null 

cross-derivatives, which implies that hardwiring them to zero does not affect exactness on 

linears. 

Definition 12.1.2. In this MP variant (§12.1.2), all the cross-derivatives are set to zero. 

12.1.3.1 Diagonal Preservation 

Monotonicity-Preserving with null cross-derivatives subdivision is not diagonal-preserving 

for hard and soft lines and interfaces. It performs the same as for bilinear for hard data after 

one subdivision, and worse than it for two subdivisions. Its performance is between that of 

bilinear and Lanczos 3 for soft data. 

For hard lines and interfaces after one subdivision (Tables 17.1-17.2) and after two 

subdivisions (Tables 17.5-17.6), MP Null has maximum variations of .50, the same as for 

bilinear. For soft lines and interfaces after one subdivision (Tables 17.3-17.4) and two 

subdivisions (Tables 17.7-17.8), MP Null has maximum variations of .19 while bilinear's 

maximum oscillation is .25 and Lanczos 3's are .03 and .05. 

12.1.3.2 Local Boundedness 

Conjecture 12.1.3. The square surface patch supported by the convex hull of four nearby 

input pixel locations, obtained by MP with null cross-derivatives, is contained between the 

maximum and the minimum of the corner values of the patch. 
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Counterexample 12.1.2. Suppose we have the following initial data: 

* 1 -10 * 

1 1 0 -10 

-10 0 1 10 

* -10 10 * 

The four corner values of the square patch under consideration are Z(0,o) = 1, Z(i,o) = 0, 

2 ( o , i )  =  0  a n d  z ^ i )  =  1 .  T h e  c o r r e s p o n d i n g  M P  s l o p e s  a r e  r n * 0 Q j  =  0 ,  m =  — 3 ,  

m(<0,1) = 3, j) = 3 and my
0 = 0, 0j = 3, rny

Q1^ — —3, fny^ ^ = 3. Substituting 

into the bicubic Hermite spline formula, one gets a value at (0.25,0.25) equal to 1.06 > 

max{0,1}. • 

Conjecture 12.1.4. The surface patch obtained by MP with null cross-derivatives is con

tained between the maximum and the minimum of all the values used to compute the patch. 

Counterexample 12.1.3. Consider the following data: 

* 0 10 * 

0 0 1 10 

10 1 0 0 

* 10 0 * 

The four corner values of the square patch under consideration are Z(o,o) — 0, Z(i,o) = 1. 

2(0)i) = 1 and 2(1,1) = 0. The corresponding MP slopes are m*0)0) = 0, m*10) = 3, 

m*0 = —3, !) = 0 and my
0 0) = 0, = —3, my

0 ^ = 3, ^ = 0. The value of 

the bicubic Hermite interpolant at (0.5,0.5) is —0.25 < 0 = min{0,1,10}. • 

Of course, this last counterexample could also have been used for the previous conjec

ture. Presenting both documents the process by which the properties of this MP variant 

where investigated. 
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12.1.3.3 Exactness on Linears 

Proposition 12.1.3. MP 2D with null cross-derivatives is exact on linears. 

Proof. Consider the grid data shown in (9.1), taken from the plane z — ax + by + d. All 

the horizontal slopes are equal to a and all the vertical slopes are equal to b while all the 

cross-derivatives are equal to 0, like for CR 2D, which is exact on linears (§6.1.2.3). • 

12.1.4 Monotonicity-Preserving (MP) 2D with Centred Differences Cross-

Derivatives 

This is another variant of 2D MP formulated by Dr. N. Robidoux. Since setting cross-

derivatives to zero failed to give a particularly attractive scheme, he decided to try the more 

accurate Catmull-Rom values. 

Definition 12.1.3. In this MP variant (§12.1.2), the cross-derivatives are computed with 

centred differences: 

xy ^ij  — 1 1 f Zi+l,j+l Zi—l,j+l —1 
- 2 ~ 2 V 2 2 J 

Zi-j-lj'+l Zi—l,j+l Zi+IJ — l ~f~ Zi—\ j_ \  _ _ . 

12.1.4.1 Diagonal Preservation 

Monotonicity-Preserving with centred differences cross-derivatives subdivision is not 

diagonal-preserving for hard and soft lines and interfaces. Its performance is between that 

of bilinear interpolation and Lanczos 3 for all cases. 

For hard lines and interfaces after one subdivision (Tables 17.1-17.2) and after two sub

divisions (Tables 17.5-17.6), MP Centred has maximum variations of .48 while bilinear's 

maximum oscillation is .50 and Lanczos 3's are .23 and .22. For soft lines and inter

faces after one subdivision (Tables 17.3-17.4) and two subdivisions (Tables 17.7-17.8), 
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MP Centred has maximum variations of .18 while bilinear's maximum oscillation is .25 

and Lanczos 3's are .03 and .05. 

12.1.4.2 Positivity 

Conjecture 12.1.5. MP 2D with centred differences cross-derivatives preserves the posi

tivity of the original data. 

Counterexample 12.1.4. Suppose we have the following initial data: 

20 0 10 0 

0 0 1 10 

10 1 0 0 

0 10 0 20 

The four corner values of the square patch under consideration are 2(o,o) = 0, 2(i0) = 1, 

z(o,i) = 1 and 2(lil) = 0. The corresponding MP slopes are m*0 = 0, 0j = 3, 

mfo,i) = ~3' m?i,i) = 0 and m(0,0) = °> m?i,0) = -3' ™(o,i) = 3' = °- The 

cross-derivatives are m*jf0j = 0, = —1, ^ = —1 and = 0. We then apply 

bicubic Hermite spline. Computing the value at (0.5,0.5) is —0.22. 

Since all the values used were positive and we obtained a negative value, MP inter

polation (and subdivision) with centred differences cross-derivatives followed by Hermite 

bicubic splines does not preserve the positivity of the data. • 

12.1.4.3 Exactness on Linears 

Proposition 12.1.4. MP 2D with centred differences cross-derivatives is exact on linears. 

Proof. Consider the grid data shown in Eq. (9.1), taken from the plane 2 = ax + by + d. 

All the horizontal slopes are equal to a and all the vertical slopes are equal to b while all the 

cross-derivatives are equal to 0. This is like CR 2D, which is exact on linears (§6.1.2.3). • 

86 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



12.1.5 Symmetrized Monotonicity-Preserving 

Symmetrized MP, a.k.a. MP Tensor, is the last of the 2D variants proposed by Dr. N. Ro-

bidoux based on the original MP method [61]. It consists of using ID MP in the horizontal 

direction and then in the vertical direction, independently using ID MP in the vertical direc

tion and then in the horizontal direction, and averaging the results. The averaging restores 

the symmetry with respect to axis reordering which would be broken if only one of the two 

sequences of ID interpolation was performed. 

Because each step preserves monotonicity, the resulting scheme is automatically locally 

bounded. Furthermore, it is automatically monotonicity-preserving for data constant on 

rows, or constant on columns. 

12.1.5.1 Diagonal Preservation 

Symmetrized Monotonicity-Preserving subdivision is not diagonal-preserving for hard and 

soft lines and interfaces. Its performance is between that of bilinear interpolation and Lanc

zos 3 for all cases except two subdivisions of hard line data. 

For hard lines after one subdivision (Table 17.1), MP results are identical to bilinear's. 

For hard lines after two subdivisions (Table 17.5), MP results are similar to bilinear's in 

the sense that they have the same maximum oscillation but MP has larger secondary os

cillations. In both of these cases, each method has a maximum variation of .50. For hard 

interfaces after both one subdivision (Table 17.2) and two subdivisions (Table 17.6), the 

maximum variation is .38 for MP, whereas it is .50 for bilinear and .22 for Lanczos 3. For 

soft lines and interfaces (Tables 17.3-17.4), the results are again between those for bilinear 

and Lanczos 3. With soft lines and interfaces, for one subdivision (Tables 17.3-17.4) and 

two subdivisions (Tables 17.7-17.8), the maximum variations for MP are, respectively, .19 

and .09. For the same data types, the maximum variations for bilinear and Lanczos 3 are, 

respectively, .25 for bilinear, and .03 and .05 for Lanczos 3. 
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12.1.5.2 Continuity 

Conjecture 12.1.6. Symmetrized MP-quadratic produces a C1 surface. 

Although Dr. N. Robidoux believes this to be an immediate consequence of the chain 

rule, the author of this thesis does not have a proof of this conjecture at this point. 

12.2 Almost Monotonicity-Preserving (AMP) 

Almost Monotonicity-Preserving (AMP) is a nonlinear interpolatory subdivision method. 

It is neither strongly nor weakly diagonal-preserving. An implementation is given in Ap

pendix F.9. 

The AMP subdivision method was formulated by Dr. N. Robidoux [102], 

12.2.1 Almost Monotonicity-Preserving (AMP) ID 

Definition 12.2.1. Instead of the usual MP slopes (12.1), we use 

rrii = minmod ^4 minmod(zi+i — Zi — 2i-i)> ' + 1  ^ •  

in the cubic Hermite spline formula (6.1). 

The factor of 4 in the slope limiter comes from the largest possible normalized end 

slope of a monotone bicubic.  Specifically,  [0,4]2  is  the bounding square of the region M  

shown in Fig. 3 of [130]. ([0,3]2 is the largest square contained in the same region, leading 

to the factor of 3 in (12.1).) Since this gives a necessary, but not sufficient, condition for 

monotonicity, the resulting scheme is not monotonicity-preserving. Dr. N. Robidoux hoped 

that loosening the usual factor of 3 would contribute to the smoothness of the result while 

providing enough overshoot damping. 

Research in AMP was suspended by the discovery of the LBB method (§12.4). 
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12.2.1.1 Co-monotonicity 

Conjecture 12.2.1. AMP ID preserves the positivity of the data. 

Counterexample 12.2.1. Consider the nonnegative data {0,0,1,10} and the AMP inter-

polant in the interval between the second and third points. The AMP slopes are, respec

tively, mo — 0, mi = 4. Putting these values in the Hermite cubic spline formula together 

with zo = 0, z\ — 1, we obtain the following formula for the interpolant: 

z ( t )  =  (2t3 - 3t2 + 1) 0 + (t3 - 2t2 + t) 0 + (-2t3 + 3t 2 )  1 + ( t 3  -  t 2 )  4 

=  t 2  ( 2 1  -  1 ) .  

This function is negative for t € (0, |). For example, 2 (|) = — • 

12.2.1.2 Co-convexity 

Conjecture 12.2.2. AMP ID preserves the convexity of the original data. 

Counterexample 12.2.2. Let the values of the data points be {15,29,41,43}. In this case, 

z0 = 29, z\ — 41, m0 = 13 and mi = 7. Inserting those values in the equation for the 

cubic Hermite spline and differentiating twice, we obtain z"(t) — —241 + 6. We have an 

inflexion point at t = which is in (0,1), which means that the convexity of the curve 

changes in the interval between the two points. Therefore, convexity is not preserved. • 

12.2.1.3 Exactness on Linears 

Proposition 12.2.1. AMP ID is exact on linears. 

Proof. Without loss of generality, consider data taken from the line 2 = mx + b. All the 

MP slopes are 

minmod (4 minmod(m, m), m) = m. 
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The Hermite spline turns out to be the same as for CR, which is exact on linears (§6.1.1.5). 

• 

12.2.1.4 Subjective Evaluation of Interpolation Plots 

The AMP method gives the same results as MP (§12.1.1.4) for hard and soft cardinal and 

Heaviside data as well as unsmooth data. The results can be found in Fig. 16.1, 16.9, 16.5, 

16.13 and 16.17. For sine data, this method is ranked before Symmetrized MP. The result 

can be seen in Fig. 16.25. The differences between the two graphs are not very obvious but 

AMP does not flatten the peak as much as Symmetrized MP and, as such, tends to be more 

visually pleasing. 

12.2.2 Almost Monotonicity-Preserving (AMP) 2D with Null Cross-Derivatives 

AMP 2D with null cross-derivatives is performed in a manner similar to MP 2D (§12.1.3) 

with null cross-derivatives but with a slope limiter of four times the minmod slope instead 

of the usual three. 

12.2.2.1 Diagonal Preservation 

AMP 2D with null cross-derivatives gives the same results as MP 2D with null cross-

derivatives (§12.1.3.1) for all cases and any number of subdivisions. 

12.2.2.2 Positivity 

Conjecture 12.2.3. AMP 2D with null cross-derivatives preserves the positivity of the data. 
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Counterexample 12.2.3. Suppose we have the following initial data: 

0 0 10 0 

0 0 1 10 

10 1 0 0 

0 10 0 0 . 

The four corner values of the square patch under consideration are Z(0,o) = 0, Z(2,0) = 1, 

2(o,i) = 1 and 2(1,1) = 0- The corresponding AMP slopes are m*0 ^ = 0, = 4, 

12.2.3 Almost Monotonicity-Preserving (AMP) 2D with Centred Differences Cross-

Derivatives 

AMP 2D with centred differences cross-derivatives is performed in a manner similar to 

MP 2D (§12.1.4) with centred differences cross-derivatives but with a slope limiter of four 

times the minmod slope instead of the usual three. 

12.2.3.1 Diagonal Preservation 

AMP with null cross-derivatives gives the same results as MP with null cross-derivatives 

(§12.1.3.1) for all cases after one subdivision. After two subdivisions, there are minor 

variations in some of the lesser oscillations, but the maximum variations are nonetheless 

identical to MP's. 

Conjecture 12.2.4. AMP 2D with centred differences cross-derivatives preserves the pos

itivity of the data. 

the corresponding Hermite spline at (0 .5 ,0 .5)  i s  —0.5 < 0.  

= 4, = 0. The value of 

• 
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Counterexample 12.2.4. Consider the nonnegative data 

0 0 10 0 

0 0 1 10 

10 1 0 0 

0 10 0 0 

The four corner values of the square patch under consideration are Z(0,o) = 0, Z(li0) = 1, 

2(o,i) = 1 and 2(1,1) = 0. The corresponding AMP slopes are m*00^ = 0, = 4, 

mfo,i) = ~ 4 > mfi,i) = 0 and m (o ,o)  =  m ( i ,o )  =  _ 4 '  m (o , i )  =  4 '  m ( i , i )  =  T h e  c r o s s "  

derivatives are = —20, rn^Q^ = — 1, = — 1 and = —20. The value of 

the corresponding bicubic Hermite spline at (0.5,0.5) is —1.09 <0. • 

12.2.3.2 Exactness on Linears 

Proposition 12.2.2. AMP 2D is exact on linears. 

Proof. Consider the grid data shown in (9.1), taken from the plane 2 = ax + by + d. All 

the horizontal slopes are equal to a and all the vertical slopes are equal to b while all the 

cross-derivatives are equal to 0. This is the same case as for CR 2D, which is exact on 

linears (§6.1.2.3). • 

12.2.4 Symmetrized Almost Monotonicity-Preserving (AMP) 2D 

Symmetrized AMP 2D, a.k.a. AMP Tensor, is performed in a manner similar to MP 2D 

(§12.1.2) but with a slope limiter of four times the minmod slope instead of the usual three. 

12.2.4.1 Diagonal Preservation 

Symmetrized AMP gives the same results as Symmetrized MP (§12.1.5.1) for all cases and 

any number of subdivisions. 
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12.3 MP (Harmonic Average) 

12.3.1 MP (Harmonic Average) ID 

Definition 12.3.1. MP (Harmonic Average) ID is the method called "MP" in Scilab. It is 

based on the DPCHIM Fortran code [39]. The slope at each point is the harmonic average 

of the left and right slopes: 

2 2 rriLmR 
m i  — T~i i~T = • 

( —  +  — )  mi +  ma \ m L rrifiJ ^ IX 

Hermite cubic splines are then used to compute the curve between two neighbouring points. 

Analysis of this MP variant was not performed. It appears that, despite its inclusion in 

Scilab and the Netlib library, this is an outdated method, made obsolete by the later method 

MP of §12.1. 

12.3.1.1 Subjective Evaluation of Interpolation Plots 

The MP (Harmonic Average) method gives the same results as MP (§12.1.1.4) for hard 

and soft cardinal and Heaviside data. The results can be found in Fig. 16.1, 16.9, 16.5 and 

16.13. For both sine data and unsmooth data, this method is ranked after Symmetrized MP. 

The results can be seen in Fig. 16.18 and 16.26. The differences between the two graphs 

are not very obvious but MP (Harmonic Average) flattens the peaks more than plain MP 

and, as such, is less pleasing visually. 

12.4 Locally Bounded Bicubic (LBB) 

Locally Bounded Bicubic subdivision is a nonlinear interpolatory method. It is 

neither strongly nor weakly diagonal-preserving. A Matlab implementation is given in 

Appendix F. 11. 
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LBB was formulated by Dr. N. Robidoux based on Butt and Brodlie [12] and Brodlie 

et al. [8] who give formulae for bicubic interpolants constrained between predefined planes 

under the assumption that the initial data satisfies the constraint. LBB is novel in that the 

constraining planes are locally, as opposed to globally, defined and enforced. 

12.4.1 Published Implementations 

The C and C++ implementations of the Nohalo-LBB hybrid scheme discussed in §4.1.1 

contain functions implementing LBB. In addition, the VIPS (Virtual Image Processing 

Library) contains a stand-alone implementation under the name LBB [106]. The VIPS 

implementation is called Upsize when called from NIP2. 

12.4.1.1 Subjective Evaluation of Interpolation Plots 

The LBB method gives the same results as MP (§12.1.1.4) for all data tested in the context 

of this thesis. 

12.4.2 Locally Bounded Bicubic (LBB) 2D 

Definition 12.4.1. As usual, let x denote the horizontal direction and y denote the vertical 

direction. In order to compute the slopes and cross-derivatives at a pixel location (i, j), we 

only need to consider the set of values at the nine closest pixel locations, namely 

^i , j  =  { z i  — l,j+li z i , j+1) z i -1-1,j+1) z i— lji z i , j i  — -+1 ,J  — 1 } •  

(An LBB variant in which Zi%i is the five-point "cross" {-Zij+i, 2j-i,j, z»j, 

was programmed as well. At this point, it appears that this latter Zitj is not as good as the 

former one, at least when LBB is used as a Nohalo finishing scheme. We will not discuss 

this variant further.) 
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Now, let 

rr i i j  = min Z h J y  

MhJ = max ZhJ, and 

min(2jj ^iii j. t j 

First, set the original slopes equal to the usual centred differences and then enforce 

dz 

dx  
< 3dij and 

dz  

dy  
< 3d i j  

by clamping if necessary. Then, the centred differences cross-derivatives are clamped so 

that the following conditions, involving the possibly clamped first derivatives in their right 

hand sides, are satisfied: 

d 2 z  

dxdy 

d 2 z  

dxdy 

d 2 z  

dxdy 

d 2 z  

dxdy 

> 3 

< -3 

< -3 

> 3 

dz  dz  

dx  +  dy 

dz  dz  

dx  dy  

dz  dz  

dx  dy  

dz  dz  

dx  dy  

9 (Z{j ^i,j) i 

+ 9 (Mi j — Zij), 

+ 9 (Zi j  — 1Tl i , j )  ,  

9 (Mij Zi,j) • 

These (possibly) clamped first and cross-derivatives are then substituted in the usual bicubic 

Hermite formula. 

12.4.2.1 Diagonal Preservation 

LBB does not preserve diagonals for hard and soft lines and interfaces. 

After one subdivision, it has the same maximum variations as bilinear for both hard 

lines and hard interfaces (Tables 17.1-17.2). For soft lines and interfaces (Tables 17.3-

17.4), LBB has maximum variations of .13 and .12. This is between bilinear's .25, and 

Lanczos 3's .03 and .05. 
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Evaluated at the second face split subdivision pixel locations, LBB has the same max

imum variations as bilinear for hard lines (Table 17.5). For a hard interface (Table 17.6), 

with .52, it performs slightly worse than bilinear's .50. For soft lines and interfaces (Ta

bles 17.7-17.8), LBB performs better than bilinear's .25 with, respectively, .11 and .12, 

although not as well as Lanczos 3 (.03 and .05). 

12.4.2.2 Positivity 

Conjecture 12.4.1. LBB 2D preserves the positivity of the original data. 

At this point, the author of this thesis does not have a complete proof of this conjecture. It 

would appear to be a fairly immediate consequence of the properties of the bounded bicu-

bics discussed in Brodlie et al. [8], Butt and Brodlie [12]. However, because the clamping 

bounds change on a pixel by pixel basis—and, in addition, the clamping bounds on the 

cross-derivatives depend on the varying first derivatives—a careful tracking of the key in

equalities is needed. 

12.4.2.3 Co-convexity 

Conjecture 12.4.2. LBB ID (obtained, as usual, by assuming data constant on columns, so 

that there is no need to consider cross-derivatives) preserves the convexity of the original 

data. 

Counterexample 12.4.1. Consider the concave data {0,20,25,25} and the LBB inter-

polant between the second (t = 0) and third (t = 1) data points. At t = 0, the centred 

difference slope is y. Since d0 = 5, and 12.5 < 15, we leave the slope as it is. At t = 1, 

the centred difference slope is 3. Since d\ = 1, and 3 < 3, we leave the slope as it is. 

With the Hermite cubic spline formula (6.1), we obtain z(t) = 20 + yi — 13£2 + y£3. 

Differentiating twice, and finding the root, we get t = which is in (0,1). Therefore, 

there is a change of convexity. • 
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12.4.2.4 Exactness on Linears 

Proposition 12.4.1. LBB 2D is exact on linears. 

Proof. Consider the grid data shown in Eq. (9.1), taken from the plane 2 = ax + by + d. 

All the horizontal slopes are equal to a and all the vertical slopes are equal to b while 

all the original cross-derivatives are equal to 0. Since all of these slopes satisfy the LBB 

conditions, we end up with the same case as for CR 2D, which is exact on linears (§6.1.2.3). 

• 
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13 Numerical Analysis of Nonlinear Face Split Hybrid 

Interpolation Methods 

In the following three chapters, the properties of some hybrid methods consisting of one 

step of a subdivision scheme followed by filtering are studied. All the hybrid methods 

considered in this thesis define an interpolation scheme. 

In this chapter, the hybrid method consisting of one step of the nonlinear Nohalo face 

split subdivision followed by linear interpolation with Catmull-Rom is discussed. Very 

briefly, the successful Nohalo-LBB hybrid is also discussed. The scant amount of analysis 

and comparative data presented for this method is in no way representative of its quality. 

Instead, it is the direct result of it being a capstone method, and as such, a relatively late 

arrival on the author's workbench. 

In the following two chapters, hybrid methods consisting of one step of interpolatory 

vertex split methods followed by linear smoothing with quadratic B-splines are considered. 

13.1 Nohalo Followed by Catmull-Rom (Nohalo-CR) 

Nohalo-CR is a nonlinear interpolatory method which was developed by Dr. N. Robidoux 

It consists of the nonlinear face split method Nohalo (§4.1) followed by the linear interpola

tion Catmull-Rom (§6.1) method. Matlab implementations of Nohalo subdivision followed 

by Catmull-Rom are given in Appendices F.6 and F.10. 

This method was made obsolete by the Nohalo-LBB hybrid discussed briefly at the end 
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of this chapter (§13.2). 

13.1.1 Nohalo Followed by Catmull-Rom (Nohalo-CR) ID 

It consists of one Nohalo subdivision step (§4.1.2) followed by Catmull-Rom bicubic inter

polation (§6.1.1) as a finishing scheme. 

13.1.1.1 Co-monotonicity 

Conjecture 13.1.1. Nohalo-CR ID preserves the monotonicity of the data. 

Counterexample 13.1.1. Consider Heaviside data. After applying Nohalo subdivision, 

we get soft Heaviside data, {0,0,0.5,1,1}. However, we know that Catmull-Rom has an 

undershoot of — ^ between the first and second points (Prop. 6.1.2). Therefore, Nohalo-CR 

ID does not preserve the monotonicity of the data. • 

13.1.1.2 Co-convexity 

Conjecture 13.1.2. Nohalo-CR preserves the convexity of the data. 

Counterexample 13.1.2. Suppose we have the initial data {—20,0,10,18,20}. After No

halo subdivision, we obtain, starting at t = |, {5.5,10,15.5,18}. Now we apply Catmull-

Rom. We compute the spline between the second and third points of the previous set and 

obtain: 

z{ t )  =  (2t 3  -  3t 2  + 1)10 + (t 3 - 2t 2  + t )5 + (—2t 3  + 3f2)15.5 + (t 3 - t 2 )4, done 

z"(t) = -12t + 5. 

This second derivative has a root at t = which is in (0,1). Therefore, the convexity 

changes between the third and fourth points. • 
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13.1.1.3 Exactness on Linears 

Proposition 13.1.1. Nohalo-CR ID is exact on linears. 

Proof. We know that Nohalo ID is exact on linears (§4.1.2.3) and that CR ID is exact on 

linears (§6.1.1.5). Therefore, one followed by the other is also exact on linears. • 

13.1.2 Nohalo Followed by Catmull-Rom (Nohalo-CR) 2D 

Nohalo-CR 2D is one Nohalo 2D subdivision (§4.1.3) followed by CR 2D (§6.1.2) as fin

ishing scheme. 

13.1.2.1 Positivity 

Conjecture 13.1.3. Nohalo-CR 2D preserves the positivity of the original data. 

Counterexample 13.1.3. Since Nohalo-CR ID does not preserve the positivity of the orig

inal data (§13.1.1.1), then neither does Nohalo-CR 2D. • 

13.1.2.2 Exactness on Linears 

Proposition 13.1.2. Nohalo-CR 2D is exact on linears. 

Proof. The ID argument carries over. • 

13.2 Nohalo-LBB 

This method is a combination of one Nohalo subdivision step (§4.1) finished with Locally 

Bounded Bicubic (LBB) interpolation (§12.4). Additional details are found in the sections 

devoted to its constituents. 
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13.2.0.3 Diagonal Preservation 

Only the main (nine-point min/max LBB computation) variant was tested. 

For hard lines and interfaces after one subdivision (Tables 17.1-17.2), Nohalo-LBB has 

the same oscillations as bilinear. Their maximum variation is .50. After two subdivisions 

(Tables 17.5-17.6), bilinear slightly outperforms Nohalo-LBB with a maximum variation 

of .50 versus, respectively, .52 and .50. 

For soft lines and soft interfaces after one subdivision (Tables 17.3-17.4), Nohalo-LBB 

preserves diagonals perfectly. This is not quite the case after two subdivisions (Tables 17.7-

17.8). In both cases, however, Nohalo-LBB performs better than all the other methods with 

maximum variations of, respectively, .03 and .02. 

101 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



14 Numerical Analysis of Linear Vertex Split Hybrid 

Interpolation Methods 

In this chapter, the hybrid method consisting of one step of the linear Centred Differences 

Vertex Split subdivision scheme followed by linear smoothing with quadratic B-splines is 

discussed. 

14.1 Centred Differences Vertex Split Followed by Quadratic B-

Spline Smoothing (CDVSQBS) 

CDVSQBS is a linear interpolatory method which was developed by Dr. N. Robidoux. It 

consists of the linear vertex split method Centred Differences Vertex Split (§10.1) followed 

by linear smoothing with quadratic B-splines (§7.1). Matlab implementations for Centred 

Differences Vertex Split and quadratic B-spline smoothing are given in Appendices F.16 

and F. 15. 

14.1.1 Centred Differences Vertex Split Followed by Quadratic B-Spline Smoothing 

(CDVSQBS) ID 

Definition 14.1.1. CDVS ID (§10.1.1) is applied to the data, then the result is smoothed 

using quadratic B-splines (§7.1.1) as finishing scheme. 
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14.1.1.1 Co-monotonicity 

Conjecture 14.1.1. CDVSQBS ID preserves the positivity of the original data. 

Counterexample 14.1.1. Consider Heaviside data {0,0,0,1,1,1}. We consider the inter-

polant between the second and third points. After vertex split, the four points closest fo 

the original second and third points have ordinates {0,0, — |, |}. After quadratic B-spline 

smoothing, we get the function 

m I+3 ('+s) ~ ('+^ + 
1 ( t  -  I ) 2  

Lemma 14.1.1. The minimum in the interval between the second and third points is 

Proof 

m = ^ - | = o = * ' = ! - a n d / (  12' 

• 

For Heaviside data, the undershoot of CDVSQBS ID is — — and the overshoot is 

Therefore, CDVSQBS ID does not preserve the positivity of the original data. • 

14.1.1.2 Co-convexity 

Conjecture 14.1.2. CDVSQBS ID preserves the convexity of the original data. 

Counterexample 14.1.2. Suppose we have initial data that is concave and monotone in

creasing, {0,50,60,68,70,70}. After applying CDVS, we obtain, starting at t = 

{57.5,57.75,62.25,66.75,69.25,69.75}. After applying QBS, we obtain, starting at t = 

|, {58.28125,62.25,66.5,69}. The differences between these values are, respectively, 

3.96875, 4.25, and 2.5. Therefore, the new data is not concave. • 
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14.1.1.3 Exactness on Linears 

Proposition 14.1.1. CDVSQBS ID is exact on linears. 

Proof. CDVS ID is exact on linears (§10.1.1.3) and QBS ID is exact on linears (§7.1.1.4). 

Therefore, CDVSQBS ID, which is one followed by the other, is also exact on linears. • 

14.1.1.4 Subjective Evaluation of Interpolation Plots 

The CDVSQBS method gives results which are very visually pleasing with smooth data. 

However, like Catmull-Rom (§6.1.1.6), CDVSQBS tends to have large overshoots and un

dershoots. As such, it has been ranked among the last methods in Chapter 16. It is ranked 

last for both hard cardinal and hard Heaviside data. This is due mostly to the large over

shoots and undershoots. The results can be seen in Fig. 16.4 and 16.8. The same applies 

to the graphs obtained from CDVSQBS applied to both soft cardinal and soft Heaviside 

data. The results can be seen in Fig. 16.12 and 16.16. For non-smooth data, CDVSQBS is 

ranked second to last, before MVSQBS. In this case, the overshoots and undershoots are 

reduced and the curve is nice and smooth. This can be seen in Fig. 16.20. Finally, for sine 

data, CDVSQBS is ranked second. It gives a very smooth and pleasing curve, quite similar 

to that obtained with Catmull-Rom. The result is presented in Fig. 16.23. 

14.1.2 Centred Differences Vertex Split Followed by Quadratic B-Spline Smoothing 

(CDVSQBS) 2D 

This method is used by applying CDVS 2D subdivision (§10.1.2) followed by QBS 2D 

smoothing (§7.1.2). 

14.1.2.1 Diagonal Preservation 

CDVSQBS does not preserve diagonals for hard and soft lines and interfaces. 
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CDVSQBS performs better than bilinear and worse than Lanczos 3 for hard and soft 

lines and interfaces for any number of subdivisions. For hard lines and interfaces, for 

both one (Tables 17.1-17.2) and two subdivisions (Tables 17.5-17.6), CDVSQBS has a 

maximum oscillation of .38, which is better than bilinear's .50, but not as good as Lanczos 

3's .23 and .22. For soft lines and interfaces, for both one (Tables 17.3-17.4) and two 

subdivisions (Tables 17.7-17.8), CDVSQBS has a maximum variation of .13. Again, this 

is better than bilinear's .25 but worse than Lanczos 3's .03 and .05. 

14.1.2.2 Positivity 

Conjecture 14.1.3. CDVSQBS 2D preserves the positivity of the original data. 

Counterexample 14.1.3. Suppose we have the following initial data: 

0 0 0 0 

0  0  1 0  

0  0  0  0 .  

Applying CDVS 2D subdivision, we obtain: 

If we now apply QBS smoothing, we obtain, at point (|, |), the value 

positivity is not preserved. 

0 0 0 ± I 0 

o _I I 1 1 I 
u 8 8 8 

o _I I 1 1 I 
u 8 8 8 

0 0 o I I 0 

—|j|. Therefore, 

• 

14.1.2.3 Exactness on Linears 

Proposition 14.1.2. CDVSQBS 2D is exact on linears. 
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Proof. CDVS 2D is exact on linears (§10.1.2.3) and QBS 2D is exact on linears (§7.1.2.2). 

Therefore, CDVSQBS 2D, which consists of applying one then the other, is also exact on 

linears. O 
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15 Numerical Analysis of Nonlinear Vertex Split Hybrid 

Interpolation Methods 

In this chapter, hybrid methods consisting of one step of a nonlinear interpolatory vertex 

split method followed by linear smoothing with quadratic B-splines are discussed. 

15.1 Minmod Vertex Split Followed by Quadratic B-Spline Smooth

ing (MVSQBS) 

MVSQBS is a nonlinear interpolatory method which was developed by Dr. N. Robidoux. It 

consists of the nonlinear vertex split method Minmod Vertex Split (§11.1) followed by lin

ear smoothing with quadratic B-splines (§7.1). Matlab implementations of Minmod Vertex 

Split and quadratic B-spline smoothing are given in Appendices F.14 and F.15. 

15.1.1 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing (MVSQBS) 

ID 

Regular MVS subdivision (§11.1.1) is performed, and quadratic B-spline smoothing is ap

plied to the result (§7.1.1). 

15.1.1.1 Co-monotonicity 

Proposition 15.1.1. MVSQBS ID preserves the monotonicity of the original data. 
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Proof. Since MVS ID is co-monotone (§11.1.1.1) and QBS ID is also co-monotone 

(§7.1.1.1), then so is MVSQBS. • 

15.1.1.2 Co-convexity 

Conjecture 15.1.1. MVSQBS ID preserves the convexity of the original data. 

Counterexample 15.1.1. Let the data points have values {0,20,39,40}. The data is clearly 

concave. After Minmod Vertex Split, we obtain, starting at i = |, {"^§r, ^|r, } • The 

midpoint of the line between the first and third points is ~ (—!- + However, 

W > Hr • Therefore convexity is not preserved. • 

Proposition 15.1.2. MVSQBS ID preserves the concavity (resp. convexity) of the original 

data when used as a vertex split subdivision method (in the "discrete ") if and only if 

-S3zi+i > (resp. < )0 \fi. (15.1) 
2 2 

Proof. First we consider the convexity of the continuous function produced by quadratic 

B-spline smoothing. Then, we only consider the discrete points obtained after one subdi

vision. Let the data points have values 2j. Consider the following values, obtained after 

Minmod Vertex Split: z^i, zi+i, -Zj+aj- We look at the curve obtained between 

2j_i and zi+1 and the results apply to all other segments. 

The first half of the curve (where, for simplicity, we have considered z - \  to have 
4 

abscissa t = 0), as well as its second derivative, is as follows: 

. Mai±iti£ t t ?)') „ 

b i=4z { _  3 - 8 ^ 1 + 4 2 ^ 1 .  

The second half of the curve (where, for simplicity, we have considered zi+i to have ab-
4 
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scissa t = 0), as well as its second derivative, is as follows: 

( 2  ( t + i ) - § ) 2  ( 3 y \  ( 2 ( i - | )  +  f ) 2  

b2 - 2i_i + 2i+! 3 + 6t - ( 2t + - + Zi+1 , 

b 2  =4z { _ l  ~8z l + i  +4z i + &.  

Suppose the original data is monotone increasing and concave. The following works 

s imilarly for other cases. This means that Vi, z* > 2t~1 2'+1. Alternatively, z^i — 2zt + 

Zi+i < 0. The slopes at the original points are 

TTi-j _ i Zi __ i, 

rrit = 

^i-i-2 ^i+1* 

Using the formulae for Minmod Vertex Split, we get 

Zv — 
Z i~ l  =  +  — 4 — ^  

Zi+1 Zi 
-2.- I = Zi -
- ?  ~ l  4  

^•i+l Zj 
ZI+1 = ZI + 

5 4 
Z{+2 

Zi+| - 2i+! 4 • 

Substituting these values in b'[ and b'̂ , we obtain 

b'[ = 3 (zi_! - 2zi + zi+i) < 0 (by definition of concavity), 

b'2 = -^i + 2zi+i - Zi+2 > 0. 

We see that in b\ the convexity is preserved but this is not the case in b2. Therefore, the con

tinuous curve obtained from quadratic B-spline smoothing does not preserve the convexity 

of the original data unless we are considering a straight line. 

Now we consider only the discrete points which we have calculated after Minmod Ver

tex Split and establish a condition for convexity to be preserved after they are smoothed by 
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quadratic B-splines. We use the following formula to smooth the points: 

„ 1 3 1 
Z\ — g2»-l + ~^Zi + g2i+l-

It is sufficient to consider the two following cases: 

Zi_3  +  Z i + l  1  /  x  

~±~l 1 " M = 16 + 4Zi~l ~ l0Zi"* + 4*i+* + ) ' 
Zi_i  +  Z i +  3 1 / X 

~~^2—1" = i6 lZi-t+ 4Z{-$ ~l0Zi+1*+ 4z*+t+ Zi+iJ • 

Supposing again that the data is concave and substituting the slopes and points as above, as 

well as ignoring the constants, we obtain 

- 17 ( z i  - Zi_ i )  + 18 Oi+i - Zi )  -  (z i + 2  -  z i + 1) = -17mi_i + 18mj - mi+1. 

This value has to be negative for convexity to be preserved. 

In the second case, we obtain the following, again substituting the slopes and points as 

above: 

- {Z i  -  Zi_ i) + 2(zi+i - Zi )  -  (z i + 2  -  Z i + 1) = -TTii-i + 2rrii - rni+1. 

Again, this value must be negative for convexity to be preserved. We now have two condi

tions that must be met for convexity to be preserved. However, the second one is stronger 

than the first and if it is met, then the first one is met as well. 

m,i-i 4- rrii+i 
Suppose the second condition is met, that is rrii < . Then, 

/ rrii-1 + m,+i \ 
-17rrii-i + 18raj - 77Zi+i < 17T71j_i + 18 ( J - mi+1 

= —87rij_i + 8mi+i < 0. 

Therefore it is sufficient and necessary that —rrii-i + 2rrii — mi+1 = —63zi+i < 0 for Min

mod Vertex Split ID followed by quadratic B-spline smoothing to preserve the convexity 

of the original data. • 
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Condition (15.1) is exactly the same convexity preservation condition as holds for No

halo ID subdivision. The consequence, however, is weaker because the corresponding 

result for Nohalo involves the face split subdivision points, while the above result only 

concerns the vertex split subdivision points. 

15.1.1.3 Exactness on Linears 

Proposition 15.1.3. MVSQBS ID is exact on linears. 

Proof. MVSQBS ID is MVS ID followed by QBS ID. Since MVS ID is exact on linears 

(§11.1.1.3) and QBS 1D is also exact on linears (§7.1.1.4), then so is their combination. • 

15.1.2 Minmod Vertex Split Followed by Quadratic B-Spline Smoothing (MVSQBS) 

2D 

This method is MVS 2D (§11.1.2) followed by QBS 2D smoothing (§7.1.2). 

15.1.2.1 Subjective Evaluation of Interpolation Plots 

The MVSQBS method gives results which are visually pleasing in terms of undershoot 

and overshoot suppression. However, it performs miserably when the data is smooth. For 

hard and soft cardinal and Heaviside data, MVSQBS has been ranked second, behind the 

MP methods. They are not ranked first because they round off the peaks a lot more and 

cause unnecessary oscillations. However, the results are still very smooth and thus visually 

pleasing. The results can be seen in Fig. 16.2, 16.6, 16.10 and 16.14. For non-smooth data 

as well as sine data, MVSQBS is ranked last. This is due to the extraneous oscillations that 

appear between the original data points. The results can be seen in Fig. 16.21 and 16.27. 
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15.1.2.2 Diagonal Preservation 

MVSQBS does not preserve diagonals for hard and soft lines and interfaces, for any number 

of subdivisions. 

MVSQBS performs worse than bilinear for hard data as well as soft interfaces after 

two subdivisions. In the other cases, MVSQBS has results between those of Lanczos 3 and 

bilinear. For hard lines and interfaces after one subdivision (Tables 17.1-17.2), MVSQBS 

has the same oscillations as bilinear. Their maximal value is .50. For hard lines and inter

faces after two subdivisions (Tables 17.5-17.6), MVSQBS performs worse than bilinear. 

MVSQBS has maximum oscillations of, respectively, .55 and 1.06 while, in both cases, 

bilinear's is .50. 

For soft lines and interfaces after one subdivision (Tables 17.3-17.4), MVSQBS has a 

maximum oscillation of .12 which is better than bilinear's .25 but worse than Lanczos 3's 

.03 and .05. For soft lines after two subdivisions (Table 17.7), MVSQBS has a maximum 

oscillation of .13. Again, this is better than bilinear's .25 and Lanczos 3's .03. Finally, for 

soft interfaces after two subdivisions (Table 17.8), MVSQBS performs worse than bilin

ear's .25 with a maximum oscillation of .26. 

15.1.2.3 Positivity 

Proposition 15.1.4. Minmod Vertex Split followed by quadratic B-spline smoothing pre

serves the positivity of the original data in 2D. 

Proof. Since MVS 2D preserves the positivity of the data (§11.1.2.2) and quadratic B-

spline smoothing also preserves the positivity of the data (§7.1.2.1), then one followed 

by the other also preserves the positivity of the data. Therefore, MVSQBS preserves the 

positivity of the data. • 
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15.1.2.4 Exactness on Linears 

Proposition 15.1.5. MVSQBS 2D is exact on linears. 

Proof. MVS 2D is exact on linears (§11.1.2.3) and QBS 2D is exact on linears (§7.1.2.2). 

Therefore, MVSQBS 2D, which is one followed by the other, is also exact on linears. • 

15.2 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline 

Smoothing (ROVSQBS) 

ROVSQBS is a nonlinear interpolatory method. It consists of the nonlinear vertex 

split method Reduced Overshoot Vertex Split (§11.2) followed by linear smoothing with 

quadratic B-splines (§7.1). Matlab implementations for Reduced Overshoot Vertex Split 

and quadratic B-spline smoothing are given in Appendices F.17 and F.15. 

ROVSQBS was formulated by Dr. N. Robidoux. 

15.2.1 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline Smoothing 

(ROVSQBS) ID 

ROVS (§11.2.1) is applied to the data points and the result is then finished off by smoothing 

using quadratic B-splines (§7.1.1). 

15.2.1.1 Co-monotonicity 

Proposition 15.2.1. ROVSQBS ID preserves the monotonicity of the original data. 

Proof. Since ROVS ID is co-monotone (§11.2.1.1) and QBS ID is also co-monotone 

(§7.1.1.1), then so is ROVSQBS. • 
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15.2.1.2 Local Boundedness 

Conjecture 15.2.1. ROVSQBS ID is locally bounded. 

Counterexample 15.2.1. Consider the set of points with values {0,2,1, —2}. The initial 

Catmull-Rom slopes at the second and third points are, respectively, | and —2. The first 

slope belongs to the corresponding bounding interval [-8,4] and the second slope also 

belongs to its bounding interval [—4,20]. Therefore, we keep the initial slopes. The new 

points after vertex split, starting at t = |, are {^, f }• Smoothing using QBS, we obtain, 

for the second of the latter points, which is greater than the maximum value of 2. • 

15.2.1.3 Co-convexity 

Conjecture 15.2.2. ROVSQBS ID preserves the convexity of the original data. 

Counterexample 15.2.2. Suppose we have initial data that is concave and monotone in

creasing, {0,50,60,68,70, 70}. After applying ROVS subdivision, we obtain, starting at 

t — |, {57.5, 57.75,62.25,66.75,69.25,70}. Now we apply QBS smoothing and obtain, 

starting at t = |, {58.28125,62.25,66.5,69.03125}. The differences between these values 

are, respectively, 3.96875, 4.25, and 2.53125. Therefore, convexity is not preserved. • 

15.2.1.4 Exactness on Linears 

Proposition 15.2.2. ROVSQBS ID is exact on linears. 

Proof. ROVS ID is exact on linears (§11.2.1.4) and QBS ID is exact on linears (§7.1.1.4). 

Therefore, ROVSQBS ID, which is one followed by the other, is also exact on linears. • 

15.2.1.5 Subjective Evaluation of Interpolation Plots 

The ROVSQBS method gives the same results as MVSQBS (§15.1.2.1) for hard and soft 

cardinal and Heaviside data, and gives the same results as CDVSQBS (§14.1.1.4) for non-
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smooth and sine data. As such, it is an excellent scheme, because it appropriately changes 

behaviour depending on whether smoothness or overshoot suppression is paramount. 

15.2.2 Reduced Overshoot Vertex Split Followed by Quadratic B-Spline Smoothing 

(ROVSQBS) 2D 

This method consists of one step of ROVS 2D subdivision (§11.2.2) followed by QBS 2D 

smoothing (§7.1.2). 

15.2.2.1 Diagonal Preservation 

ROVSQBS does not preserve diagonals. For all tested data and any number of subdivi

sions, ROVSQBS has the same maximum variations as MVSQBS (§15.1.2.2). As such, it 

performs rather poorly in the diagonal preservation department. 

15.2.2.2 Positivity 

Conjecture 15.2.3. ROVSQBS 2D preserves the positivity of the original data. 

Counterexample 15.2.3. Suppose we have the following initial data: 

10 10 0 0 

10 1 0 0 

0 0 0 0 

0 0 0 0 

After ROVS 2D, we obtain: 

3 10 0 

1 - 1 0  0  

0 0 0 0 

0 0 0 0 
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Smoothing the value at (f, |) using QBS 2D, we obtain -|f. Therefore, positivity is not 

preserved. • 

15.2.2.3 Exactness on Linears 

Proposition 15.2.3. ROVSQBS 2D is exact on linears. 

Proof. ROVS 2D is exact on linears (§11.2.2.3) and QBS 2D is exact on linears (§7.1.2.2). 

Therefore, ROVSQBS 2D, which is ROVS 2D then QBS 2D, is also exact on linears. • 

116 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



16 Plots of the Results of Interpolating with AMP, 

Catmull-Rom, CDVSQBS, LBB, MP, MP (Harmonic 

Average), MVSQBS and ROVSQBS 

In this section, plots of the results of interpolating six different data sets on the real line 

with the interpolatory methods AMP, Catmull-Rom, CDVSQBS, LBB, MP, MP (Harmonic 

Average), MVSQBS and ROVSQBS are shown. 

In every plot, circles mark the interpolated data points. 

The plots are exactly aligned from one page to the next to facilitate comparison with a 

document viewer (or by holding two pages up to a candle!). Within each data set, they are 

presented in decreasing order of subjective quality, keeping in mind that, in image resam

pling applications, large "bounce back" overshoots and overshoots lead to more noticeable 

artifacts, namely halos, than second derivative discontinuities, and that needlessly steep 

segments may contribute to aliasing. 

The very first set of plots shows the result of interpolating cardinal data. Thus, in the 

case of linear methods, they represent the cardinal basis functions (filter kernels). 
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16.1 Cardinal Data 

The data interpolated in this series of plots is 

y = {0, 0, 0, 1, 0, 0, 0} 

for x =  0 , 1 , 2 , . . . ,  6 .  

0.8 

0.6 

0.4 

0.2 

oa 

-0.2 
2 5 6 0 1 3 4 

Figure 16.1: Plot of MP (Harmonic Average) = MP = AMP = LBB for cardinal data 
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Figure 16.2: Plot of MVSQBS = ROVSQBS for cardinal data 
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Figure 16.3: Plot of Catmull-Rom for cardinal data 
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Figure 16.4: Plot of CDVSQBS for cardinal data 
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16.2 Heaviside Data 

The data used in this section is 

y — {o, o, o, l, i, i} 

for x — 0,1,2,..., 5. Heaviside data is an archetype for the interface between two regions. 

0.8 

0.6 

0.4 

0.2 

-0.2 
2 4 5 0 3 

Figure 16.5: Plot of MP (Harmonic Average) = MP = AMP = LBB for Heaviside data 
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Figure 16.6: Plot of MVSQBS = ROVSQBS for Heaviside data 
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Figure 16.7: Plot of Catmull-Rom for Heaviside data 
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Figure 16.8: Plot of CDVSQBS for Heaviside data 
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16.3 Soft Cardinal Data 

The data used in this section is 

y = {0, 0, 0.5, 1,0.5, 0, 0} 

for x = 0,1,2,..., 6. 

"Soft" data—data obtained, from example, by with face split subdivision performed 

with bilinear applied to the corresponding "sharp" data—is especially relevant in the con

text of image resampling because natural scenes captured with a digital camera a generally 

somewhat soft, as a result, for example, of optical blur and the demosaicing process. 

0.8 

0.6 

0.4 

0.2 

0C)-

-0.2 
2 4 0 3 5 6 1 

Figure 16.9: Plot of MP (Harmonic Average) = MP = AMP = LBB for soft cardinal data 
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Figure 16.10: Plot of MVSQBS = ROVSQBS for soft cardinal data 
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Figure 16.11: Plot of Catmull-Rom for soft cardinal data 
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Figure 16.12: Plot of CDVSQBS for soft cardinal data 
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16.4 Soft Heaviside Data 

The data used in this section is 

y = {0, 0, 0, 0.5, 1, 1, 1} 

for x — 0,1,2,..., 6. 

0.8 

0.6 

0.4 

0.2 

-0.2 
1 2 3 4 5 6 0 

Figure 16.13: Plot of MP (Harmonic Ave.) = AMP = MP = LBB for soft Heaviside data 
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Figure 16.14: Plot of MVSQBS = ROVSQBS for soft Heaviside data 
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Figure 16.15: Plot of Catmull-Rom for soft Heaviside data 
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Figure 16.16: Plot of CDVSQBS for soft Heaviside data 
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16.5 Non-Smooth Data 

The data used in this section is 

y = {0, 1, 0.5, 0, 0.25, 0.35, 0.8, 1, 0.95, 0.8, 0.55, 0.25, 0} 

for x = 0,1, 2,..., 10. 
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Figure 16.17: Plot of MP = AMP = LBB for non-smooth data 
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Figure 16.18: Plot of MP (Harmonic Average) for non-smooth data 
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Figure 16.19: Plot of Catmull-Rom for non-smooth data 
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Figure 16.20: Plot of CDVSQBS = ROVSQBS for non-smooth data 
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Figure 16.21: PlotofMVSQBS for non-smooth data 
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16.6 Sine Data 

The data used in this section is 

J/ = sin(3,r^) 

for x = 0,1, 2,..., 10. 
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Figure 16.22: Plot of Catmull-Rom for trigonometric data 
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Figure 16.23: Plot of CDVSQBS = ROVSQBS for trigonometric data 
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Figure 16.24: Plot of AMP for trigonometric data 
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Figure 16.25: Plot of MP = LBB for trigonometric data 
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Figure 16.26: Plot of MP (Harmonic Average) for trigonometric data 
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Figure 16.27: Plot of MVSQBS for trigonometric data 
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17 Spurious Diagonal Oscillations Introduced by AMP, 

Bicubic, Bilinear, Catmull-Rom, CDVS, LBB, MP, MVS, 

ROYS and Variants 

In this chapter, we compare the spurious diagonal oscillations introduced by some of the 

subdivision methods discussed in this thesis with those introduced by "direct" resampling 

methods, hybrid or not. 

As explained in the Introduction (§2.7), "direct" methods can be compared to subdivi

sion methods by sampling the surface produced by the "direct" method at the subdivision 

points, in effect deriving a subdivision method from the "direct" method by sampling. Be

cause we consider both face split and vertex split methods, one should, in principle, do this 

at both types of subdivision points. For the sake of brevity, we will only sample "direct" 

methods at face split points, even hybrid methods derived from vertex split methods. Only 

"pure" vertex split subdivision methods will be "sampled" at vertex split points. 

It should be noted that it is less of an accomplishment for a non-interpolatory method 

to introduce small oscillations, especially if it is strongly smoothing. 

145 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



17.1 Oscillations Along Diagonals After One Subdivision: Setup 

17.1.1 Hard Line Data 

The diagrams shown in Eqs. (17.1) and (17.2). describe the input data used to study the 

resampling of an image with a sharp diagonal line. The input data is shown in boldface. In 

the diagram shown in Eq. (17.1), asterisks indicate the interpolated value locations for the 

face split subdivision methods, and a-k label the diagonal under consideration. 

a b c d e f g h i j  k  

1 * 0 * 0 * 0 * 0 * 0  

(17.1) 
0 * 1 * 0 * 0 * 0 * 0  

* * * * * * * * * * *  

0 * 0 * 1 * 0 * 0 * 0  

For example, the a diagonal is the diagonal of ones which alternate with asterisks indicating 

face split subdivision pixel locations inserted in the middle of the "face". The b diagonal 

only consists of inserted pixel locations, inserted along horizontal and vertical "edges" in 

alternation. 

In the diagram shown in Eq. (17.2), asterisks indicate the interpolated value locations 
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for the face split subdivision methods. 

a  b e  d  e  f  g  h i  j  k  

1 0 0 0 0 0 

(17.2) 
0 1 0 0 0 0 

sje 5}< 2+c jjc sf: jjc * 

0 0 1 0 0 0 

The same diagonals, sampled at the same density and likewise labelled, are under consid

eration for both face split and vertex split methods. However, the sampled locations are not 

the same: they include input locations for face split methods, and they do not for vertex 

split methods. 

By symmetry, when performing only one subdivision with a face split method, diago

nals that do not go through original pixel locations have constant values and consequently 

vanishing variation. Similarly, when performing one subdivision with a vertex split method, 

diagonals that do go through an original pixel location have vanishing variation. This holds 

for all input data which is constant on diagonals, not only hard lines. 

Results are shown in Table 17.1. 

17.1.2 Hard Interface Data 

The diagrams shown in Eqs. (17.3) and (17.4) describe the input data used to study the 

resampling of an image with a hard interface. Face split locations are first, then the vertex 
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split locations are shown. 

a  b  c  d  e  f  g  h  i  j  k  

1  *  1  * 1 * 1 * 1 * 1  

*  *  *  * * * * * * * *  

(17.3) 
— 1  *  1  * 1 * 1 * 1 * 1  

*  *  *  * * * * * * * *  

— 1  *  — 1  * 1 * 1 * 1 * 1  

a  b e  d e f g  h i  j k  

1 1 1 1 1  

* *  * *  * *  * *  * *  

* *  * *  * *  * *  * *  
(17.4) 

- 1  1  1 1 1 1  

* *  * *  * *  * *  * *  

* *  * *  * *  * *  * *  

- 1 - 1 1 1 1  

Results are shown in Table 17.2. 

148 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



17.1.3 Soft Line Data 

(17.5) 

The diagrams shown in Eqs. (17.5) and (17.6) describe the input data used to study the 

resampling of an image with a soft line. 

a b c d e f g h i j k  

1 * . 5  * 0 * 0 * 0 * 0  

* * * * * * * * * * *  

. 5 * 1  * . 5 * 0 * 0 * 0  

* * : * * * * * * * * : *  

0  *  . 5  *  1  * . 5 * 0 * 0  

a  b e  d  e  f  g  h  i  j  k  

1  . 5  0  0  0  0  

* *  * *  *  *  *  *  *  *  

* *  *  *  *  *  *  *  *  *  

. 5  1  . 5  0  0  0  

* *  *  *  *  *  *  *  *  *  

* *  *  *  *  *  *  *  *  *  

0  . 5  1  . 5  0  0  

(17.6) 

Results are shown in Table 17.3. 
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17.1.4 Soft Interface Data 

The diagrams shown in Eqs. (17.7) and (17.8) describe the input data used to study the 

resampling of an image with a soft interface. 

a  b  c  d  e  f  g  h  i  j  k  

0  *  1  * 1 * 1 * 1 * 1  

*  *  *  * * * * * * * *  

(17.7) 
— 1  *  0  * 1 * 1 * 1 * 1  

*  *  *  * *  s i c * * * : * : *  

— 1  *  — 1  * 0 * 1 * 1 * 1  

0 

d  e / 

1 

h  

0 
(17.8) 

* *  * *  * *  * *  * *  

- 1 - 1 0  1 1 1  

Results are shown in Table 17.4. 
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17.2 Variations Along Diagonals After One Subdivision: Summary of 

the Results 

In the following tables, methods evaluated at face split points have their results shown using 

a roman font, and methods evaluated at vertex split points are shown in italics. 

The distinction between interpolatory and non-interpolatory (smoothing, in this thesis) 

methods is important. To highlight it, we show results for interpolatory methods first, above 

a double line. The results for non-interpolatory methods are shown below the double line. 

To further emphasize the distinction, we use boldface for the method names of interpolatory 

methods. 

The raw data for the table is shown in Appendix A, and the code used to generate it is 

shown in Appendix F. 

The above discussion also applies to the results shown in the following section con

cerning diagonal variations after two subdivisions. 
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a b c d e f g h i j k 
Lanczos 3 .23 0 .20 0 .13 0 .05 0 .01 0 0 
Lanczos 2 .33 0 .26 0 .07 0 0 0 0 0 0 
Catmull-Rom .36 0 .25 0 .07 0 0 0 0 0 0 
Bicubic .36 0 .25 0 .07 0 0 0 0 0 0 
CDVSQBS .38 0 .25 0 .06 0 0 0 0 0 0 
MP Centred .48 0 .25 0 .01 0 0 0 0 0 0 
AMP Centred .48 0 .25 0 .01 0 0 0 0 0 0 
Bilinear .50 0 .25 0 0 0 0 0 0 0 0 
MVSQBS .50 0 .25 0 0 0 0 0 0 0 0 
ROVSQBS .50 0 .25 0 0 0 0 0 0 0 0 
MP Tensor .50 0 .25 0 0 0 0 0 0 0 0 
AMP Tensor .50 0 .25 0 0 0 0 0 0 0 0 
MP Null .50 0 .25 0 0 0 0 0 0 0 0 
AMP Null .50 0 .25 0 0 0 0 0 0 0 0 
LBB .50 0 .25 0 0 0 0 0 0 0 0 
Nohalo .50 0 .25 0 0 0 0 0 0 0 0 
Nohalo-LBB .50 0 .25 0 0 0 0 0 0 0 0 
CDVS 0 .75 0 .25 0 0 0 0 0 0 0 
MVS 0 1 0 0 0 0 0 0 0 0 0 
ROVS 0 1 0 0 0 0 0 0 0 0 0 

S nohalo 1 9=1 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=1 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=\ .11 0 ,06 0 0 0 0 0 0 0 0 
Snohalo 1 9= | .17 0 .08 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=\ .27 0 .14 0 0 0 0 0 0 0 0 
Snohalo 1 9=\ .33 0 .17 0 0 0 0 0 0 0 0 
Midedge 0 0 0 0 0 0 0 0 0 0 0 
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0 

Table 17.1: Variation along the diagonals for a hard line after one subdivision 
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a b c d e f 8 h i j k 
Lanczos 3 0 .22 0 .17 0 .10 0 0 0 0 0 0 
Lanczos 2 0 .33 0 .18 0 .03 0 .04 0 .04 0 0 
Catmull-Rom 0 .36 0 .13 0 .01 0 0 0 0 0 0 
Bicubic 0 .36 0 .13 0 .01 0 0 0 0 0 0 
MP Tensor 0 .38 0 0 0 0 0 0 0 0 0 0 
AMP Tensor 0 .38 0 0 0 0 0 0 0 0 0 0 
CDVSQBS 0 .38 0 .12 0 0 0 0 0 0 0 0 
MP Centred 0 .48 0 .01 0 .01 0 0 0 0 0 0 
AMP Centred 0 .48 0 .01 0 .01 0 0 0 0 0 0 
Bilinear 0 .50 0 0 0 0 0 0 0 0 0 0 
MVSQBS 0 .50 0 0 0 0 0 0 0 0 0 0 
ROVSQBS 0 .50 0 0 0 0 0 0 0 0 0 0 
MP Null 0 .50 0 0 0 0 0 0 0 0 0 0 
AMP Null 0 .50 0 0 0 0 0 0 0 0 0 0 
Nohalo 0 .50 0 0 0 0 0 0 0 0 0 0 
LBB 0 .50 0 0 0 0 0 0 0 0 0 0 
Nohalo-LBB 0 .50 0 0 0 0 0 0 0 0 0 0 
MVS 2 0 0 0 0 0 0 0 0 0 0 0 
ROVS 2 0 0 0 0 0 0 0 0 0 0 0 
CDVS 2 0 .50 0 0 0 0 0 0 0 0 0 

Snohalo 1 Q= 1 0 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=1 0 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 9= | 0 .11 0 0 0 0 0 0 0 0 0 0 
Snohalo 1 0=§ 0 .17 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=| 0 .27 0 0 0 0 0 0 0 0 0 0 
Snohalo 1 9=\ 0 .33 0 0 0 0 0 0 0 0 0 0 
Midedge 0 0 0 0 0 0 0 0 0 0 0 0 
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0 0 

Table 17.2: Variation along the diagonals for a hard interface after one subdivision 
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a b c d e f g h i j k 
Nohalo 0 0 0 0 0 0 0 0 0 0 0 
Nohalo-LBB 0 0 0 0 0 0 0 0 0 0 0 
Lanczos 3 .03 0 .02 0 .01 0 .02 0 .02 0 0 
Lanczos 2 .08 0 .05 0 .06 0 .03 0 0 0 0 
Catmull-Rom .11 0 .03 0 .05 0 .03 0 0 0 0 
Bicubic .11 0 .03 0 .05 0 .03 0 0 0 0 
MVSQBS .12 0 0 0 .06 0 0 0 0 0 0 
ROVSQBS .12 0 0 0 .06 0 0 0 0 0 0 
CDVSQBS .12 0 .03 0 .06 0 .03 0 0 0 0 
LBB .13 0 0 0 .06 0 0 0 0 0 0 
MP Centred .18 0 0 0 .09 0 0 0 0 0 0 
AMP Centred .18 0 0 0 .09 0 0 0 0 0 0 
MP Tensor .19 0 .05 0 .04 0 0 0 0 0 0 
AMP Tensor .19 0 .05 0 .04 0 0 0 0 0 0 
MP Null .19 0 0 0 .09 0 0 0 0 0 0 
AMP Null .19 0 0 0 .09 0 0 0 0 0 0 
Bilinear .25 0 0 0 .12 0 0 0 0 0 0 
CDVS 0 .25 0 .13 0 .12 0 0 0 0 0 
MVS 0 .25 0 .25 0 0 0 0 0 0 0 
ROVS 0 .25 0 .25 0 0 0 0 0 0 0 

Snohalo 1 9=1 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1 9= | 
Snohalo 1 0=| 

0 0 0 0 0 0 0 0 0 0 0 Snohalo 1 9= | 
Snohalo 1 0=| 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=1 0 0 0 0 0 0 0 0 0 0 0 
Snohalo 1.5 6= | 
Snohalo 1.5 0=f 

0 0 0 0 0 0 0 0 0 0 0 Snohalo 1.5 6= | 
Snohalo 1.5 0=f 0 0 0 0 0 0 0 0 0 0 0 
Midedge 0 0 0 0 0 0 0 0 0 0 0 
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0 

Table 17.3: Variation along the diagonals for a soft line after one subdivision 
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a b c d e f g h i j k 
Nohalo 0 0 0 0 0 0 0 0 0 0 0 
Nohalo-LBB 0 0 0 0 0 0 0 0 0 0 0 
Lanczos 3 0 0 .02 0 .04 0 .05 0 .01 0 0 
Lanczos 2 0 0 .08 0 .10 0 .03 0 .04 0 0 
MP Tensor 0 0 .09 0 0 0 0 0 0 0 0 
AMP Tensor 0 0 .09 0 0 0 0 0 0 0 0 
Catmull-Rom 0 0 .11 0 .06 0 0 0 0 0 0 
Bicubic 0 0 .11 0 .06 0 0 0 0 0 0 
LBB 0 0 .12 0 0 0 0 0 0 0 0 
MVSQBS 0 0 .12 0 0 0 0 0 0 0 0 
ROVSQBS 0 0 .12 0 0 0 0 0 0 0 0 
CDVSQBS 0 0 .12 0 .06 0 0 0 0 0 0 
MP Centred 0 0 .18 0 0 0 0 0 0 0 0 
AMP Centred 0 0 .18 0 0 0 0 0 0 0 0 
MP Null 0 0 .19 0 0 0 0 0 0 0 0 
AMP Null 0 0 .19 0 0 0 0 0 0 0 0 
Bilinear 0 0 .25 0 0 0 0 0 0 0 0 
CDVS 0 .25 0 .25 0 0 0 0 0 0 0 
MVS 0 .50 0 0 0 0 0 0 0 0 0 
ROVS 0 .50 0 0 0 0 0 0 0 0 0 

Snohalo 1 0=| 0 0 .02 0 0 0 0 0 0 0 0 
Snohalo 1.5 0=4 

Snohalo 1.5 0=| 
0 0 .02 0 0 0 0 0 0 0 0 Snohalo 1.5 0=4 

Snohalo 1.5 0=| 0 0 .03 0 0 0 0 0 0 0 0 
Snohalo 1.5 9=1 0 0 .04 0 0 0 0 0 0 0 0 
Snohalo 1 0=| 0 0 .05 0 0 0 0 0 0 0 0 
Snohalo 1 9=1 0 0 .06 0 0 0 0 0 0 0 0 
Midedge 0 0 0 0 0 0 0 0 0 0 0 
Minmod Midedge 0 0 0 0 0 0 0 0 0 0 0 

Table 17.4: Variation along the diagonals for a soft interface after one subdivision 
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17.3 Oscillations Along Diagonals After Two Subdivisions: Setup 

17.3.1 Hard Line Data 

The diagrams shown in Eqs. (17.9) and (17.10) describe the input data used to study the 

resampling of an image with a hard line. In the diagram shown in Eq. (17.9), asterisks 

indicate the sampled locations for face split methods. 

a b o d e  f g h i j k l m n o p q  

1 * * * 0 * * * 0 * *  *  0 * * * 0  

* * * * * * * * * * *  *  * * * * *  
(17.9) 

* * * * * * * * * * * * * * * ^jc * 

* * * * * * * * * * *  *  * * * * *  

0 * * * 1 * * * 0 * *  *  0 * * * 0  

In the diagram shown in Eq. (17.10), asterisks indicate the sampled locations for vertex 

split methods. The same diagonals are under consideration for both face split and vertex 

split methods. 

a  b  c  d  e  f  g  h  i  j  k  I  m  

1 0  0  0  

* * * *  * * * *  * * * *  

* * * *  * * * *  *  * * * (17.10) 

* * * *  * * * *  * * * *  

* * * *  * * * *  * * * *  

0  1 0  0  

Results are shown in Table 17.5. 
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17.3.2 Hard Interface Data 

The diagrams shown in Eqs. (17.11) and (17.12) describe the input data used to study the 

resampling of an image with a hard interface. 

a  b  c  d  e  f  g  h  i  j  k i r n  n  o  p  q  

— 1  *  *  *  — 1  *  *  *  — 1  *  *  *  1  * * * 1  

(17.H) 
jjc * * * * * * * * * * * * * * * * 

— 1 * * * —1 * * * —1 * * * —1 * * * 1 

a  b  c  d  e  f  g  h  i  j  k  I  m  

-1 -1 -1 1 

* * * *  *  *  *  *  *  *  *  *  

* * * *  *  *  *  *  *  *  *  *  

* * * *  *  *  *  *  *  *  *  *  

* * * *  *  *  *  *  *  *  *  *  

-1 -1 -1 -1 

(17.12) 

Results are shown in Table 17.6. 
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b  c  d  e / 9  h  i  j  k  I  m  

.5 0 

* * * * * * * * * * * * 

* * * * * * * * * * * * 

* * * * * * * * * * * * 

* * * * * * * * * * * * 

(17.13) 

17.3.3 Soft Line Data 

The diagrams shown in Eqs. (17.13) and (17.14) describe the input data used to study the 

resampling of an image with a soft line. 

a  b  c  d  e  f  g  h  i  j  k  I  m  n  o  p  q  

1  *  *  *  . 5  *  *  *  0  *  *  *  0 * * * 0  

* * * * *  * * *  *  * *  *  * * * * *  

*  * * *  *  * * *  *  * *  *  * * * * *  

*  *  *  *  *  * * *  *  * *  *  * * * * *  

, 5 * * *  1  * * * . 5 * *  *  0 * * * 0  

a  

1  . 5  0  0  

(17.14) 

.5 1 5 0 

Results are shown in Table 17.7. 
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17.3.4 Soft Interface Data 

The diagrams shown in Eqs. (17.15) and (17.16) describe the input data used to study the 

resampling of an image with a soft interface. 

a  b  c d e f g h i j k l m n o p q  

0  * * * 1 * * * 1 * * * 1 * * * 1  

*  * * * * * * * * * * * * * * * *  

*  * * * * * * * * * * * * * * * *  

— 1  * * * 0 * * * 1 * *  *  1 * * * 1  

a  b a d e  f  g  h  i  j  k  I  m  

O i l  

* * * *  * * * *  * * * *  

* * * * * * * 

(17.15) 

* * * (17.16) 

* * * *  * * * *  * * * *  

* * * *  * * * *  * * * *  

- 1 0  1 1  

Results are shown in Table 17.8. 

17.4 Variation Along Diagonals After Two Subdivisions: Summary of 

the Results 
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a b c d e f g h i j k 1 m 

Lanczos 3 .23 .16 .22 .15 .20 .14 .17 .11 .13 .08 .10 .05 .05 

Lanczos 2 .33 .21 .24 .17 .26 .15 .13 .05 .07 .04 .03 .01 0 

Catmull-Rom .36 .21 .24 .16 .25 .14 .13 .05 .07 .04 .03 .01 0 

Bicubic .36 .21 .24 .16 .25 .14 .13 .05 .07 .04 .03 .01 0 

CDVSQBS .38 .28 .41 .25 .25 .13 .15 .07 .06 .02 0 0 0 

AMP Centred .48 .29 .26 .21 .25 .11 .06 .02 .01 0 0 0 0 

MP Centred .48 .30 .26 .21 .25 .11 .06 .02 .01 0 0 0 0 

Bilinear .50 .25 .18 .13 .25 .12 .06 0 0 0 0 0 0 

AMP Null .50 .31 .27 .22 .25 .09 .05 0 0 0 0 0 0 

MP Null .50 .31 .27 .22 .25 .09 .05 0 0 0 0 0 0 

Nohalo-LBB .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0 

LBB .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0 

MP Tensor .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0 

AMP Tensor .50 .31 .33 .22 .25 .09 .04 0 0 0 0 0 0 

Nohalo 2 .50 .38 .50 .32 .25 .06 0 0 0 0 0 0 0 

MVSQBS .50 .38 .55 .32 .25 .06 0 0 0 0 0 0 0 

ROVSQBS .50 .38 .55 .32 .25 .06 0 0 0 0 0 0 0 

CDVS2 .38 .75 .75 .75 .24 .25 .25 .25 .06 .03 0 0 0 

MVS 2 0 1.0 1.0 1.0 0 0 0 0 0 0 0 0 0 

ROVS2 0 1.0 1.0 1.0 0 0 0 0 0 0 0 0 0 

Snohalo 2 6=1 0 0 .01 0 0 0 .01 0 .01 0 0 0 0 

Snohalo 2 .11 .09 .12 .07 .06 .01 .01 0 0 0 0 0 0 

Snohalo 2 .27 .21 .27 .18 .14 .03 .01 0 0 0 0 0 0 

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 17.5: Variation along the diagonals for a hard line after two subdivisions 
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a b c d e f 8 h i j k 1 m 

Lanczos 3 .10 .08 .14 .12 .17 .13 .21 .15 .22 .16 .22 .15 .21 

Lanczos 2 .05 0 .07 .10 .18 .12 .20 .21 .33 .21 .28 .21 .33 

Catmull-Rom .01 .01 .05 .08 .13 .10 .19 .21 .36 .22 .28 .22 .36 

Bicubic .01 .01 .05 .08 .13 .10 .19 .21 .36 .22 .28 .22 .36 

MP Tensor 0 0 0 0 0 0 .04 .12 .38 .29 .34 .29 .38 

AMP Tensor 0 0 0 0 0 0 .04 .12 .38 .29 .34 .29 .38 

CDVSQBS 0 0 .01 .03 .12 .16 .28 .22 .38 .34 .54 .34 .38 

MP Centred 0 0 0 0 0 .01 .09 .21 .48 .36 .38 .36 .48 

AMP Centred 0 0 0 0 0 .01 .10 .21 .48 .36 .38 .36 .48 

Bilinear 0 0 0 0 0 0 .12 .25 .50 .25 .24 .25 .50 

MP Null 0 0 0 0 0 0 .09 .19 .50 .37 .38 .37 .50 

AMP Null 0 0 0 0 0 0 .09 .19 .50 .37 .38 .37 .50 

LBB 0 0 0 0 0 0 .07 .19 .50 .37 .52 .37 .50 

Nohalo-LBB 0 0 0 0 0 0 .07 .19 .50 .37 .52 .37 .50 

Nohalo 2 0 0 0 0 0 0 0 .12 .50 .50 .76 .50 .50 

MVSQBS 0 0 0 0 0 0 0 .12 .50 .63 1.06 .63 .50 

ROVSQBS 0 0 0 0 0 0 0 .12 .50 .63 1.06 .63 .50 

CDVS2 0 0 0 .06 .12 .50 .50 .50 .38 1.0 1.0 1.0 .38 

MVS 2 0 0 0 0 0 0 0 0 0 2.0 2.0 2.0 0 

ROVS2 0 0 0 0 0 0 0 0 0 2.0 2.0 2.0 0 

Snohalo 2 0=1 0 0 0 0 .01 0 .03 0 .05 0 0 0 .05 

Snohalo 2 0=§ 0 0 0 0 0 0 .02 .03 .11 .11 .16 .11 .11 

Snohalo 2 0=\ 0 0 0 0 0 0 .01 .07 .27 .28 .42 .28 .27 

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 17.6: Variation along the diagonals for a hard interface after two subdivisions 
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a b c d e f g h i j k 1 m 

Nohalo-LBB .01 0 .01 0 0 0 .01 0 .01 0 0 0 0 

Nohalo 2 0 0 .03 0 0 0 .03 0 0 0 0 0 0 

Lanczos 3 .03 .02 .02 .01 .02 .02 .01 .01 .01 0 .01 .02 .02 

Lanczos 2 .08 .05 .05 .04 .05 .03 .02 .03 .06 .03 .04 .02 .03 

Catmull-Rom .11 .07 .06 .03 .03 .02 .01 .03 .05 .03 .04 .02 .03 

Bicubic .11 .07 .06 .03 .03 .02 .01 .03 .05 .03 .04 .02 .03 

LBB .13 .08 .05 .02 0 .01 .04 .05 .06 .02 0 0 0 

CDVSQBS .12 .09 .13 .07 .03 .03 .06 .04 .06 .05 .07 .04 .03 

MVSQBS .12 .09 .13 .06 0 .06 .13 .07 .06 .02 0 0 0 

ROVSQBS .12 .09 .13 .06 0 .06 .13 .07 .06 .02 0 0 0 

MP Centred .18 .12 .06 .03 0 .01 .04 .06 .09 .03 .02 0 0 

AMP Centred .18 .12 .06 .03 0 .01 .04 .06 .09 .03 .02 0 0 

MP Null .19 .13 .08 .04 .01 .01 .04 .07 .09 .04 .02 0 0 

AMP Null .19 .13 .08 .04 .01 .01 .04 .07 .09 .04 .02 0 0 

MP Tensor .19 .13 .12 .06 .05 .02 .01 .04 .04 .01 0 0 0 

AMP Tensor .19 .13 .12 .06 .05 .02 .01 .04 .04 .01 0 0 0 

Bilinear .25 .13 .06 0 0 0 .03 .07 .12 .06 .03 0 0 

CDVS2 .12 .24 .25 .26 .04 .13 .13 .12 .06 .12 .12 .12 .04 

MVS 2 0 .12 .25 .38 0 .38 .25 .12 0 0 0 0 0 

ROVS2 0 .12 .25 .38 0 .38 .25 .12 0 0 0 0 0 

Snohalo 2 0=1 0 0 .01 0 .02 0 .01 0 .01 0 .01 0 0 

Snohalo 2 0=| 0 0 .02 0 .01 0 .02 0 .01 0 0 0 0 

Snohalo 2 9=| 0 0 .02 0 .01 0 .02 0 .01 0 .01 0 0 

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 17.7: Variation along the diagonals for a soft line after two subdivisions 
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a b c d e f g h i j k 1 m 

Nohalo-LBB 0 0 .01 0 .01 0 0 0 0 0 0 0 0 

Lanczos 3 0 0 0 .01 .02 .02 .04 .02 .04 .02 .05 .04 .05 

Nohalo 2 0 0 .06 0 0 0 0 0 0 0 0 0 0 

MP Tensor 0 0 .05 .08 .09 .02 0 0 0 0 0 0 0 

AMP Tensor 0 0 .05 .08 .09 .02 0 0 0 0 0 0 0 

Lanczos 2 0 .01 .04 .04 .08 .05 .08 .06 .10 .06 .05 .01 .05 

Catmull-Rom 0 .01 .04 .06 .11 .07 .06 .04 .06 .03 .03 .01 0 

Bicubic 0 .01 .04 .06 .11 .07 .06 .04 .06 .03 .03 .01 0 

LBB 0 .01 .08 .10 .12 .04 .01 0 0 0 0 0 0 

CDVSQBS 0 .06 .13 .10 .12 .10 .14 .07 .06 .02 0 0 0 

MP Centred 0 .01 .08 .13 .18 .06 .03 0 0 0 0 0 0 

AMP Centred 0 .01 .08 .13 .18 .06 .03 0 0 0 0 0 0 

MP Null 0 .01 .08 .13 .19 .07 .04 0 0 0 0 0 0 

AMP Null 0 .01 .08 .13 .19 .07 .04 0 0 0 0 0 0 

Bilinear 0 0 .06 .13 .25 .12 .06 0 0 0 0 0 0 

MVSQBS 0 .13 .26 .16 .12 .03 0 0 0 0 0 0 0 

ROVSQBS 0 .13 .26 .16 .12 .03 0 0 0 0 0 0 0 

CDVS2 0 .25 .25 .25 .12 .25 .25 .25 .06 .03 0 0 0 

MVS 2 0 .75 .50 .25 0 0 0 0 0 0 0 0 0 

ROVS2 0 .75 .50 .25 0 0 0 0 0 0 0 0 0 

Snohalo 2 9=1 0 .01 .05 .03 .04 .01 .02 0 .01 0 0 0 0 

Snohalo 2 9 0 .01 .06 .01 .02 .01 0 0 0 0 0 0 0 

Snohalo 2 0=| 0 .01 .06 .03 .04 .01 .01 0 0 0 0 0 0 

Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Minmod Midedge 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 17.8: Variation along the diagonals for a soft interface after two subdivisions 
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18 Introduction to the Remez Algorithm and Its Key 

Linear Equations 

This chapter contains an introduction to the Remez algorithm which will be used to com

pute polynomial approximations in Chapter 20. 

Interpolation consists in finding a function which goes through a set of n + 1 given 

collocation points [38]. Usually, the interpolating function is chosen to be a polynomial of 

order n. Interpolation can be used to approximate a function when the collocation points 

are values obtained from the function. In this case, the idea is to match the original function 

as closely as possible. However, the collocation points must be chosen wisely and in some 

cases must be quite numerous to obtain a good approximation. In general, polynomials are 

only good in local approximations [25]. Otherwise, it is possible to obtain unwanted oscil

lations or large errors [38]. One way to make use of this is by using spline interpolation. A 

popular method consists of using cubic spline interpolation. The idea is that the domain on 

which interpolation will be performed is divided into segments .Tj]. A cubic polyno

mial is then found to approximate the function between each pair of points. In addition, the 

polynomial coefficients are chosen in such a way that the function is twice differentiable 

everywhere [38]. 

When approximation of a function is needed, rather than simply interpolation based 

on given points, polynomial interpolation is not generally a good choice [25]. One of the 

best-known methods for approximating a function is through the use of Taylor expansions. 

For some functions, these approximations behave nicely but in other cases, they only give 
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local approximations and necessitate high degrees. In addition, Taylor expansions deal 

with derivatives of functions but in some cases it may be useful to approximate a non-

differentiable function or a complicated function whose derivatives are not easy to compute. 

Polynomial approximations of functions are especially important when they need to be 

used by computers. In the past, large tables of values were given along with ways of inter

polating between the values. Today, however, tables of values are smaller or non-existent 

and the focus is more on the methods for approximating the function [16]. Functions may 

be approximated in more than one way. There are analytic methods, which include the 

afore-mentionned Taylor series, other power series and Pade rational approximants. An

other type of method is similar to interpolation in that an approximation is built starting with 

a discrete set of data points from the function. An example of such a method is the minimax 

approximation method. This method uses interpolation methods but instead of allowing the 

error to get larger as one gets farther from the collocation points, minimax methods try to 

spread out the error evenly over the whole interval of approximation, thereby reducing the 

maximum error [16]. An algorithm to find the minimax approximation was first published 

in 1934 by Evgeny Yakovlevich Remez [40, 95, 96]. It is still used today. 

18.1 Theory 

18.1.1 Polynomial Interpolation 

Interpolation and approximation of functions does not always involve solving a matrix. 

However, for the purpose of this thesis, only methods involving matrices are considered. 

A polynomial interpolation problem to approximate a function consists of finding a 

polynomial function pn of degree n which passes through n + 1 collocation points. These 

are given by (xj, f{xi)), i = 0,1,2, • • • , n [38]. Then, one must simply solve the system 
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of equations given by 

Co + C i X i  + c 2 x f  H b c n x "  =  f ( x i) 

Co +  C 1 X 2 +  c 2 x \  H h CnX2 =  f ( x 2 )  

Co + Cio;n+i + c2x^+1 H + cnxn
n+l = /(x„+i) 

This gives the following matrix to solve. 

X \  

X 2  

X t  

X n  

X i  

/•*»' <  JU O 

1 Xn+1 xn+l X  n+1 

C0 

Ci 

C2 

h  

h  

/1 n+1 

This system is known as a Vandermonde matrix [38]. Vandermonde matrices are also found 

in many applications other than interpolation, examples of which are Gaussian quadrature 

and signal processing applications such as the discrete Fourier transform [41,46]. However, 

the Vandermonde matrices are notoriously ill-conditioned [38]. As such, many papers have 

been written exploring different methods for accurate and cost-efficient solutions. 

In the case where the interpolation is performed using cubic splines, the system is re

duced to a tridiagonal matrix. These are quite simple to solve using LU decomposition 

[38], and therefore will not be further considered here. 

18.1.2 Approximation 

When approximating a function, one may obtain different approximations when using dif

ferent methods. A valid concern is therefore how to determine which approximation is the 

best. This concern arises even if one narrows the field by only considering polynomial 

approximations. 
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The Weierstrass Theorem that any real function f ( x )  continuous on [a, b ]  can be ap

proximated by polynomials on this interval [72, 99, 124], Specifically, it states that for 

every e > 0, there exists a polynomial p{x) (which depends on e) such that 

I l / l I  =  m a x  | / ( x ) |  <  e .  
a<x<b 

The norm defined in the left hand side of the above equation is known as the uniform norm; 

it is also called the Chebyshev norm [99]. 

A theorem by P.L. Chebyshev which describes the concept of a polynomial of best 

approximation and guarantees its existence. This theorem states that for any bounded 

measurable function f(x) which is defined on [a, b], and for any integer n, there exists 

a polynomial of degree at most n which has a smallest error in uniform norm among all the 

polynomials of degree at most n [124]. 

Another theorem by Chebyshev gives a criterion that identifies a polynomial of best 

approximation. This theorem states that for a polynomial pn(x) of degree n to be the poly

n o m i a l  o f  b e s t  a p p r o x i m a t i o n  o f  a  b o u n d e d  m e a s u r a b l e  f u n c t i o n  f ( x )  i n  t h e  i n t e r v a l  [ a ,  b ] ,  

it is necessary and sufficient that the difference f(x) — pn(x) attain its maximum at least 

n + 2 times within the interval with alternating signs [124]. This is a strong theorem be

cause it says that if such a polynomial can be found, then it has to be the best approximation 

for the particular degree. 

18.2 Methods 

18.2.1 Remez Algorithm 

The Remez algorithm was first published in 1934 by Evgeny Yakovlevich Remez. This 

is a n  a l g o r i t h m  d e s i g n e d  t o  f i n d  t h e  p o l y n o m i a l  o f  b e s t  a p p r o x i m a t i o n  f o r  a  f u n c t i o n  f ( x )  

[40, 95, 96]. There are two variations of the Remez algorithm, differing in the exchange 

step [81]. The following is a simplified explanation of the second Remez algorithm. Ch-
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eney [15] gives a more formal explanation of both Remez algorithms and includes the 

necessary theoretical background. The Remez algorithm is an iterative method for com

puting coefficients for a polynomial such that the value of the error function is equal but 

with alternating signs at n 4- 2 points in the given interval [123]. The algorithm starts with 

an initial set of n + 2 points and then finds a polynomial such that the error at these n + 2 

points is equal with alternating signs. However, this error value may not be the maximum. 

The next step involves finding the points where the maximum magnitudes of the error func

tion are attained. These points are then used as the collocation points in the next iteration 

[123], There are two techniques that can be used here: either all the points are replaced by 

the new points or the point closest to the one where the error is maximum is replaced by 

the abscissa of the maximum [74]. 

The initial values chosen for this algorithm are usually chosen as Chebyshev nodes. 

Without going into the details of the theory behind this, polynomial interpolation using 

Chebyshev nodes is usually more stable than interpolation using equally-spaced points 

[6, 24, 74]. Once the initial values are chosen, the following system of equations must be 

solved. 

c0 + C \ X \  + c 2 x \  H b Cnx\ — f(xi) -  E  

Co + C \ X 2  + c 2 x 2 H b cnx2 =  f ( x 2 )  -f E  

Co + C\Xn+2 + C2x^+2 + • • • + CnX™+2 = f ( x n + 2 )  +  (  — 1 ) n + 2 E  
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This gives the following matrix system. 

C o  

1 X i  x j  • x \  1 C l  h  

1 x \  •  vn 
j u  2 -1 

(-l)H-1 

C2 
= h  

1 X-n+2 xl+2 • 
i-pTl 

n+2 (~1)"+3 

1 

/n+2 

This matrix is very similar to a Vandermonde matrix therefore it may be a good idea to first 

look at how the latter are solved. 

18.2.2 Vandermonde Matrices 

There is much literature concerning the solution of Vandermonde systems [110]. Some 

authors are concerned with finding LU or QR decompositions of such matrices [41], others 

studied, for example, the block decomposition of Vandermonde matrices [122], while oth

ers still tried to find accurate methods for computing the inverses of Vandermonde matrices 

[33, 73]. In other articles, the concept of Vandermonde matrix is generalized to include 

matrices which are similar to Vandermonde matrices but differ in some ways [27,41, 64]. 

There exist explicit formulae for solving the Vandermonde matrix and finding its in

verse, and these are well known [33]. The Parker-Traub algorithm was originally proposed 

for the computation of the inverse of the Vandermonde matrix and it was subsequently 

generalized by Gohberg and Olshevsky [44]. 

Another algorithm on which many methods are based is the one proposed by Bjorck 

and Pereyra in 1970 [94]. In their method, the authors suggest using a different polynomial 

basis when creating the Vandermonde matrix. More specifically, they suggest using New

ton polynomials instead of simple monomials. In their case, however, they were interested 

in finding a bidiagonal LU decomposition of the inverse of the Vandermonde matrix but it 
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is also possible to use this idea to solve the Vandermonde matrix directly, without finding 

its inverse. 

The Bjorck-Pereyra method was later used in conjunction with Schur functions to solve 

the Vandermonde system more accurately and efficiently [67]. 

Even with all these proposed methods for solving Vandermonde systems, it seems that 

simply changing the basis polynomial functions may be the best method. It is generally 

recommended to use Newton polynomials as basis functions. The polynomial in Newton 

representation is: 

n k—1 

P W = ~  
k—0 i=0 

[46]. By using the Newton representation of the interpolating polynomial, the following 

matrix is obtained. 

10 0 0 

1  i j - i o  0  •  •  •  0  

1  X 2 - X 0  { X 2  ~  X Q ) ( x 2  ~  X i )  • • •  0  

k-1 

1  X n - X Q  ( x n  - X Q ) ( x n  -  X i )  • • •  J J f a n - S t )  

i=0 

This is a lower triangular matrix and thus can be solved directly by forward substitution. 

18.2.3 Vandermonde-like Matrices 

Now back to the Vandermonde-like matrix that comes up when using the Remez algorithm. 

It would be very nice if there was a way to use the properties of the Vandermonde matrix 

to simplify the solution of this particular system. There is not much literature concerning 

the solution of such Vandermonde-like matrices as the ones used in the Remez algorithm. 

There was one method proposed by Gemignani in 1999 [41] which solved Vandermonde-

like matrices with low-rank changes. This method applies very nicely to the matrix in the 

170 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Remez algorithm and this is even mentioned by the author. The method solves the system 

by using the QR decomposition of the matrix and applying the results right away to find 

the solution. It is an iterative method which appears to be cost and memory efficient. 

However, perhaps it is possible to obtain a good answer that is also much simpler to 

implement. Since a change of basis worked so well for Vandermonde matrices, it may 

be worthwhile to try it with the Vandermonde-like matrix and see if it gives any special 

structure that can simplify the problem. 

1 0 0 

1  x \  —  x 0  0 

1 X 2  - XO ( x 2  -  XQ)(X 2  - XI) 

0 

0 

0 

k- l  

1  xn+2-x0 (xn+2-x0)(xn+2-x1)  • • •  J J ( a : n + 2 - a : i )  ( - l ) r  

i—0 

1 CO 

-1 Ci /i 

1 C2 = /2 

c n  fn+2 

E  

If the columns are rearranged, a lower Hessenberg matrix can be obtained. 

1 1 0 0 0 E  

-1 1 XI - XO 0 0 Co f i  

1 1 X 2  - Xo ( x 2  - o
 

1-
T 

to
 1 0 Ci 

= h  

: 
• t ; C2 

(_l)n+3 1 Xn+2 £0 {%n- j-2 ~ -XO) { x N + 2-XI) • 

k- l  

•  Y l {XN+2-XI) 
; f n +2 

_ i=0 Cn 

By reversing the order of the rows and of the columns, the system is transformed into an 
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upper Hessenberg matrix, much easier to solve than the original Vandermonde-like matrix. 

fc—1 

W { x n + 2 ~ X i )  •  1 <N + c - x 0 ) ( x n + 2 ~ x i )  %n+2 " - X o  1 ( _ l ) n + S  
C j i  

i=0 
: ; 

C2 

fn+2 

0 •  •  ( x 2 - x 0 ) ( x 2  -  X i )  x 2  - X o  1 1 Cl /2 

0 0 X i  - X o  1 -1 c0 
. fl . 

0 0 0 1 1 E  

This upper Hessenberg matrix is almost triangular and can easily be factored into LU or 

QR matrices to solve the system. 

18.3 Results 

18.3.1 Cost 

With respect to the original Vandermonde matrix, it seems quite clear that the best method 

for solving it is to use a change of base and use the Newton representation of the interpolat

ing polynomial rather than its monomial representation. Then, backward substitution can 

be used to solve the system directly. This algorithm has ^ flops [46] and has a cost of 

0 ( n 2 ) .  

For the Vandermonde-like matrix that occurs in the case of the Remez algorithm, there 

are many methods that may be used to solve the system. In this case, the matrix is (n -f 

2 )  x  ( n  +  2 )  b u t  t o  s i m p l i f y  t h e  c a l c u l a t i o n s ,  l e t  m  =  n  +  2 .  T h e r e f o r e ,  t h e  m a t r i x  i s  m  x  m .  

The cost of using each of the different afore-mentioned methods for solving this matrix are 

regrouped in the following tables. The results in Table 18.1 are for the Vandermonde-like 

matrix in monomial base [41, 46] and the results in Table 18.2 are for the same matrix but 

after it has been transformed into an upper Hessenberg matrix [46]. 

The Gemignani algorithm as well as transforming the Vandermonde-like matrix to an 

upper Hessenberg matrix are the most cost-effective methods of solving the system. 
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Table 18.1: Cost to solve a Vandermonde-like matrix 

Method Cost 

LU factorization 0 ( m 3 )  

Householder QR factorization O (m3) 

Givens QR factorization 0(m3) 

Gemignani algorithm 0 ( m 2 )  

Table 18.2: Cost to solve an upper Hessenberg matrix 

Method Cost 

LU factorization 0 ( m 2 )  

Givens QR factorization 0{m?) 

18.3.2 Accuracy 

Some explicit formulae for computing bounds on the error in max norm are given for the 

LU and Householder QR factorizations of regular matrices with no special structure [46]. 

However, nothing is given that deals with the particular structure of upper Hessenberg ma

trices, or even for the Givens QR factorization. Gemignani gave numerical results to show 

the accuracy of his method [41]. Since it would be difficult to reproduce the conditions in 

which Gemignani's numerical results were obtained, the LU and Givens QR methods only 

are compared with respect to accuracy. This is done through numerical results. 

Let 

f ( x )  =  jinc(7nr) = —^—- = J 2  (thc) + JQ( 7 TX) [48]. 

The last step was done in order to avoid division by zero. For the initial values of x ,  the 

Chebyshev nodes are computed on the interval [0,3]. (Dr. Robidoux points out that, gen-
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erally, the regions of interest for Bessel functions and derived quantities like jinc have a 

Bessel root as endpoint, and these roots are irrational. For this reason, an approximation of 

the jinc function on the interval [0,3] is not particularly useful from a practical standpoint. 

For demonstration purposes, this is irrelevant.) The right-hand-side vector consists of the 

values of f(x) at these points. Both the LU decomposition and the Givens QR decompo

sition are computed for the same resulting upper Hessenberg matrix. In order to compare 

the accuracy of the methods when solving the system Vc = /, the maximum residual, that 

is the maximum value of |/ — Vc\ is found. Both of these methods have been implemented 

in Scilab [115]. To give an idea of the accuracy of these methods, they are also compared 

to the internal '\' operator in Scilab, which is generally considered to be accurate. The 

numerical results are presented in Table 18.3, where n is the degree of the approximating 

polynomial. 

A second numerical experiment was done to compare the accuracy of the same three 

methods. This time, f(x) = sin(7ra:). The approximation is performed on the interval [0,1] 

and the initial x values are once again chosen to be the Chebyshev nodes. The results are 

shown in Table 18.4. 

18.4 Conclusion 

Many methods for solving Vandermonde-like systems were compared, first in terms of cost 

and then in terms of accuracy. With respect to the cost in flops, it was obvious that using 

a Newton polynomial representation instead of the usual monomial representation and re

arranging the matrix to obtain an upper Hessenberg matrix was the most effective method. 

Afterwards, one could solve this system using either LU factorization, Givens QR factor

ization or the method proposed by Gemignani [41]. The first two were compared to each 

other and to the Scilab internal operator '\' to determine which was most accurate. The 

results are presented in Table 18.3 and Table 18.4. From these results, it is determined that 
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the solution of the Hessenberg matrix using LU decomposition consistently gives a more 

accurate result than the one using Givens QR factorization. The latter sometimes seems to 

give a smaller error but overall, LU decomposition is better. An interesting observation is 

that for degrees higher than about 16, the Scilab operator starts losing accuracy. In those 

cases, both homemade methods surpass it. 

The LU decomposition was chosen as the best method to solve the transformed matrix 

that occurs when using the Remez algorithm. The Remez algorithm was implemented in 

Scilab using this method (see Appendix D). The algorithms used for the LU decomposition, 

the forward substitution and the backward substitution are all the standard ones [46]. Note 

that this implementation was not designed to be maximally cost- and space-effective but 

rather clear and accurate. With a few modifications, it may be modified to use less memory 

and be faster. Applying the Remez algorithm is more than simply solving a matrix. There 

is also a step where the abscissa of the maximum error values are found and then used 

in the next iteration. This step, however, concerns numerical methods rather than matrix 

computations. As such, it was omitted from this discussion, although it is included in the 

Scilab implementation. In order to find the abscissa of the maximum error values, the 

midpoint method was used on the error function and again on its derivative although there 

must be more effective methods to perform this step. 
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Table 18.3: Condition number and maximum residual when approximating jinc(7ra;) 

Degree Condition LU Scilab '\' Givens QR 

1 3.424e+00 5.551e-17 5.551e-17 5.551e-17 

2 1.148e+01 1.943e-16 1.804e-16 3.192e-16 

3 4.043e+01 4.025e-16 4.718e-16 5.967e-16 

4 1.360e+02 8.743e-16 8.188e-16 6.314e-16 

5 4.461e+02 8.188e-16 9.992e-16 2.096e-15 

6 1.452e+03 9.298e-16 8.604e-16 2.415e-15 

7 4.713e+03 1.291e-15 5.412e-16 1.985e-15 

8 1.531e+04 1.908e-15 8.951e-16 2.692e-15 

9 4.977e+04 7.043e-16 9.437e-16 1.589e-15 

10 1.621e+05 1.533e-15 1.318e-15 2.179e-15 

11 5.284e+05 2.602e-15 3.504e-15 1.464e-15 

12 1.725e+06 1.520e-15 2.699e-15 3.587e-15 

13 5.642e+06 3.983e-15 3.33le-15 8.535e-15 

14 1.847e+07 3.803e-15 1.672e-15 4.372e-15 

15 6.054e+07 1.376e-15 3.851e-15 3.428e-15 

16 1.986e+08 5.607e-15 1.846e-06 3.754e-15 

17 6.524e+08 8.493e-15 8.761e-07 7.369e-15 

18 2.145e+09 6.883e-15 1.565e-06 1.155e-14 

19 7.058e+09 7.848e-15 6.703e-06 6.800e-15 

20 2.324e+10 3.678e-15 6.110e-06 2.275e-14 

25 9.097e+12 7.390e-15 2.660e-04 1.645e-14 

30 3.608e+15 8.535e-15 9.342e-04 1.664e-14 

40 7.953e+19 8.330e-14 1.000e+00 1.583e-14 

50 3.242e+25 1.290e-08 1.000e+00 4.130e-07 
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Table 18.4: Condition number and maximum residual when approximating sin(7rx) 

Degree Condition LU Scilab '\' Givens QR 

1 3.792e+00 2.776e-17 2.776e-17 1.388e-16 

2 1.572e+01 2.220e-16 2.220e-16 5.967e-16 

3 7.191e+01 2.220e-16 2.220e-16 2.498e-16 

4 3.006e+02 3.955e-16 5.551e-17 5.551e-16 

5 1.308e+03 5.551e-16 5.551e-16 6.661e-16 

6 5.444e+03 6.661e-16 3.331e-16 5.827e-16 

7 2.310e+04 4.996e-16 2.220e-16 8.603e-16 

8 9.557e+04 4.44 le-16 3.331e-16 6.939e-16 

9 3.996e+05 5.274e-16 2.220e-16 1.100e-15 

10 1.645e+06 5.551e-16 5.551e-16 5.135e-16 

11 6.814e+06 3.331e-16 6.800e-16 6.939e-16 

12 2.794e+07 1.332e-15 2.220e-16 1.707e-15 

13 1.150e+08 6.106e-16 1.736e-15 7.216e-16 

14 4.700e+08 3.331e-16 7.340e-13 1.145e-15 

15 1.926e+09 6.106e-16 8.744e-13 2.220e-16 

16 7.850e+09 3.331e-16 2.55 le-11 1.221e-15 

17 3.206e+10 9.298e-16 1.020e-09 9.437e-16 

18 1.304e+l 1 9.506e-16 4.863e-10 1.041e-15 

19 5.31 le-4-11 7.980e-16 1.910e-l 1 9.298e-16 

20 2.157e+12 7.494e-16 1.999e-10 1.027e-15 

25 2.392e+15 8.049e-16 7.580e-09 1.360e-15 

30 5.141e+17 6.66 le-16 1.713e-10 7.772e-16 

40 3.624e+22 3.044e-15 5.457e-10 6.281e-15 

50 1.395e+29 1.201e-10 1.895e-10 1.165e-09 
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19 Literature Review: FIR Filter Design with Chebyshev 

and Minimax Methods 

This chapter presents a brief review of the literature concerning FIR (Finite Impulse Re

sponse) filter design using Chebyshev and minimax method. A survey of some of the 

important methods and improvements are presented, along with a brief description. 

19.1 Background 

A Finite Impulse Response (FIR) filter is a digital filter whose values become null after a 

finite amount of time. The impulse response of a filter is the result of applying a signal 

consisting of a single maximal non-zero value. By contrast, Infinite Impulse Response 

(IIR) filters are digital filters whose values stretch out to infinity. In this chapter, the focus 

will be on FIR filter design methods. The frequency response of an FIR digital filter is a 

function, usually complex, of the frequency after normalization [14]. 

There are many reasons for designing FIR filters. They have many applications in signal 

processing, including image processing, geophysical data processing, radar data processing 

[13], nearly linear-phase filtering, and equalization [10]. They are very attractive for such 

applications because of certain properties they possess [91]. For instance, they can have 

exactly linear phase, they do not pose the same stability problems as IIR filters, and they 

can be quite easy to design [13], due to the many efficient methods available [77]. In fact, 

during the 70's and 80's, many researchers have given some thought to the problem of de-

178 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



signing optimum (in the Chebyshev sense) FIR filters [13, 78], both in the one-dimensional 

and two-dimensional cases. Most of this research has been focused on the design of linear-

phase FIR filters [78], since this can be an important characteristic [13], though it not 

always required and may be unwanted [78], 

Many different solutions to the classical problem of FIR filter design in one or more 

dimensions have been proposed [1]. Some very powerful and computationally efficient 

algorithms have been developed, particularly for the linear-phase case [78]. When there 

are constraints in the time domain, linear programming is one of the popular techniques for 

FIR filter design [112]. Other techniques have also been considered for the various cases. 

Researchers have also been interested in the design of filters with certain behaviours in two 

or more bands [88]. 

An example where filters with constraints in the time domain are useful is in the sections 

of data communication systems responsible for transmitting and receiving. The transmit 

filter must constrain the spectrum of the transmitted data so it fits into bandlimited channels 

while the receive filter must reject the noise that is outside of the band and maximize the 

signal-to-noise ratio [112]. In this case, there are constraints in the time domain since the 

impulse response of the transmit and receive filters have zero-crossings at uniform distances 

from one another; such filters are known as Nyquist filters [112]. 

19.2 Statement of the Problem 

The design and realization of a digital filter can be separated into five steps [91]. The 

first step consists of choosing the technique that will be used for the design of the filter 

and writing the desired filter specifications mathematically. The next step is a key step 

where the ideal filter is approximated by solving the problem to find the coefficients which 

minimize an error function. The third step consists of choosing the structure to realize the 

filter and then quantizing the filter coefficients so that they have a fixed length. The fourth 
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step is quantizing the lengths of the filter variables and the fifth step is the verification that 

the resulting filter really does meet the desired specifications [91]. The literature that will 

be reviewed here will focus on the second step, which consists in solving the approximation 

problem. 

The basic idea of the problem under consideration is finding an approximation of an 

ideal frequency response [51,77]. Usually its magnitude is approximated, but the phase can 

also be considered [88]. There are various minimization criterion which can be used, the 

most common being the Chebyshev error criterion and the weighted least squares (WLS) 

error criterion. Basically, the frequency response of an ideal filter is known and the idea is 

to obtain an optimal approximation of this frequency response such that the error function 

is minimized [10, 71], which can then be converted back into the time domain to obtain a 

digital filter. This approximation can be done in one dimension, where it is generally easy, 

or in two dimensions, where the functions are generally complex and the problem become 

more computationally intensive. 

In the two-dimensional case, the problem can be reformulated in the case where the 

filter is exactly linear phase, that is, when it has symmetric real coefficients. In this case, 

one can use the Chebyshev error criterion and solve the problem as a real approximation 

problem [1, 14], The approximating function can then be written as a weighted sum of 

cosine functions [77]. 

If, however, the filter to be approximated is not linear-phase, then the approximation 

problem becomes complex [14]. These problems tend to be more computationally inten

sive but there may also be advantages to solving the complex approximation problem. One 

of its most important features is that by minimizing the error function, both the weighted 

magnitude error and the phase error are reduced simultaneously [88]. However, the com

plex approximation problem can also be seen as a real approximation problem that is non

linear, if that is preferred, since the norm of the error function can be rewritten as the usual 

norm of a complex number, that is, the square root of the sum of the squares of the real and 
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imaginary parts of the error function [10]. 

The Chebyshev (or minimax) error criterion is often used because it corresponds to 

minimizing the extremal error over all frequencies [71]. Minimizing the Chebyshev norm 

leads the error function to have an equiripple behaviour, where all the extrema of the er

ror function have the same value [88]. This is a well-known fact. On the other hand, 

the weighted least squares (WLS) design method minimizes the weighted integral of the 

squared error function [1,71]. 

Therefore, the approximation step of FIR filter design basically consists of finding the 

values of the coefficients of the impulse response such that the Chebyshev norm of the 

error, or the weighted least squares error, is minimized, where the error function is defined 

as the weighted difference between the ideal filter which is being approximated and the 

resulting approximating function. [14, 51, 88]. 

19.3 History 

There have been many attempts at solving the FIR filter design problem. Many researchers 

have considered solutions to the problem and tried to improve on the previously-developed 

methods. Such improvements included convergence speed, computational complexity, nu

merical stability, and maximal filter size. Here, a brief look will be taken at some of the 

major developments in solving the FIR filter design problem. 

One of the first methods used to solve the approximation problem was the method of 

windowing [91]. In its earlier stages, this consisted simply in taking the Fourier series of 

the ideal frequency response and truncating it to the required length. An advantage of this 

method was that the least squares error was minimized but a disadvantage was that the 

Chebyshev error was not. In fact, the Gibbs phenomenon could cause this error to be quite 

large [91]. 

Later on, the technique of windowing was refined such that the Fourier series was not 
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simply truncated. Rather, its coefficients were multiplied by a time-limited window. This 

method was developed to reduce the Gibbs phenomenon that had previously caused the 

Chebyshev error to be large [91]. Many windows were developed and used. Some of the 

more popular ones included the Kaiser [63], the Hamming [7], and the Dolph-Chebyshev 

[30] windows. An advantage of this method was that the windowing technique was analyt

ical rather than iterative like most of the other methods for FIR filter design [91]. 

In 1961, Lawson [68] described a new iterative method to solve this approximation 

problem. This algorithm became fundamental for finding optimal approximations in the 

Chebyshev sense [14], This algorithm works on the idea that the best approximation in the 

Chebyshev sense is a weighted Lp approximation, where the weighting is unknown [10]. 

This algorithm recursively finds this weighting function as well as the extremal set [14] and 

eventually converges to the optimal approximation in the Chebyshev sense [10]. However, 

the algorithm seems to have a slow convergence rate [14] and, worse, it often stops before 

reaching the optimal solution. This seems to happen when the weighting function becomes 

zero at certain points. Methods have been proposed to deal with this problem and they 

typically get the algorithm to restart [10], Due to this need to restart the algorithm, the 

convergence of the method is more difficult to show [10]. 

A few years later, the frequency sampling method was published by Gold and Jordan 

[45]. This technique has been applied to a variety of problems, including band-pass and 

low-pass filters [77]. Basically, this method works by fixing values for the coefficients 

of the discrete Fourier transform everywhere except in the transition bands. These values 

are then optimized using an algorithm that minimizes a weighted approximation error [91]. 

However, disadvantages with this method are that the result is not optimal in the Chebyshev 

sense, and it is also not possible to specify the frequencies at the edge of the bands [77]. 

This is a linear programming problem where there are few variables but many constraints 

[91]. This method was improved upon by Rabiner et al. [90]. 

In 1970, Herrmann [53] developed the first method for the design of optimal FIR filters 
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in the Chebyshev sense [91]. His method was based on the assumption that there was an 

equiripple property of the optimal low-pass filter in each band. Then, he simply fixed the 

amount of ripples in the bands and this led to some nonlinear equations, which could then 

be solved. In this case, Herrmann used an iterative descent method [91]. At the same 

time, Herrmann and Schuessler [54] described a way for going from equiripple linear-

phase designs to equiripple minimum-phase designs. This way, they ended up with half the 

original degree [78]. Filters developed using Herrmann's method had the disadvantage of 

being rather small. Their size was limited to 40 [91]. 

The next year, Herrmann's method was improved upon by Hofstetter et al. [56], who 

made it possible to design longer filters. They developed another algorithm for solving the 

nonlinear equations, instead of using the iterative descent method like Herrmann. Their 

new algorithm was similar to the Remez exchange algorithm [91]. The resulting filters 

were optimum in the Chebyshev sense but belonged to a restricted class of such filters 

[77]. These were called extraripple filters, or maximal ripple filters. Extraripple filters have 

only one more ripple than the minimum need for optimality [91]. One disadvantage of this 

method, as well as of Herrmann's method is that the cutoff frequencies of the bands cannot 

be specified beforehand [91]. 

Regarding the design of linear phase FIR filters in two dimensions, one of the simplest 

algorithms was a windowing method published by Huang in 1972 [60]. However, this 

method was not optimal in any sense [13], 

The same year, Parks and McClellan [82] showed that the Remez algorithm [95] was 

a good method for computing best approximations in the Chebyshev sense [77, 91]. They 

approximated an ideal frequency response for a low-pass filter in the pass-band and the 

stop-band using the Remez exchange algorithm[91]. This method has been used to design 

linear phase FIR filters. 

Around the same time, Rabiner [89] proposed an alternative to the method using the 

Remez exchange algorithm. He demonstrated that linear programming could also be used 
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to obtain optimal approximations in the Chebyshev sense [91]. In fact, one can design 

the same filter using both the Remez algorithm and linear programming [77]. There is a 

difference between the two, however. An advantage of linear programming is that it is 

flexible and can be used to design filters of various shapes [91]. On the other hand, the 

Remez algorithm requires much less time to perform, and thus can design longer filters 

[77], 

Hu and Rabiner [59] then proposed a method whereby linear programming is directly 

applied to the FIR filter design problem. This method consists of applying linear program

ming in a straightforward manner [13, 51], It has been deemed a slow method [13] but can 

design a filter for a small circularly symmetric impulse response in about an hour [51], 

In 1973, McClellan [76] proposed another method for the design of equiripple linear-

phase FIR filters. This is a relatively simple method for designing two-dimensional filters. 

An appropriate polynomial mapping is applied to a one-dimensional ideal filter to then 

obtain a two-dimensional filter [51]. The result is equiripple but it is not always optimal in 

the Chebyshev or minimax sense [13]. Another disadvantage is that the magnitude function 

must be carefully chosen since they cannot all be approximated well [51]. However, there 

are advantages to this method. It is easy to use to design FIR filters and the results usually 

have efficient implementations [51]. 

The same year, Fisher [37] proposed using the Lawson algorithm [68] for approxima

tions in the complex frequency domain. However, this method seems to not have worked 

very well [14]. 

Then, Mueller [80] considered the design of FIR Nyquist digital filters using an eigen

value problem. He presented a numerical solution to this problem [112]. 

Later, Burris [11] worked on the method of Herrmann and Schuessler [54] and decided 

to generalize it. His method consisted of solving for the roots of a polynomial and factoring 

these roots in a suitable manner to get the minimum-phase counterpart [78]. 

Fiasconaro [36] studied the method proposed by Hu and Rabiner [59] and wanted to 
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improve on the amount of time required to solve the approximation problem. He decided 

to propose an adaptive algorithm in which the solution from each iteration was optimized 

using linear programming. However, this method still required a fair amount of time [51]. 

The descent algorithm was applied to the FIR filter design problem by Kamp and Thi-

ran [65] and by Hersey and Mersereau [55] in an independent fashion. They managed to 

improve on the time required for the solution of the approximation problem, but the filter 

footprint was still limited to about 15 x 15 because of the computational complexity of 

the method [51]. Harris [50] also developed a similar ascent minimax algorithm. There 

were also numerical difficulties encountered in the implementation of these algorithms 

[13]. These difficulties were due to degeneracy in the reference functions [13]. 

There were also researchers who described the approximation problem and some of 

the theory behind it. Rivlin and Shapiro [97, 98] focused on a demonstration that the best 

least squares approximation using a good weighting function is the same as an optimal 

approximation in the Chebyshev sense [14]. At this point, if the weighting function is 

known along with the set of extrema, then the optimal complex minimax approximation 

can be found using least squares [14]. 

In 1978, Barrodale et al. [5] suggested using a Taylor expansion to linearize the approx

imation problem and then using a previously-published algorithm to solve it. However, the 

solution obtained can have a large error since the Taylor expansion is not accurate [14]. 

They then suggested the use of a perturbation method to get a better approximation. This 

method was not very reliable and could fail even for small problems [14], 

Instead of trying to approximate both the real and imaginary parts of FIR filters, Stei-

glitz [118] proposed separate approximations for these. However, a disadvantage of this 

method is that the errors for the magnitude and for the phase are not adjustable [14]. 

Around the same time, Glashoff and Roleff [43] and Streit and Nuttall [120] indepen

dently suggested that the approximation problem be discretized and converted from the 

complex domain to the real domain. Glashoff and Roleff solved the linear real problem 
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and used that solution as an initial vector for the Newton-Raphson method [14]. However, 

it is not guaranteed that the Newton-Raphson iteration will converge if the initial guess is 

not a good one [14]. Streit and Nuttall had a set of overdetermined linear equations and 

used a linear programming algorithm directly to solve them [14], They minimized the error 

only on a grid, and the grid density could be manipulated to reduce the error [10]. An ad

vantage of their method was that their linear programming algorithm was stable and there 

was no need for an initial vector. However, it did take a long time to compute large filters 

[14]. 

A few years later, Lim and Parker [70] showed that it is valid to used the weighted least 

squares method for designing large FIR filters when the coefficient space is discrete [71], 

Later, Cortelazzo and Lightner [18] published a method for designing FIR and IIR 

filters that could approximate either the magnitude, the phase, or the group delay of an 

ideal filter [14], However, this method was time-consuming and only worked well when 

the FIR filter was no longer than ten [14]. 

In 1987, Saramaki and Neuvo [113] developed an algorithm which used the Parks-

McClellan method to optimize in the frequency domain while at the same time optimizing 

in the time domain by solving linear equations [112]. This is an iterative method to de

sign equiripple FIR Nyquist filters and may need some modifications depending on the 

application. It seems to be well-behaved numerically and is a good alternative to linear 

programming [112], 

The same year, Chen and Parks [14] presented a method similar to that of Streit and 

Nuttall. Their method used finitization, which adds a certain amount of error to the final 

solution [10]. Another disadvantage is that the method can be slow and use a lot of memory 

space when the filter length grows [10]. However, it can give pretty accurate solutions when 

used to design filters of length up to 50 [10]. 

Later, Tang [121] developed an iterative method which did not involve finitization. The 

approximation problem was solved by simply using a simplex algorithm for linear pro-
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gramming directly [10]. This method can be used to design FIR filters with arbitrarily 

small Chebyshev errors [10]. 

Preuss [87, 88] then published an interpolating method which is also iterative. An ad

vantage of this method is that its convergence is fast when compared to linear programming 

methods [10]. However, it can be numerically unstable and it is not known whether it al

ways converges to the optimal solution [10]. 

Preuss' method was improved upon by Schulist [114] in 1990. He made the method 

faster and dealt with some of the numerical instability problems [10]. Schulist also showed 

that it is possible to add linear constraints to the problem when using linear programming 

methods but this has not been shown to be the case for interpolating methods [10]. 

Tang's simplex algorithm was applied by Alkairy et al. [2, 3] to FIR filter design. 

They used Tang's method for the starting and then solved the linear equations by taking 

the inverse of the matrix [10]. The memory requirements, convergence speed, as well as 

accuracy were all greatly improved by this method. As such, longer filters could now be 

designed [10]. 

A method different from the previous ones was proposed by Potchinkov and Reemtsen 

[86] in 1992. They formulated the FIR filter design problem as a quadratic problem, thus 

not requiring any linearization [10]. It is a fact that quadratic programming is more com

putationally intense than linear programming, but since there is no need for linearization, 

it is possible that the method allows for faster convergence [10]. Potchinkov and Reemtsen 

have designed filters that had lengths of up to 300. 

Tseng [125] decided to reconsider Lawson's algorithm for FIR filter design and im

proved on the implementation of the method as well as on its tendency to stop prematurely 

[10]. 

In 1993, Burnside and Parks [9] published a multiple exchange linear programming 

method based on the simplex algorithm. They improved the starting method and the step 

where the linear equations are solved by finding an inverse matrix [10]. Their method was 
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also generalized so it can be used to design complex FIR filters. It is numerically stable 

and relatively fast [10]. 

19.4 Literature Review 

19.4.1 FIR Digital Filter Design Techniques Using Weighted Chebyshev Approxima

tion - Rabiner et al. 

In their paper, Rabiner et al. [91] discuss various optimal methods for obtaining the solution 

of the FIR design approximation problem. In this case, optimality is in the Chebyshev 

sense. They start out by explaining that the alternation theorem is very powerful since it 

gives necessary and sufficient conditions for the optimal Chebyshev solution. The Remez 

exchange algorithm is based on this theorem and is an efficient method for solving the 

approximation problem. However, the alternation theorem is only valid when the basis 

functions satisfy the Haar condition; that is, each subset of n vectors is linearly independent 

[15]. Unfortunately, in two dimensions, these basis functions no longer satisfy the Haar 

condition. As such, it is then impossible to find the optimal solution based on the alternation 

theorem. 

When the filter is required to have the maximum number of extremal frequencies, it 

is possible to get a unique optimal filter. Such filters are called maximal ripple filters, or 

extraripple filters in the case of low-pass filters. In order to obtain a maximal ripple filter, 

one first gets a set of nonlinear equations by requiring the error function to attain a certain 

error value at the same time as having a zero derivative. These equations can be solved by 

iteration using optimization techniques. However, the maximum error value is fixed and 

therefore is not minimized. Also, the method does not give freedom to specify where the 

band edges will be, instead selecting where these will be. Another iterative method was 

proposed for designing such filters, this one based on the idea of obtaining a polynomial 

with chosen values at the extrema. This method starts with an initial guess of the location 
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of these extrema and then obtains a polynomial using Lagrange interpolation. Then, the 

extrema of this polynomial are found and another iteration begins. This is reminiscent of 

the Remez multiple exchange algorithm. The algorithm will converge independently of the 

initial estimate, but certain estimates may require more or less iterations than others. As 

with the previous method, it is still not possible to specify the filter band edge frequencies 

beforehand. 

Other techniques such as linear programming can also be used to solve this approxi

mation problem. Linear programming is much slower than the Remez algorithm, however, 

since it is basically a single exchange method, whereas the latter is a multiple exchange 

method. On the other hand, when constraints are added to the time domain, the Remez 

algorithm is not useful anymore and linear programming becomes the method of choice. 

When designing low-pass filters, for example, there are constraints in both the time and 

frequency domains at the same time. In this case, linear programming works well. Another 

example where the linear programming method surpasses the Remez algorithm is in the 

design of interpolation filters with some null coefficients. In this case, the Haar condition 

is not satisfied and thus the alternation theorem cannot be applied. 

Designing FIR filters in two dimensions is typically much more difficult than design

ing such filters in one dimension. Some techniques have been extended from one to two 

dimensions but for most techniques this does not work very well. The Remez algorithm 

has not been extended to two dimensions as of 1975 and there are no efficient methods 

for the design of two-dimensional optimal FIR filters. The problems with extending the 

Remez algorithm to two dimensions are that first, the Haar condition is not satisfied in two 

dimensions and thus the alternation theorem cannot be applied, and secondly, that there is 

no way of ordering the extrema such that the error sign changes from point to point. For 

now, linear programming seems to be the best method to use, but it is limited to low-order 

filters. 
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19.4.2 A Unified Approach to the Design of Optimum FIR Linear-Phase Digital Fil

ters - McClellan and Parks 

In this article, McClellan and Parks [77] discuss a method for designing FIR linear-phase 

digital filters where each possible case is reduced to an appropriate form for using the 

Remez exchange algorithm. Basically, they show that there are four possible cases and that 

each can be modified and then solved using the Remez algorithm. Until this moment, only 

certain types of filters could be designed using the Remez algorithm, and all others had to 

use linear programming, which tends to be slower. 

Once all cases can be reduced to the one case which is solvable using the Remez al

gorithm, it is possible to approximate band-pass filters, band-stop filters, Hilbert-transform 

filters, differentiator filters, and any arbitrary filter using this algorithm. Now that the theory 

shows that all cases can be reduced to a simple one, a more compact method can be found 

to compute the optimal approximation. They state that there is only a need for an algorithm 

which will approximate using cosine functions, since this is the case to which all others 

can be reduced. They also provide a Fortran program which is based on this idea. Such a 

program takes in an input, formulates this input into the wanted approximation problem, 

solves this problem with the Remez algorithm, and calculates the impulse response from 

these results. This method can be used for the design of FIR linear-phase digital filters. 

19.4.3 A Comparison of Algorithms for Minimax Design of Two-Dimensional Linear 

Phase FIR Digital Filters - Harris and Mersereau 

In this paper, Harris and Mersereau [51] compare two iterative FIR linear-phase digital 

filter design techniques which both use multiple-exchange ascent algorithms, and present 

a new algorithm which reduces the amount of iterations required for such algorithms. The 

first method was developed by Kamp and Thiran and the second by Hersey and Mersereau. 

Both of these methods are faster than linear programming techniques. 
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They propose three reasons for the reexamination of the ascent algorithms. The first 

reason is that ascent algorithms result in optimal filters in the Chebyshev sense. The sec

ond reason is that filters with any magnitude specification can be approximated using this 

method since it is general. The third reason is that the optimal results from the ascent 

algorithm can then be used as a basis for applying the McClellan method. 

The new algorithm they present is more efficient than both the Kamp and Thiran, and 

the Hersery and Mersereau algorithms. It uses the beginning of the Hersey-Mersereau 

method but also adds in some useful features of the other algorithm. This method is to be 

used for two-dimensional linear phase FIR digital filters. 

Harris and Mersereau then explain that the algorithms they will compare are all iterative 

and guaranteed to converge, and that it is thus important to know when to stop. They present 

some theorems of approximation theory which basically tell how to recognize when the best 

approximation has been obtained. 

The ascent algorithm is a well-known method used for finding approximations on dis

crete sets of points which are optimal in the Chebyshev sense. The discrete sets are usually 

simply samples of the continuous function taken on a Cartesian grid. This grid must be 

dense enough. If there are transition bands in the filter, the samples must include points 

along the edges of such bands. The basic idea of the ascent algorithm is to make a se

quence of best approximations on sets of points, changing these points such that the norm 

of the error is monotonically increasing. The solution with the maximum norm on sets of 

points will be the same as the solution with the minimum norm on the whole discrete set. 

First, an initial set of points is chosen. Then, a best approximation is calculated, the error 

function is evaluated at all the points, and the maximum norm is found. If the point with 

maximum norm is already in the chosen set of points, the algorithm ends. Otherwise, it is 

exchanged with another point and the next iteration begins with the new set of points. This 

is also called the single-exchange ascent algorithm. This algorithm, however, can be slow 

to converge since only one point is exchange at each iteration. The search for the largest 
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error takes the most time. A suggestion is to replace more than one point at a time. 

The method of Kamp and Thiran is designed to find local maxima of the error function 

in little time. They suggest starting at one of the reference points and moving horizontally 

while looking for a local maximum. Once the maximum is found, one can move vertically 

to find another local maximum. This continues until a local maximum is found both hor

izontally and vertically at the same time. The same thing is done for each reference point 

and the results are added to the set of reference points. If this method fails, then the overall 

maximum error is found, as in the original ascent algorithm. If a single point is found, it 

is exchanged as previously but if more than one local maximum is found, they replace the 

reference points with the greatest errors. A best approximation is only computed once per 

iteration. 

The method of Hersey and Mersereau is based on the first Remez algorithm. In this 

method, they use a sparse grid of points which contains the reference points from the pre

vious iteration. At each iteration, they find local maxima and add them to the set while 

removing those that have a small error. They then use the single-exchange algorithm to de

termine the best approximation on this grid of points. This approximation is used to search 

for the local maxima of the error function over the whole set of points. The local maxima 

are then added to the grid of points and the next iteration starts. Originally, the search over 

the whole set of points was simply an exhaustive search but they later added a variation 

of the search part of the Kamp and Thiran algorithm, allowing the search to also include 

diagonals. 

The new algorithm proposed in this paper is the method of steepest ascent. It is like 

the Hersey-Mersereau algorithm, but the exchange section is modified such that the worst 

error points on the sparse grid are exchanged for points in the reference set of points. This 

leads to more calculations and more complex method but it also converged faster since less 

exchanges have to be performed. This is particularly useful for high-order filters. 
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19.4.4 A Fast Procedure to Design Equiripple Minimum-Phase FIR Filters - Mian 

and Nainer 

Here, Mian and Nainer [78] give a method for designing equiripple minimum-phase FIR 

filters. This method is based on that of Herrmann and Schuessler [54], but avoids finding 

roots of polynomials, which posed a problem in the original method. They accomplish 

this by using cepstral deconvolution with the FFT. This method is useful in cases where 

linear-phase is not required or may be undesirable. Instead, they design minimum-phase 

filters and reduce the filter length as well as the sensitivity of the coefficients to quantization 

errors. 

The method of Herrmann and Shuessler [54] allows transformation of an equiripple 

linear-phase design into an equiripple minimum-phase design. However, a difficulty with 

this method is that roots of high-order polynomials have to be taken to be factored suit

ably in order to obtain the minimum-phase design. Mian and Nainer instead suggest an 

approach whereby the search for polynomial roots is avoided. They show that by using 

a basic property of the complex cepstrum, the factorization problem can be solved sim

ply by computing two FFT's, some complex logarithms and some other relatively simple 

operations. It is known that numerical deconvolution can pose certain difficulties but the 

authors state that through experience, cepstral deconvolution works well and accurately in 

this particular case. 

19.4.5 The Performance of an Algorithm for Minimax Design of Two-Dimensional 

Linear Phase FIR Digital Filters - Charalambous 

In his paper, Charalambous [13] studies the problem of designing linear phase FIR filters in 

two dimensions using the minimax error criterion. He uses one of his previous algorithms 

for minimax optimization and modifies the original problem into a sequence of weighted 

least squares problems. The least squares functions are then minimized using the conjugate 
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unconstrained algorithm from Powell. Charalambous states that his method converges to 

the optimal solution and that there are no degeneracy problems. 

The algorithm from Powell was chosen to be used in Charalambous' method because 

of some of its advantages. It needs only a few operations to get its direction of search and 

also looks at any symmetry that may be found in the optimization problem. Therefore, the 

algorithm does not need to search the whole space to get the optimal solution. This is a 

very useful property to have when the problem becomes larger. 

19.4.6 Design of Almost Minimax FIR Filters in One and Two Dimensions by WLS 

Techniques - Algazi et al. 

Algazi et al. [1] present a method for designing one- and two-dimensional FIR filters using 

weighted least squares techniques rather than the usually-preferred minimax method. They 

state that the minimax method can be computationally intensive, particularly when dealing 

with two-dimensional problems. They suggest the use of iterative WLS methods, even in 

the one-dimensional case. These methods are then generalized for use in two dimensions. 

The authors note that there is a relation between WLS and Chebyshev approximations 

and use this result for designing minimax filters using the WLS approach. In one dimen

sion, it is shown that the result is exactly the same for both methods. They then extend it to 

two dimensions, obtaining an efficient and simple design technique. 

WLS design consists of finding an optimal filter where the weighted least squares are 

minimized. On the other hand, minimax design consists in minimizing the error in the 

Chebyshev sense by choosing proper filter coefficients. Both techniques are iterative. The 

Remez algorithm, which is used for minimax design, cannot be extended to two dimen

sions, however, since it depends on the alternation theorem which does not apply to two 

dimensions. Instead, iterative ascent algorithms have been used but have been deemed 

computationally slow. 
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Algazi et al. recall the Lawson algorithm, which was used to find Chebyshev approx

imations by finding limits of sequences of weighted Lp approximations. The authors note 

that choosing p = 2 gives a link between the WLS and Chebyshev approximations. Law-

son's algorithm can be applied as is to the one-dimensional problem and it will always 

converge, usually rather quickly. However, there is a difficulty with Lawson's algorithm 

when some values unintentionally vanish after an iteration. In this case, the solution is not 

optimal on the whole space but rather on a subset of the space. 

This method can also be used for designing FIR filters in two dimensions. However, 

there is no proof that the result is actually a minimax FIR filter. The lack of proof is related 

to the impossibility for the Remez algorithm to be extended to two dimensions. Lawson's 

algorithm is quite simple to implement and the results obtained in one dimension are opti

mal therefore it can be a good alternative to other techniques which are more computation

ally complex. The authors also note that in two dimensions, Chebyshev approximations are 

minimax but not equiripple since all the local extrema of the error do not typically reach 

the same maximum or minimum value. 

Now that they described an iterative method for designing FIR filters using WLS tech

niques, they then modify the algorithm in order to make the weights depend on the error 

from the previous iteration. They change the weights at each iteration instead of waiting 

for the algorithm to converge before changing the weights according to Lawson's method. 

However, they remind the readers that this method still does not guarantee that the result 

will be a minimax approximation. 

19.4.7 Design of FIR Filters in the Complex Domain - Chen and Parks 

In this article, Chen and Parks [14] take a look at the design of FIR digital filters using 

the Chebyshev error criterion, and where the frequency response is complex-valued. They 

basically transform the complex problem into a real problem, then use linear programming 

195 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



to solve it. They also add some more constraints which allow the phase and group delay 

to be weighted. The idea is that they want to design filters which do not have exactly 

linear phase. They mention that minimum phase FIR filters can introduce delay distortion 

if the delay is not constant over all frequencies. For this reason, they determine that they 

approximation problem to be solved must be complex. In order to solve this problem, they 

use the method of Glashoff and Roleff [43] and Streit and Nuttall [120] and apply it to 

the design of FIR filters before extending it to the design of FIR filters whose error in the 

pass-band group delay is small. 

They remark that the linear complex problem can be seen as a nonlinear real optimiza

tion problem. Further, they introduce a simple transformation which converts this nonlinear 

problem into a linear optimization problem. They end up with a semi-infinite program, or 

Haar program, where there is a finite number of variables with an infinite number of con

ditions. The authors mention two methods for solving this type of problem. The first one 

applies an algorithm by Fahlander which is designed principally for this type of problem. 

The second method consists of using a modified simplex method. This involves finding the 

minimax solution of an overdetermined system of linear equations. They consider this last 

approach and give a design procedure to be followed. The first step is to change the origi

nal problem from the complex domain to the real domain, thus getting an overdetermined 

system of linear equations. The second step consists of using linear programming to find a 

solution optimal in the Chebyshev sense. In order to solve this problem, the authors use an 

algorithm which applies a modified simplex method to the dual problem. This particular 

method does not need an initial estimate and always converges. They also note that their 

results have nearly equiripple errors for the magnitude, the phase and the group delay. 
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19.4.8 On the Design of Optimal Equiripple FIR Digital Filters for Data Transmis

sion Applications - Samueli 

Samueli [112] presents an improved algorithm based on linear programming, which is to 

be used to design equiripple FIR Nyquist filters as well as equiripple FIR transmit and 

receive matched filters. Nyquist filters are defined as having an impulse response with 

uniformly spaced zero-crossings. The transmit and receive matched filters can be used for 

data transmission and are actually a Nyquist filter when they are cascaded, therefore this 

method also applies to them. The basic method consists of a linear programming section 

to compute a Nyquist filter whose frequency response is nonnegative, then a section where 

spectral factorization is used to obtain the nonlinear phase transmit and receive filters. 

The transmit and receive filters used in data communication systems have constraints 

in the time domain. Linear programming is typically the method of choice when dealing 

with such constraints. However, there is usually a need for the frequency points to form 

a dense grid, which can lead to numerical ill-conditioning problems. Samueli proposes 

a modification to the linear programming method whereby he avoids this necessity for 

a dense grid. He states that technically, the linear program could be solved with only 

one inequality constraint per extremal frequency of the stop-band response. However, the 

location of these frequencies is not known beforehand. The author suggests that an iterative 

method be used to find these locations and thus reduce the amount of constraints. After 

each iteration, the frequency grid points are chosen so that they are located at the extrema 

of the stop-band response. He notes that this is similar to the Remez exchange algorithm. 

In order to find these extrema, he uses Newton's method and searches for the zeros of the 

derivative of the frequency response. These are then used as the grid points for the next 

iteration. The extremal frequencies are then used to get the constraints on the maximum 

and minimum stop-band responses, alternatively evaluated. The algorithm stops when the 

change in extrema is small enough. The author cannot guarantee that this algorithm will 
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always converge but his many numerical examples lead him to think it is very reliable. 

The next step consists of taking the spectral factorization of the polynomial obtained 

at the previous step. There are many methods which can be used for this step, including 

brute-force polynomial root-finding techniques. Some tricks to reduce the computational 

complexity of this step are also given. In the case of minimum and maximum phase trans

mit and receive matched filters, the author suggests using cepstral deconvolution in order 

to avoid polynomial root-finding. This can be implemented using the FFT. 

19.4.9 On the Design of FIR Filters by Complex Chebyshev Approximation - Preuss 

Preuss [88] considers the problem of designing an FIR filter to approximate a complex-

valued function. This algorithm solves the complex problem directly, without first trans

forming it into a real problem. The author minimizes the magnitude of the complex error 

in the Chebyshev sense and uses a generalization of the Remez algorithm in order to do so. 

The problem here is to approximate a complex-valued frequency response. The error 

function is complex and incorporates the weighted approximation error of both the magni

tude and the phase at the same time. The solution is the set of coefficients which minimize 

this error in the Chebyshev sense. The minimized Chebyshev norm has an equiripple be

haviour. However, in this case, the error function which is comprised of both the magnitude 

error and the phase error is minimized. Therefore, the magnitude error and the phase error 

by themselves do not end up having an equiripple behaviour, but are rather nearly equirip

ple. 

Since there is no true equiripple behaviour, the Remez algorithm cannot be used here. 

However, it can be generalized to be applicable to the complex problem. This general

ization can be simplified to the following four steps. The first step is to compute all the 

extremal values of the error function as well as the frequencies corresponding to them. The 

second step consists of choosing n + 1 points out of the previous ones to be used for the 
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next iteration. The third step is to calculate the complex deviations at these points. These 

are then used as the basis for the fourth step, which is the design of an interpolating transfer 

function using the previously-calculated points. Usually, the extremal points and the an

gles of the error function change from one iteration to the next, and the differences become 

smaller. 

In the case of linear phase filters, this method would ignore the symmetry of the co

efficients but would still end up giving the same solution as with the Remez algorithm. 

However, since the symmetry property is not used, it would be more time-consuming than 

simply using the Remez algorithm. 

19.4.10 Improvements of a Complex FIR Filter Design Algorithm - Schulist 

In this paper, Schulist [114] decided to take a look at the previously-presented Preuss algo

rithm [88] and improved upon it by accelerating its convergence. The author also modifies 

the way the interpolated transfer function is computed, using a Gaussian relaxation algo

rithm rather than the Newton interpolation formula used by Preuss. 

Schulist describes Preuss' algorithm, stating its many advantages, but not being satisfied 

with its convergence. Preuss keeps the angles as entries for the interpolation part of his 

algorithm and this is what makes it in a way a generalization of the Remez algorithm. 

However, the chosen magnitudes are what affect the convergence, and this is what the 

author wishes to work on. 

The first improvement is in the calculation of the magnitudes of the error function. 

Instead of prescribing these values, he writes a set of linear equations where the unknowns 

are the coefficients of the transfer function as well as the error magnitude. He then solves 

for the error magnitude only, using Cramer's rule. This gives a complex number, and its 

magnitude is then taken. In the case where the error function has more extremal points 

than required, the author solves the overdetermined system of linear equations by using a 
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Gaussian relaxation method. Again, he only solves for the error magnitude. 

The second improvement concerns finding the impulse response by interpolation. 

Preuss used Newton's formula with a chosen set of points which had the largest deviations. 

Schulist decides to use all the extremal points and uses a Gaussian relaxation algorithm 

again to solve the overdetermined system of linear equations. He then obtains a polyno

mial where the deviations are minimized in the mean squared sense. In the case of nonlinear 

filters, this method worked very well. However, it sometimes failed for nearly or exactly 

linear-phase filters. In this case, the author recommends using the Newton interpolation 

formula instead. 

19.4.11 A Weighted Least Squares Algorithm for Quasi-Equiripple FIR and IIR 

Digital Filter Design - Lim et al. 

Lim et al. [71] present a new iterative algorithm for the design of FIR filters using a 

least squares frequency response weighting function. The results have quasi-equiripple 

behaviour. 

They compare the weighted least squares method to the Remez exchange algorithm 

and linear programming, stating that the former is well known and is easy to implement. 

Another advantage of the WLS method over the others is that the optimal solution can be 

obtained analytically. Observations have shown that WLS designs tend to also be optimal 

in the minimax sense, though a formal proof of this has not been done. Basically, whether 

the WLS design is also optimal in the minimax sense depends on the way in which the nec

essary weighting function is obtained, A new method for obtaining this weighting function 

is presented by the authors, who also state that the results will have an equiripple behaviour. 

Frequency responses of linear phase FIR filters can be approximated as a sum of 

trigonometric functions multiplied by coefficients. The error between the approximation 

and the desired functions can be found on a dense grid of frequencies and a set of linear 
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equations can be formed from there. The weighted least squares technique consists of solv

ing a vector equation for the error and minimizing it. The optimal solution can be found 

analytically but this is not the case for finding the least squares weighting function needed 

to get a solution which is optimal in the minimax sense. Therefore, iterative methods are 

used. 

The new algorithm proposed by Lim et al. is based on Lawson's algorithm and intro

duces an envelope function of the error function. This envelope function is used instead 

of the error function itself in order to avoid some of the problems that Lawson's algorithm 

encounters when certain values vanish. The envelope function will never be zero. There is 

also a parameter in the function which can be modified to improve the convergence speed. 

The initial function needed to start the iteration can be set equal to the envelope function 

of the filter. This can be obtained by rectangular windowing of the Fourier series of the ideal 

frequency response. The parameter which can be modified and affects the convergence 

speed can be set by trial and error. There is no analytical method for determining the value 

that will make the algorithm converge the fastest. The authors state that their algorithm has 

about the same complexity as Lawson's algorithm. 

The algorithm can terminate when one of several conditions are met. One can set the 

number of iterations to be completed or quasi-equiripple behaviour can be checked as well. 

This algorithm can be used in the design of FIR filters where the phase and the magnitude 

are arbitrarily prescribed. 

19.4.12 Optimal Design of FIR Filters with the Complex Chebyshev Error Criteria 

- Burnside and Parks 

In their article, Burnside and Parks [10] describe an algorithm which is a variation on the 

simplex algorithm. It can be used to design FIR filters that approximate complex-valued 

frequency responses. This method has also been used to design filters of length 1000. 
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The complex approximation problem can be seen as a nonlinear real approximation 

problem, and can even be reformulated as a linear approximation problem. In this case, an 

exact parametrization is used, and there is no need to worry about approximation errors. 

The linear program related to this problem is a continuous, semi-infinite program. It has 

an uncountable set of constraint parameters. This linear program can be reformulated as 

a dual linear program, which is related to the primal problem. The authors state some 

advantages to using the dual formulation rather than the primal formulation. First, the 

dimension of the constraints is reduced. It is also known that this type of problem has a 

strong duality property. Therefore, once one solution is found, the other one is very easy 

to find as well. Another advantage is that the dual variables are Lagrange multipliers of the 

active constraints at the solution point. Using this property lets one analyze the sensitivity 

of the solution very easily. 

The new algorithm is as follows. The first step is to find a basic feasible solution. 

The authors compare three methods for choosing the starting point: the conventional ar

tificial variable method, a method by Cuthbert, and a method by Tang. The latter is too 

ill-conditioned for their use, and Cuthbert's method does not let them add more linear con

straints, therefore, they settle on the artificial variable method. In the second step, they 

calculate the primal and dual variables. Then, the third step consists of pricing a fine grid 

of constraints. This step is different than in the standard simplex algorithm. They use a 

partial pricing algorithm for this step. This algorithm first solves the linear program for 

choosing the best pricing for the variables, calculating the error function related to the so

lution and, if the algorithm has not converged yet, restarting another iteration with values 

redefined to take into account the local maxima of the weighted error function. This is ba

sically a multiple exchange method because each block iteration ends up exchanging all the 

local extrema of the error function. At each iteration, the linear program uses the previous 

solution as its basis. The authors, through experimentation, found that it is better to keep 

all the additional constraints instead of dropping those that are inactive when new ones are 
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added. After the partial pricing, the nonbasic gradient pivoting rule is used to select the 

columns of the matrix to be entered into the basis. The fourth step consists of generating 

a column corresponding to the incoming variable. The fifth step is simply a ratio test. The 

authors used an anti-cycling method proposed by Steiglitz, which seems to work well for 

this method. 

This algorithm can be used to design both real- and complex-valued coefficient filters. 
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20 Relative Error Minimax Polynomial Approximation 

of Smooth Functions with Zeros in the Interval of 

Approximation 

In this section, we indicate the main techniques used to robustly compute relative error min

imax approximations of common filter kernels over intervals with roots of the approximated 

filter in its interior, even once symmetry has been used to cut the interval of approximation 

in half. This is done in very a specific context: the high quality minimax program of the 

Boost C++ library [23, 74]. 

Dr. N. Robidoux formulated these Remez tweaks. 

20.1 Even Polynomial Approximations of Even Functions 

Suppose that we want to approximate the real valued univariate function f ( x )  over the 

interval  [—b,  b] with a  polynomial  (or  rat ional  function) p.  

Filter kernels and their key factors are generally even. When they, or their constituents, 

are not even, they generally are odd; An odd function can be converted to an even one by 

dividing (or multiplying) by an odd power of x. (For later reference, note that if a function 

is odd, this last modification does not affect relative error.) For this reason, we will only 

consider the approximation of even functions. 

Even functions, when approximated over an interval centred at the origin, should ideally 

be approximated with polynomials which only contain even degrees. The Boost minimax 
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program, however, produces approximations with, in principle, nonzero coefficients for 

o d d  p o w e r s  o f  x  a s  w e l l  a s  f o r  e v e n  p o w e r s  o f  x .  

One could fix this in post-processing by symmetrizing the resulting polynomial p ( x ) ,  

that is, by averaging p(x) and p(—x). Doing this, however, means that the error estimators 

do not directly measure the absolute or relative error of intermediate results as they are 

used in the end, since they will use unsymmetrized intermediate coefficients in their com

putation. In addition, this solution requires the computation of twice as many coefficients, 

since half of them will be sent to zero in post-processing. 

There is a more elegant way to ensure that the approximating polynomials are as good 

as even at every step. If one approximates f(y/y) over [0, b2], setting 

p ( x )  =  p { y 2 ) ,  

with p  the result of the modified minimax computation, directly gives an even polynomial 

(or rational function) approximation such that p and p have the same max and relative max 

errors over their respective intervals of computation. There is some small print: The square 

root function computation must not introduce error which is comparable to the error in key 

steps of the Remez computation. For functions worth approximating, like sine, jinc and 

related functions, this is generally not the case. 

Note: Although much of what follows is also applicable to the construction of approx

imating rational functions, we will only consider polynomial approximations from now 

on. In addition, we will only consider absolute relative error minimax approximations, not 

(plain) absolute error minimax approximations. Preliminary testing established that relative 

error minimization is more conducive to frequency response preservation. 
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20.2 Minimizing the Relative Error when the Approximated Function 

Has Roots in the Key Interval 

Unfortunately (but sensibly), minimax programs which allow relative error to be used in

stead of maximum error generally assume that the function to be approximated does not 

have roots in the interval of approximation. Although the Boost minimax program has a 

workaround for the case in which the only root in the interval of approximation is located 

at one of its extremities (standardized to the position x = 0), this is not sufficient for our 

purposes,  namely approximating functions with one or  more zeros in the interior  of  [0,  b) .  

One advantage of the relative error over the (plain) maximum error is that it is invariant 

under multiplication and division by accurately computed functions that introduce no new 

roots, provided the "strength" of the matching roots of the rescaling function does not 

overpower the function which is to be approximated. This, of course, presupposes that the 

relative error is left undefined at roots of the approximated function /. 

Consequently, instead of approximating f ( x )  directly, we approximate 

fa) = M 

where K is the number of roots in the interval of approximation (possibly including those 

located at the endpoints), the are these roots' locations, and mk their multiplicities. 

Because the divisor flfcLi (x ~ rk)mk can be considered to be computed exactly (without 

significant truncation error), especially if high precision arithmetic is used for its 

computation—and it is where it counts thanks for the use of the libraries GMP (GNU 

Multiple Precision Arithmetic Library) [34] and NTL (Number Theory Library) [116] — 

and this divisor is nonzero where / is nonzero, the relative error computed with it for / 

is for all practical purposes identical to the relative error of the corresponding polynomial 

approximation of /. 

In addition, the reconstructed / automatically has roots at exactly the correct locations, 
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and with the desired multiplicity. 

There is only one last issue to address: The modified function f { x ) ,  of course, is un

defined at the roots rk. If these roots are located at likely Remez evaluation points—for 

example, if one approximates cos(7rx) over [0,2] the r*'s are at | = 0.5 and | = 1.5—the 

computation is likely to abort as a result of an illegal division by zero. 

One could, of course, prevent this from happening by inserting a branch where the 

modified function / is evaluated, and hardwiring its values at (and near) the roots of /. 

Instead of branching, we use the following "dirty" trick. 

The function cos(7rx), if computed accurately, has an infinite number of roots on the 

real line: Every half-integer is a root. Given that half-integers are exactly representable in 

floating point arithmetic, the corresponding modified function is undefined at every one of 

these "likely" Remez evaluation points. 

On the other hand, the function cos x ,  if computed accurately, has n o  floating point root 

on the real line! The reason for this is that its roots are the half-integer multiples of 7r, 

that is, they are all irrational numbers, and consequently the roots of cos x are not exactly 

representable in floating point arithmetic. 

Consequently, the modified function / can be treated as if it has a non-vanishing denom

inator by rescaling x so that the roots of the approximated function are irrational. Often, 

rescaling by a power of the high precision 7r provided by the NTL library does the trick. 

Provided the rescaling can be undone sufficiently accurately (and it can), there is no need 

for branching and accurately computing the limit of / near roots of /. Again, this rescaling 

does not affect the maximum relative error. 

This last trick is certainly more than a bit "dodgy" and, in addition, probably unneces

sary in many cases, but it appears to be useful, which is why we bring attention to it here. 

In actual computations, it has never failed us. Computing the division by linear root factors 

at a higher precision than the solution of the key linear system certainly adds a measure of 

safety. 
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Again, some small print. It is possible that part of the success of the above approach 

may be attributed to the fact that the approximated functions are themselves approximated 

by polynomials or well-behaved rational functions near their roots. For example, we do not 

pull values of trigonometric functions out of thin air: We call (unavoidably approximate) 

libraries. Once the accuracy of the minimax solution is high enough that errors near roots, 

for example, becomes significant, one should keep in mind the fact that the Remez code is 

trying to adapt to a library implementation of the target function which is itself an approx

imation. There are multiple implicit and explicit floating point precisions at play, and the 

game is played close to some of the lower tolerances. 

20.3 Future Directions: Minimax Polynomial Approximations with 

Positive Coefficients 

Roughly speaking, typical minimax approximations of filter kernels and their key factors 

have polynomial coefficients which alternate in sign. Preliminary testing performed by 

Dr. Robidoux suggests that by replacing the independent variable re by b — x, and keep

ing the linear root factors separate from the polynomial actually computed by the Remez 

program, one obtains relative minimax approximations with coefficients of a constant sign 

past a certain accuracy threshold. The reason this works is that one then "expands" the 

computed approximation around one of the roots of the approximated function instead of 

what turns out to be, usually, its maximum. Given that constant sign polynomials can be 

evaluated more accurately than the other kind because there is no cancellation error, one 

hopes that this approach will yield higher accuracy single precision approximations. 
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20.4 Accuracy of Relative Minimax Polynomial Approximations of 

Common Filter Kernels 

The following functions were approximated using the modified Boost C++ library minimax 

program shown in Appendix C: 

C0S(7TX), 

sin(7r:r) 
sinc(7rx) = 

'KX 

Lanczos2(;c) = sinc(7r:r) sine > and 

Lanczos3(x) = sinc(7ra:) sine • 

Similar approximations, with precisions matching the various bit depths used to store in

termediate results, are currently used by the image processing program ImageMagick [20]. 

They are found in the source code of the Resize program [19]. (The author of this thesis is 

among the many authors of ImageMagick.) 

The following tables present estimated maximum relative errors in various precisions 

for each of approximated function. These errors were found using the built-in test func

tion of the Boost library minimax program, evaluating the polynomial using four different 

floating point precisions: float, double, long and the NTL precision. Float is standard single 

precision (32 bits), double is standard double precision (64 bits), long is standard extended 

precision (128 bits) and the precision used with the arbitrary precision NTL library was the 

maximum handled by our computing platform, namely 2155 bits. 

These results make clear that the approximations converge rapidly. In all cases, the 

minimum relative error achieved when using machine numbers to evaluate the computed 

polynomials is comparable to the corresponding machine epsilon (approximately le-07 for 

single (float) precision and le-16 for double precision). Consequently, the polynomials are 

accurate enough to replace the standard math library implementations, in particular when 

8- and 16-bit images are filtered. 
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Table 20.1: Maximum relative error for relative minimax polynomial approximations of 

cos(7rx) on [—1,1] 

Degree Float Double Long NTL 

4 4.185539e-04 4.185843e-04 4.185843e-04 4.185843e-04 

6 1.947954e-06 1.908517e-06 1.908517e-06 1.908517e-06 

8 5.369335e-08 5.365891e-09 6.365891e-09 5.365891e-09 

10 4.426916e-08 1.024057e-ll 1.024050e-ll 1.024050e-ll 

12 4.426916e-08 1.425382e-14 1.413997e-14 1.413992e-14 

14 4.426916e-08 1.06369le-16 1.483316e-17 1.478430e-17 

16 4.426916e-08 7.914744e-17 6.367835e-20 1.211265e-20 

18 4.426916e-08 8.163299e-17 4.00319 le-20 7.986227e-24 

20 4.426916e-08 8.163299e-17 4.035382e-20 4.329052e-27 

22 4.426916e-08 8.163299e-17 4.035382e-20 1.963389e-30 

24 4.426916e-08 8.163299e-17 4.035382e-20 7.560320e-34 

26 4.426916e-08 8.163299e-17 4.035382e-20 2.502561e-37 

28 4.426916e-08 8.163299e-17 4.035382e-20 7.197284e-41 

30 4.426916e-08 8.163299e-17 4.035382e-20 1.815138e-44 

32 4.426916e-08 8.163299e-17 4.035382e-20 4.046958e-48 
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Table 20.2: Maximum relative error for relative minimax polynomial approximations of 

sinc(7rx) on |] 

Degree Float Double Long NTL 

2 6.594782e-05 6.589472e-05 6.589472e-05 6.589472e-05 

4 1.537064e-07 9.824723e-08 9.824723e-08 9.824723e-08 

6 3.539321e-08 8.539241e-ll 8.539236e-ll 8.539236e-l 1 

8 3.632800e-08 4.866524e-14 4.856105e-14 4.856100e-14 

10 3.632800e-08 1.011793e-16 1.950343e-17 1.946805e-17 

12 3.632800e-08 6.654869e-17 4.318614e-20 5.796912e-21 

14 3.632800e-08 6.805602e-17 3.30468 le-20 1.332528e-24 

16 3.632800e-08 6.805602e-17 3.30468 le-20 2.435940e-28 

18 3.632800e-08 6.805602e-17 3.30468 le-20 3.625852e-32 

20 3.632800e-08 6.805602e-17 3.30468 le-20 4.479547e-36 

22 3.632800e-08 6.805602e-17 3.30468 le-20 4.66706 le-40 

24 3.632800e-08 6.805602e-17 3.30468 le-20 4.15581 le-44 

26 3.632800e-08 6.805602e-17 3.30468 le-20 3.199192e-48 

28 3.632800e-08 6.805602e-17 3.30468 le-20 2.150258e-52 

30 3.632800e-08 6.805602e-17 3.30468 le-20 1.27278 le-56 
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Table 20.3: Maximum relative error for relative minimax polynomial approximations of 

sinc(7rx) on [—2, 2] 

Degree Float Double Long NTL 

6 1.425363e-03 1.425366e-03 1.425366e-03 1.425366e-03 

8 1.482876e-05 1.476734e-05 1.476734e-05 1.476734e-05 

10 1.750109e-07 1.02795 le-07 1.02795 le-07 1.02795 le-07 

12 6.139576e-08 5.173728e-10 5.173727e-10 5.173727e-10 

14 5.613330e-08 1.978281e-12 1.978194e-12 1.978194e-12 

16 5.613330e-08 6.100393e-15 5.953947e-15 5.953907e-15 

18 5.613330e-08 1.461780e-16 1.456223e-17 1.449143e-17 

20 5.613330e-08 1.079298e-16 1.017962e-19 2.913569e-20 

22 5.613330e-08 1.064270e-16 5.330947e-20 4.922994e-23 

24 5.613330e-08 1.064270e-16 5.052000e-20 7.091367e-26 

26 5.613330e-08 1.064270e-16 5.052000e-20 8.813838e-29 

28 5.613330e-08 1.064270e-16 5.052000e-20 9.550348e-32 

30 5.613330e-08 1.064270e-16 5.052000e-20 9.102870e-35 

32 5.613330e-08 1.064270e-16 5.052000e-20 7.692090e-38 

34 5.613330e-08 1.064270e-16 5.052000e-20 5.802586e-40 
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Table 20.4: Maximum relative error for relative minimax polynomial approximations of 

sinc(7ra;) on [—3,3] 

Degree Float Double Long NTL 

8 3.896556e-03 3.89657 le-03 3.89657le-03 3.896571e-03 

10 7.00717 le-05 7.001032e-05 7.001032e-05 7.001032e-05 

12 9.361795e-07 8.694208e-07 8.694208e-07 8.694208e-07 

14 1.103985e-07 7.97757 le-09 7.97757 le-09 7.977571e-09 

16 9.525836e-08 5.663112e-ll 5.663 lOle-11 5.663101e-ll 

18 7.972186e-08 3.215453e-13 3.213942e-13 3.213941e-13 

20 7.792516e-08 1.669357e-15 1.494867e-15 1.494803e-15 

22 7.792516e-08 2.29847 le-16 5.880179e-18 5.809685e-18 

24 7.792516e-08 2.395164e-16 9.420793e-20 1.916892e-20 

26 7.792516e-08 2.27876 le-16 1.001955e-19 5.440043e-23 

28 7.792516e-08 2.278761e-16 8.223339e-20 1.342660e-25 

30 7.792516e-08 2.278761e-16 8.07790 le-20 2.909397e-28 

32 7.792516e-08 2.27876 le-16 8.07790 le-20 5.580647e-31 

34 7.792516e-08 2.278761e-16 8.077901e-20 9.544275e-34 

38 7.792516e-08 2.278761e-16 8.07790 le-20 1.464703e-36 
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Table 20.5: Maximum relative error for relative minimax polynomial approximations of 

sinc(7ra:) on [—4, 4] 

Degree Float Double Long NTL 

10 7.694707e-03 7.694687e-03 7.694687e-03 7.694687e-03 

12 1.992570e-04 1.992063e-04 1.992063e-04 1.992063e-04 

14 3.727800e-06 3.636234e-06 3.636234e-06 3.636234e-06 

16 1.528947e-07 4.975408e-08 4.975408e-08 4.975408e-08 

18 1.333840e-07 5.333079e-10 5.333078e-10 5.333078e-10 

20 1.140123e-07 2.529567e-12 2.529364e-12 2.529363e-12 

22 1.153787e-07 3.329803e-14 3.312977e-14 3.312966e-14 

24 1.160932e-07 4.283715e-16 2.003014e-16 2.002212e-16 

26 1.160932e-07 2.561466e-16 1.147737e-18 1.035230e-18 

28 1.160932e-07 2.387065e-16 1.101967e-19 4.635935e-21 

30 1.160932e-07 2.408858e-16 1.336076e-19 1.816834e-23 

32 1.160932e-07 2.408858e-16 1.231846e-19 6.286779e-26 

34 1.160932e-07 2.408858e-16 1.279385e-19 1.935638e-28 

38 1.160932e-07 2.408858e-16 1.279385e-19 5.338746e-31 

40 1.160932e-07 2.408858e-16 1.279385e-19 1.327007e-33 
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Table 20.6: Maximum relative error for relative minimax polynomial approximations of 

Lanczos 2 on [—2,2] 

Degree Float Double Long NTL 

8 2.976738e-03 2.97674 le-03 2.97674le-03 2.97674 le-03 

10 4.774638e-05 4.769967e-05 4.769967e-05 4.769967e-05 

12 5.931718e-07 5.333010e-07 5.333010e-07 5.333010e-07 

14 6.345342e-08 4.444438e-09 4.444438e-09 4.444438e-09 

16 6.325954e-08 2.88731 le-11 2.887298e-l 1 2.887298e-l 1 

18 6.425965e-08 1.510835e-13 1.509427e-13 1.509426e-13 

20 6.368929e-08 7.844046e-16 6.504637e-16 6.503924e-16 

22 6.425965e-08 1.206126e-16 2.434396e-18 2.353636e-18 

24 6.425965e-08 1.297885e-16 7.341860e-20 7.262802e-21 

26 6.425965e-08 1.249886e-16 5.535667e-20 1.935260e-23 

28 6.425965e-08 1.249886e-16 5.973492e-20 4.500524e-26 

30 6.425965e-08 1.249886e-16 6.064956e-20 9.217962e-29 

32 6.425965e-08 1.249886e-16 6.064956e-20 1.676072e-31 

34 6.425965e-08 1.249886e-16 6.064956e-20 2.724287e-34 

38 6.425965e-08 1.249886e-16 6.064956e-20 3.982782e-37 
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Table 20.7: Maximum relative error for relative minimax polynomial approximations of 

Lanczos 3 on [—3,3] 

Degree Float Double Long NTL 

10 6.28591 le-03 6.285918e-03 6.285918e-03 6.285918e-03 

12 1.488563e-04 1.487554e-04 1.487554e-04 1.487554e-04 

14 2.581418e-06 2.493494e-06 2.493494e-06 2.493494e-06 

16 1.761916e-07 3.149920e-08 3.149920e-08 3.149920e-08 

18 1.179548e-07 3.132560e-10 3.132559e-10 3.132556e-10 

20 1.140123e-07 2.529567e-12 2.529364e-12 2.529363e-12 

22 1.179548e-07 1.719493e-14 1.696937e-14 1.696927e-14 

24 1.179548e-07 3.221458e-16 9.640893e-17 9.631240e-16 

26 1.179548e-07 2.458708e-16 5.807855e-19 4.692187e-19 

28 1.179548e-07 2.305505e-16 8.889286e-21 1.985876e-21 

30 1.179548e-07 2.305505e-16 1.067772e-19 7.375661e-24 

32 1.179548e-07 2.305505e-16 1.006381e-19 2.424808e-26 

34 1.179548e-07 2.305505e-16 1.020404e-19 7.109487e-29 

38 1.179548e-07 2.305505e-16 1.020404e-19 1.871282e-31 

40 1.179548e-07 2.305505e-16 1.020404e-19 4.447418e-34 
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21 Frequency Response of Linear Filters 

When constructing filters for digital image processing, it is sometimes be useful to work 

in the frequency domain, especially when the filters are used with an operation with a 

significant downsampling component. In the previous chapter (Chapter 20), the relative 

minimax polynomial approximations of Lanczos 2 and Lanczos 3 were compared to the 

original in the spatial domain. In the next chapter (Chapter 22), they will be compared 

in the frequency domain through the frequency response of the discrete operator derived 

from them by filtering and decimating at various downsampling ratios and phases. The 

present chapter sets the stage for this last comparison, which confirms that the relative 

error minimax approximations preserve the frequency response of the exact filters. 

21.1 Comparing Filters in the Frequency Domain 

First of all, how should filters for digital image processing be compared? There are various 

methods but one of these is by converting everything to the frequency domain and com

paring them to each other and to the ideal filter. This can be done by visual inspection. 

For downsampling, the ideal filter—at least in principle—is the "brick wall" filter [35]. In 

the frequency domain, it has a value of 0 dB until a sharp cutoff at the Nyquist frequency, 

which is the inverse of the decimation ratio, where n is the decimation ratio [126]. 

Usually, when a filter is developed, it is in the spatial domain, rather than in the fre

quency domain. There also needs to be some sort of test input to which each filter can be 

applied in order for the results to be compared. Typically, the test input used is a single 
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value equal to 1, which is padded on each side with as many zeros as necessary. This is 

called an impulse and it is like sending just one value to the filter [117]. Basically, this 

is the Dirac delta function in the continuous case and the Kronecker delta function in the 

discrete case. This can be done in one or two dimensions; however, for the remainder of 

this thesis, only the one-dimensional case will be considered. 

The result of applying the filter to the test input described above is the impulse response 

of the filter. Graphically, it would give the curve of the basis function for the filter, either 

as a continuous function or as discrete points. In digital image processing, the filters are 

all sampled so we only consider the discrete case. In the continuous case, the Fourier 

transform would be applied to the function to get the corresponding one in the frequency 

domain [117]. In the discrete case, it is recommended to take the z-transform of the given 

points and sample on the unit circle [126]. This actually corresponds to using the Discrete-

Time Fourier Transform (DTFT) [119]. Doing this, the frequency spectrum of the filter 

is obtained. The magnitude and the phase can then be extracted. In the following, the 

magnitude will be used to compare the filters. Since the result of using the DTFT is a 

continuous complex function, taking the magnitude simply consists of taking the magnitude 

of the complex values. This then gives the expected frequency response. 

21.2 Plotting ID Filtering and Downsampling Frequency Response 

The data for the following frequency response plots was computed using the Scilab code 

found in Appendix E. The basic idea was to take the z-transform after normalization of the 

sampled impulse response of various resampling methods. This resulted in the frequency 

spectrum for each method, from which the magnitude was also extracted. This magnitude 

was then converted to decibels and plotted against the frequency. More details may be 

found in Chapter 21. 

In this context, the phase of the filter simply tells us where the output is situated with 
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respect to the input samples. A zero phase indicates that the output is at the same location 

as the middle input sample and a half phase indicates that the output is between two input 

samples [126]. Other phases between zero and one half are also possible, and simply 

indicate other positions of the output samples with respect to the input samples. A way of 

visualizing how the zero and half phases were used here is to consider the impulse response 

of the resampling methods. When decimating by 2, for example, we can divide the support 

of the function into intervals of length such as [—5,0], [0, |], [|, l], and so on. For 

a zero phase, we then consider the values at the end points of the intervals, for example 

{ —0, l}. For a half phase, we consider the midpoints of each interval, for example 

4' 4 }• The idea is similar for a decimation by n. We simply use intervals of length 

~ instead, making sure that 0 is an endpoint, so as to frame the frequency response plot 

within the Nyquist limits. 

The frequency responses for the Box, Tent, Lanczos 2 and Lanczos 3 filters are shown 

in Turkowski [126]. For comparison purposes (and to double check our methods), the 

frequency responses for these methods were computed again for this thesis. We have added 

plots for Catmull-Rom, Mitchell-Netravali, (cubic) B-Spline Smoothing. All are shown 

below. The piece de resistance, however, is the comparison of the frequency responses of 

relative minimax polynomial approximations of Lanczos 2 and 3 with the original found in 

the next chapter (Chapter 22). 

The plots have been aligned to facilitate direct comparisons. In every plot, the appro

priate Nyquist frequency—and consequently the cutoff frequency of an "ideal" brick wall 

low pass filter—is shown as a dark vertical line, and a dark horizontal line shows the am

plification level which is indistinguishable from —00 when the filtering result is an 8-bit 

integer "image". 
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21.3 ID Filtering and Downsampling Frequency Response of Lanczos 

3, Lanczos 2, Catmull-Rom, Mitchell-Netravali, (Cubic) B-Spllne 

Smoothing, Tent and Box 
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Decimation by a Factor of 1 (Pure Filtering, and Translation by 

Zero Phase (Pure Filtering) 

The interpolatory filters—Lanczos 3, Lanczos 2, Catmull-Rom, Tent and Box—all have a 

gain of 0 dB (of course). The smoothing filters—Mitchell-Netravali and (cubic) B-Spline 

smoothing—do not. 

Frequency 

00 ;o 
c 
to 
O 

Lanczos 3, 2 = CR = Tent = Box 
Mitchell-Netravali 

B-Splines 

Figure 21.1: Frequency response of various standard filters when decimating by a factor of 

1 with zero phase 
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Half Phase (Translation by |) 

When translating by |, all the considered filters, having a symmetrical kernel, have a gain 

of —oo for unit frequency. Unit frequency corresponds to alternating 1/—1 data (the seesaw 

mode). 
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Figure 21.2: Frequency response of various standard filters when decimating by a factor of 

1 with half phase 
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Decimation by a Factor of 2 

Zero Phase 
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Figure 21.3: Frequency response of various standard filters when decimating by a factor of 

2 with zero phase 
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Half Phase 
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Figure 21.4: Frequency response of various standard filters when decimating by a factor of 

2 with half phase 
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Decimation by a Factor of 3 
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Figure 21.5: Frequency response of various standard filters when decimating by a factor of 

3 with zero phase 
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Figure 21.6: Frequency response of various standard filters when decimating by a factor of 

3 with half phase 
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Decimation by a Factor of 4 

Zero Phase 

o 

-10 

-20 

-30 

T3 
^ -40 
(0 
O 

-50 

-60 

-70 

-80 

Figure 21.7: Frequency response of various standard filters when decimating by a factor of 

4 with zero phase 
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Figure 21.8: Frequency response of various standard filters when decimating by a factor of 

4 with half phase 
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Decimation by a Factor of 5 

Zero Phase 

Frequency 

0.05 0 0.15 0.25 0.35 0.4 0.2 0.3 
0 

10 

•20 

30 

•40 

50 

•60 
Lanczos 3 
Lanczos 2 

Catmull-Rom 
Mitchell-Netravali 

B-Splines 
Tent 
Box 

70 

80 

Figure 21.9: Frequency response of various standard filters when decimating by a factor of 

5 with zero phase 
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Figure 21.10: Frequency response of various standard filters when decimating by a factor 

of 5 with half phase 
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Decimation by a Factor of 6 
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Figure 21.11: Frequency response of various standard filters when decimating by a factor 

of 6 with zero phase 
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Figure 21.12: Frequency response of various standard filters when decimating by a factor 

of 6 with half phase 
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Decimation by a Factor of 7 
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Figure 21.13: Frequency response of various standard filters when decimating by a factor 

of 7 with zero phase 
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Figure 21.14: Frequency response of various standard filters when decimating by a factor 

of 7 with half phase 
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Decimation by a Factor of 8 
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Figure 21.15: Frequency response of various standard filters when decimating by a factor 

of 8 with zero phase 
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Figure 21.16: Frequency response of various standard filters when decimating by a factor 

of 8 with half phase 
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Decimation by Factors of 16,32 and 64 

Discrete convolutions with large number of points are good approximations of the corre

sponding continuous convolutions. Properly scaled, the frequency response plots for dec

imation by 16, 32 and 64 are essentially identical to those for decimation by 8. This is 

the case for the plots of the frequency responses of Lanczos 3, Lanczos 2, Catmull-Rom, 

Mitchell-Netravali, (cubic) B-Splines, Tent and Box shown in this section; It is also the 

case for the plots of the frequency responses of polynomial approximations of Lanczos 2 

and Lanczos 3 shown in the next chapter, Chapter 22. For this reason, they are omitted. 

(The code to generate the plots for these decimation ratios is in Appendix E.) 
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22 ID Filtering and Downsampling Frequency Response 

of Relative Minimax Filter Kernel Approximations 

In this chapter, we show the frequency response plots of decimating with the relative er

ror minimax approximations of Lanczos 2 on [—2,2] and Lanczos 3 on [—3,3] for which 

maximum relative errors were shown in Tables 20.6 and 20.7. These confirm, in the fre

quency domain, the effectiveness of the relative minimax approximation method discussed 

in Chapter 20. 

In the case of Lanczos 2, the frequency response plots are essentially indistinguishable 

of the exact ones starting at degree 16; in the case of Lanczos 3, starting at degree 22. 

Looking back at Tables 20.6 and 20.7, we observe that this is past the degrees at which the 

maximum error of the relative minimax approximations, when evaluated with float (32 bit) 

arithmetic, stalls. It is, actually, just before the double precision limit is reached. At this 

point, we do not know if visible differences in the frequency response plots lead to visible 

artifacts. We strongly doubt it. 

Interestingly, although the frequency response of the corresponding polynomials are 

noticeably different from those of the original functions, the frequency responses of the de

gree 10 Lanczos 2 approximation and degree 20 Lanczos 3 approximation could be argued 

to be as good, possibly better, than those of the "exact" Lanczos 2 and 3 filters. 

The coefficients of the corresponding minimax approximations are found in the Ap

pendix which computes their frequency response, namely Appendix E. 
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22.1 Frequency Response of Relative Minimax Polynomial Approxi

mations of Lanczos 2 

Only degrees of the approximating polynomial which give fairly high quality results are 

shown. More were computed in Appendix E. 
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Figure 22.1: Frequency response when decimating by a factor of 1: Lanczos 2 and relative 

minimax polynomial approximations 
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Decimation 2 
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Figure 22.2: Frequency response when decimating by a factor of 2: Lanczos 2 and degree 

8 relative minimax polynomial approximation 
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Figure 22.3: Frequency response when decimating by a factor of 2: Lanczos 2 and degree 

10 relative minimax polynomial approximation 
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Figure 22.4: Frequency response when decimating by a factor of 2: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.5: Frequency response when decimating by a factor of 2: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.6: Frequency response when decimating by a factor of 2: Lanczos 2 and degree 
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Figure 22.7: Frequency response when decimating by a factor of 3: Lanczos 2 and degree 

8 relative minimax polynomial approximation 
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Figure 22.8: Frequency response when decimating by a factor of 3: Lanczos 2 and degree 

10 relative minimax polynomial approximation 
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Figure 22.9: Frequency response when decimating by a factor of 3: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.10: Frequency response when decimating by a factor of 3: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.11: Frequency response when decimating by a factor of 3: Lanczos 2 and degree 

16 relative minimax polynomial approximation 
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Figure 22.12: Frequency response when decimating by a factor of 4: Lanczos 2 and degree 

8 relative minimax polynomial approximation 
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Figure 22.13: Frequency response when decimating by a factor of 4: Lanczos 2 and degree 

10 relative minimax polynomial approximation 
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Figure 22.14: Frequency response when decimating by a factor of 4: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.15: Frequency response when decimating by a factor of 4: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.16: Frequency response when decimating by a factor of 4: Lanczos 2 and degree 
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Figure 22.17: Frequency response when decimating by a factor of 5: Lanczos 2 and degree 
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Figure 22.18: Frequency response when decimating by a factor of 5: Lanczos 2 and degree 

10 relative minimax polynomial approximation 
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Figure 22.19: Frequency response when decimating by a factor of 5: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.20: Frequency response when decimating by a factor of 5: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.21: Frequency response when decimating by a factor of 5: Lanczos 2 and degree 

16 relative minimax polynomial approximation 
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Figure 22.22: Frequency response when decimating by a factor of 6: Lanczos 2 and degree 

8 relative minimax polynomial approximation 
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Figure 22.23: Frequency response when decimating by a factor of 6: Lanczos 2 and degree 

10 relative minimax polynomial approximation 

261 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Degree 12 

Frequency 

0.3 0.15 0.2 .25 0 0.05 
0 

-10 

-20 

-30 

a "40 

-50 

-60 

-70 Lanzos 2 (<(>=0) 
Degree 12 (<j»=0) 

Lanczos 2 (<(>=1/2) 
Degree 12 (<(>=1/2) 

-80 

Figure 22.24: Frequency response when decimating by a factor of 6: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.25: Frequency response when decimating by a factor of 6: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.26: Frequency response when decimating by a factor of 6: Lanczos 2 and degree 

16 relative minimax polynomial approximation 
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Figure 22.27: Frequency response when decimating by a factor of 7: Lanczos 2 and degree 
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Figure 22.28: Frequency response when decimating by a factor of 7: Lanczos 2 and degree 

10 relative minimax polynomial approximation 
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Figure 22.29: Frequency response when decimating by a factor of 7: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.30: Frequency response when decimating by a factor of 7: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.31: Frequency response when decimating by a factor of 7: Lanczos 2 and degree 

16 relative minimax polynomial approximation 
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Figure 22.32: Frequency response when decimating by a factor of 8: Lanczos 2 and degree 

8 relative minimax polynomial approximation 
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Figure 22.33: Frequency response when decimating by a factor of 8: Lanczos 2 and degree 

10 relative minimax polynomial approximation 
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Figure 22.34: Frequency response when decimating by a factor of 8: Lanczos 2 and degree 

12 relative minimax polynomial approximation 
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Figure 22.35: Frequency response when decimating by a factor of 8: Lanczos 2 and degree 

14 relative minimax polynomial approximation 
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Degree 16 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.36: Frequency response when decimating by a factor of 8: Lanczos 2 and degree 

16 relative minimax polynomial approximation 
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Figure 22.37: Frequency response when decimating by a factor of 1: Lanczos 3 and relative 
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Figure 22.38: Frequency response when decimating by a factor of 2: Lanczos 3 and degree 
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Figure 22.39: Frequency response when decimating by a factor of 2: Lanczos 3 and degree 

16 relative minimax polynomial approximation 
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Figure 22.40: Frequency response when decimating by a factor of 2: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.41: Frequency response when decimating by a factor of 2: Lanczos 3 and degree 

20 relative minimax polynomial approximation 

279 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Degree 22 

Frequency 

0 0.2 0.6 0.4 
0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 Lanzos 3 (<j>=0) 
Degree 22 (<)>=0) 

Lanczos 3 (<l>=1/2) 
Degree 22 {<j>=1 /2) 

-80 

Figure 22.42: Frequency response when decimating by a factor of 2: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.43: Frequency response when decimating by a factor of 2: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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Figure 22.44: Frequency response when decimating by a factor of 3: Lanczos 3 and degree 

14 relative minimax polynomial approximation 

282 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Degree 16 

Frequency 

0.2 0.4 0 0.3 0.5 0.6 
0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 Lanzos 3 (<(>=0) 
Degree 16 (ij>=0) 

Lanczos 3 (<j>=1/2) 
Degree 16 (<j>=1/2) 

-80 

Figure 22.45: Frequency response when decimating by a factor of 3: Lanczos 3 and degree 

16 relative minimax polynomial approximation 
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Figure 22.46: Frequency response when decimating by a factor of 3: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.47: Frequency response when decimating by a factor of 3: Lanczos 3 and degree 

20 relative minimax polynomial approximation 
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Figure 22.48: Frequency response when decimating by a factor of 3: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.49: Frequency response when decimating by a factor of 3: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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Figure 22.50: Frequency response when decimating by a factor of 4: Lanczos 3 and degree 

14 relative minimax polynomial approximation 
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Figure 22.51: Frequency response when decimating by a factor of 4: Lanczos 3 and degree 

16 relative minimax polynomial approximation 
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Figure 22.52: Frequency response when decimating by a factor of 4: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.53: Frequency response when decimating by a factor of 4: Lanczos 3 and degree 

20 relative minimax polynomial approximation 
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Figure 22.54: Frequency response when decimating by a factor of 4: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.55: Frequency response when decimating by a factor of 4: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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Figure 22.56: Frequency response when decimating by a factor of 5: Lanczos 3 and degree 

14 relative minimax polynomial approximation 
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Figure 22.57: Frequency response when decimating by a factor of 5: Lanczos 3 and degree 

16 relative minimax polynomial approximation 
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Figure 22.58: Frequency response when decimating by a factor of 5: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.59: Frequency response when decimating by a factor of 5: Lanczos 3 and degree 

20 relative minimax polynomial approximation 

297 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Degree 22 

Frequency 

0 0.05 0.25 0.2 0.3 0.35 0.4 
0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 Lanzos 3 (<|>=0) 
Degree 22 (<j>=0) 

Lanczos 3 (<j»=1/2) 
Degree 22 (<j>=1/2) 

-80 

Figure 22.60: Frequency response when decimating by a factor of 5: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.61: Frequency response when decimating by a factor of 5: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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Figure 22.62: Frequency response when decimating by a factor of 6: Lanczos 3 and degree 

14 relative minimax polynomial approximation 
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Figure 22.63: Frequency response when decimating by a factor of 6: Lanczos 3 and degree 

16 relative minimax polynomial approximation 
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Figure 22.64: Frequency response when decimating by a factor of 6: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.65: Frequency response when decimating by a factor of 6: Lanczos 3 and degree 

20 relative minimax polynomial approximation 
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Figure 22.66: Frequency response when decimating by a factor of 6: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.67: Frequency response when decimating by a factor of 6: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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Figure 22.68: Frequency response when decimating by a factor of 7: Lanczos 3 and degree 

14 relative minimax polynomial approximation 
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Figure 22.69: Frequency response when decimating by a factor of 7: Lanczos 3 and degree 

16 relative minimax polynomial approximation 

307 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Degree 18 

Frequency 

0 0.05 0.1 0.15 0.2 0.25 

-10 

-20 

-30 

T> 
S -40 
CB 
o 

-50 

-60 

-70 Lanzos 3 (0=0) 
Degree 18 (0=0) 

Lanczos 3 (0=1/2) 
Degree 18 (<j>=1/2) 

-80 

Figure 22.70: Frequency response when decimating by a factor of 7: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.71: Frequency response when decimating by a factor of 7: Lanczos 3 and degree 

20 relative minimax polynomial approximation 
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Figure 22.72: Frequency response when decimating by a factor of 7: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.73: Frequency response when decimating by a factor of 7: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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Figure 22.74: Frequency response when decimating by a factor of 8: Lanczos 3 and degree 

14 relative minimax polynomial approximation 
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Figure 22.75: Frequency response when decimating by a factor of 8: Lanczos 3 and degree 

16 relative minimax polynomial approximation 
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Figure 22.76: Frequency response when decimating by a factor of 8: Lanczos 3 and degree 

18 relative minimax polynomial approximation 
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Figure 22.77: Frequency response when decimating by a factor of 8: Lanczos 3 and degree 

20 relative minimax polynomial approximation 
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Figure 22.78: Frequency response when decimating by a factor of 8: Lanczos 3 and degree 

22 relative minimax polynomial approximation 
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Degree 24 

Higher-degree approximations have frequency response plots identical to those of the target 

function. 
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Figure 22.79: Frequency response when decimating by a factor of 8: Lanczos 3 and degree 

24 relative minimax polynomial approximation 
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23 Conclusion 

There are two main types of research theses: 

• Theses which implement, verify, and validate methods and ideas "known" ahead 

of time to work well (based on the experience and preliminary testing or back of 

the envelope computations of members of the thesis committee, for example) and, 

consequently, which move an idea from concept to proof of concept, all the way to a 

study of the performance of the "new" compared to the "old". 

• Theses which are primarily exploratory, that is, which investigate the consequences 

of new viewpoints or new approaches to solving a problem about which so little is 

known (at least by the members of the thesis committee) that a positive outcome is 

far from guaranteed, and "success" is as much about discovering what does not work 

as discovering what does. 

This is a thesis of the exploratory type. The conclusions to be drawn from its content are 

consequently less clear-cut by virtue of not being essentially foregone. In addition, definite 

conclusions about an image resampling method can only be drawn by resampling actual 

images and evaluating the results. Although three of the novel methods discussed in this 

thesis (Nohalo-LBB, LBB and Midedge with quadratic B-Spline smoothing) survived the 

ongoing trial by fire implicit to their publication in widely distributed graphics libraries, 

such testing was not directly performed for this thesis. 

318 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



23.1 General Conclusions 

Diagonal preservation appears to be a fruitful design and evaluation criterion for image 

resampling methods. 

If one does not mind the large and far ranging undershoots and overshoots, the classical 

method Lanczos 3 and, to a lesser extent, the classical Lanczos 2 and Catmull-Rom meth

ods, are hard to beat in the diagonal preservation department, at least among interpolatory 

methods. This is especially true for images with high frequency content. 

Local boundedness, and similar properties of resampling schemes which fall short of 

(co-)monotonicity, but which nonetheless limit undershoots and overshoots without too 

much impact on smoothness, lead to promising methods. 

When an interpolatory resampling method is desired, it appears that multiple subdivi

sions (with a fixed subdivision method) do not bring significant benefits. Hybrid methods, 

which combine one step of a subdivision method with a linear or nonlinear filtering method 

used as a finishing scheme, appear to generally give better results. Things are not so clear 

when a smoothing resampling method is desired. 

Simple modifications of the Remez method allows one to construct accurate relative 

error minimax polynomial approximations of functions with roots in the interior of the 

interval of approximation. In addition, smooth even functions can be approximated with 

even polynomials, and odd ones with odd polynomials. This allows one to produce low-

cost approximations of common low-pass filters. 

23.2 Conclusions with a Narrower Scope 

The novel nonlinear face split subdivision method Nohalo has a number of attractive prop

erties. In particular, it is interpolatory, it preserves "soft" diagonals, it is monotone, and it 

is conditionally convexity preserving. Combined with the novel Locally Bounded Bicubic 

(LBB) interpolation method, it appears to be a good choice for images that are sub-critical, 
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meaning images without significant high frequency content or maximally sharp line and 

interfaces. In contexts in which one does not want the reconstructed surface to undershoot 

and overshoot, Nohalo-LBB is probably a top choice. 

Variants of Nohalo involving multiple subdivisions do not appear to be worth the addi

tional effort. Multiple subdivisions, in fact, appear to make things worse. This also holds, 

more or less, for the related Snohalo method. 

Snohalo, a novel nonlinear face split subdivision method which consists of Nohalo 

combined with a custom smoother, would appear not to be worth it on balance, given 

that it is not interpolator and that it is only conditionally diagonal-preserving. Although 

Snohalo works well, linear or nonlinear diagonal-preserving Midedge vertex split methods 

are strongly diagonal-preserving and it would appear likely that a pleasant yet less blurry 

scheme of this type could be developed. 

Combining a so-called interpolatory vertex split method with quadratic B-Spline 

smoothing gives a hybrid scheme which is also interpolatory. The novel ROVSQBS (Re

duced Oscillation Vertex Split subdivision with Quadratic B-Spline finish) hybrid method 

is particularly interesting: As a ID interpolation scheme, it produces smooth results vi

sually indistinguishable from the popular Catmull-Rom's when the data is smooth, and it 

suppresses undershoots and overshoots when the data is not. Clearly, the current method 

of extending such interpolatory vertex split/quadratic B-spline hybrid methods to a surface 

interpolation method is not viable, because the resulting surface interpolation schemes are 

marred by large spurious diagonal variations when applied to diagonal data. The one ex

ception that confirms the rule is the novel CDVSQBS (Centred Differences Vertex Split 

subdivision with Quadratic B-Spline finish) hybrid scheme. However, Catmull-Rom is 

qualitatively similar and gives superior results. 

Although it may be too early to emit such an opinion, it appears that overshoot mini

mizing methods which rely on cubic splines generally give better results than those based 

on quadratic splines. 
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Another possibly premature opinion is that extending MP (Monotonicity-Preserving) 

types of methods to 2D by applying them a tensor way and averaging the results ob

tained with the two possible ordering of the axes may be a good approach, notwithstanding 

the high quality surface reconstructions produced by the novel Locally Bounded Bicubic 

(LBB) method, a Hermite bicubic-based method. 
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A Spurious Diagonal Oscillations After One and Two 

Subdivisions: Raw Data 

A.l Hard Line: One Subdivision 

Lanczos 3 

a b c d e / 9 h i 3 k 

1 .61 0 -.14 0 .02 0 0 0 0 

.61 .77 .61 .20 -.14 -.13 .02 .05 0 -.01 

0 .61 1 .61 0 -.14 0 .02 0 0 

-.14 .20 .61 .77 .61 .20 -.14 -.13 .02 .05 

0 -.14 0 .61 1 .61 0 -.14 0 .02 

0 

0 

0 

0 

0 

Lanczos 2 

b c d e / 9 h i 3 k 

1 .57 0 -.06 0 0 0 0 0 0 0 

.57 .67 .57 .26 -.06 -.07 0 0 0 0 0 

0 .57 1 .57 0 -.06 0 0 0 0 0 

-.06 .26 .57 .67 .57 .26 -.06 -.07 0 0 0 

0 -.06 0 .57 1 .57 0 -.06 0 0 0 

322 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Bicubic = Catmull-Rom 

b c d e / 9 h i 3 k 

1 .56 0 -.06 0 0 0 0 0 0 0 

.56 .64 .56 .25 -.06 -.07 0 0 0 0 0 

0 .56 1 .56 0 -.06 0 0 0 0 0 

-.06 .25 .56 .64 .56 .25 -.06 -.07 0 0 0 

0 -.06 0 .56 1 .56 0 -.06 0 0 0 

CDVSQBS 

b c d e / 9 h i 3 k 

1 .56 0 -.06 0 0 0 0 0 0 0 

.56 .62 .56 .25 -.06 -.06 0 0 0 0 0 

0 .56 1 .56 0 -.06 0 0 0 0 0 

-.06 .25 .56 .62 .56 .25 -.06 -.06 0 0 0 

0 -.06 0 .56 1 .56 0 -.06 0 0 0 

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives 

b c d e / 9 h i 3 k 

1 .50 0 0 0 0 0 0 0 0 0 

.50 .52 .50 .25 0 -.01 0 0 0 0 0 

0 .50 1 .50 0 0 0 0 0 0 0 

0 .25 .50 .52 .50 .25 0 -.01 0 0 0 

0 0 0 .50 1 .50 0 0 0 0 0 
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Bilinear = Nohalo = MP Tensor = AMP Tensor = LBB = MP with Null Cross-

Derivatives = AMP with Null Cross-Derivatives = MVSQBS = ROVSQBS 

b c d e / 9 h i 3 k 

1 .50 0 0 0 0 0 0 0 0 0 

.50 .50 .50 .25 0 0 0 0 0 0 0 

0 .50 1 .50 0 0 0 0 0 0 0 

0 .25 .50 .50 .50 .25 0 0 0 0 0 

0 0 0 .50 1 .50 0 0 0 0 0 

CDVS 

a b c d e / 9 h i 3 k 

1 .25 0 0 0 0 0 0 0 0 0 

.25 1 1 0 -.25 0 0 0 0 0 0 

0 1 1 .25 0 0 0 0 0 0 0 

0 0 .25 1 1 0 -.25 0 0 0 0 

0 -.25 0 1 1 .25 0 0 0 0 0 

MVS = ROYS 

a b c d e / 9 h i 3 k 

1 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 0 
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Snohalo, 6 — 1 

a b c d e f g h i j k 

.50 .44 .25 .06 0 0 0 0 0 0 0 

.44 .50 .44 .25 .06 0 0 0 0 0 0 

.25 .44 .50 .44 .25 .06 0 0 0 0 0 

.06 .25 .44 .50 .44 .25 .06 0 0 0 0 

0 .06 .25 .44 .50 .44 .25 .06 0 0 0 

Snohalo 1.5, 6 = 1  

b  c  d  e / 9  h  i  3  k  

.47 .41 .25 .09 .02 0 O 0 0 0 0 

.41 .47 .41 .25 .09 .02 0 0 0 0 0 

.25 .41 .47 .41 .25 .09 .02 0 0 0 0 

.09 .25 .41 .47 .41 .25 .09 .02 0 0 0 

.02 .09 .25 .41 .47 .41 .25 .09 .02 0 0 

Snohalo 1.5,8 = | 

b  c d  e / 9  h  i  3  k  

.60 .44 .19 .06 .01 0 0 0 0 0 0 

.44 .49 .44 .25 .06 .01 0 0 0 0 0 

.19 .44 .60 .44 .19 .06 .01 0 0 0 0 

.06 .25 .44 .49 .44 .25 .06 .01 0 0 0 

.01 .06 .19 .44 .60 .44 .19 .06 .01 0 0 
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Snohalo, 6 = | 

b  c d  e / 9  h  i  3  k  

.67 .46 .17 .04 0 0 0 0 0 0 0 

.46 .50 .46 .25 .04 0 0 0 0 0 0 

.17 .46 .67 .46 .17 .04 0 0 0 0 0 

.04 .25 .46 .50 .46 .25 .04 0 0 0 0 

0 .04 .17 .46 .67 .46 .17 .04 0 0 0 

Snohalo 1.5, 6 — | 

b  c d  e / 9  h  i  3  k  

.77 .47 .11 .03 0 0 0 0 0 0 0 

.47 .50 .47 .25 .03 0 0 0 0 0 0 

.11 .47 .77 .47 .11 .03 0 0 0 0 0 

.03 .25 .47 .50 .47 .25 .03 0 0 0 0 

0 .03 .11 .47 .77 .47 .11 .03 0 0 0 

Snohalo, 9 = | 

b  c  d  e / 9  h  i  3  k  

.83 .48 .08 .02 0 0 0 0 0 0 0 

.48 .50 .48 .25 .02 0 0 0 0 0 0 

.08 .48 .83 .48 .08 .02 0 0 0 0 0 

.02 .25 .48 .50 .48 .25 .02 0 0 0 0 

0 .02 .08 .48 .83 .48 .08 .02 0 0 0 
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Midedge = Minmod Midedge 

b  c d  e / 9  h  i  3  k  

.50 .50 .25 0 0 0 0 0 0 0 0 

.50 .50 .50 .25 0 0 0 0 0 0 0 

.25 .50 .50 .50 .25 0 0 0 0 0 0 

0 .25 .50 .50 .50 .25 0 0 0 0 0 

0 0 .25 .50 .50 .50 .25 0 0 0 0 
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A.2 Hard Interface: One Subdivision 

Lanczos 3 

b  c d  e / 9  h  i  3  k  

1  1.22 1 .95 1 .99 1 .99 1 .99 1 

0 .78 1.22 1.17 .95 .90 .99 1 .99 .99 .99 

-1 0 1 1.22 1 .95 1 .99 1 .99 1 

1.22 -.78 0 .78 1.22 1.17 .95 .90 .99 1 .99 

-1 -1.22 -1 0 1 1.22 1 .95 1 .99 1 

Lanczos 2 

b  c d  e / 9  h  i  3  k  

1 1.15 1 1.02 1 1.02 1  1.02 1 1.02 1 

0 .67 1.15 1.18 1.02 1.03 1.02 1.04 1.02 1.04 1.02 

-1 0 1 1.15 1 1.02 1 1.02 1 1.02 1 

-1.15 -.67 0 .67 1.15 1.18 1.02 1.03 1.02 1.04 1.02 

-1 -1.15 -1 0 1 1.15 1 1.02 1 1.02 1 

Bicubic = Catmull-Rom 

b  c d  e / 9  h  i  3  k  

1  1.12 1  1 1 1 1 1 1 1 

0 .64 1.12 1.13 1 .99 1 1 1 1 

-1 0 1 1.12 1 1 1 1 1 1 

-1.12 -.64 0 .64 1.12 1.13 1 .99 1 1 

-1 -1.12 -1 0 1 1.12 1 1 1 1 
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MP Tensor = AMP Tensor 

a  b  c d  e  /  9  h  i  j  k  

1 1 1 1 1 1 1 1 1  1 

0 .62 1 1 1 1 1 1 1 1 

-1 0 1 1 1 1 1 1 1 1 

-1 -.62 0 .62 1 1 1 1 1 1 

-1 -1 -1 0 1 1 1 1 1 1 

CDVSQBS 

b  c  d  e  / 9  h  i  j  k  

1  1.12 1  1 1 1 1 1 1  1 1 

0 .62 1.12 1.12 1 1 1 1 1 1 1 

-1 0 1 1.12 1 1 1 1 1 1 1 

-1.12 -.62 0 .62 1.12 1.12 1 1 1 1 1 

-1 -1.12 -1 0 1 1.12 1 1 1 1 1 

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives 

a  b  c d  e / 9  h  i  j  k  

1 1 1 1 1 1 1 1 1  1 1 

0 .52 1 1.01 1 .99 1 1 1 1 1 

-1 0 1 1 1 1 1 1 1 1 1 

-1 -.52 0 .52 1 1.01 1 .99 1 1 1 

-1 -1 -1 0 1 1 1 1 1 1 1 
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Bilinear = Nohalo = LBB = MP with Null Cross-Derivatives = AMP with Null Cross-

Derivatives = MVSQBS = ROVSQBS 

a b c d e / g h i k 

1 1 1 1 1 1 1 1  1 

0 .50 1 1 1 1 1 1  1 

-1 0 1 1 1 1 1 1  1 

-1 -.50 0 .50 1 1 1 1 1 

-1 -1 -1 0  1 1 1 1  1 

MVS = ROVS 

b c d e / 9 h i j k 

1 1 1 1 1 1 1 1 1 1 1 

-1 1 1 1 1 1 1 1 1 1 1 

-1 1 1 1 1 1 1 1 1 1 1 

-1 -1 -1 1 1 1 1 1 1 1 1 

-1 -1 -1 1 1 1 1 1 1 1 1 

CDVS 

b c d 

1 1 1 

-.50 1 1.50 

-1 .50 1 

-1 -1 -.50 

-1 -1.50 -1 

e f g h i j k 

1  1 1 1 1 1 1  

1  1 1 1 1 1 1  

1  1 1 1 1 1 1  

1 1.50 11111 

.50 1 11111 
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Snohalo, 6 = 1 

b c d e / 9 h i k 

.50 .88 1 1 1 1 1 1 1 1 

0 .50 .88 1 1 1 1 1 1 1 

-.50 0 .50 .88 1 1 1 1 1 1 

-.88 -.50 0 .50 .88 1 1 1 1 1 

-1 -.88 -.50 0 .50 .88 1 1 1 1 

Snohalo 1.5, 6 = 1  

a  b  c d  e / 9  h  i  j  k  

.47 .81 .97 1 1 1 1 1 1 1 1 

0 .47 .81 .97 1 1 1 1 1 1 1 

-.47 0 .47 .81 .97 1 1 1 1 1 1 

-.81 -.47 0 .47 .81 .97 1 1 1 1 1 

-.97 -.81 -.47 0 .47 .81 .97 1 1 1 1 

Snohalo 1.5, 6 = | 

a b c d e / 9 h 

.60 .88 .99 1 1 1 1 

0 .49 .88 .99 1 1 1 

-.60 0 .60 .88 .99 1 1 

-.88 -.49 0 .49 .88 .99 1 

-.99 -.88 -.60 0 .60 .88 .99 

k 
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Snohalo, 9 = § 

a b c d e / 9 h i j k 

.67 .92 1 1 1 1 1 1 1 1 

0 .50 .92 1 1 1 1 1 1 1 

-.67 0 .67 .92 1 1 1 1 1 1 

-.92 -.50 0 .50 .92 1 1 1 1 1 

-1 -.92 -.67 0 .67 .92 1 1 1 1 

Snohalo 1.5,8 = \ 

a b c d e / 9 

.77 .94 1 1 1 1 

0 .50 .94 1 1 1 

-.77 0 .77 .94 1 1 

-.94 -.50 0 .50 .94 1 

-1 -.94 -.77 0 .77 .94 

h i j k 

Snohalo, 9 = | 

a b c d e / 9 

.83 .96 1 1 1 1 

0 .50 .96 1 1 1 

-.83 0 .83 .96 1 1 

-.96 -.50 0 .50 .96 1 

-1 -.96 -.83 0 .83 .96 

332 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Midedge 

b c d e / 9 h i j k 

.50 1 1 1 1 1 1 1 1 1 1 

0 .50 1 1 1 1 1 1 1 1 1 

-.50 0 .50 1 1 1 1 1 1 1 1 

-1 -.50 0 .50 1 1 1 1 1 1 1 

-1 -1 -.50 0 .50 1 1 1 1 1 1 

Minmod Midedge 

b c d e / 9 h i j k 

.75 1 1 1 1 1 1 1 1 1 1 

0 .75 1 1 1 1 1 1 1 1 1 

-.75 0 .75 1 1 1 1 1 1 1 1 

-1 -.75 0 .75 1 1 1 1 1 1 1 

-1 -1 -.75 0 .75 1 1 1 1 1 1 
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A.3 Soft Line: One Subdivision 

Nohalo 

i  j  k  

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

12 0 0 0 

Lanczos 3 

a b c d e f g h  

1 .88 .50 .12 0 0 0 

.88 1 .88 .50 .12 0 0 

.50 .88 1 .88 .50 .12 0 

.12 .50 .88 1 .88 .50 .12 

0 .12 .50 .88 1 .88 .50 

a  b  c  d  e  /  g  h  i  j  k  

1 .84 .50 .18 0 -.04 0 .01 0 0 0 

.84 .97 .84 .52 .18 -.01 -.04 -.02 .01 .02 0 

.50 .84 1 .84 .50 .18 0 -.04 0 .01 0 

.18 .52 .84 .97 .84 .52 .18 -.01 -.04 -.02 .01 

0 .18 .50 .84 1 .84 .50 .18 0 -.04 0 

Lanczos 2 

b  c d  e / 9  h  i  j  k  

1 .83 .50 .22 0 -.03 0 0 0 0 0 

.83 .92 .83 .55 .22 .06 -.03 -.03 0 0 0 

.50 .83 1 .83 .50 .22 0 -.03 0 0 0 

.22 .55 .83 .92 .83 .55 .22 .06 -.03 -.03 0 

0 .22 .50 .83 1 .83 .50 .22 0 -.03 0 
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Bicubic = Catmull-Rom 

b  c d  e / 9  h  i  j  k  

1  .81 .50 .22 0 -.03 0 0 0 0 

.81 .89 .81 .53 .22 .05 -.03 -.03 0 0 

.50 .81 1 .81 .50 .22 0 -.03 0 0 

.22 .53 .81 .89 .81 .53 .22 .05 -.03 -.03 

0 .22 .50 .81 1 .81 .50 .22 0 -.03 

MVSQBS = ROVSQBS 

b  c  d  e / 9  h  i  j  k  

1  .81 .50 .19 0 0 0 0 0 0 0 

.81 .88 .81 .50 .19 .06 0 0 0 0 0 

.50 .81 1 OO
 

.50 .19 0 0 0 0 0 

.19 .50 .81 .88 oo
 

.50 .19 .06 0 0 0 

0 .19 .50 00
 

1 

T-H °o 

.50 .19 0 0 0 

CDVSQBS 

b  c d  e / 9  h  i  j  k  

1 .81 .50 .22 0 -.03 0 0 0 0 0 

.81 .88 .81 .53 .22 .06 -.03 -.03 0 0 0 

.50 .81 1 .81 .50 .22 0 -.03 0 0 0 

.22 .53 .81 .88 .81 .53 .22 .06 -.03 -.03 0 

0 .22 .50 bo
 

1 .81 .50 .22 0 -.03 0 
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LBB 

b  c d  e / 9  h  i  j  k  

1 .81 .50 .19 0 0 0 0 0 0 0 

.81 .87 .81 .50 .19 .06 0 0 0 0 0 

.50 .81 1 .81 .50 .19 0 0 0 0 0 

.19 .50 .81 .87 .81 .50 .19 .06 0 0 0 

0 .19 .50 .81 1 .81 .50 .19 0 0 0 

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives 

b  c d  e / 9  h  i  j  k  

1 .81 .50 .19 0 0 0 0 0 0 0 

.81 .82 .81 .50 .19 .09 0 0 0 0 0 

.50 .81 1 .81 .50 .19 0 0 0 0 0 

.19 .50 .81 .82 .81 .50 .19 .09 0 0 0 

0 .19 .50 .81 1 .81 .50 .19 0 0 0 

MP Tensor = AMP Tensor 

b  c d  e  / 9  h  i  j  k  

1 .81 .50 .19 0 0 0 0 0 0 0 

.81 .81 .81 .55 .19 .04 0 0 0 0 0 

.50 .81 1 .81 .50 .19 0 0 0 0 0 

.19 .55 .81 .81 .81 .55 .19 .04 0 0 0 

0 .19 .50 .81 1 .81 .50 .19 0 0 0 
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MP with Null Cross-Derivatives = AMP with Null Cross-Derivatives 

b c d e / 9 h i j k 

1 .81 .50 .19 0 0 0 0 0 0 0 

.81 .81 .81 .50 .19 .09 0 0 0 0 0 

50 .81 1 .81 .50 .19 0 0 0 0 0 

.19 .50 .81 .81 .81 .50 .19 .09 0 0 0 

0 .19 .50 .81 1 .81 .50 .19 0 0 0 

Bilinear 

b c d e / 9 h % j k 

1 .75 .50 .25 0 0 0 0 0 0 0 

.75 .75 .75 .50 .25 .12 0 0 0 0 0 

.50 .75 1 .75 .50 .25 0 0 0 0 0 

.25 .50 .75 .75 .75 .50 .25 .12 0 0 0 

0 .25 .50 .75 1 .75 .50 .25 0 0 0 

CDVS 

b c d e / 9 h i j k 

1 .75 .50 .12 0 0 0 0 0 0 0 

.75 1 1 .50 .25 0 -.12 0 0 0 0 

.50 1 1 .75 .50 .12 0 0 0 0 0 

.12 .50 .75 1 1 .50 .25 0 -.12 0 0 

0 .25 .50 1 1 .75 .50 .12 0 0 0 
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MVS = ROVS 

a  b  c d e f g h i j k  

1 .75 .50 0 0 0 0 0 0 0 0 

.75 1 1 .50 .25 0 0 0 0 0 0 

.50 1 1 .75 .50 0 0 0 0 0 0 

0 .50 .75 1 1 .50 .25 0 0 0 0 

0 .25 .50 1 1 .75 .50 0 0 0 0 

Snohalo, 6 = 1 

b  c d  e / 9  h  i  3  k  

.75 .69 .50 .28 .12 .03 0 0 0 0 0 

.69 .75 .69 .50 .28 .12 .03 0 0 0 0 

.50 .69 .75 .69 .50 .28 .12 .03 0 0 0 

.28 .50 .69 .75 .69 .50 .28 .12 .03 0 0 

.12 .28 .50 .69 .75 .69 .50 .28 .12 .03 0 

Snohalo, 8 = | 

b  c d  e / 9  h  i  j  k  

.83 .75 .50 .23 .08 .02 0 0 0 0 0 

.75 .83 .75 .50 .23 .08 .02 0 0 0 0 

.50 .75 .83 .75 .50 .23 .08 .02 0 0 0 

.23 .50 .75 .83 .75 .50 .23 .08 .02 0 0 

.08 .23 .50 .75 .83 .75 .50 .23 .08 .02 0 
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Snohalo, 6 = | 

a b c d e f g h i j k  

.92 .81 .50 .18 .04 .01 0 0 0 0 0 

.81 .92 .81 .50 .18 .04 .01 0 0 0 0 

.50 .81 .92 .81 .50 .18 .04 .01 0 0 0 

.18 .50 .81 .92 .81 .50 .18 .04 .01 0 0 

.04 .18 .50 .81 .92 .81 .50 .18 .04 .01 0 

Snohalo 1.5,6 = 1  

b  c d  e / 9  h  i  3  k  

.72 .66 .49 .30 .14 .05 .01 0 O 0 0 

.66 .72 .66 .49 .30 .14 .05 .01 0 0 0 

.49 .66 .72 .66 .49 .30 .14 .05 .01 0 0 

.30 .49 .66 .72 .66 .49 .30 .14 .05 .01 0 

.14 .30 .49 .66 .72 .66 .49 .30 .14 .05 .01 

Snohalo 1.5,6 = | 

a  b  c  d  e  f  

.81 .72 .50 .25 .10 

.72 .81 .72 .50 .25 

.50 .72 .81 .72 .50 

.25 .50 .72 .81 .72 

.10 .25 .50 .72 .81 

g  h  i  j  k  

.03 0 0 0 0 0 

.10 .03 0 0 0 0 

.25 .10 .03 0 0 0 

.50 .25 .10 .03 0 0 

.72 .50 .25 .10 .03 0 
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Snohalo 1.5, Q = \ 

a b c d e f g h i j k  

.90 .80 .50 .19 .05 .01 0 0 0 0 0 

.80 .90 .80 .50 .19 .05 .01 0 0 0 0 

.50 .80 .90 .80 .50 .19 .05 .01 0 0 0 

.19 .50 .80 .90 .80 .50 .19 .05 .01 0 0 

.05 .19 .50 .80 .90 .80 .50 .19 .05 .01 0 

Midedge 

a  b  c d  e / 9  h  i  j  k  

.75 .75 .50 .25 .12 0 0 0 0 0 0 

.75 .75 .75 .50 .25 .12 0 0 0 0 0 

.50 .75 .75 .75 .50 .25 .12 0 0 0 0 

.25 .50 .75 .75 .75 .50 .25 .12 0 0 0 

.12 .25 .50 .75 .75 .75 .50 .25 .12 0 0 

Minmod Midedge 

a  b  c  d e  / 9  h  i  j  k  

.88 .88 .53 .12 .03 0 0 0 0 0 0 

.88 .88 .88 .53 .12 .03 0 0 0 0 0 

.53 .88 .88 .88 .53 .12 .03 0 0 0 0 

.12 .53 .88 .88 .88 .53 .12 .03 0 0 0 

.03 .12 .53 .88 .88 .88 .53 .12 .03 0 0 
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A.4 Soft Interface: One Subdivision 

Nohalo 

b  c d  e / 9  h  i  j  k  

0 .75 1  1 1 1 1 1 1 1 

-.75 0 .75 1 1 1 1 1 1 1 

-1 -.75 0 .75 1 1 1 1 1 1 

-1 -1 -.75 0 .75 1 1 1 1 1 

-1 -1 -1 -.75 0 .75 1 1 1 1 

Lanczos 3 

b  c d  e / 9  h  i  j  k  

0 .61 1 1.08 1 .97 1 .99 1  .99 1 

-.61 0 .61 .98 1.08 1.04 .97 .95 .99 .99 .99 

-1 -.61 0 .61 1 1.08 1 .97 1 .99 1 

-1.08 -.98 -.61 0 .61 .98 1.08 1.04 .97 .95 .99 

-1 -1.08 -1 -.61 0 .61 1 1.08 1 .97 1 

Lanczos 2 

b  c  d  e / 9  h  i  j  k  

0 .57 1 1.08 1 1.02 1 1.02 1  1.02 1 

-.57 0 .57 .92 1.08 1.10 1.02 1.03 1.02 1.04 1.02 

-1 -.57 0 .57 1 1.08 1 1.02 1 1.02 1 

-1.08 -.92 -.57 0 .57 .92 1.08 1.10 1.02 1.03 1.02 

-1 -1.08 -1 -.57 0 .57 1 1.08 1 1.02 1 
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MP Tensor = AMP Tensor 

b  c d  e / 9  h  

0 .62 1  1 1 1 1 

-.62 0 .62 .91 1 1 1 

-1 -.62 0 .62 1 1 1 

-1 -.91 -.62 0 .62 .91 1 

-1 -1 -1 -.62 0 .62 1 

k  

Bicubic = Catmull-Rom 

b  c  d  e / 9  h  i  j  k  

0 .56 1 1.06 1 1 1 1 1 1 1 

-.56 0 .56 .89 1.06 1.06 1 1 1 1 1 

-1 -.56 0 .56 1 1.06 1 1 1 1 1 

-1.06 -.89 -.56 0 .56 .89 1.06 1.06 1 1 1 

-1 -1.06 -1 -.56 0 .56 1 1.06 1 1 1 

LBB 

b  c d  e / 9  

0 .62 1 1 1 1 

-.62 0 .62 .88 1 1 

-1 -.62 0 .62 1 1 

-1 -.88 -.62 0 .62 .88 

-1 -1 -1 -.62 0 .62 

h  i  j  k  
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MVSQBS = ROVSQBS 

a  b  c  d  e  f  g  h  i  j  k  

0 .62 1 1 111111 

-.62 0 .62 .88 1 1 1 1 1 1 

-1 -.62 0 .62 1 1 1 1 1 1 

-1 -.88 -.62 0 .62 .88 1 1 1 1 

-1 -1 -1 -.62 0 .62 1 1 1 1 

CDVSQBS 

b  c d  e / 9  h  i  3  k  

0 .56 1 1.06 1 1 1  1 1 1 1 

-.56 0 .56 .88 1.06 1.06 1 1 1 1 1 

-1 -.56 0 .56 1 1.06 1 1 1 1 1 

-1.06 -.88 -.56 0 .56 .88 1 1.06 1.06 1 1 

-1 -1.06 -1 -.56 0 .56 1 1.06 1 1 1 

MP with Centred Cross-Derivatives = AMP with Centred Cross-Derivatives 

b  c d  e / 9  h  i  

0 .62 1  1 1 1 1 1 

-.62 0 .62 .82 1 1 1 1 

-1 -.62 0 .62 1 1 1 1 

-1 -.82 -.62 0 .62 .82 1 1 

-1 -1 -1 -.62 0 .62 1 1 

k  
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MP with Null Cross-Derivatives = AMP with Null Cross-Derivatives 

Bilinear 

CDVS 

b c d e / 9 h 

0 .62 1 1 1 1 1 

-.62 0 .62 .81 1 1 1 

-1 -.62 0 .62 1 1 1 

-1 -.81 -.62 0 .62 .81 1 

-1 -1 -1 -.62 0 .62 1 

a b c d e / 9 h i 3 k 

0 .50 1 1 1 1 1 1 1 1 

-.50 0 .50 .75 1 1 1 1 1 1 

-1 -.50 0 .50 1 1 1 1 1 1 

-1 -.75 -.50 0 .50 .75 1 1 1 1 

-1 -1 -1 -.50 0 .50 1 1 1 1 

a b c d e / 9 h i k 

0 .75 1 1 1 1 1 1 1 

-.75 0 .50 1 1.25 1 1 1 1 

-1 -.50 0 .75 1 1 1 1 1 

-1 -1 -.75 0 .50 1 1.25 1 1 

-1 -1.25 -1 -.50 0 .75 1 1 1 
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MVS = ROVS 

b c d e / 9 h i 3 k 

0 1 1 1 1 1 1 1 1 1 

-1 0 .50 1 1 1 1 1 1 1 

-1 -.50 0 1 1 1 1 1 1 1 

-1 -1 -1 0 .50 1 1 1 1 1 

-1 -1 -1 -.50 0 1 1 1 1 1 

Snohalo, 0 = 1 

b c d e / 9 h i j k 

0 .67 .92 .98 1 1 1 1 1 1 1 

-.67 0 .67 .94 .98 1 1 1 1 1 1 

-.92 -.67 0 .67 .92 .98 1 1 1 1 1 

-.98 -.94 -.67 0 .67 .94 .98 1 1 1 1 

-1 -.98 -.92 -.67 0 .67 .92 .98 1 1 1 

Snohalo 1.5, 9 = | 

b c d e / 9 h i 3 k 

0 .63 .90 .98 1 1 1 1 1 1 1 

-.63 0 .63 .92 .98 1 1 1 1 1 1 

-.90 -.63 0 .63 .90 .98 1 1 1 1 1 

-.98 -.92 -.63 0 .63 .92 .98 1 1 1 1 

-1 -.98 -.90 -.63 0 .63 .90 .98 1 1 1 
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Snohalo 1.5,6 = § 

a  b  c d  e / 9  h  i  j  k  

0 .53 .81 .95 .99 1 1 1 1 1 

-.53 0 .53 .84 .95 .99 1 1 1 1 

-.81 —.53 0 .53 .81 .95 .99 1 1 1 

-.95 -.84 -.53 0 .53 .84 .95 .99 1 1 

-.99 -.95 -.81 -.53 0 .53 .81 .95 .99 1 

Snohalo 1.5,6 = 1  

a  b  c d  e  / 9  h  i  3  k  

0 .45 .73 .91 .98 1  1 1 1 1 

-.45 0 .45 .77 .91 .98 1 1 1 1 

-.73 -.45 0 .45 .73 .91 .98 1 1 1 

-.91 -.77 -.45 0 .45 .77 .91 .98 1 1 

-.98 -.91 -.73 -.45 0 .45 .73 .91 .98 1 

Snohalo, 6  = | 

a  b  c d  e  / 9  h  i  3  k  

0 .58 .83 .96 1 1 1 1 1 1 1 

-.58 0 .58 .88 .96 1 1 1 1 1 1 

-.83 -.58 0 .58 .83 .96 1 1 1 1 1 

-.96 -.88 -.58 0 .58 .88 .96 1 1 1 1 

-1 -.96 -.83 -.58 0 .58 .83 .96 1 1 1 
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Snohalo, 6 = 1  

b  c  d  e  / 9  h  i  j  k  

0 .50 .75 .94 1 1 1 1 1  1 1 

-.50 0 .50 .81 .94 1 1 1 1 1 1 

-.75 -.50 0 .50 .75 .94 1 1 1 1 1 

-.94 -.81 -.50 0 .50 .81 .94 1 1 1 1 

-1 -.94 -.75 -.50 0 .50 .75 .94 1 1 1 

Midedge 

b  c d  e / 9  h  i  j  k  

0 .50 .75 1 1 1 1  1 1 1 1 

-.50 0 .50 .75 1 1 1 1 1 1 1 

-.75 -.50 0 .50 .75 1 1 1 1 1 1 

-1 -.75 -.50 0 .50 .75 1 1 1 1 1 

-1 -1 -.75 -.50 0 .50 .75 1 1 1 1 

Minmod Midedge 

b  c d  e / 9  h  i  j  k  

0 .75 .94 1 1 1 1 1 1 1 1 

-.75 0 .75 .94 1 1 1 1 1 1 1 

-.94 -.75 0 .75 .94 1 1 1 1 1 1 

-1 -.94 -.75 0 .75 .94 1 1 1 1 1 

-1 -1 -.94 -.75 0 .75 .94 1 1 1 1 
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A.5 Hard Line: Two Subdivisions 
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Bicubic = Catmull-Rom CDVSQBS 
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AMP with Centred Cross-Derivatives MP with Centred Cross-Derivatives 
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Bilinear MP with Null Cross-Derivatives = AMP 

with Null Cross-Derivatives 
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Nohalo-LBB = LBB MP Tensor = AMP Tensor 
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Nohalo 2 MVSQBS = ROVSQBS 
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CDVS2 MVS 2 = ROVS 2 
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Snohalo 2, 6 = 1 Snohalo 2,6 = | 
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A.6 Hard Interface: Two Subdivisions 
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Bicubic = Catmull-Rom MP = AMP 
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CDVSQBS MP with Centred Cross-Derivatives 
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AMP with Centred Cross-Derivatives Bilinear 
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A.8 Soft Interface: Two Subdivisions 
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Nohalo 2 MP Tensor = AMP Tensor 
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Lanczos 2 Bicubic = Catmull-Rom 
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LBB CDVSQBS 
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MP with Centred Cross-Derivatives = MP with Null Cross-Derivatives = AMP 

AMP with Centred Cross-Derivatives with Null Cross-Derivatives 
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Bilinear MVSQBS = ROVSQBS 
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ROYS 2 Snohalo 2,8 = 1 
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Snohalo 2,6 = | Snohalo 2,0 = | 
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B C Implementation of the VSQBS (Midedge with 

Quadratic B-Spline Smoothing) Hybrid Image Resampling 

Method for the GEGL Library 

This implementation of the VSQBS method for the GEGL library is currently found in its 

Git repository under the name gegl-sampler-nohalo.c: 

http://git.gnome.org/browse/gegl/tree/gegl/buffer/ 

gegl-sampler-nohalo. c?h=samplers. The first pass of this code was written by 

the author of this thesis. 

/ *  T h i s  f i l e  i s  p a r t  o f  G E G L  
*  
* GEGL is free software; you can redistribute it and/or modify it 
*  u n d e r  t h e  t e r m s  o f  t h e  G N U  L e s s e r  G e n e r a l  P u b l i c  L i c e n s e  a s  
*  p u b l i s h e d  b y  t h e  F r e e  S o f t w a r e  F o u n d a t i o n ;  e i t h e r  v e r s i o n  3  o f  
*  t h e  L i c e n s e ,  o r  ( a t  y o u r  o p t i o n )  a n y  l a t e r  v e r s i o n .  
* 

* GEGL is distributed in the hope that it will be useful, but 
* WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
* GNU Lesser General Public License for more details. 
* 

* You should have received a copy of the GNU Lesser General 
*  P u b l i c  L i c e n s e  a l o n g  w i t h  G E G L ;  i f  n o t  ,  s e e  
*  < h t t p  :  / / w w w .  g n u  .  o r g  /  l i e  e n  s  e  s  / > .  
* 

*  2 0 0 9  ( c )  N i c o l a s  R o b i d o u x ,  C h a n t a l  R a c e t t e  ,  A d a m  T u r c o t t e  ,  
*  O y v i n d  K o l a s  ,  E r i c  D a o u s t  a n d  G e e r t  J o r d a e n s  .  
*/ 

/* 
* ================ 
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* NOHALO SAMPLER 
*  ================  

* 

*  V e r t e x  S p l i t  Q u a d r a t i c  B — S p l i n e s  ( V S Q B S )  i s  a  b r a n d  n e w  
*  m e t h o d  w h i c h  c o n s i s t s  o f  v e r t e x  —  s  p  I  i  t  s u b d i v i s i o n  ,  a  
*  s u b d i v i s i o n  m e t h o d  w i t h  t h e  ( a s  y e t  u n k n o w n ? )  p r o p e r t y  t h a t  
*  d a t a  w h i c h  i s  (  l o c a l l y )  c o n s t a n t  o n  d i a g o n a l s  i s  s u b d i v i d e d  
*  i n t o  d a t a  w h i c h  i s  (  l o c a l l y  )  c o n s t a n t  o n  d i a g o n a l s  ,  f o l l o w e d  b y  
*  q u a d r a t i c  B — S p l i n e  s m o o t h i n g  .  B e c a u s e  b o t h  m e t h o d s  a r e  l i n e a r  ,  
*  t h e i r  c o m b i n a t i o n  c a n  b e  i m p l e m e n t e d  a s  i f  t h e r e  i s  n o  
*  s u b d i v i s i o n  .  
* 

*  A t  h i g h  e n l a r g e m e n t  r a t i o s  ,  V S Q B S  i s  v e r y  e f f e c t i v e  a t  
*  " m a s k i n g "  t h a t  t h a t  t h e  o r i g i n a l  h a s  p i x e l s  u n i f o r m l y  
*  d i s t r i b u t e d  o n  a  g r i d .  I n  p a r t i c u l a r  ,  V S Q B S  p r o d u c e s  r e s a m p l e s  
*  w i t h  o n l y  v e r y  m i l d  s t a i r c a s i n g  .  L i k e  c u b i c  B - S p l i n e  s m o o t h i n g  ,  
*  h o w e v e r ,  V S Q B S  i s  n o t  a n  i n t  e  r p o l a t o  r y  m e t h o d .  F o r  e x a m p l e ,  
*  u s i n g  V S Q B S  t o  p e r f o r m  t h e  i d e n t i t y  g e o m e t r i c  t r a n s f o r m a t i o n  
*  ( e n l a r g e m e n t  b y  a  s c a l i n g  f a c t o r  e q u a l  t o  I )  o n  a n  i m a g e  d o e s  
*  n o t  r e t u r n  t h e  o r i g i n a l :  V S Q B S  e f f e c t i v e l y  s m o o t h s  o u t  t h e  
*  i m a g e  w i t h  t h e  c o n v o l u t i o n  m a s k  
* 

*  1 /8  

*  1 /8  1 /2  1 /8  
*  1 /8  
* 

*  w h i c h  i s  a  f a i r l y  m o d e r a t e  b l u r  ( a l t h o u g h  t h e  c h e c k e r b o a r d  m o d e  
*  i s  i n  i t s  n u l l s p a c e  ) .  
* 

*  I n  t h e  n o h a l o  s a m p l e r ,  V S Q B S  i s  b l e n d e d  w i t h  b i l i n e a r  w h e n  a l l  
*  t h e  s i n g u l a r  v a l u e s  o f  t h e  J a c o b i a n  m a t r i x  o f  t h e  
*  t r a n s f o r m a t i o n  w h i c h  c a l l s  t h e  s a m p l e r  a r e  i n  t h e  i n t e r v a l  
* (-1/2,2). 

* 

*  B l e n d i n g  V S Q B S  w i t h  a n  i n t e r p o l a t o r y  m e t h o d  ( h e r e ,  b i l i n e a r )  i n  
*  a  J a c o b i a n  a d a p t i v e  w a y  e n s u r e s  t h a t  r e s a m p l i n g  i s  
*  i n t e r p o l a t o r y  f o r  r o t a t i o n s  ( t h a t  i s ,  t h e  a b o v e  b l u r  i s  n o t  
*  a c t i v e  w h e n  t h e  t r a n s f o r m a t i o n  i s  a  r o t a t i o n  ) .  I n  p a r t i c u l a r  ,  
*  r e s a m p l i n g  f o r  t h e  i d e n t i t y  g e o m e t r i c  t r a n s f o r m a t i o n  i s  
*  e q u i v a l e n t  t o  t h e  i d e n t i t y .  
* 

*  A n  a r t i c l e  o n  V S Q B S  i s  f o r t h c o m i n g  .  
*/ 

/ * 
*  A c k n o w l e d g e m e n t s  :  A d a m  T u r c o t t e  a n d  E r i c  D a o u s t ' s  S n o h a l o  
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*  p r o g r a m m i n g  f u n d e d  b y  G o o g l e  S u m m e r  o f  C o d e  2 0 0 9 .  N i c o l a s  
*  R o b i d o u x  '  s  r e s e a r c h  o n  N o h a l o  f u n d e d  i n  p a r t  b y  a n  N S E R C  
*  ( N a t i o n a l  S c i e n c e  a n d  E n g i n e e r i n g  R e s e a r c h  C o u n c i l  o f  C a n a d a )  
*  D i s c o v e r y  G r a n t .  
* 

*  N i c o l a s  R o b i d o u x  t h a n k s  M i n g l u n  G o n g ,  R a l f  M e y e r ,  J o h n  C u p i t t  
* and Sven Neumann for useful comments and code. 
*/ 

/ * 
* FAST-PSEUDOJFLOOR is a floor replacement which has been found 
*  t o  b e  f a s t e r .  I t  r e t u r n s  t h e  f l o o r  o f  i t s  a r g u m e n t  u n l e s s  t h e  
*  a r g u m e n t  i s  a  n e g a t i v e  i n t e g e r  ,  i n  w h i c h  c a s e  i t  r e t u r n s  o n e  
*  l e s s  t h a n  t h e  f l o o r .  F o r  e x a m p l e :  
* 

* FAST-PSEUDOJFLOOR (0.5) = 0 
* 

* FAST-PSEUDO-FLOOR (0.) = 0 
* 

* FAST-PSEUDO-FLOOR( — .5) = -1 
* 

*  a s  e x p e c t e d  ,  b u t  
* 

* FAST-PSEUDO-FLOOR( — 1 •) = -2 
* 

* The discontinuities of FASTJPSEUDO-FLOOR are on the right of 
*  n e g a t i v e  n u m b e r s  i n s t e a d  o f  o n  t h e  l e f t  a s  i s  t h e  c a s e  f o r  
*  f l o o r  .  
*/ 

#def ine  F A S T _ P S E U D O _ F L O O R ( x )  (  (g in t ) ( x )  -  (  ( x )  <  0 .  )  )  

enum 
{ 

P R O P - O ,  
P R O P - L A S T  

} ;  

s ta t i c  vo id  g e g l _ s a m p l e r _ n o h a l o _ g e t  ( G e g l S a m p l e r *  
cons t  gdouble  
cons t  gdouble  

res tr i c t  s e l f  ,  
a b s o l u t e . x  ,  
a b s o l u t e . y  ,  

vo id*  res tr i c t  o u t p u t ) ;  

s ta t i c  vo id  s e t . p r o p e r t y  (  GObject*  g o b j e c t  ,  
guint  p r o p e r t y _ i d  ,  

cons t  GValue*  v a l u e  ,  
GParamSpec*  p s p e c ) ;  
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s ta t i c  vo id  g e t . p r o p e r t y  (GObjec t*  
gu int  
GValue*  
GParamSpec*  

g o b j e c t  ,  
p r o p e r t y _ i d  ,  
v a l u e  ,  
p s p e c  ) ;  

G - D E F I N E . T Y P E  ( G e g l S a m p l e r N o h a l o  ,  
g e g l _ s a m p l e r _ n o h a l o  ,  
G E G L - T Y P E . S  A M P L E R )  

s ta t i c  vo id  
g e g l _ s a m p l e r _ n o h a l o _ c l a s s _ i n i t  ( G e g l S a m p l e r N o h a l o C l a s s  * k l a s s )  

{ 
G e g l S a m p l e r C l a s s  *  s a m p l e r _ c l a s s  =  G E G L J S A M P L E R J C L A S S  ( k l a s s ) ;  
G O b j e c t C l a s s  * o b j e c t . c l a s s  =  G _ O B J E C T _ C L A S S  ( k l a s s ) ;  
o b j e c t _ c l a s s — > s e t _ p r o p e r t y  =  s e t _ p r o p e r t y ;  
o b j e c t . c l a s s — > g e t _ p r o p e r t y  =  g e t - p r o p e r t y ;  
s a m p l e r . c l a s s  - > g e t  =  g e g l _ s a m p l e r _ n o h a l o _ g e t  ;  

} 

s ta t i c  vo id  
g e g l  _ s a m p l e r _ n o h a l o _ i n i t  ( G e g l S a m p l e r N o h a l o  * s e l f )  
{ 

G E G L - S A M P L E R  (  s e l f ) - > c o n t e x t _ r e c t  .  x  =  — 1 ;  
G E G L J S A M P L E R  (  s e l f ) - > c o n t e x t _ r e c t  .  y  =  - 1 ;  
G E G L S A M P L E R  ( s e l f ) — > c o n t e x t _ r e c t .  w i d t h  =  3 ;  
G E G L J S A M P L E R  (  s e l f ) - > c o n t e x t _ r e c t  .  h e i g h t  =  3 ;  
G E G L J S A M P L E R  (  s e l f ) - > i n t e r p o l a t e _ f o r m a t  =  

b a b l . f o r m a t  ( " R a G a B a A  f l o a t " ) ;  
} 

/* 

* THE STENCIL OF INPUT VALUES: 
* 

*  P o i n t e r  a r i t h m e t i c  i s  u s e d  t o  i m p l i c i t l y  r e f l e c t  t h e  i n p u t  
*  s t e n c i l  a b o u t  d o s . t w o  a s s u m e d  c l o s e r  t o  t h e  s a m p l i n g  l o c a t i o n  
*  t h a n  o t h e r  p i x e l s  ( t i e s  a r e  O K )  i n  s u c h  a  w a y  t h a t  a f t e r  
*  r e f l e c t i o n  t h e  s a m p l i n g  p o i n t  i s  t o  t h e  b o t t o m  r i g h t  o f  
*  d o s - t w o  .  
* 

* The following code and picture assumes that the stencil 
*  r e f l e x i o n  h a s  a l r e a d y  b e e n  p e r f o r m e d .  ( X  i s  t h e  s a m p l i n g  
*  l o c a t i o n  . )  
* 

* 

*  ( i x , i y — l )  ( i x + l , i y - I )  
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( i x  - I ,  i y  )  
= dos.one 

( i x  - I ,  i y  +  1 )  
=  t r e . o n e  

= uno.two 

( i x  ,  i y  )  
=  d o s - t w o  

X  

( i x  ,  i y  +  1 )  
=  t  r e - t w o  

=  u n o . t h r  

( i x  + 1 ,  i y  )  
-  d o s - t h r  

( i x  + 1 ,  i y  + 1 )  
=  t r e . t h r  

The above input pixel values are the ones needed in order to 
IMPLICITLY make available the following values , needed by 
q u a d r a t i c  B —  S p l i n e s  ,  w h i c h  i s  p e r f o r m e d  o n  ( s h i f t e d )  d o u b l e  
d e n s i t y  d a t a  :  

u n o . o n e _ /  =  
( i x  — 1 / 4 ,  i y  - 1 / 4 )  

X  
d o s - o n e . l  -
( i x  - 1 / 4 ,  i y  + 1 / 4 )  

o r  X  

t r e - o n e - 1  =  
f  i x  — 1 / 4 ,  i y  + 3 / 4 )  

uno .two A = uno .thr .1 = 
( i x  + 1 / 4 ,  i y  - 1 / 4 )  ( i x  + 3 / 4 ,  i y  - 1 / 4 )  

o r  X  
d o s - t w o - 1  =  
( i x + 1 / 4 ,  i y + 1 / 4 )  

o r  X  

t r e - t w o - 1  =  
( i x  + 1 / 4 ,  i y  + 3 / 4 )  

d o s - t h r - 1  -
(  i x  + 3 / 4 ,  i y  + 1 / 4 )  

t r e - t h r . l  =  
(  i x  + 3 / 4  ,  i y  + 3 / 4 )  

I n  t h e  c o e f f i c i e n t  c o m p u t a t i o n s  ,  w e  f i x  t h i n g s  s o  t h a t  
c o o r d i n a t e s  a r e  r e l a t i v e  t o  d o s - t w o . 1  ,  a n d  s o  t h a t  d i s t a n c e s  
a r e  r e s c a l e d  s o  t h a t  d o u b l e  d e n s i t y  p i x e l  l o c a t i o n s  a r e  a t  a  
d i s t a n c e  o f  1 .  

*  A s  f a r  a s  t h e  b i l i n e a r  c o m p o n e n t  o f  t h e  s a m p l e r  i s  c o n c e r n e d  ,  
*  t h e  s a m p l i n g  p o s i t i o n  i s  n o r m a l i z e d  s o  t h a t  X  i s  i n  t h e  c o n v e x  
*  h u l l  o f  d o s - t w o ,  d o s - t h r ,  t r e . t w o  a n d  t r e - t h r .  
* /  

s ta t i c  in l ine  g f loat  
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v s q b s _ b i l i n e a r _ m i x  ( cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  
cons t  

{ 
cons t  gdouble  v s q b s  =  (  

gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  
gdouble  

f o u r . c . u n o . t w o  
f o u r _ c _ u n o _ t h r  
f o u r _ c _ d o s _ o n e  
f o u r _ c _ d o s  . t w o  
f o u r _ c _ d o s _ t h r  
f o u r _ c - t r e  . o n e  
f o u r _ c _ t r e _ t w o  
f o u r . c . t r e  _ t h r  

c _ b o t _ r i t e  ,  

c _ b o t _ l e f t  ,  
c _ t o p _ l e f t  ,  
c _ t o p _ r i t e  ,  

t h e t a  ,  
u n o _ t w o  ,  
u n o . t h r  ,  
d o s _ o n e  ,  
d o s _ t w o  ,  
d o s _ t h r  ,  
t r e . o n e  ,  
t r e . t w o  ,  

t r e  _ t h r  )  

f o u r .  - C .  . u n o .  . t w o  * u n o .  _ t w o  + 
f o u r  - C  _ u n o  _ t h r  * u n o  _ t h r  + 

f o u r  -C. . d o s .  . o n e  * d o s .  . o n e  + 
f o u r .  - C  .  . d o s .  . t w o  * d o s .  . t w o  + 
f o u r  _ c  _ d  o  s  _ t h r  * d o s  _ t h r  + 
f o u r  _ c  _ t r e  _  o n e  * t r e .  o n e  + 
f o u r  - C  _ t r e  _  t w o  * t r e _  t w o  + 
f o u r  _ c  _ t r  e  . t h r  * t r e .  . t h r  ) *  0 . 2 5 ;  

cons t  gdouble  b i l i n e a r  =  c _ b o t _ r i t e  *  t r e . t h r  +  

c _ b o t _ l e f t  *  t r e . t w o  +  
c _ t o p _ r i t e  *  d o s . t h r  +  
C - t o p _ l e f t  *  d o s . t w o ;  

cons t  g f loat  n e w v a l  =  b i l i n e a r  +  t h e t a  *  (  v s q b s  -  b i l i n e a r  

re turn  n e w v a l  ;  

} 

s ta t i c  vo id  
g e g l _ s a m p l e r _ n o h a l o _ g e t  (  G e g l S a m p l e r *  res tr i c t  s e l f  ,  

c o n s t  g d o u b l e  a b s o l u t e  
c o n s t  g d o u b l e  a b s o l u t e  

vo id*  res tr i c t  o u t p u t )  
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{ 
/ * 

*  N e e d e d  c o n s t a n t s  r e l a t e d  t o  t h e  i n p u t  p i x e l  v a l u e  p o i n t e r  
*  p r o v i d e d  b y  g e  g l  . s a m p l e  r - g e t  ~ p t r  ( s e l f ,  i x  ,  i y  ) .  
*  p i x e l s - p e  r  . r o w  c o r r e s p o n d s  t o  f  e  t  c  h  . r e  c  t  a n  g  I  e  .  w i d t h  i n  
*  g e g l  s a m p l e r  . g e t - p t r  .  
*/ 

cons t  g in t  c h a n n e l s  =  4 ;  
cons t  g in t  p i x e l s . p e r . r o w  =  6 4 ;  
cons t  g in t  r o w . s k i p  =  c h a n n e l s  *  p i x e l s _ p e r _ r o w  ;  

/ * 
*  e p s i l o n  d e t e r m i n e s  h o w  f a r  f r o m  1  t h e  s i n g u l a r  v a l u e s  c a n  b e  
*  b e f o r e  w e  s w i t c h  o u t  o f  p u r e  b i l i n e a r  .  I t  s h o u l d  b e  s t r i c t l y  
*  p o s i t i v e  b u t  r e a s o n a b l y  c l o s e  t o  0 .  3 / 2 5 5  e n s u r e s  t h a t  u s i n g  
*  b i l i n e a r  w h e n ,  i n  t h e o r y ,  w e  s h o u l d  n o t ,  l e a d s  t o  p i x e l  v a l u e  
*  d i f f e r e n c e s  o f  a t  m o s t  1  w h e n  d e a l i n g  w i t h  8  b i t  i m a g e s .  
*  ( S o m e  d i f f e r e n c e s  o f  1  a r e  u n a v o i d a b l e  b e c a u s e  o f  r o u n d i n g . )  
*/ 

cons t  gdouble  e p s i l o n  =  3 . / 2 S 5 . ;  

/ * 
* The newval array will contain one computed resampled value 
*  p e r  c h a n n e l :  
*/ 

gf loat  n e w v a l  [  c h a n n e l s  ] ;  

/* 

*  C a l c u l a t e  t h e  b l e n d i n g  p a r a m e t e r  f r o m  t h e  s q u a r e s  o f  t h e  
*  s i n g u l a r  v a l u e s  o f  t h e  i n v e r s e  J a c o b i a n  m a t r i x :  
* /  

G e g l M a t r i x 2 *  cons t  i n v e r s e . j  a c o b i a n  =  s e l f  — > i n v e r s e _ j  a c o b i a n  ;  

cons t  gdouble  J i n v  _ 1  1  = *  i n v e r s e . j a c o b i a n  [ 0 ]  [ 0 ] ;  
cons t  gdouble  J i n v  _  1 2  = •  i n v e r s e . j a c o b i a n  [ 0 ]  [  1  ] ;  
cons t  gdouble  J i n v  . 2 1  = •  i n v e r s e -  j a c o b i a n  [ 1 ] [ 0 ] ;  
cons t  gdouble  J i n v  . 2 2  = •  i n v e r s e -  j a c o b i a n  [  1  ]  [  1  ] ;  

cons t  gdouble  J i n v  . 1  1  _ s q  =  J i n v . l  1  * J i n v _ l  1  ;  
cons t  gdouble  J i n v  _  1  2  - s q  =  J i n v . l  2  * J i n v _ l  2  ;  
cons t  gdouble  J i n v  . 2 1  - s q  =  J i n v _ 2  1  * J i n v . 2 1  ;  
cons t  gdouble  J i n v  . 2 2  _ s q  =  J i n v _ 2 2  * J i n v _ 2 2  ;  

cons t  gdouble  s u m .  . a l l  - s q  = 

J i n v _ l l _ s q  +  J i n v _ 1 2 _ s q  +  J i n v _ 2 1 _ s q  4 -  J i n v _ 2 2 _ s q ;  
cons t  gdouble  d e t  =  J i n v . l  1  *  J i n v _ 2 2  -  J i n v _ 1 2  *  J i n v _ 2 1  ;  
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cons t  gdouble  t w i c e . d e t  =  d e t  +  d e t  ;  

cons t  gdouble  d i s c r . p r o d . l  =  s u m . a l l . s q  +  t w i c e . d e t ;  
cons t  gdouble  d i s c r _ p r o d _ 2  =  s u m _ a l l _ s q  -  t w i c e . d e t  ;  
cons t  gdouble  d i s c r  =  d i s c r . p r o d . l  *  d i s c r _ p r o d _ 2  ;  
cons t  gdouble  d i s c r . s q r t  =  s q r t  ( d i s c r ) ;  

cons t  gdouble  s i g m a l . s q  =  (  s u m . a l l . s q  +  d i s c r . s q r t  )  *  0  
cons t  gdouble  t w i c e _ s i g m a 2 _ s q  =  s u m . a l l . s q  -  d i s c r . s q r t ;  
cons t  gdouble  o n e _ o v e r _ s i g m a 2 _ s q  =  2 . 1  t w i c e _ s i g m a 2 _ s q  ;  

/* 

* Take the largest of the two singular values and their 
*  r e c i p r o c a l s  :  
* /  

cons t  gdouble  t  =  
(  s i g m a l  _ s q  > = o n e _ o v e r _ s i g m a 2 _ s q  
?  s i g m a l . s q  :  o n e _ o v e r _ s i g m a 2 _ s q  ) ;  

i f  (  t  < =  1 .  +  e p s i l o n  )  / *  Pure bilinear */ 
{ 

cons t  g in t  i x  =  F A S T J P S E U D O J F L O O R  (  a b s o l u t e _ x  ) ;  
cons t  g in t  i y  =  F A S T _ P S E U D O _ F L O O R  ( a b s o l u t e . y ) ;  

cons t  g f loat*  res tr i c t  i n p u t . b p t r  =  
(g f loat* )  g e g l . s a m p l e r _ g e t . p t r  ( s e l f ,  i x ,  i y ) ;  

cons t  g f loat  x  =  a b s o l u t e . x  —  i x  ;  
cons t  g f loat  y  =  a b s o l u t e . y  —  i y ;  

/* 

*  B i l i n e a r  w e i g h t s  ( N o t e :  w  =  1 — x  a n d  z  =  1 — y ) :  
* /  

cons t  g f loat  x . t i m e s . y  =  x  *  y ;  
cons t  g f loat  w . t i m e s . y  =  y  —  x . t i m e s . y  ;  
cons t  g f loat  x . t i m e s . z  =  x  -  x . t i m e s . y  ;  
cons t  g f loat  w . t i m e s . z  =  l . f  -  (  x  +  w . t i m e s . y  ) ;  

gf loat  n e w v a l O  ,  n e w v a l l  ,  n e w v a l 2  ,  n e w v a l 3  ;  
gf loat  n e w v a l O i  ,  n e w v a l l i  ,  n e w v a l 2 i  ,  n e w v a l 3 i  ;  

n e w v a l O  =  *  i n p u t . b p t r + + ;  
n e w v a l l  =  *  i n p u t . b p t r + + ;  
n e w v a l 2  =  *  i n p u t . b p t r + + ;  
n e w v a l 3  =  *  i  n p u t  _ b p t r + + ;  
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n e w  v a l O i  
n e w v a l  1  i  
n e w v a l 2 i  
n e w v a ! 3 i  

*  i n p u t . b p t r  + + ;  
*  i n p u t . b p t r  + + ;  
*  i n p u t . b p t r  + + ;  
*  i  n p u t . b p t r  ;  

i n p u t . b p t r  + =  1  +  r o w . s k i p  —  2  *  c h a n n e l s  ;  

n e w v a l O  * =  w . t i m e s . z ;  
n e w v a l l  * =  w . t i m e s . z ;  
n e w v a l 2  * =  w . t i m e s . z ;  
n e w v a l 3  * =  w . t i m e s . z ;  

n e w v a l O i  * =  x . t i m e s . z ;  
n e w v a l l i  * =  x . t i m e s . z ;  
n e w v a l 2 i  * =  x . t i m e s . z ;  
n e w v a l 3 i  * =  x . t i m e s . z ;  

n e w v a l O  + =  w . t i m e s . y  *  *  i n p u t . b p t r +  +  ;  
n e w v a l l  + =  w . t i m e s . y  *  *  i n p u t . b p t r + + ;  
n e w v a l 2  + =  w . t i m e s . y  *  *  i n p u t . b p t r + + ;  
n e w v a l 3  + =  w . t i m e s . y  *  *  i n p u t . b p t r + + ;  

n e w v a l O i  + =  x . t i m e s . y  *  *  i n p u t . b p t r + + ;  
n e w v a l l i  + =  x . t i m e s . y  *  *  i n p u t . b p t r + + ;  
n e w v a l 2 i  + =  x . t i m e s . y  *  *  i n p u t  _ b p t r + + ;  
n e w v a l 3 i  + =  x . t i m e s . y  *  * i n p u t _ b p t r ;  

n e w v a l  [ 0 ]  =  n e w v a l O  +  n e w v a l O i  ;  
n e w v a l  [ 1 ]  =  n e w v a l l  +  n e w v a l l i ;  
n e w v a l  [ 2 ]  =  n e w v a l 2  +  n e w v a l 2 i  ;  
n e w v a l  [ 3 ]  =  n e w v a l 3  +  n e w v a l 3 i  ;  

} 
e l se  /*  Pure VSQBS or VSQBS blended with bilinear */ 
{ 

/* 

*  C a l c u l a t e  t h e  n e e d e d  s h i f t s :  
*/ 

cons t  g in t  i x _ 0  =  F A S T _ P S E U D O _ F L O O R  ( a b s o l u t e . x  +  . 5 ) ;  
c o n s t  g i n t  i y . O  =  F A S T J P S E U D O J L O O R  ( a b s o l u t e . y  +  . 5 ) ;  

cons t  g f loat*  res tr i c t  i n p u t . b p t r  =  
(g f loat* )  g e g l _ s a m p l e r . g e t _ p t r  ( s e l f ,  i x . O  ,  i y . O ) ;  

cons t  gdouble  x . O  =  a b s o l u t e . x  —  i x . O ;  
cons t  gdouble  y _ 0  =  a b s o l u t e . y  —  i y . O ;  

398 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



cons 
cons 

cons  
cons  

cons  
cons  

cons  
s h  

cons  
s h  

cons  
cons  
cons  

cons  
s h  

cons  
s h  

cons  
s  

g int  s i g n _ o f _ x _ 0  =  2  *  
g i n t  s i g n _ o f _ y _ 0  =  2  *  ( 

x _ 0  > =  0 .  
y . O  > =  0 .  ) 

g int  s h i f t . f o r w _  1  _ p i x  =  s i g n _ o f _ x _ 0  *  c h a n n e l s ;  
g i n t  s h i f t . f o r w . l  . r o w  =  s i g n _ o f _ y _ 0  *  r o w . s k i p  ;  

g int  s h i f t _ b a c k _ l  _ p i x  =  —  s h i f t . f o r w . l  _ p i x  ;  
g int  s h i f t - b a c k .  1  . r o w  =  —  s h i f t _ f o r w _ l  . r o w  ;  

g int  u n o . t w o . s h i f t  =  
f t . b a c k .  1  . r o w  ;  

g int  u n o . t h r . s h i f t  =  
f t . f o r w  _  1  _ p i x  +  s h i f t . b a c k . l  . r o w  ;  

g int  d o s . o n e . s h i f t  =  s h i f t . b a c k . l  _ p i x  ;  
g int  d o s . t w o . s h i f t  =  0 ;  
g int  d  o  s  _ t h r _ s h  i  f  t  =  s h i f t . f o r w .  1  _ p i x  ;  

g int  t r e . o n e . s h i f t  =  
f t . b a c k . l  _ p i x  +  s h i f t . f o r w . l  . r o w  ;  

g int  t r e . t w o . s h i f t  =  
f t . f o r w .  1  . r o w  ;  

g int  t r e . t h r . s h i f t  =  
h i f t . f o r w . l  _ p i x  +  s h i f t . f o r w . l  . r o w  ;  

cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  

cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  

a b s . x . O  =  
a b s . y . O  =  
t w i c e . a b s . x . O  =  
t w i c e . a b s . y . O  =  
X = 

y 
c e n t  =  
m i d  =  
l e f t  =  
t o p  =  
l e f t . p . c e n t  =  
t o p . p . m i d  =  
c e n t . p . r i t e  =  
m i d . p . b o t  =  
r i t e  =  

b o t  :  

f o u r . c . u n o . t w o  
f o u r . c . d o s . o n e  
f o u r . c _ d o s . t w o  
f o u r _ c . d o s . t h r  

s i g n . o f . x . O  *  x _ 0  
s i g n _ o f _ y _ 0  *  y _ 0  
a b s . x . O  +  a b s . x . O  
a b s . y . O  +  a b s . y . O  
t w i c e . a b s . x . O  +  — 0 . 5 ;  
t w i c e _ a b s _ y . O  +  - 0 . 5 ;  
0 . 7 5  
0 . 7 5  
- 0 . 5  
- 0 . 5  
l e f t  
t o p  
1 . 0  -

1 . 0  -

1 . 0  -

1 . 0  -

=  t o p  
=  l e f t  
:  l e f t .  

c e n t  
m i d  

x  *  x  
y * y 
(  x  +  
( y + 

c e n t  ;  
m i d ;  

l e f t ;  
t o p  ;  
l e f t . p . c e n t  
t o p . p . m i d  ;  

0 . 5 ;  
0 . 5 ;  

l e f t . p . c e n t  ;  
*  t o p . p . m i d  ;  
p . c e n t  +  t o p . p . m i d  
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c e n t _ p _ r i t e  *  t o p _ p _ m i d  +  r i t e ;  
cons t  gdouble  f o u r _ c _ t r e _ t w o  =  

m i d _ p _ b o t  *  l e f t . p . c e n t  +  b o t  ;  
cons t  gdouble  f  o  u  r  _ c  _ t r e  _ t h  r  =  

m i d _ p _ b o t  *  r i t e  +  b o t  *  c e n t _ p _ r i t e ;  
cons t  gdouble  f o u r . c . u n o . t h r  =  t o p  —  f o u r . c . u n o . t w o  ;  
c o n s t  g d o u b l e  f o u r _ c _ t r e _ o n e  =  l e f t  -  f o u r _ c _ d o s _ o n e  ;  

i f  (  t > = 4 .  )  / *  Pure VSQBS */ 
{ 

/* 

*  F i r s t  c h a n n e l :  
* /  

n e w v a l  [ 0 ]  =  
f o u r .  - C _  u n o .  t w o  * i n p u t  . b p t r  [  u n o  . t w o  . s h i f t  + 

f o u r  _ c  . u n o  _ t h r  * i n p u t  _ b p t r  [  u n o  _ t h r  . s h i  f t  + 

f o u r .  . c .  . d o s  . o n e  * i n p u t  - b p t r  [  d o s  . o n e  . s h i f t  + 

f o u r .  . c .  . d o s .  t w o  * i n p u t  . b p t r  f  d o s  . t w o  . s h i f t  + 

f o u r  _ c  _ d o s  _ t h r  * i n p u t  _ b p t r  [  d o s  _ t h r .  . s h i f t  + 

f o u r  _ c  _ t r e .  o n e  * i n p u t  . b p t r  [  t r e  - o n e .  . s h i f t  + 

f o u r  - C  _ t r e  _  t w o  * i n p u t  . b p t r  [  t r e _  t w o .  . s h i f t  + 

f o u r  _ c  _ t r e  . t h r  * i n p u t  - b p t r  [  t r e .  t h r .  s h i f t  ) 
*  0 . 2 5 ;  

/* 

*  S h i f t  i n p u t  p o i n t e r  b y  o n e  c h a n n e l :  
*/ 

i n p u t . b p t r  +  +  ;  
/* 

* Compute the second channel result: 
* /  

n e w v a l  [  1  ]  =  
(  f o u r . c . u n o . t w o  

f o u r . c . u n o . t h r  
f o u r . c _ d o s . o n e  
f o u r . c _ d o s . t w o  
f o u r . c  _ d o s  _ t h r  
f o u r . c _ t r e . o n e  
f o u r . c _ t r e . t w o  
f o u r _ c _ t r e _ t h r  

*  0 . 2 5 ;  
i n p u t . b p t r  +  +  ;  
n e w v a l  [ 2 ]  =  

(  f o u r . c . u n o . t w o  
f o u r . c . u n o . t h r  
f o u r . c _ d o s . o n e  
f o u r . c _ d o s . t w o  

* i n p u t  - b p t r  [  u n o  . t w o  . s h i f t  ] + 
* i n p u t  . b p t r  [  u n o  . t h r  . s h i f t  ] + 
* i n p u t  . b p t r  [  d o s  . o n e  . s h i f t  ] + 
* i n p u t  . b p t r  [  d o s  . t w o  . s h i f t  ] + 
* i n p u t  . b p t r  [  d o s  . t h r .  . s h i f t  ] + 
* i n p u t  _ b p t r  [  t r e .  o n e  . s h i f t  ] + 
* i n p u t  - b p t r  [  t r e .  t w o  . s h i f t  ] + 
* i n p u t  _ b p t r  [  t r e .  . t h r .  s h i f t  ] ) 

* i n p u t  - b p t r  [  u n o  - t w o  . s h i f t  ] + 
* i n p u t  - b p t r  [  u n o  _ t h r  . s h i f t  ] + 
* i n p u t  . b p t r [  d o s  . o n e  . s h i f t  ] + 
* i n p u t  . b p t r  [  d o s  . t w o  . s h i f t  ] + 
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f o u r . c  _ d o s  _ t h r  * i n p u t  . b p t r  [  d o s  _ t h r  . s h i f t  ] + 
f o u r  _ c  _ t r e  _  o n e  * i n p u t  . b p t r  [  t r e .  o n e  . s h i f t  ] + 
f o u r . c . t r e .  t w o  * i n p u t  - b p t r  t  t r e .  t w o  . s h i f t  ] + 
f o u r . c . t r e  . t h r  * i n p u t  - b p t r  [  t  r e  . t h r .  s h i f t  ] ) 

*  0 . 2 5 ;  
i n p u t . b p t r  + + ;  
n e w v a l  [ 3 ]  =  

(  f o u r _ c _ u n o .  t w o  * i n p u t  - b p t r  [  u n o  . t w o  . s h i f t  ] + 
f o u r . c . u n o  . t h r  * i n p u t  - b p t r  [  u n o  _ t h r  . s h i f t  ] + 
f o u r . c . d o s  . o n e  * i n p u t  _ b p t r  [  d o s  . o n e  . s h i f t  ] + 
f o u r . c . d o s .  t w o  * i n p u t  - b p t r  [  d o s  . t w o  . s h i f t  ] + 
f o u r . c . d o s  _ t h r  * i n p u t  - b p t r  [  d o s  _ t h r  . s h i f t  ] + 
f o u r . c . t r e .  o n e  * i n p u t  . b p t r  [  t r e .  o n e  . s h i f t  ] + 
f o u r . c . t r e .  t w o  * i n p u t  - b p t r  [  t r  e .  t  w  0  . s h i f t  ] + 
f o u r . c . t r e  _ t h r  * i n p u t  - b p t r  [  t r e  . t h r .  s h i f t  ] ) 

*  0 . 2 5 ;  

} 
e l se  
{ 

/* Blend VSQBS with bilinear */ 

/* 

*  B i l i n e a r  w e i g h t s  ( N o t e :  w  =  1  
* /  

x _ t i m e s _ y  =  a b s . x . O  
w _ t i m e s _ y  =  a b s . y . O  
x _ t i m e s _ z  =  a b s . x . O  
w . t i m e s . z  =  1 .  —  (  

cons t  gdouble  
cons t  gdouble  
cons t  gdouble  
cons t  gdouble  

x and z = 1—y): 

*  a b s _ y _ 0  ;  
—  x . t i m e s . y  ;  
—  x . t i m e s . y  ;  

a b s . x . O  +  w . t i m e s . y  ) ;  

/ * 
*  B l e n d i n g  c o e f f i c i e n t :  
*/ 

cons t  gdouble  t h e t a  =  ( 1  . / 3  . )  *  ( t  —  1  . ) ' >  

/ * 
* Channel by channel computation of the vsqbs/ bilinear 
*  b l e n d :  
*/ 

n e w v a l  [ 0 ]  =  
v s q b s . b i l i n e a r . m i x  (  f o u r . c . u n o . t w o  ,  

f o u r . c . u n o . t h r  ,  
f o u r . c _ d o s . o n e  ,  
f o u r . c . d o s . t w o  ,  
f o u r . c . d o s . t h r  ,  
f o u r _ c _ t r e . o n e  ,  
f o u r . c _ t r e . t w o  ,  
f o u r _ c _ t r e _ t h r  ,  
x . t i m e s . y  ,  

4 0 1  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



w _ t i m e s _ y  ,  
x . t i m e s . z  ,  
w . t i m e s . z  ,  
t h e t a  ,  
i n p u t . b p t r  [  u n o  _ t w o  . s h i f t  
i n p u t . b p t r  [  u n o  . t h r .  . s h i f t  
i n p u t . b p t r  [  d o s .  . o n e  . s h i f t  
i n p u t . b p t r  [  d o s .  - t w o  . s h i f t  
i n p u t . b p t r  [  d o s  . t h r .  . s h i f t  
i n p u t . b p t r  [  t r e .  o n e .  . s h i f t  
i n p u t . b p t r  [  t r e  _  t w o .  . s h i f t  
i n p u t . b p t r  [  t r  e .  . t h r .  s h i f t  

i n p u t . b p t r  + + ;  
n e w v a l  [  1  ]  =  

v s q b s _ b i l i n e a r _ m i x  ( f o u r _ c _ u n o _ t w o  
f o u r _ c _ u n o _ t h r  
f o u r _ c _ d o s _ o n e  
f o u r _ c _ d o s _ t w o  
f o u r _ c _ d o s _ t h r  
f o u r _ c _ t r e _ o n e  
f o u r _ c _ t r e _ t w o  
f o u r _ c _ t r e _ t h r  
x . t i m e s . y  ,  
w . t i m e s . y  ,  
x . t i m e s . z  ,  
w . t i m e s . z  ,  
t h e t a  ,  
i n p u t . b p t r  [  
i n p u t . b p t r  [  
i n p u t . b p t r  [  
i n p u t . b p t r  [  
i n p u t . b p t r  [  
i n p u t . b p t r  [  
i n p u t . b p t r  [  
i n p u t . b p t r  [  

u n o  . t w o  . s h i f t  
u n o . t h r . s h i f t  
d o s . o n e . s h i f t  
d o s . t w o . s h i f t  
d o s . t h r . s h i f t  
t r e . o n e . s h i f t  
t r e . t w o . s h i f t  
t r e . t h r . s h i f t  

i n p u t . b p t r  + + ;  
n e w v a l  [ 2 ]  =  

v s q b s . b i l i n e a r . m i x  ( f o u r . c _ u n o . t w o  ,  
f o u r . c . u n o . t h r  ,  
f o u r . c _ d o s . o n e  ,  
f o u r . c _ d o s . t w o  ,  
f o u r _ c . d o s . t h r  ,  
f o u r _ c _ t r e _ o n e  ,  
f o u r _ c _ t r e _ t w o  ,  
f o u r _ c _ t r e _ t h r  ,  
x _ t i m e s _ y  ,  

) ;  
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w . t i m e s . y  ,  
x . t i m e s . z  ,  
w . t i m e s . z  ,  
t h e t a  ,  
i n p u t . b p t r  
i n p u t . b p t r  
i n p u t . b p t r  
i n p u t . b p t r  
i n p u t . b p t r  
i n p u t . b p t r  
i n p u t . b p t r  
i n p u t . b p t r  

i n p u t . b p t r  +  +  ;  
n e w v a l  [ 3 ]  =  

v s q b s . b i l i n e a r . m i x  ( f o u r . c . u n o . t w o  ,  
f o u r . c . u n o  _ t h r  ,  
f o u r . c . d o s .  o n e  ,  
f o u r . c . d o s .  t w o  ,  
f o u r . c . d o s  . t h r  ,  
f o u r . c . t r e .  o n e  ,  
f o u r . c . t r e .  t w o  ,  
f o u r . c . t r e  . t h r  ,  
x . t i m e s . y  ,  
w . t i m e s . y  ,  
x . t i m e s . z  ,  
w . t i m e s . z  ,  
t h e t a  ,  
i n p u t . b p t r  [  u n o  . t w o  . s h i f t  
i n p u t . b p t r  [  u n o  . t h r  . s h i f t  
i n p u t . b p t r  [  d o s  . o n e  . s h i f t  
i n p u t . b p t r  [  d o s  . t w o  . s h i f t  
i n p u t . b p t r  [  d o s  _ t h r .  . s h i f t  
i n p u t . b p t r  [  t r e .  o n e .  . s h i f t  
i n p u t . b p t r  [  t r e .  t w o  . s h i f t  
i n p u t . b p t r  [  t r e .  . t h r .  s h i f t  

} 
} 

u n o . t w o . s h i f t  ]  ,  
u n o . t h r . s h i f t  ]  ,  
d o s . o n e . s h i f t  ]  ,  
d o s . t w o . s h i f t  ]  ,  
d o s . t h r . s h i f t  ]  ,  
t r e . o n e . s h i f t  ]  ,  
t r e . t w o . s h i f t  ]  ,  
t r e . t h r . s h i f t  ] ) ;  

/* 

*  S h i p  o u t  t h e  a r r a y  o f  n e w  p i x e l  v a l u e s :  
*/ 

b a b l . p r o c e s s  ( b a b l . f i s h  (  s e l f - > i n t e r p o l a t e . f o r m a t  ,  
s e l f - > f o r m a t )  ,  n e w v a l ,  o u t p u t ,  1 ) ;  

} 

s ta t i c  vo id  
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s e t . p r o p e r t y  (  GObject*  g o b j e c t  ,  
guint  p r o p e r t y _ i d  ,  

cons t  GValue*  v a l u e  ,  
GParamSpec*  p s p e c )  

{ 
G _ O B J E C T _ W A R N J N V A L I D _ P R O P E R T Y J D  ( g o b j e c t ,  p r o p e r t y - i d  ,  p s p e c ) ;  

} 

s ta t i c  vo id  
g e t - p r o p e r t y  (  GObject*  g o b j e c t  ,  

guint  p r o p e r t y . i d  ,  
GValue*  v a l u e  ,  
GParamSpec*  p s p e c )  

{ 
G - O B J E C T . W A R N J N V A L I D . P R O P E R T Y J D  ( g o b j e c t ,  p r o p e r t y . i d ,  p s p e c ) ;  

} 
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C Modified Boost C++ Library Minimax Code 

The following code is used to compute the coefficients of minimax polynomials for a given 

function. It is also used to find the maximum absolute or relative approximation errors at 

varying precisions. 

The following program files were taken from the Boost C++ library [23] and modified 

by Dr. N. Robidoux for the purpose of this research. 

The NTL (Number Theory Library) and GMP (GNU Multiple Precision Arithmetic 

Library) libraries are also used. The source code for the Boost libraries must then be 

downloaded, and the files found below must replace the plain versions found in the source 

code. Then, they must be compiled with something like 

g++ -Wall -o minimax -I/PATH/ntl-5.5.2/include \ 

main.cpp f.cpp /PATH/nt1-5.5.2/src/nt1.a -lgmp 

This must be done every time the main.cpp or f.cpp files are modified. 

To run the code, the following is done in the Boost minimax folder: . /minimax. To 

change the degree of the polynomial approximation, use order p q, where p is the de

gree of the numerator and q is the degree of the denominator. To change which variant 

is used, use variant c, where c is the numeric identifier of the variant. To change the 

range, use range a b, where the range under consideration is [a, b]. The other param

eters can also be modified but they are not useful in this case. To run the algorithm for n 

steps, use step n. Once the steps are completed, use info to obtain the coefficients. To 

compute various errors, one can use test m, test float m, test double m, and 

test long m, where m is the number of points where the error will be checked. 
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Depending on the function that is being approximated, the source code also needs to be 

modified so that the range and "scaling" are set in a compatible manner. 

C.l main.cpp 

This is the modified main. cpp code used by the minimax function in the Boost library. 

/ /  ( C )  C o p y r i g h t  J o h n  M a d d o c k  2 0 0 6 .  
/ /  U s e ,  m o d i f i c a t i o n  a n d  d i s t r i b u t i o n  a r e  s u b j e c t  t o  t h e  
/ /  B o o s t  S o f t w a r e  L i c e n s e ,  V e r s i o n  1 . 0 .  ( S e e  a c c o m p a n y i n g  f i l e  
/ /  L I C E N S E . 1  . 0 .  t x t  o r  c o p y  a t  
/ /  h t t p  : / / w w w .  b o o s t .  o r g  / L I C E N S E _ i  J ) .  t x t )  

// NICOLAS ROBIDOUX has made several changes for speed/accuracy . 

#define NICOLAS_SPEED 

#def ine  BOOST_UBLAS_TYPE_CHECK_EPSILON (  
t y p e _ t r a i t s  < r e a l _ t y p e  > : : t y p e _ s q r t  (  
b o o s t  : :  m a t h  : :  t o o l s  : :  e p s i l o n  < r e a l _ t y p e  > ( ) ) )  

#define BOOST_UBLAS_TYPE_CHECK_MIN ( 
t y p e . t r a i t s  < r e a l _ t y p e  > : : t y p e _ s q r t  (  
b o o s t  : :  m a t h  : :  t o o l s  : : m i n _ v a l u e < r e a l _ t y p e  > ( ) ) )  

#define BOOST_UBLAS_NDEBUG 

# inc lude  c b o o s t /  m a t h  /  b i n d i n g s / r r .  h p p >  
namespace  s t d {  

us ing  b o o s t  : :  m a t h  : :  n t l  : :  p o w ;  
}  / /  w o r k a r o u n d  f o r  s p i r i t  p a r s e r .  
# inc lude  c b o o s t  /  m a t h  / t o o l s /  r e m e z  .  h p p >  
#  inc lude  c b o o s t  /  m a t h  /  t o o l s / t e s t  .  h p p >  
# inc lude  c b o o s t  / m a t h /  s p e c i a l - f u n c t i o n s  /  b i n o m i a l  .  h p p >  
#include Cboost / s p i ri t / core . hpp> 
#  inc lude  c b o o s t / s p i r i t / a c t o r .  h p p >  
# inc lude  c b o o s t  /  l e x i c a l - c a s t  . h p p >  
# inc lude  c i o s t r e a m >  
# inc lude  C i o m a n i p >  
# inc lude  c s t r i n g >  
/ /  f o r  t e s t . m a i n  
#  inc lude  c b o o s t  /  t e s t  / i n c l u d e d / t e s t . e x e c  . m o n i t o r  .  h p p >  

extern  b o o s t  : :  m a t h  : :  n t l  :  : R R  f (  
cons t  b o o s t  : :  m a t h  : :  n t l  : : R R &  x  ,  in t  v a r i a n t ) ;  
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extern  vo id  s h o w _ e x t r a (  
cons t  b o o s t : :  m a t h  : :  t o o l s  : : p o l y n o m i a l  C b o o s t : :  m a t h  : :  n t l  : :  RR>& n  ,  
const boost:: math :: tools :: polynomial cboost:: math :: ntl :: RR>& d , 
c o n s t  b o o s t : :  m a t h  : :  n t l  :  : R R &  x  . o f f s e t  ,  
cons t  b o o s t : :  m a t h  :  :  n t l  :  : R R &  y  . o f f  s e t  ,  
in t  v a r i a n t ) ;  

us ing  namespace  b o o s t  : :  s  p  i  r  i  t  ;  

boo l  r e 1 _ e r r o r ( t rue  ) ;  
boo l  p i n ( fa l se ) ;  
in t  o r d e r N ( 5 ) ;  
in t  o r d e r D  ( 0 ) ;  
/ /  i n t  t a r g e t - p r e c i s i o n  =  

b o o s t  : :  m a t h  : :  t o o l s  : :  d i g i t s  c long  double  > ( ) ;  
in t  t a r g e t - p r e c i s i o n  =  1 2 8 ;  
/ /  i n t  w o r k i n g  . p r e c i s i o n  =  t a r g e t  . p r e c i s i o n  *  2 ;  

in t  w o r k i n g  . p r e c i s i o n  =  2155;  
/ / i n t  w o r k i n g  . p r e c i s i o n  =  1 0 2 4 ;  
/ / i n t  w o r k i n g  . p r e c i s i o n  =  1 2 8 ;  
bool  s t a r t e d ( fa l se  ) ;  
in t  v a r i a n t ( 0 ) ;  
in t  s k e w ( 2 5 ) ;  
in t  b r a k e  (50) ;  
// NICOLAS: x.scale is used to scale by pi (via pi"2). 
// Change back to 1 when running if this is not what you want: 
b o o s t  : :  m a t h  : :  n t l  :  : R R  x . o f f s e t ( O ) ,  y _ o f f s e t ( 0 ) ,  / / x . s c a l e  ( 1 ) ;  

x _ s c a l e ( b o o s t  : :  m a t h  : :  c o n s t a n t s  : : p i c b o o s t : :  m a t h  : :  n t l  : :  R R > ( )  
*  b o o  s t  : :  m a t h  : :  c o n s t a n t s  : :  p i  c b o o s t  : :  m a t h  : :  n t l  :  : R R > ( ) ) ;  

b o o s t  : :  m a t h  : :  n t l  :  : R R  a ( 0 ) ,  / /  NICOLAS: range to optimize over 
b (  
1 0 3 . 4 9 9 4 5 3 8 9 5 1 3 6 5 8 0 3 3 2 2 2 3 6 3 2 5 3 5 6 1 3 0 5 5 7 4 9 8 3 5 0 2 2 7 1 4 8 7 6 2 5 5 4 0 9 2 3 5 6 9 8 L /  
x . s c a l e  ) ;  

/ /  u s u a l  r a n g e  t o  o p t i m i z e  o v e r :  
/ /  b o o s t  : :  m a t h  : :  n t l  : :  R R  a ( 0 ) ,  b ( l ) ;  

bool  a u t o . o f f s e t . y ( fa l se )  ;  

b o o s t  : :  s h a r e d . p t r c b o o s t  : :  m a t h  : :  t o o l s  : : r e m e z _ m i n i m a x c  
b o o s t  : :  m a t h  : :  n t l  : :  R R >  >  p . r e m e z  ;  

b o o s t  : :  m a t h  : :  n t l  :  : R R  t h e . f u n c t i o n  (  cons t  b o o s t  : :  m a t h  : :  n  t l  : :  R R &  v a l )  
{ 
# i fde f  NICOLAS .SPEED 

4 0 7  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



re turn  f  (  v a l  ,  v a r i a n t ) ;  
#e l se  

re turn  f ( x _ s c a l e  *  ( v a l  +  x . o f f s e t ) ,  v a r i a n t )  +  y . o f f s e t ;  
#cndi f  

vo id  s t e p _ s o m e  ( uns igned  c o u n t )  
{ 

t ry{  
N T L :  : R R : :  S e t P r e c i s i o n (  w o r k i n g - p r e c i s i o n  ) ;  
i f ( !  s t a r t e d  )  
{ 

// 
// If we have an automatic y—offset calculate it now: 
/ /  
i f ( a u t o - o f f s e t . y )  
{ 

b o o s t  : :  m a t h  : :  n  t l  : :  R R  f a ,  f b  ,  f i n ;  
f a  =  f ( x _ s c a l e  *  ( a  +  x . o f f s e t ) ,  v a r i a n t ) ;  
f b  =  f ( x _ s c a l e  *  ( b  +  x . o f f s e t ) ,  v a r i a n t ) ;  
f m  =  f ( x _ s c a l e  *  ( ( a + b ) / 2  +  x . o f f s e t ) ,  v a r i a n t ) ;  
y . o f f s e t  =  - ( f a  +  f b  +  f m )  /  3 ;  

N T L : : R R : :  S e t O u t p u t P r e c i s i o n  ( 5 ) ;  
s t d : : c o u t  «  " S e t t i n g  a u t o  — y —  o f f s e t  t o  "  «  

y . o f f s e t  «  s t d : : e n d l ;  

} 
// 
/ /  T r u n c a t e  o f f s e t s  t o  f l o a t  p r e c i s i o n  :  
/ /  
x . o f f s e t  =  N T L : :  R o u n d T o P r e c i s i o n  (  x  . o f f s e t  .  v a l u e  ( )  ,  2 0 ) ;  
y . o f f s e t  =  N T L : :  R o u n d T o P r e c i s i o n  (  y . o f f s e t  .  v a l u e  ( )  ,  2 0 ) ;  
/ /  
/ /  C o n s t r u c t  n e w  R e m e z  s t a t e  m a c h i n e :  
/ /  
p . r e m e z  .  r e s e t  (new b o o s t  : :  m a t h  : :  t o o l s  : :  r e m e z _ m i n i m a x <  

b o o s t  : :  m a t h  :  :  n t l  : :  R R > (  
& t h e _ f u n c t i o n  ,  
o r d e r N  ,  o r d e r D  ,  
a ,  b ,  
p i n  ,  
r e l . e r r o r  ,  
s k e w  ,  
w o r k i n g  . p r e c i s i o n  ) ) ;  

s t d : : c o u t  «  " M a x  e r r o r  i n  i n t e r p o l a t e d  f o r m :  "  «  
s t d  : :  s e t p r e c i s i o n ( 3 )  «  s t d  : :  s c i e n t i f i c  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l _ c a s t <doubIe>(  
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} 

p _ r e m e z - > m a x _ e r r o r  ( ) )  «  s t d : : e n d l ;  
// 
/ /  S i g n a l  t h a t  w e ' v e  s t a r t e d :  
/ /  
s t a r t e d  =  t rue;  

} 
uns igned  i  ;  
for ( i  =  0 ;  i  <  c o u n t ;  + + i )  

{ 
s t d : : c o u t  «  " S t e p p i n g . . . "  «  s t d  : :  e n d l  ;  
p _ r e m e z - > s e t  . b r a k e  ( b r a k e  ) ;  
b o o s t  : :  m a t h  : :  n t l  : :  R R  r  =  p _ r e m e z - > i  t e r a  t  e  ( ) ;  
N T L : : R R : :  S e t O u t p u t P r e c i s i o n  ( 3 ) ;  
s t d  : :  c o u t  
«  " M a x i m u m  D e v i a t i o n  F o u n d :  

" «  s t d : : s e t p r e c i s i o n ( 3 )  «  s t d : :  s c i e n t i f i c  
«  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l _ c  a s t  <double  > (  
p _ r e m e z — > m a x _ e r r o r  ( ) )  «  s t d  : :  e n d l  

«  " E x p e c t e d  E r r o r  T e r m :  
" «  s t d : : s e t p r e c i s i o n ( 3 )  «  s t d : :  s c i e n t i f i c  
«  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l _ c a s t<double>(  
p _ r e m e z — > e r r o r _ t e r m  ( ) )  «  s t d : :  e n d l  

«  " M a x i m u m  R e l a t i v e  C h a n g e  i n  C o n t r o l  P o i n t s  :  
" «  s t d : : s e t p r e c i s i o n ( 3 )  «  s t d : :  s c i e n t i f i c  
«  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < d o u b l e  > ( r  )  «  
s  t  d  :  :  e  n  d  1  ;  

} 
} 
catch(cons t  s t d  : :  e x c e p t i o n &  e )  
{ 

s t d : :  c o u t  «  " S t e p  f a i l e d  w i t h  e x c e p t i o n :  "  «  
e . w h a t ( )  «  s t d  : :  e n d l  ;  

} 

vo id  s t e p ( cons t  char* ,  cons t  char*)  
{ 

s t e p . s o m e  ( 1 ) ;  
} 

vo id  s h o w ( cons t  char* ,  cons t  char*)  
{ 

N T L :  : R R : :  S e t P r e c i s i o n (  w o r k i n g - p r e c i s i o n  ) ;  
i f ( s t a r t e d  )  
{ 

b o o s t  : :  m a t h  : :  t o o l s  : : p o l y n o m i a l < b o o s t : :  m a t h  : :  n t l  :  :  R R >  

4 0 9  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



n  =  p _ r e m e z - > n u m e r a t o r  ( ) ;  
b o o s t  : :  m a t h  : :  t o o l s  : : p o l y n o m i a l < b o o s t : :  m a t h  : :  n t l  : :  R R >  

d  =  p _ r e m e z - > d e n o m i n a t o r  ( ) ;  
s t d  : :  v e c t o r < b o o s t  : :  m a t h  : :  n t l  :  : R R >  c n  =  n  .  c h e b y s h e v  ( ) ;  
s t d  : :  v e c t o r  C b o o s t  : :  m a t h  : :  n  t l  : :  R R >  c d  =  d  .  c h e b y s h e v  ( ) ;  
/ /  N I C O L A S  W A N T S  6 0  d i g i t s :  
/ / i n t  p r e c  =  2  +  (  t a r  g e t  . p r e c i s i o n  *  3 0 1 0 L L ) / 1 0 0 0 0 ;  
i n t  p r e c  =  6 0 ;  
s t d  : :  c o u t  «  s t d  : :  s c  i e n t i f i c  «  s t d  : :  s e t p r e c i s i o n  (  p r e c  ) ;  

N T L :  : R R : :  S e t O u t p u t P r e c i s i o n  ( p r e c  ) ;  
b o o s t  : :  n u m e r i c  : :  u b l a s  : :  v e c t o r < b o o s t  : :  m a t h  :  :  n t l  :  : R R >  

v  =  p _ r e m e z — > z e r o _ p o i n t s  ( ) ;  

s t d : : c o u t  «  "  Z e r o s  =  { \ n " ;  
uns igned  i  ;  
for ( i  = 0 ;  i  <  v . s i z e ( ) ;  + + i )  

{ 
s t d : :  c o u t  «  "  "  «  v [ i ]  «  s t d : :  e n d l ;  

} 
s t d : : c o u t  «  "  } \ n " ;  

v  =  p _ r e m e z - > c h e b y s h e v _ p o i n t s  ( ) ;  
s t d : :  c o u t  «  "  C h e b y s h e v  C o n t r o l  P o i n t s  =  { \ n " ;  
for ( i  =  0 ;  i  <  v . s i z e ( ) ;  + + i )  

{ 
s t d  : :  c o u t  «  "  "  «  v  [  i  ]  «  s t d  : :  e n d l  ;  

} 
s t d : : c o u t  «  "  } \ n "  ;  

s t d : :  c o u t  «  " X  o f f s e t :  "  «  x _ o f f s e t  «  s t d : :  e n d l ;  
s  t  d  : :  c  o  u  t  «  " X  s c a l e :  "  «  x  _  s  c  a  1  e  «  s t d  : :  e n d l  ;  
s t d  : :  c o u t  «  " Y  o f f s e t :  "  «  y . o f f s e t  «  s t d : :  e n d l ;  

s t d  : :  c o u t  «  " P  =  { " ;  
for ( i  =  0 ;  i  <  n . s i z e Q ;  + + i )  

{ 
s t d  : :  c o u t  «  "  "  «  n  [  i  ]  «  " L ,  "  «  s t d  : :  e n d l  ;  

} 
s t d : : c o u t  «  "  } \ n " ;  

s t d  : :  c o u t  «  " Q  =  { "  ;  
for ( i  = 0 ;  i  <  d . s i z e ( ) ;  + +  i )  

{ 
s t d  :  :  c o u t  «  "  "  «  d  [  i  ]  «  " L ,  "  «  s t d  : :  e n d l  ;  

} 
s t d  : :  c o u t  «  "  } \ n "  ;  
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s t d : :  c o u t  «  " C P  =  { " ;  
for ( i  =  0 ;  i  <  c n . s i z e ( ) ;  + + i )  
{ 

s t d  : :  c o u t  «  "  "  «  c n  [  i  ]  «  " L ,  "  «  s t d  : :  e n d l  ;  

} 
s t d : : c o u t  «  "  } \ n " ;  

s t d  : :  c o u t  «  " C Q  =  { " ;  
for ( i  =  0 ;  i  <  c d . s i z e ( ) ;  + + i )  

{ 
s t d  : :  c o u t  «  "  "  «  c d  [  i  ]  «  " L ,  "  «  s t d  : :  e n d l  ;  

} 
s t d  : :  c o u t  «  "  } \ n "  ;  

s h o w _ e x t r a  ( n ,  d ,  x . o f f s e t  ,  y . o f f s e t  ,  v a r i a n t ) ;  

} 
e l se  
{ 

s t d : : c e r r  «  " N o t h i n g  t o  d i s p l a y "  «  s t d : :  e n d l ;  
} 

} 

vo id  d o . g r a p h  ( uns igned  p o i n t s )  

{ 
N T L :  : R R : :  S e t P r e c i s i o n ( w o r k i n g _ p r e c i s i o n  ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  s t e p  =  ( b  —  a )  /  ( p o i n t s  —  1 ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  x  =  a ;  
whi le ( p o i n t s  >  1 )  

{ 
N T L : : R R : :  S e t O u t p u t P r e c i s i o n  ( 1 0 ) ;  
s t d  : :  c o u t  «  s t d : : s e t p r e c i s i o n ( 1 0 )  «  s t d : : s e t w ( 3 0 )  «  

s t d  : :  l e f t  
«  b o o s t  : :  l e x i c a l . c a s t  < s t d  : :  s t r i n g  > ( x )  «  
t h e _ f u n c t i o n ( x )  «  s t d  : :  e n d l  ;  

—  p o i n t s  ;  
x  + =  s t e p  ;  

} 
s t d : : c o u t  «  s t d  : :  s  e t p r e c i  s i  o  n  ( 1  0 )  «  s t d  : :  s e t w  ( 3 0 )  «  

s t d  : :  l e f t  
«  b o o s t  : :  l e x  i c  a l  . c a s t  < s t d  : :  s t r i n g  > ( b )  «  
t h e . f u n c t i o n  ( b )  «  s t d : : e n d l ;  

} 

vo id  g r a p h ( cons t  char* ,  cons t  char*)  
{ 
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d o . g r a p h ( 3 ) ;  
} 

t emplate  <c lass  T> 
vo id  d o _ t e s t ( T ,  cons t  char*  n a m e )  
{ 

b o o s t  : :  m a t h  : :  n t l  : :  R R : :  S e t P r e c i s i o n (  w o r k i n g  . p r e c i s i o n  ) ;  
i f ( s t a r t e d  )  
{ 

// 

// We want to test the approximation at fixed precision: 
/ /  e i t h e r  f l o a t ,  d o u b l e  o r  l o n g  d o u b l e .  B e g i n  b y  g e t t i n g  
/ /  t h e  p o l y n o m i a l s  :  
/ /  
b o o s t  : :  m a t h  : :  t o o l s  : :  p o l y n o m i a l  < T >  n  ,  d  ;  
b o o s t  : :  m a t h  : :  t o o l s  : :  p o l y n o m i a l  c b o o s t  : :  m a t h  : :  n t l  : :  R R >  n r  ,  d r  ;  
n r  =  p . r e m e z  — > n u m e r a t o r  ( ) ;  
d r  =  p . r e m e z — > d e n o m i n a t o r  ( ) ;  
n  =  n  r  ;  
d  =  d r ;  

s t d  : :  v e c t o r < b o o s t  : :  m a t h  : :  n t l  : :  R R >  c n l  ,  c d l  ;  
c n l  =  n r . c h e b y s h e v  ( ) ;  
c d l  =  d r . c h e b y s h e v  ( ) ;  
s t d  : :  v e c t o r < T >  c n ,  c d ;  
for (uns igned  i  =  0 ;  i  <  c n l . s i z e Q ;  + + i )  

{ 
c n . p u s h _ b a c k ( b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( c n l  [  i  ] ) ) ;  

} 
for (uns igned  i  =  0 ;  i  <  c d l .  s i z e  ( ) ;  + + i )  
{ 

c d .  p u s h _ b a c k ( b o o s t  :  :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( c d l  [  i  ] ) ) ;  
} 
// 
/ /  W e ' l l  t e s t  a t  t h e  C h e b y s h e v  c o n t r o l  p o i n t s  w h i c h  i s  w h e r e  
// (in theory) the largest deviation should occur. For good 
/ /  m e a s u r e  w e ' l l  t e s t  a t  t h e  z e r o s  a s  w e l l :  
/ /  
b o o s t  : :  n u m e r i c  : :  u b l a s  : :  v e c t o r  c b o o s t  : :  m a t h  : :  n t l  : :  R R >  

z e r o s  ( p . r e m e z — > z e r o _ p o i n t s  ( ) )  ,  
c h e b  (  p . r e m e z — > c h e b y s h e v . p o i n t s  ( ) ) ;  

b o o s t  : :  m a t h  : :  n t l  :  : R R  m a x . e r r o r  ( 0 )  ,  c h e b . m a x . e r r o r  ( 0 ) ;  

// 
/ /  D o  t h e  t e s t s  a t  t h e  z e r o s :  
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// 
s t d  : :  c o u t  «  " S t a r t i n g  t e s t s  a t  "  «  

n a m e  «  "  p r e c i s i o n . .  .  \  n  "  ;  
s t d  : : c o u t  «  

" A b s c i s s a  E r r o r  ( p o l y )  E r r o r  ( C h e b ) \ n " ;  
for (uns igned  i  =  1;  i  <  z e r o s  .  s i z e  ( ) ;  + + i )  
{ 

b o o s t  : :  m a t h  : :  n t l  : : R R  t r u e . r e s u l t  =  
t h e _ f u n c t i o n ( z e r o s  [ i  ] ) ;  

T  a b s i s s a  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( z e r o s  [  i  ] ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  t e s t . r e s u l t  =  n .  e v a l u a t e  (  a b s i s s a  )  /  

d .  e v a l u a t e ( a b s i s s a  ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  c h e b . r e s u l t  =  

b o o s t  : :  m a t h  : :  t o o l s  : :  e v a l u a t e . c h e b y s h e v  ( c n  ,  a b s i s s a )  /  
b o o s t  : :  m a t h  : :  t o o l s  : :  e v a l u a t e . c h e b y s h e v ( c d ,  a b s i s s a ) ;  

b o o s t  : :  m a t h  : :  n t l  : :  R R  e r r ,  c h e b . e r r ;  
i f ( r e  1 . e r r o r )  
{ 

e r r  =  b o o s t  : :  m a t h  : :  t o o  1  s  : :  r e  1  a  t i  v e _ e r r o r  (  
t e s t . r e s u l t  ,  t r u e . r e s u l t ) ;  

c h e b . e r r  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e  1  a  t  i  v e  . e r r  o r  (  
c h e b . r e s u l t  ,  t r u e . r e s u l t ) ;  

} 
e l se  
{ 

e r r  =  f a b s  (  t e  s  t  _ r e  s  u  1 1  —  t r u e . r e s u l t ) ;  
c h e b . e r r  =  f a b s  ( c h e b . r e s u l t  -  t r u e . r e s u l t ) ;  

} 
i f ( e r r  >  m a x . e r r o r )  

m a x . e r r o r  =  e r r  ;  
i f ( c h e b _ e r r  >  c h e b . m a x . e r r o r )  

c h e b . m a x . e r r o r  =  c h e b . e r r ;  
s t d : : c o u t  «  s t d  : :  s e t p r e c i s i o n  ( 6 )  «  s t d  : :  s e t w  ( 1  5 )  «  

s t d : :  l e f t  «  a b s i s s a  «  s t d  : :  s e t w  ( 1 5 )  «  s t d : :  l e f t  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( e r r )  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( c h e b _ e r r )  «  
s t d  : : e n d l ;  

} 
// 
/ /  D o  t h e  t e s t s  a t  t h e  C h e b y s h e v  c o n t r o l  p o i n t s :  
/ /  
for (uns igned  i  =  1 ;  i  <  c h e b . s i z e ( ) ;  + + i )  

{ 
b o o s t  : :  m a t h  : :  n t l  : :  R R  t r u e . r e s u l t  =  t h e . f u n c t i o n  (  c h e b  [  i  ] ) ;  
T  a b s i s s a  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e  a  1  _ c  a s  t  < T > ( c h e b  [  i  ] ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  t e s t . r e s u l t  =  n . e v a l u a t e ( a b s i s s a )  /  
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d .  e v a l u a t e  (  a b s i s s a  ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  c h e b . r e s u l t  =  

b o o s t  : :  m a t h  : :  t o o l  s  : :  e  v a l u a t e . c h e b y s h e  v  ( c n  ,  a b s i s s a )  /  
b o o s t  : :  m a t h  : :  t o o l s  : :  e v a l u a t e _ c h e b y s h e v ( c d ,  a b s i s s a ) ;  

b o o s t  : :  m a t h  :  :  n t l  : : R R  e r r ,  c h e b . e r r ;  
i f ( r e l . e r r o r )  
{ 

e r r  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e  1  a t  i  v e  _ e r r o r  (  
t e s t . r e s u l t  ,  t r u e . r e s u l t ) ;  

c h e b . e r r  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e l a t i  v e . e r r o r  (  
c h e b . r e s u l t ,  t r u e . r e s u l t ) ;  

} 
e l se  
{ 

e r r  =  f a b s  (  t e s t . r e s u l t  —  t r u e . r e s u l t ) ;  
c h e b . e r r  =  f a b s  ( c h e b . r e s u l t  —  t r u e . r e s u l t ) ;  

} 
i f ( e r r  >  m a x . e r r o r )  

m a x . e r r o r  =  e r r  ;  
s t d : :  c o u t  «  s t d  :  :  s e t p r e c i s i o n  ( 6 )  «  s t d  : :  s e t w  ( 1  5 )  «  

s t d  : :  l e f t  «  a b s i s s a  «  s t d  : :  s e t w ( 1 5 )  «  s t d  : :  l e f t  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( e r r  )  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > (  c h e b . e r r  )  «  
s t d  :  :  e n d l  ;  

} 
s t d : :  s t r i n g  m s g  =  " M a x  E r r o r  f o u n d  a t  " ;  
m s g  + =  n a m e ;  
m s g  + =  "  p r e c i s i o n  =  " ;  
m s g . a p p e n d ( 6 2  —  1 7  -  m s g . s i z e ( ) ,  '  ' ) ;  
s t d  : :  c o u t  «  m s g  «  s t d  : :  s e t p r e c i s i o n  ( 6 )  «  " P o l y  :  "  «  

s t d  : :  s e t w  ( 2 0 )  «  s t d : :  l e f t  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l  . c a s t  < T > (  m a x  . e r r o r  )  «  
" C h e b  :  "  «  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > (  
c h e b . m a x . e r r o r )  «  s t d : :  e n d l ;  

} 
e l se  
{ 

s t d : : c o u t  «  
" N o t h i n g  t o  t e s t :  t r y  c o n v e r g i n g  a n  a p p r o x i m a t i o n  f i r s t  ! ! ! "  
«  s t d  : : e n d l ;  

} 
} 

vo id  t  e  s  t  _ f  1  o  a  t  (  cons t  char* ,  cons t  char*)  
{ 

d o . t e s t  (  f loa t  ( 0 )  ,  " f l o a t " ) ;  
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} 

vo id  t e s t - d o u b l e  ( cons t  char* ,  cons t  char*)  
{ 

d o _ t e  s  t  (double  ( 0 )  ,  " d o u b l e " ) ;  

} 

vo id  t e s t _ l o n g  ( cons t  char* ,  cons t  char*)  
{ 

d o . t e s t  ( ( long  double ) ( 0 ) ,  " l o n g  d o u b l e " ) ;  

} 

vo id  t  e  s  t  _  a  1 1  (  cons t  char* ,  cons t  char*)  
{ 

d o . t e s t  (  f l oa t  ( 0 )  ,  " f l o a t " ) ;  
d o . t e s t  (double  ( 0 )  ,  " d o u b l e " ) ;  
d o . t e s t  ( ( long  double ) ( 0 ) ,  " l o n g  d o u b l e " ) ;  

} 

t emplate  <c lass  T> 
vo id  d o _ t e s t _ n ( T ,  cons t  char*  n a m e ,  uns igned  c o u n t )  

{ 
b o o s t  : :  m a t h  : :  n t l  : : R R : :  S e t P r e c i s i o n ( w o r k i n g _ p r e c i s i o n  ) ;  
i f  (  s t a r t e d  )  
{ 

// 
// We want to test the approximation at fixed precision: 
/ /  e i t h e r  f l o a t ,  d o u b l e  o r  l o n g  d o u b l e .  B e g i n  b y  g e t t i n g  
/ /  t h e  p o l y n o m i a l s  :  
/ /  
b o o s t  : :  m a t h  t o o l  s  : :  p o l y n o m i a l  < T >  n ,  d ;  
b o o s t  : :  m a t h  :  :  t o o l s  : :  p o l y n o m i a l  c b o o s t  : :  m a t h  :  :  n t l  : : R R >  n r  ,  
n r  =  p . r e m e z — > n u m e r a t o r  ( ) ;  
d r  =  p . r e m e z — > d e n o m i n a t o r  ( ) ;  
n  =  n r ;  
d  =  d r  ;  

s t d : :  v e c t o r  < b o o s t : :  m a t h  : :  n t l  :  :  R R >  c n l  ,  c d l  ;  
c n l  =  n r . c h e b y s h e v  ( ) ;  
c d l  =  d r . c h e b y s h e v  ( ) ;  
s t d  : :  v e c t o r < T >  c n ,  c d  ;  
for  (uns igned  i  =  0 ;  i  <  c n l  .  s i z e  ( ) ;  + + i )  

{ 
c n . p u s h _ b a c k ( b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( c n l  [  i  ] ) )  

} 
for (uns igned  i  =  0 ;  i  <  c d l .  s i z e  ( ) ;  + + i )  
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{ 
c d . p u s h _ b a c k ( b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > ( c d l  [  i  ] ) ) ;  

} 

b o o s t  : :  m a t h  : :  n t l  :  : R R  m a x . e r r o r  ( 0 )  ,  m a x . c h e b . e r r o r  ( 0 ) ;  
b o o s t  : :  m a t h  : :  n t l  :  : R R  s t e p  =  ( b  -  a )  /  c o u n t ;  

// 
/ /  D o  t h e  t e s t s  a t  t h e  z e r o s :  
/ /  
s t d : :  c o u t  «  " S t a r t i n g  t e s t s  a t  "  «  

n a m e  «  "  p r e c i s i o n  . . .  \  n "  ;  
s t d : : c o u t  «  

" A b s c i s s a  E r r o r  ( p o l y )  E r r o r  ( C h e b ) \ n " ;  
for ( b o o s t  : :  m a t h  : :  n  t l  : :  R R  x  =  a + s t e p ;  x  < = b ;  x  + =  s t e p )  

{ 
b o o s t  : :  m a t h  : :  n t l  : :  R R  t r u e . r e s u l t  =  t h e . f u n c t i o n  ( x  ) ;  
T  a b s i s s a  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l _ c a s t  < T > ( x  ) ;  
b o o s t  : :  m a t h  : :  n t l  : :  R R  t e s t . r e s u l t  =  n  .  e v a l u a t e  (  a b s i s s a  )  /  

d .  e v a l u a t e ( a b s i s s a  ) ;  
b o o s t  : :  m a t h  : :  n t l  : : R R  c h e b . r e s u l t  =  

b o o s t  : :  m a t h  : :  t o o l s  : :  e v a l u a t e . c h e b y s h e v  ( c n  ,  a b s i s s a )  /  
b o o s t  : :  m a t h  : :  t o o l s  : :  e v a l u a t e _ c h e b y s h e v ( c d  ,  a b s i s s a  ) ;  

b o o s t  : :  m a t h  : :  n t l  : :  R R  e r r ,  c h e b . e r r ;  
i f ( r e l . e r r o r )  
{ 

e r r  =  b o o s t  :  :  m a t h  : :  t o o  1  s  : :  r e l  a t  i  v e  _ e r r o r  (  
t e s t . r e s u l t  ,  t r u e . r e s u l t ) ;  

c h e b . e r r  =  b o o s t  : :  m a t h  : :  t o o l s  : :  r e  1  a t i  v e  . e r r o r  (  
c h e b . r e s u l t  ,  t r u e . r e s u l t ) ;  

} 
e l se  
{ 

e r r  =  f a b s  (  t e  s  t  _ r e  s  u  1 1  —  t r u e . r e s u l t ) ;  
c h e b . e r r  =  f a b s  ( c h e b . r e s u l t  -  t r u e . r e s u l t ) ;  

} 
i f ( e r r  >  m a x . e r r o r )  

m a x . e r r o r  =  e r r  ;  
i f ( c h e b _ e r r  >  m a x . c h e b . e r r o r )  

m a x . c h e b . e r r o r  =  c h e b . e r r  ;  
s t d : :  c o u t  «  s t d  : :  s e t p r e c i s i o n  ( 6 )  «  s t d  : :  s e t w  ( 1  5 )  «  

s  t  d  : :  1  e  f  t  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  <double  > (  a b s i  s  s  a  )  «  
( t e s t . r e s u l t  <  t r u e . r e s u l t  ?  " - "  :  " " )  «  
s t d  : :  s e t w  ( 2 0 )  «  s t d : :  l e f t  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l _ c a s t <doub!e> ( e r r )  «  
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b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  <double  > ( c h e b _ e r r )  «  
s t d  : :  e n d l ;  

} 
s t d : :  s t r i n g  m s g  =  " M a x  E r r o r  f o u n d  a t  
m s g  + =  n a m e ;  
m s g  + =  "  p r e c i s i o n  =  
/ / m s g .  a p p e n d  ( 6 2  —  1 7  —  m s g .  s i z e  ( ) ,  '  ' ) ;  
s t d  : :  c o u t  «  m s g  «  "  P o l y  :  "  «  s t d  : :  s e t p r e c i s i o n ( 6 )  «  

/ / «  s t d : :  s e t w  ( 1 5 )  «  s t d  : : l e f t  «  
b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l . c a s t  < T > (  m a x  . e r r o r )  «  
"  C h e b  :  "  «  b o o s t  : :  m a t h  : :  t o o l s  : :  r e a l _ c a s t < T > (  
m a x . c h e b . e r r o r )  «  s t d : :  e n d l ;  

} 
e l se  
{ 

s t d  : :  c o u t  «  
" N o t h i n g  t o  t e s t :  t r y  c o n v e r g i n g  a n  a p p r o x i m a t i o n  f i r s t  ! ! ! "  
«  s  t  d  : :  e  n  d  1  ;  

} 

vo id  t e s t . n  (  uns igned  n )  

d o . t e  s t  _ n  (  b o o s t  : :  m a t h  : :  n t l  : :  R R ( )  ,  " b o o s t  : :  m a t h  : :  n t l  :  : R R "  ,  n ) ;  

vo id  t  e  s  t  _ f l  o a  t  _ n  (  uns igned  n )  

d o . t e s t . n  (  f l oa t  ( 0 )  ,  " f l o a t " ,  n ) ;  

vo id  t e s t . d o u b l e . n  (uns igned  n )  

d o . t e s t . n  (double  ( 0 )  ,  " d o u b l e " ,  n ) ;  

vo id  t e s  t . l o n g _ n  (  uns igned  n )  

d o . t e s t . n  ( ( long  double ) ( 0 ) ,  " l o n g  d o u b l e " ,  n ) ;  

vo id  r o t a t e ( cons t  char* ,  cons t  char*)  

i f  ( p . r e m e z  )  
{ 

p _ r e m e z - > r o t a t e  ( ) ;  
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} 
e l se  
{ 

s t d  :  :  c e r r  «  " N o t h i n g  t o  r o t a t e "  «  s t d  : :  e n d l  ;  
} 

} 

vo id  r e s c a l e  ( cons t  char* ,  cons t  char*)  
{ 

i f  ( p . r e m e z )  

{ 
p . r e m e z — > r e s c a l e  ( a  ,  b ) ;  

} 
e l se  
{ 

s t d  :  :  c e r r  «  " N o t h i n g  t o  r e s c a l e "  «  s t d  : :  e n d l  ;  

} 
} 

vo id  g r a p h . p o l y  ( cons t  char* ,  cons t  char*)  
{ 

in t  i  =  5 0 ;  
b o o s t  : :  m a t h  : :  n t l  : : R R : :  S e t P r e c i s i o n ( w o r k i n g _ p r e c i s i o n  ) ;  
i f  (  s t a r t e d  )  
{ 

// 
// We want to test the approximation at fixed precision: 
/ /  e i t h e r  f l o a t  ,  d o u b l e  o r  l o n g  d o u b l e .  B e g i n  b y  g e t t i n g  
/ /  t h e  p o l y n o m i a l s  :  
/ /  
b o o s t  :  :  m a t h  : :  t o o l s  : :  p o l y n o m i a l  c b o o s t  : :  m a t h  : :  n t l  : :  R R >  n  ,  d  ;  
n  =  p . r e m e z — > n u m e r a t o r  ( ) ;  
d  =  p . r e m e z — > d e n o m i n a t o r  ( ) ;  

b o o s t  : :  m a t h  : :  n t l  : : R R  m a x . e r r o r ( O ) ;  
b o o s t  : :  m a t h  : :  n t l  :  : R R  s t e p  =  ( b  —  a )  /  i ;  

s t d : :  c o u t  «  " E v a l u a t i n g  N u m e r a t o r  . . .  \  n "  ;  
b o o s t  : :  m a t h  : :  n t l  :  : R R  v a l ;  
for ( v a l  =  a ;  v a l  < =  b ;  v a l  + =  s t e p )  

s t d  :  :  c o u t  «  n . e v a l u a t e ( v a l )  «  s t d  : :  e n d l  ;  
s t d : :  c o u t  «  " E v a l u a t i n g  D e n o m i n a t o r  . . .  \  n "  ;  
for ( v a l  =  a ;  v a l  < =  b ;  v a l  + =  s t e p )  

s t d  : :  c o u t  «  d  .  e v a l u a t e  (  v a l  )  «  s t d  : :  e n d l  ;  
} 
e l se  
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s t d  : : c o u t  «  
" N o t h i n g  t o  t e s t :  t r y  c o n v e r g i n g  a n  a p p r o x i m a t i o n  f i r s t  ! ! !  
«  s td  : :  endl  ;  

} 

in t  t e s t . m a i n  ( in t  ,  char*  [ ] )  
{ 

s t d  : :  s t r i n g  l i n e  ;  
r e a l  . p a r s e r  c long  double /*  b o o s t : :  m a t h  : :  n t l  :  : R R * /  >  cons t  r r . p  ;  
whi le ( s t d  : :  g e t l i n e ( s t d  : : c i n  ,  l i n e ) )  

{ 
i f  (  p a r s e  (  l i n e  .  c . s t r  ( )  ,  s t r _ p  ( "  q u i t " )  ,  s p a c e . p  ) .  fu  11  )  

re turn  0 ;  
i f ( fa l se  = =  p a r s e ( l i n e  .  c . s t r ( ) ,  
( 

(  s t r . p  ( " r a n g e "  ) [  a s s i g n . a  (  s t a r t e d  ,  fa l se ) ]  
& &  r e a l  _ p  [  a s s i g n _ a  ( a  ) ]  & &  r e a l  _ p  [  a s s i g n  _ a  ( b  ) ]  )  

s t r . p  ( "  r e l a t i v e  " ) [ a s s i g n _ a (  s t a r t e d  ,  fa l se  ) ] [  
a s  s i g n  _ a  (  r e l  . e r r  o r  ,  t rue) ]  

s t r . p  ( " a b s o l u t e " ) [ a s s i g n . a ( s t a r t e d  ,  fa l se  ) ] [  
a s s i g n . a  (  r e l  . e r r o r  ,  fa l se ) ]  

(  s t r . p  ( "  p i n  " ) [ a s s i g n _ a (  s t a r t e d ,  fa l se ) ]  
& &  s t r . p  ( " t r u e "  ) [  a s s i g n . a  ( p i n  ,  t rue) ]  )  

(  s  t r . p  ( "  p i n  " ) [  a s  s i g n  _ a  (  s t a r t e d  ,  fa l se ) ]  
& &  s  t r . p  ( "  f a l  s e  " ) [  a s s i g n  _ a  ( p i n  ,  fa l se ) ]  )  

(  s t r _ p ( " p i n " ) [ a s s i g n _ a ( s t a r t e d ,  fa l se ) ]  
& &  s t r . p  ( "  1 " ) [  a s s i g n  _ a  ( p i n  ,  t rue) ]  )  

(  s t r _ p ( " p i n " ) [ a s s i g n _ a ( s t a r t e d  ,  fa l se ) ]  
& &  s t r . p  ( " 0 "  ) [  a s s i g n  _ a  ( p i n  ,  fa l se ) ]  )  

s t r . p  ( " p i n " ) [ a s s i g n _ a (  s t a r t e d  ,  fa l se  ) ] [  
a s s i g n . a  (  p i n  ,  t rue) ]  

(  s t r _ p ( "  o r d e r  " ) [ a s s i g n _ a ( s t a r t e d ,  fa l se ) ]  
& &  u i n t . p  [  a s s i g n . a  (  o r d e r N  ) ]  
& &  u i n t . p  [  a s s i g n . a  (  o r d e r D  ) ]  )  
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(  s t r . p  ( " o r d e r "  ) [  a s s i g n . a  (  s t a r t e d  ,  f a l s e ) ]  
& &  u i n t . p  [  a s s i g n . a  ( o r d e r N  ) ]  )  

(  s  t r _ p  ( "  t a r g e t - p r e c  i  s i  o n  "  )  & &  u i n t _ p [  
a s s i g n . a ( t a r g e t - p r e c i s i o n  ) ]  )  

(  s  t r _ p  ( " w o r k i n g  — p r e c i  s i o n  " ) [  a s s i g n  _ a  (  s t a r t e d  ,  f a l s e ) ]  
& &  u i n t . p  [  a s s i g n . a  (  w o r k i n g  . p r e c i s i o n  ) ]  )  

(  s t r . p  ( "  v a r i a n t "  ) [  a s s i g n . a  (  s t a r t e d  ,  f a l s e ) ]  
& &  i n t _ p  [  a s s i g n . a  (  v a r i a n t  ) ]  )  

(  s t r . p  ( " s k e w "  ) [  a s s i g n  _ a  (  s t a r t e d  ,  f a l s e ) ]  
& &  i n t . p  [  a s s i g n . a  ( s k e w  ) ]  )  

(  s t r . p ( " b r a k e " )  & &  i n t _ p [  a s  s i g n _ a (  b r a k e  ) ]  )  

(  s t r . p  ( " s t e p  " )  & &  i n t . p f & s t e p . s o m e  ]  )  

s t r . p  ( " s t e p  " ) [ &  s t e p ]  

s t r _ p ( " p o l y " ) [ & g r a p h _ p o l y ]  

s t r . p  ( " i n f o  " ) [ & s h o w ]  

(  s  t r _ p  ( " g r a p h  " )  & &  u i n t . p  [ & d o _ g r a p h  ]  )  

s t r . p  ( " g r a p h " ) [ & g r a p h  ]  

(  s t r _ p ( " x — o f f s e t " )  & &  r e a l . p [ a s s i g n . a ( x . o f f s e t ) ]  )  

(  s t r . p  ( " x — s c a l e " )  & &  r e a l . p  [  a s s i g n . a  (  x . s c a l e  ) ]  )  

(  s t r . p  ( " y - o f f s e t " )  & &  s t r _ p  ( "  a u t o  "  ) [  
a s s i g n . a  (  a u t o . o f f s e t . y  ,  t r u e ) ]  )  

(  s t r . p  ( " y - o f f s e t " )  
& &  r e a l . p  [  a s s i g n . a  (  y . o f f s e t  ) ]  [  
a s s i g n . a  (  a u t o . o f f s e t . y  ,  f a l s e ) ]  )  

(  s t r . p  ( " t e s t " )  & &  s t r . p  ( " f l o a t " )  
& &  u i n t _ p [ &  t e s t . f l o a t . n  ]  )  

(  s t r . p  ( "  t e s t  " )  & &  s t r _ p  ( "  f l o a t  " ) [ &  t e s  t _ f l  o a t  ]  )  

(  s t r . p  ( "  t e s t  " )  & &  s t r . p  ( " d o u b l e " )  
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& &  u i n t _ p [ & t e s t _ d o u b l e _ n  ]  )  

(  s  t r _ p  ( "  t e s  t  " )  & &  s  t  r _ p  ( "  d o u b l e  " ) [ &  t e s t  . d o u b l e  ]  )  

(  s t r _ p ( " t e s t  "  )  & &  s t r . p ( " l o n g " )  
& &  u i n t _ p  [ &  t e s t  _ l o n g  _ n  ]  )  

(  s t r . p  ( "  t e s t  " )  & &  s t r . p  ( " l o n g " ) [ &  t e s t . l o n g  ]  )  

(  s t r _ p ( " t e s t " )  & &  s t r _ p ( " a l l " ) [ & t e s t _ a l l ]  )  

(  s t r . p  ( " t e s t  " )  & &  u i n t _ p [ & t e s t _ n  ]  )  

i i  
s  t  r  _  p  ( "  r o t a t e  " ) [ & r o t a t e ]  

(  s  t r _ p  ( "  r e s c a l e  "  )  & &  r e a l  _ p  [  a s s i g n . a  ( a ) ]  
& &  r e a l  _ p  [  a s s i g n  _ a  ( b ) ]  
& &  e p s i l o n _ p [ & r e s c a l e  ]  )  

) ,  s p a c e . p  ) .  f  u 1 1 )  
{ 

s t d : : c o u t  «  " U n a b l e  t o  p a r s e  d i r e c t i v e :  \ " "  «  
l i n e  «  «  s t d : : e n d l ;  

} 
e l s e  
{ 

s t d : : c o u t  «  " V a r i a n t  =  "  «  
v a r i a n t  «  s  t  d  :  :  e  n  d  1  ;  

s t d : : c o u t  «  " r a n g e  =  [ "  «  
a  «  "  «  b  «  «  s t d  :  :  e n d l  ;  

s t d  : :  c o u t  «  " R e l a t i v e  E r r o r  =  "  «  
r e l . e r r o r  «  s t d : :  e n d l ;  

s t d  : :  c o u t  «  " P i n  t o  O r i g i n  =  "  «  
p i n  «  s t d  : :  e n d l  ;  

s t d  : :  c o u t  «  " O r d e r  ( N u m / D e n o m )  =  "  «  
o r d e r N  «  " / "  «  o r d e r D  «  s t d  : :  e n d l  ;  

s t d  : :  c o u t  «  " T a r g e t  P r e c i s i o n  =  "  «  
t a r g e t . p r e c i s i o n  «  s t d : : e n d l ;  

s t d  : :  c o u t  «  " W o r k i n g  P r e c i s i o n  =  "  «  
w o r k i n g - p r e c i s i o n  «  s t d : :  e n d l ;  

s t d : :  c o u t  «  " S k e w  =  "  «  
s k e w  «  s t d  : :  e n d l  ;  

s t d : :  c o u t  «  " B r a k e  =  "  «  
b r a k e  «  s t d  : :  e n d l  ;  

s t d : :  c o u t  «  " X  O f f s e t  =  «  
x . o f f s e t  «  s t d  : :  e n d l  ;  
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s t d  : :  c o u t  «  " X  s c a l e  =  "  «  
x  _  s  c  a  1  e  «  s t d  : :  e n d l  ;  

s t d  :  :  c o u t  «  " Y  O  f  f  s  e  t  =  "  ;  
i f ( a u t o _ o f f s e t _ y  )  

s t d : :  c o u t  «  " A u t o  ( " ;  
s t d  : :  c o u t  «  y . o f f s e t ;  
i f ( a u t o _ o f f s e t _ y  )  

s t d : :  c o u t  «  " ) "  ;  
s t d  :  :  c o u t  «  s t d  :  :  e n d l  ;  

} 
} 
r e t u r n  0 ;  

} 

C.2 f.cpp 

This is the modified f . cpp code used by the minimax function in the Boost library. This 

is the code that contains the functions to be approximated. 

/ /  ( C )  C o p y r i g h t  J o h n  M a d d o c k  2 0 0 6 .  
/ /  U s e ,  m o d i f i c a t i o n  a n d  d i s t r i b u t i o n  a r e  s u b j e c t  t o  t h e  
/ /  B o o s t  S o f t w a r e  L i c e n s e ,  V e r s i o n  1 . 0 .  ( S e e  a c c o m p a n y i n g  f i l e  
/ /  L I C E N S E . 1 . 0 .  t x t  o r  c o p y  a t  
/  /  h t t p  :  / / w w w .  b o o s t . o r g  /  L I C E N S E - 1  _ 0  . t x t  )  

# d e f i n e  L 2 2  
#  i n c l u d e  c b o o s t  /  m a t h  /  b i n d i n g s / r r  .  h p p >  
# i n c l u d e  c b o o s t  / m a t h  /  t o o l s /  p o l y n o m i a l  .  h p p >  
# i n c l u d e  c b o o s t  /  m a t h  /  s p e c i a l _ f u n c  t i o n s  . h p p >  
# i n c l u d e  c b o o s t  /  m a t h  /  s p e c i a l _ f u n c t i o n s / z e t a .  h p p >  
#  i n c l u d e  c b o o s t  /  m a t h  /  s p e c i a l . f u n c t i o n s / e x p i n t  .  h p p >  
# i n c l u d e  c b o o s t  /  m a t h  /  s p e c i a l - f u n c t i o n s  /  s i n e  .  h p p >  
# i n c l u d e  c c m a t h >  

b o o s t  :  :  m a t h  : :  n  1 1  : :  R R  f ( c o n s t  b o o s t : :  m a t h  : :  n t  1  : :  R R &  x ,  i n t  v a r i a n t )  
{  

s t a t i c  c o n s t  b o o s t  : :  m a t h  : :  n t l  : : R R  t i n y  =  
b o o s t  : :  m a t h  : :  t o o l s  : :  m i n . v a l u e C b o o s t  : :  m a t h  : :  n t l  : :  R R > ( )  *  6 4 ;  

s t a t i c  c o n s t  b o o s t  : :  m a t h  : :  n t l  : : R R  p i e  =  
b o o s t  : :  m a t h  : :  c o n s t a n t s  : : p i c b o o s t  : :  m a t h  : :  n t l  :  : R R > ( ) ;  

s t a t i c  c o n s t  b o o s t  : :  m a t h  : :  n t l  :  : R R  p i e 2  =  p i e  *  p i e ;  
s w i t c h  (  v a r i a n t )  
{ 
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c a s e  0 :  
{ 

/ /  N I C O L A S :  

/ /  L a n c z o s  2  o f  t h e  f o r m  ( 1  —  x " 2 ) ( 4  —  x  " 2 )  
/ / ( p o l y  w i t h  o b t a i n e d  c o e f s )  
/ /  M u s t  b e  u s e d  w i t h  x . s c a l e  =  h i g h  p r e c i s i o n  p i  m a i n .  c p p  
/ /  ( n o t  i n t e r a c t i v e l y  o r  h e r e )  s o  t h a t  t h e  p r e c i s i o n  i s  
/ /  h i g h .  T h e r e  i s  a  s e c o n d  s i d e  e f f e c t  t o  d o i n g  t h i n g s  
/ /  t h i s  w a y :  B e c a u s e  p i  i s  i r r a t i o n a l  ,  w e  a v o i d  d i v i s i o n  
/ /  b y  z e r o  w h e n  e v a l u a t i n g  t h e  d e n o m i n a t o r  a t  w h a t  
/ /  c o r r e s p o n d s  t o  y  =  l  a n d  y - 2 .  T h a t  i s ,  l — y / p i e 2  i s  v e r y  
/ /  u n l i k e l y  t o  t u r n  o u t  t o  b e  z e r o  e x a c t l y .  

/ /  A l s o :  a = 0  a n d  b = 4  ( i n  m a i n .  c p p  o r  i n t e r a c t i v e l y ) .  

/ /  R e l a t i v e  e r r o r  i s  t h e  g o a l .  

/ /  T h i s  w o r k s  w e l l  
b o o s t  : :  m a t h  : :  n t l  : :  R R  y  ( x  ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y )  )  )  
* 

(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y ) / 2  )  )  
/ 
(  (  l - y / p i e 2  )  *  (  (  4 - y / p i e 2  )  *  (  4 - y / p i e 2  )  )  ) ;  

} 
c a s e  1 :  
{ 

/ /  N I C O L A S :  

/ /  S i n e  a p p r o x i m a t i o n  f o r  x  u p  t o  3 .  

/ /  M u s t  b e  u s e d  w i t h  x . s c a l e  =  h i g h  p r e c i s i o n  p i ' 2  i n  
/ /  m a i n .  c p p  ( s e e  a b o v e ) ,  a  =  0 ,  b  =  9 .  

/ /  R e l a t i v e  e r r o r  i s  t h e  g o a l .  
b o o s t  : :  m a t h  : :  n t l  :  : R R  y ( x  ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y )  )  )  
/ 
(  (  y / p i e 2  -  1  )  *  (  y / p i e 2  -  4  )  *  (  y / p i e 2  -  9  )  ) ;  

} 

c a s e  2 :  
{ 
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/ /  N I C O L A S :  

/ /  S i n e  a p p r o x i m a t i o n  f o r  x  u p  t o  4 .  

/ /  M u s t  b e  u s e d  w i t h  x . s c a l e  =  h i g h  p r e c i s i o n  p i  * 2  i n  
/ /  m a i n .  c p p  ( s e e  a b o v e ) ,  a  =  0 ,  b  =  1 6 .  

/ /  R e l a t i v e  e r r o r  i s  t h e  g o a l .  

/ /  T h i s  w o r k s  w e l l  

b o o s t  : :  m a t h  : :  n t l  : :  R R  y  ( x  ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  s i n c _ p i  (  s q r t ( y )  )  )  
/ 
( 

(  y  /  p i e 2  -  1  )  
*  (  y / p i e 2  —  4  )  
*  (  y / p i e 2  -  9  )  
*  (  y / p i e 2  -  1 6  )  

) ;  

c a s e  3 :  
{ 

/ /  N I C O L A S :  

/ /  L a n c z o s  3  

/ /  t o  g e t  a n s w e r  o f  t h e  f o r m  

/ /  (  x ~ 2  —  1  )  t i m e s  (  x " 2  —  4  )  t i m e s  (  x ' 2  —  9  )  t i m e s  
/ /  (  x  " 2  —  9  )  t i m e s  (  p o l y  i n  x * 2  w i t h  o b t a i n e d  
/ /  c o e f f i c i e n t s  )  

/ /  M u s t  b e  u s e d  w i t h  x . s c a l e  =  h i g h  p r e c i s i o n  p i  m a i n .  c p p  
/ /  ( n o t  i n t e r a c t i v e l y  o r  h e r e )  s o  t h a t  t h e  p r e c i s i o n  i s  
/ /  h i g h .  T h e r e  i s  a  s e c o n d  s i d e  e f f e c t  t o  d o i n g  t h i n g s  
/ /  t h i s  w a y :  B e c a u s e  p i  i s  i r r a t i o n a l  ,  w e  a v o i d  d i v i s i o n  
/ /  b y  z e r o  w h e n  e v a l u a t i n g  t h e  d e n o m i n a t o r  a t  w h a t  
/ /  c o r r e s p o n d s  t o  y  =  l  a n d  y  =  2 .  T h a t  i s ,  y / p i e 2 — l  i s  v e r y  
/ /  u n l i k e l y  t o  t u r n  o u t  t o  b e  z e r o  e x a c t l y .  

/ /  A l s o :  a = 0  a n d  b = 9  ( i n  m a i n .  c p p  o r  i n t e r a c t i v e l y ) .  

/ /  R e l a t i v e  e r r o r  i s  t h e  g o a l .  
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/ /  T h i s  w o r k s  w e l l .  

b o o s t  : :  m a t h  : :  n t l  : :  R R  y  ( x  ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y )  )  )  
*  
(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y ) / 3  )  )  
/  
( 

(  y / p i e 2  -  1  )  
*  (  y / p i e 2  —  4  )  
*  (  y / p i e 2  —  9  )  
*  (  y / p i e 2  —  9  )  

) ;  

c a s e  4 :  
{ 

/ /  N I C O L A S :  

/ /  S i n e  a p p r o x i m a t i o n  f o r  x  u p  t o  1 / 2 .  

/ /  M u s t  b e  u s e d  w i t h  x . s c a l e  =  h i g h  p r e c i s i o n  p i  " 2  i n  
/ /  m a i n .  c p p  ( s e e  a b o v e ) ,  a = 0 ,  b  =  l / 4 .  

/ /  R e l a t i v e  e r r o r  i s  t h e  g o a l .  
b o o s t  : :  m a t h  : :  n t l  : : R R  y ( x ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y )  )  ) ;  

} 

c a s e  5 :  
{ 

/ /  N I C O L A S :  

/ /  S i n e  a p p r o x i m a t i o n  f o r  x  u p  t o  2 .  

/ /  M u s t  b e  u s e d  w i t h  x . s c a l e  =  h i g h  p r e c i s i o n  p i  " 2  i n  
/ /  m a i n .  c p p  ( s e e  a b o v e ) ,  a = 0 ,  b  =  4 .  

/ /  R e l a t i v e  e r r o r  i s  t h e  g o a l .  
b o o s t  : :  m a t h  : :  n t l  : : R R  y ( x ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  s i n c . p i  (  s q r t ( y )  )  )  
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/ 
(  (  y / p i e 2  -  1  )  *  (  y / p i e 2  -  4  )  ) ;  

} 

c a s e  6 :  
{ 

/ /  C H A N T A L :  

/ /  c o s (  % p i  *  x  )  f r o m  — 1  t o  I .  U s e  r a n g e  [ 0  1 ] ,  

b o o s t  : :  m a t h  : :  n t l  : : R R  y ( x ) ;  
r e t u r n  

(  b o o s t  : :  m a t h  : :  c o s . p i  (  s q r t ( y ) / p i e  )  )  
/ 
( 

(  0 . 2 5  -  y / p i e 2  )  
) ;  

} 
r e t u r n  0 ;  

v o i d  s h o w _ e x t r a (  
c o n s t  b o o s t : :  m a t h  : :  t o o l s  : :  p o l y n o m i a l c b o o s t  : :  m a t h  : :  n t l  : :  R R > &  n  ,  
const boost:: math :: tools :: polynomial cboost : : math :: ntl : : RR>& d , 
c o n s t  b o o s t : :  m a t h  : :  n t l  :  : R R &  x  . o f f s e t  ,  
c o n s t  b o o s t : :  m a t h  : :  n t l  : :  R R &  y  . o f f s e t  ,  
i n t  v a r i a n t )  

{ 
s w i t c h  (  v a r i a n t )  
{ 
d e f a u l t :  

/ /  d o  n o t h i n g  h e r e  .  .  .  

> 

} 
} 
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D Remez Algorithm: Scilab Implementation 

The following code was written by Chantal Racette. 

The first function finds the coefficients of a minimax polynomial approximation of the 

function / defined in the second function. It uses the Remez exchange algorithm, solving 

the matrix system using LU decomposition. 

In order to use this function, it must first be loaded via 

exec (" \PATH\ remez LU. sci") and then run by calling it with 

remez LU (deg, a, c, it), where deg is the degree of the approximation polyno

mial, a and c are the bounds of the interval on which the function is to be approximated, 

and it is the maximum number of iteration, in case the convergence is very slow. 

f u n c t i o n  p = remezLU (deg , a , c , i t ) 
/ /  T h i s  f u n c t i o n  f i n d s  a  p o l y n o m i a l  a p p r o x i m a t i o n  o f  d e g r e e  d e g  t o  
/ /  a  f u n c t i o n  f ,  d e f i n e d  s e p a r a t e l y  ,  u s i n g  t h e  R e m e z  a l g o r i t h m  
/ /  o n  t h e  i n t e r v a l  [ a ,  c ]  w i t h  i t  i t e r a t i o n s .  

// The number of points to use is two m o r e  t h a n  t h e  
/ /  d e g r e e  w a n t e d  .  
n  =  d e g + 2 ;  

// Compute the Chebyshev nodes . 
x  =  z e r o s ( n  ,  1  ) ;  
f o r  i  =  1 :  n  

x ( i )  =  — c o s ( ( 2 * i — 1  ) * % p i / ( 2  *  n  ) )  ;  
e n d  
x 2  =  0 . 5 * ( a + c )  +  0 . 5 * ( c - a ) * x ;  

/ /  S t a r t  t h e  i t e r a t i o n  .  
f o r  1  =  1 :  i t  

/ /  F i n d  t h e  r i g h t  h a n d  s i d e  .  
n o d e s  =  f ( x 2 ) ;  
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/ /  S e t  u p  t h e  m a t r i x  t r a n s f o r m e d  i n t o  a n  u p p e r  H e s s e n b e r g  
/ /  m a t r i x  b y  u s i n g  a  N e w t o n  p o l y n o m i a l  b a s i s  .  
m a t r i c e  =  z e r o s ( n , n ) ;  
f o r  i  =  n  —  1 :  — 1 : 1  

f o r  j  =  n - 2 :  —  1  : m a x (  1  ,  i  -  1 )  
m a t r i c e  ( i  ,  j  )  =  1 ;  
f o r  k  =  1 : n — j  — 1  

m a t r i c e ( i , j )  =  m a t r i c e ( i , j )  *  ( x 2  ( n — i + 1 )  — x 2  ( k  ) ) ;  
e n d  

e n d  
e n d  

/ /  S e t  u p  t h e  c o l u m n  f o r  t h e  e r r o r  t e r m .  
a l t  =  o n e s ( n , 1 ) ;  
f o r  i  =  1 :  n  

a l t  ( n — i  + 1 )  =  (  -  1 ) * (  i  + 1 ) *  a l t  ( n - i  + 1 )  
e n d  
m a t r i c e  ( :  ,  n )  =  a l t ;  
m a t r i c e  ( : ,  n - 1 )  =  o n e s ( n , l ) ;  

/ /  S e t  u p  t h e  r i g h t  h a n d  s i d e  .  
b  =  z e r o s ( n  ,  1 ) ;  
f o r  i  =  1 :  n  

b ( n - i  +  1 )  =  n o d e s ( i  ) ;  
e n d  

/ /  S o l v e  t h e  s y s t e m  u s i n g  p e r m u t e d  L U  d e c o m p o s i t i o n  .  
[ P  L  U ]  =  P e r m u t e d H e s s e n b e r g L U  (  m a t r i c e  ) ;  
y t e m p  =  F o r w a r d S u b s t i t u t i o n R o w V e r s i o n  ( L ,  P * b ) ;  
p t e m p  =  B a c k w a r d S u b s t i t u t i o n R o w V e r s i o n  ( U ,  y t e m p ) ;  
e r r  =  p t e m p ( n ) ;  
p  =  p t e m p  ( [ n  —  1 :  - 1 : 1 ] ) ;  

/ /  D e f i n e  t h e  a p p r o x i m a t i o n  p o l y n o m i a l  .  
f u n c t i o n  y  =  p o l y n ( x , p )  

y  =  0 * o n e s ( 1  ,  l e n g t h ( x  ) ) ;  
y  =  y  +  p ( 1 ) * o n e s ( 1 , l e n g t h ( x  ) ) ;  
f o r  i  =  2 : n - l  

b r a c k e t  =  1 ;  
f o r  k  =  1 :  i  - 1  

b r a c k e t  =  b r a c k e t  . *  ( x  —  x 2 ( k ) * o n e s ( 1 , l e n g t h ( x  ) ) ) ;  
e n d  
y  =  y  +  p ( i ) * b r a c k e t ;  

e n d  
e n d f u n c t i o n  
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/ /  F i n d  t h e  z e r o s  o f  t h e  e r r o r  f u n c t i o n  u s i n g  t h e  
/ /  m i d p o i n t  m e t h o d .  
z e r o  =  z e r o s ( 1  , n  —  1 ) ;  
f o r  i  =  1 :  n  — 1  

f i r s t  =  x 2 ( i  ) ;  
l a s t  =  x 2 ( i  +  1 ) ;  
t  o  1  =  1 ;  
w h i l e  t o l  >  1 0 " ( - 6 )  

m i d  =  ( f i r s t  +  l a s t  ) / 2 ;  
t o l  =  a b s  ( m i d — f  i  r  s  t  ) ;  
p o i n t s f  =  f ( [ f i r s t  m i d  l a s t ] ) ;  
p o i n t s p  =  p o l y n ( [ f i r s t  m i d  l a s t ] , p ) ;  
i f  (  p o i n t  s f  ( 2 )  —  p o i n t s p  ( 2 ) ) * (  p o i  n t s f  ( 1 )  -  p o i n t s p  ( 1 ) )  >  0  

f i r s t  =  m i d ;  
e l s e  

l a s t  =  m i d ;  
e n d  

e n d  
z e r o  ( i  )  =  m i d ;  

e n d  

/ /  F i n d  t h e  a b s c i s s a  o f  t h e  e x t r e m a  u s i n g  t h e  m i d p o i n t  
/ /  m e t h o d  o n  t h e  d e r i v a t i v e  o f  t h e  e r r o r  f u n c t i o n .  
e x t  =  z e r o s ( 1 , n  ) ;  
p o i n t s  =  z e r o s  ( 1  , n  + 1 ) ;  
p o i n t s  ( 1 )  =  a  ;  
p o i n t s  ( n  +  1 )  =  c  ;  
p o i n t s ( [ 2 : n ] )  =  z e r o ;  
f o r  i  =  1 ;  n  

f i r s t  =  p o i n t s ( i ) ;  
l a s t  =  p o i n t s ( i  +  1 ) ;  
t o l  =  1 ;  
w h i l e  t o l  >  1 0"( — 6) 

m i d  =  ( f i r s t  +  l a s t  ) / 2 ;  
t o l  =  a b s  ( m i d —  f  i  r  s  t  ) ;  
p o i n t s f l  =  f ( [ f i r s t  m i d  l a s t ] ) ;  
p o i n t s f 2  =  f  ( [  f  i  r  s  t + 1 0 A (  — 2 )  m i d  +  l ( T ( - 2 )  . . .  

l a s t  + 1 0 A (  - 2 ) ] ) ;  
p o i n t s p l  =  p o l y n ( [ f i r s t  m i d  l a s t  ]  , p ) ;  
p o i n t s p 2  =  p o l y n  ( [  f  i  r  s  t  +  1 C T (  —  2 )  . . .  

mid +10"( —2) last+10*(-2)],p); 
d e r f  =  (  p o i n t s f  1 — p o i  n t s f 2  ) ;  
d e r p  =  (  p o i n t s p  1 — p o i n t s p 2  ) ;  
i f  (  d e r f  ( 2 )  —  d e r p  ( 2 ) )  *  (  d e r f  ( 1 )  -  d e r p  ( 1 ) )  >  0  

f i r s t  =  m i d  ;  
e l s e  
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l a s t  =  m i d ;  
end 

e n d  
e x t ( i )  =  m i d ;  

e n d  
e x t ( l )  =  p o i n t s ( 1 ) ;  
e x t ( n )  =  p o i n t s ( n  +  l ) ;  

/ /  R e p l a c e  t h e  p o i n t s  f o r  t h e  n e x t  i t e r a t i o n ,  
x 3  =  x 2  ;  
x 2  =  e x t ;  

/ /  D i s p l a y  t h e  a l t e r n a t i n g  e r r o r  a s  w e l l  a s  t h e  
/ /  m a x i m u m  e r r o r  o f  t h e  s o l u t i o n  .  
d i s p  (  e r r )  
d i s p  ( m a x ( a b s  ( b  —  m a t r i c e  * p t e m p  ) ) )  

e n d  
e n d f u n c t i o n  

The following function simply contains the function to be approximated. 

f u n c t i o n  f u n c  =  f ( x )  
f u n c  =  s i n  ( % p i  * x  ) ;  
I I  f u n c  =  b e s s e l j  ( 0  , % p i * x )  +  b e s s e I j  ( 2 , % p i * x ) ;  

e n d f u n c t i o n  
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E Frequency Response: Scilab Code 

The following Scilab code was written by Chantal Racette. 

Given an integer n, this code computes the frequency response of decimation by a fac

tor of n performed with various filters: the Box filter, the Tent filter, the Lanczos 3 filter and 

numerous minimax approximations, the Lanczos 2 filter and numerous minimax approx

imations, the Catmull-Rom filter, the (cubic) B-Spline filter, and the Mitchell-Netravali 

filter. (The minimax approximations were computed with the modified Boost C++ code 

discussed in Appendix C.The frequency response is given for both zero-phase and half-

phase decimation. Results are converted to decibels and written to files in the / trap folder. 

(An alternate destination may be specified by editing the following source code.) 

To use this function within Scilab, it must first be loaded with 

exec ( "\PATH\Decimat ion7 . sci" ). Then it can be called by typing 

Decimat ion7 (n), where n is the desired integer decimation factor. 

f u n c t i o n  D e c i m a t i o n 7  ( n )  

s  =  3 * n * 2 ;  
f o r  i  =  1 :  s  

x l  ( i )  =  —  3 + ( 1  / n  ) * (  i  - 1 ) ;  
x 2 ( i )  =  —  3 + (  1 / ( 2 *  n ) )  +  ( l / n ) * ( i - l ) ;  

e n d  

/ / B o x  
f o r  i  =  1 :  s  

i f  p m o d u l o ( n , 2 )  = =  0  
i f  ( x 2 ( i ) < — 0 . 5 ) | ( x 2 ( i ) > 0 . 5 )  

b o x d e m i  ( i )  =  0 ;  
e l s e  

b o x d e m i  ( i )  =  1  / n ;  
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e n d  
e l s e  

i f  ( x l  ( i )  <  —  0 . 5 ) | ( x l  ( i )  > 0 . 5 )  
b o x z e r o ( i )  =  0 ;  

e l s e  
b o x z e r o ( i )  =  1  / n ;  

e n d  
e n d  

e n d  

/ / T e n t  - 1 - > 1  
f o r  i  =  1 :  s  

i f  ( x l ( i ) < - l ) | ( x l (  
t e n t l l ( i )  =  0 ;  

e l s e i f  x l ( i )<=0 
t e n t l l ( i )  =  x  1  ( i  

e l s e i f  x l ( i ) > 0  
t e n t l  1  ( i )  =  — x l  (  

e n d  
e n d  

s 111 = s u m  ( t e n 11 1 ); 

f o r  i  =  1 :  s  
t e n t l z e r o ( i )  =  t e n t l  1  ( i  ) / s t l  1  ;  

e n d  

f o r  i  =  1 :  s  
i f  ( x 2  ( i ) <  —  1 ) | (  x 2  (  i )  >  1 )  

t e n t l  2  ( i )  =  0 ;  
e l s e i f  x 2 ( i ) < = 0  

t e n t l 2  ( i )  =  x 2 (  i  ) + l ;  
e l s e i f  x 2 ( i ) > 0  

t e n t l 2 ( i )  =  — x 2 ( i ) + l ;  
e n d  

e n d  

s 112 = s u m  (t e n 112 ) 

f o r  i  =  1 :  s  
t e n t l d e m i ( i )  =  t e n t l 2  ( i  ) / s  1 1 2  ;  

e n d  

/ / L a n c z o s  3  
f o r  i  =  1 :  s  

i f  ( x  1  (  i  )  = =  0 )  
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I a n  1  ( i )  =  1 ;  
e l s e i f  ( x  1  ( i )  <  — 3 ) | ( x l  ( i )  > 3 )  

l a n  1  ( i )  =  0 ;  
e l s e  

l a n l ( i )  =  3 *  s i n  ( % p i  * x l  ( i  ) ) *  s i n ( % p i * x l  ( i  ) / 3 ) / ( %  p i  ~ 2 *  x l  ( i  ) ~ 2 ) ;  
e n d  

e n d  

s i  1  =  s u m (  l a n  1  ) ;  

f o r  i  =  1 :  s  
l a n z e r o ( i )  =  l a n l ( i ) / s l l ;  

e n d  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

l a n 2  ( i  )  =  1 ;  
e l s e i f  ( x 2  ( i )  <  — 3 ) | ( x 2 ( i )  > 3 )  

l a n 2  ( i )  =  0 ;  
e l s e  

l a n 2 ( i )  =  3 * s i n  ( % p  i  * x 2  (  i  )  ) *  s  i n ( %  p  i  * x 2  (  i  ) / 3  ) / (  %  p i  " 2 *  x 2  (  i  ) " 2 )  ;  
e n d  

e n d  

s i 2  =  s u m (  l a n 2  ) ;  

f o r  i  =  1 :  s  
l a n d e m i  ( i  )  =  I a n 2 ( i ) / s l 2 ;  

e n d  

/ / L a n c z o s  3  a p p r o x i m a t i o n s  —  z e r o  p h a s e  
//**** order 10 

f o r  i  =  1 :  s  
i f  ( x l  ( i )  = =  0 )  

l a n 3 a p p 1  ( i  )  =  1 ;  
e l s e i f  ( x l  ( i  ) <  —  3 ) | ( x  1  ( i  ) > 3 )  

l a n 3 a p p 1  ( i )  =  0 ;  
e l s e  

l a n 3 a p p  1  ( i )  =  ( 0 . 0 0 3 0 6 7 1 3 9 9 6 3 1 5  8 4 3 2 8 7 7 6 1  1 2 7 7 7  3 4 5 7 0 1 2 6 0 . . .  
1 2 9 3 2 6 3 6 0 6 4 1 0 1 2 5 7 9 1 3 7 5 5 0 7  - 0 . 0 0 0 0 9 5 2 4 6 7 4 5 0 6 1 2 9 2 5 5 4 7 2 0 3 6 8 8 6 6 . . .  
9 9 8 4 2 8 4 3 7 4 0 9 5 6 6 4 2 4 1 0 2 5 9 8 9 7 5 0 5 5 8 4 4 2 * ( x l ( i ) * % p i  ) ~ 2  ) . . .  
* ( x l  ( i ) ' 2 - l ) * ( x l ( i  T 2 - 4 ) * ( x l  ( i  ) * 2 - 9 ) * ( x l  (  i  ) " 2  - 9 ) ;  

e n d  
e n d  
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s  1 3  1  =  s u m (  l a n 3 a p p  1  ) ;  

f o r  i  =  1 :  s  
l a n 3 a p p  1  z e r o ( i )  =  l a n 3 a p p 1  ( i  ) / s 1 3 1  ;  

e n d  

/ / * * * *  o r d e r  1 2  

f o r  i  =  1 : s  
i f  ( x l ( i )  = =  0 )  

I a n 3 a p p 2 ( i )  =  1 ;  
e l s e i f  ( x l  ( i )  <  —  3 ) | ( x  1  ( i ) > 3 )  

I a n 3 a p p 2  ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2  ( i )  =  ( 0 . 0 0 3 0 8 5 9 6 0 6 9 9 6 4 3 4 3 2 4 8 5 8 1 6 1 0 4 3 7 2 3 9 0 8 8 3 5 2 . . .  
6 9 6 9 5  3 6 1 0 8 3 0 7 2 5 7 2 9 0 2 5 3 4  - 0 . 0 0 0 1  1 0 3 0 9 0 3 2 8 6 3 8 7 8 7 4 2 8 2 1 0 7 4 5 3 0 5 2 2 6 4 . . .  
7 2 0 5 7 2 8 7 5 4 9 3 2 3 8 2 0 4 1 3 5 2 2 1 0 9 3 9 * ( x l  ( i  ) * % p i ) " 2  +  0 . 0 0 0 0 0 1 6 1 6 8 1 4 5 6 . . .  
0 9 3 7 6 6 1 9 9 5 8 8 0 6 6 1 3 9 3 9 1 4 0 9 4 3 8 2 7 4 6 4 6 6 6 8 9 9 4 3 4 8 1 3 4 5 0 6 3 9 6 . . .  
* ( x l  ( i  ) * % p i  ) " 4 ) * (  x l  ( i  ) ~ 2  - l ) * ( x l  ( i  ) ~ 2  - 4 ) * ( x l  ( i  ) ' 2 - 9 ) * ( x l  ( i  ) ' 2 - 9 ) ;  

e n d  
e n d  

s l 3 2  =  s u m (  I a n 3 a p p 2  ) ;  

f o r  i  =  1  :  s  
l a n 3 a p p 2 z e r o ( i  )  =  I a n 3 a p p 2 ( i  ) / s 1 3 2  ;  

e n d  

/ / * * * *  o r d e r  1 4  

f o r  i  =  1 :  s  
i f  ( x l ( i )  = =  0 )  

I a n 3 a p p 3  ( i )  =  1 ;  
e l s e i f  ( x l  ( i  ) <  —  3 ) | ( x  1  ( i  ) > 3 )  

I a n 3 a p p 3  ( i )  =  0 ;  
e l s e  

I a n 3 a p p 3  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 2 0 5 7 1 3 5  9 8 5 2 0 8 0 2 2 1 3 5 4 4 7 6 3  8 2 1 8 1 2 . . .  
5 7 6 6 7 1 4 6 2 7 5 1 4 2 8 7 3 8 5 4 8 7 7 1  - 0 . 0 0 0 1  1  1  1 4 0 5 2 6 7 8 6 0 4 9 4 6 4 0 6 0 4 7 8 3 7 2 4 9 7 4 . . .  
6 0 7 7 9 0 3 4 5 2 6 1 8 7 4 7 2 1 0 9 6 6 3 3 5 7 3 4 2 * ( x l ( i ) * % p i )  ' 2  +  . . .  
0 . 0 0 0 0 0 1 8 5 3 4 7 8 0 7 1 4 9 4 8 9 7 0 3 8 3 5 9 3 1 5 9 9 1  1 4 7 4 1 7 8 8 9 7 0 1 4 4 1 3 4 0 1 . . .  
4 3 2 3 1 9 5 6 1 3 9 0 6 * ( x l  ( i  ) * % p i  ) ~ 4  - 0 . 0 0 0 0 0 0 0 1 7 1 1 1 0 5 1 1 9 4 8 3 0 6 6 2 8 7 2 5 3 3 5 . . .  
3 8 3 6 2 5 9 0 2 9 1 5 2 3  8 3 8 6 2 9 4 2 2 5 6 7 3 8 5 5 5 6 5 0 8  
*  ( x  1  ( i  ) * % p i  ) ~ 6 ) * (  x l  ( i  ) ~ 2  -  l ) * ( x l  ( i  ) " 2  - 4 ) * ( x l ( i  ) " 2 - 9 ) * ( x l ( i  ) ' 2 - 9 ) ;  

e n d  
e n d  
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s  1 3 3  =  s u m (  I a n 3 a p p 3  )  ;  

f o r  i  =  1 :  s  
l a n 3 a p p 3 z e r o ( i )  =  I a n 3 a p p 3 ( i  ) / s 1 3 3  ;  

e n d  

/ / * * * *  o r d e r  1 6  

f o r  i  =  1 :  s  
i f  ( x l  (  i )  = =  0 )  

I a n 3 a p p 4 ( i )  =  1 ;  
e l s e i f  ( x l  ( i )  <  —  3 ) | ( x  1  ( i  ) > 3 )  

I a n 3 a p p 4 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 4  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 6 5  5  8 6 6 6 6 3 8 5 0 3 5 9 5 3 9 2 2 7 1 9 5 9 7  5 9 4 . . .  
1 6 6 0 9 8 7 3 7 0 5 4 2 9 4 4 0 6 4 8 8 1 8 8  - 0 . 0 0 0 1  1  1  1 6 5  8 0 4 8 7 4 6 4 2  1 6 1 1 2 1  8 9 0 0 8 7 5 4 9 0 . . .  
6 4 6 3 9 0 8 2 1 3 7 1 6 1 2 7 9 6 1 1 1 6 6 7 6 3 2 9 9 * ( x l ( i ) * % p i )  ' 2  +  . . .  
0 . 0 0 0 0 0 1 8 6 6 9 8 0 2 4 8 2 5 2 6 4 6 2 8 0 3 7 6 6 6 9 1 2 8 4 2 8 0 6 7 6 3 4 6 5 6 5 9 2 . . .  
7 8 9 7 8 1 5 0 2 9 6 1 9 0 3 6 3 * (  x l  ( i  ) * % p i )  ' 4  - . . .  
0 . 0 0 0 0 0 0 0 1 9 4 4 9 4 3 4 5 5 4 1 4 7 2 9 6 3 5 0 1  1 9 9 5 1  1 8 2 1 7 2 5 4 8 7 2 2 5 4 8 . . .  
6 4 5 0 2 7 8 4 0 1 7 4 6 6 8 7 1 7 * ( x l ( i ) * % p i ) ' 6  +  . . .  
0 . 0 0 0 0 0 0 0 0 0 1 2 7 4 9 9 5 1 4 0 1 6 5 3  8 8 4 8 1 9 1 9 7 4 8 3 9 0 6 7 9 8 4 1 4 4 5 2 4 . . .  
2 9 1 5 0 7 6 7 1 9 6 9 8 5 4 2 8 2 9 2 * ( x l  ( i  ) * % p i  ) ~ 8 ) * ( x l ( i  ) " 2  - 1 ) . . .  
* ( x l  ( i  Y 2  - 4 ) * ( x l  ( i  ) " 2 - 9 ) * ( x l  ( i  Y 2  - 9 ) ;  

e n d  
e n d  

s  1 3 4  =  s u m (  I a n 3 a p p 4  ) ;  

f o r  i  =  1 :  s  
l a n 3 a p p 4 z e r o ( i )  =  I a n 3 a p p 4 ( i  ) / s 1 3 4  ;  

e n d  

/ / * * * *  o r d e r  1 8  

f o r  i  =  1 :  s  
i f  ( x l  ( i  )  = =  0 )  

I a n 3 a p p 5  ( i )  =  1  ;  
e l s e i f  ( x l  ( i )  <  —  3 ) | ( x  1  ( i )  > 3 )  

I a n 3 a p p 5 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 5 ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5 2 1 1 9 5  8 0 6 9 5  8 3 1 8 8 8 6 7 4 1 1 4 3 6 4 0 0 6 . .  
2 0 9 4 0 4 8 9 5 4 3 9 5 0 8 5 4 6 7 9 6 0 3  - 0 . 0 0 0 1  1  1  1 6 6 3 1 0 6 4 4 5 4 3 5 3 1  1 9 7 4 3 3 8 2 6 0 8 7 6 2 0 . .  
0 7 4 9 4 7 1 3 7 8 2 0 4 1 1 6 0 9 9 5 2 7 3 0 4 2 7 * (  x l  ( i  ) * % p i  ) ' 2  +  0 . 0 0 0 0 0 1 8 6 7 4 1 3 6 1 5 7 3 5 . .  
7 2 0 0 1 3 0 1 1 2 0 4 6 3 7 2 6 4 8 3 1 4 5 2 3 6 7 2 8 3 1 1 4 2 6 4 9 4 6 8 8 2 5 8 7 2 * ( x l ( i ) * % p i ) " 4  - . .  
0 . 0 0 0 0 0 0 0 1 9 5 8 0 7 7 9 4 7 7 9 1 8 4 7 0 6 9 2 8 7 2 5  8 6 6 7 2 2 6 6 8 6 1 1 0 6 7 1 0 7 3 7 0 6 4 7 0 6 2 3 4 . .  
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5 5 6 9 1 3 9 * ( x l ( i  ) * % p i )  " 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 3 8 5 4 2 0 4 6 0 7 3 5 1 7 6 7 9 9 2 2 2 2 0 0 2 . . .  
8 1 6 4 1 7 7 9 9 7 8 8 9 9 7 4 0 3 1 5 3 7 5 9 0 2 4 0 2 3 5 6 5 * ( x l ( i  ) * % p i )  " 8  - 0 . 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 7 1 5 8 5 4 8 0 4 4 8 6 1 7 7 0 7 1 6 5  8 0 4 1 8 7 7 3 7 3 2 5 9 0 9 0 7 1 1 0 9 3 4 7 9 6 9 9 3 1 9 5 5  8 5 8 7 7 4 6 . . .  
*  ( x  1  ( i  ) * % p i  ) ' 1 0 ) * ( x l (  i  ) ' 2  - l ) * ( x l  ( i  ) ' 2  - 4 ) * ( x l (  i  ) ' 2  - 9 ) * ( x l (  i  ) ~ 2  - 9 ) ;  

e n d  
e n d  

s i 3 5  =  s u m ( l a n 3 a p p 5  ) ;  

f o r  i  =  1 : s  
l a n 3 a p p 5 z e r o ( i )  =  I a n 3 a p p 5  ( i  ) / s 1 3 5  ;  

e n d  

/ / * * * * O R D E R  2 0  

f o r  i  =  1 :  s  
i f  ( x l  ( i )  = =  0 )  

I a n 3 a p p 6  ( i )  =  1 ;  
e l s e i f  ( x l  ( i )  <  —  3 ) | ( x  1  ( i )  > 3 )  

I a n 3 a p p 6 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 6  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5  3 0 7 8 6 1 3 0 7 5 7 0 6 6 7 6 0 9 2 6 4 0 4 5 4 1 0 7 . . .  
0 8 2 6 0 6 2 1 8 4 9 9 4 9 6 6 1 1 6 0 1 3 6  - 0 . 0 0 0 1 1 1 1 6 6 3 1 7 9 5 8 6 6 5 4 9 3 9 3 6 2 2 0 8 1 6 8 7 2 2 6 6 . . .  
7 3 3 9 2 1 0 7 8 0 4 5 9 7 7 8 6 3 4 1 2 8 3 3 7 8 8 * ( x l  ( i  ) * % p i  ) ' 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 7 8 1 2 . . .  
9 8 5 1 8 7 7 5 1 4 2 4 4 1 1 9 4 4 2 4 5 0 8 0 0 0 9 7 5 8 0 7 6 0 0 9 9 0 0 7 2 5 1 0 6 0 8 3  3 . . .  
* ( x  1  ( i  ) * % p i  ) " 4  — 0 . 0 0 0 0 0 0 0 1 9 5 8 5 0 1 5 9 6 6 4 5 8 9 8 0 9 9 5 6 9 3 7 3 8 8 1 1 0 0 4 0 1 3 2 4 5 . . .  
3 7 1 0 2 7 7 8 9 6 4 7 9 2 2 4 8 2 7 8 9 6 * ( x l ( i  ) * % p i )  ' 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 4 4 3 2 6 4 7 6 . . .  
4 8 3 7 7 4 1  1 5 5 4 1 5 9 8 8 9 1  1 0 9 1 4 5 2 5 8 1 8 5 1 9 4 9 4 1 7 1  1 4 4 3 1 9 1 2 9 9 . . .  
* ( x l  ( i  ) * % p i ) " 8  - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 3 9 3 8 3 9 8 8 3 7 4 1 2 7 2 7 8 1 5 9 6 9 4 8 0 0 0 7 3 . . .  
3 3 0 1 4 5 7 7 4 3  1 3 8 9 4 1 4 7 7 9 0 1 6 1 7 8 9 6 * ( x l  ( i  ) * % p i  ) ' 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  
3 1 6 4 0 6 4 8 5 1 8 9 6 8 4 7 1 6 5 4 6 3 6 4 3 7 7 5 8 4 4 1 3 6 3 8 2 7 6 6 0 0 3 3 7 4 1 0 6 9 5 2 8 9 7 0 9 8 7 7 . . .  
*  ( x  1  ( i  ) * % p i  ) ' 1 2 ) * (  x l  ( i  ) ' 2  - 1  ) * ( x l  ( i  ) ~ 2 - 4 ) * ( x l  ( i  ) ' 2  - 9 ) * ( x l  ( i  ) " 2  - 9 ) ;  

e n d  
e n d  

s  1 3 6  =  s u m (  I a n 3 a p p 6  ) ;  

f o r  i  =  1 :  s  
l a n 3 a p p 6 z e r o ( i )  =  I a n 3 a p p 6 ( i  ) / s 1 3 6  ;  

e n d  

/ / * * * *  O R D E R  2 2  

f o r  i  =  1 :  s  
i f  ( x l  ( i  )  = =  0 )  

I a n 3 a p p 7  ( i )  =  1 ;  
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e l s e i f  ( x l  ( i )  <  —  3 ) | ( x  1  ( i ) > 3 )  
I a n 3 a p p 7 ( i  )  =  0 ;  

e l s e  
I a n 3 a p p 7  ( i  )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 3 6 7 3 7 8 7 8 6 0 0 4 1 9 0 0 4 5 5 8 3 7 9 9 . . .  

0 6 4 1 7 0 3 2 0 6 2 3 1 4 6 1 6 8 6 5 5 8 2  - 0 . 0 0 0 1 1  1  1 6 6 3 1 8 0 3 9 6 4 1 6 8 7 2 2 3 1 8 5 5 4 2 7 7 2 1 9 4 . . .  
1 8 1 0 2 1  1 8 1 7 8 3 8 2 2 8 4 3 3 3 2 6 1 9 0 8 7 * ( x l ( i  ) * % p i  ) * 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 0 8 . . .  
3 6 5 2 1 2 2 2 8 2 0 4 8 3 5 2 9 6 8 9 4 8 2 2 4 0 5 4 6 0 8 8 2 0 1 1 3 1 7 4 6 3 1 0 4 1 2 3 . . .  
* ( x  1  ( i  ) * % p i )  " 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 6 7 6 8 5 5 5 8 8 4 9 2 5 8 1 0 7 5 8 6 1 3 2 9 5 7 7 7 7 . . .  
2 2 4 6 9 2 0 8 4 5 2 9 1 7 4 3 2 4 6 7 1 9 8 6 * ( x l ( i  ) * % p i )  " 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 2  6 0 0 5 . . .  
7 2 7 5 0 5 9 1 2 8 3 0 6 3 6 4 8 7 0 7 3  8 2 6 5 6 0 9 4 6 5  8 3 6 6 5 3 0 1 0 8 7 1 4 6 5 7 0 6 9 . . .  
* ( x  1  ( i  ) * % p i  ) ' 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 6 9 2 9 1 6 1 5 6 3 0 4 8 8 5 7 6 3 6 9 7 2 7 5 3 9 9 4 3 . . .  
5 5 8 7 3 9 8 9 4 5 9 0 5 4 5 6 6 9 4 1 0 3  1 5 9 1 5 9 1  * (  x l  ( i  ) * % p i  ) " 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 3 5 2 5 7 5 4 4 6 3 6 3 9 6 9 6 1 6 0 0 1 5 1 0 5 4 4 9 1 4 1 8 3 5 1 4 5 2 1 0 6 5 5 2 8 1 7 9 5 2 9 8 2 4 8 6 2 3 4 9 . . .  
* ( x  1  ( i  ) * % p i  ) " 1 2  - 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 4 7 2 6 6 1 4 3 6 8 5 2 4 7 1 6 9 2 9 7 8 8 0 . . .  
6 3 0 9 5 4 7 5 2 4 1 6 7 9 6 9 1 9 5 6 2 8 0 4 3 5 8 1 0 3 8 0 6 * (  x l  ( i  ) * % p i  ) * 1 4 ) * (  x l  ( i  ) * 2  - 1 ) . . .  
* ( x l  ( i  ) * 2  -  4 ) * ( x l  ( i  ) " 2  -  9 ) * ( x l  ( i  ) A 2  -  9 ) ;  

e n d  
e n d  

s  1 3 7  =  s u m (  I a n 3 a p p 7  ) ;  

f o r  i  =  1 :  s  
l a n 3 a p p 7 z e r o ( i )  =  I a n 3 a p p 7  ( i  ) / s 1 3 7  ;  

e n d  

/ / * * * *  O R D E R  2 4  

f o r  i  =  1 :  s  
i f  ( x 1 ( i  )  = =  0 )  

I a n 3 a p p 8  ( i )  =  1 ;  
e l s e i f  ( x l  ( i  ) <  —  3 ) | ( x  1  ( i  ) > 3 )  

I a n 3 a p p 8 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 8  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5  3 0 8 6 4 1 9 4 5 5 8 2 5 9 3 4 8 0 0 7 1 3 7 9 6 2 3 . . .  
8 1 4 3 5 6 4 6 1 8 4 0 9 9 7 6 1 3 0 0 4 4 8 5  - 0 . 0 0 0 1  1 1  1 6 6 3 1 8 0 4 0 3 5  5 3 1  1 3 4 3 0 8 1 6 1 9 2 7 4 4 . . .  
5 1 9 9 8 3 5 4 5 2 3 1  1 3 4 8 4 6 4 4 9 8 0 9 8 1 5 6 * ( x l  ( i  ) * % p i  ) ~ 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 . . .  
2 4 5 4 4 1 4 1 3 2 2 0 4 6 8 2 4 8 8 8 3 7 7 4 9 5 6 6 2 2 3 7 6 4 7 5 3 0 3 2 6 1 8 6 5 7 8 0 2 5 8 . . .  
* ( x  1  ( i  ) * % p i  ) " 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 7 4 0 3 0 7 0 8 1 0 7 1 4 1 3 6 9 7 9 2 4 7 0 9 4 0 . . .  
1 6 4 4 8 0 2 7 6 9 1 8 1 2 7 1 8 5 9 3 7 9 6 0 1  * (  x l  ( i  ) * % p i  ) " 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 0 . . .  
2 6 6 4 5 0 7 0 7 0 4 5 7 3 3 6 8 4 8 1 1 0 0 7 6 2 0 4 2 6 3 2 5 4 6 8 0 9 3 1 7 0 4 4 6 7 7 2 9 0 9 . . .  
* ( x  1  ( i  ) * % p i ) " 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 6 9 6 6 5 0 1 7 7 0 3 6 5 8 4 7 9 4 5 7 2 3 6 0 0 3 . . .  
6 4 4 5 4 5 8 2 9 9 5 2 5 7 9 3 6 2 4 6 6 1 9 7 8 4 4 1  3  1  * (  x l  ( i  ) * % p i  ) ' 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 0 0 3 5 4 3 9 6 1 8 4 2 2 9 2 5 0 0 1 9 3 3 6 1 7 8 2 1 8 1 2 0 4 7 9 9 7 7 9 8 0 8 9 0 9 5 3 6 3 3 2 9 0 2 7 0 7 8 7 3 . . .  
5 4 * ( x l  ( i ) * % p i  ) * 1 2  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 8 5 6 2 7 6 0 3 7 2 3 7 9 2 4 4 9 8 0 7 . . .  
2 3 5 9 0 8 9 4 6 5 1 7 3 2 1 9 3 5 2 1 3 1 2 7 2 3 2 7 3 5 9 2 4 2 3 5 3 * ( x l ( i ) * % p i ) " 1 4  +  . . .  
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 8 5 6 9 0 0 4 1 9 6 9 4 1 4 9 8 6 6 9 0 9 1 2 5 7 9 4 7 7 4 0 2 5 6 0 9 9 6 . . .  
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1 7 4 9 5 7 4 9 0 4 2 5 7 4 4 0 5 2 1 5 * ( x l  ( i  ) * % p i  ) ' l  6 ) * (  x l  ( i  ) * 2  -  l ) * ( x l  ( i  ) * 2  - 4 ) . . .  
* ( x l ( i ) ~ 2 — 9 ) * ( x l ( i ) " 2 - 9 ) ;  

e n d  
e n d  

s  1 3 8  =  s u m (  I a n 3 a p p 8  ) ;  

f o r  i  =  1 :  s  
l a n 3 a p p 8 z e r o ( i  )  =  I a n 3 a p p 8 ( i  ) / s 1 3 8  ;  

e n d  

//* * * *ORDER 26 

f o r  i  =  1 : s  
i f  ( x l ( i )  = =  0 )  

I a n 3 a p p 9  ( i )  =  1 ;  
e l s e i f  ( x l ( i ) <  — 3 ) | ( x 1 ( i ) > 3 )  

I a n 3 a p p 9  ( i  )  =  0 ;  
e l s e  

I a n 3 a p p 9  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 4 1 9 7 5 1 6 3 8 2 1 3 9 2 6 3 9 4 3 1 9 5 5 3 . . .  
1 7 0 0 0 0 6 8 5 1 0 9 5 6 4 8 6 0 2 7 7 7 9  - 0 . 0 0 0 1 1  1 1 6 6 3 1 8 0 4 0 3 6 0 4 6 0 8 7 6 7 5 0 5 2 9 7 4 2 2 8  1 . . .  
8 1 4 7 7 8 1 2 9 5 7 3 4 3 6 9 2 1 4 8 7 7 2 6 1 8 8 * (  x l  ( i  ) * % p i  ) * 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 2 4 . . .  
6 9 2 7 0 7 9 8 2 2 9 7 2 9 3 3  8 8 2 2 3 6 2 0 5 9 7 2 1 6 8 6 0 8 2 5 3 8 3 8 2 5 0 9 5 6 9 6 9 . . .  
* ( x  1  ( i  ) * % p i  ) ' 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 9 0 6 1 3 5 3 5 3 3 8 3 7 0 8 2 8 6 4 9 8 9 5 1 7 4 6 . . .  
0 0 4 4 3 4 7 7 3 3 8 0 2 4 0 2 4 7 6 1 4 5 7 5 * ( x l  ( i  ) * % p i  ) ' 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 1 1 9 . . .  
7 0 3 0 2 0 2 8 2 8 6 2 9 1 3 3 5 0 1 1 5 9 5 0 3 3 4 8 3 5 8 6 8 1 5 3 4 7 7 1 0 2 2 3 5 3 6 2 4 . . .  
* ( x  1  ( i  ) * % p i  ) * 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 7 2 6 0 6 6 4 4 8 8 1 9 9 3 4 2 6 6 5 1 4 7 1 0 7 5 2 . . .  
3 0 7 5 6 7 9 0 1 7 3 7 3  1 8 1 5 0 1 1 7 7 9 0 2 5 2 0 5 * ( x l  ( i  ) * % p i ) " 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 3 5 4 4 5 0 9 2 5 6 1 0 4 1 3 1 6 2 0 5 9 2 3 3 7 3 8 3 2 4 9 9 5 9 4 3 3 4 6 6 2 7 9 2 4 5 8 5 3 8 0 6 2 5 3 0 7 2 4 6 . . .  
•  ( x l  ( i  ) * % p i  ) " 1 2  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 4 5 1 0 2 0 4 6 1 4 8 9 6 1 2 6 0 6 8 2 3 0 7 . . .  
4 5 6 7 2 5 0 9 3 6 2 7 8 0 3 7 7 5 6 5 2 2 1  1 3 1 7 1 5 4 7 6 2 9 * ( x l  ( i  ) * % p i ) ' 1 4  +  0 . 0 0 0 0 0 0 0 0 . . .  
0 0 0 0 0 0 0 0 0 0 0 3 7 3 4 6 3 6 8 0 3 9 6 7 9 6 1 2 5  8 9 1 6 0 7 2 2 0 7 0 5 6 8 3 4 4 2 0 5 2 7 0 8 7 6 7 9 4 0 0 4 4 . . .  
0 8 7 3 2 7 4 3 3 * ( x l  ( i  ) * % p i ) ~ 1 6  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 4 0 5 1 8 8 0 7 1 . . .  
8 1 9 1 2 7 0 1 5 2 7 1 3 4 1 7 3 5 4 9 2 0 3 9 5 1 4 3 9 7 5 3 1 2 2 3 1 2 0 1 1 8 9 3 0 4 8 2 1 . . .  
*  ( x  1  ( i )  *  % p  i  ) ' l  8 ) * (  x l  ( i  ) " 2  —  1  ) * (  x l  ( i  ) " 2  - 4 ) * (  x l  ( i  ) " 2  — 9 ) * (  x l  ( i ) ' 2  — 9 ) ;  

e n d  
e n d  

s  1 3 9  =  s u m (  I a n 3 a p p 9  ) ;  

f o r  i  =  1 :  s  
l a n 3 a p p 9 z e r o ( i  )  =  I a n 3 a p p 9 ( i  ) / s 1 3 9  ;  

e n d  

/ / L a n c z o s  3  a p p r o x i m a t i o n s  -  h a l f  p h a s e  
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/ / * * * *  O R D E R  1 0  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2  _ 1 ( i )  =  1 ;  
e l s e i f  ( x 2 ( i ) < — 3 ) | ( x 2 ( i ) > 3 )  

I a n 3 a p p 2  _ 1 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2 _  1  ( i )  =  ( 0 . 0 0 3 0 6 7 1 3 9 9 6 3 1 5 8 4 3 2 8 7 7 6 1  1 2 7 7 7 3 4 5 7 0 1 2 6 0 1 . . .  
2 9 3 2 6 3 6 0 6 4 1 0 1 2 5 7 9 1 3 7 5 5 0 7  - 0 . 0 0 0 0 9 5 2 4 6 7 4 5 0 6 1 2 9 2 5 5 4 7 2 0 3 6 8 8 6 6 9 9 8 4 2 8 . . .  
4 3 7 4 0 9 5 6 6 4 2 4 1 0 2 5 9 8 9 7 5 0 5 5 8 4 4 2 * ( x 2 ( i ) * % p i ) " 2 ) * ( x 2  ( i ) ' 2  - 1 ) . . .  
* ( x 2 ( i ) " 2 — 4 ) * ( x 2 ( i  ) " 2  - 9 ) * ( x 2 (  i  ) " 2  - 9 ) ;  

e n d  
e n d  

s  1 3  1  =  s u m (  I a n 3 a p p 2 _  1  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ l d e m i  ( i )  =  I a n 3 a p p 2 _ l  ( i  ) / s  1 3  1  ;  

e n d  

/ / * * * *  o r d e r  1 2  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 2 ( i )  =  1 ;  
e l s e i f  ( x 2  ( i )  <  — 3 ) | ( x 2  ( i )  > 3 )  

I a n 3 a p p 2  _ 2 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2 _ 2  ( i )  =  ( 0 . 0 0 3 0 8 5 9 6 0 6 9 9 6 4 3 4 3 2 4 8 5 8 1 6 1 0 4 3 7 2 3 9 0 8 8 3 5 . . .  
2 6 9 6 9 5 3 6 1 0 8 3 0 7 2 5 7 2 9 0 2 5 3 4  - 0 . 0 0 0 1  1 0 3 0 9 0 3 2 8 6 3  8 7 8 7 4 2 8 2 1 0 7 4 5  3 0 5 2 2 6 4 . . .  
7 2 0 5 7 2 8 7 5 4 9 3 2 3 8 2 0 4 1 3 5 2 2 1 0 9 3 9 * ( x 2 ( i  ) * % p i )  * 2  +  0 . 0 0 0 0 0 1 6 1 6 8 1 4 5 6 0 . . .  
9 3 7 6 6 1 9 9 5 8 8 0 6 6 1 3 9 3 9 1 4 0 9 4 3 8 2 7 4 6 4 6 6 6 8 9 9 4 3 4 8 1 3 4 5 0 6 3 9 6 . . .  
* (  x 2  ( i  ) * % p i  ) ~ 4 ) * ( x 2 (  i ) ~ 2 - l ) * ( x 2 (  i ) ' 2 - 4 ) * ( x 2 (  i  ) ' 2 - 9 ) * ( x 2 (  i  ) * 2 - 9 ) ;  

e n d  
e n d  

s  1 3 2  =  s u m (  I a n 3 a p p 2  _ 2  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 2 d e m i  ( i )  =  I a n 3 a p p 2 _ 2  ( i  ) / s  1 3 2  ;  

e n d  

/ / * * * *  o r d e r  1 4  

for  i  =  1 :  s  

439 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



i f  ( x 2 ( i )  = =  0 )  
I a n 3 a p p 2 _ 3 ( i )  =  1 ;  

e l s e i f  ( x 2 ( i )  <  — 3 ) | ( x 2 ( i )  > 3 )  
I a n 3 a p p 2  _ 3 ( i )  =  0 ;  

e l s e  
I a n 3 a p p 2 _ 3  (  i  )  =  ( 0 . 0 0 3 0 8 6 4 1 2 0 5 7 1 3 5 9 8 5 2 0 8 0 2 2 1 3 5 4 4 7 6 3 8 2 1 8 1 . . .  

2 5 7 6 6 7 1 4 6 2 7 5 1 4 2 8 7 3 8 5 4 8 7 7 1  - 0 . 0 0 0 1  1 1  1 4 0 5 2 6 7 8 6 0 4 9 4 6 4 0 6 0 4 7 8 3 7 2 4 9 7 4 . . .  
6 0 7 7 9 0 3 4 5 2 6 1 8 7 4 7 2 1 0 9 6 6 3 3 5 7 3 4 2 * ( x 2 (  i  ) * % p i  ) ~ 2  +  0 . 0 0 0 0 0 1 8 5 3 4 7 8 0 7 . . .  
1 4 9 4 8 9 7 0 3 8 3 5 9 3 1 5 9 9 1 1 4 7 4 1 7 8 8 9 7 0 1 4 4 1 3 4 0 1 4 3 2 3 1 9 5 6 1 3 9 0 6 . . .  
* ( x 2 (  i  ) * % p i  ) ~ 4  -  0 . 0 0 0 0 0 0 0 1 7 1 1 1 0 5 1 1 9 4 8 3 0 6 6 2 8 7 2 5 3 3 5 3 8 3 6 2 5 9 0 2 9 1 5 . . .  
2 3 8 3 8 6 2 9 4 2 2 5 6 7 3 8 5 5 5 6 5 0 8 * ( x 2 ( i  ) * % p i  ) * 6 )  * (  x 2  ( i  ) ~ 2  —  1 ) * ( x 2 ( i  ) ~ 2  -  4 ) . . .  
* ( x 2 ( i ) " 2 — 9 ) * ( x 2 ( i ) " 2 — 9 ) ;  

e n d  
e n d  

s  1 3 3  =  s u m (  I a n 3 a p p 2  _ 3  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 3 d e m i  ( i )  =  I a n 3 a p p 2 _ 3  ( i  ) / s  1 3 3  ;  

e n d  

/ / * * * *  o r d e r  1 6  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 4  ( i )  =  1 ;  
e l s e i f  ( x 2 (  i  ) < — 3 ) | ( x 2 (  i ) > 3 )  

I a n 3 a p p 2 _ 4 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2  _ 4  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 6 5 5  8 6 6 6 6 3 8 5 0 3 5 9 5 3 9 2 2 7 1 9 5 9 7 5 9 . . .  
4 1 6 6 0 9 8 7 3 7 0 5 4 2 9 4 4 0 6 4 8 8 1 8 8  - 0 . 0 0 0 1  1 1  1 6 5 8 0 4 8 7 4 6 4 2 1 6 1 1 2 1 8 9 0 0 8 7 5 4 9 0 . . .  
6 4 6 3 9 0 8 2 1 3 7 1 6 1 2 7 9 6 1 1 1 6 6 7 6 3 2 9 9 * ( x 2 ( i  ) * % p i  ) ' 2  +  0 . 0 0 0 0 0 1 8 6 6 9 8 0 2 4 . . .  
8 2 5 2 6 4 6 2 8 0 3 7 6 6 6 9 1 2 8 4 2 8 0 6 7 6 3 4 6 5 6 5 9 2 7 8 9 7 8 1 5 0 2 9 6 1 9 0 3 6 3 . . .  
* ( x 2 (  i  ) * % p i ) ' 4  -  0 . 0 0 0 0 0 0 0 1 9 4 4 9 4 3 4 5 5 4 1 4 7 2 9 6 3 5 0 1 1 9 9 5 1 1 8 2 1 7 2 5 4 8 7 . . .  
2 2 5 4 8 6 4 5 0 2 7 8 4 0 1 7 4 6 6 8 7  1 7 * ( x 2 ( i  ) * % p i )  ' 6  +  0 . 0 0 0 0 0 0 0 0 0 1 2 7 4 9 9 5 1 4 0 1 . . .  
6 5 3 8 8 4 8 1 9 1 9 7 4 8 3 9 0 6 7 9 8 4 1 4 4 5 2 4 2 9 1 5 0 7 6 7 1 9 6 9 8 5 4 2 8 2 9 2 . . .  
* ( x 2 ( i  ) * % p i  ) ' 8 ) * ( x 2 ( i  V 2  - 1  ) * (  x 2  ( i  ) " 2  - 4 ) * (  x 2  ( i  ) " 2  - 9 ) * (  x 2  ( i  ) " 2  - 9 ) ;  

e n d  
e n d  

s l 3 4  =  s u m (  I a n 3 a p p 2 _ 4  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2  _ 4 d e m i  ( i  )  =  I a n 3 a p p 2 _ 4  ( i  ) / s l 3 4  ;  

e n d  
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/ / * * * *  O R D E R  1 8  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 5 ( i  )  =  1 ;  
e l s e i f  ( x 2  ( i )  <  —  3 ) | ( x 2  ( i ) > 3 )  

I a n 3 a p p 2  _ 5  ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2 _ 5  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5 2 1  1 9 5  8 0 6 9 5 8 3 1 8 8  8 6 7 4 1  1 4 3 6 4 0 . . .  
0 6 2 0 9 4 0 4 8 9 5 4 3 9 5 0 8 5 4 6 7 9 6 0 3  -  0 . 0 0 0 1  1 1 1 6 6 3 1 0 6 4 4 5 4 3 5 3  1 1 9 7 4 3 3 8 2 6 0 8 7 6 . . .  
2 0 0 7 4 9 4 7 1 3 7 8 2 0 4 1  1 6 0 9 9 5 2 7 3 0 4 2 7 * ( x 2 ( i  ) * % p / ) * 2  +  0 . 0 0 0 0 0 1 8 6 7 4 1 3 6 1 . . .  
5 7 3 5 7 2 0 0 1 3 0 1 1 2 0 4 6 3 7 2 6 4 8 3 1 4 5 2 3 6 7 2 8 3 1 1 4 2 6 4 9 4 6 8 8 2 5 8 7 2 . . .  
* ( x 2 ( i  ) * % p i ) " 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 0 7 7 9 4 7 7 9 1 8 4 7 0 6 9 2 8 7 2 5 8 6 6 7 2 2 6 6 8 6 1 1 . . .  
0 6 7 1 0 7 3 7 0 6 4 7 0 6 2 3 4 5 5 6 9 1 3 9 * ( x 2 (  i  ) * % p i  ) ~ 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 3 8 5 4 2 0 4 6 . . .  
0 7 3 5 1 7 6 7 9 9 2 2 2 2 0 0 2 8 1 6 4 1 7 7 9 9 7 8 8 9 9 7 4 0 3 1 5 3 7 5 9 0 2 4 0 2 3 5 6 5 . . .  
* ( x 2 ( i  ) * % p i ) ~ 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 7 1 5 8 5 4 8 0 4 4 8 6 1 7 7 0 7 1 6 5 8 0 4 1 8 7 7 3 7 3 2 . . .  
5 9 0 9 0 7 1  1 0 9 3 4 7 9 6 9 9 3 1 9 5 5 8 5 8 7 7 4 6 * ( x 2 ( i  ) * % p i  ) ' 1 0 ) * ( x 2 ( i  ) " 2  - 1 ) . . .  
* ( x 2 ( i  Y 2  - 4 ) * ( x 2 ( i  ) ~ 2 - 9 ) * ( x 2 (  i  ) * 2  - 9 ) ;  

e n d  
e n d  

s  1 3 5  =  s u m (  I a n 3 a p p 2  _ 5  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 5 d e m i  ( i )  =  I a n 3 a p p 2 _ 5  ( i  ) / s  1 3 5  ;  

e n d  

/ / * * * *  O R D E R  2 0  

f o r  i  =  1 : s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 6 ( i )  =  1 ;  
e l s e i f  ( x 2 ( i ) < — 3 ) | ( x 2 ( i ) > 3 )  

I a n 3 a p p 2 _ 6 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2 _ 6  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 7 8 6 1 3 0 7 5 7 0 6 6 7 6 0 9 2 6 4 0 4 5 4 1 . . .  
0 7 0 8 2 6 0 6 2 1 8 4 9 9 4 9 6 6 1  1 6 0 1 3 6  - 0 . 0 0 0 1  1 1  1 6 6 3  1 7 9 5 8 6 6 5 4 9 3 9 3 6 2 2 0 8  1 6 8 7 2 2 . . .  
6 6 7 3 3 9 2 1 0 7 8 0 4 5 9 7 7 8 6 3 4 1 2 8 3 3 7 8 8 * ( x 2 ( i  ) * % p i  ) ' 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 7 8 . . .  
1 2 9 8 5 1 8 7 7 5 1 4 2 4 4 1 1 9 4 4 2 4 5 0 8 0 0 0 9 7 5 8 0 7 6 0 0 9 9 0 0 7 2 5 1 0 6 0 8 3 3 . . .  
* ( x 2 ( i  ) * % p i  ) ' 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 0 1 5 9 6 6 4 5 8 9 8 0 9 9 5 6 9 3 7 3 8 8 1 1 0 0 4 0 1 3 2 . . .  
4 5 3 7 1 0 2 7 7 8 9 6 4 7 9 2 2 4 8 2 7 8 9 6 * ( x 2 ( i  ) * % p i )  ' 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 4 4 3 2 6 4 . . .  
7 6 4 8 3 7 7 4 1 1 5 5 4 1 5 9 8 8 9 1 1 0 9 1 4 5 2 5  8 1 8 5 1 9 4 9 4 1 7 1 1 4 4 3 1 9 1 2 9 9 . . .  
* (  x 2  ( i  ) * % p i  ) " 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 3 9 3 8 3 9 8 8 3 7 4 1 2 7 2 7 8 1 5 9 6 9 4 8 0 0 0 7 . . .  
3 3 3 0 1 4 5 7 7 4 3  1 3 8 9 4 1 4 7 7 9 0 1 6 1 7 8 9 6 * (  x 2  ( i  ) * % p i ) ~ 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 3 1 6 4 0 6 4 8 5 1 8 9 6 8 4 7 1 6 5 4 6 3 6 4 3 7 7 5 8 4 4 1 3 6 3 8 2 7 6 6 0 0 3 3 7 4 1 0 6 9 5 2 8 9 7 0 9 8 7 7 . . .  
* ( x 2 ( i  ) * % p i  ) ' 1 2 ) * ( x 2 (  i ) ~ 2 - l ) * ( x 2 (  i ) ' 2 - 4 ) * ( x 2 ( i ) ' 2 - 9 ) * ( x 2 (  i ) ~ 2 - 9 ) ;  
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e n d  
e n d  

s  1 3 6  =  s u m (  I a n 3 a p p 2 _ 6  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 6 d e m i  ( i )  =  I a n 3 a p p 2  _ 6  ( i  ) / s  1 3 6  ;  

e n d  

/ / * * * *  O R D E R  2  2  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 7  ( i )  =  1 ;  
e l s e i f  ( x 2 ( i ) <  —  3 ) | (  x 2  ( i )  > 3 )  

I a n 3 a p p 2  _ 7 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2 _ 7  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5  3 0 8 6 3 6 7 3 7 8 7  8 6 0 0 4 1 9 0 0 4 5 5  8 3  7 . . .  
9 9 0 6 4 1 7 0 3 2 0 6 2 3 1 4 6 1 6 8 6 5 5 8 2  - 0 . 0 0 0 1 1  1  1 6 6 3 1 8 0 3 9 6 4 1 6 8 7 2 2 3  1 8 5 5 4 2 7 7 2 1 . . .  
9 4 1 8 1 0 2 1  1 8  1 7 8 3 8 2 2 8 4 3 3 3 2 6 1 9 0 8 7 * ( x 2 (  i  ) * % p i  ) " 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 . . .  
0 8 3 6 5 2 1 2 2 2 8 2 0 4 8 3 5 2 9 6 8 9 4 8 2 2 4 0 5 4 6 0 8 8 2 0 1 1 3 1 7 4 6 3 1 0 4 1 2 3 . . .  
* ( x 2 ( i  ) * % p i  ) ' 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 6 7 6 8 5 5 5 8 8 4 9 2 5 8 1 0 7 5 8 6 1 3 2 9 5 7 7 7 7 . . .  
2 2 4 6 9 2 0 8 4 5 2 9 1 7 4 3 2 4 6 7 1 9 8 6 * ( x 2 (  i  ) * % p i  ) * 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 2 6 0 0 5 . . .  
7 2 7 5 0 5 9 1 2 8 3 0 6 3 6 4 8 7 0 7 3 8 2 6 5 6 0 9 4 6 5  8 3 6 6 5 3 0 1 0 8 7 1 4 6 5 7 0 6 9 . . .  
* ( x 2 (  i  ) * % p i ) ~ 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 6 9 2 9 1 6 1 5 6 3 0 4 8 8 5 7 6 3 6 9 7 2 7 5 3 9 9 4 3 . . .  
5 5 8 7 3 9 8 9 4 5 9 0 5 4 5 6 6 9 4 1 0 3  1 5 9 1 5 9 1  * (  x 2  ( i  ) * % p i ) ' 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 3 5 2 5 7 5 4 4 6 3 6 3 9 6 9 6 1 6 0 0 1 5 1 0 5 4 4 9 1 4 1 8 3 5 1 4 5 2 1 0 6 5 5 2 8 1 7 9 5 2 9 8 2 4 8 6 2 3 4 9 . . .  
* ( x 2 ( i  ) * % p i ) * 1 2  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 4 7 2 6 6 1 4 3 6 8 5 2 4 7 1 6 9 2 9 7 8 . . .  
8 0 6 3 0 9 5 4 7 5 2 4 1 6 7 9 6 9 1 9 5 6 2 8 0 4 3 5 8 1 0 3 8 0 6 *  ( x 2  ( i ) * % p i  ) ' 1 4 ) . . .  
* ( x 2 ( i ) ~ 2 - l ) * ( x 2 ( i ) " 2 - 4 ) * ( x 2 ( i ) A 2 - 9 ) * ( x 2 ( i ) " 2 — 9 ) ;  

e n d  
e n d  

s  1 3 7  =  s u m (  I a n 3 a p p 2  _ 7  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 7 d e m i  ( i )  =  I a n 3 a p p 2 _ 7  ( i  ) / s  1 3 7  ;  

e n d  

/ / * * * *  O R D E R  2 4  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 8 ( i )  =  1 ;  
e l s e i f  ( x 2 ( i ) < — 3 ) | ( x 2 ( i ) > 3 )  

I a n 3 a p p 2 _ 8 ( i )  =  0 ;  
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e l s e  
I a n 3 a p p 2 _ 8 ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5 3 0 8 6 4 1 9 4 5 5  8 2 5 9 3 4 8 0 0 7 1 3 7 9 6 . . .  

2 3 8 1 4 3 5 6 4 6 1 8 4 0 9 9 7 6 1 3 0 0 4 4 8 5  - 0 . 0 0 0 1  1  1  1 6 6 3 1  8 0 4 0 3 5 5 3 1 1 3 4 3 0 8 1 6 1 9 2 7 . . .  
4 4 5 1 9 9 8 3 5 4 5 2 3 1  1 3 4 8 4 6 4 4 9 8 0 9 8 1 5 6 * ( x 2 (  i  ) * % p i  ) ~ 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 . . .  
9 2 2 4 5 4 4 1 4 1 3 2 2 0 4 6 8 2 4 8 8 8 3 7 7 4 9 5 6 6 2 2 3 7 6 4 7 5 3 0 3 2 6 1 8 6 5 7 8 0 2 5 8 . . .  
* ( x 2 ( i ) * % p i ) " 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 7 4 0 3 0 7 0 8 1 0 7 1 4 1 3 6 9 7 9 2 4 7 0 9 4 0 . . .  
1 6 4 4 8 0 2 7 6 9 1 8  1 2 7 1 8 5 9 3 7 9 6 0 1  * (  x 2 (  i  ) * % p i  ) " 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 0 . . .  
2 6 6 4 5 0 7 0 7 0 4 5 7 3 3 6 8 4 8 1 1 0 0 7 6 2 0 4 2 6 3 2 5 4 6 8 0 9 3 1 7 0 4 4 6 7 7 2 9 0 9 . . .  
* ( x 2 ( i  ) * % p i  ) ' 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 6 9 6 6 5 0 1 7 7 0 3 6 5 8 4 7 9 4 5 7 2 3 6 0 0 3 . . .  
6 4 4 5 4 5 8 2 9 9 5 2 5 7 9 3 6 2 4 6 6 1 9 7 8 4 4 1  3  l * ( x 2 ( i  ) * % p i  y i O  +  0 . 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 0 0 3 5 4 3 9 6 1 8 4 2 2 9 2 5 0 0 1 9 3 3 6 1 7 8 2 1 8 1 2 0 4 7 9 9 7 7 9 8 0 8 9 0 9 5 3 6 3 3 2 9 0 2 7 0 7 8 7 3 . . .  
5 4 * (  x 2 (  i  ) * % p i  ) " 1 2  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 8 5 6 2 7 6 0 3 7 2 3 7 9 2 4 4 9 8 0 7 . . .  
2 3 5 9 0 8 9 4 6 5 1 7 3 2 1 9 3 5 2 1 3 1 2 7 2 3 2 7 3 5 9 2 4 2 3 5 3 * ( x 2 ( i ) * % p i y i 4  +  0 . 0 0 0 0 . . .  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 8 5 6 9 0 0 4 1 9 6 9 4 1 4 9 8 6 6 9 0 9 1 2 5 7 9 4 7 7 4 0 2 5 6 0 9 9 6 1 7 4 9 5 7 . . .  
4 9 0 4 2 5 7 4 4 0 5 2 1 5 * ( x 2 ( i ) * % p i ) " 1 6 ) * ( x 2 (  i ) ' 2  -  1  ) * ( x 2 ( i ) ' 2  -  4  ) . . .  
* ( x 2 (  i  y i  — 9 ) * ( x 2 (  i  ) " 2  — 9 ) ;  

e n d  
e n d  

s  1 3 8  =  s u m (  I a n 3 a p p 2 _ 8  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 8 d e m i  ( i )  =  I a n 3 a p p 2 _ 8  ( i  ) / s  1 3 8  ;  

e n d  

/ / *  *  *  *  O R D E R  2 6  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 3 a p p 2 _ 9  ( i  )  =  1 ;  
e l s e i f  ( x 2 ( i )  <  — 3 ) | ( x 2  ( i )  > 3 )  

I a n 3 a p p 2 _ 9 ( i )  =  0 ;  
e l s e  

I a n 3 a p p 2 _ 9  ( i )  =  ( 0 . 0 0 3 0 8 6 4 1 9 7 5  3 0 8 6 4 1 9 7 5 1 6 3 8 2 1 3 9 2 6 3 9 4 3 1 9 5 . . .  
5 3 1 7 0 0 0 0 6 8 5 1 0 9 5 6 4 8 6 0 2 7 7 7 9  - 0 . 0 0 0 1  1  1  1 6 6 3 1 8 0 4 0 3 6 0 4 6 0 8 7 6 7 5 0 5 2 9 7 4 2 2 . . .  
8 1 8 1 4 7 7 8 1 2 9 5 7 3 4 3 6 9 2 1 4 8 7 7 2 6 1 8 8 * ( x 2 ( i  ) * % p i  ) ' 2  +  0 . 0 0 0 0 0 1 8 6 7 4 2 2 9 2 . . .  
2 4 6 9 2 7 0 7 9 8 2 2 9 7 2 9 3 3 8 8 2 2 3 6 2 0 5 9 7 2 1 6 8 6 0 8 2 5  3 8 3 8 2 5 0 9 5 6 9 6 9 . . .  
* ( x 2 ( i  ) * % p i ) ' 4  -  0 . 0 0 0 0 0 0 0 1 9 5 8 5 1 0 8 1 9 0 6 1 3 5 3 5 3 3 8 3 7 0 8 2 8 6 4 9 8 9 5 1 7 4 6 . . .  
0 0 4 4 3 4 7 7 3 3 8 0 2 4 0 2 4 7 6 1 4 5 7 5 * ( x 2 ( i  ) * % p i )  ' 6  +  0 . 0 0 0 0 0 0 0 0 0 1 4 4 7 7 3 2 1 1 9 . . .  
7 0 3 0 2 0 2 8 2 8 6 2 9 1 3 3 5 0 1 1 5 9 5 0 3 3 4 8 3 5 8 6 8 1 5 3 4 7 7 1 0 2 2 3 5  3 6 2 4 . . .  
* ( x 2 ( i  ) * % p i  ) * 8  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 7 0 7 2 6 0 6 6 4 4 8 8 1 9 9 3 4 2 6 6 5 1 4 7 1 0 7 5 2 . . .  
3 0 7 5 6 7 9 0 1 7 3 7 3 1 8 1 5 0 1 1 7 7 9 0 2 5 2 0 5 * (  x 2  ( i  ) * % p i  y i O  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .  
0 3 5 4 4 5 0 9 2 5 6 1 0 4 1 3 1 6 2 0 5 9 2 3  3 7 3 8 3 2 4 9 9 5 9 4 3 3 4 6 6 2 7 9 2 4 5  8 5 3 8 0 6 2 5 3 0 7 2 4 6 . . .  
* ( x 2 (  i  ) * % p i  ) ' 1 2  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 4 5 1 0 2 0 4 6 1 4 8 9 6 1 2 6 0 6 8 2 3 0 . . .  
7 4 5 6 7 2 5 0 9 3 6 2 7 8 0 3 7 7 5 6 5 2 2 1  1 3 1 7 1 5 4 7 6 2 9 * (  x 2 ( i  ) * % p i  y i 4  +  0 . 0 0 0 0 0 0 . . .  
0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 3 4 6 3 6 8 0 3 9 6 7 9 6 1 2 5 8 9 1 6 0 7 2 2 0 7 0 5 6 8 3 4 4 2 0 5 2 7 0 8 7 6 7 9 4 0 . . .  
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0 4 4 0 8 7 3 2 7 4 3 3 * (  x 2  ( i  ) * % p i  ) ~ 1 6  -  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 4 0 5 1 8 . . .  
8 0 7 1 8 1 9 1 2 7 0 1 5 2 7 1 3 4 1 7 3 5 4 9 2 0 3 9 5 1 4 3 9 7 5 3 1 2 2 3 1 2 0 1 1 8 9 3 0 4 8 2 1 . . .  
* ( x 2 (  i  ) * % p i  )  '  1  8 )  *  (  x 2  (  i  ) " 2  —  1  ) * (  x 2  (  i  )  " 2 - 4 ) * (  x 2  (  i  ) ' 2  - 9 ) * (  x 2  ( i  ) ' 2 - 9 ) ;  

e n d  
e n d  

s  1 3 9  =  s u m (  I a n 3 a p p 2  _ 9  ) ;  

f o r  i  =  1 :  s  
I a n 3 a p p 2 _ 9 d e m i  ( i )  =  I a n 3 a p p 2 _ 9  ( i  ) / s  1 3 9  ;  

e n d  

/ / L a n c z o s  2  
for  i  =  1 :  s  

i f  ( x l ( i )  = =  0 )  
l a n 2 1  ( i )  =  1 ;  

e l s e i f  ( x l  ( i ) < —  2 1 x  1  ( i  ) > 2 )  
l a n 2 1  ( i )  =  0 ;  

e l s e  
l a n 2 1 ( i )  =  2 * s i n  ( % p i  * x l  ( i  ) ) *  s i n ( % p i * x l  ( i  ) / 2 ) / ( %  p i  " 2 * x l  ( i  ) " 2  )  ;  

e n d  
e n d  

s  1 2 1  =  s u m (  l a n 2 1  ) ;  

f o r  i  =  1 :  s  
l a n 2 z e r o ( i )  =  l a n 2 1 ( i  ) / s 1 2 1  ;  

e n d  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

l a n 2 2  ( i  )  =  1 ;  
e l s e i f  ( x 2 ( i ) < — 2 ) | ( x 2 ( i ) > 2 )  

l a n 2 2 ( i )  =  0 ;  
e l s e  

l a n 2 2  ( i )  =  2 *  s i n  ( % p i  * x 2  ( i  ) ) *  s i n ( % p i  * x 2  ( i  ) / 2 ) / ( %  p i  ~ 2 *  x 2  ( i  )  " 2 )  ;  
e n d  

e n d  

s  1 2 2  =  s u m (  l a n 2 2  ) ;  

f o r  i  =  1 :  s  
l a n 2 d e m i ( i )  =  l a n 2 2  ( i  ) / s  1 2  2  ;  

e n d  

/ / L a n c z o s  2  a p p r o x i m a t i o n s  —  z e r o  p h a s e  
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//****ORDER 8 

f o r  i  =  1 :  s  
i f  ( x l ( i )  = =  0 )  

l a n 2 a p p 1  ( i  )  =  1 ;  
e l s e i f  ( x l  ( i )  <  — - 2 ) j ( x  1  ( i  ) > 2 )  

l a n 2 a p p 1 ( i )  =  0 ;  
e l s e  

l a n 2 a p p  1  ( i )  =  ( 0 . 0 6 2 3 1 4 5 0 5  8 7 7 6 1 6 1 9 9 2 3 5 7 3 8 4 4 5 6 7 7 6 1 5 6 7 7 3 7 9 8 . . .  
7 2 5 7 4 6 1 3 8 9 1  1 2 1 9 5 0 4 5 9  - 0 . 0 0 3 1 6 9 9 2 9 4 5 0 0 6 6 5 7 9 1 8 0 2 7 6 6 1 8 2 6 7 3 0 7 4 8 8 9 1 . . .  
1 9 7 2 4 0 0 7 4 1  1  5 5 6 6 2 8 5 2 9 3 4 4 5 * (  x  1  ( i  ) * % p i  ) ' 2 ) * (  1  -  x l  ( i  ) ~ 2 ) .  . .  
* ( 4 - x l ( i ) * 2 ) * ( 4 - x l ( i  ) " 2 ) ;  

e n d  
e n d  

s l 2 a p p l  =  s u m ( l a n 2 a p p l  ) ;  

f o r  i  =  1 :  s  
l a n 2 a p p l z e r o ( i )  =  I a n 2 a p p l ( i ) / s l 2 a p p l ;  

e n d  

/ / * * * *  o r d e r  1 0  

f o r  i  =  1 :  s  
i f  ( x l  ( i )  = =  0 )  

I a n 2 a p p 2 ( i )  =  1 ;  
e l s e i f  ( x l  ( i )  <  —  2 ) | ( x  1  ( i )  > 2 )  

I a n 2 a p p 2  ( i )  =  0 ;  
e l s e  

I a n 2 a p p 2  ( i )  =  ( 0 . 0 6 2 4 9 7 0 1 8 9 1 2 8 3 9 9 9 5 0 3 1 9 7 4 4 0 8 6 1 4 2 6 7 0 1 3 8 2 2 1 . . .  
2 7 6 0 9 6 3 5 6 9 9 2 0 8 9 8 1 0 3 6  - 0 . 0 0 3 5 0 9 1 8 8 7 1 5 9 2 4 8 0 0 1 1 2 2 1  1 7 7 7 7 6 2 3 3 9 9 6 6 2 9 . . .  
4 6 5 7 8 4 2 9 9 6 9 8 1 8 4 3 6 2 1 7 5 1 0 2 * ( x l  ( i  ) * % p i  ) " 2  +  0 . 0 0 0 0 8 2 7 9 0 5 2 6 0 3 8 2 8 4 . . .  
2 0 9 8 1 2 3 3 1 3 6 4 0 3 6 2 2 8 5 5 1 4 1 4 3 4 1 8 9 6 4 0 6 3 2 0 5 1 8 2 4 4 9 1 4 . . .  
* ( x l  ( i  ) * % p i  ) " 4 ) * (  1  -  x l  (  i  ) ~ 2 ) * ( 4  -  x l  (  i  ) ~ 2 ) * ( 4  -  x l  ( i  ) " 2  ) ;  

e n d  
e n d  

s l 2 a p p 2  =  s u m (  I a n 2 a p p 2  ) ;  

f o r  i  =  1  :  s  
l a n 2 a p p 2 z e r o ( i )  =  I a n 2 a p p 2  ( i  ) / s l 2 a p p 2  ;  

e n d  

/ / * * * *  o r d e r  1 2  
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f o r  i  =  l : s  
i f  ( x l ( i )  = =  0 )  

I a n 2 a p p 3  ( i )  =  1 ;  
e l s e i f  ( x l ( i ) < — 2 ) | ( x l ( i ) > 2 )  

I a n 2 a p p 3  ( i  )  =  0 ;  
e l s e  

I a n 2 a p p 3  ( i  )  =  ( 0 . 0 6 2 4 9 9 9 6 6 6 6 8 7 0 5 0 8 5 4 3 4 7 7 9 3 1  1 5 9 1 7 4 3 2 8 7 1 8 4 7 . . .  
4 1 6 3 5 8 3 7 9 4 4 1  1 5 9 4 6 6 3 9 5  - 0 . 0 0 3 5 2 1 7 1 6 5 4 6 1 3 2 8 1 8 2 5 2 4 3 0 5 9 5 2 3 0 7 0 0 0 8 1 9 . . .  
6 8 0 0 9 0 8 4 6 1 4 8 8 4 6 5 4 5 1 4 7 7 7 7 8 * ( x l  ( i  ) * % p i  ) ~ 2  +  0 . 0 0 0 0 9 0 9 1 0 5 4 5 2 7 0 1 6 . . .  
2 1 8 9 5 2 8 8 2 4 9 9 4 7 3 4 0 5 4 4 8 7 3 2 8 0 7 2 3 0 5 1 7 7 7 2 1 8 8 3 6 9 2 0 5 1  1 . . .  
* ( x  1  ( i  ) * % p i )  ' 4  -  0 . 0 0 0 0 0 1 3 3 0 5 9 0 4 5 5 6 5 6 5 6 6 2 7 8 5 9 7 3 6 8 3 4 1 9 8 8 6 1 9 4 7 3 . . .  
1 0 5 6 1 2 6 2 5 4 5 7 5 5 5 2 6 4 1 0 9 8 1  * (  x l  ( i  ) * % p i  ) " 6 ) * (  1  - x l ( i  ) " 2 ) . . .  
* ( 4  — x l ( i ) " 2 ) * ( 4  —  x l ( i  ) * 2 ) ;  

e n d  
e n d  

s l 2 a p p 3  =  s u m (  I a n 2 a p p 3  ) ;  

f o r  i  =  1 :  s  
l a n 2 a p p 3 z e r o ( i )  =  I a n 2 a p p 3 ( i  ) / s l 2 a p p 3  ;  

e n d  

/ / * * * *  o r d e r  1 4  

f o r  i  =  1 : s  
i f  ( x l ( i )  = =  0 )  

I a n 2 a p p 4  ( i  )  =  1 ;  
e l s e i f  ( x l  ( i )  <  —  2 ) j ( x  1  ( i )  > 2 )  

I a n 2 a p p 4  ( i )  =  0 ;  
e l s e  

I a n 2 a p p 4  ( i )  =  ( 0 . 0 6 2 4 9 9 9 9 9 7 2 2 2 2 2 6 2 2 7 4 2 5 8 3 1  1 8 8 6 8 1 2 4 2 2 9 0 5 6 4 . . .  
7 1 3 2 1 6 7 5 0 8 4 1 3 8 7 5 3 9 3 3  - 0 . 0 0 3 5 2 1 9 6 9 0 1 6 7 3 8 2 2 7 7 9 6 6 9 3 2 0 0 5 7 7 1 3 0 1 4 8 1 0 . . .  
5 4 0 1 7 9 3 2 6 6 4 4 2 9 6 4 2 0 6 4 7 1 1  l * ( x l  ( i  ) * % p i  ) " 2  +  0 . 0 0 0 0 9 1 2 1 7 5 8 3 0 2 0 7 8 2 . . .  
5 9 4 9 7 0 8 3 0 5 2 3 7 2 9 7 6 3 1 6 1 1 8 4 8 1 4 3 4 9 7 7 7 1 2 6 3 2 9 8 9 8 9 5 4 7 . . .  
* ( x  1  ( i  ) * % p i ) ~ 4  -  0 . 0 0 0 0 0 1 4 5 1 1 7 8 5 3 6 6 4 3 2 8 9 1 8 8 9 2 6 4 2 4 7 2 9 9 0 5 7 6 9 0 9 1 . . .  
4 5 8 5 8 5 2 9 1 0 3 6 7 3 1 6 8  6 4  3 5  0 5  * ( x l ( i  ) * % p i )  * 6  +  0 . 0 0 0 0 0 0 0 1 4 8 7 7 4 7 0 2 9 6 8 . . .  
9 0 0 5 0 5 9 2 2 9 8 2 5 3 5 4 4 5 0 7 0 2 2 7 0 6 2 3 8 1 5 3 6 5 4 6 8 7 5 9 3 1 4 4 6 9 4 4 . . .  
* ( x l  ( i  ) * % p i ) ' 8 ) * ( l  —  x  1  (  i  ) ~ 2 ) * ( 4 - x l ( i ) ~ 2 ) * ( 4 - x l ( i  ) ~ 2 ) ;  

e n d  
e n d  

s l 2 a p p 4  =  s u m (  I a n 2 a p p 4  ) ;  

f o r  i  =  1 :  s  
l a n 2 a p p 4 z e r o ( i  )  =  I a n 2 a p p 4 ( i  ) / s l 2 a p p 4  ;  

e n d  
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/ / * * * *  O R D E R  1 6  

f o r  i  =  1 :  s  
i f  ( x l ( i )  = =  0 )  

I a n 2 a p p 5  ( i )  =  1 ;  
e l s e i f  ( x l  ( i  ) <  —  2 ) | ( x  1  ( i  ) > 2 )  

I a n 2 a p p 5 ( i )  =  0 ;  
e l s e  

I a n 2 a p p 5 ( i )  =  ( 0 . 0 6 2 4 9 9 9 9 9 9 9 8 1 9 5 4 3 8 7 5 3 7 2 3 3 2 8 3 4 9 0 3 3 0 8 7 6 5 5 3 . . .  
7 0 4 4 6 2 6 3 5 1 3 2 2 6 6 3 4 2 1 9 5  - 0 . 0 0 3 5 2 1 9 7 2 3 3 5 3 8 3 1 8 0 8 2 8 3 1 3 0 2 2 0 6 5 2 5 4 1 4 8 8 . . .  
0 3 4 9 1 2 4 0 6 0 0 8 1 9 4 0 4 8 5 4 4 5 5 1 5 * ( x l  ( i  ) * % p i  ) ' 2  +  0 . 0 0 0 0 9 1 2 2 4 0 5 2 4 3 5 2 7 . . .  
8 0 5 2 8 1 9 7 8 9 4 9 7 8 5 1 2 0 1 1 2 9 3 0 1 3 4 1 5 1 1 9 8 3 7 4 5 0 7 9 6 7 6 2 6 1 3 . . .  
* ( x  1  ( i ) * % p i  ) ~ 4  -  0 . 0 0 0 0 0 1 4 5 5 6 2 5 1 5 1 4 7 1 8 9 3 7 8 2 4 2 0 8 7 9 2 8 1 0 4 7 2 9 0 2 7 2 . . .  
3 9 5 2 1 0 9 0 5 0 3 8 0 3 9 6 6 1 0 3 7 4 * ( x l  ( i  ) * % p i  ) ~ 6  +  0 . 0 0 0 0 0 0 0 1 6 1 3 0 6 4 0 3 1 0 0 9 . . .  
0 1 2 9 0 6 0 9 3 8 7 0 8 3 7 8 5 9 5 6 1 4 6 2 9 3  5 6 3 6 8 5 9 5 0 0 5 8 6 7 5 0 0 8 3 9 9 . . .  
* ( x  1  ( i  ) * % p i  ) " 8  -  0 . 0 0 0 0 0 0 0 0 0 1 2 3 9 8 7 1 9 9 2 7 2 6 9 3 1 2 7 0 5 3 0 5 4 0 6 0 5 6 0 4 3 3 . . .  
4 6 2 2 2 8 4 0 3 1 6 0 9 8 3 2 9 8 3 6 3 2 0 9 8 1 8 * ( x l ( i ) * % p i ) " 1 0 ) * ( 1  -  x l  (  i  ) * 2 ) . .  .  
* ( 4 - x l  ( i ) * 2 ) * ( 4 - x l ( i  ) A 2 ) ;  

e n d  
e n d  

s l 2 a p p 5  =  s u m (  I a n 2 a p p 5  ) ;  

f o r  i  =  1 :  s  
l a n 2 a p p 5 z e r o ( i )  =  I a n 2 a p p 5 ( i  ) / s l 2 a p p 5  ;  

e n d  

/ / * * * *  o r d e r  1 8  

f o r  i  =  1 :  s  
i f  ( x l  (  i )  = =  0 )  

I a n 2 a p p 6  ( i )  =  1 ;  
e l s e i f  ( x l  ( i )  <  — 2 ) | ( x l  ( i ) > 2 )  

I a n 2 a p p 6  ( i )  =  0 ;  
e l s e  

I a n 2 a p p 6  ( i )  =  ( 0 . 0 6 2 4 9 9 9 9 9 9 9 9 9 9 0 5 6 6 0 8 5 0 1 2 2 0 2 1 1 2 4 8 2 1 2 4 7 9 3 7 . . .  
3 4 3 7 4 3 1 5 3 6 9 4 1  1  1 4 1 5 7 3 9  - 0 . 0 0 3 5 2 1 9 7 2 3 6 6 6 3 9 3 5 9 4 0 7 9 1 2 4 5 9 2 9 3 5 0 1 3 6 7 7 . . .  
5 7 1 7 0 2 9 8 9 2 0 1 5  1 9 1 0 9 0 6 9 5 2 3 5 * (  x l  ( i  ) * % p i  ) * 2  +  0 . 0 0 0 0 9 1 2 2 4 1 4 1 4 7 2 2 9 . . .  
2 3 0 0 4 8 5 4 4 4 5  8 2 4 8 5 5 5 0 7 4 4 1 8 5 2 0 0 2 8 4 1 4 6 2 6 7 5 4 4 9 6 0 5 6 7 5 . . .  
* ( x  1  ( i  ) * % p i ) ~ 4  -  0 . 0 0 0 0 0 1 4 5 5 7 1 8 4 6 0 6 2 9 0 2 5 5 4 8 6 6 7 5 0 0 1 5 6 0 8 1 5 5 3 1 5 5 . . .  
5 5 4 4 6 7 7 1 0 3 2 6 1 3 6 7 0 7 1 7 4 3 8 * ( x l ( i  ) * % p i  ) ~ 6  +  0 . 0 0 0 0 0 0 0 1 6 1 7 5 0 1 4 7 0 4 1 . . .  
0 6 3 9 5 2 1 3 5 9 4 1 7 4 7 6 0 9 5 4 1 5 9 0 3 5 6 0 6 3 5 1 8 0 3 1 2 1 0 7 7 4 5 7 4 4 3 6 . . .  
* ( x  1  ( i  ) * % p i  ) ~ 8  -  0 . 0 0 0 0 0 0 0 0 0 1 3 3 7 4 0 3 3 4 0 3 6 9 2 8 3 6 2 3 1 5 3 4 1 0 4 7 0 9 6 6 0 5 . . .  
5 0 8 6 4 7 9 6 6 0 8  1 5 7 3 7 4 1 7 6 0 1 5 5 0 0 3 * ( x l  ( i  ) * % p i ) ' 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 . . .  
5 4 7 6 9 1 1 7 1 8 2 8 2 7 6 7 5 3 0 0 3 0 8 5 2 5 1 1 4 6 4 1 8 6 9 1 9 5 9 4 4 7 3 4 1 6 7 3 7 0 8 7 1 5 2 5 3 4 . . .  
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* ( x l  ( i  ) * % p i ) ' 1 2 ) * ( l  - x l (  i  ) ' 2 ) * ( 4  - x l  (  i  ) " 2 ) * ( 4  - x l  (  i  ) ' 2 ) ;  
e n d  

e n d  

s l 2 a p p 6  =  s u m (  I a n 2 a p p 6  ) ;  

f o r  i = 1 : s 

l a n 2 a p p 6 z e r o ( i )  =  I a n 2 a p p 6 ( i  ) / s l 2 a p p 6  ;  
e n d  

/ / L a n c z o s  2  a p p r o x i m a t i o n s  -  h a l f  p h a s e  

/ / *  *  *  *  O R D E R  8  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 2 a p p 2 _ l ( i )  =  1 ;  
e l s e i f  ( x 2 ( i )  <  — 2 ) | ( x 2 ( i ) > 2 )  

I a n 2 a p p 2 _ 1 ( i )  =  0 ;  
e l s e  

I a n 2 a p p 2 _ l  ( i )  =  ( 0 . 0 6 2 3 1 4 5 0 5  8 7 7 6 1 6 1 9 9 2 3 5 7  3 8 4 4 5 6 7 7 6 1 5 6 7 7 3 7 . . .  
9 8 7 2 5 7 4 6 1 3 8 9 1  1 2 1 9 5 0 4 5 9  - 0 . 0 0 3 1 6 9 9 2 9 4 5 0 0 6 6 5 7 9 1 8 0 2 7 6 6 1 8 2 6 7 3 0 7 4 8 8 . . .  
9 1 1 9 7 2 4 0 0 7 4 1  1 5 5 6 6 2 8 5 2 9 3 4 4 5 * ( x 2 ( i ) * % p i ) ~ 2 ) * ( 1  - x 2 ( i  ) * 2  ) . . .  
* ( 4  — x 2 (  i  ) A 2 ) * ( 4  —  x 2 (  i  ) * 2 ) ;  

e n d  
e n d  

s l 2 a p p 2 _ l  =  s u m (  I a n 2 a p p 2 _ l  ) ;  

f o r  i  =  1 :  s  
I a n 2 a p p 2 _ l  d e m i  ( i )  =  I a n 2 a p p 2 _ l  ( i  ) / s l 2 a p p 2 _ l  ;  

e n d  

/ / * * * *  O R D E R  1 0  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 2 a p p 2  _ 2  ( i )  =  1 ;  
e l s e i f  ( x 2 (  i ) <  —  2 ) | ( x 2 (  i ) > 2 )  

I a n 2 a p p 2  _ 2 ( i )  =  0 ;  
e l s e  

I a n 2 a p p 2 _ 2 ( i )  =  ( 0 . 0 6 2 4 9 7 0 1 8 9 1 2 8 3 9 9 9 5 0 3 1 9 7 4 4 0 8 6 1 4 2 6 7 0 1 3 8 2 . . .  
2 1 2 7 6 0 9 6 3 5 6 9 9 2 0 8 9 8 1 0 3 6  - 0 . 0 0 3 5 0 9 1 8 8 7 1 5 9 2 4 8 0 0 1  1 2 2 1  1 7 7 7 7 6 2 3 3 9 9 6 6 . . .  
2 9 4 6 5 7 8 4 2 9 9 6 9 8 1 8 4 3 6 2 1 7 5 1 0 2 * ( x 2 ( i  ) * % p i  ) ~ 2  +  0 . 0 0 0 0 8 2 7 9 0 5 2 6 0 3 8 2 . . .  
8 4 2 0 9 8 1 2 3 3 1 3 6 4 0 3 6 2 2 8 5 5 1 4 1 4 3 4 1 8 9 6 4 0 6 3 2 0 5 1 8 2 4 4 9 1 4 . . .  
* ( x 2 (  i  ) * % p i  ) ' 4 ) * ( 1  - x 2 (  i ) ' 2 ) * ( 4  - x 2 (  i ) ' 2 ) * ( 4  -  x 2  ( i  ) ' 2 ) ;  
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e n d  
e n d  

s l 2 a p p 2 _ 2  =  s u m (  I a n 2 a p p 2 _ 2  ) ;  

f o r  i  =  1 :  s  
I a n 2 a p p 2 _ 2 d e m i  ( i )  =  I a n 2 a p p 2 _ 2  ( i  ) / s l 2 a p p 2 _ 2  ;  

e n d  

/ / * * * *  o r d e r  1 2  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 2 a p p 2  _ 3  ( i )  =  1 ;  
e l s e i f  ( x 2 ( i )  <  — 2 ) | ( x 2  ( i ) > 2 )  

I a n 2 a p p 2  _ 3 ( i )  =  0 ;  
e l s e  

I a n 2 a p p 2 _ 3 ( i )  =  ( 0 . 0 6 2 4 9 9 9 6 6 6 6 8 7 0 5 0 8 5 4 3 4 7 7 9 3 1  1 5 9 1 7 4 3 2 8 7 1 8 . . .  
4 7 4 1 6 3 5 8 3 7 9 4 4 1  1 5 9 4 6 6 3 9 5  - 0 . 0 0 3 5 2 1 7 1 6 5 4 6 1 3 2 8 1 8 2 5 2 4 3 0 5 9 5 2 3 0 7 0 0 0 8 . . .  
1 9 6 8 0 0 9 0 8 4 6 1 4 8 8 4 6 5 4 5 1 4 7 7 7 7 8 * ( x 2 ( i  ) * % p i  ) * 2  +  0 . 0 0 0 0 9 0 9 1 0 5 4 5 2 7 0 . . .  
1 6 2 1 8 9 5 2 8 8 2 4 9 9 4 7 3 4 0 5 4 4 8 7 3 2 8 0 7 2 3 0 5 1 7 7 7 2 1 8 8 3 6 9 2 0 5 1 1 . . .  
* ( x 2 ( i ) * % p i T 4  -  0 . 0 0 0 0 0 1 3 3 0 5 9 0 4 5 5 6 5 6 5 6 6 2 7 8 5 9 7 3 6 8 3 4 1 9 8 8 6 1 9 4 7 3 . . .  
1 0 5 6 1 2 6 2 5 4 5 7 5 5 5 2 6 4 1 0 9 8 1 * ( x 2 ( i ) * % p i ) ' 6 ) * ( 1  -  x 2 ( i  ) ~ 2  ) . . .  
* ( 4 - x 2 (  i  ) " 2 ) * ( 4  —  x 2 (  i  T 2 ) ;  

e n d  
e n d  

s l 2 a p p 2 _ 3  =  s u m (  I a n 2 a p p 2  _ 3  ) ;  

f o r  i  =  1 :  s  
I a n 2 a p p 2 _ 3 d e m i  ( i )  =  I a n 2 a p p 2 _ 3  ( i  ) / s l 2 a p p 2 _ 3  ;  

e n d  

/ / * * * *  o r d e r  1 4  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 2 a p p 2  _ 4  ( i )  =  1 ;  
e l s e i f  ( x 2  ( i )  <  — 2 ) | ( x 2  ( i ) > 2 )  

I a n 2 a p p 2 _ 4 ( i )  =  0 ;  
e l s e  

I a n 2 a p p 2 _ 4  ( i )  =  ( 0 . 0 6 2 4 9 9 9 9 9 7 2 2 2 2 2 6 2 2 7 4 2 5  8 3 1  1 8 8 6 8 1 2 4 2 2 9 0 5 . . .  
6 4 7 1 3 2 1 6 7 5 0 8 4 1 3 8 7 5 3 9 3 3  - 0 . 0 0 3 5 2 1 9 6 9 0 1 6 7 3 8 2 2 7 7 9 6 6 9 3 2 0 0 5 7 7 1 3 0 1 4 8 . . .  
1 0 5 4 0 1 7 9 3 2 6 6 4 4 2 9 6 4 2 0 6 4 7 1  1  l * ( x 2 ( i  ) * % p i  ) ~ 2  +  0 . 0 0 0 0 9 1 2 1 7 5 8 3 0 2 0 7 . . .  
8 2 5 9 4 9 7 0 8 3 0 5 2 3 7 2 9 7 6 3 1 6 1 1 8 4 8 1 4 3 4 9 7 7 7 1 2 6 3 2 9 8 9 8 9 5 4 7 . . .  
* ( x 2 ( i  ) * % p i  ) ~ 4  -  0 . 0 0 0 0 0 1 4 5 1 1 7 8 5 3 6 6 4 3 2 8 9 1 8 8 9 2 6 4 2 4 7 2 9 9 0 5 7 6 9 0 9 1 . . .  
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4 5 8 5 8 5 2 9 1 0 3 6 7 3  1 6 8 6 4 3 5 0 5 * ( x 2 ( i  ) * % p i  ) * 6  +  0 . 0 0 0 0 0 0 0 1 4 8 7 7 4 7 0 2 9 6 8 . . .  
9 0 0 5 0 5 9 2 2 9 8 2 5 3 5 4 4 5 0 7 0 2 2 7 0 6 2 3 8 1 5 3 6 5 4 6 8 7 5 9 3 1 4 4 6 9 4 4 . . .  
* (  x 2  ( i  ) * % p i  ) " 8 ) * (  1  —  x 2  (  i  ) ' 2 ) * ( 4  -  x 2  (  i  ) " 2 ) * ( 4  —  x 2  ( i  ) ~ 2 )  ;  

e n d  
e n d  

s l 2 a p p 2 _ 4  =  s u m (  I a n 2 a p p 2 _ 4  ) ;  

f o r  i  =  1 :  s  
I a n 2 a p p 2 _ 4 d e m i  ( i )  =  I a n 2 a p p 2 _ 4  ( i  ) / s l 2 a p p 2 _ 4  ;  

e n d  

/ / * * * *  O R D E R  1 6  

f o r  i  =  1 : s  
i f  ( x 2 ( i )  = =  0 )  

I a n 2 a p p 2 _ 5 ( i )  =  1 ;  
e l s e i f  ( x 2 ( i )  <  — 2 ) | ( x 2  ( i ) > 2 )  

I a n 2 a p p 2  _ 5 ( i )  =  0 ;  
e l s e  

I a n 2 a p p 2  _ 5  ( i )  =  ( 0 . 0 6 2 4 9 9 9 9 9 9 9 8 1 9 5 4 3  8 7 5  3 7 2 3 3 2 8 3 4 9 0 3  3 0 8 7 6 5 . . .  
5 3 7 0 4 4 6 2 6 3 5 1 3 2 2 6 6 3 4 2 1 9 5  - 0 . 0 0 3 5 2 1 9 7 2 3 3 5 3 8 3 1 8 0 8 2 8 3 1 3 0 2 2 0 6 5 2 5 4 1 4 . . .  
8 8 0 3 4 9 1 2 4 0 6 0 0 8 1 9 4 0 4 8 5 4 4 5 5 1 5 * (  x 2  ( i  ) * % p i  ) " 2  +  0 . 0 0 0 0 9 1 2 2 4 0 5 2 4 3 5 . . .  
2 7 8 0 5 2 8 1 9 7 8 9 4 9 7 8 5 1 2 0 1 1 2 9 3 0 1 3 4 1 5 1 1 9 8 3 7 4 5 0 7 9 6 7 6 2 6 1 3 . . .  
* (  x 2  ( i  ) * % p i )  " 4  -  0 . 0 0 0 0 0 1 4 5 5 6 2 5 1 5 1 4 7 1 8 9 3 7 8 2 4 2 0 8 7 9 2 8 1 0 4 7 2 9 0 2 7 2 . . .  
3 9 5 2  1 0 9 0 5 0 3 8 0 3 9 6 6 1 0 3 7 4 * ( x 2 ( i  ) * % p i ) ' 6  +  0 . 0 0 0 0 0 0 0 1 6 1 3 0 6 4 0 3 1 0 0 9 . . .  
0 1 2 9 0 6 0 9 3  8 7 0 8 3 7 8 5 9 5 6 1 4 6 2 9 3 5 6 3 6 8 5 9 5 0 0 5  8 6 7 5 0 0 8 3  9 9 . . .  
* ( x 2 ( i  ) * % p i ) ~ 8  -  0 . 0 0 0 0 0 0 0 0 0 1 2 3 9 8 7 1 9 9 2 7 2 6 9 3 1 2 7 0 5 3 0 5 4 0 6 0 5 6 0 4 3 3 . . .  
4 6 2 2 2 8 4 0 3 1 6 0 9 8 3 2 9 8 3 6 3 2 0 9 8 1 8 * ( x 2 ( i ) * % p i ) ' l 0 ) * (  1  - x 2 ( i  ) ' 2 ) . . .  
* ( 4  — x 2 (  i ) " 2 ) * ( 4  —  x 2 ( i  ) " 2 ) ;  

e n d  
e n d  

s l 2 a p p 2 _ 5  =  s u m (  I a n 2 a p p 2 _ 5  ) ;  

f o r  i  =  1 :  s  
I a n 2 a p p 2 _ 5 d e m i  ( i )  =  I a n 2 a p p 2 _ 5  ( i  ) / s l 2 a p p 2 _ 5  ;  

e n d  

/ / * * * *  O R D E R  1 6  

f o r  i  =  1 :  s  
i f  ( x 2 ( i )  = =  0 )  

I a n 2 a p p 2  _ 6 ( i )  =  1 ;  
e l s e i f  ( x 2 ( i ) <  — 2 ) | ( x 2 ( i ) > 2 )  

I a n 2 a p p 2 _ 6 ( i )  =  0 ;  
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e l s e  
I a n 2 a p p 2 _ 6  ( i )  =  ( 0 . 0 6 2 4 9 9 9 9 9 9 9 9 9 9 0 5 6 6 0 8 5 0 1 2 2 0 2 1  1 2 4 8 2 1 2 4 7 9 . . .  

3 7 3 4 3 7 4 3 1 5 3 6 9 4 1  1  1 4 1 5 7 3 9  - 0 . 0 0 3 5 2 1 9 7 2 3 6 6 6 3 9 3 5 9 4 0 7 9 1 2 4 5 9 2 9 3 5 0 1 3 6 . . .  
7 7 5 7 1 7 0 2 9 8 9 2 0 1 5  1 9 1 0 9 0 6 9 5 2 3 5 * (  x 2  ( i  ) * % p i  ) * 2  +  0 . 0 0 0 0 9 1 2 2 4 1 4 1 4 7 2 . . .  
2 9 2 3 0 0 4 8 5 4 4 4 5 8 2 4 8 5 5 5 0 7 4 4 1 8 5 2 0 0 2 8 4 1 4 6 2 6 7 5 4 4 9 6 0 5 6 7 5 . . .  
* ( x 2 (  i  ) * % p i ) ~ 4  -  0 . 0 0 0 0 0 1 4 5 5 7 1 8 4 6 0 6 2 9 0 2 5 5 4 8 6 6 7 5 0 0 1 5 6 0 8 1 5 5 3 1 5 5 . . .  
5 5 4 4 6 7 7 1 0 3 2 6 1 3 6 7 0 7 1 7 4 3 8 * ( x 2 ( i  ) * % p i )  " 6  +  0 . 0 0 0 0 0 0 0 1 6 1 7 5 0 1 4 7 0 4 1 . . .  
0 6 3 9 5 2 1 3 5 9 4 1 7 4 7 6 0 9 5 4 1 5 9 0 3 5 6 0 6 3 5 1 8 0 3 1 2 1 0 7 7 4 5 7 4 4 3 6 . . .  
* ( x 2  ( i  ) * % p i )  ' 8  -  0 . 0 0 0 0 0 0 0 0 0 1 3 3 7 4 0 3 3 4 0 3 6 9 2 8 3 6 2 3 1 5 3 4 1 0 4 7 0 9 6 6 0 5 . . .  
5 0 8 6 4 7 9 6 6 0 8  1 5 7 3 7 4 1 7 6 0 1 5 5 0 0 3 * ( x 2 ( i  ) * % p i ) ' 1 0  +  0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 0 . . .  
5 4 7 6 9 1 1 7 1 8 2 8 2 7 6 7 5 3 0 0 3 0 8 5 2 5 1 1 4 6 4 1 8 6 9 1 9 5 9 4 4 7 3 4 1 6 7 3 7 0 8 7 1 5 2 5  3 4 . . .  
* ( x 2 ( i  ) * % p i  y i 2 ) * ( l  - x 2 (  i  ) ' 2 ) * ( 4  -  x 2 (  i  ) ' 2 ) * ( 4  - x 2 (  i  ) ~ 2 ) ;  

e n d  
e n d  

s l 2 a p p 2 _ 6  =  s u m (  I a n 2 a p p 2  _ 6  ) ;  

f o r  i  =  1 :  s  
I a n 2 a p p 2 _ 6 d e m i  ( i )  =  I a n 2 a p p 2 _ 6  ( i  ) / s l 2 a p p 2 _ 6  ;  

e n d  

I I  C a t m u l l  — R o m  
b  =  0 ;  
c  =  0 . 5 ;  
f o r  i  =  1 :  s  

i f  ( x l  ( i ) > = —  l ) & ( x  1  ( i ) <  =  l )  
c r l ( i )  =  ( 1 / 6 )  *  (  a b s  ( x l  ( i  ) ) " 3 * (  1 2 - 9 *  b - 6 * c ) +  . . .  

a b s ( x l  ( i ) ) ~ 2 * (  —  1 8  +  1 2 * b + 6 * c ) + ( 6 - 2 * b  ) ) ;  
e l s e i f  ( x l  ( i  ) > =  — 2 ) & ( x l  ( i ) < = 2 )  

c r l ( i )  =  ( 1  / 6 )  *  (  a b s  ( x l  ( i  ) ) ~ 3 * (  —  b — 6 * c ) +  . . .  
a b s  ( x l  ( i ) ) " 2 * ( 6 *  b + 3 0 * c ) + a b s  ( x l  ( i  ) ) *  . . .  

(  —  1 2 * b — 4 8 * c  )  +  ( 8 * b + 2 4 * c  ) ) ;  
e l s e  

c r l  ( i )  =  0 ;  
e n d  

e n d  

s c r  1  =  s u m (  c r l ) ;  

f o r  i  =  1 :  s  
c r z e r o ( i )  =  c r l ( i ) / s c r l ;  

e n d  

f o r  i  =  1  ;  s  
i f  ( x 2  ( i  ) >  =  —  l ) & ( x 2 ( i  ) <  =  1 )  

c r 2 ( i )  =  ( 1 / 6 )  *  (  a b s  ( x 2  ( i  ) ) " 3 * (  1 2 - 9 * b - 6 * c ) +  . . .  
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a b s ( x 2 ( i ) ) " 2 * (  —  1 8  + 1 2 * b + 6 * c ) + ( 6  —  2 *  b  ) ) ;  
e l s e i f  ( x 2 ( i ) > = - 2 ) & ( x 2 ( i ) < = 2 )  

c r 2  ( i )  =  ( 1  /  6 )  *  (  a b s  ( x 2 ( i ) ) ~ 3 * (  —  b — 6 * c ) +  . . .  
a b s ( x 2 ( i  ) ) A 2 * ( 6 *  b + 3 0 * c  ) + a b s  ( x 2  (  i ) )  *  . . .  

(  — 1 2 * b — 4 8 * c )  +  ( 8 * b + 2 4 * c ) ) ;  
e l s e  

c r 2  ( i )  =  0 ;  
e n d  

e n d  

s c r 2  =  s u m (  c r 2  ) ;  

f o r  i  =  1 :  s  
c r d e m i  ( i )  =  c r 2 ( i ) / s c r 2 ;  

e n d  

/ / C u b i c  B - S p l i n e  
b  =  1 ;  
c  =  0 ;  
f o r  i  =  1 :  s  

i f  ( x l  ( i ) > =  —  1  ) & ( x  1  ( i )  <  =  1 )  
b s p l ( i )  =  ( 1  / 6 )  *  (  a b s  ( x l  ( i  ) ) * 3  * (  1 2  —  9 * b —  6 * c ) +  . . .  

a b s ( x l ( i ) ) " 2 * (  —  1 8  + 1 2 * b + 6 * c ) + ( 6  —  2 * b  ) ) ;  
e l s e i f  ( x l  ( i  ) > = — 2 ) & ( x l  ( i ) < = 2 )  

b s p l ( i )  =  ( 1  / 6 )  *  (  a b s  ( x l  ( i  ) ) " 3  * (  —  b —  6 * c )  +  . . .  
a b s ( x l ( i ) ) ~ 2 * ( 6 * b + 3 0 * c ) +  . . .  
a b s ( x l ( i ) ) * (  —  1 2 * b - 4 8 * c  )  +  ( 8 *  b + 2 4 * c  ) ) ;  

e l s e  
b s p l  ( i )  =  0 ;  

e n d  
e n d  

s b s p  1  =  s u m (  b s p l  ) ;  

f o r  i  =  1 :  s  
b s p z e r o ( i )  =  b s p l ( i ) / s b s p l ;  

e n d  

f o r  i  =  1 :  s  
i f  ( x 2  ( i  ) > =  — l ) & ( x 2  ( i ) <  =  1 )  

b s p 2 ( i )  =  ( 1  / 6 )  *  (  a b s  ( x 2  ( i  ) ) " 3 * (  1 2 - 9 * b - 6 * c ) +  . . .  
a b s  ( x 2 ( i ) ) " 2 * (  —  1 8  +  1  2 * b + 6 * c ) + ( 6 - 2 * b  ) ) ;  

e l s e i f  ( x 2 (  i ) > = — 2 ) & ( x 2 ( i ) < = 2 )  
b s p 2 ( i )  =  ( 1 1 6 )  *  (  a b s  ( x 2  ( i  ) ) ~ 3 * (  -  b — 6 * c ) +  . . .  

a b s  ( x 2 ( i  ) ) " 2 * ( 6 * b + 3 0 * c ) +  . . .  
a b s  ( x 2  ( i  ) ) * (  —  1 2 * b — 4 8 * c  )  +  ( 8 * b + 2 4 * c  ) ) ;  
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e l s e  
b s p 2  ( i )  =  0 ;  

e n d  
e n d  

s b s p 2  =  s u m ( b s p 2 ) ;  

f o r  i  =  1 : s  
b s p d e m i  ( i )  =  b s p 2  ( i  ) / s b s p 2  ;  

e n d  

/ / M i t c h e l l — N e t r a v a l i  
b  =  1 / 3 ;  
c  =  1 / 3 ;  
f o r  i  =  1 :  s  

i f  ( x l  ( i ) > = — l ) & ( x l  (  i  ) <  =  1 )  
m n l ( i )  =  ( 1 / 6 )  *  (  a b s  ( x  1  (  i  ) ) " 3 * (  1 2  —  9 * b - 6 * c ) +  . . .  

a b s ( x l ( i ) ) A 2 * (  —  1 8 + 1 2 * b + 6 * c ) + ( 6  —  2 * b ) ) ;  
e l s e i f  ( x l  ( i ) > = - 2 ) & ( x l  ( i  ) < = 2 )  

m n l ( i )  =  ( 1  1 6 )  *  (  a b s  ( x  1  ( i  ) ) ~ 3 * (  —  b — 6 * c ) +  . . .  
a b s  ( x l  ( i  ) ) ~ 2 * ( 6 * b + 3 0 * c ) +  . . .  
a b s  ( x l  ( i  ) ) * (  -  1 2 * b - 4 8 * c  )  +  ( 8 * b + 2 4 * c  ) ) ;  

e l s e  
m n l  ( i )  =  0 ;  

e n d  
e n d  

s m n l  =  s u m  ( m n l ) ;  

f o r  i  =  1 :  s  
m n z e r o ( i )  =  m n l  ( i ) / s m n l ;  

e n d  

f o r  i  =  1 :  s  
i f  ( x 2  (  i  ) > = —  l ) & ( x 2  (  i )  <  =  1 )  

m n 2 (  i )  =  ( 1 1 6 )  *  (  a b s  ( x 2  ( i  ) ) " 3 * (  1 2  —  9 * b — 6 * c ) +  . . .  
a b s  ( x 2 ( i ) ) " 2 * (  —  1 8 + 1 2 * b + 6 * c ) + ( 6  - 2 * b  ) ) ;  

e l s e i f  ( x 2  ( i ) > = — 2 ) & ( x 2 ( i )  < = 2 )  
m n 2 (  i )  =  ( 1 1 6 )  *  (  a b s  ( x 2  ( i  ) ) ~ 3  * (  —  b - 6 * c ) +  . . .  

a b s ( x 2 ( i  ) ) * 2 * ( 6 * b + 3 0 * c ) +  . . .  
a b s  ( x 2  ( i  ) ) * (  —  1 2 * b - 4 8 * c  )  +  ( 8 * b + 2 4 * c  ) ) ;  

e l s e  
m n 2  (  i  )  =  0 ;  

e n d  
e n d  
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s m n 2  =  s u m ( m n 2 ) ;  

f o r  i  =  1 :  s  
m n d e m i ( i )  =  m n 2 ( i ) / s m n 2 ;  

e n d  

f  =  [ 0 : 1 / ( 1  1  1 3 ) :  2  *  1  1 1 2 / 1 1 1 3 ] ;  

g b o x z e r o  =  0 ;  
f o r  i  =  1 :  s  

g b o x z e r o  =  g b o x z e r o  +  b o x z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  
e n d  

g b o x d e m i  =  0 ;  
f o r  i  =  1 :  s  

g b o x d e m i  =  g b o x d e m i  +  b o x d e m i  ( i  ) *  c o s  ( % p i * n * x 2  ( i  ) *  f ) ;  
e n d  

g t e n t l z e r o  =  0 ;  
f o r  i  =  1 :  s  

g t e n t l z e r o  =  g t e n t l z e r o  +  t e n t l z e r o  ( i  ) *  c o s  ( % p i * n * x l  ( i  ) * f ) ;  
e n d  

g t e n t l d e m i  =  0 ;  
f o r  i  =  1 :  s  

g t e n t l d e m i  =  g t e n t l d e m i  +  t e n t l d e m i  ( i  ) *  c o s  ( % p i  * n * x 2  ( i  ) * f ) ;  
e n d  

g l a n z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n z e r o  =  g l a n z e r o  +  l a n z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  
e n d  

g l a n d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n d e m i  =  g l a n d e m i  +  l a n d e m i  ( i  ) *  c o s  ( % p i * n * x 2  ( i  ) * f ) ;  
e n d  

g l a n 3 a p p  1  z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p  1  z e r o  =  g l a n 3 a p p  1  z e r o  +  . . .  
I a n 3 a p p l z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 3 a p p 2 z e r o  =  0 ;  
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f o r  i  =  1 :  s  
g l a n 3 a p p 2 z e r o  =  g l a n 3 a p p 2 z e r o  +  . . .  

l a n 3 a p p 2 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  
e n d  

g l a n 3 a p p 3 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 3 z e r o  =  g l a n 3 a p p 3 z e r o  +  . . .  
l a n 3 a p p 3 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 3 a p p 4 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 4 z e r o  =  g l a n 3 a p p 4 z e r o  +  . . .  
l a n 3 a p p 4 z e r o ( i ) * c o s ( % p i  * n * x l ( i ) * f ) ;  

e n d  

g l a n 3 a p p 5 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 5 z e r o  =  g l a n 3 a p p 5 z e r o  +  . . .  
l a n 3 a p p 5 z e r o ( i ) * c o s  ( % p i  * t i * x l  ( i  ) * f ) ;  

e n d  

g l a n 3 a p p 6 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 6 z e r o  =  g l a n 3 a p p 6 z e r o  +  . . .  
l a n 3 a p p 6 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 3 a p p 7 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 7 z e r o  =  g l a n 3 a p p 7 z e r o  +  . . .  
I a n 3 a p p 7 z e r o ( i ) * c o s ( % p i  * n * x l ( i ) * f ) ;  

e n d  

g l a n 3 a p p 8 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 8 z e r o  =  g l a n 3 a p p 8 z e r o  +  . . .  
l a n 3 a p p 8 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 3 a p p 9 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 9 z e r o  =  g l a n 3 a p p 9 z e r o  +  . . .  
l a n 3 a p p 9 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  
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g l a n 3 a p p 2  _ 1  d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 1  d e m i  =  g l a n 3 a p p 2 _ l  d e m i  +  . . .  
l a n 3 a p p 2 _ l d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f  ) ;  

e n d  

g l a n 3 a p p 2 _ 2 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 2 d e m i  =  g l a n 3 a p p 2  _ 2 d e m i  +  . . .  
I a n 3 a p p 2  _ 2 d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 3 a p p 2  _ 3 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 3 d e m i  =  g l a n 3 a p p 2  _ 3 d e m i  +  . . .  
l a n 3 a p p 2 _ 3 d e m i ( i ) * c o s  ( % p i  * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 3 a p p 2  _ 4 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 4 d e m i  =  g l a n 3 a p p 2  _ 4 d e m i  +  . . .  
l a n 3 a p p 2 _ 4 d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 3 a p p 2  _ 5 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 5 d e m i  =  g l a n 3 a p p 2  _ 5 d e m i  +  . . .  
I a n 3 a p p 2  _ 5 d e m i  ( i  ) *  c o s  ( % p i  * n * x 2 (  i  ) * f ) ;  

e n d  

g l a n 3 a p p 2  _ 6 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 6 d e m i  =  g l a n 3 a p p 2  _ 6 d e m i  +  . . .  
l a n 3 a p p 2 _ 6 d e m i ( i ) * c o s  ( % p i * n * x 2  (  i  ) * f ) ;  

e n d  

g l a n 3 a p p 2  _ 7 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 7 d e m i  =  g l a n 3 a p p 2  _ 7 d e m i  +  . . .  
l a n 3 a p p 2 _ 7 d e m i ( i ) * c o s ( % p i * n * x 2 (  i ) * f ) ;  

e n d  

g l a n 3 a p p 2  _ 8 d e m i  =  0 ;  
f o r  i  =  1 : s  

g l a n 3 a p p 2  _ 8 d e m i  =  g l a n 3 a p p 2  _ 8 d e m i  +  . . .  

456 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



l a n 3 a p p 2 _ 8 d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f ) ;  
end 

g l a n 3 a p p 2 _ 9 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 3 a p p 2  _ 9 d e m i  =  g l a n 3 a p p 2  _ 9 d e m i  +  . . .  
l a n 3 a p p 2 _ 9 d e m i ( i ) * c o s  ( % p i  * n * x 2  ( i  ) *  f ) ;  

e n d  

g l a n 2 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 z e r o  =  g l a n 2 z e r o  +  l a n 2 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  
e n d  

g l a n 2 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 d e m i  =  g l a n 2 d e m i  +  l a n 2 d e m i  ( i  ) *  c o s  ( % p i * n * x 2  ( i  ) * f ) ;  
e n d  

g l a n 2 a p p 1  z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p  1  z e r o  =  g l a n 2 a p p  1  z e r o  +  . . .  
l a n 2 a p p l z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 2 a p p 2 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 2 z e r o  =  g l a n 2 a p p 2 z e r o  +  . . .  
l a n 2 a p p 2 z e r o ( i ) * c o s ( % p  i  * « * . * / ( ' / ) * / )  ;  

e n d  

g l a n 2 a p p 3 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 3 z e r o  =  g l a n 2 a p p 3 z e r o  +  . . .  
l a n 2 a p p 3 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 2 a p p 4 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 4 z e r o  =  g l a n 2 a p p 4 z e r o  +  . . .  
l a n 2 a p p 4 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  

e n d  

g l a n 2 a p p 5 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 5 z e r o  =  g l a n 2 a p p 5 z e r o  +  . . .  
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l a n 2 a p p 5 z e r o ( i ) * c o s ( % p i * n * x l ( i ) * f ) ;  
end 

g l a n 2 a p p 6 z e r o  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 6 z e r o  =  g l a n 2 a p p 6 z e r o  +  . . .  
l a n 2 a p p 6 z e r o ( i ) * c o s ( % p i * n * x l ( i ) *  f ) ;  

e n d  

g l a n 2 a p p 2 _ l d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 2 _ l d e m i  =  g l a n 2 a p p 2 _ l d e m i  +  . . .  
l a n 2 a p p 2 _ l d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 2 a p p 2  _ 2 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 2  _ 2 d e m i  =  g l a n 2 a p p 2  _ 2 d e m i  +  . . .  
l a n 2 a p p 2 _ 2 d e m i ( i ) * c o s  ( % p i  * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 2 a p p 2  _ 3 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 2  _ 3 d e m i  =  g l a n 2 a p p 2 _ 3 d e m i  +  . . .  
l a n 2 a p p 2 _ 3 d e m i ( i ) * c o s ( % p i * n * x 2 ( i ) * f ) ;  

e n d  

g l a n 2 a p p 2  _ 4 d e m i  =  0 ;  
f o r  i  =  1 : s  

g l a n 2 a p p 2  _ 4 d e m i  =  g l a n 2 a p p 2  _ 4 d e m i  +  . . .  
l a n 2 a p p 2 _ 4 d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 2 a p p 2  _ 5 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 2  _ 5 d e m i  =  g l a n 2 a p p 2 _ 5 d e m i  +  . . .  
l a n 2 a p p 2 _ 5 d e m i ( i ) * c o s  ( % p i  * n * x 2  ( i  ) * f ) ;  

e n d  

g l a n 2 a p p 2  _ 6 d e m i  =  0 ;  
f o r  i  =  1 :  s  

g l a n 2 a p p 2  _ 6 d e m i  =  g l a n 2 a p p 2  _ 6 d e m i  +  . . .  
l a n 2 a p p 2 _ 6 d e m i ( i ) * c o s  ( % p i * n * x 2  ( i  ) * f ) ;  

e n d  

g c r z e r o  =  0 ;  
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f o r  i  =  1 :  s  
g c r z e r o  =  g c r z e r o  +  c r z e r o  ( i  ) *  c o s  { % p i  * n *  x l  ( i  ) * /  ) ;  

e n d  

g c r d e m i  =  0 ;  
f o r  i  =  1 :  s  

g c r d e m i  =  g c r d e m i  +  c r d e m i  ( i  ) *  c o s  ( % p i * n * x 2  ( i  ) *  f ) ;  
e n d  

g b s p z e r o  =  0 ;  
f o r  i  =  1 :  s  

g b s p z e r o  =  g b s p z e r o  +  b s p z e r o  ( i ) * c o s  ( % p i * n * x l ( i ) * f ) ;  
e n d  

g b s p d e m i  =  0 ;  
f o r  i  =  1 :  s  

g b s p d e m i  =  g b s p d e m i  +  b s p d e m i  ( i  ) *  c o s  ( % p i  * n * x 2  ( i  ) * f  ) ;  
e n d  

g m n z e r o  =  0 ;  
f o r  i  =  1 : s  

g m n z e r o  =  g m n z e r o  +  m n z e r o  ( i  ) *  c o s  ( % p i  * n * x l  ( i  ) * f ) ;  
e n d  

gmndemi = 0; 
f o r  i  =  1 :  s  

gmndemi = gmndemi + mndemi (i )* c o s  ( % p i  * n * x 2  ( i  ) * f ) ;  
e n d  

f d  =  m o p e n (  ' / t m p / D e c i m a t i o n  1  . A l l D e m i e  .  t x t  '  , ' a  ' ) ;  
m f p r i n t f  ( f d  ,  " % /  % f  % f  % f  % f  % f  % f  % /  % f  \ n " ,  f  ' ,  . . .  

2 0 *  l o g l O  ( g b o x d e m i ) ' ,  2 0 * l o g l 0  (  g t e n t l d e m i  ) ' ,  . . .  
20* l o g l O  (  g l a n d e m i ) '  ,  2 0 *  l o g l O  (  g l a n 2 d e m i )  '  ,  . . .  
20*l o g l O (  g c r d e m i ) '  ,  2 0 * l o g l O ( g b s p d e m i ) ' ,  . . .  
20* l o g l O  ( g m n d e m i )  ' ) ;  

m c l o s e  (  f d  ) ;  

f d  =  m o p e n ( ' / t m p / D e c i m a t i o n  1  _ L a n 2 D e m i e  .  t x  t a ' ) ;  
m f p r i n t f  ( f d  ,  " % /  % f  % f  % f  % f  % f  % f  % f  % f  % f  % f  % f  % f  % f  . . .  

% f  % f  \ n " ,  / ' ,  2 0 *  l o g  1 0  (  g l a n 2 a p p 2 - 1  d e m i )  '  ,  . . .  
20* l o g l O  (  g l a n 2 a p p 2  _ 2 d e m i )  '  ,  2 0 *  l o g l O  (  g l a n 2 a p p 2  _ 3 d e m i )  '  ,  . . .  
20* l o g l O  ( g l a n 2 a p p 2 _ 4 d e m i  )  '  ,  2 0 *  l o g l O  (  g l a n 2 a p p 2  _ 5 d e m i ) '  ,  . . .  
20* l o g l O  (  g l a n 2 a p p 2  _ 6 d e m i  )  ' ) ;  
m c l o s e  (  f d  ) ;  

f d  =  m o p e n (  ' / t m p / D e c i m a t i o n l _ L a n 3 D e m i e  .  t x t  '  ,  ' a  '  ) ;  
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m f p r i n t f  ( f d  ,  " % /  % f  % f  % f  %  
% f  % f  \ n " ,  / ' ,  2 0 *  l o g  1 0  (  g l c  
2 0 * I o g l 0 ( g l a n 3 a p p 2 _ 2 d e m i )  '  ,  
2 0 * l o g l 0 ( g l a n 3 a p p 2 _ 4 d e m i )  '  ,  
2 0 * I o g l 0 ( g l a n 3 a p p 2 _ 6 d e m i ) '  ,  
2 0 * I o g l 0 ( g l a n 3 a p p 2 _ 8 d e m i )  '  ,  
m c l o s e  (  f d  ) ;  

e n d f u n c t i o n  

% /  % f  % f  % f  % f  % f  % f  % f  % f  . . .  
n 3 a p p 2 _ / d e m i  )  ' ,  . . .  
20* l o g l O  (  g l a n 3 a p p 2  _ 3 d e m i  ) '  ,  . . .  
2 0 *  l o g l O  (  g l a n 3 a p p 2  _ 5 d e m i ) '  ,  . . .  
2 0 *  l o g l O  (  g l a n 3 a p p 2  _ 7 d e m i )  '  ,  . . .  
2 0 * l o g l 0 ( g l a n 3 a p p 2 _ 9 d e m i  )  ' ) ;  
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F Spurious Oscillations Along Diagonals: Matlab Code 

The following Matlab code was written by Chantal Racette. 

It computes variation along diagonals for various resampling schemes and image inputs. 

F.l Oscillations.m 

This is the main code, which takes in an "image" in the form of a matrix, as well as the 

name of a resampling scheme, and returns the values after one subdivision. In order to get 

the values after two or more subdivisions, one can simply store the results in a matrix and 

use the latter as the input for the next subdivision. The resampling schemes programmed 

for this function are bilinear interpolation, bicubic interpolation, Lanczos 2, Lanczos 3, 

Nohalo, Snohalo (with any value for the smoothing parameter 0), MP, AMP, Catmull-

Rom, quadratic B-Spline smoothing, LBB, Midedge (under the name LDPSM), Minmod 

Midedge (under the name MDPSM), MVS, MVSQBS, CDVS, CDVSQBS, ROVS, and 

ROVSQBS. The appropriate functions are used to perform the actual subdivision calcula

tions. 

In order to use these functions in Matlab, they must be put in the current working 

directory. Then, it is simply a matter of calling Oscillations (M, type) with M 

replaced by the variable representing the input matrix, and type consisting of the name of 

the resampling scheme ('bilinear', for example). 

f u n c t i o n  [  T  ]  =  O s c i l l a t i o n s  (  M ,  t y p e ,  t h e t a  )  
%  O S C I L L A T I O N S  t a k e s  i n  a n  " i m a g e "  i n  t h e  f o r m  o f  a  m a t r i x  a n d  
%  r e t u r n s  t h e  v a l u e s  a f t e r  o n e  s u b d i v i s i o n  u s i n g  o n e  o f  t h e  
%  f o l l o w i n g  m e t h o d s :  
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% —  b i l i n e a r  
% —  b i c u b i c  
% — L a n c z o s  
% — L a n c z o s  
% — N o h a l o  
% — S n o h a l o  
% -MP 
% -AMP 
% -CR 
% —  B  S p l i n e  
% -QBS 
% -QBS2 
% -LBB 
% —MP with 
% —MP with 
% —AMP with 
% —AMP with 
% -LDPSM 
% -MDPSM 
% -MVS 
% —MVSQBS 
% -CDVS 
% -CDVSQBS 
% -ROVS 
% -ROVSQBS 

N u l l  C r o s s  — D e r i v a t i v e s  
C e n t r e d  C r o s s  — D e r i v a t i v e s  

N u l l  C r o s s  — D e r i v a t i v e s  
C e n t r e d  C r o s s  — D e r i v a t i v e s  

[ m  n ]  =  s i z e ( M ) ;  

m t  =  2 * ( m — 4 ) — 1 — 2 — 2 ;  
n t  =  2 * ( n — 4 )  — 1 — 2 - 2 ;  

T  =  z e r o s  ( m t ,  n t ) ;  
f o r  i  =  1 :  m t  

f o r  j  =  1 : n t  
i f  ( m o d  ( i  ,  2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  

i n d i  =  ( i  +  1  ) / 2 ;  
i n d j  =  ( j  +  1 )  /  2 ;  
T ( i , j )  =  M ( 2 + i n d i  , 2 + i  n d j  ) ;  

e n d  
e n d  

e n d  

i f  s t r c m p  ( t y p e  ,  ' b i l i n e a r ' )  
f o r  i  =  l : m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
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T ( i , j )  =  D i a g o n a l s B i l i n e a r L i n e  (  . . .  
[M( ( i + 1 )/2 +2,j/2 + 2), ... 
M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  3 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s B i l i n e a r L i n e  (  

[M( i / 2 + 2, (j + l)/2 +2), ... 
M ( i / 2  +  3 ,  ( j  + l ) / 2  + 2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s B i l i n e a r M i d  (  

[ M ( i / 2  +  2 ,  j / 2  +  2 )  . . .  
M ( i / 2  +  2 ,  j / 2  +  3 ) ;  . . .  
M ( i / 2  +  3 ,  j / 2  +  2 )  M ( i / 2  +  3 ,  j / 2  +  3 ) ] ) ;  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p ( t y p e ,  ' b i c u b i c ' )  
f o r  i  =  1 : m t  

f o r  j  =  1 :  n t  
i f  ( m o d  ( i  ,  2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T  ( i  ,  j  )  =  D i a g o n a l s B i c u b i c L i n e  (  . . .  
[M(( i +1 )/2 +2, j/2 + 1), ... 
M ( ( i + l ) / 2  + 2 ,  j  / 2  +  2 ) ,  . . .  
M ( ( i + l ) / 2  + 2 ,  j / 2  +  3 ) ,  M ( (  i  + 1  ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s B  i c u b i c L i n e  (  . . .  

[ M ( i / 2  +  1 ,  ( j  + 1  ) / 2  +  2 ) ,  . . .  
M ( i / 2  +  2 ,  ( j  + l ) / 2  + 2 ) ,  .  . .  
M ( i / 2  +  3 ,  ( j  + 1  ) / 2  + 2 ) ,  M ( i / 2  +  4 ,  ( j  +  l ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j , 2 )  = =  0 )  
T  ( i  , j )  =  D i a g o n a l s B i c u b i c M i d (  . . . 

[M( 1 2  +  1  ,  j / 2  + 1 )  M ( i / 2  +  1  ,  j / 2  + 2 )  
M (  1 2  +  1  ,  j / 2  +  3 )  M ( i / 2  +  1  ,  j / 2  +  4 ) ;  
M (  /  2  +  2 ,  j / 2  +  1 )  M ( i / 2  +  2 ,  j / 2  +  2 )  
M (  /  2  +  2 ,  j / 2  +  3 )  M ( i / 2  +  2 ,  j / 2  +  4 ) ;  
M (  1 2  +  3 ,  j / 2  +  1 )  M ( i / 2  +  3 ,  j / 2  +  2 )  .  
M (  1 2  +  3 ,  j / 2  +  3 )  M ( i / 2  +  3 ,  j / 2  +  4 ) ;  
M (  1 2  +  4 ,  j / 2  +  1 )  M ( i / 2  +  4 ,  j / 2  +  2 )  .  
M (  1 2  +  4 ,  j / 2  +  3 )  M ( i / 2  +  4 ,  j / 2  + 4 ) ] )  

e n d  
e n d  

e n d  
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e l s e i f  s t r c m p ( t y p e ,  ' l a n c z o s 2 ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s L a n c z o s 2 L i n e  (  . . .  
[ M ( (  i  + 1  ) / 2  +2, j /2 + 1 ) ,  . . .  
M ( (  i  +  1  ) / 2  + 2 ,  j  12 +  2 ) ,  . . .  
M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  3 ) ,  M ( ( i + l ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s L a n c z o s 2 L i n e  (  . . .  

[ M ( i / 2  +  1  ,  ( j  + l ) / 2  +  2 ) ,  . . .  
M ( i / 2  +  2 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  3 ,  ( j + l ) / 2  + 2 ) ,  M ( i / 2  +  4 ,  ( j + l ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s L a n c z o s 2 M i d  (  . . .  

[M( i / 2 + 1 ,  j  / 2  + 1 )  M ( i / 2  4 -  1  , j / 2  +  2 )  
M (  i / 2  + 1  ,  j  / 2  + 3 )  M ( i / 2  + 1  ,  j / 2  + 4 ) ;  
M ( i / 2  + 2 ,  j  / 2  + 1 )  M ( i / 2  + 2 ,  j / 2  + 2 )  .  
M ( i / 2  + 2 ,  j  / 2  + 3 )  M ( i / 2  + 2 ,  j / 2  + 4 ) ;  
M ( i / 2  + 3 ,  j  / 2  + 1 )  M ( i / 2  + 3 ,  j / 2  + 2 )  .  
M ( i / 2  + 3 ,  j  / 2  + 3 )  M ( i / 2  + 3 ,  j / 2  + 4 ) ;  
M ( i / 2  + 4 ,  j  / 2  + 1 )  M ( i / 2  + 4 ,  j / 2  + 2 )  .  
M ( i / 2  + 4 ,  j  / 2  + 3 )  M ( i / 2  + 4 ,  j / 2  + 4 ) ] )  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p  ( t y p e  ,  ' l a n c z o s 3 ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 : n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s L a n c z o s 3 L i n e  (  . . .  
[ M ( (  i  + 1  ) / 2  + 2 ,  j / 2 )  ,  M ( ( i + l ) / 2  + 2 ,  j / 2  +  1 ) ,  . . .  
M ( ( i  +  l ) / 2  + 2 , j / 2  +  2 ) ,  M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  3 ) ,  . . .  
M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  4 ) ,  M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  5 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s L a n c z o s 3 L i n e  (  . . .  

[ M ( i / 2 ,  ( j  + 1  ) / 2  +  2 ) ,  M ( i / 2  +  1 ,  ( j  +  l ) / 2  +  2 ) ,  . . .  
M ( i / 2  +  2 ,  ( j  + 1  ) / 2  + 2 ) , M ( i / 2  +  3 ,  ( j + l ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  4 ,  ( j  + 1  ) / 2  +  2 ) ,  M ( i / 2  +  5 ,  ( j  +  l ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
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T ( i , j )  =  D i a g o n a l s L a n c z o s 3 M i d  ( [ M (  i 12 ,  j / 2 )  

e n d  
e n d  

M (  /  2  j / 2  + 1 )  M ( i / 2 ,  j / 2  +  2 )  
M (  / 2  j / 2  + 3 )  M ( i  12,  j / 2  +  4 )  
M (  n j / 2  + 5 ) ;  M  i / 2  +  1  ,  j / 2 )  
M (  / 2  + 1  ,  j  2  +  1  M (  i 12 +  1  ,  j  12 + 2  
M (  / 2  + 1  ,  j  2  +  3  M (  i 12 +  1  ,  j  12 + 4  
M (  12 + 1  ,  j  2  +  5  ;  M ( i / 2  +  2 ,  j / 2 )  
M (  12 + 2 ,  j  2  +  1  M ( i / 2  +  2 ,  j  12 + 2  
M (  12 + 2,  j  2  +  3  M ( i / 2  +  2 ,  j  12 + 4  
M (  12 + 2,  j  2  +  5  ;  M ( i / 2  +  3 ,  j / 2 )  
M (  12 + 3 ,  j  2  +  1  M ( i / 2  +  3 ,  j  12 + 2  
M (  12 + 3 ,  j  2  +  3  M ( i / 2  +  3 ,  j  12 + 4  
M (  12 + 3 ,  j  2  +  5  ;  M ( i / 2  +  4 ,  j / 2 )  
M (  12 + 4 ,  j  2  +  1  M ( i / 2  +  4 ,  j  12 + 2  
M (  12 + 4 ,  j  2  +  3  M ( i / 2  +  4 ,  j  12 + 4  
M (  12 + 4 ,  j  2 + 5  ;  M ( i / 2  +  5 ,  j / 2 )  
M (  12 + 5 ,  j  2 + 1  M ( i / 2  +  5 ,  j  12 + 2  
M (  12 + 5 ,  j  2 + 3  M ( i / 2  +  5 ,  j  12 + 5  
M (  12 + 5 ,  j  2  +  4  ] ) ;  

e n d  

e l s e i f  s t r c m p ( t y p e ,  ' n o h a l o ' )  
f o r  i  =  l : m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T (  i  ,  j  )  =  D i a g o n a l s N o h a l o  ( [ M (  (  i  +  1  ) / 2  + 2 ,  j / 2  +  1 ) ,  . . .  
M ( ( i  +  l ) / 2  + 2 , j / 2  +  2 ) ,  M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  3 ) ,  . . .  
M ( (  i  +  l ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s N o h a l o  ( [ M (  i / 2  +  1 ,  ( j + l ) / 2  +  2 ) ,  . . .  

M ( i / 2  +  2 ,  ( j  + 1  ) / 2  + 2 ) ,  M ( i / 2  +  3 ,  ( j + l ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  4 ,  ( j  + l ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s N o h a l o M i d  (  . . .  

[M( 1 2  + 1  ,  j  /  2  + 1 )  M ( i / 2  • f  1 .  j  2  + 2 )  
M (  1 2  + 1  ,  j  / 2  + 3 )  M ( i / 2  + 1  ,  1 2  + 4 ) ;  
M (  1 2  + 2 ,  j  / 2  + 1 )  M ( i / 2  + 2 ,  1 2  + 2 )  •  
M (  1 2  + 2 ,  j  / 2  + 3 )  M ( i / 2  + 2 ,  1 2  + 4 ) ;  
M (  1 2  + 3 ,  j  / 2  + 1 )  M ( i / 2  + 3 ,  1 2  + 2 )  .  
M (  1 2  + 3 ,  j  /  2  + 3 )  M ( i / 2  + 3 ,  1 2  + 4 ) ;  
M (  1 2  + 4 ,  j  / 2  + 1 )  M ( i / 2  + 4  ,  1 2  + 2 )  •  
M (  1 2  + 4 ,  j  / 2  + 3 )  M ( i / 2  + 4 ,  1 2  + 4 ) ] )  
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end 
end 

end 

e l s e i f  s t r c m p ( t y p e ,  '  s n o h a l o  ' )  
M l  =  M ;  
f o r  i = 2:m-l 

f o r  j  =  2 : n - l  
M l ( i , j )  =  D i a g o n a l s S n o h a l o M i d  ( [ M (  i  —  1  , j  )  ,  M ( i , j + 1 ) ,  

M (  i  +  1  , j  )  ,  M (  i  ,  j  —  1 ) ,  M ( i  ,  j  ) ]  ,  t h e t a  ) ;  
e n d  

e n d  

T  =  z e r o s  ( m t ,  n t ) ;  
f o r  i  =  1 :  m t  

f o r  j  =  1 : n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  

i n d i  =  ( i  +  1  ) / 2 ;  
i n d j  =  ( j  +  1  ) / 2 ;  
T ( i , j )  =  M l ( 2 + i n d i  , 2 + i  n d j  ) ;  

e n d  
e n d  

e n d  

f o r  i  =  1 :  m t  
f o r  j  =  1 :  n  t  

i f  ( m o d  ( i  ,  2 )  ~ =  0 )  & &  ( m o d ( j , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s N o h a l o  ( [ M l  ( (  i  + 1  ) / 2  + 2 ,  j / 2  + 1 ) ,  . . .  

M l  ( (  i  +  1  ) / 2  + 2 , j / 2  + 2 ) ,  M l  ( (  i  +  1  ) / 2  + 2 ,  j / 2  + 3 ) ,  . . .  
M l  ( (  i  +  1  ) / 2  + 2 ,  j / 2  + 4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  " =  0 )  
T ( i , j )  =  D i a g o n a l s N o h a l o  ( [ M l (  i / 2  + 1 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  

M l ( i / 2  + 2 ,  ( j  + 1  ) / 2  + 2 ) ,  M l ( i / 2  + 3 ,  ( j  +  1  ) / 2  + 2 ) ,  . .  
M l ( i / 2  + 4 ,  ( j  +  1  ) / 2  + 2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i  ,  j )  = D i a g o n a l s N o h a l o M i d  (  .  

[ M l (  / 2  + 1  ,  j / 2 + 1 )  M l ( i / 2  +  1  ,  j / 2  + 2 )  . .  .  

M l  (  1 2  + 1  ,  j / 2  +  3 )  M l ( i / 2  + 1 ,  j / 2  + 4 ) ;  
M l (  1 2  + 2 ,  j / 2 + 1 )  M l  ( i  / 2  +  2 ,  j / 2  +  2 )  
M l  (  1 2  + 2 ,  j / 2  +  3 )  M l ( i / 2  + 2 ,  j / 2  + 4 ) ;  
M l  (  1 2  + 3 ,  j / 2 + 1 )  M l ( i / 2  +  3 ,  j / 2  +  2 )  
M l  (  1 2  + 3 ,  j / 2  +  3 )  M l ( i / 2  + 3 ,  j / 2  + 4 ) ;  
M l (  1 2  + 4 ,  j / 2 + 1 )  M l  ( i / 2  +  4 ,  j / 2  +  2 )  
M l (  1 2  + 4 ,  j / 2  +  3 )  M l ( i / 2  + 4 ,  j / 2  + 4 ) ] ) ;  
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end 
end 

end 

e l s e i f  s t r c m p  ( t y p e  ,  ' s n o h a l o l 5 ' )  
M l  =  M ;  
f o r  i  =  2 : m - l  

f o r  j  =  2 : n — 1  
M l ( i , j )  =  D i a g o n a l s S n o h a l o M i d  ( [ M (  i  —  1 ,  j  )  ,  M ( i , j + 1 ) ,  . . .  

M ( i  + 1 , j ) ,  M ( i  , j  —  1 ) ,  M ( i  , j ) ] ,  t h e t a  ) ;  
e n d  

e n d  

T 1  =  z e r o s  ( 2 * ( m - 2 )  —  1 , 2 * ( n - 2 )  -  1 ) ;  
f o r  i  =  l : 2 * ( m - 2 ) — 1  

f o r  j  =  l : 2 * ( n — 2 ) —  1  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  

i n d i  =  ( i  +  1  ) / 2 ;  
i n d j  =  ( j  +  1  ) / 2 ;  
T l ( i  ,  j  )  =  M l (  1  +  i n d i  , 1 +  i n d j  ) ;  

e n d  
e n d  

e n d  

f o r  i  =  l : 2 * ( m - 2 ) - l  
f o r  j  =  1 : 2 *  (  n — 2 ) —  1  

i f  ( m o d  ( i  ,  2 )  ~ =  0 )  & &  ( m o d ( j , 2 )  = =  0 )  
T 1  ( i  ,  j  )  =  D i a g o n a l s N o h a l o  (  . . .  

[ M l ( (  i  +  1  ) / 2  + 1 ,  j / 2  + 0 ) ,  M l ( (  i  +  1  ) / 2  +  l , j / 2  + 1 ) ,  . . .  
M l  ( (  i  +  1  ) / 2  + 1 ,  j / 2  + 2 ) ,  M l  ( ( i  +  1  ) / 2  + 1 ,  j / 2  + 3 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T l ( i , j )  =  D i a g o n a l s N o h a l o  (  . . .  

[ M l ( i / 2  + 0 ,  ( j  + 1  ) / 2  + 1 ) ,  M l ( i / 2  + 1 ,  ( j  + 1  ) / 2  + 1 ) ,  . . .  
M l ( i / 2  + 2 ,  ( j  +  1  ) / 2  + 1 ) ,  M l  ( i / 2  + 3 ,  ( j  +  1  ) / 2  + 1 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T 1  ( i  ,  j  )  =  D i a g o n a l s N o h a l o M i d  (  . . .  

[Ml ( /  2  + 0 ,  j / 2  +  0 )  M l  ( i / 2  +  0 ,  j / 2  +  1 )  
M l (  12 + o ,  j / 2  +  2 )  M l ( i / 2  + 0 ,  j / 2  + 3 ) ;  
M l (  12 + 1 ,  j / 2  +  0 )  M l  (  i  12 + 1  ,  j / 2  +  1 )  . . . 

M l (  12 + 1 ,  j / 2  +  2 )  M l ( i / 2  + 1 ,  j / 2  + 3 ) ;  
M l (  12 + 2 ,  j / 2  +  0 )  M l ( i / 2  +  2 ,  j / 2  +  1 )  
M l (  12 + 2 ,  j / 2  +  2 )  M l ( i / 2  + 2 ,  j / 2  + 3 ) ;  
M l  (  12 + 3 ,  j  / 2  +  0 )  M l  ( i / 2  +  3 ,  j / 2  +  1 )  . . . 

M l (  12 + 3 ,  j / 2  +  2 )  M l ( i / 2  + 3 ,  j / 2  + 3 ) ] ) ;  
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end 
end 

end 

T  =  z e r o s  ( m t ,  n t  ) ;  
f o r  i  =  3 : m t + 2  

f o r  j  =  3 : n t  + 2  
T ( i  —  2 , j  —  2 )  =  D i a g o n a l s S n o h a l o M i d  ( [  T 1  ( i  —  1 ,  j  )  ,  . . .  

T l ( i  , j + l ) ,  T 1  ( i  +  1  ,  j  )  ,  . . .  
T 1  ( i  , j  - 1 ) ,  T 1  ( i  ,  j  ) ]  ,  t h e t a  ) ;  

e n d  
e n d  

e l s e i f  s t r c m p ( t y p e ,  ' m p ' )  
f o r  i  =  l : m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  " =  0 )  & &  ( m o d ( j , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s M P L i n e  ( [ M ( (  i  +  1  ) / 2  + 2 ,  j / 2  +  1 ) ,  
M ( ( i + l ) / 2  + 2 , j / 2  +  2 ) ,  M ( ( i  +  l ) / 2  + 2 ,  j / 2  +  3 ) ,  
M ( (  i  + 1  ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s M P L i n e  ( [ M (  i  12 +  1 ,  ( j + l ) / 2  +  2 ) ,  

M ( i / 2  +  2 ,  ( j + l ) / 2  + 2 ) ,  M ( i / 2  +  3 ,  ( j + l ) / 2  + 2 ) ,  
M ( i / 2  +  4 ,  ( j  + 1  ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s M P M i d  (  . . .  

[M( i 12 + 1  ,  j / 2  + 1 )  M ( i / 2  +  1 .  J  2  + 2 )  
M ( i / 2  + 1  ,  j / 2  +  3 )  M ( i / 2  +  1  ,  12 + 4 ) ;  
M (  i / 2  + 2, j / 2  +  1 )  M ( i / 2  +  2 ,  12 + 2 )  .  
M (  i / 2  + 2, j / 2  +  3 )  M ( i / 2  +  2 ,  12 + 4 ) ;  
M ( i / 2  + 3, j / 2  +  1 )  M ( i / 2  +  3 ,  12 + 2 )  .  
M ( i / 2  + 3 ,  j / 2  +  3 )  M ( i / 2  +  3 ,  12 + 4 ) ;  
M ( i / 2  + 4 ,  j / 2  +  1 )  M ( i / 2  +  4 ,  12 + 2 )  .  
M ( i / 2  + 4 ,  j / 2  +  3 )  M ( i / 2  +  4 ,  12 + 4 ) ] )  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p  ( t y p e  ,  ' a m p ' )  
f o r  i  =  1 : m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T (  i  ,  j  )  =  D i a g o n a l s A M P L i n e  ( [ M (  ( i  +  1  ) / 2  + 2 ,  j / 2  + 1 ) ,  
M (  ( i  +  1  ) / 2  + 2 , j / 2  + 2 ) ,  M (  ( i  +  1  ) / 2  + 2 ,  j / 2  + 3 ) ,  .  
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M ( (  i  + 1  ) / 2  + 2 ,  j / 2  + 4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  " =  0 )  
T (  i  ,  j  )  =  D i a g o n a l s A M P L i n e  ( [ M (  i / 2  + 1 ,  ( j + l ) / 2  + 2 ) ,  . . .  

M ( i / 2  + 2 ,  ( j  + 1  ) / 2  + 2 ) ,  M ( i / 2  + 3 ,  ( j + l ) / 2  + 2 ) ,  . . .  
M ( i / 2  + 4 ,  ( j  +  1  ) / 2  + 2 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s A M P M i d  (  . . .  

[M( 1 2  + 1 ,  j  / 2  + 1 )  M ( i / 2  + 1  ,  j / 2  + 2 )  
M (  1 2  + 1  ,  j  / 2  +  3 )  M (  1 2  + 1  ,  j / 2  + 4 ) ;  
M (  1 2  + 2 ,  j  / 2  +  1 )  M (  1 2  + 2 ,  j / 2  + 2 )  .  
M (  1 2  + 2 ,  j  / 2  +  3 )  M (  1 2  + 2 ,  j / 2  + 4 ) ;  
M (  1 2  + 3 ,  j  / 2  +  1 )  M (  1 2  + 3  ,  j / 2  + 2 )  .  
M (  1 2  + 3 ,  j  / 2  +  3 )  M (  1 2  + 3 ,  j / 2  + 4 ) ;  
M (  1 2  + 4 ,  j  / 2  +  1 )  M (  /  2  + 4 ,  j / 2  + 2 )  .  
M (  1 2  + 4 ,  j  / 2  +  3 )  M (  1 2  + 4 ,  j / 2  + 4 ) ] )  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p ( t y p e ,  ' C R ' )  
f o r  i  =  l : m t  

f o r  j  =  1 :  n t  
i f  ( m o d  ( i  ,  2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i  a g o n a l  s C R L i n e  ( [ M (  ( i  +  1 ) / 2  + 2 ,  j / 2  + 1 ) ,  . . .  
M (  ( i  +  1  ) / 2  + 2 , j / 2  +  2 ) ,  M (  (  i  +  1  ) / 2  + 2 ,  j / 2  + 3 ) ,  . . .  
M ( (  i  + 1  ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s C R L i n e  ( [ M (  i / 2  + 1 ,  ( j  +  1  ) / 2  + 2 ) ,  

M ( i / 2  +  2 ,  ( j  +  1  ) / 2  + 2 ) ,  M ( i / 2  + 3 ,  ( j  + 1  ) / 2  + 2 ) ,  
M ( i / 2  +  4 ,  ( j  +  1  ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s C R M i d  (  . . .  

[M( i 12 H  1  ,  j / 2  +  1 )  M (  12 + 1  ,  j / 2  + 2 )  . . .  
M (  i / 2  + 1  ,  j  / 2  +  3 )  M (  12 + 1  ,  j / 2  + 4 ) ;  
M (  i / 2  + 2 ,  j  / 2  +  1 )  M (  12 + 2 ,  j / 2  + 2 )  .  
M (  i / 2  + 2 ,  j / 2  +  3 )  M (  /  2  + 2 ,  j / 2  + 4 ) ;  
M (  i / 2  + 3 ,  j / 2  +  1 )  M (  12 + 3 ,  j / 2  + 2 )  .  
M (  i / 2  + 3 ,  j  / 2  +  3 )  M (  12 + 3 ,  j / 2  + 4 ) ;  
M (  i / 2  + 4 ,  j  /  2  +  1 )  M (  12 + 4 ,  j / 2  + 2 )  .  
M (  i / 2  + 4 ,  j  / 2  +  3 )  M (  12 + 4 ,  j / 2  + 4 ) ] )  

e n d  
e n d  
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end 

e l s e i f  s t r c m p ( t y p e ,  ' b s p l i n e ' )  
M l  =  M ;  
f o r  i  =  2 : m - l  

f o r  j  =  2 : n — 1  
M l ( i , j )  =  D i a g o n a l s B  S p l i n e M i d  ( [ M (  i  —  1  , j  —  1 )  M (  i  —  1 ,  j  )  . . .  
M (  i  -  1 ,  j  +  1 ) ;  M (  i  ,  j  —  1 )  M (  i  ,  j )  M ( i  , j + l ) ;  M ( i  +  l , j - l )  . . .  
M (  i  + 1 , j )  M ( i  + 1 , j  +  1 )  ] ) ;  

e n d  
e n d  

T  =  M l  ( [ 2  :  m —  1  — l ] , [ 2 : n  —  1 ] ) ;  

e l s e i f  s t r c m p ( t y p e ,  ' q b s ' )  
M l  =  M ;  
f o r  i  =  l : m - l  

f o r  j  =  1 : n — 1  
M l ( i , j )  =  D i a g o n a l s B i l i n e a r M i d  ( .  . .  

[M( i , j ) M( i +1, j ); M(i , j+1) M( i+ 1 , j + 1)]); 
e n d  

e n d  

T  =  M l  (  [  1  :  m —  1 ]  ,  [  1 :  n  —  1  ] ) ;  

e l s e i f  s t r c m p ( t y p e ,  ' q b s 2 ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 : n t  
i f  ( m o d ( i , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s Q B S 2 L i n e  ( .  .  .  
[M(( i +1 )/2 +l,j/2 +2), ... 
M ( ( i + l ) / 2  + 2 , j / 2  + 2 ) ,  . . .  
M ( ( i + l ) / 2  + 3 , j / 2  + 2 ) ;  . . .  
M ( (  i  + 1  ) / 2  + l , j / 2  + 3 ) ,  . . .  
M ( ( i  +  l ) / 2  + 2 , j / 2  + 3 ) ,  . . .  
M ( (  i  +  1  ) / 2  + 3 , j / 2  + 3 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  " =  0 )  
T ( i , j )  =  D i a g o n a l s Q B S 2 L i n e  ( . . .  

[M( i /2 + 2  , ( j  + 1  ) / 2  +  1 ) ,  
M ( i / 2  + 2  , ( j  + 1  ) / 2  +  2 ) ,  
M ( i / 2  + 2  , ( j  + 1  ) / 2  +  3 ) ;  
M (  i / 2  + 3  , ( j  + 1  ) / 2  +  1 ) ,  
M (  i / 2  + 3  , ( j  + 1  ) / 2  +  2 ) ,  
M ( i / 2  + 3  , ( j  + 1  ) / 2  +  3 ) ] ) ;  
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e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s Q B S 2 M i d  ( .  .  .  

[ M ( i / 2  +  2 ,  j / 2  +  2 )  M ( i / 2  +  2 ,  j / 2  +  3 ) ;  .  
M ( i / 2  +  3 ,  j / 2  +  2 )  M ( i / 2  +  3 ,  j / 2  +  3 ) ] ) ;  

e l s e  
T ( i , j )  =  D i a g o n a l s Q B S 2 S m o o t h i n g M i d  ( .  . .  

[M( i  +  1  /  2  + 0 ,  j  + 1  ) / 2  +  0 ) ,  .  
M (  i  +  1  1 2  + 1  ,  j  + 1 )  /  2  + 0 ) ,  .  
M (  i  + 1  1 2  + 2 ,  j  + 1  ) / 2  + 0 ) ;  .  
M (  i  + 1  1 2  + 0 ,  j  + 1  ) / 2  + 1 ) ,  •  
M (  i  +  1  1 2  +  1  , (  + 1  ) / 2  + 1 ) ,  • •  
M (  i  +  1  1 2  + 2 ,  j  + 1  ) / 2  + l ) ;  •  
M (  i + 1  1 2  + 0 ,  j  + 1  ) / 2  + 2 ) ,  •  
M (  i  +  1  1 2  + 1  >  j  + 1  ) / 2  + 2 ) ,  •  
M (  i  +  1  1 2  + 2 ,  j + l ) / 2  + 2 ) ] ) ;  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p  ( t y p e  ,  ' I b b ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s L B B L i n e  ( [ M ( (  i  + l ) / 2  + 2 ,  j / 2  + 1 ) ,  .  
M ( (  i  + 1  ) / 2  + 2 , j / 2  +  2 ) ,  M ( (  i + l ) / 2  + 2 ,  j / 2  + 3 ) ,  . . .  
M ( ( i  +  l ) / 2  + 2 ,  j / 2  + 4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ' =  0 )  
T ( i , j )  =  D i a g o n a l s L B B L i n e  ( [ M (  i  / 2  + 1 ,  ( j + l ) / 2  + 2 ) ,  . . .  

M ( i / 2  + 2 ,  ( j  + 1 ) / 2  + 2 ) ,  M ( i / 2  + 3 ,  ( j  +  l ) / 2  + 2 ) ,  . . .  
M ( i / 2  + 4 ,  ( j  + 1  ) / 2  + 2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T ( i , j )  =  D i a g o n a l s L B B M i d (  . . .  

[M( i 12 + 1  ,  j / 2  +  1 )  M (  12 + 1  ,  j  / 2  + 2 )  . . .  
M (  i / 2  + 1 ,  j / 2  +  3 )  M (  12 + 1  ,  j  / 2  + 4 ) ;  
M (  i / 2  + 2 ,  j / 2  +  1 )  M (  12 + 2 ,  j  / 2  + 2 )  .  
M (  i / 2  + 2 ,  j / 2  +  3 )  M (  12 + 2 ,  j  / 2  + 4 ) ;  
M (  i / 2  + 3 ,  j / 2  +  1 )  M (  12 + 3 ,  j  / 2  + 2 )  .  
M (  i  12 + 3 ,  j / 2  +  3 )  M (  12 + 3 ,  j  / 2  + 4 ) ;  
M (  i / 2  + 4 ,  j / 2  +  1 )  M (  12 + 4 ,  j  / 2  + 2 )  •  
M ( i / 2  + 4 ,  j / 2  +  3 )  M (  12 + 4 ,  j  / 2  + 4 ) ] )  

e n d  
e n d  

e n d  
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e l s e i f  s t r c m p  ( t y p e  ,  ' m p n u l l ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T  ( i  ,  j  )  =  D i a g o n a l s M P L i n e  (  . . .  
[ M ( ( i  +  l ) / 2  + 2 ,  j / 2  + 1 ) ,  . . .  

M ( (  i  +  1  ) / 2  + 2 , j / 2  +  2 ) ,  . . .  
M (  (  i  + 1  ) / 2  + 2 ,  j / 2  + 3 ) ,  . . .  
M ( (  i  +  1  ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  " =  0 )  
T ( i , j )  =  D i a g o n a l s M P L i n e  (  . . .  

[ M ( i / 2  + 1 ,  ( j  +  1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  2 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  + 3 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  4 ,  ( j  + 1  ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T (  i  ,  j  )  =  D i a g o n a l s M P N U L L M i d (  . . .  

[M( 1 2  + 1 ,  j / 2  + 1 )  M ( i / 2  + 1 ,  j / 2  + 2 )  
M (  1 2  + 1 ,  j / 2  + 3 )  M ( i / 2  + 1 ,  j / 2  + 4 ) ;  
M (  1 2  + 2 ,  j / 2  + 1 )  M ( i / 2  + 2 ,  j / 2  + 2 )  .  
M (  1 2  + 2 ,  j / 2  + 3 )  M ( i / 2  + 2 ,  j / 2  + 4 ) ;  
M (  1 2  + 3 ,  j / 2  + 1 )  M ( i / 2  + 3 ,  j / 2  + 2 )  .  
M (  1 2  + 3 ,  j / 2  + 3 )  M ( i / 2  + 3 ,  j / 2  + 4 ) ;  
M (  1 2  + 4 ,  j / 2  + 1 )  M ( i / 2  + 4 ,  j / 2  + 2 )  •  
M (  i / 2  + 4 ,  j / 2  + 3 )  M ( i / 2  + 4 ,  j / 2  + 4 ) ] )  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p ( t y p e ,  ' m p c e n t r e d ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s M P L i n e  (  . . .  
[M(( i + 1 )/2 +2, j/2 +1), ... 

M (  ( i  +  1  ) / 2  + 2 , j / 2  +  2 ) ,  . . .  
M ( ( i + 1  ) / 2  + 2 ,  j / 2  + 3 ) ,  . . .  
M ( (  i  + 1  ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  * =  0 )  
T  ( i  ,  j  )  =  D i a g o n a l s M P L i n e  (  . . .  

[ M ( i / 2  + 1 ,  ( j  +  1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  2 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  
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M (  i / 2  + 3 ,  ( j  +  1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  4 ,  ( j  + 1  ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T(i , j ) = DiagonalsMPCENTREDMid ( ... 

[M( i/2 + 1  ,  1 2  + 1 )  M ( i / 2  + 1  .  j  2  + 2 )  
M (  i / 2  + 1  ,  1 2  + 3 )  M ( i / 2  + 1 ,  1 2  + 4 ) ;  
M (  i / 2  + 2 ,  /  2  + 1 )  M ( i / 2  + 2 ,  1 2  + 2 )  .  
M ( i / 2  + 2 ,  1 2  + 3 )  M ( i / 2  + 2 ,  1 2  + 4 ) ;  
M (  i / 2  + 3 ,  1 2  + 1 )  M ( i / 2  + 3 ,  1 2  + 2 )  .  
M (  i / 2  + 3 ,  1 2  + 3 )  M ( i / 2  + 3 ,  1 2  + 4 ) ;  
M (  i / 2  + 4 ,  1 2  + 1 )  M ( i / 2  + 4 ,  1 2  + 2 )  .  
M (  i / 2  + 4 ,  1 2  + 3 )  M ( i / 2  + 4 ,  1 2  + 4 ) ] )  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p ( t y p e ,  ' a m p n u l l ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 :  n t  
i f  ( m o d ( i  , 2 )  ~ =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s M P 4 L i n e  (  . . .  
[M(( i + 1 )/2 +2, j/2 +1), ... 

M ( ( i + 1  ) / 2  + 2 ,  j  / 2  +  2 ) ,  . . .  
M (  (  i  +  1  ) / 2  + 2 ,  j / 2  + 3 ) ,  . . .  
M ( ( i  +  1  ) / 2  + 2 ,  j / 2  +  4 ) ] ) ;  

e l s e i f  ( m o d ( i  , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  ~ =  0 )  
T ( i , j )  =  D i a g o n a l s M P 4 L i n e  (  . . .  

[ M (  i  /  2  + 1 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  +  2 ,  ( j  + 1  ) / 2  + 2 ) ,  . . .  
M ( i / 2  + 3 ,  ( j  +  1  ) / 2  + 2 ) ,  . . .  
M (  i / 2  +  4 ,  ( j  + 1  ) / 2  +  2 ) ] ) ;  

e l s e i f  ( m o d  ( i  ,  2 )  = =  0 )  & &  ( m o d  ( j  ,  2 )  = =  0 )  
T(i,j) = DiagonalsAMPNULLMid( ... 

[M( i/2 + 1  ,  J / 2  + 1 )  M ( i / 2  + 1  .  j  2  + 2 )  
M (  i / 2  + 1 ,  j / 2  + 3 )  M ( i / 2  + 1  ,  1 2  + 4 ) ;  
M (  i / 2  + 2 ,  j / 2  + 1 )  M ( i / 2  + 2 ,  1 2  + 2 )  .  
M (  i / 2  + 2 ,  j / 2  + 3 )  M ( i / 2  + 2 ,  1 2  + 4 ) ;  
M (  i / 2  + 3 ,  j / 2  + 1 )  M ( i / 2  + 3 ,  1 2  + 2 )  .  
M (  i / 2  + 3 ,  j / 2  + 3 )  M ( i / 2  + 3 ,  1 2  + 4 ) ;  
M ( i / 2  + 4 ,  j / 2  + 1 )  M ( i / 2  + 4 ,  1 2  + 2 )  .  
M (  i / 2  + 4 ,  j / 2  + 3 )  M ( i / 2  + 4 ,  1 2  + 4 ) ] )  

e n d  
e n d  
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end 

e l s e i f  s t r c m p  ( t y p e  ,  '  a m p c e n t r e d  ' )  
f o r  i  =  1 :  m t  

f o r  j  =  1 : n t  
i f  ( m o d ( i  , 2 )  " =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  

T ( i , j )  =  D i a g o n a l s M P 4 L i n e  (  . . .  
[ M ( ( i + l ) / 2  + 2 , j / 2  + 1 )  , . . .  

M ( (  i  +  1  ) / 2  + 2 , j / 2  + 2 ) ,  . . .  
M ( (  i  +  l ) / 2  + 2 , j  / 2  + 3 )  , . . .  
M ( ( i  +  l ) / 2  + 2 ,  j / 2  + 4 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  " =  0 )  
T ( i , j )  =  D i a g o n a l s M P 4 L i n e  (  . . .  

[ M (  i  / 2  + 1 ,  ( j  +  1  ) / 2  + 2 )  , . . .  
M ( i / 2  + 2 ,  ( j  +  l ) / 2  + 2 ) ,  . . .  
M ( i / 2  + 3 ,  ( j  + l ) / 2  + 2 )  , . . .  
M ( i / 2  + 4 ,  ( j  +  1  ) / 2  + 2 ) ] ) ;  

e l s e i f  ( m o d ( i , 2 )  = =  0 )  & &  ( m o d ( j  , 2 )  = =  0 )  
T( i , j ) = DiagonalsAMPCENTREDMid( . . . 

[M( i / 2 + 1 ,  j / 2  + 1 )  M ( i 12 + 1 .  j  2  + 2 )  

M (  i / 2  + 1 ,  j / 2  +  3 )  M ( i / 2  + 1 ,  12 + 4 ) ;  

M (  i / 2  + 2 ,  j / 2  +  1 )  M ( i / 2  + 2 ,  / 2  + 2 )  •  
M (  i / 2  + 2 ,  j / 2  +  3 )  M ( i / 2  + 2 ,  12 + 4 ) ;  
M (  i / 2  + 3 ,  j / 2  +  1 )  M ( i / 2  + 3 ,  12 + 2 )  •  

M (  i / 2  + 3 ,  j / 2  +  3 )  M ( i / 2  + 3 ,  12 + 4 ) ;  

M (  i / 2  + 4 ,  j / 2  +  1 )  M ( i / 2  + 4 ,  12 + 2 )  .  
M (  i / 2  + 4 ,  j / 2  +  3 )  M ( i / 2  + 4 ,  12 + 4 ) ] )  

e n d  
e n d  

e n d  

e l s e i f  s t r c m p ( t y p e ,  '  l d p s m  ' )  
T 1  =  z e r o s ( m t + l ,  n t  +  1 ) ;  
f o r  i  =  1 :  2 :  m t  

f o r  j  =  1 : 2 : n t  
T 1  ( [  i  :  i  +  1  ]  , [  j  :  j  +  1  ] )  =  D i a g o n a l s L D P S M M i d (  . . .  

M ( [ (  i  +  l ) / 2  +  2 : (  i + l ) / 2  +  3 ]  ,  [ ( j  +  l ) / 2  +  2 : (  j  + l ) / 2  +  3 ] ) ) ;  
e n d  

e n d  
T  =  T 1  ( [  1  :  m t  ]  ,  [  1  : n t ] ) ;  

e l s e i f  s t r c m p  ( t y p e  ,  ' m d p s m ' )  
T 1  =  z e r o s ( m t  +  l ,  n t  +  1 ) ;  
f o r  i  =  1 : 2 :  m t  
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f o r  j  =  1 : 2 : n t  
T l ( [ i : i  +  l ] , [ j : j + l ] )  =  D i a g o n a l s M D P S M M i d  (  . . .  

M ( [ (  i  + l ) / 2  +  0 : (  i  +  l ) / 2  +  5 ]  ,  [ ( j  +  1  ) / 2  +  0 : (  j  + 1  ) / 2  +  5 ] ) ) ;  
e n d  

e n d  
T  =  T 1  ( [  1  :  m t  ]  ,  [  1 : n t  ] ) ;  

e l s e i f  s t r c m p  ( t y p e  ,  ' m v s ' )  
T 1  =  z e r o s ( m t + l ,  n t  +  1 ) ;  
f o r  i  =  1  : 2 :  m t  

f o r  j  =  1 : 2 :  n t  
T 1  ( [  i  :  i  +  1  ]  ,  [  j  :  j  + 1  ] )  =  D i a g o n a l s M V S M i d  (  . . .  

M ( [ (  i  +  1  ) / 2 +  1 : (  i + 1  ) / 2 + 4 ]  ,  [ ( j  +  1  ) / 2 +  1 : ( j  +  1  ) / 2  +  4 ] ) ) ;  
e n d  

e n d  
T  =  T 1  ( [ 1 :  m t  ]  ,  [  1 : n t  ] ) ;  

e l s e i f  s t r c m p ( t y p e ,  ' m v s q b s ' )  
T 1  =  z e r o s ( m t + 2 ,  n t + 2 ) ;  
f o r  i  =  1 : 2 :  m t + 2  

f o r  j  =  1 : 2 : n t + 2  
T l ( [ i : i + l ] , [ j : j + l ] )  =  D i a g o n a l s M V S M i d  (  . . .  

M ( [ (  i + 1  ) / 2 +  1 : (  i  +  1  ) / 2 + 4 ]  ,  [ ( j  +  1  ) / 2 + 1 :  ( j  +  1  ) / 2  +  4 ] ) ) ;  
e n d  

e n d  
T 2  =  T 1  ( [  1  :  m t  +  2 ]  ,  [  1  :  n t  +  2 ] ) ;  

M l  =  T 2 ;  
f o r  i  =  2 : m t + l  

f o r  j  =  2 :  n t  +  1  
M2( i , j ) = DiagonalsB SplineMid ( ... 

[ M l  ( i  —  1  , j  —  1 )  M l  ( i  —  1 ,  j  )  M l  ( i  —  1 ,  j  +  1 ) ;  . . .  
M l ( i  , j  —  1 )  M l ( i  ,  j  )  M l  ( i  ,  j  +  1 ) ;  . . .  
M l  ( i  + 1 ,  j  —  1 )  M l  ( i  + 1 ,  j  )  M l  ( i  +  l , j + l ) ] ) ;  

e n d  
e n d  

T  =  M 2 ( [ 2 :  m t  +  1 ]  , [ 2 :  n t  + 1 ] ) ;  

e l s e i f  s t r c m p ( t y p e ,  ' c d v s ' )  
T 1  =  z e r o s  ( m t  +  l ,  n t  +  1 ) ;  
f o r  i  =  1  : 2 :  m t  

f o r  j  =  1 : 2 :  n t  
T 1  ( [  i  :  i  + 1  ]  ,  [  j  :  j  + 1  ] )  =  D i a g o n a l s C D V S M i d  (  . . .  

M ( [ (  i  +  1  ) / 2 +  1 : (  i  +  l ) / 2 + 4 ]  ,  [ ( j  + 1  ) / 2 +  1  : ( j  +  1  ) / 2  +  4 ] ) ) ;  
e n d  
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e n d  
T  =  T 1  ( [ 1 :  m t  ]  ,  [  1  : n t ] ) ;  

e l s e i f  s t r c m p  ( t y p e  ,  ' c d v s q b s ' )  
T 1  =  z e r o s ( m t + 2 ,  n t + 2 ) ;  
f o r  i  =  1 : 2 :  m t + 2  

f o r  j  =  1  : 2 : n t + 2  
T 1  ( [  i  :  i +  1 ]  , [  j  :  j + 1 ] )  =  D i a g o n a l s C D V S M i d  (  . . .  

M ( [ (  i  +  1  ) / 2 +  1 : (  i  +  1  ) / 2  +  4 ]  ,  [ ( j  + 1  ) / 2 + 1 : ( j  +  1  ) / 2  +  4 ] ) ) ;  
e n d  

e n d  
T 2  =  T 1  ( [  1 :  m t  +  2 ]  , [ 1 :  n t  + 2 ] ) ;  

Ml = T2; 
f o r  i  =  2 : m t + l  

f o r  j  =  2 :  n t  +  1  
M 2 ( i , j )  =  D i a g o n a l s B S p l i n e M i d  (  . . .  

[ M l  ( i  —  1 ,  j  —  1 )  M l ( i - l . j )  M l (  i  —  1  , j  +  1 ) ;  . . .  
M l  ( i  , j - l )  M l  ( i  , j )  M l ( i  ,  j  +  1 ) ;  . . .  
M l  ( i  + 1 ,  j  —  1 )  M l  (  i  + 1 ,  j  )  M l  ( i  +  1 ,  j  +  1 )  ] ) ;  

e n d  
e n d  

T  =  M 2 (  [ 2  :  m t  +  1  ]  , [ 2 :  n t  +  1 ] ) ;  

e l s e i f  s t r c m p ( t y p e ,  ' r o v s ' )  
T 1  =  z e r o s ( m t  +  l ,  n t  +  1 ) ;  
f o r  i  =  1 : 2 :  m t  

f o r  j  =  1 : 2 : n t  
T l ( [ i  :  i + 1 ]  , [ j  : j + l ] )  =  D i a g o n a l s R O V S M i d  (  . . .  

M ( [ (  i  +  1  ) / 2 + 1 : (  i + l ) / 2  +  4 ]  ,  [ ( j  +  1  ) / 2 +  1 : ( j  +  1  ) / 2  +  4 ] ) ) ;  

e n d  
e n d  
T  =  T 1  ( [  1  :  m t  ]  , [ 1 : n t ] ) ;  

e l s e i f  s t r c m p  ( t y p e  ,  ' r o v s q b s ' )  
T 1  =  z e r o s ( m t + 2 ,  n t + 2 ) ;  
f o r  i  =  1 : 2 :  m t + 2  

f o r  j  =  1  : 2 : n t + 2  
T l ( [  i  :  i + 1 ]  , [ j  : j + l ] )  =  D i a g o n a l s R O V S M i d  (  . . .  

M ( [ (  i  +  1  ) / 2 + 1 : (  i  +  1  ) / 2  +  4 ]  ,  [ ( j  +  1  ) / 2 + 1 : ( j  +  1  ) / 2  +  4 ] ) ) ;  
e n d  

e n d  
T 2  =  T 1  ( [  1  :  m t  +  2 ]  , [  1 :  n t  + 2 ] ) ;  

M l  =  T 2 ;  
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f o r  i  =  2 : m t + l  
f o r  j  =  2 : n t + 1  

M 2 ( i , j )  =  D i a g o n a l s B S p l i n e M i d  (  . . .  
[ M l (  i  —  1  , j  —  1 )  M l  ( i  —  1 ,  j  )  M l (  i  —  1 ,  j  +  1 ) ;  . . .  

M l  ( i  , j - l )  M l  ( i  , j )  M l  ( i  ,  j  +  1 ) ;  . . .  
M l (  i  +  1  , j  — 1 )  M l ( i  + 1 ,  j  )  M l (  i  + 1  ,  j  +  1 ) ] ) ;  

e n d  
e n d  

T  =  M 2 ( [ 2 :  m t  +  1  ]  , [ 2 :  n t  +  1 ] ) ;  

e l s e  
e r r o r  ( ' P l e a s e  s e e  t h e  a v a i l a b l e  s u b d i v i s i o n  m e t h o d s ' )  

e n d  

f d  =  f o p e n  (  ' / t m p / R e s u l t s D e m i e s Q u a r t s H a r d I n t 2  .  t x t  '  ,  '  a  '  ) ;  
f p r i n t f ( f d ,  ' \ n \ n  \ n \ n ' ) ;  
f p r i n t f ( f d ,  ' % s \ n \ n ' ,  t y p e ) ;  
[ r o w s  c o l s ]  =  s i z e ( T ) ;  
x l  =  r e p m a t  (  '  %  1 . 2  f  &  ' ,  1 ,  ( c o l s — 1 ) ) ;  
f p r i n t f  (  f d  ,  [ x l ,  '  %  1 . 2  f \ n  '  ]  ,  T  ' ) ;  
f c l o s e ( f d  ) ;  

e n d  

F.2 Bilinear 

These functions compute, respectively, the result of applying bilinear subdivision to a vec

tor consisting of two values, and the result of applying bilinear subdivision to a grid con

sisting of four values. 

f u n c t i o n  [  p  ]  =  D i a g o n a l s B i l i n e a r L i n e  (  V  )  
%  D I A G O N A L B I L I N E A R L I N E  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  b i l i n e a r  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P .  

a  =  V (  1 ) ;  
b  =  V ( 2 ) ;  

p  =  0 . 5  * ( a + b  ) ;  

e n d  

All 
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f u n c t i o n  [  p  ]  =  D i a g o n a l s B i l i n e a r M i d  (  M  )  
%  D I A G O N A L S B I L I N E A R M I D  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  b i l i n e a r  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  
%  r e t u r n s  t h e  d o u b l e  d e n s i t y  g r i d  D .  

a  =  M (  1  , 1 ) ;  
b  =  M (  1  , 2 ) ;  
c  =  M ( 2  , 1 ) ;  
d  =  M ( 2  , 2 ) ;  

p  =  0 . 2 5 * ( a + b + c + d ) ;  

e n d  

F.3 Bicubic 

These functions compute, respectively, the result of applying bicubic subdivision to a vector 

consisting of four values, and the result of applying bicubic subdivision to a grid consisting 

of sixteen values. 

f u n c t i o n  [  p  ]  =  D i a g o n a l s B i c u b i c L i n e  (  V  )  
% DIAGONALBICUBICLINE calculates the result of applying 
%  b i c u b i c  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P .  

a  =  V (  1 ) ;  
b  =  V (  2 ) ;  
c  =  V  ( 3 ) ;  
d  =  V ( 4 ) ;  

p  =  — a / 1 6  +  9 * b / 1 6  +  9 * c / 1 6  —  d / 1 6 ;  

e n d  

f u n c t i o n  [  p i  ]  =  D i a g o n a l s B i c u b i c M i d  (  M  )  
% DIAGONALBICUBICMID calculates the result of applying 
%  b i c u b i c  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  M ( 1  , 1 ) ;  
b  =  M (  1  , 2 ) ;  

478 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



c  =  M ( 1  , 3 ) ;  
d  =  M (  1  , 4 ) ;  
e  =  M ( 2  , 1 ) ;  
f  =  M ( 2  , 2 ) ;  
g  =  M ( 2  , 3 ) ;  
h  =  M ( 2  , 4 ) ;  
i  =  M ( 3  , 1 ) ;  
j  =  M ( 3  , 2 ) ;  
k  =  M ( 3  , 3 ) ;  
1  =  M ( 3  , 4 ) ;  

m  =  M ( 4  , 1 ) ;  
n  =  M ( 4  , 2 ) ;  
o  =  M ( 4  , 3 ) ;  
p  =  M ( 4  , 4 ) ;  

p i  =  a / 2 5 6  -  9 * b / 2 5 6  -  9 * c / 2 5 6  +  d / 2 5 6  -  9 * e / 2 5 6  +  8 1 * f / 2 5 6  +  . . .  
8 1  * g / 2 5 6  -  9 * h / 2 5 6  -  9 * i / 2 5 6  +  8 1 * j / 2 5 6  +  8 1 * k / 2 5 6  -  . . .  
9 * 1 / 2 5 6  +  m / 2 5 6  -  9 * n / 2 5 6  -  9 * o / 2 5 6  +  p / 2 5 6 ;  

e n d  

F.4 Lanczos 2 

These functions compute, respectively, the result of applying Lanczos 2 subdivision to a 

vector consisting of four values, and the result of applying Lanczos 2 subdivision to a grid 

consisting of sixteen values. 

f u n c t i o n  [  p i  ]  =  D i a g o n a l s L a n c z o s 2 L i n e  (  V  )  
% DIAGONALBICUBICLINE calculates the result of applying 
%  L a n c z o s 2  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  V  (  1 ) ;  
b  =  V ( 2 ) ;  
c  =  V ( 3 ) ;  
d  =  V ( 4 ) ;  

s 3 _ o v e r _ 2  =  s i n  ( 3 *  p i / 2 ) *  s i n  ( 3 *  p i / 4 )  *  8 / ( 9  *  p i  *  p i ) ;  
s l _ o v e r _ 2  =  s i n  ( 1  *  p i / 2 )  *  s i n  ( 1  *  p i / 4 )  *  8 / (  p i  *  p i  ) ;  

p i  =  s 3 _ o v e r _ 2 * ( a + d )  +  s 1 _ o v e r . 2 * ( b + c ) ;  
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end 

f u n c t i o n  [  p i  ]  =  Diagona l sLanczos2Mid(  M )  
%  D I A G O N A L B I C U B I C L I N E  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  L a n c z o s 2  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  = M( 1 ,1 )  
b  = M(1,2 )  
c  = M(1 ,3 )  
d  = M(1,4 )  
e  = M(2 ,1 )  
f  = M(2 ,2 )  
g  = M(2 ,3 )  
h  = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3,2 )  
k  = M(3 ,3 )  
1  = M(3,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
0  = M(4 ,3 )  

P  = M(4 ,4 )  

s3_over_2  =  s i n (3*  p i / 2 )*  s i n (3*  p i / 4 )*  8 / (9*  p i  *  p i ) ;  
s l_over_2  =  s i n  ( 1  *  p i / 2 )*  s i n  ( 1  *  p i / 4 )  *  8 / (  p i  *  p i ) ;  

s3  =  s3_over_2  *  s3_over_2 ;  
s31  =  s3_over_2  *  s l_over_2 ;  
s i  =  s l_ove r_2  *  s l_over_2 ;  

p i  =  s3*a  +  s31*b  +  s31*c  +  s3*d  +  s31*e  +  s l* f  +  s l*g  +  s31*h  
+  s31* i  +  s l* j  +  s l*k  +  s31*1  +  s3*m +  s31*n  +  s31*o  +  s3*p ;  

e n d  

F.5 Lanczos 3 

These  func t ions  compute ,  r e spec t ive ly ,  t he  r e su l t  o f  app ly ing  Lanczos  3  subd iv i s ion  to  a  

vec to r  cons i s t ing  o f  s ix  va lues ,  and  the  r e su l t  o f  app ly ing  Lanczos  3  subd iv i s ion  to  a  g r id  

cons i s t ing  o f  th i r ty - s ix  va lues .  
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f u n c t i o n  [  p i  ]  =  Diagona l sLanczos3Line  (  V  )  
%  D I A G O N A L B I C U B I C L I N E  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  L a n c z o s 3  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  V( l ) ;  
b  =  V  (2 ) ;  
c  =  V(  3 ) ;  
d  =  V(4) ;  
e  =  V(  5  ) ;  
f  =  V(  6 ) ;  

s5_over_2  =  s i n  (5*  p i / 2 )*  s i n  (5*  p i / 6 )*  1  2 / (25  *  p i * p i  ) ;  
s 3 _ o v e r _ 2  =  s i n ( 3 *  p i / 2 ) *  s i n ( 3 *  p i / 6 ) * 4 / ( 3  *  p i * p i ) ;  
s l_over_2  =  s i n  ( 1  *  p i / 2 )  *  s i n  ( 1  *  p i / 6 )*  1  2 / (  p i  *  p i ) ;  

p i  =  s5_over_2*(a+f )  +  s3_over_2*(b+e)  +  s1_over_2*(c+d) ;  

e n d  

f u n c t i o n  [  p i  ]  =  Diagona l sLanczos3Mid(  M )  
%  D I A G O N A L B I C U B I C L I N E  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  L a n c z o s 3  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  
%  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  = M( 1 ,1 )  
b  = M(1 ,2 )  
c  = M( 1 ,3 )  
d  = M( 1  , 4 )  
e  = M(1 ,5 )  
f  = M(1 ,6 )  
g  = M(2 ,1 )  
h  = M(2 ,2 )  
i  = M( 2  , 3 )  
j  = M(2 ,4 )  
k  = M(2 ,5 )  
1  = M(2 ,6 )  
m = M(3 ,1 )  
n  = M(3 ,2 )  
0  = M(3 ,3 )  

P  
= M(3 ,4 )  

q = M(3 ,5 )  
r  = M(3 ,6 )  
s  = M(4 ,1 )  
t 

= M(4,2 )  
u  = M(4 ,3 )  
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V = M ( 4  , 4 )  
w = M ( 4  , 5 )  
X = M ( 4  , 6 )  
y  = M ( 5  , 1 )  
z = M ( 5  , 2 )  
A  = M ( 5  , 3 )  
B  = M ( 5  , 4 )  
C  = M ( 5  , 5 )  
D  = M ( 5  , 6 )  
E = M ( 6 , l )  
F  = M ( 6  , 2 )  
G  = M ( 6  , 3 )  
H  = M ( 6  , 4 )  
I  = M ( 6  , 5 )  
J  = M ( 6  , 6 )  

s5_over_2  =  s i n (5*  p i / 2 )*s i n (5*  p i / 6 )*12 / (25  *  p i * p i ) ;  
s 3 _ o v e r _ 2  =  s i n  ( 3 *  p i / 2 )  *  s i n  ( 3  *  p i / 6 )  *  4 / (  3  *  p i  *  p i ) ;  
s l _ o v e r _ 2  =  s i n  ( 1  *  p i / 2 ) *  s i n  ( 1  *  p i / 6 )  *  1  2 / (  p i  *  p i ) ;  

s5  =  s5_over_2  *  s5_over_2 ;  
s53  =  s5_over_2  *  s3_over_2 ;  
s51  =  s5_over_2  *  s l_ove r_2 ;  
s3  =  s3_over_2  *  s3_over_2 ;  
s i  =  s l_ove r_2  *  s l_over_2 ;  
s31  =  s3_over_2  *  s l_ove r_2 ;  

p i  =  s5*a  +  s53*b  +  s51*c  +  s51*d  +  s53*e  +  s5*f  +  . . .  
s53*g  +  s3*h  +  s31* i  +  s31* j  +  s3*k  +  s53* l  +  . . .  
s51*m +  s31*n  +  s l*o  +  s l*p  +  s31*q  +  s51*r  +  . . .  
s51*s  +  s31* t  +  s l*u  +  s l*v  +  s31*w +  s51*x  +  . . .  
s53*y  +  s3*z  +  s31*A +  s31*B +  s3*C +  s53*D +  . . .  
s5*E  +  s53*F  +  s51*G +  s51*H +  s53*I  +  s5*J ;  

e n d  

F.6 Nohalo 

These  func t ions  compute ,  r e spec t ive ly ,  t he  r e su l t  o f  app ly ing  Noha lo  subd iv i s ion  to  a  vec to r  

cons i s t ing  o f  fou r  va lues ,  and  the  r e su l t  o f  app ly ing  Noha lo  subd iv i s ion  to  a  g r id  cons i s t ing  

o f  s ix t een  va lues .  
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f u n c t i o n  [  p i  ]  =  Diagona l sNoha lo  (  V  )  
% DIAGONALSNOHALO calculates the result of applying Nohalo 
% subdivision to the input values in V. It returns the new 
%  v a l u e  P I .  

a  =  V( l ) ;  
b  =  V(2) ;  
c  =  V(3) ;  
d  =  V(4) ;  

mg  =  b -a ;  
m  =  c — b ;  
m d  =  d — c ;  

i f  mg*m <=  0  
mb =  0 ;  

e l s e i f  a b s ( m g ) < a b s  ( m )  
mb =  mg;  

e l s e  
mb =  m;  

e n d  

i f  m*md <=  0  
mc = 0; 

e l s e i f  a b s (m)  <  a b s (md)  
mc  =  m;  

e l s e  
mc =  md;  

e n d  

p i  =  0 .5* (b+c)  +  0 .25*(mb-mc) ;  

e n d  

f u n c t i o n  [  p i  ]  =  Diagona l sNoha loMid  (  M )  
% DIAGONALSNOHALO calculates the result of applying Nohalo 
% subdivision to the input values in M. It returns the new 
%  v a l u e  P I .  

a  =  M(  1  ,D  
b  =  M(  1  , 2 )  
c  =  M(  1  , 3 )  
d  =  M(  1  , 4 )  
e  =  M(2  ,D  
f  =  M(2  , 2 )  

8  =  M(2  , 3 )  
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h  =  M(2  , 4 ) ;  
i  =  M(3  , 1 ) ;  
j  =  M(3  , 2 ) ;  
k  =  M(  3  , 3 ) ;  
1  =  M(3  , 4 ) ;  
m =  M(4  , 1 ) ;  
n  =  M(4  , 2 ) ;  
o  =  M(4  , 3 ) ;  
p  =  M(4  , 4 ) ;  

mxgl  =  f—e;  
mxl  =  g - f ;  
mxdl  =  h—g ;  
mxg2  =  j - i  ;  
mx2  =  k—j  ;  
mxd2  =  1—k;  
myh  1  =  f—b ;  
myl  =  j - f ;  
mybl  =  n—j  ;  
myh2  =  g—c ;  
my2  =  k -g ;  
myb2  =  o -k ;  

i f  mxgl*mxl  <=  0  
mxf  =  0 ;  

e l s e i f  a b s (mxg l )  <  a b s (mxl )  
mxf  =  mxgl  ;  

e l s e  
mxf  =  mxl ;  

e n d  

i f  mxl*mxdl  <=  0  
mxg  =  0 ;  

e l s e i f  a b s (mxl )  <  a b s (mxd l )  
mxg  =  mxl ;  

e l s e  
mxg =  mxdl  ;  

e n d  

i f  mxg2*mx2  <=  0  
mxj  =  0 ;  

e l s e i f  a b s (mxg2)  <  a b s (mx2)  
mxj  =  mxg2 ;  

e l s e  
mxj  =  mx2;  

e n d  
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i f  mx2*mxd2  <=  0  
mxk  =  0 ;  

e l s e i f  a b s (mx2)  <  a b s (mxd2)  
mxk  =  mx2;  

e l s e  
mxk =  mxd2 ;  

e n d  

i f  myhl*myl  <=  0  
myf  =  0 ;  

e l s e i f  a b s (myh l )  <  a b s (myl )  
myf  =  myhl  ;  

e l s e  
myf  =  myl  ;  

e n d  

i f  myl*mybl  <=  0  
myj  =  0 ;  

e l s e i f  a b s (myl )  <  a b s (myb l )  
myj  =  myl ;  

e l s e  
myj  =  mybl  ;  

e n d  

i f  myh2*my2  <=  0  
myg  =  0 ;  

e l s e i f  a b s (myh2)  <  a b s (my2)  
myg  =  myh2 ;  

e l s e  
myg =  my2;  

e n d  

i f  my2*myb2  <=  0  
myk  =  0 ;  

e l s e i f  a b s (my2)  <  a b s (myb2)  
myk  =  my2;  

e l s e  
myk =  myb2 ;  

e n d  

p i  =  0 .25*( f+g+j+k)  +  . . .  
0 .125*(mxf  -  mxg +  myf  -  myj  +  mxj  -  mxk +  myg  -  myk) ;  

e n d  
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F.7 Snohalo 

These  func t ions  compute ,  r e spec t ive ly ,  t he  r e su l t  o f  app ly ing  Snoha lo  smooth ing  to  a  vec to r  

cons i s t ing  o f  th ree  va lues ,  and  the  r e su l t  o f  app ly ing  Snoha lo  smooth ing  to  a  g r id  cons i s t ing  

o f  f ive  va lues .  These  va lues  fo rm a  c ross  on  the  2D p lane  and  a re  p rov ided  in  the  fo rm a  

vec to r .  The  f i r s t  f ou r  va lues  a re  the  va lues  o f  the  fou r  po in t s  o f  the  c ross ,  p rov ided  in  any  

o rde r ,  and  the  f i f th  va lue  mus t  be  the  cen t ra l  va lue .  

f u n c t i o n  [  p i  ]  =  Diagona l sSnoha loLine  (  V ,  t he t a  )  
%  D I A G O N A L S S N O H A L O L I N E  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  S n o h a l o  s m o o t h i n g  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  
%  t h e  n e w  v a l u e  P I .  

a  =  V  (1  ) ;  
b  =  V(2) ;  
y  =  V ( 3 ) ;  

p i  =  ( ( a+b) /4  +  y /2 )*  the ta  +  (1  —the ta )*y ;  

e n d  

f u n c t i o n  [  p i  ]  =  Diagona l sSnoha loMid  (  V ,  t he t a  )  
%  D I A G O N A L S S N O H A L O M I D  c a l c u l a t e s  t h e  r e s u l t  o f  a p p l y i n g  
%  S n o h a l o  s m o o t h i n g  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  
%  t h e  n e w  v a l u e  P I .  

a  =  V( l ) ;  
b  =  V(2) ;  
c  =  V  (3  ) ;  
d  =  V(4) ;  
y  =  V ( 5 ) ;  

p i  =  ( ( a+b+c+d) /8  +  y /2 )* the ta  +  (1  — t he t a )*y  ;  

e n d  

F.8 MP 

These  func t ions  compute ,  r e spec t ive ly ,  t he  r e su l t  o f  app ly ing  MP subd iv i s ion  to  a  vec to r  

cons i s t ing  o f  fou r  va lues ,  and  the  r e su l t  o f  app ly ing  MP subd iv i s ion  to  a  g r id  cons i s t ing  o f  
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s ix t een  va lues .  

f u n c t i o n  [  p i  ]  =  Diagona l sMPLine  (  V  )  
% DIAGONALSMPLINE calculates the result of applying MP subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  V( l ) ;  
b  =  V(2) ;  
c  =  V(3) ;  
d  =  V  (4 ) ;  

mg  =  b -a ;  
m =  c -b ;  
md =  d—c;  
e rg  =  c - a ;  
c rd  =  d—b ;  

i f  mg*m <=  0  
mnb  =  0 ;  

e l se i f  abs (mg)  <  abs (m)  
mnb  =  mg;  

e l se  
mnb  =  m;  

e n d  

i f  mnb*erg  <=  0  
mb =  0 ;  

e l se i f  abs (3*mnb)  <  0 .5*c rg  
mb =  3  *  mnb  ;  

e l se  
mb  =  0 .5*  e rg ;  

e n d  

i f  m*md <=  0  
mnc  =  0 ;  

e l se i f  abs (m)  <  abs (md)  
mnc  =  m;  

e l se  
mnc  =  md;  

e n d  

i f  mnc*crd  <=  0  
mc  =  0 ;  

e l se i f  abs (3*mnc)  <  0 .5*c rd  
mc  =  3  *  mnc  ;  
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e l s e  
mc =  0 .5*c rd ;  

e n d  

p i  =  0 .5* (b+c)  +  0 .1  25*(mb-mc) ;  

e n d  

f u n c t i o n  [  p i  ]  =  Diagona l sMPMid  (  M )  
% DIAGONALSMPMID calculates the result of applying MP subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  M(1  , 1 ) ;  
b  =  M(  1  , 2 ) ;  
c  =  M(  1  , 3 ) ;  
d  =  M(  1  , 4 ) ;  
e  =  M(2  , 1 ) ;  
f  =  M(2  , 2 ) ;  
g  =  M(2  , 3 ) ;  
h  =  M(2  , 4 ) ;  
i  =  M(3  , 1 ) ;  
j  =  M(3  , 2 ) ;  
k  =  M(3  , 3 ) ;  
I  =  M(3  , 4 ) ;  
m =  M(  4  , 1 ) ;  
n  =  M(4  , 2 ) ;  
o  =  M(4  , 3 ) ;  
p  =  M(4  , 4 ) ;  

I I  =  Diagona l sMPLine  ( [  a  b  c  d  ] ) ;  
12  =  Diagona l sMPLine  ( [  e  f  g  h ] ) ;  
13  =  Diagona l sMPLine  ( [  i  j  k  1 ] ) ;  
14  =  Diagona l sMPLine  ( [m n  o  p ] ) ;  

q l  =  Diagona l sMPLine  ( [  11  12  13  14 ] ) ;  

15  =  Diagona l sMPLine  ( [  a  e  i  m] ) ;  
16  =  Diagona l sMPLine  ( [b  f  j  n ] ) ;  
17  =  Diagona l sMPLine  ( [  c  g  k  o ] ) ;  
18  =  Diagona l sMPLine  ( [  d  h  1  p  ] ) ;  

q2  =  Diagona l sMPLine  ( [  15  16  17  18 ] ) ;  

p i  =  0 .5* (q l+q2) ;  

e n d  
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f u n c t i o n  [  p i  ]  =  Diagona l sMPCENTREDMid(  M )  
%  D I A G O N A L S M P C E N T R E D M I D  a p p l i e s  M P  s u b d i v i s i o n  w i t h  c e n t r e d  
%  c r o s s - d e  r i v a t i v e s  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  
%  n e w  v a l u e  P I .  

a  = M( 1  , 1 )  
b  = M( 1  , 2 )  
c  = M(1 ,3 )  
d  = M( 1  , 4 )  
e  = M(2 ,1 )  
f  = M(2 ,2 )  

8  
= M(2 ,3 )  

h  = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3 ,2 )  
k  = M(3 ,3 )  
1  = M(3 ,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
0  = M(4 ,3 )  

P  = M(4 ,4 )  

d  
h  
I  

%  a  b  c  
%  e  f  g  
%  i  j  k  
%  m  n  o  

mcrfx  =  0 .5* (g—e) ;  
mcrgx  =  0 .5* (h—f) ;  
mcr jx  =  0 .5  * (k—i  ) ;  
mcrkx  =  0 .5  * (1  — j  ) ;  
mcr fy  =  0 .5  * ( j— b ) ;  
mcrgy  =  0 .5  * (k—c) ;  
mcr jy  =  0 .5* (n—f) ;  
mcrky  =  0 .5* (o -g ) ;  
mcr fxy  =  0 .25*(  a—c+k—i  )  
mcrgxy  =  0 .2  5  *  (b—d+1  —j  )  
mcr jxy  =  0 .25*(e—g+o-m)  
mcrkxy  =  0 .25*(  f -h+p-n  )  

mgbx  =  b -- a  
mdbx  =  c --b  
mdcs  =  d -- c  
mgfx  =  f -- e  
mdfx  =  g-- f  
mdgx  =  h--g  
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mgjx  =  j - i  ;  
mdjx  =  k - j  ;  
mdkx  =  1  —k ;  
mgnx  =  n -m;  
mdnx  =  o -n  ;  
mdox  =  p—o ;  

mgey  =  e—a ;  
mdey  =  i— e ;  
mdiy  =  m- i  ;  
mgfy  =  f  —b ;  
mdfy  =  j  —f  ;  
mdjy  =  n - j  ;  
mggy  =  g -c  ;  
mdgy  =  k -g ;  
mdky  =  o—k;  
mghy  =  h—d ;  
mdhy  =  1  - h  ;  
mdly  =  p—1 ;  

i f  mgfx*mdfx  <=  0  
minmodfx  =  0 ;  

e l se i f  abs (mgfx)  <  abs (mdfx)  
minmodfx  =  mgfx  ;  

e l se  
minmodfx  =  mdfx  ;  

end  

i f  mdfx*mdgx  <=  0  
minmodgx  =  0 ;  

e l se i f  abs (mdfx)  <  abs (mdgx)  
minmodgx  =  mdfx ;  

e l se  
minmodgx  =  mdgx ;  

end  

i f  mgjx*mdjx  <=  0  
minmodjx  =  0 ;  

e l se i f  abs (mgjx )  <  abs (mdjx )  
minmodjx  =  mgjx  ;  

e l se  
minmodjx  =  mdjx ;  

end  

i f  mdjx*mdkx  <=  0  
minmodkx  =  0 ;  
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e l s e i f  a b s (mdjx )  <  a b s (mdkx)  
minmodkx  =  mdjx  ;  

e l s e  
minmodkx  =  mdkx ;  

e n d  

i f  mgfy*mdfy  <=  0  
minmodfy  =  0 ;  

e l s e i f  a b s (mgfy)  <  a b s (mdfy)  
minmodfy  =  mgfy  ;  

e l s e  
minmodfy  =  mdfy  ;  

e n d  

i f  mdfy*mdjy  <=  0  
minmodjy  =  0 ;  

e l s e i f  a b s (mdfy)  <  a b s (mdjy )  
minmodjy  =  mdfy  ;  

e l s e  
minmodjy  =  mdjy  ;  

e n d  

i f  mggy*mdgy  <=  0  
minmodgy  =  0 ;  

e l s e i f  a b s (mggy)  <  a b s (mdgy)  
minmodgy  =  mggy ;  

e l s e  
minmodgy  =  mdgy ;  

e n d  

i f  mdgy*mdky  <=  0  
minmodky  =  0 ;  

e l s e i f  a b s (mdgy)  <  a b s (mdky)  
minmodky  =  mdgy ;  

e l s e  
minmodky  =  mdky ;  

e n d  

i f  minmodfx*mcr fx  <=  0  
mfx  =  0 ;  

e l s e i f  a b s  (3  *  minmodfx  )  <  a b s  (0 .5  *  mcr fx  )  
mfx  =  3*minmodfx  ;  

e l s e  
mfx  =  0 .5*  mcr fx  ;  

e n d  
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i f  minmodgx*  mcrgx  <=  0  
mgx  =  0 ;  

e l s e i f  a b s (3*minmodgx)  <  a b s (0 .5*  mcrgx)  
mgx  =  3*minmodgx ;  

e l s e  
mgx =  0 .5*  mcrgx ;  

e n d  

i f  minmodjx  *  mcr jx  <=  0  
mjx  =  0 ;  

e l s e i f  a b s (3*minmodjx )  <  a b s (0 .5*  mcr jx  )  
mjx  =  3*minmodjx ;  

e l s e  
mjx  =  0 .5*  mcr jx  ;  

e n d  

i f  minmodkx*mcrkx  <=  0  
mkx  =  0 ;  

e l s e i f  a b s (3*  minmodkx)  <  a b s  (0 .5*  mcrkx)  
mkx  =  3*  minmodkx ;  

e l s e  
mkx =  0 .5*  mcrkx ;  

e n d  

i f  minmodfy*mcr fy  <=  0  
mfy  =  0 ;  

e l s e i f  a b s (3*  minmodfy  )  <  a b s  (0 .5*  mcr fy  )  
mfy  =  3*minmodfy ;  

e l s e  
mfy  =  0 .5*  mcr fy  ;  

e n d  

i f  minmodgy*mcrgy  <=  0  
mgy  =  0 ;  

e l s e i f  a b s  (3*minmodgy)  <  a b s  (0 .5*  mcrgy)  
mgy  =  3*minmodgy ;  

e l s e  
mgy =  0 .5*  mcrgy ;  

e n d  

i f  minmodjy*mcr jy  <=  0  
mjy  =  0 ;  

e l s e i f  a b s (3*  minmodjy )  <  a b s  (0 .5*  mcr jy  )  
mjy  =  3*minmodjy ;  

e l s e  
mjy  =  0 .5  *  mcr jy  ;  
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end 

i f  minmodky*mcrky  <=  0  
mky =  0 ;  

e l s e i f  a b s (3*minmodky)  <  a b s  (0 .5  *  mcrky)  
mky  =  3*minmodky ;  

e l s e  
mky =  0 .5*  mcrky ;  

e n d  

mfxy  =  mcr fxy  ;  
mgxy  =  mcrgxy  ;  
mjxy  =  mcr jxy  ;  
mkxy  =  mcrkxy  ;  

Ainv  = [1  00000000000000  0;  . . .  
0 0 0 0  1  0 0 0 0 0 0 0 0 0 0  0 ;  . . .  
-3  300  -2  -1  000000000  0;  . . .  
2  - 2  0 0 1  1 0 0 0 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 - 3  3 0 0 - 2 - 1 0  0 ;  . . .  
0 0 0 0 0 0 0 0 2  - 2  0 0 1  1 0  0 ;  . . .  
- 3  0 3 0 0 0 0 0  - 2  0  - 1  0 0 0 0  0 ;  . . .  
0 000-3  0300000-2  0 -10 ;  . . .  
9 -9 -9963-6 -36-63-3422  1;  . . .  
-6  6  6  -6  -3  -3  3  3  -4  4  -2  2  -2  -2  -1  -1 ;  . . .  
2 0 - 2  0 0 0 0 0 1 0 1 0 0 0 0 0 ;  . . .  
0 0 0 0 2 0  - 2  0 0 0 0 0 1 0 1  0 ;  . . .  
-6  6  6  -6  -4  -2  4  2  -3  3  -3  3  -2  -1  -2  -1 ;  . . .  
4 -4 -4422-2 -22-22-2111  1] ;  

vec  =  [  f  g  j  k  mfx  mgx  mjx  mkx  mfy  mgy  mjy  mky  mfxy  .  .  .  
mgxy  mjxy  mkxy  ] ;  

a lpha  =  Ainv*  vec  ' ;  

p i  =  a lpha ( l )  +  0 .5*a lpha (2 )  +  0 .25*  a lpha  (3 )  +  0 .125*  a lpha  (4 )  . . .  
+  0 .5*a lpha (5 )  +  0 .5*0 .5*  a lpha  (6 )  +  0 .25  *0 .5  *  a lpha  (7 )  . . .  
+  0 .125*0 .5*  a lpha  (8 )  +  0 .25*  a lpha  (9 )  +  0 .5*0 .25*  a lpha  (10 )  . . .  
+  0 .25*0 .25*  a lpha  (1  1 )  +  0 .1  25  *0 .25  *  a lpha  (1  2 )  . . .  
+  0 .125*  a lpha  (1  3 )  +  0 .5*0 .125*  a lpha  (14 )  . . .  
+  0 .25*0 .125*  a lpha (15)  +  0 .125  *0 .125  *  a lpha  (1  6 ) ;  

e n d  
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f u n c t i o n  [  p i  ]  =  Diagona l sMPNULLMid(  M )  
%  D 1 A G O N A L S M P N U L L M I D  a p p l i e s  M P  s u b d i v i s i o n  w i t h  n u l l  
%  c r o s s — d e r i v a t i v e s  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  
%  t h e  n e w  v a l u e  P I .  

a  = M( 1  , 1 )  
b  = M( 1  , 2 )  
c  = M( 1  , 3 )  
d  = M( 1  , 4 )  
e  = M(2 ,1 )  
f  — M(2 ,2 )  

8  
= M(2 ,3 )  

h  = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3 ,2 )  
k  = M(3 ,3 )  
1  = M(3 ,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
o  = M(4 ,3 )  

P  = M(4 ,4 )  

% a  b  c  
% e  f  8  
% i  j  k  
% m  n  o  

mcrfx  =  0 .5* (g—e) ;  
mcrgx  =  0 .5* (h—f) ;  
mcr jx  =  0 .5  * (k—i  ) ;  
mcrkx  =  0 .5  * (  1—j  ) ;  
mcr fy  =  0 .5* ( j -b ) ;  
mcrgy  =  0 .5* (k -c ) ;  
mcr jy  =  0 .5* (n—f) ;  
mcrky  =  0 .5* (o—g) ;  
mcr fxy  =  0 .25  * (  a—c+k—i  ) ;  
mcrgxy  =  0 .25*(b—d+1 — j  ) ;  
mcr jxy  =  0 .25*(e -g+o-m) ;  
mcrkxy  =  0 .25  * (  f -h+p—n ) ;  

mgbx  =  b -- a  
mdbx  =  c --b  
mdcs  =  d -- c  
mgfx  =  f -- e  
mdfx  =  g-- f  
mdgx  =  h--g  
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mgjx  =  j - i  ;  
mdjx  =  k - j  ;  
mdkx  =  1  —k ;  
mgnx  =  run ;  
mdnx  =  o -n ;  
mdox  =  p -o ;  

mgey  =  e - a ;  
mdey  =  i  - e  ;  
mdiy  =  m- i  ;  
mgfy  =  f—b;  
mdfy  =  j  —f  ;  
mdjy  =  n - j  ;  
mggy  =  g -c  ;  
mdgy  =  k -g ;  
mdky  =  o -k ;  
mghy  =  h -d ;  
mdhy  =  1  —h ;  
mdly  =  p—1 ;  

i f  mgfx*mdfx  <=  0  
minmodfx  =  0 ;  

e l se i f  abs (mgfx)  <  abs (mdfx)  
minmodfx  =  mgfx  ;  

e l se  
minmodfx  =  mdfx  ;  

end  

i f  mdfx*mdgx  <=  0  
minmodgx  =  0 ;  

e l se i f  abs (mdfx)  <  abs (mdgx)  
minmodgx  =  mdfx  ;  

e l se  
minmodgx  =  mdgx ;  

end  

i f  mgjx*mdjx  <=  0  
minmodjx  =  0 ;  

e l se i f  abs (mgjx )  <  abs (mdjx )  
minmodjx  =  mgjx  ;  

e l se  
minmodjx  =  mdjx ;  

end  

i f  mdjx*mdkx  <=  0  
minmodkx  =  0 ;  
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e l s e i f  a b s (mdjx )  <  a b s (mdkx)  
minmodkx  =  mdjx  ;  

e l s e  
minmodkx  =  mdkx ;  

e n d  

i f  mgfy*mdfy  <=  0  
minmodfy  =  0 ;  

e l s e i f  a b s (mgfy)  <  a b s (mdfy)  
minmodfy  =  mgfy ;  

e l s e  
minmodfy  =  mdfy ;  

e n d  

i f  mdfy*mdjy  <=  0  
minmodjy  =  0 ;  

e l s e i f  a b s (mdfy)  <  a b s (mdjy )  
minmodjy  =  mdfy ;  

e l s e  
minmodjy  =  mdjy ;  

e n d  

i f  mggy*mdgy  <=  0  
minmodgy  =  0 ;  

e l s e i f  a b s (mggy)  <  a b s (mdgy)  
minmodgy  =  mggy ;  

e l s e  
minmodgy  =  mdgy ;  

e n d  

i f  mdgy*mdky  <=  0  
minmodky  =  0 ;  

e l s e i f  a b s (mdgy)  <  a b s (mdky)  
minmodky  =  mdgy ;  

e l s e  
minmodky  =  mdky ;  

e n d  

i f  minmodfx*mcr fx  <=  0  
mfx  =  0 ;  

e l s e i f  a b s  (3*  minmodfx  )  <  a b s  (0 .5  *  mcr fx  )  
mfx  =  3*minmodfx ;  

e l s e  
mfx  =  0 .5  *  mcr fx  ;  

e n d  
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i f  minmodgx*mcrgx  <=  0  
mgx =  0 ;  

e l se i f  abs (3*minmodgx)  <  abs  (0 .5*  mcrgx)  
mgx  =  3*minmodgx ;  

e l se  
mgx  =  0 .5*  mcrgx  ;  

e n d  

i f  minmodjx*mcr jx  <=  0  
mjx  =  0 ;  

e l se i f  abs (3*  minmodjx )  <  abs (0 .5*  mcr jx  )  
mjx  =  3*minmodjx ;  

e l se  
mjx  =  0 .5*  mcr jx  ;  

e n d  

i f  minmodkx*mcrkx  <=  0  
mkx  =  0 ;  

e l se i f  abs (3*minmodkx)  <  abs  (0 .5*  mcrkx)  
mkx  =  3*  minmodkx ;  

e l se  
mkx  =  0 .5*  mcrkx  ;  

e n d  

i f  minmodfy*mcr fy  <=  0  
mfy  =  0 ;  

e l se i f  abs (3*minmodfy  )  <  abs (0 .5*  mcr fy  )  
mfy  =  3*minmodfy ;  

e l se  
mfy  =  0 .5*  mcr fy  ;  

e n d  

i f  minmodgy*mcrgy  <=  0  
mgy  =  0 ;  

e l se i f  abs (3*minmodgy)  <  abs (0 .5*  mcrgy)  
mgy  =  3*minmodgy ;  

e l se  
mgy  =  0 .5*  mcrgy  ;  

e n d  

i f  minmodjy*mcr jy  <=  0  
mjy  =  0 ;  

e l se i f  abs (3*minmodjy )  <  abs  (0 .5*  mcr jy  )  
mjy  =  3*minmodjy ;  

e l se  
mjy  =  0 .5*  mcr jy  ;  
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end 

i f  minmodky*mcrky  <=  0  
mky =  0 ;  

e l s e i f  a b s (3*minmodky)  <  a b s  (0 .5  *  mcrky)  
mky  =  3*minmodky ;  

e l s e  
mky =  0 .5  *  mcrky  ;  

e n d  

mfxy  =  0 ;  
mgxy  =  0 ;  
mjxy  =  0 ;  
mkxy  =  0 ;  

Ainv  = [1  00000000000000  0;  . . .  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  0 ;  . . .  
- 3  3 0 0 - 2 - 1 0 0 0 0 0 0 0 0 0  0 ;  . . .  
2  - 2  0 0 1  1 0 0 0 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 - 3  3 0 0 - 2 - 1 0  0 ;  . . .  
0 0 0 0 0 0 0 0 2  - 2  0 0 1  1 0 0 ;  . . .  
- 3  0 3 0 0 0 0 0  - 2  0  - 1  0 0 0 0  0 ;  . . .  
0 000-3  0300000-2  0 -10 ;  . . .  
9 -9 -9963-6 -36-63-3422  1;  . . .  
-6  6  6  -6  -3  -3  3  3  -4  4  -2  2  -2  -2  -1  -1 ;  . . .  
2 0  - 2  0 0 0 0 0 1 0 1 0 0 0 0  0 ;  . . .  
0 0 0 0 2 0  - 2  0 0 0 0 0 1  0  1  0 ;  . . .  
-6  6  6  -6  -4  -2  4  2  - 3  3  -3  3  -2  -1  -2  -1 ;  . . .  
4 -4 -4422-2 -22-22-21  1 1  1 ] ;  

vec  =  [  f  g  j  k  mfx  mgx  mjx  mkx  mfy  mgy  mjy  mky  mfxy  . .  .  
mgxy  mjxy  mkxy] ;  

a lpha  =  Ainv*vec  '  ;  

p i  =  a lpha ( l )  +  0 .5*a lpha (2 )  +  0 .25*  a lpha  (3 )  +  0 .125  *  a lpha  (4 )  
+  0 .5*a lpha (5 )  +  0 .5  *0 .5  *  a lpha  (6 )  +  0 .25*0 .5*  a lpha  (7 )  . . .  
+  0 .125*0 .5*  a lpha  (8 )  +  0 .25*  a lpha  (9 )  +  0 .5*0 .25*  a lpha  (1  0 )  
+  0 .25*0 .25*  a lpha ( l  1)  +  0 .1  25*0 .25*  a lpha  (1  2 )  . . .  
+  0 .125*  a lpha (13)  +  0 .5  *0 .125  *  a lpha  (14 )  . . .  
+  0 .25*0 .125*  a lpha (15)  +  0 .1  25*0 .125*  a lpha  (1  6 ) ;  
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F.9 AMP 

These functions compute, respectively, the result of applying AMP subdivision to a vector 

consisting of four values, and the result of applying AMP subdivision to a grid consisting 

of sixteen values. 

f u n c t i o n  [  p i  ]  =  Diagona l sAMPLine  (  V  )  
% DIAGONALSAMPLINE calculates the result of applying AMP 
%  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  t h e  
%  n e w  v a l u e  P I .  

a = V(1); 
b  =  V(2) ;  
c  =  V(3) ;  
d  =  V(4) ;  

mg  =  b -a ;  
m =  c -b ;  
rad  =  d—c;  
e rg  =  c - a ;  
c rd  =  d -b ;  

i f  mg*m <=  0  
mnb  =  0 ;  

e l se i f  abs (mg)  <  abs  (m)  
mnb  =  mg;  

e l se  
mnb  =  m;  

e n d  

i f  mnb*erg  <=  0  
mb =  0 ;  

e l se i f  abs (4*mnb)  <  0 .5*c rg  
mb =  4*mnb;  

e l se  
mb  =  0 .5*  e rg  ;  

e n d  

i f  m*md <=  0  
mnc  =  0 ;  

e l se i f  abs (m)  <  abs (md)  
mnc  =  m;  

e l se  
mnc  =  md;  
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end 

i f  mnc*crd  <=  0  
mc = 0;  

e l s e i f  a b s ( 4 *mnc)  <  0 .5*c rd  
mc  =  4*  mnc ;  

e l s e  
mc =  0 .5*  c rd  ;  

e n d  

p i  =  0 .5* (b+c)  +  0 .125*(mb-mc) ;  

e n d  

f u n c t i o n  [  p i  ]  =  Diagona l sAMPMid  (  M )  
% DIAGONALSAMPMID calculates the result of applying MP subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  M(  1  , 1 ) ;  
b  =  M(  1  , 2 ) ;  
c  =  M(  1 ,3 ) ;  
d  =  M(  1  , 4 ) ;  
e  =  M(2  , 1 ) ;  
f  =  M(2  , 2 ) ;  
g  =  M(2  , 3 ) ;  
h  =  M(2  , 4 ) ;  
i  =  M(3  , 1 ) ;  
j  =  M(3  , 2 ) ;  
k  =  M(3  , 3 ) ;  
1  =  M(3 ,4 ) ;  
m =  M(4  , 1 ) ;  
n  =  M(4  , 2 ) ;  
o  =  M(4  , 3 ) ;  
p  =  M(4  , 4 ) ;  

11  =  Diagona l sAMPLine  ( [  a  b c  d ] )  

12  =  Diagona l sAMPLine  ( [  e  f  g  h ] )  

13  =  Diagona l sAMPLine  ( [  i  j  k  1  ] )  

14  =  Diagona l sAMPLine  ( [m n  0  P i )  

q i  = Diagona l sAMPLine  ( [  11  12  13  4  ] ) ;  

1 5  = Diagona l sAMPLine  ( [  a  e  i  m] )  
1 6  = Diagona l sAMPLine  ( [  b  f  j  n ] )  

17  =  Diagona l sAMPLine  ( [  c  g  k  o ] )  

18  =  Diagona l sAMPLine  ( [d  h  1  P ] )  
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q2  =  Diagona l sAMPLine  ( [  15  16  17  18 ] ) ;  

p i  =  0 .5* (q l+q2) ;  

e n d  

f u n c t i o n  [  p i  ]  =  Diagona l sAMPCENTREDMid(  M )  
%  D I A G O N A L S A M P C E N T R E D M I D  a p p l i e s  A M P  s u b d i v i s i o n  w i t h  
%  c e n t r e d  c  r o s s - d e  r i v  a t  i v  e  s  t o  t h e  i n p u t  v a l u e s  i n  M .  
%  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  = M( 1 ,1 )  
b  = M( 1  , 2 )  
c  = M( 1  , 3 )  
d  = M( 1  , 4 )  
e  = M(2 ,1 )  
f  = M(2 ,2 )  
g  = M(2 ,3 )  
h  = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3 ,2 )  
k  = M(3 ,3 )  
1  = M(3 ,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
0  = M(4 ,3 )  

P  
= M(4 ,4 )  

%  a  b  c  d  
%  e  f  g  h  
%  i  j  k  I  
%  m  n  o  p  

mcrfx  =  0 .5* (g -e )  
mcrgx  =  0 .5* (h—f)  
mcr jx  =  0 .5* (k— i  )  
mcrkx  =  0 .5* (1  —j  )  
mcr fy  =  0 .5* ( j— b )  
mcrgy  =  0 .5* (k—c)  
mcr jy  =  0 .5* (n - f )  
mcrky  =  0 .5* (o—g)  
mcr fxy  =  0 .25  * (  a -c+k- i  )  
mcrgxy  =  0 .25*(b -d+ l - j  )  
mcr jxy  =  0 .25  * (  e— g+o-m)  
mcrkxy  =  0 .25*( f -h+p-n )  
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mgbx  = b—a 
mdbx  = c -b  
mdcs  = d-c  
mgfx  = f - e  
mdfx  = g- f  
mdgx  = h-g 
mgjx  = j - i  
mdjx  = k- j  
mdkx  = 1-k  
mgnx  = n-m 
mdnx  = o—n 
mdox  = p-o  

mgey  = e—a 
mdey  = i—e  
mdiy  = m-i  
mgfy  = f-b 
mdfy  = j - f  
mdjy  = n- j  
mggy = g-c 
mdgy  = k-g 
mdky  = o-k  
mghy  = h-d  
mdhy  = 1-h 
mdly  = p-1 

if m gfx*mdfx  <=  0  
minmodfx  =  0 ;  

elseif abs(mgfx)  < abs (mdfx)  
minmodfx  =  mgfx  ;  

else 
minmodfx  =  mdfx  ;  

end 

i f  mdfx*mdgx  <=  0  
minmodgx  =  0 ;  

elseif abs (mdfx)  < abs(mdgx)  
minmodgx  =  mdfx  ;  

else 
minmodgx  =  mdgx ;  

end 

i f  mgjx*mdjx  <=  0  
minmodjx  =  0 ;  

elseif abs (mgjx )  < abs (mdjx )  

502  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



minmodjx  =  mgjx  ;  
e l s e  

minmodjx  =  mdjx  ;  
end 

if mdjx*mdkx  <=  0  
minmodkx  =  0 ;  

elseif abs (mdjx )  < abs (mdkx)  
minmodkx  =  mdjx  ;  

else 
minmodkx  =  mdkx  ;  

end 

i f  mgfy*mdfy  <=  0  
minmodfy  =  0 ;  

elseif abs(mgfy)  < abs(mdfy)  
minmodfy  =  mgfy  ;  

else 
minmodfy  =  mdfy ;  

end 

i f  mdfy*mdjy  <=  0  
minmodjy  =  0 ;  

elseif abs (mdfy)  < abs(mdjy )  
minmodjy  =  mdfy  ;  

else 
minmodjy  =  mdjy  ;  

end 

i f  mggy*mdgy  <=  0  
minmodgy  =  0 ;  

elseif abs(mggy)  < abs (mdgy)  
minmodgy  =  mggy ;  

else 
minmodgy  =  mdgy ;  

end 

i f  mdgy*mdky  <=  0  
minmodky  =  0 ;  

elseif abs (mdgy)  < abs(mdky)  
minmodky  =  mdgy ;  

else 
minmodky  =  mdky ;  

end 

if minmodfx  *mcr fx  <=  0  
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mfx  =  0 ;  
elseif abs(4*  minmodfx  )  < abs (0 .5*  mcr fx  )  

mfx  =  4*minmodfx ;  
else 

mfx  =  0 .5  *  mcr fx  ;  
end 

if minmodgx*mcrgx  <=  0  
mgx  =  0 ;  

elseif abs(4*  minmodgx)  <  abs (0 .5  *  mcrgx)  
mgx  =  4*minmodgx ;  

else 
mgx =  0 .5  *  mcrgx  ;  

end 

if minmodjx  *  mcr jx  <=  0  
m j  x  =  0 ;  

elseif abs(4*  minmodjx )  < abs (0.5*  mcr jx  )  
mjx  =  4*minmodjx ;  

else 
mjx  =  0 .5  *  mcr jx  ;  

end 

i f  minmodkx*mcrkx  <=  0  
mkx  =  0 ;  

elseif abs(4*minmodkx)  <  abs (0 .5*  mcrkx)  
mkx  =  4*minmodkx ;  

else 
mkx =  0 .5*  mcrkx  ;  

end 

if minmodfy*mcr fy  <=  0  
mfy  =  0 ;  

elseif abs(4*  minmodfy  )  < abs (0 .5  *  mcr fy  )  
mfy  =  4*minmodfy ;  

else 
mfy  =  0 .5  *  mcr fy  ;  

end 

if minmodgy*mcrgy  <=  0  
mgy  =  0 ;  

elseif abs (4*  minmodgy)  < abs (0 .5  *  mcrgy)  
mgy  =  4*minmodgy ;  

else 
mgy =  0 .5*  mcrgy  ;  

end 

504  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



i f  minmodjy  *  mcr jy  <=  0  
mjy  =  0 ;  

e l se i f  abs  (4*  minmodjy )  <  abs  (0 .5  *  mcr jy  )  
mjy  =  4*minmodjy ;  

e l se  
mjy  =  0 .5*  mcr jy ;  

end  

i f  minmodky  *  mcrky  <=  0  
mky  =  0 ;  

e l se i f  abs (4*minmodky)  <  abs  (0 .5*  mcrky  )  
mky  =  4*  minmodky ;  

e l se  
mky  =  0 .5  *  mcrky  ;  

end 

mfxy  =  mcr fxy  ;  
mgxy  =  mcrgxy  ;  
mjxy  =  mcr jxy  ;  
mkxy  =  mcrkxy  ;  

Ainv  =  [1  00000000000000  0;  . . .  
0 0 0 0 1  0 0 0 0 0 0 0 0 0 0  0 ;  . . .  
- 3 3 0 0 - 2 - 1 0 0 0 0 0 0 0 0 0 0 ;  . . .  
2  - 2  0 0 1  1 0 0 0 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0  1  0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 - 3  3 0 0 - 2 - 1 0  0 ;  . . .  
0 0 0 0 0 0 0 0 2  - 2  0 0 1  1 0  0 ;  . . .  
- 3  0 3 0 0 0 0 0  - 2  0  - 1  0 0 0 0  0 ;  . . .  
0000  -3  0300000  -2  0  -1  0 ;  . . .  
9 -9 -9963-6 -36-63-3422  1;  . . .  
-6  6  6  -6  -3  -3  3  3  -4  4  -2  2  -2  -2  -1  -1 ;  . . .  
2 0  - 2  0 0 0 0 0 1 0 1 0 0 0 0  0 ;  . . .  
0 0 0 0 2 0  - 2  0 0 0 0 0 1 0 1  0 ;  . . .  
-6  6  6  -6  -4  -2  4  2  -3  3  -3  3  -2  -1  -2  -1 ;  . . .  
4 -4 -4422-2 -22-22-21  1 1  1 ] ;  

vec  =  [  f  g  j  k  mfx  mgx  mjx  mkx  mfy  mgy  mjy  mky  mfxy  .  . .  
mgxy  mjxy  mkxy  ] ;  

a lpha  =  Ainv*vec  ' ;  

p i  =  a lpha ( l )  +  0 .5*a lpha (2 )  +  0 .25*  a lpha  (3 )  +  0 .125*  a lpha  (4 )  . . .  
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+ 0 .5*a lpha (5 )  +  0 .5*0 .5*  a lpha  (6 )  +  0 .25*0 .5*  a lpha  (7 )  . . .  
+  0 .125*0 .5*  a lpha (8 )  +  0 .25*  a lpha  (9 )  +  0 .5  *0 .25  *  a lpha  (10 )  
+  0 .25*0 .25*  a lpha ( l  1 )  +  0 .1  25  *0 .25  *  a lpha  (12 )  . . .  
+  0 .125*  a lpha  (13)  +  0 .5*0 .1  25*  a lpha  (14 )  . . .  
+  0 .25*0 .  125*  a lpha (15)  +  0 .125*0 .1  25*  a lpha  (1  6 ) ;  

end 

f u n c t i o n  [  p i  ]  =  Diagona l sAMPNULLMid(  M )  
%  D I A G O N A L S A M P N U L L M I D  a p p l i e s  A M P  s u b d i v i s i o n  w i t h  n u l l  
%  c r o s s  — d e r i v a t i v e s  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  
%  t h e  n e w  v a l u e  P I .  

a  = M( 1  , 1  )  
b  = M( 1  , 2 )  
c  = M( 1  , 3 )  
d  = M( 1  , 4 )  
e  = M(2 ,1 )  
f  = M(2 ,2 )  
g  = M(2 ,3 )  
h  = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3 ,2 )  
k  = M(3 ,3 )  
1  = M(3 ,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
0  = M(4 ,3 )  

P  
= M(4 ,4 )  

%  a  b  c  d  
%  e  f  g  h  
%  i  j  k  I  
%  m  n  o  p  

mcrfx  =  
mcrgx  =  
mcr jx  =  
mcrkx  =  
mcr fy  =  
mcrgy  =  
mcr jy  =  
mcrky  =  
mcr fxy  =  
mcrgxy  =  
mcr jxy  =  

0.5  * (g—e )  
0 .5  * (h—f)  
0 .5  * (k - i )  
0 .5* (  1  — j  )  
0  • 5  *  ( j  —b )  
0 .5  * (k -c  )  
0 .5  * (  n - f )  
0 .5  * (o -g )  

0 .25  * (a—c+k—i)  
0 .25  *(b—d+1—j  )  
0 .25  * (e—g+o-m)  
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mcrkxy  =  0 .25  * (  f— h+p—n ) ;  

mgbx  = b—a;  
mdbx  = c—b;  
mdcs  = d—c;  
mgfx  = f—e;  
mdfx  = g- f ;  
mdgx  = h-g ;  
mgjx  = j - i ;  
mdjx  = k- j ;  
mdkx  = 1  —k;  
mgnx  = n-m;  
mdnx  = o-n  ;  
mdox  = p-o ;  

mgey  =  e—a ;  
mdey  =  i  —e ;  
mdiy  =  m- i  ;  
mgfy  =  f—b;  
mdfy  =  j  - f  ;  
mdjy  =  n - j  ;  
mggy = g-c; 
mdgy  =  k -g ;  
mdky  =  o—k ;  
mghy  =  h—d ;  
mdhy  =  1  —h ;  
mdly  =  p -1  ;  

i f  mgfx*mdfx  <=  0  
minmodfx  =  0 ;  

e l s e i f  a b s (mgfx)  <  a b s (mdfx)  
minmodfx  =  mgfx  ;  

e l s e  
minmodfx  =  mdfx  ;  

e n d  

i f  mdfx*mdgx  <=  0  
minmodgx  =  0 ;  

e l s e i f  a b s  (mdfx)  <  a b s  (mdgx)  
minmodgx  =  mdfx  ;  

e l s e  
minmodgx  =  mdgx ;  

e n d  

i f  mgjx*mdjx  <=  0  
minmodjx  =  0 ;  
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e l se i f  abs (mgjx )  <  abs (mdjx )  
minmodjx  =  mgjx ;  

e l se  
minmodjx  =  mdjx  ;  

e n d  

i f  mdjx*mdkx  <=  0  
minmodkx  =  0 ;  

e l se i f  abs  (mdjx )  <  abs  (mdkx)  
minmodkx  =  mdjx  ;  

e l se  
minmodkx  =  mdkx  ;  

e n d  

i f  mgfy*mdfy  <=  0  
minmodfy  =  0 ;  

e l se i f  abs (mgfy)  <  abs (mdfy)  
minmodfy  =  mgfy ;  

e l se  
minmodfy  =  mdfy ;  

e n d  

i f  mdfy*mdjy  <=  0  
minmodjy  =  0 ;  

e l se i f  abs  (mdfy)  <  abs (mdjy )  
minmodjy  =  mdfy  ;  

e l se  
minmodjy  =  mdjy  ;  

e n d  

i f  mggy*mdgy  <=  0  
minmodgy  =  0 ;  

e l se i f  abs (mggy)  <  abs  (mdgy)  
minmodgy  =  mggy ;  

e l se  
minmodgy  =  mdgy ;  

e n d  

i f  mdgy*mdky  <=  0  
minmodky  =  0 ;  

e l se i f  abs  (mdgy)  <  abs (mdky)  
minmodky  =  mdgy ;  

e l se  
minmodky  =  mdky ;  

e n d  
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i f  minmodfx*mcr fx  <=  0  
mfx  =  0 ;  

e l s e i f  a b s (4*minmodfx  )  <  a b s (0 .5*  mcr fx  )  
mfx  =  4*minmodfx ;  

e l s e  
mfx  =  0 .5*  mcr fx ;  

e n d  

i f  minmodgx*mcrgx  <=  0  
mgx  =  0 ;  

e l s e i f  a b s (4*minmodgx)  <  a b s  (0 .5  *  mcrgx  )  
mgx  =  4*minmodgx ;  

e l s e  
mgx =  0 .5*  mcrgx  ;  

e n d  

i f  minmodjx*mcr jx  <=  0  
mjx  =  0 ;  

e l s e i f  a b s (4*minmodjx  )  <  a b s  (0 .5  *  mcr jx  )  
mjx  =  4*minmodjx ;  

e l s e  
mjx  =  0 .5  *  mcr jx  ;  

e n d  

i f  minmodkx*mcrkx  <=  0  
mkx  =  0 ;  

e l s e i f  a b s  (4*  minmodkx)  <  a b s  (0 .5  *  mcrkx)  
mkx  =  4*minmodkx ;  

e l s e  
mkx =  0 .5*  mcrkx ;  

e n d  

i f  minmodfy  *  mcr fy  <=  0  
mfy  =  0 ;  

e l s e i f  a b s (4*  minmodfy  )  <  a b s  (0 .5*  mcr fy  )  
mfy  =  4*minmodfy ;  

e l s e  
mfy  =  0 .5*  mcr fy  ;  

e n d  

i f  minmodgy*mcrgy  <=  0  
mgy  =  0 ;  

e l s e i f  a b s (4*minmodgy)  <  a b s  (0 .5*  mcrgy)  
mgy  =  4*  minmodgy ;  

e l s e  
mgy =  0 .5  *  mcrgy  ;  
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end 

i f  minmodjy  *  mcr jy  <=  0  
mjy  =  0 ;  

elseif  abs(4*  minmodjy  )  < abs (0 .5*  mcr jy  )  
mjy  =  4*  minmodjy ;  

else  
mjy  =  0 .5*  mcr jy  ;  

end 

i f  minmodky*mcrky  <=  0  
mky  =  0 ;  

elseif  abs(4*minmodky)  <  abs (0 .5*  mcrky)  
mky  =  4*minmodky;  

else  
mky =  0 .5*  mcrky ;  

end 

mfxy  =  0 ;  
mgxy  =  0 ;  
mjxy  =  0 ;  
mkxy  =  0 ;  

Ainv  = [1  00000000000000  0;  . . .  
000010000000000  0;  . . .  
-3  300  -2  -1  000000000  0;  . . .  
2 - 2  0 0  1  1 0 0 0 0 0 0 0 0 0 0 ;  . . .  
000000001000000  0;  . . .  
000000000000100  0;  . . .  
00000000-3  300-2-10  0;  . . .  
000000002  -2  001  10  0;  . . .  
-3  0300000-2  0 -10000  0;  . . .  
0 0 0 0 - 3  0 3 0 0 0 0 0 - 2  0 - 1 0 ;  . . .  
9 -9 -9963-6-36-63-3422  1;  . . .  
-6  6  6  -6  -3  -3  3  3  -4  4  -2  2  -2  -2  -1  -1 ;  . . .  
2 0  - 2  0 0 0 0 0 1 0 1 0 0 0 0 0 ;  . . .  
000020  -2  00000101  0;  . . .  
-6  6  6  -6  -4  -2  4  2  -3  3  -3  3  -2  -1  -2  -1 ;  . . .  
4 -4 -4422-2-22-22-21  1 1  1 ] ;  

vec  =  [ f  g  j  k  mfx  mgx  mjx  mkx  mfy  mgy  mjy  mky  mfxy  
mgxy  mjxy  mkxy] ;  

a lpha  =  Ainv*  vec  ' ;  
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p i  =  a lpha( l )  +  0 .5*a lpha(2 )  +  0 .25*  a lpha  (3 )  +  0 .125*  a lpha  (4 )  . . .  
+  0 .5*a lpha(5 )  +  0 .5*0 .5*  a lpha  (6 )  +  0 .25*0 .5*  a lpha  (7 )  . . .  
+  0 .125*0 .5*  a lpha  (8 )  +  0 .25*  a lpha  (9 )  +  0 .5*0 .25  *  a lpha  (10)  . . .  
+  0 .25  *0 .25*  a lpha  (1  1 )  +  0 .125  *0 .25  *  a lpha  (12)  . . .  
+  0 .125*  a lpha(13)  +  0 .5  *0 .125  *  a lpha  (14)  . . .  
+  0 .25*0 .125*  a lpha(15)  +  0 .1  25*0 .125*  a lpha  (1  6 ) ;  

end 

F.10 CR 

These functions compute, respectively, the result of applying Catmull-Rom subdivision to 

a vector consisting of four values, and the result of applying Catmull-Rom subdivision to a 

grid consisting of sixteen values. 

function [  p i  ]  =  Diagona l sCRLine  (  V  )  
% DIAGONALSCRLINE applies Catmull —Rom subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  V (  1  )  ;  
b  =  V(2) ;  
c  =  V ( 3 ) ;  
d  =  V ( 4 ) ;  

mb =  0 .5  * (c -a ) ;  
mc  =  0 .5  * (d -b ) ;  

p i  =  0 .5*(b+c)  +  0 .1  25*(mb-mc) ;  

end 

function [  p i  ]  =  Diagona l sCRMid  (  M )  
% DIAGONALSCRMID applies Catmull—Rom subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  M(  1  ,  1 )  
b  =  M(1 ,2 )  
c  =  M(1 ,3 )  
d  =  M(  1  , 4 )  
e  =  M(2 ,1 )  
f  =  M(2 ,2 )  
g  =  M(2 ,3 )  
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h  =  M(2  ,4 )  
i  =  M(3  ,1 )  
j  =  M(3  ,2 )  
k  =  M(3  ,3 )  
1  =  M(3  ,4 )  
m =  M(4  ,1 )  
n  =  M(4 ,2 )  
o  =  M(4  ,3 )  
p  = M(4  ,4 )  

11  =  Diagona l sCRLine  ( [  a  b  c  d ] )  
12  =  Diagona l sCRLine  ( [ e  f  g  h ] )  
13  =  Diagona l sCRLine  ( [  i  j  k  1 ] )  
14  =  Diagona l sCRLine  ( [m n  o  p ] )  

q l  =  Diagona l sCRLine  ( [  11  12  13  14 ] ) ;  

15  =  Diagona l sCRLine  ( [  a  e  i  m] )  
16  =  Diagona l sCRLine  ( [b  f  j  n ] )  
17  =  Diagona l sCRLine  ( [ c  g  k  o ] )  
18  =  Diagona l sCRLine  ( [d  h  1  p ] )  

q2  =  Diagona l sCRLine  ( [  15  16  17  18 ] ) :  

p i  =  0 .5*(q l  +  q2) ;  

end 

F.ll LBB 

These functions compute, respectively, the result of applying LBB subdivision to a vector 

consisting of four values, and the result of applying LBB subdivision to a grid consisting 

of sixteen values. 

function [  p i  ]  =  Diagona l sLBBLine  (  V  )  
% DIAGONALSLBBLINE applies LBB subdivision 
% to  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  V(1)  ;  
b  =  V(2) ;  
c  =  V(3) ;  
d  =  V(4) ;  
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mb =  0 .5*(c—a) ;  
mc = 0.5 *(d-b); 

mini  =  min ( [  a  ,  b  ,  c  ] ) ;  
min2  =  min ( [  b  ,  c  ,  d  ] ) ;  
max  1  =  max ( [  a  ,  b  ,  c  ] ) ;  
max2  =  max ( [  b  ,  c  ,  d  ] ) ;  

db  =  min( [b -min l  ,  max l -b ] ) ;  
dc  =  min ( [  c—min2  ,  max2—c ] ) ;  

if abs(mb) <= 3*db 
mfb  =  mb;  

else  
mfb  =  s ign  (mb)*3*db  ;  

end 

if abs(mc) <= 3*dc 
mfc  =  mc;  

else  
mfc  =  s ign  (mc)*3*  dc  ;  

end 

p i  =  0 .5*(b+c)  +  0 .125*(mfb-mfc) ;  

end 

function [  p i  ]  =  Diagona l sLBBMid(  M )  
% DIAGONALSLBBMID applies LBB subdivision 
%  to t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  = M (  1 , 1 )  
b  = M( 1  , 2 )  
c  = M(1 ,3 )  
d  = M( 1  , 4 )  
e  = M( 2  ,1 )  
f  = M(2 ,2 )  
g  = M(2 ,3 )  
h  = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3 ,2 )  
k  = M(3 ,3 )  
1  = M(3 ,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
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o = M(4 ,3);  
p = M(4,4);  

%  a  b  c  d  
%  e  f  8  h  
%  i  j  k  I  
%  m  n  o  p  

minf  = min ( [  a  ,  b  ,  c  , e , f , g , i , j  , k  ]  
maxf  = max ( [  a  ,  b  ,  c  , e  ,  f  , g , i , j  »k  ]  
ming  = min ( [  b  ,  c  ,  d  , f  , g , h , n , o  > p ]  
maxg  = max ( [  b  ,  c  ,  d  , f  , g , h , n , o  > P ]  
min j  = min ( [  e  ,  f  ,  g  ,  i  ,  j  ,  k  ,m ,  n  , o ]  
max j  = max ( [  e  ,  f  ,  g  ,  i  ,  j  , k ,m,n  , o ]  
mink  = min ( [  f  ,  g  ,  h  , j  ,  k  ,  1  ,  n  ,  o  > P l  
maxk  = max ( [  f  ,  g  ,  h  , j  ,  k  ,  1  ,  n  ,  o  > P l  

d f  =  min ( [  f—minf  maxf—f  ] ) ;  
dg  =  min ( [  g—ming  maxg-g  ] ) ;  
d j  =  min ( [  j  -min j  max j - j  ] ) ;  
dk  =  min ( [k—mink  maxk—k ] ) ;  

mfx i  — 0 .5*(g—e)  
mgxi  = 0 .5*(h—f)  
mjx i  = 0 .5  *(k— i )  
mkxi  = 0 .5  *  ( I  -  j  )  
mfy i  = 0  • 5  *  ( j  —b )  
mgyi  = 0 .5*(k—c)  
mjy i  = 0 .5*(n—f)  
mkyi  = 0 .5*(o—g)  
mfxy i  =  0 .25*(a—c+k— i  ) ;  
mgxyi  =  0 .25*(b-d+l - j  ) ;  
mjxy i  =  0 .25*(e—g+o-m) ;  
mkxyi  =  0 .25  * ( f—h+p-n) ;  

i f  abs (  mfx i )<=3*  d f  
mfx  =  mfx i  ;  

else  
mfx  =  sign (  mfx i  )*3* df  ;  

end 

i f  abs (  mfy i )<=3*  d f  
mfy  =  mfy i  ;  

else  
mfy  =  sign (  mfy i  )*3* df  ;  

end 
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i f  abs(mgxi )<=3*  dg 
mgx =  mgxi  ;  

else  
mgx =  sign (mgxi )*3*dg  ;  

end 

i f  abs(mgyi )<=3*dg  
mgy  =  mgyi ;  

else  
mgy =  sign (mgyi )*3*dg  ;  

end 

i f  abs(mjx i )<=3*  d j  
mjx  =  mjx i  ;  

else  
mjx  =  sign (  mjx i  )*3* d j  ;  

end 

i f  abs(  mjyi )<=3*  d j  
mjy  =  mjy i  ;  

else  
mjy  =  sign (  mjy i  )*3* d j  ;  

end 

i f  abs(mkxi )<=3*dk  
mkx  =  mkxi ;  

else  
mkx =  sign (mkxi  )*3* dk  ;  

end 

i f  abs(mkyi )<=3*dk  
mky  =  mkyi ;  

else  
mky =  sign (mkyi  )*3* dk  ;  

end 

i f  abs(  mfxyi )>=(3*abs(mfx+mfy)  — 9* ( f -minf ) )  
mfxy l  =  mfxy i  ;  

else  
mfxyl  =  (3*abs(mfx+mfy) -9*( f -minf ) ) ;  

end 

i f  abs (mfxy  1 )<=(-3*abs (mfx+mfy)  +  9*(maxf—f) )  
mfxy2  =  mfxy l  ;  

else  
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mfxy2  =  ( -3*abs (mfx+mfy  )  +  9*(  maxf - f  ) ) ;  
end 

i f  abs(mfxy2)<=( -3*abs(mfx-mfy)  +  9*( f -minf ) )  
mfxy3  =  mfxy2 ;  

else  
mfxy3  =  ( -3*abs (mfx-mfy  )  +  9*(  f -minf  ) ) ;  

end 

i f  abs(mfxy3)>=(3*abs(mfx—mfy)  — 9* (maxf - f ) )  
mfxy  =  mfxy3  ;  

else  
mfxy  =  (3* abs (mfx-mfy)  — 9*(maxf - f  ) ) ;  

end 

i f  abs(mgxyi )>=(3*abs(mgx+mgy)  -  9*(g-ming) )  
mgxyl  =  mgxyi ;  

else  
mgxyl  =  (3*abs(mgx+mgy) -9*(g-ming  ) ) ;  

end 

i f  abs(mgxyl )<=( -3*abs(mgx+mgy)  +  9*(maxg-g) )  
mgxy2  =  mgxyl  ;  

else  
mgxy2  =  ( -3*abs (mgx+mgy)  +  9*(maxg-g  ) ) ;  

end 

i f  abs (mgxy2)<=( -3*abs (mgx-mgy)  +  9*(g -ming) )  
mgxy3  =  mgxy2;  

else  
mgxy3  =  ( -3*abs(mgx—mgy)  +  9*(g -ming  ) ) ;  

end 

i f  abs (mgxy3)  >=(3*  abs (mgx-mgy)  -9*(maxg-g  ) )  
mgxy  =  mgxy3  ;  

else  
mgxy =  (3*  abs (mgx-mgy) -9*(maxg-g  ) ) ;  

end 

i f  abs(  mjxyi )>=(3*abs(mjx+mjy)  -  9*( j -min j ) )  
mjxy l  =  mjxy i ;  

else  
mjxyl  =  (3*abs(mjx+mjy) -9*( j -min j  ) ) ;  

end 

i f  abs(mjxy l )<=( -3*abs(mjx+mjy)  +  9*(maxj - j ) )  
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mjxy2  =  mjxy l ;  
else  

mjxy2  =  (  —3*abs (mjx+mjy  )  +  9*(  max j - j  ) ) ;  
end 

i f  abs (mjxy2)<=(  —3*abs (mjx—mjy)  +  9* ( j -min j ) )  
mjxy3  =  mjxy2 ;  

else  
mjxy3  =  ( -3*abs (mjx-mjy  )  +  9* ( j -min j  ) ) ;  

end 

i f  abs(mjxy3)>=(3*abs(mjx— mjy)— 9*(maxj— j  ) )  
mjxy  =  mjxy3  ;  

else  
mjxy  =  (3*  abs (mjx-mjy)  — 9*(maxj - j  ) ) ;  

end 

i f  abs(mkxyi )>=(3*abs (mkx+mky)  -  9*(k-mink) )  
mkxyl  =  mkxyi ;  

else  
mkxyl  =  (3* abs (mkx+mky) -9*(k-mink  ) ) ;  

end 

i f  abs (mkxyl  )<=(-3*abs (mkx+mky)  +  9*(maxk-k) )  
mkxy2  =  mkxyl  ;  

else  
mkxy2  =  (  — 3* abs (mkx+mky)  +  9*(maxk-k  ) ) ;  

end 

i f  abs(mkxy2)<=( -3*abs(mkx-mky)  +  9*(k -mink) )  
mkxy3  =  mkxy2 ;  

else  
mkxy3  =  ( -3*abs (mkx-mky)  +  9*(k -mink  ) ) ;  

end 

i f  abs(mkxy3)>=(3*abs(mkx-mky) -9*(maxk-k) )  
mkxy  =  mkxy3  ;  

else  
mkxy =  (3*  abs (mkx—mky)  — 9*(maxk-k  ) ) ;  

end 

A i n v  = [ 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  0 ;  . . .  
- 3 3 0 0 - 2 - 1 0 0 0 0 0 0 0 0 0 0 ;  . . .  
2 - 2  0 0  1  1 0 0 0 0 0 0 0 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0  1  0 0 0 0 0 0  0 ;  . . .  
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0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  0 ;  . . .  
0 0 0 0 0 0 0 0 - 3  3 0 0 - 2 - 1 0  0 ;  . . .  
0 0 0 0 0 0 0 0 2  - 2  0 0 1  1 0  0 ;  . . .  
- 3  0 3 0 0 0 0 0  - 2  0  - 1  0 0 0 0  0 ;  . . .  
0 0 0 0 - 3  0 3 0 0 0 0 0 - 2  0 - 1 0 ;  . . .  
9 - 9 - 9 9 6 3 - 6 - 3 6 - 6 3 - 3 4 2 2  1 ;  
- 6  6  6  -6  -3  -3  3  3  -4  4  -2  2  -2  -2  -1  
2 0  - 2  0 0 0 0 0 1 0 1 0 0 0 0  0 ;  . . .  
0 0 0 0 2 0  - 2  0 0 0 0 0 1  0 1  0 ;  . . .  
-6  6  6  -6  -4  -2  4  2  -3  3  -3  3  -2  -1  -2  
4 - 4 - 4 4 2 2 - 2 - 2 2 - 2 2 - 2 1  1  1  1 ] ;  

vec  =  [ f  g  j  k  mfx  mgx  mjx  mkx  mfy  mgy  . . .  
mjy  mky  mfxy  mgxy  mjxy  mkxy  ] ;  

a lpha  =  Ainv*vec  ' ;  

p i  =  a l p h a ( l )  +  0 . 5 * a l p h a ( 2 )  +  0 . 2 5 *  a l p h a  ( 3 )  +  0 . 1 2 5 *  a l p h a  ( 4 )  
+  0 .5*a lpha(5 )  +  0 .5*0 .5*  a lpha  (6 )  +  0 .25*0 .5*  a lpha  (7 )  . . .  
+  0 .1  25*0 .5*  a lpha  (8 )  +  0 .25*  a lpha  (9 )  +  0 .5*0 .25*  a lpha  (10)  
+  0 .25*0 .25*  a lpha( l  1 )  +  0 .1  25*0 .25*  a lpha  (1  2 )  . . .  
+  0 .125*  a lpha  (1  3 )  +  0 .5*0 .125*  a lpha  (14)  . . .  
+  0 .25*0 .125*  a lpha(15)  +  0 .125*0 .1  25*  a lpha  (1  6 ) ;  

end 

F.12 Midedge 

This function computes the result of one Midedge subdivision, given a grid of four input 

values. It basically computes the four values making up the "smaller" square inside the one 

formed by the input. 

function [  p i  ]  =  Diagona l sLDPSMMid(  M )  
% DIAGONALSLDPSMMID applies linear DPSM subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

a  =  M (  1  , 1 ) ;  
b  =  M(  1  , 2 ) ;  
c  =  M(2  ,1 ) ;  
d  =  M(2  ,2 ) ;  

p i  =  zeros(2  ,2 ) ;  
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p i  (1  ,1 )  =  0 .5*  a  +  
p i  (1  ,2 )  =  0 .5*b  +  
p i  ( 2 , 1 )  =  0 . 5 * c  +  
p i  ( 2 , 2 )  =  0 . 5 * d  +  

end 

0 .25*b  +  0 .25*c ;  
0 .25*a  +  0 .25*d ;  
0 .25*a  +  0 .25*d ;  
0 .25*b  +  0 .25*c ;  

F.13 Minmod Midedge 

This function computes the result of one Midedge subdivision, given a grid of thirty-six 

input values. It basically computes the four values making up the "smaller" square inside 

the one at the centre of the input grid. 

function [  p i  ]  =  Diagona l sMDPSMMid  (  M )  
% DIAGONALSMDPSMMID applies minmod DPSM subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P I .  

oneone  = M( 1  1 )  
one two  = M( 1  2 )  
one th r  = M( 1  3 )  
onefou  = M( 1  4 )  
onef i  v  = M( 1  5 )  
ones ix  = M( 1  6 )  
twoone  = M(2 1 )  
twotwo  = M(2 2 )  
t  wo th r  = M(2 3 )  
twofou  = M(2 4 )  
twof i  v  = M( 2  5 )  
twos ix  = M( 2  6 )  
t h r o n e  = M( 3  1 )  
t h r t w o  = M(3 2 )  
t h r t h r  = M(3 3 )  
t h r f o u  = M(3 4 )  
t h r f i  v  = M(3 5 )  
t h r s i x  = M( 3  6 )  
fouone  = M(4 1 )  
fou two  = M(4 2 )  
f o u t h r  = M(4 3 )  
foufou  = M(4 4 )  
f o u f i v  = M(4 5 )  
f o u s i x  = M(4 6 )  
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f i  vone  = M(5 ,1 )  
f i  v two  = M (  5 , 2 )  
f i  v t h r  = M(5 ,3 )  
f i v f o u  = M(5 ,4 )  
f i  v f i v  = M(5 ,5 )  
f  i  v  s  i  x  = M(5 ,6 )  
s ixone  = M(6 ,1 )  
s ix two  = M(6 ,2 )  
s i x t h r  = M(6 ,3 )  
s ix fou  = M(6 ,4 )  
s i x f i v  = M(6 ,5 )  
s i x s i x  = M(6 ,6 )  

o n e s  i x  

t w o  s i x  

t h r s i x  

f o u  s i x  

f i v s i x  

s  i x s  i x  

oneone onetwo onethr onefou 
% 

twoone twotwo 

o  n  e f i  v  

t w  o f  i  v  t w o t h r  t w o f o u  
% xx 
%  t h r o n e  t h r t w o  x  t h r t h r  x  t h r f o u  x  t h r f i v  
% xx 
%  f o u o n e  f o u t w o  x  f o u t h r  x  f o u f o u  x  f o u f i v  
% xx 
%  f i v  o n e  f i v  t w o  f i v t h r  f i v  f o u  f i v  f i v  

%  s i x o n e  s i x t w o  s i x t h r  s i x f o u  s i x f i v  

a l  =  Diagona l sNoha lo  
a2  =  Diagona l sNoha lo  
b l  =  Diagona l sNoha lo  
b2  =  Diagona l sNoha lo  
b3  =  Diagona l sNoha lo  
c l  =  Diagona l sNoha lo  
c2  =  Diagona l sNoha lo  
d l  =  Diagona l sNoha lo  
d2  =  Diagona l sNoha lo  
d3  =  Diagona l sNoha lo  
e l  =  Diagona l sNoha lo  
e2  =  Diagona l sNoha lo  

p i  =  zeros( 2  , 2 ) ;  

o n e t h r  t w o t h r  t h r t h r  f o u t h r ] )  
one fou  twofou  th r fou  foufou] )  
th rone  th r two  th r th r  th r fou] )  
th r two  th r th r  th r fou  th r f iv ] )  
t h r t h r  t h r f o u  t h r f i v  t h r s i x ] )  
two th r  th r th r  fou th r  f iv th r ] )  
twofou  th r fou  foufou  f iv fou] )  
fouone  fou two  fou th r  foufou] )  
fou two  fou th r  foufou  fouf iv ] )  
f o u t h r  f o u f o u  f o u f i v  f o u s i x ] )  
t h r t h r  f o u t h r  f i v t h r  s i x t h r ] )  
t h r f o u  f o u f o u  f i v f o u  s i x f o u ] )  

pl (1 J) = Diagona l sNoha lo  ( [  d l  c  1  b2  a2  ] )  
p i ( 1 , 2 )  =  Diagona l sNoha lo  ( [  a l  b2  c2  d 3  ] )  
pl(2  ,1)  =  Diagona l sNoha lo  ( [  b l  c l  d2  e 2 ] )  
pl ( 2 , 2 )  =  Diagona l sNoha lo  ( [  e  1  d2  c2  b3  ] )  

end 
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F.14 MVS 

This function computes the result of applying MVS to a grid of sixteen points. It returns 

the four values forming a smaller square inside the central one in the input grid. 

function [  p l  ]  =  Diagona l sMVSMid  (  M )  
% DIAGONALSMVSMMID applies minmod vertex split subdivision 
%  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  n e w  v a l u e  P l .  

a  = M (  1  , 1 )  
b  = M (  1  , 2 )  
c  = M( 1  , 3 )  
d  = M( 1  , 4 )  
e  = M(2 ,1 )  
f  = M(2 ,2 )  
g  = M(2 ,3 )  
h = M(2 ,4 )  
i  = M(3 ,1 )  
j  = M(3 ,2 )  
k  = M(3 ,3 )  
1  = M(3 ,4 )  
m = M(4 ,1 )  
n  = M(4 ,2 )  
0  = M(4 ,3 )  

P  = M(4 ,4 )  

% a  b e d  
%  e  f  g  h  
%  i  j  k  I  
%  m  n  o  p  

function [m] = Minmod(md,mg) 
%  T h i s  c a l c u l a t e s  t h e  m i n m o d  s l o p e  .  
i f  mg*md <= 0 

m = 0; 
elseif  abs(mg) <= abs(md) 

m = mg; 

else  
m =  md;  

end 
end 

mfx  =  Minmod(g- f ,  f—e) ;  
mfy  =  Minmod( f—j  ,  b—f) ;  
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mgx = Minmod (h-g, g—f) 
mgy = Minmod (g-k, c-g ) 
m j x  =  M i n m o d ( k —  j  ,  j — i )  
m j y  =  M i n m o d ( j —  n ,  f — j  )  
m k x  =  M i n m o d ( l —  k ,  k — j  )  
m k y  =  M i n m o d ( k - o ,  g - k )  

p l  =  zeros ( 2  , 2 ) ;  

p l  ( 1  . 1 )  
p l ( 1 , 2 )  
p l ( 2  , 1 )  
p l  ( 2 , 2 )  

f 

8 
j 
k 

0.25* mfx 
0.25*mgx 
0.25* mjx 

0.25* mfy; 
0.25*mgy; 
0.25* mjy; 

— 0.25* mkx + 0.25* mky; 

end 

F.15 Quadratic B-spline 

These functions compute, respectively, the result of applying quadratic B-Spline smooth

ing to a vector consisting of three values, and the result of applying quadratic B-Spline 

smoothing to a grid consisting of nine values. 

function [  p l  ]  =  D i a g o n a l s B S p l i n e L i n e (  V  )  
% DIAGONALSBSPLINELINE applies B— Spline smoothing 
%  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  t h e  n e w  v a l u e  P l ,  

a  =  V ( 1 ) ;  
b  =  V ( 3 ) ;  
y =  V ( 2 ) ;  

p l  =  ( ( a + b )  * 0 . 1 2 5  +  y * 0 . 7 5 ) ;  

end 

function [  p l  ]  =  D i a g o n a l s B S p l i n e M i d  (  M  )  
% DIAGONALSBSPLINEMID applies B-Spline smoothing 
%  t o  t h e  i n p u t  v a l u e s  i n  V .  I t  r e t u r n s  t h e  n e w  v a l u e  P l .  

a  =  M ( 1  , 1 ) ;  
b  =  M (  1  , 2 ) ;  
c  =  M ( 1  , 3 ) ;  
d  =  M ( 2  , 1 ) ;  

522 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



e  =  M ( 2 , 2 ) ;  
f  =  M ( 2 , 3 ) ;  
g  =  M ( 3  , 1 ) ;  
h  =  M ( 3  , 2 ) ;  
i  =  M ( 3  , 3 ) ;  

1 1  =  D i a g o n a l s B  S p l i n e L i n e  ( [  a  b  c ] ) ;  
1 2  =  D i a g o n a l s B  S p l i n e L i n e  ( [  d  e  f ] ) ;  
1 3  =  D i a g o n a l s B S p l i n e L i n e  ( [ g  h  i ] ) ;  

q l  =  D i a g o n a l s B S p l i n e L i n e  ( [  1 1  1 2  1 3 ] ) ;  

1 4  =  D i a g o n a l s B S p l i n e L i n e  ( [  a  d  g ] ) ;  
1 5  =  D i a g o n a l s B  S p l i n e L i n e  ( [  b  e  h ] ) ;  
1 6  =  D i a g o n a l s B  S p l i n e L i n e  ( [  c  f  i ] ) ;  

q 2  =  D i a g o n a l s B  S p l i n e L i n e  ( [  1 4  1 5  1 6 ] ) ;  

p l  =  0 . 5 * ( q l + q 2 ) ;  

end 

function [  p  ]  =  D i a g o n a l s Q B S 2 L i n e  (  M  )  
%DIAGONALSQBS2LINE calculates the result of applying QBS 
%  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  

a  =  M ( 1  , 1 ) ;  
b  =  M (  1  , 2 ) ;  
c  =  M (  1  , 3 ) ;  
d  =  M ( 2  , 1 ) ;  
e  =  M ( 2 , 2 ) ;  
f  =  M (  2  , 3 ) ;  

%  a  b  c  
%  d  e  f  

p  =  ( a + c + d + f ) / 1 6  +  3 * ( b + e ) / 8 ;  

end 

function [  p  ]  =  D i a g o n a l s Q B S 2 M i d (  M  )  
%DIAGONALSQBS2MID calculates the result of applying QBS 
%  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  

a  =  M (  1 , 1 ) ;  
b  =  M ( 1  , 2 ) ;  
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c  =  M ( 2  ,  1 ) ;  
d  =  M ( 2  , 2 ) ;  

%  a  b  
%  c  d  

p  =  ( a + b + c + d ) / 4 ;  

end 

function [  p  ]  =  D i a g o n a l s Q B S 2 S m o o t h i n g M i d (  M  )  
%DIAGONALSQBS2SMOOTHINGMID calculates the result of applying QBS 
%  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  

a  =  M ( 1  , 1 ) ;  
b  =  M (  1  , 2 ) ;  
c  =  M ( 1  , 3 ) ;  
d  =  M ( 2  , 1 ) ;  
e  =  M ( 2  , 2 ) ;  
f  =  M ( 2  , 3 ) ;  
g  =  M ( 3  , 1 ) ;  
h  =  M ( 3 , 2 ) ;  
i  =  M ( 3  , 3 ) ;  

%  a  b  c  
%  d  e  f  
%  g  h  i  

p  =  9 * e / 1 6  +  3 * ( b + d + f + h ) / 3 2  +  ( a + c + g + i ) / 6 4 ;  

end 

F.16 CDVS 

This function computes the result of applying CDVS to a grid of sixteen points. It returns 

the four values forming a smaller square inside the central one in the input grid. 

function [ pl ] = DiagonalsCDVSMid ( M ) 
% DIAGONALSCDVSMID applies centred differences vertex split 
%  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  
%  n e w  v a l u e  P l .  

a  =  M ( 1  , 1 ) ;  
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b = M (  1  , 2 )  
c = M (  1  , 3 )  
d = M (  1  , 4 )  
e = M ( 2  , 1 )  
f = M ( 2  , 2 )  
g = M ( 2  , 3 )  
h = M ( 2  , 4 )  
i = M ( 3  , 1 )  
j = M ( 3  , 2 )  
k = M ( 3  , 3 )  
1 = M ( 3  , 4 )  
m = M ( 4  , 1 )  
n = M ( 4  , 2 )  
o = M ( 4  , 3 )  

P = M ( 4  , 4 )  

%  a  b  c  d  
%  e  f  g  h  
%  i  j  k  I  
%  m  n  o  p  

mfx = 0 . 5  * (  g-- e )  
mfy = 0 . 5 * ( b -- j  )  
mgx = 0 . 5 * ( h -- f )  
mgy = 0 . 5 * ( c -- k )  
mjx = 0 . 5  * ( k --i ) 
mjy = 0 . 5  *  (  f -- n )  
mkx = 0 . 5  * (  1 --j ) 
mky = 0 . 5 * ( g -- o )  

p l  =  zeros ( 2  , 2 ) ;  

p  1  ( 1  , 1 )  =  f  +  0 . 2 5 * m f x  —  0 . 2 5 * m f y ;  
p  1  ( 1  , 2 )  =  g  -  0 . 2 5 * m g x  -  0 . 2 5 * m g y ;  
p  1  ( 2  , 1 )  =  j  +  0 . 2 5 * m j x  +  0 . 2 5 * m j y ;  
p l  ( 2  , 2 )  =  k  -  0 . 2 5 * m k x  +  0 . 2 5 * m k y ;  

end 

F.17 ROVS 

This function computes the result of applying ROVS to a grid of sixteen points. It returns 

the four values forming a smaller square inside the central one in the input grid. 
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function [ pl ] = DiagonalsROVSMid ( M ) 
% DIAGONALSROVSVHEAPMID applies locally bounded vertex split 
%  s u b d i v i s i o n  t o  t h e  i n p u t  v a l u e s  i n  M .  I t  r e t u r n s  t h e  
%  n e w  v a l u e  P l .  

a = M (  1  , 1 )  
b = M (  1  , 2 )  
c = M (  1  , 3 )  
d = M (  1  , 4 )  
e = M ( 2  , 1 )  
f = M ( 2  , 2 )  
g = M ( 2  , 3 )  
h = M ( 2  , 4 )  
i = M ( 3  , 1 )  
j = M ( 3  , 2 )  
k = M ( 3  , 3 )  
1 = M ( 3  , 4 )  
m = M ( 4  , 1 )  
n = M ( 4  , 2 )  
0 = M ( 4  , 3 )  

P 
= M ( 4  , 4 )  

% a  b e d  
%  e  f  g  h  
%  i  j  k  I  
%  m  n  o  p  

m f x l  = 0 5* g-- e )  
m f y l  = 0 5* b--j ) 
mgxl = 0 5* h-- f )  
mgyl = 0 5* c-- k )  
m j x l  = 0 5* k -i ) 
mjy 1 = 0 5* f-- n )  
mkxl = 0 5* 1--j ) 
mkyl = 0 5* g-- o )  

m i n f x  = min (  [ e , f  , g ]  
m i n f y  = min( [b , f , j ]  
m i n g x  = min (  [f ,g , h ]  
m i n g y  = min (  t c , g . k ] 
m i n j x  = min (  [ i , j  , k ]  
m i n j y  = min (  [f , j ,n ] 
m i n k x  = min (  [ j , k , 1 ] 
m i n k y  = min (  [g , k  , o  ]  
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m a x f x  = max (  e  , f  , g ] )  
m a x f y  = max (  b  , f  J  1 )  
maxgx = max (  f  > g , h  ] )  
maxgy = max( c  , g , k ] )  
m a x j x  = max( i  , j  ,  k  ] )  
m a x j y  = max( f  . j  > n  ] )  
maxkx = max (  j  , k , 1  ] )  
maxky = max (  g  ,  k  ,  o  ] )  

b o u n d f x l  = —4 *min ( ( f + g  - 2 * m i n f x  )  ,  ( 2 *  m a x f x -- f -- e ) )  
b o u n d g x l  = —4 *min ( ( g + h  - 2 * m i n g x )  ,  ( 2 *  m a x g x --g-- f ) )  
b o u n d j x l  =  - 4 *min ( ( j + k  - 2 * m i n j x  )  ,  ( 2 *  m a x j x -- j -- i  ) )  
b o u n d k x l  =  - 4 *min ( ( k + l  - 2 * m i n k x )  ,  ( 2 *  m a x k x --k-- j  ) )  
b o u n d f y l  =  - 4 *min ( ( f + b  - 2 * m i n f y )  ,  ( 2 *  m a x f y -- f -- j  ) )  
b o u n d g y l  =  - 4 *min ( ( c + g  - 2 * m i n g y )  ,  ( 2 *  m a x g y --g-- k ) )  
b o u n d j y l  =  - 4 *min ( ( j + f  - 2 * m i n j y )  ,  ( 2 *  m a x j y --n-- j  ) )  
b o u n d k y l  = —4 *min ( ( k + g  - 2 * m i n k y )  ,  (2 * maxky--o-- k ) )  

b o u n d f x u  = 4*min((  f + e  - 2 * m i n f x )  ,  ( 2 *  m a x f x -- f -- g ) )  
b o u n d g x u  =  4 *min ( ( g + f  — 2 * m i n g x )  ,  (2*maxgx--g-- h ) )  
b o u n d j x u  =  4 *min ( ( j + i  - 2 * m i n j x ) ,  ( 2 *  m a x j x -- j -- k ) )  

b o u n d k x u  =  4 *min ( ( k + j  - 2 * m i n k x )  ,  ( 2 *  m a x k x -- k  -1  )) 
b o u n d f y u  =  4 *min ( ( f + j  - 2 * m i n f y )  ,  ( 2 *  m a x f y -- f -- b ) )  
b o u n d g y u  =  4 *min ( ( g + k  — 2 * m i n g y )  ,  (2*maxgy--c-- g ) )  
b o u n d j y u  =  4 *min ( ( n + j  - 2 * m i n j y  )  ,  ( 2 *  m a x j y -- j -- f ) )  
b o u n d k y u  =  4 *min ( ( o + k  - 2 * m i n k y )  ,  ( 2 *  m a x k y --k-- g ) )  

function [m] = Slope(ml, boundl , boundu) 
%  D e t e r m i n e s  w h e t h e r  t h e  s l o p e  i s  w i t h i n  t h e  b o u n d s .  
i f  ( m l  > =  b o u n d l )  & &  ( m l  < =  b o u n d u )  

m  =  m l ;  
e l s e i f  ( m l  <  b o u n d l )  

m  =  b o u n d l ;  
else  

m  =  b o u n d u  ;  
end 

end 

mfx = Slope (mfxl 
mfy = Slope (mfyl 
mgx = Slope (mgxl 
mgy = Slope (mgyl 
mjx = Slope (mjxl 
mjy = Slope (mjyl 
mkx = Slope (mkx 1 

b o u n d f x l  ,  b o u n d f x u )  
b o u n d f y l  ,  b o u n d f y u )  
b o u n d g x l  ,  b o u n d g x u  )  
b o u n d g y l  ,  b o u n d g y u  )  
b o u n d j x l  ,  b o u n d j x u  )  
b o u n d j y l  ,  b o u n d j y u  )  
b o u n d k x l  ,  b o u n d k x u  )  
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mky = Slope (mkyl, boundkyl , boundkyu); 

p l  =  zeros (  

p l ( 1  . 1 )  =  f  

p l ( 1  . 2 )  =  8  

p l ( 2  , 1 )  =  j  

p l ( 2  , 2 )  =  k  

end 

i  , 2 ) ;  

+  0 . 2 5 * m f x  
-  0 . 2 5 * m g x  
+  0 . 2 5 * m j x  
—  0 . 2 5 *  m k x  

—  0 . 2 5 * m f y ;  
-  0 . 2 5 * m g y ;  
+  0 . 2 5 *  m j y ;  
+  0 . 2 5 * m k y ;  
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