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Abstract

Polymerization processes require adequate monitoring to ensure that the final product

meets specification. Various on-line measuring techniques have been developed and

implemented to track polymer properties in reactors. For most processes, however,

on-line measurement cannot be implemented. In other situations, certain polymer

properties or states might not be measurable and hence have to be estimated.

This work deals with improving an on-line optimization technique and demon-

strating its effectiveness by sensitivity analysis. In addition, state estimation is used

as a tool to reconstruct states that are unavailable for measurement in a styrene and

butyl methacrylate batch-fed solution free-radical copolymerization process subject

to on-line optimization.

A hybrid extended Kalman filter is used to observe the nonlinear dynamic system

which is subject to real-time dynamic optimization. With very limited measurement

information, the states of the system were reconstructed. Additional unobservable

quantities were reconstructed using the process model and estimated states.
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Chapter 1

Introduction

1.1 State Estimation in Polymerization Systems

The polymer industry is continually developing polymer processes to achieve quality

products. Polymers are versatile products. They are used to manufacture numerous

high demand supplies such as plastics, paints, and paper. Polymers are subject to

stringent specifications in end-use products due to safety and quality issues. As a

result, there is great demand to develop effective production practices. The only way

to achieve optimum performance and quality of the polymer manufacturing process

is to incorporate mechanisms to monitor the variables that can affect the polymer

properties, and the reaction rates involved in the polymerization process [1].

It is desirable to employ on-line measuring techniques to monitor polymer prop-

erties in real-time to facilitate immediate control schemes and regulate the reaction

system. A limited number of sensors are available to measure distinct variables that

affect the physical and chemical properties of the polymer during the reaction process.

Unfortunately, real-time measurements cannot be implemented in a majority of the

1



CHAPTER 1. INTRODUCTION 2

processes and in certain situations, some states or polymer properties might not be

measurable and hence have to be estimated.

Many observers exist for linear and nonlinear systems and can either be stochas-

tic or deterministic in nature, depending on the existing mathematical structure of

the process model and sensor measurement [2]. Linear observers include Kalman

filter (stochastic) and Luenberger observer (deterministic). Polymerization reactors

are inherently nonlinear in nature and hence require implementation with nonlinear

observers. Nonlinear observers include extended Kalman filter (EKF), extended Lu-

enberger observer, high gain observers, and many more listed and discussed in [2],

[3].

In general, observers are designed to estimate unmeasured states using the avail-

able measurement information, a knowledge of the process dynamics and the noise

structure. A schematic of a typical state observer is shown in Figure 1.1.

State Model

Initial Condition State Observer State Estimate

Sensor Output

Figure 1.1: State Estimation Procedure.
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This research proposes an extended Kalman filtering technique to reconstruct the

system states required in the implementation of an on-line optimization routine.

1.2 Motivation of Thesis Project

In practice, acrylic resins for automotive coatings are required to be durable and

possess high resistance to physical and chemical wear. These resins are produced

at low solvent levels to meet regulations on volatile organic content (VOC) [4]. In

addition, the reaction is usually operated under high temperature conditions and

at low monomer concentration to improve polymer molecular weight and copolymer

composition control [5].

A starved feed feeding policy is utilized to keep the monomer and initiator content

at reduced levels. The resulting effect of this feeding strategy is a prolonged batch

time. The motivation of this study is to use an on-line optimization scheme to enhance

the reactor performance and product quality, while reducing the final batch time of the

polymerization reaction. In doing so, a state observer is also designed to reconstruct

the unmeasured states of the system from the available measurements.

The challenges of this project include the improvement of the on-line optimization

strategy and its robustness to process changes; the development of a robust observer

for the process; and the incorporation of the observer into the on-line optimization

routine.
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1.3 Structure of Thesis

This thesis is organized as follows. Chapter 2 presents theoretical background of

Kalman filtering and a review of literature.

Chapter 3 outlines the background of the system studied as well as the theory

related to on-line optimization of the semi-batch copolymerization process. The im-

provements made to the real-time optimization routine are discussed. Simulation

results for the optimization scheme are provided. In addition, a sensitivity analy-

sis of the proposed dynamic optimization routine is considered to demonstrate its

effectiveness.

In Chapter 4, a hybrid extended Kalman filter is developed for the batch-fed pro-

cess based on the system dynamic presented in Chapter 3. The hybrid extended

Kalman filter is then incorporated in the proposed on-line optimization routine out-

lined in Chapter 3 to reconstruct the system state variables. The robustness analysis

and the simulation results of the integrated algorithm are presented.

Chapter 5 provides conclusions and areas of future work for this research.



Chapter 2

Literature Review

2.1 State Estimation

State estimation is an important tool in control theory that deals with determining

the states of a system given the measurement from the sensors of the process. The

state variables describe the state of the system. For instance, possible states of a

moving vehicle include distance, velocity, and acceleration. In reaction systems, the

state variables describe the mass and internal energy of the system. The estimation of

a system’s state requires a measurement of the state variables. Unfortunately, there

are many instances where these variables cannot be measured. Hence, mechanisms

to estimate them are required.

State observers have been implemented successfully in numerous research and

industrial applications. Ideally, it is desirable that the actual process measurement

and model output are in agreement. This is usually not the case due to the presence

of noise in the measurement or disturbances in the system. The most common way to

reconstruct the imperfectly measured state variable is by designing a state observer

5



CHAPTER 2. LITERATURE REVIEW 6

in the form of a Kalman filter or extended Kalman filter. The Kalman filter can be

used as both a state estimator and a state observer.

A state estimator estimates the most likely value of the state variables of a dy-

namical system subject to noise. The Kalman filter is the most widely used state

estimator encountered in practice. A state observer, on the other hand, is designed

to reconstruct the unmeasured state variables from the sensor measurement of a dy-

namical system without any considerable process noise or measurement noise [6].

The Kalman filter can also be used as a state observer under the assumption that the

dynamical system can be observed [7].

This literature review will highlight different approaches to state estimation, fo-

cusing mainly on polymerization processes in the chemical industry.

2.2 State Estimation for Linear and Nonlinear Sys-

tems

The choice of state estimation techniques depend on whether the system is linear or

nonlinear. It also depends on the noise structure, and the degree of uncertainty in the

system dynamics. The Kalman filter (KF), first developed by Kalman [8], assumes

linearity of the dynamical system for state estimation from measurements corrupted

with noise. The extended Kalman filter (EKF) is a nonlinear variation of the KF

that linearizes the nonlinear dynamic model for state estimation purposes. Other

variations of KF and EKF exist as shown in Figure 2.1.
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Linear 
Systems

Nonlinear
Systems

Kalman Filter 
(KF)

Extended Kalman Filter
(EKF)

Unscented 
Kalman Filter

Continuous-time 
EKF

Hybrid EKF

Continuous-time KF
(Kalman-Bucy Filter)

Discrete-time
EKF

Discrete-time
KF

Figure 2.1: Linear and Nonlinear Filter Variations

2.2.1 Kalman Filter Analysis

Following Figure 2.1, the Kalman filter can be implemented in discrete-time or continuous-

time. In process control, measurements are obtained from computers which sample

in discrete-time. For this reason, the discrete-time KF is more widely used than the

continuous-time KF. The discrete-time KF assumes both the linear dynamic system

and the model output are in discrete-time. A typical example of a linear discrete-time
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system is given by [9]

xk = Ak−1xk−1 +Bk−1uk−1 + qk−1

zk = Hkxk + rk (2.1)

where k denotes the time step, xk−1 is the discrete-time state at the previous time

step k−1, uk−1 is the input, zk is the sensor measurement corrupted with noise, which

is related to the discrete-time state through the measurement matrix Hk. The state

observer seeks to reconstruct the states xk from the set of i sensor measurements [z1k,

z2k,...,zik]=zk, where i could be less than the number of states. The plant disturbance

and measurement noise qk−1 and rk have noise covariance matrices Qk and Rk, re-

spectively. The structure of Qk and Rk should be known to tune the Kalman filter.

Matrix Ak−1 is called the system matrix developed from model equations; Bk−1 is the

input matrix; both matrices are assumed to be independent of any states or input. A

more thorough exploration of state estimation theory can be found in [10], [11] and

[12].

The Kalman filter algorithm for the system in (2.1) is described by the following

procedure.

• Step 1: Select the initial conditions.

x̂0 = E[x0] (2.2)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (2.3)

Assuming all inputs, uk, are known, the initial values for the state (x̂0) and the

uncertainty in that estimate (P0) are chosen. E[·] denotes the expected value

of a random variable or expectation operator. At the first time step, (x̂0) is

defined as the expected value of initial state estimate (x0). The choice of initial
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condition for the covariance matrix P0 depends on the uncertainty associated

with the initial state estimates. The more certain the value of the state (x0) is

a priori, the closer the covariance matrix is to zero. Otherwise, P0 gets larger

as the confidence in x0 decreases [7]. The difference between the true state

variable and its estimate is called the prediction error (x0 − x̂0). The Kalman

filter is typically derived to achieve optimal state estimates by minimizing the

expected value of the squared error in (2.3). More information about expected

value minimization can be found in [13], [14], and [15].

• Step 2: Estimate ahead.

x̂−k = Ak−1x̂
+
k−1 +Bk−1uk−1 (2.4)

P−
k = Ak−1P

+
k−1A

T
k−1 +Qk−1 (2.5)

In between measurements, the estimated state variables and covariance matrix

are predicted to be x̂−k and P−
k , respectively. The superscript (+) represents

the a posteriori state estimate, given the measurement at time step k is incor-

porated. The superscript (−), on the other hand, represents the a priori state

estimate, given prior information of the process before the measurement time

step k.

• Step 3: Update measurement.

Updating the measurement is a three step process.

a. Compute the gain.

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 (2.6)

With knowledge of the predicted a priori covariance matrix, the gain is
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computed and used to update the estimated state and covariance as shown

in Step 3b and 3c.

b. Correct the state estimate

x̂+
k = x̂−k +Kk(zk −Hkx̂

−
k ) (2.7)

The state estimate is then corrected with the calculated gain and measure-

ment zk to obtain a new state estimate, x̂k.

c. Correct the error covariance

P+
k = P−

k −KkHkP
−
k (2.8)

The computed gain is also used to update the error covariance.

Steps 1 through Steps 3 of the Kalman filter algorithm are illustrated in Figure 2.2.

Step 2: Estimate ahead

Step1: Select Initial Conditions

)P,x̂( 00

1111

1111

 :

 :

Covariance

 State

−−

+

−−

−

−−

+

−−

−

−=•

−=•

k

T

kkkk

kkkkk

QAPAP

uBxAx

Step 3: Update Measurement

−−+

−−+

−−−

−=•

−+=•

+=•

kkkkk

kkkkkk

K

T

kkK

T
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PHKPP

xHzKxx
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:

)ˆ(ˆ ˆ:

)(K : 

CovarianceErrorCorrect

Estimate StateCorrect

Gain
1

K

Estimation

Step

Update

Step

Figure 2.2: Kalman Filter Procedure
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An important point to note about the form of the gain Kk and error covariance

P+
k is that they do not depend on the estimate x̂k. For this reason, the gain matrix

Kk does not require computing in real-time; it can be precomputed and accumulated

before measurements are acquired [7], [9].

Tuning the Kalman Filter

Knowledge of the structure of the noise covariances (Qk and Rk) is required to

tune the Kalman filter. The dimension of Qk and Rk have a great impact on the

gain Kk in (2.6). This relationship can be seen as follows. The process noise matrix

Qk−1 affects the predicted covariance P−
k (2.5), which in turn is used to calculate the

gain Kk (2.6). Measurement noise Rk also affects Kk. The value of Kk influences the

estimation error (zk − Hkx̂
−
k ) in the predicted state (2.7). For instance, if the value

of Kk is large, a small estimation error can yield an aggressive correction to the state

estimate, as there is more confidence in the sensor measurement [9], [16]. On the

other hand, if Kk is small, then the model dynamics are used to make correction to

the state estimate [9], [16]. Kalman filter tuning is quite intuitive and can be found

in other sources including [7]. Figure 2.3 illustrates the tuning process for Kalman

filtering.

2.2.2 Extended Kalman Filter

The extended Kalman filter is suitable for some nonlinear systems. An EKF is par-

ticularly important for conditions that require the current estimate to be linearized

about more than one steady-state point. Also, EKFs are applicable to systems with

unknown parameters. For instance, if the gain Kk is dependent on previous values of
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Condition

High model uncertainty
=

Low confidence in model

High sensor output uncertainty
=

Low confidence in measurement

R,Q ↓↑

State estimate depends more
on

model dynamics

State estimate depends more
on

sensor output

k
Kto

k
R,

k
Q

↓

↑↓

k
Kto

k
R,

k
Q

↑

↓↑

Figure 2.3: Kalman Filter Tuning Process

the state estimate x̂k, this would require the gain to be updated at every time step

with knowledge of the state. Hence, systems with parameters that depend on trajec-

tory are better implemented with EKF. This procedure can significantly improve the

accuracy of the state estimation problem for systems with parametric uncertainties.

Nonlinear discrete-time systems can be formulated as [7]

xk = fk−1(xk−1, uk−1, qk−1)

zk = hk(xk, rk)

As in the case of the Kalman filter in (2.1), the noise processes qk−1 and rk, are
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both assumed to be zero-mean, independent, white process noise with covariance ma-

trices Qk and Rk, respectively. The state estimate xk and sensor measurement zk

require linearization about previous model conditions so that as new measurements

become available, xk and zk are updated efficiently.

The algorithm for the discrete-time extended Kalman filter in (2.9) is as follows:

• Step 1: Select the initial conditions.

x̂0 = E[x0] (2.9)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (2.10)

The same procedure in choosing the initial conditions for the EKF is followed

as that of the Kalman filter. The initial state x̂0 and covariance P0 are starting

conditions for the EKF process.

• Step 2: Estimate ahead.

For each time step,

x̂−k = fk−1(x̂
+
k−1, uk−1, 0) (2.11)

P−
k = Ak−1P

+
k−1A

T
k−1 +Gk−1Qk−1G

T
k−1 (2.12)

where the EKF system matrix linearized about the a posteriori state estimate

for each time step is given as Ak−1 = ∂fk−1

∂x
|x̂+

k−1
and Gk−1 = ∂fk−1

∂q
|x̂+

k−1
. The

predictions from the state and covariance here in Step 2 is used to correct the

gain, error covariance, and state estimate as shown in Step 3.

• Step 3: Update Measurement.

Updating the measurement for each time step is performed for three step:
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a. Compute the Gain

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (2.13)

b. Correct the State Estimate

x̂+
k = x̂−k +Kk[zk − hk(x̂−k , 0)] (2.14)

c. Correct the Error Covariance

P+
k = P−

k −KkHkP
−
k (2.15)

where the matrices evaluated at the state estimate a priori is given as Hk = ∂hk

∂x
|x̂−k

and Vk = ∂hk

∂r
|x̂−k .

2.2.3 Limitations of Kalman Filtering Techniques

For Kalman filtering technique to be implemented, the process and measurement

noise structure that affects the system should be known. This requirement is a ma-

jor shortcoming of Kalman filtering methods since the noise processes are usually

unidentified.

Some of the early methods to estimate noise covariance include Output Cor-

relation Method and Innovation Correction Method developed by Mehra [17] via

least squares algorithms. The Innovation Correction Method was improved upon

by Belanger [18]. More recent noise covariance estimation procedures include auto-

covariance least squares method developed by Odelson et al. [19], which Rajamani

and Rawlings [20] improved upon by introducing optimal weighting and semidefinite

programming.
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2.3 Application of Kalman Filtering to Polymer-

ization Systems

Numerous applications of state estimation have been cited in literature in various

fields of chemical engineering such as polymer processes, biotechnology, and process

control. This literature review will be restricted to applications in fields of polymer-

ization processes.

There have been numerous studies of on-line techniques to monitor polymerization

processes. On-line densitometry and viscometry was considered by Na and Rhee [21]

to conduct an experimental study on the solution polymerization of styrene which was

assumed to follow the free radical polymerization reaction kinetics including transfer

to monomer and solvent. In their study, a multivariable polynomial autoregressive

moving-average (ARMA) model identification for a continuous styrene polymerization

reactor was performed by simulation and experimentation. Cherfi and Fevotte [22]

assessed the robustness of fiber-optic Near-Infrared (NIR) spectroscopy in their on-

line measurement of conversion for both batch and semi-continuous systems, where

solution polymerization of methyl methacrylate (MMA) in toluene was monitored at

different operating conditions.

However, many challenges and difficulties are encountered when using on-line

measuring techniques exclusively. For this reason, on-line methods are implemented

with state estimation to improve the performance.

The major issues with reactor application for polymer processes include
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• Calibration of On-line Monitoring Equipment.

To effectively control polymerization processes, the system requires measure-

ment in real-time so that it can be adjusted in a timely manner to achieve the

desired response. On-line monitoring can be quite a challenging task. Most

polymerization reactor measuring equipment such as Raman spectroscopy for

on-line measurement of monomer concentration require extensive calibration

which makes it less convenient for the user [23]. Cherfi et al. [1] elaborate

on the lack of robustness due to complex modeling, sensitive and prolonged

calibration required by most on-line measuring techniques.

• Model Equations for On-line Measurement Equipment.

On-line measurement equipment such as calorimetry, viscometry, and densitom-

etry have considerable limitations as they require sufficient model equations to

provide monomer concentration information from given data [23]. State estima-

tion techniques such as EKF that handle nonlinearities in models, when used in

conjunction with model dependent methods such as calorimetry, reduce model

discrepancies and performance error, thereby improving on-line measurement

procedure [23].

• Inability to Measure Certain Properties.

Thus far, it is very difficult to measure molecular weight on-line. In fact, there

are limited studies in which on-line techniques are used to estimate molecu-

lar weight. One case was reported by Kreft and Reed [24] where monomer and

polymer concentration measurement was combined with viscosity and light scat-

tering signals to compute molecular weight. Scarcity of on-line measurement
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for molecular weight can be problematic in the polymerization industry. It nor-

mally requires the estimation of molecular weight information from irregular or

delayed experimental analysis which can affect performance of the reactor [25].

Hence, a superior estimation technique is commonly used to calculate molecular

weight accurately.

The preferred way to achieve optimal performance in polymer manufacturing pro-

cess is to monitor the variables that affect the end-product of the polymer properties,

and the reaction rates involved in the polymerization process [1]. For the aforemen-

tioned shortcomings of on-line monitoring, state estimation techniques are econom-

ically inevitable to enable effective control and safe operation of the polymerization

reactor.

Literature Review

One of the earliest application of Kalman filtering to polymerization processes was

performed by Jo and Bankoff [26]. Free-radical polymerization of vinyl acetate was

studied and simulations with various Kalman filter algorithms were tested to provide

estimates of weight-average molecular weight and conversion [26]. After developing

the kinetic equations, they selected parameters to be adjusted to evaluate the effect of

1) the initial estimate of state variables, 2) process noise covariance, 3) measurement

noise covariance, and 4) parameter augmentation. For their study, parameters were

adjusted to monitor the effect on the tuning of the filter. They concluded that having

poor initial estimates of the state covariance matrix or of the state variables is accept-

able but that small estimates of the process noise covariance may cause divergence

of the filter. The point was also observed by Park et al. [27]. Fitzgerald [28] and
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Schlee et al. [29] elaborate on divergence issues of the Kalman filter by investigating

the mechanisms by which error sources affect performance of the filter.

Semino et al. [30] investigated the effect of parameter estimation in the extended

Kalman filter for polymerization reactors. From their study on methyl methacrylate

polymerization, parameter estimates are incorporated with estimation algorithms to

effectively handle analytical error in the model [30]. Kozub and MacGregor [31], and

Liotta et al. [32] also address the need for parameters that can be estimated. Liotta

et al. [32] suggest adapting the parameter by extending the state of the system to

include parameters to be estimated.

Berber et al. [33] performed batch styrene polymerization defined by kinetics of

initiator decomposition, initiation, propagation and termination. They were able to

integrate an extended Kalman filter in their control algorithm to extract information

about the states of the system from noisy measurement. Their algorithm was em-

ployed in an on-line control and monitoring software package [33]. They designed two

filters to estimate monomer concentration and initiator concentration from available

measurement corrupted with noise.

Valappil and Georgakis [34] studied model predictive control of end-use properties

in batch reactors. Part of their research was on state estimation of a styrene polymer-

ization process. From their study, conclusions made include 1) the chosen estimated

parameters do impact the operation of the EKF, 2) states and parameters with the

most uncertainties are typically chosen for estimation, and 3) adapted parameters

should be chosen so that the system is observable with existing measurement [34].

Their adaptive parameters were selected randomly. They implemented a two-time

scale filter such that their states were updated based on frequent measurements as
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well as delayed measurements, depending on availability of measurement information

at certain points in the system.

Park et al. [27] monitored a semi-batch methyl methacrylate (MMA) and methyl

acrylate (MA) copolymerization reactor using on-line densitometry and viscometry.

With an extended Kalman filter (EKF) as the state estimator, Park et al. [27]

were able to monitor copolymer properties on-line under both isothermal and non-

isothermal conditions. The reactants were assumed to follow free radical copoly-

merization kinetics including chain transfer to solvent and monomer. Mass balance

equations for each reacting component were formulated as well as mass balances for

moments of polymer concentration. Park et al. [27] also determined an expression

for average molecular weight based on intrinsic viscosity. Their result of on-line mea-

surements for both the isothermal and non-isothermal conditions demonstrated that

the on-line viscometry and densitometry can be used to monitor polymer variables

in copolymerization reactions. The estimated result using an EKF traced the on-

line measurements successfully. Hence, they were able to design a model predictive

control algorithm to implement with the copolymerization reactor to improve the

performance of the reactor and control polymer qualities.

Kramer et al. [35] performed re-optimization on a semi-continuous emulsion

copolymerization (SCEP) system. As mentioned earlier, limitations of on-line tech-

nique include inability to measure some polymer properties on-line. Knowledge of

co-monomer composition, which is usually not available from on-line measurement, is

required to calculate reaction rates [35]. To reach their optimization goal of minimiz-

ing batch time, the reaction rates are to be maximized, while maintaining a reaction

rate ratio for the co-monomer and thus control copolymer composition [35]. Kramer
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et al. [35] stated that models have to be reduced before they can be used for on-line

optimization and state estimation. The re-optimization technique employed simi-

lar physical model used in Kramer and Gesthuisen [36], which was also reduced by

Gesthuisen et al. [37] to develop a simple ”pseudo-bulk” kinetic model [35]. The same

simultaneous optimization approach as in Cuthrell and Biegler [38], [39], omitting fi-

nite elements, was implemented [35]. Successful optimization results were obtained

with the reduced model.

Rantow et al. [40] also incorporated a reduced-order model for a semi-batch n-

butyl acrylate solution polymerization system. The model was able to predict spec-

troscopic and chromatographic polymer properties. The nonlinear state estimator

formulated based on the reduced model was successful in providing enhanced esti-

mates as proven by the real-time simulation results [40]. Abel et al. [41] used a

reduced model, as well, to optimize an industrial semi-batch reactor with the objec-

tive to meet polymer quality constraints while reducing the batch time.

Work in Literature Review Compared to Work in Thesis

The on-line optimization techniques presented in this literature review is different

from that of this thesis project. For this research, a new technique is incorporated

where the observer is connected to an on-line optimization scheme. The feedback

measurements of the process are included directly in the optimization procedure as

opposed to a control scheme for tracking the calculated trajectories.

Thus far, other researchers have not implemented a true on-line optimization tech-

nique as they required former knowledge of the profile structure to generate continuous

optimal profiles for batch processes [42]. For instance, Kramer et al. [35] started with
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a pre-calculated optimal feed trajectory for their re-optimization strategy. However,

the on-line optimization routine with feedback measurements selected for this work

is easier to implement. The proposed approach is accomplished by splitting the opti-

mization problem into two, the elapsed cost and future cost, so that the optimization

will only be implemented on the remaining portion of the batch instead of the whole

profile. Hence, the optimization is based on present conditions rather than the initial

conditions of the process.

Alternative State Observers

As mentioned in the Introduction, a variety of observers exist for state estimation.

Biagiola and Figueroa [3] provide an extensive review of nonlinear observers. In their

work, a high-gain observer was formulated to estimate the entire state vector and time

varying parameters of an open-loop unstable continuous stirred tank reactor (CSTR).

Their observer design was used in a control scheme to track the temperature profile in

the reactor. Kravaris et al. [43] designed a nonlinear observer to estimate the process

state variables, together with unknown process or sensor disturbances. They tested

their observer design on a biological reactor through simulation studies. Soroush [2]

proposed a reduced-order nonlinear observer technique with an adaptive rate of decay

of the observer error. The proposed observer was tested on free-radical polymerization

reactors, classical chemical reactors and bio-reactors. Astorga et al. [44] considered

a continuous-discrete observer and tested it on different copolymerization processes.

Chen et al. [45] devised a particle filter for on-line state and parameter estimation in

a highly non-linear batch process.

In choosing an observer design, there often is a trade-off between computation

and performance. As shown for the alternative state observers, most of them are not
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implemented in a true on-line fashion. For instance, Biagiola and Figueroa [3] required

a controller to track the temperature profile of the reactor. These observers also have

disadvantages. High gain observers are known to be very sensitive to noise. Particle

filters require high computation and are not always feasible to implement on-line. In

this work, however, a hybrid extended Kalman filter is designed and implemented

directly with an on-line optimization routine without the need for controller design

for tracking computed profiles. More of the reasons for choosing the Kalman filtering

technique is discussed in Chapter 4.



Chapter 3

Real-Time Optimization Scheme

This chapter introduces the polymer reactor system treated in this study. Some new

contributions in the development to the initial model derived by Li and Hutchinson

[5] are also presented. The on-line optimization scheme and the improvements made

to the optimization codes since Perea’s [46] addition to the preliminary work are

discussed. In addition, a sensitivity analysis is performed on the optimization scheme

with updated parameters.

3.1 System Under Study

3.1.1 Initial Work

The motivation for this research originated from an experimental study performed by

Li and Hutchinson [5], where solution free-radical copolymerization of butyl methacry-

late (BMA) and styrene (STY) was studied under starved-feed conditions. They per-

formed the starved-feed semi-batch BMA/ STY experimentation at 1380C. Monomer

23
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was added at varying feed compositions at a fixed rate over a period of 6 hours; with

respect to monomer, tert-butyl peroxyacetate (TBPA) initiator was fed at a constant

feed composition of 2.0 wt%. A schematic of the process is shown in Figure 3.1.

STY TBPABMA

Figure 3.1: Semi-batch reactor setup. Styrene (STY), butyl methacrylate (BMA),
and tert-butyl peroxyacetate (TBPA) initiator flow rates can be changed
separately [46]

.

The model developed for the BMA/ STY study included very detailed mech-

anisms including depropagation and penultimate propagation kinetics. The results

(Figure 3.2) from their study demonstrated success in maintaining low monomer levels

throughout the experimentation as the monomer and polymer compositions remained

fairly steady.

As Figure 3.2 shows, considerable consistency in polymer composition is achieved

when starved-feed operation is implemented. However, adequate monitoring and
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Figure 3.2: Cumulative copolymer composition as calculated from gas chromatogra-
phy measurement of residual monomer for the feed ratios (wt%) of 75/25
BMA/STY (�); 50/50 BMA/STY (N); 25/75 BMA/STY (�) [5]

.

control is needed to attain adequate product quality, in light of possible disturbances

that may affect the polymerization process. In addition, there is an incentive to

reduce batch time to improve the productivity of the fed-batch process.. For these

reasons, further research has been conducted to devise an on-line monitoring process

to optimize the system. The main benefit of the optimized system is the reduction of

batch time with no deviation from the nominal product specifications.

3.1.2 Contributions of this study

The same BMA/ STY copolymerization system was studied by Perea [46]. Within

the scope of this study, Perea’s [46] main contributions were revisited. The objectives
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of this research are to reformulate the simplified reduced order dynamic model devel-

oped in [46] and to investigate the robustness properties of the real-time optimization

control scheme.

Reduced Model

Neglecting methacrylate depropagation, styrene thermal initiation and penulti-

mate chain growth kinetics, a reduced order model can be formulated to describe the

dynamics of the BMA/STY fed-batch system. Since the full mechanistic model re-

quires further reduction to be used for on-line optimization or state estimation, many

authors ( [35], [37], [40], and [41]) have derived simplified models to formulate and

implement optimization procedures.

In this study, a simplified process model is considered. The derivation of the

model relies on several simplifying assumptions such as constant physical properties,

perfect mixing, long chain hypothesis (LCH) and radical stationarity/ quasi steady-

state assumption (QSSA). Moment balances are performed on live (radical) and dead

polymer chains. Mass balances are performed on monomer, solvent and initiator.

The kinetic mechanism scheme for the copolymerization process is shown in Table

3.1.

In the free radical copolymerization kinetic mechanism presented in Table 3.1, the

initiator I decomposes with efficiency f and rate coefficient kd to form two primary

radicals I*. For growing polymer radicals Pn and dead polymer chains Dn, subscript

n is the number of monomeric units. Primary radicals combine with monomer Mj to

initiate polymer radical P j
1 . Monomer Mj adds to radical P i

n in a chain propagation

step with rate coefficient kpij
. Chain termination by combination with rate coefficient
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Table 3.1: Free radical copolymerization kinetic mechanism for BMA/ STY system

Initiator Decomposition I
kd−→ 2fI∗

Chain Initiation I∗ +Mj

kij−→ P j
1

Chain Propagation P i
n +Mj

kpij−−→ P j
n+1

Chain Termination

By Combination P i
n + P j

m

ktcij−−→ Dn+m

By Disproportionation P i
n + P j

m

ktdij−−→ Dn +Dm

Chain Transfer

To Monomer P i
n +Mj

kmon
trij−−−→ Dn + P j

1

To Solvent
P i
n + S

ksol
tri−−→ Dn + S∗

S∗ +Mj

ksol
ij−−→ Dn + P j

1

ktcij or disproportionation with rate coefficient ktdij
happens when two chains unite.

Chain transfer occurs when hydrogen is abstracted from monomer Mj or solvent S

by radical i, with rate coefficient kmontrij
and ksoltri

. Chain termination and chain transfer

form dead chains.

The model parameters and kinetic rate coefficient for the optimization work pre-

sented in Table 3.1 are the same as that used in the original experimentation in [5].

These parameters and coefficients are shown in Table 3.2. The basis for deriving the

rate constants and choosing the parameters are explained in [5].

Dynamic Mathematical Model

After the derivation of the reduced model, a dynamic mathematical model is devel-

oped based on the reduced kinetic mechanisms. These mechanisms are incorporated

into the semi-batch material balances to account for process changes and to maintain

polymer quality with a real-time measurement-based optimization control method.
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Table 3.2: Model parameters and kinetic rate coefficients for butyl methacrylate (A)/
styrene (B) system [5]

Kinetic Mechanism Rate Term Value at 1380C

Initiation [s−1]
kd(s

−1) = 6.78 × 10−15exp(-17714T−1) 1.32 × 10−3

f = 0.515

Propagation [L.mol−1.s−1]
kpAA

= 3.80 × 106exp(-2754.2T−1) 4.69 × 103

kpBB
= 4.266 × 107exp(-3910T−1) 3.16 × 103

rA =
kpAA

kpAB
= 0.42, rB =

kpBB

kpBA
= 0.61

Termination [L.mol−1.s−1]
kcopt = 4.5 × 108

α = 0.65, β = 0.01, γ = 0.33
Chain Transfer [L.mol−1.s−1]

To monomer
kmontrAA

= 1.56 × 102exp(-2621T−1) 0.27
kmontrBB

= 2.31 × 106exp(-6377T−1) 0.427

kmontrij
= kmontrjj

kpij

kpjj

To solvent
ksoltrAA

= Csol
A kpAA

2.345
ksoltrBB

= Csol
B kpBB

2.528
Csol
A = 5.0 × 10−4, Csol

B = 8.0 × 10−4

Physical Properties

Density [kg.L−1]

ρBMA = 0.915 - 9.64 × 10−4T(0C) 0.782
ρST = 0.919 - 6.65 × 10−4T(0C) 0.827
ρpol = 1.19 - 8.07 × 10−4T(0C) 1.079
ρsol = 0.892 - 1.3 × 10−3T(0C) 0.713

Molecular Weight [kg.mol−1]

M̄A = 142.2 × 10−3

M̄B = 104.15 × 10−3

M̄I = 132.16 × 10−3

M̄sol = 106.17 × 10−3
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The BMA/ STY copolymerization reaction is expressed by (3.1):

dx1

dt
= u1(t)− x1

(
kpAA

λAo (t) + kpBA
λBo (t)

)
(3.1a)

dx2

dt
= u2(t)− x2

(
kpBB

λBo (t) + kpAB
λAo (t)

)
(3.1b)

dx3

dt
= u3(t)− kdx3(t) (3.1c)

dx4

dt
= x1

(
kpAA

λAo (t) + kpBA
λBo (t)

)
(3.1d)

dx5

dt
= x2

(
kpBB

λBo (t) + kpAB
λAo (t)

)
(3.1e)

dx6

dt
= V (t)Rµ0(t) (3.1f)

where x1, x2 and x3 denote the total mass of unreacted BMA, STY and initiator,

respectively; x4 and x5 denote the mass of BMA and STY in the polymer chains;

x6 is the moles of polymer in the system (needed to compute the number-averaged

molecular weight); u1, u2 and u3 are the input mass flow rates of BMA, STY and

initiator; λAo (t) and λBo (t) are given by (3.5) below.

Based on a quasi steady-state assumption, the total moles of radicals is given by

λtoto =

(
2kDf

M̄I

)1/2(
ρtot(t)

kcopt (t)

)1/2(
x3

Mr(t)

)1/2

(3.2)

Assuming the volume in the reactor is additive, the total density of the system ρtot(t)

is derived; M̄I is the molar mass of initiator; and the cumulative mass is formulated

as

Mr(t) = x1 + x2 + x3 + x4 + x5 +msol (3.3)

where msol represents the amount of solvent in the reactor at the beginning of the

reaction; and kcopt (t) is the copolymerization termination rate coefficient that is esti-

mated by fitting model predictions to experimental data.
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The mole fraction of unreacted monomer is given as

f1(t) =
x1(t)M̄B

x1(t)M̄B + x2(t)M̄A

; f2(t) = 1− f1(t) (3.4)

where M̄A and M̄B are monomer molar masses.

The radical concentration of BMA(A) and STY(B) is

λAo (t) = λtoto (t)fAR (t); λBo (t) = λtoto (t)fBR (t) (3.5)

where the long-chain hypothesis is used to calculate each radical fraction:

fAR (t) =
kpBA

M̄Bx1

kpBA
M̄Bx1 + kpAB

M̄Ax2

; fBR (t) = 1− fAR (t) (3.6)

The rate of chain generation, used to calculate the polymer molecular weight, is as

follows:

Rµ0(t) = Rinit(t) +Rsol
tr (t) +Rmon

tr (t)−Rtc(t)
1/2 (3.7)

where the rate of radical production from initiation, transfer to solvent, transfer to

monomer, and termination by combination is given as:
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Rinit(t) =
1

Mr(t)

(
2kdf

M̄I

ρtot(t)x3

)
(3.8)

Rsol
tr (t) =

s(t)

Mr(t)
λtoto (t)ρtot(t)

Rmon
tf (t) =

[
m1(t)

x1

Mr(t)
+m2(t)

x2

Mr(t)

]
λtoto ρtot(t)

Rtc(t) = kcopt

(
(1− α)

(
λAo (t)

)2
+ (1− β)

(
λBo (t)

)2
+2(1− γ)λAo (t)λBo (t)

)
where

m1(t) =
1

M̄A

(
kmontrAA

fAR (t) + kmontrBA
fBR (t)

)
m2(t) =

1

M̄B

(
kmontrBB

fBR (t) + kmontrAB
fAR (t)

)
s(t) =

msol

M̄sol

(
ksoltrAA

fAR (t) + ksoltrBA
fBR (t)

)
The parameters α, β and γ represent the fraction of termination occurring by dispro-

portionation for A, BB and AB, respectively.

The monomer conversion formulated in terms of the states of the system is

χm(t) =
x4 + x5

x1 + x2 + x4 + x5

The number-average molecular weight and copolymer composition, both important

quantities for the determination of polymer quality, are calculated as

Mn(t) =
x4 + x5

x6

, F (t) =

(
x4

M̄A

)(
x4

M̄A

+
x5

M̄B

)−1
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It is imperative that Mn(t) and F (t) remain relatively constant throughout the re-

action period to ensure that high conversion is achieved. The optimization problem

formulated below is designed to keep Mn(t) and F (t) at their setpoints while meeting

the constraints of the system. The real-time optimization scheme employed in this

study is described below.

Real-Time Optimization Scheme

A real-time optimization scheme is formulated to effectively monitor and control

the BMA/ STY polymerization process. As explained in the last section of Chap-

ter 2, a real-time optimization scheme is proposed in which on-line measurements of

process variables are used to update optimal trajectories in real-time. This technique

contrasts with existing techniques in which a tracking controller is used to track an

optimal trajectory computed off-line. Using a suitable model of the process, the pro-

cedure employs a real-time dynamic optimization routine similar to model predictive

control that guarantees continuous improvement of the user defined cost subject to

state and input constraints.

The real-time optimization scheme is based on a nominal dynamic optimization

problem of interest. A generic dynamic optimization problem can be represented

mathematically as follows:

min
θ...θp,T

J =

∫ T

0

q(x(t), u(t))dt (3.9)

subject to the dynamics in (3.1) and the following constraints

w(x(t), u(t)) ≥ 0 (3.10)
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x(0) = xo (3.11)

x(T ) = xf (3.12)

uj(t) =
N∑
i=1

θijΞj(t), 1 ≤ j ≤ p (3.13)

where x are the state variables of the system, u represents the input variables. It is

assumed that the input trajectories uj(t) are parameterized as described in (3.13),

where θ are parameters to be found and Ξ are basic functions. The objective is

to minimize the cost function (3.9) subject to the process dynamics (3.1) and the

constraints on the path (3.10) and the end-point variable (3.12).

It is assumed that there exists a continuous control u that can steer the system

from the states at the initial point to the states of the system at the final time. The

optimal control problem is then solved with respect to the parameter values. The

parameters are assumed to be contained in a compact convex subset of the constrained

set (3.9) in RN . The cost function and the constraints of the optimization problem

are assumed to be sufficiently smooth. The constrained set is assumed to be convex

with respect to the parameters. In addition, the cost J is also assumed to be convex

with respect to the parameters. Following the necessary conditions of optimization,

these assumptions guarantee the existence of a local optimizer for the constrained

problem.

For the purpose of this study, the cost function is designed to maintain the number-

average molecular weight Mn(t) and copolymer composition F (t) at their respective

setpoints. A suitable cost function for this purpose is the following quadratic func-

tional:
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J =

∫ tf

0

(
ω1

(
Mn(t)

Msp

− 1

)2

+ ω2

(
F (t)

Fsp
− 1

)2
)
dt (3.14)

where the setpoints for molecular weight and copolymer composition are Msp and

Fsp, respectively; ω1 and ω2 are weights used to scale the cost function. The batch

time tf , assumed to be a positive nonzero number, is considered as a decision variable

along with the parameters θ.

The constraints of the system are designed to handle important performance ob-

jectives for the fed-batch system. The most important constraints of the system are

used to ensure safety of the system. They restrict the amount of heat discharge, the

unreacted monomer and initiator as follows:

0 ≤ xk ≤ xmaxk , xk+3 ≥ 0 k ∈ {1, 2, 3} (3.15)

Additional constraints on the input variables ensure that flow rates are positive. They

are stated as:

0 ≤ uk(t) ≤ umaxk , k ∈ {1, 2, 3} (3.16)

The end-point constraint guarantees that a desired mass of polymer is reached at the

end of the batch. It is given by:

x4(tf ) + x5(tf ) = mpol(tf ) (3.17)

Having defined the cost function and the state and input constraints, one must

assign a specific choice for the input parameterization (3.13). In this study, the input

variables are chosen to be the flow rates. For the duration of the batch, the input or
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control functions were parameterized as

u1(t) = θ1 (3.18)

u2(t) = θ2θ1

u3(t) = θ3θ1

where θ1, θ2 and θ3 are the parameters to be assigned in the solution of the opti-

mization problem. This parameterization mirrors the constant flow rate conditions

employed in the experimental study of [5]. The conditions outlined in [5] provide

some valuable initial estimates for the parameters that are considered in numerical

implementation of the proposed real-time optimization scheme and the simulation

study described below.

The challenge associated with the design of a real-time optimization scheme is

to devise an algorithm that can solve the optimization problem (3.9) as efficiently

as possible to permit real-time updates of the parameters of the input trajectories.

To achieve this, the real-time optimization scheme implements a transformed ver-

sion of the nominal optimization problem that can take into account new process

measurements and constraints.

The optimization procedure aims to regulate the plant process by adapting to

disturbances in real-time while directing the system towards the local optimum of

the objective function in (3.14) with respect to the parameterization in (3.18). The

optimization searches for the optimum within a restricted set of parameters to reach

a local optimum.

The incorporation of the constraints is a vital part of the proposed algorithm. A

standard mechanism used to incorporate constraints is to define barrier functions.

Logarithmic barrier functions are used to penalize all parameter values which violate
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the constraints. By construction, this implies that a known feasible set of parameters

is known that is in the interior of the constraint set. Barrier functions form the basis

of so-called interior point methods.

In the context of real-time optimization, interior point methods are used to trans-

form the constrained optimization problem into an unconstrained one subject to the

strict feasibility of the initial estimate of solution to the optimizer [42]. Barrier func-

tions are defined to handle all path constraints in the optimization problem.

The m path constraints are defined as

wk = −xk + xmaxk + ε, wk+3 = xk + ε, k = 1, 2, 3.

The input constraints are defined as

wk+6 = −uk + umaxk + ε, wk+9 = uk + ε, k = 1, 2, 3.

A typical logarithmic barrier function to handle the path constraints is of the

general form

−µ1

m∑
j=1

log (wj + ε)

where µ1 and ε are constant strictly positive tuning parameters. This time-varying

quantity can be added to the integrand of the cost functional J to penalize any

parameter value that violates the path constraints.

End-point constraints are typically not handled using interior point methods as

knowledge of parameters that meet such constraints is typically much more difficult.

To handle these constraints, a terminal penalty function is used.

Let the end-point constraints be defined as

wf = x4 + x5 −mpol(tf ),

then a terminal penalty function is included by adding a term of the form Mw2
f to
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the cost function J where M is a potentially large positive number.

Having defined the barrier functions and terminal penalty function, the cost func-

tional for the nominal optimization problem can be transformed to

Jip(θ) =

∫ tf

0

(
ω1

(
Mn(τ)

Msp

− 1

)2

+ ω2

(
F (τ)

Fsp
− 1

)2

(3.19)

−µ1

m∑
j=1

log (wj + ε)

)
dτ +M(wf )

2

where the integration variable is τ ∈ [0, tf ]. The algorithm parameter M > 0 is

the penalty function; the barrier function parameter µ1 > 0 is for the logarithm

expression; and the constraint relaxation factor ε > 0 avoids singularity of the barrier

term. Typically, small values of µ and ε are chosen to avoid breach in constraint and

a large value of M is used to ensure the endpoint constraints are met [42].

This transformation of the cost functional is such that the optimization of Jip

can be solved using unconstrained optimization techniques such as gradient based

searches.

The following assumptions ensure that there exists a local optimum of the constrained

optimization problem:

• The parameters are within a compact subset Ωp of RN ,

where convex subset of RN is given by the constrained parameter set

Ω =
{
θn ∈ RN |w(x(t), φ(θ, t) ≥ 0, ∀t ∈ [0, tf ]

}
• The cost functional J is convex and continuously differentiable on Ωp,

J : RN → R
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Having defined a transformed optimization encoding the path and end-point con-

straints, a measurement-based real-time optimization scheme can be designed.

Assume that a new measurement, x(t), is available at a given time t. Up to

time t, an input trajectory u(τ) has already been applied over the interval τ ∈ [0, t),

accounting for a certain portion of the cost. Clearly, this incurred cost can no longer

be affected by changes in the control policy. However, one can still have an impact

on the total batch cost if one can predict the remaining cost from the current time to

the end of the batch. That is, the cost incurred at time t can be estimated as follows

Jip(θ(t)) =

∫ t

0

(L(x(τ), u(τ))dτ +

∫ T

t

L(xp(τ), û(θ(t), τ))dτ (3.20)

+M ||xp(T )− xf ||2

where L(x, u) = q(x, u)−µ1

∑m
j=1 log (wj(x, u) + ε). The cost in (3.19) is split in two.

The first integral represents the elapsed cost which is calculated from the measured

states up to time t. The second integral represents the predicted cost remaining and

is calculated using the current parameter values. Using this estimate of the current

cost, one can determine the future outcome of the batch. More importantly, one can

compute the gradient of the cost with respect to the parameters and, hence, update

the remaining profile of the batch. The simplest update is to update the parameters

in the direction of the gradient of Jip(t) with respect to θ as follows,

θ̇ = −k∇θJip (3.21)

where k > 0 is an adaptive gain or positive definite scaling matrix.

Following standard adaptive control techniques, a projection algorithm is used to

prevent the update law from leaving the set ωW . The modified update law can be

written as
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θ̇ = Proj (−k∇θJip,Ωw) (3.22)

where the projection algorithm Proj(·) is such that:

• The parameters stay within the convex set Ωw = {θ ∈ Ωp |‖θ‖ ≤ η} for some

η > 0

• The cost is strictly decreasing except when the gradient is zero, which occurs

at the local minima (at the end of the batch).

Exact expressions for the projection algorithm depends on the shape of the convex

set Ωw. The most common sets used in adaptive control include hypercubes and

spherical sets.

The update law (3.22) is implemented as follows. At each time t, the gradient

estimate is computed using the updated measurements and model predictions. The

parameters are then updated in the direction of the gradient. This strategy ensures

that the cost functional Jip decreases at each subsequent step. A simple Lyapunov-

based argument can be used to demonstrate the continuous decrease of the cost. To

show this, one only needs to differentiate the cost functional with respect to time and

substitute the value for the update law and confirm that J̇ip ≤ 0 ∀t ≥ 0.

3.1.3 Additional Contribution of this Study

Within the scope of this study, many additional modifications have been made to

enhance Perea’s [46] research contributions. These changes have been tabulated in

Table 3.3 to outline the distinction between the former and current model parame-

ters and rate coefficients. The basis of contrast is for the BMA/ STY optimization
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comparative to the typical starved feed strategy for BMA/ STY 50:50 feed rate ratio.

Table 3.3: Updated model parameters and kinetic rate coefficients (A=BMA,
B=STY, j=1,2,3,4)

Symbol Previous Value Current Value
Algorithm Parameters

M 2 x 104 1 x 108

µ 1 x 10−11 1 x 10−1

kj (1 x 10−12, 1 x 10−5, 1 x 10−5,1 x 10−4) 5 x 10−3

Weighting Factors
ω1 1 x 104 1000
ω2 1 x 104 1000

Rate Coefficients
Termination [L.mol−1.s−1]

kcopt 10(f1(t)log(k
AA
t )+f2(t)log(k

BB
t )) 4.5 x 108

Transfer to solvent ratio
Csol
A 5.55exp(-4590T−1) 5 x 10−4

Csol
B 1 x 10−4 8 x 10−4

As can be seen in Table 3.3, a major difference from the previous work is the

algorithm parameters. In (3.22), the gradient of Jip is obtained with respect to the

parameter θ. For the former research, the adaptive gain k is given by kjI, where I

represents the identity matrix. Hence, four adaptive gains (k1, k2, k3, k4) are needed

for the update law (3.22). In the current study, the adaptive gain is given by

k = k0Γ
−1

where Γ is the Hessian of Jip with respect to the parameters. That is,

Γ =
∂2Jip
∂θ∂θT

.

The resulting update is a Newton like update law. The Hessian matrix is used

to remove any scaling issue that can arise in gradient-based descent. In contrast

to Perea’s work, the use of the Newton-like update allows one to use a single gain
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parameter k0 = 0.005 for all simulations. The major drawback is the increase in

computation required for the calculation of the Hessian.

Further distinction from the previous study is the value of the copolymerization

termination rate coefficient kcopt (t), which was formerly computed with respect to the

monomer molar composition ktAA
and the homo-termination rate coefficient ktBB

as

log(kcopt (t)) = f1(t) log(ktAA
)+f2(t) log(ktBB

). The updated parameter value kcopt (t) is

estimated using experimental data to obtain the best representation of the monomer

concentrations in Figure 3.3. The updated reduced model showed reasonable accuracy

when compared with the experimental data reported in [5], as shown in Figure 3.3.

The chain transfer to solvent ratios (Csol
A and Csol

B ) were updated based upon more

recent experimental work over a wider range of operating conditions, as described in

Wei and Hutchinson [47].

In this study, various alternative parameterization of the input trajectories are

considered. Three distinct parameterizations are studied. The three different cases

are given as follows:

• Case 1: Single Constant (3.18)

u1(t) = θ1, u2(t) = θ2θ1, u3(t) = θ3θ1

• Case 2: Exponential starved-feed strategy

u1(t) = θ1 expθ2t, u2(t) = θ3u1(t), u3(t) = θ4u1(t) (3.23)

• Case 3: Independent exponential starved-feed operation

u1(t) = θ1 expθ2t, u2(t) = θ3 expθ4t, u3(t) = θ5 expθ6t (3.24)

The results from the optimization of the updated model for Case 1, Case 2, and Case

3 are presented in the next section of this thesis.
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Figure 3.3: Reduced model predictions (lines) compared to experimental data (dots)
in [5] for BMA concentration (top), STY concentration (middle), and
number-averaged molecular weight Mn (bottom)
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3.2 Optimization Results

The case studies set the initial conditions for monomer and initiator mass feed rates

as used in the experimental study in [5] and shown in Table 3.4.

Table 3.4: Starved feed policy used in Li and Hutchinson [5]

Results
50 : 50

BMA : STY
(wtratio)

Description

mfed
BMA (kg) 2.46× 10−1 Total mass of BMA feed

mfed
STY (kg) 2.46× 10−1 Total mass of STY feed

mfed
TBPA (kg) 9.7× 10−3 Total mass of initiator feed
tf (min) 360 Final batch time

For Case 1 to 3,

• The initial conditions are

xi(0) = 0, i = 1, . . . , 6

• The setpoints are

Mn(kg/mol) = 8

F (BMA mole fraction) = 0.43
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• The input and state constraints are

ui(t) ∈ [0, 0.03], i = 1, 2, 3

x1(t) ∈ [0, 0.03]

x2(t) ∈ [0, 0.03]

x3(t) ∈ [0, 5.0× 10−3]

• The end-point constraint (final mass of polymer) is

mpol(tf )(kg) = 0.474

• Algorithm parameter are

k = 5× 10−3

ε = 1× 10−12

M = 1× 108

µ = 1× 10−1

Simulation Results

The simulation results for Case 2 is shown in Figures 3.4, 3.5, 3.6, and 3.7 for total

number of steps n = 30, 000. These optimization results are obtained starting from

the initial trajectory with constant feeds that match the experimental conditions in

Table 3.4. In other words, the on-line optimization software starts with the initial

inputs for the experiment and improves the profile of the batch in real-time as it

minimizes the time. The simulation time for the 360 minutes (21600 seconds) batch

experiment is 2.59 minutes using a 1.86Ghz Intel Core 2 processor, showing that

on-line implementation of this algorithm is indeed feasible.

The outputs of the system, Mn(kg/mol), F , mass of polymer generated, and total
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mass of reactor content, are presented in Figure 3.4. The subsequent input profiles,

u1, u2, u3, are shown in Figure 3.5. The state trajectories, x1, x2, x3, are displayed

in Figure 3.6. The profiles for x1 and x2 approach their upper bound. Trajectories

for x4, x5, x6 are shown in Figure 3.7. Implementation of the optimization scheme

reduced the batch time by 31%, while maintaining product quality (Mn(kg/mol) and

F ) on target.

Mn and F for Case 1, 2, and 3 are compared in Figures 3.8 and 3.9, respectively.

The trajectories are seen to improve for all three cases. Case 3 has the best profile

with the fastest approach to the Mn setpoint and the greatest reduction in batch

time from 21600 sec to 12600 sec (42% reduction in tf ). This result is expected since

the parameterization in Case 3 contains the most degrees of freedom and flexibility,

especially by the decoupling of initiator and monomer feed rates. The next best result

was for Case 1 at 14600 sec (32% reduction in tf ), followed by Case 2 at 14900 sec.

Case 1 had a slightly lower final batch time which was unexpected as Case 2 has more

flexibility in the input parameterizations.

From the results in this section, the proposed on-line optimization scheme is proven

to be effective, and to reach the objective of meeting the specification for the polymer

while satisfying the constraints and reducing the batch time. The effectiveness of the

optimization scheme is justified as all the setpoints are met for the molecular weight,

copolymer composition, states, input, endpoint constraint for final polymer produced

and mass of reactor content. Further details are given in the recent publication

describing this work [48].
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Figure 3.4: Profiles for Mn (kg/mol), F (BMA mole fraction), mass of polymer gener-
ated (kg) and total mass of reactor content (kg) with Case 2 dynamic op-
timization for ui(t) ∈ [0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈
[0, 5.0 × 10−3], k = 5 × 10−3; base case model represents experimental
setup with constant input
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5 × 10−3; base case model represents experimental setup with constant
input



CHAPTER 3. REAL-TIME OPTIMIZATION SCHEME 50

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5

6

7

8

9

Time (sec)

M
n (

kg
/m

o
l)

Case 1

Case 2

Case 3

Base Case

Setpoint

Figure 3.8: Mn real-time optimization for Case 1, 2 and 3 with ui(t) ∈ [0, 0.03], i =
1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k = 5 × 10−3; base
case model represents experimental setup with constant input



CHAPTER 3. REAL-TIME OPTIMIZATION SCHEME 51

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (sec)

F
 (

B
M

A
 m

o
le

 f
ra

ct
io

n
)

Case 1

Case 2

Case 3

Base Case

Setpoint

Figure 3.9: F real-time optimization for Case 1, 2 and 3 with ui(t) ∈ [0, 0.03], i =
1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k = 5 × 10−3; base
case model represents experimental setup with constant input



CHAPTER 3. REAL-TIME OPTIMIZATION SCHEME 52

3.3 Sensitivity Analysis

It is important to know the extent of robustness of an optimization routine used

in a process. Before incorporating the extended Kalman filter (see Chapter 4), a

set of simulations was performed to test the outcome of varying the parameters and

boundaries of the optimization scheme.

Simulations in this section were done using Case 2. Case 2 allows for exponential

feeding in starved-feed strategy which means flexibility in the input and monomer feed

rates so that the optimization profiles can be improved. This improvement translates

to enhanced product quality, better reactor efficiency, and also shorter reaction time.

The same initial conditions, setpoints, constraints and algorithm parameters as in the

previous section were used, unless otherwise specified.

The effect of the number of time interval, adaptive gain, BMA and STY constraint

relaxation, and initiator constraint tightening on the optimization scheme were an-

alyzed. A summary of the entire sensitivity analysis is presented at the end of this

chapter.

1. Effect of number of time intervals, n: For a higher value n = 40000,

n = 30000 and a lower value n = 20000, the simulations in Figure 3.10 show

that increasing the number of iterations for a fixed time leads to faster ap-

proach to the setpoint and reduction in the batch time. The greater the num-

ber of steps, the shorter the time interval for updating the profile, resulting in

a faster convergence of the optimization routine as shown in the result in Table

3.5. However, this improvement in batch time came at the cost of increased

computation time. For n = 40000, n = 30000 and n = 20000, the 360 minutes

simulation took 4.07 minutes, 2.59 minutes and 2.02 minutes, respectively, using
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a 1.86Ghz Intel Core 2 processor.

Table 3.5: The effect of varying the number of intervals n on final batch time for Case
2

n tf (sec)
40000 14000
30000 14900
20000 16200

2. Effect of adaptive gain, k: For a 50% increase in the adaptive gain k =

0.0075, k = 0.005 and for a 50% decrease in the adaptive gain k = 0.0025,

the simulations in Figure 3.11 show that there is a limit to which the batch

can be improved by increasing the gain. The projection algorithm in (3.22)

ensures that the cost decreases until the gradient is zero; so at some point,

increasing the adaptive gain k will no longer have an effect on the rate of

change of the parameters. Hence, the slight variation in the state profiles found

with changing the gains lead to approximately the same molecular weight and

copolymer composition trajectories. Consequently, all of the simulations for the

higher two gains (k = 0.0075 and k = 0.005) resulted in equivalent batch times

as summarized in Table 3.6, and k = 0.0025 produced only a slightly longer

batch time.
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Table 3.6: The effect of varying the adaptive gain k on final batch time for Case 2

k tf (sec)
0.0075 14900
0.005 14900
0.0025 15200

3. Effect of relaxing the constraint on x1 and x2: For relaxing the constraints

on x1 and x2 from 0.03 to 0.06, the simulations in Figure 3.12 illustrate similar

profiles for both tests in the state profiles which led to similar molecular weight

and copolymer composition trajectories. Table 3.7 shows approximately the

same final batch time results, despite relaxation of the constraints. This result

was unexpected, as allowing monomer in the batch should permit the batch to

be completed faster. However, since the states (x1 and x2) did not exceed their

upper bound limits at 0.03 to begin with, increasing the x1 and x2 limit to 0.06

resulted in only a very slight improvement to the batch time.

Table 3.7: The effect of relaxing x1 and x2 constraint

x1 = x2 tf (sec)
0.03 14900
0.06 14700

4. Effect of tightening the constraint on x3: Restraining initiator level x3

further from 5 × 10−3 to 5 × 10−4, the simulations in Figure 3.13 and Table

3.8 show that the more relaxed the constraint is on the initiator, the faster

the batch can be completed. This is expected, as the greater the amount of

initiator permitted in a reactor, the greater the amount of free radicals that
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can be produced in the system. As a result, the rate of propagation increases

which leads to a quicker reaction as shown in the state trajectories in Figure

3.13, where the states for x3 =5× 10−3 approach their limit much faster. Also,

more flexibility in controlling Mn is achieved.

Table 3.8: The effect of stiffening the x3 constraint

x3 tf (sec)
5× 10−3 14900
5× 10−4 17100

3.4 Summary

In this chapter, the polymer reactor system used in this project was introduced. The

major updates to the initial model parameters and rate coefficients were presented.

Improvements to the on-line optimization scheme were discussed. Finally, sensitivity

analysis of the on-line optimization routine for the BMA/ STY copolymerization

system was performed to determine robustness of the system.

The objectives of the real-time optimization scheme is to reach the setpoint of

the molecular weight and copolymer composition, while minimizing the batch time.

For all the cases with different parameterizations, the improved optimization scheme

with updated parameters proved successful in achieving these objectives as shown in

the results (Figures 3.4 to Figures 3.9). Case 3 demonstrated the greatest reduction

in the final batch time (42%) since it contained the most flexibility in monomer and

initiator feed rates. This flexibility in feed rates allowed the optimization routine to

adjust the process freely to achieve the desired response.
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Figure 3.10: Mn for n = 40000, n = 30000 and n = 20000 with Case 2 dynamic opti-
mization for ui(t) ∈ [0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈
[0, 5.0× 10−3], k = 5× 10−3
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Figure 3.11: x1, x2, and x3 profiles with Case 2 dynamic optimization for ui(t) ∈
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From the sensitivity analysis, the on-line optimization scheme also met its objec-

tives despite the large alteration of the process parameters. The system showed little

improvement to the final batch time for changes to the adaptive gain k and monomer

(x1 and x2) constraint relaxation. However, a reduction in the final batch time was

seen for increasing the number of time intervals n and also for relaxing the constraint

for initiator x3. n has an impact on the speed of convergence of the optimization

routine, while x3 affects the rate of polymer propagation.

From all the results in this chapter, the real-time optimization routine was shown

to be successful in minimizing the batch time and reaching the molecular weight and

copolymer composition targets. It was also robust to process changes. The input,

state, total mass of reactor content constraints were satisfied and the final mass of

polymer was reached.



Chapter 4

State Estimation with On-Line

Optimization

4.1 Observer Selection

As discussed in the introduction of this thesis, a wide variety of observers exist for

state estimation. However, more indepth research would be required to look at dif-

ferent observers. The extended Kalman filter was chosen for state estimation for the

following reasons:

• The process initial conditions are known for this problem. Although it is gen-

erally recognized that EKF does not provide good estimates if the estimated

initial conditions are far from the actual ones, this is not the case in this work.

• Nonlinearity of the process.

• Ease of implementation.

61
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• Possibility to include unknown parameters.

• The EKF has been proven to be appropriate for on-line implementation (see

Chapter 2 for further elaboration).

The extended Kalman filter is a suitable observer for the process presented in this

thesis. As elaborated in Chapter 2, the most prevalent Kalman filtering technique in

Advanced Process Control is the discrete-time filter due to required implementation

in a digital computer. Continuous-time system dynamics are often discretized and im-

plemented with discrete-time extended Kalman filter due to possible lack of adequate

computational power needed to integrate the system dynamics with other EKFs [7].

This work, however, uses a hybrid EKF which is also known as a continuous-discrete

EKF.

The hybrid EKF is designed for systems with continuous-time dynamics and

discrete-time measurements [7]. In reality, processes are generally continuous so the

hybrid EKF is beneficial as errors that arise from assumptions and approximations

from converting continuous-time models to discrete-time equivalents are avoided. An-

other advantage of the hybrid EKF is that the measurements are discrete in nature,

which is crucial as digital computers sample in discrete-time.

4.2 Hybrid Extended Kalman Filter

The nonlinear dynamic system with continuous-time dynamics and discrete-time mea-

surements is modeled as [7]

ẋ = f(x, u, q, t)

zk = hk(xk, rk) (4.1)
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As presented in the case of the Kalman filter in (2.1), the noise processes q(t)

and rk for the hybrid EKF, are both assumed to be zero-mean, independent, white

process noise with covariance matrices Q and Rk, respectively. The state observer

seeks to reconstruct the states ẋ from the sensor measurements zk .

Hybrid EKF Algorithm

For the process in (4.1), the same procedure followed for the KF and EKF (2.3)

is used in choosing initial conditions for the hybrid EKF. The initial conditions for

the hybrid EKF process are initial state x̂+
0 and covariance P+

0 :

x̂+
0 = 0 (4.2)

P+
0 = diag[1e−7, 1e−7, 1e−8, 1e−7, 1e−7] (4.3)

The next two steps are crucial in the filter construction.

Estimation Step

The estimation stage where the state and covariance are propagated between

observations from time (k − 1)+ to k−, with the corresponding equation as

˙̂x = f(x̂, u, 0, t) (4.4)

Ṗ = AP + PAT +GQGT (4.5)

with A and G evaluated at the state estimate as A = ∂f
∂x
|x̂ and G = ∂f

∂q
|x̂. The inte-

gration starts with x̂ = x̂+
k−1 and P = P+

k−1 and ends with x̂ = x̂−
k

and P = P−
k . The

R term is not included in the equation for Ṗ since the integration of P is between

measurements, at the time when no measurement is available.
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Update Step

The correction step occurs when measurement is available at time k. The mea-

surement zk is then incorporated into the state estimate:

1) Update Gain Matrix

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (4.6)

2) Update State Estimate

x̂+
k = x̂−k +Kk[zk − hk(x̂−k , r0, tk)] (4.7)

3) Update Error Covariance

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkHkRkV
T
k K

T
k (4.8)

with Hk = ∂hk

∂xk
|x̂− and Vk = ∂hk

∂rk
|x̂− . The nominal measurement noise r0 is zero

initially.

4.2.1 System Dynamics with Hybrid EKF

For the butyl methacrylate and styrene (BMA/ STY) solution free-radical copoly-

merization system, all six states (x1-x6) of the system are to be estimated. In the

problem presented in Chapter 3, it was assumed that all the states were available for

measurement. Hence, state variable measurements x1 to x6 were sent to the optimizer

to update the control action. However, this is not the case for the actual process.

The sixth state (x6) must be estimated for the calculation of the number-averaged

molecular weight Mn, and is dependent on x1 through x5 which are assumed to be

observed. Therefore, only the first five states are reconstructed using the hybrid EKF.

Figure 4.1 compares the former problem description in Chapter 3 to the current one.
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Figure 4.1: Distinction between the former problem description in Chapter 3 and the
present one
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Following (4.1), the nonlinear system equations to be reconstructed using the hybrid

EKF are

dx1

dt
= u1(t)− x1

(
kpAA

λAo (t) + kpBA
λBo (t)

)
+ q1 (4.9a)

dx2

dt
= u2(t)− x2

(
kpBB

λBo (t) + kpAB
λAo (t)

)
+ q2 (4.9b)

dx3

dt
= u3(t)− kdx3(t) + q3 (4.9c)

dx4

dt
= x1

(
kpAA

λAo (t) + kpBA
λBo (t)

)
+ q4 (4.9d)

dx5

dt
= x2

(
kpBB

λBo (t) + kpAB
λAo (t)

)
+ q5 (4.9e)

The definitions for (3.1) are also applicable for (4.9).

It is assumed that two measurements are available, z1 and z2. The observation equa-

tions that relate to the states are

z1 = (x1 + x2) + r1 (4.10a)

z2 = (x4 + x5) + r2 (4.10b)

z1 is assumed to be inferred by infra-red (IR) spectroscopy and z2 is deduced from

the equation

z2 =

∫ T

0

(u1 + u2)dt− (x1 + x2) (4.11)

= (x4 + x5) (4.12)

To estimate the state x3, two assumptions were made 1) the initiation coefficient

kd is known perfectly, and 2) there is no uncertainty or noise associated with the

measurement of u3. With these assumptions, the hybrid EKF reconstructs x3 from
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the system dynamic equation in (4.1):

dx3

dt
= u3(t)− kdx3(t) + q3

The output of the process equations (4.9 - 4.10) were used to estimate x6, with the

system equations as

dx6

dt
= V (t)Rµ0(t) (4.13)

4.2.2 Filter Design Parameters and Analysis

Design parameters were chosen for the hybrid EKF following theoretical and practical

consideration as outlined in this section. Values for the measurement noise covariance

R, initial error covariance P0, sensor measurement zk are given by

P0 = diag[1e−7, 1e−7, 1e−8, 1e−7, 1e−7]

R = 0.012I4x4

zk = Hk +
√
R(δ2x1)

where I is the identity matrix and δ is the random noise matrix generated by Matlab.

As discussed in Chapter 2, the choice of P0 depends on how well the initial states

(x0) are known. The greater the confidence in the initial state values, the closer

the covariance matrix would be to zero. And as mentioned in Chapter 3, the initial

states are all zero xi(0) = 0, i = 1, . . . , 6. For this reason, P0 was selected to be

very close to zero . The system dynamics (4.9) were left in the continuous state for

implementation with the hybrid EKF; thus, errors that arise from discretization were

avoided. Following the Kalman Filter Tuning Process in Figure 2.3, it is assumed

that the uncertainty in the system is introduced by noise in the measurement; thus a



CHAPTER 4. STATE ESTIMATION WITH ON-LINE OPTIMIZATION 68

large noise covariance R was chosen so that the state estimate depends more on the

system dynamics. The measurements are assumed to be corrupted with random noise

of zero-mean structure, which is usually the case for the noise pattern of most systems.

Hybrid EKF Analysis

The parameter values were incorporated into the hybrid EKF algorithm. The

system was simulated for all six states (x1 - x6) using the same condition as in section

3.2 of Chapter 3. The results with their error analysis as well as the molecular weight

Mn and copolymer composition F plots were generated.

The hybrid EKF reconstructs the states successfully as shown in Figures 4.2

through 4.8 with all estimation errors less than 4× 10−4, which also results in precise

estimates of molecular weight and copolymer composition.

4.3 Filter Implementation with Optimization

As mentioned earlier in this chapter, the results shown in Chapter 3 assumed that all

six states are available for measurement through simulation of the closed-loop system

of the process model. Only two measurements exist in reality and these two measure-

ments (4.10) are now extracted from the process model and sent to the optimization

software. As each measurement becomes available, it is sent to the hybrid EKF for

reconstruction of the first five states from which the sixth state is calculated. An

ordinary differential-equation solver package in Fortran, ODESSA [49], was used to

compute the first-order sensitivities. The new estimates from the observer were used

as initial conditions for the gradient estimator. The steepest descent approach (??)

was used for the update law and the computed inputs at that point are applied to
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the process until new measurements are received from the batch. Essentially, the

gradient information was used to calculate the next control move and the parameters

were incremented in the direction of the gradient.

Simulation Results

The simulation results for Case 2 showing the hybrid EKF implementation with

the real-time optimization technique are compared with results without the hybrid

EKF state estimates as shown in Figures 4.9, 4.10, 4.11, and 4.12. These optimization

results start with the initial trajectory matching the experimental conditions in Table

3.4. Again, the simulation was carried out for the same conditions as that without

the hybrid EKF in Chapter 3 to provide an unbiased comparison.

Figure 4.9 represents the outputs of the system, Mn(kg/mol), F , mass of polymer

generated, and total mass of reactor content. The corresponding input profiles, u1,

u2, u3, are shown in Figure 4.10. The state trajectories, x1, x2, x3, are presented in

Figure 4.11; and trajectories for x4, x5, x6 are shown in Figure 4.12.

A comparison of Mn and F for Case 1, 2, and 3 are displayed in Figures 4.13 and

4.14, respectively. For all three cases the profiles showed improvement in the reaction

time. Case 3 produced the most reduction in batch time, followed by Case 1, then

Case 2 with times of 11300 sec, 13600 sec and 13900 sec, respectively.

These results are better than those presented in Chapter 3 for the case of the

optimization without state estimation. In fact, the proposed hybrid EKF with real-

time optimization reduces the final batch time further by 1100 sec compared to using

only the dynamic optimization scheme. This improvement is due to the fact that the

optimization is not at the true optimum and the incorporation of the hybrid EKF
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finds a better path for the optimization. From view of the simulation profiles, the

hybrid EKF with real-time optimization tracks the true state estimates effectively.

4.3.1 Robustness Analysis for Filter Implementation with

Optimization

To evaluate the robustness of the system with the newly reconstructed states, the

system was perturbed to introduce model mismatch with respect to change in pa-

rameters used to calculate the sensitivities of the proposed dynamic optimization

schemes. Given that the model parameters are not perfect, disturbances were intro-

duced to the system by varying the values of the parameters. Four different scenarios

were tested for Case 2:

1. Varying reactivity ratio, rA: The reactivity ratio is known to affect poly-

merization rate and hence also influences polymer composition. The further

the reactivity ratio is from unity, the more difficult it is to control copolymer

composition. In fact, the extent of composition drift increases with increasing

rA/rB [50]. For this reason, a wide range of reactivity ratios was chosen from

50%rA to 150%rA, to evaluate how the optimization scheme would handle the

perturbation. The results are displayed in Figures 4.16 and 4.17. Discussions

for all the test results are at the end of this section and the final batch time is

presented in Table 4.1.

2. Varying propagation rate coefficient, kpAA
: The propagation rate coeffi-

cient is also know to have an effect on the polymerization rate, thus the polymer

composition. Simulations were done for 80%kpAA
and 120%kpAA

and the results
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Figure 4.9: Profiles for Mn (kg/mol), F (BMA mole fraction), mass of polymer gener-
ated (kg) and total mass of reactor content (kg) with Case 2 dynamic op-
timization and optimization with hybrid EKF state estimates for ui(t) ∈
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were compared to the true kpAA
value in Figures 4.20 and 4.21.

3. Varying transfer to solvent ratio, Csol
A : The transfer to solvent ratio does

not have a great impact on molecular weight or copolymer composition, despite

the relatively large change in the parameter values as illustrated in Figures 4.24

and 4.25 for 80%Csol
A and 160%Csol

A .

4. Varying initiator efficiency, f : The fraction of radicals produced from initia-

tor decomposition that effectively initiates polymerization, f , was varied. The

initiator efficiency has an effect on the rate of production of new polymer chains

which is needed to compute the molecular weight. Most initiators have values

of f between 0.3 and 0.8 [51]. Values were chosen for f at 0.35 and at 0.75.

The simulation results are shown in Figures 4.28 and 4.29.

Table 4.1: Results from perturbing the system by varying model parameters for hy-
brid EKF state estimates implemented with real-time optimization scheme.
The % reduction in batch time is compared to the nominal value from the
experimental results

Varied model parameters
Final batch time % reduction Cost function

tf (sec) in batch time (105)
Case 2 - True parameters 13800 36 7.8300

50%rA 13400 38 8.6800
150%rA 12000 44 7.4100

80%kpAA
12800 41 7.6100

120%kpAA
13600 37 7.9900

80%Csol
A 13800 36 8.0000

160%Csol
A 13600 37 7.3900

f = 0.35 9730 55 13.100
f = 0.75 12900 40 8.0300
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Simulation Results

Effect of Varying rA

As shown in Figures 4.16 and 4.17, the reactivity ratio affects molecular weight

and copolymer composition. The further the reactivity ratio is from unity, the more

difficult it is to control the copolymer composition. This effect is seen for 50%rA in

Figure 4.17. F exceeds its target slightly and the optimization scheme handles the

deviation effectively but at the cost of a reduction in molecular weight as shown in

Figure 4.16. The higher reactivity ratio (150%rA) produced a 44% reduction in the

final batch time, while 50%rA had 38% reduction compared to Case 2 at 36% which

was simulated with true parameter values. However, Case 2 without system pertur-

bation through varying parameter approached the setpoint faster than the 50%rA

case. This result is justified by the cost function (3.14) value for 50%rA as shown in

Table 4.1. As discussed in Chapter 3, the objective of the on-line optimization is to

minimize the cost function so the lowest possible value of the cost function is desired.

Corresponding inputs (u1 - u3) and state profiles (x1 - x3) are shown in Figures 4.18

and 4.19, respectively.

In terms of the actual process and knowledge about the kinetics of the system,

Figure 4.15 demonstrates how the system responds to changing reactivity ratios.

The system under study operates at a copolymer composition of 42% (represented

with the line across Figure 4.15) and functions to maintain this copolymer composi-

tion by controlling the ratio of the two monomers BMA and STY at fm = 0.44, as

shown by the arrow at Fp = 0.42. However, when a wrong reactivity ratio is used,

rA = 0.21(50%rA), the system still tries to match the copolymer composition of BMA

at 42%. Therefore, the optimization scheme has to adjust the ratio of monomers in
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fraction by fm = x1
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the reactor to 0.50 (as shown in the arrow at rA = 0.21(50%rA)) by changing the

relative flow rate of BMA and STY through the manipulation of u1, u2 and u3 to

maintain Mn on target.

Effect of Varying kpAA

Figures 4.20 and 4.21 show that the propagation rate coefficient influences molecular

weight and copolymer composition only slightly. As the propagation rate constant

increases, the rate of polymer chain growth increases. This is shown for a change of

120%kpAA
and the opposite effect is displayed for 80%kpAA

. The corresponding state

and input profiles are displayed in Figures 4.23 and 4.22

The propagation rate coefficients kpAA
and kpAB

are linked through the reactivity

ratio (see Table 3.2). Therefore, changing kpAA
will affect kpAB

. Increasing kpAA
will

increase the reaction rate and the reaction rate affects the relative rate of consump-

tion of the two monomers BMA and STY as shown in (3.1a) and (3.1b), which also

affects the value of Mn(kg/mol) and F .

Effect of Varying Csol
A

Simulation results in Figures 4.24 and 4.25 show that the optimization mechanism is

efficient in responding to model mismatch of using the wrong Csol
A as it directs the

profiles to their respective setpoints. The equivalent input profile is shown in Figure

4.26. Unlike the case of varying rA and kpAA
, Csol

A does not affect x1 or x2 (see Figure

4.27) but it influences the molecular weight Mn(kg/mol).

Even though the molecular weight for the process is predicted, the real-time op-

timization with hybrid EKF estimates showed adequate control of the process for
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varied transfer to solvent ratio over a wide range from 80%Csol
A to 160%Csol

A . The

expected behavior for varying chain transfer to solvent is that increasing Csol
A should

decrease Mn causing the system to respond by decreasing u3. However, the opposite

behavior is found which is justified since x6 is predicted without any experimental

measure. Therefore, there should be no difference in profiles as shown in the final

batch times which were approximately the same for both transfer to solvent variations

that matched the original Case 2 value with true parameters.

Effect of Varying f

The profiles for initiator efficiencies at 0.35 and at 0.75 is illustrated in Figure 4.29.

Initiator efficiency f affects rate of radical generation from initiation through the

term in (3.8) and, hence, the rate of generation of new polymer chains. Therefore,

increasing f initiates more chains in the system leading to an increase in the reaction

rate. This effect is shown by having a very high initiator efficiency at 0.75 which should

lead to more chains and hence a decrease in molecular weight; instead it translated

to an overshoot in Mn beyond the setpoint as seen in Figure 4.28. However, the

optimization scheme brought back the molecular weight to the setpoint towards the

end of the batch.

Changing f has a great impact on how much initiator is fed to the system as

shown in the u3 profile in Figure 4.30 and x3 profile in Figure 4.31. At the beginning

of the batch, the system feeds less initiator for f = 0.75. Intuition would suggest that

for every mole of initiator fed, more chains are generated which leads to an increase

in the reaction rate and also to an increase in the number of chains in the system.

To counteract this increase, less initiator is therefore needed.
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As the batch progresses, Mn(kg/mol) starts to increase rapidly and the system

responds to counteract the increase by a gradual raise in the feed rate of x3 (the effect

can be seen in the plateau of Mn(kg/mol)). Towards the end of the batch, however,

the system feeds large amounts of initiator (see Figure 4.30) to force Mn(kg/mol)

back to its setpoint.

For f = 0.35, the system feeds more initiator at the start of the batch. This is

expected since more moles of initiator are necessary to generate chains. The raise

in x3 increases the rate of initiation as shown in (3.8) and this affects the rate of

chain generation (3.7). As a result, x6 (Figure 4.32) increases. The system responds

to these changes early in the batch by keeping the molecular weight for f = 0.35

relatively low as shown in Figure 4.28.

It is worth noting that the result for f = 0.35 showed the greatest reduction in

reaction time at 55% from the nominal value. However, it had the greatest cost func-

tion value as shown in Table 4.1. Part of the objective of the on-line optimization is

to reach the target for molecular weight as the cost function is minimized. Therefore,

the fact that f = 0.35 results in the greatest cost function value is justified by the

results shown in Figure 4.28, since it produced the lowest molecular weight profile

compared to all the other cases.

4.4 Summary

This chapter presented the structure of the state estimation technique that was in-

corporated into the BMA/ STY copolymerization on-line optimization system. The

background for the hybrid extended Kalman filter was discussed and comparisons

were made to compare the filter application to the real-time optimization scheme of



CHAPTER 4. STATE ESTIMATION WITH ON-LINE OPTIMIZATION 90

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7

8

9

Time (sec)

M
n (

kg
/m

o
l)

50% r
A

50% r
A
 (Hybrid EKF)

True r
A

150% r
A

150% r
A
 (Hybrid EKF)

Mn setpoint

Figure 4.16: Mn from state estimates of hybrid EKF incorporated with real-time
optimization for Case 2 for 50%rA and 150%rA, with ui(t) ∈ [0, 0.03], i =
1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = k = 5× 10−3.
(Hybrid EKF) denotes the profile from the observer and all others are
from the true process
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Figure 4.17: F from state estimates of hybrid EKF incorporated with real-time op-
timization for Case 2 for 50%rA and 150%rA, with ui(t) ∈ [0, 0.03], i =
1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = 5× 10−3. (Hy-
brid EKF) denotes the profile from the observer and all others are from
the true process
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Figure 4.18: u1, u2, u3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for 50%rA and 150%rA, with ui(t) ∈
[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5× 10−3
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Figure 4.19: x1, x2, x3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for 50%rA and 150%rA, with ui(t) ∈
[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5 × 10−3. (Hybrid EKF) denotes the profile from the observer and all
others are from the true process
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Figure 4.20: Mn from state estimates of hybrid EKF incorporated with real-time opti-
mization for Case 2 for 80%kpAA

and 120%kpAA
, with ui(t) ∈ [0, 0.03], i =

1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = k = 5× 10−3.
(Hybrid EKF) denotes the profile from the observer and all others are
from the true process
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Figure 4.21: F from state estimates of hybrid EKF incorporated with real-time opti-
mization for Case 2 for 80%kpAA

and 120%kpAA
, with ui(t) ∈ [0, 0.03], i =

1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = 5× 10−3. (Hy-
brid EKF) denotes the profile from the observer and all others are from
the true process



CHAPTER 4. STATE ESTIMATION WITH ON-LINE OPTIMIZATION 96

0 2000 4000 6000 8000 10000 12000 14000
1

1.5

2

2.5

3
x 10

−5

u 1

80% k
pAA

True k
pAA

120% k
pAA

0 2000 4000 6000 8000 10000 12000 14000
1

1.5

2

2.5

3
x 10

−5

u 2

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5
x 10

−6

Time (sec)

u 3

Figure 4.22: u1, u2, u3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for 80%kpAA

and 120%kpAA
, with ui(t) ∈

[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5× 10−3
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Figure 4.23: x1, x2, x3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for 80%kpAA

and 120%kpAA
, with ui(t) ∈

[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5 × 10−3.(Hybrid EKF) denotes the profile from the observer and all
others are from the true process
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Figure 4.24: Mn from state estimates of hybrid EKF incorporated with real-time opti-
mization for Case 2 for 80%Csol

A and 160%Csol
A , with ui(t) ∈ [0, 0.03], i =

1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = 5× 10−3. (Hy-
brid EKF) denotes the profile from the observer and all others are from
the true process
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Figure 4.25: F from state estimates of hybrid EKF incorporated with real-time opti-
mization for Case 2 for 80%Csol

A and 160%Csol
A , with ui(t) ∈ [0, 0.03], i =

1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = 5× 10−3. (Hy-
brid EKF) denotes the profile from the observer and all others are from
the true process
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Figure 4.26: u1, u2, u3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for 80%Csol

A and 160%Csol
A , with ui(t) ∈

[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5× 10−3
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Figure 4.27: x1, x2, x3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for 80%Csol

A and 160%Csol
A , with ui(t) ∈

[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5 × 10−3. (Hybrid EKF) denotes the profile from the observer and all
others are from the true process
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Figure 4.28: Mn from state estimates of hybrid EKF incorporated with real-time op-
timization for Case 2 for f = 0.35 and f = 0.75, with ui(t) ∈ [0, 0.03], i =
1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = 5× 10−3. (Hy-
brid EKF) denotes the profile from the observer and all others are from
the true process
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Figure 4.29: F from state estimates of hybrid EKF incorporated with real-time opti-
mization for Case 2 for f = 0.35 and f = 0.75 , with ui(t) ∈ [0, 0.03], i =
1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0× 10−3], k = 5× 10−3. (Hy-
brid EKF) denotes the profile from the observer and all others are from
the true process
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Figure 4.30: u1, u2, u3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for f = 0.35 and f = 0.75 , with ui(t) ∈
[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5× 10−3
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Figure 4.31: x1, x2, x3 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for f = 0.35 and f = 0.75 , with ui(t) ∈
[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5 × 10−3. (Hybrid EKF) denotes the profile from the observer and all
others are from the true process



CHAPTER 4. STATE ESTIMATION WITH ON-LINE OPTIMIZATION 106

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

x 4(t
)

f = 0.35
f = 0.35 (Hybrid EKF)
True f
f = 0.75
f = 0.75 (Hybrid EKF)

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

x 5(t
)

0 2000 4000 6000 8000 10000 12000 14000
0

0.02

0.04

0.06

0.08

Time (sec)

x 6(t
)

Figure 4.32: x4, x5, x6 from state estimates of hybrid EKF incorporated with real-
time optimization for Case 2 for f = 0.35 and f = 0.75 , with ui(t) ∈
[0, 0.03], i = 1, 2, 3, x1(t) = x2(t) ∈ [0, 0.03], x3(t) ∈ [0, 5.0 × 10−3], k =
5 × 10−3. (Hybrid EKF) denotes the profile from the observer and all
others are from the true process
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the actual process in an open-loop and closed-loop form and also with model mis-

match.

For the open-loop comparison, the hybrid EKF estimates were found to closely

match the true states of the system (Figures 4.2 to 4.7). In addition, the estimated

molecular weight and copolymer composition from the filter tracked the actual ones

of the process (Figures 4.8). Overall, the error from the state estimates were all below

4× 10−4.

For the closed-loop comparison, the observer implemented performed effectively.

All of the constraints on the system were satisfied as the limitations placed on the

input, states, total mass of reactor content, and final mass of polymer produced were

not exceeded. Furthermore, the estimated molecular weight and copolymer compo-

sition reached their target. All in all, the observer was successful in reconstructing

the system states (Figures 4.11 and 4.12); tracking the inputs (Figure 4.10); esti-

mating the desired polymer properties (Figure 4.9); and it even minimized the final

batch time further by 1100 sec from the results with only the dynamic optimization

in Chapter 3.

The robustness analysis of the process with the hybrid EKF estimates and on-

line optimization subject to model mismatch introduced by incorporating incorrect

parameters showed that the system was able to perform adequately for most of the

perturbations. Of all the tests conducted, the process achieved the best control

for varying the chain transfer to solvent constant 80% above and below the true

value (Figures 4.24 to 4.27). Appropriate adjustments were made to the flow rate of

monomers and input profiles to reach the target for molecular weight and copolymer

composition for ± 50% rA (Figures 4.16 to 4.19) as well as for 80%kpAA
and 120%kpAA
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(Figures 4.20 to 4.23). The same adequate process control was shown for all the cases

with initiator efficiency f at 0.35 and most of the cases of f at 0.75, except for

molecular weight tracking (Figures 4.28 to 4.31).

Overall, none of the constraints on the states and inputs were violated for all of

the cases by using incorrect parameters. Therefore, the system is considered to be

sufficiently robust, except for very high efficiency factors (f at 0.75) where it exceeded

the target for the molecular weight.



Chapter 5

Conclusions and Future Work

State estimation is crucial for most processes in the chemical industry as system

states are not always available for measurement or may not be measurable. There is

great incentive to improve observer design to obtain effective and applicable methods.

In this research project, the on-line optimization routine was improved upon and

sensitivity analysis of the system was performed. In addition, a hybrid extended

Kalman filter was developed for a butyl methacrylate and styrene semi-batch free-

radical copolymerization process subject to on-line optimization control algorithm.

The entire thesis is summarized in Section 5.1 and recommendations for future

work are presented in Section 5.2

5.1 Summary of Thesis

In Chapter 2, the importance of state estimation was addressed. Analysis of Kalman

filtering techniques for linear and nonlinear systems were presented. It was found

that the process and measurement noise structures were important for tuning the

109
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Kalman filter to achieve desired performance. The literature review of application

of Kalman filtering to polymerization systems showcased the difficulties in on-line

monitoring, such as the need for extensive calibration of equipment and the inabil-

ity to measure certain polymer properties. However, state estimation coupled with

on-line optimization is shown to overcome many of these challenges and obstacles.

The literature review discussed cases of successful observer implementation with real-

time optimization. The on-line optimization techniques presented in the review were

different from the work in this thesis. For this research, the existing observer was

directly incorporated in the on-line optimization scheme as opposed to coupling the

state estimator with a control scheme for tracking purposes. The present optimiza-

tion scheme is easier to implement and uses feedback measurements to update the

remaining profile of the batch.

The background of the polymerization process studied and details of the real-

time optimization scheme are discussed in Chapter 3. The technique incorporated

is on-line optimization, a feedback control mechanism that uses process information

to continually change the control action. The cost function was formulated to meet

the system constraints as batch time is minimized, while maintaining the molecular

weight and copolymer compositions at their target. The improvements made to the

real-time optimization routine are also presented.

The system was found to be robust to various tuning parameters. From the

sensitivity analysis in Chapter 3, it was discovered that the most suitable way to

reduce the batch time for the process was to increase the number of time intervals

for optimization which resulted in a prolonged simulation time.

The significance of observer design and implementation with on-line optimization
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are highlighted in Chapter 4. The hybrid EKF as an observer was shown to recon-

struct the states of the process effectively as it tracked the true states of the system.

In addition, all the constraints for the state, input, total reactor content and final

mass of polymer were satisfied. The targets for molecular weight and copolymer com-

position were also reached. In light of model mismatch with incorrect parameters, the

system with observer and real-time optimization was found to be robust, especially

for great variations in chain transfer to solvent ratio. The observer connected with

the on-line optimization scheme performed effectively for most of the cases studied.

The best results were obtained for variations in model parameters for reactivity ra-

tio, propagation rate coefficient, and low initiator efficiency. However, the setpoint

for molecular weight was exceeded for very high initiator efficiency. This result was

expected as the process bases its response on the estimation of molecular weight and

has no knowledge of the true value. Therefore, without availability of a sensor to mea-

sure molecular weight on-line, the optimization software is not capable of perfectly

controlling molecular weight in the presence of model mismatch.

As shown in Chapter 4, the proposed observer coupled with the real-time opti-

mization was successful in controlling copolymer composition and molecular weight

for the process without model mismatch. With model mismatch, the process per-

formed efficiently for all the cases except for varied initiator efficiency factor. It was

noted that on-line optimization scheme was highly sensitive to the efficiency factor.

5.2 Recommended Future Research

The first and foremost recommendation for this project is to include on-line estimation

of initiator efficiency in the observer design. To do this, the initiator efficiency should
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be considered as an extra state of the system, without having any dynamics. Process

noise at high frequency should be added for this additional state to excite the system.

Once the states of the system are successfully reconstructed by the hybrid EKF, the

hybrid EKF should be implemented with the on-line optimization routine. With real-

time estimation of initiator efficiency, the on-line optimization scheme should control

the molecular weight more effectively.

Another interesting extension of this work would be to replace the process model of

the process with an actual process. For the proposed project, measurement informa-

tion would be obtained from on-line infra-red (IR) spectroscopy. These measurements

of butyl methacrylate and styrene combined together would be inputs to the hybrid

EKF developed in Chapter 4. The observer would then reconstruct the states of the

system, given the measurement and process information. The on-line optimization

routine presented in Chapter 3 coupled with the observer would then be used to con-

trol the copolymer composition and molecular weight, while reducing the reaction

time.

Other areas of study include implementing a different observer to compare the

system performance and incorporating a more complex kinetics of the process that

considers styrene thermal initiation, methacrylate depropagation and penultimate

chain growth kinetics. Predici software could be used to develop a more complex

kinetics of the process which would replace the existing process model.
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