
USING COMPLEXITY, COUPLING, AND COHESION METRICS

AS EARLY INDICATORS OF VULNERABILITIES

by

Istehad Chowdhury

A thesis submitted to the Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of Masters of Science in Engineering

Queen’s University

Kingston, Ontario, Canada

(September 2009)

Copyright © Istehad Chowdhury, 2009

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l’édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-65165-0
Our file Notre référence
ISBN: 978-0-494-65165-0

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.
.

AVIS:

L’auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l’Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.

ii

Abstract

Software security failures are common and the problem is growing. A vulnerability is a

weakness in the software that, when exploited, causes a security failure. It is difficult to detect

vulnerabilities until they manifest themselves as security failures in the operational stage of the

software, because security concerns are often not addressed or known sufficiently early during the

Software Development Life Cycle (SDLC). Complexity, coupling, and cohesion (CCC) related

software metrics can be measured during the early phases of software development such as design

or coding. Although these metrics have been successfully employed to indicate software faults in

general, the relationships between CCC metrics and vulnerabilities have not been extensively

investigated yet. If empirical relationships can be discovered between CCC metrics and

vulnerabilities, these metrics could aid software developers to take proactive actions against

potential vulnerabilities in software.

In this thesis, we investigate whether CCC metrics can be utilized as early indicators of

software vulnerabilities. We conduct an extensive case study on several releases of Mozilla

Firefox to provide empirical evidence on how vulnerabilities are related to complexity, coupling,

and cohesion. We mine the vulnerability databases, bug databases, and version archives of

Mozilla Firefox to map vulnerabilities to software entities. It is found that some of the CCC

metrics are correlated to vulnerabilities at a statistically significant level. Since different metrics

are available at different development phases, we further examine the correlations to determine

which level (design or code) of CCC metrics are better indicators of vulnerabilities. We also

observe that the correlation patterns are stable across multiple releases. These observations imply

that the metrics can be dependably used as early indicators of vulnerabilities in software.

iii

We then present a framework to automatically predict vulnerabilities based on CCC metrics.

To build vulnerability predictors, we consider four alternative data mining and statistical

techniques – C4.5 Decision Tree, Random Forests, Logistic Regression, and Naïve-Bayes – and

compare their prediction performances. We are able to predict majority of the vulnerability-prone

files in Mozilla Firefox, with tolerable false positive rates. Moreover, the predictors built from the

past releases can reliably predict the likelihood of having vulnerabilities in future releases. The

experimental results indicate that structural information from the non-security realm such as

complexity, coupling, and cohesion are useful in vulnerability prediction.

iv

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Dr. Mohammad Zulkernie,

for his all round guidance and advice during my M.Sc. studies. Without his supervision, this

thesis would still be half-baked. His advice often proved helpful beyond my academic life.

I would like to thank Dr. Ahmed E. Hassan and Dr. Ying Zou as the knowledge gained from

their courses helped me to pursue this research topic. I also thank all the members of Queen’s

Reliable Software Technology (QRST) research group for a great time working together and for

numerous thoughtful discussions.

I am grateful to my brother, Imtiaz Chowdhury, and sister-in-law, Syeda Leeza, for their love

and support during the last two years of my stay in Canada. I am indebted to my sister-in-law for

sending delicious food consignments all the way from Toronto to Kingston and making sure that I

do not have many things to worry about other than research. I am also grateful to my loving

parents and sister for staying in constant touch from across the globe and not asking me to visit

them during my M.Sc. study. Thanks to all the great friends in Kingston who accompanied me

during the random escapes from studies.

This research is partially funded by the Natural Sciences and Engineering Research Council of

Canada (NSERC). I thank Stephan Neuhaus of Saarland University, Saarbrücken, Germany for

sharing his dataset on vulnerabilities in Mozilla Firefox and for his suggestions on how to obtain

an updated dataset. I also thank Yonghee Shin of North Carolina State University, USA for taking

the time to answer our queries about her technique of extracting vulnerability data from Mozilla

archives. Moreover, I thank Mr. Shahriar Khan of Queen’s University for his comments on the

statistical analysis.

v

I would like to acknowledge Scientific Toolworks, Inc. at St. George, UT, USA for their

generous four-month extension of the trial license of Understand 2.0, the tool used to

automatically computing the metrics.

vi

Statement of Originality

I hereby certify that all of the work described within this thesis is the original work of the author.

Any published (or unpublished) ideas and/or techniques from the work of others are fully

acknowledged in accordance with the standard referencing practices.

Istehad Chowdhury

September, 2009

vii

Table of Contents

Abstract .. ii

Acknowledgements ... iv

Statement of Originality .. vi

Table of Contents ... vii

List of Figures ... ix

List of Tables ... x

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Overview .. 4

1.3 Contributions ... 9

1.4 Thesis Organization ... 10

Chapter 2 Background and Related Work ... 12

2.1 Complexity, Coupling, and Cohesion Metrics ... 12

2.2 Overview of Statistical and Data Mining Techniques ... 16

2.2.1 Decision Tree .. 16

2.2.2 Random Forests .. 19

2.2.3 Logistic Regression ... 20

2.2.4 Naïve-Bayes .. 21

2.3 Related Work ... 22

2.3.1 Fault Prediction Using Complexity, Coupling, and Cohesion Metrics 22

2.3.2 Vulnerability Prediction Using Complexity and Coupling Metrics 24

2.3.3 Vulnerability Prediction Using Other Metrics and Techniques 25

2.4 Summary .. 26

Chapter 3 Collecting Vulnerability and Metric Data ... 29

3.1 Overview of Mozilla Firefox ... 29

3.2 Mapping Vulnerabilities to Entities ... 33

3.2.1 Extracting Vulnerability Information from MFSA ... 34

3.2.2 Locating the Related Bug Reports in Bugzilla .. 37

3.2.4 Locating the Files with Vulnerability Fixes .. 38

viii

3.2.5 An Alternative Approach for Mapping Vulnerabilities to Entities 40

3.3 Computing Complexity, Coupling, and Cohesion Metrics .. 41

3.4 Tool Implementation .. 42

3.5 Summary .. 44

Chapter 4 Experimental Analysis of the Hypotheses ... 45

4.1 Experiments to Test the Hypotheses .. 45

4.1.1 Experiment 1: Associating Vulnerability with Complexity (H1) 47

4.1.2 Experiment 2: Associating Vulnerability with Coupling (H2) 49

4.1.3 Experiment 3: Associating Vulnerability with Cohesion (H3) 50

4.1.4 Experiment 4: Comparing Correlations of Code and Design-level Metrics (H4) 51

4.1.5 Experiment 5: Analyzing the Consistency of Correlations (H5) 53

4.2 Summary .. 55

Chapter 5 Automatic Prediction of Vulnerabilities .. 57

5.1 Dependent and Independent Variables .. 57

5.2 Prediction Performance Measures ... 58

5.3 Implementation and Parameter Initialization ... 62

5.4 Need for a Balanced Training Set .. 64

5.5 Results and Discussions ... 66

5.5.1 Prediction Performance of Different Techniques ... 67

5.5.2 Tradeoff between Recall and FP rate .. 71

5.5.3 Next Release Validation ... 74

5.5.4 Comparison of Results with Other Works .. 75

5.6 Summary .. 78

Chapter 6 Conclusion ... 80

6.1 General Conclusions .. 80

6.2 Limitations ... 82

6.3 Future Work ... 83

References .. 86

ix

List of Figures

Figure 1.1: Framework to predict vulnerabilities from CCC metrics .. 8

Figure 2.1: A sample decision tree for vulnerability prediction .. 17

Figure 3.1: A histogram showing the number of vulnerabilities per file in Mozilla Firefox 32

Figure 3.2: A section of the list of vulnerabilities posted in MFSA .. 35

Figure 3.3: An example of a vulnerability report in MFSA ... 36

Figure 3.4: An example of a bug report in Bugzilla .. 38

Figure 3.5: An example Diff page showing the changed files as a result of a bug fix 39

Figure 3.6: An overview of the tool to automatically extract vulnerability data 42

Figure 4.1: Comparison of average correlations of code-level and that of design-level CCC

metrics with vulnerabilities .. 52

Figure 4.2: The correlations of the all the metrics for each release ... 54

Figure 5.1: Mean vs. standard deviation of different prediction measures 69

Figure 5.2: Comparison of F2-measures of different techniques ... 71

Figure 5.3: Plot of recall and F1-measure against FP rate .. 72

Figure 5.4: Plot of recall vs. FP rate .. 73

Figure 5.5: Comparison of our FP rates and Recalls to other studies .. 76

x

List of Tables

Table 1.1: Hypotheses .. 4

Table 2.1: CCC metrics that are hypothesized to indicate vulnerabilities 13

Table 4.1: Information about different Mozilla Firefox releases ... 47

Table 4.2: Correlations between complexity metrics and vulnerabilities 48

Table 4.3: Correlations between coupling metrics and vulnerabilities .. 50

Table 4.4: Correlations between the lack of cohesion metric and vulnerabilities 51

Table 5.1: Confusion matrix .. 59

Table 5.2: Performance of a biased predictor built from imbalanced data set 65

Table 5.3: Prediction performance of different techniques .. 68

Table 5.4: Prediction performance of DT in next release validation ... 75

Table 5.5: Vulnerability prediction results of other studies ... 76

 1

Chapter 1

Introduction

1.1 Motivation

There is an increasing number of critical processes supported by software systems in the

modern world. Think of the current prevalence of air-traffic control and online banking. When

combined with the growing dependence of valuable assets (including human health and wealth, or

even human lives) on the security and dependability of computer support for these processes, we

see that secure software is a core requirement of the modern world. Unfortunately, there is an

escalating number of incidences of software security failures. A security failure is a violation or

deviation from the security policy, and a security policy is “a statement of what is, and what is

not, allowed as far as security is concerned” [8]. WhiteHat Security Inc. found that nine out of ten

websites had at least one security failure when they conducted a security assessment of over 600

public-facing and pre-production websites between January 1, 2006 and February 22, 2008 [28].

The number of security-related software failures reported to the Computer Emergency Response

Team Coordination Center (CERT/CC) has increased five-fold over the past seven years [17].

Security failures in a software system are the mishaps we wish to avoid, but they could not

occur without the presence of vulnerabilities in the underlying software. “A vulnerability is an

instance of a fault in the specification, development, or configuration of software such that its

execution can violate an implicit or explicit security policy” [65]. A fault is an accidental

condition that, when executed, may cause a functional unit to fail to perform its required or

expected function [32, 52]. We use the term ‘fault’ to denote any software fault or defect, and

reserve vulnerability for those exploitable faults which might lead to a security failure. An

Chapter 1. Introduction 2

example of a vulnerability can be improper or insufficient input validation which can lead to a

security failure such as an unauthorized access into a software system.

Vulnerabilities are generally introduced during the development of software. However, it is

difficult to detect vulnerabilities until they manifest themselves as security failures in the

operational stage of the software, because security concerns are not always addressed or known

sufficiently early during the Software Development Life Cycle (SDLC). Therefore, it would be

very useful to know the characteristics of software artifacts that can indicate post-release

vulnerabilities – vulnerabilities that are uncovered by at least one security failure during the

operational phase of the software. Such indications can help software managers and developers

take proactive action against potential vulnerabilities. For our work, we use the term

‘vulnerability’ to denote post-release vulnerabilities only.

Software metrics are often used to assess the ability of software to achieve a predefined goal

[36]. A software metric is a measure of some property of a piece of software. Complexity,

coupling, and cohesion (CCC) can be measured during various software development phases

(such as design or coding) and are used to evaluate the quality of software [25]. The term

software complexity is often applied to the interaction between a program and a programmer

working on some programming task [37]. In this context, complexity measures typically depend

on program size and control structure, among many other factors. High complexity hinders

program comprehension [37]. Coupling refers to the level of interconnection and dependency

between software entities. A goal in software development is to have a low coupling: a

relationship in which one entity interacts with another entity through a stable interface and does

not need to be concerned with the other module's internal implementation. Systems that do not

Chapter 1. Introduction 3

exhibit low coupling might experience difficulties such as change in one entity forcing a ripple of

changes in other entities, entities that are difficult to understand in isolation and entities that are

difficult to reuse or test because dependent modules must be included. Cohesion is a measure of

how strongly-related and focused the various responsibilities of a software entity are [25]. For

example, in object-oriented programming, if the methods that serve a given class tend to be

similar in many aspects, the class is said to have high cohesion. In a highly-cohesive system, code

readability and the likelihood of reuse is increased, while complexity is kept manageable.

Cohesion is decreased if the responsibilities (methods) of a class have little in common and/or

methods carry out many varied activities, often using unrelated sets of data. Numerous studies [5,

13, 21-25, 35, 37, 38, 47, 54, 69, 74] show that high complexity and coupling and low cohesion

make understanding, developing, testing, and maintaining software difficult, and, as a side effect,

may introduce faults in software systems. Our intuition is that these may, as well, lead to

introduction of vulnerabilities - weaknesses that can be exploited by malicious users to

compromise a software system. In fact, in one of our previous studies, we have shown that high

coupling is likely to increase damage propagation when a system gets compromised [15].

Although CCC metrics have been successfully employed to indicate faults in general [5, 13,

21-24, 35, 38, 47, 54, 69, 74] the efficacy of these metrics to indicate vulnerabilities has not yet

been extensively investigated. A very few works associate complexity and coupling with

vulnerabilities. Shin and William [63-65] investigate how vulnerabilities can be inferred from

(only) code complexity. A study by Traroe et al. [42] uses the notion of “service coupling”, a

measurement specific to service-oriented architecture. The effect of cohesion on vulnerabilities

has never been studied before.

Chapter 1. Introduction 4

1.2 Overview

In this thesis, we explore how the likelihood of having vulnerabilities is affected by all three

aforementioned aspects - complexity, coupling, and cohesion - both at the design and code level.

Our first objective is to determine whether complex, coupled and non-cohesive software entities

are less secure and, if so, what CCC metrics can be used to identify the type of complexity,

coupling, and cohesion that leads to decreased security. Our second objective is to investigate

whether structural information from the non-security realm such as complexity, coupling, and

cohesion metrics can be helpful in automatically predicting vulnerabilities in software.

Table 1.1: Hypotheses

 Hypotheses

H1 Complexity metrics positively correlate to the number of vulnerabilities.

H2 Coupling metrics positively correlate to the number of vulnerabilities.

H3 Cohesion metrics negatively correlate to the number of vulnerabilities.

H4 Code-level complexity, coupling, and cohesion metrics are better indicators of
vulnerabilities than design-level metrics.

H5 There is a subset of metrics that consistently correlate to vulnerabilities in all
releases.

To investigate whether complex, coupled, and non-cohesive software entities are less secure,

we postulate five hypotheses on how vulnerabilities are related to CCC metrics. The hypotheses

are presented in Table 1.1. Because high complexity and coupling and low cohesion make

understanding, developing, testing, and maintaining software difficult, they may lead to

introduction of vulnerabilities. This intuition is the basis of our first three hypotheses. H4 states

that code-level complexity, coupling, and cohesion metrics might be better indicators of

vulnerabilities than design-level metrics. Design-level metrics assess software artifacts at the

Chapter 1. Introduction 5

design phase, whereas code-level metrics specifically look into code structures and

implementation language issues [15]. We believe that the code more closely represents the

operational behavior of the software than the design specifications because the code sometimes

diverges from what is specified in the design. The magnitude of correlations of CCC metrics with

vulnerabilities may vary from one release to another. However, we hope that at least a subset of

the selected CCC metrics will consistently correlate to vulnerabilities in all releases, and hence

put forward H5. If the hypothesized relationships can be empirically validated, this information

can be used during the early stages of software development to improve the ultimate security of

software products.

To validate the hypotheses, we will first select a set of standard metrics that measure

complexity, coupling, and cohesion so that we can analyze their correlations with vulnerabilities.

Then, we will conduct an empirical study on Mozilla Firefox [49], a popular open source

browser. We will mine the vulnerability reports, bug repositories, and software version archives

of Mozilla Firefox to map the vulnerabilities back to their associated entities. An entity can be a

function, file, class, module, or component. We then compute the CCC metrics for these entities

and analyze how these metrics correlate with the number of vulnerabilities the entities have had

in the past. The results of the case study in this thesis show that CCC metrics correlate to

vulnerabilities at a statistically significant level. Since different metrics are available during

different development phases, the correlations are further examined to determine whether design-

level or code-level CCC metrics are better indicators of vulnerabilities. We observed that the

correlation patterns are stable across multiple releases of the software. This observation shows

that the metrics can be dependably used as early indicators of vulnerabilities in software.

Chapter 1. Introduction 6

The aforementioned findings allow us to coin the idea of employing CCC metrics to

automatically predict vulnerabilities. However, monotonic models based on correlations with the

raw or monotonically transformed data cannot be used effectively to identify vulnerability-prone

entities under many situations. This is because complexity, coupling, and cohesion may interact

in ways that collectively affect vulnerability-proneness. For example, larger entities may be more

vulnerability-prone when they are more complex and less cohesive but may not be as

vulnerability-prone when they are highly cohesive. The statistical and data mining techniques we

used for vulnerability prediction account for such multivariate interactions. Note that, analyzing

correlations between vulnerabilities and each metric separately is not necessarily a prerequisite

for making predictions. However, such univariate analysis helps to identify the individual

importance of each metric in vulnerability prediction. Therefore, the univariate and multivariate

analysis are complementary.

There are two main approaches to software vulnerability prediction. First, count-based

techniques focus on predicting the number of vulnerabilities in a software system. Managers can

use these predictions to determine if the software is ready for release or if it is likely to have

many lurking vulnerabilities. An example of such work is [1]. Second, classification1-based

techniques emphasize predicting the entities in a software system that are vulnerability-prone, i.e.,

those which are likely to have vulnerabilities. A vulnerability-prone entity can be a function, file,

class or other component defined by a manager or a software security engineer which is likely to

have at least one vulnerability in a release. These predictions can assist managers in focusing their

1 Classification is one of the most common inductive learning tasks that categorizes a data item into one of
several predefined categories [47].

Chapter 1. Introduction 7

resource allocation in a release by paying more attention to vulnerability-prone entities. Examples

of such studies are [63-65]. In this study, we treat vulnerability prediction as a classification

problem – predicting whether an entity is vulnerability-prone or not.

 We observed in our preliminary investigation that a very small proportion of entities contain

more than one vulnerability in a given release. Various previous studies have also made similar

observations and therefore have treated fault and vulnerability prediction as a classification

problem [5, 13, 35, 38, 21, 22, 63-65, 69]. To facilitate efficient vulnerability detection during the

SDLC, we need to identify those areas of the software which are most likely to have

vulnerabilities (vulnerability-prone), and thus require most of our attention. This approach has the

potential to find more vulnerabilities with the same amount of effort. We can draw an analogy

between this approach and weather prediction; we are predicting the areas that are likely to

experience rainfall (which might include areas that did not experience rainfall before) as opposed

to predicting the amount of rainfall.

In this thesis, we present a framework for how CCC metrics can be used to automatically

predict vulnerability-prone entities, illustrated in Figure 1.1. In the step Map Post Release

Vulnerabilities to Entities, one can map vulnerabilities (reported in the vulnerability reports) to

fixes (in the version archives) and thus to the locations in the code that caused the problem [3, 54,

56, 64]. This mapping is the basis for automatically associating metrics with vulnerabilities. A

methodical description of this step is provided in Chapter 3. In Compute CCC Metrics, a set of

standard CCC metrics is computed for each entity. There are numerous tools available for

automatically computing CCC metrics from the source code [3, 67]. A detailed description of

how we have computed the metrics and what tools we have used for our case study is also

Chapter 1. Introduction 8

provided in Chapter 3. Then these CCC metrics and the vulnerability history of entities can be

used to build and train the vulnerability predictor, which is done in the Build Predictor from

Vulnerability History and CCC Metrics step. The resulting Predictor takes the CCC metrics of

newly developed or modified entities as inputs and generates the probability of a vulnerability

occurring in the entity. Based on the calculated probability, it is possible to automatically predict

the vulnerability-prone entities, or, in other words, classify entities whether they are vulnerability-

prone or not. A detailed account of building such predictors (training) and the result of applying

them (testing) is provided in Chapter 5.

Figure 1.1: Framework to predict vulnerabilities from CCC metrics

Chapter 1. Introduction 9

Several statistical and machine learning techniques are considered to build vulnerability

predictors so that the conclusions drawn from the prediction results are not overly influenced by

any specific technique. We first use a basic but popular decision-tree-based data mining technique

called C4.5 Decision Tree. Then, we compare its prediction capability with Random Forests, an

advanced form of decision tree technique. We also consider Logistic Regression, a standard

statistical technique, and Naïve-Bayes, a simple but often useful probabilistic prediction

technique [73]. Logistic regression has been previously used in vulnerability prediction using

code complexity metrics [64]. The other machine learning techniques have never been applied to

vulnerability prediction before.

To empirically validate the prediction accuracy and usefulness of the framework, we conduct

an extensive case study on fifty-two Mozilla Firefox releases developed over a period of four

years. We are able to predict majority of the vulnerability-prone entities with tolerable false

positive rates. The results of our experiments show that the predictor developed from one release

performs consistently in predicting vulnerability-prone entities in the following release.

1.3 Contributions

The major contributions of this thesis are as follows:

• Provide empirical evidence whether complexity, coupling and lack of cohesion are enemies of

software security. Such knowledge will help avoid potential vulnerabilities in software by

keeping complexity, coupling and lack of cohesion at minimum.

Chapter 1. Introduction 10

• Propose a systematic framework to automatically predict vulnerability-prone entities from

CCC metrics. Such automatic predictions will assist software practitioners in taking proactive

action against potential vulnerabilities during the early stages of the software lifecycle. We

use statistical and machine learning techniques to build the predictor and compare the

prediction performances of four alternative techniques, namely C4.5 Decision Tree, Random

Forests, Logistic Regression and Naïve-Bayes. Among these, C4.5 Decision Tree, Random

Forests, and Naïve-Bayes have not been applied in any kind of vulnerability prediction

before.

• Conduct an extensive case study on several releases of Mozilla Firefox to validate the

usefulness of CCC metrics in vulnerability prediction. In doing so, we provide a tool to

automatically map vulnerabilities to entities by extracting information from software

repositories such as security advisories, bug databases, and concurrent version systems.

1.4 Thesis Organization

The rest of the thesis unfolds as follows. In Chapter 2, we provide background on CCC

metrics, give brief overviews of the statistical and machine learning techniques used for

vulnerability prediction, and also compare and contrast the related work on fault and vulnerability

prediction. In Chapter 3, we elaborate on how we extract vulnerability and metric data from

software repositories. In Chapter 4, we then present the results of the correlation analysis of CCC

metrics and vulnerabilities. In Chapter 5, we outline the design of the vulnerability prediction in

detail, report vulnerability prediction results and discuss the implications of the results. Finally,

Chapter 1. Introduction 11

we conclude the thesis, discuss some limitations of our approaches, and outline avenues for future

work in Chapter 6.

 12

Chapter 2

Background and Related Work

This section provides background on complexity, coupling, and cohesion (CCC) metrics that

are hypothesized to affect vulnerability-proneness and furnishes brief overviews of the statistical

and machine learning techniques used in this study to predict vulnerabilities. It also compares and

contrasts the research on vulnerability prediction related to our work.

2.1 Complexity, Coupling, and Cohesion Metrics

Complexity, coupling, and cohesion (CCC) related structural metrics are designed to measure

certain attributes of code and design quality. Table 2.1 summarizes the CCC metrics that may (we

hypothesize) have some affect on the vulnerability-proneness of software. We have selected the

standard code-level metrics from prior research on fault and vulnerability prediction [23, 47, 54,

63-65, 74]. The design-level metrics are the structural measurements defined in the Chidamber-

Kemerer (CK) [14] metric suite for Object-Oriented (OO) architectures. Some of the design-level

metrics measure both complexity and coupling. In that case, the metrics appear in both the

complexity and coupling categories. For example, the Number of Children (NOC) metric

measures inheritance complexity by counting the number of sub-classes of a class. At the same

time, the higher the number of children of a class, the more methods and instance variables the

class is likely to be coupled to. Therefore, NOC indirectly measures coupling due to inheritance

as well.

Software complexity can be categorized into four types: problem complexity, algorithmic

complexity, cognitive complexity, and structural complexity [25]. Even though the four

Chapter 2. Background and Related Work 13

complexities are interrelated, we are interested primarily in the structural complexity metrics that

we can compute from software artifacts such as code. Many structural code-level and design-level

Table 2.1: CCC metrics that are hypothesized to indicate vulnerabilities

Metrics Description and Rationale
Code-level Complexity Metrics

McCabe's

McCabe's cyclomatic complexity: the number of independent paths through a
program unit (i.e., number of decision statements plus one). For a file or class,
it is the average cyclomatic complexity of the functions defined in the file or
class. The higher this metric the more likely an entity is to be difficult to test
and maintain without error.

Modified Modified cyclomatic complexity: identical to cyclomatic complexity except
that each case statement is not counted; the entire switch statement counts as 1.

Strict
Strict cyclomatic Complexity: identical to cyclomatic complexity except that
the AND (&& in C/C++) and OR (|| in C/C++) logical operators are also
counted as 1.

Essential
Essential cyclomatic complexity: a measure of the code structuredness by
counting cyclomatic complexity after iteratively replacing all structured
programming primitives with a single statement.

CountPath

CountPath complexity: the number of unique decision paths through a body of
code. A higher value of the CountPath metric represents a more complex code
structure. According to the experience of the software engineers of SciTools
Inc. [61], it is common to have a large value for the count path metric, even in a
small body of code [62].

Nesting
Nesting complexity: the maximum nesting level of control constructs (if, while,
for, switch, etc.) in the function. Highly nested control structures might make a
program entity complex and hence difficult to comprehend by a programmer.

SLOC
Source Line of Code: the number of executable lines of source code. Although
SLOC measures size, prior research has found that SLOC highly correlates with
complexity.

CommentRatio

Comment Ratio: the ratio of number of comment lines to number of code lines.
Note that, because some lines contain both code and comment, this metric
could easily yield fractions higher than 1.0. One of our previous studies [44]
suggests that highly complex program units have more comments associated
with per line of code. Therefore, the comment ratio may have some
implications about complexity.

Design-level Complexity Metrics

WMC

Weighted Methods per Class (WMC): the number of local methods defined in
the class. WMC is related to size complexity. Chidamber et al. empirically
validated that the number of methods and complexity of the methods involved
is an indicator of development and maintainability complexity [14].

DIT Depth of Inheritance Tree (DIT): the maximum depth of the class in the

Chapter 2. Background and Related Work 14

Metrics Description and Rationale
 inheritance tree. The deeper the class is in the inheritance hierarchy, the greater

the number of methods it is likely to inherit, making it more complex to predict
its behavior [14].

NOC

Number Of Children (NOC): the number of immediate sub-classes of a class or
the count of derived classes. If class CA inherits class CB, then CB is the base
class and CA is the derived class. In other words, CA is the children of class CB,
and CB is the parent of class CB. NOC measures inheritance complexity.

CBC Count of Base Classes (CBC): the number of base classes. Like NOC, CBC
measures inheritance complexity.

Code-level Coupling Metrics

FanIn

FanIn: the number of inputs a function uses. Inputs include parameters and
global variables that are used (read) in the function. Of the two general
approaches to calculating FainIn (informational2 versus structural), we take the
informational approach [53].

FanOut
FanOut: The number of outputs that are set. The outputs can be parameters or
global variables (modified). Of the two general approaches to calculating
FanOut (informational versus structural), we take the informational approach.

HK Henry Kafura(HK): HK = (SLOC in the function) × (FanIn x FanOut)2
Design-level Coupling Metric

DIT
Defined above in the complexity metric section. It measures the number of
potential ancestor classes that can affect a class, i.e., it measures inter-class
coupling due to inheritance.

NOC
Defined above in the complexity metric section. The more children a class has,
the more methods and instance variables it is likely to be coupled to. Therefore,
NOC measures coupling as well.

CBC Defined above in the complexity metric section. We include CBC for the same
reason we have included NOC.

RFC

Response set For a Class (RFC): the set of methods that can potentially be
executed in response to a message received by an object of that class. RFC is
simply the number of methods in the set, including inherited methods.

CBO Coupling Between Object classes (CBO): the number of other classes coupled
to a class C.

Design-level Cohesion Metrics

LCOM

Lack of Cohesion Of Methods (LCOM): the LCOM value for a class C is
defined as LCOM(C) = (1- |E(C)| ÷ (|V(C)| × |M(C)|)) × 100%, where V(C) is
the set of instance variables, M(C) is the set of instance methods, and E(C) is
the set of pairs (v,m) for each instance variable v in V(C) that is used by method
m in M(C).

2 Informational approach considers data communication (e.g., through parameter passing), whereas
structural approach considers exchange of program control (e.g., via function calls or method invocations).

Chapter 2. Background and Related Work 15

complexity metrics have been proposed. The representative examples of code-level complexity

metrics are McCabe’s cyclomatic complexity [45] and Halstead’s complexity [29] metric that

measure complexity in terms of control constructs and lexical tokens, respectively. We consider

McCabe’s cyclomatic complexity metric and its several variations to capture different flavors of

code complexity. The different variations of McCabe’s cyclomatic complexity metric are

Modified cyclomatic complexity, Strict cyclomatic complexity, and Essential cyclomatic

complexity (a detailed description of how these metrics differ from McCabe’s cyclomatic

complexity metric is given in Table 2.1). Some metrics, such as Weighted Methods per Class

(WMC) and Depth of Inheritance Tree (DIT), are available after the completion of the design

phase. These design-level metrics can be used to indicate potential vulnerabilities prior to the start

of the coding phase, given that we can discover their relationships, if any, with vulnerabilities.

Note that these design-level metrics can be computed only when the software is developed based

on OO architecture.

Coupling metrics measure the relationships between entities [53]. “In ontological terms two

objects are coupled if and only if at least one of them acts upon the other” [14]. Therefore, if a

method invokes another method, then the two methods are coupled. If a class C1 has an instance

of another class C2 as one of its data members, C1 and C2 are coupled. Two entities are also

coupled when they act upon the same data (i.e., read or write the same global variables) or

communicate though data passing (parameter passing in case of functions and message passing in

case of objects). We can observe from the aforementioned examples that coupling measures

information flow complexity. FanIn and FanOut are coupling metrics that measure information

Chapter 2. Background and Related Work 16

flow (e.g., by parameter passing). Response set For a Class (RFC) is an example of a design-level

metric that measures the design coupling in OO architecture.

Cohesion metrics measure the relationships among the elements within a single module. Lack

of Cohesion Of Methods (LCOM) is one of most common metrics that measure cohesion [20],

and a method to measure LCOM is described in Table 2.1. Lack of cohesion in an entity implies

that it should be split into two or more sub entities. Non-cohesive entities are difficult to reuse,

and an attempt to reuse them might introduce vulnerabilities in the software [14]. This is the

rationale for including the LCOM metric. Some of the other cohesion metrics are Tight and Loose

Class Cohesion, more commonly known as TCC and LCC, respectively [25]. TCC and LCC are

not included in this study because these two metrics are not computed by the metric-computation

tool we have used.

2.2 Overview of Statistical and Data Mining Techniques

This section provides an overview of the four alternatives for statistical and data mining

techniques used to build vulnerability predictors that learn from the CCC metrics and

vulnerability history.

2.2.1 Decision Tree

A decision tree technique, such as a C4.5 Decision Tree (DT) [73], generates predictors in the

form of an abstract tree of decision rules. The decision rules accommodate non-monotonic and

nonlinear relationships among the combinations of independent variables. In a classification

Chapter 2. Background and Related Work 17

problem, the dependent variable is categorical. In our case, the categories3 are vulnerability-prone

(YES) or not vulnerability-prone (NO). The independent variables, also called exploratory

variables or features, are the CCC metrics. Each internal node represents a decision that is based

on an exploratory variable, and each edge leads to either a category (a leaf in the tree) or the next

decision. An entity is classified by traversing a path from the root of the tree to a leaf, according

to the values of the entity’s CCC metrics. Finally, the entity’s predicted category is assigned the

leaf’s category.

Figure 2.1: A sample decision tree for vulnerability prediction

Figure 2.1 shows a section of a decision tree obtained in one of our experiments to predict

vulnerability-prone entities. We can indentify some interesting patterns from the constructed

decision tree. For example, entities with Strict complexity less than or equal to 117 are

unlikely to have vulnerabilities (label: NO). ‘9858.0/429.0’ indicates that, out of the total

3 In the data mining and machine learning field, the categories are called classes. However, we avoid using
“class” to denote “category”, because it might be confused with class as a software entity in OO software.

Chapter 2. Background and Related Work 18

number of samples, 9,858 samples with Strict complexity <=117 are not vulnerable and 429

samples are vulnerable. However, entities with Strict complexity greater than 117 and CBO

more than 24 and HK higher than 5,302,777 are vulnerability-prone (label: YES). We

observe that the DT generates predictors that are easy to interpret (logical rules associated

with probabilities). Therefore, they are easy to adopt in practice as practitioners can then

understand why they get a specific prediction.

Given a total learning set of N samples, a C4.5 Decision Tree "learns" or builds such a

decision tree using divide-and-conquer method as per the following steps (taken from [73]):

1. Check for base cases. The base cases are:

a. If all the remaining n sub-samples to be classified belong to the same category, simply

create a leaf node for the decision tree choosing that category. The value of n can be set

as a parameter in DT.

b. If none of the features provide any normalized information gain [40], i.e., no longer adds

value to the predictions, create a decision node higher up the tree using the expected

category.

c. If an instance of previously-unseen category is encountered, again, create a decision node

higher up the tree using the expected category.

2. For each feature f, find the normalized information gain from splitting on f. Let f_best be the

feature with the highest normalized information gain. Create a decision node that splits on

f_best.

Chapter 2. Background and Related Work 19

3. Apply Steps 1 and 2 on the subset of training samples obtained by splitting on f_best, and add

those nodes as children of the decision node representing f_best.

2.2.2 Random Forests

Random Forests (RF) [73] is an advanced form of decision-tree-based technique. In contrast to

a simple decision-tree-based technique such as C4.5 Decision Tree, RF builds a large number of

decision trees. Each tree is constructed by a different bootstrap sample from the original data

using a classification algorithm with the following steps (taken from [75]):

1. If the number of samples in the training data is N, the algorithm sub-samples n cases at

random with replacement from the original data. The chosen cases are used to construct the

tree.

2. If there are M features in the training set, RF chooses m features from them at random at each

node to ensure that all the trees have low correlation between them. The value of m is held

constant by setting a parameter of RF. After the best feature amongst the m options is selected

to split this node in the tree, the best feature makes the cases reaching the immediate

descendent nodes as pure as possible. The term”pure” refers here to a set of samples that

mostly fall into the same category. The process is repeated recursively for each node of the

tree.

3. After the forest, a collection of trees, is formed, a new sample that needs to be classified is

classified by each tree in the forest. Each tree thus gives a vote that indicates the tree’s

decision on the category of the entity (as vulnerability-prone or not). The forest chooses the

category with most votes for the sample.

Chapter 2. Background and Related Work 20

RF is typically found to outperform basic decision trees and some other advanced machine

learning techniques in prediction accuracy [44]. It is more resistant to noise in the data. This is an

important advantage as we are aware of the fact that the data used in our study will contain noise

due to inconsistencies in the record-keeping of software repositories. Furthermore, often the

prediction accuracy of basic decision tree algorithms suffers when many of the attributes are

correlated. Given that a number of metrics in our study are actually correlated (e.g., all the

complexity metrics), we need a technique that is relatively robust to correlated attributes. The

Random Forests deals well with correlated attributes, and we therefore expect it to maintain a

higher accuracy in its prediction.

2.2.3 Logistic Regression

A statistical analysis method that is often used for classification is Logistic Regression (LR)

[73]. Because we look forward to investigating the collective contribution of CCC metrics in

vulnerability-proneness, we use multivariate LR (as opposed to univariate analysis which

analyzes the affect of each independent variable separately). Multivariate LR is a way to classify

data into two groups depending on the probability of occurrence of an event for given values of

independent variables. In our case, LR computes the probability that an entity is vulnerability-

prone for given metric values. If the probability is greater than a certain cut-off point (e.g., 0.5),

then the entity is classified as vulnerability-prone, otherwise not.

ܲ ൌ
݁

)...(22110 εββββ +++++ nn xxx

1 ൅ ݁
)...(22110 εββββ +++++ nnxxx

 (1)

Chapter 2. Background and Related Work 21

The probability, P, is calculated as per Equation (1) where:

• xi = i-th metric in the set of CCC metrics (independent variables)

• βi = Regression co-efficient for metric xi (i.e., the average amount of increase in the

dependent variable when the other independent variables are held constant)

• β0 = Regression constant

• ε = Error probability

We use multivariate linear regression in our study because it is a standard statistical

classification technique and it is has been used in several earlier studies on predicting fault-prone

and vulnerability-prone entities [22, 42, 54, 64, 69].

2.2.4 Naïve-Bayes

Naïve-Bayes (NB) [43] is based on probability models that assume that the instances are

independent of one another. It can handle an arbitrary number of independent variables. Suppose,

there are a set of samples and each instance in the sample is represented by a set of attributes S,

where S = {x1, x2, …, xn}. Each instance in the sample can fall into any of the categories in set C,

where C = {c1, c2, …, ck}. Naïve-Bayes first constructs the posterior probability, P(cj), for each

category cj among a set of possible categories in C as the ratio of the number of instances of

category cj to the total number of instances in the sample (N) . Given a new sample X, NB

classifier calculates the conditional probability for each category in C, P(cj|X), and the predicted

category of X is the one with the highest probability. P(cj|X) is calculated as shown in Equation

Chapter 2. Background and Related Work 22

(2) where xi-s are the values for attributes in sample X. The other conditional probability, P(xi|cj),

can be computed from the training sample in a similar way P(cj) is calculated. In our context, x1

to xn represent the CCC metrics of an entity. The category set C = {vulnerability-prone, not

vulnerability-prone}. Therefore, for an entity, X, to be predicted as vulnerability-prone,

P(vulnerability-prone | X) has to be more than 0.5.

ܲ൫ ௝ܿหܺ൯ ൌ ܲሺ ௝ܿሻ ෑ ܲ൫ݔ௜ห ௝ܿ൯

௡

௜ୀଵ

 (2)

Although Naïve-Bayes tends to be unreliable when there are many inter-related attributes, this

simple technique often yields very accurate results. It is also computationally efficient. We

consider NB because it has often outperformed more sophisticated classification methods [43].

2.3 Related Work

The related research is presented in three parts. First, we describe the research on fault

prediction using complexity, coupling, and cohesion metrics [5, 13, 21, 22, 35, 37, 38, 47, 54, 69,

74]. Second, we compare and contrast recent work that predicts vulnerabilities from complexity

and coupling metrics [42, 63-65]. Finally, we describe some studies that use other phenomena

(e.g., import patterns or past vulnerabilities) to identify the vulnerable components in a software

system [1, 56].

2.3.1 Fault Prediction Using Complexity, Coupling, and Cohesion Metrics

Several prior studies [5, 13, 21, 22, 35, 38, 69] have used Object-Oriented (OO) design-level

CCC metrics (commonly known as the CK metric suite [14]) to identify fault-prone entities.

Chapter 2. Background and Related Work 23

These studies build statistical models with those metrics as independent variables and faults as the

dependent variables. In general, it has been shown that these OO design metrics can be used to

predict the fault-prone modules or the number of faults. Janes et al. [35] identify that coupling

metrics such as Response Set for a Class (RFC) and Coupling Between Object classes (CBO) are

good fault predictors. Succi et al. [69] report that inheritance related metrics such as Number of

Children (NOC) and Depth of Inheritance Tree (DIT) can also be used as indicators of the fault-

prone classes. Basili et al. [5] discover that five of the metrics of the CK metrics suite are useful

indicators of fault-prone classes, and in fact, they are better predictors than the best set of

“traditional” code metrics (code-level metrics defined in Table 2.1). Emam et al. [22] identifies

one more metric called export coupling as having a positive correlation with the fault-proneness

in software modules.

We use the CK metric suite in our work as well. However, unlike [5, 13, 21, 22, 35, 38, 69], we

use these metrics to predict vulnerabilities (security-related faults), not general faults. Moreover,

many of those studies [5, 13, 38, 69] use pre-release faults (i.e., those faults indentified during the

testing phase), whereas we use post-release vulnerabilities (i.e., the security-related faults found

during the operational phase). Although Janes et al. [35] use post-release faults, they use the

number of revisions (i.e., how many times a class has changed so far) as a proxy for the number

of faults. Using the sheer number of revisions as a proxy for the number of faults in a software

entity can be misleading, because changes can be made for perfective, adaptive, or corrective

reasons. Perfective changes are made to improve the product effectiveness (e.g., to add

functionality, to decrease the response time). Adaptive changes are made in response to the

changes in the product’s operational environment. Corrective changes are made to remove faults,

Chapter 2. Background and Related Work 24

leaving the specifications unchanged. Therefore, only corrective changes can be used as a proxy

for the number of faults, not the other types of changes. In this study, we have precisely

indentified those corrective changes resulting from vulnerability fixes (see Chapter 3 for detail).

2.3.2 Vulnerability Prediction Using Complexity and Coupling Metrics

Failure prediction using complexity, coupling, and cohesion metrics has been the subject of

much research in software engineering. However, vulnerability prediction using complexity and

coupling metrics is a fairly new area, and the applicability of cohesion metrics in vulnerability

prediction has never been studied before.

Complexity and Vulnerability

Recently, there have been a few attempts at identifying vulnerability-prone functions using

code-level complexity metrics by Shin and William [63-65]. However, we include both design

and code complexity metrics, whereas they use only code complexity metrics. Their results show

weak correlation between code complexity metrics and vulnerabilities. Therefore, our study

incorporates some coupling and cohesion metrics which are not considered in [63-65]. They use

Logistic Regression to build vulnerability predictors whereas we apply three additional statistical

and data mining techniques to build the predictors. We have replicated their case study on

Mozilla Firefox, and our improvements over their prediction performances are discussed in detail

in Chapter 5 where we present our results.

Chapter 2. Background and Related Work 25

Coupling and Vulnerability

The experimental investigations by Traroe et al. [42] somewhat substantiates the common

intuition that service coupling affects Denial of Service (DoS) attackability (the R-squared values

of their Logistic Regression analyses are 70% which means that their model explains about 70%

of the variation in attackability). Attackability is defined as the likelihood that a software system

or service can be compromised under an attack. By coupling, they mean service coupling which

is measured as “the number of shared components between a given pair of services”. Their

concept of service coupling can only be applied in a service-oriented architecture paradigm,

whereas we measure coupling within traditional and object oriented paradigms. Even though

service coupling is found to be a good explanatory factor for DoS attackability, there might be

other independent variables such as complexity and cohesion, and we include those factors in our

analysis. Moreover, their attackability data is obtained from simulated lab experiments whereas

our vulnerability data is gathered from real-life attacks. Furthermore, they considered only DOS

attacks whereas our analyzed vulnerability reports include a broader spectrum of attacks.

2.3.3 Vulnerability Prediction Using Other Metrics and Techniques

Neuhaus and Zimmerman [56] have found that vulnerabilities in Mozilla Firefox components

can be inferred from import and function-call patterns. A component is defined as a collection of

similarly named source and header files providing a specific service. They identify common

patterns of imports (#include in C/C++) and function calls in the vulnerable components using

pattern mining techniques, whereas we identify patterns of CCC metric-values using statistical

and machine learning techniques. There is a potential to combine these two approaches to build

Chapter 2. Background and Related Work 26

more accurate vulnerability predictions. They predict about half of the vulnerable components in

Mozilla Firefox and about two-third of these predictions are correct. We have conducted a case

study on Mozilla Firefox and achieved better results. We analyze vulnerabilities in Mozilla

Firefox at a different level of granularity (see Chapter 3 for explanations), not at the component

level. Moreover, the way we map vulnerabilities to entities is slightly different from that of

Neuhaus and Zimmerman. Their vulnerability data is as of January 4, 2007. We work on an up-

to-date vulnerability data as of March 1, 2009 (the time of our data collection). However, their

vulnerability data has been very helpful in cross checking the accuracy of our vulnerability

mapping technique.

Alhazmi et al. [1] investigate whether the number of vulnerabilities latent in a software system

can be predicted from the vulnerabilities which have already been discovered. They study the

Windows and Red Hat Linux operating systems and model the future trends of vulnerability

discovery which they call the vulnerability discovery rate. As Shin and William note, “Their

approach can be useful for estimating the effort required to identify and correct undiscovered

security vulnerabilities, but cannot identify the location of the vulnerabilities in the source code”

[65]. By location, Shin and William mean the entity (e.g., file or function) where the vulnerability

is present.

2.4 Summary

This chapter provides basic information about some complexity, coupling, and cohesion (CCC)

metrics. We also provide a brief overview of the statistical and machine learning techniques used

for vulnerability prediction based on those CCC metrics.

Chapter 2. Background and Related Work 27

We conduct an extensive survey on fault and vulnerability prediction using CCC metrics. The

survey clearly shows that, although CCC metrics have been successfully employed in fault

prediction, there is little work that includes complexity and coupling metrics in vulnerability

prediction. Moreover, the affect of cohesion on vulnerability-proneness has never been studied

before.

It may be worth mentioning that the prior studies on fault prediction may be replicated in the

context of vulnerabilities. However, the results might not necessarily be the same as for software

fault prediction. Although vulnerabilities can be viewed as exploitable faults in software, there is

a need to specifically investigate the efficacy of predicting vulnerabilities from CCC metrics.

Research has shown that vulnerable entities have distinctive characteristics from faulty-but-non-

vulnerable entities in terms of code characteristics [63-65]. Moreover, it has been found that

prediction of vulnerable functions from all functions provides better results than prediction of

vulnerable functions from faulty functions [27]. One of the implications of this research is that

techniques to automatically predict fault-prone entities from CCC metrics can be adopted or

leveraged to automatically predict vulnerable-prone entities as well, which has not been

systematically done as of now.

Note that, we do not intend to show that there exist cause-effect relationships between CCC

metrics and vulnerabilities. It is clearly not the case that having a McCabe’s complexity of 100

and a FanIn coupling of 60 causes a vulnerability. However, our intuition is that, because high

complexity and coupling and low cohesion make developing, understanding, testing, and

maintaining software difficult [25, 37], these may lead to introduction of vulnerabilities. By using

the learning algorithms discussed in Section 2.3.1, we intend to learn the patterns of association

Chapter 2. Background and Related Work 28

between CCC metrics of vulnerable entities from the past and use this knowledge to predict the

vulnerability-prone entities in future.

 29

Chapter 3

Collecting Vulnerability and Metric Data

This chapter describes the vulnerability and metric data collection process that we used in order

to perform the case study. Such data is collected to (1) test the experimental hypotheses we

postulated about the relationships between vulnerabilities and complexity, coupling, and cohesion

(CCC) metrics, and (2) substantiate that these CCC metrics are applicable in predicting

vulnerability-prone entities.

This chapter begins by providing an overview of Mozilla Firefox (the source of data for our

case study), then provides a detailed description of how we map vulnerabilities to entities such as

files. To map vulnerabilities to entities we find out how many vulnerabilities an entity has had in

the past. In doing so, we outline how to extract vulnerability information from security advisories,

locate the related entries in bug repositories, and then trace the changes in the source code meant

to mitigate vulnerabilities via analyzing the version archives. The locations of vulnerability fixes

help us to determine the number of vulnerabilities that were present in those entities. We also

describe and compare an alternative approach to our vulnerability mapping technique. Then, we

specify how we have computed the set of CCC metrics from the code base of Mozilla Firefox.

Finally, we provide an overview of the tool we have developed to automatically map

vulnerabilities to entities in Mozilla Firefox.

3.1 Overview of Mozilla Firefox

We chose to conduct our case study on Mozilla Firefox, an open source browser. With an

approximate user-base of 270 million, it is one of the most popular internet browsers [62]. The

Chapter 3. Collecting Vulnerability and Metric Data 30

Mozilla Firefox project is large not only in terms of user base but also in terms of source code:

the code-base of each release of the browser measures more than 2 million lines of code.

Moreover, it has a rich history of publicly available vulnerability fixes over a period of four years

(January 26, 2005 to April 27, 2009). The integrated nature of the Mozilla repositories enables us

to accurately map vulnerabilities to their locations in the source code.

We have conducted case studies on different releases of Mozilla Firefox (releases are

analogous to versions). At the time of data collection (March 1, 2009), fifty-two releases of

Mozilla Firefox have had vulnerability fixes, from Release 1.0 (R1.0) to Release 3.0.6 (R3.0.6).

To validate this study, we have collected vulnerability information from all fifty-two releases as

the vulnerabilities are distributed amongst all the releases.

Like [31], we use a file as a logical unit of analysis based on the belief that a file is a

conceptual unit of development where developers tend to group related entities such as functions,

data types, etc. Other fine-grained units of code can be used, such as individual functions or

larger/smaller code chunks that can be determined by a person (system designer or programmer)

with good knowledge of the system. Sub-system or module level4 analysis is also possible. To

facilitate redesign, one might want to analyze from a higher level of abstraction such as

subsystems or modules. By contrast, to facilitate unit testing and code inspection, lower level of

abstractions such as file or class level analysis is more appropriate [2]. Analysis at the file level is

logical because not only files tend to represent developers' organizational choices, but also it is

4 A module is generally comprised of several source files implementing a set of related tasks.

Chapter 3. Collecting Vulnerability and Metric Data 31

particularly convenient for automated analysis as it does not require parsing the source code to

identify the unit of analysis.

To identify the vulnerable files, we count the number of files that were changed in the course

of vulnerability fixes. We know in which release a vulnerability was fixed; however, we do not

know when the vulnerability was introduced. Therefore, when there is a vulnerability fix in a file

of a release (e.g., R2.0.0.4), we assume that the same vulnerability existed in all the previous

releases of the file (i.e., from R2.0.0.3 to R1.0). We automate this cumulative-vulnerability-

collection approach initially introduced by Shin and Williams [65]. They count the number of

vulnerabilities per function in the Javascript Engine component of Mozilla Firefox. We do the

mapping at the file level and for the entire Mozilla Firefox code-base, not just for one component.

We only consider the source files (i.e., files with .c, .cpp, .java, and .h extensions) from which the

metrics are computed. The various configuration and scripting files to build or test Mozilla

Firefox are not examined as they do not represent the source code.

Over the aforementioned period of four years and fifty-two releases, 718 (6.4%) of the total of

11,139 files have had vulnerability fixes. In total, these 718 files suffered from about 1450

vulnerability fixes ranging from one vulnerability fix per file to more than five vulnerability fixes.

Figure 3.1 presents a histogram of the number of vulnerability fixes per file in Mozilla Firefox. It

shows that 454 files have had one vulnerability fix; 141 files have had two vulnerability fixes; 46

files have had three vulnerability fixes; and so on. We can observe that the majority (454) of the

718 vulnerable files have just one vulnerability. Therefore, instead of predicting how many

vulnerabilities a file is going to have, we find it logical to predict the vulnerability-prone files i.e.,

the files that are likely to have one or more vulnerabilities. Hence, we treat the problem of

Chapter 3. Collecting Vulnerability and Metric Data 32

vulnerability prediction as a classification problem, i.e. categorizing files as vulnerability-prone

or not.

Figure 3.1: A histogram showing the number of vulnerabilities per file in Mozilla Firefox

From Figure 3.1, there is another interesting point to make. The vulnerability distribution in the

histogram directly contradicts the folklore in fault prediction that says that entities that had

problems in the past will likely have problems in the future. As the data from Mozilla Firefox

suggests, this might not be true in the case of vulnerabilities (i.e., security-related faults). If that

were truly the case, the histogram would show ascending numbers of files with ascending

numbers of vulnerabilities. In fact, there are about twice as many files (454) with one

Chapter 3. Collecting Vulnerability and Metric Data 33

vulnerability fix than all files (264) with two or more vulnerability fixes combined. This implies

that majority of the files are not repeat offenders, i.e., they do not have vulnerability fixes in the

subsequent releases. This observation has been already made by Neuhaus et al. [56] and our

findings also confirm this. In fact, when Neuhaus et al. took the CVS (Concurrent Version

System) logs from July 24, 2007- encompassing changes due to vulnerability reports from

February 23, 2007 to July 17, 2007- they found that 149 components5 were changed in response

to those vulnerability reports. Of these newly fixed components, 81 were repeat offenders, having

at least one vulnerability-related fix before January 4, 2007. The remaining 68 components had

never had a security-related fix. Therefore, predicting only on the basis of past vulnerability fixes

would miss all the aforementioned 68 components. One implication of this observation is that, to

make accurate predictions, we have to go beyond vulnerability history and consider additional

factors (such as CCC metrics).

3.2 Mapping Vulnerabilities to Entities

For this research, we need three types of data: vulnerability reports, a history of source code

changes, and a method of tracing from vulnerabilities to the original and changed code of an

entity. The vulnerabilities in Mozilla Firefox are reported as Mozilla Foundation Security

Advisories (MFSAs) [51]. The source code change history is available from Concurrent Version

System (CVS) archives. However, there is no direct link from MFSA to CVS. The trace from

vulnerabilities to the original and changed code of an entity can be obtained via Bugzilla, a bug

5 Neuhaus et al. define a Mozilla Firefox component as a collection of similarly named source (.c/.cpp) and
header (.h) files providing a specific service.

Chapter 3. Collecting Vulnerability and Metric Data 34

tracking system [12]. A bug tracking system is likely to contain all sorts of entries ranging from

corrective to perfective or even specifying preventive maintenance [3]. To avoid confusion, in

this section, we refer to any problem posted on Bugzilla as an issue and use the term bug6 only for

issues requiring corrective maintenance. Our approach of mapping vulnerabilities to files can be

summarized in the following three steps which are further explained in the next three subsections.

1. Retrieve the vulnerabilities from the Mozilla Foundation Security Advisories (MFSAs).

2. For each vulnerability found in Step 1, indentify the link(s) to the associated bug(s) in

Bugzilla.

3. For each bug found in Step 2, determine the file(s) that were modified to fix the bug and

increment the vulnerability count for those file(s).

3.2.1 Extracting Vulnerability Information from MFSA

Vulnerabilities are announced in security advisories that provide users workarounds or pointers to

fixed versions and help them avoid security problems. For example, Common Vulnerabilities and

Exposures (CVE) [18] lists publicly known information security vulnerabilities and exposures. In

the case of Mozilla, the mitigated vulnerabilities are also posted in the Mozilla Foundation

Security Advisories (MFSA) page. Figure 3.2 shows a section of the list of vulnerabilities posted

in MFSA page. Each vulnerability has a unique MFSA Identifier i.e., each MFSA entry

corresponds to a vulnerability. For example, MFSA 2008-27 (circled in Figure 3.2) means that it

6 It is important not to confuse this bug- a Bugzilla entry indicating a corrective maintenance requirement
to fix a vulnerability- with the general definition of bug- a fault in the code [70].

Chapter 3. Collecting Vulnerability and Metric Data 35

is the 27th vulnerability discovered in the year 2008. The listing also shows which vulnerabilities

have been fixed in which releases. Note that, some vulnerabilities can affect multiple releases.

For example, the vulnerability MFSA 2008-65 was fixed in releases 2.0.0.20 and 2.0.0.19.

Figure 3.2: A section of the list of vulnerabilities posted in MFSA [60]

Chapter 3. Collecting Vulnerability and Metric Data 36

Figure 3.3: An example of a vulnerability report in MFSA [50]

Following the MFSA link for each MFSA entry (or vulnerability), we go to the page where the

vulnerability is reported in detail in the MFSA (shown in Figure 3.3). The title and description

section of the entry tell us that the vulnerability concerns arbitrary file uploads which allows

malicious content to force the browser into uploading local files to the remote server. This could

be used by an attacker to steal files from known locations on a victim's computer. The References

section shown in Figure 3.3 contains links to Bugzilla reports which can be used in Step 2 to find

the bug(s) associated with the vulnerability.

Chapter 3. Collecting Vulnerability and Metric Data 37

3.2.2 Locating the Related Bug Reports in Bugzilla

Each MFSA has references to bugs corresponding to the vulnerability. These references to

bugs can be found in the reference section (underlined in Figure 3.3). Details about the bugs in

Mozilla Firefox can be found in the Bugzilla database. MFSAs have references to the Bugzilla

database that typically take the form of links to its web interface, such as

https://bugzilla.mozilla.org/show_bug- .cgi?id=423541. The six-digit number at the end of the

URL is the bug identifier. Therefore, from Figure 3.3, we know that vulnerability with MFSA ID

MFSA 2008-27 corresponds to the bug 423541. For each MFSA page, we extract the links to the

Bugzilla bug report using a simple regular expression. In python’s raw regular expression syntax,

the regular expression looks like: r"\"https://bugzilla.mozilla.org/show_bug.cgi\?id=\d +\"".

Figure 3.4 shows a screen-shot of a bug report in Bugzilla. Bugzilla records include a

description of identified bugs, related components, developers, and the current status of bug fixes

and verifications. Bugzilla also provides a link to modified code for each bug fix. The bug report

in Figure 3.4 tells that Bug 423541 is found in the DOM component and the bug fix is verified for

the release 1.8.1.15.

Chapter 3. Collecting Vulnerability and Metric Data 38

Figure 3.4: An example of a bug report in Bugzilla [11]

3.2.4 Locating the Files with Vulnerability Fixes

The code changed in a bug fix (which corresponds to a vulnerability fix) can be found by

following the Diff link (circled at the bottom-right corner of Figure 3.4). The Diff page is shown

in Figure 3.5, where specific sections of the webpage are magnified to highlight the affected files.

Chapter 3. Collecting Vulnerability and Metric Data 39

Figure 3.5 reveals that the files mozilla/content/base/public/nsContentUtils.h and

mozilla/content/base/src/nsContentUtils.cpp are changed to fix the bug with bug id 423541 which

corresponds to the vulnerability with MFSA ID MFSA 2008-27. Therefore, the vulnerability

counts (i.e., how many vulnerabilities a file has had in the past) of the above stated files are

increased by one. If these files have had no vulnerability fixes before the MFSA 2008-27

vulnerability fix, the vulnerability counts of these two files are incremented from zero to one after

Figure 3.5: An example Diff page showing the changed files as a result of a bug fix

Chapter 3. Collecting Vulnerability and Metric Data 40

this vulnerability fix. If the same files are modified to fix another vulnerability (which is

represented by a different MFSA ID, e.g., MFSA 2008-28), then the vulnerability counts of these

files are again incremented by one. That is, the vulnerability counts become two. However, we

make sure that the same vulnerability fixes are not counted multiple times. For example, from

Figure 3.3, we know that MFSA 2008-27 vulnerability is fixed in release 2.0.0.15. If the same

vulnerability is also fixed in release 2.0.0.16, i.e., the files mozilla/content/base/public/nsContent-

Utils.h and mozilla/content/base/src/nsContentUtils.cpp are also modified in release 2.0.0.16 to

fix MFSA 2008-27, we do not increment the vulnerability counts of these files again as this fix

had been already counted in the previous release. Once we have identified the fixes of bugs to

mitigate vulnerabilities, we can precisely find out how many vulnerabilities each file has had in

the past. Note that a security advisory reporting a vulnerability may refer to multiple bugs, and a

bug fix can involve several files.

3.2.5 An Alternative Approach for Mapping Vulnerabilities to Entities

Before this straightforward method of tracing vulnerability fixes to code was available via

these web interfaces, one would have to download the entire CVS log of commit messages and

search the CVS logs of each file for specific bug ids in Mozilla Firefox. In that case, the steps to

count the number of vulnerabilities per file would be:

1. Download the Mozilla CVS.

2. For each MFSA extract the bug ids.

3. Look for the bug ids in the commit messages of CVS log entries.

4. Increment vulnerability counter for the affected files.

Chapter 3. Collecting Vulnerability and Metric Data 41

This alternative approach is adopted by Neuhaus et al. [56], described in detail by Sliwerski et

al.[67], and extends the approaches introduced by Fischer et al. [26] and by Cubranic et al. [19].

3.3 Computing Complexity, Coupling, and Cohesion Metrics

The complexity, coupling, and cohesion metrics are computed by statically analyzing the

source code of Mozilla Firefox which can be obtained either by downloading a source archive or

by using a source control system like a CVS client. Because we do not intent to check-in (submit)

any code back into the source archives, we simply downloaded the source code of specific

releases. The source code for a release can be found on the Mozilla FTP (File Transfer Protocol)

server [33]. A detailed manual on how to acquire the source code of a specific release via FTP is

provided in the Developer Guide [48].

We used a commercial tool called Understand C++ [61] to automatically calculate the metrics

from the source code. This tool is used because it is user friendly and it has a good set of APIs to

interact with programming languages such as C++, Perl, and Python.

In this study, we compute the metrics at file-level granularity. The design-level metrics (the C-

K metric suite) are computed for each class and aggregated to the file level. For example, the file

nsAEClassDispatcher.h has the classes AEDispatchHandler and AEDispatchTree with Lack of

Cohesion of Methods (LCOM) scores of 55% and 33%, respectively. We take the average LCOM

of these two classes, 44%, to be the representative LCOM of the file. In case of all other design–

level OO metrics, we add the metric values to aggregate to the file level. For example, the values

of the Weighted Methods per Class (WMC) metric (which is basically the number of methods

Chapter 3. Collecting Vulnerability and Metric Data 42

defined in a class) of AEDispatchHandler and AEDispatchTree are 9 and 6, respectively. The

WMC for the file nsAEClassDispatcher.h is thus 15.

3.4 Tool Implementation

We have developed a tool to automate the aforementioned method of mapping vulnerabilities

to entities by extracting information from the Mozilla repositories. The source code and detailed

documentation can be found at our website [20]. The tool is basically a collection of Python

scripts, which currently generates text output. To extract information from the html files (i.e.,

Mozilla repository web-interfaces), we use python’s regular expressions library and

BeautifulSoup [6], a HTML/XML parser module for python. The statistical analysis is done via

StatPy [68], a python library developed at Cornell University, USA.

Figure 3.6: An overview of the tool to automatically extract vulnerability data

Trace Code-change for Bug Fix

Compute CCC Metrics

Using Understand 2.0

Read Metrics

Download Source Tree

Retrieve Bugzilla Entries for

Each Vulnerability

Map Vulnerabilities to File

Parse MFSA

Analyze Metrics and

Vulnerability Count per File

Chapter 3. Collecting Vulnerability and Metric Data 43

The tool can be viewed as a combination of logical components as illustrated in Figure 3.6. The

Parse MFSA component parses the Mozilla Foundation Security Advisories (MFSA) web pages

(html files) to create a list of vulnerabilities reported in Mozilla Firefox (snapshots of the MFSA

pages are shown in Figure 3.2 and Figure 3.3). For each vulnerability, the tool extracts

information such as the MFSA link to the vulnerability report, description of the vulnerability, the

affected releases, date of vulnerability discovery, reporter’s name, and most importantly, the bug

ids that correspond to the vulnerability. The Retrieve Bugzilla Entries for Each Vulnerability

component queries Bugzilla to retrieve the bug reports that resulted from or were associated with

the vulnerability advisory. The bug reports (html files, example shown in Figure 3.4) are parsed

to retrieve the links to code fixes in the CVS repository. Then the Trace Code-change for Bug Fix

component follows the links to the CVS repository to identify the changed code and files that

were modified to fix the bug (and hence the vulnerability). Note that the components Parse

MFSA, Retrieve Bugzilla Entries for Each Vulnerability, and Trace Code-change for Bug Fix and

Map Vulnerabilities to File implement Steps 1, 2, and 3, respectively, described in Section 3.2.

The entire source tree or source code of a specific release is downloaded by the Download

Source Tree component. The downloaded source code is then fed into Compute CCC Metrics

Using Understand 2.0. Understand 2.0 is the third-party commercial tool used to automatically

compute CCC metrics (the component is grayed-out to indicate the use of a third-party tool). An

interface module, Read Module, is written so that our tool can read, preprocess, and aggregate the

metrics at file level from the raw csv (comma separated values) files generated by Understand

2.0. Finally, Analyze Metrics and Vulnerability Count per File performs the statistical analyses to

Chapter 3. Collecting Vulnerability and Metric Data 44

report the correlations between CCC metrics and vulnerabilities in Mozilla Firefox files. The

results of this statistical analysis are presented in Chapter 4.

3.5 Summary

This chapter introduces our case study subject – Mozilla Firefox. It also provides a detailed

account of how one can map vulnerabilities to software entities by extracting information from

software repositories such as vulnerability reports, bug reports and Concurrent Version Systems

(CVS). For Mozilla Firefox, we mine the Mozilla Foundation Security Advisories (vulnerability

reports), their corresponding Bugzilla entries (bug reports) and CVS repositories to trace the

source files changed to mitigate each vulnerability. The vulnerable files are identified from the

location of the vulnerability fixes. We collect vulnerability information from fifty-two releases of

Mozilla Firefox developed over a period of four years. We provide an overview of the tool

developed to automatically collect such vulnerability information from the aforementioned

repositories. We also describe how we acquire the Mozilla source code and automatically

compute CCC metrics using a third party tool.

The collected vulnerability history of more than four years and CCC metrics from several

releases of Mozilla Firefox can be analyzed to test the five hypotheses we postulated about the

underlying relationships between CCC metrics and vulnerabilities. The next chapter reports the

results of the experiments conducted to test these hypotheses.

 45

Chapter 4

Experimental Analysis of the Hypotheses

This chapter describes the experiments performed to validate the hypotheses about how

vulnerabilities relate to complexity, coupling, and cohesion (CCC) metrics. First, it gives an

overview of the experimental analysis. In doing so, it describes how to interpret the correlation

values, which correlation technique is most suitable in the experiment, and the data used in the

experimental analyses. Then it lays out each experiment in detail. The first, second, and third

experiments are conducted to investigate the association of complexity, coupling, and cohesion

metrics, respectively, with vulnerabilities in Mozilla Firefox. The fourth experiment is to

investigate which level of metrics, code or design level, more strongly correlate to vulnerabilities.

Finally, the fifth experiment is conducted to determine the subset of metrics that consistently

correlate to vulnerabilities across multiple releases of Mozilla Firefox. In the end, we provide an

overall summary of experimental findings and their implications.

We would like to remind the readers that in the previous chapter we described how we have

collected vulnerability and CCC metric data from several releases of Mozilla Firefox. In this

chapter, we use the collected data to test the hypothesis about the underlying relationship between

the CCC metrics and vulnerabilities. The discussion of classification and prediction of vulnerable

files based on that data has to wait until Chapter 5.

4.1 Experiments to Test the Hypotheses

As mentioned, we conduct five experiments to test the five hypotheses (see Table 1.1 in

Section 1.4) postulated about the underlying relationships between vulnerabilities and CCC

Chapter 4. Experimental Analysis of the Hypotheses 46

metrics. We test each hypothesis by computing the correlations between the CCC metrics and the

number of vulnerabilities in each file. The value of the correlation coefficient (denoted by

correlation in short) gives the strength of the relationship. However, the interpretation depends on

the context of the usage of correlation. Cohen et al. [16] suggest that a correlation of less than 0.3

means weak correlation, 0.3 to 0.5 means medium correlation, and greater than 0.5 means strong

correlation. We interpret the strength of correlation as per Cohen et al. The significance of the

correlation indicates whether the observed association has occurred by chance. In other words, it

asks if the correlation is significantly different than zero. Conventionally, the significance of a

correlation is determined in terms of p-value, the probability of the T-statistic. The smaller the p-

value, the higher is the confidence on the significance of the correlation. Traditionally,

correlations with p-values of less than or equal to 0.05 are considered statistically significant [16].

A p-value of 0.05 means that we are 95% confident that the observed correlation is not by chance.

The Pearson correlation coefficient (r) and Spearman rank correlation coefficient (ρ) are often

used to measure the strength of correlations between two variables. The Pearson correlation

assumes normal distribution of data, while the Spearman rank correlation is a non-parametric test

that does not assume any distribution. Spearman rank correlation is performed on the ranks of the

values without considering the magnitudes of the values, and therefore, it is not sensitive to

outliers. Spearman rank correlation is a commonly used and robust correlation technique because

it can be applied even when the association between elements is non-linear [16]. For these

reasons, we use the Spearman rank correlation for this study. We have used stats.py, a statistical

data analysis package written in python, to compute the Spearman rank correlation and its

corresponding p-value.

Chapter 4. Experimental Analysis of the Hypotheses 47

We analyze the correlation between CCC metrics and vulnerabilities on several releases of

Mozilla Firefox. The fifty-two releases of Firefox developed till March 1, 2009 fall into four

major releases: R3.0, R2.0, R1.5, and R1.0 [51]. We analyze the correlation between

vulnerabilities and CCC metrics for all four of these major releases and the release R3.0.6, the

last release with known vulnerabilities. Table 4.1 presents the summary of the releases including

the lines of code (LOC), number of files, total number of vulnerabilities, and the number of files

with vulnerabilities.

Table 4.1: Information about different Mozilla Firefox releases

Releases LOC Files Vulnerabilities Vulnerable Files
R3.0.6 2,068,407 9,417 6 26 (0.3%)
R3.0 2,066,729 11,138 38 97 (0.9%)
R2.0 2,303,114 11,138 146 434 (3.9%)
R1.5 2,228,647 11,002 229 599 (5.4%)
R1.0 2,065,001 10,377 304 693 (6.7%)

4.1.1 Experiment 1: Associating Vulnerability with Complexity (H1)

This experiment is conducted to test H1, the hypothesis that complexity metrics positively

correlate to the number of vulnerabilities. The Spearman rank correlation between the complexity

metrics and vulnerabilities per file in five major releases of Mozilla Firefox are presented in

Table 4.2. We observe from the table that the complexity metrics are generally positively

correlated to the number of vulnerabilities in Mozilla Firefox for all the five releases. Therefore,

the correlations presented in Table 4.2 unequivocally suggest that the number of vulnerabilities in

Mozilla Firefox increases with the increase in code and design complexity.

When we take a closer look at Table 4.2, we can observe that NOC is the best indicator of

vulnerabilities whereas comment ratio is the worst indicator of vulnerabilities for all releases.

Chapter 4. Experimental Analysis of the Hypotheses 48

Number of Children (NOC) or the number of children metric measures inheritance complexity.

We anticipated that vulnerabilities would be more strongly correlated to metrics measuring

overall code and design complexity such as such McCabe's cyclomatic complexity or WMC. This

finding suggests that inheritance complexity can be used as a good indicator of vulnerabilities in

Mozilla Firefox.

Table 4.2: Correlations between complexity metrics and vulnerabilities

Metrics Correlations with vulnerabilities
R3.0.6 R3.0 R2.0 R1.5 R1.0

McCabe's 0.510 0.513 0.513 0.514 0.510
Modified 0.510 0.514 0.514 0.515 0.511
Strict 0.509 0.513 0.512 0.514 0.51
Essential 0.512 0.514 0.514 0.515 0.512
CountPath 0.497 0.504 0.503 0.504 0.502
Nesting 0.532 0.541 0.541 0.542 0.538
SLOC 0.514 0.518 0.541 0.515 0.514
CommentRatio 0.324 0.339 0.339 0.338 0.341
WMC 0.429 0.437 0.437 0.442 0.46
DIT 0.459 0.455 0.456 0.475 0.488
NOC 0.642 0.663 0.663 0.662 0.714
CBC 0.457 0.463 0.463 0.467 0.502

*For all the correlations, p < 0.001

An empirical study on PosgresSQL, a database management system, shows that highly

complex program units have more comments per line of code [44]. However, this is not the case

in case of Mozilla Firefox browser. Here, the comment ratio has the weakest correlation with

vulnerabilities when compared to the correlations of other complexity metrics with

vulnerabilities. This observation suggests that the observed correlation may be project specific.

Nevertheless, the correlations of the other complexity metrics with vulnerabilities ranging from

Chapter 4. Experimental Analysis of the Hypotheses 49

0.4 to more than 0.5 with p < 0.001 suggest overall moderate but significant association. Thus,

these metrics can also be used as indicators of vulnerabilities in Mozilla Firefox. It is already

mentioned in the previous chapter that some of the vulnerabilities are fixed in more than one

release, e.g., MFSA 2008-65 is fixed in releases 2.0.0.20 and 2.0.0.19 (see Figure 3.2). Therefore,

some of the vulnerability fixes are overlapping across some releases, i.e., they are dependent.

This is why it is natural to have low p-values.

Interestingly, SLOC, a straight-forward metric like the number of executable lines of code, is

as strongly correlated to vulnerabilities as any of the other well-established complexity metrics.

However, prior research, e.g., the one by Briand et al. [5], has empirically validated that

component sizes (in terms of lines of code) are correlated to the number of failures in the

operational stage.

4.1.2 Experiment 2: Associating Vulnerability with Coupling (H2)

We conduct this experiment to test hypothesis H2 that coupling metrics positively correlate to

the number of vulnerabilities. We have computed the Spearman rank correlation between the

coupling metrics and vulnerabilities for the five releases of Mozilla Firefox as in Experiment 1.

Table 4.3 presents the correlations (for all the correlations, p < 0.001). We observe from the table

that all the coupling metrics are generally positively correlated to the number of vulnerabilities in

Mozilla Firefox across all five studied releases. This unequivocally suggests that highly coupled

files have higher number of vulnerabilities.

Similar to Experiment 1 for testing hypothesis H1, we observe in Table 4.3 that the Number of

Children (NOC) metric is the best indicator of vulnerabilities. We anticipated that vulnerabilities

Chapter 4. Experimental Analysis of the Hypotheses 50

would be more strongly correlated to the traditional and well-established coupling metrics such as

FanIn, FanOut, or Coupling Between class Objects (CBO), not to coupling due to inheritance.

NOC measures coupling due to inheritance in the sense that the more children a class has, the

more methods and instance variables it is likely to be coupled to. Nevertheless, the other coupling

metrics strongly and significantly correlate to vulnerabilities as well (correlations ranging from

0.434 to 0.539 with p < 0.001). Therefore, the coupling metrics can be used as an indicator of

vulnerabilities in Mozilla Firefox.

Table 4.3: Correlations between coupling metrics and vulnerabilities

Metrics Correlations with vulnerabilities
R3.0.6 R3.0 R2.0 R1.5 R1.0

FanIn 0.532 0.537 0.537 0.538 0.537
FanOut 0.514 0.520 0.520 0.521 0.518
HK 0.529 0.535 0.536 0.536 0.537
RFC 0.434 0.434 0.434 0.439 0.457
CBO 0.454 0.458 0.458 0.462 0.471
DIT 0.459 0.455 0.456 0.475 0.488
NOC 0.642 0.663 0.663 0.662 0.714
CBC 0.457 0.463 0.463 0.467 0.502

*For all the correlations, p < 0.001

4.1.3 Experiment 3: Associating Vulnerability with Cohesion (H3)

The association of cohesion in software entities with vulnerabilities has never been studied

before. This experiment is conducted to test hypothesis H3 that cohesion negatively correlates to

the number of vulnerabilities. The Lack of Cohesion Of Methods (LCOM) metric measures, as

the name suggests, the lack of cohesion of methods. Therefore, if cohesion is to negatively

correlate to vulnerabilities, LCOM should positively correlate to vulnerabilities. For each of the

Chapter 4. Experimental Analysis of the Hypotheses 51

studied releases of Mozilla Firefox, we compute the Spearman rank correlation between the

LCOM and vulnerabilities for all the files that contain at least one class.

Table 4.4 reports the correlations, where p < 0.001. We observe from Table 4.4 that LCOM

positively correlates to the number of vulnerabilities in Mozilla Firefox across all five releases.

This supports our hypothesis that cohesion metrics negatively correlate to vulnerabilities. The

result implies that non-cohesive classes or files are more likely to have vulnerabilities than the

cohesive classes or files.

Table 4.4: Correlations between the lack of cohesion metric and vulnerabilities

Metric Correlations with vulnerabilities

R3.0.6 R3.0 R2.0 R1.5 R1.0

LCOM 0.438 0.444 0.444 0.447 0.486

*For all the correlations, p < 0.001

4.1.4 Experiment 4: Comparing Correlations of Code and Design-level Metrics (H4)

We conduct this experiment to test hypothesis H4 that the code-level CCC metrics are better

indicators of vulnerabilities than the design-level CCC metrics. The code sometimes diverges

from what is specified in the design, because during the coding phase, the programmers may not

religiously follow (intentionally or unintentionally) the design specifications. Given that

assumption, we believe that the code more closely represents the operational behavior of the

software than the design specifications. Therefore, compared to design-level metrics, code

metrics are supposed to be more strongly correlated to vulnerabilities.

Chapter 4. Experimental Analysis of the Hypotheses 52

Figure 4.1: Comparison of average correlations of code-level and that of design-level CCC

metrics with vulnerabilities

For this experiment, we categorize the CCC metrics into code and design level (the

categorization is already shown in Table 2.1). Then, for each metric, we find the average

correlations from the Spearman rank correlations for the five releases. Figure 4.1 shows the graph

obtained by plotting the average correlations of vulnerabilities with the design-level and code-

level metrics, respectively. We can observe from the graph that the line connecting the average

correlations of code-level metrics generally lies above the line connecting the average

correlations of design-level metrics. Therefore, most of the code-level metrics are indeed more

strongly correlated to vulnerabilities when compared to the design-level metrics.

WMC DIT

NOC

CBC RFC
CBO LCOM

CommentRatio

McCabe's Modified Strict Essential
CountPath

Nesting
SLOC FanIn FanOut HK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Co

rr
el
at
io
n
w
it
h
vu
ln
er
ab

ili
te
s

Metrics

Average correlations of
design‐level metrics

Average correlations of
code‐level metrics

Chapter 4. Experimental Analysis of the Hypotheses 53

However, there are two exceptions. First, vulnerabilities are not as strongly correlated to the

CommentRatio code-level metric as they are to the design-level metrics. Second, the NOC

design-level metric shows the strongest correlation with vulnerabilities of all the metrics, more

than any of the code-level metrics. Although the experimental results support H4 in general, there

are counterexamples as well. Therefore, H4 should be revised as “most of the code-level

complexity, coupling, and cohesion metrics are better indicators of vulnerabilities than that of

design-level metrics”.

Although the correlations between code-level metrics and vulnerabilities are stronger than the

correlations between design-level metrics and vulnerabilities, it should be noted that both design-

level and code-level CCC metrics are strongly correlated to vulnerabilities. Therefore, the design-

level metrics can help developers to find the classes that require more careful design. After that,

the code-level metrics can help them to identify the code sections that require careful inspection,

refactoring, or rigorous testing.

4.1.5 Experiment 5: Analyzing the Consistency of Correlations (H5)

We conduct this experiment to test hypothesis H5 that there is a subset of metrics that

consistently correlate to vulnerabilities in all releases. If the values of correlations are stable for

all the releases, we can conclude that the metrics can be dependably used as vulnerability

indicators. Nagappan emphasizes that “for the early indicators to be meaningful, they must be

related (in a statistically significant and stable way) to the field quality of the product” [55].

Chapter 4. Experimental Analysis of the Hypotheses 54

Figure 4.2: The correlations of the all the metrics for each release

To test the stability of correlation across releases, we plot a line graph of the correlations of the

metric with vulnerabilities in the vertical axis and the metrics in the horizontal axis. We plot five

such lines for the five releases we have studied. The graph in Figure 4.2 illustrates that the lines

for each release overlap with each other. The overlapping of the lines demonstrates that the values

and pattern of correlations are similar for all five releases. Comment ratio is the worst indicator of

vulnerabilities whereas NOC is the best indicator of vulnerably across each release. The

McCabe’s, Modified, Strict, and Essential cyclomatic complexities are about 0.5 for all releases.

Nesting complexity always outperforms the other code-level complexity metrics in indicating

vulnerabilities. SLOC is as strongly correlated to vulnerabilities as any other code complexity

metrics. This trend is consistent among all releases. In fact, the whole set of metrics demonstrates

this consistency, not just a subset. Given that every set is a subset of itself, we validate the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
cC
ab

e'
s

M
od

ifi
ed

St
ri
ct

Es
se
nt
ia
l

Co
un

tP
at
h

N
es
ti
ng

SL
O
C

Co
m
m
en

tR
at
io

W
M
C

D
IT

N
O
C

CB
C

Fa
nI
n

Fa
nO

ut H
K

RF
C

CB
O

LC
O
M

Co
rr
el
at
io
n
w
it
h
vu
ln
er
ab

ili
te
s

R3.0.6

R3.0

R2.0

R1.5

R1.0

Chapter 4. Experimental Analysis of the Hypotheses 55

hypothesis (with respect to Mozilla Firefox) that there is a subset of metrics that correlate to

vulnerabilities in all releases.

4.2 Summary

In this chapter, we provide empirical evidence that complex, coupled, and non-cohesive

software entities are less secure. By conducting a case study on five releases of Mozilla Firefox,

we validate the five hypotheses about the underlying relationships between CCC metrics and

vulnerabilities. From the correlation analysis conducted on the CCC metrics of five major

releases and over four years of vulnerability history, we can conclude that in Mozilla Firefox:

• Complexity, coupling, and lack of cohesion metrics positively correlate to the number of

vulnerabilities at a statistically significant level. The correlation is on average 0.5

(approximately) with p < 0.001.

• Generally, vulnerabilities are more strongly correlated to code-level CCC metrics than that to

design-level CCC metrics. However, NOC, the design-level metric measuring inheritance

complexity and coupling, shows the strongest correlation with vulnerabilities.

• The CCC metrics are consistently correlated to vulnerabilities across several releases of

Mozilla Firefox. The stable correlation patterns imply that, once calibrated to a specific

project, the metrics can be dependably used to indicate vulnerabilities for new releases.

Given that CCC metrics are consistently correlated to vulnerabilities across several releases of

Mozilla Firefox, these metrics can be also be used to automatically predict vulnerability-prone

Chapter 4. Experimental Analysis of the Hypotheses 56

files. The next chapter reveals the results of automatic prediction of vulnerability-prone files

based on their CCC metrics.

 57

Chapter 5

Automatic Prediction of Vulnerabilities

In this chapter, we employ complexity, coupling, and cohesion (CCC) metrics to automatically

predict vulnerability-prone entities. Recollect that a framework to predict vulnerabilities using

CCC metrics is presented in the introduction (Chapter 1) of this thesis. This chapter describes

how to build the vulnerability predictors and measures how accurate the predictors are when

applied to predict vulnerability-proneness for new files in Mozilla Firefox.

The rest of the chapter is organized as follows. First, we explain the dependent and

independent variables of the prediction task at hand. This is followed by the definitions of a

number of performance measures used to quantitatively evaluate the performances of the

vulnerability predictors developed by using several statistical and machine learning techniques.

We then describe the implementation and parameter initialization of these techniques that can be

used to build the predictors. We also show that the predictors must be trained on a balanced data-

set to avoid the problem of over-fitting. Finally, we present the result of vulnerability prediction

using different statistical and machine learning techniques and discuss the implications of the

results.

5.1 Dependent and Independent Variables

A variable is any measureable characteristic, whether of a person, a situation, a piece of

software, or anything else. In the context of prediction, a dependent variable is one about which

we make a prediction; an independent variable is one that is used to make the prediction. For

Chapter 5. Automatic Prediction of Vulnerabilities 58

example, the average age of death could be a dependent variable, and age and gender might be

used as independent variables to predict average age of death.

In our case, we are trying to predict whether a file in Mozilla Firefox is vulnerability-prone or

not (dependent variable). Since we identify the location of a vulnerability from the location of its

fix (i.e. which file the fix is in), predicting the occurrences of vulnerability fixes is equivalent to

predicting the likelihood of having post-release vulnerabilities in that file. It is typical for a

vulnerability fix to involve several files, and we therefore count the number of vulnerability fixes

that were required in that file for developing the next release n+1. This aims at capturing the

vulnerability-proneness of a file in the current release n. Furthermore, as reported in Section 3.1,

only a very small portion of files undergo more than one vulnerability fix for a given release, so

finding vulnerability-proneness in release n is treated as a classification problem and is estimated

as the probability that a given file will undergo one or more vulnerability corrections in release

n+1.

The independent variables are the CCC metrics already defined in Table 2.1. The fundamental

hypothesis underlying our work is that the vulnerability-proneness of entities may be affected by

their complexity, coupling, and cohesion-related structural characteristics.

5.2 Prediction Performance Measures

The performance of a predictor can be measured in several ways. Most frequently used

measures are accuracy, recall, precision, false positive rate, and false negative rate. For the two-

class problem (e.g., vulnerability-prone or not vulnerability-prone), these performance measures

Chapter 5. Automatic Prediction of Vulnerabilities 59

are explained using a confusion matrix, shown in Table 5.1. The confusion matrix shows the

actual versus the predicted results where:

• True Negative (TN) = The number of files predicted as not being vulnerability-prone where

no vulnerability is discovered in those files.

• False Positives (FP) = The number of files incorrectly predicted as vulnerability-prone when

they are not vulnerable.

• False Negative (FN) = The number of files predicted as not being vulnerability-prone which

turn out to have a vulnerability.

• True Positives (TP) = The number of files predicted as being vulnerability-prone which are in

fact vulnerable.

Table 5.1: Confusion matrix

Actual
Predicted as

Not Vulnerable Vulnerable

Not Vulnerable TN = True Negatives FP = False Positives

Vulnerable FN = False Negatives TP = True Positives

From the confusion matrix, several of the prediction performance measures such as accuracy,

precision, recall, F-measures, false positive rate, and false negative rate can be derived as follows:

Accuracy: Accuracy is also known as overall correct classification rate. It is defined as the ratio

of the number of files correctly predicted to the total number of files as shown in Equation (3).

Chapter 5. Automatic Prediction of Vulnerabilities 60

Precision: Precision, also known as the correctness, measures the efficiency of prediction. It is

defined as the ratio of the number of files correctly predicted as vulnerability-prone to the total

number of files predicted as vulnerability-prone, as shown in Equation (4).

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
 (4)

Recall: Recall is the vulnerable entity detection rate which quantifies the effectiveness of a

predictor. It is defined as the ratio of the number of files correctly predicted as vulnerability-prone

to the total number of files that are actually vulnerable. The formulae to calculate recall is given

in Equation (5).

 ܴ݈݈݁ܿܽ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
 (5)

Both precision and recall are important performance measures. The higher the precision, the

less effort wasted in testing and inspection, and the higher the recall, the fewer vulnerable files go

undetected. Unfortunately, there is a trade-off between precision and recall. For example, if a

predictor predicts only one file as vulnerability-prone and this file is actually vulnerable, the

precision will be 100%. However, the predictor’s recall will be low if there are other vulnerable

files. In another example, if a predictor predicts all files as vulnerable, the recall will be 100%,

but its precision will be low. Therefore, a measure is needed which combines recall and precision

in a single efficiency measure.

ݕܿܽݎݑܿܿܣ ൌ
ܶܲ ൅ ܶܰ

ܶܲ ൅ ܲܨ ൅ ܶܰ ൅ ܰܨ
 (3)

Chapter 5. Automatic Prediction of Vulnerabilities 61

F-measure: F-measure can be interpreted as a weighted average of precision and recall [73].

For convenient interpretation, we also express it in terms of a percentage like our other

performance measures so it reaches its best value at 100 and its worst at 0. The general formula

for F-measure is given in Equation (6), where Fβ–measure "measures the effectiveness of

prediction with respect to a user who attaches β times as much importance to recall as precision"

[59].

ఉܨ െ ݁ݎݑݏܽ݁݉ ൌ

ሺ1 ൅ ଶሻߚ ൈ ݊݋݅ݏ݅ܿ݁ݎܲ ൈ ܴ݈݈݁ܿܽ
ሺߚଶ ൈ ሻ݊݋݅ݏ݅ܿ݁ݎܲ ൅ ܴ݈݈݁ܿܽ

 (6)

The traditional F-measure, denoted by F1-measure, gives equal importance to both precision

and recall by taking their harmonic mean [73]. Two other commonly used F-measures are the F2-

measure and F0.5-measure. F2-measure weighs recall twice as much as precision whereas F0.5-

measure weighs precision twice as much as recall.

We believe that it is more important to identify the vulnerable files, even at the expense of

incorrectly predicting some non-vulnerable files as vulnerability-prone. To draw an analogy,

consider well-known philosophical quote that states, “Better ten guilty persons go free than one

innocent person is punished” [57]. In the case of vulnerability prediction, this quote can be

rephrased as “Better ten non-vulnerable files are investigated than one vulnerable file going

unnoticed”. This is because a single vulnerable file may lead to serious security failures. Given

that, we think more weight should be given to recall than precision. Therefore, we include the F2-

measure, which weights recall twice as much as precision, to evaluate a predictor.

Chapter 5. Automatic Prediction of Vulnerabilities 62

Some researchers choose to use the false positive rate (FP rate) and the false negative rate (FN

rate) instead of precision and recall. Ostrand and Weyuker [58] in particular argue that false

positive rate (Type I misclassifications) and false negative rate (Type II misclassifications) are the

most important measures. We also believe that these measures are effective in evaluating

vulnerability prediction models. They are defined as follows:

TNFP

FPrateFP
+

= (7)

FNTP
FNrateFN
+

=

(8)

A high FN rate indicates that there is a risk of overlooking vulnerabilities, whereas a high FP

rate indicates effort may be wasted in investigating the predicted vulnerable entities. These

notions are highly related to recall and precision; in fact, recall = 1 – FN rate and precision is

inversely proportional to FP rate. Therefore, it is redundant to use all of them to indicate

prediction performance.

In this study, we use accuracy, recall and FN rate as employed in [39]. All these measures are

expressed in percentages. In addition, we use F1-measure and F2-measure to quantitatively

evaluate and compare the predictors.

5.3 Implementation and Parameter Initialization

WEKA (Waikato Environment for Knowledge Analysis) is a popular, open source toolkit

implemented in Java for machine learning and data mining tasks [72] that we chose for

implementing the four statistical and machine learning techniques discussed in Section 2.2 of

Chapter 5. Automatic Prediction of Vulnerabilities 63

Chapter 2. The parameters for each of the investigated techniques are initialized mostly with the

default settings of the WEKA toolkit such as follows:

• C4.5 Decision Tree (DT): We use the well-known J48 WEKA-implementation of the C4.5

algorithm to generate a decision tree. The confidence factor used for pruning is set at 25%

and the minimum number of instances per leaf is set at 10. A higher confidence factor incurs

more pruning of a decision tree, where pruning refers to discarding one or more sub-trees and

replacing them with leaves to simplify a decision tree (while not increasing error rates).

• Random forest (RF): The number of trees to be generated is set at 10; the number of input

variables randomly selected at each node is set at 2; and each tree is allowed to grow to the

largest extent possible, i.e. the maximum depth of the tree is unlimited.

• Logistic Regression (LR): In WEKA, LogitBoost7 with simple regression functions as base

learners is used for fitting the logistic models (see Equation 1 in Section 2.2.3 for an example

of a logistic model). The optimal number of LogitBoost iterations to perform is cross-

validated, which leads to automatic attribute/feature selection (for more information, read

[41]). The heuristicStop is set to 50. If heuristicStop > 0, the heuristic for greedy stopping

while cross-validating the number of LogitBoost iterations is enabled. This means LogitBoost

is stopped if no new error minimum has been reached in the last heuristicStop iterations. It is

recommended to use this heuristic as it gives a large speed-up especially on small datasets.

7 “LogitBoost is a boosting based machine learning algorithm that uses a set of weak predictors to create a
single strong learner. A weak learner is defined to be a classifier which is only slightly correlated with the
true classification. In contrast, a strong learner is a classifier that is arbitrarily well correlated with the true
classification” [41].

Chapter 5. Automatic Prediction of Vulnerabilities 64

The maximum number of iterations for LogitBoost is set at 500. For very small/large datasets

a lower/higher value might be preferable.

• Naïve-Bayes (NB): The useSupervisedDiscretization is set to False so that continuous,

numeric attributes (in our case the CCC metrics) are not converted to discretized or nominal

ones. Discretization refers to the process of converting continuous features or variables to

nominal or categorical features. NB does not require any numeric parameters to be initialized.

In addition to the above parameter initializations, a default threshold (cut-off) of 0.5 is used for

all techniques to classify an entity as vulnerability-prone if the predicted probability is higher than

the threshold.

There is scope to improve the prediction performance by experimenting with these parameters.

However, as we will see in later sections of this chapter, it is possible to predict vulnerability-

prone files with reasonable accuracy even with the aforementioned default parameters. This

proves our point that CCC metrics can be useful additions in vulnerability prediction. The main

objective for considering several learning techniques is to demonstrate the efficacy of

vulnerability prediction using CCC metrics irrespective of what technique is used, and not

necessarily to determine what the best learning technique is. Therefore, in this thesis, we do not

attempt to optimize the parameters for higher accuracy.

5.4 Need for a Balanced Training Set

To build and evaluate the predictors, file-level CCC metrics and vulnerability data from the 52

releases of Mozilla Firefox are used. There are 718 vulnerable files (minority category) as

Chapter 5. Automatic Prediction of Vulnerabilities 65

opposed to 10,421 non-vulnerable files (majority category) in the obtained dataset (a total of

11,139 instances). Training the predictors on such an imbalanced data set would produce biased

predictors towards the more dominant category [73] (in this case, the non-vulnerable files). This

phenomenon is known as over-fitting. The result of training predictors on an imbalanced data set

is shown in Table 5.2 for C4.5 Decision Tree (DT) technique. Because the predictor becomes

biased towards the overwhelming majority category, it predicts many vulnerable files as non-

vulnerable files. Consequently, it misses many vulnerable files. This is reflected by the low recall

of 23.3%. Naturally, the FP rate is low as files are predicted very rarely as vulnerable-prone by

the biased predictor. Notably, the high overall accuracy of 93.21% is misleading. It would be

possible to be just as accurate by blindly predicting all files as non-vulnerable, because 93% of

the instances in the data set correspond to non-vulnerable files. Even with such high accuracy and

low FP-rate, such a biased predictor is practically useless because it would miss a majority of the

vulnerable files. Similar results are obtained for all other techniques, and, for simplicity of

description, we report only the results for DT in Table 5.2.

Table 5.2: Performance of a biased predictor built from imbalanced data set

Accuracy Recall FP rate F1-measure

93.21 23.30 1.10 23.30

To facilitate the construction of unbiased predictors, we create a balanced subset (1463

instances) from the complete training set which consists of the 718 instances representing the

vulnerable files and a random selection of 718 instances representing non-vulnerable files. Many

prior studies [2, 39, 75] have also under-sampled the majority category instances to obtain a

balanced training set. The problem with under-sampling is that we lose data we can learn from.

This is a significant problem when one works with a small sample size, which is not a major

Chapter 5. Automatic Prediction of Vulnerabilities 66

problem in our case. The other possible technique would be to perform over-sampling of the

minority category, i.e., duplicating the instances representing vulnerable files. Oversampling the

minority category can raise their weight to decrease their error rate. The same result can be

achieved with an under-sampling technique, which also speeds up the predictor building

significantly by reducing the size of the dataset.

As opposed to these sampling techniques, cost-based prediction can be adopted to deal with the

imbalanced data set. In cost-based prediction, we could set higher weights to instances

representing vulnerable files. Then the error in predicting the minority class would decrease at the

expense of the increase in the overall prediction error. In addition, the interpretation of standard

prediction performance measures would become unintuitive [73].

With a balanced data set, the proportion of vulnerable and non-vulnerable files is exactly 50%.

Therefore, a random prediction is likely to be correct 50% of the time. For the predictors to prove

useful, they should be correct more than 50% of the time when classifying into either vulnerable

or non-vulnerable files. We will be able to evaluate the usefulness of the predictors from the

results presented in the next section.

5.5 Results and Discussions

This section presents the results of predicting vulnerability-prone files in Mozilla Firefox based

on complexity, coupling, and cohesion (CCC) metrics. These results will help us quantitatively

evaluate the usefulness of using CCC metrics for vulnerability prediction.

Chapter 5. Automatic Prediction of Vulnerabilities 67

5.5.1 Prediction Performance of Different Techniques

We have considered four alternative data mining and statistical techniques – C4.5 Decision

Trees (DT), Random Forests (RF), Logistic Regression (LR), and Naïve-Bayes (NB) – and

compared their prediction performances. Using DT as the baseline scheme, we perform a

statistical significance test to determine whether the differences in performance measures by other

techniques are statistically significant. The term statistical significance refers to the result of a

pair-wise comparison of schemes using either a standard t-test or the corrected re-sampled t-test

[16]. We used the latter t-test, because the standard t-test can generate too many significant

differences due to dependencies in the estimates (in particular when anything other than one run

of an x-fold cross-validation is used). As the significance level decreases, the confidence in the

conclusion increases. Traditionally, a significance level of less than or equal to 0.05 (the 95%

confidence level) is considered statistically significant. Therefore, we have performed the

corrected re-sampled t-test at 0.05 significance.

The results are obtained by performing a 10-fold cross-validation to reduce variability in the

prediction. Cross-validation is a technique for assessing how accurately a predictive model will

perform in practice [73]. The dataset is randomly partitioned into 10 bins of equal size. For 10

different runs, 9 bins are picked to train the predictors and the remaining bin is used to test them,

each time leaving out a different bin for testing. We use stratified sampling to make sure that

roughly the same proportion of vulnerable and non-vulnerable files are present in each bin while

making the random partitions. In addition, to reduce the chances for the predictors to be overly

influenced by peculiarities of any given release, we randomly select training sets across the

releases. Finally, we compute the mean and the standard deviation for each performance measure

Chapter 5. Automatic Prediction of Vulnerabilities 68

over these 10 different runs (40 runs in total for four techniques). The mean and standard

deviation (StDev) in accuracy, recall, FP rate, and F1-measure for each technique are presented in

Table 5.3. The significance column (Sig.?) in Table 5.3 reports the results of the statistical

significance test. The annotation “Yes+” or “Yes–” indicates that a specific result is statistically

better (+) or worse (-) than the baseline scheme (in this case, DT) at the specified significance

level (0.05). On the other hand, “No” means the specific performance measure of the two

techniques might be different, but the difference is statistically insignificant.

There are few points that we would like to emphasize from Table 5.3. First, for most

techniques, the predictions are more than 70% accurate. This demonstrates the efficacy of using

CCC metrics in vulnerability prediction, irrespective of what learning or prediction technique is

used. Second, we are able to correctly predict 74% of the vulnerability-prone files with an overall

accuracy of 73%. The results are promising given that we are trying to predict something about

security using information from the non-security realm and learning techniques with the default

parameter settings of the WEKA tool. Third, the standard deviations in the different performance

measures are very low. The low standard deviations indicate that there is little fluctuation in the

prediction accuracies in different runs of the experiments.

Table 5.3: Prediction performance of different techniques

Technique Accuracy Recall FP rate F1-measure

 Mean StDev Sig.? Mean StDev Sig.? Mean StDev Sig.? Mean StDev Sig.?

DT 72.85 1.46 74.22 0.03 28.51 0.05 73.00 0.01

RF 72.95 1.57 No 69.43 0.04 No 23.53 0.04 No 72.00 0.02 No

LR 71.91 1.33 No 59.39 0.03 Yes- 15.58 0.03 Yes+ 68.00 0.02 Yes-

NB 62.40 1.29 Yes- 29.18 0.03 Yes- 4.39 0.01 Yes+ 44.00 0.03 Yes-

Chapter 5. Automatic Prediction of Vulnerabilities 69

For a detailed assessment of the performances of different prediction techniques, the accuracy,

recall, FP rate and F1-measure of the different techniques are compared graphically in Figure 5.1.

In Figure 5.1(a), (b), and (d), the closer a technique appears to the top left corner, the better the

technique in terms of the overall accuracy, recall, and F1-measure, respectively. In Figure 5.1(c),

the closer a technique is to the bottom left corner, the better the technique as far as FP rate is

concerned. From Table 5.3 and Figure 5.1 (a), we can observe that RF’s overall prediction

accuracy is slightly higher than DT and significantly better than LR and NB. However, RF’s

Figure 5.1: Mean vs. standard deviation of different prediction measures

(b) Mean vs. standard deviation of recall

(c) Mean vs. standard deviation of FP rate (d) Mean vs. standard deviation of F1-measure

(a) Mean vs. standard deviation of overall accuracy

Chapter 5. Automatic Prediction of Vulnerabilities 70

variance in the overall accuracy is higher than that of DT and LR. Nonetheless, the differences in

mean and standard deviation in overall accuracy are not statistically significant. As far as recall is

concerned, DT outperforms all other techniques as shown in Table 5.3 and Figure 5.1(b).

Therefore, DT can be an efficient technique in predicting a maximum number of vulnerability-

prone files in Mozilla Firefox. In contrast, many vulnerable entities may remain unnoticed if a

prediction is made using a posterior probability based technique such as NB. The higher recall in

DT is also statistically significant compared to LR and NB. It is surprising that DT can detect

more vulnerability-prone files with a lower variance in detection rate than its more advanced

counterpart, RF. In the case of false positive rate (Figure 5.1(c)), we see the opposite scenario.

The false positive rate is at a maximum in DT and at a minimum in NB. This means that although

DT can detect more vulnerable files, it is also likely to raise more false alarms. As already

mentioned, there is a trade-off between recall and false positive rate. This issue is further

explored in Section 5.5.2. One may have to tolerate a number of false positives to ensure that a

minimum number of vulnerability-prone files go unpredicted. From Figure 5.1(d), we observe

that DT strikes a higher balance between recall and FP rate, i.e., between efficiency and

effectiveness as its F1-measure is higher than other techniques.

It will be interesting to observe how accurately different techniques predict the vulnerability-

prone entities when we put more emphasis on recall by analyzing the F2-measures of the four

techniques. Recollect that the F2-measure evaluates the accuracy of predicting vulnerability-prone

files while considering recall to be twice as important as precision. Figure 5.2 compares the F2-

measures of DT, RF, LR and NB techniques, where DT’s F2-measure is the highest. Therefore, if

Chapter 5. Automatic Prediction of Vulnerabilities 71

the objective is to correctly predict a higher percentage of vulnerable files, then DT promises to

be the preferred technique, although in overall prediction accuracy RF performs better.

Figure 5.2: Comparison of F2-measures of different techniques

5.5.2 Tradeoff between Recall and FP rate

One would ideally like to achieve high recall and a low false positive rate (FP rate).

Unfortunately, the FP rate typically increases with any increase in recall. To investigate the

tradeoff between the vulnerability-prone file detection rate (recall) and the false positive rate (FP

rate), we plot a graph of recall versus FP rate (labeled as recall in Figure 5.3). Such plots are also

called ROC (Receiver Operating Characteristic) curves. ROC curves are often used to visualize

the performance of a predictor in detecting the true class (in our case vulnerability-prone files)

[39, 75]. For ease of explanation, we first present the ROC curve of a single technique, namely

C4.5 Decision Tree, in Figure 5.3. Then in Figure 5.4 we present the ROC curves of all the

techniques we investigated. Figure 5.3 illustrates that we can correctly identify about 60% of the

DT RF LR NB

F2‐measure 73.77 70.48 62.49 33.65

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00
F 2
‐m

ea
us
re

Chapter 5. Automatic Prediction of Vulnerabilities 72

vulnerability-prone files while keeping the false positive rate below 20%, 74% of the

vulnerability-prone files with a false positive rate of below of 30%, and so on.

Figure 5.3: Plot of recall and F1-measure against FP rate

As mentioned before, it is more important to correctly predict most of the vulnerable files, even

at the expense of incorrectly predicting some non-vulnerable files as vulnerability-prone.

Therefore, reasonably high FP rates are tolerable. However, the FP rate also cannot be too high;

otherwise a predictor will be deemed useless in practice. The F1-measure helps to identify the

optimum point of operation, i.e., to find a point of balance between efficiency and effectiveness.

This is why we also place the graph of F1-measure versus FP rate (labeled as F1-measure) on

Figure 5.3. The optimum point of operation can be obtained at the point of intersection of the

recall vs. FP rate and F1-measure vs. FP Rate curves as shown in Figure 5.3. The intersection

Recall

F1‐measure

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

FP rate

Chapter 5. Automatic Prediction of Vulnerabilities 73

point is termed as optimum, because the overall accuracy deteriorates beyond the FP rate at the

intersection.

Figure 5.4: Plot of recall vs. FP rate

Figure 5.4 presents the ROC curves for all four techniques, where we can again observe the

trade-off between recall and FP rate. A good predictor would achieve high recall with a low FP

rate. These ROC curves can be used to visualize predictors’ performances in terms of correctly

predicting the vulnerability-prone files. If the ROC curve of a technique TA lies above that of

another technique TB, then TA performs better than TB in predicting the vulnerability-prone files at

the same FP rate. It can be seen that different techniques performs better than others in different

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Re
ca
ll

False Positive Rate

LR RF NB DT

Chapter 5. Automatic Prediction of Vulnerabilities 74

regions of the curves. The operative region is highlighted by the dashed rectangle (about where

the curves of recall vs. FP rate bend, changing from having tangents with slopes greater than one

to tangents with slopes less than one). This is because if recall is too low (e.g., lower than 50% or

60%), it would make a predictor ineffective no matter how low the FP rate is. Similarly, a high

FP rate (e.g., higher than 50%) would make it inefficient no matter how high the recall is. In the

operative region, the decision-tree-based techniques generally perform better than LR and

constantly perform better than NB. Between the decision-tree-based techniques, DT occasionally

performs better than RF, and vice versa.

5.5.3 Next Release Validation

We conduct a next-release validation to investigate whether a predictor trained from past

releases can predict vulnerability-prone entities in future releases. As already mentioned in

Chapter 3, fifty-two releases of Mozilla Firefox have had vulnerability Fixes starting from

Release 1.0 (R1.0) to Release 3.0.6 (R3.0.6) at the time of data collection (March 1, 2009). Data

from the first 32 releases (R1.0 to R2.0.0.9) are used to train the predictors, and the data from the

remaining 20 releases (R2.0.0.10 to R3.0.6) are used to test them. The data set is preprocessed to

obtain a balanced training set. The accuracy, recall, FP rate, and F1-measure for the next release

validation using the C4.5 Decision Tree technique are presented in Table 5.4. We notice a drop in

the vulnerability-prone file detection rate (recall) and an increase in the false positive rate when

predicting future vulnerabilities based on learning from the past. This is because the predictor is

trained on a balanced data set but tested on a very unbalanced dataset containing about 90 times

more non-vulnerable files than vulnerable files. We have tested on an unbalanced data set to

mimic the real world situation. Nevertheless, we can observe that predictors obtained from past

Chapter 5. Automatic Prediction of Vulnerabilities 75

releases can be used to predict vulnerability-prone entities in the follow-up releases without any

significant variance from the results presented in Table 5.3.

Table 5.4: Prediction performance of DT in next release validation

Accuracy Recall FP rate F1-measure

69.61% 69.52% 30.30% 66.00%

5.5.4 Comparison of Results with Other Works

This section compares the results of our vulnerability prediction in Mozilla Firefox with other

studies that used the same case study. Shin and Williams [63, 64] predicted vulnerabilities in

Mozilla Firefox using (only) code complexity metrics as independent variables and Logistic

Regression (LR) as the prediction technique. Table 5.5 reports the accuracy, recall, and FP rate of

their studies on vulnerability prediction. The average FP rate and recall of those studies using LR

are compared with that of our predictions using LR in Figure 5.5. In the figure, we also compare

the FP rate and recall of our next release validation using C4.5 Decision Tree (DT). We compare

their results with our next release validation test because Shin and Williams also have used the

information from the past releases to predict vulnerabilities in future releases. Note that, they

have used vulnerability history up to release 2.0.0.4 (the last release available during their study

conducted in February 29, 2008), while we use vulnerability history up to release 3.0.6 (the last

release available during our study conducted in March 1, 2009). Some variations in the

predictions are inevitable because the two studies (ours and Shin and Williams) use different

datasets. We explain in the following paragraphs that the variations in the predictions are not

mainly because of the use of different datasets but mainly because of the different sampling

techniques used to train the predictors.

Chapter 5. Automatic Prediction of Vulnerabilities 76

Figure 5.5: Comparison of our FP rates and Recalls to other studies [63, 64]

 As it can be observed from Table 5.5 and Figure 5.5, Shin and William achieve very low FP

rates (which are desirable) but suffer from very low recalls (which are extremely undesirable).

From the discussion about the need for a balanced training set presented in Section 5.4, it is clear

that they used a highly imbalanced data set to train the logistic regression predictor which

resulted in biased predictors. In our file-level data set, the number of non-vulnerable files is about

94% more than that of vulnerable files. Shin and Williams analyzed vulnerabilities at the function

level where the imbalance is much higher. Although the FP rate is almost zero, identifying only

13% (on average) of the vulnerable locations reduced the usefulness of their predictors as they

would miss 87% (on average) of the vulnerabilities. In contrast, we train the predictors on

balanced data and achieve recalls of about 59% using the same technique (LR) at the expense of

0.74

13.22

30.3

69.52

15.58

59.39

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

FP rate Recall

Ohters' Results (LR) Our Results (DT) Our Results (LR)

Chapter 5. Automatic Prediction of Vulnerabilities 77

about 15% FP rate. Recollect that, using decision-tree based technique, our recall is close to 75%

with false positive rate of about 28% (Table 5.3). Even in next release validation using C4.5

Decision Tree, we achieve about 70% recall at an expense of 30% FP rate. We believe such a

trade-off makes a vulnerability predictor more useful as the goal should be to correctly predict

most of the vulnerable locations while keeping the FP rate at a reasonable level. Thus, their

higher accuracy (see Table 5.5) does not necessarily indicate desirable results. That is why we do

not compare the “accuracy” side by side with our results in Figure 5.5. It would have been

possible to be just as accurate by blindly predicting all the functions as non-vulnerable, because

less than 1% of functions are vulnerable ones in the test set used in [63] and [64]. Under these

circumstances, it is more important to identify those vulnerable entities to take effective proactive

actions against potential vulnerabilities. Our predictions with higher recalls are more suitable for

that task. Had we known the “precision” of their predictions, we could compare their results with

ours using F1-measure and F2-measure that combine precision and recall into a single

performance measure.

5.6 Summary

In this chapter, we employ complexity, coupling, and cohesion (CCC) metrics to automatically

predict vulnerability-prone files in Mozilla Firefox. We use four alternative statistical and

machine learning techniques to build vulnerability predictors that learn from the CCC metrics and

vulnerability history of Mozilla Firefox. The techniques are C4.5 Decision Trees, Random

Forests, Logistic Regression, and Naïve-Bayes.

Chapter 5. Automatic Prediction of Vulnerabilities 78

We conduct an extensive case study on Mozilla Firefox to demonstrate the efficacy of

employing CCC metrics in vulnerability prediction. The case study is extensive in the sense that

we have validated our study against vulnerability history of more than four years and fifty-two

releases of Mozilla Firefox. Overall, we are able to correctly predict almost 75% of the

vulnerability-prone files, with a false positive rate of below 30% and an overall prediction

accuracy of about 74%. Notably, this reasonable accuracy in predicting vulnerability-prone files

is obtained with default parameter setting of the learning methods. By experimenting with the

parameters, it would be possible to achieve higher accuracy. We have made a number of

additional observations as described in the following paragraphs.

First, for most of the aforementioned statistical and machine learning techniques (except

Naïve-Bayes), the predictions are more than 70% accurate. This result is obtained using the

default parameter settings of the WEKA tool. This indicates that CCC metrics can be used in

vulnerability prediction, irrespective of what prediction technique is used.

Second, the standard deviations in the performance measure obtained from 10-fold-cross

validation are low. This implies that the prediction would perform consistently when applied to a

different dataset. However, it is necessary to train the predictors on a balanced data set.

Otherwise, it produces biased results towards the more dominant category resulting in poor recall

and misleading overall accuracy.

Third, decision-tree-based techniques, such as C4.5 Decision Tree and Random Forests,

significantly out-perform Logistic Regression and Naïve-Bayes in terms of correctly identifying

vulnerability-prone files and in overall prediction accuracy. These techniques also achieve a

Chapter 5. Automatic Prediction of Vulnerabilities 79

balanced false positive rate and recall, striking a balance between efficiency and effectiveness in

vulnerability prediction.

Fourth, a basic C4.5 Decision Tree technique performs as well as the advanced Random

Forests technique. Although there are differences in the prediction performances achieved by

these two techniques, the differences are not statistically significant. Moreover, the C4.5 Decision

Tree performs better than Random Forests when more emphasis is given on correctly predicting

the vulnerable files at the expense of a slightly elevated FP rate.

Fifth, predictors built from one release can be reliably used to predict vulnerability-prone

entities in future releases.

Finally, we observe an improvement over similar studies (such as [63] and [64]) on

vulnerability prediction in Mozilla Firefox. The improvement is mainly in recall or vulnerability-

prone file detection rate. Moreover, our results are as good as other techniques using different

input features and approaches, e.g., [56] (reported in Section 2.3.3). Therefore, CCC metrics

should be included in the input feature set in vulnerability prediction attempts.

 80

Chapter 6

Conclusion

6.1 General Conclusions

In this thesis, we provide empirical evidence that complex, coupled, and non-cohesive software

entities are generally less secure. We find that complexity, coupling, and lack of cohesion (CCC)

metrics positively correlate to the number of vulnerabilities at a statistically significant level over

five major releases of Mozilla Firefox. The correlation is on average 0.5 with a p-value less than

0.001. The code-level CCC metrics are generally more strongly correlated to vulnerabilities than

the design-level CCC metrics. However, design-level metrics such as NOC can be good

indicators of vulnerabilities. We also observe that the CCC metrics are consistently correlated to

vulnerabilities across five releases of Mozilla Firefox. The stable correlation patterns imply that,

once calibrated to a specific project, these metrics can be dependably used to indicate

vulnerabilities for new releases.

Motivated by the aforementioned observations, we investigate the efficacy of applying

complexity, coupling, and cohesion metrics to automatically predict vulnerability-prone entities

in software systems. We use statistical and machine-learning-based approaches to build

vulnerability predictors. In doing so, we compare the prediction performance of the C4.5

Decision Tree, Random Forests, Logistic Regression, and Naïve-Bayes techniques in predicting

vulnerability-prone entities based on their CCC metrics. An extensive empirical study is

conducted on data collected from fifty-two releases of Mozilla Firefox developed over a period of

more than four years. From the result of the study, we conclude that:

Chapter 6. Conclusion 81

• Vulnerability-proneness prediction using CCC metrics is reasonably accurate. It is possible to

correctly predict almost 75% of the vulnerability-prone files (recall) with a false positive rate

of 28%, and an overall accuracy of 74%. The result is promising given that we are using

structural information from the non-security realm to predict vulnerabilities.

• The prediction results are data independent as the predictors perform consistently against

different subsets of the datasets during 10-fold cross validation. The standard deviations in

recall, false positive rate and overall accuracy are 0.03, 0.05, and 1.46, respectively, which is

very low.

• A relatively simple technique, namely C4.5 Decision Trees, happens to perform very well in

correctly predicting the vulnerability-prone files and in overall prediction accuracy. This

suggests that more complex prediction techniques like Random Forests may not be required.

• The predictors built from one release can be reliably used to predict vulnerability-prone

entities in a future release. The result of next-release validation shows statistically

insignificant variance in prediction accuracy.

The conclusions substantiate that CCC metrics can be useful and practical addition to the

framework of automatic vulnerability prediction. Such automatic predictions will allow software

practitioners take preventive actions against potential vulnerabilities early in the software

lifecycle.

Chapter 6. Conclusion 82

6.2 Limitations

We recognize that there are certain limitations to the results and conclusions we have presented

in this thesis, and we discuss several of them in the following paragraphs.

First, our research relies on vulnerabilities which have already been discovered and reported.

Vulnerabilities that have not been discovered or publicly announced yet are not used for our study

even though that information might contribute to a more precise analysis. In particular, it is

impossible to ever know the true error rates, as certain false positives may be true positives if the

files identified contain vulnerabilities that haven’t been noticed yet.

Second, there are some inconsistencies in the traceability of Mozilla Security Advisories, bug

reports, and CVSs. For example, in release R1.0, 32 files of the total of 693 vulnerable files in the

Mozilla Firefox code-base could not be located. However, we believe that such 4%

inconsistencies are insignificant and should not threaten the validity of the study.

Third, we do not differentiate the files changed for the direct reason of vulnerabilities and the

files changed for a secondary reason identified from vulnerabilities such as an addition of a

parameter to several functions in a file with low complexity. Considering applying different

weights to the simple changes propagated from the main changes due to vulnerabilities might lead

to more precise results.

Fourth, there is always an element of randomness and variance in the results produced by

statistical and machine learning techniques. In order to confidently lessen the effects of

algorithmic bias, we have performed 10-fold cross validation, a way of performing repeated

Chapter 6. Conclusion 83

training and testing. There is also the chance that one technique might have performed better than

another technique had we experimented with different parameters. The main purpose of this study

is to investigate the applicability of using CCC metrics to predict vulnerable entities. In doing

that, we tried several techniques so that the results are not overly influenced by any specific

technique. We were not attempting to identify the most effective technique or most effective set

of parameters.

Fifth, we are aware of the fact there are many other factors that can lead to vulnerabilities in

software systems. Therefore, by no means, we imply that CCC metrics should be the sole

consideration when trying to predict potential vulnerabilities early in the software lifecycle.

Instead, our results suggest that complexity, coupling, and cohesion can be some of the major

factors to be kept in mind during security assessment of software artifacts, but there is certainly

no requirement to limit oneself to this data.

Finally, we acknowledge that one case study is not sufficient to draw a completely general and

concrete conclusion. Some conclusions drawn from studying Mozilla Firefox may not apply to

other software in different domains. Nevertheless, we have substantiated our findings over a

wealth of vulnerability data by analyzing fifty-two releases developed over a period of four years.

Researchers gain confidence in a theory as similar results are observed in different settings. In

this regards, our findings provide supportive evidence about the how complexity, coupling and

cohesion metrics relate to vulnerabilities in software.

6.3 Future Work

Our future work will concentrate on the following issues:

Chapter 6. Conclusion 84

More Metrics: Currently, we only use CCC metrics in structured and OO programming

paradigms. It would be interesting to investigate the relationship between vulnerabilities with

other CCC metrics such as service coupling and complexity in service-oriented architecture [42].

There is also the need to investigate the effects of software-development-process complexity and

coupling, i.e., metrics that focus on a code-change process instead of on the code properties. For

example, Hassan et al. conjecture that entities that are part of large, complex modifications or

entities that are being modified frequently and/or recently are likely to have faults [30]. Similar

studies can be conducted in the context of security patches and vulnerabilities.

Granularity of Analysis: Zimmermann et al.’s study [76] reveals that the degree of correlation

between faults and complexity measures is different depending on the granularity of analysis. In

this study, we analyze the effect of CCC metrics on vulnerability-proneness at the file-level.

Analyzing at various granularities (e.g., at module or component level) might reveal some more

interesting information.

More automation: The tool developed to automate the extraction and mapping of

vulnerabilities and version information is basically a collection of Python scripts, which generate

textual outputs. Convenient Graphical User Interfaces (GUI) for the tool are under development.

Furthermore, we want to integrate third-party statistical and machine learning tools with our tool

so that we can automatically obtain predictors from software archives without much human

intervention. The next step would be to integrate these predictors into development environments

supporting the decisions of software engineers and managers.

Chapter 6. Conclusion 85

More projects: Given a fully automated system, we will be able to easily replicate this study on

more projects from different domains. This will add further evidence on the applicability of CCC

metrics in vulnerability prediction. Systemic study of more projects will strengthen the existing

body of empirical knowledge in software security engineering and software engineering in

general.

Despite the limitations and clear avenues for future expansion of the work, our basic goal of

demonstrating that CCC metrics are useful as vulnerability indicators has been met.

 86

References

[1] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, "Measuring, Analyzing and Predicting Security

Vulnerabilities in Software Systems," Computers & Security, vol. 26, no. 3, 2007, pp. 219-

228.

[2] E. Arisholm, L. C. Briand, and M. Fuglerud, "Data Mining Techniques for Building Fault-

proneness Models in Telecom Java Software," in Proceedings of the 18th IEEE

International Symposium on Software Reliability Engineering, Trollhättan, Sweden, Nov.

2007, pp. 215-224.

[3] M. Auer, B. Graser, and S. Biffl, "A Survey on the Fitness of Commercial Software Metric

Tools for Service in Heterogeneous Environments: Common Pitfalls," in Proceedings of

the 9th International Software Metrics Symposium, Sydney, Australia, Sep. 2003, pp. 144-

152.

[4] K. Ayari, P. Meshkinfam, , G. Antoniol, and M. Di Penta, “Threats on Building Models

from CVS and Bugzilla Repositories: the Mozilla Case Study,” in Proceedings of the 2007

Conference of the Center for Advanced Studies on Collaborative Research, Richmond Hill,

Ontario, Canada, Oct. 2007, pp. 215-228.

[5] V. Basili, L. Briand and W. Melo, "A Validation of Object-Oriented Design Metrics as

Quality Indicators," IEEE Trans. on Software Eng., vol. 22, 1996, pp. 751-761.

[6] BeautifulSoup, http://www.crummy.com/software/BeautifulSoup/documentation.html

(accessed July 2009).

References 87

[7] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas, "Software Defect Prediction Using

Regression Via Classification," in Proceedings of the 4th ACS/IEEE International

Conference on Computer Systems and Applications, Dubai, UAE, Mar. 2006, pp. 330-337.

[8] M. Bishop, Computer Security: Art and Science, Boston, MA: Addison-Wesley, 2003.

[9] L. C. Briand, J. W. Daly, and J. Wüst, “A Unified Framework for Cohesion Measurement

in Object-Oriented Systems,” Empirical Software Engineering, vol. 3, no. 1, 2004, pp. 65-

117.

[10] Browser Statistics, http://ww.w3schools.com/browsers/browsers_stats.asp (accessed July

2009).

[11] Bug 423541 - (CVE-2008-2805), “Arbitrary file upload via originalTarget and DOM

Range,” https://bugzilla.mozilla.org/show_bug.cgi?id=423541 (accessed July 2009).

[12] Bugzilla, http://www.bugzilla.org (accessed July 2009).

[13] M. Cartwright and M. Shepperd, "An Empirical Investigation of an Object-Oriented

Software System," IEEE Trans. on Software Eng., vol. 26, no. 8, 2000, pp. 786-796.

[14] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,” IEEE

Trans. on Software Eng., vol. 20, no. 6, 1994, pp. 476-493.

[15] I. Chowdhury , B. Chan , and M. Zulkernine, “Security Metrics for Source Code

Structures,” in Proceedings of the 4th International Workshop on Software Engineering for

Secure Systems, Leipzig, Germany, May 2008, pp.57-64.

[16] J. Cohen, Statistical Power Analysis for the Behavioral Sciences (2nd ed.), Academic Press

New York, 1988.

References 88

[17] Computer Emergency Response Team Coordination Center (CERT/CC),

http://www.cert.org/stats/cert_stats.html (accessed July 2009).

[18] Common Vulnerabilities and Exposures, http://cve.mitre.org/ (accessed July 2009).

[19] D. Cubranic, G. C. Murphy, J. Singer, and S. Booth, “Hipikat: A Project Memory for

Software Development,” IEEE Trans. on Software Eng., vol. 31, no. 6, 2005, pp. 446-465.

[20] Documentation of the Implemented Tool, http://research.cs.queensu.ca/~istehad/research/

html/index.html (accessed July 2009).

[21] K. O. Elish and M. O. Elish, "Predicting Defect-prone Software Modules Using Support

Vector Machines," The Journal of Systems & Software, vol. 81, 2008, pp. 649-660.

[22] K. E. Emam, W. Melo, and J. C. Machado, "The Prediction of Faulty Classes Using

Object-Oriented Design metrics," The Journal of Systems & Software, vol. 56, 2001, pp.

63-75.

[23] W. M. Evanco and W. W. Agresti, "A Composite Complexity Approach for Software

Defect Modelling," Software Quality Journal, vol. 3, 1994, pp. 27-44.

[24] N. E. Fenton, P. Krause, and M. Neil, "A Probabilistic Model for Software Defect

Prediction," IEEE Trans. on Software Eng., vol. 2143, 2001, pp. 444-453.

[25] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,

PWS Publishing Co., Boston, MA, USA, 1997.

[26] M. Fischer, M. Pinzger, and H. Gall, “Populating a Release History Database from Version

Control and Bug Tracking Systems,” in Proceedings of the 19th International Conference

on Software Maintenance, Amsterdam, Netherlands, Sep. 2003, pp. 23-32.

References 89

[27] M. Gegick, L. Williams, and M. Vouk, “Predictive Models for Identifying Software

Components Prone to Failure During Security Attacks,” Technical Report, Department of

Computer Science, North Carolina State University, USA, Oct. 28, 2008.

[28] J. Grossman, “Website Vulnerabilities Revealed: What everyone knew, but afraid to

believe,” White Hat Security Inc, http://www.whitehatsec.com/home/assets/presentations/

PPTstats 032608.pdf (accessed July 2009).

[29] M. H. Halstead, Elements of Software Science. New York: Elsevier, 1977.

[30] A. E. Hassan, “Predicting Faults Using the Complexity of Code Changes,” in Proceedings

of the 31st International Conference on Software Engineering, Vancouver, Canada, May

2009, pp. 45-56.

[31] A. E. Hassan, Mining Software Repositories to Assist Developers and Support Managers,

PhD. Thesis, University of Waterloo, 2004.

[32] IEEE, IEEE Std. 982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable

Software, The Institute of Electrical and Electronics Engineers, Jun. 1988.

[33] Index of Mozilla FTP Server, ftp://ftp.mozilla.org/pub/mozilla.org/ (accessed July 2009).

[34] International Standards Organization, “Information technology – Database languages –

SQL, ISO/IEC 9075:1992 (3rd ed.),” 1992.

[35] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G. Succi, "Identification of

Defect-prone Classes in Telecommunication Software Systems Using Design Metrics," The

Journal of Systems & Software, vol. 176, 2006, pp. 3711-3734.

References 90

[36] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt. Upper Saddle River,

NJ: Pearson Education Inc., 2007.

[37] J. K. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M. A. Adler, "Software

Complexity Measurement," ACM Communications, vol. 29, no. 11, 1986, pp. 1044-1050.

[38] G. Koru and J. Tian, "An Empirical Comparison and Characterization of High Defect and

High Complexity Modules," The Journal of Systems & Software, vol. 67, 2003, pp. 153-

163.

[39] L. Kuang and M. Zulkernine, “An Anomaly Intrusion Detection Method Using the CSI-

KNN Algorithm,” in Proceedings of the 23rd Annual ACM Symposium on Applied

Computing, Fortaleza, Brazil, Mar. 2008, pp. 921-926.

[40] S. Kullback, Information Theory and Statistics (1st ed.), John Wiley and Sons, NY, 1959.

[41] N. Landwehr, M. Hall, and E. Frank, “Logistic Model Trees,” Journal of Machine

Learning, vol. 59, no.1-2, 2005, pp.161-205.

[42] M.Y. Liu and I. Traore, "Empirical Relations Between Attackability and Coupling: A case

Study on DoS," in Proceedings of the 2006 ACM SIGPLAN Workshop on Programming

Languages and Analysis for Security, Ottawa, Canada, Jun. 2006, pp. 57-64.

[43] Y. Ma, L. Guo, and B. Cukic, "A Statistical Framework for the Prediction of Fault-

Proneness," Advances in Machine Learning Application in Software Engineering, Idea

Group Inc, 2006, pp. 237-265.

References 91

[44] H. Malik, I. Chowdhury, H. M. Tsou, Z. Ziang, and A. E. Hassan, "Understanding the

Rationale for Updating a Function's Comment", in Proceeding of the 24th International

Conference on Software Maintenance, Beijing, China, Sep. 2008, pp.167-176.

[45] T. J. McCabe, "A Complexity Measure," IEEE Trans. on Software Eng., vol. 2, no. 4, 1976,

pp. 308-320.

[46] G. McGraw, Software Security: Building Security In, Boston, NY: Addison-Wesley, 2006.

[47] T. Menzies, J. Greenwald, and A. Frank, "Data Mining Static Code Attributes to Learn

Defect Predictors," IEEE Trans. on Software Eng., vol. 33, no. 9, 2007, pp. 2-13.

[48] Mozilla Developer Guide, https://developer.mozilla.org/en/Download_Mozilla_Source_

Code#Releases (accessed July 2009).

[49] Mozilla Firefox, http://www.mozilla.com/en-US/firefox (accessed July 2009).

[50] Mozilla Foundation Security Advisory 2008-27, http://www.mozilla.org/security/announce/

2008/mfsa2008-27.html (accessed July 2009).

[51] Mozilla Vulnerabilities, http://www.mozilla.org/projects/security/knownvulnerabilities

(accessed July 2009).

[52] J. D. Musa, "Software-Reliability-Engineered Testing", Computer Journal, vol. 29, no. 11,

1996, pp. 61-68.

[53] G. J. Myers, Composite/Structured Design, New York: Van Nostrand Reinhold Company,

1978.

References 92

[54] N. Nagappan, T. Ball, and A. Zeller, "Mining Metrics to Predict Component Failures," in

Proceedings of the 28th International Conference on Software Engineering, Shanghai,

China, May 2006, pp. 452-461.

[55] N. Nagappan, L. Williams and M. Vouk, "Towards a Metric Suite for Early Software

Reliability Assessment," in Proceedings of the 2003 International Symposium on Software

Reliability Engineering, Denver, CO, USA, 2003, pp. 238-239.

[56] S. Neuhaus, T. Zimmermann, and A. Zeller, "Predicting Vulnerable Software

Components," in Proceedings of the 14th ACM Conference on Computer and

Communications Security, Alexandria, Virginia, USA, Oct. 2007, pp. 529-540.

[57] M. Philips, “The Inevitability of Punishing the Innocent,” The Journal of Philosophical

Studies, Springer Netherlands, vol. 48, no. 3, 1985, pp. 389-391.

[58] T. J. Ostrand and E. J. Weyuker, "How to Measure Success of Fault Prediction Models," in

Proceedings of the 4th International Workshop on Software Quality Assurance, Dubrovnik,

Croatia, Sep. 2007, pp. 25-30.

[59] C. J. Rijsbergen, Information Retrieval (2nd ed.), Butterworth-Heinemann, 1979.

[60] Security Advisory for Firefox 2.0, http://www.mozilla.org/security/known-vulnerabilities/

firefox20.html (accessed July 2009).

[61] SciTools Inc, http://www.scitools.com (accessed July 2009).

[62] SciTools Inc. Blog, http://scitools.com/blog/2008/10/tip-understand-the-countpath-metric

.html (accessed July 2009).

References 93

[63] Y. Shin, “Exploring Complexity Metrics as Indicators of Software Vulnerability,” in

Proceedings of the 3rd International Doctoral Symposium on Empirical Software

Engineering, Kaiserslautem, Germany, Oct. 2008, available from the author’s website

http://www4.ncsu.edu/~yshin2/ papers /esem2008ds_shin.pdf (accessed July 2009).

[64] Y. Shin and L. Williams, "An Empirical Model to Predict Security Vulnerabilities Using

Code Complexity Metrics," in Proceedings of the 2nd ACM-IEEE International Symposium

on Empirical Software Engineering and Measurement, Kaiserslautern, Germany, Oct.

2008, pp. 315-317.

[65] Y. Shin and L. Williams, "Is Complexity Really the Enemy of Software Security?," in

Proceedings of the 4th ACM Workshop on Quality of Protection, Alexandria, Virginia,

USA, Oct. 2008, pp. 47-50.

[66] J. Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes Induce Fixes?,” in

Proceedings of the 2nd International Workshop on Mining Software Repositories, Saint

Louis, Missouri, USA, May 2005, pp. 24-28.

[67] Software Metrics Tools, http://www.laatuk.com/tools/metric_tools.html (accessed July

2009).

[68] StatPy: Statistical Computing with Python, http://www.astro.cornell.edu/staff/loredo/statpy/

(accessed July 2009).

[69] G. Succi, W. Pedrycz, M. Stefanovic, and J. Miller, "Practical Assessment of the Models

for Identification of Defect-prone Classes in Object-Oriented Commercial Systems Using

Design Metrics," The Journal of Systems & Software, vol. 65, 2003, pp. 1-12.

[70] The Linux Information Project, http://www.linfo.org/bug.html (accessed July 2009).

References 94

[71] M. M. T. Thwin and T. S. Quah, "Application of Neural Networks for Software Quality

Prediction Using Object-Oriented Metrics," The Journal of Systems & Software, vol. 76,

2005, pp. 147-156.

[72] WEKA Toolkit, http://www.cs.waikato.ac.nz/ml/weka (accessed July 2009).

[73] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques (2nd ed.), Morgan Kaufmann, San Francisco, 2005.

[74] H. Zhang, X. Zhang, and M. Gu, "Predicting Defective Software Components from Code

Complexity Measures," in Proceedings of the 13th Pacific Rim International Symposium on

Dependable Computing, Melbourne, Australia, Dec. 2007, pp. 93-96.

[75] J. Zhang, M. Zulkernine, and A. Haque, “Random Forest-Based Network Intrusion

Detection Systems,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 38, no. 5, 2008,

pp. 648-658.

[76] T. Zimmermann, R. Premraj, and A. Zeller, "Predicting Defects for Eclipse," in

Proceedings of the 3rd International Workshop on Predictor Models in Software

Engineering, Washington, DC, USA, May 2007, pp. 9-15.

	Istehad_Thesis.pdf
	Binder1
	Istehad_Thesis.pdf
	Istehad Thesis
	UNrefMZ0902Istehad_Thesis.pdf
	MZ0902Istehad_Thesis_[]

