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Abstract  

Software security failures are common and the problem is growing. A vulnerability is a 

weakness in the software that, when exploited, causes a security failure. It is difficult to detect 

vulnerabilities until they manifest themselves as security failures in the operational stage of the 

software, because security concerns are often not addressed or known sufficiently early during the 

Software Development Life Cycle (SDLC). Complexity, coupling, and cohesion (CCC) related 

software metrics can be measured during the early phases of software development such as design 

or coding. Although these metrics have been successfully employed to indicate software faults in 

general, the relationships between CCC metrics and vulnerabilities have not been extensively 

investigated yet. If empirical relationships can be discovered between CCC metrics and 

vulnerabilities, these metrics could aid software developers to take proactive actions against 

potential vulnerabilities in software.  

In this thesis, we investigate whether CCC metrics can be utilized as early indicators of 

software vulnerabilities. We conduct an extensive case study on several releases of Mozilla 

Firefox to provide empirical evidence on how vulnerabilities are related to complexity, coupling, 

and cohesion. We mine the vulnerability databases, bug databases, and version archives of 

Mozilla Firefox to map vulnerabilities to software entities. It is found that some of the CCC 

metrics are correlated to vulnerabilities at a statistically significant level. Since different metrics 

are available at different development phases, we further examine the correlations to determine 

which level (design or code) of CCC metrics are better indicators of vulnerabilities. We also 

observe that the correlation patterns are stable across multiple releases. These observations imply 

that the metrics can be dependably used as early indicators of vulnerabilities in software. 
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We then present a framework to automatically predict vulnerabilities based on CCC metrics. 

To build vulnerability predictors, we consider four alternative data mining and statistical 

techniques – C4.5 Decision Tree, Random Forests, Logistic Regression, and Naïve-Bayes – and 

compare their prediction performances. We are able to predict majority of the vulnerability-prone 

files in Mozilla Firefox, with tolerable false positive rates. Moreover, the predictors built from the 

past releases can reliably predict the likelihood of having vulnerabilities in future releases. The 

experimental results indicate that structural information from the non-security realm such as 

complexity, coupling, and cohesion are useful in vulnerability prediction. 
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Chapter 1 

Introduction 

1.1 Motivation 

There is an increasing number of critical processes supported by software systems in the 

modern world. Think of the current prevalence of air-traffic control and online banking. When 

combined with the growing dependence of valuable assets (including human health and wealth, or 

even human lives) on the security and dependability of computer support for these processes, we 

see that secure software is a core requirement of the modern world. Unfortunately, there is an 

escalating number of incidences of software security failures. A security failure is a violation or 

deviation from the security policy, and a security policy is “a statement of what is, and what is 

not, allowed as far as security is concerned” [8]. WhiteHat Security Inc. found that nine out of ten 

websites had at least one security failure when they conducted a security assessment of over 600 

public-facing and pre-production websites between January 1, 2006 and February 22, 2008 [28]. 

The number of security-related software failures reported to the Computer Emergency Response 

Team Coordination Center (CERT/CC) has increased five-fold over the past seven years [17]. 

Security failures in a software system are the mishaps we wish to avoid, but they could not 

occur without the presence of vulnerabilities in the underlying software. “A vulnerability is an 

instance of a fault in the specification, development, or configuration of software such that its 

execution can violate an implicit or explicit security policy” [65]. A fault is an accidental 

condition that, when executed, may cause a functional unit to fail to perform its required or 

expected function [32, 52]. We use the term ‘fault’ to denote any software fault or defect, and 

reserve vulnerability for those exploitable faults which might lead to a security failure. An 
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example of a vulnerability can be improper or insufficient input validation which can lead to a 

security failure such as an unauthorized access into a software system.  

Vulnerabilities are generally introduced during the development of software. However, it is 

difficult to detect vulnerabilities until they manifest themselves as security failures in the 

operational stage of the software, because security concerns are not always addressed or known 

sufficiently early during the Software Development Life Cycle (SDLC). Therefore, it would be 

very useful to know the characteristics of software artifacts that can indicate post-release 

vulnerabilities – vulnerabilities that are uncovered by at least one security failure during the 

operational phase of the software. Such indications can help software managers and developers 

take proactive action against potential vulnerabilities. For our work, we use the term 

‘vulnerability’ to denote post-release vulnerabilities only. 

Software metrics are often used to assess the ability of software to achieve a predefined goal 

[36]. A software metric is a measure of some property of a piece of software. Complexity, 

coupling, and cohesion (CCC) can be measured during various software development phases 

(such as design or coding) and are used to evaluate the quality of software [25]. The term 

software complexity is often applied to the interaction between a program and a programmer 

working on some programming task [37]. In this context, complexity measures typically depend 

on program size and control structure, among many other factors. High complexity hinders 

program comprehension [37]. Coupling refers to the level of interconnection and dependency 

between software entities. A goal in software development is to have a low coupling: a 

relationship in which one entity interacts with another entity through a stable interface and does 

not need to be concerned with the other module's internal implementation. Systems that do not 
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exhibit low coupling might experience difficulties such as change in one entity forcing a ripple of 

changes in other entities, entities that are difficult to understand in isolation and entities that are 

difficult to reuse or test because dependent modules must be included. Cohesion is a measure of 

how strongly-related and focused the various responsibilities of a software entity are [25]. For 

example, in object-oriented programming, if the methods that serve a given class tend to be 

similar in many aspects, the class is said to have high cohesion. In a highly-cohesive system, code 

readability and the likelihood of reuse is increased, while complexity is kept manageable. 

Cohesion is decreased if the responsibilities (methods) of a class have little in common and/or 

methods carry out many varied activities, often using unrelated sets of data. Numerous studies [5, 

13, 21-25, 35, 37, 38, 47, 54, 69, 74] show that high complexity and coupling and low cohesion 

make understanding, developing, testing, and maintaining software difficult, and, as a side effect, 

may introduce faults in software systems. Our intuition is that these may, as well, lead to 

introduction of vulnerabilities - weaknesses that can be exploited by malicious users to 

compromise a software system. In fact, in one of our previous studies, we have shown that high 

coupling is likely to increase damage propagation when a system gets compromised [15].  

Although CCC metrics have been successfully employed to indicate faults in general [5, 13, 

21-24, 35, 38, 47, 54, 69, 74] the efficacy of these metrics to indicate vulnerabilities has not yet 

been extensively investigated. A very few works associate complexity and coupling with 

vulnerabilities. Shin and William [63-65] investigate how vulnerabilities can be inferred from 

(only) code complexity. A study by Traroe et al. [42] uses the notion of “service coupling”, a 

measurement specific to service-oriented architecture. The effect of cohesion on vulnerabilities 

has never been studied before.  
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1.2 Overview 

In this thesis, we explore how the likelihood of having vulnerabilities is affected by all three 

aforementioned aspects - complexity, coupling, and cohesion - both at the design and code level. 

Our first objective is to determine whether complex, coupled and non-cohesive software entities 

are less secure and, if so, what CCC metrics can be used to identify the type of complexity, 

coupling, and cohesion that leads to decreased security. Our second objective is to investigate 

whether structural information from the non-security realm such as complexity, coupling, and 

cohesion metrics can be helpful in automatically predicting vulnerabilities in software. 

Table 1.1: Hypotheses 

 Hypotheses 

H1 Complexity metrics positively correlate to the number of vulnerabilities. 

H2 Coupling metrics positively correlate to the number of vulnerabilities. 

H3 Cohesion metrics negatively correlate to the number of vulnerabilities. 

H4 Code-level complexity, coupling, and cohesion metrics are better indicators of 
vulnerabilities than design-level metrics. 

H5 There is a subset of metrics that consistently correlate to vulnerabilities in all 
releases. 

To investigate whether complex, coupled, and non-cohesive software entities are less secure, 

we postulate five hypotheses on how vulnerabilities are related to CCC metrics. The hypotheses 

are presented in Table 1.1. Because high complexity and coupling and low cohesion make 

understanding, developing, testing, and maintaining software difficult, they may lead to 

introduction of vulnerabilities. This intuition is the basis of our first three hypotheses. H4 states 

that code-level complexity, coupling, and cohesion metrics might be better indicators of 

vulnerabilities than design-level metrics. Design-level metrics assess software artifacts at the 
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design phase, whereas code-level metrics specifically look into code structures and 

implementation language issues [15]. We believe that the code more closely represents the 

operational behavior of the software than the design specifications because the code sometimes 

diverges from what is specified in the design. The magnitude of correlations of CCC metrics with 

vulnerabilities may vary from one release to another. However, we hope that at least a subset of 

the selected CCC metrics will consistently correlate to vulnerabilities in all releases, and hence 

put forward H5. If the hypothesized relationships can be empirically validated, this information 

can be used during the early stages of software development to improve the ultimate security of 

software products.  

To validate the hypotheses, we will first select a set of standard metrics that measure 

complexity, coupling, and cohesion so that we can analyze their correlations with vulnerabilities. 

Then, we will conduct an empirical study on Mozilla Firefox [49], a popular open source 

browser. We will mine the vulnerability reports, bug repositories, and software version archives 

of Mozilla Firefox to map the vulnerabilities back to their associated entities. An entity can be a 

function, file, class, module, or component. We then compute the CCC metrics for these entities 

and analyze how these metrics correlate with the number of vulnerabilities the entities have had 

in the past. The results of the case study in this thesis show that CCC metrics correlate to 

vulnerabilities at a statistically significant level. Since different metrics are available during 

different development phases, the correlations are further examined to determine whether design-

level or code-level CCC metrics are better indicators of vulnerabilities. We observed that the 

correlation patterns are stable across multiple releases of the software. This observation shows 

that the metrics can be dependably used as early indicators of vulnerabilities in software. 
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The aforementioned findings allow us to coin the idea of employing CCC metrics to 

automatically predict vulnerabilities. However, monotonic models based on correlations with the 

raw or monotonically transformed data cannot be used effectively to identify vulnerability-prone 

entities under many situations. This is because complexity, coupling, and cohesion may interact 

in ways that collectively affect vulnerability-proneness. For example, larger entities may be more 

vulnerability-prone when they are more complex and less cohesive but may not be as 

vulnerability-prone when they are highly cohesive. The statistical and data mining techniques we 

used for vulnerability prediction account for such multivariate interactions. Note that, analyzing 

correlations between vulnerabilities and each metric separately is not necessarily a prerequisite 

for making predictions. However, such univariate analysis helps to identify the individual 

importance of each metric in vulnerability prediction. Therefore, the univariate and multivariate 

analysis are complementary. 

There are two main approaches to software vulnerability prediction. First, count-based 

techniques focus on predicting the number of vulnerabilities in a software system. Managers can 

use these predictions to determine if the software is ready for release or if it is likely to have 

many lurking vulnerabilities. An example of such work is [1]. Second, classification1-based 

techniques emphasize predicting the entities in a software system that are vulnerability-prone, i.e., 

those which are likely to have vulnerabilities. A vulnerability-prone entity can be a function, file, 

class or other component defined by a manager or a software security engineer which is likely to 

have at least one vulnerability in a release. These predictions can assist managers in focusing their 

                                                      

 
1 Classification is one of the most common inductive learning tasks that categorizes a data item into one of 
several predefined categories [47]. 
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resource allocation in a release by paying more attention to vulnerability-prone entities. Examples 

of such studies are [63-65]. In this study, we treat vulnerability prediction as a classification 

problem – predicting whether an entity is vulnerability-prone or not. 

 We observed in our preliminary investigation that a very small proportion of entities contain 

more than one vulnerability in a given release. Various previous studies have also made similar 

observations and therefore have treated fault and vulnerability prediction as a classification 

problem [5, 13, 35, 38, 21, 22, 63-65, 69]. To facilitate efficient vulnerability detection during the 

SDLC, we need to identify those areas of the software which are most likely to have 

vulnerabilities (vulnerability-prone), and thus require most of our attention. This approach has the 

potential to find more vulnerabilities with the same amount of effort. We can draw an analogy 

between this approach and weather prediction; we are predicting the areas that are likely to 

experience rainfall (which might include areas that did not experience rainfall before) as opposed 

to predicting the amount of rainfall. 

In this thesis, we present a framework for how CCC metrics can be used to automatically 

predict vulnerability-prone entities, illustrated in Figure 1.1. In the step Map Post Release 

Vulnerabilities to Entities, one can map vulnerabilities (reported in the vulnerability reports) to 

fixes (in the version archives) and thus to the locations in the code that caused the problem [3, 54, 

56, 64]. This mapping is the basis for automatically associating metrics with vulnerabilities. A 

methodical description of this step is provided in Chapter 3. In Compute CCC Metrics, a set of 

standard CCC metrics is computed for each entity. There are numerous tools available for 

automatically computing CCC metrics from the source code [3, 67]. A detailed description of 

how we have computed the metrics and what tools we have used for our case study is also 
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provided in Chapter 3. Then these CCC metrics and the vulnerability history of entities can be 

used to build and train the vulnerability predictor, which is done in the Build Predictor from 

Vulnerability History and CCC Metrics step. The resulting Predictor takes the CCC metrics of 

newly developed or modified entities as inputs and generates the probability of a vulnerability 

occurring in the entity. Based on the calculated probability, it is possible to automatically predict 

the vulnerability-prone entities, or, in other words, classify entities whether they are vulnerability-

prone or not. A detailed account of building such predictors (training) and the result of applying 

them (testing) is provided in Chapter 5. 

 

Figure 1.1: Framework to predict vulnerabilities from CCC metrics 



Chapter 1. Introduction  9 

 

 

Several statistical and machine learning techniques are considered to build vulnerability 

predictors so that the conclusions drawn from the prediction results are not overly influenced by 

any specific technique. We first use a basic but popular decision-tree-based data mining technique 

called C4.5 Decision Tree. Then, we compare its prediction capability with Random Forests, an 

advanced form of decision tree technique. We also consider Logistic Regression, a standard 

statistical technique, and Naïve-Bayes, a simple but often useful probabilistic prediction 

technique [73]. Logistic regression has been previously used in vulnerability prediction using 

code complexity metrics [64]. The other machine learning techniques have never been applied to 

vulnerability prediction before. 

To empirically validate the prediction accuracy and usefulness of the framework, we conduct 

an extensive case study on fifty-two Mozilla Firefox releases developed over a period of four 

years. We are able to predict majority of the vulnerability-prone entities with tolerable false 

positive rates. The results of our experiments show that the predictor developed from one release 

performs consistently in predicting vulnerability-prone entities in the following release. 

1.3 Contributions 

The major contributions of this thesis are as follows:  

• Provide empirical evidence whether complexity, coupling and lack of cohesion are enemies of 

software security. Such knowledge will help avoid potential vulnerabilities in software by 

keeping complexity, coupling and lack of cohesion at minimum.  
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• Propose a systematic framework to automatically predict vulnerability-prone entities from 

CCC metrics. Such automatic predictions will assist software practitioners in taking proactive 

action against potential vulnerabilities during the early stages of the software lifecycle. We 

use statistical and machine learning techniques to build the predictor and compare the 

prediction performances of four alternative techniques, namely C4.5 Decision Tree, Random 

Forests, Logistic Regression and Naïve-Bayes. Among these, C4.5 Decision Tree, Random 

Forests, and Naïve-Bayes have not been applied in any kind of vulnerability prediction 

before. 

• Conduct an extensive case study on several releases of Mozilla Firefox to validate the 

usefulness of CCC metrics in vulnerability prediction. In doing so, we provide a tool to 

automatically map vulnerabilities to entities by extracting information from software 

repositories such as security advisories, bug databases, and concurrent version systems.  

1.4 Thesis Organization 

The rest of the thesis unfolds as follows. In Chapter 2, we provide background on CCC 

metrics, give brief overviews of the statistical and machine learning techniques used for 

vulnerability prediction, and also compare and contrast the related work on fault and vulnerability 

prediction. In Chapter 3, we elaborate on how we extract vulnerability and metric data from 

software repositories. In Chapter 4, we then present the results of the correlation analysis of CCC 

metrics and vulnerabilities. In Chapter 5, we outline the design of the vulnerability prediction in 

detail, report vulnerability prediction results and discuss the implications of the results. Finally, 
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we conclude the thesis, discuss some limitations of our approaches, and outline avenues for future 

work in Chapter 6. 
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Chapter 2 

Background and Related Work 

This section provides background on complexity, coupling, and cohesion (CCC) metrics that 

are hypothesized to affect vulnerability-proneness and furnishes brief overviews of the statistical 

and machine learning techniques used in this study to predict vulnerabilities. It also compares and 

contrasts the research on vulnerability prediction related to our work. 

2.1 Complexity, Coupling, and Cohesion Metrics 

Complexity, coupling, and cohesion (CCC) related structural metrics are designed to measure 

certain attributes of code and design quality. Table 2.1 summarizes the CCC metrics that may (we 

hypothesize) have some affect on the vulnerability-proneness of software. We have selected the 

standard code-level metrics from prior research on fault and vulnerability prediction [23, 47, 54, 

63-65, 74]. The design-level metrics are the structural measurements defined in the Chidamber-

Kemerer (CK) [14] metric suite for Object-Oriented (OO) architectures. Some of the design-level 

metrics measure both complexity and coupling. In that case, the metrics appear in both the 

complexity and coupling categories. For example, the Number of Children (NOC) metric 

measures inheritance complexity by counting the number of sub-classes of a class. At the same 

time, the higher the number of children of a class, the more methods and instance variables the 

class is likely to be coupled to. Therefore, NOC indirectly measures coupling due to inheritance 

as well. 

Software complexity can be categorized into four types: problem complexity, algorithmic 

complexity, cognitive complexity, and structural complexity [25]. Even though the four 
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complexities are interrelated, we are interested primarily in the structural complexity metrics that 

we can compute from software artifacts such as code. Many structural code-level and design-level  

Table 2.1: CCC metrics that are hypothesized to indicate vulnerabilities 

Metrics Description and Rationale 
Code-level Complexity Metrics 

McCabe's 

McCabe's cyclomatic complexity: the number of independent paths through a 
program unit (i.e., number of decision statements plus one). For a file or class, 
it is the average cyclomatic complexity of the functions defined in the file or 
class. The higher this metric the more likely an entity is to be difficult to test 
and maintain without error.  

Modified Modified cyclomatic complexity: identical to cyclomatic complexity except 
that each case statement is not counted; the entire switch statement counts as 1. 

Strict 
Strict cyclomatic Complexity: identical to cyclomatic complexity except that 
the AND (&& in C/C++) and OR (|| in C/C++) logical operators are also 
counted as 1. 

Essential 
Essential cyclomatic complexity: a measure of the code structuredness by 
counting cyclomatic complexity after iteratively replacing all structured 
programming primitives with a single statement. 

CountPath 

CountPath complexity: the number of unique decision paths through a body of 
code. A higher value of the CountPath metric represents a more complex code 
structure. According to the experience of the software engineers of SciTools 
Inc. [61], it is common to have a large value for the count path metric, even in a 
small body of code [62].  

Nesting 
Nesting complexity: the maximum nesting level of control constructs (if, while, 
for, switch, etc.) in the function. Highly nested control structures might make a 
program entity complex and hence difficult to comprehend by a programmer.  

SLOC 
Source Line of Code: the number of executable lines of source code. Although 
SLOC measures size, prior research has found that SLOC highly correlates with 
complexity. 

CommentRatio 

Comment Ratio: the ratio of number of comment lines to number of code lines. 
Note that, because some lines contain both code and comment, this metric 
could easily yield fractions higher than 1.0. One of our previous studies [44] 
suggests that highly complex program units have more comments associated 
with per line of code. Therefore, the comment ratio may have some 
implications about complexity.  

Design-level Complexity Metrics 

WMC 

Weighted Methods per Class (WMC): the number of local methods defined in 
the class. WMC is related to size complexity. Chidamber et al. empirically 
validated that the number of methods and complexity of the methods involved 
is an indicator of development and maintainability complexity [14].  

DIT Depth of Inheritance Tree (DIT): the maximum depth of the class in the 
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Metrics Description and Rationale 
 inheritance tree. The deeper the class is in the inheritance hierarchy, the greater 

the number of methods it is likely to inherit, making it more complex to predict 
its behavior [14].  

NOC 

Number Of Children (NOC): the number of immediate sub-classes of a class or 
the count of derived classes. If class CA inherits class CB, then CB is the base 
class and CA is the derived class. In other words, CA is the children of class CB, 
and CB is the parent of class CB. NOC measures inheritance complexity.  

CBC Count of Base Classes (CBC): the number of base classes. Like NOC, CBC 
measures inheritance complexity. 

Code-level Coupling Metrics 

FanIn 

FanIn: the number of inputs a function uses. Inputs include parameters and 
global variables that are used (read) in the function. Of the two general 
approaches to calculating FainIn (informational2 versus structural), we take the 
informational approach [53].  

FanOut 
FanOut: The number of outputs that are set. The outputs can be parameters or 
global variables (modified). Of the two general approaches to calculating 
FanOut (informational versus structural), we take the informational approach. 

HK Henry Kafura(HK): HK = (SLOC in the function) × (FanIn x FanOut)2 
Design-level Coupling Metric 

DIT 
Defined above in the complexity metric section. It measures the number of 
potential ancestor classes that can affect a class, i.e., it measures inter-class 
coupling due to inheritance.  

NOC 
Defined above in the complexity metric section. The more children a class has, 
the more methods and instance variables it is likely to be coupled to. Therefore, 
NOC measures coupling as well. 

CBC Defined above in the complexity metric section. We include CBC for the same 
reason we have included NOC. 

RFC 
 

Response set For a Class (RFC): the set of methods that can potentially be 
executed in response to a message received by an object of that class. RFC is 
simply the number of methods in the set, including inherited methods.  

CBO Coupling Between Object classes (CBO): the number of other classes coupled 
to a class C. 

Design-level Cohesion Metrics 

LCOM 

Lack of Cohesion Of Methods (LCOM): the LCOM value for a class C is 
defined as LCOM(C) = (1- |E(C)| ÷ (|V(C)| × |M(C)|)) × 100%, where V(C) is 
the set of instance variables, M(C) is the set of instance methods, and E(C) is 
the set of pairs (v,m) for each instance variable v in V(C) that is used by method 
m in M(C).  

                                                      

 
2 Informational approach considers data communication (e.g., through parameter passing), whereas 
structural approach considers exchange of program control (e.g., via function calls or method invocations).  
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complexity metrics have been proposed. The representative examples of code-level complexity 

metrics are McCabe’s cyclomatic complexity [45] and Halstead’s complexity [29] metric that 

measure complexity in terms of control constructs and lexical tokens, respectively. We consider 

McCabe’s cyclomatic complexity metric and its several variations to capture different flavors of 

code complexity. The different variations of McCabe’s cyclomatic complexity metric are 

Modified cyclomatic complexity, Strict cyclomatic complexity, and Essential cyclomatic 

complexity (a detailed description of how these metrics differ from McCabe’s cyclomatic 

complexity metric is given in Table 2.1). Some metrics, such as Weighted Methods per Class 

(WMC) and Depth of Inheritance Tree (DIT), are available after the completion of the design 

phase. These design-level metrics can be used to indicate potential vulnerabilities prior to the start 

of the coding phase, given that we can discover their relationships, if any, with vulnerabilities. 

Note that these design-level metrics can be computed only when the software is developed based 

on OO architecture. 

Coupling metrics measure the relationships between entities [53]. “In ontological terms two 

objects are coupled if and only if at least one of them acts upon the other” [14]. Therefore, if a 

method invokes another method, then the two methods are coupled. If a class C1 has an instance 

of another class C2 as one of its data members, C1 and C2 are coupled. Two entities are also 

coupled when they act upon the same data (i.e., read or write the same global variables) or 

communicate though data passing (parameter passing in case of functions and message passing in 

case of objects). We can observe from the aforementioned examples that coupling measures 

information flow complexity. FanIn and FanOut are coupling metrics that measure information 
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flow (e.g., by parameter passing). Response set For a Class (RFC) is an example of a design-level 

metric that measures the design coupling in OO architecture. 

Cohesion metrics measure the relationships among the elements within a single module. Lack 

of Cohesion Of Methods (LCOM) is one of most common metrics that measure cohesion [20], 

and a method to measure LCOM is described in Table 2.1. Lack of cohesion in an entity implies 

that it should be split into two or more sub entities. Non-cohesive entities are difficult to reuse, 

and an attempt to reuse them might introduce vulnerabilities in the software [14]. This is the 

rationale for including the LCOM metric. Some of the other cohesion metrics are Tight and Loose 

Class Cohesion, more commonly known as TCC and LCC, respectively [25]. TCC and LCC are 

not included in this study because these two metrics are not computed by the metric-computation 

tool we have used. 

2.2 Overview of Statistical and Data Mining Techniques 

This section provides an overview of the four alternatives for statistical and data mining 

techniques used to build vulnerability predictors that learn from the CCC metrics and 

vulnerability history.  

2.2.1 Decision Tree 

A decision tree technique, such as a C4.5 Decision Tree (DT) [73], generates predictors in the 

form of an abstract tree of decision rules. The decision rules accommodate non-monotonic and 

nonlinear relationships among the combinations of independent variables. In a classification 
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problem, the dependent variable is categorical. In our case, the categories3 are vulnerability-prone 

(YES) or not vulnerability-prone (NO). The independent variables, also called exploratory 

variables or features, are the CCC metrics. Each internal node represents a decision that is based 

on an exploratory variable, and each edge leads to either a category (a leaf in the tree) or the next 

decision. An entity is classified by traversing a path from the root of the tree to a leaf, according 

to the values of the entity’s CCC metrics. Finally, the entity’s predicted category is assigned the 

leaf’s category.  

 
Figure 2.1: A sample decision tree for vulnerability prediction 

Figure 2.1 shows a section of a decision tree obtained in one of our experiments to predict 

vulnerability-prone entities. We can indentify some interesting patterns from the constructed 

decision tree. For example, entities with Strict complexity less than or equal to 117 are 

unlikely to have vulnerabilities (label: NO). ‘9858.0/429.0’ indicates that, out of the total 

                                                      

 
3 In the data mining and machine learning field, the categories are called classes. However, we avoid using 
“class” to denote “category”, because it might be confused with class as a software entity in OO software.  
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number of samples, 9,858 samples with Strict complexity <=117 are not vulnerable and 429 

samples are vulnerable. However, entities with Strict complexity greater than 117 and CBO 

more than 24 and HK higher than 5,302,777 are vulnerability-prone (label: YES). We 

observe that the DT generates predictors that are easy to interpret (logical rules associated 

with probabilities). Therefore, they are easy to adopt in practice as practitioners can then 

understand why they get a specific prediction.  

Given a total learning set of N samples, a C4.5 Decision Tree "learns" or builds such a 

decision tree using divide-and-conquer method as per the following steps (taken from [73]): 

1. Check for base cases. The base cases are:  

a. If all the remaining n sub-samples to be classified belong to the same category, simply 

create a leaf node for the decision tree choosing that category. The value of n can be set 

as a parameter in DT. 

b. If none of the features provide any normalized information gain [40], i.e., no longer adds 

value to the predictions, create a decision node higher up the tree using the expected 

category.  

c. If an instance of previously-unseen category is encountered, again, create a decision node 

higher up the tree using the expected category. 

2. For each feature f, find the normalized information gain from splitting on f. Let f_best be the 

feature with the highest normalized information gain. Create a decision node that splits on 

f_best. 
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3. Apply Steps 1 and 2 on the subset of training samples obtained by splitting on f_best, and add 

those nodes as children of the decision node representing f_best. 

2.2.2 Random Forests 

Random Forests (RF) [73] is an advanced form of decision-tree-based technique. In contrast to 

a simple decision-tree-based technique such as C4.5 Decision Tree, RF builds a large number of 

decision trees. Each tree is constructed by a different bootstrap sample from the original data 

using a classification algorithm with the following steps (taken from [75]): 

1. If the number of samples in the training data is N, the algorithm sub-samples n cases at 

random with replacement from the original data. The chosen cases are used to construct the 

tree.  

2. If there are M features in the training set, RF chooses m features from them at random at each 

node to ensure that all the trees have low correlation between them. The value of m is held 

constant by setting a parameter of RF. After the best feature amongst the m options is selected 

to split this node in the tree, the best feature makes the cases reaching the immediate 

descendent nodes as pure as possible. The term”pure” refers here to a set of samples that 

mostly fall into the same category. The process is repeated recursively for each node of the 

tree. 

3. After the forest, a collection of trees, is formed, a new sample that needs to be classified is 

classified by each tree in the forest. Each tree thus gives a vote that indicates the tree’s 

decision on the category of the entity (as vulnerability-prone or not). The forest chooses the 

category with most votes for the sample. 
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RF is typically found to outperform basic decision trees and some other advanced machine 

learning techniques in prediction accuracy [44]. It is more resistant to noise in the data. This is an 

important advantage as we are aware of the fact that the data used in our study will contain noise 

due to inconsistencies in the record-keeping of software repositories. Furthermore, often the 

prediction accuracy of basic decision tree algorithms suffers when many of the attributes are 

correlated. Given that a number of metrics in our study are actually correlated (e.g., all the 

complexity metrics), we need a technique that is relatively robust to correlated attributes. The 

Random Forests deals well with correlated attributes, and we therefore expect it to maintain a 

higher accuracy in its prediction.  

2.2.3 Logistic Regression 

A statistical analysis method that is often used for classification is Logistic Regression (LR) 

[73]. Because we look forward to investigating the collective contribution of CCC metrics in 

vulnerability-proneness, we use multivariate LR (as opposed to univariate analysis which 

analyzes the affect of each independent variable separately). Multivariate LR is a way to classify 

data into two groups depending on the probability of occurrence of an event for given values of 

independent variables. In our case, LR computes the probability that an entity is vulnerability-

prone for given metric values. If the probability is greater than a certain cut-off point (e.g., 0.5), 

then the entity is classified as vulnerability-prone, otherwise not.  
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The probability, P, is calculated as per Equation (1) where:  

• xi = i-th metric in the set of CCC metrics (independent variables) 

• βi = Regression co-efficient for metric xi (i.e., the average amount of increase in the 

dependent variable when the other independent variables are held constant) 

• β0 = Regression constant 

• ε  = Error probability 

We use multivariate linear regression in our study because it is a standard statistical 

classification technique and it is has been used in several earlier studies on predicting fault-prone 

and vulnerability-prone entities [22, 42, 54, 64, 69]. 

2.2.4 Naïve-Bayes 

Naïve-Bayes (NB) [43] is based on probability models that assume that the instances are 

independent of one another. It can handle an arbitrary number of independent variables. Suppose, 

there are a set of samples and each instance in the sample is represented by a set of attributes S, 

where S = {x1, x2, …, xn}. Each instance in the sample can fall into any of the categories in set C, 

where C = {c1, c2, …, ck}. Naïve-Bayes first constructs the posterior probability, P(cj), for each 

category cj among a set of possible categories in C as the ratio of the number of instances of 

category cj to the total number of instances in the sample (N) . Given a new sample X, NB 

classifier calculates the conditional probability for each category in C, P(cj|X), and the predicted 

category of X is the one with the highest probability. P(cj|X) is calculated as shown in Equation 
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(2) where xi-s are the values for attributes in sample X. The other conditional probability, P(xi|cj), 

can be computed from the training sample in a similar way P(cj) is calculated. In our context, x1 

to xn represent the CCC metrics of an entity. The category set C = {vulnerability-prone, not 

vulnerability-prone}. Therefore, for an entity, X, to be predicted as vulnerability-prone, 

P(vulnerability-prone | X) has to be more than 0.5.  
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Although Naïve-Bayes tends to be unreliable when there are many inter-related attributes, this 

simple technique often yields very accurate results. It is also computationally efficient. We 

consider NB because it has often outperformed more sophisticated classification methods [43]. 

2.3 Related Work 

The related research is presented in three parts. First, we describe the research on fault 

prediction using complexity, coupling, and cohesion metrics [5, 13, 21, 22, 35, 37, 38, 47, 54, 69, 

74]. Second, we compare and contrast recent work that predicts vulnerabilities from complexity 

and coupling metrics [42, 63-65]. Finally, we describe some studies that use other phenomena 

(e.g., import patterns or past vulnerabilities) to identify the vulnerable components in a software 

system [1, 56].  

2.3.1 Fault Prediction Using Complexity, Coupling, and Cohesion Metrics 

Several prior studies [5, 13, 21, 22, 35, 38, 69] have used Object-Oriented (OO) design-level 

CCC metrics (commonly known as the CK metric suite [14]) to identify fault-prone entities. 
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These studies build statistical models with those metrics as independent variables and faults as the 

dependent variables. In general, it has been shown that these OO design metrics can be used to 

predict the fault-prone modules or the number of faults. Janes et al. [35] identify that coupling 

metrics such as Response Set for a Class (RFC) and Coupling Between Object classes (CBO) are 

good fault predictors. Succi et al. [69] report that inheritance related metrics such as Number of 

Children (NOC) and Depth of Inheritance Tree (DIT) can also be used as indicators of the fault-

prone classes. Basili et al. [5] discover that five of the metrics of the CK metrics suite are useful 

indicators of fault-prone classes, and in fact, they are better predictors than the best set of 

“traditional” code metrics (code-level metrics defined in Table 2.1). Emam et al. [22] identifies 

one more metric called export coupling as having a positive correlation with the fault-proneness 

in software modules. 

We use the CK metric suite in our work as well. However, unlike [5, 13, 21, 22, 35, 38, 69], we 

use these metrics to predict vulnerabilities (security-related faults), not general faults. Moreover, 

many of those studies [5, 13, 38, 69] use pre-release faults (i.e., those faults indentified during the 

testing phase), whereas we use post-release vulnerabilities (i.e., the security-related faults found 

during the operational phase). Although Janes et al. [35] use post-release faults, they use the 

number of revisions (i.e., how many times a class has changed so far) as a proxy for the number 

of faults. Using the sheer number of revisions as a proxy for the number of faults in a software 

entity can be misleading, because changes can be made for perfective, adaptive, or corrective 

reasons. Perfective changes are made to improve the product effectiveness (e.g., to add 

functionality, to decrease the response time). Adaptive changes are made in response to the 

changes in the product’s operational environment. Corrective changes are made to remove faults, 
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leaving the specifications unchanged. Therefore, only corrective changes can be used as a proxy 

for the number of faults, not the other types of changes. In this study, we have precisely 

indentified those corrective changes resulting from vulnerability fixes (see Chapter 3 for detail). 

2.3.2 Vulnerability Prediction Using Complexity and Coupling Metrics 

Failure prediction using complexity, coupling, and cohesion metrics has been the subject of 

much research in software engineering. However, vulnerability prediction using complexity and 

coupling metrics is a fairly new area, and the applicability of cohesion metrics in vulnerability 

prediction has never been studied before.  

Complexity and Vulnerability 

Recently, there have been a few attempts at identifying vulnerability-prone functions using 

code-level complexity metrics by Shin and William [63-65]. However, we include both design 

and code complexity metrics, whereas they use only code complexity metrics. Their results show 

weak correlation between code complexity metrics and vulnerabilities. Therefore, our study 

incorporates some coupling and cohesion metrics which are not considered in [63-65]. They use 

Logistic Regression to build vulnerability predictors whereas we apply three additional statistical 

and data mining techniques to build the predictors. We have replicated their case study on 

Mozilla Firefox, and our improvements over their prediction performances are discussed in detail 

in Chapter 5 where we present our results. 
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Coupling and Vulnerability 

The experimental investigations by Traroe et al. [42] somewhat substantiates the common 

intuition that service coupling affects Denial of Service (DoS) attackability (the R-squared values 

of their Logistic Regression analyses are 70% which means that their model explains about 70% 

of the variation in attackability). Attackability is defined as the likelihood that a software system 

or service can be compromised under an attack. By coupling, they mean service coupling which 

is measured as “the number of shared components between a given pair of services”. Their 

concept of service coupling can only be applied in a service-oriented architecture paradigm, 

whereas we measure coupling within traditional and object oriented paradigms. Even though 

service coupling is found to be a good explanatory factor for DoS attackability, there might be 

other independent variables such as complexity and cohesion, and we include those factors in our 

analysis. Moreover, their attackability data is obtained from simulated lab experiments whereas 

our vulnerability data is gathered from real-life attacks. Furthermore, they considered only DOS 

attacks whereas our analyzed vulnerability reports include a broader spectrum of attacks. 

2.3.3 Vulnerability Prediction Using Other Metrics and Techniques 

Neuhaus and Zimmerman [56] have found that vulnerabilities in Mozilla Firefox components 

can be inferred from import and function-call patterns. A component is defined as a collection of 

similarly named source and header files providing a specific service. They identify common 

patterns of imports (#include in C/C++) and function calls in the vulnerable components using 

pattern mining techniques, whereas we identify patterns of CCC metric-values using statistical 

and machine learning techniques. There is a potential to combine these two approaches to build 
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more accurate vulnerability predictions. They predict about half of the vulnerable components in 

Mozilla Firefox and about two-third of these predictions are correct. We have conducted a case 

study on Mozilla Firefox and achieved better results. We analyze vulnerabilities in Mozilla 

Firefox at a different level of granularity (see Chapter 3 for explanations), not at the component 

level. Moreover, the way we map vulnerabilities to entities is slightly different from that of 

Neuhaus and Zimmerman. Their vulnerability data is as of January 4, 2007. We work on an up-

to-date vulnerability data as of March 1, 2009 (the time of our data collection). However, their 

vulnerability data has been very helpful in cross checking the accuracy of our vulnerability 

mapping technique.  

Alhazmi et al. [1] investigate whether the number of vulnerabilities latent in a software system 

can be predicted from the vulnerabilities which have already been discovered. They study the 

Windows and Red Hat Linux operating systems and model the future trends of vulnerability 

discovery which they call the vulnerability discovery rate. As Shin and William note, “Their 

approach can be useful for estimating the effort required to identify and correct undiscovered 

security vulnerabilities, but cannot identify the location of the vulnerabilities in the source code” 

[65]. By location, Shin and William mean the entity (e.g., file or function) where the vulnerability 

is present. 

2.4 Summary 

This chapter provides basic information about some complexity, coupling, and cohesion (CCC) 

metrics. We also provide a brief overview of the statistical and machine learning techniques used 

for vulnerability prediction based on those CCC metrics.  
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We conduct an extensive survey on fault and vulnerability prediction using CCC metrics. The 

survey clearly shows that, although CCC metrics have been successfully employed in fault 

prediction, there is little work that includes complexity and coupling metrics in vulnerability 

prediction. Moreover, the affect of cohesion on vulnerability-proneness has never been studied 

before.  

It may be worth mentioning that the prior studies on fault prediction may be replicated in the 

context of vulnerabilities. However, the results might not necessarily be the same as for software 

fault prediction. Although vulnerabilities can be viewed as exploitable faults in software, there is 

a need to specifically investigate the efficacy of predicting vulnerabilities from CCC metrics. 

Research has shown that vulnerable entities have distinctive characteristics from faulty-but-non-

vulnerable entities in terms of code characteristics [63-65]. Moreover, it has been found that 

prediction of vulnerable functions from all functions provides better results than prediction of 

vulnerable functions from faulty functions [27]. One of the implications of this research is that 

techniques to automatically predict fault-prone entities from CCC metrics can be adopted or 

leveraged to automatically predict vulnerable-prone entities as well, which has not been 

systematically done as of now.  

Note that, we do not intend to show that there exist cause-effect relationships between CCC 

metrics and vulnerabilities. It is clearly not the case that having a McCabe’s complexity of 100 

and a FanIn coupling of 60 causes a vulnerability. However, our intuition is that, because high 

complexity and coupling and low cohesion make developing, understanding, testing, and 

maintaining software difficult [25, 37], these may lead to introduction of vulnerabilities. By using 

the learning algorithms discussed in Section 2.3.1, we intend to learn the patterns of association 
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between CCC metrics of vulnerable entities from the past and use this knowledge to predict the 

vulnerability-prone entities in future.  
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Chapter 3 

Collecting Vulnerability and Metric Data  

This chapter describes the vulnerability and metric data collection process that we used in order 

to perform the case study. Such data is collected to (1) test the experimental hypotheses we 

postulated about the relationships between vulnerabilities and complexity, coupling, and cohesion 

(CCC) metrics, and (2) substantiate that these CCC metrics are applicable in predicting 

vulnerability-prone entities.  

This chapter begins by providing an overview of Mozilla Firefox (the source of data for our 

case study), then provides a detailed description of how we map vulnerabilities to entities such as 

files. To map vulnerabilities to entities we find out how many vulnerabilities an entity has had in 

the past. In doing so, we outline how to extract vulnerability information from security advisories, 

locate the related entries in bug repositories, and then trace the changes in the source code meant 

to mitigate vulnerabilities via analyzing the version archives. The locations of vulnerability fixes 

help us to determine the number of vulnerabilities that were present in those entities. We also 

describe and compare an alternative approach to our vulnerability mapping technique. Then, we 

specify how we have computed the set of CCC metrics from the code base of Mozilla Firefox. 

Finally, we provide an overview of the tool we have developed to automatically map 

vulnerabilities to entities in Mozilla Firefox. 

3.1 Overview of Mozilla Firefox 

We chose to conduct our case study on Mozilla Firefox, an open source browser. With an 

approximate user-base of 270 million, it is one of the most popular internet browsers [62]. The 
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Mozilla Firefox project is large not only in terms of user base but also in terms of source code: 

the code-base of each release of the browser measures more than 2 million lines of code. 

Moreover, it has a rich history of publicly available vulnerability fixes over a period of four years 

(January 26, 2005 to April 27, 2009). The integrated nature of the Mozilla repositories enables us 

to accurately map vulnerabilities to their locations in the source code.  

We have conducted case studies on different releases of Mozilla Firefox (releases are 

analogous to versions). At the time of data collection (March 1, 2009), fifty-two releases of 

Mozilla Firefox have had vulnerability fixes, from Release 1.0 (R1.0) to Release 3.0.6 (R3.0.6). 

To validate this study, we have collected vulnerability information from all fifty-two releases as 

the vulnerabilities are distributed amongst all the releases.  

Like [31], we use a file as a logical unit of analysis based on the belief that a file is a 

conceptual unit of development where developers tend to group related entities such as functions, 

data types, etc. Other fine-grained units of code can be used, such as individual functions or 

larger/smaller code chunks that can be determined by a person (system designer or programmer) 

with good knowledge of the system. Sub-system or module level4 analysis is also possible. To 

facilitate redesign, one might want to analyze from a higher level of abstraction such as 

subsystems or modules. By contrast, to facilitate unit testing and code inspection, lower level of 

abstractions such as file or class level analysis is more appropriate [2]. Analysis at the file level is 

logical because not only files tend to represent developers' organizational choices, but also it is 

                                                      

 
4 A module is generally comprised of several source files implementing a set of related tasks.  
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particularly convenient for automated analysis as it does not require parsing the source code to 

identify the unit of analysis. 

To identify the vulnerable files, we count the number of files that were changed in the course 

of vulnerability fixes. We know in which release a vulnerability was fixed; however, we do not 

know when the vulnerability was introduced. Therefore, when there is a vulnerability fix in a file 

of a release (e.g., R2.0.0.4), we assume that the same vulnerability existed in all the previous 

releases of the file (i.e., from R2.0.0.3 to R1.0). We automate this cumulative-vulnerability-

collection approach initially introduced by Shin and Williams [65]. They count the number of 

vulnerabilities per function in the Javascript Engine component of Mozilla Firefox. We do the 

mapping at the file level and for the entire Mozilla Firefox code-base, not just for one component. 

We only consider the source files (i.e., files with .c, .cpp, .java, and .h extensions) from which the 

metrics are computed. The various configuration and scripting files to build or test Mozilla 

Firefox are not examined as they do not represent the source code.  

Over the aforementioned period of four years and fifty-two releases, 718 (6.4%) of the total of 

11,139 files have had vulnerability fixes. In total, these 718 files suffered from about 1450 

vulnerability fixes ranging from one vulnerability fix per file to more than five vulnerability fixes. 

Figure 3.1 presents a histogram of the number of vulnerability fixes per file in Mozilla Firefox. It 

shows that 454 files have had one vulnerability fix; 141 files have had two vulnerability fixes; 46 

files have had three vulnerability fixes; and so on. We can observe that the majority (454) of the 

718 vulnerable files have just one vulnerability. Therefore, instead of predicting how many 

vulnerabilities a file is going to have, we find it logical to predict the vulnerability-prone files i.e., 

the files that are likely to have one or more vulnerabilities. Hence, we treat the problem of 
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vulnerability prediction as a classification problem, i.e. categorizing files as vulnerability-prone 

or not.  

 

Figure 3.1: A histogram showing the number of vulnerabilities per file in Mozilla Firefox 

From Figure 3.1, there is another interesting point to make. The vulnerability distribution in the 

histogram directly contradicts the folklore in fault prediction that says that entities that had 

problems in the past will likely have problems in the future. As the data from Mozilla Firefox 

suggests, this might not be true in the case of vulnerabilities (i.e., security-related faults). If that 

were truly the case, the histogram would show ascending numbers of files with ascending 

numbers of vulnerabilities. In fact, there are about twice as many files (454) with one 
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vulnerability fix than all files (264) with two or more vulnerability fixes combined. This implies 

that majority of the files are not repeat offenders, i.e., they do not have vulnerability fixes in the 

subsequent releases. This observation has been already made by Neuhaus et al. [56] and our 

findings also confirm this. In fact, when Neuhaus et al. took the CVS (Concurrent Version 

System) logs from July 24, 2007- encompassing changes due to vulnerability reports from 

February 23, 2007 to July 17, 2007- they found that 149 components5 were changed in response 

to those vulnerability reports. Of these newly fixed components, 81 were repeat offenders, having 

at least one vulnerability-related fix before January 4, 2007. The remaining 68 components had 

never had a security-related fix. Therefore, predicting only on the basis of past vulnerability fixes 

would miss all the aforementioned 68 components. One implication of this observation is that, to 

make accurate predictions, we have to go beyond vulnerability history and consider additional 

factors (such as CCC metrics). 

3.2 Mapping Vulnerabilities to Entities 

For this research, we need three types of data: vulnerability reports, a history of source code 

changes, and a method of tracing from vulnerabilities to the original and changed code of an 

entity. The vulnerabilities in Mozilla Firefox are reported as Mozilla Foundation Security 

Advisories (MFSAs) [51]. The source code change history is available from Concurrent Version 

System (CVS) archives. However, there is no direct link from MFSA to CVS. The trace from 

vulnerabilities to the original and changed code of an entity can be obtained via Bugzilla, a bug 

                                                      

 
5 Neuhaus et al. define a Mozilla Firefox component as a collection of similarly named source (.c/.cpp) and 
header (.h) files providing a specific service. 
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tracking system [12]. A bug tracking system is likely to contain all sorts of entries ranging from 

corrective to perfective or even specifying preventive maintenance [3]. To avoid confusion, in 

this section, we refer to any problem posted on Bugzilla as an issue and use the term bug6 only for 

issues requiring corrective maintenance. Our approach of mapping vulnerabilities to files can be 

summarized in the following three steps which are further explained in the next three subsections. 

1. Retrieve the vulnerabilities from the Mozilla Foundation Security Advisories (MFSAs). 

2. For each vulnerability found in Step 1, indentify the link(s) to the associated bug(s) in 

Bugzilla. 

3. For each bug found in Step 2, determine the file(s) that were modified to fix the bug and 

increment the vulnerability count for those file(s). 

3.2.1 Extracting Vulnerability Information from MFSA 

Vulnerabilities are announced in security advisories that provide users workarounds or pointers to 

fixed versions and help them avoid security problems. For example, Common Vulnerabilities and 

Exposures (CVE) [18] lists publicly known information security vulnerabilities and exposures. In 

the case of Mozilla, the mitigated vulnerabilities are also posted in the Mozilla Foundation 

Security Advisories (MFSA) page. Figure 3.2 shows a section of the list of vulnerabilities posted 

in MFSA page. Each vulnerability has a unique MFSA Identifier i.e., each MFSA entry 

corresponds to a vulnerability. For example, MFSA 2008-27 (circled in Figure 3.2) means that it 

                                                      

 
6 It is important not to confuse this bug- a Bugzilla entry indicating a corrective maintenance requirement 
to fix a vulnerability- with the general definition of bug- a fault in the code [70]. 
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is the 27th vulnerability discovered in the year 2008. The listing also shows which vulnerabilities 

have been fixed in which releases. Note that, some vulnerabilities can affect multiple releases. 

For example, the vulnerability MFSA 2008-65 was fixed in releases 2.0.0.20 and 2.0.0.19. 

 

Figure 3.2: A section of the list of vulnerabilities posted in MFSA [60] 
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Figure 3.3: An example of a vulnerability report in MFSA [50] 

Following the MFSA link for each MFSA entry (or vulnerability), we go to the page where the 

vulnerability is reported in detail in the MFSA (shown in Figure 3.3). The title and description 

section of the entry tell us that the vulnerability concerns arbitrary file uploads which allows 

malicious content to force the browser into uploading local files to the remote server. This could 

be used by an attacker to steal files from known locations on a victim's computer. The References 

section shown in Figure 3.3 contains links to Bugzilla reports which can be used in Step 2 to find 

the bug(s) associated with the vulnerability.  
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3.2.2 Locating the Related Bug Reports in Bugzilla 

Each MFSA has references to bugs corresponding to the vulnerability. These references to 

bugs can be found in the reference section (underlined in Figure 3.3). Details about the bugs in 

Mozilla Firefox can be found in the Bugzilla database. MFSAs have references to the Bugzilla 

database that typically take the form of links to its web interface, such as 

https://bugzilla.mozilla.org/show_bug- .cgi?id=423541. The six-digit number at the end of the 

URL is the bug identifier. Therefore, from Figure 3.3, we know that vulnerability with MFSA ID 

MFSA 2008-27 corresponds to the bug 423541. For each MFSA page, we extract the links to the 

Bugzilla bug report using a simple regular expression. In python’s raw regular expression syntax, 

the regular expression looks like: r"\"https://bugzilla.mozilla.org/show_bug.cgi\?id=\d +\"".  

Figure 3.4 shows a screen-shot of a bug report in Bugzilla. Bugzilla records include a 

description of identified bugs, related components, developers, and the current status of bug fixes 

and verifications. Bugzilla also provides a link to modified code for each bug fix. The bug report 

in Figure 3.4 tells that Bug 423541 is found in the DOM component and the bug fix is verified for 

the release 1.8.1.15.  



Chapter 3. Collecting Vulnerability and Metric Data 38 

 

 

 

Figure 3.4: An example of a bug report in Bugzilla [11] 

3.2.4 Locating the Files with Vulnerability Fixes  

The code changed in a bug fix (which corresponds to a vulnerability fix) can be found by 

following the Diff link (circled at the bottom-right corner of Figure 3.4). The Diff page is shown 

in Figure 3.5, where specific sections of the webpage are magnified to highlight the affected files. 
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Figure 3.5 reveals that the files mozilla/content/base/public/nsContentUtils.h and 

mozilla/content/base/src/nsContentUtils.cpp are changed to fix the bug with bug id 423541 which 

corresponds to the vulnerability with MFSA ID MFSA 2008-27. Therefore, the vulnerability 

counts (i.e., how many vulnerabilities a file has had in the past) of the above stated files are 

increased by one. If these files have had no vulnerability fixes before the MFSA 2008-27 

vulnerability fix, the vulnerability counts of these two files are incremented from zero to one after  

 

Figure 3.5: An example Diff page showing the changed files as a result of a bug fix 
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this vulnerability fix. If the same files are modified to fix another vulnerability (which is 

represented by a different MFSA ID, e.g., MFSA 2008-28), then the vulnerability counts of these 

files are again incremented by one. That is, the vulnerability counts become two. However, we 

make sure that the same vulnerability fixes are not counted multiple times. For example, from 

Figure 3.3, we know that MFSA 2008-27 vulnerability is fixed in release 2.0.0.15. If the same 

vulnerability is also fixed in release 2.0.0.16, i.e., the files mozilla/content/base/public/nsContent- 

Utils.h and mozilla/content/base/src/nsContentUtils.cpp are also modified in release 2.0.0.16 to 

fix MFSA 2008-27, we do not increment the vulnerability counts of these files again as this fix 

had been already counted in the previous release. Once we have identified the fixes of bugs to 

mitigate vulnerabilities, we can precisely find out how many vulnerabilities each file has had in 

the past. Note that a security advisory reporting a vulnerability may refer to multiple bugs, and a 

bug fix can involve several files. 

3.2.5 An Alternative Approach for Mapping Vulnerabilities to Entities 

Before this straightforward method of tracing vulnerability fixes to code was available via 

these web interfaces, one would have to download the entire CVS log of commit messages and 

search the CVS logs of each file for specific bug ids in Mozilla Firefox. In that case, the steps to 

count the number of vulnerabilities per file would be: 

1. Download the Mozilla CVS. 

2. For each MFSA extract the bug ids. 

3. Look for the bug ids in the commit messages of CVS log entries. 

4. Increment vulnerability counter for the affected files. 
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This alternative approach is adopted by Neuhaus et al. [56], described in detail by Sliwerski et 

al.[67], and extends the approaches introduced by Fischer et al. [26] and by Cubranic et al. [19].  

3.3 Computing Complexity, Coupling, and Cohesion Metrics 

The complexity, coupling, and cohesion metrics are computed by statically analyzing the 

source code of Mozilla Firefox which can be obtained either by downloading a source archive or 

by using a source control system like a CVS client. Because we do not intent to check-in (submit) 

any code back into the source archives, we simply downloaded the source code of specific 

releases. The source code for a release can be found on the Mozilla FTP (File Transfer Protocol) 

server [33]. A detailed manual on how to acquire the source code of a specific release via FTP is 

provided in the Developer Guide [48]. 

We used a commercial tool called Understand C++ [61] to automatically calculate the metrics 

from the source code. This tool is used because it is user friendly and it has a good set of APIs to 

interact with programming languages such as C++, Perl, and Python. 

In this study, we compute the metrics at file-level granularity. The design-level metrics (the C-

K metric suite) are computed for each class and aggregated to the file level. For example, the file 

nsAEClassDispatcher.h has the classes AEDispatchHandler and AEDispatchTree with Lack of 

Cohesion of Methods (LCOM) scores of 55% and 33%, respectively. We take the average LCOM 

of these two classes, 44%, to be the representative LCOM of the file. In case of all other design–

level OO metrics, we add the metric values to aggregate to the file level. For example, the values 

of the Weighted Methods per Class (WMC) metric (which is basically the number of methods 
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defined in a class) of AEDispatchHandler and AEDispatchTree are 9 and 6, respectively. The 

WMC for the file nsAEClassDispatcher.h is thus 15.  

3.4 Tool Implementation 

We have developed a tool to automate the aforementioned method of mapping vulnerabilities 

to entities by extracting information from the Mozilla repositories. The source code and detailed 

documentation can be found at our website [20]. The tool is basically a collection of Python 

scripts, which currently generates text output. To extract information from the html files (i.e., 

Mozilla repository web-interfaces), we use python’s regular expressions library and 

BeautifulSoup [6], a HTML/XML parser module for python. The statistical analysis is done via 

StatPy [68], a python library developed at Cornell University, USA. 

 

Figure 3.6: An overview of the tool to automatically extract vulnerability data 

Trace Code-change for Bug Fix 

Compute CCC Metrics 
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The tool can be viewed as a combination of logical components as illustrated in Figure 3.6. The 

Parse MFSA component parses the Mozilla Foundation Security Advisories (MFSA) web pages 

(html files) to create a list of vulnerabilities reported in Mozilla Firefox (snapshots of the MFSA 

pages are shown in Figure 3.2 and Figure 3.3). For each vulnerability, the tool extracts 

information such as the MFSA link to the vulnerability report, description of the vulnerability, the 

affected releases, date of vulnerability discovery, reporter’s name, and most importantly, the bug 

ids that correspond to the vulnerability. The Retrieve Bugzilla Entries for Each Vulnerability 

component queries Bugzilla to retrieve the bug reports that resulted from or were associated with 

the vulnerability advisory. The bug reports (html files, example shown in Figure 3.4) are parsed 

to retrieve the links to code fixes in the CVS repository. Then the Trace Code-change for Bug Fix 

component follows the links to the CVS repository to identify the changed code and files that 

were modified to fix the bug (and hence the vulnerability). Note that the components Parse 

MFSA, Retrieve Bugzilla Entries for Each Vulnerability, and Trace Code-change for Bug Fix and 

Map Vulnerabilities to File implement Steps 1, 2, and 3, respectively, described in Section 3.2.  

The entire source tree or source code of a specific release is downloaded by the Download 

Source Tree component. The downloaded source code is then fed into Compute CCC Metrics 

Using Understand 2.0. Understand 2.0 is the third-party commercial tool used to automatically 

compute CCC metrics (the component is grayed-out to indicate the use of a third-party tool). An 

interface module, Read Module, is written so that our tool can read, preprocess, and aggregate the 

metrics at file level from the raw csv (comma separated values) files generated by Understand 

2.0. Finally, Analyze Metrics and Vulnerability Count per File performs the statistical analyses to 
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report the correlations between CCC metrics and vulnerabilities in Mozilla Firefox files. The 

results of this statistical analysis are presented in Chapter 4.  

3.5 Summary 

This chapter introduces our case study subject – Mozilla Firefox. It also provides a detailed 

account of how one can map vulnerabilities to software entities by extracting information from 

software repositories such as vulnerability reports, bug reports and Concurrent Version Systems 

(CVS). For Mozilla Firefox, we mine the Mozilla Foundation Security Advisories (vulnerability 

reports), their corresponding Bugzilla entries (bug reports) and CVS repositories to trace the 

source files changed to mitigate each vulnerability. The vulnerable files are identified from the 

location of the vulnerability fixes. We collect vulnerability information from fifty-two releases of 

Mozilla Firefox developed over a period of four years. We provide an overview of the tool 

developed to automatically collect such vulnerability information from the aforementioned 

repositories. We also describe how we acquire the Mozilla source code and automatically 

compute CCC metrics using a third party tool.  

The collected vulnerability history of more than four years and CCC metrics from several 

releases of Mozilla Firefox can be analyzed to test the five hypotheses we postulated about the 

underlying relationships between CCC metrics and vulnerabilities. The next chapter reports the 

results of the experiments conducted to test these hypotheses. 
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Chapter 4 

Experimental Analysis of the Hypotheses 

This chapter describes the experiments performed to validate the hypotheses about how 

vulnerabilities relate to complexity, coupling, and cohesion (CCC) metrics. First, it gives an 

overview of the experimental analysis. In doing so, it describes how to interpret the correlation 

values, which correlation technique is most suitable in the experiment, and the data used in the 

experimental analyses. Then it lays out each experiment in detail. The first, second, and third 

experiments are conducted to investigate the association of complexity, coupling, and cohesion 

metrics, respectively, with vulnerabilities in Mozilla Firefox. The fourth experiment is to 

investigate which level of metrics, code or design level, more strongly correlate to vulnerabilities. 

Finally, the fifth experiment is conducted to determine the subset of metrics that consistently 

correlate to vulnerabilities across multiple releases of Mozilla Firefox. In the end, we provide an 

overall summary of experimental findings and their implications.  

We would like to remind the readers that in the previous chapter we described how we have 

collected vulnerability and CCC metric data from several releases of Mozilla Firefox. In this 

chapter, we use the collected data to test the hypothesis about the underlying relationship between 

the CCC metrics and vulnerabilities. The discussion of classification and prediction of vulnerable 

files based on that data has to wait until Chapter 5. 

4.1 Experiments to Test the Hypotheses 

As mentioned, we conduct five experiments to test the five hypotheses (see Table 1.1 in 

Section 1.4) postulated about the underlying relationships between vulnerabilities and CCC 
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metrics. We test each hypothesis by computing the correlations between the CCC metrics and the 

number of vulnerabilities in each file. The value of the correlation coefficient (denoted by 

correlation in short) gives the strength of the relationship. However, the interpretation depends on 

the context of the usage of correlation. Cohen et al. [16] suggest that a correlation of less than 0.3 

means weak correlation, 0.3 to 0.5 means medium correlation, and greater than 0.5 means strong 

correlation. We interpret the strength of correlation as per Cohen et al. The significance of the 

correlation indicates whether the observed association has occurred by chance. In other words, it 

asks if the correlation is significantly different than zero. Conventionally, the significance of a 

correlation is determined in terms of p-value, the probability of the T-statistic. The smaller the p-

value, the higher is the confidence on the significance of the correlation. Traditionally, 

correlations with p-values of less than or equal to 0.05 are considered statistically significant [16]. 

A p-value of 0.05 means that we are 95% confident that the observed correlation is not by chance.  

The Pearson correlation coefficient (r) and Spearman rank correlation coefficient (ρ) are often 

used to measure the strength of correlations between two variables. The Pearson correlation 

assumes normal distribution of data, while the Spearman rank correlation is a non-parametric test 

that does not assume any distribution. Spearman rank correlation is performed on the ranks of the 

values without considering the magnitudes of the values, and therefore, it is not sensitive to 

outliers. Spearman rank correlation is a commonly used and robust correlation technique because 

it can be applied even when the association between elements is non-linear [16]. For these 

reasons, we use the Spearman rank correlation for this study. We have used stats.py, a statistical 

data analysis package written in python, to compute the Spearman rank correlation and its 

corresponding p-value. 
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We analyze the correlation between CCC metrics and vulnerabilities on several releases of 

Mozilla Firefox. The fifty-two releases of Firefox developed till March 1, 2009 fall into four 

major releases: R3.0, R2.0, R1.5, and R1.0 [51]. We analyze the correlation between 

vulnerabilities and CCC metrics for all four of these major releases and the release R3.0.6, the 

last release with known vulnerabilities. Table 4.1 presents the summary of the releases including 

the lines of code (LOC), number of files, total number of vulnerabilities, and the number of files 

with vulnerabilities. 

Table 4.1: Information about different Mozilla Firefox releases 

Releases LOC Files Vulnerabilities  Vulnerable Files  
R3.0.6 2,068,407 9,417 6 26 (0.3%) 
R3.0 2,066,729 11,138 38 97 (0.9%) 
R2.0 2,303,114 11,138 146 434 (3.9%) 
R1.5 2,228,647 11,002 229 599 (5.4%) 
R1.0 2,065,001 10,377 304 693 (6.7%) 

4.1.1 Experiment 1: Associating Vulnerability with Complexity (H1) 

This experiment is conducted to test H1, the hypothesis that complexity metrics positively 

correlate to the number of vulnerabilities. The Spearman rank correlation between the complexity 

metrics and vulnerabilities per file in five major releases of Mozilla Firefox are presented in 

Table 4.2. We observe from the table that the complexity metrics are generally positively 

correlated to the number of vulnerabilities in Mozilla Firefox for all the five releases. Therefore, 

the correlations presented in Table 4.2 unequivocally suggest that the number of vulnerabilities in 

Mozilla Firefox increases with the increase in code and design complexity. 

When we take a closer look at Table 4.2, we can observe that NOC is the best indicator of 

vulnerabilities whereas comment ratio is the worst indicator of vulnerabilities for all releases. 



Chapter 4. Experimental Analysis of the Hypotheses 48 

 

 

Number of Children (NOC) or the number of children metric measures inheritance complexity. 

We anticipated that vulnerabilities would be more strongly correlated to metrics measuring 

overall code and design complexity such as such McCabe's cyclomatic complexity or WMC. This 

finding suggests that inheritance complexity can be used as a good indicator of vulnerabilities in 

Mozilla Firefox. 

Table 4.2: Correlations between complexity metrics and vulnerabilities 

Metrics Correlations with vulnerabilities 
R3.0.6 R3.0 R2.0 R1.5 R1.0 

McCabe's 0.510 0.513 0.513 0.514 0.510 
Modified 0.510 0.514 0.514 0.515 0.511 
Strict 0.509 0.513 0.512 0.514 0.51 
Essential 0.512 0.514 0.514 0.515 0.512 
CountPath 0.497 0.504 0.503 0.504 0.502 
Nesting 0.532 0.541 0.541 0.542 0.538 
SLOC 0.514 0.518 0.541 0.515 0.514 
CommentRatio 0.324 0.339 0.339 0.338 0.341 
WMC 0.429 0.437 0.437 0.442 0.46 
DIT 0.459 0.455 0.456 0.475 0.488 
NOC 0.642 0.663 0.663 0.662 0.714 
CBC 0.457 0.463 0.463 0.467 0.502 

*For all the correlations, p < 0.001 

An empirical study on PosgresSQL, a database management system, shows that highly 

complex program units have more comments per line of code [44]. However, this is not the case 

in case of Mozilla Firefox browser. Here, the comment ratio has the weakest correlation with 

vulnerabilities when compared to the correlations of other complexity metrics with 

vulnerabilities. This observation suggests that the observed correlation may be project specific. 

Nevertheless, the correlations of the other complexity metrics with vulnerabilities ranging from 
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0.4 to more than 0.5 with p < 0.001 suggest overall moderate but significant association. Thus, 

these metrics can also be used as indicators of vulnerabilities in Mozilla Firefox. It is already 

mentioned in the previous chapter that some of the vulnerabilities are fixed in more than one 

release, e.g., MFSA 2008-65 is fixed in releases 2.0.0.20 and 2.0.0.19 (see Figure 3.2). Therefore, 

some of the vulnerability fixes are overlapping across some releases, i.e., they are dependent. 

This is why it is natural to have low p-values. 

Interestingly, SLOC, a straight-forward metric like the number of executable lines of code, is 

as strongly correlated to vulnerabilities as any of the other well-established complexity metrics. 

However, prior research, e.g., the one by Briand et al. [5], has empirically validated that 

component sizes (in terms of lines of code) are correlated to the number of failures in the 

operational stage.  

4.1.2 Experiment 2: Associating Vulnerability with Coupling (H2) 

We conduct this experiment to test hypothesis H2 that coupling metrics positively correlate to 

the number of vulnerabilities. We have computed the Spearman rank correlation between the 

coupling metrics and vulnerabilities for the five releases of Mozilla Firefox as in Experiment 1. 

Table 4.3 presents the correlations (for all the correlations, p < 0.001). We observe from the table 

that all the coupling metrics are generally positively correlated to the number of vulnerabilities in 

Mozilla Firefox across all five studied releases. This unequivocally suggests that highly coupled 

files have higher number of vulnerabilities. 

Similar to Experiment 1 for testing hypothesis H1, we observe in Table 4.3 that the Number of 

Children (NOC) metric is the best indicator of vulnerabilities. We anticipated that vulnerabilities 
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would be more strongly correlated to the traditional and well-established coupling metrics such as 

FanIn, FanOut, or Coupling Between class Objects (CBO), not to coupling due to inheritance. 

NOC measures coupling due to inheritance in the sense that the more children a class has, the 

more methods and instance variables it is likely to be coupled to. Nevertheless, the other coupling 

metrics strongly and significantly correlate to vulnerabilities as well (correlations ranging from 

0.434 to 0.539 with p < 0.001). Therefore, the coupling metrics can be used as an indicator of 

vulnerabilities in Mozilla Firefox. 

Table 4.3: Correlations between coupling metrics and vulnerabilities 

Metrics  Correlations with vulnerabilities  
R3.0.6 R3.0 R2.0 R1.5 R1.0 

FanIn 0.532 0.537 0.537 0.538 0.537 
FanOut 0.514 0.520 0.520 0.521 0.518 
HK 0.529 0.535 0.536 0.536 0.537 
RFC  0.434 0.434 0.434 0.439 0.457 
CBO 0.454 0.458 0.458 0.462 0.471 
DIT  0.459 0.455 0.456 0.475 0.488 
NOC 0.642 0.663 0.663 0.662 0.714 
CBC 0.457 0.463 0.463 0.467 0.502 

*For all the correlations, p < 0.001 

4.1.3 Experiment 3: Associating Vulnerability with Cohesion (H3) 

The association of cohesion in software entities with vulnerabilities has never been studied 

before. This experiment is conducted to test hypothesis H3 that cohesion negatively correlates to 

the number of vulnerabilities. The Lack of Cohesion Of Methods (LCOM) metric measures, as 

the name suggests, the lack of cohesion of methods. Therefore, if cohesion is to negatively 

correlate to vulnerabilities, LCOM should positively correlate to vulnerabilities. For each of the 
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studied releases of Mozilla Firefox, we compute the Spearman rank correlation between the 

LCOM and vulnerabilities for all the files that contain at least one class.  

Table 4.4 reports the correlations, where p < 0.001. We observe from Table 4.4 that LCOM 

positively correlates to the number of vulnerabilities in Mozilla Firefox across all five releases. 

This supports our hypothesis that cohesion metrics negatively correlate to vulnerabilities. The 

result implies that non-cohesive classes or files are more likely to have vulnerabilities than the 

cohesive classes or files. 

Table 4.4: Correlations between the lack of cohesion metric and vulnerabilities 

Metric  Correlations with vulnerabilities  

R3.0.6 R3.0 R2.0 R1.5 R1.0 

LCOM 0.438 0.444 0.444 0.447 0.486 

*For all the correlations, p < 0.001 

4.1.4 Experiment 4: Comparing Correlations of Code and Design-level Metrics (H4) 

We conduct this experiment to test hypothesis H4 that the code-level CCC metrics are better 

indicators of vulnerabilities than the design-level CCC metrics. The code sometimes diverges 

from what is specified in the design, because during the coding phase, the programmers may not 

religiously follow (intentionally or unintentionally) the design specifications. Given that 

assumption, we believe that the code more closely represents the operational behavior of the 

software than the design specifications. Therefore, compared to design-level metrics, code 

metrics are supposed to be more strongly correlated to vulnerabilities. 
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Figure 4.1: Comparison of average correlations of code-level and that of design-level CCC 

metrics with vulnerabilities 

For this experiment, we categorize the CCC metrics into code and design level (the 

categorization is already shown in Table 2.1). Then, for each metric, we find the average 

correlations from the Spearman rank correlations for the five releases. Figure 4.1 shows the graph 

obtained by plotting the average correlations of vulnerabilities with the design-level and code-

level metrics, respectively. We can observe from the graph that the line connecting the average 

correlations of code-level metrics generally lies above the line connecting the average 

correlations of design-level metrics. Therefore, most of the code-level metrics are indeed more 

strongly correlated to vulnerabilities when compared to the design-level metrics. 
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However, there are two exceptions. First, vulnerabilities are not as strongly correlated to the 

CommentRatio code-level metric as they are to the design-level metrics. Second, the NOC 

design-level metric shows the strongest correlation with vulnerabilities of all the metrics, more 

than any of the code-level metrics. Although the experimental results support H4 in general, there 

are counterexamples as well. Therefore, H4 should be revised as “most of the code-level 

complexity, coupling, and cohesion metrics are better indicators of vulnerabilities than that of 

design-level metrics”.  

Although the correlations between code-level metrics and vulnerabilities are stronger than the 

correlations between design-level metrics and vulnerabilities, it should be noted that both design-

level and code-level CCC metrics are strongly correlated to vulnerabilities. Therefore, the design-

level metrics can help developers to find the classes that require more careful design. After that, 

the code-level metrics can help them to identify the code sections that require careful inspection, 

refactoring, or rigorous testing.  

4.1.5 Experiment 5: Analyzing the Consistency of Correlations (H5) 

We conduct this experiment to test hypothesis H5 that there is a subset of metrics that 

consistently correlate to vulnerabilities in all releases. If the values of correlations are stable for 

all the releases, we can conclude that the metrics can be dependably used as vulnerability 

indicators. Nagappan emphasizes that “for the early indicators to be meaningful, they must be 

related (in a statistically significant and stable way) to the field quality of the product” [55].  
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Figure 4.2: The correlations of the all the metrics for each release 

To test the stability of correlation across releases, we plot a line graph of the correlations of the 

metric with vulnerabilities in the vertical axis and the metrics in the horizontal axis. We plot five 

such lines for the five releases we have studied. The graph in Figure 4.2 illustrates that the lines 

for each release overlap with each other. The overlapping of the lines demonstrates that the values 

and pattern of correlations are similar for all five releases. Comment ratio is the worst indicator of 

vulnerabilities whereas NOC is the best indicator of vulnerably across each release. The 

McCabe’s, Modified, Strict, and Essential cyclomatic complexities are about 0.5 for all releases. 

Nesting complexity always outperforms the other code-level complexity metrics in indicating 

vulnerabilities. SLOC is as strongly correlated to vulnerabilities as any other code complexity 

metrics. This trend is consistent among all releases. In fact, the whole set of metrics demonstrates 

this consistency, not just a subset. Given that every set is a subset of itself, we validate the 
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hypothesis (with respect to Mozilla Firefox) that there is a subset of metrics that correlate to 

vulnerabilities in all releases. 

4.2 Summary 

In this chapter, we provide empirical evidence that complex, coupled, and non-cohesive 

software entities are less secure. By conducting a case study on five releases of Mozilla Firefox, 

we validate the five hypotheses about the underlying relationships between CCC metrics and 

vulnerabilities. From the correlation analysis conducted on the CCC metrics of five major 

releases and over four years of vulnerability history, we can conclude that in Mozilla Firefox: 

• Complexity, coupling, and lack of cohesion metrics positively correlate to the number of 

vulnerabilities at a statistically significant level. The correlation is on average 0.5 

(approximately) with p < 0.001. 

• Generally, vulnerabilities are more strongly correlated to code-level CCC metrics than that to 

design-level CCC metrics. However, NOC, the design-level metric measuring inheritance 

complexity and coupling, shows the strongest correlation with vulnerabilities.  

• The CCC metrics are consistently correlated to vulnerabilities across several releases of 

Mozilla Firefox. The stable correlation patterns imply that, once calibrated to a specific 

project, the metrics can be dependably used to indicate vulnerabilities for new releases.  

Given that CCC metrics are consistently correlated to vulnerabilities across several releases of 

Mozilla Firefox, these metrics can be also be used to automatically predict vulnerability-prone 
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files. The next chapter reveals the results of automatic prediction of vulnerability-prone files 

based on their CCC metrics. 



 

 57 

 

Chapter 5 

Automatic Prediction of Vulnerabilities  

In this chapter, we employ complexity, coupling, and cohesion (CCC) metrics to automatically 

predict vulnerability-prone entities. Recollect that a framework to predict vulnerabilities using 

CCC metrics is presented in the introduction (Chapter 1) of this thesis. This chapter describes 

how to build the vulnerability predictors and measures how accurate the predictors are when 

applied to predict vulnerability-proneness for new files in Mozilla Firefox. 

The rest of the chapter is organized as follows. First, we explain the dependent and 

independent variables of the prediction task at hand. This is followed by the definitions of a 

number of performance measures used to quantitatively evaluate the performances of the 

vulnerability predictors developed by using several statistical and machine learning techniques. 

We then describe the implementation and parameter initialization of these techniques that can be 

used to build the predictors. We also show that the predictors must be trained on a balanced data-

set to avoid the problem of over-fitting. Finally, we present the result of vulnerability prediction 

using different statistical and machine learning techniques and discuss the implications of the 

results.  

5.1 Dependent and Independent Variables 

A variable is any measureable characteristic, whether of a person, a situation, a piece of 

software, or anything else. In the context of prediction, a dependent variable is one about which 

we make a prediction; an independent variable is one that is used to make the prediction. For 
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example, the average age of death could be a dependent variable, and age and gender might be 

used as independent variables to predict average age of death. 

In our case, we are trying to predict whether a file in Mozilla Firefox is vulnerability-prone or 

not (dependent variable). Since we identify the location of a vulnerability from the location of its 

fix (i.e. which file the fix is in), predicting the occurrences of vulnerability fixes is equivalent to 

predicting the likelihood of having post-release vulnerabilities in that file. It is typical for a 

vulnerability fix to involve several files, and we therefore count the number of vulnerability fixes 

that were required in that file for developing the next release n+1. This aims at capturing the 

vulnerability-proneness of a file in the current release n. Furthermore, as reported in Section 3.1, 

only a very small portion of files undergo more than one vulnerability fix for a given release, so 

finding vulnerability-proneness in release n is treated as a classification problem and is estimated 

as the probability that a given file will undergo one or more vulnerability corrections in release 

n+1. 

The independent variables are the CCC metrics already defined in Table 2.1. The fundamental 

hypothesis underlying our work is that the vulnerability-proneness of entities may be affected by 

their complexity, coupling, and cohesion-related structural characteristics. 

5.2 Prediction Performance Measures 

The performance of a predictor can be measured in several ways. Most frequently used 

measures are accuracy, recall, precision, false positive rate, and false negative rate. For the two-

class problem (e.g., vulnerability-prone or not vulnerability-prone), these performance measures 
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are explained using a confusion matrix, shown in Table 5.1. The confusion matrix shows the 

actual versus the predicted results where:  

• True Negative (TN) = The number of files predicted as not being vulnerability-prone where 

no vulnerability is discovered in those files.  

• False Positives (FP) = The number of files incorrectly predicted as vulnerability-prone when 

they are not vulnerable. 

• False Negative (FN) = The number of files predicted as not being vulnerability-prone which 

turn out to have a vulnerability.  

• True Positives (TP) = The number of files predicted as being vulnerability-prone which are in 

fact vulnerable. 

Table 5.1: Confusion matrix 

Actual 
Predicted as 

Not Vulnerable Vulnerable 

Not Vulnerable TN = True Negatives FP = False Positives 

Vulnerable FN = False Negatives TP = True Positives 

From the confusion matrix, several of the prediction performance measures such as accuracy, 

precision, recall, F-measures, false positive rate, and false negative rate can be derived as follows: 

Accuracy: Accuracy is also known as overall correct classification rate. It is defined as the ratio 

of the number of files correctly predicted to the total number of files as shown in Equation (3).  
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Precision: Precision, also known as the correctness, measures the efficiency of prediction. It is 

defined as the ratio of the number of files correctly predicted as vulnerability-prone to the total 

number of files predicted as vulnerability-prone, as shown in Equation (4).  

݊݋݅ݏ݅ܿ݁ݎܲ  ൌ
ܶܲ

ܶܲ ൅ ܲܨ
 (4) 

Recall: Recall is the vulnerable entity detection rate which quantifies the effectiveness of a 

predictor. It is defined as the ratio of the number of files correctly predicted as vulnerability-prone 

to the total number of files that are actually vulnerable. The formulae to calculate recall is given 

in Equation (5).  

 ܴ݈݈݁ܿܽ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
 (5) 

Both precision and recall are important performance measures. The higher the precision, the 

less effort wasted in testing and inspection, and the higher the recall, the fewer vulnerable files go 

undetected. Unfortunately, there is a trade-off between precision and recall. For example, if a 

predictor predicts only one file as vulnerability-prone and this file is actually vulnerable, the 

precision will be 100%. However, the predictor’s recall will be low if there are other vulnerable 

files. In another example, if a predictor predicts all files as vulnerable, the recall will be 100%, 

but its precision will be low. Therefore, a measure is needed which combines recall and precision 

in a single efficiency measure. 

ݕܿܽݎݑܿܿܣ  ൌ
ܶܲ ൅ ܶܰ

ܶܲ ൅ ܲܨ ൅ ܶܰ ൅ ܰܨ
 (3) 
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F-measure: F-measure can be interpreted as a weighted average of precision and recall [73]. 

For convenient interpretation, we also express it in terms of a percentage like our other 

performance measures so it reaches its best value at 100 and its worst at 0. The general formula 

for F-measure is given in Equation (6), where Fβ–measure "measures the effectiveness of 

prediction with respect to a user who attaches β times as much importance to recall as precision" 

[59]. 

 
ఉܨ െ ݁ݎݑݏܽ݁݉ ൌ

ሺ1 ൅ ଶሻߚ ൈ ݊݋݅ݏ݅ܿ݁ݎܲ ൈ ܴ݈݈݁ܿܽ
ሺߚଶ ൈ ሻ݊݋݅ݏ݅ܿ݁ݎܲ ൅ ܴ݈݈݁ܿܽ

 (6)  

The traditional F-measure, denoted by F1-measure, gives equal importance to both precision 

and recall by taking their harmonic mean [73]. Two other commonly used F-measures are the F2-

measure and F0.5-measure. F2-measure weighs recall twice as much as precision whereas F0.5-

measure weighs precision twice as much as recall.  

We believe that it is more important to identify the vulnerable files, even at the expense of 

incorrectly predicting some non-vulnerable files as vulnerability-prone. To draw an analogy, 

consider well-known philosophical quote that states, “Better ten guilty persons go free than one 

innocent person is punished” [57]. In the case of vulnerability prediction, this quote can be 

rephrased as “Better ten non-vulnerable files are investigated than one vulnerable file going 

unnoticed”. This is because a single vulnerable file may lead to serious security failures. Given 

that, we think more weight should be given to recall than precision. Therefore, we include the F2-

measure, which weights recall twice as much as precision, to evaluate a predictor.  



Chapter 5. Automatic Prediction of Vulnerabilities 62 

 

 

Some researchers choose to use the false positive rate (FP rate) and the false negative rate (FN 

rate) instead of precision and recall. Ostrand and Weyuker [58] in particular argue that false 

positive rate (Type I misclassifications) and false negative rate (Type II misclassifications) are the 

most important measures. We also believe that these measures are effective in evaluating 

vulnerability prediction models. They are defined as follows:  

 
TNFP

FPrateFP
+

=  (7)  

 

FNTP
FNrateFN
+

=
 

(8)  

A high FN rate indicates that there is a risk of overlooking vulnerabilities, whereas a high FP 

rate indicates effort may be wasted in investigating the predicted vulnerable entities. These 

notions are highly related to recall and precision; in fact, recall = 1 – FN rate and precision is 

inversely proportional to FP rate. Therefore, it is redundant to use all of them to indicate 

prediction performance. 

In this study, we use accuracy, recall and FN rate as employed in [39]. All these measures are 

expressed in percentages. In addition, we use F1-measure and F2-measure to quantitatively 

evaluate and compare the predictors. 

5.3 Implementation and Parameter Initialization 

WEKA (Waikato Environment for Knowledge Analysis) is a popular, open source toolkit 

implemented in Java for machine learning and data mining tasks [72] that we chose for 

implementing the four statistical and machine learning techniques discussed in Section 2.2 of 
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Chapter 2. The parameters for each of the investigated techniques are initialized mostly with the 

default settings of the WEKA toolkit such as follows: 

• C4.5 Decision Tree (DT): We use the well-known J48 WEKA-implementation of the C4.5 

algorithm to generate a decision tree. The confidence factor used for pruning is set at 25% 

and the minimum number of instances per leaf is set at 10. A higher confidence factor incurs 

more pruning of a decision tree, where pruning refers to discarding one or more sub-trees and 

replacing them with leaves to simplify a decision tree (while not increasing error rates). 

• Random forest (RF): The number of trees to be generated is set at 10; the number of input 

variables randomly selected at each node is set at 2; and each tree is allowed to grow to the 

largest extent possible, i.e. the maximum depth of the tree is unlimited. 

• Logistic Regression (LR): In WEKA, LogitBoost7 with simple regression functions as base 

learners is used for fitting the logistic models (see Equation 1 in Section 2.2.3 for an example 

of a logistic model). The optimal number of LogitBoost iterations to perform is cross-

validated, which leads to automatic attribute/feature selection (for more information, read 

[41]). The heuristicStop is set to 50. If heuristicStop > 0, the heuristic for greedy stopping 

while cross-validating the number of LogitBoost iterations is enabled. This means LogitBoost 

is stopped if no new error minimum has been reached in the last heuristicStop iterations. It is 

recommended to use this heuristic as it gives a large speed-up especially on small datasets. 

                                                      

 
7 “LogitBoost is a boosting based machine learning algorithm that uses a set of weak predictors to create a 
single strong learner. A weak learner is defined to be a classifier which is only slightly correlated with the 
true classification. In contrast, a strong learner is a classifier that is arbitrarily well correlated with the true 
classification” [41]. 
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The maximum number of iterations for LogitBoost is set at 500. For very small/large datasets 

a lower/higher value might be preferable. 

• Naïve-Bayes (NB): The useSupervisedDiscretization is set to False so that continuous, 

numeric attributes (in our case the CCC metrics) are not converted to discretized or nominal 

ones. Discretization refers to the process of converting continuous features or variables to 

nominal or categorical features. NB does not require any numeric parameters to be initialized.  

In addition to the above parameter initializations, a default threshold (cut-off) of 0.5 is used for 

all techniques to classify an entity as vulnerability-prone if the predicted probability is higher than 

the threshold. 

There is scope to improve the prediction performance by experimenting with these parameters. 

However, as we will see in later sections of this chapter, it is possible to predict vulnerability-

prone files with reasonable accuracy even with the aforementioned default parameters. This 

proves our point that CCC metrics can be useful additions in vulnerability prediction. The main 

objective for considering several learning techniques is to demonstrate the efficacy of 

vulnerability prediction using CCC metrics irrespective of what technique is used, and not 

necessarily to determine what the best learning technique is. Therefore, in this thesis, we do not 

attempt to optimize the parameters for higher accuracy.  

5.4 Need for a Balanced Training Set 

To build and evaluate the predictors, file-level CCC metrics and vulnerability data from the 52 

releases of Mozilla Firefox are used. There are 718 vulnerable files (minority category) as 
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opposed to 10,421 non-vulnerable files (majority category) in the obtained dataset (a total of 

11,139 instances). Training the predictors on such an imbalanced data set would produce biased 

predictors towards the more dominant category [73] (in this case, the non-vulnerable files). This 

phenomenon is known as over-fitting. The result of training predictors on an imbalanced data set 

is shown in Table 5.2 for C4.5 Decision Tree (DT) technique. Because the predictor becomes 

biased towards the overwhelming majority category, it predicts many vulnerable files as non-

vulnerable files. Consequently, it misses many vulnerable files. This is reflected by the low recall 

of 23.3%. Naturally, the FP rate is low as files are predicted very rarely as vulnerable-prone by 

the biased predictor. Notably, the high overall accuracy of 93.21% is misleading. It would be 

possible to be just as accurate by blindly predicting all files as non-vulnerable, because 93% of 

the instances in the data set correspond to non-vulnerable files. Even with such high accuracy and 

low FP-rate, such a biased predictor is practically useless because it would miss a majority of the 

vulnerable files. Similar results are obtained for all other techniques, and, for simplicity of 

description, we report only the results for DT in Table 5.2. 

Table 5.2: Performance of a biased predictor built from imbalanced data set 

Accuracy Recall FP rate F1-measure 

93.21 23.30 1.10 23.30 

To facilitate the construction of unbiased predictors, we create a balanced subset (1463 

instances) from the complete training set which consists of the 718 instances representing the 

vulnerable files and a random selection of 718 instances representing non-vulnerable files. Many 

prior studies [2, 39, 75] have also under-sampled the majority category instances to obtain a 

balanced training set. The problem with under-sampling is that we lose data we can learn from. 

This is a significant problem when one works with a small sample size, which is not a major 
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problem in our case. The other possible technique would be to perform over-sampling of the 

minority category, i.e., duplicating the instances representing vulnerable files. Oversampling the 

minority category can raise their weight to decrease their error rate. The same result can be 

achieved with an under-sampling technique, which also speeds up the predictor building 

significantly by reducing the size of the dataset.  

As opposed to these sampling techniques, cost-based prediction can be adopted to deal with the 

imbalanced data set. In cost-based prediction, we could set higher weights to instances 

representing vulnerable files. Then the error in predicting the minority class would decrease at the 

expense of the increase in the overall prediction error. In addition, the interpretation of standard 

prediction performance measures would become unintuitive [73]. 

With a balanced data set, the proportion of vulnerable and non-vulnerable files is exactly 50%. 

Therefore, a random prediction is likely to be correct 50% of the time. For the predictors to prove 

useful, they should be correct more than 50% of the time when classifying into either vulnerable 

or non-vulnerable files. We will be able to evaluate the usefulness of the predictors from the 

results presented in the next section.  

5.5 Results and Discussions 

This section presents the results of predicting vulnerability-prone files in Mozilla Firefox based 

on complexity, coupling, and cohesion (CCC) metrics. These results will help us quantitatively 

evaluate the usefulness of using CCC metrics for vulnerability prediction. 
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5.5.1 Prediction Performance of Different Techniques 

We have considered four alternative data mining and statistical techniques – C4.5 Decision 

Trees (DT), Random Forests (RF), Logistic Regression (LR), and Naïve-Bayes (NB) – and 

compared their prediction performances. Using DT as the baseline scheme, we perform a 

statistical significance test to determine whether the differences in performance measures by other 

techniques are statistically significant. The term statistical significance refers to the result of a 

pair-wise comparison of schemes using either a standard t-test or the corrected re-sampled t-test 

[16]. We used the latter t-test, because the standard t-test can generate too many significant 

differences due to dependencies in the estimates (in particular when anything other than one run 

of an x-fold cross-validation is used). As the significance level decreases, the confidence in the 

conclusion increases. Traditionally, a significance level of less than or equal to 0.05 (the 95% 

confidence level) is considered statistically significant. Therefore, we have performed the 

corrected re-sampled t-test at 0.05 significance. 

The results are obtained by performing a 10-fold cross-validation to reduce variability in the 

prediction. Cross-validation is a technique for assessing how accurately a predictive model will 

perform in practice [73]. The dataset is randomly partitioned into 10 bins of equal size. For 10 

different runs, 9 bins are picked to train the predictors and the remaining bin is used to test them, 

each time leaving out a different bin for testing. We use stratified sampling to make sure that 

roughly the same proportion of vulnerable and non-vulnerable files are present in each bin while 

making the random partitions. In addition, to reduce the chances for the predictors to be overly 

influenced by peculiarities of any given release, we randomly select training sets across the 

releases. Finally, we compute the mean and the standard deviation for each performance measure 
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over these 10 different runs (40 runs in total for four techniques). The mean and standard 

deviation (StDev) in accuracy, recall, FP rate, and F1-measure for each technique are presented in 

Table 5.3. The significance column (Sig.?) in Table 5.3 reports the results of the statistical 

significance test. The annotation “Yes+” or “Yes–” indicates that a specific result is statistically 

better (+) or worse (-) than the baseline scheme (in this case, DT) at the specified significance 

level (0.05). On the other hand, “No” means the specific performance measure of the two 

techniques might be different, but the difference is statistically insignificant. 

There are few points that we would like to emphasize from Table 5.3. First, for most 

techniques, the predictions are more than 70% accurate. This demonstrates the efficacy of using 

CCC metrics in vulnerability prediction, irrespective of what learning or prediction technique is 

used. Second, we are able to correctly predict 74% of the vulnerability-prone files with an overall 

accuracy of 73%. The results are promising given that we are trying to predict something about 

security using information from the non-security realm and learning techniques with the default 

parameter settings of the WEKA tool. Third, the standard deviations in the different performance 

measures are very low. The low standard deviations indicate that there is little fluctuation in the 

prediction accuracies in different runs of the experiments. 

Table 5.3: Prediction performance of different techniques 

Technique  Accuracy  Recall  FP rate  F1-measure 

  Mean StDev Sig.?  Mean StDev Sig.?  Mean StDev Sig.?  Mean StDev Sig.? 

DT  72.85 1.46   74.22 0.03   28.51 0.05   73.00 0.01  

RF  72.95 1.57 No  69.43 0.04 No  23.53 0.04 No  72.00 0.02 No 

LR  71.91 1.33 No  59.39 0.03 Yes-  15.58 0.03 Yes+  68.00 0.02 Yes- 

NB  62.40 1.29 Yes-  29.18 0.03 Yes-  4.39 0.01 Yes+  44.00 0.03 Yes- 
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For a detailed assessment of the performances of different prediction techniques, the accuracy, 

recall, FP rate and F1-measure of the different techniques are compared graphically in Figure 5.1. 

In Figure 5.1(a), (b), and (d), the closer a technique appears to the top left corner, the better the 

technique in terms of the overall accuracy, recall, and F1-measure, respectively. In Figure 5.1(c), 

the closer a technique is to the bottom left corner, the better the technique as far as FP rate is 

concerned. From Table 5.3 and Figure 5.1 (a), we can observe that RF’s overall prediction 

accuracy is slightly higher than DT and significantly better than LR and NB. However, RF’s  

 

Figure 5.1: Mean vs. standard deviation of different prediction measures 

(b) Mean vs. standard deviation of recall 

(c) Mean vs. standard deviation of FP rate (d) Mean vs. standard deviation of F1-measure 

(a) Mean vs. standard deviation of overall accuracy 
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variance in the overall accuracy is higher than that of DT and LR. Nonetheless, the differences in 

mean and standard deviation in overall accuracy are not statistically significant. As far as recall is 

concerned, DT outperforms all other techniques as shown in Table 5.3 and Figure 5.1(b). 

Therefore, DT can be an efficient technique in predicting a maximum number of vulnerability-

prone files in Mozilla Firefox. In contrast, many vulnerable entities may remain unnoticed if a 

prediction is made using a posterior probability based technique such as NB. The higher recall in 

DT is also statistically significant compared to LR and NB. It is surprising that DT can detect 

more vulnerability-prone files with a lower variance in detection rate than its more advanced 

counterpart, RF. In the case of false positive rate (Figure 5.1(c)), we see the opposite scenario. 

The false positive rate is at a maximum in DT and at a minimum in NB. This means that although 

DT can detect more vulnerable files, it is also likely to raise more false alarms. As already 

mentioned, there is a trade-off between recall and false positive rate. This issue is further 

explored in Section 5.5.2. One may have to tolerate a number of false positives to ensure that a 

minimum number of vulnerability-prone files go unpredicted. From Figure 5.1(d), we observe 

that DT strikes a higher balance between recall and FP rate, i.e., between efficiency and 

effectiveness as its F1-measure is higher than other techniques.  

It will be interesting to observe how accurately different techniques predict the vulnerability-

prone entities when we put more emphasis on recall by analyzing the F2-measures of the four 

techniques. Recollect that the F2-measure evaluates the accuracy of predicting vulnerability-prone 

files while considering recall to be twice as important as precision. Figure 5.2 compares the F2-

measures of DT, RF, LR and NB techniques, where DT’s F2-measure is the highest. Therefore, if 
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the objective is to correctly predict a higher percentage of vulnerable files, then DT promises to 

be the preferred technique, although in overall prediction accuracy RF performs better.  

 

Figure 5.2: Comparison of F2-measures of different techniques 

5.5.2 Tradeoff between Recall and FP rate  

One would ideally like to achieve high recall and a low false positive rate (FP rate). 

Unfortunately, the FP rate typically increases with any increase in recall. To investigate the 

tradeoff between the vulnerability-prone file detection rate (recall) and the false positive rate (FP 

rate), we plot a graph of recall versus FP rate (labeled as recall in Figure 5.3). Such plots are also 

called ROC (Receiver Operating Characteristic) curves. ROC curves are often used to visualize 

the performance of a predictor in detecting the true class (in our case vulnerability-prone files) 

[39, 75]. For ease of explanation, we first present the ROC curve of a single technique, namely 

C4.5 Decision Tree, in Figure 5.3. Then in Figure 5.4 we present the ROC curves of all the 

techniques we investigated. Figure 5.3 illustrates that we can correctly identify about 60% of the 
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vulnerability-prone files while keeping the false positive rate below 20%, 74% of the 

vulnerability-prone files with a false positive rate of below of 30%, and so on. 

 

Figure 5.3: Plot of recall and F1-measure against FP rate 

As mentioned before, it is more important to correctly predict most of the vulnerable files, even 

at the expense of incorrectly predicting some non-vulnerable files as vulnerability-prone. 

Therefore, reasonably high FP rates are tolerable. However, the FP rate also cannot be too high; 

otherwise a predictor will be deemed useless in practice. The F1-measure helps to identify the 

optimum point of operation, i.e., to find a point of balance between efficiency and effectiveness. 

This is why we also place the graph of F1-measure versus FP rate (labeled as F1-measure) on 

Figure 5.3. The optimum point of operation can be obtained at the point of intersection of the 

recall vs. FP rate and F1-measure vs. FP Rate curves as shown in Figure 5.3. The intersection 
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point is termed as optimum, because the overall accuracy deteriorates beyond the FP rate at the 

intersection. 

 
Figure 5.4: Plot of recall vs. FP rate 

Figure 5.4 presents the ROC curves for all four techniques, where we can again observe the 

trade-off between recall and FP rate. A good predictor would achieve high recall with a low FP 

rate. These ROC curves can be used to visualize predictors’ performances in terms of correctly 

predicting the vulnerability-prone files. If the ROC curve of a technique TA lies above that of 

another technique TB, then TA performs better than TB in predicting the vulnerability-prone files at 

the same FP rate. It can be seen that different techniques performs better than others in different 
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regions of the curves. The operative region is highlighted by the dashed rectangle (about where 

the curves of recall vs. FP rate bend, changing from having tangents with slopes greater than one 

to tangents with slopes less than one). This is because if recall is too low (e.g., lower than 50% or 

60%), it would make a predictor ineffective no matter how low the FP rate is. Similarly, a high 

FP rate (e.g., higher than 50%) would make it inefficient no matter how high the recall is. In the 

operative region, the decision-tree-based techniques generally perform better than LR and 

constantly perform better than NB. Between the decision-tree-based techniques, DT occasionally 

performs better than RF, and vice versa.  

5.5.3 Next Release Validation 

We conduct a next-release validation to investigate whether a predictor trained from past 

releases can predict vulnerability-prone entities in future releases. As already mentioned in 

Chapter 3, fifty-two releases of Mozilla Firefox have had vulnerability Fixes starting from 

Release 1.0 (R1.0) to Release 3.0.6 (R3.0.6) at the time of data collection (March 1, 2009). Data 

from the first 32 releases (R1.0 to R2.0.0.9) are used to train the predictors, and the data from the 

remaining 20 releases (R2.0.0.10 to R3.0.6) are used to test them. The data set is preprocessed to 

obtain a balanced training set. The accuracy, recall, FP rate, and F1-measure for the next release 

validation using the C4.5 Decision Tree technique are presented in Table 5.4. We notice a drop in 

the vulnerability-prone file detection rate (recall) and an increase in the false positive rate when 

predicting future vulnerabilities based on learning from the past. This is because the predictor is 

trained on a balanced data set but tested on a very unbalanced dataset containing about 90 times 

more non-vulnerable files than vulnerable files. We have tested on an unbalanced data set to 

mimic the real world situation. Nevertheless, we can observe that predictors obtained from past 
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releases can be used to predict vulnerability-prone entities in the follow-up releases without any 

significant variance from the results presented in Table 5.3. 

Table 5.4: Prediction performance of DT in next release validation 

Accuracy Recall FP rate F1-measure 

69.61% 69.52% 30.30% 66.00% 

5.5.4 Comparison of Results with Other Works  

This section compares the results of our vulnerability prediction in Mozilla Firefox with other 

studies that used the same case study. Shin and Williams [63, 64] predicted vulnerabilities in 

Mozilla Firefox using (only) code complexity metrics as independent variables and Logistic 

Regression (LR) as the prediction technique. Table 5.5 reports the accuracy, recall, and FP rate of 

their studies on vulnerability prediction. The average FP rate and recall of those studies using LR 

are compared with that of our predictions using LR in Figure 5.5. In the figure, we also compare 

the FP rate and recall of our next release validation using C4.5 Decision Tree (DT). We compare 

their results with our next release validation test because Shin and Williams also have used the 

information from the past releases to predict vulnerabilities in future releases. Note that, they 

have used vulnerability history up to release 2.0.0.4 (the last release available during their study 

conducted in February 29, 2008), while we use vulnerability history up to release 3.0.6 (the last 

release available during our study conducted in March 1, 2009). Some variations in the 

predictions are inevitable because the two studies (ours and Shin and Williams) use different 

datasets. We explain in the following paragraphs that the variations in the predictions are not 

mainly because of the use of different datasets but mainly because of the different sampling 

techniques used to train the predictors.  
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Figure 5.5: Comparison of our FP rates and Recalls to other studies [63, 64] 

 As it can be observed from Table 5.5 and Figure 5.5, Shin and William achieve very low FP 

rates (which are desirable) but suffer from very low recalls (which are extremely undesirable). 

From the discussion about the need for a balanced training set presented in Section 5.4, it is clear 

that they used a highly imbalanced data set to train the logistic regression predictor which 

resulted in biased predictors. In our file-level data set, the number of non-vulnerable files is about 

94% more than that of vulnerable files. Shin and Williams analyzed vulnerabilities at the function 

level where the imbalance is much higher. Although the FP rate is almost zero, identifying only 

13% (on average) of the vulnerable locations reduced the usefulness of their predictors as they 

would miss 87% (on average) of the vulnerabilities. In contrast, we train the predictors on 

balanced data and achieve recalls of about 59% using the same technique (LR) at the expense of 
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about 15% FP rate. Recollect that, using decision-tree based technique, our recall is close to 75% 

with false positive rate of about 28% (Table 5.3). Even in next release validation using C4.5 

Decision Tree, we achieve about 70% recall at an expense of 30% FP rate. We believe such a 

trade-off makes a vulnerability predictor more useful as the goal should be to correctly predict 

most of the vulnerable locations while keeping the FP rate at a reasonable level. Thus, their 

higher accuracy (see Table 5.5) does not necessarily indicate desirable results. That is why we do 

not compare the “accuracy” side by side with our results in Figure 5.5. It would have been 

possible to be just as accurate by blindly predicting all the functions as non-vulnerable, because 

less than 1% of functions are vulnerable ones in the test set used in [63] and [64]. Under these 

circumstances, it is more important to identify those vulnerable entities to take effective proactive 

actions against potential vulnerabilities. Our predictions with higher recalls are more suitable for 

that task. Had we known the “precision” of their predictions, we could compare their results with 

ours using F1-measure and F2-measure that combine precision and recall into a single 

performance measure. 

5.6 Summary 

In this chapter, we employ complexity, coupling, and cohesion (CCC) metrics to automatically 

predict vulnerability-prone files in Mozilla Firefox. We use four alternative statistical and 

machine learning techniques to build vulnerability predictors that learn from the CCC metrics and 

vulnerability history of Mozilla Firefox. The techniques are C4.5 Decision Trees, Random 

Forests, Logistic Regression, and Naïve-Bayes.  
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We conduct an extensive case study on Mozilla Firefox to demonstrate the efficacy of 

employing CCC metrics in vulnerability prediction. The case study is extensive in the sense that 

we have validated our study against vulnerability history of more than four years and fifty-two 

releases of Mozilla Firefox. Overall, we are able to correctly predict almost 75% of the 

vulnerability-prone files, with a false positive rate of below 30% and an overall prediction 

accuracy of about 74%. Notably, this reasonable accuracy in predicting vulnerability-prone files 

is obtained with default parameter setting of the learning methods. By experimenting with the 

parameters, it would be possible to achieve higher accuracy. We have made a number of 

additional observations as described in the following paragraphs. 

First, for most of the aforementioned statistical and machine learning techniques (except 

Naïve-Bayes), the predictions are more than 70% accurate. This result is obtained using the 

default parameter settings of the WEKA tool. This indicates that CCC metrics can be used in 

vulnerability prediction, irrespective of what prediction technique is used. 

Second, the standard deviations in the performance measure obtained from 10-fold-cross 

validation are low. This implies that the prediction would perform consistently when applied to a 

different dataset. However, it is necessary to train the predictors on a balanced data set. 

Otherwise, it produces biased results towards the more dominant category resulting in poor recall 

and misleading overall accuracy. 

Third, decision-tree-based techniques, such as C4.5 Decision Tree and Random Forests, 

significantly out-perform Logistic Regression and Naïve-Bayes in terms of correctly identifying 

vulnerability-prone files and in overall prediction accuracy. These techniques also achieve a 
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balanced false positive rate and recall, striking a balance between efficiency and effectiveness in 

vulnerability prediction. 

Fourth, a basic C4.5 Decision Tree technique performs as well as the advanced Random 

Forests technique. Although there are differences in the prediction performances achieved by 

these two techniques, the differences are not statistically significant. Moreover, the C4.5 Decision 

Tree performs better than Random Forests when more emphasis is given on correctly predicting 

the vulnerable files at the expense of a slightly elevated FP rate. 

Fifth, predictors built from one release can be reliably used to predict vulnerability-prone 

entities in future releases.  

Finally, we observe an improvement over similar studies (such as [63] and [64]) on 

vulnerability prediction in Mozilla Firefox. The improvement is mainly in recall or vulnerability-

prone file detection rate. Moreover, our results are as good as other techniques using different 

input features and approaches, e.g., [56] (reported in Section 2.3.3). Therefore, CCC metrics 

should be included in the input feature set in vulnerability prediction attempts. 
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Chapter 6 

Conclusion 

6.1 General Conclusions 

In this thesis, we provide empirical evidence that complex, coupled, and non-cohesive software 

entities are generally less secure. We find that complexity, coupling, and lack of cohesion (CCC) 

metrics positively correlate to the number of vulnerabilities at a statistically significant level over 

five major releases of Mozilla Firefox. The correlation is on average 0.5 with a p-value less than 

0.001. The code-level CCC metrics are generally more strongly correlated to vulnerabilities than 

the design-level CCC metrics. However, design-level metrics such as NOC can be good 

indicators of vulnerabilities. We also observe that the CCC metrics are consistently correlated to 

vulnerabilities across five releases of Mozilla Firefox. The stable correlation patterns imply that, 

once calibrated to a specific project, these metrics can be dependably used to indicate 

vulnerabilities for new releases. 

Motivated by the aforementioned observations, we investigate the efficacy of applying 

complexity, coupling, and cohesion metrics to automatically predict vulnerability-prone entities 

in software systems. We use statistical and machine-learning-based approaches to build 

vulnerability predictors. In doing so, we compare the prediction performance of the C4.5 

Decision Tree, Random Forests, Logistic Regression, and Naïve-Bayes techniques in predicting 

vulnerability-prone entities based on their CCC metrics. An extensive empirical study is 

conducted on data collected from fifty-two releases of Mozilla Firefox developed over a period of 

more than four years. From the result of the study, we conclude that: 
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• Vulnerability-proneness prediction using CCC metrics is reasonably accurate. It is possible to 

correctly predict almost 75% of the vulnerability-prone files (recall) with a false positive rate 

of 28%, and an overall accuracy of 74%. The result is promising given that we are using 

structural information from the non-security realm to predict vulnerabilities. 

• The prediction results are data independent as the predictors perform consistently against 

different subsets of the datasets during 10-fold cross validation. The standard deviations in 

recall, false positive rate and overall accuracy are 0.03, 0.05, and 1.46, respectively, which is 

very low.  

• A relatively simple technique, namely C4.5 Decision Trees, happens to perform very well in 

correctly predicting the vulnerability-prone files and in overall prediction accuracy. This 

suggests that more complex prediction techniques like Random Forests may not be required. 

• The predictors built from one release can be reliably used to predict vulnerability-prone 

entities in a future release. The result of next-release validation shows statistically 

insignificant variance in prediction accuracy. 

The conclusions substantiate that CCC metrics can be useful and practical addition to the 

framework of automatic vulnerability prediction. Such automatic predictions will allow software 

practitioners take preventive actions against potential vulnerabilities early in the software 

lifecycle.  
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6.2 Limitations 

We recognize that there are certain limitations to the results and conclusions we have presented 

in this thesis, and we discuss several of them in the following paragraphs.  

First, our research relies on vulnerabilities which have already been discovered and reported. 

Vulnerabilities that have not been discovered or publicly announced yet are not used for our study 

even though that information might contribute to a more precise analysis. In particular, it is 

impossible to ever know the true error rates, as certain false positives may be true positives if the 

files identified contain vulnerabilities that haven’t been noticed yet. 

Second, there are some inconsistencies in the traceability of Mozilla Security Advisories, bug 

reports, and CVSs. For example, in release R1.0, 32 files of the total of 693 vulnerable files in the 

Mozilla Firefox code-base could not be located. However, we believe that such 4% 

inconsistencies are insignificant and should not threaten the validity of the study. 

Third, we do not differentiate the files changed for the direct reason of vulnerabilities and the 

files changed for a secondary reason identified from vulnerabilities such as an addition of a 

parameter to several functions in a file with low complexity. Considering applying different 

weights to the simple changes propagated from the main changes due to vulnerabilities might lead 

to more precise results. 

Fourth, there is always an element of randomness and variance in the results produced by 

statistical and machine learning techniques. In order to confidently lessen the effects of 

algorithmic bias, we have performed 10-fold cross validation, a way of performing repeated 
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training and testing. There is also the chance that one technique might have performed better than 

another technique had we experimented with different parameters. The main purpose of this study 

is to investigate the applicability of using CCC metrics to predict vulnerable entities. In doing 

that, we tried several techniques so that the results are not overly influenced by any specific 

technique. We were not attempting to identify the most effective technique or most effective set 

of parameters. 

Fifth, we are aware of the fact there are many other factors that can lead to vulnerabilities in 

software systems. Therefore, by no means, we imply that CCC metrics should be the sole 

consideration when trying to predict potential vulnerabilities early in the software lifecycle. 

Instead, our results suggest that complexity, coupling, and cohesion can be some of the major 

factors to be kept in mind during security assessment of software artifacts, but there is certainly 

no requirement to limit oneself to this data. 

Finally, we acknowledge that one case study is not sufficient to draw a completely general and 

concrete conclusion. Some conclusions drawn from studying Mozilla Firefox may not apply to 

other software in different domains. Nevertheless, we have substantiated our findings over a 

wealth of vulnerability data by analyzing fifty-two releases developed over a period of four years. 

Researchers gain confidence in a theory as similar results are observed in different settings. In 

this regards, our findings provide supportive evidence about the how complexity, coupling and 

cohesion metrics relate to vulnerabilities in software.  

6.3 Future Work 

Our future work will concentrate on the following issues: 
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More Metrics: Currently, we only use CCC metrics in structured and OO programming 

paradigms. It would be interesting to investigate the relationship between vulnerabilities with 

other CCC metrics such as service coupling and complexity in service-oriented architecture [42]. 

There is also the need to investigate the effects of software-development-process complexity and 

coupling, i.e., metrics that focus on a code-change process instead of on the code properties. For 

example, Hassan et al. conjecture that entities that are part of large, complex modifications or 

entities that are being modified frequently and/or recently are likely to have faults [30]. Similar 

studies can be conducted in the context of security patches and vulnerabilities.  

Granularity of Analysis: Zimmermann et al.’s study [76] reveals that the degree of correlation 

between faults and complexity measures is different depending on the granularity of analysis. In 

this study, we analyze the effect of CCC metrics on vulnerability-proneness at the file-level. 

Analyzing at various granularities (e.g., at module or component level) might reveal some more 

interesting information. 

More automation: The tool developed to automate the extraction and mapping of 

vulnerabilities and version information is basically a collection of Python scripts, which generate 

textual outputs. Convenient Graphical User Interfaces (GUI) for the tool are under development. 

Furthermore, we want to integrate third-party statistical and machine learning tools with our tool 

so that we can automatically obtain predictors from software archives without much human 

intervention. The next step would be to integrate these predictors into development environments 

supporting the decisions of software engineers and managers. 
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More projects: Given a fully automated system, we will be able to easily replicate this study on 

more projects from different domains. This will add further evidence on the applicability of CCC 

metrics in vulnerability prediction. Systemic study of more projects will strengthen the existing 

body of empirical knowledge in software security engineering and software engineering in 

general. 

Despite the limitations and clear avenues for future expansion of the work, our basic goal of 

demonstrating that CCC metrics are useful as vulnerability indicators has been met. 
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