
Improved Coding Techniques for MPPM-like Systems

by

Siyu Liu

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science,
The Edward S. Rogers Sr. Department of

Electrical & Computer Engineering
University of Toronto

Copyright c© 2009 by Siyu Liu

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l’édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-59259-5
Our file Notre référence
ISBN: 978-0-494-59259-5

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.
.

AVIS:

L’auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l’Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.

Abstract

Improved Coding Techniques for MPPM-like Systems

Siyu Liu

Master of Applied Science,

The Edward S. Rogers Sr. Department of

Electrical & Computer Engineering

University of Toronto

2009

Multipulse pulse position modulation (MPPM) has been widely proposed to improve

data rate over the traditional pulse position modulation (PPM) in free-space optical

communication systems. However, there is no known efficient method of encoding MPPM

codewords. Furthermore, MPPM is not the optimal coding scheme (in terms of data

rate) given the two main constraints of optical systems (duty cycle and zero runlength).

In this work, an improved encoding technique for MPPM is provided as well as an

analysis of regions where significant rate gain over MPPM is achievable. A new coding

technique based on constrained coding is introduced that allows construction of codes

which achieves considerable rate gain over comparable MPPM systems. In addition, our

new codes allow for convenient concatenation with an outer-code and are suitable for

iterative decoding. Simulation results show that these codes can achieve a 6 dB coding

gain over comparable MPPM systems.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Frank R. Kschischang.

It has been a truly rare pleasure to work with an advisor who not only provided me with

academic guidance, but also insightful discussions on all aspects of life. His extraordinary

patience and devotion to his students cannot be overstated. His dedication has made my

last two years a truly wonderful life experience.

I wish to thank the members of my evaluation committee: Prof. Ben Liang, Prof.

Teng Joon Lim and Prof. Li Qian for taking their time to help evaluate my thesis. Their

comments, suggestions and advices have benefitted me greatly in improving this thesis.

I am deeply grateful to my colleague Ben Smith for providing me with vital research

advice as well as providing me with useful computer codes. His assistance has been most

valuable to the completion of this thesis. I would also like to thank David Han, Yan

Liang and Mingfai Wong for proofreading my thesis and providing useful comments.

For their friendship and advice, I would like to thank the members of FRK group:

Chen Feng, Azadeh Khaleghi, Sarah Lyons, Chunpo Pan, Danilo Silva, Mansoor Yousefi.

For all the joy and laughter that makes BA4162 the best office, I like to extend my

thanks to my officemates: Hayssam Dahrouj, Peyman Razaghi, Soroush Tabatabaei,

Ameer Youssef and Weifei Zeng.

Finally, I am, as always, grateful to my family and friends for their unwavering sup-

port.

iii

Contents

1 Introduction 1

1.1 PPM and MPPM . 1

1.1.1 PPM . 1

1.1.2 MPPM . 3

1.2 Two Key Constraints . 4

1.3 Previous Works on MPPM . 4

1.4 Drawbacks of MPPM . 5

1.5 Overview of Thesis . 7

2 Analysis of MPPM 8

2.1 MPPM Codebooks . 8

2.2 Standard Encoding and Decoding . 10

2.3 Mapping MPPM using Integer Partition 12

2.3.1 Correspondence of MPPM and Ordered Partition 13

2.3.2 Ordered Partition under Cyclic Permutation 14

2.4 Improved Encoding and Decoding . 17

2.4.1 Example of Improved Encoding and Decoding 19

2.4.2 List of Orbits for Various MPPM Systems 19

3 Theoretical Rate Improvements over MPPM 24

3.1 Fixed Duty Cycle and Zero Run-length Constraint 24

iv

3.1.1 Counting using Integer Composition 25

3.1.2 Rate Improvements for Various Duty Cycle and Zero Runlength . 27

3.2 Achievable Regions with Fixed Duty Cycle 32

4 Constrained Coding Approach 38

4.1 Runlength-Limited Sequences . 38

4.2 Finite State Encoders . 39

4.2.1 Constraint Graphs . 39

4.2.2 Encoders from Constraint Graphs 40

4.2.3 Entropy of Constraint Graphs . 41

4.2.4 p:q Encoders and Power Graphs 41

4.3 (0, k) Sequences and Power Graphs . 43

4.3.1 (0, k) Capacity . 43

4.3.2 Power Graphs of (0, k) Sequences 43

4.4 Minimal Duty Cycle Design . 48

4.4.1 Design Algorithm via Power Graph 49

4.4.2 Duty Cycle Analysis . 51

4.5 Achievable Rates and MPPM Comparison 54

5 Concatenation with Outer Code 58

5.1 Serially Concatenated System . 58

5.2 LDPC code and EXIT Chart Analysis 59

5.2.1 LDPC Codes . 60

5.2.2 EXIT Charts . 61

5.3 Message Passing Algorithm . 64

5.4 Simulation Results . 69

5.4.1 Result from EXIT Chart Analysis 69

5.4.2 Simulation of Concatenated Systems 72

v

5.4.3 Estimation of Shannon Limit . 73

5.4.4 MPPM Comparison . 76

6 Conclusion 79

6.1 Summary of Contributions . 79

6.2 Directions for Future Research . 80

A Finite State Codes 82

A.1 Basis Definitions . 82

A.2 Graph Representations of Shifts . 83

A.3 Finite-State Code Theorem . 84

B LDPC Code Design from EXIT Charts 86

B.1 Intuitive Idea . 86

B.2 Derived Equations . 87

Bibliography 89

vi

List of Tables

2.1 Complexity of Standard MPPM Encoding and Decoding 12

2.2 Complexity of standard MPPM method vs orbit partition method 19

2.3 Table of orbits representatives of M̄(9, 2) 20

2.4 Table of orbits with k = 2 . 21

2.5 Table of orbits with k = 3 . 21

2.6 Table of orbits with k = 4 . 22

2.7 Table of orbits with k = 5 . 22

3.1 List of Codewords of S(6,3,2) . 26

3.2 List of Codewords of (5,2) MPPM . 33

4.1 Capacity of (0, k) Sequences for Various k Values 44

4.2 State Table Part 1 . 52

4.3 State Table Part 2 . 53

4.4 Table of output weights . 54

4.5 Table of Constrained Code . 57

5.1 Table of Variable Node Distribution for a Fixed Check Node (Rate =0.8) 70

5.2 Table of Variable Node Distribution for a Fixed Check Node (Rate =0.9) 70

5.3 Comparable MPPM systems for overall rate 0.64 concatenated system . . 77

5.4 Comparable MPPM systems for overall rate 0.72 concatenated system . . 78

vii

List of Figures

1.1 Example of n = 5 PPM system . 2

1.2 Example of n = 5 k = 2 MPPM system 3

3.1 Rate improvement starting from a (20,2)-MPPM base code, 20% duty cycle 28

3.2 Rate improvement starting from a (10,2)-MPPM base code, 20% duty cycle 29

3.3 Rate improvement starting from a (10,3)-MPPM base code, 30% duty cycle 30

3.4 Rate improvement starting from a (10,4)-MPPM base code, 40% duty cycle. 31

3.5 Rate as a function of zero runlength constraint for 25% duty cycle 35

3.6 Rate as a function of zero runlength constraint for 30% duty cycle 36

3.7 Rate as a function of zero runlength constraint for 40% duty cycle 37

4.1 Constraint graph representation of (1,∞) runlength limited sequence . . 39

4.2 A rate 1/2 finite state code . 41

4.3 Second power graph of (1,∞) runlength limited sequence 42

4.4 Constrained graph representation of (0,5) runlength limited sequence . . 49

4.5 Comparison of constrained codes with MPPM systems for 25% duty cycle 55

4.6 Comparison of constrained codes with MPPM systems for 30% duty cycle 56

4.7 Comparison of constrained codes with MPPM systems for 40% duty cycle 57

5.1 Full communication model with constrained (trellis) inner code and LDPC

outer code . 59

5.2 Tanner Graph Representation of (6,3) Regular LDPC Code 60

viii

5.3 A portion of an iterative decoding system that takes in a priori information

and passes out extrinsic (a posterior) information. 62

5.4 EXIT Chart for Es/N0 = 3dB . 63

5.5 Iterative decoding block of our communications system. 64

5.6 Factor graph representation of a trellis 65

5.7 Detailed view of a trellis section . 65

5.8 Detail view of trellis transition with edges going into state 2 highlighted . 67

5.9 Message passing on a variable node . 68

5.10 Message passing on a check node . 68

5.11 Required SNR to achieve desired rates for outer LDPC codes 71

5.12 Check degree versus SNR required to achieve LDPC code rate of 0.8 . . . 72

5.13 Check degree versus SNR required to achieve LDPC code rate of 0.9 . . . 73

5.14 BER curve for the concatenated system with rate 0.8 outer LDPC code . 74

5.15 BER curve for the Concatenated System with rate 0.9 outer LDPC code 75

5.16 Comparison against MPPM system using overall rate 0.64 concatenated

system . 77

5.17 Comparison against MPPM system using overall rate 0.72 concatenated

system . 78

ix

Chapter 1

Introduction

Pulse position modulation (PPM) and multipulse position modulation (MPPM) are very

useful coding schemes for a wide range of optical communication systems [9]. In this

work, we shall examine new coding techniques to improve achievable rates and decoding

capabilities over comparable optical communication systems.

This chapter provides a brief introduction to both PPM and MPPM, highlighting the

reasons that make them desirable for optical communication systems. In addition, we

shall also draw attention to the limitations of PPM and MPPM. These limitations serve

as our motivation to study better coding techniques.

1.1 PPM and MPPM

We shall first motivate the idea of pulse position modulation (PPM) and discuss multi-

pulse position modulation (MPPM) as its generalization.

1.1.1 PPM

Pulse position modulation (PPM) has been shown to be a desirable modulation scheme for

optical communication systems that use photon-counting techniques for direct detection

1

Chapter 1. Introduction 2

[1]. Especially for low-power, low-data-rate applications (such as deep space optical

communication), PPM is known to be particularly suitable [1] [2].

1

1

1

1

1

Figure 1.1: Example of n = 5 PPM system

For simplicity, we shall only consider binary PPM where we are restricted to sending

0 and 1. In an optical device such as a laser, a 0 corresponds to an off signal (the laser

is turned off) while a 1 corresponds to an on signal (the laser is turned on). A general

binary PPM codeword has n slots. We can view each slot as an allocation of a block of

time for data transmission. In exactly one of the n slots, we are allowed to send a 1 with

0s in all other slots. Thus, a binary PPM codeword is identified by the position of its 1.

The n slot binary PPM codebook is simply the set of all binary sequences of length n

with exactly a single 1. Clearly, it has exactly n codewords. Figure 1.1 shows an example

of a 5-slot PMM codebook.

As we can easily see, PPM suffers from a very low data rate. As n grows large,

the number of codewords grows linearly in n while the total number of possible binary

sequences of length n grows as 2n. Even if we were to allow the alphabet size of PPM

to increase from binary, it has been shown that PPM still suffers severe throughput

limitations [9]. Hence, to improve on PPM, two generalizations of PPM have been

studied: overlapping PPM (OPPM) [10] and multipulse or combinatorial PPM (MPPM)

[11]. It has been shown that MPPM can achieve superior rates compared to both PPM

and OPPM [9], and thus will serve as the basis of this work.

Chapter 1. Introduction 3

1.1.2 MPPM

Multipulse pulse position modulation (MPPM) was introduced in [6] as an improved

modulation scheme over PPM. The idea of MPPM is simple. Instead of only allowing

one pulse (or sending a 1 in our above example) per n slots, we allow exactly k of them.

Figure 1.2 shows an MPPM codebook with 5 slots and allowing exactly two (k = 2) 1s to

be transmitted in the 5 slots. This coding scheme will allow a significant rate gain over

PPM even for small values of n and k. As an example, take a n = 8 binary PPM, we

1

1 1

1

1

11

1

1

1

1 1

1 1

1 1

1 1

1 1

Figure 1.2: Example of n = 5 k = 2 MPPM system

have exactly 8 codewords and a code rate of 3/8 = 0.375. Now consider MPPM with the

same n = 8, by simply allowing k = 2, we have
(
8
2

)
= 28 codewords and a code rate of

log 28/8 = 0.601. Thus we see almost a 2 times rate gain by using MPPM modulation.

Besides the gain in rate, the main reason why generalizing PPM to MPPM is valid

and useful is that MPPM maintains all the important characteristics that make PPM a

desirable coding scheme. These important characteristics are outlined in the following

Chapter 1. Introduction 4

section and will serve as recurring constraints for our new approach to code design for

optical communication systems.

1.2 Two Key Constraints

Comparing PPM and MPPM, we see that both schemes has the property that every

codeword contains exactly the same number of 1s. We shall henceforth call the fraction of

1s the duty cycle of the code. We see that PPM system has a duty cycle of 1/n and MPPM

in general as a duty cycle of k/n. This requirement translates to a maximal runlength of

consecutive 0s (we shall henceforth call this “zero runlength”). Not surprisingly, MPPM

shares the same characteristics as PPM. It has constant weight, duty cycle of k/n and a

maximal zero runlength.

It turns out that for free-space optical systems where PPM and MPPM are used,

these characteristics are of great importance. The duty cycle requirement is induced by

the power constraint on the optical system. The zero runlength constraint is induced

by the synchronization sensitivity of the optical system; as it has been shown that long

sequences of zeros or ones are ill-suited for symbol synchronization [5] [12].

Thus, the duty cycle and zero runlength constraints are fixed by the underlying optical

system and must be satisfied. Therefore, in order to improve on MPPM and still be

applicable to the same optical system, we need to satisfy both these constraints. We shall

henceforth call the duty cycle and zero runlength constraints the two key constraints.

1.3 Previous Works on MPPM

In a landmark paper [9], Georghiades gave an in depth analysis of the error probability,

cutoff rate and capacity of PPM, OPPM and MPPM systems. He showed while both

MPPM and OPPM can achieve high rates, OPPM requires large indices of overlap for

high rates that make synchronization difficult in practical implementations. Furthermore,

Chapter 1. Introduction 5

he proposed trellis-coded modulation (TCM) to encode MPPM and showed that a 3 dB

coding gain over PPM is achievable.

In [3], the maximum achievable throughputs (rates) of uncoded OPPM and MPPM

are analyzed. It was concluded that MPPM should be used for high rate transmission.

Specifically, MPPM is superior to OPPM if the underlying optical system allows a trans-

mission efficiency exceeding 0.027 nats/photon. (For our purposes, this just means that

MPPM is preferred over OPPM).

In [7, 8], Reed-Solomon (RS) coded MPPM was analyzed. Particularly, in [8], it was

shown that RS-coded MPPM can achieve a 3 dB gain over RS-coded PPM. In [7], it was

shown that RS-coded MPPM has better performance over uncoded MPPM only when

the number of oness in each codeword is large.

In [4], it was shown through a design example that for very low duty cycle (hence low

rate), MPPM has only an negligible gain over PPM. This result shows that we should

only consider MPPM for duty cycles where significant gain over PPM can be achieved.

In [5, 12], the issue of symbol synchronization for MPPM systems was examined. The

main result that is useful for our discussion is that long sequences of consecutive zeroes

are undesirable for symbol synchronization.

In sum, previous works have shown that MPPM is the desired modulation scheme

(compared to PPM and OPPM) for high data rates. Furthermore, symbol synchroniza-

tion is a major concern in designing MPPM codebooks.

1.4 Drawbacks of MPPM

From the list of previous works, we can see that much analysis has been done to show

the superiority of MPPM over PPM. We shall now show that there are in fact several

drawbacks of MPPM on which significant improvements are desired.

Firstly, the mapping (encoding) from bit sequences to MPPM codewords is typically

Chapter 1. Introduction 6

done through a lookup table. On the decoding end, MPPM decoding is done through the

same brute force table lookup. We observe that for even moderate size of n and k such

as 20 and 10,
(
20
10

)
= 184756 requires a large lookup table. Thus, the lack of an efficient

encoding and decoding algorithm severely limits the MPPM codebook size in practice,

which in turn limits the rates we can achieve.

Secondly, we shall show in Chapter 3 that MPPM is not the optimal code (in terms

of data rate) that satisfies our key conditions. Thus, it is natural to ask if we can find

better codes that achieve better rates than MPPM.

Lastly, MPPM itself can be viewed as more of a modulation scheme than a coding

scheme in the sense that it has very limited error correcting capabilities. Thus, it would

be desirable to concatenate it with an outer error-correcting code. In a concatenated

system, it would then be desirable to take advantage of iterative decoding, i.e., the so-

called Soft-In-Soft-Out (SISO) decoding technique. However, the brute force mapping

of MPPM codewords is ill-suited for iterative decoding in concatenation with an outer

error-correcting code.

With these drawbacks in mind, we would like to look for coding systems that can

improve over MPPM in the aforementioned areas while still satisfying our two key con-

straints. We shall list the three areas of improvements as follows:

1. efficient mapping algorithm;

2. higher rate;

3. suitable for iterative decoding.

In this thesis, we shall show that we can indeed find such coding systems. Further-

more, we shall provide both the construction and analysis of such systems in concatena-

tion of outer error-correcting codes and demonstrate their superiority over MPPM.

Chapter 1. Introduction 7

1.5 Overview of Thesis

The thesis is organized as follows.

In Chapter 2, we shall provide a more in depth analysis of MPPM and describe a

technique that allows reductions in the size of the required MPPM lookup tables.

In Chapter 3, we analyze the asymptotic rates while satisfying our 2 key conditions.

We shall show that for many parameters significant gain over MPPM systems are theo-

retically possible.

In Chapter 4, we shall provide a constrained coding approach as an alternative to

MPPM. We shall show that this construction allows us not only to achieve much better

rates than MPPM, but also enables an efficient codeword mapping algorithm defined in

terms of a finite state machine.

In Chapter 5, we shall use Extrinsic Information Transfer (EXIT) charts to design

outer LDPC codes that can be serially concatenated with our constrained codes. Superior

performance of our codes in comparison with MPPM systems is demonstrated.

In Chapter 6, we summarize our contributions, and suggest directions for future

research in this area.

Chapter 2

Analysis of MPPM

In this chapter, we briefly introduce the MPPM model and provide an improved mapping

algorithm that reduces the size of MPPM lookup tables.

2.1 MPPM Codebooks

MPPM is also called combinatorial PPM [11]. When restricted to the binary alphabet

{0, 1}, each MPPM symbol is a {0, 1} sequence of length n having exactly k ones and

(n − k) zeros. Let M(n, k) denote the set of all possible MPPM codewords for a fixed

pair (n, k). The size of M(n, k) is given by :

|M(n, k)| =
(

n

k

)
=

n!

k!(n− k)!
. (2.1)

With this formulation, we shall now state a few key definitions.

Definition 2.1.1 A (n, k) MPPM codebook is a nonempty subset of M(n, k).

In general, we allow any subset of M(n, k) to define a MPPM codebook. We shall later

outline some desirable properties that we would like our MPPM codebooks to satisfy.

These properties will guide us in making judicious choices for MPPM codebooks.

8

Chapter 2. Analysis of MPPM 9

Definition 2.1.2 For a (n, k) MPPM codebook, the ratio k/n is called the duty cycle

and will henceforth be denoted by D.

In optical systems, each transmission of a 1 translates to an on signal. For example,

in a laser device, a 1 translates to turning the laser on for a given time slot. In this

context, we can relate the duty cycle as an average power constraint determined by a

given optical system.

Given a finite binary sequence x, a subsequence of z consecutive 0s (or 1s) in x is

called a run of 0s (or 1s) and has a runlength of z. The zero runlength of a sequence x is

the longest run of 0s in x. Given an (n, k) MPPM codebook, we can easily see that the

zero runlength of any codeword is upper bounded by n−k. In a practical optical system,

it is useful to think of sending MPPM codewords sequentially. Thus, we are concerned

with the concatenation of MPPM codewords. In this setting, the longest run of 0s we

can achieve is the concatenation of a codeword with n− k 0s at the end with a codeword

with n− k 0s in the beginning. This particular concatenation results in a zero runlength

of 2(n − k). This motivates the definition of zero runlength for general (n, k) MPPM

codebook.

Definition 2.1.3 Zero runlength Z of M(n,k) is given by Z = 2(n− k).

In physical systems, it has been shown that long runs of 0s have a detrimental effect

on signal synchronization [9, 12]. Thus, we can view Z as a constraint determined by

the timing sensitivity of the physical device.

Now, given an (n, k) MPPM codebook Ω, we define its rate CΩ(n, k), in the standard

way as:

CΩ(n, k) =
log |Ω|

n
, (2.2)

where log denotes the base 2 logarithm here and in all following discussions. We shall

drop the subscript of Ω when there is no confusion over the particular (n, k) codebook

Chapter 2. Analysis of MPPM 10

in question. For Ω = M(n, k), we can approximate |M(n, k)| as follows:

|M(n, k)| =
(

n

k

)
= 2n(H(D)+o(1)), (2.3)

where D = k/n and H(D) is the binary entropy function given by the formula

H(D) = −D logD − (1−D) log(1−D) (2.4)

and o(1) denotes the little-o notation defined by f(x) ∈ o(g(x)) if

lim
x→∞

f(x)

g(x)
= 0. (2.5)

Hence, o(1) is very small and we can approximate C(n, k) ≈ H(D).

For example, suppose k/n = p = 0.5. Then H(0.5) = 1, so asymptotically C(n, k) ≈
1. To actually come close to this rate, however, we would need very large values for n

and k. For example, picking n = 20 and k = 10 will only give us C(20, 10) ≈ 0.875,

while |M(20, 10)| = 184756, a considerably large codebook size. The difficulty with large

MPPM codebooks is that there is no known efficient way of encoding input messages to

MPPM codewords. We shall make the notion of encoding precise in the the next section,

and analyze the standard encoding and decoding method.

2.2 Standard Encoding and Decoding

We shall first define a correspondence between an input bit sequence and an (n, k) MPPM

codeword.

Definition 2.2.1 Let {0, 1}m be the set of all possible m-bit input messages. An encoding

of a message x ∈ {0, 1}m to a MPPM codeword y ∈ M(n, k) is an injective (one-to-one)

function E : {0, 1}m → M(n, k).

From the above definition, the injectivity assumption tells us that it is sufficient to

consider a MPPM codebook that has the same cardinality as the set of input messages.

Chapter 2. Analysis of MPPM 11

Since we are assuming the set of inputs has cardinality a power of 2 (2m for some m), we

can restrict the size of our MPPM codebook to the same power of 2. This motivates the

following mapping b : Z+ → Z+:

b(x) = 2blog xc. (2.6)

We are generally interested in (n, k) MPPM codebooks of size b(
(

n
k

)
). We shall henceforth

denote a (n, k) MPPM codebook of size b(
(

n
k

)
) by M̄(n, k) and let C̄(n, k) denote its

rate. As an example, consider M̄(20, 10). We have |M̄(20, 10)| = 217 = 131072 and

C̄(20, 10) = 17/20 = 0.85. Note that the above map only tell us the value of |M̄(n, k)| and

does not tell us which elements of M(n, k) should be included in M̄(n, k). In fact there

is no canonical choice of elements to be included in M̄(n, k). Choices for constructing

M̄(n, k) will be discussed in the following section and the next chapter.

Now given an input message set {0, 1}m and a corresponding M̄(n, k) with |M̄(n, k)| =
2m, we shall analyze the complexity of the standard MPPM encoding and decoding

method.

For both the input message set {0, 1}m and M̄(n, k), we can order their elements by

a lexicographical ordering. More precisely, we shall define the following.

Definition 2.2.2 Let X ⊂ {0, 1}n be a nonempty set of binary sequences of length n,

and let N be the cardinality of X. Define η : X → {0, 1, . . . , N − 1} as the mapping that

takes x ∈ X to its lexicographical index in {0, 1, . . . , N − 1}.

Since both {0, 1}m and M̄(n, k) have the same cardinality, the lexicographical ordering

on both sets gives a natural bijection between them. This bijection induces the following

encoding function:

Definition 2.2.3 Let x ∈ {0, 1}m and y ∈ M̄(n, k). The standard MPPM encoding

function ES : {0, 1}m → M̄(n, k) is given by ES(x) = y if η(x) = η(y).

With this encoding function, we need a lookup table with a list of all codewords of

M̄(n, k) (listed in lexicographical order). This lookup table has a total of 2m elements

Chapter 2. Analysis of MPPM 12

Table 2.1: Complexity of Standard MPPM Encoding and Decoding

Encoding Decoding

Space Complexity (bits) 2mn 2mn

Time Complexity (operations) O(1) O(m)

and each element has a size of n bits. Thus, a total space of 2mn bits is needed. For

encoding time, we shall assume the time to look up an element takes constant time.

On the decoding side, since Es is a bijection, we just need to find the inverse map.

Namely, given a M̄(n, k) codeword y, we need to find η(y). Towards this end, we can use

the same lookup table as the encoder and perform binary search to deduce η(y). Since

there are 2m elements on our list, we need O(m) search operations to deduce η(y).

The encoding and decoding complexity are summarized in Table 2.1.

2.3 Mapping MPPM using Integer Partition

From the above analysis, the standard encoding method results in a lookup table that has

as many elements as the number of codewords in our MPPM codebook. In practice, there

are physical limitations on the size of lookup tables. These limitations in turn restrict

the size of an MPPM codebook. Therefore, it is desirable to find encoding methods

that can handle large codebooks without large lookup tables. We shall now describe a

method based on integer partitions that can reduce the size of MPPM lookup table. This

reduction proves to be significant for moderate codebook sizes that are generally used in

practice.

Chapter 2. Analysis of MPPM 13

2.3.1 Correspondence of MPPM and Ordered Partition

Let n be a positive integer. Following the notations of [13], we define an ordered partition

or composition of n+1 into k+1 parts as an ordered (k+1)-tuple α = (m1,m2, . . . , mk+1)

where mi are positive integers and m1 + m2 + . . . + mk+1 = n + 1. Denote the set of all

ordered partitions of n + 1 into k + 1 parts as P(n + 1, k + 1). From basic combinatorics,

we know that |P(n + 1, k + 1)| = (
n
k

)
. Thus we see that |P(n + 1, k + 1)| = |M(n, k)|.

There is a natural bijection between elements of P(n + 1, k + 1) and elements of a

M(n, k). This bijection is given by corresponding each mi in the composition of n with

a binary sequence of zeros of length mi − 1 and each + sign as the position of a one.

Namely, we define the following map B : P(n + 1, k + 1) → M(n, k) by:

B(α) = B(m1,m2, . . . , mk+1) (2.7)

= 0m1−110m2−11 . . . 0mk−110mk+1−1 (2.8)

where 0j is a string of j 0s and follows the convention that 00 is the empty string.

For example, the combination 2 + 2 + 1 = 5 will correspond to the 4-bit sequence

0101. Below is an example of the set P(5, 3) and its corresponding M(4, 2) codewords:

P(5, 3) M(4, 2)

1 + 1 + 3 1100

1 + 3 + 1 1001

3 + 1 + 1 0011

1 + 2 + 2 1010

2 + 1 + 2 0110

2 + 2 + 1 0101

Chapter 2. Analysis of MPPM 14

2.3.2 Ordered Partition under Cyclic Permutation

In [13], the action of a cyclic permutation on the set P(n, k) is investigated. Let θ be the

map on P(n, k) defined via

θ[(m1,m2, . . . , mk)] = (m2,m3, . . . , mk,m1). (2.9)

It is clear that θ generates a cyclic group Gθ of order k under function composition, with

θk = e (the identity element in the group) and θ−1 = θk−1. Whenever we have a group G

acting on a set (also called a group action), we would naturally like to examine the set

of orbits of G under this action. We shall define orbits of P(n, k) under the action of Gθ

as follows.

Definition 2.3.1 The orbit of α ∈ P(n, k) under the action of Gθ is the set

Gθα = {α, θα, θ2α, . . . , θk−1α} (2.10)

For example, the orbit of the 3-tuple (1, 0, 2) is the set {(1, 0, 2), (2, 1, 0), (0, 2, 1)}, which

is also the orbit of (2, 1, 0) and (0, 2, 1). From this example, it is easy to see that many

elements can have the same orbit. In fact, orbits form an equivalence relation on P(n, k)

and hence induce a partition of P(n, k). Thus, it is natural to determine the total number

of orbits of P(n, k).

For our given group action on P(n, k), define its set of orbits as O(n, k) and further,

denote the set of orbits with exactly k-elements as Ok(n, k). It has been proven in [13]

that the size of the orbits follows the following elegant formulae:

|Ok(n, k)| = 1

n

∑

d|{n,k}
µ(d)

(
n/d

k/d

)
(2.11)

and

|O(n, m)| = 1

n

∑

d|{n,k}
φ(d)

(
n/d

k/d

)
, (2.12)

where µ is the Möbius function and φ is the Euler Totient function defined below, and

the sum is taken over all positive common divisors of n and k.

Chapter 2. Analysis of MPPM 15

Definition 2.3.2 Let n be a positive integer. The Möbius function is defined as

µ(n) =





1 if n is square-free with an even number of distinct prime factors;

−1 if n is square-free with an odd number of distinct prime factors;

0 if n is not square-free.

(2.13)

Putting in more a compact form: let ω(n) be the number of distinct primes dividing

n and Ω(n) be the number of prime factors of n, counted with multiplicities (clearly,

ω(n) ≤ Ω(n)). Then:

µ(n) =





(−1)ω(n) = (−1)Ω(n) if ω(n) = Ω(n);

0 if ω(n) < Ω(n).
(2.14)

The Euler totient function, φ(n), is defined as the number of positive integers less or

equal to n and relatively prime to n. The totient function is deeply related to the

Möbius function via the Möbius inversion formula:

φ(n) =
∑

d|n
d · µ(

n

d
). (2.15)

Now (2.11) is particularly interesting to us. Let MOk
(n, k) be the union of all the

orbits inOk(n, k). Then |MOk
(n, k)| = k·|Ok(n, k)|. Now, we consider MOk+1

(n+1, k+1),

keeping in mind that elements of MOk+1
(n + 1, k + 1) are in natural correspondence with

elements of M(n, k). Now if|MOk+1
(n + 1, k + 1)| ≥ |M̄(n, k)|, then we can take a subset

of MOk+1
(n+1, k+1) to generate a codebook of size |M̄(n, k)|. To see how we can achieve

this algorithmically, we first need the following definition.

Definition 2.3.3 Suppose that |MOk+1
(n + 1, k + 1)| = (k + 1) · Ok+1(n + 1, k + 1) ≥

|M̄(n, k)|. Let p be the smallest positive integer such that (k + 1)p ≥ |M̄(n, k)|, i.e., p is

such that

(k + 1)(p− 1) < |M̄(n, k)| ≤ (k + 1)p. (2.16)

Chapter 2. Analysis of MPPM 16

We shall now give an example illustrating the above concepts. Take M(9, 2), we have

|M(9, 2)| = 36 and |M̄(9, 2)| = 32. Then

|O3(10, 3)| = 1

10

(
10

3

)
= 12 (2.17)

Thus, we have 12 orbits of size 3. We only require 11 of these, since 11× 3 > 32. Thus,

in our example, we have p = 11.

Now we shall give an algorithm for constructing M̄(n, k).

1. Via our bijection B, we can view elements of MOk+1
(n + 1, k + 1) as elements of

M(n, k).

2. From each orbit, we can select a representative element. We can make a canonical

choice for the representative by picking the smallest element in the orbit (viewed

as element of M(n, k)) in lexicographical order.

3. Within each orbit Oj, we can index its elements by the action of θ on the orbit

representative. More precisely, let α be the orbit representative. Each β ∈ Oj is

given as β = θiα for some i ∈ {0, 1, . . . , k}, so i is the index assigned to β. This i

is the assigned index of β. This method of index assignments gives the elements of

each orbit an index from 0 to k.

4. Given a set of orbit representatives, we can index the orbits from 0 to |Ok(n, k)|−1

in ascending lexicographical order of the orbit representatives.

5. Construct M̄(n, k) with p orbits (possibly eliminating some elements from the last

orbit to match the size of M̄(n, k)).

With the above construction, we can see that every codeword of M̄(n, k) is completely

specified by the orbit it belongs to and its position in the orbit. Thus, let a be the orbit

number and r be the position in the orbit, the 2-tuple (a, r) completely specifies the

codewords of M̄(n, k). This motivates the following mapping:

Chapter 2. Analysis of MPPM 17

Definition 2.3.4 Let τ : M̄(n, k) → {0, . . . , p − 1} × {0, . . . , k} be the bijection that

sends the codewords of M̄(n, k) to their 2-tuple representations. Namely, for y ∈ M̄(n, k),

(a, r) ∈ {0, . . . , p − 1} × {0, . . . , k}, our above construction defines the mapping τ(y) =

(a, r).

In the next section, we shall see that the above construction leads to an improved encoding

and decoding method.

2.4 Improved Encoding and Decoding

With the particular M̄(n, k) given by the above construction, we can now define our

improved encoding function. We shall again assume that |M̄(n, k)| = |{0, 1}m| = 2m. A

key observation is that for x ∈ {0, 1}m, with η(x) = w for some w ∈ {0, 2m − 1}, we can

represent w as:

η(x) = w (2.18)

= a(k + 1) + r, (2.19)

where 0 ≤ r ≤ k.

Of course, it is no coincidence that we choose (k + 1) and the letters a and r. With

this observation, we can define the following improved encoding function.

Definition 2.4.1 Let x ∈ {0, 1}m with η(x) = a(k + 1) + r. The improved MPPM

encoding function EI : {0, 1}m → M̄(n, k) is given by EI(x) = y, where y ∈ M̄(n, k) and

τ(y) = (a, r).

With this improved encoding function, we see that we only need to specify a lookup

table with p elements (recall p is the number of orbits used in constructing M̄(n, k)). This

will require pn bits. Note that we need not to store all the elements of a particular orbit

because we can find every element in the orbit easily by knowing the orbit representative

Chapter 2. Analysis of MPPM 18

and the r value. Thus, the encoding is essentially a table lookup together with a cyclic

shift (θr) of an orbit representative. We shall assume that the table lookup takes constant

time and a cyclic shift can be done in O(k) time.

For decoding, we will still use the same lookup table with p elements. The decoding

procedure can be described as follows:

1. Suppose y ∈ M̄(n, k) is received, map y to its integer partition representation y′

via B−1.

2. Perform the inverse cyclic shift θ−1 on y′ until we arrive at an orbit representative.

Note that our canonical choice orbit representative ȳ is the cyclic shift of y′ that has

the smallest lexicographical value. Thus we can determine the orbit representative

in at most k cyclic shifts (recall θ generates a group of order (k + 1)).

3. Let r be defined by θ−ry′ = ȳ.

4. Given orbit representative ȳ, find ȳ in our lookup table of orbit representatives.

Since the orbit representatives are lexicographically ordered, we can use binary

search.

5. Let a be defined by the position of ȳ in our lookup table.

6. With r and a, we can recover our input message x ∈ {0, 1} by the formula η(x) =

a(k + 1) + r

With this decoding algorithm, we again need pn bits to store a lookup table with

p elements. For time complexity, O(k) operations are needed to determine a canonical

orbit representative and O(log p) operations are needed to perform binary search on our

lookup table.

Since we have 2m ≈ (k + 1)p, we can now compare the encoding and decoding com-

plexity of our improved method against the standard method. This comparison is sum-

marized in Table 2.2. In general, we have reduced the lookup table size by a factor of

Chapter 2. Analysis of MPPM 19

Table 2.2: Complexity of standard MPPM method vs orbit partition method

Standard MPPM Method Orbit Partition Method

Input Output Input Output

Space Complexity (bits) (k + 1)pn (k + 1)pn pn pn

Time Complexity (operations) O(1) O(log(kp)) O(k) O(k) + O(log p)

k + 1. Also note that in most cases we have p À k, and log p > k. Thus we also have a

slight gain in decoding time complexity over the standard method.

2.4.1 Example of Improved Encoding and Decoding

To further illustrate our improved encoding and decoding algorithm, recall our earlier

example with M̄(9, 2). We can now explicitly list out its 11 orbit representatives in Table

2.3. Note that O3(10, 3) has one more orbit (4, 3, 3), which is eliminated. Furthermore,

we only need 2 elements in the last orbit in Table 2.3 to get a total of 32 elements.

Now suppose that we received the codeword 001000001. We wish to find its a and

r value. Using our decoding algorithm, map 001000001 back to its integer partition

representation via B−1. We have 001000001 → (3, 6, 1). Now, applying θ−2 gives us that

θ−2(3, 6, 1) = (1, 3, 6) Since there are only 3 elements in the orbit, we see that (1, 3, 6)

is the element with the smallest lexicographical value. Thus, it must be our canonical

orbit representative. As we have used θ−2, the r value is 2. Now a binary search on orbit

representatives gives us a = 5. With these values, we see that ak + r = 5× 3 + 2 = 17.

This corresponds to the 5-bit input of 10001.

2.4.2 List of Orbits for Various MPPM Systems

In the above example, we saw that the orbits of size 3 actually covers the whole set

M(9, 2) and hence we were able to construct M̄(9, 2). In this section, we shall show

Chapter 2. Analysis of MPPM 20

Table 2.3: Table of orbits representatives of M̄(9, 2)

O(10, 3) M̄(9, 2) Index Value (a)

(8, 1, 1) 000000011 0

(7, 2, 1) 000000101 1

(7, 1, 2) 000000110 2

(6, 3, 1) 000001001 3

(6, 2, 2) 000001010 4

(6, 1, 3) 000001100 5

(5, 4, 1) 000010001 6

(5, 3, 2) 000010010 7

(5, 2, 3) 000010100 8

(5, 1, 4) 000011000 9

(4, 4, 2) 000100010 10

Chapter 2. Analysis of MPPM 21

Table 2.4: Table of orbits with k = 2

n-value |M(n, k)| |O(n + 1, k + 1)| (k + 1)× |O(n + 1, k + 1)| |M̄(n, k)|
9 36 12 36 32

12 66 22 66 64

17 136 45 135 128

24 276 92 276 256

33 528 176 528 512

Table 2.5: Table of orbits with k = 3

n-value |M(n, k)| |O(n + 1, k + 1)| (k + 1)× |O(n + 1, k + 1)| |M̄(n, k)|
7 35 8 32 32

9 84 20 80 64

11 165 40 160 128

13 286 70 280 256

16 560 140 560 512

20 1140 285 1140 1024

for most practical MPPM codebooks (relatively small codebooks), |MOk
(n, k)| is always

greater than |M̄(n, m− 1)|. In Table 2.4 to 2.7, we give a list of MPPM codebooks with

k values ranging from 2 to 5. In most cases, the n values are appropriately chosen so

that
(

n
k

)
is close to a power of 2. We see that for all cases in Table 2.4 to 2.7, we have

enough orbits to construct M̄(n, k).

Finally, we note that this result only provides a significant gain (in terms of size

of lookup table) when we have relatively small codebooks. This is because in general

we can only reduce the lookup table size by a factor of k which converts to blog kc
bits. To put this into perspective, recall our first example with n = 20, k = 10, we

Chapter 2. Analysis of MPPM 22

Table 2.6: Table of orbits with k = 4

n-value |M(n, k)| |O(n + 1, k + 1)| (k + 1)× |O(n + 1, k + 1)| |M̄(n, k)|
7 35 7 32 32

8 70 14 70 64

9 126 25 125 64

11 330 66 330 256

13 715 143 715 512

15 1365 273 1365 1024

Table 2.7: Table of orbits with k = 5

n-value |M(n, k)| |O(n + 1, k + 1)| (k + 1)× |O(n + 1, k + 1)| |M̄(n, k)|
10 252 42 252 128

13 1287 212 1272 1024

16 4368 728 4368 4096

18 8568 1428 8568 8192

23 33649 5598 33588 32768

26 65780 10962 65772 65536

Chapter 2. Analysis of MPPM 23

have M̄(20, 10) = 217, while blog 10c = 3. Hence, we still need a lookup table of size

217/10 ≈ 13108 or 14-bits (rounding up to the nearest bit value). Therefore, while useful,

this mapping algorithm still does not allow us to construct large codebooks that approach

the asymptotic rate of H(k/n).

Chapter 3

Theoretical Rate Improvements over

MPPM

In this chapter, we shall examine theoretical rate improvements over MPPM while satis-

fying the same duty cycle and zero runlength constraints as an MPPM codebook.

3.1 Fixed Duty Cycle and Zero Run-length Constraint

As mentioned earlier, both the duty cycle and the zero runlength constraint are imposed

by the optical system. The duty cycle constraint translates to an average power con-

straint, while the zero runlength constraint corresponds to the fact that long sequences

of zeros are undesirable for synchronization purposes [9]. These two constraints exactly

fix the parameters of MPPM (i.e., the n and k values). Thus, it is useful to examine if

we can achieve a rate gain by considering other modulation schemes while keeping both

D and Z constant.

The first observation is that, in order to keep the D parameter constant, it suffices to

keep the ratio k/n constant. Thus, it is natural to investigate how much improvement

one can make by increasing n and k simultaneously while keeping the same D and Z.

First, we shall make the following definition:

24

Chapter 3. Theoretical Rate Improvements over MPPM 25

Definition 3.1.1 Let x ∈ {0, 1}n. Let wt(x) denote the number of 1s in x and z(x)

denote the zero runlength of x. We define the set S(n, k,Z) as:

S(n, k,Z) = {x ∈ {0, 1}n : wt(x) = k, z(x) ≤ Z}. (3.1)

A simple example shows that we can gain quite a bit by increasing n and k. Suppose we

start with M(4, 2). We have |M(4, 2)| = 6, D = 50% and Z = 2. Now we examine the

effect of increasing n and k simultaneously. Clearly, if we set n = 6 and k = 3, we still

satisfy the same duty cycle. Now we ask how many sequences of length n = 6, k = 3 has

a zero runlength of Z = 2? Namely, we would like to find |S(6, 3, 2)|. Towards this end,

we can, in a brute force manner, list out all such sequences as in Table 3.1.

As we can count, there are 16 codewords of S(6, 3, 2). To make a fair comparison, let us

concatenate M(4, 2) sequentially. A concatenation of 3 consecutive M(4, 2) codewords is

a sequence of length 12; and this concatenated codebook has a total of |M(4, 2)|3 = 216

codewords. Likewise, we can concatenate S(6, 3, 2) sequentially. A concatenation of

2 consecutive S(6, 3, 2) codewords is also a sequence of length 12. This concatenated

codebook, however, contains a total of |S(6, 3, 2)|2 = 256 codewords. Thus, we gain 40

codewords over a length of 12 by simply increasing both n and k by 1!

If we keep increasing n and k, we quickly find that we cannot list the codebook by a

brute force manner. Unfortunately, there is no known asymptotic formula for S(n, k,Z).

There is, however, a method to analyze this problem for reasonably large n and k values.

This method is related to yet another integer partition problem.

3.1.1 Counting using Integer Composition

We shall now show that counting codewords of S(n, k,Z) is related to counting the

number of compositions of a positive integer n into k parts with each part ≤ Z + 1.

Namely, n = m1 + m2 + . . . + mk,mi ≤ Z + 1, ∀i. We can think of each part mi as a

binary sequence starting with one followed by |mi|−1 zeros. This combinatorial problem

Chapter 3. Theoretical Rate Improvements over MPPM 26

Table 3.1: List of Codewords of S(6,3,2)

n = 6, k = 3,Z = 2

001011

001101

001110

010011

010101

010110

011001

011010

011100

100101

100110

101001

101010

101100

110010

110100

Chapter 3. Theoretical Rate Improvements over MPPM 27

has a well-known generating function given by [14]:

G(x) = (x + x2 + . . . + xZ+1)k. (3.2)

Let ak denote the coefficient of xk. We see that the coefficient an corresponds to the

number of binary sequences of length n that begin with a one; and in general, the

coefficient an−j corresponds to the number of binary sequences of length n that begin

with exactly j zeros. In our case, we allow up to Z zeros. Thus, the total number of

sequences is given by the following formula:

|S(n, k,Z)| =
Z∑

i=0

an−i. (3.3)

Now, looking back at our S(6, 3, 2) example. Take our generating function approach,

we have:

(x + x2 + x3)3 = x9 + 3x8 + 6x7 + 7x6 + 6x5 + 3x4 + x3 (3.4)

Since n = 6 and Z = 2, we need to sum the coefficients from x4 to x6. Thus, |S(6, 3, 2)|
is given by:

|S(6, 3, 2)| = a6 + a5 + a4 (3.5)

= 7 + 6 + 3 (3.6)

= 16, (3.7)

exactly the same as our brute force approach. Furthermore, referring back to Table 3.1,

there are indeed a4 = 3 sequences that begin with two consecutive 0s, a5 = 6 sequences

that begin with one 0 and and a6 = 7 sequences that begin with a 1.

3.1.2 Rate Improvements for Various Duty Cycle and Zero Run-

length

Now equipped with the above generating function method, we can investigate the effect

of increasing n and k simultaneously. In each case, we shall start with a base MPPM

Chapter 3. Theoretical Rate Improvements over MPPM 28

system that induces a duty cycle D and zero runlength Z. In Figures 3.1 to 3.4, we start

with M(20, 2), M(10, 2), M(10, 3), M(10, 4) respectively. These give us duty cycles of

10%, 20%, 30% and 40%. In each case, we let n increase to the nearest value less than

100 that satisfies the given duty cycle constraint. The two points on the figures where

the n and R values are explicitly shown are the extremum points of the graph. The R

values compares the rate gain over the base MPPM system for the largest n < 100.

As we can see from Figures 3.3 and 3.4, for 30% and 40% duty cycle, the rate gain is

quite significant. For lower duty cycles, as shown in Figures 3.1 and 3.2, we do not get

a large rate gain. Lastly, we note that we have limited our analysis to duty cycle up to

40%. This is because duty cycles higher than 40% are of no practical interest.

20 30 40 50 60 70 80
0.375

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

n: 80
R: 0.408

Codeword Length

R
at

e

(20,2) MPPM

n: 20
R: 0.3785

Figure 3.1: Rate improvement starting from a (20,2)-MPPM base code, 20% duty cycle

Chapter 3. Theoretical Rate Improvements over MPPM 29

10 20 30 40 50 60 70 80 90 100
0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62
n: 95
R: 0.6152

Codeword Length

R
at

e

(10,2) MPPM

n: 10
R: 0.5492

Figure 3.2: Rate improvement starting from a (10,2)-MPPM base code, 20% duty cycle

Chapter 3. Theoretical Rate Improvements over MPPM 30

10 20 30 40 50 60 70 80 90
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82
n: 90
R: 0.8111

Codeword Length

R
at

e

(10,3) MPPM

n: 10
R: 0.6907

Figure 3.3: Rate improvement starting from a (10,3)-MPPM base code, 30% duty cycle

Chapter 3. Theoretical Rate Improvements over MPPM 31

10 20 30 40 50 60 70 80 90 100
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
n: 95
R: 0.9157

Codeword Length

R
at

e

(10,4) MPPM

n: 10
R: 0.7714

Figure 3.4: Rate improvement starting from a (10,4)-MPPM base code, 40% duty cycle.

Chapter 3. Theoretical Rate Improvements over MPPM 32

3.2 Achievable Regions with Fixed Duty Cycle

In the above section, we saw that by allowing n and k to increase, we can get a significant

rate gain. In this section, we shall keep the duty cycle fixed, and pick a large n and k

that satisfy the given duty cycle. Now we allow the zero runlength to vary. Each Z value

determines an MPPM system. Thus, for various Z values, we can compare the rate gain

of S(n, k,Z) over the corresponding MPPM system determined by Z.

In the previous section, we considered M(n, k) and S(n, k,Z). In both codebooks,

the zero runlength is indeed Z. In practice, however, we are not actually dealing with

M(n, k), but M̄(n, k). With an appropriate choice of codewords in M̄(n, k), we can

actually reduce the zero runlength. We shall first illustrate this with an example.

Consider M(5, 2), which has |M(5, 2)| = 10 elements as listed in Table 3.2. If we

are concatenating M(5, 2) codewords, we will have Z = 6. But in practice, we only

require M̄(5, 2) with |M̄(5, 2)| = 8. Thus, we are free to eliminate 2 codewords from

M(5, 2). Suppose that we choose to eliminate codewords 11000 and 00011, we see that

the maximum zero runlength upon concatenation is actually only 4. This is because

11000 and 00011 are the only sequences that either begin or end with three 0s. Without

them, all leftover codewords have a maximum of two 0s at either the beginning or the end.

Thus, upon concatenation, these codewords can only create maximum zero runlength of

4.

To make this notion precise, we shall make the following definitions.

Definition 3.2.1 The front zero runlength of a finite binary sequence is the number of

consecutive zeros occurring at the beginning of the sequence; and the end zero runlength

of a finite binary sequence is the number of consecutive zeros occurring at the end of the

sequence.

Definition 3.2.2 Let X be a codebook containing finite binary sequences (e.g. M(n, k)).

The maximum front zero runlength Uf (X) of X is the largest front zero runlength over

Chapter 3. Theoretical Rate Improvements over MPPM 33

Table 3.2: List of Codewords of (5,2) MPPM

Codewords of M(5, 2)

11000

10100

10010

10001

01100

01010

01001

00110

00101

00011

all codewords in X; and the maximum end zero runlength Ue(X) of X is the largest end

zero runlength over all codewords in X.

Starting with a M(n, k), we can systematically eliminate codewords with long zero run-

length (both front and end), such that the resulting M̄(n, k) has the smallest maximum

zero runlength (front and end). We shall call this particular choice of codewords in

M̄(n, k) the M̄(n, k) that minimizes zero runlength. With this choice, we can define our

new zero runlength parameter Z̄ as follows:

Definition 3.2.3 Let M̄(n, k) be chosen to minimize zero runlength. Let zi be the zero

runlength of a codeword xi ∈ M̄(n, k), and let Zmax be defined as:

Zmax = max
xi∈M̄(n,k)

zi. (3.8)

The zero runlength parameter Z̄ is defined by:

Z̄ = max(Uf (M̄(n, k)) + Ue(M̄(n, k)), Zmax). (3.9)

Chapter 3. Theoretical Rate Improvements over MPPM 34

Note that the above definition tells us that if Uf (M̄(n, k)) + Ue(M̄(n, k)) < Zmax, the

zero runlength is not determined by the concatenation of codewords, but it is instead

determined by the longest zero runlength of the codewords.

With the above setup, we shall compare the achievable regions for 3 systems as

a function of zero runlength constraint for a fixed duty cycle. First, we consider our

standard MPPM M(n, k), governed by the parameter Z. Since such a system is not

practical, we shall give it the name “naive” MPPM. The second system is the above

choice of M̄(n, k) that minimizes the zero runlength with its associated parameter Z̄, we

shall call this type of system practical MPPM. Lastly, we choose a large n (≈ 200) and

the corresponding k (given by the fixed duty cycle) and calculate the rate for S(n, k,Z).

This is denoted as “Zero Runlength” on the figures. Note that as the zero runlength

grows sufficiently large, the asymptotic rate for S(n, k,Z) approaches H(D) where H

is the bin ary entropy function and D is our duty cycle. This shows that n ≈ 200 is

sufficiently large in giving approximately the asymptotic achievable rate for given Z and

D parameters.

The following (Figures 3.5 to 3.7) are a few of the results with duty cycles of prac-

tical interest. The points on each graph where z and R values are explicitly shown are

chosen to illustrate the significant difference in achievable rates in each of the systems for

comparable zero runlengths. We can easily see that the performance of practical MPPM

system achieves a much lower rate than the asymptotic rate.

With this set of results, it is natural to ask if we can achieve better rates using other

coding schemes. Towards this end, we shall consider a constrained coding approach as

described in the following chapter.

Chapter 3. Theoretical Rate Improvements over MPPM 35

0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

z: 12
R: 0.6009

Number of allowable consecutive zeros

R
at

e

25% Duty Cycle

z: 14
R: 0.787

z: 14
R: 0.5833

Zero Runlength
Practical MPPM
"Naive" MPPM

Figure 3.5: Rate as a function of zero runlength constraint for 25% duty cycle

Chapter 3. Theoretical Rate Improvements over MPPM 36

0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z: 21
R: 0.75

Number of allowable consecutive zeros

R
at

e

30% Duty Cycle

z: 14
R: 0.6907

z: 14
R: 0.8594

Zero Runlength
Practical MPPM
"Naive" MPPM

Figure 3.6: Rate as a function of zero runlength constraint for 30% duty cycle

Chapter 3. Theoretical Rate Improvements over MPPM 37

0 10 20 30 40 50 60 70 80
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

z: 12
R: 0.7714

Number of allowable consecutive zeros

R
at

e

40 % Duty Cycle

z: 13
R: 0.8

z: 13
R: 0.95

Zero Runlength
Practical MPPM
"Naive" MPPM

Figure 3.7: Rate as a function of zero runlength constraint for 40% duty cycle

Chapter 4

Constrained Coding Approach

In this chapter, we introduce a constrained coding method to satisfy both the duty cycle

and zero runlength constraints.

4.1 Runlength-Limited Sequences

Runlength-limited (RLL) sequences have been widely studied for many years. They are

by far the most frequently used coding schemes in digital recording. An in depth analysis

on this subject is given in [17]. For our purpose, we only require the basics.

RLL sequences are binary sequences that are completely characterized by two param-

eters d and k. The d constraint forces two 1s to be separated by at least d consecutive

zeros, while the k constraint allows any run of consecutive 0s to have length at most

k. Thus, an RLL sequence is normally denoted as a (d, k) sequence. As an example, a

(1,∞) sequence is a sequence without two consecutive ones. Similarly, a (0, 1) sequence

is a sequence without two consecutive zeros.

It is easy to see how RLL sequences are of interest as an alternative to MPPM. If we

are interested in a particular zero runlength constraint Z on our system, we can simply

use the corresponding set of (0,Z) RLL sequences. The only difficulty will be trying to

satisfy the given duty cycle constraint. Towards this end, we propose a greedy power

38

Chapter 4. Constrained Coding Approach 39

graph approach based on constraint graphs.

4.2 Finite State Encoders

RLL sequences and other constrained sequences can be analyzed using a symbolic dy-

namics approach. Symbolic dynamics is a branch of mathematics that studies dynami-

cal systems of discrete spaces. The tools of symbolic dynamics provides us with a way

to build finite state encoders, which shall prove to be particularly useful for our coding

problem. In this section, we shall give a brief introduction to finite state encoders and

outline some of their key properties that we will use. A more detailed mathematical

treatment is given in Appendix A. For a thorough analysis, readers are encouraged to

consult [18].

4.2.1 Constraint Graphs

Many constrained codes, and in particular RLL sequences, can be represented by a

constraint graph. In loose terms, a constraint graph is a graph with an output edge

labeling that forbids certain output sequences from occurring. Figure 4.1 is an example of

a constraint graph that represents the set of (1,∞) RLL sequences. The circles represent

1 2

0

0

1

Figure 4.1: Constraint graph representation of (1,∞) runlength limited sequence

vertices with a set of vertex labels. We can think of the vertices as states of a finite state

machine. The labeling of the edges gives us a set of outputs of our finite state machine.

Chapter 4. Constrained Coding Approach 40

In Figure 4.1, we can see that the only edge that outputs a 1 is the edge transition from

state (vertex) 2 to state 1. When we are in state 1, we can only go to state 2 with an edge

label of 0. Thus, it is easy to see that an output of two consecutive 1s can never occur.

The self-loop on state 2 allows us to output arbitrarily long sequences of 0s. Hence, we

have verified that the above constraint graph indeed represents the set of (1,∞) RLL

sequences.

4.2.2 Encoders from Constraint Graphs

In the last example, we called the labeling of our edges outputs because they represent the

set of all possible sequences that occur as a result of traversing the edges of our constraint

graph. We can view these outputs as the output of an encoder. As an example, consider

state 2 in Figure 4.1. There are two outgoing edges from state 2, thus each time at state

2, we are given a choice of which edge to traverse. A set of choices can be defined by a set

of inputs for our constraint graph. At each state, an encoding is an one-to-one mapping

from inputs to outputs.

To illustrate this notion, consider Figure 4.2 as an example. At each state, we have

two possible outgoing edges. The choice of an edge is determined by a binary input of

either a 0 or 1. Each choice of an input uniquely determines which edge is taken, and

hence also determines the output. For example, at state 1, an input of 0 determines an

output of 00. Thus, at state 0, the input 0 is encoded into the output 00. A constraint

graph where every edge is specified with an input and an output is called an encoder

graph. The resulting code is referred to as a finite state code.

Note that in Figure 4.2 we have an encoding from 1-bit input to a 2-bit output. This

gives us a code rate of 1/2. In general, we are interested in rational code rates of r = p/q

with p, q ∈ Z+. Of course, there are limitations on what rates we can achieve for a given

constraint graph. For example, no matter what the underlying graph is, we can never

achieve a rate greater than 1. To fully capture the achievable rates of a constraint graph,

Chapter 4. Constrained Coding Approach 41

we shall develop the following notion of entropy.

1

4 3

2

0/00

1/11

0/01

1/10 1/01
0/11

0/10

1/11

Figure 4.2: A rate 1/2 finite state code

4.2.3 Entropy of Constraint Graphs

For a given constraint graph G, the maximal code rate it can achieve is governed by its

entropy. Entropy can be easily computed based on Perron-Frobenius theory (implicitly

we are assuming that our underlying graph is irreducible). Namely, given the adjacency

matrix A of G, the entropy is given by:

h(G) = log λA (4.1)

where λA is the largest eigenvalue of A. With this and as a consequence of the Finite-

State Coding Theorem from [18], we can construct a rate p/q code from G as long as

h(G) ≥ p/q.

4.2.4 p:q Encoders and Power Graphs

A natural way to construct rate p/q finite state code is to consider a mapping from p

input bits to q output bits. This mapping can be easily done if each of the vertices in our

Chapter 4. Constrained Coding Approach 42

constraint graph has at least 2p outgoing edges. However, using the (1,∞) RLL sequence

in Figure 4.1 as example, we see that this condition cannot even be satisfied for p = 1.

One way to remedy this problem is by taking power graphs. Again using the (1,∞)

example, we see that it has an adjacency matrix

A((1,∞)) =




0 1

1 1


 .

Taking the second power graph, we get (see Figure 4.3):

A((1,∞))2 =




1 1

1 2


 .

1 2

00

10

01

01

00

Figure 4.3: Second power graph of (1,∞) runlength limited sequence

We see that the second power graph has at least 21 outgoing edges at each vertex. This

will allow us to build 1/q codes. Note that any power graph satisfy the same constraints

(on the output sequence) as the original constraint graph. Thus taking power graphs

is an useful tool for constructing finite state codes. More generally, we can take power

graphs and use an algorithm called the State Splitting Algorithm (outlined in [18]) to

construct finite state codes. For our purposes, we shall see that taking power graphs

alone is sufficient to achieve a high rate.

Chapter 4. Constrained Coding Approach 43

4.3 (0, k) Sequences and Power Graphs

With a general notion of capacity for constraint graphs, we shall now shift our attention

back to RLL sequences. Specifically, we will now focus on (0, k) sequences. As previously

mentioned, (0, k) sequences are particularly interesting to us as the k constraint exactly

gives us a zero runlength of k.

4.3.1 (0, k) Capacity

It is easy to analyze the capacity of general (d, k) sequences. One way is through their

constraint graph representations. As shown in [17], the characteristic equations (of the

adjacency matrices) of (d, k) sequences have the following general form:

zk+2 − zk+1 − zk−d+1 + 1 = 0. (4.2)

Putting d = 0, we get

zk+2 − 2zk+1 + 1 = 0. (4.3)

With this, we shall now list the capacity of (0, k) sequences for various k parameters in

Table 4.1.

4.3.2 Power Graphs of (0, k) Sequences

As 4.1 shows, the (0, k) sequences have very high capacity for k > 2. This allows us

a great deal of flexibility in designing p/q finite state codes. As mentioned earlier, a

standard way of designing p/q finite state codes is through taking power graphs of the

underlying constraint graph. In this section, we shall prove a theorem that demonstrates

a useful property of the power graphs of (0, k) sequences. In the following section, we

shall exploit this property in our code design. Throughout this section, we shall assume

the following set of definitions:

Chapter 4. Constrained Coding Approach 44

Table 4.1: Capacity of (0, k) Sequences for Various k Values

k Capacity

1 0.6942

2 0.8791

3 0.9468

4 0.9752

5 0.9881

6 0.9942

7 0.9971

8 0.9986

9 0.9993

10 0.9996

∞ 1.000

Chapter 4. Constrained Coding Approach 45

Definition 4.3.1 Let Gk be the constraint graph representation of the set of (0, k) se-

quences. Let A(Gk) be its adjacency matrix and A(Gk)
n be the adjacency matrix of the

nth power graph. Let Rn
i be the ith row in A(Gk)

n with Rn
i (j) denoting its jth element

and |Rn
i | the associated row sum (sum over all Rn

i (j)). Similarly, let Cn
i be the ith column

in A(Gk)
n with Cn

i (j) denoting its jth element and |Cn
i | the associated column sum (sum

over all Cn
i (j)).

We shall prove the following main theorem of this section.

Theorem 4.3.2 Given a Gk, for 1 ≤ j ≤ k + 1, 1 ≤ i ≤ k + 1, we have |Rj
i | ≥ 2j−1,

with equality exactly when i = k + 1 (i.e, on the last row).

Before proving the theorem, we first observe that A(Gk) is a (k + 1) × (k + 1) matrix

with entries Aij having the following form:

Aij =





1 if j = 1, or j = i + 1 and i ≤ k

0 otherwise
(4.4)

From this, or from the constraint graph, it is easy to first prove the following lemma.

Lemma 4.3.3 For all n > 0, we have |Rn
i | > |Rn

k+1| for 1 ≤ i ≤ k.

Proof : Looking at the adjacency matrix A, we have |Ri| > |Rk+1| for 1 ≤ i ≤ k.

Furthermore, Rk+1 has only one non-zero element, namely the first element Rk+1(1) = 1.

Now for 1 ≤ i ≤ k, Ri(1) = 1 and Ri(j) = 1 for some 1 < j ≤ k +1. This means that for

all 1 ≤ i ≤ k, Ri(j) ≥ Rk+1(j) for all 1 < j ≤ k + 1; and for each i, 1 ≤ i ≤ k there exist

exactly one j, 1 < j ≤ k + 1 such that Ri(j) > Rk+1(j). In words, all entries of any row

Ri is bigger or equal to entries of Rk+1, with exactly one element strictly greater. Now,

observe that A is positive definite with a column (C1) with strictly positive entries. This

means that for 1 ≤ i ≤ k, RiC1 > Rk+1C1 and RiCj ≥ Rk+1Cj for 1 < j ≤ k + 1. This

shows that for 1 ≤ i ≤ k, |R2
i | > |R2

k+1|. The rest follows by induction. ¤

Chapter 4. Constrained Coding Approach 46

Next, we observe that Rn
k+1 = Rn−1

1 . This is by the fact that applying Rk+1 to An−1

simply copies the values of the first row of An−1 (recall that Rk+1 has Rk+1(1) = 1 and

the rest of the entries being 0). Thus, we should focus our attention to the evolution of

Rn
1 (as we increase n). Note that since R1(1) = 1, R1(2) = 1 and R1(j) = 0 for j ≥ 2,

we have Rn
1 = Rn−1

1 + Rn−1
2 . I.e., applying R1 to An−1 gives us the sum of the values of

the first two rows of An−1. Now, the key observation here is that the first two rows of

An follow a very neat pattern for n ≤ k + 1. As an example, we shall illustrate this fact

by looking at the adjacency matrix of G4. We have the following:

A(G4) =




1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0




A(G4)
2 =




2 1 1 0 0

2 1 0 1 0

2 1 0 0 1

2 1 0 0 0

1 1 0 0 0




A(G4)
3 =




4 2 1 1 0

4 2 1 0 1

4 2 1 0 0

3 2 1 0 0

2 1 1 0 0




Chapter 4. Constrained Coding Approach 47

A(G4)
4 =




8 4 2 1 1

8 4 2 1 0

7 4 2 1 0

6 3 2 1 0

4 2 1 1 0




A(G5)
5 =




16 8 4 2 1

15 8 4 2 1

14 7 4 2 1

12 6 3 2 1

8 4 2 1 1




Focusing on the first two rows, we see that for n < k + 1, Rn
1 (j) = Rn

2 (j) for 1 ≤ j ≤ n.

Furthermore, for n < k, we have Rn
1 (n + 1) = 1, Rn

2 (n + 1) = 0, Rn
1 (n + 2) = 0 and

Rn
2 (n + 1) = 1. In fact, this observation is true for any Gk. We shall prove this as the

following lemma.

Lemma 4.3.4 For any A(Gk), for n < k + 1, Rn
1 (j) = Rn

2 (j) for 1 ≤ j ≤ n. For n < k,

we have Rn
1 (n + 1) = 1, Rn

2 (n + 1) = 0, Rn
1 (n + 2) = 0 and Rn

2 (n + 1) = 1.

Proof : Consider the constraint graph Gk. Elements of A(Gk)
n correspond to paths of

length n in Gk. Now for n < k, consider any state j with j ≤ n. Any path from state

1 to state j of length n must pass through state 1 at least once (excluding the initial

state from state 1). This is because j ≤ n and the only loop in the graph is through

state 1. Note that, as we can see from the constraint graph, it is not possible to have

path of length n between two states that differ in state index less than n without a loop.

Similarly, any path from state 2 to state j has the same property.

With this observation, we see that we can form a bijective correspondence between

state transitions from state 1 to j and state 2 to j by simply shifting the index of all state

transitions by 1 except state transitions that ends with state 1 (and of course the last

Chapter 4. Constrained Coding Approach 48

state transition to state j). For example, consider A(G4)
3 from above, the two paths of

length 3 from state 1 to state 2 are 1 → 2, 2 → 1, 1 → 2 and 1 → 1, 1 → 1, 1 → 2. The

two corresponding paths from state 2 to 2 are 2 → 3, 3 → 1, 1 → 2 and 2 → 1, 1 → 1,

1 → 2. By our restriction on the state index of j, it is easy to see that this mapping is

indeed a bijection (our state index can never be greater than k).

Lastly, it is easy to see that there is exactly one path of length n from state 1 to

state n + 1 and one path of length n from state 2 to state n + 2. With this, the proof is

completed. ¤.

With the above lemmas, we are now in the position to prove Theorem 4.3.2.

Proof of Theorem 4.3.2: We shall proceed by induction. Clearly, R1(1) = 1 and

R1(2) = 1 with all other entries zero. Now suppose for some n ≤ k we have Rn
1 (j) = 2n−j

for 1 ≤ j ≤ n. By Lemma 4.3.4 we know that Rn
2 (j) = 2n−j for 1 ≤ j ≤ n as well.

Furthermore, we know that Rn
1 (n+1) = 1 and Rn

2 (n+2) = 1, with all other entries zero.

Since Rn+1
1 is the sum of these two rows, we have Rn+1

1 (j) = 2n−j+1 for 1 ≤ j ≤ n + 1

and Rn+1
1 (n + 2) = 1. This gives us |Rn+1

1 | = 2n+1. Since we have Rn+2
k+1 = Rn+1

1 , we have

|Rn+2
k+1 | = 2n+1. By our restriction on n, this works exactly up to n + 2 = k + 1 (recall

n < k). The proof is complete with Lemma 4.3.4. ¤

4.4 Minimal Duty Cycle Design

At this point, as a guiding design example for the rest of our discussion, we will start

with (0, 5) RLL sequence and construct a rate 4/5 code from it. First observe that the

(0, 5) RLL sequence can be represented by the following constraint graph G (Fig. 4.4).

Chapter 4. Constrained Coding Approach 49

1 2 3 4 5 6

0 0 000

1

1 1 1 1 1

Figure 4.4: Constrained graph representation of (0,5) runlength limited sequence

Associated with this constrained graph is its adjacency matrix given by:

A(G) =




1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0




4.4.1 Design Algorithm via Power Graph

Now, we shall outline our design algorithm by taking power graphs.

1. Given a constraint graph Gk of set of (0, k) sequences , find its adjacency matrix

A(Gk)

2. Compute h(A(Gk).

3. Choose integers p and q such that p < q, q ≤ k + 1 and h(A(Gk)) ≥ p/q

4. Construct Gq
k, observing that h(A(Gq

k)) ≥ log 2p.

5. Observe that by Theorem 4.3.2 each vertex of Gq
k has at least 2p outgoing edges.

6. Prune away extra edges from Gq
k if necessary to obtain Ĝk

q
, which has exactly 2p

outgoing edges at each vertex.

Chapter 4. Constrained Coding Approach 50

Following the above algorithm, in order to construct a 4/5 code from a constraint

graph, we would need to construct G5. Namely, this is the graph of all paths of length 5

in G and thus has the following adjacency matrix:

A(G5) = A(G)5 =




16 8 4 2 1 1

16 8 4 2 1 0

15 8 4 2 1 0

14 7 4 2 1 0

12 6 3 2 1 0

8 4 2 1 1 0




Looking at the sum of each row, we see that every row sums up to at least 24 = 16. Thus,

each vertex in G5 has at least 16 outgoing edges. Also observe that by our construction,

we have h(A(G5)) = 4.9405 ≥ log 2p = 4.

Now each of the edges in G5 correspond to a length 5 path in G. As we labeled edges

in G by 1-bit output labels, we can label edges in G5 by its corresponding 5-bit output

label. Note that we only require 16 outgoing edges at each vertex. So if a vertex has

more than 16 outgoing edges, we would like to keep the 16 edges that minimizes the

overall duty cycle of code. To achieve this, we shall use the following greedy approach:

1. Take the 16 edges with the least number of 1s (least weight) in their output labels.

2. If there is a tie between two edges, we always pick the edge that goes to the lower

vertex (state) index.

As an example, at the outgoing edge of vertex 3, if we have a choice between picking

10011 which goes to vertex 1 and 10110 which goes to vertex 2 (both have weight 3), we

will pick 10011 because vertex 1 has a lower vertex index. The rationale behind this is

that in general the higher the vertex index, the higher the overall weight of the output

edges (by that we mean the sum of all weights) at the vertex. Thus, we would like to go

back to the vertices with lower indices as much as possible. Clearly, this greedy approach

Chapter 4. Constrained Coding Approach 51

tries to minimize the duty cycle of the code. However, we currently have no proof that

the resulting code does indeed have a minimal duty cycle.

Following the above greedy algorithm, we can list outputs for each state in Table 4.2

and 4.3. The tables are listed in term of vertices similar to the structure of an adjacency

matrix. The initial vertex is listed in the first column, and the next 6 columns list the

output edge labeling from the initial vertex to given state in the particular column. For

example, from state (vertex) 1, there are 2 edges going into state 4, and they are 01000

and 11000. Listing edges in this manner, we can easily see that most of the edges go into

state 1.

Given the list in Table 4.2 and 4.3, we can construct a finite-state code by choosing

a set of input labels. Finally, we give the constraint graph representation of this new

finite-state code C. For simplicity, we shall represent it by its adjacency matrix:

A(C) =




5 4 3 2 1 1

6 4 3 2 1 0

6 4 3 2 1 0

7 3 3 2 1 0

9 2 2 2 1 0

8 4 2 1 1 0




4.4.2 Duty Cycle Analysis

As our key goal is to analyze the asymptotic duty cycle of this code, we need knowledge

of the weight (number of ones) associated with each state. Such a list is given in Table

4.4.

What we are really interested in is actually the average weight of the code. To

compute this, we note that the adjacency matrix tells us the probability of each state

transition. Namely, the probability of a state transition from state i to state j is given

by 1
16

A(C)i,j. Thus, we can model the state transitions as a Markov chain. From this

Chapter 4. Constrained Coding Approach 52

Table 4.2: State Table Part 1

States 1 2 3 4 5 6

From 1 00001 00010 00100 01000 10000 00000

00011 00110 01100 11000

00101 01010 10100

01001 10010

10001

From 2 00001 00010 00100 01000 10000

00011 00110 01100 11000

00101 01010 10100

01001 10010

10001

00111

From 3 00011 00010 00100 01000 10000

00101 00110 01100 11000

01001 01010 10100

10001 10010

00111

01011

Chapter 4. Constrained Coding Approach 53

Table 4.3: State Table Part 2

States 1 2 3 4 5 6

From 4 00101 00110 00100 01000 10000

01001 01010 01100 11000

10001 10010 10100

00111

01011

10011

10101

From 5 01001 01010 01100 01000 10000

10001 10010 10100 11000

01011

10011

10101

11001

01111

10111

11011

From 6 10001 10010 10100 11000 10000

10011 10110 11100

10101 11010

11001 11110

10111

11011

11101

11111

Chapter 4. Constrained Coding Approach 54

Table 4.4: Table of output weights

States Output Weight

1 25

2 28

3 30

4 33

5 40

6 48

the steady state distribution P∞ is given by the equation:

P∞ =
1

16
A(C)P∞ (4.5)

In our particular case, we have P∞ = [0.3740, 0.2345, 0.1821, 0.1235, 00625, 0.0234]. Given

our weight distribution W = [25, 28, 30, 33, 40, 48], we have P∞W T ≈ 29.0775. So the

average weight is 29.0775, this corresponds to an asymptotic duty cycle of 29.0775/(16×
5) ≈ 36.347%.

Thus, with our new design, we are able to achieve a rate of 4/5 with duty cycle 36.347

and zero runlength constraint of 5. In the following section, we shall see how this code

compares to MPPM systems.

4.5 Achievable Rates and MPPM Comparison

Following the code construction we described in the previous section, we constructed 5

different constrained codes with different duty cycles and zero runlengths. As shown in

Figures 4.5 to 4.7, they all achieve superior rate against comparable MPPM systems.

Note that their duty cycle is not exactly same as the fixed duty cycle on the figures. In

all cases, our constrained codes actually have a slightly lower duty cycle. Taking the

Chapter 4. Constrained Coding Approach 55

best constrained code in each of the figures, Table 4.5 shows the exact properties of our

codes.

0 10 20 30 40 50 60 70 80
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of allowable consecutive zeros

R
at

e
25% Duty Cycle

Zero Runlength
Practical MPPM
Constrained Code 1

Figure 4.5: Comparison of constrained codes with MPPM systems for 25% duty cycle

From Table 4.5, we can see that our 4/5 code provides the best gain over MPPM.

Both M̄(5, 2) and M̄(10, 4) MPPM systems achieve only a rate of 0.6. M̄(5, 2) has a zero

runlength of 4 while M̄(10, 4) has a zero runlength of 10. (Recall we started with a (0, 5)

RLL sequence, hence have a zero runlength of 5). To further put our gain in perspective,

even a M̄(40, 10) system only achieves a rate of 0.725 and it requires a zero runlength of

54 and has 229 = 536870912 codewords!

In the next chapter, we shall use our rate 4/5 constrained code in serial concatenation

with an outer LDPC code. Using iterative decoding, we shall show that our concatenated

Chapter 4. Constrained Coding Approach 56

0 10 20 30 40 50 60 70 80
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of allowable consecutive zeros

R
at

e

30% Duty Cycle

Zero Runlength
Practical MPPM
Constrained Code 2
Constrained Code 3

Figure 4.6: Comparison of constrained codes with MPPM systems for 30% duty cycle

system can achieve much better bit-error-rate (BER) for the same SNR as compared to

MPPM systems.

Chapter 4. Constrained Coding Approach 57

0 10 20 30 40 50 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of allowable consecutive zeros

R
at

e
40% Duty Cycle

Zero Runlength
Practical MPPM
Constrained Code 4
Constrained Code 5

Figure 4.7: Comparison of constrained codes with MPPM systems for 40% duty cycle

Table 4.5: Table of Constrained Code

Code Asymptotic Duty Cycle p:q Rate

Code 1 22.2% 5 : 9 0.556

Code 2 28.3% 2 : 3 0.667

Code 5 36.47% 4 : 5 0.8

Chapter 5

Concatenation with Outer Code

As mentioned in the previous section, one of the main advantages of having a constrained

code is to allow for soft decoding. In this chapter, we create a serially concatenated

code with our constrained system as an inner code. We shall first describe our iterative

decoding system, followed by explaining a methodology of designing outer codes using

Extrinsic Information Transfer (EXIT) charts [19, 20]. Lastly, we shall compare the

performance of our iterative decoding system against comparable MPPM systems.

5.1 Serially Concatenated System

Since the discovery of turbo codes [22], the concept of iterative decoding has been widely

used due to its excellent performance. In our work, we propose a serially concatenated

system with our constrained code as an inner code and a low density parity check (LDPC)

code as the outer code. Figure 5.1 provides an overview of our communication system.

Iterative decoding is performed between the inner trellis decoder and the outer LDPC

decoder. The choice of LDPC codes and the exact message passing involved in the

iterative decoding will be explained in the following sections.

58

Chapter 5. Concatenation with Outer Code 59

Trellis

Encoder

LDPC

Encoder

AWGN Channel

Trellis

(BCJR)

Decoder

LDPC

Sum-Product

Decoder

Encoder Block

Iterative Decoder Block

User Message

Decoded Message

Figure 5.1: Full communication model with constrained (trellis) inner code and LDPC

outer code

5.2 LDPC code and EXIT Chart Analysis

In this section, we shall give a brief introduction to LDPC codes and EXIT charts. We

shall use EXIT charts to design LDPC outer codes for our serially concatenated system.

Chapter 5. Concatenation with Outer Code 60

5.2.1 LDPC Codes

LDPC codes were first invented by Gallager [26]. As its name implies, an LDPC code

has a sparse parity-check matrix. More precisely, it has a parity-check matrix of size

r×n and code rate of R = 1− r
n
. As n →∞, the fraction of zero elements goes to one.

v
1

v
2

v
3

v
4

v
5

v
6

c
3

c
2

c
1

Figure 5.2: Tanner Graph Representation of (6,3) Regular LDPC Code

It is convenient to represent the parity-check matrix H as a bipartite graph with n

left variable nodes and r right check nodes, and an edge joining a left node and a right

node if H has a non-zero element in the corresponding position. This representation is

called a Tanner graph [27], which is a special case of a factor graph [28].

Associated with an LDPC code are two sets of parameters called variable degrees

and check degrees. For a given variable node, its variable degree is the number of edges

connected to it. Similarly, for a given check node, its check degree is the number of edges

it is connected to. If every variable node has variable degree j and every check node has

check degree k, the LDPC code is called a (j, k) regular LDPC code.

With some analysis [29, 31], one can show that increasing the variable degree j im-

Chapter 5. Concatenation with Outer Code 61

proves the performance of the LDPC code, and decreasing the check degree also improves

the performance. However, it is clear that for a regular LDPC code, it is impossible to

satisfy both conditions simultaneously. This calls for the implementation of irregular

LDPC codes.

Irregular LDPC codes were first studied by Luby et al. [30]. As one might guess,

instead of having one fixed variable degree and check degree, irregular LDPC codes

have a distribution of variable degrees and check degrees. The only requirement is that

one maintains an average variable degree d̄v and an average check degree d̄c such that

n · d̄v = r · d̄c. We shall see that given an EXIT chart of the inner code, we can use curve

fitting to design the degree distribution of the outer LDPC code.

5.2.2 EXIT Charts

Extrinsic information transfer (EXIT) charts were first introduced by ten Brink [19].

They provide a very intuitive method for designing iterative decoding systems. Concep-

tually, an EXIT chart keeps track of the flow of information in an iterative decoding

system, much like density evolution as proposed by Richardson and Urbanke [23, 24].

The advantage of EXIT charts is that, while they are not exact, they allow information

to be characterized in terms of mutual information, which can be efficiently computed.

Following ten Brink’s treatment, we focus our attention on a section of an iterative

decoding system. Figure 5.3 shows a decoder within an iterative decoding system. Here

Z represents the channel observation, D is the decoded output, A is the a priori infor-

mation from a previous decoder in the system and E is the extrinsic information to be

passed to the next decoder in the system. From the perspective of our particular serially

concatenated system in Figure 5.1, focusing on the trellis decoder, A corresponds to the

message passed back to the trellis from the outer LDPC decoder while E corresponds be

the message that the trellis decoder pass to the outer LDPC decoder.

The key observation by ten Brink is that the a priori input A can be modeled by

Chapter 5. Concatenation with Outer Code 62

Z A

ED

From Channel
From Previous

Decoder

To Next

Decoder

Decoded Bits

Trellis (BCJR)

Decoder

Figure 5.3: A portion of an iterative decoding system that takes in a priori information

and passes out extrinsic (a posterior) information.

applying an independent Gaussian random variable nA with zero mean and variance σ2
A

in conjunction with the known transmitted bits x, given by:

A = µAx + nA (5.1)

With this, we can compute the mutual information IA = I(X; A) given by:

IA =
1

2

∑
x=−1,1

∫ +∞

−∞
log

2 · pA(ξ|X = x)

pA(ξ|X = −1) + pA(ξ|X = +1)
dξ (5.2)

Now since pA(ξ|X = x) is a function of σA, we can characterize IA as a function of σA.

Namely, define:

J(σ) = IA(σA = σ) (5.3)

σA = J−1(IA) (5.4)

Note that this J function cannot be expressed in closed form.

Furthermore, the mutual information of the extrinsic output IE = I(X; E) is given

Chapter 5. Concatenation with Outer Code 63

by:

IE =
1

2

∑
x=−1,1

∫ +∞

−∞
log

2 · pE(ξ|X = x)

pE(ξ|X = −1) + pE(ξ|X = +1)
dξ (5.5)

With the above analysis, we can see that via σA we can write IE as a function of IA and

Eb/N0. If we fix Eb/N0, we can write IE = T (IA), a function of IA alone.

On a trellis type decoder, we can use the BCJR algorithm [21] to do iterative decoding

(details in the next section). Using the same construct, we can feed in IA as our a

priori probability values to the BCJR algorithm and extract IE through the a posterior

probability values from the BCJR. This will give us numeric values of IE in terms of IA.

Using our constrained code as the inner code, Figure 5.4 is an example of EXIT charts

for Es/N0 = 3dB.

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

I
A

I E

EXIT Chart at 3dB

Figure 5.4: EXIT Chart for Es/N0 = 3dB

Given the EXIT chart of the inner code, we can design outer LDPC codes by a method

Chapter 5. Concatenation with Outer Code 64

illustrated by ten Brink [20]. The essence of the method is to find the appropriate LDPC

parameters that matches the EXIT chart curve of the inner code. This turns out to be

an optimization problem that can be solved via linear programming [31]. In brief, it

suffices to know that given an EXIT chart, we can find the optimal set of LDPC degree

distributions. We leave the detailed discussion to Appendix B.

5.3 Message Passing Algorithm

Having designed trellis code and outer LDPC code, we shall now turn our attention to

the iterative decoder and briefly explain how iterative decoding is done. Recall that we

have the following overall decoder block diagram shown in Figure 5.5.

Trellis

(BCJR)

Decoder

LDPC

Sum-Product

Decoder

Iterative Decoder Block

Decoded

Message
Channel

Observation

LLR Values

Probability Values

Figure 5.5: Iterative decoding block of our communications system.

We shall first focus on the trellis decoder. Following the the standard convention of

[28], the trellis decoder is best represented as a factor graph as shown in Figure 5.6.

The channel observations are in the form of f(yi|xi), note that yi and xi can be a vector

of many bits (5 in our particular model). Symbols xi, ui, si denote the input variables,

output variables, and state variables respectively. The functions Ti are indicator functions

of the form Ti(si−1, xi, ui, si). Namely, Ti is 1 if and only if si−1, xi, ui, si correspond to a

valid state transition.

Chapter 5. Concatenation with Outer Code 65

S
1

S
0 S

2 S
3

S
4

u
1 u

2
u

3

x
1

x
2 x

3 x
4

T
1 T

2
T

3
T

4

f(y x)
11

| f(y |x)
2 2

f(y |x)
3 3

f(y |x)
4 4

Figure 5.6: Factor graph representation of a trellis

Si
Si-1

ui

xi

α(S)i-1 α(Si)

β(S)i-1
β(S)i-1

δ(u)i

γ(x)i

µ(xi)

Figure 5.7: Detailed view of a trellis section

With this model, we can focus our attention at a particular trellis section and analyze

the message passing around that particular node. Figure 5.7 is a detailed view of a

particular trellis section and the corresponding messages. γ(xi) is the message from the

channel observation, based on f(yi|xi). α(xi) and β(xi) are messages from the state

variables (left and right respectively). δ(ui) is the message we receive from the outer

LDPC code, while µ(ui) is the message we wish to pass “upwards” to the LDPC decoder.

Note in the case of µ(ui), we will convert this to a log likelihood ratio (LLR) and pass

it to the LDPC decoder. The iterative message passing on the trellis section can be

Chapter 5. Concatenation with Outer Code 66

summarized with the following summations. Note that ∼ xi refers to summation over all

variables except xi, a standard notation in [28].

α(si) =
∑
∼si

Ti(si−1, ui, xi, si)α(si−1)γ(xi)δ(ui) (5.6)

β(si−1) =
∑
∼si−1

Ti(si−1, ui, xi, si)β(si)γ(xi)δ(ui) (5.7)

µ(si) =
∑
∼si

Ti(si−1, ui, xi, si)α(si−1)β(si)γ(xi) (5.8)

In our particular trellis, we have the setup shown in Figure 5.8. The e(k) in the Figure

5.8 denote the edges involved in the state transition from one state to another. Multiple

edges are represented by 1 edge on the graph with an associated list of edge indices. Also

associated with each edge are a γ and δ value. We shall use γ(k) and δ(k) to denote the

values corresponding to edge k. The transitions into state 2 are highlighted. Let si(j)

denote the j state at stage si. As an example, the summation of α(si) at state 2 can be

computed as follows:

α(si(2)) =
∑

k→si(2)

α(si−1)γ(k)δ(k) (5.9)

=
6∑

j=1

∑

k→si(2)

α(si−1(j))γ(k)δ(k) (5.10)

=
6∑

j=1

∑

k∈{5−9,23−26,39−42,56−58,74−75,89−92}
α(si−1(j))γ(k)δ(k), (5.11)

where the notation k → si(2) denotes the set of edges that go into si(2).

Now, passing the message µ up to the LDPC decoder, we need to specify the message

passing from a variable node to a check node and vice versa (see Figure 5.9 and 5.10).

Towards this end, we shall refer to the treatment presented in [24, 31]. Let the set of

messages towards a variable node v with degree dv be denoted by the set {mi}. Then

the outgoing message via edge i is summation of all incoming values from all other edges

plus the µ value from our inner code. Namely:

messagev→c =
dv∑

j=1,j 6=i

log
p(mj|v = +1)

p(mj|v = −1)
+ µv (5.12)

Chapter 5. Concatenation with Outer Code 67

1

2

3

4

5

6

1

2

3

4

5

6

e(1) - e(5)

e(5) - e(9)
e(10) - e(12)

e(13) - e(14)
e(15)

e(16)

e(17
) - e(22

)

e(23) - e(26)

e(27) - e(29)e(30) - e(31)

e(32)

e(3
3)

 -
e(3

8)

e(48)

e(43) - e(45)

e(1) - e(5)

e(39
) - e

(42)

e(46) - e(47)

e(64)

e(62) - e(63)

e(5
9) - e(6

1)

e(
56

) -
 e(

58
)

e(
49

)
- e

(5
5)

e(1) - e(5)

e(
65

)
-
e(

73
)

e(
74

)
-
e(
75

)

e(
76

) -
 e(

77
)

e(78
) - e(79

)

e(80)

e(
81

)
-
e(

88
)

e(
89

)
-
e(
92

)

e(
93

)
-
e(
94

)

e(9
5)

e(9
6)

Si-1
Si

Figure 5.8: Detail view of trellis transition with edges going into state 2 highlighted

Chapter 5. Concatenation with Outer Code 68

Note that in LLR domain +1 and −1 corresponds to the binary value 0 and 1 respectively.

µv refers to the µ value that corresponds to our particular variable node v.

v

µ
v message

v->c

m
es

sa
ge c->

v

m
essage

c->v

Figure 5.9: Message passing on a variable node

c

message
c->v

m
es

sa
ge v->

c

m
essage

v->c

Figure 5.10: Message passing on a check node

In the check node to variable node direction, the set of messages towards a check node

of degree dc are the LLR values, denoted by a set {Li}. The outgoing message from the

check node via a particular edge i is given by:

messagec→v = 2 tanh−1
(dc∏

j=1,j 6=i

tanh(
Lj

2
)
)

(5.13)

With the above list of equations, we have completely specified the message passing

in our iterative decoding system.

Chapter 5. Concatenation with Outer Code 69

5.4 Simulation Results

In this section we shall put together all the theory we have described in the above sections

and simulate our entire communication system and evaluate its performance.

5.4.1 Result from EXIT Chart Analysis

From our EXIT chart analysis, we can calculate the SNR required to achieve certain rates

for our outer LDPC code. Since we do not know the overall code rate of the concatenated

system, we shall measure SNR in terms of Es/N0. We recall that our inner code has duty

cycle D = 36.47%. Thus, we shall set Es = 0.3647 and calculate N0 according.

As a first step analysis, we restrict the check degree of our outer LDPC code to be

≤ 20. Figure 5.11 shows that we can achieve rate of 0.8 and 0.9 at SNR of 2.2 dB and

4.1 dB respectively. Setting rates of 0.8 and 0.9 as our target rates for designing outer

codes, we examine the check degrees required to achieve such rates as a function of SNR.

We shall limit ourselves to maximum check degree of 50 as decoding complexity increases

for large check degrees. Figure 5.12 shows that for rate 0.8, the minimal check degree

required is 10 and for check degree upper bounded by 50, we require at least a SNR value

of 1.9 dB. Figure 5.13 shows that for rate 0.9, the minimal check degree required is 20

and for check degree upper bounded by 50, we require at least a SNR value of 3.9 dB.

In Table 5.1 and 5.2, we plot the variable node distributions associated with each of

the check degrees in Figure 5.12 and 5.13. We shall use Vd to denote the variable node

degree, and λVd
to denote the percentage of edges incident to the given Vd.

From Table 5.1 and 5.2, we can see that for large check degrees, a significant portion

of high variable degree nodes are necessary. Thus, in order to arrive at a lower SNR, we

not only need to increase the complexity at the check nodes, we also have to significantly

increase the complexity at the variable nodes. In the other extreme, however, we see that

for low check degrees, we can achieve low variable degree distributions . Specifically, for

Chapter 5. Concatenation with Outer Code 70

Table 5.1: Table of Variable Node Distribution for a Fixed Check Node (Rate =0.8)

Cd Vd λVd

47 2 0.1904

72 0.0251

73 0.7844

33 2 0.2785

57 0.4218

58 0.2997

23 2 0.4080

43 0.5821

44 0.0099

16 2 0.6015

29 0.3985

13 2 0.7557

28 0.2443

10 2 1

Table 5.2: Table of Variable Node Distribution for a Fixed Check Node (Rate =0.9)

Cd Vd λVd

28 2 0.6805

18 0.2781

19 0.0414

22 2 0.9012

19 0.0988

20 2 1

Chapter 5. Concatenation with Outer Code 71

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rate

E
s/

N
o

dB

SNR vs Rate (dc<=20)

Figure 5.11: Required SNR to achieve desired rates for outer LDPC codes

the case of rate 0.8 code, we can use a regular (10, 2) LDPC code with a threshold value

of 2.4 dB. Similarly, for rate 0.9 code, we can use a regular (20, 2) LDPC code with a

threshold value of 4.1 dB. In the former case, we only sacrifice 0.5 dB for a significant

reduction in complexity. And in the latter case, we actually only sacrifice 0.2 dB. With

this trade off between complexity and SNR gain in mind, we will henceforth fix our outer

codes to be the (10, 2) and (20, 2) LDPC code for rates 0.8 and 0.9 respectively.

Lastly, we shall note that in the LDPC literature, a LDPC code with every variable

node having degree 2 is called a cycle code, and has been shown to satisfy many nice

properties [33].

Chapter 5. Concatenation with Outer Code 72

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

15

20

25

30

35

40

45

50

SNR (Es/N
0
) dB

C
he

ck
 D

eg
re

e

Check Degree vs SNR (Rate = 0.8)

Figure 5.12: Check degree versus SNR required to achieve LDPC code rate of 0.8

5.4.2 Simulation of Concatenated Systems

We shall now present the simulation results of our concatenated system. In our simu-

lations, we allow up to 100 iterations of message passing between the inner and outer

decoders. In Figure 5.14 and 5.15, we present the bit-error-rate (BER) curves for rate

0.8 and 0.9 outer LDPC code respectively. In each case, we used outer LDPC codes of

blocklength 104 and 105.

Figure 5.14 and 5.15 shows the performance with LDPC code of length 104 and 105.

In the blocklength of 104 case, for rate 0.8, we can achieve a BER of 10−5 within 0.5 dB of

EXIT chart threshold; and for rate 0.9, we can achieve a BER of 10−5 at 0.4 dB from the

EXIT chart threshold. In the blocklength 105 case, the performance is even better. For

Chapter 5. Concatenation with Outer Code 73

3.85 3.9 3.95 4 4.05 4.1 4.15
18

20

22

24

26

28

30

SNR (E
s
/N

0
) dB

C
he

ck
 D

eg
re

e

Check Degree vs SNR (rate = 0.9)

Figure 5.13: Check degree versus SNR required to achieve LDPC code rate of 0.9

rate 0.8, we can achieve a BER of 10−6 within 0.2dB of the EXIT chart threshold; and

for rate 0.9 case, we can achieve a BER of 10−6 within a mere 0.15 dB of the the EXIT

chart threshold. We shall henceforth use the results for blocklength 105 to compare our

systems with comparable MPPM systems. In concatenation of inner code, the rate 0.8

LDPC gives an overall rate 0.64 concatenated system and the rate 0.9 LDPC gives an

overall rate 0.72 concatenated system.

5.4.3 Estimation of Shannon Limit

While we can approach the threshold predicted by the EXIT chart, it is more valuable

to find out how far we are from the Shannon limit. Specifically, we want to find out the

Chapter 5. Concatenation with Outer Code 74

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (E
s
/N

0
) dB

B
E

R

BER vs SNR (Rate = 0.8)

EXIT Chart Threshold

Blocklength 104

Blocklength 105

Figure 5.14: BER curve for the concatenated system with rate 0.8 outer LDPC code

Shannon limit of sending binary signals over AWGN channel that satisfies both our duty

cycle and zero runlength constraints at our target rates of 0.64 and 0.72. Towards this

end, we try to find the SNR needed to achieve these target rates. This problem proves

to be difficult; and so far we have not been able to find a good way to incorporate both

constraints into one capacity calculation. Thus, in this section we shall only provide a

lower bound on the Shannon limit.

It is easy to calculate the capacity (as a function of SNR) if we ignore the zero

runlength constraint and focus only on the duty cycle. Namely, if we are sending x ∈
{0, 1}, and receive Y = X + Z, where Z is a zero mean Gaussian with variance σ2, then

the mutual information between X and Y is given by:

I(X : Y) =
∑
x=0,1

∫ +∞

−∞
f(y|x)p(x) log

f(y|x)

f(y)
dy (5.14)

Chapter 5. Concatenation with Outer Code 75

4 4.1 4.2 4.3 4.4 4.5 4.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (E
s
/N

0
) dB

B
E

R

BER vs SNR (Rate = 0.9)

EXIT Chart Threshold

Blocklength 104

Blocklength 105

Figure 5.15: BER curve for the Concatenated System with rate 0.9 outer LDPC code

We can express f(y) by the following:

f(y) = p(x = 0)f(y|x = 0) + p(x = 1)f(y|x = 1), (5.15)

and f(y|x) is given by:

f(y|x = a) =
1√
2πσ

e−
(y−a)2

2σ2 . (5.16)

Our duty cycle constraint tells us exactly the distribution p(x). With this, varying the

value of σ, we can find the required σ values that give us capacity of value of 0.64 and

0.72 respectively. Since we ignored the zero runlength constraint, this method gives us

an under-estimate on the SNR needed to achieve the given capacity values.

Using this method, we arrived at Shannon limit values of approximately Es/N0 = 1 dB

for rate 0.64 and Es/N0 = 2.2 dB for rate 0.72. We shall further discuss the implications

of these values in the following section. Lastly, we emphasize that the Shannon limit

Chapter 5. Concatenation with Outer Code 76

values obtained are lower bounds.

5.4.4 MPPM Comparison

In this section, we state our main results. We shall show that our concatenated system

achieves a significant coding gain (in terms of BER vs SNR) as compared to MPPM

systems. Furthermore, our code actually comes relatively close to the Shannon limit.

To make a fair comparison with MPPM, throughout this section we shall measure

SNR in terms of Eb/N0. Figures 5.16 and 5.17 shows the performance of our concatenated

systems against comparable MPPM systems as well as our lower bound Shannon limit

estimate. As shown in Figure 5.16, our rate 0.64 concatenated system performs over 6

dB better than a comparable MPPM system at a BER of 10−5. More importantly, its

performance is within 1.5 dB of the Shannon limit. Similarly, in Figure 5.17, our rate 0.72

concatenated system performs around 5dB better than the comparable MPPM system

at a BER of 10−5 and is within 2 dB of the Shannon limit.

In Table 5.3 and 5.4, we list a few other comparable MPPM systems. From these,

we can verify that our concatenated system achieves similar coding again over all these

systems as well.

Lastly, we shall again emphasis that our Shannon limit estimate is a lower bound,

so we are actually closer to the real Shannon limit value than our graphs indicate. In

addition, if we were to employ more complex LDPC codes (i.e., those with higher check

and variable degrees), we can push our performance even closer to the limit.

Chapter 5. Concatenation with Outer Code 77

1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR(E
b
/N

0
) dB

B
E

R
BER vs SNR (Rate =0.64 Overall System, Blocklength = 105)

EXIT Chart Threshold
Lower Bound on Shannon Limit
Rate 0.64 Concatenated System
(6,3) MPPM

Figure 5.16: Comparison against MPPM system using overall rate 0.64 concatenated

system

Table 5.3: Comparable MPPM systems for overall rate 0.64 concatenated system

M(n, k) |M(n, k)| |M̄(n, k)| C̄(n, k) Z̄ SNR for BER = 10−5

M(5, 2) 10 8 0.6 4 9.3

M(6, 3) 20 16 0.667 4 9.4

M(9, 3) 84 64 0.667 8 9.4

Chapter 5. Concatenation with Outer Code 78

2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR (E
b
/N

0
) dB

B
E

R
BER vs SNR (Rate = 0.72 Overall System, Blocklength 104)

EXIT Chart Threshold
Lower Bound on Shannon Limit
Rate 0.72 Concatenated System
(11,4) MPPM

Figure 5.17: Comparison against MPPM system using overall rate 0.72 concatenated

system

Table 5.4: Comparable MPPM systems for overall rate 0.72 concatenated system

M(n, k) |M(n, k)| |M̄(n, k)| C̄(n, k) Z̄ SNR for BER = 10−5

M(10, 4) 210 128 0.7 7 9.4

M(11, 4) 330 256 0.727 9 9.5

M(13, 5) 1287 1024 0.769 11 9.5

Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we outlined three key areas where significant improvements of current

MPPM coding systems are desired. The three areas are as follows:

1. efficient mapping algorithm;

2. higher rate;

3. suitable for iterative decoding.

In Chapter 2, we provided a more efficient mapping algorithm within the framework

of MPPM. Comparisons showed that our mapping algorithm can provide significant

reductions in the sizes of MPPM lookup tables.

In Chapter 3, we showed through simulation results that significant rate improvement

over MPPM systems are indeed possible (while satisfying the same constraints). This

set of results also provided us with a region in which we can look for higher rate codes.

Chapter 4 highlights our most important contributions to this subject. We took a

constrained coding approach and in particular investigated the prosperities of (0, k) RLL

sequences. By taking power graphs and using a greedy edge pruning algorithm, we were

79

Chapter 6. Conclusion 80

able to construct codes with comparable duty cycle and zero runlength constraints as

MPPM systems while achieving much higher rates. Furthermore, by the constraint graph

structure of our construct, our new constrained codes automatically have an efficient

mapping algorithm and are suitable for iterative decoding.

In Chapter 5, we concatenated an example of our constrained code with an outer

LDPC code and performed iterative decoding. Simulation results showed that we were

able to achieve an enormous gain of 6 dB over comparable MPPM systems for the same

BER. Furthermore, analysis showed that our concatenated system can perform at least

within 1.5 dB of the Shannon limit.

In sum, our new code design was able to achieve all three areas of significant im-

provements over MPPM that were desired. Furthermore, in concatenation with outer

LDPC code, our code demonstrated overwhelmingly better performance than compara-

ble MPPM systems.

6.2 Directions for Future Research

While we have shown codes that provide significant improvements over MPPM systems,

there are still numerous open questions left unanswered.

In Chapter 2, we outlined a particular method that can reduce the size of MPPM

lookup tables. It is natural to ask if there are even better mapping algorithms out

there. The existence and construction (or non-existence) of such mapping algorithms are

interesting theoretical questions to be answered.

In Chapter 3, we used simulations to approximate the capacity rates for fixed duty

cycle and zero runlength constraints. It is useful to ask if we can find close forms of

the capacity rates (as n goes to ∞). Possible approaches could be attempting to derive

close forms based on the generating function we had. This question is only of theoretical

interest and does not affect practical implementations.

Chapter 6. Conclusion 81

In Chapter 4, we provided an algorithm as an attempt to minimize the overall duty

cycle of the code. However, we did not prove that our method actually gives the minimal

construction (in terms of duty cycle). For both theoretical and practical interest, it

is important to either prove that our construction is indeed duty cycle minimizing or

provide an algorithm that gives the actual duty cycle minimizing construction.

Furthermore, there are many aspects of our code constructions in which further anal-

ysis is needed. For example, it would be interesting to analyze the duty cycle tradeoff

of constructing a p/q code versus a kp/kq (for integer k > 1) code. An example of such

would be the trade off between constructing a 2/3 code versus a 4/6 code. Clearly, the

4/6 code is more complex. But at the same time, do we get a reduction in duty cycle?

Analysis of such tradeoffs would result in better code designs.

In Chapter 5, we were only able to provide a lower bound on the Shannon limit

calculation. It is desirable to find an exact formula or at least an accurate approximation

of the actual Shannon limit. Such an analysis will shed light on exactly how powerful our

codes are and how far away we are from the threshold. Furthermore, in our simulations,

we assumed Gaussian noise and coherent detection. It would also be interesting to

consider noncoherent detection.

Lastly, we note that we really only found one special method of constructing codes

that satisfy both duty cycle and zero runlength constraints. It will be interesting to find

entirely different construction methods that could potentially perform better than the

systems we provided.

Appendix A

Finite State Codes

In this appendix, we shall go through some key definitions in the language of symbolic

dynamics and constraint graphs. These definitions will lead us to the Finite-State Coding

Theorem which puts the work in Chapter 4 in solid theoretical framework. Readers who

wish to gain deeper understanding of this theory are encouraged to read [18]. In our

discussion, we shall faithfully follow the conventions used in [18].

A.1 Basis Definitions

Definition A.1.1 Let A be a finite alphabet. The full A-shift is the collection of all

bi-infinite sequences of symbols from A, and is denoted by AZ.

Given an alphabet A, a block over A is a finite sequence of symbols from A. A k-block

is simply a block of length k. For example, let x = (xi)i∈Z, xi ∈ A be a sequence. We

can denote x[i,j] = xixi+1 . . . xj as a block of length j − i + 1.

Let F be a collection of blocks over A. Define XF to be the subset of AZ which do

not contain any block in F . In some sense, we can think of F as a set of forbidden blocks.

This allows us to define the following:

Definition A.1.2 A shift space (or simply shift) is a subset X of AZ such that X = XF

82

Appendix A. Finite State Codes 83

for some collection F of forbidden blocks over A.

To this point, we have talked about shifts over a alphabet A, we can further expand

this notion by looking at alphabets in terms of blocks. Namely, let A[N]
X be the set of all

N -blocks that are allowed in a shift X. We can regard A[N]
X as an alphabet on its own,

and over which we could form the full A[N]
X -shift (A[N]

X)Z. This allows us to define the

higher block code βN : X → (A[N]
X)Z by:

(βN(x))[i] = x[i,i+N−1] (A.1)

Now, it is natural for us to define the higher block shift X [N] as the image (of X)

X [N] = βN(X) in the full shift over A[N]
X . This definition will be useful when we consider

codewords in blocks, as they arise naturally by taking sequences in blocks each time.

Lastly, we shall define the shifts that characterize our RLL sequences.

Definition A.1.3 A shift of finite type is a shift space that can be described by a finite

set of forbidden blocks. Furthermore, a shift of finite type is M-step if it can be described

by a collection of forbidden blocks all of which have length M + 1.

As a cumulating example justifying the above definitions, consider the (1,∞) RLL se-

quence. This is a shift space with forbidden block F = {11}. Thus, it is a shift of finite

type; and since the only forbidden block has length 2, it is 1-step. If we let X be this

shift space, then looking at X [2] we have sequences over the alphabet {0, 1}2 where the

11 ∈ {0, 1}2 is forbidden.

A.2 Graph Representations of Shifts

As we have justified RLL sequences as shifts of finite type, we shall now show it is no

coincidence that they have graph representations. First we need a few definitions.

Appendix A. Finite State Codes 84

Definition A.2.1 A graph G is a collection consisting of a finite set V = V(G) of

vertices (or states) together with a finite set E = E(G) of edges. Each edge e ∈ E(G)

starts at a vertex denoted by i(e) ∈ V(G) and terminates at a vertex t(e) ∈ V(G).

Definition A.2.2 Let G be a graph with edge set E. The edge shift XG is the shift space

over the alphabet A = E given by:

XG = {ξ = (ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1)∀i ∈ Z} (A.2)

From this we can see that if we traverse a graph and record its edge labeling, the edge

labeling gives us a shift space. Thus, we can produce shift spaces from graphs. The

converse to this is guaranteed by the next theorem proven in [18]:

Theorem A.2.3 If X is an M-step shift of finite type, then there is a graph G such that

X [M+1] = XG.

A.3 Finite-State Code Theorem

Now that we have justified using graph representations of shifts. We now show how we

can construct finite-state codes using graphs.

Definition A.3.1 Let G be a graph with edge set E. A road-coloring C of G is a labeling

C : E → A that establishes, for each state I of G, a one-to-one correspondence between

A and the edges of G starting at I.

Definition A.3.2 A labeled graph is right-closing with delay D if whenever two paths of

length D + 1 start at the same state and have the same label, then they must have the

same initial edge. A labeled graph is right-closing if it is right-closing with some delay

D ≥ 0.

These two definitions serve the purpose of eliminating graphs that have ambiguous

labeling. With them in mind, we can finally define finite-state codes.

Appendix A. Finite State Codes 85

Definition A.3.3 A finite-state code is a triple (G,J ,O), where G is a graph called the

encoder graph, J is a road-coloring of G called input labeling, and O is a right-closing

labeling of G called the output labeling. If G has constant out-degree n and if X is a shift

containing all output sequences (from the output labeling) of G, then (G,J ,O) is called

a finite-state (X,n)-code.

Finally, we shall state the finite-state coding theorem:

Theorem A.3.4 (Finite-State Coding Theorem). Let X be a shift of finite-type

and n ≥ 1. Then there is a finite state (X, n)-code if and only if h(X) ≥ log n.

Appendix B

LDPC Code Design from EXIT

Charts

In this appendix, we shall briefly describe a method of designing LDPC codes from EXIT

charts. We shall follow the treatment detailed in [20].

B.1 Intuitive Idea

From our message passing between the check nodes and variable nodes of an LDPC

code, we see that the extrinsic information computed through the variable nodes serves

as a priori information for the check nodes. This extrinsic information, of course, will

depend on the exact underlying LDPC structure. Namely, the degree distributions of

both variables nodes and check nodes.

Now key the observation is the following. Let the EXIT chart of a prior decoder

(in our case the inner decoder) be given. Suppose that from the EXIT chart we can

characterize the extrinsic information at the variable nodes as a function of the degree of

the variable nodes (vd); and we can equally characterize the a priori information at the

check nodes as a function of the degree of the check nodes (cd). Then, knowing the fact

that these two functions should match (or come close to matching), we can deduce the

86

Appendix B. LDPC Code Design from EXIT Charts 87

appropriate values for vd and cd so that these functions match. This is the key idea of

designing LDPC codes from EXIT charts.

B.2 Derived Equations

We shall first define a set of notations. We shall denote the a priori and extrinsic infor-

mation of the inner decoder IA,DET and IE,DET respectively. Similarly, we shall denote

the extrinsic information at the variable nodes and the a priori information at the check

nodes IE,V ND and IA,CND respectively.

With these, we recall (from Chapter 5) that the EXIT chart of the inner decoder is

simply a graphical representation of IE,DET as a function of IA,DET . Also, recall that we

have a function J that relates a priori mutual information and its variance σA (equations

(5.3) and (5.4)). Now, it has been shown in [20] that

IA,DET (IA,V ND, dv) = J(
√

dvJ
−1(IA,V ND)) (B.1)

where IA,V ND is the a priori information to the variable nodes.

Thus, if we allow IA,V ND to vary from 0 to 1, we get a set of values for IA,DET , which

in turn gives us values for IE,DET via the EXIT chart of the inner decoder. Now, [20]

further showed that IE,V ND can be modeled as

IE,V ND(IA,V ND, IE,DET , dv) = J(
√

(dv − 1)[J−1(IA,V ND)]2 + [J−1(IE,DET]2). (B.2)

Note that IE,DET is determined by IA,V ND. Furthermore, it was also shown that IA,CND

can be modeled by

IA,CND(IA,V ND, dc) ≈ 1− J
(J−1(1− IA,V ND)√

dc − 1

)
. (B.3)

Now, for fixed IA,V ND, both IE,V ND and IA,CND are one variable functions of vd and cd

respectively. Thus, it suffices to find values of vd and cd such that IE,V ND and IA,CND

agrees for all values of IA,V ND. In other words, we want to find vd and cd such that the

Appendix B. LDPC Code Design from EXIT Charts 88

graphs of IE,V ND and IA,CND as (a function of IA,V ND) match (more precisely terms, we

want the EXIT chart to be “open”, see [19] for details). In addition, we also want to

add the constraint that we attain an LPDC code with the highest possible rate. This

procedure can be easily done using linear programming as shown in [31].

Bibliography

[1] J.R. Pierce,“Optical channels: practical limits with photon counting,” IEEE Trans.

Commun., vol. COM–26, pp. 1819–1821, 1978.

[2] D. L. Snyder and I. B. Rhodes, “Some implications of the cutoff rate criterion for

coded direct-detection optical communication systems,” IEEE Trans. Inform. Theory,

vol. IT–26, pp. 237–338, Jul. 1981.

[3] H. M. H. Shalaby, “Maximum achievable throughputs for uncoded OPPM and MPPM

in optical direct-detection channels,” IEEE J Lightwave Technol., vol. LT–13, No. 11.

pp. 2121–2128, Nov. 1995.

[4] J. Hamkins and B. Moision, “Multi-pulse PPM on memoryless channels,” in Proc.

Int. Symp. Information Theory, Chicago, IL, June–July 2004, pp. 336.

[5] R. Velidi and C.N. Georghiades, “On symbol synchronization of MPPM sequences,”

IEEE Trans. Commun., vol.46, no. 5, pp. 587–589, May 1998.

[6] H. Sugiyama and K. Nosu, “MPPM: A method for improving the band-utilization

efficiency in optical PPM,” IEEE J Lightwave Technol., vol. LT–7, no.3. pp. 465-472,

Mar. 1989.

[7] K. Sato, T. Ohtsuki, I. Sasase and S. Mori,“Performance analysis of (m, 2) MPPM

with imperfect slot synchronization,” IEEE Pacific Rim Conference on Communica-

tions, Computers and Signal Processing, vol. 2, pp. 765–768, May 1993.

89

Bibliography 90

[8] T. Ohtsuki, H. Yashima, I. Sasase and S. Mori, “Cutoff rate and capacity of MPPM

in noiseless photon counting channel,” Trans. IEICE Japan, vol. E74, no. 12, pp.

4080–4084, Dec. 1991.

[9] C. N. Georghiades, “Modulation and coding for throughput-efficient optical systems,”

IEEE Trans. Inform. Theory, vol. 40, no. 5, Sep. 1994.

[10] G.M. Lee and G. W. Schroeder, “Optical pulse-position modulation with multiple

positions per pulsewidth,” IEEE Trans. Commun., vol. COM–25, pp. 360–364, Mar.

1977.

[11] J. M. Budinger, M. Vanderaar, P. Wagner, and S. Bibyk, “Combinatorial pulse

position modulation for power-efficient free-space laser communications,” SPIE Proc.,

vol. 1866, Jan. 1993.

[12] H. Park and J. R. Barry, “Trellis-coded multiple-pulse-position modulation for wire-

less infrared communication,” IEEE Trans. Commun., vol. 52, no. 4, pp. 643–651,

2004.

[13] R. Razen, J. Seberry, and K. Wehrhahn, “Ordered partitions and codes generated

by circulant matrices,” J. Comb. Theory, Ser. A, 27(3): 333–341, 1979.

[14] A. K. Agarwal, Padmavathamma, and M.V. Subbarao, Partition Theory. Chandi-

garh, India: ATMA RAR & SONS, 2005.

[15] T. T. Nguyen and L. Lampe, “Capacity-maximizing MPPM constellations for free-

space optical communications,” Proc. 6th Symposium on Communication Systems,

Networks and Digital Signal Processing, Graz, Austria, July 2008.

[16] S. Hranilovic, “On the design of bandwidth efficient signalling for indoor wireless

optical channels,” International Journal of Communication Systems - Special Issue on

Bibliography 91

Indoor Optical Wireless Communication Systems and Networks, Wiley Interscience,

vol. 18, no. 3, pp.205–228, April 2005.

[17] K. A. S. Immink, Coding Techniques for Digital Recoders. Hertfordshire, UK: Pren-

tice Hall, 1991.

[18] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding. New

York: Cambridge University Press, 1995.

[19] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” IEEE Trans. Commun., vol. 49, pp. 1727–1737, Oct. 2001.

[20] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check

codes for modulation and detection,” IEEE Trans. Commun., vol. 52, pp. 670–678,

Apr. 2004.

[21] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minmizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT–20, pp. 284–287,

Mar. 1974.

[22] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

codes and decoding: Turbo codes,” in Proc. IEEE International Conference on Com-

munications, Geneva, Switzerland, 1993, pp. 1064–1070.

[23] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 619–637, Feb. 2001.

[24] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check

codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2,

pp. 599-618, Feb. 2001.

Bibliography 92

[25] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check

codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

[26] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

[27] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981

[28] F. R. Kschischang, B. J. Frey, H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Inform. Theory, vol. 47. no 2, pp. 498–519, Feb. 2001.

[29] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann,

“Practical loss-resilient codes,” Proc. 29th Sympoisum on Theory of Computing, 1997,

pp. 150–159.

[30] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved

low-density parity-check codes using irregular graphs,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 585–598, Feb. 2001.

[31] B. Smith, “Low-density partiy-check codes with reduced decoding complexity,”

M.A.Sc. Thesis, University of Toronto, 2007.

[32] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-

growth Tanner graphs,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 3886–3898,

Jan. 2005.

[33] G. Horn, “Iterative decoding and pseudo-codewords,” Ph.D. disseration, California

Institue of Technology, 1999.

