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Abstract 

This thesis proposes to study and extend the ability of the statistical methodologies that have been 

established to measure the performance of multimodal biometric systems. In particular, it takes into 

account the various noise factors that are inevitable in a real world scenario, which influence the 

performance of biometric systems. The work completed in the past uses the Design of Experiment 

framework to create a systematic approach to test the performance of biometric systems. Input 

parameters are varied including the data fusion methods and the normalization schemes (both 

controlled), and using discrete intervals based deviations in the matching scores (uncontrolled) of 

genuine and impostor users to represent noise. This work however, is limited provided the manual 

interface to the developed application. All parameters are fixed and operate over a comparatively small 

dataset. Further, the design of the existing application limits the extensibility of the same to incorporate 

additional data sources, increase or decrease the deviation values that contribute to the noise, and 

generate analytical graphs and reports. 

It is the purpose of this thesis to establish a framework that is scalable to accommodate additional 

biometric databases for a larger subject pool. The developed application will also allow users to identify 

a larger set of deviation values for noise, automatically generate test cases for all possible biometric 

modalities defined within the system, etc. It is also the intent to provide, as results, the ability for the 

user to choose from a set of possible graphs and reports that are in tune with the common industry 

(commercial) standards as opposed to purely technical reports. 
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Modalities -

Unimodal-

Multimodal • 

Matching scores -

DoE-

FAR-

FRR-

Glossary of Terms 

physiological or psychological biometric traits used in biometric systems to 

identify individuals. This can also be used to identify any algorithms employed in 

the identification process. 

biometric system utilizing only a single biometric trait or a type of algorithm for 

purposes of identification. 

biometric system utilizing multiple biometric traits or multiple flavors of 

algorithms to be used for the purposes of identification. 

numerical values identifying the similarity in the biometric data retrieved from 

the individual to be authenticated and the data stored in the biometric 

database. 

Design of Experiments refers to an experimental method used to study factors 

and their interactions statistically through methodically controlling their values 

within a system to be studied. 

an error measurable in a biometric system identifying the system's rate of 

accepting an impostor based on the biometric signals provided. 

an error measurable in a biometric system identifying the system's rate of 

rejecting a genuine user based on the biometric signals provided. 
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Chapter 1. Introduction 

Authentication for the purpose of securing resources and accurately identifying individuals has evolved 

into the field of biometrics. Biometric systems are being deployed within government offices, high 

security facilities, major corporations, etc. to deny or allow access to resources. Further, as an 

identification tool, biometric systems allow enforcement agencies to identify suspects, for immigration 

authorities to authenticate travelers, etc. Within the field of biometrics, this has been made possible by 

using human physiological and psychological traits that can be measured through hardware including 

sensors and cameras. 

Usually, a biometric system utilizes a single trait to identify individuals. Such systems suffer from 

performance issues and have paved the way for multimodal biometric systems. Multimodal biometric 

systems combine data from various unimodal biometric systems to achieve improved performance in its 

authentication abilities. Since the combining of data can occur at various levels and through different 

permutations, it is important to understand and evaluate the performance of such systems. A realistic 

factor that affects the performance of biometric systems is the influence of noise through various 

sources including faulty devices, change in traits, to name a few. This variability further enhances the 

need to study the performance of these systems. 

Given biometrics is a young field and evaluation of such systems with any systematic approach younger 

still, some attempts have been made to analyze performance of multimodal biometric systems 

(Biometrics Testing and Statistics, 2006) (P. Jonathon Phillips, 2007). These evaluations, however, are 

done under controlled test environment for a particular set of biometric modalities or for specific 

applications. In (Gan, 2007), the author has provided a framework to analyze multimodal biometric 

systems to measure their performance using the DoE framework, but has had to carry manual 

experiments utilizing the MUBI tool (Samoska, 2006), which can be time consuming and cost ineffective. 

Much of the performance evaluation is done using existing multimodal biometrics' databases that 

include matching scores for unique biometric traits. Evaluations are performed only through 

combinations of these modalities limited to the databases. The considered parameters or noise levels 

are also limited and may not be completely representative of the systems under study or may not apply 
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to individual modalities. For example, considering a 5% deviation across a multimodal biometric system 

as noise representing face modalities and finger modalities may not be a true representative. Noise is 

more likely to occur in hardware to detect fingerprints than face images due to its nature. Subjects 

directly interact with the fingerprint scanners while face images are taken through cameras without 

direct interaction with the subjects. 

As evaluation is performed within the scientific community, measurements are usually reported through 

numbers. A better evaluation matrix is necessary to enable non-scientific community to analyze 

multimodal biometric systems in comparison with each other. 

The intent of this thesis paper and the research performed within the premise allows for a study of the 

performance evaluation of multimodal biometric systems, especially under the influence of noise. 

Various existing applications, that enable users to measure the performance of biometric systems, have 

been researched and their functionality enhanced to allow for evaluation of a larger dataset with user 

defined modalities. Better reporting matrix have been included that allow users to perform a more 

direct comparison of multimodal biometric systems. An automation of existing applications has been 

performed to decrease the cost associated with the evaluation process. 

The remainder of this paper has been organized into the following sections. Section 2 provides a more 

detailed understanding of biometric systems, unimodal and multimodal. It also presents the schemes of 

data combination to create multimodal biometric systems. Section 3 discusses the various performance 

measures that have been identified to evaluate a multimodal biometric system. In section 4, the 

theoretical framework identifying the method of analysis has been presented. Section 5 discusses the 

implemented system that supports, in theory, the proposed methodology for evaluation. Section 6 

provides test experiment setups, results, and finishes with a discussion of these results. Section 7 

presents the conclusion and scope of future work. 
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Chapter 2, Overview of Biometric System 

In the present world scenario, the need for security ranging from simple applications such as protecting 

copyrighted material to sheltering a country has reached a new dimension. The shift from printed media 

to digital information, movement of people due to globalization and increasing crime are just some of 

the reasons that have fuelled the need for accurately identifying a person, or validating a person's 

identity. The response to such requirements has spawned the use of biometrics, an evolving field of 

science and resulting technology that enables identification (and verification of the identity) of 

individuals based on physiological and psychological traits. Essentially, biometrics emerged from its 

extensive use in the field of law enforcement but is increasingly being employed in other high security 

applications, including many civilian applications (A. K. Jain, 2004). 

2,1 Biometric Systems 

A biometric recognition system encompasses a shift from traditional identification and authorization 

mechanisms such as passwords, secret phrases, etc. to the use of features that humans inherently 

possess or can develop (J. Ortega-Garcia, 2004). A biometric system uses features in humans that can, to 

a degree of certainty, establish a person's identity. Consequently, a biometric system can be likened to a 

pattern recognition system. A biometric is an individual biological characteristic that can be a candidate 

for identifying a person pending the following requirements (K. Delac, 2004) (A. K. Jain, 2004) (Thieme, 

2003): 

• Universality: The physiological or psychological trait must be present as a common 

characteristic in all human population. 

• Distinctiveness: The trait must differ (in the measured value) between people. 

• Permanence: The trait (specifically the measured values of the trait) should remain unchanged 

over a period of time. 

• Collectability: The trait must be measurable quantitatively. 

Given in Figure 1 are some common biometric traits utilized in identifying individuals. 
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Figure 1: Common biometric traits (A, K, Jain, 2004) 

Once the candidate traits for a biometric system have been identified, the system must still consider 

other issues in implementation including: 

• Performance: This identifies the accuracy and speed of the system in achieving the desired 

functionality, the resources required to achieve the accuracy and speed in the identification 

process and the operational and environmental factors that affect the accuracy and speed of the 

system. 

• Acceptability: All biometric systems interface with the human population, who are also the end 

users of the system. Therefore, the acceptability of a biometric system determines whether the 

biometric characteristics (or the system as a whole) are acceptable to the general public, and to 

what extent. 

• Circumvention: This measures the ease of being able to bypass the system using fraudulent 

methods. 

The author in (J. Ortega-Garcia, 2004) has identified and classified some of the commonly used 

biometric features (also called biometric modalities). One of the key criteria of classification established 
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in the paper distinguishes features as physiological or behavioral. Discussed below are the biometric 

features reported, but not limited to. 

2,1,1 Physiological Features 

Fingerprints 

This is one of the most commonly used features that have been used to identify humans. Prior to the 

advent of biometric tools, fingerprints (captured on paper using ink marks) have been used extensively 

in forensics for the identification and verification of criminals. Provided the advent of new technologies, 

fingerprints are now captured using optical, capacitive or ultrasonic sensors, that measure the ridges, 

valleys and islands in a fingerprint. 

Pace 

Humans are conditioned to recognize each other based on facial features. Consequently, facial features 

can be considered an "inherent" modality since it is widely used for recognition amongst humans. 

Captured usually as an image, facial features are normally used for identification or verification in a 

multimodal biometric system. Commonly used algorithms that support this process include measuring 

the distance between the facial features. Another approach employs scalar comparison between parts 

of the face using the sample image and the template set. Facial thermographs are also used as a facial 

trait. 

iris 

This type of recognition identifies a subject utilizing the trabecular pattern which is formed based on the 

anatomy of the eyes' structure. It has been established that the iris in a human being retains its 

structure over time without being affected by the environment. Using the scanned images of the user's 

iris and those existing in the template database, the identity of the subject can be established through 

an image processing technique. 

Palmprin I Recognition 

This modality includes matching features from a complete palm print. This is more accurate that using 

fingerprints provided the larger set of features available in the palm as opposed to those in a finger. The 

prints are captured using an optical CCD device and the measurements performed check for point 
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features identifying the deltas, ridges, islands and ridge ends, or line features including any wrinkles, or 

the texture of the skin. 

Hand Geometry 

Using hand geometry in biometrics involves measuring various parameters of a hand including the size 

of the fingers, the spacing between the fingers, and any other structural factors that can contribute to 

the uniqueness of a human hand. Comparison between images is employed to authenticate the user. 

2,1,2 Behavioral Features 

Voice 

Speech recognition can be used in a biometric system and can establish the speaker's identity by 

processing the speech signal. The anatomical structure of the speaker can be identified using the 

amplitude spectrum of the speech patterns. The methodologies used in the process include dynamic 

time-warping, neural networks, and hidden Markov models. 

Handwriting 

Also generalized with the term "signature", handwriting is a trait that can, to a degree of confidence, 

identify a subject or verify the identity of a subject. A person's signature is legally accepted as a 

verification measure, although it is not scrutinized as per the true meaning of, and the implementation 

of biometrics. For true biometric systems, the verification of handwriting is performed by studying its 

time parameters such as velocity and acceleration, or its feature parameters. This is referred to as online 

signature verification in which case the sample is available for analysis while it is being written by the 

subject. Offline signature verification is performed with an existing sample. The measures include the 

shape of the letters, the pressure of the letters, their luminescence, etc. 

Given on the next page, in Figure 2, is a list of common biometric traits and their performance based on 

the properties of universality, distinctiveness, permanence, collectability, performance, acceptability 

and circumvention (Jain, 2004). 



Performance Analysis of Multimodal Biometric Systems - An Automated Statistical Approach 

Biometrics: :• 14 

iFace 

; Fingerprint 

| Hand geometry 

: Keystrokes 

I Hand veins 

I Iris 

Retina! scan 

Signature 

Vaice 

Facial thermograph 

Odor 

DHA 

: Gait 

; Ear Canal 

Universality H | Uniqueness El Permanence SColIeetability fS Performance 

i 1 : 

|H H 

X L :L 

H IH 

-• • H 

L 1 

H 

L. 

it L 
h: JL 

-. 
-

f-

L L 

V L 

r! 

.* 

L 

U" 

H 

L 1+ 

'< L 

X 

iH 

|L L 

|L- H 

|H L 

;M 

El Acceptability 

3~« 

• - - — : ~ 

L 

,L 

H 

if 

H 

L 

'h 

"s 

3 Circumvention* li1 

;. 

;H 

i : 

;H ' :.. 

|H 
H 

_ 
„ 

H 

-
• 

• 

Figure 2: A comparison of various biometric traits for properties (Jain, 2004) (H^High, M=fvledium, L-Low) 

2.1,3 Biometric System Components 

A biometric system, which can be used either under the verification mode or under identification mode, 

accepts as an input some biometric data from an individual and extracts a feature set that is then 

compared with the template set in the system database. A common biometric system consists of the 

following modules: 

Sensor module: This is the interface that captures the biometric data from an individual during 

enrolment (initial registration of a genuine user's biometric information) as well as the 

identification step. This module usually consists of the hardware that interfaces with the users 

such as cameras, voice recorders, fingerprint scanners, etc. 

Feature extraction module: This module processes the captured biometric data to extract the 

feature set (set of distinguishing features). The extracted "features" depend on the type of 

biometric modality being considered and the algorithm being used. For example, the feature 

extraction module may report the length and width of fingers, provided a hand is being used for 

comparison. 
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• Matcher module: This module compares the feature set against the template set stored in the 

system database to generate matching scores. The data in the template set is the information 

set captured during the enrolment process. This data is represented according to the chosen 

feature extraction algorithm. The biometric signal presented in the identification or verification 

process is extracted using similar feature extraction algorithms and compared by the matcher 

module. The matching scores generated indicate the probability that the user is either genuine, 

or impostor. Normally, a decision module is also available within the matcher module. The 

decision module makes the decision on the authentication of the subject based on the matching 

scores and a defined threshold value. 

• System database module: This consists of the database containing the template sets of all 

enrolled individuals. The biometric information gathered during the enrolment process is 

verified to ensure quality expectations are met and then recorded in a usable digital form. For 

example, the scanned images of fingerprints, through feature extraction module, can be 

recorded as distance between ridges and valleys, the number of deltas, forks or ridge endings, 

etc. The matcher module uses the information in this database against which it verifies the 

identity of the subject. 

Provided in Figure 3, are all biometric system components as used during the process of enrolment 

(initially recording user data that is used to authenticate the user later), during the process of 

verification and during the process of identification. The flow of information between the components is 

also indicated along with the matcher module's results. 
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2.1,4 Limitations of Unimodal Systems 

Due to its infancy, and to a degree the limited acceptance of the technology, majority of the biometric 

systems in place are unimodal systems, i.e. they rely on a single biometric trait to identify (or verify the 

identity) of a person. Such systems have low performance in terms of their ability to identify a person 

with confidence measures necessary in security critical applications such as forensics and federal 

programs. Some of the issues with biometric systems commonly in use today have been identified in (A. 

Ross A. J., 2004) and discussed below. 
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• There might be noise present in the data due to factors including defective equipment used to 

collect the biometric signals, alteration in the biometric trait itself owing to physical injuries or 

due to health conditions. Noise due to the limitations in the physical environment may also be a 

factor. This type of noise includes lighting conditions, humidity, heat, etc. 

• Intra-class variations are caused by changes in the subject's interaction with the system during 

enrolment and identification phases. For example, the user may improperly scan his/her 

fingerprint by placing the finger on the scanner inaccurately, or there might be a difference in 

the lighting conditions. Another reason for intra-class variations is the difference in the 

equipment itself. During enrolment, an optical state fingerprint sensor might be used and during 

the identification process a different solid state sensor might be used. 

• Inter-class variations (or lack thereof) indicate the potential commonality in the measured 

features amongst the population. These similarities are usually magnified in case of biometric 

traits that are anatomically controlled by genetics. For example, facial features and voice are to 

a large extent similar in related individuals such as parents and children and amongst twins. 

• Non-universality refers to the limitations in the presence of a biometric trait across all human 

population. It has been observed that not all (if any) biometric traits are universal. Even 

fingerprint, largely considered to be a uniquely identifying feature in humans, is not available in 

2% of the population rendering it useless for those. 

• Spoof attacks are performed by individuals unlawfully accessing sensitive resources by acting as 

masqueraders of authorized users. These attacks are usually carried out by replicating 

behavioral traits including voice and handwriting. Physical traits are also replicated, although 

not frequently. 

2,2 Multimodal Biometric Systems 

As the name suggests, multimodal biometric systems combine biometric information from multiple 

sources to establish the authenticity of a person. As identified in (A. Ross A. J., 2004), multimodal 

biometric systems resolve, to a degree, the issue posed by non-universality. This is done by taking into 

account multiple biometric traits that can better identify a person when used in conjunction as opposed 

to a single modality. Multimodal biometric systems also act as deterrent to spoof attacks by making it 
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more difficult to replicate the information since any illegitimate use will require the subject to imitate 

multiple features. More details have been provided in the following sub-section. 

2,2,1 Necessity of Multimodal Biometric Systems 

In section 2.1.4, some limitations of biometric systems relying on a single trait or modality have been 

identified. Multimodal biometric systems counter these limitations and present an improvement in the 

authentication performance. These improvements have been listed below. 

• The noise present in the data due to factors such as defective equipment, alteration in the 

biometric trait or limitations in the physical environment have a lesser probability of affecting 

multiple hardware and multiple traits. Hence, a multimodal biometric system ensures 

improved performance. 

• Intra-class variations are mitigated provided any degree of difference in user's interaction with 

a particular component of a multimodal system is distributed over the entire system during the 

authentication process, therefore, lessening its effects. The probability of change in hardware 

throughout the system is also less compared to a single modality biometric system. 

• Inter-class variations are also mitigated provided the commonality in physical or psychological 

traits within individuals is of much lesser probability than a single trait. 

• Non-universality is addressed in multimodal biometric systems due to the increased size of the 

biometric traits' set. The probability of finding a biometric signal to authenticate a user 

increases with an increase in the number of modalities. 

• Spoof attacks are also limited in multimodal biometric systems, simply owing to the number of 

biometric signals that must be imitated to carry out such an attack. 

Multimodal biometric systems, consequently, provide an improved performance over unimodal systems 

in their ability to authenticate a user in presence of various limiting factors discussed above. In addition, 

multimodal biometric systems also provide improved security within the systems themselves. Provided 

below, in Figure 4, is a sample chart comparing the performance of a multimodal biometric system and 

individual biometric systems. As can be observed, the black curve representing the combined 

multimodal system has a better acceptance rate for genuine users than both unimodal curves (individual 
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modalities) represented by the other two curves, for any given value of FAR. An understanding of the 

genuine acceptance rate (GAR) and the false acceptance rate (FAR) has been covered in a later section. 
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Figure 4: Comparison of multimodal biometrics system and unimodal systems in performance measured in GAR against FAR. 

2.2.2 Multimodal Biometric Systems - Schemes 

As described in previous sections, a multimodal biometric system is created by combining various 

unimodal systems. The information retrieved in these individual systems is combined to create a 

multimodal system. In such systems, the information can be combined through (Nandakumar, 2005): 
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• Multiple sources of a single biometric trait such as index fingers from the left and the right 

hands. In such case, the "index finger" provides the single biometric trait while the left and the 

right fingers, specifically, provide the biometric signal that is combined. 

• Different equipment types to enroll a single biometric trait such as an optical state sensor and a 

solid state sensor. In such cases, a single biometric trait (and a single instance of that trait) such 

as an index finger is authenticated through multiple sensors. Information from each sensor is 

combined and provides an overall matching result. 

• Multiple feature extraction or matching algorithms used on the same biometric data to provide 

separate results to be combined. Biometric signals from the same trait and same equipment are 

processed through more than one feature extraction module or matching module. Information 

from these is combined for an overall result. 

• Multiple enrolment records for a single biometric trait such as various angles of the face. 

• Information from different biometric traits such as face, fingerprints, retinas, etc. This, as a true 

multimodal biometric system, utilizes multiple biometric modalities (or traits) and combines 

information retrieved from these into a single decision level score to authenticate the user. 

2.2.3 Combin ing In fo rmat ion in Mu l t imoda l Biometr ic Systems - 'Fusion' 

Combining information within multimodal biometric systems is referred to as the process of fusing 

information. The information captured from various sources following the schemes mentioned in the 

previous section can be fused at any of the following levels (Faundez-Zanuy, 2005): 

• Sensor module level: The information from a single biometric trait can be captured through 

multiple sensors. In this case, the information is usually in its native format. The combined 

information can improve accuracy, ensure completeness of data or add more information to 

the vector space. For example, images of a face taken at different angles can be used to 

indicate depth in the image. 

• Feature extraction module level: At this level multiple features can be extracted from the same 

biometric trait (signal), or feature vectors from multiple biometric traits can be fused to 

provide a combined feature vector. For example, using a face image, the spatial data can be 

fused with the distance in feature points. 



Performance Analysis of Multimodal Biometric Systems - An Automated Statistical Approach | 

• Opinion level: This essentially combines information at the matcher module in terms of 

distance or similarity to result in a single combined confidence level of authenticity achieved 

through a chosen normalization technique. For example, matching scores from multiple 

biometric systems can be combined, through normalization at a similar scale, to create a single 

matching score indicating the authenticity of the subject. This type of fusion is also called 

matching level fusion. 

• Decision level: Fusion at this level requires a combination of various decisions made through 

multiple unimodal biometric systems to achieve a final combined decision to establish the 

identity of the subject. Usually, the decision output from a biometric system is in the form of a 

probabilistic match between the provided biometric signal and the information stored in the 

template database. As an example, an aggregate function can be applied to individual decision 

probabilities to achieve a single unit authenticating a subject. 
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Chapter 3. Problem Statement 

3 . 1 P e r f o r m a n c e E v a l u a t i o n o f M u l t i m o d a l B i o m e t r i c S y s t e m s 

Performance in biometric systems, measured in terms of their accuracy, ease of use, speed, and other 

measurable is paramount given the increasing use of such systems in high security applications in 

government organizations, as well as in solving crimes through forensics. Given the access to 

information and the need to secure the same, biometric systems are on the rise in commercial 

applications as well, enhancing the requirement for such systems to perform well in varied 

circumstances. A comparison has been provided below in Figure 5. (EER, FAR and FRR are measurable 

units for biometric systems explained in the following sections). 
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Figure 5: Performance of various biometric systems using standard measurable fSiometrics, 2008) 

Since multimodal biometric systems are more useful in comparison to unimodal systems, the thesis 

strives to provide a framework to evaluate such systems in an automated environment, however, under 

noise conditions that are unavoidable in commercial settings, following the findings in (Gan, 2007). The 

application proposed within this paper performs evaluation of biometric systems automatically to 

provide a scalable system that can then be used commercially or for further research. 
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According to (A. K. Jain, 2004), the two primary types of errors caused by a biometric verification system 

are the false match rate (also called the false accept rate or FAR) and the false nonmatch rate (also 

called the false reject rate or FRR). The false match rate is the degree of the system inaccurately 

accepting biometric inputs from two individuals to be the same person. The false nonmatch rate is due 

to the system rejecting inputs from the same person as being from two different individuals. Since a 

biometric system results in a matching score, a threshold is identified in context of its application for 

which a genuine subject would need a score higher than the threshold. The false match rate is inversely 

related, while the false nonmatch rate is directly related to the system threshold. Figure 6 (a) provides 

the probability distribution curves of the genuine and impostor matching scores. Against a chosen 

threshold, t, the FMR and FNMR have been displayed. Figure 6 (b) provides a curve for a function of FMR 

and FNMR. Provided is a generalization of application types as applied to the curve. As can be observed 

in the figure, forensic applications are tolerant to a higher FMR, which allows for a higher pool of 

suspects, while applications (or resources) that require a higher level of authentication allow a higher 

FNMR. 
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Figure 6: (a) Impostor and Genuine scores distributions for threshold t with corresponding FMR and FNMR. jb) Receiver 

Operating Characteristics (ROC) curve with varied operating points resulting in different FMR and FNMR, (A. K. Jain, 2004) 
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The FMR (referred to as FAR in this document from this point forth) and the FNMR (referred to as FRR in 

this document from this point forth) are discussed in more detail in the following sub-sections. Also 

discussed are additional biometric performance measures that are, however, used in limited scenarios. 

3.1.1 FAR (False Accept Rate) 

FAR represents the frequency with which a given biometric system identifies an impostor as a genuine 

subject. Mathematically, the FAR is the ratio of successful fraudulent attempts and the total number of 

fraudulent attempts. This is denoted by, 

successful fraudulent attempts made for identity n 
FAR (n) = , 

all fraudulent attempts made for identity n 

where, n is a unique identity. 

The overall FAR of a biometric system can be calculated as an average through the formula, 

FAR(A/)=- Sn = 1 Fi4/?(n) , 

where, N represents all identities being evaluated by the system. 

The FAR represents a statistical value, and therefore is dependent on the size N of the identities against 

which the biometric system is tested as well as the number of fraudulent attempts made. In an effort to 

determine the FAR, a probability distribution curve is usually used that is an approximation of a 

histogram representing the frequency of similar matching scores for genuine and impostor users (Figure 

6). Mathematically, the distribution curve is represented as, 

FAR{t) = / t p(s\impostor)ds, 

where, t is the threshold on the scale of the matching scores identifying genuine and impostor users. 

The FAR is the area under the impostor distribution curve with matching score values greater than the 

threshold. 

3.1.2 FRR (False Reject Rate) 

The FRR represents the frequency with which a biometric system rejects a genuine user, failing to 

correctly match the provided biometric signal with the stored template. Essentially, the FRR is the ratio 
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of the number of failed authentication attempts for genuine users and the total number of 

authentication attempts made for genuine users. The formula for the FRR is denoted by, 

rejected genuine attempts made for identity n 
FRR (") = 7, : T~^—r: : , 

all genuine attempts made for identity n 
where n is a unique identity in the system. 

The overall FRR of a biometric system can be calculated using the average through the formula, 

FRR(N)=^ £ n = i F t f / ? ( n ) , 

where N represents all identities within the biometric system. 

Similar to the FAR, FRR represents a statistical value dependent on the size N of the identities against 

which the biometric system is tested as well as the number of authentication attempts made. In an 

effort to determine the FRR, a probability distribution curve is used that is an approximation of a 

histogram representing the frequency of similar matching scores for genuine and impostor users (Figure 

6). Mathematically, the distribution curve is represented as, 

w = /_ p(s\genuine)ds, FRR.. . 
-co 

where, t is the threshold on the scale of the matching scores identifying genuine and impostor users. 

The FAR is the area under the impostor distribution curve with matching score values greater than the 

threshold. 

3.1,3 GAR (Genuine Accept Rate) 

The GAR represents the frequency by which a biometric system accepts genuine users as authentic. The 

GAR is related to the FRR through the formula 

GAR = 1-FRR 

Usually, to measure performance of a biometric system, the FAR is mapped against the GAR in an ROC 

curve. 
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3,1,4 EER (Equal Er ro r Rate] 

The FMR and the FNMR are both performance measures that rely on the chosen threshold values. The 

Equal Error Rate, EER, on the other hand is independent of the threshold. In general, the EER is the value 

on the ROC curve where the FMR and FNMR are equal. A low value of EER is considered to represent a 

biometric system with highly accurate performance. The EER has been claimed to be unreliable and 

limited provided any comparison performed between biometric systems using the EER is done within a 

small range of values, which may or may not provide a generalized result. Further, for the purpose of 

comparing multiple biometric systems, EER has limited usefulness given the curves denoting the 

biometric systems may overlap. Given below in Figure 7 is a representative ROC curve identifying the 

EER. 

FMR 

Figure 7: ROC curve indicating the Equal Error Rate (EER), where EER = FNMR = FMR 

3,1.5 FT A (Fai lure to Acquire Rate) 

The FTA (or FTC as Failure to Capture rate), identifies the frequency of a biometric system's inability to 

identify and correctly capture the biometric signal presented to it. The FTA can be considered as a 

measure of noise within the biometric system since it usually results in inaccurate biometric data. This 

type of error is usually caused due to the wear and tear in the biometric system's equipment. 
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3,1,6 FIR (False Identification Sate] 

The FIR is the frequency of times a biometric system incorrectly identifies a genuine user and attributes 

the user with an identity not his/her. 

FAR and FRR are the identified measurable that are utilized to establish the performance of biometric 

systems used by manufacturers. Further, the ROC curve (the FRR is replaced by the GAR and the 

biometric system(s) is plotted with GAR and FAR) is also commonly used to compare multiple biometric 

systems (Gan, 2007). (P.J. Phillips, 2000) has identified the following evaluation protocols. 

• Technology evaluation: This involves testing the prototype algorithms and results in identifying 

technological progress and promising approaches in controlled laboratory conditions. The 

algorithms applied including those for acquiring biometric signals, retrieving feature sets from 

the provided signals and generating matching scores are tested to identify the performance of 

the biometric system. 

• Scenario evaluation: Scenario evaluation revolves around measuring system performance of a 

biometric technology within a class of applications under conditions resembling real world 

deployment scenarios. As an example, the evaluation process might consider biometric systems 

as applied to providing access to high security buildings. 

• Operational evaluation: This tests a particular biometric system within a particular application 

scenario. As an example, biometric systems might be tested to evaluate performance of 

fingerprint scans at the JFK airport in New York. 

Both scenario and operational evaluations of biometric systems are specific to applications and 

situations. Consequently, the results from such evaluations cannot be generalized and do not promote 

an understanding of the performance of biometric systems as well as a comparison of such systems 

without the specificity of the environment under which these are studied. Technological evaluation of 

biometric systems (considering various technologies employed within such systems) provides means for 

a better analysis. 

Within the context of technology evaluation, in (Gan, 2007), the author has established the limitations in 

traditional testing frameworks for performance analysis of multimodal biometric systems based on 
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varied biometric traits, databases, algorithms, normalization methodologies and fusion methods. The 

author has promoted factoring noise in performance evaluation since traditional tests provide 

situational outcomes that are inconsequential in a generalized context. Factoring noise in the 

performance evaluation allows users to conduct more realistic evaluations of biometric systems. 

3,2 A S t a t i s t i c a l A p p r o a c h 

With respect to evaluating performance of multimodal biometric systems, various assessment factors 

exist including technological performance, security performance, user acceptance, identification and 

verification performance, etc. Of paramount importance and of direct consequential value is a biometric 

system's performance in correctly evaluating the data presented to it to identify or verify a subject's 

authenticity. In (R. Snelick M. I., 2003), the authors have provided a framework to conduct performance 

evaluation of multimodal biometric systems. The authors have pointed the importance of fusion in any 

multimodal biometric system (essentially to achieve a multimodal biometric system, a level of fusion of 

data is necessary). They have also identified the benefits of performing fusion at the matching scores 

level including the ability to use existing matching score databases available in the public domain (or 

otherwise) and the ability to conduct tests without affecting existing biometric systems (since the 

experiments are conducted on data generated by these systems). The following framework has been 

suggested. 

• Identify the target set and the query set consisting of signatures known to the biometric system 

and the signatures to be compared against the known signatures, respectively. 

• Generate a matching score matrix (similarity matrix) for each pair of the target and query sets' 

signatures. 

• Create gallery sets and probe sets from the target and the query set, respectively. Repeat the 

three steps for each biometric modality. 

• Format the data from the different modalities into similar unit and ensure the size of the 

similarity matrices is the same. An assumption is that all modalities are statistically independent 

and can be combined to create virtual subjects (to indicate the information comes from the 

same subjects). 

• Normalize the data from different modalities into a common range of values. 
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• Fuse the data from the various similarity matrices from each biometric modality to a single 

fused similarity matrix. 

• Using the fused similarity matrix with (with fused genuine and impostor scores), achieve the 

performance measures including the FAR and the FRR. Create the ROC curve using the FAR and 

GAR to evaluate the multimodal biometric system being studied. 

The above mentioned framework guidelines have been used by the author in (Gan, 2007) to validate 

performance of multimodal biometric systems under the influence of noise. The author indicates the 

difficulties in establishing a testing system taking into account every noise source due to the exponential 

growth of the noise factors. The use of robust parameter design has consequently been proposed to 

identify the values for system parameters to institute a high performance, functional and robust 

methodology. Design of Experiments (DoE) has been used within which a Parameter Diagram has been 

created outlining the various system parameters including the biometric signals, the noise factors and 

any control factors to generate the performance matrices. The author has further used the Gaussian 

Noise Model to generate noise factors through deviations based on interval values that are 

representative of the general continuous values. 

It has been pointed out that using a full factorial experimentation method will be cumbersome due to 

the number of different combinations that can be achieved through the controllable and uncontrollable 

factors (and provided the lack of support to carry out such tests without an automated framework). The 

controllable and uncontrollable factors including the fusion methodologies, the normalization 

techniques, the number of modalities considered, the distribution of noise within each of those 

modalities considered, etc. result in an exponential growth in the number of possible test cases 

(considering also the various levels of operation in each of these parameters). In (R. Krishnan, 2007), the 

authors have discussed Orthogonal Array Based Testing Strategy (OATS) and displayed, with examples, 

the increased effectiveness and efficiency in using orthogonal arrays to generate test cases. In most 

practical implementations, OATS offers extensive coverage of the testing domain with minimal number 

of test cases through pair-wise combination of parameters affecting the tests. A library of multiple 

orthogonal arrays is available at the website http://www.research.att.com/~nias/oadir/index.html that 

includes arrays designed for various numbers of factors and levels. Even though orthogonal arrays 

provide an effective means of designing test cases, they can be considered limiting within the tests for 

http://www.research.att.com/~nias/oadir/index.html
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evaluating multimodal biometric systems given the benefits of even marginal improvements in the 

performance of such systems. A more flexible approach and selection of test cases (even though limited 

through OATS) is necessary for improved evaluations. 

To evaluate the performance of the stated multimodal biometric systems considering a combination of 

face and fingerprint readings using the NIST BSSR1 database, the author in (Gan, 2007) has generated an 

evaluation matrix. The matrix consists of the control factors, discussed in the next paragraph, and 

possible combinations of the same. The noise added to considered modalities, valued at various 

deviation intervals, are the uncontrollable factors. Combinations of the values of these factors are 

achieved by using orthogonal arrays. For example, an L9 Taguchi orthogonal array has been used to 

specify the noise variations in the combination of the four modalities. 

It has been observed that for performance analysis, partitioning the original dataset into training and 

testing datasets, referred to as cross validation within the statistical analysis field, yields more accurate 

results. To evaluate biometric systems, the partitioning of the BSSR1 dataset through one of the possible 

partitioning schemes such as re-substitution validation, holdout validation or leave one out validation 

results in a controlled factor to be considered in experimentation. Values for the normalization scheme 

and the fusion method are the other controlled factors. 

3,3 Automated Analysis 

Evaluating a biometric system to verify its performance based on a defined set of controlled and 

uncontrolled factors within the statistical analysis methodology can be time consuming. This complexity 

stems from the fact that the number of test cases that can be generated for each of the system 

parameters increases exponentially provided the noise factors, the fusion methodologies and the 

normalization schemes that are considered. The number of modalities considered is also an influence. 

Even though the test cases are reduced through the use of orthogonal arrays, previous use of manual 

applications to determine the performance of multimodal biometric systems has been shown to be cost 

ineffective. For example, in (Gan, 2007), the author has manually executed 126 experiments using 

various fusion methods and normalization schemes, with limited results. The solution proposed in the 

past employs tools that allow the user to perform some automated analysis, but still requires manual 

interaction with the system. This also poses as a limitation to the analysis capabilities. 
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Discussed in this section are the primary tools used to perform the experiments to analyze the 

performance of multimodal biometric systems based on the theoretical framework discussed in the 

previous section. 

3.3. t NISI BSSR1 Database 

In (Gan, 2007), the author has chosen the NIST BSSR1 database as the database of choice for genuine 

and impostor matching scores. The BSSR1 database is a true (actual subjects) multimodal database and 

it provides the largest dataset available in the public domain. The BSSR1 contains matching scores in 

three variations; one set combining data from face and finger fusion, one set combining scores from two 

fingers fusion and one from combining two different algorithms. Further, each of these variations 

contains matching scores from 517, 6000 and 3000 subjects, respectively. The matching scores have 

been captured through cross comparison of all subjects in similarity files. Each file contains one genuine 

score and remaining impostor scores. As used in (Gan, 2007), only the data set combining the face and 

finger modalities have been considered to evaluate the resulting multimodal biometric system. 

3.3.2 BSSR Processor 

The BSSR Processor is a Java application that operates on the BSSR1 database. The author (Gan, 2007) 

has implemented the functionality to generate comma delimited files for genuine and impostor scores 

that are used as input to the MUBI tool. The files are generated, one each for the faces and fingers 

modalities. Noise is also added to the scores through the use of Gaussian noise generator module within 

the processor. 

3.3.3 MUBI (Analysis Tool) 

MUBI is a Java application developed at West Virginia University as an analysis tool for biometric 

systems by evaluating matching scores through a selection of fusion and normalization techniques. It 

allows the user to submit genuine and impostor scores in comma delimited files, one each for multiple 

biometric modalities. The user can then choose a normalization scheme and a fusion method to plot the 

density curves of genuine and impostor scores. As an output, MUBI also provides the ROC curves for the 

modalities of choice. This enables the user to understand the performance of the single multimodal 

biometric system. 
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3.4 Problem Definition 

Even though earlier work has been done in measuring performance of multimodal biometric systems 

under the influence of noise factors (Gan, 2007) through experimentation, the existing tools such as the 

NIST BSSR1 database, the BSSR Processor and the analysis tool MUBI limit the test cases that can be 

generated due to the manual inputs. The experiments performed in the previous work have been 

conducted over a single dataset with provided modalities. To carry out meaningful performance 

comparisons for multimodal biometric systems over different biometric databases will require 

additional experiments with consideration to the levels of noise introduced in the system. From a 

usability point of view, it is also difficult to measure performance of various multimodal biometric 

systems against one another. Such a usage scenario will require the user to manually identify each 

multimodal biometric system individually and use the existing tools repeatedly to evaluate their 

performance separately. The results gathered will then have to be manually compared to generate a 

performance evaluation report. This process is tedious as well as time consuming. Further, use of the 

BSSR1 database limits the cases under study to a specific multimodal biometric system evaluation, 

provided it includes matching scores for face and fingers, fingers, and alternate algorithms only. The 

chosen intervals to introduce noise in the system also create system boundaries for the analysis 

performed. 

Due to the shortcomings discussed above and the requirements of performance evaluation of biometric 

systems, the technical and commercial viability of the studied framework has its limitations. This thesis 

and the resulting application strive to automate the process of generating test cases and input to the 

analysis tool. It is the intent to allow users the ability to combine matching scores from various 

multimodal databases that are similar in structure to create a larger subject set. The user will be allowed 

to configure the noise intervals and the range of values for each. Depending on the dataset, the 

biometric systems will be generated automatically by considering individual modalities and by 

generating subsets of the modalities from the provided dataset. The proposed tool will scale the 

analytical capabilities of MUBI to generate reports and graphs using the ROC curve as a function of FMR 

and FNMR. The reports and graphs comparing the multimodal biometric systems will be created 

automatically based on user preferences. These can then be used in a generalized context to evaluate 
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competing multimodal biometric systems and identify the commercial viability of such systems under 

various conditions of noise. 



Performance Analysis of Multimodal Biometric Systems - A n Automated Statistical Approach 

Chapter 4, Method of Analysis 
The purpose of this thesis is to extend and improve on the work that has been done in evaluating the 

performance of multimodal biometric systems from a statistical analysis point of view by automating the 

established framework. It is also the intent to develop an application that allows more freedom in the 

user's ability to control the test parameters including those for the noise factors, modalities, etc. It 

allows the system to operate over a larger dataset by combining multiple multimodal (or unimodal) 

biometric databases. This section identifies the observations made by authors in previous work (Gan, 

2007) and consequently establishes the underlying theoretical and experimental framework as a 

solution to the discussed problem statement in extending the work completed so far. 

In (Gan, 2007), the author has performed experiments to measure the performance of a multimodal 

biometric system consisting of facial images and fingerprint modalities. Using the framework discussed 

in section 3.2, the author has generated an evaluation matrix through the use of orthogonal arrays. The 

control parameters used include the data set partitioning method, the normalization schemes and the 

fusion methods. Given below, in Table 2, are the factors and the possible values. The table is followed by 

a summary of each factor including all partitioning methods, normalization methods and fusion 

methods, and indicates the underlying mathematical basis of each. 

Factor Name Possible Values 

| W ^i|i;^|||^Kg^e|Wiia3l::.; 

•::.. R&fU&stltution valid^ 

(::<m Holdout validation 

^^^^ ̂ ^s^sys^<iJ:^u^^^^^ift^j(jy0pifli^iJ5^ fiJi^S^Bl! ill̂ lft ffl Ulill 

IBilfillPi 
lipiiii= 

Min-max normalization 

Normalization Method Z-score normalization 

Tanh-estimators normalization 

V• l^^f^Ei^c^prjh^.f^4l^^i i^oc3»ic| iHIH11 i*SS1c"~"I:--_=j-̂ l=.: /.::"iS"-:£-S_j*:i"i"-_-̂ -_r_":=- =1;".".; =-_ Simple product rule based fusion 
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Factor Name Possible Values 

Simple maximum rule based fusion 

Biometric 6ain against Impostor based fusion 

Table i : Data set partitioning, data normalization and fusion methods used in previous work. 

4,1 Dataset Partitioning Methods 
As identified by the author in (Gan, 2007), dataset partitioning into training and testing sets is vital in 

conducting analysis of biometric systems' performance. It allows the evaluators to hypothesize various 

parameters to control the biometric systems' setup and measure performance using the training set to 

achieve optimum values. The performance of the system within these parameters is then validated 

through the testing set. Partitioning of datasets can be achieved through the following three methods, 

discussed in Table 3. 

Partitioning Method Description 

for the testing data. The values are then chosen randomly from the 

Holdout Validation original dataset up to the percentage value specified to form the testing 

dataset. The remaining values are used for the training (or validation) 

dataset. 
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Partitioning Method Description 

Table 2: Summary of Dataset Partitioning Methods. 

4,2 Normalization Methods 
Usually, the matching scores of different modalities are provided on different numerical scales (also 

dependent on the matching algorithm used). To create and study the performance of a multimodal 

biometric system, these scores must be considered within the same scale. For the purpose, data 

normalization is used. The author (Gan, 2007) has identified the importance of the chosen normalization 

scheme to be robust to discount the presence of outliers and efficient to identify values as close to the 

values observed if the distribution of the data points was known. Various normalization methods used 

have been presented below in Table 4. 

Normalization Scheme Description 
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formalizat ion Scheme Description 

In this normalization scheme, the normalized value is achieved by moving 

the decimal point of the original data value. The number of decimal places 

moved depends on the maximum absolute value of the dataset. 

Decimal Scaling 

Normalization 

Mathematical Representation 

d(i) 
(f(D = 

io£ 

where, d'{i) is the normalized value for the data point d(i) and c is the 

smallest number such that max(|cf'(/)|) < 1 

This method can be applied if the matching scores of the modalities 

considered follow a logarithmic scale. The method is not robust and is 

dependent on the matching scores being logarithmic. 
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Normalization Scheme Description 

Median and Median 

Absolute Deviation 

Normalization 

*iine!h\Sn&;fHe standard^ 

Under this scheme, the normalized value of each data point in a dataset is 

given by subtracting the median of the dataset from the data point and 

then dividing the value by the Median Absolute Deviation. The Median 

Absolute Deviation is the median of the absolute value of the median 

subtracted from the data point. 

Mathematical Representation 

d(i)~ median 
d'ii) = —~~-~~~~~——— 

MAD 
where, d'{i) is the normalized value of the data point d(i) and MAD = 
median (| d{i) - median j) 

This method has low efficiency. 

MM!MW'9:i:WX. : '"MX-., •'•'•:•.:"':'|;r •;.:•••• %M.Mffl:(M• ":wf'] M^M'WM-;-WMXM£Xt: 

::::y^i,;::hj:;::;:-1;;;:::;^ 
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formalization Scheme Description 

Table 3: Summary of common Normalization Schemes, 

4,3 Data Fusion Methods 
In (Gan, 2007), the author has discussed some commonly used fusion methodologies to combine 

multiple modalities at the matching scores level. As identified, the fusion methods can be applied to the 

posteriori probability of subjects being genuine. Since the proposed performance evaluation is done at 

the matching score level (with the testing component being matching scores), these are combined 

directly to identify better recognition performance (A. K. Jain, 2004). Given below, in Table 5, is a 

summary of the fusion methods. 

Fusion Method Description 

Simple Product Rule individual scores. 
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Fusion Method Description 

Mathematical Representation 

s= S: x s2 x ... x s„ 

where , s„ represents the scores for the modali t ies considered and s is the 

fused score. The subscript identif ies the individual modali t ies. 

;:t
:t;':t:;:[u.'g:t1i:i;;t;1;';;'̂ ;:tvtfe--'; ^r:j;:;-^^W ;;rj;::;;- ^ 

"&:'V::^yMMd^:W\J :'Vt '•'m : ' i f trM fusaidpore. :
 T a i i 1 * 

Mii3iti^||j|sll|pi 

In this method, the resulting fused score is the maximum score from the set 

of all scores for all modalities. 

Simple Maximum Rule MgthematicgLReBKsentation 

s = max ($;, s2,,.., s„) 

where, s„ represents the scores for the modalities considered and s is the 

final fused score. 

For the purpose of utilizing the concept for data fusion, the 

as an approximation to the URGI Ratio of Genuine toSijn|qsf&ff;ivi 
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Fusion Method Description 

This is represented as 

„,-> , ~^, probability of a subject known to be an impostor 
BGs ~ LRGi = — —— ——————•—.—•—— 

i i t f l / i ^ / i k > M f * i s* & /•* vb ! fk s fl/if Sr \i maws i* s^ ii s? st stt^ •* t v 'w, sv 

;d to achieve Foi 

bjectI probability of a subject known to be genuine 

For each unimodai biometric system, the 

the BG1 score for the modality. For a mu' 

aretransforme.. 

"nodal system, the individual BGI 

{modified} are then combined through a simple product rule to 

chieve the BGI scores of the multimodal system. 

^ eitvirt'm riVf\Anr* **i ilss frf% 

Table 4: Summary of Fusion Methods. 

The uncontrolled factors for the experiments to evaluate the performance of multimodal biometric 

systems, in (Gan, 2007), include the modalities considered in the chosen NIST BSSR1 database. Although 

known, these act as uncontrolled parameters since the deviations based on the Gaussian noise model 

are applied directly to the matching scores within defined 1%, 5% and 10% intervals. The modalities 

include the Face C and G modalities as well as the right and left Index Finger modalities. The factors and 

their values have been listed below in Table 6. 

Factor Name Possible Values 

Jio!:,^i'H£4lt.: :;4^4y~;;::&:y:. ••^;^pp]jei'l%||v]||i(|fi^ 

ISSfitlK ;: Applied 5% deviation 

l l f i l i 
11:11 

. «K5ttp||i©|iil0% fe 

Face G modality '^d^^^^^^:^^:^^. 

$ :!|:|^M«|SI^^M::;!; ;:-.:; :v,!-.;: ;* 

Applied 1% deviation 

ftftppliefl 

Applied 10% deviation 

Applied 5% deviation 
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Factor Name Possible Values 

Left Index Finger modality 

Applied 10% deviation 

Applied 1% deviation 

Applied 5% deviation 

Applied 10% deviation 

Table 5: Noise rates applied to modality scores in previous work. 

Considering the mentioned controlled and uncontrolled factors, the n matrix is generated for the NIST 

BSSR1 database limited to the multimodal biometric system defined by the modalities considered within 

the database. After generating the comma delimited genuine and impostor matching scores for each 

modality, the same are entered into MUBI. Given in the next few pages in Figures 8, 9, 10 and 11 are 

samples of the results observed in the experiments conducted in the paper (Gan, 2007). 

Density plol for left finger 

Legend 

Genuine 

Impostor 

Matching Scores 

Figure 8: Density plot for left finger modality using original scores 
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Density plol for Face C 

Legend 

Genuine 

Matching Scores 

Figure 9: Density plot for Face C using original scores 

Density plot for rlghi Index finger lex original scores 

Legend 

Genuine 

Impostor 

m 

Density pSal for right index finger for scores with- 10̂ 5 deviation 

Legend 

Genuine 

frit 

ton potior 

Malching Scores 

Figure 10: Probability density curves for right index finger with original scores and scores with 10% deviation added 
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Face G ROCCuive 

FdceJS ROC Curve 

Levi Index Flfiser ROC Curve 

Right index Finger ROC Curve 

False Acceptance Rate (FAR/FMRi 

Figure 11: ROC curves for combined modalities with simple product fusion 

Based on the above graphs, the author has observed the overall performance of the multimodal 

biometric system consisting of the Face and Finger modalities. The experiments have been carried out as 

per an evaluation matrix and the results have indicated comparatively lesser impact of noise on certain 

combination of control factors while in other cases the noise deteriorates the performance of the 

system dramatically. The author has confirmed the need to perform more thorough experiments 

necessitating the increased size of test cases also discussed in (A.K. Jain A. R., 2006). The author also 

points out the dependence of the results on the chosen FAR values. This has a direct consequence on 

the type of applications the system under test is appropriate for. 

One of the key aspects that limit the existing application in determining the performance of multimodal 

biometric systems is the dataset being considered. There are various multimodal databases available 

including the FRGC database from NIST, University of Surrey's XM2VTS, European BioSecure's MylDea 

database, etc. (Flynn, 2008). These databases cover different modalities in different conditions and with 

different equipment. As indicated in (Gan, 2007), performing tests on a larger representative database 

allows for increased confidence in the accuracy, scalability and throughput of a biometric system. By 
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enabling the use of these databases through a common platform, the user is allowed to perform analysis 

over a much larger dataset and the inherent variance in these databases present a more real world 

scenario. 

To study the effects of noise, the author in (Gan, 2007) has used values within interval levels as 

corresponding to the noise factors that are then added to the matching scores from the biometric 

databases. These intervals represent a continuous set of values that affect the system as noise. The size 

of the interval chosen, consequently, limits the ability of the system to analyze effectively the 

performance. Also, as per the experiments, the noise levels are applied to the overall biometric system 

implying that each modality considered is applied the same noise level. In a real world scenario, this is 

not true (A.K. Jain A. R., 2002). As an example, a fingerprint scanner will potentially suffer more wear 

and tear (due to direct interaction with the user) than a camera used to capture face images. 

Consequently, to simulate a multimodal biometric system with the two modalities, the noise level 

should be more for the fingerprint modality than the face modality. A larger set of values chosen using 

the Gaussian Noise Model within smaller intervals and applying noise levels independently (or to the 

overall system) can, therefore, be used to analyze the performance of biometric systems under noise 

more accurately. It is the purpose of this thesis to study the performance of multimodal biometric 

systems by allowing the user more freedom in specifying the deviations caused by noise factors over a 

much larger range of values. 

It is also the purpose of this thesis to provide a commercially viable solution that can be adequately used 

to determine the performance of multimodal biometric systems considering the noise factors, and 

operating over a larger dataset. This paves the way for more accurate comparisons to be performed 

over various flavors of multimodal biometric systems and provide a direct comparison of such systems. 

As identified earlier, manufacturers usually provide a single value of FMR to identify the capabilities of 

their biometric systems (http://www.bioid.com/sdk/docs/About EER.htm). As an example, given below 

in Figure 12 is an excerpt from the datasheet for a biometric system from Bioscrypt called the V-Station. 

http://www.bioid.com/sdk/docs/About
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VERIFICATION {1:1): 
Enrollment time: < 3 seconds 
Verificationtima <1 second 
False Acceptance Rats (FAR); Adjustable 
False Rejection Rate (FRR); Adjustable 
Equal Error Rate [EEB) (FAR=FRR): 0,1% 
Number of templates: ~ 3550 per unit 
Template size; - 350 bytes 

IDENTIFICATION (1:N): 
Enrollment time; < 3 seconds 
Identification time: < 2 seconds 
FAR; 0,2% 
FRFS: 1.0% 
Number of templates; 500 per unit* 
Template size; ~ 2500 bytes 

VOLTAGE; 
12.5-24 VDC 

(stores approximately 3SS0 it 
Desktop VNjA, P, R: V-Statio: 
power supply 
Demo VN.A, RRsV-Statton^ 
supply, case and five Pros* car 

MlF%Ri*MODIL 

Certifications: FCC CE, UL294, 
Supported Cards; GemEasy 8 
unprogrammed on the MFAI 
Contact Btosctyptfora comp 

V-StatioiuA,G,R: Integrates 
verification, unlimited cardhe 
Desktop VN.ArGvR: V-Statlc 
power supply 
Detiw¥N,ft,G,R: V-Stationi 
supply,case, and five MIFARE 

Figure 12: Datasheet excerpt from Biostrypt's V-$tation biometric system 

Using just the FAR or the FRR is inadequate for a comprehensive comparison. Consequently, it is the 

intent of this thesis to identify multiple reporting criteria including the FAR, FRR, GAR and the ROC 

curves to promote automated comparison between systems and the applicability to different 

applications including high-security, forensics, civilian, etc. identified as per the required GAR values for 

a given value of FAR. 

Discussed in the next section is the proposed application design that utilizes the theory covered in this 

section and previous sections to present the overall solution. 
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Chapters. Method of Approach 

The material presented in earlier sections indicates to some of the shortcomings in the performance 

evaluation of multimodal biometric systems using existing methodologies and applications. Even though 

the underlying theory correctly forms the basis of the necessary analysis, the limitations arise due to the 

manual nature of existing applications. As has been mentioned earlier, the key limitations include: 

• The limited dataset that can be used in performing the experiments manually. 

• Since the dataset is limited, the multimodal biometric systems (by changing the test conditions) 

that can be considered are also limited. 

• The noise factors are defined as deviations using a small number of discrete values (1%, 5% and 

10%). 

• The output observed using the existing tools is not sufficient to intuitively identify and compare 

different biometric systems. 

• Since the process of generating the matching scores, using the MUBI tool to define a single 

multimodal biometric system as per controlled factors, and retrieving the results is manual, the 

solution is not cost effective and tedious. 

This section focuses on providing an insight into the application modules that will be developed to 

support the thesis, and in the process, the use of existing applications to achieve the desired 

functionalities. 

5 , 1 S y s t e m M o d u l e s - A r c h i t e c t u r e 

The implemented system includes developed modules in addition to existing components with 

enhanced capabilities, primarily in automation of the components. Where applicable, the design from 

existing modules has been implemented through new modules to ensure compatibility with the 

developed application. The suggested usage scenario includes existing databases released by 

government and independent agencies to generate test cases and consequently define the modalities in 

the biometric system. The BSSR1 database released by the NIST will be the candidate database. 

However, the system is scalable to retrieve genuine and impostor matching scores from other databases 

as well, provided the structure of the databases remains consistent. The BSSR Processor has been 

implemented considering existing design to automatically retrieve values from the test database for 
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selected modalities and add the Gaussian noise. The generated scores are then used to create modality 

objects for the MUBI analysis tool. A wrapper around the MUBI tool has been implemented to take, as 

input, the generated scores automatically. Further, the output from MUBI (in existing application, 

graphical charts) has been enhanced to capture information in a results database. Also added to the 

system is a module to execute over the results database to generate textual reports, graphical charts 

and various comparison matrices. Native graphs generated by MUBI are also displayed and can be 

captured as images for individual tests. The overall system architecture has been included below in 

Figure 13, followed by a discussion of the key individual modules in the next section. 
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Figure 13: Automated System Modules 
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5,2 System Algorithm 

Included in this section is an overall algorithm for the implemented application. The algorithm identifies 

the major inputs to the system as well as the outputs provided by the system. The major steps within 

the execution of the application have been included. 

Algorithm BiometricPerformanceEvaluator 

Input: matching scores from biometric databases 

test setups configured in application database identifying 

- modalities to be included in multimodal system 

- partitioning scheme for data 

- normalization scheme 

-fusion scheme 

-test FAR value 

Output:ROC curves for individual modalities without fusion for test setup 

ROC curves for individual modalities with fusion for test setup 

comparison chart for all test setups 

1.0 read biometric database matching scores for each modality, if biometric database supplied 

2.0 insert each new modality found in the table BIOMETRIC_MODALITIES 

2.1 insert each genuine score in the table MODALITY_GENUINE_SCORES 

2.2 insert each impostor score in the table MODALITY_IMPOSTOR_SCORES 

3.0 read TEST_SETUP_MASTER and create objects for each configured Test Setup 

4.0 read MODAUTIES_CONFIGURATION for each Test Setup element and create objects to be added 

to Test Setup objects 

5.0 for each item in Test Setup objects, do 

5.1 generate an analyzer Mubi system 

5.2 set the system data partitioning scheme 

5.3 for each modality in the current Test Setup object do 

5.4 create an analyzer Mubi system modality 

5.5 set all values of the Mubi system modality 

5.6 add modality genuine and impostor scores 

5.7 update modality scores to implement partitioning scheme 

5.8 set modality normalization scheme and update scores 

5.9 add modality to the current Mubi system 

5.10 end for 

5.11 generate and display ROC curve without fusion applied 
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5.12 apply fusion to the Mubi system 

5.13 update all scores with the fusion methodology applied 

5.14 generate and display ROC curve with fusion applied 

5.15 endfor 

5.16 generate a comparison chart for all Test Setup objects 

6.0 end execution 

End Algorithm 

5.3 Implemented Software Application Components 

Included in this section is a discussion on the key modules that have been implemented to achieve the 

desired functionality of analyzing performances of multiple multimodal biometric systems. These have 

been identified with implemented Java components according to the overall system model given in the 

previous section. A list of all Java packages and classes has been included here. 

implemented Packages and Classes 

Following are all the classes implemented within the system. These do not include existing modules that 

have been used in the analysis including the MUBI analysis tool. A discussion of the tool is outside of the 

scope of the thesis paper and has been covered comprehensively in (Samoska, 2006). 

• com.biometrics.thesis.analyzer 

o AnalyzeTestConfiguration - The analyzer class that interacts with the MUBI system to 

analyze each test configuration individually. The class provides a comprehensive result 

on processing. 

• com.biometrics.thesis.controller 

o SystemController - The system controller that performs each step in sequential order 

including adding a biometrics' database, creating test configurations, analyzing the 

configurations and reporting the results. 

• com.biometrics.thesis.db 

o DBConnectionManager - Manages connection to the database for adding modalities to 

it as well as adding results. 

• com.biometrics.thesis.elements 
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o GenuineScoreElement - A genuine score object added to the modality to be used within 

the system. 

o ImpostorScoreElement - An impostor score object added to the modality to be used 

within the system. 

o ModalityElement - An object representing a single modality within the system that is 

read from the database. This is then used to create modalities within the MUBI analysis 

tool. The object includes various properties relevant to the modality itself. 

o TestConfiguration - An individual test configuration consisting of all parameters 

identifying the test and the modalities attached to the test. 

• com.biometrics.thesis.generator 

o GenerateModalitiesScoreDatabase - Used to read from a user identified source 

database to create system modalities along with genuine and impostor scores in the test 

database. 

o GenerateTestModalities - Used to read the test configurations and generate a list of the 

same. The test configurations contain all relevant parameters for the test as well as 

individual modalities through TestConfiguration and ModalityElement objects, 

respectively. 

• com.biometrics.thesis.testers 

o RunBiometricsTester -The test class to execute the system. 

• com.biometrics.thesis.ui 

o GARResultChart - Creates a chart to compare the various test systems. The GAR values 

for configured FAR are used to compare the test systems. 

5.4 Multimodal biometrics database 

Although the system is scalable so that it can be used with various biometrics databases conforming to 

the NIST BSSR1 database's structure, the NIST's BSSR1 database has been used for the proof of concept. 

The NIST BSSR1 database contains 4 different modalities using a total of 517 subjects, along with their 

genuine and impostor matching scores. The modalities include matching scores for right index finger, 

left index finger, face using a matching algorithm C and face using a matching algorithm G. The 

properties of these modalities, as relevant to the system, have been included below in Table 2. 
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Modality 
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Table 6; NiST BSSR1 Modalities Parameters 

5,5 Test Data Generator 

The intent of this module is to utilize information provided in the multimodal biometrics databases to 

create a single dataset of matching scores (genuine and impostor). In implementation, the class 

GenerateModalitiesScoreDatabase included in the package com.biometrics.thesis.generator has been 

developed. This component of the system reads the biometrics database (in textual format), and ports 

the value to the test database. The user is able to identify the source database (NIST BSSR1, or 

otherwise) within a folder structure and the component reads through all scores' files for each modality 

included and stores the information in the database. The stored modalities, which are individually kept 

in the database from various source databases, can be combined together to produce more complex 

multimodal biometric systems. Consequently, the module addresses the limitations of a small dataset 

with a fairly small number of subjects considered. This also extends the capabilities of existing systems 

by allowing the user to conduct experiments over a larger dataset. Both the reasons mentioned here 

allow the user to conduct experiments using a more robust system design. 

Component Process 

The component assumes the structure of the source database as similar to the NIST BSSR1. For each 

modality within the database, the component reads the genuine and impostor scores and stores the 

information in the test database in two different tables. Modalities and their properties are stored in a 

separate table. 
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5 .6 T e s t D a t a b a s e 

The test database serves multiple purposes in context of the developed application. It captures, 

uniquely, data from multiple source biometrics databases to identify the genuine and impostor 

matching scores against the individual modalities. It also includes various other properties of the 

modalities relevant to be tested. Further, the database contains test configurations. Test configurations 

uniquely identify proposed multimodal biometric systems and include parameters pertaining to the test 

configurations. Included below are the structures of all tables and the purpose of each. Also included in 

Figure 14, is the database diagram indicating the tables and the relationships between the same. 
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Figure 14: Test Database Tables and Relationships, 

BM}METR!C._M01MUTIES 

This table contains each modality that has been added to the system. Since the user can employ 

multiple biometrics databases, each modality in the databases is captured separately allowing the user 

to cross reference these modalities to generate multimodal biometric systems. The structure of the 

table is included below in Table 3 with a short description of each column. 

Column Name Column Purpose 

MODALITY ID A unique identifier of the modality used for 
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Column Name Column Purpose 

MODALITY 

reference within the system. 

Any string identifying the modality to the user. 

The score scale for the modality, 

Identifies whether the scores represent similarity 
or distance. These are used during the analysis 
process. 
Identifies if higher scores in the modality are 
better within the system. These are used during 

_ the analysis process. ___ __ ^ ^ 

NAME 

MODALITY 

«_SCALE 

SCORE SIMILAR 

MODALITY HIGHER BETTER 

Table 7: Table BIOMETRIC MODALITIES structure. 

MODALITIES_CONFIGURATION 

This table contains additional properties that are relevant to a single modality to be analyzed using the 

system. The user, as part of configuring a test system, must add modalities here (linked with the test 

system identifier) and set up configurable parameters. A list of the parameters is included below, 

identified as columns in Table 4. 

Column Name Column Purpose 

MODALITIES CONFIG ID 

MODALITY ID 
The identifier of the modality being changed for 
this instance of the configuration. 

'*-;•'&*''•••'•-*:v: Z%^§^e:to^e^plieW0I 

A decimal value as the first parameter of the 
normalization scheme (if required). 

MODALITY NORMALIZATION PARAM1 

"' fc*;i':*^*-'1:;*;-• - *•• | | : f '"• 

MODALITY NUMBER THRESHOLDS 

• • •. j jprmalaai igr 

|p||ipt§j^^ 

MODALITY THRESHOLD MIN 

An integer number identifying the number of 
thresholds to be applied to the modality in the 
analysis process. 
ttejrfiSxiifilM^ 

The minimum decimal value of a threshold for this 
modality. 



Performance Analysis of Multimodal Biometric Systems - A n Automated Statistical Approach 

Column Name Column Purpose 

MODALITY NOISE FACTOR 
A decimal value identifying the noise level to be 
applied to the scores of this modality. _ 

Table 8: Table MODAUTiES_CGNf IGURATION structure. 

MODAUTY.GENUINE..SCORES 
This table contains the genuine scores for all modalities, identified by the modality identifier. The 

columns have been included below in Table 5. 

Column Name 

wmmm 
MODALITY J D 

GENUINE SCORE 

Column Purpose 

.,;•.;• Aft autegef^r i led: ^m0^^B0^^:i0Mfflgj$^iei, 

The modality identifier of the modality for which 
this record holds the genuine score. 
The decimal value of the genuine score. 

Table 9: Table MODAUTY GENUINE SCORES structure. 

MOBAUTYJMPOSTOIISCORES 
This table contains the impostor scores for all modalities, identified by the modality identifier. The 

columns have been included below in Table 6. 

Column Name Column Purpose 

iC0REjj|»;J| jR^ ;:;p 

MODALITYJD 

i ilM PGITMRIICIIIRE1: 

An auto-generated unique identifier for the score 
record. 
The modality identifier of the modality for which 
this record holds the impostor score. 
The decimal value of the impostor score. 

Table 10; Table MODAUTYJMPOSTOR.SCORES structure, 

TESTJETUP^MASTER 

The table contains the various test setups devised by the user that are to be analyzed and compared. 

Various parameters that are relevant to generating the performance analysis of the test setups have 

also been included. The following Table 7 provides a list of all columns and identifies their purpose 

within the system. 
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Column Name Column Purpose 

MSKSETOHitt 

MODALITIES CONFIG ID 

The modalities configuration from table 
MODALITIES_CONFIGURATION that is used in this 
test as a multimodal biometric system. 

:#al|if;:i 

•be: !M?.i INNNW: 

TEST„PARTITIONJMETHOD 
A string identifying the partitioning method used 
for the test. The permissible partitioning methods 
include the ones provided in Table. 

TEST PARTITION PARAfvIZ 

$^^mMM$:km 

TEST_FUSION_SCHEME 

be used "y 
^:?SvW3f po|jh:3y§ svMakli 

method" 

the wmsmmRfWWMi^ 

A decimal value identifying the second parameter 
to be used for the partitioning method. This may 
or may not have a value depending on the 
partition method chosen. 

; - ^ f g g i m i l : M | f e 
^ :be;;u#d;j i f | f f i^ 

•• mgftb^!|;|^Spn.jy;;;;j|:r 8:mM8$MMM$P^XWi,iI. 
A string representing the fusion method chosen 
for this test setup. The permissible values include 
the ones provided in Table. 

4^:kM^w^$M§Qj0f0M 

prQyW:eS;SSornpa; 
J(|i 

in 
tS-i 

Table 11: Table TEST_SETUP_MASTER structure. 

TEST_SETUP_RESUL TS 
This table contains the results for each test configuration in terms of the GAR value against the 

configured FAR. In Table 8, the columns and their purpose have been outlined. 

Column Name Column Purpose 

T S j i s i T y i f t i M r 
The unique identifier of the test configuration for 
which this record indicates the GAR value. 
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Column Name Column Purpose 

The decimal value of the GAR for the test 
configuration against the defined FAR. 

Table 12: Table TEST_SETUP_RESULTS structure. 

5.7 BSSR P r o c e s s o r 

The BSSR Processor was an existing module that adds noise based on Gaussian distribution to the 

matching scores. The component processes the biometric database directly and generates comma 

delimited files that provide the input to the MUBI analysis tool. Currently a manual process, this module 

has been automated in a new implementation to generate genuine and impostor matching scores for 

different biometric modalities based on the Test Database. In the existing tool, the noise added to the 

scores is one of 1%, 5% or 10% deviation. A feature of automation added to this module will be a user 

configured element to determine the amount of noise added. The user, for each individual test setup is 

able to add arbitrary values of noise to the modalities. This allows the user to study the effects of noise 

using higher degree orthogonal arrays enabling a more realistic simulation as well as promotes the study 

of application based analysis of the biometric systems. 

Component. Process 

Within the process, the class GenerateTestModalities reads information from the database to generate 

individual test configurations (represented in the system through the element TestConfiguration). Each 

test configuration contains multiple modality elements represented by the Modality class. The list of 

TestConfiguration objects are then passed for analysis within the system. The existing BSSR Processor 

has not been modified for the purpose. Instead, the design has been implemented to conform with the 

created application. This forms a part of the analyzing class AnalyzeTestConfiguration within which the 

MUBI system modality elements are created with genuine and impostor scores after applying the 

defined noise rate. 

5.8 Modality Scores 

For each test system being studied, the application creates a separate MUBI analysis system and 

measures the performance of the same. For this purpose, the modality scores provided to MUBI are 
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retrieved from the test database and after having been applied the necessary noise through the BSSR 

Processor component, added directly to the MUBI system. Therefore, the scores are kept in memory as 

GenuineScore and ImpostorScore elements linked to the various modalities. 

5.9 MUBI Analysis Tool 

This existing application uses a combination of biometric modalities, normalization techniques and 

fusion methods to generate ROC curves corresponding to genuine and impostor test scores. The 

application can also generate the probability density curves for genuine and impostor distribution for 

each modality. In its present state, the application requires the user to manually create a simulated 

multimodal biometric system by adding modalities. Matching scores for each must be provided through 

text files along with configuring the normalization scheme and the fusion method to generate results for 

the specific case. 

In the process of automating this component, it has been used as a Java repository to make use of the 

exposed functions. The class AnalyzeTestConfiguration acts as an automated wrapper that creates 

multiple objects of the MUBI system based on the number of test configurations to be analyzed and 

compared. The normalization schemes, partitioning methods and fusion methods are then applied 

directly to the system (and modalities within it). The data collected from this is then stored in the 

database (to be used in further analysis, as needed) as well as displayed to the user through graphs, 

textual reports and a comparison charts. 

Component Process 

As part of the process, the AnalyzeTestConfiguration creates MUBI system objects for each test 

configuration based on the TestConfiguration objects. For each test configuration, linked modalities are 

added and normalized as per the parameters defined in the database. The system is then partitioned 

and scores are fused. Graphs for each system are then displayed to the user and textual data reported. A 

comparison chart is then provided comparing the performance of each test configuration for a given 

FAR value. The performance is measured in terms of the GAR. 

5.10 Reporting and Graphing module 

The module is responsible in providing the users a textual report on the performance of the various 

configured multimodal biometric systems (through different test configurations). It also provides the 
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user a comparison chart reporting the performance of the various multimodal biometric systems being 

tested against each other. The comparing value used is the GAR. A bar chart is created by the system 

outlining, in percentage, the success in accepting users based on a FAR value. The class GARResultChart 

performs the stated tasks. 

5,11 System. Controller 

This module acts as an authority to delegate the tasks defined, as per process, to other modules. 

Provided the complete solution involves various modules that have either been developed or have been 

extended for automated functionality, these modules must operate within a defined process cycle. The 

System Controller module identifies, through rules, the necessary user configuration elements and the 

process with which it controls the generation of the test database, the addition of noise factors, the 

analysis by MUBI and finally the generation of reports. 
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Chapter 6. Sample Experiments & Results 
Discussed in this section are some sample test experiment setups and the observed results. In the first 

sub-section, a random test experiment setup is explained along with the values of all parameters 

considered and the relevance of each. The test results are then briefly discussed. In the following sub

section, test setup to compare the previous experiments performed manually in (Gan, 2007) has been 

constructed for the automated approach. The results of the experiments have been compared and an 

analysis presented outlining the benefits of the new approach. 

6,1. Experiments Setup - Random Test Values 

Setting up the test system requires adding values to the tables listed in the section 5.5. Given below are 

excerpts of all tables with the sample data added to them. 

BI0METMCJ40DAUTIES 

This table has been designed to accommodate any modality for which genuine and impostor scores can 

be provided. For the purpose of the test, this table contains the modalities from the NIST BSSR1 

biometric database. For each modality, the score scale, similarity boolean value and score higher better 

value has been added. Given below in Figure 15 is a sample excerpt from the table. 

|:>.;ftbte^dbo".BiOMraKjMODALrntS Summary' 

I MOOALITYJD ; *TOOAUTY_NAME MQDAUTY_SCORE_SGM.E MCOALITY_SCORE_SIM£LAR MODAlITY_HISHER_BETTER 

(I •• '"iW'hs".'/"^ faceC 1.00000000 True True 

| b72-»lf2b-eef2-^ead-66ef df4faf9bf*8 right finger 250.00000000 True True 

| i5d2572ea-06ai-<TOlb-a2f3-d5f7efeS9516 leftfinger 250.00000000 True True 

| jdl3e9795-7ba9-*72-SffM781e81dlaaQ face G '50.00000000 True True 

Figure 15: BIOMETRIC..MODAUTIES tabia with initial test setup data from NIST BSSR1 biometric database. 

MODALITY_GENUINE_SCORES 

This table contains the genuine scores, in their original form, for all modalities listed in the table 

BIOMETRIC_MODALITIES. The scores are recognized based on the MODAUTYJD. Given below is the 

table containing actual data from the NIST BSSR1 database. A total of 2068 records are available in the 

present environment (provided the NIST BSSR1 database contains 517 genuine scores for each modality, 

resulting in 517 X 4 = 2068 genuine scores). Figure 16 contains a sample. 
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fab le - dSxiuMOTO_6ENUiME_SCORES Symrnary 

. SCOREJD : MODALUYJD 

3EJK2BK2EE3& ' "^'3l*:3 dl3e9793-7ba9-4S72 8frM73ie8idiaaQ 

9dbl38fc-59ae-4fe0-8257-003db290eab8 lccdS755-3566-4eil-8a7Q-9e679468778i 

|ef502fad-21Q9-4d8e-82fl-GQ6Q59924edc 5d2572ea-06Ql-4Glb-a2f3-d5f7efa59516 

;j 2a05i435-la59-415 l-9dc3-00a3f7c5e670 b7241f2b-eef2-4ead-S6ef-af4faf9bf4a8 

. j 5be2a4G3-d3ed-4d3d-9ad4-Q0e4Q591c735 5d257Zea-Q6Qi-4Qlb-a2f3-d5f7efa59516 

j 333dS64f-S3bc-432 5-a 72f-00fbf95Sf363 5d 2572ea-Q6Q1-40 lb -a2f 3-d 5f7efa 59 516 

|93id645S-b270-495d-bllc-01fllb43dbe69 b7241f2b-€ef2-4ead-86ef-af4faf9bf4aS 

ic6d2fa01-cd02-4289-a36f-011509a269ea dl3e9793-7ba9-4372-8ffM781e81dlaa0 

Jd6Z325da^e35-49b7-b9b8-QllaaG3fcb37 5d2572ea-Q601-401b-a2f3-d5f7efa59516 

j S5f7d595-1986-4d29-b653-G 18Q3a5824a 1 b7241f2b-eef2-4ead-86ef-af4faf9bf4a8 

:|f745d64f-3f6a-48ca-8f83-0^ecdde068d 5d2572ea-Q6Ql-4Clb-a2f3-d5f7efa59516 

Jbse43030-b376-4d2e-bf53-01a73f535fe5 lcod875 5-3565 -4ell-3a70-9e67946377Sl 

J4ff75e6f-9Q2f-4Gbl-8Qa5-01abal93dcb4 5d2572ea~Q601-4Qlb-a2f3-d5f7efa59516 

|bf663a74-2bla-4d0d-8425-01b3eGclel6f b7241f2b-eef2-4ead-86ef-af4faf9bf4a8 

1ce7c83ea-a8d3-4f70-bb98-0]bdflfif3elb b724.if2b-eef2-4ead-8Sef-af4fafitbf4a8 

j0e8aa8f2-S310-4292-ad63-0.1d53Q39ff21 b7241f2b-eef2-4ead-86ef-af4faf9bf4a8 

] 219d8ft5-3c87-499a-SfiJ9-0 If4f68eft 15 
! • • • • 

J2%2fccb-3bc3-43fc-b329-023fG431eS2.7 

5d2572ea-060 l-4Qib -a 2f3-d5f?efa595i6 

d 13e9793-7ba9-4872-8fff-d78 le8 Id laaO 

>3af91829-13fl-4836-b3c7-Q24bQ33d8Sd3 lccdS755-3566-4ell-3a70-9e67946877Sl 

!3d7bfe7b-9fb2-417e-blaa-025988d3a711 5d2572ea-0601-40ib-a2f3-d5f7efa59516 

|9d6a9dl5-efdl-49dQ-ad51-G27010f7cOfO 5d2572ea-G601-401b-a2f3-d5f7efa59516 

|c5f37f22-e06e-45f9-Slb4-028533G29f?8 5d2572ea-06Qi-401b-a2f3-d5f?efa59516 

GENUffJE_SCORE 

80.14683000 

0.60790000 

84.00000000 

57.00000000 

50.00000000 

11,00000000 

11,00000000 

82.11810000 

64.00000000 

61.00000000 

19.00000000 

0.73832000 

107,00000000 

7.00000000 

38.00000000 

39.00000000 

77.00090GOO 

76.90302000 

0.52017000 

87.00000000 

11.00000000 

73.00000000 

Figure 16: MODAL!TY_GENUiNE_SCORES table with initial test setup data from NIST BSSR1 biometric database. 

MODAIJTYJMPOSTORJCORES 

This table contains the impostor scores, in their original form, for all modalities listed in the table 

BIOMETRIC_MODALITIES. The scores are recognized based on the MODALITYJD. Given below is the 

table containing actual data from the NIST BSSR1 database. A total of 1067088 records are available in 

the present environment (provided the NIST BSSR1 database contains 516 impostor scores for each 

subject and for each modality, resulting in 517 X 516 X 4 = 1067088 impostor scores). Figure 17 contains 

a sample. 
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f able I dlKKMOEOMPOSTOR_SCORES Summary _ 

i SCORE ID MODALITY ID IMPOSTOR. SCORE 

b 7241f2b-eef2-4ead -86ef-af4faf9bf4a8 8.00000000 

a lda&545-e 5aa-480b -a92a-00003d3 ledaO 5d2572ea-0601-40 Ib-a2f3~d5f7efts59516 10,00000000 

2c252f79-5d86-4591-954S-0GQ04e0dfc6a dl3e9793-7ba9-4872-8fff-d781e81dlaaO 59,63693000 

d4acQa6e-2af8-4ba3-a4d3-0QG055fiM3c dl3e9793-7ba9-4372-8fff-d731e81dlaa0 • 63,94175000 

199Qe64f-2:c39-4754-89b3-0QQQce2d5S36 5d2572ea-0601-401b-a2f3-d5f7efa5951fi 7,00000000 

7416e7cl-2e37-49f3-9bb5-0000e0154cab dl3e9793-7ba9-4872-8fff-d78ie81dlaaQ 64,89241000 

bcfe4336-5593-453f-aSff-0GQ0e53b59c9 b7241f2b-eef2-4ead-36ef-af4faf9bf4a8 6,00000000 

b45393fti~2d61-4d93-91af-0000e6e99cd2 di3e9793-7ba9-4S72-Sfff-d7Sle81dlaa0 '•• 67.02085000 

7e3ab0e0-5a36-4a4d-alld-0000e8d&34ad dl3e9793-7ba9-4872-8ffT-d731e8idiaa0 ;65.99216000 

b29eQ6a3-f23e-4d41-9c97-G00Qfa0144e9 di3e9793-7ba9-4872-Sfff-d7SleSldlaa0 72.33743000 

99baled3-7f7f-4242-a 185-000127662a6e dl3e9793-7ba9-4372-Sfff-d7Sie8idiaa0 :65.59457000 

aa Id035c-c:d2e-4db0-9178-000142416d95 lccd8755-3566-4eH-8a70-9e6794687781 0.49131000 

bf72a235-85b9-4c27-a412-0Q0153aS9b47 5d2572ea-Q601-401b-a2f3-d5f7efaS9516 :5.00000000 

b0d9ebd7-€d2e-42b6-ab02-€001863fff8c lccd&755-3566-4e U-8a70-9e6794687781:0.47528000 

25f91997-8 7c6-47fe-b 703-00018be6d8a8 IccdS 75 5-3566 -4e Il-8a70-9e6 794687781 0.50819000 

7bl45ic2-iba3-459a-83ftJ-QQQ19079e0e8 5d2572ea-0601-401b-a2f3-d5f7efa59516 8.00000000 

Ibdfl3cll-5a08-4b8f-ab49-00019ce2e8da dl3e9793-7ba9-4872-SffF-d?81e8idlaaQ ;66,48454000 

76b8db42-70f7-4fa2-a491-0001a3blc7f7 dl3e9793-7ba9-4872-8fff-d7Sle81dlaa0 • 66.17708000 

7b79a23d-357a-4efb-a325-QQOlafbf7063 5d2572ea-a601-4aib-a2f3-d5f7efs59516 ; 7.00000000 

ddea2cd9-f5bf-4192-a798-0001b7312593 5d25?2ea-Q601-4Qlb-a2f3-d5f7efa59516 5.00000000 

5ad5bQfd-6bSc-4661-Sbf4^Q0ic32fc658 dl3e9793-7ba9-4372-8ffl:-d781fi81dlaa0 66.01602000 

14fab3Sf-ebed-42aa-92S4-000lec26183f d 13e9793-7ba9-4372-8ffT-d78le8IdlaaO : 72,52839000 

9fd7fBbQ-7dS6-4abe-9c31-00Q20G882798 5d2572ea-0601-401b-a2f3-d5f7efB59516 6.00000000 

82ccc348-494f-4d3d-b4c2-0002037fb9c6 b?241f2b-eef2-4ead-S6ef-af4faf9bf4a8 6.00000000 

5<xle3dl-24a8-4b8e-a26c-0002065aab28 b7241f2b-eef2-4ead-86ef-af4faf9bf4aS ; 11,00000000 

-&. - r n i . .<tr> J J m . -x££ nnn -s •>„ -t ̂  & t -li. p J n r-rtm - ^rtiL. _ n£n J r £"-».£. r n r i 

Figure 17: M0DAUTY_GENUINE.„SC0RE5 table with initial test setup data from N1ST BSSR1 biometric database. 

MODALITIES,, CONFIGURA TION 

This table includes the specific configurations for the modalities to be considered within a multimodal 

biometric system. For each MODAUTIES_CONFIGURATION_ID, multiple modalities exist through the 

MODALITYJD. This indicates for a particular multimodal biometric system with 

MODALITIES_CONFIGURATION_ID, the related modalities exist with the configured properties. In this 

sample provided below, a test system with MODALITIES_CONFIGURATIONJD [e442f6fa-d689-4cef-bc6f-
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a8654e944016] includes two modalities with MODAUTYJDs [lccd8755-3566-4ell-8a70-

9e6794687781] and [b7241f2b-eef2-4ead-86ef-af4faf9bf4a8]. For both the modalities, parameters 

including the normalization scheme, normalization parameters, number of thresholds, minimum and 

maximum values for the threshold and the noise to be applied to the modalities are configured. Figure 

18 contains a sample. 

Table - dbo.MOD..S_CONFIGUBATtON Summary 

MODALXTTESj:... MQOAUTYJD • MtBAUTYJK). 

• ' mmiMsMm lc«!3755-35&&-4e... Min-Maxttema* 

!83a>-«3e-2378-... di3e9793-7t><i9-43... Mn-MaxNorroaS... 54.835 

ie442f&fa-d689-... iccd3755-3566-4e... Min-Max Normal 

je442fi$fa-ri6SS-.. ;b724if2b-eef2-4ea,,. Min-HaxNormaij. 

;d9S5fad57-fsOS-... b7241f2b-eef2-4ea.,, Min-MaxNorma*. 

d57-fa06-... 5d2572ea-O601-4G... r%t-Max Normal. . G.000 

MODA1I7YJ10.. 

•1,000 

54.835 

-1.000 

0.000 

0.000 

0.000 

MODAUTY_NO.. 

0.898 

83.494 

0.89a 

257.000 

257.000 

2-46.000 

HODAUIYJW.. 

10 

10 

10 

10 

10 

10 

MODALITY J H . , 

0.398 

S3.494 

0,398 

257.000 

257.000 

246.000 

M o p a i r r j M R . . 

-1.00D 

54.835 

-1.000 

0.000 

0.000 

0.000 

MOD; 

1.500 

2.000 

1.500 

: 3.250 

3.250 

4.000 

Figure IS: MODALrf"l£S_CONFlGURATION table as configured for the sample test environment consisting of three multimodal 
biometric systems, each with two modalities. 

TESTJEWPJJIASTER 

This table contains the configuration of individual test systems. The configuration elements are those 

that are applied to all modalities combined. These include partitioning schemes, fusion scheme, etc. The 

value of the FAR is used to compare the various test systems. Given below is the test setup for the three 

tests for which configuration has been provided in the previous section detailing 

MODALITIES_CONFIGURATION. Figure 19 contains the test setups. 

Table - dbo.TKT_SETUP_MASTER Summary 

TESTJ3ETUPJD MODALmE5_C.,,. SCORE_SCALE TEST_PARTITT,., T£5T_PART5Ti... TEST j>ARTTTT.„ TE5T_PARTITI... TEST_FUS1QN_.,, TESTFAR.RATE 

• J 1 d J u J - 1 Z , i 3 e 4 4 2 « f a - d « 8 9 - . . . 0.000 leave One Out NULL MM Mil Simple Product R... O.lflO 

;bad95161-abcd-... d9E5bd57-fa06-... 0.000 Leave One Out NULL NULL NULL Simple Product R... 0.100 

5iba6aS9-9deO-... 882b433e-2378-... 0.000 leave One Out NUL NULL NULL SmpteProductR... 0.100 

Figure 19: TEST_SETUP„MASTER table outlining the configuration for test multimodai biometric systems with partitioning 
arid fusion schemes. 

Provided in the next section are the observed results from executing the implemented tool with the test 

environment discussed in the configuration tables. 
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6.1.1 Experiment Results 

As outlined in section 5, the various components of the system were executed sequentially as per the 

defined process. The genuine and impostor values for each test configuration are retrieved from the 

database and after applying noise levels, passed to the MUBI analysis tool to generate the resulting 

graphs. The system performances are also captured in the database to present the user an overall 

comparison of the various configured multimodal systems. Included below, in screen shots, are the 

observed results. 

ROC Curves without Fusion 
Included in this section are the ROC curves for the genuine and impostor scores for the three test setups 

without fusion applied. The curves indicate the independent modalities with noise levels applied. 

Given below in Figure 20, for the multimodal system [7f060644-f3e0-47f8-bf25-18f99844da8f], the right 

finger modality performs much better than the face C modality with a higher GAR value against the FAR 

value range. In this case, the noise factor applied to the right finger modality is 3.250% while a noise 

factor of 1.5% is applied to the face C modality. Despite of a smaller noise factor, the facial modality 

performs worse than the right finger modality as provided through the matching scores in the NIST 

BSSR1 database. 
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Figure 20: ROC curves, without fusion, for multimodal system ID [7f060644-f3e0-47f8-bf25-18f99844da8f] 

In Figure 21, the multimodal system [bad95161-abcd-4859-a02c-cl2e0a98e374] is considered with 

modalities left finger and right finger. The right finger modality is shown to perform better with a higher 

GAR value than the left finger. The noise factors applied to the genuine and impostor scores for the 

modalities left and right finger modalities are 4.0% and 3.25% respectively. 
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Figure 2 1 : ROC curves, without fusion, for multimodal system ID [bad95161-abcd-4859-a02c-cl2e0a98e374] 

Provided in Figure 22, are the ROC curves for the modalities considered in multimodal system 

[51ba6a89-9de0-4el3-afa3-c2d593ae0639]. The modalities include face G and face C unimodal 

biometric systems. A noise factor level of 1.5% and 2.0% is applied to the two modalities face G and face 

C respectively. As can be observed, for higher values of the FAR, the face C modality performs better, 

but the curves intersect at around FAR value of 0.5%, after which face G performs better. 
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Figure 2 2 : ROC curves, w i t h o u t fusion, f o r mu l t imoda l system ID [ 5 1 b a 6 a 8 9 - 9 d e 0 - 4 e l 3 - a f a 3 - c 2 d 5 9 3 a e 0 6 3 9 ] 

ROC Curves with Fusion 
In this section, the ROC curves of the different test systems have been included along with the curve 

reporting the fused performance as a multimodal system. As observed, the overall performance of the 

multimodal systems is better than the individual unimodal system. More details have been provided 

below. 

Provided in Figure 23, are the ROC curves for the multimodal system [7f060644-f3e0-47f8-bf25-

18f99844da8f]. The right finger and face C modalities included are first normalized using the Min-Max 

normalization at a scale of 1.0. The data is partitioned using the Leave One Out scheme. Simple product 
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rule fusion is applied. The fused result, indicated by the black curve is consistently better (in values of 

GAR against FAR) than the individual modality performances. 
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Figure 23: ROC curves, with fusion, for multimodal system ID [7f060644-f3e0-47f8-bf25-18f99844da8f] 

In Figure 24, the performance results for the multimodal biometric system [bad95161-abcd-4859-a02c-

Cl2e0a98e374] are captured which entails the modalities left and right fingers. The modalities are 

normalized using the Min-Max Normalization scheme with the score scale of 1.0. Leave One Out 

partitioning scheme has been employed along with the Simple Product rule based fusion methodology. 

Once again, the black curve representing the multimodal system performs better than the individual 

modalities. 
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Figure 24: ROC curves, with fusion, for multimodal system ID [bad95161-abcd-4859-a02c-cl2e0a98e374] 

Figure 25 provides the ROC curves for the multimodal system [51ba6a89-9de0-4el3-afa3-

c2d593ae0639] consisting of the individual modalities face G and face C. The reported noise factors have 

been applied along with Min-Max Normalization scheme at a scale of 1.0. The system then utilizes Leave 

One Out partitioning methodology and Simple Product Rule based fusion. The curve representing the 

multimodal system (black curve) is observed to perform consistently better than the unimodal systems. 
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Figure 25: ROC curves, with fusion, for multimodal system ID [51ba6a89-9de0-4el3-afa3-c2d593ae0639] 

Multimodal System Comparison 

The implemented system captures all data relevant to the modalities and the test configurations after 

the matching scores from the database are processed through partitioning, normalization and fusion 

schemes. This allows the user to generate a graph identifying the performance of the various configured 

multimodal systems. The performance is captured as the GAR value against a configured FAR value. For 

the purpose of the reported experiments, all test configurations included a FAR value of 0.1%. The 

performance of the systems is reported at the closest approximate of the GAR value at the configured 

FAR value. Given in Figure 26, is a chart reporting the performance of the three test systems [7f060644-

f3e0-47f8-bf25-18f99844da8f], [bad95161-abcd-4859-a02c-cl2e0a98e374] and [51ba6a89-9de0-4el3-
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afa3-c2d593ae0639]. As can be observed, the test system [bad95161-abcd-4859-a02c-cl2e0a98e374] 

consisting of the right and left finger modalities performs better than the other two. The reported GAR 

value for this system is 96.905% at 0.1% FAR. The other two systems report a marginally lower value of 

GAR. 

Figure 26: Comparison of test multimodal systems using the GAR value against the FAR value of 0.1%. 

6.2 Experiments Setup - Comparative Analysis 

In this section, a test setup to mimic some multimodal biometric systems has been designed. The 

experiments conducted in (Gan, 2007) have been given on the next page in Table 14. The multimodal 

systems corresponding to the provided values (highlighted in green) have been used to create the test 

cases. As per the evaluation matrix, the values for each test configuration are: 

Test system 1 

Biometric modalities with noise levels: face C (10%), face G (5%), left finger (1%), and right finger (10%) 

Partitioning method: Re-substitution partitioning 

Normalization method: Min-Max normalization scheme 

Fusion method: Simple sum fusion 
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Table 13: Test setups in (Gan, 2007). The configurations marked have been used for experiments in this paper. 
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Test system 2 

Biometric modalities with noise levels: face C (1%), face G (10%), left finger (10%), and right finger 

(10%) 

Partitioning method: Hold-out partitioning 

Normalization method: Min-Max normalization scheme 

Fusion method: Simple product fusion 

Test system 3 

Biometric modalities with noise levels: face C (1%), face G (5%), left finger (5%), and right finger (5%) 

Partitioning method: Leave one out partitioning 

Normalization method: Min-Max normalization scheme 

Fusion method: Simple minimum fusion 

Test system 4 

Biometric modalities with noise levels: face C (5%), face G (10%), left finger (1%), and right finger (5%) 

Partitioning method: Leave one out partitioning 

Normalization method: Decimal scaling normalization scheme 

Fusion method: Simple maximum fusion 

The four test system configurations presented above have been randomly selected across the range of 

the GAR values achieved in experiments conducted in (Gan, 2007). Similar to the application database 

configurations presented in section 6.1, the test systems were configured as independent multimodal 

biometric systems. Given in the following section are the results for each of the configured multimodal 

systems along with a comparison with earlier experiments carried out in (Gan, 2007). 

6,2,1 E x p e r i m e n t R e s u l t s 

The results for performance evaluation of the multimodal biometric systems created in the 

implemented application based on the test setups discussed in the previous section have been reported 

here. Included is a review of the ROC curves generated for each multimodal system without applying 
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fusion to them, followed by ROC curves generated for each multimodal system with the application of 

fusion algorithms. 

ROC Curves without Fusion 

Provided in this section are the results of utilizing the developed system prior to applying the configured 

fusion methods. Figures 27, 28, 29 and 30 provide the results of evaluating the test setups 1, 2, 3 and 4, 

respectively. For all noise variations, in general, the finger modalities outperform the face modalities. 

The results are consistent with previous work in (Gan, 2007), however, the values of the measurable 

units GAR and FAR are observed to be slightly different. 
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Figure 27: ROC curve, without fusion, for Test setup 1. 
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The above graph provides the ROC curve for Test setup 1 consisting of all modalities provided in the 

NIST BSSR 1 database. The setup includes the applied noise levels, partitioning scheme and 

normalization scheme. 

Figure 28: ROC curve, without fusion, for Test setup 2. 

The above graph provides the ROC curve for all NIST BSSR1 modalities with noise deviations, partitioning 

scheme and normalization schemes applied. The matching scores in the above graph have not been 

fused for this result. 



Performance Analysis of Multimodal Biometric Systems - An Automated Statistical Approach | | 

Figure 29: ROC curve, without fusion, for Test setup 3. 

The above graph identifies the results in the ROC curve for Test setup 3. The normalization scheme, 

partitioning scheme and noise deviation levels have been applied for the results. No fusion method has 

been utilized for these results. 
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Figure 30: ROC curve, without fusion, for Test setup 4. 

The above graph identifies the results for Test setup 4 without the application of a fusion method. All 

modalities of the NIST BSSR1 database have been used along with the configured noise deviation levels, 

partitioning scheme and normalization scheme. 

ROC Curves with Fusion 

The results provided in this section include graphs retrieved from the implemented application 

identifying the performance of the configured multimodal biometric test systems after having applied 

the fusion methods. The black curve identifies the fused performance of the systems combining 



Performance Analysis of Multimodal Biometric Systems - An Automated Statistical Approach 

performance of all individual modalities. The following Figures 31, 32, 33 and 34 provide the ROC curves 

for the biometric systems after the application of the fusion method. 

0.001 001 . 0.1 .1 10 100 

I FALSE ACCEPT RATE (%) III 

Figure 31: ROC curve, with fusion, for Test setup 1. Utilizes Simple Sum rule based fusion. 

The above graph indicates through the black curve, the performance of the multimodal system 

configured through Test setup 1. The multimodal system performs better consistently for all values of 

the FAR in comparison with the individual modalities. The GAR value for FAR = 0.1% is observed to be 

slightly lower in comparison with the experiments carried out in (Gan, 2007). This can be attributed to 

the precision in the matching scores. The implemented solution retrieves true values from the NIST 

BSSR1 database while previous work allowed for capturing lower precision values. 
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Figure 32: ROC curve, with fusion, for Test setup 2. Utilizes Simple Product rule based fusion. 

The above graph provides the ROC curve for Test setup 2. Again, similar to Test setup 1, the multimodal 

system performs better than individual modalities. 
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Figure 33: ROC curve, with fusion, for Test setup 3. Utilizes Simple Minimum rule based fusion. 

The above graph identifies the ROC curve for the four modalities from NIST BSSR1 database and the 

combined multimodal system (black curve). The multimodal system performs better than individual 

modalities over the range of FAR values. This system, however, does not perform as well as the previous 

two tested systems. 
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Figure 34: ROC curve, with fusion, for Test setup 4. Simple Maximum rule based fusion used. 

The above graph indicates the performance of the multimodal system configured through Test setup 4. 

The graph identifies that the overall multimodal system utilizing Decimal Scaling normalization, Leave 

one out partitioning scheme and the Simple Maximum rule based fusion method does not perform as 

well as the other Test system setups. It can also be derived from the graph that over intervals of FAR 

values, the multimodal system performs worse than the right finger modality for the applied noise 

deviations. 
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Multimodal Systems'Comparison 

Given below in Figure 35 is the chart comparing the performance of the four Test system setups 

configured in section 6.2. The Test setup 1 performs better than the rest with a GAR value of 99.033% 

for the configured FAR value of 0.1%. The performance of the remaining systems (between 79% and 

88%) deteriorates consistently, with Test system 4 performing worse than an individual modality. The 

values observed for each test system are slightly different than those observed for the same setup in 

(Gan, 2007). This is potentially due to the difference in precision of decimal values in the system. This 

can also be attributed to the various parameters for normalization schemes, partitioning methods and 

fusion methods that the author of this paper did not have access to. 

Biometrics Systems Performance - Test Systems Comparison 

Figure 35: Comparison of the performance of multimodal systems configured in Test setups 1, 2, 3 and 4. 



Performance Analysis of Multimodal Biometric Systems - An Automated Statistical Approach | 

Further analysis of the results and the conclusions drawn from the same has been covered in the next 

section. The next section also discusses directions for future work based on the limitations of the 

implemented approach and the potential for improvements in the same. 
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Chapter 7, Conclusion 

The underlying research and the developed application enhance our ability to systematically evaluate 

the performance of multimodal biometric systems. The thesis has identified some of the shortcomings 

in existing methods in their efficiency, effectiveness and the ease of use. The resulting application that 

has been developed by combining the theoretical framework provided in previous research and existing 

applications demonstrates a viable solution to conduct more evolved experiments. Given in the next sub 

section are the contributions of this research followed by a section identifying potential enhancements 

for the future. 

7 , 1 C o n t r i b u t i o n s 

As indicated in the problem statement covered in section 3.4, existing work in the field of performance 

evaluation of multimodal biometric systems suffers from the inability of a researcher to combine 

multiple biometric databases, retrieve results that are user friendly, or conduct a large number of 

experiments. The configurable system developed as part of this thesis provides enhancements and 

allows the users to create multimodal biometric systems by combining matching scores provided 

through various multimodal databases. It also allows the users to generate results in the forms of graphs 

and charts to easily analyze performance of the configured biometric systems. Other factors to be 

considered in evaluating performance including the partitioning scheme, the normalization scheme, the 

fusion methods and noise levels, are also configurable to allow users to conduct a larger number of 

experiments with more educated parameter values. As per design, the developed application is scalable 

to retrieve any multimodal databases added to it, for users to arbitrarily combine modalities and 

enhances the user's ability to generate and consider various multimodal biometric systems. As identified 

in (Gan, 2007) for future work, the system alleviates the shortcomings of limited factors that can be 

considered (within previous work). An internal database is utilized that enables users to combine 

multiple biometric databases (unimodal or multimodal), thus providing a larger dataset. This enhances 

previously conducted research. Enhanced reusability is also provided by capturing test system 

configurations and results in increased efficiency. 
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7,2 Future Work 

Even though this thesis enhances the researchers' and commercial users' ability to evaluate biometric 

systems for their performance, it allows for future work to further enhance various aspects of the 

implementation. These have been listed below. 

1. Technical hurdles in using the application - The application has been designed to be portable 

across all platforms. However, it is a single implementation based system. This requires for a 

high end system with sufficient memory to maintain millions of data records in memory and 

generate graphical results. A distributed system provided through services can allow this 

application to be used without physical access to the machine where it resides. It also can 

ensure more effective use of computing resources. 

2. Reporting abilities - The application provides reports that are displayed to the users using the 

system locally. The graphs generated can be viewed on the host machine which may not be 

accessible by others. A web based interface that allows users to access the application and view 

results remotely will be an effective enhancement. 

3. Services based system -The application is modular in nature but tightly coupled to execute on a 

single machine. This also makes it difficult for a more collaborative effort in evaluating 

performance of multimodal biometric systems. The same application implemented using a 

Service Oriented Architecture will allow researchers and other users from any physical location 

to submit biometric databases for consideration, configure modalities and test multimodal 

biometric systems. 
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