CHEMOENZYMATIC SYNTHESES OF NOVEL ENANTIOPURE OXAZOLIDINES AND β-LACTAMS

by
Jianmei Wang
M. M., Harbin University of Commerce, China, 2000
B. Sc., Beijing University of Traditional Medicine, China, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

In the Graduate Academic Unit of Chemistry

Supervisor: Margaret M. Kayser (Ph. D., Chemistry)
Co-supervisor: Ghislain Deslongchamps (Ph. D., Chemistry)
Examining Board: Jeffrey Banks (Ph. D., Chemistry)
Karen Kidd (Ph. D., Biology)

This thesis is accepted by the

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK
May, 2007

Library and Archives	Bibliotheque et
Canada	Archives Canada
Published Heritage	Direction du
Branch	Patrimoine de l'édition

395 Wellington Street Ottawa ON K1A ON4 Canada

Your file Votre référence

ISBN: 978-0-494-56489-9
Our file Notre reférence
ISBN: 978-0-494-56489-9

Abstract

NOTICE: The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.
Canada'

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

This thesis describes the preparation of several important enantiopure compounds. The "green chemistry" approach employed throughout the project combines simple traditional syntheses with biocatalysis to realize several transformations with high regioand enantioselectivity.

Enantiopure 3-hydroxy- β-lactams are important building blocks for the synthesis of many bioactive compounds including paclitaxel side chain analogues. The poor aqueous solubility and growing drug resistance of paclitaxel significantly restricted its clinical applications and promoted a search for better analogues, particularly the analogues with modified C13 side chain since the modifications in the C13 side chain are relatively easy to make, and were shown to improve paclitaxel's performance. The novel β-lactams, with modified chains in position 4 (the precursors of C 13 side chain) were obtained in a series of simple and efficient steps. The corresponding enantiopure products were obtained via baker's yeast reduction or lipase-mediated kinetic resolution.

Several wild type and mutated reductases overexpressed in E. coli enlarge the family of new enantioselective bioreductants. The enantio- and stereoselectivity of purified enzymes were evaluated against β-chloro- α-keto ester and α-keto- β-lactam substrates. Screening identified red yeast, Sporobolomyces salmonicolor (SSCR) and its mutants as the most highly enantioselective bioreagents for reduction of β-chloro- α-keto ester. The screening of individual reductases for α-keto- β-lactams demonstrated that none of the enzymes was selective towards these rigid substrates. Since most reductases, either from different microorganisms or from the site-directed mutagenesis, exhibit excellent enantioselectivity for the reduction of acyclic α-keto esters, the lack of enantioselectivity

in the reduction of β-lactams was rationalized in terms of the rigid and symmetrical structure of the latter compounds. The mutations of amino acids close to the active site in the SSCR mutants were expected to enhance the S-selectivity according to Prelog's rule for enzymatic reductions. In fact, screening of the mutants showed them to be highly enantioselective and provided a method for the preparation of enantiopure oxazolidines.

Oxazolidines are useful biologically active molecules and are widely used as important chiral auxiliaries and ligands for asymmetric syntheses. A series of novel oxazolidines were synthesized in high yields using the simple and clean reaction of DMSO $/ \mathrm{P}_{4} \mathrm{O}_{10}$ as formaldehyde equivalent. This method was extended to the preparation of optically pure oxazolidines and α-hydroxy- β-amino esters from the enantiopure β -chloro- α-hydroxy ester obtained via biotransformations with new reductases.

ACKNOWLEDGEMENTS

I would like to express my deep thanks and respect to Dr. Margaret M. Kayser for her help throughout this project. Especially I appreciate the research experience and scientific thinking learned from Dr. Kayser. Her guidance and knowledgeable discussions were always enlightening during the progress of the research.

I am grateful to Dr. Hua Lin for providing research facilities and supporting me scientifically during my time in Southern Methodist University (Dallas, TX). I would like to thank Dr.Yan Yang and Dr. Dongming Zhu also for the fruitful discussions and help in the laboratory. The overall collaboration was very enriching.

I would also thank Dr. D. Hooper (Dalhousie University, Halifax, NS) for help in NMR analyses, Dr. C. K. Tompkins for help in thesis editing, Kim Banks and Crystal L. Cavanaugh for departmental help. I am grateful to the examining committee (Drs. Margaret M. Kayser, Ghislain Deslongchamps, Jeffrey Banks, Karen Kidd) and to the departmental readers (Drs. David Magee, Andreas Decken, and Saba M. Mattar). I especially thank Dr. Magee for many important discussions and suggestions that he made during the writing of my thesis. I want to thank my group colleagues, Abir Lefsay and Chris Clouthier, for their help and encouragement.

Finally, I would like to give my special thanks to my husband, Leiming Li and my son, Kevin Ali Li who gave me endless support and whose love enabled me to complete my study.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi
CHAPTER I INTRODUCTION 1
1.1 Paclitaxel and its analogues 1
1.1.1 Phenylglycidate routes toward the synthesis of the paclitaxel side chain 3
1.1.2 Synthesis of paclitaxel C-13 side chain precursors: chiral β-lactams 6
1.1.3 Structural modifications of paclitaxel 8
1.2 Reduction of α-ketoesters with reductases. 10
1.3 Oxazolidine 18
1.4 References 24
CHAPTER 2 CHEMOENZYMATIC SYNTHESES OF NOVEL β-LACTAMS 31
2.1 Introduction 31
2.2 Results and Discussion 34
2.2.1 Synthesis of racemic cis acetoxy- β-lactam by the Staudinger reaction 34
2.2.2 Preparation of $(3 S, 4 R) \mathbf{- 2 - 1 0},(3 R, 4 S) \mathbf{- 2 - 1 0}$, and $(3 R, 4 R)-\mathbf{- 1 0} \mathbf{1 0}$ from lipase and baker's yeast resolution 35
2.2.3 Absolute configuration of β-lactam 2-10 37
2.2.4 Synthesis of racemic cis and $(3 R, 4 S) \beta$-lactam bearing a hydroxyl group 39
2.2.5 Synthesis of racemic cis and ($3 R, 4 S$) β-lactam bearing a morpholine group 41
2.2.6 Other approaches for morpholin- β-lactam 2-19 44
2.3 Conclusions 46
2.4 Experimental 47
2.4.1 Acetoxy glycolic acid 2-7 47
2.4.2 Carboxylic acid chloride (acetoxylacetyl chloride) 2-8 47
2.4.3 5,5-Dimethyl-2-phenyl-1,3-dioxane 2-3 47
2.4.4 3-(Benzyloxy)-2,2-dimethylpropan-1-ol 2-4. 48
2.4.5 3-(Benzyloxy)-2,2-dimethylpropanal 2-5. 49
2.4.6 (E)-N-(3-(Benzyloxy)-2,2-dimethylpropylidene)-4-methoxybenzenamine 2-6 49
2.4.7 cis-(\pm)-3-Acetoxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)- azetidin-2-one 2-9 50
2.4.8 General procedure for lipase resolution of racemic cis 3-acetoxy- β-lactams 51
2.4.9 (3R,4S)-(+)-3-Hydroxy-4-(2-hydroxy-1,1-dimethylethyl)-1-(4-methoxyphenyl) azetidin-2-one 2-11 52
2.4.10 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethyl ethy)- 1-(4-methoxyphenyl)azetidin-2-one 2-15. 53
2.4.11 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-hydroxy-1,1-dimethylethyl)-1- (4-methoxyphenyl)azetidin-2-one 2-16 54
2.4.12 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(1-formyl-1,1-dimethylmethyl)-1-
(4-methoxyphenyl)azetidin-2-one 2-17. 54
2.4.13 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-morpholin-1,1-dimethylethyl)- 1-(4-methoxyphenyl)azetidin-2-one 2-18 55
2.4.14 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1, 1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-12 56
2.4.15 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1, 1-dimethylethyl)azetidin-2-one 2-13 57
2.4.16 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1,1-dimethylethyl)-1-(t-butoxycarbonyl)azetidin-2-one 2-1458
2.4.17 (4R)-4-(2-Benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2,3- dione 2-20 59
2.4.18 (3R,4R)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxy- phenyl) azetidin-2-one 2-10 60
2.4.19 cis-(\pm)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl) azetidin-2-one 2-21 61
2.4.20 cis-(\pm)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl)-1-(t - butyloxycarbonyl)azetidin-2-one 2-22 62
2.4.21 General procedure for the preparation of (S)-MTPA-derivatives of 2-10 62
2.5 References 65
CHAPTER 3 EVALUATION OF SEVERAL MICROBIAL REDUCTASES AS ENANTIOSELECTIVE REDUCING AGENTS FOR α-KETOESTERS 68
3.1 Introduction 68
3.2 Results and Discussion 73
3.2.1 Substrates for screening of reductases overexpressed in E. coli. 73
3.2.2 Assignment of the absolute configuration by lipase resolution 73
3.2.3 Reduction with baker's yeast 75
3.2.4 Screening result of compound 3-4 with isolated reductases and mutants 78
3.2.5 Screening results for 3-oxo- β-lactams 2-20 and 3-7 83
3.3 Conclusions. 86
3.4 Experimental 87
3.4.1 Activity assay of the carbonyl reductase 87
3.4.2 Enantioselectivity of the enzymatic (SSCR) reduction of α-ketoesters 3-3, 2-20, and 3-7 87
3.4.3 General procedure for biotransformations with baker's yeast 88
3.4.4 Methyl 3-chloro-2-oxo-3-phenylpropanoate 3-3 88
3.4.5 Reduction of $\mathbf{3 - 3}$ by NaBH_{4} 89
3.4.6 General procedure for lipase catalyzed kinetic resolution of syn- and anti-methyl
3-chloro-2-hydroxy-3-phenylpropanoate 3-4 90
3.5 References 91
CHAPTER 4 CHEMOENZYMATIC SYNTHESIS OF NEW ENANTIOPURE OXAZOLIDINES 93
4.1 Introduction 93
4.2 Results and Discussion 95
4.2.1 Synthesis of syn-oxazolidine 4-4 from racemic trans-epoxide 4-1 95
4.2.2 Proposed mechanism of oxazolidine formation 98
4.2.3 Synthesis of enantiopure oxazolidines via enzymatic chemical reaction 101
4.3 Conclusions 105
4.4 Experimental 106
4.4.1 Racemic trans-ethyl phenylglycidate 4-1 106
4.4.2 General procedure for the enzymatic (SSCR) reduction 106
4.4.3 (2R,3R)-(+)-Methyl 3-phenylglycidate 4-10 107
4.4.4 General procedure for the epoxide ring opening 108
4.4.5 General procedure for the formation of oxazolidines 4-4 and 4-12 111
4.5 References 115
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 120
5.1 Conclusions 120
5.2 Future work 121
APPENDIX I General experimental conditions 123
APPENDIX II Protocols of gene expression and purification 125
(1). The protocol of gene expression and purification of the carbonyl reductase from Sporobolomyces salmonicolor (SSCR) 125
(2). The protocol of gene expression and purification of the carbonyl reductase from Candida magnoliae (CMCR). 126
(3). The protocol of gene expression and purification of the carbonyl reductase from 7α-hydroxy-steroid dehydrogenase (7 α-HSDH). 127
(4). The protocol of gene expression and purification of the carbonyl reductase $a d h D$ (PFADH) from hyperthermophilic archaeon pyrococcus furiosus. 128
APPENDIX III Representatives of specific activity of enzymes 129
APPENDIX IV GC, HPLC spectra 131
(1). Chiral GC spectra for four diastereoisomers of 3-4 from NaBH_{4} reduction 131
(2). syn- and anti-3-4 were resolved by Lipase PS to yield acetylated ester respectively
with chiral GC analysis. 132
（3）．Chiral GC spectra of screening results from α－ketoester 3－3 reduction． 133
（4）．Chiral GC trace of SSCR（wild type）reduction of β－chloro－α－ketoester 3－3 134
（5）．SSCR mutant（N207V）reduction（ representative of mutants）on β－chloro－α－ ketoester 3－3 135
（6）．Chiral GC analysis of isolated（ $2 S, 3 S$ ）－（＋）－4－9 from enzymatic reduction． 135
（7）．Chiral GC trace of $(2 R, 3 R)-(+)$－methyl 3－phenylglycidate $\mathbf{4 - 1 0}$ 136
（8）．Chiral HPLC trace of racemic 4－12c． 136
（9）．Chiral HPLC trace of $(4 S, 5 R)-(+)-4-12 \mathrm{c}$ ． 137
（10）．Chiral HPLC trace of $(3 R, 4 R)-\mathbf{2 - 1 0}$ in chiracel OD－H column． 137
（11）．Chiral HPLC analysis of screening results on 3－oxo－β－lactam 3－7． 138
APPENDIX V NMR spectra 140
（1）．trans－（ \pm ）－Methyl 3－phenyloxirane－2－carboxylate 3－6． 140
（2）．syn－（ \pm ）－Methyl 3－chloro－2－hydroxy－3－phenylpropanoate 3－4 141
（3）．Methyl 3－chloro－2－oxo－3－phenylpropanoate 3－3（or 4－8） 142
（4）．（2S，3S）－（＋）－Methyl－3－chloro－2－hydroxy－3－phenylpropanoate 4－9 143
（5）．（ $2 S, 3 R$ ）－（＋）－Methyl－3－chloro－2－hydroxy－3－phenylpropanoate 4－9 144
（6）．$(2 R, 3 R)$－（＋）－Methyl 3－phenylglycidate 4－10 145
（7）．trans－（土）－Ethyl 3－phenylglycidate 4－1 146
（8）．anti－（土）－Ethyl 2－hydroxy－3－phenyl－3－（phenylamino）propanoate 4－3a 147
（9）．anti－（土）－Ethyl 3－（4－methoxyphenylamino）－2－hydroxy－phenylpropanoate 4－3b． 148
（10）．anti－（土）－Ethyl 3－（4－chlorophenylamino）－2－hydroxy－phenylpropanoate 4－3c 149
（11）．anti－（ \pm ）－t－Boc protected $4-3 \mathrm{~b}$ 150
（12）．cis－（ \pm ）－Ethyl 3－（4－methoxyphenyl）－4－phenyl－oxazolidine－5－carboxylate 4－4b． 151
(13). cis-(\pm)-Ethyl 3-(4-chlorophenyl)-4-phenyl-oxazolidine-5-carboxylate 4-4c 152
(14). (2R,3S)-(+)-Methyl 3-(4-methoxyphenylamino)-2-hydroxy-3-phenylpropanoate
4-11b 153
(15). (2R,3S)-(+)-Methyl 3-(4-chlorophenylamino)-2-hydroxy-3-phenylpropanoate
4-11c 154
(16). (2R,3S)-(+)-Methyl 3-(4-chlorophenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-12c 155
(17). (4S,5R)-(+)-Methyl 3-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5- carboxylate 4-12b. 156
(18). 3-(S)-(-)-MTPA-(3R,4S)-(+)-2-10 from lipase PS resolution 157
(19). 3-(S)-(-)-MTPA-(3S,4R)-(+)-2-10 from lipase PS resolution 158
(20). 3-(S)-(-)-MTPA-(3R,4R)-(+)-2-10 from baker's yeast reduction of (4R)-oxo- $\beta-$ lactam 159
(21). 5,5-Dimethyl-2-phenyl-1,3-dioxane 2-3 160
(22). 3-(Benzyloxy)-2,2-dimethylpropan-1-ol 2-4 161
(23). (E)-N-(3-(Benzyloxy)-2,2-dimethylpropylidene)-4-methoxybenzenamine 2-6 162
(24). cis-(土)-3-Acetoxy-4-(2-benzyloxy-1,1-dimethylethyl-1-(4-methoxyphenyl) azetidin-2-one 2-9 163
(25). (3R,4S)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl) azetidin-2-one 2-10 164
(26). (3R,4S)-(+)-3-Hydroxy-4-(2-hydroxy-1,1-dimethylethyl)-1-(4-methoxyphenyl) azetidin-2-one 2-11 165
(27). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-(1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-12.................................. 166
(28). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-(1,1-dimethylethyl)azetidin-2-one 2-13 167
(29). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-(1,1-dimethylethyl)-1-(t-butoxycarbonyl)azetidin-2-one 2-14
(30). (3R,4R)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl) azetidin-2-one 2-10 169
(31). (4R)-4-(2-Benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2,3-dione 2-20 170
(32). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-15 171
(33). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-hydroxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-16 .. 172
(34). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-formyl-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-17... 173
(35). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-morpholin-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-18 ... 174

Vita

LIST OF TABLES

Table 1-1 Reduction of 3-oxo- β-lactam with selective GST-purified enzymes from baker's yeast 12
Table 1-2 Enantioselectivity of 7 α-hydroxysteroid dehydrogenase toward various α - ketoesters 13
Table 1-3 Heterologous reductases overexpressed in E. coli with references for overexpression and purification methods 14
Table 1-4 Reduction of α-ketoesters by SSCR. 16
Table 2-1 Yields of compounds: 2-3 to 2-9 34
Table 2-2 Properties of the three enantiomers of 2-10 via lipase and yeast resolution. 37
Table 2-3 Enantiopure compounds 2-9 to 2-14. 41
Table 2-4 Enantiopure compounds 2-15 to 2-18. 43
Table 2-5 Methods of reductive amination. 43
Table 3-1 Retention times of stereoisomers on chiral phase GC. 75
Table 3-2 Conversions (\%) obtained in yeast-catalyzed reduction of 3-3. 76
Table 3-3 Comparison between chemical reduction and yeast reduction. 78
Table 3-4 Screening results of the biocatalytic reduction of compound 3-3. 80
Table 3-5 Conversion and side-product percentages of 3-4. 81
Table 3-6 Screening substrate 3-7 with reductases and mutants. 84
Table 4-1 Isolated yields of compounds 4-3 and 4-4. 97
Table 4-2 Melting points, optical rotations and isolated yields for compounds 4-11 and 4-12. 103

LIST OF FIGURES

Figure 1-1 Structures of paclitaxel (Taxol^{8}) and its analogues docetaxel, TX-67 and
\qquad

Figure 1-2 Influence of structural modifications on the cytotoxicity and improved water solubility of paclitaxel analogues... 9

Figure 1-3 New taxane analogues bearing a morpholine moiety. 10
Figure 1-4 Two basic genetic tools (gene overexpression and gene knockout) allow for rational design of the engineered strain and improve the stereoselectivity of baker's yeast reduction... 11

Figure 1-5 Stereoview of the interactions between SSCR (yellow carbon atoms) and NADPH (gray carbon atoms) illustrated by the programs MOLSCRIPT and
\qquad
Figure 1-6 Examples of oxazolidine ligands used and structurally characterized metal complexes.. 19

Figure 1-7 Clinical drug Dox (1-27a), Doxaz (1-27b), potent cytotoxins Doxf (1-27c) and proposed carbamate prodrug of Doxazolidine (1-27d). 21

Figure 2-1 Mechanism of the Staudinger reaction.. 32
Figure 2-2 $(3 R, 4 S),(3 S, 4 R)$ and ($3 R, 4 R$)-2-10 resolved on chiral HPLC column............ 38
Figure 3-1 (S)-Alcohol obtained following Prelog's rule... 69
Figure 3-2 NAD(P)H-regeneration system for the reduction of α-ketoesters. 70
Figure 3-3 Four α-ketoesters attempted for screening.. 71
Figure 3-4 Conversion of β-chloro- α-ketoester 3-3 in baker's yeast reduction............... 76
Figure 3-5 Chiral GC spectra of baker's yeast reduction. .. 78

Figure 3-6 Correlation between starting material and products in resolution. 82
Figure 3-7 Reduction and product distribution in the screening test................................ 85
Figure 3-8 Separation of four enantiomers of 3-8 on a chiral (S, S)-Whelk-O 1 column. 85 Figure 4-1 Oxazolidines obtained from an amino-alcohol and a carbonyl compound..... 94

Figure 4-2 Ephedrine and oxazolidines are useful chiral auxiliaries................................ 94
Figure 4-3 X-Ray crystal structure of ethyl 3-(methoxyphenyl)-4-phenyl-1,3-oxazolidine-
5-carboxylate 4-4b 97

Figure 4-4 ${ }^{13} \mathrm{C}$-labelled oxazolidine in ${ }^{13} \mathrm{C}$-NMR. ... 101

LIST OF ABBREVIATIONS

Ac	acetyl
Ar	aryl(aromatic)
\AA	Angstrom
Bn	benzyl
t-Boc	tert-butyoxycarbonyl
CAN	(NH4 $)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$, ammonium cerium nitrate
CMCR	Candida magnoliae
COBE	configuration 4-chloro-3-oxobutanoate
Conf.	conversion
Conv.	diethyl L-tartrate
CSA	dynamic kinetic resolution
L-(+)-DET	equivalent
DKR	eschemical shift
δ	diastereomer ratio
DMAP	dimethyimethylaminopyridine sulfoxide
Equiv.	N,N-dimethylformamide
DMF	d. r.

Et	ethyl
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
EtOAc	ethyl acetate
EtOH	ethanol
FID	flame ionization detector
GC	gas chromatography
GDH	glucose dyhydrogenase
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	Herz
7-HSDH	7α-hydroxy-steroid dehydrogenase, Bacteroides fragilis
r.t.	room temperature
RT	retention time
IR	infrared spectroscopy
Kpi	potassium phosphate buffer
LB	Luria-Bertani
LDA	lithium diisopropylamide
Lit.	literature
Me	methyl
MTPA	α-methoxy- α-trifluoromethylphenylacetic acid
MS	molecular sieves
MW	molecular weight
NADH	nicotinamide adenine dinucleotide

NADPH	nicotinamide adenine dinucleotide phosphate
NMR	nuclear magnetic resonance spectroscopy
NMMO	N-methyl-morpholine N-oxide
OD	Optical density
PFADH	Archaeon Pyrococcus furiosus
Ph	phenyl
PMP	iso-propyl
i-Pr	Saccharomyces cerevisiae
S.cerevisiae	Sporobolomyces salmonicolor
SSCR	tert-butyldimethylsilyl
TBDMS (TBS)	2,2,6,6-tetramethyl-1-piperidinyloxy, free radical
TEMPO	trifluoroacetic acid
TFA	tetrahydrofuran
THF	toluene
Tol.	triisopropylsilyl
TIPS	thin layer chromatography
TLC	the maximum enzyme velocity
TsCl	

CHAPTER I INTRODUCTION

1.1 Paclitaxel and its analogues

Abstract

Paclitaxel $\left(\right.$ Taxol $\left.^{\left({ }^{(}\right)}\right)$is one of the most powerful anticancer agents ${ }^{[1]}$ and has been approved for the treatment of several cancers. ${ }^{[2]}$ Because of its limited availability in nature, paclitaxel used in treatment is prepared by attaching a synthetic $\mathrm{C}-13$ chain to a readily available natural product, 10-deacetylbaccatin III (baccatin III) obtained from the plants such as Taxus canadensis (Figure 1-1). ${ }^{[3,4]}$

Although highly successful in cancer treatment, paclitaxel, like any drug, presents many problems. Its poor solubility in water, inability to cross the blood-brain barrier (BBB), lack of oral bioavailability, ${ }^{[5]}$ and increasing paclitaxel-resistance, all of which were encountered in the treatment of many cancers, prompted the search for new paclitaxel analogues. In recent years, several analogues that compensate for some of paclitaxel's deficiencies have been identified. ${ }^{[6]}$ For example, replacement of the benzoyl group with the Boc group on the nitrogen at position 3' of the $\mathrm{C}-13$ side chain gave docetaxel (Taxotere ${ }^{\circledR}$), which is more water soluble and highly active in the treatment of certain cancers. ${ }^{[7]}$ Orally bioavailable analogue BMS-275183, ${ }^{[8]}$ shows improved cytotoxicity and water solubility compared to paclitaxel, ${ }^{[9]}$ and TX-67 can cross the BBB in situ (Figure 1-1). ${ }^{[10]}$ In fact, many second-generation taxoids were synthesized in high yields from baccatin III or modified baccatin III coupled with two important chiral intermediates: (a) enantiopure phenyl glycidate $1-\mathbf{3}^{[11-13]}$ and (b) enantiopure β-lactams $\mathbf{1 -}$ $2^{[14-17]}$ (Scheme 1-1).

$$
\begin{array}{ll}
\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{R}_{3}=\mathrm{Ac}, \mathrm{R}_{4}=\mathrm{Ac} & \text { Paclitaxel }\left(\mathrm{Taxol}^{\mathbb{B}}\right) \\
\mathrm{R}_{1}=t-\mathrm{BuO}, \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{R}_{3}=\mathrm{Ac}, \mathrm{R}_{4}=\mathrm{H} & \text { Docetaxel }\left(\text { Taxotere }{ }^{\mathbb{B}}\right) \\
\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{R}_{3}=\mathrm{Ac}, \mathrm{R}_{4}=\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} & \mathrm{TX}-67 \\
\mathrm{R}_{1}=t-\mathrm{Bu}, \mathrm{R}_{2}=t-\mathrm{Boc}, \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{4}=\mathrm{Ac} & \text { BMS-275183 }
\end{array}
$$

Figure 1-1 Structures of paclitaxel and its analogues docetaxel, TX-67 and BMS-275183.

Enantiorich phenylglycidate $1-3$ can be synthesized via asymmetric synthesis (Schemes 1-2 and 1-3) ${ }^{[11-12]}$ or enzymatic resolution of 1-3 by Mucor meihei lipase ${ }^{[13]}$ (Scheme 1-4). A suitably protected β-lactam $1-\mathbf{2}^{[18,19]}$ can be prepared using chiral auxiliary groups during enolate condensation with an imine (Scheme 1-5 and Scheme 16) ${ }^{[14,15]}$ or by lipase resolution of 3-acetyl- β-lactams (Scheme 1-7). ${ }^{[16,17]}$ Precursor β lactams are readily attached to baccatin III through Holton's coupling protocol. ${ }^{[20-23]}$ Both methodologies are discussed in the following sections.

Scheme 1-1 Alternative routes to coupling with baccatin III

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \text { (Paclitaxel), } \mathrm{R}_{2}=\mathrm{Ac} \\
& \mathrm{R}_{1}=t-\mathrm{BuOCO} \text { (Docetaxel) }, \mathrm{R}_{2}=\mathrm{H}
\end{aligned}
$$

1.1.1 Phenylglycidate routes toward the synthesis of the paclitaxel side chain

The epoxide functionality is a useful intermediate in the synthesis of the paclitaxel C-13 side chain. Greene and his group ${ }^{[11]}$ were the first to report this phenylglycidate strategy. Sharpless epoxidation of cis-cinnamyl alcohol 1-4 followed by ruthenium trichloride-sodium periodate oxidation of the terminal alcohol to acid and subsequent esterification with diazomethane gave epoxy ester $1-3 \mathrm{c}$. Oxirane $1-3 \mathrm{c}$ was opened with azidotrimethylsilane to give hydroxy azide 1-5a. Azido benzoate 1-5b, prepared from 1 5a, was hydrogenated to produce the aminobenzoate $1-5 \mathrm{c}$, which rearranged in situ to give product 1-7 (Scheme 1-2). Greene et al. ${ }^{[3]}$ reported an improved synthesis of the epoxide intermediate $\mathbf{1 - 3} \mathbf{c}(82 \%$ ee) through Sharpless asymmetric dihydroxylation of the trans-methyl cinnamate 1-6, also shown in Scheme 1-2.

Scheme 1-2

a: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
a: $X=N_{3} ; R=H$
b: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
c: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
b: $\mathrm{X}=\mathrm{N}_{3} ; \mathrm{R}=\mathrm{COPh}$
c: $\mathrm{X}=\mathrm{NH}_{2} ; \mathrm{R}=\mathrm{COPh}$

$$
\begin{aligned}
& \mathrm{a}: \mathrm{R}=\mathrm{H} \\
& \mathrm{~b}: \mathrm{R}=\mathrm{Ts}
\end{aligned}
$$

Reagents: (i). (a). t - $\mathrm{BuOOH}, \mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{~L}-(+)-\mathrm{DET}\left(65 \%, 80 \%\right.$ ee); (b). $\mathrm{RuCl}_{3}, \mathrm{NaIO}_{4}, \mathrm{H}^{+}$; (c) $\mathrm{CH}_{2} \mathrm{~N}_{2}(84 \%)$
(ii).(a). $\mathrm{Me}_{3} \mathrm{SiN}_{3}, \mathrm{ZnCl}_{2}$ (90\%); (b). $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \operatorname{DMAP}$ (94\%) (c). $\mathrm{H}_{2} 10 \%, \mathrm{Pd} / \mathrm{C}(89 \%)$
(iv). (a). $\mathrm{DQCB}, \mathrm{NMMO}, \mathrm{OsO}_{4}$ (cat.) 51%; (b). $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}(88 \%)$
(v). $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, DMF (91\%)

Applying Evan's chiral auxiliary chemistry, Commerçon et al. ${ }^{[12]}$ prepared bromoalcohol 1-9 through aldol condensation of benzaldehyde with bromoacetate 1-8.

The removal of the auxiliary group gave phenylglycidate $\mathbf{1 - 3}$ in 81% yield. Unfortunately, no enantiomeric excess was reported (Scheme 1-3).

Scheme 1-3

Reagents: (i).(a). $\mathrm{Et}_{3} \mathrm{~N}, n-\mathrm{Bu}_{2} \mathrm{BOTf}$; (b). $\mathrm{PhCHO}(58 \%)$ (ii). EtOLi, THF (81\%)

Another effective approach to the asymmetric synthesis of the paclitaxel side chain was reported by Chen et al. ${ }^{[13]}$ who used lipase-mediated trans-esterification of methyl trans-phenylglycidate 1-3. Mucor meihei MAP-10 lipase selectively hydrolyzed the (-)methyl ester 1-3 and converted the acid to (-)-i-butyl ester 1-10 (95\% ee) in the presence of iso-butanol. The unreacted (+)-methyl phenylgycidate $\mathbf{1 - 3}$ became an important enantiopure intermediate for making the final precursor of the paclitaxel side chain (Scheme 1-4).

Scheme 1-4

1.1.2 Syntheses of paclitaxel $\mathbf{C - 1 3}$ side chain precursors: chiral β-lactams

Commercially, paclitaxel is prepared by acylation of 7-protected baccatin III with β-lactams (Scheme 1-1) which are prepared by the Staudinger reaction. In Holton's original approach, the racemic cis β-lactam was attached to baccatin III. ${ }^{[21]}$ Highly successful asymmetric syntheses of suitably protected β-lactams were developed by Georg employing Oppolzer's chiral auxiliary 1-11 ${ }^{[15]}$ (Scheme 1-5) and Ojima using (1R,2S)-2-phenyl cyclohexan-1-ol 1-13 (Scheme 1-6). ${ }^{[14]}$ These two reactions involve additions of enolates derivatized with a chiral auxiliary to imines followed by lactamization. Other asymmetric syntheses of the β-lactam were developed using chiral imine precursors ${ }^{[24,25]}$ and oxazolidinone auxiliaries. ${ }^{[26]}$

Scheme 1-5. Georg's method.

Reagents: (i). LDA, THF (94\%)
(ii). $\mathrm{PhCOCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP (96% yield, $93-97 \%$ ee)

Scheme 1-6. Ojima's method.

Recently, Georg and her group ${ }^{[27]}$ carried out a systematic study of the kinetic resolution of racemic cis-4-phenyl- and cis-4-t-butyl-3-hydroxy- β-lactam 1-2 with 7-Otriethylsilylbaccatin III . The product paclitaxel and butitaxel analogues were found to form with high diastereoselectivity (10:1 to 80:1) in favor of the natural $2^{\prime} R, 3^{\prime} S$ configuration (Scheme 1-7).

Scheme 1-7

Enzyme-catalyzed resolution is another route to enantiopure β-lactams. Lipases are the most frequently used biocatalysts because they accept a wide spectrum of substrates and the reaction can be carried out in water or organic solvents. ${ }^{[28]}$ These reactions require mild conditions, thus minimizing the problems associated with undesired side reactions such as isomerization, racemization, and rearrangements. ${ }^{\text {[28] }}$ There have been several examples of lipase-catalyzed resolution of acetoxy β-lactams reported in the literature. The first enzyme-catalyzed kinetic resolution of racemic β lactams was performed by Sih and his coworkers. ${ }^{[16]}$ Pseudomonas lipase PS-30 was identified as the best catalyst among the several lipases studied. ${ }^{[16]}$ Thus, lipase PS-30catalyzed resolution of 3-acetoxy- β-lactam yielded the corresponding alcohol, $(3 S, 4 R) \mathbf{1 -}$ 14 in 98% ee and 46% yield (Scheme 1-8). This study showed that using $10 \% \mathrm{CH}_{3} \mathrm{CN}$ as
a co-solvent significantly improved the reaction rate and enantioselectivity of the hydrolysis. Later, Patel et al. ${ }^{[17]}$ reported that lipase PS-30 immobilized on accurel polypropylene gave 1-14 with 96% ee and 48% yield.

Scheme 1-8

racemic cis 1-15

$10 \% \mathrm{CH}_{3} \mathrm{CN}$

(3S,4R) 1-14
98% ee
46\% yield

(3R,4S) 1-15
99.5\% ee
47% yield

It is important to remember that lipase resolution of racemic cis acetoxy- β lactams can only give a maximum of 50% yield of the desired enantiomer. In order to achieve higher yields, enzymatic methods allowing dynamic kinetic resolution ${ }^{[29,30]}$ are necessary.

1.1.3 Structural modifications of paclitaxel

Structure-activity relationship studies, ${ }^{[31]}$ have shown that the C-13 side chain and the baccatin ring system are both indispensable for bioactivity. In the side chain, the hydroxyl group at C-2' (Figure 1-2) is essential for activity. While the phenyl at C-3' can be replaced by other groups, the replacement of the $3^{\prime}-\mathrm{N}$-benzoyl group with a t butyloxycarbonyl (docetaxel) and other substituted benzoates provides analogues with equal or better biological activity as compared to paclitaxel. The natural stereochemistry at $\mathrm{C}-2^{\prime}$ and $\mathrm{C}-3^{\prime}$ (i.e. $2^{\prime} R, 3^{\prime} S$) is desirable for maximum activity (Figure 1-2). ${ }^{[32]}$

Figure 1-2 Influence of structural modifications on the cytotoxicity and improved water solubility of paclitaxel analogues.

Recently, successful modifications in baccatin III were reported by Soga and coworkers. ${ }^{[33]}$ Four new analogues bearing a morpholine moiety on baccatin III 1-16a-d showed stronger activity against several tumor cell lines expressing P-glycoprotein (PC12, PC-6/VCR 29-9, and PC-6/VP1-1) than either paclitaxel or docetaxel (Figure 13). ${ }^{[34]}$

In view of the above results, it is important to develop new enantiopure paclitaxel side chains bearing polar functional groups such as a hydroxyl or morpholine group. The work describing the development of such novel paclitaxel side chains is the topic of Chapter 2.

1-16a

$\mathrm{R}=\mathrm{Boc}$ or Bz
1-16b

1-16c

1-16d

Figure 1-3 New taxane analogues bearing a morpholine moiety.

1.2 Reduction of α-ketoesters with reductases

Enzymatic or microbial transformations allow for the preparation of enantioenriched compounds in a "green" way because of the simplicity of the procedure and mildness of experimental conditions. Among enzymatic reactions, lipase-catalyzed asymmetric hydrolysis of esters and baker's yeast-mediated asymmetric reduction of prochiral ketones have been most extensively studied. Since the pioneering work of Neuberg at the beginning of the $20^{\text {th }}$ century, ${ }^{[35]}$ baker's yeast has remained the most popular whole-cell biocatalyst for asymmetric organic synthesis. ${ }^{[36,37]}$ While baker's yeast reductions often proceed with high diastereo- and enantioselectivities, it is not always the
case. Since baker's yeast carries a large number of reducing enzymes, the low selectivities were believed to be the result of overlapping substrate specificities combined with differing enantio- and diastereoselectivities. ${ }^{[38]}$ In other words, it was generally assumed that a mixture of products arises when a single substrate is accepted by multiple enzymes rather than a single enzyme with low selectivity. This assumption has inspired a search for methods to improve the selectivity of whole cell yeast-catalyzed reactions by altering the culture conditions during whole cell-mediated reductions (temperature, pH , etc. ${ }^{[39]}$ or use of inhibitors. ${ }^{[40]}$ These methodologies work by selectively diminishing the catalytic activities of reductases that give unwanted products, but are rarely effective for a broad spectrum of substrates and give unpredictable results. Alternative approaches include the use of purified reductases from yeast or other organisms or gene knockout and overexpression technologies. ${ }^{[41]}$ The concept for the design of the stereoselective yeast strain is illustrated in Figure 1-4. ${ }^{[42]}$ Two basic genetic tools (gene overexpression and gene knockout) allow for the manipulation of the enzyme expression levels in yeast. In gene overexpression, the enzyme of interest is overproduced; while, in gene knockout, the competing enzyme is replaced with a nonfunctional variant. ${ }^{[42]}$

Figure 1-4 Two basic genetic tools (gene overexpression and gene knockout) allow for rational design of the engineered strain and improve the stereoselectivity of baker's yeast reduction.

The more efficient strategy, however, is to use reductases from microorganisms, such as the yeast cell Saccharomyces cerevisiae, cloned into a host cell such as Escherichia coli that possess fewer endogenous reductases. Much work in this field has been accomplished in recent years. For example, the nineteen reductases from S. cerevisiae were tested against 3-oxo- β-lactam as GST-purified enzymes and overexpressed in E. coli. ${ }^{[43]}$ The results showed that only four enzymes were highly selective for the substrate tested (Table 1-1).

Table 1-1 Reduction of 3-oxo- β-lactam with selective GST-purified enzymes from baker's yeast. ${ }^{[43]}$

Yeast ORF	Conversion (\%)	Product Composition (\%)
YDL124W	68	$R R(0), S S(10), S R(7), R S(83)$
YCR107W	67	$R R(0), S S(5), S R(89), R S(6)$
YBR149W	73	$R R(0), S S$ (4), $S R(93), R S(3)$
YJR096W	63	$R R(0), S S(8), S R(15), R S(77)$

Although much research has been focused on the enantioselective reductions of aryl ketones and β-ketoesters, ${ }^{[44]}$ only a few studies on the enzymatic reduction of α ketoesters have been reported. ${ }^{[45]}$ It is especially evident in the case of biocatalytic reductions of aromatic α-ketoesters which have been shown to be less successful than their aliphatic counterparts. The enzymatic reduction of aromatic α-ketoesters with one chiral center has received scant attention, probably because of the difficulty in
preparation of the substrates and the instability of the products. ${ }^{[46,47]}$ Recently, Hua et al. ${ }^{[48]}$ have isolated and over-expressed a thermostable 7α-hydroxysteroid dehydrogenase (7-HSDH) from Bacteroides fragilis ATCC 25285 and examined its substrate specificity and stereoselectivity toward the reduction of various ketones including aromatic and aliphatic α-ketoesters. All α-ketoesters were reduced by 7 -HSDH to (S)-enantiomers in $>98 \%$ ee (Table 1-2). ${ }^{[49]}$

Table 1-2 Enantioselectivity of 7α-hydroxysteroid dehydrogenase toward various α ketoesters. ${ }^{[49]}$

α-Ketoester	ee (\%)	α-Ketoester	ee (\%)
$(\mathrm{R}=)$	$(\mathrm{R}=)$		
Phenyl	$>99(S)$	4-Cyanophenyl	$99(S)$
4-Flurophenyl	$95(S)$	3,5-Difluorophenyl	$98(S)$
4-Chlorophenyl	$99(S)$	Isopropyl	$99(S)$
4-Bromophenyl	$99(S)$	Cyclohexanyl	$>99(S)$
4-Methylphenyl	$99(S)$	t-Butyl	$>99(S)$

The use of engineered E. coli cells to express heterologous reductases is not restricted to those derived from S. cerevisiae. The heterologous reductases overexpressed in E. coli for screening in this project and the related references for overpression in E. coli and purification methods are listed in Table 1-3.

Table 1-3 Heterologous reductases overexpressed in E. coli with references for overexpression and purification methods. ${ }^{[50-56]}$

Gene name	Enzyme	Host	Reference
SSCR (wild type)	Sporobolomyces salmonicolor AKU4429	E.coli BL21(DE3)	[50], [51]
CMCR	Candida magnoliae	E.coli Rosetta2(DE3)pLysS	[52], [51]
7-HSDH	Bacteroides fragilis ATCC25285	E.coli Rosetta2(DE3)pLysS	[53], [51]
PFADH	Hyperthermophilic archaeon Pyrococcus furiosus	E.coli BL21(DE3)	[54], [51]
GRE2	Saccharomyces cerevisiae EC100	E.coli Rosetta2(DE3)pLysS	[55], [51]
YMR226c	Saccharomyces cerevisiae EC100	E.coli Rosetta2(DE3)pLysS	[56], [51]
$\begin{aligned} & \text { SSCR N207V } \\ & \text { (Asn 207-Val) } \end{aligned}$	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]
SSCR Q245L (Gln 245-Lys)	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]
SSCR K181R (Lys 181-Arg)	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]
$\begin{aligned} & \text { SSCR N207T } \\ & \text { (Asn 207-Tyr) } \end{aligned}$	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]
$\begin{aligned} & \text { SSCR Q245P } \\ & (\mathrm{Gln} 245-\mathrm{Pro}) \end{aligned}$	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]
$\begin{aligned} & \text { SSCR Q245H } \\ & \text { (Gln } 245-\mathrm{His}) \end{aligned}$	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]
SSCR M242G (Met 242-Glu)	Sporobolomyces salmonicolor (mutant)	E.coli BL21(DE3)	[50], [51]

Note: (1) All enzymes use cofactor, NADPH except 7-HSDH and PFADH use NADH. (2) All optimized pH is 6.5 except GRE2 and YMR226c use 6.5-7.0.

The purified reductases from different microorganisms, including Candida magnoliae, Sporobolomyces salmonicolor AKU4429, Saccharomyces cerevisia, Bacteroides fragilis, Pyrococcus furiosus, all belong to the short-chain dehydrogenese superfamily and share many similar properties, such as the requirement for a $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ cofactor. ${ }^{[57]}$ All these enzymes have been purified and overexpressed in E. coli as a host vector. ${ }^{[51]}$ Sporobolomyces salmonicolor AKU4429 (SSCR) introduced in this chapter, is also a member of the short-chain dehydrogenese family. Two enzymes, ARI and SSCR, isolated from Sporobolomyces salmonicolor AKU4429 by Kataoka and coworkers ${ }^{[58]}$ were found to reduce 4-chloro-3-oxobutanoate (COBE) 1-17 to opposite enantiomers with very high enantioselectivity (Scheme 1-9). ${ }^{[50,58]}$

Scheme 1-9

Hua et al. reported that SSCR accepts a very broad range of substrates that include aliphatic and aromatic ketones, as well as α - and β-ketoesters. ${ }^{[59]}$ The screening of a series of aromatic and aliphatic α-ketoesters showed that aliphatic α-ketoesters gave the (R)-configuration while aromatic compounds were reduced to (S)-alcohols. Concomitant substrate docking studies showed that the hydride transfer from NADPH
to the carbonyl groups of α-ketoesters occurs from different faces in the aromatic and the aliphatic compounds leading to the opposite enantiomers (Table 1-4).

Table 1-4 Reduction of α-ketoesters by SSCR.

			$\mathrm{R}=\text { aromatic }$
R	ee (\%)	Specific activity	Reference
Phenyl	99 (S)	6640	[59]
4-Fluorophenyl	$74(S)$	5070	[59]
4-Chlorophenyl	$63(S)$	6360	[59]
4-Bromophenyl	$56(S)$	1400	[59]
4-Cyanophenyl	82 (S)	2280	[59]
3,5-Diflurophenyl	43 (S)	5730	[59]
4-Methylphenyl	$88(S)$	1200	[59]
Isopropyl	$99(R)$	17540	[59]
t-Butyl	$99(R)$	5560	[59]

Note: The unit of specific activity : $\mathrm{nmol} \mathrm{min}^{-1} \mathrm{mg}^{-1}$.

The available X-ray structures of SSCR and the SSCR/ NADPH complex, as well as the well-understood catalytic mechanism underlying the stereoselective reduction of SSCR, ${ }^{[60,61]}$ allow the design of rational mutations of SSCR. Seven site-directed mutations of SSCR, shown in Table 1-3, were carried out by Hua and coworkers based on the stereoview of the interactions between SSCR and NADPH (Figure 1-5). ${ }^{[62]}$ Some
exchanged amino acids and their positions can be viewed from the stereostructure in Figure 1-5. The substrate specificity and enantioselectivity of SSCR mutants were not fully evaluated at the beginning of this project. The initial screening of these mutants against α-ketoesters is discussed in Chapter 3.

Figure 1-5 Stereoview of the interactions between SSCR (yellow carbon atoms) and NADPH (gray carbon atoms) illustrated by the programs MOLSCRIPT and Raster3D. The selected hydrogen bonds are shown with dotted lines. The structures of two mobile regions of unliganded SSCR are also shown in magenta carbon atoms. Mutated positions are N207, K181, Q245, M242 (Reprinted from reference ${ }^{[60]}$).

In an effort to prepare new enantiopure C-13 paclitaxel side chain analogues, several new substrates including β-chloro- α-ketoester and α-keto- β-lactams were selected for screening against the reductases listed in Table 1-3 (Scheme 1-10). During the synthesis of one of these substrates, the unanticipated formation of oxazolidine opened the door to a new project. The identification of highly enantioselective reductases
(discussed in Chapter 3) expanded this research project to the preparation of enantiopure oxazolidines, which is discussed in Chapter 4.

Scheme 1-10

1)

1.3 Oxazolidine

Oxazolidines have received considerable attention as chiral ligands and are counted among the most efficient chiral auxiliaries. ${ }^{[63,64]}$ For example, oxazolidinebased ligands in asymmetric catalytic transformations give up to 97% yield and 98% ee
in Pd-catalyzed allylic alkylation reactions. ${ }^{[65]}$ The types of oxazolidine ligands used as catalysts in asymmetric reactions are illustrated in Figure 1-6. ${ }^{[66]}$

1-18

1-19

1-20

Figure 1-6 Examples of oxazolidine ligands used and structurally characterized metal complexes.

Scheme 1-11

Chiral oxazolidine ligand 1-21

$R=$ aryl groups ee: up to 99%

$\mathrm{R}=$ aryl groups ee: up to 88%

Wang and his group ${ }^{[63]}$ reported a new chiral oxazolidine ligand 1-21 synthesized from natural amino acids. Oxazolidine 1-21 promotes the asymmetric addition of diethylzinc to aromatic aldehydes with good yields and high enantioselectivity (Scheme 1-11). Similarly, Brigaud and co-workers ${ }^{[64]}$ reported using chiral 2trifluoromethyloxazolidine 1-22 as a chiral auxiliary for highly diastereoselective alkylation reactions of amide enolates (Scheme 1-12).

Scheme 1-12 Highly diastereoselective benzylation of N-propanoyl oxazolidine.

85\% yield; d.e. $>99 \%(S)$
Furthermore, oxazolidines have been used as protecting groups for aminoalcohols. For example, Commerçon and co-workers ${ }^{[20]}$ reported using oxazolidinetype protection to attach baccatin III without epimerization, as shown in Scheme 1-13.

Scheme 1-13

Reagents: (i). HCl gas, $\mathrm{MeOH}, 40^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$.
(ii). (a). H_{2} (345 psi), $\mathrm{Pd} / \mathrm{C}(3 \%), \mathrm{MeOH} / \mathrm{AcOH}(3 / 1), 65^{\circ} \mathrm{C}, 4 \mathrm{~h} . ;$ (b) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{Na}_{2} \mathrm{CO}_{3}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$.
(iii). $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{3}$, PPTS, toluene, $80^{\circ} \mathrm{C}$.

There have been also a number of studies involving conversion of 1,2aminoalcohols to oxazolidines such as carbamates that were prepared as potential prodrugs. ${ }^{[67]}$ As well as exhibiting chemical stability, the carbamate derivatives were shown to have favorable lipophilic properties because they are much weaker bases than
the parent β-amino alcohols thus leading to higher lipophilicity at physiological $\mathrm{pH} .{ }^{[68]}$ For instance, doxazolidine (Doxaz) 1-27b is an oxazolidine derivative resulting from the reaction of the antitumor drug doxorubicin (Dox) 1-27a with formaldehyde; another derivative doxoform (Doxf) 1-27c is obtained by further coupling of two Doxaz molecules with formaldehyde (Figure 1-7). ${ }^{[67,69]}$ Doxaz 1-27b is the active metabolite of Dox 1-27a that cross-links DNA, leading to tumor cell death. ${ }^{[69,70]}$ Doxf 1-27 is a very labile prodrug of Doxaz. Doxf and Doxaz are 10-to 10000-fold more active than Dox for growth inhibition of sensitive and resistant cancer cells.

1-27a

Doxoform
(Doxf)
1-27c

Doxaz carbamate prodrug 1-27d

Figure 1-7 Clinical drug Dox (1-27a), Doxaz (1-27b), potent cytotoxins Doxf (1-27c) and proposed carbamate prodrug of Doxazolidine (1-27d).

Not surprisingly, high interest in this class of molecules has led to the development of numerous strategies for their preparation. One of the most common routes involves the preparation of oxazolidines from the condensation of aminoalcohols with formaldehyde or acetone (Scheme 1-14). ${ }^{[71-73]}$ Condensation of a β-aminoalcohol, including L-serine and L-cysteine methyl esters, with paraformaldehyde has been frequently reported in the literature despite the fact that the yields are rather low. ${ }^{[74-79]}$ Much less work on the enantioselective preparation of oxazolidines has been reported. ${ }^{[80-}$ 83]

Scheme 1-14

Since oxazolidines derived from β-aminoalcohols are important chiral auxiliary groups frequently used in asymmetric synthesis, it is important to develop new methods for the preparation of these compounds in enantiopure form. The results of this investigation on the preparation of enantioselective oxazolidines are discussed in Chapter 4.

In summary, the lipase-mediated syntheses of enantiopure novel β-lactams as new paclitaxel side chain analogues are discussed in Chapter 2. The screening of α-ketoesters against new wild type and mutant reductases are discussed in Chapter 3. The enantioselective reductases and the unexpected formation of oxazolidines leading to novel syntheses of enantiopure oxazolidines are discussed in Chapter 4.

1.4 References

[1]. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325-2327.
[2]. Rovwinsky, E. K.; Donehower, R. C. J. Natl. Cancer Inst. 1991, 83, 1778-1781.
[3]. Denis, J.-N.; Correa, A; Greene, A. E.; J. Org. Chem. 1990, 55, 1957-1959.
[4]. Holton, R. A. U.S. Patent 5,015,744; Chem. Abst. 1991, 115, 159485.
[5]. Ge, H.; Vasandani, V.; Huff, J. K.; Audus, K. L.; Himes, R. H.; Seelig, A.; Georg, G.
I. Bioorg. Med. Chem. Lett. 2006, 16, 433-436.
[6]. For review: Kingston, D. G. I; Jagtap, P. G.; Yuan, H.; Samala, L. Prog. Chem. Org. Nat. Prod. 2002, 84, 53-225
[7]. (a) Kim, S.-C.; Moon, M.-S.; Cheong, Ch.-S. Bull. Korean Chem. Soc. 1999, 20, 1389-1392; (b) Bissery, M.-C.; Nohynek, G.; Sanderink, G.-J.; Lavelle, F. Anti-Cancer Drugs 1995, 6, 339; (c) Ojima, I.; Sun, C. M.; Zucco, M.; Park, Y.H.; Duclos, O.; Kuduk, S. Tetrahedron Lett. 1993, 34, 4149-4152.
[8]. Mastalerz, H.; Cook, D.; Fairchild, C. R.; Hansel, S.; Johnson, W.; Kadow, J. F.; Long, B. H.; Rose, W.C.; Tarrant, J.; Wu, M.-J.; Xue, M.-Q.; Zhang, G.-F.; Zoeckler, M.; Vyas, D. M. Bioorg. Med. Chem. 2003, 11, 4315-4323.
[9]. Ali, S. M.; Hoemann, M. Z.; Aube, J.; Georg, G. I.; Mitscher, L. A. J. Med. Chem. 1997, 40, 236-241.
[10]. Rice, A.; Liu, Y.; Michaelis, M. L.; Himes, R. H.; Georg, G. I.; Audus, K. J. Med. Chem. 2005, 48, 832-838.
[11]. Denis, J. N.; Greene, A. E.; Serra, A. A.; Luche, M.-J. J. Org. Chem. 1986, 51, 46-
50.
[12]. Commerçon, A.; Bézard, D.; Bernard, F.; Bourzat, J. D. Tetrahedron Lett. 1992, 33, 5185-5188.
[13]. Gou, D.- M.; Liu, Y.-C.; Chen, C.-S. J. Org. Chem. 1993, 58, 1287-1289.
[14]. Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. Tetrahedron 1992, 48, 6985-7012.
[15]. Georg, G. I.; Cheruvallath, Z. S.; Harriman, G. C. B.; Hepperle, M.; Park, H. Bioorg. Med. Chem. Lett. 1993, 3, 2467-2470.
[16]. Brieva, R.; Crich, J. Z.; Sih, C. J. J. Org. Chem. 1993, 58, 1068-1075.
[17]. Patel, R. N.; Howell, J.; Chidambaram, R.; Benoit, S.; Kant, J. Tetrahedron: Asymmetry 2003, 14, 3673-3677.
[18]. Holton, R. A. Method for preparation of Taxol ${ }^{\circledR}$. Eur. Pat. Appl. 1990, 0400-971 A2, ppl-18.
[19]. Brieva, R.; Crich, J. Z.; Sih. C. J. J. Org. Chem. 1993, 58, 1068-1075.
[20]. Geng, L. X.; Tynebor, R.; Gallagher, D. J.; Pollina, E.; Rutter, J.; Ojima, I. Chirality 2000, 12, 431-441.
[21]. Holton, R. A.; Biediger, R. J.; Boatman, P. D. Semisynthesis of taxol and taxotere. In: Suffness M, editor. Taxol ${ }^{\circledR}$:science and applications. New York: CRC Press; 1995. pp 97-121.
[22].Ojima, I.; Kuduk, S. D.; Chakravarty, S. Recent advances in the medicinal chemistry of taxoid anticancer agents. In: Maryanoff BE, Reitz AB, editors. Adv. Med. Chem. Greenwich, CT: JAI Press; 1998. pp 69-124.
[23]. Ojima, I.; Lin, S.; Wang, T. The recent advances in the medicinal chemistry of taxoids with novel β-amino acid side chains. In: Hoekstra W J, editor. The chemistry and
biology of β-amino acid. Curr. Med. Chem. 1999, 6, 927-954.
[24]. Farina, V.; Hauck, S. I.; Walker, D. G. Synlett. 1992, 9, 761-763.
[25]. Bourzat, J. D.; Commerçon, A. Tetrahedron Lett. 1993, 34, 6049-6052.
[26]. Palomo, C.; Aizpurua, J. M.; Miranda, J. I.; Mielgo, A.; Odriozola, J. M.
Tetrahedron Lett. 1993, 34, 6325-6328.
[27] Ge, H.; Spletstoser, J. T.; Yang, Y.; Kayser, M. M.; Georg, G. I. J. Org. Chem. 2007, 72, 756-759.
[28]. Draus, K.; Waldmann, H. In : Enzyme Catalysis in Organic Synthesis: A
Comprehensive Handbook. Wiley-VCH, New York, 2002, pp 1-39.
[29]. Turner, N. J. Curr. Opin. Chem. Biol. 2004, 8, 114-119.
[30]. Pellissier, H. Tetrahedron 2003, 59, 8291-8327.
[31]. (a) Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggan, P.; McPhail, A. T. J. Am.
Chem. Soc. 1971, 93, 2325-2327; (b) Georg, G. I.; Ali, S. M.; Zygmunt, J.; Jayasinghe,
L. R. Exp. Opin. Ther. Patents, 1994, 4, 109.
[32]. Guéritte-Voegelein, F.; Guénard, D.; Lavelle, F.; Legoff, M-T.; Mangatal, L.;
Potier, P. J. Med. Chem. 1991, 34, 992-998.
[33]. (a) Takeda, Y.; Uoto, K.; Chiba, J.; Horiuchi, T.; Iwahana, M.; Atsumi, R.; Ono, C.;
Terasawa, H.; Soga, T. Bioorg. Med. Chem. 2003, 11, 4431-4447; (b) Takeda, Y.;
Yoshino, T.; Uoto, K.; Chiba, J.; Horiuchi, T. ; Iwahana, M.; Atsumi, R.; Ono, C.;
Terasawa, H.; Soga, T. Bioorg. Med. Chem. Lett. 2003, 13, 4431-4447.
[34]. Ishiyama, T.; Iimura, S.; Yoshino, T.; Chiba, J.; Uoto, K.; Terasawa, H.; Soga, T.
Bioorg. Med. Chem. Lett. 2002, 12, 2815-2818.
[35]. Neuberg, G.; Lewite A. Phytochemische Reduktionen. XIV. Hydrierung eines Ketons durch Hefe. (Umwandlung von Methylheptenon in Methylheptenol). Biochem. Z. 1918, 91, 257-266.
[36] Servi, S. Synthesis 1990, 1-25.
[37]. D'Arrigo, P.; Pedrocchi-Fantoni, G.; Servi, S. Adv. Appl Microbiol. 1997, 44, 81123.
[38]. Stewart, J. D.; Rodriguez, S.; Kayser, M. M.; Cloning, Structure and Activity of Ketone Reductases. Enzyme Technology for Pharmaceutical and Biotechnological Applications, Edited by Kirst, H. A.; Yeh, W.-K.; Zmijewski, M. J.; Marcel Dekker, Inc., New York, 2001, pp 175-207.
[39]. Dahl, A. C.; Madsen, J. Ø. Tetrahedron: Asymmetry 1998, 9, 4395-4417.
[40]. Nakamura, K.; Kawai, Y.; Ohno, A. Tetrahedron Lett. 1990, 31, 267-270.
[41]. Stewart, J. D. Curr. Opin. Biotech. 2000, 11, 363-368.
[42]. Rodríguez, S.; Kayser, M. M.; Stewart, J. D. Org. Lett. 1999, 1, 1153-1155.
[43]. Kayser, M. M.; Drolet, M.; Stewart, J. D. Tetrahedron: Asymmetry 2005, 16, 40044009.
[44]. For review, see: (a) Shieh, W.-R.; Sih, C. J. Tetrahedron: Asymmetry 1993, 4, 1259;
(b) Rodríguez, S.; Schroeder, K. T.; Kayser, M. M.; Stewart, J. D. J. Org. Chem. 2000, 65, 2586-2587; (c) Zhu, D.; Mukherjee, C.; Hua, L. Tetrahedron: Asymmetry 2005, 16, 3275-3278; (d) Kaluzna, I. A.; Feske, B. D.; Wittayanan, W.; Ghiviriga, I.; Stewart, J. D. J. Org. Chem. 2005, 70, 342-345.
[45]. For review, see: (a) Kaluzna, I. A.; Matsuda, T.; Sewell, A. K.; Stewart, J. D. J. Am.
Chem. Soc. 2004, 126, 12827-12832; (b) Ishihara, K.; Yamaguchi, H.; Omori, T.;

Uemura, T.; Nakajima, N.; Esaki, N. Biosci. Biotechnol. Biochem. 2004, 68, 2120-217;
(c). Ishihara, K.; Yamaguchi, H.; Hamada, H.; Nakamura, K.; Nakajima, N. J. Mol. Catal. B: Enzym. 2000, 20, 419-428.
[46]. Ishihara, K.; Yamaguchi, H.; Nakajima, N. J. Mol. Catal. B: Enzym. 2003, 23, 171189.
[47]. Nakamura, K.; Kondo, S.; Nakajima, N.; Ohno, A. Tetrahedron 1995, 51, 687-694.
[48]. Bennett, M. J.; McKnight, S. L.; Coleman, J. P. Curr. Microbiol. 2003, 47, 475-484.
[49]. Zhu, D.; Stearns, J. E.; Ramirez, M.; Hua, L. Tetrahedron 2006, 62, 4535-4539.
[50]. Kita, K.; Fukura, T.; Nakase, K.-I.; Okamoto, K.; Yanase, H.; Kataoka, M.;
Shimizu, S. Appl. Environ. Microbiol. 1999, 65, 5207-5211.
[51]. Milburn, P.; Hoare, B.M.; Dunnill, P. Enzyme Microb. Technol. 1990, 12, 527-532.
[52].Yasohara, Y.; Kizaki, N.; Hasegawa, J.; Wada, M.; Kataoka, M.; Shimizu, S.
Biosci., Biotechnol., Biochem. 2000, 64, 1430-1436.
[53]. Bennett, M. J.; MacKnight, S. L.; Coleman, J. P. Curr. Microbiol. 2003, 47, $475-$ 484.
[54]. Lin, Y.; Cheng, G.; Wang, X.; Clark, T. G. Gene 2002, 288, 85-94.
[55]. Kuhn, A.; van Zyl, C.; van Tonder, A.; Prior, B. A. Appl. Environ. Biotechnol. 1995, 61, 1580-1585.
[56]. Harbrych, M.; Rodriguez, S.; Stewart, J. D. Biotechnol. Prog. 2002, 18, 257-261.
[57]. Sih, C. J.; Chen, C.-S. Angew. Chem. Int. Ed. Engl. 1984, 23, 570-578.
[58]. Kataoka, M.; Rohani, L. P. S.; Yamamoto, K.; Wada, M.; Kawabata, H.; Kita, K.;
Yanase, H.; Shimizu, S. Appl. Microbiol. Biotechnol. 1997, 48, 699-703.
[59]. Zhu, D.; Yang, Y.; Buynak, J. D.; Hua, L. Org. Biomol. Chem. 2006, 4, 2690-2695.
[60]. Kamitori, S.; Iguchi, A.; Ohtaki, A.; Yamada, M.; Kita, K. J. Mol. Biol. 2005, 352, 551-558.
[61]. Filling, C.; Berndt, K. D.; Benach, J.; Knapp, S.; Prozorovski, T.; Nordling, E.; Ladenstein, R.; Jörnvall, H.; Oppermann, U. J. Biol. Chem. 2002, 277, 25677-25684. [62]. http://nobelprize.org/nobel_prizes/chemistry/laureates/1993/illpres/site.htmL [63]. Kang, Y.-F.; Liu, L.; Wang, R.; Ni, M.; Han, Z.-J. Synth. Commun. 2005, 35, 18191823.
[64]. Tessier, A.; Pytkowicz, J.; Brigaud, T. Angew. Chem. Int. Ed. Engl. 2006, 45, 3677 3681.
[65]. Braga, A. L.; Sehnem, J. A.; Ludtke, D. S.; Zeni, G.; Silveira, C. C. ; Marchi, M. I. Synlett, 2005, 8, 1331-1334.
[66]. Cardile, S. A.; Jennings, M. C.; Jones, N. D. J. Chem. Soc.,Dalton Trans. 2006, 4672-4678.
[67]. Post, G. C.; Barthel, B. L.; Burkhart, D. J.; Hagadorn, J. R.; Koch, T. H. J. Med. Chem. 2005, 48, 7648-7657.
[68] Moloney, G. P.; Craik, D. J.; Iskander, M. N.; Nero, T. L. J. Chem. Soc. Perkin Trans. 2 1998, 199-206
[69]. Burkhart, D. J.; Barthel, B. L.; Post, G. C.; Kalet, B. T.; Nafie, J. W.; Shoemaker, R. K.; Koch, T. H. J. Med. Chem. 2006, 49, 7002-7012.
[70]. Fenick, D. J.; Taatjes, D. J.; Koch, T. H. J. Med. Chem. 1997, 40, 2452-2461.
[71]. Kang, Y.-F.; Wang, R.; Liu, L.; Da, C.-S.; Yan, W.-J.; Xu, Z. Q. Tetrahedron Lett. 2005, 46, 863-865.
[72]. Astrová, M.; Kurc, L.; Červený, L. Chem. Listy 2005, 99, 318-323.
[73]. Hajji, C.; Zaballos-Garcia, E.; Sepulveda-Arques, J. Synth. Commun. 2003, 33, 4347-4354.
[74]. Aitken, D. J.; Besson, L.; Fournier, F.; Husson, H.-P.; Lemoine, P.; Lesage, D.;
Libot, F.; Martin, P.-G.; Mellin-Morlière, C.; Monnier, V.; Tabet, J.-C.; Viossat, B. Heterocycles 2004, 64, 277-289.
[75]. Bolm, C.; Chuang, T.-H.; Raabe, G.; Fang, J.-M. Synth. Commun. 1999, 29, 43-51.
[76]. Sélambarom, J.; Monge, S.; Carré, F.; Fruchier, A.; Roque, J.P.; Pavia, A. A. Carbohydr. Res. 2001, 330, 43-51.
[77]. Sélambarom, J.; Carré, F.; Fruchier, A.; Roque, J. P.; Pavia, A. A. Tetrahedron 2002a, 58, 4439-4444.
[78]. Sélambarom, J.; Monge, S.; Carré, F.; Roque, J.P.; Pavia, A. A. Tetrahedron 2002b, 58, 9559-9566.
[79]. Sélambarom, J.; Smadja, J.; Pavia, A. A. Tetrahderon Lett. 2005, 46, 615-617.
[80]. Kang, Y.-F.; Liu, L.; Wang, R.; Zhou, Y.-F.; Yan, W.-J. Adv. Synth. Catal. 2005, 347, 243-247.
[81]. Prasad, K. R. K.; Joshi, N. N. J. Org. Chem. 1997, 62, 3770-3771.
[82]. Evans, D. A.; Johnson, J. S. J. Am. Chem. Soc. 1998, 120, 4895-4896.
[83]. Da, C. S.; Han, Z. J.; Ni, M.; Yang, F.; Liu, D. X.; Zhou, Y. F.; Wang, R.
Tetrahedron: Asymmetry 2003, 14, 659-665.

CHAPTER 2 CHEMOENZYMATIC SYNTHESIS OF NOVEL β -

LACTAMS

2.1 Introduction

In recent years, β-lactams have been used for syntheses of α-hydroxy- β-amino acids which are present in many biologically active compounds such as paclitaxel, bestatin (inhibitor of aminopeptidases), ${ }^{[1]}$ microginin, ${ }^{[2]}$ and HIV-1 protease inhibitors. ${ }^{[3]}$ The important anticancer activity of many of these compounds encouraged more research on structure modifications and synthesis of new analogues with more desirable physicochemical properties and enhanced potency. ${ }^{[4]}$ It is well-known that paclitaxel's poor water solubility significantly hinders its oral administration and restricts injection applications. ${ }^{[5,6]}$ Researchers continue to seek effective ways to increase its watersolubility; therefore, many techniques and approaches have been developed. These include addition of different cosolvents such as DMSO; ${ }^{[7]}$ addition of cyclodextrin as a solubilizer through the formation of inclusion complexes ${ }^{[8,9]}$ and use of water-soluble polymers. ${ }^{[10,11]}$

It has been shown that introduction of a morpholine group into four new taxane analogues (non-side chains) provided greater pharmaceutical activity than paclitaxel and docetaxel, especially against the resistant cancer cell lines expressing P-glycoprotein (PC-12, PC-6/VCR 29-9, and PC-6/VP1-1). ${ }^{[12, ~ 13] ~}$ Taxane analogues with a morpholine or hydroxyl group in the $\mathrm{C}-13$ side chain are therefore worth investigating. Many secondgeneration taxoids were synthesized from suitably modified baccatin and enantiopure (3R,4S)- β-lactam using Holton's coupling protocol (Scheme 2-1). ${ }^{[14]}$

Scheme 2-1 Coupling of β-lactam with baccatin III.

The well-documented Staudinger reaction ${ }^{[15]}$ was used to prepare all target compounds in which cycloaddition readily proceeded between the nucleophilic imine and an electrophilic ketene that was generated in situ. The mechanism for this reaction is presented in Figure 2-1.

Figure 2-1 Mechanism of the Staudinger reaction.

In this project, new C-13 side chain analogues with improved water solubility were synthesized. A hydroxyl or morpholine polar group was introduced onto a β-lactam in such a way as to replace the native paclitaxel's 3' phenyl group. Protocols for the synthesis of racemic precursors were developed and optimized and the enantiopure
targets were prepared via lipase resolution. Synthesis of this compound is discussed in this chapter.

2.2 Results and Discussion

2.2.1 Synthesis of racemic cis acetoxy- β-lactam by the Staudinger reaction

Treatment of neopentyl glycol 2-1 with benzaldehyde dimethylacetal 2-2 in the presence of camphorsulfonic acid (CSA) and $4 \AA$ molecular sieves, performed according to a protocol reported in the literature, ${ }^{[16]}$ gave benzylidene acetal 2-3 in essentially quantitive yield (Scheme 2-2). Selective monobenzylation of glycols is an important protecting step in organic synthesis. It can be achieved via direct monoalkylation with benzyl chloride or via reductive cleavage of benzylidene acetals. ${ }^{[17]} \mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}$ efficiently cleaved the acetal 2-3 to 3-benzyloxy-2,2-dimethylpropan-1-ol 2-4 in 93\% yield. ${ }^{[18]}$ Subsequent Swern oxidation ${ }^{[19]}$ of benzyloxy alcohol $\quad 2-4$ yielded benzyloxyaldehyde 2-5 in 92\% yield (Scheme 2-2; yields listed in Table 2-1). In this case, condensation of aldehyde 2-5 with p-anisidine generated exclusively E imine 2-6 as determined by the ${ }^{1} \mathrm{H}$ NMR of the crude product. The Staudinger reaction of imine 2-6 in the presence of acetoxyacetyl chloride 2-8, gave racemic cis β-lactam 2-9 in 75\% yield. The cycloaddition was completed in 3 hours and was free of by-products (Scheme 2-2).

Table 2-1 Yields of compounds from 2-3 to 2-9.

Compound	$\mathbf{2 - 3}$	$\mathbf{2 - 4}$	$\mathbf{2 - 5}$	$\mathbf{2 - 6}$	$\mathbf{2 - 7}$	$\mathbf{2 - 8}$	$\mathbf{2 - 9}$
Yield (\%)	92	90	92	95	93	95	75

Scheme 2-2 Synthesis of racemic cis-3-acetoxy- β-lactam 2-9.

2-2
DMSO
$(\mathrm{ClCO})_{2}$, TEA, $-60^{\circ} \mathrm{C}$

2-7

2.2.2 Preparation of $(3 S, 4 R)-2-10,(3 R, 4 S)-2-10$, and $(3 R, 4 R)-2-10$ from lipase and baker's yeast resolution

Enantiopure 2-10 obtained via lipase resolution of racemic cis 2-9 is an important intermediate in the preparation of enantiopure $\mathrm{C}-13$ side chain analogues substituted with a hydroxyl or morpholine group. Only cis-3-acetyl lactams are accepted and resolved by lipase PS. On the other hand, trans-3-hydroxy-4-t-butyl- β-lactam was obtained in the
yeast reduction of the 3-oxo-4-t-butyl- β-lactam. ${ }^{[20]}$ To achieve enantiopure trans-3-hydroxy- β-lactam in high yield, 2-10 we decided that the combination of lipase PS resolution and baker's yeast reduction may be used to obtain enantiopure trans- β-lactam. The strategy is shown in Scheme 2-3.

Scheme 2-3

With all chemical reactions optimized, lipase PS catalyzed kinetic resolution provided a route to both 2-10 enantiomers. Thus, $(3 S, 4 R) \mathbf{- 2 - 1 0}(99 \%$ ee) was prepared via kinetic resolution of racemic cis $\mathbf{2 - 9}$ since lipase only converts $(3 S, 4 R) \mathbf{- 2 - 9}$ to the hydrolyzed product $(3 S, 4 R) \mathbf{- 2 - 1 0}$ while remains ($3 R, 4 S$)-2-9 unreacted. Its antipode $(3 R, 4 S)-2-10$ was accessed by 2 M KOH hydrolysis of the unreacted $(3 R, 4 S) \mathbf{- 2 - 9}(99 \%$ ee). Oxidation of ($3 S, 4 R$)-2-10 gave ($4 R$)-2-20 which was reduced with baker's yeast to give ($3 R, 4 R$)-2-10 in 90\% yield as shown in Scheme 2-3 and Table 2-2.

Table 2-2 Properties of the three enantiomers of 2-10 via lipase and yeast resolution.

Substrate	Yield (\%)	ee (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	$[\alpha]_{D}^{25}$
$(3 S, 4 R)-(-)-\mathbf{2 - 1 0}$	47	>99	$133-134$	-77.1
$(3 R, 4 S)-(+)-\mathbf{2 - 1 0}$	42	>99	$138-140$	+78.0
$(3 R, 4 R)-(+)-\mathbf{2 - 1 0}$	90	>99	$95-96$	+39.5

Note: (1). ee was determined by chiral HPLC analysis and Mosher's reagent.
(2). Enantiomers were assigned by ${ }^{1} \mathrm{H}$ NMR after derivatization with Mosher's reagent.

2.2.3 Absolute configuration of $\boldsymbol{\beta}$-lactam 2-10

The absolute configuration of ($3 S, 4 R$)-2-10 was assigned from lipase resolution; its absolute configuration has been confirmed by X-ray crystallographic ${ }^{[21,22]}$ and proton NMR analyses. ${ }^{[23]}$ Enantiomeric excess of the three enantiomers of 2-10 was determined by derivitization with Mosher's reagent $(R)-(-)-\alpha$-methoxy- $\alpha-$ (trifluoromethyl)phenylacetyl chloride ((R)-MTPA-Cl) ${ }^{[24]}$ and chiral HPLC analysis. Three derivatized enantiopure species of 2-10 (Scheme 2-4) were $>99 \%$ ee as shown by NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are given in Appendix III).

Scheme 2-4

\(\left.\begin{array}{l}(3 S, 4 R)-

(3 R, 4 S)-

(3 R, 4 R)-\end{array}\right\}\)| 3-hydroxy- β-lactam |
| :---: |
| $2-10$ |

derivative of 3-hydroxy- β-lactam by Mosher's reagent

The three compounds $(3 R, 4 S) \mathbf{- 2 - 1 0},(3 S, 4 R)-\mathbf{2 - 1 0}$ and $(3 R, 4 R) \mathbf{- 2 - 1 0}$ could not be separated on a chiracel OD-H column ($4.6 \times 150 \mathrm{~mm}$). However, they are resolved clearly on a chiral HPLC (S, S)-Whelk-O 1 column ($25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$, Regis Technologies Inc.) (Figure 2-2); each individual compound shows a single peak, indicating $>99 \%$ enantiomeric excess for each compound.

Figure 2-2 $(3 R, 4 S),(3 S, 4 R)$ and $(3 R, 4 R)-2-10$ resolved on a chiral (S, S)-Whelk-O 1 column.

2.2.4 Synthesis of racemic cis and ($3 R, 4 S$) β-lactam bearing a hydroxyl group

Both racemic cis and the enantiopure cis ($3 R, 4 S$) β-lactams were synthesized because they are useful for preparing C-13 side chain analogues. Georg and her group ${ }^{[25]}$ carried out a systematic study of the kinetic resolution of racemic cis-4-phenyl- and cis-4-t-butyl-3-hydroxy- β-lactam (obtained from our group) with 7-O-triethylsilylbaccatin III. The product paclitaxel and butitaxel analogues were found to form with high diastereoselectivity ($10: 1$ to $80: 1$) in favor of the natural $2^{\prime} R, 3^{\prime} S$ configuration. To extend the research, novel racemic cis β-lactams as C - 13 side chain analogues were synthesized to instigate a kinetic study and investigate the diastereoselectivity ratio.

The acetyl group of β-lactam 2-9 was hydrolyzed with 2 M potassium hydroxide in THF, and the resulting 3-hydroxy- β-lactam 2-10 was used in transformations leading to β-lactams derivatized with a hydroxyl or morpholine functional group as shown in Scheme 2-5 and Scheme 2-6. The cleavage of the benzyl group, particularly in sensitive molecules such as β-lactams, was expected to be troublesome. In fact, the commonly used $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$ hydrogenation ${ }^{[26]}$ was ineffective at deprotecting (3R,4S)-2-10. Among several methods investigated, homogeneous hydrogenation with ammonium formate as the hydrogen source turned out to be fast and reliable ${ }^{[27]}$ (Scheme 2-5). The same deprotection method was also effective with the t-butyldimethyl silyl (TBS) derivative ($3 R, 4 S$)-2-15, making it suitable for the preparation of compound ($3 R, 4 S$)-2-16 (Scheme 2-6). 3-Hydroxy- β-lactam 2-10 was debenzylated to give β-lactam 2-11 in high yield.

Scheme 2-5

Hydroxy- β-lactam 2-11 was treated with two equivalents of t-butyldimethyl silyl (TBS) chloride to give the corresponding protected lactam 2-12. In the following steps, the p-methoxyphenyl (PMP) group was oxididatively cleaved using cerium (IV) ammonium nitrate (CAN) to give NH- β-lactam 2-13. Removal of the PMP group by oxidation with CAN was optimized in a series of small-scale reactions. The solvent and temperature were very important for the success of this reaction; in particular, it was critical that the water and acetonitrile ratio was strictly controlled to achieve a reasonably good yield. The optimized solvent ratio was determined to be acetonitrile : deionized water $=25: 15$ (based on 1 mmol of reaction) and the reaction had to be carried out in an ice-salt bath. For larger scale reactions the yields were always lower.

Protection of 2-13 with di t-butoxy dicarbonate $(t-\mathrm{Boc})$ in the presence of 4 dimethylaminopyridine (DMAP) yielded $\mathbf{2 - 1 4}$ ready for coupling with baccatin III to make a new paclitaxel analogue.* The characteristics of all compounds discussed in Scheme 2-5 are listed in Table 2-3.

Table 2-3 Enantiopure compounds 2-9 to 2-14.

Comp.	$(3 R, 4 S)$						(3S,4R)	
	2-9	2-10	2-11	2-12	2-13	2-14	2-10	2-11
m.p. $\left({ }^{\circ} \mathrm{C}\right)$	85-86	138-140	162-164	79-80	93-94	oil	133-134	155-157
$[\alpha]_{D}^{25}$	+51.0	+ 78.0	+ 70.2	+34.8	+47.1	+57	-77.1	- 70.0
Yield \%	44	90	50	72.3	74	93	47	52.5

2.2.5 Synthesis of racemic cis and ($3 R, 4 S$) β-lactam bearing a morpholine group

To obtain a β-lactam substituted with a morpholine group, 2-18 was prepared in four steps from 2-10. In the first step, the hydroxyl group in 3-hydroxy- β-lactam 2-10 was protected with TBSCl to give $\mathbf{2 - 1 5}$ in 96% yield. This was followed by debenzylation using 10% palladium on activated carbon with ammonium formate as the hydrogen source. Although this step needed more palladium and a longer reaction time, it proved equally effective in preparing debenzylated 2-16. Swern oxidation $\left(\mathrm{DMSO} /(\mathrm{COCl})_{2}\right)^{[19]}$ of compound 2-16 at -50 ${ }^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$ gave aldehyde 2-17 in high yield. The aldehyde 217 was then subjected to reductive amination with sodium triacetoxylborohydride $\left(\mathrm{NaBH}(\mathrm{OAc})_{3}\right)^{[28]}$ in the presence of excess morpholine to give 2-18 in 53% yield (shown in Scheme 2-6 and Table 2-4). Other reductive amination methods such as $\mathrm{NaBH}_{3} \mathrm{CN}$ or

[^0]neat $\mathrm{Ti}(\mathrm{OiPr})_{4}$ associated with $\mathrm{NaBH}_{3} \mathrm{CN}$ or $\left(\mathrm{NaBH}(\mathrm{OAc})_{3}\right)^{[29]}$ gave lower yields as shown in Table 2-5. The reduction of the aldehyde 2-17 to alcohol 2-16 was a major side reaction under all conditions investigated; sodium triacetoxyborohydride protocol is the most effective in reductive amination and is superior to the commonly used toxic $\mathrm{NaBH}_{3} \mathrm{CN} .{ }^{[30]}$

Scheme 2-6

racemic cis 2-10
($3 R, 4 S$)-2-10
fracemic cis 2-15
l(3R,4S)-2-15
$\left\{\begin{array}{c}\text { racemic cis 2-16 } \\ (3 R, 4 S)-2-16\end{array}\right.$
 $-60^{\circ} \mathrm{C}$

Table 2-4 Enantiopure compounds 2-15 to 2-18.

Compound	$(3 R, 4 S)$			
	$\mathbf{2 - 1 5}$	$\mathbf{2 - 1 6}$	$\mathbf{2 - 1 7}$	$\mathbf{2 - 1 8}$
m.p. $\left({ }^{\circ} \mathrm{C}\right)$	oil	$103-104$	$110-111$	$90-91$
$[\alpha]_{D}^{25}$	+52.1	+53.7	+56.4	+48.7
Yield (\%)	97	57	83	53

Table 2-5 Methods of reductive amination.

Method	Reaction time (h)	Yield (\%)
$\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}, \mathrm{MeOH}$	3	30
$\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{THF}$	12	53
$\mathrm{Ti}(\mathrm{OiPr})_{4}$ in $\mathrm{NaBH}_{3} \mathrm{CN}$	4	32
$\mathrm{Ti}(\mathrm{OiPr})_{4}$ in $\mathrm{NaBH}(\mathrm{OAc})_{3}$	4	45

Note: Titanium (IV) isopropoxide was reacted with a mixture of the aldehyde and amine and then reduced by sodium cyanoborohydride in anhydrous ethanol.

The attempted removal of the PMP group was unsuccessful. Compound 2-18 on treatment with CAN gave multiple products, quinone imine derivatives being the most important. ${ }^{[31]}$ Since the morpholine group did not appear in the ${ }^{1} \mathrm{H}$ NMR of the product mixture it must have been removed during this step. Thus, the PMP group has to be removed before morpholine is introduced into the β-lactam.

2.2.6 Other approaches for morpholino- β-lactam 2-19

Removal of the PMP in a β-lactam tends to be not only low yielding but also quite unpredictable. Therefore, it was not a great surprise when hydroxy- β-lactam 2-16 and aldehyde 2-17 were subjected to oxidation conditions, only decomposition mixtures were obtained. This confirms that sensitive functional groups like carbonyl or hydroxyl need to be protected before using cerium (IV) ammonium nitrate.

Scheme 2-7

racemic cis 2-15

2-19

Given these results, the functional group in position 4 of β-lactam must be protected before removal of the PMP. The projected, modified sequence of reactions is shown in Scheme 2-7. We know that racemic, benzyl protected cis 2-15 was oxidized with CAN to give the NH- β-lactam 2-21 in 52\% yield and the following reaction with (t $\mathrm{Boc})_{2} \mathrm{O}$ gave racemic cis 2-22 in 90% yield. Possibly, debenzylation, oxidation, and reductive amination performed on relatively readily available cis 2-22 would lead to an
acceptable yield of product 2-19. Alternative approaches require several protection and deprotection steps and could not be carried out in the time frame of this M. Sc. thesis.

2.3 Conclusions

Novel β-lactams are useful chiral building blocks for the synthesis of paclitaxel analogues. Racemic cis and enantiopure β-lactams bearing hydroxyl groups were prepared via simple synthesis and lipase-catalyzed kinetic resolution. These building blocks were synthesized efficiently in high yields and sent for kinetic study upon attachment with baccatin III. Racemic cis and enantiopure β-lactams bearing the morpholine group were employed with a different synthetic route since sensitive functional groups such as hydroxyl, carbonyl, morpholine were very fragile to CAN oxidation and this route can be accomplished if time isn't limited. Two different enantiomers $(3 R, 4 S),(3 S, 4 R)$ and one diastereomer $(3 R, 4 R) \mathbf{- 2 - 1 0}$ were obtained from the hydrolysis of lipase or baker's yeast in $>99 \%$ ee. The enantiomeric excess was determined by chiral HPLC analysis, specific optical rotation and ${ }^{1} \mathrm{H}$ NMR after derivatization with Mosher's reagent. The method to preparation of three enantiopure forms of 2-10 can serve as a useful protocol for the preparation of other β-lactam enantiomers.

2.4 Experimental

2.4.1 Acetoxy glycolic acid 2-7. ${ }^{[32]}$ Acetyl chloride ($82 \mathrm{~mL}, 1.2 \mathrm{~mol}$) and glycolic acid ($35.1 \mathrm{~g}, 0.46 \mathrm{~mol}$) were added to a flask with vigorous stirring at room temperature. After 30 min , TLC indicated complete conversion. Evaporation of the excess chloride under vacuum gave acetoxy glycolic acid (2-acetoxyacetic acid) 2-7 (50.5 g, 93\% yield) as a pure white powder. m.p. $61-64{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3054$ (broad peak), 1739, $1424,1375,1218,1079 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.62(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 11.1\left(1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right)$.
2.4.2 Carboxylic acid chloride (acetoxyacetyl chloride) 2-8. Oxalyl chloride $(\mathrm{COCl})_{2}$ ($21.50 \mathrm{~mL}, 0.246 \mathrm{~mol}$) was added to a solution of acid $2-7(14.54 \mathrm{~g}, 0.123 \mathrm{~mol})$ in benzene $(100 \mathrm{~mL})$. The reaction was heated and maintained at $50^{\circ} \mathrm{C}$ for 6 hours, then cooled to room temperature and stirred overnight. Vacuum distillation removed the excess oxalyl chloride and the benzene solvent to give acid chloride 2-8 (14.9 g, 89\% yield) as a colourless liquid. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2999,2947,1811,1758,1407,1374$, 1221, $953 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.2\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 5.0\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{COCl}\right)$.
2.4.3 5,5-Dimethyl-2-phenyl-1,3-dioxane 2-3. ${ }^{[33]}$ Camphorsulfonic acid ($0.22 \mathrm{~g}, 0.95$ $\mathrm{mol})$ was added to a solution of neopentyl glycol $2-1(8.32 \mathrm{~g}, 0.08 \mathrm{~mol})$ and benzaldehyde dimethyl acetal 2-2 ($12.8 \mathrm{~mL}, 0.09 \mathrm{~mol}$) in methylene chloride (220 mL) containing activated $4 \AA$ molecular sieves (10 g). GC and TLC showed complete conversion after 30 minutes of reaction and the molecular sieves were filtered off and washed with methylene chloride ($20 \mathrm{~mL} \times 3$). The filtrate was washed with 10% sodium bicarbonate and brine, dried over magnesium sulfate, filtered. Evaporation under vacuum afforded 2-3 ($14.9 \mathrm{~g}, 99 \%$ yield) as colourless crystals. m.p. $30-31{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max }$
$/ \mathrm{cm}^{-1}: 3066,3036,2953,2868,1456,1390,1216,1105,1022 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.65(2 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{CH} 2), 3.77(2 \mathrm{H}$, d, $\left.J=11.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.37(3 \mathrm{H}, \mathrm{dd}, J=6.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, \mathrm{Ar} H), 7.51$ $(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.9\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 30.2$ $\left(\mathrm{CMe}_{2}\right), 77.7\left(\mathrm{OCH}_{2}\right), 101.8(\mathrm{HCPh}), 126.1,128.3,128.7,138.6 ;$ HRMS: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$, calc.: 192.11504 , found: 192.11502 .
2.4.4 3-(Benzyloxy)-2,2-dimethylpropan-1-ol 2-4. ${ }^{[33]}$ Lithium aluminum hydride (1.98 $\mathrm{g}, 0.052 \mathrm{~mol})$ was added to a solution of $\mathbf{2 - 3}(10.0 \mathrm{~g}, 0.052 \mathrm{~mol})$ in $1: 1$ diethyl ether and methylene chloride $(200 \mathrm{~mL})$ cooled to $-10^{\circ} \mathrm{C}$. Aluminum chloride $(6.95 \mathrm{~g}, 0.052 \mathrm{~mol})$ in 40 mL of diethyl ether was then added and the resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 10 minutes. The reaction was allowed to warm to room temperature, then it was heated until reflux. Reflux was continued until GC showed complete conversion (4h). After the reaction was cooled to $-10{ }^{\circ} \mathrm{C}$ it was diluted with 50 mL of ethyl acetate. The reaction was hydrolyzed with water (150 mL) and extracted with ethyl acetate. The combined organic layers were washed sequentially with 10% sodium bicarbonate solution and brine, dried over magnesium sulfate, and filtered. Evaporation under vacuum gave 2-4 ($9.35 \mathrm{~g}, 93 \%$ yield) as a colourless oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3349,2982,2940,2839$, $1725,1513,1249,1173 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.93\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 2.68(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 3.32(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.8\left(\mathrm{CH}_{3}\right), 36.2\left(\mathrm{CMe}_{2}\right), 71.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 79.3$ $\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right), 127.4,127.6,128.4,138.2$; HRMS: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$, calc.: 194.13068, found: 194.13067.
2.4.5 3-(Benzyloxy)-2,2-dimethylpropanal 2-5. ${ }^{[19]}$ A solution of oxalyl chloride (4.9 g , 0.025 mol) in dry methylene chloride (63 mL) was placed in a flame-dried 250 mL threeneck round-bottom flask equipped with a thermometer and two pressure-equalizing dropping funnels containing dimethyl sulfoxide ($3.6 \mathrm{~mL}, 0.051 \mathrm{~mol}$) dissolved in methylene chloride (12 mL) and benzyl ether alcohol 2-4 ($4.9 \mathrm{~g}, 0.025 \mathrm{~mol}$) dissolved in methylene chloride (25 mL), respectively. The reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and the DMSO solution was added over a period of 5 minutes, followed by the alcohol solution (10 min). After stirring at $-60^{\circ} \mathrm{C}$ for 30 minutes, triethylamine ($18 \mathrm{~mL}, 0.13$ mol) was added and stirring was continued for an additional 45 min when GC showed complete conversion. After the reaction was warmed to room temperature, water (40 mL) was added and stirred for 10 minutes, followed by addition of $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$. The solution was extracted with methylene chloride, washed with brine, dried over magnesium sulfate and filtered. Evaporation under vacuum gave 2-5 ($6.0 \mathrm{~g}, 92 \%$ yield) as a colourless oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3349,2982,2940,2839,1725,1513,1249,1173$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 3.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.51(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 9.57(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.3$ $\left(\mathrm{CH}_{3}\right), 43.4\left(\mathrm{CMe}_{2}\right), 73.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 76.5\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 127.5,127.6,128.3,138.0,182.2$; HRMS: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$, calc.: 192.1150, found: 192.1142 .
2.4.6 (E)-N-(3-(Benzyloxy)-2,2-dimethylpropylidene)-4-methoxybenzenamine 2-6. To a 5% solution of the corresponding aldehyde $2-5(4.239 \mathrm{~g}, 0.022 \mathrm{~mol})$, in methylene chloride (18 mL) were added p-anisidine ($2.883 \mathrm{~g}, 0.022 \mathrm{~mol}$) and $4 \AA$ molecular sieves (9 g). The resulting suspension was stirred at room temperature for 2 hours until TLC showed complete conversion. The molecular sieves were filtered and thoroughly washed
with methylene chloride. The combined organic solutions were concentrated under vacuum to give pure imine 2-6 ($6.2 \mathrm{~g}, 95 \%$ yield) as a light yellow liquid. $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\gamma_{\max } / \mathrm{cm}^{-1}: 3031,2961,2930,2858,3708,1731,1648,1504,1454,1244,1101,1034 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.15\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 3.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.83(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, ArH), $7.32(5 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH})$.
2.4.7 cis-(土)-3-Acetoxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)-azetidin-2-one 2-9. The crude imine 2-6 (10.8 g, 0.036 mol) and dry triethylamine (25 $\mathrm{mL}, 0.18 \mathrm{~mol})$ in dry methylene chloride $(100 \mathrm{~mL})$ were cooled to $-10^{\circ} \mathrm{C}$ and treated under a nitrogen atmosphere with carboxylic acid chloride 2-8 ($12.3 \mathrm{~g}, 0.09 \mathrm{~mol}$) in dry methylene chloride (65 mL). After complete addition, the solution was warmed to room temperature and stirred for 6 hours. The reaction mixture was hydrolyzed with 2 M HCl , and extracted with methylene chloride. The combined organic layers were washed with saturated sodium carbonate solution, dried over magnesium sulfate, filtered, and evaporated to dryness. Crystallization from hexane and ethyl acetate gave racemic cis 2-9 (11.9 g, 75% yield) as white crystals. m.p. $78-79{ }^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2961,2934$, $2871,1758,1513,1373,1221,1112 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.17(2 \mathrm{H}, \mathrm{dd}, J=9.1 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{CCH})_{2}$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.39\left(2 \mathrm{H}, \mathrm{q}, J=11.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NCH})$, $6.17(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CHO}), 6.83(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.34-7.38(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 20.39\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3} \mathrm{CO}\right), 38.4\left(\mathrm{CMe}_{2}\right)$, $55.4\left(\mathrm{OCH}_{3}\right), 61.8(\mathrm{NCH}), 73.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.4(\mathrm{CHO}), 77.6\left(\mathrm{CCH}_{2} \mathrm{O}\right), 114.2,121.2$,
127.4, 127.7, 128.4, 130.3, 138.1, 157.1, 163.9, 169.1; HRMS: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$, calc.: 397.18893, found: 397.18891.
(3R,4S)-(+)-3-Acetoxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)
azetidin-2-one 2-9. Colourless crystals. m.p. $85-86^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+51.0\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2.4.8 General procedure for lipase resolution of racemic cis 3-acetoxy- β-lactams.

Amano PS lipase (2 g) was suspended in a 0.2 M potassium phosphate buffer (pH 7.5, 27 mL). 3-Acetoxy- β-lactam racemic cis $2-9(2 \mathrm{~g}, 0.005 \mathrm{~mol})$ in 10% acetonitrile (3 mL) was added to the reaction mixture. The reaction was vigorously stirred at room temperature for 72 hours until one of the isomers of the starting material reached more than 48% conversion (by chiral HPLC analysis). The mixture was extracted with ethyl acetate and the combined ethyl acetate layers were washed with brine and dried over magnesium sulfate. Removal of the solvent afforded a mixture of unreacted 3-acetoxy- β lactam and hydrolyzed product 3-hydroxy- β-lactam. Separation by flash chromatography on a silica gel column gave enantiopure 3-hydroxy- β-lactam $(3 S, 4 R)-(-)-\mathbf{2 - 1 0}(0.83 \mathrm{~g}$, 47% yield) and the unreacted 3-acetoxy- β-lactam $(3 R, 4 S)-(+)-2-9(0.95 \mathrm{~g} 48 \%$ yield $)$. Chemical hydrolysis of the latter gave ($3 R, 4 S$)-(-)-2-10 in 92% yield.
(3S,4R)-(-)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)-azetidin-2-one 2-10. White crystals; m.p. $133-134{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=-77.1\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1} 3344,2943,2876,1726,1512,1243 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $\left.0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.10(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{CCH})_{2}\right), 3.48(1 \mathrm{H}, \mathrm{d}, J=$ $\left.9.3 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.24(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NCH}), 4.57(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J=5.4 \mathrm{~Hz}, J=11.5 \mathrm{~Hz}, \mathrm{OHCH}), 5.40(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{OH})$, $6.83(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.19(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$

NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.6\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 38.9\left(\mathrm{CCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 66.7$ $(\mathrm{NCH}), 74.1(\mathrm{HOCH}), 74.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 77.3\left(\mathrm{CCH}_{2} \mathrm{O}\right), 114.2,121.6,128.4,128.6,128.7$, 130.27, 136.2, 156.8, 168.4; HRMS: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$, calc.: 355.1783 , found: 355.1776 . (3R,4S)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)-azetidin-2-one 2-10. Racemic cis or (3R,4S)-(+)-3-acetoxy- β-lactam 2-9 (2 g, 0.005 mol) was dissolved in tetrahydrofuran $(40 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was slowly treated with $2 \mathrm{M} \mathrm{KOH}(20 \mathrm{~mL})$ and stirred at $0{ }^{\circ} \mathrm{C}$ until TLC indicated complete conversion (2 h). The reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate, filtered, and concentrated. Crystallization from hexane and ethyl acetate yielded racemic cis or $(3 R, 4 S)-(+)-2-10(1.65 \mathrm{~g}, 92 \%$ yield $)$ as colourless crystals. m.p. $138-140^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=$ $+78.0\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Spectra are identical to those of $(3 S, 4 R)-(-)-\mathbf{2 - 1 0}$.

2.4.9 (3R,4S)-(+)-3-Hydroxy-4-(2-hydroxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)-

 azetidin-2-one 2-11. Ammonium formate ($0.41 \mathrm{~g}, 0.006 \mathrm{~mol}$) and palladium on activated carbon ($1.2 \mathrm{~g}, 10 \mathrm{wt} . \%$) were added to a solution of β-lactam $(3 R, 4 S)-(+)-\mathbf{2 - 1 0}(1.1 \mathrm{~g}$, $0.03 \mathrm{~mol})$ in dry methanol $(15 \mathrm{~mL})$. The reaction was stirred under reflux for 20 minutes when TLC indicated complete conversion. The mixture was acidified with 2 M HCl to $\mathrm{pH} \sim 3$, and then extracted with ethyl acetate (40 mL x 3). The organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and evaporated to dryness to give the crude product. Crystallization with methylene chloride yielded $(3 R, 4 S)-(+)$-2-11 $(0.398 \mathrm{~g}, 50 \%$ yield $)$ as colourless crystals. m.p. $162-164{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+$ $70.2\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3369,2960,2933,1727,1512,1247,1126$, 1033; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$$=10.5 \mathrm{~Hz}, \mathrm{NCH}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CHOH}), 4.23(2 \mathrm{H}, \mathrm{d}, J=$ $\left.5.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.83(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{ArH}), 7.23$ $(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.5\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 39.4$ $\left(\mathrm{C}(\mathrm{Me})_{2}\right), 55.5\left(\mathrm{OCH}_{3}\right), 66.6(\mathrm{NCH}), 67.5(\mathrm{OHCH}), 76.5\left(\mathrm{CH}_{2}\right), 114.3,122.4,129.4$, 157.3, $169.7(C O)$; HRMS: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$, calc.: 265.1001, found: 265.1006 .
$(\mathbf{3 S}, \mathbf{4 R})-(-)-2-11$: Colourless crystals. m.p. $155-157^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=-70.0\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Racemic cis-2-11: Colourless crystals. m.p. 133-134 ${ }^{\circ} \mathrm{C}$.
2.4.10 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-15. 3-Hydroxy- β-lactam ($3 R, 4,5$)-(+)-2-10 (1.1 g, $0.03 \mathrm{~mol})$ was dissolved in dimethylformamide (2 mL). t-Butyldimethylsilyl chloride (0.73 $\mathrm{g}, 0.036 \mathrm{~mol}$) and imidazole (2.5 equiv) were added. The mixture was stirred at $35^{\circ} \mathrm{C}$ until TLC indicated complete conversion (3 h). The reaction was quenched with water and extracted with methylene chloride. The combined organic extracts were washed three times with water and brine, dried over magnesium sulfate. Filtration and concentration gave $(3 R, 4 S)-(+)-2-15(1.3 \mathrm{~g}, 97 \%$ yield $)$ as a colourless oil. $[\alpha]_{D}^{25}=+52.1\left(\mathrm{c}, 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2955,2931,2857,1753,1513,1248,1132 ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.11\left(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.47(1 \mathrm{H}$, d, $\left.J=9.3 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.35(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NCH}), 4.57(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.96(1 \mathrm{H}, \mathrm{dd}, J=5.4 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, \mathrm{CHOH}), 5.40(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{OH})$, $6.83(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \operatorname{Ar} H), 7.20(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-5.4\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 18.1\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 20.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$, $21.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 25.7\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $39.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 61.9(\mathrm{NCH}), 73.0}\right.$ $(\mathrm{HOCH}), 76.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 78.0\left(\mathrm{CCH}_{2} \mathrm{O}\right), 114.0,120.5,127.3,127.5,128.3,131.2,138.4$, 156.5, 167.4; HRMS: $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right)$, calc. for 469.2648 , found: 469.2648 .

Racemic cis-2-15: Colourless crystals. m.p.105-106 ${ }^{\circ} \mathrm{C}$.

2.4.11 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-hydroxy-1,1-dimethylethyl)-1-

 (4-methoxyphenyl)azetidin-2-one 2-16. Ammonium formate ($820 \mathrm{mg}, 13 \mathrm{mmol}$) and palladium on activated carbon ($1.5 \mathrm{~g}, 10 \mathrm{wt} . \%$) were added to a solution of $(3 R, 4 S)-(+)$ -2-15 ($499 \mathrm{mg}, 1 \mathrm{mmol}$) in dry methanol (20 mL). The reaction was stirred under reflux for 30 minutes when TLC indicated complete conversion. The mixture was acidified with 2 M HCl to $\mathrm{pH} \sim 3$, and then extracted with ethyl acetate ($40 \mathrm{~mL} \times 3$). The organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and evaporated to dryness. Separation of the crude residue by flash column chromatography followed by crystallization with methylene chloride yielded $(3 R, 4 S)-(+)-\mathbf{2 - 1 6}(230 \mathrm{mg}$, 57% yield) as colourless crystals. m.p. $103-104{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+53.7\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3417,2956,2931,2858,1738,1513,1248,836 ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.40\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2}\right)\right.$, $3.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NCH}), 5.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.39 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ $5.4\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 18.1\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 20.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 21.1\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 25.7$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 39.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 55.5\left(\mathrm{OCH}_{3}\right), 62.9(\mathrm{NCH}), 69.8(\mathrm{HOCH}), 114.2,121.0$, 131.0, 156.7, $167.2(\mathrm{CON})$; HRMS: $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right)$, calc.: 379.21790, found: 379.21787.Racemic cis-2-16: Colourless crystals. m.p. 101-102 ${ }^{\circ} \mathrm{C}$.
2.4.12 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(1-formyl-1,1-dimethylmethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-17. ${ }^{[19]}$ A solution of oxalyl chloride $(0.134 \mathrm{~mL}$, $1.74 \mathrm{mmol})$ in dry methylene chloride $(12 \mathrm{~mL})$ was placed in a 50 mL three-neck round-
bottom flask equipped with two dropping funnels containing DMSO ($0.265 \mathrm{~mL}, 3.76$ mmol) dissolved in methylene chloride (4 mL) and ($3 R, 4 S$)-(+)-2-16 (660 mg, 1.88 mmol) dissolved in methylene chloride (8 mL), respectively. When the reaction mixture was cooled to $-60{ }^{\circ} \mathrm{C}$, the DMSO solution was added to the mixture, stirred for 5 minutes; then, the alcohol solution was added over a period of 10 minutes. After stirring at $-60^{\circ} \mathrm{C}$ for one hour, triethylamine ($1.368 \mathrm{~mL}, 9.88 \mathrm{mmol}$) was added and stirred for an additional 4 hours at room temperature. When TLC indicated complete conversion, water $(10 \mathrm{~mL})$ was added and stirred for 10 min , followed by addition of saturated ammonium chloride solution (10 mL). The solution was extracted with methylene chloride, washed with brine, dried over magnesium sulfate, and filtered. Evaporation under vacuum gave $(3 R, 4 S)-(+)-2-17(600 \mathrm{mg}, 83 \%$ yield $)$ as colourless crystals. m.p. $110-111{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=$ $+56.4\left(\mathrm{c}, 1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 2955,2932,2857,1756,1724,1513$, $1466,1384,1249,1180,1129,894,837,783 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.15(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.92\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.24(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.55(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NCH}), 5.02(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}$, $\mathrm{CHOH}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 9.64(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.8\left(\mathrm{SiCH}_{3}\right), 18.1(\mathrm{Me} 3 \mathrm{CSi}), 19.3$ $\left(\mathrm{CH}_{3} \mathrm{C}\right), 22.1\left(\mathrm{CH}_{3} \mathrm{C}\right), 25.6\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 48.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 64.1(\mathrm{NCH}), 76.2}\right.$ $(\mathrm{OCH}), 114.4,114.4,121.1,122.5,130.3,156.9(C-\mathrm{Ph}), 166.3(\mathrm{CO}), 204.3(\mathrm{CHO})$; HRMS: $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right)$, calc.: 391.21787 , found: 391.21824 .

Racemic cis-2-17: Colourless crystals. m.p.107-107.5 ${ }^{\circ} \mathrm{C}$.
2.4.13 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-morpholin-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-18. ${ }^{[28]}$ Aldehyde ($3 R, 4 S$)-(+)-2-17 (541 mg, 1.43
mmol) was dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$; to this solution were added morpholine (0.36 mL , $4.2 \mathrm{mmol})$, $\mathrm{AcOH}(0.075 \mathrm{~mL}, 1.43 \mathrm{mmol})$, and $\mathrm{NaBH}(\mathrm{OAc})_{3}(417 \mathrm{mg}, 2 \mathrm{mmol})$. With ice cooling, the mixture was stirred at room temperature for 3 hours. The reaction mixture was quenched with saturated NaHCO_{3} solution (20 mL) and extracted with EtOAc (20 $\mathrm{mL} \times 3$). The combined organic layer was washed with brine, and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel with hexane and ethyl acetate $(4: 1)$ to give $(3 R, 4 S)-(+)-2-$ $18\left(340 \mathrm{mg}, 53 \%\right.$ yield) as a colourless solid. m.p. $90-91{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+48.7$ (c, 1.5 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 2956,2931,2857,1749,1512,1378,1247,1131,1036$, $888,836,782 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.95\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CC}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} H_{3} \mathrm{CC}\right), 2.21(1 \mathrm{H}, \mathrm{d}, J=13.8$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 2.56\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 2.43-2.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NCH} \mathrm{N}_{2}\right), 3.65-$ $3.66\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.27(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NCH}), 4.96(1 \mathrm{H}$, $\mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{OCH}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-5.4\left(\mathrm{SiCH}_{3}\right),-4.5\left(\mathrm{SiCH}_{3}\right), 18.1\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 22.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$, $25.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 25.7\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 40.3\left(\mathrm{CMe}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 56.2\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 65.7$ $(\mathrm{NCH}), 76.5(\mathrm{HOCH}), 65.0\left(\mathrm{CCH}_{2} \mathrm{O}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 114.0,121.7,130.9,156.6(\mathrm{C}-$ $\mathrm{Ph}), 167.4(\mathrm{CO})$; HRMS: $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right)$, calc.: 448.27572, found: 448.27602.

Racemic cis-2-18: Colourless solid; m.p. $91-92{ }^{\circ} \mathrm{C}$.
2.4.14 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-12. Hydroxy- β-lactam $(3 R, 4 S)-(+)-2-11(1.06 \mathrm{~g}, 0.004 \mathrm{~mol}, 1.0$ equiv) was dissolved in dimethylformamide (2 mL). t-Butyldimethylsilyl chloride ($1.32 \mathrm{~g}, 0.009 \mathrm{~mol}$) and imidazole (4 equiv) were
added. The mixture was stirred at $35^{\circ} \mathrm{C}$ until TLC indicated complete conversion (4 h). The reaction was quenched with water and extracted with methylene chloride. The combined organic extracts were washed three times with water and brine, dried over magnesium sulfate. Filtration and concentration gave (3R,4S)-(+)-2-12 (1.4 g, 72\% yield) as colourless crystals; m.p. $82-83{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+34.8\left(\mathrm{c}, 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }}$ $/ \mathrm{cm}^{-1}: 2955,2931,2857,1753,1513,1248,1132 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.17$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{3} \mathrm{Si}\right), 0.95\left(18 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 3.15(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}$, $\mathrm{CHOBn}), 3.32(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, \mathrm{C} H \mathrm{OBn}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.42(1 \mathrm{H}, \mathrm{d}, J=5.5$ $\mathrm{Hz}, \mathrm{NCH}), 4.98(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CHO}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{d}, J=$ $8.9 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-5.5\left(\mathrm{CH}_{3} \mathrm{Si}\right),-5.4\left(\mathrm{CH}_{3} \mathrm{Si}\right),-5.4\left(\mathrm{CH}_{3} \mathrm{Si}\right),-$ $4.6\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.1\left(\mathrm{Me}_{3} \mathrm{C}\right), 18.3\left(\mathrm{Me}_{3} \mathrm{C}\right), 19.5\left(\mathrm{CH}_{3} \mathrm{C}\right), 20.8\left(\mathrm{CH}_{3} \mathrm{C}\right), 25.7\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 25.9$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 39.3\left(\mathrm{C}(\mathrm{Me})_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 61.3(\mathrm{NCH}), 76.0(\mathrm{OCH}), 70.5\left(\mathrm{CH}_{2}\right), 113.9$, 120.3, 131.5, $156.4(C-\mathrm{Ph}), 167.5(C O)$. HRMS: $\mathrm{C}_{26} \mathrm{H}_{4} \mathrm{NO}_{4} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$, calc.: 493.30435, found: 493.30518 .

Racemic cis-2-12: Colourless crystal. m.p. $79-80^{\circ} \mathrm{C}$.

2.4.15 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-

 1,1-dimethylethyl)azetidin-2-one 2-13. A solution of β-lactam ($3 R, 4 S$)-(+)-2-12 (262 $\mathrm{mg}, 0.531 \mathrm{mmol}$) in acetonitrile (25 mL) was cooled to $-10^{\circ} \mathrm{C}$. CAN ($1.016 \mathrm{~g}, 1.858$ mmol) (3.5 equiv) in distilled water (14 mL) was added dropwise to the solution over the period of one hour. The reaction mixture was diluted with distilled water (10 mL) and stirred at $-10^{\circ} \mathrm{C}$ for 20 minutes. Then, the mixture was extracted with ethyl acetate (three times), and the combined organic layers were washed with 5% sodium bisulfite solution, 10% sodium carbonate solution, 5% sodium bisulfite solution, and brine. The yelloworganic layers were dried over magnesium sulfate, filtered, and concentrated under vacuum. Purification of the crude products by flash chromatography on silica gel with hexane and ethyl acetate (7:1) as eluting solvent gave the $\mathrm{N}-\mathrm{H}$-lactam $(3 R, 4 S)-(+)-\mathbf{2 - 1 3}$ ($152.3 \mathrm{mg}, 74 \%$ yield) as colourless crystals. m.p. $97-98{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+47.1$ (c, 0.25 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3232,2955,2930,2858,1763,1472,1254,1190,196$, 890, 837, 729, 668; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.14\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.19(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.87\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 0.92\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.02\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.26(1 \mathrm{H}, \mathrm{d}, J=$ $\left.9.6 \mathrm{~Hz},(\mathrm{CH})_{2} \mathrm{O}\right), 3.40\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz},(\mathrm{CH})_{2} \mathrm{O}\right), 3.56(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{NCH}), 4.87$ $(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{CHO}), 5.88(\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right),-$ $5.5\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.6\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.0\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 18.3\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 19.3\left(\mathrm{CH}_{3} \mathrm{C}\right), 19.9\left(\mathrm{CH}_{3} \mathrm{C}\right)$, $25.7\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 25.9\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 37.3\left(\mathrm{C}(\mathrm{Me})_{2}\right), 60.5(\mathrm{NCH}), 78.3(\mathrm{OCH}), 73.2\left(\mathrm{CH}_{2}\right)$, $169.5(\mathrm{CO})$; HRMS: $\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$, calc.: 387.26251, found: 387.26272 .

Racemic cis-2-13: Colourless crystals. m.p. 93-94 ${ }^{\circ} \mathrm{C}$.

2.4.16 (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-

 1,1-dimethylethyl)-1-(t-butoxycarbonyl)azetidin-2-one 2-14. Triethylamine (4 equiv) was added dropwise to a stirred solution of $\mathrm{N}-\mathrm{H}-\beta-\operatorname{lactam}(3 R, 4 S)-(+)-\mathbf{2 - 1 3}(775 \mathrm{mg}, 2$ mmol), di- t-butyl-dicarbonate ($808 \mathrm{mg}, 4 \mathrm{mmol}$) (2 equiv), and DMAP (0.3 equiv) in 15 mL of dry methylene chloride at room temperature. After the addition of amine, the reaction mixture was monitored by TLC until complete conversion was indicated. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine solution, dried over anhydrous MgSO_{4}, filtered and concentrated under vacuum. The crude material was purified by flash chromatography on silica gel (hexane: EtOAc =$8: 1)$ to afford $(3 R, 4 S)-(+)-\mathbf{2 - 1 4}\left(917 \mathrm{mg}, 94 \%\right.$ yield) as a colourless oil. $[\alpha]_{D}^{25}=+$ 57.1(c, 1.01, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2956,2931,2858,1808,1729,1472,1318$, $1256,1156,1095,838,780 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ci}_{3}\right),-0.18$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right),-0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.70\left(9 \mathrm{H}, \mathrm{s},\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 0.72\left(9 \mathrm{H}, \mathrm{s},\left((\mathrm{CH})_{3} \mathrm{CSi}\right)\right.\right.$, $0.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 0.85\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.31\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right), 3.20(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}$, $\left.(\mathrm{CH})_{2} \mathrm{O}\right), 3.41\left(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz},(\mathrm{CH})_{2} \mathrm{O}\right), 3.93(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{NCH}), 4.72(1 \mathrm{H}, \mathrm{d}, J$ $=6.6 \mathrm{~Hz}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right),-5.5\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.7$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.0(\mathrm{Me} 3 \mathrm{CSi}), 18.3\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 20.1\left(\mathrm{CH}_{3} \mathrm{C}\right), 22.7\left(\mathrm{CH}_{3} \mathrm{C}\right), 25.6\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $25.9\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 28.0\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right), 39.4\left(\mathrm{C}(\mathrm{Me})_{2}\right), 63.2(\mathrm{NCH}), 76.1(\mathrm{OCH}), 83.0$ $\left(\mathrm{Me}_{3} \mathrm{CO}\right), 69.6\left(\mathrm{CH}_{2}\right), 149.1(\mathrm{COO}), 167.8(\mathrm{CO})$; HRMS: $\mathrm{C}_{24} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$, calc.: 487.31491, found: 487.31496 .

2.4.17 (4R)-4-(2-Benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2,3-

 dione 2-20. Phosphorus pentoxide ($568 \mathrm{mg}, 1.5$ equiv) was added to dry DMSO (15 mL) and stirred at room temperature for 10 minutes. The starting material (3S,4R)-2-10 (710 $\mathrm{mg}, 2 \mathrm{mmol}$) dissolved in 6 mL of DMSO , was added dropwise. The resulting mixture was stirred at room temperature, until TLC indicated complete conversion (24 h). The reaction was quenched with cooled saturated NaHCO_{3} solution and extracted with ethyl acetate ($25 \mathrm{~mL} \times 3$). The combined organic layers were washed with water $(20 \mathrm{~mL} \times 3)$ to remove excess DMSO, washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by flash chromatography on silica gel and crystallized from hexane and ethyl acetate ($8: 1$) to give ($4 R$)-2-20 ($310 \mathrm{mg}, 55 \%$ yield) as yellow crystals. $\mathrm{mp}: 137-138{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2962,2930,2874,1813$, $1759,1512,1464,1251,1113,1030,978,830,739,604 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$$1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.19\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.86$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.51\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.78(1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}), 6.92$ $(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar} H), 7.45(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar} H), 7.30-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.3\left(\mathrm{CH}_{3}\right), 23.71\left(\mathrm{CH}_{3}\right), 39.4\left(\mathrm{CMe}_{2}\right), 55.6\left(\mathrm{OCH}_{3}\right), 73.5$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.8(\mathrm{NCH}), 76.9\left(\mathrm{CCH}_{2} \mathrm{O}\right), 114.4,121.1,127.8,128.5,129.9,137.6,158.0$ (C-Ph), 161.4 (CON), 194.4 (COC); HRMS: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$, calc.: 339.14706, found: 339.14711 .

2.4.18 (3R,4R)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxy-

 phenyl)azetidin-2-one 2-10. Dry baker's yeast (7g) was added to a solution of sucrose $(26 \mathrm{~g})$ in sterilized water $(250 \mathrm{~mL})$ contained in a 1 L flask with 500 mL working volume. The mixture was stirred vigorously at $30^{\circ} \mathrm{C}$ for 30 minutes in order to activate the yeast. $(4 R)-2-20(300 \mathrm{mg}, 0.89 \mathrm{mmol})$, finely ground with 300 mg of β-cyclodextrin, was added to a fermenting yeast and the reaction was monitored by TLC. When the reaction reached 100% conversion (48 h), the reaction was stopped. The reaction mixture was saturated with sodium chloride and centrifuged at 3000 xg for 10 minutes in order to remove yeast cells. The cell pellet was washed with ethyl acetate. The supernatant liquid was extracted continuously with ethyl acetate for 24 hours and the combined extracts were washed with brine and dried over anhydrous MgSO_{4}. After removing the solvent under reduced pressure, the crude residue was purified by flash chromatography to yield optically pure trans-3-hydroxy- β-lactam ($3 R, 4 R$)-2-10 $(270 \mathrm{mg}, 90 \%$ yield) as colourless crystals. m.p. $95-96{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+39.5\left(\mathrm{c}, 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1} 3350,2960,2930,2870$, $1750,1510,1250 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.10\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NCH})$,$4.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 4.40\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.75(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}, \operatorname{Ar} H), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.24-7.39(5 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.6\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CMe}_{2}\right), 5.5\left(\mathrm{OCH}_{3}\right), 66.9(\mathrm{NCH}), 74.0(\mathrm{HOCH}), 74.6$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 77.2\left(\mathrm{CCH}_{2} \mathrm{O}\right), 114.2,121.6,128.3,128.6,128.6,130.3,136.2,156.8,168.4 ;$ HRMS: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$, calc.: 355.17857 , found: 355.17838 .
2.4.19 cis-(\pm)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl)-azetidin-2-one 2-21. A solution of β-lactam 2-15 ($249 \mathrm{mg}, 0.531 \mathrm{mmol}$) in acetonitrile (25 mL) was cooled to $-10^{\circ} \mathrm{C}$. CAN $(1.016 \mathrm{~g}, 1.858 \mathrm{mmol}$) (3.5 equiv) in distilled water $(14 \mathrm{~mL})$ was added dropwise to the solution over the period of one hour. The reaction mixture was diluted with distilled water $(10 \mathrm{~mL})$ and stirred at $-10^{\circ} \mathrm{C}$ for 20 minutes. Then, the mixture was extracted with ethyl acetate (three times), and the combined organic layers were washed with 5% sodium bisulfite solution, 10% sodium carbonate solution, 5% sodium bisulfite solution, and brine. The organic yellow layers were dried over magnesium sulfate, filtered, and concentrated under vacuum. Purification of the crude products by flash column chromatography on silica gel with hexane and ethyl acetate (7:1) as eluting solvent gave the N-H-lactam 2-21 ($270 \mathrm{mg}, 52 \%$ yield) as a beige oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3210,2955,2930,2857,1761,1471,1361,1254,1191$, 1099, 894, 838, 781, 697. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.03$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.73\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 0.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.97(1 \mathrm{H}$, d, $\left.J=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.10\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.26$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.39(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{NCH}), 4.68(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{OC} H), 5.6(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}), 7.06-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$.
2.4.20 cis-(\pm)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl)-1-(t -butyloxycarbonyl)azetidin-2-one 2-22. Triethylamine (4 equiv) was added dropwise to a stirred solution of $\mathrm{N}-\mathrm{H}-\beta$-lactam 2-21 (1 equiv), di-t-butyl-dicarbonate (2 equiv), and DMAP (0.3 equiv) in 10 mL of dry methylene chloride at room temperature. After the addition of amine, the reaction mixture was monitored by TLC until complete conversion was indicated. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine solution, dried over anhydrous MgSO_{4}, filtered and concentrated under vacuum. The crude material was purified by flash chromatography on silica gel (hexane : $\mathrm{EtOAc}=8: 1$) to afford N -Boc-lactam 2-22 as a beige oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}$: $2956,2931,2858,1808,1729,1472,1254,1170,838,670 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $-0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.71\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 0.91\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$, $1.29\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right), 3.14\left(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.23(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.01(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{NCH})$, $4.70(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{OC} H), 7.06-7.11(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-$ $5.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right),-0.7\left(\mathrm{CH}_{3} \mathrm{Si}\right),-0.5\left(\mathrm{CH}_{3} \mathrm{Si}\right), 22.8(\mathrm{Me} 3 \mathrm{CSi}), 25.6\left(\mathrm{CH}_{3} \mathrm{C}\right), 27.1\left(\mathrm{CH}_{3} \mathrm{C}\right), 30.4$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 32.8\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right), 43.3\left(\mathrm{C}(\mathrm{Me})_{2}\right), 68.0(\mathrm{NCH}), 70.0(\mathrm{OCH}), 77.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $80.8\left(\mathrm{OC}(\mathrm{Me})_{3}\right), 87.8(\mathrm{COBn}), 143.6-132.1(\mathrm{C}-\mathrm{Ph}), 152.2(\mathrm{COO}), 169.5(\mathrm{CO})$.

2.4.21 General procedure for preparation of (\boldsymbol{S})-MTPA-derivatives of 2-10 ${ }^{[34,35]}$

A solution of $(R)-(-)-\alpha-$ Methoxy- α-(trifluoromethyl)phenylacetyl chloride (22.73 $\mathrm{mg}, 0.108 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added dropwise to a solution of $(3 R, 4 S)$; $(3 R, 4 R) ;(3 S, 4 S)-\mathbf{2 - 1 0}(32 \mathrm{mg}, 0.09 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(41 \mu \mathrm{~L}, 0.294 \mathrm{mmol})$, and DMAP (3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring overnight, the reaction was diluted with
$\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and then poured into an aqueous saturated NaHCO_{3} solution $(10 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The combined organic fractions were dried over MgSO_{4} and concentrated under vacuum. The resulting crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $: \mathrm{EtOAc}=$ $6: 1$) providing the derivatized product ($47 \mathrm{mg}, 83 \%$ yield).

3-(S)-(-)-MTPA-(3R,4S)-(+)-2-10. Colourless oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2980,2958$, $2853,1766,1513,1245,1453,1387,1245,1173,1107,1032,982,830,754,717,521 ;$ ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.91(1 \mathrm{H}, \mathrm{d}, J=9.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.04\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.68(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NC} H), 6.18(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CHOH}), 4.27(1 \mathrm{H}, \mathrm{d}, J=$ $\left.11.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.31\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.73(2 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{ArH})$, 7.18-7.51 (12H, m, ArH); ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.6\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CMe}_{2}\right), 5.4$ $\left(\mathrm{OCH}_{3}\right), 66.9(\mathrm{NCH}), 74.0(\mathrm{HOCH}), 74.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 77.2\left(\mathrm{CCH}_{2} \mathrm{O}\right), 114.2,121.6,128.3$, $128.5,128.7,130.3,136.2,156.8,168$.

3-(S)-(-)-MTPA-(3S,4R)-(+)-2-10. Colourless oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2980,2958$, $2853,1766,1513,1245,1453,1387,1245,1173,1107,1032,982,830,754,717,521$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.74(1 \mathrm{H}, \mathrm{d}, J=9.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 2.93\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.16\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 4.61$ $(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{NC} H), 6.22(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CHOH}), 6.73(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}$, $\mathrm{Ar} H)$, 7.17-7.51 (12H, m, ArH).

3-(S)-(-)-MTPA-(3R,4R)-(+)-2-10. Colourless oil. IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2980,2958$, $2853,1766,1513,1245,1453,1387,1245,1173,1107,1032,982,830,754,717,521 ;$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.04(1 \mathrm{H}, \mathrm{d}, J=9.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.10\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}), 4.31(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CHOH}), 4.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 4.36$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.73(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar} H), 7.13(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{Ar} H), 7.51$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$.

2.5 References

[1]. (a) Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M; Takeuchi, T. J. Antibiot. 1976, 29, 600-601. (b) Pearson, W. H. H. J. Org. Chem. 1989, 54, 4235.
[2]. Okino, T. M.; Murakami, M.; Yamaguchi, K. Tetrahedron Lett. 1993, 34, 501.
[3]. Kiso, Y. Y.; Matsumoto, S.; Mimoto, H.; Kato, T.; Nojima, R.; Takaku, S.; Fukazawa, H.; Kimura, T.; Akaji, T. Arch. Pharm. 1998, 331, 87-89.
[4]. Guéritte-Voegelein, F.; Guénard, D.; Lavell, F.; Le Goff, M.-T.; Mangatal, L.; Potier, P. J. Med. Chem. 1991, 34, 992.
[5]. Swindell, C. S.; Krauss, N. E.; Horwitz, S. B. Ringel, I. J. Med. Chem. 1991, 34, 1176-1184.
[6]. Mathew, A. E.; Mejillano, M. R.; Nath, J. P.; Himes, R. H.; Stella, V. J. J. Med. Chem. 1992, 35, 145-151.
[7]. Adams, J. D.; Flora, K. P.; Goldspiel, B. R.; Wilson, J. W.; Finley, R. J. Natl. Cancer Inst. Monogr. 1993. 15, 141-147.
[8] Liu, Y.; Chen, G-S.; Zhang, H-Y.; Cao, D-X.; Yuan, Y-J. J. Med. Chem. 2003, 46, 4634-4637.
[9]. Szente, L.; Szejili, J.; Vikmon, A. Inclusion complexes of taxol or taxotere or taxus extract formed with cyclodextrins, its preparation and use. PCT Int. Appl. WO 9426728 Al. 1994.
[10]. Konno, T.; Watanabe, J.; Ishihara, K. J. Biomed. Mat. Res. Part A 2003, 65, 209214.
[11]. Lavasanifar, A.; Kwon, G. S. PCT Int. Appl. 2005, 70.
[12]. Takeda, Y.; Yoshino, T.; Uoto, K.; Chiba, J.; Ishiyama, T.; Iwahana, M.; Jimbo, T.; Tanaka, N.; Terasawa, H.; Soga, T. Biorg. Med. Chem. Lett. 2003, 13, 185-190.
[13]. Takeda, Y.; Yoshino, T.; Uoto, K.; Chiba, J.; Horiuchi, T. ; Iwahana, M.; Atsumi, R.; Ono, C.; Terasawa, H.; Soga, T. Biorg. Med. Chem. Lett. 2003, 13, 4431-4447.
[14]. (a) Holton, R. A.; Biediger, R. J.; Boatman, P. D. Semisynthesis of Taxol and Taxotere, CRC Press, Florida, 1995, 97. (b) Ojima, I; Lin, S; Wang, T. Curr Med Chem. 1999, 6, 927-954.
[15]. Georg, G. I. The Organic Chemistry of β-lactams, VCH, 1993, 381.
[16]. Calinaud, P., Gelas, J. Synthesis of Isopropylidine, Benzylidine, and Related Acetals in Preparative Carbohydrate Chemistry Ed. Hanessian, S. Marcel Dekker, Inc: New York, 1997; pp 3-33 and the references therein.
[17]. Green, T. W.; P. G. M. Wuts, P. G. M. Protecting Groups in Organic Synthesis, 2nd ed. Wiley-Interscience: New York, 1991; pp 128-134.
[18]. Lipták, A.; Imre, J.; Harangi, J.; Nánási, P.; Neszmélyi, A. Tetrahedron 1982, 38, 3721-3727.
[19]. Mancuso, J.; Swern, D. Synthesis 1981, 165-185.
[20]. Yang, Y. Yeast reductase reduction of α-keto- β-lactams; chemo-and enzymatic synthesis of 3-hydroxy- β-lactams. Ph.D. Thesis. The University of New Brunswick, Saint John, 2005.
[21]. Yang, Y.; Wang, F-Y; Rochon, F. D.; Kayser, M. M. Can. J. Chem. 2005, 83, 2836.
[22]. Yang, Y.; Kayser, M. M.; Rochon, F. D. ; Rodriguez, S.; Stewart, J. D. J. Mol. Catal. B: Enzym. 2005, 32, 167-174.
[23]. Yang, Y.; Kayser, M. M.; Hooper, D. Chirality 2005, 17, 131-134.
[24]. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519.
[25] Ge, H.; Spletstoser, J. T.; Yang, Y.; Kayser, M. M.; Georg, G. I. J. Org. Chem. 2007, 72, 756-759.
[26]. Abouabdellah, A.; Bégué, J.-P.; Bonnet-Delpon, D.; Thanh Nga, T. T. J. Org. Chem. 1997, 62, 8826-8833.
[27]. Díez, E.; Fernández, R.; Marqués-López, E.; Martín-Zamora, E.; Lassaletta, J. M. Org. Lett. 2004, 6, 2749-2752.
[28]. Abdel-Magid, A. F.; Carson, K.G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.
[29]. Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. J. Org. Chem. 1990, 55, 2552-2554.
[30]. Moormann, A. E. Synth. Commun. 1993, 23, 789-795.
[31]. Fetter, J.; Giang, L. T.; Czuppon, T.; Lempert, K.; Kajtar-Peredy, M.; Czira, G. Tetrahedron 1994, 50, 4185-4200.
[32]. Altamura, M.; Cesti, P.; Francalanci, F.; Marchi, M.; Cambiaghi, S. J. Chem. Soc., Perkin Tran. 1 1989, 7, 1225-1229.
[33]. Kaluzna, I.; Matsuda, T.; Sewell, A. K.; Stewart, J. D. J. Am. Chem. Soc. 2004, 126, 12827-12832.
[34]. Konno, K.; Fujishima, T.; Liu, Z.; Takayama, H. Chirality 2002, 13, 72-80.
[35]. Ema, T.; Yoshii, M.; Korenaga, T.; Sakai, T. Tetrahedron:Asymmetry 2002, 13, 1223-1229.

CHAPTER 3 EVALUATION OF SEVERAL MICROBIAL REDUCTASES AS ENANTIOSELECTIVE REDUCING AGENTS FOR α-KETOESTERS

3.1 Introduction

The development of methods for the synthesis of enantiopure compounds by microbial transformations has become an important goal in bioorganic chemistry. ${ }^{[1]}$ Microbial transformations with high stereoselectivities have been applied to asymmetric syntheses in order to circumvent the disadvantages of conventional organic synthetic processes. ${ }^{[1]}$ Reduction of a carbonyl group to a homochiral alcohol can be achieved efficiently by a variety of microorganisms. Baker's yeast (Saccharomyces cerevisiae) is by far the most commonly used ${ }^{[2]}$; other frequently used microorganisms include Thermoanerobic brockii, ${ }^{[3]}$ Lactobacillus kefir, ${ }^{[4]}$ Pseudomonas sp., ${ }^{[5]}$ and Candida magnoliae ${ }^{[6]}$ During the last decade, reductases overexpressed in host organisms have become important bioreagents for the reduction of carbonyl compounds. ${ }^{[7]}$

It is interesting to note that many, but certainly not all, microbial reductions of prochiral ketones follow Prelog's Re-face attack rule ${ }^{[8]}$ to give S-alcohols as shown in Figure 3-1. ${ }^{[9]}$ Prelog's rule depends on the relative size of the two groups $\left(\mathrm{R}_{S}\right.$ and $\left.\mathrm{R}_{L}\right)$ attached to the carbonyl since they can be recognized by reductases. ${ }^{[10]}$

Figure 3-1 (S)-Alcohol obtained following Prelog's rule.

Yeast genome encodes a large number of reductases, several of which can accept a given substrate but not necessarily with the same enantioselectivities, thus leading to product alcohols with reduced enantioselectivity. However, the problem of competing reductases is minimized when a desired reductase is overexpressed in other simple and easy-to-handle hosts. ${ }^{[7]}$ The common host Escherichia coli (E. coli) is often used since it is well suited for genetic manipulations and can be used in large-scale transformations. It has been shown that individual reductases from different microorganisms overexpressed in E. coli lead to improved reductions of many ketoesters. ${ }^{[9-11]}$ The mutated reductases overexpressed in E. coli further enlarge the family of new enantioselective bioreductants. The advantage of the overexpression systems, in general, is that they produce the required cofactor(s) as well as a large quantity of a target enzyme.

Often, the preliminary evaluation of new enzymes is carried out with purified enzymes to establish unambiguously stereo- and enantioselectivity. The screening with purified reductases requires the addition of commercially available but expensive cofactor $N A D(P) H$. In this project, several purified carbonyl reductases from various
organisms were evaluated. ${ }^{\dagger}$ To reduce the cost, the glucose dehydrogenase $(\mathrm{GDH}) / \mathrm{NAD}(\mathrm{P}) \mathrm{H}$-recycling system was used (Figure 3-2) to provide in situ continuous regeneration of the $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ cofactor.

Figure 3-2 $N A D(P) H$-regeneration system for the reduction of α-ketoesters.

The wild type enzymes used in this project came from several microorganisms described in Chapter 1. All mutants were the products of rational design by site-directed mutagenesis of enzymes from a single organism red yeast Sporobolomyces salmonicolor (SSCR). In site-directed mutagenesis, the information in the genetic material is changed by modifying a particular codon in the DNA molecule. Ideally, the modifications should be carried out within or close to the active site, providing that the active site is known. This reprogrammed DNA molecule will then direct the synthesis of a protein with an exchanged amino acid close to the active site. ${ }^{[12]}$ Since both the active site and the catalytic mechanism of wild type SSCR are known, all SSCR mutants were prepared via site-directed mutagenesis. Hua and coworkers used a modeling program ${ }^{[10]}$ to design amino acid exchanges close to the hydrophobic pocket of the active site that would modify the enzyme in such a way as to accommodate larger molecules. The exchanged amino acids in the mutants are listed in Table 1-3.

[^1]As was discussed before (Chapter 2) the paclitaxel C-13 side-chain and its analogues can be derived from enantiopure 3-hydroxy- β-lactams or from linear β-amino-α-hydroxyesters. ${ }^{[13]}$ In either case, the desired enantioselectivity can be introduced during bioreduction of their α-ketoesters. Since enantioselectivity of the wild type and mutant reductases (Table 1-3) towards α-ketoesters with pre-existing chiral center has not been established before, four α-ketoesters shown in Figure 3-3 were chosen as substrates for screening. Among them, α-keto esters 3-3 and 3-7 are potential precursors of the enantiopure paclitaxel C-13 side chain. The remaining two are precursors of paclitaxel C13 side chain analogues. The proposed route to the enantiopure $(2 R, 3 S) \mathrm{C}-13$ paclitaxel side chain is outlined in Scheme 3-1. Unfortunately, we were unable to prepare substrate 4-3 ${ }^{\ddagger}$ and only compounds $3-3,3-7$ and 2-20 were used in screening against the purified enzymes listed in Table 1-3.

3-3

paclitaxel side chain

2-20

4-3
paclitaxel side chain analogues

Figure 3-3 Four α-ketoesters attempted for screening.

[^2]Scheme 3-1 The route to the enantiopure $(2 R, 3 S) \mathrm{C}-13$ paclitaxel side chain from the $\alpha-$ ketoesters 3-3 and 3-7.

Thus, in order to identify the most enantioselective enzymes for each substrate, β-chloro- α-keto ester 3-3 and β-lactams 3-7 and 2-20 were screened against reductases from six microorganisms and seven SSCR mutant reductases (shown in Table 1-3).

3.2 Results and Discussion

3.2.1 Substrates for screening of reductases overexpressed in E. coli.

The syntheses of β-lactams 2-20 and 3-7 and the assignment of absolute configurations of their reduction products were discussed in Chapter 2. The 3-chloro-2ketoester 3-3 was synthesized by base-catalyzed condensation of benzaldehyde with dichloroacetate 3-1. This type of Darzens condesation ${ }^{[14]}$ has been frequently used to obtain trans-glycidic esters. In this case, trans-glycidic ester 3-2 was not isolated but underwent spontaneous rearrangement to the more stable chloro ketone 3-3 as shown in Scheme 3-2. Attempts to isolate the product by vacuum distillation (b.p. $105^{\circ} \mathrm{C} / 5$ $\mathrm{mmHg}^{[15]}$) gave a mixture of 3-3 and unreacted aldehyde (b.p. $106{ }^{\circ} \mathrm{C} / 5 \mathrm{mmHg}$). Subsequent purification by column chromatography allowed easy separation of 3-3 from the unreacted aldehyde. The product 3-3 was isolated as a yellow oil which became a semi-solid below $-10^{\circ} \mathrm{C}$.

Scheme 3-2

3-1

3.2.2 Assignment of absolute configuration by lipase resolution

The chloro-ketoester 3-3 was rapidly (20 min) reduced with sodium borohydride to yield the syn- and anti-alcohols 3-4 in 60\% and 30\% yield respectively (Scheme 3-3).

The amount of NaBH_{4} (whether 1.5 or 4 equiv) or the length of time of reaction did not influence the ratio of the syn and anti products; therefore, the minimum (1.5 equiv.) amount of NaBH_{4} was used in the optimized reaction. In addition to two alcohols, 8% of trans-epoxide 3-6 was isolated from the reaction mixture. The formation of 3-6 was caused by the spontaneous ring closure of the anti-3-4 which accounted for the lower yield of anti-3-4 product.

Scheme 3-3

The absolute configuration of the alcohol was deduced from the kinetic resolution of racemic syn-and anti-3-4 by lipase PS mediated transesterification in diisopropyl ether ${ }^{[15]}$ (Scheme 3-3). The racemic syn- and anti-3-4 diastereomers were separated on silica
column monitored by GC and in the following step lipase converted $(2 R, 3 R)-3-4$ and ($2 R, 3 S$)-3-4 to the acetylesters $(2 R, 3 R)$-3-5 and ($2 R, 3 S$)-3-5 leaving enantiomers ($2 S, 3 S$)-3-4 and ($2 S, 3 R$)-3-4 as alcohols. The four enantiomers are fully resolved on chiral phase GC. The reaction was monitored by chiral GC and was stopped when ($2 R$)-3-4 was totally consumed (spectra shown in Appendix III). The retention times for all isomers are shown in Table 3-1. The optical rotation and the assignment of individual enantiomers are in accordance with the literature data. ${ }^{[15]}$

Table 3-1 Retention times of stereoisomers on chiral phase GC.

Racemic syn-3-4	$(2 S, 3 S)-(+)-3-4$	$(2 R, 3 R)-(-)-3-4$	$(2 R, 3 R)-(-)-3-5$
RT (min)	64.80	64.22	71.01
Racemic anti-3-4	$(2 S, 3 R)-(+)-3-4$	$(2 R, 3 S)-(-)-3-4$	$(2 R, 3 S)-(-)-3-5$
RT (min)	65.92	67.69	68.72

3.2.3 Reduction with baker's yeast

Baker's yeast reduces a wide spectrum of substrates. Prior to testing the reductases overexpressed in E.coli, verification of whether whole yeast accepts substrate 3-3 and whether the reduction is diastereo- and/or enantioselective was required. Following the standard protocol, the reaction, monitored by GC, reached total conversion in 24 hours. The values of conversion versus time are shown in Table 3-2 and plotted in Figure 3-4.

Table 3-2 Conversions (\%) obtained in yeast-catalyzed reduction of 3-3.

Figure 3-4 Conversion of β-chloro- α-ketoester 3-3 in baker's yeast reduction.

Figure 3-4 indicates that for longer reaction times, more racemic anti-3-4 is obtained. On the other hand, the minor syn product 3-4 was produced only during the
initial 1.5 hours and no significant increase was observed after longer reaction times. Chiral GC spectra indicated, after the starting material was consumed in 24 hours that the products consisted of $(2 S, 3 S)-3-4$ in 98% ee and racemic anti-3-4 in a ratio of $15: 85$ (syn : anti) (Scheme 3-5 and Figure 3-5).

Scheme 3-5

3-3

$$
(2 S, 3 S)-(+)-3-4
$$

racemic anti-3-4
15 : 85

Figure 3-5 Chiral GC spectra of baker's yeast reduction.

Although ($2 S, 3 S$)-3-4 was enantiorich, the major anti product was racemic; Clearly baker's yeast was not sufficiently selective, perhaps because of the presence of several enzymes with opposite stereoselectivity. Interestingly, the reduction of 3-3 by NaBH_{4} gave quite different ratios of diastereomers with syn being the major product (Table 3-3).

Table 3-3 Comparison between chemical reduction and yeast reduction.

Method	Conv. (\%)	Time	Diastereoisomeric ratio (syn: anti)
Baker's yeast	>98	24 hours	$15: 85$
NaBH_{4}	>98	10 minutes	$65: 35$

3.2.4 Screening result of compound 3-4 with isolated reductases and mutants

The screening experiments were carried out on a 1 mL scale at room temperature with the exception of the thermophilic PFADH enzyme which was performed at $37^{\circ} \mathrm{C}$. All enzymes used in this screening were pure as indicated by protein gel. As described in the experimental section, the cofactor regeneration system and $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ were dissolved in KPi buffer which contained substrate dissolved in biograde DMSO. The pH was adjusted depending on the enzyme used (shown in Table 1-3). The reaction was stopped after 12 hours, and analyzed by chiral phase GC. The absolute configuration was assigned by comparison of the retention times to authentic samples from lipase resolution. Specific activity of each enzyme was determined by spectrophotometrically using SpectraMax M2 microplate reader (Molecular Devices) and by measuring the
oxidation of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ at $340 \mathrm{~nm}\left(\varepsilon=6.22 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$ every 9 seconds during the first 3 minutes of reaction in the presence of the substrate and enzyme in the potassium phosphate buffer. Details are presented in experimental section.

The results of the screening of the purified enzymes are summarized in Table 3-4. Enzymes CMCR, 7-HSDH, PFADH, GRE2, YMR226c gave side-reactions yielding more than 80% of by-products which appeared within one hour (Table 3-5). ${ }^{\S}$ Because of the side-reaction, the yield of alcohol $3-4$ was low. On the other hand, the reactions catalyzed by SSCR (wild type) and SSCR mutants proceeded with a high degree of enantioselectivity in all cases to give $(2 S, 3 S)$-hydroxy-ester 3-4 as a major product. The site-directed mutagenesis did not change the enantiomeric excess, it was at least 98% ee in all cases. All mutants except for SSCRQ245P, however, gave much higher diastereomeric ratios in favor of the $\operatorname{syn}(S S)$ products than the wild type SSCR.

[^3]Table 3-4 Screening results of the biocatalytic reduction of compound 3-3.

Note: (1). Chiral GC, $100^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ to $180^{\circ} \mathrm{C}, 180^{\circ} \mathrm{C}$ for 10 min . (2). The unit of specific activity: $\mathrm{nmol} \mathrm{min}^{-1} \mathrm{mg}^{-1}$.

Table 3-5 Conversion and side-product percentages of 3-4.

Enzyme	Product composition (\%)	GC Conv.	d.r.	Side-product
	$R R, S S, S R, R S$	$(\%)$		$(\%)$
SSCR (wild type)	$1,51,39,9$	98	$49 / 51$	0
SSCRN207V	$1,79,17,3$	98	$80 / 20$	0
SSCRQ245L	$1,78,15,6$	98	$79 / 21$	0
SSCRK181R	$0,76,19,3$	96	$77 / 23$	1.2
SSCRN207T	$0,70,27,3$	96	$70 / 30$	0
SSCRQ245P	$0,38,43,19$	96	$38 / 62$	0
SSCRQ245H	$0,41,6,3$	96	$81 / 19$	0
SSCRM242G	$0,80,16,6$	96	$78 / 22$	0
CMCR	$80,10,8,2$	94	$90 / 10$	80
7-HSDH	$24,4,70,2$	98	$28 / 72$	82
PFADH	$42,56,1,2$	98	$97 / 3$	88
GRE2	$51,38,5,6$	98	$89 / 11$	85
YMR226c	$41,51,4,4$	98	$92 / 8$	84

Note: (1). All reactions were stopped after 12 hours.
(2). d.r. $=$ syn/anti ratio.

In biocatalysis, the major application of enzymes in enantioselective organic synthesis is the kinetic resolution (KR) of racemates. ${ }^{[16]}$ A major drawback of $K R$, however, is that the yield is limited to a maximum of 50%. In some cases, dynamic kinetic resolution (DKR) can be developed in which the non-reacting enantiomer is racemized in situ during the desymmetrization reaction. The optimal DKR can give the desired product in a 100% yield and 100% enantiomeric excess ${ }^{[17]}$ The success of
enzymatic DKR is limited by pH . Since the pH window for biocatalysis is rather narrow, it is not surprising that successful applications were found only for chiral centers which may be racemized in situ under weakly alkaline or acidic conditions also observed in this project. ${ }^{[18]}$ Under the optimized pH condition, acid/base-catalyzed enol(ate) formation was expected to facilitate DKR.

Reductions of chloroketone 3-3 generate the second asymmetric center. However, because β-chloro- α-ketoester can undergo rapid keto-enol equilibration under the reaction conditions, dynamic kinetic resolution $\left(\mathrm{K}_{R}>\mathrm{Krac}>\mathrm{K} s\right)$ takes place as shown in Figure 3-6. The observed selectivity results from rapid equilibrium established between the two enantiomers of the oxoester. From the improved diastereomeric ratio, it may be concluded that the SSCR mutants' k_{R} reaction rate is faster than that of the wild type SSCR under the same pH condition. The improved yield of ($2 S, 3 S$)-3-4 product in the reductions with SSCR mutants is probably the result of the mutant enzymes' active site reconstruction that lowered the transition state energy leading to the $S S$ product (because of better fit hence better stabilization of the transition state) rather than changes in the reaction conditions such as enhanced solubility or increase of enzyme concentration.

Figure 3-6 Correlation between starting material and products in resolution.

The reductions with the SSCR mutants producing ($2 S, 3 S$)-3-4 (99% ee) showed that the reactions followed Prelog's rule, i.e. the Re-face attack was preferred and gave the major product. The SSCR X-ray structure and docking studies ${ }^{[10]}$ on wild type SSCR and its mutants assumed that the best conformation for β-chloro- α-ketoester facilitated π π interactions in the hydrophobic pocket of the active site, which favors the ($2 S, 3 S$)product. The modeling studies helped in the interpretation of the results. The improved enantiomeric excess of the anti-product in the reaction catalyzed by mutant $\mathrm{N} 207 \mathrm{~V}^{* *}$ (80% ee compared to 60% ee for the wild type SSCR) may be because of the fact that the neighboring hydrophobic pocket was enlarged to better accommodate the phenyl group, leading to increased selectivity. Other SSCR mutants actually blocked this pocket and limited the phenyl ring movement, which apparently decreased enantioselectivity.

3.2.5 Screening results for 3-oxo- β-lactams 2-20 and 3-7

3-Oxo- β-lactams 2-20 and 3-7 were screened with purified reductases and mutants overexpressed in E. coli. Unfortunately, substrate 2-20 was not accepted by any of these enzymes under a variety of tested transformation conditions, such as increased enzyme concentration, addition of β-cyclodextrin, longer reaction times. This may be because β-lactam 2-20 with a large substituent in position 4 does not fit into the relatively small active site of these enzymes. This rationalization is supported by the fact that even substrate 3-7, with just a phenyl group in position 4, was transformed slowly and maximum conversion of only 10% was achieved after 48 hours of reaction. The results of the screening with these purified reductases overexpressed in E.coli are displayed in

[^4]Table 3-6. The four enantiomers of the reduction (Figure 3-7) were cleanly separable on a chiral phase HPLC column as shown in Figure 3-8.

Table 3-6 Screening substrate 3-7 with reductases and mutants.

Enzyme	Product composition (\%) $S S, R R, S R, R S$	trans-3-8 ee (\%)	cis-3-8 ee $(\%)$	Conv. $(\%)$
SSCR(wild type)	$57,7,32,4$	$78(3 S, 4 S)$	$79(3 S, 4 \mathrm{R})$	9.8
SSCRN207V	$60,8,27,5$	$76(3 S, 4 S)$	$71(3 S, 4 R)$	11.2
SSCRQ245L	$39,11,41,8$	$55(3 S, 4 S)$	$66(3 S, 4 R)$	7.4
SSCRK181R	$61,8,29,2$	$76(3 S, 4 S)$	$85(3 S, 4 R)$	10.6
SSCRN207T	$45,9,31,14$	$67(3 S, 4 S)$	$37(3 S, 4 R)$	9.1
SSCRQ245P	$46,10,33,10$	$65(3 S, 4 S)$	$53(3 S, 4 R)$	9.3
SSCRQ245H	$54,11,36$,	$70(3 S, 4 S)$	$88(3 S, 4 R)$	9.2
SSCRM242G	$51,11,36,9$	$66(3 S, 4 S)$	$61(3 S, 4 R)$	9.4
CMCR	$60,13,25,2$	$65(3 S, 4 S)$	$82(3 S, 4 R)$	6.2
$7-H S D H$	$20,9,48,22$	$37(3 S, 4 S)$	$36(3 S, 4 R)$	4.5
PFADH	$48,47,3,2$	0	$30(3 S, 4 R)$	5.1
GRE2	$54,13,23,9$	$61(3 S, 4 S)$	$43(3 S, 4 R)$	8.9
YMR226c	$63,13,21,2$	$65(3 S, 4 S)$	$80(3 S, 4 R)$	7.9

Note: The reaction was initiated with 1.5 mg of enzyme, 3 mg of GDH, 12 mg of glucose over 24 hours, then 1.5 mg of enzyme, 3 mg of GDH, 12 mg of glucose were added during a second 24 hours (total 48 hours).

Figure 3-7 Reduction and product distribution in the screening test.

Figure 3-8 Separation of four enantiomers of 3-8 on a chiral (S, S)-Whelk-O 1 column.

Screening of 3-oxo- β-lactam 3-7 was carried out with the set of reductases listed in Table 1-3. The regeneration system and reaction conditions were the same as described for compound 3-4. The samples were analyzed after 12, 24, and 48 hours by
chiral phase HPLC (Agilent HPLC 1100). It is interesting to note that in this case, as well, all enzymes favored $R e$-face attack and gave ($3 S$)-Prelog products (Figure 3-8). Poor substrate acceptance, coupled with the low solubility of β-lactams in aqueous media, are likely responsible for the low conversions and limited the usefulness of these reactions. The apparent lack of enantioselectivity may be related to the rigid and symmetrical structure of compound 3-7. Since low enantioselectivities in reductions of this substrate were also observed in the transformations performed with several aldoketo reductases, the rigidity and symmetry of β-lactams may be a general problem. ${ }^{[19]}$ The indepth study, including modeling, of the few reductases that are selective vis a vis these compounds may suggest active-site modifications that would allow engineering of better reductases for β-lactams.

3.3 Conclusions

Screening of reductases from six microorganisms and seven SSCR mutant reductases against β-chloro- α-ketoester 3-3 identified several highly enantioselective enzymes. The formation of by-products, observed with other reductases, combined with the difficult syntheses of β-substituted- α-ketoesters may explain the reason why these substrates have been seldom investigated. The SSCR mutants showed an improved selectivity over that of the wild type SSCR. The availability of enantioselective reductases for β-chloro- α-ketoester 3-3 facilitated the syntheses of the enantiopure paclitaxel side chain and oxazolidine (discussed in Chapter 4). Screening of the same reductases against β-lactams 2-20 and 3-7 indicated that none of these enzymes was a suitable bioreductant.

3.4 Experimental

3.4.1 Activity assay of the carbonyl reductase

The activity of the carbonyl reductases from SSCR and other microorganisms ${ }^{[10]}$ toward the reduction of α-ketoesters was determined spectrophotometrically by measuring the oxidation of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ at $340 \mathrm{~nm}\left(\varepsilon=6.22 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$ in the presence of excess α-ketoesters. The activity was measured at room temperature in a 96 -well plate, in which each well contained α-ketoester (6.25 mM), $\mathrm{NAD}(\mathrm{P}) \mathrm{H}(0.25 \mathrm{mM})$ in potassium phosphate buffer ($100 \mathrm{mM}, \mathrm{pH}=6.5-7,180 \mu \mathrm{~L}$). The reaction was initiated by the addition of purified enzyme ($20 \mu \mathrm{~L}$ solution containing 2-40 $\mu \mathrm{g}$ of enzyme). The specific activity is defined as the number of micromoles of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ converted in 1 min by 1 mg of enzyme ($\mu \mathrm{mol} \mathrm{min}^{-1} \mathrm{mg}^{-1}$). Calculation is based on $\mathrm{V}_{\max }=\Delta \mathrm{A} / \Delta \mathrm{t}=\Delta \mathrm{c} / \Delta \mathrm{t} * \varepsilon^{*} 1$ (Beer's law).

3.4.2 Enantioselectivity of the enzymatic (SSCR) reduction of α-ketoesters 3-3, 2-20,

 and 3-7The enantioselectivity of the enzymatic reduction of the α-ketoesters 3-3, 3-7 and 2-20 catalyzed by the carbonyl reductase from SSCR and other microorganisms ${ }^{[10]}$ was studied using an $\mathrm{NAD}(\mathrm{P})$ H recycling system. The general procedure was as follows: Dglucose (4 mg), D-glucose dehydrogenase (0.5 mg), $\mathrm{NAD}(\mathrm{P}) \mathrm{H}(0.5 \mathrm{mg}$), carbonyl reductase (SSCR or others, 0.5 mg) and a solution of the α-ketoester in DMSO ($50 \mu \mathrm{~L}$, 0.25 M) were mixed in a potassium phosphate buffer ($1 \mathrm{~mL}, 100 \mathrm{mM}, \mathrm{pH} 6.5$ or 7.0) and the mixture was shaken overnight at room temperature. The mixture was extracted with methyl t-butyl ether (1 mL). The organic extract was dried over anhydrous sodium sulfate
and was subjected to chiral GC analysis to determine the enantiomeric excess. The absolute configurations of the product alcohols were identified by comparing the chiral GC data with materials obtained via lipase resolution. ${ }^{[18]}$ Details of the chiral GC analysis are summarized in Table 3-4 and Appendix III.

3.4.3 General procedure for biotransformations with baker's yeast

Dry baker's yeast (2 g) was added to a solution of sucrose (8 g) in sterile water $(100 \mathrm{~mL})$ contained in a 250 mL Erlenmeyer flask. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 30 minutes to activate the yeast. The substrate methyl 3-chloro-2-oxo-3phenylpropanoate 3-3 (1 g) was added to initiate the reaction. The conversion was monitored by GC and chiral phase GC and was shown to be completed in 24 hours. Analytical samples were collected after 1.5, 3.5, 5.5, 7.5 and 24 hours and prepared by mixing $300 \mu \mathrm{~L}$ of the reaction mixture with $300 \mu \mathrm{~L}$ of ethyl acetate. After vortex mixing for 1 min , the sample was spun in a microcentrifuge for 1 minute, then $200 \mu \mathrm{~L}$ of the organic layer was collected and dried over magnesium sulfate. $1 \mu \mathrm{~L}$ of sample was used for GC analysis.

3.4.4 Methyl 3-chloro-2-oxo-3-phenylpropanoate 3-3. ${ }^{[15]}$ Methyl dichloroacetate

 $(43.20 \mathrm{~g}, 0.302 \mathrm{~mol})$ and benzaldehyde $(32.0 \mathrm{~g}, 0.302 \mathrm{~mol})$ were added dropwise into $\mathrm{NaOMe}(16.308 \mathrm{~g}, 0.302 \mathrm{~mol})$ in diethyl ether $(400 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ under argon. After stirring for 6 hours, the reaction mixture was warmed to room temperature and stirred overnight. The mixture was then quenched with $5 \% \mathrm{HCl}$ solution, and extracted twice with diethyl ether. The combined organic layers was washed with brine and dried over MgSO_{4}. After evaporation, the crude product was purified by flash chromatography with hexane and ethyl acetate (5:1) and gave 3-3 (58.40 g, 90\% yield) as a yellow oil. IR$\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} \mathrm{cm}^{-1}: 3062,2955,1737$ (very strong), $1454,1245,1062,701 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.18(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.37-7.42(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 53.4\left(\mathrm{OCH}_{3}\right), 61.9(\mathrm{CHCl}), 129.7(\mathrm{Ar}-\mathrm{C}$ para), $128.9(\mathrm{Ar}-\mathrm{C}$ meta), 129.1 (Ar- C ortho), $132.8(\mathrm{CAr}-\mathrm{C}), 160.4\left(\mathrm{COOCH}_{3}\right), 184.6(\mathrm{CO})$.

3.4.5 Reduction of 3-3 by NaBH_{4}

To a stirred solution of β-chloro- α-ketoester 3-3 ($401.2 \mathrm{mg}, 2 \mathrm{mmol}$) in MeOH (30 mL) was added NaBH_{4} ($249 \mathrm{mg}, 3 \mathrm{mmol}, 1.5$ equiv.) in three portions every 2 minutes at $0{ }^{\circ} \mathrm{C}$. Stirring was continued and the reaction was monitored by GC until complete conversion (20 min). Then the mixture was poured into brine and extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layer was washed with brine, dried over MgSO_{4}, evaporated. The residue was purified by column chromatography with hexane and EtOAc (6:1) to give racemic $\mathbf{3 - 5}(28.5 \mathrm{mg}, 8 \%$ yield) as a yellow oil; racemic syn-3$4(257 \mathrm{mg}, 60 \%$ yield) as white crystals; racemic anti-3-4 (128 $\mathrm{mg}, 30 \%$ yield) as yellow crystals.

Methyl (\pm)-syn-3-chloro-2-hydroxy-3-phenylpropanoate 3-4. White crystals. m.p: 77$78{ }^{\circ} \mathrm{C}$. Spectrum was identical to an authentic sample. ${ }^{[20]} \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v_{\max } / \mathrm{cm}^{-1}: 3484$, 2954, 2920, 2850, 1742, 1452, 1263, 1214, 1117, 994, 904, 698; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.26(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.58(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{CHOH}), 5.36$ $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ClCH}), 7.42-7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 53.2$ $\left(\mathrm{OCH}_{3}\right), 63.7(\mathrm{CHOH}), 74.6(\mathrm{CHCl}), 128.8(\mathrm{Ar}-\mathrm{C}$ para $), 127.9(\mathrm{Ar}-C$ meta $), 128.5(\mathrm{Ar}-\mathrm{C}$ ortho), 137.6 (CAr-C), $171.7(\mathrm{CO})$. HRMS: for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right)$: calc. 214.03967; found: 214.03974.

Methyl (\pm)-anti-3-chloro-2-hydroxy-3-phenylpropanoate 3-4. Yellow crystal. mp: 81$81.5^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} \mathrm{cm}^{-1}: 3456,3062,3032,2954,1742,1494,1453,1282,1214$, 1153; 1116, 699; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.1(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right)$, $4.70(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{CHOH}), 5.26(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{ClCH}), 7.40-7.44(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 52.7\left(\mathrm{OCH}_{3}\right), 62.9(\mathrm{CHOH}), 75.3(\mathrm{CHCl}), 128.0$ (Ar-C para), 128.4 (Ar-C meta), 128.9 (Ar-C ortho), 135.9 (CAr-C), 171.1 (CO). HRMS: for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right):$calc. 214.03967; found : 214.03974.

Racemic trans-methyl 3-phenyloxirane-2-carboxylate 3-5. Yellow oil. IR $\left(\mathrm{CHCl}_{3}\right)$ $\gamma_{\text {max }} \mathrm{cm}^{-1}: 3646,3485,3035,2955,1747,1441 ; 1294,1210,1022,896,760,697,600$, 517; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHCO}), 4.14(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OCHC}) ; 7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.6\left(\mathrm{OCH}_{3}\right), 56.7$ (OCHCO), 58.0 (ArCHC), 129.0 (Ar-C para), 128.7 ($\mathrm{Ar}-C$ meta), 125.8 (Ar- C ortho), 134.4 (CAr-C), $168.6(\mathrm{CO})$.

3.4.6 General procedure for lipase catalyzed kinetic resolution of syn- and antimethyl 3-chloro-2-hydroxy-3-phenylpropanoate 3-4

Racemic syn-3-4 or anti-3-4 ($28 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added into lipase PS (Amano, 56 mg) and vinyl acetate ($33.6 \mathrm{mg}, 0.39 \mathrm{mmol}$) in diisopropyl ether (4 mL) and stirred for 24 hours at room temperature. ${ }^{[15]}$ The reaction was monitored by GC until 48% conversion of the starting material. The reaction mixture was filtered and quenched with water, and extracted with ethyl acetate. $1 \mu \mathrm{~L}$ of sample was used for chiral GC analysis.

3.5 References

[1]. Morrison, J. D.; Ed. Asymmetric Synthesis Academic press: New York, 1985, pp 2-5. [2]. (a) Stewart, J. D. Curr. Opin. Drug Discovery Dev. 1998, 1, 278-289; (b) Kirst, H. A., Yeh, W.-K., Zmijewski, M. J., Eds.; Marcel Dekker: New York, 2001; pp 175-208.
[3]. Keinan, E.; Hafeli, E. K.; Seth, K. K.; Lamed, R. J. Am. Chem. Soc. 1986, 108, 162168.
[4]. Bradshaw, C. W.; Hummel, W.; Wong, C.-H. J. Org. Chem. 1992, 57, 1532-1536.
[5]. Bradshaw, C. W.; Fu, H.; Shen, G.-J.; Wong, C.-H. J. Org. Chem. 1992, 57, 15261532.
[6]. Kita, K.; Kataoka, M.; Shimizu, S. J. Biosci. Bioeng. 1999, 88, 591-598.
[7].(a) Habrych, M.; Rodriguez, S.; Stewart, J. D. Biotechnol. Prog. 2002, 18, 257-261;
(b) Machielsen, R.; Uria, A. R.; Kengen, S. W. M.; van der Oost, J. Appl. Environ. Microbiol. 2006, 72, 233-238; (c) Zhu, D.; Stearns, J. E.; Ramirez, M.; Hua, L. Tetrahedron 2006, 62, 4535-4539.
[8]. Prelog, V. Pure Appl. Chem. 1964, 9, 119.
[9]. Fantin, G.; Fogagnolo, M.; Giovannini, P. P.; Medici, A.; Pedrini, P.; Gardini, F.; Lanciotti, R. Tetrahedron 1996, 52, 3547-3552.
[10]. Zhu, D.; Yang, Y.; Buynak, J.D.; Hua, L. Org. Biomol.Chem. 2006, 4, 2690-2695.
[11]. Rodriguez, S.; Kayser, M.M.; Stewart, J. D. J. Am. Chem. Soc. 2001, 123, 15471555.
[12]. http://nobelprize.org/nobel prizes/chemistry/laureates/1993/illpres/site.htmL
[13]. (a) Wang, Z-M.; Kolb, H. C.; Sharpless, K. B. J. Org. Chem. 1994, 59, 504-5105;
(b) Zhou, Z.; Mei, X.; Chang, J.; Feng, D. Syn. Commun. 2001, 31, 3609-3615.
[14]. Darzens, G. Compt. Rend. 1904, 139, 1214.
[15]. Hamamoto, H.; Mamedov, V. A.; Kitamot, M.; Hayashi, N.; Tsuboi, S. Tetrahedron: Asymmetry 2000, 11, 4485-4497.
[16]. Fable, K. Biotransformations in Organic Chemistry, $4^{\text {th }}$ ed; Springer-Verlag: Berlin, 2000.
[17]. Strauss, UT; Felfer, U; Fable, K. Tetrahedron:Asymmetry 1999, 10, 107-117.
[18]. Faber, K. Eur. J. Chem. 2001, 7, 23.
[19]. Yang, Y.; Drolet, M.; Kayser, M. M. Tetrahedron: Asymmetry 2005, 16, 27482753.
[20]. Srivastava, R.; Zjawiony, J. K.; Peterson, J. R.; McChesney, J. D. Tetrahedron: Asymmetry 1994, 5, 1683-1688.

CHAPTER 4 CHEMOENZYMATIC SYNTHESIS OF NEW ENANTIOPURE OXAZOLIDINES

4.1 Introduction

In recent years, oxazolidine derivatives of optically pure β-amino alcohols such as $(-)$-ephedrine ${ }^{[1,2]}$ have received considerable attention because of their wide occurence in biologically active molecules and applications as chiral auxiliaries and ligands for asymmetric synthesis. ${ }^{[3]}$ Oxazolidines are useful as prodrugs for β-amino alcohols because the resulting "masked" amines do not ionize and hence are more compatible with organic and lipophilic media. ${ }^{[1,2]}$ For example, it has been shown that at pH values around 7, an oxazolidine can penetrate a biological membrane (faster than a β-amino alcohol) from water. ${ }^{[4]}$ In addition, parent drugs can be easily regenerated from prodrug oxazolidines via hydrolysis. ${ }^{[4-6]}$ For the latter reason, oxazolidines are used also as protecting groups for amino alcohols in asymmetric syntheses. ${ }^{[7]}$

Chiral oxazolidines are usually prepared by the reaction of carbonyl compounds (mainly aldehydes) with chiral β-amino alcohols (Figure 4-1). ${ }^{[8]}$ Control over the chemical stability of the oxazolidine systems can be enforced by the choice of different aldehyde moieties. ${ }^{[9]}$ Thus, facile and high yielding syntheses of oxazolidines, especially enantiopure 2-oxazolidines (Figure 4-2), continue to be developed by many research groups. ${ }^{[10]}$

Figure 4-1 Oxazolidines obtained from an amino-alcohol and a carbonyl compound.

Ephedrine

2-Oxazolidine

Figure 4-2 Ephedrine and oxazolidines are useful chiral auxiliaries.

The goal of the present work is to provide a new strategy for chemoenzymatic asymmetric synthesis of enantiopure 2-oxazolidines and α-hydroxy- β-amino esters. Sharpless osmium-catalyzed aminohydroxylation of olefins ${ }^{[11]}$ and the Mannich-type reaction ${ }^{[12]}$ provide a powerful entry to highly enantioenriched α-hydroxy- β-amino esters or α, β-epoxy esters. Sharpless asymmetric epoxidation (AE) usually fails to give more than 80% ee for the cis- α, β-epoxy ester from a Z-allylic alcohol. ${ }^{[13]}$ trans- α, β-Epoxy esters, on the other hand, are easily obtained with $>90 \%$ ee from Sharpless $A E$ of E allylic alcohols and subsequent oxidation and esterification. ${ }^{[14]}$ The cis-epoxy esters can be prepared via enzymatic reduction of β-ketoesters. ${ }^{[15,16]}$ In this work, it will be shown that enantiopure cis- α, β-epoxy ester can be obtained via enzymatic reduction of α ketoester and can served as a precursor in the syntheses of enantiopure α-hydroxy- β amino esters and oxazolidines.

4.2 Results and Discussion

4.2.1 Synthesis of cis-oxazolidine 4-4 from racemic trans-epoxide 4-1

At the beginning of this project, oxazolidines were not the target of our synthesis; our target was β-amino- α-ketoester $\mathbf{4 - 5 b}$, a substrate for enzymatic reductions, which was to be prepared via a straightforward three-step synthesis as shown in Scheme 4-1.

Scheme 4-1

This route was appealing, since the precursor, racemic trans-epoxide 4-1, was commercially available, and its readily accessible enantiopure forms ${ }^{[17,18]}$ allowed access to both enantiomers of $\mathbf{4 - 5 b}$. The synthesis started well. The zinc chloride-catalyzed ${ }^{[19]}$ ring opening of racemic trans-ethyl 3-phenyl glycidate $4-\mathbf{1}^{[20]}$ with p-anisidine $\mathbf{4 - 2 b}$ gave readily separable anti- β-amino alcohol $\mathbf{4 - 3 b}$ and a small amount of α-amino alcohol (9:1 confirmed by GC-MS) in excellent yield (Scheme 4-1). The following step, however, did
not proceed along the projected route since all attempts to oxidize alcohol 4-3b (Jones' reagent, ${ }^{[21]} \mathrm{PCC}$, TEMPO/ $\mathrm{NaOCl},{ }^{[22]}$ and Dess Martin reagent ${ }^{[23]}$) to 4-5b under a variety of conditions gave inseparable mixtures of many compounds. Swern oxidation, ${ }^{[24]}$ on the other hand, has been shown to be a favorable method for the oxidation of a few t-Boc protected primary and secondary β-amino alcohols. ${ }^{[25,26,28]}$ The oxidation of the Boc-protected ($\mathrm{R}^{\prime}=t$-Boc) alcohol 4-3b with $\mathrm{P}_{4} \mathrm{O}_{10}$ in DMSO, however, was not successful and no product (Boc-protected) 4-5b could be detected. We decided to attempt the same reaction with an unprotected $4-3 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{H}\right)$. Although DMSO in hydrochloric acid had been used as formaldehyde replacement (one-carbon source) in the synthesis of Tröger base, ${ }^{[27]}$ we hoped that the $\mathrm{P}_{4} \mathrm{O}_{10}$ in DMSO combination might favor oxidation, even in the presence of an unprotected secondary amine. ${ }^{[28]}$ The $\mathrm{P}_{4} \mathrm{O}_{10}$ in DMSO reaction with an unprotected $\mathbf{4 - 3 b}\left(\mathrm{R}^{\prime}=\mathrm{H}\right)$ gave a single crystalline compound (85% yield), which was identified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR as 3-(methoxyphenyl)-4-phenyl-oxazolidine-5carboxylic acid ethyl ester $\mathbf{4 - 4 b}$. The structure of $\mathbf{4 - 4 b}$ was confirmed by X-ray crystallographic analysis (Figure 4-3). ${ }^{[29]}$

To investigate the generality of oxazolidine formation, the reaction sequence was repeated with aniline 4-2a, p-chloroaniline 4-2c, and p-nitroaniline 4-2d. Only p chloroaniline 4-2c was successful; p-nitroaniline 4-2d did not react with the oxirane 4-1, while aniline gave 4-3a in good yield but failed to form oxazolidine 4-4a. The results and yields of products are summarized in Table 4-1.

Table 4-1 Isolated yields of compounds 4-3 and 4-4.

	4-2	4-3		4-4	
Entry		m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
a	Aniline	$57.0-58.0$	-89	NR	
b	p-Anisidine	$74.8-75.0$	91	$78.0-78.5$	85
c	p-Chloroaniline	$96.0-96.5$	93	$105.0-105.5$	90
d	p-Nitroaniline	NR		-	

Note: NR = no reaction.

Figure 4-3 X-Ray crystal structure of ethyl 3-(methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-4b. ${ }^{[29]}$

4.2.2 Proposed mechanism of oxazolidine formation

The formation of the oxazolidine $\mathbf{4 - 4 b}$ may be rationalized as follows. It is generally accepted that in the oxidation of alcohols, DMSO is activated by a reaction with an electrophile (here, $\mathrm{P}_{4} \mathrm{O}_{10}$), and that subsequent nucleophilic attack of an alcohol on the activated sulfoxonium intermediate leads to the formation of the alkoxysulfonium salt, which breaks down under basic conditions to give the carbonyl compound and dimethyl sulfide ${ }^{[30]}$ (Scheme 4-2). It is also known that problems can arise when the formation of methylthiomethyl ether from the alcohol becomes an important competitive reaction. ${ }^{[31,32]}$ Sulfonium ions, such as 4-6, are recognized as intermediates in Pummerer rearrangements. ${ }^{[30]}$

Scheme 4-2

 (path a)

alkoxysulfonium salt

4-6

4-7 methylthiomethyl ether

4-7b

In the case of the attempted oxidation of the alcohol $\mathbf{4 - 3 b}$, the formation of the alkoxysulfonium salt is probably very slow and the reaction preferentially follows path b (Scheme 4-2). The competing formation of oxazolidine 4-4b (or 4-4c) can be envisaged as outlined in Scheme 4-3. The unprotected, strongly nucleophilic, β-amino group in compound 4-3b (or 4-3c) competes with the α-alcohol for sulfonium ion 4-6 but does not stop at the Pummerer rearrangement product since ether $\mathbf{4 - 7 b}$ possesses not only a potential leaving group $\left(\mathrm{CH}_{3} \mathrm{~S}^{-}\right)$but also a neighboring electron-rich hydroxyl group. The proposed mechanism is supported by the fact that C-2 of the oxazolidine ring originates from DMSO, as was established when the signal for this carbon atom at 83.43 ppm was enhanced (5 x) when the reaction was performed in ${ }^{13} \mathrm{C}$ enriched DMSO.

Scheme 4-3

racemic cis-4-4b

The importance of the electron-rich amine group is confirmed by the fact that alcohol 4-3c was readily converted to 4-4c in excellent yield, but no oxazolidine 4-4a could be detected in the cyclization of 4-3a. The latter reaction gave a mixture of unidentifiable products. The reduced capacity to donate electrons, coupled with the vulnerability to oxidation of the non-substituted aniline likely contributed to the failure of this reaction. A poor electron donor, p-nitroaniline 4-2d, did not react with epoxide 4-1 even under forced conditions (heating at $90^{\circ} \mathrm{C}$ for four days) as shown in Table 4-1.

Other characteristics which have an important bearing on the success of this reaction are the reversibility and the instability of the oxazolidine heterocycles towards hydrolysis, which often precludes their purification by chromatography. When run in dry, distilled DMSO, oxazolidines $\mathbf{4 - 4 b}$ and $4-4 \mathrm{c}$ crystallized from the reaction mixture in excellent yields. On the other hand, when the purification and drying of DMSO was not possible, as was the case in the reaction performed with ${ }^{13} \mathrm{C}$-DMSO, the product did not crystallize spontaneously. During purification by flash chromatography, the proportion of ${ }^{13} \mathrm{C}$-labelled oxazolidine $\mathbf{4 - 4 b}$ in the mixture rapidly decreased (accompanied by the formation of several other unidentified products), resulting in a low yield of (still) impure 4-4b (Figure 4-4).

Figure 4-4 ${ }^{13} \mathrm{C}$-labelled oxazolidine in ${ }^{13} \mathrm{C}$-NMR.

4.2.3 Syntheses of enantiopure oxazolidines via enzymatic chemical reaction

Having optimized all steps leading to the formation of racemic cis oxazolidines, we turned to the synthesis of enantiopure trans products. β-Chloro- α-ketoester 4-8, prepared according to the literature protocol, ${ }^{[33]}$ was reduced using several carbonyl reductases from various microorganisms Bacterodies fragilis, ${ }^{[34]}$ Pyrococcus furiosus, ${ }^{[35]}$ Candida magnoliae, ${ }^{[36]}$ and Sporobolomyces salmonicolor (SSCR). ${ }^{[37,38]}$ The carbonyl reductase from SSCR which gave ($2 S, 3 S$)-4-9 with $>99 \%$ ee has been discussed in Chapter 3. The enantiomeric excess of $(2 S, 3 S)-4-9$ was determined by chiral phase GC and the absolute configuration was assigned by comparing the retention time of a known
sample from lipase resolution. ${ }^{[39]}$ Overall formation of (2S)- α-hydroxyl ester 4-9 is consistent with the enzyme-substrate docking studies of Hua and co-workers. ${ }^{[38]}$

Ring closure of $(2 S, 3 S)-(+)-4-9$ gave $(2 R, 3 R)-(+)$-methyl glycidate ester 4-10. This epoxide is very sensitive to water and several protocols $\left(\mathrm{NaOMe} / \mathrm{MeOH},{ }^{[34]}\right.$ $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF},{ }^{[40]} \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}^{[41]}$) were investigated to ensure a good yield. The $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ method gave the best yield, providing that $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added gradually. The product $(2 R, 3 R)-(+)-\mathbf{4 - 1 0}$ was isolated as a colourless oil, in 85% yield. The cis stereochemistry and absolute configuration were confirmed by ${ }^{1} \mathrm{H}$ NMR and optical rotation. ${ }^{[42]}$ *

The availability, via enzymatic reductions, of enantiopure glycidates 4-10 provides access to the corresponding enantiopure β-amino alcohols and oxazolidines, compounds not previously reported in the literature. The asymmetric aminolysis (Lewis acid catalyst ZnCl_{2} at $\left.82{ }^{\circ} \mathrm{C}\right)$ of $(2 R, 3 R)-(+)-4-10$ with amines $4-2 \mathrm{~b}$ and $4-2 \mathrm{c}$ gave the products $(2 R, 3 S)-(+)-4-11 \mathrm{~b}$ and 4-11c respectively (Scheme 4-4).

Both amino alcohols ($3 R, 3 S$)-(+)-4-11b and 4-11c reacted with dry DMSO in the presence of $\mathrm{P}_{4} \mathrm{O}_{10}$ at room temperature to give $(4 S, 5 R)-(+)-4-12 \mathrm{~b}$ and $\mathbf{4 - 1 2 \mathrm { c }}$ in excellent yields. Their melting points and optical rotations are listed in Table 4-2.

[^5]
Scheme 4-4

Table 4-2 Melting points, optical rotations and isolated yields for 4-11 and 4-12.

Entry		$(2 R, 3 S)-(+)-4-11$		$(4 S, 5 R)-(+)-\mathbf{4 - 1 2}$		
		m.p. $\left({ }^{\circ} \mathrm{C}\right)$	$[\alpha]_{D}^{25}$	Yield (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)[\alpha]_{D}^{25}$	Yield (\%)
1	$p-$-anisidine (b)	$76-77$	+10.3	90	$90-90.5$	+48.7
2	p-chloroaniline (c)	$89-89.5+7.86$	92	$93-93.5$	+36.3	95

The syn-configurations of $(2 R, 3 S)-(+)-\mathbf{4 - 1 1 b}$ and $\mathbf{4 - 1 1} \mathbf{c}$ were deduced from their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The $\mathrm{J}_{2,3}$ values of 2 Hz are considerably smaller than 3.2 Hz reported for anti isomers. ${ }^{[43]}$ The following $\mathrm{DMSO} / \mathrm{P}_{4} \mathrm{O}_{10}$ ring closure gave both oxazolidine products in high yields and without a decrease in enantiopurity. The analysis by chiral

HPLC showed a single peak (compared to two well-resolved peaks observed in the racemic products).

4.3 Conclusions

Oxazolidines can be obtained in a simple and clean reaction using DMSO as the cosolvent and $\mathrm{P}_{4} \mathrm{O}_{10}$ as the catalyst. This method allows the preparation of substituted oxazolidines from epoxide precursors, providing that the amines used to open the epoxide ring are good electron donors. An important aspect of this protocol is that it can be adapted for the synthesis of enantiopure oxazolidines, since enantiopure epoxides are available through the enzymatic reductions of α-chloro- β-ketoesters. ${ }^{[18]}$ The success of this methodology encourages future exploration of related reactions.

4.4 Experimental

4.4.1 Racemic trans-ethyl phenylglycidate 4-1. ${ }^{[33,39]}$ Commercially available starting material ethyl 3 -phenylglycidate contains 14% cis, 85% trans, and 1% unidentified impurity as established in a SPB-5 column of GC-MS. The commercial product was purified by florosil column in hexane and ethyl acetate ($10: 1$) and gave 80% pure transglycidate 4-1 as a colourless oil; IR $\left(\mathrm{CHCl}_{3}\right) \gamma \max / \mathrm{cm}^{-1}: 2983,1748,1459,1290,1202$, $1026,894,759,697 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.22\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.40(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{CHCO}), 4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.99(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}$, CHPh), 7.18-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 56.7$ (CHPh), $57.8(\mathrm{CHCO}), 61.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 125.8$ (Ar-C para), 128.6 (Ar-C meta), 128.9 (Ar-C ortho), 135.0 (Ar-C), 168.1 (CO); EI-MS, m/z (\%): 135 (100) [M-57] ${ }^{+}, 118[\mathrm{M}-$ $74]^{+}, 107(79)[\mathrm{M}-85]^{\dagger}$. HRMS: for $\mathrm{C}_{1} 1 \mathrm{H}_{12} \mathrm{O}_{3}$: calc. C, 68.73 ; $\mathrm{H}, 6.29$, found: $\mathrm{C}, 68.65$; H, 6.32.

4.4.2 General procedure for enzymatic SSCR reduction

Purified reductase from $\operatorname{SSCR}^{[37]}$ (60 mg), D-glucose dehydrogenase (GDH) (60 mg), NADPH (60 mg) and glucose (2 g) were dissolved in 200 mL of 100 mM potassium phosphate buffer ($\mathrm{pH}=6.5$) and then 1 g of $4-8$ dissolved in 10 mL DMSO was added. The reaction mixture was stirred at room temperature overnight, extracted with ethyl acetate ($200 \mathrm{~mL} \times 3$), dried over sodium sulfate. The reaction mixture was filtered, concentrated and the residual crude mixture was purified by column chromatography (silica gel Merk 60) with hexane and EtOAc (6:1) to give (2S,3S)-4-9
$(0.41 \mathrm{~g}, 41 \%$ yield, $>99 \% \mathrm{ee})$ and $(2 S, 3 R)-4-9(0.50 \mathrm{~g}, 50 \%$ yield, $61 \% \mathrm{ee})$ as colourless oils.
(2S,3S)-(+)-Methyl-3-chloro-2-hydroxy-3-phenyl-propanoate 4-9. Colourless oil, $>99 \%$ ee. The ee was determined by GC analysis using a CP-Chirasil-Dex CB chiral capillary column ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$); RT $=19.4 \mathrm{~min}$. Only one diastereomer was observed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and GC analysis: $[\alpha]_{D}^{25}=+46\left(\mathrm{c}, 1.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{lit} .{ }^{[39]}[\alpha]_{D}^{25}+47, \mathrm{c}\right.$ $1.4, \mathrm{CHCl}_{3}$). IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3484,2954,2920,2850,17428,1453,1263,1214$, 1118, 995, 905,$699 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.36(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CHOH})$, $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.58(1 \mathrm{H}, \mathrm{dd}, J=7.4 \mathrm{~Hz}, J=2.2 \mathrm{~Hz} \mathrm{CHOH}), 5.35(\mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$ $\mathrm{ClCH}), 7.42-7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 53.2\left(\mathrm{OCH}_{3}\right), 63.7$ $(\mathrm{CHOH}), 74.7(\mathrm{CHCl}), 128.8$ (Ar-C para), 127.9 (Ar-C meta), 128.5 (Ar-C ortho), 137.5 (CAr-C), 171.7 (CO). HRMS: for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right)$: calc. 214.03967; found: 214.03974. (2S,3R)-Methyl-3-chloro-2-hydroxy-3-phenyl-propanoate 4-9. Colourless oil, 61% ee. The ee was determined by GC analysis using a CP-Chirasil-Dex CB chiral capillary column (25 m x 0.25 mm); RT $=20.9 \mathrm{~min} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3456,3062,3032$, $2954,1742,1494,1453,1282,1214,1153 ; 1116,699 ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 3.1$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.60(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{CHOH}), 5.26(1 \mathrm{H}, \mathrm{d}, J=4.2$ $\mathrm{Hz}, \mathrm{ClCH}), 7.32-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.7\left(\mathrm{OCH}_{3}\right), 62.9$ $(\mathrm{CHOH}), 75.4(\mathrm{CHCl}), 128.0(\mathrm{Ar}-C$ para), 128.4 ($\mathrm{Ar}-C$ meta), 128.9 (Ar-C ortho), 135.9 (CAr-C), $171.1(\mathrm{CO})$. HRMS: for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right)$: calc. 214.03967; found: 214.03974 . 4.4.3 (2R,3R)-(+)-Methyl 3-phenylglycidate 4-10. To a solution of ($2 S, 3 S$)-chlorohydrin 4-9 ($1 \mathrm{~g}, 4.6 \mathrm{mmol})$ in 30 mL of methanol, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.76 \mathrm{~g}, 5.52 \mathrm{mmol}, 1.2$ equiv) was added gradually and then the mixture was stirred at room temperature until the starting
material had reacted (12 h). The reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL)and extracted with ethyl acetate ($25 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over sodium sulfate, evaporated. The crude residue was purified by flash chromatography and eluted with 10% dry ether in hexane to give $(2 R, 3 R)-(+)-4-$ $10(0.82 \mathrm{~g}, 85 \%$ yield $)$ as a colourless oil. $[\alpha]_{D}^{25}+10.8\left(\mathrm{c} 1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{lit} .{ }^{[39]}[\alpha]_{D}^{25}+13, \mathrm{c}\right.$ 1.1, $\mathrm{CHCl}_{3} ;$ lit. ${ }^{[42]}[\alpha]_{D}^{25}+11$, c $\left.4.4, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3080,3060,2980$, 2950, 1750, 1435, 1210; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83(1 \mathrm{H}, \mathrm{d}$, $J=4.7 \mathrm{~Hz}, \mathrm{OCH}), 4.25(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{OCH}), 7.26-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.0\left(\mathrm{OCH}_{3}\right), 55.8(\mathrm{COCHO}), 57.5(\mathrm{PhCCHO}), 126.6(\mathrm{Ar}-\mathrm{C}$ para $)$, 128.1 (Ar-C meta), 128.5 (Ar-C ortho), 132.8 (CAr-C), 167.0 (CO).

4.4.4 General procedure for epoxide ring opening

A mixture of ethyl (or methyl) 3-phenyl glycidate ($5 \mathrm{mmol}, 1$ equiv) and p substituted aniline ($5 \mathrm{mmol}, 1$ equiv) was dissolved in acetonitrile (20 mL). Dry ZnCl_{2} ($34 \mathrm{mg}, 0.25 \mathrm{mmol}$) ($1.25 \mathrm{mmol} \%$) was added and the resulting mixture was stirred under nitrogen atmosphere for 12-28 hours at $82{ }^{\circ} \mathrm{C}$. Removal of the solvent gave a residue, which was extracted with ethyl acetate $(50 \mathrm{~mL})$ and washed with a saturated solution of sodium bicarbonate (20 mL), water and brine. After drying over anhydrous magnesium sulfate and removal of the solvent, the residue was purified by chromatography over ultra pure silica gel using hexane and ethyl acetate (2:1) to give the product.
(\pm)-anti-Ethyl 2-hydroxy- 3-phenyl-3-(phenylamino) propanoate 4-3a. White powder, 89% yield. m. p.: $57-58{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3404,3054,2982,2934,1736,1298$, $1603,1504,1214,1106,1026,868,750,694,561,509 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$1.31\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{C} H_{3}\right), 2.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.91(1 \mathrm{H}, \mathrm{N} H), 4.22(3 \mathrm{H}, \mathrm{m}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 4.71(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{NHCH}), 4.92(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{CHOH}), 6.67(2 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}, \operatorname{Ar} H-N), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \operatorname{Ar} H-N), 7.14(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \operatorname{Ar} H-N), 7.34$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 59.6$ (CHNH), 62.0 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.6(\mathrm{CHCO}), 113.9$ (NHAr-C ortho), 118.1 (NHAr-C para), 127.6 (Ar-C ortho), 128.5 (Ar-C meta), 129.2 (NHAr-C meta), 137.2 (Ar- -CH), 146.2 ($\mathrm{Ar}-\mathrm{C}-\mathrm{NH}$), $172.1(\mathrm{CO})$; HRMS: for $\mathrm{C}_{17} \mathrm{O}_{3} \mathrm{NH}_{19}\left(\mathrm{M}^{+}\right)$: calc. 285.13635; found: 285.13651.
(\pm)-anti-Ethyl 3-(4-methoxyphenylamino)-2-hydroxy-3-phenylpropanoate 4-3b. Yellow crystals, 91% yield. m. p.: $74.8-75^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3285,2979,2936$, $2471,1737,1511,1258,1217,1028,701 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.23(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.91(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{~N} H), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} H_{3}\right), 4.16(3 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}$, CH_{2} and OH$), 4.63(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, \mathrm{NHCH}), 4.78(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, \mathrm{CHOH}), 6.70$ $(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Ar} H), 6.58(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{Ar} H), 7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 60.6(\mathrm{CHNH}), 73.5(\mathrm{CHCO}), 61.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 114.8$ (NHAr-C ortho), 115.5 (NHAr-C meta), 127.6 (Ar-C ortho), 128.4 (Ar-C meta), 136.1 (Ar- $\mathrm{C}-\mathrm{NH}), 140.5(\mathrm{Ar}-\mathrm{C}-\mathrm{CH}), 152.5\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}\right), 172.3(\mathrm{CO})$; EIMS, $\mathrm{m} / \mathrm{z}: \mathrm{M}^{+}: 315,211(\mathrm{M}-103)^{+}, 103(\mathrm{M}-211)^{+}, 77,89$. HRMS: for $\mathrm{C}_{18} \mathrm{O}_{4} \mathrm{NH}_{21}\left(\mathrm{M}^{+}\right):$ calc. 315.14706 ; found: 315.14686 .
(\pm)-anti-Ethyl 3-(4-chlorophenylamino)-2-hydroxy-3-phenylpropanoate 4-3c. Yellow crystals, 93% yield; m. p.: $96-96.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 3473,3400,3029,2981$, $2932,1936,1600,1453,1245,1210,1095,1024,816,720,700 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.25\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.92(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N} H), 4.15(3 \mathrm{H}, \mathrm{m}, J=$ $7.3 \mathrm{~Hz}, \mathrm{CH}_{2}$ and OH$), 4.63(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{NHCH}), 4.78(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{CHOH})$,
$6.51(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 6.70(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 59.6(\mathrm{CHNH}), 62.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 73.4$ (CHCO), 115.0 (NHAr-C ortho), 122.6 (NHAr- C para), 127.4 (Ar- C ortho), 128.5 (Ar-C meta), 129.0 (NHAr- C meta), 136.6 (Ar- $C-C H), 144.7$ (Ar- $C-N H), 171.8(C O)$; HRMS: for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClO}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: calc. 319.09649 ; found: 319.09753.
(2R,3S)-(+)-Methyl 3-(4-methoxyphenylamino)-2-hydroxy-3-phenylpropanoate 411b. Yellow crystals, 90% yield. $[\alpha]_{D}^{25}+10.3$, (c, $0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $>99 \%$ ee; m. p.: 76-77 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3285,2979,2936,2471,1737,1511,1258,1217,1028,701$, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J=$ $2.4 \mathrm{~Hz}, \mathrm{NHCH}), 4.84(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{CHOH}), 6.50(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H), 6.63$ $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \operatorname{Ar} H), 7.25-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.3$ $\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 60.0(\mathrm{CHNH}), 74.7(\mathrm{CHCO}), 114.7$ (NHAr-C ortho), 115.4 (NHAr-C meta), 127.0 (Ar-C ortho), 128.6 (Ar-C meta), 136.1 (Ar-C-NH), 140.4 (Ar-C$\mathrm{CH}), 152.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}\right), 173.3(\mathrm{CO}) ;$ HRMS: for $\mathrm{C}_{17} \mathrm{O}_{4} \mathrm{NH}_{19}\left(\mathrm{M}^{+}\right)$: calc. 301.13141; found: 301.13142 .
(2R,3S)-(+)-Methyl 3-(4-chlorophenylamino)-2-hydroxy-3-phenylpropanoate 4-11c. Colourless crystals, 92% yield. $[\alpha]_{D}^{25}+7.86\left(\mathrm{c}, 1.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;>98 \%$ ee; m. p.: 89-89.5 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\text {max }} / \mathrm{cm}^{-1}: 3473,3400,3029,2981,2932,1936,1600,1453,1245,1210$, 1095, 1024, 816, 720, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.14(1 \mathrm{H}$, $\mathrm{OH}), 4.49(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{NHCH}), 4.79(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CHOH}), 6.45(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \operatorname{Ar} H), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.24-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 53.1\left(\mathrm{OCH}_{3}\right), 59.0(\mathrm{CHNH}), 74.5(\mathrm{CHCOH}), 115.0(\mathrm{NHAr}-\mathrm{C}$ ortho), 122.6 (NHAr-C para), 127.8 (Ar-C ortho), 128.7 (Ar-C meta), 129.0 (NHAr-C meta),
$138.8(\mathrm{Ar}-\mathrm{C}-\mathrm{CH}), 144.7(\mathrm{Ar}-\mathrm{C}-\mathrm{NH}), 173.2(\mathrm{CO}) ; \mathrm{HRMS}:$ for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClO}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$: calc. 305.08187; found: 305.08065.

4.4.5 General procedure for formation of oxazolidines 4-4 and 4-12

Phosphorus pentoxide ($568 \mathrm{mg}, 2 \mathrm{mmol}$, calculated with $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{MW}=284$) was added to dry DMSO (3 mL) and ultrasonicated for 10 minutes. Compound 4-3 or 4-11 (1 mmol) in DMSO (2 mL) was added and the resulting mixture was stirred at room temperature until TLC indicated complete conversion (24 h). The reaction mixture was quenched with cooled saturated sodium bicarbonate solution (20 mL) followed by a small amount of water. The mixture was extracted with ethyl acetate ($30 \mathrm{Ml} \mathrm{x} \mathrm{3)}$. combined organic layers were washed with water ($40 \mathrm{~mL} \times 3$) to remove unreacted DMSO, then washed with brine, dried over magnesium sulfate, filtered, concentrated, separated by flash chromatography on silica gel and then crystallized from hexane and ethyl acetate to give colourless crystals.
(\pm)-cis-Ethyl 3-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-4b. Yellow crystals, 85% yield. m. p: $78-78.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2980,2930,2836$, $1746,1514,1244,1200,1038 ;{ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.94(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 3.88\left(2 \mathrm{H}, \mathrm{dd}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}$, $\mathrm{NCHO}), 5.01(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{NCHO}), 4.94(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}), 4.90(1 \mathrm{H}, \mathrm{d}, J$ $=7.3 \mathrm{~Hz}, \mathrm{COH}), 6.74(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Ar} H), 6.42(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Ar} H), 7.29(5 \mathrm{H}$, m, ArH) ; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $55.7\left(\mathrm{OCH}_{3}\right), 61.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 64.4(\mathrm{NCHC}), 83.4\left(\mathrm{NCH}_{2} \mathrm{O}\right), 81.7(\mathrm{OCHC}), 115.0$ (NAr-C ortho), 114.1 (NAr-C meta), 152.5 (NAr-C para), 127.6 (Ar-C para), 128.4 (Ar-C meta), 128.2 (Ar-C ortho), $138.8(\mathrm{Ar}-\mathrm{C}-\mathrm{CH}), 168.1(\mathrm{CO}) ; \mathrm{GC}-\mathrm{MS}(\mathrm{SPB}-5$ column)-MS. $\mathrm{RT}=10.65 \mathrm{~min}$.

EI-MS, m/z: $\mathrm{M}^{+} 327,73,77,86,91,105,118,122$. HRMS: for $\mathrm{C}_{19} \mathrm{O}_{4} \mathrm{NH}_{21}\left(\mathrm{M}^{+}\right)$: calc. 327.14706; found: 327.14743 .
(\pm)-cis-Ethyl 3-(4-chlorophenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-4c. Colourless crystals, 90% yield. m. p: $105-105.5^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2982,2902$, $2836,1760,1744,1599,1493,1469,1341,1201,1097,1041,809,737,699,504 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.70\left(1 \mathrm{H}, \mathrm{m}, J=3.6 \mathrm{~Hz}, \mathrm{CH} H_{2}\right)$, $\left.3.86(1 \mathrm{H}, \mathrm{m}, J=3.6 \mathrm{~Hz}, \mathrm{CH})_{2}\right), 4.92(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{OCH}), 4.96(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $\mathrm{NCH}), 5.04(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{NCHO}), 5.56(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{NCHO}), 6.35(2 \mathrm{H}, \mathrm{d}, J$ $=8.7 \mathrm{~Hz}, \operatorname{Ar} H), 6.74(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} H), 7.29(5 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 13.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.6(\mathrm{NCHC}), 82.6\left(\mathrm{NCH}_{2} \mathrm{O}\right), 81.6$ (OCHC), 113.8 (NAr-C ortho), 123.1 (Ar-C para), 127.5 (Ar-C meta), 128.6 (Ar-C ortho), 129.2 (NAr-C meta), 137.1 (Ar-C-CH), 142.5 (NAr-C para), 167.6 (CO); HRMS: for $\mathrm{C}_{18} \mathrm{O}_{3} \mathrm{NClH}_{18}\left(\mathrm{M}^{+}\right)$: calc. 331.09829 ; found: 331.09753 .
(4S,5R)-(+)-Methyl 3-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 412b. Colourless crystals, 86% yield; $[\alpha]_{D}^{25}+48.7$ (c, $1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $>99 \%$ ee; m. p: 90 $90.5{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2982,2902,2836,1760,1744,1599,1493,1469,1341$, 1201, 1097, 1041, 809, 737, 699, 504; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.59(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{OCH}), 4.85(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{NCH}), 5.24$ $(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{NCHO}), 5.38(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{NCHO}), 6.35(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\operatorname{Ar} H), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $51.8\left(\mathrm{OCH}_{3}\right), 54.22\left(\mathrm{OCH}_{3}\right), 64.7(\mathrm{NCHC}), 82.8\left(\mathrm{NCH}_{2} \mathrm{O}\right), 84.2(\mathrm{OCHC}), 114.1(\mathrm{NAr}-\mathrm{C}$ ortho), 123.2 (Ar-C para), 126.2 (Ar-C meta), 128.7 (Ar-C ortho), 129.2 (NAr-C meta),
140.2 ($\mathrm{Ar}-\mathrm{C}-\mathrm{CH}$), 142.6 (NAr-C para), $167.6(\mathrm{CO})$; HRMS: calc. for $\mathrm{C}_{18} \mathrm{O}_{4} \mathrm{NH}_{19}\left(\mathrm{M}^{+}\right)$: 313.13141; found: 313.13145 .
(4S,5R)-(+)-Methyl 3-(4-chlorophenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 412c. Colourless crystals, 95% yield; $[\alpha]_{D}^{25}+36.3$ (c, $0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $>98 \%$ ee; m. p: 93$93.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \gamma_{\max } / \mathrm{cm}^{-1}: 2982,2902,2836,1760,1744,1599,1493,1469,1341$, 1201, 1097, 1041, 809, 737, 699, 504; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $4.63(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}), 4.88(1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}), 5.24(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO}), 5.38(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO}), 6.35$ $(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \operatorname{Ar} H), 7.10(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \operatorname{Ar} H), 7.25-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.6\left(\mathrm{OCH}_{3}\right), 64.6(\mathrm{NCHC}), 82.7\left(\mathrm{NCH}_{2} \mathrm{O}\right), 84.1(\mathrm{OCHC})$, 114.0 (NAr-C ortho), 123.2 (Ar-C para), 126.1 (Ar- C meta), 128.1 (Ar- C ortho), 129.1 (NAr-C meta), 140.1 (Ar-C-CH), 142.4 (NAr-C para), 170.9 (CO); HRMS: calc. for $\mathrm{C}_{17} \mathrm{O}_{3} \mathrm{NClH}_{16}\left(\mathrm{M}^{+}\right): 317.08188$; found: 317.08177 .
$\left({ }^{13} \mathrm{C}\right.$) Ethyl 3-(4-methoxyphenyl)-4-phenyl-1, 3-oxazolidine-5-carboxylate $\left({ }^{13} \mathrm{C}\right.$)-4-4b. Phosphorus pentoxide ($568 \mathrm{mg}, 2 \mathrm{mmol}$ calculated with $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{MW}=284$) was added to dry DMSO (2 mL) containing $\mathrm{C}^{13}-\mathrm{DMSO}(5 \%)$ and ultrasonicated for 10 minutes. Compound 2-1 ($315 \mathrm{mg}, 1 \mathrm{mmol}$) in DMSO (3 mL) containing C^{13}-DMSO (5%) was added and the resulting mixture was stirred at room temperature until TLC indicated complete conversion (24 h). The reaction was quenched with cooled saturated sodium bicarbonate solution followed by a small amount of water. The mixture was extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with water (40 $\mathrm{mL} \times 3$) to remove unreacted DMSO, then washed with brine, dried over magnesium sulfate, filtered, concentrated, and separated by flash chromatography on silica gel with
hexane and ethyl acetate (6:1) to give a yellow product which was highly enriched but not pure $\left({ }^{13} \mathrm{C}\right)-4-4 \mathrm{~b}$.

4.5 References

[1]. Bundgaard, H.; Johansen, M. Int. J. Pharm. 1982, 10, 165.
[2]. Johansen, M.; Bundgaard, H. J. Pharm. Sci. 1983, 72, 1294.
[3]. (a) Chudinov, Yu. B.; Gashev, S. B.; Chernysheva, N. B.; Semenov, V. V. Russ. Chem. Bul., Int. Ed. 2006, 55, 123-136; (b) Ishizuka, T. J. Pharm. Soc. Jp. 1997, 117, 339-352; (c) Huo, C.; Wei, R.; Zhang, W.; Yang, Li.; Liu, Z-L. Synlett. 2005, 161-164; (d) Gosselin, F.; Roy, A.; O'Shea, P. D.; Chen, C-Y.; Volante, R. P. Org. Lett. 2004, 6, 641-644; (e) Pastor, A.; Adam, W.; Wirth, T.; Toh, G. Eur. J. Org. Chem. 2005, 30753084; (f) Hashimoto, N.; Takahashi, K.; Nakama, C.; Ogino, Y.; Sakai, F.; Nishimura, T.; Eiki, J. Patent: PCT Int. Appl. 2006, p162; (g) Microreview: Agami, C.; Couty, F. Eur. J. Org. Chem. 2004, 677-685.
[4]. Buur, A.; Bundgaard, H. Int. J. Pharm. 1984, 18, 325.
[5]. Young-Harvey, J. A.; Rae, I. D.; Pitman, I. H. Int. J. Pharm. 1986, 30, 151.
[6]. Bundgaard, H.; Johansen, M. J. Pharm. Sci. 1980, 69, 44.
[7]. (a) Wagner, B.; Gonzalez, G.; I.; Tran Hun Dau, M. E.; Zhu, J. Bioorg. Med. Chem. 1999, 7, 737-747; (b) Berrien, J. F.; Royer, J.; Husson, H. P. J. Org. Chem. 1994, 59, 3769-3774; (c) Herdeis, C.; Aschenbrenner, A.; Kirfel, A.; Schwabenländer, F. Tetrahedron: Asymmetry 1997, 8, 2421-2432.
[8]. (a) Wainer, I. W.; Doyle, T. D.; Fry, F. S. J. Chrom. 1986, 355, 149-156; (b) Astrová, M.; Kurc, L.; Červený, L. Chem. Listy. 2005, 99, 318-323; (c) Didier, E.; Fouque, E.; Taillepied, I. Commercon, A. Tetrahedron Lett. 1994, 35, 2349-2352; (d) Reddy, G. V.; Rao, G. V.; Sreevani, V.; Iyengar, D. S. Tetrahedron Lett. 2000, 41, 953-954.
[9]. (a). Kang, Y. F.; Liu, L.; Wang, R.; Ni, M.; Han, Z. J. Synth. Commun. 2005, 35, 1819-1823; (b) Hussain, A.; Wyatt, P. B. Tetrahedron 1993, 49, 2123-2130; (c) Agami, C.; Couty, F.; Hamon, L.; Venier, O. J. Org. Chem. 1997, 62, 2106-2112; (d) Agami, C.; Couty, F.; Lequesne, C. Tetrahedron Lett. 1994, 35, 309-3312; (e) Ukaji, Y.; Yamamoto, K.; Fukui, M.; Fujisawa, T. Tetrahedron Lett. 1991, 32, 2919-2922.
[10]. Tessier, A.; Pytkowicz, J.; Brigaud, T. Angew. Chem. Int. Ed. 2006, 45, 36773681.
[11]. Li, G.; Chang, H.-T.; Sharpless, K. B. Angew, Chem., Int. Ed. Engl. 1996, 35, 451454.
[12]. (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336-9337; (b) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338-339.
[13]. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem .Soc. 1987, 109, 5765-5780.
[14]. Chong, J. M.; Sharpless, K. B. Tetrahedron Lett. 1985, 26, 4683-4686.
[15]. Wuts, P. G. M.; Gu, R, L.; Northuis, J. M. Tetrahedron: Asymmetry 2000, 11, 2117 2123.
[16]. Chan, W.-K.; Yu, W.-Y.; Che, C.-M.; Wong, M.-K. J. Org. Chem. 2003, 68, 65766582.
[17]. Kaluzna, I. A.; Feske, B. D.; Wittayanan, W.; Ghiviriga, I.; Stewart, J. D. J. Org. Chem. 2005, 70, 342-345.
[18]. Feske, B. D.; Kaluzna, I. A.; Stewart, J. D. J. Org. Chem. 2005, 70, 9654-9657.
[19].Durán Pachón, L.; Gamez, P. van Brussel, J. J. M.; Reedijk, J. Tetrahedron Lett. 2003, 44, 6025-6027.
[20]. Commercially available starting material (ethyl 3-phenylglycidate) is a mixture of 14% cis, 85% trans, and an unidentified impurity (1\%) as established by GC-MS, SPB-5 column. The mixture can be separated by chromatography, with the cis isomer eluting first. The ring opening and the following oxidation reactions can also be carried through with the commercial mixture of the cis and trans ethyl 3-phenylglycidate since the trans and cis oxozalidines are also easily separated by chromatography.
[21]. Bowden, K.; Heilbron, I. M.; Jones, E. R. H. J. Chem. Soc. 1946, 39-45.
[22]. (a) Palomo, C.; Aozpurua, J. M.; Cuevas, C.; Urchegui, R.; Linden, A. J. Org. Chem. 1996, 4400-4404. (b) De Luca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041-3043.
[23]. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
[24]. Mancuso, J.; Swern, D. Synthesis 1981, 165-185.
[25]. (a) McDermott, T. S.; Mortlock, A. A.; Heathcock, C. H. J. Org. Chem. 1996, 61, 700-709; (b) Datta, A.; Veeresa, G. J. Org. Chem. 2000, 65, 7609-7611.
[26]. (a) Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J. L.; Yi, N. J. Org. Chem. 1987, 52, 1487-1492; (b) Brenner, E.; Baldwin, R. M.; Tamagnan, G. Org. Lett. 2005, 7, 937-939.
[27]. Li, Z.; Xu, X.; Peng, Y.; Jiang, Z.; Ding, C.; Qian, X. Synthesis 2005, 1228-1230.
[28].(a) Chrisman, W.; Singaram, B. Tetrahedron Lett. 1997, 38, 2053-2056.
[29].The oxazolidine ring has an envelope conformation with the O atom out of the plane formed by the four other atoms. The torsion angles inside the 5 -membered ring are N3$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1=-26.4(4)^{\circ}, \mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2=43.5(4), \mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3=-42.7(4), \mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3-$ $\mathrm{C} 4=25.5$ (4) and $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5=0.9(4)^{\circ}$. The $\mathrm{N}-\mathrm{C}$ bond distances inside the ring are
1.456 (6) and 1.463 (6) \AA, while the $\mathrm{N}-\mathrm{C} 11$ is shorter (1.395 (6) \AA. In the oxazolidine ring, the C-O bonds are 1.400 (6) and 1.434 (5) \AA, while the C-C bond is 1.553 (6) \AA. For the ester group, the $\mathrm{C}=\mathrm{O}$ bond (ave. 1.201 (5) \AA) is shorter than the C -O bond (ave. $1.340(5) \AA$) as expected. The H atoms on C 4 and C 5 are cis to each other. The molecules are stabilized in the crystal only by van der Waals interactions.
[30]. Haines, A. H. in Best Synthetic Methods Series Methods for the Oxidation of Organic Compounds Academic Press, London, 1988, pp 91-127.
[31]. Pojer, P. M.; Angyal, S. J. Aust. J. Chem. 1978, 31, 1031-1040.
[32]. Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660.
[33]. Darzens, G. Compt. Rend. 1904, 139, 1214.
[34]. Zhu, D.; Stearns, J. E.; Ramirez, M.; Hua, L. Tetrahedron, 2006, 62, 4535-4539.
[35]. Zhu, D., Malik, H. T., Hua, L. Tetrahedron: Asymmetry, 2006, 17, 3010-3014.
[36]. Zhu, D.; Yang, Y.; Hua, L. J. Org. Chem. 2006, 71, 4202-4205.
[37]. Kita, K.; Fukura, T. ; Nakase, K.-I.; Okamoto, K.; Yanase, H.; Kataoka, M.; Shimizu, S. Appl. Environ. Microbiol. 1999, 65, 5207-5211.
[38]. Zhu, D.; Yang, Y.; Buynak, J. D.; Hua, L. Org. Biomol. Chem. 2006, 4, 2690-2695.
[39]. Hamamoto, H.; Mamedov, V.A.; Kitamot, M.; Hayashi, N.; Tsuboi, S. Tetrahedron: Asymmetry 2000, 11, 4485-4497.
[40]. Cabon, O.; Larchevêque, M.; Buisson , D.; Azerad, R. Tetrahedron: Asymmetry 1995, 6, 2211-2218.
[41]. Rodrigues, J. A. R.; Milagre, H. M. S.; Milagre, C. D. F.; Moran, P. J. S. Tetrahedron: Asymmetry 2005, 16, 3099-3106.
[42]. Denis, J.-N.; Greene, A. E.; Serra, A. A.; Luche, M. J. J. Org. Chem. 1986, 51, 4650.
[43]. Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Massaccesi, M.; Melchiorre, P.; Sambri, L. Org. Lett. 2004, 6, 2173-2176.

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Three projects have been successfully carried out and are outlined in this thesis: (1) Synthesis of novel substituted β-lactams; (2) Evaluation and application of new reductases in synthesis of important, enantiopure synthetic intermediates for organic synthesis; (3) Development of new methodology for the preparation of oxazolidines.

New β-lactams synthetic building blocks for new paclitaxel analogues were synthesized and fully characterized. The introduction of polar groups such as a hydroxyl group or morpholine group at C 4 of the β-lactams ring makes them useful not only as paclitaxel analogue precursors but also as general β-lactams synthons (a term proposed by Ojima) for synthetically and medicinally important compounds.

The use of acetoxyacetyl chloride as ketene precursor in the Staudinger reaction was found to be the easiest way to achieve high cis selectivity while Lipase PS-mediated hydrolysis made enantiopure ($3 R, 4 S$)- β-lactams possible. Both racemic cis and $(3 R, 4 S)-\beta$ lactams with protected hydroxyl groups, the paclitaxel C-13 side chain precursors ready for in coupling with 10-deacetylbaccatin III have been submitted for further studies and evaluation by our coworkers at the University of Kansas.

Thirteen heterologous reductases overexpressed in E. coli were evaluated for their enantioselectivity in the reductions of 3-oxo- β-lactams. The results show that these reductases (belonging to the family of short chain dehydrogenases) have a limited ability to accept rigid and large compounds and show little selectivity possibly because of relative symmetry of β-lactam molecules.

The screening of β-chloro- α-ketoester with the corresponding purified enzymes showed that the reductases and mutants from red yeast Sporobolomyces salmonicolor reduced this substrate in good yields with excellent enantiomeric excess. The dynamic kinetic resolution observed in these transformations is more important in the reactions with mutants than in the reactions with the wild type enzyme. Other reductases used in the study produced numerous by-products.
$\mathrm{DMSO} / \mathrm{P}_{4} \mathrm{O}_{10}$ oxidation of aryl substituted β-amino- β-hydroxy esters was shown to give oxazolidines in high yield. This reaction offers a practical and feasible method to synthesize substituted oxazolidines providing that the amino group is sufficiently nucleophilic to facilitate formation of the oxazolidine. Based on the promising screening results on β-chloro- α-ketoester (Chapter 3), scale-up of the wild type Sporobolomyces salmonicolor reduction reaction allowed for the preparation of enantiopure alcohol esters ($>99 \%$ ee). Further manipulation at these alcohols, such as epoxide formation, ring opening, oxazolidine formation were undertaken and ultimately led to the successful synthesis of $(4 S, 5 R)$-oxazolidines.

Overall these studies established optimized protocols for the chemoenzymatic syntheses of $(2 R, 3 S)$ - β-aminoalcohols, ($4 S, 5 R$)-oxazolidines and ($3 R, 4 S$)- β-lactams bearing polar functional groups. Further investigation of these new compounds is interesting because of their application important in drug delivery, prodrug protection, and use as chiral auxiliaries.

5.2 Future work

Interdisciplinary projects described in my thesis not only provide some interesting and useful results but also open the door to further investigations.

The poor screening results obtained in reductions of 3-oxo- β-lactams coupled with the importance of securing an access to these very important compounds in enantiopure form suggested that the search for effective reductases for 3 -oxo- β-lactams through screening and enzyme engineering is an important goal in bioorganic chemistry.

The high proportion of by-products observed in the reduction of β-chloro- $\alpha-$ ketoester by many reductases can be an interesting future project that would explore whether these enzymes facilitate other, potentially useful, reactions.

The results of reductions with wild type SSCR and its mutants are baseline studies that will require modeling and directed mutations to engineered mutants with improved enantioselectivity. These studies have an excellent chance to be highly successful since SSCR's gene sequence and X-ray structure are well-established.

The work on the synthesis of β-lactams bearing a morpholine group has shown that PMP needs to be removed by CAN before the sensitive morpholine group is introduced. Differing from the previous synthetic route, the following two steps leading to the morpholine-substituted β-lactam appear to be likely to succeed.

The new synthesis of oxazolidine leads into a broad research field. A variety of available amino alcohols and amino alcohol esters may be suitable candidates. The latter compounds may be accessed in enantiopure form from amino acid pool.

APPENDIX I General experimental conditions

(1). General instrumentation

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution at room temperature on a 400 MHz or 500 MHz Bruker spectrometer and chemical shifts are reported in ppm using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. J values are expressed in Herz. Melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected. IR spectra were recorded as thin films on NaCl plates on a Mattson Satellite FT-IR spectrometer. GC-EI-MS measurements were performed on a SPB-5 GC column of Agilent 5890 series II GC-MS instrument. Chiral HPLC analysis was performed on an Agilent 1100 series high-performance liquid chromatography system with (S, S)-Whelk-O 1 column (25 cm x 4.6 mm , Regis Technologies Inc.) or Chiracel OD-H column ($4.6 \times 150 \mathrm{~mm}$) using hexane and iso-propanol ($90: 10$) as the mobile phase. The UV detector used was set at 254 nm . Chiral GC analysis was performed on an Agilent 5890 series II plus gas chromatography equipped with autosampler, EPC, split/splitless injector, FID detector and CP-Chirasil-Dex CB chiral capillary column (25 mx 0.25 mm). Analysis of racemic compounds was performed on an Agilent 5890 instrument employing a DB-1301 (15 m x $0.53 \mathrm{~mm} \times 1.0 \mu \mathrm{~m})$ column from J \& W Scientific. High resolution mass spectra were obtained on a Kratos MS50TC mass spectrometer. Optical rotations were measured on a Perkin-Elmer 241 Polarimeter operating at room temperature with energy source Na 589. Thin layer chromatography was performed on Sigma-Aldrich 0.2 mm aluminum-backed silica gel plates with UV indicator or KMnO_{4} dipping reagent. Flash chromatography was performed on 230 to 400 mesh silica gel (Silicycle). The X-ray crystallographic data were
collected using a Bruker platform or Enraf-Nonius CAD-4 diffractomer, operating with $\mathrm{CuK} \alpha$ radiation. Vaccum evaporation was performed using a Büchi Rotavapor R-200.

Chiral GC program: Initial temperature $120^{\circ} \mathrm{C}$ for 10 minutes, then increased $5{ }^{\circ} \mathrm{C}$ per minute until final temperature $180^{\circ} \mathrm{C}$, then kept at $180^{\circ} \mathrm{C}$ for 10 minutes, total run time 32 minutes.

Chiral HPLC program: Mobile phase: Hexane and iso-proanol (87:13).
Flow rate: $0.9 \mathrm{ml} / \mathrm{min}$. ambient temperature.
λ max : UV 254 nm.

(2). Treatment of chemicals and solvents

All chemicals were purchased from Fisher Scientific or Sigma-Aldrich Co. and were used as received except where noted. DMSO was prepared by distillation over calcium hydride and stored over molecular sieves ($4 \AA$ Á). All purified enzymes were provided by Dr. Hua Lin of Chemistry Department of Southern Methodist University (Dallas, US). Lipases were generous gifts from Amano Enzyme USA Co. Ltd. Commercial baker's yeast was obtained from a local grocery chain.

APPENDIX II Protocols of gene expression and purification

(1). The protocol of gene expression and purification of the carbonyl reductase from

 Sporobolomyces salmonicolor (SSCR)The carbonyl reductase gene from Sporobolomyces salmonicolor was cloned by gene assembly techniques. ${ }^{[50]}$ Twelve oligonucleotides ranging from 100 to 120 nucleotides were designed on the basis of the nucleotide sequence of the Sporobolomyces salmonicolor carbonyl reductase gene. The Nco I and Bam HI sites were franked to the open reading frame for easy cloning into the expression vector pet $15 b$ (Novagen). Plasmid DNA containing the SSCR gene was transformed into E.coli BL21(DE3) strain. Overnight culture was diluted with fresh LB medium containing ampicillin ($100 \mu \mathrm{~g} \mathrm{~mL}^{-1}$) and incubated at $37^{\circ} \mathrm{C}$ until the optical density reached 0.6 at 595 nm . The expression was induced by addition of IPTG to 0.1 mM and the culture was incubated at $30^{\circ} \mathrm{C}$ for another 6 h . Cells were harvested by centrifugation at 4100 rpm at $4^{\circ} \mathrm{C}$ for 30 min . The cell pellet was resuspended in potassium phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 7.4$) and the cells were disrupted by an Emulsion Flex-C5 Homogenizer. The cell-free extract was mixed with an equal volume of PEI solution (0.25% polyethyleneimine MW $40 \mathrm{~K}-60 \mathrm{~K}$, $6 \% \mathrm{NaCl}, 100 \mathrm{mM}$ borax, pH 7.4) to remove lipids. ${ }^{[51]}$ The supernatant was precipitated with 50% ammonium sulfate. The resulting precipitate was collected after centrifugation and dissolved in potassium phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.4$) containing 0.1 mM dithiothreitol. The lysate was desalted by gel filtration into potassium phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.4,0.1 \mathrm{mM}$ dithiothreitol) and lyophilized to afford the SSCR enzyme as a white powder with a protein content of 83% as measured with the Bradford assay.

(2). The protocol of gene expression and purification of the carbonyl reductase from Candida magnoliae (CMCR).

The carbonyl reductase gene from Candida magnoliae (Genbank Accession No. AB 036927) was cloned by gene assembly techniques. ${ }^{[53]}{ }^{\dagger \dagger}$ Ten oligonucleotides ranging from 100-120 nucleotides were designed on the basis of the nucleotide sequence of the C. magonoliae carbonyl reductase gene. The open reading frame is composed of 850 nucleotides (284 amino acid residues). The Nco I and Bam HI sites were franked to the open reading frame for easy cloning into expression vector Pet15b (Novagen). The plasmid DNA containing the CMCR gene was transformed into the E.coli Rosetta2(DE3)pLysS strain. Overnight the culture was diluted with fresh LB medium containing ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and chloramphenicol ($34 \mu \mathrm{~g} / \mathrm{mL}$) and incubated at 37 ${ }^{\circ} \mathrm{C}$ until the optical density reached 0.6 at 595 nm . The expression was induced by addition of IPTG to 0.5 mM and the culture was incubated at $30^{\circ} \mathrm{C}$ for another 6 hours. Cells were harvested by centrifugation at 4100 rpm at $4^{\circ} \mathrm{C}$ for 30 minutes. The cell pellet was resuspended in a 100 mM potassium phosphate buffer (pH 6.5) and the cells were disrupted by an EmulsiFlex-C5 Homogenizer. The cell-free extract was mixed with an equal volume of PEI solution $(0.25 \%$ polyethyleneimine MW $40 \mathrm{~K}-60 \mathrm{~K}, 6 \% \mathrm{NaCl}, 100$ mM borax, pH 7.4) to remove lipids. ${ }^{[51]}$ The supernatant was precipitated with 25% ammonium sulfate and the precipitate was discarded. The remaining supernatant was precipitated with 55% ammonium sulfate. The resulting precipitate was collected after centrifugation and dissolved in potassium phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0,2 \mathrm{mM} 2$ mercaptoethanol). The lysate was desalted by gel filtration into potassium phosphate

[^6]buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0,2 \mathrm{mM}$ 2-mercaptoethanol) and lyophilized to yield the CMCR enzyme as a white powder with a protein content of 86% as measured with the Bradford assay. The expression vector pet15b without the CMCR gene was also expressed in Rosetta2(DE3)pLysS. The cell-free extract was purified by the same procedure and used as a control in the activity assay.

(3). The protocol of gene expression and purification of the carbonyl reductase from

 7a-hydroxy-steroid dehydrogenase ($7 \alpha-\mathrm{HSDH}$).The carbonyl reductase gene from Bacteroides fragilis ATCC 25285 (Genbank Accession No.) was cloned by gene assembly techniques. ${ }^{[53]}$ Plasmid pBPC-1 (from James P. Coleman) containing the 7-HSDH gene from B. fragilis ATCC 25285 was used as a template for PCR amplification. The PCR fragment was cloned into the pTXB1 expression vector at the Nde I and Bam HI sites to give JS2.2. The cloned 7-HSDH gene was confirmed by DNA sequencing. The plasmid JS2.2 was transformed into Rosetta2(DE3)pLysS for expression. Overnight the culture (20 mL) was diluted into 1 L of LB media containing $100 \mu \mathrm{~g} / \mathrm{mL}$ of ampicillin and $34 \mu \mathrm{~g} / \mathrm{mL}$ of chloramphenicol and propagated until OD_{595} reached $0.6-1.0$ at $37{ }^{\circ} \mathrm{C}$. The cells were then induced with 0.1 mM IPTG and continued growing at $30^{\circ} \mathrm{C}$ for 5 hours. The cells were harvested and lysed in 10 mM potassium phosphate buffer (pH 7.0) via Homogenizer. The cell-free extract was heat-treated in a water-bath for 30 min at $55-60^{\circ} \mathrm{C}$ and centrifuged at 20,000 g for 30 minutes. The heat-treated lysate was then mixed with an equal volume of PEI solution (0.25% polyethyleneimine MW $40 \mathrm{~K}-60 \mathrm{~K}, 6 \% \mathrm{NaCl}, 100 \mathrm{mM}$ borax, pH 7.4) to remove lipids. ${ }^{[51]}$ The PEI-treated supernatant was precipitated with 45% ammonium sulfate. The resulting precipitate was collected after centrifugation and dissolved in a
potassium phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0$). The lysate was dialysed by gel filtration into a potassium phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0$), and then lyophilized as a powder.

(4). The protocol of gene expression and purification of the carbonyl reductase $a d h \mathrm{D}$ (PFADH) from hyperthermophilic archaeon pyrococcus furiosus.

The carbonyl reductase gene $a d h \mathrm{D}$ from hyperthermophilic archaeon pyrococcus furiosus (Genbank Accession No. Ae010289, region from nucleotides 7356 to 8192; National Center for Biotechnology information) was cloned by gene assembly techniques. ${ }^{[54]}$ The Nco I and Bam HI sites were franked to the open reading frame for easy cloning into the expression vector Pet24d (Novagen). Plasmid DNA containing adhD gene was transformed into E.coli BL21(DE3) strain. Overnight the culture was diluted with fresh LB medium containing kanamycin and spectinomycin (both $50 \mu \mathrm{~g}$ mL^{-1}) and incubated at $37^{\circ} \mathrm{C}$ until optical density reached 0.6 at 595 nm . The expression was induced by addition of IPTG to 0.1 mM and the culture was incubated at $37^{\circ} \mathrm{C}$ for another 18 hours. Cells were harvested by centrifugation at 4100 rpm for 30 min . The cell pellet was resuspended in 20 mM Tris- HCl buffer (pH 7.5) and the cells were disrupted by Emulsi Flex-C5 Homogenizer. The cell-free extract was mixed with an equal volume of PEI solution (0.25% polyethyleneimine MW $40 \mathrm{~K}-60 \mathrm{~K}, 6 \% \mathrm{NaCl}, 100 \mathrm{mM}$ borax, pH 7.4) to remove lipids. ${ }^{[51]}$ The supernatant was heated for 30 minutes at $80^{\circ} \mathrm{C}$ and was precipitated with 50% ammonium sulfate.

The resulting precipitate was collected after centrifugation and dissolved in 20 mM Tris- HCl buffer (pH 7.8). The lysate was desalted by gel filtration into 20 mM TrisHCl buffer (pH 7.8) and lyophilized to afford the PFADH or $a d h \mathrm{D}$ enzyme as a white powder.

APPENDIX III Representatives of specific activity of enzymes

Specific activity of each enzyme was assayed by using a SpectraMax M2 microplate reader (Molecular Devices) and by measuring the oxidation of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ at $340 \mathrm{~nm}\left(\varepsilon=6.22 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$ every 9 seconds in the first 3 minutes of the reaction in the presence of substrate and enzyme in potassium phosphate buffer. The unit of specific activity was $\mathrm{nmol}^{-1} \mathrm{~min}^{-1} \mathrm{mg}^{-1}\left(\mathrm{~V}_{\max }=\Delta \mathrm{A} / \Delta \mathrm{t}=\Delta \mathrm{c} / \Delta \mathrm{t} * \varepsilon^{*} 1\right)$
(1). Enzyme: SSCRN207T (100 $\mu \mathrm{L}$)

Concentration: $7.8 \mathrm{mg} / 2000 \mathrm{~mL}$
Substrate: β-chloro- α-ketoester 3-3

[^7]
(2). Enzyme: SSCRN207V (100 $\mu \mathrm{L}$)

Concentration: $11.7 \mathrm{mg} / 3000 \mathrm{~mL}$
Substrate: β-chloro- α-ketoester 3-3

APPENDIX IV GC, HPLC spectra

(1). Chiral GC spectra for four diastereoisomers of 3-4 from NaBH_{4} reduction.

(2). syn-and anti-3-4 were resolved by Lipase PS to yield acetylated ester respectively with chiral GC analysis.

(3). Chiral GC spectra of screening results from α-ketoester 3-3 reduction.

(4). Chiral GC trace of SSCR (wild type) reduction of β-chloro- α-ketoester 3-3.

(5). SSCR mutant (N 207 V) reduction (representative of mutants) on β-chloro- α -

ketoester 3-3.

(6). Chiral GC analysis of isolated (2S,3S)-(+)-4-9 from enzymatic reduction.

(7). Chiral GC trace of ($2 R, 3 R$)-(+)- methyl 3-phenylglycidate 4-10.

(8). Chiral HPLC trace of racemic 4-12c.

(9). Chiral HPLC trace of $(4 S, 5 R)-(+)-4-12 \mathrm{c}$.

(10). Chiral HPLC trace of $(3 R, 4 R)-2-10$ in chiracel OD-H column.

（11）．Chiral HPLC analysis of screening results on 3－oxo－β－lactam 3－7．

 		$\frac{3}{4}$
－5，\％		
为为为者		
3 \％	， 2 Ha	
\％$x^{\text {\％\％\％\％}}$		（1）

$5 \mathrm{~m}-\mathrm{xa}$

APPENDIX V NMR spectra

(1). trans-(土)-Methyl 3-phenyloxirane-2-carboxylate 3-6

(2). syn-(\pm)-Methyl 3-chloro-2-hydroxy-3-phenyl-propanoate 3-4

(3). Methyl 3-chloro-2-oxo-3-phenylpropanoate 3-3 (or 4-8)

(4). (2S,3S)-(+)-Methyl-3-chloro-2-hydroxy-3-phenyl-propanoate 4-9

(5). (2S,3R)-(+)-Methyl-3-chloro-2-hydroxy-3-phenyl-propanoate 4-9

Nis	(pric)	(12)	bietgh	Na.	(fim)	(12)	Heght
1	52\%4.	\%\%32.	0.2.20	10	$12 \mathrm{~m} / \mathrm{T}$	78223.1	001234
2	680	Pmu.	0.2144	$1:$	128.44	16459,	0.3428
3	73.3	86717	10.2094	12	12064	16777	0.3351
4	76.6	S5sis	[10,457	13.	120.59	:3220	0,2927
5	7700	G6839	10000	14.	129,93:	162629	0.105
5	7725	3) 515	05754	15	1299	62385	0.1845
7	17,72	102772	0.0880	10	12979	163221	06087
E:	12787	160408	¢1562	\%	13586	126412	0.1028
θ	128.00	162973	c3/42	18	174.18	218279	0.4616

mbentis
1

(6). (2R,3R)-(+)-Methyl 3-phenylglycidate 4-10

mistrest

(7). trans-(\pm)-Ethyl 3-phenylglycidate 4-1

(8). anti-(土)-Ethyl 2-hydroxy-3-phenyl-3-(phenylamino) propanoate 4-3a

(9). anti-(土)-Ethyl 3-(4-methoxyphenylamino)-2-hydroxy-3-phenylpropanoate 4-3b

(10). anti-(土)-Ethyl 3-(4-chlorophenylamino)-2-hydroxy-3-phenylpropanoate 4-3c

(11). anti-(\pm)- t-Boc protected 4-3b

(12). cis-(\pm)-Ethyl 3-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-4b

raconie eis

(13). cis-(\pm)-Ethyl 3-(4-chlorophenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-4c

(14). (2R,3S)-(+)-Methyl 3-(4-methoxyphenylamino)-2-hydroxy-3-phenylpropanoate 4-11b

(15). (2R,3S)-(+)-Methyl 3-(4-chlorophenylamino)-2-hydroxy-3-phenylpropanoate 411c

(16). (2R,3S)-(+)-Methyl 3-(4-chlorophenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate 4-12c

(17). (4S,5R)-(+)-Methyl 3-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-
carboxylate 4-12b

(18). 3-(S)-(-)-MTPA-(3R,4S)-(+)-2-10 from lipase PS resolution

(19). 3-(S)-(-)-MTPA-(3S,4R)-(+)-2-10 from lipase PS resolution

(20). 3-(S)-(-)-MTPA-(3R,4R)-(+)-2-10 from baker's yeast reduction of (4R)-oxo- $\beta-$

Lactam

(21). 5,5-Dimethyl-2-phenyl-1,3-dioxane 2-3

(22). 3-(Benzyloxy)-2,2-dimethylpropan-1-ol 2-4

(23). (E)-N-(3-(benzyloxy)-2,2-dimethylpropylidene)-4-methoxybenzenamine 2-6

(24). cis-(\pm)-3-Acetoxy-4-(2-benzyloxy-1,1-dimethylethyl-1-(4-

methoxyphenyl)azetidin-2-one 2-9

(25). (3R,4S)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-
methoxyphenyl)azetidin-2-one 2-10

(26). (3R,4S)-(+)-3-Hydroxy-4-(2-hydroxy-1,1-dimethylethyl)-1-(4-

methoxyphenyl)azetidin-2-one 2-11

(27). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1,1-
dimethylethyl)-1-(4-methoxyphenyl)azetidin-2-one 2-12

(28). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1,1-dimethylethyl)azetidin-2-one 2-13

(29). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-(t-butyldimethylsilanyloxy)-1,1-dimethylethyl)-1-(t-butoxycarbonyl)azetidin-2-one 2-14

(30). (3R,4R)-(+)-3-Hydroxy-4-(2-benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)

azetidin-2-one 2-10

(31). (4R)-4-(2-Benzyloxy-1,1-dimethylethyl)-1-(4-methoxyphenyl)azetidin-2,3-dione

2-20

(32). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-benzyloxy-1,1-dimethylethyl)-1-
(4-methoxyphenyl)azetidin-2-one 2-15

(33). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-hydroxy-1,1-dimethylethyl)-1-

(4-methoxyphenyl)azetidin-2-one 2-16

(34). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-formyl-1,1-dimethylethyl)-1-(4-
methoxyphenyl)azetidin-2-one 2-17

(35). (3R,4S)-(+)-3-(t-Butyldimethylsilanyloxy)-4-(2-morpholin-1,1-dimethylethyl)-1-

(4-methoxyphenyl)azetidin-2-one 2-18

Vita

I. PERSONAL INFORMATION
Name: Jianmei Wang
Current address: Apt 10, 33 Christopher Court, Saint John, N.B. Canada E2K 4L4 Email: jianmeijianmei@gmail.com
II. EDUCATION

* M. Sc. (candidate) The University of New Brunswick, Saint John, Canada 2005-2007
* M. M. Harbin University of Commerce, Harbin, China 1997-2000
* B. Sc. Beijing University of Traditional Medicine, Beijing, China 1990-1994
III. EMPLOYMENT HISTORY
* Analytical Chemist 2002-2005
Chatham biotech Co. Ltd. \& Atlantic Forestry Centre (N.R.C.) Fredericton, N.B. Canada
* R\&D Assistant 2000-2001
Team Academy of Pharmaceutical Science Beijing, China
* QC Chemist1994-1997
Jingtie Hualong Pharmaceutical Co. Ltd. Beijing, China
IV. PUBLICATIONS AND CONFERENCE PRESENTATIONS
(1). Jianmei Wang, F. D. Rochon, Y. Yang, L. Hua, M. M. Kayser. Synthesis ofoxazolidine using DMSO/ $\mathrm{P}_{4} \mathrm{O}_{10}$ as formaldehyde equivalent. Tetrahedron: Asymmetry2007. (Accepted for publication)
(2). Jianmei Wang, F. D. Rochon, M. M. Kayser. Chemoenzymatic Synthesis of Enantiopure Oxazolidine. Canadian Institute of Chemistry May 26-30, 2007.

Submitted:

(1).Y. Yang, Jianmei Wang, M. M. Kayser. Approaches to the synthesis of enantiopure α-hydroxy- β-lactams with functionalized side chains. 2007.
(2). H. Ge, C. Schneider, Jianmei Wang, M. M. Kayser, J. K. Huff, R. H. Himes, G. Georg. Synthesis and biological evaluation of 3'-debenzoyl-3'-boc-3'-hydroxy-tertbutylpaclitaxel analogue through a highly efficient kinetic resolution of racemic 4-tert-butyldimethysiloxy-tert-butyl- β-lactam with 7-O-triethylsilylbaccatin III. 2007.

[^0]: * The products were tested at the University of Kansas, Laurence KS.

[^1]: ${ }^{\text {4 }}$ The protocols of gene expression and purification for the carbonyl reductases are described in Appendix I. Various organisms were listed in Table 1-3.

[^2]: \ddagger The details are discussed in Chapter 4.

[^3]: ${ }^{\text {§ }}$ This phenomenon also happened previously with the twelve yeast reductases in the E.coli whole cell.

[^4]: ** asparagine was changed into threonine at position 207.

[^5]: *The $\mathrm{J}_{2,3}$ value of 4.6 Hz is consistent with cis configuration; $[\alpha]_{D}^{25}+10.8, \mathrm{c} 1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (lit. ${ }^{[42]} \mathrm{J}_{2,3}=4.7 \mathrm{~Hz},[\alpha]_{D}^{25}+11, \mathrm{c} 4.4, \mathrm{CHCl}_{3}$).

[^6]: ${ }^{\dagger \dagger}$ All references were listed in Chapter 1.

[^7]: $V_{\text {max }}$ Foints $=12$
 Well O H9
 $\begin{array}{lr} \\ V \text { max } & -152.3 \\ R^{\wedge 2} & 0.999\end{array}$

