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Abstract

In this thesis we describe how the balancing of the Tor functor can be used to compute

the minimal free resolution of a graded module M over the polynomial ring B =

K[X0, . . . , Xm] (K a field Xi’s indeterminates). Using a correspondence due to R.

Stanley and M. Hochster, we explicitly show how this approach can be used in the

case when M = K[S], the semigroup ring of a subsemigroup S ⊆ N
l (containing 0)

over K and when M is a monomial ideal of B.

We also study the class of affine semigroup rings for which K[S] ∼= B/p is the

homogeneous coordinate ring of a monomial curve in P
n
K
. We use easily computable

combinatorial and arithmetic properties of S to define a notion which we call stabi-

lization. We provide a direct proof showing how stabilization gives a bound on the

N-graded degree of minimal generators of p and also show that it is related to the

regularity of p. Moreover, we partition the above mentioned class into three cases and

show that this partitioning is reflected in how the regularity is attained. An interest-

ing consequence is that the regularity of p can be effectively computed by elementary

means.
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Chapter 1

Introduction

Let S be a subsemigroup (containing 0) of Z
l, l ≥ 1 with minimal generating set

{a0, . . . , an}. Let K denote a field, R = K[S] the semigroup ring of S over K and B =

K[X0, . . . , Xn] the polynomial ring over K. In what follows we say that S is an affine

semigroup and that R is an affine semigroup ring. We endow an S-grading on B by

setting deg(Xi) = ai. The semigroup ring R can be identified with the subring of the

Laurent polynomial ring K[t±1
1 , . . . , t±1

l ] generated by the monomials Tb = tb11 . . . tbll ,

b = (b1, . . . , bl) ∈ S which is, tautologically, S-graded by setting deg(Tb) = b. Let p

be the kernel of the natural surjection B → R defined by sending Xi 7→ Tai. Then

B/p ∼= R and it is via this representation that we regard R as a graded B-module.

Thus, to R we may associate the invariants βi,m = dimK TorBi (K, R)m, m ∈ S, which

we call the multigraded Betti numbers of R. These numbers count the number of

generators of degree m in the ith step of the minimal free resolution of R as a B-

module. These numbers thus help to measure the extent to which R fails to be free

over B. If the multigrading is positive, we may coarsen the multigrading to an N-

grading, setting deg(Tb) = b1+. . . bl for example, and then consider another invariant,

1



CHAPTER 1. INTRODUCTION 2

that of Castelnuovo-Mumford regularity (or simply regularity), which is defined to be

reg(R) = max{bi−i} where bi = max{βi,m | m ∈ N}. This invariant helps to measure

how hard it is to compute the minimal free resolution of R.

In this thesis we study affine semigroup rings and are interested in the extent

to which these invariants can be computed by combinatorial and arithmetic means.

The correspondence we investigate (Theorem 3.1.3) is due to Stanley, Hochster and

perhaps others. This correspondence is well known, see [31, Chapter I Theorem

7.9, p. 49], or [26, Theorem 9.2, p. 175] for example. For a slightly more general

correspondence see [12]. On page 49 of [31], Stanley writes that, at that time, no

applications of this correspondence had yet been found. Since that account, the

extent to which the minimal free resolution of R, or its invariants as defined above,

can be computed from this correspondence has been extensively studied. Accounts

such as [13] and [5] focus on trying to find minimal ideal generators of p. On the

other hand, accounts such as [14] and [8] consider higher syzygies. In the following

chapters we describe such applications.

The outline for this thesis is as follows. In Chapter 2 we provide some background

and define some notation and conventions which we use for the remainder of the thesis.

In Chapter 3 we establish the correspondence of Theorem 3.1.3 and show how the

minimal free resolution of R can be computed from this correspondence. We have not

found this done explicitly anywhere in the literature. Moreover, in doing so, we relate

[7] and [26]. In Chapters 4 and 5 we study the class of affine semigroups associated to

projective monomial curves. We denote this class by C ′ and describe it shortly. More

specifically, in Chapter 4 we use the methods of [28] and [29] to define the notion

of the integer i for which S has stabilized (Definition 4.2.15). This notion is used to
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classify the elements of C ′ in terms of easily computable combinatorial and arithmetic

properties of S (Theorem 4.2.17). In Section 4.3 we also give a direct proof showing

how Theorem 4.2.17 and Definition 4.2.15 are related to the maximum N-graded

degree of minimal ideal generators of p. In Chapter 5 we explore the methods of [14]

and show how they are related to the theory of Chapter 4 and Theorem 3.1.3. We

also obtain a description of regularity in terms of Definition 4.2.15 and, in Theorem

5.9.1, show how regularity is reflected in terms of Theorem 4.2.17. In Chapter 6 we

provide a brief summary of the thesis and make some comments about the results

presented.

Before describing the class of semigroups C ′ which will be considered in Chapters 4

and 5, we would like to make some comments concerning regularity. More specifically,

we would like to mention that it is well known that if S ∈ C ′ then the regularity of p is

attained in at least one of the last two steps in the minimal free resolution. Moreover,

if R is Cohen-Macaulay, regularity is always attained in the last step of the resolution.

(This follows from Proposition 1.1 and Corollary 1.2 of [2] or from Exercise 20.19 of

[17].) In Theorem 5.9.1 we shed more light onto this phenomenon by clarifying which

monomial curves attain regularity in the last step of the minimal free resolution.

We now describe the class of semigroups C ′ which will be considered in Chap-

ters 4 and 5. An element S ∈ C ′ is a subsemigroup of N
2 whose minimal gen-

erating set Λ = {a0 = (d, 0), a1 = (d − m1, m1), . . . , an = (0, d)} is constructed

from a set S = {m1, . . . , mn = d}, gcd({mi}) = 1, 0 < m1 < · · · < mn of inte-

gers. The semigroup ring R = K[S] can be identified with the monomial subring

K[sd, sd−m1tm1 , . . . , sd−mn−1tmn−1 , td] of the polynomial ring K[s, t] in two variables.

The surjection B → R, defined by sending Xi 7→ Tai,Tb = sb1tb2 , b ∈ S, induces
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an embedding of ProjR as a monomial curve CS in P
n
K

= ProjB. Let p be the

kernel of this surjection. Then B/p ∼= R is the homogeneous coordinate ring of CS .

Throughout this thesis we informally identify S with this curve.

1.1 Some notation and conventions

We now make some comments about notation and conventions. The natural numbers

N contain zero, all rings are commutative, |A| denotes the cardinality of a set A

and A\B denotes the set theoretic complement of two sets A and B. If A and B

are sets we let A + B = {x + y | x ∈ A, y ∈ B}, x + A = {x + y | y ∈ A} and

−A = {−x | x ∈ A}. We have included an index. Many important symbols etc., are

included there with page references indicating where they are defined.



Chapter 2

Literature Review

In this chapter we recall some background from several standard references.

2.1 The main objects of study

The goal of this section is to develop some of the theory of semigroups and semigroup

rings. We follow treatments given in [18], [23] and [9].

2.1.1 Semigroups and monoids

Definition 2.1.1. A (commutative) monoid is a set S with one commutative, asso-

ciative operation, +, and an identity element 0 (i.e., 0 + s = s+ 0 = s for all s ∈ S).

A commutative monoid S is cancellative if s + t = s + u implies that t = u for all

s, t, u ∈ S. We say that S is finitely generated if there exist a finite number of elements

s1, . . . , sm ∈ S such that for any s ∈ S, we can write s = a1s1 + a2s2 + · · · + amsm,

ai ∈ N. A non-zero element s ∈ S is irreducible if s cannot be written as the sum of

two other non-zero elements of S. An element s ∈ S is a unit if −s ∈ S. We say that

5
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S is pointed if its only unit is 0, equivalently, S ∩ −S = {0}.

In this thesis we use the term semigroup instead of monoid. Thus, we are assuming

that all semigroups contain 0. This is to be consistent with accounts such as [26].

Given semigroups (P, ∗) and (S,+) we say that a function φ : P → S is a semi-

group homorphism if φ(0P ) = 0S and φ(p1 ∗ p2) = φ(p1) + φ(p2) for all p1, p2 ∈ P . It

is clear that the collection of semigroups and semigroup homomorphisms form a cat-

egory and that any other reasonable restrictions, such as restricting to commutative

and pointed semigroups, result in full subcategories.

For every commutative semigroup (S,+) there exists a unique smallest abelian

group in which we can map S via a semigroup homomorphism. We denote this group

by G(S) and say that G(S) is the quotient group of S. We refer to [23, I.7] for the

construction.

There is a homomorphism of semigroups ι : S → G(S) which has the following

universal property. Given a semigroup homomorphism φ : S → H into an abelian

group H there exists a unique ψ : G(S)→ H such that the diagram

S
ι //

φ

��

G(S)

ψ||yy
yy

yy
yy

H

commutes. In this situation ι is a universal (repelling) object in the category of

homomorphisms of S into abelian groups. (A morphism between two semigroup

homomorphisms, f1 : S → A1, f2 : S → A2, in this category is a group homorphism

g : A1 → A2, such that gf1 = f2.) Moreover, if S is cancellative then ι is an inclusion.
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2.1.2 Semigroup rings

From now on we assume that S is a commutative, cancellative semigroup with oper-

ation + and identity 0. We now let B be a commutative ring and to S we associate,

in a natural way, a ring which we denote by B[S]. The following construction works

in more general settings such as if S and B are both not commutative. See [18] for

that situation. If the operation of S is multiplicative we refer to [18] or [23] although

this is only a notational change.

Let B[S] denote the collection of functions, f : S → B, which are finitely supprted,

i.e., f(x) = 0 for all but finitely many x ∈ S. Given f, g ∈ B[S] define addition and

multiplication of functions by the formulas (f + g)(x) = f(x)+ g(x) and (f ∗ g)(x) =
∑

y+z=x f(y) ∗ g(z), where the symbol
∑

y+z=x indicates that the sum is taken over

all pairs (y, z) of elements of S such that y + z = x and (f ∗ g)(x) = 0 if x 6= y + z

for any y, z ∈ S.

It is clear that f + g ∈ B[S]. On the other hand, since there are only finitely

many (y, z) ∈ S × S such that f(y) ∗ g(z) 6= 0, the sum
∑

y+z=x f(y) ∗ g(z) is finite.

Thus, there are only finitely many expressions y + z = x for (y, z) ∈ S × S for which

(f ∗ g)(x) 6= 0. Hence, f ∗ g is a function S → B which is finitely non-zero so that

f ∗ g ∈ B[S].

We have shown that the above definitions make B[S] closed under addition and

multiplication. The function 1B[S], defined by 0 7→ 1B and x 7→ 0 for x 6= 0, is the

multiplicative identity of B[S]. It is now straightforward to verify that B[S] is a

commutative ring.

We now develop a notation which is convenient since the operation of S is +. Our

goal is to regard B[S] as a free B-module with basis corresponding to elements of S.
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This notation will make it clear that B[S] faithfully encompasses the structure of S

and B in the sense that an isomorphic copy of each is embedded in B[S].

Let x ∈ S and let rx ∈ B. Let rxT
x : S → B denote the function that sends

x 7→ rx and y 7→ 0 for all y 6= x, x, y ∈ S. By construction, rxT
x ∈ B[S]. In

particular, the function 1BTx, which we now simply denote as Tx, is the function

that sends x 7→ 1B, and y 7→ 0, y 6= x. Thus, T0 is the identity of B[S].

Let f ∈ B[S]. We claim that f has a unique expression of the form f =
∑

x∈S rxT
x

such that x ∈ S, rx ∈ B, and rx = 0 for all but a finite number of x. Indeed, by

definition, f is finitely non-zero so that f is determined by those elements x ∈ S

such that f(x) 6= 0. Set rx = f(x) for all x ∈ S and set h =
∑

x∈S rxT
x. Then, by

construction, h(x) = rx = f(x) for all x ∈ S, so h = f . Moreover, the set {rx}x∈S

consists of finitely many non-zero elements so that f =
∑

x∈S rxT
x is a finite sum.

Using our formulas for multiplication inB[S], if f =
∑

x∈S rxT
x and g =

∑
y∈S ryT

y

then, f ∗ g is given by:

(
∑

x∈S

rxT
x)(

∑

y∈S

ryT
y) =

∑

x,y

rxryT
x+y.

In particular, TxTy = Tx+y. We can also “add componentwise” i.e., if f =
∑

x∈S rxT
x,

and g =
∑

x∈S r̃xT
x, then f + g is given by:

∑

x∈S

rxT
x +

∑

x∈S

r̃xT
x =

∑

x∈S

(rx + r̃x)T
x.

We can now consider B[S] as the free B-module with basis S via the embedding,

as a homomorphism of semigroups, x 7→ Tx. The action of B is defined by

r · f = r ·
∑

x∈S

rxT
x = rT0

∑
rxT

x =
∑

rrxT
x.
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The map B → B[S], given by r 7→ r · T0, is also an embedding of B as a

homomorphism of rings. Thus, B[S] encodes the structure of B and B[S] is an

B-algebra.

Given a homomorphism φ : S → P of semigroups there exists a unique homomor-

phisms of semigroup algebras h : B[S]→ B[P ] such that h(Tx) = Tφ(x) for all x ∈ S

and h(rT0S) = rT0P for all r ∈ B [23, Proposition 3.1, p. 106]. Similarly, given a

homomorphism ψ : B → A of rings and a semigroup S, there is a unique homomor-

phism h̃ : B[S] → A[S] such that
∑

x∈S rxT
x 7→

∑
x∈S ψ(rx)T

x [23, Proposition 3.2,

p. 107 ].

In this way we can verify that, for a fixed B and arbitrary semigroups S and P

the assignment S 7→ B[S], φ ∈ HomSemigroups(S, P ) 7→ h ∈ HomB-algebras(B[S], B[P ])

is functorial. Similarly, for a fixed semigroup S and an arbitrary rings A and B, we

can verify that the assignment

B 7→ B[S], φ ∈ HomRings(B,A) 7→ h̃ ∈ HomSemigroup rings over S(B[S], A[S])

is functorial.

2.1.3 Affine semigroups and semigroup rings

For the remainder of this thesis S denotes a semigroup, K denotes a field and R =

K[S], the semigroup ring of S over K.

Definition 2.1.2. An affine semigroup is a finitely generated subsemigroup (con-

taining 0) of Z
l, l ≥ 1.

Definition 2.1.2 implies that we may specify an affine semigroup, S ⊆ Z
l, l ≥ 1,

by giving a finite set {a0, . . . , an}, ai ∈ Z
l of generators. Thus, the quotient group
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G(S) will be a subgroup of Z
l. In particular, G(S) will be a free abelian group (of

rank less than or equal to l).

Using the notation of Section 2.1.2, we have that R = K[Ta0 , . . . ,Tan]. Thus,

after using the identification Taj = ta11 . . . tall , aj = (a1, . . . , al) ∈ Z
l, we may regard

R as a monomial subring (i.e., a subring generated by monomials) of the Laurent

polynomial ring K[t±1
1 , . . . , t±1

l ]. Moreover, K[G(S)] will also be a monomial subring

of the Laurent polynomial ring K[t±1
1 , . . . , t±1

l ]. We also have, [18, Theorem 21.4] for

example, that the Krull dimension of R is equal to that of K[G(S)], which is equal

to the rank of the free abelian group G(S).

2.2 Betti numbers

Let Λ = {a0, . . . , an} be a subset of Z
l, let S be the subsemigroup generated by Λ

and let B = K[X0, . . . , Xn]. Define an S-grading on B by setting deg(Xi) = ai. Let

M be an S-graded B-module. We assume that this grading is positive, i.e., that one

of the following equivalent conditions hold.

Theorem 2.2.1. [26, Theorem 8.6, p. 151] The following are equivalent for a poly-

nomial ring B = K[X0, . . . , Xn] graded by an affine semigroup S.

1. There exists an a ∈ S such that Ba is a finite dimensional K-vector space.

2. The only polynomials of degree 0 are constants; i.e., B0 = K.

3. For all a ∈ G(S) the K-vector space Ba is finite dimensional.

4. For all finitely generated S-graded modules M and degrees a ∈ G(S), the K-

vector space Ma is finite dimensional.
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5. The semigroup S has no units (it is pointed) and no variable Xi has degree zero.

Consider the following definition.

Definition 2.2.2. We define βi,m = dimK TorBi (K,M)m for some m ∈ S to be the ith

Betti number of M . (We will explain why TorBi (K,M) is a graded module shortly.)

Although this is the “right” way to define Betti numbers, a certain amount of

explanation is in order, especially if one has not heard of Betti numbers or Tor. We

sketch some details now.

A reference for the following discussion is [9, Chapter 6.B]. We first recall some

terminology. Let G be a finitely generated free abelian group and let B be a G-graded

ring, i.e., we can write B = ⊕i∈GBi as abelian groups, such that BiBj ⊆ Bi+j . Let

M be an B-module. We say that M is G-multigraded if we can write M = ⊕i∈GMi

as abelian groups such that BiMj ⊆ Mi+j . If I is an ideal of B we say that I is

multigraded if it is graded as a B-module.

When we talk of mulitigraded rings and modules usually the group G is fixed.

Thus, unless stated otherwise, we drop the prefixes and refer simply to a ring or

module as being graded.

If f is an element of a graded B-module M then we say that f is homogeneous

of multidegree i if f ∈ Mi for some i ∈ G. Sometimes we say simply that f is

homogeneous, the degree of f is i, the multidegree of f is i, deg(f) = i, or minor

variants thereof.

If M is a graded B-module, then M has a set of homogeneous generators and every

element x ∈ M can be written uniquely as a sum of homogeneous elements x =
∑

i xi,

xi ∈ Mi. If M is a finitely generated B-module, we say that a set of generators for

M is minimal if the omission of any generator implies that we no longer have a
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generating set. If M is finitely generated and graded then M has a minimal set of

homogeneous generators. If M is a graded module and N is a submodule, then we

say that N is a graded submodule if the additive subgroups Nt = Mt ∩ N for t ∈ G

define a graded module structure on N .

Let M and N be graded B-modules and consider a B-module homomorphism

φ : M → N . We say that φ is graded if there exists j ∈ G such that φ(Mi) ⊆ Ni+j

for all i ∈ G. The degree of φ is j. The collection of G-graded B-modules and graded

homomorphisms of degree 0 form a category which we denote by M0(B). For each

object M and N ofM0(B), we denote by Hom0
B(M,N), the abelian group of degree

zero homomorphisms M → N . (Note that Hom0
B(M,N) is not a B-module in the

usual way in which HomB(M,N) is.) Moreover, the kernel, image and cokernel of

graded homomorphisms are graded as is easily checked using a homogeneous set of

generators for the source of the map.

In what follows, we denote by M(B) the category of B-modules and B-module

homorphisms, C (M(B)) the category of chain complexes of objects of M(B) and

C (M0(B)) the category of chain complexes of objects of M0(B). Let M be an

object ofM0(B). We denote by M(j) the graded B-module with grading shifted by

a factor of j ∈ G. This means that M(j)d = Mj+d. In particular, if M is generated

in degree 0 then since M(j)−j = M0 we have that M(j) is generated in degree −j.

The direct sum, ⊕iMi, of a collection {Mi}i∈I of objects in M0(B) is graded.

More specifically, (⊕iMi)j = ⊕iMi,j , where Mi,j denotes the degree jth component of

Mi. This shows that finite products and coproducts exist inM0(B).

Using the above discussion, it is now immediate to verify thatM0(B) is an abelian

category. See [23, Chapter III Section 3, p. 133] for the axioms we must check.
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We now show that tensor products of graded objects are graded. We include a

proof since the only reference we could find was [11, Exercise 1.5.19 d), p. 39].

Proposition 2.2.3 (Exercise 1.5.19 d), p. 39, [11]). Let M and N be B-graded

modules. Then M ⊗B N is graded. More specifically, (M ⊗B N)i is generated as a

Z-module by elementary tensors m⊗n such that m ∈Mj , n ∈ Nk for all j, k ∈ G and

j + k = i.

Proof. Let M be a graded B-module. Then M has a homogeneous set of generators

{mi} such that degmi = −βi ∈ G. Let ⊕iB(βi) be the free B-module such that each

summand B(βi) has basis eβi with deg(eβi) = −βi. Then ⊕i(B(βi)) is graded by the

discussion above. We can form the exact sequence

⊕iB(βi)
ψ // M // 0

where ψ is a degree zero map sending eβi 7→ mi. Since the kernel of ψ is a graded

submodule of ⊕B(βi), we can extend the above exact sequence into another one:

⊕iB(αi)
φ // ⊕iB(βi)

ψ // M // 0

where φ is a degree zero map, so we have an exact sequence inM0(B).

We now make an observation. Since N(βi) is graded, the natural isomorphism

(B(βi)⊗BN) ∼= N(βi) given by eβi⊗n 7→ eβin shows that each summand, (B(βi)⊗B

N), of ⊕i(B(βi)⊗BN), is graded with (B(βi)⊗B N)d being generated by elementary

tensors of the form r ⊗ n such that r and n are homogeneous with degree deg(r) +

deg(n) = d.

Since tensor product commutes with direct sums, the natural map φ⊗1 : ⊕i(B(αi)⊗B

N) → ⊕i(B(βi) ⊗B N) is a morphism in M0(B). Moreover, applying the functor
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−⊗B N to the above exact sequence we obtain another exact sequence (inM(R)):

⊕i(B(αi)⊗B N)
φ⊗1 // ⊕i(B(βi)⊗B N)

ψ⊗1 // M ⊗B N // 0 .

Exactness implies that M ⊗B N ∼= ⊕i(B(βi)⊗B N)/(image(φ⊗ 1)), which we denote

by (∗) and claim is graded in the manner desired.

Consider image(φ⊗ 1). Fixing a summand, B(αi)⊗B N , of ⊕i(B(αi)⊗B N), we

have, by construction that eαi ⊗ n 7→ rαi ⊗ n where n is a homogenous element of

N , and rαi is a homogeneous generator of ker(ψ). This implies that image(φ⊗ 1) is

graded with (image(φ ⊗ 1))d being generated by elementary tensors r ⊗ n for some

homogeneous elements r ∈ (ker(ψ))l, and n ∈ Nk such that l + k = d. This shows

that ⊕i(B(βi) ⊗B N)/(image(φ ⊗ 1)) is graded in the manner desired. The desired

grading on M ⊗B N is now given by the isomorphism (∗).

We have shown that M0(B) is closed under tensor products. Let M be a B-

module (B and M need not be graded at the moment). Then − ⊗B M is a right

exact functorM(B)→M(B). Moreover, if B and M are graded then −⊗B M is a

right exact functor M0(B) → M0(B). The category M0(B) obviously has enough

projectives; thus, we may form the left derived functors of − ⊗B M , which we label

as TorBi (−,M) and describe in the following definitions.

Definition 2.2.4. Let M be a B-module. Let

F : . . . // Fn
φn // . . . φ1 // F0

// 0

be a chain complex of B-modules. Then F is a projective resolution of M if each Fi

is a projective module and F is exact everywhere, i.e., ker(φi) = image(φi+1), except

in homological degree 0, where M ∼= F0/ image(φ1), i.e., M ∼= coker(φ1). If each
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Fi is a free module, then we say that F is a free resolution of M . If each Fi is a

graded projective module, and each φi is a degree zero map, then we say that F is

a graded projective resolution. In a similar manner we define graded free resolutions.

Set M0 = M , Mi = ker(φi−1), i ≥ 1. The modules Mi, i ≥ 0 are called the ith syzygy

modules of M .

Remark 2.2.5. We sometimes augment the above chain complex by adding M to

the right of F0 and taking φ0 to be the natural surjection F0 → M . This makes the

above sequence exact everywhere. In this situation we say that M sits in homological

degree −1.

Definition 2.2.6. Let M,N be B-modules, and let

F : . . . // Fn
φn // . . . // F0

φ0 // M // 0

be a free resolution of a B-module M . (If we are working inM0(B), then each φi is

a degree zero map, and each Fi is a graded free B-module.) The left derived functor

of − ⊗B N , which we denote by TorBi (M,N), can be computed by taking the ith

homology module of the complex:

F ⊗B N : . . . // Fn ⊗B N // . . . // F0 ⊗B N // 0.

i.e., TorBi (M,N) = ker(φi ⊗ 1)/ image(φi+1 ⊗ 1), and in particular, TorBi (M,N) is a

B-module. (If B, M and N are graded then so is TorBi (M,N).)

It is natural to ask whether TorBi (N,M) ∼= TorBi (M,N) i.e., if the result of apply-

ing − ⊗B M to a free resolution of N and then taking homology, is the same as the

result by applying −⊗B N to a free resolution of M and then taking homology. This

turns out to be the case as we will see shortly. Moreover, as with any left derived
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functor in an abelian category with enough projectives, TorBi (M,N) does not depend

on the chosen projective resolution [33, Lemma 2.4.1, p.44], for example. This implies

that if B is graded and if M and N are graded modules then TorBi (M,N) is graded.

Moreover, this grading is independent on the choice of graded free resolution of M or

N .

We now have developed enough terminology to understand Definition 2.2.2. If

B = K[X0, . . . , Xn] is positively S-graded (in the sense of Theorem 2.2.1) and if M

is a graded B-module, then B0 = K and so βi,m is the dimension of vector space

of the mth graded piece of the module TorBi (K,M). Moreover, since the grading of

TorBi (K,M) is independent of the choice of resolution of M , we have that βi,m is an

invariant of M .

There is another interpretation of βi,m which we now describe. One definition of

a minimal free resolution for M is a resolution F of M such that applying − ⊗B K

to F turns all of the maps into the zero map. See [17, p.476-477] for example. (It

also turns out that a minimal free resolution is unique up to isomorphism of chain

complexes. See [17, Section 20.1, p. 494].) In a free resolution of M each Fi is of the

form Fi = ⊕jB(−bj). Thus, in computing TorBi (M,K) ∼= TorBi (K,M) we might as

well choose a minimal free resolution for M . Thus,

TorBi (K,M)m ∼= TorBi (M,K)m ∼= (⊕jK(−bj))m

so that βi,m counts the number of generators of degree m of Fi. Equivalently, we may

say that βi,m counts the number of i-syzygies of degree m. If I is a graded ideal of

B, we may choose to resolve I as a B-module, or we may resolve the module B/I.

In this case TorBi−1(K, I)m
∼= TorBi (K, B/I)m, i ≥ 1 so that the Betti numbers of I as

a B-module appear in homological degree one less than they appear in a resolution
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of B/I.

We should also recall one last notion. The projective dimension of M as a B-

module, which we denote by pdBM , is the smallest j ≥ 0 (we set pdBM =∞ if no

such j exists) such that there exists a projective resolution:

0 // Fj // . . . // F0
// M // 0

of M as a B-module.

With our current assumptions on B, Hilbert’s Syzygy Theorem, [33, Corollary

4.3.8, p. 102] shows that every B-module has finite projective dimension. This,

combined with the fact that B is Noetherian, implies that every finitely generated

graded B-module has only finitely many non-zero Betti numbers.

2.3 Some combinatorial notions

We now review some combinatorial notions. There are several references such as [26,

Chapter 1] or [11, Chapter 5].

2.3.1 Simplicial complexes

Definition 2.3.1. A simplicial complex ∆ on the vertex set {1, . . . , n} is a collection

of subsets, called faces, closed under taking subsets. i.e., if σ ∈ ∆ and τ ⊆ σ then

τ ∈ ∆. A face σ ⊆ ∆ with cardinality |σ| = i + 1 has dimension i. A maximal face

(under inclusion) of a simplicial complex is called a facet.

It is immediate that a simplicial complex is determined by its facets. Two trivial,

although important, examples of simplicial complexes are: {}, the void complex



CHAPTER 2. LITERATURE REVIEW 18

(i.e., the simplicial complex with no faces), and {∅}, the irrelevant complex (i.e.,

the simplicial complex with one face in diemension −1).

Let ∆ be a simplicial complex on the vertex set {1, . . . , n}. For each integer i ≥ −1

let C̃i(∆) be the vector space over a field K whose basis elements eσ correspond to

i-dimensional faces σ ∈ ∆. (i.e., |σ| = i+ 1.) Note that we consider the empty set as

a face of dimension −1 so that if ∆ 6= {} then C̃−1(∆) will have basis e∅.

Remark 2.3.2. In our definition we do not require that for each i ∈ {1, . . . , n} we

have {i} ∈ ∆. This convention is different than accounts such as [11, Definition

5.1.1, p. 207]. (The reason for our definition should become obvious in subsequent

chapters.)

Definition 2.3.3. The complex:

C̃.(∆; K) : 0 // C̃n−1(∆)
δn−1 // . . . δ0 // C̃−1(∆) // 0

is said to be the reduced chain complex of ∆. The maps are defined by setting

δi(eσ) =
∑

j∈σ sign(j, σ)eσ\{j}, where sign(j, σ) = (−1)r−1 if j is the rth element of the

set σ ⊆ {1, . . . , n}, written according to some fixed total ordering. Unless otherwise

stated we use increasing order. If i < −1 or i > n− 1 then C̃i(∆) = 0 and δi = 0 by

definition.

Remark 2.3.4. We omit the verification that C̃.(∆; K) is a complex. (It is straight-

forward and along the same lines as the proof of Lemma 2.4.1.)

Definition 2.3.5. For each integer i, the K-vector space

H̃i(∆; K) = ker(δi)/ image(δi+1)

in homological degree i is the called the ith reduced homology of ∆ over K.
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When computing C̃.(∆; K) and H̃i(∆; K) the field is fixed. Hence, we sometimes

denote these simply as C̃.(∆) and H̃i(∆). Moreover, we often just refer to H̃i(∆)

as the ith homology of ∆ or the homology of ∆ or minor variants thereof. If for a

simplicial complex ∆ and all i ≥ −1 we have H̃i(∆) = 0, we say that ∆ is an acyclic

simplicial complex.

Remark 2.3.6. Since we are using reduced homology dimK H̃0(∆) is equal to the

number of connected components minus one. (Recall that for H0(∆), the non-reduced

homology of ∆, i.e., we do not include the empty set as a −1-dimensional face,

dimKH0(∆) is equal to the number of connected components.) We should also remark

that if ∆ = {∅} then H̃−1(∆) ∼= K and is zero for all other values of i. On the other

hand, if ∆ = {}, then H̃i(∆) = 0 for all i.

Example 2.3.7. If ∆ is the simplicial complex defined by facets {{1, 2}, {2, 3, 4}, {5}},

then ∆ has one two dimensional face, four one dimensional faces, five zero dimen-

sional faces and, of course, one face in dimension negative one. We can represent ∆

geometrically in Figure 2.1.

b

b

b b

b

1 3

2

4

b

5

Figure 2.1: The simplicial complex ∆ = {{1, 2}, {2, 3, 4}, {5}}.

The reduced chain complex of ∆ has the form

C̃.(∆; K) : 0 // C̃2(∆)
δ2 // C̃1(∆)

δ1 // C̃0(∆)
δ0 // C̃−1(∆) // 0
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and C̃2(∆) has basis {e{2,3,4}}, C̃1(∆) has basis {e{1,2}, e{2,3}, e{2,4}, e{3,4}}, C̃0(∆) has

basis {e{1}, . . . , e{5}} and C̃−1(∆) has basis {e∅}.

Since δ2 is an injection, H̃2(∆) = 0. Since δ2(e{2,3,4}) = e{3,4} − e{2,4} + e{2,3}, a

basis for image(δ2) is given by {e{3,4}−e{2,4} +e{2,3}}. The map δ1 can be represented

by the matrix 


−1 0 0 0

1 −1 −1 0

0 1 0 −1

0 0 1 1

0 0 0 0




,

where the order of the columns correspond to{e{1,2}, e{2,3}, e{2,4}, e{3,4}}, and the order

of the rows correspond to {e{1}, . . . , e{5}}. This matrix has rank 3 so the kernel has

dimension 1. It is clear that e{2,3} − e{2,4} + e{3,4} maps to zero and so is a basis for

ker(δ1). Hence H̃1(∆) has dimension 1 − 1 = 0. Similarly, H̃0(∆) has dimension 1,

since dimK ker(δ0) = 4 and dimK image(δ1) = 3. It is easy to see that a basis for

H̃0(∆) is given by {e{1} − e{5}}. It is in the kernel of δ0, but is clearly not in the

image of δ1.

As for a combinatorial definition of what it means for ∆ to be connected, we have

the following, [11, 5.1.26, p. 222]:

Definition 2.3.8. Let ∆ be a simplicial complex. We say that ∆ is disconnected if

the vertex set V (i.e., zero dimensional faces) of ∆ can be written V = V1 ∪ V2 such

that V1 ∩ V2 = ∅ and such that no face of ∆ has vertices in both V1 and V2. If this is

not possible, we say that ∆ is connected.
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2.3.2 Some remarks concerning relative homology of simpli-

cial complexes

We now say a few words with respect to the relative homology of simplicial complexes.

Let ∆ be a simplicial complex on some vertex set V . A simplicial subcomplex of ∆

is a simplicial complex Γ, such that every face of Γ is a face of ∆. Note that the

void complex {} is a simplicial subcomplex of every simplicial complex, and that the

simplicial complex {∅} is a simplicial subcomplex of every simplicial complex except

the void complex.

Let C̃.(∆; K) denote the reduced chain complex of ∆ and let C̃.(Γ; K) denote

the reduced chain complex of Γ. Then, for all t ≥ −1, we can regard C̃t(Γ) as a

subspace of C̃t(∆). Moreover, a basis for the quotient C̃t(∆,Γ) := C̃t(∆)/C̃t(Γ) can

be identified with the symbols eσ such that σ is a t-dimensional face of ∆ and σ 6∈ Γ.

For each t ≥ −1 let δt : C̃t(∆)→ C̃t−1(∆) denote the chain complex map of C̃.(∆; K).

Define δ̄t : C̃t(∆,Γ)→ C̃t−1(∆,Γ) to be the image of δt(eσ) in the quotient of C̃t(∆)

by C̃t(Γ). That δ̄t−1δ̄t = 0 follows from the fact that δt−1δt = 0. Thus, the data

{C̃t(∆,Γ), δ̄t}t is a chain complex which we denote by C̃.(∆,Γ) and call the relative

chain complex of ∆ with respect to Γ. The homology of this complex is called the

relative homology of ∆ by Γ and is denoted by H̃t(∆,Γ).

If Γ = {} then C̃.(∆,Γ) = C̃.(∆). This implies that we will always have

C̃−1(∆,Γ) = 0, unless Γ = {} and ∆ = {∅}. Also note that if Γ = {∅}, then

H̃0(∆,Γ) = H0(∆).

Given a simplicial subcomplex Γ of ∆, we obtain a short exact sequence of chain

complexes:

0 // C̃.(Γ) // C̃.(∆) // C̃.(∆,Γ) // 0 ,
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and then a long exact sequence

. . . // H̃t+1(∆,Γ) // H̃t(Γ) // H̃t(∆) // H̃t(∆,Γ) // . . .

of homology. This will become useful Chapter 5.

Let’s now consider an example.

Example 2.3.9. Suppose ∆ is defined by facets {{1, 2}, {3, 4}} and that Γ is defined

by facets {{1, 2}, {4}}. Then, as in the above discussion, C̃t(∆,Γ) = 0 for all t ≥ 2,

a basis for C̃1(∆,Γ) is given by {e{3,4}}, a basis for C̃0(∆,Γ) is given by {e{3}} and

C̃−1(∆,Γ) = 0. Thus C̃.(∆,Γ) will take on the form:

0 // C̃1(∆,Γ)
δ̄1 // C̃0(∆,Γ) // 0 ,

where δ̄1 is given by sending e{3,4} 7→ −e{3}. Thus C̃.(∆,Γ) will be acyclic, i.e.,

H̃t(∆,Γ) = 0 for all t ≥ −1.

2.4 The Koszul complex

We now state some facts about the exterior algebra of a free module over a commu-

tative ring and the Koszul complex. These can be found in accounts such as [23].

Let B be a commutative ring and let M be an B-module. We assume the reader

is somewhat familiar with the exterior algebra
∧

(M). We set
∧0(M) = B. If M is

a free B-module with basis e1, . . . , en then
∧p(M) = 0 for p > n. If 1 ≤ p ≤ n then

∧p(M) is a free B-module, of rank
(
n
p

)
, with basis ei1 ∧ ei2 ∧ · · ·∧ eip for all p-element

subsets {i1, . . . , ip} of {1, . . . , n} with i1 < i2 < · · · < ip.

We can now discuss some facts regarding the Koszul complex. Let x = x1, . . . , xn

be a sequence of elements of B. The Koszul complex K(x) is constructed as follows.
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We first set K0 = B and define K1 to be the free B-module F with basis {e1, . . . , en}.

For 1 < p < n, we define Kp to be the free B-module
∧p(F ) with basis {ei1∧· · ·∧eip}

for all p-element subsets of {1, . . . , n} such that i1 < · · · < ip. Finally, we let Kn to be

the free module
∧n(F ) of rank 1 with basis {e1 ∧ · · · ∧ en}. For each free module Kp

we define a map δp as follows. We set δ1(ei) = xi. For p > 1, define δp : Kp → Kp−1

to be such that δp(ei1 ∧ · · · ∧ eip) =
∑p

j=1(−1)j−1xijei1 ∧ · · · ∧ êij ∧ · · · ∧ eip , where êij

means that the element eij is removed.

We check that K(x) is a complex.

Lemma 2.4.1. Let K(x), Ki, δi be defined as above. Then

K(x) : 0 // Kn
δn // . . . // K1

δ1 // K0
// 0

is a complex.

Proof. Clearly the composition of two successive maps at the beginning and then end

of the sequence is the zero map, so we only need to check that δpδp+1 is the zero map

for 1 ≤ p ≤ n− 1. Indeed,

δpδp+1(ei1 ∧ · · · ∧ eip+1) = δp(

p+1∑

j=1

(−1)j−1xijei1 ∧ · · · ∧ êij ∧ · · · ∧ eip+1)

=

p+1∑

j=1

(−1)j−1xij

p+1∑

k=j+1

(−1)k−2xik(ei1 ∧ · · · ∧ êij ∧ · · · ∧ êik ∧ · · · ∧ eip+1)

+

p+1∑

j=1

(−1)j−1xij

j−1∑

k=1

(−1)k−1xik(ei1 ∧ · · · ∧ êik ∧ · · · ∧ êij ∧ · · · ∧ eip+1) = 0,

since considering the right hand side, it is clear that all terms cancel in pairs (since

xijxikei1 ∧ · · · ∧ êij ∧ · · ·∧ êik ∧ · · · ∧ eip+1 appears twice: first with sign (−1)j+k−3 and

then with opposite sign (−1)j+k−2).
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If B = K[X0, . . . , Xn] and m = (X0, . . . , Xn), we give a combinatorial argument

for the following well known statement. We first define some notation. Let m =

(m0, . . . , mn) ∈ N
n+1. Define supp(m) = {i ∈ {0, . . . , n} | mi 6= 0} to be the support

of m.

Proposition 2.4.2. Let B = K[X0, . . . , Xn] and let m be the maximal ideal (X0, . . .Xn).

Set x = X0, . . . , Xn. Then K(x) is a free resolution of B/m.

Proof. Let ei denote the standard basis vectors of N
n+1 0 ≤ i ≤ n. Give B the

standard N
n+1-grading by setting deg(Xi) = ei. The Koszul complex is also naturally

N
n+1-graded setting deg(ei) = ei. Since the set {e0, . . . , en} is N-linearly independent

each m ∈ N
n+1 has a unique expression m =

∑
i∈supp(m) ciei, ci > 0 (if m = 0 then

supp(m) = ∅ and the sum over the empty set is zero). Letting p = | supp(m)| and

restricting K(x) to degree m, we get a complex of vector spaces:

(K)m : 0 // (Kp)m
δp // . . . δ1 // (K0)m // 0 .

A K-basis for (Kj)m, 1 ≤ j ≤ p, consists of the
(
p
j

)
elements of the form

Xm−
P

i∈σ eiek1 ∧ · · · ∧ ekj , where σ = {k1, . . . , kj} ⊆ supp(m) and k1 < · · · < kj.

Finally, (K0)m = Bm the unique monomial of degree m. (The uniqueness follows

from our choice of N
n+1-grading.)

Let ∆ = {supp(m)}. Then ∆ is an aycylic simplicial complex unless m = 0, in

which case ∆ = {∅}. Moreover, for all m ∈ N
n+1 there is a canonical isomorphism of

complexes:

0 // (Kp)m
δp //

��

. . . δ1 //

��

(K0)m //

��

0

0 // C̃p−1(∆)
dp−1 // . . . d0 // C̃−1(∆) // 0.
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(This isomorphism is similar to the one given in the proof of Theorem 3.1.3, so we

omit some details regarding this isomorphism here.)

Since (K0)0 = 0 → K → 0, the above isomorphisms implies that K(x) is acyclic

except in homological degree 0. On the other hand, image δ1 = m so that K =

coker(δ1) which implies that K(x) is a free resolution of K.



Chapter 3

Simplicial complexes and the total

tensor resolution

In this chapter we relate several accounts showing how the combinatorial and arith-

metic properties of S can be used to explicitly construct the minimal free resolution

of R = K[S].

3.1 A correspondence of Stanley and Hochster

Let S be a subsemigroup of N
l, l ≥ 1 and let Λ = {a0, . . . , an} be a minimal gen-

erating set for S. Then R = K[S] can be identified with the monomial subring

K[Ta0 , . . . ,Tan] of the polynomial ring K[t1, . . . , tl], Tb = tb11 . . . t
bl
l , b = (b1, . . . , bl) ∈

S. The ring R is given the tautological S-grading, setting deg(Tb) = b, for b ∈ S.

Let B = K[X0, . . .Xn] and define an S-grading on B by setting deg(Xi) = ai. Let p

be the kernel of the surjective K-algebra homomorphism B → R sending Xi 7→ Tai.

Then B/p ∼= R, an integral domain, so that p is a prime ideal.

26
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In Section 2.2 we defined the multigraded Betti numbers of R and p. We now give

a combinatorial interpretation.

Definition 3.1.1 (p. 175, [26]). Let S be minimally generated by {a0, . . . , an} and

let m ∈ S. Define ∆m = {σ ⊆ {0, . . . , n} | m−
∑

i∈σ ai ∈ S}.

It is clear from the definition that ∆m is a simplicial complex, that ∆0 = {∅} and

that ∆m 6= {} for all m ∈ S. In order to compute ∆m it is necessary to determine

semigroup membership. With our assumptions on S we may use the following ele-

mentary approach. Let w := degN(m) =
∑l

i=1mi, A := {0}, B := {} and y := false.

If w = 0 then y := true. While
∑l

i=1 xi ≤ w for some x = (x1, . . . , xl) ∈ B and

y = false do: B := (Λ + A)\(A); A := A ∪ B; If m ∈ B then y := true; end do.

Return y. Since S ⊆ N
l, adding Λ to a subset A ⊆ S strictly increases the minimum

degree, i.e., min{degN(x) | x ∈ Λ+A} > min{degN(x) | x ∈ A}. This ensures that the

process stops. The value of y at the end of the procedure says whether or not m ∈ S.

If S is homogeneous (i.e., generated in degree 1) with respect to some N-grading, then

the above procedure can be easily modified to be more efficient. The computation of

∆m is now immediate from the definitions.

Examples 3.1.2. We now illustrate Definition 3.1.1. Let Λ = {a0 = (6, 0), a1 =

(5, 1), a2 = (1, 5), a3 = (0, 6)} generate S. Then ∆(6,6) has facets {{0, 3}, {1, 2}},

∆(5,25) has facets {{2}, {1, 3}}, ∆(10,20) has facets {{0, 2}, {1, 3}} and ∆(12,12) is defined

by the single facet {{0, 1, 2, 3}} and is a tetrahedron.

We now make one comment regarding a notational convention. In Mathematica

the first element of a list is indexed by 1. As such, we have found it convenient, when

programing the definition of ∆m, and all other simplicial complexes which appear in
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this thesis, to label the vertices from {1, . . . , n+ 1} as opposed to {0, . . . , n}. On the

other hand, we use B = K[X0, . . . , Xn], as opposed to K[X1, . . . , Xn+1], so that our

curves constructed from S , which appear in Chapter 4, are curves in P
n. We use

this convention from now on and hope that it does not result in too much confusion.

We now introduce the correspondence of R. Stanley and M. Hochster which we

explore in this thesis.

Theorem 3.1.3 (Chapter I Theorem 7.9, p. 49 [31]). With the notation and assump-

tions as above, for all i, 0 ≤ i ≤ n+ 1, TorBi (K, R)m ∼= H̃i−1(∆m).

Proof. Let x = X0, . . . , Xn. The Koszul complex K(x) is naturally S-graded, setting

deg(ej) = aj . This also implies that the modules Ki+1 ⊗B R are graded. For each

i, −1 ≤ i ≤ n, we define φi : C̃i(∆m) → (Ki+1 ⊗B R)m as follows. For each σ =

{k1, . . . , ki+1} ∈ ∆m we send eσ 7→ ek1 ∧ · · · ∧ eki+1
⊗Tm−

P

j∈σ aj, k1 < · · · < ki+1.

We claim that φi is an isomorphism of K-vector spaces. For this, we note that a K-

basis for (Ki+1⊗B R)m consists of elements of the form ek1 ∧ · · · ∧ eki+1
⊗Tm−

P

j∈σ aj ,

where σ = {k1, . . . , ki+1} ⊆ {0, . . . , n}, k1 < · · · < ki+1 and m −
∑

j∈σ aj ∈ S.

On the other hand, σ = {k1, . . . , ki+1} ∈ ∆m if and only if m −
∑

j∈σ aj ∈ S, so

that eσ is a basis vector of C̃i(∆m) if and only if (Ki+1 ⊗B R)m has a basis vector

ek1 ∧ · · · ∧ eki+1
⊗Tm−

P

j∈σ aj . Thus, φi is an isomorphism.

To compute TorBi (K, R) we apply − ⊗B R to K(x) and take homology. Thus,

applying − ⊗B R to K(x) and restricting to degree m, we claim that the collection

{φi}
n
i=−1 yields an isomorphism of complexes:

0 // C̃n(∆m)
dn //

φn
��

. . .

��

// C̃i(∆m)
di //

φi
��

. . .

��

d0 // C̃−1(∆m) //

φ−1

��

0

0 // (Kn+1 ⊗B R)m //δn+1⊗1// . . . // (Ki+1 ⊗B R)m
δi+1⊗1// . . . δ1⊗1 // (K0 ⊗B R)m // 0

.
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Since each φi is an isomorphism, it remains only to show that the diagram com-

mutes. Let σ = {k1, . . . , ki+1} ⊆ {0, . . . , n} and assume that k1 < · · · < ki+1. We

have,

φi−1di(eσ) = φi−1(
∑

kj∈σ

sign(kj, σ)eσ\{kj})

=
∑

kj∈σ

sign(kj, σ)ek1 ∧ · · · ∧ êkj ∧ · · · ∧ eki+1
⊗T

m−
P

l∈σ\{kj}
al .

Since kj is in the jth position of σ (listed in increasing order), sign(kj, σ) = (−1)j−1.

On the other hand,

(δi+1 ⊗ 1)φi(eσ) = (δi+1 ⊗ 1)(ek1 ∧ · · · ∧ eki+1
⊗Tm−

P

l∈σ al)

=
∑

kj∈σ

(−1)j−1Xkjek1 ∧ · · · ∧ êkj ∧ · · · ∧ eki+1
⊗Tm−

P

l∈σ al

=
∑

kj∈σ

(−1)j−1ek1 ∧ · · · ∧ êkj ∧ · · · ∧ eki+1
⊗T

m−
P

l∈σ\{kj}
al.

Since K(x) ⊗B R is a graded complex, (Hi(K(x) ⊗B R))m = Hi((K(x) ⊗B R)m).

Moreover, Hi((K(x)⊗B R)m) is isomorphic to H̃i−1(∆m) so the result is proved.

Remark 3.1.4. The isomorphism of complexes proved in the statement is sometimes

denoted by (K(x)⊗B R)m ∼= C̃.(∆m)[−1].

The following corollary is immediate upon noting that TorBi−1(K, p) ∼= TorBi (K, R),

i ≥ 1.

Corollary 3.1.5 (Theorem 9.2, p. 175, [26]). The Betti number βi,m of p equals

dimK H̃i(∆m).

Since for a simplicial complex ∆ we have in general H̃0(∆) 6= 0 if and only if ∆ is

disconnected, the following corollary is immediate.
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Corollary 3.1.6. The ideal p has a minimal generator in multidegree m if and only

if ∆m is disconnected.

Example 3.1.7. The Betti numbers can get quite large even when S ⊆ N
2. Moreover,

a single m ∈ S can contribute to more than one nontrivial Betti number. Let S be

generated by

Λ = {{16, 0}, {14, 2}, {13, 3}, {12, 4}, {10, 6}, {8, 8}, {6, 10}, {4, 12}, {0, 16}}

and let m = {34, 30}. Labeling the elements of Λ from 1 through 9, ∆m is defined by

the facets:

{{3, 8}, {1, 5, 8}, {2, 4, 8}, {2, 5, 9}, {2, 6, 7}, {2, 6, 8}, {2, 7, 9}, {3, 6, 9},

{4, 5, 7}, {4, 5, 9}, {4, 6, 7}, {4, 7, 8}, {5, 6, 7}, {1, 2, 8, 9}, {1, 4, 7, 9},

{1, 5, 6, 9}, {1, 6, 7, 8}, {2, 4, 6, 9}, {2, 5, 7, 8}, {4, 5, 6, 8}}.

We then compute that dimK H̃1(∆m) = β1,m = 1 and dimK H̃2(∆m) = β2,m = 11.

3.2 Some homological notions

We would like to make Theorem 3.1.3 explicit. More specifically, is it possible to

compute the minimal free resolution of R as a B-module simply with the knowledge

of all ∆m with H̃i(∆m) 6= 0, i ≥ −1? The answer is yes as we will see in Section

3.3. For now, we recall some homological notions which we will need. Let B be

a commutative ring. For now we assume we are working in M(B) and that our

complexes are in C (M(B)). The discussion of Section 2.2 ensures all results will

carry over toM0(B) and C (M0(B)).

For the remainder of this section, we let the complex

F : . . .
φn+1 // Fn

φn // . . . φ1 // F0
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be a free resolution of a B-module M , and we let the complex

G : . . .
ψn+1 // Gn

ψn // . . . ψ1 // G0

be a free resolution of a B-module N . We say that the diagram:

0 0 0 . . .

0 F0 ⊗B G0
oo

OO

F0 ⊗B G1

OO

oo F0 ⊗B G2

OO

oo . . .

OO

oo

0 F1 ⊗B G0
oo

OO

F1 ⊗B G1
oo

OO

F1 ⊗B G2

OO

oo . . .oo

OO

0 F2 ⊗B G0
oo

OO

F2 ⊗B G1
oo

OO

F2 ⊗B G2

OO

oooo . . .oo

OO

..

.
..
.

oo

OO

..

.
oo

OO

..

.
oo

OO

oo

is a double complex of F and G, which we denote by F ⊗B G. The vertical and

horizontal maps are given by φj ⊗ 1 : Fj ⊗B Gk → Fj−1 ⊗B Gk and (−1)j ⊗ ψk :

Fj ⊗B Gk → Fj ⊗B Gk−1 respectively.

Since each Fj and Gk is a flat B-module (free modules are flat), the rows and

columns of F⊗BG are all exact except at F0⊗BGk vertically and Fj⊗BG0 horizontally.

It is also evident that each square anti-commutes.

We can make F ⊗B G into a complex, called the total complex Tot(F ⊗B G),

as follows. Let Toti(F ⊗B G) = ⊕j+k=iFj ⊗B Gk. Then Toti(F ⊗B G) is a free B-

module whose summands correspond to diagonals of the above diagram. For example,

Tot1(F⊗BG) = F1⊗BG0⊕F0⊗BG1 and in general Toti(F⊗BG) has i+1 summands.

We then define Tot(F ⊗B G) to be given by the diagram:

. . . δi+1 // Toti(F ⊗B G)
δi // Toti−1(F ⊗B G)

δi−1 // . . . δ1 // Tot0(F ⊗B G) // 0 ,

where the differential δi : Toti(F ⊗B G) 7→ Toti−1(F ⊗B G) is defined in a natural way

using the double complex.
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We define δi by what it does to each xj,k ∈ Fj ⊗B Gk, such that j + k = i. Define

δi(xj,k) to map into Fj−1 ⊗B Gk, via the map xj,k 7→ (φj ⊗ 1)(xj,k), and also into

Fj ⊗B Gk−1, via the map xj,k 7→ ((−1)j ⊗B ψk))(xj,k). Letting x = xi,0 + · · ·+ x0,i ∈

Toti(F ⊗B G), and letting πk denote the projection of Toti(F ⊗B G) → Fj ⊗B Gk,

0 ≤ j, k ≤ i, such that j+k = i, we have that πkδi(x) = (φj+1⊗1)(xj+1,k)+ ((−1)j⊗

ψk+1)(xj,k+1). This can be represented by the diagram:

πkδi(x) = (φj+1 ⊗ 1)(xj+1,k) + ((−1)j ⊗ ψk+1)(xj,k+1) xj,k+1 ∈ Fj ⊗B Gk+1
(−1)j⊗ψk+1oo

xj+1,k ∈ Fj+1 ⊗B Gk.

φj+1⊗1

OO

That δi−1δi(x) = 0 for all x = xi,0 + · · · + xj,k + . . . x0,i,∈ Tot(F ⊗B G), xj,k ∈

Fj ⊗B Gk, j + k = i, follows from the fact that φj−1φj = 0, ψk−1ψk = 0, and that the

squares anti-commute. Thus, Tot(F ⊗B G) is a complex.

We have the following statment.

Theorem 3.2.1 (Exercise 1.12, p. 19 [26]). Let M and N be B-modules and let

F = {Fi, φi}i∈N and G = {Gi, ψi}i∈N be (augmented) free resolutions of M and N

respectively. The morphisms ν : Tot(F ⊗B G)→ F⊗B N , where νi sends Fi⊗B G0 to

Fi⊗N by 1⊗ψ0 and Fj⊗BGk → 0, k > 0, j+k = i, and η : Tot(F⊗B G)→ G⊗BM

(defined analogously to ν) induce isomorphisms on homology. Moreover, ην−1 induces

an explicit isomorphism H̃i(F ⊗B N) ∼= H̃i(M ⊗B G).

Proof. We prove that ν induces an isomorphism Hi(Tot(F ⊗B G)) ∼= Hi(F ⊗B N).

Transposing the argument shows that η induces the second isomorphism. That ην−1

induces the final explicit isomorphism is an immediate consequence of the construction

of η and ν.
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Since the map ψ0 is the natural surjection G0 → N , we augment the diagram

of F ⊗B G (constructed from the non-augmented resolutions F and G) using ψ0.

This means that we have the following diagram, where the rows are exact, where the

left-most squares commute, and all other squares anti-commute.

0 0 0

0 F0 ⊗B Noo_ _ _

OO�
�

�

F0 ⊗B G0

OO

1⊗ψ0oo_ _ _ F0 ⊗B G1
oo

OO

. . .oo

0 F1 ⊗B Noo_ _ _

φ1⊗1

OO�
�

�

F1 ⊗B G0
1⊗ψ0oo_ _ _

OO

. . .oo

OOOO

0 F2 ⊗B Noo_ _ _

φ2⊗1

OO�
�

�

.

..

1⊗ψ0oo_ _ _ _ _

OO

.

..
oo

OO

...

OO�
�

�

We check that ν is a morphism of complexes. Let x = xi,0+. . . x0,i ∈ Toti(F⊗BG).

Then (φi⊗1)◦νi(x) = (φi⊗1)◦(1⊗ψ0)(xi,0) = (1⊗ψ0)◦(φi⊗1)(xi,0) by commutativity

of the square. On the other hand, since ψ0ψ1 = 0, we have that νi−1 ◦ δi(x) =

(1⊗ψ0)((φi⊗1)(xi,0)+((−1)i−1⊗ψ1)(xi−1,1))) = (1⊗ψ0)◦(φi⊗1)(xi,0) = (φi⊗1)◦νi(x),

so that ν is a morphism of complexes.

We now claim that for each i ≥ 0, the induced map νi∗ : Hi(Tot(F ⊗ G)) →

Hi(F ⊗B N) is an isomorphism.

We prove that νi∗ is surjective, i.e. that every cycle of Fi ⊗B N is in the image

under νi of a cycle of Toti(F ⊗B G), by diagram chasing. Throughout a ← b means

that b maps to a.

Let xi,N ∈ Fi ⊗B N be a cycle. Surjectivity of νi, commutativity of the left-most

squares and exactness of the horizontal differentials implies that we have the following
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diagram:

0 (φi ⊗ 1)(bi,0)
1⊗ψ0oo b̃i−1,1 (for some b̃i−1,1 ∈ Fi−1 ⊗B G1)

(−1)i−1⊗ψ1oo

xi,N

φi⊗1

OO

bi,0
1⊗ψ0oo

φi⊗1

OO

from which it is clear that taking bi−1,1 = −b̃i−1,1 and b = bi,0 + bi−1,1 implies that

π0δi(b) = 0, i.e., that (φi⊗ 1)(bi,0) + ((−1)i−1⊗ψ1)(bi−1,1) = 0, and that νi(b) = xi,N ,

although δi(b) may still be non-zero. This problem can be solved recursively.

Suppose that b = bi,0 + · · ·+ bj,k ∈ Toti(F ⊗B G), that πlδi(b) = 0, 1 ≤ l ≤ k − 1,

and νi(b) = xi,N . Then (φj+1 ⊗ 1)(bj+1,k−1) + ((−1)j ⊗ ψk)(bj,k) = 0, so that 0 =

(φj⊗1)◦(φj+1⊗1)(bj+1,k−1)+(φj⊗1)◦((−1)j⊗ψk)(bj,k) = (φj⊗1)◦((−1)j⊗ψk)(bj,k).

Thus, we have the diagram:

0

(−1)j ⊗ ψk(bj,k)

φj⊗1

OO

bj,koo

which, combined with anti-commutivity of Tot(F ⊗B G) and exactness of the hori-

zontal differential, implies that we have the following diagram:

0 (φj ⊗ 1)(−bj,k)oo bj−1,k+1
(−1)j−1⊗ψk+1oo

−bj,k

φj⊗1

OO
.

Considering this diagram, we have that ((−1)j−1 ⊗ ψk+1)(bj−1,k+1) = (φj ⊗ 1)(−bj,k)

so that (φj ⊗ 1)(bj,k) + ((−1)j−1 ⊗ ψk+1)(bj−1,k+1) = 0. Hence, taking b = bi,0 +

· · ·+ bj−1,k+1, we have that πkδi(b) = 0. Thus, continuing this process recursively, we

obtain a cycle b = bi,0 + · · ·+ b0,i, mapping to xi,N so that νi∗ is surjective.
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For injectivity, we show that a cycle of Toti(F⊗B G) which maps to a boundary in

Fi⊗BN is a boundary in Toti(F⊗BG). For this, let b = bi,0+· · ·+b0,i ∈ Toti(F⊗BG)

be a cycle such that νi(b) = xi,N ∈ image(φi+1 ⊗ 1). We claim that b ∈ image(δi+1).

Commutativity of the left-most squares and the fact that xi,N ∈ image(φi+1 ⊗ 1)

yields the commutative diagram:

xi,N (φi+1 ⊗ 1)(yi+1,0)
1⊗ψ0oo

yi+1,N

φi+1⊗1

OO

yi+1,0
1⊗ψ0oo

φi+1⊗1

OO
.

On the other hand, the definition of νi implies that xi,N = (1 ⊗ ψ0)(bi,0), whereby

horizontal exactness yields the diagram:

0 bi,0 − (φi+1 ⊗ 1)(yi+1,0)
(−1)i⊗ψ0oo yi,1

(−1)i⊗ψ1oo

so that bi,0 = (φi⊗ 1)(yi+1,0)+ (−1)i⊗ψ1)(yi,1). Taking y = yi+1,0 + yi,1 we have that

bi,0 = π0δi+1(y).

Suppose now that y = yi+1,0 + · · · + yj+1,k + yj,k+1 ∈ Toti+1(F ⊗B G) and bj,l =

πlδi+1(y) for 0 ≤ l ≤ k and j = i− l. We construct yj−1,k+2 ∈ Fj−1⊗BGk+2 such that

bj−1,k+1 = πk+1δi+1(y) for y = yi+1,0 + · · ·+ yj,k+1 + yj−1,k+2 ∈ Toti+1(F ⊗B G).

The assumption that b is a cycle implies that πkδi(b) = 0. Thus, (φj ⊗ 1)(bj,k) +

((−1)j−1(bj−1,k+1) = 0. Setting a = (φj ⊗ 1)(bj,k) ∈ Fj−1 ⊗B Gk yields the diagram:

a −bj−1,k+1 .
(−1)j−1⊗ψk+1oo

bj,k

φj⊗1

OO
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The assumption that bj,k = πkδi+1(y) yields the anti-commuative diagram:

a (φj ⊗ 1)(yj,k+1)
(−1)j−1⊗ψk+1oo

bj,k − (φj+1 ⊗ 1)(yj+1,k)

φj⊗1

OO

yj,k+1 .
(−1)j⊗ψk+1oo

φj⊗1

OO

Combining the previous two diagrams, along with anti-commutativity of the sec-

ond, we obtain:

−((−1)j−1 ⊗ ψk+1) ◦ (φj ⊗ 1)(yj,k+1) = a = ((−1)j−1 ⊗ ψk+1)(−bj−1,k+1).

It follows that ((−1)j−1 ⊗ ψk+1)(bj−1,k+1 − (φj ⊗ 1)(yj,k+1)) = 0. Exactness of the

horizontal rows, implies that bj−1,k+1 − (φj ⊗ 1)(yj,k+1) = ((−1)j−1 ⊗ ψk+2)(yj−1,k+2)

for some yj−1,k+2 ∈ Fj−1 ⊗B Gk+2. Thus bj−1,k+1 = (φj ⊗ 1)(yj,k+1) + ((−1)j−1 ⊗

ψk+2)(yj−1,k+2) as desired. Setting y = yi+1,0 + · · ·+ yj−1,k+2 we have that bj−1,k+1 =

πkδi+1(y). Continuing this process recursively, we obtain y = yi+1,0+· · ·+y0,i+1 which

maps to b so that b is a boundary.

Thus νi∗ is injective. Hence, ν induces an isomorphism of homology.

Since TorBi (M,N) ∼= Hi(F⊗BN) and TorBi (N,M) ∼= Hi(G⊗BM) ∼= Hi(M⊗B G),

Theorem 3.2.1 has an immediate consequence.

Corollary 3.2.2. Let B be a commutative ring, and let M ,N be B-modules. Then

TorBi (M,N) ∼= TorBi (N,M).

3.3 The total tensor resolution

We now show how Theorem 3.1.3, Theorem 3.2.1 and Corollary 3.2.2 allow for the

computation of the minimal free resolution of R = K[S] from the correspondence of
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Theorem 3.1.3. Our account relates at least two accounts in the literature. More

specifically, [7] describes one approach to this problem and appears to be using the

double complex without exploiting Theorem 3.2.1. On the other hand, [26] does not

say how to construct a minimal free resolution of R as a B-module from Theorem

3.1.3. They do, however, present Corollary 3.2.2 as Exercise 1.12, p. 19.

We first describe the general situation and, in fact, we are being more general than

[7]. Let S be a pointed affine semigroup and let B = K[X0, . . . , Xn] be positively S-

graded in the sense of Theorem 2.2.1. Let M ∼= B/I be an S-graded B-module for

some ideal I of B and let F be a graded free resolution of M . As a consequence of

the previous section, we have the following description of the Betti numbers of M :

βi,m = dimK TorBi (K,M)m = dimK Hi(Tot(K(x)⊗BF))m = dimK TorBi (M,K)m, m ∈ S.

We have the following statement.

Theorem 3.3.1. Let B = K[X0, . . . , Xn] be positively S-graded as above. Let M be

a finitely generated S-graded B-module. Suppose that for each 0 ≤ i ≤ pdM and

m ∈ S we know a K-basis for TorBi (K,M)m (defined as (Hi(K(x) ⊗B M))m). Then

we can construct a minimal free resolution of M .

Before proceeding, we would like to explain the hypothesis. Although there are

many ways to compute TorBi (K,M), we are requiring that it be computed by applying

−⊗BM to K(x) and then taking homology. We are then requiring the knowledge of

a K-basis for (Hi(K(x) ⊗B M))m. For example, in the case where M = R = K[S],

by Theorem 3.1.3, this constitutes knowing H̃i−1(∆m), which, in Chapter 5, we use

[14] to show how this can be done for certain S. After giving the proof we do an

explicit example to show how this process can be worked out in practice. We also
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show how Theorem 3.3.1 can be used to compute the minimal free resolutions of

monomial ideals of B.

Proof of Theorem 3.3.1. Assume we have a minimal free resolution

0 Moo F0
φ0oo . . .φ1oo Fi−1

φi−1oo Fi
φioo Fi+1

oo · · · : Foo

ofM and that we explicitly know both a K-basis for F0, . . . Fi−1 and the map φj, j < i.

As a consequence of Theorem 3.2.1 and its proof we have an explicit isomorphism

between TorBi (K,M) (defined as the ith homology of K(x)⊗B M)) and TorBi (M,K)

(defined as the ith homology of K⊗B F), which we now exploit.

Since everything is graded, we may restrict to a multidegree m ∈ S. Thus, let

g1, . . . , gN be a K-basis of TorBi (K,M)m. As in the proof of Theorem 3.2.1, we may

lift g1, . . . , gN to a set of cycles g1, . . . , gN of (Toti(K(x) ⊗B F))m which represent

a K-basis of (Hi(Tot(K(x) ⊗B F))m. Then for each h, 1 ≤ h ≤ N , we have gh =

ghi,0 + · · ·+ ghj,k + · · ·+ gh0,i, for some ghj,k ∈ Kj ⊗B Fk, such that j + k = i.

As in the proof of Theorem 3.2.1, each gh0,i ∈ (K0⊗BFi)m ∼= (Fi)m projects to gh0,i ∈

TorBi (M,K)m. Thus, the collection {g1
0,i, . . . , g

N
0,i} project to a K-basis {g1

0,i, . . . , g
N
0,i}

of TorBi (M,K)m. In K ⊗B F the maps are zero, so the ith homology of K ⊗B F

is Fi/mFi. Thus, the collection {g1
0,i, . . . , g

N
0,i} form a K-basis for (Fi/mFi)m; by

(graded) Nakayama’s Lemma, the collection {g1
0,i, . . . , g

N
0,i} form the degree m part of

a homogeneous B-basis for Fi.

In the construction of each gh0,i, we map gh1,i−1 to xh0,i−1 ∈ K0 ⊗B Fi−1
∼= Fi−1 and

then lift to gh0,i ∈ Fi (up to sign):

0 xh0,i−1
oo gh0,ioo

gh1,i−1

OO
.
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By the way a minimal free resolution of M is constructed, the collection {xh0,i−1}
N
h=1

form the degree m part of a minimal homogeneous B-generating set for ker(φi−1).

Thus, assuming we know the collection {xh0,i−1}
N
h=1 (one for each gh) for all m ∈ S

with ToriB(K,M)m 6= 0 explicitly, we can redefine Fi by labeling a basis element, eh

of the appropriate degree for each xh and map the corresponding element of Fi to xh,

eh 7→ xh. This makes the map φi explicit. Continuing this process recursively, we

obtain an explicit description of F .

To see that it is possible to know the collection {xh0,i−1}
N
h=1 explicitly, we first note

that the K-vector spaces (Kj ⊗B Fk−1)m and (Kj ⊗B Fk)m are finite dimensional. We

then note that since we are constructing a basis for Fi and defining the map φi degree

by degree, constructing the diagram:

0 xhj,k−1
oo ghj,koo

ghj+1,k−1

OO
,

is a linear algebra problem. Thus, recursively, we can explicitly compute each xh0,i−1

and gh0,i.

Definition 3.3.2. We call the resolution described in Theorem 3.3.1 as the total

tensor resolution of M .

Remark 3.3.3. The advantage to the total tensor resolution is that it always pro-

duces minimal free resolutions. This is not true for other combinatorial algorithms;

see [26], for example, for a survey of several combinatorial methods for producing (gen-

erally non-minimal) free resolutions of monomial ideals and affine semigroup rings.
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3.4 Minimal free resolutions of affine semigroup

rings

Example 3.4.1. Suppose Λ = {(4, 0), (3, 1), (1, 3), (0, 4)}minimally generates S. We

now show how to construct the minimal free resolution of R = K[S].

The diagram that we are dealing with is the following:

0 0 0 0

0 K ⊗B F0
oo_ _ _ _ _

OO�
�

�

K ⊗B F1

OO�
�

�

oo_ _ _ K ⊗B F2

OO�
�

�

oo_ _ _ K ⊗B F3

OO�
�

�

oo_ _ _ . . .oo_ _ _

0 K0 ⊗B Roo_ _ _

OO�
�

�

K0 ⊗B F0

OO�
�

�

oo_ _ _ K0 ⊗B F1

OO�
�

�

oo K0 ⊗B F2

OO�
�

�

oo K0 ⊗B F3

OO�
�

�

oo . . .oo

0 K1 ⊗B Roo_ _ _

OO�
�

�

K1 ⊗B F0
oo_ _ _

OO

K1 ⊗B F1
oo

OO

K1 ⊗B F2
oo

OO

. . .oo

OO

0 K2 ⊗B Roo_ _ _

OO�
�

�

K2 ⊗B F0
oo_ _ _

OO

K2 ⊗B F1
oo

OO

. . .oo

OO

0 K3 ⊗B Roo_ _ _

OO�
�

�

K3 ⊗B F0
oo_ _ _

OO

. . .oo

OO

where the dashed arrows denote the augmentation of the double complex K(x)⊗B F .

For each m ∈ S we also have canonical isomorphism C̃.(∆m)[−1] ∼= (K(x) ⊗B R)m

(this is proved in the proof of Theorem 3.1.3). We also have K0 ⊗B Fj ∼= Fj .

In Chapter 5 we give a systematic approach for finding all m ∈ S with H̃i(∆m) 6= 0

for some i (with our current assumptions on S). For now, we assume that this has

been accomplished. The calculation is summarized in Table 3.1. (In this example we

are labeling the elements of Λ from 1 through 4, and B = K[X1, . . . , X4].)

We already know what the map φ0 : B → R is. Considering m = (4, 4), a cycle (of

C̃0(∆m)) which is not a boundary is e{2}−e{1} and corresponds to e2⊗Ta3−e1⊗Ta4 ∈
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m ∆m i βi,m
(3,9) {{3}, {2, 4}} 1 1
(4,4) {{1, 4}, {2, 3}} 1 1
(6,6) {{1, 3}, {2, 4}} 1 1
(9,3) {{2}, {1, 3}} 1 1
(6,10) {{2,3},{2,4},{1,3,4}} 2 1
(7,9) {{1,3},{1,2,4},{2,3,4}} 2 1
(9,7) {{2,4},{1,2,3},{1,3,4}} 2 1
(10,6) {{1,3},{2,3},{1,2,4}} 2 1
(10,10) {{2, 3, 4}, {1, 2, 4}, {1, 2, 3}, {1, 3, 4}} 3 1

Table 3.1: The multidegrees of syzygies for Λ = {(4, 0), (3, 1), (1, 3), (0, 4)}

0 1̄(4,4)
oo

0 X2X3 −X1X4

OO

oooo 1(4,4)oo

OO

0 e2 ⊗Ta3 − e1 ⊗Ta4

OO

oo e2 ⊗X3 − e1 ⊗X4
oo

OO

Figure 3.1: Constructing a 1-syzygy

(K1 ⊗B R)(4,4).

Restricting the above diagram to degree (4, 4), yields the situation described in

Figure 3.1. Thus, we set g1
0,1 = 1(4,4). Then B · 1(4,4) is a summand of K0 ⊗B F1

∼= F1

and we define a map B · 1(4,4) → K0 ⊗B F0
∼= F0 by sending 1(4,4) 7→ X2X3 − X1X4

so that X2X3−X1X4 is a minimal 1-syzygy of R in multidegree (4, 4), (or a minimal

0-syzygy of p).

In a similar manner, lifting the cycles e{2} − e{1}, e{1} − e{2} and e{3} − e{2}, (of

C̃0(∆m)) corresponding to m = (9, 3), (6, 6) and (3, 9) produces minimal 1-syzygies

X3
2 −X

2
1X3, X2X3−X1X4 and X3

3 −X2X
2
4 respectively so that we can respresent φ1
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by the matrix

(
X2X3 −X1X4 X3

2 −X
2
1X3 X1X

2
3 −X

2
2X4 X3

3 −X2X
2
4

)
.

We will explicitly construct φ3 momentarily. Before doing so, we should note

that we can construct φ2 by lifting the cycles e{1,3} − e{2,3} − e{1,2}, −e{2,4} + e{2,3} +

e{3,4}, e{1,3} − e{2,3} − e{1,2}, e{1,3} − e{2,3} − e{1,2}, e{2,3} + e{3,4} − e{2,4} (of C̃1(∆m))

corresponding to m = (10, 6), (9, 7), (7, 9), (6, 10) respectively, and we represent φ2 by

the matrix: 


−X2
2 −X1X3 −X2X4 −X

2
3

X3 X4 0 0

X1 X2 −X3 −X4

0 0 X1 X2




,

where the rows correspond to degrees (4, 4), (9, 3), (6, 6) and (3, 9) respectively.

To get a sense for how things work for higher syzygies, we show how to construct

φ3. For m = (10, 10) a cycle (of C̃2(∆m)) is e{2,3,4} − e{1,3,4} + e{1,2,4} − e{1,2,3} which

corresponds to e2 ∧ e3 ∧ e4 ⊗ T(6,2) − e1 ∧ e3 ∧ e4 ⊗ T(5,3) + e1 ∧ e2 ∧ e4 ⊗ T(3,5) −

e1 ∧ e2 ∧ e3⊗T(2,6) ∈ (K3⊗B R)(10,10). We now have the diagram given in Figure 3.2.

Thus, using our previous ordering with respect to the basis, we can represent φ′
3 by

the matrix: 


−X4

X3

X2

−X1




.

Using these matrices, we can check, using [20] for example, that we have obtained

maps in the minimal free resolution of R.
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0 1̄(10,10)
oo

0 X31(9,7)

OO

oo 1(10,10)

OO

oo

−X41(10,6)

+X21(7,9)

−X11(6,10)

0 e1 ⊗ (−X41(6,6) −X2
31(4,4) +X21(3,9))oo −e1 ⊗ 1(6,10)

(sign

change)

oo

OO

+e2 ⊗ (X2X41(4,4) +X31(6,6) −X11(3,9)) +e2 ⊗ 1(7,9)

+e3 ⊗ (−X41(9,3) −X21(6,6) +X1X31(4,4)) +e3 ⊗ 1(9,7)

+e4 ⊗ (x31(9,3) −X2
21(4,4) +X11(6,6)) −e4 ⊗ 1(10,6)

0 e1 ∧ e2 ⊗ (X2X2
4 −X3

3 )oo

OO

−e1 ∧ e2 ⊗ 1(3,9)
(no sign change)oo

OO

e1 ∧ e3 ⊗ (−X1X3X4 +X2X2
3 ) e1 ∧ e3 ⊗X31(4,4)

e1 ∧ e4 ⊗ (X1X2
3 −X2

2X4) e1 ∧ e4 ⊗ 1(6,6)

e2 ∧ e3 ⊗ (X2
2X4 −X1X2

3 ) −e2 ∧ e3 ⊗ 1(6,6)

e2 ∧ e4 ⊗ (−X2
2X3 +X1X2X4) −e2 ∧ e4 ⊗X21(4,4)

e3 ∧ e4 ⊗ (X3
2 −X2

1X3) e3 ∧ e4 ⊗ 1(9,3)

0 e2 ∧ e3 ∧ e4 ⊗ T
(6,2)oo

OO

e2 ∧ e3 ∧ e4 ⊗X2
2

OO

oo

−e1 ∧ e3 ∧ e4 ⊗ T
(5,3) −e1 ∧ e3 ∧ e4 ⊗X1X3

+e1 ∧ e2 ∧ e4 ⊗ T
(3,5) +e1 ∧ e2 ∧ e4 ⊗X2X4

−e1 ∧ e2 ∧ e3 ⊗ T
(2,6) −e1 ∧ e2 ∧ e3 ⊗X2

3

Figure 3.2: Constructing a 3-syzygy of R = K[S].
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3.5 Minimal free resolutions of monomial ideals

In order to justify the generality in which we stated Theorem 3.3.1, we provide an-

other concrete situation in which the total tensor resolution can be used to com-

pute the minimal free resolution of a graded B-module. For this, we use the total

tensor resolution to compute the minimal free resolution of a monomial ideal I of

B = K[X0, . . . , Xn] with respect to the standard N
n+1-grading. See [26] for several

approaches to compute free (generally non-minimal) resolutions of monomial ideals.

We first use [12, Proposition 1.1] to derive [26, Theorem 1.34]. Moreover, neither [12]

nor [26] say how to use these statements to compute the minimal free resolution of I

as a B-module.

We let S = N
n+1 and we let ai denote the ith standard basis vector of N

n+1 so

that Λ = {a0, . . . , an}. We define momentarily the simplicial complex Γm of [12,

Proposition 1.1]. In fact, it is the same simplicial complex Km(I), m ∈ N
n+1 of [26,

Definition 1.33, p. 16]. The simplicial complex ∆m is the usual definition that we

have been using although, since S = N
n+1, ∆m will be the simplex on the support,

supp(m) = {i ∈ {0, . . . , n} | mi 6= 0}, of m = (m0, . . . , mn) ∈ S. More explicitly, the

unique monomial Xm = Xm0
0 . . .Xmn

n of degree m = (m0, . . . , mn) ∈ S will have ∆m

defined by as the simplex {supp(m)} and will be acyclic.

Let m ∈ S. The simplicial complex Γm is defined by:

Γm = {σ ⊆ {0, . . . , n} | Xm−
P

i∈σ ai ∈ I}.

It is clear that Γm is a simplicial subcomplex of ∆m. Note also that if Xm 6∈ I, then

Γm = {}. By [12, Proposition 1.1], (K(x)⊗B B/I)m ∼= C̃.(∆m,Γm)[−1] which implies

that TorBi (K, B/I)m ∼= H̃i−1(∆m,Γm), i ≥ 0. More explicitly, if σ = {k1, . . . , ki} ⊆
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{0, . . . , n}, σ ∈ ∆m, σ 6∈ Γm, then for all i ≥ 0, the isomorphism C̃.(∆m,Γm)[−1] ∼=

(K(x) ⊗B B/I)m is given by C̃i−1(∆m,Γm) → (Ki ⊗B B/I)m, eσ 7→ ek1 ∧ · · · ∧ eki ⊗

X
m−

P

j∈σ aj , k1 < · · · < ki. (The proof of this correspondence is similar to Theorem

3.1.3 and is omitted.)

The short exact sequence

0 // C̃.(Γm) // C̃.(∆m) // C̃.(∆m,Γm) // 0

gives rise to the long exact sequence in homology:

. . . // H̃i(Γm) // H̃i(∆m) // H̃i(∆m,Γm)
δi // H̃i−1(Γm) // . . . .

Since ∆m is acyclic, we have an explicit isomorphism δi : H̃i(∆m,Γm) → H̃i−1(Γm)

for all i ≥ 0, m 6= 0. (The map δi is the connecting homomorphism.)

Let βi,m = TorBi (K, I)m. Then the above observations, combined with the rela-

tion TorBi (K, B/I)m ∼= TorBi−1(K, I)m, i ≥ 1, allow us to derive the relation βi,m =

dimK H̃i−1(Γm) which is [26, Theorem 1.34, p. 16].

If Xm is not the least common multiple of some subset of the minimal mono-

mial generators of I then Γm is the cone over some subcomplex (and hence aycylic)

([26, Exercise 1.2, p. 18]). Thus, we have a finite set containing all m ∈ S with

H̃i(∆m,Γm) 6= 0 and we can compute a K-basis for H̃i(∆m,Γm) by way of the inverse

image of δi of a K-basis for H̃i−1(Γm). Thus, we can use Theorem 3.3.1 to construct

the minimal free resolution of B/I.

Example 3.5.1. We now let B = K[x, y, z] and we let I = (x2, xy, xz, y2, yz, z2).

The complexes Γm with nontrivial homology are summarized in Table 3.2.

We know the map φ0 : F0 = B → B/I and, after labeling a basis for F1 by

e11, . . . , e
6
1 and defining φ1 by e11 7→ x2, . . . , e61 7→ z2, we know F1 and φ1. We consider
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m Γm i βi,m
(0, 0, 2) {∅} -1 1
(0, 1, 1) {∅} -1 1
(0, 2, 0) {∅} -1 1
(1, 0, 1) {∅} -1 1
(1, 1, 0) {∅} -1 1
(2, 0, 0) {∅} -1 1
(0,1,2) {{2}, {3}} 0 1
(0,2,1) {{2}, {3}} 0 1
(1,0,2) {{1}, {3}} 0 1
(1,1,1) {{1}, {2}, {3}} 0 2
(1,2,0) {{1}, {2}} 0 1
(2,0,1) {{1}, {3}} 0 1
(2,1,0) {{1}, {2}} 0 1
(1,1,2) {{1, 2}, {1, 3}, {2, 3}} 1 1
(1,2,1) {{1, 2}, {1, 3}, {2, 3}} 1 1
(2,1,1) {{1, 2}, {1, 3}, {2, 3}} 1 1

Table 3.2: The simplicial complex Γm for Example 3.5.1

m = (1, 1, 1) and show how to construct the degree m part of a homogeneous basis

for F2 and the corresponding part of φ2.

We first recall how to lift a K-basis of H̃t(Γm) to a K-basis of H̃t+1(∆m,Γm) by

way of the inverse image of the connecting morphism. For this, we treat a cycle z of

C̃t(Γ) as a cycle in C̃t(∆m) by inclusion. We then lift z to an element z′ of C̃t+1(∆m),

and then we project z′ to obtain the desired cycle, z′ in C̃t+1(∆m,Γm).

A K-basis for H̃0(Γ(1,1,1)) can be identified with the set of cycles {−e{1}+e{2},−e{1}+

e{3}} ⊂ C̃0(Γ(1,1,1)). Using the above description, we obtain cycles {e{1,2}, e{1,3}}, of

C̃1(∆(1,1,1),Γ(1,1,1)), which correspond to a K-basis of H̃0(∆(1,1,1),Γ(1,1,1)). As before,

we then lift to form the degree (1, 1, 1) part of a homogeneous basis for F2, while in

the process defining part of φ2. This procedure is summarized in Figure 3.3, where

we produced two basis elements, e12 and e22 of F2 and they map under φ2 to ye31− xe
5
1
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0 {e12, e
2
2}

oo

0 {ye31 − xe
5
1, ze

2
1 − xe

5
1}

oo

OO

{e12, e
2
2}

oo

OO

0 {xze2 − zye1, xye3 − yze1}oo

OO

{e31e2 − e
5
1e1, e

2
1e3 − e

5
1e1}

oo

OO

{e{1,2}, e{1,3}}

OO

{ze1 ∧ e2, ye1 ∧ e3}oo

OO

Figure 3.3: Forming part of a minimal free resolution for B/I.

and ze21 − xe
5
1 respectively.



Chapter 4

Affine semigroups and monomial

curves

In this chapter we study the class of affine semigroups for which R = K[S] ∼= B/p

is the homogeneous coordinate ring of a projective monomial curve. We explore the

interplay between properties of S, R and the minimal ideal generators of p.

4.1 The construction

In what follows we use the methods and terminology of [30], [28] and [29] to study

R. We describe these now. Let S = {m1, . . . , mn = d} be a sequence of integers

such that 0 < m1 < · · · < mn, and gcd({mi}) = 1. To S we associate a pointed

affine semigroup S ⊆ N
2 with minimal generating set {(d, 0), (d−m1, m1), . . . , (d −

mn−1, mn−1), (0, d)}. To S we associate the semigroup ring R = K[S], for some

field K. For ease of notation, we label the n + 1 generators of S by setting a0 =

(d, 0), ai = (d − mi, mi), 1 ≤ i ≤ n, so that an = (0, d). This leads to the natural

48
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identification R ∼= K[Ta0 , . . . ,Tan], where Tb = sb1tb2 , for some b = (b1, b2) ∈ S. As

in [29, Definition 2.2, p. 174] we define the dual of S to be Ŝ = {d−mn−1, . . . , d−

m1, d}. Let Γ be the numerical semigroup generated by S and let Γ̂ be the numerical

semigroup generated by Ŝ . Then Γ is the projection of S onto the second coordinate

and Γ̂ is the projection of S onto the first coordinate. Moreover, there is no loss in

generality in assuming that gcd({mi}) = 1 since otherwise we can divide all elements

by their greatest common divisor and obtain an isomorphic semigroup. We denote

by G(S) the quotient group of S, which is equal to {(x, y) ∈ Z
2 | x + y ≡ 0 modd}

and has rank two. We also have SS
∼= S

Ŝ
(by interchanging coordinates) and thus

K[SS ] ∼= K[S
Ŝ

].

4.1.1 Gradings on the semigroup ring, and Hilbert functions

We consider two gradings on R. The first is the tautological S-grading, setting

deg(Tai) = ai. The second is a standard N-grading, defined by setting deg(sxty) =

(x+ y)/d. The N-grading also allows us to view G(S) and S as being N-graded. This

is done by setting deg((x, y)) = (x+ y)/d for all (x, y) ∈ G(S), so that the ith graded

piece of S is the set Si = {(x, y) ∈ S | deg(x, y) = i}.

We now briefly recall some facts about Hilbert functions of N-graded K-algebras.

Let A = ⊕i≥0Ai be an N-graded K-algebra such that A is finitely generated as an A0 =

K-algebra. Define HA(i) = dimK Ai to be the Hilbert function of A. The difference

sequence ∆HA is defined to be ∆HA(i) = HA(i) − HA(i − 1), i ≥ 1,∆HA(0) = 1.

Recall that if x ∈ A1 is a non-zero divisor of A then ∆HA(i) = HA/xA(i).
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4.1.2 The K-algebras gr(S ), gr(Ŝ )

We now describe the K-algebras gr(S ) and gr(Ŝ ). The K-algebra gr(S ) appears

in [30]; the dual, gr(Ŝ ), appears in [29]. We do the construction for gr(S ). The

K-algebra gr(Ŝ ) is constructed by transposition.

Let Θi be the set of all sums (repetitions allowed) of i elements of S , and let

Mi = Θi\ ∪j<i Θj. If n ∈ Γ, define ordS (n) to be the unique integer i such that

n ∈ Mi. We define an S -expression of n to be a way of writing n as the sum of

elements of S . It follows that ordS (n) is the smallest cardinality of an S -expression

of n.

Let gr(S )i denote the K-vector space with basis {tn | n ∈Mi} and let gr(S ) =

⊕i≥0 gr(S )i. Defining multiplication as:

ta · tb =

{
ta+b if ordS (a+ b) = ordS (a) + ordS (b)

0 otherwise

makes gr(S ) into a ring.

When the set S is understood, we sometimes drop the subscript and simply write

ord(n). Setting deg(tx) = ord(x) makes gr(S ) standard graded (i.e., N-graded and

generated in degree 1) and, by construction, Hgr(S )(i) = |Mi|. In what follows we let

td denote the map gr(S )i → gr(S )i+1 given by tx 7→ txtd. We also let sd denote the

obvious transposition to Ŝ . The following was shown in [30].

Proposition 4.1.1 (Theorem 3 a), p. 305, [30]). If i is sufficiently large then

Hgr(S )(i) = |Mi| = d and the map td : gr(S )i → gr(S )i+1 is an isomorphism.

We also have an isomorphism gr(S ) ∼= R/(sd)R, as graded rings. More explicitly,

if ordS (x) = n then the class of snd−xtx in R/(sd)R corresponds to tx ∈ gr(S ).
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In fact, for all j ≥ 0 there exists a natural identification of a K-basis of gr(S )j

with the elements Aj = {x ∈ Sj | x − (d, 0) 6∈ S}, of Sj, corresponding to a K-

basis for (R/(sd)R)j . Explicitly, fix j ≥ 0 and let n ∈ Mj. Then ordS (n) = j,

and n is the sum of the second coordinates of j minimal generators of S. Hence,

x = (jd − n, n) ∈ Sj, and we claim that x ∈ Aj . Suppose not. Then x − (d, 0) ∈ S

so that x − (d, 0) = ((d − 1)j − n, n) ∈ Sj−1, which implies that n is the sum of

the second coordinates of j − 1 generators of S. In particular ordS (n) 6= j so that

n 6∈Mj. This a contradiction. Conversely, let x = (m,n) ∈ Aj. Then (m+ n)/d = j

so that m = jd−n. If ord(n) < j then there exists an S -expression for n containing

less than j elements of S which implies that (kd − n, n) ∈ S for some k < j so

(kd − n, n) + (j − k)(d, 0) = (m,n) = x. Thus, if k < j then x − (d, 0) ∈ S, a

contradiction. We have shown that the correspondence snd−xtx 7→ tx is bijective.

We omit the verification that this is a (degree preserving) ring homorphism. In a

similar way gr(Ŝ ) ∼= R/(td)R and we identify a K-basis of gr(Ŝ )j with the elements

Cj = {x ∈ Sj | x− (0, d) 6∈ S}, for all j ≥ 0, of Sj. Note that Aj ∩Cj 6= ∅, in general.

Since R is an integral domain, td is a non-zero divisor in R. Moreover, td ∈ R1 so

that Hgr(S )(i) is the (first) difference sequence of HR(i). In particular, Hgr(S )(i) =

∆HR(i) = HR(i) −HR(i− 1). A simple argument by induction shows that HR(i) =

∑i
j=0Hgr(S )(j) =

∑i
j=0 |Mj|.

The following was shown in [28].

Lemma 4.1.2 (Lemma 1.4. p. 277,[28]). If td : gr(S )i → gr(S )i+1 is onto (equiva-

lently every element of Mi+1 is the sum of d and an element of Mi) and |Mi+1| = d

then td : gr(S )j → gr(S )j+1 is an isomorphism for all j ≥ i+1. Equivalently adding

d gives a bijection from Mj to Mj+1 for all j ≥ i+ 1.
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Proposition 4.1.1 shows that the hypothesis of Lemma 4.1.2 are satisfied for some

i ≫ 0. It is also easy to compute the smallest i satisfying the hypothesis of Lemma

4.1.2. Once i has been determined it is easy to compute HR. Indeed, we have that

Hgr(S )(j + 1) = Hgr(S )(j) = d for all j ≥ i+ 1. In terms of R, there exists an i such

that HR(j+1) = HR(j)+ d for all j ≥ i. Thus, computing |Mj|, 0 ≤ j ≤ i, produces

the desired result.

The above discussion also carries over for the dual gr(Ŝ ) although it is not clear,

a priori, that the map sd : gr(Ŝ )i → gr(Ŝ )i+1 becomes onto at the same time as

td : gr(S )i → gr(S )i+1. It is not true, in general, that if td : gr(S )i → gr(S )i+1 is

onto then Mi+1 = d. This will become apparent in examples.

We now illustrate the above discussion with some examples.

Example 4.1.3. Let S = {1, 3, 4}. Then S is minimally generated by

Λ = {{4, 0}, {3, 1}, {1, 3}, {0, 4}}.

We summarize the sets Mi and the Hilbert function Hgr(S )(i), 0 ≤ i ≤ 3 in Table

4.1. To illustrate multiplication in gr(S ) we have that t1t3 = 0 since ordS (1 + 3) =

ordS (4) = 1 whereas ordS (1) + ordS (3) = 2. On the other hand, t1t4 = t5 since

ordS (4 + 1) = ordS (5) = 2, which equals ordS (1) + ordS (4).

It is clear that adding M3
+4 // M4 is a bijection. Hence, we also have that the

Hilbert function of gr(S ) is given by {1, 3, 5, 4 →}. This implies that the Hilbert

function of R = K[s4, s3t, st3, t4] is given by {1, 4, 9, 13, 17, 21, . . .}.

Example 4.1.4. It is possible for the Hilbert function of gr(S ) to become constant,

i.e., Hgr(S )(j) = Hgr(S )(k) for all k ≥ j, before the map becomes onto. For example,

let S = {5, 9, 11, 20}. The sets Mi and the Hilbert function Hgr(S )(i), for 0 ≤ i ≤ 6,

are summarized in Table 4.2.
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i Mi Hgr(S )(i)
0 {0} 1
1 {1, 3, 4} 3
2 {2, 5, 6, 7, 8} 5
3 {9, 10, 11, 12} 4
4 {13, 14, 15, 16} 4

Table 4.1: The data associated to Example 4.1.3

i Mi Hgr(S )(i)
0 {0} 1
1 {5, 9, 11, 20} 4
2 {10, 14, 16, 18, 22, 25, 29, 31, 40} 9
3 {15, 19, 21, 23, 27, 30, 33, 34, 36, 38, 42, 45, 49, 51, 60} 15
4 {24, 26, 28, 32, 35, 39, 41, 43, 44, 47, 50, 53, 54, 56, 58, 62, 65, 69, 71, 80} 20
5 {37, 46, 48, 52, 55, 59, 61, 63, 64, 67, 70, 73, 74, 76, 78, 82, 85, 89, 91, 100} 20
6 {57, 66, 68, 72, 75, 79, 81, 83, 84, 87, 90, 93, 94, 96, 98, 102, 105, 109, 111, 120} 20

Table 4.2: The data associated to Example 4.1.4

Hence, the Hilbert function of gr(S ) is {1, 4, 9, 15, 20, 20, 20 →}. We have that

37 − 20 = 17 6∈ M4, so adding 20 does not give a surjection M4 → M5. We do

however obtain the desired bijection gr(S )i → gr(S )i+1 when i = 5.

4.1.3 Unstable elements and the basis

In [28] elements x ∈ Γ were defined to be unstable if there exists a ∈ N such that

ordS (ad + x) < a + ordS (x). If no such a exists then x is said to be stable. This

definition is equivalent to saying that x is unstable if and only if tx is killed in gr(S )

by some power of td. In the same way, we refer to elements of Γ̂ as being stable or

unstable. Proposition 4.1.1 and Lemma 4.1.2 imply that there exists an i ≫ 0 such

that td : gr(S )j → gr(S )j+1 is injective for all j ≥ i. This implies that there are only

finitely many unstable elements. Since the property of being unstable depends on S



CHAPTER 4. AFFINE SEMIGROUPS AND MONOMIAL CURVES 54

and Ŝ and not Γ nor Γ̂, we sometimes say x is an unstable element of S , Ŝ or even

gr(S ) or gr(Ŝ ). The existence of unstable elements is equivalent to R not being

Cohen-Macaulay. Indeed, we will show momentarily that sd, td is a homogeneous

system of parameters for R. Moreover, R is Cohen-Macaulay if and only if every

(and equivalently one) system of parameters is regular (see [31, Theorem 5.9, p. 41]

for example) and there exists unstable elements of Γ if and only if td is a zero divisor

in gr(S ). Also, S and Ŝ need not have the same number of unstable elements as

we will see in Example 4.1.6.

Example 4.1.5. Let x, y ∈ Γ. Suppose that y ≡ xmod d with y > x. Then y = x+qd

for some q ≥ 1. Suppose ord(y) ≤ ord(x) + q − 1. Then x is unstable. Indeed, by

assumption, ord(y) = ord(x+ qd) < ord(x) + ord(qd) = ord(x) + q so that txtqd = 0.

In [19] the semigroup S ′ was defined to be {x ∈ G(S) | x + a(d, 0) ∈ S and

x + b(0, d) ∈ S for some a, b ≥ 0}. In [29] it was shown that the second coordinates

of elements of S ′\S are the unstable elements of Γ and the first coordinates are the

unstable elements of Γ̂. It follows, from previous discussion, thatR is Cohen-Macaulay

if and only if S = S ′.

In [29], the set S̃ = {x ∈ G(S) | x+(d, 0) ∈ S and x+(0, d) ∈ S} was defined and

it was shown that S̃ is not a semigroup, in general. We do however have the relations

S ⊆ S̃ ⊆ S ′ ⊆ G(S) ∩ N
2, as sets, and that the maximum N-degree of an element of

S ′\S is equal to the maximum degree of an element of S̃\S.

The elements of Aj with second coordinate an unstable element of S are of the

form x = (d, 0)+s for some s ∈ S ′\S such that deg(s)+1 = j. Similarly, the elements

of Cj with second coordinate an unstable element of Ŝ are of the form x = (0, d)+ s,

s ∈ S ′\S such that deg(s) + 1 = j.
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Consider the set B = {x ∈ S | x− (d, 0) 6∈ S and x− (0, d) 6∈ S} ⊆ S. The set B

was used in accounts such as [29] and [24] to study S and R. At the K-algebra level, B

can be identified with the exponent vectors of the monomials of R/(td, sd)R. We call B

the basis of S over the set {(d, 0), (0, d)}, suggestive by the fact that the obvious lifting

of the monomials in R/(td, sd)R is a finite minimal generating set of R as a module

over K[sd, td]. This is shown in [24, Lemma 3.1.1, p. 30] and an alternative argument

follows from Corollary 4.2.2. It follows that the set B is finite. In the literature, see

[14] for example, B is sometimes called the Apery set relative to {(d, 0), (0, d)}. In

[24] an algorithm to compute B is given and we present an alternative method in

Proposition 4.2.4. In what follows we let Bi be the set of elements of B which have

degree i. It follows that Bi = Ai ∩ Ci ⊆ B.

Example 4.1.6. We now do a detailed example intended to illustrated the notions

introduced thus far. Let S = {1, 7, 9}, so that Ŝ = {2, 8, 9}. We summarize the sets

Mi and M̂i in Table 4.3. The underlined numbers represent the unstable elements of

S and Ŝ .

i Mi M̂i

0 0 0
1 {1,7,9} {2, 8, 9}
2 {2, 8, 10, 14, 16, 18} {4, 10, 11, 16, 17, 18}
3 {3, 11, 15, 17, 19, 21, 23, 25, 27} {6, 12, 13, 19, 20, 24, 25, 26, 27}
4 {4, 12, 20, 22, 24, 26, 28, 30, 32, 34, 36} {14, 15, 21, 22, 28, 29, 32, 33, 34, 35, 36}
5 {5, 13, 29, 31, 33, 35, 37, 39, 41, 43, 45} {23, 30, 31, 37, 38, 40, 41, 42, 43, 44, 45}
6 {6, 38, 40, 42, 44, 46, 48, 50, 52, 54} {39, 46, 47, 48, 49, 50, 51, 52, 53, 54}
7 {47, 49, 51, 53, 55, 57, 59, 61, 63} {55, 56, 57, 58, 59, 60, 61, 62, 63}

Table 4.3: The data associated to Example 4.1.6.

We have that S is minimally generated by Λ = {{9, 0}, {8, 1}, {2, 7}, {0, 9}}. The
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basis B is given by:

B = {{0, 0}, {2, 7}, {4, 14}, {6, 21}, {8, 1}, {10, 8}, {12, 15},

{14, 22}, {16, 2}, {24, 3}, {32, 4}, {40, 5}, {48, 6}}.

The elements of S̃\S are:

{{15, 12}, {23, 13}, {31, 5}, {39, 6}}.

Figure 4.1 shows how everything corresponds to S graphically in the plane. We have

scaled everything so that the vertical and horizontal axes indicate the N-graded degree

of S. The large solid dots correspond to the elements of the basis. The open circles

are the elements of Aj which are not elements of Cj. The open circles with × in the

middle are the elements of Cj which are not elements of Aj. The small black dots

are the remaining elements of S. The elements of S̃\S are represented by solid black

squares.

4.2 Stabilization of projective monomial curves

We would like a systematic way to organize the class of affine semigroups constructed

in Section 4.1. For this, let Cd denote the set of affine semigroups contained in

N
2
d := {(x, y) ∈ N

2 | x+ y ≡ 0 mod d} with minimal generating set ΛS = {(d, 0), (d−

m1, m1), . . . , (d − m2, m2), (0, d)} constructed from a set S = {m1, . . . , mn = d}

of nonnegative integers such that 0 < m1 < · · · < mn and gcd({mi}) = 1. Let

C ′ = ∪d∈N>0Cd.

We now make some observations regarding B, gr(S ), gr(Ŝ ), S̃\S and the unstable

elements of S and Ŝ . We will use these observations to partition the elements of C
′
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Figure 4.1: S = {1, 7, 9} in the plane

into three classes and relate the theory of this chapter with that of Chapter 3. We

first relate the basis B to gr(S ) and gr(Ŝ ).

Theorem 4.2.1. Let S , Ŝ , S and other notation be as above. The following are

equivalent:

1. The map td : gr(S )i → gr(S )i+1 is onto.

2. The map sd : gr(Ŝ )i → gr(Ŝ )i+1 is onto.

3. The basis, B, contains no elements in degree i+ 1.

4. Si+1 = (Si + (d, 0)) ∪ (Si + (0, d)).
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Proof. The equivalence of statements 3 and 4 is immediate from the definitions. To

see the equivalence of statements 1 and 3, recall the isomorphism gr(S ) ∼= R/(sd)R so

that gr(S )/(td) gr(S ) ∼= R/(sd, td)R and (gr(S )/(td) gr(S ))i+1
∼= (R/(sd, td)R)i+1.

The exponent vectors of a K-basis of the right hand side correspond to the elements of

B in degree i+1. Since deg(td) = 1, the left hand side is equal to gr(S )i+1/(t
d) gr(S )i.

Having td : gr(S )i → gr(S )i+1 onto is equivalent to gr(S )i+1/(t
d) gr(S )i = 0,

whence statement 1 is equivalent to statement 3. The equivalence of statements 2

and 3 follows similarly.

Theorem 4.2.1 yields the following corollary.

Corollary 4.2.2. Suppose one of the equivalent conditions of Theorem 4.2.1 is sat-

isfied in degree i. Then the following equivalent conditions hold.

1. The map td : gr(S )j → gr(S )j+1 is onto for all j ≥ i.

2. The map sd : gr(Ŝ )j → gr(Ŝ )j+1 is onto for all j ≥ i.

3. The basis B contains no elements in degree greater than or equal to i+ 1.

4. Sj = (Sj−1 + (d, 0)) ∪ (Sj−1 + (0, d)) for all j ≥ i+ 1.

5. The sets Aj, and Cj, which are the elements of S which correspond to K-bases

of gr(S )j and gr(Ŝ )j, respectively, are disjoint for all j ≥ i+ 1.

Proof. The equivalence of the last three statements are immediate from the definitions

and recalling that Bi = Ai∩Ci. The equivalence of statements 1 and 3 and statements

2 and 3 follow in the same manner as in Theorem 4.2.1. To have no basis elements

in degree i+1 implies that Ri+1/(s
d, td)Ri = 0. Since gr(S ) is standard graded (i.e.,
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N-graded and generated in degree 1), gr(S )/(td) gr(S ) ∼= R/(sd, td)R is standard

graded. Thus, (gr(S )/(td) gr(S ))i+1 = (gr(S )/(td) gr(S ))1(gr(S )/(td) gr(S ))i so

that if (gr(S )/(td) gr(S ))i = 0, i.e., td : gr(S )i → gr(S )i+1 is onto, then we also

have (gr(S )/(td) gr(S ))j = 0 for all j ≥ i. Thus, statement 3 holds.

Example 4.2.3. It is possible for the maps td : gr(S )j → gr(S )j+1 , sd : gr(Ŝ )j →

gr(Ŝ )j+1 to become onto in degree i + 1, without |Mi+1| = |M̂i+1| = d so that

td : gr(S )j → gr(S )j+1 and sd : gr(Ŝ )j → gr(Ŝ )j+1, are not isomorphisms for all

j ≥ i+ 1.

All curves up to degree 16 were searched. The first example found was S =

{1, 3, 11, 13}. The sets Mi are summarized in Table 4.4. Considering this example,

we see that the map t13 : gr(S )4 → gr(S )5 is onto. On the other hand, the map

t13 : gr(S )5 → gr(S )6 is not an isomorphism because t21 ∈ ker(t13).

i Mi |Mi|
1 {1,3,11,13} 4
2 {2,4,6,12,14,16,22,24,26} 9
3 {5,7,9,15,17,19,23,25,27,29, 33,35,37,39} 14
4 {8,10,18,20,28,30,32,34,36,38,40,42,44,46,48,50,52} 17
5 {21,31,41,43,45,47,49,51,53,55,57,59,61,63,65} 15
6 {54,56,58,60,62,64,66,68,70,72,74,76,78} 13

Table 4.4: The data associated to Example 4.2.3

Below are all such curves of degree 13 that have similar phenomenon.

{{1, 3, 11, 13}, {2, 10, 12, 13}, {1, 3, 5, 11, 13}, {2, 8, 10, 12, 13}}

Similarly, below are all such curves of degree 15.

{{2, 12, 15}, {3, 13, 15}, {1, 3, 13, 15}, {2, 12, 14, 15}, {1, 3, 5, 13, 15},

{2, 8, 10, 12, 15}, {2, 10, 12, 14, 15}, {3, 5, 7, 13, 15}, {1, 3, 5, 7, 13, 15}, {2, 8, 10, 12, 14, 15}}
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We will momentarily call curves with this phenomenon case 3 curves.

We now show that the basis can be computed from gr(S ) and gr(Ŝ ).

Proposition 4.2.4. Let x ∈ Γ and suppose ord(x) = i. Then (id − x, x) ∈ Bi if and

only if the canonical image of tx in gr(S )i/(t
d) gr(S )i−1 is non-zero. (The obvious

transposition of the statement for Ŝ also holds.)

Proof. This is immediate from the isomorphisms gr(S )/(td) gr(S ) ∼= R/(td, sd)R ∼=

gr(Ŝ )/(sd) gr(Ŝ ) of graded rings.

Remark 4.2.5. Proposition 4.2.4 shows that the basis B can be computed from

the sets Mi. (The fact that R/(ss, td)R is finite dimensional ensures this is a finite

computation.) The advantage is that this algorithm should be faster than computing

the basis in S. We also have that the number of basis elements of degree i is equal

to Hgr(S )/(td) gr(S )(i). (This also follows from the isomorphism gr(S )/(td) gr(S ) ∼=

R/(td, sd)R.)

A consequence of Corollary 4.2.2 is that the canonical lift of a monomial K-basis

of gr(S )/(td) gr(S ) is a minimal finite generating set for gr(S ) as a K[td]-module.

Similarly, gr(Ŝ ) is also finitely (and minimally) generated as a K[sd]-module by the

lift of a monomial K-basis of gr(Ŝ )/(sd) gr(Ŝ ). Motivated by Proposition 4.2.4, we

refer to the second coordinates of elements of B as the “basis” of gr(S ) and the first

coordinate of elements of B as the “basis” gr(Ŝ ). We make this terminology precise

in the following series of definitions. All of these definitions seem to be useful in

describing R in what follows.
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Definition 4.2.6. Let x = (x1, x2) ∈ B. We say that tx2 is a basis element of gr(S ),

and that sx1 is a basis element of gr(Ŝ ). In what follows, we sometimes just refer to

x2 or x1 as being the basis elements of gr(S ) and gr(Ŝ ) respectively.

Definition 4.2.7. If x = (x1, x2) ∈ B and x2 is a stable element of S then we say

that tx2 (or sometimes just x2) is a stable basis element of gr(S ). The analogous

terminology is used for gr(Ŝ ).

An equivalent definition for a stable basis element is saying that tx is a stable basis

element of gr(S ) if x is the smallest stable element in its congruence class mod d.

This definition makes it clear that there are exactly d stable basis elements of gr(S )

and gr(Ŝ ), i.e., one per congruence class. Also note that, in general, we need not

have x = (x1, x2) ∈ B with both x1 and x2 stable basis elements. One explanation

for this is given in Theorem 4.4.4.

Definition 4.2.8. If x = (x1, x2) ∈ B and x2 is an unstable element of S then we

say that tx2 is an unstable basis element of gr(S ). The analogous terminology is used

for gr(Ŝ ).

We refer to the collection of basis elements of gr(S ) as its basis and the collection

of stable basis elements of gr(S ) as its stable basis. Moreover, the stable basis of

gr(S ) is contained in its basis; R is Cohen-Macaulay if and only if the stable basis

equals its basis. (If S contains any unstable elements then the smallest unstable

element in each congruence class will be an element of the unstable basis.) Similar

definitions hold for gr(Ŝ ).

Definition 4.2.9. If tx ∈ gr(S ) and txtd = 0 then we say that x is an immediately

unstable element of gr(S ) . The analogous definition holds for elements of gr(Ŝ ).
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It follows that the maximum degree of an unstable element is equal to the maxi-

mum degree of an immediately unstable element.

Example 4.2.10. We now use Example 4.1.6 to illustrate the above definitions.

Recall that S = {1, 7, 9} and Ŝ = {2, 8, 9}. Considering Table 4.3, it is easy to

compute the stable and unstable basis of gr(S ) and gr(Ŝ ). The stable basis of

gr(S ) is given by: {0, 1, 2, 7, 8, 14, 15, 21, 22} since, for example, 8 ∈ M2 is stable

but not equal to 9 + x for some x ∈ M1. The unstable basis of gr(S ) is given by:

{3, 4, 5, 6} since, for example, 3 ∈ M2 is unstable but not equal to 9 + x for some

x ∈M2. Similarly, the stable basis of gr(Ŝ ) is given by: {0, 2, 8, 10, 16, 24, 32, 40, 48},

whereas the unstable basis of gr(Ŝ ) is given by: {4, 6, 12, 14}. One can also use the

description of the sets Mi and M̂i in Example 4.1.6 and Proposition 4.2.4 to verify

that the basis B of Example 4.1.6 is as claimed.

We are able to give an explicit bound on the degree of stable basis elements.

Proposition 4.2.11. Let S = {m1, . . . , mn} be defined as above, let tx be a stable

basis element of gr(S ) and let sy be a stable basis element of gr(Ŝ ). Then ordS (x) ≤

d− n + 1, ord
Ŝ

(y) ≤ d− n+ 1, deg(tx) ≤ d− n+ 1 and deg(sy) ≤ d− n + 1.

Proof. Let J and Ĵ be the ideals of gr(S ) and gr(Ŝ ) consisting of their unstable ele-

ments. Then td and sd are non-zero divisors in degree one of gr(S )/J and gr(Ŝ )/Ĵ re-

spectively. Thus, ∆Hgr(S )/J (i) = H
(gr(S )/J)/td

(i) and ∆Hgr(Ŝ )/Ĵ(i) = H
(gr(Ŝ )/Ĵ)/sd

(i).

Since gr(S )/J and gr(Ŝ )/Ĵ are 1-dimensional and standard graded, (gr(S )/J)/td

and (gr(Ŝ )/Ĵ)/sd are 0-dimensional and standard graded. Thus, the Hilbert func-

tions H
(gr(S )/J)/td

(i) and H
(gr(Ŝ )/Ĵ)/sd

(i) are non-zero until reaching constant value

zero so that the Hilbert functions Hgr(S )/J (i) and Hgr(Ŝ )/Ĵ(i) strictly increase and
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then become constant. In some degree all stable basis elements will have appeared,

either in that degree or some lower degree. The Hilbert functions, Hgr(S )/J(i) and

Hgr(Ŝ )/Ĵ (i), become constant precisely when we have them all. The first representa-

tive of a congruence class in a graded piece is a stable basis element. Hence, increasing

the degree by one yields at least one new congruence class so that in degree d−n+1 all

stable basis elements have appeared so that the result follows. (We have n congruence

class in degree 1 so in degree d− n+ 1 we have all d congruence classes.)

In what follows, we sometimes refer to the Hilbert functions of gr(S )/J , gr(Ŝ )/Ĵ

as the stable Hilbert functions of gr(S ) and gr(Ŝ ) respectively.

Example 4.2.12. The Hilbert functions of gr(S )/J , gr(Ŝ )/Ĵ need not reach a

constant value d at the same time. For example, if S = {1, 5, 7}, then Ŝ = {2, 6, 7},

and the stable Hilbert functions are described in Table 4.2.12.

i Mi modunstable elements Hgr(S )/J (i) M̂i mod unstable elements Hgr(Ŝ )/Ĵ(i)

1 {1,5,7} 3 {2,6,7} 3
2 {2,6,8,10,12,14} 6 {8,9,12,13,14} 5
3 {9,11,13,15,17,19,21} 7 {15,16,18,19,20,21} 6
4 {16,18,20,22,24,26,28} 7 {22,23,24, 25,26,27,28} 7

Table 4.5: The data associated to Example 4.2.12

We now relate the degree of elements of S̃\S and the degree of immediately

unstable elements of gr(S ) and gr(Ŝ ).

Lemma 4.2.13. The following are equivalent for a fixed i ≥ 0.

1. There exists a = (a1, a2) ∈ (S̃\S)i.

2. ta2 ∈ gr(S )i+1 and ta2 is an immediately unstable element of gr(S ).
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3. sa1 ∈ gr(Ŝ )i+1 and sa1 is an immediately unstable element of gr(Ŝ ).

Moreover, the maximum degree of an unstable element of gr(S ) or gr(Ŝ ) is equal to

max{deg(x) | x ∈ S̃\S}+ 1.

Proof. We first show the equivalence of statement 1 and statement 2. The equivalence

of statement 1 and statement 3 follows similarly whence statement 2 is equivalent to

statement 3. Recall that for j ≥ 0, the set Aj = {x ∈ Sj | x− (d, 0) 6∈ S} corresponds

to a K-basis of gr(S )j . Let ta2 ∈ gr(S )i+1 and suppose ta2td = 0 in gr(S ). This is

true if and only if ordS (a2 + d) ≤ ordS (a2) = i+ 1, equivalently, if and only if there

exists (y, a2) ∈ Ai+1 such that (y, a2 + d) ∈ Si+2\Ai+2; if and only if (y, a2) ∈ Si+1,

(y− d, a2) ∈ (G(S)\S)i and (y− d, a2 + d) ∈ Si+1; if and only if (y − d, a2) ∈ (S̃\S)i.

Thus, statement 1 is equivalent to statement 3. Since the maximum degree of an

unstable element is equal to the maximum degree of an immediately unstable element,

the last assertion follows.

Proposition 4.2.14. Let i be the smallest integer such that td : gr(S )j → gr(S )j+1

is an isomorphism for all j ≥ i. Let l be the smallest integer such that sd : gr(Ŝ )j →

gr(Ŝ )j+1 is an isomorphism for all j ≥ l. Then i = l.

Proof. By assumption, all unstable elements of gr(S ) have degree ≤ i − 1. Lemma

4.2.13 implies that the same is true for gr(Ŝ ). Thus, sd is injective for all j ≥ i. To

see that it is surjective, by assumption, td : gr(S )j → gr(S )j+1 is an isomorphism for

all j ≥ i. Thus, by Corollary 4.2.2, sd : gr(Ŝ )j → gr(Ŝ )j+1 is onto for all j ≥ i.

Proposition 4.2.14 motivates the following definition.

Definition 4.2.15. Let i ≥ 0 be the smallest integer such that td : gr(S )j →

gr(S )j+1 is an isomorphism for all j ≥ i. (By Proposition 4.2.14 this is equivalent to
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saying the same thing for sd and gr(Ŝ ).) Then we say that S has stabilized in degree

i.

We now use Definition 4.2.15 to partition the elements S ∈ C ′, constructed from

S as above, into three classes.

Definition 4.2.16. Suppose that S has stabilized in degree i. If td : gr(S )i−1 →

gr(S )i is not onto, then we say that S is a case 1 curve.

If td : gr(S )j → gr(S )j+1 first becomes onto for j = i− 1 then we say that S is

a case 2 curve.

If td : gr(S )j → gr(S )j+1 first becomes onto for some j < i− 1, then we say that

S is a case 3 curve.

Proposition 4.2.14 implies that SS and S
Ŝ

are of the same case. It is obvious that

these cases partition C ′. Moreover, we could continue with arbitrarily many cases

although, for the moment, this seems to be the right way to partition C ′ as we will

see in Theorems 4.2.17 and 5.9.1. Before continuing with examples, we present the

main result of this section which gives a characterization of the cases.

Theorem 4.2.17. Let S ∈ C ′ so that S has minimal generating set constructed from

S = {m1, . . . , mn}, such that gcd({mi}) = 1 as above.

1. The set S defines a case 1 curve which stabilizes in degree i if and only if there

exists a stable basis element of gr(S ) of degree i, all basis elements of gr(S )

have degree ≤ i and all unstable elements have degree ≤ i−1. The same is true

for gr(Ŝ ).

2. The set S defines a case 2 curve which stabilizes in degree i if and only if there

exists a basis element of gr(S ) of degree i − 1, all basis elements have degree
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≤ i− 1, both S and Ŝ contain an unstable element of degree i− 1, and all of

their unstable elements have degree ≤ i− 1.

3. The set S defines a case 3 curve which stabilizes in degree i if and only if both

S and Ŝ contain an unstable element of degree i − 1, all of their unstable

elements have degree ≤ i− 1 and all of the basis elements of gr(S ) and gr(Ŝ )

have degree < i− 1.

In all cases, suppose S has stabilized in degree i and consider the ideals

J = 〈tx | x is an unstable element of S 〉,

Ĵ = 〈sx | x is an unstable element of Ŝ 〉.

Then

Hgr(S )(j) = Hgr(S )/J (j) = Hgr(Ŝ )(j) = Hgr(Ŝ )/Ĵ (j) = d

for all j ≥ i.

Proof. We prove the forward direction for each of the three characterizations. For

each characterization the converse follows immediately from the definitions. The

last statement is immediate since in all situations there are no unstable elements

in degrees ≥ i. In all cases, by assumption, i is the smallest integer for which td :

gr(S )j → gr(S )j+1 and sd : gr(Ŝ )j → gr(Ŝ )j+1 are isomorphisms for all j ≥ i.

Thus, by Corollary 4.2.2, all basis elements of gr(S ) and gr(Ŝ ) have degree ≤ i and,

by Lemma 4.2.13, all unstable elements of gr(S ) and gr(Ŝ ) have degree ≤ i−1. If S

defines a case 1 curve then, by definition, td : gr(S )i−1 → gr(S )i is not onto so, by

Theorem 4.2.1, both gr(S ) and gr(Ŝ ) contain basis elements in degree i. Thus, all

basis elements of gr(S ) and gr(Ŝ ) in degree i are stable. If S defines a case 2 curve,
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then by definition, td : gr(S )j → gr(S )j+1 first becomes onto for j = i−1. Thus, by

Theorem 4.2.1, both gr(S ) and gr(Ŝ ) contain basis elements in degree i− 1 and, by

Corollary 4.2.2, all of their basis elements have degree ≤ i− 1. Since S has stabilized

in degree i, td : gr(S )i−1 → gr(S )i and sd : gr(Ŝ )i−1 → gr(S )i are not injective

so Lemma 4.2.13 implies that both gr(S ) and gr(Ŝ ) have an immediately unstable

element of degree i − 1. Finally, if S defines a case 3 curve then, by definition,

td : gr(S )j → gr(S )j+1 first becomes onto for j < i − 1 so Corollary 4.2.2 implies

that all basis elements of gr(S ) and gr(Ŝ ) have degree < i−1. Since S has stabilized

in degree i, Lemma 4.2.13 implies that both gr(S ) and gr(Ŝ ) have an immediately

unstable element of degree i− 1.

Examples 4.2.18. • If S is Cohen-Macaulay, then we are always in case 1.

• The curve S = {2, 12, 15} is an example of case 3. It stabilizes in degree

8. It is not case 1 since the stable Hilbert function (i.e., the Hilbert func-

tion of gr(S )/J) is {1, 3, 6, 9, 12, 14, 15, 15, 15,→}, so the maximum degree

of a stable basis element is 6, whereas the Hilbert function (of gr(S )) is

{1, 3, 6, 10, 15, 18, 18, 16, 15,→}, which shows that there are unstable elements

in degree 7. It is not case 2 since the maximum degree of a basis element is 6

corresponding to the basis elements {{38, 52}, {68, 22}}. There is an unstable

element of degree 7, corresponding to the element {53, 37} of S̃\S which is of

degree 6.

• All of the curves in Example 4.2.3 are case 3.

• The curve S = {5, 9, 11, 20} gives a non-Cohen-Macaulay example of case

1. It stabilizes in degree 5. The maximum degree of a basis element is 5,
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corresponding to {63, 37} (t37 is a stable basis element of gr(S )), whereas the

maximum degree of an element of S̃\S is 3 corresponding to {36, 24} and the

unstable element 24 of degree 4.

• The curve S = {1, 3, 4} provides an example of case 2. It stabilizes in degree

3. We have that {6, 2} is a basis element of S which has degree 2, and 2 is an

unstable element of S .

• The curve S = {1, 3, 4, 9, 13} is another non-Cohen-Macaulay example of case

1. It stabilizes in degree 3. The element {28, 11} is of degree 3 and corresponds

to a stable basis element of gr(S ), whereas the maximum degree of an unstable

element is 2, corresponding to 5 or the element {8, 5} of S̃\S which is of degree

1. The Hilbert function is given by {1, 5, 13, 13, 13,→}, whereas the stable

Hilbert function is given by {1, 5, 12, 13, 13}.

• We now provide some case 3 curves which suggest that it may be appropriate to

continue with arbitrarily many cases. If S = {5, 9, 13, 17, 33, 45, 101, 125}, then

td : gr(S )j → gr(S )j+1 first becomes onto for j = 6, but does not stabilize until

degree 9. If S = {5, 9, 13, 17, 33, 45, 301, 325} then td : gr(S )j → gr(S )j+1

first becomes onto for j = 13, but does not stabilize until degree 17. If S =

{5, 9, 13, 17, 33, 45, 901, 925} then td : gr(S )j → gr(S )j+1 first becomes onto

for j = 38, but does not stabilize until degree 42.

4.3 A bound on minimal generators

Recall that S is minimally generated by Λ = {a0 = (d, 0), a1 = (d−m1, m1), . . . , an =

(0, d)} and that R = K[sd, sd−m1tm1 , . . . , sd−mn−1tmn−1 , td]. Recall also that R ∼= B/p,
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where B = K[X0, . . . , Xn] is S-graded, setting deg(Xi) = ai, and p is the kernel

of the surjective K-algebra homomorphism B → R sending Xi to Tai. Recall that

∆m = {σ ⊆ {0, . . . , n} | m −
∑

i∈σ ai ∈ S}. Finally, recall that, by Corollary 3.1.6,

p has a minimal ideal generator of multidegree m if and only if ∆m is disconnected.

We now use the theory of the previous section to give a direct proof which bounds

the degree of minimal ideal generators of p.

Lemma 4.3.1. Suppose that td : gr(S )k → gr(S )k+1 is onto, let j ≥ k + 2 and let

m ∈ Aj, m
′ ∈ Cj. Then ∆m and ∆m′ are connected.

Proof. Let m ∈ Aj . Since td : gr(S )k → gr(S )k+1 is onto and since j ≥ k + 2, the

equivalence of statements 1 and 4 of Corollary 4.2.2 implies that m = (0, d) + a for

some a ∈ Aj−1 so that {n} ∈ ∆m. Now let {v} 6= {n} be a vertex of ∆m. Considering

Definition 2.3.8, we may claim that {v, n} is a face of ∆m. To have {v} ∈ ∆m implies

that m − av ∈ S, so that m = av + c for some c ∈ Sj−1. Since j − 1 ≥ k + 1 we

have that c = c′ +(0, d), for some c′ ∈ Sj−2, since otherwise, again by the equivalence

of statements 1 and 4 of Corollary 4.2.2, m = av + c′ + (d, 0) so that m 6∈ Aj a

contradiction. Thus m − av − (0, d) = c′ ∈ S so that {v, n} ∈ ∆m. Transposing the

argument shows that ∆m′ is also connected.

Lemma 4.3.2. Let i be the integer for which S has stabilized, let j ≥ i + 1 and let

φ : Sj−2 → Sj\(Aj ∪ Cj) defined by m 7→ m+ (d, d). Then φ is a bijection.

Proof. Since S has stabilized in degree i and since j ≥ i + 1 by last statement of

Theorem 4.2.17, ∆HR(j − 1) = Hgr(S )(j − 1) = d and ∆HR(k) = Hgr(S )(k) = d

for all k ≥ j − 1. Since ∆HR(j) = HR(j) − HR(j − 1), we have that HR(j) =

d+HR(j−1) = d+HR(j−2)+∆HR(j−1) = 2d+HR(j−2). In terms of S, we have
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|Sj| = 2d+ |Sj−2| and |Aj | = |Cj| = d. Again, since j ≥ i+1, td : gr(S )j−1 → gr(S )j

is onto so that by the equivalence of statements 1 and 5 of Corollary 4.2.2, Aj∩Cj = ∅.

Thus, |Sj\(Aj ∪ Cj)| = |Sj−2|. Since S is cancellative, Sj−2 + (d, d) produces |Sj−2|

distinct elements of Sj. Thus, φ is a bijection.

Lemma 4.3.3. Let i be the integer for which S has stabilized. Suppose S is a case

1 curve, let j ≥ i + 2 and let m ∈ Sj\(Aj ∪ Cj). Then ∆m is connected. Suppose S

is a case 2 or a case 3 curve. Let j ≥ i+ 1, and let m ∈ Sj\(Aj ∪ Cj). Then ∆m is

connected.

Proof. In all three cases j ≥ i + 1 so that if m ∈ Sj\(Aj ∪ Cj) then, by Lemma

4.3.2, m = y + (d, d) for some y ∈ Sj−2 so that {0, n} is a face of ∆m. Now consider

an arbitrary vertex {v} ∈ ∆m, v 6= n, v 6= 0. This implies that m = av + y

for some y ∈ Sj−1. If S is a case 1 curve then, since j ≥ i + 2 by assumption,

td : gr(S )j−2 → gr(S )j−1 is onto so that, by the equivalence of statements 1 and

4 of Corollary 4.2.2, y − (0, d) ∈ S or y − (0, d) ∈ S. Thus, either {v, n} ∈ ∆m or

{0, v} ∈ ∆m. If S is a case 2 or a case 3 curve then, since j ≥ i + 1 by assumption,

td : gr(S )j−2 → gr(S )j−1 is onto so that again, by the equivalence of statements 1

and 4 of Corollary 4.2.2, {v, n} or {0, v} is a face of ∆m. In all three cases, considering

Definition 2.3.8, ∆m is connected.

We now come to the main result of this section.

Theorem 4.3.4. Let i be the integer for which S has stabilized. Suppose that S is a

case 1 curve. Let j ≥ i+ 2 and let m ∈ Sj. Then ∆m is connected. Suppose that S

is a case 2 or 3 curve. Let j ≥ i + 1 and let m ∈ Sj. Then ∆m is connected. If S

is a case 1 curve then all minimal ideal generators of p have degree (in the standard
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N-grading) less than or equal to i + 1. If S is a case 2 or 3 curve all minimal ideal

generators of p have degree (in the standard N-grading) less than or equal to i.

Proof. Suppose S is a case 1 curve. Then, by definition, td : gr(S )i−1 → gr(S )i is

not onto but td : gr(S )i → gr(S )i+1 is onto. Thus, if j ≥ i + 2 and m ∈ Aj or Cj

then Lemma 4.3.1 implies that ∆m is connected. On the other hand, if j ≥ i + 2

and m ∈ Sj\(Aj ∪ Cj) then Lemma 4.3.3 implies that ∆m is connected. If S is a

case 2 or case 3 curve then, by definition, td : gr(S )i−1 → gr(S )i is onto. Thus, if

j ≥ i+ 1 and m ∈ Aj or Cj then Lemma 4.3.1 implies that ∆m is connected. On the

other hand, if j ≥ i+ 1 and m ∈ Sj\(Aj ∪ Cj) then Lemma 4.3.3 implies that ∆m is

connected.

Examples 4.3.5. If S = {1, 2, 3} then S is a case 1 curve which stabilizes in degree

1 and p is minimally generated by binomials of degree 2. Thus, Theorem 4.3.4 is

sharp for case 1 curves. If S = {1, 3, 4} then S is a case 2 curve which stabilizes

in degree 3 and p is minimally generated by a binomial of degree 2 and 3 binomials

of degree 3. Thus, Theorem 4.3.4 is sharp for case 2 curves. I have yet to find an

example for which Theorem 4.3.4 is sharp for case 3 curves.

4.4 Decomposition via congruence classes

Proposition 4.2.11 and Theorem 4.2.17 imply that if S is a case 1 curve then the integer

for which S stabilizes is less than or equal to d − n + 1. We would like to obtain a

similar result for case 2 and case 3 curves. For this, we further develop an approach

to study R = K[S] which is used in [29] and considered in higher dimensions by Ping

Li and Leslie Roberts. The right context in which to view the following discussion is
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in the context of monomial modules.

Definition 4.4.1. Let S be a subsemigroup of N
2
d = {(x, y) ∈ N

2 | x+ y ≡ 0 modd}

minimally generated by (d, 0), (0, d) and some other generators, and let R = K[S] ⊆

K[s, t]. A monomial K[sd, td]-module is a submodule of R(−c), c ∈ Z, which has a

finite generating set {Tb = sb1tb2 | b = (b1, b2) ∈ S} ⊆ R(−c) of monomials.

The advantage of monomial modules is that given monomial modules M and

N , N ⊆ M , we can form “staircase diagrams”, as we will see in Figure 4.2, which

represent the monomials of M and the monomials of M/N .

Example 4.4.2. If S ∈ C ′ then R = K[S] is a monomial K[sd, td]-module with

generating set {Tb | b ∈ B}. We will see several other examples shortly.

From now on we assume that S ∈ C ′ and all other notation as before. Let

α = (α1, α2) and β = (β1, β2) ∈ N
2. We say that α ≡ βmod d if αi − βi ≡ 0 mod d,

1 ≤ i ≤ 2. Since the collection of elements of S are relatively prime, in G(S) there are

d congruence classes mod d with representatives C = {(0, 0)}∪{α = (d−α2, α2) | 0 <

α2 ≤ d− 1}. For each α ∈ C let S ′
<α> = {a ∈ S ′ | a ≡ αmod d}, let S<α> = {a ∈ S |

a ≡ αmod d} and let B<α> = {a ∈ B | a ≡ αmod d}. By construction, S<α> ⊆ S ′
<α>.

Let K[S ′]<α> = ⊕a∈S′
<α>

K[S ′]a and let R<α> = ⊕a∈S<α>Ra. We use < α >, as

opposed to α, in order to distinguish between congruence classes R<α>, α ∈ C, and

graded pieces Ra, a ∈ S. Congruence class mod d induces decompositions S ′ =
∐

α∈C S
′
<α>, S =

∐
α∈C S<α>, K[S ′] = ⊕α∈CK[S ′]<α> and R = ⊕α∈CR<α>. Let x = sd,

y = td. Regarding K[x, y] as a subalgebra of R, x 7→ sd, y 7→ td, by construction, each

R<α> is a monomial K[x, y]-module with minimal generating set consisting of those

monomials Tb = sb1tb2 such that b = (b1, b2) ∈ B and b ≡ αmod d, or equivalently,
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{Tb | b ∈ B<α>}. Moreover, R<α> is a submodule of the K[x, y]-module K[S ′]<α>.

We will see momentarily that K[S ′]<α> is also a monomial module.

For a set A ⊆ N
2, let x1 and x2 denote the smallest first and second coordinates

of all elements of A, respectively, and define inf A := (x1, x2). Let bα = (b1, b2) =

inf S ′
<α>. We have the following lemma.

Lemma 4.4.3. Let bα = inf S ′
<α>. Then bα ∈ S

′
<α> and bα = inf S<α> = inf B<α>.

Moreover, bα ∈ B<α> if and only if B<α> contains one element if and only if S ′
<α> =

S<α>.

Proof. Let bα = (b1, b2) = inf S ′
<α>. Then there exists x = (b1, x2) ∈ S

′
<α>. If b2 6= x2

then b2 < x2. Since b2 ≡ x2 mod d, x2 = qd+ b2, q > 0. Thus, bα+ q(0, d) = x ∈ S ′
<α>

which also implies that bα ∈ S ′
<α>. Let aα = (a1, a2) = inf B<α>. By definition

of B, aα = inf S<α>. Obviously, a1 ≥ b1 and a2 ≥ b2. Since bα ∈ S ′
<α>, we have

that bα + p(d, 0) ∈ S and bα + m(0, d) ∈ S for some p,m ≥ 0. Take the smallest

such m. We claim that (b1, b2 + md) ∈ B<α>. We have (b1, b2 + md) ∈ S<α> but

(b1, b2 +md)−(0, d) 6∈ S<α>. Since (b1, b2) = inf S ′
<α>, we have (b1, b2 +md)−(d, 0) 6∈

S ′
<α>, thus, (b1, b2 + md) 6∈ S<α>. Thus, (b1, b2 + md) ∈ B<α> so that a1 ≤ b1. A

similar argument shows a2 ≤ b2. Thus, a1 = b1 and a2 = b2. For the last assertion

it is immediate from the definitions that S ′
<α> = S<α> if and only if B<α> contains

only one element. Since bα ∈ S
′
<α>, bα ∈ B<α> if and only if S ′

<α> = S<α>.

Let bα = inf S ′
<α>. Then Lemma 4.4.3 implies that a minimal generating set for

K[S ′]<α> as a K[x, y]-module is the monomial Tbα, so that K[S ′]<α> is also a mono-

mial module. There is a bijective correspondence between elements of S ′
<α> and

monomials of K[x, y] given by (a1, a2) 7→ x((a1−b1)/d,(a2−b2)/d) = x(a1−b1)/dy(a2−b2)/d.

Letting b′α = deg(bα) = (b1 + b2)/d, under this identification, an element of (S ′
<α>)i
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corresponds to a monomial in K[x, y](−b′α) of degree i − b′α. Thus, this identifica-

tion induces an isomorphism of Z-graded K[x, y]-modules K[x, y](−b′α)
∼= K[S ′]<α>

given by x(a1,a2) 7→ T(b1+da1,b2+da2). In a similar manner, the monomials of R<α> are

in bijective correspondence with the monomials of a monomial submodule I<α> of

K[x, y](−b′α).

We now describe a minimal monomial generating set for I<α>. By definition of

B if b, c ∈ B<α> then b and c must be incomparable with respect to the natural

product partial order on N
2. The same is true after subtracting bα. Thus, the set of

monomials {x(a1/d,a2/d) | a = (a1, a2) + bα ∈ B<α>} constitute a minimal generating

set for I<α> as a K[x, y]-module. (Note that if B<α> contains only one element, then

I<α> = K[x, y](−b′α).) The module I<α> is obviously graded. Moreover, x(a1,a2) ∈

I<α> if and only if (da1 + b1, da2 + b2) ∈ S. Thus, the map I<α> → R<α>, defined by

x(a1,a2) 7→ T(b1+da1,b2+da2), yields an isomorphism of graded K[x, y]-modules. This map

also induces an isomorphism ⊕α∈CI<α> → ⊕α∈CR<α>
∼= R of graded K[x, y]-modules.

Suppose now that B<α> contains more than one element and let bα = (b1, b2) =

inf S ′
<α>. Then, as in the proof of Lemma 4.4.3, there exists elements (b1, b2 +

md), (b1 + pd, b2) ∈ B<α>, where m, p ≥ 0 are the smallest integers such that

bα + m(0, d) and bα + p(d, 0) ∈ S. It follows that x(0,m) and x(p,0) will be mini-

mal monomial generators of I<α> and that there are only finitely many monomials

not in I<α>, i.e., that K[x, y](−bα)/I<α> has a finite monomial K-basis. Since the

monomials of K[x, y](−b′α) are in bijective correspondence with S ′
<α>, this implies

that the elements of S ′
<α>\S<α> are in bijective correspondence with the monomials

of K[x, y](−b′α)/I<α>. We can represent the monomials of I<α> and the monomials

not in I<α> by using staircase diagrams (Figure 4.2 for example). Finally, it is also
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apparent that, the monomial x(0,m) (of K[x, y](−b′α)/I<α>) will not be a multiple of x

(i.e., a horizontal translate), under the action of K[x, y] and, similarly, the monomial

x(p,0) will not be a multiple of y (i.e., a vertical translate), under the action of K[x, y].

Converting back into S, it follows that b2 + md and b1 + pd will not be the second

or first coordinates, respectively of elements of S ′\S. Thus, b2 +md will be a stable

basis element of gr(S ) and b1 + pd will be a stable basis element of gr(Ŝ ).

Since the monomials x(0,m) and x(p,0) are minimal K[x, y]-module generators of

I<α> and since b2 + md and b1 + pd are stable basis elements of gr(S ) and gr(Ŝ )

respectively, it follows, from Proposition 4.2.11, that the degree of tb2+md and sb1+pd

will be less than or equal to d − n + 1 and thus, the degrees of (b1, b2 + md) and

(b1 + pd, b2) will be less than or equal to d− n+ 1. Applying this to K[x, y](−b′α), it

follows that the monomials x(0,m) and x(p,0) have degree ≤ d− n+ 1.

Before continuing with an example, we summarize some of the discussion thus far

in the following.

Theorem 4.4.4. Let bα = (b1, b2) = inf S ′
<α> and let b′α = deg(bα). The following

hold.

1. The semigroup rings K[S ′] and R = K[S] have natural decompositions K[S ′] =

⊕α∈CK[S ′]<α>, R = ⊕α∈CR<α> where α ranges over all congruence classes of

G(S).

2. The K[x, y]-modules K[S ′]<α> and K[x, y](−b′α) are isomorphic.

3. The elements of B<α> correspond to minimal monomial K[x, y]-module genera-

tors for a monomial module I<α> of K[x, y](−b′α). Moreover, the map x(a1,a2) 7→

T(b1+da1,b2+da2) is an isomorphism I<α> ∼= R<α> of Z-graded K[x, y]-modules.
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4. If B<α> contains only one element then I<α> = K[x, y](−b′α) and the monomial

x(0,0) corresponds to the stable basis elements b2, b1 of gr(S ) and gr(Ŝ ) in the

appropriate congruence class. If B<α> contains more than one element then

there exists minimal monomial generators x(0,m), x(p,0), m, p ≥ 0 of I<α> such

that b2 + md and b1 + pd are the stable basis elements of gr(S ) and gr(Ŝ )

in the appropriate congruence class. Any monomial which corresponds a stable

basis element of gr(S ) and gr(S ) has degree ≤ d−n+1. Moreover, in a given

congruence class α there are only finitely many monomials of K[x, y](−b′α) which

are not in I<α>.

5. There is a bijective correspondence between a monomial K-basis of K[x, y](−b′α)/I<α>

and S ′
<α>\S<α>.

Example 4.4.5. This is a continuation of Example 4.1.6. Recall that S = {1, 7, 9}

so that Ŝ = {2, 8, 9} and S is minimally generated by

Λ = {{9, 0}, {8, 1}, {2, 7}, {0, 9}}.

Let α = {4, 5}. Then considering the basis computed in Example 4.1.6, we see that

B<α> = {{4, 14}, {40, 5}} so that bα = inf B<α> = (4, 5), b′α = 1. Considering Table

4.3, we see that 14 is a stable basis element of gr(S ), that 5 is an unstable basis

element of gr(S ) and that 40 and 4 are stable and unstable basis elements of gr(Ŝ )

respectively. The staircase diagram of I<α> is shown in Figure 4.2. The elements of

B<α> are represented by large solid dots. The elements of Aj which are not elements

of Cj, 0 ≤ j ≤ 4, in this congruence class, are represented by the open circles. On

the other hand, the elements of Cj which are not elements of Aj , 0 ≤ j ≤ 6, in this

congruence class, are represented by the open circle with an × in the middle. There
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is only one element of S̃<α>\S<α> in this example; it is represented by a solid black

square. The remaining elements of S ′
<α>\S<α> are represented by open squares. The

axis labels indicate the exponents of the corresponding monomials of K[x, y](−1).

(Recall that since b′α = 1 the monomial x(a1,a2) has degree 1 + a1 + a2.) We also have

that x(0,1) 7→ T(4,14) and that x(4,0) 7→ T(40,5). Since x(0,1) has degree 2 and x(4,0) has

degree 5, the correspondence I<α> → R<α> is of degree 0 as claimed.

0 1 2 3 4 5
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b

⊗
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Figure 4.2: The staircase diagram of I<α>=(4,5) for Example 4.4.5.

4.4.1 General bounds for stabilization

Proposition 4.2.11 and Theorem 4.2.17 imply that if S is a case 1 curve then the

integer for which S stabilizes is less than or equal to d − n + 1. We use Theorem

4.4.4 and the discussion of this section to give a similar statement for case 2 and

case 3 curves. For this, let bα = (b1, b2) = inf S ′
<α>, b′α = deg(bα) and, finally, let

(b1, b2+md), (b1+pd, b2) ∈ B<α> so that they are the elements of B<α> corresponding

to the stable basis elements in their congruence class of gr(S ) and gr(Ŝ ) respectively.

Let m′ = deg((b1, b2 + md)) and let p′ = deg((b1 + pd, b2)). As a consequence of

Theorem 4.4.4, for a fixed congruence class, the finite number of monomials which
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are not in I<α> are contained in a (p′ − b′α)× (m′ − b′α)-rectangle. (If I<α> has more

than two generators, some monomials of this rectangle will be contained in I<α>.)

(If this description is not clear, refer to Figure 4.2 of Example 4.4.5 where d = 9,

α = (4, 5), bα = (4, 5), b′α = 1, (b1, b2 +md) = (4, 14), (b1 + pd, b2) = (40, 5), m′ = 2,

p′ = 5, and we formed a 4× 1 rectangle containing all monomials not in I<α>.)

To bound the maximum degree of an element of S ′
<α>\S<α> we may look at a

given rectangle and determine the largest degree of a monomial not in I<α>. Moreover,

we should make the rectangle as large as possible. This amounts to maximizing p′

and m′ while minimizing b′α. By Theorem 4.4.4, m′ and p′ are less than or equal to

d − n + 1. Since b′α = 0 if and only if α = (0, 0), in which case I<α> = K[x, y], we

may consider the case b′α = 1. The result is forming a (d−n)× (d−n) square, Figure

4.3, where the black square and the monomial xd−n−1yd−n−1, which is not in I<α>,

b b

bb

b

yd−n

xd−n

xd−nyd−n

x0y0 b

b

rsxd−n−1yd−n−1

Figure 4.3: An extreme case 2 or case 3 curve.

corresponds to an element of S ′
<α>\S<α>, of maximum degree or equivalently, to an

element of S̃<α>\S<α> of maximum degree. Since b′α = 1, the monomial xd−n−1yd−n−1

has degree 2d−2n−2+1 = 2d−2n−1. This is the maximum degree of an element of

S ′
<α>\S<α> and in fact, the maximum degree of an element of S ′\S and S̃\S. Using

these observations, we now state the main result of this section.
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Theorem 4.4.6. Let S ∈ C ′ be constructed form S = {m1, . . . , mn = d} as in the

previous discussion. The following statements hold.

1. If S is a case 2 or case 3 curve then all elements of S ′\S have degree less than

or equal to 2d− 2n− 1.

2. If S is a case 2 or case 3 curve then the maximum degree of an unstable element

of gr(S ) or gr(Ŝ ) is ≤ 2d− 2n.

3. If S is a case 1 curve then S stabilizes in degree ≤ d− n+ 1. If S is case 2 or

case 3 curve then S stabilizes in degree ≤ 2d− 2n+ 1.

Proof. Statement 1 was proved in the above discussion. Statement 2 follows from

Statement 1 and Lemma 4.2.13. The first assertion of Statement 3 follows from

Proposition 4.2.11 and Definition 4.2.15. The second assertion follows from Statement

2 and Definition 4.2.15.

Remark 4.4.7. In Theorem 5.9.1 we will show that for case 2 and case 3 curves the

regularity of p will be equal the degree for which S stabilizes. By the famous result of

[21], reg(p) ≤ d− n+ 2, so that the combinatorial bound of statement 3 of Theorem

4.4.6 is not quite double this bound. We will also show that for case 1 curves the

regularity of p will be equal to one more than the degree for which S stabilizes. Thus,

for case 1 curves we have obtained the appropriate bound. At the moment, for case 2

and 3 curves, we are unable to get the the bound of [21]; the result stated in Theorem

4.4.6 is the best we can do. It is also unclear whether the approach used here can be

used to obtain their bound.

Remark 4.4.8. It is also clear from the (d−n)×(d−n) square formed above that the

number of basis elements in a particular congruence class is at most d− n+ 1, which
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implies that the number of basis elements of S is at most quadratic in d. Similarly,

the number of elements of S ′\S in a particular congruence class is at most (d− n)2,

so the number of elements of S ′\S is at most cubic in d.



Chapter 5

Betti numbers, regularity and

stabilization

In this chapter we describe the approach of [14] to determine finite check sets con-

taining all multidegrees of syzygies of p. This approach is then related to [6] and the

theory of Chapter 4. More specifically, we obtain a description for the regularity of p

in terms of the stabilization of S (Definition 4.2.15). We then give insight into how

the case of S (Definition 4.2.16 and Theorem 4.2.17) is reflected by how the regularity

is obtained.

5.1 Introduction

We keep the same assumptions on the semigroup S as in Chapter 4, which we will

review shortly. In the mean time, recall that dimK H̃t(∆m) = βt,m, t ≥ 0, where

m ∈ S, βt,m = dimK TorBt (K, p)m and p is the kernel, of the K-algebra homomorphism

B = K[X0, . . . , Xn] → R = K[S], defined by sending Xi 7→ Tai. We would like to

81
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find all nontrivial Betti numbers (or a least a finite set of multidegrees from which we

can compute them). At present our goal is as follows: Give a sufficient condition for

H̃t(∆m) = 0 for some t ≥ 0 and for some m ∈ S. In fact, we are hoping to do better.

We would like to find all m ∈ S such that H̃t(∆m) 6= 0 for some t ≥ 0.

For now, we ignore the graphs and their homology defined in [14]. In that account,

the homology of each graph is isomorphic to the homology of an appropriate reduced

(perhaps relative) chain complex of appropriate simplicial complexes. The motivation

for their graphs seem to be to compute a K-basis for H̃t(∆m), t ≥ −1. At present we

already know how to do this (at least with our current assumptions on S).

We now introduce some notation. We try to be consistent, to some extent, with

that of [14] so as to facilitate verifying this write up with theirs while at the same

time being consistent with the notation already introduced in this thesis.

Let Λ = E ∪ A, where E = {a0 = e = (d, 0), an = e′ = (0, d)} and A =

{a1, . . . , an−1}, be a minimal generating set for S ⊆ N
2 constructed from S =

{m1, . . . , mn = d} by setting ai = (d −mi, mi), 1 ≤ i ≤ n. (Note that |Λ| = n + 1,

and that |A| = n− 1.) Let F ⊆ Λ, and let nF :=
∑

n∈F n. (If F = ∅, then nF = 0.)

Let m ∈ S and define ∆m to be the simplicial complex on Λ defined as follows:

∆m := {F ⊆ Λ | m− nF ∈ S}.

This definition agrees with Definition 3.1.1 although in what follows, for notational

reasons, it is convenient to use subsets of Λ as the faces of ∆m as opposed to subsets

of the indices. This being said, in all examples where we actually compute ∆m and

any other simplicial complexes, as in the previous Chapters, we will label the vertices

from 1, . . . , n+ 1, so that the vertex corresponding to ai will be i+ 1.

If we are defining a simplicial complex by facets, we explicitly state that we are
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doing so (as opposed to setting it equal to its set of facets). This is to avoid confusion

with some of the definitions of [14] which define some simplicial complexes by setting

them equal to all of their faces.

So as to have a concrete choice of boundary maps in C̃.(∆), we must define a total

ordering on Λ. Without loss of generality, assume this is e < a1 < · · · < an−1 < e′.

Now, with respect to this total ordering, the boundary maps of C̃.(∆) are the same

as if we were defining ∆m to be a simplicial complex with vertex set {0, . . . , n}.

Throughout we use the convention that A\B denotes the set theoretic complement

of sets A and B. In [14] the authours use A−B, and we would like to avoid confusion

with other accounts of affine semigroups. More specifically, in [32] A − B means

something different.

5.2 The idea

We now give a brief summary of the approach used in this chapter. In [14] a simplicial

subcomplex Km, of ∆m is defined. The relative homology H̃t(∆m, Km) of the relative

chain complex C̃.(∆m, Km) is then considered. Recall that this is the quotient of

the complexes C̃.(∆m) and C̃.(Km). This leads to the short exact sequence of chain

complexes:

0 // C̃.(Km) // C̃.(∆m) // C̃.(∆m, Km) // 0 ,

and then a long exact sequence

. . . // H̃t+1(∆m, Km) // H̃t(Km) // H̃t(∆m) // H̃t(∆m, Km) // . . .

of homology. From this it is clear that if H̃t(∆m) 6= 0 for some t ≥ 0 then either

H̃t(Km) 6= 0 or H̃t(∆m, Km) 6= 0. Thus, a sufficient condition for H̃t(∆m) = 0 is
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that both H̃t(Km) and H̃t(∆m, Km) equal 0. In Proposition 5.7.2, we give a sufficient

condition for H̃t(∆m, Km) = 0. In order to study the homology of C̃.(Km) an acyclic

simplicial complex (i.e., a simplicial complex with trivial homology) K̄m, containing

Km, is defined. This leads to another short exact sequence of chain complexes:

0 // C̃.(Km) // C̃.(K̄m) // C̃.(K̄m, Km) // 0 .

It turns out thatKm and K̄m can never be equal to {∅}. Thus, as before, we get a long

exact sequence of homology, although this time, since C̃.(K̄m) is acyclic, we have that

H̃t+1(K̄m, Km) ∼= H̃t(Km) for t ≥ −1. Hence, in order to determine when H̃t(Km) =

0, we study H̃t+1(K̄m, Km) and give a sufficient condition for H̃t+1(K̄m, Km) = 0

(Proposition 5.7.3).

5.3 Some notation translation

We now summarize the isomorphisms between the “graphic” homology (the homology

coming from various graphs) of [14] and the reduced homology from their simplicial

complexes.

In [14, Definition 1.1, p. 145], given a subset B of S and a subset A of Λ satisfying

certain conditions, a graph G A
B is defined. Given an element m ∈ G(S) a chain

complex {C.((G A
B )m), δ.} is then constructed, and its homology H.((G A

B )m) is called

the homology of G A
B at m. In [14, Section 2, p. 146] the notation for the graphs is

simplified. In particular, the graph G
A
B is denoted simply as GB, and {C.((G A

B )m), δ.}

and H.((G A
B )m) are denoted by {C.(Bm), δ.} and H.(Bm). Also in this section, the

subset A ⊆ Λ is fixed, and a subset Q of S is defined. Both Q and A are shown to

satisfy the conditions of [14, Definition 1.1, p. 145], so that they can consider the
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graph G A
Q . Given m ∈ G(S) along with the previous simplification of the notation,

we then have the chain complex {C.(Qm), δ.} and its homology H.(Qm). We now

be more specific as to how the homology of the graphs translates into homology of

simplicial complexes.

• In [14] the set Q, whose definition we will recall in Section 5.4, is equivalent to

our basis B. In this chapter we use B throughout.

• C.(Qm) ∼= C̃.(∆m, Km), which implies that Ht(Qm) ∼= H̃t(∆m, Km).

• For all t ≥ −1, Ct(D̄m) ∼= C̃t+1(K̄m, Km). (Similarly, the symbol C.(D̄m) is used

to denote the chain complex at m ∈ S which is constructed from the graph GD.

See [14, p. 150].)

Thus, using the above isomorphisms some of the exact sequences etc. of [14],

which are written in terms of “graphic” homology, can be made to look like the ones

mentioned previously.

5.4 The definitions of Km and K̄m

We now give the definitions of Km and K̄m, as presented [14], and make a few com-

ments about them. We also say how some things simplify since we are restricting to

two dimensions.

Recall that the set B, [14, Definition 2.1, p. 147] or see Section 4.1.3, denotes the

basis. i.e.,

B = {m ∈ S | m− e 6∈ S∀e ∈ E},
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and the set Km, [14, p. 147] is defined to be:

Km = {L ∈ ∆m | (L ∩ E 6= ∅) or (L ⊆ A and m− nL ∈ S\B)}.

We show now that Km is a simplicial subcomplex of ∆m. As a set it is clear that

Km ⊆ ∆m. To see that Km is closed under taking subsets, the only nontrivial case

to check is if L ∈ Km and L′ ⊂ L, with L ∩E 6= ∅ and L′ ∩E = ∅, then L′ ∈ Km. In

this case, there exists e ∈ E ∩ (L\L′) so m− nL′ = m− nL + nL\L′ = m− nL + e+ s,

for s = nL\(L′∪{e}) ∈ S, so m− nL′ 6∈ B, so again L′ ∈ Km.

The above definition for Km is given in [14], and describes all faces of Km. From

this definition, it is clear that Km can never equal {∅}. Indeed, no face of ∆m meets

E if and only if m ∈ B if and only if Km = {}. The last equivalence also implies

that m ∈ B if and only if C̃.(Km) is the zero complex. We now give an alternative

description in terms of the facets of ∆m.

Proposition 5.4.1. With the notation above, suppose there exists facets of ∆m which

intersect E nontrivially. Then Km is the simplicial subcomplex of ∆m generated by

these facets. Otherwise Km = {}. In particular, if {F1, . . . , Fl} are the facets of ∆m

which intersect E nontrivially then these are the facets of Km. If no such facets exist

then Km = {}.

Proof. Clearly all of the facets of ∆m which intersect E nontrivially are facets of Km.

It remains to show that there are no more. Suppose L is a facet of Km such that

L∩E = ∅. Then by definition of Km, m−nL ∈ S\B. This implies, that m−nL−e ∈ S

for some e ∈ E. Thus L ∪ {e} is a face of ∆m which intersects E nontrivially. Hence

L ∪ {e} is a face of Km. This contradicts the maximality of L.
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The description of Km given in Proposition 5.4.1 gives a clear description of Km

in terms of ∆m. Moreover, given the facets of ∆m it is trivial to compute Km.

We also have the following consequence.

Corollary 5.4.2. Let m ∈ S and suppose m cannot be written as m = q + nI for

some q ∈ B, I ⊆ A. Then ∆m = Km.

Proof. If ∆m 6= Km, then some facet I of ∆m does not meet E. Hence m − nI ∈ B

for some I ⊆ A which is a contradiction.

Example 5.4.3. If ∆m is defined by facets {{e, a1}, {a2, a3, a4}, {e
′, a5, a4}} then we

have that Km is defined by facets {{e, a1}, {e
′, a5, a4}}. The geometric realization of

∆m is pictured to the left below. That of Km is pictured to the right.
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Consider now the set, [14, p. 147] (in this definition we are assuming |J | ≥ 2):

K̄m = Km ∪ {I ∪ J | I ⊆ A, J ⊆ E, m− nI − nJ 6∈ S and m− nI − e ∈ S, ∀e ∈ J}.

We claim that K̄m is a simplicial complex containing Km. It is clear that as sets

Km ⊆ K̄m. It remains to show that K̄m is closed under taking subsets.

Clearly, if L ∈ K̄m and L ∈ Km then any subset of L is in K̄m as Km is a simplicial

complex. Now suppose that L = I ∪ J ∈ K̄m\Km (this implies that |J | ≥ 2). Let

L′ ⊂ L. Then we may partition L′ as L′ = I ′ ∪ J ′ with I ′ ⊂ I ⊂ A and J ′ ⊂ J ⊂ E.

Since L ∈ K̄m\Km, we have that m− nI − e ∈ S for all e ∈ J but m− nI − nJ 6∈ S.

This implies that m − nI′ − e ∈ S for any e ∈ J ′. Hence if m − nL′ 6∈ S (i.e.,
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m− nI′ − nJ ′ 6∈ S), then we must have |J ′| ≥ 2 so that L′ ∈ K̄m\Km. On the other

hand, if m− nL′ ∈ S then L′ ∈ ∆m. If J ′ 6= ∅, then L′ ∩ E 6= ∅. If J ′ = ∅, then since

m − nI′ − e ∈ S for all e ∈ J , we have that m − nI′ ∈ S\B. In either case L′ ∈ Km

so that L′ ∈ K̄m. Thus K̄m is a simplicial complex as claimed.

Moreover, if we are in two dimensions we have that J = E, so that the definition

of K̄m simplifies to:

K̄m = Km ∪ {I ∪E, | I ⊆ A,m− nI − nE 6∈ S and m− nI − e ∈ S, ∀e ∈ E}.

Translating the above definition into words, we also have the following description

of K̄m. (In the two dimensional case.)

Proposition 5.4.4. The facets of K̄m are the maximal sets of the following set:

{Facets of Km}∪

{I ∪ E | I ⊆ A, such that I ∪ {e} and I ∪ {e′} are faces of Km

but I ∪ {e, e′} is not a face of Km.}.

Proof. All the facets of Km are faces of K̄m, although they may cease to be facets.

On the other hand, all new faces of K̄m (i.e., the faces of K̄m which are not faces of

Km) are contained in the right hand side of the union.

The definition of K̄m, as is, may seem strange. We now present several examples

illustrating, what it may look like. The examples should help convince the reader

that K̄m is acyclic, which is shown to be the case in [14, Proposition 2.2, p. 148], and

for emphasis we state:

Proposition 5.4.5 (Proposition 2.2, p. 148 [14]). The simplicial complex K̄m is

acyclic.
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Note also that if m ∈ B then K̄m = {}. Moreover note that both Km and K̄m

have the same zero-dimensional faces.

Examples 5.4.6. If Km is defined as in Example of 5.4.3 then K̄m is defined by

facets {{e, e′}, {e, a1}, {e
′, a5, a4}} and pictured on the left below. If Km is defined

by the facets {{a1, e}, {a1, e
′}} then K̄m is defined by a single facet {{e, e′, a1}}. In

this case Km is pictured in the middle below and K̄m is pictured on the right.

b

b

bb

e′

a5a4

b

b

a1

e
b b

b

b

be

a1

e′ b

b

bbe

a1
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Examples 5.4.7.

• If Km is defined by facets {{e, a1}, {a1, e
′}, {a2, e

′}, {e, a2}} then K̄m is defined

by facets {{e, e′, a1}, {e, e
′, a2}}.

b

b

b

b
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b

b

be

a1
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b b

• IfKm is defined by facets {{e, a1, a2}, {e
′}} then K̄m is defined by facets {{e, a1, a2}, {e, e

′}}.

b b
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5.5 The relative homology H̃t(K̄m, Km)

In Section 5.4 we presented the definitions of Km and K̄m in a more general context.

As such, we now remind the reader that we are still assuming that S ∈ C ′ so that

S ⊆ N
2 and has minimal generating set Λ constructed from S = {m1, . . . , mn} as in

Section 5.1.

We would like to compute H̃t(K̄m, Km). In order to do so we must make some

more definitions. Set M
(−1)
m := Km and, for each 0 ≤ i ≤ r := |A| = n − 1, define

M
(i)
m to be the simplicial subcomplex of K̄m:

M (i)
m = Km ∪ {L = I ∪ J ∈ K̄m | I ⊆ A, J ⊆ E and |I| ≤ i}.

It is clear from the definitions that for all i, −1 ≤ i ≤ r, M
(i)
m is a simplicial complex

(any subset of Km is an element of M
(i)
m and any subset of L = I ∪ J ⊆M

(i)
m \Km is a

face of K̄m and contains less than or equal to |I| elements of A so will also be a face

of M
(i)
m ). In other words, M

(i)
m is the simplicial complex consisting of the faces of Km

together with the faces of K̄m containing less than or equal to i elements of A. We

now have the following filtration of simplicial complexes:

Km = M (−1)
m ⊆ M (0)

m ⊆ M (1)
m ⊆ · · · ⊆ M (r)

m = K̄m.

The above filtration implies that for any triple (i, j, k), 1 ≤ i < j < k ≤ r the

short exact sequence of chain complexes:

0 // C̃.(M
(j)
m ,M

(i)
m ) // C̃.(M

(k)
m ,M

(i)
m ) // C̃.(M

(k)
m ,M

(j)
m ) // 0

give rise to the long exact sequence in homology:

. . . // H̃t(M
(j)
m ,M

(i)
m ) // H̃t(M

(k)
m ,M

(i)
m ) // H̃t(M

(k)
m ,M

(j)
m ) // . . . ,
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t ≥ −1.

We would like to determine when H̃t(K̄m, Km) = H̃t(M
(r)
m ,M

(−1)
m ) = 0 for some

t ≥ −1. In order to do this, by recursion, it is enough to use triples (i, j, k) =

(−1, 0, 1), (−1, 1, 2), . . . , (−1, r − 1, r). We show this momentarily.

Since we are taking relative homology we always have H̃−1(M
(i)
m ,M

(i−1)
m ) = 0 and

H̃−1(K̄m, Km) = 0. We now give a sufficient condition for H̃t(K̄m, Km) = 0, t ≥ 0.

Lemma 5.5.1. Fix t ≥ 0. If for all i = 0, 1, . . . , r we have H̃t(M
(i)
m ,M

(i−1)
m ) = 0 then

H̃t(K̄m, Km) = 0.

Proof. The exact sequence

0 // C̃.(M
(r−1)
m ,M

(−1)
m ) // C̃.(M

(r)
m ,M

(−1)
m ) // C̃.(M

(r)
m ,M

(r−1)
m ) // 0

of chain complexes induces the long exact sequence

. . . // H̃t(M
(r−1)
m ,M

(−1)
m ) // H̃t(M

(r)
m ,M

(−1)
m ) // H̃t(M

(r)
m ,M

(r−1)
m ) // . . .

on homology. By assumption, H̃t(M
(r)
m ,M

(r−1)
m ) = 0. It remains to show that the

assumptions also imply that H̃t(M
(r−1)
m ,M

(−1)
m ) = 0 whence exactness will imply that

H̃t(M
(r)
m ,M

(−1)
m ) = 0 thus, completing the proof.

To compute H̃t(M
(r−1)
m ,M

(−1)
m ) we may consider a triple of the form (−1, r−2, r−

1). Then, as above, we obtain a long exact sequence of homology such that the

right hand term, H̃t(M
(r−1)
m ,M

(r−2)
m ) = 0 by assumption. Continuing this process, by

recursion, we obtain an exact sequence, corresponding to the triple (−1, 0, 1):

. . . // H̃t(M
(0)
m ,M

(−1)
m ) // H̃t(M

(1)
m ,M

(−1)
m ) // H̃t(M

(1)
m ,M

(0)
m ) // . . .

whereby, the assumptions imply that, H̃t(M
(1)
m ,M

(−1)
m ) = 0. Backwards substitution

now completes the proof.
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By definition the vertices of M
(i)
m and M

(i−1)
m are the same. This implies that

C̃0(M
(i)
m ,M

(i−1)
m ) = 0 and H̃0(M

(i)
m ,M

(i−1)
m ) = 0. We now give an explicit description of

a K-basis for C̃t(M
(i)
m ,M

(i−1)
m ). By definition of M

(i)
m and M

(i−1)
m , and after canonically

identifying elements of the quotient, C̃t(M
(i)
m ,M

(i−1)
m ) := C̃t(M

(i)
m )/C̃t(M

(i−1)
m ), it is

clear from the definitions that a K-basis for C̃t(M
(i)
m ,M

(i−1)
m ) is given by the set:

{eL | L = I∪E ∈ K̄m such that I ⊆ A, |L| = t+ 1, |I| = i, and L is not a face of Km}.

This is just saying that a K-basis for C̃t(M
(i)
m ,M

(i−1)
m ) can identified with the canonical

image in the quotient of the basis elements eL of C̃t(M
(i)
m ) such that L = I∪E contains

i elements of A and L is not a face of Km. Moreover, the above also implies that

if eL is a basis element of C̃t(M
(i)
m ,M

(i−1)
m ) then |L| = t + 1 = i + 2. In particular,

Ct(M
(i)
m ,M

(i−1)
m ) = 0 for t 6= i+ 1.

Considering now the relative chain complex C̃.(M
(i)
m ,M

(i−1)
m ) we note that, since

|E| = 2, C̃.(M
(i)
m ,M

(i−1)
m ) reduces to a short exact sequence:

0 // C̃i+1(M
(i)
m ,M

(i−1)
m ) // 0 ,

so that H̃i+1(M
(i)
m ,M

(i−1)
m ) = C̃i+1(M

(i)
m ,M

(i−1)
m ) and H̃j(M

(i)
m ,M

(i−1)
m ) = 0 for all

j ≥ 0, j 6= i+ 1.

This observation will be important in what follows. Hence, for emphasis, we state

the following lemma.

Lemma 5.5.2. With the notation as above, for all j ≥ 0, j 6= i + 1 we have

H̃i+1(M
(i)
m ,M

(i−1)
m ) = C̃i+1(M

(i)
m ,M

(i−1)
m ), and H̃j(M

(i)
m ,M

(i−1)
m ) = 0.

To help the reader understand the above definitions and notation, we do an ex-

ample.
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Example 5.5.3. Let S = {7, 10, 13, 15, 24, 25} so that S is minimally generated by

Λ = {{25, 0}, {18, 7}, {15, 10}, {12, 13}, {10, 15}, {1, 24}, {0, 25}}.

Let m = {55, 95}. We then compute that ∆m is defined by the facets:

{{1, 3, 7}, {4, 5, 6}, {1, 2, 4, 7}, {1, 3, 4, 6}, {2, 3, 5, 6},

{2, 4, 6, 7}, {3, 4, 6, 7}, {1, 2, 5, 6, 7}, {2, 3, 4, 5, 7}}.

Using Proposition 5.4.1 it is easy to see that Km = M
(−1)
m is defined by the facets:

{{1, 3, 7}, {1, 2, 4, 7}, {1, 3, 4, 6},

{2, 4, 6, 7}, {3, 4, 6, 7}, {1, 2, 5, 6, 7}, {2, 3, 4, 5, 7}}.

Since {1, 7} is a face of Km, we have that M
(0)
m = Km. Since {1, a, 7} is a face of

Km, 2 ≤ a ≤ 6, we also have that M
(1)
m = Km.

On the other hand M
(2)
m is given by:

M (2)
m := Km ∪ {{1, 3, 4, 7}, {1, 3, 6, 7}, {1, 4, 6, 7}},

since for example, {3, 4, 7} and {1, 3, 4} are faces of Km but {1, 3, 4, 7} is not a face

of Km. Similarly, one checks that {1, 3, 6, 7} and {1, 4, 6, 7} are faces of M
(2)
m not

contained in Km. Considering all four element subsets of {1, . . . , 7} containing both

1 and 7, we see that these are all of the new faces.

In a similar fashion, one computes that M
(3)
m is given by

M (3)
m := M (2)

m ∪ {{1, 3, 4, 6, 7}},

and that M
(3)
m = K̄m.
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Considering C̃.(M
(2)
m ,M

(1)
m ), we have:

0 // C̃3(M
(2)
m ,M

(1)
m ) // 0 ,

where a K-basis of C̃3(M
(2)
m ,M

(1)
m ) is given by {e{1,3,4,7}, e{1,3,6,7}, e{1,4,6,7}}.

Similarly considering C̃.(M
(3)
m ,M

(2)
m ), we have:

0 // C̃4(M
(3)
m ,M

(2)
m ) // 0 ,

with a K-basis of C̃4(M
(3)
m ,M

(2)
m ) given by {e{1,3,4,6,7}}.

To see that C̃3(M
(3)
m ,M

(2)
m ) = 0, for example, we note that the faces:

{1, 3, 6, 7}, {1, 4, 6, 7}, {1, 3, 4, 7}

of M
(3)
m are elements of M

(2)
m \Km whereas {3, 4, 6, 7} and {1, 3, 4, 6} are faces of Km.

5.6 A vanishing theorem

Our goal now is to understand [14, Proposition 3.2, p. 153]. In light of Lemma

5.5.1, we have the following criterion: If for all i = 0, 1, . . . , r = |A| = n − 1 we

have H̃t(M
(i)
m ,M

(i−1)
m ) = 0 then H̃t(K̄m, Km) = 0. To use this criterion, we establish

a correspondence between H̃t(M
(i)
m ,M

(i−1)
m ), and the homology of certain simplicial

complexes Tm ([14, p. 153]) which we now define.

For every m ∈ S define the simplicial complex on the vertex set E as follows:

Tm := {J ⊆ E | m− nJ ∈ S}.

Moreover, set

Em := {e ∈ E | m− e ∈ S},
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and define Σ′
m to be the simplicial complex consisting of all subsets of Em. Then Tm

is a simplicial subcomplex of Σ′
m. If m ∈ B then Em = ∅, Σ′

m = {∅} and Tm = {∅}.

If m 6∈ B then, since E = {e, e′}, we have that Σ′
m is defined by one of the three sets

of facets: {{e}}, {{e′}}, or {{e, e′}} and that there are four choices for Tm: {{e}},

{{e′}}, {{e}, {e′}}, or {{e, e′}}.

We now relate C̃i+1(M
(i)
m ,M

(i−1)
m ) to the simplicial complexes Tm and Σ′

m just

defined. Since the vertices of Σ′
m−nI

and Tm−nI are the same by definition we have

that C̃0(Σ
′
m−nI

, Tm−nI ) = 0, which implies that for all I ⊆ A such that m − nI ∈ S

we have H̃0(Σ
′
m−nI

, Tm−nI ) = 0. Hence, C̃.(Σ′
m−nI

, Tm−nI ) reduces to:

0 // C̃1(Σ
′
m−nI

, Tm−nI )
// 0 .

This implies that H̃1(Σ
′
m−nI

, Tm−nI ) = C̃1(Σ
′
m−nI

, Tm−nI ) and that C̃1(Σ
′
m−nI

, Tm−nI ) 6=

0 if and only if m− nI − e ∈ S, m− nI − e
′ ∈ S and m− nI − nE 6∈ S. (This is the

only case in which we will have Σ′
m−nI

6= Tm−nI .)

Consider now the K-vector space

⊕

I⊆A,|I|=i,m−nI∈S

C̃1(Σ
′
m−nI

, Tm−nI ).

We can denote a K-basis for the sum as the set {eI | I ⊆ A and |I| = i and C̃1(Σ
′
m−nI

, Tm−nI ) 6=

0}.

I now claim that:

C̃i+1(M
(i)
m ,M (i−1)

m ) ∼=
⊕

I⊆A,|I|=i,m−aI∈S

C̃1(Σ
′
m−nI

, Tm−nI ),

via the isomorphism eL 7→ eI (recall that L = I ∪E).

Indeed, by the previous discussion, we have that a K-basis for C̃i+1(M
(i)
m ,M

(i−1)
m )

is given by the set:

{eL | L = I∪E ∈ K̄m such that I ⊆ A, |L| = i+ 2, |I| = i, and L is not a face of Km}.
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On the other hand, the definitions of K̄m and M
(i)
m imply that for a fixed L = I ∪E ∈

K̄m\Km, I ⊆ A, |I| = i, (so that L is not a face of M
(i−1)
m ) we have, by definition of

K̄m, that m − nI − e ∈ S and m − nI − e
′ ∈ S but m − nI − nE 6∈ S. Hence the

correspondence eL 7→ eI is bijective.

We have the following statement.

Proposition 5.6.1. With the notation and assumptions above, for a fixed i, 0 ≤ i ≤

r = |A| = n− 1, we have the following isomorphisms on homology for all j ≥ 0:

1. H̃i+1(M
(i)
m ,M

(i−1)
m ) ∼=

⊕
I⊆A,|I|=i,m−nI∈S

H̃0(Tm−nI ).

2. H̃j(M
(i)
m ,M

(i−1)
m ) = 0, j 6= i+ 1.

Proof. The second assertion is contained in Lemma 5.5.2. To prove the first, by

Lemma 5.5.2, H̃i+1(M
(i)
m ,M

(i−1)
m ) = C̃i+1(M

(i)
m ,M

(i−1)
m ). Combing this with the pre-

vious observation that H̃1(Σ
′
m−nI

, Tm−nI ) = C̃1(Σ
′
m−nI

, Tm−nI ), along with the above

discussion, we have that

H̃i+1(M
(i)
m ,M (i−1)

m ) ∼=
⊕

I⊆A,|I|=i,m−nI∈S

H̃1(Σ
′
m−nI

, Tm−nI ).

We now observe that the K-vector space C̃1(Σ
′
m−nI

, Tm−nI ) 6= 0 exactly when

m− nI − {e} ∈ S, m− nI − {e
′} ∈ S, m− nI − nE 6∈ S, and is 1-dimensional. This

is exactly the case when Tm−nI = {{e}, {e′}}, i.e., the only case when H̃0(Tm−nI ) is

1-dimensional.

Remark 5.6.2. The above has been extracted from page 152 to the bottom of page

153 of [14]. In particular, Proposition 5.6.1, is more or less [14, Proposition 3.2, p.

153], although we hope the above discussion has helped to explain what is happening.
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To help the reader understand the above notation and proof, we do an example.

Example 5.6.3. This example is a continuation of Example 5.5.3. Recall that S is

minimally generated by

Λ = {{25, 0}, {18, 7}, {15, 10}, {12, 13}, {10, 15}, {1, 24}, {0, 25}},

and that m = {55, 95}. We illustrate the assertion that

C̃i+1(M
(i)
m ,M (i−1)

m ) ∼=
⊕

I⊆A,|I|=i,m−nI∈S

C̃1(Σ
′
m−nI

, Tm−nI ).

It is easy to compute Tm−nI for all I in the sum using Km. For example, let i = 2.

We summarize Σ′
m−nI

and Tm−nI in Table 5.1.

We have that Tm−nI is disconnected for I ∈ {{3, 4}, {3, 6}, {4, 6}}, so that a K-

basis for
⊕

I⊆A,|I|=2,m−nI∈S

C̃1(Σ
′
m−nI

, Tm−nI )

is given by {e{3,4}, e{3,6}, e{4,6}}. Comparing this with the K-basis for C̃3(M
(2)
m ,M

(1)
m ),

described in Example 5.5.3, we see that the correspondence eL 7→ eI is an isomor-

phism.

5.7 A set containing all nontrivial Betti numbers

In this section, for a fixed t ≥ 0, we give a finite subset of S containing all m ∈ S

such that H̃t(∆m) 6= 0. We first recall what exactly we are doing. We would like to

give a sufficient condition for H̃t(∆m) = 0 for some t ≥ 0. Recall that we have the

following long exact sequence of homology:

. . . // H̃t(Km) // H̃t(∆m) // H̃t(∆m, Km) // . . . ,
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I Tm−nI Σ′
m−nI

{2,3} {{7}} {{7}}
{2,4} {{1,7}} {{1,7}}
{2,5} {{1,7}} {{1,7}}
{2,6} {{1,7}} {{1,7}}
{3,4} {{1},{7}} {{1,7}}
{3,5} {{7}} {{7}}
{3,6} {{1},{7}} {{1,7}}
{4,5} {{7}} {{1,7}}
{4,6} {{1},{7}} {{1,7}}
{5,6} {{1,7}} {{1,7}}

Table 5.1: The simplicial complexes Tm−nI and Σ′
m−nI

of Example 5.6.3.

and the relation H̃t(Km) ∼= H̃t+1(K̄m, Km). This implies that if H̃t+1(K̄m, Km) = 0

and H̃t(∆m, Km) = 0 then H̃t(∆m) = 0.

We now give a sufficient condition for H̃t(∆m, Km) = 0 for all t ≥ 0.

Proposition 5.7.1. Let m ∈ S and suppose m − nI 6∈ B for all I ⊆ A. Then

H̃t(∆m, Km) = 0 for all t ≥ 0.

Proof. If m − nI 6∈ B for all I ⊆ A, then all of the facets of ∆m meet E so that

∆m = Km whence C̃.(∆m, Km) equals the zero complex. Thus, H̃t(∆m, Km) = 0 for

all t ≥ 0.

In fact, we can be more specific. If C̃t(∆m) = C̃t(Km) then C̃t(∆m, Km) = 0 and

thus H̃t(∆m, Km) = 0. We take care of this in the following statement.

Proposition 5.7.2. Let m ∈ S and suppose that m−nI 6∈ B for all I ⊆ A, such that

|I| = t+ 1. Then H̃t(∆m, Km) = 0.

Proof. If m− nI 6∈ B for all I ⊆ A such that |I| = t+ 1, then all of the t-dimensional

faces of ∆m are contained in a facet meeting E so that C̃t(∆m) = C̃t(Km). Thus

C̃t(∆m, Km) = 0, so that H̃t(∆m, Km) = 0.
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Let us now determine when H̃t(K̄m, Km) = 0 for some t ≥ 1.

Proposition 5.7.3. With the notation above, fix t ≥ 0. If for all I ⊆ A, such that

|I| = t and such that m−nI ∈ S, we have that H̃0(Tm−nI ) = 0 then H̃t+1(K̄m, Km) =

0.

Proof. Lemma 5.5.1 implies that if, for all i = 0, 1, . . . , r = |A| = n − 1, we have

H̃t(M
(i)
m ,M

(i−1)
m ) = 0 then H̃t(K̄m, Km) = 0. Moreover, Proposition 5.6.1 says that

for all i ≥ 0,

H̃i+1(M
(i)
m ,M (i−1)

m ) ∼=
⊕

I⊆A,|I|=i,m−nI∈S

H̃0(Tm−nI ),

and that H̃t(M
(i)
m ,M

(i−1)
m ) = 0 for all t 6= i+1. It thus follows (by Lemma 5.5.1) that

if, for a fixed i ≥ 0, we have H̃i+1(M
(i)
m ,M

(i−1)
m ) = 0 then H̃i+1(K̄m, Km) = 0. The

above isomorphism implies that H̃i+1(M
(i)
m ,M

(i−1)
m ) = 0 if and only if for all I ⊆ A,

such that |I| = t and, such that, m−nI ∈ S, we have that H̃0(Tm−nI ) = 0. This final

observation completes the proof.

Recall that, just before Proposition 5.7.1, we derived the following criterion: if

H̃t+1(K̄m, Km) = 0 and H̃t(∆m, Km) = 0 then H̃t(∆m) = 0. The contrapositive reads:

if H̃t(∆m) 6= 0 then H̃t+1(K̄m, Km) 6= 0 or H̃t(∆m, Km) 6= 0. It thus follows that the

multidegrees m ∈ S such that H̃t(∆m) 6= 0, t ≥ 0 are contained in the set:

Bt := {m ∈ S | H̃t+1(K̄m, Km) 6= 0 or H̃t(∆m, Km) 6= 0}.

We hope that Bt is finite. At present we have developed enough theory to describe

a finite set, which we label Ct, containing Bt.

Theorem 5.7.4. The multidegrees of all t-syzygies of p are contained in the finite

set

Ct := {B + sums of t+ 1 distinct elements of A}
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∪{(d, d) + S̃\S + sums of t distinct elements of A} .

(Since |A| = n− 1, we have that Cn−1 = {nΛ + S̃\S}, and that Ct = {}, t ≥ n.)

Proof. By the previous discussion all multidegrees of t-syzygies are contained in Bt.

Thus, we may show that Bt ⊆ Ct and that Ct is finite. Proposition 5.7.2 implies that

if m ∈ S and H̃t(∆m, Km) 6= 0 then m − nI ∈ B for some I ⊆ A with |I| = t + 1.

This implies that for some I ⊆ A, |I| = t + 1 and for some q ∈ B we have m =

q + nI . Thus, the elements of m ∈ Bt with H̃t(∆m, Km) 6= 0 are contained in the set

{B + sums of t+ 1 distinct elements of A}.

Before proceeding further, we note that the elements m′ ∈ S such that H̃0(Tm′) 6=

0 are of the form m′ = s+ nE for some s ∈ S̃\S. Indeed, by definition of S̃ it is clear

that if, for some s ∈ S̃\S, we have m′ = s + (d, d) then H̃0(Tm′) 6= 0. Conversely,

let m′ ∈ S and suppose that H̃0(Tm′) 6= 0. Then m′ − e ∈ S and m′ − e′ ∈ S but

m′ − nE = s ∈ G(S)\S. Since s+ e = m′ − e′ ∈ S and s+ e′ = m′ − e ∈ S, we have

s ∈ S̃. It follows that if m ∈ S and m− nI ∈ S with H̃0(Tm−nI ) 6= 0, for some I ⊆ A

such that |I| = t, then m = nI + s+ (d, d).

Now let m ∈ S and suppose that H̃t+1(K̄m, Km) 6= 0. Then, by Proposition 5.7.3,

there exists I ⊆ A such that |I| = t and such that m − nI ∈ S with H̃0(Tm−nI ) 6=

0. We just showed that this implies that m = nI + s + (d, d) for some s ∈ S̃\S.

Thus, the elements of m ∈ Bt with H̃t+1(K̄m, Km) 6= 0 are contained in the set

{(d, d) + S̃\S + sums of t distinct elements of A}. We have shown that Bt ⊆ Ct.

Since both B and S̃\S are finite sets so is Ct.

We would like to relate Theorem 5.7.4 with the terminology of Chapter 4 which we

now recall. Recall, that the second coordinates of elements of S̃\S are immediately

unstable elements of gr(S ) (i.e., if x is the second coordinate of some element of
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S̃\S then tx is killed by td in gr(S )) and, similarly, the first coordinates of S̃\S are

the immediately unstable elements of gr(Ŝ ). Recall that if x = (x1, x2) ∈ S̃\S then

deg(x) = ord(x2) − 1 = ord(x1) − 1, and that the maximum order of immediately

unstable elements of gr(S ) and gr(Ŝ ) coincide (Lemma 4.2.13).

We also recall that x = (x1, x2) ∈ (B)i, if and only if the canonical image of tx2

in the quotient gr(S )i/((t
d) gr(S )i−1) is non-zero (Proposition 4.2.4). Moreover, the

canonical lift of the monomials of gr(S )/(td) gr(S ) constitutes a finite (minimal)

generating set of gr(S ) as a K[td]-module, as does the lift of gr(Ŝ )/(sd) gr(Ŝ ) for

gr(Ŝ ) as a K[sd]-module. Thus, we may refer to the second coordinate of elements

of B as the “basis” of gr(S ) and the first coordinate of elements of B as the “basis”

of gr(Ŝ ) (Definition 4.2.6).

The following observation is immediate from the definitions and useful in what

follows.

Lemma 5.7.5. The maximum N-degree of an element of C0 is equal to:

max{{max{N-degree of a basis element of S}+ 1}∪

{max{N-degree of an element of S̃\S}+ 2}}.

Equivalently, the maximum degree of an element of C0 is equal to:

max{max{ord(x) | tx is a basis element of gr(S )}+ 1} ∪ {max{ord(x) | x

is an immediately unstable element of gr(S )}+ 1}}.

Example 5.7.6. Let S = {2, 12, 15}, so that Λ = {{15, 0}, {13, 2}, {3, 12}, {0, 15}}.

Using Mathematica, the sets Ci were found to be:
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C_0:={{3, 12}, {6, 24}, {9, 36}, {12, 48}, {13, 2}, {15, 60}, {16,

14}, {19, 26}, {22, 38}, {25, 50}, {26, 4}, {28, 62}, {29, 16}, {32,

28}, {35, 40}, {38, 52}, {39, 6}, {39, 36}, {41, 64}, {42,

18}, {42, 48}, {45, 30}, {48, 42}, {51, 54}, {52, 8}, {52, 38}, {55,

20}, {55, 50}, {58, 32}, {65, 10}, {65, 40}, {68, 22}, {68,

52}, {71, 34}, {78, 12}, {81, 24}}.

There are thus 36 elements of C0 and the maximum degree of an element of C0 is

thus 8.

C_1:={{16, 14}, {19, 26}, {22, 38}, {25, 50}, {28, 62}, {29, 16}, {32,

28}, {35, 40}, {38, 52}, {41, 64}, {42, 18}, {42, 48}, {45,

30}, {45, 60}, {48, 42}, {51, 54}, {52, 38}, {54, 66}, {55,

20}, {55, 50}, {58, 32}, {58, 62}, {65, 40}, {68, 22}, {68,

52}, {71, 34}, {71, 64}, {78, 42}, {81, 24}, {81, 54}, {84, 36}}

There are thus 31 elements of C1.

C_2:={{55, 50}, {58, 62}, {68, 52}, {71, 64}, {81, 54}, {84, 66}}

There are thus 6 elements of C2. Since |A| = 2, these are all of the check sets.

The elements of S̃\S are:

{{24, 21}, {27, 33}, {37, 23}, {40, 35}, {50, 25}, {53, 37}}.

The maximum degree of an element of S̃\S is thus 6.

The elements of B are:

{{0, 0}, {3, 12}, {6, 24}, {9, 36}, {12, 48}, {13, 2}, {16, 14}, {19,

26}, {22, 38}, {25, 50}, {26, 4}, {29, 16}, {32, 28}, {35, 40}, {38,

52}, {39, 6}, {42, 18}, {52, 8}, {55, 20}, {65, 10}, {68, 22}}.

The maximum degree of an element of B is thus 6.

We can also represent the syzygies in Table 5.2.
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i m ∆m dimK H̃i(∆m)
0 {15,60} {{3}, {1, 4}} 1
0 {39,36} {{1,3},{2,4}} 1
0 {45,30} {{1, 4}, {2, 3}} 1
0 {78,12} {{2},{1,3}} 1
1 { 45, 60} {{1, 3}, {1, 4}, {2, 3, 4}} 1
1 {54, 66} {{2, 3},{1, 2, 4}, {1, 3, 4}} 1
1 {78, 42} {{2, 4},{1, 2, 3}, {1, 3, 4}} 1
1 {84, 36} {{1, 3}, {2, 3}, {1, 2, 4}} 1
2 {84, 66} {{1, 2, 3},{1, 2, 4}, {1, 3, 4}, {2, 3, 4}} 1

Table 5.2: The data associated to Example 5.7.6

5.8 A simple description for reg(p)

We now use Lemma 5.7.5 to obtain a simple description for reg(p) with respect to

the standard N-grading. We also show that this is related to the degree for which S

stabilizes. Recall that reg(p) = max{bi − i}, where bi is the maximum (N-graded)

degree of an i-syzygy [1, Definition 1.1, p. 3].

We first recall the following notation for this Chapter. We have that S is generated

by n + 1 elements. Thus, we are taking B = K[X0, . . . , Xn] and we claim that

pd p ≤ r = |A| = n − 1. Indeed, we have that pdB R = pdB p + 1. By the graded

Auslander-Buchsbaum theorem [17, Excercise 19.8, p. 489], we have that pdB R =

depthB − depthR. Thus, pdB R ≤ n + 1 − 1 = n (since 1 ≤ depthR ≤ 2) so that

pdB p ≤ n− 1 = r.

We first need some preliminary results. Let N = max{deg(x) | x ∈ C0} and let

M denote the elements of C0 of degree N . Then, by definition of C0, the elements

of M will be of the form q + a for some a ∈ A, q ∈ B such that deg(q) = N − 1 or

(d, d) + s for some s ∈ S̃\S such that deg(s) = N − 2. Note that if elements q ∈ B

and s ∈ S̃\S contribute to elements of M then they are elements of maximum degree
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of B and S̃\S respectively. Also note that M need not have elements of both forms.

More specifically, a case 1 curve will only have elements of the form q + a, a case 2

curve will have elements of both forms, and a case 3 curve will have elements only of

the form (d, d) + s.

We have the following statement.

Lemma 5.8.1. Let N = max{deg(x) | x ∈ C0} and let M denote the elements of

C0 of degree N . The following statements hold. For any element q + a of M (q ∈ B

such that deg(q) = N − 1, a ∈ A), setting m = q + nA implies that H̃r−1(∆m) 6= 0.

For any element (d, d) + s, of M (s ∈ S̃\S such that deg(s) = N − 2 of M), setting

m = s+ nΛ implies that dimK H̃r(∆m) = 1.

Proof. We first recall that r = |A| = n − 1. Suppose M has an element of the form

q+ a as described in the statement. Let m = q+ a+nA\{a} = q+nA. We claim that

H̃r−1(∆m) 6= 0. We first make some observations. Recall the long exact sequence:

. . . // H̃r−1(Km) // H̃r−1(∆m) // H̃r−1(∆m, Km) // H̃r−2(Km) // . . .

of homology. Suppose that H̃r−1(∆m, Km) 6= 0 and that H̃r−2(Km) = 0. i.e., we have

the diagram:

. . . // H̃r−1(Km) // H̃r−1(∆m) // H̃r−1(∆m, Km) // 0 .

Then exactness implies that H̃r−1(∆m) 6= 0.

Recall also that H̃r−2(Km) ∼= H̃r−1(K̄m, Km) (Section 5.2). The outline for proof

is thus the following. We show that H̃r−1(K̄m, Km) = 0 and that H̃r−1(∆m, Km) 6= 0.

We now show that H̃r−1(K̄m, Km) = 0. By Proposition 5.6.1 we have the following

isomorphism:

H̃r−1(M
(r−2)
m ,M (r−3)

m ) ∼=
⊕

I⊆A,|I|=r−2,m−nI∈S

H̃0(Tm−nI ).
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To see that H̃r−1(K̄m, Km) = 0, by Lemma 5.5.1, we may show that the right hand

side of the above isomorphism is zero.

Suppose not. Then there exists I ⊆ A, |I| = r − 2 such that H̃0(Tm−nI ) 6= 0.

Then m−nI = (d, d)+ s̃ for some s̃ ∈ S̃\S (note that this implies that S̃\S 6= ∅). By

assumption, since m = q+nA, |A| = r, and |I| = r−2, we have that m−nI = q+nA\I

which has degree N + 1. Since q+ nA\I = m− nI = (d, d) + s̃, and deg(q) = N − 1 it

follows that N−1 = deg(q) = deg(s̃). On the other hand, we have that s̃+(d, d) ∈ C0

and deg(s̃+ (d, d)) = N + 1 > N . This is a contradiction.

We now show that H̃r−1(∆m, Km) 6= 0. For this we consider the diagram:

C̃.(∆m, Km) : . . . // C̃r(∆m, Km) // C̃r−1(∆m, Km) // C̃r−2(∆m, Km) // . . . ,

and we claim that C̃r−1(∆m, Km) 6= 0 while both C̃r(∆m, Km) and C̃r−2(∆m, Km) = 0.

To see that C̃r−1(∆m, Km) 6= 0, we note that since m − nA ∈ B, A is an r − 1-

dimensional facet of ∆m not meeting E. Thus A is a face of ∆m not in Km, so

C̃r−1(∆m, Km) 6= 0. On the other hand, any r-dimensional face of ∆m must contain

r+1 elements of Λ thus meeting E. This implies that all r-dimensional faces of ∆m are

faces of Km, and thus C̃r(∆m, Km) = 0. Finally, since deg(q) = max{deg(x) | x ∈ B}

we have that q + a 6∈ B for all a ∈ A. This implies that m − nI ∈ S\B for any

I ⊆ A, |I| = r − 1. Thus any r − 2-dimensional face of ∆m is contained in a face

meeting E and thus is a face of Km so that C̃r−2(∆m, Km) = 0.

Thus, if M contains an element of the form q + a, as described in the statement,

then setting m = q + nA implies that H̃r−1(∆m) 6= 0. Thus, we have constructed an

r − 1 syzygy of p of degree N + r − 1.

Suppose now that M contains an element of the form (d, d) + s for some s ∈ S̃\S

such that deg(s) = N − 2. Let m = (d, d) + s + nA = s + nΛ. I claim that ∆m is
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the r-sphere which will show that dimK H̃r(∆m) = 1. By definition of S̃ we have that

s + e ∈ S for all e ∈ E and I claim we also have s + a ∈ S for all a ∈ A. Suppose

not. We have the chain of sets S ⊆ S̃ ⊆ S ′, and S ′ is a semigroup. If s + a 6∈ S then

s + a ∈ S ′\S so that for some m, p ≥ 0, s′ = s + a + pe +me′, is an element of S̃\S

of degree strictly greater than s. This is a contradiction.

By assumption, we have that m−nΛ = s 6∈ S. On the other hand, since s+a ∈ S

for all a ∈ A, we have that for each L ⊆ Λ, |L| = r+ 1, m− nL = s+ λ ∈ S for some

λ ∈ Λ. Thus ∆m is the r-sphere as claimed. Thanks to Leslie Roberts who noticed

that ∆m would be the r-sphere. This simplified my original argument.

Thus, ifM contains an element of the form (d, d)+s, as described in the statement,

then setting m = s+ nΛ yields an r-syzygy of p of degree N + r.

We have the following theorem. Our formulation of the statement and our proof

is independent from [6, Theorem 16, p. 177].

Theorem 5.8.2. With the notation as above, the following statements hold.

reg(p) = max{degN(x) | x ∈ C0}

= max{{max{degree of an element of B}+1}∪{max{degree of an element of S̃\S}+2}}

= max{max{ord(x) | tx is a basis element of gr(S )}+ 1}∪

{max{ord(x) | x is an immediately unstable element of gr(S )}+ 1}}.

Proof. We prove the first equality. The equality of the others follows from Lemma

5.7.5. Lemma 5.8.1 combined with Theorem 5.7.4 shows that reg(p) ≥ max{deg(x) |

x ∈ C0}. We now show that reg(p) ≤ max{deg
N
(x) | x ∈ C0}.

Fix i such that 0 ≤ i ≤ pd p. As in the above discussion, we may take 0 ≤ i ≤ r.

Let m ∈ S such that H̃i(∆m) 6= 0 and deg(m) = max{deg(x) | x ∈ S and H̃i(∆x) 6=
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0}, i.e., m is an element of S corresponding to the maximum degree of an i-syzygy

with respect to the standard grading. By Theorem 5.7.4 we have that m ∈ Ci. Thus

we have two cases: either m = q+nI for some I ⊆ A, |I| = i+1, and for some q ∈ B,

or m = (d, d) + s+ nI′ for some I ′ ⊆ A, |I ′| = i, and for some s ∈ S̃\S.

In the first case we have that deg(m) − i = deg(q) + i + 1 − i = deg(q) + 1 ≤

max{deg(x) | x ∈ C0}. Similarly, in the second case we have that deg(m) − i =

deg((d, d) + s) + i− i = deg((d, d) + s) ≤ max{deg(x) | x ∈ C0}.

Remark 5.8.3. Theorem 5.8.2 does not say that the regularity is bounded by the

maximum degree of a 0-syzygy (however, it is bounded by the maximum degree of

an element contained in a finite set containing all zero-syzygies).

Example 5.8.4. Continuing with Example 5.5.3, recall that S = {7, 10, 13, 15, 24, 25},

we have, using Mathematica, that C0 contains 127 elements. (For interest, C1, C2, C3, C4, C5

contain 228, 267, 208, 93, and 14 elements respectively.) The maximum degree of ele-

ments of C0 is 10. These elements are

{{10, 240}, {19, 231}, {21, 229}, {24, 226}, {27, 223}, {34, 216}}.

The maximum degree of a basis element is 9 and there was only one basis element

{9, 216} of this degree. Thus, the elements of C0 of the form {9, 216} + a for some

a ∈ A are:

{{10, 240}, {19, 231}, {21, 229}, {24, 226}, {27, 223}}.

We have that m = {9, 216}+ nA = {65, 285} and ∆m is defined by facets:

{{2, 3, 5, 6, 7}, {2, 3, 4, 5, 7}, {2, 3, 4, 5, 6}, {2, 3, 4, 6, 7}, {2, 4, 5, 6, 7}, {1, 2, 5, 6, 7},

{1, 2, 4, 5, 7}, {1, 2, 4, 6, 7}, {1, 2, 3, 6, 7}, {1, 3, 4, 5, 6, 7}}.
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Computing homology we see that dimK H̃4(∆m) = 1.

The maximum degree of elements of S̃\S is 8 and there was only one element

{9, 191}. The element of C0 of the form (d, d) + {9, 191} is thus {34, 216}. Letting

m = {9, 191}+ nΛ = {90, 285} we have that ∆m is the 5-sphere:

{{2, 3, 4, 5, 6, 7}, {1, 2, 4, 5, 6, 7}, {1, 2, 3, 4, 6, 7},

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 5, 6, 7}, {1, 3, 4, 5, 6, 7}}

and thus dimK H̃5(∆m) = 1.

It turns out that the minimal free resolution of p is of the form (we are using

nongraded notation):

0 // B6 // B42 // B107 // B126 // B75 // B21 // p // 0 .

5.9 Regularity and the stabilization of S

Recall the following notion. Let i ≥ 0 be the smallest integer such that td : gr(S )j →

gr(S )j+1 is an isomorphism for all j ≥ i. (This is equivalent to saying the same thing

for sd and gr(Ŝ ).) Then we say that S has stabilized in degree i.

Using Theorem 4.2.17 and Theorem 5.8.2 we have the following description of

reg(p). This description shows how the arithmetic properties of S are intrinsically

related to the regularity of p and how being a case 1,2 or 3 affects how regularity is

attained. Essentially, we are showing that being case 1,2 or 3 is explained in the last

row of the Betti diagram. Recall that r = |A| = n− 1.

Theorem 5.9.1. With the notation above, let i be the integer for which S stabilizes.
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1. If S is a case 1 curve then reg(p) = i + 1 and regularity will be obtained as an

r − 1 syzygy which comes from a multidegree q + nA for some q = (q1, q2) ∈ B,

deg(q) = i with q1 a stable basis element of gr(Ŝ ), and q2 a stable basis element

of gr(S ). Regularity will not be obtained as an r-syzygy.

2. If S is a case 2 curve then reg(p) = i and regularity will be obtained as both

r− 1 and r-syzygies. Moreover, there exists an r− 1-syzygy attaining regularity

which comes from a multidegree of the form m = q + nA for some q ∈ B,

deg(q) = i − 1. There also exists an r-syzygy attaining regularity which comes

from a multidegree of the form s+ nΛ for some s ∈ S̃\S, deg(s) = i− 2.

3. If S is a case 3 curve then reg(p) = i and regularity will be obtained as an

r-syzygy which comes from a multidegree of the form s+ nΛ for some s ∈ S̃\S,

deg(s) = i−2. Any other t-syzygy (which may or may not be present), 0 ≤ t ≤ r,

attaining regularity will come from a multidegree of the form s+ (d, d) + nL for

some L ⊆ A such that |L| = t and some s ∈ S̃\S, deg(s) = i− 2.

Proof. To get the claimed values for regularity we use Theorems 5.8.2 and 4.2.17. If

S is a case 1 curve then, by Theorem 4.2.17, the integer i for which S stabilizes equals

the maximum degree of a basis element. Moreover, all unstable elements have degree

< i. Thus, if S is case 1, by Theorem 5.8.2, reg(p) = i + 1. If S is case 2 then, by

Theorem 4.2.17, the maximum degree of a basis element equals the maximum degree

of an unstable element, which is one less than the integer i for which S stabilizes.

Thus, by Theorem 5.8.2, reg(p) = i. Similarly, if S is case 3 then by Theorem 4.2.17

the maximum degree of an unstable element is strictly greater then the maximum

degree of a basis element and is one less than the integer i for which S stabilizes.

Thus, by Theorem 5.8.2, reg(p) = i.
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To see how the regularity is attained, we let N = max{deg(x) | x ∈ C0}. Then,

by Theorem 5.8.2, in all three cases reg(p) = N . By Theorem 5.7.4, the t-syzygies of

p are all contained in Ct. Thus, we fix t and describe the elements of Ct of degree

N + t. By Theorem 5.7.4 we have

Ct := {B + sums of t+ 1 distinct elements of A}

∪{(d, d) + S̃\S + sums of t distinct elements of A}

and, since r = |A| = n− 1, Cn−1 = {nΛ + S̃\S}, and that Ct = {}, t ≥ n.

If S is a case 1 curve then the maximum degree of a basis element is N − 1 and

all unstable elements have degree < N − 1. This implies, by Lemma 4.2.13, that all

elements of S̃\S have degree < N − 2. Thus, for a fixed t ≥ 0, the elements of Ct of

degree N+t will be of the form q+nI , I ⊆ A, |I| = t+1 and deg(q) = N−1. Moreover,

since S is case 1, Theorem 4.2.17 implies that, any basis element q = (q1, q2) of degree

N − 1 will have tq2 and sq1 stable basis elements of gr(S ) and gr(Ŝ ) respectively. In

particular, the elements of Cr−1 of degree N + r− 1 will be of the form q+nA where,

since S is case 1, q = (q1, q2) has degree N−1 and tq2 and sq1 are stable basis elements

of gr(S ) and gr(Ŝ ) respectively. We showed in Lemma 5.8.1 that elements of Cr−1

of this form produce r − 1-syzygies of degree N + r − 1 and thus, attain regularity.

Since there will be no elements of Cr of degree N + r, regularity is not attained as an

r-syzygy. This completes the proof of statement 1.

If S is case 2 we argue similarly, except in this case Cr−1 with have elements of

the form q + nA, q ∈ B of degree N + r − 1 and Cr will have elements of the form

s + nΛ, s ∈ S̃\S of degree N + r. We showed in Lemma 5.8.1 that these elements

produce r − 1 and r-syzygies of degrees N + r − 1 and N + r, respectively, and thus

attain regularity. Thus, statement 2 holds.
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If S is case 3 then Cr will have elements of the form s + nΛ, s ∈ S̃\S of degree

N + r and, by Lemma 5.8.1, these elements produce r-syzygies of degree N + r and

thus attain regularity. On the other hand, since S is case 3, the maximum degree of

an element of S̃\S is greater than or equal to the maximum degree of an element of

B (by definition and Lemma 4.2.13) so that for a given t, the elements of Ct of degree

N + t will be of the form s+ (d, d) + nI , s ∈ S̃\S, I ⊆ A, |I| = t. Thus, should these

elements produce syzygies, they will attain regularity and will be of the claimed form.

Thus, statement 3 holds.

Corollary 5.9.2. The elements S ∈ C ′ for which reg(p) is not attained in the last

step of the minimal free resolution of p are precisely those S ∈ C ′ which are case 1

and for which R is not Cohen-Macaulay.

We now do some more examples. (Note that we are resolving p as an B-module,

and not B/p, equivalently R.)

Examples 5.9.3. • If S = {1, 2, 3} then S is Cohen-Macaulay, so we are in

case 1. We have that S stabilizes in degree 1, and reg(p) = 2.

• If S = {5, 9, 11, 20} then we are in case 1. We have that S stabilizes in degree

5, and reg(p) = 6.

• If S = {7, 10, 13, 15, 24, 25} then S stabilizes in degree 10, and we are in case

2. Thus, reg(p) = 10. We showed in Example 5.8.4 that the regularity was

obtained as both r − 1 and r-syzygies.

• If S = {2, 12, 15} then we are in case 3. We have that S stabilizes in degree 8 so

reg(p) = 8. We showed that regularity was obtained as an r-syzygy in Example
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5.7.6. We also showed that regularity is not attained as an r − 1-syzygy (and

hence no lower syzygy.

• If S = {1, 3, 13, 15} then we have a case 3 curve which attains regularity as an

r−2 syzygy, an r−1-syzygy and r-syzygy. This curve stabilizes in degree 7. The

maximum degree of a basis element is 5. The maximum degree of an unstable

element is 6. There are two elements of S̃\S of degree 5: {{25, 50}, {37, 38}}.

Using [20], we obtain the Betti diagram in output 3 which shows that reg(p)

equals 7.

Macaulay 2, version 0.9.95

with packages: Classic, Core, Elimination, IntegralClosure, LLLBases, Parsing,

PrimaryDecomposition, SchurRings, TangentCone

i1 : B=QQ[X_0..X_4]

o1 = B

o1 : PolynomialRing

i2 : p=monomialCurveIdeal(B,{1,3,13,15})

2 2 3 2 2 3 3 2 2 2 4 5

o2 = ideal (X X - X X , X X - X X , X - X X , X X - X X , X X X - X X , X

2 3 1 4 1 3 0 4 1 0 2 0 3 2 4 0 1 3 2 4 2

--------------------------------------------------------------------------

4 4 4 6 5 5 2 4 4 2 2 3

- X X , X X - X X , X - X X , X X - X X , X X - X X X )

0 4 1 2 0 3 3 2 4 1 3 2 4 0 3 1 2 4

o2 : Ideal of B

i3 : betti res image mingens p
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0 1 2 3

o3 = total: 9 17 12 3

2: 1 . . .

3: 2 2 . .

4: . . . .

5: 4 6 2 .

6: 2 7 6 1

7: . 2 4 2

o3 : BettiTally

Considering the last row of the Betti diagram, we see that there are two 1-

syzygies, four 2- syzygies and two 3-syzygies attaining regularity.

There are no 0-syzygies arising from multidegrees of (N-graded) degree 7. There

are two 1-syzygies arising from multi-degrees of degree 8: {{42, 78}, {54, 66}}

and they are of the desired form. The 2-syzygies which arise from multidegrees

of degree 9 are {{54, 81}, {56, 79}, {66, 69}, {68, 67}} and are of the desired form.

The 3-syzygies which arise from multidegrees of degree 10 are {{68, 82}, {80, 70}}

are also of the desired form.



Chapter 6

Summary and Conclusions

We now provide a summary of the thesis and make some comments about the obser-

vations made.

6.1 The total tensor resolution

The motivation behind the total tensor resolution, Theorem 3.3.1, was to show how

the correspondence of Theorem 3.1.3 could be used to construct the minimal free res-

olutions of R and p as modules over B. More specifically, given a simplicial complex

∆m such that H̃i(∆m) 6= 0, we wanted to construct an i-syzygy of p. In the process

of answering this question we noticed that Theorem 3.3.1 could be stated more gen-

erally. Moreover, by stating Theorem 3.3.1 as such, we were able to show, in Section

3.5.1, that this approach could be used to construct the minimal free resolutions of

monomial ideals of B. We have not seen this approach for computing minimal free

resolutions of graded B-modules done explicitly anywhere. The total tensor reso-

lution has the advantage of always producing minimal free resolutions which is not

114
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true for other combinatorial algorithms. (See [26] for several combinatorial methods

for producing (generally non-minimal) free resolutions of monomial ideals and affine

semigroup rings.) We should also mention that Theorem 3.3.1 seems more useful for

monomial ideals, as opposed to affine semigroup rings, since the check set contain-

ing all multidegrees of syzygies is more manageable. For example, the check sets of

Theorem 5.7.4 are in practice much larger than they need to be. It would be nice to

make them smaller and also to give a more conceptual description of finite check sets

containing all multidegrees of syzygies.

Another observation is that in the course of proving Theorem 3.3.1 we did not

directly use the assumption that B is a polynomial ring. This leads us to suspect that

this theorem may hold in a more general setting i.e., finitely generated modules over

an arbitrary Noetherian graded ring, or perhaps even finitely generated modules over

a Noetherian local ring. Having said this it may be better, before generalizing the

statement, to look for more general correspondences in the spirit of Theorem 3.1.3.

Such statements would yield more situations for the hypothesis of Theorem 3.3.1 to

be satisfied.

6.2 Stabilization

Chapters 4 and 5 were motivated by several factors. For example, not only did we

want to understand [14], and the check sets which they propose and we describe in

Theorem 5.7.4, but we also wanted to explore other applications of Theorem 3.1.3.

The end result was relating the methods of [29], [30], [28] and [14] with the correspon-

dence of Theorem 3.1.3. In particular, we introduced the notation of stabilization

(Definition 4.2.15), and the definition and characterization of the cases (Definition
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4.2.16 and Theorem 4.2.17). We then showed that these notions were all related to

understanding how the regularity of p is attained in Theorem 5.9.1. To this end,

Theorem 4.2.17, Lemma 5.8.1 and Theorem 5.9.1 should be seen as the main results

of this effort. Morever, the partitioning of the elements of C ′ as we have chosen to do

so is also interesting, as should already be apparent from Theorem 5.9.1. We discuss

other reasons in Section 6.3.

Experimental evidence suggests that the most common curves are case 2. It

would be nice to prove this and explain why. It would also be interesting to be able

to produce curves of each case at will. For example, experimental evidence suggests

that if x ≥ 1, Sx = {3, 27x, 36x, 64x} and gcd(Sx) = 1 then Sx defines a case 3

curve. Similarly, if x ≥ 1, Sx = {2, 12x, 15x} and gcd(Sx) = 1 then Sx defines a

case 3 curve. Experimental evidence also suggests that for case 3 curves, no 0-syzygy

(of p) attains regularity.

Finally, it would also be interesting to understand stabilization in terms of other

well studied invariants of R. For example, we saw in Theorem 5.9.1 that stabilization

is not equal to the regularity of p in general. Moreover, we will see other invariants

for which it is not in Section 6.3.

6.3 Some comments concerning regularity

We now discuss some of our observations concerning regularity. We would first like

to mention that a statement similar to Theorem 5.8.2, in slightly different language

and with a more direct argument than given here, appears in [27]. The argument we

give is motivated by several factors. For example, not only did we want to see how

far we could push the correspondence of Theorem 3.1.3, but also, at the moment, we
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do not know of another way of gaining insight into how the regularity is attained and

reflected in terms of the cases as we do in Theorem 5.9.1.

We would also like to mention that in [4] it is shown that if p defines a curve

in P
3
K

for which R is not Cohen-Macaulay then, in the notation of Chapters 4 and

5, reg{p) = max{deg(x) | x ∈ S ′\S} + 2. More specifically, in [4] it is shown

that if p defines a monomial curve in P
3
K

and R ∼= B/p then reg(R) = max{j |

(H1
m
(R))j 6= 0} + 1 so that reg(p) = max{j | (H1

m
(R))j 6= 0} + 2. It is well known

that H1
m
(R) = K[S ′\S], see [4, Lemma 1.1, p. 82], [32, Corollary 3.4, p. 153] or [22,

Lemma 2.2] for example, so that reg(p) = max{deg(x) | x ∈ S ′\S}+2. A consequence

of Theorem 5.8.2 and Theorem 4.2.17 is that reg(p) = max{deg(x) | x ∈ S ′\S} + 2

holds in P
n
K

only when R is not Cohen-Macaulay and not case 1. This observation,

combined with the observation of [4] that reg(p) = max{deg(x) | x ∈ S ′\S}+2 holds

in P
3
K
, implies that there are no curves in P

3
K

for which R is not Cohen-Macaulay

and case 1. The problem studied in [22] suggest that these are new observations.

More specifically, let m = (sd, sd−m1tm1 , . . . , smn−1tmn−1 , td), let q = (td, sd) and let

r(S) = min{i ∈ N | mi+1 = qmi}. The number r(S) is called the reduction number of

m with respect to q. In our notation, r(S) = min{i ∈ N | (K[S]/(sd, td)K[S])i+1 = 0}

or, equivalently, max{deg(x) | x ∈ B}. In [22] it is asked whether or not reg(R) = r(S)

or, equivalently, whether or not reg(p) = r(S) + 1. They show that this is not true,

in general, by providing the counter example S = {2, 5, 13, 14, 16, 17} which turns

out to be, in our language, a case 3 curve. Another consequence of Theorem 5.8.2

and Theorem 4.2.17 is that, more generally, the collection of monomial curves for

which reg(R) 6= r(S) are those curves which are case 3. Moreover, the collection of

non-Cohen-Macaulay monomial curves for which r(S) = max{j | (H1
m
(R))j 6= 0}+ 1



CHAPTER 6. SUMMARY AND CONCLUSIONS 118

are precisely those which are case 2.

Another advantage to our approach is that we are able to compute the regularity

of p without computing a generating set for p. More specifically, since both the

integer for which S stabilizes and the case of S are easily computable, we conclude

that the regularity of p can be effectively computed by elementary means. Although

we restricted our attention to monomial curves, our approach may be instructive

when considering more general settings. For example, in [3] regularity of projective

monomial varieties of codimension two is studied. At present we are considering the

regularity of one dimensional projective monomial varieties of arbitrary codimension.

As such, our methods may be instructive when considering the regularity of more

general monomial varieties of codimension greater then two.

6.3.1 Explicit regularity bounds

Theorem 4.4.6 and Theorem 5.9.1 imply that if p is the defining ideal of a case

1 curve corresponding to S = {m1, . . . , mn} then reg(p) is less than or equal to

mn − n + 2. Thus, for case 1 curves, a fairly restrictive hypothesis, we have given a

combinatorial argument for the more general bound given in [21]. This also gives a

partial solution to a problem posed in [10, p. 207], which asked for a combinatorial

argument for the bound of [21] when p defines a projective monomial curve. If p is

the defining ideal of a case 2 or case 3 curve then Theorem 4.4.6 and Theorem 5.9.1

imply that reg(p) ≤ 2mn − 2n + 1. In [25, Proposition 5.5, p. 732] results from

[21] are used to obtain another bound. In particular, it was shown that reg(p) ≤

max1≤i<j≤n{(mi − mi−1) + (mj − mj−1)} (n ≥ 3, m0 = 0). (Taking S = {1, 2, 3}

shows that the bounds of [21] and [25] are sharp.) The question of bounding regularity
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of curves is also an on-going problem of more recent interest. See [16] and [15]

for example. Thus, our primary contribution to this effort is not our bounds for

regularity but instead in the fact that we can compute the regularity of p effectively

by elementary means and also that we can explain why and how the regularity is

attained. It would be interesting to explore the interplay between the methods used

here and these previously mentioned accounts to see if a better bound can be obtained.

6.4 Betti numbers and the characteristic of K

Since the property of an element of gr(S ) being a basis element or an unstable

element does not depend on the characteristic of the field, we conclude from Theorem

5.8.2 that the regularity of p does not depend on the characteristic of the field, char K.

This is not true for graded B-modules in general. For example, it is well known that

the Betti numbers of

I = (X0X1X2, X1X2X3, X0X1X4, X0X3X4, X2X3X4,

X0X2X5, X0X3X5, X1X3X5, X1X4X5, X2X4X5),

which is the Stanley-Reisener ideal (see [12, Chapter 5] for a discussion of Stanley-

Reisener ideals) of a triangulation of the real projective plane, as a N
6-graded B =

K[X0, . . . , X5]-module depend on char K. Here, we note that reg(I) = 3 if char K = 0,

and reg(I) = 4 if char K = 2.

Having said this it remains unclear to what extent the Betti numbers of R are

independent of char K. More specifically, in [12, Theorem 1.3, p. 188] it is shown that

the Betti numbers βi,m of R = K[S] do not depend on char K for i = 0, 1, n − 1, n,

and n + 1. (βn+1,m will always be zero.) Since TorBi−1(K, p)m ∼= TorBi (K, R)m, i ≥ 1
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we conclude that the Betti numbers βj,m of p do not depend on the characteristic of

the field for j = 0, n− 2, n− 1 and n.
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