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Abstract

Many speech enhancement algorithms suffer from musical noise – an estimation

residue noise consisting of music-like varying tones. To reduce this annoying noise,

some speech enhancement algorithms require post-processing. However, a lack of au-

ditory perception theories about musical noise limits the effectiveness of musical noise

reduction methods.

Scientists now have some understanding of the human auditory system, thanks to

the advances in hearing research across multiple disciplines – anatomy, physiology,

psychology, and neurophysiology. Auditory models, such as the gammatone filter

bank and the Meddis inner hair cell model, have been developed to simulate the

acoustic to neuron transduction process. The auditory models generate the neuron

firing signals called the cochleagram. Cochleagram analysis is a powerful tool to

investigate musical noise.

We use auditory perception theories in our musical noise investigations. Some

auditory perception theories (e.g., volley theory and auditory scene analysis theories)

suggest that speech perception is an auditory grouping process. Temporal properties

of neuron firing signals, such as period and rhythm, play important roles in the

grouping process. The grouping process generates a foreground speech stream, a

background noise stream, and possibly additional streams.

We assume that musical noise is the result of grouping to the background stream

the neuron firing signals whose temporal properties are different from the ones grouped

to the foreground stream. Based on this hypothesis, we believe that a musical noise

reduction method should increase the probability of grouping the enhanced neuron

firing signals to the foreground speech stream, or decrease the probability of grouping
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them into the background stream. We propose a post-processing musical noise reduc-

tion method for the auditory Wiener filter speech enhancement method, in which we

employ a proposed complex gammatone filter bank for the cochlear decomposition.

The results of a subjective listening test of our speech enhancement system show that

the proposed musical noise reduction method is effective.
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Chapter 1

Introduction

1.1 Overview

The objective of speech enhancement research is to reduce the noise level of corrupted

speech and to increase speech intelligibility. The usual method of speech enhancement

is to decompose the noisy speech into another domain and use an estimator to estimate

the clean speech.

Many speech enhancement methods suffer from musical noise, the continuous

music-like varying tones caused by the estimation residue noise. To reduce musical

noise, post-processing is required. Currently there are few investigations on musical

noise, especially from the auditory perception point of view. Some post-processing

methods reduce musical noise at the cost of introducing more distortions into the

enhanced speech signals.

Hearing science deals with the auditory perception of sound and speech. It in-

volves multiple disciplines such as physiology, biophysics, biochemistry, psychoacous-

tics, psychology, and neurophysiology. In the past few decades, advanced technologies

have allowed scientists to measure the sensory transduction process of the mammalian

auditory receptor (cochlea) in their research. The structure of the cochlea (basilar

membrane, inner hair cells, afferent/efferent nerves, etc.) is now well understood.

Scientists have also developed computational models to simulate the cochlear trans-

duction process [21] [40] [48] [49]. On the frontier of psychoacoustic research, scientists

have developed many auditory perception theories [3] [5].
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Although the exact human auditory perception process remains a mystery, the ef-

forts in hearing science have inspired researchers to use auditory models and auditory

perception theories to solve speech enhancement problems. Some researchers incor-

porate human auditory properties in their speech enhancement algorithms [22] [29].

Others develop the speech enhancement algorithms in the auditory domain [36].

In this thesis, we will propose an auditory speech enhancement platform and

investigate musical noise in the auditory domain. Based on our investigations, we

will propose a method to reduce musical noise.

1.2 Thesis Objectives and Contributions

One objective of this thesis is to create an auditory speech enhancement platform.

We will extend the real gammatone filter bank and propose a complex gammatone

filter bank and its inversion filter bank for auditory decomposition and synthesis. The

proposed complex gammatone filter bank is computationally less expensive. We will

integrate the Wiener filter method to perform speech enhancement, and the Meddis

inner hair cell model to convert the decomposed auditory domain signals into the

cochleagram (the neuron firing signals), which is similar to the “spectrogram” in the

auditory domain.

Another objective of this thesis is to gain a better understanding of musical noise

by using auditory perception theories and to develop a musical noise reduction post-

processing method. To this end, we will perform the Wiener filter speech enhancement

method and convert the enhanced auditory domain signals into a cochleagram. We

will apply auditory perception theories (the volley theory and the auditory scene

analysis theories) in cochleagram analysis on the Wiener filter residue noise, and will

propose a hypothesis on musical noise perception. Based on our hypothesis, we will

propose a post-processing algorithm to reduce musical noise.

This thesis makes the following contributions: (1) we propose a complex gamma-

tone filter bank and its inversion filter bank for auditory domain decomposition and

synthesis. (2) we perform cochleagram analysis and propose a hypothesis on musical

noise perception. (3) we propose a post-processing method for Wiener filter speech



3

enhancement in the proposed auditory domain.

1.3 Thesis Organization

This thesis is organized as follows. Following the introduction in Chapter 1, Chapter

2 reviews the research in the following aspects: speech enhancement, the physiological

auditory system and its models, and auditory perception theories.

In Chapter 3 and Chapter 4, the methods are discussed. In Chapter 3, we will

propose a complex gammatone filter bank cochlear model and its inversion filter bank.

In Chapter 4, we will first create an auditory speech enhancement platform in the

Matlab environment, integrating the proposed complex gammatone filter bank and its

inversion filter bank, the Wiener filter method, and the inner hair cell model. Then

we will perform the Wiener filter speech enhancement simulations and investigate

musical noise. Finally, we will propose a post-processing musical noise reduction

method.

In Chapter 5, we will perform the auditory Wiener filter speech enhancement

/post-processing simulations, and then conduct a subjective listening test on the

simulation results to evaluate the proposed speech enhancement method. We will

also discuss the evaluation results. In Chapter 6, conclusions will be presented and

future work will be discussed.



Chapter 2

Review of Speech Enhancement
Methods, the Auditory System,
and Perception Theories

In this chapter, we will review the following research: (1) speech enhancement meth-

ods; (2) the human physiological auditory system and auditory models; and (3) some

auditory perception theories. The review provides the background for building an

auditory speech enhancement platform and testing our proposed post-processing mu-

sical noise reduction algorithm.

2.1 Speech Enhancement Overview

2.1.1 Noise Degradation

Godsill and Rayner [17] classified noise degradations for recording devices and me-

dia into two groups: localized degradations and globalized degradations. Localized

degradations, e.g., clicks, are short duration (less than 20ms) and affect only cer-

tain samples in the signal waveform. Localized noise removal systems are based on

detection-interpolation schemes [31] [52]. Globalized degradation (e.g., the 60Hz hum

or ambient room noise) affects all samples of the signal waveform. In this thesis, we

are concerned only with speech enhancement in the context of globalized noise degra-

dation.
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estimation synthesis- -

enhanced
speech

--

noisy
speech decompos

ing

step 1 step 2 step 3

Figure 2.1: General speech enhancement.

2.1.2 Speech Enhancement Methods

To simplify the speech enhancement problem, we assume the following additive model:

x[n] = s[n] + d[n] (2.1.1)

where x[n], s[n], and d[n] represent digitized noisy speech, clean speech, and noise

respectively. The noise d[n] is assumed to be additive, stationary in the short time

sense, and slowly varying over time. Speech enhancement is a method of extracting

clean speech s[n] from noisy speech x[n] under certain constraints.

Most speech enhancement methods can be described in three steps (Figure 2.1):

1. decomposing the speech signal into a transformed domain;

2. estimating the clean channel signals in the transformed domain;

3. synthesizing the speech from the estimated channel signals.

Different speech enhancement methods use different transformation techniques and

estimation algorithms.

One category of speech enhancement methods is based on the short-time Fourier

transform (STFT). For example, the spectral subtraction (SS) speech enhancement

method and its variants are based on STFT techniques [2] [54]. The standard SS

method is to estimate the power density spectrum (PDS) of the clean signals by

subtracting the noise PDS from the PDS of the noisy signal in the STFT domain.

One variant of the SS method is to use absolute magnitude spectrum subtraction

(also called rectification) for estimating clean speech. The performance of SS methods

largely depends on the estimation accuracy of the noisy speech spectrum and the noise

spectrum. Poor spectral estimations result in large errors in the enhanced speech.

To reduce errors in spectral estimation, the noisy speech spectrum and the noise

spectrum are often averaged over the adjacent STFT frames.
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The Wiener filtering (WF) speech enhancement method is also based on the STFT

technique, and uses the same basic estimation principle as the SS methods. The

WF method can effectively reduce Gaussian noise [51] [52]. Another example of an

STFT based speech enhancement method is the Minimum Mean Square Estimation –

Short Time Spectral Amplitude (MMSE-STSA) method. This method assumes that

the noisy speech STFT coefficients for continuous frames are independent Gaussian

variables, which can be statistically modelled to estimate the clean speech spectrum

[10].

In addition to STFT-based techniques, researchers have used vector subspace

(VSS) based speech enhancement methods [11] [13] [25] [26]. A VSS-based speech

enhancement method usually has the following steps: (1) the noisy speech is decom-

posed into a vector space; (2) the noisy speech vector space is divided into a signal

subspace and a noise subspace; (3) the noise subspace is removed and the speech

signal is reconstructed from the signal subspace. VSS-based speech enhancement

methods may use several transformation techniques. Researchers commonly use the

Karhunen-Loéve transform (KLT) and the discrete cosine transform (DCT) for noisy

speech decomposition. KLT is an optimal eigen decomposition technique, but DCT

is more computationally efficient. A VSS-based speech enhancement method usually

uses a Laplacian model or a Gaussian model to describe the signal subspace, and uses

a Gaussian model to describe the noise subspace.

Researchers have also developed the following speech enhancement methods: Lin-

ear Predictive Coding (LPC) based methods [16] [20] [35], Kalman filter based meth-

ods [39], neural network based methods [12], Hidden Markov Model (HMM) based

methods [9] [38], and Wavelet based methods [1] [23] [24]. These methods are claimed

to have similar performance to the STFT-based and the VSS-based speech enhance-

ment methods.

2.1.3 Musical Noise

Most speech enhancement methods successfully reduce the level of noise. However,

they all suffer from the estimation residue noise called musical noise. Musical noise,



7

synthesis- -

enhanced
speech

step 4

estimation

step 2

post
processing

-

step 3

-

noisy
speech decompos

ing

step 1

-

Figure 2.2: A post-processing step is introduced after the estimation step to reduce
musical noise.

which is caused by errors introduced in the estimation step in most speech enhance-

ment methods, sounds like continuously varying tones and is perceptually quite an-

noying.

Increasing estimation accuracy reduces residue noise, and thus reduces the percep-

tion of musical noise. Researchers such as Boll [2] average the estimated magnitude

spectrum of the noisy speech and the noise over frames to increase the average esti-

mation accuracy. Hu and Loizou [23] use a low pass filter to average the magnitude

spectrum in their speech enhancement methods. However, residue noise cannot be

completely removed in the speech enhancement methods. A post estimation process-

ing step is needed to further reduce the musical noise effect (see Figure 2.2). Generally,

reducing musical noise may increase the distortion of the enhanced speech. For exam-

ple, Udrea [50] uses over-subtraction in his spectral subtraction speech enhancement

method to reduce the musical noise at a cost of increased distortion.

Some researchers have incorporated human auditory properties in their musical

noise reduction methods. Jabloun and Champagne [29] incorporated human hear-

ing properties in their VSS-based speech enhancement method. In their method,

the human critical band masking property was summarized to a masking function

of the masker frequency. In each vector processing frame, the masking threshold

was calculated and transformed into the vector subspace. The estimation algorithm

incorporated the masking threshold. The two researchers claim that their method out-

performs two other competing methods (the Pre-Whitening Signal Subspace method

and the Raleigh Quotient Signal Subspace method) for less musical noise perception

and that the residue noise has similar characteristics regardless of the corrupting noise

color.

Our research shows that the human auditory perception is a complicated process
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and that musical noise perception was not well understood by the previous researchers.

Currently there are no psychoacoustic theories about musical noise perception, and

no researchers use neuron firing signals to investigate the musical noise phenomenon.

Auditory perception theories (to be reviewed in Section 2.4) show that auditory

perception is related to cochlear neuron firing temporal patterns. In this thesis, we

will investigate the relationship between cochlear neuron firing temporal patterns of

estimation residue noise and musical noise perception based on literatures. After

reviewing the human auditory system and auditory perception theories in the follow-

ing sections, we will propose a hypothesis about musical noise perception and then

propose a musical noise reduction method.

2.2 The Human Auditory System

Anatomically, the human ear consists of three sections: the outer, middle, and inner

ear (see Figure 2.3). The outer ear collects sound and propagates it to the middle ear.

In the middle ear, three small bones provide impedance matching and transform the

sound to the inner ear. The inner ear has an auditory receptor structure called the

cochlea, which transduces the acoustic input sound into neuron firing signals [32] [57].

Figure 2.3: Diagram of a human ear showing the outer, middle, and inner ear [21]
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2.2.1 The Cochlea

The cochlea (see Figure 2.4) is a fluid-filled coiled tube that looks like a snail shell.

The stapes on its base connects to the middle ear. If a cochlea were uncoiled, it would

be about 35mm long. The cochlea tube structure is divided into three chambers (the

vestibular canal, cochlea duct, and tympanic canal) by the Reissner’s membrane and

the basilar membrane (see Figure 2.5). The cochlea also has many afferent/efferent

nerve fibers to transfer neuron signals to/from the central nerve system.

Figure 2.4: An uncoiled cochlea diagram [21]

2.2.2 Basilar Membrane (BM)

The basilar membrane is a stiff supporting structure for sensory cells within the

cochlea. The basilar membrane, measured from cochlear base to apex, is about 35mm

long (see Figure 2.4). Its width and stiffness change along its length. From base to

apex, the basilar membrane width increases by a factor of about 6, and the stiffness

varies by a factor of 100, with the stiffest part at the base. On the basilar membrane

there are three rows of outer hair cells (OHC) and one row of inner hair cells (IHC)

(see Figure 2.5). There are approximately 12,000 OHCs and approximately 3,500

IHCs on a human basilar membrane.
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Figure 2.5: Basilar Membrane diagram [21]

2.2.3 IHC and OHC

Inner hair cells (IHCs) and outer hair cells (OHCs) are different cells from anatomical

and functional points of view. IHCs are served by about 95% of the afferent nerve

fibers in a cochlea, which is evidence that IHCs are auditory receptors. [21]. OHCs

have motor structures and provide positive feedback to enhance the vibrations at

certain places on the basilar membrane [15].

Figure 2.6 shows the structure of an IHC. The IHC has hairs at its top and

afferent nerves attached at its base. Functionally, an IHC is somewhat similar to

a transistor. The bending of the cell hairs controls an ion current inside the IHC

similar to a transistor “gate.” The ion current induces firings in the afferent neurons.

The innervation process is also called the IHC transduction process, in which the

mechanical movements are transduced into neuron firings. If the input sound is a

periodic signal, the afferent nerve fibers show periodic high/low rate neuron firing

activities [14] [15] [21].
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Figure 2.6: Inner Hair Cell diagram [21]

Figure 2.7: Cochlear frequency mapping [21]



12

2.2.4 Cochlear Frequency Decomposition

Sound waves always travel from the cochlear base to the cochlear apex, and are not

reflected backward from the apex. A travelling sound wave causes relative displace-

ment of the BM, which causes the hairs of the IHCs to bend and starts the IHC

innervation process [14] [21]. The location of the maximum BM displacement varies

with the input frequency. The higher the input sound frequency, the closer the max-

imum BM displacement to the cochlear base. The lower the input sound frequency,

the closer the maximum BM displacement to the cochlear apex (see Figure 2.7). This

is the idea behind the Békésy’s travelling wave theory.

Békésy’s travelling wave theory differs from the earlier “place theory,” which

claims that the maximum displacement location on the BM solely determines the

pitch perception of the input sound. The “place theory” is correct for a high fre-

quency input sound, but fails to explain low pitch perception, which is related to

neuron firing temporal patterns. Békésy’s travelling wave theory suggests that the

BM in a cochlea can be viewed as a group of mechanical filters [21].

2.3 Auditory Model

The cochlear mechanical-to-neuron-transduction process is a non-linear process. Re-

searchers have suggested a two-stage auditory model to simulate this non-linear trans-

duction process. The first stage, which simulates the BM mechanical filtering process,

is called the cochlear model. The second stage, which simulates the inner hair cell

innervation process, is called the IHC model. The cochlear model can be designed

as a group of linear pass-band filters that decompose the input sound into cochlear

responses for different frequency bands. The IHC model represents the non-linear

part of the cochlear transduction process. It converts the decomposed cochlear model

responses into the neuron firing signals or cochleagram [28] [41].

It is also valuable to design an inversion or synthesis model to convert the de-

composed cochlear responses back into sound. Figure 2.8 shows the signal paths in a

complete auditory model.
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Figure 2.8: The signal path in the three auditory models.

2.3.1 Cochlear Model

The overlapped pass-band filters can be used to simulate the cochlear mechanical

filtering process [21]. The most popular pass-band filter cochlear model is the gam-

matone filter (GTF) bank model. The GTF cochlear model, developed from a cat’s

cochlea, was largely developed by researchers such as Patterson [45], Johannesma [30],

and de Boer [8].

Patterson’s gammatone filter, whose envelope approximates a gamma distribution

function, is characterized by its impulse response g(t) in the following equation:

g(t) = atN−1e−2πbt cos[2πft + φ], for t ≥ 0, N ≥ 1, (2.3.1)

where a is a normalization scaler, N is the filter order, b is the filter equivalent

rectangular bandwidth (ERB), f is the filter center frequency, and φ is the filter phase.

Figure 2.9 shows a sample gammatone filter impulse response g(t). A gammatone

filter bank consists of a group of overlapped gammatone filters of different center

frequencies and bandwidths.

2.3.2 IHC Model

Hearing scientists use the rate-intensity function to describe the mechanical-to-neuron-

transduction process of a single auditory nerve fiber at its characteristic frequency. To

approximate the nonlinear rate-intensity function of a single IHC, some researchers

use a half-wave rectifier followed by a square root compression function [33] [34],

which is not an accurate IHC model.
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Figure 2.9: A sample gammatone filter (GTF) impulse response g(t) - center frequency
f = 516Hz, bandwidth b = 82Hz.

In 1986, Meddis proposed an accurate IHC model describing the adaptation char-

acteristics of the mechanical-to-neuron-transduction process [40]. The Meddis IHC

model has good temporal properties. According to its developer, the Meddis IHC can

simulate certain auditory temporal phenomena such as phase locking. The outputs

of a group of Meddis IHC models are the neuron firing signals or cochleagram. The

cochleagram is a useful tool to investigate both the temporal and frequency properties

of the input sound.

The 1986 Meddis IHC model only simulates one major type of nerve fiber and

does not simulate two other types of nerve fiber. The model has since been revised

to include the other two types of nerve fibers and is more accurate than the earlier

model [48] [49]. However, the 1986 Meddis IHC model is still popular for auditory

speech processing because of its simple implementation.

Figure 2.10 shows the diagram of the Meddis IHC model. Meddis assumed that

there are quantities of “transmitters” inside an IHC which can be released into the

synaptic cleft as neurotransmitters and then recirculated. He defined the transmitter

permeability of an IHC membrane to control the transmitter releasing process, which

also depends on the instantaneous quantities of the free transmitters. The recircu-

lation process is proportional to the instantaneous quantities of the neurons in the

synaptic cleft [28] [41].
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Figure 2.10: Diagram of inner hair cell model

The Meddis IHC model can be described in the following difference equations:

q[n + 1]− q[n]

Ts

= y max(M − q[n], 0) + xw[n]− k[n]q[n] (2.3.2)

c[n + 1]− c[n]

Ts

= k[n]q[n]− lc[n]− rc[n] (2.3.3)

w[n + 1]− w[n]

Ts

= rc[n]− xw[n]. (2.3.4)

Ts is the adaptation interval, M is the pool capacity, and q[n], w[n], and c[n] denote

the instantaneous quantity of the transmitters in the pool, the transmitters in the

reprocessing store, and the transmitters in the synaptic cleft, respectively. Both

the factory and the reprocessing store produce transmitters to the pool. The new

transmitters from the factory are produced at the rate of y max(M − q[n], 0). The

reused transmitters from the reprocessing store are produced at the rate of xw[n].

k[n] denotes the membrane permeability. At a certain instant, k[n]q[n] amount of

transmitters are released from the free pool to the synaptic cleft. lc[n] represents the

lost transmitters and rc[n] represents the returned transmitters [28] [41].

The Meddis IHC model is driven by the input k[n], which can be acquired from

the GTF cochlear response s[n] in the following equation:

k[n] =





g
s[n] + A

s[n] + A + B
Ts for s[n] + A > 0;

0 for s[n] + A ≤ 0.

(2.3.5)
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where A, B, and g are parameters controlling the inner hair cell membrane perme-

ability [41]. The output of the Meddis IHC model is the neuron firing rate signal

q[n].

All the parameters of the Meddis IHC model described by equation (2.3.2) to

(2.3.5) are listed in Table 2.1. The pool capacity M is usually normalized to 1 but

can be set to a value such as 1000. The adaptation interval Ts must be less than

0.1ms [41].

Table 2.1: Meddis IHC-AN model parameters given by [40] [41]

parameters values
permeability parameter A=5
permeability parameter B=300
permeability parameter g=2000
replenishment rate y=5.05
rate loss from cleft l=2500
rate of release from reprocessing to free transmitter x=66.3
rate of return from the cleft r=6580
normalized maximum transmitter in system m=1.0
firing rate factor h=1

2.3.3 Cochleagram

The cochleagram is a time-frequency representation of the input sound passing through

the GTF bank and the IHC models.

Figure 2.11 shows a cochleagram of an impulse signal using our complex GTF

auditory system proposed in Chapter 3. The horizontal axis denotes time and the

vertical axis denotes the channel number. The curves are channel neuron firing signals

normalized into the range of (0, 1) in order to be plotted inside the horizontal channel

“bin.” The curves at the top of Figure 2.11 represent the high frequency channel neu-

ron firing signals, and the curves at the bottom represent the low frequency channel

neuron firing signals.

Cochleagram analysis is a useful tool for auditory sound/speech perception re-

search. According to some researchers [6] [7] [45] [47] [55] [56], the human brain may

perform an autocorrelation operation on the neuron firing signals and analyze the
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Figure 2.11: The cochleagram generated by an impulse signal

histogram information to obtain the fundamental pitch periods of the input sound.

The autocorrelation of a cochleagram can be used to extract the period of the funda-

mental pitch of the input sound. Other cochleagram analysis techniques include the

inter spike interval (ISI) histogram, post-stimulus time (PST) histogram, and neu-

ron firing cross-correlation [42] [43]. PST and ISI histograms are good for temporal

analysis of the input sound and can reveal pitch information about the input.

2.4 Auditory Perception Theories

2.4.1 Pitch Perception

Békésy’s travelling wave theory clearly reveals the relationship between the location of

the basilar membrane maximum displacement and the input signal frequency. How-

ever, it is wrong to conclude that pitch perception is determined only by the place of

IHC excitation on the BM, as “place theory” describes.
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Seebeck’s Siren

In 1834, Seebeck conducted an experiment challenging “place theory” [21] [53]. He

constructed a siren with a rotating disk full of small holes. Pulse trains were generated

when the disk was rotated. He found that 2ms interval pulse trains were perceived

as 500Hz pitch. But slightly modified intervals of the 2ms pulse trains (1.95ms and

2.05ms alternatively) were perceived as 250Hz pitch. Seebeck’s experiment was simu-

lated in the Matlab program (see Figure 2.12) and a similar result was obtained when

listening to the generated signals. In our simulation, a 250Hz pure tone signal and a

500Hz pure tone signal were generated and used as reference signals. Two listeners

were asked to determine if the pitch of the generated Seebeck’s pulse is close to the

pitch of one of the two reference signals.

Beat Phenomenon

The beat phenomenon can be observed when two slightly different frequency signals

are combined. When the combined signal is played, a low frequency pitch equal to

the frequency difference is heard.

Missing Fundamental Experiments

In the 1940s, Schouten managed to generate a complex signal without the funda-

mental frequency. His experiments, also called the missing fundamental experiments,

may be simplified as follows. Sine waves of 800Hz, 1000Hz, and 1200Hz tones are

generated and combined to generate a complex signal. These tones are actually the

fourth, fifth, and sixth harmonics of the fundamental frequency 200Hz of the complex

signal. When the complex signal is played, a 200Hz pitch is perceived. We simulated

Schouten’s experiment in Matlab and obtained a similar result (see Figure 2.13). In

our simulation, the generated complex signal was played. Two listeners were asked

to determine if the generated Schouten’s complex signal has the same pitch as the

reference signal – a 200Hz pure tone signal. The spectrum of the complex signal

shows that there is no spectral energy around the 200Hz frequency.
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Figure 2.12: Simulation of Seebeck’s experiment. (a) near 2ms pulse train x1(n)
waveform (1.95ms and 2.05ms alternatively, solid line) and its spectrum |X1(f)|; (b)
2ms pulse train x2(n) waveform and its spectrum |X2(f)|
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Figure 2.13: Schouten’s missing fundamental experiments. The top shows generated
complex signal x(n) waveform obtained by summing the 800Hz, 1000Hz, and 1200Hz
sine waves. The bottom shows the magnitude spectrum |X(f)|. Note that in the
spectrum there is no signal energy in the 200Hz location.
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Temporal Coding Pitch Perception Theory (Volley Theory)

The experiments of Seebeck and Schouten [21] show that pitch perception is not

simply determined by the IHC innervations around the location on the basilar mem-

brane, whose characteristic frequency is the pitch frequency. Wever proposed the

temporal coding theory (volley theory) to explain the pitch perception phenomenon.

He pointed out that pitch perception for complex signals is not solely determined by

neuron firings at the maximum BM displacement, and that neuron synchrony and

the temporal recurrent neuron firing pattern play an important role. Wever’s theory

that the pitch perception depends on both the excitation location and the temporal

properties of the neuron signals is well accepted [21].

2.4.2 Auditory Scene Analysis

Auditory scene analysis (ASA) deals with perception problems in complex environ-

ments. The ASA theories try to answer the question of how humans perceive “use-

ful” information from the mixture of sound sources. Having worked in this area for

decades, Bregman successfully built some ASA theories [3] [5].

Bregman suggested that there are two stages of ASA. The first stage is decom-

position: the input sound is decomposed into discrete cochlear neuron signals. The

second stage is grouping: the human brain groups the decomposed neuron signals

into different streams – commonly the foreground stream and the background stream.

The exact grouping theory is still unclear. But Bregman showed that the grouping is

largely related to neuron signal temporal properties: synchrony, onset/offset, rhythm,

etc. [4] [55] [56]. He pointed out that synchrony of neuron signals means that they

are probably from the same sound source.

ASA theories can explain the cocktail party phenomenon. In a noisy environment

such as a cocktail party, one listener can perceive a speaker’s speech without much

effort. Even if there is a second speaker, the listener can still manage to perceive the

first speaker’s speech. ASA theories suggests that the human brain may selectively

choose neuron firing signals that have the same repeating patterns and group them

into a speech stream. For those neuron firing signals that have different temporal
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patterns, the brain may group them into the background stream. The brain may

even attenuate the perception of the background stream.

In ASA theories, Bregman also discussed “attention” – a selective and capacity-

limited conscious perception. “Attention” is the involvement or the focus of the brain

on one “object.” Most people can focus on one object for a short time without any

difficulties. However, focusing on two objects simultaneously is demonstrably very

difficult. We take “attention” for granted. In fact, it consumes a large amount of

energy in the brain. Frequently switching “attention” between two or more objects

can cause the brain fatigue [55] [56].

2.5 Summary

In this chapter, we have reviewed some popular speech enhancement methods. In

order to design an auditory domain speech enhancement system, we have reviewed

the physiological human auditory system (the cochlea, the basilar membrane, and the

inner hair cell) and their computational models (the gammatone filter bank model,

the Meddis inner hair cell model, and the inversion filter bank). Finally, we have

reviewed auditory perception theories (pitch perception theories and auditory scene

analysis theories) that help us to analyze the musical noise phenomenon and to design

musical noise reduction algorithms.



Chapter 3

Proposed Complex GTF Bank

In this chapter, we propose a complex gammatone filter (CGTF) bank for cochlear

decomposition. The associated inversion filter bank is also proposed.

3.1 Background

The GTFs characterized by equation 2.3.1 can be implemented as FIR filters or IIR

filters. Slaney introduced a GTF design method using the filter impulse response

Laplace transformation [46]. Immerseel reviewed and compared different GTF bank

implementation methods [27]. In this thesis, we refer to Slaney’s GTF implementation

as the real GTF bank, which is implemented as a reference to our proposed complex

GTF bank.

Slaney’s real GTF design is based on the GTF impulse response Laplace transform

described by the following equations:

e−2πbt cos[2πft] ⇒ s + 2πb

(s + 2πb)2 + (2πf)2
, (3.1.1)

te−2πbt cos[2πft] ⇒ − d

dt
[

s + 2πb

(s + 2πb)2 + (2πf)2
], (3.1.2)

tN−1e−2πbt cos[2πft] ⇒ (−1)N−1 dN−1

dtN−1
[

s + 2πb

(s + 2πb)2 + (2πf)2
]. (3.1.3)

Based on the above derivations, Slaney concluded that a fourth order gammatone

filter can be implemented as an eighth order IIR filter or four cascaded second order

IIR filters in practice. Each of the second order IIR filters may be implemented in

23
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the format as

a0 + a1z
−1 + a2z

−2

b0 + b1z−1 + b2z−2.
(3.1.4)

Inspired by Slaney’s derivation method, we will derive a complex GTF bank in

the following sections. The proposed complex GTF bank is implemented as an IIR

filter bank. We first generalize a real gammatone filter impulse response to a complex

function. Then we derive the complex impulse response Laplace transform. Based

on the complex Laplace transform, we calculate the coefficients of the IIR filters. We

implement a fourth order IIR filter using the proposed complex GTF impulse response

Laplace transform method. The resulting fourth order complex IIR filter bank has

the same computational cost as Slaney’s eighth order real IIR filter bank. However,

we double the filters in each channel, therefore doubling the frequency resolution.

3.2 Complex GTF Bank

Our design of the complex GTF bank has two steps: (1) generalizing real GTF impulse

responses for the complex functions and designing an analog complex GTF bank; (2)

transforming the analog complex GTF bank to digital IIR filters using the impulse

invariance technique.

3.2.1 Complex GTF Generalization

The analog GTF impulse response g(t) in equation (2.3.1) is in fact the real part of

a complex GTF impulse response gc(t), defined as

gc(t) = atN−1e−2πbtej2πft

= atN−1e−[2πb−j2πf ]t

= atN−1e−pt, for t ≥ 0, N ≥ 1, (3.2.1)

where a is a normalization factor and p = 2πb− j2πf is a complex number. f is the

center frequency and b is the bandwidth, as defined in equation (2.3.1).

Figure 3.1 shows a sample complex GTF impulse response with the center fre-

quency f = 516Hz and the bandwidth b = 82Hz. The solid curve represents the real

part of the impulse response, and the dashed curve represents the imaginary part.
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Figure 3.1: A sample complex gammatone filter (GTF) impulse response – center
frequency = 516Hz, bandwidth = 82Hz. The solid curve represents the real part of
the impulse response, and the dashed curve represents the imaginary part

The Laplace transform of gc(t) is given by

Ga(s) = L {gc(t)}

= a(N − 1)!
1

(s + p)N

= c
1

(s + p)N
, (3.2.2)

where c = a(N − 1)! is a normalization factor to make the complex GTF filter

maximum gain unity. Note that Ga(s) has a pole at s = −p with multiplicity N .

3.2.2 Complex IIR GTF Design

Two techniques are commonly used to design a digital filter from an analog filter trans-

fer function: the impulse invariance technique and the bilinear transform technique.

Unfortunately, the bilinear transform technique can cause large center frequency devi-

ations for pass band filters with high center frequencies and thus cannot be employed

in our complex GTF design. On the other hand, the impulse invariance technique is

known to have the drawback of the aliasing effect. Fortunately, the aliasing effect can

be ignored in band pass digital filter designs. Thus the impulse invariance technique

is well suited to our need to design a digital pass band GTF.
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The pole with multiplicity N of the analog complex GTF transfer function Ga(s)

is s = −p. The corresponding pole in z-domain is z = e−pT , where T is the sampling

period. Applying the impulse invariance technique to equation (3.2.2) with some

algebra, the complex GTF z-domain transfer function G(z) is expressed as

G(z) = c
1

(1− e−pT z−1)N
. (3.2.3)

The normalization factor c can be calculated as

c = (1− e−pT+j2πfT )N

= (1− e−2πbT )N . (3.2.4)

Adding subscript i to equation (3.2.3), the ith channel IIR complex GTF transfer

function is

Gi(z) =
(1− e−2πbiT )N

(1− e−piT z−1)N
, (3.2.5)

where

pi = 2πbi − j2πfi (3.2.6)

is a complex number.

Some researchers proposed a fourth order (N = 4) real GTF banks to match the

steep skirt properties of the auditory filters [27] [36] [37]. We also propose the fourth

order (N = 4) complex GTF bank. Expanding equation (3.2.5) with N = 4, we

obtain the ith channel complex GTF transfer function as given by

Gi(z) =
(1− e−2πbiT )4

1− 4e−piT z−1 + 6e−2piT z−2 − 4e−3piT z−3 + e−4piT z−4
. (3.2.7)

3.2.3 Center Frequencies and Bandwidths

We determine the complex GTFs’ center frequencies by the following cochlear fre-

quency mapping function:

fi = 165.4(102.1xi − 1), (3.2.8)

where xi ∈ (0, 1) is the normalized cochlear distance from the stape, and the constants

recommended for the human cochlea are given by [18] [19] [46].
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Table 3.1: The center frequencies and bandwidths (in Hz) of the proposed complex
GTF bank and Slaney’s real GTF bank [46] with both numbers of channels M = 25

proposed complex GTF Slaney’s real GTF
channel number

center frequency bandwidth center frequency bandwidth
1 118 38 100 36
2 151 42 135 40
3 188 46 175 44
4 228 50 218 49
5 274 55 266 54
6 325 61 319 60
7 382 67 378 67
8 445 74 443 74
9 516 82 516 82
10 595 91 596 91
11 683 100 685 100
12 781 111 783 111
13 890 123 892 123
14 1013 137 1012 137
15 1149 152 1146 151
16 1301 168 1294 167
17 1471 187 1457 185
18 1661 208 1639 205
19 1872 231 1840 228
20 2108 257 2062 252
21 2372 286 2308 279
22 2666 318 2581 309
23 2993 354 2884 342
24 3359 395 3218 379
25 3767 440 3589 420

The complex GTF ERB bandwidth bi’s are determined from the filter center

frequency fi’s by the following function:

bi = 1.019× 24.7(1 + 4.37
fi

1000
). (3.2.9)

The constants are recommended for the human cochlea in [45]. The filter ERB bi’s

indicate the amount of cochlear frequency selectivity.

Consider the design of a complex GTF bank with M = 25 channels for the fre-

quency range of fL = 100 to fH = 4000Hz at sampling frequency fs = 8000Hz. The

center frequency for channel 1 is determined by

f1 = fL +
1

2
× 1.019× 24.7(1 + 4.37

fL

1000
). (3.2.10)

The center frequency for channel M (with M = 25 here) is determined by

fM = fH − 1

2
× 1.019× 24.7(1 + 4.37

fH

1000
). (3.2.11)
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From f1 and fM , we can calculate the corresponding normalized cochlear distance x1

and xM . The center frequencies of the channels between channel 1 and M = 25 are

determined by the evenly distributed normalized cochlear distances xi’s, between x1

and xM (see Figure 3.2).

In Table 3.1, the center frequencies and bandwidths of both the proposed complex

GTF bank and Slaney’s real GTF bank [46], both having a number of channels

M = 25, are listed. The two methods have slightly different center frequencies and

bandwidths. In Figure 3.2, the center frequencies and bandwidths of the proposed

complex GTF bank are plotted. The proposed complex GTF bank spectrum is shown

in Figure 3.3(a), in comparison with Slaney’s real GTF bank shown in Figure 3.3(b).
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Figure 3.2: M = 25 channel complex GTF bank center frequencies – channel number
mapping. ◦ represents the center frequencies. 2 represents the upper and lower
cutoff frequencies of the pass band filters. The center frequencies are determined
from equations (3.2.8), (3.2.10), and (3.2.11). The bandwidths are determined from
equation (3.2.9).
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Figure 3.3: (a): the M = 25 channel proposed complex GTF bank analysis filter
spectrum. (b): the M = 25 channel Slaney’s real GTF bank analysis filter spectrum.
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3.2.4 Complex GTF Bank Discussions

Choice of the Number of Channels

The number of channels M of the complex GTF bank affects the overall auditory

system frequency resolution. In Section 3.4, the results of the speech reconstruction

using both our proposed complex GTF system and Slaney’s real GTF system with

M varying between 5 and 30 are shown. Our choice of M = 25 is determined from

the simulation under the following considerations: (1) a low distortion is achieved;

and (2) no perceptual difference is heard between the reconstructed speech and the

original speech.

Comparing the Complex GTF Bank and the Real GTF Bank

The proposed complex GTF bank has two advantages over Slaney’s real GTF bank:

(1) the complex GTF transfer function has a simple closed-form solution given by

equation (3.2.5), which is easy to implement; and (2) the complex GTF (order N = 4)

is implemented as a fourth-order complex IIR filter. Slaney’s real GTF (order N = 4)

is implemented as four cascaded second-order real IIR filters. The computational costs

of the complex GTF and the real GTF are almost the same, but the proposed complex

GTF doubles the filters in each channel and therefore has better frequency resolution.

3.3 Inversion Filter Bank

3.3.1 Overview

The auditory inversion or synthesis filter bank has practical applications since it can

convert processed GTF responses into sound or speech.

Kubin and Kleijn [33] designed a synthesis filter bank whose impulse responses

are the time-reversed impulse response of the analysis GTFs. Their method requires

a time delay of at least 20ms to make the system causal. Lin et al. [36] [37] designed

an auditory inversion filter bank based on the least squares optimization technique.

Their method minimizes the noise power gain of the FIR inversion filters subject
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to the constraint that the difference between the impulse response of overall anal-

ysis/synthesis filters and an ideal delayed impulse is less than a value determined

experimentally.

We now proceed to propose an FIR-type inversion filter bank for our proposed

complex GTF bank. Our method employs similar optimization constraints to those

used in Lin et al.’s inversion filter method.

3.3.2 Inversion Filter Bank Algorithm

Our method is to approximate the real part of the overall analysis/synthesis system

impulse response to an L-sample delayed impulse δ[n− L].

To formulate the optimization problem, we assume that the ith channel analysis

filter complex impulse response is

gi[n] = gi,real[n] + jgi,imag[n], (3.3.1)

and the ith channel synthesis filter complex impulse response is

hi[n] = hi,real[n] + jhi,imag[n]. (3.3.2)

The overall analysis/synthesis system complex impulse response is obtained as

yc[n] =
M∑
i=1

[∑
m

hi[m]gi[n−m]

]

=
M∑
i=1

[∑
m

(hi,real[m] + jhi,imag[m]) (gi,real[n−m] + jgi,imag[n−m])

]

=
M∑
i=1

[∑
m

(hi,real[m]gi,real[n−m]− hi,imag[m]gi,imag[n−m])

]

+j

M∑
i=1

[∑
m

(hi,real[m]gi,imag[n−m] + hi,imag[m]gi,real[n−m])

]
.

(3.3.3)

The real part of complex impulse response yc[n] is denoted as

yr[n] =
M∑
i=1

[∑
m

(hi,real[m]gi,real[n−m]− hi,imag[m]gi,imag[n−m])

]
. (3.3.4)

The following notations are defined for our optimization method. We define a

vector

h =
[
hT

1,real hT
1,imag ... hT

i,real hT
i,imag ... hT

M,real hT
M,imag

]T
, (3.3.5)
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where

hT
i,real = [hi,real(0) hi,real(1) ... hi,real(Ns)] (3.3.6)

and

hT
i,imag = [hi,imag(0) hi,imag(1) ... hi,imag(Ns)] (3.3.7)

are the real and imaginary parts, respectively, of the impulse response of the ith FIR

synthesis filter to be designed. Each filter hi(n) is Ns + 1 long. Next, we define a

convolution matrix

G = [G1,real −G1,imag ... Gi,real −Gi,imag ... GM,real −GM,imag] , (3.3.8)

where Gi,real and Gi,imag are the ith channel analysis filter convolution matrices de-

fined by

Gi,real =




gi,real(0) 0 · · · 0

gi,real(1) gi,real(0) · · · 0

...
...

. . .
...

. gi,real(0)

gi,real(Na − 1) . .
...

0
...

...
...

.
...

. . . .

0 0 · · · gi,real(Na − 1)




(3.3.9)

and

Gi,imag =




gi,imag(0) 0 · · · 0

gi,imag(1) gi,imag(0) · · · 0

...
...

. . .
...

. gi,imag(0)

gi,imag(Na − 1) . .
...

0
...

...
...

.
...

. . . .

0 0 · · · gi,imag(Na − 1)




. (3.3.10)
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Na is the length of the ith channel analysis filter impulse response. Both Gi,real and

Gi,imag are (Na + Ns) × (Ns + 1) matrices. Finally, we define a L-sample delayed

impulse vector as

∆ = [0 0 ... 0 1 0 ... 0]T , (3.3.11)

where the position of element 1 in ∆ is the delay L. ∆ is Na + Ns long.

Using these new notations, the real part of analysis/synthesis system impulse

response yr[n] can be written in matrix format as

yr[n] =
M∑
i=1

[Gi,realhi,real −Gi,imaghi,imag]

= Gh, (3.3.12)

The difference between the real part of analysis/synthesis system impulse response

and the impulse vector ∆ is defined by

d = ∆− yr[n]

= ∆−Gh. (3.3.13)

We define the total system distortion

D = ‖d‖2 = dT d

= (∆−Gh)T (∆−Gh). (3.3.14)

The optimization problem is to minimize the noise power gain of the inversion filters

‖h‖2, subject to the constraint that the impulse response distortion D is less than a

threshold DT .

Our optimization problem can be solved by the classical Lagrange multiplier

method. Using a Lagrange multiplier λ, we formulate an equation

J(h, λ) = hT h + λ(dT d−DT ) (3.3.15)

= hT h + λ
[
(∆−Gh)T (∆−Gh)−DT

]
. (3.3.16)

Setting the derivative of J(h, λ) with respect to h to zero, we have

∂J(h, λ)

∂h
= 2h− 2λGT (∆−Gh) = 0. (3.3.17)

The optimal solution is achieved as

h = (GT G +
I

λ
)−1GT ∆. (3.3.18)
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3.3.3 Inversion Filter Design Parameters

To design an inversion filter bank, the following parameters are required:

• the truncated complex GTF impulse response gi[n] and its length Na;

• the length Ns of the FIR inversion filter impulse response hi[n];

• the value L of the L-sample delayed impulse δ[n− L]; and

• the Lagrange multiplier λ.

The truncation of the complex GTF impulse response gi[n] controls the inver-

sion filter design accuracy. The truncation length Na is determined by forcing the

magnitude of the tail of gi[Na] to be less than a small percentage ε of the maximum

magnitude of gi[n]. We specify ε = 0.1%, and find that the setting Na = 500 satisfies

all the channels of the proposed M = 25 channel complex GTF bank.

The lowest channel complex GTF center frequency is around 100Hz. We set the

inversion filter impulse response length as Ns = 80, which is close to the period of

complex GTF system cut-off frequency. Our observations (Section 3.4) show that the

choice of delay L near Ns archives the minimum distortion. We set L = 70 for the

minimum distortion.

The Lagrange multiplier λ is a trade-off parameter between the reconstruction

accuracy and the white noise power gain. Our observations (Section 3.4) show that

λ can be in the range of 50 to 2000. At λ = 200, the three distortion curves (num-

ber of channels M = 20, M = 25, and M = 30) of the proposed complex GTF

analysis/synthesis system begin to converge. So we set λ = 200.

Using the above parameters, we have designed an inversion filter bank for the

M = 25 channel complex GTF bank. Figure 3.4(a) displays the M = 25 chan-

nel complex GTF analysis/synthesis system individual channel magnitude spectrum.

Figure 3.4(b) displays the overall complex GTF analysis/synthesis system magnitude

spectrum, which is almost flat over the 100-4000Hz frequency range.

For the purpose of comparison, we have also designed the inversion filter bank

for Slaney’s real GTF bank [46] using Lin et al.’s method, which is displayed in
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Figure 3.3(b). The resulting real GTF analysis/synthesis system individual channel

magnitude spectrum and the overall system magnitude spectrum are displayed in

Figure 3.5(a) and Figure 3.5(b), respectively.

3.4 Complex GTF Analysis/Synthesis System Dis-

cussions

We calculate the overall system distortions, D’s in equation 3.3.14, of the proposed

complex GTF analysis/synthesis system and Slaney’s real GTF analysis/synthesis

system simulated with different parameter combinations of M =5, 10, 15, 20, 25,

30, and λ =1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000. The distortions for the

simulations are shown in Table 3.2 and Table 3.3 and plotted as a group of curves in

Figure 3.6(a) and Figure 3.6(b). As can be seen, the distortion curves of both the

proposed complex GTF system and Slaney’s real GTF system are similar.

The distortion curves in Figure 3.6(a) show that increasing the value of M can

effectively decrease the value of D. As λ increases from 1 to 2000, the distortion

curves for M = 10 to M = 30 begin to converge to a minimum distortion value.

Observing the results of our simulations, we choose λ = 200 and M = 25.

Our simulations show that a number of values for delay, L, can be chosen near

the inversion filter order Ns. This can be seen from Table 3.4, and from Figure 3.7(a)

and Figure 3.7(b), in which the values for the proposed complex GTF system and

Slaney’s real GTF system are plotted from Table 3.4 , respectively. In the simulation,

Ns is set to 80. The delay L is chosen to be 70 by observation.

3.5 Summary

In this chapter we have proposed an IIR digital complex GTF bank and its inversion

filter bank. The proposed complex GTF system is compared with Slaney’s real GTF

system. The two systems have the same computational cost (fourth order complex

IIR filter computational cost versus eighth order real IIR filter computational cost)
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Table 3.2: The complex GTF analysis/synthesis system total distortion D’s for vari-
ous numbers of channels M and Lagrange multipliers λ. Delay L = 70.

λ = 1 λ = 2 λ = 5 λ = 10 λ = 20 λ = 50
M = 5 0.8645 0.7965 0.7001 0.6304 0.5643 0.4791
M = 10 0.7423 0.6093 0.4196 0.2889 0.1824 0.0880
M = 15 0.6297 0.4519 0.2342 0.1241 0.0636 0.0303
M = 20 0.5427 0.3523 0.1566 0.0780 0.0417 0.0234
M = 25 0.4775 0.2901 0.1199 0.0598 0.0341 0.0213
M = 30 0.4264 0.2470 0.0986 0.0501 0.0301 0.0201

λ = 100 λ = 200 λ = 500 λ = 1000 λ = 2000
M = 5 0.4130 0.3442 0.2492 0.1783 0.1160
M = 10 0.0493 0.0296 0.0176 0.0126 0.0090
M = 15 0.0207 0.0160 0.0124 0.0102 0.0080
M = 20 0.0178 0.0145 0.0115 0.0095 0.0075
M = 25 0.0169 0.0140 0.0110 0.0090 0.0071
M = 30 0.0164 0.0136 0.0106 0.0086 0.0067

Table 3.3: The Slaney’s real GTF analysis/synthesis system total distortion D’s for
various numbers of channels M and Lagrange multipliers λ. Delay L = 70.

λ = 1 λ = 2 λ = 5 λ = 10 λ = 20 λ = 50
M = 5 0.8509 0.7910 0.7097 0.6498 0.5911 0.5136
M = 10 0.6524 0.5188 0.3549 0.2575 0.1872 0.1269
M = 15 0.4871 0.3251 0.1704 0.1021 0.0612 0.0315
M = 20 0.3758 0.2199 0.0959 0.0513 0.0298 0.0182
M = 25 0.3054 0.1651 0.0670 0.0366 0.0234 0.0164
M = 30 0.2579 0.1340 0.0540 0.0306 0.0209 0.0155

λ = 100 λ = 200 λ = 500 λ = 1000 λ = 2000
M = 5 0.4550 0.3975 0.3284 0.2859 0.2514
M = 10 0.0954 0.0691 0.0406 0.0261 0.0178
M = 15 0.0208 0.0157 0.0127 0.0115 0.0104
M = 20 0.0147 0.0128 0.0112 0.0103 0.0094
M = 25 0.0139 0.0123 0.0109 0.0099 0.0091
M = 30 0.0135 0.0120 0.0106 0.0097 0.0088

and a similar system distortion, but the proposed complex GTF system has better

frequency resolution because it doubles the filters in each GTF. In Chapter 4, we will

integrate the complex GTF bank, its inversion filter bank, and additional processing

blocks into an auditory speech enhancement processing platform.
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Table 3.4: The total distortion D of the proposed complex GTF analysis/synthesis
system and Slaney’s real GTF analysis/synthesis system as a function of delay L.
For both systems: number of channels M = 25, inversion filter order Ns = 80, and
Lagrange multiplier λ = 200.

Delay L proposed complex GTF Slaney’s real GTF
L=20 0.0720 0.0552
L=30 0.0363 0.0255
L=40 0.0227 0.0177
L=50 0.0172 0.0152
L=60 0.0148 0.0137
L=70 0.0140 0.0123
L=80 0.0144 0.0114
L=90 0.0157 0.0187
L=100 0.0564 0.1246
L=110 0.3613 0.3074
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Figure 3.4: (a): M = 25 channel complex GTF analysis/synthesis individual channel
spectrum. (b): the overall complex GTF analysis/synthesis system spectrum. The
synthesis filter design parameters are Na = 500, Ns = 80, L = 70, and λ = 200.
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Figure 3.5: (a): M = 25 channel Slaney’s real GTF analysis/synthesis individual
channel spectrum. (b): the overall real GTF analysis/synthesis system spectrum.
The synthesis filter design parameters are Na = 500, Ns = 80, L = 70, and λ = 200.
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Figure 3.6: (a): The proposed complex GTF analysis/synthesis system total distor-
tion D curve as a function of Lagrange multiplier λ and number of channels M . (b):
Slaney’s real GTF analysis/synthesis system total distortion D curve as a function of
Lagrange multiplier λ and number of channels M .
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Figure 3.7: (a): The proposed complex GTF analysis/synthesis system total distor-
tion D curve as a function of delay L. (b): Slaney’s real GTF analysis/synthesis
system total distortion D curve as a function of delay L. For both system: number
of channels M = 25, inversion filter order Ns = 80, and Lagrange multiplier λ = 200.



Chapter 4

Proposed Musical Noise Reduction
Method

In this chapter, we create a complex GTF auditory speech enhancement simulation

platform in the MATLAB environment. The platform includes the proposed complex

GTF bank and its inversion filter bank, a Wiener filter, and the Meddis IHC model.

In our proposed platform, we investigate the Wiener filter enhancement musical

noise. We convert the Wiener filter enhanced cochlear responses to a cochleagram,

which we compare to the clean speech cochleagram. We also employ auditory percep-

tion theories in the musical noise perception investigation. Based on our observations

and analysis, we propose a hypothesis about the cause of musical noise perception

and propose a neuron post-processing method to reduce musical noise.

4.1 Simulation Platform Overview

Figure 4.1 displays the diagram of our auditory speech enhancement simulation plat-

form. The processing blocks in the diagram are described in the following sections.

The simulation platform input is a clean speech file about 10 seconds in length.

The platform generates three output speech files – the noisy speech file, the WF

enhanced speech file, and the WF/post-processed speech file. All the input/output

speech files are 16-bit data sampled at 8kHz in Microsoft WAV format. The simulation

system processing frame rate can be from 5ms to 15ms by observations. We choose

8ms frame rate for our simulation experiments.

42
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Figure 4.1: Proposed auditory speech enhancement system diagram.

4.1.1 Adding Noise Block

The adding noise block controls the SNR of the corrupted clean speech. Figure 4.2

shows the adding noise block diagram, where the average power of clean speech is

calculated and used to calculate noise power. White noise is generated by the Matlab

rand() function and is scaled to obtain a desired SNR.

j+

jx

noise
generator

6

- noisy
speech

-

-clean
speech

calculate
noise power

?

6

Figure 4.2: Adding noise block diagram.

4.1.2 CGTF Block

The CGTF block is the complex GTF bank proposed in Section 3.2, which decomposes

speech signals into cochlear responses. There are two identical CGTF blocks in our

platform. One is used for noisy speech and the other is used for clean speech.
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4.1.3 Wiener Filter Block

The Wiener filter block diagram is shown in Figure 4.3. For each channel, the Wiener

filter is implemented as a gain function.

calculating
Wiener

filter gain

jx
ωixi = si + ni ŝi = ωixi?

-

- -

Figure 4.3: Wiener filter block diagram.

The Wiener filter algorithm is described as follows. The ith channel noisy speech

cochlear response xi[n] can be expressed as

xi[n] = si[n] + di[n], for i = 1, . . . , M, (4.1.1)

where si[n] and di[n] represent the ith channel clean speech cochlear response and

the ith channel additive cochlear noise, respectively. We assume that both si[n] and

di[n] are zero mean short-time stationary processes.

A simple clean speech estimator with only a scaling factor ωi is described by

ŝi[n] = ωixi[n], for i = 1, . . . ,M, (4.1.2)

where ŝi[n] is the ith channel estimated cochlear response. To minimize the difference

between the clean cochlear response and its estimate, we define the following error

ε2
i = E[‖ŝi[n]− si[n]‖2], for i = 1, . . . , M. (4.1.3)

The error ε2
i is minimum when

dε2
i

dωi

= 0. (4.1.4)

The optimal solution is

ωi =
σ2

si

σ2
si

+ σ2
di

, (4.1.5)

where σ2
si

= E[si[n]2] and σ2
di

= E[di[n]2] are the ith channel clean speech cochlear

response variance and the ith channel cochlear noise variance, respectively. This can

be re-written as

ωi =
σ2

xi
− σ2

di

σ2
xi

, (4.1.6)
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where σ2
xi

= E[xi[n]2] is the ith channel noisy speech cochlear response variance.

In practice, the noisy speech cochlear response variance and the cochlear noise

variance are estimated in frames. Equation (4.1.6) is re-written as

ωi(m) =
σ̂2

xi
(m)− σ̂2

di
(m)

σ̂2
xi

(m)
, (4.1.7)

where σ̂2
xi

(m) is the ith channel mth frame noisy speech cochlear response variance

estimate and σ̂2
di

(m) is the ith channel mth frame noise variance estimate. In order

to reduce the estimation errors, σ̂2
di

(m) can be smoothed by the following equation:

σ̂2
di

(m) = (1− α)σ̂2
di

(m− 1) + ασ2
di

(m), (4.1.8)

where σ2
di

(m) is the current frame noise variance from the observations. The low pass

filter parameter α is close to 1, and its actual value is not critical.

The calculation of ωi(m) may result in negative values. To avoid this, we set a

minimum gain floor ε for ωi(m). We also introduce one parameter β to control the

trade-off between noise reduction and distortion. The final Wiener filter gain function

ωi(m) is described as

ωi(m) = max

(
ε,

σ̂2
xi

(m)− βσ̂2
di

(m)

σ̂2
xi

(m)

)
, (4.1.9)

where ε ∈ (0, 1) can be determined experimentally. β is in [0, 1], where β = 0 means

no noise reduction and β = 1 means the standard Wiener filter enhancement.

4.1.4 IHC Block

The IHC block converts cochlear responses into a cochleagram. Figure 4.4 shows

the diagram of one channel in the IHC block. In each complex GTF bank channel,

we use two Meddis IHC models (see Section 2.3.2) to separately convert the real

and imaginary parts of the cochlear response into neuron firing signals. The output

neuron firing signals from all cochlear channels form a cochleagram.

4.1.5 Cochleagram Outputs

We generate two cochleagram outputs – the clean speech cochleagram and the WF

enhanced speech cochleagram – in our simulation platform for cochleagram analysis.

We also use the WF enhanced speech cochleagram for the post-processing block.
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Figure 4.4: IHC block diagram.

4.1.6 Post-Processing Block

We propose a musical noise reduction method in the post-processing block. The

method is implemented as gain functions for every cochlear channel. We use the WF

enhanced cochleagram to calculate gains for every WF enhanced cochlear response.

Figure 4.5 shows the post-processing block diagram. We will describe the proposed

musical noise reduction algorithm in Section 4.3.
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Figure 4.5: Post-processing block diagram.

4.1.7 Inversion Filter Block

The inversion filter block (proposed in Section 3.3) synthesizes the cochlear responses

to a speech signal. We have two identical inversion filter blocks in our simulation

platform. One is used for WF enhanced cochlear responses, and the other is used for

WF/post-processed cochlear responses.
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4.2 WF Musical Noise Cochleagram Analysis

4.2.1 WF Speech Enhancement

Figure 4.6 shows how the three outputs – the WF enhanced cochlear responses, the

WF enhanced cochleagram, and the WF enhanced speech are generated in our WF

experiment.

noisy
speech

WF enhanced
cochleagram

WF
enhanced
speech

WF enhanced
cochlear responses

-

-

-

-¾

-- Wiener
filterCGTF inversion

filter

IHC

Figure 4.6: The Wiener filter experiment diagram. The WF experiment generates
three outputs: the WF enhanced cochlear responses, the WF enhanced cochleagram,
and the WF enhanced speech.

We use SNR=10dB noisy speech as an example to show our musical noise inves-

tigation. We analyze below the following aspects of WF enhancement musical noise

perception: (1) the high/low frequency channel residue noise contributions; (2) the

silence interval residue noise contributions; and (3) the vowel interval residue noise

contributions. We use the cochleagram to investigate the residue noise temporal and

frequency distribution in aspects (2) and (3).

4.2.2 High/Low Frequency Channel Residue Noise

From volley theory (see Section 2.4.1), we may assume that high frequency (>1000Hz)

residue noise and low frequency (<1000Hz) residue noise make different contributions

to musical noise perception. The high frequency residue noise is perceived as noise

with high pitch tones, whose pitch is determined by the location of maximum neuron

excitation on the basilar membrane. The low frequency residue modifies the neuron

firing temporal patterns of a low pitch signal, and is often perceived as distortions.

Therefore, we treat high/low frequency channel signals differently.

We divide total complex GTF channels into two groups – high frequency group
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(HFG) and low frequency group (LFG) channels. In an M = 25 channel complex

GTF bank, the two groups are defined as: (1) LFG – channel 1–13 (equivalent to

100–1000Hz); and (2) HFG – channel 14–25 (equivalent to 1000–4000Hz). We will

investigate the contributions of residue noise of each frequency group to musical noise

perception.

We have manipulated the WF enhanced cochlear responses and the clean cochlear

responses from our WF enhancement experiment (Section 4.2.1) and generated the

following synthesized speech signals:

• speech A – from the WF enhanced cochlear responses;

• speech B – from the LFG channel clean cochlear responses and the HFG channel

WF enhanced cochlear responses; and

• speech C – from the HFG channel clean cochlear responses and the LFG channel

WF enhanced cochlear responses.

We have listened to these generated speech and found the following: (1) strong and

similar musical noise for both speech A and speech B; (2) almost no musical noise

perception for speech C; (3) weak distortions for speech C. By observation, we have

concluded that the HFG channel residue noise is the main cause of the musical noise

perception in the WF enhanced speech.

4.2.3 Silence Interval Analysis

Figure 4.7 displays a segment of the clean cochleagram and the corresponding seg-

ment of WF enhanced cochleagram generated in the experiment in Section 4.2.1.

Figure 4.7(a) is the clean speech cochleagram. Figure 4.7(b) is the corresponding

WF enhanced speech cochleagram. We compare the neuron firing signals of one si-

lence interval between 470ms and 520ms (between the two dashed lines) in these two

cochleagrams. We select three LFG channels (6, 7, and 8) and three HFG channels

(16, 17, and 18), and plot their neuron firing signals in Figure 4.8 and 4.9. In both

Figure 4.8 and 4.9, the clean speech cochleagram has low neuron firing activities on

the six selected channels, but the estimated speech cochleagram shows some high
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(a) A segment of clean speech waveform and its cochleagram.
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(b) A segment of WF enhanced speech waveform and its cochleagram.

Figure 4.7: The WF enhanced vowel and silence interval cochleagram analysis.
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(a) The clean silence interval (above) and its selected LFG channels 6, 7, and 8
neuron firing signals (below)
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(b) The WF enhanced silence interval (above) and its selected LFG channels 6, 7,
and 8 neuron firing signals (below)

Figure 4.8: The clean silence interval and the WF enhanced silence interval cochlea-
gram of the three selected LFG channels
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(b) The WF enhanced silence interval (above) and its selected LFG channels 16, 17,
and 18 neuron firing signals (below)

Figure 4.9: The clean silence interval and the WF enhanced silence interval cochlea-
gram of the three selected HFG channels
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neuron firing activities on several channels. These high neuron firing activities are

the WF enhancement residue noise. They are distributed randomly over time and

channels and form the source elements of the musical noise perception.

4.2.4 Vowel Interval Analysis

We proceed to investigate the HFG/LFG channel neuron firing signal waveforms in

the vowel interval between 0ms and 400ms of the two cochleagrams in Figure 4.7. We

select three LFG channels (6, 7, and 8) and three HFG channels (16, 17, and 18), and

plot their neuron firing signals in Figure 4.10 and 4.12.

Vowel Interval LFG Channels

Figure 4.10(a) displays the clean vowel LFG channel (6, 7, and 8) neuron firing signals.

Figure 4.10(b) displays the WF enhanced vowel LFG channel (6, 7, and 8) neuron

firing signals. The three selected LFG channel neuron firing signals of both the clean

vowel and the WF enhanced vowel are periodic, and their envelopes look similar. The

WF enhanced LFG channel neuron firing signals show some distortions caused by the

residue noise. The difference between the neuron firing signals of the clean vowel and

the WF enhanced vowel of the three selected LFG channel (6, 7, and 8) is plotted in

Figure 4.11.

Vowel Interval HFG Channels

Figure 4.12(a) displays the clean vowel HFG channel (16, 17, and 18) neuron fir-

ing signals. Figure 4.12(b) displays the WF enhanced vowel HFG channel (16, 17,

and 18) neuron firing signals. The envelopes of the three selected clean vowel HFG

channel neuron firing signals are periodic. But the envelopes of the three selected

WF enhanced vowel HFG channel neuron firing signals are almost non-periodic, and

do not contribute to the vowel perception. This causes the vowel perception to be

distorted. The difference between the neuron firing signals of the clean vowel and the

WF enhanced vowel of the three selected HFG channel (16, 17, and 18) is plotted in

Figure 4.13.
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(a) The clean vowel waveform (above) and its selected LFG channels 6, 7, and 8
neuron firing signals (below)
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(b) The WF enhanced vowel waveform (above) and its selected LFG channels 6, 7,
and 8 neuron firing signals (below)

Figure 4.10: The clean vowel and the WF enhanced vowel LFG cochleagram analysis.
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Figure 4.11: The clean vowel waveform and the difference between the clean vowel
neuron firing signal and the WF enhanced vowel neuron firing signal of the three
selected LFG channels (6, 7, and 8).

4.2.5 Musical Noise Perception Hypothesis

The volley theory and the ASA theories (see Section 2.4) suggest that the auditory

rhythmic grouping plays a major role in speech (vowel) perception. The auditory

grouping is based on the temporal attributes (e.g. periodicity) of cochlear channel

neuron firing signals. The envelope of each channel neuron firing signal of a clean

speech vowel interval has the same periodicity, resulting in the channel signals being

grouped into the speech stream. The channel neuron firing signal, whose envelope is

not periodic, or does not follow the rhythm of the speech stream group, are grouped

into the background stream.

From observation, we assume that the musical noise perception in the WF en-

hanced speech is an auditory grouping problem. The distortion imposed by the

residue noise, which may be very small, may perturb the speech stream grouping

process.

In the vowel intervals, the majority of the WF enhanced channel neuron firing

signals have “correct” periods and are grouped into the vowel/speech stream. Some
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(a) The clean vowel waveform (above) and its selected HFG channels 16, 17, and 18
neuron firing signals (below)
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(b) The WF enhanced vowel waveform (above) and its selected HFG channels 16, 17,
and 18 neuron firing signals (below)

Figure 4.12: The clean vowel and the WF enhanced vowel HFG cochleagram analysis.
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Figure 4.13: The clean vowel waveform and the difference between the clean vowel
neuron firing signal and the WF enhanced vowel neuron firing signal of the three
selected HFG channels (16, 17, and 18).

WF enhanced channel neuron firing signals are severely corrupted by the residue

noise, and their envelope periodicity is lost. These channel neuron firing signals are

grouped into the background stream. Since fewer channel neuron firing signals are

grouped into the speech stream, the perceived WF enhanced speech is distorted. If

the residue noise is not strong in the vowel intervals, the background stream will be

masked by the stronger foreground speech stream. The listener will mainly perceive

distortions, not musical noise.

In the silence intervals, the WF enhanced channel neuron firing signals are com-

posed of randomly distributed residue noise. Generally, residue noise of one channel

does not correlate with that of another channel. But the human brain somehow

groups the residue noise of different channels into a single stream, as if they are from

the same source (see Section 2.4). This residue noise is the cause of the musical noise

perception. Many attributes affect the residue noise stream grouping process. The

residue noise has short duration. The HFG residue noise has random high pitches

and cannot be grouped into a low pitch stream as harmonics. We assume that the

residue noise stream grouping is ascribed to these attributes based on observations
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and experimental results even if we do not clearly understand the exact grouping

process.

Although both vowel intervals and silence intervals contain residue noise streams,

we found that the residue noise stream in the silence intervals is the main cause of

musical noise perception. Because the speech stream is not present in silence intervals,

the residue noise stream becomes the foreground stream and draws the listener’s

“attention” (see Section 2.4.2). In such cases, attention-switching occurs. Constant

attention-switching at short intervals between speech stream and noise stream causes

brain fatigue for the listeners. This is the reason that musical noise is perceptually

annoying.

4.3 Post-Processing Method

Our musical noise perception hypothesis implies a principle for musical noise reduction

methods. The principle is to decrease the probability of the brain’s grouping the

cochlear channel neuron firing signals into the background/residue noise stream.

Since we have hypothesized that musical noise perception is mainly caused by

the channel residue noise in silence/low neuron firing intervals, we propose a post-

processing algorithm to reduce the residue noise at such intervals for the WF enhanced

cochlear channel signals. We do not process the cochlear channel signals in vowel

intervals since the stream formed by the residue noise in vowel intervals is much less in

energy than the speech stream, and listeners mainly perceive distortions, not musical

noise. We also do not process the LFG residue noise because it is also perceived

as distortions, not as musical noise. Our proposed method is intended to decrease

the probability of the brain grouping the channel residue noise into the background

stream. The method is also intended to decrease the chance of attention switching.

We may enhance the cochlear channel signals at vowel intervals to increase the

probability of their being grouped into the speech stream. However, speech stream

grouping is a rather complicated process, and many temporal attributes of the channel

signals affect the grouping process. The mechanism of these attributes affecting the
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vowel grouping is not entirely clear within the research communities [44, pages 188-

196]. We will leave this topic for the future research.

4.3.1 Neuron Firing Rate Measures

Temporal Average Firing Rate We define a measure, the ith channel mth frame

temporal average neuron firing rate qi(m), as

qi(m) =
1

N

N∑
n=1

qi((m− 1) ∗N + n), (4.3.1)

where qi(n) is the ith channel neuron firing rate and N is the frame size. The total

M channel temporal average neuron firing rates at the mth frame form a vector

[q1(m) q2(m) ... qM(m)] . (4.3.2)

Spatial Neuron Firing Center We define the spatial neuron firing rate center as

the first moment of the temporal average neuron firing rate vector,

Qq(m)(m) =

∑M
i=1 qi(m) i∑M
i=1 qi(m)

, (4.3.3)

where M is the number of channels, and qi(m) is the ith channel mth frame temporal

average neuron firing rate. The first moment of the temporal average neuron firing

rate vector describes the cochlear neuron firing spatial center at the current frame.

We use the measure Qq(m)(m) as a low neuron firing detector in our musical

noise reduction algorithm. Considering a clean speech cochleagram in the low neuron

firing/silence intervals, the measure Qq(m)(m) is around the cochlear spatial center,

which is 1
2
(M +1) when the number of channels M is an odd number, and is 1

2
M when

M is an even number. This is also the case for the low neuron firing/silence intervals

of WF enhanced cochleagram, because the residue noise is randomly distributed over

time and channel at these intervals. In the vowel intervals, the measure Qq(m)(m) is

biased against the cochlear spatial center.

4.3.2 Proposed Musical Noise Reduction Method

We propose a musical noise reduction method with two steps: (1) to detect the low

neuron firing frames, and (2) to attenuate the HFG channel WF enhanced cochlear
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responses. Our method does not process the LFG channel WF enhanced cochlear

responses.

We implement our post-processing algorithm as gain functions as

yi,m(n) = νi(m)ŝi,m(n), for i = 1, . . . , M, (4.3.4)

where νi(m) is the ith channel mth frame post-processing gain, and ŝi,m(n) and yi,m(n)

are the ith channel mth frame WF enhanced cochlear response and post-processed

cochlear response, respectively.

In our M = 25 channel complex GTF simulation platform, the post-processing

gains νi(m)s are determined by the following algorithm:

1. For LFG channel 1–13 , no post-processing,

2. For HFG channel 14–25, the νi(m)s are determined as

νi(m) =





1, for
∣∣Qq(m)(m)− 1

2
(M + 1)

∣∣ ≤ ε

θ, for
∣∣Qq(m)(m)− 1

2
(M + 1)

∣∣ > ε,

(4.3.5)

where Qq(m)(m) is the mth frame spatial neuron firing center. The number of channels

M of our proposed complex GTF auditory speech enhancement platform is an odd

number 25, so the cochlear spatial center is 1
2
(M + 1) = 13. We define a threshold

ε for the low neuron firing detector. ε should be equal to or smaller than 1. When

ε is set to 1, we find that the processed speech sounds unnatural. This is because

that some transition parts of the processed speech signal were detected as low neuron

firing signals and were attenuated. Lower ε results in more natural speech. By trial

and error, we set ε = 0.2 to obtain a natural processed speech. Setting ε below 0.1

results in no obvious improvements to the WF enhanced speech. θ is the attenuation

factor between 0 and 1, a trade-off parameter between musical noise reduction and

distortion. θ can be set to a number of values between 0 and 1, where 0 means

completely attenuation, and 1 means no attenuation at all. Our experiments show

that setting θ to the range of 0.6 to 1 results in no obvious improvements to the

WF enhanced speech. On the other hand, setting θ below 0.1 causes high distortions
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Figure 4.14: The diagram of proposed complex GTF bank WF enhancement with
post-processing system.

to the post-processed speech. We set θ = 0.3 by trial and error, which results in a

natural post-processed speech.

Figure 4.14 displays the signal path in the diagram of the proposed complex GTF

bank WF enhancement with the post-processing system.

4.4 Summary

In this chapter, we have built an auditory WF speech enhancement simulation plat-

form in the Matlab environment. We have performed WF enhancement experiments

and have analyzed the WF enhanced cochleagrams to discover the cause of musical

noise perception. We have proposed a hypothesis on WF enhancement musical noise

perception, and, based on it, have proposed a post-processing musical noise reduction

method.



Chapter 5

Simulation Results and Discussion

In this chapter, we perform simulations for our proposed complex GTF WF speech

enhancement/post-processing system. We discuss the ITU P.835 subjective listening

test method and use it to evaluate the performance of our proposed system.

5.1 Simulation Result Speech Waveforms

Figure 5.1 displays the signal path in our simulation. The input clean speech is x1[n].

The simulation generates three output files: x2[n] – the corrupted speech; x3[n] – the

WF enhanced speech without post-processing; and x4[n] – the WF enhanced speech

with the proposed post-processing algorithm. The simulations are performed under

three noise corruption levels: SNR=5dB, SNR=10dB, and SNR=15dB. Figure 5.2

displays the resulting speech waveforms from one simulation with noise corruption at

SNR=10dB.

The waveforms resulting from the simulations are also saved in speech files. In

Section 5.3, we use these speech files to evaluate the performance of our proposed

speech enhancement system.
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-complex
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-inversion
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Figure 5.1: The signal path from x1[n] to x4[n] in our proposed auditory WF
enhancement/post-processing system.
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Figure 5.2: Four speech waveforms in our WF/ post-processing speech enhancement
simulation: x1[n], input clean speech; x2[n], noisy speech corrupted at SNR=10dB;
x3[n], WF enhanced speech without post-processing; and x4[n], WF enhanced speech
with post-processing. The simulation signal path is displayed in Figure 5.1.
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5.2 Speech Enhancement Evaluation Method

A subjective listening test is the best method to evaluate speech quality. In a sub-

jective listening test, a number of listeners listen to the test speech signal and rate

speech quality as a number in the range of 1 to 5, where 1 is worst quality and 5

is best quality. The average rating of the group is called the Mean Opinion Score

(MOS), which is a good indicator of the test speech quality.

An objective test is an alternative method to evaluate speech quality. An objective

test requires no listeners and takes little time. The Perceptual Evaluation of Speech

Quality (PESQ) method correlates well with the subjective test MOS method in some

applications. However, we have observed that the PESQ score does not reflect musical

noise effect for speech enhancement applications. For this reason, we do not use it to

evaluate our auditory speech enhancement system.

The International Telecommunication Union (ITU) P.835 standard is a special

MOS-based subjective listening test method recommended for speech enhancement

research. The ITU P.835 recommendation requires a sample of enhanced speech to

be listened to three times. The first time, the listeners rate the foreground speech

signal; the second time, they rate the background; and the third time, they rate the

overall quality. In the end, there are three MOSs for the foreground and background

signals, and the overall quality.

We adopted the ITU P.835 recommendation to evaluate our complex GTF speech

enhancement system. Sixteen listeners participated in the subjective listening test.

Listeners were instructed to use their computers and headphones to listen to three

types of test speech files: noisy speech, WF enhanced speech, and WF/post-processed

speech. For each type of speech, each listener gave three corresponding MOSs for the

foreground, the background, and the overall ratings, as the ITU P.835 recommends.

We calculate a total average MOS by averaging the three MOSs for each type of

speech file.
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(a) The subjective test bar charts for the noise degradation at SNR=15dB.
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(b) The subjective test bar charts for the noise degradation at SNR=10dB.
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(c) The subjective test bar charts for the noise degradation at SNR=5dB.

Figure 5.3: The subjective listening test individual MOS bar charts for noise degra-
dation at SNR=15dB, SNR=10dB, and SNR=5dB. From left to right in each degra-
dation, the figures are for the foreground signal MOS, the background MOS, and the
overall MOS. In each figure, the left bar is the MOS of the WF enhanced speech
without post-processing, and the right bar is the MOS of the WF enhanced speech
with post-processing. The small bar represents standard deviation for each left or
right bar.
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Table 5.1: Subjective test MOS scores (ITU P.835) for noise corruption at
SNR=15dB, SNR=10dB, and SNR=5dB WF/post-processing speech enhancement
experiments. The numbers in the brackets () are standard deviations for the MOS
scores.

First Second Third
Speech Total listening listening listening Total
sample number average average average average

description of tests score score score score
(standard (standard (standard
deviation) deviation) deviation)

noisy speech 01
at SNR=15dB degradation 16 - - 2.75 (0.83) 2.75 (0.83)
noisy speech 01 enhanced

by Wiener filtering 16 3.81 (0.73) 3.38 (0.86) 3.63 (0.60) 3.60 (0.73)
noisy speech 01 enhanced by

Wiener filtering/post-processing 16 4.06 (0.56) 4.00 (0.87) 3.94 (0.75) 4.00 (0.73)
noisy speech 02

at SNR=10dB degradation 16 - - 2.13 (0.99) 2.13 (0.99)
noisy speech 02 enhanced

by Wiener filtering 16 3.81 (0.95) 3.81 (0.88) 3.69 (0.61) 3.79 (0.81)
noisy speech 02 enhanced by

Wiener filtering/post-processing 16 3.75 (0.66) 4.06 (0.90) 3.56 (0.61) 3.79 (0.72)
noisy speech 03

at SNR=5dB degradation 16 - - 1.88 (1.05) 1.88 (1.05)
noisy speech 03 enhanced

by Wiener filtering 16 3.19 (1.01) 3.63 (1.05) 3.13 (0.78) 3.31 (0.95)
noisy speech 03 enhanced by

Wiener filtering/post-processing 16 3.13 (0.99) 3.81 (1.24) 3.13 (0.78) 3.35 (1.00)

5.3 Enhanced Speech Evaluation Result

We have performed the ITU P.835 subjective listening test (Section 5.2) for the out-

put speech files generated in our simulations, with 16 people participating in the

test. Table 5.1 shows the test results for the speech files from the simulations with

SNR=15dB, SNR=10dB, and SNR=5dB corruption.

Figure 5.3 displays the individual results for different simulations, plotted as bar

charts. There are a total of nine figures. The top three figures are from the sim-

ulation at SNR=15dB. From left to right, the three figures represent the average

MOSs of foreground speech, background, and overall quality, respectively. The mid-

dle three figures and the bottom three figures are for the simulations at SNR=10dB

and SNR=5dB, respectively. In each of the nine figures, the left bar represents the

MOS of the WF enhanced speech, while the right bar represents the MOS of the WF

enhanced/post-processed speech.
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Figure 5.4: The ITU P.835 subjective listening test total average MOS bar chart for
the noisy speech, the WF enhanced speech, and the WF/post-processed speech in
our simulation. The red bars represent the standard deviations for the corresponding
MOS.

Figure 5.4 shows the bar chart of the total average MOSs described in the col-

umn “Total average score” shown in Table 5.1. Figure 5.4 shows that our complex

GTF speech enhancement system improves the speech quality of the noisy speech

in all three simulations. For example, the noisy speech has a MOS rating of 2.75

in the SNR=15dB scenario. The proposed complex GTF WF enhancement method

improves the MOS rating to 3.60 with no post-processing and to 4.00 with post-

processing. The subjective test results show that for the SNR=15dB scenario the

proposed post-processing method improves the MOS rating of the WF enhanced

speech from 3.60 to 4.00 (0.40 increase).

In the SNR=10dB and SNR=5dB scenarios, our complex GTF WF enhance-

ment system also improves the quality of the noisy speech signal. Without the post-

processing, the complex GTF WF enhancement method improves the MOS rating

from 2.13 to 3.79 in the SNR=10dB scenario and from 1.88 to 3.31 in the SNR=5dB

scenario. However, the improvements of our post-processing method in these two
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scenarios are not obvious, with only 0.02 and 0.04 increases, respectively.

5.4 Discussion

As can be seen from Figure 5.4, the post-processing method has effectively improved

the total average MOS on the WF enhanced speech in the SNR=15dB simulation.

The average MOS improvement (0.40 increase) comes from the improvements of all

the three aspects in the listening test – foreground signal, background, and overall

quality (see top three figures in Figure 5.3(a)). This shows that in relatively high

SNR corruption scenarios (e.g., SNR=15dB) the proposed post-processing method

has reduced the distortion and the musical noise of the WF enhanced speech signal,

and improved the quality of the overall enhanced speech.

However, the improvements of the proposed post-processing method on the WF

enhanced speech at SNR=10dB and SNR=5dB scenarios are not obvious. Our obser-

vations on the listening test results (the charts in Figure 5.3(b) and 5.3(c)) show that

the average MOSs for the WF enhanced speech with the post-processing method are

similar to those without the post-processing method. This result is not surprising. We

have observed that the WF enhanced speech in these two scenarios has a large amount

of distortion and less perceptible musical noise. In these two scenarios, the listeners

tend to rate the WF enhanced speech according to their opinion on distortions. The

post-processing method trades off musical noise to slightly more distortion, which is

not enough to change the listeners’ opinions on distortions. This is reflected in the far

left figures in Figure 5.3(b) and 5.3(c), where the average MOS ratings are almost the

same for the WF enhanced speech with or without post-processing. Because there is

less musical noise in the WF enhanced speech, the slight improvements made by the

post-processing method do not change the listeners’ opinions on background noise

perception. This can be seen from the middle figures in Figure 5.3(b) and 5.3(c).

The similar listeners’ average MOS ratings in the two low SNR corruption scenar-

ios show that the listeners do not perceive any difference between the WF enhanced

speech and the WF/post-processed speech. In these two scenarios, the background
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noise scores for the WF enhanced speech and the WF/post-processed speech are be-

tween 3.63 and 4.06. This shows that the musical noise in the WF enhanced speech or

the WF/post-processed speech is less perceptible. This means that WF enhancement

method does a good job and the proposed post-processing method does no harm to

the WF enhanced speech.

5.5 Summary

We have performed the WF enhancement/post-process simulation in the proposed

complex GTF auditory speech enhancement platform. The simulations are performed

for signal degradations of SNR=15dB, SNR=10dB, and SNR=5dB. We have evalu-

ated the speech files resulting from the simulations using the ITU P.835 subjective

listening test method. The evaluation results show that (1) the proposed complex

GTF WF speech enhancement system improves the MOS ratings of the noisy speech

with or without the post-processing method; and (2) the proposed post-processing

method slightly improves the ratings for the SNR=15dB degradation scenario, but

results in no further improvements for the SNR=10dB and SNR=5dB degradation

scenarios.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed a complex GTF bank and its inversion filter bank.

We have also implemented Slaney’s real GTF bank and have compared our complex

GTF bank with Slaney’s real GTF bank. The two systems have the same computa-

tional cost and similar system distortion. Because the proposed complex GTF system

doubles the filters, it has better frequency resolution than Slaney’s real GTF system.

We have simulated the WF speech enhancement method in the proposed complex

GTF bank system and observed the musical noise phenomenon. We have employed

auditory perception theories to investigate WF enhancement musical noise in our

simulation. Based on our observations about WF enhanced speech, we have hypoth-

esized that the musical noise phenomenon is an auditory grouping problem. We have

proposed some theories about the cause of musical noise.

We have observed that the HFG channel residue noise in the WF enhanced speech

has a strong musical noise perception (see Section 4.2.2). The LFG channel residue

noise sounds like distortions, rather than musical noise. We have concluded that the

HFG channel residue noise is the main cause of the musical noise perception and the

LFG channel residue noise contributes less to the musical noise perception.

We have experienced strong musical noise on the silence intervals or pauses be-

tween voiced intervals of the WF enhanced speech. According to the auditory group-

ing theories, the residue noise from different cochlear channels of silence intervals are

grouped into a background stream, perceived as musical noise. The residue noise

69
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degrades the temporal attributes (e.g., rhythm or period) of the cochlear channel

signals in vowel intervals. The degraded channel signals form a musical noise back-

ground stream. But with the strong speech stream present, the residue noise in vowel

intervals is mainly perceived as distortions, not as musical noise.

When foreground and background streams are switching, we call it “attention”

switching. We have assumed that fast and constant attention switching causes brain

fatigue.

Based on our hypothesis on musical noise, we have proposed a post-processing

musical noise reduction method. The method is to attenuate the HFG channel residue

noise at the low neuron firing/silence intervals. The idea behind this method is to

decrease the probability of the brain’s grouping HFG channel residue noise into the

background stream. The proposed method does not process the LFG channel residue

noise in order to reduce distortions.

We have conducted the simulation for the proposed WF enhancement/musical

noise reduction method. We use the ITU P.835 subjective listening test to evaluate

our speech enhancement system. We have compared the subjective testing result-

ing MOSs for noisy speech, WF enhanced speech, and WF enhanced/post-processed

speech. Our evaluation shows that the proposed post-processed method has improved

the average MOS (0.4 increase) for the WF enhanced speech for SNR=15dB corrup-

tion scenario but does not improve those for SNR=10dB and SNR=5dB corruption

scenarios.

6.2 Future Work

Vowel Cochlear Perceptual Distance From the volley theory standpoint, vowel

perception in speech is related to the temporal attributes, e.g., periodicity, of the

neuron firing signals in vowel intervals. If two channel neuron firing signal envelopes

are strongly correlated, they are likely to be grouped into the same vowel stream.

Improving the periodicity and other temporal attributes of the enhanced cochlear

response can improve its vowel perception and reduce distortions and musical noise

perception.
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If we understand more about how the temporal attributes of the cochlear channel

signals affect the auditory grouping process, we might able to define a vector, vowel

cochlear perception (VCP), and to define the VCP distance to reflect the similarity

of the vowel perception. The vowel period can be defined as one element of VCP.

Some statistical moments of certain temporal attributes of the neuron firing signals in

vowel intervals can be defined as elements of VCP as well. The VCP distance may be

used in the WF estimation as a constraint condition to obtain the estimated speech

that will have a similar vowel perception to the corresponding clean speech. This may

strengthen the vowel stream grouping and decrease the musical noise stream grouping

probability.
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