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ABSTRACT

Gilbert, Guillaume, M.A.Sc. (Computer Engineering). Royal Military College Of
Canada. August 2005. Parameterized High Performance CORDIC Processor Archi-

tectures for FPGAs.
Supervisors: Dr. Dhamin Al-Khalili, Dr. Céme Rozon.

The COordinate Rotation Digital Computer (CORDIC) performs general vec-
tor rotation in the 2D plane in the circular, linear and hyperbolic coordinate systems.
Its strength lies in its ability to perform various elementary functions with a rela-
tively simple hardware implementation. The CORDIC algorithm is highly versatile,
and it has been used extensively in a broad range of applications, including Digital
Signal Processing, 3D Computer Graphics, Wireless Receivers, Matrix Algebra and
Robotics, to name only a few.

Modern applications have ever increasing processing requirements and demand
low power consumption. In order to provide the required computing power for such
applications, there has been a shift from software to specialized hardware. The need
for smaller devices across a wide range of applications has also been a major driving
force in the proliferation of hardware solutions. This has led to the integration of
entire systems on a single chip. In addition, economic considerations have made
the Field Programmable Gate Array (FPGA) an important target platform, since
its development costs are much lower than those required for a custom Application
Specific Integrated Circuit (ASIC).

This thesis presents the development of several different types of CORDIC
processing elements specifically optimized for FPGA implementation, and examines
the area-performance trade-offs for each. In order to quickly generate these different
processing elements, an automatic code generation tool has been developped. These
CORDIC implementations can be used in a wide variety of applications, and are

particularly well suited for System on Chip (SoC) designs.



RESUME

Gilbert, Guillaume, M.Sc.A. (Génie Informatique). College Militaire Royal du Canada.
Aofit 2005. Architecture de processeurs CORDIC & haute performance avec paramétrage
pour FPGAs.

Superviseurs: Dr. Dhamin Al-Khalili, Dr. Céme Rozon.

Les champé d’applications modernes requiérent une grande rapidité du traitement
des données, tout en exigeant une basse consommation de puissance. Afin de fournir
la puissance de calcul requise dans de telles circonstances, il y a eu ces dernieres
années une transition des systémes logiciels vers les systémes matériels. La nécessité
d’avoir des appareils de petite taille pour bon nombre d’applications a également
contribué & la prolifération des systémes matériels. Ceci a mené & l'intégration de
systémes entiers sur une seule puce. De plus, I'aspect économique a fait du réseau
prédiffusé programmable par l'utilisateur (FPGA en anglais) une plateforme de choix
pour les dévelopeurs, vu son cofit moindre en comparaison avec les circuits intégrés
a application spécifique.

L’algorithme CORDIC (COordinate Rotation Digital Computer) effectue la
rotation d’un vecteur dans un plan & deux dimensions pour des coordonnées polaires,
linéaires et hyperboliques. L’avantage de cet algorithme est qu’il permet le calcul
de plusieurs fonctions élémentaires avec une implémentation matérielle relativement
simple. L’algorithme CORDIC est trés polyvalent, et il a été utilisé dans bon nombre
d’applications, notamment le traitement numérique du signal, I'infographie 3D, les
récepteurs sans fil, I’algebre matricielle et la robotique.

Le présent ouvrage traite du développement de plusieurs différents types de
processeurs CORDIC optimisés pour implémentation sur réseau prédiffusé program-
mable par l'utilisateur, avec un accent sur les compromis entre la surface et la perfor-
mace de chaque type d’architecture. Afin de pouvoir créer rapidement ces différents

processeurs, un outil capable de générer automatiquement le code source a été mis au



point. Ces implémentations de I'algorithme CORDIC peuvent &tre utilisées dans
plusieurs applications différentes, et sont particulitrement bien adaptées pour les

systémes sur une puce.
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CHAPTER 1: INTRODUCTION

1.1 General Overview

The CORDIC (COrdinate Rotation Digital Computer) is an extremely versa-
tile algorithm for numerical computations. It is essentially a simple hardware im-
plementation of the Given’s Transform for vector rotation in the 2D plane, and was
first presented in 1959 by J.E. Volder [2]. It was later extended by Walther [3] who
proposed a unified CORDIC algorithm capable of performing vector rotations in the
circular, hyperbolic and linear coordinate systems. By using a CORDIC rotator, it
is possible to calculate various trigonometric and hyperbolic functions, natural log-
arithms, natural exponential, square root, multiplication, polar to rectangular and
rectangular to polar conversion. As such, the CORDIC algorithm can be used in
any application which requires such computations, such as Digital Signal Process-
ing, 3D Computer Graphics, Wireless Receivers, Matrix Algebra and Robotics, to
name only a few. The floating point version of the CORDIC algorithm is used when
large dynamic ranges are required, particularly in 3D Computer Graphics, Numerical
Computing, Medical Research and Robotics. Some of the more notable historical
applications that have made use of the CORDIC algorithm include airborne naviga-
tion (for which the algorithm was originally intended), the Hewlett Packard HP-35
scientific calculator and the Intel 8087 math co-processor.

Modern applications, such as DSP and 3D computer graphics, have ever in-
creasing processing requirements due to the need for higher resolution and real-time
applications. In order to provide the required computing power for such applications,
there has been a shift from software to specialized hardware. The need for smaller
devices across a wide range of applications has also been a major driving force in
the proliferation of hardware solutions. An important trend resulting from this and

made possible by advances in VLSI technology has been the System on Chip (SoC)
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approach to hardware design. SoC are complex integrated circuits that include almost

all system components and interfacing hardware on a single chip or chip set.

1.2 Motivation

Traditionally, SoC designs were implemented on custom Application Specific
Integrated Circuits (ASICs). ASICs require an elaborate development process, have
substantial non-recurrent engineering (NRE) costs and may present a high degree of
risk. They are simply not a viable option for prototyping and sma,ll to medium volume
production. An alternative to the high cost ASIC are the Field Programmable Gate
Arrays (FPGAs). Advances in FPGA technology now provides the hardware designer
with large devices that can run at speeds of several hundred megahertz. In addition to
the ever increasing number of logic elements and wiring resources, manufacturers now
provide special-purpose resources such as Block RAM, multipliers, analog to digital
and digital to analog converters and even entire “hard” microprocessors in a single
device. This has made the FPGA a solid platform for SoC applications, along with
its much simpler design flow, low NRE costs and very low degree of risk.

Designing optimized logic for implementation on an FPGA is quite different
than designing digital circuits at the transistor level or using a standard cell library.
The logic elements available on the FPGA impose certain limitations. In order to
squeeze out maximum performance or use the least amount of space possible, the
designer must find clever ways of using the available logic elements to his advantage.

Since the CORDIC algorithm is used in a wide range of different SoC applica-
tions, it is one of the most important algorithms to optimize for implementation on an
FPGA. This optimization can be for area, speed, power dissipation or a combination
of these. Additionally, there are many applications that require a number of different
CORDIC processing elements. Examples of such applications include the Discrete

Cosine Transform [4], the Fast Fourier Transform [5] and matrix transformations [6].



Chapter 1: Introduction 3

1.3 Objective

The aim of this thesis is to develop several different types of CORDIC process-
ing elements specifically optimized for FPGA implementation, and to study the area-
performance tradeoffs of each. These different processing elements can then be used
in a variety of applications. Particular attention will be devoted to SoC applications,
where relatively small area utilization is required.

In order to achieve this aim, a number of different objectives must be met. The
first is to conduct an extensive survey of the state of the art in terms of the CORDIC
algorithm. There has been an astounding number of different modifications that have
been proposed for the algorithm in an attempt to increase its efficiency. However, not
all these can be successfully applied to FPGAs, and the architectural details of the
FPGA must be carefully considered when determining what CORDIC variants are
suitable for implementation. The chosen algorithm will be adapted to different types
of architectural styles, taking into consideration precision requirements. Functional
simulation will need to be carried out on these different architectures in order to
ensure correctness of the implementation. In order to provide usable components
for inclusion into larger designs, an automatic code generation tool will be developed.
This tool will be capable of generating processing elements according to user specified
parameters. Xilinx, the leading FPGA manufacturing company, already provides
such a tool called Core Generator, which includes, among other types of modules,
a CORDIC module. The generated CORDIC processing elements from the custom

code generation tool will be benchmarked against those produced by the Xilinx tool.

1.4 Thesis Outline

This thesis is broken down into eight chapters, including this introductory
chapter. Chapter 2 presents the original CORDIC algorithm proposed by Volder and

describes some of the more notable modifications presented by various researchers.
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Chapter 3 examines the low level details of the programmable logic platform chosen
for this thesis, the Xilinx Virtex-II. This chapter will also examine the four broad
architectural styles that have been deemed the most useful for implementation of the
CORDIC algorithm on an FPGA. Chapter 4 includes a comparison of the two most
promising alternative CORDIC algorithms and selection of the best algorithm for
implementation on the target platform. This chapter also includes error analysis and
details on the internal data path format. Chapter 5 contains the hardware imple-
mentation details of the chosen CORDIC algorithm for all four architectural styles.
Chapter 6 presents a novel technique used for automatic VHDL code generation and
describes the tool used to generate the different CORDIC processing elements. Chap-
ter 7 provides characterization data and benchmarks for the different CORDIC PE
architectures. Finally, chapter 8 contains the conclusions and recommendations for

future work resulting from this thesis.



CHAPTER 2: BACKGROUND THEORY

The term CQordinate Rotation Digital Computer (CORDIC) was first coined by J.
E. Volder in 1959 in his landmark paper The CORDIC Trigonometric Computing
Technique [2]. He initially developed the CORDIC special purpose digital computer
for real-time computation in support of airborne navigation. The CORDIC computer
described by Volder essentially rotates a vector ¢ in the 2D plane in incremental steps,
and it has two different modes of operation: rotation and vectoring.

In rotation mode, a vector with the specified z and y end coordinates is rotated

about the origin by an angle a as specified by the Given’s Transform equation:

' =zcosa—ysina (2.1)
Yy =ycosa+ zsina (2.2)

In vectoring mode, the inputs are the vector end coordinates and the results

are the vector magnitude and angle argument:

Il = /22 + ¢ (2.3)
a= arctan% (2.4)
The basic computing technique in both of these modes is a step-by-step se-

quence of incremental rotations that will either be equivalent to the desired overall

rotation (rotation mode) or result in a final angle residual of zero (vectoring mode).
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2.1 CORDIC Algorithm
2.1.1 Given’s Transform

The CORDIC algorithm is elegantly demonstrated by making use of the Given’s

transform which performs 2D vector rotations in the Cartesian plane:

2 =zcosa—ysina (2.5)

y' =ycosa+ zsino (2.6)

Equations 2.5 and 2.6 gives the relationship for converting the initial (z,y) coordinates
into the new (2',y') coordinates after rotating the vector by an angle of o in the
cartesian plane. The first key concept in the CORDIC algorithm is that a rotation
by an angle  in the cartesian plane can also be accomplished by successive rotations

of smaller angles ; such that:

N-1
Z o= (2.7)

=0

The equations defining these smaller iterations are thus:

Zip1 = TiCOSQ; — Y;sinqy (2.8)

Yir1 = Yi COS @ + T; sin oy (2.9)

2.1.2 Pseudo-Rotations and Scaling Constant

In an attempt to further simplify the basic iteration equations, it is possible
to take out the cosq; factor out of each iteration equation. Consider that cosine is

an even function, that is cos(a) = cos(—a). Thus, for two consecutive rotations, we

have:
Tit1 = cos a;(T; — ¥; tan ;) (2.10)
Yir1 = cos a;(y; + z; tan ;) (2.11)
Tiyo = €08 0ly1(Tit1 — Yit1tAND Q41g) (2.12)
Yi+2 = COS Q41 (y,-+1 + Zi+1 tan a¢+1) (213)
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Considering only the z coordinate, we have:

Tita = COS Qi4+1[c0s 0 (z; — y; tan ;) — cos ¢ (y; + ; tan a;) tan o) (2.14)

Titg = COS @ COS 41 [(T; — yitanay) — (y; + z; tan oy) tan 4] (2.15)

Hence, the cosq; factors can be taken out from each iteration, and can be taken
care of separately. What is left is a pair of new iteration equations which are called

pseudo-rotations:

Tit1 =Ty — Y tan ¢ (2.16)

Yir1 = Y + zitan o (2.17)

Considering the relationship between pseudo-rotations and pure rotations as per the

Given’s Transform, we have:

T; — yitana; = cos™ a;(z; cos o — y; sin ;) (2.18)
Yi + z;tan o; = cos™ a;(yi cos o + z;sinoy) (2.19)
Equations 2.18 and 2.19 clearly indicate that pseudo-rotations will induce growth in

the vector being rotated. The magnitude of this growth is determined by the scaling

factor K. For N pseudo-rotations, the final coordinates are given by:

T’ = [Zy-1C08aN-1 — YN-15iDON_1] (2.20)
¥ = [yn-1c08 aN_1 + ZN_1SiRON_1] (2.21)
=K1 [.’IIN_1 — yn—1tan aN_l] (2.22)
y =K' [yn—1 + zn_1 tanay_1 (2.23)

Where the scaling factor K is defined as:

N-1
K = H cos™! oy (2.24)

=0



Chapter 2: Background Theory 8

2.1.83 Arc Tangent Radiz

Equations 2.16 and 2.17 provide for efficient computation, since they are com-
posed of only one addition and one multiplication. By choosing the values of tan o
so that they are fractional powers of two, multiplication by tan ¢; is performed using

simple right shift operations. Also note that for the special case of a = /2 rad:

¥=—y (2.25)
Y =+z (2.26)

Following is a partial table of tangent values that are fractional powers of two:

Tangent Corresponding Angle

tanas =00 ay = m/2rad (special case)
tanog =1 ap = 0.785398 rad
tanay = 27! ag = 0.463648rad
tanae = 272y = 0.244979rad
tanas =273 g = 0.124355rad
tanag =2"* oy = 0.062419rad
tanas = 27% a5 = 0.031240rad
tanag = 27% ag = 0.015624rad
tan oy =97 o = 0.007812rad

These angles can be combined together in a sequence to form a special radix repre-

sentation for a given angle o as follows:

N-1
a= Z o;0; (2.27)

=0
where a; represents the Arc Tangent Radix (ATR) constants and o; are the ATR dig-

its. For reasons of computational efficiency, the ATR digits are restricted to {—1, +1}.
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For example, an angle of —15810 ~ 0.087266 rad would be obtained in the following man-

ner:

+7/2 ~ arctan(2°) — arctan(2!) — arctan(272) + arctan(2™3)

— arctan(2™4) — arctan(27%) — arctan(27%) — arctan(277) ~ 0.084032rad

It’s ATR digit vector is thus o = (+1,-1,~1,~-1,+1,-1,-1,-1,-1), and forms
an alternative representation of the angle. These digits indicate whether the next
rotation will be positive or negative. Also note that the precision of the ATR rep-
resentation obtained for an angle is dependent on the smallest angle present in the
ATR constants set.

From the preceding discussion, it can be seen that the ATR constants are also
used in order to calculate the scaling factor K. By keeping 0; € {—1,1}, a constant

scaling factor is ensured since cos(—a;) = cosa;. The expression for cos o; is derived

as follows:
Yy 1
tana; = EI- = 'é;
17=\/y2+a:2=\/1+22"
cosqy; = z- z = !
YTO V1428 J142°%

And the scaling factor becomes:

K= Iﬁl V1+2-% : (2.28)

=0
For an infinite number of iterations, the inverse scaling factor would evaluate to the

following series:

ad 1
K =[] === = 0607253 (2.29)
pairs A /1 + 2—Zz

2.1.4 CORDIC Pseudo-Rotation Equations

When implementing the CORDIC algorithm, an angle accumulator is used in

order to make a decision on the direction of the next rotation.
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In rotation mode, the target angle value « is first loaded in the accumulator.
At each step, a decision will be made in order to diminish the magnitude of the
residual angle in the register. If the residual angle is positive, the next ATR constant
needs to be subtracted from the accumulator; otherwise, the next ATR constant has
to be added to the accumulator. At the end of all the iterations, only a very small
residual angle should be left in the accumulator.

In vectoring mode, the decision will be made in order to diminish the magni-
tude of the current y component. At the end of all the pseudo-rotations, the residual
y component has to be as close to zero as possible. In this way, the last calculated z
value will contain the magnitude of the vector, and the angle register will contain the
total rotation angle .. At each step, if the residual y value is positive, the next ATR
constant has to be added to the accumulator; otherwise, the next ATR constant gets
subtracted from the angle accumulator.

From these statements, the CORDIC pseudo-rotation equations for rotation

mode are as follows:

ZTit1 = T4 — a,-yi2"“' (230)

Yir1 = Yi +0:2,27" (2.31)

Rit+1 = 2§ — O30 (232)
-1 ifz <0

o = (2.33)

+1 otherwise
The equations for vectoring mode are exactly the same. This is obvious, since the
rotation operation is the same. The only difference is the condition for the rotation
direction, o;, which now becomes:

1 ify; <0
o = v (2.34)

—1 otherwise
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2.2 Unified CORDIC Algorithm

By slightly modifying the pseudo-rotation equations, Walther [3] was able to
present a unified CORDIC algorithm capable of performing rotations in the linear and
hyperbolic coordinate systems in addition to the circular rotations first presented by

Volder. The unified CORDIC pseudo-rotation equations are given by:

Tig1 = T; — mo2 5™y, (2.35)

Y1 = yi + 0275z, (2.36)

Ziyl = 2% — OiQmg (2.37)

where m = 1 for circular, m = 0 for linear and m = —1 for hyperbolic coordi-

nate systems. The direction of rotation for both rotation and vectoring modes are
still o; = sign(z;) and o; = —sign(y;) respectively. The S(m,i) variables indicate
the amount of shift for each iteration. Throughout this text, if the m variable is
missing, it is assumed that m = 1, or S(i) = S(1,i), corresponding to the circu-
lar coordinate system. In the circular and linear coordinate systems, the shift se-
quences are given by S(1,7) = 5(0,7) = (0,1,2,3,...). In order to preserve conver-
gence, the hyperbolic coordinate system requires that certain elements in the shift
sequence be repeated. Convergence in the CORDIC algorithm will be discussed in
further sections. Thus, the shift sequence for the hyperbolic coordinate system is
S(-1,%) = (1,2,38,4,4,5,...,12,13,183, 14, ...) where the repeated elements are given
by {3k + 1} k € N. The scaling factor for the hyperbolic and circular coordinate

systems is now given by:

-1
Knmi = [[ /1 +mo?2-25tms (2.38)

i=0
Note that scaling is not applicable to the linear coordinate system. Also, the angle
basis for the unified CORDIC now becomes:

1 0= i
Omyi = ﬁ arctan (\/;7’12 S(m, )) (239)
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2.3 Algorithm Modifications

Following the initial work on the CORDIC algorithm by Volder and Walther,
there has been a tremendous amount of work aimed at improving the basic CORDIC
algorithm. The bulk of this work has been in devising “short-cut” methods in order
to speed up the algorithm. The most notable ideas are presented in this section and

are grouped into broad categories.

2.8.1 Hybrid Radiz Sets and Rotation Prediction

The main bottleneck of the CORDIC algorithm lies in the fact that the di-
rection of rotation for a particular iteration depends on the results of the previous
iteration. If the Afc Tangent Radix representation of the angle is known in advance,
then there is no dependency on the previous iterations and there is no need for the
z data path (in rotation mode). However, the input angle is usually encoded in con-
ventional two’s complement representation. There have been numerous publications
which discuss the process of deriving the ATR representation directly from the two’s
complement representation of the angle. These are usually based on the Hybrid Radix
Set discussed in [7].

Hybrid radix sets rely on the following relationship:

2—k
Jim %_T— =1 (2.40)

As k increases, the difference between the circular ATR angles and the radix-2 shift
coefficients becomes more and more negligeable. However, for small values of %, this
difference is quite large. The solution proposed in [7] is to use the circular ATR angle
rotations for the first n iterations, and use the linear coefficients for the remainder
of the iterations. In fact, it is shown in [7] that n = ( E"l%z—?’-’ This Mized-Hybrid
Radiz Set is of the form:
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most significant part

{arctan co, arctan 1, arctan 21, . . . ,arctan2~™+1, 27n .. 2=N-1 3
P A—
least significant part
When such an angle quantization method is used, iterations 0 to iteration

(n—1) are performed as in the original CORDIC. At the end of these first iterations,
there will be an angle residual left in the angle accumulator. The value of the residual
angle is the radix-2 representation (approximation) of the remaining angle rotation
in the linear coordinate system. In the case of a positive residual angle, a 1 indicates
a positive rotation and a 0 indicates a non-rotation. A similar approach can be used
for negative residual angles. Introducing non-rotations will lead to a non-constant
scaling factor, since for a rotation by o; = 0, we have cosa; = cos(arctan(0) = 1.
The only way to keep the scaling factor constant is to perform either a positive or
negative rotation at every iteration, since cos(arctan(—2"t)) = cos(arctan27t). The
authors in [7] also note that the computation of ay, the most significant part of o
might impact «y, the least significant part of a. Hence, there must be a separation
of the rotation prediction for ay and ay.

The problem then becomes the prediction of the first n terms which are not
directly available from the two’s complement representation of the input angle. One
way of accomplishing this ié by compressing the ay rotations into a single rotation
that is implemented by the use of a ROM as discussed in [7]. Others have developed
combinational means of generating the ay ATR digits 8] [9]. Usage of the Booth

encoding algorithm has also been used in order to recode angles {10} [11].

2.3.2 Modified ATR Sets

The term Angle Set designates the elementary angles which form a radix rep-
resentation of an angle. The Angle Set is an important factor when examining the
CORDIC algorithm. One obvious impact in the choice of an Angle Set is in the ac-

curacy of the results. The Angle Set also has a direct influence on the scaling factor
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and on rotation direction determination. An excellent generalization concerning An-
gle Set Selection can be found in [12]. In this work, the authors discuss the concept
of Angle Quantization, which is defined as the process of decomposing an arbitrary
angle # in terms of a set of sub-angles ¢;. In Volder’s original work [2], the term Arc
Tangent Radix (ATR) was used in order to stress the fact that these sub-angles were
expressed as o; = arctan(27%). However, the terminology found in {12] will be used
in order to demonstrate this concept.
The Elementary Angle Set (EAS) is defined as:

S, = {arctan(027%) : 0 € {~1,0,1},k € {0,1,...,N — 1}} (2.41)

From this definition, it can be seen that Volder’s ATR representation is a subset of the
EAS where o € {—1,1}. The ATR representation ensures that for a fixed number of
iterations, the scaling factor will remain constant. However, the definition of the EAS
allows for the possibility that a rotation might not be executed during a particular
iteration (i.e. when o = 0). In this case, the scaling factor does not remain constant.

The Extended Elementary Angle Set (EEAS) is defined as:

S, = {arctan(co2™* + 0,27%) : 5,01 € {~1,0,1}, ko, k1 € {0,1,..., N — 1}}
(2.42)
The EEAS allows for more flexibility in the choice of angles that make up the set. This
flexibility can actually be used in order to “steer” the scaling factor to a Signed Power

of Two (SPT), which would eliminate the need for a costly post-scaling multiplier.

2.8.3 Combined Successive Iterations

In order to solve different types of bottlenecks with the CORDIC iterations,
researchers have combined successive iterations. The way that successive iterations
are combined depends on the problem that is being addressed. Some of these solutions
are concerned with angle convergence, others are concerned with scaling factor and

others still try to increase the parallelism of the CORDIC process.
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There have been several attempts made at combining two successive CORDIC

iterations into a single iteration. Double Rotation CORDIC is derived as follows:

Tig1 = Ty — yiU¢2—i (243)

Yir1 = Yi + 2027 (2.44)

Tirs = Tig1 — Yit10i4127" (2.45)

Tiyo = (2 — 1,027 — (i + 203270341271 (2.46)
Tiyo = x,(l - 0'1'0','+12—i2—i+1) + yz(chZ" + 0','+12—i+1) (247)
Yiva = yz(l - 0,‘0'i+12-i2—i+1) — iL‘i(CFiQ_i -+ 0'7;+12—i+1) (248)

In [13], the combination of two successive iterations provides for a new angle
recoding scheme. ' The recoding scheme uses a ROM based approach in order to encode
the required rotation directions for each angle. In this manner, the algorithm has a
non-constant scaling factor, and relies on a fast variable scale factor decomposition
and compensation algorithm.

Another well known paper that uses this approach is found in [14]. In this
paper, double rotations are introduced in order to correct the scale factor issues
associated with the Redundant CORDIC, and it uses the redundant binary number
representation with the digit set of {T,0,1}. The Double Rotation CORDIC performs
three types of rotations: negative, positive and non-rotation. These three types of
rotations are performed with the help of two consecutive sub-rotations (hence the
term Double Rotation). The smaller sub rotation angles are chosen such that their
arctangent value are half those of regular CORDIC, that is arctan 2—2_1 = arctan 27 L.
Interestingly enough, all possible rotation angles performed in Regular CORDIC will
also be used in this algorithm; however, éa,ch rotation will be applied twice. The

double rotations are derived in a slightly different way:
Tigr =T — Y02 (2.49)
Yirr = Yi + 2027 (2.50)



Chapter 2: Background Theory

16

Considering only the z data path, we have:

—i1
Tit2 = Tit1 — Yir10i412
—i-1 —i1 —ie1
Tive = [z — %i0:277Y) — [ys + 2032771 03342

Tigo = T; — 27 oy + 0y 127" — [04 - Oipa] 2 27H72

Setting ¢; = 27! [o; + 0441] and p; = [0; - 0441] we have
Tiyo = T; — 2" — pimi2 %2

The positive, negative and non rotations are thus defined as follows:

negative rotations: oy =1, 05 =1=¢=1,p;=1

nonrotations : 0; = 1,051 =1=¢=0,p; =1

positive rotations : 0y = L0 =1 =g =1,p;=1

(2.51)
(2.52)
(2.53)

(2.54)

Since there is no need for an i + 1 iteration, ¢ and i+ 2 effectively become two

successive iterations. Note also that the decision for the direction of the rotation (g;

and p;) are based on the three most significant digits of z;. Thus, the pseudo-rotation

and decision equations can be written as follows:

Tjs1 =T — qy;270 — pjz27
Yir1 = Y + ;277 ~ pjy;27 77

zj41 = z; — ¢;2arctan 277!

1,1 if[A71d] <o,
(95,p5) = (QT)1[414#“]=,
(1L,1) i [ 72" >

(2.55)
(2.56)
(2.57)

(2.58)

As previously mentioned, the main limiting factor of the CORDIC algorithm

is that it is iterative in nature, i.e. the value of z;,; and y;,1 are a function of both
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z; and y;. By successive substitutions of z; and ¥; in the basic CORDIC equations,
it is possible to derive an expression for the final values z)y and yy that is only
dependent on 24 and yo [15]. This type of algorithm is called the Flat CORDIC, and
the resulting expressions become quite simple to implement at the hardware level.
However, the drawback of Flat CORDIC is that the ATR representation of the angle
must be available before processing; this is accomplished with the use of a specialized
circuit called the signed digit generator in [15], and is based on rotation prediction as
described in section 2.3.1.

In the derivation of the Merged CORDIC algorithm {16}, matrix operations
are used in order to combine successive iterations. The idea behind merging the
iterations is to rearrange their sequence in such a way that the ith iteration is next
to the (n — 4+ 1) iteration. The resulting iteration equations of the merged CORDIC

thus become:

Tip1 = 24 — (0i2—i + Un_i+12_n+i—1)yi (259)
Yirr = ¥i + (0:27 + 02" D)y (2.60)
Zi41l = 2 — 0iQ; — Op_iy10n541 (2.61)

With merged CORDIC there are considerable hardware savings since n-bit

shifters are not required; only % -bit shifters are needed.

2.3.4 Scaling Factor Compensation

As discussed earlier, the pseudo-rotations will induce magnitude growth in the
rotated vector. In order to obtain unscaled values, the final z and y values must be
multiplied by the inverse scaling factor given by:

N-1

1
z=1] == (2.62)
K E V14272
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The most straightforward method of compensation is to multiply the final z and y
values by the inverse scaling factor (post-scaling). It is also possible to perform the
multiplication prior to the CORDIC iterations (pre-scaling). Multiplier recoding into
Canonical Signed Digit can be used in order to simplify the multiplication.

Another method of performing compensation is to introduce normalization
steps in between CORDIC iterations as presented in [17]. The scaling factor can be

expressed as:
N-1

=[] — mym 275 (2.63)

i=0

1
Kn(n)

where v,; € {0,1}. Finally, the normalization steps are:
) —. . ) 9—S(myi) (2 64)
Zit1norm = Titl — MTi41TYm,i .
Yirinorm = Yi+1 — myi+17m,z’2—s(m’i) (265)

As mentioned in 2.3.2, the double shift iterations of the EEAS angle set can
be used in order to steer the inverse scaling to a simple sum of signed powers of two.

The generalized equation of the unified CORDIC for double shift is given by:

Tip1 = T — Moy 2~ 5™ — moyn, ;275 ™9 (2.66)
Yir1 = Yi + moz; 25 4 mcrmm,ixﬁ“sl(m’i) (2.67)

1 , e
o = —\/:777. arctan [\/ﬁ (2‘5 (md) 4 Nmi2 ™5 (m”))} (2.68)

where 7, ; € {—1,0,1} and S’(m,i) is a second shift factor.

Another variation that is quite similar to the double shift CORDIC is the
compensated CORDIC presented in [5]. The iteration equations for the compensated
CORDIC are given by:

Tipy = 2 — moy 27 ST 4oy, 2,27 Sm) (2.69)

Yir1 = i + maimiQ-—S(m,i) + 77m,iyz'2—s(m’i) (2.70)
1 vm
a; = ——"n_z arctan [ﬁm] (271)
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2.8.5 Floating Point CORDIC

The shift and add nature of the CORDIC algorithm makes use of the fixed
point format. Performance degradation would occur if these operations were to be
carried out in Floating Point format, which requires more overhead.

In most cases, Floating Point implementations will convert the Floating Point
input to a Fixed Point internal representations, and reconvert this internal represen-
tation to Floating Point at the output. In order to do so, a working exponent must
first be determined, which is the largest of the two exponents. The mantissas of both
inputs have to be aligned in order to perform the CORDIC iterations. Examples of
usage of block floating point can be found in [18] [19] [20]. Another point to consider
in the use of the floating point representation is that in certain applications, a fixed
point representation might be all that is needed [20].

One recent paper discusses the use of the Floating Point Format for internal
calculations in support of the Singular Value Decomposition Problem [21]. The au-
thors state that the parallelism of the systolic array architecture reduces the penalty

from the overhead of floating point normalization in each pipeline stage.

2.3.6 Alternative Number Representation System

In attempting to improve the CORDIC algorithm, Redundant Number Sys-
tems have been used in order to speed up the arithmetic operation of addition in each
iteration. The inherent difficulty in the use of such a number representation is the
determination of the next direction for rotation, since the sign of a binary number
can no longer be determined by simply examining the MSB. Usually, the sign of an
RNS number can only be determined by starting from the MSB, and examining each
digit in sequence until a non-zero digit is encountered. As discussed in [14], it is
possible to examine only a limited number of bits which form a window, as all bits
to the left of this window are guaranteed to be zero in the CORDIC process. Others
have proposed the Branching and Double Step Branching CORDIC algorithm [22]
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[23]. The Branching CORDIC requires two CORDIC processors which perform the
iterations in parallel. When the sign of the next rotation can be determined from
the bits within the window, the two processors execute the same rotation. When
the direction cannot be determined, they take different rotation directions; in this
way, one of the two processors is guaranteed to converge. When the next branching
decision is triggered by one of the two processors, that processor is the one that has
taken the proper direction for convergence.

Traditionally, radix-2 based number representation systems have been used
for both the redundant and non-redundant CORDIC algorithm. There have been
numerous publications that use higher order radix representations (radix-4, 8) [24]
[25] [26] [27] and very-high radix (radix-512) [28]. These representations allow for
more bits of the result to be calculated in a single iteration and hence, reduce the
required number of iterations. A higher order radix r is always a power of two. The
Arc Tangent Radix set is thus extended such that o [0;] = arctan(c;r™*), where o; €
{-r/2,...,0,...,7/2}. Such a representation gives a redundant ATR representation
of angles. For example, the radix-4 CORDIC pseudo-rotation equations would be

rewritten as:

Tiy] = Ty — or,-yi4‘i (2.72)
Yirr = Yi + 03zid ™ (2.73)
%41 = % — 0; arctan 4™ (2.74)

where 0; € {-2,-1,0,1,2}. In a radix-4 implementation, the number of
iterations required for the CORDIC algorithm are reduced by half. Two problems
arise from the use of this new radix representation. First, the direction selection
function for both the rotation and vectoring mode become quite complex because of
the extended o; set of ATR digits. Second, this digit set will lead to a variable scaling

factor.
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Several solutions have been devised to both these problems, and can be found

in [24) [25] [26] [27] [28].

2.4 Convergence

When considering a particular variation of the CORDIC algorithm, it is im-
portant to ensure the correctness of the result and determine its limitations in terms
of precision. Obviously, the precision of the result is determined by the width
of the internal data paths. In the case of circular CORDIC, precision is deter-
mined by the maximum shift parameter S(N — 1) and the smallest rotation angle
ay_1 = arctan(2~SN-1),

Convergence in both the rotation mode and the vectoring mode must also be
ensured in order to obtain the correct result. In rotation mode, the z data path is
being driven to zero, and there has to be enough angles remaining in subsequent
iterations in order to bring the value of z within ay_; of zero. Thus, there exists a

set {o;} where j =4,i+1,..., N —1 such that:

N-1
2 — E 005

=

Sana (2.75)

From this, we define the range of convergence which determines the angles that the
CORDIC algorithm will be able to process in order to produce correct results. From
Equation 2.75 it is easily shown that the range of convergence is given by:

N-1
lon] < @i+ an— (2.76)

2=0
When using conventional CORDIC, the shift sequence is {S(i) = i}, that is i =
0,1,...,N — 1. The range of convergence is roughly [-—1.7433, +1.7433] for N = 16.
Two possible solutions exist in order to expand the range to [—m,+w]. The first

solution is to perform pre-rotation by an angle of 7. In this case, the pre-rotation
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equations are given by:

Ty = —0Zo (2.77)
Yo = OYo (2.78)
2 =2+ ag (2.79)

where 0 = +1 if y < 0, —1 otherwise. The second solution is to perform an initial

rotation of either = or 0, as in the following equations:

Ty = 0o (2.80)
Yo = 0Yo (2.81)
20 ifo=1,
2y = (2.82)
Zp—m ifo=-1

where ¢ = +1 if z < 0, —1 otherwise. From Equation 2.76, it is now possible to
derive the convergence criterion for the CORDIC process. This criterion imposes a
specific order on the angle shift sequence, and is given by:

N~-1

o] < Z a; + oy (2.83)

F=itl

Similarly, the range of convergence in vectoring mode is related to the z and y input

arctan (gz—’l)
Zin

and is given by:

N-1
< Z o; + an— (2.84)

=0

2.5 Error Analysis

The finite nature of the CORDIC algorithm leads to errors in terms of precision
when performing rotation and vectoring operations on the input data. The ideal
CORDIC process data paths would have an infinite number of bits and the number

of iterations would also be infinite. It is useful to use this theoretical model in order
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to derive the error bounds for a particular hardware implementation. An in-depth
discussion of the various errors related to the CORDIC algorithm can be found in
[29] and [30], and only a brief overview will be provided. There are four main sources

of error in the CORDIC process:

1. Input value rounding error
2. Angle approximation error
3. Iteration rounding error

4. Scaling factor compensation error

The input value rounding error occurs when the data path width is less than
the input data width. Since the CORDIC process induces magnitude growth in the
vector being rotated, the input value rounding error is also scaled as it propagates to
the outputs.

The second type of error is due to the fact that the total rotation angle 6 is

approximated by a linear combination of a limited set of ATR angles such that:

N-1
0=> oi+6 (2.85)

=0
where 4 is the error due to the angle approximation. In order to minimize this error, it
is important to make an..; as small as possible. However, the width of the data path
impose a lower bound on the value of a(y_1y. Since ay-1) = arctan 2V-1 ~ 20V 1)
this angle will be equal to the smallest representable value in the z data path.

The third type of error is due to the limited precision arithmetic of the shift
and add operations within the pseudo-rotation equations for the z and y data paths.
Rounding errors will occur every time a shifted operand is added (or subtracted) from
a non-shifted operand. Once again, the errors due to rounding will incur growth from
the moment they appear up to the end of the CORDIC process. Defining ¢ as the

machine accuracy and b as the number of bits for the z and y data paths, we have
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€ = 27" in the case of rounding and € = 27? in the case of truncation. Thus, for n

iterations, the accumulated error f(n) due to rounding is bounded by:
F(m)] < e (2.86)

Note that the scaling factor contribution has been neglected in this case.

The final type of error is due to the post-scaling multiplication of the inverse
scaling factor with the final z and y values. Since the inverse scaling factor is also
rounded, it has an associated error AK~!. Multiplication by the inverse scaling factor

will be of the form:
T+ A7 = (z+Az) - (K1 + AK™) (2.87)
Using simple averaging errors, this error may be represented by:

Az =2AK '+ KAz (2.88)

2.6 Implementations on FPGA

In recent years, there has been increasing interest in FPGA implementations
of the CORDIC algorithm. This is due in part to the trend back to hardware for
Digital Signal Processing applications and the increase in logic density of modern
programmable devices. Andraka [1] was one of the first to provide a practical overview
of CORDIC algorithms specifically for FPGAs. The architectures discussed in the
paper examined two different aspects for implementing the algorithm. In the first, an
architecture could be either iterative or pipelined. The second aspect considers bit-
serial and bit-parallel implementations. These different approaches may be combined
together in a number of ways, and selecting the proper architecture for a particular
application is a trade off between speed and area. The paper also discusses how
these architectures are implemented at the Control Logic Block level for some specific

devices. In order to optimize the performance of the CORDIC algorithm on an FPGA,
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a designer must carefully decide how to use the available resources in the most efficient
way; this is a very different approach compared to ASIC design. There have also been
other similar studies [31] [32] [33] [34] . Some of these studies examined high-radix
implementations [32] [34] and the use of Redundant Number System representations
(RNS) [31] [33]. It is interesting to note that in [33], the authors conclude that an
RNS implementation is not suitable for FPGA design. They stipulate that operators
needed for the RNS implementation require a 4 to 5 times larger area than their
conventional counterpart. Furthermore the speed advantages that are gained in a full

custom design are lost in the FPGA design due to longer routing delays.

2.7 Summary

This chapter presented the basic CORDIC algorithm, along with the unified
CORDIC algorithm capable of performing vector rotations for the circular, linear and
hyberbolic coordinate systems. An overview of the most important ideas in order to
speed up and/or simplify the algorithm were also presented. In the next chapter, the
characteristics of the target FPGA will be examined in order to determine which type

of CORDIC variant will be suitable for implementation on the chosen platform.
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CHAPTER 3: DESIGN CONSIDERATIONS

In order to design CORDIC processors optimized for a certain type of application,
an understanding of the physical characteristics of the target platform is essential.
In this particular case, the Field Programmable Gate Array (FPGA) will be used for
the various processor implementations. The available resources will determine what
type of algorithm and ultimately, what type of architecture, are most suitable for

implementation on this particular platform.

3.1 FPGA Architecture

The basic Field Programmable Gate Array (FPGA) is essentially an array of
Configurable Logic Blocks (CLB). Each CLB contains programmable function gener-
ators and associated memory elements. They may be combined via wiring resources
called the routing channel. The routing channel contains wires that run in both hor-
izontal and vertical directions. Programmable elements allow for wire interconnects.
Input/Output (I/O) ports are also accessible through the routing channel. In addi-
tion to these basic elements, an FPGA might contain other dedicated resources such
as large blocks of RAM or built-in multipliers. For this project, the target platform
is the Xilinx Virtex-II. Although a specific device was chosen, the proposed CORDIC
processors are also adaptable for other programmable logic devices.

Following is a list of dedicated resources that are available on the Virtex-II:

e Programmable I/Os
e Digital Clock Manager blocks (DCMs)

e Dual Port Block Select RAM (18Kbit)



Chapter 3: Design Considerations 27

¢ Embedded 18x18 Multiplier blocks
e Control Logic Blocks (CLBs)

The CLB is the top level logic component and is made up of four slices. Each
slice contains two logic cells, for a total of eight distinct logic cells per CLB. The logic
elements available in a slice is of particular interest, since they will become the basic

building blocks of an optimized design. Each Virtex-II slice contains the following:
¢ 2 Function Generators (FG)
e 2 Storage Elements
o Arithmetic Logic Gates
o Large Multiplexers
e Fast Carry Look-Ahead chain
o Horizontal Cascade Chain (OR gate)

Figure 3.1 shows further details for a single logic cell and shows how these
different elements are connected together. The most important logic element available
in a cell is the Function Generator (FG). It can be configured as a Look-Up Table
(LUT) that implements a 4:1 logic function. A second option is to use the FG as
a 16-bit Variable Tap Shift Register. Finally, it can also be configured as 16-bit
SelectRAM memory. It is also important to note that two 16-bit RAM resources can
be combined together in order to provide dual port 16-bit RAM with one dedicated
read/write port and a second read-only port.

3.2 Number System and Arithmetic for FPGA

As described in Chapter 2, considerable research has been conducted on the

use of high-radix and redundant number systems for the CORDIC algorithm. The
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motivation for using number systems other than two’s complement is to reduce the
carry propagation time of additions in order to increase throughput. In a signed
digit representation, every digit requires two bits, effectively doubling the data path.
Furthermore, use of these non-conventional systems leads to a non-constant scaling
factor. Studies have shown that advantages gained in an ASIC design by using re-
dundant number systems are lost when implemented on an FPGA because of the
increase in number of logic blocks and routing delays [31] [33]. Use of higher-radix
number systems was also found unsuitable for FPGA implementations {34].

The Fast Carry Logic available on the Virtex-II is intended for the two’s com-
plement number system, and allows for very fast arithmetic operations. These oper-
ations are carried out in a bit-parallel fashion, meaning that all the bits of the result
are calculated at once by allowing the carry signal to propagate from the LSB to the
MSB. Bit-serial arithmetic is an alternative way of performing such operations. Each
operation is carried-out one bit at a time by reusing the same hardware. Although
this is not as efficient in terms of speed, it does provide the potential for significant
savings in terms of both logic cells and routing resources. Consider for example the
storage elements included in a slice on the Virtex-II device. When a bit-parallel ap-
proach is used, only the 2 memory elements are usable for storage, meaning that a
16-bit register will require 8 slices for storage. In the bit-serial case, the entire register
can fit in one LUT configured as a 16-bit shift register, requiring only half a slice.
The 16 bit register requires virtually no wiring: only the input, output and clock.
lines are required. The drawback however is that a controller is required in order to
perform bit-serial operations. Also note that in lower grade programmable devices
that do not have fast carry-logic, the gap in performance between a bit-serial design

and a bit-parallel design will be even smaller.
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3.3 Design Goals

The main focus for this project is to provide CORDIC implementations suit-
able for System on Chip (SoC) that will fit on a single FPGA. As already mentioned,
many applications will require a number of CORDIC processing elements. Thus, the
CORDIC implementations are required to be compact and of low complexity. The
fully pipelined bit-parallel implementation will obviously have the highest throughput
compared to other approaches, but will require the most logic elements and routing
resources. In applications such as audio processing that do not require extremely
high data rates, such an approach will take up unnecessary real-estate. Providing
alternative architectures and characterizing their area/performance trade offs pro-
vides designers with a wider range of options that will allow for the tightest possible
integration of their design. Following are some of the important characteristics to ex-
amine when determining the most suitable CORDIC implementation for a particular

application.

3.3.1 Latency

Latency is the amount of time required for the input to propagate to the out-
put. Ideally, this amount of time is to be kept to a minimum. An iterative algorithm
such as CORDIC has an inherently high latency as opposed to other methods such as
look-up tables for calculating values of trigonometric functions. Some possible solu-
tions to reducing latency are simplification of the algorithm and exploiting parallelism

wherever possible.

3.3.2 Throughput

Throughput is the amount of data produced per unit of time. Pipelining is the
most common way of increasing throughput. In order to have high throughput, the
maximum delay between pipeline stages must be kept to an absolute minimum. In

an iterative architecture, throughput is determined by the latency of the algorithm,
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as well as the delay required for each iteration. Insuring the algorithm can complete
in as few iterations as possible will maximize throughput in the case of an iterative

architecture.

8.3.8 Accuracy and Error

Accuracy and allowable error are highly dependent on the application being
targeted. Obviously, the automatic generation of a CORDIC PE architecture must
allow for a wide range of accuracy requirements. Floating point implementations
also allow for a greater dynamic range than fixed point implementations. For the

CORDIC algorithm, one extra bit of accuracy is obtained for every iteration.

3.8.4 Area

The area occupied by a CORDIC PE becomes a crucial design consideration
if the PE is to be used as part of a larger design, such as systolic array or a system on
chip (SoC). Architectures that use the minimum number of logic blocks and minimize
the number of required interconnects will ensure that the PE does not take up too

much valuable real estate on the FPGA.

3.3.5 Power Consumption

With the increase in integration, larger FPGAs and portable systems, power
consumption is becoming an important issue. Obviously, implementation must be as
simple as possible in order to reduce unnecessary power consumption. Cutting down
on long interconnects and minimizing fanout are crucial in bringing down power con-
sumption in an FPGA. This is usually accomplished by inserting memory elements to
break up the interconnect and reduce the fanout. Reducing unnecessary glitches with
the use of appropriate state-machine memory elements will also help to reduce power
dissipation. Finally, power consumption can be reduced by preventing unnecessary

switching and turn off parts of a circuit when they are not required.
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3.8.6 Scalability

Scalability is the ability of a system to be extended in order to meet increasing
requirements while minimizing impacts on performance. In the case of the CORDIC
PE, scaling will imply that various bitwidths must be supported in order to be suitable
for a wide range of applications. It is important to note that the performance and

complexity of the CORDIC algorithm is directly proportional to its required accuracy.

3.4 Architectural Styles

The internal structure of FPGAs in genefal lends itself to a certain number of
architectural styles. For this work, four broad categories will be examined, namely

bit-parallel iterative, bit-parallel pipelined, bit-serial iterative and bit-serial pipelined.

3.4.1 Bit-Parallel Iterative Architecture

The bit-parallel iterative structure stems directly from the CORDIC pseudo-
rotation equations, and is shown in Figure 3.2. Initial values are loaded into the
appropriate registers via the input multiplexers. Two barrel shifters are required in
order to provide the shifted values for 227* and y2~* for the cross-additions. The
ATR constants for the 2 data path are stored in ROM and the outputs of the z, y
and z data paths are fed back into their respective registers. The direction of rotation
0; is determined by the sign of the z register in rotation mode or the sign of the y
register in vectoring mode. A controller (omitted on the figure) is required in order
to provide the ROM addresses and and shift parameters to the barrel shifters.

This design is relatively compact and straight forward. Implementing efficient
barrel-shifters is an important issue for this architecture in order to maximize the use
of available logic elements. For bit-parallel implementations, the latency is equal to

the number of iterations Niger. If Fiock is the maximum operating frequency of the
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Figure 3.2: Bit-Parallel Iterative CORDIC Structure [1]

iterative processor, then the throughput R will be:

Feiock
R = -5 3.1
Nz‘te'r ( )

3.4.2  Bit-Parallel Pipelined Architecture

By unrolling the iterative architecture, a purely combinational structure as
depicted in Figure 3.3 can be obtained. This type of structure does not require

barrel shifters since the shift for the cross adders are provided by the wiring. The
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Figure 3.3: Unrolled Bit-Parallel CORDIC Processor {1]

ROM is also eliminated, as each ATR constant required in the z data path can
now be hardwired. The suppression of the barrel shifters and ROM also leads to
the elimination of the controller. The design is easily pipelined by adding registers
after each adder/subtracter. In an FPGA, each logic cell has an associated memory
element. If only the logic cell are used, the memory elements are lost. Thus, pipelining
in an FPGA comes at no extra cost, and should be exploited wherever possible. In

this case, the throughput R is:

R= Fclock (32)
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3.4.8 Bit-Serial Iterative Architecture

The bit-serial iterative architecture is depicted in Figure 3.4. By processing
the bits one at a time, there is no delay associated with carry propagation and a lot
less hardware is required for the adders. In this manner, the processor can have a
higher clock rate. However, the wide multiplexer can present problems for implemen-
tations in certain FPGAs. The controller required for such an architecture is more
complex than for a bit-parallel design, since the bit-serial addition has to be properb;
sequenced. This usually requires insertion of a few delay memory elements in order to
properly align the control signals and reset the serial adder carry storage. Denoting
B, ;s as the number of effective bits in the register and Bgeia, as the number of delay

bits, the throughput of the bit-serial processor will be:

Faock
R= 3.3
]Viter ¢ (Beff + Bdelay) ( )
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3.4.4 Bit-Serial Pipelined Architecture

The bit-serial iterative structure can also be unrolled into a pipelined archi-
tecture, as shown in Figure 3.5. The serial ROMs will become one-dimensional as
opposed to the two-dimensional ROM required for the iterative architecture. Also,
the wide multiplexer is no longer required since all registers contain a tap for the
corresponding shift value. As the bits are fed continuously into the next register,
some mechanism for sign recording and sign extension is also required. Some form of
sequencing is necessary in order to handle sign recording, sign extension, serial ROM

addressing and serial addition. The throughput for such an architecture will be:

F, clock
R= ——-dock 3.4
(Bess + Baelay) (34)

3.5 Xilinx Intellectual Property Core

Xilinx already provides an Intellectual Property (IP) CORDIC implementation
as part of their LogiCORE product line. These cores can be built automatically
through the Xilinx Core Generator interface according to user supplied parameters.

The implementations are specially tailored to Xilinx FPGAs and utilize the available
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logic elements in an extremely efficient way. The version used during the course of
this project was the CORDIC v2.0. In this version, only the bit-parallel iterative and
pipelined architectures can be generated. These implementations use the original
CORDIC equations with a very fast and area efficient constant coefficient multiplier
(CCM) for scaling factor compensation. The generated CORDIC cores will be used

as benchmarks for the processing elements proposed in this work.

3.6 Summary

This chapter outlined the key characteristics of the Xilinx Virtex-II, which
will be the target platform used for this project. The design goals for the CORDIC
Processing Elements were also outlined. Finally, the four broad architectural styles
that will form the basis for the CORDIC PEs have been examined, namely the bit-
parallel iterative, bit-parallel pipelined, bit-serial iterative, and bit-serial pipelined
architectures. In the next chapter, these design considerations will be used in order

to select a suitable CORDIC algorithm for implementation on the Virtex-II device.
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CHAPTER 4: ALGORITHM SELECTION

The original algorithm proposed by Volder [2] is the most common way of implement-
ing CORDIC in hardware. Since each pseudo-rotation is dependent on the previous
result, the rotation stages offer little parallelism opportunities. Hybrid radix repre-
sentation and rotation prediction provide an alternative, but are only valid in the case
of rotation. Decreasing latency in a pipelined architecture thus becomes a matter of
implementing an extremely efficient Constant Coefficient Multiplier, as is the case for
the Xilinx CORDIC IP Core. However, the iterative structure and bit-serial archi-
tectures have different characteristics, and the most efficient approach for a parallel
pipelined architecture might not be suitable in these other circumstances. In this
chapter, two potential candidates will be compared and the most suitable algorithm

will be selected in order to implement the CORDIC PE on an FPGA.

4.1 Double Shift CORDIC

The double shift CORDIC technique was first discussed in [35]. Instead of
performing a single shift on the z; and y; variables, two different shift values are
obtained and are either added or subtracted. This allows added flexibility in the
angles that are used for each iteration, and angle shift parameters are chosen in
such a way that the scaling factor is steered toward a simple sum of signed powers
of two. Originally, parameter optimization was considered in order to produce a
general purpose ALU capable of performing rotations in all three coordinate systems,
ie. linear, circular and hyperbolic. Similar results were also presented in [36]. In
[37], sets of shift parameters are presented that are optimized only for the circular
case. Furthermore, [36] and [37] consider scaling factors that are simple sums (or

differences) of signed powers of two containing 2 terms, whereas [35] only considers a



Chapter 4: Algorithm Selection 39

scaling factor of 0.5 for the circular coordinate system.

The modified iteration equations for the Double Shift CORDIC algorithm are

as follows:
Tip1 = z; — 02750 4 (5)275 D)y, (4.1)
Yir1 = yi + 032750 4 ()27 D)z, (4.2)
Zi41 = & — 0304 (4-3)
where:
a; = arctan(2™5@ 4 p(3)2~5®) (4.4)

Notice that each angle is now described by three parameters, S(i), S'(¢) and n(é). The
parameter S’'(i) is a second shift factor, and n(i) € {-1,0,1}. Thus, the equations
for the z and y data paths now contain two shifting operations and two addition
operations. The z data path is unaffected since the o; constants are pre-calculated.

The following constraints are also imposed on the shift parameters:
1. Angle set:

a; = arctan(275® 4 7;,275®) (4.5)

where:

€ {—170’ 1}
S(i),S'(G) € {0,1,..., N}
() > ()

2. Representation range:

N
P g— (4.6)

3. Angle convergence:

N
az-SaN-!-Za,-forz'::O,...,N—l (4.7)
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4. Angle precision:

ay = arctan(27) (4.8)

5. Inverse scaling factor composition:

N D-1
K1l= Hcos oy R Z )\jQ’TJ’ (4.9)
=0 =0
Aj € {-1,0,+1} (4.10)
T; € {0,...,N} (4.11)

The resulting scaling factor is given by:

N-1
k=1] \/ 1 4 2-256) 4 7,2-SO-S'@+1 4 729-256) (4.12)
=0

The derivation of the scaling factor is given in Appendix A.

In (4.9), D indicates the maximum number of signed digits. The above con-
straints are required in order to preserve the convergence properties and the accuracy
of the CORDIC process. Finding shift parameters that will yield a simple inverse
scaling factor is an optimization problem where the total number of iterations has to
be kept to a minimum and the number of iterations where 7; # 0 also has to be min-
imum. Furthermore, limits have to be imposed on how many double shift iterations
and how many total iterations that can be used as the ATR. Note also that according
to [38], this problem is NP-complete.

In order to further investigate the properties of the Double Shift CORDIC
and its usefulness for hardware implementations, a study was conducted as part of
this thesis and published in [39]. In this study, a more flexible solution in terms of
optimization is proposed for both recursive and pipelined architectures. Particularly,
the use of modified CORDIC ATR sequences was carefully considered against the
basic CORDIC algorithm originally proposed by Volder [2] and Double Shift CORDIC
shift sequences presented in [40] in order to ensure that benefits are achieved in terms

of area, power, and throughput. The proposed approach was to allow more flexibility
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in the number of terms that can appear in the scaling factor. A search algorithm was
developed in Matlab in order to find double shift CORDIC sequences that would yield
scaling factors with a specified number of signed digits. In order to restrict the search
space, repetition of the same angles in the angle set is not allowed. However, the
search space stills remains quite overwhelming, containing 3.373825 x 10%° different
possibilities for the 32 bit precision ATR. The input to the search function is the
maximum shift value, the maximum number of double shift stages allowed, the depth
of the search and the maximum number of signed digits that can be present in the
scaling factor. The depth of the search takes advantage of the fact that angles with
smaller shift values will have the most impact on changing the value of the scaling
factor. In contrast to the previous approaches where a series of nested “for loops”
were used, this program uses modulo counters to perform the loops. In this manner,
the program does not have to be rewritten for different bit sizes. For each candidate
angle sequence, the convergence reqﬁirements are first tested. If the angle set meets
the convergence criterion, its corresponding scaling factor is recoded into Canonical
Signed Digit (CSD) format, and the program checks whether it contains the allowable
number of signed digits or fewer. If the angle set meets all these requirements, it is
added to the list of acceptable angle sequences.

Hardware requirements for the original CORDIC shift sequence, the double
shift sequences found in [40] and the proposed modified double shift CORDIC were
tabulated and compared for bit widths of 12, 16, 18, 24 and 32 bits. The study clearly
showed that no benefits were derived in terms of latency and amount of hardware
for the shift sequences found in [40] when compared to the original CORDIC shift
sequence. It was also shown that the modified double shift CORDIC did outperform
the original CORDIC and the shift sequences found in [40].

One major disadvantage of the Double Shift approach is the complexity of
the search algorithm required to produce valid and efficient ATR shift sequences.

Furthermore, this search process has to be conducted each time we want to generate
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an ATR sequence for a different data width. Note that for a fixed bit width, this
ATR sequence does not change. The second disadvantage is that two different shifted
operands have to be generated for each pseudo-rotation equation for the z and y data
path. This leads to the requirement for either four barrel-shifters for an iterative
architecture or to split the double-shift iterations into two with an accumulator and
increased control logic. In a bit-serial design, this means that we need double tap
registers in a pipelined implementation or two wide multiplexers for each data path

in an iterative implementation.

4.2 Compensated CORDIC

The compensated CORDIC algorithm is based on a two step process where
simple correction iterations are inserted in order to force the scaling factor to 2. First,

the conventional CORDIC iteration is performed:

Thy =i — o2 (4.13)
Yier = Ui + 0227 (4.14)
%y = % — 0i04 (4.15)
Ky = k(1 +27%)3 (4.16)

where 0; = —1if z; < 0,+1 otherwise (Rotation Mode)

followed by a magnitude correction iteration which does not perform any rotation of

the vector:
Tit1 = Tipy — i 2" (4.17)
Yirl = Yigs + %2 (4.18)
Ziv1 = 24 (4.19)

Fis = Ky + 7276 4 pi-oi (4.20)
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where n; = +1if k; < 0, —1 otherwise

The rotation and compensation can be combined into a single set of equations:

Tip1 = T; — o2~ + mizi2™" + o2~ (4.21)
Yirs = Yi + 03227 4+ 0yi2 7 + oy 27 (4.22)

With these compensated pseudo-rotations, the values for 7; are selected at each step
in order to steer the scaling factor to 2. However, these equations do not bring
about any real benefits in terms of reducing the amount of processing required for
the CORDIC algorithm, since they contain 4 operands with different shift values. In
order to simplify the compensated pseudo-rotations, the last term in each equation

can be dropped, leading to the following equations:

Ti+1 = X5 — aiy,-Q“S(") + 7’]¢.’I7¢2~S(i) (423)
Yir1 = Yi + 032:2750 + ;2750 (4.24)
Ziy1 = 2 - o0 (4.25)

Note that the shift factors 2~¢ have been replaced by 275®. The ATR angles are thus

given by:
1
o; = arctan (mm) (426)
and the scaling factor is given by:
N-1
K=Y /1427350 4 p2-S6:41 4 22250 (4.27)

i=0

Appendix A contains all the details for the derivation of the ATR angles and scaling

factor. Significant benefits are gained from these modified compensated CORDIC

iterations. The equations now contain only 3 operands, just like the double shift

CORDIC. However, the two same shifted terms (i.e. £;2~°% and y,2-5%) appear in

both equations, whereas the double shift algorithm required four different shift terms.
While these equations are simpler, the ATR radix has been modified and con-

vergence is no longer guaranteed for S(i) = 0,1,2,3, ..., N. Certain shift parameters
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S(¢) will need to be used more than once in order to ensure convergence. A heuristic
search was used in [5] in order to determine the appropriate shift sequence and corre-
sponding values for 7;. The search algorithm was developed in order to minimize the
number of operations required to insure both angle convergence to zero and scaling
factor convergence to a value of 2. The results for a maximum shift of 31 was given
in [5]. Extension to a maximum shift value of 34 was trivial, and the resulting shift
sequence is presented in table 4.1. The Compensated CORDIC leads to two other
significant advantages over its Double Shift counterpart: 1) the search algorithm is
much simpler and 2) the shift sequence obtained from the search can be used for the
entire range of data width contained in the list. For example, if a maximum shift of

20 is required, iterations 0 through 22 are used.

i 8¢ | m K-1 logy E i| S | m K1 log, E
0 0 0 | 0.70710678118655 -2.27155 19 18 1 | 0.50000031318151 | -21.60650
1 1 0 | 0.63245553203368 -2.91642 20 18 0 | 0.50000031317788 | -21.60651
2 2 0 | 0.61357199107790 -3.13832 21 19 0 | 0.50000031317697 | -21.60652
3 3 1 | 0.54206153065211 -4.57135 22 20 0 | 0.50000031317674 | -21.60652
4 4 1 | 0.50929518563202 -6.74930 23 21 1 | 0.50000007475807 | -23.67320
5 5 0 | 0.50904668833221 -6.78839 24 22 0 | 0.50000007475805 | -23.67320
6 6 1 | 0.50115589503831 -9.75677 25 23 1 | 0.50000001515340 | -25.97578
7 6 0 | 0.50109473088091 -0.83521 26 24 0 | 0.50000001515340 | -25.97578
8 7 0 | 0.50107943938330 -9.85550 27 25 1 | 0.50000000025224 | -31.88447
9 8 0 | 0.50107561649432 -9.86062 28 26 0 | 0.50000000025224 | -31.88447
10 9 1 | 0.50009791076158 | -13.31817 29 27 0 | 0.50000000025224 | -31.88447
11 10 0 { 0.50009767229648 | -13.32169 30 28 0 | 0.50000000025224 | -31.88447
12 11 0 | 0.50009761268020 | -13.32257 31 29 0 { 0.50000000025224 | -31.88447
13 12 0 | 0.50009759777613 | -13.32279 32 30 0 ( 0.50000000025224 | -31.88447
14 13 1 | 0.50003655443256 | -14.73959 33 31 1 | 0.50000000001941 | -35.58433
15 14 1 | 0.50000603555478 | -17.33808 34 32 0 | 0.50000000001941 | -35.58433
16 15 0 | 0.50000603532195 | -17.33814 35 33 0 | 0.50000000001941 | -35.58433
17 16 0 | 0.50000603526374 | -17.33815 36 34 0 | 0.50000000001941 | -35.58433
18 17 1 | 0.50000222053498 | -18.78066

Table 4.1: Compensated CORDIC Shift Sequence and Properties
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4.3 Algorithm Selection

The compensated CORDIC algorithm provides some clear advantages over the
double shift algorithm, and will be the algorithm used for the FPGA implementations.
Following are the 3 main reasons why the compensated CORDIC is well suited to

FPGA implementation:

1. Simple Inverse Scaling Factor (K~! = 0.5)
2. Occurrence of same shift factors in both z and y data path

3. No complicated search algorithm for ATR sequence

Having a simple scaling factor that only requires a shift operation will become
crucial in a bit-serial implementation, where implementation of a bit-serial multiplier
is awkward: a bit-serial multiplier requires twice as many clock cycles as a bit-serial
adder, since it produces twice as many bits. Occurrence of the same shift factors will
greatly simplify hardware, particularly in the iterative bit-parallel and both types
of bit-serial structures. If a three operand adder is used in the bit-parallel iterative
structure, only two barrel shifters will be required in the case of the compensated
algorithm, whereas four barrel shifters would have been required in the case of the
double shift algorithm. For bit-serial arithmetic, single-tap shift registers will be used
instead of double tap shift registers. This also has an effect on the controller, since

only a single sign extension signal will be required instead of two different signals.

4.4 Error Analysis
4.4.1 Angular Error Analysis

The first source of error to consider is the one introduced by the finite set of
ATR angles. As such, the angle precision will be determined by the smallest ATR

angle. The worst case angular error will occur when the second last iteration produces
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a vector with the exact angle of rotation required (or an angle of zero in the case of
vectoring). The last iteration will then rotate the vector by the final angle an_1,
inducing an error in the z and y component of the vector. Appendix B provides the
details on the effects of this error. The result is that for b bit precision, the shift value
for the smallest angle will have to be S(N — 1) = b.

Table 4.2 shows how precision is improved with each subsequent iteration
when considering angular error for 16-bit precision. Another interesting fact is that if
the CORDIC algorithm is used only for vector magnitude calculation (i.e. vectoring
" without the need for accurate angular displacement), the number of iterations can be
cut in half since the z data path has an improvement of 2 bits per iterations (except

in cases where angles are repeated).

i | arctan(a;) z err(%) | affected y err(%) | affected z err | affected
1—cosa z bits sina y bits z bits

0 0.785398 | 29.289322 15 | 70.710678 16 | 0.785398 0
1 0.463648 | 10.557281 13 | 44.721360 15 | 0.463648 -1
2 0.244979 2.985750 11 | 24.253563 14 | 0.244979 -2
3 0.110657 0.611627 9 | 11.043153 13 | 0.110657 -3
4 0.058756 | 0.172563 7 | 5.872202 12 | 0.058756 -4
5 0.031240 0.048792 5 3.123475 11 | 0.031240 -5
6 0.015383 0.011832 3 1.538280 10 | 0.015383 -6
7 0.015624 0.012205 3 1.562309 10 | 0.015624 -6
8 0.007812 0.003052 1 0.781226 9 | 0.007812 -7
9 0.003906 0.000763 -1 0.390622 8 | 0.003906 -8
10 0.001949 0.000190 -3 0.194931 7 | 0.001949 -9
11 0.000977 | 0.000048 -5 0.097656 6 | 0.000977 -10
12 0.000488 0.000012 -7 0.048828 5 1 0.000488 -11
13 0.000244 0.000003 -9 0.024414 4 1 0.000244 -12
14 0.000122 0.000001 -11 0.012206 3 1 0.000122 -13
15 0.000061 0.000000 -13 0.006103 2 | 0.000061 -14
16 0.000031 0.000000 -15 0.003052 1 { 0.000031 -15
17 0.000015 0.000000 -17 0.001526 0 | 0.000015 -16

Table 4.2: Angular Error Analysis - 16 bit Inputs
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4.4.2  Truncation Error Analysis

Since shifted operands are used with finite word length, rounding will produce
further errdrs during the CORDIC process. In order to keep the hardware as simple
as possible in the present implementations, it was decided to use truncation instead
of rounding. The error introduced is given by the number of 1’s that have been
truncated. Thus, the maximum error is found by adding all the weights for the
truncated bits. In compensated CORDIC, stages where 7; # 0 have two shifted
operands, and will introduce more errors than stages that have only a single shifted
operand. It is possible to pad the data path with an appropriate number of bits in
order to allow for error accumulation. If E is the maximum accumulated error for the
CORDIC process, then logs(E) bits will need to be padded. Tables B.1 and B.2 in
Appendix B show truncation error details as well as the number of pad bits required
for different numbers of iterations for both the original CORDIC algorithm and the
compensated CORDIC.

4.4.8 Owerflow Error Analysis

The = and y data path of the pseudo-rotation stages of the CORDIC PE
perform simple fixed point shift and add operations. Because of this, the width of
the data paths has to be adjusted in order to handle possible overflow conditions.
Overflow conditions can result from the following sources: 1) growth from 2D vector
rotations and 2) growth in magnitude induced by the pseudo-rotations themselves
(i.e. the scaling factor). The worst case growth will occur when both z and y are at

their absolute maximum, and the desired angle of rotation is £ /4. For example:

z’ = zcos (g) — ysin (%) =0 (4.28)

y' = ycos (%) — zsin (—:{-) 7z 1.4142 -y (4.29)

Growth resulting from the scaling factor occurs at every iteration of the com-
pensated CORDIC algorithm, and reaches K ~ 2. Thus, the z and y data paths
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must be padded with a total of 2 extra bits in the MSB positions.

4.5 Data Format

The internal data path format is shown in Figure 4.1 for b bit inputs. Note
that if a binary point is present in the inputs, it must be at the same position for
both the 2 and y input. Contrary to the z and y data paths, the z data path does not

MSB Guard Digits Input Digits LSB Guard Digits

btl b2 bl 0 -l -
Figure 4.1: x and y Datapath Format .

require MSB or LSB guard bits, since it deals with simple add and subtract operations
without any shifting or induced scaling. It has a standardized fixed-point format in
order to represent angles in the range of [—7/2,+7/2]. In order to represent this
range, the z datapath will have 2 whole bits and b— 2 fractional bits, which will allow

for an effective range of [-2, +2 — 2752,

4.6 Summary

The Compensated CORDIC algorithm was selected for the hardware imple-
mentation of the CORDIC PE. It provides a simple inverse scaling factor, has the
same shift factors for both the z and y data paths and requires no complicated search
algorithm for determining the ATR shift sequence. The characteristics of the Com-
pensated CORDIC lead to significant savings in terms of hardware. In the next
chapter, FPGA implementations of the Compensated CORDIC will be examined for

the four different types of architectural styles.
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CHAPTER 5: IMPLEMENTATIONS

The compensated CORDIC algorithm was chosen for the FPGA implementation of
the CORDIC PE. There is a broad range of options when attempting to map the
CORDIC algorithm into hardware. The architectural styles presented in Chapter 3
will be used and arithmetic operations will be adapted in such a way as to derive
maximum benefits either in terms of speed or minimum area.” One major advantage
of the compensated CORDIC is that no multiplier is required for scaling factor com-
pensation. Hence, the design of normal CORDIC stages and compensated stages, in

addition to controllers, is all that is required to be examined.

5.1 Bit-Parallel Pipelined Implementation

The bit-parallel pipelined implementation has two different types of pipeline
stages: 1) the regular CORDIC iteration stage (7; = 0) and 2) the compensated
CORDIC stage (7; = 1). The regular CORDIC stage is shown in Figure 5.1 and is

the one that was used in describing the basic architectural style in Chapter 3. In the

Xi+1 Yix1 Zit1

Figure 5.1: Regular CORDIC Pipeline Stage



Chapter 5: Implementations 50

case of the compensated stage, it is required to perform an operation such as:
R=A+B+C (5.1)

There are two different options for performing this type of operation in an
FPGA such as the Virtex-II. The first is to perform the operation in two steps, which
will require one adder/subtracter followed by an adder (Figure 5.2). Typically, each
bit-slice of a 2 operand adder requires 1 LUT and associated carry-logic. Thus, by
cascading two w-bit adders, 2w LUTs (and associated carry-logic) will be required.
The delay of the operation will be twice the delay of a w bit adder. The second

Subtract

w

A—pt

Figure 5.2: 3 Operand Adder/Subtracter

option, and the one that was used for the pipelined implementation, is to use a 3:2
compressor structure followed by an adder, as depicted in Figure 5.3. The compressor
stage will have a delay equal to a single LUT, since there is no carry propagation.
Following are the Boolean equations for calculating the sum and carry bits for both

the sum and carry vectors from the a, b and c bits of the three operands:

d = b ® subtract (5.2)
sum=adddc (5.3)
carry=a-d+a-ct+d-c (5.4)

Note that the equations for each sum and carry bit is dependant on 4 inputs, namely
a, b, c and subtract, and these functions can be implemented in a single LUT. Once

the sum and carry vectors have been generated after a delay of 1 LUT, these vectors
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are then used as inputs to a w-bit adder. The total delay is thus 1 LUT plus the delay
of 1 w-bit adder. The drawback to this approach is that 2 LUT for each bit-slice is
required (one for the sum, and one for the carry). Thus, the resources required to
implement such a structure will be 3w LUTSs, or 1/3 more hardware than the cascaded
approach. Considering that the compensated stages on average make up less than
30% of the total number of stages, this increase is a small price to pay for the added

performance gain. The resulting compensated pipelined stage is shown in Figure 5.4.

Subtract —
ggg: Is‘f:ﬁ sum2) RQ)—
A Carry(1)
Subtract —
cqQy < LUT Fast Carry
B(l) — Carry Adder
A(l) —
Subtract — LUT
C(1) Sum Sum(l) R(A)[—
f((ll)) : Carry(0)
Subtract —
C(0) - LUT
B() - ©¥
A(0)
Subtract —
LUT
C(0) — Sum Sum(0) RO—
1}3(((()))) : -{Carryln
Subtract

Figure 5.3: 3:2 Compressor and Adder
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Xi+1 Yitl Ziny
Figure 5.4: Compensated Pipeline Stage

5.2 Bit-Parallel Iterative Implementation

The bit-parallel iterative implementation of the CORDIC PE can be subdi-
vided into three main parts (Figure 3.2), namely the controller, the ROM and the
data paths. The data path is slightly different than the one used in a compensated
CORDIC stage of the pipelined implementation, and the processing element can be
seen in Figure 5.5. A cascaded arrangement of one adder and one adder/subtracter
is used instead of the 3:2 compressor structure of the pipelined implementation. The
reason for this is that there is now an extra decision variable, 7;, which prevents the
logic function from fitting nicely into a 4 input LUT. The decision variable 7; and the
shift values S(¢) are provided by the controller. The direction of rotation variable o;
is equal to the sign bit of the 2 register for rotation mode or the complement of the y
register sign bit in vectoring mode. The controller also provides the appropriate ad-
dress for the ATR constants stored in the ROM. The Block RAM resources available
on the Virtex-II were used in order to implement the ROM. Note also that the values
of the z and y output registers are shifted one bit position to the right in order to
correct for the scaling factor. When all iterations have been completed, the z, y and

z output registers contain the unscaled values for the rotated vector.



Chapter 5: Implementations 53
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XRegister Y Register Address Z Register

S(i)

Shifter Shifter

ROM
(Block RAM)

Controller

AR

\ S(i) T
l XOut >>1 l I YOut >>1 I ZOut

xn yn Zn

Figure 5.5: Bit-Parallel Iterative Implementation

5.3 Bit-Serial Pipelined Implementation

In a bit-parallel architecture, the adder/subtracter delay is equal to the the
carry propagation time. The Virtex-II provides fast carry logic within each slice in
order to speed up these operations. Parallel arithmetic requires the same amount of
logic to perform operations as there are bits in the operands. This means that for
each bit of a register, one logic cell is required (recall that there is 1 memory element
per cell). One way to significantly reduce the amount of hardware required to per-
form arithmetic operations is to perform bit-serial arithmetic. Since each LUT in the
Virtex-II can also be configured as a 16-bit shift register, registers will take up less
logic and wiring resources on the device. This does not amount to a reduction in area
of 16:1 however, since arithmetic operations have to be controlled by a sequencer.

Bit-serial arithmetic can also prove very useful when no fast carry logic is available



Chapter 5: Implementations 54

on & device. Bit-serial implementations will be much slower than bit-parallel imple-
mentations, but the reduction in area and routing makes this solution particularly
attractive for FPGAs, especially for System On Chip applications.

The first consideration when attempting to map the compensated CORDIC
algorithm in a bit-serial architecture is the implementation of a tapped shift register.
An implementation example of a 34-bit tapped register with LSB output is shown
in Figure 5.6. Each LUT in the Virtex-II can be used as a 16-bit variable tap shift
register, denoted as SRL16 in Figure 5.6. The values on the address lines (A0 through
A3) indicate which bit of the register will appear on the @ output. In order to
implement a shift register with two outputs (one for the tap and one for the LSB), at
least two shift registets are needed with the appropriate addresses for the @) outputs.

The synthesizer also uses the available flip-flop element since it will be lost if it is not

used.
___8RU18 SRL1G SRL16
Datain®—— o D iz D D
o—v—r— QD o-—r«—l Q0 a i Data(0)
——DCLK ——DCLK ——PCLK

1~ a0 1 A0 —-+C §—— A0 ——HC

1 At 1 At 4 —— A1

1—— A2 0-—— A2 0-1{ A2

{——ins 1-A3 0——1{ A3

L—- & Data(5)

Figure 5.6: 34-bit Tapped Shift Register with LSB Output

Next, a serial adder/subtracter element is required for the iteration equations.
An effort was made in order to maximize the use of available logic resources. The
resulting element is shown in Figure 5.7 and requires one LUT for the sum (LUT1? ),
one LUT for the carry or borrow (LUT?2) and one D Flip-Flop for storage of the carry
or borrow (DFF1). The Init signal resets the carry/borrow storage element when
starting a new operation. For a compensated CORDIC stage, an extra addition is

required, and the resulting compensated adder is shown in Figure 5.8. The structure
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of this element is similar to the serial adder/subtracter element, except that the
second operation is always an addition. Also, the compensated element will have a

delay equivalent to that of two LUTs.

LUT1

A JA Sum & Sum

BB B

| Camfin
SumbDiff1

Subtract 5 --——subtract
CarryBorrow1 dffr

Figure 5.7: Bit-Serial Add/Subtract Element

The tapped shift registers and serial adders are then used in the data path
pipe sections. A pipe section for the z and y data path is depicted in Figure 5.9. A
storage element is present in order to store the MSB of the z and y registers when
the RecordSign signal is high. This sign is used for sign extension of the shifted
operand, which is controlled by the ExtendSign signal. The LSB and tap outputs are
fed to a serial adder/subtracter in the case of a regular stage or a compensated serial
adder /subtracter in the case of a compensated stage. Once again, the o; signals are
generated from the sign of either the y or z sign storage element depending on the

mode of operation. The z data path is shown in Figure 5.10. The ATR constants
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are stored in one or more LUTs, and are addressed using a Linear Feedback Shift
Register (LFSR). An LFSR is used since it has a simpler hardware implementation
than other types of counters. Because of this, the ATR digits have to be recoded
in order to correspond to the count sequence of the LFSR. Also note that all z pipe

sections only require a simple serial adder/subtracter.

LUT1 LUT3
AL A amir A - Sum & Sum
B {8 CE 1B
| Canyin F{Caryin
SumDiffi Sumbiffl
LUT2 DFF1 LUT4 DFF2
A CanryOut D A CamyOut D
B a 8 a
Ly-dcamyin v Clock -] Carryin Glock
Subtract B> {Subtract Reset Reset
Carry1 -
CarryBorrow1 dffr difr

Clockis-
InitE>-

Figure 5.8: Bit-Serial Compensated Element

In order to minimize long wire delays and increase performance, control pipes
as shown in Figure 5.11 are used in order to propagate control signals injected by a
sequencer at the front of the pipeline. Figure 5.12 shows an example of a timeline that
was used in order to determine the control signal dependencies for each stage. Control
signals are divided into internal and external control signals. The Subtract signal is the
only internal control signal, and is used as a control signal for the adder /subtracters

of the z, y and z datapaths, where a value of 1 indicates a subtract operation, and
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Figure 5.10: Pipe Section - z Data path

a value of 0 indicates an add operation. In the case of the z and z datapaths, the
Subtract signal is equal to the o; signal. In the case of the y datapath, the Subtract
signal is equal to —o;. External control signals are those that have to be generated by
the control pipeline, and include the Init, RecordSign and EztendSign signals. As can
be seen in Figure 5.12, there is a delay of two clock cycles between successive pipeline
stages. This delay is required in order to properly align the external control signals
generated by the control pipeline. One of these delays is a flip-flop inserted after the
serial adder/subtracter of each stage of Figure 5.10 and a second delay is included in
the shift registers by increasing their size by one extra bit, for a total of two clock
cycles. The first clock cycle delay is required for the Init signal, which initializes the

carry/borrow storage element of the serial adders. This signal must be active at the
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Figure 5.11: External Control Pipe Section
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Figure 5.12: External Control Timing (8 Bits, 4 Iterations)

same time as the last bit enters the LSB of the shift register. The other clock cycle

delay is required in order to properly align the signals in the control pipeline. The
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RecordSign signal needs to be generated one clock cycle after the Init signal of the
previous stage, and is generated one clock cycle before the Init signal of the next
stage. In order to clarify this, the signal on the control pipe of Figure 5.11 is labeled
RecordSignNext instead of RecordSign. Finally, the ExtendSign signal of stage i + 1
is initiated immediately after the initiation of the ExtendSign signal of the previous
stage ¢, and is terminated one clock cycle after the RecordSign signal of the present
stage ¢ + 1. Note that the Subtract signal on Figure 5.12 indicates the moment at

which this internal control signal becomes valid.

5.4 Bit Serial Iterative Implementation

One of the challenges in implementing the bit-serial iterative architecture is to
efficiently implement the very wide multiplexers for the shifted values of the z and
y data path. As suggested in (1], the tapped shift registers can be implemented by
configuring the Virtex-II slices as dual port RAM. As stated in Chapter 3, the Virtex-
IT function generators may be configured as 16x1-bit RAM, as shown in Figure 5.13.
Any type of RAM which is implemented within the Control Logic Blocks is refered
to as CLB RAM, as opposed to the dedicated dual port block select RAM (18Kbit)
resources.

In the case of the Virtex-II, CLB RAM can also be easily configured as dual-
port RAM shown iﬁ Figure 5.14 with one synchronous write port D and two asyn-
chronous read ports DPO and SPO. The A/3:0] address is used for both the write
port and the SPO read port, and the DPRA[3:0] address is used for the DPO output.
In this configuration, a shift register can be implemented by using the CLB RAM
and incrementing the A/3:0] address after each access. The second read port DPO
of the dual port RAM can be used for the register tap, and by properly sequencing
the DPRA[3:0] address on this second port, sign extension can be accomplished at

no extra hardware cost.
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Figure 5.13: Virtex-II CLB RAM
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The basic CLB RAM unit can implement 16x1-bit Dual Port RAM by using
a single slice (two logic cells). By cascading 16x1-bit CLB RAM with multiplexers, it
is possible to implement the 32x1-bit and 64x1-bit RAM required for the wider data
path widths. The addresses for the CLB RAM are generated by the controller, as
shown in figure 5.15. One set of lines is for the bit count (BitCount), and seperate
address lines are for the tap count (TapCount).

Input multiplexers (MX, MY and MZ) are required for choosing whether to
load input data or select data from the internal data paths. according to the Load
signal. The z and y data path are comprised of a dual port sync RAM and a com-
pensated adder/subtracter element. This element takes the unshifted data from the
corresponding read/write port (z; and y; for the z and y datapaths respectively) and
the shifted outputs from both read only ports (2;2~5® and y,275®). The subtract
signal § is stored in a flip flop, and is fed to all add/sub elements. The compensated
add/sub elements also have an extra input 7, which indicates if compensation is re-
quired for the current iteration. This 7 signal and the initialize signals (labeled [ )
are generated by the controller. Note that the add/sub element of the 2 data path is
a simple adder subtracter where one of the inputs originates from the z Single Port

RAM and the second input originates from the ROM that stores the ATR constants.

In order to keep the controller as simple as possible, the serial add/sub elements
of Figure 5.15 are asynchronous so they don’t introduce any clock cycle delays; the
result of the operation is directly fed into the input multiplexers. This means that
there will be a delay of two LUTs (one for the first add/sub operation and one for
the compensated addition) plus one multiplexer delay between the output of the dual
port CLB RAM to its input. This allows for the simple controller design shown in
Figure 5.16. It is essentially made up of three counters: the bit counter, the tap
counter and the iteration counter. The first two counters work together in order to

provide the proper addresses for the bit count and the tap count. For a b-bit width
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Figure 5.15: Bit-Serial Iterative Architecture

processor, the bit counter will always count from 0 to b — 1. In contrast, the tap

counter must start with the current shift value index, and count up to b — 1. The

b — 1 count must be kept until the bit counter has finished counting; this has the
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effect of performing sign extension on the shifted output.
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Figure 5.16: Bit-Serial Iterative Controller

Another key element in the synchronization of the entire process is the iteration
counter. Recall that the compensated CORDIC shift sequence contains two distinct
variables, S(i) and 7;, as listed in table 4.1 of Chapter 4. However, since there are
repetitions in the S(i) sequence, this variable cannot be used as the count sequence. In
order to keep the hardware as simple as possible, it was decided to use the combination
of S(i) and 7; as the count sequence. In this manner, the S(i) shift factors and 7
factors are immediately available from the controller, and the count sequence is used
as an address for the ROM. Note that using the concatenation of S(i) and 7; leads
to a non-linear count sequence, and there will be gaps in the ROM addresses. Also,
the fact that the tap counter needs to be loaded with the value of the S(i) parameter
presents a synchronization problem. First, the iteration and bit counters are reset to
0 when the Start signal is activated. Second, in order for the tap counter to be loaded

with the proper starting value, the iteration value can only be incremented after the
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tap counter has latched in the proper value. The easiest solution to this problem
was to ensure that the iteration counter has a shift value of S(i + 1). A similar
approach is also required in order to properly latch the value of the Eta signal, which
is accomplished using a Flip Flop and Clock Enable signal which acts as the “Load”

signal.

[ o |

MSB-1 LSB MSB

Gap J

MSB-1 LSB MSB

MSB-1 LSB MSB

Figure 5.17: ATR ROM Memory Layout

Synchronization issues and a non-linear counting sequence will also affect the
ATR ROM memory layout. The amount of data required to be stored in the ROM
is (b x N) x 1 bits. The first consideration is in the generation of the addresses for
the ROM. The ROM addresses is split into two parts: the Address High (AH) are
formed from the concatenation of S(i) and 7;, and the Address Low (AL) bits are

formed from the BitCount address bus. Since the AH address count is non-linear

(it skips over certain values), it will introduce gaps in between the ATR constants
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(Figure 5.17). Since the AL address bits are taken from the bit count, there is a
possibility that the AL address will not cover all the possible values for the AL bus.
This will introduce small trailing gaps right next to the ATR constants. As already
discussed, the shift values of the iteration counter (and hence, the AH address bits),
are always +1 with respect to the current iteration value. In order to compensate
for this, there will be an offset in the memory layout. This means that ATR(0) will
have to be stored at AH = x0002 instead of AH = x0000. All ATR constants will
thus have to be moved accordingly in memory. Since we are using sync ROM, there
is also a clock cycle delay between the availability of the address, and the resulting
output. In order to account for this, the MSB of each ATR has to be shifted up in

memory as depicted in Figure 5.17.

5.5 Summary

In this chapter, the proposed FPGA implementations of the compensated
CORDIC algorithm for the four different architectural styles were presented. From
this discussion, it can be seen that the four implementations take advantage of dif-
ferent FPGA resources, and they will require quite different descriptions when using
a hardware description language. Furthermore, these hardware descriptions have to
be parameterized in order to be able to generate a CORDIC PE of a given data
width and precision. In the next chapter, a new approach to VHDL code generation
will be examined, along with the proposed design flow for the compensated CORDIC

processing elements.
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CHAPTER 6: VHDL CODE GENERATION AND
SYNTHESIS

The compensated CORDIC PEs need to be scalable in terms of data width and
precision. Some of the implementations of the CORDIC PE contain elements that
are not easily parameterizable using standard VHDL constructs, such as LFSRs and
specialized ROMs that need a very specific memory layout. In this chapter, a new
approach to the generation of synthesizeable VHDL code will be examined, along
with the proposed design flow and automatic code generation tool built as part of

this project.

6.1 Code Generation With PHP Hypertext Preprocessor

Code generation is the process of producing program source files in some auto-
matic manner. In a more general sense, it essentially amounts to “writing code that
writes code”. In this particular case, the target language is VHDL, or to be more
precise, synthesizeable VHDL. Synthesizeable VHDL code will allow for efficient and
correct translation of a high-level hardware description into a netlist that can be im-
plemented on an FPGA. VHDL contains a host of features that make it a powerful
language for the description and simulation of hardware systems. However, the nature
of synthesis precludes the use of a wide range of VHDL constructs: some abstractions
simply do not have hardware equivalents. The subset of VHDL constructs appropri-
ate for synthesis is often referred to as Register Transfer Logic (RTL). It is a coding
style that essentially describes hardware systems containing memory elements (such
as registers) and the logic present between these elements. It is thus vital for the

designer to properly partition the design in order to obtain predictable results. The
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best way to achieve this is to subdivide the design into smaller components and to
synthesize them individually. In this manner, the VHDL description can be adjusted
in order to obtain the desired result. Sometimes, the best way to describe a particular
component will be in a purely “structural” manner.

Parameterization is also an important consideration when describing hardware.
Parameterization will allow for the reuse of existing VHDL code in order to instanti-
ate components of different word sizes and internal architecture. VHDL does provide
some basic constructs in order to allow for parameterized designs, such as generics
and the generate statement. However, these statements are rather inflexible, and
only allow for limited parameterization. Features such as including or removing in-
put/output ports and renaming entities according to user supplied parameters cannot
be easily done. Furthermore, arithmetic functions such as ceil and log2 used to cal-
culate generics need to be carefully coded in order to make them understandable for
the synthesis tool. Another area of concern is in automatically generating the values
for a ROM of given depth and width. Clearly, VHDL lacks flexibility in its ability
to completely parameterize a design. Also, the restricted VHDL subset allowed by
the synthesis tool further restricts this flexibility by providing inference templates. In
contrast, code generation provides unlimited flexibility in parameterizing a synthe-
sizeable design and is a much-more efficient way of achieving code reuse.

The language used for code generation in this case is PHP, which is a recur-
sive acronym for PHP: Hypertext Preprocessor. It is a widely popular open-source
programming language used primarily for server-side applications and developing dy-
namic web content. PHP has also benefited from many enhancements over the past
few years, most notably CLI (Command Line Interface) and PHP-GTK. The CLI
allows PHP to be used as a general purpose scripting language from the command
line. PHP-GTK is an object-oriented interface to the Gimp Toolkit (GTK+) classes
and functions for writing client-side GUI applications. PHP’s syntax is borrowed

from Perl, C, C++ and Java. The most peculiar characteristic of this language is
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that it can be literally embedded inside another source file. As its name implies, it
is primarily used in conjunction with HTML in order to dynamically generate a Web
page on the server before transmitting it to the client.

It is much more than a simple preprocessor or macro language, and is an
extremely powerful tool for code generation (i.e. writing code to write code). The
PHP code is embedded within starting <? and ending ?> tags. Furthermore, any
number of code fragments can be inserted within a PHP file, and all text outside
these fragments is considered as literal print statements, conserving the exact format
including all white spaces and carriage returns.

In order to illustrate VHDL code generation with PHP, consider the code
fragment of Listing 6.1 describing the entity for a maximum length LFSR.

Listing 6.1: Maximum Length LFSR in PHP (Entity)

<? php
/* Maximum length LFSR for different bit widths =/
$xnor_taps = array(
3 => array (3,2), 4 => array (4,3), b => array (5,3),
6 => array (6,5), 7 => array (7,6), 8 => array (8,6,5,4),
9 => array (9,5), 10 => array (10,7), 11 => array (11,9),
12 => array (12,6,4,1));
$lfsr_width = 8argv[1];
php 7>
library ieee;
use ieee.STD_LOGIC_.1164.al1;
entity Lfsr<?print $1fsr_width?™ is
port(
Clock : in STD_LOGIC;
Reset : imn STD_LOGIC;
CountQut : out STD_LOGIC_VECTOR(<?php print 8lfsr_width-1 7> downto 0)
);
end Lfsr<?print 8ifsr.width?>;

By typing php 1fsr.php 4 > Lfsr4.vhd on the command line, the embedded

code will be processed and the output file Lfsr4.vhd will contain the result of the
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output. The example in Listing 6.1 demonstrates the basic idea of code generation
using the PHP language. Lines 2 to 7 describe the $xnor_taps array structure which
contains the taps required for maximum length LFSRs of width 3 to width 12. Line
8 parses the first command line argument, in this case, $argv[1] = 4. The value of
$1fsr_width is then used in lines 12 and 18 in order to give the entity a descriptive
name. In this particular case, the entity will be named Lfsr4 in the resulting output
file. Finally, $1fsr_width is used in line 16 in order to provide the upper bound of
the CountOut vector. The resulting output after preprocessing is shown in Listing

6.2.

Listing 6.2: Maximum Length LFSR in VHDL (Entity)

library ieee;
use ieee.STD_LOGIC_1164.all;

entity Lfsr4 is
port (
Clock : in STD_LOGIC;
Reset : in STD_LOGIC;
CountQOut : out STD_LOGIC_VECTOR(3 downto 0)
I
end Lfsr4;

The corresponding architecture portion of the PHP file is shown in Listing 6.3.
Once again, the $1fsr_width variable is used in order to construct the proper entity
name (Lfsr4) on line 21 and as an upper bound for the register Q on line 23. Lines
25 through 34 contain the PHP code that prints out the feedback equation in VHDL
syntax for the LFSR, and uses the $xnor_taps array structure defined in Listing 6.1.
The resulting output is shown in Listing 6.4.

Since any text that is not within the PHP begin <7 and end 7> tags is in-
terpreted as one big print statement, conditional output of entire blocks of text is

greatly simplified. An example of conditional output is shown in Listing 6.5. In this
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Listing 6.3: Maximum Length LFSR in PHP (Architecture)

architecture Behavioral of Lfsr<?print 8lfsr_width?> is
signal FeedBack : STD_LOGIC;
signal Q: STD_LOGIC_VECTOR(1 to <?php print $lfsr_width?>);
begin
FeedBack <= <7php
$taps = 8xnor_taps|8lfsr_width];
$count = count(8taps);
for (8i = 0; 8i < 8count; $i++) {
print *Q(8taps{8i])”;
if (8i < 8count-1)
print ” xnor ”;

}

print ®;\n”;

Listing 6.4: Maximum Length LFSR in VHDL (Architecture)

architecture Behavioral of Lfsr4 is
signal FeedBack : STD_LOGIC;
signal Q: STD_LOGIC_VECTOR(1 to 4);
begin

FeedBack <= Q(4) xnor Q(3);

listing, it can be seen that the if-else construct is formed by lines 2, 9 and 11, and
the two blocks of text are on lines 3-9 and line 10.

Embedding PHP within the VHDL code does have the disadvantage of having
to deal with two different languages. Surprisingly, VHDL with embedded PHP is not
more complicated than the equivalent parameterized VHDL code. The reason for this
is that the VHDL code present in the PHP file describes a pure hardware architecture,
whereas the PHP provides all the support for parameterization. Finally, the VHDL

code resulting from code generation can be made much more understandable since




W W I oA W N e

[ I
N = O

Chapter 6: VHDL Code Generation and Synthesis 71

Listing 6.5: Conditional Block in PHP

<? if (8is_buffered) { 7>
DFF1 : dff
port map(
Clock => Clock,
D => NETOO1,
Q => Datalut
);
<? } else { 7>
DataQut <= NETO001;
<t}

the hardware description isn’t clouded by extraneous parameterization constructs.
Traditionally, languages such as C, C++, Java and Matlab have been used
in order to automatically generate VHDL code. Since these languages cannot be
embedded in the source code, they yield heavier source files that are not as intuitive
to work with. Every time a line has to be output to a file, one must use printf style
statements. This leads to a lot of repetitive typing and does not provide a clear view
of the structure of the output file. Another language that has some nice features for
automatic code generation is PERL, which includes heredoc statements that allow to
print entire formatted blocks of text. However, PERL cannot be embedded within

the target source code.

6.2 Design Flow

The Design flow for the CORDIC Generation tool is depicted in Figure 6.1.
A GUI front-end allows the user to input the parameters for the generation of the
CORDIC processor. The tool then performs preprocessing of the . php files which are
VHDL source files with embedded PHP code. After preprocessing, all the required
VHDL files are now available for the CORDIC processor. These VHDL files can be




Chapter 6: VHDL Code Generation and Synthesis 72

used for functional simulation, synthesis using commercial design tools, or inclusion

into a larger design. Implementation on the FPGA is the last step in the process.
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Figure 6.1: CORDIC Generation Tool Design Flow

6.3 CORDIC Generation Tool

The CORDIC Generation Tool is a GUI front end for the automatic code
generation of the various CORDIC architectures described in this thesis. It was pro-
grammed using the PHP-GTK framework and provides a user friendly interface that
allows the designer to control the generation of the CORDIC implementations. It
contains a block diagram of the generated architecture that contains all input and
output ports along with their characteristics, and is updated in real-time. The inter-
face is very similar to the one used for the Xilinx LogiCORE library. The Architecture
page (Figure 6.2) allows the designer to assign the component name and the desired
output directory for the generated VHDL files. It also has options for the functional
selection, architectural configuration (iterative or pipelined) and what type of bit-
flow to use (bit-serial or bit-parallel arithmetic). Note that currently, only the first
three functional selection options (rotation, vectoring and rotation/vectoring) have
been implemented. The second page is for the Data Format of the processing ele-
ment (Figure 6.3). It allows the user to enter the width of the data path. In order
to simplify the CORDIC PE designs, the z, y and z data paths all have the same
width. Another option is the phase format for the 2 data path. Currently, only the
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Figure 6.3: CORDIC Generation Tool - Data Format

radians format is supported. The third page contains the Pin Selection sheet (Figure
6.4). It allows the user to select which input/output pins will appear in the final
VHDL entity. Note that certain pins are optional, and others are not. This depends
on the functional selection the user made on the architecture page. The last page
(Figure 6.5) is for other options, such as the number of iterations, pre-rotation by « /2
and whether or not to perform scale factor compensation. Obviously, scaling factor
compensation is accomplished using the compensated CORDIC algorithm. Note also

that at this point, pre-rotation by m/2 has not been implemented.
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Figure 6.5: CORDIC Generation Tool - Advanced

6.4 Summary

In this chapter, the automatic code generation method using the PHP language
was described, along with the proposed design flow for the parameterized generation
of the compensated CORDIC PEs. It was shown that PHP is superior to other
languages such as C, C++, Java and Perl because of its ability to be embedded in
VHDL code. The next chapter contains the synthesis results of the CORDIC PEs

generated by the automatic code generated tool for the four basic architectural styles.
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CHAPTER 7: RESULTS

The proposed CORDIC PE implementations provide the designer with a wide variety
of options in order to provide a module capable of performing general vector rotation.
Some or the architectures were designed for maximum speed and low latency, while
others attempt to use the least amount of logic resources possible, leading to the
tighter integration necessary for SoC applications. Providing characterisation data
for the proposed architectures is crucial in order to allow designers to have a realistic
view of what is achievable in terms of performance and area when implementing the
CORDIC algorithm on an FPGA. This chapter outlines the performance character-
istics of various synthesized versions of the proposed CORDIC PE implementations

built by the automatic code generation tool.

7.1 Characterization Environment

The FPGA platform used in this work was the Xilinx Virtex-II, device number
xc2v2000, package number ff896 and speed grade -6. The synthesis tool used is XST
G. 31a, Release 6.2.03i. Default parameters for the synthesis tool were used, with the
exception of optimization options. The optimization goal was set to “speed” and the
optimization effort to a level of 2.

The CORDIC PEs were produced by the automatic code generation tool, and
the resulting descriptions were output in VHDL. The compilation and simulation of
the PEs were carried out using ActiveHDL .6.2. A Matlab script was used to provide
the necessary data for functional simulation of the compensated CORDIC algorithm.
To obtain a good number of samples, compensated CORDIC PEs for 12, 16, 24
and 32-bit precision for pipelined (bit-parallel and bit-serial) and for iterative (bit-

parallel and bit-serial) were generated. Since vectoring and rotation have the same
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hardware complexity, only the rotation mode of operation was used in generating the
CORDIC PEs. Pre-rotation was not used in order to generate the simplest possible
processing elements for comparison purposes. MSB bits for vector magnitude growth
were included in the data format, but extra LSB bits for error accumulation were
excluded and truncation is used instead of rounding. A summary of the CORDIC

PE data path characteristics is shown in table 7.1.

Precision Datapath Maximum Number of
Width Shift Iterations

12 14 12 14
16 18 16 18
24 26 24 27
32 34 32 35

Table 7.1: CORDIC PE Data Characteristics

The generated CORDIC processing elements were benchmarked against the
Xilinx CORDIC LogiCORE v2.0. The Xilinx LogiCORE is able to generate only
the bit-paralle] iterative and pipelined architectures. Once again, the LogiCORE
CORDIC implementations have no pre-rotation, are generated for rotation mode only,
have the same data path characteristics as those outlined in Table 7.1 and perform
truncation instead of rounding. Other settings specific to the LogiCORE CORDIC
include maximum pipelining (only valid for the pipelined implementation), creation
of Relationally Placed Macro set to “off”, and scaling compensation is accomplished
using a specialized LUT based Constant Coefficient Multiplier. Obviously, the latency
of the Xilinx CORDIC cores will be different than the number of iterations outlined
in Table 7.1 for the compensated CORDIC. According to the Xilinx CORDIC Logi-
CORE v2.0 data sheet, the LogiCORE is an implementation of the original CORDIC
algorithm when using the circular coordinate system. Scaling factor compensation is

thus accomplished by a post-scaling multiplication.
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For the benchmarks, 8 different Xilinx CORDIC LogiCOREs were generated,
including 4 different bit-parallel pipelined versions and 4 different bit-parallel itera-
tive versions (12, 16, 24 and 32 bits). These benchmarks were compared to 16 dif-
ferent compensated CORDIC PEs produced by the automatic code generation tool,
including 4 bit-parallel pipelined, 4 bit-serial pipelined, 4 bit-parallel iterative and
4 bit-serial iterative (12, 16, 24 and 32 bits). The results have been divided into
two categories, which are pipelined architectures and iterative architectures. For the
pipelined architectures, the main areas of comparison were throughput, latency and
number of slices. The iterative architectures have a slightly different comparison ba-
sis. First of all, latency is only a measure of how many iterations must be performed,
and is used in determining the throughput. Secondly, the compensated CORDIC
architectures differ slightly from the Xilinx implementation in that they use Block
RAM for the ROM implementation. It was still deemed useful to include the amount
of reduction in the number of slices in order to see what effect using block RAM can

have on slice count reduction.

7.2 Results for Pipelined Architectures

The results for the Xilinx, bit-parallel and bit-serial pipelined architectures
can be found in Tables 7.2, 7.3, 7.4 and 7.5. The first characteristic to be examined
will be the clock frequency of the different implementations. It is interesting to
note that the clock rate of the bit-parallel compensated CORDIC is higher than
the Xilinx implementation. At first glance, this should not be the case, since the
original CORDIC has a maximum delay of one adder between pipelined stages, and
the compensated cordic, which uses 3:2 compression, has roughly one extra LUT
delay. However, the synthesis reports show that the critical path for the Xilinx
implementation also has an extra LUT delay. Since no source code is available for the

Xilinx implementation, it can only be concluded that some form of compression must
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12-bit
Xilinx | Bit-Parallel | Bit-Serial
Clock Rate (MHz) | 214.247 228.050 336.757
Number of Slices | 501 496 176
Latency 18 14 14
Throughput (MHz) | 214.25 228.05 21.05
Throughput Increase % | N/A 6.44 -90.18
Area Reduction % | N/A 1.01 64.87
Latency Reduction % | N/A 22.22 22.22

Table 7.2: Results for 12-bit Pipelined Architectures

16-bit
Xilinx | Bit-Parallel | Bit-Serial
Clock Rate (MHz) | 204.290 215.808 312.061
Number of Slices 822 912 303
Latency 23 18 18
Throughput (MHz) | 204.29 215.81 15.60
Throughput Increase % | N/A 5.64 -92.36
Area Reduction % | N/A -9.87 63.14
Latency Reduction % | N/A 21.74 21.74

Table 7.3: Results for 16-bit Pipelined Architectures

occur in the post-scaling multiplication. However, this fact alone does not explain why

the compensated CORDIC is faster. There are actually three significant differences

in the data paths of the Xilinx and the parallel compensated implementations. First,

the compensated implementation uses the active low output of the second LUT,

whereas the Xilinx implementation uses the active high output of the second LUT.
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24-bit
Xilinx | Bit-Paralle]l | Bit-Serial
Clock Rate (MHz) | 189.215 203.479 312.061
Number of Slices | 1624 1973 454
Latency 31 27 27
Throughput (MHz) | 189.22 203.48 12.00
Throughput Increase % | N/A 7.54 -93.66
Area Reduction % | N/A -17.69 - 72.04
Latency Reduction % | N/A 12.90 12.90

Table 7.4: Results for 24-bit Pipelined Architectures

32-bit
Xilinx | Bit-Parallel | Bit-Serial

Clock Rate (MHz) | 176.940 | 187.723 312.061

Number of Slices | 2710 3413 737
Latency 40 35 35

Throughput (MHz) | 176.94 | 187.72 8.67
Throughput Increase % | N/A 6.09 -95.10
Area Reduction % | N/A -20.60 72.80
Latency Reduction % | N/A 12.50 12.50

Table 7.5: Results for 32-bit Pipelined Architectures

According to the synthesis report, this amounts to a difference of 0.347 ns. Secondly,
the critical path of the compensated implementation has one less fast carry logic
multiplexer delay from carry in to output, labelled as MUXCY:CI->0, but has one
extra MUXCY multiplexer delay from S input to output, labelled MUXCY:S->O of
0.235 ns. The MUXCY:CI->O path used in the fast carry logic has an associated
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gate delay of 0.042 ns. Finally, there are slightly higher fanouts for certain gates in
the Xilinx design, adding to the Net Delay for those gates. The net effect is that
the critical path of the compensated implementation is lower than the one for the
Xilinx implementation, which is a reduction of 6.06% for the 12 bit implementation
and 5.75% for the 32 bit implementation.

The compensated serial implementation’s critical path is mostly determined
by the clock to output delay of the 16-bit shift register. Recall that a LUT in the
Virtex-II can be configured as a 16 bit shift register, labeled as SRL16E. The clock to
output delay of an SRL16E is 2.294 ns, which is 6.6 times higher than the delay of a
LUT (0.347 ns). Since the Virtex-II has MUXCY elements for fast-carry logic (delay
of 0.042 ns), the benefits of using bit-serial arithmetic is greatly diminished because of
the overwhelming speed of the carry logic. In a bit-parallel CORDIC implementation,
the factors that will affect the efficiency of the adder will be the clock to output delay
of the memory elements, the fan-out of these memory elements, the delay of the LUT
used for the sum and the entire fast-carry logic chain delay. The fast-carry logic
chain delay is a function of how many bits make up a word. The maximum fan-out
will occur in the last CORDIC stage, where the sign must be extended to b — 1 bits
for a b bit data path. These two delays are eliminated when bit-serial arithmetic is
used, and is the reason why a faster clock rate can be achieved. If fast carry logic is
not available in a programmable device, then the difference in clock speed between
bit-parallel and bit-serial arithmetic would be much higher.

It is interesting to note that the clock rate for the 12-bit serial implementation
is lower than the clock rate for the other 3 bit widths. The reason for this is that
in the 12-bit case, the critical path has the output of the SRL16E chained to its
corresponding flip-flop, which is in the same logic cell. For the other three cases,
the registers are much wider, and the synthesizer produced a path form the output
from an SRL16E to the input of the next SRL16E which resides in another logic

element. This results in a difference of 0.235 ns, and is the reason why the 12-bit
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implementation has a higher clock rate than the 16, 24 and 32 bit implementations.
Also, the throughput in a serial design is equal to the clock rate divided by the number
of bits to be processed in a word. Two bits also have to be added in the pipelined
designs in order to account for synchronization bit delays as explained in Chapter 5.

From this it can be seen that the compensated bit-parallel implementation had
an average Throughput Increase of 6.43% over the Xilinx design, with a minimum
of a 5.64% increase and a maximum of 7.54%. On the other hand, the average
decrease in terms of throughput for the compensated bit-serial designs was 92.82%.
It is important to mention however that even for a 32 bit serial implementation, a
throughput of 8.62 MHz was achieved which is still quite impressive considering how
little logic resources and more importantly, how few wiring resources were required.

As a rule of thumb in digital design, faster designs will usually have a larger
area than their slower counterparts. As it can be seen from Tables 7.2, 7.3, 7.4 and
7.5, this is certainly the case here. In the case of the bit-parallel implementation,
there is a steady increase in area compared to the Xilinx implementation. The main
reason for this is the amount of compensated stages that contain 3:2 compressors,
which is roughly 1/3 of all iterations for compensated CORDIC. As expected the
bit-serial implementation has significant area reductions, with an average of 68.21%
(maximum of 72.80% and minimum of 64.87%).

In a pipelined implementation, latency is another important aspect, since a
system is “on-line” when the pipeline has filled and valid results are starting to be
produced. By using the 3:2 compression technique for the compensated stages, it was
possible to significantly decrease the latency, with a minimum gain of 12.5% and a

maximum gain of 22.22%.



Table 7.6: Results for 12-bit Iterative Architectures

16-bit
Xilinx | Bit-Parallel | Bit-Serial

Clock Rate (MHz) | 140.83 108.50 226.68

Number of Slices | 482 203 43

Number of BRAMs 0 1 1

Number of Iterations (per word) | 25 18 18
Throughput (per word) MHz | 5.63 6.03 0.79
Throughput Increase % | N/A 7.00 -86.03
Slice Reduction % | N/A 57.88 91.08
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12-bit
Xilinx | Bit-Parallel | Bit-Serial

Clock Rate (MHz) | 141.29 117.77 253.97

Number of Slices | 326 155 33
Number of BRAMs 0 1 1

Number of Iterations (per word) | 20 14 14
Throughput (per word) MHz | 7.06 8.41 1.51

Throughput Increase % | N/A 19.07 -78.60

Slice Reduction % | N/A 52.45 89.88

Table 7.7: Results for 16-bit Iterative Architectures

7.3 Results for Iterative Architectures

The results for the Xilinx, bit-parallel and bit-serial iterative architectures can
be found in Tables 7.6, 7.7, 7.8 and 7.9. As can be seen in these tables, the clock rate of
the Xilinx implementation will always be higher than the bit-parallel implementation,

since the bit-parallel implementation requires two cascaded add/subtract operations



Table 7.8: Results for 24-bit Iterative Architectures

32-bit
Xilinx | Bit-Parallel | Bit-Serial

Clock Rate (MHz) | 103.39 91.63 203.48

Number of Slices | 1352 426 68

Number of BRAMs 0 1 1

Number of Iterations (per word) | 42 35 35
Throughput (per word) MHz | 2.46 2.62 0.24
Throughput Increase % | N/A 6.34 -90.16
Slice Reduction % | N/A 68.49 94.97
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24-bit
Xilinx | Bit-Parallel | Bit-Serial
Clock Rate (MHz) | 107.98 104.51 226.682
Number of Slices | 873 304 49
Number of BRAMs 0 1 1
Number of Iterations (per word) | 33 27 27
Throughput (per word) MHz | 3.27 3.87 0.35
Throughput Increase % | N/A 18.30 -89.31
Slice Reduction % | N/A 65.18 94.39

Table 7.9: Results for 32-bit Iterative Architectures

and the Xilinx implementation presumably uses only one add/subtract operation for
the z and y data path, as can be deduced from the synthesis log files. It is important
to note that the clock rates for the bit serial design is the same in the case of the
16 and ,24 bit implementations. This is to be expected, since the actual data width

for both these implementations is 18 and 26 bit respectively, in order to account for
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growth in the rotated vectors. Thus, the 12-bit serial implementation requires 16-bit
sync RAM, the 16 and 24 bit serial implementations require 32-bit sync RAM, and
the 32 bit implementation (with an actual width of 34 bits) will require 64-bit RAM.
The critical path in the case of the 12, 16 and 24 bit serial implementations is mainly
due to the Sync RAM and compensated adders. Note that the basic building block
for Dual Port Sync RAM is two logic elements configured as 16-bit RAMs. In order
to build bigger RAMs, these basic building blocks are cascaded using multiplexing
logic. It is interesting to note that in the case of the 32-bit serial implementation, the
critical path is actually not the 64-bit Dual Port Sync RAM, but the state machine
associated with the Tap Counter.

The key factor in speeding up the CORDIC process for the iterative design
is to have the lowest possible number of iterations in order to complete the process.
Even though the clock rate of the bit-parallel implementations was lower than the
Xilinx implementations, the fact that fewer iterations were required resulted in a
higher throughput for the compensated implementations. An interesting side effect
of this reduction in clock frequency is that there will be a reduction in switching

power dissipation. The average switching power dissipation is defined as:
Pavg = aCLV]_%chlk (71)

where « is the node transition factor, C, is the capacitive load being driven, Vpp
is the power supply voltage and fux is the clock frequency. From this equation, it
is obvious that reducing the clock frequency will directly reduce power consumption.
The maximum increase in speed for the compensated CORDIC PE as opposed to
the Xilinx implementation was 19.07 %, and the minimum increase was 6.34%. As
expected, the decrease in throughput for the bit-serial compensated design was much
lower than the Xilinx design, ranging between 78.60 and 90.16 %. However, the
throughput of the 32-bit serial design was still around 240 KHz, which is still an
acceptable data rate for many types of applications in audio processing.

Early on in the design process, it was determined that the ROM elements
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required for the compensated CORDIC might pose a problem in terms of perfor-
mance. In order to simplify the design process, it was decided to use Block RAM
in order to implement the ROM. Because of this, there was a considerable reduc-
tion in the number of slices required to implement both the bit-serial and bit-parallel
compensated CORDIC algorithms. To get a precise idea of the relative amount of
logic required to implement the bit-parallel vs the Xilinx implementation, an attempt
would have to made in order to implement the ROM into standard slices. As far as
the bit-serial implementation is concerned, it is almost certain that this design will
be much smaller than its Xilinx counterpart, considering the very simple data paths
it contains. Nonetheless, comparison of the slice reduction is still very useful, since
it gives us an idea of what types of reduction in slice count can be achieved by using
the built in Block RAM. Maximum slice reduction were 94.97% and 68.49% for the

bit-serial and bit-pipelined implementations respectively.
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CHAPTER 8: SUMMARY AND CONCLUSIONS

8.1 Conclusions

This thesis presented the development of four different types of CORDIC
processing elements suitable for a wide range of applications. An in depth survey
of a wide range of CORDIC variants was investigated and the most suitable algo-
rithms for implementation on an FPGA platform were identified and evaluated. An
evaluation of the suitability of using redundant number systems and high radix num-
ber systems for arithmetic operations on the FPGA was also conducted. It was
found that the logic resources available on the FPGA are geared toward conventional
two’s complement arithmetic, and that the benefits that could be gained from alter-
nate number representations on an FPGA would be lost due to the increase in logic
resources required to implement them. The goal of this thesis was to develop differ-
ent architectures that could be used for general vector rotation; i.e. the CORDIC
processing elements must be able to perform in both rotation and vectoring modes of
operation. Because of this, certain short-cuts specifically designed for use in rotation
mode only were discarded, such as rotation prediction and the use of hybrid radix
systems. However, for certain applications that require only the rotation mode (such
as trigonometric function evaluation), use of these types of short-cuts is the most
efficient way of implementing the CORDIC algorithm. For general vector rotation on
FPGA architectures, it was found that the compensated CORDIC algorithm provides
an efficient alternative to the conventional circular CORDIC algorithm first presented
by Volder.

A novel technique for VHDL pre-processing using the PHP scripting language
was also developed and incorporated into a GUI-based application for automatic code
generation. This tool allows the user to quickly and efficiently produce synthesizeable
VHDL code for the four different types of CORDIC architectures. One major feature
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of this tool is that it allows for the entire range of data width from 12 bits to 32 bits,
and allows much freedom in tweaking the number of LSB guard bits and number of
iterations in order for the user to control performance-area-precision trade offs.

The compensated CORDIC architectures were found to be extremely efficient
and provide several implementation options that were unavailable in the LogiCORE
tool provided by Xilinx. Both the bit-parallel pipelined and iterative implementations
outperformed the Xilinx implementations at little or no extra cost in terms of logic
resources. Additionally, the bit-parallel compensated architecture had a significant
decrease in latency, ranging from 12.5% to 22.22% over the Xilinx implementation.
The bit-serial architectures are extremely useful additions to the CORDIC implemen-
tations, since they provide acceptable performance for a fraction of the cost in terms

of both logic and wiring resources.

8.2 Recommendations for Future Work

Although much work has gone into developing efficient architectures, there are
still possible improvements that could be made to the architectures. In particular, the
controllers of the iterative architectures could be implemented differently, using either
Johnson or LFSR counters; this would require a different approach in order to provide
the ATR constants, the shift coefficients and the compensated 7; coefficients. Also,
since the iterative architectures were implemented using Block RAM, efficient LUT
based memory structures could be developed in order for the compensated CORDIC
implementations to be independent of these logic resources. Another enhancement
for the bit-serial pipelined architecture would be to use delayed shift registers for the
smaller ATR angles instead of using serial ROM structures.

This thesis examined general vector rotation for both the rotation mode of op-

eration and vectoring. Short-cuts specific to rotation only, especially for trigonometric
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function evaluation, could be investigated and implemented for FPGAs. Also, extend-
ing the architectures in order to be able to use and generate the ATR representation
for angles would be very useful, in particular for use in systolic array architectures
were the output of one CORDIC processor is fed into the input of another. These
changes could be incorporated into the GUI tool to provide even more flexibility for
the designer. An efficient floating point version for all four CORDIC architectures
could also be quickly developed, since only pre and post processing blocks would be
required in order to align the input mantissas and finally perform post-normalization
of the floating point values. A further enhancement would be to extend the com-
pensated CORDIC algorithm to data widths up to 64 bits. This would require the
development of a heuristic search in order to find S(¢) and 7; factors that have an
inverse scaling factor that is close to 271. All these improvements could be incor-
porated in the GUI tool to provide even more flexibility for the different CORDIC
implementations.

The previous project carried out at RMC concerning floating point CORDIC
used a rounding technique in the cross-addition stages of the CORDIC algorithm.
An in-depth study of the impact of rounding on precision, amount of hardware and
speed could be carried out in order to determine whether rounding or truncation is the
most efficient way of implementing the CORDIC algorithm on an FPGA. Another
very important area for future development is to use the compensated CORDIC
architectures in actual applications such as SoC, image/audio processing, ALUs, SVD
or 3D computer graphics, to name only a few. Implementing these algorithms in other
types of programmable logic devices from Xilinx or other companies (such as Altera)
could also be carried out. Finally, a similar approach for steering the scaling factor

to a simple value could be implemented for the hyperbolic coordinate system.
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Appendix A

Mathematical Derivations

A.1 Double Shift Scaling Factor

The pseudo-rotation equations for the double shift CORDIC are as follows:

Tow1 = 2 — 03(2750 4,275 D)y,
Vi1 = i + 052750 4 9275 O,

Zit1 = 2 — 040y

where:

o; = arctan(275® 4 5,0-5'®)

and the scaling factor is given by:

N-1
K= H cos™*

i=0

From A.4 we have:

9=50) 4. 1,9-8'()
tano; = % = +]77¢

Using the pythagorean theorem, we have:

h=\T+ g% = \/ 1+ 2-286) 4 1,2-S@-8'G1+ 4 22-25')

Ti _ 1
h V1 + 27250  1;2-5@-5W+H 4 22-25G)

Finally,
N-1

K= H \/ 1+ 2-250) 4 ,2-S@-S' 61+ 4 p22-25'6)

3=0

(A1)
(A.2)
(A.3)

(A4)

(A5)

(A6)

(A7)

(A.8)

(A.9)
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A.2 True Compensated CORDIC Scaling Factor

The pseudo-rotation equations for the true compensated CORDIC are as fol-

lows:
Tiyy = & — 02" (A.10)
Yirr = ¥i + 0227 (A.11)
Ziy1 = % — 0y (A.12)
Kipn = ki(1 +27%)3 (A.13)

where 0; = ~1 if 2; < 0, +1 otherwise (Rotation Mode)

followed by a magnitude correction iteration which does not perform any rotation of

the vector:
Tiv1 = 37;4-1 - 77i$2+12—i (A.14)
Yitt = Yipy + Williy12”™" (A.15)
Zitl = Zip (A.16)

where 7; = +1 if k; < 0, —1 otherwise

In order to determine the scaling factor after correction, the following rela-
tionship relating the compensated vector norm to the uncompensated vector norm is

used:

VTi1® + Yo (A.17)

;2 ;2
Tiy1 ¥

2 2
ki = K,° [-m—’il-—* Hitl ] (A.18)

/
kis1 = ki+1

;2 ;7 2
Tig1 + Yin

For clarity, let z{,, = v, y{.; = w and 7; = b. Then we have:

b2 — 2 (v + bv27%)2 4 (w + bw2~%)?
i+l = ki 0

(A.19)

2 20—i+1 | 72,20-% | . 2 20—i+1 | p2, 202
2 2 [V? + 00?27 4+ B2022% + w? + bw?2 4 PPw?2
kiv1® = ki [ 0 (A.20)
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, v? + w?) 4+ (0 + w2~ 4+ (v? + w?)p?2
kiv1? = K, [( )+ ( 02)+ - ( (A.21)
ki? = kL 214 827 4 5227 (A.22)
Since b = n;, we finally have:
ki1 = kz/'+1\/1 + 027 P2 (A.23)

A.3 Modified Compensated CORDIC ATR Angles and Scaling Factor

Recall that the basic Given’s Transform equations are given by:

Tiy1 = T;cos; — Y sin gy (A.24)

Yit1 = Y; COS @y + T; Sin oy (A.25)

and the CORDIC rotations (unscaled) can be rewritten as:

Tip1 = cos ai(z; — o3yi27Y) (A.26)
Yir1 = cos ;(y; + 0;2:277) (A.27)
a; = arctan 27 (A.28)

In order to adapt the modified compensated CORDIC equations, we have the follow-

ing relationships:

T — 027" + iz~ 2"
‘ = |z — oy [ —2 A29
1+ N2~ T~ oY 1+ n2- ( )
Yi + 01727 + mig; 27 27
, I I A.30
1+ niz—z Yi + 0y, 1+ 171,2-1 ( )
the Given’s Transform equations for the modified compensated cordic become:
2—i
Zjq41 = COS Oy [(I)z — OiY; (W)J (A31)
2—-i
Yi+1 = COS Oy [yz + o (m:)] (A.32)

2~ 1
a; = arctan (W) = arctan (Th' n 22.) (A.33)
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thus we have:
COS ¢; —1 —
Tit1 = -1—+—nz—21_—1(:171 - a,—in + ml‘iz ) (A.34)
cos @; iy »
Yit1 = mé:;(yz + 03227 + niy27) (A.35)
and
-1 0050 A.36
K 14 ;21 ( )
From A.33 we have: .
y 2"
£ =2 : A.37
M= T T p2 (A-37)
Using the pythagorean theorem, we have:
h=+z2+y2=+/(1+n27%)2 +2-% (A.38)
1+mn27
cosa; = % = all e (A.39)
\/]_ + niQ—z-H +n? 9-2i | 9-2%
thus: '
1
1= A.40
142 202 07 (8.40)
The scaling factor is given by:
N-1
K= H k; (A.41)
i=0
and finally:
N-1
K =T /1 +27% + ma-s+t 4 pi2-2 (A.42)

=0
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Appendix B

Error Analysis Supplement

B.1 Angular Error

Figure B.1: Graphic Representation of Angular Error

€z = rcosa — rcos(a + 0) (B.1)
€ = rcosa — r (cos a cos § + sin a sin §) (B.2)
€z = rcosafl — cosd) + rsinasiné (B.3)

The error will be maximum when cosa = 1 and sina = 0. Thus, the maximum error
is given by:
maz{e;) = (1 — cosd) (B.4)

Similarly, for the y component error we have:
€ =rsin(a + 8) — rsina (B.5)
€y =r(sinacosd + rcosasind) — rsina (B.6)

€y =rsina(cosd — 1) + rcos asing (B.7)



Appendix B: Error Analysis Supplement 98

Since we have cosa = 1 and sina = 0, the resulting error in this case is:
€y =rsind (B.8)

Note that the situation could be reversed, and we could define the maximum error

when sina = 1 and cosa = 0. In that case, we would have:

maz(ey) = r(cosd — 1) (B.9)
€x = rsind (B.10)

The following proof will show that in order to have b bits of precision in the
result, it is required to have the maximum shift S(N —1) = b.
We have: _
1—cosa <sina Va € [0, +7/2] (B.11)

Thus:
log, [(1 —cosa) - 2°] < log, [sina - 2°] Va € [0, +7/2) (B.12)

For very small angles in the shift sequence, we have o; = arctan(2-5®)) ~ 2-5@), We

will be able to ensure b bit precision iff:

log,(sinay - 2°) < 0 (B.13)

Thus we have:
log,(275® . 2%) < 0 (B.14)
—-S(@)+5<0 (B.15)

S() > b (B.16)
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i 2-50) Shifted | Truncation | Accumulated | Guard Bits
Operands Error | Trunc Error g(i)

0 | 1.000000 0 0.000000 0.000000 0
1 | 0.500000 1 0.500000 0.500000 1
2 | 0.250000 1 0.750000 1.250000 1
3 | 0.125000 1 0.875000 2.125000 2
4 | 0.062500 1 0.937500 3.062500 2
5 { 0.031250 1 0.968750 4.031250 3
6 { 0.015625 1 0.984375 5.015625 3
7 1 0.007813 1 0.992188 6.007813 3
8 | 0.003906 1 0.996094 7.003906 3
9 | 0.001953 1 0.998047 8.001953 4
10 | 0.000977 1 0.999023 9.000977 4
11 | 0.000488 1 0.999512 10.000488 4
12 | 0.000244 1 0.999756 11.000244 4
13 | 0.000122 1 0.999878 12.000122 4
14 | 0.000061 1 0.999939 13.000061 4
15 | 0.000031 1 0.999969 14.000031 4
16 | 0.000015 1 0.999985 15.000015 4
17 | 0.000008 1 0.999992 16.000008 5
18 | 0.000004 1 0.999996 17.000004 5
19 | 0.000002 1 0.999998 18.000002 5
20 | 0.000001 1 0.999999 19.000001 5
21 | 0.000000 1 1.000000 20.000000 5
22 | 0.000000 1 1.000000 21.000000 5
23 | 0.000000 1 1.000000 22.000000 5
24 | 0.000000 1 1.000000 23.000000 5
25 | 0.000000 1 1.0600000 24.000000 5
26 | 0.000000 1 1.000000 25.000000 5
27 | 0.000000 1 1.000000 26.000000 5
28 { 0.000000 1 1.000000 27.000000 5
29 | 0.000000 1 1.000000 28.000000 5
30 | 0.000000 1 1.000000 29.000000 5
31 | 0.000000 1 1.000000 30.000000 5
32 | 0.000000 1 1.000000 31.000000 5
33 | 0.000000 1 1.000000 32.000000 6
34 | 0.000000 1 1.000000 33.000000 6

Table B.1: Truncation Error Analysis - Conventi.ona,l CORDIC
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i 2~802) Shifted | Truncation | Accumulated | Guard Bits
Operands Error | Trunc Error (i)

0 } 1.000000 0 0.000000 0.000000 0
1 ] 0.500000 1 0.500000 0.500000 1
2 | 0.250000 1 0.750000 1.250000 1
3 | 0.125000 2 1.000000 2.250000 2
4 | 0.062500 2 1.125000 3.375000 2
5 | 0.031250 1 1.156250 4.531250 3
6 { 0.015625 2 1.187500 5.718750 3
7 | 0.015625 1 1.203125 6.921875 3
8 | 0.007813 1 1.210938 8.132813 4
9 | 0.003906 1 1.214844 9.347656 4
10 | 0.001953 2 1.218750 10.566406 4
11 | 0.000977 1 1.219727 11.786133 4
12 | 0.000488 1 1.220215 13.006348 4
13 | 0.000244 1 1.220459 14.226807 4
14 | 0.000122 2 1.220703 15.447510 4
15 | 0.000061 2 1.220825 16.668335 5
16 | 0.000031 1 1.220856 17.889191 5
17 | 0.000015 1 1.220871 19.110062 5
18 | 0.000008 2 1.220886 20.330948 5
19 | 0.000004 2 1.220894 21.551842 5
20 { 0.000004 1 1.220898 22.772739 5
21 | 0.000002 1 1.220900 23.993639 5
22 | 0.000001 1 1.220901 25.214540 5
23 | 0.000000 2 1.220901 26.435441 5
24 | 0.000000 1 1.220902 27.656343 5
25 | 0.000000 2 1.220902 28.877245 5
26 | 0.000000 1 1.220902 30.098147 5
27 | 0.000000 2 1.220902 31.319049 5
28 | 0.000000 1 1.220902 32.539951 6
29 { 0.000000 1 1.220902 33.760853 6
30 | 0.000000 1 1.220902 34.981755 6
31 | 0.000000 1 1.220902 36.202657 6
32 | 0.000000 1 1.220902 37.423559 6
33 | 0.000000 2 1.220902 38.644461 6
34 | 0.000000 1 1.220902 39.865364 6
35 | 0.000000 1 1.220902 41.086266 6
36 | 0.000000 1 1.220902 42.307168 6

Table B.2: Truncation Error Analysis - Compensated CORDIC



