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Abstract

Styrene and methacrylates are principal components of many automotive coatings
resins. Acrylic resins for coatings production are produced using a “starved feed”
strategy in which the monomer and initiator are fed at a fixed rate over a period of
several hours to produce polymer with relatively constant composition and molecular
weight with minimal on-line measurement. The resulting robust reactor operation
comes at a price in terms of long batch time, and drift in both polymer molecular weight
and composition still occurs in the early and late stages of the batch. Improved
operation requires a combination of an optimal recipe with an effective on-line control
strategy based on a mathematical model that capture the underlying physics of the

process.

In this work, a real-time optimization scheme for nonlinear processes is implemented
for this system. The system input and state trajectories are determined on-line to
minimize a cost function defined in terms of deviation from target molecular weight and
composition, and batch time. The performance of the proposed strategy is examined
through numerical simulation for several study cases for the Butyl Methacrylate and
Styrene (BMA/STY) free radical polymerization system which has been extensively
studied in the past few years.[42 3] Results show that polymer quality can be assured in

minimum batch time while achieving constraint satisfaction over the entire run.
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Nomenclature

DE reactor mixture density [Kg.L"]

f initiator efficiency

f mole fraction of monomer-i in the monomer mixture

1! mole fraction of polymer radicals ending in monomer unit-j
k, rate coefficient for initiation decomposition [s™']

k rate coefficient for primary-radical initiation [L.mol'1 s

XY rate coefficient for addition of monomer Y to radical X [L.mol”.s"]

kX rate coefficient for termination by combination [L.mol™.s"]
kX rate coefficient for homo-termination of species X [L.mols™]
kX rate coefficient for transfer to monomer [L.mol.s”]

kfs  rate coefficient for transfer to solvent [L.mol™s™]

9P copolymer-averaged termination rate coefficient [L.mol”.s"]

mso,  mass of solvent pre-charged [Kg]

Mx molecular weight for species X [Kg.mol]

M, number-average copolymer molecular weight [Kg.mol™']
Mr mass reactor content [Kg]
Ry, rate of production of new polymer chains [mol.L"s"]

rate of radical generation from initiator [L.mol'] s

init
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rate of transfer to monomer [L.mol™.s']
rate of termination by combination [L.mol" s
rate of transfer to solvent [L.mol” 5]

monomer reactivity ratio for radical-1

mass flow rate of monomer BMA [Kg.s']
mass flow rate of monomer STY [Kg.s™]
mass flow rate of initiator TBPA [Kg.s™']

mixture volume [L]

mass of unreacted monomer BMA in the reactor [Kg]
mass of unreacted monomer STY in the reactor [Kg]
mass of unreacted initiator in the reactor [Kg]

mass of polymer-BMA [Kg]

mass of polymer-STY [Kg]

mol of copolymer [mol]

zeroth live moment of the polymer radicals X [mol.L]

total concentration of polymer radicals [mol.L™"]

density of species X [Kg.L"]

fraction of termination events that occur by disproportionation
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Chapter 1 Introduction

1.1 Overview of Polymer Industry

The polymer industry, an important segment of the chemical processing industry with
millions of tons per year produced worldwide, is facing many challenges to meet a
rapidly changing and diversifying market environment in an ever competing global
economy. The pressure for cost reductions and new product developments is creating a
need for flexible production through multi-product facilities. In particular, batch and
semibatch reactors are widely used in the chemical industry to produce fine chemicals,
pigments, polymers and pharmaceuticals. Often the reactions show exothermic behaviour

and tight quality specifications have to be met.*"]

As tighter environmental and safety regulations are imposed, competition constantly
demands improved operation. However, control of semi-batch reactors is by no means a
trivial task due to the unsteady state nature of the process, complex nonlinear behaviour
and highly uncertain dynamics.”®** The nonlinear dynamics arise from the complexity
of the physicochemical interactions and the kinetics of the polymerization reactions, and

heat and mass transfer limitations.

Polymerization reactors face additional challenges, as process variables that affect
important product quality properties need to be subject to tight control due to the
irreversibility of the polymer quality. The actual customer specifications for end-use

applications are often represented by non-molecular parameters (e.g., tensile strength,



impact strength, color, crack resistance, thermal stability, melt index, density, etc.) that
must be somehow related to fundamental polymer quality properties such as average
molecular  weight, copolymer composition, branching, crosslinking, and
stereoregularity.® Properties are often difficult or even impossible to measure on-line;
off-line measurements are usually available only at low sampling frequencies,

introducing delays when tracking their evolution.

1.2 Motivation and Scope of the Work

Currently, acrylic resins for coatings production are produced using a “starved feed”
feeding strategy in which the monomer and initiator are fed at a fixed rate over a period
of several hours. This strategy is adopted due to the irreversibility of product quality.
Operating at these conditions of high instantaneous conversion (low monomer
concentrations) ensures the production of polymer with relatively constant quality
properties requiring minimal on-line measurement. In particular, the result of this feeding
strategy is that copolymer composition and average molecular weight remain uniform

during the reaction.

However, the robust reactor operation comes at a price in terms of long batch time, and
drift in both polymer molecular weight and composition still occurs in the early stages of
the batch. Thus, there are significant incentives for improving reactor operation and the
efficiency of quality monitoring which can translate to higher production rates, improved

product quality, safer operation, and, as the ultimate consequence, improved profits.



In this work, a reduced dynamic model is developed to capture the essence of the starved-
feed free-radical copolymerization process (Chapter 2). The model is used as a basis for
on-line optimization of a butyl methacrylate and styrene (BMA/STY) system, reducing
batch time while improving product uniformity. Chapter 3 provides an overview of the
control strategies used for semi-batch systems and a description of the particular
approach used in this work. Chapter 4 deals with the definition of the actual optimization
problem; the problem is tailored to the optimization technique to be used through a
suitable formulation. Several case studies are presented in Chapter 5 to illustrate the
performance of the optimization approach, and the thesis concludes with a description of

how the optimization strategy may be further improved and implemented.



Chapter 2 Model Development

2.1 Overview of Process Modeling

Modeling of polymerization processes, especially modeling of polymer architectural
properties, is of enormous industrial importance because it plays a key role in achieving
the industry’s goal of speedy introduction of new products into markets.®®” Further,
numerical simulation allows a critical analysis of the behaviour of the system under
different operating conditions, improving the understanding of the kinetics and the
influence of changing process variables on the process performance and product quality.
A good process model can be used to predict the influence of operating conditions on
reaction rate and polymer properties, guide the selection and optimization of standard
operating conditions for existing and new polymer grades, and to guide process

development from lab to pilot plant to full-scale production.?*!

The modeling approach and level of detail should be dictated by the application.®” For
design purposes, detailed mechanistic models to fully describe the process are important.
However, for the purposes of control strategy specification, controller design and control
system analysis, models that can replicate the dynamic trends of the target processes are
usually sufficient.®®! It is acknowledged that the assumptions about the system on which
a model is constructed does not entirely capture the full complexity of the system.
Although no estimation of a real world system is an exact representation, a trade-off

between accuracy and complexity should be made.



For example, to track polymer molecular weight, all mechanisms that include radical
transfer must be included. Additional balances are needed to follow other molecular
properties, such as the density of short-or long-chain branches, end-group functionality,
and the creation and reaction of terminal double bonds.** The development of a model
that can predict detailed polymer structure but that relies on measurements that either are
not available or that introduce delays (in many cases the result of the sample analysis is
only of current interest and too late for control decisions to be made'®”) may not be
appropriate when operating and control of the process under disturbances is the ultimate

objective.

A detailed description of how polymer architecture and polymerization rate depend on
reaction conditions and species concentrations from a defined set of kinetic mechanisms
has been developed for the BMA/STY system.” This model can be used for product
development and off-line optimization of the current starved-feed operating strategy. In
this work a reduced dynamic mathematical model has been built based on a reduced set
of kinetic mechanisms embedded into overall material balances. Our aim is the
development of a simplified model that captures the fundamental process behavior to
design an efficient and robust system to control polymer properties while fully exploiting
on-line optimization-based control techniques. Therefore, predictions on the intended
controlled variables should be consistent and represent the dominant dynamics of the
system. To this regard, the kinetics represented by the so called terminal model, which

assumes that the reactivity of the polymer radical depends solely on the nature of its



terminal monomer unit, was employed. Other mechanisms not considered in the

modeling include styrene thermal initiation and methacrylate depropagation.

The accuracy of the reduced dynamic model simulated in Matlab is compared with the
full detailed representation of the BMA/STY system built in Predici.l*”! The Predici code
has also been used to run a series of simulations with penultimate propagation kinetics,
STY thermal initiation, and BMA depropagation mechanisms turned off. Therefore, this
“reduced Predici model” is very similar to the model implemented in Matlab; small
differences remain, such as the use of the quasi-steady state assumption on radical
concentrations. Experimental data from the work of Deheng Li are also shown in the

various plots.[m

2.2 Development of Reduced Model

In this section the mathematical model of the free-radical co-polymerization system
styrene (STY) and butyl methacrylate (BMA), using tert-butyl peroxyacetate (TBPA) as
initiator, and xylene solvent is described. The reactions are carried out in a semibatch
reactor under isothermal operation at 138 °C. Under standard assumptions such as perfect
mixing, constant physical properties, quasi steady-state assumption (radical stationarity)
and long chain hypothesis, mass balances on the initiator, solvent and monomers, and
moment balances on the radical (live) and dead polymer chains yield the mathematical
model summarized below. The model is based upon the set of kinetic mechanisms
including initiation, propagation, transfer to monomer and solvent, and termination, as

described in Scheme 2.1.



As mentioned previously, thermal initiation, penultimate propagation kinetics and
depropagation, as well as chain-branching and scission are not considered for this
reduced model. Table 2.1 summarizes the kinetic rate coefficients whereas the
thermodynamical data are provided in Table 2.2. The primary references for these

coefficients and parameters are contained in the work of Lik

Initiator Decomposition | 7 —*2 52 f7°

Chain Initiation I"+ M, _ P’
Chain Propagation P+ Mj _kP_) P’
Chain Termination
L
Combination plyap/ i yp
n m n+m

Disproportionation | pi 4 p/ " _yp 4+ p
n m n m

Chain Transfer

p
To Monomer P+ M _k!_n_M_..> D + P/
n Jj n 1

) 2] .
P’ +S’;’S>Dn +S

n

To Solvent ol

S+Mjl—f>Dn + P/

Scheme 2.1 Set of kinetic mechanisms assuming terminal radical model.

In Scheme 2.1, the subscript n denotes the number of monomeric units in growing
polymer radicals P, and dead polymer chains D,. Each reaction has an associated
kinetic rate coefficient. The free radical initiator / unimolecularly decomposes (with rate

coefficient k,) to form two primary radicals /" with efficiency /. Chain initiation



occurs when the primary radical adds to monomer M ; to form a polymer radical of

type- ( P’ ). The relative amounts of dead polymer D, and radical-i Pn' , made up of a

mixture of the monomer types present in the system, are determined by the copolymer

composition. Chain growth occurs by addition of monomer M ; to radical-i Pni with the

propagation rate coefficient kg dependent on both radical and monomer type. Dead

chains are formed through bimolecular termination or chain transfer, as discussed later in

the development of equations to track polymer molecular weight.

The resulting set of differential equations is:

A1) 6y — e, (O (1) + £33 (1))

dt
d(xTZ’(t)l = (1) = %, (k" Mg (0) + k7 25.(1))
@zm(z‘)—k,ﬂ3 ) on
d(x, (1))
T (O (0 + kL 0)
d(xs (1))
TSV (O(R,g ()

x,(t) and x, (¢) represent the total mass of unreacted BMA and STY in the reactor, while

x3(#) is the mass of unreacted initiator. All the same, x,(f) and x,(¢) represent the mass

of BMA and STY in the polymer in the reactor and the number of moles of polymer is

represented by x, (7).



The model is subject to a number of algebraic equations. The total concentration of

radicals in the system is calculated assuming radical stationarity:

1/2 172
DE(t) x5 (£)
AOT (1) = cc[ prees (t)J (Mi (t)] (2.2)

with the constant cc defined as

Y |:2kDf:|l/2

M, (2.3)
System density is calculated assuming volume additivity:
() x@)  x0) (O +x5@) |
X X X m X X
DE(t) = Mr(t){ 1722l 73/ SoL g 0 5 (2.4)
p A P B p 1 P SOL p POL
The total mass in the reactor is calculated as:
Mr()=x () +x,(O) +x, (1) + x, () + x, () + mg,, (2.5)

where m_,, is the initial charge of solvent in the reactor at the start of polymerization.

SOL

kO (¢) is the termination rate coefficient in the copolymerization system, calculated as

a function of monomer molar composition and the homo-termination rate coefficients

AA BB
k term> kterm

according to:

AA BB
Ae) og(ki3tm)+ 2 (D) loglkigrm)
k9P (F) = 10( ) (2.6)

where f;(¢) is the mole fraction of monomer-i in the unreacted monomer in the system:



x ()M B
W= (M B +x2 ()M 4 (2.7)

x2 ()M B X
J2)= [ (OM B +x2 ()M 4 (2:3)

The concentration of radicals of BMA (superscript “A”) and STY (superscript (“B”) is
calculated as:

Ao (=27 (070 2.9)
(2.10)

A=A () fR (0

The radical fraction of each type is calculated according to the long-chain hypothesis:

- 0] 2.11)
B kP M )x, (1) + (K 2B M a)x, (0)
5 (ky® M 4)x, (1)
fr@®= e B
(k)" M p)x,)(6) + (k" M 4)x,(1) (2.12)

and the volume of the reactor content is given by:

x,(2) N x,{t) N %, msor  (x, (1) +x,(8)

Vin= o 05 N +pSOL + N (2.13)

The rate of production of new polymer chains is required to calculate polymer molecular

weight. It is defined by:

_R)

R,y () =Ry, () + RYOV (1) + RIF (1) :

(2.14)

10



where the rate of radical generation from initiator is:

2
R, () = cc”DE(t)x4(t)
Mr(t)
and the rate of transfer to monomer is:
t £ .,
RMO¥ (1) = {ml 0 A);r((t)) #ma(0) 22 ((t))}xff” (t)DE(?)

A4 LA BA 4B
kiR @)tk fr @)

m,(t) =
1 (0) T
k2 RO+ k25, 7@
m,(t) = — —
Mp

The rate of transfer to solvent is:

soL . S o7
R, (t)_—Mr(t)x" (t)DE(1)

A 14 B +B
kpsfr @)tk sfr @)
M sou,

s(t) =

mgo,

and finally the rate of termination by combination is:

R (6) = kX (YL (1) + k22 (S (1) + 2K 22 ()ME (A (1)

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

with the termination by combination defined as a function of the termination rate

coefficient k°’(r), and the fraction of termination events that occur by

disproportionation for AA (a ), BB (8 ), and AB () termination.

11



k() = (1~ kS (1) 2.21)
k2 (1y=(1- Bk T () (2.22)

2
K2 = k2P (0) = -k (0) (2.23)
Various quantities of interest can be calculated from the states. For the semi-batch
reactor, monomer conversion is defined as the mass of polymer in the reactor divided by

the mass of monomer and polymer:

x, (£) + x5(2)
X, () +x,(#)+x, (1) + x,(¢)

%, )= (2.24)

Number-average molecular weight and copolymer composition denoted by M and F

are calculated as follows:

B x, () +x (1)
M (t)= 0 (2.25)
%O
_ M4
Fo= XG) s 0 (2.26)
M4 Ms

An objective of the starved-feed strategy is to keep these latter two quantities uniform
throughout the course of the semi-batch reaction, while maintaining high conversion in

the reactor.

12



Table 2.1 Rate coefficients and model parameters (A = BMA, B = STY)

Initiation [s] T(K) @ 138 °C
k 6.78%10".exp[-17714T77'1 | 1.3185x10?
£=5.155x107"
Propagation [L.mol.s™]
K 3.80x10%.exp[275427'] | 4.69x10°
k2P 4.266x10".exp[-3910.T7'] | 3.162x10°
n =042, r, =061
k;,B:k_;i 1.12x10*
h
kﬁ”=£ 5.18x10°
h
Termination [L.mol™.s™]
ki 7.10x10".exp[-830.7 '] 9.43x10°
k22 3.818x10%.exp[-958.77'] | 3.09x10°
a=0.65, p=0.01 , y=0.33
Transfer to monomer [L.mol”.s7]
ki 1.56x10%.exp[-2621.T'] | 2.658x107"
ki 2.31x10%exp[-6377.77'] | 4.243x10"
ki S S (S 2.6678x10™"
k2 [ el (e 1.3918
Transfer to solvent [L.mol'l.s'l]
Cs 4 5.55exp[-4590.T7 '] 7.869x107°
Cop 4.23x107 exp[3910.T77"] 5.707 x10™
ks Cy k2 3.6889x10™
k,f,s Cypk 53 1.8116

13




Table 2.2 Thermodynamical data

Species-i Density [Kg.L"] @ 138 °C Molecular weight
[Kg.mol'l]
A (BMA) p? =9.01x10"' —=8.35x10™* xT | 7.858x107" | M 4 =142.2x10"
B (STY) p? =9.19x107" —6.65x10™ xT | 8.273x107" | M5 =104.15%x1073
Sol (Xylene) | 550L —892x107! —1.3x107 xT | 7.126x10™" | M sor =106.17x107>
I (TBPA) | o/ =8.85x10~! M, =132.16x107°
Pol(Polymer) | 70l —1 19-8.07x107* xT 1.0786

2.3 Comparison of Reduced and Full Models

The accuracy of the dynamic reactor model predictions have been tested against the full
and the reduced kinetic model developed in Predici. Dynamic model simulations have
been carried out for a set of several recipes in which the mass ratio of the two monomers
in the feed have been varied, as done in the experimental study of Li.l****! The monomer
mixture is fed at a constant mass flow into the initial xylene charge, which makes up 30%
of total mass in the reactor at the end of the 6 hour feed period. TBPA initiator is also fed
continuously, with the mass of initiator fed kept constant at 1.98 wt% relative to the mass

of monomer fed.

The Matlab code for the model is attached as Appendix A to this thesis. The system of
equations was solved using Matlab solver “ODE15s”. Simulink, the Matlab graphical
interface, was used to control the execution of the simulations. Predictions of the reduced
model implemented in Matlab are compared to the Predici models. The results presented

in Figures 2.1 through 2.8 show the calculated M, , [BMA], [STY], and [TBPA] profiles.

14



In addition the predicted copolymer composition is compared with the experimental data

provided.

The predictions of the reduced Matlab model differ from those of the full Predici model
because of the different set of kinetic mechanisms included. The differences are seen
mainly for the BMA-rich recipes, and are caused by neglecting BMA depropagation.
Lower predicted monomer concentrations also result from the use of the terminal model

to describe chain propagation instead of penultimate kinetics. Note that in the work of Li,

the fit of the full model to the experimental data was improved by changing k. The

predictions of the Matlab model are in agreement to those of the reduced Predici model
and consistent with respect to the experimental data as can be observed from the plots.
Predictions on copolymer composition are consistent with the experimental data in all

cases showed.

Thus it can be concluded that the reduced model derived in this work is consistent with
the previous work and experimental data, capturing the essential dynamics of the system.
The model will be used as the basis for the on-line optimization scheme discussed in later

chapters.

2.4 Summary

In this section a reactor model of reduced complexity has been developed. The reduced
model predictions show to be in agreement with those of the reduced Predici model and

consistent with the experimental data. Differences in the model fit in comparison to the

15



full Predici model and to the data are due to the exclusion of BMA depropagation

kinetics, the use of a terminal model kinetics and the approximation of the copolymer-

kCOP
{

averaged termination rate coefficient ( ) as mentioned earlier in this chapter. It is

expected that the accuracy of the model predictions will improve as the excluded
mechanisms are incorporated in the model. The reduced complexity and the acceptable

accuracy of the reactor model developed in this section make it suitable for control

studies.

Average Molecular Weight [BMA]
14 0.4
12
10 T ———
= —
;g” aif / R < =
/ - €
= 6 -
= F.
2
o R ,
0 0.5 1 15 2
t.s x 10*
[STY]
0.4
A
A A
0.3 -

molt
molfl

0 05 1 15 2 ) 05 1 15 2

Figure 2.1 Predictions for BMA/STY system at 50/50 mass ratio.
Reduced model (—); reduced Predici model (= - -); full Predici model (—--);
experimental data (A).
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Copolymer Composition
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Figure 2.2 Copolymer composition for BMA/STY system at 50/50 mass ratio.
Reduced model (—); experimental data (a ).
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Figure 2.4 Copolymer composition for BMA/STY system at 75/25 mass ratio.
Reduced model (—); experimental data (a ).
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experimental data (A).
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Figure 2.6 Copolymer composition for BMA/STY system at 25/75 mass ratio.
Reduced model (—); experimental data (a ).
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Chapter 3 Control Strategies and System
Optimization

3.1 Control Strategies for Semibatch Reactor Operation

Semibatch processes are similar to batch processes, except that reactant can be added
and/or products removed during the polymerization.®” Depending upon the feeding
strategy the monomers are fed continuously or by following a pre-defined schedule to

obtain required polymer quality specifications.

In a batch reaction, copolymer composition drifts according to the inherent reactivities of
the monomers. One monomer is consumed preferentially, causing the monomer
composition in the reactor to change as the overall monomer conversion increases. This
change gives rise to a variation in copolymer composition with conversion. The
BMA/STY system has an azeotropic composition such that BMA is incorporated
preferentially into the copolymer at low BMA fraction in the reactor, while at high BMA
fraction STY is incorporated preferentially.m] However in semibatch operation, drift can
be substantially reduced by maintaining a constant concentration ratio of the respective

monomers in the reactor,®" the objective of most copolymer production.

One of the most common strategies to achieve constant copolymer composition is to pre-
charge the total amount of the least reactive (slower) comonomer into the reactor and
feeding the other comonomers while maintaining a specified concentration ratio.” A

similar approach consists of pre-charging a portion of the total reactant load at
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predetermined concentrations to obtain a copolymer with the desired composition, then
feeding both monomers to the reactor with time varying flow rates to maintain such
concentrations, and thus copolymer composition, constant with time.[”® Although these
strategies are effective for copolymer composition control, they suffer from several
drawbacks. They, are not necessarily time optimal, and the pre-charged amount has to be
exactly calculated for a desired amount of polymer. A significant practical issue is that
pre-charging one monomer may not be desired for safety reasons. Furthermore, the
approach relies on measuring accurately the concentrations in the reactor to regulate the
monomer feed rate; the measurement delay (e.g., using a gas chromatograph) makes the

control problem more difficult.?> ™)

Starved feed operation, the operating strategy currently used widely in industry,
overcomes many of these problems. A starved feed reactor (SFR) is a semibatch
polymerization reactor in which initiator and monomer are fed slowly into a fixed amount
of solvent. The polymerization is carried out isothermally at elevated temperatures. The
added initiator decomposes almost instantaneously, and the added monomer also
polymerizes immediately. Thus, the monomer concentration in the SFR is very low,
ideally approaching zero, such that polymer composition matches the composition of the
fed monomers. The molecular weight of the product polymer can also be effectively

controlled by the feed ratio of monomer to initiator.

Although this strategy is more robust than scheduled feeding described before (especially

with the lack of on-line measurements), it is not time optimal and frequently requires a
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long batch time. As monomer concentration in the reactor is held low, the potential
hazard for thermal runaway reaction scenario is minimized. A potential concern with
operating in starved mode is that polymer concentrations are high, resulting in higher
rates of transfer to polymer and branching reactions.®” In addition, starved-feed
operation does not ensure that the quality specification is met under process disturbances.
In general the control system for a polymerization reactor must be sufficiently robust to
handle unmeasured disturbances, which impact polymer reactor operation. These
disturbances typically result either from trace amount of polymerization inhibitors left
over after monomer purification prior to the polymerization reaction or from trace
amounts of other compounds which may be present in a typical polymerization recipe
and which may be affecting the reaction.? A well designed feeding strategy must
overcome several pitfalls and meet quality and safety constraints. In addition, the control
strategy can be time optimal and must provide a robust mode of operation to deal with

disturbances and unknown physics to ensure polymer quality is achieved.

The system under study in this work is operated under starved feed conditions. Initiator
and monomers are continuously fed in the desired mass ratio to provide composition and
molecular weight control while maintaining low monomer concentration in the reactor. A
representation of the process is given in Figure 3.1. Solution free-radical BMA/STY
copolymerizations have been performed at 138 °C with monomer added at a constant rate
over 6 hours at different mass ratio (feed compositions); initiator was fed in at a constant
mass ratio of 1.98 wt% relative to monomer feed. The experimental study showed that

the free STY and BMA monomer levels in the semibatch reactor remain low throughout
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the course of these reactions such that the monomer and polymer compositions remain

relatively constant. !

€y .
.

E-1

Figure 3.1 Semibatch reactor schematic

3.2 Optimization of Semibatch Reactor Operation

3.2.1 System Optimization Overview

Chemical industries and in particular those dedicated to the production of fine chemicals
and polymers have come to recognize that the operation of the processes often provides
far from optimum performance with regard to efficiency, yield, safety, or environmental
compatibility. For batch and semibatch reactors the typical approach to improve
performance has been divided into two parts. First, a recipe for the feed flowrate of one

or more reaction components, typically based upon heuristics and experience, has been
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fixed. In a second step a controller has been designed in order to implement the
determined feed flowrate in the presence of disturbances.”” Potential for optimization
comes from the fact that both steps can be executed simultaneously through the use of
novel control algorithms. Indeed, many applications in engineering can be formulated as
optimization problems whose objective and constraints are often dictated by cost criteria,

safety, quality and environmental restrictions.

The objective function for the optimal operation of most processes is formulated so as to
minimize the process time, cost of operation, and maximize the product yield and so on.
The optimization then is possible through the manipulation of certain process variables
such as flow rates, temperature, heat duty, etc. However, these process variables are not
always adjustable and are often limited by physical bounds. Thus, the optimal operation
of any process involves the determination of an extremum for the objective function by

adjusting the process variables while satisfying the constraints on the process.’*?

By solving an optimization problem we obtain an open-loop optimal control (and
corresponding state trajectories) that we may implement to control a plant. This standard
approach discards model uncertainty (nominal optimization), and leads to an optimal
input solution that may not correspond to optimal performance or may not even be
feasible in the presence of uncertainty. Moreover,constraint satisfaction, highly important

in the presence of safety or environmental constraints, may not be guaranteed. > %
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Thus, the technical challenge is to optimize the system in light of uncertainties.
Uncertainties arise from model mismatch, model parameter uncertainties and unmeasured
process disturbances. In particular, kinetic parameter uncertainties arise from the fact that
coefficients that are usually estimated from laboratory-scale experiments, may not be
accurate in commercial-scale reactors due to differences in mixing, or heat and mass

transfer characteristics.[’"

Conceptually, there are different approaches to deal with process uncertainties. The
difference among them relates to whether or not measurements are used in the calculation
of the optimal strategy. A robust optimization approach, for example, is used in the
absence of process measurements, whereas measurement-based optimization approach is
used in the opposite case. The robust optimization approach takes the uncertainty into
account explicitly through the use of probability and the modeling of uncertainties. The
input trajectories are then computed off-line once and utilized for all batches."” For
measurement-based optimization, an online approach is used if measurements are
available during the batch.When only offline measurements are available a run-to-run
optimization approach is in order. In the latter, information from previous batches is used
to update the operating strategy for the current operation. However, this approach does

not account for the effect of process disturbances within the batch.

Mathematical optimization methods available in the literature address two major issues:
solution of the system equations and formulation of optimization strategy. Most methods

differ from one another in the approach employed to address these two issues."*
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Direct and indirect methods are identified as the two most commonly used approaches to
solve the system of differential equations in the optimization problem. The indirect
method, based on optimal control theory or calculus of variations (Pontryagin minimum
principle), results in TPBVPs (two boundary value problems) which are computationally
intensive and whose solution is often a non-trivial task These techniques are not
considered further in this work. In the direct method, discussed in more detail below, two
different approaches have been reported: the sequential approach in which the process
dynamic equations are integrated explicitly (control vector parameterization), and the

simultaneous approach in which the equations are integrated implicitly.

Whether we choose to parameterize the control and/or the process states by a set of finite
parameters (direct methods), the resulting system needs to be coupled with numerical
optimization algorithms (typically nonlinear programming). In general, any numerical
procedure for dynamic optimization involves the following steps: (i) choice of initial
inputs; (ii) calculation of the system states, the performance index, and the constraints;
and (iii) adaptation of the inputs towards the optimum (using for example gradient

information). Steps (ii) and (iii) are then repeated until convergence.m]

3.2.1.1 Literature review

In control vector parameterization (CVP), only the inputs are parameterized using a finite
set of decision variables through, typically, a piecewise constant approximation over

equally spaced time intervals.*’®®! The sensitivity equations are then integrated
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simultaneously with the process equations.®™ This sequential method has the advantage
that the number of degrees of freedom in the nonlinear program remains relatively

small.[¥

Several efficient optimization algorithms for sequential methods are available in the
literature.!$?%367.72 Most algorithms are similar in the strategies used for function
evaluation, gradient evaluation, and formulation of the quadratic program.[82] The main
drawbacks of this method are that the quality of the solution depends upon the
parameterization of the control profile and that a fast convergence to the solution is
obtained only if a feasible starting guess is provided. Nonetheless, finding this feasible
initial solution is a non-trivial problem. Several CVP applications for nominal

[27,51,58]

optimization have been reported in literature for batch distillation systems and for

semibatch and batch processes.!**®!

In the simultaneous approach the explicit solution of the differential equations 1s avoided.
Sensitivity equations for the dependent variables with respect to the parameters along
with the system differential equations are replaced by an approximating set of algebraic
equations and the optimization is performed in the full space of discretized inputs and

states [9,20,33,38,61,74,85]

Several batch process applications using this approach' have been reported in

literature, 121244465 For large scale systems, however, the total discretization of the system
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greatly increases the cost of- computing and storage requirements, making its

implementation in online optimization schemes difficult.

In sequential methods a system of differential equations is solved by using an
optimization routine with an embedded differential equations solver. However, the
original differential equation system is converted into a non-linear optimization problem
in simultaneous methods, which is usually solved by nonlinear programming (NLP)

routines such as Sequential Quadratic Programming.[sz]

Thus, a large number of research studies are found concerning off-line optimization for
process case studies and/or concerning closed loop controller design for certain specified

trajectory or end-point problems, including state observer/estimator design.

Industry and academia have shown an increasing interest in using optimization based

[37,50,53,57] and on-

methods such as model predictive control (MPC) for trajectory tracking,
line re-optimization strategies.[25’64’75] This tendency seems to go hand in hand with recent

developments in sensor technology that are becoming prevalent in many industrial

settings.

In model predictive control the optimization problem is solved over a prediction horizon
at each sampling instant yielding a sequence of control moves from which only the first
move is implemented. These control variables are manipulated to force the process

variables to follow a pre-specified trajectory (reference tracking) from the current
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operating point to the target. The inputs trajectories are defined, typically in piecewise
constant functions. Moreover, the optimization is solved using various techniques,
including nonlinear programming or gradient methods.P% A detailed description of model

. . . . . 28. 52
predictive control is available in several references. [28,52,63)

In particular, MPC has drawn the attention of some academic researchers focusing on the
design of MPC controllers for regulation around a set point (in many cases for
temperature control) and minimization of off-grade products in polymerization
reactors.['"'#48:54) MPC controller , state estimator design and implementation has also

been carried out for fed-batch reactors.!'722326%.77)

In order to deal with uncertainties online re-optimization schemes have been reported in
literature. An online cascade optimization scheme was applied to a penicillin fed-batch
fermentation process where the input was parameterized using a CVP approach in a
piecewise fashion.’® Cascade optimization combines the positive features of optimal
operation and feedback control. This scheme is composed of a “high level” optimizer that
repeatedly solves the optimization problem and a “low level” feedback controller that

tracks the optimal trajectories calculated.

Also, a re-optimization based control for a semibatch emulsion copolymerization process
to minimize the batch time while maintaining copolymer composition has been reported
in literature.’> For a desired copolymer composition, a specified reaction rate ratio for

the comonomers has to be maintained while the reaction rates are maximized to achieve
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the shortest possible time. The re-optimization is triggered only if the ratio deviates from
a tolerated band. The necessity to compute a new optimal trajectory is checked at every
sampling interval up to the end of the batch. The measured or observed process states are
used as initial conditions for the optimization of the remainder of the batch, and the
calculated manipulated variables are implemented without the need of designing a

tracking controller to follow the trajectory.

3.2.1.2 Shortcomings

Many industrial batch processes are operated through open-loop application of an off-line
optimized input profile, such as feed or temperature; this approach does not account for
process uncertainty and in particular, in polymerization processes, the irreversibility in
polymer quality that requires fast response to existing disturbances will not be overcome.
However, when on-line measurement information is available, on-line re-optimization
promises considerable improvement.” One important precondition, however, is the
availability of reliable and efficient (limited computational complexity) numerical

optimal control algorithms.[sl

Particularly, the high computational requirements,[s] the dependence of the quality of the

1162}

solution on the accuracy of the process mode and the stability issue related to the

[16,49)

prediction horizon approximation are acknowledged to be the main problems arising

from nonlinear MPC.
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In addition to the prohibitve computing time for real time implementation, complexities
arising from controller design in cascade optimization might become difficult to
overcome.

1) that addresses these

To overcome those pitfalls, an on-line optimization technique
shortcomings has been employed in the present work and it is described in more detail in
the next section. This technique, unlike a cascade optimization scheme, incorporates the
feedback measurements directly into the optimization procedure rather than into a low

level tracking controller so it truly becomes an online optimization rather than an online

re-optimization, thus avoiding the need for controller design and the related complexities.

The driving idea behind the method utilized in this work is that as measurements come in
from the batch, new profiles are determined on-line and implemented simultaneously
without the need of tracking the calculated proﬁles.[56] The major differences with other
online strategies are in the numerical algorithm used to solve the optimization in
comparison to other nonlinear optimization algorithms widely used in other optimization
approaches. This improvement addresses the intensive computing time drawback without

introducing any compromises for on-line implementation.
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3.2.2 Online Optimization Technique Employed

3.2.2.1 Problem Statement

The basic control problem addressed here is to find the input trajectory that solves the
dynamic optimization problem for some cost functional J (Egs. 3.1 and 3.2).
Mathematically, the general form of the constrained dynamic optimization problem can

be expressed as:

: Vi
min J(x,u) = jo g(x(t), u(t))dt (3.1)
subject to: X(t) = f (x(0),u(0))
w(x(0),u()) 20 , Ve e[0,,]
x(0) = x,
Xt,)=x, (3.2)

In this formulation, x € R” are the state variables, u(f) =[u,(?),...,u, (")) € R"™ is the

vector of m input variables, f:R" xR"™ — R" is a smooth vector-valued function. The

function w:R" xR™ —» R™ is also smooth vector-valued function. This represents the
path constraints that limit the inputs and the states during the batch. The end-point

variables that limit the outcome of the batch at final time is represented by x(¢ f) .
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The real-valued smooth cost function ¢g:R”"xR™ — R is assumed to be positive
definite, 1i.e.,q(0,u)=0,VueR™ and q(x,u)>0,Vx#0.Similarly, ¢q(x,0)=0,

Vx e R" and q(x,u)>0,Vu#0.

In general, the particular choice of the problem formulation including the objective
function and the set of constraints, the input parameterization and the complexity of the
process dynamics have an effect on the problem’s solution and the effort required to

obtain it.

3.2.2.2 Parameterization
The input trajectories u(t) =[u,(?),....,u,, ("] are  approximated by a given

parameterization defined as:
N
1, (0=) 8,6,0)=0(0.0) (3)
i=1

where ¢, (¢) are the basis functions and 9,./, are the parameters to be determined for

i=1..,N and j=1,..,m, where N is the number of parameters for input j. 6 ; represents

the vector of parameters for input j.

3.2.2.3 Real Time Optimization Technique

The dynamic optimization problem is now expressed in terms of the parameters
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Min J = j Y a(xP (1), (0, 1)t (3.4)
8 0

subject to
xP = f(xP (0),9(8,0)
w(xp(t),(p(O,t)) 20 ’ Vie [Oatf]

xP () =x"(t)

3.5)

The superscript m denotes a measured quantity, and the superscript p denotes a predicted
quantity. Here, the predicted states at each time instant are initialized to the current state

measurements starting from the current time

The constrained parameter set Q={0e R" | w(x”(t),p(6,7)) >0} describe a convex

subset of R" It is assumed that the parameters evolve on a compact subset y of R .
The cost functional J:y — R is assumed to be convex and continuously differentiable
on y. The assumptions made up to this point guarantees a local optimization of the
constrained problem exists and that the gradient can be used to achieve that

minimization.>®

An interior point method with penalty function is used to include the constraint costs. The
interior point method incorporating a log barrier function enforces the state and input
constraints (essentially converting the constrained optimization problem into an

unconstrained one) while the end-point constraints are incorporated through a terminal

penalty function.”® In the remaining equations obvious notation has been omitted.
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Thus, let the path cost with barrier function be stated as follows:

nc

L(x,u)=q(x,u) —Z p, log(w, (x, u) +¢) (3.6)
i=1

To emphasize that the optimization is based on the current conditions, the new cost

functional with interior point method and penalty function is stated as:

f
Jip = .r L(x* (1), @@, ))dt+ M || xP(t,)—x, 12 (3.7)

4

where te(t,t,] is the integration variable and nc is the number of inequality
constraints. The parameterp, >0 is the barrier parameter for the logarithm term, M >0

is the penalty term and € > 0 is a constraint relaxation factor (back-off) that prevents the

barrier term from singularity.

The technique uses a gradient-based method for the solution of the dynamic optimization
problems in real time. The method employs a straightforward diagonally scaled steepest

descent parameter update law of the form:

6 = —Proj(T'VoJ,,,Q,,) (3.8)

ip?

where I > 0 is the scaling matrix (referred as a gain matrix) to be defined. A discussion
of the choice of I' is given in Chapter 5. To avoid divergence of the update law a

projection algorithm is used. This guarantees that the parameters remain in a convex set

36



Q,=1{0e RY | | 0I< n} for some 1 >0 while assuring that the cost decreases until the

optimal profile parameters are determined. A Lyapunov-based method was used to show

convergence to the local minimizers of a user-defined cost functional.***)

The projection algorithm is given by:*®

Y, I lI8ll<n or (|6]l=n and VP(8)<0)

0= (3.9)
Y, otherwise
VP®VPO) .
where y =7y — YT(V}))(G—)(F)—: y is a compact subset of R"” where the parameters are

assumed to evolve, P(0) =070 -1, 8 is the vector of input parameters and 7 is chosen

such that || 0 ||<n.

Full state measurements are assumed through simulation carried out in Matlab

[41], a Fortran-based differential

(simulation of the closed-loop system) whereas Odessa
solver, was used to calculate the model predictions and the first order sensitivities. On
each sampling time the process model is integrated while simultaneously obtaining
sensitivity information for the objective function and the states with respect to the free
optimization variables. This information is used to generate new values for the decision

variables (inputs and time interval lengths) through the update law. The calculated inputs

are then implemented until the next measurement is available.

37



The optimization procedure is nested within the process control scheme, with the
optimization triggered when the next measurement is available (or prediction). The time
for the solution of each optimization problem must be short enough to guarantee a
sufficiently fast reaction to disturbances and should not be larger than the sampling time
for the real time scheme to be implementable. The series of integration and optimization

proceeds until reaching the last time interval.
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Chapter 4 Problem Statement and On-line
Optimization

4.1 Reactor Optimization Problem

The problem of real-time optimization of a system with nonlinear dynamics subject to
control, states and endpoint constraints is considered in this chapter. A reduced model
and an adequate objective function and set of constraints were formulated to fully exploit

the on-line optimization technique used to develop an improved feed schedule.

The operation of the BMA/STY semi-batch reactor is subject to optimization. The
objective is defined so as to minimize the batch time and maintain the copolymer
molecular weight (M) and composition (F") at their targets values while satisfying path
and terminal constrains on the states and/or the controls. Those operational, quality and

safety related constraints have to be met during the batch and at its final time.

In order to find optimal trajectories for the operational degrees of freedom, a dynamic
optimization problem is formulated describing the feed flow rates parameters and the
time interval lengths as decision or optimizing variables. For tracking purposes the

objectives for M, (Eq 2.25) and F (Eq 2.26) have been aggregated into a single scalar

function while defining the batch time as a terminal objective function

f M, (1) F(t)
J=J'0 (m,(—ﬁ:—l)z+m2(};—1)2)dt+m3tf @.1)
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J is the objective function to be minimized, and M, and F, are the target values for

molecular weight and composition respectively. The set of weights that properly scales

the objectives are defined by »,,0,,®,. The optimization is subject to process dynamics

x = f(x,u) (Eq. 2.1), with the constraints described below.

State-dependent constraints typically result from safety and operability considerations,
such as limits on temperature and concentrations. In particular, the monomer and initiator
levels in the batch must not exceed certain maximum limits in order to meet safety

constraints related to heat release. These constraints are described by:

0<x, ()< x™, kefl,2,3}

X43(020 “42)

Placing the constraints on unreacted monomer in the reactor is a convenient way to limit
potential heat release, as this quantity is directly related to the maximum temperature rise
in the reactor that could occur in the case of a complete loss of heat removal capacity in

the system.

On the other hand, control constraints are often dictated by actuator limitations. For

instance, non-negativity of flow rates is a common input constraint.

0<u, () suf™ | kefl,23) (4.3)
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Terminal constraints are commonly related to safety or productivity considerations. With
regard to the latter, the desired mass of polymer at the batch end is specified as an

endpoint constraint:

Xy (bp)+xs(tp) =mpp(t)) 4.4)

4.2 Parameterization

The control functions are parameterized using a single constant: u, (£) =4, ( k=123)

through the entire batch time horizon. Although the described optimization technique
contemplates the use of a parameterization function of time to approximate the infinite-

dimensional inputs, some compromises has been made in this work.

While it may be true that a constant parameterization might result in suboptimal profiles,
it results in a manageable tuning process, for algorithm parameters and gain factors, and
maintainability than otherwise (polynomial, exponential, sigmoidal parameterization,
etc). As a consequence, in particular, reasonable response of the process outputs
(molecular weight and composition) to gain changes has been observed in agreement
with the physics of the process. This turns the tuning procedure into a relatively less

complicated task.

The control parameterization is set to take advantage of the generally good control of
polymer quality (molecular weight and composition) using starved-feed operation. Thus,

the controls are expressed as follows:

u (1)=9,
Uy (¢)=9,0,
u;(t) =648,

(4.5)
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The mass flowrate of STY (u,) is related to the mass flowrate of BMA (§,) with

proportionality factor ,. Similarly, 65 is the ratio of initiator to BMA mass flow.

On the other hand, since the batch end time of the problem is unspecified and also subject
to minimization, the problem is converted to one with a specified end time through the

use of the following transformation (time normalization):

v=t/t,, 1€[0,] (4.6)

The independent variable is now t, which varies from 0 to 1. Then, the final batch time
is considered as an additional optimization parameter. However, an equivalent approach

has been taken. Here, the batch time horizon ¢, is decomposed into n equally spaced

J

time intervals [¢,,¢,. ] with ¢, <t ,, ii=1,.,n , such that

t;=Atn (4.7)

The length of the interval is considered as an optimization variable (8, = At) instead of

the variable ¢ ; for scaling purposes.
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4.3 Modified Cost Functional

To emphasize that the optimization is based on the current conditions, the objective

function and the process dynamics can be stated now as follows:

F(c)

: M, (o) 2 2
J('c)='[tf(0)1( V. 1) mz(—Fs,, ~1)%)do + oy @.11)
dx
X d’f fﬁx,u)
where
t;=Atn (4.13)

The modified cost function then can be stated as follows

M z=m
Jip= Jj|:tf(0)1( A:’[(G) —1)? +c02(F(G) 1)) -, Zlog(wj +s)}dc+(n3tf +M(w,)* (4.14)

p Fsp j=1

where o € [1,1], the m path constraints w; are given by:

_ ™ e (4.15)

w k

=—-X

k k

Wiy =X +€, k=123 (4.16)

For control constraints:

Wieg = —Up UL +€ (4.17)

Wio = Uy +8, k=123 (4.18)
and end point constraints:

Wf =X +x5—mp01(tf) (419)
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Numerical values for the bounds of the path constraints are given in Chapter 5 when
several cases studies have been discussed. The integral part of the modified cost is

considered as an additional state such that:

d; (1) M, () F(x)
b= = O e (D -y lejlogw, ve)  (4.20)

Finding a locally optimal solution can often be achieved through appropriate initial
guesses to the optimizer and the use of realistic constraints. However, to find a feasible
set of initial guesses is sometimes not a trivial task due to the interior feasible point
method (barrier function) used. The barrier method requires that the initial guess of the
solution to be strictly feasible. In addition, ill conditioning inherent to the nonlinearity of

the reactor system may play a role in the sensitivity of the solution to initial conditions.
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Chapter 5 BMA/STY System Optimization

5.1 Optimization Results and Discussion

In this chapter, the performance of the proposed on-line optimization based control
strategy is illustrated for several BMA/STY copolymerization case studies, including
varying the initial feed rates and changing the copolymer molecular weight target value.
Simultaneously, a comparison with the results obtained through simulation of the
conventional starved feed operation at different feed composition (mass) ratios is carried

out.

Cases 1-3 illustrate the optimization of the BMA/STY system relative to the conventional
starved feed strategy for the 50:50 BMA: STY mass ratio. Case 1 follows experimental
initial conditions (monomer and initiator feed rates) used in the experimental study of
Li"™) and summarized in Table 5.1. Further improvement on these results is obtained
through a change in the initial input parameters, as shown in Case 2. Case 3 presents the

optimization under a different target value for molecular weight.
Finally, Case 4 deals with the optimization of the BMA/STY system relative to the

conventional starved feed strategy at 75:25 BMA: STY mass ratio. Section 5.2 discusses

the robustness of the proposed operation strategy under model parameter uncertainty.
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The settings and results for the presented case studies are summarized in Tables 5.2
through Table 5.8, whereas the graphical outputs can be observed in Figures 5.1 through

5.10.

Table 5.1 Conventional starved feed strategy used in experiments of Li [43]

Results 50:50 BMA:STY | 75:25 BMA STY
(wt ratio) (wt ratio)
fed 9.7E-03 9.7E-03
Mippy » K8
d 2.46E-01 3.6E-01
mlj;eMA . Kg
d 2.46E-01 1.23E-01
m.{;Y . Kg,
t, ,min 360 360
Mo (t), (%) 0.474 0.483
(*) terminal constraint : mass of polymer produced (Kg)

In Table 5.1, mﬁ‘; P mﬁ‘; ”» mfr‘;, represent the mass of initiator , BMA and STY fed to

reactor up to the final batch time, respectively. The final batch time is given by ¢ Iz The

mass of polymer produced at the final batch time is m,,, (¢,) . This will be taken as the

terminal (end-point) constraint for the optimization cases to be treated later in this

chapter.
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Table 5.2 Settings for Cases 1-3

Initial Conditions Case 1 Case 2 Case3
x(0) ,Kg 0.215
x1(0) = x5(0) = x3(0) = x4 (0) = x5(0) Kg 0
x6(0) , mol 0
Initial control parameters ler =21600s, n=1000
6,00), Kgs' 2.46E-01/t,,; | 1.7TE-01/1,,, | 2.4E-01/¢,,/
08,(0) 1 1 1
0;(0) 0.039 0.074 0.086
04(0) ,s lyey 10
Target values
M, ,Kgmol' 9.96 8
F 0.423
Constraint bounds
mg]oalx (t;) . Kg 0.474
XN <x ()< x| ke{l,2,3,4,56) Kg x i x g
x; (8) 0 0.01
X5 (1) 0 0.01
x3 (1) 0 5E-04
0 0
x5 (0) 0
x6(0) 0
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Table 5.3 Algorithm parameters for Cases 1-3

Algorithm Parameters | Case 1 | Case 2 | Case 3
M 2E+04 | 4E+04 | 6E+03
B 1E-11 | 1E-11 | 1E-11
€ 1E-12 | 1E-12 | 1E-12
k; 1E-12 | 1E-12 | 1E-12
ky 1E-05 | 1E-05 | 1E-05
ky 1E-05 | 1E-05 | 1E-05
k, 1E-04 35 1.9

Table 5.4 Optimization results for Cases 1-3

Results Case 1 Case 2 Case 3
d 9.8E-03 .8E-03 | 12.3E-03
m%{ZPA , Kg 03| 9.8E

ml];eAZA . Kg 2.46E-01 | 2.44E-01 | 2.45E-01
mé’erc; , Kg 2.47E-01 | 2.44E-01 | 2.25E-01

t}ef _t;atch . min 59.0 77.2 69.4
Mmoo (E,)=mu (i) ,Kg | 22E-04 | 47E-04 | 4.6E-04
Computation time , s 11.02 12.83 10.52
Final Cost 155.27 227.73 172.04
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Initial conditions and constraints for Cases 1-3 are summarized in Table 5.2, and the
algorithm parameters in Table 5.3. The optimization results are summarized in Table 5.4.
Table 5.3 shows the algorithm parameters chosen for a given case study. In particular, the

adaptive gain (k;,k, , k3, k, ) are scaling factors that play a role on controlling the rate of

change of the parameters (0;,0,,05,0,) according to the steepest descent law which




Q.), j=1..,4 used by the algorithm (Eq.3.8). In

takes the form 6, = —Proj(k jVej Jips
practice, it was found that increases in k; cause an increase in molecular weight while a

decrease causes the opposite effect. All the same, an increase in k, results in a difficult

copolymer composition control leading to negative deviations from its target. The

opposite is also true, a decrease in k, increases the composition values. Similarly, k3 has

influence over the polymer quality specifications specifically on molecular weight

showing a direct relationship with molecular weight variations, that is, a molecular

weight increase is due to arise in k3 and vice versa.

Lastly, k, exerts a similar influence on the change of 0,4 (time interval length) and as a

consequence on the batch time. An increase in k, emphasizes the time reduction task.

With regard to the other algorithm parameters, the barrier parameter (p ) is chosen small

while the penalty factor (M ) is chosen to be large. A larger M value may be needed to

force terminal constraint satisfaction while a smaller value of p may lead to numerical

problems and erroneous constraint violation. Finally, small values of € are to be used to

avoid constraint singularity (in the log barrier term).

Finally, it is worth to point out that in all case studies the set of weights that properly

scale the objectives are set to w; =1, ®, =1 and w3 =1/21600. Increasing , leads to

a greater emphasis on batch time reduction. However, those increments in time reduction

were found to be negligible relative to that achieved with the base set of weights.
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For Case 1, the initial flowrates of monomers and initiator are set to the experimental
values used by Li. Fig 5.1 shows that although copolymer composition is kept at its target

value, there is no improvement in the M, profile after optimization; a transient

overshoot still occurs in the first third of the batch. However, the algorithm is able to
increase monomer and initiator flow rates (Fig 5.2) such that the batch is completed about
1 hr more quickly, compared to the 6 hr feed time of the original recipe. Although a
decrease in the objective function values (see cost functional in Fig 5.1) is obtained, there
is still an unexploited potential for further reduction on the objectives, mainly molecular
weight deviation and batch time since good control on copolymer composition is

achieved.

Free mass of TBPA is shown to be within its boundary while free mass of BMA and STY
hit their boundary values at the batch end (Fig 5.1). All the same, it has been observed
that the rest of process states show non negativity as defined in Table 5.2. The latter turns

out to be the case for all runs carried out in this chapter.

In Fig.5.2, it is seen that the profiles initially show a slow rate of change and although the
flow rates show a quick increase afterwards, the rate of adaptation of the flow rates is
clearly not fast enough to achieve the objectives and constraint satisfaction at the batch

start.
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However, as a result of the posterior increased flow rates the objectives are finally
fulfilled at roughly 10000 seconds, the point at which the policies adopt a flat shape to

keep control towards the end of the process. ~

In addition, from Table 5.4 (Case 1), the load of monomers and initiator fed with the new
feeding strategy is in accordance with the charge fed under the conventional starved feed
operation (see Table 5.1). Although quality requirements are not fully met, the solution
shows a reduction of batch time of around 16 % while approaching the terminal

constraint on mass of polymer within 0.5 grams of tolerance.

The Case 1 results suggest that a further improvement on the objectives is in order. This
is possible by adjusting the set of initial control parameters as reported in Table 5.2 (Case
2), with graphical output given by Fig.5.3 and Fig.5.4. The new set of initial conditions
on the parameters was found by trial and error, based upon the structure of molecular
weight and copolymer composition definitions. Decreasing initial monomer flow rates
and increasing the initial initiator flow rate was found to eliminate molecular weight

overshoot.

Fig 5.3 shows that the initial overshoot on molecular weight, as shown by simulation of
the conventional operation, has been overcome while reducing the batch time by about
21% relative to the actual operation, as reported in Table 5.4 (Case 2). The improvement
on the objectives is reflected by a large decrease on the cost functional as shown in Fig

5.3. Moreover, the final value of the cost functional as reported in Table 5.4 represents a
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reduction in 97.5 % relative to its initial value as inferred from Fig 5.3 showing the

effectiveness of the optimization.

Fig 5.4 shows that both monomer feed flow rates are increased simultaneously with the
initiator policy. The optimal initiator flow rate shows a large increase at the beginning of
the batch and then the profile decreases as the limit on the free mass of initiator in the
reactor is approached (Fig 5.3), followed by a slow increase with time as seen in Fig 5.4.
Similarly, the monomer feed profiles climb quickly until they reach a period of relatively
constant flow. Both monomer profiles are similar, suggesting that the mass ratio of
monomers ( 6,) is being held close to unity, as shown by Fig 5.5. Similarly, the same can
be deduced for Case 4 (75:25 BMA/ST mass ratio) from Figs 5.9 and 5.10. Moreover,

Figs 5.5 and 5.10 show that the estimated parameters change more slowly as time

increases (iterates). Also, it can be seen in Fig 5.5 that 0 (difference of successive
parameters values) converges to zero as the parameters reach a stationary value as time
approaches the batch end while the cost decreases at the same time as observed from Fig
5.3. This is expected as the cost will strictly decrease until the optimal profile parameters
are determined (end of the batch) as discussed in the appropriate reference.’® There, it
was shown that the objective function or cost functional (J) will strictly decrease until
the optimal profile parameters are determined, point at which the gradient with respect to

the parameters is zero (parameter convergence).

Constraint satisfaction is achieved along the Case 2 batch while approaching the terminal

constraint on mass of polymer within 0.5 grams of tolerance. The latter required a penalty
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factor of double magnitude relative to the first run (see Case 1 in Table 5.3). Keeping

M at its former value will result in the terminal constraint on mass of polymer m (¢ )

far less from expected. To force m (¢ ) (as defined in Eq.4.6) within certain tolerance,

pol

M should be increased accordingly.

Moreover, the total consumption of raw material is in accordance to the charge fed under
conventional starved feed as shown in Table 5.4 (Case 2). Additionally, it can be seen
from Fig. 5.3 that the free masses of BMA and STY in the reactor reach values very near
to the actual maximum bound of 0.01 kg at the batch end. Nonetheless, it has been
observed that a relaxation on such constrained variables lead to a negligible improvement

on the objective function.

A change in the molecular weight target value (decreased from 10,000 to 8000 g/mol)
yields similar results, as seen in Table 5.4, Fig 5.6 and Fig 5.7 for Case 3. The initial
conditions for Case 3 were obtained by adjusting the control parameters corresponding to
flow rates of BMA and initiator (TBPA) from Case 2 to achieve a lower molecular
weight. Since copolymer composition was not subject to changes, 6, was unaltered
relative to Case 2. A batch time reduction of about 19% is achieved while reaching
saturation on remaining mass of initiator in the reactor. Although a relaxation of the
constraint may lead to further time reduction, it has been observed that a broader range
leads to negligible improvement on batch time. A 26% increase (2.6 g) in the amount of

initiator is required compared to the cases with higher molecular weight target values, as
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reported in Table 5.4 (Case 3). This increase is expected since low molecular weight

resins are produced by increasing the amount of initiator fed to the reactor.

The optimization results summarized in Table 5.4 (Case 1-3) and Table 5.8 (Case 4)
show a computing time on the order of ten seconds for each case. This makes the
optimization procedure more appealing for on-line implementation. The time reported
corresponds to the product of the averaged computing time for each control (flow rate) at
each time step and the number of time intervalsn. For most online optimization
techniques, the heavy demand for computing time restricts the frequency of updates, and
consequently these methods usually result in very discrete on-line changes.[“] However,
the methodology used in this work enabled fast control calculation allowing for high
number of updates as the number of intervals in which the process time was portioned is
large (n). This results in relatively smooth control policies as seen throughout this

section.

Fig 5.8 and Fig 5.9 show the outputs for the optimization of the BMA/STY system
relative to a conventional starved feed operation at 75:25 BMA:STY feed mass ratio
(Case 4). Results show that polymer quality can be assured in minimum time while
having constraint satisfaction over the run. In particular, the time reduction achieved is
about 32% relative to the conventional strategy, and the overall monomer load fed is in
accordance to the open-loop starved feed operation. However, an initiator excess of about
3 % (equivalent to 0.3 grams) relative to the conventional satrategy is required, as

reported in Table 5.8 as low molecular weight resin is being produced (similar to Case 3).
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Note that no solution to the control problem was obtained when running the optimization
procedure using the experimental initial conditions of Li (see Table 5.1): results were
similar to the conventional operation and no time minimization was achieved. Following
the same practical rules employed to adjust the initial conditions on the control
parameters (from Table 5.5), the initial guess for this case was obtained (see Table 5.6).

The results of the subsequent optimization carried out under this new initial guess set are

Fig.5.5 Parameter convergence for Case 2

reported in Table 5.8, whereas the algorithm parameters are found in Table 5.7.
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A large decrease in final batch time is reflected by a large decrease of the cost functional
once polymer quality specifications are met as shown in Fig 5.8 and Table 5.8. The
reduction in the objective function value is about 99.6 % relative to its initial cost as

inferred from Fig.5.8 confirming the effectiveness of the optimization procedure.

As we have seen, most of the optimization work is carried out at the first portion of the
batch where quick changes on the flow rates are needed in order to achieve the objectives
and meet constraints. Fig.5.9 shows that the rate of adaptation of BMA and STY flow
rates are fast enough for the optimization procedure to succeed. In addition, the initiator
flow rate suffers a steep reduction (followed by a period of slight flat adjustments) as the
TBPA free mass in the reactor reach saturation. Table 5.8 shows the total amount of raw
material fed into the reactor, in reasonable agreement with the experimental values (Table
5.1). However, a significant improvement in polymer quality (molecular weight and
composition control) was achieved, and the batch time was reduced by close to two

hours.

Table 5.5 Initial control parameters for Case 4 corresponding to experimental conditions

summarized in Table 5.1

Experimental Conditions | 75:25 BMA:STY (wt ratio)
0,(0) (Kg.s™ 3.69E-01/1,,
0, (0) 0.333
05(0) 0.0263
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Table 5.6 Settings for Case 4

Initial Conditions Case 4
x1(0) ,Kg 0.215
x1(0) = x5 (0) = x3(0) = x4 (0) = x5(0) , Kg 0
x6(0) , mol 0
Initial control parameters ter =21600s, n=1000
0,(0) ,Kgs™ 5.5B-01/t,,/
0,(0) 0.24
05(0) 0.069
0400) ,s Lyer/n
Target values
M, ,Kgmol” 7.98
F 0.685
Constraint bounds
mzl:;( ;) . Kg 0.483
P <x () <x™, kef{l,2,3,4,56) ,Kg xnin X[
x, () 0 0.01
X (1) 0 0.01
x3(t) 0 SE-04
x4(0) 0
x5 () 0 -
0 0

Table 5.7 Algorithm parameters for Case 4

Algorithm Parameters Values
M 9E+04
H 1E-11
€ 1E-12
k; {le-14,1e-03,1e-05,0.6}
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Table 5.8 Optimization results for Case 4

Results Values
fed 10E-
mTleBPA , Kg OE-03
mé’eﬁA . Kg 3.69E-01
mfff, . Kg 1.23E-01
t}ef _t;atch _min 116.9
mpol (tf ) =My (tf) > Kg 2E-04
Computation time , s 10.58
Final Cost 79.60
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Fig.5.10 Parameter convergence for Case 4

5.2 Robustness under Model Parameter Uncertainty

Robustness under model parameters uncertainty has been analyzed and presented for

Case 2 only. The robustness with respect to the homopropagation rate coefficient (k)

and the reactivity ratio (r,) have been selected for study, as these parameters have a

strong effect on the rate of polymerization and thus on molecular weight and copolymer
composition control, respectively. Moreover, it is of interest to have a sense of the degree
of model parameter uncertainty (model mismatch) under which the solution to the

optimization problem is still viable.
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The simulations set in which the parameter k7 is at its nominal value (no uncertainty) is

indicated in solid line and labeled as optimal. Also, the curve labeled as simulation

represents the open-loop conventional starved feed policy under no uncertainty.

The effect of uncertainty in ;% and r, is summarized in Table 5.9 along with the
reference Case 2 optimal results. Those results correspond to a variation in k74 and r, of

+20 % and + 30 % relative to their nominal values. The results are presently graphically

in Fig 5.11 through Fig 5.16.

The constrained variables both in presence of -20% and +20% uncertainties in model

parameter k,* are shown in Fig 5.12. Similarly, constrained state trajectories were
obtained for uncertainties in », and can be found in Fig 5.15. Deviation on monomer
constrained trajectories are no more than + 0.001 Kg for variations in £/ and no more

than + 0.002 Kg for uncertainties in r, whereas initiator constrained trajectory shows a

better agreement with that of the optimal solution for both model parameters.

The flow rates of monomers and initiator corresponding to the optimal strategies in

presence of +20% uncertainty in &, are shown in Fig 5.13, and the control policies

under r, uncertainty (+ 30% nominal value) are presented in Fig 5.16. From Table 5.9, it

can be seen that the load of raw material fed to the reactor is consistent with the optimal
solution (Case 2) while the final batch time achieved does not differ by more than 10 %

relative to Case 2 for both model parameters.
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Table 5.9 Optimization results under model parameter uncertainty

Results 120% k4 | 80% k¥ | 130% r, | 70% r; | Case2
(optimal)
mid Kg 9.9E-03 9.6E-03 | 9.6E-03 | 10E-03 9.8E-03
g 2.44E-01 | 2.46E-01 | 2.46E-01 | 2.44E-01 | 2.44E-01
Mppa > 58
mfd Kg | 244E-01 | 2.46E-01 | 2.46E-01 | 2.44E-01 | 2.44E-01
t;,ef — ¢4 min 73.7 81.8 83.5 69.5 772

The growth rate of polymer chains is increased as the propagation rate constant is

increased, which results in the molecular weight slightly drifting away from the optimal

curve momentarily until the control is recovered. The decrease in k7* shows the opposite
effect, a temporary negative deviation on molecular weight, as seen in Fig 5.11. An
uncertainty of up to +20% in 7/ is well tolerated while still achieving good polymer

quality control, constraint satisfaction (see Fig 5.12) and a reduction in batch time. Time
reduction is favored by feeding the monomers and initiator at higher rates as it can be

observed from Fig 5.13 for 80 % k4 policies. The same turned out to be true for higher

values of the reactivity ratio (+ 30 % uncertainty) as seen in Fig 5.16. The opposite is also

true as shown by the corresponding curves of 120% &7 and 70 % r, uncertainties (see

also Table 5.9).

On the other hand, the reactivity ratios reflect the inherent tendencies of a radical to react
with its own monomer relative to the comonomer. It is expected that a change on the

reactivity ratios will give rise to a variation in copolymer composition. Indeed, Fig 5.14
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shows the copolymer composition drifting away from the optimal curve (and from the

target value) as the uncertainty in r, is introduced. In particular, an uncertainty of +30 %
in r, causes a temporary positive deviation from its target value while -30 % in r, yields
the opposite effect. Uncertainty of 30 % in r, is also well tolerated while achieving the

objectives and meeting constraints (see Fig 5.15).

5.3 Summary

In this section a real-time optimization technique to optimize the control profiles over the
remaining batch as described in Chapter 4 has been used. The results of the optimization
show that considerable improvements in polymer quality (less drift in molecular weight
and copolymer composition) and productivity (batch time reduction) can be obtained
while satisfying the constraints imposed to the system. Moreover, this novel technique
and the use of a reduced order model result in low computational effort which can be
further exploited through the use of a more complex model that improves the accuracy of

the model predictions.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

In this study, the development of an optimization based control strategy for a semi-batch
polymerization reactor was investigated. A reduced mechanistic model was developed
based on a proposed set of reaction mechanisms of high-temperature solution
polymerization of BMA and STY. It was shown that the model can capture the

underlying dynamics of the system making it suitable for control studies.

The actual process is being operated under starved-feed conditions, a strategy adopted for
safety reasons and to maintain good composition and molecular weight control in the
absence of on-line measurement. Such a scenario is taken as the basis for the study of
56 as

real-time optimization in this work through the application of a novel technique

desicribed in Chapter 3.

Optimal control policies are calculated based on minimization of a performance index
that is formulated based on desired quality and productivity requirements such as
minimization of batch time, molecular weight and copolymer composition deviation
along the batch. The applicability of the proposed methodology was presented for various

practical examples.

The results of the on-line optimization based control strategy show that considerable
improvements in polymer quality and in productivity can be achieved. In particular, for

Case 2 (50:50 BMA:STY mass ratio) the batch time can be reduced by 21% and for Case
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4 (75:25 BMA:STY mass ratio) by 32% compared with the conventional starved-feed
operation. Moreover, the control strategy holds the free monomer and initiator in the
reactor low throughout the batch. This reduction in batch time is achieved while also
improving product quality, achieved by manipulating the initial feed rate of monomers

and initiator.

Optimization results reveal implementable control policies that allow for the production
of higher quality polymer resins at lower costs. Also, the obtained constrained trajectories
for all the variables of interest are within their expected range as determined by the path
constraints. Furthermore, the production of a desired amount of polymer at the batch end
is assured while requiring roughly the same load of monomers and initiator as used under
the conventional starved-feed operation for the same molecular weight and composition
target values; as shown by Case 3 a change in molecular weight target results in a change

in the amount of initiator required.

The results for Case 2, the main example in this work, show that the calculated feed flow
rates are relatively high at the beginning of the batch and then level off or decreases for
monomers and initiator feed, respectively, as the end of the batch is approached. Not
surprisingly, adding feed more quickly allows for the reduction of the batch time as the
limits on the constrained state trajectories (free BMA, STY and TBPA in the reactor) are
approached. Allowing the feed flow rates to be higher by increasing the limits on the
constrained variables is expected to result in a decrease of batch time. However,

increasing the ultimate limit values chosen did not result in significant improvement.

78



Nonetheless, it was noticed that an improvement on batch time reduction can be obtained
by increasing the barrier parameter value () until a point at which any further
improvement comes at the expense of the polymer quality (reflected by unacceptable
deviations from targets and an increase on the final cost function value). Also, it was seen

that lower values of u, result in less batch time reduction for the same constraint bounds.

This is expected as decreases in the barrier parameter diminish the effect of the barrier
term, so that the iterates can gradually approach the boundary of the feasible region as
determined by the set of constraints (which may result in constraint saturation) restricting

the objective value improvement and therefore the batch time reduction.

With regard to the extent of deviation from the optimal solution in the presence of
uncertainty, this varies from parameter to parameter. Some parameters do not influence
the optimal solution under uncertainty, while uncertainty in others may lead to deviations
from optimal solution. No important deviation in polymer quality and productivity was

found for the model parameters chosen for study in this work.

Furthermore, the maintenance of the program, that is changes in the process model,
control problem formulation (performance index and set of constraints) and changes in
quality specifications, turns out to be of relatively reduced difficulty. It does not require
complete redesign, as opposed to control input parameterization using other functional

forms.
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6.2 Future Work

A natural extension of this work will be the experimental validation of the optimization
results in laboratory and production scale. That is, the strategy implemented in the actual
batch operation and a comparison of the experimental results with those obtained from

the computer simulations presented in this work.

Due to the efficiency of the real-time optimization scheme, in terms of fast calculation of
the optimal profile at any sampling instant, a more complex model would still be feasible
for on-line implementation. This unused capacity of the real-time strategy may lead to
consider the inclusion of additional kinetic mechanisms such as BMA depropagation or
penultimate chain-growth kinetics to improve the accuracy of the model predictions
especially for BMA-rich recipes. In addition, it would be interesting to analyze the
structure of optimal solution with a model that includes an energy balance, and to extend
the control strategy to the calculation of an optimal temperature profile. Further
constraints on the total amount of raw material used in a run (e.g., initiator) or constraints

including cooling system limitations against cooling failure could also be considered.

Another important direction for further study to be explored is the estimation problem.
Currently, the closed-loop control strategy design is based only on state predictions and
no actual plant measurements. What measurements are available versus what are needed
for updating the model needs to be further evaluated. Moreover, when process operation
is limited by state constraints, it is essential to have accurate state estimates or

measurements for the process to be operated as close as possible to the restrictions for
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optimal performance. Thus, it would also be of interest to study the impact of
measurement noise on the transient and stationary behaviors of optimal profiles and the

overall control performance.
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Appendices

Appendix A: BMA/STY Reduced Process Model

A.1 Matlab Reduced Process Model

new_model2.m
In the model , A , B, I stand for BMA , STY and TBPA respectively
function [sys, y0,str,ts] = Reactor_Sim(t,y,u,flag,01,02,03,04,05,06)

fac=1;
switch flag

case 0

str =[];

ts =[0 0];

S = simsizes;
s.NumContStates = 6;
s.NumDiscStates = 0;
s.NumOutputs =15;
s.Numlnputs =3;
s.DirFeedthrough = 0;
s.NumSampleTimes = 1;

sys = simsizes(s);

y0 =[01,02,03,04,05,06];
case |

T=411.15;
Td=T-273.15;%C
msol=fac*0.215;
f=15.1548e-01;

% reactivity ratios

r1 =0.42;
12 =10.61;

90



% initiation coefficient < s™-1 >
kd = 6.78e+15*exp(-1.7714e+04/T) ;

% propagation rates < l/(mol.s) >

kpaa = 3.802e+06*exp(-2.754e+03/T);
kpbb = 4.266e+07*exp(-3.910e+03/T);
kpab = kpaa/r1

kpba = kpbb/12 ;

% termination coefficients < 1/(mol.s) >
kterm_aa = 7.10e+07*exp(-8.30e+02/T);
kterm_bb = 3.818e+09*exp(-9.58¢+02/T);

% transfer to monomer < I/(mol.s) >

ktrm_aa = 1.56e+02*exp(-2.621e+03/T) ;

ktrm_bb = 2.31e+06*exp(-6.377e+03/T) ;

ktrm_ba = ktrm_aa*kpbb/(kpaa*r2); % ktrm_aa*kpba/kpaa;
ktrm_ab = ktrm_bb*kpaa/(kpbb*rl); % ktrm_bb*kpab/kpbb;

% transfer to solvent <1/(mol.s) >
Cs_a=5.55*%exp(-4.590e+03/T) ;
Cs b= 1e-04;

ktrs a=Cs_a*kpaa,
ktrs b=Cs_b*kpbb ;

% molecular weights (Kg/mol)
Mi=1.3210e-01;

Ma =1.42¢e-01;

Mb =1.0415e-01;

Ms =1.0617¢-01;

% densities (Kg/l)

pA =9.01e-01 - 8.35e-04*Td;
pB =9.19¢-01 - 6.65e-04*Td;
pl = 8.85e-01 ;

pSol = 8.92e-01 - 1.3e-03*Td ;
pPol = 1.19 - 8.07e-04*Td;

% defining inputs
ul =u(l);
u2 =u(2);
u3 =u(3);
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% defining state vector
x1p=y(1); % mA(t)

x2p=y(2); Yo mB(t)

x3p=y(3); % ml(t)

x4p=y(4); Yo mAPol(t)

x5p=y(5); %o mBPol(t)

x6p=y(6); % total mol of polymer

Mr=x1p+x2p+x3p+x4p+x5p+msol;
D = Mr/( x1p/pA + x2p/pB + x3p/pl + msol/pSol + x4p/pPol + x5p/pPol );
C = sqrt(2*f*kd/Mi) ;

f2 =x1p*Mb / ( x1p*Mb + x2p*Ma+teps ) ;
f3 =x2p*Ma/ ( x1p*Mb + x2p*Ma+eps ) ;
frA = kpba*Mb*x1p/( kpba*Mb*x1p + kpab*Ma*x2p+eps );
frB = kpab*Ma*x2p/( kpba*Mb*x1p + kpab*Ma*x2p+eps );

Ktcop = 10~ 2*log10(kterm_aa) + f3*log10(kterm_bb));
Ltot = C*sqrt(D*x3p/( (Ktcop)*Mr )) ;
Mn=(x4p+x5p)/(x6p+eps);

La = Ltot*frA ;
Lb = Ltot*frB ;
V=Mr/D;

alpha=0.65;
betha = 0.01 ;
gamma = 0.33 ;

ktc_aa = (1- alpha)*Ktcop ;
ktc_bb = (1- betha)*Ktcop ;
ktc_ab = (1- gamma)*Ktcop ;
ktc ba=ktc _ab;

Rinit = (C*2)*D*x3p/Mr ;

Rtrm = ( ( ktrm_aa*frA + ktrm_ba*frB )*x1p/(Mr*Ma) + (ktrm_bb*frB
+ ktrm_ab*frA)*x2p/(Mr*Mb) )*Ltot*D

Rtrs = (ktrs_a*frA + ktrs_b*frB )*msol*Ltot*D/(Mr*Ms);

Rtc =ktc_aa*La”2 + ktc_bb*Lb"2 + 2*ktc _ab*La*Lb;

Ruo = Rinit + Rtrm + Rirs -Rtc/2 ;
% RHS system

yprime(1,1) =ul - x1p*( kpaa*La + kpba*Lb );
yprime(2,1) = u2 - x2p*( kpbb*Lb + kpab*La );

92



yprime(3,1) = u3 - kd*x3p;

yprime(4,1) = x1p*( kpaa*La + kpba*Lb );
yprime(5,1) = x2p*( kpbb*Lb + kpab*La );
yprime(6,1) = V*Ruo;

sys = [yprime];

case 3

% defining outputs
x1p=y(1); % mA(t)
x2p=y(2); Yo mB(t)
x3p=y(3); % ml(t)
x4p=y(4); Yo mAPol(t)
x5p=y(5); %o mBPol(t)
x6p=y(6);

T=411.15; %K
Td=T-273.15;%C

pA =9.01e-01 - 8.35¢-04*Td,
pB =9.19¢-01 - 6.65e-04*Td;
pl = 8.85e-01 ;

pSol = 8.92e-01 - 1.3e-03*Td ;
pPol =1.19 - 8.07e-04*Td;

% termination coefficients < 1/(mol.s) >
kterm aa = 7.10e+07*exp(-830/T);
kterm_bb = 3.818e+09*exp(-958/T);

Mi =1.3210e-01;
Ma=1.42e-01;
Mb =1.0415e-01;
Ms =1.0617e-01;
msol=fac*0.215;

2 =x1p*Mb / ( x1p*Mb + x2p*Ma-+teps ) ;

f3 =x2p*Ma/ (x1p*Mb + x2p*Ma+teps ) ;

Ktcop = 10" £2*loglO(kterm_aa) + f3*loglO(kterm_bb));
% composition

Fnum=x4p/Ma;

Fden=x4p/Ma + x5p/Mb;

F=Fnum/(Fden+eps);

% average molecular weight:
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Mnum=x4p+x5p;
Mden=x6p;
Mn=Mnum/(Mden+eps);

Mr=x1p+x2p+x3p+x4p+x5p+msol;

D = Mr/( x1p/pA + x2p/pB + x3p/pl + msol/pSol + x4p/pPol + x5p/pPol );
V =(Mr/D),

CI=D*x3p/(Mi1*Mr);
Re=(D/Mr)*(x1p/Ma+x2p/Mb)/((CI/Ktcop)™0.5+eps);

C _BMA reactor = x1p/(V*Ma);

C_Sty reactor = x2p/(V*Mb);

C_I reactor = x3p/(V*Mi);

PolymerMass = x4p+x5p;

MonomerFed = x1p+x2p+x4p+x5p;
xc=PolymerMass/(MonomerFed+eps); %instantaneous conversion

mAPOL = x4p; % mA,POL(t)
mA =x1p; % mA(t)

mBPOL = x5p; % mB,POL(t);
mB =x2p; % mB(t)

ml =x3p; % ml(t)

molpol = x6p;

CBMA =xI1p/(V*Ma);

CSty = x2p/(V*Mb);

CI =x3p/(V*Mi);
xc_abs=PolymerMass/(MonomerFed+ml+eps);

rel M_mpol = PolymerMass/(MonomerFed+mI+msol);

sys = [MonomerFed,F, mAPOL ,mBPOL ,
mA,mB,ml,CI,PolymerMass,Rc,Mn,xc_abs,MassR,molpol,V]';

case{2,4,9}
sys=[];
otherwise

error(‘unhandled flag")
end
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Appendix B: Optimization Routines

B.1 Matlab Optimization Routine

function{Clock,tout,xs,vec,tm, X, Mn,F,Mnsim,Fsim,U1,U2,U3] =ReactorRunSF(x0);

mex odef.f90 ODESSA.f
tref=21600;
ni=1000 ; % 120 <=ni <= 1000 works fine ! , analysis done for CASE 2

%% CASE 1

% M_sp=9.96;

% F_sp=4.23e-01;

% mpol=0.474;

% theta0_ul = [0.246/tref]’,

% theta0 u2 =[1.0];

% thetaQ u3 =[0.0391]";

% theta0_tf=[21600/ni]';

% kk=diag([1e-12,1e-05,1e-05,1e-04]);
% M=2et+04;

% mul=le-11;

% epsilonl=le-12;

% epsilon2=1e-12;

% epsilon3=le-12;

% x1b=[00.01]; % mBMA(t)
% x2b=[00.01]; % mSty(t)
% x3b=[0 5e-04];

%%% CASE 2 %%%%%%%%%%%%%%%%%%%%%%%:%%%:%%%
M_sp=9.96;

F sp=4.23e-01;

mpol=0.474;

theta0_ul = [1.70e-01/tref]’;

theta0 u2 =[1.0]";

theta0_u3 =[0.074]';

theta0 _tf =[21600/ni]';

kk=diag([1e-12,1e-05,1e-05,35]); % k3=0.2e-05 and k3=1.5e-05 with k4=1e-01
M=4e+04;
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mul=le-11;

epsilonl=le-12;
epsilon2=1e-12;
epsilon3=1le-12;

x16=[0 0.01]; % mBMA(t)
x2b=[00.01]; % mSty(t)
x3b=[0 5e-04];

%%%% CASE 3 %%%%%%%%%%%%%%%%%:%%%%%%:%%

% M_sp=8;

% F _sp=4.23e-01;

% mpol=0.474;

% theta0 ul = [2.40e-01/tref]’;
% theta0 u2 =[1.0]";

% theta0 u3 =[0.086]';

% theta0_tf = [21600/ni]';

% kk=diag([le-12,1e-05,1e-05,1.9]);
% M=6000;

% mul=le-11;

% epsilonl=le-12;

% epsilon2=1e-12;

% epsilon3=le-12;

% x1b=[0 0.01]; % mBMA(t)
% x2b=[00.01]; % mSty(t)
% x3b=[0 5e-04];

% CASE 4

% M _sp=7.98;

% F_sp=6.85e-01;

% mpol=4.83e-001; % 75 25

% thetaO_ul = [5.5e-01/tref]';

% theta0_u2 = [0.24]";

% theta0 _u3 = [0.069]";

% theta0_tf=[21600/ni]";

% kk=diag([1e-14,1e-03,1¢-05,0.6]);
% M=9¢+04;

% mul=le-11;

% epsilonl=le-12;

% epsilon2=1e-12;

% epsilon3=le-12;

% x1b=[0 0.01]; % mBMA(t)
% x2b=[0 0.01]; % mSty(t)
% x3b=[0 5e-04];
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Tem=411.15e+00; % K
rl =0.42e+00;
r2 =0.61e+00;
=0.515e+00;
Mi =1.3210e-01;
Ma = 1.42e-01;
Mb = 1.0415e-01,
Ms=1.0617e-01;
alpha = 0.65e+00;
betha = 0.01e+00;
gamma = 0.33e+00;
facc=1.0e+00;
msol = facc*0.215;
EEPS=eps;

per=0.99;
V=1,

% input bounds

ulb=[05]; % feed flow rate BMA
u2b=[05]; % feed flow rate Sty
u3b=[05]; % feed flow rate Init.

% weighting factors
wifl=1/1; %1/1.5;
wif2=1/1; %1/1.5;
wif3=1/21600; %1/10600;

x1lub=x1b(2);
x2ub=x2b(2);
x3ub=x3b(2);
ulub=ulb(2);
u2ub=u2b(2);
u3ub=u3b(2);

vec=[M_sp,F_sp,Tem,msol,wffl,wff2,x1ub,x2ub,x3ub,ulub,u2ub,u3ub,ni,mpol,per, Vf,
mul,epsilonl,epsilon2,epsilon3]; % for passing values to odef.f90

NS=7; number of states (original states + extra state due to cost function)

NPAR ul=l;
NPAR u2=1,
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NPAR u3=1;
NPAR tfpar=1;
N=NPAR ul + NPAR u2 + NPAR u3+NPAR tfpar; % total number of parameters

x10 =x0(1); % mBMA

x20 = x0(2); % mSty

x30 =x0(3); % ml

x40 = x0(4); % mAPol

x50 =x0(5); % mBPol

x60 = x0(6); % mol pol

x70=0; % additional state cost related

% vector preallocation
thetadot_ul=zeros(NPAR ul,l);
thetadot u2=zeros(NPAR u2,1);
thetadot_u3=zeros(NPAR u3,1);
thetadot_tf=zeros(1,1);
temp=zeros(N,1);

Clockl=clock;

nn=ni+1;
JJ=zeros(nn,1);
TJ=zeros(nn,1);
XDIF=zeros(nn,NS);

tau0=0;
X=x0;
Xo=X;
X1T=[x0,0];
TO=tau0;
To=tau0;
tm=0;

Td=Tem -273.15;
pSol = 8.92e-01 - 1.3e-03*Td ;

VO0=msol/pSol;
Vif=per*Vf;

TC=x70+ M*((x40+x50-mpol)*2)+wff3*theta tf*ni;
1IC=x70;
ICmat=x70;

Grad_Jic=zeros(nn,1);
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tt=tau0;

% data storage for plotting
vec_iter = zeros(nn+1,1);
viter=zeros(nn,1);

vdtheta ul=zeros(nn,NPAR ul);
vdtheta u2=zeros(nn,NPAR_u2);
vdtheta u3=zeros(nn,NPAR_u3);
vdtheta_tf = zeros(nn,1);

GradT _vec = zeros(nn,N);

% piece wise constant - not a function of tt

U10=theta0_ul(1,1);

U20=theta0 u2(1,1)*theta0 ul(l,1)
U30=theta0_u3(1,1)*theta0_ul(1,1)

if U10 <=0

U10 =0,

elseif U10 >=ulb(2)
U10 =ulb(2),

end

if U20 <=0

U20=0;

elseif U20>=u2b(2)
U20=u2b(2);

end

if U30 <=0

U30=0,

elseif U30 >=u3b(2)
U30=u3b(2);

end

U1=U10;
U2=U020;
U3=U30;

Th_ul=[theta0_ul'];
Th_u2=[theta0 u2'];
Th u3=[theta0 u3'];
Th_tf=[theta0 tf'];

summ=0;
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tic;

T=1;
options=odeset('RelTol',1.0e-6,'AbsTol',1.0e-8);

epsilons=[epsilonl epsilon2 epsilon3]; % back-off

pl=vec_paramSF(wffl,wff2,wff3,ulb,u2b,u3b,x1b,x2b,x3b,mul,epsilons,M_sp,F_sp,Te
m,msol,ni,mpol,per,V{);

for ij=1:nn

vec_iter(ij+1,1)=ij;

viter(ij,1)=ij; % vector of iterations

ccl=cputime;

delta tau=1*(1/ni);

ifij==

y=[x10,x20,x30,x40,x50,x60,x70];

taus=tau0; %=0

tauf=tau0;

else

tauf=tau0 + 1/ni ;

[taus,y]=odel5s('ReactorModel SF',[tau0,tauf],[x10,x20,x30,x40,x50,x60,x70],0ptions,N,
T,theta0 ul,theta0 u2,theta0 u3 ,theta0 tf,pl); '

end

cc2=cputime-ccl;
summ=summ-+cc2;
m=size(y,1);
xx=y(:,1:end-1);
Costm=y(:,end);
xobs=xx(m,:);
cost(ij,1)=Costm(end);

for irk=1:1

if (irk<4&irk>1)

thetam ul=theta0 ul+M1 ul(irk-1,:)*(delta tau)/2;
thetam_u2=theta0 u2'+M1 u2(irk-1,:)*(delta_tau)/2;
thetam u3=theta0 u3'+M1 u3(irk-1,:)*(delta_tau)/2;
elseif irk==

thetam ul=theta0 ul’,

thetam u2=theta0 u2';

thetam_u3=theta0 u3’;

elseif irk==

thetam_ul=theta0 ul'+M1 ul(irk-1,:)*(delta_tau);
thetam_u2=theta0 u2'+M1 u2(irk-1,:)*(delta_tau);
thetam u3=theta0 u3'+M1 u3(irk-1,:)*(delta_tau);
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end

thetam_rowvec = [thetam_ul , thetam_u2 , thetam_u3 ,theta0_tf,vec];
ytemp = odef(tauf,1,thetam_rowvec,[xobs Costm(m,1)]);

itemp=1;

for i=1:NS

for j=1:N+1
yt(i,j)=ytemp(l,itemp);
itemp=itemp+1;

end

end

x1t=yt(1,1); % x1(t)
x2t=yt(2,1); % x2(t)
x3t=yt(3,1); % x3(t)
x4t=yt(4,1); % x4(t)
x5t=y1(5,1); % x5(t)
x6t=yt(6,1); % x6(t)
x7t=yt(7,1); % x7(t)

x1c=yt(1,2:end);
x2c=yt(2,2:end);
x3c=yt(3,2:end);
x4c=yt(4,2:end);
x5¢=yt(5,2:end);
x6c=yt(6,2:end);
x7c=yt(7,2:end),
Jic=yt(end,1); % x7c
JI(ij,1)=Jic;

TJ(ij,1 )=tauf;

Td=Tem-273.15;

pA =9.01e-01 - 8.35e-04*Td,
pB =9.19e-01 - 6.65e-04*Td;
pl = 8.85e-01;

pSol = 8.92e-01 - 1.3e-03*Td ;
pPol =1.19 - 8.07e-04*Td;

V = x1t/pA + x2t/pB + x3t/pl + msol/pSol + x4t/pPol + x5t/pPol ;

terme = M*((x4t+x5t-mpol)"*2) ; % terminal equality constraint
Jip = Jic + termc + wff3*theta0 _tf*ni; % modified cost
Grad_termc =2*M*((x4t+x5t-mpol)*(x4c+x5¢));
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Grad_Jic = x7c;
gradthetaO_tf dp=[zeros(1,N-1), 1];
Grad_Jip = Grad_Jic' + Grad_termc' + wff3*ni*gradtheta0 tf dp’;

if norm(Grad Jip)==0 % euclidean norm of dJip/dp
temp=zeros(NN,1); % temp = - factor*dJip/dp
else

temp(1,1)=-kk(1,1)*Grad _Jip(1,1);
temp(2,1)=-kk(2,2)*Grad_Jip(2,1);
temp(3,1)=-kk(3,3)*Grad_Jip(3,1);
temp(4,1)=-kk(4,4)*Grad Jip(4,1);

end

low_ul=[le-06*ones(1,NPAR ul)];
low_u2=[1e-06*ones(1,NPAR u2)];
low_u3=[1e-06*ones(1,NPAR u3)];
low_tf=[1e-06];

high ul=[0.5*ones(1,NPAR ul)];
high u2=[3*ones(1,NPAR _u2)];
high u3=[0.5*ones(1,NPAR u3)];
high tf=[18};

delta=1e-05;
deltatf=1e-05;
delta_taul=1*delta_tau;
delta_tau2=1*delta_tau,
delta tau3=1*delta tau;
delta_tau tf=1*delta_tau;

% %% for Ul---theta 1

for i=1:NPAR ul

if thetaO ul(i,1) + delta_taul *temp(i,1) >= low _ul(i)
if theta0_ul(i,1) + delta_taul *temp(i,1) <= high ul(i)
thetadot ul(i,1) = temp(i,1);

end

end

if thetaO_ul(i,1)+delta_taul*temp(i,1) <low ul(i)

thetadot ul(i,1)=0

% if temp(i,1)<0

% thetadot_ul(i,1)=(1+(theta0_ul(i,1)-low_ul(i))/delta)*temp(i,1);
% else

% thetadot ul(i,1)=temp(i,1);

% end

end
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if theta0 ul(i,1)+delta_taul*temp(i,1) > high ul(i)

if temp(i,1)>0

% thetadot_ul(i,1)=0;

thetadot_ul(i,1)=(1+(high_ul(i)-theta0 ul(i,1))/delta)*temp(i,1);
else

mark ul 4=1;

thetadot ul(i,1)=temp(i,1);

end

end

end

%%% for U2 --- theta 2

for i=1:NPAR u2

if thetaO u2(i,1) + delta_tau2*temp(i+NPAR ul,1) >=low u2(1)
if thetaO_u2(i,1) + delta_tau2*temp(i+NPAR _ul,1) <= high u2(i)
thetadot u2(i,1) = temp(i+NPAR ul,l);

end

end

if theta0_u2(i,1)+delta_tau2*temp(i+NPAR ul,1) <low_u2(i)
thetadot_u2(i,1)=0;

% if temp(i+NPAR ul,1)<0

% thetadot_u2(i,1)=(1+(theta0 u2(i,1)-low_u2(i))/delta)*temp(i+NPAR ul,1);
% else

% thetadot u2(i,1)=temp(i+NPAR ul,1);

% end

end

if theta0_u2(1,1)+delta_tau2*temp(i+NPAR _ul,1) > high u2(i)

if temp(i+NPAR ul,1)>0

% thetadot u2(i,1)=0;

thetadot_u2(i,1)=(1+(high u2(i)-theta0 u2(i,1))/delta)*temp(i+NPAR ul,1);
else

thetadot_u2(i,1)=temp(i+NPAR ul,1);

end

end

end

% for U3 --- theta 3

for i=1:NPAR_u3

if theta0_u3(i,1) + delta_tau3*temp(i+NPAR_ul+NPAR u2,1) >=low_u3(i)
if thetaO_u3(i,1) + delta_tau3*temp(i+NPAR ul+NPAR u2,1) <= high u3(i)
thetadot u3(i,1) = temp(i+NPAR_ul+NPAR u2,1);

end

end
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if thetaQ u3(i,1)+delta_tau3*temp(i+NPAR_ ul+NPAR u2.1) <low u3(i)
thetadot _u3(i,1)=0;

% if temp(i+NPAR_ul+NPAR u2,1)<0

% thetadot_u3(i,1)=(1+(theta0 u3(i,1)-
low_u3(i))/delta)*temp(i+NPAR ul+NPAR u2,1)

% else

% thetadot_u3(i,1)=temp(i+NPAR ul+NPAR u2,1);

% end

end

if theta0_u3(i,1)+delta_tau3*temp(i+NPAR ul+NPAR u2,1) > high u3(i)

if temp(i+NPAR_ul+NPAR u2,1)>0

% thetadot u3(i,1)=0;
thetadot_u3(i,1)=(1+(high_u3(i)-theta0_u3(i,1))/delta)*temp(i+NPAR ul+NPAR u2,1);
else

thetadot_u3(i,1)=temp(i+NPAR ul+NPAR u2,1);

end

end

end

%theta_tf (4™ parameter)

if thetaO_tf(1,1) + delta_tau_tf*temp(end,1) >= low tf % =10
if theta0_tf(1,1) + delta_tau_tf*temp(end,1)<= high_tf %=20
thetadot_tf(1,1) = temp(end,1);

end

end

if theta0_tf(1,1)+delta_tau_ tf*temp(end,1) <low_tf

thetadot tf(1,1)=0;

% if temp(end,1)<0

% thetadot_tf(1,1)=(1+(theta0 tf(1,1)-low_tf)/deltatf)*temp(end,1);
% else

% thetadot tf(1,1)=temp(end,1);

% end

end

if theta0_tf(1,1)+delta_tau_tf*temp(end,1) > high tf

if temp(end,1)>0

% thetadot_tf(1,1)=0;
thetadot_tf(1,1)=(1+(high_tf-theta0_tf(1,1))/deltatf)*temp(end,1);
else

thetadot_tf(1,1)=temp(end,1);

end

end

105



M1 ul(irk,:)=thetadot ul’;
M1 u2(irk,:)=thetadot u2';
M1 u3(irk,:)=thetadot u3';

end;

% else,

% MIl1=zeros(1,N);

% end;

% thetal=theta0+deltaT*(M1(1,:)/6+M1(2,:)'/3+M1(3,:)'/3+M1(4,:)'/6);

thetal ul = theta0 ul + delta taul*M1 ul(l,:)";
thetal u2 = theta0 u2 + delta_tau2*M1 _u2(l1,)';
thetal u3 = theta0_u3 + delta_tau3*M1 _u3(1,:)}
thetal tf=thetaQ tf+ delta tau_tf*thetadot tf

vdtheta ul(i,:) = delta_taul*M1 ul(l,:);
vdtheta u2(i,:) = delta_tau2*M1 u2(1,:);
vdtheta u3(i,1) = delta_tau3*M1 u3(l,:);
vdtheta tf(i,1) = delta_tau tf*thetadot tf;

TO0=[TO;taus];

To=[To;tauf];
tm=[tm;taus*thetal tf*ni];
Th_ul=[Th_ul ; thetal ul'];
Th_u2=[Th u2 ; thetal u2'];
Th _u3=[Th_u3 ; thetal u3'];
Th tf=[Th_tf; thetal tf'];

sv=size(xx,1);
xx1=xx(:,1);
xx1v=zeros(sv,1);
xx2=xx(:,2);
xx2v=zeros(sv,1);
xx3=xx(:,3);
xx3v=zeros(sv,1);
xx4=xx(:,4);
xx4v=zeros(sv,1);
xx5=xx(:,5);
xx5v=zeros(sv,1);
xx6=xx(:,6);
xx6v=zeros(sv,1);

for w=1:sv
if xx1(w)<=x1b(1)
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xx1v(w)=x1b(1);
elseif xx1(w)>=x1b(2)
xx1v(w)=x1b(2);

else

xx1v(w)=xx1(w);

end

if xx2(w)<=x2b(1)
xx2v(w)=x2b(1);
elseif xx2(w)>=x2b(2)
xx2v(w)=x2b(2);

else

XX2V(W)=xx2(W);

end

if xx3(w)<=x3b(1)
xx3v(w)=x3b(1);
elseif xx3(w)>=x3b(2)
xx3v(w)=x3b(2);

else

xx3v(w)=xx3(w);

end

if xx4(w)<=0
xx4v(w)=0;

else
xx4v(w)=xx4(w);
end

if xx5(w)<=0
xx5v(w)=0;

else
xxSv(w)=xx5(w);
end

if xx6(w)<=0

xx6v(w)=0;

else

xxX6v(w)=xx6(w);

end

end

xx=[xx1v, xx2v, xx3v , xx4v , Xx5v , xx6v];

X=[X;xx];

Xo=[Xo;xobs];
IC=[IC;Jic]; % x7 integral cost
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TC=[TC;Jip];

theta0 ul = thetal ul;
theta0 u2 =thetal u2;
theta0 u3 = thetal u3;
theta0_tf = thetal tf;

x10=y(m,1);
x20=y(m,2);
x30=y(m,3);
x40=y(m,4);
x50=y(m,5);
x60=y(m,6);

x70=y(m,7); %cost function

ICmat=[ICmat;x70];
tau0=tauf;

for ii=1:m
tto=taus(ii);
Ulp=thetal ul(1,1);

U2p=thetal u2(1,1)*thetal ul(1,1);
U3p=thetal u3(1,1)*thetal ul(1,1);

if Ulp <=0

Ulp =0;

elseif Ulp >=ulb(2)
Ulp =ulb(2);

end

if U2p <=0

U2p=0;

elseif U2p>=u2b(2)
U2p=u2b(2),

end

if U3p <=0

U3p=0;

elseif U3p >=u3b(2)
U3p=u3b(2);

end

Ul=[UL;Ulp];
U2=[U2;U2p];
U3=[U3;U3p];

end
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% Clock(ij)=cputime-Clock1;
% [theta0 ul,theta0 u2,theta0 u3]

tf=Th_tf(end)*ni;

mreactor=x10+x20+x30+x40+x50+msol;

Vcontent= x10/pA + x20/pB + x30/pl + msol/pSol + x40/pPol + x50/pPol ;
Mw=(x40+x50)/sqrt(x60"2+eps);

Fp=(x40/Ma)/(sqrt(x40"2+eps)/Ma + sqrt(x50"2+eps)/Mb);

[mreactor,x10,x20,x30,x40+x50,V,Mw,Fp] ; % display

clear Ulp
clear U2p
clear U3p

end % close MAIN LOOP

Clock=(toc-summ)/nn;
Vt=tm(2:end)-tm(1:end-1);
ulv=U1(1:end-1);
u2v=0U2(1:end-1);
u3v=0U3(1:end-1);
[=u3v'*Vt

BMA fed=ulv'*Vt

STY fed=u2v'*Vt

redx_init_fed=(1- 1/9.70e-03)*100
difference _init_fed GR=(9.70e-03-1)*1e+03
redx_batchtime=(21600-tf)/60
Cost=Jip(end)

Pol produced =X(:,4)+X(:,5);
MPOL_optm=Pol_produced(end)

return

The subroutines: vec paramSF, open vec paramSF, and ReactorModelSF have been
omitted for space sake .The first two subroutines are intended to pass and receive
constant values from one script to another; open_vec_paramSF is located inside
ReactorModelSF subroutine. The latter is the process model used by the optimization
algorithm. The same model; however, is also written in B.2 section in Fortran.
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B.2 Fortran Optimization Routine

SUBROUTINE odef(T,STEPS,PAR,Y0,YOUT)
DOUBLE PRECISION ATOL,RWORK,RTOL,T,TOUT,Y,PAR,YOUT,STEPS,Y0
EXTERNAL FEX, JEX, DFEX
DIMENSION YOUT(1,35),Y0(7,1),Y(7,5),PAR(24) RTOL(7,5),ATOL(7,5)
DIMENSION RWORK(358),]WORK(32),NEQ(2),I0PT(3)
N=7
NPAR = 4
NSTEP=STEPS
NEQ(1)=N
NEQ(2) = NPAR
NSV = NPAR+1
DO 101=1N
DO 10J = 1,NSV
10 Y(1J)=0.0D0
Y(1,1) = YO(1,1)
Y(2,1) = YO(2,1)
Y(3,1) = YO(3,1)
Y(4,1) = YO(4,1)
Y(5,1) = YO(5,1)
¥(6,1) = YO(6,1)
Y(7,1) = YO(7,1)
TOUT = T+ 0.001D0
ITOL = 4
ATOL(1,1) = 1.D-08
ATOL(2,1) = 1.D-08
ATOL(3,1) = 1.D-08
ATOL(4,1) = 1.D-08
ATOL(5,1) = 1.D-08
ATOL(6,1) = 1.D-08
ATOL(7,1) = 1.D-08

DO20I=1N
RTOL(1,1) = 1.D-06
DO 15J=2NSV
RTOL(LJ) = 1.0D+00*RTOL(I,1)
15 ATOL(1,J) = 1.0D+00*ATOL(L1)
20 CONTINUE
ITASK =1
ISTATE=1
IOPT(1)=0
IOPT(2) =1 ! 1=sensitivity analysis , 0 otherwise
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IOPT(3) =1 ! 1=DFDP supplied by user, 0 otherwise
LRW =358
LIW =32
MF =21 ! MF=21 DFDY full jacobian supplied by user , 22 otherwise
TOUT =1
DO 60 IOUT = 1,NSTEP
CALL ODESSA(FEX,DFEX,NEQ,Y,PAR, T,TOUT,ITOL,RTOL,ATOL,ITASK, &
ISTATE,JOPT,RWORK,LRW,IWORK,LIW JEX ,MF)
ITEMP=1
DO401=1N
DO 30J=1NSV
YOUT{IOUT,ITEMP)=Y(LJ)
30 ITEMP=ITEMP+1
40 CONTINUE

60 TOUT = TOUT+ 0.001D0
RETURN
END

SUBROUTINE FEX (NEQ, T, Y, PAR,YDOT)

DOUBLE PRECISION T,Y,YDOT,PAR,U1,U2,U3 ,Td,mfed, Mmax
DIMENSION Y(7), YDOT(7), PAR(24)

DOUBLE PRECISION W1,W_1,W2,W 2 W3 W 3 W4 W5 W6W7 W8 WIW10
DOUBLE PRECISION W12,W13,W14,W15,W16,W17,W18,W19,W20
DOUBLE PRECISION W11,W _11,W21,W 21, W31, W 31,W41,W51,W61,W71
DOUBLE PRECISION W81,W91,W101,W121,W131,W141,W151

DOUBLE PRECISION W161,W171,W181,W191,W201

DOUBLE PRECISION kd kpaa,kpbb,kpab,kpba,ktrm_aaktrm bb,ktrm_ab
DOUBLE PRECISION ktrm_ba,Cs_a,Cs_b,ktrs aktrs b

DOUBLE PRECISION ktermaa,ktermbb,m1,m2,s,ktc_ba,Rinit,Rtrm Rtrs
DOUBLE PRECISION Rtc,Ruo,Ltot,La,Lb,V ktc aaktc bb.,ktc ab

DOUBLE PRECISION pA,pB,pl,pSol,pPol 2,13 frA frB,DE,SS,CC Ktcop
DOUBLE PRECISION Fcnum,Fcden,Fe,Mnum,Mden,Mn,Msp,Fsp,Tem,r1,r2,f
DOUBLE PRECISION alpha,betha,gamma,Mi,Ma,Mb,Ms, frac

DOUBLE PRECISION mul epsilon],epsilon2, wifl,wff2, wif3 eff, nPOL
DOUBLE PRECISION ylupsf,y2upsf,y3upsf,ulins,u2ins,u3ins,Vf,V{f
DOUBLE PRECISION x1p,x2p,x3p,x4p,x5p,x6p,x7p,Mr ,facc,prodc,msol
INTEGER ni

r1=1.0*0.42D0
12=1.0*0.61D0
£=5.1548D-01
alpha=0.65D0
betha=0.01D0
gamma= 0.33D0
Mi= 1.3210D-01
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Ma= 1.42D-01;
Mb= 1.0415D-01
Ms=1.0617D-01
eps= 2.2204D-016

Msp=PAR(5)
Fsp=PAR(6)
Tem=PAR(7)
msol=PAR(8)
wifl=PAR(9)
wif2= PAR(10)
ylupsf=PAR(11)
y2upsf=PAR(12)
y3upsf=PAR(13)
ulins=PAR(14)
u2ins=PAR(15)
u3ins=PAR(16)
ni=PAR(17)
mPOL=PAR(18)
frac=PAR(19)
Vi=PAR(20)
mul=PAR(21)
epsilon1=PAR(22)
epsilon2=PAR(23)
epsilon3=PAR(24)

UI=PAR(1);
U2=PAR(2)*PAR(])
U3=PAR(3)*PAR(1)

IF ((Ul-ulins).GE.O0) Ul=ulins
IF (UL.LE.O) Ul=0

IF ((U2-u2ins).GE.0) U2=u2ins
IF (U2.LE.O) U2=0

IF ((U3-u3ins).GE.0) U3=u3ins
IF (U3.LE.O) U3=0

x1p=(Y(1)**2+eps)**0.5; mBMA
x2p=(Y(2)**2+eps)**0.5; !mSty
x3p=(Y(3)**2+eps)**0.5; !ml
x4p=(Y(4)**2+eps)**0.5; !mAPol
x5p=(Y(5)**2+eps)**0.5; 'mBPol
x6p=(Y(6)**2+eps)**0.5; 'mol pol
x7p=(Y(7)**2+eps)**0.5; !cost

Mr=x1p+x2p+x3p+x4p+x5Sp+msol;
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W1 =-x1p + ylupsf +epsilonl;
W11=-x1p + ylupsf;

W_1=xlp + epsilonl;

W 11=xlp

IF((x1p-ylupsf).GE.0) Wl=epsilonl
IF((x1p-ylupsf).GE.0) W11=0
IF(x1p.LE.0) W_1=epsilonl
IF(x1p.LE.O) W_11=0

W2 = -x2p + y2upsf +epsilon2;
W21=-x2p + y2upsf

W_2 =x2p + epsilon2;

W 21=x2p

IF((x2p-y2upsf).GE.0) W2=epsilon2
IF((x2p-y2upsf).GE.0) W21=0
IF(x2p.LE.0) W_2=epsilon2
IF(x2p.LE.0) W_21=0

W3 = -x3p + y3upsf +epsilon3;
W31=-x3p + y3upsf

W_3 =x3p + epsilon3;

W _31=x3p

IF((x3p-y3upsf).GE.0) W3=epsilon3
IF((x3p-y3upsf).GE.0) W31=0
IF(x3p.LE.0) W_3=epsilon3
IF(x3p.LE.0) W_31=0

Td = Tem-273.15D0

pA = 9.01D-01 - 8.35D-04*Td;
pB =9.19D-01 - 6.65D-04*Td;
pl = 8.85D-01 ;

pSol = 8.92D-01 - 1.3D-03*Td ;
pPol = 1.19D0 - 8.07D-04*Td;

V=x1p/pA+x2p/pB+x3p/pl+msol/pSol+x4p/pPol+x5p/pPol

W6 = x4p + epsilonl;
W61=x4p

IF(x4p.LE.Q0) Wé=epsilonl
IF(x4p.LE.0) W61=0

W7 =x5p + epsilonl,
W71=x5p

[F(x5p.LE.0) W7=epsilonl
IF(x5p.LE.0) W71=0
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W8 = x6p + epsilonl;
W81=x6p

[F(x6p.LE.0) W8=epsilonl
IF(x6p.LE.0) W81=0

U1
W13 = Ul + epsilonl;
W131=Ul;

W14 = -Ul + ulins +epsilonl;
W141=-Ul +ulins

IF (U1.LE.O) W13=epsilonl

IF (U1.LE.O) W131=0

IF ((U1-ulins).GE.0) W14=epsilonl
IF ((Ul-ulins).GE.0) W141=0

1u2

W15 = U2 + epsilon2

W151=U2;

W16 = -U2 + u2ins +epsilon2
W161=-U2 + u2ins

IF(U2.LE.0) W15=epsilon2
IF(U2.LE.0) W151=0
IF((U2-u2ins).GE.0) W16=epsilon2
IF((U2-u2ins).GE.0) W161=0

U3

W17 = U3 + epsilon3;

W171=U3;

W18 = -U3 + u3ins +epsilon3;
W181=-U3 + u3ins;

IF (U3.LE.0) W17=epsilon3

IF (U3.LE.0) W171=0

[F ((U3-u3ins).GE.0) W18=epsilon3
IF ((U3-u3ins).GE.0) W181=0

linitiation coefficient < s*-1 >
kd = 6.78D+15*DEXP(-17714D0/Tem) ;

Ipropagation rates < /(mol.s) >

kpaa = 3.802D+06*DEXP(-2754D0/Tem);
kpbb = 4.266D+07*DEXP(-3910D0/Tem);
kpab = kpaa/rl ;

kpba = kpbb/r2 ;
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ltermination coefficients <1/(mol.s) >
ktermaa = 7.10D+07*DEXP(-830.0D0/Tem);
ktermbb = 3.818D+09*DEXP(-958.0D0/Tem);

ltransfer to monomer < l/(mol.s) >

ktrm_aa = 1.56D+02*DEXP(-2621.0D0/Tem) ;
ktrm_bb = 2.31D+06*DEXP(-6377.0D0/Tem) ;
ktrm_ba = ktrm_aa*kpbb/(kpaa*r2);

ktrm_ab = ktrm_bb*kpaa/(kpbb*rl);

Itransfer to solvent < 1/(mol.s) >
Cs_a=5.55D0*DEXP(-4590.0D0/Tem)
Cs_b=1D-04;

ktrs a=Cs_a*kpaa;

ktrs b= Cs_b*kpbb;

DE = Mr/(x1p/pA+x2p/pB+x3p/pl+msol/pSol+x4p/pPol+x5p/pPol)

CC =DSQRT(2.0D0*f*kd/Mi);

2 = x1p*Mb/(x1p*Mb + x2p*Ma);

f3 = x2p*Ma/(x1p*Mb + x2p*Ma);

frA = kpba*Mb*x1p/( kpba*Mb*x1p + kpab*Ma*x2p);

frB = kpab*Ma*x2p/( kpba*Mb*x1p + kpab*Ma*x2p);

Ktcop=10**((£2* DLOG(ktermaa)+{3*DLOG(ktermbb))/DLOG(10.0D0));
Ltot = CC*DSQRT(DE*x3p/(Ktcop*Mr))

La = Ltot*frA
Lb = Ltot*frB
V =Mr/DE

ktc_aa = (1.0D0-alpha)*Ktcop
ktc_bb = (1.0D0-betha)*Ktcop
ktc_ab = (1.0D0-gamma)*Ktcop
ktc ba=ktc_ab

Rinit = (CC**2)*DE*x3p/Mr

ml = (ktrm_aa*frA+ktrm_ba*{rB)/Ma

m2 = (ktrm_bb*frB+ktrm_ab*frA)/Mb

Rtrm = (m1*(x1p/Mr) + m2*(x2p/Mr))*Ltot*DE

s = (ktrs_a*frA + ktrs_b*frB)*msol/Ms

Ritrs = s*Ltot*DE/Mr

Rtc=ktc_aa*((La)**2)+ ktc_bb*((Lb)**2)+2*ktc_ab*La*Lb

Ruo = Rinit+ Rtrm + Rtrs - 0.5D0*Rtc

Fecnum=x4p/Ma;
Fcden=x4p/Ma + x5p/Mb;
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Fe=Fcnum/(Fcden);

Mnum=x4p+x5p;
Mden=x6p;
Mn=Mnum/(Mden);

prodc=W1*W_[*W2*W 2*W3*W _3*W6*W7*W8*W13*W14*W15*W16*W17*
W18

YDOT(1) = PAR(4)*ni*(Ul - x1p*( kpaa*La + kpba*Lb ))

YDOT(2) = PAR(4)*ni*(U2 - x2p*( kpbb*Lb + kpab*La ))

YDOT(3) = PAR(4)*ni*(U3 - kd*x3p)

YDOT(4) = PAR(4)*ni*(x1p*( kpaa*La + kpba*Lb ))

YDOT(5) = PAR(4)*ni*(x2p*( kpbb*Lb + kpab*La ))

YDOT(6) = PAR(4)*ni*(V*Ruo)

YDOT(7) = PAR(4)*ni*(wif1*(((Mn/Msp)-1)**2) + wif2*(((Fc/Fsp)-1)**2)) &
- mul*DLOG(prodc)

RETURN

END

SUBROUTINE DFEX (NEQ, T, Y, PAR,DFDP, JPAR)

DOUBLE PRECISION T,Y,PAR,DFDP,U1,U2,U3 prodc,mfed, Mmax,Td
DOUBLE PRECISION DU1_DP1,DU1 DP2,DU1_DP3,DU1_DP4,DU1_DP5
DOUBLE PRECISION DU1 _DP6,DU2 DP1,DU2 DP2,DU2 DP3,DU2 DP4
DOUBLE PRECISION DU2_DP5,DU2 _DP6,DU3 DP1,DU3 DP2,DU3 DP3
DOUBLE PRECISION DU3_DP4,DU3 _DP5,DU3_DP6

DOUBLE PRECISION W1,W_1,W2,W 2 W3 W 3 W4 W5W6W7, W8 WI W10
DOUBLE PRECISION W12,W13,W14, W15 W16,W17,W18,W19,W20
DOUBLE PRECISION W11,W_11,W21,W_21,W31,W 31,W41,W51,W61,W71
DOUBLE PRECISION W81, W91,W101,W121,W131,W141,W151

DOUBLE PRECISION W161,W171,W181,W191,W201

DIMENSION Y(7), PAR(24), DFDP(7)

DOUBLE PRECISION kd,kpaa,kpbb,kpab,kpba,ktrm aaktrm bb

DOUBLE PRECISION ktrm_ab,ktrm_ba,Cs_a,Cs_b,ktrs aktrs b

DOUBLE PRECISION ktermaa,ktermbb,m1,m2,s,frac,prodc u

DOUBLE PRECISION pA,pB,pL,pSol,pPol,f2,13,frA,{rB,DE,SS,CC

DOUBLE PRECISION Ktcop,Ltot,La,Lb,V ktc_aaktc_bb.,ktc ab

DOUBLE PRECISION ktc_ba,Rinit,Rtrm,Rtrs,Rtc,Ruo,cte s

DOUBLE PRECISION Fcnum,Fcden,Fc,Mnum,Mden,Mn,Msp,Fsp,Tem
DOUBLE PRECISION rl,r2.f,alpha,betha,gamma,Mi,Ma,Mb,Ms,msol
DOUBLE PRECISION mul ,epsilonl,epsilon2,wffl,wff2 eff, mPOL

DOUBLE PRECISION ylupsf,y2upsf,y3upsf,ulins,u2ins,u3ins, Vf,Vff
DOUBLE PRECISION x1p,x2p,x3p,x4p,x5p,x6p,x7p,Mr ,facc,eps

DOUBLE PRECISION dprodcu_dp!,dprodcu_dp2,dprodcu_dp3
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INTEGER ni

r1=1.0*0.42D0
12=1.0*0.61D0
£=5.1548D-01
alpha=0.65D0
betha= 0.01D0
gamma= 0.33D0
Mi=1.3210D-01
Ma= 1.42D-01;
Mb= 1.0415D-01
Ms=1.0617D-01
eps= 2.2204D-016
Fsp=PAR(6)
Tem=PAR(7)
msol=PAR(8)
wifl=PAR(9)
wif2=PAR(10)
ylupsf=PAR(11)
y2upsf=PAR(12)
y3upsf=PAR(13)
ulins=PAR(14)
u2ins=PAR(15)
u3ins=PAR(16)
ni=PAR(17)
mPOL=PAR(18)
frac=PAR(19)
VI=PAR(20)
mul=PAR(21)
epsilon]=PAR(22)
epsilon2=PAR(23)
epsilon3=PAR(24)

U1=PAR(1);
U2=PAR(2)*PAR(]);
U3=PAR(3)*PAR(1);

IF ((Ul-ulins).GE.0) Ul=ulins
IF (U1.LE.O) U1=0
IF ((U2-u2ins).GE.0) U2=u2ins
IF (U2.LE.O) U2=0
IF ((U3-u3ins).GE.0) U3=u3ins
IF (U3.LE.O) U3=0

x1p=(Y(1)**2+eps)**0.5;
x2p=(Y(2)**2+eps)**0.5;
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x3p=(Y(3)**2+eps)**0.5;
x4p=(Y(4)**2+eps)**0.5;
x5p=(Y(5)**2+eps)**0.5;
x6p=(Y(6)**2+eps)**(.5;
X7p=(Y(7)**2+eps)**0.5;

Mr=x1p+x2p+x3p+x4p+x5p+msol;

W1 =-x1p + ylupsf +epsilonl;
W1l1l=-x1p + ylupsf;

W_1=xlp + epsilonl;

W_11=xlp

IF((x1p-ylupsf).GE.0) Wl=epsilonl
IF((x1p-ylupsf).GE.0) W11=0
[F(x1p.LE.0) W_1=epsilonl
[F(x1p.LE.O) W_11=0

W2 = -x2p + y2upsf +epsilon2;
W21=-x2p + y2upsf

W_2 =x2p + epsilon2;

W 21=x2p

IF((x2p-y2upsf).GE.0) W2=epsilon2
IF((x2p-y2upsf).GE.0) W21=0
IF(x2p.LE.0) W_2=epsilon2
[F(x2p.LE.O) W_21=0

W3 = -x3p + y3upsf +epsilon3;
W31=-x3p + y3upsf

W _3 =x3p + epsilon3;

W_31=x3p

IF((x3p-y3upst).GE.0) W3=epsilon3
[F((x3p-y3upsf).GE.0) W31=0
IF(x3p.LE.0) W_3=epsilon3
IF(x3p.LE.O) W_31=0

Td = Tem-273.15D0

pA =9.01D-01 - 8.35D-04*Td,

pB =9.19D-01 - 6.65D-04*Td;

pl =8.85D-01;

pSol = 8.92D-01 - 1.3D-03*Td ;

pPol = 1.19D0 - 8.07D-04*Td;
V=x1p/pA+x2p/pB+x3p/pl+msol/pSol+x4p/pPol+x5p/pPol

W6 = x4p + epsilonl;
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W61=x4p
[F(x4p.LE.0) Wé6=epsilonl
IF(x4p.LE.0) W61=0

W7 =x5p + epsilonl;
W71=x5p

IF(x5p.LE.0) W7=epsilonl
IF(x5p.LE.0) W71=0

W8 = x6p + epsilonl;
W81=x6p

IF(x6p.LE.0) W8=epsilonl
[F(x6p.LE.0) W81=0

U1
W13 =Ul + epsilonl;
W131=Ul;

W14 =-Ul + ulins +epsilonl;
W141=-U1 + ulins

IF (U1.LE.O) W13=epsilonl

IF (U1.LE.O) W131=0

IF ((U1-ulins).GE.0) W14=epsilonl
IF ((Ul-ulins).GE.0) W141=0

U2

W15 = U2 + epsilon2;

W151=02;

W16 =-U2 + u2ins +epsilon2;
W161=-U2 + u2ins

[F(U2.LE.0) W15=epsilon2
[F(U2.LE.O) W151=0
[F((U2-u2ins).GE.0) W16=epsilon2
IF((U2-u2ins).GE.0) W161=0

'u3

W17 =U3 + epsilon3;

W171=U3;

W18 =-U3 + u3ins +epsilon3;
W181=-U3 + u3ins;

IF (U3.LE.O) W17=epsilon3

IF (U3.LE.0) W171=0

IF ((U3-u3ins).GE.0) W18=epsilon3
IF ((U3-u3ins).GE.0) W181=0

linitiation coefficient < s”-1 >
kd = 6.78D+15*DEXP(-17714.0D0/Tem) ;
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Ipropagation rates < 1/(mol.s) >

kpaa = 3.802D+06*DEXP(-2754D0/Tem);
kpbb = 4.266D+07*DEXP(-3910.0D0/Tem);
kpab = kpaa/rl ;

kpba = kpbb/r2 ;

ltermination coefficients < 1/(mol.s) >
ktermaa = 7.10D+07*DEXP(-830.0D0/Tem);
ktermbb = 3.818D+09*DEXP(-958.0D0/Tem);

ltransfer to monomer < 1/(mol.s) >

ktrm aa = 1.56D+02*DEXP(-2621.0D0/Tem) ;
ktrm_bb = 2.31D+06*DEXP(-6377.0D0/Tem) ;
ktrm_ba = ktrm_aa*kpbb/(kpaa*r2);

ktrm_ab = ktrm_bb*kpaa/(kpbb*rl);

ltransfer to solvent < l/(mol.s) >
Cs_a=5.55D0*DEXP(-4590.0D0/Tem) ;
Cs_b=1D-04;

ktrs a=Cs_a*kpaa;

ktrs_b = Cs_b*kpbb;

'densities (Kg/l)

pA =9.01D-01 - 8.35D-04*Td;
pB =9.19D-01 - 6.65D-04*Td,
pl = 8.85D-01 ;

pSol = 8.92D-01 - 1.3D-03*Td ;
pPol = 1.19D0 - 8.07D-04*Td;

CC = DSQRT(2.0D0*f*kd/Mi),

DE = Mr/(x1p/pA +x2p/pB + x3p/pl+ msol/pSol+ x4p/pPol+ x5p/pPol);
2 =x1p*Mb / (x1p*Mb + x2p*Ma),

3 =x2p*Ma/ (x1p*Mb + x2p*Ma);

frA = kpba*Mb*x1p/( kpba*Mb*x1p + kpab*Ma*x2p);

frB = kpab*Ma*x2p/( kpba*Mb*x1p + kpab*Ma*x2p);
Ktcop=10**((f2*DLOG(ktermaa)+f3*DLOG(ktermbb))/DLOG(10.0D0));
Ltot = CC*DSQRT(DE*x3p/(Ktcop*Mr))

La = Ltot*frA ;
Lb = Ltot*fiB ;
V =Mr/DE ;

ktc _aa = (1.0D0-alpha)*Ktcop ;
ktc_bb = (1.0D0-betha)*Ktcop ;
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ktc_ab = (1.0D0-gamma)*Ktcop ;
ktc ba=ktc_ab;

Rinit = (CC**2)*DE*x3p/Mr ;

ml = (ktrm_aa*frA+ktrm_ba*{rB)/Ma;

m2 = (ktrm_bb*frB+ktrm_ab*frA)/Mb;

Rtrm = (m1*(x1p/Mr) + m2*(x2p/Mr))*Ltot*DE ;

s = (ktrs_a*frA + ktrs_b*{rB)*msol/Ms;

Rtrs = s*Ltot*DE/Mr;

Rtc=ktc aa*((La)**2)+ktc_bb*((Lb)**2)+2*ktc_ab*La*Lb;

Ruo = Rinit+ Rtrm + Rtrs - 0.5D0*Rtc ;
Fenum=x4p/Ma;

Fcden=x4p/Ma + x5p/Mb;
Fc=Fcnum/(Fcden);

Mnum=x4p+x5p;
Mden=x6p;
Mn=Mnum/(Mden);

prodc_u=WI13*W14*WI15*W16*W17*W18

dprodcu_dpl=(W13*W14*W15)*(PAR(3)*W16*(W18-W17)-PAR(2)*W17*W18)
+ (W16*W17*W18)*(W13*(PAR(2)*W14-W15)+W14*W15)

dprodcu_dp2=(PAR(1)/(W15*W16))*(W16-W15)
dprodeu_dp3=(PAR(1)/(W17*W18))*(W18-W17)

GO TO (1,2,3,4),JPAR
DUl DP1=1

DU2 DP1 =PAR(2)

DU3 DP1 =PAR(3)

DFDP(1) = PAR(4)*ni*DU1_DP1
DFDP(2) = PAR(4)*ni*DU2_DP1
DFDP(3) = PAR(4)*ni*DU3_DP1
IDFDP(4)=0

IDFDP(5) =0

IDFDP(6)=0

DFDP(7) = -mul*dprodcu_dpl/prodc_u
RETURN

DU1 DP2=0

DU2_DP2 =PAR(1)

DU3_DP2 =0

IDFDP(1) = PAR(4)*ni*DU1_DP2
DFDP(2) = PAR(4)*ni*DU2_DP2
IDFDP(3) = PAR(4)*ni*DU3_DP2
IDFDP(4)=0
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IDFDP(5)=0

'DFDP(6) =0

DFDP(7) = -mul*dprodcu_dp2

RETURN

DUI DP3 =0

DU2 DP3=0

DU3 DP3 =PAR(1)

'DFDP(1) = PAR(4)*ni*DU1_DP3

'DFDP(2) = PAR(4)*ni*DU2_DP3

DFDP(3) = PAR(4)*ni*DU3_DP3

'DFDP(4) =0

'DFDP(5) =0

'DFDP(6) =0

DFDP(7) = -mul*dprodcu_dp3

RETURN

DUI_DP4=0

DU2 DP4=0

DU3 DP4=0
DFDP(1) = ni*(U1 - x1p*( kpaa*La + kpba*Lb ))
DFDP(2) = ni*(U2 - x2p*( kpbb*Lb + kpab*La ))
DFDP(3) = ni*(U3 - kd*x3p)
DFDP(4) = ni*(x1p*( kpaa*La + kpba*Lb ))
DFDP(5) = ni*(x2p*( kpbb*Lb + kpab*La ))
DFDP(6) = ni*(V*Ruo)

DFDP(7) = ni*(wff1*((Mn/Msp)-1)**2) + wif2*(((Fc/Fsp)-1)**2))
RETURN

END

SUBROUTINE JEX (NEQ, T, Y, PAR, ML, MU, PD, NRPD)

DOUBLE PRECISION T,Y,PAR,U1,U2,U3,prodc,ES ,PD ,prodc_s

DOUBLE PRECISION W1,W_1,W2 W 2 W3 W 3 W4 W5W6W7,W8WIWI10
DOUBLE PRECISION W12,W13,W14,W15,W16,W17,W18,W19,W20
DOUBLE PRECISION W11,W_11,W21,W _21,W31,W 31,W41,W51,W61,W71
DOUBLE PRECISION W81,W91,W101,W121,W131,W141,W151,W161
DOUBLE PRECISION W171,W181,W191,W201,fac,Td,mfed, Mmax
DIMENSION Y(7),PD(NRPD,7), PAR(24)

DOUBLE PRECISION kd,kpaa,kpbb,kpab,kpba,ktrm aaktrm bb

DOUBLE PRECISION ktrm_ab,ktrm _ba,Cs_a,Cs_b,ktrs_a,ktrs b

DOUBLE PRECISION ktermaa,ktermbb,frac,prodc_u

DOUBLE PRECISION pA,pB,pl,pSol,pPol,f2.3,frA,frB,DE,SS

DOUBLE PRECISION CC,Ktcop,Ltot,La,Lb,V ktc_aaktc bbktc ab

DOUBLE PRECISION ktc_ba,Rinit,Rtrm,Rtrs,Rtc,Ruo

DOUBLE PRECISION Fcnum,Fecden,Fe,Mnum,Mden,Mn,Msp,Fsp,Tem
DOUBLE PRECISION rl,r2.f alpha,betha,gamma,Mi,Ma,Mb,Ms,msol
DOUBLE PRECISION mulepsilonl,epsilon2,wffl wff2 eff
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DOUBLE PRECISION ylupsf,y2upsf,y3upsf,ulins,u2ins,u3ins,Vf
DOUBLE PRECISION x1p,x2p,x3p,x4p,x5p,x6p,x7p,Mr,eps, V{f
DOUBLE PRECISION dDE dyl,dDE_dy2,dDE dy3,dDE_dy4,dDE dyS5
DOUBLE PRECISION dDE_dy6,dDE _dy7,df2dy2,df3dy2,df2dy3,df3dy3
DOUBLE PRECISION dKtcop dyl,dKtcop dy2,dKtcop dy3,dKtcop dy4
DOUBLE PRECISION dKtcop dy5,dKtcop_dy6,dKtcop dy7

DOUBLE PRECISION dLtot_dyl,dLtot dy2 ,dLtot dy3 ,dLtot dy4
DOUBLE PRECISION dLtot_dy5 ,dLtot_dy6 ,dLtot_dy7

DOUBLE PRECISION dfrA_dyl,dfrB_dyl,dfrA dy2,dfrB dy2,dfrA dy3
DOUBLE PRECISION dfrB_dy3,dfrA_dy4,dfrB_dy4

DOUBLE PRECISION dfrA_dyS5,dfrB_dyS,dfrA_dy6,dfrB_dy6,dfrA_dy7
DOUBLE PRECISION dfrB_dy7,dLa dyl,dLb_dyl,dLa dy2

DOUBLE PRECISION dLb_dy2,dLa dy3,dLb dy3,dLa_dy4,dLb dy4
DOUBLE PRECISION dLa_dy5,dLb_dy5,dLa dy6.dLb dy6

DOUBLE PRECISION dLa_dy7,dLb_dy7

DOUBLE PRECISION dF1_dyl,dF1 dy2,dF1 dy3,dF1 dy4,dF1_dy5
DOUBLE PRECISION dF1_dy6,dF1_dy7,dF2 dyl,dF2 dy2

DOUBLE PRECISION dF2_dy3,dF2_dy4,dF2_dy5,dF2 dy6,dF2 dy7
DOUBLE PRECISION dF3 dyl,dF3_dy2,dF3_dy3,dF3 dy4,dF3 dy5
DOUBLE PRECISION dF3 dy6,dF3_dy7,dF4 dyl,dF4 dy2

DOUBLE PRECISION dF4 dy3,dF4 dy4,dF4 dyS.dF4 dy6,dF4 dy7
DOUBLE PRECISION dF5_dyl,dF5 dy2,dF5 dy3,dF5 dy4,dF5 dyS
DOUBLE PRECISION dF5_dy6,dF5 dy7,dF6_dyl,dF6 dy2

DOUBLE PRECISION dF6_dy3,dF6_dy4,dF6_dyS,dF6 dy6,dF6 dy7
DOUBLE PRECISION dF7 dyl,dF7 dy2,dF7 dy3,dF7 dy4,dF7_dyS5
DOUBLE PRECISION dF7 dy6,dF7 dy7

DOUBLE PRECISION ml,dml dyl ,dml dy2 ,dml dy3 ,dml dy4
DOUBLE PRECISION dm1 _dy5,dml_dy6,dml_dy7,m2,dm2 dyl,dm2 dy2
DOUBLE PRECISION dm2 dy3,dm2_dy4 ,dm2 dyS ,dm2 dy6 ,dm2 dy7
DOUBLE PRECISION s ,ds_dyl ,ds dy2 ,ds_dy3 ,ds_dy4

DOUBLE PRECISION ds_dy5 ,ds _dy6 ,ds_dy7

DOUBLE PRECISION dRinit_dyl,dRinit dy2,dRinit dy3,dRinit dy4
DOUBLE PRECISION dRinit_dy5 ,dRinit_dy6 ,dRinit_dy7

DOUBLE PRECISION dRtrm_dy1 ,dRtrm_dy2 ,dRtrm_dy3 ,dRtrm_dy4
DOUBLE PRECISION dRtrm_dyS5 ,dRtrm_dy6 ,dRtrm_dy7

DOUBLE PRECISION dRtrs_dyl ,dRtrs dy2 ,dRtrs _dy3 ,dRtrs dy4
DOUBLE PRECISION dRtrs_dy5 ,dRtrs_dy6 ,dRtrs_dy7

DOUBLE PRECISION dRtc dyl,dRtc_dy2 ,dRtc_dy3 ,dRtc_dy4
DOUBLE PRECISION dRtc_dy5 ,dRtc_dy6 ,dRtc_dy7

DOUBLE PRECISION dRuo_dy! ,dRuo_dy2 ,dRuo_dy3 ,dRuo_dy4
DOUBLE PRECISION dRuo_dy5 ,dRuo_dy6 ,dRuo_dy7

DOUBLE PRECISION dV_dy1 ,dV_dy2 ,dV_dy3 ,dV_dy4

DOUBLE PRECISION dV_dy5 ,dV_dy6,dV_dy7

DOUBLE PRECISION dFc_dyl,dFc_dy2,dFc_dy3,dFc dy4,dFc dyS
DOUBLE PRECISION dFc_dy6 ,dFc_dy7 ,dFc_dy8

DOUBLE PRECISION dMn_dy1,dMn_dy2,dMn_dy3,dMn_dy4,dMn_dy5
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DOUBLE PRECISION dMn_dy6 ,dMn_dy7 ,dMn_dy8,dprodc_u_dy4
DOUBLE PRECISION dprodc_s_dyl,dprodc_s_dy2,dprodc_s dy3
DOUBLE PRECISION dprodc s dy5 ,dprodc_s_dy6 ,dprodc_s dy7
DOUBLE PRECISION dES _dy2,dES dy3,Z1,22,73,facc, mPOL,cte u
INTEGER ni

r1=1.0*0.42D0

12=1.0*0.61D0

=5.1548D-01

alpha=0.65D0

betha= 0.01D0

gamma= 0.33D0

Mi= 1.3210D-01

Ma= 1.42D-01;

Mb= 1.0415D-01

Ms=1.0617D-01

eps= 2.2204D-016

Msp=PAR(5)
Fsp=PAR(6)
Tem=PAR(7)
msol=PAR(8)
wifl=PAR(9)
wif2= PAR(10)
ylupsf=PAR(11)
y2upsf=PAR(12)
y3upsf=PAR(13)
ulins=PAR(14)
u2ins=PAR(15)
u3ins=PAR(16)
ni=PAR(17)
mPOL=PAR(18)
frac=PAR(19)
V{=PAR(20)
mul=PAR(21)
epsilon]1=PAR(22)
epsilon2=PAR(23)
epsilon3=PAR(24)

U1=PAR(]);
U2=PAR(2)*PAR(]);
U3=PAR(3)*PAR(]);

IF ((Ul-ulins).GE.0) Ul=ulins
IF (UL.LE.O) U1=0
IF ((U2-u2ins).GE.0) U2=u2ins
IF (U2.LE.O) U2=0
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[F ((U3-u3ins).GE.0) U3=u3ins
IF (U3.LE.0) U3=0

x1p=(Y(1)**2+eps)**0.5;
x2p=(Y(2)**2+eps)**0.5;
x3p=(Y(3)**2+eps)**0.5;
x4p=(Y(4)**2+eps)**0.5;
xSp=(Y(5)**2+eps)**0.5;
x6p=(Y(6)**2+eps)**0.5;
x7p=(Y(7)**2+eps)**0.5;

Mr=x1p+x2p+x3p+x4p+xSp+msol;

W1 =-x1p + ylupsf +epsilonl;
Wl11=-x1p + ylupsf;

W_1=xlp + epsilonl;

W_ 1l1=xlp

IF((x1p-ylupsf).GE.0) Wl=epsilonl
IF((x1p-ylupsf).GE.0) W11=0
IF(x1p.LE.0) W_1=epsilonl
[F(x1p.LE.O) W _11=0

W2 = -x2p + y2upsf +epsilon2;
W21=-x2p + y2upsf

W_2 =x2p + epsilon2;

W 21=x2p

IF((x2p-y2upsf).GE.0) W2=epsilon2
IF((x2p-y2upsf).GE.0) W21=0
[F(x2p.LE.0) W_2=epsilon2
IF(x2p.LE.O) W_21=0

W3 = -x3p + y3upsf +epsilon3;
W31=-x3p + y3upsf

W_3 =x3p + epsilon3;

W 31=x3p

IF((x3p-y3upsf).GE.0) W3=epsilon3
[F((x3p-y3upsf).GE.0) W31=0
IF(x3p.LE.0) W_3=epsilon3
IF(x3p.LE.0O) W_31=0

Td = Tem-273.15D0

pA =9.01D-01 - 8.35D-04*Td;
pB =9.19D-01 - 6.65D-04*Td;
pl = 8.85D-01 ;

pSol = 8.92D-01 - 1.3D-03*Td
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pPol = 1.19D0 - 8.07D-04*Td
V=x1p/pA+x2p/pB+x3p/pl+msol/pSol+x4p/pPol+x5p/pPol

W6 = x4p + epsilonl;
W61=x4p

IF(x4p.LE.0) W6=gepsilonl
[F(x4p.LE.0) W61=0

W7 =x5p + epsilonl;
W71=x5p

[F(x5p.LE.0) W7=epsilonl
[F(x5p.LE.0) W71=0

W8 = x6p + epsilonl;
W81=x6p

[F(x6p.LE.0) W8=epsilonl
[F(x6p.LE.0) W81=0

tUl
W13 = Ul + epsilonl;
W131=Ul,;

W14 = -Ul + ulins +epsilonl;
W141=-U1 + ulins

IF (U1.LE.O) W13=epsilonl

IF (U1.LE.0) W131=0

IF ((Ul-ulins).GE.0) W14=epsilonl
IF ((Ul-ulins).GE.0) W141=0

o2
W15 = U2 + epsilon2;
W151=U2;

W16 =-U2 + u2ins +epsilon2;
W161=-U2 + u2ins

IF(U2.LE.0) W15=epsilon2
IF(U2.LE.0) W151=0
[F((U2-u2ins).GE.0) W16=epsilon2
IF((U2-u2ins).GE.0) W161=0

'u3

W17 =U3 + epsilon3
W171=U3;

W18 = -U3 + u3ins +epsilon3
W181=-U3 + u3ins;
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IF (U3.LE.O) W17=epsilon3

IF (U3.LE.O) W171=0

IF ((U3-u3ins).GE.0) W18=epsilon3
IF ((U3-u3ins).GE.0) W181=0

linitiation coefficient < s"-1 >
kd = 6.78D+15*DEXP(-17714.0D0/Tem) ;

Ipropagation rates < l/(mol.s) >

kpaa = 3.802D+06*DEXP(-2754.2D0/Tem);
kpbb = 4.266D+07*DEXP(-3910.0D0/Tem);
kpab = kpaa/r1 ;

kpba = kpbb/r2 ;

'termination coefficients < 1/(mol.s) >
ktermaa = 7.10D+07*DEXP(-830.0D0/Tem);
ktermbb = 3.818D+09*DEXP(-958.0D0/Tem);

Itransfer to monomer < 1/(mol.s) >

ktrm_aa = 1.56D+02*DEXP(-2621.0D0/Tem) ;

ktrm_bb = 2.31D+06*DEXP(-6377.0D0/Tem) ;

ktrm_ba = ktrm_aa*kpbb/(kpaa*r2); | ktrm_aa*kpba/kpaa;
ktrm_ab = ktrm_bb*kpaa/(kpbb*rl); ! ktrm_bb*kpab/kpbb;

Itransfer to solvent < 1/(mol.s) >
Cs_a=5.55D0*DEXP(-4590.0D0/Tem) ;
Cs b=1D-04

ktrs a=Cs_a*kpaa ;

ktrs b= Cs_b*kpbb ;

!densities (Kg/l)

pA =9.01D-01 - 8.35D-04*Td;
pB =9.19D-01 - 6.65D-04*Td,;
pl=8.85D-01 ;

pSol = 8.92D-01 - 1.3D-03*Td ;
pPol = 1.19D0 - 8.07D-04*Td,

CC = DSQRT(2.0D0O*f*kd/Mi);
DE = Mr/(x1p/pA+x2p/pB+x3p/pl+msol/pSol+x4p/pPol+x5p/pPol)

dV_dyl=1.0D0/pA
dV_dy2=1.0D0/pB
dV_dy3=1.0D0/pl
dV_dy4=1.0D0/pSol
dV_dy5=1.0D0/pSol
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dMr_dyl1=1.0D0
dMr dy2=1.0D0
dMr_dy3=1.0D0
dMr_dy4=1.0DO
dMr_dy5=1.0D0

dDE_dy1=-1.0D0*Mr*dV_dy1/(V**2) +dMr_dyl/V
dDE_dy2=-1.0D0*Mr*dV_dy2/(V**2) + dMr_dy2/V
dDE_dy3=-1.0D0*Mr*dV_dy3/(V**2) + dMr_dy3/V
dDE_dy4=-1.0D0*Mr*dV_dy4/(V**2) + dMr_dy4/V
dDE_dy5=-1.0D0*Mr*dV_dy5/(V**2) + dMr_dy5/V
1dDE_dy6= 0.0D0

1dDE_dy7=0.0D0

2 =x1p*Mb/(x1p*Mb + x2p*Ma);
3 =x2p*Ma/(x1p*Mb + x2p*Ma);
frA = kpba*Mb*x1p/( kpba*Mb*x1p + kpab*Ma*x2p);
frB = kpab*Ma*x2p/( kpba*Mb*x1p + kpab*Ma*x2p);

Ktcop = 10**((f2* DLOG(ktermaa) + f3*DLOG(ktermbb))/DLOG(10.0D0));
Ltot = CC*DSQRT(DE*x3p/(Ktcop*Mr))

Fecnum=x4p/Ma;
Fcden=x4p/Ma + x5p/Mb;
Fc=Fcnum/(Fcden);!Fden+eps
Mnum=x4p+x5p;

Mden=x6p;
Mn=Mnum/(Mden);!'Mden+eps

df2dyl = Mb/( x1p*Mb + x2p*Ma) - x1p*(Mb*Mb)/((x1p*Mb + x2p*Ma)**2);
df3dyl = -1.0D0*df2dyl

df2dy2 = -1.0D0*x 1p*Mb*Ma/((x1p*Mb + x2p*Ma)**2);

df3dy2 =-1.0D0*df2dy2

ES=(f2*DLOG(ktermaa)+f3* DLOG(ktermbb))/DLOG(10.0D0)
dES_dyl=(df2dy1*DLOG(Ktermaa)+ df3dy1*DLOG(Ktermbb))/DLOG(10.0D0)
dES_dy2=(df2dy2*DLOG(Ktermaa)+ df3dy2*DLOG(Ktermbb)y/DLOG(10.0D0)
dKtcop_dyl=(10**ES)*DLOG(10.0D0)*dES_dy!
dKtcop_dy2=(10**ES)*DLOG(10.0D0)*dES_dy2

dfrA_dyl=kpba*Mb/(kpba*Mb*x1p+ kpab*Ma*x2p) &

-((kpba*Mb)**2)*x1p/((kpba*Mb*x1p+ kpab*Ma*x2p)**2)
dfrB_dyl1=-1.0D0*dfrA dyl
dfrA_dy2=-1.0D0*kpba*Mb*x1p*kpab*Ma/((kpba*Mb*x1p+kpab*Ma*x2p)**2) ;
dfrB_dy2=-1.0D0*dfrA dy2
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7Z1=0.5D0* CC*((Ktcop*Mr/(DE*x3p))**0.5)
72=1.0D0/((Ktcop*Mr)**2)
Z3=1.0D0/(Ktcop*Mr)

dLtot dyl = Z1*x3p*(-1.0D0*DE*Z2*(dKtcop_dyl*Mr+Ktcop*dMr dyl)+ &
Z3*dDE _dyl)
dLtot_dy2 = Z1*x3p*(-1.0D0*DE*Z2*(dKtcop_dy2*Mr+Ktcop*dMr dy2)+ &
Z3*dDE_dy2)

dLtot_dy3 = Z1*(1/Ktcop)*(-1.0DO*DE*x3p*dMr_dy3/((Mr)**2) + &
(1/Mr)*(x3p*dDE _dy3+DE))

dLtot dy4 = Z1*(x3p/Ktcop)*(-1.0DO*DE*dMr_dy4/((Mr)**2) + &
(1/Mr)*dDE_dy4)

dLtot_dy5 = Z1*(x3p/Ktcop)*(-1.0DO*DE*dMr_dyS5/(Mr)**2) + &
(1/Mr)*dDE_dy5)

'dLtot_dy6 =0

'dLtot dy7 =0

dFc_dy4 = (1.0D0/Ma)/( x4p/Ma + x5p/Mb ) - (x4p/(Ma**2))/(( x4p/Ma +
x5p/Mb)**2);
dFc_dy5 = (-1.0D0*x4p/(Ma*Mb))/((x4p/Ma + x5p/Mb )**2)

dMn_dy4 = 1.0D0/(x6p);
dMn_dyS = 1.0D0/(x6p);
dMn_dy6 = -1.0D0*(x4p+x5p)/((x6p)**2);

La = Ltot*frA ;

Lb = Ltot*frB ;

ktc_aa = (1.0D0-alpha)*Ktcop
ktc_bb = (1.0D0-betha)*Ktcop
ktc_ab = (1.0D0-gamma)*Ktcop
ktc ba = ktc_ab

Rinit = (CC**2)*DE*x3p/Mr ;

ml = (ktrm_aa*frA+ktrm_ba*{rB)/Ma;

m?2 = (ktrm_bb*frB+ktrm_ab*frA)/Mb;

Rtrm = (m1*x1p/Mr + m2*x2p/Mr)*Ltot*DE ;

s = (ktrs_a*frA + ktrs_b*frB)*msol/Ms;

Rtrs = s*Ltot*DE/Mr;

Rtc = ktc_aa*(La**2) + ktc_bb*(Lb**2) +2*ktc_ab*La*Lb

Ruo = Rinit+ Rtrm + Rtrs - 0.5D0*Rtc ;

dLa_dyl =dLtot_dyl*frA + dfrA_dyl*Ltot
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dLb_dyl = dLtot_dy1*frB + dfrB_dy1*Ltot

dLa dy2 =dLtot_dy2*frA + dfrA dy2*Ltot
dLb dy2 = dLtot dy2*frB + dfrB_dy2*Ltot

dLa_dy3 = dLtot_dy3*frA
dLb_dy3 =dLtot_dy3*frB

dLa_dy4 = dLtot_dy4*frA
dLb_dy4 = dLtot_dy4*frB

dLa_dyS5 = dLtot dyS*frA
dLb_dy5 =dLtot dy5*frB

!dLa dy6=0
'dLb dy6 =0

IdLa dy7=0
IdLb _dy7=0

dF1_dyl=-(kpaa*La + kpba*Lb)-x1p*(kpaa*dLa_dyl+kpba*dLb dyl)
dF1 _dy2 = -x1p*(kpaa*dLa_ dy2 + kpba*dLb_dy2)

dF1 dy3 = -x1p*(kpaa*dLa dy3 + kpba*dLb_dy3)

dF1_dy4 = -x1p*(kpaa*dLa_dy4 + kpba*dLb_dy4)

dF1_dy5 = -x1p*(kpaa*dLa dyS5 + kpba*dLb_dyS5)

IdF1_dy6=0

!dF1_dy7 =0.0D0

dF2 dyl =-x2p*(kpbb*dLb dyl + kpab*dLa dyl);
dF2_dy2=-(kpbb*Lb + kpab*La)-x2p*(kpbb*dLb dy2+kpab*dLa dy2);
dF2_dy3 = -x2p*(kpbb*dLb_dy3 + kpab*dLa_dy3);

dF2 dy4 = -x2p*(kpbb*dLb_dy4 + kpab*dLa_ dy4);

dF2_dyS = -x2p*(kpbb*dLb_dyS5 + kpab*dLa_dyS5);

!IdF2 dy6=0

dF2_dy7 =0.0D0

1dF3_dyl = 0.0D0 ;
1dF3_dy2 = 0.0D0 ;
dF3_dy3 =-kd;

IdF3_dy4 = 0.0D0 ;
1dF3_dy5 = 0.0D0 ;
1dF3_dy6 = 0.0D0 ;
1dF3_dy7 = 0.0D0 ;

dF4_dyl = (kpaa*La + kpba*Lb) + x1p*(kpaa*dLa_dyl + kpba*dLb_dyl);
dF4 dy2 =x1p*(kpaa*dLa dy2 + kpba*dLb_dy2);
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dF4 dy3 =xlp*(kpaa*dLa_dy3 + kpba*dLb_dy3) ;
dF4 dy4 = x1p*(kpaa*dLa_dy4 + kpba*dLb_dy4) ;
dF4 dyS =xIp*(kpaa*dLa_dyS + kpba*dLb_dy5) ;
'dF4 dy6=10

!dF4_dy7=0.0DO0;

dF5_dyl = x2p*(kpbb*dLb_dyl + kpab*dLa_dy1);

dF5_dy2 = (kpbb*Lb + kpab*La) + x2p*(kpbb*dLb_dy2 + kpab*dLa_dy2);
dF5_dy3 = x2p*(kpbb*dLb_dy3 + kpab*dLa_dy3);

dF5_dy4 = x2p*(kpbb*dLb_dy4 + kpab*dLa_dy4);

dF5_dyS = x2p*(kpbb*dLb_dy5 + kpab*dLa dyS5);

IdF5 dy6=0

'dF5_dy7 = 0.0D0

'm] = (ktrm_aa*frA+ktrm ba*{rB )/Ma;

dml _dyl = (ktrm_aa*dfrA dyl + ktrm_ba*dfrB_dy1)/Ma;
dml dy2 = (ktrm_aa*dfrA_dy2 + ktrm ba*dfrB_dy2)/Ma;
{dm1 dy3 =0.0D0;
!dm1_dy4 = 0.0D0;
!dm1_dy5 =0.0D0;
'dm1_dy6 = 0.0D0;

'm2 = (ktrm_bb*{frB+ktrm_ab*frA)/Mb;

dm2_dyl = (ktrm bb*dfrB_dyl + ktrm_ab*dfrA_dy1)/Mb;
dm2 dy2 = (ktrm bb*dfrB dy2 + ktrm_ab*dfrA_dy2)/Mb;
tdm2_dy3 = 0.0D0;
{dm2_dy4 = 0.0D0;
Idm2 dy5 = 0.0DO;
Idm2 dy6 = 0.0DO0;

Is = (ktrs_a*frA + ktrs_b*frB)*msol/Ms;

ds_dyl = (ktrs_a*dfrA_dyl + ktrs_b*dfrB_dy1)*msol/Ms;
ds_dy2 = (ktrs_a*dfrA_dy2 + ktrs_b*dfrB_dy2)*msol/Ms;
!ds_dy3 = 0.0D0;
!ds_dy4 = 0.0DO0;
!ds_dy5 = 0.0DO0;
'ds_dy6 = 0.0D0;

dRinit_dyl=(CC**2)*x3p*(-1.0D0*DE*dMr_dy1/(Mr)**2)+dDE_dy1*(1/Mr))

dRinit_dy2=(CC**2)*x3p*(-1.0DO*DE*dMr_dy2/((Mr)**2)+dDE_dy2*(1/Mr))

dRinit_dy3=(CC**2)*(x3p*(-1.0DO*DE*dMr_dy3/((Mr)**2)+dDE_dy3*(1/Mr)) &
+ DE*(1/Mr))
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dRinit_dy4=(CC**2)*x3p*(-1.0DO*DE*dMr_dy4/((Mr)**2)+dDE_dy4*(1/Mr))
dRinit_dy5=(CC**2)*x3p*(-1.0DO*DE*dMr_dy5/((Mr)**2)+dDE_dy5*(1/Mr))
IdRinit_dy6 = 0.0D0
ldRinit_dy7 = 0.0D0

dRtrm_dyl = (m1+xIp*dml dyl +x2p*dm2 dy1)*(1/Mr)*Ltot*DE &
+ (m1*x1p+tm2*x2p)*(Ltot*(dDE_dy1*(1/Mr) &
- DE*dMr_dy1/((Mr)**2))+dLtot_dy1*DE*(1/Mr))

dRtrm_dy2 = (m2+x1p*dml_dy2 +x2p*dm2 dy2)*(1/Mr)*Ltot*DE &
+ (m1*x1p+m2*x2p)*(Ltot*(dDE_dy2*(1/Mr) &
- DE*dMr_dy2/((Mr)**2))+dLtot_dy2*DE*(1/Mr))

dRtrm_dy3 = (m1*x1p+tm2*x2p)*(Ltot*(dDE_dy3*(1/Mr)-
DE*dMr_dy3/((Mr)**2)) & +dLtot_dy3*DE*(1/Mr))

dRtrm dy4 = (m1*x1p+m2*x2p)*(Ltot*(dDE_dy4*(1/Mr) -
DE*dMr_dy4/((Mr)**2)) & +dLtot dy4*DE*(1/Mr))

dRtrm_dy5 = (m1*x1p+m2*x2p)*(Ltot*(dDE_dy5*(1/Mr)-
DE*dMr_dy5/((Mr)**2)) & +dLtot_dyS*DE*(1/Mr))
ldRtrm dy6 =0

IdRtrm_dy7 = 0.0D0

dRtrs_dyl=s*(Ltot*(dDE_dy!*(1/Mr)-
DE*dMr_dy1/(Mr)**2))+(DE/Mr)*dLtot_dyl) &+ Ltot*DE*ds_dy1*(1/Mr)

dRtrs_dy2=s*(Ltot*(dDE_dy2*(1/Mr)-
DE*dMr_dy2/((Mr)**2))+(DE/Mr)*dLtot dy2) &+Ltot*DE*ds_dy2*(1/Mr)

dRtrs_dy3=s*(Ltot*(dDE_dy3*(1/Mr)-
DE*dMr_dy3/(Mr)**2))+(DE/Mr)*dLtot_dy3 )
dRtrs_dy4=s*(Ltot*(dDE_dy4*(1/Mr)-
DE*dMr_dy4/((Mr)**2))+(DE/Mr)*dLtot _dy4 )
dRtrs_dy5=s*(Ltot*(dDE_dy5*(1/Mr)-
DE*dMr_dy5/((Mr)**2))+(DE/Mr)*dLtot_dy5 )
!dRtrs_dy6=0.0D0

!dRtrs_dy7=0.0D0

dRtc_dyl =2.0D0*(ktc_aa*La*dLa dyl + ktc bb*Lb*dLb dyl &
+ ktc_ab*(dLa_dyl*Lb+La*dLb_dyl));

dRtc_dy2 = 2.0D0*(ktc_aa*La*dLa_dy2 + ktc _bb*Lb*dLb dy2 &
+ ktc_ab*(dLa_dy2*Lb+La*dLb_dy2));

dRtc_dy3 =2.0D0*(ktc_aa*La*dLa dy3 + ktc_bb*Lb*dLb dy3 &
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+ ktc_ab*(dLa_dy3*Lb+La*dLb_dy3));

dRtc dy4 =2.0D0*(ktc_aa*La*dLa dy4 + ktc bb*Lb*dLb dy4 &
+ ktc_ab*(dLa_dy4*Lb+La*dLb_dy4));

dRtc_dyS =2.0D0*(ktc_aa*La*dLa dy5 + ktc_bb*Lb*dLb dy5 &
+ ktc_ab*(dLa dyS*Lb+La*dLb_dy5));

'dRtc_dy6 =0

!dRtc_dy7 = 0.0D0

dRuo_dyl =dRinit dyl + dRtrm_dy1 + dRtrs_dyl -0.5D0*dRtc_dyl;
dRuo_dy2 =dRinit_dy2 + dRtrm_dy2 + dRtrs_dy2 -0.5D0*dRtc_dy2;
dRuo_dy3 = dRinit_dy3 + dRtrm_dy3 + dRtrs_dy3 -0.5D0*dRtc_dy3;
dRuo_dy4 = dRinit_dy4 + dRtrm_dy4 + dRtrs_dy4 -0.5D0*dRtc_dy4;
dRuo_dy5 = dRinit_dy5 + dRtrm_dyS5 + dRtrs_dy5 -0.5D0*dRtc_dyS;
!dRuo_dy6 =0

!dRuo_dy7 = 0.0D0

dF6 _dyl =dV_dyl*Ruo + V*dRuo_dyl ;
dF6_dy2 =dV_dy2*Ruo + V*dRuo_dy2 ;
dF6_dy3 =dV_dy3*Ruo + V*dRuo dy3 ;
dF6 dy4 =dV_dy4*Ruo + V*dRuo dy4;
dF6_dy5=dV_dy5*Ruo + V*dRuo_dy5 ;
IdF6_dy6 =0

dF6_dy7 = 0.0D0

tprode s=W1*W_1*W2*W 2*W3*W _3*W6*W7*W8

dprodc_s _dyl1=(1.0DO/(W1*W_1))*(W1-W_1)
dprodc_s_dy2=(1.0D0/(W2*W_2))*(W2-W_2)
dprodc_s_dy3=(1.0D0/(W3*W_3)*(W3-W_3)
dprodc_s dy4=1.0D0/W6

dprodc_s dy5=1.0D0/W7

dprodc_s dy6=1.0D0/W8

!dprodc_s dy7 =0.0D0

dF7_dy!l =-mul*dprodc_s dyl ;
dF7_dy2 = -mul*dprodc_s dy2 ;
dF7_dy3 =-mul*dprodc s dy3;

dF7_dy4=PAR(4)*ni*(2.0D0O*wff2*((Fc/Fsp)-1.0D0)*dFc_dy4/Fsp &
+ 2.0D0*wiff1*((Mn/Msp)-1.0D0)Y*dMn_dy4/Msp) - mul*dprodc_s_dy4;

dF7_dy5=PAR(4)*ni*(2.0D0*wff2*((Fc/Fsp) - 1.0D0)*dFc_dy5/Fsp &
+ 2.0D0*wff1*((Mn/Msp)-1.0D0)*dMn_dyS5/Msp) - mul*dprodc_s dyS5;
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dF7_dy6=PAR(4)*ni*(2.0D0*wffl1*((Mn/Msp)-1.0D0)*dMn_dy6/Msp) &
- mul*dprodc_s dy6
IdF7_dy7 = 0.0D0;

PD(1,1) = PAR(4)*ni*dF1_dyl
PD(1,2) = PAR(4)*ni*dF1_dy?2
PD(1,3) = PAR(4)*ni*dF1_dy3
PD(1,4) = PAR(4)*ni*dF1_dy4
PD(1,5) = PAR(4)*ni*dF1_dy5
IPD(1,6) = PAR(4)*ni*dF1_dy6
IPD(1,7) = PAR(4)*ni*dF1_dy7

PD(2,1) = PAR(4)*ni*dF2_dyl
PD(2,2) = PAR(4)*ni*dF2_dy2
PD(2,3) = PAR(4)*ni*dF2_dy3
PD(2,4) = PAR(4)*ni*dF2_dy4
PD(2,5) = PAR(4)*ni*dF2_dyS5
IPD(2,6) = PAR(4)*ni*dF2_dy6
IPD(2,7) = PAR(4)*ni*dF2_dy7

IPD(3,1) = PAR(4)*ni*dF3_dyl
IPD(3,2) = PAR(4)*ni*dF3_dy?2
PD(3,3) = PAR(4)*ni*dF3_dy3

IPD(3,4) = PAR(4)*ni*dF3_dy4
IPD(3,5) = PAR(4)*ni*dF3_dy5
IPD(3,6) = PAR(4)*ni*dF3_dy6
IPD(3,7) = PAR(4)*ni*dF3_dy7

PD(4,1) = PAR(4)*ni*dF4_dyl
PD(4,2) = PAR(4)*ni*dF4_dy?
PD(4,3) = PAR(4)*ni*dF4_dy3
PD(4,4) = PAR(4)*ni*dF4_dy4
PD(4,5) = PAR(4)*ni*dF4_dy5
IPD(4,6) = PAR(4)*ni*dF4_dy6
IPD(4,7) = PAR(4)*ni*dF4_dy7

PD(5,1) = PAR(4)*ni*dF5_dyl
PD(5,2) = PAR(4)*ni*dF5_dy?2
PD(5,3) = PAR(4)*ni*dF5_dy3
PD(5,4) = PAR(4)*ni*dF5_dy4
PD(5,5) = PAR(4)*ni*dF5_dy5
IPD(5,6) = PAR(4)*ni*dF5_dy6
IPD(5,7) = PAR(4)*ni*dF5_dy?7
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PD(6,1) = PAR(4)*ni*dF6_dyl
PD(6,2) = PAR(4)*ni*dF6_dy?2
PD(6,3) = PAR(4)*ni*dF6_dy3
PD(6,4) = PAR(4)*ni*dF6_dy4
PD(6,5) = PAR(4)*ni*dF6_dy5
IPD(6,6) = PAR(4)*ni*dF6_dy6
IPD(6,7) = PAR(4)*ni*dF6_dy7

PD(7,1) = dF7_dyl
PD(7,2) = dF7_dy2
PD(7,3) = dF7_dy3
PD(7,4) = dF7_dy4
PD(7,5) = dF7_dy5
PD(7.6) = dF7_dy6
IPD(7,7) = dF7_dy7
RETURN

END

! The gateway routine
subroutine mexFunction(nlhs, plhs, nrhs, prhs)

! (pointer) Replace integer by integer*8 on the DEC Alpha
! 64-bit platform

integer plhs(*), prhs(*)
integer mxCreateDoubleMatrix
integer T pr, steps_pr, p_pr, y0_pr, y_pr

integer nlhs, nrhs
integer m, n, size
integer mxGetM, mxGetN, mxIsNumeric
real*8 T, steps, p(24,1), y0(7,1), y(1,35)

! Check for proper number of arguments.

! if (nrhs .ne. 2) then

!' call mexErrMsgTxt("T'wo inputs required.")
!' elseif (nlhs .ne. 1) then

!' call mexErrMsgTxt('One output required.")
!' endif

! Check to see both inputs are numeric.

P'if (mxIsNumeric(prhs(1)) .ne. 1) then

! call mexErrtMsgTxt('Input #1 is not a numeric.")

! elseif (mxIsNumeric(prhs(2)) .ne. 1) then

! call mexErrMsgTxt('Input #2 is not a numeric array.")
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! endif

! Check that input #1 is a scalar.

! m = mxGetM(prhs(1))

' n = mxGetN(prhs(1))

!'if(n .ne. 1 .or. m .ne. 1) then

! call mexErrMsgTxt('Input #1 is not a scalar.")
! endif

! Get the size of the input matrix.
! m = mxGetM(prhs(1))
! n = mxGetM(prhs(2))+1

m=1
n=35
size = m*n

! Create matrix for the return argument.
plhs(1) = mxCreateDoubleMatrix(m, n, 0)
T pr = mxGetPr(prhs(1))

steps_pr= mxGetPr(prhs(2))

p_pr = mxGetPr(prhs(3))

y0_pr = mxGetPr(prhs(4))

y_pr = mxGetPr(plhs(1))

! Load the data into Fortran arrays.

call mxCopyPtrToReal8(T pr, T, 1)

call mxCopyPtrToReal8(steps pr, steps, 1)
call mxCopyPtrToReal8(p pr, p, 24)

call mxCopyPtrToReal8(y0 pr, y0, 7)

! Call the computational subroutine.
call odef(T, steps, p, y0,y)

'Load the output into a MATLAB array.
call mxCopyReal8ToPtr(y, y_pr, size)

return
end
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