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Abstract

Text learning is the problem of applying machine learning to extracting useful informa-
tion from large amounts of textual data. It is important in both information retrieval and
statistical natural language processing. However, many current text learning systems are
designed for specific languages, and/or require significant human labor to construct. In
this thesis, we attempt to build language independent text learning systems that do not re-
quire significant human intervention. Our solution is based on statistical n-gram language
modeling and unsupervised machine learning. Statistical language modeling is concerned
with estimating the probability of word sequences, which provides a natural and principled
approach to text learning. Statistical n-gram language models model text as a sequence
of characters or words and offer the advantage of language independence. Unsupervised
machine learning offers the advantage of significantly reducing human labor. We focus
on improving performance on three text learning problems by building statistical n-gram
language models and by exploiting the value of un-labeled data. These tasks include lan-
guage and task independent text classification, language independent lexical learning and
unsupervised word segmentation, and Chinese text retrieval.

The first task we consider is language and task independent text classification. Most
current text classification techniques (such as naive Bayes classifiers) rely critically on fea-
ture engineering to cope with the feature explosion that occurs in text learning problems.
However, feature selection is often language and task dependent, and involves many ad
hoc decisions. Feature selection also tends to lose important information by discarding
low frequency features. Moreover, the standard naive Bayes classifier makes independence

assumptions that are too strong to model real textual data written in natural language. In
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particular, it assumes that observations (e.g., words) are independent of each other, given
the class. We generalize the naive Bayes classifier by incorporating local dependencies
between observations (characters or words) with a Markov chain. The result is a Chain
Augmented Naive Bayes (CAN) Bayes classifier. By exploiting sophisticated smoothing
techniques from language modeling research, we can deal with the feature explosion prob-
lem efficiently in CAN models. Our language modeling based approach avoids many of
the ad hoc and error accumulating aspects of feature selection. The approach can work
both at the character and word level. When applied at the character level, it avoids the
word segmentation problem that occurs in many Asian languages. Experiments on vari-
ous languages (English, Greek, Chinese, Japanese) and various text classification problems
(language identification, authorship attribution, text genre detection, topic detection, sen-
timental classification) show it can achieve (or exceed) state of the art performance in most
cases.

The second task we consider is language independent lexical learning and unsupervised
word segmentation. Automated lexical learning and word segmentation is important in
speech recognition and in processing the written texts of many Asian languages such as
Chinese and Japanese. Traditional lexicon construction approaches are based on manu-
ally segmenting large corpora of raw data and then collecting words from the segmented
corpora. Given a manually constructed lexicon, a new sequence can be segmented with
heuristic methods, such as longest word match. There are some shortcomings with these
traditional approaches however. For example, manually constructing a lexicon requires
a huge amount of human labor. Moreover, longest word match segmentation produces

fixed segmentations of a sequence, regardless of its context. To alleviate both of these



limitations, we propose an unsupervised lexicon construction approach by applying an it-
erative optimization procedure (the EM algorithm) to n-gram models. We then segment
new sequences based on dynamic programming (the Viterbi algorithm). Our approach
removes the necessity of manual dictionary construction and allows for adaptive segmen-
tations based on context. To reduce the sparse data and local maxima problems that
occur with the traditional EM algorithm, we use a modified EM algorithm that exploits
hierarchical structure and employs a self-supervised estimation strategy. Experiments on
artificial English data and real Chinese data show the effectiveness of our methods.
Finally, we apply unsupervised word segmentation to Chinese text retrieval. Despite its
low segmentation accuracy relative to supervised methods, our unsupervised segmentation
method has many advantages over traditional word segmentation approaches. Experiments
on the TREC-5 and TREC-6 data sets show that unsupervised word segmentation often
outperforms traditional segmentation methods in Chinese text retrieval. We also find
that the relationship between word segmentation performance and retrieval performance
is not monotonic, as commonly expected. These findings are of theoretical and practical

importance to both Chinese word segmentation and Chinese text retrieval.
Index Keywords

Language independence, Information retrieval, Statistical natural language processing, Sta-
tistical language modeling, Unsupervised machine learning, Text learning, Text classifica-

tion, Lexical leérning, Word segmentation, Chinese text retrieval
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Chapter 1

Introduction

1.1 Thesis Motivation

Nowadays, people are frustrated by being drowned in huge amounts of data while still
being unable to obtain useful information. This situation is becoming worse due to the
fast development of the Internet. Data exists in many formats, such as text, image, video,
and audio. However, a large portion of data is in textual format; for example, books,
papers, email, memos, news stories and press releases. Forrester Research (cf. [140]) has
predicted that unstructured data (such as text) will become the predominant data type
stored on-line. The volume of text available on the Internet is expanding very fast. As a
consequence, intelligent text learning systems are in high demand. Recently, text learning
has been attracting increasing interest from researchers in the areas of information retrieval,
natural language processing and machine learning. The collaboration of these areas has
led to significant progress in text learning. A few notable events on text learning include

the KDD-2000 workshop on text mining, the IJCAI-01 workshop on text learning: beyond
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supervision, the ICDM-2001 workshop on text mining, the ICML-02 workshop on text
learning, and the ICML-03 workshop on the continuum from labeled to unlabeled data.

Text learning is a broad concept including all learning problems related to learning
from textual data. Typical examples include text retrieval, where the problem is to re-
turn documents relevant to a user query; information extraction, where the problem is to
return a piece of information relevant to a query from a document; word segmentation,
where the problem is to detect word boundaries in continuous speech or in written Chi-
nese or Japanese (where no explicit word boundaries are marked); and text categorization,
where the problem is to classify a document into one or more pre-defined categories. These
problems are important in many real world applications. For example, text retrieval is an
essential part of every search engine (such as Google, Yahoo, Infoseek, Altavista); word
segmentation is the first step in speech recognition and in Chinese and Japanese informa-
tion processing (such as text retrieval and machine translation); and text classification is
frequently used in filtering, routing, and document organization. Improving performance
on text learning problems will create direct benefit to people’s lives.

One significant problem with many current text learning systems is that they (or some
components of them) are designed for one specific language. Language dependence makes
it difficult to adapt a system to a new linguistic environment since this requires significant
re-engineering. For example, manually constructing a Chinese lexicon requires a significant
amount of intervention by a person knowledgeable in Chinese. Without knowing Japanese,
the same person is not able to construct a Japanese lexicon. Another aspect of language de-
pendence is the feature selection process on which many current text classification systems

critically rely. Various techniques such as stop-word removal or stemming require language
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specific knowledge. Moreover, many current text classification systems work on word level
features. However, in many Asian languages such as Chinese or Japanese, identifying words
from a character sequence itself is a difficult problem, and any word-based approach must
address added complexity in coping with segmentation errors. Thus, designing language
independent text learning systems would be useful in practice.

In addition to language dependence, another problem with feature selection is that it
involves many ad hoc decisions and loses useful information by discarding uncommon fea-
tures. There are an enormous number of possible features to consider in text categorization
problems. Many standard machine learning techniques, such as naive Bayes classifiers, sup-
port vector machines, linear least squares models, neural networks, and K-nearest neighbor
classifiers [152, 127], have difficulty in coping with the feature explosion. Feature engineer-
ing is critical to achieving good performance. To cope with huge amounts of features,
these methods rely critically on a feature selection procedure. Once good features have
been identified, almost any reasonable technique for learning a classifier seems to perform
well [126]. Feature selection normally uses indirect tests, such as x? or mutual information,
which involve setting arbitrary thresholds and conducting a heuristic greedy search to find
good feature sets and discard other features. However, the cumulative effect of uncommon
features can still reduce classification accuracy, even though infrequent features contribute
less information than common features individually. Consequently, throwing away uncom-
mon features is usually not an appropriate strategy in text learning. (We will discuss this
issue in detail in Chapter 2.) A better solution is to use as many featurcs as possible.
However, this causes problems for traditional classifiers since they do not cope well with

an abundance of features. Efficiently coping with the feature explosion in a principled
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fashion is an important issue in text classification.

Lexical learning and word segmentation is another important text learning problem
in natural language processing and information retrieval. Traditional lexicon construction
is based on manual segmentation. A person knowledgeable in the given language first
manually segments a large corpus of raw data, and then collects all words in the segmented
corpus to form a lexicon. With the manually constructed lexicon, heuristic methods, such as
longest word match, are then used to segment new sequences. However, there are problems
with this traditional approach. One significant problem is that it requires too much human
labor. Constructing a complete Chinese dictionary for word segmentation may require years
of effort to segment a large corpus and collect words from the corpus. It is very useful to
design an algorithm that can automatically learn a lexicon from unsegmented raw data,
and use the learned lexicon for segmenting new sequences. A second problem is that the
traditional longest word match produces a fixed segmentation of a sequence, regardless
of its context. A better approach is segmenting sequences dynamically based on context.
These two problems suggest a need for automated lexicon learning and unsupervised word
segmentation. Since labeled data is not easy to obtain while unlabeled data is abundant
on the Web, exploiting unlabeled data with unsupervised learning (or semi-unsupervised
learning) is gaining increasing attention.

In this thesis, we build text learning systems that are language independent, remove ad
hoc feature selection processes as much as possible, and do not require significant human
involvement. Our goal is to design general, flexible text learning systems that are portable
from language to language and domain to domain. Our solution is based on statistical

language modeling, specifically, n-gram language modeling. Statistical language modeling
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is concerned with determining the probability of naturally occurring word (or character)
sequences in a language. Thus it provides a natural and principled approach to tackling
many text learning problems. N-gram models, specifically, character level n-gram models,

provide an avenue for language independence.

1.2 Thesis Contributions

We use statistical n-gram language modeling as a principled solution to address the above

concerns. We focus on improving three text learning problems in this thesis.

1. Language and Task Independent Text Classification based on Statistical

n-Gram Language Modeling

We propose the Chain Augmented Naive (CAN) Bayes classifier, based on statistical
n-gram language modeling, as a general text classification framework. Our approach
is based on simple information theoretic principles and removes many ad hoc de-
cisions involved in traditional classifiers. It generalizes the traditional naive Bayes
classifier by allowing local Markov dependence. It can work directly at the character
level or at the word level. When applied at the character level, it avoids the necessity
of word segmentation in many Asian languages and provides an avenue to language
independent classification. Our experimental results show that the simple approach
achieves state of the art performance across a variety of languages (English, Greek,
Chinese, Japanese) and tasks (language identification, authorship attribution, text
genre detection, topic detection, sentimental classification) without requiring signifi-

cant feature selection or extensive pre-processing.
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2. Language Independent Unsupervised Lexical Learning and Word Segmen-

tation

Based on n-gram models and the EM algorithm, we propose a hierarchical EM ap-
proach for continuous speech segmentation and a self-supervised method for Chinese
word segmentation. This removes the necessity of manual lexicon construction. We
segment new sequences with a dynamic programming algorithm (Viterbi algorithm)
based on context. To efficiently reduce the parameters, we also employ a mutual
information based scheme for lexicon pruning. These techniques are shown to suc-
cessfully mitigate the sparse data and local maxima problems that occur in traditional

unsupervised methods.

3. Chinese Text Retrieval with Unsupervised Word Segmentation

We further apply self-supervised word segmentation to Chinese text retrieval to build
adaptable and robust Chinese text retrieval systems. This method combines the
advantages of a traditional dictionary based approach, character based approach, and
mutual information based approach, while overcoming many of their shortcomings.
Experiments on TREC-5 and TREC-6 data sets show improved performance over
these traditional approaches. Our method is completely language independent and
unsupervised, which provides a promising avenue for constructing multi-lingual or
cross-lingual information retrieval systems that are flexible and adaptive. We also
investigate the relationship between word segmentation performance and retrieval
performance in Chinese text retrieval. We find that, counter-intuitively, retrieval
performance is not monotonically related to segmentation performance. Although the

segmentation performance of the self-supervised method is not as accurate as other
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supervised learning systems, it nevertheless allows superior retrieval performance.

1.3 Thesis Organization

We intend to make the thesis self-contained. In addition to presenting new results, each
chapter also serves as a tutorial introduction to the topic it addresses. The rest of the
thesis is organized as follows. In Chapter 2 we introduce the use of n-gram models in
information retrieval. In Chapter 3 we present background on statistical n-gram language
modeling. In Chapter 4 we describe a language and task independent text classification
approach based on statistical n-gram language modeling. In Chapter 5 we investigate an
unsupervised approach to word segmentation where we present a mutual information based
lexicon pruning strategy, a hierarchical EM approach for continuous speech segmentation,
and a self-supervised EM algorithm for Chinese word segmentation. In Chapter 6 we
investigate how self-supervised word segmentation can be used to build robust and adaptive
Chinese information retrieval systems. Finally, in Chapter 7 we conclude by summarizing
the thesis, pointing out ongoing research problems, and providing an outlook for future

research.



Chapter 2

N-Gram Models in Information

Retrieval

In this chapter, we present the concept of n-grams, and discuss past research on n-gram
models in text retrieval, text classification and other applications. We demonstrate a
limitation of traditional text classification approaches that employ n-gram features, which
motivates us to consider a better framework for n-gram models based on statistical language

modeling.

2.1 Basic Concepts

Informally, an n-gram is a concatenated sequence of n tokens (characters or words in text).
Formally, given a token sequence S = t1ts...t;...tx, where N is the length of sequence S
and t; is an element from a finite vocabulary 4, an n-gram is defined to be any segment of

S that has length n. The ** n-gram of sequence S is denoted as t;t;11...t;4n—1. A sequence
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S of length N has N —n+ 1 n-grams; that is, S has N uni-grams, N — 1 bi-grams, N — 2
tri-grams, etc. !
Clearly, the number of possible n-grams grows exponentially with n. Let |.A] be the

size of vocabulary A and let A(n) be the number of possible n-grams. Then we have

A(n) = A"

However, only a small portion of n-grams can be observed in any real application. This

leads to the sparse data problem. Quoting a paragraph from [71]

“...even for a very large data collection, the maximum likelihood estimation
method does not allow us to adequately estimate probabilities of rare but nev-
ertheless possible word sequences since many sequences occur only once; many

more do not occur at all...”

To give an idea of how serious the sparse data problem is, Table 2.1 presents the statis-
tics obtained on an English data set used in Chapter 4. The vocabulary has 95 characters,
including uppercase and lowercase alphabetic characters, digits, and punctuation marks.
We can see that as n grows, only a very small portion of n-grams are observed.

We will return to the sparse data problem in Chapter 3. Below we discuss research on
n-gram models in information retrieval, particularly in text retrieval and text classification.
Here, the concept of an n-gram model is broad. Any model that employs n-gram features
could be considered as an n-gram model. The use of character n-grams offers an intuitive,

yet powerful, method of representing documents. N-grams can be defined at the word

For n < 4, Latin names are commonly used as prefixes for n-grams; for example, uni-gram, bi-gram,
tri-gram. For n > 4, numeric prefixes are used instead; for example, 4-gram, 5-gram, 6-gram, etc.
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n 95™ | observed number | percentage of observed n-grams (%)
1 95 95 100
2 9,025 8,684 96.2
3 857,375 332,848 38.8
4 81,450,625 1,241,920 1.5
5 7,737,809,375 2,374,071 0.03
6 | 735,091,890,625 3,800,519 ~0

Table 2.1: Sparse data problem in n-gram models

level or at the character level. However, character level n-gram models offer the following

benefits and have been successfully used in many information retrieval problems.

e Language independence and simplicity: Character level n-gram models are applicable

to any language, and even non-language sequences such as music or gene sequences.

e Robustness: Character level n-gram models are relatively insensitive to spelling vari-

ations and errors, particularly in comparison to word features.

e Completeness: The vocabulary of character tokens is much smaller than any word

vocabulary and normally is known in advance. Therefore, the sparse data problem

is much less serious in character n-gram models of the same order.

2.2 N-Gram Models in Text Retrieval

N-gram models have been extensively used in text retrieval, particularly in Asian language

text retrieval, such as Chinese and Japanese. A text retrieval process is typically divided

into three stages. The first stage is document indexing where content bearing terms are

extracted from the document text. The second stage is index weighting which is used to
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enhance relevance of the documents retrieved for a query. The final stage ranks documents
relative to the query according to a similarity measure. 2

At the indexing stage, documents are normally represented as a bag of words. However,
in Chinese and Japanese, words are not explicitly delimited in text. One method for
avoiding word segmentation is to use n-gram character features. In Chinese, the bi-gram
model is often found to be very effective. In this case, all overlapping bi-grams that occur in
the documents are indexed [77], which avoids the word segmentation problem but creates
a large index file and increases retrieval time. We will return to n-gram based Chinese

text retrieval in Chapter 6. For English text retrieval, n-gram models are used for phrase

weighting [143].

2.3 N-Gram Models in Text Classification

Many researchers have realized the importance of n-gram models for designing language
independent text categorization systems [20, 35, 65]. However, they have typically used
n-grams as features for a traditional feature selection process, and then deployed classi-
fiers based on calculating feature vector similarities. Feature selection in such a classical
approach is critical, and many of the required procedures, such as stop word removal, are
actually language dependent. In most current text classifiers, feature engineering has been
found to be critical [126].

The first attempts to employ n-gram features to obtain language independent text

classifiers are presented in [20, 35]. In those work, a test document d and a class label ¢

2Three different kinds of text retrieval models have been developed so far: similarity based model (such
as vector space retrieval models [122, 123]), probabilistic relevance models [117] and language modeling
based models [82, 113].
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are both represented by vectors of n-gram features, and a distance measure between the
representations of d and c is defined. We refer this method as the ad hoc n-gram based

approach. The final classification decision is made according to
¢* = argmin distance(d, ¢) (2.1)
ceC

Different distance metrics can be used in this approach. A simple re-ranking distance used
by Cavnar and Trenkle [20] is referred to as the out-out-place (OOP) measure. In this
method, a document is represented by an n-gram profile that contains selected n-grams
sorted by decreasing frequencies. For each n-gram in a test document profile, we find its
counterpart in the class profile and compute the number of places its location differs. The
distance between a test document and a class is computed by summing the individual
out-of-place values, as shown for example in Figure 2.1. For example, the 2-gram “TH”
has distance 0 since it has the same rank in both the document and class profiles. The
tri-gram “ING” has distance 1 since it has rank 2 in the document but has rank 3 in the
class profile. The 2-gram “ED” is not found in class profile and therefore has a distance
set to a default value of 1000. (We set the default value to be the maximum number of
features observed.)

The standard rationale for feature selection is that current text classifiers do not cope
efficiently with the feature explosion, and therefore have to rely on a feature selection
procedure to reduce the number of features. However, feature selection can lose a lot of
useful information by discarding uncommon features. Zipf’s law [87, 155] states that, in
natural language text, the frequency of a term f is inversely proportional its rank, ry; that

is,
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Category Profile = Document Profile Out of

Place
TH | ——— | TH 0
ON ING 1
ING = ON 1
AND ED 1000
LE PER

Figure 2.1: Example of an out-of-place distance calculation.

log f~C —zlogry

where f is the frequency of a term having rank ry, z is a positive coeflicient (close to 1),
and C is a constant. Figure 2.2 and Figure 2.3 show Zipf’s phenomena in the English and
Greek data sets used in Chapter 4. From these figures one can see that a few terms occur
very frequently whereas most terms occur rarely (i.e., a heavy tail).

Zipf’s law has been found to be prevalent in many domains such as natural language
processing, text compression, finance and business. There are important implications of
Zipf’s law for text classification. One common idea is to use it for feature selection since
the most frequent terms occupy a large portion of all terms [121]. However, this can be a
misuse, since there is a deeper meaning of Zipf’s law: most terms do not occur frequently
in text, and therefore there is a large number of terms that are observed infrequently,
and even a larger number of terms that are never observed at all. Thus, discarding all

uncommon terms can lose a significant amount of useful information for text classification.
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Figure 2.2: Zipf’s law on English 20 news data set
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Figure 2.3: Zipf’s law on Greek authorship data set
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A popular feature selection technique is based on calculating information gain by de-
termining the average mutual information of a word between all classes [33, 70]. The
information gain of a word w; is calculated as

Pr(w;, ¢;)

Z(wi,C) = ) Pr(wic;)log Pr(w;)P(c;)

¢
Words are sorted by their information gain and the top ranked words are selected.
Although this feature selection method works well with traditional text classifiers [90, 70,
it still loses significant information by discarding uncommon features. Figure 2.4 illustrates
this effect. The X-axis is the rank of features sorted according to their information gain
and the Y-axis is the normalized cumulative information gain. Typically, the first 5000
features only capture about 40% of the information and therefore discarding all remaining
features loses up to 60% of the information. A better way to deal with features is to use
as many as possible. However, traditional text classifiers do not deal with this situation
well. Another drawback of feature selection is that classifiers are sensitive to the number
of selected features. Too few features cannot capture enough information, but too many
features can cause over-fitting problems. Both will decrease classification performance. To
obtain an optimal feature subset, normally a heuristic greedy search is used, which involves
making many ad hoc decisions. Figure 2.5 illustrates the sensitivity of the ad hoc n-gram
text classifier to the number of features selected, where the X-axis is the number of selected
features and the Y-axis is the classification performance.
In summary, current text classifiers cannot cope efficiently with the feature explosion
problem. Therefore, we should find a way to use as many features as possible, while still

maintaining efficiency and effectiveness. This motivates us to consider statistical n-gram
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Figure 2.4: Cumulative information of features

language modeling as a general text classification approach.

2.4 N-Gram Models in Other Applications

In addition to text retrieval and text classification, n-gram models have also been suc-
cessfully applied to many other domains. These include adaptive filtering [137], language
identification [124], missing phoneme guessing [153], music retrieval [40] and computational

immunology [88], among others.
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Figure 2.5: Influence of number of feature selected
2.5 Summary

In this chapter, we have introduced some of the basic concepts of n-gram models. We have
also briefly reviewed past research on n-gram models for text retrieval, text classification
and other applications. In particular, we examined the shortcomings of current n-gram
based text classifiers, which motivates us to use a better framework to consider the feature

explosion problem — statistical n-gram language modeling.



Chapter 3

Statistical n-Gram Language

Modeling

In this chapter, we present some background on statistical language modeling, particularly
on n-gram language models. We also briefly introduce our statistical n-gram language mod-
eling toolkit. This chapter forms the basis for Chapter 4, where we will present the Chain
Augmented Naive (CAN) Bayes classifier, based on back-off statistical n-gram language

modeling.

3.1 A Brief History of Language Modeling

Statistical language modeling was first investigated in the context of speech recognition. A
speech recognition system is given a sequence of speech signals A, from which it attempts

to recognize an uttered sequence of words W. The process of speech recognition can be

18
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formulated as follows.

W* = arg max Pr(W|A) (3.1)

= arg max Pr(A|W) Pr(W) (3.2)

In speech recognition, Pr(A|W) is called the acoustic model and Pr(W) is called the
language model. Pr(W) computes the prior probability of a word sequence W. Without a
language model, a speech recognition system will typically demonstrate poor performance.

For example, the following two word sequences may have similar acoustic signals.

word sequence 1: Let’s go there

word sequence 2: Let’s go hair

An acoustic model alone can not discriminate between these two word sequences. How-
ever, with the introduction of language model P(W), these two sentences might be easily
discriminated, since “let’s go there” is a much more likely word sequence than “let’s go
hair”. Figure 3.1 illustrates the architecture of a simple speech recognition system.

In general, statistical language modeling is concerned with determining the probability
of naturally occurring word sequences in a language. Although the traditional motivation
for language modeling has come from speech recognition, statistical language models have
recently become more widely used in many other application areas, such as information
retrieval, machine translation, optical character recognition, spelling correction, document
classification, information extraction, and bio-informatics.

The goal of language modeling is to predict the probability of natural word sequences,

W = wiws...wy; or more simply, to put high probability on word sequences that actually
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Input Speech Signals
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Let’s go there ,

Figure 3.1: Speech Recognition

occur (and low probability on word sequences that never occur). The quality of a language
model should be measured by its impact on the actual application at hand. For example,
in speech recognition, the quality of a language model should be measured by how much it
improves recognition accuracy. However, since speech recognition also involves a complex
acoustic model, evaluating the quality of a language model in terms of recognition accuracy
is complicated. In practice, people measure the quality of a language model by its empirical
entropy (or perplexity) on test data. Given a word sequence wjws...wy to be used as a

test corpus, the quality of a language model can be measured by the empirical perplexity
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and entropy scores on this corpus [4]

N
1
. N
Perplexity = gpr(wilwlmwi—l) (3.3)
Entropy = log, Perplexity (3.4)

The goal is to obtain small values of these measures. Although these measures have received
criticism and some new measures have been proposed [29], they are still the standard
measures used in the language modeling literature.

The simplest and most successful basis for language modeling is the n-gram model
wherein a word is assumed to depends only on the previous n — 1 words. Many language
models have been proposed in the literature to improve a basic n-gram models. These
more sophisticated techniques include link grammars [81], sentence mixtures [67], deci-
sion trees, clustering [16], caching [68, 29], skipping models [119, 129], latent semantic
analysis [8], structured language models [23, 22|, neural network models [10], maximum
entropy models [119, 74|, and latent maximum entropy language models [146, 147]. The
two references [120, 52] provide a thorough overview and systematic investigation of cur-
rent techniques. However, basic language modeling research remains a hard problem. The
improvements obtained by these sophisticated language models often do not justify their
added complexity. In many situations, the n-gram language model is still the best choice
in practice. Although basic language modeling research is hard, language modeling is at-
tracting increasing attention recently because it has been successfully applied to many real
world problems.

Below we will introduce n-gram language modeling in more detail.
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3.2 N-Gram Markov Language Models

Note that by the chain rule of probability we can write the probability of any word sequence

as
N

Pr(wyws...wy) = H Pr{w;|w;...w;—1) (3.5)

i=1
An n-gram model approximates this probability by assuming that the only words relevant

to predicting Pr(w;|w;...w;—1) are the previous n — 1 words; that is, it assumes
Pr(wi|w1...wi_1) = Pr(wi|w,~_n+1...wi_1)

A straightforward maximum likelihood estimate of n-gram probabilities from a corpus is

given by the observed frequency

3 Wi~ Wy
Pr(wi|wi_n+1...w¢_1) = ##E'l(uz Z—:l wz)l)
i1 e Wi—

(3.6)

where #(.) is the number of occurrences of a specified gram in the training corpus.
Although one could attempt to use these simple n-gram models to capture long range
dependencies in language, attempting to do so directly immediately creates sparse data
problems. Using grams of length up to n entails estimating the probability of |.A|™ events,
where |A| is the size of the word vocabulary. This quickly overwhelms modern compu-
tational and data resources for even modest choices of n (beyond 3 to 6). Also, because
of the heavy tailed nature of language (i.e. Zipf’s law) one is likely to encounter novel n-
grams that were never witnessed during training in any test corpus. This is the sparse data

problem mentioned in Chapter 2. Therefore some mechanism for assigning non-zero proba-
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bility to novel n-grams is a central and unavoidable issue in statistical language modeling.
The standard approach to smoothing probability estimates to cope with the sparse data
problem (and to cope with potentially missing n-grams) is to use some sort of interpolated

or back-off estimator [25, 71, 96, 149].

3.2.1 Smoothing Models
Linear Interpolation Model

A linear interpolated model is a linear combination of several different order n-gram models.
Pr(wl-lw,-_nﬂ...wi_l) = )\PT‘ML(wilwi_n+1...wi_1) + (1 - )\) Pr(wilwi_n_l_z...wi_l)

where Pr sz (w;|wi—pt1...w;—1) is the maximum likelihood estimate and A is its weight which

is normally computed by hold-out estimation.

Back-off Model

A back-off n-gram model [71] is defined as

(
Pr(wi|wi_n+1...wi_1),

Pr(wi|w¢_n+1...wi_1) = < " (37)
ﬂ(wi_n+1...’wi_1) X Pr(wi|wi~n+2...wi_1),

otherwise

where

> discounted # (wi—p41---W;
Pr(wi|wi_n+1...wi~1) = #(w 3‘:&-5 1wn.+11) 1,)
i—n41e. Wi—

(3.8)
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and B(w;_p41...w;_1) is a normalization constant, calculated to be

1- Z P;r(a:[w,-_nﬂ...wi_l)
T (Wi—n 1. Wi—12)>0
B(wi~n+1...wi_1) = ( W1 T)> = (39)
1-— Z Pr(m|wz-_n+2...w,~_1)

Tt (Wimng1.owi—12)>0

The derivation of the constant S(w;—p11...w;~1) is shown in Appendix A.

3.2.2 Discounting Methods

Different methods can be used for computing the discounted probability (Equ. (3.8)).
Typical discounting techniques include absolute smoothing, linear smoothing, Good-Turing

smoothing, and Witten-Bell smoothing.

Absolute discounting

In absolute discounting, the frequency of a word is reduced by a constant ¢. The probability

of w; given w;_p41...w;—1 is then calculated as:

R Wi—p+1...W;) — ¢
Pr(wilwi—nt1...wi1) = %;g(@;ni 1;)) 1)
i—n e g —

where c is often defined as (see [97] for derivation):

n

T ong+2ny

Here n, denotes the number of words that occur 7 times. The definition of n, also applies

to the other smoothing techniques below.
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Linear discounting

In linear discounting, the probability of a word w; given w;_p41...w;—1 is calculated as:

R #(wi_n+1...wi)
P Hw— eWi—1) =
I‘(wz |wz n41---Ws 1) o #(wi-—n+1 .--wi-—l)

where a is defined as (see [97]):

=1-2
@ N

Here N denotes the number of events (uni-grams).

Good-Turing discounting

In Good-Turing discounting, the frequency r is discounted as (see [71, 87, 92, 93]):

GT, = (r + 1)t

Ty
where the probability of w; given w;_p4+1...w;—; is calculated as:

A GTh(w;_pprwi
Pr(wi|wi—ni1...wi—1) = #(w#(w::ﬂw.w i)
i1 Wie
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Witten-Bell discounting

Witten-Bell discounting * is similar to the linear discounting. The probability of a word

w; given w;_p11...w;_; is calculated as:

#(wi-—n+1---wz’)
#(wi—n+1--~wi—l)

].Sr(wi|wi_n+1...wi_1) =

where « is defined differently as (see [149]):

C
#(Wimnt1...Wimy) + C

a=1-—

Here C' denotes the number of distinct words that can follow w;_py1...w;_; in the training

data.

3.3 Discussion

The language modeling techniques described above use individual words as the basic unit,
although one could instead consider models that use individual characters as the basic
unit. The remaining details remain the same in this case. The only difference is that the
character vocabulary is always much smaller than the word vocabulary, which means that
one can normally use a much higher order, n, in a character-level n-gram model (although
the text spanned by a character model is still usually less than that spanned by a word

model). The benefit of the character-level model is that it avoids the need for explicit word

Witten-Bell smoothing is a misnomer since it was actually invented by Alistair Moffat, and is called
method C in PPM text compression. We are grateful to William Teahan for pointing this out. (personal
communication)
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segmentation in the case of Asian languages, and thus achieves language independence. In
fact, the basic unit in language modeling need not only be words or characters, it can
also be other non-language units after some transformation. For example, speech can be
transformed into sequences of phonemes, pictures can be transformed into sequences of 3x3
pixel combinations, musical scores can be transformed into sequences of musical symbols,

Web logs can be transformed into sequences of objects [61], etc.

3.4 The Waterloo Statistical LM Toolkit

As part of the thesis, I have implemented a statistical n-gram language modeling toolkit
in C++4. This toolkit retains most of the functionalities of the CMU-Cambridge language
modeling toolkit [30]. However, our toolkit can work at both the word level and character
level to achieve language independence and domain independence in many applications
and it also considers the special coding requirements of Chinese and Japanese. Use of the
Waterloo LM toolkit is very similar to use of the CMU toolkit. In Appendix B we will
show some of the functionalities and a typical use of the language modeling toolkit. The
flowchart of a typical usage is illustrated in Figure 3.2 and an example usage is presented

in Appendix B.

3.5 Summary

In this chapter, we have presented some background on Markov n-gram models, which
will serve as a base for Chapter 4. As part of the thesis, I have implemented a language

independent statistical n-gram language modeling toolkit.
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Figure 3.2: Typical usages of n-Gram language modeling toolkit
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Chapter 4

Language and Task Independent

Text Classification

In this chapter, we present a simple approach to language and task independent text cate-
gorization learning, based on statistical n-gram language modeling. The result is the Chain
Augmented Naive (CAN) Bayes classifier, a generalized naive Bayes Classifier which allows
for a local Markov dependence among observations. Our approach is based on simple infor-
mation theoretic principles and achieves effective performance across a variety of languages
and tasks without requiring significant feature selection or extensive pre-processing. To
demonstrate the language and task independence of the proposed technique, we present ex-
perimental results on several languages—Greek, English, Chinese and Japanese—in several
text categorization problems—language identification, authorship attribution, text genre
classification, topic detection, and sentimental classification. Our experimental results
show that the simple approach achieves state of the art (or significantly better) perfor-

mance in most cases.

30
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4.1 Introduction

Text categorization concerns the problem of automatically assigning given text passages
(paragraphs or documents) into predefined categories. Due to the rapid explosion of texts
in digital form, text categorization has become an important area of research, owing
to the need to automatically organize and index large text collections in various ways.
Such techniques are currently being applied in many areas, including language identifica-
tion [124], authorship attribution [135], text genre classification [73, 135], topic identifica-
tion [42, 85, 90, 152], and subjective sentiment classification [142].

Many standard machine learning techniques have been applied to automated text cate-
gorization problems, such as naive Bayes classifiers, support vector machines (SVM), linear
least squares fit models, neural networks, and K-nearest neighbor classifiers [152, 127]. A
common aspect of these approaches is that they treat text categorization as a standard
classification problem, and thereby reduce the learning process to two simple steps: feature
engineering, and classification learning over the feature space. Of these two steps, feature
engineering is critical to achieving good performance in text categorization problems. Once
good features are identified, almost any reasonable technique for learning a classifier seems
to perform well [126].

Unfortunately, the standard classification learning methodology has several drawbacks
for text categorization. First, feature construction is usually language dependent. Various
techniques such as stop-word removal or stemming require language specific knowledge to
design adequately. Moreover, whether one can use a purely word-level approach is itself a
language dependent issue. In many Asian languages such as Chinese or Japanese, identi-

fying words from character sequences is hard, and any word-based approach must suffer
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added complexity in coping with segmentation errors. Second, feature selection is task
dependent. For example, tasks like authorship attribution or geﬁre classification require
attention to linguistic style markers [135], whereas topic detection systems rely more heav-
ily on bag of words features. Third, there are an enormous number of possible features
to consider in text categorization problems, and standard feature selection approaches do
not always cope well in such circumstances. For example, given an enormous number of
features, the cumulative effect of uncommon features can still have an important effect on
classification accuracy, even though infrequent features contribute less information than
common features individually. Consequently, throwing away uncommon features is usu-
ally not an appropriate strategy in this domain (see Chapter 2 for detailed discussion of
this). Finally, by treating text categorization as a classical classification problem, standard
approaches ignore the fact that texts are written in natural language, meaning that they
have many implicit regularities that can be well modeled with specific tools from natural
language processing.

We will provide a simple approach based on statistical n-gram language modeling to
address the above mentioned issues, resulting in the chain augmented Naive Bayes classifier.
The rest of the chapter is organized as follows. We first discuss two well known text
classifiers in Section 4.2, namely support vector machine (SVM) classifiers and naive Bayes
classifiers. Then in Section 4.3 we present our chain augmented Naive Bayes classifier
based on statistical language modeling. After that, we evaluate the chain augmented naive
Bayes classifier on various languages and various text classifications tasks in Section 4.4.

Finally, we present a detailed discussion and analysis in Section 4.5.
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4.2 Traditional Text Classifiers

Text classification is the problem of assigning a document D to one of a set of |C| pre-
defined categories C' = {¢1, ¢, ..., ¢jc}. Normally a supervised learning framework is used
to train a text classifier, where a learning algorithm is provided a set of N labeled training
examples {(d;,c;) : ¢ = 1,...,N} from which it must produce a classification function
F : D — C that maps documents to categories. Here d; denotes the ith training document
and ¢; is the corresponding category label of d;. We use the random variables D and C
to denote the document and category values respectively. Support vector machine (SVM)
classifiers and naive Bayes classifiers are currently considered the state of the art text

classifiers [127].

4.2.1 Support Vector Machine Classifiers

Support vector machine (SVM) classifiers are based on Vapnik’s structural risk minimiza-
tion principle [144]. Given a set of N linearly separable training examples S = {z; €
R"i = 1,2,..., N}, where each sample belongs to one of the two classes, y; € {+1, -1},
the SVM approach seeks the optimal hyperplane w -  + b = 0 that separates the positive
and negative examples with the largest margin. The problem can be formulated as solving

the following quadratic programming problem (19, 144].

1
minimize —2—||wH2 (4.1)

subject to yi(w-z;+b) 21

Figure 4.1 gives an illustration of an SVM linear classifier.
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Figure 4.1: Illustration of an SVM classifier, showing examples of separating hyper-planes
(solid lines), optimal hyper-plane (bold solid line) and support vectors (data on the dashed
lines). The dashed line identifies the maximum margin.

The basic SVM formulation can be extended to the nonlinear case by using nonlinear
kernels. Interestingly, the complexity of an SVM classifier representation does not depend
on the number of features, but rather on the number of support vectors (the training
examples closest to the hyperplane). This property makes SVMs suitable for large dimen-
sional classification problems [70]. SVMs are often considered to be the statc of the art
classification technique in many text classification problems [152].

A shortcoming of SVM classifiers is that they do not deal with unobserved features
well. They simply ignore all unobserved features by assigning them zero weight. Feature
smoothing for SVMs is not as straightforward as for probabilistic models, such as naive

Bayes classifiers, and remains an ongoing research problem.
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4.2.2 The Naive Bayes Text Classifier

Unlike SVMs, a generative probabilistic text classifier is formulated by first postulating
a joint probability model over documents d and class labels ¢, and then determining a
classification by solving the following decision problem: given a document d, determine

the class label ¢* that yields the highest posterior probability Pr(C = ¢|D = d).
¢ = argmax Pr(C =¢|D =d) (4.2)

Normally a generative model for text classification is formulated by a prior distribution
over class labels Pr(c) and a class conditional model over documents Pr(d|c). Therefore,

classification usually requires applying Bayes’ rule [41, Chapter 10]:

Pr(C=c¢) xPr(D=d|C=¢c)

Pr(C=c¢|D=d) = iD= d) (4.3)
To simplify the presentation, we re-write Equ. (4.3) as
Pr(cld) = Pr(c) x Pr(d|c) (4.4)

Pr(d)

Bayes’ rule decomposes the computation of a posterior probability into the computation
of a likelihood and a prior probability. In text classification, a document d is normally
represented by a vector of K attributes! d = (v, vz, ....vx). Computing p(d|c) in this case
is not generally trivial, since the space of possible documents d = (vj, v, ....uk) is vast.

To simplify this computation, the naive Bayes model introduces an additional assumption

1 Attributes are also called features. Feature selection is an important procedure in many classifiers
[126].
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that all of the attribute values, v;, are independent given the category label, ¢. That is, for
i # j, v; and v; are conditionally independent given c. This assumption greatly simplifies

the computation by reducing Equ. (4.4) to

H;il Pr(vj|c)

Pr(c|ld) = Pr(c) x =E)

(4.5)

Based on Equ. (4.5), the maximum a posterior (MAP) classifier can be constructed by

seeking the optimal category which maximizes the posterior Pr(c|d):

c* = arg max Pr(c|d) (4.6)
K
1 Pr(vjlc
= arg max Pr(c) x —IL—“% (4.7)
= argmax Pr(c) x HPr(vjlc) (4.8)

Note that the step from Equ. (4.7) to Equ. (4.8) is valid because Pr(d) is irrelevant to
category c. A MAP classifier (Equ. (4.2)) is optimal in the sense of minimizing zero-one
loss (i.e. misclassification error). If the independence assumption holds, then a classifier
based on Equ. (4.8) is also optimal [41].

The prior distribution Pr(c) can be computed from training data, or can also be used
to incorporate additional assumptions. Two commonly used prior distributions are the
Dirichlet distribution and the uniform distribution. When a uniform distribution is used

as the prior, the MAP classifier becomes equivalent to the maximum likelihood (ML)
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Figure 4.2: Graphical model of a naive Bayes classifier

classifier.

K
¢" = argmax jl:IlPr(vﬂc) (4.9)

Equ. (4.9) is called the mazimum likelihood naive Bayes classifier. There are several variants
of naive Bayes classifiers, including the binary independence model, the multinomial model,
the Poisson model, and the negative binary independence model [44]. It has been shown
that for text categorization applications, the multinomial model is most often the best
choice [44, 90], therefore we will only consider the multinomial naive Bayes model in this
thesis. Figure 4.2 gives a graphical representation of the multinomial naive Bayes model,
showing that each attribute node is independent of the other attributes given the class
label C.

The parameters of & multinomial naive Bayes classifier are given by © = {6 = Pr(v;|c) :

j=1.,K;c=1,.,|C|}. The likelihood of a given set of documents D¢ for a given
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category c is given by
Nel .
Pr(D°©) = —— 1] (4.10)

where N7 is the frequency of attribute j occurring in D® and N¢ = 3 ; VP A maximum
likelihood estimate yields the parameter estimates

oo =

§ = (4.11)

Note that Equ. (4.11) puts zero probability on the attribute values that do not actually
occur in D¢ (i.e., N{ = 0). Unfortunately, a zero estimate can create significant problems
when we classify a new document, in particular, when we encounter a new attribute value
that has not been observed in the training corpus D°. To overcome this problem, Laplace
smoothing is usually used to avoid zero probability estimates in practice:

P Njc-i-aj

J = Ne¢ +a (412)

where a = ) ;@5 A special case of Laplace smoothing is add one smoothing [87, chapter
6] obtained by setting a; = 1. However, Laplace smoothing is not as effective in language
modeling as some other smoothing techniques [25]. We will show that more advanced
smoothing techniques can be used to improve naive Bayes classifiers, and therefore play an
important role in developing effective text classifiers using naive Bayes models.

Naive Bayes classifiers have been proven successful in many domains, especially in text

classification [86, 90, 117], despite the simplicity of the model and the restrictiveness of
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the independence assumptions it makes. Domingos and Pazzanni [39] point out that naive
Bayes classifiers can obtain near optimal misclassification error even when the indepen-
dence assumption is strongly violated. Nevertheless, it is commonly thought that relaxing
the independence assumption of naive Bayes ought to allow for superior text classifica-
tion [86], and it has been shown in practice that functionally dependent attributes can
indeed improve classification accuracy in some cases [47, 116].

A significant amount of research has been conducted on relaxing the naive Bayes in-
dependence assumption in machine learning research. A well known extension is the Tree
Augmented Naive Bayes classifier (TAN) [47] which allows for a tree-structured depen-
dence among observed variables in addition to the traditional dependence on the hidden
“root” variable. However, learning tree structured Bayesian networks is not trivial [72],
and this model has rarely been used in text classification applications. We will investigate
a convenient alternative that lies between pure naive Bayes and TAN Bayes models in the
strength of its assumptions; namely, the Chain Augmented Naive Bayes (CAN) model. A
CAN Bayes model simplifies the TAN model by restricting dependencies among observed
variables to form a Markov chain instead of a tree. Interestingly, it turns out that the
model that results is closely related to n-gram language models which have been widely
studied in statistical natural language modeling and speech recognition. Below, we will
augment the naive Bayes text classifier by including attribute dependencies that form a
Markov chain, and use techniques from statistical n-gram language modeling to learn and
apply these models. The result is a combination of naive Bayes and statistical n-gram

methods that yields simple yet surprisingly effective classifiers.
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4.3 Language Models as Text Classifiers

Our approach to applying language models to text categorization is to use Bayesian decision
theory, similar to the naive Bayes model. Assume we wish to classify a text d = wyws.... wn
into a category ¢ € C = {c1,...,¢¢}. A natural choice is to pick the category ¢ that has

the largest posterior probability given the text. That is,
¢* = argmax Pr(c|d) (4.13)
ceC

Using Bayes rule, this can be rewritten as

¢* = argmax Pr(c) Pr(d|c) (4.14)
ceC
N
= arg max Pr(c) ];! Pro(wi|Wi—pt1.--wi—1) (4.15)

Here, Pr(d|c) is the likelihood of d under category ¢, which can be computed by n-gram
language modeling. The likelihood is related to perplexity and entropy by Equ. (3.3) and
Equ. (3.4). The prior Pr(c) can be computed from training data or can be used to incorpo-
rate more assumptions, such as a uniform or Dirichelet distribution. Pre(w;|w;—ps1...Wi—1)

is computed using a back-off model:

( ~
Pre(w;|wi—nt1...wi—1),

if #c Wi— 1...wi) >0
Prc(wi|wi_n+1...wi_1) =Y ( m (416)

/Bc(wi—n+1---wi—l) X Prc(wilwi—n+2---wi——l)>

otherwise
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where #.(W;_n+1...w;) is the number of times of w;_,+1...w; occurs in all training documents

of category c, P}c(wi|w,-_n+1...wi_1) is the discounted probability calculated as

discounted #.(w;—nt1...W;)

PAT'C WilWi—pg1..- Wi—1 ) = 4.17
( I +1 1) #c(wi—n+1---w'i—l) ( )
and f.(W;—n41...-w;—1) is a normalization constant, calculated to be
1- Z P}c(ac|w,~_n+1...wi_1)
Bo( Wiy e Wioy) = —— Pt BP0 (4.18)
1-— Z Pro(z|wi—py2.. . wi-1)

w:#(wi_n+1 ...wi_1$)>0

Therefore, our approach is to learn a separate back-off language model for each category,
by training on a data set from that category. Then, to categorize a new text d, we supply
d to each language model, evaluate the likelihood (or entropy) of d under the model, and
pick the winning category according to Equ. (4.15). Figure 4.3 illustrates this procedure.
The parameters in the model are © = {#f = P}c(wi|wi_n+1...wi_1), B¢ = Be(Wi—pt1.--Wi—1) :
i=1,.,N;c=1,..,|Cl|}

The inference of an n-gram based text classifier is very similar to a naive Bayes clas-
sifier. In fact, n-gram classifiers are a straightforward generalization of naive Bayes: a
uni-gram classifier with Laplace smoothing corresponds exactly to the traditional naive
Bayes classifier. However, n-gram language models, for larger n, possess many advan-
tages over naive Bayes classifiers, including modeling longer context and applying superior
smoothing techniques in the presence of sparse data. Another notable advantage of the
n~-gram language modeling based approach is that it does not have an explicit feature selec-

tion procedure. Instead, it considers all possible n-grams as features and their importance
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Figure 4.4: Graphical model of a bi-gram chain augmented naive Bayes classifier

is implicitly considered by their contribution to the quality of language modeling (in the
sense of perplexity given in Equ. (3.3)). The back-off smoothing technique effectively deals
with the feature explosion.

In a naive Bayes text classifier, attributes (words) are considered to be independent
of each other given the category. However, in a language modeling based approach, this
is enhanced by considering a Markov dependence between adjacent words. Due to this
similarity, we refer the n-gram augmented naive Bayes classifier as a Chain Augmented
Naive Bayes classifier (CAN). A graphical model of a bi-gram augmented naive Bayes text
classifier is given in Figure 4.4, where each leaf node is a word occurring sequentially in a

document.

4.4 Experimental Comparison

We now proceed to present our results on several text categorization problems in different
languages. Specifically, we consider language identification, authorship attribution (on

Greek, Chinese and English), Greek genre classification, topic detection (English, Chinese,
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and Japanese) and sentimental classification.

4.4.1 Measuring Classification Performance

In many cases, classification can be carried out directly based on Equ. (4.2).2 However,
some classifiers such as SVMs, are specifically designed only for binary classification prob-
lems. For these classifiers, even given a single |C| category classification problem, we have
to convert it into a set of |C| binary classification problems. Probabilistic classifiers can
be directly used for classifying into |C| categories based on Equ. (4.2).

Different performance measures can be used to assess these two different unique clas-
sification approaches. For the sake of consistency with previous research, we experiment
with both approaches in different data. In the Chinese topic detection experiments, there
are 6 classes, so we formulate 6 binary classification problems. In Reuters topic detection
experiments, there are 10 classes, so we formulate 10 binary classification problems. In
both of these cases, we measure classification performance by micro-averaged F-measure.
To calculate the micro-averaged score, we formed an aggregate confusion matrix by adding
up the individual confusion matrices from each category. The micro-avcraged precision,
recall, and F-measure can then be computed based on the aggregated confusion matrix.

In other experiments, we measured overall accuracy and macro-averaged F-measure.
(Micro-averaged values are not available in these cases. ) Here the precision, recall, and
F-measures of each individual category can be computed based on a |C| x |C| confusion

matrix. Macro-averaged scores can be computed by averaging the individual scores. The

2In most problems we consider, each text can only belong to a unique category. However, in some
problems, such as Reuters-21578 data, an individual text can simultaneously belong to several categories
(multi-way classification). A multi-way classification problem is normally converted into multiple unique
classification problems, one for each possible category.
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overall accuracy is computed by dividing the number of correctly identified documents

(summing the numbers across the diagonal) by the total number of test documents.

4.4.2 Language Identification

The first text categorization problem we examined was language identification—a useful
pre-processing step in multi-lingual information retrieval. In our experiments, we consid-
ered one chapter of the Bible that had been translated into 6 different languages: English,
French, German, Italian, Latin and Spanish. In each case, we reserved twenty sentences
from each language for testing and used the remainder for training. For this task, with
bi-gram or greater character-level models and all of the available smoothing techniques, we
achieved 100% accuracy.

Language identification is probably the easiest text classification problem because of
the significant morphological differences between languages,® even when they are based on

the same character set. Other techniques can also achieve accurate performance [124].

4.4.3 Authorship Attribution

The second text categorization problem we examined was author attribution. A famous
example is the case of the Federalist Papers, of which twelve instances are claimed to have
been written both by Alexander Hamilton and James Madison [59]. Authorship attribution
is more challenging than language identification because the difference among authors is
much more subtle than that among different languages. To demonstrate the language

independence of our approach, we experiment on three different languages: Greek, English

3Language identification from speech is of course much harder.
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Code | Author Name | Train size (characters)
BO S. Alaxiotis 77295
B1 G. Babiniotis 75965
B2 G. Dertilis 66810
B3 C. Kiosse 102204
B4 A. Liakos 89519
B5 D. Maronitis 36665
B6 M. Ploritis 72469
B7 T. Tasios 80267
B8 K. Tsoukalas 104065
B9 G. Vokos 64479

Table 4.1: Authors in the Greek authorship attribution data set

and Chinese.

Greek data sets

Fuchun Peng

We considered a data set used by Stamatatos et al. [135] consisting of 20 texts written by
10 different modern Greek authors (totaling 200 documents). In each case, 10 texts from
each author were used for training and the remaining 10 for testing. The specific authors
that appear are shown in Table 4.1.

The results are shown in Table 4.2. In our experiments, we obtained the best perfor-
mance by using a tri-gram model with absolute smoothing. The best accuracy we obtained
is 90%. This compares favorably to the best accuracy reported by Stamatatos et al. [135]
of 72%. 4 The 18% accuracy improvement is surprising given the relative simplicity of our
method.

To compare the individual author categories, Table 4.3 gives the confusion matrix.

4Note that Stamatatos et al.’s measures of identification error and average error correspond to our
recall and overall accuracy measures respectively.
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[n] Absolute Laplace Good-Turing Linear Witten-Bell
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
0.57 | 053 |0.56| 051 |[055| 049 |0.55| 049 |0.55 | 0.49
085 084 |(082| 079 (08| 075 | 084 0.83 |0.84 | 0.82
090 089 |[070| 0.64 |0.79} 0.72 | 0.89| 088 | 0.89 | 0.87
087 | 085 |047) 039 [ 079} 072 |0.85)| 0.82 | 0.88 | 0.86
08 | 08 [035| 029 ;079 | 072 |087| 0.85 |0.86| 0.83
08 | 083 016| 010 {079 | 0.73 | 087 | 0.85 | 0.86 | 0.83

O U = QO DN =

Table 4.2: Results on Greek authorship attribution using character models

Comparing Table 4.3 to the original results [135, Table 6], shows that we obtain better
results in every category.

As a typical western language, Greek words are separated by white-spaces. We can
therefore also apply word level models to the Greek data. Table 4.4 shows the word level
results. The performmance goes up to 96%, which is better than character level models.

However, such improvement is not always observed as we will see in other experiments.

English data set

The English data used in our experiments is available from the Alex Catalogue of Electronic
Texts.> We used the 8 most prolific authors from this collection, shown in Table 4.5.

To reduce any sparse data problems we might face, we first converted the corpus to
lowercase characters and only used the 30 most frequent characters in the vocabulary,
which comprises over 99% of the character occurrences in the corpus. The best accuracy
we obtained was 98%, which was achieved by a 6-gram model using absolute smoothing.

This is excellent performance. However, it is probably due to the distinct writing styles of

Shttp://www.infomotions.com/alex/downloads/
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Computer Estimate

TrueLabel || B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | Recall
B0 8 2 0.8
B1 10 1.0
B2 8 1 1 0.8
B3 10 1.0
B4 10 1.0
B5 2 3 4 1 0.4
B6 10 1.0
B7 10 1.0
B8 10 1.0
B9 10 1.0

Precision || 1.00 | 0.83 | 1.00 | 1.00 | 0.77 | 1.00 | 0.91 | 1.00 | 0.77 | 0.91

Overall Accuracy: 0.90

Macro-average F-measure: 0.89 |

Table 4.3: Confusion matrix on the Greek authorship data using tri-gram model with
absolute smoothing

n | Absolute Laplace | Good-Turing Linear | Witten-Bell |
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Ace. | F-Mac | Ace. | F-Mac
11096| 095 (076 | 072 [ 093 | 092 [0.96| 0.95 | 0.61| 0.57
21096 | 095 [060| 056 | 095 094 095 | 094 |0.83] 0.78
31096 095 [054| 051 | 095 094 | 095 | 094 |083]| 0.78
41096 | 095 |056| 053 |095| 094 {095 | 094 |[084 | 0.8

Table 4.4: Results on Greek authorship attribution using word level models
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Author Name Training size
word(character)
EO Charles Dickens 1614258 (9033267)
E1 John Keats 49314 (335676)
E2 John Milton 146446 (868857)

E3 | William Shakespeare | 645605 (3642829)
E4 | Robert L. Stevenson | 1036108 (5687003)
E5 Oscar Wilde 102092 (585092)

E6 | Ralph W. Emerson | 384570 (2201546)
E7 Edgar Allan Poe 307710 (1785067)

Table 4.5: Authors appearing in the English authorship attribution data set.

these famous authors.

Chinese data

Authorship attribution in Chinese normally requires an initial word segmentation phase,
followed by a feature extraction process at the word level, as in English. However, word
segmentation is itself a hard problem in Chinese, and an improper segmentation may cause
insurmountable problems for later prediction phases. We avoid the word segmentation
problem by simply operating at the character level.

The Chinese corpus we used in our experiments was also downloaded from the Internet.®
Eight of the most popular modern Chinese martial art novelists were included in this study,
shown in Table 4.6. One or two novels was selected from each author to be used as training
data, and an additional 20 novels were used as a test set.

Note that a significant difference between Chinese and English (or Greek) is that the

Chinese character vocabulary is much larger than the English (or Greek) character vo-

Shttp://chineseculture.about.com/library/chinese/blindex.htm
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Author Name | Training size
(character)
Co Gu Long 1466286
C1 Huang Yi 1860555
C2 Jin Yong 979885
C3 | Liang Yusheng 1085179
C4) Wen RuiAn 536986
G5 Xiao Yi 875678
C6 | Chen Qinyun 857929
C7| Wo Losheng 1554689

Table 4.6: Authors appearing in the Chinese authorship attribution data.

cabularies. For example, the most commonly used Chinese character set contains 6763
characters. In our experiments, we encountered about 4600 distinct Chinese characters.
Therefore, to reduce the sparse data problems, we first selected the most frequent 2500
characters as our vocabulary, which comprised about 99% of all character occurrences.
The best overall accuracy we obtained was 94%, with a tri-gram language model using
Witten-Bell smoothing. Once again, this is effective performance, but possibly obtained

on an easy data set.

4.4.4 Text Genre Classification

The third problem we examined was text genre classification, which is an important ap-
plication in natural language processing and information retrieval [73, 84]. We considered
again a Greek data set used by Stamatatos et al. [135] consisting of 20 texts of 10 different
styles extracted from various sources (200 documents in total). For each style, we used 10
texts as training data and the remaining 10 as testing data. The 10 different text genres

and their original sources are shown in Table 4.7.
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code | Genre Source
0 Press editorial Newspaper TO BHMA
1 Press reportage Newspaper TO BHMA
2 Academic prose Journal of archives of hellonic pathology
3 Official documents High court decisions, ministerial decisions
4 Literature Various pages
5 Recipes Magazine NETLIFE
6 Curriculum Vitae Various pages
7 Interviews Newspaper TO BHMA
8 Planned speeches Ministry of defense
9 Broadcast news, scripted | Radio station, FLASH 9.61

Table 4.7: 10 Different Text Genres

The results of learning an n-gram based text classifier are shown in Table 4.8. The
86% accuracy obtained with bi-gram models compares favorably to the 82% reported
carlier [135], which again is based on a much deeper NLP analysis.

Again, we can apply word level models to Greek text genre classification. We obtain
81% accuracy using absolute smoothing and n = 1. Here the word level models are worse
than the character level models. Below, we will see more cases where character level models

are superior to word level models.

4.4.5 Topic Detection

The fourth problem we examined was topic detection in text, which is a heavily researched
text categorization problem [42, 85, 90, 152, 127]. Here we demonstrate the language inde-
pendence of the character based language modeling approach by considering experiments

on English, Chinese and Japanese data sets.
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n | Absolute Laplace | Good-Turing Linear | Witten-Bell |
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
0.31 055 (030! 054 (030 054 {030} 054 | 030 0.54
0.86| 08 |[072]| 069 060 | 052 |082] 081 |0.86| 0.86
077 | 075 | 050 041 065 | 059 079 077 | 0.85 | 0.85
069 | 065 }038| 029 |0.58 | 0.50 |0.74 | 0.69 | 0.76 0.74
0.66 0.61 0.38 ] 029 | 056 0.49 | 0.69 | 0.66 0.73 0.70
062 | 057 |038( 029 |049 ) 053 |067| 063 | 0.71 | 0.68
0631 058 (033! 021 1049 053 (066} 062 | 0701 0.68

=3} Oof O i COf DO bt

Table 4.8: Results on Greek text genre classification using character models

English Data

The English 20 Newsgroup data was originally collected and used for text categorization by
Lang [83] and has been widely used in topic detection research [90, 115].7 This collection
consists of 19,974 non-empty documents distributed evenly across 20 newsgroups. We use
the newsgroups to form our categories, and randomly select 80% of the documents to be
used for training and set aside the remaining 20% for testing. Table 4.9 shows the 20
categories appearing in the newsgroup data.

We considered text to be a sequence of characters, and learned character-level n-gram
models. The resulting classification accuracies are reported in Table 4.10. We can also
consider English text as a sequence of words and therefore also apply word models in
this case. The results are shown in Table 4.11. All results are averaged across 5 random
runs. In the character model, with tri-gram (or higher order) models, we consistently
obtain accurate performance, peaking at 89.13+0.33% accuracy in the case of 6-gram

models with Witten-Bell smoothing. We note that word-level models were able to achieve

Thttp://www.ai.mit.edu/” jrennie/20Newsgroups/
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Code | Newsgroup Code | Newsgroup
0 alt.atheism 10 | rec.sport.hockey
1 comp.graphics 11 | sci.crypt
2 comp.os.ms-windows.misc 12 | sci.electronics
3 | comp.sys.ibm.pc.hardware | 13 | sci.med
4 comp.sys.mac.hardware 14 | sci.space
5 comp.windows.x 15 | soc.religion.christian
6 misc.forsale 16 | talk.politics.guns
7 rec.autos 17 | talk.politics.mideast
8 rec.motorcycles 18 | talk.politics.misc
9 rec.sport.baseball 19 | talk.religion.misc

Table 4.9: English 20 Newsgroup data

88.2240.35% accuracy in this case. (Using the t-test, we find that the difference between
the results of character level models and word level models are statistically significant to
the a = 0.01 significance level. The associated p-value is 0.0027 and t-score is 4.2818.)
These results compare favorably to the state of the art result of 87.5% accuracy reported
elsewhere [115], which was based on a combination of SVMs with error correcting output
coding (ECOC).

Note that the word level model with Laplace smoothing and n = 1 is exactly equivalent
to the traditional Naive Bayes classifier. The accuracy is 84.93%, which is consistent with

previous findings [90].

Japanese Data

Similar to Chinese, Japanese topic detection is often thought to be more challenging than
in English, because words are not white-space delimited in Japanese text. This fact seems

to require word segmentation to be performed as a pre-processing step before further
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|n| Absolute Laplace Good-Turing Linear Witten-Bell

Acc. | F-Mac | Ace. | F-Mac | Acc. | F-Mac | Acc. | F-Mac Acc. F-Mac
0.2128 | 0.2034 | 0.2128 | 0.2033 | 0.2126 | 0.2032 | 0.2126 | 0.2032 | 0.2126 | 0.2032
0.6691 | 0.6505 | 0.6646 | 0.6451 | 0.6760 | 0.6569 | 0.6772 | 0.6584 | 0.6628 | 0.6437
0.8680 | 0.8635 | 0.8458 | 0.8385 | 0.8617 | 0.8571 | 0.8629 | 0.8596 | 0.8673 | 0.8621
0.8879 | 0.8849 | 0.8279 | 0.8197 | 0.8803 | 0.8775 | 0.8783 | 0.8760 | 0.8903 | 0.8870
0.8895 | 0.8867 | 0.7384 | 0.7267 | 0.8803 | 0.8764 | 0.8824 | 0.8806 | 0.8923 | 0.8896
0.8876 | 0.8852 | 0.6517 | 0.6453 | 0.8787 | 0.8759 | 0.8810 | 0.8794 | 0.8913 | 0.8883
0.8862 | 0.8831 | 0.5800 | 0.5759 | 0.8771 | 0.8742 | 0.8838 | 0.8821 | 0.8909 | 0.8875

~| Ol O i Wil DO =

Table 4.10: Topic detection results on English 20 Newsgroup data using character models

(n | Absolute Laplace Good-Turing | Linear | Witten-Bell
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. F-Mac { Acc. | F-Mac
0.8735 | 0.8694 | 0.8493 | 0.8412 | 0.8653 | 0.8612 | 0.8757 | 0.8717 | 0.8423 | 0.8343
0.8818 | 0.8781 | 0.4730 | 0.4718 | 0.8733 | 0.8686 | 0.8822 | 0.8790 | 0.8749 | 0.8711
0.8800 | 0.8766 | 0.3381 | 0.3416 | 0.8713 | 0.8668 | 0.8798 | 0.8769 | 0.8726 | 0.8693
0.8808 | 0.8774 | 0.3234 | 0.3274 | 0.8712 | 0.8667 | 0.8795 | 0.8766 | 0.8730 | 0.8699

O N =

Table 4.11: Topic detection results on English 20 Newsgroup data using word models
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| n| Absolute Good-Turing Linear Witten-Bell

Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
0331 029 [034] 029 |034| 029 | 034 | 0.29
0.66 0.62 |0.66| 0.61 j0.66| 0.63 0.66 0.62
0.7 | 072 075 072 {076 | 0.73 | 0.75 | 0.72
0811 077 |081| 076 |0.82]| 0.76 | 081 | 0.77
0.83 077 {083 0.7 083! 0.76 0.83 0.77
084 07 |083| 075 1083 ]| 075 |0.84 | 0.77
0.84| 095 [083| 0.74 083 | 0.74 |0.84| 0.76
0.83 0.74 083} 073 {083 073 |0.84| 0.76

O 3| O] U > W DO

Table 4.12: Japanese topic detection results

classification [1]. However, we avoid the need for explicit segmentation by simply using a
byte-level n-gram classifier.

We consider the Japanese topic detection data investigated by Aizawa [1]. This data set
was converted from the NTCIR-J1 data set originally created for Japanese text retrieval
research. The data has 24 categories. The testing set contains 10,000 documents dis-
tributed unevenly between categories. We have obtained the experimental results shown
in Table 4.12, which still show an 84% accuracy rate on this problem (for 6-gram or higher
order models). This is the same level of performance as that reported in [1], which uses an

SVM approach with word segmentation, morphology analysis and feature selection.

Chinese Data

Chinese poses the same word segmentation issues as Japanese. Word segmentation is also
thought to be necessary for Chinese text categorization [55], but we avoid the need again

by considering character level language models.

For Chinese topic detection we considered a data set investigated in He et al. [55]. The
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Code | Topic

0 Politics, Law and Society
Literature and Arts
Education, Science and Culture
Sports
Theory and Academy
Economics

O ] QO DO b

Table 4.13: Chinese topics

corpus in this case is a subset of the TREC-5 data set created for research on Chinese
text retrieval. To make the data set suitable for text categorization, documents were first
clustered into 101 groups that shared the same headline (as indicated by an SGML tag)
and the six most frequent groups were selected to make a Chinese text categorization
data set. Following earlier researchers [55, 56], we converted the problem into 6 binary
classification problems. In each case, we randomly selected 500 positive examples and then
selected 500 negative examples evenly from among the remaining negative categories to
form the training data. The testing set contains 100 positive documents and 100 negative
documents generated in the same way. The training set and testing set do not overlap and
do not contain repeated documents.

Table 4.14 shows the results of the character level language modeling classifiers. Ta-
ble 4.15 shows the results of using an SVM classifier. (We use the SV M'9ht [70] toolkit
with linear kernels.) The entries are micro-average F-measure. We observe a performance
of over 86.7% for this task, using bi-gram (2 Chinese characters) or higher order models.
SVM achieves stable performance of about 81.5%. We can see that SVM is robust to the
number of features in this case.

Note that Japanese and Chinese characters are both encoded with 2 bytes in a computer.
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| | Absolute | Laplace | Good-Turing | Linear | Witten-Bell
1 0.855 0.857 0.858 0.859 0.859
2| 0.867 0.798 0.862 0.860 0.859
3 0.864 0.794 0.859 0.859 0.862
4 0.866 0.801 0.860 0.863 0.862

Table 4.14: Results of character level language modeling classifier on Chinese topic detec-
tion data.

Feature # | Micro-F1
100 0.811
200 0.813
300 0.817
400 0.816
500 0.817
1000 0.817
1500 0.815
2000 0.816

Table 4.15: Results of the character level SVM classifier on Chinese data.
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A sequence of Chinese characters can be considered as a concatenated sequence of either
one-byte characters or two-bytes characters. In the Chinese experiments, we considered this
coding requirement (a slightly worse performance was obtained without this consideration
due to noise). However, in the Japanese experiments, we did not consider this requirement
and merely used byte-level n-gram models. The reason is that we have no knowledge of
Japanese and could not guarantee the correctness of character segmentation in this case.
This explains why the optimal context length in the Japanese results (Table 4.12) is about
twice that of the Chinese results (Table 4.14).

Reuters-21578 data experiments

Unlike other data sets, Reuters-21578 data is used for multiway classification, where each
document is allowed to belong to more than one category.® The data set contains 12902
Reuters news wire articles. The documents are assigned to 135 topic categories. However,
some categories are empty and thus there are only 118 non-empty categories, among which
the 10 most frequent categories contain about 75% of the documents. There are several
ways to split the documents into training and testing sets: 'ModLewis’ split, 'ModApte’
split, and "ModHayes’ split. The "ModApte’ train/test split is widely used in text clas-
sification research. Using the 'ModApte’ split, the 10 most frequent categories and the
numbers of documents used for training, testing and reserved unused in each category are
listed in Table 4.16.

The results of micro-averaged F-measure are shown in Table 4.17 and Table 4.18 for

character level models and word level models respectively.

8The data set is publicly available at http://www.research.att.com/” lewis
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| category | training | test | unused |
earn 2877 1087 22

acq 1650 719 79
money-fx 538 179 82
grain 433 149 45
crude 389 189 54
trade 369 118 65

interest 347 131 33
wheat 212 71 23
ship 197 89 18
corn 182 56 15

Table 4.16: Reuters top 10 most frequent categories

| n | Absolute | Laplace | Good-Turing | Linear | Witten-Bell
1| 0.4213 0.4207 0.4207 0.4207 0.4207
0.6607 0.6731 0.6790 0.6651 0.6651
0.7816 0.8032 0.7873 0.7883 0.7805
0.8010 0.7229 0.8024 0.7969 0.8023
0.7964 0.6448 0.7932 (0.7855 0.7996
0.7832 0.6156 0.7839 0.7765 0.7884
0.7701 0.6131 0.7782 0.7697 0.7813

N O OY x| WD

Table 4.17: Results of the character level language modeling classifier on Reuters data

| n | Absolute | Laplace | Good-Turing | Linear | Witten-Bell ]
1] 0.7850 0.7973 0.7900 0.7880 0.7959
2 0.8152 0.7069 0.8124 0.8114 0.7935
3| 0.8137 0.6353 0.8135 0.8105 0.7952

Table 4.18: Results of the word level language modeling classifier on Reuters data
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Word level models marginally outperform character level models. Bi-gram or tri-gram
word level models are better than uni-gram models, which means that relaxing the inde-
pendence assumption in naive Bayes models also helps in this case. However, in previous
research, an SVM classifier obtained up to 92% accuracy [42], which was based on feature
selection and optimizing prior Pr(c) for each individual category. We did not optimize the
prior information and merely used uniform prior (that is, we put equal weight for positive

and negative category).

4.4.6 Sentimental Classification

The last text classification problem we examined is sentimental classification, an emerging
text clagsification task which judges the sentimental view of a given text. For example,
given a article from CNN, is it positive or negative for Bush’s policy? Are the comments
subjective or objective?

We use a set of movie review data originally constructed by Pang and Lee [103].° The
data set consists of 700 positive and 700 negative texts. Following [103], we use 3 fold
cross validation testing. The best results reported in [103] are 82.9% accuracy for an SVM
and 78.7% for naive Bayes. For this problem, we obtain 81.5% using word level language

models and 73% using character level language models.

9 Available on-line: http://www.cs.cornell.edu/people/pabo/movie-review-data/
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4.5 Analysis and Discussion

The perplexity of a test document under a language model depends on several factors.
The three most influential factors are the order, n, of the n-gram model, the smoothing
technique used, and the number of training documents. These factors significantly influence
the quality of a language model and thus may influence classification performance. We
will first discuss the relationship between language modeling quality and classification
performance. Then we will further analyze the influence of each individual factor. We will
also discuss other factors such as the influence of prior information Pr(c) in Equ. (4.15)

and whether character or word level models should be applied.

4.5.1 Relationship between Classification Performance and Lan-

guage Modeling Quality

Figures 4.5 shows the relationship between classification performance and language mod-
eling quality on the Greek authorship attribution task. (The other data sets have similar
curves.) The upper part of the figure shows classification performance and the lower part
shows language modeling quality measured by average entropy across all testing documents
(bits per character). We can see that classification performance is almost monotonically
related to languagemodeling quality. However, this is not absolutely true. Since our goal
is to make a final decision based on the ranking of perplexities, not just their absolute val-
ues, a slightly superior language model in the sensc of perplexity reduction (i.e. from the
perspective of classical language modeling) does not necessarily lead to a better decision
from the perspective of categorization accuracy.

The influence of language modeling can further be decomposed into three factors: or-
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Figure 4.5: Relationship between classification performance and language modeling quality

der of the n-gram model, smoothing techniques, and number of training documents. We

analyze these factors individually below.

4.5.2 Effects of n-Gram Order

Relaxing the naive Bayes independence assumption to consider local context dependencies
is one of the main motivations of the CAN Bayes model. The order n is a key factor in
determining the quality of n-gram language models. If n is too small then the model will
not capture enough context. However, if n is too large then this will create severe sparse
data problems. Both extremes result in a larger perplexity than the optimal context
length and decrease classification performance. Figures 4.6 illustrates the influence of
order n on classification performance in the previous five experiments (Greek authorship
attribution, Greek text genre classification, English topic detection, Chinese topic detection

and Japanese topic detection) using absolute smoothing. From the curves, one can see that
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Figure 4.6: Influence of the order n on classification performance

as the order increases, classification accuracy increases, presumably because the longer
context better captures the regularities of the text. However, at some point accuracy
begins to decrease and entropy begins to increase as sparse data problems begin to set in.
Interestingly, the effect is more pronounced in some experiments (Greek genre classification)
but less so in other experiments (topic detection under any language). The sensitivity
demonstrated in the Greek genre case could still be attributed to the sparse data problem

(over-fitting in genre classification could be more serious than other problems).

4.5.3 Effects of Smoothing Technique

Another key factor affecting the performance of a language model is the smoothing tech-
nique used. We illustrate the results on the 20 Newsgroup data sets with character level
and word level models in Figure 4.7 and Figure 4.8 respectively.

Here we find that, Laplace smoothing over-fits very quickly. Other smoothing tech-
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Figure 4.7: Results on the 20 Newsgroup data using character models
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Figure 4.8: Results on the 20 Newsgroup data using word models (Laplace smoothing is
not shown for clarity)
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niques perform similarly on character models but vary significantly on word level mod-
els. On word level models, absolute smoothing and linear smoothing outperform other
smoothing techniques. However, in character level models, for the most part, one can
use any standard smoothing technique (except Laplace smoothing) and obtain comparable
performance. One reason that the smoothing technique does not make a big difference for

character level models is that character level models have a very small vocabulary.

4.5.4 Influence of Training Size

Clearly, the size of the training corpus can affect the quality of a language model. Normally
with a larger training corpus more reliable statistics can be recovered which leads to better
prediction accuracy on test data. To test the effect of training set size we obtained an
additional 10 documents from each author in the group B Greek data set. In fact, this
same additional data has been used in [136] to improve the accuracy of their method from
72% to 87%. Here we find that the extra training data also improves the accuracy of our
method, although not so dramatically.

Figure 4.9 shows the improvement obtained for n-gram language models using absolute
smoothing. Here we can see that indeed extra training data uniformly improves attribution
accuracy. On the augmented training data the best model (tri-gram) now obtains a 92%
attribution accuracy, compared to the 90% we obtained originally. Moreover, this improves
the best result of 87% obtained earlier [136]. Our smaller relative improvement could be
due to the fact that it is harder to reduce a small prediction error. A similar phenomenon

also occurs with other smoothing techniques.
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Figure 4.9: Influence of training size on accuracy.

Task Character level | Word level
Greek authorship attribution 90% 96%
Greek genre detection 86% 81%
English topic detection (20news) 89.1% 88%
English sentimental classification 73% 81.5%

Table 4.19: Character level versus word level results

4.5.5 Character Level versus Word Level

For many Asian languages such as Chinese and Japanese, where word segmentation is
hard, character level CAN Bayes models are well suited for text classification because they
avoid the need for word segmentation. For Western languages such as Greek and English,
one can work at both the word and character levels. Table 4.19 compares character and
word level results on the Greek and English experiments.

In the Greek authorship attribution task and movie review sentimental classification
task, word level models significantly outperform character level models. However, in other

experiments, character level models outperform word level models. It seems that for in-
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formal texts, such as Newsgroup data and other on-line data, character models have an
advantage since that they can capture some regularities that word level models miss in
this case, such as spelling errors. By relaxing the context, character level models can also
capture regularities at the word level, and even phrase level regularities. However, it is
not clear whether a character or word model should be used for a specific text. Perhaps

combining the two levels could result in more robust and more accurate results.

4.5.6 Choice of Priors

The prior Pr(c) in Equ.(4.15) can be empirically computed from training data, or sometimes
can be assumed to be uniform if we do not know its true distribution. In the Japanese
topic detection experiments, the data had 24 categories and documents were distributed
unevenly between categories (with a minimum of 1747 and maximum of 53975 documents
per category). This imbalanced distribution could cause some difficulty if one assumed a
uniform prior over categories. However, with an empirical prior distribution learned from
training data, we observe that the results do not change significantly from simply using a
uniform prior. The comparison of using a uniform prior versus an empirical prior is shown
in Table 4.20 (with absolute smoothing). There is a significant improvement for uni-gram
models when using an empirical instead of uniform prior. However, the difference becomes
smaller and eventually can be ignored as higher order models are used. Basically, it is safe

to use a uniform prior in text classification tasks.
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| n | Uniform prior | Empirical prior |
1 0.33 0.38
2 0.66 0.67
3 0.75 0.76
4 0.81 0.81
5) 0.83 0.83
6 0.84 0.84
7 0.84 0.84
8 0.83 0.83

Table 4.20: Uniform prior or empirical prior on Japanese topic detection results

4.5.7 Overall Performance Compared to State of the art

The results we have reported here are comparable to (or much better than) the state of
the art results on the same data sets. For example, our 90% accuracy for Greek authorship
attribution is much better than the 72% reported earlier. Our 86% Greek genre classi-
fication accuracy is better than the 81%, which is based on a much more complicated
analysis. Our 89.13% accuracy on the 20 Newsgroups data set is better than the best
result, 87.5%, reported in [115] which is based on a combination of SVMs and error cor-
recting output coding (ECOC). Our 86.7% accuracy on the Chinese TREC data is better
than the 81.7% achieved by SVMs. Overall, the chain augmented naive Bayes classifier
works very well, even though it is a much simpler technique than these other methods and
it is not specialized to any particular data set.

However, language modeling based approach does not win in all cases. We also found
that in Reuters-21578 data, SVMs still outperform language modeling based classifiers. The
reason is that the sparse data problem in this data set is very severe in some categories (such

as corn, ship, and wheat). In these categories, a traditional SVM classifier with an explicit
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feature selection may have an advantage since the feature selection procedure may be able
to pick up a few words which are enough to distinguish the categories, while language
modeling approach does not have enough data to obtain reliable probability estimates.
Nevertheless, language modeling based classifiers still improve plain naive Bayes classifiers

in this case.

4.6 Relation to Previous Research

In principle, any language model can be used to perform text categorization based on
Equ. (4.14). However, n-gram models are extremely simple and have been found to be
effective in many applications. For example, character level n-gram language models can
be easily applied to any language, and even non-language sequences such as DNA and
music. Character level n-gram models are widely used in text compression—e.g., the PPM
model [7]—and have recently been found to be effective in text classification problems as
well [138]. The PPM model is a weighted linear interpolation n-gram models and has been
set as a benchmark in text compression for decades. Building an adaptive PPM model
is expensive however [7], and our back-off models are relatively much simpler. Using
compression techniques for text categorization has also been investigated elsewhere [9],
where the authors seek a model that yields the minimum compression rate increase when
a new test document is introduced. However, this method is found not to be generally

effective nor efficient [53]. In our approach, we evaluate the perplexity (or entropy) directly

on test documents, and find the outcome to be both effective and efficient.
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4.7 Summary

We have presented a simple approach for language and task independent text categoriza-
tion based on character level n-gram language modeling. The approach is evaluated on
four different languages and five different text categorization problems. Surprisingly, we
observe state of the art or better performance in most cases. We have also experimentally
analyzed the influence of different factors that can affect the accuracy of this approach, and
found that for the most part the results are robust to perturbations of the basic method.
The wide applicability and simplicity of this approach makes it immediately applicable to
any sequential data (such as natural language, music, DNA) and yields effective baseline
performance. The success of this simple method, we think, is due to the effectiveness
of well known statistical language modeling techniques, which surprisingly have had lit-
tle significant impact on the learning algorithms normally applied to text categorization.
Nevertheless, statistical language modeling is also concerned with modeling the semantic,
syntactic, lexicographical and phonological regularities of natural language—and would
seem to provide a natural foundation for text categorization problems. One interesting
difference, however, is that instead of explicitly pre-computing features and selecting a
subset based on arbitrary decisions, the language modeling approach simply considers all
character (or word) subsequences occurring in the text as candidate features, and implicitly
considers the contribution of every feature in the final model. Thus, the language modeling
approach completely avoids a potentially error-prone feature selection process. Also, by
applying character-level language models, one also avoids the word segmentation problems
that arise in many Asian languages, and thereby achieves a language independent method

for constructing accurate text categorizers.
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To us, these results suggest that basic statistical language modeling ideas might be

more relevant to other areas of natural language processing than commonly perceived.



Chapter 5

Language Independent
Unsupervised Lexical Learning and

Word Segmentation

In this chapter, we present a machine learning approach for automated lexical learning
based on the EM algorithm and n-gram models. The approach is language independent and
completely unsupervised. Thus it removes the necessity of manual lexicon construction and
can be easily adapted to other languages. Word segmentation is accomplished by a dynamic
programming algorithm (Viterbi decoding), which segments sequences dynamically based
on their context. We propose several methods to reduce the data sparse problem and allow
EM to escape local maxima. The proposed augmentations include mutual information
based lexicon pruning, a hierarchical approach to employing word structure information,

and a self-supervised method for lexicon construction.

72
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5.1 Introduction

Word segmentation is an important problem in many natural language processing tasks.
For example, a first step in speech recognition is to segment the continuous speech ut-
terance into word-like units for further processing. In many written Asian languages like
Chinese, Japanese, and Thai, word segmentation is also a problem. Unlike English and
other western languages where words are explicitly delimited by white-spaces, these Asian
language do not have any delimiters between words. Word segmentation is therefore a
key sub-problem of many language processing tasks (such as information retrieval and
machine translation) in these languages. Beyond natural language processing tasks, sim-
ilar segmentation problems have also recently arisen in bio-informatics where continuous
protein sequences need to be segmented into meaningful patterns.

Unfortunately, segmenting an input sentence into words is a nontrivial task. There
has been a significant amount of research on techniques for discovering word segmentation
boundaries; see for example [2, 3, 14, 13, 21, 27, 28, 36, 37, 49, 60, 69, 75, 76, 112, 133,
134, 154], among which there are at least two Ph.D. theses [36, 75]. The main idea behind
most of these techniques is to start with a lexicon that contains the set of possible words
and then segment a concatenated character string by optimizing a heuristic objective such
as maximum length match, mutual information, or maximum likelihood. This approach
implies, however, that one of the main problems in word segmentation is constructing the
original lexicon.

Lexicon construction methods can be classified as either supervised or unsupervised.
In supervised lexicon construction, one has to segment a raw unsegmented corpus by hand

and then collect all the words from the segmented corpus to build a lexicon. However,
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the supervised learning method for constructing a lexicon has received much criticism
because of its obvious disadvantages: First, the lexicon constructed by this method cannot
be complete. Second, the supervised lexicon construction method is not adaptive. That
is, the lexicon constructed in one domain is not applicable to another domain. Third, it
requires too much human labor to segment a large corpus manually.

Therefore many unsupervised methods have been proposed for segmenting raw char-
acter sequences into words with no boundary information. Brent [13] gives a good survey
of the area. Most current approaches are based on using some form of EM (expectation-
maximization) to learn a probabilistic speech or text model and then employing Viterbi-
decoding-like procedures to segment new speech or text into words. Another unsupervised
method that has been used in Chinese text retrieval is mutual information based segmenta-
tion [24]. This method limits words to be of length of most two characters and thus is not
a general word segmentation method. In this chapter, we focus on EM based approaches
only.

One reason that the EM algorithm is widely adopted for unsupervised learning is that it
is guaranteed to converge to a good probability model that locally maximizes the likelihood
or posterior probability of the training data [38]. For the problem of word segmentation,
EM is typically applied by first extracting a set of candidate n-grams from a given training
corpus [37], initializing a probability distribution over this set, and then using the standard
iteration to adjust the probabilities of the n-grams to increase the posterior probability of
the training data.

There are at least three problems with the standard EM approach. First, because

likelihood is usually defined by a product of individual chunk probabilities (making the
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standard assumption that segments are independent), the more chunks a segmentation
has, the smaller its likelihood will tend to be. For example, given a character sequence
sizeofthecity and a uniform distribution over n-grams, the segmentation sizeof|thecity will
have higher likelihood than segmentation size|of|the|city. Therefore, the maximum like-
lihood EM training procedure will prefer fewer chunks in its segmentation, and thus it
will tend to put a large probability on long non-word character sequences such as sizeof,
longtime and computerscience. If one can break such excessive agglomerations into short
legal words, such as size, of, long, time, computer and science, then the lexicon will be
much smaller and both training and segmentation should be improved.

Second, in continuous speech segmentation, there is a significant sparse data problem
in training large n-gram models. For example, if one wished to model all English words
of length up to 15 characters, 26 + 262 + - - - + 26'® n-grams would have to be considered
(in a naive model that only considers lower case characters). Although EM will give zero
probability to any unseen n-gram—and therefore eliminate most of them—it still typically
produces a very large lexicon. Due to the limited amount of training data it remains
difficult to estimate a probability distribution that is defined by so many free parameters.

Third, EM is known to have problems with getting trapped in poor local maxima
[38] and often achieves results that depend strongly on the distribution from which it is
initialized.

In this chapter, we propose several methods that can mitigate all three of these prob-
lems. In Section 5.4, we proposal a mutual information based lexicon pruning scheme to
address the three problems. We do this by detecting long n-grams that can be decomposed

into shorter n-grams without significantly reducing data likelihood, and delete these weakly
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connected long sequences from the lexicon. The rationale for lexicon pruning is not merely
to cope with sparse data, but also to reduce excessive word agglomerations (the second
problem) and help guide EM out of poor local minima (the third problem). As pointed
out by Brand [12], effective parameter pruning can help move EM into better subspaces
and enable further progress.

In Section 5.5, we then propose a two-level hierarchical EM method to segment words.
The idea is based on the simple intuition that words themselves are built out of an inter-
mediate vocabulary of morphemes (or phonemes in speech) which are in turn defined by
shorter structured character strings. For example, in English, words (like carelessly) are
composed of one to three morphemes, (e.g., care, less, ly), which are themselves composed
of one to five characters. To exploit this feature of natural text, we apply EM hierarchically
in two phases: first to learn a morpheme lexicon, and second to learn a word lexicon over the
base morpheme vocabulary. This hierarchical approach dramatically reduces the number
of free parameters in our probability model by reducing the number of candidate n-grams
t0 26 + 262 + - - - +26° + |G| + |G|? + |G|® (where |G| is the number of morphemes retained
in our model)—which substantially reduces the problem of sparse training data. Although
the idea of using morphemes/phonemes to detect word boundaries is not new [14, 13, 28],
previous work all assumes that the set of morphemes/phonemes is fixed beforehand and
therefore learns a word model over an established morpheme/phoneme vocabulary. Our
work is different in that we automatically learn the underlying morpheme/phoneme vo-
cabulary from a training set of unsegmented character/phone strings.

Finally, in Section 5.6, we propose a variant of the EM algorithm for segmenting Chi-

nese words, which is termed self-supervised learning because this approach can automat-
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ically identify the words in a core lexicon. The idea is based on a simple observation:
in the word segmentation problem, one can use known words to guide the recognition
of unknown words. For example, if one knows the word “computer” then upon seeing
“computerscience” it is natural to segment “science” as a new word. Based on this, we
propose a new unsupervised training method for acquiring probability models that accu-
rately segment Chinese character sequences into words. By automatically constructing a
core lexicon to guide unsupervised word learning, self-supervised segmentation overcomes
the local maxima problems that hamper standard EM training. Our procedure uses suc-
cessive EM phases to learn a good probability model over character strings, and then
prunes this model with a mutual information selection criterion to obtain a more accurate
word lexicon. The segmentations produced by these models are more accurate than those
produced by training with EM alone.

In the remainder of the chapter, we first introduce the EM algorithm and then show
how EM can be used for unsupervised lexicon learning. Then we proceed to introduce
mutual information based lexicon pruning, the hierarchical EM segmentation algorithm,

and the self-supervised Chinese word segmentation algorithm.

5.2 Learning from Unlabeled Data with EM

In many applications, labeled training data is not easy to obtain for supervised learn-
ing, while unlabeled data is abundant (e.g., on the Web). Unsupervised learning that
exploits unlabeled data for training is attracting increasing interest. Although research on
exploiting unlabeled data is still maturing, it has been receiving more attention recently.

Approaches to using unlabeled data for supervised learning include: expectation maxi-
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mization (EM) [38], co-training [11], adaptive regularization [125], active learning [141],
and transductive learning. EM, in particular, is widely used in density estimation from

unlabeled data in probabilistic models.

5.2.1 Problem Formulation

EM is a general method for finding locally maximum-likelihood estimates of the parameters
of an underlying distribution from data that is incomplete or has missing values.

Let us assume that a random variable X is observed and is independently identically
generated by some process parameterized by ©. We call X the incomplete data and assume
that a complete data tuple consists of Z = (X,Y) where Y is the missing component.
Assuming there are ¢ observations X = {z1, 2, ..., 2; }, then the goal of maximum likelihood
density estimation is to find an optimal ©* which gives the largest likelihood Pr(X|0), or
log-likelihood L(X|©) = log Pr(X|©), for the observation X.

O = arg max L(X|©)

= argmax log Pr(X|©)

¢
= argmax Z log Pr(z;|0)

j=1
t
= arg max Zlog Z Pr(z;,y;1©) (5.1)
j=1 y; €Y

Because the objective function (5.1) contains the log of a sum, there is no general closed-
form solution for ©*. The EM algorithm is used in this situation.

There are two steps in the EM algorithm: the expectation (E) step and the maximiza-
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tion (M) step. In the E step, one computes the expectation of the log-likelihood for the
complete data L(X,Y|©) given the observed data X and current parameter estimate ©%~1.

This expectation function is called the @) function.

Q(6,0% 1) = E [log Pr(Z]0)| X, 65! (5.2)

- B (5.3)

¢
Z log Pr(z;, yﬂ@)’ X,0r1

j=1

The M step consists of finding a © which maximizes Q(©, ©%1) and setting it to be the
new parameters, i.e.

oF = arg max Q(e,6%1) (5.4)

The E step and M step are iterated until convergence or some stopping criterion is met.
Sometimes, if the M step is too difficult to compute, it can be replaced by a generalized
M step. For a generalized M step, it is not necessary to find a © which maximizes the log
likelihood, but to simply find a © which only improves the log likelihood compared to the
previous step. This version of EM, called Generalized EM (GEM), converges more slowly

than standard EM.

5.2.2 Convergence of EM

The proof of convergence of EM can be found in many papers [38, 32, 94]. To be self-
contained, we summarize a simple proof below.
To prove the convergence of EM, we need to show each iteration will increase log-

likelihood L(X|©) . Note that the log-likelihood L(X|0) can be decomposed as follows.



80 Fuchun Peng

L(X|®) = Zlog Pr(z;|0) (5.5)
= D_logPr(z;, () — 3 _log Pr(ysle;, ©) (5.6)

since Pr(z;,y;|©) = Pr(z;|0) Pr(y;|z;, ©) for all y;.
Taking the expectation of both sides, given the observed data X and current parameter

estimate ©%~1, we have

E[L(X|®)| X,0" 1 = E[L(Z]0)| X,0" '] - E[L(Y|X, 0)| X,0 ] (5.7)

= Q(6,0F 1) — H(8,6* ) (5.8)

where H(©,0F 1) = E [L(Y|X,0)| X, 0F1].

First consider the left side

t
E[L(X|0)| X,0" 1 = E |} logPr(z,|0)| X, @’H} (5.9)
j=1
t t
= /Zlog Pr(z;|0©) HPr(yl|:1:l, 6% Ndy,...dy; (5.10)
=1 I=1

t t
= ZlogPr(a:j|€~))/HlogPr(ydxl,@k‘l)dyl...dyt (5.11)
j=1 I=1

= i log Pr(z;|©) = L(X|©) (5.12)

Jj=1
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Thus

L(X|0) = (6,6 1) — H(e, 0% 1) (5.13)

If H©,0* 1) < H(0* 1 6% 1) the convergence of EM would follow straightforwardly,

since this would imply

Q6,0 1) > Q(eF 1 6k = L(X|0) > L(X|eF ™) (5.14)

Theorem: H(O,0% 1) < H(O%1 ok-1)
Proof:

We first decompose H (6, 0% 1) as follows.

H(©,0 ") = E[L(Y]X,0)| X,0] (5.15)
t
=FE ZlogPr(yj|xj,@) X, @k"ljl (5.16)
7j=1
t t
_ / S log Pr(y;lz;, ©) [ Pr(wilas, ©*)dys...du (5.17)
j=1 1=1
t -~
-y / log Pr(yj e, ©) Pr(ysle;, 05 )dy; [ | / Pr(y|z, O)dy  (5.18)
i=1 1)
t
= 3> [ 1ogPr(uyla;, 0) Pr(yslas, 6y (5.19)
j=1

= i hi(©, 0% (5.20)

where h;(0,0%1) = [log Pr(y;|z;, ©)P(y;|z;, 0% ')dy,;. Thus H(O,©0* ) can be decom-
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posed into a sum of a function of individual observations. We now prove
h;(©,0F 1) < hy(6F 1,65 1) forall j.
First notice that

hj(@,(%k_l) = /logPr(yj|xj,@) Pr(yjlxj,@k"l)dyj (5.21)

h;(©F @F 1) = /logPr(yj|mj,@k“1)Pr(yj|wj,@k‘1)dyj (5.22)
Thus,

hi(©,0571) — h;(0*, 0%

= / [log Pr(y;|z;, ©) — log Pr(y;|z;, ©F1)] Pr(y;|z;, 0¥~ !)dy; (5.23)
Pr(y;lz;, ©) k-1

= iz dy; 5.24

/ [log Pr(yjlxj,@k_l) Pr(yjlx]’@ ) y.? ( )

Note that since logz < (z — 1), we have

Pr(y;|e;,0) _ _Pr(y;lz;, ©)

I
8 Pr(y;|z;, ©F1) ~ Pr(y;|z;, ©F1)

-1

Thus,

Pr(y;|z;, ©)

—— L 1| Pr(y;|z;, 0 )dy;  (5.25
Pr(y;|z;, ©%-1) r(ylz;, 0" )dy; - (5.25)

(8,647 — e+ ev) < [ [

which implies
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hi(©,0F1) — hy(8,041) < / [Pr(ylze;, ©) - Pr(yle;, 6] dy; =0 (5.26)
and hence
hi(8,04) < hy(O4, 64 (5.27)

Combining Equ. (5.13), Equ. (5.20), and Equ. (5.27) establishes Equ. (5.14). Thus the

convergence of EM is proven.

5.2.3 Comments on Applying EM

Since EM only finds local maxima, applying EM directly often does not yield good perfor-
mance. Some variants have been used in various applications. For example, McCallum and
Nigam [91] use an active learning method to select unlabeled data in a text classification
problem. To overcome the local maximum problem of standard EM, the authors initialize
EM only with labeled data, and then use a criterion derived from Query-By-Committee
(QBC) [128] to select a few most informative unlabeled examples to add to the labeled data
pool, and then rerun EM. Nigam et al. [101] present a case study which addresses whether
unlabeled data can help improve a Naive Bayes text classifier with only a small amount of
labeled training data. To penalize the influence of unlabeled data, the authors multiply a
constant A, 0 > A < 1, with the log likelihood term of the unlabeled data. In [107], the
distribution is separated into two equal parts to emphasize the influence of a set of core

lexicon words. Wu et al. [150] combines EM with multiple discriminant analysis [41] and
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proposed a discriminant EM (D-EM) algorithm for an image retrieval application. Ivanov
et al. [66] modified the EM algorithm for reinforcement learning by including the reward
in the optimization problem.

From the literature and our experience, we suggest that to make EM work one has to

address the following issues:

1. The initialization parameters must usually be chosen carefully (e.g. with labeled

data) instead of randomly.
2. Often EM must be customized for the specific application, e.g. [91, 107].

3. Unlabeled data often must be chosen carefully; for example by selecting representative

unlabeled data using active learning,.

4. The iterative procedure must be monitored carefully and stopped early if necessary.
Sometimes a high likelihood does not necessarily imply good performance for the
application at hand, and continued iteration may result in performance degradation.
That is, too many iterations can result in over-fitting [43]. We observe this effect in

Chinese word segmentation.

5.3 Standard EM Word Segmentation

Assume we have a sequence of characters C = ¢j¢y...cp that we wish to segment into chunks
S = $153...8)r, where the chunks s; are chosen from a lexicon V = {s;,i =1, ..., |V|}. If we
already have a probability distribution 6 = {6;|6; = p(s;),i = 1, ...,|V|} defined over the

lexicon, then we can compute the most likely segmentation of the sequence C' = ¢;cs...cr
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into chunks S = s;89...5) as follows. First, for any given segmentation S of C, we can

calculate the joint likelihood of S and C by
M
Pr(S,C10) = [ ] : (5.28)

i=1

Our task is to find the segmentation S* that achieves the maximum likelihood:

S* = arg max Pr(S|C;0)

= argmax Pr(S,C|0) (5.29)

Note that the number of possible segmentations is 27!, and therefore it is not feasible to
enumerate all of them to determine S*. However, the best segmentation can be efficiently
recovered by the Viterbi algorithm, which employs a dynamic programming approach to

build up the best segmentation in a bottom up manner.

5.3.1 Viterbi decoding

Let §(¢) denote the partial best likelihood for current observation c;...c; and let £ be the
length of a word, which could be from 1 to the maximum word length of words L. To
compute the best segmentation S* in Equ. (5.29), one can compute §(T") using the following
equation and track the best word length £ in each step

§(t) = ZEI?EJ.}ICJ} 0t — ) X Pr(ci—g41..-Ct) (5.30)

and 6(t) = 1 when ¢ = 0. In practice, one often uses log-arithmetic to avoid underflow.
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t-3 t-2 t-1 t

0 Q Q Q Q
l §¢-1 l Prit - l,r)[

I S¢t-2) | Pr(t -2, l

l §¢-3 | Pr¢—3,6 I

Figure 5.1: The successive computation procedure for Viterbi-decoding

The algorithm is illustrated in Figure 5.1.
Here, the time complexity is O(LT) instead of 27—, Viterbi decoding is very efficient

when T is large (see Rabiner [114] for more details of the Viterbi algorithm).

5.3.2 Parameter Re-estimation

Viterbi decoding allows one to compute the best segmentation for a given probability
distribution 8 = {p(s;)} over the lexicon. Learning these probabilities from a training
corpus is the job of the EM algorithm. Following Dempster et al. [38], the update @

function that we use in the case we are examining here is
Q(k, k+1) =) Pr(S|C;6) log(Pr(C, S|6**")) (5.31)
S

By maximizing Equ. (5.31) under the constraint that 3, 65 = 1, we obtain the parameter

re-estimation formula

L Sog#(si,8) x Pr(S, C|6F)
9@“ B Zs,» %s #(s;,9) x Pr(S, C|6%) (5.32)
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raw text collection

Extract N-grams to form a initial lexicon

Initialize distribution

Segment raw training data

Output lexicon with distribution

EM Satisfied?

1N0
Viterbi segi i Seg d seq!

Adjust distribution

New sequence

Training phase Testing phase

Figure 5.2: Procedures of unsupervised word segmentation

Here the numerator is a sum over all possible segmentations S of the number of occurrences
of a word s;, weighted by the probability of the segmentation. Similarly, the denominator is
a weighted sum of the number of words in all possible segmentations. Thus, Equ. (5.32) is
a weighted frequency count. Equ. (5.32) can be efficiently calculated by using the forward
and backward algorithm, or be efficiently approximated by using the Viterbi algorithm;
see [114] and [37] for detailed algorithms.

Figure 5.2 shows the procedure of unsupervised word segmentation.
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5.4 Mutual Information Lexicon Pruning

A naive application of EM will run into at least two of the problems we identified in
Section 5.1: excessive agglomeration and poor local minima. To cope with both of these
issues, we employ a simple lexicon pruning scheme that eliminates long agglomerations of
short primitives. For example, a naive application of EM results in agglomerated character
sequence such as sizeof to be learned in the initial model and retrieved in subsequent
segmentation. Clearly, the string sizeof is a concatenation of two shorter legal words, size
and of. As mentioned previously, maximizing likelihood does not necessarily remove these
larger agglomerations, and in fact encourages their creation. To prune these conjunctions
of shorter words (and morphemes) we employ a probabilistic criterion based on mutual
information.

Recall that the mutual information between two random variables X and Y is defined

MI(X,Y)=> Pr(X =z,Y =y)log 5 (5.33)

r(X =z) x Pr(Y =y)
where a large value indicates strong dependence and zero indicates independence. To
implement our pruning criteria we use a variant of this formula to evaluate the cohesiveness
of strings. Specifically, given a long string s we consider splitting it into the two substrings
s1 and s that maximize p(s1) X p(s2) over all two-chunk segmentations s = s153. Let the
probabilities of the original string and the two chunks be p(s), p(s;) and p(s2) respectively.

We define a modified pointwise mutual information [87] between s; and sq to be

1
pMI(sy,82) = = % log L (5.34)
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where T is the length of s. To apply this measure to pruning, we set two thresholds v, > .
If the mutual information is higher than the high threshold +; we say that s; and s, are
strongly correlated and do not split s. (That is, we do not remove s from the lexicon.)
If the mutual information is lower than the lower threshold v, we say that s; and s; are
nearly independent, so we remove s from the lexicon and distribute its probability to s;
and sp. If the mutual information is between the two thresholds we say that s; and s
are weakly correlated and therefore shift some of the probability from s to s; and se by
keeping a portion of s’s probability for itself (1/3 in our experiments below) and distribute
its remaining probability mass to the smaller chunks proportional to their probabilities.
The idea is to shift the weight of the probability distribution toward shorter words.

This splitting process is carried out recursively for s; and s;. The pseudo code is

illustrated in Figure 5.3.

5.5 Hierarchical EM Word Segmentation

To cope with the remaining problem identified in Section 5.1 (the sparse data problem), we
propose a two level hierarchical EM approach for unsupervised word segrﬁentation. In the
first level, we generate all morphemes with one to five characters from the training corpus
C, use EM to learn a probability distribution over morphemes (as described above), prune
low probability morphemes, and segment the original training corpus C' into a morpheme
sequence G. In the second level, we generate a large word lexicon from G (n-grams over
morphemes), use EM to learn a probability distribution over words, and segment G into a
word sequence W. The complete process is illustrated in Figure 5.4. In both phases, once

EM converges we employ additional lexicon pruning (discussed in Section 5.4) which pulls
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1: (s1,82) = mostlikely_split(s);

. _ 1 p(s)
20 MI = 5 x logp(sl)xp(s2)
3: if(MI > ~;){//strongly dependent
return -1;

else if(MI < ~2){//independent
probSum = p(s1) + p(s2);
p(s1)+ = p(s) x p(s1)/probSum;
p(s2)+ = p(s) x p(sz)/probSum;
p(s) = 0;
return 1,
}
else{//weakly dependent
probDistribute = p(s)/3;
probSum = p(s1) + p(s2);
p(s) = probDistribute;
p(s1)+ = 2 x probDistribute X p(s1)/probSum;
p(s2)+ = 2 X probDistribute x p(ss)/probSum;
return 0;

}

Figure 5.3: Mutual information probabilistic lexicon pruning
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Charcter sequence C: computerscience

First Level EM: Learn morpheme Lexicon

Morpheme sequence G: compu ter sci ence

Second Level EM: Learn word lexicon

Word sequence W: computer science

Figure 5.4: Hierarchical EM segmentation model

EM out of local maxima and allows it to make further progress. Overall, the first level

determines

G* = arg max Pr(G,C|6,) (5.35)

and the second level determines
W* = arg max Pr(W,G|6,,) (5.36)

where 6, and 8, are the distributions over morpheme lexicon and word lexicon respectively.
The EM algorithms in both levels are identical except that in the first level the basic

observation unit is the character and in the second level the basic unit is the morpheme.
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5.5.1 Performance measures

We measured performance on the test corpus by recording recall, precision and F-measures
with respect to detecting the word boundaries in a test sequence. A predicted word bound-
ary which corresponds to white space or punctuation in the original test text is considered
correct [76]. Let N} denote the true number of word boundaries in the original test text,
let N? denote the number of predicted boundaries, of which N are correct. Then the

precision, recall and F-measure on boundary are defined by

. . N3
boundary precision: p, = 3%
b

N3
boundary recall: r, = N,'}L

boundary F-measure: F, = 2—:;%:%

We also report the word identification performance on the test text [13, 14, 28, 49, 112].

A word is considered to be correctly recovered if and only if [102]:
1. a boundary is correctly placed in front of the first character of the word,
2. a boundary is correctly placed at the end of the last character of the word,
3. and there is no boundary between the first and last character of the word.

Let Nl denote the number of words in the test corpus, let N2 denote the number of
words in the recovered corpus, and let N2 denote the number of words correctly recovered.

Then the precision, recall and F measures on word are defined by

.. N3
word precision: p,, = 3%

NB
word recall: r, = %
w

2X Doy X Ty

word F-measure: F,, = F——
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5.5.2 Experimental Results

We tested our procedure on segmenting the Brown corpus of English text into words.
Specifically, we converted the corpus to lowercase letters and removed all white-space and
punctuation. We then split the corpus into a training sequence C; (4292K characters,
891524 words, 37930 unique words) and a test sequence Cs (317K characters; 64338 words;
9506 unique words, 2280 of which do not occur in the training sequence). For pruning we

used the thresholds vy, = 3 and 7, = 0.5.

Results of the first level model

To use the limited training corpus effectively, we first trained the morpheme model on
the training sequence C; with n-grams of lengths 1-5 characters using EM, ranked the
morphemes according to their probabilities, and then picked the top rank morphemes to
compose a morpheme lexicon. Our final lexicon consisted of 13506 morphemes. With this
morpheme lexicon, we then segmented the training sequence C; into a morpheme string
G using the Viterbi algorithm. With this initial morpheme lexicon in hand, we then
conducted several stages of our recursive pruning procedure to remove large morphemes
from the lexicon. For each pruned lexicon, EM was run again to re-estimate the probability
parameters, and each model was then used to re-segment the training sequence.

Each of these models was tested on the separate test sequence Cy by running Viterbi
to segment it into a morpheme string Go using the learned models. Table 5.1 shows the
results of using the various learned probability models to predict word boundaries in the test
sequence C; (where # represents the size of the lexicon). Here, each reduced and trained

model was used to segment the test sequence using Viterbi, and the morpheme boundaries
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# Db Tp F
G Start 13506 | 0.603 | 0.799 | 0.678
G Pruned 1| 8274 | 0.595 | 0.867 | 0.695
G Pruned 2 | 7793 | 0.590 | 0.873 | 0.693
G Pruned 3 | 7625 | 0.589 | 0.876 | 0.694
G Pruned 4 | 6800 | 0.576 | 0.892 | 0.689
G Pruned 5 | 6758 | 0.570 | 0.908 | 0.690

Table 5.1: Test segmentation results with the first level (morpheme) model showing bound-
ary detection scores
were used to predict word boundaries in the initial text. Clearly, this segmentation should
not work particularly well because proper morphemes only comprise sub-components of
words. Nevertheless, we should see a high recall score (every word boundary corresponds
to a morpheme boundary) along with a mediocre precision score—which is exactly what
Table 5.1 shows.

Using the best of these morpheme models (G Pruned 5), the first 10 sentences in the
test sequence are segmented as follows. (The predicted morpheme boundaries are indicated

by | and the true word boundaries delimited by white spaces.)

| the| fulltlon| count|y| grand| jury| said| frilday| an| inves|tigat|ion of] at|lanta| s|
re|cent| prim|ary| elect|ion| pro|duced| no| e|vi|dence| that| any| irre|gular|ities| took| place]
the| jury| furth|er| said| in ter|m en|d| pres|ent|ments| that| the| city| ezecu|tive] commlittee]
which| had| over| all] chargle| of the| election| de|serve|s| the| praisie| and| than|k|s| of
the| city| of] at|lanta] for| the] mann|er| in| which| the| elec|t|ion| was| con|duct|ed| thel
sept|ember| octobler| term| jury| had| been| chargled by| fullt|on| sup|erior| court| judge]

dur|wood| plyle| to| inves|tigat|e rle|port|s of] pos|sible| irre|gular|ities| in the| hard| flough]
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# Db Th Fy
Start 812841 | 0.806 | 0.670 | 0.716
W Pruned 1 | 278608 | 0.754 | 0.720 | 0.721
W Pruned 2 | 224619 | 0.743 | 0.731 | 0.721
W Pruned 3 | 198723 | 0.746 | 0.792 | 0.754
W Pruned 4 | 181316 | 0.733 | 0.806 | 0.753
W Pruned 5 | 174806 | 0.725 | 0.806 | 0.749

Table 5.2: Test segmentation results with the second level (word) model showing boundary
detection scores

prim|ary| which| was| w|on| by| may| or| nomin|ate| i|vjan| alllen| jlr| only| a re|lative|
hand|ful] of, such| re|ports| was| recei|ved| the| jury| said| con|sider|ing| the| wide s|pread)
inter|es|t| in the| elect|ion| the njumber| of] voter|s and| the| size| of] this| city| the| juryl
said| | did| find| that| many| of] georg|ila s re|gistr|ation| and| elect|ion| law|s are| out|

mod|ed| or| in| adequ|ate| and| often| ambi|guous|

Results of the second level model

Using the best morpheme model learned in the first level (G Pruned 5), we then trained
the second level (word) model over the morpheme segmentation of the training sequence.
Using EM we learn a lexicon of words composed of morpheme strings and a probability
distribution over these words. As above, we successively prune the word lexicon and re-
estimate the probability distribution over words in the training sequence using EM. For
each successive word model, we segment the test morpheme string into words using Viterbi
decoding. The results are shown in Table 5.2. Here, the effects of pruning have an opposite
effect on precision and recall.

In addition to these boundary detection results we also measured the word detection

performance of the best model (W pruned 3) on the test sequence, obtaining 49.1% word
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precision, 60.1% word recall and 53.8% F-measure. Using this best word model (W
Pruned 3), the first 10 sentences in the test sequence are segmented as follows.

| the| fulton| county| grand| jury| said| friday| an| investigat|ion| ofl atlanta| s| recent)
primary| election| produced| no| evidence| that| any| irregularities| took| place| the| jury|
further| said| in| term| end| present|ment|s| that| the| city| executive| committee| which| had|
over| all| charge| of the| election| deserve|s| the| praise| and| thank|s| of the| city| of] atlanta|
for| the| manner| in| which| the| election| was| conduct|ed| the| september| octobler| term)|
Jury| had been| charg|ed by| fulton| superi|or] court| judge| dur|wood| p|y|e| to| investigat|e
rle|port|s of| possible| irregqularities| in| the| hard| fought| primary| which| was| won| by| may|
or| nominate| i|v|an| alllen| j|r| only| a| relative| handful] of| such| report|s| was| receiv|ed)
the| jury| said| consider|ing| the| wide| spread| interest| in| the| election| the| number| of|
voter|s| and)| the| size of| this| city| the| jury| said| it| did| find| that| many| of] georgila s

re|gistr|ation| and| election| law|s are| out| mod|ed| or| in| adequate| and| often| ambiguous|

Results of a flat model

To verify the effectiveness of our hierarchical approach, we re-ran the experiments using
a basic flat model that is similar to the first level of our hierarchical model. Here, we
generated all words up to 15 characters from the training sequence Cy, ran EM to learn a
probability model over words, and tested the model by segmenting the test sequence Cs.
The results for the original trained model as well as successively pruned versions are shown
in Table 5.3.

Using this flat one level model, we obtained a best word detection performance (F
Pruned 1) of: 32.4% word precision, 48.1% word recall and 38.1% F-measure, which is

substantially below that obtained by the hierarchical model.
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# Do T F,
Start 8578589 | 0.727 | 0.556 | 0.607

F Pruned 1 | 1316725 | 0.846 | 0.513 | 0.620

F Pruned 2 | 1232529 | 0.713 | 0.515 | 0.583

Table 5.3: Test segmentation results with the flat model showing boundary detection scores

5.5.3 Interpreting the results

From both Table 5.1 and Table 5.2, it is clear that pruning greatly reduces the size of lexicon
and improves overall performance. In the first level model pruning increases recall from
0.799 to 0.908, which in fact makes the positive results of the second level possible. Since
the second level model only combines adjacent morphemes, the second level recall must be
no more than the first level recall. However, the precision is substantially higher, as hoped.
As lexicon pruning continues, long n-grams are successively dropped. Consequently, the
algorithm produces more chunks in the segmentation, which increases recall, but decreases
precision. However, the trade-off in the F-measure usually increases at first, but then drops
off when excessive pruning is performed.

The weakest results we obtained with the hierarchical model are those with no lexicon
pruning: 80.6% precision, 67% recall and 71.6% F-measure. The best results were achieved
after applying pruning to both the morpheme and word models. The combination G-
Pruned-5 and W-Pruned-3 yielded 74.6% precision, 79.2% recall and F-measure 75.4%.

Compared to the flat model, the hierarchical model gains 13.4% improvement on
boundary detection F-measure and 15.7% on word detection F-measure. The best known
results on segmenting the Brown corpus that we are aware of are due to Kit and Wilks
[76] who use a description length gain method. They trained their model on the whole

corpus (6.13M) and reported results on the training set, obtaining a boundary precision
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of 79.33% and a boundary recall of 63.01% (they did not report boundary F-measure, but
we can calculate it to be 70.23% in this case). By comparison, we train our model on a
much smaller subset of the corpus (4292K) and test on unseen data. Even the weakest (un-
pruned) results of the hierarchical model are better than those reported in [76]. After the
lexicon is optimized, we obtain 16.19% higher recall and 4.73% lower precision; resulting
in an improvement of 5.2% in boundary F-measure.

De Marcken [36] also uses a minimum description length (MDL) framework and a
hierarchical model to learn a word lexicon from raw speech. However, this work does not
explicitly yield word boundaries, but instead recursively decomposes an input string down
to the level of individual characters. As pointed out by Brent [13], this study gives credit
for detecting a word if any node in the hierarchical decomposition spans the word. Under
this measure [36] reports a word recall rate of 90.5% on the Brown corpus. However, his
method creates numerous chunks and therefore only achieves a word precision rate of 17%.

Christianson et al. [28] use a simple recurrent neural network approach and report a
word precision rate of 42.7% and word recall rate of 44.9% on spontaneous child-directed
British English.

Brent and Cartwright [14] use an MDL approach and report a word precision rate of
41.3% and a word recall rate of 47.3% on the CHILDES collection. More recently, Brent [13]
achieves improved results (about 70% word precision and 70% word recall) by employing
additional language modeling and smoothing techniques.

The best word recognition performance we obtain is 49.1% word precision and 60.1%
word recall, hence 53.8% word F-measure on the Brown corpus. This is better than [28, 14]

but worse than [13]. However, it is difficult to draw a direct comparison between these
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results because of the different test corpora used. Nevertheless, our results seem to support

the utility of exploiting a simple hierarchical model for word recognition.

5.6 Self-supervised Chinese Word Segmentation

Unlike English, Chinese words do not have delimiters between them. For example, given
the Chinese character string “IN#& K% 5 KZE A HHLR” if one does not understand
Chinese, one can not tell where to put the whitespaces to segment this string, athough it
is trival for Chinese speakers: “J% K (Canada) k5 (Waterloo) K% (University) it
H 1 (Computer) #(Department)”

In the previous section, we have described a hierarchial approach to improving standard
EM word segmentation. This approach is also useful in detecting compounds and phrases
in English, but this method is not useful in Chinese word segmentation where most Chinese
words are only 1 to 4 characters long. In this section, we describe another improvement to
standard EM word segmentation which is not only useful for English, but also useful for
Chinese.

One advantage of unsupervised lexicon construction is that it can automatically discover
new words once other words have acquired high probability [34]. For example, if one
knows the word “computer” then upon seeing “computerscience” it is natural to segment
“science” as a new word. Based on this observation, we propose a new word discovery
method that is a variant of standard EM training, but avoids getting trapped in local
maxima by keeping two lexicons: a core lexicon that contains words that are judged to
be familiar, and a candidate lexicon which contains all other words that are not in the

core lexicon. We use EM to maximize the likelihood of the training corpus given the two
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lexicons, which automatically suggests new words as candidates for the core. However,
once new words have been added to the core, EM is re-initialized by giving a certain fixed
amount of the total probability mass to the core lexicon, thus allowing core words to guide
the segmentation and pull EM out of poor local maxima. *

Assume we have a sequence of characters C = c¢i¢...cr that we wish to segment into
chunks S = s185...5), where T is the number of characters in the sequence and M is the
number of words in the segmentation which may vary in each iteration with the change
of the parameters 6. Here chunks s; will be chosen from the core lexicon V; = {s;,i =

. |Vi|} or the candidate lexicon Vo = {s;,j = 1,...,|Va|}. If we already have the
probability distributions 8 = {6;|6; = p(si),i = 1,...,|Vi|} defined over the core lexicon
and ¢ = {¢;l¢; = p(s;),5 = 1,...,|Va|} over the candidate lexicon, then we can recover
the most likely segmentation of the sequence C' = ¢;¢s...cp into chunks S = s15;...5)7 a8
follows. First, for any given segmentation S of C, we can calculate the joint likelihood of

S and C by

M Mo M, M
Pr(S,Cl8,¢) = H Ap(s;) H p(s;) = )\Ml(l )Mz H 0; H oy
i=1 j=1 i=1  j=1

where M; is the number of chunks occurring in the core lexicon, M, is the number of
chunks occurring in the candidate lexicon, s can come from either lexicon, (Note that
each chunk s, must come from exactly one of the core or.candidate lexicons.) and A is the

weight of core lexicon. Note that M; and M, may vary in each iteration with the change

1To increase the influence of core words in determining segmentations and allow them to act as more
effective guides in processing the training sequence, we assign A weight to the influence coming from the
core lexicon words. In practice, we found A = 1/2 is a good choice. The amount 1/2 is set arbitrarily and
it is not guaranteed to be optimal. The optimal value of the weight could be determined automatically.
However, this would make the algorithms more complicated.
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of parameters 6 and ¢.

Our task is to find the segmentation S* that achieves the maximum likelihood:

S* = arngaxPr(SlC;G,qb) (5.37)

= arg mgxPr(S, C|0, o) (5.38)

Similar to standard EM segmentation, following [38], the update @ function that we use

in the EM update is given by

Q(k,k+1) =Y Pr(S|C; 6, ¢) log(Pr(C, S|9*+, ¢**1)) (5.39)
S

Maximizing (5.39) under the constraints that 3_,0f*! = 1 and > ¢! = 1 yields the

parameter re-estimation formulas

6k+1 - ZS #(Sia S) X PI'(S, Clak’ ¢k)
‘ B Zsi ZS #(Si, S) X PI‘(S, Cleka d)k)

(5.40)

¢/§:+1 _ ZS #(Sj,S) X Pr(S,C|6’“,¢’“)
T X, Ya#(ss, 8) x Pr(S, Cl6k, o)

where #(s;,S) is the number of times s; occurs in the segmentation S. These are the

(5.41)

standard re-estimation formulas, and are the same for § and ¢ except that each will be
reinitialized differently in successive optimizations (see below).

In both cases the denominator is a weighted sum of the number of words in all possible
segmentations, the numerator is a normalization constant, and Equ. (5.40) and Equ. (5.41)

therefore are weighted frequency counts. Thus, the updates can be efliciently calculated
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using the forward and backward algorithm, or efficiently approximated using the Viterbi
algorithm.

The main difficulty with applying EM to this problem is that the probability distri-
butions are complex and typically cause EM to get trapped in poor local maxima. To
help guide EM to better probability distributions, we partition the lexicon into a core and
candidate lexicon, V; and V5; where V; is initialized to be empty and V5 contains all words.
In a first pass, starting from the uniform distribution, EM is used to increase the likelihood
of the training corpus C;. When the training process stabilizes, the N words with highest
probability are selected from V5, and moved to Vj, after which all the probabilities are
rescaled so that V; and V; each contain half the total probability mass. EM is then run
again. The rationale for shifting half of the probability mass to V; is that this increases
the influence of core words in determining segmentations and allows them to act as more
effective guides in processing the training sequence. We call this procedure of successively
moving the top N words to V; forward selection.

Forward selection is repeated until the segmentation performance of Viterbi on the
validation corpus Cs leads to a decrease in F-measure (which means we must have included
some erroneous core words). After forward selection terminates, N is decremented by 5, and
we carry out a process of backward deletion, where the N words with the lowest probability
in V; are moved back to V,, and EM training is successively repeated until F-measure again
decreases on the validation corpus Cy (which means we must have deleted some correct
core words). The two procedures of forward selection and backward deletion are alternated,
decrementing N by 5 at each alternation, until N < 0; as shown in Figure 5.5. As with

EM, the outcome of this self-supervised training procedure is a probability distribution
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over the lexicon that can be used by Viterbi to segment test sequences.
Also, after EM training comes stable, we employ a mutual information based lexi-
con pruning to prune illegal words (see Section 5.4), which is found to be important in

segmentation.

5.6.1 Experimental Results

We use a training corpus, C1, that consists of 90M (5,032,168 sentences) of unsegmented
Chinese characters supplied by the author of [49], which contains one year of the “People’s
Daily” news service stories (www.snweb.com). The test corpus Cs is ChineseTreebank from
LDC? (1M, 10,730 sentences), which contains 325 articles from “Xinhua newswire” between
1994 and 1998 that have been correctly segmented by hand. We remove all white-space
from C3 and create an unsegmented corpus C3”. We then use the algorithm described in
Section 5.6 to recover C3’ from C3”. The validation corpus, Cs, consists of 2000 sentences
randomly selected from the test corpus.

According to the 1980 Frequency Dictionary of Modern Chinese (c.f. [48]), the 9000
most frequent words in Chinese consist of 26.7% uni-grams, 69.8% bi-grams, 2.7% tri-
grams, 0.007% 4-grams, and 0.002% 5-grams. So in our model, we limit the length of
Chinese words to 4 characters, which is sufficient for most situations.

One sample of unsegmented raw text from the Chinese Treebank (the first article) and
the corresponding segmentation output are shown in Figure 5.6 and Figure 5.7 respectively.
The experimental results are shown in Table 5.4. The first set of results, Results 1, are

obtained by standard EM training, Results 2 are obtained by self-supervised training, Re-

2http://www.ldc.upenn.edu/cth/
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0. Input
Unsegmented training corpus C;
Validation corpus C,

1. Initialize

Vi = empty;
V, contains all potential words;
OldFmeasure = —o0;

bForwardSelection=true;
set N to a fixed number;

2. Iterate
while (N > 0){// N = 50 in experiments

EM based on current V; and V5 until convergence;
Calculate NewF'measure on validation corpus Cs;
if(NewFmeasure < OldFmeasure){

// change selection direction

bForwardSelection = —bForwardSelection;

N = N-5;
}
OldFmeasure = NewF'measure;
//SelectCoreWords(true) performs forward selection
//SelectCoreWords(false) performs backward selection
SelectCoreWords(bF orwardSelection);

}

3. Test
Test on test corpus Cs

Figure 5.5: Self-supervised Learning
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EEIHAR I R SUERIE R R L B B A+ H R E e e R R I ARIE
S RARAN SEAT T I S 2 5 A 5 B BRI B B SO B 0 L — ARV U R
TR FF R FFBATIR AR T BP0 — IR % b2 SR iF B & Rl O
Py 2t 20 TR R DR B 2 DA B AN R B 3 e B L5 e R L AR A R fRT B
F SR — B B AR R T 2250 LA P e TR R 401 7 ST R A S R R R
I X R RO ISE A SN S8 R 2 AR S e 3 i R R 8 TR SO
X 22 GEE Bl — H LB BN NI B 2 S0 AT X e AR R P [ 38— R BT LA
25 i SR M M 55 0 TE B A — TR ARt LU B IE e 2 4 AT 2 b — L % ol L —
BB FR T RH AR — I E RRFFESIX A B E X ERA AN TR ER
TR AT #ct EA M AT AL WL E RS H X EE R EERAM L
W T ) RME &5 ST AR TT RS BR R B T — RS 3 e AT 3 i S Hoh L
TR LIRS e B MESF I T $8 1A 1 B UK/ MR 15 Bt B R
FE R R W L TR AT IME SR AR T 8 W3R B am SCEAR
W A R LA AR 15518 B E MM SR BT IMEH T IR E R ER
B AR T X R VR SR LB e AR TR A R SE R B D 58
FARIXFEG SRR 2TES 22 T B W SMEETEE FIEF PR T 9 B R BT X
Bt Bk U R 28 RE 18 B R b

Figure 5.6: Sample unsegmented raw text from the Chinese Treebank

sults 3 are obtained by repeatedly applying lexicon pruning to standard EM training, and
Results 4 are obtained by repeatedly applying lexicon pruning to self-supervised training.
The row labeled Perfect lexicon is obtained by using the dictionary based segmentation
approach (see Section 5.6.2) with the complete lexicon which contains exactly all the words
from the test corpus. Soft-counting is the result of [49],® which is also a EM based unsu-
pervised learning algorithm. The word-based results are from [112] which uses a suffix tree
model. Finally, the Perfect lexicon [112] results are obtained using a lexicon from another
test corpus.

There are several observations to make from these results. First, self-supervised train-

ing improves the performance of standard EM training from 40% to 54.1%. Second, mutual

3[49] did not supply the F-measure, so we calculate it for comparison.
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Ll WK TR B EW| @R P Bied] B¥ (A HH f] e
e sE| KPR B WER| RIS K| AU SKAT| T WK K5 Ha| #
B AR B CE | YUK B Bt AR ERIEE SOF| #R] T A
TER| W BRF| BT R PR TR R — T #RX| B Ew] B
2| Wo| SRk P /) B[] TR Nk KB B 8| 2| R
A& BB | m OB B OB REE xRk AR AR R B R
T —B| BE| % RE| T &%l US| | HE| B &6 | 7
R ] R ER| M M F| B B 28| #I BiE BN B
K| EBR| ¥F| BR| KE| M| HE| M| #ED| R SOfF] ] X &
Bl VESN | HIL ORRRE AN ] BulE] £ A1) AR BX| ] A9
TE| ) K| BT N gk R RS o] IE] B — JHaR
| ME| B8 B4 WAL B —Mel £ o] BR| &I 6l Bl
B & TER| WK B I EE| KT ED) X F| A BA x| @29
A TR AN S T w4 & X A Bk k| | AE B3| AT
Al Bkl W TF A& B EERla| RE BX| M) L#ET 8 AR
e 48] WR| PR SEf| & Bi&| T —| R S &kl Wi 1|
S| Hep| G| TRE| T BEdR| BH| JmE| T BT ME| B
WE| B L] INE| BME| ROl K| Bk BRE| #i| B 2k T
MEL| PREE| EER| CEAT) INE| B A BT | A M E H| B W
X B4R M) ME| A oF #X| BX| AT SE K| b X R 3
| RIE| B B BME| AT W BE RE| BR| X SE] B X
PEOSCF| B LR M| B E| RRE| BT HUE| B KB P 7
| | E] X R ER] B KT M| 4| WE3h ZE| T BRSH #
BE B VR AT WA B R ORI B G| B R B S|
Fzd| BE| B LRES|

Figure 5.7: Segmentation output of the sample raw text, where the whitespace indicates
the true boundaries and the vertical bars indicate the predicated boundaries.
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P Tw F, final lex size
Results 1 44.6% | 37.3% | 40.0% 19044012
Results 2 55.7% | 53.9% | 54.1% 19044012
Results 3 73.2% | 71.7% | 72.1% 1670317
Results 4 75.1% | 74.0% | 74.2% 1670317
Perfect lexicon 92.2% | 91.8% | 91.9% 10363

Soft-counting [49] || 71.9% | 65.7% | 68.7%
Word-based [112] || 84.4% | 87.8% | 86.0%
Perfect lexicon [112] || 95.9% | 93.6% | 94.7%

Table 5.4: Experimental results

information pruning gives even greater improvement (from 40% to 72.1%), verifying the
claim of [112] that the lexicon is more influential than the model itself. Lexicon pruning
reduces the lexicon size from 19044012 to 1670317, which makes the lexicon much smaller.
By combining the two strategies, we obtain further improvement (from 40% to 74.2%),
which is promising performance considering that we are using a purely unsupervised ap-
proach. By comparison, the result given by a perfect lexicon is 91.9%. Finally, the two
improvement strategies of self-supervised training and lexicon pruning are not entirely
complementary and therefore the resulting performance does not increase additively when
both are combined (72.1% using lexicon pruning alone to 74.2% using both).

A direct éomparison can be made to [49] because it also investigates a purely unsuper-
vised training approach without exploiting any additional context information and uses
the same training set we have considered. When we compare the results, we find that self-
supervised training plus lexicon pruning achieves both a higher precision and recall, and
obtains a 5.5% (from 68.7% to 74.2%) improvement in F-measure. One problem with this

comparison, however, is that Ge et al. [49] does not report precisely how the testing was
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performed. It is also possible to compare to [112], which uses a suffix tree model and em-
ploys context information (high entropy surroundings) to achieve an 86% F-measure score.
This result suggests that context information is very important. However, because of a
different test set (our test set is the 1M ChineseTreebank data set from LDC, whereas their
test set is 61K of data pre-segmented by the NMSU segmenter [69] and corrected by hand),
the comparison is not completely calibrated. In the perfect lexicon experiments, Ponte and
Croft [112] achieves higher performance (94.7% F-measure), whereas only 91.9% is achieved
in our experiments. This suggests that we may obtain better performance when testing
on the data used in [112]. Nevertheless, the result of [112] appears to be quite strong, and
demonstrates the utility of using local context rather than assuming independence between
words, as we have done.

The results are promising because we have not yet employed any smoothing techniques
and local context information which were proved to be very useful [13, 15, 112]. We believe
that after adding these techniques, the performance will be dramatically increased.

Also, in the experiments (numbers not reported), we find that higher likelihood does
not necessary mean better segmentation. EM and self-supervised segmentation only con-
sider the frequencies of chunks, whereas highly frequent chunks may not be true words.
We are currently considering using language characteristics such as part of speech (POS)

information to augment segmentation.

5.6.2 Comparison to Supervised Word Segmentation

So far we have mainly focused on unsupervised word segmentation. Our results improve

previous results obtained by unsupervised learning methods. However, not surprisingly,
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unsupervised methods are not as effective as supervised learning methods in this domain.
Two accurate word segmentation methods based on supervised learning have been devel-
oped for Chinese: the dictionary based approach and the compression based approach [139)].

The dictionary based approach is the most popular Chinese word segmentation method.
Given a manually built dictionary, a heuristic method, such as longest word match, is then
used to segment new sequences. In our experiments we used the longest forward match
method in which text is scanned sequentially and the longest matching word from the
dictionary is taken at each successive location. Using a dictionary that contains 69,353
words and phrases [6], we can obtain an 85% accuracy. In Table 5.4, we can obtain 91.9%
accuracy when using a perfect lexicon. However, it is not possible to obtain such a perfect
lexicon in practice.

The PPM (prediction by partial matching) word segmentation algorithm of Teahan
et al. [139] is based on the text compression method of Cleary and Witten [31]. PPM
learns an n-gram language model by supervised training on a given set of hand segmented
Chinese text. To segment a new sentence, PPM seeks the segmentation that gives the best
compression using the learned model. By controlling the amount of training data and the
order of the language model, we can control the resulting word segmentation accuracy of
PPM models. It has been shown to be able to yield up to 95% accuracy [139].

The accuracies obtained by the supervised methods are clearly superior to the results
obtained by our state of the art unsupervised segmentation algorithms. However, our un-
supervised methods for word segmentation obtain many of the advantages indicated in
Section 5.1. Moreover, as we will demonstrate in Chapter 6, our self-supervised word seg-

mentation algorithm yields advantages in Chinese text retrieval over supervised methods.



110 Fuchun Peng
5.6.3 Error Analysis

Figure 5.8 shows two categories of error that are typically committed by our model. In
each case, the left string shows the correct word and the right bracketed string shows the
recovered word segmentation. The first error category is date and number. In Chinese,
dates and numbers are represented by 10 characters. Unlike Arab numbers, the 10 Chi-
nese numeric characters are not different from other Chinese characters. Most dates and
numbers are not correctly recognized because they do not have sufficient joint statistics in
the training corpus to prevent them from being broken down into some smaller numbers.
For example, “1937 year” is broken into “19”, “3”, “7 year”; “2 wan 3 gian 1 bai 1 shi 4”
is broken into “2 wan”, “8 gian”, “1”, “bai 1 shi 4” (wan denotes 10-thousand, gian denotes
thousand, bai denotes hundred, and shi denotes ten). It turns out that one can easily
use heuristic methods to correct errors in these special cases. For example, if a string of
concatenated characters are all numeric characters, then the string is very likely to be a
single date or number.

The second error category is the recognition of compound nouns. For example, the com-
pound “united nation” is recovered as two words “union” and “country”; “team Australia”
is recovered to “team” and “Australia”. One reason for the failure in correctly recovering
compounds is that we are limiting the maximum length of a word to 4 characters, whereas
many compounds are longer than this limit. However, simply relaxing the length limit
creates significant sparse data problems. The recognition of noun compounds appears to

be difficult, and a general approach may have to consider language constraints.
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A: Date and Numbers

—N=H4F ( —lL = &%)
SHET-H A (ZH EF - H -+ )
B: Compounds

B ( ke H)

YRR BA ( BRI BA)

Figure 5.8: Typical Chinese segmentation errors

5.7 Relation to Previous Research

Our work is related to many other research efforts.

Word boundary detection and lexical acquisition in continuous speech: There
is some previous research on detecting words from continuous speech using a hierarchical
structure. In addition to the work of de Marcken [36] mentioned in Section 5.5.3, Witten
and Nevill-Manning [95] also use a hierarchical approach to detect boundaries, but similarly
do not directly report word boundaries. Our model is limited to 2 levels and therefore
explicitly identifies word boundaries.

The work of [76, 60, 14, 13] is all based on the MDL principle, but these investigations
differ in how the description length is encoded. Kit and Wilks [76] use a description length
gain measure, but do not use hierarchical structure nor EM to learn a lexicon. {14] and [13]
use Huffman codes to describe words and use a generative model in which the size of lexicon
is predefined, and then use this lexicon to generate observations. Qur model uses a simple
lexicon pruning scheme to automatically determine the size of the lexicon.

[14, 13, 28] test their algorithms on phonemically transcribed corpora (the CHILDES
collection and spontaneous child-directed British English) but in practice the phonemes

are not explicitly identified in the utterances, and therefore the basic unit in speech is
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the phone. Here it is also necessary to detect phonemes automatically from a phone
sequence. In essence, this corresponds to the second level of our model: learning words

given phonemes.

Unsupervised Chinese word segmentation: Ge et al. [49] use a soft counting version
of EM to learn to segment Chinese. To augment the influence of important words, they
shift the probability mass to likely words by soft counting. In our model, we shift half
of the probability space to core words by dividing the lexicon to two parts. Also, they
do not employ any sort of lexicon pruning, which we have found is essential to improving
performance. Ponte and Croft [112] uses a suffix tree word-based model and a bi-gram
model to segment Chinese strings. This work takes the surrounding word information
into consideration when constructing the lexicon. They uses a more complicated Hidden
Markov Model (HMM) model that includes special recognizers for Chinese names and a
component for morphologically derived words. As pointed out by Ge et al. [49], standard

EM segmentation can be thought of as a zero order HMM.

Morphology learning: In the first stage of our hierarchical model we learn morphemes
from character strings. There has been a lot of work on automated morphology learning;
see [51] for a recent survey. However, unlike other morphology learning work, the goal of our
model is not to learn morphemes per se, but to use morphemes to identify word boundaries.
Therefore, the morphemes learned in our first stage may not be true morphemes in the full

linguistic sense [54, 89]—they are really just chunks that occur most often in words.

Hierarchical models for sparse data: Many authors have proposed hierarchical struc-
tures to reduce the effects of sparse training data. Freitag and McCallum [46] use hierarchi-

cal models to regularize hidden Markov model emission probability estimates. Baker et al.
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[5] use hierarchical models to regularize naive Bayes models for topic detection and track-
ing. Slonim and Tishby [130] use a similar two-step method to cluster documents. In their
work, Slonim and Tishby first cluster words in a document, and then cluster documents
based on the word clusters obtained from the first step. The main technique for exploiting
a hierarchy in these cases is to share common information between related clusters of data.
As long as there is common information, a hierarchical structure should prove beneficial.

In our case, the common information is the morphemes that are shared between words.

Mutual information lexicon optimization: Sproat et al. [134] use mutual information
to build a lexicon, but deal with words up to 2 characters only. Ponte and Croft [112] and
Zhao et al. [154] use mutual information and context information to build a lexicon based
on the statistics directly obtained from a training corpus. Instead of building a lexicon from
scratch, we first add all possible words into the lexicon and then use mutual information to
prune the illegal words after training by EM. Therefore, the statistics we use for calculating
mutual information are more reliable than those directly obtained from corpus by frequency
counting. Zhao et al. [154] also use mutual information to optimize a Chinese lexicon and
test the effect of some variations of mutual information on Chinese lexicon optimization.
Their results show that the basic mutual information formula log ﬁ% does not work
well in every circumstance, and some variations are suggested for different applications. In
our work, we correct the basic formula by using a coefficient that is related to the length

of the word.
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5.8 Summary

In this chapter, we present several methods to alleviate the sparse data problem in unsu-
pervised word segmentation.

First, we propose a mutual information based lexicon pruning scheme to greatly reduce
the lexicon size and help guide EM out of local training maxima.

Second, we presented a two-level hierarchical EM approach to word segmentation and
word discovery by exploiting the internal structure of English words. The hierarchical
structure we impose is natural and effectively deals with the sparse training data problem.
Our model can learn phonemes and words automatically. We tested our model on the
Brown corpus and obtained a noticeable improvement over MDL based methods on the
same data. Overall, these results show the potential advantage of hierarchical models
for speech segmentation and text-to-speech synthesis, as well as compound and phrase
detection in natural language processing.

Third, we describe a new unsupervised method for discovering Chinese words from
an unsegmented corpus. Combined with an efficient mutual information based lexicon
pruning scheme, we achieved competitive results. It is worthwhile to point out that the
self-supervised method does not apply only to Chinese, but also applies to other languages.

There remain many open questions. As shown in many other areas of research, MDL
or Bayesian estimators often yield better models than a straightforward maximum likeli-
hood approach. It is therefore worthwhile to consider imposing a hierarchical model on
description length gain [76] or exploit a prior in EM training. Also, our use of EM sets the
probability of all non-occurring words in the training sequence to zero. It would be ben-

eficial to employ the smoothing techniques we discussed in Chapter 3 in estimating these
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probabilities, although that will make the algorithm much more complicated. Another
problem with our self-supervised training procedure is that it puts equal weight on the
core and candidate lexicons. One interesting idea would be to automatically estimate the
weights of the two lexicons by using a mixture model.

In our experiments, we found that high likelihood did not always correspond to accurate
segmentation performance. The reason is that EM segmentation only gives the most likely
segmentation, where the chunks may not be true words in a language, although they have
high frequency in the training set. That is, in Equ. (5.29), we did not consider any language
characteristics that may be helpful in segmentation. We plan to use part of speech (POS)
information to augment word segmentation. Here, we are looking for a segmentation that

gives not only the most likely boundaries, but also the mostly likely POS at the same time
S* = arg max Pr(S,T|C;6) (5.42)

where S, T, C, 6 are the segmentation, POS tag, character string, and probability dis-
tribution defined over the lexicon respectively. If we assume T is independent of C, we

have

Pr(S,T|C; 6) = Pr(S|C;6) Pr(T|S;0) (5.43)

The first part Pr(S|C;0) is just the standard segmentation that we have already solved.
The second part Pr(T|S; 6) is the POS tagger which gives the most likely POS tag sequence
given the segmentation S. So, there are two steps in the segmentation. First, we segmont
the character string C' into chunks .S, then compute the probability of POS tags T given

these chunks S. The search for the best segmentation is more complicated than standard
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segmentation, since we have to consider two parts: Pr(S|C;6) and Pr(T|S;6).



Chapter 6

Applying Unsupervised Word
Segmentation to

Chinese Text Retrieval

In this chapter, we discuss how to use self-supervised word segmentation to improve Chinese
text retrieval. We also investigate the relationship between retrieval performance and word

segmentation performance for Chinese text retrieval.

6.1 Introduction

Increasing interest in cross-lingual and multilingual information retrieval has created the
challenge of designing accurate information retrieval systems for Asian languages such as
Chinese, Thai and Japanese. For multilingual information retrieval it is important to have

an adaptable system which can be easily ported to new domains and languages. However,

117
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in designing information retrieval systems for these languages one faces the challenge of
addressing the word segmentation problem as part of the retrieval process. This creates
significant problems both in interpreting queries and in indexing the text corpus.

In Chinese text retrieval, the first step is to tokenize the collection. Traditionally there
have been three approaches to tokenization: the dictionary based approach, the character
based approach and the mutual information based approach [24, 64, 99, 100]. The dictio-
nary based approach has already been introduced in Section 5.6.1. In the dictionary based
approach, one pre-defines a lexicon containing a large number of Chinese words and then
uses heuristic methods such as maximum matching to segment Chinese sentences. In the
character based approach, sentences are tokenized simply by taking each character to be
a basic unit. In the mutual information based approach, one uses the statistics of Chinese
characters in the corpus to mark word boundaries. The lexical statistics include the occur-
rence frequency of each character in the corpus, and the co-occurrence frequency of each
pair of characters in the corpus. All three approaches have advantages and disadvantages.

The dictionary based approach is the oldest method and remains the most widely used
one in Chinese information retrieval. It has the advantage of requiring a smaller inverted
index file, allowing faster retrieval speed, and also allowing additional linguistic information
to be incorporated in the retrieval system (e.g. synonyms). The most prominent disad-
vantage of the dictionary based approach is that it requires a large pre-defined lexicon,
which normally must be constructed by hand with a significant amount of time and labor.
Moreover, the lexicon constructed for one language/domain is not portable to another lan-
guge/domain, and it is virtually impossible to list all Chinese words in a dictionary since

the set of words is open-ended [24], as in any language. An additional shortcoming of the
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traditional maximum matching method used in the dictionary approach is that a character
sequence is always segmented the same way regardless of context, which violates the true
nature of Chinese text.

For the character based approach, the most prominent advantage is that it does not
require a pre-defined lexicon. Each character is considered as a basic unit. However, the
disadvantages include the requirement of a huge index file, much slower retrieval speed,
and the fact that it is difficult to incorporate linguistic information of any kind.

Both the dictionary based and the character based approaches have been successfully
applied to Chinese information retrieval in recent work [17, 24, 63]. Overall, the character
based approach has tended to yield better retrieval precision [18, 64, 148]. Therefore
there remains a question of whether word segmentation is necessary at all for Chinese
text retrieval. However, some researchers [99, 100] have argued that there exist some
inherent difficulties in the character based approach. For example, a modern Chinese
information retrieval system should be able to take into account more than just character
information, but should also be able to exploit sophisticated techniques such as latent
semantic indexing [58]. Thus text segmentation, especially that using machine learning
techniques, is still a challenging and interesting problem in Chinese text retrieval [151]. In
this vein, Kwok [77] proposed using overlapping bi-grams for word segmentation, but this
creates a large index file due to overlapping.

Chen et al [24] proposed using a mutual information based approach for word segmen-
tation and obtained better retrieval performance than overlapping bi-gram segmentation.
However, the mutual information based approach limits words to be at most two char-

acters. Although most Chinese words are only one or two characters long, there remain
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many words that are longer than two characters.

We are interested in determining whether machine learning can be used for Chinese
information retrieval instead of manually constructed dictionaries, while achieving com-
parable performance to the mutual information based approach, the character based ap-
proach, and the dictionary based approach to segmentation. In this chapter, we propose
using the self-supervised segmentation method introduce in Chapter 5 for Chinese infor-
mation retrieval. The self-supervised approach has many of the advantages of the other
approaches, while overcoming many of their shortcomings. For self-supervised segmenta-
tion, no predefined lexicon is required. Instead, all that is needed is a large unsegmented
training corpus—which is almost always easy to obtain. We automatically learn a lexicon
and lexical distribution from the training corpus by using the EM algorithm [38], and then
segment the collections using the Viterbi algorithm [114]. Since our segmentation approach
is completely unsupervised and language independent, it can be easily adapted to other
languages.

We have implemented the mutual information based,! character based, dictionary
based, and self-supervised methods, and compared their retrieval effectiveness at differ-
ent word segmentation accuracies. In terms of raw word segmentation accuracy, these
methods are not equivalent. For example, the best segmentation accuracy obtained by the
self-supervised segmentation is around 77% (on the PH corpus [15, 57, 139] 2). This is
not as good as many supervised learning segmenters [57, 139]. However, in this chapter,

we investigate whether this segmentation performance is sufficient for Chinese information

We did not implement the overlapping bi-gram approach because Chen et al. [24] found that the
non-overlapping mutual information based approach performed better.

2We used the ChineseTreebank as the test data in Chapter 5. We noticed that the performance on PH
corpus is slightly higher than that on the ChineseTreebank.
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retrieval.

The relationship between Chinese word segmentation accuracy and information re-
trieval performance has recently been investigated in the literature. Foo and Li [45] have
conducted a series of experiments which suggest that the word segmentation approach
does indeed have effect on retrieval performance. Specifically, they observe that recog-
nizing words of length two or more can produce better retrieval performance, and the
existence of ambiguous words resulting from the word segmentation process can decrease
retrieval performance. Similarly, Palmer and Burger [102] observe that accurate segmen-
tation tends to improve retrieval performance. All of this previous research has indicated
that there is indeed some sort of correlation between word segmentation accuracy and
retrieval performance. However, the nature of this correlation is not well understood.

One reason why the relationship between segmentation and retrieval performance has
not been well understood is that previous investigators have not considered using a vari-
’ety of Chinese word segmenters exhibiting a wide range of segmentation accuracies, from
low to high. In order to address this problem, we employ four families of Chinese word
segmentation algorithms from the recent literature. The first technique we employed was
the standard maximum matching dictionary based approach. The second is the mutual
information based approach [24]. The remaining two algorithms were selected because
they can both be altered by simple parameter settings to obtain different word segmen-
tation accuracies. Specifically, the third Chinese word segmenter we investigated was the
minimum description length algorithm of Teahan et al. [139], and the fourth was the EM
based technique introduced in Chapter 5. Overall, these segmenters demonstrate word

identification accuracies ranging from 44% to 95% on the PH corpus.
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The rest of the chapter is organized as follows. First Section 6.2 briefly describes the
information retrieval environment we use. Then we present the experiments we conducted
on the TREC-5 and TREC-6 data sets in Sections 6.3, 6.4 and 6.5 respectively. Finally, a

discussion and conclusions are given in Section 6.6 and Section 6.7.

6.2 Information Retrieval Environment

We conducted our information retrieval experiments using the OKAPI system [64, 118].
To construct a dictionary based information retrieval system we considered two different
single unit weighting functions. They are both extended versions of ICF,®> which include
document length and within-document and within-query frequencies to provide additional
evidence. Adding this evidence makes the term-weighting dependent on the document,

which has been shown to be highly beneficial in English text retrieval [118].

6.2.1 BM25 Weighting Function

The first function, called BM25 [6], is

(ki) xtf . N-n+05 (ks+1)*qtf (avdl — dl)
R STy LYY e AR P Ty

(6.1)

where N is the number of indexed documents in the collection, n is the number of docu-
ments containing a specific term, #f is within-document term frequency, ¢#f is within-query

term frequency, dl is the length of the document, avdl is the average document length,

3ICF is defined as w = log %, where N is the number of indexed documents in the collection and

n is the number of documents containing a specific term [131].
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Correction
Factor

avdl dl

Figure 6.1: Curve for BM25’s correction factor

ng is the number of query terms, the k;s are tuning constants (which depend on the
database and possibly on the nature of the queries and are empirically determined), K is
ki * ((1 —b) + b*dl/avdl), and & indicates that its subsequent component is added only

once per document, rather than for each term. The component

(avdl — dl)

k A, o 7
25 Cdl + dl)

is called the correction factor, which is designed to take into account the length of a
document. The value of the correction factor decreases with dl, from a maximum as
dl — 0, at which dl = avdl, and to a minimum as dl — oo, as shown in Figure 6.1.

This design of the correction factor assumes that the shorter the document, the larger
the correction factor should be, i.e., the more likely the document is relevant.

In our experiments, the values of ki, k2, k3 and b in the BM25 function are set to
be 2.0, 0, 5.0 and 0.75 respectively. Note that we set ks to be 0, which means that

the correction factor is not considered. The setting of these numbers was obtained from
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previous experiments on English text retrieval and from initial experiments on Chinese
text retrieval. For example, we found that the system produces better results if we set ks

to be 0.

6.2.2 BMZ26 Weighting Function

The fact that improved performance of BM25 is achieved when &, is set to be zero in
BM25 (i.e., the correction factor is ignored) indicates that the correction factor in BM25
is not designed properly. To repair this problem, we propose an enhanced version of
BM25, referred to as BM26, which is based on the following two assumptions: (1) overly
short documents are not relevant; (2) the functional curve for the correction factor should
be consistent with the distribution of relevant documents in the standard text collection
provided by the TREC conferences. More details can be found in [64]. BM26 is defined as

follows:
_(k1+1)*tf*lo N—n+0.5*(k3+1)*qtf
T T K+if & r05 ks + qtf

¥ k‘d * Y (62)

where all the parameters have the same meaning as in BM25 except kg is a tuning constant

and

In(z2) + In(z:) if 0 < dl <= rel_avdl;

y= (6.3)
(In(rekavdty 4 In(g,))(1 — —dorebavdl ) if vl gudl < dl < co.

avdl zoxavdl—rel.avdl

in which dl is the length of the document, avdl is the average document length, rel_avdl is
the average relevant document length calculated from previous queries based on the same
collection of documents, and z; and x, are two parameters to be set. The parameter kqy

in BM26 is set to have different values in our experiments. When &, is 0, BM26 becomes
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i
avdl rel_avdl 26*av dl

Figure 6.2: Curve for the new correction factor

BM25 since we set the parameter ks in BM25 to be 0 in our experiments.

The difference between BM26 and BM25 is the y term of the correction factor. In
BM26, y will reach a maximum as dl — rel_avdl, and a minimum as dl — 0 (or dl — 00).
This relation is shown in Figure 6.2. In our experiments, z, and xz, were set to 3 and 26

respectively.

6.3 Experimental Setup

6.3.1 Data Sets

The test collection we use is from TREC-5 and TREC-6 (the Text REtrieval Conferences)
[145]. It contains 164,768 documents and consists of 139,801 articles selected from the
People’s Daily newspaper and 24,988 articles selected from the Xinhua newswire, with 0
bytes as the minimum file size, 294,056 bytes as the maximum size and 891 bytes as the
average file size. 54 Chinese topics (28 for TREC-5 and 26 for TREC-6) were used in our

experiments. The document collection used in TREC-6 Chinese track was identical to the
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one used in TREC-5. All of the original articles were tagged using SGML. The Chinese
characters in these articles were encoded using the GB (GuoBiao) coding scheme.

As mentioned in Section 5.6.1, our self-supervised segmenter is trained on the training
set C) with validation set Cs, where C; is 10M of data which contains a subset of one year
of the People’s Daily news service stories (www.snweb.com), and C5 is a randomly selected
2000 sentence subset of the Chinese Treebank from LDC, which has been segmented by
hand. The parameter kq in Table 6.1 and Table 6.2 is a tuning constant in BM26 (see

equation 6.2). Recall that when k; is 0, BM26 becomes BM25 in our experiments.

6.3.2 Measuring Retrieval Performance

In our experiments, the TREC relevance judgments for each topic came from the human
assessors of the National Institute of Standards and Technology (NIST). Statistical evalu-
ation was done by means of the TREC evaluation program. Several measures are used to
evaluate the retrieval result which is an ordered set of retrieved documents. The measures
include Average Precision (average precision over 11 recall points, 0.0, 0.1, 0.2,..., 1.0, R
Precision (precision after the number of documents retrieved is equal to the number of
known relevant documents for a query), and Precision at 100 docs (precision after 100
documents have been retrieved). Detailed descriptions of these measures can be found

in [145].
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kq

L=2

L=3

L=4

0

0.3264/0.3639

0.3422/0.3857

0.3246,/0.3550

2

0.3326/0.3707

0.3504,/0.3901

0.3319/0.3585

6

0.3430/0.3819

0.3613/0.3981

0.3416/0.3692

8

0.3453/0.3849

0.3641,/0.3996

0.3419/0.3602

10

0.3450/0.3832

0.3661/0.4027

0.3422/0.3733

15

0.3403/0.3773

0.3601,/0.3923

0.3412/0.3747

20

0.3320/0.3744

0.3536/0.3836

0.3368/0.3737

50

0.2756/0.3271

0.2982/0.3444

0.2865,/0.3316
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Table 6.1: Influence of L on TREC-5 using different weighting methods

6.4 Effects of Self-supervised Segmentation on Chi-
nese Text Retrieval

In this section, we first investigate the influence of maximum word length L on retrieval
performance, and then use the optimal length L = 3 for further comparison with other

term extraction methods.

6.4.1 Influence of Maximum Word Length L

As mentioned in Section 5.6.1, among the 9000 most frequent words in Chinese: 26.7%
are uni-grams, 69.8% are bi-grams, 2.7% are tri-grams, 0.007% are 4-grams, and 0.002%
are 5-grams. Thus most Chinese words are no longer than 4 characters. In our training
algorithm, we set a maximum word length constraint L. To evaluate the effect of L,
we experimented with L set to 2, 3 or 4. Table 6.1 and Table 6.2 shows the average
precision/R-precision results on the TREC-5 and TREC-6 data, sets.

Here one can see that the best results were achieved when L = 3. An explanation of
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kq L=2 L=3 L=4

0 | 0.4363/0.4572 | 0.4660/0.4849 | 0.4531/0.4652
2 | 0.4459/0.4579 | 0.4754/0.4897 | 0.4632/0.4718
6 | 0.4595/0.4693 | 0.4906/0.4949 | 0.4781/0.4792
8 || 0.4635/0.4687 | 0.4950/0.4939 | 0.4822/0.4822
10 || 0.4661/0.4667 | 0.4968/0.4973 | 0.4841/0.4839
15 || 0.4659/0.4685 | 0.4970/0.5001 | 0.4820/0.4799
20 || 0.4603/0.4624 | 0.4928,/0.4976 | 0.4758/0.4798
50 || 0.3990/0.4244 | 0.4186/0.4566 | 0.4101/0.4459

Fuchun Peng

Table 6.2: Influence of L on TREC-6 using different weighting methods

this observation is that although more than 96% of Chinese words are at most 2 characters
long (which is the reason why bi-gram indexing works reasonably well [24, 77]), there are
still many words that are longer than 2 characters, and ignoring them compromises the
retrieval performance. Thus words longer than 2 characters can still help improve retrieval.
This is consistent with [78] where Kwok improves bi-gram indexing by a dictionary of
commonly occurring words whose length could be 3 or longer. Obviously, tri-grams and
4-grams will have less ambiguity than bi-grams. However, 4-grams will include many more
combinations than tri-grams, which reduces the reliability with which their occurrence
probabilities can be estimated. Therefore, statistical over-fitting may explain why L = 4
yields worse performance than L = 3.

One can also see that the different weighting methods have a large effect on performance.
Using the BM26 weighting function causes a large improvement in retrieval quality com-
pared to using BM25 (i.e., k; = 0). Here we find that the performance on the TREC-6

data is much better than on the TREC-5 data.
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6.4.2 Comparison with Other Term Extraction Methods

We compare the retrieval performance facilitated by our self-supervised segmentation ap-
proach with other traditional segmentation algorithms used in Chinese information re-
trieval. The first extraction method is the dictionary based method which uses a hand
built dictionary of words, compound words, and phrases to index the texts [64]. The sec-
ond extraction method we compare to is a standard character based approach, in which
documents are indexed by single Chinese characters appearing in the text. (However, we
would like to emphasize that using single characters for indexing does not imply that we
use single characters as keywords for search. For the character based approach, search can
be conducted for any multi-character word or phrase identified at search time, whether or
not this word or phrase appeared in the dictionary. Therefore the experimental results we
report for the character based approach use the character based method fcr indexing and
a dictionary based method for topic processing.) The third extraction method we compare
to is the mutual information based approach [24], in which one first collects occurrence
frequencies for uni-grams and bi-grams, and then uses a mutual information criterion to
segment the text [133], and finally uses these segmented terms to index the documents.
Finally we also compare to the PPM based method, which has also been briefly discussed
in Section 5.6.2

The topic processing method we used in the experiments is simple and automatic. First
we rank the words extracted from each topic by the values of their weights multiplied by the
within-query frequencies. We then use the 19 top ranked words as retrieval keywords. *

A detailed description can be found in [64]. The segmentation method used in topic

4We chose 19 because it gave the best result among the three numbers we tried in our experiments.
There may be a better way to do it. But it does not affect our results.
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processing is consistent with that used in document processing except for the character
based approach. That is, when the EM method, dictionary based method or mutual
information based method are used for document processing, topic processing also uses the
EM method, dictionary based method or mutual information based method respectively.
However, the character based method we use is mixture of a pure character based method
and dictionary based method, i.e., it uses the character based method for indexing but
uses a dictionary based method for topic processing. This hybrid system yields far superior
results to the pure character based method.

The motivation for using the self-supervised segmentation method for Chinese text
retrieval is to incorporate the advantages of the character based, dictionary based, and
mutual information based approaches, while overcoming their shortcomings. Below we
will show these detailed comparisons.

The size of the character based index built for the Chinese TREC collection is about
one gigabyte, which is about twice the size of the raw document collection. This is because
the positional information about each character’s occurrence is stored. In this paper, we
use the positional information in the process of retrieval for the character-based approach.
However, the size of the character-based index without positional information is much less
according to some other experiments [98]. The index for the EM based methods are
roughly the same size as for the dictionary based method. The sizes of the index files for
the dictionary based, EM based, mutual information (MI) based and PPM based methods
are given in Table 6.3. In terms of retrieval time, the EM based methods are similar to the
dictionary based methods. The mutual information based method is a little slower than

the dictionary based, EM based, and PPM based methods. Each of these four methods is
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index invert
character 139,734 | 1,077,393,536
dictionary | 1,691,575 | 678,257,616
EM2 2,087,509 | 648,472,816
EM3 1,431,104 | 667,634,000
EM4 1,868,539 | 677,900,752
MI 11,723,406 | 730,013,936
PPM90 8,282,064 | 669,070,144

Table 6.3: Size of Index Files (unit is byte)

about three times faster than the character based approach.

We show the experimental results of the five methods on TREC-5 data in Tables 6.4
and 6.5, and the results on TREC-6 data sets in Tables 6.6 and 6.7. Here the relevant
retrieved is the number of relevant documents retrieved out of the 2182 or 2958 documents
in the collection for TREC-5 or TREC-6 respectively. We set the dictionary based method
as the baseline.

On TREC-5 data, we find the EM based segmentation gives a 5.57% improvement in
average accuracy over the dictionary based method, but it does a little worse than the
character based method. In terms of R-precision, the EM based method yields better
performance than all other methods. On TREC-6 data, the EM based method yields
slightly worse results than both the dictionary based and the character based methods.
On both TREC-5 and TREC-6 datasets, the EM based method produces better results
than mutual information based method.

Previous research [17, 64] has suggested that exact segmentation may not be necessary
for information retrieval. Our results also support this point: although the segmentation

accuracy of the EM based method is not as high as other methods, it yields comparable
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Recall character | dictionary | EM-based | MI-based | PPM-based
0.00 0.7764 0.7681 0.7358 0.7473 0.6655
0.10 0.6243 0.6261 0.6249 (0.6263 0.5304
0.20 0.5507 0.5075 0.5429 (0.5528 0.4735
0.30 0.4987 0.4531 0.4998 0.4976 0.4309
0.40 0.4458 0.4034 0.4406 0.4289 0.3998
0.50 0.4247 0.3558 0.3954 0.3935 0.3592
0.60 0.35901 0.3180 0.3343 0.3415 0.2972
0.70 0.2711 0.2463 0.2803 0.2569 0.2433
0.80 0.2236 0.1760 0.1859 0.1818 0.1594
0.90 0.1408 0.1154 0.1082 0.0993 0.0914
1.00 0.0266 0.0082 0.0157 0.0275 0.0078
average precision | 0.3795 0.3468 0.3661 0.3627 0.3213
improvement, 9.43% baseline 5.57% 4.58% -7.35%

| relevant retrieved | 1986 | 1883 | 1939 [ 1893 | 1894 |

Table 6.4: TREC-5: comparing precision at specified recall rate

retrieval performance to a hand built dictionary approach.

6.5 Relationship between Segmentation Accuracy and
Retrieval Performance

The advantages of using EM for word segmentation has in fact been considered in previous
research [49, 107]. However, due to the low segmentation accuracies these methods obtain,’
they still do not tend to be regarded as good methods for Chinese information retrieval.

Nevertheless, the results presented so far suggest that this need not be the case. In fact,

5The segmentation accuracies of EM based and mutual information based methods, whose retrieval
performances shown in Tables 6.4, 6.5, 6.6 and 6.7, are 77% and 61% respectively.
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R character | dictionary | EM-based | MI-based | PPM-based
5 0.5571 0.5429 0.5500 0.5286 0.4571
10 0.5429 0.5143 0.5107 0.5214 0.4821
15 0.4881 0.4810 0.4881 0.4952 0.4643
20 0.4732 0.4732 0.4857 0.4946 0.4500
30 0.4369 0.4321 0.4595 0.4571 0.4238
100 0.3189 0.3150 0.3243 0.3139 0.3007
200 0.2380 0.2302 0.2418 0.2329 0.2291
500 0.1272 0.1216 0.1269 0.1208 0.1202
1000 0.0709 0.0672 0.0693 0.0676 0.0676
R-Precision 0.3963 0.3863 0.4027 0.3988 0.3663

| improvement | 2.59% | baseline 4.25% 3.24% -5.18% |

Table 6.5: TREC-5: comparing R-precision

we have shown that unsupervised Chinese word segmentation, limited as it is in terms of
accuracy, can still facilitate retrieval performance that it comparable with the best current
Chinese information retrieval systems. In the following, we investigate the relationship
between word segmentation accuracy and retrieval performance in Chinese information

retrieval.

6.5.1 Segmentation Accuracy Control

To achieve a wide range of word segmentation accuracies, we employed the various seg-
menters and varied their parameters to vary the segmentation accuracy. In particular,

we used the dictionary based method (see Section 5.6.2), the mutual information based
method [24], the PPM based method [139] (also see Section 5.6.2), and the self-supervised

method (see Section 5.6).

In the dictionary based approach, we control accuracy by using two different dictio-
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Recall character | dictionary | EM-based | MI-based | PPM-based
0.00 0.9604 (0.9558 0.9110 0.9120 (0.9149
0.10 0.8144 0.8217 0.8021 0.8105 0.7994
0.20 0.7396 0.7351 0.7482 0.7371 0.7255
0.30 0.6957 0.6586 0.6580 0.6564 0.6486
0.40 0.6662 0.5958 0.5935 0.5921 0.5827
0.50 0.5937 0.5507 0.5267 0.5402 0.5258
0.60 0.5195 0.4708 (0.4608 0.4659 0.4692
0.70 0.4284 0.3844 0.3779 0.3683 0.3864
0.80 0.3224 0.2892 0.2738 0.2755 0.2961
0.90 0.1966 0.1485 0.1846 0.1751 0.1796
1.00 0.0239 0.0023 0.0297 (0.0050 0.0141
average precision | 0.5348 (0.5044 0.4970 (0.4966 (0.4983
improvement 6.03% baseline -1.47% -1.55% -1.21%

l relevant retrieved { 2569 | 2536 l 2540 | 2532 ] 2518 ]

Table 6.6: TREC-6: comparing precision at specified recall rate

naries. The first is the Chinese dictionary used by Gey et al. [50], which includes 137,659
entries. The second is the Chinese dictionary used by Beaulieu et al. [6], which contains
69,353 words and phrases. By using the forward maximum matching segmentation strategy
with the two dictionaries, Berkeley and City [24, 64], we obtain the segmentation accura-
cies of 71% and 85% respectively. The segmentation accuracy for the mutual information
based approach is 61%.

For the PPM algorithm, by controlling the order of the n-gram language model used
(specifically, 2 and 3) we obtain segmenters that achieve 90% and 95% word recognition
accuracy respectively.

Finally, for the self-supervised learning technique, by controlling the number of EM

iterations and altering the lexicon pruning strategy we obtain word segmentation accuracies
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R character | dictionary | EM-based | MI-based | PPM-based
5 0.7615 0.8077 0.7538 0.7846 0.7846
10 0.7731 0.7885 0.7846 0.7808 0.7615
15 0.7615 0.7667 0.7564 0.7641 0.7410
20 0.7385 0.7404 0.7346 0.7423 0.7096
30 0.6910 0.6936 0.6833 0.6949 0.6769
100 0.5035 0.4923 0.4831 0.4758 0.4838
200 0.3615 0.3521 0.3406 0.3354 0.3456
500 0.1832 0.1808 0.1798 0.1765 0.1782
1000 0.0988 0.0975 0.0977 0.0974 0.0968
R-Precision (0.5404 0.5055 0.5001 0.4955 0.5008

| improvement | 6.90% baseline | -1.07% | -1.99% | -0.93% |

Table 6.7: TREC-6: comparing R-precision

of 44%, 49%, 53%, 56%, 59%, 61%, 70%, 75%, and 77%.
Thus, overall we obtain 13 different segmenters that achieve segmentation accuracies

of 44%, 49%, 53%, 56%, 59%, 61%, 70%, 71%, 75%, 7%, 85%, 90%, and 95%.

6.5.2 Experimental results

Now, given the 13 different segmenters, we conducted extensive experiments on the TREC
data sets using different information retrieval methods (achieved by tuning the k; constant
in the term weighting function described in Section 6.2).

Table 6.8 shows the average precision and R-precision results obtained on the TREC-5
and TREC-6 queries when basing retrieval on word segmentations at 12 different accuracies,
for a single retrieval method, k4 = 10. To illustrate the results graphically, we re-plot this
data in Figure 6.3, in which the x-axis is the segmentation performance and the y-axis is

the retrieval performance.
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seg. accuracy TREC-5 TREC-6
44%(EM) 0.2231/0.2843 | 0.3424/0.3930
49%(EM) 0.2647/0.3259 | 0.3848/0.4201
53%(EM) 0.2999/0.3376 | 0.4492/0.4801
56%(EM) 0.3056/0.3462 | 0.4473/0.4727
59%(EM) 0.3097/0.3533 | 0.4740/0.4960
61%(MI) 0.3627/0.3988 | 0.4953/0.4942
70%(EM) 0.3721/0.3988 | 0.5044/0.5072
71%(Berkeley) || 0.3656/0.4088 | 0.5133/0.5116
75%(EM) 0.3652/0.4000 | 0.4987/0.5097
TT%(EM) 0.3661/0.4027 | 0.4968,/0.4973
85%(City) 0.3468/0.3863 | 0.5044,/0.5055
90%(PPM) 0.3213/0.3663 | 0.4983,/0.5008
95%(PPM) 0.3189/0.3669 | 0.4867/0.4933

Fuchun Peng

Table 6.8: Average precision and R-precision results on TREC queries when k; = 10.
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Retrieval performance (y-axis) versus segmentation accuracy (x-axis) for kg =
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Clearly these curves demonstrate a nonmonotonic relationship between retrieval per-
formance and segmentation accuracy (on both P-precision and R-precision). In fact, the
curves show a clear uni-modal shape, where for segmentation accuracies between 44% and
70% retrieval performance increases steadily, but then plateaus for segmentation accura-
cies between 70% and 77%, and finally decreases slightly when the segmentation accuracy
is increased to 85%, 90% and 95%. This phenomenon is robust to altering the retrieval
method by setting kg = 0,6, 8,15, 20, 50, as shown in Figures 6.4 to 6.9 respectively.

The highest segmentation accuracy achieved by the self-supervised segmentation method
is 77%. However, the best retrieval performance for this method is obtained by setting the
segmentation accuracy to 70%.

To give a more detailed picture of the results, Figures 6.10 and 6.11 illustrate the
full precision-recall curves for k; = 10 at each of the 12 segmentation accuracies, for
TREC-5 and TREC-6 queries respectively. In these figures, the results of the 44%, 49%
segmentation accuracies are marked with stars, the 53%, 56%, 59% segmentation accuracies
are marked with circles, the 70%, 71%, 75%, 77% segmentation accuracies are marked with
diamonds, the 85% segmentation accuracy is marked with hexagrams, and the 90% and
95% segmentation accuracies are marked with triangles. We can see that the curves with

the diamonds lie above the others, while the curves with stars lie at the lowest positions.

6.6 Related Work and Discussion

In this section, we analyze the experimental results reported in Sections 6.4 and 6.5.
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Relation of segmentation performance and retrieval performance on TREC5 (kd=0)
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Figure 6.4: Retrieval performance (y-axis) versus segmentation accuracy (x-axis) for kg =
0.
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Relation of segmentation performance and retrieval performance on TRECS (k d=6)
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Figure 6.5: Retrieval performance (y-axis) versus segmentation accuracy (x-axis) for kg =
6.

6.6.1 Word Segmentation in Chinese information retrieval

Our work in this chapter is most closely related to the work of Chen et al. [24]. There it
was also proposed that Chinese information retrieval could be conducted without using a
manually built dictionary. In their method, Chen et al. collect occurrence frequencies from
the corpus, limit the word length to be at most 2 characters, and use the mutual information
technique to segment Chinese text. Similarly, we also use frequencies from the corpus and
use mutual information during the process. However, our approach differs from theirs in
many respects. First we do not limit the word length to 2 characters. The maximum word
length could be set arbitrarily to suit the application. In fact, our best results are achieved
with L = 3. Second, the statistics we used were optimized by an iterative EM process,

which is guaranteed to achieve at least a local optimum. This approach should be more



140 Fuchun Peng

Relation of segmentation performance and retrieval performance on TRECS (k,=8)
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Figure 6.6: Retricval performance (y-axis) versus segmentation accuracy (x-axis) for kq =
8.

reliable than using the statistics obtained directly from the corpus. This is confirmed by
the experimental results shown in Tables 6.4, 6.5, 6.6 and 6.7. Our work is also strongly
related to Kwok [77, 78] who proposed a mixture of uni-grams and bi-grams, or mixture of
uni-grams and short words to represent text. The mixture was built with some predefined
rules. In our work, this mixture is defined implicitly because our EM based algorithm can
segment text into words ranging from 1 character to L characters.

There are three concerns with the EM based approach. The first is that unsupervised
learning normally requires a large amount of raw training data to achieve reasonable per-
formance. This raises the question of how much raw data should be enough for training.
In our experiments, we used 10M raw data, a subset of 90M data downloaded from Peo-

ple’s Daily news service stories (www.snweb.com). The entire 90M data set was previously
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Relation of segmentation performance and retrieval performance on TRECS (k d=15)
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Figure 6.7: Retrieval performance (y-axis) versus segmentation accuracy (x-axis) for kg =
15.

investigated in [49, 107]. In our experiments, we found that 10M data was sufficient to
achieve good performance.

The second concern is that EM training can often take a long time to converge. In
our experimental environment (a 750M HZ Pentium IV PC with 2G RAM), it took about
1 hour for a single EM iteration. Ten iterations were sufficient for convergence. After
initial training reaches convergence, the lexicon pruning and core lexicon construction
routines were then applied. Once lexicon pruning has been carried out, time was reduced
to about 30 minutes for a single EM iteration. Overall, we conducted three iterations of
lexicon pruning and core lexicon growing. This meant that the entire training process
was completed within 36 hours. Note that the training process only has to be conducted

once as an off-line preprocessing procedure. Once the lexicon is constructed, the Viterbi
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Relation of segmentation performance and retrieval performance on TRECS (k,=20)
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Figure 6.8: Retrieval performance (y-axis) versus segmentation accuracy (x-axis) for kg =
20.

algorithm can be used to segment each new sentence in time linear in the length of the
sentence [114]. Thus, in terms of training time, the unsupervised lexicon construction and
word segmentation approach is plausible.

The third concern is that the segmentations obtained by pure unsupervised methods
are not as accurate as those obtained by other supervised methods. Such a reduction in
segmentation accuracy might not be acceptable in some applications; for example, in ma-
chine translation. However, in Chinese text retrieval, we have shown that the segmentation
accuracy obtained by unsupervised methods can lead to competitive retrieval performance.
It is also worth pointing out that text retrieval in general has to rely on large-scale auto-
matic methods, simply because of the quantity of textual material available. It would be

interesting to investigate how much an unsupervised method can help in this matter.
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Relation of segmentation performance and retrieval performance on TREC5 (kd=50)
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Figure 6.9: Retrieval performance (y-axis) versus segmentation accuracy (x-axis) for k; =
50.
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Overview of the TRECS results
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Figure 6.10: TRECS precision-recall comprehensive view at kq = 10

Overview of the TREC-6 results
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Figure 6.11: TREC6 precision-recall comprehensive view at kg = 10
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6.6.2 Relationship between Segmentation Accuracy and Retrieval

Performance

The relationship between retrieval performance and segmentation accuracy was surprising
to us at first and suggested that there was an interesting phenomenon at work. To attempt
to identify the underlying cause of the nonmonotonic relationship, we break the explanation
into two parts: an initial phase where retrieval performance increases with increasing seg-
mentation accuracy, and a second effect in the region where retrieval performance plateaus
and eventually decreases with increasing segmentation accuracy.

The first part of these performance curves seems easy to explain. At low segmentation
accuracies the segmented tokens do not correspond to meaningful linguistic terms, such
as words, which hampers retrieval performance (because the term weighting procedure is
comparing arbitrary tokens to the query). However, as segmentation accuracy improves,
the tokens behave more like true words and the retrieval engine begins to behave more
effectively.

However, after a point, when a second regime is reached, retrieval performance no longer
increases with improved segmentation accuracy, and eventually begins to decrease. One
possible explanation for this is that a weak word segmenter accidentally breaks compound
words into smaller constituents, and this, surprisingly can yield a benefit for Chinese
information retrieval.

For example, one of the test queries, Topic 34, is about the impact of droughts in various
regions of China. Retrieval based on the EM-70% segmenter retrieved 84 o\f the 95 relevant
documents in the collection, whereas retrieval based on the PPM-95% segmenter retrieved

only 52 relevant documents. In fact, only 2 relevant documents were missed by EM-70%
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but retrieved by PPM-95%, whereas 34 documents retrieved by EM-70% and were not
retrieved by PPM-95%. In this case, we find that the performance drop appears to be
due to the inherent nature of written Chinese. That is, in written Chinese many words
can be legally represented by their subparts. For example, & {E#] (agriculture plants)
is sometimes represented as 1E#J (plants). So for example in Topic 34, the PPM-95%
segmenter correctly segments FK as FK (drought disaster) and &/EY) correctly as &
YE#) (agriculture plants), whereas the EM-70% segmenter incorrectly segments 5 K as
£ (drought) and K (disaster), and incorrectly segments & E#] as & (agriculture) and
YE%) (plants). However, by inspecting the relevant documents for Topic 34, we find that
there are many Chinese character strings in these documents that are closely related to the
correctly segmented word £ %K (drought disaster). These alternative words are H5, F
B, 25, T8, %, BEKX etc. For example, in the relevant document “pd9105-832”,
which is ranked 60th by EM-70% and 823rd by PPM-95%, the correctly segmented word
FK does not appear at all. Consequently, the correct segmentation for £ % by PPM-95%
leads to a much weaker match than the incorrect segmentation of EM-70%. Here EM-70%
segments 7K into £ and % , which is not regarded as a correct segmentation. However,
it turns out that there are many matches between the topic and relevant documents which
contain only 5. This same phenomenon occurs with the query word &K {E#) since many
documents only contain the fragment /E#] instead of RAE#), and these documents are
all missed by PPM-95% but captured by EM-70%. This explanation is consistent with
previous research [79, 80].

The relationship between word segmentation accuracy and retrieval performance is not

obvious. The fundamental problem is the balance between specificity and exhaustiveness,
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or precision and recall. Longer words contribute to increasing precision, but keeping only
long words will hurt recall. In Nie et al. [98], to increase precision without penalizing
recall, long words are combined with short words and characters contained within long
words. However, the traditional dictionary based approach using longest word match for
segmentation tends to create long terms, thus it hurts recall.

Chinese word segmentation and text retrieval are two different tasks. In word segmen-
tation research, accuracy is measured by how good a machine segmented string matches
a manually segmented string. However, manual segmentation is performed by considering
syntactic and semantic information. Whereas for text retrieval, word segmentation is mea-
sured by its indirect effect on precision and recall. Since current retrieval methods only
consider documents as a bag of words and ignore the syntactic and semantic content of
the words, an accurate segmentation may not provide an optimal basis for text retrieval.
For example, we observe that the PPM segmenter trained on manually segmented data de-
creases performance, although it achieves a higher segmentation accuracy. This illustrates
the mismatch between word segmentation itself and its use as a tokenizer for text retrieval.
The non-monotonic relationship between word segmentation and retrieval performance is
caused by this mismatch. This mismatch suggests that different segmentation criteria
should be applied in different applications. Our research may provide some guidance in

this direction for Chinese text retrieval.

6.7 Summary

We have applied the novel EM based text segmentation method introduced in Chapter 5 for

the purposes of Chinese information retrieval, and presented experimental results on recent
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TREC data. Our method retains the advantages of the character based, dictionary based
and mutual information based methods, while overcoming many of their shortcomings.
Although our EM based segmentation method does not yield completely accurate segmen-
tations by itself, it nevertheless performs well as a basis for Chinese information retrieval.
We achieve retrieval performance that is comparable (and sometimes even better) than
the manual dictionary based, character based and mutual information based segmentation
methods. Our results demonstrate that machine learning techniques can be successfully
applied to text segmentation and information retrieval to build adaptable systems.

We also observe that the relationship between word segmentation accuracy and retrieval
performance is non-monotonic. Retrieval performance first increases as word segmentation
accuracy increases, but it begins to plateau after some point and eventually decrease when
segmentation accuracy is too high. Our self-supervised word segmentation method yields
comparable retrieval performance, although it produces its best result on TREC-5 data by
setting the parameters that lead to a segmentation accuracy of only 70%. These observa-
tions may also explain the effect of maximum length L (in Section 6.4.1) where we found
that L = 3 is better than L = 4. We conclude that it would be better to bias a segmenter
in the direction of deliberately matching shorter rather than longer words. One way to
think about this would be to penalize long matches more stringently than short matches
in the evaluation.

Although straightforward, these observations suggest a different approach to research
on Chinese information retrieval. Instead of focusing on accurate word segmentation, one
should pay more attention to issues such as keyword weighting [64] and query keyword

extraction [26]. Our current keyword extraction method is very rough, and we are in-
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vestigating more sophisticated extraction methods such as those used in [24, 26]. Also,
since weak unsupervised segmentation can yield better performance in Chinese informa-
tion retrieval than the other approaches, it seems that machine learning techniques offer a
promising new avenue to apply machine learning techniques to information retrieval [132).
Of course, despite these results, we expect that accurate word segmenters will still play
an important role in other Chinese information processing tasks, such as information ex-
traction and machine translation. Our research suggests that different criteria for Chinese

word segmentation should be applied to different NLP applications.



Chapter 7

Conclusions

This chapter briefly reviews the thesis, points out future work, and gives an outlook for

longer term research.

7.1 Thesis Review

We have proposed using statistical n-gram models for language independent text learning.
Statistical language modeling has a strong basis in information theory and removes many
ad hoc procedures from traditional text learning systems. The n-gram modeling approach
also facilitates language independence. In this thesis, we have achieved improvements in
three different areas of text learning based on statistical n-gram language modeling and

unsupervised machine learning.

- @ Language independent and task independent text classification

We proposed using a simple back-off n-gram language model for language and task

independent text classification. The approach is a generalization of naive Bayes clas-
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sification which considers local Markov dependencies, resulting the chain augmented
naive Bayes classifier. It effectively copes with the feature explosion problem by in-
corporating back-off models and sophisticated smoothing techniques. Thus it avoids
an explicit feature selection step critical to most traditional text classifiers, while
efficiently dealing with unseen features in a better way than traditional text classi-
fiers. The approach can be applied at both the word level and the character level.
When applied at the character level, it avoids the explicit word segmentation prob-
lems that occur in many Asian languages such as Chinese and Japanese, and thus
it allows a completely language independent approach to text classification. Experi-
ments across various languages (Greek, English, Chinese and Japanese) and various
text classification tasks (language identification, authorship attribution, text genre
classification, topic detection, and sentimental classification) demonstrate the success

of this approach.

e Language independent lexical learning and unsupervised word segmentation

We proposed using an unsupervised approach based on n-gram models for language
independent lexical learning. Given such a model, one segments new sequences based
on dynamic programming. To reduce the sparse data problem occurring in traditional
EM approaches, we propose a hierarchical method, a self-supervised method, and a
mutual information based lexicon pruning method. These methods efficiently ad-
dress the sparse data problem while helping EM overcome local maxima problems.

Experiments on artificial English data and real Chinese data show their effectiveness.

e Chinese text retrieval with unsupervised word segmentation
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We further applied unsupervised word segmentation to Chinese text retrieval. The
dynamic segmentation method based on the automatically learned lexicon combines
many of the advantages of traditional word segmentation methods while overcoming
their shortcomings. Experiments on the TREC-5 and TREC-6 datasets show the
success of this method. We also investigated the relationship between word segmen-
tation and retrieval performance in Chinese information retrieval. Here we found
that the relationship is not monotonic as commonly expected. These findings are of
theoretical and practical importance to both Chinese word segmentation and Chinese

text retrieval.

7.2 Research Outlook

We have demonstrated the success of statistical n-gram language modeling and unsuper-
vised learning in various text learning problems. However, there are still many research
questions that need to be addressed in the near future. One important ongoing inves-
tigation is to incorporate unlabeled data into the chain augmented Naive Bayes (CAN)
model, in a similar fashion to the plain naive Bayes model [91, 101]. The tricky part
about incorporating unlabeled data in the CAN model is that we have to consider back-off
and smoothing issues. We have solved most of these issues and are currently beginning
experiments with unlabeled data.

In this thesis, we have demonstrated the success of statistical language modeling for
text learning problems. In fact, statistical language modeling is a general approach for
arbitrary sequence learning problems and can be applied in a much broader area than text.

Recently we have successfully applied this approach to web usage mining by considering
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visited objects as a basic unit for language modeling. Here we proposed a dynamic session
boundary detection method using entropy evolution based on statistical language modeling.
Experiments on association rule learning based on this new approach improves traditional
ad hoc session detection significantly [61].

Many other applications can also be formulated as a language modeling problem, such
as gene sequence analysis, music analysis, etc. Figure 7.1 gives an outlook of possible
research based on statistical language modeling and machine learning. We are interested

in the following research problems.

e Improving statistical language modeling itself

Although language modeling is a hard and well studied problem, it is still worth
further investigation due to its importance. N-gram language models are still the
most successful model in this area. However, with the development of faster hardware
and developments in machine learning, many currently impractical models could
have great applicability in the future. Effectively combining n-gram models with
other constraint models such as context free grammars and latent semantic indexing

remains an important research topic.

e Web mining

The rapidly expanding Web contains a vast amount of data containing useful infor-
mation waiting to be discovered. Web usage mining is a recently established area
that focuses on developing techniques for discovering usage patterns in Web log data
to better serve the needs Web-based applications. One important Web usage mining

problem is to learn interesting association rules from Web logs. Language modeling
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can be successfully applied in many of Web mining applications. Our first experi-
ments on association rule learning, using the language model based session detection
approach outline above, has already shown the promise of language modeling in this
arca [61]. We are currently investigating other applications such as sequential pattern

learning.

Multimedia information retrieval and bio-informatics

Multimedia information retrieval and bio-informatics are two other information ac-
cess problems that have been emerging recently. They share many similarities with
text learning problems, and many text learning approaches can be readily applied
in these fields. For example, unsupervised word segmentation methods can be ap-
plied to music segmentation and gene sequence segmentation, and language modeling
techniques can be used to compare the similarities between music sequences and gene

sequences.
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Normalization Constant 5 in the

Back-off Model

Let h = wy—p41..w;—1 and A~ = w;_p42..w;—1. Then we have the following:

> Prlh)= ) Prlh)+ Y. Pr(zlh) (A.1)
T z:#(h,z)>0 z:##(h,x)=0
= Y B+ 3 AR Pl (A.2)
z:#(h,x)>0 x:#(h,z)=0

by plugging in Equ. (3.7) to Equ. (A.1).

To ensure that Pr(z|h) is normalized, we should have

> Pr(zlh) =1 (A.3)

Thus, combining Equ. (A.2) and Equ. (A.3) yields
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Bh) Y Prh)=1- > Pr(zlh)

it (h,a)=0 z:#t(h,z)>0

Hence,

1- Z Pr(z|h)

z:#(h,z)>0

> Pr(z|h”)

x:¢#(h,x)=0)

1- Z Pr(z|h)

z:#t(h,z)>0

BEECE

z:#(h,z)>0

1- Z Pr(z|h)
z:#(h,z)>0
1— Y Pr(z|h7)

z:#(h,xz)>0

This proves the Equ. (3.9).



Appendix B

An Example Usage of the Waterloo
LM Toolkit

In this appendix, we introduce the functionalities of our Waterloo language modeling
toolkit, and give an example usage (Section B.3). The use of the toolkit is divided into two
phases: generating n-gram language models (Section B.1) and evaluating language models

on testing data (Section B.2).

B.1 Generating n-gram language models

Given a training corpus, there are four steps to generate a language model.

1. text2w freq

The first step is to generate all word frequencies from the training corpus.

158
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Command syntax:

text2w freq [—hashsize (size of hash table)]
~ in (required training file)
[—out (output file, default to screen)]
[—unit] (0 for word level;
1 for English character level,
2 for Chinese character level;

3 for Japanese character level, default set to 0)

More about the parameters:

—in: specifies the training corpus. This parameter is a mandatory parameter.

—out: specifies the output of word frequency file. If no output file is specified, it
outputs to the screen.

—unit: specifies the basic unit used in the language model. It could be the English
word level (0), English character level (1), Chinese character level (2), or Japanese
character level (3). The default is set to be English word level (0).

—hashsize: Higher values for the -hash parameter require more memory, but can

reduce computation time. Normally, one does not need to set this.

2. wfreq2uocab
The second step is generating a vocabulary from the word frequencies generated in

step 1.
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Command syntax:

w freq2vocab [—hashsize (size of hash table)]
— in (wireq file)
— out (output vocab file)

[—top (select top N words only, default 20000)]

More about the parameters:

—in: specifies the word frequency file generated by command text2wireq.

—out: specifies the vocabulary file name.

—top: specifies how many of the most frequent words are to be selected from the

word frequency file. Default is set to be 20000.

3. text2idngram
The third step is to generate the n-grams from the training corpus. The n-grams are

represented with integer word index numbers.
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Command syntax:

text2idngram [—n (ngram order, default 3)]
~ vocab (vocab file)
—in (training file)
[—out (output file, default to screen)]
[—onlyflag]
[—bwritewords (1 or 0, default 0)]
[—independence (1 or 0, default 0)]
[—ex_unk default is not set]
[—unit] (0 for word level;
1 for English character level;
2 for Chinese character level;

3 for Japanese character level, default set to 0)

More about the parameters:

n: specifies the order of n-gram. The default is set to be 3, which generates 3-grams.
—vocab: specifies the vocabulary file generated by wfreq2vocab command.

—1in: specifies the training corpus. It is the same parameter as that used in command

text2wireq.

—out: specifies the file name for the n-grams. For example, if the file name is
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“NGram” and the order is 3, the 1-grams are stored in file “NGram_1", the 2-grams
are stored in file “NGram_2” and the 3-grams are stored in file “NGram_3” respec-
tively.

—onlyflag: If this flag is set, only the specified n-grams are generated, otherwise all
n-grams from order 1 to n are generated. The default is all.

—bwritewords: If this is set to be 1, then the words are also written into the n-gram
files. Otherwise only the indices are written. The default is that no words are writ-
ten.

—independence: If this is set. The n-gram language model will assume independence
between sentences. Sentences are split by punctuation marks, including period(.),
question mark (?) and !. The default is to assume dependence.

—er_unk: If this is set, the n-gram model will exclude out of vocabulary n-grams in
the training corpus. This happens when the selected vocabulary does not contain all
the words occurring in the training corpus. The default is to include out of vocabu-

lary n-grams.

idngralm2lm

The fourth and last step is to generate a n-gram language model from the n-gram files.
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Command syntax:

idngram2lm — vocab (vocabfile)
— idngram (idngramfile)
[—n (ngram order)]
[—out (output file)]
[~vocab_type (vocabulary type)]

[—lin_abs| — linear| — witten_bell| — absolute| — good_turing|laddone]

More about the parameters:

—vocab: specifies the vocabulary, which is generated by command wifreq2vocab.
—idngram: specifies the n-gram file name. This is the same parameter as that used
in text2idngram command.

—n.: sets the order of n-gram language model. The default is set to be 3.

—out: specifies the language model file name.

—wvocab_type: specifies the vocabulary type. 1 indicates an open vocabulary, which
include a UNK word for unseen words, and 0 indicates a closed vocabulary, which
does not allow unseen words.

[—lin_abs| — linear| — witten_bell| — absolute| — good_turing|addone]: specifies the

smoothing technique. The default is linear smoothing.

The above command syntax information can be displayed by typing “— help” following

any command.
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B.2 Evaluating language models on test data

After a language model is generated, it could be used to evaluate the perplexity of a test

document. There is only one command for evaluation.

Command syntax:

evallm — Im (* required, language modeling file)
— vocab (* required, vocabulary file)
[—independence] (sentence independence assumption ?)
[—unit] (0 for word level;
1 for English character level;
2 for Chinese character level,
3 for Japanese character level, default set to 0)
[—test < file >]

[—include_unks]

More about the parameters:
—Im: specifies a language model to be used.
—vocab: specifies the vocabulary, which is generated by command wfreq2vocab.
[—independence]: If this is set, the evaluation assumes that each sentence is independence.
[~unit]: This is the same parameter as that used in commands text2wfreq and text2idngram.

[—tést]: This option allows for batch evaluation. One can put all your file NAMES with
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a full path into a file, where each line is a file name to be evaluated. The program will
then evaluate all of these files directly. Otherwise, the program will enter an interactive
evaluation environment where one can manually specify files.

[—include_unks]: If this flag is set on, the perplexity calculation will include OOV words.

Otherwise, the OOV words are ignored for perplexity evaluation.

Interactive Evaluation:
After the “evallm” program enters an interactive evaluation program (by not specifying the

-test parameter at command line), there are three commands for interactive operations.

1. help
This command displays a help menu designed to help users select appropriate com-

mands.

Command syntax:

help

2. perplexity

This command computes the perplexity/entropy of a testing document.
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Command syntax:

perplexity — test testfile

[—include_unks]

More about the parameters:

—test: epecifies the file to be tested.

—include_unks: This is optional. If it is set, the perplexity computation will include

OOV words.

. validate

This command validates the sum of the probabilities of all the words given a context

is 1.

Command syntax:

validate context

More about the parameters:
The context specifies the words which will be conditioned on.
quit

This command exits the program.
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Command syntax:

quit

B.3 An Example Usage

We now show how the toolkit works through a concrete example. Here 80% of the Brown
corpus is randomly selected for training and the remaining 20% is used for testing. The

data is available under the toolkit directory “data/English”.

Generating a language model:

1. textwfreq

Input:

text2w freq —in ../data/English/brown._corpus_0.8_train —out wireq —unit 0

Output:
text2wireq: 1000000 ../data/English/brown_corpus.0.8_train wireq 0
Total Units Num: 911259

text2wfreq:done

Explanation:
The program takes the file “./data/English/brown_corpus_0.8_train” as a training
corpus and generates 911259 units in total. The basic unit here is a word. The

output is written to the file “wfreq” in the current directory.
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2. wfreq2vocab

Input:

w freq2vocab —in wireq —out vocab —top 15000

Output:

reading the words from wireq file ...done!
sorting counts ... done!

sorting alphabetically...done!

Generate a vocabulary vocab containing the most frequent 15000 words from wfreq It accounts for

0.9608 = (875517/911259) word occurrence!

Explanation:
The program takes the word frequency file “wfreq” and generate a vocabulary file

“vocab” which contains the 15000 most frequent words. These words account for

96.08% of all word occurrences in the training corpus (875517 out of 911259).

3. text2idngram

Input:
text2idngram ~n 3 ~vocab vocab —in ../data/English/brown_corpus_0.8_train —out NGram

-ex_unk 1

Output:
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text2idngram: -n 3 -vocab vocab -in ../data/English/brown_corpus_0.8_train -out NGram -onlyflag
0 -bwritewords=0-independence 0 -ex_unk 1 -unit 0
Vocabulary Size : 15000

getting 1 grams ....

write to file:NGram...

read 1-Gram into memory from file: NGram.1...
totalWords:15000

sorting...

output to NGram_1...

total 1 grams(uniqueGrams) 875517(15000)
getting 2 grams ....

write to file:NGram...

read 2-Gram into memory from file: NGram_2...
totalWords:289799

sorting...

output to NGram.2...

total 2 grams(uniqueGrams) 841706(280616)
getting 3 grams ....

write to file:NGram...

read 3-Gram into memory from file: NGram.3...
totalWords:603079

sorting...
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output to NGram_3...

total 3 grams(uniqueGrams) 810291(603079)

- results

1-grams: 875517(15000)
2-grams: 841706(280616)
3-grams: 810291(603079)

text2idngram:done totalGrams: 2527514 totalUniqueGrams:898695

Explanation:

The programs generates all of the 1-grams, 2-grams, and 3-grams from the training
corpus. The n-grams are stored into files "NGram_1”, “NGram_2", and “NGram_3"
respectively. A total of 875517 uni-grams (the length of training corpus) were ex-
tracted, of which 15000 are distinct. Similarly, 841706 bi-grams were extracted, of
which 289799 are distinct. and 810291 3-grams were extracted, of which 658698 are

distinct.

. tdngram2lm

Input:

idngram?2lm -vocab vocab -idngram NGram -out LIN3.arpa -n 3 -linear

Output:
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This is a 3-gram, back_off=1, idngramFile=NGram szVocFile=vocab

(Detailed information is omitted here)

—————— discounting ratios
Linear discounting ratios...

l-gram : 0.998714

2-gram : 0.779318

3-gram : 0.394262

(Detailed information is omitted here)

write language model to file LIN3.arpa...
Bo-Weight memory is freed

Unigram prob and log.prob memory is freed

Explanation:
The program generates a tri-gram language model using linear smoothing. The
smoothing constants for the uni-grams, bi-grams, and tri-grams are 0.998714, 0.779318,

and 0.394262 respectively. The language model is written into the file “LIN3.arpa”.
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Now that a language model has been generated, it can be used to evaluate the perplexity

of an unseen testing document.

Evaluating language models on testing data:

1. evallm

Input:

evallm -vocab vocab -lm LIN3.arpa

This command loads the language model “LIN3.arpa” and moves the program into

an interactive environment.

Interactive Commands:

(a) perplexity

Input:

perplexity -test ../data/English/brown_corpus.0.2_test

Output:
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Perplexity /Entropy = 432.065562/8.755106 dUNKProb = 0.000000 dSum_Log_Prob=-632352.699000
totalWords = 259749 OOV words #=19817 (0.076293) totalUsed Words = 239932

3-gram hit number :58641 (0.244407)

2-gram hit number :102848 (0.428655)

1-gram hit number :78443 (0.326938)

Character_perpelxity/entropy = 4.477070/2.162555 Character_number = 971365

Missing words: missing# /(missing#+hit#)
3-gram: 181289/(181289+4-58641) = (0.755591)
2-gram: 78442/(78442+102848) = (0.432688)

1-gram: 0/(04+78443) = (0.000000)

Explanation:

This command evaluates the perplexity of testing document

“../data/English /brown_corpus_0.2_test”

The perplexity and entropy of the testing document are 432.065562 and 8.755106
respectively. Additional information about how many n-grams were observed

and how many were missing were also printed out.

(b) validate

Input:

validate see

Output:
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prob(* | see ) = 1.000016

Explanation:
The commands computes the sum of all conditional probabilities given the con-
text see. The sum of the probabilities is 1.000016, which is correct up to round

off error. (The value is supposed to be 1.)
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