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Abstract

In this thesis, we study range restriction categories and their properties. Range
restriction categories with split restriction idempotents are shown to be equivalent
to the partial map categories of M-stable factorization systems. The notions of a
restriction fibration, a range restriction fibration, a stable meet semilattice fibration,
and a range stable meet semilattice fibration are introduced and it is shown that
(range) stable meet semilattice fibrations provide a bridge between the category of
(range) restriction categories and the category of categories and that (range) restric-
tion fibrations are the same as (range) restriction categories so that these fibrations
provide a useful setting for studying (range) restriction categories. Finally, we con-
struct the free range restriction structures over directed graphs using deterministic

trees.
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Chapter 1

Introduction

Partial maps play an important role in the semantics of computer science and in the
more traditional mathematical areas, such as algebraic geometry and analysis [7].
In [12], Di Paolo and Heller introduced dominical categories as an abstract setting
to capture the notion of partiality. They used zero morphisms and near products
to abstract the notion of partiality and they showed that the fundamental results of
recursion theory could be obtained from these simple assumptions and the presence
of a Turing object.

Robinson and Rosolini [23] noticed that the zero structure was not necessary for
obtaining a notion of partiality and introduced the notion of P-categories (categories
with a near product structure) as the basis for a more general theory of partiality.
P-categories are essentially the same as Cockett’s copy categories [5)].

Cockett and Lack [7] introduced restriction categories as an even more general
framework for working with abstract categories of partial maps. In a restriction
category, the notion of partiality is captured abstractly by a single combinator U
and four restriction axioms (see [R.1], [R.2], [R.3], and [R.4] below). As claimed
in [7], “the intuition for the combinator f is provided by thinking of the maps
as programs: the restriction combinator modifies a program so that, rather than
returning its output, it returns its input unchanged when it terminates.” Dominical
categories, P-categories, and copy categories are all restriction categories.

In this thesis, we examine categories of partial maps in which not only is the



domain of the partial map abstractly defined but also the image of the partial map.
This occurs frequently in practice: for example, in partial recursive functions, enu-
merable sets can not only be described as the domains of partial recursive functions
but also as their images. We call restriction categories in which images are defined
range restriction categories and they require, in addition to the restriction combina-
tor, another combinator called the range combinator which satisfies just four axioms.

The thesis develops and studies the properties of range restriction categories.

1.1 Main Objectives of Thesis

Let X and Y be sets and f : X — Y a partial map. We define a partial map
f: X — X related to f by

; z if | f2),

1 otherwise,

where | f(x) means that f is defined at = while f(z) = 1 means that f is not defined
at z. Clearly, the definition of f determines the partiality of f and the following four

axioms:

[R.1] ff = f for each map f,

[R.2] fg

gf whenever dom(f) = dom(g),
[R.3] g—f = gf whenever dom(f) = dom(g),

[R.4] gf = fgf whenever cod(f) = dom(g),



are satisfied. In [7], Cockett and Lack introduced the notion of restriction categories
as a setting for working with abstract categories of partial maps: in a restriction
category partiality is concentrated into this single combinator which associates to
each map f : X — Y amap f : X — X such that the above four restriction
axioms [R.1], [R.2], [R.3], and [R.4] are satisfied. However, a partial map f :
X — Y between sets has not only a restriction or partial structure but also a range
structure. In computability theory, recursively enumerable sets can be characterized
by being both domains of partial functions and ranges of recursive function: a set S
is recursively enumerable if and only if S is the range of a recursive function [11]. The
first objective of the thesis is to introduce the notion of range restriction categories
to axiomize both the restriction and range structures of partial maps.

A collection of monics M of a category C is called a stable system of monics
if it includes all isomorphisms, is closed under composition, and is stable (i.e., a
pullback of an M-map along any map is also in M). Such a pair (C, M) is called
an M-category, which is essentially the same as a domain in [25], an admissible
system of subobjects in [23], a notion of partial in [24], and a domain structure in
[19]. M-categories provide a categorical setting to discuss partial maps. Given
an M-category (C, M), one can form its partial map category Par(C, M), which
turns out to be a split restriction category (see [7]). On the other hand, for each
restriction category C, there is an M-category (D, M) for which C is a full restriction
subcategory of Par(D, M), as shown in [7]. Cockett and Lack also showed that the
construction Par is an equivalence of 2-categories between split restriction categories
and M-categories. It is natural to ask whether there is an equivalence of categories

between range restriction categories and some special M-categories. The second



objective of this thesis is to answer this question by introducing the notion of M-
stable factorization systems and showing that the construction Par is an equivalence
of 2-categories between range restriction categories with split restrictions and M-
categories, where M is the set of M-maps of an M-stable factorization systems
(Theorem 2.3.8).

Fibrations are special functors important in category theory. They are connected
to polymorphism, see, for example, [10], [13], and [14]. For each restriction category
C, one can form the category r(C) with (X, ex) as objects, where ex is a restriction
idempotent over X, namely, a map ex : X — X satisfying ex = ey, and with maps
f: X — Y such that ex = ey fex as maps from (X,ex) to (Y,ey). The obvious
forgetful functor d¢ : r(C) — C is a very special fibration: its fibers are meet semi-
lattices, and its inverse image functors are stable meet semilattice homomorphisms,
see [7], Section 4.1 or Lemma 3.2.3 below. The third objective of the thesis is to
introduce the notion of stable meet semilattice fibrations and to show that any sta-
ble meet semilattice fibration 6x : X — X produces a restriction category S;(dx)
(Proposition 3.2.4) and that the functor S; given by S,(dx) is a left adjoint of the
functor R, given by Oc (Theorem 3.2.12). In this direction, we shall also provide
the free stable meet semilattice fibration structure Ac (Theorem 3.2.24) for each cat-
egory C. Applying the construction S; to Ac, we shall obtain the free restriction
category structure F,(C) over a given category C (Theorem 3.2.27). So stable meet
semilattice fibrations provide a bridge between the category of restriction categories
and the category of categories.

For each restriction category C, the fibration dc not only is a stable meet semi-

lattice fibration but also satisfies some extra properties [rF.1], [rF.2], [rF.3], and



[rF.4] (see Definition 3.3.1). In order to study the image of the category of restriction
categories under R, in Chapter 3, we shall also introduce the notion of restriction
fibrations (Definition 3.3.1) and show that such restriction fibrations are the same as
restriction categories (Theorem 3.3.11).

Now, one may ask whether there are similar fibrations that produce range re-
striction categories. In order to answer the question and to find analogous results
for range restriction categories, in Chapter 4, we introduce the notion of range stable
meet semilattice fibrations and show that such range stable meet semilattice fibrations
provide range restriction structures over categories (Theorem 4.1.11). Of course, sim-
ilar to restriction fibrations, we also define range restriction fibrations and show that
those fibrations are the same as the range restriction categories (Theorem 4.2.9).

In Chapter 5, we shall provide an explicit construction of free range restriction
structures over directed graphs by using deterministic trees. To do so, it suffices to
construct the free range stable meet semilattice fibration over G*, the path category
over a given directed graph G. Hence we need the indexed category from (G*)°P to
the category of stable meet semilattices. In order to construct that indexed category,
we introduce the notions of based directed graphs, based trees, based trees in a based
directed graph, and deterministic trees and get the desired free fibrations by applying
the poset collapse to based deterministic trees in G.

Finally, in Chapter 6, we summarize the main results and point out some possible

directions for further work.



1.2 History of Work on Partial Maps

In 1987, Di Paola and Heller [12] introduced dominical categories as an algebraic set-
ting in which one may study partial maps and computability theory. They used zero
maps and near products to approach partiality. In 1988, Robinson and Rosolini [23]
noticed that one may obtain a theory of partiality with the near products alone. So
they introduced P-categories (categories with near products) as the basis for their
partiality theory. However, we should note here that P-categories are essentially
the same as Cockett’s copy categories [5]. In 1987, Carboni [4] gave a bicategori-
cal account of partiality. In 1994, Jacobs [15] related P-categories to the semantics
of weakening. In [19], [20], and [21], Mulry considered partial map classifications.
In 2002, Cockett and Lack [7] abstracted the categories of partial maps as restric-
tion categories using the single combinator U and the above four simple restriction
axioms [R.1], [R.2], [R.3], and [R.4]. Cockett and Lack gave a well motivated in-

troduction to restriction categories in their paper [7], to which we refer the reader,

as well as to its successors [8] and [9)].

1.3 Outline of Thesis

The basic notions of category theory and the basic properties of restriction categories
are assembled in Sections 1.4 and 1.5, respectively. Chapter 2 introduces the notion
of range restriction categories and shows that range restriction categories with split
restriction idempotents are equivalent to the partial map categories of M-stable
factorization systems. Chapter 4 explores the relation between range restriction

categories and range stable meet semilattice fibrations while Chapter 3 shows the



relation between restriction categories and stable meet semilattice fibrations. In
Chapter 5, we provide an explicit construction of the free range restriction over

directed graphs. We end this thesis by giving our conclusions in Chapter 6.

1.4 Basic Categorical Notations

In this section, we collect some basic categorical notions which we shall use.

1.4.1 Categories and Some Special Maps

A category is a directed graph with composition. More precisely, a category C

consists of the following data:
e A collection of objects, obC;
e A collection of maps, mapC;

e Two operations assigning to each map f € mapC its domain dom(f) which is
an object of C and its codomain cod(f) also an object of C. We shall indicate

that f has domain A and codomain B by writing f : A — B;

e Maps f and g are composable if cod(f) = dom(g). There is an operation
assigning to each pair of composable maps f and g their composition which
is a map denoted by ¢f such that dom(gf) = dom(f) and cod(gf) = cod(g).
There is also an operation assigning to each object A € obC an identity map

14: A — A. These operations are required to satisfy the following axioms:

[C.1] (identity law) if f: A — B is a map in C then fl4 = f = 1z,



[C.2] (association law) if f: A — B, g: B — C, and h: C — D are maps in

C then (hg)f = h(gf).

A subcategory C' of a category C is given by any subcollections of the objects
and maps of C which is a category under the domain, codomain, composition, and
identity operations of C.

Given a category C, if we flip the directions of all maps in C then we obtain its

dual category , denoted by C°P. Clearly, (C°P)°P = C.
Here are some examples of categories:
1. Sets and functions between them form a category Set.
2. Sets and partial functions between them form a category Par(Set, Monics).

3. A monoid M is a category with x as its object and with elements of M as its

maps.
4. Groups and group homomorphisms form a category Grp.

5. Categories and functors form a category Caty.

6. Topological spaces and continuous maps form a category Top.

7. Let R be aring. Left R-modules and R-module homomorphisms form a category

R-Mod.

8. Meet semilattices and stable meet semilattice homomorphisms between them, i.e.,
those maps preserving binary meets but not necessarily the top element, form a

category msLat.



9. Posets and monotone functions form a category Poset.

A map f: A — B in a category C is monic if fg; = fgo implies g1 = ¢g2. A map
f:A— Bin a category C is a section if there is a map g in C such that gf = 14.
Dually, a map f: A — B in a category C is epic if g f = gof implies ¢ = g, and a
map f : A — B in a category C is a retraction if there is a map ¢ in C such that

fg = 1. A map is called an isomorphism if it is both a section and a retraction.

1.4.2 Functors, Natural Transformations, and Adjunctions

A functor F' from a category C to a category D, written as F' : C — D, is specified

by
e an operation taking each object A in C to an object F(A) in D,

e an operation sending each map f: A — B in C to a map F(f) : F(A) —» F(B)
in D,

such that

F(14) = 1pa) and F(gf) = F(g)F(f)

for any maps f: A — B and g: B — C in C. So, functors are structure preserving
maps between categories.
Let F,G : C — D be two functors. A natural transformation o from F to G,

written as a : F' — @, is specified by an operation which assigns each object C of C
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a map ac : F(C) — G(C) such that for each map f: A — B in C

commutes in D. Natural transformations are maps between functors. A natural
transformation « is called a natural isomorphism, denoted by « : FF = @G, if each

component ae is an isomorphism.

An equivalence between categories C and D is defined to be a pair of functors
S:C —->DandT:D — C together with natural isomorphisms 1¢ = 7'S and

lp = ST.

An adjunction from C to D is a triple < F, G, ¢ >: C — D, where F' and G are

functors:

and ¢ is a function which assigns to each pair of objects C € C, D € D a bijection
of sets

v = ¢c,p : D(F(C), D) = C(C,G(D))
which is natural in C and D. We denote it by

F(C)—D
C - G(D)
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By [[17], p.83, Theorem 2], each adjunction < F,G,¢ >: C — D is completely

determined by one of five conditions. Here we only record:

(v) functors F, G and natural transformationsn : 1¢ = GF ande : FG — 1p such

that Ge -G =1g and ¢F - Fn = 1p.

Hence we often denote the adjunction < F,G,¢o >:C - D by (n,¢) : F4G:C —

Dor by < F,G,n,e >: C — D.

1.4.3 2-categories, 2-Functors, and 2-Natural Transformations

A 2-category K consists of the following data:
e A collection of objects or O-cells: A, B, ---
e A collection of maps or 1-cells: f: A — B,---

e A collection of 2-cells: a: f = g¢,---

The objects and maps form a category Ky, called the underling category of K.

For any objects A and B, the maps f : A — B and the 2-cells between them
form a map-category K(A, B) under vertical composition, denoted by 8 o a.

The identity 2-cell on f : A — B is denoted by 1;.

There is an operation of horizontal composition of 2-cells:

Bra:uf wvg)=(B:u—>v)x(a: f—>g)
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as displayed by

f u uf

A Ve B U (O = A Vb (O
B —— —_—
g v vg

Under this operation the 2-cells form a category with identities:

1a
A Vi, A
—_—
1a
e In the situation:
—_— .
o Yy

A—B——C,
B us

the following interchange law
(6x7)o(B*a)=(8oB)x(yoa)
holds true and for any pair of composable 1-cells f and g,
1% 15 = 1,

A basic example of a 2-category is Cat, whose objects are small categories, 1-cells
are functors and 2-cells are natural transformations. Also, for any small category C,
the slice category Cat/C is again a 2-category.

A 2-functor F' : K — L between 2-categories K and L is a triple of functions

sending objects, 1-cells, and 2-cells of K to items of the same types in L preserving
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domains, codomains, compositions, and identities.

A 2-natural transformation o : F = G between 2-functors F, G : K — L assigns
to each object A of K a map a4 : F(A) — G(A) in L such that for each map
f:A—= BinK,

apF(f) = G(f)aa

and for each 2-cell 0 : f = g in K,

F(f) G(f)
F(A) W@ F(B) 22~ G(B) = F(A) 22 G(A) ¥66) G(B).
F(g) G(g)

Many categorical notions/constructions are defined up to isomorphism. A pseudo-
functor is defined in such a way: if we require that those equalities in the definition

of a functor hold only up to isomorphism, then we get a pseudo-functor.

1.5 Introduction to Restriction Categories

This section is devoted to the presentations of the fundamentals of Cockett-Lack’s

restriction theory.

1.5.1 Definitions and Basic Properties of Cockett-Lack’s Restrictions

First, we recall the definition of Cockett-Lack’s restriction.

A restriction structure on a category C is an assignment of amap f : X — X to each
map f : X — Y such that the four restriction axioms [R.1], [R.2], [R.3], and [R.4]

are satisfied. A category with a restriction structure is called a restriction category.
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Now, we record some basic properties of restriction categories in Lemmas 1.5.1,

1.5.2, and 1.5.3, which are Lemmas 2.1, 2.2, and 2.3 in [7], respectively.

Lemma 1.5.1 In a restriction category,

(i) f is an idempotent for each map f;
() f gf = gf if codom(f) = dom(g);
(¢43) gf = gf if codom(f) = dom(g);
(iw) f = F for each map f;
(v) 97 =7 if dom(f) = dom(g);
(vi) If f is monic then f = 1;
(vii) fg = f implies = Fg.
A map f such that f = f is called a restriction idempotent. Restriction idempotents

are precisely the maps of the form f by Lemma 1.5.1 (4v). A map f is called total if
f=1.
Lemma 1.5.2 In a restriction category,

(1) If f is monic, then f is total;

(¢1) If f and g are total and codom(f) = dom(g) then so is gf;

(13t) If gf is total then so is f;

(tv) The total maps form a subcategory.

The subcategory of total maps of a restriction category C is denoted by Total(C).
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A restriction idempotent f is called split if f = mr for some maps m and r with
rm = 1. In such a case, m and r are called respectively the monic part and the epic
part of the split restriction idempotent f. Note that if f splits by m and r then

f=7as f=mr =

3

= T since m is monic. A restriction structure on a category
is said to be split if all of its restriction idempotents split. Split idempotents are
determined completely by their monic parts or epic parts as shown by the following

lemma:

Lemma 1.5.3 In any restriction category:

(¢) Ifrm =1 and sm =1 with mr =7 and ms =3 thenr = s;

(@) Ifrm=1 and rn =1 with mr =7 and nr =7 then m = n.

Restriction idempotents have also the properties shown in the following lemma.

Lemma 1.5.4 Let C be a restriction category with restriction () and Rle(X) the

set of all restriction idempotents over an object X of C. Then

(1) RIc(X) is closed under composition;
(2) If f.9 € RIc(X), then gf = gf = fg = fg;
(3) If f € Rlc(X), then gf =3f;

(4) Rlg(X) forms a meet semilattice.

PRroor:
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(1) If f,g € RIg(X), then
af = faf
= fgf (f € Rlc(X))
= 9f [R4]
= gf (9 € Rle(X)).
Hence gf € RIc(X) and therefore RIc(X) is closed under composition.

(2) gf =3f = fg= fg and gf is a restriction idempotent.

(4) If we define the order < in RIg(X) by

e1 < ey & e = ejey = egeq,

then RIc(X) becomes a poset. Furthermore, it is easy to check that RIg(X) is
a meet semilattice with the binary meet given by e; A e = e1e5 and with the

top element 1.
O

Let C be a restriction category and f : X — Y a map in C. By Lemma 1.5.4
(4), both RIc(X) and RI¢(Y) are meet semilattices. If we define f* : RIg(Y) —
RIc(X) by sending e in RI¢(Y) to ef in RIg(X), then f* is a stable meet semilattice

homomorphism, which means that f* preserves binary meets but does not necessarily
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preserve the top element.

Lemma 1.5.5 Let C be a restriction category and f : X — Y a map in C. Then
f*:RIc(Y) = Rlg(X), taking e to ef, is a stable meet semilattice homomorphism.

Moreover, f* preserves the top if and only if f is total.

PRrooOF: For any ej, e; € RIg(Y),

frle)) A fr(e2) = eifeof

Hence f* preserves binary meets, as desired.

Clearly,

f* preserves the top & 1x = TRig(x) = f*(TRIc(Y)) =f"(ly)=f

& f is total.

By Lemma 1.5.5, we have immediately:

Lemma 1.5.6 Let C be a restriction category and let msLat be the category of all
meet semilattices and stable meet semilattice homomorphisms between them. Then

there is a functor C°® — msLat sending f : Y — X to f*: RIc(Y) — Rlc(X).
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1.5.2 Examples of Restriction Categories
We record some examples of restriction categories as follows:
1. Par(Set, Monics) is a restriction category if for any partial map f: X — Y, one

defines the partial map f: X — X given by

xz whenever | f(z),

1 otherwise.

to be the restriction of f.

2. Every category is a restriction category with the restriction given by f = 1x for
any map f: X — Y. The restriction is called the trivial restriction structure. So

a restriction structure is not a property of a category but an extra structure.

3. The category displayed by

is a restriction category, where ff = f and 72 =f.

4. If C is an object of a given restriction category C, then the slice category C/C
with objects all pairs (f, X), where f : X — C is a map of C, and with maps
h:(f,X) — (¢g,Y) those maps h : X — Y of C for which gh = f, is also a

restriction category with the same restriction as C.

In order to provide examples of one object restriction categories, we recall some

definitions and properties of inverse semigroups.
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Let S be a semigroup. a € S is called regular if there is z € S such that aza = a.
A semigroup S is called regular if all of its elements are regular. An inverse of
an element a is x € S such that axa = a and xax = z. An inverse semigroup is a
semigroup in which each element @ has a unique inverse a{~. Let z,y, z be elements

of an inverse semigroup S. Then one has:

2(yz) = (zy)z,
(x(—l))(_l) = :[,‘,
(my)(’“l) et y("l)x(_l),

$x(_1)yy(_l) e yy(‘l)xx(_l).

For example, any group is an inverse semigroup. The following can be used to test

when a semigroup is an inverse semigroup.

Proposition 1.5.7 A semigroup is an inverse semigroup if and only if it is regular

and any two idempotents commute.
PROOF: See [22], p.78. O

Proposition 1.5.8 Every inverse semigroup with an identity can be regarded as the

one object restriction category with the restriction given by T = z("Vz.

PROOF: Every inverse semigroup with an identity is a monoid, so it can be regarded
as a category with one object. To prove that it is a restriction category, it suffices

to check the four restriction axioms.

[R.1] 27 = 22"V = 2.
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&l

[R.z] T g = x(_l)xy(_l)y = y(_l)yx(_l)x = y

[R.3]

T = (yz'Vz)DyVg

= (D)0 (=D g
= g DgyDyg-Dyg

= ¢y DyzVgz(-Vg

= yDyzDyg

= T

[R.4] 277 = z(yz) " (yz) = 22y Dyz = yyza-Vz = yyz = ga.

See [18] for relations between restriction categories and inverse semigroups.

1.5.3 Category of Restriction Categories

A functor F': C — D between two restriction categories is said to be a restriction
functor if F(f) = F(f) for any map f in C. Restriction categories and restriction
functors form a category, denoted by rCaty. Clearly, there is a forgetful functor

U, : rCaty — Caty which forgets restriction structures by sending any restriction

functor F : C — D to the functor F : C — D.

A natural transformation between restriction functors is called a restriction trans-

formation if all of its components are total. Restriction categories, restriction func-
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tors, and restriction transformations form a 2-category, called rCat. rCat has an
important full 2-subcategory, comprising those objects with split restriction struc-

tures, denoted by rCat;.



Chapter 2
Range Restriction Categories

In this chapter, we shall introduce the notion of range restriction categories and show
that partial map categories of M-stable factorization systems provide examples of
range restriction categories (Section 2.2). We shall also prove that conversely each
range restriction category gives rise to a category with an M-stable factorization
system in Section 2.3. Finally, we shall prove that the 2-category of range restric-
tion categories with split restrictions is equivalent to the 2-category of the specified

factorization systems (Theorem 2.3.8).

2.1 Definition of Range Restriction Categories

Let f : X — Y be a partial map in Par(Set, Monics). We define a partial map
F:Y > Y by
y if 3z f(z) =y,

1T otherwise.

fly) =

Obviously the definition of f gives the range of f and satisfies the following four

conditions:
[RR.1] ?: ffor each map f,
[RR.2] ff= f for each map f,

[RR.3] ﬂ = g7 for all maps f, g with codom(f) = dom(g),

22
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[RR.4] gf = ;? for all maps f, g with codom(f) = dom(g).

Definition 2.1.1 A range structure on a restriction category C is an assignment
of a map f: Y - Y in C to each map f : X — Y such that the four range arioms
[RR.1], [RR.2], [RR.3], and [RR.4] are satisfied. A restriction category with a

range structure is called a range restriction category.

2.1.1 Examples of Range Restriction Categories

1. Any category is a range restriction category with trivial restriction structure

and trivial range structure given by
F=1x and f = 1y,

forany map f: X — Y.

2. Par(Set, Monics) is a restriction category with restriction given by

x whenever | f(x),

1 otherwise.

for each map f: X — Y. It is also a range restriction category with the range

structure given by
) y if 3z f(z) =y,

1 otherwise.

3. The category displayed by
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is a restriction category, where ff = f, 72 =7, ff=f and f2= 7.

Proposition 2.1.2 Any inverse semigroup with an identity can be regarded as the
one object range restriction category with the restriction and the range given by T =

zVz and T = 22V,

PROOF: By Proposition 1.5.8, each inverse semigroup with an identity can be re-
garded as the one object restriction category with the restriction given by 7 = x{-Vz,

It suffices to check the four range axioms.
[RR.1] 7 = (zz0)) TV pz() = zx(-Vpz(-D = g2(-D = 7.
[RR.2] 7z = 22" Yz = 1.

[RR.3]
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[RR.4]

7 = yrat) (oY
= yazVgz-Vy-D
= gDy

= ya(yr)

= yI.

2.1.2 Some Properties of Range Restriction Categories

Some basic properties of range restriction categories are recorded in the following

lemma.

Lemma 2.1.3 In a range restriction category,

(i) §F = 1§ if codom(f) = codom(g);
(i) fg=7gf if dom(g) = codom(f);
(iii) §f =G if codom(f) = codom(g);
(iv) f=1if f is epic. In particular, 1 = 1;
(w) (f)? = f for each map f;
(vi) T
(vii) f = f for each map f;

(viii) ;}’g\ = 5} if codom(f) = dom(g);

—

f for each map f;

1

)
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(ix) 'g/\}\: §f if codom(f) = codom(g).
Proor:

(i) By [RR.1] and [R.2], 57 = 3f = f§ = 4.

o~

(ii) By [RR.1] and [R.2], f§ = f5 =5f = 3f.
(iti) By [RR.1] and [RR.3], 5/ =3/ = 3/ = 4/,

(1v) Since f is epic, ff = f implies f: 1.

——
o~

(v) By [RR.2), [RR.1], and [RR.3], f = 7f = ff = FF = FF = (P

(vi) By [RR.3], f= 1= Fi=7
(vii) By [RR.3], F=F1 = F1=7.

(viii) By (iii) and [RR.2], 9/ = 59/ = 99f = 9/

(iz) By [RR.1] and [RR.3], 57 =37 =3f =3/,

2.1.3 2-Categories rrCat and rrCat;,

Recall that a functor F': C — D between two restriction categories is called to be a
restriction functor if F(f) = F(f) and restriction natural transformations between
two restriction functors are those natural transformations whose components are

total.
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Definition 2.1.4 A functor F : C — D between two range restriction categories is
called a range restriction functor if F(f) = F(f) and F (f) = F(f) for each map
f in C. A natural transformation between two range restriction functors is called a

range restriction transformation if its components are total.

Range restriction categories and range restriction functors form a category, denoted
by rrCatg. There is an evident forgetful functor U,, : rrCaty — Catg, which forgets
restriction and range structures. Range restriction categories, range restriction func-
tors between them, and range restriction natural transformations form a 2-category,
denoted by rrCat. Again, there is an evident forgetful 2-functor U,, : rrCat — Cat.
rrCat has an important full 2-subcategory, comprising those objects with split re-

striction, denoted by rrCat,.

2.2 Partial Map Categories and Range Restriction Cate-

gories

In [7], Cockett and Lack introduced the notion of M-categories. An M-category
is a pair of a category C and a specified system of monics M in C. They also
used the construction Par to form a split restriction category Par(C, M) and showed
that Par turned out to be an equivalence of categories between the category of split
restriction categories and the category of M-categories. The objective of this section
is to provide a certain class of examples of range restriction categories by showing
that partial map categories with respect to the M-maps of certain factorization

systems are range restriction categories with split restriction structures.
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2.2.1 Construction Par

We first summarize the notions of system of monics, M-categories, the category

Par(C, M), which are given in [7].

System of Monics and M-Categories

In a category, a collection M of monics that includes all isomorphisms and is closed
under composition is called a system of monics. A system of monics M is said to
be stable if for any m € M and any f : A — B the pullback m' of m along f exists
and belongs to M. An M-category is a pair (C, M), where C is a category and M

is a stable system of monics in C.

Category Par(C, M)
Given an M-category (C, M), one may form the category of partial maps Par(C, M)

as in [7] with:
objects: A € C;

maps: a map from A to B is a pair (m, f), where m : A* - A is in M and

f:A > Bisamapin C:

factored out by the equivalence relation: (m, f) ~ (m/, f') whenever there

exists an isomorphism « in C such that m'a = m and f'a = f;

identities: (14,14): A — A;
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composition: (m/, g)(m, f) = (mm”, gf'), where f' and m" are given by the pull-

back diagram (x):

/\
/\/\

The original maps in C can be embedded into Par(C, M) by f — (1, f) and are

called total partial maps. In [7], Cockett and Lack proved:

Theorem 2.2.1 ([7], Proposition 3.1) Let (C, M) be an M-category. Then the

category Par(C, M) has a split restriction given by (m, f) = (m,m). Furthermore,

a map 1is total in Par(C, M) with respect to this restriction if and only if it is total

as a partial map.

2.2.2 Pullback Stability of Factorization Systems and MStabFac

Recall that a factorization system on a category C consists of two classes £, M of

maps in C such that
(1) every isomorphism is both in € and in M;
(13) € and M are closed under composition;

(iit) every map f of C factors as f = mges with ef € € and my € M;
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(iv) for each commutative square where e € € and m € M, there ezists a unique

diagonal map making both triangles commutative:

e<—0

Q————e—>
Ve
l ,
7/
¥
® —>
m

Let £, M be two classes of maps in C. Then, as is well-known (see [6]), the following

are equivalent:
(1) (£, M) is a factorization system on a category C.
(2) The following three conditions hold true:

(i) Both M and & contain all identity maps and are closed under composition
with isomorphisms on both sides;
(it) Every map f of C factors as f = mse; with ey € € and my € M;

(iti) For each commutative square where e € £ and m € M, there exists a

unique diagonal map making both triangles commutative:

@<—@©0
»
ok
N
@<— @

(3) The following two conditions hold true:

(1) € contains all isomorphisms and is closed under composition;
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(i1) Mazimal € -factorization property: each map f can be factored as f = myey

with ey € £, which is mazimal in the following sense:

for each commutative square with e, ey € £, there is a unique map making

€
o ——— >0

L

®O—> 0 ———> 0
er my

commute.

Furthermore, under the above condition (3), if M = {f|ey is isomorphic}, then

(€, M) forms the factorization system determined by the condition (3).
A factorization system has the following properties.
Proposition 2.2.2 Let (£, M) be a factorization system on a category C. Then

(1) f€&ENM implies f is an isomorphism;

(it) The factorization f = mgey with ey € € and my € M, of a map f, is unique

up to an isomorphism;

(i5i) f € M if and only if for every commutative square
[ [ J
||
[ ) [

with e € € there is a unique diagonal map making both triangles commutative;

€
—_—
Ve
/
/
v
—_—
f

(tv) fg € M and f € M implies g € M;
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(v) Pullbacks of M-maps are M-maps. That is if

is a pullback diagram and m € M, then n € M.
The dual properties of (iit), (iv), (v) are valid for maps in £.
PROOF: See [3]. 0O

Now, we consider the following diagram:

®
! -~ 7
g 7 N\
7 z
e |
[ ] I’ i [ ]

in which f’ and A’ are pullbacks of f and h along x, respectively. If f = hg, then, by
easy diagram chasing, there is a unique map ¢’ such that f' = h'¢’ and z2"¢' = gz’
and so ¢’ is the pullback of g along z"”. We say that the triangle f' = h'q’ is a pullback

of the triangle f = hg along x.

Definition of Pullback Stable Factorization Systems

Definition 2.2.3 Let C be a category and let A be a set of maps in C, along which

pullbacks exist. A factorization system (£, M) of C is said to be pullback stable
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along A-maps if for any a € A and any (£, M)-factorization f = myes, f' = mie}

is a pullback of f = mgeys along a, then f' = m'e); is the (€, M)-factorization of f'.

Clearly, a factorization system (£, M) of C is pullback stable along A-maps in the
case that for any (£, M)-factorization f = myey in C and any A-map q, if f' = m/e’

is a pullback of f = mye; along a, then f' = m/e/ is the (€, M)-factorization of f":

Examples

1. Let 'Top,,., be the subcategory of Top with open functions as its maps. Con-
sider

& = {surjective open functions},
M = {injective open functions}.

Clearly, both £ and M are closed under composition and contain all isomor-

phisms.

For any open function f: T — S, f: T — im(f) is a surjective open function
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and 7 : im(f) < S is an injective open function. So

N A

im(f)
gives the (£, M)-factorization of f.

For any commutative digram

i —= 5

ol

Ty—t> S,

where e € £,1 € M, since

g(S1) = ge(Th) = if (T1) C i(Y1),

there is a unique diagonal map d given by ¢, which makes both triangles com-
mutative. Hence Top,,., admits (£, M)-factorization system.

If f: A— Bisan &map and X C B is open, then f~!}(X) is an open
subset of A, and so open sets of f~}(X) and X are given by those of A and B,

respectively. Hence f: f~}(X) — X is also an £-map. Note that

!

T
f

A B
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is a pullback diagram. Then the (£, M)-factorization system of Top,,, is

pullback stable.

2. Recall that a category is regular if each map has a kernel pair and each kernel
pair has a coequalizer and if regular epics are pullback stable. The algebraic
and monadic categories over Set, including -algebras, are regular [2]. Any
regular category admits the (RegEpi, Mon)-factorization system which is pull-

back stable [2].

2-Category MStabFac

Suppose that MStabFac is with

objects: M-stable factorization systems (C, &, M), where C is a category such
that C has an (€, M)-factorization system which is pullback stable along M-

maps with M C {monics in C}, and C has pullbacks along M-maps;

maps: (£, M)-functors. A (£, M)-functor F : (C,E,M) — (C',E' M) is a
functor F : C — C' such that F(£) C &', F(M) C M’, and F preserves

pullbacks along M-maps;
composition: as the composition of functors;
identities: 1(c e m) = 1c;

2-cells: M-cartesian natural transformations. A natural transformation « : FF —

G between (£, M)-functors: F,G : (C,E, M) — (C', &', M') is M-cartesian if



36

for each m: A — B in M,

is a pullback diagram.
Then, MStabFac is a 2-category.

When is a Factorization System Pullback Stable?

Lemma 2.2.4 If pullbacks along M-maps ezist, then a factorization system (€, M)
of C is pullback stable along M-maps if and only iof £ is pullback stable along M-

maps.

PROOF: (=) For any e € £ and any m € M, if

is a pullback diagram, then e’ = 1¢’ is the pullback of the (£, M)-factorization e = 1le
of e and so is the (£, M)-factorization of /. Hence ¢’ € £.

(<) For any m € M, assume that f = mye; is the (£, M)-factorization of f and
that f' and m/; are pullbacks of f and my along m, respectively. Then there exists

a unique map €} such that f' = m’e}; and m"e; = eym’ and e’ is the pullback of e;
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along m" € M:

[ ]
kd

3
3

!
-
€
-~
— ,”T/I

-~
-~
° £ °

|

ef/ xn
./ f K.

m

and so that e} € £ by hypothesis. Since M-maps are pullback stable, my € M. So

f'=mje} is (€, M)-factorization of f'. O

2.2.3 Factorization System Implies Range Restriction

If C is a category with a specified (£, M)-factorization system which is stable over
M-maps, then Par(C, M) becomes a range restriction category as shown in Theo-
rem 2.2.5 below. So we can construct a range restriction category whenever we have
an (£, M)-factorization system which is M-stable and pullbacks along M-maps exist

as shown in the following theorem.

Theorem 2.2.5 Let C be a category with an (£, M)-factorization system which
is pullback stable along M-maps with M C {monics in C}. If C has pullbacks
along M-maps, then Par(C, M) is a range restriction category with the split restric-
tion structure given by (m, f) = (m,m) and the range structure given by (m/,\f) =
(my, mg), where my is determined by the (£, M)-factorization of f: f = mye; with
ef € £ and my € M. Furthermore, a map 1is total in Par(C, M) if and only if it is

total as a partial map.
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PROOF: Since C admits an (£, M)-factorization system with M C {monics in C},
(C, M) is an M-category. By Theorem 2.2.1, Par(C, M) is a restriction category
with the split restriction given by (m, f) = (m,m) and a map is total in Par(C, M)
with respect to this restriction if and only if it is total as a partial map. In order to
prove that Par(C, M) is a range restriction category with the range structure given

by (m, f) = (my, my), where my is given by the (£, M)-factorization of f: f = myey,

it suffices to check the four range axioms.

Let (m, f): A— B and (n,g) : B — C be maps in Par(C, M) and let f = myes be
the (£, M)-factorization of f.

o — —

[RR.1] (m, f) = (my,my) = (my,my) = (m, f).

e —

[RR.2] (m, f)(m, f) = (mg,ms)(m, f) = (m, f) since the following (*) is a pullback

Al
RS
A (%) D
m my
f mf
A B B

[RR.3] Let (n, f') be the pullback of (n, f) and (n”,m}) the pullback of (n,my).

diagram:

!

Then there is a unique map e} : D — D' in C such that

mie = f' and n'e} = epn'
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and so (n', €}) is a pullback of (n", ey):

Hence, by hypothesis, f' = m/;€/; is the (£, M)-factorization of f' and there-

fore

!

nf' = (nm})e}

is the (&, M)-factorization of nf’ since nm’; € M and €} € £. Thus,

(n,g)(m, f) = (n,n)(m,f)

= (mn',nf")
= (Mg, M)
= (nm},nm}) (since nf' = (nm')e})

= (n,n)(mys,my) (since (n",m}) is the pullback of (n,my))

= (n,g)(m, f).

[RR.4] Suppose that (f’,n’) and (m/;,n") are pullbacks of (f,n) and (my,n), re-

spectively. Again, there is a unique map e’f : E — F such that

m'e’s = f' and n"e; = en’



and so (n', e}) is a pullback of (n”, ey):

B~ e_f - F e 1
V f ,/ lmf f
AI s D !
y \fl / \ lmgm/f
A B C

If gm’; = Mgny, g, is the (£, M)-factorization of gm';, then
gfl = g(m,felf) = mgm’f (egm’felf)

is the (&£, M)-factorization of gf’. Thus,

()i D) = (ng)mpimy)

e —

= (mgn", gmy)

- (mgm’fa mym’f)

= (myf’v mgf’)
= (mgp,mgyp)

e —

= (n,9)(m, f),

as desired.

Hence, Par(C, M) is a range restriction category.
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O

If F:(C,E,M)— (C, &', M) is a map in MStabFac, then F(£) C &', F(M) C

M', and F preserves pullbacks along M-maps. Hence Par(F) : Par(C, M) —
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Par(C’, M') given by

A F(A")
A N
A B F(A) F(B)
is a range restriction functor. So we have the functor Par : MStabFac — rrCat

given by
(C,E,M) - Par(C, M)
Fj - lPar(F)
(C,& M) - Par(C', M’)

Furthermore, it is a 2-functor as shown by:

Proposition 2.2.6 There is a 2-functor Par : MStabFac — rrCat taking F :

(C,E,M) = (C', &', M) to Par(F) : Par(C, M) — Par(C', M').

PROOF: In order to define a 2-functor, we should also point out the assignments
on the 2-cells. Given F,G : (C,E,M) — (C',&', M) and an M-cartesian natural
transformation «: F' — G, define Par(a)4 : Par(F)(A) — Par(G)(A) to be the total
map (14,4) : F(A) — G(A). We must check the naturality condition which says

that
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and amounts to checking that

F(A)
/ w\
F(A) F(B)
F(m) ap
F(A) F(B) G(B)
and
F(A)
F(m) yr
F(A) G(4')
1 G(f)
/ \ -
F(A) G(A) G(B)

give the same composition. This follows immediately by the M-cartesianness of a
and the naturality of a.
All the data for a 2-functor Par : MStabFac — rrCat are now ready. Checking

various functoriality conditions remains but is straightforward. O

2.3 The Completeness of Range Restriction Categories

In [7], Cockett and Lack provided the completeness of restriction categories as a
formulation of partial maps by showing that each restriction category is a restriction
subcategory of Par(D, M) for some M-category (D, M) and that rCat; is equiva-

lent to the category of M-categories. In this section, we shall show that in fact each
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range restriction category is a range restriction subcategory of Par(D, M) for some
category D with an M-stable factorization system and that the category rrCat, of

range restriction categories with split restriction is equivalent to MStabFac.

2.3.1 Construction Splitg

In order to prove a converse of Theorem 2.2.5, we assume that C is a range restriction
category. However, this category does not have a class of M-maps nor need it have
any pullbacks. In order to introduce the desired structure, we form Split;(C) as

follows:
objects: restriction idempotents of C;
maps: a map f from (e; : A — A) to (eo: B— B) isgiven by amap f: A - B

in C such that both triangles in the diagram

B

lw

A1
AN
(3] f
| A
A —f> B
are commutative;
composition: as in C;

identities: 1, = e for any object e of Splitg(C).

If f:eq — ey and g : ea — e3 are maps in Splitg(C), then

e3(gf) = (esg)f = gf and (gf)er = g(fer) = 9f,
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and so gf is a map from e; to ez in Split;(C). Hence the composition is well-defined.
Obviously, the composition is associative. Since ee = e = ee, clearly e is a map from
e to e so that identities are well-defined. For any map f : e; — e5 in Split;(C), since

all triangles of the diagram

are commutative,

f161:f61:f262f:162f'

Therefore, Split,(C) is indeed a category. Furthermore, Splitg(C) is a range restric-
tion category when we define its restriction and range structures by the range and
restriction structures in C. To show this, it suffices to show that f : e; — e; and

o~

f : ea = eg are maps of Split;(C).

Lemma 2.3.1 If f : e; — ey is a map of Splitz(C), then so are f : e, — e, and

o~

f:eg—)eg.

PRrRooF: Since

fer=for = fer = fer =,

and
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all triangles in

A\—f>A B\—\LB

SONIEEN:

A—_>A, B——B
f f

are commutative. Hence f : e, — e; and f : e; — ey are maps in Splitz(C), as

desired. 0

Therefore, Splitg;(C) is a range restriction category. But we have more:

Proposition 2.3.2 If C is a range restriction category, then so is Splitg(C), but

with a split restriction structure given by the restriction in the category C.

PROOF: It remains to prove that the restriction structure of Splitz(C) is split. For
any restriction idempotent f given by C-map f : (e; : A = A) — (ey : B — B),

since all triangles in

T

l NN l

A—A—A
f f

are commutative, f : e; — f and f: f — e, are maps of Split;(C). Note that

|
|
I
|
I
[uury
!

in Split;(C). Hence f is a split restriction, as desired. a
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2.3.2 Range Restriction Implies Factorization System

Let D be a range restriction category with split restriction. Then we consider the

following two classes of maps:
Ep={f:X > YinTotal(D)|f =1y}
and
Mp={m:X —>YinTotalD)|3Ir:Y = X in D, rm = 1x and 7 = mr}.

We have:

Theorem 2.3.3 If D is a range restriction category with split restriction, then
Total(D) admits the (Ep, Mp)-factorization system which is pullback stable along
Mp-maps and Total(D) has pullbacks along Mp-maps, where £Ep and Mp are as
above with

Mp C {monics in Total(D)}.
The proof of Theorem 2.3.3 is given by the following three lemmas:

Lemma 2.3.4 If D is a range restriction category with split restriction, then the

category Total(D) admits the (€p, Mp)-factorization system with

Mp C {monics in Total(D)}.
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PRrROOF: Clearly, every isomorphism is in £&p and Mp C {monics in TotalD}. The
composition closedness of £p is clear since restriction idempotents are closed under

composition and f: ffor any map f in D.

For any map f : X — Y in Total(D), since f ;'Y — Y is a split restriction
idempotent, we can write f: myry for some maps ry 1Y — Zand my : Z = Y
with 7pms = 1. Then f = Ff = my(rpf). Clearly, my € Mp. To prove that
mg(rsf) is the (€p, Mp)-factorization of f, we need to check that r;f € £p. But,

it is easy since

ref = Tsrsf (since my is monic)

= myr;f (by Lemma 1.5.1 (41))
= Jr
= f (since f € Total(D))

- 1Xa

and

7f = 17 (by [RR.4)

= rmyTy

o~

= 14 (since r; is epic).
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For each commutative square

_e>B

l y

C—>D
in Total(D), where e € &p and m € Mp, we assume that r : D — C is a map in D

such that rm = 1¢ and 7 = mr. Then

and so

Hence

mr=T7T > ml = je =ye =7,

and therefore mry = 7. It follows that

m(ry) = mrjy = gy = .

Clearly,

(ry)e = r(mzx) = (rm)z = z.

Since y = mry is total, by Lemma 1.5.2 (ii3), 7y is total. Hence, m is monic implies

that there exists a unique diagonal map ry : B — C in Total(D) making both
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triangles in

A—B

e
/'m
C—D

commute. So Total(D) has the (£p, Mp)-factorization system. O

Lemma 2.3.5 Pullbacks of a total map along Mp-maps exist in Total(D). More
precisely, suppose that m € Mp such that ¥ = mr,rm =1 and f is a total map. If

rf=m'r" with r'm' =1 and f' = rfm’, then (m', f') is a pullback of (m, f).

PROOF: Since 7’ is epic and
mf'r' = m(rfm'yr' = mrfrf =7f = frf = fu'r’

we have mf' = fm/. Clearly, m’ = 1 and so m/' is in Total(D). Since mf' = fm' is

total, by Lemma 1.5.2, f’ is total. Then

fl

A—B

c—-L-p
is a commutative diagram in Total(D). Now, we want to show that it is a pullback
diagram. To do this, let z: X — C and y : X — B be maps in Total(D) such that
fz = my. Since

m'r'tr =rfr = xmrfr = aTmy = 2y = 7,

and

fir'e=rfmrzs =rfrfz=rfe=rmy =y,



and m/ is monic, there is a unique map 7'z : X — A in Total(D) such that

m'r'r=xand fir'r=y:

A——DB
c—1-p

Hence (f',m’') is a pullback of (f,m) in Total(D).

Lemma 2.3.6 Every Ep-map is pullback stable along an Mp-map in Total(D).
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PROOF: Let e € £p and m € Mp. Assume rm = 1 and ¥ = mr. Since € = 1, by

Lemma 2.3.5 the pullback of e along m exists. Write ¢/ = rem and 7€ = m/r’ with

r'm’ = 1. Then (¢’,m’) is a pullback of (e, m) in Total(D). Compute

Q)

—

= rem’

= 7:”77:7 (since 7' is epic)
= rem't’ (by [RR.4))

= rere

= fe

= 12 (by [RR4))

=7

= 1 (since r is epic)
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and

e =rem =Fem! = m'r'm' =m/ = 1.
Then €' € &p, as desired. O
ProOOF OF THEOREM 2.3.3. Combine Lemmas 2.3.4, 2.3.5, and 2.3.6. d

If C is a range restriction category, then by Proposition 2.3.2 Split;(C) is a
range restriction category with split restriction and so Theorem 2.3.3 is applicable

to Splitz(C). Hence, we have:

Theorem 2.3.7 If C is a range restriction category, then Total(Splitgy(C)) admits
the (€, M)-factorization system which is pullback stable along M-maps and has
pullbacks along M-maps, where € = {f : X — YinTota|(Sp|itE(C))|f = 1y}
and M = {m : X — YinTotal(Splitg(C))|Ir : ¥ — X in Splity(C), rm =

1x and mF = mr}.

2.3.3 rrCat, is 2-equivalent to MStabFac

If F: C — D is a range restriction functor between two range restriction categories
with split restriction, then we have a functor Total(F') : Total(C) — Total(D) by re-
stricting F to Total(C). The construction of pullbacks in Total(D) (see Lemma 2.3.5)
yields that Total(F’) preserves pullbacks along Mc-maps. Obviously, Total(F)E¢ C

Ep, and Total(F)M¢c C Mp. Hence, we have a functor

Total(F') : (Total(C), £, Mc) — (Total(D), Ep, Mp)
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and therefore a functor Total : rrCat, — MStabFac given by:

C ~ (Total(C), Ec, Mc)
F — J{TotaI(F)
D ~ (Total(D), £p, Mp)

If F,G: C — D are range restriction functors and o : ' — G is a natural trans-
formation whose components are total, then we can form a natural transformation
Total(«) : Total(F) — Total(G) by the components of . For the naturality and the
Mp-cartesianness of Total(a), we need to check that for each map m : A — B in
Mc,
F(A) 24> G(A)
F(m) G(m)

F(B) 22~ G(B)

is a pullback diagram in Total(D). To do this, we assume rm = 1 and ¥ = mr. Then

G(r) - G(m) =1and G(r) = G(m) - G(r),

F(r)-F(m)=1and F(r) = F(m) - F(r),

and

G(r)-ap=aa-F(r)y=F(r)=F(F) = F(mr) = F(m) - F(r).

It follows that F'(m) splits the restriction idempotent G(r) - ag. Clearly,

G(r)-ap-F(m)=a4 - F(r)- F(m) = aa.
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So by Lemma 2.3.5 the last diagram is a pullback, as desired. These data now form

a 2-functor Total : rrCat;, -+ MStabFac.

Theorem 2.3.8 The 2-functors Total and Par give an equivalence of 2-categories

between rrCat, and MStabFac.

PROOF: In order to prove Par o Total & 1,,cat,, for each range restriction category

with split restriction structure D, we define &p : D — Par(Total(D), £p, Mp) by

A A
|-
B A B
where m is determined by the conditions f = mr =7 and rm = 1. Since

Tn—zzf_mzmrm:mzl,

®p is well-defined. Clearly ®p(14) = (14,14) for each object A. For any maps
f:A—> Bandg: B — Cin D, assume that f = mr = F,rm = 1 and § =
ns = 5,sn = 1. Write sfm = n's’ = § with s'n’ = 1 and let f' = sfmn’. Then,
by Lemma 2.3.5, (n/, f') is a pullback of (n, fm) and so ®p(g)®p(f) = (mn’, f'gn)

since (%) is a pullback:
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But

mn's'r = msfmr = mrnsfmr = fgf = gf

and (s'r)(mn’) = 1, so mn' is the monic part of gf. Notice that gnf’' = gnsfmn’ =
ggfmn’ = gfmn'. Then &p(gf) = (mn',gfmn’) = ®p(g)Pp(f). Hence ®p is a
functor. Since ®p is the identity on objects, to prove Paro Total = 1,..cat,, it suffices
to show that ®p is full and faithful. If (m, f) is a map in Par(Total(D), Mp), then
there exists a unique map r such that rm = 1 and mr = Tr and so ®p(fr) =
(m, frm) = (m, f) which means that ®p is full. On the other hand, ®p(g) = (m, f)
yields gm = f and mr = g so that fr = gmr = gg = g. Faithfulness of ®p follows,
as desired.

For a M-stable factorization system (C, £, M), since the total maps in Par(C, M)
are the same as C and the monic parts of restriction idempotent in Par(C, M) are
just M, we clearly have an isomorphism Total o Par = 1 y4s¢tabFac- Thus, Total and

Par are part of an equivalence of 2-categories between rrCat, and MStabFac. [

2.3.4 Example of a Restriction Category which is not a Range Restric-

tion Category

Split range restriction categories rise essentially from M-stable factorization sys-
tems while split restriction categories rise essentially from stable systems of monics.
If (C,M) is an M-category in which C does not admit any M-stable (£, M)-

factorization system, then Par(C, M) is not a range restriction category but a re-

striction category with the split restriction given by (m, f) = (m,m). Such an

M-category is as follows.
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Let Setg, be the subcategory of Set with functions f : A — B such that

|f71(b)| < +o0 for each b € B as maps. Consider

M = {injections i : A — B | |B\ i(A)| < +o0}.

Then we have:

Proposition 2.3.9 Setg;, does not admit any (€, M)-factorization system with

M = {injections i: A — B | |B\ i(4)| < +o0}.

ProOOF: We begin with:
Claim M is a stable system of monics.

Clearly, all isomorphisms are in M. Forany i: A — B,j: B —> C € M, we have

1B\ i(A)| < +oo and |C\ j(B)| < +oo.

Then

[C\Ji(A)] = (C\5(B)) Uj(B\i(A)] < [C\j(B)| + B\ i(4)] < +o0,

and so ji € M. To prove the Claim, it suffices to prove that M is pullback stable.
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For any M-map i : A <— B and any map f: X — B in Setgy,

is a pullback. Since f~1(B\ A) = X \ f~1(A), |B\ 4] < +o0, and since each f~'(b)

is a finite set for each b € B, we have

X\FTHA = 1B\ A)

< U
beB\A
< +00.

Hence f~!(A) < X is an M-map, as desired.

Suppose, for contradiction, that Setg, admitted an (€, M)-factorization system.
Then € = M. Clearly, 0 : {x} — N is a map of Setg, but 0 is not an M-map.
Suppose that 0 = mgey, where e¢5 : {x} — X is an &-map and my : X — N is
M-map. Then ey L M and so e is surjective. In fact, if ¢y were not surjective, then

there existed zo € X \ eo({*}). Note that

{x} ——x

o

X\ {zo}—>X

is commutative in Setg, and ¢ € M. But, clearly, in the last diagram there does

not exist the diagonal map = : X — X \ {zo} such that zey = ¢y and iz = 1 since



37

iz(xg) # 2o, which contradicts to ey L M.

Since ey is a surjection, X = {eg(*)}. Hence

IN\ mo(X)] = +o0,

which contradicts to that mg is an M-map. Hence Setg;, does not have (£, M)-

factorization system. O



Chapter 3

Restriction Categories and Fibrations

For a given restriction category C, Cockett and Lack [7] constructed a functor
Rld¢ : C°P — Poset in which each poset RIdc(C) is a meet semilattice. Hence, by
Grothendieck construction (See Section 3.1 below), each restriction category gives
rise to a fibration d¢ : r(C) — C in which each fiber is a meet semilattice. In this
chapter, we study how restriction categories connect with fibrations. We shall first
recall the notions of fibrations, indexed categories, and their relation by Grothendieck
construction. Secondly, we introduce the notion of stable meet semilattice fibrations
and show that such fibrations produce restrictions and provide a bridge between the
category of restriction categories and the category of categories. Thirdly, we produce
Cockett-Lack’s free restriction category structures over categories using the special
stable meet semilattice fibrations A¢ for each category C. Finally, we introduce the
notion of restriction fibrations and show that restriction fibrations are the same as

restriction categories.

3.1 Preliminaries for Fibrations

This section is devoted to the presentation of the fundamentals of the theory of

fibrations.

o8
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3.1.1 Definition of Fibrations

Definition 3.1.1 Let P : E — C be a functor and p: E — B a map of C. The
fiber of P at B is the non-full subcategory E(B) of E whose objects are in P~(B)
(i.e., those objects A of E with P(A) = B) and whose maps f : A — A’ are E-maps
such that P(f) = 1p. If X € E(B), then a map ¥,X : p*X — X of C is a cartesian

lifting over p at X if
[F.1] P(9,X) =p;
[F.2] For any map v :Y — X of E and any map h : P(Y) — E in C satisfying

ph = P(v), there is a unique w: Y — p*X in E such that

UpX -w=v and P(w)=h.

P(Y)
h P(v)
E/ 2 \B

A functor P : E — C is called a fibration if for any map p: E — B in C and every

in C

object X in E(B) there is a cartesian lifting (p*X, 9,X) over p at X. A functor

P :E — C is called an opfibration if P°P is a fibration. P is a bifibration if both P
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and P°P are fibrations.

3.1.2 Examples of Fibrations

1. Identity Functors. For every category C, the identity functor 1¢ is a bifibration.

2. Basic Fibrations. If C is a category with pullbacks, and if C? is the map category

of C with

objects: maps f: E — B in C,

maps: maps from f: E — B to f': E' — B’ are pairs (u,v) of maps in C such

that f'u =vf, where u: E — E' and v: B — B’ are C-maps:

composition and identities: defined as follows:

(', v")(u,v) = (v'u,v'v)

and

ly.p8 = (1g,1p),

then the codomain functor

0: C*—-C: (f:A=B)— B, (u, v) > v
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is a fibration, called the basic fibration of C. In fact, for any mapp: E — Bin C

and an object (z : X — B) in 07'(B), the following pullback diagram:

X g

1| l

B—— B
yields a map (9,X, p) : (f : X — E) = (z : X — B) in C?, which is a
cartesian lifting over (p: E — B) at (z : X — B).

On the other hand, 0 is an opfibration (i.e., 3°P is a fibration). In fact, for any
map p : E — B in C and any object (z : X — E) in 07!(E), an opcartesian

lifting over (p: E — B) at (z : X — E) is given by

(1x,p): (x: X > E)— (pr: X - B):
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Z\
X —x J X
T D P
N
E P B in C2
la
D
N
E P B in C

Hence 0 is a bifibration.
3. Modules. Let MOD be the category defined as follows:

e An object of MOD is a pair (R, M), where R € CRng,, M € Mod-R;

e Amap (f,u): (R,M)— (R, M')has f : R — R amap (unital commutative
ring homomorphism) of CRng, and u: M — M’ ® g R a map of Mod-R,;
o If (fyu): (R,M) — (R,M'), (g,v): (R,M') — (R",M") are maps of
MOD, then
(9,0)(f,u) : (R, M) — (R", M")

is given by

(g,v)(f, u) = (fg’ (U Qr 1R)u)
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Then the functor mod: MOD — (CRng;)° given by

(R,M) = R

w| e

(R, M) =~ R

is a fibration. In fact, for any unital commutative ring homomorphism f : R — S
and any (R, M) € mod™ (R), (f, layags) : (S, M ®z S) — (R, M) is a cartesian
lifting over f at (R, M).

. Topologies. Let F : Top — Set be the forgetful functor. Then F is a fibration:
for any map p : E — B in Set and for B € Top, if F is equipped with the
coarsest topology which makes p : £ — B continuous, then p : £ — B is a
cartesian lifting over p at B. F is also an opfibration: for any mapp: £ — B
in Set and for F € Top, p: F — B is a cocartesian lifting over p at F if B is
equipped with the finest topology which makes p : F — B continuous. Hence F

is a bifibration.

3.1.3 Indexed Categories vs Fibrations

We shall see that fibrations and indexed categories are essentially the same.

Indexed Categories

Let C be a category. A C-indezxed category A is a pseudo-functor A : C°? — CAT

such that for every f: . — D, g: D — C in C, there are natural isomorphisms

P10 = (1p), 79 frg* = (9f)"



which satisfy that

i fr ghtp

and
* K]k 159k * *
f*g*ht ———— f*(hg)

ghHanx Jfhg

(gf) h*

(hgf)"

jyf,h
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commute, where AP = A(D) and z* denotes A(z) : AP — AP for any map z : £ —

D in C.

For example,

A:C® - CAT

given by B+~— C/B and (f: E — B) — f*: C/B — C/E, the pullback functor

along f, is a C-indexed category, and we call it the basic C-indezed category.

Indexed Categories Give Rise to Fibrations by Grothendieck Construction

Given a C-indexed category A : C® — CAT, one defines a category G(C, A) as

follows:

e An object of G(C, A) is a pair (C,x), where C is an object of C and z is an

object of A(C);
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e A map (f,u) : (C,z) = (C',z') consists of a C-map f : C — C' and a
A(C)-map u: z — A(f)(2');

o If (f,u) : (C,x) — (C",2),(g,v) : (C",2") = (C",2") are maps of G(C, A),
then

(g,0)(f,u) : (C,z) = (C",2")

is given by

(g,0)(f, u) = (9f, A(f) (v)w).

The projection functor P : G(C, A) — C given by

C,z) = C

w - |

¢z = C’

is a fibration. This process is called the Grothendieck construction (see [1]). So an

indexed category gives rise to a fibration by the Grothendieck construction.

Clearly, mod: MOD — (CRng,)°" is given by the Grothendieck construction
applied to the (CRng;)%P-indexed category R —Mod-R, in Example 3.1.2 (3).

Hence it is a fibration.

Fibrations Gives Rise to Indexed Categories
If P: E - Cis a fibration and p : E — B is a map in C, then we have the
inverse-tmage functor

p" :E(B) - E(E)
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given by A — p*A and obvious assignments on maps, and a cleavage

Yy 1 Jpp* — Jp,

where Jg : E(B) — E is the inclusion functor and P¥, = Ap : AE — AB is the

constant natural transformation. Hence one gets a pseudo-functor

()*: C® — CAT

given by

since there are the uniquely determined natural equivalences
ip: lgm) — (1p)" and jpq:¢"p" — (pg)”
such that

V1, - Jpip = 1,,, PJpip = Alp,

and

Upq = IxTpg = p - Ugp*s PIxjpq = Olx,

forany p: E — B and ¢ : X — E in C by the definition of the cartesian lifting.

This means that ( )* : C°® — CAT is a C-indexed category.

A fibration gives rise to an indexed category by the above process. For example,
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the basic fibration yields the basic C-indexed category given by the sliced categories
and pullback functors.

On the other hand, given a C-indexed category A : C°? — CAT, as we already
saw, by the Grothendieck construction, one may construct a fibration. Any C-

indexed category essentially rises in this way (see [16]).

3.2 Stable Meet Semilattice Fibrations and Restriction Cat-
egories
In this section, we shall introduce the notion of stable meet semilattice fibrations

and show that such fibrations produce restriction categories and provide a bridge

between the category of restriction categories and the category of categories.

3.2.1 Stable Meet Semilattice Fibrations
Definition 3.2.1 A stable meet semilattice fibration is a fibration éx : X — X in
which for each map f : X — Y, the inverse image functor f* : 65 (Y) — 0x"(X) is

a stable meet semilattice homomorphism.

Clearly, stable meet semilattice fibrations are precisely those fibrations given by

indexed categories X°? — msLat.

For example, for any category C, the identity fibration 1¢ : C — C is a stable

meet semilattice fibration.

Restriction Categories Give Rise to Stable Meet Semilattice Fibrations

Each restriction category gives rise to a stable meet semilattice fibration as shown
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in Lemma 3.2.3 below.
Suppose that C is a restriction category. As in [7], one can form the category

r(C) with the following data:

objects: (X,ex), where X is an object of C and each ex is a restriction idempotent

on X;

maps: a map from (X,ex) to (Y,ey) isamap f: X — Y in C such that ex =

ey fex;
composition and identities are formed as in C.

If f:(X,ex) = (Y,ey) is a map of r(C), then ex = ey fex and so ex = fey fex =
fex. It follows that ex = ex fex = Eex. Hence f : (X,ex) — (X,ex) is also a
map of r(C) and therefore r(C) is a restriction category with the restriction of a

map f: (X,ex) = (Y,ey) given by f: (X,ex) — (X, ex), where f is the restriction

of f in category C. Moreover, we have the forgetful functor d¢c : r(C) — C which

forgets the restriction idempotents. Since dc(f) = f = dc(f) for any map f in r(C),
Oc : t(C) — C is a restriction functor.

Moreover, if C is a range restriction category, then, of course, it is a restriction
category and so we have the restriction category r(C). Now we form the subcategory
rr(C) of r(C) with the same objects as r(C) but with maps f : (X,ex) — (Y, ey)
in r(C) such that ey = fey. If f : (X,ex) = (Y,ey) is a map in rr(C), then ey =
fey = fey = ey fey and so both T : (X,ex) = (X,ex) and f: (Y,ey) — (Y, ey)
are maps in rr(C). Hence rr(C) is a range restriction category with the range and

restriction structures given by those structures in C. So we have:
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Lemma 3.2.2 If C is a restriction category, then so is r(C). If C is a range

restriction category, then so is rr(C).

Lemma 3.2.3 If C is a restriction category, then the forgetful functor Oc : r(C) —

C is a stable meet semilattice fibration.

PrOOF: For any map f : X — Y in C and any object (Y,ey) € 9g'(Y), f :
(X,eyf) = (Y,ey) is a map of r(C) since mz = ey f. Moreover, f: (X,eyf) —
(Y, ey) is the cartesian lifting of a map f: X — Y at (Y,ey). In fact, for any map

g:(Z,ez) = (Y,ey) in r(C), we have

€z = €ygeg.

If h: Z — X is a map such that fA = ¢ in C, then

€z = €yfh€Z = eyfhez.
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Hence h: (Z,ez) — (X, ey f) is a map such that dc(h) = h and fh = g in r(C):

(Zv 6Z)
-~ \*
Xah—? Vier)  inr(C)
-
A
/ \
X ! Y in C

The uniqueness of the map & : (Z,ez) — (X, ey f) in r(C) such that fh = g in r(C)

is obvious. Hence 0¢ : r(C) — C is a fibration. Note that each fiber

05 (X) = {(X,ex) |ex : X — X is a restriction idempotent on X}

is a meet semilattice with the order given by

(X,ex) < (X,ey) & ex =¢€yex

which is equivalent to saying that there is a map from (X, ex) to (X, €Y) in 95" (X),

with the binary meet given by

(Xv 6X) A (Xv eIX) = (X7 eXe,X)a
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and with (X,1x) as the top element. Obviously, for any map f : X — Y, f*:
95 (Y) — 0g'(X), sending (Y,ey) to (X, ey f), is a stable meet semilattice homo-

morphism. Hence 0¢ : r(C) — C is a stable meet semilattice fibration. O

3.2.2 The Construction S;

Suppose that dx : X — X is a stable meet semilattice fibration. Then we can form

S,(dx) with the following data:
objects: A € obX;

maps: (f,0) : A — B, where f : A — B is a map in X and o € 65'(4) is such

composition: For any map (f,0,) : A — B and (g,02) : B — C,
(9,02)(f 01) = (gf, 01 A f*(02));

identities: 14 = (14, Ts1(4))-

In order to prove that S;(dx) is a category, we must first check that the composition
and identities are well-defined. For any maps (f,01) : A = B and (g,09) : B = C,

we have

o1 € 05 (A), 01 < f*(TJ;(I(B))v

and
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Then

fr(o) Ao < fr(o2) < F(0" (Tozr ) = (95) (Toz1(0)s

and

f*(o2) Ao € f (05 (B)) A {o1} € 6x'(A),

and so the composition is well-defined. Since

Ua(Togr ) = Logray (Togray) = Tograys

clearly the identities is also well-defined. We must also check the identity and asso-

ciative laws. For any maps (f,0,): A = B, (9,02) : B — C and (h,03) : C — D,

(h,03)((9,02)(f,01)) = (h,03)(gf, 01N [*(02))
= (hgf o1 A f*(02) A (9f)(03))
= (hgf,01 A f*(02) A f7g*(03))
= (hgf,01 A f*(02 A g"(03)))
= (hg,02 N g"(03))(f,01)

= ((h703)(9702))(fa01),

(f,00)(La, Tozray) = (s Togray A Lalo1)) = (F,00 A Tooi ) = (f,01),

and

(13’ T(S)_(I(B))(.ﬂ 01) = (f7 WA f*(T5;(1(A))) = (fv 01)?
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as desired. Hence S,(dx) is a category. Furthermore, S;(dx) is a restriction category

with the restriction given by (f,0) = (14,0) for any map (f,0) : A — B as shown

by the following proposition.

Proposition 3.2.4 S,(dx) is a restriction category with the restriction given by

(f,0) = (La,0) for any map (f,0): A — B.

Proor: We already proved that S;(6x) is a category. Clearly, (14,0) : A — A

is a map in S,(dx). So it suffices to check that (f,o) = (14,0) satisfies the four

restriction axioms.

[R.1] For any map (f,0): A— B,

(f,0)(f,0) = (f,0)(1a,0) = (f,0 A14(0)) = (f,0 AN s014(0)) = (£, 0).

[R.2] For any maps (f,01) : A — B and (g,02) : A = C,

(f,01) (9:02) = (1a,01)(14,02)
= (14,01 AN 0o2)
= (la,00A\0q)
= (La,02)(14,01)

= (9702) (fv 01)'
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[R.3] For any maps (f,01): A — B and (g,03) : A — C,

(9,02)(f,01) = (9,02)(14,01)

= (g,01 A 1%(02))

= (gaal A 02)
= (1A,01 A 02)
= (1A702)(1A701)

= (9’02) (f’ 01)'

[R.4] For any maps (f,01) : A — B and (g,02) : B — C, we have

(9,02)(f,01) = (1B,02)(f,01)
= (f,01 A f*(02)),

and

(f,o1)(g,02)(f,00) = (f,01)(gf, 01N f*(02))
= (f,01)(La, 01 A f*(02))
= (f,o1 A f*(02) A14(01))

= (f,01 A f*(02)).

Hence (g,09)(f,01) = (f,01)(g,02)(f,01).
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Examples

1. Suppose that C is a category. Then S;(1c) = C, which is a restriction category

with the trivial restriction structure.

2. For each restriction category C, S;(0¢) is the restriction category with the same
objects as C while a map from A to B in S;(0c) is a pair (f,e) with a map

f:A— Bin C and a restriction idempotent e < f over A in C, the composition

is given by (g,es)(f,ea) = (9f,ea Nepf) = (g9f,enfea) for any maps (f,e4) :

A — B and (g,ep) : B— C, and the restriction is given by (f,e4) = (14,€4).

3.2.3 Category of Stable Meet Semilattice Fibrations and rCat,

First, we form the category of stable meet semilattice fibrations.
Category of Stable Meet Semilattice Fibrations

Let sFibgy be the category with

objects: stable meet semilattice fibrations: (dx : X — X);

maps: a map from (6x : X — X) to (6y : Y — Y) is a pair (F, F'), where

F:X Y and F' : X = Y are functors such that

~ F o~
X—Y
dx Sy
X >y
commutes and for any map f : A — B in X and any 0,0’ € dx'(B), the

following conditions are satisfied:
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[sfM.1] F'(Tsor () = Togtriayy
[sfM.2] F'(o Ad') = F'(0) A F'(0"),
[sfM.3] F'(f*(0)) = (F(£))*(F'(0)).
That is, a map from (0x : X = X) to (0y : Y = Y) is a pair (F,a), where

F : X — Y is a functor and « is a natural transformation:

Xop = yop
(h o A

sLat
composition: for any maps (F,F') : (6x : X = X) = (6y : Y = Y) and
(G,G):(6y : Y =Y) = (0z:Z - Z), (G,G")(F,F') = (GF,G'F");

identities: 1;;_x_x), = (1x,1x)-

Functor S, : sFiby — rCat,
Recall that each stable meet semilattice fibration 6x : X — X gives rise to a restric-
tion category S,(0x). Suppose now that (F, F'): (6x : X = X) = (0y : Y = Y) is

map in sFibg. Then we define S,(F, F') : S;(dx) — S;(dy) by

If (f,0): A— B is amap in S;(dx), then

o € 6x'(A) and o < f*(Té;(l(B))
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and so

(6x F')(0) = (Fox)(0) = F(A)

and

F'(o) < F'(f"(Tsz10a))) (by [sfM.2])
= (P (P(Toa) (by [sTM.3)

= (F(N)"(Tsz1ray) (by [stM.1]).

Hence (F(f),F'(0)) : F(A) — F(B) is a map in 8,(dy) and therefore S,(F, F') :

S:(0x) — Ss(by) is well-defined. Now we have:

Lemma 3.2.5 If (F,F') : (6x : X = X) = (6y : Y — Y) is map in sFib,
then S;(F, F') : S,(6x) — Ss(dy), given by taking (f,0) : A — B in S,(dx) to
(F(f),F'(0)) : F(A) = F(B) in S;(dy), is a restriction functor.

ProoF: We already knew that S;(F, F') is well-defined. Clearly,

Ss(F,F')(La) = S(F, F’)(lA:Ta,;l(A))
= (F(lA)vFI(Tcs;(I(A)))
= (Ir@), Togiray) (by [sEM.1))
= lpay

= ls.rF)a)-



For any map (f,0) : A — B and (g,0') : B — C in S,(éx),

S(F, F')((g,0')(f,0)) = Si(F, F')(gf,0A f*(c"))
= (F(gf), F'(o n f(0"))
= (F(g)- F(f), F'(o) A F'(f*(0"))) (by [sfM.2])
= (F(g)- F(f), F'(o) A (F(f))"(F'(0))) (by [sfM.3])
= (F(g), F'(o))(F(f), F'(0))
= 1(F, F')(g,0") - x(F, F')(f, 0).

Hence Ss(F, F') : S;(dx) — Ss(dy) is a functor.

Note that, for any map (f,0) : A — B in S;(0x),

S(F,F')((f,0)) = S(F,F')((14,0))
= (k) F'(0))
= (F(),F'(0))
= S,(F,F")(f, o).

Hence S;(F, F') : S;(6x) — Ss(dy) is a restriction functor.
Furthermore, it is easy to check that S, : sFiby — rCat; given by
((5x X = X) = 83(6)()

(F,F')l — lSS(F,F’)
(6Y 'Y = Y) s Ss(éy)
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is a functor. So we have:

Lemma 3.2.6 S, : sFib, — rCato, given by sending (F,F') : (6x : X — X) —
(6y : Y = Y) in sFibgy to S,(F, F') : S,(6x) — Ss(dy) in rCaty, is a functor.

Let Y be a restriction category, then by Lemma 3.2.3, dy : r(Y) — Y is stable
meet semilattice fibration. If (F, F') : (6x : X — X) — (8y : r(Y) = Y) is a map
in sFibg, then by Lemma 3.2.5, there is a restriction functor S,(F, F') : 8,(éx) —
Ss(0y). But S;(dy) and Y are different restriction categories in general. So a natural

question is: Is there a restriction functor from S;(0x) to Y ? The answer is Yes!

Lemma 3.2.7 Let 6x : X — X be a stable meet semilattice fibration and let Y be
a restriction category. If (F,F') : (0x : X = X) = (By : r(Y) = Y) is a map in
sFiby, then there is a restriction functor F* : S,(6x) — Y sending (f,0): A — B
to (F(f))e, : F(A) = F(B), where the restriction idempotent e, is determined by
F'(o) = (F(A),e,) € r(Y).

For any object A € X and any object o € 63" (A), F'(c) € r(Y) can be written as
(F(A),e,), where e, is a restriction idempotent over F(A) in Y. In order to prove

Lemma 3.2.7, we need:

Lemma 3.2.8 Let 6x : X — X be a stable meet semilattice fibration. Then

(i) For any object A € X and any 0,05 € 63 (A),

et _, . = lpa) and e; ng, = €5 N €55
531 (A)



(i4) For any map f: A— B in X and o € 65 (B),

ero) = € (F(f));

(112) For any map (f,0) : A — B in S;(0x), e, = F(f)e,.

PROOF:

() By [sfM.1],
(F(A), ety ) = F(Tarw) = Tagrray = (F(A), 1pw).
Hence €T i1 = 1p(4). By [sfM.2],

(F(A)760'1/\0'2) = FI(O'l A 0'2)
— F’(O’l) /\F’(O'g)
= (F(A),e0,)(F(A),€5)

= (F(A),e5¢€0)-

Hence ey, ngy, = €464, -
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(i) By [sfM.3],

(F(A)aef*(o)) = Fl(f*(a))

Hence ef-(5) = m-

(i43) For any map (f,0) : A = B in 8,(0x), since 0 < f*(Ts1(4)), we have the

following commutative diagram in X:

o TJ)—(I(B)

where ¥ is the cartesian lifting of f at Ts-1(5). Applying F, we have the

following commutative diagram:

(F(4), ef*(Té)—(l(B)))

e )

Hence F(f): (F(A),e;) = (F(B),1rp)) is a map in r(Y) and therefore

(F(B), 1r(s))

€o = F(f)lF(B)eU = F(f)e.
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PROOF OF LEMMA 3.2.7: Clearly, by [sfM.1],

Fo%(1,) = F™(14, Tsoiay) = F(la) et = F(14) - 1p(ay = Lr(a)-

gty
For any maps (f,0) : A = B and (g,0") : B — C in S§,(dx), we have
F*((g,0')(f,0)) = F**(gf,0 A f(c"))

= F(gf) " esns(o1)

= F(g9) - F(f)-es Neg(r) (by Lemma 3.2.8 ()),

and
F™%(g,0"\F™*(f,0) = (F(9)-ex)(F(f)-e5)
= (F(g9)- F(f))es(F(f))es (by [R.4])
= (F(9) F(f))es()es (by Lemma 3.2.8 (i)).
Hence

F((g,0")(f,0)) = F™(g,0")F**({,0).



Therefore F%% is a functor. Since

F>((f,0)) =

F%% is a restriction functor.

Functor R, : rCaty — sFib

If F: X — Y is a restriction functor, then we have a functor r(F) :

given by
(Aa eA)

4

(B,GB)

and a commutative diagram

F5x(1A,O-)
F(lA) * €45
€o

F(f)e, (by Lemma 3.2.8(iii))

(F(f))es (by [R.3])

Fox(f,0),
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For any map f: A — B in X, we have

I'(F)(Ta,;l(A)) = r(F)(4,14)
= (F(A), F(14))
= (F(A)71F(A))

= Tog'(r(ay

r(F)((B,ep)(B,€p)) = r(F)(B,epep)
= (F(B),F(es) - F(ep))
= (F(B)vFeB)(F(B)vF(eIB))

= r(F)(B,eg) r(F)(B,¢}p),
and

r(F)(f*(B,es)) = x(F)(4,esf)
= (F(A),F(esf))
= (F(A),F(es) - F(/))
= (FU))(F(B), F(es))
= (F()"(c(F)(B,e))-

Hence the conditions [sfM.1], [sfM.2], and [sfM.3] are satisfied and therefore

(F,x(F)): (0x:r(X) 2 X) = 0y :r(Y) > Y)

84
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is a map in sFiby. We have more:

Lemma 3.2.9 If F : X — Y is a restriction functor, then there is a unique functor

r(F) : r(X) — r(Y) such that
(F,r(F)): (0x :r(X) > X) > (Oy : r(Y) =2 Y)

is a map in sFiby.

PROOF: We already proved that
(For(F)): (0x :r(X) > X) = (Oy :r(Y) = Y)
is a map in sFiby. To prove the uniqueness of r(F'), assume that
(F,G): (0x:r(X) > X) > (0y :x(Y) = Y)

is a map in sFiby. Since
r(X) <> r(Y)

axl lay

X—2 vy

is commutative, G must map f : (X1,ex,) = (X3, ex,) in r(X) to

F(f): (F(X1),irxn) = (F(X2), ir(xy))
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in r(Y), where (F(X4),ir(x,)) is an idempotent over F(X}), k = 1,2. By [sfM.1],
G(X1,1x,) = G(Ta;(l(xl)) = Ta;l(F(Xl)) = (F(X1), Ipxn)-
Note that ex, : (X1,ex;) — (X1, 1x,) is a map in r(X). By [sfM.3],

G(X1ex) = Glex, (X1,1x,))
= (F(ex,))(G(X1,1x,))
= (F(ex,))"(F(X1), Lrexy)
= (F(X1), Lpxy Flex,))
= (F(X1), F(ex))

= (F(X1), F(ex,))-

Hence G = r(F), as desired. O

Lemma 3.2.10 R, : rCaty — sFibyg, taking F : X — Y in rCatq to (F,r(F)) :
(0x : r(X) = X) = (0y : r(Y) = Y) in sFiby, is a functor.

PROOF: For any restriction functors F': X —- Y and G : Y — Z, we have
Rs(GF) = (GF,r(GF)) = (GF,r(G)r(F)) = (G,r(G))(F, r(F)) = Ro(G)Rs(F).

Clearly,

Rs(l)() = (1X7 1r(X))

Hence R, is a functor. O
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Adjunction §; 4R,

For a given stable meet semilattice fibration dx : X — X, we can form Ix : X —
S;s(dx) by sending f: A — B to (f, f*(T(s)—cl(B))) : A — B. Clearly, (f, f*(Ta)—(l(B))) :
A — B is a map in 8,(dx) and so Ix is well-defined. For any maps f : A — B and

g: B = C of X, since ¢*(T%'(C)) < T%'(B),

Ix(9)Ix(f) = (9,9 (Tsgp U [ (Tsz1m)
= (9, /" (Tspm) A9 (Tozic)
= (9f, 79" (Tsz10))
= (95, (/)" (Ts2(c))

= Ix(gf).

Clearly, Ix(14) = (1A,(1A)*(T5)_(1(A))) = (].A,TJ)—(I(A)) = 174(4). Hence Ix is a

functor. Also, we can define

I X - r(S,(6x))

by
U — (5x(U), (15x(U)’U))
; " l(dxu)’(‘SX(f))*(T6§1(5x("))))
1% — (5X(V)7 (15X(V)a V))

Since 15,/ (U) =U < T ozl ex () (Lsx ), U) : 0x(U) — 6x(U) is a map in S,(dx)

and so a restriction idempotent over éx(U). Since there is a unique map h : U —
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((Sx(f))*v such that ﬁgx(f)h = f:

U < (6x(f))*V. Hence

(Lax(v), V) (0x (f); Ox () *(Tsg1 6 v))) axwy, U)
= (0x(f), Ox(N))*(Tsz 6xvy) A (0x (1) V) (Lax ), U)
= (0x(f), 6x(N))V)(sx @), U)
= (Lx), (0x(f)"V)Lox ), U)
= (Lx), (6x(f)'V AU)

= (15x(U)’ U)

and therefore (0x(f), (5X(f))*(T6;(1(5x(V)))) : (Lixw), U) = (Lsx(v), V) is a map in
r(S,(dx)). Then I¥ is well-defined.

Lemma 3.2.11 I[féx : X — X is a stable meet semilattice fibration, then there is a
functor Ix : X = 8,(0x) and a functor I : X — r(S,(0x)). Moreover, (Ix, I%) is

a map from (0x : X — X) to (Os,(ox) : (Ss(6x)) — Ss(dx)) in sFiby.

PROOF: We already showed that Ix is a functor and I3X is well-defined. For any

dx

maps f: U — V and g: V — W in X, since ((5xg)*(T5)-(1( (W))) < T(s)—(l(é—x(v)), we



have

RHOIZ() = (6x9: (0x9)" (T sz axowy)) 0x () Gx (D) (Tt e ry))
= (6x(9.): Ox () (T sz ismevy) A Gx ()" 0x9) (ot gewyy)
= (6x(9/), (5x ()" (6x9)* (T 521 sy wy))
= (6x(9.), (6x(9/)* (T 5155 wy)))

= LX(gf).

Clearly,

I (1y) = (6x1u, (Ox10)" (T 21 o)) = (Ox 1oy (Tsg s @) = 1I§(x(U)-

Hence I3 is a functor. Obviously,

’x

X —>1(Ss(0x))
ox 1353(6,()

X —X- 8,(6%)

is commutative. For any map f : A — B in X and 0,0’ € §5'(B), we have

I)6CX(T6;(1(A)) = (5X(T5,;1(A))a(16x(T

= (4, (L4, Tz

éil(A))a T&,‘(I(A)))

- Ta‘;;(&x)([x(,q)) ’
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IX(oAd) = (6x(o Ad"), (Loxono), 0 A T'))
= (B,(lp,0N0)
= (B,(18,0)) A (B, (15,0"))
= (0x(0), (Lsx (0, 9)) A (6x(0"), (Lox(01), "))

= I (o) NZ(d"),
and

IX(7(0)) = (Ox(£(0)), Qoxgrmo: £(0)))
= (A, (14, /()
= (Tia5)" (B, (15,0))
— (£, £ (Ta15))" 0x(0), (Lox(en,0)
= (Ix(F)"IF ().

Hence, conditions [sfM.1], [sfM.2], and [sfM.3] hold true, and therefore (Ix, I%¥)
is a map from (6x : X — X) to (3s,(s) : T(Ss(6x)) = Ss(0x)) in sFibg. O

For any stable meet semilattice fibration dx : X — X, by Lemma 3.2.11, there
exists a map (Ix, I3¥) : (0x : X — X) — (Os,(x) : T(Ss(0x)) = S,s(dx)) in sFiby.
This map turns out to be the unit of the adjunction S; 4 R,. In fact, let Y be a
restriction category and (F, F') : (6x : X = X) = R,(Y) any map in sFibg, by
Lemma, 3.2.7, there is a restriction functor F* : S,(6x) — Y. It is easy to check
that

(F(sx?r(Féx))(IX7I§(x) = (F7 FI)'
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If G:S,(0x : X = X) = Y is a restriction functor such that
(G,x(G)(Ix, [Y) = (F, F),

then GIx = F and r(G)IfcX = F'. Hence for any map f : A — B in X, G must map
A to F(A) and must map (f, f*(T5)_(1(B))) :A— Bto F(f): F(A) - F(B) and

therefore G(f, f*(Té;cl(B))) = F(f) = F*({, f*(T(s;(l(B))) since €1 (Tyzn F(f).
For any map (f,0) : A — B in S,(dx),

)

(F(A),es) = F'(o)
= r(G)(Ix)(0)
= I‘(G)(A, (1A’U))

= (G(A),G(14,0))

and so G(14,0) = ¢,. Since (f,0) = (f, f*(TJ)—cl(B)))(].A,O') and G is a restriction

functor,

G(f,0) = G(f, " (Tsz1(5))G(14,0)
= F(f)es

= F%(f 0).
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Then G = F% and so the uniqueness of F%% follows. Therefore, there is a unique

restriction functor F%% : S;(6x) — Y such that

§

< (IX,Ixx) ~ ~
((5}( X—)X)—>RS(SS(5XX—>X)) Ss(dxX%X)
(F,F") le(F‘SX) S!éFéx
Rs(Y) Y

commutes. Hence S, 4 R,. Clearly, the counit ¢ of S 4 R, is given by e¢ :
Ss(R4(C)) — C sending (f,es) : A = B to fea : A = B, where ey is a restriction
idempotent such that e4 < f, for each restriction category C. We define A¢c : C —
S,(R,(C)) by taking f: A — B to (f,f) : A — B. It is easy to check that Ac is a
functor such that ecAc = 1¢ in Caty. Hence ¢ is an epic in rCaty and therefore

is faithful. So, we proved:

Theorem 3.2.12 There is an adjunction:

Ss

- ————

I‘C&tg L SFib()

—_—

Rs
with a faithful functor R;.

Remark For a given restriction category C, the restriction functor

EC . SS(RS(C)) — C

is faithful if and only if the restriction category C has the trivial restriction. To
see this, we first suppose that ec is faithful. If C had a non-trivial restriction, then

there would be a restriction idempotent e4 # 14 over A. But ec(la,e4) = €4 =
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ec(ea,ea), which contradicts the fact that ec is faithful. Hence e¢ is faithful implies
that C is with a trivial restriction. Conversely, if C is with the trivial restriction,
then, clearly, S;(R(C)) = C.

Clearly, if C is a restriction category with the non-trivial restriction, then one

has a sequence of restriction categories:

(SSRS)(C)’ (SsRs)z(C)’ T (SsRs)n(C)’ e

3.2.4 The Image of S;: Fibered Restriction Categories

In the last subsection, we constructed the functor S, : sFibg — rCaty. The objective
of this subsection is to characterize the class of restriction categories, which is the
image of the functor S;. We call these categories fibered restriction categories. We

begin with:
Lemma 3.2.13 Let C be a restriction category. For any A, B € obC,

(1) mapa(A, B) is a poset with the order given by

f<ge f=gf;

(#i) f < g in mapg(A, B) implies f < g in mapg(A4, A).
PROOF:

(i) Clearly, f = ff gives f < f.



If f<gand g <h,then f=gf and g = hg and so, by [R.3],

f=gf = hgf = hgf = hF.

Hence f < h.

If f<gand g < f,then f = gf and g = fg and so, by [R.3],

T=gf=9f=T5=F3=70.

Q|

Hence, by [R.1],
f=9f=g3=9
as desired. Therefore, mapc(A, B) is a poset.

(i3) f < g gives f = gf. Hence

<l
I
Y
=¥
I
=]
=3
I
i~
<l

and therefore f < 3.

Now, for a pair of objects A, B in a restriction category C, we define

mapa™ (A4, B) = {f € mapc(A4,B) | f < h implies h = f in mapc(A4, B)}.

94
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A restriction category C is called a fibered restriction category if C satisfies the

following two conditions:

[M.1] For any objects A, B and any f € mapg(A, B), there is a unique my €

map&** (A, B) such that f < my;

[M.2] For any objects A, B,C, f € map@**(A, B), and g € mapg™(B,C), gf €

mapg** (A4, C).

Note that for any map f : A — B in a restriction category C, mz = 14 since
f<lpandly < g% g=1, in mapc(A, A). Note also that 14 € mapg* (A, A)
since my, = 14.

For example, for any stable meet semilattice fibration dx : X — X, the restriction

category S,(dx) is a fibered restriction category. In fact, for any objects A, B,
mapg, sx) (4, B) = {(f,0)|f € mapx (4, B) and o € 6x'(A) with o < f*(T5)_(1(B))}.

Clearly, (f,o) < (f, f*(Td;(l(B))) since

(f’ 0) = (f7 0)(17f*(T6;(1(B))) = (f7 0)(f7 f*(TJ;(l(B)))
If (f, f*(Tdil(B))) < (g,0’'), then

/ *
o <g (Téi‘(ﬁ))
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and

(f?f*(T(S;(I(B))) = (gvo-l)(f,f*(Téil(B)))
= (Q,U’)(laf*(Ta;(l(B)))

= (9, f*(TJ)—(l(B)) No').

Hence f = g and f*(T, 1(3)) No' = [T, B)) and therefore f = g and o’ >
f*(TJ)—(l(B)). But 0/ < ¢ (T(S;(B)) = 4T 5)_(1(3))‘ Then o' = f*(T(s)—(l(B)) and so
(g,0") = (f, f*(Ts5z1(m)))- Therefore,

(f, f*(T5;(1(B))) € mapg s, (A B)

and (f,0) < (f, f*(TJ)—(l(B))). If (g,0") € map§i, (4, B), then ¢’ < g*(Ta)—(l(B)) and

0 (g,0') < (9,9*(T5§1(3)))- Hence (g,0") = (9, 9" (TJ;(l(B))) and therefore
mapg, (5 (4, B) = {(f, f"(Tsz1(5)) | f € mapx (A, B)}.

If (gag*(TJ ( ))) € mapgla&)fs (A7B) and (f7 U) S (g7g*(T6;(1(B)))) then

(f’ U) = (gvg*(Té)“(l(B)))( 70) = (gvg*(Té;cl(B)))(lao-) = (g,aA g*(TJ)‘(l(B))),

and so f = g. Hence (g,g*(Té)_cl »)) = ([, f*(T5-1(B))) and therefore the uniqueness
of msq) = (f, f*(Tsz1(p))) follows. So [M.1] is satisfied.
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v(f, f*(T(S;(l(B))) € mapg 5, (4, B), (9,9 (Ta,—(l(C))) € mapg;. (B, C), we have

(9,9( (C)))(f (T )) = (gfvf*(Tdil(B))/\f*g*(Tdil(C)))
= (g/, f*g*(Té;(l(C)))
= (¢/, (gf)*(Ta;(l(C)))

€ mapg; (5, (4, C).

Hence [M.2] is also satisfied. Thus, S,(dx) is a fibered restriction category.
Let C be a fibered restriction category. We define Cyy,x by following data:
objects: the same as the objects of C;
maps: for any objects A, B, mapg, (A, B) = mapg*™ (4, B);
composition: the same as in C.

Then by [M.2], Cpax is a category. Now, we define Crax to be the category given
by

objects: (A, e4), where ey is a restriction idempotent over A in C;

maps: a map f from (A,es) to (B,ep) is a map f € mapg* (A, B) such that

es = epfen;
composition: the same as in C.

Obviously, there is a forgetful functor Oc,,, : Chrnax — Crax, which forgets restriction

idempotents.



98

Lemma 3.2.14 For any fibered restriction category C, the forgetful functor Oc,,,, :

Chax — Cumax 15 a stable meet semilattice fibration.

PROOF: As in Lemma 3.2.3, for any map f : A — B in Cyay and any (B,ey) €
95 (B), f: (Ajesf) — (B,ep) is the cartesian lifting of a map f : A — B at

(B, ep). Note that each fiber

dc- (A) ={(A,ea)|ea: A — Ais a restriction idempotent on A}

is a meet semilattice with the order given by

(A, €A) S (A,e;l) & eq = e%eA,

with the binary meet given by

(Av eA) A (Av 614) = (Av 6Ae:4)a

and with (A,14) as the top element. Obviously, for any map f : A — B, f*:
dg. (B) — g (A), sending (B,ep) to (A,epf), is a stable meet semilattice
homomorphism. Hence J¢_,, : émax — Chax 1S a stable meet semilattice fibration.

O

Now, by Lemma 3.2.14, we can consider 8;(dc,,,, )-
Proposition 3.2.15 For any fibered restriction category C, Ss(0c,...) = C.

PRroOOF: Define the functor E : §,(0c,,,.) = C by sending (f,(A4,e4)) : A — B to

fea: A — B. Then it is easy to check that F is a restriction functor.
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For any map f : A — B in C, by [M.1], there is a unique my € map,,,, (4, B)
such that f < my. Then f < m; = m}(Taérlnax(B)) and so (my, (A, f)) : A = B is
a map in S;(0c,,, ) Now, we define F : C — &,(0c,,,) by sending f : A — B to
(my, (A, f)) : A — B. Clearly, F is well-defined and

F(1a) = (m1,, (A, 14)) = (14, (4, 14)) = 1r(a).

For any maps f: A— Band g: B— Cin C,

F(Q)F(f) = (mg,(B,9)(my, (A, )
= (mgmy, (A, ) Am}(B,7))
= (mys, (4, fgmy))
= (myy, (A, gms]))
= (mgs, (A,gf)) (since f <my = f=m;f)

= (mgr, (4,9f))

= F(gf).

Hence F' is a functor. Note that

F(f) = (m7(4,0)
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Then F is a restriction functor.

For any map f: A — B in C,

Hence FF = 1¢.
On the other hand, for any map (f, (A,04)) : A = B in S,(0c,...)

a4 < f*(Ta—l

Cmax

(B)) = 7

Then

oa= foa= fea

and so fes = ffes which gives fey < f. Since f € map&*(A4, B), we have

mye, = f. Hence

(FE)(f7 (A, eA)) = F(feA) - (mfeAa (A’fTA)) = (f7 (Av eA)),
and therefore FE = 15,(5,__)- Thus, S,(9¢c,,,) = C. O

3.2.5 The Free Stable Meet Semilattice Fibrations

By Theorem 3.2.12 we have an adjunction §; 4 R : rCaty — sFiby. There is a base
functor Uy : sFiby — Cato, which sends (F,F') : (6x : X = X) = (by : Y = Y)
to F: X — Y. One may ask whether the base functor U; has a left adjoint. The

objective of this subsection is to answer this question.
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Categories Give Rise to Stable Meet Semilattice Fibrations
Each category gives rise to a stable meet semilattice fibration. In order to see this,
we first recall Cockett-Lack’s closure operator |( ).

Let C be a category, K = {f; : X — Z, | i € I} a set of maps with domain X,
and ¢ : Y — X a map. Then we write Kg for the set {fig | i € I}, and {(K) for
the set {f : X — Z | uf = f; for some ¢ € I and some u: Z — Z;}. Suppose that

K and L are sets of maps with domain X. Clearly, if K C L then J(K) C {J(L).

Lemma 3.2.16 For any category, () is a Kuratowski closure operator on the maps

with domain X. Namely, if K, K|, and K, are sets of maps with domain X, then

U(0) =0, J(K1 U Kz) = U(K1) U(K), K € U(K), J(U(K)) = H(K).

Proor: Clearly, {(0) = 0.
Since J(K;) C L(K1 U K3),i = 1,2, $(K1) U 4(K32) C J(K1 U K3). On the other
hand, for any f € {(K;UK>), there is a map u such that uf € K;UK, andso uf € K,
or uf € K,. Hence f € J(K;) U (K>) and therefore (K7 U K3) C (K;) U J(Ky).
Thus, J(K; U K,) = J(K7) U (K,).
Forany f € K, 1f = f € K. Hence f € |(K) and therefore K C |(K).
Obviously, {(K) C J({}(K)). For any f € J({(K)), there is a map u such that
uf € J(K) and so vuf € K for some map v. Then f € |J(K) and so J({(K)) C

4(K). Hence L(I(K)) = J(K). O

So, §(.) endows X/C with a topology: the closed sets of this topology are the sets

J(K) while the open sets (the complements of the closed sets) are sieves that are
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sets O such that f € O implies uf € O. A map f: X — Y of C induces a map {(f)

in the reverse direction between these topological spaces Y/C and X/C:

U(f) : Y/C — X/C;h — hf.

Moreover, {(f) : Y/C — X/C is a continuous map as shown in Lemma 3.2.18 below.

We first observe the following simple topological result:

Lemma 3.2.17 Let f : T — S be a map between two topological spaces T and S.
Then the following are equivalent:

(i) f is continuous,

(i1) For any closed set F C S, f~'(F) is closed in T;
(113) For any set A C T, f(cl[A4]) C cl[f(A)];

(iv) For any set AC T, cl[f(A)] = cl[f(cl[A])].
PRrROOF:
(i) & (ii) : Since fYS\F) =T\ f~'(F).

(i3) = (i44) : Since f(A) C cl[f(4)], A C fH(cl[f(A)]). By (i), f~H(cI[f(A4)]) is a
closed set in T'. So cl[A] C f~1(cl[f(A)]). That is f(cl[A]) C cl[f(A)].

(i41) = (iv) : For any set A C T, by (i), f(cl[A]) C cl[f(A)]. Hence cl[f(cl[A])] C
cl[f(A)]. On the other hand, as A C cl[A], we have cl[f(A4)] C cl[f(cl[A])]
always. Therefore, cl[f(cl[A])] = cl[f(A)].
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(iv) = (i4) : For any set A C T, by (iv), cl[f(cl[A]] = cl[f(A)]. Then f(cl[A]) C
cl{f(cl[A])] = cl[f(A)]. So, for any closed set F' C S, we have

FEFHED) Cellf(f7HF)] C el[F] = F.
Hence cl[f~'(F)] € f~'(F) and therefore f~'(F') is closed in T'.
O

Lemma 3.2.18 Let K, K' be sets of maps with domain X and f a map with

codomain X. If J(K) = W(K'), then Q(Kf) = J(K'f). In particular,

HEK))S) = HKS)

and so (f) : Y/C — X/C is continuous.

PROOF: If z € (K f), then uz = kf for some u and k € K. As certainly k € {(K),

there is a map v such that vk € K’. But then vux = vkf so that z € {(K'f). Hence

WK F) C Y f). Similarly, J(K'f) C U(K f). Therefore, J(K f) = Y(K'f).
Since J(J(K)) = $(K), we have

YUN(EK)) = UKY)

for any K C Y/C. By Lemma 3.2.17, |(f) : Y/C — X/C is continuous. O
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Now, we can form |} : C°°? — Top by

Y — Y/C
f — lU(f)
X - X/C

By Lemma 3.2.18, we have the following property.
Proposition 3.2.19 | : C°® — Top is a functor.

We also need the following lemma:

Lemma 3.2.20 Let F : C — D be a functor and K a set of maps in C with domain

X. Then Y(F(K)) = $(F(}(K))).

Proor: Since K C |(K), W(F(K)) C W(F(U(K))). On the other hand, for any
z € (F(YK)), uz = Fy for some map u in D and some map y € |(K). Since

y € (K), vy = k for some map k € K and some map v in C. Then

(F(v) - w)z = F(v) - uz = F(v)F(y) = F(vy) = F(k) € K,

Now, we form s(C) by the following data:
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objects: (X, {z1, -+ ,2m}), where X € ob(C) and {z;, -+ ,zn} C ob(X/C);

maps: a map from (X, }{z1, -+, zm}) to (Y, l{yr,--+ ,ya}) isamap f: X =Y

in C such that li{ylf) e aynf} C_: ‘U’{xla e axm}7
composition and identities are formed as in C.

By Lemma 3.2.18, s(C) is a category. Clearly, there is a forgetful functor Ac :
s(C) — C, which forgets the sieves ||(K).

Lemma 3.2.21 Let C be a category. Then the forgetful functor Ac : s(C) — C is

a stable meet semilattice fibration.

PROOF: For any map f : X — Y in C and any object (Y, 4{y1, - ,¥a}) € AG (Y),

Clea‘rly f : (Xa U’{ylf, ) ynf}) - (Y7 U’{ylv U ayn}) is a map of S(C) MOI’GOVGI‘,

f : (X’U'{ylfv"' 7ynf}) - (Y7U'{y1>"' ayn})

is the cartesian lifting of a map f: X — Y at (Y, 4{v1, -+ ,yn}). In fact, for any

map g : (Za ‘U’{Zl, o 7Zk}) - (Y, U’{ylv e 7yn}) in S(C)’ we have

‘U’{ylg, e 7yng} g ‘U’{Zla e ,Zk}.

If h: Z — X is a map such that fh = g in C, then

‘U’{ylfh’ ot )ynfh} = U’{ylga tT ,yng} g U{Zly' o 7zk}-



Hence

h: (Z,U«{Zl,"' ,Zk}) — (X"U'{ylf’ aynf})

is a map such that Ac(h) = h and fh = g in s(C):

(Za/u{zh e 7zk})

XUl f}) ! RTINS
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in s(C)

in C

The uniqueness of the map h : (Z,4{z1, -+ ,z}) = (X, {wif, - ,ynf}) with the

property that fh = g in s(C) is obvious. Hence A¢ : s(C) — C is a fibration. Note

that each fiber

A (X) ={(X, Hzr, -+ zm}) [{z1, -+, 2} € map(X/C)}

is a meet semilattice with the order given by

(X,l}{wlv"' axm}) < (Xv‘U{"Ull) 3'112}) And U’{‘E’lv a‘l’;} - U’{-Lh

aJ"m}a
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with the binary meet given by

(X7U’{x1v"' >xm}) N (X’U{xll’ 711;}) = (X’U’{xlv"' ’Imaxll"" 7x2})7

and with (X,{{1x}) as the top element. Clearly, for any map f : X — ¥ in C,

5 AGHY) = AGH(X) which takes (Y, U{y1,- -+ ,yn}) to (X, U{wnf,--,unf}) is 2
stable meet semilattice homomorphism. Therefore, Ac : s(C) — C is a stable meet

semilattice fibration. O

By Lemma 3.2.21, for any category C, the forgetful functor Ac : s(C) — C is
a stable meet semilattice fibration. If F': X — Y is a functor, then we have s(F) :
s(X) = s(Y) defined by sending f : (X,{{z1, -+ ,zm}) = (Y, {y1,- -+ ,yn}) to
F(f) : (F(X), H{F (1), -, Flam)}) = (FY),{F(s1),---, F(yn)}). By Lemma
3.2.20, s(F') is a well-defined functor.

For any map f : A — B in X and any (B, {{b1,-- ,bx}), (B, }{b},--- ,b;}) €
AG(B), we have:

S(F)(TA;l(A)) = S(F)(AaU{lA}) = (F(A),U{lF(A)}) = TA;l(F(A))a

s(F)((B, 4{by, -+ ,bi}) A (B, 4{b, -+, b}))
= S(F)(B7U{b1, 7bk>b’1"" 7b;})
= (F(B),I{F (1), -, F(be), F (b)), , F(b))})

= s(F)(B,4{bs, -, b}) As(F)(B, I{bh, -+, bi}),
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and

s(F)(f" (B, 4{br, -+, 0k}) = s(F)(A,Hbif, -+, buf})
= (F(A), HF®uf), -, F(bef)})
= (F(A), {FG)F(f),--, F(be)F()})
= (F(O)(FB), HF 1), , F(b)})
= (F(N)) (s(F)(B; 4{b,-- -, bi}))-

Hence (F,s(F)) satisfies the conditions [sfM.1], [sfM.2], and [sfM.3] and therefore
(F,s(F)) : Ax — Ay is a map in sFibg. Clearly, we have:

Lemma 3.2.22 F; : Caty — sFiby, defined by sending F : X — Y to (F,s(F)) :

Ax — Ay, s a functor.

In order to prove the universal property of Fy 4 Uy, we also need:
Lemma 3.2.23 For any stable meet semilattice fibration 6x : X — X and any
functor G : C = X, there is a unique functor G': s(C) — X such that

(G,G") : Ac — bx

is a map in sFibg.

ProOOF: For any map f : (C,{§{c1, -+ ,en}) = (D, Y{ds,--- ,d,}) in s(C), where

¢,:C—=X,andd;:D—Y,aremapsinC,i=1,--- ,m,j=1,--- ,n,

‘U’{dlfv 7dnf} g ‘U’{Cla"' acm}-
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Hence we have the following commutative diagram:

(€, Her, - eml)
/ \

(C, 4{drf, -+ dnf}) ! (D, 4{dy,--- ,dn})

where (C,{d1f, - ,dnf}) = f*(D,4{d1, -+ ,dn}). Now we define G’ : s(C) —» X
by sending
f : (07&{017 Ut ,Cm}) -~ (Dy‘U’{dla o adn})

to

U< /\ﬁl(G(Ci))*Tdil(G(Xi)) — /\?:1(G(dj))*_r5;(1(c(yj)),

which is given by the following commutative diagram in X:

=1 (G(e))" Tz aoxy

/ %
Yas)

(GU))Y Y

where YV = /\;Lzl(G(dj))*Td)—cl(G(Yj)). Clearly,

G'(Lcyfer,emd)) = G(le) = Inn (6(e) T

s G

For any map ¢ : (D, {{dy, - ,d,}) = (E,{e1, - ,ex}) in s(C), where e; : E — Z;

are maps in C, i = 1,--- k, since G'(g) is given by the following commutative
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diagrams:
i=1(G(d)" Tzt oy
/ %\
(Glo)'W W
and

with W = /\le(G(ei))*Té;cl(G(Zi)), we have G'(gf) = G'(9)G'(f). So G' : s(C) =+ X

is a well-defined functor. It is routine to check that

s(C) “—~x%

C -~
Acl l&x
C"——G—>X

commutes. For any map f:C — D in C and any

(D7U'{dla" . ,dn})7 (D7U{dll7 o 7d;c}) € Aél(D)y

where d; : D — Yy and d; : D — Y/ aremapsin C, ¢ =1,---,n,j =1,--- , k, we
have

G'(Tagi o) = G(C,Hlic}) = (G(10)) (Tee) = Tewe)
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G'((D,W{dy, -+ ,du}) AN (D, U{d}, -+, di}))
= GI(D?‘U'{dly"' adnadll"" 7d;c})
= (N (G(d) (Taap)) A (A= (GEd) (Tay))

- GI(Dv‘U’{dla e adn}) A GI(Da U’{dlla e ’d;c})a
and

G'(f*(D,{dr,--+,dn})) = G(C,H{drf, - duf})
= N2(Gdif) (Tay)
= (G() (AL (G(d) (Twy))

= (GG (D,¥{dy,--- ,dn})).

Hence (G, G") : Ac — &x satisfies the conditions [sfM.1], [sfM.2], and [sfM.3] and
therefore it is a map in sFiby.

Assume that G” : s(C) — X is a functor such that
(G, G”) : AC — 6x

is a map in sFibg. Let f : (C,{{c1,- - ,cn}) = (D,4{ds, -+ ,dn}) be a map in
s(C). By [sfM.1],

G"(C, U{lc}) = G”(TAEI(C)) = T&,_(l(G(C))‘
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By [sfM.3],
G"(C,H{e}) = G"(c (X1, 4{1x,}))
= (G(e))(G"(X1, 4{1x,}))
= (G(Cl))*—ra,;l(c(xl))-
By [sfM.2],

G"(Ca U{Cl, e ’Cm}) = G”(/\ﬁl (C’ l}{Cl}))
= ALG'(C Ha})

= AZI(G(Ci))*Tﬁil(G(xi))'
Hence G"(C, U{c1, - ,em}) = G'(C,4{c1, -+ ,cm}). Similarly,

G”(D7‘U'{d17 e 7dn}) = GI(D7 ‘U’{dla tte 7dn})

Since

s(C) <> x

Acl x
C—FX
commutes, for any map f : (C,{c1, - ,em}) = (D,H{dy, -+ ,dn}) in s(C), we

have

0xG"(f) = GAc(f) = G(f).
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Hence there is a unique map

h: N (G(di )T Gy =G ) T 216y

in 05 (G(C)) such that 6x(h) = lg(c) and Jgpyh = G"(f):

NELG(E)) T szt
- ()

A//

LLe n *
1= (G5 ) Tszr ey & N1 (G(d3))" T sz a(vy)

Since dx is a stable meet semilattice fibration, A~ =<. Hence, by the definition of

G'(f),
G"(f) = Yainh = Vo) <= G'(f)

and therefore the uniqueness of G’ follows. O
Now we are ready to prove:
Theorem 3.2.24 There is an adjunction:

Fy
N <
SFlbO L Cato
Uy
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with the identity unit nc = lc.

PRroOF: For any category C, clearly UsF;(C) = C. n¢ = 1¢ : C — UsFy(C) turns
out to be the unit of Fy 4 Us. In fact, for any stable meet semilattice fibration
6x : X — X and any functor G : C — U;(6c), by Lemma 3.2.23 we have a unique
map G* = (G,G") : Ac — éx in sFibg such that

C—""%U;Fy(C)  F(C)

> lUf(G*) EI!\;G*
Us(9x) ox
commutes. Hence Fy 4 Uy with the unit nc = 1c. U

So for any category C, Fy(C) = Ac is the free stable meet semilattice fibration over
C.

3.2.6 The Free Restriction Categories over Categories

Recall that there is an evident forgetful functor U, : rCaty — Caty, which forgets

restriction structures. One may ask:
Does U, have a left adjoint?

In [7], Cockett and Lack gave an answer to the question by providing the free re-
striction categories over categories. In this subsection, as an application of Theorems
3.2.12 and 3.2.24, we shall revisit this question and reproduce Cockett-Lack’s free
restriction category F,(C) using the free stable meet semilattice fibration A¢ for any

given category C.
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At first, we recall that adjunctions are composable.

Theorem 3.2.25 Given two adjunctions:

<FGne>C—-X, <F G ¢d>X->D,

the composition functors yields an adjunction

< F'F,GG',Gn'F -n,e' - F'eG' >: C —» D.

PROOF: See [17]. O
Ss
By Theorem 3.2.12, there is an adjunction rCaty _ L _sFiby with a faithful functor
Rs
Ky
Rs. By Theorem 3.2.24, there is an adjunction sFiby, L ~Caty, with the identity
Uy

unit nc = 1c. Now, we define F, to be the functor S,Fy : Caty — rCaty and U,
to be the functor UyR, : rCaty — Cat, which forgets the restriction structures. By

Theorem 3.2.25, F, 4 U,. Explicitly, for a given category C, F,(C) is the category
e with the same objects as C;
e with a map from C to D being a pair of (f, }(K)), where f : C — D is a map

of C and K is a set of maps in C with domain C such that

fel(n) and |K| < +00;
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e with the composition given by

(9, WD) (£ MEK)) = (gf, HUE) U UN(L)))
= (¢f, {(KULS));

e with the identities given by

le = (1, H{le}).

So, F,(C) is Cockett-Lack’s free restriction category over a given category C.

If F: C — D is a functor, then the functor F.(F) : F.(C) — F.(D) is given by

Clearly, we have:
Theorem 3.2.26 F, 41U, : rCaty — Catg is an adjoint pair.

Theorem 3.2.26, together with Theorems 3.2.12 and 3.2.24, immediately yields:
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Theorem 3.2.27 The following adjoint diagram

Fr

rCato

U Cato
Rs | Us

Ss Fy
SFibO

18 commutative.

Recall that there is the free category generated by a graph [17]. So one has an
adjunction:
Fe
Caty _ + Graph.
U
Define U.s = U.Uy : sFiby — Graph and F¢; = FyF. : Graph — sFiby and define

U,. = U,U, : Caty — Graph and F,, = F_.F, : Graph — rCat,. Then we have:

Theorem 3.2.28 The following diagram of adjunctions

rCat, Graph

Ure

18 commutative.
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3.3 Restriction Fibrations and Restriction Categories

In this section, we shall show that restriction categories and a certain class of fibra-

tions (namely, restriction fibrations) are essentially the same.

3.3.1 Definition of Restriction Fibrations

Definition 3.3.1 A fibration 6 : D — C is called a restriction fibration if for each
object X of C the fiber §~1(X) is a meet semilattice in which E, < E, if and only
if there is a map from E, to E, and for any object E of 61 (X) there is a map

eg: X = X such that:

[I‘F.l] 6T5—1(x) = 1)(,
[rF.2] e5(Ts-1(x)) = E, where O, : e5(Ts-1(x)) = Ts-1(x) is the cartesian lifting
0f€E at Té—l(X);

[I‘F.3] EEEE = EEAE',
[rF.4] er(f) = fep(m),

for any map f: X =Y in C and any E,E' € 6 1(X) and any F € 671(Y).

Fibrations and indexed categories are essentially the same. So we have the definition

of restriction C-indexed categories by translating that of restriction fibrations:

A C-indexed category ()* : C°® — msLat is called a restriction C-indezed category
if for any object X of C and any object E of X* there is a map €g : X — X such

that:

[I‘Il] ET xe = 1)(,
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tL.2] £5(Tx-) = B,
[r1.3] egep = epagr,
rL4] er(f) = fepr),
for any map f: X -+ Y in C and any E,E’ € X* and any F € Y.

For example, for any category C, the identity fibration 1¢ : C — C is a restriction
fibration called the trivial restriction fibration over C. Let X* = {1x} and let
f* 1 Y* — X* be given by f*(ly) = lx for each map f : X — Y of C. Then
()* : C°? — msLat is a restriction C-indexed category called the trivial restriction

C-indexed category.

Lemma 3.3.2 Let C be a restriction category. Then the forgetful functor Oc :

r(C) — C is a restriction fibration.

PRrROOF: By the proof of Lemma 3.2.3, dc : r(C) — C is a fibration and each fiber

0c'(X) = {(X,ex) |ex : X — X is a restriction idempotent on X'}

is a meet semilattice with the order given by

(X,ex) < (X,€y) & ex =eyex

which is equivalent to saying that there is a map from (X, ex) to (X, ey) in g (X),

with the binary meet given by

(X7 eX) A (Xa eIX) = (X’ eXelX)’
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and with (X, 1x) as the top element.

For any X € C and any (X,ex) € 95" (X), let €(xex) = ex. For any map
f:X - Y inC, and any (X, ex), (X, ey) € 95*(X), and any (Y, ey) € 95'(Y), we
have

ET 1 = E&xX1x) = lx,

8glx)
€lxex)(Tazixy) = €x (X, 1x) = (X, Ixex) = (X, ex),
and
E(Xiex)E(Xoel) = EXEX = E(X,ex)A(X.ely):

So, [rF.1], [rF.2], and [rF.3] are satisfied.
On the other hand, since f : (X,eyf) — (Y,ey) is the cartesian lifting of f at

(Y, ey), we have

fr(Y,ey) = (X, ex f).

Then

fo*(Y,ey) = f€(x,;Tf) = fﬁ =eyf= 6(Y,ey)f-

Hence, [rF.4] is satisfied, too. Therefore, Oc : r(C) — C is a restriction fibration.

O

We shall see that every restriction fibration is of the form d¢ : r(C) — C for some

restriction category C (see Proposition 3.3.10 below).

Each fiber of a restriction fibration has the following properties:

Lemma 3.3.3 Let 6 : D — C be a restriction fibration and C' an object in C. Then
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(1) For any object E of 6 *(C), ey = _ANE;
(2) For any E,F' € 6 '(C), E<X E' & cg =¢cpecE;
(3) {eg | E € 671(C)} is a meet semilattice with the order given by cp < ¢p & eg =

epEr, with the binary meet given by eg A g = egepr, and with ET5-10) 05 the

top element. Moreover, {ex | E € §71(C)} =267 1(C).

PROOF: (1) Since for any U € X*,

(p)U) = (ep)"(ep(Tx-)) (by [r1.2])
= (eyep)*(Tx-) (by functoriality of ()*)
= epap(Tx-) (by [rL.3])

= UAE (by [r1.2]),
we have
€ = -NE.
(2)If E<E', then E=EAE'" and so cgepr = €gapr = €E-
Conversely, if e = egepr, then eg = egepr = epapr. Hence

F = 5*E(T6~1(X)) = 5EAE’(T8‘1(X)) =FEA E’,

and therefore £ < F'.
(3) Clearly, {eg | E € §71(C)} is a meet semilattice and 0 : 6~ 1(C) — {eg | E €

§~1(C)}, given by E — €, is a semilattice isomorphism. O
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Obviously, one may give the corresponding result of Lemma 3.3.3 for a restriction

C-indexed category.

3.3.2 Characterization of Restriction Categories Using Fibrations
Restriction categories can be characterized by restriction fibrations as shown in the
following theorem.

Theorem 3.3.4 Let C be a category. Then the following are equivalent:

(1) C is a restriction category,
(2) There is a restriction fibration 0 : D — C;

(3) There is a restriction C-indezed category ()* : C°® — msLat.

PROOF:

(1) = (2) : If C is a restriction category, then by Lemma 3.3.2, we have a
restriction fibration d¢ : r(C) — C.

(2) = (3) : Each restriction fibration § : D — C gives rise to a C-indexed
category

()*: C° s StaLat

by its inverse image functors:
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where p* : §7}(B) — 67Y(E) is given by

(Bes) =  (E,%5P)

R

(Bieg) = (E,epp)

It is easy to check that the induced C-indexed category ( )* satisfies the conditions
[r1.1], [r1.2], [r1.3], and [rI.4] so that it is a restriction C-indexed category.

(3) = (1) : We define the restriction of a map f: X — Y in C by f = ep.(1,.).
In order to prove that C is a restriction category with this restriction structure, we

must check the four restriction axioms.

[R.1] For any map f : X — Y, letting F = Ty. in [rI.4], by [rI.1] we have

feps(tye) = €Ty f = f. Then ff =F.

[R.2] For maps f: X — Y),9: X = Y5, by [rL.3],

6f*(TY5)€9*(TYI*) = 6f*(TY1*)/\Q*(TY,;)
- 69*(TY2*)/\f*(TY1*)

= 69*(_‘—)3‘)gf”(—ryl*)'

Therefore, fg=gf.
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[R.3] For any maps f: X = Y1,9: X = Y5,
(ggf*(Ty;))*(TY;) = (5}*(Tyf)g*)(TY;)

= ()

= f(Ty:)Ag*(Ty;) (by Lemma 3.3.3 (1)).
Hence

8(95f*(Ty1*))*(TY2*) = 8f*(Tyl*)/\9*(Ty2*)
= Eg (TypInf*(Typ)
= € (Typ)Ef(Ty (by [rL.3]),
and therefore ﬁ =73f.

[R.4] For any maps f: X - Y,¢9:Y — Z, by [r.4],

Eg(Tgn)f = fep (a2 (T2o)) = [E@H* (T 20)-

Hence §f = fgf.

3.3.3 The Category of Restriction Fibrations is Equivalent to rCat,

We shall form the category rFibg of restriction fibrations first, then define the func-
tors R, : rCaty — rFibg and &, : rFiby — rCatq. Finally, we shall prove that R,

and &, turn out to be an equivalence of categories.
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The Category of Restriction Fibrations rFib, and Functors R, and &,

Let rFiby be the category with

objects: restriction fibrations: § : D — C;

maps: a map from (§ : D — C) to (' : D' — C') is a pair (F, F'), where

F:C —C and F' : D — D' are functors such that

commutes and for any map f : X —» YinCandany E € 6~ 1(X),W € 67 1(Y),

the following conditions are satisfied:

[PR-1] F'(Ts-1x)) = Ty,
[PR.2] F(eg) = cp (),
[pR.3] F'(f*(W)) = (F(f))*(F'(W));
composition and identities are defined by: (Fy, F})(F, F]) = (FoFy, F3FY), and
lppoe) = (lc, 1p)-

By Lemma 3.3.2, each restriction category C gives rise to a restriction fibration
(0c : r(C) — C), denoted by R,.(C). If F': D — C is a restriction functor, then we

have a (restriction) functor r(F') : r(D) — r(C) given by

(Dl’el) H (F(Dl)ﬂF(el))

dl — lF(d)

(D, e2) = (F(Dy), F(e2))
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It is easy to check that

r(D) xF)

|

D

r(C)

|2

F .cC

commutes. For any map d: X — Y in D, (X,eg) € 95'(X), and (Y, ew) € 95 (Y),

we have

r(F)(Tagl(X)) =r(F)(X, 1x) = (F(X), 1F(X)) = TBEI(F(X))a

Fexep) = Fep = €(p(x),Fep) = Ex(F)(X )5

and

r(F)f*Y,ew) = r(F)(X,ewf)

= (F(N)"x(F)Y,ew)).

Hence R, (F) = (r(F), F) satisfies [pR.1], [pR.2], and [pR.3], and therefore R, (F) :

R,(D) — R,(C) is actually a map in rFiby. Now, clearly, R, : rCaty — rFibg
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given by

C — R,(C) = (0c : r(C) = C)
is a functor. So we already proved:
Lemma 3.3.5 R, : rCaty — rFiby, taking F : D — C to R.(F') : (0p : r(D) —
D) — (0c : r(C) — C), is a functor.
In the inverse direction, we have:
Lemma 3.3.6 There is a functor &, : tFiby — rCaty sending (F,F') : (6 : D —
C)— (¢': D' > C') to F:C— C, where C and C' are the restriction categories
with the reduced restriction structures by & and &', respectively.
PROOF: For any map (F,F'): (6 : D = C) — (¢’ : D' — C') in rFiby, since (F, F")

satisfies [pR.1], [pR.2], and [pR.3], we have

F(f) = FlepTyiy)
= EF(f*(Tsoryy) (DY [PR.2])
= E(F(N))(F(Ts-1iyy) (bY [PR.3])
= EFEN (Ty-10mvy) (Y [PR-1])

= F(f).

Hence F' : C — C' is a restriction functor and therefore &, is well-defined. The

functoriality of &£, is obvious. So &, is a functor. O
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Adjunction &, 1R,
Given any restriction fibration 6 : D — C, C is a restriction category with the
restriction structure induced by 8. Assume that F': C — E is a restriction functor.

In order to prove &, 1 R,, we construct Fs : D — r(E) by

D, = ((F8)(Dy), Flep,))
fl - l(FJ)(f)
D, = ((F6)(D2), F(ep,))

Since ¢ is a restriction fibration, for a given map f : D1 — D5 in D there is a unique

map h : Dy — (6(f))*(Dz) in §71(6(Dy)) such that 95 sy p,h = f:

- Dl
Ih 7 f
% £7 1’6(f>,D2\
(6(f))*(D2) D,
l&
6(Dy)
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Then D; < (6(f))*(Ds) in 671(6(D4)) and so

F(ep,)(FO)(f)F(ep,) = F(ep,d(f))F(ep,)

= F(ep,0(f))F(ep,)

= F(E(ep, 65 (Ts-15p,,)) F(eD1)
= F(e6p) e, (51 50y F (€D2)

= F(e@pwy)F(ep,) (by [rF.2))
= F(e@p o)

= F(e@poan:) (by [rF.3])

= F(‘(‘:Dl)-
Hence
(FO)(f) : ((F6)(Dn), F(ep,)) = ((F6)(D2), F(ep,))

is a map in r(E) and therefore Fjs is well-defined. Clearly, F; is a functor such that

Fs

D—>r(E)

O

o

c—L-g

commutes.
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For any map f: X —» Y in C and any E € 6 }(X),W € §~}(Y), we have

Fs(To1x)) = (FO)(To-10x)), FleTsmnsy))

= (F(X),F(1x)) (by [rF.1])
= (F(X), 1))

= Tiog)-1(F(X))5

E€Fs(E) = &(Fs5(E),F(ep))

and

Fs(f*W)) = ((FO)(f'W), Flefw))
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Hence [pR.1], [pR.2], [pR.3] are satisfied. Therefore (F, F;) is a map from (6 : D —
C) to (0g : r(E) — E) in rFib,. But we have more:

Lemma 3.3.7 Let § : D — C be a restriction fibration and C the restriction
category with the restriction structure induced by 6. Then (F,G) is a map from
(6 : D = C) to (g : r(E) — E) in rFiby if and only if G = Fs. In particular, if
F : C = D is a restriction functor, then (F,G) is a map from (Oc : r(C) — C) to

(0p : r(D) — D) in rFib, if and only if G = r(F).

ProOF: We already saw that (F, Fs): (6 : D = C) — (0¢ : r(C) — C) is a map in
rFiby. So we need to prove the uniqueness of F5. Assume that (F,F'): (6 : D —
C) = (¢ : r(C) — C) is a map in rFiby. Then

D —Z>r(E)
O
Cc——E

o

commutes and so F’ must send any map f: D; — Dy in D to

(F0)(f) : (FO)(D1), eraypy)) = ((FO)(D2), eray(pa))s
where e(rs)(p,) are restriction idempotents over (Fé)(D;) in E, i = 1,2. By [pR.2],

ersypy) = £r(py) = F(ep,).

Similarly,

e(Fs)(Ds) = EF/(Dy) = F(ED,)-
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So F' = Fs and the uniqueness of Fs follows, as desired. Now, by applying the
restriction fibration d¢ : r(C) — C to 4, r(F) : r(C) — r(D) is the unique functor

such that (F,r(F)): (0c : r(C) = C) — (dp : (D) — D) is a map in rFibs. [

For any restriction fibration § : D — C, by Lemma 3.3.7 there exists a map
(1g,15) : (6 : D = C) = (0c : r(C) — C) taking f : Dy — D, to 6(f) :
(6(D1),ep,) — (6(Ds),ep,) in rFiby. This map turns out to be the unit of the
adjunction & - R,. In fact, let E be a restriction category and (F,G) : (6 : D —
C) —» R,(E) any map in rFib,. By Lemma 3.3.7, G must be Fs and so there exists

a unique map F : (6 : D —» C) — E in rCat such that

(1c,1s)

(6:D— C)—=R,&.(0: D — C) E(0:D— C)

N »

R.(E) E
commutes. Hence &, 4 R,. Clearly, £, R, = 1rcat,- Therefore, we proved:

Lemma 3.3.8 There ts an adjunction:

Er
-~ N
rCaty, L _rFib,
Rr

with identity counit so that R, is full and faithful.

rCat, and rFib, are Equivalent
By Lemma 3.3.2, each restriction category C gives rise to a restriction fibration
dc : r(C) — C. Naturally, we want to know whether all restriction fibrations are

of the form O¢ : r(C) — C, namely, whether R, is surjective on objects. If so, by
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Lemma 3.3.8, R, is an equivalence of categories.

Lemma 3.3.9 If 6 : D — C is a restriction fibration and C is the restriction

category with the restriction induced by 6, then there is a map (lg,G) from O :

r(C) - C to 6 : D — C in rFib,.

PRroOF: Note that r(C) = {(C,eg)|VC € obC,E € 6 1C)}. If f: (Ci,eR,) —

(Cy,€E,) is a map in r(C), then

€ = gEZfEEl
- 6(EEQf)*(—|—(J§)€E1
= gf*s*E2(TC§)6E1

= EfE¥E -

Hence €, < €4+, and therefore E, < f*F; by Lemma 3.3.3. Then there is a
unique map leq : E; — f*E, in §7!(C;) satisfying é(leq) = 1¢, and so a map
lift(f) = Op,p,leq : By — E, satistying d(lift(f)) = f, where ¥y, : f*Ey — Ej is the

cartesian lifting of f at F5. Now, we can define G : r(C) — D by

(Cl>€E1) = E,
fl - llift(f)
(027 E:EQ) = E2

By Lemma 3.3.3, ¢g, = €g, & E; = E,. Clearly, lift(f) is determined uniquely by
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f. So G is well-defined. By the functoriality of ()*, 1{¢, o, y(E1) = Eq and so

G(l(Cl,EEl)) = lift(1(01,5E1)) =1g = 1G(Cl,5E1)-

On the other hand, for any maps f : (Ci,eg,) — (Ca,eg,) and g : (Cy,ep,) —
(Cs,eg,) in (C), by the definition of cartesian lifting we have the following commu-

tative diagrams:

/ﬂ\

fLEg

2
leq / \9)
* g E3

Vform
f*g*E3 T2

and

Ey
leq G(gf)

ﬁgf,Es

(9/)E
Hence G(gf) = G(g)G(f). Therefore, G is a functor. For any map f: X =Y in C,

Es

(X,eg) € 05" (X), and (Y,ew) € 85" (Y),
G(X, lx) = G(X, aTé—l(x)) = TB"I(X) = Té—l(lc(X))a

lcee = €E = €G(Xe5)s
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and

G(f)(Yiew) = G(X,ew/)
= G(X, eewnN*(Ts-10v))
= G(X,epw)
= f*W

= (LN (G(Y,ew)).

Hence (1¢,G) satisfies [pR.1], [pR.2], and [pR.3] and therefore (1¢,G) is a map
from dc : r(C) — C to § : D — C in rFiby. O

Proposition 3.3.10 Each restriction fibration can be written in the form Oc :
r(C) — C for some restriction category C. More precisely, if 6 : D — C 15 a

restriction fibration then (6 : D — C) = (¢ : r(C) — C) in rFib,.

PrROOF: Assume that 6 : D — C is a restriction fibration. By Theorem 3.3.4,
we have a restriction category C with the restriction structure induced by ¢ and
a restriction fibration d¢ : r(C) — C. By Lemma 3.3.7, there is a map (1¢, 15) :
(6 : D - C) - R,(C) in rFib,. By Lemma 3.3.9, there is a map (1¢,G) from
(Oc : T(C) = C) to (6§ : D — C) in rFiby,. Clearly, (1¢,15)(1c,G) = 1g.(c)- For

any map d: Dy — D, in D, we have

(1(3, 15)(d D — DQ) = (5(d) : ((5(D1),6D1) — (5(D2),€D2)).
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But lift(6d) = d since there is a unique map leq : D; — (0 f)*D; such that

%\

_ Y0y

8(f

commutes. Hence

(1e,G)(1c, 1s)(d: Dy = Dy) = (lc,G)(8(d) : (8(Dr),ep,) — (8(D2),€p,))
— (Iift(dd) : Dy — Dy)

= (dZD1 —>D2),

and therefore

(1c,G)(1c, 1s) = ls:posc)-

Thus,
(Oc:r(C)—>C)=(6: D — C).

Now we are ready to prove:

Theorem 3.3.11 There is an adjoint equivalence:

Er
-~ .
rCaty; 1 _rFib,
Rr

with identity counit.

PrRooOF: Combining Lemma 3.3.8 and Proposition 3.3.10, R, is not only full and
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faithful, but also surjective on objects. Hence R, is an equivalence of categories. []

S

Remark. By Theorem 3.2.12, we have an adjunction rCaty_ L _sFib,. Clearly,
Rs

S; 1R, and &, 1R, are connected since

R.(rCat) ~ rFiby, — sFib,.



Chapter 4

Range Restriction Categories and Fibrations

In this chapter, we shall introduce the notion of range stable meet semilattice fi-
brations and show that such fibrations produce range restriction structures. We
shall also introduce the notion of range restriction fibrations and show that those

fibrations are the same as range restriction categories.

4.1 Range Stable Meet Semilattice Fibrations and Range

Restriction Categories

In Section 3.2, we showed that there is an adjunction between rCaty and sFibgy. In

this section, we shall provide the analogous result for range restriction categories.

4.1.1 Range Stable Meet Semilattice Fibrations

Definition 4.1.1 A range stable meet semilattice fibration is a stable meet semilat-
tice fibration 0x : X — Category in which for any map f: A — B in X there is a
monotone map fi : 6x*(A) — d5x'(B) such that (gf) = gifr for any map g: B —» C
in X and for any o4 € 05'(A),0p € 85" (B), the following conditions are satisfied:
[rsE.1] (f(04)) Aos < filoa A S*(0s),

[rsF.2] o4 A (f*(0B)) < f*(filoa) AoB),

[rsF.3] fif*(oB) < 0.

138
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For example, for any category C, the identity fibration 1¢ : C — C is a range

stable meet semilattice fibration.

Lemma 4.1.2 If C is a range restriction category, then the forgetful functor dc :

r(C) — C is a range stable meet semilattice fibration.

ProOF: By Lemma 3.2.3, d¢ : r(C) — C astable meet semilattice fibration. For any
map f: A — Bin C and any (A,e,) € 05'(A), we define f: 95'(4) — 9c'(B) by
sending (A4, e4) to (B, fc:;). If (A,e4) < (A4,¢,) in 95'(A), then es = ea€)y = €4ea
and so

— — e — e — ———
fesfea = feaesfea = feaey = feq.

Hence fe: < feTA and therefore
(A ea) = (B, Fea) < (B, fel,) = fi(A, €}).

Therefore f, is monotone. For any maps f : A - B and g : B — C in C and

(A,es) € 35 (A), by [RR.4] we have

afi(A en) = gi(B, Fen) = (C,9Ten) = (C.3Fen) = (af (A, en).

Hence (gf) = gifi- So it suffices to check the conditions [rsF.1], [rsF.2], and [rsF.3).

Let f: A — B be any map in C and (A4,e4) € 95'(A), (B, ep) € 05" (B).
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[rsF.1] Since

fesen] = (feaenfen)
— (fesenfes) (by [R.3)
= @5fea (by [R.4))

= _7(;163 (by [RR.3]),

we have (fi(A,ea)) A (B,eg) < fi((A,ea) A f*(B,eg)).

[rsF.2] Since

epfeafenfea = epfeafescnf
= epfeafesenf (by [R.3])

= egfesepf (by [RR.2])

= epfesepf (by [R.3])

= epfepfea
= epfea (by [R.1))

= epfea (by [R.3]),

we have egfes < erejqf. Hence

(AveA) A (f*(BveB)) < f*(f'(A’ 6,4) A (B’eB))'
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[rsF.3] Since

fenfes = enfes (by [R4))
— epepf
= #es/ (by [RR.3))
= @

e —

= fepf (by [R.4]),

—

we have fegpf < ep. Hence fif*(B,eg) < (B,eg).
O

Suppose that dx : X — X is a range stable meet semilattice fibration. Then by
Proposition 3.2.4, we have the restriction category Ss(dx) with the restriction given

by (f,0) = (la,0) for any map (f,0) : A — B. It becomes a range restriction

——

category if we define (f,0) = (1p, fi(0)) for any map (f,0) : A = B. We need the

following lemma:

Lemma 4.1.3 Let 0x : X — X be a range stable meet semilattice fibration and

f:A— B amap in X. Then

(1) If o € 05! (A) is such that o < f*(TJ;(B)), then o < f*fi(o);

(2) If o4 € 63 (A) and op € 65" (B), then filoa A f*(0)) = filoa) A op.

PROOF:
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(1) Since o < f*(TJ)—(l(B)), by [rsF.2], we have

o=0A f*(Té;cl(B)) < fH(filo) A T&,‘(I(B)) = f*filo).

(2) Since g4 A f*(0B) < 04,04 N f*(0B) < f*(op) and fi is monotone,

filoa A f*(oB)) < fi(oa),

and by [rsF.3],
filoa A (o)) < fif'(oB) < 0B.

Then

filoa A f*(oB)) < filoa) ANos.

On the other hand, by [rsF.1],

filoa) Nop < filoa A f*(oB)).

Hence fi(oa A f*(0B)) = filoa) ANop.

d

Proposition 4.1.4 Ifdx : X — X is a range stable meet semilattice fibration, then

S,(6x) is a range restriction category with range and restriction given by (f,0) =

—

(14,0) and (f,0) = (1B, fi(o)) for any map (f,0) : A — B. Denote this range

restriction category by Sys(dx).
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PRrooFr: By Proposition 3.2.4, S;(dx) is a restriction category. So it suffices to check

the four range axioms. Let (f,0): A — B, (g,0') : B — C be maps in S;(0x).

——

RR.1] (£,0) = (Ta, f10)) = (15, o)) = (F,0).
[RR.2] Since 0 < f*(Ta)—(l(B)), by Lemma 4.1.3 (1), 0 < f*fi(o). Hence

(F,0)(f,0) = (15, £i(0)(f,0)) = (.o A f*i(0)) = (f, ).
[RR.3] By Lemma 4.1.3 (2),

filo A f*(0") = filo) Ao,

Hence

(9,0)(f,0) = (1s,0")(f,0)

and therefore
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[RR.4] Again, by Lemma 4.1.3 (2),

filo A f*(0")) = file) Ao

Hence

(0.0 5) = (9,0 (0m o))

e —

= (9, o) o)
= (Lo, gi(filo) Ad")

= (lo,g(filo A f7(0")))
= (Le, (9 (o A 17(0")))
= (9f, 0 ATH(0")

e —

= (9,0')(f,0),

and therefore

Examples

1. Suppose that C is a category. Then S,s(1c) = C, which is a range restriction

category with the trivial restriction and range structures.

2. For each range restriction category C, S,5(0c) is the range restriction category

with the same objects as C while a map from A to B in S,;(0c) is a pair (f,e)
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with a map f : A » B in C and a restriction idempotent e < f over A in C,

the COIl’lpOSitiOIl is given by (g’ eB)(f; eA) = (gfa WA éB_f) = (gf7 EGA) for any

maps (f,ea) : A — B and (g,ep) : B = C, and the range and restriction are

given by (f,ea) = (1a,ea) and (F,€4) = (L4, fea).

4.1.2 Category of Range Stable Meet Semilattice Fibrations and rrCat,
We begin with:

Category of Range Stable Meet Semilattice Fibrations

Let rsFibg be the category with

objects: range stable meet semilattice fibrations: (0x : X — X);

maps: a map from (0x : X = X) to 0y : Y — Y) is a pair (F, F’), where

F:X 5 Y and F' : X = Y are functors such that

- F' .
X—Y
x Sy
X->Y
commutes and for any map f : A — B in X and any o4 € 65 (A),0p,05 €
6x"(B), the following conditions are satisfied:
[SiM.l] F’(TJ)—(I(A)) = Tg;l(F(A))a
[sfM.2] F'(op Nog) = F'(og) A F' (o),
[stM.3] F'(f*(08)) = (F(f))"(F'(oB)),

[cstML.1] F'(fi(0a)) = (F(f))(E"(04));
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composition: for any maps (F,F') : (0x : X = X) = (by : Y = Y) and
(G,G): 6y : Y =Y) = (6z:Z — Z), (G,G')(F,F') = (GF,G'F");

identities: 15 % ,x) = (1x,1x)-

Functor S,; : rsFiby — rrCat,

By Proposition 4.1.4, each range stable meet semilattice fibration dx : X - X
gives rise to a range restriction category S,5(dx). Suppose now that (F, F') : (éx :
X — X) = (6y : Y = Y) is map in rsFiby. Then by Lemma 3.2.5, we have
the restriction functor S,,(F, F") : S;s(6x) — Sis(dy) sending (f,04) : A = B to
(F(f),F'(0)) : F(A) — F(B). Now we have:

Lemma 4.1.5 If (F,F') : (6x : X = X) — (6y : Y — Y) is map in rsFiby,
then Sys(F, F') : S5(6x) — Sis(8y), defined by taking (f,0) : A — B in S,,(0x) to
(F(f),F'(0)): F(A) = F(B) in S5(dy), is a range restriction functor.

PROOF: It remains to prove that S,s(F, F') : S;s(0x) — Srs(dy) is a range functor.

For any map (f,0) : A — B in §,5(dx),

——

5:o(F,F)({f,0)) = SwlF,F')(15, £i(0))
= (F(1p), F'(f(0)))
= (Legw), (F(HI(F'(0))) (by [rsfM.1))
= (F(}).F(0))
= 5. (FF)(f,0).

Hence S,s(F, F') : §,;5(6x) = Sys(dy) is a range restriction functor, as desired. [
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It is easy to check that S, : rsFiby — rrCat, given by

(6){ X = X) — Srs((SX)
(F,F’)l - ers(F,F’)
(6Y : ? — Y) = Srs(dY)

is a functor. So we have:

Lemma 4.1.6 S,, : rsFiby — rrCaty, sending (F,F’) : (6x : X — X) — (dy :
Y — Y) inrsFibg to S,s(F, F') : S;5(6x) — Srs(dy) in rrCaty, is a functor.

Let Y be a range restriction category, then by Lemma 4.1.2, dy : r(Y) - Y
is range stable meet semilattice fibration. If (F,F") : (0x : X — X) — (dy :
r(Y) — Y) is a map in rsFiby, then by Lemma 3.2.7, there is a restriction functor
Fx : §,.(0x) — Y sending (f,0) : A — B to (F(f))e, : F(A) — F(B), where the
restriction idempotent e, is determined by F'(c) = (F(A),e,) € r(Y). Similarly, we

have:

Lemma 4.1.7 Let 0x : X — X be a range stable meet semilattice fibration and let
Y be a range restriction category. If (F,F'): (6x : X = X) = (0y :v(Y) = Y) isa
map in rsFiby, then there is a range restriction functor F9% : S, (d0x) — Y sending
(f,o) : A — B to (F(f))e, : F(A) — F(B), where the restriction idempotent e, is
determined by F'(o) = (F(A),e,) € r(Y).

PRrROOF: By Lemma 3.2.7, F%* : S,,(0x) — Y is a restriction functor. For any map
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(f,0) : A— B in S,4(6x), since

(F(B),es0)) = F'(fi(o))

= (F()(F'(0)) (by [rsfM.1])

—

we have ef,(,) = (F(f))e,. Hence

F*((f,0)) = F™(1g, fi(0))

—

= F‘SX (f? a)’
and therefore F% is a range restriction functor. (]

Functor R, : rrCaty — rsFib,
If F: X — Y is a range restriction functor, then we have a functor r(F) : r(X) —
r(Y) given by

(4, e4) = (F(A), Fea))

I P

(B, es) = (F(B), Fes))
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By Lemma 3.2.9, there is a unique functor r(F) : r(X) — r(Y) such that

(F,r(F)): (0x :r(X) = X) = (0y : r(Y) = Y)

is a map in sFiby. But it is a map in rsFiby if F' : X — Y is a range restriction

functor:

Lemma 4.1.8 If F : X — Y is a range restriction functor, then there is a unique

functor x(F) : r(X) = r(Y) such that

(F,r(F)): (0x :r(X) > X) = (Oy : r(Y) =2 Y)

is a map in rsFibg.

ProoOF: Clearly, it suffices to prove that (F,r(F)) : (x : r(X) = X) — (dy :
r(Y) — Y) satisfies the condition [rsfM.1]. For any map f : A — B in X and
(4,e) € 0x'(4),

r(F)(f.(A,e)) = r(F)(B,fe)

= (F(H))(E(F)(A,e)),

as desired. O
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Lemma 4.1.9 R,, : rrCaty — rsFiby, given by taking F' : X — Y in rrCat, to

(F,x(F)): (0x : v(X) = X) = (0y : £(Y) = Y) in rsFiby, is a functor.

PROOF: For any range restriction functors F : X - Y and G : Y — Z, we have
R.s(GF) = (GF,x(GF)) = (GF,v(G)r(F)) = (G, r(G))(F,x(F)) = Rrs(G)Rrs(F).

Clearly, R,s(1x) = (1x, Llyx)). Hence Ry, is a functor. O

Adjunction S,; 1R,

For a given range stable meet semilattice fibration dx : X — X, we can form a
functor Ix : X — S,5(dx) by sending f : A — B to (f, f*(T(s)—(l(B))) : A — B. Also,
we have a functor

I X — r(S,4(6x))

given by
U — ((Sx(U)a(15x(U)’U))
; N l(&x(f),(éx(f))*(T(gil(ax(v))))
Vv = (0x(V), (Lox vy, V)

Lemma 4.1.10 If 6x : X — X is a range stable meet semilattice fibration, then
(Ix,I;S(x) is a map from (0x : X = X) to (0s,50) : T(Srs(0x)) — Sps(dx)) in
rsFib,.

PrROOF: By Lemma 3.2.11, we have (Ix, I;cx) is map from (dx : X — X) to (0s,+(6x) :
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r(S;5(6x)) — S;5(0x)) in sFiby. Forany map f: A — Bin X and 0 € 65 (A),

IF(fi(0) = (6x(fi(0)), (Lox(n(on: fi(0)))
= (B,(Ls, £(0)))
= (B,(f,0))
= (B,(f,0 AT (Ts1))
= (B, (f, F(Trz1(m)(14,0))
= (1P (Tim)i(A, (14,0))
= (£, F(Ts225)i(0x(0), (Lox(e), 9))

= (Ix(M)IE(0)):

Hence, condition [rsfM.1] holds true, and therefore (Ix, I;s(x) is map from (6x : X —

X) to (8s,,(5x) : T(Srs(6x)) = Srs(dx)) in rsFiby. O

For any range stable meet semilattice fibration dx : X — X, by Lemma 4.1.10,
there exists a map (Ix, I¥¥) : (0x : X — X) = (0s,,(5x) * T(Srs(0x)) = Srs(6x)) in
rsFiby. This map turns out to be the unit of the adjunction S,s 4 R,s. In fact, let
Y be a range restriction category and (F, F') : (0x : X = X) = R,,(Y) any map
in rsFibg. By Lemma 4.1.7, there is a range restriction functor F** : S,,(6x) — Y.

It is easy to check that

(F6x’r(Fdx))(IX’I§(x) = (Fa FI)‘
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If G: S5(06x : X = X) = Y is range restriction functor such that
(G,I‘(G))(Ix,[ix) = (F’ F,)?

then GIx = F and r(G)I;s(x = F'. Hence, for any map f : A — B in X, G must
map A to F(A) and must map (f, f*(TJ)—(l(B))) :A— Bto F(f): F(A) —» F(B).
Tt = F(f), GUf, F(Tspmy)) = F(f) = F™(f, f*(Tsz1(p)))- For any
map (f,0) : A — B in S,5(x),

Since egx(

r(G)(I)(0) = r(G)(4,(14,0))

= (G(A),G(14,0))

and so G(14,0) = e,. Since (f, o) = (f, f*(Té)—(l(B)))(lA,O') and G is a range restric-

tion functor,

G( 70) = G(f7f*(T6§1(B)))G(1A’U)
= F(f)e

= F(f,0).

Then G = F* and so the uniqueness of F?% follows. Therefore, there is a unique
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range restriction functor F* : S,,(dx) — Y such that

- Ix, 12X - .
(Ox : X o X)ZER (5ax: X 2 X)) Snldx: X = X)
(FF7) lRm(F‘SX) H!éFﬁx
Rs(Y) Y

commutes. Hence S,; 4 R,s. The counit € : §,;R;s = lercat, of Srs 1 Ry is given
by ec : Srs(Rrs(C)) — C which sends (f,es) : A — B to fea : A — B, where
e4 is a restriction idempotent over A such that ey < f, for each range restriction
category C. Since each ¢ is a split epic in Catg, ec is an epic in rCat,. Hence R,

is faithful. We proved:

Theorem 4.1.11 There is an adjunction:

8"‘ 8

- .
rrCaty, L rsFib,
Rrs

with a faithful functor R,.

4.1.3 The Image of S,,;: Fibered Range Restriction Categories

In Subsection 3.2.4, we characterized the image of the functor S;. In this subsection,
we shall specify the class of range restriction categories, which is the image of S,; :
rsFib, — rrCat,.

For a pair of objects A, B in a range restriction category C, we define

mapc™ (A4, B) = {f € mapc(A,B) | f < h implies h = f in maps(A4, B)},
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where the order < is defined in Lemma 3.2.13. A range restriction category C is

called a fibered range restriction category if it satisfies the following two conditions:

[M.1] For any objects A, B and any f € mapc(A,B), there is a unique m; €

map®** (A, B) such that f < my;
[M.2] For any objects A, B,C, f € map&™(A4, B), and g € mapg™(B,C), gf €
mapg** (A4, C).
Clearly, for any map f : A — B in a range restriction category C, my = mp =14
and 14 € mapg*(4, A).

Since a range stable meet semilattice fibration dx : X — X is a stable meet
semilattice fibration, and S,s(dx) is the range restriction category with the same
objects, the same maps, and the same restriction as S,(dx) and with the range given
by (f,/;) = (1, fi(0)), the range restriction category S,s(dx) satisfies the conditions
[M.1] and [M.2]. In fact, for any objects A, B,

mse) = (f, f° (T 1(3)))

maps(5x) (4, B) = {(f, F"(Tsz1m)) | f € mapx (4, B)},

and for any (f, f*(TJ)_(l(B))) € mapg*;, (4, B), (9, 9" (T4 e o)) € mapg®i; (B, C),

(9, 9" (T ) (Togry)) = (9, (9F) (Tsgr (o))

Hence S,5(0x) is a fibered range restriction category.
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Let C be a fibered range restriction category. Define Cy,x by following data:
objects: the same as the objects of C;
maps: for any objects A, B, mapc,_, (A4, B) = mapg™ (A, B);
composition: the same as in C.
Then, by [M.2], Cyax is a category. We define Cnax t0 be the category given by
objects: (A, ey), where e, is a restriction idempotent over 4 in C;

maps: a map f from (A,es) to (B,ep) is a map f € mapg*(A, B) such that

ea = epfey;
composition: the same as in C.

Obviously, there is a forgetful functor dc,,,, : Cinax — Cmax, which forgets restriction

idempotents.

Lemma 4.1.12 For any fibered range restriction category C, the forgetful functor

0c..., : Cmax = Cmax 15 a range stable meet semilattice fibration.

PrROOF: By Lemma 3.2.14, Jc,.., : Cmax — Cmax is a stable meet semilattice fi-
bration. For any map f : A — B in Cy., and any (A, eqs) € 6(—3,1,1&,((‘4)7 we define
fr: 05 (A) = 85 (B) by sending (4, e4) to (B,fc;q). By the proof of Lemma
4.1.2, fi is a monotone map such that (gf); = ¢ifi and the conditions [rsF.1}, [rsF.2],

and [rsF.3| are satisfied. Hence Oc,,,, : Cmax — Cmax is a range stable meet semi-

lattice fibration. O

Proposition 4.1.13 For any fibered range restriction category C, S,5(0¢,,.,) = C.
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PROOF: Define the functor E : S,,(0c,..,) — C by sending (f, (A,e4)): A —= B to

fea : A — B. Then it is a restriction functor. Note that

e — e ——

E(f, (A ea)) = fea = E(1p, (B, fea)) = E((f, (A, ex))).

Hence F is a range restriction functor.
For any map f : A — B in C, by [M.1], we can define F' : C = S;(0c..) bY
sending f : A = B to (my, (A, f)) : A = B. Then, by the proof of Proposition

3.2.15, F is a restriction functor. Note that

—~

= (13, (B,msT))

= (187 (mf)'(Avf))

Hence F' is a range restriction functor. Now it is routine to check that EF = 1¢ and

FE = 1STs(3Cmax)‘ ThUS, STS(aCmax) ~ C. 0
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4.2 Range Restriction Fibrations and Range Restriction Cat-

egories

We already saw that the category of restriction categories is equivalent to the cat-
egory of restriction fibrations (Theorem 3.3.11). It is natural to ask whether range
restriction categories can be characterized by some special fibrations. The purpose of
this section is to answer this question by introducing the notion of range restriction
fibrations and showing that the category of range restriction categories is equivalent

to the category of range restriction fibrations.

4.2.1 Definition of Range Restriction Fibrations

Definition 4.2.1 A fibration 0 : D — C is called a range restriction fibration if for
each object X of C, the fiber 071(X) is a meet semilattice in which Ey < E, if and
only if there is a map from E| to Ey, and for any object E of 071(X), there is a map

ep: X — X, and for each map f : X =Y, there is a wy € 0~1(Y) such that:

[I'F.].] 6T8—1(X) - 1)(,

[rF.2] e;(To-1x)) = E, where 9., : e5(To-1(x)) = To-1(x) 1 the cartesian lifting

OfEE at Ta—l(X),

[I‘F3] EEEE = EEAE!,

[tF.4] er(f) = fep ),

[I‘I‘F.l] Egsf(Ta_l(y)) = 5f"(Ta_l(y))’

[rrF.2]) e, f = f,
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rrF.3| ¢ = g €
[ ] Wegr(Tymr gt 9 (Tomtm)er

[rrF.4] Euge,; = Eugyp)
for any map ¢:Y — Z in C and any E,E' € 071(X) and any F € 871(Y).

One may easily give the definition of range restriction indexed categories by trans-

lating that of range restriction fibrations.

For example, for any category C, the identity fibration 1¢ : C — C is a range

restriction fibration and is called the trivial range restriction fibration over C.

If C is a range restriction category, then the forgetful functor d¢ : r(C) — C is

a range restriction fibration, as show in the following lemma.

Lemma 4.2.2 Let C be a range restriction category. Then the forgetful functor

dc : r(C) — C is a range restriction fibration. We denote this range restriction

fibration by R..(C).

PrOOF: By Lemma 3.3.2, O¢ is a restriction fibration. To prove that it is a range
restriction fibration, for any map f : X — Y in C, we let wy = (Y, 7 e a5 (V).
It suffices to show that O¢ satisfies range fibration axioms [rrF.1], [rrF.2], [rrF.3],

and [rrF.4]. For any f : X — Y, we have:

[I‘I‘F.l] 55}(Ta(y)) = 8€:)f(y,1y) = 8f*(Y,1y) = €(Y’—A) = 6(},,'\) = €wf.

[rrF.2] Eu,f = E(Y,f)f = J?f = f.
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[rrF.3]

= V@&,
= 89*(1—3_1(2))6“,].

[rrF.4] Cwgew, = Ewgerypy T Fwyp T S5 0H T 9f =95 = euyy-

Therefore, d¢ : r(C) — C is a range restriction fibration, as desired. O

Similar to restriction fibrations, we shall see that all range restriction fibrations are

of the form O¢ : r(C) — C (see Proposition 4.2.8 below).

4.2.2 Characterizations of Range Restriction Categories in Terms of Fi-

brations

Range restriction categories can be characterized by range restriction fibrations as

shown in the following theorem.

Theorem 4.2.3 A category C is a range restriction category if and only if there is

a range restriction fibration § : D — C for some category D.
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Proor: If C is a range restriction category, then, by Lemma 4.2.2, there is a range
restriction fibration dc : r(C) — C. Conversely, if there is a range restriction
fibration 6 : D — C, then C is a restriction category with the restriction given by
f= Ef (To-10v)) for each map f : X — Y in C because of the conditions [rF.1],
[rF.2], [rF.3], and [rF.4]. On the other hand, if we define f by f = €u;, then C
becomes a range restriction category, since the range fibration conditions [rrF.1],

[crF.2], [rrF.3], and [rrF.4] correspond to the four range axioms [RR.1], [RR.2],

[RR.3], and [RR.4]. Hence, C is indeed a range restriction category. O

4.2.3 The Category of Range Restriction Fibrations is Equivalent to

rrCat

The objective of this subsection is to prove that the category of range restriction
fibrations is equivalent to rrCaty. To do so, we use the techniques developed in
Section 3.3.3 leading to the fact that rFiby =~ rCatg;, but here, we have to worry

about the range structures.

The Category of Range Restriction Fibrations and Functors R, and &,,
Let rrFibg be the category with
objects: range restriction fibrations: § : D — C;

maps: a map from (6§ : D — C) to (&' : D' — C') is a pair (F, F'), where

F:C—C and F' : D — D are functors such that
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commutes and for any map f : X = Y in Cand any E € 6~1(X),W € 6 1Y),

the following conditions are satisfied:

[PR.1] F'(Ts-1(x)) = T@)-1rx))
[pR.2] F(cg) = € (E),

[pPR.3] F'(f*(W)) = (F(f)"(F'(W)),
[PRR.1] F'(wy) = wr(p);

composition and identities are defined by: (Fy, F3)(Fy, F) = (FoFy, F3FY), and

lspoc) = (lc, 1p).

Clearly, rrFibg is a subcategory of rFiby. By Lemma 4.2.2, each range restriction
category C gives rise to a range restriction fibration dc : r(C) — C, denoted by
R (C). If F : D — C is a range restriction functor, then we have a range restriction

functor r(F) : r(D) — r(C) defined by

(D1, e1) = (F(D1), F(e1))

dl — lF(d)

(Do, €2) = (F(Ds), F(e2))

such that

r(D) *% r(C)

o | ) Joc

D C

commutes. Obviously, (r(F), F)) satisfies [pR.1], [pR.2], and [pR.3]. For any map
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f: Dy — Dy in D, since

-~ —

r(F)(wy) = £(F)(Da, f) = (F(Dy), F(f)) = (F(D2), F(f)) = wr(p),

[PRR.1] is also satisfied. Hence R,,(F) = (F,r(F)) : R,r(D) = R.,(C) is actually

a map in rrFiby. Therefore,

Lemma 4.2.4 R,, : rrCaty, — rrFiby, teking F : D — C to R, (F) : (0p :

r(D) —» D) = (0¢ : r(C) — C), is a functor.

Lemma 4.2.5 &,, : rrFiby — rrCatg, sending (F,F'): (6 : D —- C) = (' : D' —

C') to F: C— C', is a functor.

PROOF: For any map (F,F') : (6 : D — C) — (&' : D' — C') in rrFiby, (F, F")

satisfies [pR.1], [pR.2], [pR.3], and [pRR.1]. Then

F(f) = Flep,y))
= EP(f(Tso1gy)
= EE) F(Tyo1gy)
= S (T )1 rry)

= F(f)

and

=)

F(f)= F(gwf) = EF'(wy) T Cwpgy) T F(f).
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Hence F : C — C' is a range restriction functor and therefore &,, is well-defined. It

is routine to check that &,, : rrFiby — rrCat, is a functor. O

Equivalence Adjunction &, 4 R,,
Given any range restriction fibration 4 : D — C, C is a range restriction category
with the restriction and range structures induced by 4. Assume that F': C — Eisa

range restriction functor. As in Section 3.3.3, we can construct a functor Fs : D —

r(E) by
D, = ((Fé)(Dh), F(ep,))
f{ — l(”)(f)
D, = ((F(S)(D2)’F(5D2))
such that
D—F§>r(E)
5[ Joe
C——E

commutes. Certainly, (F, Fj) satisfies [pR.1], [pR.2], and [pR.3]. For any map
f: X =Y in C, note that

o~ ———

Fy(wy) = (Fo)(wp), Flew,)) = (F(Y), F(f)) = (F(Y), F(f)) = wr(y)-

Hence [pRR.1] is also satisfied. Therefore (F, F3) is a map from (§ : D — C) to

(O : r(E) —» E) in rrFib,. By the same process we used in Lemma 3.3.7, we have:

Lemma 4.2.6 Let § : D — C be a range restriction fibration and C the range
restriction category with the range and restriction structures induced by 6. Then

(F,G) is a map from (6 : D — C) to (Og : r(E) — E) in rrFibg if and only if
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G = Fy. In particular, if F : C — D 1is a range restriction functor, then (F,G) is a
map from (Oc : t(C) — C) to (dp : r(D) — D) in rrFiby if and only if G = r(F).

For any range restriction fibration § : D — C, by Lemma 4.2.6, there exists
a map (lg,15) : (6 : D = C) = (¢ : r(C) = C) taking f : D; — D, to
5(f) : (6(D1),ep,) = (8(Ds),ep,) in rrFiby. As in Lemma 3.3.8, this map turns

out to be the unit of the adjunction &,, 4 R,. Clearly, £+Ryr = lircat,- We have:

Lemma 4.2.7 There is an adjunction

Epr

———

rrCaty L _rrFib,

—_—T

RT’I‘

with identity counit so that R, s full and faithful.
Also, all range restriction fibrations are of the form d¢ : r(C) — C.

Proposition 4.2.8 Fach range restriction fibration can be written in the form Oc :

r(C) — C for some range restriction category C.

ProoF: By Theorem 4.2.3, each range restriction fibration § : D — C gives rise
to range restriction category C, and so we have a restriction fibration d¢ : r(C) —
C. By Lemma 4.2.6, there is a map (1¢,15) : (6 : D = C) —» R,(C). If f :
(Ci,eg,) = (Coep,) is a map in r(C), then g, < e4.p,, and so E; < f*E; by
Lemma 3.3.3. Hence, there is a unique map leq : E; — f*E, in 67 (C;), and so a
map lift(f) =.J7leq : Ey — E, satisfying §(lift(f)) = f, where ¥y p, : f*Ey — E,
is the cartesian lifting of f at Ey. As in Proposition 3.3.10, we can define a functor

G : r(C) — D by sending f : (Cy,ep,) — (Cy¢cr,) to lift(f) : By — E;. Of
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course, (1c, G) satisfies [pR.1], [pR.2], and [pR.3]. For any map f: C, — C; in C,
G(wy) = G(Ca,€u;) = Wig(p)- Hence [pPRR.1] is also satisfied and therefore (1c, G)
is a map from R,,.(C) to (§ : D — C) in rrFiby. Obviously, (1¢,G)(1c, 1s) =
lspoo) and (lg, 15)(1c, G) = 1g,,(c)- Hence R..(C) = (6: D — C). O

Combining Lemma 4.2.7 and Proposition 4.2.8, R,, is not only full and faithful but

also surjective on objects. Thus, we have:

Theorem 4.2.9 There is an adjoint equivalence

57'7“
‘e .
rrCaty | rrFibg
Rrr

with identity counit.

4.2.4 Inverse Image Functors and Direct Image Functors

Given a range restriction fibration § : D — C, for each map f : X = Y, we have
the inverse image functor f*: 6= }(Y) — 6 }(X). The objective of this section is to
answer which f* have left adjoints. Since § is of the form J¢ : r(C) — C for some
range restriction category C by Proposition 4.2.8, we only need to consider the range
restriction fibration d¢ : r(C) — C for some range restriction category C. We need

the following lemma.

Lemma 4.2.10 In a range restriction category, if dom(g) = codom(f) then

F<ge f<gf
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Proor: If fﬁ g, then f: gf. Hence

9f f = gf (since fgf =gf)

{l
@l

g/ (by [RR.2))

I
)l =]

Il 1
=
- -

and therefore f < gf. Conversely, if f < gf, then f = fgf = gf. Hence

9f = 3/ (by RR.3))

r—

= fgf (by [R.4])

= 7

= f (by [R.1]),

and therefore fg g. O

Assume that C is a range restriction category. Since d¢ : r(C) — C is a fibration, for
each map f: X — Y in C, one has the inverse image functor f*: 8g'(Y) — 95! (X)
taking (Y, ey) < (Y,€}) to (X,eyf) < (X,elf). On the other hand, we define
the direct image functor fi : 9g'(X) — 05*(Y) by sending (X,ex) < (X, ¢€Yy) to

(Y, fex) < (Y, feiy). If (X,ex) < (X, €)) in the fiber 95 (X), then ex = eyex =
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exe'y and so

feifex = felexfey
= fevex (by [R.4])

= fex.

Hence, filx = 1y : (Y, f/c;() — (Y,E) is amap in 9 (Y) whenever 1x : (X,ex) —
(X,€)y) is a map in dg'(X). Then f; is well-defined and so fi : 0g'(X) — 9c'(Y) is

a functor clearly. We have:

Proposition 4.2.11 Let C be a range restriction category and 0c : r(C) — C the
forgetful range restriction fibration. Then f: X — Y is total if and only if there is
an adjunction:
dc'(Y) i—fiaal(X)
I

PROOF: “=” For any total map f : X — Y in C and (X,ex) € 9g'(X) and

(Y,ey) € 85" (Y), we have

f/e} <ey & fex <eyfex (by Lemma 4.2.10)

& ex <eyfex (by [R.3] and f=1)
evf

< ex = exex = ey fex
& ex Zeyf.
Hence o
fex < ey

ex <eyf
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and therefore
fg()(, ex) — (Y, ey)

(X,ex) = f*(Yrey)

Thus, fy - f*, as desired.

“<” If fi - f*, then f* preserves the top element of d5'(Y) and this happens if

and only if f is total. O

Now we recall that a range restriction fibration 6 : D — C gives rise to the inverse
image functor f*: ~1(Y) — 6~1(X). By Proposition 4.2.8, § = (9¢ : r(C) — C) for
some range restriction category C and each fiber 671(X) = d5'(X). Hence we also
have the direct image functor f; : 67 1(X) — 671(Y) sending D; < D, in §~1(X) to
Wi < W in §71(Y’), where Wies = Wey ey - By Propositions 4.2.8 and 4.2.11, we

have:

Proposition 4.2.12 Let 6 : D — C be a range restriction fibration. Then f : X —

Y s total if and only if there is an adjunction:

0=1(Y) i 0~H(X)

f*

where fy, f* are direct and inverse image functors, respectively.



Chapter 5

The Free Range Restriction Categories over

Directed Graphs

The objectives of this chapter are to construct the free range restriction categories
over directed graphs and to give a source of range restriction categories whose word
problems are decidable as well as some explicit examples of range stable meet semi-
lattice fibrations. We first introduce the notions of based directed graphs, based trees,
based trees over a based directed graph, and deterministic trees. Then we show that
the deterministic based trees over a directed graph G give rise to a G*-indexed cat-
egory dbTree : (G*)°® — dbTree(G). Finally, we apply the poset collapse to the
indexed category dbTree to obtain the desired free range stable meet semilattice

fibration over G*, which turns out to produce the free range restriction category over

G.

5.1 Based Direct Graphs and Based Trees

In this section, we introduce the definitions of based directed graphs, based trees,

and based trees over a based directed graph and their properties.

5.1.1 Definitions of Based Direct Graphs and Based Trees

Recall that a (finite) directed graph is an object of a functor category (Set;)?, where

. . d . . . .
2 is the category displayed by e —=3e. Explicitly, a directed graph G consists of a

169
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finite set V(G) of vertices, a finite set F(G) of edges, and two maps

Let v1,v; € V(G). A path from vertex v; to vq is a list of finite distinct edges
[my, -+ ,my] such that 8§ (my) = v, 8% (m;) = 8§ (mi1),t = 1,--+ ,k — 1, and
0%(my) = vo. A undirected path between vertices vy and vy in G is a oriental path
[mi, -+, mi¥] such that 8§ (m%) = vy, 8¢ (ml) = 8g(mi’j11),z =1,---,k—1, and
Of(mfc’“) = vy for some Iy,---,ly € {—1,1}, where my,---,my are distinct edges in
G and 8;(m}) = 9;(m;) and &;(m;') = 8i_¢(m;), i € {0,1} and j € {1,--- , k}.

A treeis a finite directed graph in which there is a unique undirected path between
any two vertices. A directed tree is a finite directed graph in which there is a vertex
r € V(G) such that for any z € V(G) there exists a unique path from r to .

Let G and H be two directed graphs. Clearly, a directed graph map from G to H
is a map in the functor category (Sety)?. Explicitly, a directed graph mapv : G — H

is pair v = (vg,vy) of maps: vg : E(G) — E(H) and vy : V(G) — V(H) such that

commutes serially. We shall denote the category (Set;)? of directed graphs and
directed graph maps by Graph.
Given a directed graph G, we can form the path category G*: the objects of G*

are the same as V(G) but the maps of G* are lists of edges in G which juxtapose:
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if [my,-++,my] is a juxtaposing list from A to B in G then (A,[my,---,my}, B) :
A = B is a map in G*, the composition is given by concatenation and the identities
are given by the empty paths: 14 = (4,[], A). We can easily extend 8, and 9, from
E(G) to G*.

Examples

1. Let G be given by V(G) = @ and E(G) = 0. Then G is a directed graph (tree),

which we shall denote by O.

2. Let G be given by V(G) = {*} and E(G) = (. Then G is a directed graph (tree),

which we shall denote by *.

3. Let G have V(G) = {#} and E(G) = {+} and Op(+) = 0:1(+) = *. Then G is a

directed graph (tree), which we shall denote by 1.

Definition 5.1.1 A based tree (based directed graph) T is a tree (directed graph)
T with a selected verter by, namely, a map by : x — T, denoted by (T,br). A
based tree (based directed graph) map v : (T,br) — (T”,byv) is a directed graph map
v:T — T such that

*
R
14

T

TI

commautes.

Based trees and based tree maps form a category bTree. Also, based directed graph
and based directed graph maps form a category bGraph. Obviously, bTree is a full

subcategory of bGraph.
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Examples
1. (x,#) is the initial based directed graph (tree).

2. (1,x) is the final based directed graph (tree).

5.1.2 Functors (—)t and (—)~

If (T,br) is a based directed graph (based tree), then we can form a based directed

graph (based tree) (T,br)" = (T, x) by the following data:

V(T =V(T) u{+}, E(T") = E(T)u {+},

and

8o, : E(T*) = V(T

given by

)
do(e), ifee E(T),
*, otherwise,

4

81(6), lf e € E(T),

br, otherwise.
\

Moreover, if v : (T,br) — (T",br) is a based directed graph (based tree) map, then
we have a based directed graph (based tree) map v* : (T,br)" — (T",bp)* which
extends v : (T,br) — (T',br/) by sending + : * — by to + : * — bp. Clearly, we

have:

Lemma 5.1.2 (—)" : bGraph — bGraph, sending v : (T,br) — (T",br) to
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vt (T,br)t — (T',bpr) T, is a functor.

Lemma 5.1.3 Let h : A — B be an edge in a directed graph G. Then there is a
based directed graph map h : (G, B)T = (G, A).

PROOF: Define h : (G,B)t — (G, A) by h(e) = e if e € E(G) and h(+) = h.
Clearly, h : (G, B)t — (G, A) is a based directed graph map. O

Similarly, given a based directed graph (based tree) (T, br), we can form a based

directed graph (based tree) (T,br)~ = (T, *) by the following data:

V(T7) =V(T)u{s}, E(T7) = E(T) U {-},

and
80,81 : E(T_) — V(T—)
given by
)
Oo(e), ife € E(T),
dle)=4{
br, otherwise,

\

5i(c) = ¢ di(e), ifee E(T),

*, otherwise.
\

If v:(T,br) = (T',bp) is a based directed graph (based tree) map, then we have
a based directed graph (based tree) map v~ : (T,br)~ — (T”,br)” which extends

v: (T, br) = (T',br) by sending — : by — * to — : byr — *. Clearly, we have:

Lemma 5.1.4 (—)~ : bGraph — bGraph is a functor.
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Lemma 5.1.5 Let h : A — B be an edge in a directed graph G. Then there is a
based directed graph map h : (G, A)™ — (G, B).

PrOOF: Define h : (G,A)~ — (G,B) by h(e) = e if e € E(G) and h(=) = h.

~

Clearly, h : (G, A)” — (G, B) is a based directed graph map. O

Examples

5.1.3 Trees over Directed Graphs

A tree T over a directed graph G consists of a tree T and a directed graph map
v:T — G. The trees over G form a category Tree(G) with trees over G as objects

and with a direct graph map 7 : T} — T5 such that

T

T T2
G

commutes as a map from v : Ty = G to vy : Ts — G. Its composition and identities
are obvious.

Let (G,A) be a based directed graph. A based tree ((T,br),vr) over (G, A)
consists of a based tree (T, br) and a based directed graph map vr : (T, br) — (G, A).

A based tree map T : ((T,br),vr) — ((T",br),v7) is a based directed graph map
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7: (T,br) — (T",by) such that

(T, br) . (T', byv)

commutes in bTree.

Let o : G — H be a directed graph map and ((T,br), vr) € bTree(G, A). Then
((T, br), avr) € bTree(H, a(A)).

All based trees over the based directed graph (G, A) and maps between them

form a category bTree(G, A). This category always has finite coproducts:

Lemma 5.1.6 Let (G, A) be a based directed graph. Then bTree(G, A) has finite

coproducts.

Proor: Clearly, ((A, A),14) is the initial object in bTree(G, A). So, it suffices to
show that bTree(G, A) has binary coproducts. For any ((T,br),vr), ((S,bs),vs) €
bTree(G, A), we form a based tree (T'+.S5, brys) by just identifying by and bg, called

by bT-i-Sa namelya

V(T +5) = (V(T)u V(S)\ {br, bs}) U {brys},

and

E(T+ S)={ee€ E(T)UE(S)|if 9;(e) € {br, bs} rename 9;(e) to bris,i = 0,1}.

Clearly, (T + S, brys) is a based directed graph. For any vi,vs € V(T + S), if both
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vy and vy are in V(T) or V(S), then there is a unique undirected path between v,

and v, since both T and S are based trees. If v; € V(T') and v; € V(S), 4,5 €

{1,2},4 # j, then there is a unique undirected path [my,- - ,my] connecting v; and
bris and a unique undirected path [ny,---,n] connecting v; and bris and so a
unique undirected path [my,---,mg,nq, -+, 7] connecting v; and v;. Therefore,

(T + S,bpys) is a based tree. Define vrigs : (T + S,brys) — (G, A) by sending
v € V(T) to vr(v), v € V(S) to vs(v), bris to vp(br), and e € E(T) to vr(e),
e € E(S) to vg(e). Then (((T + S,br+s), vr+s), b1, t2) is a coproduct of ((T, br), vr)
and ((S,bs),vs) in bTree(G, A), where v : (T, br),vr) = (T + S,brys), vrys)
and tg : ((S,bs),vs) = ((T + S,brys), vr+s) are the embeddings. In fact, for any
maps 77 : ((T,br),vr) — ((X,bx),vx) and 75 : ((S,bs),vs) = ((X,bx),vx) in
bTree(G, A), there is a unique map 7 : ((T + S, brys), vris) — ((X,bx),vx) given
by sending v € V(T) to 7r(v), v € V(S) to 75(v), brys to 7p(br) = 7s(bs) = bx,

and sending e € E(T) to 7r(e), e € E(S) to 7s(e), such that

(T, br), vr) T ((T + 8, br+s), vr4s) <=———((S, bs), vs)
T H'T TS
v
((X, bx), vx)
commutes in bTree(G, A). O

5.1.4 The Indexed Category bTree : (G*)°°? — bTree(G)

Given a directed graph G, we form the category of all bTree(G, A), A € V(G) and

functors between them, denoted by bTree(G). In order to form the desired indexed
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category, we need the change base functor:

Lemma 5.1.7 Let h : A — B be an edge in a directed graph G. Then there is a
functor Oh : bTree(G, B) — bTree(G, A).

ProorF: For any map 7 : ((T,br),vr) = ((T",br), vr) in bTree(G, B), we have a

commutative diagram

(T, br) - (T, byr)

k& v

(G,B)

in bTree. Applying the functor (—)* to the last diagram, we get a commutative

diagram
(T, by)* Al (T, bp)*
k v
(G, B)T
in bTree and so a commutative diagram
(T, br)* a (T, bpo)*
(G, 4)

in bTree. Hence there is a map

(T, bT)+,BV7f) — ((TI,bT/)+,iLV;/)
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in bTree(G, A) and therefore a functor Oh : bTree(G, B) — bTree(G, A) taking

7: ((T,br),vr) = (T',by), vp) to 7+ ((T, bT)+,le;) — ((T',bT/)Jf,hu:,f,). d
By Lemma 5.1.7, we have the change base functor:

Lemma 5.1.8 Let h : A — B be a path in a directed graph G. Then there is a

functor Oh : bTree(G, B) — bTree(G, A).

PROOF: Assume that h = [my,---,my] is a path from A to B. By Lemma 5.1.7
we have a functor (O0m; : bTree(G,d,(m;)) — bTree(G,d(m;)), for each i €
{1,---,k}. Hence we have a functor Oh = (Omy)---(0Om;) : bTree(G,B) —
bTree(G, A). O

Similarly, for any map 7 : ((T,br), vr) — ((T", bp), vrv) in bTree(G, A), we have

a commutative diagram

(T, br) = (T', byv)

k\ vt

(G, 4)

in bTree. Applying the functor (—)~, we have a commutative diagram

(T,br)~ T (T', byr)~

k vz,

(G, 4)~
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in bTree and so a commutative diagram

(T, br)~ T (T', bye)~

in bTree. Hence there is a map

7 (T, by) ™ hg) — (T, bp) ™, b

in bTree(G, A) and therefore a functor Oh : bTree(G, A) — bTree(G, B) taking
7 (T, br),vr) = (T, bp),vp) to 7~ = (T,br)~, hvg) — (T, br)~, hug). As in

Lemma 5.1.8, we have:

Lemma 5.1.9 Let h : A — B be a path in a directed graph G. Then Oh :
bTree(G, A) — bTree(G, B) is a functor.

By Lemma 5.1.8, we immediately have:

Proposition 5.1.10 bTree : (G*)°® — bTree(G), sending each h : B — A in
(G*)P to a functor Oh : bTree(G, B) — bTree(G, A) in bTree(G), is an indexed
category, in which there is a functor Oh : bTree(G, A) — bTree(G, B) for each path
h:A—BindG.
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5.2 Range Stable Meet Semilattice Fibrations over Directed

Graphs

The goal of this section is to construct the range stable meet semilattice fibration

over a given directed graph using deterministic based trees.

5.2.1 Deterministic Based Trees

In order to form a range stable meet semilattice fibration, we introduce the notion
of deterministic based trees. Throughout this subsection, (G, A) denotes a based
directed graph.

For each edge e € F(G), we only assume that [e!, ¢e] is a path from 0,(e) to
di(e): e7te = (8,(e),[],8:(e)). For any given ((T,br),vr) € bTree(G, A), we define

a relation ~ on V(T') by

v ~ Ve <> there is a undirected path [pi,- -, pi] from v; to vy such that
vr(p1) - ve(pe) = (ve(wn), [ ], vr(ve)) in G*.
Lemma 5.2.1 ~ is an equivalence relation on V(T).

ProOF: For any v € V(T'), there is a undirected path (v,[ ],v) : v = v such that
vr(v,[],v) = (v,[],v). Hence v ~ v and therefore ~ is reflexive.

If ¥4 ~ vy, then there is a undirected path [py,-- -, pg] from v; to v, such that

vr(p1) -+ vr(pk) = (vr(vi), [ ], vr(v2)),



181

and so there is a undirected path [p,- - ,p1] from v, to vy such that

vr(pe) - vr(p1) = (vr(va), [ ], vr(v1)).

Hence vy ~ v; and therefore ~ is symmetric.
If v; ~ vy and vy ~ v3, then there are undirected paths [p1, - -, pi] from v; to v,

and [g1,- -, ¢q] from v, to v3 such that

vp(p1) - vr(pe) = (vr(v1), [, vr(v2))

and

vr(qr) -+ vr(@) = (vr(v)), [ ], vr(vs)).

If {p1,---,pe} N {g7", -+ ,q '} = 0, then there is a undirected path

[pl,"’ yPkyq1," 7ql]

from v; to v3 such that

vr(py) - -ve(pr)ve(q) - - - velq) = (ve(v), [ ], vr(vs)).

If{pla ,pk}ﬂ{(h_lf" 7ql—1} - {Clv"' 7cm}7é®’ then

[pla”' )pk] = [plv"' yDk—m,C1y " * ’Cm]
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and

[41," : ,ql] = [Cr_nla' o 701_17Ql—m+17" : an]-

It is easy to check that

[ph oy Pe—my Qi—m41, 00 7ql]

is a undirected path from v; to vs, which is obtained by deleting the common part

of [p1,+ -+ ,pi] and [g1, - - -, qi], such that

vr(p1) - vr(Pk—m )V (Q—mt1) - - vr(q) = (vr(v1), [ ], vr(vs)).

Hence v; ~ vz always and therefore ~ is transitive. O

This equivalence relation ~ introduces a relation ~g on E(T):

ey ~p € < 80(61) ~ 80(62) and 81(61) ~ 81(62).

Clearly, ~ is an equivalence relation on E(T') since ~ is an equivalence relation.

Definition 5.2.2 ((T,br),vr) € bTree(G, A) is called deterministic if e, = ey

whenever e, eo € E(T) are such that e; ~p es.

All deterministic based trees over (G, A) and based directed graph maps between
them form a category dbTree(G, A). We shall see that dbTree(G, A) turns out to
be a reflective subcategory of bTree(G, A).

Now we define a tree T'//~ by

V(T/~) =V(T)/~ E(T/~)= E(T)/~&
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and

Oo([e]) = [Do(e)], D ([e]) = [B1(e)]-
If e; ~ ey, then 9;(e;) ~ 0;(e2) and so [9i(e1)] = [0;(e2)],4 = 0,1. Hence Jp and 9, of
T/~ are well-defined. Therefore, we have a based tree (T'/~, [br]). Define

T/~ - (T/Na [bT]) - (GvA)

by sending [v] € V(T/~) to vr(v) and [e] € E(T/~) to vr(e). If [v1] = [vy], then

v, ~ vo and so there is a undirected path [py,- -, px| from vy to vy such that

vp(pr) -+ - vr(pe) = (vr(v), [ ] vr(v2))

and so vp(vy) = vr(vg). If [e1] = [eq], then dy(er) ~ Gy(ez) and 0y (e1) ~ Oi(ez) and
so there are undirected paths [py, -, pi] from dg(e1) to Go(e2) and g1, -, q] from
d1(e1) to O1(eq) such that

vr(p1) - -vr(pr) = (vr(Boler)), [ ], vr(Go(es)))

and

vr(qn) - vr(@) = (vr(9i(e1)), [1,vr(di(es)))-

Since there is a unique undirected path from 0;(e;) to 0i(es), we have vr(ey) =
vr(ez). Hence vr/. is a well-defined directed graph map and therefore we have a
based tree ((T'/~, [br]), vr/~) over (G, A), which we shall denote by Det((T, br), vr).

An easy observation is:
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Lemma 5.2.3 Let ((T,br),vr) € bTree(G, A), v1,v2 € V(T) and e1,ey € E(T).
Then

(i) [v1] ~ [va] in Det((T,br),vr) & vi ~ vy in ((T,br),vr) & [v1] = [va] in
Det((T,br), vr).
(ZZ) [61] ~ [62] m Det((T, bT),l/T) S e~ ey in ((T,bT),VT) == [61] = [62] m

Det((T,br), vr).

PROOF: (i) By the definition of Det((T,br),vr), clearly, v; ~ v2 = [v1] = [v2] =
[v1] ~ [v2] and vy ~ vy in ((T, br), vr) & [v1] = [ve] in Det((T, br), vr). So it suffices
to prove that [vi] ~ [vg] = v1 ~ vs.

If [v1] ~ [vq], then there is a undirected path [[pi],---,[pk]] in Det((T,br), vr)

such that

vrj([p1]) -+ vry (k) = (vry~([01]), [ vy~ ([v2])),

and so

vr(p1) -+ vr(pk) = (vr(vi), [ ], vr(v2)).

Since [[p1],- - ,[px]] is a undirected path in Det((T,br),vr), for each 1 < i < ky,

81([}72]) = 80([[%4.1]). Hence [81 (pl)] = [80(pi+1)] and therefore al(pz) ~ 80(pi+1), for

i=1,---,k— 1. It follows that there exist undirected paths [g;1, - ,¢; ;) from

01(p;) to Ay(pi+1) in ((T,br), vr) such that

vr(qin) - vr(@ig,) = (vr(0i(pi)), [ ], vr(Oo(piv1))),s =1,k — L.
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Hence there is a undirected path [s,- -, 8] from v; to vs, obtained from

{Pl,(h,h 1yttt s Pk—1,9k-1,15 0 an—l,ik_l’pk}

by deleting the common parts as we did in the proof of Lemma 5.2.1, such that

vp(s1) - vr(sm) = (vr(v1), [ ], vr(ve))

and therefore v; ~ vy, as desired.
(43) Similarly, it suffices to show that [e;] ~ [ea] = €1 ~ eq. If [e1] ~ [ea], then
dile1] ~ Oilea] and so [0;(e1)] ~ [0i(e2)],i = 0,1. By (%), 0;(e1) ~ Oi(e2),7 = 0, 1.

Hence e; ~ es. O
Lemma 5.2.4 Det((T,br),vr) is a deterministic tree.

PROOF: Let [e(],[es] € E(T/~) with [e;] ~ [e2]. Then, by Lemma 5.2.3, €; ~ €9

and so [e;] = [ex]. Hence Det((T, br),vr) is a deterministic tree. O

If 7 : ((T,br),vr) = ((S,bs), vs) is a directed graph map in bTree(G, A), then
we define

Det(r) : Det((T, br),vr) — Det((S, bs), vs)

by sending [v] to [7(v)] and sending [e] to [r(e)]. If v; ~ vy, then there is a undirected

path [p1, -+, pe] from v; to v such that

vr(p1) -+ -vr(pk) = (vr(v), [ ], vr(ve)).
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Hence there is a undirected path [qi, -+ ,q] obtained from [7(p1),---,7(pk)] from

7(v1) to 7(ve) such that

vx(q) - vx(g) = vx (T(p1)) - - vx(7(pe)) = (wx (1(v1)), [ ], vx (7(v2)))

and so 7(vy) ~ 7(ve). Hence [7(v1)] = [r(v2)]. Similarly, if e; ~g e, then 7(e;) ~g
7(ez2) and so [T(e1)] = [r(e2)]. Therefore, Det(r) is a well-defined directed graph

map. Clearly, we have:

Lemma 5.2.5 Det : bTree(G, A) — dbTree(G, A), sending 7 : (T, br),vr) —
((S,bs),vs) to Det(r) : Det((T,br), vr) — Det((S,bs),vs), is a functor.

In the other direction, since each deterministic based tree is, of course, a based tree,
we have an inclusion functor ¢ : dbTree(G, A) — bTree(G, A). Now we are ready

to prove:

Lemma 5.2.6 Let (G, A) be a based directed graph. Then dbTree(G, A) is a fully

reflective subcategory of bTree(G, A) and has finite coproducts.

Proor: We shall prove that Det is a left adjoint functor of the inclusion ¢ :
dbTree(G, A) — bTree(G, A).

For any ((T,br),vr) € bTree(G, A), we define a based tree map 1rpr)vy)
((T,br),vr) — Det((T,br),vr) by taking v to [v] and e to [e], which serves as the
unit of Dety - ¢. For any map 7 : (T, br),vr) — «((X,bx),vx) in bTree(G, A), we
define 7% : Det((T,br),vr) — ((X,bx),vx) by sending [v] to 7(v) and [e] to 7(e).
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If v; ~ vq, then there is a undirected path [p;,- - - ,pk] from v; to vy such that

vr(p) - ve(pr) = (vo(v1), [ ], vr(ve)),

and so there is a directed path [g1, - - - , ¢] obtained from [r(p1), - - - , 7(px)] from 7(v;)

to 7(vz) such that

vx(q) - -vx(@) = vx7(p) - —vxT(pe) = (vxT(v1), [} vx7(ve)).

Since ((X,bx),vx) is deterministic, by Lemma 5.2.3 7(v1) = 7(va).
Similarly, if e; ~ €5, then 7(e;) = 7(e2). Hence 7# is well-defined and therefore
there is a unique map 7# : Det((T,br),vr) = ((X,bx),vx) in dbTree(G, A) such

that

N(T,bp)vp)

(T, br),vr) «(Det((T,br),vr)) Det((T,sz), vr)

\ lL(T#) VT#

L((vaX)vVX) ((‘YabX)’VX)

commutes. Thus, dbTree,(G) is a fully reflective subcategory of bTree(G, A). O

By Lemma 5.2.6, Det is a left adjoint of the inclusion functor. Hence Det pre-

serves finite coproducts. So,

Lemma 5.2.7 The functor Det : bTree(G,A) — dbTree(G, A) preserves finite

coproducts.

By Lemma 5.1.6, bTree(G, A) has finite coproducts. The binary coproducts of
dbTree(G, A) can be created by using the functor Det: take the binary coproducts

in bTree(G, A) first, then apply the functor Det.
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Let dbTree(G) be the category of all dbTree(G,A),A € V(G) and functors
between them. By Proposition 5.1.10, bTree : (G*)°® — bTree(G), sending each
h:B — Ain (G*)° to a functor Oh : bTree(G, B) — bTree(G, A), is an indexed -
category, in which there is a functor Qh : bTree(G, A) — bTree(G, B) for each
path h : A — B in G. If ((T,br),vr) € bTree(G, A) is deterministic, then so is
Oh((T, br), vr) = ((T,bp)*, hvr) in bTree(G, B). In fact, let hy, hy € E((T,br)*)
be such that hy ~ hy. Since ((T,br),vr) € bTree(G, A) is deterministic, h; =
ha = + or hy,hy € E(T). On the other hand, hy,hy € E(T) and h; ~g hy imply
hy = hg since ((T,br),vr) is deterministic, and so h;y = hy in all cases. Hence

dbTree : (G*)°® — dbTree(G), taking h: B — A in (G*)°® to
Oh : dbTree(G, B) — dbTree(G, A),

is a functor.

It is easy to check that for any path h: A — B,

dbTree(G, B) x dbTree(G, B) —" . dbTree(G, A) x dbTree(G, A)

¢ |+

bTree(G, B) bTree(G, A)

Detl lDet

dbTree S dbTree(G, A)




commutes, since for any (T, br), vr), ((S,bs), vs

Oh(Det((T, br), vr) + ((S,bs),vs)) =

as displayed graphically:

) € dbTree(G, B),

OA((Det(T + 5), [br+s]), vr+s)
((Det(T + 8))*, %), h(vrss))
((Det(T* + S*), %), vt + hvd)
(T*, %), hvf) + (5™, %), hg)

Dh((T, bT), VT) + Dh((S, bs), 1/5)

h h
i bsi Oh x Oh b/T\ N Det bris
b brys #
(bTi bs ) + T+S Det f Dh bris

Then Uk : dbTree(G, B) — dbTree(G, A) preserves binary coproducts.

On the other hand, Ah = (Det)(Oh)(1)

functor, for each path h: A — B in G.
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: dbTree(G, A) — dbTree(G, B) is a

Lemma 5.2.8 dbTree : (G*)°® — dbTree(G), sending each h : A — B to a binary

coproducts preserving functor Oh : dbTree(G, A) — dbTree(G, A), s an indexed

category, in which there is a functor

Ah = (Det)(0h)(:) : dbTree(G, A) — dbTree(G, B)
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for each path h: A — B in G.

5.2.2 Poset Collapse

Recall that a small category C with finite coproducts is a preorder with the binary
relation < given by

X <Y & thereisamap X — Y.

Let (Poset(C), <) be the poset reflection of (C, <). Then (Poset(C), <) is a join
semilattice with the join given by coproducts and with the bottom element given by
the initial object of C and so, dually, (Poset(C), <)°P is a meet semilattice.

Let Cat, be the category of small categories with finite coproducts and func-
tors preserving binary coproducts. Let C;D € Cat, and let F : C — D be a
binary coproducts preserving functor. Then Poset(F') : Poset(C) — Poset(D),
sending X <Y to F(X) < F(Y), is a stable join semilattice homomorphism, and
so (Poset(F))° : (Poset(C))°® — (Poset(D))° is a stable meet semilattice homo-

morphism. Hence we have:

Lemma 5.2.9 Poset® : Cat, — msLat, given by taking F': C — D to

(Poset(F))? : (Poset(C))® — (Poset(D))?,

s a functor.

5.2.3 The Range Stable Meet Semilattice Fibration 0

Let G be a directed graph and h : A — B a path in G. Then we have a binary

coproducts preserving functor [Jh : dbTree(G, B) — dbTree(G, A) and a functor
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Ah : dbTree(G, A) — dbTree(G, B). By Lemma 5.2.9, we have:

Lemma 5.2.10 PosetdbTree : (G*)°? — msLat, sending h: B — A in (G*)°P to

h* = (Poset((1h))°? : (Poset(dbTree(G, B))®® — (Poset(dbTree(G, A))°P,

is an indexed category, in which there is a stable meet semilattice homomorphism

hy = (Poset(/Ah))P : (Poset(dbTree(G, A))® — (Poset(dbTree(G, B))°P

for each path h: A — B in G.

By Grothendieck construction, we have the fibration dg : g(PosetdbTree(G)) — G*
constructed from the indexed category PosetdbTree : (G*)°® — msLat. More

precisely, g(PosetdbTree((#)) is the category with the following data:

objects: (A, ((T,br),vr)),

where A € V(T) and ((T,br), vr) € PosetdbTree(G, A);
maps: a map from (A4, ((T,br),vr)) to (B, ((S,bs),vs)) isapathh: A —- Bin G

such that

(A, ((T,br),vr)) < h*(B,((S,bs),vs)) in (PosetdbTree(G, A))°?;

composition and identities are formed as in G*.

The forgetful functor 0z : g(PosetdbTree(G)) — G* turns out to be what we

wanted as showed by the following lemma.
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Lemma 5.2.11 The fibration 0g : g(Poset(dbTree(G))) — G* is a range stable

meet semilattice fibration.

PRroOF: For any A € V(G), we have

051 (A) = {(4, (T, br), vr)) | ((T, br), vr) € (Poset(dbTree(G, A))°F}.

Since (Poset(dbTree(G, A))° is a meet semilattice, ;' (A) is also a meet semilat-
tice with the order and meet of (Poset(dbTree(G, A))°P. For any path h: A — B
in G, we have stable meet semilattice homomorphisms h* : 9;'(B) — 9;'(A)
sending (B, ((S, bs), vs)) to (A4,0h((S,bs),vs)) and h : 95'(A) — 85" (B) sending
(A, ((T,br),vr)) to (B, AR((T,br), vr)). Hence d¢ : g(Poset(dbTree(G))) — G* is
a stable meet semilattice fibration. Now it suffices to show that J¢ satisfies [rsF.1],

[rsF.2], and [rsF.3]. Let (4, (T, br), vr)) € 95'(A) and (B, ((S, bs), vs)) € 95" (B).
[rsF.1] Compute
(he(A, (T br), vr))) A (B, ((S, bs), vs))

= (B7Det((Ta bT)_v ]A“/’I_“)) N (B7 ((S7 bS)v VS))

= (B, Det((T,br)~, hvg) + ((S, bs),vs)),
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and

h!((A7 ((T’ bT)a VT)) A h*(B7 ((Sv bS)v VS)))
= h((A (T,br),vr)) A (A, ((S,bs)*, hvd)))
= h!(A’ ((T7 bT): VT) + ((57 b5)+’ BV;—))

= (B, lu(((T,br), vr) + (S, b5)*, hr3)))

as displayed graphically:

h

br bs
(hi(A, ((T,b7),v7))) A (B,((S,bs),vs)) = Det( s : ; \. )

*

h
b b
h!((A?((TabT)aVT)) /\h*(Bv((vaS)?VS))) = Det( ; \ b /\S )

h

br bs
= Det( / : ; \)

Hence, there is a map

h((T,br), vr) + ((S,bs)™, hvd) — Det((T,by)~, hvg) + (S, bs), vs),



and therefore

(Pa(A, (T, br), vr))) A (B, ((S, bs), vs))

< h!((Av ((Ta bT)’ VT)) A h*(B’ ((57 bS)’ VS))'

[rsF.2] Compute

(A’ ((Ta bT)7 VT)) A (h’*(B7 ((Sa bS)7 VS)))
= (A, ((T,br),vr)) A (4, ((S,bs)*, b))

= (Av ((T> bT)a VT) + ((S, b5)+7 ilI/;)),
and

h’*(h!(A7 ((T7 bT)’ VT)) A (B’ ((S, bS), ’/S)))
= h*(B,Det((T,by)~, hvg) + ((S,bs), vs))

= (A’h*(Det((T’ bT)~7 }AU/ZI-“) + ((S, bS)a VS)))

as displayed graphically:

h

br bg
(A, ((T,br),vr)) A (R*(B, ((S,bs),vs))) = Det( s : ; \ )

*

b bs
h*(h(A, ((T,br), vr)) A (B, ((S,bs),vs))) = Det( 7\ " / \)

194
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Hence, there is a map
K*(Det((T,br)~, hvg) + ((S,bs), vs)) = (T, br),vr) + ((S,bs)*, hvd).
Therefore,

(4, (T, br), vr)) A (R*(B, ((S, bs), vs)))

< B (h(A, (T, br), vr)) A (B, ((S; bs), vs)))-

[rsF.3] Note that

h!h*(B,((S,bS),I/S)) = hg(A,h*((S,bs),Vg))
- h!(A’((S’bS)+ath))

= (B, Det(((S,bs)")™, h(hvd)7))

as displayed graphically:

h h o h
WR(B,(S,b)vs)) =h( g )= Det( U f )=y

Clearly, there is a map ((S, bs), vs) — (Det((S,bs)*)~, h(hv$)~) and there-
fore

h!h*(B7 ((S’ bS)’ VS)) < (Ba ((S’ bS)»VS))'
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Hence 0 : g(Poset(dbTree(G))) — G* is a range stable meet semilattice fibration.

O

5.3 The Free Range Restriction Categories over Directed

Graphs

In this section, we prove that dg : g(PostdbTree(G)) — G* constructed in the last
section is the free range stable meet semilattice fibration and produces the free range
restriction category over a given directed graph G. We also provide some examples

of free range restriction categories over directed graphs.

5.3.1 0Og is Free

If o : G = His a map in Graph, then we have a functor o* : G* — H* and a

functor

a, : g(Poset(dbTree(G))) — g(Poset(dbTree(H)))

given by sending

h: (A, ((T,br),vr)) = (B, ((S,bs),vs))

to

a*(h) : (a(A), (T, br), avr)) = ((B), ((5, bs), aws)).

Clearly,
g(Poset(dbTree(G))) — g(Poset(dbTree(H)))

o

G* o>
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commutes. For any path h: A — B in G, and
(A7 ((T’ bT)’ VT)) € 361(14)7 (Sa ((Ta b5)7 VS))a (Ay ((Ra bR)a VR)) € agl(B)a

we have

[sfM.1] a(Tyz1(a) = (A, (4, 4), 14)) = (a(A), (4, A), ala)) = To (),

[sfM.2]
o, ((B, ((S,bs),vs)) A (B, (R, br), vr)))
= o.((B,(Det(S + R,bstr), Vs+r)))
= («(B), (Det(S + R,bs+r), 0VsiR))
= (a(B),((S,bs),avs)) A (a(B), (R, br), avg))
= (B, ((S,bs),vs)) A au(B, ((R, br), vr)),
[sfM.3]

a.(R*(B, ((S,bs),vs))) = au(A, (h*((S,bs),vs)))
= (4, ((8,bs)", hvd))
= (a(4), ((S,bs)*, ahvf))
= (a*(R))"(a(B), ({5, bs), avs))

= (a&"(h))*(eu(B; ((S,bs),v5)));
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[rsfM.1]

au(lu(A, (T, br),vr))) = au(B, (M((T,br), 1))
= (B, ((S,bs)", hvg))
= (a(B), ((8,bs)™, ahwy))
= (a*(h)*(a(A), (T, br), ovr))

= (a*(h))"(eu(4, (T, br), vr)))-

Hence (a*, ) : g — Oy is a map in rsFiby. So we have:

Lemma 5.3.1 Let o : G — H be a path in G. Then (a*,a,) : 9g — Oy is a map

in rsFiby.

For any map o : G — H in Graph, by Lemma 5.3.1 there is a map (o*, a.) :
dc — On in rsFiby. Hence, we have a functor F,; : Graph — rsFibg, which
sends o : G — H to (a*,a,) : Og — On. In the other direction, there is a functor
U,s : rsFiby — Graph, which sends (F, F') : 6x — dy to F : X — Y forgetting
composition and identities.

In order to prove that Fy.; 4 U, ¢, we first develop a method to write a based tree

inductively. For any based tree (T, br), let
Dy, ={e € V(T) | do(e) = br}

and

RbTT = {6 € V(T) | 81(6) = bT}
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Write (T, br,) as

(T7 bT) = (+66’Dg‘T€!(Te> bTe)) + (+eERITT6* (Te, bTe))a

where (T, by, ) are based trees. We can inductively repeat the above process in each
based tree (T.,br,) so that we can write (T, br) as the coproducts of some initial
based trees (x,*) by using the operations ( )* and ( ) as displayed graphically as

follows:
Tev\ .. / v
br
T. A - A
Lemma 5.3.2 For any range stable meet semilattice fibration dx : X — X and

any direct graph map a : G — U,¢(6x : X — X), there is a unique functor & :

g(Poset(dbTree(G))) — X such that (o, &) : dg — dx is a map in rsFibo;

PROOF: Recall that in order to define a map («, &) : 3¢ — dx in rsFibg, we need to
define a natural transformation o/ : PosetdbTree — ( )*«, where ( )* is the indexed

category corresponding to the fibration dx : X — X:

G* = X

fre!
Posetd% %

msLat
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In order to define a meet preserving functor o/, : 9;'(4) — %' (a(A)), for each

(A, ((T,br),vr)) € 351(14), we write
(T7 bT) = (+eeDg1Te!(Tea bTe)) + (+e€Rg1T e’ (Tev bTe))'

Define o/4(A, ((T, br), vr)) = o/4(T, br), which is given inductively as follows:

oy (%, %) = Téil(oa/T(*))
g€ (x, %)) = (a(r(e)) Tt )
aylex ) = (avr(€)) T st )
p((Fecop. &1Tobr)) + (Feerg € (Toubn) = (Neeop (vr(e)o(Tibr)

AlNeerg, (ovr(€))"oly(T.br,)).

If there is a map  : (T,br) — (S,bs), then o4(T,br) > o4(S,bs). In fact, if
(T,br) = (%, %), then, clearly,

AW (T, br) = oy (*,%) = Tos1( > o4(S, bs).

avr(*))

Otherwise, we write (T, br) as

(Ta bT) = (+e€’DZ"Te!(Tea bTe)) + (+eERZ1T6* (Tea bTe))'

Then for each based tree (T, br,), there is a based tree (Sj.y, br,,,) such that there

()

is a map k. : (Te,br,) = (Sige), bry.,)- By induction, o/y(Te,br,) > o/4(Sie), b1, )-
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Therefore,

ay(T,br) = (Aceny (avr(e))ela(Te, br.)) A (Acerg (avr(e))*ay(Te, br. )

v

(/\i(e)eDfS (avs (i(e)))!ah(si(e)’ bSi(e)))
/\(/\i(e)eRbSS (aVS(i(e)))*a;l(Si(e)’ bSi(e) ))

> OéfA(S, bS)

It is easy to check that for any map h: A — B in G*,

commutes. Hence o' : PosetdbTree — ( )*« is a natural transformation. Note that
o' : PosetdbTree — ()«
yields a functor & : g(PostdbTree(G)) — X which sends
h: (A, (T, br), vr)) = (B, (S, bs), vs))

to

&(h) : a'A(T, bT) — CM’B(S, bs),



where a(h) is given by the following commutative diagram in X:

0454 (T, bT)

= Y
9

(a(h))*(alg(S, bs)) e

Now it is routine to check that

g(Poset(dbTree(G))) —2> %

%] | Jax

G* _ X

commutes.

For any map h: A = B in G*, any (A, ((T,br),vr)) € 85'(A), and any

(Ba ((57 bS)’ VS))? (Bv ((QabQ)7VQ)) € 651(3)7

we have

a(Toorg) = (4, ((4,4),14))

= (a"(4,[], A))*(Ta;(l(a(A))) A(a*(4,] ]7A))!(T6;(1(a(/1)))

= Tsx(a(a)>

202
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and

(B, (S, bs),v5) A (B, (Q,bo). 7))
= &(B, (S + Q.bsio) vsta))
= (Acepgra (0vs10(€)@a((S + Qe bisray.)
Mhersze (@7s1a(€)'0s((S + Qe bssa.)

= d(B, ((S, bS)a VS)) N &(Bv ((Q7 bQ)’ VQ))v

since

S5+Q _ S Q
DbS+Q - Dbs U DbQ>

Rot@ =Ry URY,
a(h*(B, ((S,bs),vs))) = a(A,h™((S,bs),vs)))
= (aws(+))"a(S, bs)

= (a(h))"(@(B, ((S;bs), ¥s))),

and

a(h(A, ((T,br),vr))) = &(A, ((T,br),vr))
= (avr(—)ha(T,br)

= (a(M)(@(A, (T, br),vr))).
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Hence (o, &) : 0g — 0x satisfies conditions [sfM.1], [sfM.2], [sfM.3], and [rsfM.1]
and therefore (a, &) is also a map in rsFib,.

Assume that & : g(Poset(dbTree(())) — X is also a functor such that
(a, d’,) : 60 — (Sx

is a map in rsFiby. Let h : (A, ((T,br),vr)) — (B,((S,bs),vs)) be a map in
g(Poset(dbTree(G))). Then (A, ((T,br),vr)) < h*(B, ((S,bs),vs)). By [sfM.1],

dI(A’ ((4,4),1)) = d’(Taal(A)) = T«S)_cl(a(A)) = a(4, ((4, 4),1)).

We write

(Tv bT) = (+eEDZ"Te!(Te, bTe)) + (+eERZ"T e’ (Tea bTe))‘

Assume that &'(T,,br,) = &(T,,br,). Since (o, &') is a map in rsFiby, by [sfM.2],

[sfM.2], and [rsfM.1], we have

&(A,((T,br),vr)) = &((+eepp @(Tesbr)) + (Heerz €' (Lo b))
= (Aeepp &(e1(Te,b1.))) A (Acer & (€' (T2, b))
= (Acepp (avr(e))d(Te, br.)) A (Aeery (avr(e))d (T, br.))
= &((+eepg @(Te, br.)) + (+eery €' (Te: br.)))

= a(A, ((T,br), vr)).

Similarly, & (B, ((S, bs),vs)) = &(B, ((S, bs), vs)).
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For any map h : (A4, (T, br),vr)) — (B, ((S,bs),vs)) in g(Poset(dbTree(G))),

g(Poset(dbTree(G))) 4%

o 23

G* - X

is commutative,

Sx& (h) = adg(h) = a(h).

Hence, there is a unique map z : &(A, ((T,br),vr)) — &(A, h*((S,bs),vs)) in
6% (a(A)) such that 6x(z) = 14y and Jamyx = &' (h):

d(A, ((Ta bT), VT))
Ay _ -~ - a' (h)

(e(R))*a&(B, ((S, bs), vs)) Ba

&(Ba ((57 bS)’ VS))

% a(h‘)
a(h)

a(B)

and therefore the uniqueness of & follows. O
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Theorem 5.3.3 There is an adjunction:

Fr.f

rsFib, ~ . _ Graph
Uyt

with the identity unit ng = 1¢.

PRrOOF: For any direct graph G, clearly U,;F;¢(G) = G. ng = 1l¢ : G = Upp F4(G)
turns out to be the unit of F,; 4 U,. In fact, for any stable meet semilattice fibration
6x : X = X and any direct graph map o : G — U,(6x), by Lemma 5.3.2, we have

a unique map o¥ = (o, @) : d¢ — dx in rsFibg such that

G — 28U, Fy(G) F4(G)

T
\ lUrf(a#) 3 éa#
Y

Urs(dx) dx
commutes. Hence F,; - U,y with the unit ng = 15. 0
Srs
Theorem 4.1.11 states that there is an adjunction: rrCatq L _rsFiby. Hence we
Rrs

have the functor U,, = U,fR,s : rrCaty; — Graph and the functor Fyy = S, Ff :
Graph — rrCat,. By the adjointness of S,; 4 R,, and F.; 4 U,y, it is easy to see
that F,, 4 U,4. So we have:

Theorem 5.3.4 There is a commutative adjunction diagram:

rrCatg Graph
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So, for any directed graph G, F,;(G) is the free range stable meet semilattice fibration

over G and F,4(G) is the free range restriction category over G.

5.3.2 The Free Range Restriction Category over an Arrow

Let G be the directed graph displayed by A N B . Then G* is the path category

with
objects: A, B;
maps: 14 = (A,[],A): A— A, 15 =(B,[],B): B— B,(A,[f],B): A— B.

If ((T,br),vr) € dbTree(G, ), then there are no paths [m;, ms] in T since m; and
mgy must satisfy vp(m;) = vr(ms) = f. Obviously, dbTree(G, B) = dbTree(G, A)

is given by the set of all possible trees in G displayed as

with properly chosen bases (so that they are in dbTree(G, A) or dbTree(G, B)).

Since there are obvious maps:
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and
we have
Poset(dbTree(G, B)) = {((*,*),1), ((® —x,%),1)}
and

Poset(dbTree(G, A)) = {((*,*),¢), ((* —o,%),1)}.
Hence, we have the indexed category PosetdbTree : (G*)°° — msLat, and so by
Grothendieck construction, the free range stable meet semilattice fibration

0 : g(PosetdbTree(G)) — G*,

which is the forgetful functor, where g(PosetdbTree(G)) is the category with

objects: (A, ((x,*),1)), (A, (¥ —=o,%),1)), (B, ((*,%),4)),
(B’ (( ¢ —x%, *)7 1));

maps: a map from (¢, ((T,br),vr)) to (s, ((S,bs),vs)) isa map h : t — s in G*
such that

(tv ((T7 bT)7VT)) < h*(S, ((Sv bS)v VS))
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in (PosetdbTree(G, x))°, where t,s € {A, B}.
By Theorem 5.3.4, F.4(G) = S,,(0¢). Explicitly, F,4(G) is the category with
objects: the same as G*, namely, A,B;

maps: (h,0):t— s, where h:t — s is a map in G* and o € §;'(t) is such that
a S h*(—raal(s)),

where t,s € {A, B};
composition: (g,0)(h, o) = (gh, 01 A h*(02);
identities: 14 = (14, Taal(A)) = (1, ((%,%),¢)),1p = (1B, Taal(B)) = (1, ((*, %),1)).

Now, let’s look at the maps of F;,(G). It is easy to check that
(lA’ (A7 ((*a *)7 L))) tA— A,

(lA’(A7((*——>.7*)71))):A_>A,
(1p,(B, ((*,%),t))) : B— B,
(1Ba(B’((._>* 7*)’1))) :B— B,

and

((A’ [f]’B)’(A’(( *“—_>.,*),1))) :A— B
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are maps in Fy(G). But
((A,[f], B), (A, ((,%),1))) : A= B
is not a map in Fy,(G) since
(4, ((x,%),0)) £ (A, [f], B) (T gz () = (A, [f], B)'(B, ((x, %), 1))

The range and restriction structures are given by

e ——

(1Aa (A7 ((*a *)7 L))) = (1Av (A7 ((*7 *)’ L))) = (1A7 (A’ ((*’ *)7 [')))’

(1A7 (A’ (( *—o ’*)a 1))) = (1A’ (Av (( *—= o %), 1)))

= (1A7 (A’ (( kK——0 7*)’ 1)))7

(137 (Bv ((*’ *)’ l’))) - (13’ (B’ ((*’ *)7 L))) = (13? (B7 ((*a *), l’)))’

(15, (B, (¢ —=x*,%),1))) = (1p,(B,((¢—>*,%),1)))

= (1Ba (B, (( & ——>% 7*)7 1)))»

((4, 11, B), (4, ((* —9,%),1))))

(1/17 (A’ (( *—>0, *)7 1)))7

and

((Av [f]aB)a (A’ (( ¥ ——>o, *)’ 1))) = (1s, (Ba (( e —>x,%),1))).
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Write
(4,171, B), (A4, (¥ —=¢,%),1))) = f,
(La, (A, ((+,%),0))) = 1a,
(La; (4, (x—o,%), 1)) = f,
(18, (B, ((¥,%),4))) = 1,
and

(1Bv(B5((.—>*’*)’1))) = f

Then F,,(G) is the free range restriction category displayed by

M, O
A—B
(RN

with the obvious composition.

5.3.3 The Free Range Restriction Category over a Single Endoarrow

Let H be the directed graph displayed by e :/f Then H* is the category with e as
its unique object, with all possible trees displayed by e S et se o e-Tre as

maps, and with concatenation as the composition. If we denote the tree

f f f

o —>0 ——>0 v @ —>0

with n edges by n, then clearly, H* is the category (e, N) with the composition given

by +. We consider the free range restriction category over (e,N), which is F;,(H).
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We denote Total(Splitg(F,4(H))) by 7rN and take a quick look at its structure which
is quite interesting.

Let (T, *) be an arbitrary based tree, and let v send each vertex of T' to e and
each edge of T to f. Then clearly, ((T,*),vr) € bTree(H, o). If ((T,*),vr) €
Poset(dbTree)(H, o), then, by an easy induction on the number of edges in T,

((T, *), vr) can be displayed as

Fi, Fy, F,
! f !
! ! f
Fi, Fyky Fi i,
! 7 f
P SNV SN S Y SR, S SN, SO S |

where the integers m, s, ki, - - ks > 0 satisfy

ki>m+1+1or k; =0,

i=1,--+,s. We denote ((T,*),vr) by

(m,[(ki—=m~—-1)Vv0,(kg—m—-2)VO0,--, (ks —m —s) V0],

where sV ¢t denotes max(s, ).
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For example, (2,[1,2,0,0]) represents the following deterministic based tree:

o
.
o o
o o
o o
o o
o o * o . o o
while (0, [0,1,0]) and (0, []) represent
o
o
o
* ° ° ° and *

respectively. Obviously,

Poset(dbTree(H,e)) = {(m, [k1, - ,ks]) | m,s, k1, , ks > 0 are integers}.

Hence, we have the indexed category PosetdbTree : (H*)°®? — msLat, and so by
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Grothendieck construction, the free range stable meet semilattice fibration

Oc : g(PosetdbTree(H)) — H*,

which is the forgetful functor, where g(PosetdbTree(H)) is the category with
objects: (e, (m,[k1,--- ,ks])), where m,s, ki, -+, ks > 0 are integers;

maps: a map from (e, (m, [ki,- -, ks])) to (e, (n,[l,-++,1])) is a p € N such that

there is a map from p*(n, [I1, - - ,l;]) to (m, [k, - - , ks]) in PosetdbTree(H, o);
identities: 0;
composition: +.

By Theorem 5.3.4, F,,(H) = S,5(0n). Explicitly, F,4(H) is the range restriction

category with
objects: e,

maps: (p,(m, k1, - ,ks])): ® = o where p € N and

(m, [ky,- -+ , ks]) € Poset(dbTree(H, o))

with p < s,

composition:

((], (na [lla T ,lt]))(p, (ma [kla B ks]))

= (g+p,(m, [k, - k) Ap*(n, [ln, -+, 1])),
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identities: 1, = (0, (0,[])),

restriction: (p, (m, [k, -, ks])) = (0, (m, [k1, - - -, ks])),

e ——

range: (p, (m,[ki, -, ks])) = (0, p(m, [k1, -+ -, ks])),

where

0 ify=20
fy(x): Y

z otherwise

(mVn,lay, -, a,bi1, - ,bs]) ifs>t
(m, [y, - k) A ([l -+ b)) = S
(mVn,lay, -+ ,asCep1, - ,¢]) otherwise

with

a; = (fr,(ki+m+)V f,(li+n+i)—mVn—-1i)VO0,
bj=(fkj(kj+m+j)—mVn)v0,

and

ch(fzj(ljJrn—i—j)—mVn)VO,

p*(m, [kl’ R kS])

= (07 07"' 707(m_p)Vo’fkl(k1+m_p)\/07"' ’fks(ks_*_m*p)vo])’

p—1
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pr(m, [k, -+ k)
(W, [(frpss (kpr1 +m+p+1) —w) VO,---,
= (fr,(ks+m+s+1)—w)Vv0]),ifp<s

©,[]),ifp=s

with w = fy (ki +m+p) V-V fi,(ky +m +p).

By Theorem 2.3.7, rrN has the following properties:

e admits the (£, M)-factorization system which is pullback stable along M-

maps,
e has pullbacks along M-maps,

where

E={f: X oY inrN|f=1y}

and
M={m: X ->YinrrN3 r: Y — X inSplit,(F,,(H)), rm = 1x and 7ar = mr}.
The objects of rrN are restriction idempotents in Fy.,(H), namely,

(Oa (mv [kl’ T ks}))

with integers m, s, k1, -+ , ks > 0. Clearly, there are countably many objects in this
category.

A map (p, (u,[v1, -+, vg])) from (0, (m, [k, -, ks])) to (0, (n,[l1, -+ ,1])) must



satisfy

Hence, it is of the form

(pv (ma [k"la e aks])) : (0’ (mv [kb U aks])) — (0, (nv [llv e

such that
. (p,(m,[k1,+ ks 1)) o
(07(m7[k17'"7k8]))l ma[klv'" 7k8])) 1(07(n’[l11""lt]))
° N °

(pv(ma[kly'" 7k8]))

commutes, which means that

(m’ [kh T 7kS])

O M UNUSERNA)

= (0, 07 ,0,(n——p)VO,fll(l1+n—p)V0,,flt(lt—i—n—p)VO])

p—1

in (rrN)°P. Therefore, a map

(p’ (u’ [Ulv T avh])) : (Oa (ma [kl’ e ’ks])) - (Oa (TL, Ulv T

1)

217
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in Total(Splitg(F,,(H))) is given by integers p,u, vy, -, vy > 0 satisfying

U = m
h = s
uy = m
U = My
p+t < s
(n—-pv0o < k&
fll(ll-i—n—p)VO S k‘p+1
fulli+n—p)vO0 <k

Clearly, only finitely many possible p’s exist or no such p exists, and so

[rrN((0, (m, Do, -+ K1), (0, ([l -+ 1)) ) | < +oo.

Also, given (0, (n, [l1,---,1])) and (p, (u, [v1,- -+ ,vp])), one can easily decide whether
or not (p, (u, [v1,- - ,vs])) is a map from (0, (u, [v1,---,vp])) to (0, (n, [l1, -, L]))-
For example, it is easy to see that (1,(1,(2,1,1])) : (0,(1,[2,1,1])) — (0,(1,[1,1]))

is a map in rrN. So rrN has also the following properties:
e has infinitely many objects,

e cach map set T‘TN((O, (m, [k1, -+ ks))), (0, (n, Iy, - - ,lt]))) is finite and decid-
able.
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Finally, let’s illustrate how to find the (£, M)-factorization of a given map by using

the map

(1,(1,12,1,1])) = (0,(1,2,1,1])) = (0, (1, [1, 1])).

—

Clearly, (1, (1,[2,1,1])) = (0, (4,0, 0])) and (0, (4,[0,0])) can be split as

(0, (4,[0,0])) = (0, (4,[0,01))(0, (4, [0, 0])).

Hence

—

(17(17[27171])) = (1’(17[27171]))(1a(17[271’1]))
= (0,(4,[0,01))(0, (4,[0,0]))(1,(1,[2,1,1}))

= (0’ (47 [O’ 0]))(1’ (L [27 L, 1]))7

which is the (£, M)-factorization of (1,(1,[2,1,1])) by Theorem 2.3.7. So, rrN is

quite surprising and interesting.



Chapter 6

Conclusions and Further Work

In this thesis, we abstract the notion of partial maps over a system of monics which
are part of a factorization system as a range restriction category by axiomatizing both
domains and ranges of partial maps and study their properties. Range restriction
categories fill out the theory of restriction categories in a particular direction. In this

chapter, we provide some concluding remarks and considerations for further work.

6.1 Main Results

The main results we obtained in this thesis are summarized as follows.

1. Range Restriction Categories are Equivalent to Partial Map Categories

Theorem 2.2.5 states that if C is a category with (€, M)-factorization system
which is pullback stable along M-maps with M C {monics in C} and if C has
pullbacks along M-maps, then Par(C, M) is a range restriction category with the

split restriction structure.

Theorem 2.3.7 states that if C is a range restriction category, then Total(Split;(C))
admits the (£, M)-factorization system which is pullback stable along M-maps

and has pullbacks along M-maps, where & = {f : X — Y in Total(Split;(C)) | 7

ly} and M = {m: X — Yin Total(Splitz(C)) |3 r : ¥ — X in Splitg(C), rm =
1x and o7 = mr}. Thus, each range restriction category can be embedded into

a partial map category.

220
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Theorem 2.3.8 states that the category of range restriction categories with split

restriction is 2-equivalent to the category of M-stable factorization systems.

. Restriction Categories and Stable Meet Semilattice Fibrations

Each restriction category gives rise to a stable semilattice fibration (Lemma
3.2.3). Conversely, each stable semilattice fibration produces a restriction struc-
ture (Proposition 3.2.4). In this direction, relationships established in this thesis

can be summarized by the following commutative diagram of adjunctions:

rCat, Graph.

. Range Restriction Categories and Range Stable Meet Semilattice Fi-

brations

Each range restriction category gives rise to a range stable meet semilattice fibra-
tion (Lemma 4.1.2). Conversely, for each range stable meet semilattice fibration

ox : X = X, S,,(X) is a range restriction category (Proposition 4.1.4). We also
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showed that there is an adjunction:

S’I‘S

———e

rrCat, : _rsFibg

—

Rrs
with a faithful functor R,; (Theorem 4.1.11).

4. Free Range Restriction Categories over Directed Graphs

We provide an explicit construction of the free range restriction categories over di-
rected graphs using deterministic based trees (Theorem 5.3.4) and give an explicit

description of the free range restriction category generated by a single endomap.

6.2 Further Work

We list here some possible directions for future work and some questions to which

we would like to know the answers.

1. The biggest gap in this thesis is the construction of the free range restriction
categories over arbitrary categories. This construction would provide not only
a left adjoint to the forgetful functor U,, : rrCaty — Catg, but also a class of
examples of range restriction categories. For general reasons, the adjoint exists.

However, giving a detailed description was beyond the scope of the thesis.

2. A crucial technique of the thesis was the use of fibrations to construct (range)
restriction categories. The structure of these categories of fibrations was not

studied in any detail.

3. The thesis describes a number of adjunctions (e.g., Theorems 3.2.28 and 5.3.4),
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but does not study the monadicity or Eilenberg-Moore algebras of those adjunc-

tions. This is a gap that could be filled in the future.

. Bach category C gives rise to a topological functor | : C°® — Top (Proposition
3.2.19). This functor gives the free stable meet semilattice fibration Ac which
produces the free restriction category over C. The connection between restriction

categories and topology needs further investigation.

. Let X be a restriction category, and A an object of X. ¢4 : RA — A is a
classifier at A if ¢4 is a restriction retraction and every map with codomain A
factorizes through ¢4 by a unique total map. A restriction category is a classified
restriction category if it has a classifier at every object. In [8], Cockett and Lack
studied classified restriction categories and showed that the category of classified
restriction categories in which the restriction idempotents split is equivalent to

the category of classified M-categories (i.e., having an M-partial map classifier).

We call a range restriction category classified if it is classified as a restriction
category. It would be interesting to explore the analogous results proven in [8] for

range restriction categories.
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trivial restriction, 119

functor, 9
inverse-image, 65
pseudo-, 13

range restriction, 27
restriction, 20

Grothendieck construction, 65

indexed category, 63
restriction, 118
trivial restriction, 119

inverse semigroup, 19

isomorphism, 9

monic, 9

natural isomorphism, 10

natural transformation, 9
range restriction, 27
restriction, 20

opfibration, 59

path, 170
oriental, 170
undirected, 170
poset reflection, 190

range structure, 23
trivial, 23

restriction idempotent, 14
split, 15
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restriction structure, 13
split, 15
trivial, 18
retraction, 9

section, 9

stable meet semilattice homomorphism,
16

subcategory, 8

system of monics, 28

total map, 14
tree, 170
— over a directed graph, 174
directed, 170
based, 171
— over a directed graph, 174



