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Abstract

A broad range of topics concerning fuzzy logic svstems. nonlinear system identifi-
cation and adaptive control are addressed in this thesis to achieve our main objective.
which is to develop effective and reliable fuzzy logic approaches for identification and
control of ill-defined. nonlinear dynamic systems.

First. improvements are made of existing fuzzy logic systems. which include
defining two on-line quantitative measures for [F-THEN rule performance. and in-
troducing a statistical confidence measure for approximation accuracy of FLS es-
timators. To facilitate on-line applications. a simplification is proposed of fuzzy
inference computation. and the bounds of approximation errors are derived. Next.
a complete procedure is presented for formulating expert knowledge based fuzzy
logic controllers. and experimental results are demonstrated on a real mechanical
system. The empirical FLC is also compared with PD controllers. and their respec-
tive properties discussed. Following is an optimal training scheme for fuzzy logic
systems which combines a backpropagation algorithm with a least square estimation
technique. svnergistically combining them.

Observing the fact that the fuzzy logic systems being used to date are static in
nature while the physical systems of interest are generally dynamic. a novel fuzzy
logic system structure, the DFLS, which is characterized by inclusion of dvnam-
ics. is proposed. and its universal approximation property proved. Based on the

DFLS. an identification algorithm is further developed. and its stability proper-

il



ties analysed theoretically. Its application to nonlinear. ill-defined dynamic systems
is illustrated via a variety of examples, where the significance of human expert
knowledge in improving system performance is demonstrated and a comparison of
performance between DFLS and FLS identifiers is presented. In addition. a novel
DFLS based indirect adaptive control scheme is developed. and its closed loop svs-
tem performance and stability properties theoretically analysed. Two approaches
are presented to estimate an unknown control gain function. g. One is based on a
self-tuning scheme. the other is a FLS approach, and their respective properties are
discussed. The DFLS adaptive control algorithm is applied to a variety of nonlinear
systems. including a real mechanical system. and satisfactory results are observed
in all situations. which demonstrates the effectiveness of the proposed control ap-
proach in dealing with nonlinear. ill-defined systems. Finally. a recurrent DFLS. the
RDFLS. is introduced. its universal approximation property proved. and a RDFLS
based stable identification algorithm developed. The stability properties of the RD-
FLS identifier are theoretically analysed. and its application to nonlinear systems is

demonstrated via simulation examples.
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Chapter 1

Introduction

1.1 General Background

Evolution in the regime of automatic control has been fueled by three major needs
[5. 6}: the need to deal with increasingly complex systems. the need to satisfy in-
creasingly demanding design requirements. and the need to attain these requirements
with less precise advanced knowledge of the plant and its environment.

Control of well-defined linear svstems is a mature subject with a variety of pow-
erful methods and a long history of successful industrial applications [66. 120]. In
countrast to this. constructive procedures similar to those available for linear syvstems
do not exist for nonlinear systems [L15]. Even so. the development and application
of control methodologies for nonlinear systems have their own merits which are not
undermined by the existence of these well developed methodologies for linear sys-
tems [151]. For example, linear control methods rely on the key assumption of small
range operation for the linear model to be valid. When the required operation range
is large. a linear controller is likely to perform very poorly or to be unstable. because

the nonlinearities in the system can not be properly compensated for. Nonlinear con-
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trollers. on the other hand. may handle the nonlinearities in large range operation
directly. and result in improved control systems. Also. there are many nonlinearities
whose discontinuous nature does not allow linear approximation. These so-called
hard nonlinearities include Coulomb friction. saturation. dead-zones. backlash. and
hysteresis. and are often found in control engineering. Their effects can not be dealt
with by linear methods. and nonlinear analysis techniques must be developed to pre-
dict a svstem’s performance in the presence of these inherent nonlinearities which
frequently cause undesirable behavior of the control systems. such as instabilittes or

spurious limit cycles.

Fundamental to system analysis and control is the characterization of the system
of interest by mathematical expressions. or so called system modeling. System mod-
els can be obtained either by manipulating mathematical descriptions of physical
laws governing a particular svstem or by extracting system mapping information
from experimental input-output data sets of the system. The former approach is
generally referred to as analytical modeling. the latter as identification. \With ili-
defined. nonlinear systems. the effectiveness of the analytical modeling approach is

severely limited and consequently. identification approaches have been developed.

Among various active research areas in the regime of identification and con-
trol of ill-defined. nonlinear systems. the fuzzy logic approach distinguished itself
by its impressive successes in wide spectrum of practical applications. and by its
capability to systematically incorporate human linguistic information into control
and identification system design. Nevertheless, the fuzzy logic approach still faces
many challenges. It has even not been viewed as a rigorous science by some people
[126. 127] due to the lack of formal synthesis techniques in system design which
guarantee the basic requirements of global stability and acceptable performance.
The design of fuzzy logic svstems has been ad hoc and their parameters often must

be maunually adjusted on a trial and error basis. It is the purpose of this work to ad-



dress some of the challenges in the regime of identification and control of ill-defined.

nonlinear systems using the fuzzy logic approach.

1.2 Research Objective

The objective of this research is to develop effective fuzzy logic approaches for iden-
tification and control of nonlinear, ill-defined dvnamical systems. This includes
investigation of current fuzzy logic systems. identifving their weaknesses. making
necessarv improvements. and developing fuzzy logic based identification and con-
trol approaches that can be more effective and reliable in dealing with nonlinear.

ill-defined dynamic syvstems to achieve better performance.

1.3 Thesis Outline

An overview of the issues related to this research is introduced in next chapter. A
briet theory of fuzzy sets and fuzzv logic is presented in chapter 3. Following this.
in chapter 4. is a detailed introduction of fuzzy logic systems (FLS) that is directly
related to our later development.

In chapter 5, improvements to current fuzzy logic systems are presented. First.
two simple quantitative measures are defined and integrated into fuzzy logic syvs-
tems. which can indicate certain difficulties with IF-THEN rules and increase the
reliability of the corresponding fuzzy logic systems. Next. a statistical confidence
measure. the confidence interval. is introduced for fuzzy logic systems used in func-
tional approximation problems. and is used to indicate statistical confidence of the
approximation accuracy of both overall FLS output and prediction of individual
IF-THEN rules. Following is a simplification of fuzzy inference computation for an

important type of FLS. This results in a significant increase of calculation speed.



which is verv important for on-line control applications. The bounds of approxima-
tion errors are derived in closed form and their values also tabulated for applications

of potential practical interest.

Chapter 6 investigates the application of the theory of fuzzy sets and fuzzy logic
to automatic control. where a complete procedure to formulate expert knowledge-
based fuzzy logic controllers (FLC) is presented. It is demonstrated that human
knowledge can be effectively incorporated into fuzzy logic systems to produce prac-
tical controllers. In addition. the mathematically formulated fuzzy logic controllers
are amenable to treatment by powerful analytical tools and can be subsequently im-
proved and analysed theoretically. by using the approaches developed in the following
chapters. The empirical FLC and PD (proportional-derivative) control approaches

are comipared and experimental results are included.

Complementing the selection of fuzzy logic system parameters by expert knowl-
edge or trial and error as in the cases of chapter 6. an optimal fuzzy logic svstem
training approach is introduced in chapter 7 which combines a backpropagation (BP |
training algorithm with a least squares estimation technique. The resulting optimal
LSE-BP training scheme avoids the weaknesses of both LSE and BP approaches

while combining the strength of both.

Following observation of the fact that the fuzzy logic systems being used to date
are static in nature while the physical systems of interest are generally dynamic. a
novel fuzzy logic system structure, the DFLS, which is characterized by inclusion of
dynamics. is proposed in chapter 8. and its universal approximation property proved.
Based on the DFLS. an identification algorithm is further developed and its stability
properties analysed theoretically. Its application to nonlinear. ill-defined dvnamic
syvstems is illustrated via a variety of examples in which the significance of human
expert knowledge in improving system performance is made clear. and comparisons

of performance between DFLS and FLS identifiers are also demonstrated.



Following this in chapter 9, a novel DFLS based indirect adaptive control scheme
is developed. and its closed loop system performance and stability properties theo-
retically analysed. Two approaches are presented to estimate an unknown control
gain function. ¢: one is based on a self-tuning scheme, the other is a FLS approach.
The DFLS adaptive control algorithm is applied to a variety of nonlinear systems
including a real mechanical system, and satisfactory results are observed in all sit-
uations. which demonstrates the effectiveness of the proposed control approach in
dealing with nonlinear. ill-defined systems. The potential advantages of the DFLS
based controllers over static FLS based controllers are also discussed.

A recurrent DFLS. the RDFLS. is introduced in chapter 10. and its universal
approximation property proved. Further. a RDFLS based stable identification algo-
rithm is developed. its stability properties theoretically analysed. and its application
to nonlinear svstems demonstrated via simulation examples.

This work 1s concluded in chapter 11. where the major contributions of this
research are highlighted. and possible topics as a continuation of this work are
suggested.

A dynamic model of a flexible single link robotic manipulator is developed in
appendix A. Although presented as an appendix. it is an integral portion of this
research because it provides not only an important vehicle for simulation and exper-
imental demonstration of the theory. but the derivation process itself also provides
much insight into the mathematical model and provides clues for the formulation of
the research plan in the early stages of this work.

The experimental setup, which is a flexible single link robotic manipulator. is
described in appendix B.

A list of publications resulting from this research and up to the date of prepara-

tion of this manuscript is presented in appendix C.



Chapter 2

A Brief Overview of Modeling and

Control of Nonlinear Systems

2.1 Conventional Methodologies

2.1.1 Control Techniques for Nonlinear Systems

[n the analysis and control of nonlinear systems. although there are currently no
mature. general methods for obtaining reliable controilers. there is. nevertheless. a
rich collection of alternative and complementary techniques. each best applicable
to particular classes of nonlinear control problems [59. 119. 151]. These techniques
may be loosely classified into two groups. One includes conventional techniques
such as trial and error. feedback linearization. robust control. adaptive control. and
gain scheduling. The other covers the techniques in the realm of intelligent control
systenis. such as artificial neural network approaches. fuzzy logic approaches. genetic
algorithm methods. and so on. [130, 132, 187. 198]. In this section, we briefly review
the basic conventional control techniques; the other type of control methedologies
is reviewed in later sections.

For the first group suggested above. Slotine and Li {151] presented a comprelien-

sive. easy to follow and up to date tutorial on various methods. which the interested
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reader can consult for more details. The brief introduction to major nonlinear con-
trol techniques we give here is primarily based on [151].

The idea of the trial and error approach is to use analysis tools. such as the phase
plane method. the describing function method. and Lyapunov analysis to guide the
search for a controller which can then be supported by analysis and simulations.
Experience and intuition are critical in this process. However. for complex systems.
trial and error often fails.

The feedback linearization approach first transforms a nonlinear svstem into a
(full or partial) linear system. and then uses the powerful linear design techniques
to complete the control design. Although successful in solving a number of practical
nonlinear control problems. it is not applicable to non-minimum phase systems and

does not guarantee robustness in the face of parameter uncertainty or disturbances.

The idea of robust nonlinear control is to design controllers based on the con-
sideration of both the nominal model of the plant and some characterization of the
model uncertainties (such as the knowledge that the load to be picked up by a robot
is between 2 kg and 10 kg). This method has proven very effective in some practical
control problems. but is applicable to primarilv specific classes of nonlinear systems
and i1~ subject to weaknesses such as chattering and requirements for large control
authority.

Adaptive control is an approach to deal with uncertain or time-varying systems.
Although the term “adaptive” is broad in meaning, current adaptive control designs
apply mainly to systems with known dynamic structure but unknown constant or
slowly varving parameters.

Gain scheduling is a technique in which the well developed linear control method-
ology is applied to the control of nonlinear systems. The idea is to select a number
of operating points which cover the range of system operation. and at each of these.

the designer makes a linear time invariant approximation to the plant dynamics and
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designs a linear controller for each linearized plant. Between operating points. the
parameters of the compensators are interpolated, or scheduled, thus resulting in a
global compensator. This method is conceptually simple, and also practically suc-
cessful for a number of applications. But it has only limited theoretical guarantees
of stability in nonlinear operation. and its computational burden is excessive. due

to the necessity of computing many linear controllers.

2.1.2 Identification Approaches for Nonlinear Systems

Svstem modeling is fundamental to system analysis and high performance controller
design!.

Svstem modeling has two basic paradigms. analvtical modeling and nonanalyt-
ical modeling. In analytical modeling. a svstem model is obtained from equations
derived [rom physics. e.g.. using Kirchhoff's laws to obtain the dynamic mode! of
an electrical system. using Newton's second law for a mechanical system. and so
on. However. it is well known that analytical modeling can be severely hampered
by complexity of the physical systems to be modeled. or by the physical processes
underlyving a phenomenon being unavailable or even unknown. rendering analvti-
cal modeling impossible. The complexity may be due to inherent nonlinear and
nou-stationary aspects. and is difficult to handle effectively with current controller
design and stability analysis techniques. To address these difficulties. identification
approaches have been developed.

A vast literature exists on the characterization of nonlinear functionals. Some
excellent tutorial surveys are available for reference [8. 14. 46. 106].

The most systematic approach to nonlinear system identification is that of Wiener

[191. 192]. which involves Laguerre and Hermite series expansions to model the dy-

'There are some excellent comments presented in [114. section 1.4] about the relationship

between system modeling and control, which the interested reader may refer to.



namics and the nonlinear aspects, respectively. The model outputs are formed as an
infinite series of products of Hermite polynomials in the Laguerre coefficients of the
past of the input. A problem with this approach is the large number of coefficients
to be estimated. Actually. this is such an important restriction that the method is
rarely implemented {63].

A nonlinear system representation with potential for time domain as well as
frequency domain applications is provided by the Volterra kernel representation.
which leads to multilinear extensions of the transfer function notions used in linear
systems ‘791 This method. however. is difficult to extend to systems with feedback.
and i~ for thix reason of limited value [63].

For svstem control purposes. two classes of identification techniques have been
found particularly useful in practical applications.

One class of identification techniques assumes a system dynamic structure with
unknown parameters. and then adjusts its parameters so as to minimize the errors
hetween the phvsical process and the model outputs in some optimal sense. The
most successful examples of this kind are in the class of model reference adaptive
control and self-tuning regulators (7. 41. 114. 151]. However. it is also known that
this kind of approach generally suffers from such weaknesses as the requirement for
explicit a priori knowledge of model structure. and ineffectiveness in dealing with
intrinsic svstem nonlinearities [65. 151].

Another class of popular identification techniques that has recently emerged ix
that with universal nonlinear approximation capabilities, such as Artificial Neural
Networks (ANN) and Fuzzy Logic Systems (FLS). This class of approaches views a
physical system as a black box and identifies unknown system mappings based only
on input-output data sets, and thus neither requires a priori knowledge of system
structure. nor is impaired by the presence of nonlinearities and unknown internal

dynamics. Methodologies of this kind will be introduced in the following sections.
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2.2 Intelligent Techniques

The concept of intelligent control was introduced close to two decades ago by Saridis
[146]. and is recently gaining in recognition and visibility in the control systems es-
tablishment [187. 198. 207]. According to Astrém and McAvoy [187. Chapter 1]: an
intelligent control system has the ability to comprehend. reason. and learn about pro-
cesses. disturbances, and operation conditions. Factors that have to be understood
and learned are primary process characteristics like static and dynamic behavior.
characteristics of disturbances. and equipment-operating practices.. It would bhe de-
sirable if this knowledge was acquired and stored in such a way that it can be used
and retricved. It would also be desirable that a system can autonomously improve
upon it~ performance as experience is gathered.

Although it appears that current control systems have a long way to go before
they can qualify for the title of “intelligent control systems”. impressive progress
has been made due to the emergence of such methodologies as fuzzy logic. artificial
neural networks. genetic algorithms. and so on [110. 130. 132. 187. 198. 207" In the

following. we present a brief overview of these subjects.

2.2.1 Artificial Neural Networks

The idea of a neural network was originally conceived as an attempt to model the
biophysiology of the brain. i.e., to understand and explain how the brain operates
and functions. The goal was to create a model capable of human thought processes
[4. 105]. Today. there are two different, not always disjoint, groups of people ex-
ploring neural networks. The first group is composed of biologists, physicists and
scientific psychologists who work toward developing a neural model that accurately
mimics the behavior of the brain. The second group consists of engineers who are

concerned with how artificial neurons can be interconnected to form networks with
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interesting and powerful computational capabilities [39. 108, 112]. This second group
treats the biological models as a functional starting point for research. which is the

approach of interest for control engineers.

Two classes of neural networks have received considerable attention in recent
vears. One is multilayer feedforward neural networks [32. 40. 32, 108. 121. I44.
135]. the other is feedback. or recurrent. neural networks [49. 30. 76. 77. 78. 95i.
[n a feedforward network. the output of any given neuron can not be fed back
to itself directly or indirectly. and so its present output does not influence future
outputs. When an input pattern is presented to the input terminals of a network.
the neurons in the first layer compute output values and pass these values onto
the next layver. Each laver in turn receives input values from the previous laver.
computes output values and passes these values on to the next laver. When the
output values of the final layver are determined. the computation ends. This rule
can be violated only during the training phase. when the output of a neuron can
be used to adjust its weights. thus influencing future outputs of the neuron. In a
feedback network. any given neuron is allowed to influence its own output directly
through self-feedback or indirectly through the influence it has on other neuruns
from which it receives inputs. Classically. multilaver feedforward networks have
proven extremely successful in pattern recognition problems [23. 43. 148. 190] while
recurrent networks have been used in associative memories as well as for solution of

optiniization problems [49. 51, 140. 162].

The ANN possesses some important characteristics [39, 56. 112]. First. a number
of results have been published showing that a multilayer feedforward neural network
can approximate arbitrarily well a continuous function [32, 40, 52]. Second. ANN has
a highly parallel structure which lends itself immediately to parallel implementation.
while the basic processing element in a neural network has a very simple structure

so that with these together. fast overall processing can be achieved for a neural



network. Third, ANN has learning and adaptation ability.

ANNs have either fixed weights or adaptable weights. Networks with adaptable
welghts use learning laws to adjust the values of the interconnection strengths. If
the neural network is to use fixed 'veights. then the task to be accomplished must
be well defined a priori. The weights are determined explicitly from the description
of the problem. Adaptable weights are essential if it is not known a priori what the
correct weights should be.

There are two types of learning: supervised and unsupervised. Supervised learn-
ing occurs when the network is supplied with both the input values and the correct
output values. and the network adjusts its weights based upon the error of the com-
puted output. Unsupervised learning occurs when the network is only provided with
input values. and the network adjusts the interconnection strengths based solely on
the input values and the current network output. Details of various learning algo-
rithms may be found in {39. 108. 112].

I the regime of control engineering. if an ANN is used to model an unknown
plant. it i+ an identifier in the conventional sense. and if it is used to generate con-
trol signals directly. it assumes the role of a controller. Both multilayver feedforward
neural networks and recurrent neural networks have shown great potential in deal-
ing with nonlinear systems [29. 30. 70. 71. 83. 110. 1153. 116. 133. 133. 145. 135].
Among various types of neural networks and training approaches. the multilayver
feedforward neural network equipped with a backpropagation training algorithm
has been particularly enthusiastically received among researchers for being simple

vet effective.

The backpropagation algorithm, which is gradient based learning in general.
was developed by Werbos in 1974 [185] but was not much noticed until it was
rediscovered and popularized by Rumelhart et al. in 1936 [144]. It is now probably

the most widely used training strategy for artificial neural networks. This method
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computes local errors from the global errors. and in turn uses the local errors for
local adaptation by means of gradient search techniques.

The basic approaches reported in the literature for applying ANNs in control
include supervised control. direct inverse control. neural adaptive control. back-
propagation through time. and adaptive critic methods [110. 187].

In supervised control. ANNs are trained on a database that contains the correct
control signals to use in sample situations. i.e., ANNs are trained to copy an existing
controller [110. 187]. But this approach requires the existence of a database of sensor
inputs and desired actions.

In direct inverse control. ANNs directly learn the mapping from desired trajec-
tories (e.g. of a robot arm) to the control signals which yield these trajectories te.g.
joint anglesy {44. 110. 187]. This approach was originally proposed by Widrow et al.
(197>, 1936 (138, 139!} for the adaptive control of linear systems. and was demon-
strated to be applicable to the control of nonlinear systems by Psaltis et al. (1933}
(135, A major problem with inverse identification arises when many plant inputs
produce the same output. i.e.. when the plant’s inverse is not well defined. In this
case. the network will attempt to map the same network input to many different
targel responses.

In neural adaptive control. neural networks are used to identify the unknown
nonlinear systems. and adaptive control schemes are synthesized based on the iden-
tified system models [70. 71, 110, 115, 116, 187].

In backpropagation through time. the user specifies a utility function or perfor-
mance nieasure to be maximized. and a model of the external environment. Back-
propagation is used to calculate a “derivative of utility” summed across all future
times with respect to current actions. These derivatives are then used to adapt the
ANN which outputs the actions. or to adapt a schedule of actions [185. 136]. But

this approach requires a model of the external environment which must be noise-
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free and exact. Also. it requires calculations backwards through time. which is not
consistent with true real-time learning {110, Chap.2].

In adaptive critic methods. the user supplies a function or measure to be max-
imized. The long term optimization problem is solved by adapting an additional
ANN. called a critic network. which evaluates the progress that the system is mak-
ing. The network which outputs the actions is adapted to maximize this secondary
utility function in the immediate future {110. 187].

Although successful. the ANN suffers from such weaknesses as its parameters
generally lacking explicit physical meaning. and it can not effectively utilize linguistic
information about the behavior of the systems of interest that may be provided by
field experts.

The weaknesses of the ANN are exactly the strong points of another approach

in the class of intelligent control techniques — the fuzzy logic approach.

2.2.2 Fuzzy Sets and Fuzzy Logic

The idea of the fuzzy set was introduced by L.A. Zadeh in 1965 [204] as a general-
ization of the idea of an ordinary or crisp set. Crisp sets allow only full membership
or no membership at all. while fuzzy sets allow partial membership. i.e.. fuzzy sets
allow for the description of concepts in which the boundary between having or not
having a certain property is not sharp. The application of the fuzzy set concept in
traditional logic resulted in the development of fuzzy logic, which was first outlined
in the seminal paper [206] by Zadeh in 1973. Since then, the theory of fuzzy sets and
fuzzy logic (or fuzzy logic in short) has found many applications in a variety of sub-
ject fields. such as in control engineering, artificial intelligence. management/society.
and so on [101. 130. 132. 156. 163. 187. 197. 198].

As pointed out by Pedrycz [130]: The role of fuz:y sets as a general and fun-

damental principle of processing of nonnumerical (nonpointwise) information is not



restricted to a specific field and. essentially. can be embedded. to a certain ertent.
into almost any area requiring human erpertise or calling for the formalization of
linguistic specifications and that of relevant knowledge. Terano et al. [163] presented
an excellent overview of applications of the theory of fuzzy sets and fuzzy logic in
various flelds. which the interested reader may consult for more details.

In this work, our primary interest lies in the regime of control engineering and
we restrict out scope of discussion accordingly.

For most engineering systems. there are two important information sources: sen-
sors which provide numerical measurements of variables. and human experts who
provide linguistic instructions and descriptions of the systems. The information of
the first tvpe is called numerical information. and the second is called linguistic
information. which 1s usually represented in fuzzy terms. Conventional engineer-
ing control approaches and ANNs. can make use of only the numerical information
and have difficulty incorporating linguistic information. In contrast to this. the
fuzzv loeic approach provides a svstematic and efficient framework for incorporat-
ing linguistic descriptions of human expert knowledge into the design of automatic
controllers,

The literature on fuzzy logic based identification and control has been growing
rapidlv. making it unfeasible to present a comprehensive review of this vast field.
Here. rather than a comprehensive review. we synthesize the published works and
give a brief introduction to the history and applications of fuzzy logic based iden-
tification and control. More detailed surveys and commentaries may be found in
[60. 67. S». Y7. 102, 109. 164, 166].

Generally. if a fuzzy logic system is used to model an unknown plant. it is an
identifier in the conventional sense, and if it is used to generate control signals for
the plani. it assumes the role of a controller.

Fuzzy lugic control systems were proposed in the early seventies [27. 205. 206].
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Credit is due mainly to the seminal article by Zadeh in 1973 [206] on a new approach
to the analvsis of complex systems that the basic theory upon which fuzzy logic con-
trollers would be built was formulated. The first fuzzy logic controller (FLC) was
develuped and published by Mamdani and Assilian the following vear {99. 103. 104}
to control a laboratory model steam engine. Since then, FLC has been successfully
applied to control various complex and ill defined systems and industrial processes.
such as aircraft flight control [86], automobile speed control [113], train operation
svstem control [201]. continuous casting plants control [10]. polymer extrusion pro-
duction control [435]. cement kiln control [169]. water purification process control
199", aud manyv others [11. 87. 104. 153. 136. 210]. The successful application of
FLC 10 a variety of consumer products [129. Chap.4} such as: FLC tuned televi-
sionis. focused and stabilized camcorders. washing machines. defrosting refrigerators.
and scheduled traffic lights. has impressed the general public and contributed to the
current interest in fuzzy logic theory.

The impressive successes of the fuzzy logic control approach is based on intrinsic
advantages of this approach over conventional control approaches for many applica-

tions. As indicated by Mamdani. et al.

e The main merit of a FLC is that it gives the most efficient knowledge rep-
resentation method that can be devised for rule based systems that deal with

continuous variables {102].

o ['he busic idea behind this approach was to incorporate the “erperience” of a
human process operator in the design of the controller. From a set of linguis-
tic rules which describe the operator’s control strategy a control algorithm s
constructed where the words are defined as fuszzy sets. The main advantages
of this approach seem to be the possibility of implementing “rule of thumb™

erperience. intuition, heuristics, and the fact that it does not need a model of
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the process [73].

For example. human operators can very successfully control complex, highly uncer-
tain systems. such as aircraft, without reference to a precise (or any) mathematical
model. If asked what control strategies they followed, they describe their expertise
linguistically. in a fashion which can be summarized into a set of fuzzy control rules
in linguistic terms. e.g..
IF SPEED IS TOO SLOW. THEN INCREASE FUEL. ...

Although these linguistic descriptions and fuzzy control rules are not precise and
may even not be sufficient for constructing a successful automatic controller. they
certainly provide very important information about the system behavior and the
ways to control the svstem. which can be effectively integrated into controller de-
sien~ by the tuzzy logic approach.

From another point of view. in many situations if precise solutions are sought
the problems may become intractable. A typical example of this type is the prob-
lem of parking a car [207]. We solve this problem every day without making any
measurements. We can do this because the final position of the car is not specified
with precision. If it were. the cost of solution would be prohibitive. As pointed out

recently by Zadeh [207] :

o [n cffect. it is the human ability to erploit the tolerance for imprecision that
makes it possible to achieve tractability. robustness, and low solution cost. This
is what the conventional methods of system analysis and control fail to do.

This is exactly what the fuzzy logic approach is all about.

From the aspect of control engineering. linguistic information from human ex-

pert~ can be classified into two classes [130. Chap.8].{184. Chap.§] :

1. Describe control actions from given system states. For example. consider the

situation of driving a car in which the linguistic information of this kind is in



the form of “IF the speed of the car is slow. THEN give more gas™.

2. Describe the behavior of the unknown plant. With the car again, the linguistic
information of this second kind is given as “IF more gas is given. THEN the

speed of the car will increase”.

Classically. fuzzy logic controllers have been designed by directly utilizing lin-
guistic information of the first type. and an overwhelming body of literature deals
with a form of nonlinear fuzzy proportional-derivative-integral control for set point
regulation problems. such as the applications presented. among others. in {39. Yx.
99. 101. 103. 156. 164. 196. 209]. But this kind of fuzzy logic control approach
generally lacks formal synthesis techniques which gﬁarantee the basic requirements
of global stability and acceptable performance. The design has been ad hoc. and
controller parameters often must be manually adjusted by trial and error. These
weaknesses have drawn some criticism of the fuzzy logic approach as not being a
rigorous science {126, 1271

Tu address these difficulties. efforts have been made to develop stability analysis
techniques for fuzzy logic systems, to integrate training algorithms into fuzzy logic
systenis to automatically adjust their parameters (and structures) based on numer-
ical information. and to integrate conventional synthesis and design techniques into
the design and analysis of fuzzy logic control systems.

To study the stability of fuzzy logic systems. various approaches have been de-

veloped. which include. among others. the following examples.

e Kickert and Mamdani (1978) [73] developed a multilevel relay model of their
proposed fuzzy controller and used classical describing function techniques to
study the stability problern. But the describing function method is generally
used to determine the existence of periodic oscillations in nonlinear systems.

It is an approximate method at best and does not directly address the issue
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of stability.

Braae and Rutherford (1979) [22] developed the notion of the so called gran-
ularized state-space. and proposed a method of analysis based on systematic

mapping of the process state. using control rules as transition functions.

Kiszka et al. (1985) (74} proposed an energistic approach which was based
on a measure of the energy of a closed loop fuzzy dynamic svstem. In this
approach. the notions of stability and robustness are intertwined. and the
closed loop system is considered robustly stable if a fuzzy energy function can

be found consistently decreasing along the solution trajectories of the system.

Chen 119891 1311 applied the concept of cell-to-cell mapping to the analyvsis of
stability of fuzzy control systems. See also Kang (1993) [68}. This approach.
however. requires an accurate mathematical model of the process. which con-
tradicts the basic premise of the fuzzy logic control approach. i.e.. to deal with
a complex and/or ill-defined system without knowing a priori its precise math-
etnatical model. Also. well defined systems may be dealt with more efficient!v
with the many powerful and well developed conventional identification and

countrol approaches.

Langari and Tomizuka (1990) [85] presented a stability analysis approach for
fuzzy control systems by applying Lvapunov's direct method. A technique of

this kind was also seen in [161] by Tanaka and Sugeno (1992).

Wang (1993) [182] proposed an adaptive fuzzy logic system design scheme fol-
lowing the Lyapunov synthesis approach. and the resulting closed loop system
was stable in Lyapunov sense. Similar adaptive FLS design procedures have
also been reported in [154] by Su and Stepanenko (1994). and [152] by Spooner

and Passino (1996).



20

A fuzzy logic system equipped with a training algorithm is called a self-organizing
fuzzy logic system by Pedrycz [129], Procyk and Mamdani [134], Langari and Berenji
[187. Chap.4] et al., and called an adaptive fuzzy system by Wang [184]. This kind of
fuzzy logic system is constructed from a set of linguistic [F-THEN rules using fuzzy
logic principles. and the training algorithm adjusts the parameters (and structures)
based on numerical information. As outlined by Wang (1994) [184. Chap.1]. there
are two strategies for combining numerical and linguistic information using adaptive

fuzzyv syvstems:

o ('s¢ linguistic information to construct an initial fuzzy logic system. and then
adjust the parameters of the initial fuzzy logic system based on numerical in-
formation. The final fuzzy logic system is. therefore. constructed based on both

numerical and linguistic information.

o [se numerical information and linguistic information to construct two sepa-
rate fuzzy logic systems. and then average them to obtain the final fuzzy logic

systern.

In this work. we are only concerned with the first strategy.

lu the literature. various techniques for adjusting fuzzy logic svstem parameters
have been proposed. The popular approaches include gradient based approaches
similar tu the backpropagation algorithm for artificial neural networks [61. 62. 173].
least squares estimation techniques [64. 159. 181]. Lyapunov synthesis approaches
[154. 182. 184]. and a fuzzy version of the signal Hebbian learning law [130. 173].
Other training techniques include, among others, nonlinear programming techniques
[159]. an orthogonal least squares technique [179]. nearest neighborhood clustering
[184. Chap. 6]. a table-loop up scheme {180]. heuristic stochastic optimization
algorithin [13]. and convex programming techniques for linear matrix inequality

problems [176].
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Research on integrating conventional design techniques into direct fuzzy logic
control system design utilizing the first type of linguistic information. include. among

many others. the following examples:

e Palm (1992) [123]. Kung and Liao (1994} [84] combined fuzzy logic control
systems with sliding mode control techniques to form fuzzy-sliding mode con-

trollers for tracking control of nonlinear systems.

o Vachtsevanos et al. (1992, 1993) [171. 172] presented a fuzzy logic controller
design approach which was based on a partitioning of the state space into small
rectangles called cell-groups. and quantization of the states and the available
controls into finite levels or bins. Membership functions were then assigned
for the state and controls. The transition from one conditional subspace to
another was accomplished via a center-point mapping of the cell groups. under
the applied action of each IF-THEN rule. But there was no stability analysis

presented in their works.

e Pedryvez 11993. 1995) [129. 130] proposed a controller structure called the ~hy-
brid fuzzy controller™ which blended fuzzy and PID controllers. The main
idea was that the fuzzy controller was superb for a far away control where
its nonlinear characteristics could generate a fast dvnamic response. When
approaching to the setpoint. the role of the fuzzy controller diminished and
the control action was taken over by the PID element. The switching between
far away and nearby control was performed by an additional fuzzy controller
making a relevant selection between the corresponding control action of the

fuzzy and PID controller.

o Wauu (1993) {182] presented a stable direct adaptive fuzzy controller by fol-
lowing a Lyapunov synthesis approach. for tracking control of a general high

order nonlinear continuous system.



o
[BV]

e Birdwell and Wang (1994) [15] presented a so-called fuzzy-PID controller in
which a fuzzy logic system was used to tune the gains of a conventional PID
coutroller where the fuzzy rule base was tuned using a heuristic stochastic

optimization algorithm. Sufficient conditions for svstem stability were given.

e Qin and Borders (1994) [137] proposed a multiregion fuzzy logic controller
for nonlinear process control, where the process to be controlled was divided
into fuzzy regions such as high-gain, low-gain, ..., based on prior knowledge.
A fuzzy controller was then designed based on this regional information. and
duriuge operation an auxiliary process variable was used to detect the process

uperating regions.

e Hwang and Tomizuka (1994} [53] presented a fuzzy variable structure control
svstem. For this tyvpe of control system. which implements different control
laws in different regions of the state space divided by a set of boundary man-
ifolds. the control input switches from one control law to another when the
~tale crosses the boundary manifolds. Hwang and Tomizuka proposed tuzzy
rufe based algorithms for smoothing the control input when switching at the

boundary manifolds to avoid exciting high frequency dynamics.

The second type of linguistic information is analogous to conventional identifi-
cation problems, and is called fuzzy modeling or fuzzy identification [129. 159. 165].

Most fuzzy modeling problems seen in the literature are concerned with repre-
senting ur approximating relationships between input and output variables in the
form of sume functional dependencies [131], and are more or less based on the sem-
inal works by Zadeh in 1973 [206] and Takagi et al. in 1985 {139]. A notable
exception comes in the form of fuzzy relational models proposed by Pedrycz (19384.
1993 [128. 129]. which is more general than the concept of function and is to charac-

terize links rassociations) between some objects distributed in several different spaces
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or defined in a Cartesian product of the same space (130, App. B]. Recently. a new
modeling framework termed fuzzy multimodels was presented in [131] by Pedrycz
(1996). which produces an environment assuring successful interaction (when func-
tion oriented or relation focused models are not sufficient } between several relational
or functional constructs and allows for their efficient utilization.

In this work. we restrict our scope of fuzzy modeling, or fuzzy identification. to
functional models. and leave the study of fuzzy relational models and fuzzy multi-
models. as well as development of correspondent control strategies to future consid-
eration.

When linguistic information of the second type is used in control applications.
it is sometines called fuzzy model based control [64]. where the plant is modeled
or identited with a fuzzy logic system and a controller is constructed based on the
fuzzy model. often with the help of conventional controller synthesis and design
techuiques. There have been several approaches reported to fuzzy model based

control.

o A strategy where at each discrete time step a linear controller was designed on
the hasis of a linearization of the fuzzy model at the current operating point.
was used in [94. (1992)]. [157. (1986)]. [158. (1992)]. This gave a nonlinear
controller which is conceptually simple. but suffered from drawbacks similar

to those of conventional gain scheduling approaches outlined in section 2.1.

e Wang and Vachtsevanos (1992) [173] presented a methodology for the design
of & learning fuzzy logic control system which was based on the concept of
indirect control approach where selection of control parameters relied on the
estimates of process parameters. The control law consisted of an on-line fuzzyv
identifier. desired transition model and fuzzy controller. The fuzzyv version of

the signal Hebbian learning law was introduced for identifving the unknown
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plant. There was no system stability analysis associated with this approach.

Jang (1993) [63] proposed an adaptive-network-based fuzzy inference system.
which was a fuzzy inference system implemented in the framework of adaptive
networks. By using a hybrid learning procedure, the proposed fuzzy system
could construct an input-output mapping based on both human knowledge
and stipulated input-output data pairs. and could be used to identify nonlinear
coniponents on-line in a control system. Again. there was no system stabihty

analvsis presented in this work.

Johausen (1994) [64] presented a nonlinear controller design and analysis ap-
proach which was based on a fuzzy model of MIMO dyvnamical systems. and
the closed loop system was claimed to be globally stable and robust with re-
spect to unstructured uncertainty such as modeling error and disturbances.
But this approach was not applicable to systems with strong non-minimum

phase features. or in which the unstructured uncertainty was large.

An indirect adaptive tracking control strategy was proposed by Wang (1994)
[184. Chap.8] and Su et al. (1994) [154] separately. where fuzzy logic systems
were used to model the unknown plants. In both works. the global stabilities

of the closed loop systems were established in the Lyapunov sense.

Wang et al. [174. 173, (1993)]. [176. (1996)] presented a design methodology
for stabilization of a class of nonlinear svstems, where a nonlinear plant was
modeled by a fuzzy logic system and then a model based fuzzy controller
design utilizing the so-called “parallel distributed compensation” technique
was emploved. The main idea of the controller design was to derive each
control rule so as to account for each rule of a fuzzy svstem. The stability
aualysis and control design problems were reduced to linear matrix inequality

{LNII) problems. which could be solved by convex programming techniques.
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Apart from the above applications where fuzzy logic systems have been used
basically for low level. set-point-oriented problems. they also can be applied to high-
level. task-oriented control functions. A simple yet clear example of this kind is a
method called supervisory control proposed by Pedrycz (1993,1995) [129. 130]. where
the function of a fuzzy controller was to switch between several local controllers.
Each of these local controllers was tuned to perform well only in a limited range
of its input variables. An industrial application of this control methodology at
“General Electric” was also reported in 1995 by Bonissone et al. [17]. where fuzzy
logic sv~tems were used in high-level. supervisory roles to complement low-level

conventivnal controllers.

2.2.3 Remarks
1. Fuzzy Logic System vs. Artificial Neural Network

From the previous discussion. it is seen that similarities exist between fuzzy logic
svstems and artificial neural networks. They share a common objective. which is to
emulate the operation of the human brain. /n some sense. artificial neural netuworks
try to emulate the “hardware™ of the human brain, whereas adaptive fuzzy systems
try to emulate the "software” in the human brain [184. Chap.7]. Theyv can both
handie extreme nonlinearities in the system. Both techniques allow interpolative
reasonny. which frees us from the true/false restriction of logical systems such as
those used in symbolic artificial intelligence [187. Chap.4]. For example. once an
ANN has been trained for a set of data. it can interpolate and produce answers for
cases nut present in the training data set. Similar properties hold for a FLS. Also.
the weighted average scheme of FLSs and the sum of products of the ANNs are
similar in principle.

However. the two methodologies have a fundamental difference. which is that
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the fuzzy logic system takes linguistic information explicitly into consideration and
makes use of it in a systematic way. whereas the artificial neural network does not.
Also, adaptive fuzzy systems are said to constitute a much larger functional space
than artificial neural networks [184, Chap.7]. More details of comparison between
FLS and ANN may be found in [184. 187].

In recent vears. there has been a growing interest in integrating FLS with ANN.
such as the examples presented. among many others. in [28. 129. 130. 152. 137. 195"
This fusion allows use of a humanly comprehensible expression of the knowledge
used in control in terms of fuzzy control rules: the fuzzy controller learns to adjust

its perforinance automatically using an ANN structure [187. Chap.4].

2. Fuzzy Logic System vs. Evolutionary Computation

During the last two decades. there has been a growing interest in algorithms which
are based on the principle of evolution (survival of the fittest). which are generally
referred to as “evolutionary computation”. The best known algorithms in this class
include genetic algorithms. evolutionary programming. evolution strategies. and ge-
netic prosramming [132. Chap.1.1]. Since the best known evolutionary computation
techniques are genetic algorithms. very often the term evolutionary computation and
genetic algyorithm are used interchangeably in the literature.

As pointed out by Davis and Steenstrup [35. Chap.1] (see also [132. Chap.1}).
... the metaphor underlying genetic algorithms is that of natural evolution. In evo-
lution. the problem each species faces is one of searching for beneficial adaptations
to a complicated and changing environment. The “knowledge™ that each species has
gained s embodied in the makeup of the chromosomes of its members.

Genetic computations are aimed at finding a global maximum of a function
of many variables through performing a genetic-inclined search of the space [130.

Chap.3|. This methodology has been integrated with FLS and ANN to increase
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computational efficiency [130. 132, 194], where [132] (Pedrycz ed., 1997) presented
a comprehensive and updated collection of both fundamental tutorials and cutting
edge research of the fusion of fuzzy logic system and evolutionary computation.

which interested readers may consult for more details.

2.3 Modeling and Control of Flexible Link Ma-

nipulators

Because of their potential use in space applications as well as in new generations
of industrial robots. there has been increasing interest in designing light weight
robotic systems. which usually possess flexible links. Flexural behavior in an already
highly nonlinear robotic syvstem considerably complicates analyvsis and design. and
demands elaborate control schemes with attendant requirements for sophisticated

hardware  software.

In this work. flexible link manipulators are considered as examples of challenging
and important practical systems on which our fuzzy logic based identification and

control methodologies can demonstrate their merits.

A flexible link manipulator was constructed to serve as the experimental testbed
for the theoretical developments. In addition, the dynamic model of a flexible link
manipulator is developed and used as, among others, an important numerical ex-
ample for simulation studies of our theoretical developments. Specifically. the end

point pusition control of the robotic manipulator is of interest in this research.

As mudeling and control of flexible link manipulators are not the core subjects

of this rescarch. only a very brief review will be presented in the following,
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2.3.1 Introduction

Todav's commercial robots share the common features of being heavy and bulky.
They operate at low speed. have low load to weight ratio and high energy consump-
tion. which lead to low productivity and low efficiency. and therefore. are inapplica-
ble for situations requiring light weight structures. low energy consumption. high ma-
neuverability. easy transportability. and smaller. lighter actuators. such as in space
applications. To replace the heavy structure with light weight structure is generally
desirable tu advance the state of the art of robotics. The use of light weight struc-
tures will certainly lead to the use of flexible links. This is one of the reasons for the
initiatiou in the seventies [18. 19] of work in this area and there has been increasing
interest over the past decade in the analysis and control of flexible link robotic manip-
ulators [16. 20.26. 34.47. 48.82. 111, 117. 136. 142, 143. 168. 170. 193. 200. 203. 203].

Some of the undesirable features of current robots originate from their control
schemes. For example. to position the end point of a manipulator. the desired
location i~ transformed into equivalent angles that each of the robot joints must
assunie with real time kinematic computation. and every joint is then driven to the
specitied angle simultaneously by emploving a PI servo loop which is made up of
a torquer and a collocated sensor. e.g.. an encoder. The accuracy of the end point
is based on the rigidity of the robot links which must be guaranteed with stiff and
therefore bulk structures.

Compared with their rigid link counterparts. flexible link manipulators are much
lighter and have many desirable properties, such as low energy consumption. high
maneuverability, easier transportability, and smaller, lighter actuators. But these
desired features are somewhat vitiated by the much more stringent requirements
on their control system design imposed by the flexibility. The end point accuracy
of a flexible link is severely degraded due to structural deformation and movement

induced vibrations. To achieve maximum accuracy in positioning a manipulator’s
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working end (i.e.. the tip), sensors often must be used to measure the tip position.
while the control torque that is based on the measurements of the tip position is
applied at the other end of the link. This scheme results in noncollocated sensors and
actuators. which greatly complicates the controller design compared to the situation
of collocated sensors and actuators where stable servo control is guaranteed by the
collocation {26]. In addition. the mathematical models of a flexible link robotic
system can be highly nonlinear. This has resulted in increased research activity into
methods of actively influencing flexible manipulator behavior. as mentioned above.

A practical manipulator may be multidimensional with multiple links. But such
a robotic svstem which is additionally elastic is too complex to be dealt with thus
far. The basic analysis and control issues can be exposed and should be solved in
the coutext of a one dimensional case. i.e., a single link planar manipulator case.
It is observed that. currently. most published works are basically at this stage. In
this work. we restrict our scope to the single link planar manipulator. This svstem
is indeed sufficiently complex. with unknown and nonlinear elements. to pose a real

challenge 1o the most advanced control strategies. as we shall see.

2.3.2 Dynamics of Flexible Link Manipulator

A flexible link is a distributed parameter system. and rigorous representation of
such a system usually requires a set of partial differential equations, which can be
derived using one of many available approaches (described in standard dynamics
text books). such as the Hamilton Principle and Lagrangian Dynamics.

The derived partial differential equations (PDEs) must be solved. Generally
speaking. there are only a few simple and special forms of PDEs which can be solved
explicitly. i.e.. to obtain their closed form solutions [122. 141]. In most practical situ-
ations. this is not possible, and the PDEs are discretized and solved in approximate

form. Tzafestas presented a good survey on various discretization methods f167.
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Chapter 1]. such as modal expansion methods. the Green’s function method . the

finite element method. and so on.

Modal Expansion Method

The modal expansion method has been widely used in solving dynamic problems.
The solution is expanded with system eigenvalues and eigenvectors. and results in
a series of infinite order. Thus the PDEs can be transformed into set of ordinary
differential equations (ODEs) of infinite order. But due to limitations of computer
power. sensor inaccuracy and system noise {not to mention physical reality!). the
solution is approximated by truncating the infinite series and retaining only some
of the terms. that is. the solution is approximated with a series of finite order.
Thus. the PDEs can be transformed into a set of ODEs of finite order. Further. the
ODE: mav Le rearranged into state space expression or transfer function. which are
convenicnt for control purposes.

The abuve procedure is one of the most popular approaches to the modeling
of flexible robot links [16. 13. 19. 20. 26. 34, 47. 438, 82. 111. 136]. In most cases.
a flexible link is modeled as a clamped-free or pinned-free Euler-Bernoulli beam
superposed with a rigid body rotation. Hastings and Book indicated 43! that the
clampedd-free Euler-Bernoulli beam model agreed better with measured responses
than that of a pinned-free beam model. Also. they believed that the first two
vibration modes dominated the system responses, a view which was also shared by
Zaki [203].

To avoid nonlinearities which cause immense difficulties in applying conventional
controller design techniques. radical simplifications have commonly been made in

published works. which generally include the assumptions of small deflections of the

2Green function approach gives closed form solutions of PDE’s. But in general situation. Green

function it=elf may be expanded with system eigenvalues and eigenfunctions [90].
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flexible beams. small angular velocities. ignoring rotary inertia of the beam cross-
section and end-point pavload. ignoring shear deformation effects. and nonlinear

friction.

Finite Element Method

Another approach to the discretization of distributed parameter systems is the finite
element method (FEM) [211]. This method has been primarily used to solve prob-
lems of large scale and complex systems. but it has seen occasional use in application
to the modeling of flexible links. e.g.. [13. 170]. in which each flexible link is assumed
to be composed of beam tvpe finite elements attached to each other with the first
and the last satisfving corresponding system boundary conditions. The deformed
shapes of the link are described by using a set of perturbation coordinates for the
entire link and a set of shape functions that characterize the displacements of link
points located between the finite element nodes. The main drawback of a FEM

model 1~ it~ inherent computation burden.

Lumped Parameter Method

In contrast tu the distributed parameter system which is assumed to occupy a certain
spatial domain. the lumped parameter system is assumed to be concentrated at a
spatial point. For this kind of system. ordinary differential equations may be directlv
obtained. An example of this approach is in [117]. in which Nelson. et al. modeled
a flexible link as a lumped mass-spring-mass system and obtained the ODEs of the
system directly. This model ignored some significant features of real flexible robot
arms. For example. the distributed flexibility and the delay effects associated with
wave propagation along the length of the beam are neglected. This may be one
reason that the lumped parameter system has not been widely applied in modeling

ﬂe.\'iblu ]illl\‘
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There are more approaches for dynamic modeling of flexible link manipulators.
of which mention is not made here. Interested readers may consult an excellent
review on this subject in [2]. For the purpose of the proposed research. the modal
expatsion of an Euler-Bernoulli beam is deemed to be an adequate first approach

to serve as a computer simulation tool.

2.3.3 Position Control of Flexible Link Manipulators

The objective of position control is to command the end-effector of the robotic
manipulator to follow a desired trajectory. or simply to maintain a desired position.
Various coutrol schemes have been developed for this purpose.

Most published works linearized dynamic models of the manipulators. and ap-
plied linear control techniques.

For nouvarving and known payloads. Book and Majette (1933) [20] used a pole
placement (linear state feedback) method to design a linear controller. Cannon and
Schmitz ( 1Yin45 {26] introduced an experimental approach to identify the coefficients
of the <v~teni’s non-minimum phase transfer function based on frequency response
analyvsis. aud further developed a linear quadratic Gaussian controller. They also
observed that if the system mathematical model did not match the system’s actual
behavior well. the control system could be unstable. Other examples of this kind
may be found in [16, 47. 82].

To compensate for unknown/varying payload, adaptive control techniques have
been used 1o estimate the payload. such as in [117. 142, 143. 200. 203]. Rovner et
al. (1Y57.19sy) [142. 143] proposed load adaptive control algorithms based on the
self-tuning rechnique. where dvnamic models of the flexible links were identified with
a recursive least squares algorithm. and controllers were obtained based on linear
quadratic Gaussian synthesis procedures. Yurkovich et al. (1989) [203] proposed

a similar adaptive control scheme. where. in contrast to others. they incorporated
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end-point acceleration (instead of position) into control laws.

In order to use conventional inverse tracking control techniques. Davis (1933) [34]
proposed a manipulator mechanism characterized by a collocated position sensor and
force actuator. which resulted in 2 minimum phase dynamic model. Similar efforts
have also been made in [111. 150].

Robust control techniques have also been used. For example, Qian and Ma
(1992) {136 proposed a variable structure sliding mode control scheme for end-point
tracking control. Franke (1986) [38] proposed a robust variable structure controller
in the presence of plant uncertainties for a distributed parameter system.

Usually the controller of a flexible structure is designed based on its reducec
order mode!l with the potential for excitation of the residual modes by control signals.
termed spdlocer. which can cause unwanted. noise-like vibration in the system. To
avoid thi~ problem. Lin {1992) [92] proposed a robust controller based on addition
of a parallel ur cascade connected residual mode filter with an observer.

In recent vears. the ANN has been used in position control of flexible link ma-
nipulators. For example. Newton and Xu (1993) [118] introduced an ANN based
on on-line learning control for a flexible space manipulator. A similar scheme was
also prescuied in [160]. Donne and Ozgiiner (1994) '37] proposed a control scheme
for lexible manipulator with partially known dynamics. where an ANN was used to
identify the unknown flexible dynamics. See also [93] for a similar control strategy.

The fuzzy logic approach has been found to be effective in control of flexible link
manipulators. For example, Tzes and Kyriakides (1993) [168] proposed a control
scheme for flexible link manipulators, where the region of the eigenvalue space was
partitioned into fuzzy cells and membership functions were assigned to the fuzzy sets
of the eigenvalue universe of discourse which was utilized by a fuzzy controller to
infer control actions. Akbarzadeh-Totonchi (1994) {1] proposed a knowledge based.

model free tuzzy control scheme with a two level hierarchical structure. where the
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higher level monitored link behavior and extracted features in fuzzy terms. while
the lower level used this information to control the system. Lee et al. (1994) [91]
also proposed a knowledge based. model free fuzzy controller for end-point position
control.

Alasty (1997) (2] presented a detailed review of modeling and control of flexible

link manipulators, which interested readers may consult for more details.



Chapter 3

Brief Review of Fuzzy Sets and Fuzzy

Logic

3.1 Introduction

The idea of the fuzzy set was introduced by L.A. Zadeh in 1965 [204]. to allow
imprecise and qualitative information to be expressed and used in an exact way.
and is. as the name implies. a generalization of the ordinary notion of a set. An
example is appropriate to illustrate this [164]: Suppose it is required to specifv
linguistic measures of temperature on the closed interval [100°C. 200°C7]. and that
such a measure is T é{temperatures about 150°C'}. An ordinary set which defines
this can be expressed in terms of a membership function. gr(T), which can take
values of either 0 or 1. If a temperature T is not a member of the set 7. i.e.. T¢ T.
then pr(T)=0: if it is a member of 7. i.e., T€ 7. then pr(T)=1. Graphically. ur
may be defined as the rectangular function shown in fig.3.1(a). A fuzzy set which
expresses the corresponding idea has a membership function which has a continuum
of grades of membership. t.e.. it takes all values in [0. 1]. and might thus be as
shown in tig.3.1(b). The ordinary set has an abrupt transition from membership

to non-membership, i.e.. an item is either a member or not a member of a set.

35
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Figure 3.1: The Concept of Fuzzy Set

The fuzzy set. on the other hand. allows the qualitativeness of the measure to be
reflected in a gradual membership transition. i.e.. an item is allowed to belong tu
a set to a certain degree. For example. consider T= 135°C’. In the case of the
ordinary <ct. this temperature is not a member of the set 7. i.e.. ur(133°C) = O
in the case of the fuzzy set. it is a member of 7 with grade of membership 0.25.
i.e.. ur(135°C) = 0.25. Using this idea, qualitative information can be represented
mathematically and handled in a systematic and rigorous manner.

The application of the fuzzy set concept to traditional logic resulted in the devel-
opment of fuzzyv logic. which was first outlined in the seminal paper [206] by Zadeh
in 1973, Siiv e then. the theory of fuzzy sets and fuzzy logic (or fuzzy logic in short

has found many applications in a variety of subject fields. such as in control engi-
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neering. artificial intelligence, management/society, and so on [163]. In fact. any
field X can be fuzzified and labeled fuzzy X by replacing the concept of a set in X by
the concept of a fuzzy set [184. in the Foreword by Zadeh].

Because the primary goal of this development is in the regime of control engi-
neering. we are interested only in the theory of fuzzy sets and fuzzy logic as they

pertain to this area. and which is introduced in the following.

3.2 Basics of Fuzzy Sets and Fuzzy Logic

In this section. we present only a very brief introduction to those aspects of the
theory of fuzzy sets and fuzzyv logic which are relevant to the development of this
work. However. we will indicate references in which more comprehensive and in-
depth information is to be found. Following now is a collection of basic concepts

summarized from [88. 129. 184. 204. 206. 212].

3.2.1 Fuzzy Sets

Uneeerse of Descourse: Let U be a collection of objects denoted generically by {u}.
which can be discrete or continuous. U is called the universe of discourse and u
represents a generic element of i,

Fuzzy Set: With U a universe of discourse. a fuzzy set L' in & is a set of ordered
pairs

U2 {(upe(u) lueU}. (3.1)

in which g is called the membership function of {7 and takes values in the interval
[0. 1]. and p¢(u) represents the grade of membership of u in {’. Let {'; and {’; be
two fuzzy sets in & with membership functions yu;, and pg,. respectively. These are
equal. written as [y = (5. if and only if pr(u) = pe,(u) for all u e U.

Support: The support of a fuzzy set " is the crisp. i.e.. non-fuzzy. set of all points
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u in U such that pup(u) > 0.

Fuz:zy Singleton: A fuzzy set whose support is a single point in U is referred to as a
fuzzy singleton.

The Ertension Principle: Let U and V be two universes of discourse and f a mapping
from U to V. For a fuzzy set [" in U. the extension principle allows us to define a

fuzzy set |V in V by

VE {(eopv(e)) | v = flu)u €U} . (3.2)
where
~1(y i .t -1 ) T*L 0:
pyv(v) 2 *HPues M[#L(U)] ST (3.3
0. otherwise.
where 7' i~ the inverse of f.

The extension principle is one of the most basic concepts of fuzzy set theory. and

is used to generalize crisp mathematical concepts to fuzzy sets.

3.2.2 Operations on Fuzzy Sets

Union: The union of two fuzzy sets {7} and ('; is a fuzzy set (3. written as [ =
Uy 2 . whose membership function is pointwise defined for all v € U by
Fa¥ ;
#Ua(u) = #L'lkJU:(u) = max{,uyl(u), #L'z(u>}' (34)

Intersection: The intersection of two fuzzy sets '}, and (', is a fuzzy set [7. written

as {4 = (', N (. whose membership function is pointwise defined for all u € & by

o . , -
pes(u) = praes (u) = minfue, (u). pe,(u)} (3.5)

Complement: The complement of fuzzy set {7 is denoted by [ and is pointwise
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defined for all u € U by

pp(u) =1 — pe(u) (3.6)

t-norm: A t-norm. denoted by "%, is a two place function from [0. 1}x[0. 1] to {0.

1], which [129. Chap.1]
® is nondecreasing in each argument. i.e..if r < 2/, y <y'.thenr+y < 1=y
e is commutative. l.e.. Iy =y * I:
® s assuciative. l.e.. (Txy)=z =1 * (y«z):
® satisfies the boundary conditions. r*0=0. r« 1 = I:

where r. "o y. ¢'. = € [0.1]. Typical t-norms are defined as follows [212. Chap.3 .
M- p L ;

vy = minfr.y} . (minimum) .
oy = ry . (algebraic product; .
rxy Emax{0. r~y—-1}. (bounded di f ference) . 13.7)

min{r.y} . f max{z.y} =1,

e

r*y (drastic product) .

0. otherwise .

s-norm: A s-norm. denoted by "+, is a two place function from [0. 1]x[0. 1] to [0.

1. which [129. chap.1]
® is nondecreasing in each argument:
® is commutative:
® s assucialive:

® ~atislies the boundary conditions. r+0 = r. r+1 = 1:
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Typical s-norms are defined as follows {212, Chap.3].

7

I~y 2 max{z.y} . (maximum) .
r~ySr+y—-zy. (algebraic sum) .
J T+y = min{l. z + y} . (bounded sum) , (3.7
. o | max{zr.y}. if min{z,y} =1, .
r+y = (drastic sum) .
1, otherwise .

\

where z. y € [0.1].

3.2.3 Fuzzy Relations and Compositions

Fuzzy Relation © A fuzzy relation F is a fuzzy set in the Cartesian product ¢ « V.
and is characterized by a membership function up(u.v). u € Y. v € V. where I{ and

V are two universes of discourse. Formally.

Fé{((u.v).pp(u.v))[(u.MEUxV} . 130

Generallv. an n-ary fuzzy relation F is a fuzzy set in the Cartesian product. If; -

-~ U,.. aud 15 characterized by a membership function. gp(u,.....u,). u, € ..
t=1l.....n.
A

F={((ur. i) pr(uy, oo un)) | (Uny e ttn) €Uy x - x Uy} . (3.10)

Sup-star Composition : If F and S are fuzzy relations in &4 x V and V x W,
respectivelv. the fuzzy relation in & x W is given by the composition of F and S.
which 1s denoted by F oS and is characterized by a membership function pros(u. w).

i.e.

e

FoS={((u,w),pros(u,w)) | (u.w) €U x W} . (3.11)

with

"F°5(“-L")ésug{#f‘(u-v)*ﬂs(v.w)} : (3.12
vEV
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where u € U. v € V. w € W. The symbol “+” represents the t-norm. The most com-
monly used sup-star compositions are the sup-min and sup-product compositions.

which replace the “x” in eq.(3.12) by "min” and algebraic product. respectively. i.e..

KFos(u.w) S sug{min{p;(u,u), ps(v.w)}} . (sup —min) (3.13)
vE

o

pros(u.w) 2 sup{ur(u.v)-us(v.w)} . (sup —product) (3.14)
veV

A special case of this is with S. instead of being a fuzzy relation. is a fuzzy set in
V. In this case. Fo S & {(u.pros(u)) | u € U}. and in eq.(3.12). the proslu. u)

becomes prcs(u), the gs(v.w) becomes us(v). and the others remain the same.

3.2.4 Linguistic Variables and Approximate Reasoning

Linguestic Varwable : A linguistic variable is a generalized real-valued variable whose
values can cither be real numbers or be linguistic terms. Formally. a linguistic
variable is characterized by a quintuple. (u. T(u).U.G. M). in which u is the name
of a variable: T(u) is the term set of u. which includes the set of permissible real
values of u in U and the set of names of linguistic values of u with each value being a
fuzzy set detined in the universe of discourse U: G is a syntactic rule for generating
the names of linguistic values of u; and M is a semantic rule for associating with
each linguistic value its meaning [212].

For example. if speed is a linguistic variable defined in a universe of discourse

Uz [0.100]. then its term set T'(speed) may be defined as
T(speed) £ {10. 35, ...}, or {slow. medium. fast. ...} . (3.15)

where each term in T(speed) is either a real number in U or a linguistic value (a
fuzzy set) in &. The meaning of the linguistic value. medium. could be defined as.
say.

M(medium) = {(speed, pmedium (speed)) | speed € U} . (3.16)



where
A 1 speed — 30 ,. 1=
Hmedium (Speed) = exp[-—g(pOT‘)'i : (3.171

Generalized Modus Ponens (GMP): It has been suggested in (88, 100. 212] that
from the perspective of control engineering, the main tool of reasoning for fuzzy

logic control systems is the generalized modus ponens rule :

premise 1 uis (7
premise 2 [FuwslU THEN visV (3.1
consequence :  vis V'’

where u and v are linguistic variables in the universes of discourse ¢/ and V. respec-
tively. (" and (" are fuzzy sets in U. V" and V" are fuzzy sets in V. If the fuzzy sets
are replaced with non-fuzzy. or crisp sets. and {" = {'. V. = 1" this becomes the
modus pouens rule of traditional logic {212, Chap.9]. which is the reason that it is
called the generalized modus ponens.

An example of the GMP is [212. Chap.9].

premise 1 : T his tomato is very red
premise 2 IF a tomatoisred THEN the tomato (s ripe
consequence : 1 his tomato is very ripe

In this example. “very” is called a linguistic hedge or a modifier. a concept which
will not be explored here in more detail. as it is not to be used explicitly in this
work. Interested readers may refer to [88. 206. 212] for more details.

Fuzzy Dnplication: Let U and V' be fuzzy sets in & and V. respectively. with
u € U and ¢ € V linguistic variables: a fuzzy implication. denoted by [ — 1" is a

special kind of fuzzy relation in & x V defined as{134]

(A A {((u,v)epr—vluv)) [ (u.t) €U x V), (3.19)
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where the membership function uy—v(u.v) conforms to a number of possible inter-

pretations:

po(u) = py(v), (fuzzy conjunction):
pe(u)+pv(v), (fuzzy disjunction):

a | s +pv(v). (material implication):

pr—v(u.er) =< .
pr(u)+pr.v(e). (proportional calculus):
sup{c € (0.1} | pr(u) »c < pv-(v)}. (generalized modus
ponens).

{3.201
In GMP. eq.i3.13). the fuzzy [F-THEN rule in premise 2 can be implemented with
a fuzzy vnplication. U — V. The different definitions of the membership function
in eq.i3.20) correspond to different interpretations or implementations of fuzzyv [F-
THEN rules that are based on intuitive criteria or generalizations of classical logic
[184].

Sup-star Compositional Rule of Inference : The GMP. or sometimes called fuzzy
conditivual inference [212. Chap.9]. is implemented via the compositional rule of
inference.  Formally. for universes of discourse & and V. let u € U. v & V be
linguistic variables. {7, V7 be fuzzy sets in & and V. respectively, and " — 1" be
a fuzzy implication in &/ x V. Then for a given fuzzy set {” in U the sup-star
compositional rule of inference asserts that the fuzzy set V" in V induced by [ is

given by the sup-star composition of {”" and " — V. i.e..
N . , , .
V"={"0 ((_ — ‘/) = {(L“#L"'O(L.—-l"](v)) I (A )/} . (321)
where
N .
Ko —v)(v) = sgg{,uuf(u) * pp—yv(u,v)} - (3.22)

This brief review of fuzzy sets and fuzzy set operations is sufficient for the pur-

poses of this work. Further details can be found in the indicated references.



Chapter 4

Fuzzy Logic Systems

4.1 Introduction

In the general literature. the term “fuzzy logic system” is not always precisely defined
and frequently refers to almost any system which has something to do with the
concepts of fuzzy sets and fuzzy logic. In this work. the scope is restricted to the
regime of control engineering. and the meaning and structure of the fuzzy logic
svstem is restricted to this application.

The basic structure of a fuzzy logic svstem in control engineering is as shown
in fig.4.1. Throughout this work. a fuzzy logic system with this structure will be
abbreviated as FLS. A FLS is composed of four major components. namely. a fuzz:-
fication interface. a fuzzy rule base, a fuzzy inference engine and a defuzzification
interface. The input and output variables of a FLS are linguistic variables. which
assume real values preceding the fuzzification interface and following the defuzzi-
fication interface. and take linguistic terms (fuzzy sets) in between. and this FLS
can naturally fit into engineering systems. It works as follows: real values of the
input linguistic variables are fuzzified into corresponding fuzzy input sets according
to certain fuzzification strategies. These fuzzy input sets are then fed into a fuzzy

inference engine which. by triggering relevant fuzzy rules in the rule base. maps the

44
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fuzzy input sets to a fuzzy output set which is in turn defuzzified to a real valued
output signal.

Since a multi-input. multi-output (MIMO) system can often be decomposed
into a group of multi-input. single-output (MISO) systems. only MISO fuzzy logic

systems will be considered in this work, as illustrated in fig.4.1.

Fuzzy Rule
Base

=N EL.
[ .
. . . Fuzzy Inference o{ Deruzzifier H-
: : L R ( Defuzzifier =
22 o Fuzzifier P ‘
=7 - Defuzzification
Interface
Fuzzification
Interface
Figure 4.1: Basic Structure of Fuzzy Logic System
The svmbols in fig.4.1 are defined as follows: for p = 1..... P.:peZ, CR

are linguistic input variables. y € )}’ C R is linguistic output variable. Z, is the
universe of discourse of the linguistic variable z;. )" is the universe of discourse of
the linguistic variable y. R is the set of real numbers. Z, is the fuzzy set generated
from the input linguistic variable =, by a corresponding fuzzifier. and Y is the fuzzy
set induced by the fuzzy inference engine. In the following. we discuss each of these

compornents in more detail.

4.2 Fuzzification Interface

The fuzzification interface is a collection of fuzzifiers. each of which corresponds to an
input linguistic variable and performs 2 mapping from a crisp number {real number)

to a fuzzy set. Two types of these mappings commonly seen in the literature are:
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(a) Fuzzifier A (F4) — Singleton Fuzzifier : F4 is defined as a mapping from a
crisp number, zg € Z. to a fuzzy singleton. Z € Z. where Z is a universe of

discourse {104]. Formally.

o

Z £ Fa(z0) {(z.pz(z)) |z € 2},

1. 1fz=2. (4.1

e

pz(z) ,
0. otherwise .

(by Fuzzifier B (Fg) - General Fuzzifier : Fg is a mapping from a crisp number.

W= 2.t afuzzy set. Z € Z,
Z £ Fa(z0) 2 {(z.pz(2)) | s € 2} . (4.2)

where pz(z0) = 1 and pz(z) is some function defined subjectively which de-

creases from a maximum of 1 as = separates from 2o [72].

A graphical illustration of these two fuzzifiers is shown in fig.4.2. Of these two types
Hzi<)
o *
I
'
ot} bod

(a) Fuzzifier A

20 <

(b) Fuzzifier B

H

pzl

Figure 4.2: [llustration of Fuzzifiers

of fuzzifiers. only the singleton fuzzifier. F4. is commonly used. The other tvpe may

be more usetul for inputs corrupted by noise [184. Chap.2].



4.3 Fuzzy Rule Base

A fuzzy rule base is a repository of expert knowledge. which consists of a collection

of fuzzy [F-THEN rules in the form.

C':TF (zy s Ayl and ... and zp1s Ap) THEN (y s B") . (4.3)
where ("*. ¢ = {l.....I}. represents the ith fuzzy rule. I is the total number of fuzzy
rules in the fuzzy rule base. z,. p = L..... P. are input linguistic variables in the

universes of discourse Z,. and y is the output linguistic variable in the universe of

discourse Y.

Forp=1..... Pand:=1..... I.
A€ {4, 1 4,€ 2, jp=1..... Jo} . "
B' € {B.|Bie). k=1..... K} .

where A, are primary fuzzy sets defined in universes of discourse Z,. By are primary
fuzzy sets defined in universe of discourse ). J, and A" represent the number of
primary fuzzy sets defined in Z, and ). respectively.

[ this work. the term primary fuzzy set indicates those fuzzy sets defined to
express linguistic [F-THEN rules. as distinguished from the fuzzy sets generated
by fuzzifiers. In the [F part of expression (4.3). there are maximally J; x --- ~ Jp
different combinations of the primary fuzzy sets. {A4p,,,.... Aps, }. which is the max-
imum possible number of IF-THEN rules in the fuzzy rule base.

The sentence connective “and” is usually implemented as a fuzzy conjunction.
defined in eq.(3.20). in the Cartesian product space Z; x - - - x Zp. in which the
underlving variables take values in different universes of discourse [88]. i.e.. the IF

part of eq.(4.3) 1s a fuzzy relation F* £ 41 x --- x 4% defined as
1 P
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In control engineering. the most widely seen fuzzy conjunction operators for defini-

tion (4.3) are the *min” and algebraic product. i.e..

Jal .
BF(21,....2p) = mln(#Ai(zl)a #_4;,(31’)) . (4.6)
or
a ) -
#Fl(:l ..... :P) = ll__‘l:‘izl)';1_4-:(:2}"'#._“?‘:P’. (4|'

Each [F-THEN rule of expression (4.3) defines a fuzzy implication:
F*— B' = {((z.y): p—p(2.y)) | (z.y) € Zx Y} . (+4.8)

where

ne

z {:1.....:P}T.

~

- =z
—'l’('"‘—’P'

i-+.9]

o~
™
—

e

The membership function. pp_gi(z.y). is determined via eq.(3.20) in terms of
prtz) and pgry). where the former is defined in (4.3).
In the literature. if the THEN part of an [F-THEN rule is defined as a linear

combination of input vanables. i.e..
A |
y=cp+c sy +...+cpip. (4.10

where ¢,. j = 0.1..... P. are real parameters. the corresponding FLS is known
as a FLS of the Takagi and Sugeno type [159]. As indicated in [184, Chap.l]. an
advantage of this kind of FLS is that it can provide a compact FLS equation, and
parameter estimation and order determination methods can be used to estimate the
parameters ¢, and the order /. Its weakness is that the THEN part of the rule is
not fuzzv. and it does not. therefore. provide a natural framework for incorporation
of fuzzy rules from human experts. This type of FLS will not be considered in this

work.
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4.4 Fuzzy Inference Engine

The fuzzy inference engine is a fuzzy logic based decision making scheme which.
by combining the IF-THEN rules in the fuzzy rule base in certain manner. induces
output fuzzy sets in )} from input fuzzy sets in Z2 = 2Z; x --- x Zp.

With a input fuzzyv set Z € Z, where

I

z Zyx - xZp = {(z. uz(z)) | (z) € Z} .

(4.11)

e

1z(z) gz, (z1)*- - *pze(zp) .

and by using the sup-star compositional rule of inference. eq.(3.21). each individual
IF-THEN rule. C*. induces a component. denoted as Y. of the output fuzzy set

Yed e fore=1..... I

e

11

b Zo(F'—=B') = {(y- pv:(y))ly €)X} . ,
(4.12)
fy sty

HzoF—By(Y) = supgez{uz(z)*xup_pg(z.y)} .

The member-hip function of the fuzzy implication. pg_g:(Z. y}. is defined in eq.13.20;
in terins of gpozr and pgoy). and the membership functions for the fuzzy relations
urz) and pyoz) are defined in egs. (4.5} and (4.11). respectively.

The output fuzzy set Y is the collection of the / components, Y*'. i = 1..... I.

induced by the [F-THEN rules in the fuzzy rule base, i.e..

Y2y | Yiey i=1.. I}. (4.13)

4.5 Defuzzification Interface

The defuzzification interface is a collection of defuzzifiers. or a single defuzzifier in
the case of single output. each of which corresponds to an output linguistic variable
and performs a mapping from a fuzzy set. Y. to a crisp number. y. There are three

kinds of defuszifiers commonly seen in the literature.
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(a) The first type. called the Least-Marimum Method (LMM) [206]. is defined as

ye 2 D.(Y) & min{|ym |, m = 1.... M} . (4.14)
Ym
where y,,.m = 1.....! M. are the supports in fuzzy set ¥ that have the {same)
maxinuum grades of membership. i.e.
Ym € {y|y=args:§{,uy(y)}}, m=1,....M. (4.15)
v

The LMM defuzzifier generates a crisp number, y,, which is the support point
that has the maximum grade of membership in the fuzzy set. Y. or. in case
there ix more than one support corresponding to the same maximum grade
ot membership. te.. N> 1. y, takes the support that has the least absolute

valile.

) The second type. called the Mean of Mazimum Method (MOM) [104]. is defined

as
_ | M
BwEDYIE =Y g (416
"] m=]
where 4. 1s the mean of the supports y,,.m =1...... V. If Al = 1. this tvpe of

detuzziher generates the same crisp number as that of the first type defuzzifier.

The third type. called Centroid Method (CM) [21], is defined as

a A YL (@) -7 -
c=Dc Y)= - - y 1.1
e = D) @) A

where §'. ¢ = 1.2..... I, are the centers of the primary fuzzy sets. B'. i.e..
N ,
y' = argsup{up:(y)} . (4.13)
veY

and py.1y) can be obtained with eq.(4.12). y. represents the centroid of the
supports ¥'. which is the reason that this approach is called the Centro/d

Mcthod.
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The CM is the most popular defuzzification strategy. as it is said to yield generally
smoother responses and better steady state performance than the MOM [147]. Sim-
ilar observations were made in an aircraft flight control study [86]. where it is found
that although both the MOM and CM yielded satisfactory performance. the results
with the CM were superior.

The MOM demonstrated better performance than the LMM in certain experi-
ments [75] and frequently vielded better transient performance than the CM [147].
The LMNDMI strategy. unlike the other two strategies. has not been seen much in
practical applications.

Throughout this work. the centroid defuzzification method will be used. because

its expression is mathematically more tractable than the others.

4.6 Overall Mappings of Fuzzy Logic Systems

We have seen that there are many possible combinations of fuzzifiers. defuzzifiers.
fuzzy implication operations and fuzzy inference mechanisms. which result in many
different fuzzy logic system configurations. or overall mappings. This provides a
great deal of freedom of choices of a specific FLS configuration which fits the con-
straint and requirement of a particular task.

Among the two fuzzifiers mentioned in section 4.2, the singleton fuzzifier pro-
duces the simplest FLS. and only this kind of fuzzifiers will be used in this work.

Formally. for the FLS shown in fig4.1, p=1,..., P,

Zy = {(zs. pz(zp)) [ zp € Z,} .
l. if z, = zp0 - (4.19)

e

0. otherwise .

where -, is a crisp value of the variable z;.
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In the following. we derive two overall mappings which are particularly useful in

later development of this work:

4.6.1 FLS-1I

e "min” operation for fuzzy relation:

Equation (4.5) is written as

F' & {(z. pplz)) |z € E} .
- {(z. pr } (120)
pp(z) = minfug () gy (zp)}
where z = {z... .. pl.Z2=2, x--- x Zp. A, € Z, are primary fuzzy sets.
e “min’ uperation for fuzzy implication:
Equation (4.8) is written as
a ‘ - .
Fr = B = {((z.y). pr—_plz.y)) (z.y) e Z x )} . o1
=
a .
pp_plz.oy)) = min{pgp(2). pply)} .
where 3¢ are primary fuzzy sets in ).
e “xup-min’~ compositional rule of fuzzy inference:
Equation {4.12) is written as
1 A 3 1 Ay )
Yo = Zo(F'—>B') = {(y. mve(y)lyed}. 4.22)
2 : =
uy(y) = supgez{min{uz(z). pr_p(2.y)}} .
Use of ¢q.14.21) in eq.(4.22) vields
py(y) = Stelg{min{#z(Z)-, pe(z). e (y)}} . (4.23)
4

Since we use the “min” operation for fuzzy relations. the membership function

iz(z}) i~ expressed as

N ‘
pz(z) = minfuz (z1). .... pz.(zp)} . (4.24)



In view of egs. (4.20) and (4.24). eq.(4.23) can be rewritten as

py(y) = igg{min{#zl(a) ~~~~~ 1zp(2P) par(21)s- - pa (2P) ppe(y)}} -
(4.25)

Given a crisp input. zg 2 {z10. ---. zpo}7. use of eq.(4.19) in eq.(4.25) results

in
py(y) = min{#_~\;(310)- 11.4'},(3P0)- ue(y)} - (4.26)

o Using the CM defuzzifier. eq.(4.17). the crisp output signal of the FLS is

yL_A—_Z‘ )y (427
S ¥

Here 7.+ = 1.2..... 1. are defined as {33. 91]

2

7 min{ |y |: ¥ = argsup{u(y)} } . 14.25)
Ie}| ye}

This will be explained in more detail in chapter 6 through examples.

The FLS specitied above is referred to as FLS-I in this work.

4.6.2 FLS-II

e Algebraic product operation for fuzzy relation:

Equation (4.3) is written as

Fr {(z. up(z))|z€ Z}.

e

1 (2) #.4;(31)'#.4'2(32)"'#.4;,(3P) .

where z = {z;....,2p}7, 2 =2, x --- x Zp, AL € Z, are primary fuzzv sets.
b2l P B A

and " represents the algebraic product operation.



Algebraic product operation for fuzzy implication:

Equation (4.8) is written as

F*= B 2 {((z.y), kr—p(z.9)) | (z.9) € Z x V} .

N (4.30)
pr—-p(2.y) = pr(2z) pe(y) ,
where B' are primary fuzzy sets in ).
“sup-product” compositional rule of fuzzy inference:
Equation 14.12) 1s written as
1 & 3 1 A M
{ Vo2 Zo(F o B 2 {ly me) v e
A \ . i
#y(y) = supgez{pz(z) prp—plz.y)} .
Using eq.r4.30) in eq.(4.31) yields
pyi(y) = sup{puz(z)- pp (2] ppiy)t} - (4.32)
FAPS

Since we use the algebraic product operation for fuzzy relations. the member-

ship function pz(z) 1s expressed as

uz(z) & uz,(=1) - pzy(z2) - - pza(zp) . (4.33)

lu view of eqs. (4.29) and (4.33). eq.(4.32) can be rewritten as

1y —Sgp{ H#zp (zp) Hm' (z)] - upe(y)} 14.34)
zeZ o p=1
For a crisp input. zg = {z10. .- -. zpo}7. use of eq.(4.19) in eq.(4.34) results in

Ha(Z10) - ta(220) - pa (zPo) - pas ifz=129.
syl g) = a3 (<10 1% ) KAy 0) (¥)} f 0 (1.35)

0. otheruise.

Using the CM defuzzifier, eqgs.(4.17-4.18). the crisp output signal. y. of the
FLS s

e

I \
(T T

Z,_}m vy (4.36)
E:;_—:l #}"{y )

VoY -
7 = argsup{up(y)} . (4.37)
y€)

Ye
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For simplicity. it may be assumed that

1}

—
———
-
[~}
[04]

ke (7")

Use of eq.(4.33) in eq.{4.36) and considering eq.(4.38) vield

z—l np—l ,U-.p )

y = (4.39)
I =1 Hf_1 Hay (~p)

where. for simplicity. y. is abbreviated as y. and z,0 is abbreviated as z,.

The FLS which satisfies these conditions is hereafter referred to as FLS-II in this

work.

4.6.3 Membership Functions and an Overall FLS Mapping

In fuzzv logic systems. it is necessary to specify membership functions for primary
fuzzy sets. In practice. two types of membership functions have been popular
namely the Gaussian and triangular tvpe membership functions.

For a given linguistic variable. u. in universe of discourse. I{. a Gaussian tvpe

membership function of v in a fuzzy set {7 € U is expressed as

1l u—1u

uor(u) = exp[—é( -

¥ . t4.40)

where T is the center of the fuzzy set " and o is a parameter that characterizes
the shape of the membership function. Lower values of o produce narrowing of the
function. as shown in fig.4.3(a).

The 1riangular membership function is expressed as

u—u

1-—

, if u€lt—-o0.u+0].

po(u) = (4.41)

0. otherwise .

where u is the center of the fuzzy set [". and ¢ controls the shape of the function.

as shown in hg.4.3(b).



(o =10.5) (o0 =0.3)
(a) Gaussian Type Membership Functions

u—o u u+o

(b) Triangular Type Membership Function

Figure 4.3: Gaussian and Triangular Membership Functions

The Gaussian tvpe membership function will be used throughout this work for

1ts compact matiiematical expression and ease of manipulation.

With & Gaussian type membership function. eq.(4.40). in FLS-II. eq.(4.391 be-

coniles
7T, exp[-1(222 )
y & flz) & == = 2: — : (4,42
Zx— p-l e)‘p[—_(%a]zi

P

It 1s shown in [134] that for any given real continuous function ¢ on a compact
set L. there exists a fuzzy logic system f in the form of eq.(4.42). such that ¢ can

be approximated by f over U to any desired degree of accuracy.

We simplify our notation by defining

il lexp[—-(—P——'Z) )

S TIE, expl- (um'

0:(z) = (4.43)
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which is called a fuzzy basis function in the literature [179]. Let

O(z) £ {6i(z)....01(z)}7 .
i) N {61(2).....01(2)} (1.44)
= {7,.....7;}7.
Equation (4.42) can then be rewritten as
[ —
y=3_7 -0.2)=07(2)Y . (4.45)
=1

In eq.{4.43). it is clear that @ is characterized by the number of primary fuzzyv

sets. J,. in each universe of discourse Z,. p = 1..... P. as well as the position T

and shape o of the membership function of each primary fuzzy set. where

-:-;’ € {EPJ;J ,EPJP € APJP‘ jp =1l..... JP} * (4.46)
o, € {op,lip=1..... Jp} .
and I, . aud 7, are centers and shape parameters of the primary fuzzy sets. 4, .

respectively. If we fix these parameters and leaveonly 7,. ¢ = 1..... I. as adjustable

parameters. then expression (4.43) is linear in its parameters.



Chapter 5

More On Fuzzy Logic Systems

5.1 Quantitative Measures of IF-THEN Rule Per-

formance

5.1.1 Introduction

The fuzzyv rule base. which consists of IF-THEN rules. is the heart of a fuzzy logic
system in the sense that all other components of the FLS are used to interpret these
rules and make the rules usable for specific problems [184]. Difficulties with logical
properties of the rules. their completeness. consistency. etc.. may lead to unsatis-
factory results [129]. These problems may be caused either by poor initial design
or because of changing operating environment and system parameters. Therefore.
it is desirable to monitor the performance of the IF-THEN rules on-line and warn
system operators of any problems so that corrective measures can be made in time.

and satisfactory system performance maintained.

In the following. we define quantitative criteria that can reveal certain problems

with the rules. aud demonstrate their application through numerical examples.
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5.1.2 Quantitative Measures
The completeness of a fuzzy rule base is defined by Pedrycz [129] as

Definition 5.1 Completeness of Fuzzy Rule Base:
Consider a fuzzy rule base consisting of IF-THEN rules of the form of expression

(4.3) and of size I. It is said to be complete. if
vze Z. 3i€l, I]. such that up(z)>:, <€(0.1]. (5.1)

where z = {z.....zp}7 is a crisp input vector, F*. defined in eq.({.5). is a fuzzy
relation in the IF part of the ith [F-THEN rule. and = is a subjective positive con-

stant.

We now introduce a quantitative index that indicates the degree of completeness of
a fuzzy rule base. It should be kept in mind that as this quantitative index is for
on-line applications. it should be as simple as possible and not generate a significant

extra commputational burden.

Definition 5.2 Completeness Inder (C1):
For u fuzzy rule buse consisting of [F-THEN rules of the form of erpression (4.3,
and of ~ize [ the completeness inder for the th rule is defined as

= (

CI'(z) = pp(2) . 5.2)

where z = {z..... zp}T € Z is a crisp input vector. and F*, defined in eq.({.5). 1s

a fuzzy relation in the [F part of the ith IF-THEN rule.

We now apply the completeness index to test the completeness of fuzzy rule base.

Lemma 5.1 A fuzzy rule base of size [ is incomplete if fori=1..... I.and ¥ z €
Zz.
Cl'(z) < =. ¢ € (0.1]. (3.3)

where = s u subjective positive constant.
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Proof: Direct from the definition of completeness of fuzzy rule bases and the

definition of the completeness index.

Remarks:

e The completeness of a fuzzy rule base. i.e.. eq.(5.1). means that {130. Chap.6)

(i) the primary fuzzy sets defined in the input universes of discourse overlap:

{11) each primary fuzzy set is used in at least one rule.

Comparing eq.(3.3) with eq.(5.1), it is clear that the index CI can indicate

potential problems in these aspects.

e Since ([ is defined as ug. it does not generate much additional computa-
tiotal burden and is therefore suitable for on-line applications. The only extra

calculation required is its comparison with the predefined threshold parameter

Definition 5.3 Fire-Density Indexr (FDI):
Consider a fuzzy rule base of size [ triggered M times in certain period of time. [t,.
ta). Thew the arithmetic average of the completeness inder of the ith rule s defined

as the Fire-Density Inder in [ty. ty]. Formally.

; A 1 M ) ;
FDI'|2= 17;2::, CL (z) . (5.4)
The index FDI'. i =1.....I. indicates the share of usage of individual rules. If

FDI' distributes very unevenly with respect to i over a designated period of time.
e.g.. as shown in fig.3.1. it means that some rules are heavily used. such as the
fifth and sixthy rules. while others. such as the first and tenth. are little used. This
indicates that the input universes of discourse may have been ill-partitioned. and

there i~ at least a room to improve the fuzzy partition.
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FDI

Figure 5.1: Distribution of Fire-Density Indices
5.1.3 Numerical Examples
Example 1. Completeness of Fuzzy Rule Base

. L . 2
Consider a linguistic variable, u € & = [-3.3]. whose values are random numbers

normally distributed with mean 0 and variance 1. Its density function is {124]

flu) = —— exp(—22) (3.3
u) = V/_z?e.\p : 3.5)

203
which 1~ grapliucally illustrated in fig.5.2(a). Define five primary fuzzy sets. {N2.
N1. ZR. Pl. P2}= U. whose membership functions are Gaussian tvpe membership
functivus. {eq.(4.40)). centered at {-2. -1. 0. 1. 2} with shape parameters. o £0.3.
for all the primary fuzzy sets. as shown in fig.5.2(b). The corresponding fuzzy rule
base we assign to have five [F-THEN rules as shown in table 3.1. With the desired

threshold parameter. <, set at 0.03. i.e.

££0.05 (5.6)
for crisp input « = 2.735 € U.
[ crr3s) = o < &
CI*2.735) = 0 < ¢
§ CI*(2.735) = 0 < & (5.7
Cr2.735) = 0 < =
| CI°(2.733) = 0.0497 < =



Table 5.1: [F-THEN Rules for Linguistic Variable u

C*: IF (uis N2) THEN ...:
C% IF (uis N1) THEN ...
C3 IF (uis ZR) THEN ...:
C* IF (uis P1) THEN ...
CS: IF (uis P2) THEN ....

Therefore. according to lemma 3.1. this fuzzy rule base is incomplete. For this simple
example. it 1~ vobvious that the fuzzy partition must be improved. We may redefine

the member<hip functions for the fuzzy sets "N2" and "P2" as.

1. if u< =2
A -
pxaAu) = { oo (3.%)
exp[—3(¥E2)% . if u> -2
oo, u=242 : .
exp|—>{ )- 1f u<2:
ppa(u) = P! R (5.9)
1. 1 fu>2.

The new primary fuzzy sets are shown in fig.5.2(c). and the corresponding complete-

ness indices for u = 2.735 are

CI'2.733) = 0 < «¢
Cr’2.7135) = 0 < «
§ CPP2735) = 0 < ¢ (5.10)
CI*2.735) = 0 < ¢
CrP(2.733) = 1 > ¢

It is clear that the problem of incompleteness of the fuzzy rule base has been cor-

rected.
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Density Function

u

) ZR P1 P2
¢ .
0 1 2
u
(b) Primary Fuzzy Sets
o8k N2 N1 ZR P1 P2 i
Q.6 / _'t
Hoogal 4
c.2r ‘1:
J
93 -2 ~1 o 1 2 3
u

(¢) New Primary Fuzzy Sets
Figure 5.2: Completeness of Fuzzy Rule Base

Example 2. Distribution of Fire-Density Index

Consider the same linguistic variable u € & £ [—3, 3] as in example 1. whose density
function is plotted in fig.5.3(a) again. Define five primary fuzzy sets. {N2. N1. ZR.
Pl. P2}€ U. whose membership functions are Gaussian. (eq.(4.40)). centered at {-2.
-1. 0. I. 2} with shape parameter o £ 0.35 for all the primary fuzzy sets. as shown
in fig.5.3(b). where

1. if u< =2

exp[—3(5£2)?) | if u > -2.

e
(W]
—
—
—

pna2(u)
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exp[—3(%32)%] . ifu<

e

pp2(u)
1. tf u>2.

The corresponding fuzzy rule base has five [F-THEN rules, the same as those in
table 5.1. We take 2000 samples of variable u. Correspondingly. the fuzzy rule base
is triggered M = 2000 times. The fire density indices for the five rules over the 2000
samples. are shown in fig.5.3(c). where FDI?*. FDI® and FDI* are significantly
larger than FDI' and FDI®. This uneven share of the IF-THEN rules is due to the
fact that samples are not evenly distributed. and most of the samples are in [-1. 1.
where the density function of variable u has high values.

We can define more primary fuzzy sets in the region where the density function
is large. and define fewer primary fuzzy sets where the density function has lower
values. which is intuitively more appealing. We now define seven primary fuzzy
sets. {N3. N2. N1. ZR. P1. P2. P3}€ U. whose membership functions are Gaussian
centered at {-1.3. -1.0. -0.5. 0. 0.5. 1.0. 1.3} with corresponding shape parameters.

o. being {0.35. 0.3. 0.25. 0.23. 0.25. 0.3. 0.35}. as shown in fig.5.3(d). where

1. if u< —1.5

pyalu) £ (5.13)
exp[—3(13)2)  ifu> —1.5.
exp[—§(%32)Y . ifu< L3 ‘
ppalul 2 o) (5.14
1. if u>1.5.

The corresponding fuzzy rule base has seven IF-THEN rules. which are similar to
those in table 3.1. Using the same 2000 samples mentioned above. the fire-density
indices for the seven rules are shown in fig.53.3(e). where FDI', 1 = 1..... T. are

quite evenly distributed.
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5.1.4 Concluding Remarks

e Two quantitative measures, completeness index and fire density index. for
IF-THEN rule performance are proposed here. They can indicate certain diffi-
culties in a particular fuzzy rule base. such as incompleteness and uneven share
of usage of individual rules. and these indices were illustrated via numerical

examples.

o With these indices integrated into a fuzzy rule base. the reliability of the cor-
responding fuzzy logic system is likely to be enhanced. since system operators
can be warned of certain weaknesses of the FLS and take remedial measures

In time.

® These indices are obtained with little additional computational burden. since
C'I' is defined as pg.. FDI' is defined as the arithmetic average of C'I’ over a

certain period of time.

® A full understanding of these indices. as well as their values for system perfor-
mance are yet to be investigated. There is no solid theory available at present.
and their merits must therefore be understood and explained based on experi-
ence and with regard to specific problems. In addition. there is no automatic
means available to correct the problems they uncover - another subject for

further investigation.



67
5.2 Statistical Confidence Measure of Fuzzy Logic

System Performance

When a fuzzy logic system is used in function approximation problems. it is desirable
to know both the approximation accuracy of the FLS approximators and the quality
of performance of the individual IF-THEN rules. In this section. by applyving interval
estimation techniques of statistics. we develop a statistical index which can be used
to address this. Specificallv. we present statistical estimates of confidence limits on

both the overall FLS outputs and predictions of individual IF-THEN rules.

5.2.1 Interval Estimation Problem

The interval estimation of a parameter 7 is an interval (n;. n:). the endpoints of
which are functions of an observation vector x. ie.. 5y = ¢;(x) and 72 = gx).
We shall say that (7. n2) is a v confidence interval of 5. if the probability that

neEin. ) is 5 124, Chap.9l. i.e..

r
—
-

Plm<n<m}=~. (2.1

The constant = is the contidence coefficient of the estimate and thus is a subjective
measure of our confidence that the unknown n is in the interval (n,. n2). The
estimate is expected to be correct in 100~y percent of cases. If v is close to 1. we
can expect with near certainty that 7 is in (77, 72). but the difference, 7, — n,. is
usually large. With v reduced. n; — n; is reduced but the estimate is less reliable. It
is clear that. for given ~. smaller n, — n; indicates better performance of the svstem.
The objective of interval estimation is to determine the functions g,(x) and g¢,(x)

for given ~.



63

5.2.2 Confidence Interval for the Mean of FLS Approxi-
mation Errors

For a function approximation problem. assume we have M input-output data pairs.
o : :

{(Zm.yd) | m = 1...... M}, where 2z, = {zim..--. zpm}¥ is the mth input vector.

P is the number of input variables. and y? is the mth output of the function to

be approximated. Let y be the output of the FLS approximator. F. i.e.. for m =

¥(2) € Fizn) - (5.16)

Let ¢ be the approximation error.
a -
&(Zm) = y(Zm) = Y - (5.17)

Assume the approximation error. e. to be a random variable normally distributed
with mean. 7.. and variance. o2. Our objective is to determine the confidence limits.
Et and EY. of the confidence interval. (EL. EY). for given confidence coefficient.

~ . ~uch that the probabilitv of n, € (EL. EV)is =, ie..
P(EL<UE<E£';=1-. R

The sample variance of the random variable. €. 1s

) 1 M 5 ‘
s.‘\l A/I _ 1 mz=l em, . (3-19)

e

a . i . . .
where €,, = €(z). This is an unbiased estimate of the variance o2. and it tends to

o2 as M — oc [124. Chap.9]. Therefore. for large M,
sy o, . (3.20)

The sample mean. €. of the random variable. €, is

ne

€

Ly
M =
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For normally distributed random variable. €. the confidence iimits for its expected

value. .. can be obtained as [124. Chap.9]

U _. = s

S (5.22)
L _ —_

E = ey — tl_%—\’/-l‘% .

That is
_ Saf - Sy .
P(ey —t,_e—F=<ne<ey+t _s—F=)=~. (5.23)
AT S VY]

where 6 £ 1 — v .and t,_. is the 1 — % percentile! of a Student-t distribution with
2
M — 1 degrees of freedom. which can be obtained from tables such as table 9-2 in

[124].

5.2.3 Confidence Interval for the Mean of Prediction Er-
rors of Individual IF-THEN Rules

In the following. for a given overall FLS output error. e. the confidence intervals for
the means of the prediction errors of individual rules are determined.
With a FLS using the CM defuzzifier. eq.(4.17). the output of the FLS is

I s =1
- I} Q= )
Z(:l }l)’ll\y '

(524

where Y. given in eq.(4.12). are the components of output fuzzy set induced by
the ith rule, 7' is the center of a primary fuzzy set. B'. in the output universe of
discourse. and [ is the size of the fuzzy rule base. Let

9. & ___f_l_y_'_@_ ) (;
‘ Z:il:l #Y‘(?)

The output of the FLS. eq.(5.24). can be rewritten as

(1)
1.2
N

I
y=> 67 . (5.26)
1=1

‘The 1 - % percentile of a random variable t. is the smallest number. t,_.. such that

l-S=P{t <t _¢}.

2

[S10Y
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which is the weighted sum of the centers of the primarv fuzzy sets in the output
universe of discourse.
Assume. for the moment. that the total FLS output error. €. can be distributed

unambiguously among individual rules. Formally.

where ¢! is the fraction of € contributed by the ith rule. and can be unambiguously
determined given the total output error. €.
One way to distribute the output error is to assume that the contribution of the

ith rule to the total output error is proportional to the weighting coefficient. §,. i.e..

€59, -¢. (5.28)

Fori=1..... [. assume the €’ to be random variables normally distributed with

means. ni. and variances. gl. Now. our objective is to find the confidence hmits.

(EL) and i EY)'. of the contidence interval. ((EL). (EYV). for given confidence

coetticients. ~'. such that the probability of p} = ((EL).(EV)) is +'. ie.. for ¢ =
... I.

PUER) <p! <(EV))y=~". (5.29)

The sample variances of the random variables. €', are

M

. A 1
(shy)® = 5 (el )? . (5.301
MoTX

2

where e}, = €'(2m ). The sample means. €);, of the ¢’ are

- & 1 M $ . .
ey = Mmz:,e"‘ . (5.31)

The confidence limits for normally distributed variables. €. are obtained as

Yy = gyt e

Ly - v s
(E ’ —_— 64\! t]—é:—‘ﬁ'



That is

= SM i_ o5 Siy
P(CM —‘tl_‘;ﬁ <n.< Cfxw'{'tl_%xﬁ)

=~ {3.33)

Fay . ct . . . . .
where ' =1 —+', and t_als the 1 — "; percentile of a Student-t distribution with
2

M — 1 degrees of freedom.

5.2.4 Numerical Examples

Consider a discrete nonlinear system

f(z) = 3sin(m=z(k)) +sin(3m=z(k)) + v(k) . (3.34)

where ¢ is Gaussian noise with mean. 5, = 0. and standard deviation. o, = 0.03. z is
a random variable uniformly distributed in (-1. 1). z(k) and v(k) represent sampled
values of random variables = and v. respectively. at time step k.

A FLS in the form of eq.(5.24) is used to approximate fiz). whose structure is

as ~hown in fig.5.4 with a single input and single output. Fifteen primary fuzzy sets.

[Fuzzy Rule BaseJ

K z' [ Singleton | Z' | Fuzzy Inference | Y’ CM 7
A Fuzzifier Engine Defuzzifier

Figure 5.4: Structure of FLS Approximator

o

I )

A,. j = 1,...,15. are defined in the input universe of discourse, Z £ (-1 ). and

Gaussian type membership functions are used for all the primary fuzzy sets. i.e..

1

. <
Ha, () o
exp[—i(f=2)2 L if ' >3



7 s

- =
< “

N 1 . o=
pa,(z) = exp[—;( 1)) . 5 =2.3.... 14, (3.35)
< )
N oA exp[—%(z'T'i’-")z] if < 3
HAas (: ) =
1. lf ' 2 315 .
where ' = Kz, and K £7is a scaling parameter. [nitially. the parameters. =, and
o,. are assigned the following values.
T & - -\T
SO~ V- S Z14. 2 ={-7.—6.....0..... 6.7 . ‘
{z1.22 4. 215} = { } (5,361

01 =03 ="'+ =035 £05.
Fifteen primary fuzzy sets. B;. { = 1.....13. in output universe of discourse. }' Z R.
are used and y,. [ = 1..... 15. are the centers of the B;. which are initially assigned
random values uniformly distributed in (-1. 1).

The output of this FLS is expressed as

15 ’
g ()Y -
y= -{5#-1 ( 7 . (5.37)
=1 p’.‘l'(:)
where ' {4, | 4, € 2. j=1..... 15}.,and 7' € {7, |7, €Y. [=1..... 15}. Let
g, & _Fal&) (5.38)

- TR ()
Then
15
y=>_ 673" . (5.39]
1=1

A Confidence Interval for the Mean of FLS Approximation Errors

For purposes of comparison we use two training approaches to train the FLS: the
back-propagation approach (BP). and a combined least squares estimation and back-
propagation approach (LSE-BP). The BP approach uses the back-propagation al-
gorithm to train parameters. Z,. o,.and g,. j./ = 1..... 15. The LSE-BP approach
uses BP training to train parameters ¥,. o, and ¥y, when LSE training is not ap-

plicable, and it uses LSE training to train §, whenever LSE training is applicable.



The two training approaches are presented in detail in chapter 7. and here. we

concentrate only on the statistical confidence measures of FLS performance.
Figure 5.5(a-b) shows the outputs of the FLS trained by LSE-BP and BP. re-

spectively. In both BP and LSE-BP training, the learning gains for parameters z,.

n~

o, and 7y, are all set to 0.1, i.e., for j.{ =1,....15.

az, = a,, = ay, = 0.1 . (5.10)

In both cases. training terminates at & = 37. It is observed that the LSE-BP
trained FLS has superior performance.

Let the approximation error of the FLS be €. i.e..
y(z) — f(=) . (5.41)

which is assumed normally distributed with mean. n,.. and variance. o?. Given a

confidence coefficient.
~209. (5.42)

then ¢ = 0.1. and tl_% = to.95. to9s can be obtained from tables 9-1 and 9-2 in [124].
and therefore the confidence limits for the means of FLS approximation errors. £
and EL. can be obtained with eq.(5.22). Figure 5.5(c) shows the 0.9 confidence
intervals of n.. for the FLS trained by LSE-BP and BP. respectively.

In fig.5.5(c). the bias of the confidence interval from horizontal axis represents
the sample mean of FLS output error, and the width of the confidence interval is pro-
portional to the estimated standard deviation of the output error. For both LSE-BP
and BP trained FLS. the confidence intervals narrow down very quickly as training
continues. which indicates the effectiveness of both training approaches. However.
after the conclusion of training. the confidence interval of the LSE-BP trained FLS
continues converging. and at a certain point has smaller width and smaller bias

from the horizontal axis than that of the BP trained FLS. which indicates superior
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performance of the LSE-BP trained FLS. This coincides with the observation made

earlier on figs.5.5(a-b).
B Confidence Interval for the Mean of Prediction Errors of Individual

Rules

Assume the contribution of the ith rule to the total output error is proportional to

the weighting coefficient. 4., i.e..

1152

g, -¢. (5.431

whose values are assumed normally distributed with mean. 5!. and variance. (/).

Again. set confidence coefficients. 4. ¢ = 1..... '15 at 0.9. so that tl_; = {jys.
The confidence limits for the expected values of €'. (E(')‘ and (EL)'. can be obtained
with eq.(5.32). Considering only the FLS trained with the LSE-BP approach. figure
3.6 shows the confidence intervals for the odd numbered rules with respect to time
step k. Figure 3.7 shows the confidence intervals of all the rules at time steps. £=30.
100. and 200.

The error distribution approach used here is subjective. and how best to un-

derstand and make use of the confidence intervals of individual rules is vet to be

investigated. We leave this as future work.
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5.3 On Computational Issues of Fuzzy Logic Sys-

tems

5.3.1 Introduction

Consider the FLS-II of section 4.6.2. which is a FLS with singleton fuzzifier. CM
defuzzifier. sup-product compositional rule of inference. algebraic product operation
for fuzzy implications and t-norms. If further Gaussian type membership functions

for primary fuzzy sets are used. the output of this FLS is given by eq.(4.42) as

I — P =% 2
A =1 Y Hp:l exp[_( p,,- ) ] _
= —= . (5.4
-P_:p

I P L
=1 np=1e3\PL_\ e

y 27
)

This FLS will be extensively used later in this work. In the following. we present an
approach for simplifying the calculation of eq.(5.44) and increasing speed of compu-
tation. which i1s much desired for on-line FLS control algorithms where calculation
speed is often critical for success. To address the concern of the error resulting from
this simplification. the bounds of the errors will also be specified and tabulated for

certaln situations.

5.3.2 Approximation in FLS Computation

Let
P =352
a e pa;, )l P
0,‘ = ! P — . {3.40)
g
i=1 p—lexP[—(““J,L )2]
where z; € Z,.p=1..... P. are input variables. T, are the centers of the primary

fuzzy sets in the universes of discourse Z, and appear in the ith rule. Rewrite
eq.(3.44) as

y=) 0.7 . (5.46)
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where 6, is a coefficient determined by the IF part of the ith rule. and 7* is the center
of the primary fuzzy set in the output universe of discourse used in the THEN part
of the ith rule. The term. (6,7'). represents the contribution of the ith rule to the
total output.

Consider a fuzzy partition for a given universe of discourse, Z,. as illustrated in

fig.5.8. Forp=1....,P. and j, = 1....,J,, Zp,, € 2, represent the centers of the
e N
4 ™~
‘4P'qu-¢31yl -‘lpupo—ll AF]DO -'19".!,(-4-1- -'1p<),c+A1pr

Emso-‘-‘-u Epu,o—n Zprpo IO ":p'),,cﬁ-l) Zpn Jpo+djp
Figure 3.8: A Fuzzy Partition
primary fuzzy sets. 4, &€ Z,.and T, € {5, 1), = 1..... Jp}.

For a given crisp input z,6 € Z,. the grade of membership of zp in A, is

. :O—E 2 .
IJAPJP(:PO} = exp[_( . Op; pJp) } . (.’)_4,)
P

which decreases exponentially with increasing separation between z,9 and T,,,. In-
tuitively. for p € {1..... P} and j, € {1..... Jo} if | zpo — 3p,, | is large enough
such that Ha,,, (Zp0) 1s small enough. then the corresponding coefficients. 6,. : ¢
{1..... I}. which contain p4,, (zp0) are sufficiently small that the effects of the rel-
evant [F-THEN rules are negligible. If a relatively large number of fuzzy rules can
be neglected for each input without causing significant error. the calculation speed
can increase significantly with acceptable output accuracy.

Developing this notion further. we now assume that only those primary fuzzy
sets in the neighbourhood of the crisp input. zp0. say from Ay, s,y to Ay, 5,

are required in calculating the FLS output. as shown in fig.5.8. and the resulting



approximation error of the overall FLS output from neglecting the rest of the primary
fuzzy sets. i.e.. those outside the indicated neighbourhood. is negligible.

From observing fig.5.8. it is clear that the range of the indicated neighbourhood.
A,,- and the shape of the membership functions. o,,,. determine the FLS output
accuracy (or approximation error).

Next. we investigate the bounds of the approximation errors for different ranges
of neighbourhood and different shapes of membership functions, (i.e.. for different
values of A, and o,,,). which provide some guidance in determining which rules

can be neglected in calculations while still maintaining acceptable output accuracy.

5.3.3 Bounds of Approximation Errors

An expression for the bounds of the approximation errors for general fuzzy logic
systewns is difficult to derive. We confine our derivation to a two-input single-output

FLS. i.e..

e

P=2. (3.43)

because. first. this type of systems has been widely used in various application (e.g..
with inputs being “error” and “change of error™). and second. in the case of more
than two inputs the analysis procedure here is still applicable (except the process is
much more tedious).

Another restriction on our scope is that it is assumed for all the universes of

discourse that the centers of the membership functions of the primary fuzzy sets are

— - FaN -
| Zosp = Toe-n | = 1. (5.49)

Again. this is for simplicity of derivation. The derived results are directly applicable
to most situations in this work. for which the centers of the primary fuzzy sets in

input space are usually evenly spaced. For situations other than these. although the
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numerical results may not be directly applicable. they can nevertheless reveal the
level of the approximation errors. At the very least. the analysis procedure here is

still valid and may be applied in specific situations to rederive the numerical results.

Define primary fuzzy sets. {4y, | j1 = 1....,J1} and {Az,, [ j2 = L.....Jo}. in

input universes of discourse. Z; and Z,, respectively. The [F-THEN rules have the

form
IF =, is 4y,, and =, is 4,,, THEN yis B,,,, .

where B,,,, € )} is an output primary fuzzy set. whose center is denoted as j, . .

and ) is the output universe of discourse. This fuzzy rule base is illustrated in table

5.2. which is composed of .J; x .J; rules.

Table 3.2: Fuzzy Rule Base

. - L L] L] - L] . - L] L] L
A:Nno—-\n) 42530 ‘42(130'?-\12' -"ZJ-,
A B“ e o o Bz‘)iu-Af23 . e Bll:o « s @ Bl(}:o+-\12) e o o BLJ;
- L] L] L] - [ ] L] - . .
. o L] - L] - L ] L L] L[]
- . L 3 . - L] L] L] . .
1 b=
L]
.
A‘un
.
'41'Jm+-3Jx)
L]
.
.
A B so0 I Bre-amny| @0 0 | Bhe| ¢ 0 0 | Brggeran| ¢ 0 ¢ [ Bug

For given crisp input. {z10. 220} wWe assume {Z1,,,. 2,0} to be the closest centers
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of membership functions of primary fuzzy sets. {A,,,,. Az, }. We also assume that
only the primary fuzzy sets between A, ,-a;,) and Ay o+a,,). p = 1.2, are used in
calculations for this input. The relevant [F-THEN rules correspond to the shaded
area in table 3.2, and other rules are then neglected. It should be noted that the

subscripts. jpo and Aj,, must satisfy the following conditions. for p = 1.2

Jpo—3Ajp 2 1 (5.50]
2.9
_]pO + A_]; S ']P .
We now rewrite eq.(3.44) as
2 _ ~'p0_5mg V27
Z =1 Z_}z—l y_]l_]gn =1 exp[ ( Ip)p ) '! (.. ..l)
y= = . 5.5
Ji 2p0=3pyp (2
Z},—l Zn_l —1 e\p‘ ( Ipip ]
and make the following definitions:
Jio+3dn J20+322 2 co—=
- & - . <p0 ~ Spip - =
S, = Y, 11 exp(— - [ (5.32)
n=n0-3 xFn0-A% p=1 PJp
N Jo+d ) J2o+An 2
o = ~ ~FPip \2 = =
S, = [T exp{-(Z=—"2)"] (5.53)
N=n0—3An n=nc-A4 p=1 Plp
Jie=an -1 J; 0—3
) "P ~p0 ™ <pip 20
A, = Z Z Y H e‘(p a — )i
si=1 =1 PJp
Jig+3Ag) J:o-—\Jz-l o
, - . r =P P2
S U | T e
A=se—Ah J2=1 p=1 Flp
.12 2 ~ 0 — -
_ of (TP0 T Spyp 2
+ Z Ynn H exp{—{-— P Y1}
J2=Jzo+-§_7-+l p=1 Pip
N _
] "PJP 2 - =g
- Z Z Y0 H exp[—(——)] . (5.5+4)
Nn=no+aAn-+1 =1 JF’JP
A Jw=An-1 J; 2 _
; £ "PJp 2
A &Y Y [T expl—(Z2y
n=l  j=lp=l Opse
No+33r j20-A432-1 —_
"PJp 2
; o
Ji=jio—=3dn n=l PJp



Ja _=
+ Z H expl— PJp )2]}
J2=120 +A12 +1 p=1 Op1p
+ z Z H exp — "PJP )2] i
n=no+dn+i 2=1p=1 aPJp

Using these symbols in eq.(5.51) results in

Sk + AL

v= Si+ ;0

{3.56)

From table 5.2 it is clear that S, and Sy are relevant to the rules in the shaded area.

while A, and A, are relevant to the rules outside the shaded area and represent the

residual values of the numerator and denominator of eq.(5.51). respectively. which

resulted from the approximations.

[,r't

‘
16>

(j), r,

. A

which is the output approximated by using only those rules in the shaded area in

table 5.2. The approximation error is

"

Ay

Denote. for p = 1.2

'

We then have the following theorem,

Ymax = supuey{lyl}.
Ymax = max{|7,;, [17,,, €Y. n=1....,J;, 2=1,..
Opmax 2 max{o,,, | j, =1....,Jp} .

. Opmin = min{a,), | j, =1..... Jo} .

AN

Theorem 5.1 Consider the FLS of eq.(3.44) subject to the restrictions of egs./5.48-

5.49). For a given crisp input {z10, 220}, if only the rules in the shaded area in table
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3.2 are used in calculating the corresponding output. y. the absolute value of the
approrimation error. \y. is bounded by 2ymax

Sdmax ¢
Sdmun
P Y| A .
=¥ | ¢ g—dmax (5.60)
Ymax bdmin
u'/lcl't
J20-1 = = =
A 22500 — 2235, — O.D
Admax = { ) exp[~(—2—& )+ 1
Ja=1 02 max
L2 T2 — 325 — 0.3
+ Z exp[—( 212 2120 )2]}
J2=J20+1 T2max
Se=An=l = -=, —0.5
B { Z exp[—4 -lic 1) )2}
]1=1 Ul max
Jy = N — 0—')
+ Z exp{_( 1n 1)i: JZ]}
Nn=s0TAn tl Timax
Jio—t = _ = - 0.5
+ { Z e.\ip[—( Lo 1n )’.’] +1
N=no=348 T1 max
Jro+dg = _= -0.5
o expit—(.-l‘“ ~1ne . I.’I}
= ~1 T1max
P R = = O =
Sl T S2, —ULD L,
L) exp[—( ===k )’
a=1 02 max
22 Ty, = 3 0.5
+ > exp|—(—2— %0 ]} (3.61)
J2=J20+A72+1 T2max
Jio—1 = - = =
. A 2150 — 215, + 0.5 0.5
Sdmin = { Z exp[_( = - )2] + exp[——( )2]
=5e—3 I1min Tt min
+3,: = = 4
+ JIOZJ e\(p[_( g~ S t 0.5 )2]}
J1=J10+1 91 min
sl %950 — 22,, + 0.3 6.5 ..
% { Z exp{_( 2j20 252 )2]+exp[_( )2]
12=50-3)2 T2 min T2min
J20+3A 12 = = =
Z2j, — T2550 + 0.5 -
+ 3 exp[—(FA Ty (5.62)
J2=J20+ 1 J2min

The proof of this theorem is presented in the next subsection (5.3.4).
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For given parameters. 0, max- Opmin. ad Njp. p = 1.2. the bounds of the ap-
proximation error. iﬂ’- can be calculated with this theorem.

max

The special case in which

Ajr=Aj 2 Aj. (5.63)

Olmax = Olmin = O2max = O2min = O .

(provided here to allow the reader to get a feel for this). has bounds of error for

different values of o and A calculated and presented in table 3.3. Other cases mav

Table 5.3: Bounds of Approximation Errors

1Ay!
mas 0.3 0.35 0.40 0.45 0.50 0.55 0.65
A Jj
1 3.23 6.30 2.02 223 1.26 4.59 2.59
x10~8 x107° x10~* x10~3 x1072 =107 x107!
5 161 115 2380 5.89 142 8.30 201
- x10~% x 10720 x 1071 x107*? x107° x10~¢ x10~*

alsu be calculated from theorem 5.1. Table 5.3 may also serve as a nominal case

whicl illustrates the level of the approximation errors.

Remarks

e Theorem 3.1 presents bounds of approximation error for the situation of two
input variables. In the case of more than two input variables. the analvsis to

obtain the bounds of the output error is the same. but more tedious.

e brom table 5.3. it is seen that if A;j = 1. and ¢ < 0.43. the approximation
error, y%ﬂ is no greater than 0.223%. which is satisfactory for many practical
applications. In this situation. only three primary fuzzy sets in each universe
of discourse need be used in FLS calculations for a given crisp input. From
experience. we have also found that use of the three primary fuzzy sets closest
to the crisp input speeds up calculation without significantly sacrificing ac-

curacy. Observation of fig.5.8 also suggests that the three primary fuzzy sets



closest to the crisp input contribute most significantly. Theorem

5.3 justify our experience and intuition.
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5.1 and table

o In the case of two input variables. if seven primary fuzzy sets are defined in

each universes of discourse. e.g.. as in [91]. then there are forty

nine rules in

the rule base. For any given crisp input. if three primary fuzzy sets in each of

the input universes of discourse are used rather than seven. this corresponds

to nine rules in the rule base. which only counts for 18.4% of the entire rule

base. Therefore. calculation speed can be increased significantly. which is much

desired for on-line control applications.

5.3.4 Proof of Theorem 5.1

From eq.(5.38).

S, S, + A\, A Ay
A — r_ = - - - = p~ (3.64 ,'
LAy =1y y.Ibd S, T, |54+A ysd+_\f
Since S, > 00 Ay > 0.
. ' I -Ar. - y,A'." 5 ‘ An ’ 1. -Ad' i An : -ld -
. < < j— << o 3.6
' A.‘/ = \gi —_— \d | y ’ 54 g Sd + yma\ 5 . l-]’(" )
From detinitions of 7, and ymax. €q-(3.39). then.
ymax S ymax . (3-6()!
Using egs. (3.39) and (5.66) in eq.(3.34) vields
J, 20 — Ty Jig=An-1 210 — T
Ar | < Ymax Z e-\P[ ( - 2 )-]{ eXP[—( = J-}
n=l O2; n=l Oi1n
d 10 — Z15
+ ) exp[—( )1}
J1=ho+4j1+1 T1n
No+an -7 J20—-48j2~1 0 — o,
+ Ymax 9. exp[—(Z2=ZM 2§ exp[— 2 7]
n=no-an 91n 12=1 252
A toy — Zyo
+ Y exp[— (227 (5.67)

J2=)0+A+1
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Since. for p = 1.2. 3, are the closest to z,0 among the centers of the primary fuzzy

sets.
po - Epjpo |S 0'5 L] (3 68,
Or.
= = - = . 3 3 (
~Dips U-‘) S ~p0 S ~pipc T -2 . (-).6.)|
For =,,, <%, then
0 <30 —%pp =03 <200 — 35, S0 — 3py, +0.5. (5.70)
Theretore.
= _ = - -~ = =
- -~ :"_ U-) . -0'——:, -~ . :r.f z 0.:)1
exp — — Pir V< expi—t £ 2E )0 < expl - (22 Er g
T omin Toup T-max
(3.71.
while for the case of T, =5, .
0.5 Zo0— =
¢ 24 . p0 2 - -
expi—i 1"} < exp[—{ ey <1 (5.72)
T.nun J;:;;
and for 3, > i -
0< “pip T TPip T 0.5 < _(:pO - :pjp) < Spip Zpipo + 0.3 . (3{3,’
so that.

I, —T + 0.5 o0 — T o — < -0.5,
( PJp PJlpo )2] S exp[—( p0 pip )2] 5 exp[—( PJp PJpo )-]:

exp[—
Cpmin ap]p Op max

Using eqs.(3.71). (5.72) and (3.74) with eq.(5.67) vields

s2c =1 =

’An \) S .{/max{ Z exp[_(

2=l 02 max

233 — Z253 — 0.5

)+ 1



32.72 - ‘52]20 - 0.5 ]2]}

Jz
+ ) exp[—(

J2=j320+1 T2 max
Jo—4875 -1 = - 0.5
<lno0 = *1n — ] 2
x{ 2. exp[~( 3]
1=1 01 max
Jl = - -
T1, — Ty — 0.5
R R RETELITELL )
1 max

Ji=io+Aas+1
-z, —05

Jig—1 ;l
~1lno 2
+ ymax{ Z exp[—-( ) ]+1
1=J10—-AJ 01 max
Je+4An = = 0 i
2151 — f1550 — VI 0
+ ) exp[—(—* ‘ 2}
N=jo+1 U1 max
J20—35 -1 - - .
- T2500 — T2y, — 0.5
A exp{—( %]
22=1 T2 max
J> - - .
. T2 = T2y — 0.3,
- expi—i ) J}
2=nc+dn+l O 2max

Using eqs. (3.71). (5.72) and (5.74) with eq.(5.35) vields

J2c—1 = = _ .
A < { D expi~t T30 T~ 0'3)2: ]
Jo= UBmax :
JV‘ = = -
- S2p — < - 0.5
- 3 expio(CmTim T3y
J2=)0+1 02 max
Ne=3 =1 - _ _
Tip0 — 21 — 0.3
D ST T P
n=l 1 max
Jl = - O -
~1)n — <1 — 0.2,
+ z exp[_( 1 J10 )2]}
N=noe+an+l 1 max
Ji0—1 - _ a
Z150 — 21y, — 0.9
+ {2 exp[-(F L 2 +1
N=i16—3An T1 max
1e+Ag - = 0 _
“~ - < f— %)
D S G TR I
J1=no+! 71 max
J20=3)2-1 - _ 0.5
-3 — U0
<{ 3 exp[—(Re i 2]
52=1 02 max
J» _ _ _
. S T <2 T 0.5 2
T Z e:(p[—( J po, J2C ))]} '
2 max

Jz=pe+drl

L
[y A



Using egs. (3.71). (3.72) and (5.74) with eq.(3.33) results in

Jio—1 = = =
i 1 — 215, + 0.5 0.5
S¢e 2 { Y exp[-(——* )] + exp[—(——)?]
n=ne-an J1min 91 min
J10+-‘3J1 = i 0—
F41 21 + 0.0
+ z exp[-( 21 -~ Jx.u )2]}
N1=no0+l 1 min
J2 71 22,0 ~ 325, + 0.3 0.5
A Y explo (BTt 0 (B2
J2=J120—-31n Zmumn 2min
Jaord %, —% - 0.5
= X expl-(ZE—EE oy
sz=su+l T2mun

Now egs. (5.73) and 15.76) in the light of (3.61) respectively give

P\
| —n

IN

Ay £
and eq.(3.62) with eq.(5.77) shows that
S¢>S

T

Finally eqs.(5.

yma.x-Ad max -

-ld max -

dmin

8) and (3.79) with eq.(5.63) yields

. 4 max
CAY 1S 2Ymax
~d min
Or.
| Ayi S Q{dma.\ .
Ymax Sdmin

This completes the proof.

f.

{5.79)
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Chapter 6

Fuzzy Logic Controller — An Application
of the Theory of Fuzzy Sets and Fuzzy

Logic

6.1 Introduction

Wlhen the fuzzy logic svstems described in Chapter 4 are used as controllers. they
are called fuzzy logic controllers. abbreviated as FLC. Fuzzy logic control is by far
the most successful application of the theory of fuzzy sets and fuzzy logic. Fuzzy
logic control approach provides a systematic and efficient theoretical framework
for incorporating linguistic descriptions of human expertise into design of automatic
controllers. It has been shown [80. 177] that, under certain conditions. fuzzy systems
are universal approximators. i.e.. they are capable of approximating real continuous
functions on a compact set. (i.e.. on a closed and bounded set). to arbitrary accuracy.
This provides an explanation for the practical success of fuzzy logic systems in
engineering applications. It also indicates that. theoretically. it is possible to find

an appropriate fuzzy logic controller for a large class of systems concerned.

In this chapter. a complete practical procedure for formulating expertise based

90
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fuzzy logic controllers is presented via experiments and simulation examples. In
the experiments. fuzzy logic controllers are designed to control a real flexible single
link manipulator. described in Appendix B. whose dvnamic model is unknown (or
assumed so for purposes of controller design). where. when disturbed by external
disturbances. (1) active damping of beam vibration and (2) position regulation of
the tip of the beam are demonstrated. Their performances are also compared with
that of conventional PD controllers. In the simulation example. a fuzzy logic con-
troller is designed to command the tip of the flexible link of a manipulator to follow
a predefined trajectory. where the flexible link manipulator is represented by a dv-
namic model. This model. however. is treated as a black box. and is unknown to
the controller.

[t should be emphasized that the resulting fuzzy logic controllers here are based
solely on human expertise and trial and error tuning. without explicit theoretical
analvsis. This is to form a basis for further development in following chapters. where
analvtical techniques are introduced to adaptively tune FLS parameters to improve

svstem performance and assure system stability.

6.2 Basics of Fuzzy Logic Controller Design

The design of a FLC is an ad hoc procedure based on its four components: fuzzifi-
cation interface. fuzzy rule base. fuzzy inference engine and defuzzification interface

[83. 177]. The design process may be divided into the following steps.

7T
& determine input and output variables.
& design fuzzification interface.

o design fuzzy rule base.

& design fuzzy inference engine. i.e.. choose decision making logic.



e design defuzzification interface.

The selection of input and output variables of a FLC depends on the particular

problem and designer’s experience.

For the fuzzification interface, as pointed out previously. we use the singleton
fuzzifier throughout this work. For the convenience of computer implementation
of control algorithms. we decompose each fuzzifier into two parts. a prefilter and a

fuzzifier. as shown in fig.6.1. The prefilters. f,. p = 1..... P. transform the input

':‘_—’Lfl }:—;’( Fuzzifier Q—L

!
< z Z
i —{ fe '—>‘P Fuzzifier P }—'——E*

Figure 6i.1: Reconfigured Fuzzification Interface

values of system states into desired ranges. i.e..
(zp —ap) - b, . (6.1)

where a, and b; are constants that translate and scale the values of input variables.
respectively. We can by this means use a normalized fuzzy partition and adapt it
to different input variables with different numerical regions by applyving appropriate
prefilters. For example. for an input variable, = € [5, 20], and a normalized fuzzy
partition as shown in fig.6.2. where primary fuzzy sets are defined as {NB. NS. ZR.
PS. PB}. we wish to transform the region of input values from [5. 20] to [-2.5. 2.5].

This can be achieved by applving a prefilter. f. defined as

[N
)]

(=-=12.5)- 6.2)

=~

(el
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NB NS PS PB

-2 -1 0 1 2

Figure 6.2: A Normalized Fuzzy Partition

The fuzzy rule base is the main part of an FLC. It is composed of linguistic
coutrol rules of the form + 131, which map a set of fuzzy input sets to a fuzzy output

set. The design of a fuzzyv rule base may be decomposed into the following steps:

e fuzzy partition of linguistic variables. i.e.. define primary fuzzy sets for every

linguistic variable.

o detine membership finctions for every primary fuzzy set.

o define linguistic statements of fuzzy rules. ie.. define mappings from state

space to output space.

The fuzzy inference engine is the decision making logic which, by using IF-
THEN rules in the rule base. derives a fuzzy output set from fuzzy input sets. [ts
mathematical expression is given in eq.(4.12).

The defuzzification interface is a defuzzifier which transforms a fuzzy output
set into a crisp control signal. For convenience in certain situations. a defuzzifier
is sometimes decomposed into two components. a defuzzifier and a scale factor. as

shown in fig.6.3.
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}' 4
—-‘*v’[ Defuzzifier H R )—"y"*'

Figure 6.3: Reconfigured Defuzzifier

6.3 Fuzzy Logic Control of Flexible Link Manip-
ulator: Design and Experimental Demon-
strations

A flexible single link manipulator was built to serve as an experimental testbed. with
details of this mechanical syvstem presented in Appendix B. Although this is only a
single degree of freedom system. the very flexible link. the presence of nonlinear joint
friction. and existence of an unknown internal control loop make this manipulator

a very challenging svsten fur identification and control purposes.

6.3.1 Active Link Vibration Control with FLC

In this section. a fuzzy logic controller is developed to actively suppress the deflec-
tion at the tip of the manipulator link caused by external disturbances. The main
objective liere is to demonstrate the basic ideas and procedures for developing a

fuzzy logic controller.

Stage 1 Accumulating Experience

Initially we have no knowledge of the dynamics of this manipulator. For FLC design.
the first step is to acquire familiarity with the dvnamic behavior of this mechanical
svstem.  To achieve this an operator manually controls the input voltage of the
motor by operating a jovstick to suppress the tip vibration of the link via eve-hand

coordination. as illustrated in fig.6.4(a). No feedback sensors are used at this stage
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of FL(' development which is for a human operator to acquire intuition about system

dynamic behavior and accumulate expertise in controlling the system.

Stage 2 Refining Expertise and Collecting Input-Output Data

At this stage. an ultrasonic position sensor is incorporated into the system. and tip
deflection of the link is measured and displayed on a computer screen in real time.
The rate of change of the tip deflection of the link is obtained through numerical
differentiation of the tip deflection and is also displaved on the computer screen.
Now. rather than looking at the real beam. the operator manipulates the jovsiick
while watching the computer screen. where measured information is displaved. as
tusitated in ig.6.4¢by. This is nearer to the real automatic control situation where
only ~cnsed information is accessible by automatic controllers. In this stage. the
expertise of the human operator is refined. and both input and output data are
recorded. and can be processed and analysed off-line to help generate and tune

[F-THLEN rules.

Stage 3 Design of Automatic FLC

The next step is the design of the automatic fuzzy logic controller. We choose tip
detlection of the link. ¢ 2 #(L.¢t) € €. and its rate of change. ¢ £ v(L.t) €C. as the
inputs of the FLC. and the command voltage of the motor. § € D. as the output.
where £ C. D C R. are the universes of discourse for €. ¢ and é. respectivelyv. In

addition.

o v(L.t)=v(L.t=T)

7 (6.3)

= c(Lot)

and 1" is the sampling period. which is 0.025 sec in this experiment. The control
system is illustrated in fig.6.4(c). and the overall structure of the FLC is illustrated

in fe.6.5.
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Figure 6.4: Fuzzy Logic Controller Development

Seven primary fuzzy sets are defined in €. C and D. respectively. i.e..

E . {E] EQ. Ea. E.p E,:.. EB. E7} .
C {('1. Cz. Cg. C.;. Cs. ('6— C,-} .
D . {.l] Ag. .33. .3.;. As. ._Xs. AT} .

For the notation to be linguistically meaningful, let

{E\. Es. E5. E;. Es. Es. E:}T

£ {Exs. Exu. Exs. Ezn. Eps. Epys. Epg}T .

{Ch. Ch. Cy. Cy. Cs. Cs. C:=}T
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(6.4)

(6.3)
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Figure 6.5: FLC for Vibration Control Experiment

= {C'vg. Cyyr. Cns. Czr. Cps. Cpy. Cpp}T . (6.6)

(A5 Az Ag A As Qe AT

e

{A,\;B. Anvare Avs. Azr. Aps. Apay. APB}T . (6.7)

where N - Negatiee, P - Positice. B - Big. M - Medium. S - Small. The numerical
subscripts - .20 and the literal subscripts - VB, V... will be used interchange-
ably  the former being more convenient in mathematical expressions while the latter
is hnguistically more appealing.

Gaussian tvpe membership functions are used for each primary fuzzy set.

, = I . lf f/ < F; .
po o = o
exp[—3 ==L € > E .
’ sl l € —€ ) . -
pete’l = exp{—=( 1)1 J=23.....6. (6.5
; 2 o,
N exp[—%(%:—f-l)z] , ife <&,
HE(€7) =
1 . if € 2 €x y
,.oA 1. if ¢ < [
poelc) = o
exp[—3(Z==)% . if 275 .
1
KAy 1 C’ _E 21 . :
pete) = expl=g(——07. j = 2.3...6. (6.9)
&~ c



exp[—3(=E)?] . ifd <& .

#C,‘(C') é oer
1. if 2 c- .
N if 6 < &,
Hated = . 1o&=5; 2 eSS R
e:\p[—i(a—al*) .o ifé >
1.8 —8, 5 .
ua,(6) £ exp[~=( 13 | j=2.3.....6. (6.10)
0’5]
& B exp[—%(%‘fl)z] L ifé < és .
M- = -

L. if 8 > &5 .
where ¢’ and ¢ are transformed values of € and c. respectively. For j=1.2....7. 0, .
0. aud o. are parameters characterizing the shape of the membership functions.
and ©,. ¢, and &, are parameters characterizing the locations of the corresponding

primary fuzzy sets. The locations of the primary fuzzy sets are defined as

- — - 2 . - - = & - - T 4L
Iclzclzblz—h. 63=C3=O'_)=—4. 63=C3=(5'5=—2.
E._{:Z,‘—(-\;é“. lbll)
17-‘:;.‘:?:;-_’_ fo =0 = 0 = 4 F-=7-=¢-Z6
The <hape of the primary fuzzy sets are defined as.
Al 03. for j=41. .
0., =0, =05 = (6.12)

0.6 . otherwise .
Figure 6.6 shows the primary fuzzy sets for variable e.
The fuzzy rules are developed through operator’s intuition and experience. and
are further tuned through trial and error tests. This FLC has 49 rules. as shown in
table G.1. The table is read as

IF (e is Exp and cis Cxg) THEN (6 is Axp) :

We use the FLS-1 mapping. as defined in section 4.6.1. for the FLC. which is

characterized by the folluwing properties. repeated here for convenience:
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Figure 6.6: Primary

Fuzzyv Sets for € in Vibration Control Experiment with FLC

[able 6.1: Fuzzy Rule Base of the FLC for Vibration Control Experiment

E)

p A\t

$ Cyp p Cvu | Cxs | Czr Cps Cpur Cps
Evp Avy E Avg Axg | Avs Ave | Azr Azr
Exv | Ave l Avg | Ayve | Avs Ave | Azr Azr
Evs Avy D Avy | Avy | Ay Azr | Aps Aps
Ezn Avy | Avy | Axs Azr Aps | Apar | Apyr
Eps Avs Axns Azr Apy Apy | Apr | Apas
Epyy Azr Azr App Aps Apg | Aprs Apg
Epp Azr Azr Aps App Apg | ApB Apg

~ineleton fuzzibier. equod 19):

@ “miu~ opceration for fuzzy relations. eq.(4.20):

® “miu~ operation for fuzzy implication. eq.(4.21):

“sup-min_ compositional rule of fuzzy inference. eq.(4.22):

CM defuzzifier. eqgs.(4.27-4.28).



100

The crisp output. é’. of this FLC is given by eq.(4.27) as

' é Z{=1 luA"(gi) : 31 )
Sm1 an(T)

(6.13)

where A" is the output fuzzy set induced by the ith rule. and g,..(8') is defined in

eq.1 1.26) as
y_\'.(g:» = min{ug:(€'). pe (). ,u,_\.(gz)} . (16.14)

where. for i = 1..... 49.

(E,. j=1.....7}.

2 {0,y
1 Az {AL

Equation (6.14) may be graphically illustrated as in fig.6.7. where the shaded area

—_—
™
M

(6.1

i I
— —
: .

-1 -1
—— ———

M

represents the output fuzzy set. A" induced by the ith rule, and § is defined in
eq.(4.2%) as

5= min { ! "1 §" =argsup{u (6N} }. (6.16)
e’ D

which i~ also illustrated in tie.i6.7). The ¢ is selected according to the fulluwing
rationafe: among the infinite number of support points in A", we take onlv that
which has associated with it the maximum grade of membership. and in the case
there are several such support points. we take that with the least absolute value.

For ¢ in cm and ¢ 1n cm/sec. let

K, £ i6.
K. 2 004. (6.17)
K = 6.7 .

Figure 6.8 shows the free vibration at the tip of the link. v(L,#). when disturbed
by an external disturbance (an impact). Figure 6.9 illustrates a vibration control

experiment when the initially still link is subjected to external disturbances. Figure
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Figure 6.3: Free \'ibration at the Tip of the Link When Disturbed

30

6.9(a) shows the command voltage of the motor. é. produced by the FLC. and

figure 6.9(b) shows the vibrational displacement. v(L.t). at the tip of the link. The

disturbances are imposed at t & 2 sec. 8 sec. and 15 sec.

[t is seen that the tip vibration of the link can be quickly damped out. The

usefulness and effectiveness of a fuzzy logic controller is clearly demonstrated. There

does remain a small residual vibration with magnitude about 1 cm. This small

residual vibration is very hard to be suppressed actively mainly due to the nonlinear

friction of the motor.
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Figure 6.9: Active Vibration Control Experiment with FLC

6.3.2 Vibration and Position Control with FLC

Above. we have used a FLC to actively control only the tip deflection of the beam.

with the angular position of the link of no concern. so that the final position of the

link can be different from its original position. \We next consider a more realistic

control task. which is still to actively suppress the beam vibration due to external

disturbances. but at the same time. the beam is not allowed to deviate from its

original angular position.

Define state variables.

e

v(L.t) = K’

=

-0(0.1) .

np

t(L.t)— K -o0(0.1) .

(6.1%)



103

where K2 and A'C are the weighting coefficients for o(0.1) and o(0. t). respectively.
v(L.t)and ¢(L.t) are the vibrational displacement and velocity. respectively. at the
tip of the beam. o(0.¢) and é(O.t) are the angular displacement and velocity of
the motor hub. v(L.t) is measured with the ultrasonic position sensor. and &(L.f)
is obtained through numerical differentiation of v(L.t). as given in eq.(6.3). where
the sampling period. T. is 0.025 sec. o(0.t) and 0(0.t) are measured with built in
encoder and velometer. respectively.

The same FLC developed in the vibration control experiment. section 6.3.1. is
used here for this vibration and position control experiment. Here. € and ¢ defined in
eq.(6.18) are the inputs of the FLC. and the output of the FLC. é. is the command
voltage of the motor. For viL.#} in cm. ¢(L.#) in cm/sec. o(0.1) in degrees. and
o(0.t) in rad/sec. the weighting parameters and the gains of the FLC are defined as

r

KT 2 25
K230

(K, £ 16. (619
K. £ 004,

A I 2 6 .

A vibration and position control experiment with the FLC is illustrated in tig.6.101a-
c). where external disturbances presented at { = 2 sec. 8 sec. and 15 sec. which are
imposed by manually hitting the beam. Figure 6.10(a) shows the control signal.
6.10(b) shows the vibrational displacement at the tip of the link. and 6.10(c) shows
the angular displacement of the motor hub.

It is seen that the tip vibration of the beam is effectively suppressed. and at the
same time. the angular position of the beam is also maintained at its original settine.

which. again. demonstrates the capability of the fuzzy logic control approach.
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Figure 6.10: Experiment on Vibration and Position Control with FLC



6.4 Experiments with PD Control

6.4.1 Introduction

The proportional-integral-derivative (PID) control approach is widely used in indus-
trial applications. Process engineers and operation personnel are familiar with it.
and most industrial single-loop processes are robustly and stably controlled with it
[38. Chap.4]. Although this controller is not designed as optimal. it is estimated that
more sophisticated controllers would not confer an economic advantage over PID in
30% of control loops [24]. The PID control approach can also be model free. as ix the
fuzzy logic control approach. A natural question raised here. therefore. is how the
performance of a fuzzy logic controller compares with that of a PID controller” [n
the following. we use PD controllers to repeat the experiments presented in the last
section with FLC - thar is. to first actively suppress beam vibration. and second.

to control the beam vibration and maintain the beam angular position at the <ame

time.

6.4.2 Active Link Vibration Control with PD Controller

The syvstem with PD controller is shown in fig.6.11. where the output of the PD

controller. é. is the command voltage of the motor and is obtained as
&S KNye+ RKac . (6.20)

where as previously. € £ v(L.t) and ¢ 2 ¢ are the vibratior al deflection at the tp
of the beam and its time rate of change. respectively. Again. ¢ is obtained with
numerical differentiation of €. as given in eq.(6.3). where the sampling period. T. is
0.025 sec. The objective is to actively suppress the beam vibration due to external

disturbances.
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s

« K, +sh; Manipulator

Sensors

Figure 6.11: PD Control System For Vibration Control Experiment
For € in cm and ¢ in cm/sec. gains are selected. by trial and error. to be:

K, £ 027,
A (6.21)
£ 0015.

[\'4
A vibration control experiment is illustrated in fig.6.12(a~b). where external distur-
bances are imposed at t = 2 sec. 8 sec. and 15 sec. Figure 6.12(a) shows the control
signal. é. and 6.12(b) shows the vibrational displacement. e_ at the tip of the link.
Comparing fig.6.12 to the results of the similar experiment with FLC. fig.6.49. it i~

found that both types of controllers perform well. but the FLC appears to have an

edge in the residual vibration.

6.4.3 Vibration and Position Control with PD Controller

Now. we consider an experiment similar to that presented in section 6.3.2 with the
FLC. which is to actively suppress the beam vibration due to external disturbances.
but at the same time. the beam is not to deviate from its original angular position.

Define state variables.

Ine

€(t) v(L.t) - KN -0(0.¢) .

(6.22)

e

c(t) C(L.t) — K< -0(0.1) .

where A'® and A are the weighting coefficients for (0.} and o(0.f). respectively.

The PD controller illustrated in fig.6.11 is used for this vibration and position
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Figure 6.12: Active Vibration Control Experiment with PD Controller

control experiment. and the output of the PD controller. &. is obtained from

&2 KNoe + Ny . (6.23)
with € and ¢ here being defined in eq.(6.22). For v(L.t) in cm. &#iL.f) in cm, sec.
0(0.t) in degree. o(0.1) in rad/sec. the weighting parameters and the gains of the

PD controller are:

' K 2 25,
K 2 15. N
< K, & 045 o
| Ay & 002
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A vibration and position control experiment with the PD controller is illustrated in
fig.6.13(a-c). where external disturbances are imposed at ¢ = 2 sec. 8 sec. and 153 sec.
Figure 6.13(a) shows the control signal. 6.13(b} shows the vibrational displacement

at the tip of the link. and 6.13(c) shows the angular displacement of the motor hub.

Comparing fig.6.13 to the results of the similar experiment with FLC. fig.6.10. it
is again observed that both the FLC and PD perform well. but the residual vibration

of the beam with FLC is smaller than that with PD controller.
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Figure 6.13: Experiment on Vibration and Position Control with PD Controller
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6.4.4 Remarks

e Although in the simple control tasks presented above. the FLC approach is
only slightly better than that of PD control approach. for more complicated
situations such as industrial process controls [10. 169. 210]. human expertise
can be of much more significance for successful control. when the simple PID

control approach may not work at all.

o The design procedures of FLC and PID control are fundamentally different.
The PID control approach is basically a trial and error approach. while the
FLC approach provides a systematic framework to explicitly incorporate hn-
man expertise in the form of IF-THEN rules. The fuzzy IF-THEN rules can
be rationally set up and modified. as opposed to trial and error for obtaiuing

the gains in the case of PID control.

o The fuzzy logic control approach has the potential to be further developed into
an effective approach in dealing with highly nonlinear and ill-defined systems.
where the overall svstem stability properties and performance criteria can be
theoretically analyvsed and adaptively adjusted. as will be seen later in this

work.

e From our experience. the FLC appears more stable and robust than PD cou-
troller. The former is less sensitive to the values of gains. change of the tip

mass. and the strength of external disturbances.

e In the literature. it has been reported [33. 102] that fuzzy logic controllers are
more robust than PID controllers. since thev can cover much wider ranges of
operating conditions than can PID controllers: developing a FLC is frequently
cheaper than developing a model based or other controller with equivalent

performance: fuzzy logic controllers are customizable. since it is easy to un-
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derstand and modify their rules. which not only mimic a human operator’s
strategies but are also expressed in linguistic terms in natural language. Our

observations are generally in accord with these views.

6.5 Trajectory Control of a Flexible Link Manip-
ulator — A Simulation Example with FLC

Consider the dvnamic model of a flexible link manipulator given in eq.(B.1) with
motor friction neglected.

X = AN+ BR7lL .

Vo= CX.

(6.25:

where A1 is the motor torque constant. 1, is the command voltage of the motor.
X and } are given in eq.{A.137). 4. B and (" are given in eqs.(A.141-A. 1431 This
models the torque control mode of the direct drive motor described in Appendix B.

The objective here is to develop a FLC to command the tip of the link of this
manipulator to follow a desired trajectory. Simulation results will be presented. but
the dynamic model of the manipulator is treated strictly as a black box for the FLC'.
i.e.. 1t 1s unknown to the FLC.

Let the desired tip trajectory of the link be w,(L.t). and the actual trajectory

of the tip of the link be w(L.t). The difference between these is
€(t) 2 wil.t)— walL.t). (6.26)

Let the rate of change of €(t) be c(t), i.e.

2

c(t) =€(t) = uw(L.t) — wy(t) . (6.27}

The overall system is illustrated by a block diagram in fig.6.14. where bold lines

represent vector signal flows.



fwy. wy {e. c}1 FLC Vin Ky T \ = 4\ + BT, Y -
i Y = CX

{wi(l.t). w(L.t)}

Figure 6.14: Control System Diagram for Trajectory Control with FLC

We choose ¢ € £ C R and ¢ € C C R as the inputs of the FLC. The output
of the FLC is the command voltage. ¢ £ 1, € D C R. where £ C and D are
the respective universes of discourse. \We use the same FL(' as developed in the
active vibration control experiment of section 6.3.1. illustrared in fig.6.5. except

with different parameter values here.

The locations of the primary fuzzy sets are defined as

- - - L, - - - & — - - 2
51=C1=01=—-3. fg——-(‘_g:égz—z 63—(‘7—(‘.:—[

- A LN
€y =Cy=¢3 =0, FHLIN)
- - = & — - - 4 - — - 4
€5 =C;=¢s5=1. € =Cs = 0 =2 . f-=¢~=¢-=13

For want of a compelling reason to do otherwise. and for simplicity. the same <hape

of membership function was used for all of the primary fuzzy sets. by assigning
& . : »
g, =0, =0, =045, 5 = 1. 2....7. (6.29

Figure 6.15 shows the primary fuzzy sets for variable ¢ defined above. As before.
the fuzzy rules were developed through an operator’s intuition and experience. The
19 rules of this FLC are summarized in table 6.2.

The flexible link is of stainless steel plate of 700 mm long. 1.27 mm thick and
50 mm wide. with Young's modulus £ = 206.7 x 10° N/m’ and mass density p =
7.89 x 10°® Kg/m>. The tip of the link is subjected to a pavload of the same mass ax
the link. The structural damping coefficients of the flexural modes are assumed to

. A ) C A -
be 0.002. 1.e.. §, = 0.002. and the motor torque constant is taken to be h'r = I8.75
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Table 6.2: Fuzzy Rule Base of the FLC for Trajectory Control

p \C

€ CxB Cxy Cys Czr Cps Cpar Cpg
ExB Apg App Aps Apg Aps Azp Azr
Exy | ApsB App App Aps Appg AzR Azr
Evs Apys Apy Apys Apyy Azr Avs Avs
Ezr Apys Apys Aps Azr Avs Avy ANy
Eps Aps Aps Azr Qvar [ Avyy Ay Avyy
Epyy Azr Azr Avp Avg | dys Avg Avp
Epg AZR AzR Avp Avg | Avg Avp Avg

m/\V. The dynamic model of the manipulator was implemented in SINTLINK.

and the simulation programmed in MATLAB.

The sampling rate was set at 100 Hz.

A simulation experiment for trajectory

fig.6.16. where 6.16(a) shows the control signal. 6.16(b) shows both

J i
A
I \-.5

e

Ine

and.

0.07 .
0.07 .
10 .

(6.301

control of the manipulator 1= shown in

the desired
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trajectorv and the controlled trajectoryv. and 6.16(c) shows the difference hetween
the desired trajectory and the controlled trajectory.

The results are quite satisfactory. which demonstrates once again the effective-
ness of the human knowledge based FLC. which does not utilize the system mathe-

matical model.

0.2 T y T ; —

0 0.5 1 1.5 2 2.5 3 3.5 4
t (sec)
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3; T T
—_
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t (sec)

(c¢) Tracking Error

Figure 6.16: Trajectory Control of a Flexible Link Manipulator



6.6 Concluding Remarks

In addition to the remarks made in section 6.4.4. we have following remarks and

observations.

e In this chapter. we have applied the theory of fuzzy sets and fuzzy logic to
control applications. and presented a process for formulating expert knowl-
edge based fuzzy logic controllers. We have demonstrated applications of
those fuzzy logic controllers for various control tasks. both experimentally
and numerically. We also compared the performance of FLC with that of PD

controllers.

e In FLC design. human expertise can be svstematically incorporated in the

form of IF-THEN rules.

o In both experimental demonstrations and simulation examples. the fuzzyv logic
controllers designed solely on the hasis of expert knowledge demonstrate the
capability of performing various control tasks satisfactorilv. without knowledee

of system mathematical models.

® [n this chapter. FLC parameters must be designed ad hoc depending on indi-
vidual systems and control tasks. and must sometimes be adjusted manually
by trial and error. There is no formal synthesis which can theoretically guar-
antee system stability and acceptable performance. This is a major weakness

of this FLC design scheme.

Later in this work. we present a new fuzzy logic syvstem structure which can be
more effective in dealing with dynamic svstems. New identification and control
algorithms are also developed. whose stability properties and performance criteria

can be theoretically justified and parameters adaptively adjusted.



Chapter 7

Optimal Training For Fuzzy Logic

Systems

7.1 Preliminary

[n the previous chapter we presented an empirical fuzzyv logic svstem (FLS) desian
process and its application in automatic control. in which all FLS parameters are
obtained either by expert knowledge or by trial and error. In this chapter. we
present an optimal training approach for FLS parameters by using a least-squares
estimation technique and backpropagation algorithm.

As pointed out in chapter 2. least-square estimation and backpropagation tech-
niques have been used in tuning FLS parameters. But it is also known that back-
propagation approach has such weaknesses as generally being slow in convergence
rate and the possibility of being trapped in local minima. while the least-square
estimation technique suffers from the restriction of a rank condition over a param-
eter matrix. These motivated us to propose a training scheme that combines the
both mentioned techniques in such a wayv that the new scheme would include the

advantages but avoid the weaknesses of the both ingredient techniques.

Consider a FLS with input variables z, € Z, C R. p = 1..... P. where this

116
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FLS is characterized by singleton fuzzifiers. CM defuzzifier. the product implication
rule. sup-product compositional operator. Gaussian type membership functions for
primary fuzzy sets. and algebraic product operation for all the ~«" operators. Its

output. y. is given in eq.(4.43) as

y=07(z2)Y . (7.1
where z £ {z1..... :p}T. ©(z) and Y are defined in eq.(4+.44) as
@(z) 2 {biiz).....00(z)}7 . _,
(.20
=5 & —
Y = {yl ..... f/{}
Bz).i=1..... [. are given in eq.(4.43) as.
. IR expl—d(22ey
8,(z) = — — . (7.3
r ;- _LE 31
Zx:] npzl expl—%{ PU;J ,.'

where T! and ! are design parameters that characterize the centers and shapes
P F >

of membership functions of primary fuzzy sets. In the following discussions. we

assume that the number of fuzzy rules. /. has been defined. leaving =.. o and 7..

r=1.0.. [. as free parameters.
The problem is to determine parameters ;. o and y, for given input-output
data pairs. (z(k). q(k)). b = 1...... \.ozik) = {zpik) spth}T € Z = R,

e

Ed lod
- -
-— -

¢+ oo x Zp.qthy & R. such that the loss functional - sum of the squared

errors between the observations and the model outputs:

‘ N A 1 AY -
Jy & Z £y =5 Sl yltk)y—qk) JF =

k=1 = k=1
is minimized. where ¢g(k) is the model output. and y(&) is the FLS output. both at

v —Qn . (7.4

o] —

time step k. and

(y(k) = OT(khY(k)
Ec = Huythy—qki 2.
J A ft.-)l
Yy = {l/!l) ..... l/(\)}r
Ov 2 {q(1).....q(\)T

\
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7.2 Optimal Training for FLS

7.2.1 Backpropagation Training

In the literature. the backpropagation algorithm (BP) has been used to train the
parameters =, 0;. and 7, of the FLS in eq.(7.1) (177]. This approach causes the loss
functional to decrease in the direction of steepest descent. The training rules are as

follows. for ¢t = 1..... [.p=1..... P.

Gk+1) = Fk) - a;—dl_— 5,27, 1k) (7.6

_ - A.J -

IP(A—I) = :p(A"—O?;’f)—T’ :[:‘.'p=?;,(;‘»'}' tyoa)
~p

, dJi -

U,‘A "l) = O’;’(AJ—O”;'(')TTE"';:”;/(” (Y
P

where ay . az and .. are the learning rates of the respective variables. For conve-
L g

nience in on-line applications. the gradient descent is usually based on £y of 1 7.5

rather than an .Ji. Accordingly. the training rules are modified as (177 .

Fih+1) = Gk} —an — =z 4, - I
'/( } I/( } OJ, ()y‘ VN =i
— - JdE, -
:p(A‘..I_l) = :p‘l'.)—n?;, d?; z;;’::;(;\.) 'll”l
t . t ()E’\ : -
Up(l-""l) = UF(A,—O’;’(]_O-;)‘;":”;‘“:) vl
Let
P =
A 1 ozp(h) = Z5(k) -
Ap = exp|— =( ——————F—)-] . (7.124
g };‘[l Pt 2 0’;)(/\‘) J
then
I ! _
Auy, (k) -
(k) = 0.(k)g, (k) = —— (.13
Y ; 7. (%) ; Z{:l Ak '
The gradient terms can be obtained as [177].
JE; A
— t =7 (k) = ky—glk) ] ——— . (7. 140
ayl 19, =7, (k) [y( ) Q( ) Z{:z .'1,'1\-
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AE o Au _ (k) = T (k) .
7, mesw = [0 —alb [ S ) —ythl S0 1)
~p =1 'k P

9Ex | Au _ Lk =T R
—_— t =gt - L‘ —_— k " ——— . k -_— A- [ 4

80’; izy= p{k] [y( ) Q( ) ] Z‘[’=l Ax'k [yx( ) y( )l (O’;”\’)P

(7.169

Although powerful. the BP approach is also well known for its weaknesses of gener-
ally slow convergence rate and the possibility of being trapped in local minima.

Observing eqs.(7.1-7.3). it is clear that expression { 7.1) is linear in parameters 7y .
i=1..... I. Therefore. if the parameters T, and o, are determined. the well known
least-square estimation (LSE) technique can be applied to estimate parameters j .
The parameter vector. Y. obtained in this way is the global optimal point in the
parameter space ). Y € ) Z R' [7. Chap.3].

In the following sections. we first brieflv review the LSE approach. and then
present a new FLS training scheme which combines the LSE technique with BP

approach.

7.2.2 Least-Squares Estimation

Let

el

>
4

CIP
@T(k)

if (@]7]@], is nonsingular. and parameter vector. Y (&). is given by

e

Y(k) = ([@)f[@]) ' efQ. . (7N

then the loss function of eq.(7.4) is minimized. and this minimum is unique [7.

Chap.3].
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In control applications. the observations. (z(k).¢(k)). are obtained sequentially
in real time. It is then desirable to make the computations recursive to save com-
putation time. That is. the computation should be arranged in such a way that the
results obtained at the (m-1)th step can be used to obtain the results at the mth
step. This problem has also been well developed in the literature. and the results
are given as follows [7. Chap.3|:

Assume [@]][@]; is nonsingular for all & > ky. given Y (k) and S(ky). the least-

squares estimate Y (&) then satisfies the recursive equations.

Yihk+1) = Yo+ Ritk+ gk =0Tk + DYtk ] . Ty
Kik+1) = Sth+10Ok+1)
= Shi®Ok =1 +OT k= NSkOk+1) 7. .20,
Sth+11 = Sty =SkOhk = D[ T +OT(h = NSOk + 1) 71O 1k = 11Nk
= [ [—Kitk=10OTik~1)Sth). e
To obtain an initial condition for S(k). it is necessary to choose & = k, =nch that

'©!] [@.. is nonsingular. The initial conditions are then

Shy) = '[@J‘TL[@"—} (7.2
?”\‘01 é Au)'@ Qx

. ~, a0 - - .. . . -
Or simplyv let S{0) = Sy/. where S, is some large positive number (41. Chap.7 .

7.2.3 LSE-BP Training of FLS

\'ia the LSE approach it is easy to obtain the optimal parameter vector. Y. which
minimizes the loss function. Jy. in eq.(7.4). For eq.(7.18) or the recursive equations
(7.19-7.22) to be valid. the matrix [@]7[@]; must be nonsingular. In addition. the

parameters T, and o, are still to be determined.
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At this point the possibility of the combination of the LSE and the BP approaches

which includes the advantages and avoids the weaknesses of both. which we term

the LSE-BP approach. become apparent.

The LSE-BP approach works as follows.

(1)

(11}

(111)

(1v)

Design the initial fuzzy logic system. Determine the number of fuzzy rules.
/. and assign initial values for parameters. . o, and g,. Expert knowledge
can be used in this stage. If there is no expert knowledge available at all. rhe

initial values may be assigned randomly. Also. determine the learning rates.

aj . a= and a,.. for BP training rules, eqs.(7.9-7.111.
Y. <p P (=4

Obtain input-output pairs of the plant and FLS. (z(ki.g(h)) and izthk). yibo,
respectively. Check the estimation error. and if satisfactorv. terminate the

training process. otherwise. go to the next step.

Check the matrix [@]7i® . for nonsingularity. If it is nonsingnlar. use the
recursive LSE equations. (7.19-7.22). to obtain the optimal parameter vector.

Y (k + 1. otherwise. go to the next step.

[f the matrix [@]F{@, is singular. use BP equations. (7.9-7.16). to update

Jie d

parameters y,. T, and #]. otherwise. only update parameters T, and #!. Then
r

go back to step (ii).

7.3 Numerical Examples

Consider a nonlinear system which was used in [177].

y(bh +1) =03y(k) + 0.6k = 1) + glu(h)]. (7.23)

where the unknown function. g(u ). has the form

glu) =0.6sin(xu) + 0.3sin(3xu) = 0.1sin(37u) . (7.24)
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Our objective is to identify the unknown function g(u) using the FLS and optimal

training approaches presented in previous sections. The above dvnamic model.

eq.(7.24). will be treated strictly as a black box. and is unknown to the identifiers.

The FLS of eq.(7.1) is used as the identifier. Its input is u. and its output is the

estimation of the function g. denoted §. i.e..
§=0Tu"Y .

and the estimated system output. g. is defined as

ylh +=1)=03gk)+ 065k -1)+g.

=1
(8
St

(7.26)

The input universe of discourse. & < R. is partitioned into 15 primary fuzzy sets.

(i =1..... 13. Therefore.

®iu'y = {()l(ll,).....glx(ll,\}r )
— A _ _
T 2 (T
and
0.0t = ppelu’)

21;1 g’y

where the membership functions are defined asx

) 1 of u' < u!
e (u'y = ‘
exp=dIE L if Wz
A I u — T 9 .
pe(u') = expl—=(—)] . 1 =2..... 14
S22 ot
() 2 exp[-H*=—)] . if W <u®®
g (u =

1 iof W >ub

In the above equations. u’ is the filtered value of u. which is defined as

~
ay -
u’;f(u)= u-i.

1o
-1

170N
(7.29)
(7.30)



Initially. the centers of the primary fuzzy sets are defined as
(@2 . T at) T R (-7 ~6.....0.....6.T}T . (7.31)

The shape parameters. o', = 1..... 15. are assigned random numbers uniformly dis-
tributed in (0.1. 0.6). this being an arbitrary range balancing with against strength
of the membership functions. All the learning rates. ag.. ag.. and a,.. are set at 0.1.

For inputs. u{k). & = 1.2..... being random numbers uniformly distributed in
i{-1. 1). the training processes for the FLS identifiers are shown in fig.7.1. where
fig.7.1(a-b) shows the training of the FLS identifiers using LSE-BP and BP ap-
proaches. respectively. All training ends at & = 150. Figure 7.1(c) shows the exti-
mation errors of the FLS identifiers for both training approaches. The superioriiyv
of the LSE-BP approach over BP approach is very clear.

The initial and final values of the FLS parameters. @'. ¢’ and 7.+ = 1.....15.
obtained with both LSE-BP and BP approaches are tabulated in Table 7.1.
The trained FLS identifiers are tested by using them to predict the svstem oui-
puts for the input
sin(27h2350) . for 1 <&k <250 and k> 501.

T WL

ulh)
0.53s1ini 274 /2300 ~ 0.3sin(2xk,;23) . for 251 <k < 500.

which is shown in fig.7.2(a). The outputs of the LSE-BP trained identifier and

the BP trained identifier are illustrated in fig.7.2(b-c). respectively. For the same

number of training steps. the performance of the LSE-BP trained identifier is much

better than the other.



Table 7.1: [nitial and Final Values of FLS parameters
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—_—

ut a Y
; | Initial |LSE-BP| BP Initial | LSE-BP| BP Initial | LSE-BP| BP
1 -7 6915 |-6.817 0.241 | 0414 | 0.589 |[-0992 | 0.023 |-0.839
21 -6 -6.082 | -6.215 0.383 | 0.564 | 0.494 | 0.732 |-0.670 | 0.309
3| -5 -5.078 | -5.165 0.200 | 0.418 | 0.505 [-0.529 |-0.471 |-0.603
4| -4 -3.978 | -4.001 0.157 | 0.080 | 0.031 [-0.812 |-0.391 [-0.712
51 -3 22977 | -2.921 0.551 | 0.653 | 0.761 |-0.503 |-0.389 |-0.430
6 -2 -2.144 | -2.206 0.525 { 0.223 | 0.003 | 0.723 |-0.510 | 0.520
71 -1 -1.059 | -1.076 0.405 | 0.543 | 0.654 [-0.101 |-0.626 |-0.186
8 0 0.022 | 0.028 0.103 | 0.185 | 0.138 | 0.037 |-0.136 | 0.002
9 1 1.070 | 1.066 0.514 | 0.682 | 0.596 | 0.190 | 0.599 | 0.390
10 2 2.037 | 2.054 0.212 | 0.246 | 0.182 [-0.029 | 0.511 | 0.044
Il 3 2692 | 2.677 0.110 | 1.014 | 1.529 | 0.508 | 0.534 | 0.629
12 4 3755 | 4.144 0.527 | 1.037 | 0.027 |[-0.989 | 0.250 |-0.739
13 5 4947 | 4.922 0.545 | 0.670 | 0.596 |-0.479 | 0.603 |-0.072
14 6 6.023 | 6.143 0.421 | 0.458 | 0.403 {-0.667 | 0.757 |-0.263
1S 7 6982 | 6.710 0.421 | 0474 | 0.850 | 0.740 | 0.035 | 0.80l
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7.4 Concluding Remarks

o A LSE-BP training scheme has been presented here. which is a combination
of LSE approach and BP approach. The resulting optimal LSE-BP training
scheme avoids the weakness of both the LSE and BP approaches. such as the
rank requirement on the parameter matrix in LSE. and the slow convergence
rate and the possibility of being trapped in local minima for the BP approach.
Meanwhile. it combines the strengths of both LSE and BP. such as the wide
applicability of BP and quick convergence rate and global optimality of LSE.
Comparisons were made in simulation examples between the LSE-BP and BP
approaches. The superiority of the LSE-BP approach over the BP approach

is clearlv demonstrated for this application.

o Ineq.(7.17).

XS
'@y = : . SREY

CREFRY
N is the size of data set and [ is the size of fuzzy rule base. '@’y ix a .\ hyv
I matrx. From matrix theory. it is known that a necessary condition for the
matrix [@]1.[@]+ to be nonsinguiar is that N > 7 [66. App. Al In control and
identification applications. the number of fuzzy rules is usually much less than
the number of data samples. and therefore. this condition is of no concern.
If in certain situations in which the size of data set is small. for (@1 @'\
to be nonsingular the maximal allowable number of fuzzy rules is \' = 1. i.e..

]max =N-1

e This author discovered an approach similar to the LSE-BP presented here
in recently published literature [63]. although an explicit comparison of the

training process and the BP approach is not presented in this reference.



Chapter 8

The Dynamic Fuzzy Logic System and

Nonlinear System Identification

8.1 Introduction

As indicated previously. fuzzy logic systems provide an effective framework for incor-
porating human linguistic descriptions into otherwise unknown systems. aud their
parameters have clear plivsical interpretations N3, 130, 206 . Impressive results have
been achieved. both theoretically and practically. for identification and control of
complicated svstems. as outlined in chapter 2. However. the fuzzy logic ~vstems
used to date are static in nature. Since the physical systems of interest in identifi-
cation and control applications are generally dvnamic. this suggests that one might
include dynamical elements into fuzzy logic systems. which would themselves then
be more naturally integrated into dynamic svstems to take advantage of these intrin-
sic dvnamics. This would provide new tools in identification and control of dvnamic
systems.

With this in mind. it is proposed here to incorporate dynamics into fuzzy logic
svstems. The resulting fuzzy logic system. termed the Dynamic Fuzzy Logic System

(DFLS). will be shown to possess the important universal approximation capability.

128
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Further. based on the DFLS. a stable identification scheme. which is applicable to
a large class of nonlinear dynamic systems. is developed via a Lyapunov synthesis

approach.

To motivate the discussion and to serve as a vehicle for demonstrating application
to nonlinear systems. the DFLS identification approach is applied to identify various

nonlinear syvstems.

8.2 The DFLS and Universal Approximation

Consider a differential equation of the form
y=—ay+ frrsiz) . (5.1

where y is a scalar variable. a is a positive constant. and the second term on the
right hand side of above equation. frrs(z). represents the output of an ordinary
fuzzy logic svstem. i.e.. that shown in fig.4.1. and the vector. z = {z,.....zp}7. i~
the input of this fuzzy logic svstem. Equation (.11 ts illustrared in fig. S 10 We term
this svstem the dynamic fuzzy logic system. abbreviated as DFLS. for 1ts explicit
dependence on time.

[n the rest of this work. we restrict the function fr;<iz). te.. the ordinary fuzzy

logic syvstem or fuzzy logic syvstem in short. to be of the form of eq.(4.453). i.e..
L al .
fris(z) = O (2)Y . (3.2)

where @(z) and Y are defined in eq.(4.44).

O(z) = {6:(z) ....9/(2)}T <3
(.3
G & - -
Y = {7...70)7
and 6,(z) is given by eq.(14.43) as.
P e.\:p'—%(:"—_.zlz?
0,(z) =] ik ! —_— . (S

L s expl -4 25 )

=1 p=
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Equations (8.2-8.14) represent a static fuzzy logic system characterized by a single-
ton fuzzifier. CM defuzzifier. the product implication rule. the sup-product compo-
sitional operator. Gaussian tvpe membership functions for primary fuzzy sets. and
the """ operators representing the algebraic product operation. This specific static

FLS has been theoretically justified as a universal approximator {134].

Next. substituting eq.(3.2) into (8.1} vields
y=—-ay+0T(2)Y . (N.5)

We shall now show that the DFLS of eq.(%.3) retains this capability of uniformly
approximating a large class of nonlinear functions to any desired degree of accuracy.

Consider a nonlinear svstem described by differential equation in the form
r= flz). (NG

“w

where r is anyv scalar element of the vectorz € 2 Z RP . ie. r = {z. 2. ... op ).
z may he composed of both svstem states and external inputs to the syvstem.

—~
-

f: R — R is a continuous static nonlinear map defined on a compact set Z.

Theorem 8.1 For any z > (). there exrist~ a DFLS i(n the form of eq.i5.5, with z.

as described above. defined on a compact set Z C RT. such that

sup |y —ri< . (N7
zZeZ
Proof:
Rewrite eq.(3.6) as
r=-ar+g(z). (NN

where

g(z)éa.r-i-f(z). (R.9)



Subtracting eq.(3.8) from eq.(38.3) gives
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é = —ae + [©@7(2)Y — g(z)] . {810
where
egy—r. (N.11)
The solution to eq.(3.10) is
- ! —— .
e(t) = [expl —at)]e(0) +/ [expi—att — TNH][@T(2)Y — giz)idr . (S.12)
Q
Or
Le(t) | < lexpl—at)lei0) | -*-/‘iexp(—n(/ — ) OT2YY —glz) dr . (N30
0
[t is straight forward to verifv that. if e(0) = 0. ¥ ¢&, > 0 and
, L ieiQi, :
totéy) < {t: + > max{0. — In| ‘ |}} ENEY
Q T
then
expl—atyile(0) i< & . (U150
From the universal approximation theorem for fuzzy logic systems (177, we have
that for compact set £ C R and ¥ é > 0.3 ® and Y. such that
sup | ©7(2)Y — g(z) [< & . (8.16)
zel
Thus
t — L
/ lexp(—a(t — 7))} 1@T(2)Y - g(z) | dm < / tlexpl—alt — =i)dr
0 0
¢, .
= —|l —expl—af)
a
& -
< - . (5.1- |
o
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Using eqs. (8.13) and (8.17) 1n eq.(3.13) vields

0 L

Le(t) < b+ —. (3,18
Q
Now let
é
26+ —. (3.19)
Q
then
ly—r1i<s. (5,20

This completes the proof.

Although this theorem reveals the universal approximation property of a DIFLS.
it only indicates that a DFLS can be a universal approximator. without providing
any guidance on how one might construct such a DFLS to approximate a given
physical system. In the following. we will address this latter point by developing a
stable identification algorithm that is based on the DFLS. and is applicable to laree

class of nonlinear systems.
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8.3 DFLS Based Identification for Nonlinear Dy-

namic Systems and Stability Analysis

8.3.1 Preliminary

In this section. we develop a DFLS based stable identification algorithm for iden-
tification of nonlinear dyvnamic syvstems. Consider a general dvnamic system of the

form
x = Fix.u). (820

a _ oy 2 B
where x = {r,..... ry}T 2 RY and u = {u;..... uy} = RY are the state and

external input vectors of the physical process. respectively. N and M represent the
total number of states and external inputs. F: Y=Y — RV is continuous nonlinear
vector function defined on a compact set £ C RY~Y.

For ease of later discussion. we rewrite eq.(N.211 as a et of <tate equations. i.e..

fork=1...... V.
I, =f,';(X.L1) . (N2

where fi. : R*™Y — R is continuous nonlinear function defined on the compact
set 2. A slight difference in notation between eqs.(3.22) and (3.6 is apparent. [n
eq.(3.6). the vector z. composed of both states and external inputs of the physical
process. is explicitly decomposed in eq.(3.22) into x and u. ie.. z = {x.u}’. P =

N + V. Here. we impose a mild restriction on this svstem:

Assumption 8.1 For given admissible input u and any finite initial condition x101.

the state. x(t) = {x((t)..... ryit)}T. is bounded.

The DFLS of eq.(8.5) is apparently characterized by the free design parameters

~Jp

. 7,,.¥,-and a. where : = 1..... I.p=1..... P.and j, = 1...... Jr. J, is the
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number of primary fuzzy sets in the universe of discourse Z,. which is also a design
parameter.

In the rest of this work. we assume that for p = 1..... P. the fuzzy partition
parameter J,,. the membership function parameters T, and 7, . as well as the param-
eter a are designed off-line. leaving only Y = {7,..... 7} as an on-line adjustable
parameter vector. The off-line design process is the same as that for static fuzzy logic
systems. such as that of chapter 6. and this is the design stage where engineering
knowledge and intuition about the system concerned can be incorporated.

Our objective here is to develop a stable training algorithm for the DFLS <uneh
that it can identify an unknown nonlinear dynamic system in the form of eq.(~.22].
with the identification error being bounded and as small as possible. ideally con-
verging to zero. and at the same time. the parameters themselves should al~o be

bounded.

8.3.2 DFLS Identification Algorithm

To identify the kth state of eq.(=.22y. oo k= {1...... Vi a DELS of the following

form is used:

Y = —Qilfi + G)Z(x.u)-Y—'._. . a. > 0. (N2

A

where x and u are the states and external inputs of the physical process. @
{6cr..... 01 }7. Yy £ {Feyo - Y.}, The subscript k indicates that the identifier
is for the kth state. This formulation implicitly assumes that all the states are
available.

Since we may be interested in identifving only certain states. the subscript & need
not include all states from 1 to .V. In addition. it may be unnecessary to feed all

T

the states. {r;..... rxv}T. and external inputs. {u,..... uy )’ . into the fuzzy logic

svstem. since a specific state may have little correlation with certain other states
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and external inputs. which may be determined from physical intuition. For example.
in the case of a flexible link manipulator. the beam vibration might bear little direct
relationship to the angular position of the motor hub. In any case. eq.(%.23) is
sufficiently general to cover these situations.

Equation (8.22) can be rewritten as
Iy = —Qpl + arpli + fi(xou). k& {1 ...... \'}. (.24

By denoting the identification error of the kth state ax

ey D

€k = Y& — I N2
and subtracting eq.(8.24) from eq.{3.23i. we get
g €q { g
i = —Qpe; — f@{lx wiY: —aprie — fL‘-IX.U,l: . i~20

where Y is the adjustable parameter vector. Define

-

rax.u.9.Y,.i= @f(x.u;‘tﬂ. —aur;— flxour . IN2TH

which can be viewed as the static modeling error of the DFLS. Equations /=261 and

(3.27) together give

€ = —Qr€L + redxou. 9L Y. ENCVING

The identification error. €. i1s evidently controlled by ri(x.u.@;.Y.i. We shall
show below that under certain conditions. the identification error can be made ar-

bitrarily small. We first have the following preliminary result:

Lemma 8.1 For given 0 < M,, <. 3Y, € {Yi:]| Y.< Vg ).

such that

sup | re(xu. 0. Y, | < M,,. ke {l...... V) (3,20,

{xuiez

where M., and My, are positive design constants.
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Proof : This follows directly from the universal approximation theorem of the static
FLS[177].

Remarks:

e In Lemma 3.1. we may further denote Y, as the optimal parameter vector
. e . . - -
which minimizes the static modeling error. ri(x.u.@. Y, ). for (x.u) < Z =

RN*M e,

—= A A f— , .
Y, =argmin{ sup r‘;;(x.u.G)k.YLy i} (.30
(Y, ixupesl

e Lemma X.1 indicates only the existence of such a parameter vector. but not how
to find it. It will be shown that by adjusting Y with the training law presenred

below. it is possible to find a Y, which can approximate Y satisfactorilv.

We can rewrite eq.in.22) as
1

fr=—0wre ~Olix. )Y, —rxou. @Y, . k= {l...... Vi N3
and subtract eq.(2.31) from eq.{8.23] 10 give
o= —arer ~OIX UIAY, ~rix. 0. Y . ks {l . Voo s
where
Ay, £Y.-Y;. (2.33)

Follewing the well known Lyapunov synthesis approach. we now obtain a training
law for Y, such that the identification error. e. is bounded. and even asvmptoti-
cally approaches zero under certain conditions. To avoid circumstances under which
the parameter vector Y becomes too large or even drifts to infinity[133]. a pro-
jection algorithm modification. which has been successfully implemented by various

researchers{133. 42. 37]. is used in the training process to guarantee the boundedness



133

of the parameters. The main results are summarized in the following theorem. We

first specify the training law to be
?;\- = —Hk('-)k(x.u)ck - Skijk?k . ke {1 ...... \'} . (8.34

where H; is a constant positive definite svmmetric matrix. S is a switch defined as

0. of | Yill< My,
or || Y. il= My, and OTH, Y.ex > 0.

k= 9 or || Y. > "[Vk and @ZHk?kfg. >0. (8.35)

1. otherwise.

\

and .J; is a positive design parameter which satisfies

Y = My and OIH, Y. < 0.
‘jr !\;(II
O H.Y.

> —==——¢; . lf E ?k > \[?‘ and @ZH.‘;T;;H_- <0.
Y,“HkYk &

Theorem 8.2 Consider an unknown nonlinear dynamic system in the form of eq.ox. 22
which is to be identified by the DFLS of €q.(~.23. by adjusting the parameter vector
Y. of the DFLS with the training law of eq.(5.34;. The DFLS «dentifier possesses

following properties.
8.2.1 || Yu [[< My,
8.2.2 | e, < M., where M,, 15 a positive constant:

8.2.3 |, 6%.(7)617 <a+ bfof ri(v)dr . where a and b are positive constants.
and if re(t) € L£2]0. 5 ). Le. (f | rel7V 2 d7)E < x . then.

lime— | ex(f) =0 .
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8.3.3 Proof of Theorem 8.2

Proof of 8.2.1

Consider the Lyvapunov function candidate.

then.

. |l sT— ey
‘?k:§YL-Y"\" {837
. T }
by, = Y Y Y

IfFiiYeil< ‘”'Y-k‘ whether \"?k 1s positive or negative is of no concern.
IF1Y, = M5, and OTH.Y.ie: > 0. use of eqs.(3.34-8.33) in eq.(3.35 vields
' k

‘Y_. = —@ZH;_.—Y_;:(‘,;- <0 (N.390

Therefore. i Y, i is bounded.

If 1 Y. ii= _\[?k and @Z.-Hx;?;-ﬂ- < 0. use of eqs.(3.34-X36G) in eq.N.3N

results in
Iy, = —OTH: Y., - 3. Y H. Y. <0 (S0
Again. || Y, I} is bounded.

I Y il> My . te. || Yi | exceeds its nominal bound. Mg, . which may
occur during the training process. and as the training is implemented compu-

tationally as

Y.t +dt) =Yi(t)+ Yel(t)dt . (3.11)

(where Yi(f) is given by the training law eq.(3.34)j. then in the situation in

which || Y4(t) || is very close to the nominal bound. Ms7 . but still within
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this bound. with a gain H; and the time increment “dt” being sufficiently

large. the resulting || Y«(t + dt) || can exceed the prespecified nominal bound

.‘U?k by the norm of the training increment Y.(t)dt. at most. Now. use of

eqs.(8.34-8.36) in eq.(8.33) vields

For ©[HiYier >0 : Vg =-OIH:Yiex <0.

For @ZH};?};CQ <0 : ‘?k = _GZHk?kfk - 3&?{H~?K <0.

(3.42)

which indicates that as soon as || Y || exceeds its nominal bound. My o1

immediately returns within this bound. Therefore. this excess is small and

temporary. Formallv. for the compact set Z. and anyv given H; and dt.

Gy 4 & ,
Mg = sup [ Y.itidt .
N (x.ujes
then we have
Yt = diy i< Mg+ &My

which indicates the boundedness of Y.

This concludes the proof of X.2.1.

Proof of 8.2.2

Consider the Lyvapunov function candidate

Its derivative is

.. . : _ . =I___
V"= Ek€k+A%kalA7k = €€ +YkH%.lA7k .

Substituting eq.(3.32) into eq.(3.46) vields

. —_ T
1" = —akef. -+ @Z(X U)A?&ﬁ; -+ I‘k(x.u.@'\-.Y,\.)(k -+ YkH;IA'&—»“ .

(3

iNchD

(N.19)

(846

(847



141

and use of eq.(8.34) in eq.(8.47) vields

- 2 ~v <7 -
V= —okef + @Ay ek + riex + (O Hier — 503 Y, Ho)H Ay,

2 ~ T v go
= —Qg€p + g€ — .'D;;.jkYk Avk . (S.48)

where all arguments have been suppressed. From (2.35). only for the case of || Y. I!>

My, with S =1 need the last term of eq.(8.18) be considered. Now

Yiag, = (Vi-Y,-Y Ay, =aL ag +Y, Ag,
= %A%A?k + %(A%k Ay, +2Y1 Ay,
= 1AL Ag < LT < ¥ ag,
- %A%kA?k + %VZ?A - %?;_Tv;
= SUAg eI Ve g IV o
where I - || is the Euclidean vector norm. From Lemma S.1. Y, '< My . and

noting that ' Y, !> A5 . shows that the last term of eq.(S.15) <atisfies.

Ag > Lo I ] > 3
Y. 2 50 A?k =>0. NI

Use of eq.(3.30) in eq.in.43) now vields

c. l - . )
1 S —Okti - .—.‘“,’\.3;‘. ii A? e YA

2
S S Ll .
= —Eo;c(k - 53;_. H A?k o=l —bk;:j.ﬂ. i A?k i
1 - Tk
— —ailel =26 . NG
2 Q.

furthermore. again with the help of Lemma 3.1.

1 5 r 1 : Y 2 2 AVARE
—gak(ﬁz—l—kfk) = ——Ok(ck—r—k)' )rk < )T',‘ ( A) (%.32)
2 Q < Qe ZQyy 2O .2(:,;
and
L] 1 5| L= s
(1 — :‘1:)531\ lay, I < Eﬁ Ay, 1I°< 3 LYol =0 Y e
< 23 M, )P (3531
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-
o

and
1 e L Ay Hi'ay,
— = || A ‘< == S 254
5 k] Y. ‘< > k ’\max(H;,) (N5
where Anax(HE ') is the maximum eigenvalue of H;'. Define
& . 3 Y --
x = min{ ap. ——— } . (2.3
’\max(Hk l)
Now using eqs.(8.32) to (3.35) in eq.(8.31) vields
2 Lot 2 1M
I S _A(EC“TE ‘?ka A?k"".zj,‘( \[_‘\7 ) - :](};:
< ' =C (.06
where
(M, )" ‘
C =223\ )7 -~ . (N3,
oMy Ja.. !
which is a constant. That is
"< —nl" = ¢ ENLN
Therefore.
1"<0. If‘ > —. N
-

Thus.if " < £. then 1" is bounded. implying boundedness of ¢, and Ay, U > =
then eq.(R.39) indicates the boundedness of V7. again implving the boundedness of
e and Ay . Therefore. there exists a positive constant. V., . such that I ¢, [< 1. .

This completes the proof of 8.2.2.

Proof of 8.2.3

From eqs.(8.51) and (8.52). we have

. 1 -~ 2 3
U < —awel = 583 Ay, P +rieer S —awef + rics
1 | S .
S _sokcz ~+ —.) T'Z, . [\f)UI

& O
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Integrating both sides of eq.(8.60) vields

ap f* 1 t

)y -V - 2(r)dr + — 2(7)dr 3.611
Vi -vi0) < -5 [ el(nd +t5a \dr . (8.61
Let
a 2 . . a1 .
a=—sup{V(0)=1(t)} . b= — 18,62,
Qi z>g{ } QL
then
t, 2 oo,
/e{.(r)d? < ——-{V(O)—HH}-!——,] ritcads
0 Qx a: Jo
< (z+b/ f'f.(T)(/T. iN630
0
Since ( [;° !l re(7) {}* d7)i < . we have
(/‘ (i_(:‘}(l?‘)iT Sla-;—bf. rf_{r)d:‘l%<x. ARTRY
0 0

L,. By result 8.2.2. we know that ¢;(¢t) is bounded. i.e.. co(ti = £ .

th

le.. ex{t
We thus have e.(f) € (L, N L+ 1. Since r is bounded. the boundedness of ¢, can be

L. . By Corollary 2.9 in 111 . we conclude

s

concluded from eq.i8.32i. l.e.. é.(t)

that
lim ety (=0 . Y

= ol

This completes the proof.

8.3.4 Remarks

L. If the output of the identifier is used as one of the syvstem inputs to replace

the input variable it estimates. i.e..
Yk = —Qiyr + G)f(w.u)?k .o >00 kefl...... V. (.66

& T
where w = {r,..... Thot-Yhe Thiie - ry} . we term the system a recurrent

dynamic fuzzy logic system. which will be elaborated on later in this work. To
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distinguish this from the DFLS of eq.(8.23). we term the latter 2 non-recurrent

DFLS. For the sake of simplicity we will generally omit the label non-recurre nt.

The development of a DFLS identifier consists of off-line design (for ®;) and
on-line training (for Y;). In off-line design. the number of primary fuzzyv
sets for each universe of discourse. as well as the positions and shapes of
membership functions for each primary fuzzyv set are to be determined. This
1s a very active but still immature area of research. Thus far. ad hoc analy«ix
based on physical intuition is still required. After off-line design. the parameter
vector Y is trained on-line with the training law given in eq.(3.34). If the
results are unsatisfactory. one must return to. the off-line design process and

repeat the whole procedure.

The importance of the initial values in nonlinear problems is well known. and
an important point vet remains to be addressed. viz..

What s an appropriate initial value for rector Y, before training beginsz
This brings out a very important feature of a fuzzy logic svstem. A human
being can generally acquire some knowledge of the behavior of aimost anv
physical process through experience. which may be described linguistically
in the form of I[F-THEN rules. A fuzzy logic system provides a theoretical
framework into which fuzzy linguistic information can be incorporated and
processed svsternatically. a process for which powerful mathematical tools are
available. The initial values of parameters 7./ = 1..... . can therefore he
determined from the initial [F-THEN rules. and further revised or refined

through on-line training processes.

For some processes. if there is enough human expertise available. a fuzzy logic
system may perform well enough that no further training is necessary.. e.g..

the fuzzy logic systems presented in Chapter 6 for simple control tasks. If
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there is no human expertise available at all. the initial values must he as-
signed randomly. Nevertheless. the DFLS identifier’s performance is as good
as specified in Theorem 38.2. If there is only limited human expertise available.
which is the usual situation in practice. the initial values based on this limited
expertise are generally better than those randomly assigned and. in turn. the
system may require less training and display significantly improved behavior.

This will be illustrated through simulation experiments in the next section.

It is interesting to compare the DFLS with the High Order Neural Neticork

presented by Kosmatopoulos et al. [81i. They share similar mathematical
expressions in the input-output sense. and they both possess learning abili-
ties. However. they originated from different physical backgrounds. and they
have different system structures and physical perspectives. As pointed omn
by Wang T184]. artificial neural networks try to emulate the hardware of the
human brain. whereas fuzzy svstems trv to emulate the software in the human
brain. The ANN is characterized with massive parallelism. but its parameters
lack explicit physical meaning. The fuzzy logic svstem provides an effective
framework to utilize human linguistic descriptions of unknown systems. and
its parameters have clear physical meaning. [n addition. the similarities in
their mathematical expressions indicate that if there were no initial human

expertise integrated into a fuzzy logic system. the DFLS would perform about

as well as a high order neural network.

i

Comparing the DFLS with the static FLS. e.g.. those presented in [33. ]
the dynamic feature of DFLS creates the potential to take advantage of the
intrinsic dynamics of physical processes. and to thus be integrated into dy-
namic systems more naturally. The DFLS thus provides us with new tools in

dealing with dynamic svstems.
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8.4 Identification of Nonlinear Systems — Illus-
trative Applications of DFLS

8.4.1 Example 1 — A Nonlinear System with Chaotic Be-

havior

Consider a nonlinear svstem
F4+0.15 + 1> =6sint . IXL6T

which exhibits chaotic hbehavior and mayv represent a lightly damped. sinusoidally

forced mechanical structure undergoing large elastic deflections [151]. Let

I /E I
£ = r :
and
.l'l‘f) R
x(t) = . PN
Lol
Then eq.(3.67) is expressed in state space form
i‘l = I . L
{(X.700
ry = —r}—0.lr;+06sint.
The phase plane trajectory of this system with initial condition x(0) = {0. 0}7 is

shown in fig.8.2 for t = 0 to t = 70 sec.

Our objective here is to identify the state variables. r; and r,. using the DFLS
based identification algorithm developed in previous sections. It should be stressed
that the dynamic model will be treated strictly as a black box. i.e.. it is unknown

to the identifiers.
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Figure .2: Phase Plane Trajectory - Example |

Two DFLS identifiers. namely. D;, and D... are used for | and r;. respectively,

{y. = D, ix). ,
(Nl

where i and y, are the estimates of vy and r,. respectively. with estimartion errors.

t] Y — -
iN T
¢ Ya— o

A DFLS Identifier for +, : D,,

¢, and e.. defined as

1%

It

D;, has twoinputs. r; € .1 and r, € .Y;. and one output. y; € ). where .1;. .1, and
Iy 1 1 - E y]

)1 are universes of discourse of linguistic variables. r;. ry and y;. respectively. In
both X} and ;. five primary fuzzy sets. 4, and 4,,.. j, = 1..... 5.0 =1..... 3.

are defined. For greater linguistic appeal. let

e

{EN2) (N (ZR)y. (Pl (P2} 7.
{8.13)

{.‘ln. ."112. .’113. .414. .413}T

>

{Aa. A A Agp A25)7 {(N2)a. (N1 (ZR)a. (Plis. (P,
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where P means positive. NV means negative. and ZR stands for zero. Gaussian type

membership functions are used for the primary fuzzyv sets. For p = 1.2

(') A 1. I.f I;<_-fpl-
14 (L) = _
Fm 157 ex '—l(—L’ 2Ly Gf I >T
3 pl 5 ol . p = LTp1 -
' r l -r;-, _Tp_wp ) . . . [T
fa,, (1) = expl—;(—————)'} c Jr1eJ2 =234 (X743
2 Tp,
Jp
1 .Z"—; r _71 -_—
2y A exp[—3 (== if 1, <Tps
fa,. (1) = :
1
l if I, > 7T

where the shape parameters of all the primary fuzzy sets are defined to be (.45, i.e..

115

0.45 . . (N.T3)

Plp

and the position parameters. T, . are. for p = 1.2

":

(N.T6)

—tm
~)
1
i
~|
1 19
il
T
%
|
s
|
m
=
——
~
"
—,
|
| )
|
—
o
—
<
——
N{

The primary fuzzy sets are illustrated in fig.N.3.

0.9 //
. /
oa- /1 \1,. (7}?»\ /.P1 \ , |P_»1

1\11) /

i m,,y i\
y&@i\

Figure 3.3: Primary Fuzzy Sets in .t} and ., for D,

lv lv

Il

1

4

In eq.(8.74). 7. p = 1.2. are filtered values of inputs. r,. The prefilters are

defined as

filxy)

ry = falrs) R I

~
i
Il
N

(N.77)

e
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which transform the majority of data of both variables. r; and z;. into {-2. 2].
The output of D;,. y,. which is the estimate of r,. is defined with the DFLS of

eq.(8.3). i.e..

‘[;(1 = —-aiy; + OWI - (STS)
In this equation.
@,(x") = {#lix). 85(x". ... 8L (x"}T o
- (S.7%
Y. = {7 % 7T
where x’ £ {r. r4}7. and
T B
0l (x') = = p=tf L (X80
Y, ﬂ;_l poge ()
and for/=1.....25.
'-{I = {.‘11‘,;2}1:1.....5}. .
(NNTo

Ay e {4, =1 5} .
The positive constant. a,. is set to be 10. Now. Y, is left as a free parameter
vector that is to be adaptively adjusted with the training law. eq.ix.341 j.e..

i_rl = —Hl@l(l - -§'1~31Hi.‘?1 . {NUNDY

In computer implementation. the derivative is approximated by a difference. i.e..

Y (kT +T)=Y,(kT)
= :

Ine

k=1.2.... (.83

Y,
where T £ 0.05 is the time incremental step. Use of eq.(8.83) in eq.(3.82) vields
?[(I\T + T) = ?1(1(T) - T[Hl@ﬁ.l + 5‘1 lel-Y_l(AT)j . (S\\‘“

The initial values of the elements of the parameter vector. Y (0). are assigned

random numbers uniformly distributed in (1. ). The gain matrix. H;. is defined as
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a diagonal matrix with all diagonal elements equal to 60. this being determined after
considerable trial and error as providing good results. The bound of the parameter
vector. My . Is set to 10%. Assume the system to be identified is initiallv at rest.
i.e.. x(0) = {0. 0}7. The identification processes for r, is shown in fig.8.4. where
training ends at t=40 sec. The solid line represents identifier output. and the dashed
line represents the real system output. [t is seen that the training process converges

very well. and after training ends. the identifier predicts the system state. r;. quite

well.

ot =S
™
3
w2 -
TT————

i
‘ EUEM‘\;
I A

SeTTII T T

|
N
e

t (sec)
Identifier Qutput: =-=- Plant Qutput .

(Training Terminates at + = 40 sec

Figure 3.4: Identification of r, - Example 1

B  DFLS Identifier for r; : D.,

D;, is designed similarly to D, . It has also two inputs. r; € .Y} and r; = .1, and

one output. y2 € ). Here. for both X} and .. nine primary fuzzyv sets. By, and



Gaussian type membership functions are used for the primary fuzzy sets. ie

p=1.2.
;prX(.I';)
“Bl"}r(l‘;)

HB,! 1:, )

-

K

ne-

9. are defined. For more linguistic appeal. let

1.
exp[—11

1 r!

e.\:p{—s( -

expl—1

L.

ﬂpl

Ty,

pPlp

:',-;;-,- 23
I ) Dt

p3

I‘E—F,; }:1.

T

[ (Bi1. Bia. Bis. B Bis. Bis. Bis. Bus. Bio}T &
{NAh. (N3). (N2)1 (N (ZR). (Pl)i. (P2 (P3)i. (Pin)T.

{Bz1. By, Bas. Bay. Bas. Bos. Bar. Bas. B} 2
{{N)2. (N3)2. (V2)5. (N1)o (ZR)a. (Pl)a. (P2)y. (P3ja. i Py, )T.

i
ofor
’
ofor

<7
>7

il .
rd

J b5

(R.83)

.. for

IN.NG

where the shape parameters of all the primary fuzzy sets are defined to he 0,43, e

and the position parameters. 7, . are defined as. for p = 1.

{To1. Tpae Toa

ne

U,—“Jp

0.-45 .

Lpg. ?p.’). Tp,;. Tyt

Trs. Tpol

{=4. =3. =2, =1. 0.

The primary fuzzy sets are illustrated in fig.8.5.

In eq.(3.836). 7. p =

defined as

1.2,

(NN

are filtered values of inputs. r,. The prefilters are

= fitxy)
= fz(l'z)

I

e

[y 8]
s
S-
<z
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Figure 8.5: Primary Fuzzy Sets in ) and .; for D,.

which transform the majority of data of both variables. ry and r; into -4, 4.
The output of D.,. y». which is the estimate of r,. is detined with the DFLS of

eq.[N.3). le..
- ) I~ v
y_‘——(l‘v_yg‘:‘@_.Y_\. (=900

In this equation.

’®
.
e

{O7ix" . B3ix 1. L 030x)T

. (N9
Y. = {ﬁf J3e oo u;'l}r
where
, 13-, 18 .
9:(2)— Slr l, L r=1..... si. (N9
=] ;:l ;18'
and for 7 = 1.....81.
B, = {By,:h=1..... 9} ‘
(2,93
B:_; € {an Ja = l..... ‘J}

The free parameter vector. Y,. is adaptively adjusted with the training law.

eq.(38.34). i.e..
—?2 = —nggég - 5-_\.3—3H3?g . (8.9] ¥
Approximating the derivative by a difference vields

YQ(AT +T)= "'Y-F:(AT) - T[H_\@-;:C_r + SngH_)-Y_—_v(AT)] . (N.95)



where T is the same as in the case of D;,.

The initial values of the elements of the parameter vector. Y,(0). are also as-
signed random numbers uniformly distributed in (-1. 1). We take the positive
constant a2 £ 10. The gain matrix. H,. is defined as a diagonal matrix with ali
diagonal elements equal to 60. The bound of the parameter vector. My . is set to
10°. With the system to be identified initially at rest. the identification processes
for r, is shown in fig.8.6. where training ends at t=10 sec. The solid line represents
identifier output. and dashed line represents real svstem output. Again. the training

process converges very well. and after training ends. the identifier predicts sys<tem

state. r». quite well.
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( [dentifier Output: ---- Plant Qutput 1

{ Training Terminates at ¢ = 40 sec)

Figure 8.6: Identification of r, - Example |

C Test of Trained DFLS Identifiers

Both identifiers. D,, and D.,. were able to predict the system states quite well.
demonstrating that the system was quite well identified for the specitic initial con-

dition.
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For chaotic systems. the choice of initial conditions has a significant effect on
the system dynamics. as illustrated in fig.8.7. where the solid lines represent tie
dynamics for x(0) = {2. 3}7. and the dashed lines represent the dynamics for x(0)

= {0. 0}T.
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Figure 8.7: System Dynamics for Different Initial Conditions

Next the trained identifiers. D;, and D,,. are tested against a different initial
condition. x(0) = {2. 3}7. The identification results are shown in fig.8.8. where the
solid lines represent identifier outputs. and the dashed lines represent real svstem

outputs. Again. the results are quite satisfactory and indicate that the DFLS based



identification algorithm is very effective in dealing with nonlinear systems. It should

ane-%
T
=
T
,—”D
T
’,7)
—r=7

\ \ / ) k
VIR I DA RN TiTAe
| Y
NI Y
hn \ / \ \ i ! 'l t
: i \ \ ! \1 ! E
| ! o _‘ { l} i
3 N \f ¥ / A
-t5r \j ‘\J \J v U u -
—_2- ' Y B o
255 s 0 15 20 25 30 35 a0
t (sec)
6 e
Lo, ,‘" . 4
R R T po ] . A
o o S T
> ‘; .’\ T ‘!] ‘ 4 . bl “.“ £ ’ \ i o
IR IRV IR A R L i AR W
Voot l b (. N A A S 4 R ~o. Cdoe oy 3
b ety ey Tty ey f’\ YA PO I A T T
o e bt e gt E Pat e b R T U A S A B S A
2 T A R ¥ [ A S I A IO T A T B
noe ! v‘lj‘ j v [V S L N I N AR S R A IRV
" T AR I VIR i Yo\ Aoy H i
N ooy ! e ) S S S Vi [ .t'{
-2'?’ M L [ - S g !
b NI v VL J i N i B 0oy
:,Vq It !J Y \ f i o '
_4!'-,' W ‘J ¥ ' 1 J
‘;‘I
~%5 s 10 15 20 25 3o as a0
1 (sec)
(— Identifier Output: - --- Plant Output )

Figure 3.8: Test of Trained Identifiers for x(0i = {2. 3}7

be mentioned that all simulations in this work are programmed with MATLAB and

SINIULINK.

8.4.2 Example 2 — Chaotic Glycolytic Oscillator

We now demonstrate another identification example. and compare our results with

that of a static FLS.



Consider the following chaotic glycolytic oscillator [184. chap.11].

I (t) = —ry(t)r3(t) +0.999 + 0.42 cos(1.75¢)
(R.961

Ia(t) = zy{t)rs3(t) — 1y(t)
Our objective is to identify the state variables. r; and r;. using the DFLS based
identification algorithm. As in the previous simulation examples. the svstem dv-
namic model is strictly treated as a black box.
Two DFLS identifiers. (7., and (.. are used to identify the two state variables.
ry and . respectively. i.e..
no o= Grix). .
N9
y: = (i..(x).
where y; and y, represent estimates of the state variables. ry and r,. respectivels,

The identification errors. ¢ and ¢.. are definied as

€L = Yy — Iy
RRIAY
¢ = yp—I:.

Both identifiers. (7., and (7. . have two inputs. r; €.1] and r. = X, and one

)

output. yy < ) for (7., and y, € ), for (7.

A DFLS Identifier for r, : (v,

are defined. Their membership functions are those defined in eqs.1>.74-X.761. and
illustrated in fig.8.3.

The phase plane trajectory of the syvstem with initial condition. x(01 = {1.5. 1.5}%.
is shown in fig.8.9 for ¢t = 0 to ¢ = 100 sec. from swhich it is observed that most of
the values of r; and .r; are in [0.2. 3] and [0.3. 3]. respectively. To transform these

to {-2. 2]. the following prefilters for r; and r; are defined

' & 3+0.2 2
'y = filry) = (1) - == <
1 Jitd] 1 > 5.(3—=0.2
R 2 0.5-(3-0 (.90,
J_I) — f.’(fQ) = (.l'_v _ 3+O.3) 2
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Figure X.9: Phase Plane Trajectory - Example 2

The output of (5,,. y;. which 1s the estimate of ry. 1s defined via the DFLS of

eq.(3.5). 1.e..
. _ Td, X
h = —(\1.'/1'*'@1Y1 . e~ 100

where @, and Y, are the same as those defined in eqs.(x.70-X.81 1.
The parameter vector. Y. has 235 free parameters and is adaptively adjusted

with the training law. eq.(3.84). i.e..
YI(A'T -+ T) = ?I(I\T’ - T[Hlelf 1 + <‘| 'JIHl-Y_;l(ATIj . (100

The time increment. 7. is set to 0.1 sec and constant. a,. is set to 10. The initial
values of the elements of the parameter vector. Y, (0). are assigned random values
uniformly distributed in (-1. 1). The gain matrix. H,. is defined as a diagonal
matrix with all diagonal elements equal to 50. The bound of the parameter vector.

.\[71. is set to 10°.
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Assume the system to be identified is initially at x(0) = {1.5. 1.3}7. The

identification processes for r; is shown in fig.8.10. where training ends at ¢t = 30 sec.
The solid line represents identifier output. and dashed line represents real system
output. [t is seen that the convergence speed and accuracy of the training process

are quite satisfactory. After training. the identifier predicts system state. r,. very

well.

n

Identifier Output -

3.5+
Lo TTTs Plant Output ; ,
ﬂ : ;
] ,/'\ , Vel

A Y R R
noo== o\ , |

10 20 30 40 50 60 70 80

N

—

~——

<
F <
(‘\..
C\—.‘

&

90 100

t (sec)

t Training Terminates at 1=50 sec)

Figure 3.10: Identification of r; with x(0) = {1.5. 1.5}7 - Example 2

B DFLS Identifier for r; : G,,

The primary fuzzy sets in both X} and .1, of G, are defined to be the same as those

of GGr,. namely. 4, and A,,. j, = 1..... 5. 92 = l..... 5. and their membership
functions those defined in eqs.(3.74-8.76).

The prefilters for r, and r, are the same as those defined in eq.(X.99. which
transform the bulk of the values of both variables. x, and r,. into * 2. 2. The

output of (7;,. y2. which is the estimate of r,. is defined via the DFLS of eq.{X.53).
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_l;h = —02y2 -+ G)Z--Y_;z . (8.102}

where ®, and Y, are defined in eqgs.(8.79-3.81).
The parameter vector. Y ;. is adaptively adjusted with the training law. eq.(3.95.

lLe..
VQ(A'T + T' = ?3(A'T) - T{H‘:@:f: + gzngg—Y_glkT:’* . ‘QIO;I

The time increment. T, is set to 0.1 sec. and a; 2 10. The initial values of the
elements of the parameter vector. Y ,(0). are assigned random values uniformly
distributed in (-1. ). The gain matrix. H,. is defined as a diagonal matrix with
all diagonal elements equal to 30. by trail and error as providing good results. The
bound of the parameter vector. Mg . 1s set to 10°.

With the system to be identified initially at xi0) = {1.5. 1.3}7. the identification
processes for r, is shown in fig.2.11. where training ends at { = 30 sec. The solid line
represents identifier output. and dashed line represents real system output. Again.
the convergence speed and accuracy of the training process are quite satisfactory,
and after training stops. the identifier predicts system state. ry. very well. These
results. again. show the usetulness of this identification algorithm in dealine witl

complex nonlinear systems.

C Identification Results : DFLS vs. FLS

We now compare our DFLS based identification results with those obtained by
means of the static FLS [184. chap.l1].

The same plant. i.e. eq.(3.96). was identified in {184, chap.11] using static fuzzy
logic svstems. Figure 3.12 shows the identification results from this reference for

ry and r; using so-called “first tvpe” fuzzy identifiers!. Figure S.13 shows their

*The kind of FLS which is linear in their adjustable parameters [184].
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a T v
ashk Identifier Output |
iy T Plant Output ;
o
Y2 i .
i |
J I‘ ]
O0 1‘0 20 30 4.0 Sb 60 70 80 S0
t (sec)

{ Training Terminates at =30 sec)

Figure 2.11: Identification of r, with x(0) = {1.5. 1.5}7 - Example

100

2

identification results for =, and r, using so-called “second tvpe™ fuzzyv identifiers-.

Figure 3.14 shows the identification results of r) and r, using our DFLS identifiers.

Comparing our DFLS results. fig.8.14. with those of FLS. figs.x 12X,

300t as

apparent that the DFLS identification results are superior to those of both first

type FLS and second type FLS in terms of convergence accuracy.

n . . . . . . . P
“The kind of FLS which is nonlinear in their adjustable parameters "154].
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0 5 10 15 20 25 30 35 40 45 50

Figure 11.3  x,(r) (solid line) and £, (¢} (dashed line) using the first-type fuzzy identifier
without tncorporating any linguistic information.
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Figure 11.4 xa(r) (solid line) and x2(¢) (dashed line) using the first-type fuzzy identifier
without incorporating any linguistic information.

Figure 8.12: Identification of z, and r; Using FLS ("First-Type Identifier”}
(Identifier Output - Dashed Line: Plant Qutput - Solid Linei
Reproduced by Permission of the Publisher from “Adaptive Fuzzy Syvstems and

Control™. (Li-Xin Wang. (©1994 by PTR Prentice Hall;
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Figure 11.7 x,(r) (solid line) and £, (r) (dashed line) using the second-type fuzzy iden-
tifier without incorporating any linguistic information.

.1 N " i " i i

0 s 10 15 20 25 30 35 40 45 S0

Figure 11.8 xy(r) (solid line) and f3(r) (dashed line) using the second-1ype fuzzy 1den-
tifier without tncorporaung any linguistic information.

Figure 8.13: Identification of r, and r; Using FLS ("Second-Type Identifier™:

(Identifier Output - Dashed Line: Plant Output - Solid Line|

Reproduced by Permission of the Publisher from “Adaptive Fuzzy Systems and

Control”. 'Li-Xin Wang. (<1994 by PTR Prentice Hall)
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Figure 8.14: Identification of r; and r, Using DFLS (For Comparison with FLS

Results)
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8.4.3 Example 3 — A Flexible Link Manipulator with Non-

linear Joint Friction

We now demonstrate the application of the DFLS identification algorithm to a
practical system through simulation experiments.

Consider a flexible single link manipulator described by eq.(A.151) of Appendix

N = AN+ B(T,.-T:.
Y o= CXN.

where 7., is the electro-magnetic torque of the motor. and T is the friction torque of
the motor. The matrices. 4. B. and (", are given in eqs.t A 141-A143). The friction.
Ty. is composed of stiction and dynamic friction. whose mathematical models are
given n eqs.{A.143-A.130).  Here. it is assumed that T, is proportional to the

command voltage applied 10 the motor. 1,,. i.e..
T, =Kt . (. 105

where A7 is the torque constant. The state vector. X. and output vector. Y. are

defined in eq.(A.137) as

v o= { - g @. ¢ g G 43 ¢ }T- . )
A . (3.106:
Yo = {o0.t). of0.t). v(L.t). #(L.t). }T.
where ¢,. ¢t = 0.....3. are generalized coordinates. o(0.t) and o(0.1} are the angular

displacement and the angular velocity at the root of the beam. v(L.#)and ¢(L.#) are
the deflection and its rate of change at the tip of the beam due to flexural vibration.
Again. this dynamic model will be strictly treated as a black box from the point of

view of the identifiers.



The beam is made of stainless steel. and has the following properties.

(
length :

thickness :

tip load :

\

L
width : H
B

H

{ mass density : p
Young's modulus: E
damping ratios :

[
o=

540 mm.

30 mm.

.28 mn.
V.85 g/cm?. 18,107
206.7  GN/m?.

0.002. (=1.2.....

M, =0246 kg.

where mass density and Young's modulus are obtained from '23.

The actuator is a direct drive motor whose mass moment of inertia. .J.. and

torque constant. A'r. are

Jioo= 0.4

KNy = 13.7

LY

The parameters in the motor friction model are obtained from 3. and are as follows:

'4

Qg = 35
Q, = (.516
as = 0.376
™ = 0.0
4
= = 0.001
ks = 10000
d, = 1100
00(0.1) = 0.04

\

(N 1099

N-mjrad.
N-m - sec/rad.

rad/sec.

Our objective was to identify the following variables using DFLS identifiers.

(1) angular displacement at the root of the heam. o(0Q. t}:

(i1) angular velocity at the root of the beam. rf)(O. t:
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(111) vibrational displacement at the tip of the beam. v(L. ¢):

(1v) vibrational velocity at the tip of the beam. ©*(L.¢).

Four DFLS identifiers were used. one for each variable to be identified. as illustrated
in fig.8.15. where D, for o(0.¢). D, for 5(0.t). D, for v(L.t). and D; for ~(L.#).
Beam vibrational variables were not used in identifving o(0.¢) and o(0./). because
based on our experience. this increased the size of the fuzzyv rule base and slowed
down the fuzzy inference process which is crucial for on-line operation. and did little
to improve accuracy. For the same reason. angular displacement of the motor hub.

o(0.t}. was not used in identifving beam vibrational variables. (L.t} and &~ L. 1),

Loaf) &— Lo f) &
o0.ty == D —ey. o0ty D, ey
o0, 1) e— ot0. ¢
Vo.it) e— Lty &——
0(0.t) e—— 010.{] e——t
, D = y 0. — y
il t) e—d L. ) e——
ML) FL.t)

Figure .13: Inputs-Outputs of DFLS identifiers - Example 3

The identification errors are denoted as

’

60 ':— yo—O(O.f).
A .~
€, = y,—o(0.1).
{ ¢ N ° (R.110)
(l' = yl' - L.(L.tj .
e 2 oy —(L.1).

\

All the universes of discourse were partitioned into five primary fuzzy sets:

{N2.X1. ZR. P1. P2}.
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whose membership functions were the same as those defined in eqgs.(3.74-3.76) and
illustrated in fig.3.3. Each input variable in fig.5.15 passed through a prefilter to

transform the majority of their values into {-2. 2].

A DFLS Identifiers for o(0.t) and o(0.f)

With the DFLS of eq.(8.5).

ys = —a.y. -‘—@Z(Zél?C. (NI
U~ = —0{_;_:;_5-4-(9{(2':)?5 . S

where
2. = {00, 0.0 VT (5113,

The prefilters are defined as

)

O'0.1) = filot0.f)] = o0t — S =
O'I(O.fi é _f.-:’-:’”)-”} é 6'0‘”'0%.(.{,-."‘, . IS HD
‘.'.'1’ é f\'m"‘."’ij é ‘m-)

Both @, and @ have 123 free parameters. aud are trained using adaptive law.

eq.(3.34). Use of a difference to approximate the derivative in eq.(3.34) gives

Y.kT+T) = Y, (kT)=TH.@.c, + S.3,H. Y (kT)] .
Y kT +T) = Y (hT)~TH. O e, +S.3.H.Y (kT .

(S.119)

where the time increment. 7. is set to 0.05 sec. the gain matrices. H, and H_. are
diagonal matrices with all diagonal elements equal to S0. and the bounds of the
parameter vectors. M, and ). are set to 10°. The constants. a. and a_. are set to

10.



B DFLS Identifiers for v(L.t) and ¢(L.t)

With the DFLS of eq.(8.5).

. = —owye +0O7(2)Y. . (S.116)
.l)i' = —QiY: -f-@lT(Z,L ]?L . [S.[IT'

where
2. 2 {&'0.1). o'(L.6). ¢L.H). VYT (5118

The prefilters are defined as

! 4 t s \ 2
Loty = fiell.ty) = (Lot - S3oasoo - 1l
-, Ja .. LA . ) , PR
Loty = finlon = rlL.rl-m .
.y Fay . A . 2
[ = fu.tbw) = Ve grmehmm

Both ®, and @, have 625 free parameters that are trained using adaptive [aw,
eq.(8.34). Use of a difference to approximate the derivative in eq.iX.31 aives

Y AT, +T.) = Y hTO =T HO. . + S, 3H Y kT,

Y. T, =T, = ?,;‘ kT)-T.H.©_ . + -q;j.&)Hr_-.?,,q{‘l"Tz .

(N L2000

where the time increment. T.. is set to 0.02 sec. the gain matrices. H, and H.. are
diagonal matrices with all diagonal elements equal to 200. and the bounds of the
parameter vectors. M, and ;. are set to 10*. The constants. a. and a.. are set to
10.

C Training and Testing of DFLS Identifiers

For command input

Im =0.3sin(t) . 1R0121)
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05 . I . 7 N
i, Of \'\-

30
t (sec)

(a) Command Voltage. 1, = 0.5sin(f)

10‘| T T T

_10' 1 e 1 1
0 5 10 15 20 25 30

t (sec)

(b) Torque on the Rotor of the Motor

Figure x.16: Command Voltage 1, = 0.5<init) and Torque T, - Example 3

the command voltage. 1. and the corresponding torque acting on the rotor of the
A
motor. T, = K1l — T4. are shown in fig.8.16(a-b). The identification process for
T

identifiers F, and F, are shown in fig.8.17(a-b). where training ends at f = 20 sec.

&

The identification processes of identifiers F,. and F; are illustrated in fig.5. [8(a-
b). where training ends at + = 10 sec. The elements of all the parameter vectors.
Y.. _\7,;. Y.. and Y.. are initially assigned random values uniformly distributed in
(-1. 1). It 1s seen that all of the four variables have been well identified for the

specific input.
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Next we trained identifiers using command voltage
Vo= Aosin(27f,¢) . (N.122)
which is characterized by the pair {4,. f,;}. Let

A =05V, 4, =03V, 43 =0.7
0

\
fi=0.1Hz f, =0.2Hz. f; =0.5Hz. fy =1 Hz. f; = 0.3 Hz. f; = 0.7 Hz.

There were eighteen different pairs. {4A,. f,}. for /7 = 1.2.3. j = L..... fi. which
were used to train the DFLS identifiers. and for each pair. training lasted twenty
seconds. At the conclusion of training. the trained identifiers were tested against a

new command.
Voo = 0.3sm(5 + 0. dsin( b ERRY

A N . : ‘ .
The correspunding torque. 7o, = AV, — Tsis shown in fig.x 19, The ontputs of
identifiers are shown in fig.~.20(a-b) and fie.x.21va b respectively. The result< are
quite satisfactory and snggest that the DFLS identifiers and the training aleoritinn

developed in the previous sections can be very effective in robotic applications.
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1 5 T T T T RS

-5 i L 1 \
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L (sec)

{a) Identification for Angular Dispiacement oi0. 11

b T T

Idenllﬁer Output; ------ Plant Output
-10 ! 1 . ,
0 5 10 15 20 25 30
l (sec)

(b) Identification for Angular Velocity o(0. #)

( Training Terminates at t = 20 sec)

Figure 8.17: Identification of Angular Displacement and Velocity for 1, = 0.3sin(¢)

- Example 3
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W Byl |
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~0.5F | | | -
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ib) Identification for Vibration Velocity ¢(L.¢)

(Training Terminates at f = 40 sec}

Figure 8.13: Identification of Vibrational Displacement and Velocity at the Tip of

the Beam for 1, = 0.5sin(¢) - Example 3
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(b) Torque on the Rotor of the Motor

Figure 3.19: Command Voltage 1, and Torque T}, for Test of Trained DFLS [den-

tifier - Example 3
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Figure 8.20: Test of Trained ldentifiers for Angular Displacement and Velocity of

the Motor - Example 3
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Figure 8.21: Test of Trained Identifiers for Vibrational Displacement and Velocity

of the Tip of the Beam - Example 3
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8.4.4 Expert Knowledge and Identifier Performance

If some knowledge of svstem behavior is available a priori. it can be integrated into
DFLS design and improve its performance. Sometimes even very limited. intuitive
knowledge may significantly improve system performance. We demonstrate this
point with a simulation experiment.

Consider the flexible link manipulator just described in section 3.4.3. Suppose
we had some knowledge of its dvnamic behavior. We could now identify the angular
velocity of the motor hub. o(0.1). using the DFLS identifier. D . designed in that
section. and incorporate this knowledge of 0(0. 41 into D .. This knowledge of 20,1

is summarized in Table 3.1 as [F-THEN rules.

Table S.1: Linguistic Description of Dynamic Behavior of o101

—

IF [o(0.£)is N2 AND [ V.(f1is N2 ] THEN [y, ix N2%
IF [ o0.fris N27 AND [ VLt)is NI J THEN 7y, is N2

IF [e0.4yis N27 AND [ Vi is ZR ] THEN [y s N2
IF “o0.)is NTTOAND [ V.ifiis N2 7 THEN 7y s N1
JIF [ot0.41is NLTOAND [VLyis NI} THEN [y s NI
I [ 6(0.1is NI] AND [Vif)isZR THEN [y is N1
IF [o6(0.f)is ZR! AND [Vn(f)isZR] THEN [y;isZR ;.
IF [o(0.t)is PI] AND [l.(t)isZR] THEN fyéﬁplkf
IF [6(0.)is P1] AND [V, isP1] THEN [y, isPl}
IF [o(0.t)is P1] AND [V,(t)isP2] THEN {y;isPl:
IF [o(0.tjis P2] AND [ V,(t)isZR] THEN [y isP2::
IF [o(0.t)is P2] AND [1.(f)isPl] THEN [y isP2":

IF [o(0.1)is P2] AND [V,.(f)isP2] THEN [y isP21




1iv

Initially. those parameters in Y ; that are relevant to the rules are assigned values
according to these rules. and the remaining parameters. i.e.. those not affected by
the rules are still assigned random numbers uniformly distributed in (-1. [,

For the new identifier. the training process for a command input.
1 = 0.5sin(0.2x¢) . (S.124)

is shown in fig.3.22. where the dotted line represents the measured values. the dashed
line represents identified 0(0.1) without any initial knowledge. the solid line is the
identified o(0.1) with expert IF-THEN rules incorporated into D : before training
starts. The significance of this expert knowledge in performance improvement is

clearly demonstrated.

T

———— Identifier Outpult with Human Experltise Incorporated
— — — — Identifier Output without Human Expertise [ncorporated

E | ! ) : : ,
0 2 4 6 8 10 12 14 16 18 20

t (sec)

Figure 8.22: Training of the Identifier for Angular Velocity of the Motor. ol0.1).

with and without Expert Knowledge Incorporated
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8.5 Experimental Demonstration — Identification
of a Mechanical Manipulator

To further demonstrate the properties and effectiveness of the DFLS identification
algorithm. DFLS identifiers are applied to identifv the mechanical single link ma-
nipulator described in Appendix B. This mechanical svstem is characterized by a
very flexible link. significant nonlinear joint friction and an unknown internal motor
speed control loop.

The angular displacement of the motor hub. o(0.7). and the tip vibrational

displacement of the link. v(L.#). are to be identified. To simplify the notation. let

f

O () ol0.f) .

1N 1250

ne

rrit) il ).

Two DFLS identifiers. D. and D), . are used for variables. o0.f1v and o1 [ fi,

respectivelv. le..

y.: = D.ton. o.. Vi ,
PN L2
Ul = D!'((:}":' .t ‘n )
This is illustrated in fig.8.23
‘-m L a— ‘-r,". L a—
o . Om &

Om D, | Ye D. pt—=y,

. v -— | !

Om *—— l.‘[_ [ S—

Figure 3.23: Inputs-Outputs of DFLS identifiers - Identification Experiment

The identification errors are denoted as

e

CO .‘/G_O‘O'I) .

e

y, —uv(L.t).

€.
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Each universe of discourse is partitioned into five primary fuzzy sets. namelyv.
{N2. V1. ZR. Pl. P2}.
whose membership functions are the same as those defined in eqs.(8.74-2.76) and

illustrated in fig.8.3.

The gain matrices. H, and H.. are taken to be diagonal matrices with all diag-
onal elements equal to 40. The bounds of parameter vectors. M, and M, . are set
to 10°. and the constants. a, and a,. to 10. These parameters are selected quite
arbitrarily without a great deal of effort and thus may not be optimal ones. which
poses a more stringent condition for our training algorithm. Experimental data are

obtained at a sampling rate of 10 Hz.

The identification process for command voltage

‘;n:‘L.:.)..\'in( _),—-f)l‘) ERKAY

is shown in fig.8.24. with fig.8.24(a) the command voltage. X.24(h) the angular dis-
placement. and 8.24(¢) the tip vibrational displacement. The parameter vectors
to be trained. Y. and Y.. are both initiallv assigned random numbers uniformly
distributed in (-1. 1).

The training process for o, converges very fast. as seen in fig.3.24(hy. Figure
8.24(c) shows the training process for the tip vibrational displacement. /. which is
the l4th round of training (i.e.. the identifier is repeatedly trained 14 times using
the same batch of data). It converges well although it requires more effort than
does the hub angle. which is not surprising since the dynamics of the tip vibration
is much more complex than that of the hub angle.

For this low command voltage. the motor rotates at very low speed and stiction
has a very significant effect on svstem behavior and makes system dynamics highly

nonlinear{36]. as observed from fig.8.24.



Figure 8.25 illustrates the training process for command input
Voo = 2sin(0.6xt)(17) . (3.129)

The trained parameter vectors from fig.8.24 are used as the starting points for this
training. Figure 8.25(c) shows the 2nd round of training. Again. good convergence
is evident for both variables.

Figure 8.26 shows the training process for a complex command input pattern.
shown in fig.8.26(a). which is generated by a human controlled jovstick superposed
with some disturbances. Thus the input is quite arbitrary and nonrepeatable. The

initial parameter vectors are obtained by training the identifier with command inpnrs

V= Aosin2=f 4 (070, e~ 1300
where
A0 o2 {120 150 20250 30350 L5 50950 .
(N 131
f= {0.1.0.2. 0.3. 0.4, 0.5. 0.6, 0.7, 0.5 0.9} .

Each input pattern {A,. f} lasts fifty seconds. and the inital elements of Y..
k = 1.2 for the first pattern {4, = 1.2, f; = 0.1}. are randomw numbers uniformly
distributed in (1. 1). It is clear that even for such complex input~. the identification
process converges reasonably well.

After training with an additional twenty five complex input patterus. each of
which lasted thirty seconds. the trained identifiers were tested by predicting the
responses of o(t) and v(¢) for the inputs shown in fig.3.27(a). which is quite complex
(and was used in the training process). Figure 3.27(b-c) shows the responses for
o(0.t}) and v(L.t) predicted by the identifiers. The results are quite satisfactory and
suggest that the proposed DFLS identifiers and the training algorithm can be very

effective in practical applications.
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8.6 Concluding Remarks

In addition to the remarks made in section 3.3.4. we have the following conclusions

and observations.

1. A novel fuzzy logic system structure. which is characterized by its dvnamic
aspect. is proposed here. and its universal approximation property proven.
We believe that the new dynamic fuzzy logic svstem. DFLS. is more naturally
integrated into many dynamic svstems and makes better nse of the intrinsic

dvnamics than does the conventional static version.

2. A DFLS based stable adaptive identification algorithm is developed here.
which enables the DFLS identifiers to identify a large class of nonlinecar dy-

namic svstems reliably.

3. The DFLS based identification algorithm has been applied to identify a variety
of nonlinear system. and the design procedures of DFLS identifiers have bheen
demonstrated in detail. In all of the applications. satisfactory results were
obtained and the effectiveness of DFLS identifiers in dealing with complex.

nonlinear svstems is clearly demonstrated.

4. In the Chaotic Glycolytic Oscillator example. section 3.4.2. the identification
results of the DFLS identifiers are compared with those of static FLS identifiers
in published literature. and the former is clearly better. This example offers
an evidence to support one of our assertion that DFLS can have performance
superior to that of a static FLS. although more in-depth comparisons between

DFLS and static FLS are vet to be done. This is left for future investigation.

5. In most of our applications. it was assumed that there is no human expertise
available a priori. which poses a more stringent condition on DFLS identifiers.

but satisfactory results can still be achieved nevertheless.



If there is expert knowledge available a priori in form of I[F-THEN rules. even
of a verv limited nature. it can be explicitly incorporated into identifiers and
significantly improve system performance. This is demonstrated through a

simulation experiment in section 3.4.4.

In this work. the off line designed parameters. in view of eqs.(8.23) and (3.34).
include a;. H:. ,'ll?k and ©@;. as well as prefilter. fi. and time increment.
T. These were all determined by trial and error. Explicit procedures for

determining the optimal values of these parameters have vet to be developed.

[t should be pointed out that in the illustrative applications. these parameters
are selected without a great deal of effort and thev are thus by no means
considered to he optimal. which also poses more stringent demands on the

DFLS identification algorithm.

The conditions for adequate training of a DFLS are not discussed here. which
itself is an interesting research topic and involves issues such as persistent
input excitation. the choices of fuzzy logic syvstem structure and the off-line

design parameters. and <o on. This is a subject for future investigation.

Problems associated with svstem and measurement noises are not discussed in

this work. This is another subject for future investigation.



Chapter 9

On Adaptive Control of Nonlinear
Systems — DFLS Approach

9.1 Introduction

[n chapter 6. we presented an empirical fuzzy logic controller design process which
15 solely based on expert knowledge. The resulting FLC' wax shown to work well if
there is adequate expertise available and the control tasks are not complex. The
main problem with this approach is that it does not have any theoretical guaran-
tee of stability or consistent performance in the presence of large uncertainties and
unknown variations in svstem behavior. In addition. if there is not adequate ex-
pert knowledge available. or the control tasks are too complex. this approach will
be very difficult to effectively implement. Therefore. there is a need to develup a
systematic design and analysis approach for fuzzy logic control svstems. such that
the resulting fuzzy logic control systems are adaptive in the sense that they can not
only be capable of incorporating linguistic fuzzy information from human experts.
but also maintain system stability and consistent performance in the presence of
svstem uncertainties and variations. Since the latter part of the objective generally

coincides with the basic objective of adaptive rontrol. which is to maintain consis-

1387



r—
S
Ve

tent performance in the presence of variations of system parameters. the design and
analvsis tools from the realm of adaptive control may be useful in the developmem

of adaptive fuzzy logic systems.

Pioneering work of this kind was reported in [182] and {154. 134]. The former
developed a direct adaptive fuzzy logic control scheme where fuzzy logic svstems are
used as controllers and their parameters directly adjusted to reduce some norm of
the output error between the plant and the reference model. Linguistic [F-THEN
rules can be directly incorporated into controllers of this kind. The latter developed
an indirect adaptive fuzzy logic control scheme where fuzzy logic systems are used to
model the plant whose parameters are estimated. and the controller is chosen as<um-
ing that the estimated parameters represent the true values of the plant parameters.
The fuzzy [F-THEN rules describing the plant can be directly incorporated into the

indirect adaptive fuzzy controllers.

However. in these works the fuzzy logic svstems involved are static in nature.
In this chapter. the dvnamic fuzzy logic svstem described in chapter S is used 10
develop a stable indirect adaptive fuzzy logic control scheme. following the Lyvapunov
synthesis approach. The resulting DFLS based adaptive controller will he seen 1o

have certain advantages over static FLS based adaptive controllers.

To demonstrate the application and properties of the DFLS adaptive controller
simulation examples are presented here in which it is used to control various non-
linear systems. To further justifv the properties and illustrate its eflectiveness. the
DFLS adaptive controller is also applied to control the trajectory (at the tip of the
link) of a single link mechanical manipulator. which is characterized by a veryv flex-
ible link. significant nonlinear joint friction and an unknown internal control loop.

as described in the previous chapter.



9.2 Preliminaries and Objective
9.2.1 Dynamic System
Consider the following class of nonlinear syvstem:
M= fix) = gix)u . (9.1

where v € R and r = R are the input and output of the system. respectively.

e

X ={r.r...... r =T 2 RY s the state vector which is assumed 1o be available

for measurement. and r} represents the Nth order derivative of r with respect
to time. f: RY — Rand ¢ : R — R are unknown continuous nonlinear functions

defined in certain controllability region .t = R". Let

11>

£y £
S .
r, =r
£ R
= A
Then x = {rj...... rv )T and equ(9.1) can be written in state space form as.
(
I = T2
(9.3
Iy_p = Iy
Iy = f(x)+g(xXiu.

For the system to be controllable. we impose mild restrictions on the function g.

Assumption 9.1 0 < 2, <l g(x) [K M,. x € .X and 0 <t < xc. where M, is
large positive constant and z, is a small positive constant. The sign of gix) i~ also

knouwn.
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9.2.2 DFLS Identifier
Consider the DFLS of eq.(3.3). i.e.
j=—ay+0T(x.u)Y . (9.4

where @ and Y are as defined in eqgs.(3.3-2.4). i.e..

LA ,
O(z) = {biiz).....00(z)}T . ]
— A {(9.3)
Y 2 (g
and 6.(z) is given by eq.(4.43) as.
. TS expl-{r25=0
f.iz) = — e 96
TR expl— (55
where
z = e I,\'-l}T é{.rl......r\-.u}r. (9.7

This DFLS will be used as an on-line identifier for the unknown state ry. where
parameters a and @ are to be defined in an ofl-line design process. leaving only Y

as a free parameter vector and which is to be adaptively tuned on-line.

The expression for state variable ry ineq.(9.3) is now rewritten as
Iy = —ary + Olix Y -rixu0.Y). PN
where
- A T - \ .
rix.u.@.Y)=0' (x.u)Y —arxy — fIXi —g(xju . R

which may be considered the static modelingerror of the DFLS identifier. By Lemma

8.1. for bounded inputs and states there exists an optimal parameter vector. Y .

which minimizes the static modeling error. r(x. u. ®.Y ).

Y £ (Y'| min{ sup | rix.u.0.Y) 1. (9.10)
Y

{xX.ujes
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where
S{YY < M5} (9.11}
for which

sup | r{x. w.®.Y' ) <M, . (9.12)

{x.u}el

2 C RY*! is a compact set. My and M, are positive constants that bound the
norms of Y and r{x.u.®.Y ). respectively.

Here. we know that such an optimal parameter vector exisis for bonnded inputs
and states. but we have no guidance on how to find it. In the following section~. we
first develop a control law which ensures the houndedness of the system input and
svstem states. then specify an adaptive law for Y. such that Y can be satisfactorily
approximated.

Replacing Y by Y in eq.(9.8) results in
Iy = —ary -« Olix.u)Y —-rix.u.®.Y 1. RRY
Subtracting eq.i4.13) from eq.i9.4) vields
f=—nf-:~G)T(x.u;AT+r(x.u.@.?-) . (314

where £ is the identification error for the state variable rx.

e

E=y—2r~. .15

and the vector Ay is the parameter estimation error.

e

Av=Y -Y (9,16
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9.2.3 Objective

Let ¢ be a desired trajectory of svstem output. r. and denote

( A

g = q.

¢ = g

- 7 {(9.17)
WAy S v

Let ¢ be the difference between r and g. t.e..

e=r—gq. (9.1~
Denote
€y = €
£ ; €
I‘)l']»
= N -1
= f" -1

Our objective is to develop DFLS based stable adaptive control system. such
that the plant output. r(ti. follows the predefined bounded reference trajectory.
q(t). under the constraint that all quantities involved must be bounded.

Specifically. we will develop control law for plant input. u. adaptive law for DFLS
free parameter vector. Y. and adaptive law to estimate the unknown function. g.

such that the closed system is stable in the sense that

(1)  the tracking error. €. and the identification error. £. are bounded and is to
be as small as possible. ideally converging to zero:

(11) the DFLS identifier parameter vector. Y. is bounded:

(111) the svstem input and system states are bounded:
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9.3 Control Law of the System

To make sure that the system states have the desired tracking performance and are

always bounded. we specifv a control law consisting of two components. u. and u,.

e

u. — S,u, . {9.20)

<

where

0. f leili< M.
5'u§ ofoled N (9.21)

L. if el> M.

M is a finite positive design parameter that bounds ' e .. The first component.

u.. is the usual control term for tracking performance when the system states are

within a desired hound.

N-i
~ 1 _
N - . X . Y.
U = <1 gy = gy — eTix.0)Y - _S_ Qrfe . 19,22
g k=1
where a;. .... ay_; are design parameters vet to he determined. ¢ is the estimated

value of the unknown function gtx). and

A
Oix.01=@Q(x.u) =, IR

The second component. u,. 1s a supervisory control term that restrains the svstemn

states from drifting bevond a desired bound. and is only activated when <vstem

states actually reach the bound. This term follows the idea presented in [IN3..
Here. it is derived as
A : l ‘ , -
u ty = sgn(BTPej sgn(gy - — -[ajon i+ 07x.0Y | +M:
-3
+ (M, + g0 Tu ). (4.24)
where VM, is a large positive constant that bounds f(x). thatis. ¥x 2 X! fix) i<
My, and the sign function. sgn. is defined as
Lo of 220.
(49.25)

A
sgnir) =
—1. 1f r<0.



9.4 Adaptive Law for Parameter Vector Y

Substituting eq.(9.22) in eq.(9.3) and using eq.(9.19) gives

{
€1

J €Ex—y

€N

\

[N

—aéN — E:;,l Qi€p — @T(X.O]AV - Nu - rx.0.0.Y

—S.gu, .

where \; is the estimation error of the function gixi.

and

Let

A';é."/_g-

r‘ix.O.@.YJ E rex. u.@.?‘l “W=0

= @T(X.O)?— ISFEN —f{.!‘i .

e

Qv Q.

then equation (9.26) can be written in matrix form as.

e = Ae + B —G)TI,X.OIA? - Nu,. - rx.0.0.Y ) - S.gus .

where
- .
€2
e =
A
€N

I 0 1 0 0 -
0 0 l 0
A=
0 0 0 !
| a1 —ay —ay ... —ay |

0

194

19.261

RERAN

i9.29

19,30
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The parameters. {a;. .... ax}. are chosen in such a way that A is a stable

matrix. i.e.. the roots of the polynomial.

det[sI —Aj=s" +ayvs> '+  +a, . (9.310)
are all located in the open left half of the complex plane.

Following the Lyapunov svnthesis approach. the adaptive laws for the parameter
vector Y. and for the estimate. §. of the function. g{x). can be derived. and stability
of the control svstem guaranteed. The estimate. ¢. of the unknown function. gix.
can be obtained either with a self-tuning scheme. or with a static FLS.

[n the following. we first present the adaptive laws for Y and §. and then analvse
svstem stability properties in the form of theorems.

This adaptive law for Y is

Y = ~-HO(x.u)hf —O(x.0/(B"Pe) — ~JHY . 19,320

where H is a constant positive definite svmmetric matrix. and / is a positive constant
that weights the identification error. P is a positive definite symmetric matrix that

satisfies the Lyvapunov equation.

A'TP+P'A=-Q. (9.33)

where Q 1s some given positive definite symmetric matrix.
The last term on the right hand side of eq.(9.32) represents a projection algorithm
modification [42. 57. 133]. to avoid circumstances under which the parameter vector.

Y. becomes too large or even drifts to infinity [133]. The on or off status of this term
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is controlled by the switch S. which is defined as

4

0. if Y |i< My
or | Y lj= My and Y H[O(x.u)hé — @(x.0)(BTPe)] >0 :

(f,
I
A

or | Y ||> M< and Y H[O(x. w)hé — @O(x.04BTPe)] > 0 : 19.34)
Y L

1. otherwise:

\

3 is a positive design parameter which satisfies

[ 3 > Y HO(x.0(B Pe)-O(x..1is! if 1Y = My and
Y HY ;
I .
Y HO@ix.uihé — @x.0){B"Pei’ < 0:
< i9.35)
3> Y HOx0UB Pe)-Qix.u)hel of 1Y 4> My and
Y HY -
gy ‘ .
Y HO(x.u1hf - @(x.0(B"Pe) <0

9.5 Adaptive Laws for ¢

Two approaches are presented in this work to estimate gixi. One is based on a
traditional self-tuning scheme. the other is a FLS approach. If there i no expert
knowledge about g(x1 available at all. the former approach may be more appropriate.
since it is more straight forward and simpler than the other. If. however. there is
expert knowledge of g(x) available. the FLS approach may be more advantageons.
since it can systematically incorporate human linguistic information. and result in

better system performance.

9.5.1 Self-Tuning Scheme for g

The adaptive law for ¢ is

g:' = 1-(BTPe)u,_. + 5,359 . £9.361



where =+ Is a positive gain. ¥, is a switch defined as
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(0. if 5, <lgi<M,.
or 1 gl=z, and §(BTPeju.>0.
or 'gl=M, and §(BTPe)u. <0.
or 1§i> M, and §(BTPeju <0.
s, 2 (9.37)

~1. if {gl=M, and §(BTPe)u. >0
or 1§!> M, and §iBTPeiu. >0

L. if (gl=z, and gBTPeju. < 0.

\

and 3, is a positive design parameter

(3, > £#BPe ey
or 9=z,
\ J.J.)i‘.fl‘j_f"l.‘: of g > M,

[t is possible that * ¢

exceeds its lower bound. =,

which <atisfies

and GBTPeiu. >0 ( for posttive signi .

and §(BTPewu. < 0 for negative sign) .
(9.3

and §iBTPeju. >0 .

during the training process

in the following way: as the training is implemented computationally as

gt =dty = gity + guhdt

(where g:(t) is given by the training law. eq.(9.36)). then if . g(t) i

lower bound. z,. but still within this bound. the resulting | ¢(f + dt) |

exceed this prespecified lower bound.

In this special situation. we can change the value of the gain. ~.

(.39,

is very close to its

can possiblv

.

in eq.{9.36G) and

obtain a new value for g:(f). which would result in a new value of ¢(f + dt) (such that

fglt +dt)i> ;). Another alternative
to skip this undesired situation. and

samples.

Py

could simply be to let g(t +dt) = sgnlgitiiz,

carry on the adaptive calculation with new



9.5.2 FLS Approach for g

Since the function ¢g(x} is of a static nature. a static FLS is used as its estimator.

Consider the FLS defined in egs.(1.43-14.43). Let

=¥ (x)G. (9.40)
where
Tix) = {eg(x) ... ep(xi}T .
—_ - (9.41
G £

and the membership functions are defined as

17 exp— 22

F=1 s

LX) = o . 9420
‘—J P LT ‘r»’—;jl' 2
L=t r=1 e:\[)L—( ”;p * .

Equations (9.40-9.42) represent a static FLS characterized by a singleton fuzzifier.
centroid defuzzifier. sup-product compositional rule of inference. algebraic produer
operation for fuzzy implication and t-norm. and Ganssian tvpe membership func-
tions for primary fuzzy sets.

[n eq.9.40). W(xi is designed off-line and G is the parameter vector adjusted

on-line. Before presenting the adaptive law. we impose an assumption on ¢ and G.

Assumption 9.2 7 - =.V'. G 1> Mg then g =z, where Mg s somr large

positive constant.

The adaptive law for parameter vector. G. is
G = ~¥(x)(B"Peju. - 5,3,7G . (943
where ~ is a positive gain. 5, is a switch to control the on or off status of the

projection modification term. and J3, is a positive design parameter.

fry

(SU.3UYT . f tgl>e, .
7+ ) | ’ (9.44)

—_—
rl‘|
)
R
——
~
e

SL
{-5;.

I i dgi=z, and [Gl< Mg,
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where
0. if |Gi< Mg
or |G l= Mg and G ®(x)(BTPeju. < 0.
55 2 or | Gl> Mg and ﬁr‘P(x)(BTPe)uf <0. (9.45)
1. otherwise.
(0. if3(BTPelu. > 0.
Sk = (946
| 1. if §(BTPeju. < 0.

G’ BT : — = .
3> G ¥ix)iB Peju. of 1 Gij= Mg and GT‘I’(XII(BTPE,M. >

¥ G'G
(4T
. =7 T . R — —T
30> G q”f_”.—B_Pe'“ 0 f 1G> Mg and G TixiB'Pei.>0.
3 GG : :
j@T¥ ) B Peu.
.),{‘ >_§(‘p )? U ' (018,
g - g_
Mg 15 a positive design constant that bounds G . and satisfies
l ( {
\[6 < —=1\/. (9.4
v/

where J is the size of the vectors. ¥ and G. as in eq.(9.41).
As above. it is possible that | § < z, and | G |j< M. during training. where

again as the training is implemented computationally as
Gt +dt) = g(t) + §(t)dt = g(t) + BTG(t)d! . (9.501

(where G(t) is given by the training law. eq.(9.43)). then if { git) | 1s very close to irs
lower bound. ;. but still within this bound. the resulting | §(t = dti | can possibly

exceed this prespecified lower bound.
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In this situation. we can change the value of the gain. 4. and obtain a new value
of 6({). which would result in a new value of g(f + dt) (such that | g(t +dt) |> =, 1.
Another choice could simply be to let g(t + dt) = sgn[g(ti]z, to skip this situation.

and carry on the adaptive calculation with new samples.

9.6 Stability Properties of DFLS Control Algo-
rithm

The stability properties of the DFLS based adaptive control system are summarized

in the following theorem.

Theorem 9.1 Consider an unknown nonlinear dynamic system described by eq. 9.1,
which s subject to the control luw. cq.i9.200. If the DFLS of eq.0 9.1 (s used to den-
tify the state. ry. with adaptive law. eq.i9.32:. for tuning s parameter vector. Y.
and furthermore the unknown function, g{r). s estimated either by a ~self-tuning
scheme with adaptive law. ¢q.79.36). or by a FLS. with adaptive law. eq.09.]5 then

the closed loop system has the following stabiity properties,

9.13 lelj< Me. i xS Mo+ qll. and | £ < M:. where q = {op..... gy} oand

M s a positive constant:
9.1.4
(2= L (VMg +a oyt )

Jothgn(t l=dai Moy = Mo,
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A . : . .
where a = {ay..... ax}?. I is the size of the vector @. and My is a positive

fix)|:

constant that bounds

9.1.5
¢ t _
/ Pe(r) | dr < b+q/ [ P(x.0.0.Y) + rix.w.0.Y" ) = A2 jdr .
0 0
t t p—— ..
/fg(r)dr < b-:-r//{rz(x.O.@.Y)+r2(x.u.@.Y )+ A jdr .
0 0 ;
where b and n are positive constants:

Vand N, = L0000, e (fy0 o rr) 1P dTY < x and

9.1.6 f rit) € L£,0

X
(f" Ag(lr)% < x. then,
lim jjeit1i = 0.
t—

lim  &itvi = 0.

the proofs will be addressed presently. but we first consider a particular case.

9.7 A Special Situation : g(x) Known

Consider the dynamic svstem described by eq.(9.11.

.1‘('\')=f(X)+g(X)ll . (9.51)

[t is possible that the function. g. is known to us. In this situation. the indirect
adaptive control algorithm developed previously is still applicable. provided that

the identifier to estimate the function g(r) is eliminated. and
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Theorem 9.1 of course still holds. but Theorem 9.1.2 is unnecessary here. The results
for this special situation are summarized in the following corollaries. The conirol

terms. u. and u,. are given as follows:

1. . N
_t;{ gy + agy — O7T(x.0)Y — Z QrEx
k=1

e

. (9.33)

——

1 , —
u, 2 sgn(BTPe}-;-{ail‘_\'i+}@T(X.O)Y,|+.\[_;}. (9.54)

Corollary 9.1 Consider a nonlinear system described by eq.(/9.51i. which 15 the
same as €q.(9.1) ercept that g is a known function here. and the control terms. u.
and us. tn the control law. €q.(9.20). are given in €qs.19.53-9.54;. Then. the closed

loop system has the following stability properties,
o | Y i< My

o [le!|< Mo | X 1< M=t q . and ' €< M.

fo tetriiFdr < bh=p ([ rx.0.0.Y  ~riix.u.®.Y jjd- .

Y
JEer)dr < b+ [ rlix0.0.Y

where h and n are positive constants:

b~ rixou.®. Y T e

o frit1=L20.2¢). then, lime jfe(t) i=0 . lim_.  Sf)i=0.
Corollary 9.2

1 ~ v ] .
lu(t) | '—,[3 (VIMg +airvit) )+ gyt [ = flal] Me~ M; ! .
Igl ’

9.8 Proof of Theorem and Corollaries

9.8.1 Proof of Theorem 9.1.1

(CConsider a Lyvapunov function candidate.

Ig=-Y'Y. (.35

Wi r—
-
Y |
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Differentiating both sides of eq.{9.53) vields

1e=YY. (9.56)
Using €q.(9.32) in eq.(9.56) vields
Iy = —Y H[O(x.u)hé — O(x.0)(BTPe)] — $3Y HY . (9.57)

We have mentioned that M5 > 0 is a design constant which bounds the norm of Y.

Here. we call M57 the nominal bound of i} 'Y jj. Now. we discuss different situations.

(i) 'Y i< My

This is the desired situation. and the norm of the parameter vector. Y. is of

no concern to us.

(i) 1Y i= My
Consider eq.{49.34 .
— for Y H[@ix.ulhé - O(x.01(BTPei} >0. &=0.

Iz = -Y H{®(x.u1hf — O(x.01iB Per < 0 . 5N

- for ?THE@(X. w)hé — @(x.0iBPe)l < 0. S =1.and

Iy = -Y H[@x. uhé — O(x.0(B Pelj — 3¥ HY . (4.3,
Y H!O(x.0){BPe| - ®(x. u)h€] |
iz — p— - {9.60
Y'HY
or.
g <0. (961

Equations (9.58) and (9.61) indicate that § Y ! tends to increase. and the

boundedness of || Y || can be concluded.



(iii) | Y {|> M5 :

In this case. || Y || exceeds its nominal bound. Mg. which may occur during

the training process. and as the training is implemented computationally as

Yt +dt)=Y(t)+ Yit)dt .

(9.62)

(where Y(t) is given by the training law eq.(9.32}). then in the situation in

which || Y(t) || is very close to the nominal bound. My, but still within this

bound. the resulting || Yt + dt) j| can exceed the prespecified nominal bound

by the norm of the training increment. Y #)df. at most. Considering eq.i9.34).

then.
- for ?THE@(X. uihé — ©(x.0(B"Pei. >0. S =0.

g = -Y HOix.uihé — ©ix.0B Pe/ < 0.

- for VTHQG)D(. uth& — @(X.O)QBTPe;} <{. S=1.and

'y = -Y H{®x.uhé — @ix.00(BPe) — 5T HY .
, o Y HOx0(BPe - Oix.uh¢
' Y HY |
or.
g <0.

1963

19,61

i9.65.

{9.66.

Equations (9.63) and {9.66) indicate that as soon as |! Y | exceeds its nominal

bound. Ms. it immediately returns within this bound. Therefore. this excess

is small and temporary. Formally. denote

EMg & sup || Y(N)dt !l

{x.uleZ

and let

ME 2 Mg+ My .

i9.67)

(9.65)



then we have
1 Y(t+dt)[|< Mg (9.69)

which. again. indicates the boundedness of Y.

For simplicity but without loss of generality. we still use M5 instead of Mz in

this work. which is equivalent to implicitly specifying that V5 = max{.\/5. .\I'?}.

This concludes the proof of Theorem 9.1.1.

9.8.2 Proof of Theorem 9.1.2 — Estimation of ¢(x) with

Self-tuning Scheme
Consider a Lvapunov function candidate.
- l -2 a -
‘J:Eg . l-‘.l(]'
Differentiating both sides of eq.19.70) vields
U, =g . (0.1
Using eq.(9.36) in (9.71) vields
1=~ B Pe - Soedat. (T2
(i) 1g1=2,:
Consider eq.{9.37).
— for g(BTPeju.>0. S, =0.

1, =~g(B"Peju.>0. (9.73)

— for g(BTPeju. < 0. S, =1.and

1, = ~g(BTPeju.+~3,4". (.74
- T
3, > _g—_._(B_Pe)““‘, (9.73)

)
g-
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or.

1, >0. (9.76)

Equations (9.73) and (9.76) indicate that | ¢ | tends to increase. and therefore.

the lower boundedness of | § | can be concluded.

(ii) 2, <l § < M, :

This is the desired situation. and i g | is of no concern to us.

(iii) | 4= M, :

Consider eq.(9.37).
- for g(BTPeju.<0. S,=0.

I, =-4(B"Peju. <0 . 0T

- for g BTPer > 0. S, = —1.and
1, = ~gBTPeiu. — - 4,4° . LTS
¢(BTPe)u.

PR

ar.,

v

;0. 9.8

Both eqs.(9.77) and (9.80) indicate that | ¢ | tends to decrease. and therefore.

its upper boundedness can be concluded.

(iv) 1g > M, :
In this case. | g | exceeds its upper bound. ;. which may occur during the

training process. and as the training is implemented computationally as

Gt +dt) = g(t)+ gtt)dr . (9.81)
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(where g(f) is given by the training law eq.{9.36)}). then in the situation in
which | g(¢) | is very close to its upper bound. M,. but still within this bound.
the resulting | §(t + dt) | can exceed the prespecified bound. M,. by | giiidt .

at most. Considering eq.(9.37). then
- for g(BTPe)u. < 0. S, =0.

‘J = ‘,'g(,BTPE}U._- <0. (9.8

- for §iBTPe)u.> 0. it has S, =—1.and

1, = ~¢giB"Peju. —-3,4° . (9.53)
7(BTPeu. .
i_’ _g* . (9.8
g9
or.
1, <0. TRSY
Equations 19.82) and (9.85) indicate that as <oon as ' ¢ ' excecds its upper

bound. M,. it immediately returns within this bound. Therefore. this excess

is small and temporary. Formally. denote

&M, = sup | gutydt PNG
xe.v
and let
r & - -
.\[3 = M, +¢M, . (.87
then we have
| glt +dt) (< M. (9.8%)

which. again. indicates the boundedness of | ¢ 1.

For simplicity but without loss of generality. we still use M/, instead of /! in

this work. which is equivalent to implicitly define that 1/, £ max{.\M,. M}
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This concludes the proof of Theorem 9.1.2 for the situation that the unknown func-

tion. g(x). 1s estimated with a self-tuning scheme.

9.8.3 Proof of Theorem 9.1.2 — Estimation of ¢g(x) with

FLS

Consider a Lvapunov function candidate.

R P
l5=3G'G. (80,

Differentiating both sides of eq.i9.89) vields.
=G G. 90
Using eq.i9.431 in eq.i.90). and considering eq.(9.44) gives
. —T - G =T =
g =-G ¥ xiB'Pelu. -5, $-G G. HEY

Let 0 < Mg < x be the nominal bound of the norm of G. We now consider
different sttuations.
i ol -
- 1G i< Vg:
This is the desired situation. and the norm of the parameter vector. G.
is of no concern to us.
- ” G H: _1!6 .

Considering eq.(9.43).

« for G Wix)(BTPe)u.<0. SU =0q.

4

Tz =G ¥(x)B"Peju. < 0. (902
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« for G Wix)(BTPeju. >0. SU =1.and

3
Iz = +G ¥(x)(B"Peju. - 3~G'G . (9.93)
—T T
s GT@E{RW\ (.94
G G
or.
"'6 <0. L9905

]

Equations (9.92) and (9.95) indicate that | G || tends to decrease. and
therefore. the houndedness of | G | can he concluded.

iG> .\[6 :

[n this case. || G 1 exceeds its nominal bound. Mg. which may oceur
during the training process. and as the training is implemented comp-

tationally as
Git+=dti =Git -~ Gitult . 96

fwhere Giti is given by the training law eq.(9.43 0. then in the situation

in which .. Git) | is very close to the nominal bound. Mz, bt il

within this bound. the resulting || Gt = dfi © can exceed the prespecitied

nominal bound by the norm of the training increment. Gitidt. at most.

Considering eq.(9.43}. then.
= for ETW(XHBTPGNL < 0. }g = 0.

T

16 = .6 "I"()()(BTPQ)UC < Q. (9T,

* for ﬁr‘P(x)(BTPe)u, > 0. ‘vﬁ = 1. and

‘-;G- = T’ET‘I’[XHBTPQ)“ .- i;‘ETE . “;.”\l
G o (x)(B"Pe)u
GG

9,949,



or.

Iz <0. (9.100)

Equations (9.97) and (9.100) indicate that as soon as || G || exceeds its
nominal bound. Mg. it immediately returns within this bound. There-

fore. this excess is small and temporary. Formally. denote

Mg & sup | Gitvdt | | (9.101)
Xe.X
and let
Mg = Mg+ Mg . 19,102,
then we have
I Git =y i< Mg (103

which. again. indicates the boundedness of + G .
For simplicity but without loss of generality. we still use Mg instead of

.\[’5. which iz equivalent to implicitly specifving that Mg = max{ \/g. .\1”6}
Therefore. in situation (i). i.e.. 1 g "> z,. 1t 1= concluded that
G Mg . (9,104
Considering eq.(9.40}
(g l=I TG I<iw - 1G . (9.105

and it is known that of all elements of the vector. W. none is larger than one.

le.v, <l .forj=1...... J. Therefore.
J —
1@ = D i<V, (9.106)



(ii)

Using eqs.(9.104) and (9.106) in eq.(9.103) yvields
g1V Ms .
Considering eq.(9.49). i.e..
1
.\fa < —=\,.
v/

we have

g =z,and " G l< Mg

[n this situation. ! G

candidate.

Differentiating both sides of eq.i9. 1101 vields
=49 =39'G .
Considering eqs.(9.43-9.44). we have

U; = ~gC OB Peiu. + SL3[-g WG

= g0 (B Peiu. + SE35-47
Further. referring to eqs.(9.46) and (9.43).
- For g(BTPeju. > 0. .‘;'3" = 0.

U, = -g¥ W B Peju. >0 .

(9.107)

(910N

(. 1049

< of no concern to us. Consider a Lyapunov function

9. 1100

RN

(9.112)

(9.113:



(]
—
(V]

— For ¢(BTPe)u. < 0. \gL = 1. and

‘J = ~g¥ ¥ B Pe)u. + - 3;5}1 . (9.114)
U3 B Peju.
gty R0 o (9.115)
gb
or.
1;20. (9.116
Equations (9.113) and (9.116) indicate that | ¢ | tends to increase. and

therefore. the lower boundedness of ! ¢ | is concluded.

This concludes the proof of Theorem 9.1.2 for the situation of the unknown function.

g(xi. being estimated with a FLS.

9.8.4 Proof of Theorem 9.1.3
Using eq.(9.25) 1 eq.19.30) vields
é=Ae~B -@Tx.0)Y ~ary + fix1=qgixXiu. —qu =S qgu, . 9117
Consider the Lyapunov function candidate.
1
l,=;e Pe . LNy

Differentiating hoth sides of eq.(9.113) vields

l 1

I, =;¢"Pe+ -e'Pe. (0.119)
and use of eq.(9.117) in (9.11Y9) vields
.. 1 —
1. = 5el(ATP+PTA)e + (B"Pe){ ary + fix) + g(x)u. — O (x.0)Y - gu

— S.g(BTPe)u,
—_ _leTQe /BTP 4 e . , T v . 1
= 5 -+ e)j ary + f(x)+g(x)u. — O (x.00Y — gu. !

~ S.¢9(BTPe)u, . 19120



Then

. 1 - ) .
1. < —;eTQe+[BTPe[»[a|r,\-|+|@T(x.0)Y;+.wf+('.wg+;g;)-;u,u

— S.g(BTPe)u, . (9.121)

where M, is the upper bound for | fix) |. If || e {{> Me. 5, = 1. Using eq.(9.24]
with (9.121) vields

; P
1. < -%eTQeHl-‘g‘).JBTPep

(ol oy +-ggef(x.o;?; + M=M= g w22
Since | g {> z,. then. for | e |> M.

i< -—-e"Qe<0. (9.123)
Therefore. when e 1> V. i < 0. which indicates the boundedness of e . i.e..
e n< M. . (9120

Further. since e = x — q .

< Me- ' q (9.125)
Now. consider eq.(9.4).
y=—ay+0T(x.)Y . (9.126
The solution to eq.{9.126) is
y(t) = e 2'y(0) + /Or e 10T (x. u)Ydr . (9.127)

Or.

fult)y ] < c“‘”jytO);'-}——/ e @ x )Y dr
(0]

< ey e [ eT @k I Y idr . (902
Q



Consider
@7 x. = TL 6(x.ui < VT .
| Wl = U S Y (9.129)
1Y < My
then
! i —atl P —at T l a° gt
by(t) ] < e Py(0) | e " VI - —€e' g
o
= 7 y0) E~ji\/7.\[7(l—-f:—'”) . (9. 1300
Q
Fort > 0.0 < e " < 1. therelfore.
i <iyf E Tl (9.131
!‘!](f];__gyi(]]:-—gv[.?. 9131
Since £ = y — .
NI R ¢
I~
< iy ~=viMe - VMo~ q . 9,132,
< oy “\/ I / q [
Let
My = sup{./ qti '} . (133
FEU
and
L ]
M 21 y(0) ! +g\ﬁ_u?+uc+.\1q. (.13
Then M is a positive constant that bounds | £ |. L.e..
EI< M, (9,135

This completes the proof of Theorem 9.1.3.
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9.8.5 Proof of Theorem 9.1.4

Equations (9.20) and (9.24) together give

u = u.— S,sgn(BTPe)-sgn(g)- —-[a|rx|~+ 0l(x.00Y | =\,

(n
N l"“

+ (M= g tus ] (9.1361

or.

M+ g . < . B}
w < (1= [—91 ; Hatey i+ OTx.00Y =M. (9137

3 3

. , . - .. yay .
Equation {9.22) with (9.137) and defining a = ax gives

MV~ ! - - _
I u S '1 —— = - ‘g i —_— H { (}‘\~ - Q,I"\, — @T'X.OIY —_— Z O"’.f & )
=3 Py k=1
I, , — .
+—-la oy = OTx.0)Y  +M;
M,~- 4 l . T __ Al
< (l=————y-—- gy =a rx —. @ ix.0Y - Z (e
I; Iy =
L. T = : .
~ = o ry = ©0x.0Y =M SN
Since
OTx.0Y! < |@x.0" 1Y < ViV, o

Tl = lale| < flal-llefi<liall M.

where [ is the size of vector @. Using eq.(9.139) in eq.(9.138) vields

1 M+ 1g | i
lu! < _—-[(2+-9—1ﬂ)-(a!-r.\'l+v1-‘fv]
<y :._7
M g | C. . ; NE
+{l+ L’g"" gy |+ Fi a a: '-‘[er’+ \[r . (9. 140
o

This completes the proof of Theorem 9.1.4.
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9.8.6 Proof of Theorem 9.1.5 — Estimation of g(x) with

Self-tuning Scheme

Consider the Lyapunov function candidate

- 1 T 2, T g1-1 L A=l g2
! =;[e Pe + h¢ + Ay Ay -+ (9.141)

Differentiating both sides of eq.(9.141) vields.

- 1. ! . : : :
"= EeTPe + EeTPe ~h&E+ AZH Ay ~ 7120, (142

Equations (9.14) and (9.30) together with eq.(1.142} gives

. l ) . ' -
" = 3eT(ATP+PTA)e—0h\‘-;~A%{ H"AV—G)(X.U!(BTPe;-r@('x.ullz\“

+ 3, 7'1$j ~(B"Peju. i~ rix.0.0.Y }(B'Pe| + rix.u.0.Y k¢

- S.¢(BTPeju, . (9.143

Using eq.09.33) in eq.t9.143). and noting that

J Ay = Y.
A, = q. TIRREY
l S g(BTPewu, > 0.

we have

t. ]- o} = .
< —;eTQe——oh\'-é-A%{ H_'Y—@(x.O}(BTPeJ+G‘)(x.4z)Ia£j

+ 3, [+"'g- (BTPeju. |

—r(x.0.0.Y ) (B"Pe) + r(x.u.©.Y )h< . (9.145i
Substituting eq.(9.32) in eq.(9.143) vields

. l s < . : :
I < —se’Qe—-o0he - 53aLY + 3, <71~ (B"Peju. |

—7r(x.0.0.Y }(B"Pe) + rix.u.®.Y )hs . (9.146)



| ]
—
-1

After some manipulations. we obtain

A

- | s Ly 1o 2 -
\T—(Y=§I|Avl|2+§llYH'—§HY 1. (91475

We know that || Y ||< M. and for & = 1. || Y > Ms7. therefore.

S3ALY >

v S3| Ay I*>0. (9.14%)

S| —

Since the eigenvalues of a svmmetric positive definite matrix are positive[6G!. the
eigenvalues of @Q are positive. Denoting \,;,(Q) as the minimum eigenvalue of Q.

then
e’Qe > \uin(Q) i e > 0. (9.1491

Substituting eqs.(9.143) and 9.149) into eq.(9.146) vields

T I > Bl l - . ) . -1 - ) .
17 < —5,\,“;“(Q1 el —ahf - _—)—.\'.1’ AT AL tg — (B Peu. )

- rx.0.0.Y 1B Pe) - rix.u.®.Y he . (9150

Reorganizing individual terms in eq.(9.1501 gives

) S 1 ) I, : h —= .
—ahl® +rix.u.©®.Y )& = —zahl - 5 (ah)=& — (;}-)-_‘I'lx.u.@.Y T
ho, —
-Z—_)—r'(x.u.@.Y )
2a
1 ) h 3 Eaai -
< -—)ahf'-é-.—r'(x.u.@.Y ). (9.1351
2 2a

1 Y —
—5Amin(Q) f e I —r(x.0.©.Y (BT Pe)

-

1 | , rix.0.0.Y") 3

= ——\nin | ® ~—=Amin i g == L pPT T

1 (Q)llell _1\ Q)i [e+ Q) (P'By | i
r’(x.0.0.Y) 1o,
P'B) |-

1 \ L rix.0.0.Y)
< —=)\ i ! 2
= el Q e P+

HPTB |? . (9.152)



Substituting eqs.(9.151-9.152) into eq.(9.130) and recognizing that —

0 results in

I ] ]- ) vl
— 7 min(Q) [ e P =50k + A,[ <71 g — (BTPeju. |

o<
”Ai—{BQ“)zrz(x.O.@.?H—%rﬂx.u.@.?] . (9.1531
Referring to eq.(9.36).
A +7tg~(BTPelu. | = 5,3,1,4 . (91541
where
N TR VAR VAT RCIEVAE Al 0,155,
and to eq.(9.37). we consider the following situations:
e For 5, =0.
RSN

5,3.0.9g=0.

® For 5, = —1.7¢g > M, Since i ¢ (< M, . referring 1o eqa9.1335) gives

l ., -
A,y > 3.3} . (9L 15T
or.
- ) A 1 p .
S;3,00=-3,3,9 < —33ij . (9155,
o For §; =1.|g|=2¢, . Since |g|> z,.referring to eq.(9.133) gives
A,g <£_\.2 (9.139
gg_zg. (9.139
or.
. . . 1 5 .
-Sg-ngjg = v)ng_,’,g S SggA; . 19160



From eqgs.(9.136). (9.158). and (9.160). it is concluded that

3,;A

3

o) —
o

573,349 <
Using eq.(9.161) in (9.153) vields

. 1 ‘ I R B
< *I,\m;n(Qp | e l]? —Eahf“ + 5.33_\.5

” PTB ”2 2 <. . h 2 -
+mr(x.0.@.Yh—§r (XU@Y ).
Let
- 2 . '\min(QJ ah
{ = min{——— . T} )
= {H P'B h 3,
! = X . . _—
1 max o Q) 2o %
Then

"< —(ef sza*g-lji Pix.0.0Y -rixu®Y i - _\j .

Integrating both sides of eq.(4Y.165) vields

‘ .
Vity =10 < —(/ Telir (/T—(/ i
0 0

(9.161)

(9.162)

i9.163,

(9. 164

(9. 165

t
+Cn/ [r(x.0.0.Y i+ rfix.u.©.Y ) = A dr (9.166,
Q

Let

1134

b= —sup{Vl(0)—=17(t)}.
>0

1
(G

then

4 t
/ ! ezr);y'lc1r+/ £ 1dr
0 0

< b-:‘-r}/‘[ rf(x.0.0.Y )+ rlix.u.®.Y |+ A s
0

(9. 167

19,16~
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or

<

t t
/[|e(r)[|2dr < b+q/{r2(x.o.e.\7')+r-’<x.u.@.
0 0

+ 4] Jdr. (9.169)

'o\”.‘
n
[ ]
|
[~
~}
IN

t
b+77/ [ x.0.0.Y )+ rxud®.Y)
0
+ A2 |dr. (9.170)

3

This completes the proof of Theorem 9.1.3 for g(x) being estimated with the self-

tuning scheme.

9.8.7 Proof of Theorem 9.1.5 — Estimation of ¢g(x) with

FLS
(1) iai>z,:

Let A, be the modeling error of the FLS. i.e..

Aj(x.‘I'.E)éé/—g{m:\PTE—g(Xj. 9171
and let G™ be the optimal parameter vector that minimizes A, ix. W.G 1 . For-
mallv.

G = argmin{sup ! A:,(X.‘I’-a} '} (9. 172
G xex
where
B T — -
G ={G||G|IS\16} . (9.173)

The existence of such an optimal parameter vector. G . is justified by Lemma S.1.

Mg is a positive constant that bounds || G !l. Let

PR Zell (9174



Consider eq.(9.30).
é=Ae+B[-0Tix.00A¢ - Nyu. — r(x.0.©.Y ) = Sygu, ;. 19.173)
Since

Aju. = (g —glu.

(9— g u:+ (9" — g)u.

= ‘I’T(t_;—_(—}—-)u: + (UG —ghu. . (9.176)

and referring to eq.(9.171) and letting

G-G

91T

I

Az
we have
Nu=OTAzu. = A x. 0.G . (TN
Equation (9.17%) in eq.t9.1731 vields

e = Ae- B —@fo.O)A?—\I’TAau.—rlx.().@.?-v-Ab.'x.'l'.am,

—S.guy . (01T

Counsider the Lvapunov function candidate

...
!
to | —

[ePe+ 1 - ALH 'Ag--"'alag . 19,180
Differentiating both sides of eq.(9.130) vields.

L. Loy : iy - \
{ =3eTPe+§eTPe+hss+A.{7H 'ay++T'akag. (9,181

In the current situation. {S,. 3,}7 = {5'; .35'}T. Using eqs.(Y.14) and {9.179) in

(9.181) vields

‘. l b}
| (- 3eT(ATP +PTAle —ahs®



o
i<

v
[ BV

+ AL{H'Ay - ©(x.0)(B"Pe) + O(x. u)hE |
+ AL+ 'Ag - ¥(B"Peju. | — S,9(B Peju,
—r(x.0.0.Y )(BTPe) + r(x.u.®.Y }hs

- A,(x.®. G )(B"Pe)u. . (9.132,

Using eq.(9.33) in eq.(9.182). and noting that

Ay =Y
Az = G 19,183
S.g(BTPeju, > 0
we have
- I r ! L AT -1%7 : T e
" < —se Qe —ahé + Ay H'Y - 9{x.0(B'Pe) -~ Oix.ujhé
+ AL +7'G - ®(B"Peju. | — S.¢(BTPe)u,
—r(x.0.0. Y (B'Pei - rix.u.®.Y ih¢
-\ x. .G B'Peju. . N
Substitution of (9.32) and {943} in eq.o9.154) vields
& LT 2 o Ty U U AT
| < —Ee Qe - (‘)}l\ - '“'fA?Y - ."‘j J';_, A—G-G
—rix.0.0.Y 1B Pei - rix. u.@.Y 1A
- \,x.®¥.G B Peiu. . P9.183,
T~ II' 12 1;_|.’ lw—'l.’ , S
AEG:-) il Aa TS IEGH —;HG {’ . (9.186)
e For q; =0
U U AT -
_bJ jg AEG—O (g.ll,\nl
o For b; =1.IG|> Mg, but ! G i< Me. Therefore.
TN — l - .
QU AT e 2 -,
_"Hy .'j’s AEGS—EJJ 4| AE H . {9.1xx



From eqgs.(9.137) and (9.13%). we conclude that

3 Azt (9.189)

Using eqs.(9.1839) and (9.148-9.149) in eq.(9.183) vields

- 1 i "2 2 1 < 12 1 ol ’ 12
VS —3Amn(Q) e f* —ahg® = 353 | Ax | —55; 3, 1 Ag
- r(x.O.@.?‘)(BTPe) + r(x. u. @.T}hf
~ A,(x.¥.G )(B"Pe)u. . (9.190

[ndividual terms in eq.{9.190) can be reorganized ax:

1 R — —
5 \min(Q) fe " —rix.0.0.Y WBTPe) - \,ix. .G j(B"Peiu. .

1 s ] . rix.0.0©.Y ) C
= —'3-\min(Q" I\ e i- _g’\mm(Q) ile - 4 mme) (PTB" -
1x.0.0.Y ) Al)s‘I’ G Jus ,
Lol ' (PTB) . - 1 (PTB) ¢
'\min! Q ) mml Q
l _\.IX.‘I’.E)U- N >
— =M EK o (PTB. **
\ e Q ! '\miu { Q ) . ’
1 , x.0.0.Y L
< — Al Q1 e X - | pTB
-l an(Q’
Ax. .G r X
P e S PTB . (9. 191

'\min\ Q )

Using eqs.(9.151) and (9.191) in eq.(9.190). and noting that

—=S5S3 1 A il < 0.
3 i Ay |l (9,192,
LGl gt 2
=395, .5_7 I Aa[ < 0.
then
, 1 ,
! S - \mln(Q) :f € H- -3Oh£~
il PTB i|2
i 1 2 - 2 2
+-\min(Q)[r(XO®Y) A ix. .G u
h —_—
+ _)—r‘[x.u.@.G ) . (9.193;



Since
A 1 _ N-—1
u: = <[ gy +aqy —OT(x.0)Y — 3 asei ] .
g k=1
then
1 _ N ‘
u.l < —[lgvi+alov!+1OTx.00Y |+ owei!]
<y k=1
1 —
< =My +aM +0Tx0i-[Yi+al-
-3
l. —~ .
< —{ M, +aM., =VIMNg+iaille .
-1
where
M. = *”P:gu{f gy b
Moo E ol oy )
Let
A - )
M, =2—="M, ~alM. =My~ a! M. .
we have
. < M,
Let
- 4 . ’\min(Q) ah
¢ = mm{-T— . T} .
| PTB ji* | PTB 1* /
) 2 ma.\:{‘."l_ LN '2"_ — M —I
CAmin(Q) CAmin(Q) - 2Ca
Then
< Ui e |i? &%)

.)-)‘_1

(9.194)

191950

19, 196,

SN R

RIS

(9. 199)

(9.200,

(4.201
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wit

Integrating both sides of eq.(9.201) vields

t e
V() = V(0] < —c/o 37 | d,--g/o E(rdr

+ A (x.¥.G) jd7 . (9.202)
Let
ol ) ) .
b= —sup{1(0) =1V} . 19.203)
(0
we have
' iy ! 3
/ il elr)i=dr —+-/ &(ridr
0 (8]
f X" 3 =r" ) —_——— -
<h=+ r]/ rAx0.0.Y )+ rtixou. @Y 1 - ALix. .G (dr 092000
or
/‘ teir) tdr < b~ r]/‘z ix.0.0.Y 1+ rix.u.©.Y
) 0]
- AJ(X‘I’C—‘I (/T‘ (9,240
t 4 —w 3 o
/ Cirudr < b-r'-r//{r"(x.ﬂ.@.Y = roix.u. .Y
0 1)
+ANx. 9.G) id. (9206
(2) ‘ g v= :g

Consider the Lyapunov function candidate
o] ) 2 -
V= §[ e’Pe+ he + ATH Ay + 57 (TTE)7'A 7 | (9.207)
By mathematical manipulations similar to those of eqs.(9.142-9.153} we have

. 1 ) . . o .
" < —I,\min(Q)He][“—éohf“-&-AJij et g — (BTPeju.

| PT i ” — l a9 N
LEB 1 2x.0.0.77)  2-r2(x.4.0. 7). 19.20%)
'\min(Q) 2a
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Considering g = ¥7G. and using eqs.(9.43-9.44) gives

A+ HET®) g — (BTPeju. | = SE3H®TE)TN, TG

= SEsheTe) 'y, (9.209)
Since
N o= AL - g
lgl = ;. (9.210)
fgl > =,
we have
ot 1 2 () -)
A,g < ?_;—3_; . (9211

Using eq.{9.211) in 19.209). and considering both NJ‘ =0 and SE = 1. we have

i
. , 1 ,
A =) — (BTPew. ' < g.ift\FT‘If i".A; : 19.212)
Equation (9.212) in (9.208) gives
- 1 ‘ oo bl et 12
" < —I,\mm(Q) et —3(1/2\'—#;{_1‘1’ ) .
tPTB | — N , —
S % 0.0.Y ) - i @Y. 21
'\min( Q ! 2a
Let
.4 . A 1in ) Oh
{ = mln{-—r—'-T—Q—. T} {(9.21 4
a I PTB 1 A 3HETE! .
n = max{—= ) — . . (9.215)
’ (@~ %a )
Then

"< —({||el® +& +(nl rPx.0.0.Y )+ r(x.u.0.Y )+ ._Xj o021
Integrating both sides of eq.(9.216) vields

t ¢
Uiy —-11(0) < —C/ Il e®(r) | dT—g.-/ E(rydr
Q 0

t
+ g'r)/ [ 3(%.0.0.Y7) + rix.u. ©@. Y ) + A dr (9.217)
0 o



Let
I .
b2 Zsup{V(0)~ 1 ()} . (9.213)
( >0
then
t " t
[ et i dr+ [ &4ridr
0 Q
t
< b+ r,/ r(x.0.0.Y )+ rix.u.®.Y )+ Adr . 19219,
0
or

t t . X —
/ le(r) i dr < b+q/{r—‘cx.o.@.y 4% 1. .Y
0 0 _
= ATdr. (9.220
t t . ’ .
/ Elrpdr < h—:,/{#(x.O.@.Y =X . u.©.Y
0

0

~ A 1.221

This completes the proof of Theorem 9.1.5 for gix) being estimated with a FLS.

9.8.8 Proof of Theorem 9.1.6

For r(x.0.®.Y 12 £,0.x) and N, = £,{0. x 1. we have

‘r./ rix.u.©.Y )dr 7‘ < x . (9.220

0

4 x* ) = !

[/ rix.0.0.Y jdr T < x . (9.223)
0

(P15

([T Artcx (9.224)
0
By Theorem 9.1.5.

r = | v e vi G 9=
1. | e(r)il”dm 7 < x. (9.225)
0



[/ £(r)dr |7 < x . i9.226)
0

Therefore. e € £,. and £ € £;. From Theorem 9.1.3. it is known that e € £.. and
& € L. Observing the expressions for £ and é. eqs.(9.14) and (9.30) reveals that all
the components on the right hand sides of the expressions are bounded. Therefore.
£ and é are bounded. that is. € € £ and £ € £... From Corollary 2.9 in {1141, we

conclude that

limjel = 0. (9,227

Iimi1&! = 0. 228

t—

This completes the proof of Theorem 9.1.6.

9.8.9 Proof of Corollaries 9.1 and 9.2

Consider ¢ = ¢ and A, = 0. Corollary 9.1 directly follows Theorem 9.1.1. %.1.3.
9.1.5. and 9.1.6.

For Corollary 9.2, consider eq=.(9.20) and i9.31i then

X I . — . .
u = u.-— b',‘.~gu(BTPe,l A B A O7ix.0:Y e EA L B Y
)
or.
1 r . , T X7 H .
lu: <lu.'+—— - -{ailry | = 1O (x.0)Y =M 1. (9.230,
lg: ~ ' e
Using eq.(9.33) in (9.230) and defining a = oy gives

ot

1 ~ . ‘ ;
< — {2ajrx | +VIMgi+ gy i+ a) Mo+ M7 (9230

This completes the proof of Corollary 9.2.
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9.9 Illustrative Applications

9.9.1 Example 1 — Trajectory Control of a Simple Nonlin-

ear System

Consider the following nonlinear svstem:

)
coslz) | LA (9.232)

I = —
l - cos=(.r})

I +r
Our objective is to command the state r to track a desired trajectory. 4i/1. by using
the DFLS based adaptive control scheme developed in previous sections. where this

trajectory is

Fay

g = 2sinify . (9.233
A DFLS identifier. labeled D. is used to identify r. i.e..

y=Dir.u). 19,231

where y represents the identifier’s output and is the estimate of r. The trackine

error. ¢. and identification error. . are

-

¢ r—q.
A (49,235

$ = y—1r.
The identifier. D. has two inputs. r € X' Z R. v € U C R. and one output.

y €)Y C R where Y. U and ) are universes of discourse of linguistic variables. r.
. . . Jas T2 T

u and y. respectively. For conciseness of expression. let z = {r. v}’ = {22}, [n

both 1" and ¢. five primary fuzzy sets. 4, and 4,,,. ji.j» = L.....5. are defined.

Gaussian type membership functions are used for all the primary fuzzy sets.

, o! -
.o 1. of r < Ty
Ha,lrp) = R
. = Ipl 7 : I -
eﬂp{—z“%i Lol 1, 2T



, Py 1 ,.1" - T, . . )
Hap, (Tp) = expl—s(E—")" . jij,=2.3.4
< Tzp
[ eplmMEERR L if r <t
ll:‘p.‘,(‘rp)
]. . lf .1'; Z _fps .

\We set the shape parameters of all the primary fuzzy sets to 0.45. i.e..

A=
Ty, = 043 .

and define the position parameters. T, . as.

3 T Tps)T S {=2. =1 0. 1. 2}7 .

adl

{Toi. Tpoe
In eq.{9.236). .. p = 1.2, are filtered values of inputs. r. that is.

.l"‘ = flf.l'l b

.I"; = f_" £ [

The output of D. y. is defined with the DFLS of eq.9.4). ie..
Dizi: §j=-ay-07z"\Y .

In this equation.

O(z') = {0(2). 0.2 ... O:5(2)}7 .
Y = (7 B o U5}
and
« 122, pan (0]
0,(2’, = 25 p—lq; A;‘ ;, ] . = l. ..... 23
oy o=y pay (23)
where
'Vl < {'-‘IJX: jl =1..... _)} .

B '_1 & {.’12_,22 j:» =1..... '-)} .

(9.235

19.2499,

(9.2 101

(9.4
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Y is the free parameter vector to be adaptively adjusted with the training law.

eq.(9.32).
Y = —H[O(+". «')hé — ©(2".0)(BTPe)] — S3HY . (9.244)

In this control system. A = [—a]. B ={1]. and e = {¢]. Let Q £ Da]. then P =11,

Further. let k = 1. then
Y = —H[®(+". «)t - O(+.0)c} - SIHY . (9,245

In computer implementation. the derivative is approximated by a difference. i.e.,

YikT ~T)=Y kT
T i

-

i"_ A=0.1.2.... 19246

where T 1s the time incremental step. Use of eq.i9.2461 in (9.245) vields

YAT = T) = Y(hT) = TH][ @' (kT 1. o' (kT EAT ) = @ia'thT .01 kT

+ S3Y(RT . V24T

The gain matrix. H. is defined as a diagonal matrix with all diagonal elements
equal to 4. We set a to 10. the time increment. 7. to 0.05 sec. the bound of the
parameter vector .\[?. to 10%. and the bound of the function f. to M: = 1. The
initial values of the elements of the parameter vector. Y(0). are random nimbers
uniformly distributed in {-1. 1). and assume the svstem to be controlled is initialiy

at rest. i.e.. r(0) = 0. Now. we consider the following situations.

9.9.1.A Function ¢g(r) Known

Consider the situation where g(r) is a known function. In this situation. no identifier

is required to estimate g(r). The prefilters are defined as

e

ry = filry) Iy .

i 9,245

e

l

rh = filra) Iy

L]
Ut
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The bound of the tracking error. .. is set to 13. The controller output. u. the
identifier output. y. and the controlled trajectory of svstem output. r. are shown in
fig.9.1(a-c). respectively. The adaptation process ends at ¢t = 20 sec.

It is seen that the training process for the DFLS identifier converges very well.
and the the control strategy is verv effective. After the adaptation process ends
the identifier predicts the svstem state veryv well. and the svstem output follows the
desired trajectory satisfactorilyv. In this case. the tracking error. €. is alwayvs within
its bound. /.. and therefore. the supervisory control is not triggered. The trackineg
error for this case is shown in fig.9.3(a).

\With the bound of the tracking error. .M/, . set 1o 6. the controiler output. u. the
identifier output. y. and the controlled trajectory of svstem output. r. are shown
in fig.9.2(a-c). respectively. where the adaptation process starts at { = 0.5 <ec. and
ends at t = 20 sec. The tracking error for this case is shown in fig.9.3i1by. It ix
observed that in this situation the tracking error is generally contained within its
desired bound. and whenever the tracking error is detected exceeding its bound
the supervisory control action is triggered and the error is pulled back within the
bound. Nevertheless this is achieved with extraordinary control efforts. as observed
from fig.9.2(a). Since the supervisory control i to prevent the system states from
drifting to infinity. it is usually very large. Therefore. unless absolutely necessary,

this action should generally be avoided in practice by careful off-line designs.

9.9.1.B Function g{r) Unknown and Estimated with Self-Tuning Scheme

Consider the situation where g(.r) is an unknown function. and we use the self-tuning

scheme to estimate its value. We set the prefilters as

ne

ry = fitay)

falies) g,

<

Ly
(9249

|-

T

~“ ™~

‘e
1

and set the initial value of ¢ to 1. and the bound of the tracking error. \.. to 15.
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In this situation. the unknown function. g(.r). is estimated by the adaptive law

eq.(9.36).
§==~eu. +S,3,~g . (9.250)

where ~ £ 0.1. Let M, £ 10. and £, £ 0.1. The controller output. u. the controlled
trajectory of system output. r. and the tracking error. €. are shown in fig.9.4(a-
c). respectively. where the adaptation process stops at ¢ = 20 sec. The estimations
for the system state. r. and the unknown function. g¢. are shown in fig.).3ia b,
respectively.

[t is seen that the controlled trajectory converges very well to the desired tra-
jectory and follows this desired trajectory after the adaptation process stops. The
training process for the DFLS identifier also converges verv well. and the trained
identifier predicts the syvstem state satisfactorily after the training stops.

It 1s observed in ig.9.5(h) that ¢ does not converge to the true value of g. This ix
not surprising because the true value of g is not known. and the adaptive algorithn
adjusts g in such a way as to reduce the tracking error. e. instead of the estimation
error. (g — ¢). and at the same time restrains the estimated value. g. from exceeding

its desired bounds.

9.9.1.C Function ¢(r) Unknown and Estimated with FLS

Consider the situation where ¢g(r) is an unknown function. and we use a FLS to

estimate its value. i.e..
vi()G . (9.251)

where ¢ represents the identifier’'s output and is the estimate of ¢. The FLS has
one input. r}. and one output. §. Five primary fuzzy sets. B,. j = l..... 3. are

defined in the input universe of discourse of the FLS. Gaussian tvpe membership
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functions are used for all the primary fuzzy sets. which are the same as those given

in egs.(9.236-9.233). The adaptive law of this FLS is given in eq.(9.43).
G = ~euU(z)) — 5,3,7G . (9.252)

where 5 £ 0.1. Let M, £ 100. =01 Mg = 7‘; - M,. and set all the elementx of

the parameter vector. G(0). at 1. Define the prefilters as

Iy

(YL

.I‘(l = f](.l'l)

ne

.l’" = f_u(.l'_aj T

-

"~
w

The controller output. u. the controlled trajectory of svstem output. r. and the
tracking error. €. are shown in fig.9.61a-c). respectively. where the adaptation pro-
cess stops at t = 20 sec. The estimations for the system state, . and the unknown
function. ¢. are shown in fig.9.7ra-bi. respectively.

Again. the system performance is very satisfactory. Comparing fig=.4.6-0.7 of
this system with figs.9.4-9.5 where the unknown function being estimated with self-

tuning scheme. it is seen that their performances are generally comparable.
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9.9.2 Example 2 — Control of a Nonlinear System with

Chaotic Behavior

Consider a nonlinear svstem

.l"l = I>.
(9.254)

I —ri—0.lr; +6sint — g(xu .

which is similar to the system in section R.4.1. i.e.. eq.(8.701. except that an extra
control input. u. is present. Qur objective here is to command the output of this
system. ry. to track the desired trajectory. g(f). by using the DFLS adaptive control

scheme developed in previous sections. where

a)
AN

qit)y = 2singt) . 19.255)

A DFLS identifier. labeled D). is used to identifyv the state variable. .. ie..

y=Dixoui . P.2560

where x = {ry. o,}7. 4 represents the identitier’s output and is the estimate of ).

The tracking error. ¢. and identification error. £. are

= !
e = I —q.

. (9,257
§ = y—ur.

The 1dentifier. D. has three inputs. r; € X\, oy € .Y v € U. and one output.
y € Y. where .. X,. 4. ) C R. are universes of discourse of linguistic variables.
Ii. T2. u and y. respectively. In each of V. .Y, and ¢ five primary fuzzy sets. 4, .
Az, and As,. gyajaga = 1.0 5. are defined. For conciseness of expression. let
32 u. and z 2 {ry. o2 u}T = {a).x2.23}7. Gaussian type membership functions
are used for all the primary fuzzy sets. which are the same as those defined i

eqs.(9.236-9.233). for p=1.2.3. and y, = 1..... 3.
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For p = 1.2.3. the filtered values of the inputs. r. are defined as

N
ry = filry) = 1

N e
1y = falr) = r1:. (9.2334

4 1
r; = filrz) = T3 15 -

The output of D. y. is defined with the DFLS of eq.(9.4).

Diz'y: y=-ay+07(2)Y. (9.234)
In this equation.
Oz’ = {0002, B2, ... Bias(Zi} T
19,260
Y = {7, 7 o Tinsh?
and
TP
12y = lllp_n_‘/ M - r=1..... 125. P9.261
Ry ) AN T TR R oy
where
‘1‘1 = {.41‘;:2 .jl =1l..... 3} .
Ay 2 {Ay s =1 5} . 19,262,
‘1; = {.'13J_,Z _/-'5 =1l..... :)} .

Y is the free parameter vector to be adaptively adjusted with the training law.

eq.(9.32).
Y = —-H[®(z')h¢ ~ O(x".0)(B"Pe)] — SJHY . (9.263
Using a numerical difference to approximate the derivative vields

YT +T) = Y(kT)-TH! ©(2'(kT))h&hT

—O(X'(kT).0)(BTPe(hT ) + S3Y(AT) . 19.264,

where T is the time incremental step.
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Let a = a; 2 10. We set the time increment. T. to 0.1 sec. the bound of the
parameter vector. My to 10°. the bound of the function f. to M; = [r,{* + 10. and
the bound of the tracking error. Me. to 20. Let the initial values of the elements of
the parameter vector. Y(0). be random numbers uniformly distributed in (-1. 11.
and assume the system to be controlled is initiallv at rest. i.e.. x(0) = {0.0}7. Now.

we consider the following situations.

9.9.2.A Function ¢g(x) Known

Counsider the situation where g(x) is a known function. say.
g=1. {9,267 )

In this situation. we require no identifier to estimate ¢g. Let Q = I where I i~ an
identity matrix. and let the gain matrix. H. be a diagonal matrix with all diagonal
elements equal to 1.5, and set the weight parameter. £.to 15. The controller ontpur,
u. the identifier outpur. y. and the controlled trajectory of svstem outpui. o). are
shown n fig.9.81a-c 1. respectivelyv. where the adaptation process stops at f = 20 ~ec.
The controlled trajectory in phase plane. ry — r,. is shown in fig.).9.

It is seen that the identification process converges quite well, and the control
strategy is quite effective. considering the lack of knowledge of the system dynamics

and the limited training effort.

9.9.2.B Function g(x) Unknown and Estimated with Self-Tuning Scheme

Consider the situation where g(x) is an unknown function.

2
= ——T (9.266
IET + cos?(ay) )

which will be estimated with the self-tuning algorithm. The adaptive law for ad-

justing ¢ is given by eq.(9.36].

g=-(BTPeju.+ S;3,49 . 19.267)
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Let Q £ 10 - I. where I is an identity matrix. Set the initial value of ¢ to 1.
the weight parameter. h. to 20. and the gain matrix. H. is defined as a diagonal
matrix with diagonal elements equal to 2. Let -~ £ 0.01. M, £ 10. and E £ 0.1.
The controller output. u. the controlled trajectory of system output. r;. and the
controlled trajectory in phase plane. r; — r,. are shown in fig.9.10(a-c). respectively.
where the adaptation process stops at ¢t = 30 sec. The estimations for the state
variable. r;. and the function. g(x). are shown in fig.9.11(a-b). respectively.

Again. the controlled trajectory converges very well to the desired trajectory
and follows the desired trajectory after the adaptation process stops. The training
process for the DFLS identifier also converges quite well. and the trained identifier

predicts the system state satisfactorily after the training ends.

9.9.2.C g¢g(r) Estimated with FLS

Here we use a FLS identifier to estimate the nnknown function. g(x). of eq.i9.266,,
P r .C () *):
g=wix'G. (926~

where ¢ represents the identifier’s output and is the estimate of y. The FLS has

(B

two inputs. ri.rh. and one output. g. Five primary fuzzy sets. B., . p = L.
JieJp =1l .. 5. are defined in both universes of discourse in the input space of the
FLS. Gaussian tvpe membership functions are used for all the primary fuzzy sets,
which are the same as those given in eqs.(9.236-9.233). The adaptive law for this

FLS is given in eq.(9.43).

3.~G . (9.269)

vJn
5

G =0(x)(B"Pe)u. - S,

]
i

Let 4 £ 0.001. M, £ 100. £, £ 0.1. Mg 2 117,. Q £ 10- L and set the initial

value of all the elements of the parameter vector. G(0). to 1. The gain matrix. H. is

defined as a diagonal matrix with all diagonal elements |. and the weight parameter.

h. 1s 20.
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The controller output. u. the controlled trajectory of system output. r;. and the
controlled trajectory in phase plane. r; — r,. are shown in fig.9.12(a-c). respectively.
where the adaptation process stops at t = 30 sec. The estimations for the state
variable. ry. and the function. g(x). are shown in fig.9.13. respectively.

The controlled trajectory converges very well to the desired trajectory and follows
the desired trajectory after the adaptation process stops. The training process
for DFLS identifier also converges quite well. and the trained identifier predicts
system state satisfactorily after the training stops. The performance of this system

is comparable to that where g is estimated with the self-tuning scheme.
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9.10 Experimental Demonstration — Trajectory

Control of a Mechanical Manipulator

Consider the single link manipulator described in Appendix B. which is characterized
by a very flexible link. significant nonlinear joint friction. and an unknown internal
motor speed regulation loop. Our objective here is to command the tip of the link
to follow a desired trajectory. g(¢). by using the DFLS adaptive control algorithm.

The manipulator is schematically shown in fig.9.14. where L =054 m 1s the
length of the beam. v{(L.t) is the vibrational displacement of the tip of the beam.
®(t is the angular displacement of the rigid body motion of the beam. and wit) i~

denoted as the displacement of the tip of the beam. ie..
WiV E Loy =Lt (9,270

In the experimental setup. the variables. @11, iticand (L. 1) can be directly mea-

L

Figure 9.14: [llustration of a Single Link Manipulator

sured with sensors. while ¢(L.t) is obtained by numerical differentiation of r{L.#).
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le..

MLt)—v(Lt =T
i-u;.t)é“L ) ‘T( ) (9.271

As this operation may amplify noise significantly. a low pass filter is used to filter

out high frequency noises. A second order low pass digital Butterworth filter 1in

MATLAB) is used here.

We assume that the svstem is of the following type

0= fluow) = glw.uils, 19.27Th

where 17, 1s the command voltage of the motor. f and g are unknown continuous

functions. Let

-

"y w .
(92730
135 = w
then
uyoo= oy .
92T
wy = flwi+giw)l, .
where w = {w;. u, ).
A DFLS identifier. labeled D. is used to identify the state variable. w.. 1o
Jas . -
.UZD(W"‘"‘.) . fl’_‘;l

where y represents the identifier's output and is the estimate of w,. The tracking

error. €. and identification error. £, are

IH>

w, —q. .
{9.2706)

n
(e

Yy —wy.
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For conciseness of expression. let

( N
Iy =
o .
Iy = d .
A 9=-
{ 3 = uy (9.277)
A
Iy = us
A .
I = ‘m

Further considering eq.(9.270) we have

y=Did. &, v(L.t) . (L) Vi) = D(®. d. wy .y V) S Diz) . 10275

>

where z

{ry.ry. 0. 05,05} The identifier. D. has five inputs. r. < X;. p =
l..... 5. and one output. y < ). where .Y,. ) Z R are universes of disconurse of
their respective linguistic variables. In each of .V,. three primary fuzzy <ets. A, .

p=1l..... 5. J, = 1.2.3. are defined. Gaussian type membership functions are used

for all the primary fuzzy sets.

A l forl < T,
/I.-‘;!"l‘ Vo= = '
t‘xp{—%(‘—%"—‘l i f 1: > T
. 4 l ‘l'lﬂ —T'.' Ve
;1_4%(.1';,,! = cxpt—;('——-l'_ . 19,279
2 Gp2
pe
1 rh=Fp e .,
o) & exP[_E“TJ-J b I < T
At g, -
P E l , .
. If Ip 2 I'pa

Let the shape parameters of all the primary fuzzy sets be 0.45. i.e..

e

0y, = 0.45 . 19,2501

and let the position parameters. T, . be.

(Tpr. Tore T3}  E{-1. 0. 1}7 . (9251
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[n eq.(9.279). r, represents the filtered value of the DFLS input. r,. that is. for

p=1l..... 3
= flr,). (9.232)
The output of D. y. is defined via the DFLS of eq.(9.4}.
D(z"): §=-ay+@T(z)Y . (9,283

In this equation.

Oz = {0i(2'i. 0x(2"). ... Oagaiz' )} .
_ , (9.2%4
Y 2 {7 oo Tanlt
and
o, g’
0,2') = ot — =13, TIRISY
Z::l =1 }I.-\:, "i.f '
where. for p=1..... Sor=1lo.... 243,
A2 {A = L203) RUNTY

Y is the free parameter vector to be adaptively adjusted with the training law.
eq.{9.32).
Y = -H®(z)hf — ©(X".0)/(B'Pe) — S3HY . (9,987

where x’ = {z}. 1. ry. r}T. Using a numerical difference to approximate the deriva-

tive gives

YT +T) = Y(hT)=TH! @2 (kT h&(kT)

~ @(X' (kT ). 0B Pe kT 11 = S3YAT) . 19.25%,

where T is the time incremental step.
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The unknown function g is estimated with FLS approach.

i

§ =¥ (x)G . (9.289)
where g represents the identifier’s output and is the estimate of g. The FLS has four
inputs. r. r}. r}. r. and one output. §. Three primary fuzzy sets. B;,,.p = 1.2.3.4.
J» = 1.2.3. are defined in all the universes of discourse in the input space of the
FLS. Gaussian type membership functions are used for all the primary fuzzy sets.

which are the same as those given in eqs.19.279-9.281}1. The adaptive law for this

FLS is given in eq.(9.43).

G=-¥x)BPeu - 5,4,-G. £9.290.
The command voltage is restricted in 1-7V. 7V je..
e - i S (9.291)

Correspondingly. the supervisory control term is not required in this control svstem.

e

Let a = a, 10. Set the time increment. 7. to 0.026 sec. the hounds of the
parameter vectors. My and M. 1o 10%. and =, to 0.01. Let Mg = LV, and set the
gain matrix. H. to be a diagonal matrix with all diagonal elements equal to 5. and

set the gain. ~. to 5. and the weight parameter. £, to 2. Q is defined as a «iagonal

matrix with all diagonal elements set to 4.

The filtered values of inputs. x). p=1..... 5. are defined as
[r'l = filr) S oL
o= faen) 2L
$ oy o= falrs) £ owe)-) (9.292)
ro= falzy) = @)l
| 1 = falrs) = U0

The initial values of the parameter vectors. Y(0) and G10). are obtained by simu-

lation of the dynamic model of the manipulator specified in section 8.4.3. That i,
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the DFLS controller outlined above is used to control the trajectory of the manipu-
lator represented by the dynamic model in section 8.4.3 to follow various sinusoidal
trajectories of different frequencies and magnitudes. The final parameter vectors. Y
and G. obtained in those simulations are used as initial values in the experiments.

The mechanical system is initially at rest. i.e.. w(0) = {0.0}7.

For a desired trajectory.
gty =04sin(037t + =) = 0.4 (9.293)

the command voltage. 1. and the controlled trajectory. w. are shown in fig.9.15(a
b). the estimations for variable u* and for function ¢ are shown in fig.9.16a-bj. The
adaptation process stops at t = 10 sec. It is seen that the controlled trajectory
converges very fast and follows the desired trajectory very well.

For another. more complicated desired trajectory.
gttr=03sin(0.654) - 0.3sin0.8xt) - 0.6 . 19,2094

the command voltage. V. and the controlled trajectory. w. are shown in tig.9.17va-
bi. and the estimations for variable « and for function g are shown in fig.9.I18a b,
The adaptation process also stops at f = 10 sec. Again. the controlled trajectory
converges very fast and follows the desired trajectory very well.

These experiments demonstrate the effectiveness of the DFLS adaptive control
approach in dealing with nonlinear. ill-defined svstems. and reveal its potential

usefulness for practical applications.
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9.11 Concluding Remarks

1. A DFLS based indirect control scheme was developed here via a Lyvapunov svn-
thesis approach for a class of nonlinear systems in companion form. eq.(9.1j.
Closed loop svstem performance and stability properties are analyvsed and sum-
marized in the form of a theorem and corollaries. which theoretically justifies
the fact that this control scheme enables us to achieve satisfactory perfor-

mance. even under rather stringent conditions.

2. The DFLS based adaptive control algorithm was applied to control a variety
of nonlinear syvstems. and the design procedures of DFLS controllers were
illustrated in detail. In all the situations. satisfactory results were obtained.
and the effectiveness of DFLS controllers in dealing with complex. nonlinear

svstems was demonstrated.

Notably. the experimental results were very satisfactory from applving the
DFLS adaptive controller to control the trajectory of the tip of a tlexible beam
manipulator. which is a very challenging mechanical svstem for identification
and control. This further demonstrated the effectiveness of the DFLS adaptive
control approach in dealing with nonlinear. ili-defined svstems. and revealed

its potential usefulness in practical applications.

3. In the DFLS based adaptive control algorithm. a measurable state variable.
rv. was identified. instead of identifving the unknown function. f(x). as in the
case of static FLS based control algorithms [154. 184]. It is easier 1o acquire
knowledge of the dyvnamic behavior of a measurable state variable than to
acquire knowledge about the unknown function. f(x). which is not directly

accessible to us.

Also. in the DFLS based control algorithm. the system control input. u. is
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explicitly included as an input of the DFLS. where any expert knowledge
about the relationship between the syvstem input. u. and the syvstem state. rx-.
can be explicitly incorporated. This is in contrast to the situation of the static
FLS based control algorithm [154. 184]. where u is not explicitly included as

an input of the FLS.

\

Two approaches were presented to estimate the unknown function. g(xj. in
eq.(9.1). One is based on a traditional self-tuning scheme. the other is a FLS

approach.

From simulation examples i1 1s observed that the estimation of the unknown
function. ¢g. by both approaches results in comparable syvstem performance in

the situation where no expert knowledge about g is available.

Generally. if there is no expert knowledge about ¢ available. the former ap-
proach may be more appropriate since it is more straight forward and compu-
tationally simpler. whereas if there is such expert knowledge available. the FLS
approach may be better because it can explicitly incorporate this knowledee

and result in better initial values.

In eq.9.1i. if the unknown function. gix). is estimated with a FLS. Assump-
tion 9.2 is required to ensure the svstem stability properties specified in Theo-
rem 9.1. Since 7, is a very small number and Mg is a very large number. this
assumption is not unreasonable. The author has never encountered the situ-
ation where this assumption is violated. But. the elements of the parameter
vector. G. are not restricted to have the same sign as g(x). as was the case in
[184]. which would otherwise reduce the search region of the elements of G by

half and could result in a poorer set of parameters.

If Assumption 9.2 is violated in practice. then. it is necessary to either <witch

to the self-tuning scheme which does not require this assumption to estimate g.
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or to change the initial values of G and other off-line determined parameters.

and repeat the training process.

6. The development of the DFLS based indirect control scheme consists of off-
line design (for @. etc.). and on-line adaptation (for Y). In off-line design.
the number of primary fuzzv sets for each universe of discourse. as well as
the positions and shapes of membership functions for each primary fuzzy set
are to be determined. Thus far. ad hor analvsis based on physical intuition
is required. This currently is an active but immature area of rescarch. The
same is also true for a. Mg and other off-line determined parameters. for
which explicit procedures for determining the optimal values have vet to be
developed. After off-line design. the parameter vector Y is adjusted on-line
with the adaptive law given in eq.(9.32). If satisfactory results are not obtained
by adjusting Y. one must return to the off-line design process 1o modifv the
off-hine designed parameters and repeat the entire procedure. Furthermore,
the conditions for adequate training of a DFLS are not dizcussed here. and are

left as a subject for future investigation.

The importance of initial values in nonlinear probiems is well known. I control
svstem design. if some expert knowledge about the svstem is available and is
described in the form of linguistic [F-THEN rules. often the situation in prac-
tice. the initial values of the parameter vector Y can be assigned accordingly.
These initial values are generally better than those randomly assigned. and in
turn. the svstem may require less training and display improved behavior as
demonstrated in the last chapter. In the absence of human expertise. there
remains no alternative to random selection. Nevertheless. closed loop svstem

performance will be as good as specified in Theorem 9.1.

S. An itmportant problem in practical applications is how to deal with svstem
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and measurement noises. which is not discussed in this work. This remains for

future investigation.

In the illustrative application examples. the off-line design parameters were
selected quite arbitrarily. without a great deal of effort. and they are by no
means considered to be the optimal. This poses more stringent demands on

our identification and control algorithms.



Chapter 10

The Recurrent Dynamic Fuzzy Logic
System and Nonlinear System

Identification

10.1 Preliminary

In this chapter. a tvpe of “recurrent”™ DFLS is introduced and it= application in nou-
linear syvstem identification demonstrated. As in the previous chapters, we restrict
our scope to single output fuzzy logic svstems.

By a recurrent DFLS. or RDFLS. we mean a kind of DFLS whose outpur is used
to replace a plant state as one of its inputs. as illustrated in fig.10.1. where x =
{ri.....rx}T € .X C RY is the plant state vector. u S {wy.. ... ure}T = U < RY
is the plant external input vector. and y is the estimate of the state variable. r..

1<k<N.

The mathematical expression of this system is
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where w = {uy..... '
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Non-recurrent DFLS Recurrent DFLS

Figure 10.1: Concept of RDFLS

y.1 <k < N. O and Y are the same as those in eqs.i¥.3-%.4). i.e

Ow) = {hiw). ... .0;w)}T
. (1020
Y = {7,....5}7 .

. n,l expl— i eTh

fiw) = . BUBE
S e \1»{4( el
- P

T, €T, jp= L. ool S o, ) = 1oL J,}. and J, is the number of

primary fuzzy sets in the universe of discourse Z, for lingumstic variable .

We shall show that the RDFLS of eq.(10.11 retains the capability of approximat-

ing a large class of nonlinear functions to any desired degree of accuracy.

10.2 Universal Approximation Property

(Consider the same nonlinear system as in eq.(8.6). i.e
r= f(z). (10.4)

A 2 - . : :
where z = {x.u}? = {z..... p}l e Z C RT.P =N+ M. ie. zis composed
of both svstem states and external inputs. r is any scalar element of the svstem

state vector. X. and f : R” — R is a continuous static nonlinear map defined on the

compact set Z
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Before presenting the universal approximation theorem for RDFLS. we first prove

the following lemma.

Lemma 10.1 For given O(w) = {6(w).....0/(w)}T. and w = {uw..... wpdl <
Z C RP. where Z is a compact set. there erist positive constants ¢,. i = l..... I.
such that
| O(w;) —O(wy) | < cil w; —w, || (10.5)

- = -z 2 7. T
where wy = 2. w, £ Z. andec = {c..... cr}t.
Proof:
Fromeq.(10.3). it is clear that. for i = 1..... [.8,(w is differentiable with respect to

all the elements of w and the derivatives are hounded. By the mean value theorem

of multivariables. then. for /. = 1..... [.
6,(W‘)—'0,(W3} = 0,“{'11 ..... ll'lpj—f},(u'_'l ..... up) 106
Al & ... .. Epi f_)ﬂ;l\ﬂ ..... P
= T ‘H'“—H‘_vl)-"“"?‘ - ey p — wohp .
duy dup

I
a
)
2

where w,. w, =

Hi>

(4

S =wy M, —wy) . 0< N p=1o. P . LU

From eq.(10.6). we have

AOE . ... J \
L. (wy) —Biwe) | < (glal S sl = el + -
']
A&, .. ... fp) ‘ .
=+ ! la“ il Pauwip —wap . (10.%
‘P
Let. forp=1..... P.
a8,
¢y 2 sup ] 51} (109
=z w,
then.

[0 wy) —8.(w,) | < cqfwy —way)+ - +aplwp —wap . (10.10



and let
, A
c,=mpax{c,p. p=1..... P} . i 10.11)
then.
| 0wy} = O(wa) | S cif fwey —war| + -+ jwp —wapl | (10.12
Since
( lwy —wnl + -+ iwyp — wapi )2
P
N P . g Lo
W Wry " ==~ p— WP
- (10,13,
- P
it follows that
iy — Wl == wp = wap < VP fwyy — wa S+ e~ e p — atap ” )i
= VPIlw, —w,i. BSURER
Lettiug ¢, = ¢/v P. and using eq.(10.14) in (10.121 vields
COaw g —fHiws) < e, W — Wy c10 15
Since this proof is generally valid for 2 = 1..... [. we have
PO (W) — Gy (ws) | €1
|@(W1)—@{WJ]"= S H Wl—W_u‘ llOI(H
PO(w) = 8i(w,) | o
. 4
With ¢ = {cy..... cr}7. we have
FO(w)) —O(w,) | < cljw; —wall . (10.17,

This completes the proof.

Next. we present the universal approximation theorem of RDFLS.



(£
~1

Theorem 10.1 For any z > 0. there exists a RDFLS in the form of eq.(10.1}. with

w defined on a compact set Z C RP. such that

sup ly—rl < z.
zZ.wel

Proof:

Rewrite eq.(10.4) as
Ir=—ar+ar-+ flz).
With eqs.(10.1) and (10.19) we have
. <7
€ =—-ae+Y OQiw)—gizi.

where ¢ i< the identification error. and

I

¢ y—r.

i

in} alr —-— f(Z) .

(10.1%)

(1019

(1u.200

il0.2h

By the universal approximation theorem of static fuzzy logic svstems 177 . 7 & > 0.

_ T
2 Y @iz). such that
=T ‘
sup Y @zi—-gizr < &
zeZ
Ineq.l10.20). let Y =Y . then

(= —ac+Y Ow -Y Oz -Y @iz - giz .

The solution to eq.(10.23) is

=T

e(t)

t —_—
—+—/ expl—alt —7)]| Y TG)(Z] — g(z) [d7 .
0

or.

| ! ; o7 .
[e(t)! < exp(—ot);c(Olé-*—/e.\‘pi—aft—r,l‘i Y ©Ow)-0(zi
0

t 5=
-!-/ expl—a(t —7)]!'Y T@(z\ —gl(z)idr.
0

i 1022

(1023

z =r= -
exp(—of)e(0)+/ exp[—a(t = 7)Y O(w)-Y T@(zn T
9]

(10.2:4)

-

(10.25)



It is straightforward to verify that. for €(0) # 0. ¥V 6 > 0 and

I |el0
tolbo) € {t: t > max{0. —ln[I F(, ! I]}} . (10.26
a bo
that
exp{—atg)- | €(0) | < & . {10.27,
Referring to Lemma 10.1. then.
_—T, . =—=1
Y [©w)—-0(z)]; < [ -1 O(w)—0O(z)
CwsaT . . e
< 'Y i-ic -iw—2zZ. . (10.2%)
But i w —z {|={¢i. Let B 2 i ?-T i - ¢ 1. and considering eqs.010.22) and

{10.27). then.

t t
betty, < 5(,—,-/ e ‘B-exp{—mf—r;}(/r%—/ &-expl—allt — ) dr
1] V]

S . : :
< (‘r)‘—+/ L€ -B-exp —alt — r)dr . (10,29
a 0

By the Gronwall-Bellman lemma {114, Chap.2'.

: ¢ ! . .
Pe(t) i< (&, + — 1-expd / B -exp —att —)ldr} . i 10,300
Q 0
Since
t i B . B
/ B-expl—a(t —7)]dr = — [l —expl—at) i < — . (10.31)
0 a a
use of eq.(10.31) in (10.30) vields
. é B
be(t)i<(bo+— )-exp( — ). (10.324
a a
Let
A é
s={bg+ —)-expl — ). 110.33)
Q 8}



then

{10.34)

(L))

le(t) | <

This completes the proof of Theorem 10.1.

Although this theorem reveals the universal approximation property of a RDFLS.
it only indicates that a RDFLS can be a universal approximator. without providing
any guidance on how one might construct such a RDFLS to approximate a given
physical svstem. In the following. we address this latter point by developing a stable
identification algorithm that is based on RDFLS. and is applicable to a large clasx

of nonlinear svstems.

10.3 RDFLS Identification of Nonlinear Systems

10.3.1 Preliminary

As in section X.3. consider a general dvnamic syvstem of the form
x=Fix.ui. 110,35

where x = {ry...... 1‘_\-}T = RY and u = {ug..... u‘\,}T € RM are the state vector
and external input vector of the physical process. respectively. N and M represent
the total number of states and external inputs. F: RY™Y — BV is a continuous
nonlinear vector function defined on a compact set Z < RY*Y. We take assumption
3.1 to hold for this system as well.

We can rewrite eq.(10.33) into a set of state equations. i.e..for A = 1...... A
7 = fulx.u) . (10.36)

where fi : RY*M — R is a continuous nonlinear function defined on the compact

set Z. To identify the kth state. r. kb € {i...... V}. a RDFLS in form of eq.(10.1}



is used.
(10.371

gk = —Qlk -i—e{(W)?k . a>0.

where a; 1s a positive constant. @ and Y. are as defined in eqs.10.2-10.3). and
) o
LW = Y

.....

which is the estimate of r,.
Again. as in the case of the DFLS in section 3.3. the RDFLS of eq.i 10.371 is
..... [.

Y- and oo where s = 1

=1.....

characterized by the free design parameters T ,,. o,
Again. it is assumed that. for p

=1.....J,.

p=1
fuzzy partition parameter ./,. the membership function parameters i, and o . as

well as the parameter a are designed off-line. leaving only Yi = {7,,..... T} oas

an on-line adjustable parameter vector.
Our objective here is 10 develop a stable adaptive law for the RDFLS identitier

such that it can identify an unknown nonlinear dvnamic svstem in the form of
eq.i10.36). with the identification error being bounded and as <mall as possible.

ideally converging to zero. and at the same time. all the parameters should also be
bounded.

10.3.2 Adaptive Law and Stability Properties

Let the identification error of the state variable. ry. be
(10.3~,

e

€k = Yk — Tk .

following the well known Lyvapunov synthesis approach we obtain a adaptive law for

Y. as follows.
(10.39)

-H, @ wie, — S 3 HL Y, .

Y. =
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where H, is a constant positive definite symmetric matrix. S is a switch defined as

0. f | Yell< My,
or il Y’\‘ ”= »‘I?k and @,\T(VV)I‘I;‘-?-,LG,L > 0.
and Ol iw)H.Yier > 0. {10.40)

;{J

I

o
v
o

or

1 . otherwise.

M is a positive design parameter. and .3, is a positive design parameter that
Y‘ ~ 2

satisfies

T Y. — . -
QY. f i Ve = My and ©FwiH Y <0

j&' L0 EL

w. oafd ? 0> _\[?:A_ and @Z(W’)H,‘:?,}f& <10.

The stability properties of this identifier are summarized in the followine theo-

rem.

Theorem 10.2 (‘onsederan unknown nonlonear dynamae system in form of eq.. 10,46 .
which s to be identified by the RDFLS of eq. 10.37: by adjusting the parameter ree-

tor Y. of the RDFLS with the adaptive law of eq.i10.79;. The RDFLS identifier

salisfies the following properties.
10.2.1 || Y, 1< My, :
10.2.2 | €, |< M,,. where M, is a positive constant:

10.2.3 [jei(t)dr < a+ bf,ri(7)dT . wherc a and b arc constants.
and if ri(t) € £5{0.2c). foe (f55 1] radm) )2 dr)t < x .

then, lim,_.. | e(t)!=0.



10.3.3 Proof of Theorem 10.2
A  Proof of Theorem 10.2.1

This is similar to the proof of Theorem 8.2.1. and therefore. it is omitted here.

B Proof of Theorem 10.2.2
Let

rex. 1. 0. Y 2 Olix. u)Y: — apre — feix.u) . 1042
Rewrite eq.{10.36) as

I = —Qply + Qi ~ fA-‘X.U) . (10,83,

and rewrite eq.(10.37) ax

Yo = =0l — GZlW}—\-';, - @thlYI_ - @Z!WlY:
T N T . N
-—O ix.uY, -0 i x.uiY, . BINEE
where Y _ is an optimal parameter vector defined in eq.t3.300 which minimizes the

static modeling error. ri(x.u. .. Y, ). Relerring to Lemma S.1 we have

1YL < My
e Ye 10,45
SUDixurez | MR(X . @p Y ) <M
where M, is a positive constant. Considering eqs.(10.43-10.44) gives
) =T -
6‘\. = —ORGK+OI(W)A7k+Y$: Aek +rk(x.u.@;‘-.Y;\.) . (I(J'“||
where
A —
Ye . (10T
A = O.iw)—-0(z)

S

and z = {x.u}”.



Consider the Lyvapunov function candidate
= lo LA HoAG
T T IOV 2Y
[ts derivative is

.. _ . , T -1 _
‘, _6}\'6;‘—’-A‘?RHA' AYk

Using eq.(10.46) in (10.49) and considering AT,; = ?:\. results in

- 9 =T v
U = —awei + Of(W)Ag ex + Y, Ag v~ ru(x.u. 0. Y i,

T

The adaptive law. eq.{10.39). in eq.010.50) vields

.. ) " =T . T
1" = —Qpe; - I'g-l.X.u.@A-.YA.]('. - YL AOA“ - A.\,.f;._.Y . A? .

Since

and for Sy = 1.1 Y, !> Mz . therefore.

Use of eq.(10.33) in (10.51) vields

. b] 1 - 9 I T
U < —oawel — 550 | A, P +ri(x 0.0,V e + Y, Ag, e

Lo, 1 L
= o~ 3kl Ag, i 1—“)3HAY

l 1 —
- Iakef_ -+ rk(x.u.Gk.Yk)q. - Iokff_ +Y, Ag ¢ .

Reorganizing individual terms in eq.(10.54) produces

l ~ 3 1 Rl [ v X " i}
S =Sk hacls < 5Tl AT S SAtl Yoo =Y 0
< '3'3*'-"2?&

(10.4%)

(10.49)

1 10.50

105

1002

t10.53

(10.54)

{10.55:



l A —= Q. 2 e 1n
—Carel + (k. @n Y = ——]er - —rix.u.0,.Y,) )’
4 4 Q.
l
+ _rk(x u. @L Y J
Qg
1
< —rk(x.u.GA Y,.)
< —11 (10.36)
Qp
1 2 =T o I —.r ,
——arer + Y, Ag,ex = ——Je g——Y A@ ) 1P - —(Y. Ap, "
4 4 Q; Qi :
=T
< (Yk Aek
Qg
1
< —i YY) Ae, 1 (1037
Q.
Since 0 <O iw)<l.and 0 < #Oiz)<l.:=1..... I. we have.
i iw) = H iz < 1. (10.5%:
therefore.
‘?:.T L Bde, = ?:.T FOiw) - Oiz)
!
= Z o e aw — iz
=1
1
< Z i 105
=1
Since
_ 1,—: ! -- [..
( Zt-l; JU )2 S Zx 1 [[ {10.(IO+
or.
1 —_— —
ST i< VIIYL < Vg, . (10.61)
1=1
so that.
1 I— & !
_IOkcz_+Yk A@ktk S Q_A‘I?k (106:”
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Also.
T -1
| ) l A'kak Ay, N
-~ .-jjk | Ay, II° < —531\- Ao (HLT) (10.63
where Amac(Hf') is the maximum eigenvalue of matrix H'.
Using eqs.(10.55-10.56) and (10.62-10.63) in eq.{10.54) vields
1 2 1 3k T 1r-! L 2 I
! S -§Ok6k - EmA?ka A?'« - liL‘I?k - Z\[v*
+ —1-_\[;-; (10.64)
Qg
Let
A 3.
' = min{ a - . 110.65
N { \max(H;l) } )
2 oagur = Lap Ly 10.6t
= i F O -\—.k ;:, vk—;—;, _ t OO0
then
U< =t = (. (10,67
Therefore.
.. . .. C
V<0, of V> — £ 10.6%
-

Thus. if V7 < {- then 17 is bounded. implyving boundedness of v and &g . 17> =,

then eq.(10.63) indicates the boundedness of 1. again implyving the boundedness of

€x and A;. Therefore. there exists a positive constant. M., . such that { e, i< M. .

C Proof of Theorem 10.2.3

Considering eq.(10.534) we have

IA

- , 2 " T
Se3k H Avk H -r-rk(x.u.Qk.Y,\.)ck ‘,'Y;\. A@k(;.

ol —

2

< —ael + rx 0. @p. Yi)er + Y Ao,k - (10.69



(]
s
2

Substitution of eqs.(10.56-10.57) in eq.(10.69) gives

" | | - I o T 2 -
V< ——arel + —ri(xu.®. Y + —(1Y, |-]Ag, 1)°. (10.70)
2 oy O
By Lemma 10.1 we have
| Ag, | =|Oww)—Ouiz)| < cllw—z]. (10.+1
or.
Ao, S clec]. (10,72
where ¢ £ {ere. ... cr}7. whose elements are positive constants. Use of eq.(10.72) in

(10.70) and letting B = Y,

a

| - ¢) results in

t. 1 Bf ) l b '
U< —i—a,— S+ —rixou. @Y ). 11073
2 Q. ()8 ’

Integrating both sides of eq.110.73) vields

) . D—2B; o, Loy,
Vit = 17401 < —-n—“—l/ r;{ru/r-i-—/r'-:.whl.'. t10.7 1
s} G Ju

2a;

Since a; is a design parameter. we can choose ai > 287, Let

h) 2a. i i
S —— oy =V} (10.775
ey R A "
A 2
h = —. 6
Qf_ —'_)Bi (10.76
then
t , H ”
] cilridr < a -+-b/ ritTidT . (10.57)
0 0

where a and b are constants.
If ri(t) € L. then by eq.(10.77). €:(t) € £,. By Theorem 10.2.2. we know that

(LN L ). From eq.(10.46).

M

€x(t) is bounded. i.e.. e, (t) € L. Therefore. e,(?)

the boundedness of ¢; can be concluded. since all the terms on the right hand side



of the equation are bounded. That is. €x(t) € L. By Corollary 2.9 in 114, we

conclude that

lim | ec(t) |=0. (10.7%)

t—xC

This completes the proof of Theorem 10.2.

10.4 Illustrative Applications — Identification of

Nonlinear Systems

10.4.1 Example 1 - Identification of a Simple Nonlinear
System

Consider the following nonlinear system.

cosi.ry L=
- —u . (RN

| - -

Qur ohjective here is to identify the state variable. r. using the RDFLS identification
algorithm developed in previous <ections. The dynamic model will be treated strictlv
as a black box. and it is unknown to the identitier.

Let

11

w = {wi )T = {y. u}’ . 10.50)
A RDFLS identifier. F. is used to identify r. i.e..

y=F(w') . SURYY

where w' is the filtered value of w. with the prefilters defined as

e

(wy —4)-

Loy (O8]

wy = filuy) (10,82
|

fie

wh = falwy) T



y is the estimate of r. and is specified by eq.(10.1).
y=—ay+0T(w)Y .

The estimation error. ¢. is defined as

o
f
(1]

(10.33)

(10.54)

F" has two inputs. wy and uj. and one output. y. In both universes of discourse of

input variables. seven primary fuzzy sets. 4, and 4,,,.

are defined. Gaussian type membership functions are used for the primary fuzzy

sets.

. V-
. 1 f w, < Wy .

Ikes

!
Hap () 7 L
of wp >

I

i lu")
Ay, W,

) W .

of wl <

l. ifow!
e ’

e

£ -t u‘;l

Let shape parameters of all the primary fuzzy sets be 0.43. i.e..

e

o 0.45 .

Fup
Define position parameters. I, . as. for p = 1.2,

)

F

{Tp1. Tpao Wpse Wpye Wpae Wpse Tpr}! = {=3. =2, —=1. 0. 1. 2. :

In this RDFLS. eq.(10.83).

[ @w) & {(8.(w'). Bu(w'). . Bug(w'))T
1 Y 2 {5 0y oo Tuod7
and
S s (wh)

5 .
- N
=1 I-Ip"_—l lu.-l_",[“”p‘

i 10.82)

cTUNG

(10.5%)

(10.89



and for7/ =1..... 19. p=1.2.
Ave (A Jp=1....T}. (10.90
The free parameter vector. Y. is adjusted with the adaptive law. eq.(10.39). i.e..
Y = ~HO(w)e — SIHY . (10.91)

In computer implementation. the derivative is approximated by a difference. there-

fore.
Y AT +T)=Y{(kTi - TIHO(W (AT i)e(hT) + SIHY AT L. (1092

where T is the time incremental step and is set at 0.0 sec.

The initial values of the elements of the parameter vector. Y(01. are assigned
random numbers uniformly distributed in (-1. 1). The gain matrix. H. is defined
as a diagonal matrix with all diagonal elements equal to 175. The bound of the

A
—

parameter vector. M. is set to 107, Let a 10. and we assume the svstem
to be identified 1< initially at rest. i.e.. (01 = 0. For input v = sin(0.1=#i. the
identification processes for r is shown in fig.10.2. where training stops at t=100 =cc.

[t is seen that the training process converges quite well. and after training ends the

identifier predicts the syvstem state, r. satisfactorily.

10.4.2 Example 2 — Duffing Forced-Oscillation System

We now demonstrate another application. Consider the following Duffing forced-
oscillation Syvstem [134].

.I"l = TIy.

-

(10.93)

I, = —r}—=0.1ry 4 12cos(t) + u(t) .
Our objective is to identifv the state variables. r; and r,. by using the RDFLS
identification algorithm. As in previous simulation examples. the svstem dyvnamic

model is treated strictly as a black box.
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= Identifier Output (y)-
st . T=m== Plant Qutput (r) _t

rd N
'l
YN

o 50 100 150 200 250 300 350 <00 450 500

t isec)

(Adaptation Terminates at t=400 sec)

Figure 10.2: [dentification of r with RDFLS — Example |

Let

¥es

{”‘11~“'12-“'|:J,}T = {y]..rl.u}T.

}r {ryyau}l .

Two RDFLS identifiers. D.. and D.,. are used to identify the two state variables.

W
(1090

I
1{#

W {wnwanwn

Iy and r. respectively. Le..

ho= D.wl
1 10L990

Y = D:_»(W"_v} .

where y. represents estimate of the state variable. r;. and w is the filtered valne

K
of wi. & = 1.2, Both identifiers. D, and D,,. have three inputs and one outpnt.

The identification errors. €, and €. are defined as

A
€1, = Y1 — 2. '
[10.5“!]

ne

€2 Yo — Iy .

A RDFLS Identifier for r, : D,

[n all the universes of discourse of input variables. five primary fuzzy sets. 4, .

p=1.2.3.j,=1.....5 are defined. Gaussian type membership functions are used



(Y
s
-t

for all the primary fuzzy sets. which are the same as those defined in eqs.iS.74-2.761.

The prefilters for w);. w;; and w3 are defined as

o . N
wy, = filwen) = wn-;
& -
wy, = falwn) = own-g (10.97)
A .
wis = falwp) = owp-2.
The output of D:.. y;. is specified by the RDFLS of eq.(10.1). i.e..
ho=—aun - @{(W; ‘?1 . i LOIN
where
GHWJI\’ = {011'“/"1'. f)ll[wll). . Hl(lgg)IW'i,}T . Lo
i RS A
Y. = (v = T
Yo = {7i- T o T
and
[-["f_, fop L)
Maw)i = =7 SIRUE
1 l Y_};J ﬂ;-wu ey
and for = 1..... 125 p=1.2.3.
L= 10 5} BURIIN

The free parameter vector. Y,. is adjusted with the adaptive law. eq. 1039, We

approximate the derivative by a difference to give
?1([\'T -+ T) = ?1(/\'T) - T[ H[@[(W;_(A'Y' |FI(A'T) -+ S[-i[H}?HA'Y } ‘ (1“[();"

where T is the time incremental step and is set at 0.1 sec. The initial values of the
elements of the parameter vector. Y,(0). are assigned random numbers uniforily
distributed in (-1. 1). The gain matrix. Hy. is defined as a diagonal matrix with
all diagonal elements set to 100. The bound of the parameter vecior. Mg . is set

s : e e
to 10°. Let a; = 10. and we assume the system to be identified is initially at rest.



For the input u = sin(¢). the system trajectory in state space is shown in fig.10.3.
and the identification processes for z, is shown in fig.10.4{a). where training ends
at t = 50 sec. [t is seen that the convergence speed and accuracy of the training
process are quite satisfactory. and after the end of training. the identifier predicts

the syvstem state. ry. very well.

-3 -3 -2 - o] 1 2 3 4

Figure 10.3: State Space Trajectory — Example 2

B RDFLS Identifier for r, : D_,

In all the universes of discourse of input variables. five primary fuzzy sets. B, .
p=1.23j),=1.... 5. are defined. Gaussian type membership functions are used
for all the primary fuzzy sets. which are the same as those defined in eqs.(3.74 -3.76).

The prefilters for wz;. wa; and wys are the same as those defined for D, i.e..

N
why = filwn) = wy -3
' Ay 1 .
wy = fatwn) = wny (10.103)
N
why = falwa) = wa-2.



The output of D,,. y.. is defined with the RDFLS of eq.(10.1). i.e..
Y2 = —aay2 + ezT(W'z)?z . (10.104:

where ©,(w,1 and Y are the same as those defined in eqs.(10.99-10.101). The
parameter vector. Y .. is adaptively adjusted with the training law. eq.i10.391. and

we approximate the derivative by a difference so that

We set the time increment. 7. to 0.] sec. and let a, = 10. The initial values of the
elements of the parameter vector. Y,({0). are assigned random numbers uniformly
distributed in (-1. 1). The gain matrix. H.. is defined as a diagonal matrix with all
diagonal elements set to 100. The bound of the parameter vector. Mg . 1s et 10
10°.

With the svstem to be identified initially ar rest. and for input v = sinct:. the
identification processes {or ., is shown in fig.10.41h). where trainine ends ar £ = 50
sec. Again. the convergence speed and accuracy of the training process are guite
satisfactory. and after the end of training. the identifier predicts syvstem stare. r ).

very well.
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10.5 Concluding Remarks

e The RDFLS has been shown to possess the desired universal approximation

capability. just as the static FLS and DFLS.

e A RDFLS identification algorithm was developed and described here. which
can be used to identify a large class of nonlinear dvnamic systems. with iden-
tifier stahility properties specified in Theorem 10.2. and applications demon-

strated in simulation examples.

e One of the features of a well trained RDFLS identifier is that it does not
use the plant signal being estimated after the adaptation process ends. bt
continues to work well. as illnstrated in the simulation examples. Therefore
RDFLS identifiers may be very useful in the situation where a plant signal to
be estimated is dithcult or expensive to obtain. This is still open to further

investigation.



Chapter 11

Conclusions and Suggestions for Future

Work

11.1 Conclusions

The main objective of this work was tu develop effective fuzzy logic approaches for
identification and control of certain types of ill-defined. nonlinear dynamical syvsrems.
This objective was successfully achieved in this research through investigation of a
broad range of topics including fuzzy logic <ystems. nonlinear system identitication
and adaptive control. The major accomplishments and observations are summarized

as follows:

1. In appendix A. a dvnamic model of a flexible single link robotic manipulator
was developed independently in this work. Although presented as an appendix.
it is an integral portion of this research because it provided not only an impor-
tant vehicle for simulation and experimental demonstration of the theory. but
the derivation process itself also provided much insight into the mathematical
model and provided clues for the formulation of the research plan in the carly

stages of this work.
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The approach illustrated key assumptions used to obtain a linear dynamic
model of the svstem (not vet considering the highly nonlinear joint friction)
which is used in controller design for flexible link manipulators and can be
solved by standard mathematical approaches. such as modal analysis and oth-
ers. It is known that some of the effects generally ignored can be crucial for
successful control in certain situations. This inspired us to investigate identi-
fication and control approaches which do not explicitly rely on accurate and

tractable syvstem mathematical models.

Observing the fact that a human expert is able to control many very com-
plicated svstems only through accumulation of expertise. without necessarily
knowing their mathematical models. it was decided to investigate the fuzzy
logic approach for identification and control of ill-defined. nonlinear dynamic
svstems. because this approach provided by far the most effective theoreti-
cal framework to systematically incorporate human linguistic information and

express it in mathematical terms.

Two on-line quantitative measures, the Cland FDIL were introduced in seetion
5.1 for [F-THEN rule performance in fuzzy logic systems. which can indicate
certain problems in a fuzzy rule base. such as incompleteness or uneven share
of usage of individual rules. With this information. system operators can
be warned of these problems and take corresponding measures in time. <o
that the resulting fuzzy logic systems are expected to be more reliable. [n
addition. the implementation of the indices produces little extra computational
burden. Numerical examples were presented to demonstrate applications of

these indices.

A statistical confidence measure. the confidence interval. was introduced in

section 3.2 for the fuzzy logic systems used in functional approximation prob-



24

lems. whereby the approximation accuracy of both overall FLS output and
prediction of individual I[F-THEN rules can be measured and analvsed statis-

tically. Numerical examples were also presented to demonstrate applications.

Simplification was made of fuzzy inference computation in section 3.3 for an
important type of FLS. and significant increase in calculation speed of fuzzy
inference was observed. which is especially important for on-line identification
and control applications. A closed form expression for the bounds of the
simplification errors was derived. and the values of the error hounds were

tabulated for applications of potential interest.

A complete procedure was presented in chapter 6 for formulating expert knowl-
edge based fuzzy logic controllers. or empirical FLC. [t was explicitly demon-
strated that human knowledge in linguistic form could be systematically in-

corporated into fuzzy logic svstems and expressed in mathematical form.

Also it was illustrated. both experimentally and numerically. that the fuzzy
logic controllers designed solely on the basis of expert knowledge were capable
of performing variou~ control tasks satisfactorilv. withoutr knowledee of the

svstem mathematical models,

Via experiments. the empirical fuzzy logic control approach was compared to
PD control approach in section 6.4. It was observed that although in some
simple control tasks the results of the fuzzy logic approach were only slightly
better than that of the PD approach. for more complicated situations human
expertise could be of much more significance for successful control of these
complex systems. where the simple PID control approach might not work at
all. Also. the design procedures of FLC and PID control are fundamentally
different. The latter is basically a trial and error approach. while the FLC

approach provides a systematic framework to explicitly incorporate human
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expertise in the form of IF-THEN rules. which can be rationally set up and
revised. Furthermore. the fuzzy logic control approach has the potential to be
further developed into an effective approach for dealing with highly nonlinear
and ill-defined systems where the overall system stability properties and per-
formance criteria can be theoretically analysed and adaptively adjusted. On
the other hand the PID approach intrinsically lacks means of formal synthesis

for stability analyvsis in these situations. which often limits its usefulness.

An optimal fuzzy logic svstem training scheme was proposed in chapter 7.
which combined the backpropagation training algorithm with the least squares
estimation technique. The resulting optimal LSE-BP training scheme avoids
the weaknesses of both the LSE and BP approaches. such as the rank re-
quirement in LSE and the slow convergence rate and the possibility of being
trapped in local minima for BP approach. Meamvhile. it combines the strone
points of both approaches. such as the wide applicabilityv of BP and quick
convergence rate and global optimality of LSE. Also. comparisons were made
between LSE-BP and BP approaches. and the superiority of the LSE-BP ap-

proach was demonstratec.

In section ¥8.2. a novel fuzzy logic svstem structure which is characterized by
its dynamic feature. was proposed. and its universal approximation property
proved. This new dyvnamic fuzzy logic system (DFLS) is believed to be more
naturally integrated into dynamic svstems and to make better nse of intrinsic

dynamics than does the conventional static version.

A DFLS based stable adaptive identification algorithm was developed in sec-
tion 3.3 via a Lvapunov synthesis approach. which enables DILS identifiers

to identifv a large class of nonlinear dyvnamic svstems reliably.



10.

11.

294

In section 8.4. the DFLS based identification algorithm was applied to iden-
tifv a variety of nonlinear systems. The design procedures for these DFLS
identifiers were demonstrated in detail. and in all applications <atisfactory re-
sults were observed. which illustrates the effectiveness of the DFLS identifier

in dealing with complex. nonlinear dynamic systems.

DFLS identifiers were also compared with static FLS identifiers {subsection
8.4.2) via a simulation example. and better performance of the DFLS identifier

was ohserved.

[n most of the DFLS identification applications it was assumed that there was
no available @ prior: human expertize. which poses more stringent conditions
on DFLS identifiers. Satisfactory results could nevertheless still be achieved.
If there is expert knowledge available a priori in form of IF-THEN rules.
even of a very limited narure. it can be incorporated into DFLS identitiers
with resulting significantly improved svstem performance. as observed in the

simulation experiment in section N.4.4.

[n chapter 9. a novel DFLS based indirect adaptive control scheme was de-
veloped via a Lyapunov svnthesis approach for a class of nonlinear sv<iems.
eq.i4.1).
N ‘
= fix) - g(xiu .

The closed loop system performance and stability properties were analvsed
and summarized in the form of theorems and corollaries. which theoretically
support the observed results that this control scheme enabled us to achieve

reliable performance even under rather stringent conditions.

Two approaches were presented in section 9.3 to estimate the unknown fune-

tion. g{x). in eq.(9.1). One is based on a traditional self-tuning scheme. the
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other is a FLS approach.

Generallyv speaking. if there is no expert knowledge about ¢ available the
former approach may be more appropriate. since it is more straightforward and
computationally simpler. If there is such expert knowledge available the FLS
approach may be better. because it can explicitly incorporate this knowledge

and produce better initial values.

The DFLS based adaptive control algorithm was applied to control a variety
of nonlinear systems (sections 9.9-9.10}. The design procedures of DFLS con-
trollers were illustrated in detail. In all the situations satisfactory results were
observed. and the effectiveness of DFLS controllers in dealing with complex.

nonlinear svstems was demonstrated.

Notablyv. experimental results in section 9.10 were very satisfactory when the
DFLS adaptive controller was applied to control the moving trajectory of the
tip of a flexible beam manipulator. which is a real mechanical svatem for
identitication and control. This further demounstrated the effectiveness of the

DFLS adaptive control approach in dealing with nonlinear. ill-defined svstems,

and revealed 1ts potential usefulness for practical applications.

In the DFLS based adaptive control algorithm a mweasurable state vartable.
ry. was identified rather than identifving the unknown function. fixi. ax in
the case of the static FLS based control algorithm. [t is easier to acquire
knowledge about the dynamic behavior of a measurable state variable than to
acquire knowledge about the unknown function. f(x). which is not directly
accessible to us.

Also. in the DFLS based control algorithm. the system control inpnt, . is
explicitly included as an input of the DFLS. where any expert knowledee

about the relationship between the system input. uv. and the system state. oy
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can be explicitly incorporated. This is in contrast to the situation of the static
FLS based control algorithm. where u is not explicitly included as an input of

the FLS.

15. In chapter 10. a recurrent DFLS. RDFLS. was introduced and its universal
approximation property proved. A RDFLS based stable adaptive identifica-
tion algorithm was further developed and its stability properties investigated

theoretically.

16. The application of the RDFLS identification algorithm to nonlinear systems
was demonstrated in section 10.4 via simulation examples. and satistactory
results were observed. which indicated the potential usefulness of the RDFLS
in the identification of nonlinear svstems,

For a well trained RDFLS identifier one of its properties is that. it does not
use the plant signal being estimated after the adaptation process ends. but
it still functions well. as illustrated in the simulation examples. Therefore.
RDFLS identifiers might be useful in the situation where a plant ~signal 1o be

estimated is difficult or expensive ro obtain.

11.2 Summary of Major Contributions

1. A novel dvnamic fuzzy logic syvstem structure. the DFLS. was proposed and

its universal approximation property proved.

2. A novel DFLS based adaptive identification algorithm was developed and its
stability properties theoretically analysed. Its application to various nonlinear.

ill-defined dvnamic svstems was demonstrated.

3. A novel DFLS based indirect adaptive control algorithm for a class of nonlinear

svstems in companion form was developed and its stability properties thieo-
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retically analysed. Its applications to various nonlinear. ill-defined dyvnamic

systems was demonstrated.

Two approaches. a self-tuning and a fuzzy logic approach. were presented to
estimate the unknown function. g. in the DFLS adaptive control algorithm:

each has its respective advantages in different situations.

A recurrent DFLS structure. the RDFLS. was introduced and its universal
approximation property proved. A RDFLS based adaptive identification algo-
rithm was also developed and its stability properties theoretically investigated.

Its application to various nonlinear dyvnamic syvstems was demonstrated.

An optimal fuzzy logic syvstem training scheme. the LSE-BP. which combines
the advantages of both LSE and BP approaches while avoiding their respective

weaknesses. was proposed.

We presented a complete developmental procedure for designing a human ex-
pert knowledge based fuzzy logic controller. and demonstrated its properties

and applications both experimentally and numerically.

We simplified fuzzy inference calculations for an important type of fuzzy logic
svstem and derived closed form expressions for the bounds of simplitication
errors. and tabulated the values of the bounds of errors for potential practical

applications.

A statistical confidence measure. the confidence interval for fuzzy logic svs-
tems was introduced and used in function approximation problems. where the
approximation accuracy of both overall FLS output and performance of indi-

vidual [F-THEN rules can be statistically measured and analysed.
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We introduced two simple on-line quantitative measures. the C'[ and FDI. for
[F-THEN rule performance in fuzzy logic svstems. which resulted in increased

reliability of the corresponding fuzzy logic systems.

We developed a dvnamic model for a flexible single link robotic manipula-
tor. and explicitly indicated assumptions needed to obtain the widely used.

mathematically tractable linear model.

We compared. via experiments. the empirical fuzzy logic control approach with

traditional PD control approach.

We compared the results of DFLS identifiers with those of static FLS identi-

flers.

We demonstrated how 1o incorporate a prioriexpert knowledge in DFLS iden-
tifier design and improve svstem performance.

We experimentally implemented the DFLS adaprive control algorithim and

successfully controlled the moving trajectory of the tip of the Hexible link of

a real mechanical manipulator.

Empirical fuzzy logic controllers for vibration and position control of the tex-

ible beam of the mechanical manipulator were experimentally implemented,

A mechanical single link robotic manipulator. which could be controlled au-
tomatically by computer and/or manually by a human operator through a
Jovstick. was developed. It served as a realistic experimental testbed for the-

oretical developments on identification and control.

We developed relevant software packages in the course of this research. These
included communication software between controllers. sensors and actuators.

and graphics software for real-time on screen display of input and outpus
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samples of both controllers and the plant. The latter was essential for acquiring

knowledge of the svstem dynamic behavior.

11.3 Suggestions for Future Work

In the author’s opinion. the following studies are necessary to refine the current

research.

e [nvestigate the effects of system and measurement noises on syvstem perfor-

mance. and develop measures to diminish their possible detrimental effects.

e Develop explicit eriteria for the conditions of adequate training. which mayv
include persistent input excitation issues. the choices of fuzzy logic svstem

parameters. and <o on.

e Develop RDFLS based adaptive control s<chemes. and investigate their stabiliry

properties.

e Develop analytical means for determining off-line parameters which wonld
complement the current expert knowledge and trial and error based desien

approaches such that an optimal et of off-line parameters can be obtained.
e [nvestigate the effects of sampling period on system stability properties.

e Further investigate the quantitative measures. Cl and FDI. and the statisti-
cal confidence measure. confidence interval. to understand and relate <pecific

values of these indices with fuzzy logic system performance.

o Integrate other types of sensors with higher sampling rates in the experimental
testbed to replace the current ultrasonic sensor. whose maximal sampling rate

is onlv 50 Hz.
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e Develop intelligent hybrid systems which combine the methodologies of fuzzy

logic. artificial neural networks. and genetic algorithms.
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Appendix A

Dynamic Model of Flexible Single Link

Manipulator

A.1 System Configuration

A mechanical flexible single link robotic manipulator i illustrated in ig. A 1. which
has been serving as an experimental testbed for identification and control studies in
Robotics Laboratory of Canadian Space Agency. The roboties manipulator of this
kind may be schematically shown in fig. A.2.

[t is assumed that the link rotates within the horizontal plane and deflects freely
in this plane. but is rigid in the vertical plane. The link is viewed as an elastic
pinned-free beam with a load M, at its free end. The rotor of the actuator ix
considered part of the beam located at the pinned end with mass moment of inertia
Jy. on which a torque T}, is exerted. ®(t) is the angular position of the rigid mode

of the beam. o(.r.t) is the actual angular position at r along the beam. and a(.r. /)

1s the angle of deflection due to the structural flexibility. We have
olr.t)y=®d(t)+ alr.t). (A1)

In fig.A.2. 10; is the fixed reference frame with origin o at the center of the motor

—

hub. @,0d, is a rotating frame that follows the rigid mode of the beam. and 55,5, is

328



Figure A.l: An Experimental Single Link Robotic Manipulator
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Figure A.2: A Schematic Illustration of Single Link Robotic Manipulator
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a moving frame fixed on a cross-section of the beam with §, always contained in the
deformed cross-section and S, perpendicular to the cross-section. Since the motion

is planar. it has k& = a; = §;. The following relationships will be useful in later

development {149].

alty = ) alt).
. o (A.2)
a(t)y = —®(t)alt).
sr.t) = cosalr.t) alt)+sina(zr.t)a.(t).
’ (A.3)
Sr.t) = —sinalr.t)a(t)+cosalr.t)ait).
Siacty = (B +ar ) Sl
. . (A D
S(rt)y = =ty +alrti) Sat) .
where () 2 %—) . To simplify our latter development. the following assumption is

made.

Assumption A.1 The angle of flecural deflection. alr.t). s uniformly small for

x 210, L}, and the plane cross-section remains plane after deformation.
With Assumption A.l. we have
sina X a . cosa x| . tALD

Therefore. eq.{A.3) can be rewritten as

Slr.ty = a(t)-alr.t)ait) . ,
(A6
Sty = —alr.t)a(t)+dl(t).

Let p be the position vector of a material particle of the beam initially located at
Po = 17 + yj in the reference frame. Let u(r.t) and v(z./) be the movements in @,

and a, directions. respectively. of a particle initially located at (2.0} in the reference

frame. We have

plr.y. V= {r + v(r.d)]d(t)+ v(r.t)a,(t)+ys,(r.t). (A7)



332

Also.

. {r.t)
z =du(r i -,-(.r.i):ﬁ—a(x.t). (AN

o dr dr

For the notational simplicity. explicit indication of the arguments r. y. and t will
often be omitted. Taking the derivative on both sides of eq.(A.7) and considering

eqgs.(A.2) and (A.4) result in
5: (& - d’('}ﬁ; + &+ G(r + uljd, - y(d = a3 . A9

The square of the norm of ji is

I pley tyl® = peop
= (ut =07 =yl ¢ ~ar = Cbzi(.r i+t = '_"bz—z'u' =
- '_)y|<i>+d)[z}—1'<i>-é-nz"-1-a<i>(f-:-ul} . rALL0

A.2 Potential Energy and Kinetic Energy

ln this section. we will present the expressions for =vstem potential energy and

kinetic energyv. We first make some more assumption:
Assumption A.2 The torsional effects of the beam are negligible.
Assumption A.3 The structural damping of the beam is negligible.

Assumption A.4 The load at the free end of the beam. M,. is concentrated at the

center of the cross-section. i.€.. its coordinate in the reference frame is (r.y.z) =

(L.0.0).

Consider Assumptions A.1-A.3. and further assume that the beam of interest has

uniform cross-section with cross-sectional area A. the total potential energy of the
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beam is composed of potential energy due to bending. shearing. and the axial stress.

ie. (149,

bt

L L L
= 1/ EL s o l/ GA~2dr + 1/ Eq: . (AL
2 Jo dr 2 Jo 2 Jo

where E 1s the Young's modulus. /. is the second moment of area of the cross-section
about the neutral axis. &G is the shear modulus. = is the shear strain. =, is the strain
in longitudinal direction.

The total kinetic energy of the svstem 1s composed of the kinetic energy of the
rotor at the pinned end of the beam. the kinetic energy of the concentrated load at

the free end. and the kinetic energyv of the beam excluding above two portions, i.e..

KN=~LK +~Ny + K. (AL
where
o L S |
;= ;./y’.‘;'l().!) = —)/ Dt — Al AL
Since M, is assumed concentrated at the tip of link. it has coordinare vy = L0

and it= rotary effects are not considered. Therefore.

. 1 L e )
Ky, = Mo ipcL.0.ty) "
I 3 . . g D . \ > .
= 3,‘[:{[1'1-([,.f);L"'L.flj";'(I)-lfl!_(l."-U(L./H-‘T‘ il
= 20ty [—il Lot Loty =1L+ uil.tnecL )]} . (AL

The cross-sectional dimensions of the beam is shown in fig.A.3. The kinetic eneray
of the beam is

1 o B -
K, = /// 5P P plr.y .t~ dl
V2

8

Lrd ¥ - ’
= / _/ H / a ol ioplaecy. tyis drdyds . (AL 15
o J-H /.82
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Figure A.3: Cross-Sectional Dimensions of the Beam

Use eq.i A.100 in eq.t A 150, and note A = BIH . I. = [, ydA. we have

M

L . .
/ pAat = = plad = e

JO

L . .
/ pA{P (i —u . vt =20 —ue — v~
0

1S — il —

=2y d i —rd —ar ~a®ir —ui fdr

The Lagrangian £ is obrained as

c

N =1

l . g . 2

:;.[‘»::q)(f} —'—(‘1(0./’_:'

I rFad Y : 3 - 2 3 .
SMAL L+ CUL ]+ QL ~uwi L t)) = (Lot)

+'_)<i>(l)[—t}([,.f)1*(_ Loty+(L+utl.otniecLotn}

l L' 2 ) z )y
3/0 AT+ 07+ pl(P +a)dr

)

L M ) B . v .
= / pA{P o+ u) + 7]+ 2 =t = (= u i
0]

—2yid =i —rd ~ar +abir—u Vb
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AL

i
T dr

L da ) 1s
/ rEl.(—o)' + G A+ EAzldr .
0

i
2

A.3 Derivation of Equations of Motion
The equations of motion can be syvstematically derived by means of Hamilton's

principle {107].
PALDY

ta ) ts N
o [Trar—e [Twar=0.
I t
where 117 represents the work done by external forces. Here. the external force 1s the

resultant torque T exerted on the rotor which will be elaborated later. Therefore.
W =T.00.t = [J‘Dl - (HU./"E . AT

Using eq=.i A.17 1 and (A 19 in equ ALINy and integrating by parts. we obtain

(‘/- Ldt = ¢ /»; Hodt
r;! L ) . . . N
= / / [ —pdii = pA®r = 2000 = pAg( = a1 = pADTs ~ 0
+ Ju
—pAydard - )~ EAu"eu

~ —pAi = ,).-l(i)l £ - ‘.’/);\d’f/ -~ pAyd ' SR pAyan ® ~ i

—pAD T = pAyD D — 4 = (A e
+ipAyti — br— P+ 6 +ai - Cb(}(.z' +uj = a®ir ~ur—adi
—pl(® ~é) = pAy(t + dlr —un(d - a) + GA~ + El.a” o
+lopli® +a) — pAidlr + u)? +20(r = u)i + Bed = 2d0i — i

~(r +u)t)+ plylu — dr - dr + ol +ab = dalr = u)
+a®ir +u)+adi) - p.{q((é A= id = a) — GLD ~ & = ui
—al® +aj(r+u)—ald+aiijed } drd

t2 - . .
+ / (T= i Loty + MOe(Lot)+2Mde(L. 1)+ MDHL + uil.t))
51



—EAd (L. t)euiL t)

=MLty = ML+ u(L. b)) — 2Mbat L.ty = M b (L.t
—GAS(L.jée(L.t)

+[=Ju(® + &(0.1)) + EL.a'(0.t) + T:]éa(0. 1)

+~[—ELa'(L.t)]ta(L.t)

+{=Jh(® = E(0.1)) = MS(L+u(L. 1)) =2 M DL = ul L. t))in L.t
MO L) = 2M (L (L.t + Mo Lot Lot

- ML +uwl tytL.ty+Tyed }df. 1AL200

where (V' = —}7’ . and in deriving eq.i A.200. following relationships have heen used
107
e operators ¢ and =. ax well as ¢ and = are commurative.
[ =

e the integrations with respect to ¢ and & are interchangeable,

o forf =t . and t = ¢, ¢u= ¢ =¢a =60 = 0. which means that at the two

instants + = f; and f = {,. the true and varied paths coincide.

Since the virtual displacements ¢u. & fa. and ¢® are independent and arbitrary.

Tr=(0.Lyand t =t t). from eq.(A.1T1 and eq.r A.20). we have

pAil — pAdr — 2pADE — pAy(d +a) — pAG s+ u) = pAydaid = A
—EAu" =0. tA2L

pAL + pABr + u) + 2pAd0 — pAyald +a) - p:l_ual(ﬁ —a) = pAdie
—pAyd(P +4) -G,y =0. (A2

pAyli— dr —di+ar+ai ~Palr +u)+ad(r —u)=adi - plid =i
—pAylt = bl +u (D + )= GAw + ELa =0 . TA23

/ {=pl. (& +cd)—pAidr+ ) +2br —uji + Pt =200 — G = (= i
A .
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+pAylii ~ dr — @i+ a¢ + aif + Pa(r — u) + ad(r + ui = adi]
—pAy[(P+a)jr + (P +a)—a(d +a)r + uj

—a(® +a)ir+u)—ald+ é)uj } dr

—Jn(® + &(0.4)) = ML + u(L. 1)) = 2MD(L + wl L. )il L.t
—MOCAL.t)y = 2MDe( L. t)yi(L.t)y = Moa(L.tve(L.t)

—MiL +uwlL.t))YML.h+=To=0. (A2
Since the virtual displacements fu( L. t). fv(L.t). da(0.t). and éaiL. t) are also
independent and arbitrary. we have
Mo Lotv = Moo Lty =20 bi Loty — MO L~ utL 1
~EAui L. =9 PN

M Loty = MOL ~wi Lot =20 @i Loty — M,d i [t

~(iA~ L.ty =0 i NG
Ji® a0t — Ela'(0.6 =T, =0 . AT
El.o'il.t)=0. CALIN

Remarks:

e Equations i A.21-A.25) represent the equations of motion of the systeni and the
natural boundary conditions. Specificallv. eqs.( A.21) and (A.221 characterize
the beam vibrations in longitudinal and transversal directions. respectively.
eq.(A.23) corresponds to the rotary effects of the beam cross-section. and

eq.(A.24) expresses the overall balance of angular momentum of the svstem.

e Among the natural boundary conditions. eqs.(A.25) and (A.26) govern the vi-
brations of the tip load in longitudinal and transversal directions. respectively.
eq.(A.27} represents the angular dynamic equilibrium at the root of the beam.

and eq.(A.238) corresponds to the angular dyvnamic equilibrium at the tip of
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the beam. noting that the tip load and the motor hub are considered parts of

the beam.

o The set of equations of motion are highly nonlinear and heavily coupled bhe-
tween flexural deformations and rigid body motion. which are too complex to
be of much use in control applications. and therefore. we have to make further

simplifications.

Assumption A.5 The longitudinal deformation and its time and spatial de rivatives

are negligible. 1.¢.,

utr.ty=uwlr.ty=utr.t)=uvir t)y=uv"tr.ti1 =0 . Vo= L0 L LAY

Stnce eqs.{A.21) and i A.250 characterize the longitudinal vibrations of an infinites-
imal element of the beam and the tip mass. respectively. By Assumption AL,

longitudinal vibrations are neglected. <o are the eq<.0 A215 and  A.25).

Assumption A.6 The transcerse deflection. via by of the beam s uniformly small

for o 270, L0. and its higher order terms are negligible.

Assumption A.7 Beam dimension in transvervse divection s small, and the rotary

effects of the beam cross-section are negligible.

By Assumptions A.5-A.7. the equations of motion and the natural boundary con-

ditions. eqs.(A.21-A.23) are simplified as.

pAC + p.'l.z'(f) - p.»l:'d): - GA~" =0 1 A30)
GAs~ + El.a" =0. (A3
Jri® - a(0.1)) +/ pAlr"® =200 + rit dr

o

F ML + 200 L)y L. + Li(L.t)i =T, =0 . (A.32)
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b
M,
Figure A.4: Free Body Diagram of the Beam
MIHL.ty+ L® — (L)% = GA,~(L.t) =0 . (A3
Jid+a(0.0)] - El.a’(0.1y =T, =0 . A
El.a'tL.ty=0. A
Remarks:
o Differentiating eq.i A.31 wor.t. r vields
GA,' = —FlLa" . AL
Using eq.tA367 1 eqr AL301 vields a new equation of motion.
pAl = pArd — pArd? -~ El.a” =0 (A7)
o Investigating eq.i A.32) more closelv. it is found that
L .
M= / pAL D = 200d o) e
u
F ML + 20 L) Lod = LE(L. 1. (AL3N

where 1/ is the bending moment on the cross-section and at the root of
the beam. as shown in fig.A.4 The integral part of eq.( A.33] represents the
bending moment incurred by the beam without the tip load. the first and third
terms of which correspond to the rigid body motion and transverse vibration.
respectively. while the second term represents the Coriolis effect due 10 the

interference between rigid body motion and transverse vibration. Similarly,
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the bending moment incurred by the tip load is also composed of the same

three effects.
e ['sing eq.(A.33) in eq.( A.32) results in
Jn(®~a0.0)+M ~Ti=0. (A3
We also know that {12}
M, =—-FEIl.a"0.t) . AL

Consider eq.(A.40) and compare eq.i A.39) with eq.i A34). we find that they
are actually identical. and therefore. one of them. say equ A9 can be omit-

ted.

o Ineq.iA33). GA~ Lot represents the shear force at o = L. From equi A3

we have

GA L= —Ela"tr t.op 2 —FElLa" L1 A

Using eq.e At eqa N33 results in
MLt = L& — i L5 = El.o"il.t =0 . AL
e Since the root of the heam is pinned. we have a geometric boundary conditiou.
c(0.t) =0 . R RY

Summarizing above discussions. we obtain the new equation of motion and

boundary conditions as follows. subject to Assumptions A 1-A.7T.

pAlr + pArd — p1rd*+ El.a” =0. (AL
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(0.4) = 0. (AL
MJF(L )+ LO — o(L.1)®%] — El.”"(L.1) =0 . (A.46
JW[® + 6(0.1)] — F1.a"10.4) = T, =0 . (AT
El.a'(L.t)=0. (AL

where the nonlinear centrifugal terms are still present in eqs.(A.44) and (A 16).

Assumption A.8 Shear strain of the beam. ~(x.t). s uniformly small for r =

[O. L]. such that
alr.ty=v(r. ==~ .ty xdlir ). v 0L, (A 49

Assumption A.9 The centrifugal effects due to coupling between rigid body motion
and beam rvibration. which are proportional to c(r @2 are uniformly small for

r < 0. L. and are negligible .

Using Assumptions A.X and A9 in eqsi AU A AN we obrain the final form of

equation of motion and boundary conditions.

pAL = Ele" —pArd =0 . LA
cl0.t =0 . (A5
Lty =0. (A2
MELO)+ ML - EL™ L. ty=0. (A.33
Jul® + #(0.4)] = EL2e"0.6) =T, =0 . (A5

The system dynamic model. eqs.(A.50-A.54). may be simplified symbolically by

defining a variable transformation.

FaY

wir. t)=eix. .ty = rdit) . (A3
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where the new variable. w(r. ). is the superposition of rigid bodyv motion and flexural

vibration of the beam. \WWe have

'4

B(r.t) = Hr.t)+rd(t) .
w'{r.t) = or.t)+dit) .
w’'(r.t) = v’(z.t).
J w{r.t) = o™r.t). (A6
wir.ty = "ir.t).
wi((. t) = v(0.4).
0. = M0t = D0t .

Use eq. A.56) in eqs.t A.30- A 340, we obtain the svstem dyvnamic model in terms of

the transformed variable. w{.r.f).

1

pAe = FElwe =0. P ADST
w0, hr =0 CALTN
w'tl ot =1, AL
MLt —Elo™ Lothy=0 . CALGOY
Joiooh = Elae™0. =T, =0 . (A6

A.4 Remarks

e The dynamic model of the system. eqgs.(A.50-A.54). is linear. and therefore.
can be solved by standard mathematical approaches. such as modal expansion
method. This model has been widely used in controller design for flexible link
manipulators. e.g.. [2. 69. 82, 96. 123. 136]. just to name a few. But one has 1o

keep in mind that this model has been obtained after severe simplifications of

the physical systems. i.e.. Assumptions A.1-A9. And any significant deviation



343

S IHOJL
L = Q

VAN

Figure A.5: Shear Force on the Free End of the Beam

of the real system from the assumed conditions could result in unsatisfactorv
results and cause potential problems in applications. For example. it has heen
shown that an uncoupled model of a beam can lead to faulty prediction of the
natural frequencies of vibration [34. 202]. It has also been indicated 119 that

the centrifugal effects in equations of motion have crucial role with regard to

the stability of a rapidly rotating beam.

In equation of motion of the syvstem. eq.t A.301. the three terms correspond.
respectivelyv. 1o the effects of transverse vibration. <hcar force due to heam
deflection. and rigid body motion. The first two terins correspoud to the
standard linear Euler-Bernoulli beam theorv. while the third term acconnts

for the rigid body motion.

Equations (A.32) and {A.533} indicate that. at the tip of the beam. the bending
moment is zero while the shear force is not. This is the result of Assumption
A.d. i.e.. the tip load i1s concentrated at the center of the beam cross-section
of the free end. Since the load is assumed to be point load. it does not incur
any bending moment. But. since it has mass. it does incur a shear force on
the cross-section of the beam as a result of transverse vibration and rigid hady

motion. as illustrated in fig.A.5. where @) represents shear force.
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A.5 Eigenvalues and Eigenfunctions

To obtain the eigenvalues and eigenfunctions of the svstem. we let external forces

vanish. i.e..

T, =0. (A6
Therefore.
pAd+ Elw’ =0. i A3
wil. Yy =0 (AL64
W' Lot =0. (A6
M Loty = El.we™i L.ty =0, CALGE
S 0.0 — ELac™00ty = 0. CALGT

Assnume the variable wor f) i< separable in time and space. je..
wer )= Tty TR

Use eq.t AON 1 in eq.(A63) leads to

E‘[— [ "nn i
- i :

_ (1= ——qit. NG9
pA Wir) q{f)'{ '

[n eq.tA.69). the left hand side depends only on . while the right hand side depends
only on f. they must have a constant common value. sav . whicli is also shown to

he positive [139]. Denote

'—1 2l .
A2 2_1*" . (A.T0)

We have
G+ gty =0 . tATH

"

W = Ve =0, CALT
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where \ and i1°(r) are the eigenvalue and eigenfunction of the system. respectively.
and ~ is the natural frequency of the syvstem.

Use eq.(A.638) in eqs.{ A.64-A.67). we have

HW(0jq(t)=0. fAT3)
W"(L)yg(t)=0. (AT
MW (L)Ggity = ELLW"(Ligtty=10. (ATS)
S0V = ELW 0qtty =0 . (AT
Since gt £ 0. and Gt = —qut). we have the boundary conditions
HWior=0. LA
WLy =0. AT
MWL = ELW™ Ly =0. CALTO
J W0 = ELW0)=0. rASO

We now solve eq.e A.72) to obtain eigenvalues and eigenfunctions. Assume
HWiry=ce™ . CAND

where ¢ and s are constants. Using eq.i ANy in eq e ALT2)0 we obtain the auxiliary

equation
S=M=0. PN

Roots of this equation are solved as

Sja==xA s = i\ (AN
The solution of eq.(A.72} is obtained as
LU AV ro=\r /Ny ¢ =1 \r R
W(r)=ce'" +che - Cyf e (AN
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where ¢}. & = 1.2.3.4. are constants. Reorganize eq.{A.84). we have
Hir)=c cos(Ar)+ ¢c;sin(A\r) + czcosh(\r) + ¢y sinh(Ar) . (A3

where c;. & = 1.2.3.4. are new constants to be determined from boundary condi-

tions. Use eq.(A.33) in eqgs.(A.77-A.30). and after some manipulations we have

[cos(AL) + cosh(AL) — 2asinh(AL)] ey + [sin(AL +sinh(ALi] c; = 0. (ANG)

{sin(AL) = sinh(\L) + 2a cosh(\L) = F{cos(\L) — cosh(NL) + 20 <inhe N1} ¢

+{=cos{AL}) — coshiAL) + F[sin(AL) = sinhi \L}i} ¢y =0 . (AT
3= —cy . | Y
cy = 2ac) — s AN
where
3 3 .Ig b 1[. o - /).“ [. '
= —— . 3= N — . Mo =pAl . g = = PO
EEVATI LT P 3

For a non-trivial solition of eq.i A.72). equations (A.X6 and (AST have 1o give a
non-trivial sohition of the constants ¢, and ¢, and there. the determinant of their

coefficients must be zero. 1.e..

(“[.\l (13(/\|
det =1 (A9
Ca (N Cani )
where
( A

CiitA) = cos(AL) + cosh(AL) — 2asinh(AL) .

CialA) £ sin(AL) +sinh(AL) .

Cai(N) = sin{AL) —sinh(AL) + 2a cosh( AL) AWLY

+.3{cost AL} — cosh(AL) + 2a sinh(AL )] .

Caat Ny s cos{ \L} = cosh(AL} + 3[sin( \L) — sinh(\L)] .
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eq.{A.91) gives the characteristic equation of the system.

I + cos(AL)cosh({AL) + a[sin(AL)cosh(AL) — cost \Lisinhi AL )
+3[ cos(AL)sinh(AL) = sin(AL)cosh(AL)

+2asin(AL)sinh(\L) | =0 . (A.93)
Or. by eq.(A.90).

. . Joo . .
l,\L)j"[ + costAL)cosh(\L ) = 37—[541111 N eosh(NLy — cost ALy sinhe VLY

n

M, . .
+(AL )4T[—‘i_— sint AL ycosht L) + cost ALy sinht AL+

M
M T .

*6(,\[_)-\—1;151111.\[_,'Smh(,\[_i =0. FAL

The roots of eq.i A94I N, .y = 1.2, are the eigenvalues of svstem. of which there

are infinite numbers due to the continuous nature of the svstem. It is casyv to ~ee

that

.\” == U l\')—)'

i a solution of the characteristic equation. eq. A9 which corresponds to the rieid
hody motion of the heam. and the natural frequency oy = 0. In this case. the mode

shape and the time dependent variable are given as

Hoiry = .
iALU6H
([U”) = (I)i’fj .
For \, #0. ¢ = 1.2.... i.e.. for flexural modes. from eq.{ A.XT}. we have
Ca(A
ey = ) (AT

11 A,) o

where (75 ( A} and (1 A,) are given in eq.t A.Y2). Using eqea AOTi0 AN and

(A.89) in eq.( A.33). the eigenfunctions. or mode shapes. of the system are obtained
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A\ L= 1.9545

Hsra 0

Figure A.6: First Three Flexural Eigenvalues and Eigenfunctions

Wirt = {cost Ny = coshid oy = 2a, sinlue Ao
Catd o by ) 1o v
-~ — S =8 tAar ey =1.2..... AN
; ('_‘_»f,\,v'm 1 inht oo ey !

where ¢; is an arbitrary constant. and without loss of generality. can be assinmed to
o 2 : .
be unity. i.e.. ey = 1. If the beam has no tip load. i.e.. M, = 0. the mode shape.
eq.(A.95) can be shown to be the same as that of obtained in 9.
Jl -~ .
For M, = 0 and 3 = 0.137. the first three flexural modes and corresponding

eigenvalues. A\, L. = 1.2.3. are shown in fig.A.6.

A.6 Orthogonality of Eigenfunctions

[t is known that for continuous svstems. there are infinite number of natural fre-

quencies. «,. and mode shapes. U (). 7 = 0.1..... where 1 = 0 corresponds to the
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rigid body motion. We now show that the mode shapes. given by eq.(A.93). and

corresponding to different eigenvalues or natural frequencies. are orthogonal.

L L
/ W (o)W, (c)dr = / W0 )+ W (e,
0] 0

W/ ()b (A.99)

L L
/ W (e = / W) 1, e = T (e ik

Q Q
~ Wi ek AL 100,

From eqs.i A.72) and ( A.T7T-A.504 we have

(

Wy = M
o = —Maumon.

WLy = 0. TR
™o = 0.

WL = —.\:‘}"jilis/.n.

Using eq .t AL101) in equi AL100Y vields

L ) ] L AVA
/ W W "ryde = / MUl cride = NP L L)
4] ’ 0 - : ‘p.-1 )
N/ .
+ \T—Hoii . (AL 102
_‘p.__i v

Similarly. we can obtain
L - -1 N 4 It
[ ede = / AW e XS LI
0 i
4 ]'t -t -t BN
+ N —H/ (070 . (AL1030
pA ’
Subtracting eq.(A.102) from eq.(A.103) results in

L
(AY =AY p AN ()W (rjdr = ML (L) = JW7000H7 (00 = 0.0A 101,
J 0 J J : J B



Let
A L i
M, E/ p AW ()W (r)dr + MW (OW, (L) + J;IH','(O)U']/(O) . (A 1050
0

IfA #£)\.¥:i#£ ) we have

M., fi=7.
M, = / / (A 106
0. fi1#7.
Let
A L
K., E/ ELW"(e) WV "o . PALLOT
[¢]

Using eq.t A 102) in eq.(A.107) vields

L El
K, = / NELW W oide ~ VY ES v oo L
’ Q ’ : 'p:l -
£l
NP2 T (AL TON)
RN

By eq.i A0 1t becomes
L ) 1 )
N, = / rp AW e W cnde ~ MW CDT Ly — o
6]
= V. CALTOY

Therefore.

cALTTON

A.7 Uncoupled Equations of Motion of Undamped
System

Using the expansion theorem [107]. we write the solution of svstem equations of
motion. eqs.(A.37-A.61). as superposition of the mode shapes W () multiplving

corresponding time dependent generalized coordinates. ¢,(f). i.e..

u'(.z‘.l):Z”’,(r]q,({) . i

=0



Using eq.(A.111) in egs.(A.537). (A.60) and {A.61) results in

p4qu HW(r) + EL Zq,(t ry=0. (A.112)
1=0
MG OW L) — ELS ¢ (W, "(L) =0 . (A.113
J=0 =0
IS G N0) = ELS. ¢ (1,"(0) = T | (A111)
=0 =0
Multiply a mode shape Hi(r). ¢ € {1.2....}. on both sides of eq.cA.112). and

integrate both sides w.r.t. r. to obtain

Zqﬂf/pl” e =S q 0 [ ELW eV eide = 0. AL

=0 a

Multiply (L) and 117101 on both sides of eq.i A.113) and eq.t A L14). respectively.

We have
Z GO LI = > g ELW LW Ly =0, rALTTE
o=0 o=u
Z(.I.J,l'f'./}_”710]”:’10] =D @ ELI 00 0 = T, LT
o= 2=u

Sum both sides of egs. (A T15 ALLT). respectively. We have

~ L
S [ p AW e = MWL L= 0
J=0 v ’
+ ij / ELW (0 Woryde — ELW LWLy = ELIE007500
=0
= H,(O)Th. CATIN

Using eqs.(A.70) and (A.101) in eqs.(A.118] results in
> L . +
Z ijj(t)[/ pAN ()W (r)dr + MW (LYW (L) + S B0 (0))]
0 ;

+ qu / pALTW o) (2 )d + WL L ) + 2200 )

1=0

= W07, . (ALY



Considering eqs.(A.103) and (A.109). we have
DIMLG, () + Kyq, ()] = W(0)Ts . (A 120)
J=0

By the orthogonality of mode shapes. eq.(A.106) and eq.(A.110}. we obtain the

uncoupled equations of motion

Mg ()~ K,q(t)=1"0T; . r=1.2..... (A.121
Or
, ) ;
r'{',lf)d-..'_“f{,.tfiz—j-[l—l—)h . r= 120 CALE22

A.8 Damping Resistances

[n deriving the equations of motion. eq. A 1221, we have 1gnored the damping resis-

tances. of which the fo“u\\'iug_ tvpes can be identified.

e Damping caused by external forces opposing the transverse vibration of the
beam. such as air resistance. The resultant damping force acting on the in-

finitesimal element ix given as 35, Chap. 14
fo=ctrneir. ty . A2
where ¢fr11s a damping constant per unit length.

o Resistance to internal strain. which is expressed as [35. Chap.14;

s,

— . (A2
¢ ot

Oy =

where ¢, is a damping constant. The resultant of the stress on a cross-section

can be expressed in terms of a bending moment. \/,.

Miry=cl.u" (0. t). PALT2S)
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e \iscous damping on the rotor of the actuator at the root of the beam. which

is expressed as
fh=Chu:‘l(0.f) . (A126]
where ¢, i1s a damping constant.

e Damping resistance on the tip load caused by external forces opposing the

transverse vibration of the tip load. e.g.. air resistance. which is expressed asx
f-”: = C»\[rll.‘t L.ty . PALI2T

where cyy, 1s a damping constant.

By considering these damping resistances. and expressing the displacement wir_ti
as a superposition of the mode shapes of the associated nndamped svstem. e,

~

u‘!y_l'_f):Z”".l.l‘)q:{fi . AN AN

=u

-

the equations of motion can be obtained as 33, 82
.. T . 5
.U”q,(h—Z('qv,lh--l\:_.q,|f|_.H:(U,lf;z. =120 ALY,
o=0
The second term represents the effects of the damping resistances. and this term

makes the equations of motion coupled. However. for a special case.

clry = agpd.
C\’! = (l().‘lr .
(A 1300
Ckr = (IUJh .
Cs = a/F .
\

where ay and a; are constants. the damping terms can also satisfv the orthogonalitv

relationship. The corresponding equations of motion are

Mot + (ao + @) Mogilt) + Kog ) = W0IT, . i=1.2..... (A131



Let
2, = ag + ay) (A3
We have
Mg (t) +286,0,M,,q,(t) + KNqt) = WI0)T, . p =120, (A.133)
Or
10

T'n . = 1.2, cALESL

gty - 25;——‘:’].‘," - w',l({:(f) =

“[u

where & is called the damping ratio for the ith mode.

A.9 State Space Representation

[t we use the rigid body motion and the first three Hexnral modes 1o approximare
the displacement. wir 10 we have

R]
»

u‘i.x‘./la‘tZ”',lj.:'y({:l/b_ AT
1=
where i 1qol 1) represents the rigid body motion. and HWyirr = o0 gt = dutie,
3
wlie ty = rdit) - Z Worigotr . tAL L6
=1
For simplicity. we will replace the approximation symbol "=" with =" throughont

this work. But it should be kept in mind that the fourth and higher flexural modes
are truncated in eq.(A.133].

We define system state vector and output vector as

-~
I

{(lu o G ¢ G2 qr q3 43 }T .
{ 0l0.1) 0l0.11y L.ty c1L.1y )T,

AT

e



where 0(0.f) represents the angular movement at the root of the beam. and 1 L.#:
represents the flexural vibration of the tip of the beam which is the displacement of

the tip of the beam less the portion of rigid body motion. We have

3

o(0.t) = u'(0.ty =®H)+ > W/(0igit) . CALL3N
=1

c(L.ot) = w(l.fy=Léih =Y Wiliqit. {AL130
=1

The system dyvnamic model in state space form ix

N = AN - BT..
i AL
Y = O\
wlhere
0 1 0 {) () (0 () 0
00 0 0 0 0 0 ()
00 0 ! 0 0 0 0
0 0 —= =25 0 0 () 0
1 = CALTLD
0 0 0 0 0 ! (1 0
0 0 v 0 -5 =280 0 ()
00 0 0 0 0 0 1
(00 0 0 0 0 —i =280
: 1 170 17500) 20
B = [0 0 —2 0 —= 0 — T Al
Y Ve i \o, Vi, ‘ ’

Lo Wjoy o0 WXy o W40 0

0 1 0 ”}'(0) 0 ”'.f[ﬂl 0 oo
C = CeALTES

00 Wy0p 0 W0, 0 WL 0

00 0 1700 0 115,(0) 0 5000

-



A.10 The Joint Friction of the Manipulator

In view of the motor. T} is the external torque load. Let T,, be the electro-magnetic

torque produced on rotor. and T; be friction torque on rotor. so that
I.=T,+Ts. (AL
We will model the friction T following the approach presented by de Wit et al 36"
Ti=11 -1, =T, . RWEEY

where T, and T; represent stiction and dynamic friction. respectively. The variable s
is used to weigh each of the two friction types. and i~ characterized by the following
dvnamic equation.

) , ol0.t) .
Toa = —a— | —expl———i"". AL
' ol 0.1

where =, is the time constant for frictional lag. o,(0. 41 is the rate of the so called
Stribeck effect ::g(ii.
The dynamic friction. I, is given as

T0 = agsgn o0 1 = 000,11 . CALLLT

where aq ix the Coulomb friction coetficient. o, is the viscous friction coetficient.

and "sgn” is the Signum function defined as

1. (fer>0.
sgn(.z'}é 0. ifr=0. AL LN
-1. ifr<o0.
The stiction. T. is given as
Qg + ap . tf k¢ 4-(155(0.!} > ap+aq;:
To =9 ko l=doi0.t). if —(ag+a1) <k ~dso(0.11 < ag+a;: (AT

—(OU+QI). F.f]\'sL:‘f—(ISC.)(O.t)S-‘(()U"‘O[).



ks and d, represent a stiff spring and a damper. respectively. for modeling stiction.
(ao + @) represents the break away friction torque which limits stiction. ¢ 15 a
variable representing the relative displacement from the position at which stiction

occurred. and is characterized by
. . I , o
¢=1l—s5)ol0.4) —s—(. {A.150)

By considering the friction of the motor. the state space description of the systemn.

eq.(A.140). is modified as

N = AV BT, -T: . )

i IS
Y= CXN.

where T.. is the electro-magnetic torque of the motor. and 7+ is the friction charac-

terized by eqs.i A.143-A.15301. The svstem model mayv be intuitively illustrated a~

in fig. A.7. where the thick lines represent vector flows. 1, represents the command

voltage signal to the motour. f, (-) represents the function relating the command

voltage and the electro-magnetic torque. i.e..
T, = f. il o). i)t ). CALIO2

and the function f.. depends on specific motor and its operating mode. It ix clear

that the motor friction makes the svstem dynamic model nonlinear and coupled.
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Figure A.7: Dynamic Model of a Sinele Link Manipulator



Appendix B

Experimental Testbed — A Single Link

Robotic Manipulator

B.1 System Configuration

A flexible single link robotic manipulator has been developed in Roboties Lahoratory
of Directorate of Space Mechanics at Canadian Space Agency. as shown in fig. B.1. It
has been serving as an experimental testbed for research on identification and control
algorithms. This system is schematically shown in fig.B.2. whicli is composed of &
personal computer. a direct drive motor with controller. an ultrasonic position and

orientation sensing system. and AD/DA interface. A incremental encoder and a

velometer are also installed in the motor by its manufacturer.

3349
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B.2 Direct Drive Motor and Interface to Com-

puter

B.2.1 Introduction

The actuator of the manipulator is a Dynaserv DMI1130A direct drive DC motor
made by Parker Hannifin Corporation [214]. which is a high torque. low-speed. outer-
rotor tvpe servo motor. A direct drive systemn couples the load directly to the motor
without mechanical speed reducers. e.g. gears and pullevs. which can elininare the
problems associated with speed reducers. such as friction. backlash and rransmission
fextbility.

This motor has following parameters and features 211 .

Outer diameter @ 264 mmn:

Speed : up to 2.0 rp~:

Torque : up to 370 ft-lbs:

Compression loads @ up 1o 900 /hs:

Overhung loads : up to 296 ft-Ihs:

e Rotor inertia : J, =0.142 KNg-m*

Incremental encoder feedback with resolution of 1.024.000 ~fe paire e

sl se

® Analog velocity loop with velocity constant of 1.2566 ==

[t can be operated in following control mode.

o I — PD Typc Position Control
Position Control Mode

P Type Position Control
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. P Type Velocity Control
Velocity Control Mode
PI Type Velocity Control

Torque Control Mode

e Accepts £101" for Velocity Control Mode:
o Accepts =31 for Torque C'ontrol Mode:

The internal control loop of the motor may be schematically shown in fie.B.3.
The motor operating mode can be set by configuring the jumpers in the motor
controller. The signal of the encoder is obtained by computer through an encoder
reader board. which is the Model 53312 Quadrature Encoder Input - PC Card. made
by Technology <0 Inc. 215;. The angular position of the motor hub in degree can

he obtained as

361
Q. o=\ ——Llr/fgfr'r(i. cBLD

1.024. 000

where Vi< the number of pulses counted. The analog voltage signal of the motor
velocity monitor. i VELMONI. is sent into computer throngh a data acquisition
iA'D & D:A)board. which is a RTI-N 15 board made by Analog Devices [ne. 216,

The angular velocity of the motor hub can be obtained as 214;.

Om = Niy - (VELMON(rad/s) . (8.2

i

bals

where A’y = 1.2366 1.". The command voltage of the motor. V. is generated in

the computer and sent out to the motor controller through the same data acquisition
{(A/D & D/A) board. The interface between the computer and the motor controller
1s shown in fig.B.4. The command voltage. 1,.. can be generated in two wavs. with
a joy-stick operated by a human operator. or with an automatic control algorithm

implemented as a computer program. both of them are useful in this work.
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B.2.2 Motor Operating Modes

We are only interested in Torque Control Mode and Velocity Control Mode in this
work. In Torque Control Mode. the torque. T,,. is proportional to the command

voltage. 1. l.e..
T =Kt -1, . tB.3

Consider the dynamic model for a single link manipulator derived in Appendix A.

i.e.. eq.A.151. For the torque control mode. it has

N = AN = BIArl, = Th .
’ B
Y = CX

where X and Y are defined in eq.c A 1370 4. B. and " are defined in eqs.i AT
ALL43). the friction T is defined by eqs.i A 145 A.150). This model 15 tHustrared
in fie.B.5. In experiments, we found that the motor acceleration is too big for
the flexible beam to stand. For example. 1 = 2 17 would cause severe plastic
deformation for the beam. Therefore. thix mode 15 only used in simulation studies
but not in experiments.

[n P Type Velocity Control Mode. the motor angular velocity is proportional to

the command voltage. i.e..
on = Ky'Vo, . iB.5.

where o, represents the angular velocity of the motor hub. Ay is a proportional
constant. In this situation. the motor has an internal control loop to regulate its
angular velocity to be proportional to its command voltage. The parameters of this
internal loop is unknown to us. i.e.. the function f, in eq.A.132 is unknown. The
dynamic model of the sy'stem in this mode is illustrated in fig. B.6. From experiments,
we found that the motor velocity. 5,,,. demonstrates complex nonlinear relationship

with the motor command voltage. 1. instead of being proportional to the commanl
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voltage as suggested in eq.(B.3). However. in our experiments. we treat the whole
svstemn as a black box. and therefore. it 1s not necessaryv to obtain accurate syvstem

dvnamic mode] and its parameters.

B.3 The Flexible Beam

The beam is made of stainless steel. with mass density p = 7.85¢/cm” and Young's
modulus E = 206.7G N,/ m" [23]. and its dimensions are shown in fig.B.7. At one end.
the beam is clamped to the motor hub. which can only be driven in the horizonial
plane. At the other end. the beam is free and may subject to a load. With 1.25mm
thickness in the transverse direction and 30mm in the vertical direction. the beam
is very flexible in horizontal plane and stiff enough in the vertical plane. allowing

the assumption of planar motion.

B.4 Ultrasonic Position and Orientation Sensing

System

This svstem is the 3D Head Tracker made by Logitech Ine. 213" which includes an
ultrasonic transmitter. a receiver. a control unit. power supply. and computer cable,
as schematically illustrated in fig. B.8. where a picture of the ultrasound transmitter
and receiver is shown in fig.B.Y.

The position and orientation of the receiver can he measured and sent to com-
puter through the serial port (RS-232). The transmitter is mounted on the hub of
the motor. while the receiver is fixed at the tip of the beam. being parallel to the
transmitter. The transverse deflection of the tip of the beam can be measured. with
the resolution of 1/230 of an inch [213]. The measurements are updated at the speed

of 50Hz. and the maximal permitted tracking speed of the receiver is 30 inches per
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second [213].
The speed of transverse deflection can be obtained through numerical differenti-

ation of the deflection. i.e..

vit+T)— vt
' .

it +Ti= iB.61

where r(t) is the transverse deflection of the tip of the beam at time instant f.

measured with the 3D head tracker. and T is the time increment.
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1. Flexible Link

2. Direct Drive Motor
2.A. Motor
2.B. Motor Controller
3. Ultrasonic Position and Orientation Sensing Svstem
3.A. Ultrasonic System Controller
3.B. Ulrasound Transmitter
3.C. Ultrasound Receiver

[y

Tip Load of the Beam
Jov-stick for Manual Moror Control
DC Power Source

7. Personal Computer (436-100MHz) :
Including System Controller. AD/DA Interface Board.
and Encoder Reader Board

o> o

Figure B.1: Experimental Testhed — A Flexible Link Mechanical Manipulator
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- Ultrasound Ultrasound
Transmitter Receiver

s 3 ® ™

Ultrasonic Sensor

Controller : : l Flexible Link |

Tip Load

Direct Drive Motor

Motor Controller

Computer

I —

Figure B.2: Schematic [lustration of the Experimental Testhed

~ ™
‘ : Tr
= Motor Controller ' Motor >
OVH
Encoder
Om . . .
Velocity Monitor
i\ J
(Motor)

Figure B.3: Internal Control Loop of the Motor
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Computer

|

— o5V
[ Encoder Board ) @TI Board (AD & D-A) < % <Jo_v-Stick Control
(Alm Bl (GNDy| [fAII L) (AIIHy (ADOH) (AOCM) £2 |
6 7 8 21 5 39 43 < 1
(] 1.2 kQ
13 9 18 17 19 50 =
(0A+i(0B+1(GND) (VELMON) (VIn)  (GND» s3 SV
= < Enable Switch
(Motor ComroIlerj zZ - ._7

Figure B.4: Interface Between Notor Controlier aud Computer

-

i, T T, \ =1\ + BT.
S T oy I

Motor Friction | T7
Model

Om

Figure B.5: Dynamic Model of the Manipulator in Torque Control Mode
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Om

T: \ = A\ + BT; Y .

Motor Friction T,,
Model

Q-

Figure B.6: Dynamic Model of the Manipulator in Velocity Control Maode

580mm ,
|

)

!
0o

17
ol
3
E:
(0N 6)
(ONO)

Figure B.7: Dimensions of the Beam
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—
Receiver |

Computer

Il —

To Parallel Port (RS-232)

Figure B.3: Ultrasonic Position and Orientation Sensing Svstem
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CUltrasound Receiver) CUltrasound Transmitleﬂ

Figure B.9: Ultrasound Transmitter and Receiver
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Thesis Subject Related Publications

Book Chapter

“Stable [dentification and Adaptive Control - A Dynamic Fuzzy Logic System
Approach.” in Fuzzy Evolutionary computation. Pedryvez. W. ed. Boston.
London. Dordrecht: Kluwer Academic Publishers, 1997, pp.223 248,

(with Vukovich. G.)

Journal Publication

“The Dynamic Fuzzy Logie System: Nonlinear System [dentification and Ap-
plication to Robotic Manipulators.™ Journal of Robotic Svstems. [4it, 1997,
pp.391-105.

(with Vukovich. G.)

Conference Publications

e “ldentification of Nonlinear Svstems - A Fuzzy Logic Approach and Exper-
imental Demonstrations.”  Procecedings of 1997 IEEE International Confer-
ence on Systems, Man. and Cybernetic~. Orlando. Florida. Oct.. 1997,

(with Vukovich. G.)

371



332

e “Fuzzyv Control of A Flexible Link Manipulator.”™ Baltimore. Maryland: Pro-
ceedings of 1994 American Control Conference. June 1994, pp.563-574.

(with Vukovich. G.. and Sasiadek. J.Z.)
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