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Abstract

A computer code was developed to implement a numerical model that predicts the
temperature field in and around the core and windings of a natural-convection-cooled
distribution transformer. The computer code also predicts the two-dimensional flow
of transformer oil around the core and windings of a transformer. A key feature of
the presented model is its detailed treatment of the geometry in two dimensions. The
model requires detailed information about the transformer geometry and materials
so that it can predict the effect they have on the temperature field within the trans-
former. A solver was developed based on the additive correction multigrid solver
algorithm so that it could solve this conjugate heat transfer problem.

The mathematical model consisted of a set of differential equations expressing
conservation of mass, momentum, and energy, over a Cartesian domain. The fluid was
assumed to have Newtonian and 'aminar flow characteristics. The energy equation
was modified to allow for conjugate heat transfer between a solid and the surrounding
fluid. A method for modelling the windings as a homogeneous material was also
introduced. The transport equations were discretized using a finite volume approach,
and the pressure-velocity coupling was handled using the SIMPLEC algorithm.

A series of tests were performed to validate the computer code. Then the code
was compared against another transformer model to show that it could model the
general transient temperature trends. A parametric study was conducted to show the
effect of two ambient conditions, and the effect of having the oil viscosity modelled
as a function of temperature, on the solutions. The effect of modelling the core and

windings as a homogeneous region was also explored.

The code was then tested against the ANSI loading guides for overloads. The
results showed that although the maximum hotspot temperatures by the code were
relatively close to those predicted by the loading guides, the maximum oil temper-

i



ature predicted was much lower than ANSI. The difference between the maximum

temperatures was decreased when variable viscosity was employed.
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index for the first control volume in the y direction
index for the last control volume in the y direction
thermal conductivity [W/m K]

length of domain region [m]

inner length of the conjugate benchmark test problem [m]
mass [kg]

mass [kg]

mass flow rate [kg/s]

number of control volumes

multigrid level number

Nusselt number

average Nusselt number

pressure [N/m?

pressure correction [N/m?]

Peclet number
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Prandtl number

rate of energy generated [W]

lagged part of linearlized source term [W]
average heat flow

volumetric rate of energy generated [W/m?]
heat flow [W]

active nodal part of linearized source term [W]
thermal resistance [K/W]

residual of control volume

resistance to convection heat transfer (K/m?W]
Rayleigh number

Rayleigh number for conjugate benchmark test problem
Rayleigh number for protruding heat sources
Reynolds number

grid aspect ratio

Iinearized source term

temperature [K]

average temperature (K]

normalized temperature [K]

wall interface temperature for a control volume [K]
time [s]

z direction velocity component [m/s]

y direction velocity component [m/s]

volume [m?]

width [m]

inner width of the conjugate model [m]
distance in the z direction [m]



Te half the width of the core (or the width of the core in the

symmetrical transformer cross-section view) [m]

z4 width of a duct [m]

z¢ radius of the tank in the Alegi and Black test problem [m}]
Ty total thickness of the windings around the core [m]

y distance in the y direction [m]

Greek Letters

a convective weighting coefficient for upwind differencing

a thermal diffusivity [m?/s]

a absorptivity

B8 diffusive weighting coefficient for upwind differencing

B thermal coefficient of volume expansion [1/K]

r general diffusion coefficient [m?/s]

A measure of field change per step, compared to convergence criterion
6 correction

8z depth of tank [m]

€ relative error

€ convergence criterion

€ emissivity

€L multigrid residual reduction convergence criterion at a level
€s multigrid residual reduction stall criterion

n grid expansion coefficient

6 temperature rise above ambient (T — To,) [K]

K loop count for PVT-loop

xxiv



A solver iteration count

13 specific heat for energy equation, otherwise equal to 1.0
7 absolute viscosity [kg/m s]

v kinematic viscosity [m?/s]

p density [kg/m’|

o Stefan-Boltzmann constant (5.67 x 10~ W/m?K?)

T time constant [hrs]

® boundary condition value

@ general variable (referring to U or V Velocity, T or P’)
é best estimate of general variable ()

w iteration count for a visit at a level in the multigrid algorithm
Subscripts

A+ B Alegi and Black

avg average

B bottom

b boundary

C cold

c conduction

¢ core

c+w core, and coil assembly (windings)

calavg calculated average

crit critical

cu copper

E,W,N,S referring to the nodal quantities to the east, west, north, and south

Xxxv



of the present control volume
e,w,n,s referring to the face quantities to the east, west, north, and south

of the present control volume

eds exponential differencing scheme
eff effective

eq equivalent

f fictitious

f fluid

f film (used for fluid properties)
free free convection only

gen generation

H hot

HV high voltage

HV1 HV winding section number one
HV?2 HV winding section number two
i control volume indexing in z direction

incident radiation

-,

J control volume indexing in y direction
k multigrid block index for z direction
L left

L level

LV low voltage

l multigrid block index for y direction

NE,NW,SE,SW referring to the nodal quantities to the northeast, northwest,
southeast, and southwest of the present control volume

nb neighbour points

0 fluid oil
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Superscripts

S

o

g g

referring to the present control volume

reference to the last control volume of the previous grid region

PVT-loop

right

radiation, radiated
radiation, radiated
solid

surface

specified

steady state

top

tank

uniform grid

coil assembly (windings)
z direction

y direction

surrounding or ambient

mass conservation
iteration number
old

pressure correction
temperature

U velocity
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Acronyms

ACM2d
CACM2d
LGS2d
LUD2d
NX

NY
SIMPLEC

V velocity

surface flux

volumetric

right, or top, region/control volume
left, or bottom, region/control volume
rate

averaged
guessed or old values

Additive correction multigrid solver in two-dimensions
Conjugate additive correction multigrid solver in two-dimensions
Line-Gauss Seidel solver in two-dimensions

LU Decomposition solver in two-dimensions

number of control volumes in the z direction

number of control volumes in the y direction
SIMPLE-Consistent



Chapter 1

Introduction

1.1 Overview

Electric utilities use power station generators to produce electrical power. The volt-
age level varies in the process of conveying the electrical power from the generating
station to the consumer. A transformer at the power station is used to increase,
or ’step up’, the voltage and then transmission lines convey the electrical energy to
a substation. The transformer, or transformers, at the substation reduce, or ’step
down’, the voltage. Once the voltage is down to distribution levels, the electrical
energy is distributed to customers via a distribution grid (7].

Transformers are stationary devices capable of converting alternating current (AC)
energy from one voltage level to another. While power transformers aid in the trans-
mission and sub-transmission of high voltages, distribution transformers reduce the
voltage, typically between 4 kV and 35 kV, to a level used by the customer (480 V
or less).

Figure 1.1 shows the main components of a natural convection oil-cooled, distri-

bution transformer. The transformer consists of a closed magnetic circuit (the core)

1
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Transformer Qil

Figure 1.1: Simplified cross-section of a natural convection oil-cooled distribution

transformer.

with two coils, or windings, of insulated conductors wound around the core. The cur-
rent in the input, or primary, coil creates a magnetic field. This field induces a voltage
across the output, or secondary coil. The secondary coil of a distribution transformer
is designed to deliver energy at a lower level of voltage relative to the input voltage.
For a distribution transformer, the high voltage winding is the primary coil and the
low voltage winding is the secondary coil. The low and high voltage windings are
shown in Figure 1.2.

As the current passes through the copper or aluminum windings, energy is lost
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Windings

Figure 1.2: Relative location of the high (primary) and low (secondary) voltage wind-
ings.

because of electrical resistance power losses (Power = Current? x Resistance). The
energy losses raise the temperature of the windings. Various methods of dissipating
energy to the surroundings are employed to cool the windings. The temperature rise
is controlled by transferring energy generated from the transformer to a cooling fluid,

such as oil or air.

Excess heating accelerates the aging of the transformer insulation. When the oil-
paper insulation is subjected to thermal stress, the oil and paper components of the
insulation may be irreversibly damaged. The thermal stress reduces the mechanical
and dielectric performance of the insulation [22].

There is a need to optimize the design and application of transformers. Manufac-
turers and utilities try to reduce the capital and operational costs of transformers.

Since modern transformers are believed to be underrated and therefore possess some
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inherent reserve capacity beyond the nameplate rating, many utilities wish to es-
tablish higher loading capability limits for either operation during normal system
conditions, during emergencies, or both. Although the thermal phenomena within a
transformer are not fully understood, transformers are used well above their name-
plate ratings. The risk is felt to be acceptable and justified in order to maximize the

economic capacity of a transformer [40].

While attempting to maintain the transformer’s electrical performance, the de-
signers must try to decrease the weight of the transformer and to increase the heat
transfer from the windings and core. The size and position of the core and windings,
the volume of oil, and the size of the tank all affect the rate at which heat is removed
from the windings. Ducts are usually placed within the windings to increase the heat
transfer by allowing the oil to flow over more winding surface area. The conducting
and insulating materials may vary in composition and proportion between transform-
ers. The design of the transformer must also account for changes in the ambient
conditions, including parameters such as incident solar radiation, and ambient tem-
perature and air flow. The load on the transformer may be either constant, or cycle

over a period of time.

1.2 Literature Review

In order to provide some background to the present work, a review of previous research
is given in this section. The section begins by giving an overview of existing litera-
ture. A literature review is then given for each type of investigation: experimental,
correlation models, lumped models, equivalent circuit models, and finite element and
finite difference based models. This is followed by a review of the detailed theoretical

work done on the transformer components.
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1.2.1 Overview of Previous Work

There have been several models derived to predict the hotspot temperature of the
transformer windings. These models range from simple correlations to complicated
three-dimensional finite element models. Since it is difficult to obtain direct measure-
ments of the hotspot temperature, no models have been thoroughly validated.

Previous research may be grouped into five categories. They are experimental
work, transformer correlations, lumped models, equivalent circuit models, and finite
element and finite difference models. An example of a transformer correlation is the
ANSI loading guide [3]. Correlation models tend to simplify the problem to the point
where changes in the geometry have little effect on the overall solution. Lumped
models improve upon transformer correlations, but they still do not account for the
exact physical dimensions of the transformer. Coupled flow and thermal circuits
take the principles of lumped models a step further by including more transformer
components in the model. In those models, attempts are made to include the effects
of the coolant flow around the core and windings and through the ducts. Detailed
numerical models in the literature further divide the model but they still do not
calculate the detailed oil flow field around the transformer.

It is difficult to determine experimentally the temperature field within the trans-
former tank. When sensors are inserted into the transformer they disturb the nor-
mal winding construction and therefore alter the thermal properties of the windings.
Computer models can help in the prediction of the temperature field. Although most
models give overall values such as hotspot temperature and top oil temperature, a
detailed numerical solution may help to improve the design. Past computer models
have divided the transformer into small sections and produced an approximate solu-
tion using a finite element method, but these computer models only use correlations

to model the convective heat loss from the core and windings to the oil, from the oil
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to the tank walls, and from the tank walls to the environment.

The following subsections present brief descriptions of the existing solution meth-
ods used to study the temperature, velocity, and pressure fields within transformers.

1.2.2 Experimental Investigations

The multiflow method presented by Carruthers and Norris [10] in 1969 determined the
hottest-spot temperature based on measurements made during a single temperature-
rise test on a transformer. Their work showed that the multifiow method would
allow for higher average winding-temperature rises without any increase in either the
hottest-spot temperature or the hottest-oil temperature. Rele and Palmer [57] devel-
oped an improved method of measuring and calculating temperature rise test data
by statistical curve fitting the data. The method developed gave better agreement
between measurement and calculated results than previous methods.

Aubin et al. [4] developed new methods for measuring the hottest spot temperature
in a power transformer. Several methods were considered, but only two measuring
approaches were selected for testing. The first method used a heat degradable com-
pound which was added to the transformer oil. A disadvantage of this method is the
tendency for the compound to deposit on the windings since it could not be dissolved
by the oil. The second method involved taking an oil sample from the cooling ducts.
A Teflon tube piped the oil away to a location where the temperature could be mea-
sured with a thermocouple. This method required that the hottest spot location must

be known in advance.

In 1981, Beavers [6] showed that hot-resistance measurements can be used to
determine the effective oil temperature and time constant of each individual winding,
as well as the winding temperature at the instant of shutdown. The method Beavers
described assumed that the windings cool exponentially from the highest average
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temperature, at the instant of shutdown, to the average oil temperature. The resuits
of his model agreed closely with the American Standards Association Test Code.

Buchan [8] reported that the presence of hot spots can be detected by the con-
tinuous measurement of dissolved carbon dioxide gas in the transformer oil. The
production of carbon dioxide from the oil/paper insulation speeds up dramatically at
a threshold temperature of 140°C.

McNutt et al. [40] embedded fiber optic temperature sensors directly within the
windings of a large auto-transformer to measure hot spot temperatures under a va-
riety of loading conditions. The experiment demonstrated that accurate conductor
temperature data can be obtained, but that probe insertion methods are critical.
The data calculated can be used with industry loading guide equations (ANSI/IEEE
C57.92-1981) to improve the prediction under any loading conditions.

Pierce [47] conducted a comprehensive thermal test program on a 2000 kVA cast-
resin dry type transformer. Three hundred embedded thermocouples were used to
determine the hottest spot temperature and to obtain data to develop mathematical
models. The test data indicated that the hottest spot temperature allowance used
in the IEC standard is too low, and the IEEE standard appears conservative up
to a 115°C average winding temperature rise. The data indicated that the ratio
of hottest spot temperature rise to average temperature rise at different loads only
varied slightly. Pierce recommended that the ratio be different between self-cooled
and forced-air transformers. The time constants were also found to be different for

the high voltage winding and the low voltage winding.

Dooher and Elliott [16] measured the transient and steady-state responses of a
three-phase 30-MVA (megavoltampere) natural convection type, non-directed flow
power transformer. The temperature responses were measured under two oil cooling

conditions - natural air (OA) and forced air convection (FA) - and under a third
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condition with a forced oil auxiliary cooling system (FOA). The results show that
the industry loading guide equations developed by IEEE (ANSI C57.92-1981) do not
provide accurate winding temperature predictions under these conditions. The data
also showed that the top oil temperature is not an effective indicator of transformer
operating conditions. The temperature in the windings was found to vary nonlinearly
from bottom to top. The auxiliary cooler significantly reduced winding temperatures,
but the oil low must be optimized to maximize heat transfer. Dooher and Elliott
finally conclude that an auxiliary cooling device can safely extend the rating of a large
core-type transformer beyond its nameplate rating.

Nauert [44] mentions that by 1994, Union Electric Co. (U.E.) stopped using only
a single specification of nameplate rating for a transformer. Instead they now specifiy
load profile, ambient temperature, acceptance criteria, and the means of evaluation.
Lahoti and Flowers [36] developed an evaluation of transformer loading capabilities,
including the combined effect of thermal aging of insulation, short circuit stresses,
and transient overvoltages, as well as limitations on the transformer components

other than the windings.

Several researchers have investigated the effect of sub-zero temperatures on trans-
formers. Barrios and Council [5] presented a method for establishing winter loading
guidelines based on data collected from several overloaded transformer runs at differ-
ent ambient temperatures. Eastgate [18] examined the effect of sub-zero transformer
operation by running detailed heating cycles for a typical range of distribution trans-
formers. They concluded that oil-immersed transformers may be freely used down
to temperatures of —20°C. Operation in cooler temperatures may be cause for con-
cern. Au Yeung and Walker [66] validated the extrapolation of the ANSI guidelines
on the loss of insulation life of distribution transformers during cold load pickup at
low ambient temperatures. After testing the transformers at ambient temperatures
between 0°C and —40°C the researchers concluded that the ANSI guidelines are con-
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servative when predicting transformer life expectancy at low ambient temperatures.
Lampe [37] explored the use of power transformers and shunt reactors at tempera-
tures below —50°C, and concluded that cold starts should be avoided and that only
approved naphtenic oils with low viscosity should be used. For distribution transform-
ers, Miller et al. [41] attempted to predict the cold load peak duration produced from
electrically heated homes after a power outage. A “lumped heat” capacity method is
used to predict the magnitude of the cold load peak for a given home. A hypothetical
subdivision of ten homes of various sizes was modelled, and the effect of the cold load
on a 100 kW distribution transformer was determined.

The experimental results found in literature tend not to contain enough informa-
tion to be used in a numerical model. For the present work, the important information
that can be gleaned from these sources is that top oil is not a good indicator of hot

spot temperature, and that each winding has a different time constant.

1.2.3 Correlation Models

A simple transformer model is made up of a set of correlations. The correlations may
model transient and steady-state conditions using the results of previously tested
models. The most well known set of transformer correlations is the ANSI Standards
[3]. These loading guides are used to estimate the top-oil rise, the hottest-spot tem-
perature, and the percent loss of life of the transformer based on the transformer
nameplate rating, ratio of losses between the windings and the core, time constant of
the transformer unit, the hottest-spot conductor temperature rise over oil, and the
load profile expected to act on the unit.

Although the ANSI Standards are widely used, the loading guide approximations
cause transformers to be over designed [48]. The temperatures predicted by the ANSI
guide are well above the actual values. In an attempt to increase the accuracy of the
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standards, many modifications have been published. Pierce wrote several papers
describing his improvements to the ANSI loading guides. These modified loading
guides accounted for oil viscosity and electrical resistance changing with temperature,
cooling duct oil rise, and the hot spot location [48]. An experiment was conducted
on a full size winding assembly imbedded with thermocouples. The results of the
experiment were used to improve the existing winding loading guides.

Another modified prediction model was designed by Pierce [52, 49, 53] based on
analysis and testing to account for the type of liquid coolant, cooling mode, winding
duct oil temperature rise, resistance and viscosity changes, and ambient temperature
and load changes during a load cycle. The equations make use of both the top and
bottom oil temperature rises. They were developed based on fluid flow and heat
transfer principles. The improved loading equations give a more accurate method of
predicting liquid and winding hottest spot temperatures in liquid-filled transformers
during transient loading conditions. The improved loading equations predict more
loading capacity for non-directed FOA units, and less loading capability for FA rated
units during high, short duration overloads. The equations were verified using test
data. With this model, Pierce attempted to account for the time lag between the
top oil temperature rise and the oil temperature rise in the winding cooling ducts by

using a transient forward marching finite difference calculation procedure.

Pierce [50] also reported that six full size test windings were manufactured with
imbedded thermocouples. On these windings, 133 test runs were performed to obtain
temperature rise data. Pierce suggests that a constant ratio of hottest-spot winding
temperature rise to average winding temperature rise should be used in product stan-
dards for the insulation temperature classes. A ratio of 1.5 is suggested for ventilated
dry type transformers above 500 kVA. Different hottest spot temperature allowances
should be used for ventilated dry type transformers 500 kVA and below.



CHAPTER 1. INTRODUCTION 11

In 1984, Buchan and Green [9] suggested that the constants used by the ANSI
loading guides needed to be modified. They developed new constants based on their
theoretical work to make a more versatile and accurate model. A theoretical analysis
of heat input and heat flow by conduction, convection, and radiation, provided a
guide for adjusting the ANSI model. Heat run tests were performed on four different
transformers - three with a 10 kVA ratings and one with a 25 kVA rating. Their
experimental work showed that they improved the ANSI loading guides from an
accuracy of +10°C to within £2°C of measured results. They also describe the

development of a more versatile and accurate model.

In 1983, Wilde [63] analyzed the characteristics of residential customer loads and
determined the effect of these loads at low ambient temperatures. A first order
thermal model is used. Two outages during the winter of 1982 on the Ottawa Hydro
system were used to validate the model.

1.2.4 Lumped Models

Several researchers have tried to improve upon the predictions of the ANSI loading
guides by designing lumped models. The model consists of several components, and
energy conservation is applied to each part. The model is called “lumped” because
the entire system is the sum of a few homogeneous, isotropic components. The
isotropic components may represent many smaller nonhomogeneous objects that are
lumped together to simplify the problem. For instance, the windings that are made
up of the conducting material, oil, and insulating paper, are lumped together for
purpose of simplifying the model. The set of energy balance equations is used to
model the transient heat transfer once the appropriate boundary conditions have

‘been prescribed.

Allen and Childs {2] designed a disc type windings transformer model made up
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of thermal and fluid flow circuits. The thermal model presented contained several
finite difference and lumped models that are connected by a thermal circuit. The
electrical analogue network calculates the oil flow rate in the duct circuits. The two
circuits are solved by iteration. Allen and Childs found very good agreement when
they compared their model with their experimental results.

In 1990, Alegi and Black (1] developed a thermal model for predicting the real-
time temperatures of an oil-immersed, forced-air cooled transformer. The thermal
model consisted of a set of three differential equations that were used to solve for
the time-varying temperatures of the core and coil assembly, the oil, and the tank.
Expressions for the convection heat transfer coefficients are used between the compo-
nents even though these correlations are only for steady-state problems. Heat transfer
by incident solar radiation, thermal radiation exchange with the environment, and
ambient convection cooling the tank and the cooling tubes, are all included in the
model. Only the experimental results for a 75 kVA transformer were used to validate
the theory. The model was tested with two step loads, each applied after the trans-
former achieved a steady-state condition. The run was performed indoors without
a cooling assembly, and without incident solar radiation on the transformer. The
predicted results for the run were conservative by approximately 5°C at steady state
when compared with the temperature measurements. The model was then used to
analyze a 5,000 kVA transformer run for a 24 hour load cycle. This transformer had
a cooling assembly and was exposed to incident solar radiation.

1.2.5 Equivalent Circuit Models

An improvement on the lumped sum model is the equivalent circuit model. The
transformer components are divided up into smaller pieces so that the temperature

can be predicted in more detail. Each piece is coupled by the heat transfer and
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convective flow between the pieces.

Imre et al. [29] modelled the coupled problem by designing both a mass flow and
a heat flow network to determine the steady state temperature field in a naturally oil-
cooled disc-type transformer. While the mass network was for non-isothermal flow
conditions, the heat flow network model of the coil was prepared so that the heat
capacitance of the cooling media flow corresponded to the branch fluxes in the mass
flow network. The networks were solved together by iteration.

Yamaguchi et al. [65] presented another method of calculating the flow rates of
circulating oil in self-cooled transformers. The flow rate is calculated by equating the
pressure loss with the thermal driving force in a circulating loop. The pressure loss
and the velocity distribution in the horizontal ducts were calculated using an oil flow
circuit in the winding. The calculated and measured results agreed within 15% when
compared with a testing apparatus.

In 1984 Lindsay [39] modelled an oil-filled transformer as a fifth order system.
The transformer was considered to consist of five parts: the high voltage windings,
the low voltage windings, the core, the oil, and the tank. A systematic procedure was
developed to determine the eight thermal conductances of its analogous circuit. The
thermal conductances varied as a function of the mean temperature rise of the oil. The
model was set up to predict the response of a transformer to a typical daily load cycle.
The model was tested on the steady-state simulations of two identical pole-mounted
transformers rated at 10 kVA, 230/115 V. The predicted rise in temperatures agreed
well with the actual values, even when the load was changing rapidly. The weakness
of this model is that the thermal conductances must be obtained as a function of
the mean oil temperature rise through previous experimental results on a specific

transformer.
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1.2.6 Finite Element and Finite Difference Models

Finite element or finite difference models represent a further refinement of the equiv-
alent circuits models. The transformer, tank, and oil, are broken down further into
smaller elements or volumes. Although differing in mathematical approach, each
method defines a smaller region (smaller than the lumped model) called a finite ele-
ment or a control volume. A governing differential equation is solved discretely over
all the smaller regions to get a higher resolution of the local temperature field. This
method is also used to calculate the details of the fiuid flow.

Szpiro et al. [61] only modelled the flow of the transformer coolant through disc
winding sections of five and eight ducts. The model uses two-dimensional Cartesian
momentum and the mass conservation equations. The flow is calculated using the
stream function-vorticity method. A central difference finite difference approximation
is used for the two-dimensional flow calculations in the ducts.

Hwang et al. [28] compared winding temperature predictions from a finite element
based method with the measured values of a 10 kVA oil-immersed wire-wound single
phase distribution transformer. The results of several 60 Hz tests validated the pre-
diction algorithm and illustrated that the position of the hot-spot remains basically

unchanged when harmonics are introduced in the numerical model.

Douglas and Jessee [45] presented their own model for analyzing high-frequency
transformers in 1992. Their model is based on the simultaneous solution of coupled,
nonlinear thermal and electromagnetic equations. The transformer is modelled as
two-dimensional and axisymmetric. Natural convection in the air gaps between the
windings and the core is neglected. A quasi-steady formulation of the heat-conduction
equation eliminated the time dependency of the thermal problem.

In 1994, Carstea [11] developed a finite element method for calculating the tem-
perature field in natural and forced flow, oil-immersed transformers. Cylindrical
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coordinates were used to model the steady-state temperature rise of the transformer
windings. The heat transfer within the ducts was assumed to be by conduction only.
Convection heat transfer from the core and the windings to the oil was modelled by
a correlation that employs an average Nusselt number. Radiation heat transfer was
neglected, but the model accounted for oil property changes with temperature.

Pierce [51] presented a three-dimensional finite difference model for the thermal
conduction within a transformer core and windings. Three different thermal conduc-
tivities were used to represent the nonhomogeneous nature of the windings. The code
accounted for radiation and convection using correlations for heat transfer from the
windings and the core to the oil. Test data from six layer type test windings and a
three phase 2500 kVA prototype was used to refine the model. The purpose of the
windings test was to obtain a correlation for the local heat transfer coefficient in the

cooling ducts.

1.2.7 Detailed Theoretical Analysis of Transformer

Components

There has been extensive research conducted for each transformer component. Infor-
mation about components, such as duct heat transfer and oil properties, is important
to the understanding of the transformer heat transfer physics. This section gives a
brief overview of the work in this field.

Stenkvist [59] decribed the oil flow in large oil-immersed transformers. Both forced
oil cooling and natural oil cooling were described in detail, based on experimental
results. An attempt was made to explain the behavior of the oil flow.

Langhame et al. [38] compared the test results of a reference naphthenic oil and
an experimental paraffinic oil at low temperatures. The test results show that the

viscous properties of the parraffinic oil are unacceptable for use below —20°C.
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Kunes [34] conducted several tests to obtain data on the characteristics of ther-
mosiphon oil flow in transformers. The paper reports that there is a correlation
between the relative elevation of the heat source and the heat sink, and the top-to-
bottom oil temperature difference. Good oil circulation occurs when the transformer
core-and-coil assembly is positioned low in the tank. The tests confirm that when the
transformer is positioned high in the tank, poor oil circulation results in high top-to-
bottom oil temperature differences and a high hot-spot temperature rise. Kunes also
states that only the oil adjacent to the hot and cold surfaces is active in heating and
cooling the oil. The bulk of the oil does not take an active role in the heat transfer

process. A recommendation to reduce the central oil column is given.

Taylor et al. [62] studied the heat-transfer properties of cooling ducts in natural
convection transformer coils. Two types of windings were investigated: vertical-layer
winding and disc winding. Taylor et al. stated that their data may be used to predict

the hot-spot temperature of a transformer in service.

Moore [43] discussed in detail the radiation exchange between the environment
and a corrugated body such as a transformer tank. Moore concerned himself with
finding the total radiation per unit length from a rectangular slot that is infinitely
long, 2 inches wide, and 8 inches deep.

Montsinger and Wetherill [42] validated some test results on transformers sub-
jected to service conditions using radiation theory. The test results show no advan-
tage for light colors on lowering the transformer temperatures in a hot climate. The
radiation calculations accounted for the ratio of the area of the surface exposed to the
sun to the total surface dissipating energy, the difference in thermal capacities, and
the case where the test piece is also dissipating energy. Montsinger and Wetherill con-
cluded that the color of the tank paint may only affect the transformer temperature
by one or two degrees centigrade when the tranformer operates in direct sunlight.
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Gupta et al. [22] summarized the state of insulation aging about insulation life
and remaining life of operating power transformers. Aging mechanisms such as ther-
mal, electrical, mechanical, and environmental are summarized, as well as general
information about the prediction of insulation life.

Rele [56] reviewed the basic principles of transformer thermal design. The focus
was to reduce the cost of cooling the transformer without exceeding temperature
limits. Rele presented calculations assuming that the top oil temperature in every
winding is the same as the top oil temperature in the tank. Experiments were per-
formed on a 49 MVA single-phase prototype transformer.

1.3 Scope and Objectives

There are many models attempting to predict the phenomena inside the transformer.
Some are based on correlations, simplifying the geometry of the problem and reduc-
ing the parameters to one time constant. Lumped-sum models improve upon these
approximations but still oversimplify the transformer model by not accounting for the
position of the transformer relative to the bulk of the oil coolant and the tank, and by
considering only one temperature to be representative of a whole region. Equivalent
circuit models couple the heat fluxes between components, and some even attempt to
account for the fluid flow, but they do not contain enough detail of the transformer
to properly capture the thermal behavior of the system. Previous work with finite
element and finite difference models has attempted to model the transformer with
more precision by accounting for the physical dimensions of the core and windings.
However, none of these models has accurately resolved the flow of oil around the
core and windings simultaneously with a temperature field calculation. The flow of
oil is the principle medium of energy dissipation. A more accurate prediction of oil
flow and heat transfer in the oil should significantly improve the transformer thermal
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model.

Although there are many models to predict either the average or hotspot tem-
peratures of transformers, they all neglect the effect of many geometric details and
thermal properties. But even with their considerable assumptions some models still
produce reasonable hotspot temperature predictions. Nevertheless, a detailed model
is needed to improve the accuracy of hotspot temperature and location predictions
so that manufacturers and utility companies can economically maximize the use of a

transformer, and designers can assess the effect of geometric and material changes.

The objective of the thesis is to develop a transformer model that improves the
prediction of hot spot temperatures within the distribution transformer. The oil
flow field must be calculated in conjunction with the temperature field of the entire
transformer in order to simulate the conjugated heat transfer problem. The modelling
method must be able to calculate the transient response of the transformer to various
load and ambient conditions. The model must also be able to predict the effect of
winding geometry, tank size, and different insulating materials, including the oil type,
on the hotspot temperature.

There are many parameters that must be considered in the thermal design of a
transformer. These parameters include the geometry of the tank and the transformer,
the thermal and physical properties of the cooling fluid, the core, and the windings and
their insulating material, and the ambient conditions. Designing a transformer model
that can simulate the thermal effect of every dimension of the transformer would take a
prohibitive amount of computer time. Therefore, the scope of the thesis was narrowed
to simplify the modelling and analysis of a transformer run. Figure 1.3 defines the
key dimensions of the naturally oil-cooled distribution transformer studied in this
work. The cross-section shown does not represent the cross-section throughout the

transformer, but instead it corresponds to the cross-sectional slice shown in Figure 1.4.
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Figure 1.3: Dimension nomenclature for the naturally oil-cooled pole-mounted distri-

bution transformer cross-section.

This slice may be used to model an entire transformer because it demonstrates all the
heat transfer modes found within the entire naturally-cooled transformer assembly. It
is assumed that this simplified model of the transformer will be a reasonable starting
point for the development of a detailed model.

Figure 1.5 shows a magnified view of a transformer windings cross-section to
illustrate the individual dimensions of each winding and the ducts. The geometries
and properties of the windings play an important role in determining the temperature
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Figure 1.4: Several views of an oil-immersed distribution transformer.
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field. The model must be sensitive to these parameters since they may affect the

CHAPTER 1. INTRODUCTION

hotspot temperature and location.

Xulv

Figure 1.5: Magnified view of the transformer windings cross-section.
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1.4 Outline

The remainder of this thesis is arranged as follows: Chapter 2 presents the mathe-
matical model based on the Navier-Stokes and energy conservation equations in two
dimensions. The theory behind the solid regions and the buoyancy force acting on
the fluid is introduced.

Chapter 3 presents the method used to generate the computational grids used
in this work. The basic nomenclature of the grid system, and a general method of
specifying the control volumes within grid regions, is described.

Chapter 4 describes the numerical model. The integration of the governing equa-
tions and the derivation of the algebraic equation set are presented. There is a detailed
discussion given for each of the equation terms. A method of coupling the temper-
ature and velocity fields is described in detail. Special regions within the grid that
represent the solids are also discussed.

Chapter 5 presents an explanation of the numerical solution method. The solvers
that were used are discussed, including modifications done to the additive correction
multigrid solver.

Chapter 6 presents test problems used to validate the computer code. Problems
with known results or published solutions are solved. Each test is chosen to validate
particular aspects of the code and the methods used. This chapter also details the
steps that were taken to make sure that the code could solve the specified transformer

model.

Chapter 7 presents and discusses the results of the transformer application. The
chapter shows the model simplifications and assumptions used for the thesis and
presents and discusses the results of the simulations performed.

Chapter 8 provides a summary of the main results in this work and draws relevant
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conclusions.
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Chapter 2

The Mathematical Model

2.1 Introduction

The fluid flow and heat transfer in a transformer is modelled in this work using the
Navier-Stokes equations for incompressible flow, and the conservation of energy equa-
tion. The mathematical model used in the thesis consists of four equations: energy
conservation, U and V-momentum conservation, and mass conservation. The solution
of the energy equation produces the temperature field, and the momentum equations
determine the velocities in the fluid. The mass conservation equation ensures that
fluid entering a control volume also leaves the control volume and is used as the

constraint on pressure.

The equations are restricted to two-dimensional, incompressible, laminar flow of
a Newtonian fluid. The properties are held constant except in selected cases where

the oil viscosity is prescribed as a function of temperature.

24
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2.2 Governing Equations

The energy conservation equation is given by Equation (2.1). The first term on the
left-hand side of the energy conservation equation represents the energy storage. The
second and third terms represent the advection of energy by the moving fluid. On
the right hand side of the equation, the first two terms are the energy diffusion terms,

and the last term represents the energy generation per unit volume.

cpat(pT) + C,,a (pUT) + Cp (pVT) = 5 (kzaz) (kv%) + Q’m
@2.1)

The momentum conservation equations in two-dimensions, Equations (2.2) and (2.3),
are used to calculate the velocity fields. The first term in each equation represents
the change in momentum over time. The second and third terms on the left-hand side
of the equations represent the advection of momentum. The first two terms on the
right-hand side of the equations account for the net viscous forces, and the third term
represents the pressure forces. The last term of the y direction momentum equation

represents the bouyancy force used when solving a natural convection problem.
0 i} 0 0 ( aU a( oU oP
7 PYU) + 5 (bUU) + gg(PVU) = 3;( 5;:) + E(ﬂgg) -5 (22

FOV) + mGUV) + ZOVV) = ZS) + 2g)

aP
- 'é'y‘ + P89 (T — To) (2.3)

Natural convection is the body force driving fluid flow within a naturally oil-
cooled transformer. A bouyancy force is the net effect of body forces acting on a
fluid in which there are density gradients. For this model, the density gradient is
induced by a temperature gradient in the fluid, and the body force is due to the
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gravitational field, g, acting in the negative y direction. The bouyancy force in the
y direction momentum equation is modelled by using the Boussinesq approximation.
In that term, po, is the average fluid density, 3 is the thermal coefficient of volume
expansion, and T, is the average fluid temperature.

Equation (2.4) is the continuity equation. In that equatino, the first term accounts
for the mass storage, and the other two terms describe the change of mass flow in

both the z and y directions, respectively.

20) + 2 00) + Z(V) = 0 24)

2.3 General Boundary Conditions

Boundary conditions are necessary to solve the four differential equations. Four
boundary conditions are needed to define the two-dimensional domain for each equa-
tion because the U, V, and T equations have elliptic forms. Elliptic phenomena are
such that the conditions at a given location are influenced by changes in conditions

on either side of that location.

There are three types of boundary conditions that are common to most heat
transfer models: Dirichlet, Neumann, and Newton boundary conditions. Dirichlet
boundary conditions exist when the boundary value or function is specified. For the
energy equation, it is expressed as

Ty = Tec (2.5)
Similiarly, for velocity it is expressed as

(2.6a)
(2.6b)

Uy
Vb

[
)

[
§<
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for each of the U-velocity and V-velocity momentum equations respectively.

The Neumann boundary condition specifies the field gradient on the boundary.
In the energy equation the heat flux, gj,.., at the boundary is expressed as

. dar
@ = -kEI = Qe 2.7
For velocity, the Neumann boundary condition is expressed as the spacial change of
velocity at the boundary.
W _w g, W& -
dz dT | spec Y Y lspec

These conditions are often used to specify symmetry and fully developed flow by
setting the velocity gradient to zero.

Finally the Newton, or mixed, boundary condition describes the relationship be-
tween the gradient and the specified value. Only the energy equation uses this bound-
ary condition type because it can be used to specify energy convection at the outside
surface of the domain. Convective heat transfer at a boundary is specified by the

equation,

p aT
@ = kL] = heo(Ts ~ To) (2.9)

2.4 Transformer Model Boundary

Conditions

Figure 2.1 shows the boundary conditions of the transformer model. The bottom,
top, and reight side are modelled using a Newton boundary condition. Although the
top, bottom, and right side all share the same ambient temperature, each has its
own convection coefficient. The left side is modelled as insulated since symmetry is
implemented to simplify the model. Therefore, the left side is a Neuman boundary
condition with the prescribed heat flux equal to zero.
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Figure 2.1: External boundary conditions for the transformer model.

2.5 Internal Boundary Conditions

A conjugate heat transfer problem is defined as one consisting of both fluid and solid
regions. The energy distribution within the solid is dependent on the energy distribu-
tion in the fluid, and vice versa. A solid region is defined as a region through which
thermal energy is exchanged only by conduction. The transformer model consists of
solid regions that represent the core and the windings. The rest of the domain is
made up of the transformer oil.

2.5.1 Energy Equation

The energy equation does not need to differentiate between a solid and a fluid as
long as the correct thermal properties are used. Energy is conserved across the solid-
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fluid interface and the temperature is continuous at the interface. Thermal contact

resistance is neglected.

Figure 2.2: Internal boundary conditions for flow along solid regions.

2.5.2 Momentum Equations

The momentum and continuity equations are only solved in the fluid regions because
there is no motion in the solid region. The internal boundary conditions are imposed
on the surface of the solid-fluid interface. Figure 2.2 illustrates that the boundary
conditions are modelled by setting Dirchlet boundary conditions, U,pe. and Vi,
equal to zero on the surface of the solid.



Chapter 3

Grid Generation

3.1 Introduction

In order to derive algebraic equations from the governing partial differential equations,
the solution domain must be divided up into control volumes. This chapter describes
how the domain is divided into control volumes. The collection of control volumes
in the solution domain is also called the computational grid, or simply the grid. The
geometric quantities defined for the grid are used in Chapter 4, which describes the

discretization of the mathematic model for a typical control volume.

3.2 The Grid Layout

The simplest grid to generate would be one that has uniform control volume spacing.
However, that type of grid is limited by how well you can resolve the grid in areas
of strong gradients. If a portion of the domain needs refinement then the entire grid
is refined. This is computationally expensive since very large numbers of control

30
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Figure 3.1: Dividing the domain into grid regions (dark lines) made up of control

volumes (finer lines).

volumes are required to solve the problem. Computational effort increases with the

number of control volumes.

In order to reduce the number of control volumes needed, a grid generator was
developed that can produce non-uniformly spaced grids. This grid generator allows
more control volumes to be placed where needed without having to increase the grid

resolution of the entire domain.

To isolate the areas where more control volumes are needed, grid regions were
developed. A grid region is a subdivision of the domain where the grid may be
specified. Figure 3.1 shows an example of a duct model being broken up in the
y direction into three grid regions: the top, middle, and bottom regions. Each of
these regions represents a grid with the same rate of grid expansion between control
volumes (ie. the top region uses one grid expansion value to determine the size of
control volumes in the y direction). The top and bottom regions are used to more
accurately model the higher velocity gradients found near the walls. The top region
starts with a very fine control volume grid near the wall, and then expands to a coarser
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grid. The middle grid is modelled with uniform control volumes. The bottom grid

region is the mirror image of the first grid region. For more complicated structures,

as shown in Figure 3.2, the grid in both the z and y directions is broken up into

many grid regions before being further divided into control volumes. It is hoped that

by using a non-uniformly spaced grid, and placing control volumes where they are

expected to be needed, that the number of control volumes needed for the problem

will be reduced.

It is desirable to limit the expansion factor between neighbouring control volumes

to a value less than two or greater than one half for reasons discussed in Section 4.4.
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3.3 Grid Regions

Inside a grid region, control volumes are either expanded or contracted along the
length of the region. Each grid region can only perform one type of expansion or
contraction. For simplicity, the term grid ezpansion is used for both expansions
and contractions. There are four types of grid region expansion: uniform grid, grid
expansion from the first control volume, grid expansion from the last control volume
of the previous grid, and grid expansion based on the last control volume for the
current region. The following subsections describe all four region types.

3.3.1 Uniform Grid

The uniform grid region is the most common type. Once the length of the region,
L., and the number of control volumes, N;, for the x-axis are known the size of the

control volumes is calculated from the equation,

L.

= 31)

Az

Figure 3.3 shows a typical uniform grid region in the z direction. The size of the

control volumes in the y direction are calculated in a similar manner.

=
o ox, ax,

Figure 3.3: A typical uniform grid region in which all values of Az are equal.
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Figure 3.4: A typical expanding grid region where Az is a factor larger than Az;.

3.3.2 Grid Expansion from the First Control Volume

Unlike a uniform grid, a non-uniform grid allows for finer grid resolution where it
is required. The expansion, or contraction, of the grid in a grid region is shown in
Figure 3.4. The second control volume, Az, is a factor 7, larger than Az;. This can

be written as
A:z:i = M A-’Bi-1 (3'2)

where 7. represents the grid muitiplier for the z direction and ¢ indicates the current
control volume. The grid multiplier can either expand the grid with a value greater
than 1.0, or contract the grid with a value below 1.0.

Grid expansion can have one control volume specified as a reference to calculate
7. This could be any control volume in the grid region. The total length of a region
is defined as the sum of control volume lengths. When the expansion is referenced to
the first control volume, then the total length of the region equals

Ny
L. = ) Az (3.3)
i=1
If the control volume length, Az;, is defined as

Az; = Any(n:)" (3.4)
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Then

Nx
L = Z_;Azl(nz)‘-‘ (3.5)

The region type, grid expansion from first control volume, has several specified
parameters. These are the region length, L., number of control volumes, N;, and
starting control volume length, Az,. Based on this information, the value of 7. is
calculated for the r region. The Newton-Raphson Method is used to solve Equa-
tion (3.3) for n.. Equation (3.6) shows the equation used in the iterative solution for

Nz-

N, ‘
{ Z Axl("z,m—l)'-l} -~ L,
=1

Ny
> Azy(i — 1)(mem)

=1

(3.6)

Nzm = Mem-1 —

The term, 7z m-1, refers to the solution of the previous iteration, or the initial guess
when m = 1. The value of 1, ,, is determined after iterating Equation (3.6) anywhere
between five and thirty times to obtain a relative error, €, of 1.0 x 10~5. The relative

error is calculated by the equation,

- [Mzm — Mzl (3.7)

€
Nz.m

Using the calculated value of 7, the rest of the z region control volume lengths
are calculated by starting with the first control volume and then multiplying each
consecutive control volume by 7, (for example, Az; = 7.Az;, Azs = 7, Az, etc.).

The control volumes for the y regions are calculated in a similar manner.
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3.3.3 Grid Expansion from the Last Control Volume of the

Previous Grid

This method is similiar to that discussed in Section 3.3.2 except that the starting
control volume length is defined based on the previous grid region, as shown in Fig-
ure 3.5. The variable, 7,, represents the multiplier between grids. For example if 7,
is equal to 1.5 for the new region, the starting control volume would be 1.5 times
larger than the last control volume of the previous grid region. This procedure allows
the grid to adjust itself to a previous grid region and maintain a specified grid aspect
ratio. The ratio of neighbouring control volume sizes is not allowed to exceed 2.0 (or

drop below 0.5).

new region

Axl Ax1=m Ml

Figure 3.5: Specifying the starting control volume size based on the last control

volume of the previous grid.
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3.3.4 Grid Expansion Based on the Last Control Volume for
the Current Region

The final type of grid region is the grid expansion from the last control volume.
The value of 7, is calculated after the grid region length, L., the number of control
volumes, N;, and the last control volume size, Az,, are specified. The derivation of
the 7, solution begins by rearranging Equation (3.4) in terms of Az, for Az,

p— __Az,_ n
(ne)N="1

Equation (3.8) is substituted into Equation (3.3) to get

Az, (3.8)

= Aza
L = Z(?z')—,,,‘_—l(ﬂz) '

i=1

Nz
> Aza(ne) (3.9)
i=1

Using the Newton-Raphson Method, Equation (3.9) is solved in terms of 7,.

Nz
{ Z Azn('lz,m-l)ioN’} - L,
i=1

Ng
Z Az,(i— N, z)("h.m-l)i—N’ -
i=1

(3.10)

Nzm = Nzm-1 —

The same convergence criterion as Equation (3.7) is used for Equation (3.10). Once
the value of 7, is determined, Equation (3.8) is used to calculate Az,. From Az, each
consecutive control volume length is calculated by multiplying the previous control
volume length by .. The y region control volumes are calculated in a similiar manner.

3.4 Boundary Control Volumes

Boundary conditions are applied around the perimeter of the grid, as shown in Fig-

ure 3.6. All of the solution domain boundary control volumes are zero-width volumes,
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|
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Boundary Control Volumes

Figure 3.6: The boundary control volumes (dashed lines) surrounding the solution

domain.

which means that the boundary nodes are located directly on the boundary. Figure 3.6
shows non-zero width boundary control volumes only for illustration purposes. These

control volumes are used to set the boundary conditions for the model.

3.5 Grid Information Generated for the Solution

Domain

Each control volume is indentified by ¢ and j indices. Figure 3.7 shows the index
convention used in the computer code. The grid indices for the z direction start at 2
and end at N, + 1. The grid indices for the y direction start at 2 and end at Ny + 1.
Although not shown in the figure, the boundary control volumes are indexed at either
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Figure 3.7: The grid indices for the solution domain.

1, or at Nz +2 and N, + 2.

Figure 3.8 shows the indexing and notation for neighbouring control volumes. The
capital letters, E, W, N, and S, represent the nodes neighbouring the P node, or
the current reference node. The nomenclature for the neighbouring control volumes
represents the four compass points: east, west, north, and south. The lower case

letters, e, w, n, and s, represent the face values of the P control volume.

There are several geometric features that are stored for each control volume of
the grid, including the boundary control volumes even though they are zero-width.
Figure 3.9 shows the nomenclature for each quadrant within a control volume. The
names, NW, NE, SW, and SE are the compass directions: northwest, northeast,
southwest, and southeast. Figure 3.10 shows the coordinate and the nomenclature

used to locate the corners and center of every control volume. The coordinates are
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Figure 3.8: The indexing and notation for the reference control volume and its neigh-

bouring control volumes.

based on the domain origin in the lower left corner. Figure 3.11 shows the nomen-
clature used for the control volume length segments. The d; lengths represent the
control volume length segments in the z direction, and the d; lengths represent the
control volume length segments in the y direction. Figure 3.12 illustrates the nomen-
clature for the control volume area segments for a control volume. The domain has a
uniform depth Az. Figure 3.13 demonstrates the four quadrant volume segments of

the control volume.
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Figure 3.9: The quadrant nomenclature for a control volume.

—1
XY Ko Yie)
w o de

(xw,yw) (xsz ,Y,B)

Figure 3.10: The coordinate nomenclature for a control volume.
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Figure 3.12: The nomenclature for the control volume area segments.
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Figure 3.13: The volume nomenclature for the control volume segments.
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Chapter 4

The Numerical Solution Procedure

4.1 Introduction

This chapter describes how the mathematical model given in Chapter 2 is used to
derive a set of algebraic equations using a process called discretization. The gov-
erning equations of the mathematical model are integrated over the control volumes
described in Chapter 3. This chapter begins by showing the derivation of a generally-
applicable discretization equation. The following sections then describe the details of
the discretized equation set, including modifications that are particular to the solution

of a conjugate heat transfer problem.

4.2 Discretization Equation for General Transport

Equation in 2-D

The mathematical model is discretized in a manner similiar to that presented by

Patankar [46]). Since the form of the energy, mementum, and mass conservation

44
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equations are similiar, a general transport equation for a property, ¢, is introduced:

0 0 a9 a o9 S
'5y‘(PV¢) = 5;@:@;) + %(va';) + §" (41)

This equation can be used for energy, momentum, and mass conservation by setting

ad 0
Egt'(mﬁ) + E-a;(PUtﬁ) + £

the appropriate ¢, &, I', and S” terms as given in Table 4.1. The thermal conduc-
tivities, k; and ky, may be different from each other for anisotropic materials such as
transformer windings. Because the specific heat is not constant throughout the do-
main, the variable, &, is introduced. For all equations except the energy conservation

equation £ is set to a value of 1.0.

Figure 4.1 shows the control volume nomenclature used when discretizing Equa-
tion (4.1) . The ¢ terms represent the field value at the nodes. The é, and §,, terms
are distances between the nodes. The geometric quantities are derived as presented
in Chapter 3.

Equation EAKARYIRY s
Mass Conservation T 11010 0
X-Direction Momentum Conservation | U | 1 | g | p | = %5 + f
Y-Direction Momentum Conservation |V [ 1 [ u | p | -5 + £
Energy Conservation Tl | ke | By Q"

Table 4.1: Terms of the general transport equation
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©y),

Figure 4.1: General control volume nomenclature.

4.2.1 Conservation of Mass

The conservation of mass equation is the first equation discretized. Using the values
in Table 4.1 for mass conservation, Equation (4.1) takes the form of Equation (2.4).

The conservation of mass equation is integrated over the control volume shown in

Figure 4.2 to get Equation (4.2).

2 ava v [T (pU) d¥ dt
v Ot

M—I M—II
t+At
+ / / Z(pV)d¥dt = 0 (4.2)

M-Il

The conservation of mass equation is broken up into three terms: M —I, M —I1I,
and M — III. Each term is integrated separately before being combined to form
the final discretization equation. The M — I term of Equation (4.2) is integrated as
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Figure 4.2: Conservation of mass control volume.

follows
t+At a
M-I = /v / SO ~ (op—pp)¥p = (Mp — M3)  (43)
t

The superscript, “o” represents an old time step value. It is implied that a variable

is a new time step value when it has no superscript. M — I is integrated by expanding

d¥ = dzdA.
t+At e 9
M-II = / / / 9 U)dzdAadt
t A Juw 3::

t+At
~ ./; {peAeUe - prwa}dt
= (the — Thy) At (4.4)

Similiarly, M — II1I is integrated to get Equation (4.5):
M-III = (m, — m,) At (4.5)

When terms M —I, M —1II, and M —I1I, are substituted back into Equation (4.2)
and the equation is divided by At, the discretized conservation of mass equation
becomes

(Mp — M3)

Y = (— m, + My — Ty + mM,) (4.6)
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4.2.2 General Transport Equation

Equation (4.1) is integrated over the typical control volume shown in Figure 4.1.
t+At t+At )
/ / E—(p $)d¥dt + / [ Eé—(pU @) d¥dt
~ t ¥ z _—

-1 Tfn
t+At ) t+At
+ / / e (ove)avdt = / / —(r )dth
Je v Oy D
T-?I T-Iv
t+AL t+At
+ / (1‘—) d¥dt + / / S" d¥dt (4.7)
t ¥
T-v T-VI

The integration of the general transport equation is broken into six parts and
each part is integrated separately over the control volume. First, the T' — I term of
Equation (4.7) is integrated as follows

t+At o
-1 = /t /v € o (o) a¥it

=~ Epl(ppdp — PP o7)¥p
= §p(Mpop — Mpdp) (4.8)

The integration of the T — II term produces
t+At ;)
T—II = / / £ 2 (pU §) avdit
t v Oz

t+At
~ 5“’[ (Ve Acbe — puUs Audu}dt

i

t+At
& [ g = thudu}de 49)
t
Introducing the following interpolations for east and west face values of ¢,

= (1+a)dr + (3 ~a.) oz (4.108)
= (}+aw)dw + (3—au)dr (4.10b)
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where a, and «, are the convection weight factors discussed later in Section 4.4.
Using the fully implicit scheme, the T — I] term is

T-11 = o {e (4 a0) s — 1 (3 +0) bw
[ +02) = (3 )] 0 50 (411)
Similiarly, term T — II] is approximated using the convection weight factors,
T-I1 = g {rin (3 an) bo = e (1 + ) bw
+ [m,. (3 +an) — 1, (3— a,)] ¢p} At (4.12)

Term T — IV is also integrated to give

/”’A‘ [ ( o) awa

t+At a¢
~ /t {r A, - Tudug ..,} dt (4.13)
The derivatives, 22| and 22| , are approximated by
| . . (¢ — ép)
o = Be —-(Sa:)e (4.14a)
o _ . (¢p — éw)
i Buw G, (4.14b)

where 3. and 3, are the diffusion weight factors discussed in Section 4.4. When
Equations (4.14a) and (4.14b) are substituted into Equation (4.13), term T — IV

becomes
_m (¢ — op) (e — dw)
-1V = l {FeAeﬂgTz-)—e—— - PwAwﬁw —(—b.}—);—}dt (4.15)
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For a fully implicit formulation, Equation (4.15) can be written as

= {%;;)—fe(tﬁa - ¢p) — %ﬂ"?—w(tﬁp - ¢W)}At

_ {reAeﬂe Ty Ay o

T-1v

o). T TG v

Fed.Be | TwAwPu
- @), + 62)y ) op }At (4.16)

Similiarly, term T — V with the following approximations,

3| _ . (én — ¢p)

——ay ) ~ fn ———( 5o (4.17a)
| _ , (6p — ¢s) -
Wl, 5 =a, (417)

becomes

v - {r‘nA,.ﬂ,.m o DoAubs

(0z)n (6z)s
FnAnBn | [sAsBs
- (CE )¢"}At (4.18)

Finally, a step-wise profile assumption is used for term T' — VI to give
t+At . _
T-VI = / / $" AV dt ~ §"¥p At = Sp At (4.19)
t ¥

After all the terms are assembled into the original Equation (4.7) and divided by At,

the following equation is obtained:
Ep (Mpop — Mp $%)
At
+ &p {rhe (3 - a)be — 1y (3 + aw)dw + [1he (3 + @) — 110 (3 — o) | 07 )
+ &p {1itn (1 = a) b — 1he (3 + ) s + [1in (3 +an) — e (3 — )] 0 }
_ TeAB.,  TuAubo TeAcf  TuwAubu
= @ . ‘( ©)e (6 )4"’
rnAnﬁn F.! Asﬁl¢s - (rnAn,Bn ra A’ BS) ¢P +SP (4.20)

. "t 6, @ T 6w




CHAPTER 4. THE NUMERICAL SOLUTION PROCEDURE 51

The source term is linearized so that Sp = Qp + Rpdp. The terms are gathered
and Equation (4.20) is written in the form,

apdp = agde + awdw + andn + asds + bp (4.21)
where,

ag = f.D. — jmlp + |me|lac|ép

aw = PuDw + i1uép + |Mullawlép

aN=ﬂnDn - %mngl’ + Imn“aulgl’

as = B,D, + %fhaEP + lﬁ‘a”aslfP (4'228')

M, X .
ap = ——EPAtP + mhe(} + ae)ép + (3 — aw)ép
+ n(} + an)ép + ™me(3 — as)ép — Rp (4.22b)
Ep M3

bp = PAtP(b‘;’: + Qp

(4.22c)

To obtain an expression for ap that relates it to the sum of neighbour coefficients,
ap, Equation (4.22b) is written as

M . . . . .
ap = gpAtP + &p (e — iy + 1y, —my) +ap — Rp (4.23)
P
where,
a;=za,.,, = ag+aw +an +ag (4.24)

The G term in Equation (4.23) is equal to %ﬁ as shown below. Using Equa-

tion (4.6), the mass conservation equation can be written as

Mp : M3
A T e~ T +1n — i, = (4.25)
So from Equation (4.23),

A (4.26)
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Therefore, Equation (4.23) becomes

ap = At‘o’ + ap — Rp (4.27)
The diffusion terms are defined as,
D, = fb’a:)‘: (4.28a)
Dy = I(‘Jx‘;: (4.28Db)
D, = I(‘Jyj)*: (4.28¢)
D, = %54):" (4.28d)

The value of I" at a face uses the harmonic mean of the neighboring control volume.

The nomenclature for Equation (4.29) is shown in Figure 4.3.
Cple

fe = (ferP + (1 - fe) rE) (4.29)
where,
_ (6z).+
fc - (az)e (4'30)

Cw, Ca, and I, are evaluated in an analogous way. Also the mass flow rate at a face

is calculated using the equations,

m, = p.A. U, (4.31a)
My = pwAuwlUy (4.31b)
My = pnAnVa (4.31c)

m, = p,A,V, (4.31d)
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Figure 4.3: Harmonic mean nomenclature.

4.3 Distorted Transient Formulation

The steady-state solution of the domain can be obtained by either solving the equation
sets at discrete time steps until the fields no longer change, or by using the so-called
“distorted transient” formulation developed by Raithby and Schneider [55]. This
section details how the discretized general transport equation is modified so that
both true transient and distorted transient models are made available in the same

equation set.

First the time step, At, is defined as

MO
At = E* {__EL__P;__ 4.32

(ap — Re) 432)
where the term in braces is a time step-like quantity. The above equation is rearranged

in terms of f!’_:_fi so that it can be substituted into the ap and bp coefficients.

M3 _ (ap-R
gPAtP - (e = 7) (4.33)
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Equation (4.33) is then substituted into Equations (4.27) and (4.22c).

ap = (ap— Rp) (1+—é;) (4.34)
b = CE=Relyp 4 o (4.35)

By comparing Equations (4.27) and (4.22c) with Equations (4.34) and (4.35), new

coefficients are written to combine both true transient and distorted transient.

ap = (ab—Rp) (1+‘E17) + %ﬁ (4.36)
(a' - R ) E Mg o
b = { =t PAtP}¢P ter &30

In order to specify true transient, E? is specified as a very large number (such as
1.0 x 10%), and At is set to the desired value. For distorted transient At is set as a
very large number (such as 1.0 x 10%°) and E¥ is set to the desired value.

4.4 Exponential Upwind Grid Weighting

In a solid, the face values of ¢ are calculated by a linear interpolation. The general
transport equation uses an exponential scheme to approximate the face value of ¢.
The general scheme recovers the linear interpolation in the case where the velocity is
zero (in a solid).

Patankar [46] described the exponential scheme in detail for uniform grids. Since
some of the models in this work required non-uniform grids, the standard formulation
was extended. The following one-dimensional formulation removes the uniform grid
assumptions. Similiar equations are derived for the two-dimensional grid.

The convection weight factors for the east and west interfaces are defined in Equa-
tions (4.10a) and (4.10b),and Equations (4.14a) and (4.14b). Figure 4.4 illustrates

the nomenclature for these equations.
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Figure 4.4: A typical control volume cluster for the one-dimensional problem.

A total flux, J, is defined so that it is made up of the convection flux pU¢ and
the diffusion flux —% %

I d¢
J = pU¢ — ik (4.38)
Since the governing equation in one dimension (assuming constant &) is
d _ d (Td¢
5 (PU9) = — ( £ dz) (4.39)
the total flux equation becomes,
dJ
= = 0 (4.40)
When the domain 0 < z < L is used, with the boundary conditions
At =0, ¢=dy, (4.41a)
At z=L, ¢=¢, (4.41b)

the solution of Equation (4.39) is

¢—¢o _ exp[(Pe)z/L] — 1
¢L—do exp[Pe] -1 (4.42)
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where Pe is a Peclet number defined by

p€ulL

Pe = T

When Equation (4.40) is integrated over the typical control volume to give
JcAc - JwAw =0

Then Equation (4.38) is modified to give

_ L., 4
JeAe = pU.Acde — -E- dz

e

56

(4.43)

(4.44)

(4.45)

The equations for ¢, and % are derived from the exact solution, Equation (4.42), and
applied between zp and xg.e Figure 4.5 illustrates the nomenclature of the following

equations. The Pe, term is calculated using the value of U,.

(8x)

e
(ox).. | (0x),,
=2

¥

xe
—>

Figure 4.5: Nomenclature for the exponential upwinding scheme.
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exp |(P e)eS:_":'.':ﬂ -1
[ i (4.46)

®e = ¢p + (0 — op)

exp [(Pe)e] - 1
dp| exp [(Pe) 2= (),
d—z' . = (¢E - ¢P) exp [(Pe)e] -1 zg—zp (4'47)

To determine the exact values of a. and £., Equations (4.10a) and (4.14a) are
compared to Equations (4.46) and (4.47) to give

exp [(Pe).f] - 1

a=1- (Pl —1 (4.48a)
.. [(Pe).£.] .
¢ “’exp [(Pe)e] —1
where
0z .+ (ze — zp)
f= G = s - ) (4.49)
Similiarly,
oy = 1 _ exp [(Pe)wfw] -1 (4 503)
: exXp [(P e)u:] -1 -
Pw = (Peyw) s [(Pe)m] (4.50b)
v exp [(Pe)w] — 1
where
_ bzy- (TP —Ty)
fo = e~ (zr —2w) (4.51)

For the uniform grid, the a and 3 coefficients are obtained by setting f. in Equa-
tion (4.48) equal to one half.

exp [(Pe)./2] - 1
exp [(Pe)] — 1
exp [(Pe)./2]

exp [(Pe)] — 1

Qe = 3 (4.52&)

(4.52b)

Be = (Pe.)
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Figure 4.6 shows the relative difference between the uniform and non-uniform
grid a-equations as a function of the grid Peclet number. The error is defined as
the difference of the non-uniform grid and the uniform grid face temperatures, T new
and T, .4, divided by the uniform grid face temperature, T, .q4,. As the grid aspect
ratio increases, the amount of error also increases. Also, the error increases with a
larger temperature ratio, Tg/Tp. The plot illustrates that significant error is only
introduced when the temperature ratio is relatively large and the Peclet number
is low. This situation may occur only with coarse grids because in fine grids the
temperature ratio is usually small. Also, the Peclet number is usually much greater
than a value of five and therefore any error will be very small. In the transformer,
adjacent node temperature ratios in the oil are not expected to exceed 1.1 since the
grid is refined in the regions of high oil temperature gradients. Therefore the uniform
grid approximation is valid as long as the grid aspect ratio is kept under 2.0.

Calculating the weighting terms, a and 8, is computationally expensive because
Equations (4.52a) and (4.52b) require the use of the exponential function. To re-
duce the calculation time Raithby and Schneider [55] used an approximation for the
uniform-grid a and # weightings, shown in Equations (4.53). Since the uniform-
grid was proved valid in Figure 4.6, then the approximations used by Raithby and
Schneider are also expected to be valid.

_ 4 (Pe)?
lal = = gy (4.53a)
2
g =L+ 0.005Pe (4.53b)

1 + 0.05Pe?
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Figure 4.6: Comparison of the relative difference between uniform vs. non-uniform

grid a-equations on the face temperatures.

4.5 Energy Equation Discrete Boundary

Conditions

As described in Section 2.3 there are three types of boundary conditions applicable
to the energy equation. The boundary conditions of the energy equation are handled
in a similiar manner to Patankar [46]. Figure 4.7 illustrates the nomenclature for a
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full width fictitious control volume on the left boundary. For the energy equation, all
fictitious control volumes have zero width. This means that the Tp; node is placed

on the boundary so that Tpy = T.

(8x),

o

=

——
(8x).ﬂ,,[
T..o—> oT
Pf ,{; P

X i
»PRf o
- b
X
—p P

Figure 4.7: Fictitious control volume nomenclature for Dirichlet boundary conditions.

For Dirichlet boundary conditions, the fictitious control volume coefficients are

apy = 10 (4.54a)
agys = --(—1-:—@ (4.54b)

fr
by = Lawee (4.54c)

fe
where,

_ (0z)e+s

fuo = m)—;{— (4.55)

Since the boundary control volume is zero-width, the term, f; becomes equal to unity.

The remaining coefficients are set to zero so that the energy equation take the form

apsTpy = agyTp + by (4.56)
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Neumann boundary conditions have the flux specified for the boundary, as illus-
trated in Figure 4.8. The coefficients for the fictitious control volume are

apy = 1.0 (4.57a)
agy = 1.0 (4.57b)
wec (67)
__ Yspec e.f
bf = _kL (4.57C)

with the remaining coefficients set to zero. The value of ki refers to the thermal
conductivity of the control volume next to the fictitious control volume. It is assumed
that the fictitious control volume has the same properties as its neighbour. Although
it is not relevant for the energy equation, this assumption becomes important for the

full-width momentum boundary control volumes.

(6x),
J« .
e
TP > qwl o'I;,

R J. x

Figure 4.8: Fictitious control volume nomenclature for a Neumann boundary condi-

tions.

The last boundary condition used for the energy equation is the Newton, or mixed,
boundary condition. Figure 4.9 shows the nomenclature for the Newton boundary
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condition. The coefficients are derived to be

apf = 1.0 (4.588.)
_ [0 = — fr)(Bi)L]

“Bf = TT10 + fo(Bi)L (4.58b)

— (Bi)c Too,L
b = To+ £ (B (4.58¢)

where,

(Bi)L = hoat (02)e (4.59a)

ke
fer = %’;—))‘ff-’- (4.59b)

The remaining coefficients are set to zero. The variable, T, represents the ambi-

ent temperature, and Ao, represents the convection heat transfer coefficient at the

boundary surface.

(8x),

—
(9x)
kL
b

J
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Figure 4.9: Fictitious control volume nomenclature for Newton boundary conditions.

Before solving the set of equations, the coefficients of the fictitious control volumes

are absorbed into their neighbouring control volumes. This is done by modifying the
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coefficients of the neighbouring control volumes. The coefficient changes are derived
by rearranging Equation (4.56) in terms of Tp, and substituting it in for Ty in
Equation (4.21) as it is applied to the energy equation. The subscript, b, refers to

the first interior control volume in the domain.

a
apip = Gpip — aw.w;i’-f (4.60a)
b 17
bp = by + am,-b;—‘[- (4.60b)
aws = 0 (4.60c)

The ag», an s, and a, 5 terms are left unchanged. The derivations for the coefficient
changes of the other boundaries are done in a similiar manner. Once the matrix
of equations are solved for interior nodal values, the values of the fictitious control

volumes are specified to be consistent with the boundary control volume equations.

4.6 Nodal Velocity Storage Location

The numerical mode] uses a “staggered” grid for the velocity components, as discussed
by Patankar [46]. In the staggered grid, the velocity components are calculated for
the points that lie on the faces of the control volumes. Thus, the z direction velocity,
U, is calculated at the faces that are normal to the z direction. The grid is generated
based on the main grid, which is used by the energy equation. Each control volume in
each of the staggered grids is created by dividing two control volumes of the main grid
exactly in half, as shown in Figure 4.10 and Figure 4.11. The dashed lines represent
the staggered grid on top of the main grid (solid lines).

The boundary control volumes of the staggered grids are modelled so that the
velocity nodes are directly on the main grid boundary. For example, for the U-
velocity staggered grid, the top and bottom control volumes are zero-width, and the



CHAPTER 4. THE NUMERICAL SOLUTION PROCEDURE 64

left and right control volumes are half-width.

-— e en o

Figure 4.10: Staggered grid for U-velocity.

4.7 Momentum Equations Boundary Conditions

There are only two types of boundary conditions for the momentum equations: Dirich-
let (velocity specified) and Neumann (velocity gradient specified). Although the ve-
locity grids are staggered from the main grid, the boundary conditions are handled

in a similiar manner to that described in Section 4.5.

Figure 4.12 shows the boundary control volume for the right U-velocity boundary.
The Up;s node represents the velocity at the boundary, and the subscript, ie, rep-
resents the last interior control volume in the z direction. There is one less column
than the main grid for the staggered U-momentum equation set, and one less row
for the staggered V-momentum equation set. Unlike the zero-width fictitious control
volumes of the main grid boundaries, the right boundary of the U-velocity staggered
grid is a half control volume since the staggered grid is shifted by half a control vol-
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Figure 4.11: Staggered grid for V-velocity.

ume. Dirichlet boundary conditions are used to specifiy boundary velocities. For
example, the velocity of the transformer tank walls are specified as zero. The velocity
is specified by modifying the fictitious velocity control volume coefficients as follows:

apy =1.0 (4.61a)
awys = —-(1—;1;&!)- (4.61b)
bpy = I_j?’? (4.61c)
where
_ (612),,,-,;
fr = Co)er (4.62)

The remaining coefficients of the right fictitious control volume are set equal to zero.

Thus the equation for the fictitious control volume takes the form

apsUps = awsUwys + b (4.63)

The rest of the boundaries are set up in a similiar manner. Equation (4.62)
distinguishes between zero-width and full-width fictitous control volumes by using
the grid parameters described in Section 3.5.
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' Gx),
_____ .
E l‘(fx) (8x) )+
E -»UH
,xp.f

Figure 4.12: Right U-velocity boundary control volume.

The Neumann boundary conditions specify a velocity gradient. The fictitious
staggered control volume coefficients are derived by first letting

dUu Upsy — Up
— == e—t—— 4.64
(=) 62)us (464
Equation (4.64) is rearranged in terms of the fictitious velocity.
Ups = Up + (62)uy ﬂ) (4.65)
4T / spec

By inspection, the coefficients at the fictitious control volume are set to reflect the
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Neumann boundary conditions:

aps = 1.0 (4.66&)
dUu
aws =+(6z),, (Ez‘) (4.66b)
spec
bpy =1.0 (4.66¢)

The remaining coefficients of the right fictitious control volume are set equal to zero.

The other momentum equation boundary conditions are derived in a similiar man-
ner for both the U- and V-velocity staggered grids. The top and bottom of the
U-velocity grid, and the left and right sides of the V-velocity grid, have zero-width

control volumes. The rest are full-width control volumes.

Once the fictitious control volume coefficients are derived, they are absorbed into
the neighbouring control volumes in the same way as the coefficients of the energy
equations were in the previous section. Again, once the equations are solved then
the velocities of the fictitious control volumes are solved using the ficticious control

volume coefficients.

4.8 SIMPLEC Algorithm

When the momentum equations are solved, the velocity fields conserve momentum but
they do not neccessarily conserve mass. The pressure correction algorthim corrects the
velocity fields so that they conserve mass. The numerical solution method adopted in
this work uses the SIMPLEC algorithm described by Van Doormaal and Raithby [17]
to determine the pressure correction values. The algorthim steps are listed below.

1. Guess the pressure field, P*.

2. Using velocities from initial conditions (or a previous iteration) the coefficients

are calculated for the momentum equations, U* and V*.



CHAPTER 4. THE NUMERICAL SOLUTION PROCEDURE 68

3. The pressure correction equation coefficients are calculated.
4. Solve for U* using the momentum equation,

apUp = Y a%pUnp + b5 + CB(Pp— Pp) (4.67)
5. Solve for V* using the momentum equation,

apVi = D akeVap + bp + Cp(Ff — Pp) (468)

6. Calculate the P’ equation source term, 4%, using the values of U* and V*, and

then solve for the pressure correction, P, using the equation,
epPp = Zafvppfvp + b (4.69)

7. Correct for the final U, V, and P fields using the equations,

Pp = Py + Pb (4.708)
Up = Up + d2(Ph~ F}) (4.70b)
Ve = Vp + d,(Pp— Py) (4.70c)
where,
o= ;%_C"___m: (4.71a)
P =< (4.71b)

ap — > akp
8. Repeat steps 4-7 until adequate convergence has been achieved in the linear

equation sets (mass and momentum).

4.9 Pressure Correction

The SIMPLEC algorithm requires that the velocity fields be corrected to conserve
mass. This correction is also used on the pressure field. The following subsections

show the derivation for the pressure correction equation.
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4.9.1 The Pressure Correction Equation

The pressure correction, P/, equation is derived from the continuity equation, Equa-
tion (2.4), when £ is set equal to 1.0. Following the derivation by Patankar [46] the

pressure correction equation has the form,

ahPE = ) akpPhp + B (4.72)
where,

af = peAd, (4.73a)
oy = puhudy (4.73b)
ay = pnAndy (4.73c)
a'g‘ = pyAsd, (4.73d)
ap =dp+afy+af+af = D alp (4.73¢)
bp =—(h.)" + (y)* — (1hs)" + (10,)* = — AM® (4.73f)

The asterisk superscript, also called “starred” values, are used to designate values
calculated directly from the momentum equations using the guessed pressure field
P,

4.9.2 Boundary Conditions for the Pressure Correction

Equation

A general method is needed to assert the pressure correction boundary conditions.
The pressure correction boundary conditions, shown in Figure 4.13, are based on the
mass conservation equation (Equation (4.6)). The right boundary condition is used

as an example of the derivation. Since Mp equals M} when using incompressible flow
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assumptions, the equation reduces to

aiyUw + agUep +a3iVx +a5Vs =0 (4.74)
where,
ay = Puwlu ag = pA.
ag = ps4, ay = Padn (4.75)

The fictitious velocity boundary condition is described by Equation (4.63).

.

ot —1p>
[}
]
|
|

Py

Figure 4.13: Pressure correction boundary conditions.

apsUp = awyUw + bp; (4.76)

Equation (4.76) is substituted into Equation (4.74), and then the equation is rear-

ranged in terms of velocities to get

c c aa’.f c c a'%b?’,f
awy + eg oy Uw + aiVp + a5Vs + 7?,7‘ =0 (4.77)

The velocities are then replaced with their U* and V'* pressure corrections, given by
Equations (4.70b) and (4.70c), respectively. The resulting equation is rearranged in
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terms of P’ to get

where,

A =
b b

= (o + 5oeL )y = iy + s L
P.f i

o = -aid

&% =a3d;

— 4
ap = ZaNP
B =ai U + asUp + a5 V3 + a5V = —AM"

71

(4.78)

(4.79a)

(4.79b)

(4.79¢)
(4.79d)
(4.79)
(4.796)

The term with the underbrace in the a}, equation is simply added onto the original

coefficient. For the boundary conditions in a corner, the two boundary terms are

added onto the original coefficients. For example, the pressure correction coefficients

for the upper right corner would be:

(4.80a)

(4.80b)

(4.80c)

(4.80d)

(4.80e)
(4.80f)
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4.9.3 Pressure Reference Specification

Sometimes it is necessary to specify the value of P’ since certain boundary conditions
created a redundant equation, as discussed by Van Doormaal and Raithby [17). The
continuity equation is replaced by setting one of the P’ control volume values equal
to zero. The pressure field is also modified to maintain a reference pressure in one of
the control volumes. The rest of the pressure field is shifted to maintain the reference

pressure.

4.10 Solid Regions

In a solid region the velocity is zero throughout the entire region. Each control volume
in the region is modelled as a homogenous material. As described in Section 2.5,
the energy equation does not require special boundary conditions for solid regions.
The only calculation needed is the face value of the thermal conductivity which is

determined using the harmonic mean.

The solid face velocity boundary conditions are treated in the same way as the
boundary conditions of the outer model domain. Dirichlet boundary conditions are
used to ensure a zero velocity profile along the edges of a solid. The interior control
volume coefficients for the U and V' equations are all set to zero except for ap, which
is set equal to unity. Thus the velocity field within the solid is calculated as zero.

The pressure correction coefficients are modified so that the entire region within a
block would specify a zero pressure field. All the P’ equation coefficients for control
volumes in a solid region are set to zero except for ap which is set equal to one. For
the fluid control volumes beside the solid, the coefficients of all the terms that connect

the pressure correction equation to the solid are set to zero. This removes any effect
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the solid may have on the pressure correction. For example, all fluid control volumes

to the right of a solid have the a};, terms set to zero.

4.11 The PVT-Loop

Natural convection is a phenomenon where the temperature and the velocity of a fluid
are interdependent. When modelling this phenomenon, a strong interaction of the
temperature and velocity fields is observed. Because they represent the physics, the
algebraic equation sets are coupled. This may lead to instabilities when attempting to
solve the conjugate transformer model with a segregated solution method, especially
when using large time steps. In an attempt to reduce the instabilities, a PVT-loop
was introduced. Rather than use a new algorithm that performs a simultaneous cou-
pled equation solution, a modified version of the standard algorithm was examined.
Figure 4.14 shows the PVT-loop algorithm used. This loop was repeated until con-
vergence is reached for a given time step. The PV-loop is discussed in Section 4.8,
and is nested within the PVT-loop. The velocity and pressure correction coeflicients
are calculated before the PVT-loop as a means of adding relaxation to the solution of
the complete equation set. Since the mass flows from the previous time steps are used
for the momentum equations, this kept the U-velocity and V-velocity equations un-
coupled from each other. Only the source terms of the velocity equations are changed
inside the PVT-loop to account for the updated pressure and temperature fields. Be-
fore the energy equation coefficients are calculated, new mass flows are solved so that
the temperature field can accurately reflect the change in enthalpy. Once all the fields
have been calculated, then the PVT-loop is checked for suitable convergence. The

convergence for iteration x + 1 is checked with the equation,

N (ot s) PN | (4.81)

€put s} r+1

mazr min



CHAPTER 4. THE NUMERICAL SOLUTION PROCEDURE

| Calculate New Mass Flow Rates |
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Figure 4.14: PVT-loop flowchart for a single time step.
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Once the PVT-Loop is converged, then the time step is finished and the solution

progresses to the next time step.

Relaxation is also applied to the energy and momentum equations within the loop.
The relaxation employed is similiar to that used by P. F. Galpin et al. [19]. With the

relaxation term, e7, the energy equation becomes

1 a
apTH+ (1 + ;f) = agT5* + aw Ty + on Tt +asT™ + (bp + —£T5)

(4.82)

The relaxation term is set up so that as the solution of the temperature field ap-
proaches the final solution, then the term is cancelled out of the equation (a,,fl";""1 Je' =

a, T /eT since T+t ~ TF).

Similiarly, the momentum equations become

1
apU;“ (1 + zﬁ) = GEUE'H’ + ava';,+1 + aNU,'\‘,"'I + a'sUg'"1

+ (o + i;g-ug) (4.83)

1

apV;:ﬂ'l (1 + 'eT;) agvg'H + awv;':,+l + aNVﬁ“ + asV;"'l

+ (bp + ggvg) (4.84)

The relaxation term increases the diagonal dominance of the equations. When
the equation set is converged within the PVT-loop, then the relaxation terms in
Equations (4.82) to (4.84) cancel.

4.12 The Overall Steady State Convergence

When there is negligible difference in the four solution fields between time steps, the
model has obtained overall steady state convergence. The steady state convergence
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check that was applied to the temperature, velocity, and pressure fields is
(6= 8 )meel -
¢m¢z - ¢min -
The difference between the new and old fields is divided by the new field range so that
the difference is normalized by a non-zero value. A typical value of ¢,, is 1.0 x 10~5.

(4.85)

€ss



Chapter 5

Algebraic Equation Solvers

5.1 Introduction

This chapter presents the four algorithms used to solve the discretization equations
derived in Chapter 4. The four solvers are Line-Gauss Seidel with relaxation (LGS2d),
LU Decomposition (LUD2d), Additive Correction Multigrid (ACM2d), and Conju-
gate Additive Correction Multigrid (CACM2d). For a given solution, whether steady

state or transient, only one solver is used on each equation set.

As part of this work the effectiveness of the four different solvers was investigated
briefly. The LGS2d solver, a standard line solver, and the LUD2d solver, a standard
direct solver, are both commonly used to solve computational fluid dynamic problems.
The ACM2d has been developed relatively recently; it makes use of several levels of
grid resolution to solve for the desired field. The CACM2d is a new solver based on
the ACM2d that was specially adopted to improve its use on conjugate heat transfer

problems.

7
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5.2 Line-Gauss Seidel with Relaxation in

Two-Dimensions (LGS2d)

The LGS2d solver, also known as Line Successive Over Relaxation (LSOR), sweeps
with a TDMA (Tri-Diagonal Matrix Algorithm) line solver to solve each row and
column of the two-dimensional model [46]. The direction of the line solver is alternated
by first solving columns from left to right, then solving rows from bottom to top, to
complete one iteration. The solver converges when the residual is reduced below
the criterion, €yyeray. The residual reduction of €pyerqst is defined for iteration A by
Equation (5.1).

R'\
Coverall = g (5.1)

The residual, R, is defined in Equation (5.2). The sum of the magnitude of the
residuals in all control volumes is normalized by the total number of control volumes.
The initial residual, R?, is calculated before the solver algorithm is applied to the

equation set.

3" 3" | (aete + awdw +andn +asés +bp — apdp) l

=t el
k= N; x N, (5-2)

5.3 LU Decomposition (LUD2d)

The LUD2d algerithm used was a banded storage direct solver. Because of the com-
putational cost for large number of nodes it is not practical to use the LUD2d solver
for the transformer model. It was therefore used just to produce a benchmark solution
against which the other solver solutions could be compared.
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5.4 Additive Correction Multigrid (ACM2d)

The ACM2d solver is based on the additive correction multigrid algorithm by Hutchin-
son and Raithby [27, 26, 54]. ACM2d is a method of accelerating the convergence
of an algebraic equation set for a two-dimensional domain. The algorithm uses the
original (fine grid) equation set, plus other coarser grids that are built by gather-
ing the control volumes of the finer grid into larger blocks. For example, a 40 x 40
grid represents the finest, or starting grid. The algorithm them builds coarser grids,
20 x 20, 10 x 10, etc. to help with the convergence of the original equation set. The
coarser grids are used to help move the solution field information around to the other
control volumes faster than if only the fine grid was used. The ACM2d solver uses
the LGS2d solver on the equation sets at each multi-grid level. The so-called flexible
cycle algorithm is implemented since it had a faster convergence rate than the V and
W-cycles. A cycle is the method by which the algorithm moves between grid levels.
In this thesis, the multigrid algorithm only solves the temperature and pressure cor-
rection equations since LGS2d alone is considered adequate for the solution of the

momentum equations.

54.1 ACM2d Overview

Additive correction multigrid (ACM) is a multigrid method where the equation set
is solved on several grid densities to accelerate the convergence of an equation set.
Each of these grids are increasingly coarser than the last. The ACM procedure forms
the coarse-grid equations by asserting integral conservation over blocks of control
volumes. The corrections calculated on the coarser grids are added to the finer grids
in order to preserve the integral balances. In this work the grids are made coarser by

a factor of two control volumes into one, although other combinations could be used.



CHAPTER 5. ALGEBRAIC EQUATION SOLVERS 80

When solving the finest grid, the solver quickly reduces the high frequency error,
or relative error. The high frequency error is the relative error of a control volume
based on the values of its neighbours. The information about the neighbouring control
volumes is quickly assessed and calculated in the solution of the equations. On the
other hand, iterative solvers need many more iterations to reduce low frequency errors,
or the absolute error. The low frequency error is the error of the control volume's
currently calculated value relative to the final answer. Information about the control
volumes on one end of the model takes several iterations to arrive at the control

volumes on the other end of the domain.

As shown for the one-dimensional grid in Figure 5.1, ACM reduces the low fre-
quency error introduced by the boundary conditions, ®; and ®,, by solving a coarser
grid. The correction calculated on the coarser grid is added to the finer grid. The
new high frequency errors are quickly solved on the finer grid (54].

Figure 5.2 illustrates the ACM grid levels. The “flexible cycle” ACM solver begins
with the finest grid (Level 1). When the solution convergence rate on this grid begins
to slow down (or stall) the “flexible cycle” solver moves to a coarser grid. The coarser
grid is used to calculate the correction to be applied to the finer grid. When the
solution convergence rate for the correction field slows down, the ACM solver moves
on to the next coarser grid. This third level is the correction for the correction field
of level 2. This continues until either level N quickly reduces its residual, or until the
correction equations on a very coarse level are solved simultaneously with a direct
solver. When level N is solved adequately, then the correction field is added onto
level N-1. Now level N-1 is solved again until it either quickly converges or stalls. If
the solution of the level stalls then the soiver will return back to level N to reduce the
low frequency error again. If level N-1 quickly converges, then the correction solved
by level N-1 is added to level N-2. This continues until level 2 adds the correction to

level 1, and level 1 quickly converges to the answer.
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Figure 5.1: Additive correction multigrid reducing low frequency errors and introduc-
ing high frequency errors [54]. The two boundary conditions in this illustration are
represented by ®; and ®,.

5.4.2 ACM2d Equations

This subsection describes the general multigrid equations. It shows how the equations
may be assembled based on the control volume equations from the finer grid. The
derivation and assembly procedure described here follows the work of Raithby [54].
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X
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Figure 5.2: An example of the levels involved when solving an ACM model.

In the description below, the equations are first derived for a one-dimensional grid,
and then extended to two dimensions.

Each two-dimensional control volume from the base grid, or level 1, is represented
by Equation (4.21). For a one-dimensional grid, this equation takes the form

appp = apdeg + awdw + bp (5.3)

To form each additive correction (AC) equation for the level 2 block, Equa-
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Figure 5.3: Schematic showing the assembly of one-dimensional control volumes on
the fine grid to create blocks (denoted by thick lines) for the coarser grid.

tion (5.3) is summed for each control volume being assembled. For instance, the
k blocks shown in Figure 5.3 may have one and two control volumes added together

to form the basis of the new equations.

First, let ¢; = ¢; + 8 where ¢; is the best estimate of ¢; and & is the correction
added to ¢; to obtain an improved value of ¢;. The value of 8 is uniformly applied

to all control volumes in a block.

Inserting the new ¢; into Equation (5.3) produces the following equation for the

¢ control volume:
api(¢i +6) = api(biv1 +6) + awi(di-1 +6k—1) + bps (5.4)

Note that the ¢;_; term has the correction, 6i-;, applied to it since that control
volume is assembled into block k-1.

A similiar equation is written for the neighboring i+ control volume.

api+1(Pis1 +0k) = agir1(Piv2 + O6ks1) + awit1(di +6k) + bpiyr (5.5)
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These two equations are summed together and then rearranged in terms of §; to get

(api + apis1 — ag; — Owi+1) O = Owibk-1 + GE+10k41

+ (agsfi+1 + awsdio1 +bp; —apidi)

—~

R
+ (aBsr1ie2 + Owis1di +bpivt — Gpi16i1) (5.6)
Rina

where the last two terms, ﬁ. and §"+1, are the equation residuals of the two assembled
control volumes. Equation 5.6 is simplified to get

Bpili = BExber1 +awrde-1 +bpk (5.7)
where
Gprx = ap;+Qpiy1 — GEi — QWi+l (5.8a)
gk = GEi+1 (5.8b)
awk = Gw; (5.8¢)
bpy = Ri+Rin (5.8d)

An analogous equation is assembled for each coarse-grid block. Once these coarser
grid equations are solved, the resulting correction are applied to the finer grid. After
all the corrections are applied, then the finer grid is re-solved. Note that the coarser
grid equation set solved by iteration may also stall after the high frequency errors are
reduced. This process could then be applied to assemble an even coarser grid so that

a correction could be solved for the correction grid.

Using the procedure shown for the one-dimensional grid, the two-dimensional grid

equation is:

@pubu = @epmubksu +awudk-u + BvpOus1 +Esubu- +bpu (5.9)
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where,

@pxi = GPpij +api+1j + GPij+1 + BPi+1j+1 — BB — @Njij — CW,i+1j — @Ni+lj

— BEij+1 — GSij+1 — OW,i+1j+1 — BSi+1j+1 (5.10a)
GeM = GEi+1j +OEi+1j+1 (5.10b)
Gwix = Gwj + Owij+1 (5.10c)
GNK = GNgj+1 +ONi+1j+1 (5.10d)
dsu = Gs;j +asivj (5.10e)
bpu = Rij+ Ripij+ Rijir + Riviinr (5.10f)

The values of R are the residual of each control volume on the finer grid.

Rij = agijbiv1j +awijPi-1j + aNijPij41 + @siibij-1

+bpsj ~ apsidij (5.11a)
Ri+1j = aE.i+1j$i+2j + aW,i+lj¢~5ij + GN,i+1j$i+1j+1 + aS.i+1j$i+lj-—1
+bpis15 — al’,i+lj$i+1j (5.11b)
ﬁij+1 = as,ij+1$i+1j+1 + aW,ij+l$i-lj+1 + aN.ij+l$ij+2 + as.ij+1¢;ij
+bpije1 — al’,ij+l$ij+1 (5.11¢)
Rt’+1j+l = aE.i+1j+1¢.’i+2j+1 + aw,i+1j+1$ij+1 + aN,i+1j+1$i+1j+2 + as,i+1j+1<5i+1j
+bpis1ie1 — @Pi+1i41Pir 141 (5.11d)

Figure 5.4 shows how the level 1 grid control volumes (the finest mesh) are com-
bined to form the level 2 grid in two dimensions. The darker lines represent the level
2 mesh. The blocks are formed by trying to assemble two blocks in each direction.
Sometimes rectangular blocks are formed out of the remaining control volumes. New
correction equations are derived for these coarse blocks using the method described

above.
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Figure 5.4: Schematic showing the assembly of two-dimensional control volumes on
the fine grid to create blocks (denoted by thick lines) for the coarser grid.

5.4.3 ACM2d Solution Procedure

The previous subsection, ACM2d Equations, described the derivation of the AC equa-
tions. This subsection outlines the strategies involved in solving the correction equa-

tions.

There are several common strategies for moving between grid levels. In this work,
the V-cycle and the flexible cycle methods were investigated. Figure 5.5 shows an
example of the V-cycle. The algorithm starts at level 1 (the finest grid), and performs
one iteration at each level until it reaches the N level. At the N level the solver
will attempt to solve the correction equations to a tight convergence criterion. The
equation set is solved either by a direct solver (Gauss elimination in this case) or by
solving the equations using LGS2d until convergence (€x = €oerant, the convergence
criterion of the solver). The correction from level N is added to level N-1, and LGS2d
solves the equation until it reaches the required level residual reduction, ¢;. The level
residual reduction is the requirement of the solver to reduce the residual for a given

level. In this work a value of €7, equal to 0.25 was used. Once this criterion is met, the
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Figure 5.5: Flowchart showing an example of the V-cycle algorithm with only five

levels.

correction is added onto the next level, and the solution proceeds to the next finest
level. Eventually the correction is added onto level 1. LGS2d then solves the original
set of equations until the solution stalls. A solution is considered stalled when the
residuals are not changing a significant amount relative to each other. The residual
reduction stall criterion, ¢,, defined by Hutchinson and Raithby [27], is satisfied when

&R > R (5.12)

where R¥~! is the residual for iteration w —1. In this work €, was set to 0.6. Once the
solution of level 1 stalled, the V-cycle was restarted by collecting the residual from
level 1 and reassembling the source term of level 2. This procedure continues until
the solver criterion, €yyerqu, is achieved on level 1 as defined by Equation (5.1). The
value of RO is calculated before any V-cycles equation solutions are performed.

The main disadvantage of the V-cycle algorithm is that it often solves level cor-
rections that are not needed. Since the V-cycle is very rigid in its design, it cannot

optimize the convergence of the field by either staying at the coarser levels to reduce
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Figure 5.6: The flexible cycle of B. R. Hutchinson and G. D. Raithby [27] is used to

determine when coarse-grid correction equations are to be employed.

the low frequency errors, or by spending time at level one when the field equations are
solving with a fast convergence rate. Therefore another strategy is needed to improve

convergence.
The flexible cycle, as described by Hutchinson and Raithby [27], improves upon

the V-cycle algorithm. A flowchart of the flexible cycle is shown in Figure 5.6. The
solver starts with one iteration of LGS2d on the first level equation set. If the solution
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is converged to the solver criterion, €yyerqiz, then the solver stops. Otherwise the solver
will continue iterating on level 1 until the LGS2d solver begins to stall. This stall
criterion, ¢,, is the same as used for the V-cycle. Once the solver stalls on level 1, the
residuals of the level 1 control volumes are assembled to create the source terms of
level 2. After the solver iterates on level 2, the correction equations are checked for
convergence. The correction equation set is converged when the correction residual

reduction criterion, €, has satisfied the equation,

eeR} > R (5.13)

If the level 2 correction equation set has not converged on a solution, the LGS2d
solver continues solving this equation set until it meets the convergence criterion or
until it stalls. The convergence is considered stalled if the ratio of residuals between
iterations is greater than ¢,. If the solution stalls, then the residuals of the correction
equations are assembled together to create the source terms of level 3. These new
equations are a correction for the correction equations of level 2. The algorithm
continues until level N is reached. If LGS2d stalls on level N-1, the solver creates
the new source terms of level N. The solver iterates with LGS2d until the level has
met the €, convergence criterion. Alternatively, a direct solver can be used at level N
if there are only a few blocks on this final grid. In this work Gauss elimination was
used at level N if it was a 2 x 2 grid, otherwise LGS2d was used.

Once level N has been solved, the correction is applied to level N-I and the solver
continues by trying to solve the finer grid equations. Eventually, the solver will work
its way back to level 1 where the corrections from level 2 are added to the field of
level 1. Iteration using LGS2d continues until it stalls on level 1 again, or until the
solver converges. Convergence on level 1 is obtained when Equation (5.1) is satisfied.
The value of R? is the residual calculated before any iterations have been performed
by the solver.
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Sometimes the flexible cycle will oscillate among the coarser levels because at times
a correction applied to a finer grid solution field can induce a divergence from the final
solution rather than improve the convergence. This may cause the finer grid to stall
prematurely, and so the solver tries to use another coarser grid correction equation
set to improve the convergence. If the new correction increases the divergence this
can continue indefinitely. To prevent the solver from wasting time on the coarser
levels, a maximum number of work units is set for the solver. A work unit (WU)
represents the time required to solve one LGS2d iteration on the finest level. As an
approximation, each two-dimensional level was assumed to take one-quarter the time
of the previous level. Therefore level 1 takes one WU, level 2 takes 0.25 WU’s, level
3 takes 0.0625 WU'’s, and so on. Monitoring CPU time usage in a few test cases
indicated that this approximation is very close to the actual time it takes to solve
large grids.

5.5 Conjugate Additive Correction Multigrid
(CACM2d)

The CACM2d solver is the same as the ACM2d solver except that the CACM2d
distinguishes between solid and fluid regions in the solution domain. Figure 5.8
shows a conjugate model with the coarser multigrid control volumes straddling the
fluid and two different solids. Sun and Emery [60] discussed how they used multigrid
to solve their conjugate domain. They explained that the correction calculated for
a coarser block straddling a solid and a fluid region would not improve the solution.
If this correction is applied to the finer grid solution field then the solution of the
equations near the discontinuity will diverge [60]. For example, the additive correction
for the pressure correction field is calculated for a coarser grid straddling a fluid-solid
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interface. The solid has a residual of zero, and the fluid some nominal value. When
the residuals are added together, the residual you wish to reduce is now halved.
When this correction is added to the finer grid, it will drive the solution in both
the solid and the fluid regions further away from the final solution because it had
not been calculated properly for each region. In the CACM2d method, these higher
level, or coarser, control volumes are not allowed to straddle across two different solid
region control volumes, or across a solid-fluid interface. This approach maintains the
clustering of uniform property control volumes. Sun and Emery adjusted their solver
so that no correction is applied near the discontinuity [60].

To ensure that the higher level control volumes did not straddle two different
materials, control volumes are categorized according to the type of material. The

material type is either a fluid or a solid.

Figure 5.7 illustrates the algorithm in one-dimension. For the second level, the
CACM2d algorithm first combines every pair of control volumes until the second
control volume in a set is a different material. The solver then kept the two control

volumes separate and continues ’joining’ control volumes together, starting with the
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Figure 5.7: CACM2d assembling the control volumes into coarser blocks while keeping

the solid region (shaded area) separate from the fiuid.

new material control volume. This continues until the second level is complete. The
third and fourth levels are also assembled in a similiar manner, each relying on the
information stored in the previous level to determine which control volumes are to be
joined together. In the example, the final level has only one control volume for each
material type. Figure 5.8 shows how CACM2d creates control volume blocks in two
dimensions by avoiding blocks that straddled different materials.
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Chapter 6

Computer Code Validation Tests

This chapter describes the validation tests performed on the computer code developed
in this work. Two types of tests were performed: tests on the equation solvers and
tests on the flow and heat transfer equation set results. The results are presented for
the different solvers for each fiow or heat transfer problem. There were five solution
algorithms tested: LUD2d, LGS2d, V-cycle ACM, flexible-cycle ACM, and CACM.
These solver were described in Chapter 5. Both ACM solvers and the CACM solver
use LGS2d to solve the equation sets for each multigrid level.

The tests started with the energy equation sets by modelling pure conduction.
Next, the momentum equations sets were tested with isothermal flow tests. Finally
the coupling of all the equations sets were examined with natural convection flow
tests. In some cases, the efficiency of the solvers were compared. The solver efficiency
was measured by either looking at the total computational time spent, or by counting
the number of work units used. A work unit, or WU, was defined in Chapter 5. The
work units of the LUD2d solver were not calculated.

After the equation sets were validated on conduction, flow and natural convection

cases, the tests presented at the end of this chapter were used to learn what may
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be required to simulate transformer models. This knowledge was used to help in
modelling the transformer problems presented in Chapter 7.

6.1 One-Dimensional Conduction Test Problems

The first step in validating the numerical model was to test the energy equation. This
was done by testing both one-dimensional and two-dimensional conduction models.
The convergence to steady state of the conduction test problem was determined with
the equation,

————-TEM;I_"T% < 1x10°° (6.1)
When Equation (6.1) is satisfied at all temperature nodes, the code reports that
steady state convergence has been met, and then performs postprocessing on the
results. The convergence of the steady state solution is also checked by calculating
the overall energy balance on the solution domain, and then normalizing the result
with the sum of the out flowing energy and the stored energy. The energy balance
calculation used is

Qin JMQ:“ Q"::"“ x 100% (6.2)

The balance shown in Equation (6.2) is checked to be sure that it is less than 1%.

6.1.1 Homogeneous Material

The energy equation was first tested by solving the one-dimensional conduction test
problem, shown in Figure 6.1. The temperature on the left boundary, 7, was set to
0 K and the right boundary, T3, was set to 100 K. The domain was solved to steady
state by setting the values of the time step, A¢, and the energy equation E-factor,
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ET, to a very large number (1 x 10%). The thermal conductivity of air at 300 K was
used. The grid is a 50 x 1 control volume matrix (one control volume is used in the
y direction since the test problem is set up to be one-dimensional).

The LGS2d solver obtained convergence with four coefficient updates, and re-
duced the energy balance to an error of 0.0211%. The LUD2d direct solver required
two coefficient updates for a heat balance of 0.00246%. The ACM solver took four
coefficient updates to obtain the heat balance of 0.0111%. In all three cases, the
temperature field is linearly increasing in the z direction. The only errors present,

relative to an exact solution of the equations, were due to numerical round-off.

Ya

X
rlr1r7,7r'W~
//////////// /

Figure 6.1: One-dimensional conduction benchmark.

The model was then rotated 90-degrees counter-clockwise to test the y direction
coefficients. The LGS2d solver required four coefficient updates to achieve a heat
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balance of 0.0348%. The LUD2d solver required only two coefficient updates to get
a heat balance of 0.00247%. The ACM solver performed three coefficient updates to

get 0.0220%.

The transient calculations of the code were also tested by replacing the left bound-
ary condition with a insulated wall (g; = 0). The remaining properties were set for
air at 300 K. When the results were compared with an analytical solution, they were
found to agree with each other very well.

6.1.2 Composite Material

To test the energy equation for a nonhomogeneous domain, the one-dimension con-
duction benchmark model was extended to consist of two materials. As shown in
Figure 6.2, the solids are arranged in series. The thermal conductivities are equal to
k; =1 W/m?K and k; = 100 W/m?K. The left temperature, Touq, is 0.0 K and the
right temperature, The, is 1.0 K. The cavity measures one metre by one metre, and
consists of exactly half of each material. The model was broken up into a 40 x 40
control volume grid. The rest of the model is identical to the one-dimensional single
material model presented in Section 6.1.1.

The ACM solver took 3 coefficient updates to reduce the heat balance to 0.00602%.
The LUD2d solver took 2 coefficient updates to reduce the heat balance to 0.0188%.
The interface between the two materials was calculated to have a temperature of

0.990099 K using the following equation:

k\Tc + kT
Tinterface = hit

(6.3)
The LUD2d solver calculated the temperature as 0.990102 K (which is an error of
0.00035%). Another test point was taken inside the left material at 0.3625 m (15%
control volume) from the left side. The temperature determined by the code matched

the analytical answer equally well.
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Figure 6.2: One-dimensional conduction benchmark with two materials.

Various permutations of the model were tried with similiar results.

6.2 Two-Dimensional Conduction Test Problem

The code was tested against the two-dimensional benchmark test problem shown
schematically in Figure 6.3. The hot temperature located at the top of the model,
Thot, is equal to 100 K and the cold temperature sides, T4, is equal to 0 K. The
solution domain is one meter square, and the grid was modelled as 41 x 41 control
volumes. The thermal conductivity of the domain is equal to 0.0263 W/m K. A
steady state convergence criterion of 10~5 was used and the values of At and ET
were set to 1 x 10%. For comparison, the analytical solution was calculated using the
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Figure 6.3: Boundary conditions for conduction benchmark.

equation presented by Incropera and De Witt [30], as shown in Equation (6.4).

Thot — Teotd L 7 sinh(nnW/L)
When the analytical solution was compared with the numerical solution, there was a

T(z,y) = Teota _ 2 x= (=)™ +1 . rnwzy\ sinh(nmy/L)
cold ;2_;““—,; sin (1) (6.4)

maximum error of 0.000667%.

The same model was then used to test the efficiency of the ACM solver. In this
case, the grid resolution was increased from 41 x 41 to 64 x 64 to better demonstrate
the abilities of the multigrid algorithm. Also, an E-factor of 30 was used for the
energy equation to slow down the solution and help demonstrate the efficiency of the
solvers. The conduction test results are shown in Table 6.1. In the table there are
eight columns. The first column, Solver Type, lists the solver used in the test run.
The ACM solvers list in parenthesis the maximum multigrid level set for the run. The
second column, # Coarsest Level CV’s, shows the grid size for the coarsest level. The
Computational Time is the time the computer spend solving the problem. The fifth
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Solver # Coarsest | Computational | Work Units | %Heat | Coefficient

Type Level CV's Time wWu(T) Balance | Updates

LGS2d 64 x 64 1272s 1185 2.1684% 504

LUD2d 64 x 64 23060 s N/A 2.1596% 422

LUD24tt 64x 64 1094s N/A 0.0046% 2

V-cycle (1) 64 x 64 1334 s 1185 2.1684% 504
V-cycle (2) 32x32 12118 924 2.0754% 441
V-cycle (3) 16 x 16 1221s 1004 2.0423% 429
V-cyele (4) 8x8 1233 s 1037 2.0407% 429
V-cycle (5) 4x4 1236 s 1046 2.0407% 429
V-cycle (6) 2x2 1237s 1048 2.0407% 429
V-cycle (7) Ix1 1237 s 1048 2.0407% 429
F-cycle (1) 64 x 64 1304 s 1185 2.1684% 504
F-cycle (2)t 32 x 32 1346 s 1185 2.1684% 504
F-cycle (3)t 16 x 16 1357s 1185 2.1684% 504
F-cycle (4)t 8x8 1360 s 1185 2.1684% 504
F-cycle (5)! 4x4 1360 s 1185 2.1684% 504
F-cycle (6)! 2x2 1361 s 1185 2.1684% 504
F-cycle (7)t 1x1 1360 s 1185 2.1684% 504

Table 6.1: Conduction solver comparison of temperature solution.

1The flexible-multigrid solver would not advance beyond the first level.
+tLUD2d solution with ET-factor set to 1.0 x 10%.

column, Work Units, shows the number of work units used to solve the temperature
field for the model. There are no WU entries for the LUD2d solver since it would be
difficult to accurately measure the time to solve one iteration on the finest grid using
LGS2d without running an iteration and thereby affecting the results. The second
last column, % Heat Balance, shows how closely energy was conserved. The final
column, Coefficient Updates, shows the number of iterations required for the model
to reach steady state in the temperature field using the distorted transient solution
method.
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The results demonstrate that for pure conduction the multigrid algorithm may not
be very efficient. The second level V-cycle showed the best time results but the gain
relative to LGS2d was still not significant. The flexible-cycle ACM solver spent most
of the calculation time on the finest grid level since the set of equations converged very
quickly. Therefore excess time was consumed in the solver setting up the multigrid
coefficients for the equation sets. Note that the LUD2d test with the E”-factor set
to 1.0 x 10% obtained a better heat balance than the other runs. This suggests that
the other runs were not as tightly converged as the LUD2d test run. The distorted
transient runs may have “stalled” as they approached steady state, and therefore the
solution algorthm considered them as tightly converged solution.

The results were compared against the LUD2d results by taking the difference of
the fields and dividing by the range of the LUD2d field, using Equation (6.5). The
results are shown in Table 6.2. As the table illustrates, the normalized temperature
difference remains constant for all solvers except the seven-level V-cycle ACM. The
flexible-cycle solver did not continue past level 1 into the higher levels and therefore
the results were equivalent to the LGS2d solver. The seven-layer V-cycle ACM solu-
tion had the highest normalized temperature difference. This was attributed to the
high frequency errors introduced by multigrid that were not eliminated by the time

the convergence criterion was satisfied.

TLUDM,ma: - TLUD2d,min
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Max Field LGS2d | V-Cycle | V-Cycle | Flexible-Cycle | Flexible-Cycle
Difference (1 Level) | (7 Levels) | (1 Level) (7 Levels)

Table 6.2: Conduction field comparison of two-dimensional conduction solutions.

6.3 Lid-Driven Cavity Test Problems

After the conduction terms of the energy equation were validated, the next step was
to test the momentum equations and the advection terms of the energy equation.
First an isothermal lid-driven cavity model was solved. Once the velocity fields for
the domain were calculated, the temperature field was determined from the energy

equation.

6.3.1 Isothermal

The solution of this test problem helps to examine the accuracy of the velocity and
the pressure correction solution algorithm. Figure 6.4 schematically shows the test
problem. The domain is square, with all sides equal to one meter in length. The
properties of the fluid, except density, are equal to those of air at atmospheric pressure
and 300 K. The lid velocity is equal to one meter per second in the positive z direction.
The Reynolds number is defined as:

Repq = ﬂ%‘U"—“ (6.6)

where the parameters are the density, p, length of the cavity wall, L, lid velocity,
ULid, and absolute viscosity of the fluid, 4. The density value was adjusted to obtain
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U =0,
v-r =0

L

Figure 6.4: Lid-driven cavity test problem.

the desired Reynolds number for comparison with literature. The solution was run to

a steady state criterion of 1 x 10~6 using an E~factor of 5.0 for the velocity solutions.

Figures 6.5 and 6.6 show the horizontal and vertical centerline velocity profiles
compared with Ghia et al. [20]. The staggered grid used for the velocity calculations
created some difficulties when comparing results with Ghia et al. In order to avoid
interpolating the velocity between control volumes for comparison with the Ghia et al.
published results, the grids were modified by adding either a column or a row. A
130 x 129 grid was used for the U-velocity profile comparison, and a 129 x 130 grid
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was used for the V-velocity profile comparison.

The addition of a column or row of control volumes should not have affected the
results significantly. The cavity with the Reynolds number of 400 showed very good
agreement with Ghia et al., except for a point on the V-direction centerline profile.
The error on this centerline profile was attributed to a data error in the paper since
the other points showed very good agreement. However, the results of the present
work for a Reynolds number of 5,000 did not compare well with Ghia et al. This
deviation was attributed to the exponential upwinding scheme used in the present
work compared to the first-order accurate upwind differential scheme (with a second-
order accurate term as a deferred correction) use by Ghia et al. The significant
influence of the upwind scheme was demonstrated by Jessee and Fiveland [31].

1 - - - ' 04 v - - -
U-direction results — .
. V-direction results —
0.8 Ghiaetal. results o 03r Ghia et al. results ® A
3 Re ;=400 g o2} Re ;=400
< o6} 130 x 129 grid < 129 x 130 grid
= = 0.1
2 4 2
# o4l >c.= P S LT “COT PP PIT PRI
- >
E o2t 0.1F
E ] 02f
(=]
z z 0 ‘3 b
02} oet
04— 02 04 06 08 1 050 02 04 06 08 1
Normalized Verticle Position [m] Normalized Horizontal Position [m]
(a) U-velocity. (b) V-velocity.

Figure 6.5: Velocity centerline profiles for the square cavity (Reg;q = 400).
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Figure 6.6: The velocity centerline profiles for the square cavity (Req = 5000).

The efficiency of the multigrid algorithm for this problem was examined. Since
the velocity is not a function of temperature, the velocity field was solved first. The
model was standardized for each test by maintaining all input parameters between
models, and the results were compared between the solvers. The lid velocity for
these tests cases was set equal to 0.1 m/s. The Reynolds number, calculated using
Equation (6.6), is 20.8. Table 6.3 is a summary of the test run results. Only the
type of the pressure correction solver was varied since this equation set required the
most iterations. The solvers iterated until the convergence criterion of 1 x 10~ was
achieved.

The research indicated that the LUD2d solver was more efficient solving the pres-
sure correction equation set than the LGS2d solver. As expected, the V-cycle ACM
solver required less CPU time than the LGS2d solver. The V-cycle ACM solver needed
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Solver | # Coarsest | Computational | Work Units | Coefficient
Type Level CV's Time WU(P') Updates

LGS2d 64 x 64 15,460 s 68,700 229

LUD2d 64 x 64 13,090 s N/A 230
Vcycle (1) | 64 x 64 19,520 s 68,700 229
Vcycle (2) | 32x32 14,500 s 43,380 229
Vcycle (3) | 16x 16 9,563 28,360 230
V-cycle (4) Bx8 7,137 s 20,570 230
V-cycle (5) 4x4 59128 16,630 230
V-cycle (6) 2x2 5,200 s 14,580 230
V-cycle (7) 1x1 3,900 s 10,280 230
F-cycle (1) | 64x64 16,160 s 68,700 229
F-cycle (2) | 32x32 17,210 73,440 229
F-cycle (3) | 16x 16 18,830 s 74,320 230
F-cycle (4) 8x8 9,308 s 34,710 230
F-cycle (5) 4x4 46148 12,370 230
F-cycle (6) 2x2 3,449 s 8,716 230
F-cycle (7) 1x1 3212s 7,893 230

Table 6.3: Comparison of solver effectiveness for the velocity field in the lid-driven

cavity test problem. The resolution of the fine grid was 64 x 64 control volumes.
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one-sixth the work units and one quarter of the CPU time of the LGS2d solver for
a 64x64 control volume grid. The flexible-cycle solver required less than one-eighth
the work units of the LGS2d solver and one fifth of the CPU time. These results
indicated that the flexible-cycle ACM was the fastest solver when solving the velocity
field for a lid-driven cavity model.

In addition to computational effort comparisons, specific field values were also
compared in the results for the different solvers. Field differences were calculated rel-
ative to the value at the same node in the LUD2d solution. The maximum differences
in velocity, pressure, and stream function are reported in Table 6.4. The field results
were exactly the same for the LGS2d, V-cycle with one level, and the flexible-cycle
with one level. This was expected since the ACM algorithm using an LGS2d solver
only on the first level is essentially the same as an ordinary LGS2d solver. When the
number of levels was increased, the accuracy of the results also increased since the

higher levels removed the low-frequency error modes.

Field LGS2d V-Cycle V-Cycle Flexible-Cycle | Flexible-Cycle
(1 Level) (7 Levels) (1 Level) (7 Levels)

Normalized U-velocity 4.1172x 107 | 4.1172x10~% | 1.2319x 10~7 | 4.1172x 10~5 | 1.5398 x 107

Q position (i,j) (33,50) (33,50) (36,65) (33,50) (2.65)
Normalized V-velocity 6.4453x 10~ | 6.4453 x 10~% | 1.2207 x 10~7 | 6.4453 x 10~6 | 2.1973 x 10~7

Q position (i,j) (16,33) (16,33) (2,62) (16,33) (2,64)
Normalized Pressure 1.1333x 10~6 | 1.1333x 10~% | 8.0950 x 10~% | 1.1333 x 10~% | 2.1587 x 107

Q position (i,j) (1,65) (1,65) (5,65) (1,65) (1,65)
Normalized Stream Function | 1.5563 x 105 | 1.5563 x 10~5 | 3.6364 x 107 | 1.5563 x 10—5 | 2.8382 x 10~7

@ position (ij) (32,33) (32,33) (65,60) (32,33) (44,49)

Table 6.4: Lid driven cavity field comparison of velocity solutions.
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6.3.2 Non-Isothermal

The LUD2d-solved velocity field was next used to test the temperature solution field.
Using the solution of the velocity field, the temperature field was calculated using the
different solvers. The temperature boundary conditions prescribed for this model are
illustrated in Figure 6.7. For the results described next, the values of Ty were 300 K

and 100 K, respectively.

¥ Lid
t —> —
B |
) T,
H
TH Tni
Yy _TH >X
— L—»

Figure 6.7: Lid driven cavity nomenclature for the temperature benchmark.

Table 6.5 displays the results for the tests of solver efficiency for the non-isothermal
lid driven cavity test problem. The LUD2d solver took over eighteen times more

CPU time to solve the temperature field than LGS2d. The V-cycle ACM did not
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Solver # Coarsest | Computational | Work Units | % Heat | Coefficient

Type Level CV's Time WU(T) Balance Updates

LGS2d 64 x 64 2874s 254.0 1.48906% 350

LUD2d 64 x64 54130s N/A 1.43908% 329
Vcycle (1) | 64x64 3020 254.0 1.48906% 350
V-cycle (2) | 32x32 27755 214.8 1.38141% 334
Vcycle(3) | 16x16 240.3 s 240.3 1.35665% 331
V-cycle (4) 8x8 284.158 8.1 1.35544% 331
V-cycle (5) dx4 2849s 250.0 1.35547% 331
V-cycle (6) 2x2 285.5 8 250.5 1.35535% 331
V-cycle (7) 1x1 285.18 250.6 1.35535% 331
F-cycle (1) 64 x64 295.28 254.0 1.48906% 350
F-cycle 1(2) 32x32 306.2s 254.0 1.48906% 350
F-cycle $(3) 16x 16 309.0s 254.0 1.48906% 350
F-cycle t(4) 8x8 3090s 254.0 1.48906% 350
F-cycle 1(3) 4x4 309.3s 254.0 1.48906% 350
F-cycle $(6) 2x2 309.2s 254.0 1.48906% 350
F-cycle t(7) 1x1 3093 s 254.0 1.48906% 350

Table 6.5: Comparison of solver effectiveness for the temperature field in the lid-driven

cavity test problem. The resolution of the fine grid was 64 x 64 control volumes.

1This run converged only using the first (finest) level.

significantly improve the solution of the field over the LGS2d solver. The flexible
ACM solved only the finest grid equation set without having to use any additive

corrections to speed up the convergence.

The LUD2d solver again was used as the basis of comparison for the temperature
field value. Table 6.6 shows that the LGS2d, V-cycle with one level, and both flexible-
cycle test runs, have the same maximum temperature field difference. Since the
flexible-cycle converged rapidly on the fine grid, it did not need to use the coarser
grid levels; most of the ACM solvers behaved as ordinary LGS2d solvers. Only the
multi-layered V-cycle test case showed a slightly smaller deviation from the LUD2d
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field values since it was forced to use the coarser grids.

Maximum Field LGS2d V-Cycle V-Cycle Flexible-Cycle | Flexible-Cycle
Difference (1 Level) (7 Levels) (1 Level) (7 Levels)

Normalized Temperature | 7.7393 x 10—4 | 7.7393x 10— | 5.7037 x 10—4 | 7.7393 x 10~4 | 7.7393 x 10~4
Q position (i,j) (18,24) (18,24) (31,35) (18,24) (18,24)

Table 6.6: Lid driven cavity field comparison of temperature solutions.

6.4 Natural Convection Benchmark Test

The next step is to test the ability of the computer code to calculate the field of
a natural convection problem. The first natural convection test was done on the
test problem shown schematically in Figure 6.8. The fluid properties are for air at
atmospheric pressure and 300 K. The square cavity had a side length, L, of one meter.
A computational grid with 80 x 80 uniformly spaced control volumes was used. The
ET factor was set to 5, the EV and EV factors were both set to 3, and the steady-
state convergence criterion was specified as 10-3. The hot temperature, Ty, was set
to 5 K, and the low temperature, T, was set to -5 K. The fluid density was varied to
get Rayleigh numbers between 10° and 10°. The value of the Rayleigh number, Ra,
was calculated from the equation,

AT L3
Ra = ngﬁpk % (6.7)

Table 6.7 reports the Nusselt Number comparison between the present work and two
benchmark results from the literature [25, 15].
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Figure 6.8: Boundary conditions for natural convection in a cavity.

The Nusselt number, as given by M. Hortmann et al. [25], is defined by the

equation,

Nu = g; (6.8)

where Q is the actual heat flow across the cavity and Q. is the heat flow from pure

conduction. Q. is defined as

Ty - T
Q. = F“r-———”L °H (6.9)

where H is the height of the cavity, which in this case is equal to the side length,

L. The heat flow, @, is the average of the sum of the convection and diffusion fluxes
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through the CV faces along any verticle grid line (i = constant).

/. dT
Qi = Z (‘mecpTe - keAga—z‘ ) (6.10)
j=3jb e/ q
The average value is given by:
-3 a (6.11)
N""l.-_'u L

The values of Q; are summed starting from ib — 1 so that the heat flow through
every control volume face is considered in the calculation of Q. The results shown in
Table 6.7 indicate that the the code produced results very similiar to other natural

convection benchmarks.

Rayleigh | Present Work | Hortmann | Davis

Number | 80 x 80 [25] [15]
Bl B elohio S NN SO L

103 1.11733 - 1.118
10* 2.24981 2.24475 | 2.243
10° 4.54192 452164 | 4.519
108 8.96487 8.82513 | 8.800

Table 6.7: Nusselt numbers for natural convection in a cavity.

To further test the efficiency of the ACM solver, comparisons were made between
the different solvers. The results of these comparisons are summarized in Tables 6.8
and 6.9. The full ACM flexible-cycle solver solved the benchmark in one-fifth the
time of the LGS2d solver, and in one-ninth the time of the LUD2d solver. Note that
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Solver Type | Computational Work Units % Heat | Coefficient | Nusselt
ForT | ForP’ Time WU(T) | WU(P") | Balance | Updates | Number
LGS2d | LGS2d 11,560 s 167 49200 | 0.1647% 165 4.51878
LUD2d | LUD2d 21,170 s N/A N/A | 0.3330% 195 4.54996
va) | v 14,0208 167 | 49,200 | 0.1647% 165 451878
v | v@) 9,714 166 | 29,880 | 0.0410% 159 451273
va) | v@ 45928 166 13,510 | 0.0107% 154 4.51025
va | v 2,833 s 165 7,325 | 0.0774% 163 4.51495
v | va) 13,160 s 1448 | 45900 | 0.3034% 154 4.51850
ve | v@ 8,566 s 1448 | 26,270 | 0.1526% 140 451314
v | v 4,431 s 1458 | 12,910 | 0.1184% 146 451573
ve | v 2,747 s 1448 | 7,060 | 0.1797% 160 4.52201
v | va) 13,070 s 1594 | 45560 | 0.4327% 153 452071
v@ | v@ 8,894 s 1594 | 27,350 | 0.2111% 146 4.51696
v@ | va 5,060 s 156.7 | 14,880 | 0.2293% 166 4.53010
v | v 3,089 156.7 | 8080 | 0.2953% 179 4.54100
v | v 13,110 s 161.0 | 45560 | 0.4294% 153 4.52097
ven | v 9,011s 1610 | 27,350 | 0.2778% 146 4.51704
v | v 5,398 s 158.3 | 15930 | 0.2353% 177 4.54062
vy | v 3,093s 1583 | 8081 | 0.2934% 179 4.54077

Table 6.8: Natural convection solver comparison (V-cycle).

the flexible-cycle solver did not use any multigrid levels to solve the energy equation
even though it was allowed to solve up to seven levels. The energy equation converged
rapidly on the finest grid level.

6.5 Conjugate Heat Transfer Test Problem

As a final test to validate the code, a conjugate benchmark was modelled. This model
is similiar to the natural convection benchmark described in Section 6.4. In this case
the cavity was surrounded by walls of finite thickness. Figure 6.9 shows the layout of
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Solver Type Computational Work Units % Heat | Coefficient | Nusselt
ForT | For P’ Time WU(T) | WU(P’) | Balance | Updates | Number
LGS2d | LGS2d 11,560 s 167 49,200 | 0.1647% 165 4.51878
LUD2d | LUD2d 21,170s N/A N/A | 0.3330% 195 4.54996
F(Q) F Q) 12,1108 167 49,200 | 0.1647% 165 4.51878
F Q) F (2 129208 166 50,780 | 0.0386% 160 4.51295
FQ) F (@) 5,188 s 165 16,210 | 0.0685% 158 4.51237
F(Q1) F (7 2,264 8 162 5,590 | 0.0759% 162 4.51413
F@t| F@ 12,1208 1670 | 49,200 | 0.1647% 165 4.51878
F@t| F(@ 12,9108 1660 { 50,780 | 0.0386% 160 4.51295
F@t| F@ 5204 s 1650 | 16,210 | 0.0685% 158 4.51237
F@t| F@ 2,278 s 165.0 5,590 | 0.0759% 162 4.51413
FM@t| FQ 12,1308 167.0 | 49,200 | 0.1647% 165 451878
FA@t| F(2 12,910 166.0 | 50,780 | 0.0386% 160 4.51295
FAt| F@ 5,207 s 1650 | 16,210 | 0.0685% 158 4.51237
F@t| F@ 2,284 s 156.0 5,590 | 0.0759% 162 451413
F(MHt]| FQ) 12,170 s 167.0 | 49,200 | 0.1647% 165 4.51878
F(Nt| F@ 12,9208 166.0 | 50,780 | 0.0386% 160 4.51295
FMt| F@ 5,210 s 1650 | 16,210 | 0.0685% 158 4.51237
F(Ot] F(M 2,281s 165.0 5,590 | 0.0759% 162 4.51413
F(7t | LUDA 9342 165.0 N/A | 0.0870% 163 4.51487
LUD2d | F(7) 12670 s N/A 6714 | 0.3234% 195 4.54980

Table 6.9: Natural convection solver comparison (flexible-cycle).

1This run converged using only the first (finest) level.

the model. The fluid properties are the same as for the previous natural convection
benchmark. The grid used was 80 x 80 (40 x 40 in the cavity). The size of the
cavity is 0.6 meters along each wall, and the outside wall length measures 1.0 m. The

thermal conductivity of the solid was set to be ten times greater than the fluid (air).
For comparison with the results presented by Kim and Viskanta [32], the density of
the solid can be said to be 2000 times greater than the fluid, and the specific heat is
uniform throughout the domain. A steady state criterion of 10~° was used.
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Figure 6.9: Conjugate benchmark; natural convection with finite walls.

Several tests were run with different Rayleigh numbers by changing the density of
the fluid (and the solid density, accordingly). The Rayleigh number was calculated

using the following equation:

Ty — T

The Nusselt numbers were then calculated locally and averaged at each interior surface
of the cavity walls. The formulation of the Nusselt number is based on the equation
given by Kim and Viskanta [32], although it was modified to ensure an energy balance.
The step-by-step details of the modification are given below.

Figure 6.10 illustrates the nomenclature used to calculate the Nusselt number.
First, the heat flow across the fluid-block control volume interface is defined for the
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Fluid

Figure 6.10: Nomenclature for the conjugate Nusselt number calculaticn for natural
convection within a square cavity with finite walls.

left vertical wall:
aT
Q- = — sAe'b'a':’ - (6.13)
Then, the heat flow is defined in terms of the convection coefficient, h., for the control
volume face.
gt = Ach: (T. — (Ta +7Tc)/2) (6.14)
= A (I. - T) (6.15)

Next, Equation (6.15) is rearranged in terms of the local convection coefficient to get

get
hy = ——aet 6.16
A (T < T) (6.16)
and since g.- = g.+, Equation (6.13) can be substituted in for g,+.
- kaAe%fl -
hy = ——e—92 e 6.17
Thus the local Nusselt number is defined as
-k, AT
Nu, = L =t _’é‘k_le‘_ (6.18)

kg ki A. (T. - T)
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The average Nusselt number is calculated by averaging the local nusseit number over
the area of the cavity wall.
-AZE|

Nu = Amzk, T. -T) (6.19)

The equations required to calculate the Nusselt numbers for the other walls can

be derived in a similiar manner.

The results calculated by the code developed in this thesis are compared against
the benchmarked results given by Kim and Viskanta [33]. The results are summa-
rized in Table 6.10, and the temperature contours and the streamlines are shown in
Figures 6.11 and 6.12.

Result Type Nug | Nuc | Nur | Nug
. .
Kim & Viskanta [33] 3.801(3.781 | 1.017 | 1.057

Nu based on Tyen — T | 14.19 | 17.00 | 6.606 | 60.85

Nu based on Ty — T | 7.425 | 7.571 | 2.522 | 2.666

Table 6.10: Nusselt numbers for natural convection in a cavity.

The Nusselt numbers based on the T,y — T are much higher than those of Kim
and Viskanta for all sides of the cavity. The Nug results are the highest because the
wall temperature approaches the average fluid temperature at two control volumes.
When the difference of the two temperatures, Tiya — 1, becomes very small, the value
of the Nusselt number becomes very large. There is a large discrepancy between the
Kim and Viskanta results and those from Equation (6.19) because there appears to
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Figure 6.11: Temperature contours in the thick walled cavity for Ra* = 10°.

be an error in the derivation of the Nusselt number in Kim and Viskanta [32]. The
“Tyg — Tc" Nusselt number is calculated using Equation (6.8). In this case the cavity
is treated like the convection cavity without finite walls. The average temperatures

of the interior left and right walls are used for Ty and T¢, respectively.
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Figure 6.12: Streamlines for the thick walled cavity for Ra® = 10°.

6.6 Conjugate Tests with an QOil-Filled Cavity

These series of tests set the basis for the transformer runs described in Chapter 7.
These problems examine the sensitivity of the conjugate domain solution to changes
in fluid-solid thermal conductivity ratio, the width-height ratio of the cavity, and the
boundary conditions.

The test problems began by modelling a simple geometry in order to build an
understanding of solving conjugate problems. When the trends of the simple model
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were understood, more complexity was added to the transformer model.

Based on the test described in Chapter 6, the CACM2d solver was selected for the
solution of the transformer model. This solver was used to calculate the temperature
and the pressure correction fields. LGS2d was used to calculate the velocity fields
since they tended to converge quickly without a multigrid solver.

6.6.1 Oil-Filled Cavity with Two Thick Walls

The first test is similiar to the standard natural convection cavity described in Sec-
tion 6.4. In this test problem, the fluid in the cavity is transformer oil (properties
at 300 K). The density of the oil was specified to obtain a Rayleigh number of 10*.
The Rayleigh number, using Equation (6.7), was calculated for the cavity by calcu-
lating the average temperatures on the left and right solid-oil interfaces. As shown
in Figure 6.13, solid walls were placed beside the cold and hot sides with properties
all equal to that of transformer oil except for the thermal conductivity. The ther-
mal conductivity of the solid regions was changed throughout the series of tests. If
the thermal conductivity is high enough, the temperature throughout the left block
would be nearly equal to T}, and the temperature throughout the right block would
be nearly equal to T,4. The value of AT for the interior cavity would equal the dif-
ference of T}, and Tyq- In this case, the behaviour of the fiuid flow should be nearly
the same as the fluid cavity with isothermal walls, which is the standard benchmark
test problem discussed in Section 6.4. The top and bottom of the domain is insulated.
A uniform 41 x 41 grid was used for the cavity, and each of the solid walls on either

side had an additional five control volumes across their width.

Several tests were run by varying the ratio of the solid to oil thermal conductivities,
ks/k,. Ratios of 10%, 103, 102, 10, 5, 3, and 1, were analyzed. The runs showed that
as the k,/k, ratio is reduced, the Rayleigh number decreases from 0.972 x 10* for
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q"=0

cold

q"=0

Figure 6.13: Dllustration showing the setup and nomenclature for the square oil cavity
with two conjugate walls test.

ks/ko = 10° to 0.163 x 10* for k,/k, = 1. This is attributed to the increasing thermal
resistance in the solid walls causing a larger temperature drop across the finite wall.
As the ratio of k,/k, = 105 decreased to k,/k, = 1, the amount of work units required
for a solution almost doubled. Over 60% of the work for the k,/k, = 10° test case
was spent computing the pressure correction field, while approximately 64% of the

time was spent on the same task in the k,/k, =1 test case.

This test case illustrates that as the temperature gradients inside solid increase,
the number of work units required to solve the problem also increases. Therefore, it

is expected that the closer the core and winding thermal conductivity is to the oil
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thermal conductivity, the greater will be the CPU time that is required to solve the

transformer simulation.

6.6.2 Narrow Fluid Cavity With One thick Wall

The next series of test problems consisted of a solid beside a narrow cavity filled with
transformer oil, as shown in Figure 6.14. The purpose of this test is to determine
the effect of having a tall and narrow cavity on the solution time and stability. This
geometry is specified so that it is nearly that of a transformer cross-section. These
tests, therefore, provided some experience in computing transformer-like problems.
Also, the solid region properties were specified to be a homogeneous representation

of the core and winding region in a transformer.

The first test case uses Dirichlet boundary conditions to specify a temperature on
the boundary of the domain. All the walls were specified with the same temperature,
except one which was given a higher temperature. The next test case took the average
heat flux induced by the Dirichlet boundary conditions and used that value to replace
the boundary condition of the higher temperature wall with a heat flux specification.
The final test case used the total energy added to the previous tests cases divided by
the volume of the solid as the energy generation within the solid. The heat flux on
the left wall was removed, and instead the wall was treated as insulated.

Wall Boundaries with Specified Temperatures

The solid was approximated by a homogenous core-and-winding-like material (the
approximations are based on a actual dimensions of an aluminum-wound winding).
All the properties are listed in Table 6.11. The width of the solid is 0.1 meters,
the fluid cavity is 0.015 meters, and the height of the cavity is 0.8 meters. These
dimensions were chosen to reflect the dimensions of a typical, small-sized, distribution
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Figure 6.14: Schematic illustration of a narrow cavity, conjugate heat transfer model

with dirichlet boundary conditions.

transformer. The Dirichlet boundary conditions were specified with a Ty of 5°C on
the left hand side (on the windings side) and T of 0°C on the remaining sides. The

higher temperature is used to simulate a power generation within windings.

Two sets of runs were conducted. The first set of runs were for k,/k; = 10'°, and
a time step of 1, 2, and 3 seconds. The fluid properties remained constant throughout
all the runs, only the thermal conductivity of the solid was changed. The results are
summarized in Table 6.12. The solution proved to be unstable with larger time steps;
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Property Qil at 72°C | Core and Windings
Density 834.96 kg/m? 2180 kg/m?
Thermal Conductivity | 0.45 W/m-K by ratio
Specific Heat 1875.69 J/kg-K 1032 J/kg-K

Table 6.11: Properties for the narrow fluid cavity model.

Time Total Total Work Units Interface
Step Steps Time [hrs] T U v P’ Ra Nu T

1 534 0:08:54.00 | 1,228 | 1,105 | 1,142 | 119,400 | 7.870 x 104 | 2.4222 | 3.3548 K

917 0:30:34.00 | 1,380 | 2,459 | 1,555 | 114,600 | 7.874 x 10* | 2.4235 | 3.8566 K

3 10,000 ¢+ | 8:20:00.00 | 10,520 | 29,890 | 17,920 | 817,200 | 7.873 % 10¢ | 2.4232 | 3.8563 K

Table 6.12: Results for the k,/k; = 10" conjugate model with narrow fluid cavity.

{This run did not reach steady state because of oscillations.

the time step of three seconds did not converge to a steady state value. The Rayleigh

and the Nusselt numbers are determined based on the calculated average temperatures
of the left and right walls, using Equations (6.7) through (6.11). The Nusselt number
varied little between the different time steps, even if the time step of three seconds is
considered. The number of work units is also recorded so that a prediction could be

made about how long a transformer problem may take to solve. These values indicate

how the solution time will increase as the test problem is modified to become more

transformer-like.

The next set of runs were for a ratio of k,/k; = 1/0.45. This ratio is close to the
actual ratio found between the windings in a transformer and the oil. The results are
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Time | Total Total Work Units Interface
Step | Steps | Time (hrs}] | T U v P Ra Nu T
2 6,463 | 3:35:26.00 | 6,463 | 12,900 | 13,560 | 1,478,000 | 1.623 x 104 | 0.3053 | 0.7949 K
3 4,705 | 3:55:15.00 | 5,652 | 9,396 | 10,200 { 983,000 | 1.634x 10* | 0.3084 | 0.8005 K

Table 6.13: Results for the k,/k; = 1/0.45 conjugate model with narrow fluid cavity.

summarized in Table 6.13. The results for the one second time step are not shown
because the test case would have taken over 10,000 time steps to converge. It is
important to note that the solution of the k,/k; = 1/0.45 ratio problem is able to be
solved with a larger time step.

Wall Boundary with a Specified Heat Flux

The model from Section 6.6.2 used Dirichlet boundary condition to simulate the heat
generation within the windings. For this test case, the Ty boundary condition was
replaced with the equivalent heat flux. The heat flux was based on the average heat
flow (50 W) found on the left face of the k,/k; = 1/0.45 test case in the Dirichlet test
problems. The heat flux applied to the left face is 62.5 W/m2. Figure 6.15 shows the
new boundary conditions. Only the k,/k; = 1/0.45 case was analyzed.

The purpose of the test was to see if changing the boundary condition would have a
significant effect on the solution time and stability. A summary of the results is shown
in Table 6.14. Although the results show that solution stability is not a problem, the
new boundary condition increases the simulated time required to obtain steady state.
In the previous subsection, three to four hours was required to reach steady state
convergence. With the heat flux applied to the left side, the simulated time increased
to at least eleven hours. The three second time step run was stopped because it was

taking a long time to reach steady state. The longer simulation time makes sense
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WL

Figure 6.15: Schematic illustration of a narrow cavity, conjugate heat transfer test

with a constant heat flux.

because the left temperature is no longer held constant. The wall boundary increases
in temperature with the rest of the model. The left wall temperature increased from
an average of 0.8 K in the Dirichlet test cases, to 1.0 K. The Rayleigh number increased
from 1.6 x 10* to 2.0 x 10%, and the Nusselt number increased from approximately
0.30 to 0.34.

These results show that the computer time required to solve the transformer model
could be substantial since none of the transformer walls are held at a constant tem-

perature.
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Time | Total [ Total Work Units Interface
Step |Steps | Timen] [ T | U | Vv | P Ra Nu T K]

4 | 9972 | 11:04:48.00 | 12,080 | 20,030 | 19,310 | 1,958,000 | 2.018 x 104 | 0.33411 | o0.98859
8 | 5936 | 13:11:28.00 | 10,660 | 14,150 | 13,060 | 913,700 | 2.046 x 104 | 0.33688 [ 1.00195
10 | 5050 | 14:01:40.00 | 8,911 | 12,200 | 11,780 | 697,900 | 2.052x 104 | 0.33754 | 1.00513
20 | 3201 | 17:47:00.00 | 5974 | 8581 | 8311 | 387,900 | 2.067x 104 | 0.33902 | 101232

Table 6.14: Results for the k,/k; = 1/0.45 narrow fluid cavity with left side heat flux.

Heat Generation within the Solid

The 50 W heat flow used on the left side of the previous test problem was used to
calculate an equivalent volumetric energy generation rate for the next variation of this
model. Dividing this value by the volume area of the solid gives a heat generation
rate of 625 W/ m®, and the left side was insulated to match a symmetry condition of a
transformer model. Appendix A describes the justification for using this transformer

cross-section as the model.

The test problem layout conditions are shown in Figure 6.16, and the results are

summarized in Table 6.15. Only runs with a time step of 15 and 20 seconds were

Time | Total Total Work Units Interface
Step | Steps | Time [hrs] T U v P’ Ra Nu T [brs]

TS S B
15 3866 | 16:06:30.00 | 7,364 | 10,590 | 9,799 | 476,400 | 2.158 x 10¢ | 0.63951 | 1.05702

20 4604 | 25:34:40.00 | 82,500 | 13,050 | 13,050 | 541,300 | 2.165 x 104 | 0.63937 | 1.06045

Table 6.15: Results for the k,/ks = 1/0.45 narrow fluid cavity with heat generation
in the solid.
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Insulated

¢ L,

Figure 6.16: Schematic illustration of a narrow cavity, conjugate heat transfer test

with energy generation within the solid.

conducted because the purpose of these tests were just to see if the switch from a
heat flux on the left side to heat generation inside the solid would affect the results
significantly.

The results showed that the simulated time increased from between fourteen and
seventeen hours in the previous test cases, to between sixteen and twenty-five hours.
The number of work units required increased by 50%, and the fluid-solid interface
temperature increased from 1.01 K to 1.06 K. Both the Rayleigh and the Nusselt
numbers increased from approximately 2.06 x 10* and 0.34 to 2.16 x 10* and 0.64,
respectively.
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6.6.3 PVT-Loop Tests

After much investigation it was found that the PVT-Loop discussed in Section 4.11
did not allow for longer time steps when analyzying the transformer model. Instead,
the solutions continued to diverge at the higher time step and thus required many
more solver iterations. Even the one second time step the PVT-Loop did not improve
upon the solution time of the transformer. This may be attributed to the movement of
the fluid cells above the core and windings. Instead, the standard segregated solution
method was used to solve the transformer test cases in the next chapter.



Chapter 7

Transformer Simulations

7.1 Introduction

A method has been developed to model transient, conjugate heat transfer. The previ-
ous chapter showed the test cases used to validate the equation sets and the solution
algorithms. The next step is to apply the computational model to a distribution
transformer. The first transformer model was used to ensure that the theoretical
model can capture the basic phenomena in a naturally oil-cooled distribution trans-
former. The work of Alegi and Black [1] was used to test the present model since their
paper contained sufficient details for comparison with the present computer model.
Once the simulated transformer model results were compared with the results of Alegi
and Black, a parametric study was conducted on the same transformer configuration
to show the effect of varying the ambient conditions, the load, and the description
of the core and windings. Finally, a comparison was made with the ANSI loading
guide [3]. These tests compared the computer-predicted hotspot temperature rise for
step overloaded transformers with the ANSI tabulated values.

130
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7.2 Comparison of Results with Alegi and Black

The results of Alegi and Black [1] were used to test the application of the present
work. Using a lumped model approximation, Alegi and Black compared their theoret-
ical model against data obtained from experimentally testing a 75 kVA distribution
transformer.

7.2.1 Model Development

This section details the development of the Alegi and Black comparison model. The
transformer parameters presented by Alegi and Black are reviewed, and the assump-
tions made by the authors are discussed in detail. This subsection then discusses the

assumptions used in the comparison model.

Alegi and Black Model Summary

The Alegi and Black article [1] contains most of the information about their trans-
former run required to build a numerical comparison model. Some transformer
specifics such as dimensional details about the windings, and the ratio of core to
windings mass, had to be approximated. The basic model parameters are listed in
Table 7.1.

The lumped model by Alegi and Black consists of three transient energy balances,
one for each of the three transformer components shown schematically in Figure 7.1.
The components are the core and winding assembly, the transformer oil, and the
external transformer tank and fittings. Their model assumes that the core and wind-
ings can be approximated as a vertical cylinder with the top and bottom perfectly
insulated. The core and the tank are linked by oil convection, and the tank is linked

with the ambient air by convection. Correlations were used to model the convection
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Parameter Value
Full Load (Nameplate) Rating 75 kVa
Iron (No Load) Losses 0.07 kW
Full Load Copper (Full Load) Losses 0.528 kW
Top Oil Temperature Rise at Full Load 65°C
Mass of Core and Coil Assemby 532 lbm (241 kg)
Mass of Oil 278 lbm (126 kg)
Mass of Tank and Auxillary Fins 140 lbm (64 kg)
Equivalent Diameter and Height of Core and Coil | 1.64x1.41 ft (0.5x0.43 m)
Diameter and Height of Tank 1.9x3.33 ft (0.58x1.01 m)

Table 7.1: Alegi and Black [1] transformer data.

Core .
& (» 0ol (B Tk |[p Amblent
Windings

Figure 7.1: Alegi and Black lumped model energy flow diagram.

heat transfer. Alegi and Black made no attempt to model the increased convection
caused by the auxillary fins. In the discussion to the paper, L. W. Pierce states that
significant error is introduced by neglecting the heat transfer from the winding ducts
to the oil. The present model also makes this approximation for consistency.

The Alegi and Black model used several correlations to model the convection

between components. For the convective heat transfer from the sides of the core
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and coil assembly to the surrounding oil, the authors stated that the curvature of
a cylinder has no appreciable effects as long as the Grashof number is great than
105. This criterion is satisfied for a typical transformer design. Therefore the Nusselt

number for the flow of oil over the core and coil assembly sides is calculated by
Nugyw = A(GrePros)™® (7.1)

where the following expression is used for the value of A:

P 0.25

T,

A= oL 7.2
[2.435 + 4.884Pr37 + 4.953Pr, ¢ 2

The Grashof number of the oil is evaluated from the expression

ot 9 (Tevw — To) Ha,
_ Bosg( s ) (7.3)

where H,,, is the height of the core and coil assembly, and T, — T, is the difference

Grc-{»w

between the core and windings, and oil temperatures. Once the Nusselt number
is evaluated for the flow of oil over the core and coil, the convection heat transfer

coefficient is determined by the expression

ko tNu
horw = .Jﬁ.cfﬂ (7.4)

Expressions for the thermophysical properties of the oil (Pr, 3, v,k) are given in
Table 7.2. All oil properties are evaluated at the oil film temperature, the average of
T, and Toyy-

The convection heat transfer coefficient between the oil and the inside walls of

the tank is evaluated using a similiar procedure. Equations (7.1) and (7.2) still apply

without modification, but the Grashof number is determined from the expression

0, To—Tt Hf
By fg((u,,)z ) (7.5)

Grt
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Property ; Units Symbol Expression
Thermal Conductivity of Air; Btu/hr - °R kair 0.000263 + 22.50 x 10~6T
Kinematic Viscosity of Air; ft2/sec Vair —1.3663 x 10~4 +5.785 x 10~7T
Coefficient of Thermal Expansion of Air; 1/°R |  fair 1/T
Prandtl Number of Air Proiy 0.70
Thermal Conductivity of Oil; Btu/hr - R°R ko 0.07755 — 25.672 x 10T
Kinematic Viscosity of Oil 1; ft?/sec Vo 10~% x exp (32.18 — 0.0772T + 50.81 x 10~573)
Coefficient of Thermal Expansion of Oil; 1/°R Bo 0.0004
Prandtl Number of Oil Pr, ezp (30.36 — 0.0712T + 46.81 x 10-97?2)
Specific Heat of Oil; Btu/Ibm-°R. Cpo 0.1009 + 5.849 x 10—4T
Specific Heat of Copper; Btu/Ibm-°R. Cp,cu 0.0856 + 12.778 x 10—6T
Specific Heat of Steel; Btu/lbm-°R Cp,ateel 0.0726 +60.556 x 10—8T
Above expressions are limited tc 480°R. < T < 680°R, and T must be in °R.

Table 7.2: Alegi and Black [1] thermophysical property expressions and definition of

symbols.

{The expression for this property was modified from the original expression in
the paper because the calculated values were unrealistic. The original expression,
ezp [(32.18 — 0.0772T + 50.81 x 10~%) x 107¢], was missing the T? factor in the last term, and
misplaced the x10~8 term in the exponent.
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where H, is the height of the transformer tank, and T, — T; is the difference between
oil and tank temperatures. The convection heat transfer coefficient is given by

(7.6)

where all oil properties are evaluated at the film temperature, the average of T, and
T:.

To evaluate the convective heat transfer coefficient on the outer surface of the
tank walls, the transformer tank is modelled as a vertical cylinder. For this test case,
Alegi and Black modelled the tank convection heat transfer as being only natural
convection. As long as the thermal boundary layer thickness over the outer surface
of the tank is small compared to the effective diameter of the tank, Alegi and Black
suggested using the following equations to determine the Nusselt number.

Nugfree = 0.555(GreProi)™® ; GreProy < 10° (7.7)
Nty free = 0.021(GrePry;)*® ; GrePror > 10° (7.8)
where
Gr. = ﬁai:,_fg (T — Too) H (7.9)
(l’m'r._f):a

The temperature difference, T; — T, is between the tank and ambient temperatures.
Expressions for the thermophysical properties used for air in the Alegi and Black
model are given in Table 7.2 and they are evalulated at the film temperature, the

average of T, and T,.

The convection heat transfer coefficient for free convection between the outside of
the transformer tank and the air is calculated by

koir,s N
Pefree = —oeei :f H:h'!m (7.10)
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The energy generated in the core and coil assembly is produced by two sources
of electrical losses. The first loss, which is constant and independant of load, is the
iron loss. This loss is the sum of hysteresis and eddy-current losses. The second loss
is the copper (load) loss and it results from the electrical resistance of the windings.
The magnitudes of these losses are determined from heat run test data. With this
information the total heat generated, as a function of transformer load, is

VA 2
Qgcn = {[‘ﬁ('["l;‘A‘—]‘ﬁ%:'l‘o'“; X Qw.lou }+ Qc,lou (7‘11)
The net radiation exchange leaving the transformer tank to the environment is
modelled by the expression
Grad = AveroT} — AwaroTy, (7.12)

Alegi and Black state that the emitted radiant energy from the surface of a trans-
former tank which has a temperature in the range of 20 to 120°C, and the absorbed
energy from the surroundings at roughly the same temperature, falls predominantly
in the infrared wavelength range. Assuming only infrared energy and applying Kirch-
hoff’s law, the emissivity and the absorbtivity are assumed to be equal; ef = ay. A

value of 0.95 was recommended as an average for typical transformer paints.

To verify their model, Alegi and Black conducted experiments using a transformer
equipped with thirty calibrated thermocouples: ten throughout the core and coil
assembly, ten at various positions in the oil, and the remaining ten on the exterior
surface of the tank. The thermocouple readings were averaged to provide a measure
of the average component temperature. As a result, the average of the measured
temperatures will be lower than the maximum temperatures that can exist in the

core and coil assembly and in the oil.

Some of the thermocouples used to measure the core and coil temperature were

placed in oil ducts, and some were fastened to the coil. The thermocouples used to
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measure the average oil temperature were attached to ceramic rods and located at
various distances from the bottom of the tank to the top of the tank over the core
and oil assembly. All the tests were conducted indoors so there was no solar energy

incident on the tank.

For the first test, the distribution transformer was started from a cold-start (uni-
formly equal to the 20°C ambient temperature) with a step load increase from 0 to
49 kVA. Once the transformer achieved steady state the transformer load was again
increased stepwise from 49 to 71 kVA.

The Choice of the Two-Dimensional Transformer Model

The ideal transformer model should be able to simulate the thermal effect of every
dimension of the transformer. As previously mentioned, such a model would be very
complicated, and would take a prohibitive amount of computer time to solve. In
an attempt to simplify the problem and to reduce the solution time, it was decided
to model the transformer on a two-dimensional basis. Appendix A discusses the
reasoning behind the selection of the model cross-section, and why other potentially

more accurate three-dimensional models were not chosen.

Appendix B shows the grids developed for all transformer runs. This appendix
will serve as a reference for all grid information presented in this chapter.

Assumptions and Approximations of the Present Model

Several assumptions had to be made for the two-dimensional transformer model be-
cause all the necessary parameters are not available in [1]. For instance, although the
approximate diameter of the core and windings were given, no information was given

as to how they determined the approximate diameter of the core and windings. Also,
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no information was given about the position of the transformer within the tank. The
present model was developed in Cartesian coordinates, and adjustments were then
needed to approximate the cylindrical shape given by Alegi and Black.

In order to obtain the best approximation possible to the Alegi and Black domain,
several equations were derived to maintain the basic physical properties of the Alegi
and Black 75 kVA transformer. The air gap above the oil was ignored to simplifiy the
model. Equation (7.13a) maintains the mass of the oil at 126 kg since the oil plays
an important part in the thermal capacitance of the transformer. The nomenclature

Transformer Oil

o

Figure 7.2: Dimension nomenclature for the Alegi and Black comparison model.
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for this equation is illustrated in Figure 7.2. The total power generated within the
transformer is maintained by Equation (7.13b). The surface area of the core and
windings is maintained by Equation (7.13c) so that the model kept the same amount
of heat flow from the core and windings to the oil. Equation (7.13d) maintains the
mass of the core and windings at 241 kg. Although the surface area of the tank
should also remain constant, another equation could not be added because it made it
difficult to solve the equation set and maintain a domain geometry that reasonably
approximates that of a distribution transformer. Instead, the convection coefficient for
the tank is modified, as shown later in the chapter, to compensate for the discrepancy.

Mo = po(heZy = heTerw)(62) (7.13a)
Quotat = Q" (hesw Terw)(82) (7.13b)
(As)etw = (Rerw + Terw)(62) (7.13¢)
Mepw = Pore (Torw herw)(62) (7.13d)

The half-width of the core and windings, ..., is set equal to the equivalent core
and winding radius as determined by Alegi and Black, and the width of the tank, z.,
is set equal to the tank radius. The equations are solved to obtain the resuits shown
in Table 7.3.

All properties were evaluated based on the steady state temperatures determined
from the Alegi and Black lumped model simulation. The properties of the oil were
evaluated at 39.5°C for the 49 kVA run and 55.0°C for the 71 kVA run. The core
properties were evaluated at 44°C for the 49 kVA load run, and 64°C for the 71 kVA
load run. The specific heat of the core and windings was approximated by taking
the volume-weighted average specific heat of pure copper and the steel of the core
(using the correlations supplied by Alegi and Black). The thermal conductivity of the
windings was assumed to be uniform, isotropic, and equal to 5 W/m?K. The thermal
conductivity of the core was assumed to be 42.5 W/m?K. The present model used
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Parameter Variable | Value

Half width of core and windings | Zc4w |0.25m
Half width of tank Tt 029m
Height of core and windings hetw [0.20m
Height of tank he 0.58 m

Depth of tank 6z 0.68 m

Table 7.3: The Alegi and Black approximate model dimensions used in the present
study.

a homogenous thermal conductivity for the entire core and windings block based on
the harmonic mean of both the winding and steel core thermal conductivities (8.94
W/m?K). The density of the core and windings could not be based on the properties
of the core or windings because no information was given about how much of the
core and windings was iron core and how much was copper windings. Therefore,
the equivalent diameter and height were used to get an equivalent volume. The
density was then calculated by dividing the given mass of the core and windings by
this equivalent volume to produce an effective density of 2,854 kg/m3. The power
generated by the core and windings was summed according to Equation (7.11) and
divided by the total volume to produce volumetric energy generation rates of 3.4750
and 6.3904 kW/m3 for the 49 kVA and 71 kVA runs, respectively.

The Alegi and Black model simulated the convection by only considering the sides
of the tank. Since a similiar assumption of insulated top and bottom tank surfaces
would be expected to unrealistically change the characteristics of the oil flow within
the tank, convection boundary conditions were used for the top and bottom, as well

as for the side. The ambient properties of air were evaluated at 20°C. The convection
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Tank | Natural Convection Radiation Overall

Side (h) (k) (hesr)

———**————'—*-__—_—T—-'_—
sides 2.291 W/m?K | 5.762 W/m?K | 9.395 W/m?K

top 4192 W/m?K | 5.762 W/m?K | 11.612 W/m?K
bottom | 2.351 W/m?K | 5.762 W/m?K | 9.465 W/m?K

Table 7.4: Tank convection coefficients for the two-dimensional transformer flow
model loaded at 49 kVA for comparison with Alegi and Black.

coefficients for the external boundaries of the tank were calculated differently for
each of the surfaces. They are summarized in Table 7.4. The sides of the tank were
evaluated based on the steady state tank temperature, 32°C, calculated by Alegi and
Black for the 49 kVA run. The correlation supplied by Alegi and Black for the ambient
air convection was used to calculate the wall convection using the actual tank height

of 1.01 m.

The convection coefficients for both the top and bottom of the tank were calculated
based on correlations for natural convection from a horizontal flat plate given by
Incropera and DeWitt [30]. The convection coefficient for the top of the tank was
calculated based on a wall temperature of 32°C. The Rayleigh number was calculated
by the equation

Ra = gﬂ(Ta — Tao)Ls (7_14)
va

The length is determined based on the characteristic length. This length was calcu-
lated by dividing the surface area of the plate by the perimeter, to produce a value
of 0.145 m. The Rayleigh number was equal to 3.357 x 10%, which corresponds to

laminar flow. Since the flow is laminar, the convection coefficient for the top plate
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was calculated using
h = == Nu (7.15)
Nu = 0.54(3.357 x 10%)/4 (7.16)

The convection coefficient for the bottom plate was calculated based on a tank tem-
perature of 39°C after some preliminary runs suggested using this higher tempera-
ture. The Rayleigh number for the natural convection of the bottom surface (using
Equation (7.14)) indicated that the air flow would still be laminar. Therefore the
convection coefficient was calculated using

B = "“Z-’ Nu (7.17)
Nu = 0.27(3.357 x 10%)*/4 (7.18)

The radiation exchange between the tank walls and the environment was also
estimated. An effective convection coefficient was determined for the radiation using

oe(T¢ — T3)

T (7.19)

hy =

For the radiation calculation, the tank temperature was assumed to be uniformly at
32°C, and the emissivity, ¢, of the tank paint was given by Alegi and Black to be
0.95. The temperature of the surroundings was assumed to be equal to the ambient

air temperature.

An overall convection coefficient correction based on the surface area ratio between

the models resulted in the equation,

hesy = 1.1666(h, + h) (7.20)

Table 7.5 shows the effective convection coefficients for the 71 kVA run. The tank

temperature was assumed to equal 49°C.
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Tank | Natural Convection | Radiation Overall
Side (h) (k) (hess)
sides 3.200 W/m?K | 6.279 W/m?K | 11.058 W/m?K
top 5.259 W/m?K | 6.279 W/m¥K | 13.460 W/m?K
bottom { 2.629 W/m?K | 6.279 W/m?K | 10.392 W/m?K

Table 7.5: Tank convection coefficients for the two-dimensional transformer flow
model loaded at 71 kVA for comparison with Alegi and Black.

Grid and Time Step Independence Checks

Grid and time independence runs were performed on the two-dimensional transformer
flow model that would later be used for comparison with the Alegi and Black results.
For each grid, several time steps were used to determine at which point the solution is
insensitive to a change in the size of the time step. The grids evaluated were 54 x 51,
73 x 73, 100 x 102, and 100 x 152. The results are presented in Appendix C. These
results are based on the transformer loading of 49 kVA described in the next section.
The properties were all evaluated at 300 K for the purpose of the time and grid
independence runs. For those runs the model is divided into three regions: the solid,
the top oil cavity, and the narrow right channel along side the core and windings.
The the results of the independence checks also show the simulated results obtained
by Alegi and Black for the 49 kVA loading. The top curve of each plot shows the
average core temperature, the middle curve shows the average oil temperature, and

the bottom curve shows the average tank temperature.

The transformer runs did not reach a steady state condition, as defined by Equa-

tion (4.85). The flow oscillated as cells of oil move around above the core and wind-
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ings. This is illustrated in Section 7.2.2. Instead, two new criteria were required to
determine when to stop the computations. Those two conditions, based on a relative

change of energy storage and average temperature were

1Qgen = Q| <10x107® (7.21)
Qgen

and

Tavg — T,

(Tavg — Taug <1.0x1078 (7.22)
where Qe is the energy generated within the solid, Qu: is the energy leaving the
tank, Ty, is the average overall temperature, and T3, is the average overall temper-

ature from the previous time step.

As the difference in Equation (7.21) gets smaller, the stored energy decreases.
When the ratio is reduced to 1.0 x 10~3 then the energy storage is very small relative
to the energy generated. Equation (7.22) is satisfied when there is little overall
temperature fluctuation within the domain between time steps, even though local

temperatures may vary spatially as the oil flow cells move slightly.

Appendix C shows the results of the time and grid independence tests. The results
show that a time step of one second for a 73 x 73 grid gives optimal results based on
the CPU solution time and accuracy of the average temperatures.

7.2.2 Two-Dimensional Flow Model: 49 kVA Load

This section presents and discusses the results obtained by using the two-dimensional
flow model when the transformer is loaded at 49 kVA. These results are compared
with the results of Alegi and Black for the same loading. A 73 x 73 grid was employed

and the time step was chosen to be one second.
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Average Temperatures

Figure 7.3 shows the nomenclature for the temperature rise, , at various locations
in the solution domain. The subscript, R, represents the region to the right, and T
represents the region above the core and windings. The plot in Figure 7.4 shows the
average temperatures for the core and windings, the right oil region, and the top oil
region. Note that for these and all subsequent plots, only the values for every tenth
time step are plotted.

The average temperature is volume weighted for each region (since the regions
have uniform specific heat). The transformer took 38:23:44.00 hours (138,224 one-
second time steps) of simulated time to reach steady state. The core and windings

....................................................

Figure 7.3: Model layout showing the nomenclature of 8, the temperature rise above

ambient.
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Figure 7.4: Comparison of the 49 kVA load results showing the temperature rise

above the ambient temperature of 20°C.

surface temperature results only considers the surfaces in contact with the fluid oil.
The surface temperature of each control volume face is determined by linear inter-
polation, and the average surface temperature is calculated by weighting the surface
temperatures by the control volume surface and then dividing the sum by the total
surface area. The average surface temperature results calculated by the computer
code compare well with the Alegi and Black predicted core and windings results.
Both the Alegi and Black and the present results for the surface temperature over
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predict the steady state experimental results by approximately five degrees. This may
be because the temperature probes were not placed within the windings and the ther-
mocouple signal was averaged, or because no ducts were considered in either model.
Note that the quantity labelled as the maximum temperature rise value in the core
and windings (0c4w,maez) accured at different spatial locations during the simulation,
but was always at the same location as steady-state conditions were approached.

The present work results capture the general trends in temperature variation in
the transformer. The top oil and right side cavity average temperatures are on either
side of the Alegi and Black calculated average oil temperature. This shows that the
thermal characteristics of the oil are modelled similarly in both models. Although it
is not shown in this plot, the Alegi and Black measured oil temperature of the trans-
former are close to the average tank temperature curve calculated by Alegi and Black.
At steady state, the top oil temperature predicted in this work is approximately 5°C
higher than the measured value.

The results from the two-dimensional flow model showed that the location of the
maximum hotspot temperature moved from the center of the left boundary control
volume at the coordinates (0 m, 0.10625 m) to the boundary control volume at (0 m,
0.06875 m), relative to the lower left corner of the domain. Then by 1.5 hours later
it had moved slowly back up to (0 m, 0.11875 m).

Temperature and Streamline Plots

Figure 7.5 shows the temperature field snapshots every 10 seconds at “steady state”.
In this case, “steady state” means a sufficiently long time so that Equations (7.21)
and (7.22) are met, but Equation (4.85) may not be. These and all other temperature
field plots are used for a qualitative analysis of the results; the contours do not
represent the same temperature value between plots. There is very little change in
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the temperature fields between intervals. The only noticable changes are the small
temperature fluctuations directly above the core and windings.

The streamline plots, Figures 7.6 to 7.9, show the changes in the fluid flow above
the core and windings every five seconds. These plots show that the centers of the
main vortices in the oil are not stationary. The oscillating flow may be due to in-
stabilities that indicate the beginning of a transition to turbulent flow. In all plots,
Figures 7.6 to 7.9, the rotation of the oil vortices is clockwise. It was observed that
the changes in the oil flow patterns did not repeat themselves in a regular, periodic

way.

Heat Flow

Figure 7.10 shows the heat flow out each face of the tank normalized by the generated
energy. As expected, most of the energy is transfered from the side of the tank (g}).
More energy leaves by the bottom of the tank than the top. This may be attributed
to the core and windings being modelled as sitting on the bottom of the tank. The
total ratio of energy leaving the tank to the energy being generated within the core

and windings was 0.9987 when the run was terminated.

Steady State Check

The results of the steady state heat flow check is shown in Figure 7.11. As the
transformer approaches a steady state heat flow condition, the heat flow oscillations
become more noticable. This is because the fluid cells above the core and windings
are constantly moving around. Although it does not appear that the simulation
satisfies Equation (7.21), the criterion was met four time steps after the last result
was recorded (which is recorded every ten seconds). The steady state check based
on the average temperature change was satisified (at 10~°) long before the steady
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(b) to + 10s.

———— L ————

(c) to +20s. (d) to + 30s.

Figure 7.5: Elapsed time temperature results at steady state; starting from a datum
of to = 138,225 seconds for the 49 kVA Alegi and Black simulation case.
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Figure 7.6: Elapsed time streamline results at steady state; starting from a datum of
to = 138, 225 seconds for the 49 kVA Alegi and Black simulation case.
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(b) to + 5s. (c) to +10s.

(a.) to.

() to + 20s. () to + 25s.

(d) to + 15s.

Figure 7.7: Elapsed time streamline results at steady state; starting from a datum of

138, 255 seconds for the 49 kVA Alegi and Black simulation case.

to
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(c) to + 10s.

(d) to +15s. (e) to + 20s. (£) to + 25s.

Figure 7.8: Elapsed time streamline results at steady state; starting from a datum of
to = 138, 285 seconds for the 49 kVA Alegi and Black simulation case.



153

CHAPTER 7. TRANSFORMER SIMULATIONS

(c) to + 10s.

(b) to + 5s.

(3) to.

(e) to + 20s. (F) to + 25s.

(d) to +15s.

Figure 7.9: Elapsed time streamline results at steady state; starting from a datum of

138, 315 seconds for the 49 kVA Alegi and Black simulation case.

to
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Figure 7.10: Normalized tank surface heat flow for the two-dimensional transformer
flow model: 49 kVA load.

state heat flow check stopped the run. This is because the oil temperature is almost
uniform.

Two tests were conducted after the 49 kVA load test case reached ”steady state”.
The purpose of the tests was to see which equation set may have been making the
solution unstable. When the temperature field was held constant, the flow field was
allowed to be solved until it reached steady state in 7.5 minutes. Since the temperature
was not allowed to change with the flow field, the flow field quickly settled out to a
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Figure 7.11: Steady state heat flow check for the two-dimensional transformer flow
model: 49 kVA load.

steady state condition. The next test took the original ”steady state” solution again,
held the flow field constant this time, and then solved for the temperature field. The
temperature field took a little over 14 minutes to reach steady state. The ratio of
energy flowing out of the transformer to the energy generated also quickly converged
to a value (0.0085). This means that when the flow field is held constant, the the
energy equation is stable. Therefore, the coupling of the temperature and the flow

field in the transformer test case is the cause for the solution instabilities.
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Rayleigh Numbers
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Figure 7.12: Rayleigh numbers evaluated from the two-dimensional transformer flow

model: 49 kVA load.

The Rayleigh number is calculated for each oil region using Equation (6.7) by first
finding an average temperature for each side. Since two fluid cells seemed to form, one

in each region, approximating each as a separate rectangular cavity was considered
to be appropriate. The highest Rayleigh number of 3.055 x 10° was found for the top
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oil cavity based on calculating the Rayleigh number between horizontal surfaces. The
Rayleigh number was also evaluated using the method suggested by Heindel et al. [24]
for an array of protruding heat sources;

Ra* = -,rj:f;;q”ht (7.23)
where h. is the length of the heat source face, and ¢” is the heat flux at the wall on
the protruding heat source. Equation (7.23) is arranged in terms of Q" by letting
¢ =Q"z..

s __ gﬂ ” 4
O (7.24)

This equation gives a Rayleigh number of 2.72 x 10'!. Heindel et al. only considered
a Ra* up to 10? for a fluid with a Prandtl number of 25, but in this case transformer
oil has a Prandtl number of 167. Heindel et al. [23] stated that a Prandtl number of
appraoximately 167 demonstrates laminar flow up to a Re* = 101, but this value may
have been influenced by the geometry of Heindel et al.’s model.

Wroblewski and Joshi [64] determined that the turbulence transition Rayleigh
number could be determined by Ra = 10°Pr, using the following definition:

2
- %%% (7.25)

When applied to the Alegi and Black 49 kVA test case, Equation (7.25) gave a
Rayleigh number of 7.41 x 10!}, but the turbulence transition Rayleigh number was
calculated to be 1.67 x 10!! (from Ra = 10°Pr).

The turbulence transition Rayleigh number presented by Lage and Bejan [35]
shows that the oil flow in the transformer tank may not be turbulent. They use the
definition

_ 9BHYT,-T))
av

Ra

(7.26)
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where H is the height of the cavity. For Prandtl numbers greater than one, they gave

the criterion:
Rda-{g ~ 108P 1'2 (727)

to determine if the flow was begining to transition to turbulence. This produced a
critical Rayleigh number of 2.78 x 10'2 for the 49kVA run. The Rayleigh numbers
calculated for each the top and side cavities, shown in Table 7.6, show that the oil
within the transformer fall well below this criterion. This does not definitely show
that there is no turbulence since the models examined by Lage and Bejan are insulated
at the top and the bottom, and no upper Pr limit is given for the Rayleigh number
criterion.

The Rayleigh numbers calculated for the transformer model cannot be used to ac-
curately determine whether or not the fluid flow is turbulent because of the relatively
high oil viscosity and the lack of research results for cavities with non-insulated top
and bottom walls. Instead they can be used to show the relative change in Rayleigh
number between the runs.

Cavity | T}, rise | T rise Ra
Side | 25.5°C | 15.2°C | 1.41 x 10°

Top |22.0°C |17.6°C|1.39 x 10°

Table 7.6: Rayleigh number calculated based on Equation (7.26) for the 49 kVA load
Alegi and Black simulation case.
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Calculated from
Location Alegi and Black | Average Temperature
Core+Windings to Oil | 40.3 W/m?K 38.4 W/mK
Qil to Tank 35.1 W/m?2K 35.0 W/m?K
Tank to Ambient 8.05 W/m?K 10.1 W/m?*K

Table 7.7: Calculated effective convection coefficients at steady state for the two-
dimensional transformer flow model: 49 kVA load.

Convection Coefficients

The average convection heat transfer coefficient for the oil convection around the
core and windings is calculated using the average solid temperature and the average
oil temperature. The average oil and solid temperatures are calculated by volume
weighting each control volume. The results are shown in Table 7.7. The ambient
air properties given by Alegi and Black [1], as shown in Table 7.2, do not match
the properties given by Incropera and DeWitt [30]. Therefore the latter properties
were used in the convection coefficient calculations. The Alegi and Black convection
coefficients were calculated based on equations given in Section 7.2.1. The tank-to-
ambient effective convection coefficients include the effect of radiation between the
tank and the surroundings. The core-and-windings-to-oil and oil-to-tank coefficients
predicted by the current work are close to the Black and Alegi values. For this
calculation, only the temperature of the oil touching the boundary of the domain
was used. This temperature represents a tank temperature because the tank was
considered to have negligible thermal resistance. The tank to ambient convection
coefficient predicted by the code is the average convection coefficient of the model.
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The coefficient for the Alegi and Black model is equal to the convection coefficient
boundary condition specified on the right hand side of the comparison model, before
it is multiplied by 1.1666 to account for the difference in tank surface areas.

From the calculations, the average tank wall temperature rise above ambient was
found to be 16.442°C.

Time Constants

Time constants are calculated for each component of the transformer model using
the normalized temperature given in Equation (7.28). The normalized temperature
is the regional temperature rise divided by the steady state temperature rise of the
region. It can be calculated from the equation,

. __ (T—TW) —_ — o t/T
g = (—T',T‘-Tw)- = 1-e / (728)

The first time constant, T]o.632, has elapsed when 6* equals 0.632. It can be deter-
mined by solving Equation (7.28) for 7. Two more time constants may be determined
by recording the time when 8* equals 0.865 and 0.950, solving Equation (7.28) for
T|g=0.865 and T|g==0.950, and then dividing these numbers by two and three, respec-

tively. The average time constant is
1
Tavg = 3 (To.632 + To.s65 + To.950) (7.29)

Table 7.8 shows the time constants for each component.

The average of the time constants was then used to compare theoretical first order
behavior with the computer code predicted behavior for a number of key temperatures
in the transformer. Figure 7.13 shows both the temperature normalized plots of
the 49 kVA load run, and a plot of the #* function from Equation (7.28) for the
average core and winding temperature for 7,,4 = 5.891 hours. At first, the theoretical
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Normalized Temperature Rise, ©*

Time [h]

Figure 7.13: Normalized transient temperature to determine the time constants of
the core and windings for the two-dimensional transformer flow model: 49 kVA load
for the Alegi and Black simulated case. The calculated values were determined from
Equation (7.28).
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(Tavg) curve increases more slowly than the calculated values. This difference can be
explained by the oil not cooling the solid as much for the first few hours. Then the oil
heats up and begins to move as the bouyancy forces exceed the gravitational forces.
Later, the normalized temperatures slowly converge together at 6* = 1.0.

Figure 7.14 shows the normalized temperature plots for the oil regions. The
theoretical curves predicted for the right and top oil regions give almost the same
results, but both are much higher than the computer code values for the first ten
hours. The oil is heated by the core and windings. Since the oil does not move very
much at first, there is little mixing taking place and the average oil temperature is

lower than theoretical curve.

At approximately three hours, there is a point where the computer program pre-
dicts a temperature oscillation for the average temperature of the right cavity. This
oscillation also exists in the finer grids, as shown in the grid and time independence
plots in Appendix C, but the time at which it occurs varies between grids. For the
100 x 148 grid, the oscillation occurs at approximately 1.4 hours after the load was

Region T0.632 T0.865 70.950 Tavg
C+W Average Temperature | 5:325 hrs | 6.068 hrs | 6.280 hrs | 5.891 hrs

C+W Maximum Temperature

4.957 hrs

5.920 hrs

6.177 hrs

5.685 hrs

C+W Surface Temperature

5.928 hrs

6.390 hrs

6.477 hrs

6.265 hrs

Top Oil Region Temperature

7.994 hrs

7.425 hrs

7.156 hrs

7.525 hrs

Side Oil Region Temperature

7.789 hrs

7.308 hrs

7.075 hrs

7.391 hrs

Table 7.8: Time constants evaluated from the two-dimensional transformer flow

model: 49 kVA load Alegi and Black simulation case.
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Normalized Temperature Rise, ©*

Figure 7.14: Normalized transient temperature to determine the time constants of
the side and top oil regions for the two-dimensional transformer flow model: 49 kVA
load for the Alegi and Black simulated case. The calculated values were determined
from Equation (7.28).
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applied. For the 100 x 102 grid, the oscillation occurs at 2.2 hours. The oscillation is
grid dependent, but it is consistently part of the predicted behaviour. Its presence,
however, has a negligible effect on the overall temperatures of the transformer model.

Figures 7.13 and 7.14 illustrate that the time constant of the core, windings, and
the oil changes throughout the heating process of the transformer. Therefore a typical
transformer may not be accurately modelled as a simple first order system.

The deviation of the detailed computer prediction from a simple first order system
can be explained if the time constant is written as given by Incropera and DeWitt [30):

n = (h;) (o%c) = RC. (7.30)

The thermal time constant of the solid, 7;, is given as a function of the resistance
to convection heat transfer, R; = 1/hA,, and the lumped thermal capacitance of the
solid, C; = p¥c. Since the properties and the geometry were not allowed to vary
in the 49 kVa run, only h changed. When starting with an uniform temperature
throughout the domain, there is no convection. As the temperature of the oil near
the core increases, so too does the temperature differential between the oil near the
core and the oil near the tank. This difference in temperature induces a natural
convection flow and thus h increases. The increase in h reduces the value of 73, which

is consistent with the oil time constant results shown in Table 7.8.

7.2.3 Two-Dimensional Flow Model: 71 kVA Load

After reaching steady state with the 49 kVA run, the load on the transformer was
increased to 71 kVA. The steady state results of the 49 kVA load run were used as
the initial conditions for the 71 kVA load run. The same grid and time step was used
for this test case as in the 49 kVA load run.
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Figure 7.15: Comparison of the 71 kVA load results showing the temperature rise
above the ambient temperature of 20°C.

Average Temperature

The transient temperature results are shown in Figure 7.15. The time required for
steady-state of the 49 kVA case was not given by Alegi and Black [1], but steady-state
conditions were assumed as the starting conditions of the 71 kVA run. For Figure 7.15,
the Alegi and Black comparison results were shifted on the z-axis to match up with
the steady state time from the present work for the 49 kVA simulation. The results
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show that the Alegi and Black average core and winding temperature plot is bounded
between the computer code calculated average core and winding temperature and
the average surface temperature. This means that the temperatures calculated by
the code come reasonably close to the results of Alegi and Black. Although it is not
shown in the Figure 7.15, the calculated average oil temperatures for the right and
top regions come closer to the Alegi and Black experimental temperature results than
the values prediced by Alegi and Black for the oil. The oil experimental results are
close to the calculated average tank temperature shown in the plot. The maximum
temperature was found to be within the core and windings. The location of the
maximum temperature moved from control volume (0 m, 0.13125 m) to (0 m, 0.10625
m), and then back to (0 m, 0.11875) relative to the lower left corner of the domain.

Temperature and Streamline Plots

Figure 7.16 shows the temperature field plots every ten seconds at “steady state”.
There is very little change in the temperature fields between intervals. The only
noticeable changes are the small temperature fluctuations directly above the core and

The streamline plots, Figures 7.17 to 7.18 show the changes in the fluid flow above
the core and windings every five seconds. The flow pattern is changing slightly with
time. It was also observed in this case that the changes in the flux patterns did not
repeat itself in a regular, periodic way.

Heat Flow

Figure 7.19 shows the heat flow, normalized by the generated heat, out each face of
the tank. The heat flow profiles are similiar to the results shown in Figure 7.10 for
the 49 kVA run except that heat flow through the bottom of the tank does not exceed
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(b) to +10s.

(c) to +20s. (d) to + 30s.

Figure 7.16: Elapsed time temperature results at steady state; starting from a datum
of to = 235,675 seconds for the 71 kVA Alegi and Black simulation case.
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(d) to +15s. (e) to + 20s. (£) to + 25s.

Figure 7.17: Elapsed time streamline results at steady state; starting from a datum
of to = 235, 675 seconds for the 71 kVA Alegi and Black simulation case.
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(d) to +15s. (e) to + 20s. (f) to + 25s.

Figure 7.18: Elapsed time streamline results at steady state; starting from a datum
of to = 235, 705 seconds for the 71 kVA Alegi and Black simulation case.
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Figure 7.19: Normalized tank surface heat flow for the two-dimensional transformer
flow model: 71 kVA load.

the flow out the side during any time of the run. The total ratio of heat leaving the
tank to the heat being generated within the core and windings was 0.9978 when the

run was terminated.

Steady State Check

The results of the steady state heat flow check is shown in Figure 7.20. As the trans-

former solution field approaches steady state convergence, the heat flow oscillations
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Figure 7.20: Steady state heat flow check for the two-dimensional transformer flow
model: 71 kVA load.

increased. The results satisfied Equation (7.21) even though it does not appear as
such from Figure 7.20. The steady state convergence criterion was met eight time
steps after the last result was recorded. The steady state check, based on the average
temperature change, showed oscillations similiar to those found in the 49 kVA load
run. The convergence tests were both satisified to a level of 105 at approximately
150,000 seconds, or 41.7 hours, after the 71 kVA load was applied.
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Rayleigh Numbers

Figure 7.21 shows that the highest Rayleigh number of 8.305 x 10° is found for the top
oil cavity using the calculation for a Rayleigh number between horizontal surfaces.
Table 7.9 shows the results of calculating the Rayleigh number using the different
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Time [s]

Figure 7.21: Rayleigh numbers evaluated from the two-dimensional transformer flow
model: 49 kVA.
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methods discussed earlier. According to the different criteria for transition some
Rayleigh numbers show that the oil low may be turbulent, and others show that
the flow is still laminar. Again, the results are not conclusive because none of hte
results from the literature matches the boundary conditions and Prandtl number of
the situation in this work.

[ Heindel et al. [24] || Wroblewski and Joshi [64) || Lage and Bejan {35]

3.74x 10° | 1.06 x 1012
Top | N/A N/A N/A 3.64x 10° | 1.06 x 1012
Entire Domain || 885 x 10° 2.41 x 1012 | 1.03 x 101! N/A N/A

Table 7.9: Rayleigh numbers calculated based on several different methods from
literature for the 71 kVA load run.

Convection Coefficients

The average convection coefficient results are shown in Table 7.10. The Alegi and
Black values are calculated based on equations given in Section 7.2.1. Unlike in the
49 kVA load case, the core and windings to oil coefficient predicted by the code is 23%
lower than the Black and Alegi approximation. The present model also predicted a
higher convection coefficient from the oil to the tank than Alegi and Black. The value
predicted by the code is higher than the Alegi and Black calculations by a factor of
1.247 (compared to the 1.1666 surface are ratio correction factor that was multiplied
to the boundary conditions). This difference in convection coefficients shows that the

Alegi and Black correlations do not compare well with the detailed computer model
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Calculated from
Location Black and Alegi | Average Temperature
Core+Windings to Oil | 54.9 W/m?K 42.3 W/m?K
Oil to Tank 37.9 W/m?K 43.7 W/m?K
Tank to Ambient 9.46 W/m?K 11.8 W/m?K

Table 7.10: Calculated effective convection coefficients at steady state for the two-
dimensional transformer flow model: 71 kVA load Alegi and Black simulation case.

under these conditions.

The average tank wall temperature rise above ambient was equal to 26.380°C.

7.3 Parametric Study

After comparing the computer model with the results of Alegi and Black [1], the
next step was to examine the sensitivity of the model to changes in a few selected
parameters. The purpose of this parametric study was to determine the effects of
ambient conditions, variable oil viscosity, and the manner in which the core and
windings are modelled (i.e. homogeneous or nonhomogeneous), on the results of the
transformer simulation. Because a single simulation requires approximately two to
three weeks of CPU time on a Sun Microsystems Sparc station 20, the parametric
study was limited to twelve cases. The transformer two-dimensional flow model used
for these runs is the same as the one described in the previous section, except that
the load was changed to 50 kVA and 75 kVA, both starting from ambient conditions.

Table 7.11 shows the various cases considered in the parametric study. The runs
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Load b=k, | u) Too Final Results
Run || (50 kVA) | (75 kVA)

Figure Number
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25
Figure 7.26
Figure 7.27
Figure 7.28
Figure 7.29
Figure 7.30
Figure 7.31
Figure 7.32
Figure 7.33

no

yes yes

A kel kbl R R ki ks

X X
X X X

Akl kel ke
R ed e

Table 7.11: Parametric study run matrix.

were categorized into four groups, and labelled A, B, C, or D. Runs A and B are
setup with an ambient temperature of 30°C, and runs C and D are at a temperature of
—5°C. Simulations A and C are loaded at 50 kVA, and B and D are loaded at 75 kVA.
Runs C1, C3, D1, and D3, were not included because, by the matrix in Table 7.11, the
results would be equal to A1, A3, B1, B3, respectively, since they are all insensitive

to absolute temeperatures (i.e. viscosity is not a function of temperature).

The transformer was assumed to be a 55°C rise transformer based on the 71

kVA test run in the previous section because the average winding temperature rise
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was not more than 50°C and the hottest-spot winding rise was not more than 65°C.
Table 7.12 shows the assumed transformer characteristics at rated load as determined
by ANSI [3]. Note that the tiem constant given for the hottest spot temperature is
much lower than the 5.7 hours calculated during the run loaded at 49 kVA.

Average Winding Rise 55°C
Hottest Spot Conductor Temperature Rise | 65°C
Top-0il Temperature Rise 45°C
Top-Oil Time Constant 3.0 hr

Hottest Spot Conductor Time Constant | 0.0834 hr

Table 7.12: Assumed transformer characteristics at rated load from Table 3 in
ANSI [3].

The same boundary conditions as the 71 kVA Alegi and Black comparison model
were used for the entire parametric study. The uniform initial temperature of the

entire transformer was set equal to the ambient temperature of the run.

7.3.1 Properties

To simplify the parametric study, the properties and the ambient conditions were eval-
uated at one representative temperature for all runs (referred to here as the baseline
temperature). Using the ANSI predicted rises above ambient, the expected aver-
age top-oil temperature at steady state is 57.5°C, and average winding temperature
is 67.5°C. The average top-oil baseline temperature was determined by adding the
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Region ke (W/m3K] | ky (W/m3K] | p[kg/m3] | cp [J/kgK] | & [Ns/m7] B

Core 42179 42.179 2982.2 459.42 N/A N/A
L.V. Winding 0.91564 3.39345 2966.0 603.22589 N/A N/A
H.V. Winding 0.38667 2.12779 24825 844.91925 N/A N/A

Qil 0.10777 0.10777 861.86 1879.9 5.5086 x 10~3 | 0.00072

Table 7.13: Properties for the nonhomogeneous model.

top-oil rise (45°C) to the ambient temperatures, and then calculating the average oil
temperature for all runs. The average winding baseline temperature was determined
by adding the average winding rise to the ambient temperature, then the average
between the two ambient conditions was taken. The temperature correction in the
ANSI loading guides for ambient temperatures below 30°C was not used. The oil
properties are determined based on the property correlations provided by Alegi and
Black at 57.5°C. For some of the runs (cases A2, A4, B2, B4, C2, C4, D2, and D4),
the viscosity was allowed to change as a function of temperature.

Table 7.13 shows the properties used for all the nonhomogeneous, anisotropic core
and windings cases (i.e. cases A3, A4, B3, B4, C4, and D4). The thermal properties
of the windings were calculated using the equivalent circuits method discussed in
Appendix D. The winding conductor is assumed to have a rectangular cross-section.
The constant heat flow thermal circuit (Equations (D.8) and (D.12)) was selected
because the parallel isotherm circuit created a higher thermal resistance than would
be expected. Since the parallel isotherm circuit is a series of parallel subcircuits, if one
parallel subcircuit had a high thermal resistance (i.e. the paper insulation) it would
dramatically increase the overall resistance of the circuit. Instead, with a constant
heat flow circuit, most of the energy would be able to “flow around” the areas of

higher thermal resistance. All the winding properties are evaluated at 67.5°C. The
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Dimension L.V. Winding | H. V. Winding
conductor - width (4,) 0490 m 0.0885 m
conductor - thickness (A;) 0.265 m 0.0636 m
paper thickness - around conductor (t; =t,;) 0.007m 0.0017 m
paper thickness - between layers (P;) 0.020 m 0.020 m

Table 7.14: Dimensions assumed for the square conductor windings.

assumptions for the winding dimensions are shown in Table 7.14. These dimensions
are based on the conductor dimensions of an existing 50 kVA transformer with square
conductor windings [14]. The winding conductor is copper, and since the oil-saturated
paper has properties close to oil, the paper properties are assumed to equal that of
oil. For the nonhomogeneous test case, the region representing the core and windings
is divided equally into two: the core on the left and the windings on the right. The
windings are further divided into two halves: low voltage windings on the left and
high voltage windings on the right. Since the same grid was to be used for all runs,
the region divisions were made as close as possible to the grid boundaries. In the final
configuration, the width of the core was 0.1275 m, the low voltage winding wide was
0.06417 m, and the high voltage winding width was 0.05833 m.

The properties of the solid for the homogeneous cases are summarized in Ta-
ble 7.15. The windings are first lumped together using equivalent circuits. For the z
direction, the harmonic mean of the two thermal conductivities was taken. For the
y direction, the average thermal conductivity of the two windings is used. In this
calculation, the winding thermal conductivity was taken as the average of the £ and
y direction thermal conductivities. The harmonic mean is calculated between the
core and the final winding thermal conductivity to get the thermal conductivity of a
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Region k [W/m K] | p [kg/m®] | ¢, [J/kg K]
Core + Windings | 3.1798 2854 591.75

Table 7.15: Properties for the homogeneous solid regions.

homogeneous core and windings model. The specific heat is volume-averaged for the
solid. Although the density for the core and windings remained at 2854 kg/m3 for the
homogenous cases, densities for each component are required for the nonhomogeneous
cases. For the nonhomogeneous cases, the overall mass of the core and windings was
maintained by adjusting the densities of each solid so that the total mass of the core
and windings would equal the measured value of Alegi and Black.

Power generation is treated differently between the homogeneous and nonhomo-
geneous test cases. For the homogeneous cases, the power generation was calculated
using Equation (7.11) and yielded 3,588 W/m?* for the 50 kVA load run and 7,035
W/m? for the 75 kVA load run. For the nonhomogeneous cases, the core generated
1,615 W/m3. The windings were each assumed to generated the same amount of
energy; 5,642 W/m3 for the 50 kVA load run and 12,677 W/m? for the 75 kVA load

run.

7.3.2 Results of Parametric Study

This subsection details the results of the parametric study. Figures 7.22 through
to 7.33 each show the transient temperature history of the transformer runs and a
plot of the steady-state temperature contours. The temperature contour plots are
for qualitative discussion of the temperature gradients within the transformer and to

indicate the location of the hotspot. In the case where the core and windings solid
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(a) Temperature rise with time. (b) Temperature contours.

Figure 7.22: Parametric study case Al: transient temperature rise results and tem-

perature contours at t = 137,435 seconds.

is not homogeneous, the hot-spot temperature moved from the model symmetry line
to a location within the windings. The hot spot location is approximately half way
from the top of the windings in all cases. In literature, experimental results indicate
that the hotspot is usually located down one third from the top of the windings.

The transient temperature history shows that the general trends are similiar for all

cases. For the non-homogeneous solid cases the average temperature of the windings
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Figure 7.23: Parametric study case A2: transient temperature rise results and tem-

perature contours at time = 140,415 seconds.

is plotted along with the average temperature of both the core and windings together
to show the relative difference between the two. Table 7.16 shows the steady state
temperature rises above ambient. Those results indicate that the effect of variable
viscosity, instead of a constant viscosity, on the steady state temperature rise is at
most a 3°C difference. The final location of the hotspot for the runs is approximately
in the same location for all the homogeneous core and windings cases. The location,
although different, was also the same for all the nonhomogeneous core and windings
runs. The effect of the nonhomogeneous core and windings was only to shift the
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Figure 7.24: Parametric study case A3: transient temperature results and tempera-

ture contours at time = 133,989 seconds.

hotspot location horizontally (from the homogeneous test case position) so that the
hotspot was located within the windings. The hotspot temperature was also predicted

to be higher for the nonhomogeneous runs.

Table 7.17 shows the simulated time required for the transformers to reach steady
state, and the normalized heat flow outside the tank walls. The table shows that the
runs with an ambient temperature of —5°C took significantly longer to reach steady
state than the 30°C runs. Another observation is that the variable viscosity test cases
required a less time to reach steady state than their constant viscosity counterparts.
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Figure 7.25: Parametric study case A4: transient temperature results and tempera-~

ture contours at time = 136,755 seconds.

The basic trends for all the normalized heat flow (gface/ggen) are basically the same
between all the runs. The steady state values for the flows out each face are very
similiar.

Table 7.18 shows Rayleigh numbers calculated from Equation (6.7) by using the
average temperature of each side of the fluid region. The Rayleigh number of the
variable viscosity runs are calculated based on the average viscosity. The results
show that the Rayleigh number of the 50 kVA load run was equal to approximately
half of the Rayleigh number of the 75 kVA load run.
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Figure 7.26: Parametric study case Bl: transient temperature results and tempera-

ture contours at time = 131,512 seconds.
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Figure 7.27: Parametric study case B2: transient temperature results and tempera-

ture contours at time = 125,649 seconds.
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Figure 7.28: Parametric study case B3: transient temperature results and tempera-

ture contours at time = 156,142 seconds.
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Figure 7.29: Parametric study case B4: transient temperature results and tempera-

ture contours at time = 141,447 seconds.
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Figure 7.30: Parametric study case C2: transient temperature results and tempera-

ture contours at time = 145,226 seconds.
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Figure 7.31: Parametric study case C4: transient temperature results and tempera-

ture contours at time = 144,197 seconds.



CHAPTER 7. TRANSFORMER SIMULATIONS 190

Temperature Rise, © {°C]
8

Load: 75 kVA

Core and Windings: Homogeneous
10 Viscosity: Variable J
Ambient Temperature: -5
0 IR 1 L 2 | 1
] 40,000 80,000 120,000
Time [s]
(a) Temperature rise with time. (b) Temperature contours.

Figure 7.32: Parametric study case D2: transient temperature results and tempera-

ture contours at time = 136,109 seconds.
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Figure 7.33: Parametric study case D4: transient temperature results and tempera-

ture contours at time = 149,545 seconds.
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Side QOil | Top Oil Core & Windings Windings Only
Run | 0Ogy Oavg Oaug Ormaz Oavg
Al | 16.15°C | 19.11°C | 29.82°C | 35.13°C (0.000 m, 0.119 m) N/A
A2 | 16.28°C | 19.42°C | 30.10°C | 35.40°C (0.000 m, 0.119 m) N/A
A3 | 14.81°C | 18.94°C | 30.03°C | 36.77°C (0.196 m, 0.119 m) 30.95°C
A4 | 14.88°C | 19.24°C | 30.28°C | 37.01°C (0.196 m, 0.119 m) 31.19°C
Bl | 31.43°C | 36.63°C | 56.89°C | 67.26°C (0.000 m, 0.119 m) N/A
B2 | 31.54°C | 36.50°C | 56.53°C | 66.92°C (0.000 m, 0.119 m) N/A
B3 | 29.68°C | 36.83°C | 57.49°C | 73.77°C (0.196 m, 0.119 m) 61.17°C
B4 | 29.74°C | 36.41°C | 56.68°C | 73.02°C (0.196 m, 0.119 m) 60.42°C

O,
C2 | 16.57°C | 20.50°C | 31.64°C | 36.91°C (0.000 m, 0.119 m) N/A

C4 | 14.95°C | 20.23°C | 31.79°C | 38.45°C (0.187 m, 0.119 m) 32.63°C
D2 | 32.01°C | 38.11°C | 58.41°C | 68.72°C (0.000 m, 0.119 m) N/A
D4 | 29.88°C | 37.58°C | 58.04°C | 74.32°C (0.196 m, 0.119 m) 61.74°C

Table 7.16: Parametric study temperature rise results.
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Run

Steady State

Time (hours)

Normalized Heat Out-Flow

Left Face

Right Face

Bottom Face | Top Face

Al 38:10:35 0.000 0.418 0.317 0.264

A2 39:00:15 0.000 0417 0.320 0.262
A3 37:13:09 0.000 0.404 0.335 0.259
A4 37:59:15 0.000 0.402 0.337 0.260
Bl 36:31:52 0.000 0.422 0.312 0.265
B2 34:54:09 0.000 0.423 0.310 0.265
B3 43:22:22 0.000 0411 0.326 0.262
B4 39:17:27 0.000 0.412 0.322 0.264
C2 40:20:26 0.000 0.406 0.332 0.262
C4 40:03:17 0.000 0.388 0.352 0.259
D2 37:48:29 0.000 0.417 0.318 0.265
D4 41:32:25 0.000 0.407 0.329 0.263

Table 7.17: Parametric study steady state heat flow distribution.
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Side Oil Cavity

Top Oil Cavity

Ra,
9.361 x 106

Ra,
2.719 x 10°

Ra,
1.617 x 10°

Ray
5.722 x 10°

6.826 x 108

1.933 x 10°

1.375 x 10°

4.568 x 10°

6.762 x 10°

2.985 x 107

1.662 x 10°

6.253 x 10°

Bl

4.773 x 108
1.636 x 107

2.025 x 10°
5.000 x 10°

1.379 x 10°
2.778 x 10°

4884 x 10°
9.893 x 10°

B2

1.761 x 107

5.591 x 10°

3.377 x 10°

1.249 x 10'°

B3

9.377 x 10°

3.893 x 10°

2.017 x 10°

7.644 x 10°

B4
C2

1.155 x 107
2.157 x 106

5.149 x 10°
5.261 x 10°

3.092 x 10°
4.767 x 108

1.172 x 10%°
1.460 x 10°

C4
D2

1.521 x 10¢
6.373 x 10°

5.160 x 108
1.795 x 10°

4.888 x 108
1.495 x 10°

1.519 x 10°

m
4.713 x 10°

D4

5.368 x 10°

2.113 x 10°

1.652 x 10°

5.620 x 10°

Table 7.18: Parametric study Rayleigh number results.
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7.4 Comparison with ANSI

The last comparison made in this work was between the results obtained from the
two-dimensional transformer flow model and from the ANSI loading guides. The only
parameters required to determine the ANSI loading guide for the present runs are
the magnitude of the overload and the duration of the overload. The loading guides
will then give the maximum temperature rise of the transformer and the maximum

top oil rise.

These simulations are meant as an initial investigation of how the two-dimensional
transformer flow model predictions compare to the ANSI loading guides. This is the
beginning of work to address the question of how to use the new detailed thermal
model prediction relative to the established ANSI guide.

7.4.1 Model Setup

As shown in Table 7.19, there were four test cases analyzed for comparison with the
loading guides. The runs were divided up into two categories: uniform viscosity and
variable viscosity. The core and windings were modelled as non-homogeneous, as

described for the parametric study model.

First, the two transformer models were run to steady state at 50% load (cor-
responding to an energy generation rate of 3.169 x 103 W/m®) for each of the two
viscosity conditions. Each of the steady state results was then used as the initial
condition for both transformer step loading cases. For each category, the trans-
former was subjected to a sudden increase in power, to 260% of the nameplate rating
(85.70 x 103W/m®). This is illustrated in Figure 7.34. One run subjected the trans-
former model to the step increase for a duration of one hour. The other step overload

lasted for two hours.
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steady 50 % Load
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Time

Figure 7.34: Step loading the transformer.

Run | Viscosity | Duration of Overload
ANSI1 | constant 1 hour
ANSI2 | constant 2 hour
ANSI3 | variable 1 hour
ANSI4 | variable 2 hour

Table 7.19: Breakdown of runs used for the ANSI load guides comparison.

The approximate transformer model is identical to the two-dimensional trans-
former flow model used for comparison with the results of Alegi and Black, as de-
scribed in Section 7.2. The ambient temperature was set to 0°C. The temperature at
which the properties were evaluated was determined by assuming that the transformer
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is a 55°C rise transformer and then finding the maximum hottest spot temperature
and highest average oil temperature predicted for these conditions. Using the maxi-
mum temperature rise predicted by ANSI for the one hour power step up as the basis
for the material properties, the oil properties were calculated for 65°C. Assuming
that the average core and windings temperature is ten degrees below the hottest-spot
temperature (as given for 100% name plate load conditions; shown in Table 7.12) the
properties of the core and windings were evaluated at 147°C. The Alegi and Black
property correlations, shown in Table 7.2, were used to get most property values (ex-
cept density which was determined from Incropera and DeWitt [30]). The ambient
boundary conditions are the same as those used for the 71 kVA load Alegi and Black

comparison test case. Table 7.20 shows a summary of the properties.

Region k: [W/m3K] l ky W/m2K] | plkg/m?) | cp [J/kgK] | p [Ns/m?) B
Core a9an 41.71 2959.9 500.3 N/A N/A
L.V. Winding 0.90869 3.36741 2098.5 658.43 N/A N/A
H.V. Winding 0.38374 2.11152 2450.4 954.15 N/A N/A
oil 0.10062 0.10062 731.88 2274.4 1.1831 x 10~3 | 0.00072

Table 7.20: Properties for the ANSI loading guide comparison model.

7.4.2 Results

The results of the four ANSI comparison runs are summarized in Table 7.21. Fig-
ures 7.35 to 7.38 show the transient temperature response of each run. A vertical line
is drawn on each plot to show where the overload is removed and the transformer is
once again loaded at 50% of the nameplate rating.
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Max. T Rise | Avg. Top Oil Rise Max. T Rise

ANsn || 236°C 12.6°C | 157°C | 144.0°C || 65°C 21.9°C 31.8°C
ansiz || 23s7C 126°C 1[ 95°C 39.2°C 50.49°C
ANSI3 25.12°C 13.6°C 157°C | 145.5°C || e5°C 22.8°C 33.0°C
ANSH ||  2sa2°C 13.6°C 187°C | 216.1°C || 95°C 140.6°C 51.8°C

Table 7.21: Average temperature rise over ambient temperature; results for the ANSI

comparison runs.

The first two columns of Table 7.21 show the steady state temperatures of the
50% nameplate loading computer simulation. The maximum temperature rise is the
highest temperature rise of the entire domain, and it is located within the windings.
The table entry labelled, Avg. Top Oil Rise, corresponds to the average temperature
of the top fluid region. The results show that the addition of variable viscosity (ANSI3
and ANSI4) only increases the temperatures by less than 2°C.

The next two columns, labelled Maz. T Rise, show the maximum temperature of
the windings at the time when the overload is removed. The computer code results are
compared with the ANSI loading guide predictions. The computer model predicted
a 13°C lower maximum temperature than ANSI for the one hour overload. Variable
viscosity only increases the maximum temperature rise by 1.5°C. For the two hour
overload, the computer model predicts a 28°C higher temperature than ANSI. Having
viscosity change as a function of temperature again only causes a small increase in
temperature. With only four test cases to work with, it is difficult to determine what
is the cause of the discrepancies in maximum temperature rise. It may be because
the Alegi and Black 75 kVA transformer does not follow the predictions of a 55°C
rise transformer very well. It is apparent that more work is required.
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Figure 7.35: Transient temperature monitoring for run ANSI1.

The last three columns of Table 7.21 show the effect of the overload on the top
oil. The computer code predicted maximum top oil rise temperatures much lower
than ANSI. The code calculates the top oil temperature by calculating the average
oil temperature for the top region (Figure 7.3 shows the location for the calculated

parameters).

Figures 7.35 to 7.38 show that the oil continues to increase in temperature up
to two and a half hours after the overload is removed. = The ANSI loading guides
predict a much higher top oil temperature than the present model. The results from
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Figure 7.36: Transient temperature monitoring for run ANSI2.

the variable viscosity cases are closer to the ANSI guide values than the results for
the constant viscosity cases. The dependence of the viscosity on temperature causes
the oil average temperature to rise faster since higher viscosity fluid is more resistant
to bouyant forces. This in turn reduces the ability of the oil to remove heat to the
ambient conditions outside the tank. It is difficult to determine the accuracy of the
top oil temperature since this parameter is not well defined in literature.
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Figure 7.37: Transient temperature monitoring for run ANSI3.
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Figure 7.38: Transient temperature monitoring for run ANSI4.



Chapter 8

Closure

8.1 Summary

This thesis described a numerical model for conjugate heat transfer in an oil-immersed
distribution transformer that is cooled by natural convection. The mathematical
model consisted of a set of differential equations expressing conservation of mass,
momentum, and energy, in a Cartesian coordinate system. The energy equation was
modified to allow for an anisotropic thermal conductivity in part of the solid region.

The governing transport equations were discretized using a finite volume approach,
employing an exponential upwind approximation of the advection terms. The equa-
tion sets were solved on a non-uniformly spaced grid. The pressure-velocity coupling
was handled by the SIMPLEC method.

The algebraic equations were solved using a LGS2d solver that was accelerated
using an improved additive correction multigrid method. The multigrid algorithm
was modified to ensure that coarser grids did not straddle a solid-fluid interface. A
relatively small time step was required to avoid the convergence difficulty caused by

inter-equation coupling. In some cases the oil viscosity was a function of temperature.
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After the code was validated against benchmark problems from the literature, the
Alegi and Black [1] 75 kVA transformer was used as a test problem. A computer
model was set up based on the parameters supplied by Alegi and Black, and the
transformer was run at 49 kVA until it reached a steady state condition. Then the
transformer load was stepped up to 71 kVA and again run to steady state. The
average and maximum temperatures calculated by the computer code was compared

against the average temperature results of Alegi and Black.

The Alegi and Black comparison was followed by a parametric study that focussed
on the effect of two ambient temperatures (-5°C and 30°C), two load conditions
(50kVA and 75kVA), modelling the core and windings as a homogeneous solid, and
modelling viscosity as a function of temperature. The final computer code application
was a test in which the computer model results were compared with the ANSI loading
guides [3]. Starting from steady state at 50% load, a step load up to 260% of the
nameplate rating was applied for one and two hours. The time variation of key system

temperatures was compared.

8.2 Conclusions

The benchmark test problem comparisons verified the computer code implementation.
Although an adequate conjugate heat transfer test benchmark problem could not be
found in the literature, the computer code was tested by modelling a fluid cavity
with conduction in thick walls. Grid and time step independance tests conducted
for the transformer simulation indicated that consistent results were produced by the

computer code.

The additive correction multigrid solver performance was demonstrated to work

best on the solution of the pressure correction equation set. The conjugate additive



CHAPTER 8. CLOSURE 205

corrective multigrid solver helped increase the convergence of the pressure correction
equation set since it prevented coarser grid blocks from overlapping regions of different
fluids.

The ratio of thermal conductivities between the core and windings and the oil
had a significant impact on the number of iterations required for the equation set to
converge for a given time step. A narrow channel beside a solid was also shown to

increase the number of iterations required for convergence.

It was found that a one second time step with a 73 x 73 non-uniform grid produced
satisfactory results for the two-dimensional transformer flow model. During these
runs it was observed that the transformer oil flow did not reach a true steady state
condition. The transformer flow model results showed that the oil flow around the
core and windings is unstable and sensitive to small fluctuations in the temperature
field. This may be a highly unstable transient flow, or the beginning of transition to
turbulent flow. The locations and size of the vorticies in the region above the core and
windings changed with time, even after the average temperature of the transformer
components had stabilized. Therefore it was determined that two other criteria were
required to determine adequate steady state convergence: the reduction of the energy
storage term relative to the generated power, and the realative change of the overall
average temperature between time steps. When the Rayleigh number was calculated
based on average wall temperatures, the values approach 1 x 10!°. A review of the
literature offered no conclusive turbulence transition criterion because of the unique

arrangement of the domain and boundary conditions in the present work.

The comparison with the Alegi and Black 49kVA and 71kVA load results showed
that the present work predicted similiar trends in temperatures to those calculated
by Alegi and Black. The greatest deviation between the present work and the work
of Alegi and Black for the average temperature of the core and windings and the oil
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was 10°C. In some instances, the present model shows better agreement with the
experimental results than the Alegi and Black model.

It was found that the time constants of the transformer components changed
throughout the history of a transformer run. The results indicated that the time con-
stants change with time as the effective heat transfer coefficient for natural convection
of the oil changes with the oil flow development. As the oil temperature increases, the
natural convection circulation begins and the time constant of the core and windings

decreases in magnitude.

The parametric study of twelve different runs generated similiar temperature
trends between all the runs. The proportion of heat flow out of each tank wall
was similiar between all runs. Lowering the ambient temperature increased the time
required for the transformer oil flow to reach steady state. The effect of having a ho-
mogeneous block represent both the core and windings was a reduction in the hot-spot
temperature. The nonhomogeneous test cases predicted a hotspot in the windings
that was located half way up the windings, and beside the core.

For the ANSI loading guide comparison, the code predicted slightly higher winding
maximum temperatures than the loading guides for the two hour 260% overload (over
nameplate rating). For the one hour overload the present model predicts a lower
maximum temperature. While the ANSI loading guides gave conservative results for
the one hour step overload when compared to the code results, the loading guides
suggested hotspot temperatures much lower than the code for the two hour step
overload. The resuits showed only a one to two degree difference between maximum
temperatures for the the constant and variable viscosity cases. The largest difference
came from the top oil temperature where the variable viscosity test cases produced

temperatures approximately 20°C higher than the constant viscosity cases.
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8.3 Recommendations

The present study indicated that more research is required in the development of a
transformer model that includes conjugate heat transfer. Further research must also
establish if the tranformer oil flow is turbulent. In that case, a turbulence model must
be added to the equation set.

The present study was restricted by the computer CPU time required to perform
a simulation. A means of coupling the energy and momentum equations must be
explored as a means of reducing the solution time. An attempt was made to add
another iterative loop within each time step but initial tests indicated that it did not
reduce the solution time. With a reduced solution time, a greater scope of tests could
be performed and the model could be refined. Instead of simplifying the core and
windings as a block, a better approximation of the transformer geometries could be
used and the oil ducts could then be included. A three-dimensional model could also
be attempted, but a lot more detailed knowledge would be required.

The effect of temperature on the thermal and electrical properties of the trans-
former could also be a subject of further investigation. The electrical resistance of
the windings could be modelled as a function of temperature. This would cause the
power generated from the windings to change with time. With an increased solution
stability, the effect of varying other properties and geometries, as well as transient
ambient conditions and transformer loading, could be explored. And if access could
be gained to get more detailed information about a set of experimental runs, the
accuracy of the transformer comparison model could be improved since all of the

transformer dimensions would be known.
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Appendix A
Transformer Model Selection

There are many ways that the transformer could be approximated. The most im-
portant criterion of the model is that it should be able to simulate oil flow induced
by natural convection around a heated solid region. This appendix justifies the two-
dimensional Cartesian model selected over some of the other model types.

A.1 Three-Dimensional Models

If a three-dimensional model were to be used it would be necessary to identify and
fit a grid for all the geometric details of the transformer shown in Figure A.1. In
that case an attempt would be made to model each of the transformer components
as closely as possible. Such a model would required many hundreds of thousands of
control volumes to resolve the detailed three-dimensional model. The model would
require a large amount of computational time, and it would take a long time to
perform a thorough parametric study because there would be many more parameters
to be considered. The requirements of the complicated model would introduce a large

amount of geometric uncertaintly since the exact design information for a transformer

216



APPENDIX A. TRANSFORMER MODEL SELECTION 217

Figure A.1: Various views of a two winding transformer.

would be difficult to get.

Based on these points, it was decided that a two-dimensional approximate model
would be a better first estimate for simulating a transformer run.

A.2 Two-Dimensional Models

This section will describe the benefits and disadvantages of three types of two-
dimensional models: the cylindrical model, front profile, and side profile. All three
models significantly reduce the number of control volumes required to do a simulation

when compared to a three-dimensional model.
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Figure A.2: Cylindrical model of a single winding and the core.

A.2.1 Cylindrical Model: Single Winding and Core

The transformer could be divided in half so that only part of the core, and one
winding, would be modelled together as a cylinder. This model is shown in Figure A.2.
A lot less work is required relative to the three-dimensional models to derive the
equations and code them. The volume of the windings and the core could be adjusted
to account for the less than perfect fit to a cylinder.

On the other hand, this model neglects the effect of the rest of the core. It is
difficult to model the tank as a perfect cylinder with any degree of accuracy since the
transformer was cut in half. The core is approximated as a cylinder when actually
it is rectangular. The windings are not cylindrical either; they are rectangular with
rounded edges. The ducts through the windings can only be modelled as a continuous
duct around the windings, or neglected completely. In actual fact, the duct should
only go through part of the windings.

To summatrize, it is difficult to model the tank and the rest of the core with the two-
dimensional cylindrical model. Cylindrical windings may not be a valid approximation
of the windings.
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A.2.2 Front Profile Model

Using Cartesian coordinates, the transformer could be modelled by taking a slice
down the center through the core and both windings. Using symmetry, the model
could then be simplified so that only one winding would be considered. The model
makes it fairly easy to determine the properties of the core and winding section, as
shown in Figure A.3, since the ratio of core and windings is constant through the
section. This model requires less time to derive, and then program, the discretization

equations than a three-dimensional model.

Winding

<2\ Winding
>3

Slice of Winding and Core

Figure A.3: Front profile model of a tranformer.

On the other hand, the model does not capture the three-dimensional aspects of
the windings. The heat should be close to being symmetric around the core since heat
will be more likely to travel along the windings than through the insulation around
them. The ducts cannot be modelled using this cross-section since they typically run
parallel to the core (relative to the long side of the core). Also, this model cannot
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Figure A.4: 2-D side profile model of a transformer.

simulate the effects of varying the distance from the core and windings to the tank.

Although this model looks fairly good for the current work, there must be some
trial-and-error to get the specified heat generation to correctly represent the heat
generated in an actual core and windings. Trial-and-error must also be used to find
the dimension for the distance between the core and the tank. No attempt could be
made to model the ducts.

A.2.3 Side Profile Model

The 2-D side profile model, as shown in Figure A.4, makes use of symmetry to model
the slice of one of the windings and part of the core. This model requires very
few control volumes compared to the three-dimensional models. The ducts can be
modelled through the windings, and the tank can be modelled adequately. This
model has the ducts going through the entire winding cross-section. Therefore the
duct width may have to be modified to improve the approximation of the heat transfer

from the windings to the oil in the ducts.

This model is satisfactory for this work. Trial-and-error must be used to find the

effective duct size, as well as to determine the windings to tank distance.



Appendix B
Details of the Computation Grids

This appendix shows how each grid is broken down into non-uniform control volumes.
These transformer grids are used throughout Chapter 7, but are presented here for
comparison purposes. Chapter 3 gives a detailed explanation on how the grids were

generated for the domain.

B.1 54 x 51 Grid

The domain is broken up into five z grid regions and six y grid regions, as shown
in Figure B.1. The specified details on each grid region are shown in Table B.1.
Figure B.2 shows the complete grid.
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arameters

Specified Grid P
i Number of Nodes

Other Parameter "

X Grid Regions
15 Az, =0.00916 m
12 uniform I]
9
9
9
Y Grid Regions
Y1 0.05m 5 Ay, =0.01250 m
Y2 0.15m 12 uniform
Y3 0.05 m 6 np = 1.0
Y4 0.05 m 6 7 =10
Y5 023 m 16 uniform
Y6 0.05 m 6 np, =1.0

Table B.1: Grid region specified parameters for the 54 x 51 grid.
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Y6

X1 X2 X3X4X5

Figure B.1: Grid regions for the grid independence transformer grid.
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Figure B.2: 54 x 51 Grid for the grid independence check.
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B.2 73 x 73 Grid

The domain is broken up into five z grid regions and six y grid regions, as shown in
Figure B.1. The details on each grid region is shown in Table B.2, and Figure B.3
shows the complete grid.

s haln MmO

Figure B.3: 73 x 73 Grid for the grid independence check.
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Specified Grid Parameters

Number of Nodes
X Grid Regions

Other Parameter

25

Azn =0.00916 m

12

12

12

12

Y1 0.05m 10 Ay, = 0.01250 m
Y2 0.15m 12 uniform
Y3 0.05 m 11 7 = 1.0
Y4 [|0.05m 11 7, = 1.0
Y5 023 m 18 uniform
Y6 0.05 m 11 7 = 1.0

Table B.2: Grid region parameters for the 73 x 73 grid.
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B.3 100 x 102 Grid

The domain is broken up into five = grid regions and six y grid regions, as shown in
Figure B.1. The details on each grid region is shown in Table B.3, and Figure B.4
shows the complete grid.

-----

Figure B.4: 100 x 102 Grid for the grid independence check.
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Specified Grid Parameters

Number of Nodes

Other Parameter I

Az, =

Y1 0.05 m 12 Ay, = 0.007500 m
Y2 0.15m 20 uniform
Y3 0.05 m 14 = 1.0
Y4 0.05m 14 7 = 1.0
Y5 0.23 m 30 uniform
Y6 0.05m 12 np = 1.0

Table B.3: Grid region parameters for the 100 x 102 grid.




APPENDIX B. DETAILS OF THE COMPUTATION GRIDS 229

B.4 100 x 152 Grid

The domain is broken up into five z grid regions and six y grid regions, as shown in
Figure B.1. The details on each grid region is shown in Table B.4, and Figure B.5
shows the complete grid.

Figure B.5: 100 x 152 Grid for the grid independence check.
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Specified Grid Parameters
Region || Length | Number of Nodes | Other Parameter

X Grid Regions

X1 q 0.10 m 37 Az, =0.006111 m
18 i

15
15
X5 0.02m 15
Y Grid Regions
Y1 0.05 m 30
Y2 0.15m 25

uniform

Y3 0.05 m 21 7, =10
Y4 [ 0.05m 21 n, = 1.0
Ys%f 0.23 m 34 uniform
| ve [oo5m 21 7o = L.O

Table B.4: Grid region parameters for the 100 x 152 grid.




Appendix C

Time and Grid Independence Test

Results

This appendix contains all the time and grid independence results in the form of plots.
These are all based on the 49 kVA Alegi and Black comparison runs in Chapter 7.

Time Step | 54 x 51 I 73 x 73 | 100 x 102 | 100 x 152
0.25s 14 hrs | 12 hrs 7 hrs -
0.50 s - 24 hrs 24 hrs 12 hrs
1.00s S.S. S.S. S.S. -
200s - - diverged -
3.00s - S.S. - -
5.00s S.S. S.S. diverged -
100s S.S. - - -

Table C.1: Time and grid independence run matrix.
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Figure C.1: Region layout for transformer model.

These runs were used to determine the best grid and largest time step that could
be used without sacrificing accuracy. Table C.1 shows the runs performed at each
time step and grid size. Figure C.1 shows how the transformer model is divided into

regions.

C.1 Time Independence

This section shows the results of the time independence runs. There are three plots
shown for each run; one for each component: core and windings, right oil cavity, and

the top oil cavity.

The time independence of the transformer flow model was examined first. The
top oil region showed little dependence on the time step. On the other hand, the core
showed little dependence on time step for the 54 x 51 grid but the 73 x 73 grid showed
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a large dependence on the time step. From Figure C.8, it was determined that a one
second time step is the best choice. Although the 0.5 second and 0.25 second time
steps showed a very close agreement when compared with each other, they required
a long run time. The relatively small error introduced by the 1.0 second time step
was considered acceptable. The 100 x 102 grid showed very little time dependence
for the core when comparing a 0.5 and 1.0 second time step results.

The right oil cavity showed a dependence on time step. Although the steady
state results for the 54 x 51 grid are the same for all time steps, there is a large
temperature difference after the first eight hours of the transformer run. The 73 x 73
and the 100 x 102 grid runs did not show this dependence on the time step. Therefore,

the one second time step is used for the rest of the transformer runs.
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Figure C.2: Alegi and Black time independence run for 54x41 grid: core and windings.
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Figure C.3: Alegi and Black time independence run for 54x41 grid: right oil cavity.
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Figure C.4: Alegi and Black time independence run for 54x41 grid: top oil cavity.
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Figure C.5: Alegi and Black time independence run for 100x102 grid: core and wind-
ings.
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Figure C.6: Alegi and Black time independence run for 100x102 grid: right oil cavity.



APPENDIX C. TIME AND GRID INDEPENDENCE TEST RESULTS 239

25 T

[r— b

S) 20

e

D

O

ﬁ 15

o

2

=

Q 10f

5 .
e time step = 0.50s

time step = 1.00s —

Alegi & Black: experimental c+w results @

L 1 1 A ] L 1

0 20,000 40,000 60,000 80,000
Time [s]

Figure C.7: Alegi and Black time independence run for 100x102 grid: top oil cavity.
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Figure C.8: Alegi and Black time independence run for 73x73 grid: core and windings.
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Figure C.9: Alegi and Black time independence run for 73x73 grid: right oil cavity.
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Figure C.10: Alegi and Black time independence run for 73x73 grid: top oil cavity.
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C.2 Grid Independence

This section shows the results of the grid independence runs. There are three plots,
Figures C.11 through C.13; one for each component: core and windings, right oil
cavity, and the top oil cavity. All the runs are shown for a one second time step,
except the 100 x 152 grid since only one run was conducted for this case. Only the
54 x 51 grid showed a discrepancy in the results. The 54 x 51 grid produced average
core temperatures almost five degrees higher than the other grids. Therefore, the
73 x 73 grid was used for the analysis of all the other transformer test models since
it produced results close to those of the finer meshes, and required less time to solve.
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Figure C.11: Alegi and Black grid independence run: core and windings.
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Figure C.12: Alegi and Black grid independence run: right oil cavity.
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Figure C.13: Alegi and Black grid independence run: top oil cavity.



Appendix D

Effective Winding Thermal
Conductivity

In order to reduce the number of control volumes, the components of the windings
are lumped together to constuct a homogeneous model of equivalent thermal prop-
erties. This appendix describes the method used to calculate the equivalent thermal

conductivity for this homogeneous material.

D.1 Background

A two-dimensional nonhomogeneous region must be simplified so that it can be rep-
resented by an equivalent z direction thermal conductivity, y direction thermal con-
ductivity, overall specific heat, and average density. The specific heat and the density

are volume averaged.

A two-dimensional problem is shown to be equivalent to a combination of two
thermal circuits as discribed by Soliman et al. [58]. These approximations are vali-
dated against a direct analytical solution of the domain. Their research shows that
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the choice of approximations depends on parameters such as geometry and thermal

conductivity.

Using the same theory as [58], Crane and Vachon [13] show that a square, three-
dimensional domain can be given an equivalent thermal conductivity. The concept of
a uniform heat flux and parallel isotherm model is used to give two thermal conductiv-
ities for granular materials. The experimental results showed that the two equations
bounded the experimental data. Cheng and Vachon [12] also compared experimental
results with their equivalent thermal circuit model. A equivalent thermal resistance
is calculated by integrating over the domain.

Goel et al. [21] calculate the effective thermal conductivity by using parallel, uni-
form heat flux strips integrated across the face of the medium. A separate thermal
conductivity is calculated for the z and the y directions for use in a finite difference
model. The results are compared against a finite element-based numerical modelling
software package known as ANSYS. A comparison of the finite element and the finite
difference runs showed that the approximate thermal conductivity produced excellent

results.

D.2 Theory for Equivalent Thermal Conductivity

Many distribution transformer windings are made up of conductor, paper insulation,
and oil, components. Figure D.1 shows a typical section of the windings. To simplify
the model, the thermal conductivity of this region must be replaced with effective

thermal conductivities for both the z and y directions.

There are two ways of finding the equivalent thermal conductivity: constant heat
flow and parallel isotherms. Figures D.2 and D.3 shows the two different thermal

circuits.
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Figure D.1: A typical windings section that must have effective thermal conductivities
calculated for both the z and y directions.

Constant Heat Flow Circuit

The constant heat flow approximation assumes that heat will flow in a straight line
from one side of the region to the opposite side. The thermal circuit consists of

parallel circuits, and the equation for the equivalent circuit takes the form

7;; = EE}; (D.1)

=1
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(a) Winding cross-section. (b) Equivalent thermal circuit.

Figure D.2: Equivalent circuit illustration for constant heat flow. The grayed areas

represent different materials.

where R is the one-dimensional plane wall thermal resistance (L/kA). When Equa-
tion (D.1) is expanded with the definition of R it becomes

keqAoveral _ = kjA; (D.2)
Loveranr Loveratt

j=1
where k., is the equivalent thermal conductivity and k; is the thermal conductivity
of each parallel strip. For more complicated structures, this equation can be replaced
with an integration (as was done by Goel et al [21]). Within each strip there may
be several materials. In this case, the equivalent thermal conductivity is calculated
for each strip before the overall equivalent thermal conductivity is determined. This
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Figure D.3: Equivalent circuit illustration for parallel isotherms. The grayed areas

represent different materials.

may be accomplished by considering the strip as a thermal circuit in series.
o'uemll
Frees Zk‘A (B-3)
Parallel Isotherm Circuit

The parallel isotherm approximation assumes that the isotherms run parallel to each

other and perpendicular to the direction being measured. The equation for the eqi-
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valent circuit takes the form
Ry = ) R (D.4)
=1

which may be expanded to get

Louefall

n L
keqAoverat § ki Agveratt

The equivalent thermal conductivity of each strip is determined by treating each strip

(D.5)

as thermal resistance circuit in parallel.

£ j=l 3

Choosing which thermal conductivity to use for each direction is problem depen-
dent since it depends mainly on the geometry and the thermal conductivities involved.

D.3 Square Windings

Some winding conductors may be approximated by a rectangular cross-section. Fig-
ure D.4 shows an example of a winding conductor with a square cross-section. The
winding cross-section may be simplified using symmetry. Paper insulates each layer
of winding, as well as each individual turn of winding. The effective thermal conduc-
tivity is calculated by constant heat flow and parallel isotherm circuits for both the

z and y directions.

Equivalent Thermal Conductivity in the X Direction

Figure D.5 shows the equivalent thermal circuit for constant heat flow in the z direc-
tion. Using the theory developed in Section D.2, the equivalent thermal conductivity
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Figure D.4: Cross-section of the square winding (making use of symmetry).

is calculated from

1 2 1
- = X D.7
B R T BmiR+R (D.7)

Note that since 7 has the same material on either side it is neglected in the thermal

R,
A\~

T, R, T, R T, R, T

AAZAAN AN
R,
AN

Figure D.5: Equivalent circuit illustration for constant heat flow in the z direction of

the square winding.
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Figure D.6: Equivalent circuit illustration for parallel isotherms in the = direction of

the square winding.

circuit. Equation (D.7) is expanded, then rearranged, to get

Kz eq1 (2t, + Av) - 2koty Ay (D.8)
2+ A+ P, A+ A+ P By g '

Figure D.6 shows the equivalent thermal circuit for parallel isotherms for the z direc-

tion, and the thermal resistance equation is then derived to be
1

Rieqz = Rs+ -2-—-(-_1- + Rg (D.9)
Re ' Ry
This is expanded, then rearranged, to get
2, +A:+F _ 2.+ Pz Az (D.10)

Focat @ty +Ay)  Fp(hy +4Ay) | 2ty + oAy
Equivalent Thermal Conductivity in the Y Direction

Another two equivalent thermal conductivities are derived for the y direction. These
are based on thermal circuits similiar to the thermal circuits for the z direction
equivalent thermal conductivity. The equivalent thermal conductivity for constant

heat flow can be written as:
1 1 1 1

= — + — D.11
B "R THmIRIR R (D-11)
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b Qe+ 4: +P) _ (2t +P) A (D12
2, + 4, 2%, +4, @ Bi '
The equivalent thermal conductivity for parallel isotherms in the y direction can be
written as:
Ryea = 2Rs + ——1 (D.13)
eq2 = 2l .
- ER
2y + Ay 2t, Ay (D.14)

Fpez =+ A +B) BT A +E) T k, 2L, + Py) + koA,





