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ABSTRACT 

Hypenpectnl rernote sensing potentiall y allows for the development of image 

processing techniques that could be applied over large areas to assess forest condition. 

Current hypenpecrral research for forestry tends to focus on deriving and modelling plant 

physiological responses. Stnicturil information is typicall y denved from a very di fferent 

type of image processing, using spatial techniques on high spatial resolution data. This 

research involved the incorporation of hypenpectral and spatial processing techniques to 

derive structural indices from Compact Airborne Spectrographic imager (CASI) 

hyperspectral d m  thüt were correlated with s~uc tunl  chancteristics of sugar msple 

stands. 

Data collection for ihis work involved a field campaign to chmcterize the stand 

and canopy stmcture of selected sugar mapie stands in southeastern and central Ontario. 

These stands covered a variety of canopy conditions ranging from varied silviculture 

treatments applied in the Algoma region of central Ontario to various levels of damage 

resulting from the 1998 ice storm in eastem Ontario. Hyperspectnl CAS1 refiectance 

data were collected for these areas in 1998 and 7 0  respectively. 

Hypenpectnl image processing involved the calculation of fint- and second- 

derivative images from the reflectance data and subsequent semivariognm analysis to 

chancterize nnge and anisotropic information for each cali bntion site. These nnge 

values were used to derive texture features frrim the reflectance and derivative data. 

Correlation analysis was used to identify spectral. derivative, and texture indices that 



were correlated to ground-based stmctunl rnetrics. Indices that showed strong 

correlations were then applied to validation sites to assess robustness. 

Results illustrate that the integraiion of spatial and hypenpectral techniques 

improve the relationships with ground-based structural metrics over what could be 

derived using either technique alone for these data. For example. a dissimilarity texture 

index applied to the second derivative of the 505 nm channel has strong correlations with 

percent canopy openness (significant at 9 5 8  confidence intervals) at the calibration sites 

(rr0.83) and the control sites in the validation study area (rd .82) .  By identifying 

correlation patterns on the spectral and derivative curves (a technique that is not possible 

with rnultispectril data). i t  has been demonstrated that hyperspectral data has unique and 

valuable information to add to remote sensing of forest structure. 



Rcer saccharum, 

You reach up to the sky and release the breath of life through your open amis. 
It grieves me that we butcher you, we carelessly poison you, slowly eliminate you. 

How poorly we understand you. 

Whisper the secrets of centuries through your leaves. 1 am listening. 
Have patience, gentle ones. as 1 struggle with your lessons. 

1 will not abandon you. 1 am your sister. 

V. Thomas 
August 19,2000 
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1.0 INTRODUCTION 

There are approximately 418 million hectares of forest in Canada. alrnost half of 

this nation's land mass. Maintaining the sustainability. biodiversity. and long-term health 

of Canada's forests through effective management is a subject of interest for a variety of 

groups. including the federal and provincial govemments, industry, environmental 

groups. and the Canadian public in general. The National Forest Strategy (1996-1003) - 

Srisruinuble Forests: A Curiudiun Conimitnierrt (Canadian Council of Forest Ministers 

(CCFiM). 1998) identified the need for a national framework of criteria and indicators for 

sustainable forest management. This has been extended to the forest industry in Ontario. 

through the Crown Forest Sustainability Act. 1991 and the Policy Framework for 

Sustainable Forests (Ontario Ministry of Natursl Resources (OMNR). 1998): which 

require that Crown forests be managed in a way ihût  will meet the social. econornic. and 

environmental nerds of both present and future generations. In 1999. a strong emphasis 

was placed on intensive silviculturil treatment practices, with recommendations put 

foward in Canada's Senate Subcommittee Report on the boreal forest and in Ontario's 

Living Legacy (Taylor. 1999; OMNR. 1999: Lautenschlager. 2000). Unfonunately, 

current limitations in field suniey techniques with regards to high costs. subjectivity. and 

low spatial and temporal coverage severely limit decision making by forest resource 

managers. Remoie sensing and related technologies offer significant potential for 

classification and monitoring of ecosystem classes. and the estimation of 

ecologicavbiophysicd pumeters at multiple scales. This increases the sbility of 

foresten to consider the emerging concepts of landscape ecology when adopting 

management stntegies. and to research the importance of spatial arrangements of forests 
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and processes within them for the functioning of organisms, groups, and ecosystems 

(Farina, 1998). 

There are sevenl definitions of landscapes and numerous disciplines have 

adopted the concepts of landscape ecology in an ettempt to undentand some of the 

complex spatial interactions of life on Earth. Haber (in Farina. 1998, p. 2) came up with 

a general definition of the Irindscape as "a piece of land which we perceive 

comprehensively üround us, without looking closely iit single components, and which 

looks familiar to us." This broad defini tion of a landscape (i.e., based on perception) is 

suitable for remote sensing research, since the whole field of remote sensing is based on 

obtaining different views or perceptions of the surface of the eath. Without the use of 

remote sensing, human perception of the landscape is restricted to that which c m  be 

viewed from the ground. Foresters survey field sites containing what they perceive to be 

a reasonably homogeneous assemblage of plants to obtain average measurements for the 

area. They then extrapolaic to the larger sunounding areû assuming that their definition 

of homoseneity is mainmined and that the hrger area can be considered as 3 unit or 

stand. Remoie sensing has opened the door to allow the study of the forest ecosystern at 

many levels. and to extend Our perception of the forest landscape to regional, provincial, 

national, and even global spatial scales. The potential for monitoring process and 

function within the landscape at various temporal (and spatial) scales has also ken  

greatly enhanced with this technology. This is particularly true of spacebome senson. 

which can provide continuous coverage of large portions of the Earth's surface. 

Currently in the remote sensing community there is a divided resemh focus on 

the potential of very high spatial and spectral (hypenpectral) resolution data for the 
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analysis of forest ecosytems in tems of structunl and physiological response. The 

majority of current hyperspectral research focuses on deriving and modelling plant 

physiological characteristics and responses. This is typically done at the laboratory/leaf 

scale and is often "upscaled to the canopy level using a variety of geometric-optical 

canopy refiectance modelling techniques (Zarco-Tejada et al.. 1999; Peddle and Johnson. 

2000). In this manner, the goal of many research initiatives is to relate quantifiable leaf- 

scale spectral response to the spectral reflectance captured at the ;iirbome/canopy scales. 

The driving goal behind typical hypenpectral research is to eventuall y move to satellite 

platforms. without losing the integrity of detailed physiological information available at 

the Iaboratory/leaf scale. Structunl information. on the other hand. is typically derived 

from spatial information available at high resolution airbome or satellite platforms. with 

less consideration given to detailed spectral response. In this scenario. the focus has been 

on spatial patterns within the image. often incorporating texture, geostatistics, or 

component fraction techniques in an attempt to quanti fy the spatial arrangement and 

pattern of the Imdscape. 

With current technology. rnost hyperspectnl data is obtained using airborne 

platforms. A hypenpectnl data cube contains infornation both on the detailed 

physiological canopy response and the spatial patterns and variations of canopy spectn. 

However. the potential benefits of having detailed spectral information to supplement 

high spatial resolution data have k e n  Iugely ignored for structural research. There has 

been little work done towards the integntion of spatial and hypenpectnl techniques for 

the extraction of structurai information. The focus of this reseruch has k e n  on the 



integntion of hyperspectral and spatial techniques to extract spectral derivatives over 

spatial extents that quantify structunl information about the forest canopy. 

Research questions on forest physiology and structure can be addressed by 

hyperspectral remote sensing through the analysis of the electrornagnetic response that is 

captured by the sensor. The interaction between electromagnetic energy and the leaf has 

k e n  studied at both the labontory and canopy scales for physiological research. 

Relationships between the first and second derivatives of the spectral curve and cellular 

biochemicd processes have been established (Le.. Belanger, et al. 1995: Zarco-Tejada 

and Miller. 1999; Treitz and Howanh. 1999: Sampson, 2000). By assessing the spatial 

distribution and pattern of these processes as well as the pattem of shadow and gaps in  

the canopy. this research relates the electromagnetic response to forest structure. 

1.1 Hypothesis 

It is hypothesized that there are quantifiable relationships between the spatial 

distribution of hyperspectral response measured at airborne scdes and ground-based 

bioph ysical variables measured at the stand level. B y incorponting both h yperspectral 

and spatial techniques. structunl indices can be derived from airbome hypenpectnl data 

to estimate biophysical charûcteristics of sugar maple stands. 

1.2 Objectives 

To test the stated hypothesis, the following research objectives were addressed: 

1. to develop a digital dûtabase of stand structural data for control sites and those 

that have undergone naturd or silvicultunl-induced change; 



3. to explore the use of hyperspectni image processing techniques. geostatistics and 

texture analysis for identifying relationships between airbome hypenpectral data 

and ground-brised data; and 

3. to derive ernpirical indices that are correlated with sugar rnaple biophysical 

c harxteristics and demonsrrate porential for predicting forest structunl 

parameters. 

1.3 Study Sites 

Ideally. in order to assess the utility of hypenpectral data for the monitoring of 

forest biophysical pmmeten. one would hope to study the relationships under varying 

structunl conditions. In pmctice. this is quite difficult to achieve. since scientists are 

often constrained to the forest conditions that exist at their study site at the time the 

remote sensi ng data are collected. Howrver. for this study. a unique opponunity existed 

to access a range of forest structunl conditjons for sugar maple stands throughout 

Ontario. Various sugar maple canopy structunl conditions resulting from differing 

silviculture treritment practices were avdable for study at the Turkey M e s  Watershed 

study uea north of Sault Ste. Marie. In addition. the destructive 1998 ice storm that 

affected large portions of eastem Ontario and southem Quebec provided a nnge of 

natunl occumng structunl changes to sugar maple canopies. Finally. sugar maple stands 

in central Ontrino were studied. These had not k e n  logged and were located outside the 

area of damage from the 1998 ice storm. Combined. these sites encompassed the range 

of canopy structural conditions most likely to be found in Ontario's sugar maple stands. 

This provided a comprehensive "testing ground for the utility of hypenpectral remote 



sensing for the monitoring of forest biophysical panmeten. The approximate locations of 

the study sites within Ontario are shown in  Figure 1. 

Figure 1: Locations Of Study Sites Used For Calibration (Index Development) And Validation 

1.3.1 Calibration Sites 

Calibration sites included unmanaged sites (that were used as controls in the 

development of indices) and managed sites that were damaged by the 1998 ice storm 

(used as damagd sites for the development of indices). These sites were al1 selected 

from previously studied forest plots set up by the Ontario Forest Research Institute 

(OFRI). In 1996. OFRI created the Bioindicators of Forest Condition Project to "develop 

a Forest Condition Rating (FCR) System to classify condition on a quantitative scde 

from healthy to stressed. relative to an acceptable range of values" (Sampson. 2000, p.1). 

This was an interdisciplinary project that involved the use of remote sensing and ground- 
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based measurements of structural and physiological components of forest condition. One 

of the aims of the project was to use airbome nypenpectral remote sensing to overcome 

the conventional labour-intensive approach required to measure the physiological 

response of individual trees. As pan of the Bioindicaton of Forest Condition Project. 

multiple sites were selected across Ontario that covered a range of canopy conditions. 

including sites damaged by the 1998 ice storm. The goal was to collect hyperspectnl 

data in the summer of 2000. which would correspond io a field campaign to characterize 

physiological response. Through coopention with OFRI. a concurrent field campaign 

was designed to chancterize the ground-based structural parameters for these sites. 

OFRI then provided hypenpectral data for considention of structural conditions. 

I.3.I. 1 1998 Ice Storm Damage (ISD) Siles 

The ice storm of January 5-10. 1998 was one of the most destructive natural 

disturbances ever recorded in Nonh Amerka (Lwtenschlager and Nielson. 1999). 

Throughout the St. Lawrence and Ottawa River valleys. as well as upstate New York, 

parts of New England. and the Maritimes. entended periods of supercooled rain. which 

froze on contact. çaused extensive damage to the forest canopy (Lautenschlager and 

Nielsen. 1999). Since thst time, a variety of short- and long-term socio-economic and 

ecologicrl concems have k e n  nised about dealing with the loss and darnage caused by 

the storm. as well as preventing future damage caused by similar storms. 

The sugx müple stands in this area were severely damaged by the stom. resulting 

in considerable effort k ing placed on understanding the impacts of the storm on the 

production of maple synip. In 1998, the Ontario Ministry of Natural Resources (OMNR) 



assessed and categorized the damage of the ice storrn to sugar m~ple stands pnvately 

owned by maple symp producen. Depending on the ertent of the structural damage, each 

location was categorized as having light. moderate. or severe damage. An 

interdisciplinary sugar maple study was then established to: 

"document how tapping effects sugar maple recovery probabilities; the 
potential of cost-effective remedid treatments to speed recovery of. and 
rnitigate funher damage to sugar maple stands; the effects of damage and 
potential remedial treatments on sap production (volume and sweetness); 
and some ecological consequences of damage and potential remedial 
treatments (Lautenschlager and Nielson. 1999, p.636)." 

The experiment consisted of 35 one-hectare plots on pnvately owned rnaple syrup 

f w m s  thüt accounted for the range of canopy darnage classes. Each plot was 100 m x LOO 

m. divided into 50 m n 50 rn quadrants. The qundr~nts were used to test the effect of 

remediril fenilizer treatrnents. including: 1) no treatment; 1) the addition of phosphorus 

and potassium: 3) the addition of lime and magnesium; and 4) the addition of 

phosphorus. potassium. lime. and magnesium (Lautenschlager and Nielson. 1999). 

Of these 35 plots. twelve were selected for the Bioindicaton of Forest Condition 

Project for the airborne hyperspectral mission (Figure 1). These plots covered the entire 

range of canopy damage as assessed by the OMNR. with four plots in each category of 

low. moderate. and severe damage. Stand structunl data were collected for each of these 

twelve plots in Iune and July of 2000. The hyperspectral data for these plots were 

collected in July. 1000. Due to poor flight conditions, two of the original twelve plots 

were dropped from the mission. leaving ten ISD plots for the development of structural 

indices. 



IJ.l .2 Forest Health (FH)  Sites 

In 1985, a network of over LOO permanent hardwood Forest Health (RI) sites 

(each containing a 60 m x 60 m plot) was established by the Ontario Ministry of the 

Environment and Energy (OMEE), whose purpose was to assess acid rain and low-level 

ozone dûmage to stands throughout Ontario (Sampson et al.. 2000). Annual assessments 

of these stands were completed to develop a historical database of crown condition in the 

form of a Decline Index (DI). This index incorporated information on proportion of d e d  

branches in the canopy with chlorosis information to calculate a numerical value used to 

categonze crown damage as low. modente. or severe (Sampson et al.. 2000). The DI 

values were used to select six hardwood FH plots chat covered a nnge of canopy 

conditions. These six sugu rnaple stands were not used for the production of mliple 

syrup and were located outside of the area affected by the 1998 ice storm (Figure 1). For 

the purpose of this research, ihey sewed as control or "naturül" condition sites for the 

development of structunl indices. 

1.3.2 Validation Site 

1.3.2 1 Turkey Lakes Hanesting Impacts Project 

The Turkey hkes  watenhed (TLW) is located in the southem portion of the 

Boreal Shield Ecozone, approximritely 60 km nonh of Sault Ste. Marie. Ontario. 

Characteristic tree species in the area include sugar maple (Acer saccharum Marsh.), 

yellow birch (Betiila alleglieniensis Arnold), red maple (Acer nrbrum L.). white spruce 

(Picea gïaiica). ironwood (Ostry virgifliana). balsam fir (Abia balsrrnlea). and eastem 

white cedar (ïïiiija occidenralis) (Naturd Resources Canada (NRCan), 1998). The forest 



in this watershed consists of tolerant hardwoods that have in the past been high-graded 

for quality logs, resulting in a present day forest that is "an uneven-aged, genenlly 

mature-to-ovemature. old growth tolerünt community. . ..The percentnge composition of 

Acrr spp. and Betiila spp. is quite high (ca. >90% in total) (Sampson. 2000, p.33)." The 

topognphy in this area of the Algoma Region is rugged, with shallow. Precmbrian- 

derived till soi1 (NRCan, 1998). 

In 1979. a 1 0  ha study area was established in the TLW by the Canadian Forest 

Service (CFS) and other interest groups as pan of a project to study the impacts of the 

long-rang transpon of air pollutants on aquatic and terrestrial ecosystems (NRCan. 

1998). Ernerging from this project in 1997. the Turkey Lakes Harvesting Impacts Project 

(TLHIP) was developed for the lower pan of the watenhed "to examine the impacts of 

hiirvesting practices on the ecosystem and to calibrate ii range of huvesting prescriptions 

to this imponant forest type" (NRCan. 1998. http://www.glfc.forestry.ca/index- 

enlresearch-elforest~ecology-e/turkeylakes-e.hm). In puticular. the TLHIP was 

designed to study the effects of human induced variations to the light regime, which is a 

dominant growing force in ciosed canopy forest environments. As stated by NRCan 

( 1998: http://www.glfc.forestry.ca/index-en/rese~ch-e/forest~eco~ogy-e/turkeylakes- 

e.html), "üny disturbance process that increases light penetration sets off a chah of 

events, many of tnem interrelated, that change the structure, composition, function and 

process within the stand." 

The TLWIP sites consisted of four silviculture treatment rnethods; controt, 

selected cut. shelterwood. and clear cut. Control sites were untreated in the experiment, 

and consist of old-growth closed-canopy conditions. The selected cut (also referred to as 
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selection) treatment is a system in which individual trees are selected and removed over a 

luge area. resulting in an uneven-aged stand. This system tends to be more common on 

productive logging sites (Sampson, 2000). Sheiterwood harvesting involves two or more 

successive cuts which provide a source of protection and seed for regeneration. This 

results in an even-aged stand. and tends to be more common on less productive sites 

(Sampson, 2000). For this experiment. only the fint cut had k e n  made. meaning that the 

sheltenvood and selected cut sites would have very similar characteristics. Clear cut 

harvesting involved the removal of most or a11 stems. in rhis case everything with a 

diameter greüter than 10 centimeters. Obviously this is not the preferred harvesting 

method if the goal is to achieve a sustainable forest management practice. However. for 

the purpose of the TLHIP. i t  served as the maximum site disturbance. with almost 

complete canopy removal. For this research. 36 plots with an 11.3 m radius were 

sampled within the TLW. The layout of the sample plots within the site is 

illustrated in Figure 2. These plots were used for validation (i.e., to test the robustness of 

the denved indices on an independent dataset with different structural conditions in the 

canopy). 
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Figure 2: Validation Plots Wïthin TLHIP Site 

1.4 Thesis Outline 

This research consists of four main components: 1)  a comprehensive literature 

search to detennine the current state of research reparding hypenpectral remotr scnsiny 

of forest biophysical parameten; 2) an intensive field campais to charactenze the Forest 

biophysical parameters for the identified study site; 3) compilation of a digital database 

containing the nw field data as well as calculated rnetncs; and 4) an image processing 

phase used to relate the field pararneters to the airborne hyperspectral data and various 

derivativeshdices. The key information derived fiom the literature review is presented 

in Chapter 2. Methods utilized for the field campaign, digital database compilation, and 

image processing are presented in Chapter 3, followed by a presentation of major results 

in Chapter 4. A discussion of these results and their implications for remote sensing of 
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forest ecosystems is presented in Chapter 5. Finally, the major conclusions drawn from 

this work and recommendations for future research are presented in Chapter 6. 



2.0 BACKGROUND 

Before discussing sorne of the issues that have arisen around hyperspectnl rernote 

sensing and its potential for monitoring forest structure. it may prove useful to briefly 

examine how hyperspectnl remote sensing fits within the context of remote sensing in 

genenl. and why i t  has genented such interest for forest ecosystem monitoring. 

Lillesand and Kiefer (L99J. p. 1) define remote sensing as: 

"the science and an  of obtaining i~ifonnation about an object, area. or 
plieiionienon tliroicgli the annlysis of data acquired by a device rliat is not 
in conroct with the object. area. or pliniornenon under investigation." 

This includes the collection of any form of data. with common types including force. 

acoustics. and electromagnetic (EM) energy. The research for this thesis concems the 

collection of EM energy for the purpose of monitoring the Euth's surface. in particular 

lorest ecosystems. Wi th such a broad definition. i t becomes apparent that various aspects 

of remote sensing science and the study of EM energy can be traced throughout human 

history. perhaps as far back as ancient Greek civilization. As early as 300 BC. Aristotle 

theorized about the nature of light and the tnnsparency of certain objects in its presence 

(Estes. 1997). Remote sensing using EM energy has existed since the evolution of 

vision. which is simply a way for the body to sense EM energy in the visible portion of 

the EM spectrum. conven this energy into signais for the bnin. and process these signals 

to allow humans and animals to study their surroundings. 

Recent technological advances have allowed for the study of EM energy outside 

the visible range. through the use of such devices as spectrondiometen, sonar. radar. etc. 

As early as the 195O's, muitispectral sensor technology allowed for the relativeiy cnide 



spectral chancterization of reflected and emitted EM energy (Estes. 1997). These 

senson collected digital irnagery in 3 to 10 spectral bands, each of which contained broad 

averages of EM energy (bandwidths of approximately 70-400 nm). Multispectnl 

satellites were launched in the 1960's and 1970's. with rapid progress made in the 

developmen t of anal ytical techniques for the image data collected (Landgrebe. 1998). 

Exth scientists have found muitispectral remote sensing useful for a variety of 

applications. including forestry. agriculture. geology. oceanology - essentially any 

application that could benefit from monitoring the landscape from different perspectives 

(and scales) than is possible with human vision at the ground level. 

Since the 1980's. the development of airborne hyperspectral sensors has allowed 

for the shift from the analysis of a few broad bands of noncontiguous. multispectnl 

imügery to the more complex retlectance spectroscopy (Goetz er ai.. 1985: Vane et al.. 

1993. Landgrebe. 1998: Clark. 1999). Imaging spectroscopy has been performed in a 

laboratory setting for the put 100 years, and can be defined as the study of reflected or 

scattered lighi as a function of wavelength through use of a spectrometer (Clark. 1999). 

In this sense. a hyperspectral remote sensing scanner is a special type of multispectral 

scanner that records rnany bands of imagery at very narrow bandwidths. To create an 

image. multiple spectrometers are aligned in an a m y  to cover a ground area. creating a 

recognizable image at any one spectral wavelength. This allows the spatial information 

to br collected in  the x-y dimension. with spectral information contained in the z 

dimension. forming whût is referred to as a data cube. 

There are usually around 1 0  to 300 spectral bands of relatively narrow 

bandwidths (i.e.. 5-10 nm) in a hyperspectral dataset. Cornpared to the earth monitoring 
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remote sensing platfons developed prior to hypenpectral senson. this represents a 

dramatic increase in the amount and detail of spectral information available for any given 

location on the surface of the earth. It has allowed for the generation of a spectral 

signature for a given location. compared to the broad approximation based on the few 

bands in a traditional multispectral sensor. 

There are distinct advûntages associaied with hyperspectral data that have k e n  

observed in the laboratory setting for some tirne. With a more complete spectnl 

signature. it is possible to identify different groups of materials on the Earth's surface 

based on their charactenstic spectral response and. in many cases. it is possible to 

determine the identity of individual memben of such groups. Individual materials that 

occur within a class (for example. specific minenls within a broader mineral group or 

individual species of trees within a forest) often express their variations in composition as 

slight shifts in the peaks and troughs within the spectral curve continuum. In addition. 

hypenpectral senson have the ability to detect very subtle changes in the spectral 

response of an object over iime. This has led to considenble research into the utility of 

hyperspectral remote sensing for the detection of vegetative stress and the eventual 

detailed monitoring of vegetative health from satellite platforms. 

Progress in the analysis of hypenpectral data has not k e n  as npid or successful 

as oripnally anticipated (Landgrebe. 1998). This has been due to a vaiety of factors. 

which relate to the size and complexity of hyperspectral datasets, limitations in cornputer 

processing capabilities, environmental conditions introducing noise. and the sensitivity of 

surface materials to environmenial conditions causing variations in spectral refiectance. 

To cover the same spatial extent as would be seen with a multispectral scanner, the 
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datasets become very large. requiring the development of new processing techniques. 

Ironically, most of these techniques have focused on extraciing the most appropriate 

wavelength ranges for a particular study, in order to eliminate redundant or less useful 

bands. This then allows for analyses using processing techniques developed for 

multipspectnl data. 

There are further complexities introduced when attempting to study vegetated 

environments. Within-species retlectance from a vegetated surface will vary depending 

on season, iliumination, nutrient regime. availribiIity of water. etc. Some studies have 

illusrrated thlit despite the original expectations of many remote sensing scientists. it has 

not been possible to uniquely identify and separate al1 vesetative species (Hoffbeck and 

Lmdgrebe. 1996). main1 y due to the variability of vegetative response across space and 

time. In response to the potentials and problems outlined übove. hyperspectral research 

with regards to vegetation analysis has been narrowly focused on denving and modelling 

plant physiological responses. This has k e n  done by examining subtle variations in the 

spectral signature and developing very specialized spectral indices. The complexities 

introduced by the examination of structural information, which is a spatial phenomenon, 

have cunriiled research in this area. Research towards the utility of hyperspectral data for 

the extraction of stnicturd information for a forest ecosystern. speci fically sugiu maple 

Forest, has been largely unexamined to date and is the focus of this research. 

2.1 Spectral and Hyperspectral Techniques 

Spectral indices are transformstions applied to image data. including ratios and 

linednonlinear band combinations, specifically designed to enhance some aspect of the 



reflectance surface (Jensen, 1996). Govaens et al. (1999) describe a spectral index to be 

a single number denved from some multivariate function using two or more spectral 

observations. The result of a spectral index is a single channel of data. where each pixel 

coniains a value that describes the characteristic for which the index was designed 

(Jensen. 1996). One of the overall objectives in the design of vegetation indices is the 

monitoring of vegetation through the rneasurement of spatial and temporal variations of 

vegetation composition and photosynthetic activity (Dawson. 1998). More specificall y. 

the objective is the development of indirect measurements of biophysical panmeters such 

as leaf area index (LAI). fraction of absorbed photos yntheticall y active radiation (faPAR 

or FPAR). biomass. and percent green cover (SeIlers. 1985; Goward and Huemmrich. 

1992: Treitz and Howarth. 1999). as well as geophysicd measures of soii condition. 

surface wetness, and plant stress. 

In genenl, green vegetation exhibits several spectral response charactenstics in 

the visible and near infrared (NR) portions of the EM spectmm thût are different from 

other materials on the earth's suhce. This includes 8û-90% absorption by chlorophyll 

in the visible range (Jensen. 1996). with a slight peak of refiectance in the green range. 

known as the "green peak". The "absorption well" in the red region of the EM spectnim 

is followed by a dramatic increrise in reflectance in the N R  of 40-508 (Jensen, 1996). 

The transition area of the reflectance curve between absorption in the red region and 

reflectance in the NIR is known as the "red-edge", which has been shown in sevenl 

studies to be sensitive to vegetative stress (Mohammed et al., 1997: Sampson et al.. 

1 998). 



Other surface materials have spectral response curves that are dmatically 

different than vegetation in the visibleb'IR region. Water sbsorbs almost al1 EM 

radiation in  the NIR portion of the spectrum. Materials such as soi1 and litter generally 

exhibit a steady increase in reflectance with wavelength in this region (Goward. 1989). 

These consistent differences in spectral response are the basis for the assumption that 

indices can be designed to detect and measure the presence and condition of 

photosynthetically active vegetation surfaces. 

2.1.1 Narrow-Band Indices 

Corresponding to the development of remote scnsing technology, most of the 

common spectrd indices (e.g., Normalized Di fference Vegetation Index (NDVI)) were 

originally designed for broiid-band sensors (A  summary of the common broad-band 

indices round in current literÿture is included in Appendix A l .  1 and A1.2). However. 

standard laboratory spectroradiorneter equipment and hyperspectral sensors can measure 

radiance at a rnuch finer spectral resolution. Where a broad-band sensor cm provide one 

value as an average of the most intense ndiance in a certain range, a hyperspectral sensor 

clin provide a contiguous curve for the same area. It has ken  shown that stressed 

vegetation will show a change in the red edge of the spectnl reflectance curve which cm 

be described as a shift in the inflection point from longer wavelengths (red) towards 

shoner wavelengths (blue). While spectroradiometers and hyperspectnl sensors have the 

ability to record these shifts, broad-band multispectnl senson are not. In fact, most of 

the red edge is not even sensed for the more common broad-band sensors, which tend to 

focus on the red and the NIR. and not the transitional region between them. This has led 



to the development of hyperspectral indices of two types. The first is the adaptation of 

proven broad-band indices to h yperspectnl daiasets, which involves the selection of 

appropriate narrow band(s) to use in place of the broad bandwidths discussed above. A 

current issue undergoing research in this area is whether or not the hyperspectnl data can 

actually achievc higher correlations io biophysical parameters than the more general 

broad-band sensors. Second. hyperspectnl indices have been developed to accentuate 

subtle spectral feotures on the continuous curve (Appendix A. 1.3). 

There has been some success in developing and relating hypenpectral indices to 

various forest parameters at the leaf and (to a lesser degree) canopy levels. Most of these 

relationships concem physiological nther than structural parameters, where changes in 

ihese meüsurements have k e n  related in some way to plant stress. These physiological 

parameters include a vÿriety of plant measures that can be analyzed in a controlled 

Iiiboratory setting, including tluorescence. chlorophyil a & b, light absorbing pigments, 

proteins, nitrogen, lignin, caroienoid concentrations, and cellulose (Belanger, et al. 1995; 

Zarco-Tejada and Miller. 1999: Treitz and Howath. 1999: Sampson. 2000). In order to 

understend and mode1 such forest ecosystem processes as photosynthetic efficiency, leaf 

litter decomposition nies. and net prirnary production. knowledge of these physiological 

parameters is crucial (Dawson, 1998). 

There has been less work done to relate spectral indices to forest structural 

parameten, which would include anything that describes the physical presence of forest 

vegetation. Most of these parameten would be very difficult to represent in a labontory 

setting and are very much a function of 

structural parameters of interest include 

the scale of observation. Some examples of 

LAI, crown closure. tree height. tree density, 
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biornass, leaf and canopy density. live stem size. live/dead volumes. and live/dead stem 

density (Olthof and King. 1998; Treitz and Howarth, 1999; Sampson, 2000). To date, 

reservch reponed in the literature regarding forest structural panmeters involves the use 

of spatial statistics. textural analysis, and multiple regression/multivariate techniques 

(Yuan et al.. 1991; Hershey et ai.. 1998; Olthof and King, 1998; Davison et al., 1999; 

Phinn et al.. 1999; Seed et al., 1999; Seed and King. 2000). 

Due to the nature of hyperspectrd datasets, the techniques used to derive these 

indices tend to be more involved than broad-band indices and very specific to a pmicular 

application. Careful consideration must be made to the biophysical panmeter of interest 

and the best way of relaiing the panmeter to the reflectünce data. To reducc the number 

of bands required and select the most appropriate band combination often requires 

ngorous statistical procedures. which help identify the highest correlations between the 

parrimeter of interest and the wavelength(s). width of the waveband, andor their 

combinations (Dawson. 1998;  mert ton, 1998; Schmuck et al., 1998; Govesinz et al., 

1999). 

One area of current research focuses on the geometnc characteristics of the red 

edge and the movement of its infiection point. These relationships cm be evalunted 

through the calculation of fint- and second-order derivatives. First-order denvative 

transformations provide a slope curve that will help to emphasize any subtle differences 

on the red-edge curve, which may point to useful information regarding absorption and 

reflection features that would otherwise be obscurred (Elvidge and Chen, 1995; Novo et 

al.. 1995; Merton. 1998). The red-edge inflection wavelength (A,) cm be found by 

calculating the second denvative, with the inflection point king the value where the 
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second derivative equals zero. There are a variety of theoretical applications for )cL 

including the monitoring in spectral shifts for a vegetation community over time (Merton, 

1998). This has k e n  correlated to changes in chlorophyll, LAI. leaf inclination angle. 

and vanous plant stress factors (Merton. 1998: Mohammed et al.. 1997; Sampson et of.. 

1998). However. recalling the discussion above regarding the confounding factors with 

broiid-band indices. it becomes immediately apparent that hyperspectral calculations are 

even more probletnatic beyond a laboratory setting. 

Fint- and second-order derivatives have also been used for the development of 

hypenpectral indices by integrating the area under the derivative corves of discrete 

narrow-wavebünd spectra over the red-edge, or in areas thai have k e n  highlighted in 

first-order derivatives to be areas of subtle or rapid change in dope (Elvidge and Chen. 

1995: Thenkabail et al.. 1999). El vidge and Chen ( 19%) subtracted a ixal-derivative 

baseline from their integriited indices to remove background effects. which they found to 

improve the ovenll performance of the indices. They also reporied using 3 Fourier 

transforrn smoothing algorithm (Press et al., 1989) to smooth the reflectûnce spectra 

before differentiating. 

As was the case with the broad-band spectral indices. there are many 

h ypenpecrnl indices currentl y being developed for s variety of applications (Appendix 

A.1.3 and A.1.4). One of the issues of concem regarding the utility of hyperspectral 

datasets for vegetation indices is the overwhelming quantity of data that is associated 

with each image. Determining the optimal wauelength bands (Le.. feature selection) 

useful for the anal ysis of cenain biophysical panmeters has k e n  a crucial technique used 

to reduce the original dataset to a more manageable size. This is a challenging process 
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and often requires the use of statistical regression and modelling techniques. Key to the 

success of these techniques is a good understanding of the biophysical parameten of 

interest. When examining the reflectance characteristics of a hyperspectral dataset in 

general. i t  has been found thüt high spatial resolution is more significant than high 

spectr~l resolution to identify surface types (Price. 1997). However. when analyzing the 

specific spectral behavior of a certain parameter. very fine spectral resolution may be 

required in one or more regions of the EM spectrum. 

One analysis technique of interest is the use of multiple linear regression analysis 

to relate biophysical parameten to reflectance. Thenkabail et al. (1999) describe the use 

of a model to perform an analysis of this type. which calculated the best R' values for 

one. two. four. and n-band combinations using reflectance as the independent variable 

and biophysical parameten as the dependent variable (using the stepwise MAXR 

procedure in the statisticül package SAS). Thenkabail et ul. (1999) describe the outputs 

of this technique as a class of vegetation indices labeled the Optimal Multiple Namow- 

Wrivebünd Reflectivity indices (OMNBR). These models (indices) can be tested to 

determine how much of the variability of the biophysical parameter can be explaincd by 

the narrow-waveband variables. Significance testing can be used to detemine the utility 

of addi tionai wave bands. w hic h provides a justifiable method of determining appropriate 

wavelengths and prevents models from "over-fitting" the dataset (Blackburn, 1998; 

Thenkabail. 1999). The OMNBR techniques can be very helpful in identifying re,' =loris 

on the spectral reflectance curves that are important for certain biophysical panmeten. 

This would be especially useful if some optimal information about the pumeter of 

interest is not located in the red or NIR wavebands. 
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Si mi lu regression approaches can also be taken to determine the best possible 

band combinations to calculate nmow-band versions of the common broad-band indices 

(e.g., NDVI). This has been accomplished by calculating al1 possible combinations of 

NDVI and then correlating them with biophysical parameters (Merton, 1998; Thenkabail 

et uf.. 1999). This provides a more rigorous procedure than simply selecting the peak 

bands in the red/NIR regions. As well, i t  allows for the probability that the bands 

selected for a nürrow-band NDVI for one biophysical pmmeter (LAI for instance) may 

not provide the highest correlation possible for another (e.g. biomass). These 

considerations appear to be significant. as several authors have utilized different 

wwelengths for the nmow-band NDVI calculations (Menon and Harvey. 1997; Merton. 

1998; Thenkabüil et al., 1999; Zrirco-Tejrida et ul., 1999). 

It should be noted that when correlüting a hyperspectril index to a biophysical 

parameter. it is not necessary for the most appropriate relationship to be linear. There are 

a variety of possible reliitionships between the index and the panmeter of interest. which 

will drpend on how a model can be fit to the plot trends to give the best R' value. 

However, one should view a lower R' value from a higher order relationship with caution 

when selecting an appropriate model, as the results in regions which have not been 

adequately sampled are highly suspect. Thenkabail et al. (1999) found that linear and 

exponential relationships were the most satisfactory models for hyperspectral crop 

indices. This cm also be true when relating broad-band indices to biophysical 

parameten. as found by Friedl et aï. (1995) when relating NDVI (from Landsat TM) to 

LAI and FPAR. 



Other approaches to developing hypenpectnl indices found in the litenture 

revolve around modelliiig the spectral response curve or the soi1 line in spectnl space 

(Menon. 1998; Govaenz. L999). Menon (1998) created a linear model of the red-edge 

geometry of the spectral reflectance curve. where the degree of concavity between the 

upper portion of the red-edge curve and the linear model were used as a rneasure of 

vegetation stress. However. in this case. the index was designed to be highly 

interpretable and somewhat generic, where positive values indicate ares  of high stress 

and negative values indicate low stress. Menon (1998) also had some success relating 

this index to NDVI for sevenl vegetation communities. There was no report of any 

attempt to relate this stress index to any specific biophysical panmeter. 

2.1.2 General Comments on Indices 

Upon examination of the characteristics of hyperspectral datasets and the 

techniques required to perform meaningful analysis with these data. i t  becomes 

immcdiately apparent that most of the problems relating to the effectiveness of broad- 

band indices will also affect the narrow-band indices. While the very specific nature of 

most narrow-band indices allows for the possibility that confounding factors can be 

reduced, the complexity of the dataseis increases the potentiai for confusion. In order to 

successfully exploit the detaiied nature of hypenpectnl datasets, i t  is evident that 

detailed information on the study area at the time of observation is crucial (more so than 

for most brorid-band studies). This would also include observation conditions that couid 

affect the sensor, such as illumination conditions, orbital information, solar conditions, 

etc. It is then necessary CO determine and account for the significance of these factors on 



the specific study of interest. The sheer magnitude and relative novelty of this task may 

explain the variety of approaches noted in the literature for the development of 

hyperspectral indices. as the remote sensing community is attempting to address a wide 

range of issues in this area. Govaerts et al. (1999) have outlined a genenl approach for 

the design of optimal spectral indices. which could be adopted in most cases to ensure 

that the optimal spectral index is developed. However. the specific rnethodology for 

finding an optimal solution is still completely dependent on the question king asked and 

the data available to address it. 

There is a key difference between the development of a hypenpectral index for 

forcst structural parameters and physiologiciil chriracteristics. As noted übove. rnost 

indices derived for physiological panmeten are developed in labontory settings at the 

leaf scale. followed by atternpts to "scale-up". usually through the use of canopy 

reflectance models (e.g.. Grossman et al.. 1994: Zarco-Tejada et al.. 1999; Peddle. 1999). 

Structural pmmeters on the other hand cannot really be rneasured in a Iaboratory. If the 

goal is to relate an existing hypenpectral index to a parameter of interest. the procedures 

would generally be similar in  either case. However. when deriving a new index designed 

speci ficall y to enhance sorne structural chanctenstic. it would be very di fficult to 

establish rhis relationship prior to image analysis. Büsed on the litenture findings, it 

seems evident that hyperspectnl indices for forest structure will require additional spatial 

considerations and inputs frorn a variety of processing techniques. Some of these 

techniques include canopy reflectance modelling. spectral unmixing analysis, spectnl 

inversions. geostatistical analysis. multiple regression techniques, and statistical 

significance testing. Careful considention must also be made regarding the scale of 
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observation and field analysis. While there is obviously great potential in this area. it is 

clear that success has ken  somewhat limited to date. and research is really just 

2.2 Spatial Techniques 

Remote sensing images of the Eanh's surface have distinct spatial propenies 

charxteristic of the landscape at the scale of observation. However. for most 

applications traditional remote sensing research has concentnted mainly on the spectral 

response characteristics of objects or areas of interest. This information would then be 

used to mess  the health, status. andor change in the natunl environment over time. 

Although it was recognized to be 3 potential contnbuting factor, little consideration was 

given to the appropriate scale of study for the process of interest and the pattern of this 

process across the landscape. This was. in part. due to the historical limitations on 

remote sensing technology. which severely restncted the options for choice in the spatial 

resolution of remotely sensed images from space. In many cases. the scientist would 

simply select the brst resolution possible in order to obtain dl the spectnl information 

avsilable for a study ares. In recent years. advances in technology have enabled very 

high spatial- and spectral-resolution satellites to be developed for the monitoring of 

natural resources. This has opened the door for analysis of the landscape at many scales. 

which has led to a present day focus on a variety of scale issues for remote sensing 

anal ysis (e.g.. Marceau, 1999). 

One of the problems encountered by remote sensing scienrists when using very 

high spatial resolution data is the increased volume of data that must be collected to cover 



the same area that a corner resolution sensor would traditionally have covered. This is 

due to the obvious fact that corner spatial resolution sensors require fewer picture 

elements, or pixels, to cover the same area. This is compounded when considenng the 

increased spectral resolution of a suite of hyperspectnl satellites to be launched over the 

next ten years. With the increased number of spectral bands available for analysis, this 

will further increase the data quantity by over 200 times the current data sources. 

Without consideration of sciile and pattern in datasets of this size. the sheer quantity of 

the information wi Il become unmanageable. 

Another consideration that has become the focus of much recent attention is the 

aggregation of datasets across multiple scales for the purpose of studying multi-scaled 

spatial phenomenü in the Iündscape. This has led to what is commonly referred to as the 

Modifiable Areal Unit Problem (kIAIiP). described fïnt by Openshüw and Taylor 

(1979). The MAUP consists of two sepente but interrelated components; i.e.. scaling 

and zoning (Openshrw and Taylor. 1979. 198 1; Openshaw. 1984; Jelinski and Wu. 1996; 

Marceau. 1999). The scaling probiem exists because of varying results that occur when 

datasets are aggregated into fewer and fewer units for analysis. Zoning can be described 

as the variation of results that exist due to the many possible methods of aggregating data 

at the same scales. while still maintainhg the same overall number of units (Openshaw 

and Taylor. 1979. 1981; Openshaw. 1984: Jelinski and Wu. 1996; Marceau, 1999). The 

implications of the MAUP on spatial data and its influence on spatial statistics of 

estimation and significance testing has been further presented by Arbia (1989). To date. 

one of the most promising hopes for mûnaging the MAU? at an acceptable level has ken  



through the integration of spatial autocorrelation statistics with the analysis (Marceau, 

1999). 

2.2.1 Spatial Statistics 

The main premise behind spatial statistics is the simple concept that points closer 

together tend to be more similar than points fanher apart. This is what is commonly 

referred to as 'The Fint Law of Geography", and is the basis behind the analysis of 

surfxe structure. The very concept of spatial structure implies that the fundamental 

assumption behind classical inferentiül stotistics. that observations are independent of 

each other. cannot be applied. This means that statistical analysis of spatial data must 

include consideration of the dependence of observations on each other and on location. 

In curent statistical methods, there are two ways to consider structure in spatial 

data. either through trend surfüces or spatial autocorrelation statistics (Jongman et al., 

1995). Trend surfaces imply a gradua1 change with the landscape. where there is a direct 

relationship between points. However. in reality. random variations and spatial clustering 

are often present in  the landscape. which confounds the sssumptions behind trend surface 

analysis. In contrast. spatial autocorrelation statistics suggest that short-range variation is 

often correlated but cindom. In other words. points closer together tend to be more 

similar than points fanher apan, but there is no direct relationship between them 

(Jongman et al., 1995). 

A variable is autocorrelated (or regionalized) i f  it is possible to predict its value at 

a given point in space by knowing its value at other locations (Legendre and Fortin, 

1989). Typically, autocorrelation is described as king either positive or negative, where 



positive autocorrelation refers to the case when close or adjacent points have very similar 

values and negative autocorrelation refers to the case of close or adjacent points having 

unlike values (Legendre and Fortin. 1989). Another mesure of the spatial variation of a 

dataset is the semivariance. Semivariance of an increment Z(xl) - Z(x2) can be defined 

as half of the variance of the increment (Jongman et al., 1995). Semivariogams are used 

to describe spatial structure in the data or to interpolate surfaces based on a theoretical 

model. 

A semivariogram is a gnph with semivariance plotted on the ordinate axis and 

distance classes on the abscissa. The semivariogram is composed of three main 

descriptive components. nrimely the nnge, sill. and nugget. According to C u n n  (1988). 

the sill ciin be described as the ordinüte value at which the semivariogram levels off. 

This corresponds to the variance of the samples. The rmge is defined as the distance ai 

which the levelling off occun. This distance describes the extent of the spatial structure. 

and crin be considered the distance after which points are no longer correlated. The 

nugget variance is simply the semivariance at distance 0.0 (the intemept). where a value 

of non-zero implies inirinsic variability (sampling error) or variability at a smaller scale 

than observed (Curran, 1988). 

One of the problems with scale in remote sensing and the MAüP is that it is 

always possible to reduce the resolution of the image pixels. When examining processes 

in Iiindscape ecology. it is known that very different processes are occumng even at the 

microscale level. As remote sensing technology becomes capable of sensing at finer and 

finer resolutions, some of these smaller processes will contribute more si gni ficantl y to 

EM response. As well, a variety of physiographic factors will influence the EM response 
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at many levels. For this reason. the nugget variance is not particularly useful when 

exarnining the semivariograms for a remotely sensed image. Rather it is much more 

common to determine the range and sill values. and evaluate the shape of the 

semivariogrÿm curve in order to assess the characteristics of the landscrpe processes 

which may be causing such EM response. It should be noted that there are many 

instances in the nütural landscape where a sill is never reached in the semivariogram 

being anûlyzed. This indicates that remote sensing data often exhibits chmcteristics of 

being non-stationary. miking autocorrelogram analysis inappropriate in these cases and 

providing further impetus for a semivariogrim approach (Cumn. 1988). 

The assumption that these graphs are independent of direction is called the 

assumption of isotropy (Jongman et aL. 1995). with semivariograms that assume 

isotropy being referred to as all-directional or isotropic. However, in many instances 

direction has a significant effect on the shape of these graphs. For example. when 

considering n repetitive landscape such as rows of planted trees, one would expect a 

periodic semivariogram when examining transects across the rows. but the shape dong 

the rows could be unbounded or iispatiül. This directional effect is known as anisotropy 

(Jongman er al.. 1995). and it has a significant impact on the interpretation of the 

semivariogram. 

2.2.1.1 Optimal Sampling 

One of the objectives of perfoming spatial autocorrelation statistics on remoteiy 

sensed data is to determine the optimal sampling size for the process under study. This is 

done by eramining the spatial extent of the structure in different directions and choosing 



the minimum extent as the optimal remote sensing resolution (Curnn, 1988). This 

considers the effect of anistropy when determining the appropriate spatial resolution of 

the dataset. However, it should be noted that by collecting square pixels. true 

considerütion of anistropy when considenng optimal resolution is not possible. The ideal 

situation would be the capability to adjust the shape and size of the pixel according to the 

expected autocorrelation in the study area. However. this is an extremely impnctical 

approach when using remotely sensed data, where sampling methods are dependent on 

the technological capabilities of the satellite (or airbome sensor) and the computen which 

process the resulting images. By taking the minimum range, al1 of the necessary 

structural information present in  the data is captured while reducing the noise as much as 

possible. 

Woodcock and Strahier (1987) describe a technique for determining the optimal 

siirnpling spacing by analyzing local variance. Here. the idea is that if the pixel size is 

much smaller than the size of the object on the surface. the local variance (variance 

between neighbonng pixels) will be low. The variance will then increase as pixel size 

increases until an infiection point is reached and the local variance begins to decrease 

again. Woodcock and Strahler (1987) interpreted the inflection point to occur where the 

pixel size is such that it rninimizes the local autocorrelation. Hypannen (1996) used the 

method of local variance to determine the optimal spatial resolution to study a boreal 

Forest environment. In this study, he created ten images with pixel resolutions nnging 

from l m  to 10m (by spatially avenging the values from a 1 m resolution dataset). He 

then calculated the variance for windows of nine neighbonng pixels and plotted this 



against spatial resolution. This gave an indication of optimal sample size based on the 

aggregation of square pixels. 

2.2.1.2 Theoretical Semivariograms 

Theoretical semivariograms have also been shown to be very useful for extracthg 

paramaten from the semivariogram (such as nnge and sill). as well as modelling surfaces 

through interpolation (kriging). Tu make use of the theoretical semivariogram. the 

empincal semivariogram must fint be calcuiated using the estimator described in 

previous chapters of this paper. Once this has been done. the shûpe of the semivariognm 

is examined, and an appropriate theoretical model is chosen to represent the data. 

There is much to be leamed about using the theoretical semiv~ograms to model 

the empirical semivariogram. It can be easily shown that there is no satisfactory method 

for choosing the best model. Often the shape of the semivariogram is such that more than 

one of the theoretical models will fit the empincal semivariognm to approximûtely the 

same degree of success. For remote sensing data analysis. theoretical semivariognms are 

typically used to extract a variety of panmeters from the image (Fleming, et al.. 1999). 

With imageery. surface interpolation is not often required, because a surface already exists 

as an inherent characteristic of a nster dataset. Rather, interpolation techniques are used 

to design appropriate field sampling campaigns (Fleminz, et al., 1999). The selection of 

the theoretical semivariogram is often not based upon the most appropriate model. 

Rather. various forms of the spherical and exponential models are heavily preferred 

because they provide an easily interpreted nnge and si11 value (Cumn. 1988; Curran and 



Atkinson. 1999). In this case. parameten are adjusted to provide the best possible fit 

with this model. 

2.2.1.3 Commerts On Sparial Statistics 

Applying spatial statistics to rernotely sensed images is not a simple task. In 

addition to the complications previously mentioned. it should also be noted that different 

structural effects may be apparent for each wavelength band. as well as each direction. 

This is simply a function of current remote sensing technology and the variation in 

spectral response across wavelengths. To date, most remote sensing scientists consider 

spatial autocorrelation for each band separately. rather than trying to incorporate the 

bands into multivariate techniques. An exception to this trend was reported Sampson et 

al. (1000). who applied semivariogram analysis to features derived from principal 

component anal ysis. 

It is apparent that remote sensing scientists are only beginning to understand some 

of the complexities involved with the applicaiion of spatial autocovariation techniques to 

very high spatial and spectral resolution remote sensing datasets. To date, multiv~ate 

techniques such as the Mantel correlogram and the partial Mantel tests (described in 

Legendre and Fortin, 1989) are not even king successfully applied to these types of data. 

In füct. the remote sensing community as a whole is struggling to fully undentand the 

implications of autocorrelogrms and semivariograms when applied to issues such as 

scaling of the landscnpe within an image. 

With the problems anticipated from the huge influx of data expected with the 

Iaunch of hyperspectml and high spatial resolution satellites, it is obvious that the use of 



spatial autocorrelation techniques will be crucial for the elimination of data captured at 

inappropriate scales for the study in question. Marceau (1999, p.355) suggests that 

spatial statistical techniques such as autocorrelation and semivariogram anaiysis 

"illustrate that it is possible to control and predict the MALlP effects to 
some extent. But, most of d l .  they represent funher steps toward the 
derivation of theoreticall y sound and operationall y practical methods to 
deal with the issue." 

2.2.2 Texture for Forest Structure 

Texture features in an image relate intensity values of neighbounng pixels for a 

speci fied window size. usudly repeated over the entire image. providing some 

description of the intnnsic spatial variiibility of the image (Rüphu et al.. 1995: Zhou and 

Civco. 1998; Treitz et al.. 1000). Visually. this is analogous to the appeannce of 

roughness in the image. Given this definition. there are a wide vûnety of algot-ithms that 

have been developed to quantify image texture. including the spatial statistics described 

in the section above. For the most part. texture tends to be broadly categorized into 

structuriil and statistical rneasures (Tiün and Murphy. 1997: Zhou and Civco, 1998). 

Structural approaches are designed to descnbe repetitive patterns in tenns of their 

primitive elements and the geometrical relationships between them (Tian and Murphy. 

1997). On the other hand. statistical approaches estimate parameters of nndom texture 

that descnbe image roughness with neither repetitive pattern nor orientation (Tian and 

Murphy. 1997). Other less frequentl y reponed textural measures include fractals. texture 

spectrum. spectral texture pattern matching, autoregressive models, log-nonnal random 

field models, fourier analysis. and wavelet tnnsforms (Wang and He, 1990; Gong 

1992; Jensen. 1996; Zhou and Civco; 1998; St.-Onge, 1999; Treitz et al.. 2000). 

et al., 
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To date. the most common utility for texture analyses in remote sensing 

applications has been for the improvement of image classification. This h a  resulted in 

statistical tenture measures king the most extensively and successfully applied, since 

they meet the stochastic assumption of digital image classi fien (Jensen, 1996; Zhou and 

Civco. 1998; Treitz er al.. 2000). There are many first-order image statistics thst cm be 

calculated for each band. including such measures as mean. standard deviation. variance. 

entropy, skewness. kunosis, etc. (Jensen, 1996). Although these measures have shown 

statistically significant relationships with land cover types, second-order statistics have 

been shown to be a supenor method of texture representrtion. due in most part to the fact 

that one or more first-order statistics are contained within the second-order measures 

(Yuan et al.. 1991: Treitz et ai.. 2000). These second-order statistics are based on gray- 

level CO-occurrence matrices (GLCM). As described by Zhou and Civco (1998. p. 579 ,  

a GLCM "measures within-window frequency of painvise occurrence of brightness 

values of points sepürated by the vector defined by the inter-pixel distance and 

orientation." Based on the GLCM. a variety of second-order statistics can be derived. 

includinp the angular second moment. contrast. and correlation (Yuan, 199 1 ; Jensen. 

1996: Zhou and Civco. 1998). The neighbouring grey-level dependence matrix 

(NGLDM) is another mesure that has k e n  used to calculate the large number emphasis 

(LNE) and second moment texture (SMT) statistics for spthetic aperture radar (SAR) 

data (Rotunno et al., 1996; Treitz et al., 2000). 

The approaches discussed in the litenture for textunl assessment of forest 

svucture are quite varied, with no single technique showing a distinct supenority over 

othen. The most prevalent in the rernote sensing litenture is what can be described as an 
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empincallstatisticd approach that seems to be concentrated from research in geography, 

environmental, and earth-science depariments. This work focuses around using 

regression techniques to relate field measurements such as basal area. crown closure, tree 

height. diameter at breast height (DBH). stem density, etc. to image spectral, textunl. and 

structural (many researchers refer to geostatistics as a fom of texture analysis) features. 

Most commonly reported textural techniques from this group are first- and second-order 

statistics (Yuan et (il..  199 1 ; Hay et al.. 1996; Olthof and King, 1998; Seed et ai.. 1999; 

Davidson rr al.. 1999) andor geostatisiics (Cohen and Spies. 1990: Bowen et al.. 1994: 

Hay et al.. 1996: King. 1997; Hershey et al.. 1998; Butson and King. 1999: Lévesque and 

King. 1999; Phinn cr al., 1999: St.-Onge. 1999). 

2.3 lntegration of Hyperspectral and Spatial Techniques 

It is evident that the combination of spatial techniques with hypenpectril indices 

is a logical extension to the assessrnent of forest stnictunl pmmeten. Intuitively. the 

ideal hyperspectnl/spatial analyses should allow for the exploitation of the complete 

spectral curve and examination of how aspects of interest on the curve vary spatially. 

Given the current state of computer and image processing technologies, it is now quite 

feasible to analyze the entire data cube without reducing it to a more "manageable" size. 

One way of approaching this is to extend the spectral calculations that are 

nomally done on point locations to cover the entire image. For example, the current 

method to calculate the red-edge infleciion point is to select a specific pixel. extnct the 

spectnl sipature for that pixel, calculate the fint and second derivatives of the spectral 

cunre and determine where within the red edge the inflection point is equal to zero 



(Menon. 1998). This is normally done with samples at the same spatial location over 

time. to see if the location of the REIP is shifting over time. It is also possible to see if the 

REIP is shifting over space. This can be accomplished by repeating the calculations for 

the REiP for every pixel in the image, creating first- and second-derivative images. each 

containing the same amount of channels as the original hyperspectnl image. The second- 

derivative image could then be used to detennine the wavelength on the red edge where 

the inflection point is equal to zero for each pixel in the image. resulting in a REIP image. 

Texture and geostatistical analysis could then be completed on any or al1 of the images 

(the original hypenpectnl data. the first- and second-derivative images, or the REP 

image) as a way of incorponting both the spectral and spatial characteristics into index 

developmen t. 

By approaching the analysis in this way. it is possible io explore many more 

relationships than simply the spatial variations of the intlection point. Once the 

derivative images rire created. the spatial patterns of any promising feature of the 

hypersprctd or derivative curves could then be examined. In this way, from an image 

processing perspective. the hypenpectnl dataset can be fully explored in a spatial 

context. The predicted limiting factor when attempting to relate hyperspectnl data to 

field-based measurements would be the suitribility of the field-based measurements for 

hypenpectral analysis at the scale under consideration. The techniques discussed in this 

chrpter. dong with other approaches currently king examined by various researchers, 

promise an exciting future for the integration of remote sensing. landscape ecology. and 

spatial staiistics. 



3.0 METHODS 

This chepter outlines the design and implementation of the field carnpaign, with 

the objective to collect ground-based measurements of forest structure at sites that 

corresponded to the collection of remotely-sensed data. Procedures used to analyze 

these field data; collect and process the remotely-sensed data; and derive spectral indices 

are descnbed. 

3.1 Field Data Acquisition 

From May to July 2000. a field campaign was undenaken with the objective of 

charricterizing the structure of sugar maple stands in eastem and central Ontario (refer to 

Chapter 1.3 for a description of these sites). Data collection for these sites. coincided 

with a Compact Airborne Spectrographie Imager (CASI) mission flown in July 2000. 

The field campaign was extended to the TLW in  Iuly Z û û û  to collect a similar database 

for silviculture treatment sites. The CAS1 data for the TLW were collected in July 1998. 

3mlml Differential Global Positioning System (DGPS) Data 

In May of 1000, initial GPS mapping was undenaken to record the plot 

dimensions and sipificant features expected to be visible in  the CAS1 imagery. At each 

site. white panels were laid out as tagets in locations visible from the sky. At û 

minimum. three targets (approximately 9 feet x 9 feet) were used at each site. distnbuted 

as evenly as possible around the exterior of the plot. Care was taken to ensure that the 

targets were located such that they would not be obscured by canopy growth later in the 

season. The precise locations of these targets were recorded using DGPS, and served as 
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ground control points by which the CAS1 hyperspectnl data could be corrected and 

georeferenced. These data were collected using a Trimble Geoexplorer II system and 

di fferen tial l y corrected to the Uni versa1 Trmverse Mercator (UTM) projection. 

For many applications. the enors now ûssociated with uncomected GPS are small 

enough for the coordinates to be used without differential correction. However. errors 

associated with the ionosphere. the troposphere. ephemeris data. satellite clock drift. 

rneüsurement noise. and multipath can still cause inaccuracies in the order of +/- 10 to 20 

metres (Trimble Navigation Limited. 1996). Any errors that ;ire cornmon to both the base 

(i.e., reference) and roving GPS receiven can be elimininated using di fferential correction 

(Le.. DGPS). For recreational and mapping grade receivers. including the Trimble 

Geoexplorer used for the field campaign. ihis typically reduces planimetric error (i.e.. 

x.y) to 1 to 5 m (Trirnble Navigation Limited. 1996). The differentially corrected 

locations for the ISD and Ri plots were used for planning and implernenting the CAS1 

mission. and subsequently for linking ground-biised data to the CAS1 hypenpectral data. 

3.1.2 Mensuration Data 

Some expenmentation was required to design the most effective sampling scherne 

to capture the chancteristics of the trees that contributed to the Forest cmopy. For the 

ISD plots, this initialiy consisted of sampling al1 trees with diarneter at breast height 

(DBH) > 10 cm that fell within a 17.6 m ( ~ 0 . 1  ha) radius of the centre of each quadrant 

(described in Chapter 1.3.1.1). For each site, this would have covered approxirnately 0.4 

ha. or about 408 of the total plot m a  (Figure 3). 



Figure 3: lnitial Sampling Design 

Field experience quickly illustrated that this design was prohibitively tirne 

consuming. However. ground exploration of the sites indicated that for some locations 

there W ~ S  considerable variation between the quadrants. whic h would require sampling in 

ail quadrants. It was determined that a more appropriate approach was to reduce the 

radius of the sampling areas. while increasing their distribution across the plots. By 

reducing the sampling radius to 11.3 m (4.04 ha, a radius also used for field 

meüsurements by foresten at the CFS (Baldwin. 2000)). and centreing 5 locations on the 

quadrant centres and plot centre. a 20% coverrige was achieved while at the same time 

capturing more of the rxisting variation within the plot. The following figure illustrates 

the layout of the final sampling design. Note thût due to time constnints, the centre plot 

was not sampled for three of the ISD plots (ISD 19. ISD 31. and ISD 40). The site 

averiges for these three sites were derived from the quadrant sampling areas. 



Figure 4: Sampling Design For Ice Storm Damage Sites 

Within each sampling area. every tree with a DBH > 10 cm was assessed for 

DBH. height to the top of the crown. height to the crown base. width of maximum crown 

mis. width of crown perpendicular to the major width axis, and species. Measuring 

tapes. desiped specificdly for measuring stem dimeter. were used to measure the 

diameter of the tree at approximately 1.6 m above ground (i.e.. breast height). Tree 

heights were measured with laser vertex equipment (Haglof Vertex Hypsometer models 1 

and 3). which consisted of a trmsponder and a receiver. To operate this equiprnent. the 

transponder was held or attached to the tree at eye Ievel. The vertex was taken away 

from the tree, level to the transponder at least as far as the tree was tall. A cross-hair 

sighting was tnen used to align the receiver with the transponder to get a rneasurement of 

the distance from the tree. The vertex was then aimed at the apex of the tree crown to 

obtain a measurement angle. followed by a similar reading to the base of the crown. The 

vertex would compte height using triangle geometry. 



There were sevenl factors to be considered when using the vertex. Care was 

taken to ensure the vertex was properly calibrated to the height of the person sampling. 

Distance to the base of the tree was shown to have an impact on height calculations. with 

longer distances providing more consistent results. This was easily explained when 

considenng the geometry of the calculations. where n slight variation in angle would have 

a larger impact when the distance to the base was shorter. For this reason. the estimated 

heipht of the tree was used as an approxirnate minimum guide for the base distance. It 

was also necessary to corne up with a consistent method for determining the base of the 

crown. It became apparent during the field exercise that the base of a sugar maple 

canopy was not always distinct. with minor branches occumng al1 the way down the 

trunk to dmost ground level. It was determined. in consultation with personnel of the 

CFS. that the most appropriate meihod was to select the bottom major iimb as the crown 

base. ignoring the smaller branches thüt prew down the tree (Baldwin, 2000). Canopy 

widths were rneasured either using the laser venex. with the tnnsponder and receiver 

held under opposite edges of the canopy. or with a tape measure. 

As mentioned, previous field work by various groups in the TLW had resulted in 

a considerable amount of mensuration data stored in various formats by several forest 

scientists. Although ihese data were extensive. it was not consistent across ail of the 

sites. and did not contain al1 of the same measurements taken at the ISD and FH plots. 

Therefore. the field work at this location was mainly completed to collect data missing 

from the database. This included tree heights of al1 trees with DBH > 10 cm within an 

L 1.3 m radius from the plot centre. as well as the two measures of canopy width. 

Hemispherical photos were also taken at the centre of each plot. Scientisü at OFR[ and 
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CFS provided the remainder of the &ta in either digital or hardcopy format. Refer to 

Chapter 1.3.2 for a description of the size and layout of these plots. 

3.1.3 Canopy Hemispherical Photography 

To determine canopy closure, hemispherical photos were taken at each quadrant 

and plot centre. This was done using a camen and fish-eye lens. at a height of one metre 

ribove the ground. leveled. and oriented towards north. Care was taken to ensure that 

there was a minimum of one metre overhead clearance from hanging branches. 

Photographs were taken using sky. red. and blue filters for each location. prefenbly in 

overcüst conditions. In cases where the sky was clear. the camera w u  configured to have 

the Sun behind the trun k of a tree, mini mizing the effects of sun glue. 

To catalog any general observations. ground-. eye-. and canopy-level photogaphs 

were taken at each site. Any unusual field characteristics were noted in the logs, and any 

unusual or unidentified features were photographed. 

3.2 Field Data Processing 

With the exception of the hemisphencal photos. al1 of the mensuration data 

collected in the 2 0 0  field campaign were in hardcopy format. To facilitste use of these 

data for analysis. al1 data were entered into digital spreadsheet templates andor GIS data 

layers. This allowed for the calculation of forest metrics for anaiysis with the CASI data. 

Due to extemal interests in the TLW. this database, which was far more extensive, was 

developed separately in  MS Access and integrated into AmView GIS. Once dl of the 

data were in a digital format. average forest metncs were calculated. 



3.2.1 Mensuration Data 

Several fxest metrics were calculated from the field measurements. Due to the 

differences in  plot size and layout between the ISD, FH. and TLW plots. there were sorne 

variations in the calculation methods for each location. For the ISD plots. average 

panmeters were calculüted for the entire plot. as well as for each quadrant (Le. A, B. C. 

D as discussed in Chapter 1.3.1.1). Table 1 outlines the forest metrics used in this study. 

with the exception of those deterrnined from the hemispherical photos. 

Table 1: Forest hletric Equations (Adapted From Hansen et aL, 2001) 
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3.2.2 Canopy Hemisphericil Photography 
Leaf area index (LAI) is an index often used to characterize the geometric 

structure of a plant community. and cm be descnbed as the ratio of the leaf surface area 

of a plant to the amount of ground surface beneath it. It is related to forest canopy iight 

penetration. snow accumulation and rnelt. interception. evapotranspiration. productivity. 

and the carbon budget (Waring and Running, 1998). Quantifying LAI for a forest canopy 

site is very difficult. and it is often approximated with "effective LAI". which is 

calculûted from some measurement of canopy gap fraction (denved in this case from 

hemispherisal photos). Digital image analysis to compute effective LA1 and percent 

canopy openness was completed using the Gap Light Analyzer Software v 2.0 (Frazer et 

aL. 1999). The analysis consisted of three main steps: 1) image registntion, where the 

orientation (descnbed above) and circular extent of the hemisphencal photo were 

identified: 2) image classification, where thresholding was used to create a binary image 
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of visible and obscured sky (canopy openings and foliage); and 3) calculation of LAI and 

percent canopy openness based on the classi fied image. 

Hemispherical photographs were collected so that north was at the top of the 

image (Figure 5). This facilitated geographic registration in a consistent manner for each 

photo. The circular extent of the hemispherical photo was directly identified by manual 

interpretation of the image. 

Figure 5: Orientation Of The Hemispherical Photograph 

image classitication of canopy openness and foliage required some 

expenmentation to select an appropriate threshold value. This required interpretation and 

judgement in each case, as results varied considerably depending on acquisition 

conditions. in particular, cloud cover, which ranged from completely overcast to 

completely cloud free, and Sun angle, which ranged Eiom low (early mominglate 
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afternoon) to hi& (mid-day), caused two types of confusion in certain areas of the image. 

The fint and most comrnon source of confusion occurred when leaf edges were sunlit 

from the side or were directly in line with the sun and were mistaken for sky. resulting in 

considerable underestimation of the vegetation component (Figure 6). The second source 

of error occurred when dark blue sky was mistaken for vegetation, which resulted in 

considerable overestimation of the vegetation component. 

Figure 6: Leaf Edge Effects For a Truc Color and Threshold Image 

Having three images for each site (me color, red filtered, and blue filtered) 

assisted considerably in the reduction of these erron. In most cases, the blue component 

of the blue-filtered image appeared to be the most effective for classification purposes, 

significantly reducing the sky and leaf-edge effects. This can be noted in the 

irnprovements with the blue component of the same image that was previously shown, 

along with its threshold image (Figure 7). 



Figure 7: Blue Component and Threshold Hemispherical Image 

Due to variations in acquisition conditions. it was found that there was no simp 

way of accounting for the confusion in an automated manner. The most effective method 

for producing a binary imase was the rnanual adjustment of the thresholds, chosen by 

comparing the original image to the classified image and modifying the thresholds where 

necessary (Prenzel, 2000). Once binary images were generated, percent canopy openness 

was detemined by calcuiating the proportion of the area of the hemisphere that was 

foliage (black) or open sky (white). This information was input to effective leaf area 

index algorithms to detennine LAI, which were calculated based on the integraiion of 

zenith angles of O to 60 degrees (LAI 4Ih ring) or O to 75 degrees (LM sth ring) (Frazer et 

al., 1999). 

3.3 Compact Airborne Spectrograpbk Imager (CASI) Data 

The Compact Airbome Spatrographic imager (CASI) was used to collect the 

hyperspectral data for this research. CAS1 is a visibldnear-infiared pushbmm imaging 

spectrograph with a refiection grating and a two-dimensional CCD solid-state array 
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measuring 512 x 388 pixels (Gray et al.. 1997). CASI is capable of three sensor modes, 

which vary in terms of spatial and spectrai resolution. These include: mapping mode; 

hypenpectral mode (72 spectral channels); and full-spectral mode (288 spectral 

channels). 

3.3.1 CAS1 Data Acquisition 

CAS1 data were acquired from a Piper Navajo Chieftan aircraft in July, 1998 for 

TLW and in July. 2000 for the ISD and FH sites. Mapping and hyperspectral mode data 

were collected for al1 sites by the Centre of Research for Earih and Space Technology 

(CRESTech) as part of the Bioindicators of Forest Sustainability Project. Mapping mode 

data were collected at approximately 0.5 m spatial resolution (spatial resolution varies 

according to altitude and velocity of the nircraft). with 7 spectral bands (&CO-Tejjada. 

1000). These data were used to locate the field sites and plan the hypenpectral mission. 

The hypenpectral mode data were collected at approximately 1.5 m spatial resolution for 

the ISD and FH sites. and at approximûtely 2 m spatial resolution for TLW (Zarco- 

Tejada. 2000). Al1 hypenpectral data consisted of 72 spectral bands with approximately 

7.5 nm spectral resolution (Appendix A.6). While the hypenpectral mode mission was 

being flown. ground-based aerosol optical depth data were collected by scientists from 

York University using a Micro-Tops iü sunphotometer at multiple wavelengths (i.e.. JO: 

380: 440; 500; 670; 870: and 1020 nm) (Zarco-Tejada. 2000). 

3.3.2 CAS1 Data Preprocessing 

CAS1 data were collected at l'-bit ndiometnc resolution and pre-pmcessed by 

CRESTech to ût-sensor radiance using cali bration coefficients developed at CRESTech 
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(Zxco-Tejada, 1000). The aerosol optical depth data collected in the field were used to 

derive aerosol optical depth at 550 nm. This information was used with the CAMSS 

atmosphenc correction mode1 to process the hypenpectnl radiance data to ground 

reflectance (Zarco-Tejada. 2000). Finally. these data were geo-referenced using DGPS 

data collected on the aircraft. This process involved the resampling of the hypenpectral 

data to 1.5 m square pixels for al1 of the ISD and FH sites, and 2 m square pixels for 

TLW (Zarco-Tejada, 2000). 

3.3.3 CAS1 Data Procossing 

The objectives of the hyperspectnl image processing phase of this research were 

to qumify the relationships between the field measurements of forest structure to the 

CAS1 hyperspectnl data. These relationships were then used to develop stnicturil 

indices for the sugx maple environment. Hypenpectral and spatial techniques were 

explored concurrently, and then combined to take advantage of the high spatial and 

spectral resolution of the CAS1 data cube. Currently, the spectral curve and its derivatives 

are normally considered at a single point irrespective of spatial pattern. However, by 

creating calculus images, it is possible to explore the spectrd curve and its derivatives to 

discover spatial patterns. 

3.3.3.1 Calculus Images 

The following calculus secondary images were genented from the original 

h ypenpectral data: 1) first-derivative image; 2) second-denvative image; 3) red-edge 

inflection point image; and 4) integnl image (intepied over the entire spectnim). 



To genente the derivative and in tep l  images, it was necessary to incorporate 

computer prognmming techniques to iterate through the entire hyperspectrd data cube. 

For each spatial location. the entire spectral curve was extracted. Numerical 

differentiation was performed using three-point, Lagrangian interpolation to create a new 

derivative curve. This curve was then written to a new image, and a new derivative data 

CU be was genented in a pixel-by-pixel fashion. The second-deri vative image was 

genented using the same method, applied to the fint-derivative cube. To generate an 

"integral image", a similar "pixel-by-pixel" approach was taken to extract the spectnl 

curves. In this case, a five-point Newton-Cotes integration formula was used to 

iipproximate the single-value integnl solution to the spectnl curve. 

As discussed in Chapter 2, the REIP is often an area of interest for vegetative 

analysis. To examine the spatial variations of this value, a single image channel was 

created. with each pixel containing the wavelength where the inflection point value of the 

spectral curve was equal to zero. This was determined by examining the second- 

derivative cube in the wavelength region where the red edge would occur, somewhere 

between red and NIR regions of the EM spectrum (600-800 nm). Again, a computer 

program was generated to examine the second derivative curve for each pixel within the 

600-800 nm wavelength region. To determine the exact location of the REP, the two 

consecutive image channels where the shorter wavelength had a second derivative less 

thsn zero and the longer wavelength had a second derivative greater than zero were 

isolated. A linear interpolation was then calculated between these wavelengths to extnct 

the exact position where the inflection point was equal to zero. This was done for the 

entire image to create a new "REIP" image. Note that this calculation is only valid for 
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cases where the pixel actually contains vegetation. For other landcover types, a value 

for the REIP. while mathematically possible, would be meaningless. To ensure that non- 

vegetated pixels did not confound the analysis, a value of zero was assigned to any pixel 

where the sign of the second-derivative did not change from positive to negative over the 

600-800 nm region. 

3.3.3.2 Nano w- Band Indices 

There has been considerable hyperspectrd work cornpleted at the leaf scale to 

relate spectral reflectance to biochemicel parameters such as chlorophyll a. chlorophyll 

fluorescence. efficiency of radiation use. pigment. % nitrogen. 8 lignin, vegetative stress. 

and photosynthetic capacity. This has resulted in a collection of narrow-band indices 

reported in the literature (Appendix A. 1.3 and A. 1.4). To date. these indices have not 

been correlated to forest structure panmeten. To test them. the ratio-bûsed nmow-band 

indices presented in Appendix A.1.3 were calcu!ated using the most closely matching 

CASI channels. This resulted in 31 new channels. with each channel containing the 

resuits of one of the nrirrow-band indices (Table 2). 

Table 2: Creation of Existing Narrow-Band Index Image 

1 Index 1 Modifieâ Formula 1 
( Appendix A. 1 ) 

PRIl 
(wavelength, nm) 

(528-565)/(528+565) 

VOG 1 I 740/724 
VOG2 (732-747)/(7 17+724) 



3.3.3.3 Geostatistical and Texture Analysis 

RVSI / [(7 17+755)12]-732 
VOG4 7 171709 (lst deriv) 

Geostatistical results will vary based on wavelength and spatial resolution 

LIC4 
ADR 
LPR 

(Sampson. 2000; Treitz, 2001). Since ri single. optimal filter size does not exist across 

, integrate 453-679 
integrate 679-762 

max(679-737) 

the entire data cube, geostatistical analysis was perfomed prior to specifyng an 

appropriate filter size for texture calculations. To accomplish this. tnnsects in the nonh- 

south and est-west directions were extracted for each channel at every site. For every 

innsect. empirical semivariograms were calculated (Jongman et al., 1995): 

y (ip = '=' 
2(n -ip 

Where: h = lag distance 
Z = value at Iocation x 
N = number of data pairs separated by distance, h 



Once the sernivariograms were calculated, the range values were estimated by 

modelling the empirical sernivariograrn and extracting the nnge panmeter from the 

theoretical model. The sphencal, exponential. lineu. linear to sill, and gaussian models 

were applied to each empirical sernivaiognm to estimate the range. An exmination of 

the results indicated that the sphencal model most frequently provided the best fit to the 

ernpirical semivariogram, giving the lowest residual sum of squares value and the highest 

regression coefficient. To be consistent. the sphencal mode1 was used to extract nnge 

values in al1 cases: 

For h 5 Ao: 

Y, = CO + C[1 S(hl A,, ) - O S ( h l 4  ) 
For h > Ao: 

),, =Co+C 

where: h = the lag distance interval 
Co = nugget variance 2 0, 
C = stmctural variance 1 Co, and 
A. = range. 

For each of the selected chûnnels, minimum range values from this ünalysis were 

used to select an appropriate filter size and shape for the genention of texture images. 

The following first-order texture statistics were genented: 1) nnge; 3) mean; 3) variance; 

4) entropy; and 5) skewness. Range, mean, and variance are common first-order statistics 

that will not be explained funher here. Entropy is a concept that is described in more 

than one way in the litenture. To fit the context of first-order texture in digitai image 

processing, entropy cm be described as a mesure of mdomness or disorder in the 

texture filter. It is low when the image is uniform within the filter ( K I .  1998). The 

mathematical definition used to calculate entropy is shown below (Jensen, 1996). 



Where: fi = frequency of value occumng in the filter window 
quantt = quantization level of the image (in this case 216 = O to 65535) 
W = number of pixels in the image 

First-order skewness can be described as the lûck of symmetry in the filter. It is 

reponed as the coefficient of skewness (C,), and is calculated as follows (Rozgonyi, 

(mean - mediari) 
C ,  = 

standard - deviation 

Second-order statistics based on the grey-level CO-occurrence matrix (GLCM). 

included: 1) mean; 2) variance; 3) hornogeneity; 4) contnst; 5) dissimilarity; 6) entropy: 

7) anguiar second moment; and 8) correlation. Mem. variance, and entropy are similar to 

the firsi-order statistics, except that they are calculaied for the GLCM. which describes 

the frequency of occurrence of values relative to a specified distance and direction. For 

this work. the shift wris one pixel in both the X and Y positive directions. which is the 

default (and the most common) shift reported for texture work (ENVI. 1000). 

Hornogeneiiy is a rneasure of local uniformity, with the reported value king high 

when the GLCM is uniform. It is defined by the following equütion (Hall-Beyer, 2000): 

Where: Pi, = the normalized GLCM 
i.j = row, column location 
n = number of pixels in the matrix 



Contrast and dissimilarity are both measures of locai variance (essentially the 

opposite of homogeneity), with high values indicating greater variance. Contnst can be 

calculated with the following algorithm (Hall-Beyer. 2 0 ) :  

Dissimilxity is very similar to contrast. except that it uses linear weighting in the 

matrix: 

Note that because this is a linear mesure, this statistic is considered to be a first- 

order calculation (Hall-Beyer, 2000). However, it is included with the second-order 

texture features because it was calculated using the GLCM. 

The angular second moment is described as another measure of local 

hornogeneity and cün be considered the opposite of entropy. It incorporates the 

normûlized GLCM as a weight in 

(Hall-Beyer, 2000): 

[self. and is calculated with the following equation 

Finally. CO-occurrence correlation measures the linear dependency of values of 

neighbounng pixels, and helps to assess spatial autocor~elation in an image. If the range 

of spatial autocorreIation is larger than the filter, this texture value tends to be high (Hall- 

Beyer. 2000). It is calculated as follows (PCI. 1998): 



Where: p, a' = rnean. variance 

Once the texture images were generated. the correlation analysis was performed 

for these indices. in an identical manner to that described in Chapter 3.3.3. 

3.4 Correlation Analysis 

Correlation analysis enabled the linkage between the field metncs and the 

hyperspectnl indices. Calibration correlation analyses involved the calculation of the 

Pearson correlation coefficient between each crilibration index and the field metrics. 

These results were used to develop correlation curves, which illustnte the pattern in 

correlation between the index and the metnc across multiple channels (i.e.. refiectance. 

derivative. and texture). Results from this analysis allowed for the identification of 

promising indices that were validated using the TLW dataset. 

3.4.1 Calibration Data 

To examine the relation of reflectance and its derivatives to the ground-based 

biophysical variables. the mean. standard deviation. and variance values were extncted 

from the hypenpectnl data cube, calculus images, and index images for each channel 

and correlated with the mensuration data. This was done for each of the quadrant centres 

as well as the centre of the plot (Note: only the plot centres were used for the Ri plots, 

which were not divided into quadrants). The extraction technique was designed to 

average image values from an area that closely approximûted the ground sampling effort. 

To extract the vaiues, the centre coordinate obtained in the GPS mission was used as the 
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centre location for the extracted region. A fourteen by fourteen pixel region (2 1 m x 2 1 

m; ~0 .04  ha) was then extncted. centreed around this coordinate (Figure 8). 

Figure 8: Reflectance Extraction Regions With Sampling Regions Overlain 

This approach differed frorn the technique utilized by Z<irco-Tejada and Miller 

(1999). where only the brightest pixels were selected in an attempt to reduce shadow 

effects. However. in this case, it was more appropriate to incorponte effects of shadow. 

as one would expect structural differences to be expressed as variations in reflectance. 

Values for mean, standard deviation. and variance were then regressed against the 

extracted region for each channei. to determine which regions were more closely related 

to each biophysical parameter. 

Due to the way the ISD plots were sarnpled, there were a variety of ways that the 

image data could be related to the field metncs. Although there were five extraction 

rireas for the ice storm damage sites. it was important at this stage to consider the spatial 
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dependency of the samples within each of the ice storm damage sites. Given the close 

physical proximity of the extraction areas and the similm environmental conditions 

within the entire plot. the five extraction areas could not be considered independent 

samples. For this reason. the extraction areas were combined to fonn an average measure 

for each icc stom darnage plot. which would make up one independent sample for the 

correlation anaiysis. 

3.4.2 Validation Data 

The geostatistical and texture analyses of the CAS1 data and their denvative cubes 

completed the integration of spatial and hyperspectral techniques. The final stage in the 

analysis was the validation of the indices. and an analysis to determine whether the 

integration of spectnVspatia1 measures provided higher correlations with the field 

parameters than either the spatial or hyperspectral techniques alone. Validation of the 

optimal results w u  completed by testing the indices on the TLW dataset. Up to this 

stage. the n W  dataset was not used in the analysis and served as an independent 

validation site. Although the stmctunl variations caused by silviculture treatment would 

be different than the ice stom diimage. the strength and robustness of the relationships 

identified for the cafibration sites (ISD and FH) could be validated. 

3.4.3 Predictive Indices 

The correlation analysis descnbed above was used to identify strong relationships 

between the calculated rnetrics from the study sites and hypenpectrd data. These 

relationships are typically reported as either the correlation coefficient (r) or the 
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coefficient of determination (2). which is a measure of explained vuiance. They are 

very useful indications of the utility of remote sensing for the application under 

consideration. and results are most often reported in this fashion. particularly when the 

relationships are unknown prior to the study. as in the case of this research. However, if 

a strong correlation is found. the index can be convened into a predictive measure by 

determining the parmeters of the equation descnbing the correlation (Hansen et al.. 

2001). 

Considering the index in a predictive manner represents the next phase of 

research. which would allow discovered and proven relationships to be expressed in a 

fiashion that is directly useful for forest managers. enabling hem to predict the value of a 

forest rnetric for a certain m a  simply by applying the predictive index. This enables 

research into the spatial distribution of a pruticular parameter of interest mapped directly 

from the imagry. which could highlight change in the metnc over tirne, or pinpoint ares 

of concem that would require a more detailed ground evaluation. These maps cm then 

be integrited with other data sources using GIS. enabling very sophisticated 

environmental and ysis. For illustrative purposes, this was done for the strongest 

relationship discovered in  the analysis above that held for the validation data. Using a 

rnetnc in this fashion allows the forest metric of interest to be quantitatively mrpped with 

known accuracy. It should be noted thrt predictive measures are beyond the scope of this 

research. and an example is only provided to illusuate the modelling potentid of these 

techniques. 



4.0 RESULTS 

4.1 Introduction 

Site level field metrics for each study area can be found in Appendix A.2 

(calibmtion sites) and A.3 (validation sites). The original mensuration and GPS data 

collected for this study have been digitally xchived at the Laboratory for Remote 

Sensing of Earth and Environmental Systems (LARSEES) in the Department of 

Geography cit Queen's University. A list and description of the metrics calculated is 

presented in Chapter 3.2. L. 

All of the spatial data for this study are in the UTM projection, with a WGS84 

datum. The study area spans three UTM zones. TLW is iocated in UTM zone 16, the FH 

sites are in üTM zone 17. and the ISD plots are in zone 18. Differentially corrected 

rasrings and nonhings for the centres of each plot cm be found in Appendix AA. 

Extensive computer code was developed in the Interactive Data Language (DL) 

io process the data for this study at almost every stage of the analysis. Though its length 

prohibits its inclusion in this thesis, it has been digitally archived ont0 CD-ROM and can 

be made avdable upon request. These software routines were used in the analysis to 

calculate fint- and second-derivotive calculus images. texture mesures. correlations, etc. 

4.2 Spectral And Spatial Indices 

Initial processing of the CASI data resulted in multiple spectral and spatial 

indices, including: the CAS1 reflectance images; the first- and second-denvative images; 

red-edge inflection point images; integral images; empirical and modelled 

semivariogr;ims for each of these images; and various texture derivatives for each of 



these images (refer to Chapter 3.3.3). Note that the images derived from narrow-band 

indices (Table 2) did not result in notable relationships (i.e.. strong correlations) with 

structurai metrics and are not discussed further. 

4.2.1 Hyperspectral, Calculus, Red-Edge Inflection Point (REIP), and Integral 

Indices 

The Iwge volume of hypenpectnl imagery and derivatives prohibi ts their display 

hrre. Siimple images from ISD plot 21. dong with extncted spectral or denvative 

curves. are presented in Figures 9-15. For illustration. a NIR reflectance composite. 

contüining two chünnels in the red edge and one in the NIR is presented in Figure 9. The 

pole green illustrates the forest canopy in the middle of the image and r vegetated field in 

the east of the image. both of which reflect strongly in  the NIR (green channel). 

Individual tree crowns and shadows ciin be identified within the 100 m x 100 rn plot 

(outlined in yellow). 



Figure 9: CM1 Hyperspectrrl NIR Reflectance Composite - ISD 21 

Red: 739 nm Green: 816 nm Blue: 709nm 



The spectral reflectance curve for the crown in the centre of ISD 21 is illustrated 

in Figure 10. It is consistent with typical vegetation response (Lillesand and Kiefer, 

1994). Some notable features include the green peak at approxirnately 558 nm, the 

beginning of the red edge at approximately 686 nm, the REiP in the vicinity of 724 nm, 

and the oxygen absorption feature at 762 nm (Adler-Golden et al., 1999), which is also 

approximately the end of the red edge. 

Spectral Cuwe for Centre of ISD 21 

62 nm, Band 48 
Absorption 

Red-Edge [nflection Point (REIP 
Approximtely 724 nm 

558 nm, Band 21 
Green Peak f 

g 6 B 6  "m. Band 38 
Beginning of Red Edge 

400 500 600 700 800 900 

Wavelength (nm) 

Figure 10: Spectral Reflectance Curve for Centre of ISD 21 



Figure I l  presents the fint- and second-denvative curves corresponding to the 

centre pixel (Le., tree crown) for Figures 14 and 15 respectively. The REIP (0724 nm) 

indicates the location where the reflectance curve changes from concave up to concave 

down (see Figure 10). It can be identified as the maximum value along the fint- 

denvative curve (within the red-edge wavelengths: 600 - 800 nm) or the location where 

the second derivative is equal to zero. Note that the oxygen absorption feature (at 762 

nm) is greatly exaggerated on these curves. 

First and Second Derivative Cuwes 
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Figure 11 : First- and Second-Derivative Curves For Centre of ISD 2 t 



The first-denvative image at 739 nm is show for the same location in Figure 12. 

Light areas indicate a larger change in reflectance between the reflectance channel at 739 

nrn and its adjacent channels (i.e., larger dope on the reflectance curve). Since 739 nm is 

along the red edge. al1 vegetated areas (which would have a refiectance curve similar to 

that shown in Figure 10) should appear brighter in the image. 

Figure 12: First-Derivative Image, 739 nm - ISD 21 



Figure 13 represents the second-denvative image of the sarne area (739 MI). 

Visual interpretation of the image is not intuitive, because it contains values describing 

the rate at which reflection changed fiom one channel to another (Le. acceleration on the 

curve - or the quantity of dope change From one channel to the next). To inteipret it 

requires knowledge of the reflectance curve (Figure 10) and the derivative curve (Figure 

1 1). At this wavelength, darker areas represent vegetation, because there is a large 

decrease in slope change in this portion of the red edge. in other words, this wavelength 

(739 nm) is the portion of the red edge that is concave dom.  

Figure 13: 2nd Derivative Image, 739 nm - ISD 21 



The REP image in Figure 14 was calculated by interpolating the wavelength at 

which the second denvative was equal to zero. The histogram indicates that most of the 

R E P  wavelengths range from 710 nrn - 730 nrn. in the REiP image, dark red is normal 

healthy vegetation. Light orange and yellow represent vegetation for which the REP 

was shifted toward the blue end of the EM spectrum. This could be due to stress, 

different species composition within the pixel, or variable canopy closure (some shadow 

fraction). Green represents mixed pixels, with vegetation combined with other surface 

features, as would occur in fields, shadows, etc. Blue and black are non-vegetated 

surfaces. 

Figure 14: REIP Image and Histograrn - ISD 21 



Integrating under the spectral curve also resulted in an image for each of the study 

sites (Figure 15). Because the reflectance curve (Figure 10) contains only positive 

values, the image cm be thought of as the total area under the spectral reflectance cuwe 

for each pixel. Darker values indicate a smaller are* meaning the reflectance in each 

channel is low for that pixel (e.g., shadow and wet areas). Vegetation would tend to 

exhibit green - red colours, because of the large area under the NIR region of the cuve. 

Figure 15: Integral Image for ISD 21 

4.2.2 Geostatistical and Texture Indices 

To consider anisotropic effects. uansects were extracted in two perpendicular 

directions kom each image channel at each ISD and FH site. This equated to 
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approximately 6.800 semivariograms to be modelled for the extraction of  an optimal 

range in the N-S and E-W directions. Sample N-S and E-W variograms and their 

spherical models are presented in Figures 16 and 17 for ISD plot 21, at 739 nm. Range 

values varied with waveiength and direction (Le.. ranging from 2 m to 33 m). Optimal 

range values for each channel in the two perpendicular directions are presented in 

Appendix AS. 

Isdropic Variogram 

Separation Distance (m) 

Spherical model (Co = 1 270000 .OQ00; Co + C = 2406OOOO .Omo; Ao = 4.70; r2 = 0.31 1 ; 
RSS = 4.7436741 

- -- 

Figure 16: S-S Semivariogram ISD 21,739 nm 



ISD site 21, at 739 nrn, was used to illustrate the calculated texture measutes. In 

this case, five first-order and eight second-order texture features were derived for each of 

the reflectance images, first- and second-derivative images, the RElP image, and the 

integral image. Figures 18-21 illustrate examples of the fint-order texture images 

denved from the reflectance, Tint- and second-denvative. and REiP images at 739 nrn for 

ISD 21 (outiined in purple). Ln these figures, range, mean. and variance are cornmon 

first-order sratistics that are more intuitive for visual interpretation. Range and variance 

values are higher in areas that have greater variability, such as the forest canopy (when 

derived from reflectance ai 739 nm), and low in areas that are relatively uniform (Le. 

fields). First-order mean resembles the original image, only srnoother (this texture 

feature is commonly used to remove noise). Entropy, a measure of disorder or 



randomness in the image. is low when the image is uniform within the filter. Although 

some variation can be seen in the field areas, the differences between most pixels were 

very slight, with a few pixels having a drarnatic variation. This gave the entropy images 

a "binary" appearance, making them very difficult to interpret visually. Skew, described 

in Chapter 3 as lack of symmetry. is low when change is uniform (or symmetrical) within 

the filtrr (i.e., within the tree crowns of the reflectance image) and higher where the 

change is non-symmetrical (i.e., fields with rows. forest plantations, etc.). 

-- - - - - pp - - - - 

Figure 18: First-Order Texture From Reflectance - 1SD 21 



- - 

Figure 19: First-Order Texture From First-Derivative Image - ISD 21 

Figure 20: First-Order Texture From Second-Derivative Image- ISD 21 



Figure 21: First-Order Texture From REIP - ISD 21 

Figures 22 to 25 present examples of the secondsrder texture features derived 

from the reflectance, first- and second-derivative, and REP images at 739 nrn for ISD 

21. As discussed in Chapten 2 and 3. the secondsrder texture features are calculated 

from the GLCM. Second-order mean and variance behave in a very sirnilar manner to 

fint-order mean and variance. Contrast, dissimilarity, and homogeneity are three 

methods of assessing local variance within the filter. Contrast and dissimilarity have 

higher values in areas that had possess greater variance (Le., the forest canopy at 739 nm) 

and lower values for more uniform areas (i.e., fields). Homogeneity behaves in an 

opposite manner, with higher values representing a more unifonn area Note that for this 

texture derivative calculated on the reflectance image, most of the image appean 

relatively uniform (because an adjacent pixel was specified as the neighbour), resulting in 
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a dark image, with a few brighter areas (again giving a "binary" appearance). Subtle 

differences are highlighted in the fint- and second-derivative images providing more 

meaningful results. Entropy and angular second moment are alrnost opposites of each 

other. Angular second moment is a measure of certainty within the filter and can be 

thought of as a measure of the presence of structure or pattern (Yuan er al., 199 1 ). The 

value will be hi& if the image is relatively smooth, and low if there is uncertainty or 

randomness in the filter. At 739 nrn (and the distance and direction specified. i.e., 1, l ) ,  

entropy and angular second moment do not provide any real insight to the study area. 

This is likely due to multiple scattering within the canopy in the NiR (Le., increased 

variability), which make the genention of the GLCM usin5 an adjacent pixel ineffective 

for these two texture features in the NIR. 

Figure 22: Second-Otder Texture From Reflectance - ISD 21 
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I 
Figure 23: Second-Order Texture From First-Derivative Image - ISD 21 

-- - 

Figure 24: Second-Order Texture From Second-Derivative Image - fSD 21 



Figure 25: Second-Order Texture From REIP - ISD 21 

4.3 Correlation Results - Spectral Indices (Calibration) 

One of the challenges in the analysis of field rnetrics and hyperspectral data was 

the interpretation of a very large quantity of datdresults. To gain an understanding of 

sources of redundancy within the field data, the fint statistical assessment of the data was 

a multiple correlation analysis to identify how each of the field metrics related to one 

another. This was done to quantitatively confinn that the ground-based measwments 

were generally consistent with the expect results for a forest canopy. There are no 

particularly surprising or unusual results arising fiom this analysis. The key relationships 

are shown in Appendix A.7. As expected, both measures of DBH are highly correlated, as 

are the measures of crown closure. Relationships between metrics that are direct inputs 

into the calculations of other metrics are hi@. These included the relationships between 



crown diameter / crown width and between crown closure / crown width / crown 

diameter. 

Once the relationships within the field metncs were identified. it was then 

possible to correlate the field metrics with imagery. By writing cornputer prognms. it 

was possible to explore thousands of relationships between (i) 246 individual channels 

(7 1 CAS1 channels; 7 1 first-derivative channels; 7 1 second-derivative channels; 1 REIP 

channel: 1 integral channel; and 31 narrow-band index channels), (ii) each of the forest 

metrics, and (iii) field sites. The total number of relationship calculations exceeded 

500,000. Cornputer progrms were wntten to identify some key results, which are 

presented below. 

Significant relütionships for the Ri plots are presented in Table 3. At this stage in 

the analysis. the highest correlation found out of ail the wavelengths was extracted and 

tested for significance, with no consideration given to consecutive channels with high 

correlations or any patterns in correlation trends across wavelengths. Results 

demonstrate thrt in every case. the highest correlations for the metrics are found with the 

derivative or REIP images. As expected. forest metrics that are highly correlated with 

each other are also highly correlated to the image ai the s m e  wavelengths. This cm be 

seen with perpendicular crown width, major crown width. and crown diarneter (dl 

reporting the highest correlation at 498 nm) as well as with stem density and number of 

trees (854 nm). Note that the sample size for the control sites was very small (n=6), 

which mey have led to inaccuracies in the statistical results (partially accounting for the 

high correlations). 



Table 3: Index Correlations üerived From FH Plois (na) 

Structural Parameter r 1 rz 1 INDEX: Image, 1 Extraction 1 
DB&", 

Basal Area 
Crown Closure (circular) 

Crown Diameter 
Crown Depth 

Crown Width (major) 
Crown Width (perpendicular) 

Stem Density 
Height to Crown Base 

w 

Significant relationships for the ISD plots are presented in Table 4. For these 

LAI 4" ring 
LAI 5" ring 

Percent Opening 

study sites, the openness of the cmopy was more variable due to the damage cause by the 

0.99 

ice siorm. This. combined with a lxger sample size (n=IO). contnbuted to the genenl 

-0.88 
0.97 
-0.98 

lowering of correlations. Again. results show that in every case. the highest correlations 

0.99 

Mean 
Mean 

Tree Height 1 0.94 
Number of trees 1 -0.95 

for the forest rnetrics are found with the derivative images. Note that for dl metncs the 

-0.93 ( 0.88 

0.77 
0.93 
0.95 

wavelength of highest correlation varies from Table 3 to Table 4. This is due to the fact 

Wavelength (nm) 
1" Derivative. 535 

0.88 
0.89 

that only the highest correlation was extracted, without consideration of the correlation 

Measure 
Mean 

1'' Denvative. 893 

1'' Derivative, 43 1 
znd Derivative. 854 

WP 
yd Derivative. 468 
2"%erivative. 656 

patterns ûcross wavelengths. Examination of the correlation curves revealed that high 

Variance 

Std. Dev. 
Merin 

Std. Dev. 

correlations do exist for the metrics at both locations, but the wavelength of highest 

Variance 
Std. Dev. 
Std. Dev. 
Std. Dev. 
Std. Dev. 

Mean 
Mean 

-0.97 / 0.94 [ 1'' Denvative. 67 1 

correlation differ. Note that high correlations of a few of the metrics in the visible region 

-0.92 
-0.9 1 
-0.9 1 
-0.91 
-0.95 
-0.94 

(1.e.. percent opening. LAI. height, and DBH) are consistent across FH plots (Tables 3) 

and ISD plots (Table 4). 

0.85 
0.83 
0.83 
0.84 
0.89 
0.88 

2%erivative, 498 
znd Derivative, 626 
znd Derivative. 498 
znd Denvative. 498 
znd Derivative, 854 
2"' Denvative. 43 1 



Table 4: Index Correlations Deriveà Fmm ISD (n=10) 

Structural Parameter 

DB&uz~ 
Crown Closure (circuiar) 

Crown Diameter 
Crown Depth 

Crown Width (major) 
Crown Width 

(perpendicular) 
Stem Density 

Heioht to Crown Base 

r 

0.86 
0.93 
0.88 

Tree Height 
Number of trees 

LAI 4' ring 

To increrise the robustness of the correlations between the field data and 

-0.90 
-0.92 
0.83 

-0.81 

LAI 5L" ring 
Percent Openi ng 

hyperspecrral features, the FH and ISD plots were pooled and analyzed together. The 

r2 

0.74 
O. 86 
0.78 

0.86 
-0.8 1 
-0.87 

results of these analyses are presented in Table 5. and demonstnte a general decrease in 

0.81 
0.85 
0.69 

0.66 

0.93 
-0.85 

correlations. Aithough a pattern in these results is difficult to detect. there are 

INDEX: Image, 
Wavelength (nm) 
1'' Derivative, 4 16 
2"* Denvative. 520 
2"* Denvative. 595 

-0.83 1 0.70 
0.74 
0.66 
0.75 

consistencies when examining parameters that are highly correlated (Le., measures of 

Extraction 
Measu re 
Variance I 

Mean , 

Mean 
lStDerivative,878 
znd Derivative. 870 
2"' Derivative. 595 

vati ve. 924 

, 0.86 
0.73 

crown closure, crown diameter and canopy width. and LAI and percent canopy opening). 

' variance 
Std. Dev. 

Mean 

Variance 
7"' Derivative. 542 
Reflectance, 408 

2"' Denvûtive. 924 
2" Derivative. 43 1 

Note the correlation of the denvative images at 498 nm to crown diameter1perpendicul;ir 

Variance 
Mean 

Variance 
Mean 

, znd Derivative. 416 
2" Derivative. 446 

crown width. suggesting a spectral feature within bluelgreen region. Again, for most 

Mean 
Mean 

metncs, the fint- and second-denvative images contain the channel with the highest 

correlations. 



Table 5: Index Correlations ûerived From Pooled FH d ISD Plots (n=16) 

1 Structural Parameter 1 r 1 8 1 INDEX: Image, 1 ~dract ionl  

- - - 

1 Crown Closure (circular) 1 0.74 1 0.55 1 Refiectance. 431 Mean 1 
D B h ~ a d  

Basal Area 

I I 

1 Crown Width (maior) 1 0.76 1 0.58 1 2""erivative. 932 1 Variance 1 

0.79 
-0.65 

Crown Closure (ellipse) 
Crown Diameter 

Crown De~th 

1 Crown Width (oerpendicular) 1 -0.87 1 0.75 1 1" Derivative. 498 1 Mean 1 

0.63 

0.76 
-0.83 
-0.73 

4.4 Correlation Results - SpectralJSpatial Indices (Calibration) 

1 Stem Density 
Height to Crown Base 

Tree Height 
Number of trees 

1 LAI 1" ring 
LAI jth ring 

Percent Opening 

In mony cases. geostatisticd and texture andysis notably improved relationships 

Wavelength (nm) 
znd Derivative. 83 1 

0.57 
0.70 
0.54 

between forest metrics and the spectr~llspatial indices. The highest correlations found 

, Measure 
Mean 

0.42 1" Derivative. 6 10 

-0.78 
-0.85 
-0.78 
-0.85 
-0.72 
-0.73 
0.8 1 

between the forest metrics and the geostatisticalltexture indices for the pwled FH and 

Variance 

Reflectance, 43 1 
1" Derivative. 498 
Reflectance. 686 

ISD sites are presented in Table 6. At fint review. these results do not appear to have a 

Mean 
Mean 

Std. Dev. 

0.60 
0.73 
0.6 1 
0.72 
0.51 
0.54 
0.66 

lot in cornmon with Tables 3 to 5. mainly due to the presentation of the highest 

correlation nther than correlation patterns. However. there are some observations than 

1" Derivative, 916 
1" Derivative. 535 
2"* Denvative. 409 
1" Derivative. 762 
1'' Derivative. 747 
1'' Derivative, 161 
1" Derivative. 747 

can made from these results that are consistent amongst metrics. For example. the fini- 

Mean 
Variance 

Mean 
Std. Dev. 
Std. Dev. 

Mean 
Std. Dev. 

and second-order derivative texture images have higher correlations than the reflectance 

texture images. Second. texture improves the correlation for most metrics. Third. crown 

diameter and perpendicular crown width once again have strong correlations for images 

derived from the 498 nm &ta, suggesting a "real" feature at this wavelength. Finally, the 



results have shown that presentation of the highest correlations found between the image 

and the suuctud parameter without consideration of correlation pattems across 

wavelengths can be very difficult to interpret (and possibly misleading). However, 

presentation of results in this manner has been reported on multiple occasions (e.g.. 

Merton. 1998: Thenkabail er al., 1999). These results suggest that a more appropriate 

method to extract "optimal" or robust correlations would be an examination of the 

correlation patterns across image channels. 



Table 6: Index Correlations For Texture Features From Pooled FH and ISD Sites (1146) 

Structural Parameter Extraction 
Measure 

Basal Area 

Crown Closure (circulrir) 

1 Crown Closure (ellipse) 

Crown Diameter 

Crown Depth 

i Crown Width (major) 

0.7 1 znd ~erivative. skew. Std. Dev. 

0.89 
/ Order Variance. 939 1 

0.81 

0.81 

0.69 

0.73 
1 homogeneity. 64 1 

0.79 1 1'' Derivative. znd 

1 Crown Width 

Mean 

1 Stem Density 

5 13 
1" Derivative. 1'' 
Order Variance, 793 
lsc Derivative. lsc 
Order Variance, 793 
1" Derivative. 1'' 
Order Mean, 498 

l 
Height to Crown Base 

Mean 

Mean 

Mean 

lsLDenvative.lsc ]Mean 
Order Mean, 398 
1" Denvative. 1'' Mean 

1" Denvative. / Variance 

1 1 1 1 Order Variance. 5 13 1 
zn'l Derivative. Skew. Std. Dev. 
808 / 
1" Derivative. Skew, Mean 

Tree Height 

Number of trees 

LAI 1'" ring 

t 1 LAI jth ring 

Percent Opening 

znd Deri vat ive, 1 Variance 

4.5 SpectnUSpatial Regions of Cor relation 

0.87 

0.84 

-0.85 

0.86 

0.92 

Correlation curves for each rnetric were examined to extnct indices with 

0.75 

0.71 

0.72 

0.73 

0.85 

promising correlations for two or more consecutive chmnels. These indices (dong with 
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the single highest correlations show above) were then tested for robustness in the 

validation analysis. This produced a large volume of information, with more than one 

wavelength region investigated for each metric. To assist with the interpretation of 

results, metncs were grouped according to their similarities. Within these groups, only 

metrics that showed promise for the validation analysis are presented below. 

4.5.1 DBH 

Both measures used to estimate DBH (arithmetic and quadratic) are similar, with 

the same general pattem in the correlation curves. Results indicate ihat quadratic DBH 

has a slightly higher correlation with the reflectance data and their derivatives. The 

variations in correlation between quadratic DBH and the reflectance and calculus image 

channels are illustrated in Figure 26. 

Correlation Coefficients For Quadratic OBH 
6a-d on Moan For FHPIlSD Tofpthor and FWP alono 

Bands 
1-71 = Rafkctrnco, 72-142 = 1st ûoriviativm 

143-213 = 2nd ûorhntivm, 214 = REIP, 215 - Intagrni 

Figure 26: Correlation Curve For Quadratic DBH 

Although the magnitude of the correlation coefficients varies for each extraction 

method, the pattern remains relatively consistent across the entire channel range. When 
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examining the correlations denved from the pooled sites. no two consecutive channels 

have a correlation with r > 0.7 (Figure 26). However. sevenl regions exhibiting high 

correlations are observed when examining FH sites. which suggests that there are high 

correlations between DBH and the images for undarnaged. closed canopy conditions. To 

assess this, wavelength regions were identified where at least two consecutive channels 

had a correlation of r > 0.9 for FH alone (Table 7). Although texture analysis produces a 

higher correlation for the permutations of interest at a single wavelength (Table 6), none 

of the texture measures improve the correlations across multiple wavelengths for this 

metric. 

Table 7: Extracted Channel Ranges For Quadratic DBH 

1 Wavelength 1 Image 1 Comments 1 
Range (nm) 
520-618 
693-73 1 

4.5.2 Metrics Derived From Measures of Crown Width 

505-543 
558-6 18 
64 1-663 
686-7 17 
5 13-565 
663-694 

There were five metrics derived from field measurements of crown width. These 

C.4SI reflectance 
CASI reflectance 

included 1) major crown width; 2) perpendicular crown width; 3) crown diameter; 4) 

14 channels in the greenhed 
6 channels in the red edge 

Fint derivative ) 6 channels in the green 

circular crown closure: and 5) elliptical crown closure. Results illusirate two main 

First derivative 
First derivative 
First deri vati ve 
Second denvative 
Second derivative 

cornmonalities amongst the indices for these metrics: 1) channels dong the red edge. 

9 channels in the greedred 
4 channeIs in the red 
5 channels in the red edge 
8 channels in the green 
5 channels in the red 

from the absorption well to approximately the REIP. have the highest correlations, and 2) 



use of standard deviation to extnct reflectance values from the image result in the highest 

correlations. 

Examination of major and perpendicular crown width indicate that correlations 

with the original reflectance and derivative images are generall y low . Texture improves 

correlations considenbly for both metncs. resulting in strong correlations dong the red 

edge. Somewhat weaker relationships are also found in the blue region for both metncs. 

Correlations across multiple channels are notably stronger for perpendicular crown width 

than for major crown width. Examination of both circular and elliptical crown closure 

reveal multiple wavelengths in the green peak region and dong the red edge to have 

strong correlations with these metrics. Specifically. the original CAS1 reflectance image 

is correlated to both metrics in multiple channels of the green region. After geostatistical 

and texture analysis, the reflectance imagery had multiple channels with high 

relationships in the blue and red edge. The derivative images are not as highly correlated 

to these rnetrics. Circular crown closure relrtionships are slightly stronger than elliptical 

relationships. although the two metrics have genenlly similar results. Crown diamcter. 

which was calculated using the mean of the two crown width measurernents. generrlly 

has low correlations ( r4 .7 )  when examining multiple consecutive image channels. 

Geostatistical and texture analysis. in pariicuiar second-denvative homogeneity, improve 

the relationships in  the NIR to give two consecutive channels with ~0.7. However. in  

comparison with the other crown-width metrics. the relationships with crown diameter 

are not pmrnising. 

To simplify the results for these metrics. only the most promising correlation 

curves are presented below. It should be noted that there are multiple correlation cwves 
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(i.e. there were multiple indices) for each metnc that suggested potentially promising 

ranges of charnels. Al1 indices that showed promise were investigated further in the 

validation analysis. The range correlation curve for circular crown closure and the first- 

order mean texture index for perpendicular crown width are illustrated in Figure 27. The 

first-order mean texture index for perpendicular crown width is also illustrated. The most 

promising consecutive wavelengths for the five metrics are listed in Table 8 (the Iowest 

correlations in the table were for crown diarneter at ~ 0 . 7 ) .  

Correlation Curver For Mean and Range Texture Features 
Perpendicular Crown Width and Circular Crown Closure 

Wavekn~th (nm) 
CASI Rdettonce Bands 

- Mean - 
Perpendicular 
Crown Width 

- Range - 
Circular Crown 
Closure 

-- 

Figure 27: Correlation Cumes For Crown Width And Crown Closure 



Table 8: Channel Ranges (rAI.7) For Crown-Width Metrics 

Metric 1 Wavelength 1 Index 1 Comments 
Range (nrn) 

520-528 
Major Crown 

Width 

Circular Crown 
Closure 

Skew of first denvative 

Perpendiculÿr 
Crown Width 

1 686-694 1 Range of CAS1 reflectance I 3 channels in the 
red edge 

2 channek in the 

932-939 

Elliptical Crown 
Closure 

686-70 1 

694-70 1 

Standard deviation of second 
derivative 

1 1 1 redlred edge 

green peak 
2 channels in the 
NIR 

First-order mean of CAS1 
reflectance 
Dissimilarity of CAS1 
reflectrtnce 

483498 

686-694 

Crown Diameter l 785-793 1 Homogeneity of second 2 channels in the 
derivative 

3 channels in the 
red edge 
2 channels in the 
red edge 

4.53 hletrics Deriveâ From Measures of Tree Height 

Second-order mean of CAS1 
re flectance 
Range of CAS1 refltctance 

The three metncs relûted to measures of height include: 1) height to the base of 

the canopy; 2) crown depth; and 3) tree height. For each of these metrics. geostatistics 

and texture analysis considerably improve the relationships between the indices and the 

metrics. Results indicated thst height ro the base of the canopy has notably higher 

relationships with the data, with sevenl wavelength regions and texture mesures giving 

a correlation coefficient greater than 0.85. Strong correlations for this meuic are found in 

the second-denvative for green wavelengths, and in sections of the red edge on both sides 

of the inflection point for the reflectance and first-denvative images. Tree height and 

crown depth indices have lower correlations. although sevenl wavelength ranges were 

identified that have correlation coefficients between d.7-0.8. For m e  height and height 
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3 channels in the 
blue 
3 channels in the 



to the crown base, fint-order mean indices have the strongest relationships with the 

metrics. Although the strength of the relationships varies, the general shape of the 

correlation curve for these two metrics is very similar. Crown depth has stronger 

relationships with second-order indices, including homogeneity and entropy. 

.rile first-order mean index for height to the base of the canopy is  the most 

promising for the height rnetrics. Figure 28 illustrates the correlation curve for this 

metric. Table 9 lists the most pmmising wavelength ranges identified for each of these 

metrics, each of which is further examined in the validation analysis. 

-- -- A - -- - - - -. --- - - 

Correlation Curve for Height to Crown Base 

Bands: 
1-71 = CASI reflectance, 72-142 = 1st Derivative 

143-213 = 2nd Derivative, 214 = REIP, 215 = Integral 

- Mean (Extract:, 
Std. Dev.) 

Figure 28: Correlation Curve For Height To The Base Of The Canopy 



4.5.4 Metrics Derived From Number of Trees 

Table 9: Channel Ranges ( ~ 4 . 7 )  For Height Metrics 

There were three metrics derived from the number of trees in the study plots. 

These include: 1) basal area (which also incorporates DBH): 2) stem density; and 3) 

Metric 

Height 
t O 

crown 
base 

Tree 
heigh t 

Crown 
depth 

number of trees. Basal arer is not well comelated to images across consecutive channels. 

Although texture does appear to improve the correlations in most wavelengths the 

Wavelength 
Range (nm) 

550-558 
694-709 

701-723 

7 17-73? 

558-565 
694-70 1 

701 -7 17 

595-610 

626-633 
7 17-733 

923-93 1 

relationships are not strong enough to pursue with this multiple wavelength approach 

(r4.7). More promising are the results from the number of trees, and to a lesser extent 

Index 

First-order rnean of second derivative 
Fint-order mean of fint derivative 

First-order mean of CAS1 reflectance 

Variance of CAS1 refiectance 

First-order mean of first derivative 
First-order mean of first derivative 

First-order mean of CAS1 reflectance 

Entropy of fint and second denvative 

Homogeneity of CAS1 Reflectance 
Homogeneity of first derivative 

Homoeeneitv of first derivative 

stem density. The number of trees within plots has strong correlations in the proximity of 

Cornments 

2 channels in the green 
3 channels on the red 
edge 
4 channels on the red 
edge to the REiP 
3 channels around the 
REIP 
2 channels in the green 
3 channeis in the red 
edge 
2 channels in the red 
edge 
3 channels in the 
greedred 
2 chrinnels in  the red 
3 channels around the 
REIP 
2 channels in the NIR 

the red edge for the reflectance and derivative images. Texture mesures of skew and 

fiai-order mem funher strengthen these relationships, with targeted wavelengths having 

rS .8 .  The strongest relationships for stem density ( d . 7 )  occur in the first-order mean 
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image in the N R  region of the spectmm. The first-order mean correlation curves for 

number of trees and stem density are presented in Figure 29. The most prornising 

wavelength ranges that were targeted for furiher investigation are presented in Table 10. 

Correlation Cuwes for Numbar of T m  and Stem Density 
Cint Order Mean 

Nurnber 
of Trees: 

üands: 
1-71 1 CASI Reflectanw, 72-f42 1st khl t iv*  

143-213 = 2nd M v i t l v e ,  214 = REIP, 215 = Intognl 

Figure 29: Correlation Curve For Yumber Of Trees And Stem Density 

Table 10: Channel Ranges (r>0.7) For Sumber Of Trees And Stem Density 

Metric 1 Wavelengtb 1 Index 1 Comments 1 
Range (am) 

694-7 17 

1 1 derivative 1 around the REIP 1 

First-order mean of 
1 

Trees 1 
1 724-747 

4 channels on the red edge 
CAS1 reflectance 
Skew of first derivative Number of 2 channek in the red 641-648 

First-order mean of fint 

Stem Density 
. (#/ha) 

absorption well 
4 channels on the red edge, 

739-755 

778-83 1 

First-order mean of 1 2 channels on the red edge 
second denvat ive 
Fint-order mean of 
CAS1 reflectance 

8 channels in the NiR 



45.5 Metrics Derived From Hemispherical Photographs 

The final group of metrics included those that were derived from the 

hemispherical photographs, including LAI and percent canopy openness. LAI values 

derived using the five rings (full field of view) have consistently lower correlations than 

LAI derived from four rings (0-60' field of view), and are not discussed further here. 

When examining LAI derived from the inner four rings, the correlations for the original 

reflectance and calculus images are generally low. Texture provides notable 

improvements for al1 of the metrics derived from hemispherical photos. For LAI. 

dissimilarity texture indices gives correlations of n0.77 in the NTR of the first-derivative 

image. Percent canopy openness is well correlated (rM.8) to multiple texture indices and 

is the most promising of a11 metrics examined. Figure 30 illustntes the dissimilarity 

correlation curves for both metrics. while Table 11 lists the more promising indices 

invesrigated funher in the validation analysis. 



Comlation Cunras for Metrics Owivaâ From Hemisphwical Photos 
Dirsimilarity Indices 

Bands: 
1-71 = CASI Reflectance, 72-142 = 1st ûerivative 

143-213 = 2nd Derivative, 2.14 + REIP, 215 = Integral 

1-w : j 
Derived . 

1 From 4 
I Rings , 
l 
1- Percent 
i Canopy 
i Openness~i 
I l 

- - . - . -. - . - - -- - - - A -- 

Figure 30: Correlation Cumes For Metrics Derived From Hemispherical Photos 

Table I l :  Channel Ranges (rM.7) For Metrics Derived From Hemispherical Photos 

Metric ' Wavelengtb 

' percent 

LAI 

Index 1 Commen ts 

611 -648 
801 -808 

Range (nm) 
83 1-862 Dissirnilarity of the 1" denvative 

476483 

198-505 

663-686 

i 

878-885 

l (4 rings) , 4 channels in the 
NIR 

Opemess 1 603-6 10 
Second Moment of 1" derivative 
Dissimilarity of lSt denvative 

Range of CAS1 reflectance 

Dissimilarity of CAS1 reflectance 

Dissimilarity of CAS1 reflectance 

, 2 channels in the red 
2 channels in the 
NIR 

Dissimilarity of 1" Derivative 
I 

Dissimilarity of 1" Derivative 

2 channels in the 
blue 
2 channels in the 
b ludgreen 
4 channels in the red 

Second Moment o f  1'' derivative 

3 channels in the 
NlR 
2 channels in the 
NIR 

2 channels in the red 



4.6 Validation of Indices 

By examining the extracted wavelength ranges. a number of relationships were 

discovered that agreed with the validation data from the TLW. Al1 correlations were 

tested for statistical significance. Only those indices that were statistically significmt at 

95% confidence intervals are reported here. 

Several indices and wavelengths proved to have strong relationships with percent 

crinopy openness calculated from the hemispherical photos. Other meincs with which 

developed indices are consistent include LAI. crown diameter. perpendicular canopy 

width. number of trees. and crown depth. These metncs and their relationships for both 

the calibration and validation sites (ice stom damage/FH and TLW respectively) are 

presented in Tables 12 to 16. Resuits from the validation analysis highlight three 

significant consistencies: 1) standard deviation is the most robust rnethod to extract pixel 

values from the images; 1) dissimilrrity. second moment, and homogeneity appear to be 

more robust than the other texture features examined; and 3) clex cut conditions ;ire not 

well correlated to the indices. 



Table '12: Validated Indices For Percent Canopy Opemess (hemispberical photos) 

Index 

Dissimilarity at 505 nm; 
extracted by standard 
deviation 

-- 

Second Moment at 6 10 
nm: extracted by standard 
deviation 
Second Moment at 558 
nrn - 1'' Derivritive; 
extncted by standard 
deviation 
Second Moment at 648 
nm - 1" Derivritive; 
cxtrir cted by standard 
deviation 

Calibration Sites 1 Validation Sites Cornmen ts 
(FH and ISD) 

Index Calibration Sites / (FH and ISD) 

Shelterwood 
Shelterwood & 
Selected Cut 

Selected Cut 

Table 13: Validated Indices For LAI (deriveâ from four inner rings) 

by standard deviation 
Dissimilruity at 7 17 nm - -0.71 0.5 16 
2" Derivative: extracted 
by standard deviation 

S helterwood 
Shel terwood & 
Selected Cut 

Validation Sites Commen ts 
(TLW 

f 
n 

-0.93 0.86 8 Control 

-0.99 1 0.98 ( 4 1 Selected Cut 
I 



Table 14: Validated Indices For Crown Diameter 

Index Calibration Sites 
(FH and ISD) 

Homogeneity at 565 nm - 
2"" Derivative; extracted 
by standard deviation 
Homogeniety at 785 nm - 
2" Deri vative; extracted 

, bv standard deviation 

Validation Sites 1 Comrnents 1 

0.58 8 Sheltewwd 

Sheltenuood :z 1 F3 1 Sheltenvood & 1 
Selected Cut 

Table 15: Validated Indices For Number Of Trees 

Index 

1 First Order Mean at 732 
nm - 1" Denvative; 
extracted by standard 

1 extrxted by standard 1 1 1 

Calibration Sites 
(FH and ISD) 

deviation 
Second Order Mean at 732 
nm - 1" Denvative: 

1 deviation I 

-0.82 

n r 

-0.8 1 

r : 

0.67 

Table 16: Validated lndices For Crown Depth 

Cornments 
Validation Sites 

(TLW) 

16 

0.66 
I 

-0.89 0.79 1 5 

Index 

16 Selected Cut 

:li,b;tionSitn 
(FH and ISD) 

n r r2 

-0.89 

Validation Sites Comments 

0.79 5 

1 ~ n t r o ~ y  at 446 nrn - 2"" 
Derivative; extncted by 
variance 

Selected Cut 

4.7 Predictive Indices 

0.7 1 0.89 
0.68 

Percent canopy openness derived from the hernispherical photos possessed the 

strongest relûtionships with the indices at both the calibntion and validation sites. 

0.50 0.79 
0.46 

Dissimilanty ai 505 nm of the reflectance image, which has a high correlation with the 
97 

16 5 
11 

Selected Cut 
Clearcut 



pooled calibration sites and held for the control sites in TLW (Table 12), was selected to 

derive predictive indices. As mentioned in Chapter 3, development of predictive indices 

is a future stage of research. which would be very useful for denving structure maps at a 

regional or provincial scale. For illustrative purposes, the correlation equation was 

rnodelled from the scatterplot of the dissimilarity index versus percent canopy openness 

to derive a predictive index (Figure 3 1). Results in Table 12 indicate that this predictive 

index is only valid for control areas (undamaged, closed canopy) as well as the areas in 

which the index was developed (ISD and FH). 

Figure 31: Pearson Correlation For Dissimilarity Indes vs. Percent Canopy Openness 
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With a correlation of r=0.83, the predictive index denved from the calibntion 

sites can be taken as the correlation equation in Figure 3 1 : 

% Canopy Openness = 1.2242 + 0.12752*(Dissimilarity of reflectance at 505 nm) (23) 

The predictive index for percent canopy openness was then applied to the Turkey 

Lakes image data to obtain a percent canopy openness map from which percent canopy 

openness could be quantitatively extracted directly from each pixel for control areas. A 

percent canopy openness rnap for two control areas in Turkey Lakes (Area II1 located 

within the harvest treatment study area and Area #2 located outside of it), with the 

validation sites outlined is displayed in Figure 33. Table 17 lists the area percentages for 

openness in the control areüs. These values were calculated within ü GIS by dividing the 

number of pixels of each percentage class (Figure 32) by the total number of pixels 

within the two control areas (each has an nea of 1 ml) and multiplying by 100%. 

Statistics for the validation sites are included in Table 18. This table compares the mean 

and maximum values of percent canopy openness predicted in the GIS for the validation 

sites (Figure 32) with the mean value of percent canopy openness derived from the 

hemispherical photos. Modelled predictions are within approximately 31% of the 

known value for the validation sites. Again. this is presented as a demonstration of the 

technique of deriving predictive maps. The results are only valid for the control areas 

outlined in Figure 32. 



Percent Canopy Openness 
Turkey Lakes Watershed - Close View of Two Confroi Areas 

Fiald OItr - Juiy 2000 
CASI HypMspedril Dira - Jüly 1998 

Nolo. Map crorlod from Ihe dksimlkrity 
index of reîloduice aï 505 nrn . 

Figure 32: Percent Canopy Openness Map For Two Control Areas In TLW 

Table 17: Percen tage Area Derived From ~Modelled Percent Canopy Openness 

Area of Control 
Area #2 (%) 

0.67 

Percentage Area of  Control 
Opennesr (%) 1 Area #l (%) 

i O <  1 0.6 



Table 18: Validation Statistics For Modelied Percent Canopy Opemes 

Statistics For The Control Areas 

1 Area of Control Area # l  (rn2) 1 39532 1 

Max Extncted Percent Canopy Openness in Validation Site (Sb) ( 4.9 1 

Percent Canopy Openness Calculated From Hemispherical Photos in 
Baldwin's Validation Plot #7 (%) 

Mean Extracted Percent Canopy Openness in Validation Site (%) 

6.19 

3.5 

4.8 Summary of Significant Results 

Area of Control Area #1 (m') 
Percent Canopy Openness Caiculated From Hemispherical Photos in 

Baldwin's Validation Plot #8 (%) 
Mean Extncted Percent Canopy Openness in Valichtion Site (Sb) 
Max Extracted Percent Canopy Openness in Valiâation Site (%) 

The derivative images provide links to structural parameters that would not be 
detected otherwise. as subtle features on the reflectance curve are emphasized. 
This supports the notion that hyperspectrai techniques may provide additional 
value to the assessrnent of forest structure. 
Texture improves the correlations for most metrics. 
The red edge and the REiP are cornmon features of interest for several metrics. 
Percent canopy openness calculated from hemispherical photos shows the greatest 
modelling potential. Correlations remained strong during validation. 
Hemisphericd photos are an efficient and unbiased method of obtaining canopy 
measurements. 
Range values extracted by modelling the semivariograrns Vary according to 
wavelength and direction. 
Use of extracted range vdues as inputs to texture filter dimensions improve the 
relationship between the spectnVspatia1 derivatives and the forest metrics. 
Strong comlations exist between forest metrics and denvative images. 
particularly for the undisturbed forest health plots. Correlations decrease when 
using FH and ISD together. 
Use of standard deviation to extract values from the remotely sensed image give 
the most robust relationships. 

57401 
8.69 

4.7 
7 .O 

10. Narrow-band indices did not demonsuate strong relationships to forest structural 
parameters. 



5.0 DISCUSSION 

Satellites carrying h yperspectral sensors (e.g., Hyperion. MODIS) are now 

collecting data of the earth's surface. It is necessary to strive to understand the 

implications of interpreting detailed spectral data at coarser spatial scales and to develop 

approaches that will enable us to efficiently utilire such a large quantity of data without 

having to sacrifice any potentially beneficial trends in the data. Within the next ten years, 

the amount of data king collected by hyperspectnl satellites could easily render current 

data würehousing facilities ineffective and cause current hypenpectral processing 

techniques to be unmanageable. pa-ticularly for studies at regional, national. or global 

spatial sciiles. unless more reliable and accurate automated approaches are developed. 

Tradi tionall y. feiiture extraction techniques are used to reduce the dataset to one 

or more wavelengths on which to perform analyses. This follows frorn the multispectnl 

image-processing pmdigm. Results from this research demonstnte that meaningful 

patterns of relationships and wavelengths would have k e n  overlwked if feature 

extraction had been performed prior to the analysis. With this in mind, it became 

necessary to devise methods to examine the results in an efficient manner to corne up 

with meaningful indices that could be validated elsewhere. Computer algonthms were 

developed and applied to identify wavelengths and indices that had high correlations with 

forest metncs. While i t  is possible that single channels (= 10 nm bandwidth) with suong 

correlations were overlooked. notable features on the spectral and derivative curves 

involving two or more sequential channels were investigated. Future work in this area 

could involve the development of algorithms to examine additional index/wavelength 



permutations (of which there were over 500,000). as well as combinations of multiple 

wavelengths. for significant relationships. 

5.1 Field Data 

Design of the field sampling for this research required not only that the 

mensuration data be collected to capture natural variations occumng on the ground, but 

also that the scale of variation captured would be detectable on the hyperspectral image. 

Ldeally. knowledge of spatial autocorrelation within the study area could be used to 

design an appropriate sampling scheme. Un fortunatel y, this is not usual l y feasible for 

remote sensing studies. as the imagery is collected during or after the field carnpaign and 

the relationships between the metrics king sarnpled and the remotely sensed data are 

unknown prior to the analysis. To address this. the sampling areas were designed to be 

large enough to include sevenl image pixels, with the objective of capturing the scale of 

variation expected within the image data. 

Semivariance analysis in this study illustnted that extncted range values varied 

according to wavelength. a result consistent with the work of others (e.g. Sampson, 2000; 

Treitz and Howmh. 2000: Sampson er al.. 1001: Treitz, 2001). This meant that a single 

optimal field sampling size for the entire hyperspectral dataset did not exist. To 

effectively capture variance within the field measures that would be applicable to the 

CAS1 reflectance data. the minimum sampling size would have to be larger than extracted 

range values presented in Appendix AS. For most channels, the extracted range fell 

between -1-8 metres, suggesting that the "objects" embedded in the CAS1 data are tree 

crowns (i.e.. the range vaiues indicate a single tree). Smpling an 11.3 m radius (22.6 m 



diameter) area would include a significant number of "objects" to capture the variance of 

the "objects" in the scene. 

One of the issues arising from the field data collection was the accuracy of the 

sampling techniques. The standard measure of DBH was simple and consistent 

regardless of the time and conditions for sampling. However. estirnates of other rnetncs 

(e.g., canopy shape. LAI, percent canopy openness) were complicated by weather (i.e.. 

wind) and illumination conditions. Foresten from the Canadian Forest Service (CFS) 

and the Ontario Forest Research institute (OFRI) were consulted to ensure the 

rneasurement techniques were consistent with standard forestry practices. 

Use of the Iriser vertex (Haglof Vertex Hypsometer models 1 and 3) for rneasunng 

tree height proved to be a very efficient technique for sampling the large number of trees 

considered for this study. Tree height measurements were the rnost difficult panmeter to 

measure in closed canopies, because of the challenge in identifying the apex of the crown 

from a location that satisfied the geometrical requirements of the vertex. In addition. 

occasional windy conditions caused the trees to sway, introducing variability to the 

measurements. To promote consistency with the technique thmughout the season, the 

same two individuals used the instrument for the entire field season. It should be noted 

that previously existing tree height measurements for l'LW were not collected with the 

same instrument. The accuracy of the technique was tested during the field season by 

measuring apinst objects of a known height. and after the field season by comparing the 

tree height measurements with previously collected tree heights in some of the same 

plots. Cornpuisons confirmed that average height measurements for the smpling sites 

were consistent between the two measunng techniques. 



The measunng of canopy widths had the most room for inconsistency in the 

results. with at les t  two people needed to obtain the measurement. It rcquired a 

judgment as to the longest mis of the tree crown. In closed canopy conditions. it was 

often difficult to separate one tree crown from the next. As a result. the technique often 

required a third person to render a judgment from a location funher from the tree. 

The hemispherical photos provided the most objective view of the canopy at any 

Field site. They captured a permanent record of the canopy from below, intuitively 

suggesting a direct link to the CAS1 imagery taken from above. Success achieved with 

this sampling technique and the strong relationships between the percent crnopy 

openness and CAS1 imagery. even for the validation sites at TLW. illustrated that 

hemispherical photos are very powerful tools for assessing forest canopy. Future work 

on the ch;urcterizûtion of forest structure for remote sensing analysis should funher 

explore this technique for estimating canopy conditions. 

5 2  Spectral and Spatial Indices 

52.1 Reflectance, Derivative, Red-Edge Inflection Point (REIP), and Integral 
Indices 

Examination of the initial dataset (pnor to geostatistical and texture processing) 

led to a nurnber of observations that proved helpful in the interpretation of overall results. 

As mentioned. the spectral reflectance curve illustnted in Figure 10 is consistent with 

typical vegetation response (Lillesand and Kiefer, 1994). Some notable features 

observed on the curves include the green peak at approximately 558 nm, the beginning of 

the red edge at approximately 686 nm. the REP in the vicinity of 724 nm, and the O2 



absorption feature at 762 nm (Adler-Golden et al.. 1999), which also marks the end of the 

red edge. The fint- and second-derivative curves have considenbly more variation. with 

subtle changes in the reflectance curve k ing  much more pronounced (Figure Il). 

Variations wi thin the red edge are particuiarly notable in the second-denvative image. 

which possesses a dip in the curve at 709 nm. as well as a bend in the curve at 739 nm. 

These features are in  addition to the RUP at approxirnately 724 nm, which explains why 

results show multiple regions along the red edge that have strong correlations with forest 

metncs. The shift from positive to negative values in the fint- and second-derivative 

curves also explains the positive and negative correlations illustrated in the correlation 

curves in Chapter 4 (Figures 26 to 30). 

The REIP image (Figure 14) represents a different form of data presentation than 

the derivative or integral images. This image is a single channel. with each pixel 

containing the actual wavelength at which the REIP occurred. Variations in the image 

occur because of shifts in the location of the REIP, which are known to occur because of 

vegetative stress. species variation, and shadow variability due to canopy stnicture 

(Miller er al.. 1990: Sampson et al.. 1998; Treitz and Howarth. 1999). Conversely, the 

reflectûnce and cvlculus images convey the magnitude of response at specifïed 

wavelengths. where variations in the image illustrate changes in magnitude of response. 

Since one set of images (i.e., reflectance and calculus) contains variations in response at a 

specific wavelength and the other (i.e.. REIP) contains variations in wavelengths, the two 

types of images rire not directly comparable. For example. there are sevenl instances 

where there are strong correlations with the metncs centreed on the REIP (of which the 

approximate location is known, 2 724 m) (Table 9. Table IO), but comparatively low 
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correlations with the REiP image itself. Due to the spatial variations shown in the REP 

image. there is no actud way to rneasure the magnitude of response at the REIP. Since 

the wavelengths around the REiP have strong correlations with the metrics, future work 

could examine modelling the magnitude of response in 

the wavelength itself. 

The integnl image and the images derived from i 

this area. rather than rnodelling 

ndices previously developed for 

physiological relationships do not have notable relationships with forest structural 

metrics. This is not a particularly surprising result. given chat the various indices were 

developed around specific biochemical properties (pigment concentrations. etc.), with no 

consideration for spatial properties. 

A cornparison between the FH and ISD sites consistently demonstrated higher 

correlations for the FH sites. which were chosen for this analysis to serve as natural 

control sites. Compared to the ISD sites. the canopy of the FH sites are undamaged and 

the plots thernselves are not managed for maple syrup production, meaning that the six 

FH sites have similar canopy conditions. This may be of particular importance when 

ronsidenng below cmop y rneasures such as DBH. For s i te-spi  fic studies. relationshi ps 

between DBH and the crown have k e n  established (Ter-Mikaelian and Lautenschlager, 

2000). However, variability in the relationships due to site-specific factors (i.e., broken 

canopy for the ISD sites) is not currently undentood (Ter-Mikaelian and Lautenschlager, 

1 0 ) .  Relationships between DBH and reflectance from a forest with a closed canopy 

(Le.. FH sites) would not be expected to hold for forests with major limbs broken and 

visible openings in the canopy in a somewhat random pattern (i.e., ISD sites) or 

systematic pattern (i.e., TLW). 



Many of the highest correlations with rnetncs occur at wavelengths in the visible 

portion of the spectral curve (Table 5: crown closure; crown dimeter; crown width; tree 

height; and LAI). This 1s important to note, since most hyperspectral techniques tend to 

focus on the red edge (i.e.. physioiogical response). Results illustrate that the visible 

region. the red edge. and the NIR region ali have a significant utility for multiple 

structural measures (e.g. percent canopy openness: visible and NIR (Table LI); tree 

height: visible and red edge (Table 9)). This information may prove useful in the future 

development of multi-band indices. which focus on more than one region of the EM 

spectrum. 

5.2.2 Geostatistics and Texture Indices 

Semivariogram analyses illustrate that extracted range values Vary according to 

wavelength (Appendix AS). a result that is supported by others (e.g.. Sampson. 2000; 

Treitz and Howmh. 2000; Treitz. Zûûl). Although this has been reponed for corne 

spectral resolution rernote sensing data. it has not k e n  previously demonstrated for al1 

wavelengths in ii hyperspectral data cube. In this study. results reveal some cases of 

consecutive wavelengths where the extracted nnge values do not change. This suggests 

that the spectral scale required to detect spatial structure is corner than the spectral 

resolution in these regions. Changes in the optimal range do not dways occur at the 

same wavelengths when comparing the reflectance data to the first- and second- 

derivative data. This illustrates the benefits of calculating semivariance for each channel, 

rtther than assuming a common range across al1 image channels. 



An obvious question stemming from the semivariance analysis is whether or not 

this type of analysis actually improves the relationship between remote sensing data and 

forest metrics. Would improved relationships for some of the forest metncs (Table 6) 

have occurred by simply selecting arbitrq filter dimensions and calcuhting texture 

without considention of semivariance? This question was addressed by comparing the 

relationships determined from pre-texture indices (Table 5) to those derived from first- 

order mean/v;inance texture. In the case of pre-texture analysis, image values were 

extracted based on the mem. standard deviation, and variance for the entire sampling 

area of the field site. First-order mean and variance texture calculations incorponte the 

optimal range. Any case where first-order mean andfor variance texture produce higher 

correlations than corresponding measures for pre-texture analysis illustrates improvement 

as a function of incorponting range estimates in the texture calculation. Sevenl 

examples of first-order mean indices having stronger relationships than the pre-texture 

indices are presented in Tables 7 to 11. Results for number of trees. stem density. height 

to the crown base, tree height. crown closure, crown diameter. and crown width show 

improved correlations with texture features when the optimal nnge values are 

incorporated into texture filter definition. This result is significant, in that nnge 

extraction in this manner has not ken  reponed in the litenture. 

A genenl exmination of the texture indices reveals that texture improves the 

relationships to al1 forest metrics (with the exception of DBH), particularly when 

considering consecutive image channels. Al1 forest metrics, with the exception of DBH. 

tree height, and height to the base of the crown. are denved from some measurement of 

the tree crown, suggesting a relationship between range and crown. As mentioned 
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earlier. range was calculated to be between 4 to 8 m for most image channels. Most 

measurements of crown width also fa11 within this range. further suppotting the link 

between range and crown. Range is generally associated with the largest element in the 

scene (in this case dong the transect). which corresponds to the tree crown for high 

spatial resolution imagery (Cohen and Spies. 1990; Treitz and Howarth. 2000; Sampson. 

2000). 

5.3 SpectraUSpatial Indices and Forest Structure 

The ability to develop an index nt a given cûlibration site and Inter transfer it to 

irnagery at other sites with consistent accuracy was a key god for this research. Part of 

the challenge when developing an index to monitor forest structure was the wide vviety 

of canopy conditions thst could be encountered in an image. pûniculûrly over such an 

expansive landmass es Ontario. Remote sensing of forest structure. pariicularly for sugar 

miiple environments. is still relatively new with very few studies having been pubiished 

where the work has k e n  tested across multiple environments. Some work has k e n  

reported relating texture variables (contrûst. rotropy. angular second moment (ASM)) 

derived from rnultispectral video imaging to forest-decline indices exuacted from 

airphoto interpretation. giving correlations of ~ 0 . 7 9  between contrast and the photo- 

decline index (Yuan et al.. 1991). This was expanded to a two-variable model (contrast 

and principle components) with r=0.85 between the texture and the photo-decline index 

(Yuan et al.. 1991). This work was then compared to ground-based modelling techniques 

employed by the Ontario Ministry of Environment (OME). Results showed that for most 

sites. there was a qualitative agreement with the OME model, which meant that both 



techniques ordered the sites in a similar fahion in ternis of the average sugar maple 

decline in the area (Yuan et al.. 199 1). However, there was no quantitative cornpaison 

reponed between the two methods. 

Results from this research are mixed when trying to transfer indices from the 

calibration sites in southem Ontario to the validation sites at TLW. Even within the 

calibration sites. results vary when cornparing indices developed from the FH sites alone 

to the ISD sites and to indices developed from the pooling of al1 of the sites. Deciduous 

forests are complex ecosystems. with many factors affecting crown architecture and 

hence spectral reflectance. Other research has atternpted to solve this problem by first 

focusing on forest ecosystems that appear to be simpler to modei or chmcterize. 

S uccess has been reponed for extracting structural parameters from coni ferous forests in 

fliit terrain (PrddIr et dl. .  1999). but çonsiderible difficulty still exists when moving from 

a coniferous environment to a mixed or deciduous environment (Peddle and Johnson. 

2000). This work has shown sorne success in crerting indices where relationships hold 

for some validation sites. particularly for control, sheltenvood. and selected cut sites (e.g., 

metncs for percent canopy openness. LAI, nurnber of trees. crown depth, crown diameter 

- Tables 12 to 16). Given the complex nature of the sugar maple ecosystem. the fact that 

these indices are transferable to TLW is encouraging. 

Throughout the analysis. the results dernonstrate that for sevenl metncs the fini- 

and second-denvative calculations improve correlations when compared to the 

reflectance data and texture features applied. This represents a significant result. because 

it shows that hyperspectral processing techniques contribute additional value to spatial 

processing for forest structure. The first- and second-derivative calculations accentuate 
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subtle variations that were insignificant in the original spectral reflectance curve. For 

example, although an examination of the spectral reflectance curve (Figure 7) does not 

reveal any notable features in the visible ngion other than the green peak associated with 

vegetation. the first- and second-derivative curves (Figure 1 1) emphasize seveni smdl 

but distinct features in the blue, green. and red wavelengths that are related to forest 

metrics (e.g.. Table 8: 483-498 nm are related to elliptical crown closure). This is further 

emphasized by the results that demonstrate that most of the visible channel correlations 

occur in the derivative images (Table 5). These findings raise a few questions as to the 

nature of the derivative images themselves: 1) Are the subtle changes which are 

emphasized in the denvative curves a function of atmosphenc noise or do they represent 

real features on the vegetation spectral curve? and 2) Why are the first- and second- 

derivstives related to the physicd propenies of the forest? 

To address the fint of these questions. a clear understanding of the derivative 

images is required. The information contained in each channel of the fint-denvative 

image could be described as the mount of change in refiectance from one channel to the 

next. i.e. the slope of the reflectance curve. By definition. the sign of the data values 

changes from positive to negative at any point on the spectral reflectance curve where the 

dope changes. This would occur at notable features on the reflectance curve, including 

the green peak. the absorption well in the red region. the REP. and the NiR shoulder, 

causing the correlation coefficient to change signs at these locations as well. This is 

exaggented even funher for the second-derivative image. which coniains values 

describing the rate at which reflectance changes from one channel to another (i.e. 

accelention on the curve - or the quantity of slope change from one channel to the next). 
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In this case. the change of sign from positive to negative is the result of the detailed shape 

of the curve, nther than an actual abrupt change in reflectance. 

It becornes apparent from the above description that atmospheric noise. which 

may not be visibly apparent on the spectral reflectance curve. will be emphÿsized in the 

denvative curves. It is well known that even wiih imagery that has been processed to 

reflectance, l i  ke the CAS1 data used in this research. atmospheric absorption features are 

not perfectly modelledremoved (Milier. 2001). This is due in part to a lack of 

understanding of dl of the effects of absorption and scattenng in the atmosphere as well 

as to difficulties in modelling the spatial variation of these processes (Miller. 2001). A 

clex exxmple of an atmospheric absorption effect that is plainly visible on the CAS1 

spectral refiectance curve is the oxygen absorption feature at 762 nm (Figure 10). This 

leoture hris ri dramatic effect on the first- and second-denvative curves (Figure I l ) .  

which. i f  its atmospheric origins were not known. could easily be confused for a real 

reflectance feature. 

The confusion introduced by atmosphenc features (andor any other noise feature) 

was addressed in this research by: 1) the multi-pixel approach used to extnct pixel values 

(Le.. within a 14 x 14 pixel study area, 196 pixels would be sampled to obtain a single 

value for the correlation anaiysis); and 7) the search for, and extraction of multiple 

consecutive wavelengths with high correlations. In this rnanner, features that may have 

resuited from atmospheric absorption and have high correlations with the forest metncs 

would not be pursued in the validation analysis unless they affected more than a 10 nm 

nnge of the spectral curve (i.e., eiich channel is approximately 10 nm wide). The chance 

of any of the final indices king related to forest metrics due to atmosphenc artifacts was 

113 



funher reduced by the validation analysis in TLW. These data were collected in a 

different year, with inherently different atmosphenc conditions. 

The question regarding the relationship between forest structural metrics and fint- 

and second-denvative images should be expanded to include considention of spatial 

pattern: 1)  To what cm the relationship between the first- and second-derivative images 

and the physical properties of the forest k attributed? 2) To what can the relationship 

between spatial pattern (texture) and the physical propetties of the forest be attributed? 

and 3) How did these combine to produce the relationships found in this research? 

Whether the research is addressing questions of forest structure or physiology. 

that fact remains thst the sensor is only detecting one thing - the quantity of EM response 

that reiiches it. To determine what causes relationships ktween the imagery and the 

forest metncs, it is necessary to mce the path of short-wave radiation from the Sun as it  

travels through the iitmosphere, where it is absorbed. transmitted, and reflected. to the 

canopy surface where it undergoes the same processes. Incident short-wave ndiation 

reaches the forest canopy (i.e.. either direct short-wave radiation from the Sun or diffuse 

short-wave radiation from the sky) and intencts with leaves at the cellular level. Of this, 

û portion is reflected towards the sensor. Funher, energy is transmitted through the 

cûnopy to interact with the understory and the ground surface. Portions of this energy 

will also be reflected towards the sensor. The interaction between EM energy and the 

leaf has been studied at both the labontory and canopy scales. Relationships between the 

first and second derivatives of the spectral curve and cellular biochemical processes have 

k e n  established in the literature. Many of the existing hypenpectral indices developed 

for estimating physiological response are summarized in Appendix A. 1. By relating the 
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imagery to forest structure, this research is assessing the spatial distribution and pattern of 

these cellulx processes as well as the pattern of shadow and gaps in the canopy. 

To gain an undentanding of the structurai relationships found in this research and 

how they can be related back to our understanding of EM interaction with the forest 

canopy. it is necessary to consider what is actually occumng in the structure of the forest 

canopy in relation to the various metrics. The variable that was most easily modelled was 

percent canopy openness. Let us fint consider this metnc and the relationships to 

dissimilaity and angular second moment. The strongest relationships were found with 

these texture features and percent canopy openness in the blue, red, and NIR (>800 nm) 

wavelengths. 

Low values of percent canopy openness (or high values of crown closure) imply a 

closed canopy, with very few gaps or breaks. From a synoptic vantage point. these areas 

would üppear to be densely vegetated. with some "shallow" shadow features spread 

nther evenly throughout the canopy as a result of the orientation of the leaves. or as the 

result of some trees being tdler than others, but with very few deep shadow areas that 

might be associated with gaps in the canopy. Variabiiity (and dissimilarity) would be 

highest in the NIR region of the EM spectrum. as the amount of refiectance from 

vegetation is highest in  this regon. The blue and red regions would appear relatively dark 

and uni form under c losed canopy conditions (a function of c hloroph yll absorption). As 

percent canopy openness increases, more deep shadow areas will occur, increasing the 

vririability (and dissimilarity) of reflectance values likely to occur in the blue and red 

regions. This effect would dso be evident but less pronounced in the NIR regton. 

because multiple scattering in the canopy causes more vuiability in the amount of 
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reflectance in the NIR. This explains why percent canopy openness is related to the 

dissimilarity texture features of reflectance in the visible region. and to the first- 

derivative image in the N i R  (i.e.. the first-denvative image emphasizes the subtle 

differences in the texture features) (Tables 6. 11, and 12). With these physical factors in 

mind. the dissimilarity texture features would be lowest in closed canopy conditions at 

each wavelength. However the lowest dissimilarity values in the N R  would be higher 

than the lowest values in the blue and red regions. As gaps are introduced to the canopy. 

dissimilarity in al1 regions of the spectnim would increase. but the most obvious change 

would occur in the visible wavelengths. Therefore. one would expect that as percent 

canopy openness increüses. the dissimilarity values would increase, resulting in a positive 

correlation (Figure 30). Note that the opposite is true for crown closure. producing a 

negative correlation between range and crown closure (Figure 17). 

ASM can be considered the opposite of entropy (Hall-Beyer. 2000). and as such 

can be considered a measure of the presence of distinct structure or orgmization of 

patterns within the image (Yuan et al.. 199 1). Structure or pattern would be expected to 

increase as gaps and shadows are introduced into the canopy. resulting in a positive 

correlation between ASM and percent canopy openness. With this description of ASM. 

the relationships would be expected to weaken in closed canopy or clex-cut conditions. 

as was shown to be the case in the validation analysis (Table 12). As was the case with 

dissimilarity. reiationships with the percent canopy openness would be most evident in 

the visible regions. since the multiple scattering effects in the NIR would introduce some 

confusion to this calculation (Tables 1 1 and 12). 



LAI and crown diameter were found to have relationships with dissimilarity and 

hornogeneity respectively on the green peak and the red edge. which are wavelengths 

known to be related to vegetation type. photosynthetic capacity, and efficiency of 

radiation use (Gamon et al., 1995: Zarco-Tejada and Miller. 1999). Dissimilarity has 

negative correlations with LAI. suggesting that as vwiability within the filter increases 

(i.e. as more shadows and gaps are introduced). values for LAI decrease. In other words. 

as gaps are introduced, a smaller fraction of the pixel is cornposed of leaf area. 

Homogeneity can be described as essentially the opposite to dissimilarity (areas with 

higher variance have lower values of homogeneity). which explains the positive 

correlations found with crown dirimeter (Tables 8 and 14). In this case. as the size of the 

crown increases and gaps are reduced wi thin the fi l ter. hornogeneity increases. 

Fint- and second-order mean texture features are negtively correlated with the 

number of trees. This can be explained by the shadow and illumination effects caused by 

the edge of individual crowns. More indi vidual crowns cause increased edges between 

them, introducing more shadowed pixels and bi-directional reflection effects, which 

would lower the rnean reflectance. This idea is supponed by conclusions reponed by 

Olthof and King (1998) who suggested that higher texture values (in their case 

"contrast") occur along edges where two fractions meet. with low values occumng in 

larger dark or bright areas. This would be expected to happen at dl wavelengths, 

however the vxiability in reflectance in the N R  would decrease this effect somewhat. 

Here again. the first derivative of the mean texture feature accentuate the subtle changes 

in this rezion. allowing for a stronger correlation than for the reflectance image (Table 

10). 
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Finally. entropy for the second derivative of the blue region is related to crown 

depth (Tables 9 and 16). Entropy is a measure of uncenainty within the filter and can be 

thought of as a measure of the lack of structure or pattern (Yuan et al.. 1991). The value 

will be low if the image is relatively smooth. and high if there is more of a pattern. The 

results indicate that as the pattern increases. crown depth increases as well. This finding 

is supported by field observations, which note that in the broken canopy conditions of the 

ISD plots. young trees have grown toward any gap with available sunlight (this would 

have occurred in the two-year span between the ice storm and field work). Because there 

is a lot of sunlight reaching lower levels of the forest. many of these trees have srnall 

branches ail the way down the trunk. making identification of the base of the crown very 

difficult. This contrasts with the old growth in the TLW. where tree crowns are very 

distinct. with few branches lower than the main canopy. 

Ail of the relationships descnbed above are strongly infiuenced by the effects of 

shüdow and variations in illumination. The ability to understand and chancterize shadow 

and its patterns within the image is critical to the extraction of structural information 

about the forest. This need has k e n  recognized in current research. and attempts to 

relate shadow to structure have been reported (Yuan et al., 199 1). Attempts to exuact the 

shadow cornponent of a pixel have also been reported (Peddle et oL. 1999). but the 

complexity of sugnr maple stands has thus far limited the success in this area. 



6.0 CONCLUSIONS & RECOMMENDATIONS 

Perhaps more significmt than the indices that were developed in this research is 

the notion that the techniques used to develop them have proven to provide beneficial 

information about the pattern of relationships dong the spectral curve. The integntion of 

spatial and hyperspectral techniques do improve relationships with stmctural mesures, 

which suggests that further research in this area is wmnted. Results in this reseiuch 

demonstrate that meaningful relationships along the spectral and derivati ve curves would 

have been entirely missed if feature extraction had been performed prior to the analysis, 

because features on the spectral. and hence the denvative curves, would not have ken  

captured. By accentuating correlation patterns on the spectral and derivative curves that 

would not have been detectable using multispectral images. it has been demonstrated in 

this work that hypenpectral imagery has unique and valuûble information to add to 

remote sensing of forest structure. 

In many cases. the first- and second-derivative images improve correlations 

between the hyperspectnl data and forest structure rnetrics (e.g.. Table 5). This is due to 

the fact that subtle features on the spectral reflectance curve are emphasized on the first- 

and second-den vative curves. This resul t il lustrates the utility of appl ying hyperspectnl 

techniques to forest structure research. Funher supponing this idea are strong 

correlations with mesures of the crown dimensions and the REIP (e.g., Figure 27). a 

feûture known to be related to physiological parameten (Zarco-Tejada et al., 1999). 

The visible. red-edp. and NIR regions of the EM specmm each contain features 

that are correlûted with forest structure. Sevenl forest structural metrics have strong 

correlations in multiple regions of the spectrum. illustrating a potentid for multiband 
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indices. For exrmple, percent canopy openness (Tables 1 I and 12) is highly correlated to 

texture features in the blue. red. and NIR regions of the EM spectrum. This result 

demonstrates the importance of investigating al1 regions of the EM spectrum detected by 

the hyperspectml senson. nther than focusing on the red edge as tends to occur for 

physiological indices (Appendix A. 1.4 and A. 1 S). 

Incorporating geostatistical (i.e.. semivariance) results with texture anaiysis by 

defining the filter dimensions with estimated range parameter improves the correlation 

with the texture features and forest structure rneasures (e.g.. for number of trees. stem 

density. height to the crown base. tree height. crown closure. crown diameter, and crown 

width). Estirnated nnge values Vary according to wavelength and appear to be linked to 

individual tree crowns (Appendix AS). This supports the results of previous work (e.g.. 

Sampson. 7000: Treitz and Howunh. 2000: Treitz. 1001). 

Texture features improve correlations between the hypenpectnl data and al1 

forest structure metrics (except DBH). Most prevalent in the results are: hornogeneity; 

dissimilarity; and mean texture features. Dissimilarity texture features are negaiively 

correlated wirh estimates of LAI and positively correlated to percent canopy openness 

(,Table I l ) .  sugesting a link wiih shadow fraction (Yuan et al., 1991; Peddle et al.. 

1999). Mean texture features are negatively correlated to the number of trees within the 

plots (Table 15), which is atuibuted to shadow and illumination effects dong the edge of 

the tree crowns (Olthof and King. 1998). Finally, homogeneity is positively related to 

crown diameter (Table 14), indicating that as crown size increases and gaps in the canopy 

are reduced. the image becornes smoother (i.e.. more homogenous) within the filter. 



To this point, emphasis has been placed on developing indices that are 

transfenble across sugar maple environments across Ontario. However, results indicate 

thüt this may be too broad a study m a  to realistically expect one index to perform well 

under d l  conditions. However, when considenng the expansive area within south-eastem 

Ontario over which the indices were developed, predictive indices could potential l y 

provide valuable information for this area. This would first require additional validation 

sites, to assess the Iiccuracy of the prediction maps. This could prove to be particularly 

interesting when considering the temporal changes occumng in the canopy affected by 

the ice storm as the health of the damaged canopies improve. 

Although the results from this work show promise, considerable study needs to 

be undenaken before hyperspectnl remote sensing can extract forest structure in a 

sufficiently practicai and reliabie way to be useful for forest managers or government 

reponing ngencies. Clearly. use of this data is still vecy much in the research phase. with 

limited understanding of how forest ecosystems are characterized or measured by 

hypenpectral sensors operating iit a given spatial resolution. With this in mind. the 

following recommendations have been developed based on the results and issues 

encountered within this study. 

1.) There is an immediate need to assess the impact of moving to a corner spatial 

scale. while still maintaining the fine spectral resolution. A multi-scaled analysis 

needs to be undertaken both for physiological and s ~ c t u d  parameten to gain a 

better understanding of the scaiing phenornenon across landscapes with respect to 

canopy reflectance. 



2.) Greater effort is required to determine the most effective sarnpling strategy for 

various structunl parameters, particularl y for "upscalingT' to corner resolutions. 

The objective use of field data should also be considered. since linking field data 

to a remotely sensed image requires different considentions and sampling criteriû 

than currently used by forest managers to obtûin stand-leve! information. This 

again will require an analysis of the effect of sa le  on the representation of forest 

parameters. 

a. This work should be completed with careful consideration of current and 

anticipated forest management objectives. If hypenpectnl satellite 

technology is going to eventually prove useful to forest managers and 

govemment reporting agencies. i t  must be suitable for addressing 

problems they are currently considering. An undentanding of how 

variations in structural pammeters are linked to ecosystem herlth at 

various spatial scales is required. Keeping in mind that remote sensing 

does not provide causal information. it is necessary to determine what 

information needs to be extracted at the satellite scale and how that 

information cm actuaily be used by foresters once it has k e n  

demonstrated to be accunte and reiiable. 

b. Given the success with hemispherical photognphy in this study, more 

work should be completed to mess  effective methods of relating above 

and below canopy images to canopy structure. Hemispherical photos may 



prove to be an effective and objective approach to detennining canopy 

shape from the ground. 

3.) As knowledge of the spatial and spectral processes occumng at the canopy 

improves. more efforts should be directed towards automating the cornputer 

processing and storage techniques. This will assist in reducing the size of the data 

sets to be more manageable and eliminate the need for repetitive manual 

cdculations that may introduce error and in genenl make the use of this 

technology unattractive to forest managers. 

4.) Spectrd unmixing, a method to detemine the shadow component of the imagery. 

is a spatial technique that was not incorporated into this research. Work should be 

compleied to improve the effectiveness of spectral unmixing in a sugar maple 

environment so that the success of the technique can be compared to 

texture/geostatisticiil results. Once this has been completed. the potential of 

combining the two spproaches to extract shadow component could be considered. 

This hiis significant application to analyzing hyperspectral data at satellite scales. 

5.) The REP has k e n  show to be a feature of interest for both physiological and 

structural investigations. A more detailed investigation of REiP spatial variations, 

p;trticularly when moving across scales should be undertaken. Underlying 

ecosystem processes that are affecting this parameter need also to be investigated 

at various scales. 
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6.) Validation results for percent canopy openness showed that multiple texture 

features had relationships with calibntion and one or more validation sites, 

indicating that different texture features are more effective than others for 

characterizing different silviculture treatments. To attempt to chancterize a 

greater nnge of silviculture treatments in the texture models. a multi-variable 

relationship should be explored. 

7.) Further investigation is required into determining optimal distance and direction 

parameters for generating the GLCM. The need for this was illustrated in Figures 

12 to 25 for ASM and entropy. which were not optimized at this wavelength (739 

nm). most likely due to the variability in the NIR (i.e., multiple scattering) as 

cornpared to ihe visible regions. This made the adjacent pixel specified by the 

distance and direction parameters an inappropriate choice for ASM and entropy in 

the NCR. The utility of the nnge and anisotropic information denved from 

semivariance analysis for these parameten should be determined. 

S.) Resul ts indicate that reporting optimal wavelengths for structural panmeten 

based on the highest determined correlation between wavelengths and meirics can 

be very misleading, because it ignores correlation patterns across wavelengths. 

Efforts should be made to consider consecutive channels with high correlations 

when reporting results. 



The potential to extract structunl information from hypenpectral data is 

encouraging for the future anal ysis of satellite h yperspectral data. This potential suggests 

that the applications of hyperspectnl satellites for forest research are more widespread 

than is commonly considered. If physiological and structural information can both be 

extracted from the same data, a signifiant step fonuard in providing cost effective tools 

for resource managers and govemment reponing agencies to repetitively monitor forest 

ecosystems over large areas can be taken. 



REFERENCES 

Aber. J.D. and M.E. Matin, 1995. "High Spectnl Remote Sensing of Cmopy 

C hemistry ." Simtnarks of rlie Fifrli Annual JPL Airborne Eartli Science 

Workïliop. NASA Jet Propulsion Laboratory publication 95-1. January 23-26, 

1995, Vol. 1, pp. 1-4. 

Adler-Golden. S.M., M.W. Matthewa, L.S. Bernsteina, R.Y. kvinea. A. Berka, S.C. 

Richtsmeiera, P.K. Acharyaa, G.P. Andenonb. G. Feldeb. J. Gardnerb, M. Hokeb. 

L.S. Jeongb. B. Pukûllb. I. Mellob. A. Ratkowskib, and H.-H. Burkec. 1999. 

"Atmospheric Correction for Short-wave Spectral Imagery Based on 

MODTRAN4," Itnagc Spectrorneren, V. SPIE Proceedings, July. 1999. Vol. 

3753. 

hrbia. G.. 1989. Sputiuf Data Con/igitrution in Sfaristicul Analysis of Regional 

Ecw~iorriic aird Relured Problertrs. Kluwer Academic Publishers. 

Badhwar. G.D.. R.B. MacDonald. F.G. HaIl, I.G. Carnes. 1986. "Spectnl 

Chancterization of Biophysical Characteristics in a Boreal Forest: Relationships 

Between Thematic Mapper Band Reflectance and Leaf Area Index for Aspen," 

IEEE Transactions on Geoscirnce and Remou Sensing, Vol. GE-21, No. 3, pp. 

322-326. 

Baldwin. K, 2000. Personal Communication, Canadian Forest Service, SauIte Ste. Marie, 

ON. 

Baret. F., G. Guyot, and D. Major. 1989. 'TSAVI: A vegetation index which minimizes 

soi1 brightness effects on LAI or APAR estimation." Proceedings of the 121h 

126 



Canadian Symposium on Remote Sensing and Internalional Geoscience and 

Remote Sensing Symposium 1989, Vancouver Canada. July 10-14. 1989. pp. 

1355-1358. 

Baret. F. and G. Guyot. 1991. "Potentials and limits of vegetntion indices for LAI and 

APAR assessment." Remore Sensing of Environment. Vol. 35. pp. 53-70. 

Belanger. M.J.. J.R.Miller. and M.G. Boyer. 1995. "Comparative Relationships Between 

Some Red Edge Parameten and Seasonal Leaf Chlorophyll Concentrations." 

Canadian Joiintul of Rrnrote Sensing. Vol. 2 1. No. 1. pp. 16-2 1. 

Blackburn. GA. .  1998. "Quantifying chlorophylls and carotenoids from leaf to canopy 

scales: an evaluation of some hyperspectral approaches." Remore Srnsing of 

Environmerit. Vol. 66. pp. 773-285. 

Brick. C .L.. 1997. "Measunng Stand Basal Area." Tecli~iicul Note: [FA Newsletrer. Vol. 

38. NO. 5. pp. 16 - 17. 

Bowers, W.W., S.E. Franklin. J. Hudak, and G.J. McDennid. 1994. "Forest Structural 

Darnage Analysis Using Image Semivariance." Canadian Journal of Renrote 

Sensirig. Vol. 20. No. 1. pp. 28-36. 

Butson. C.R. and D.J. King. 1999. "Semivariance Anûlysis of Forest Structure and 

Remote Sensing Data to Determine and Optimal Sample Plot Size." Proceedings 

of ?lie Foirrtli Intemutianal Airbonte Renlote Selzsing Conference and Erliibition. 

Ottawa. Ontario. Canada. June 21-24. Vol. 2. pp. 155-162. 

Canadan Council of Forest Ministers, 1998. "Sustainable Forest: A Canadian 

Cornmitment." National Forest Strategy On-Line Publication, 

http://nfsc.forest.ca/strategy4.html. 



Carter, G.A. 1994. "Ratios of leaf reflectances in narrow wavebands as indicators of 

plant stress." Inremarional Journal of Remore Sensing, Vol. 15, No. 3,  pp. 697- 

703. 

Carter. GA, 1998. "Reflectance Wavebands and Indices for Remote Estimation of 

Photosynthesis and Stornatal Conductance in Pine Canopirs." Reniote Sensing of 

Environnietlt. Vol. 63. No. 1.pp. 6 1-72. 

Chen. J.M. 1996. "Evaluation of Vegetation Indices and a Modified simple Ratio For 

Boreal Applications." Canadiari Joirniol of Remote Se~isi~lg. Vol. 22, No. 3. pp. 

"'9-232. -- 
Chen. LM. and J. Chilar. 1996. "Retrieving Leaf Arer Index of Boreal Conifer Forest~ 

Using Landsat TM Images." Rmote Sensing of Environntrrit. Vol. 55. pp. 153- 

162. 

Clark. R. N .. L 999. Sprcrroscopy urid Prirtciples of Specrroscopy. Marzrial of Reniote 

Settsitig. John Wiley and Sons. Inc. 

Cohen. W.B. and T.A. Spies, 1990. "Semivariognms of Digital imagery for Analysis of 

Conifer Canopy Structure." Rertiore Sr~ising of Environmeriz, Vol. 3.1, pp. 167- 

178. 

Crippen. R.E.. 1990. "Calculating the Vegetation Index Faster." Remote Sensing of 

Envirorznienr, Vol. 34. pp. 7 1-73. 

Crist. E.P. and R.C. Cicone. 1984. "Application of the tasseled cap concept to simulated 

thematic mapper data." Pliotogrummetric Engineering and Remote Sensing. Vol. 

50, pp. 343-352. 



Curran. P.J.. 1988. 'The Semivariogram in Remote Sensing: An Introduction", Reniore 

Serising of E~iviron~ne~lr. Vol. 24. pp. 493-507. 

Curran. P.J. and P.M. Atkinson, 1999. "Issues of scale and optimal pixel size." Spatial 

Staristics For Remore Sensing, edited by A. Stein. F. Van Der Meer. and B. Gorte 

Dordrecht: Kluwar Academic Pulblishen. pp. 1 15- 133. 

Davison. D.. S. Achal. S. Mah. R. Gûuvin. M. Kerr. A. Tarn, and S. Preiss, 1999. 

"Determination of Tree Species and Tree Stem Densities in Nonhem Ontario 

Forests Using Airborne CAS1 Data," Proceedings 01 rlie Foicnli lnrernationul 

Airbonle Reniore Setisilig Cotfererice atid EXliibiriori, Ottawa, ON. June 21-24. 

1999. Vol. 2, pp. 187-196. 

Dawson. T. P.. 1998. "Estimating the Foliar Biochemicril Content of Forest Cünopies 

Using Physical Models and Aviris Spectra." Proceedings o/ [lie Firsr 

biteniario~ial Corifereiicc on Grosparial b,/onnurion in Agriculture and Forest.. 

Lake Buena Vista, FI. lune 1-3, 1998. Vol. 1. pp. 4 3 3 4 0 .  

Deenng. D. W.. J. W. Rouse. R. H. Haas, and J. A. Schell. 1975. "Mesuring forage 

production of grazing units from hndsat MSS data." Proceedings, 10th 

I~mrnariottal Symposiiinl on Renlote Sensing of Environmenf, Vol. 1, pp. 1 169- 

1178. 

DeWuIf. R.R., Gossens. R.E.. DeRoover, B.P., and F.C. Bony, 1990. "Extraction of 

forest stand panmeten frorn panchromatic and multispectral SPOT4 data," 

lrzrrniarional Joiirnai of Remote Sensing. Vol. L 1, pp. 157 1 - 1588. 



Elvidge. C.D. and Z. Chen. 1995. "Compuison of Broad-Band and Nmow-Band Red 

and Near-Infrared Vegetation Indices." Remote Sensing of Environment, Vol. 51. 

pp. 3848. 

ENVI. 2000. ENVI Titrorials. ENVI Version 3.4. September. 2000 Edition. Research 

Systems Inc.. Colorado. 590 pp. 

Estes. LE.. 1997. "Lecture 1 : The History of Aerial Photography," The Remore Sensing 

Cure Curriciclit~n. An ASPRS Initiative For Space Age International Education. 

Vol. 1. htt~://umbc7.umbc.edu/-t benla 1Isüntahdvol Mec 111 lecture. html 

Farina, A.. 1998. Principles and Metltods in Londscape Ecology. Chapman & Hall Ltd.. 

New York. 

Fleming. R.A.. D.B. Lyons. and J.N. Candau. 1999. "Spatial Transmutation and its 

Consequcnces in Spatiali y Upscaling Models of Spruce Budwom Population 

Dynamics." Canudiari Joi ïnd of Reirrote Sensing, Vol. 25. No. 4. pp. 388-402. 

Frazer. G.W.. Cünham. C. D.. and Lertzman, K. P. 1999. Gap Light Anafy:er (GU) .  

Version 2.0: Imagirig sofivare IO extract canopy srntctiire and gup liglit 

rransmission iîidices froni  me-color Jshqe plzotograplis. mers manual artd 

progrant dociinieiitarion. Simon Fraser Univeni ty. Bumaby. British Columbia. 

and the Insti tute of Ecosystem Studies, Millbrook. New York. 

Fnedl. M.A., F.W. Davis. J. Michaelsen, and M.A. Moritz. 1995. "Scaling and 

Uncenainty in the Relationship between the NDVI and Land Surface Biophysical 

Variables: An Analysis Using a Scene Simulation Model and Data from FïFE." 

Remore Sensing of Environment. Vol. 54. pp. 233-246. 



Gamon, J.A.. D.A. Roberts. and R.O. Green, 1995. "Evaluation of the Photochernical 

Reflectance Index in AVIRIS Imagery" Surnmaries of the Fifil1 Amiral JPL 

Airbonie Earrli Science Worhlzop. NASA let Propulsion iabontory publication 

95- 1. J a n u q  23-26. 1995. Vol. 1. pp. 12 1 -  124. 

Gitelson. A.A. and M.N. Memlyak. 1997. "Remote estimation of chlorophyll content in 

higher plant leaves." hiemational Jounrul of Remote Sensing. Vol. 18. No. 12. 

pp. 269 1 -2697. 

Goetz. A.F.H. G. Vane. J.E. Solomon. and B.N. Rock. 1985. Iniuging spectrometry for 

eurtli rmtote sensitig. Science. Vol. 238. pp. 1 147- 1 153. 

Gong. P.. Marceau. D.J.. and P.J. Howarth. 1992. "A Cornpiu-ison of Spatial Feature 

Extraction Algorithms for Land-Use Classification with SPOT HRV Data." 

Remote Srnsing of Environnieni. Vol. 10. pp. 137- 15 1. 

Govaertz. Y.M.. M.M. Verstraete. B. Pinty. and N. Gobron. 1999. "Designing optimal 

spectral indices: a feasi bi l i  ty and proof of concept study." Intemutional Journal of 

Remte Seming. Vol. 20. No. 9. pp.1853-1873. 

Goward, S. N.. 1989. "Satellite bioclirnatology." Journal of Climute. Vol. 7. No. 2. pp. 

7 10-720. 

Goward. S.N.. and K.F. Huemrnrich. 1992. "Vegetation canopy PAR absorptance and the 

normalized difference vegetation index: an assessrnent using the SAIL rnodel," 

Rentote Seming of Environment. Vol. 39. pp. 1 19- 140. 

Gray. L.. J. Freemantle. P. Shepherd, J. Miller. J. Hmon. and C. Hersom. 1997. 

"Chancterization and Csiibntion of the CAS1 Airbome imaging Spectrometer 



for BOREAS." Canadian Journal of Remote Sensing, Vol. 23, No. 2, pp. 188- 

195. 

Grossman. Y .L., E.W. Sandenon. and S.L. Ustin, 1994. "Relationships Between Canopy 

Chemistry and Reflectance for Plant Species from Jasper Ridge Biological 

Preserve, Cali fomia." Proceeditzgs of the Intenlatioital Ceoscience and Remotes 

Smsing Syiposiiim IGMSS '94, California institute of Technology, August 8- 12. 

1994,4 pp. 

Hall-Beyer, M., 2000. "GLCM Texture: A Tutorial. Version 2.3. " Remore Sensing Corr 

Curriciilii~n. Volume 3, Introductory Digital Image Processing, On-Line 

Publication, http://www.cla.sc.edu/_eeoe/nlab/rsccnew/ 

Hansen, M.J., S.E. Franklin, C. Woudsma, and M. Peterson. 200 1. "Forest Structure 

Clüssi ficatino in the North Columbia Mountains Using the Lndsat TM Tüsseied 

Cap Wetness Component". Cuizadian Joiimul of Remote Sensing, Vol. 27. No. 1. 

pp. 1 1  -32. 

Hay. G.J., K.O. Niemann. and G.F. McLean, 1996. "An Object-Specific Image-Texture 

Analysis of H-Resolution Forest Imagery," Rernote Sensing of Environment, Vol. 

55.  pp. 108-112. 

Hershey. R. R., W. H. McWilliams, and G.C. Reese, 1998. "Utilizing the Spatial 

Structure Available: Creating Maps of Forest Attributes From Forest Inventory 

Data." Proceedings of the First Intemutional Conference on Geospotiul 

Infomzarim in ~~~~~~~~~~~e and Forestry. Lake Buena Vista, Fl. June 1-3. 1998, 

Vol. 1, pp. 61-71. 



Hochheim. K.P. and D.G. Barber. 1998. "Spring Wheat Yield Estimation for Western 

Canada Using NOAA NDVI Data." Canadian Journal of Remore Sensing. Vol. 

14. No. 1. pp. 17-27. 

Hoffbeck. J.P. and D.A. Lndgrebe. 1996. "Classification of Remote Sensing Images 

Having High Spectral Resolution." Remote Sensing of Envirorsment. Vol. 15. pp. 

119- 1%. 

Huete. A.R. and C.J. Tucker. 1991. "Investigation of soi1 influences in AVHRR red and 

near-infrared vegetation index imagery." Intento~ional Journal of Renrote 

Seiisi~tg. Vol. 12. N0.6. pp. 1223- 1242. 

Hurte. A.R.. H.Q. Liu. K. Batchily. and W. van Leeuwen. 1997. "A cornparison of 

vegetation indices over a global set of TM images for EOS-MODIS." Remore 

Serisiuy of Eriviro~tnicit. Vol. 59. No. 3. pp. 44045 1. 

Hypannen. H.. 1996. "Spatial autocorrelation and optimal spatial resolution of optical 

remote sensing data in boreal forest environment". Inrernatiortal Journal of 

Rcniote Sensi~ig. Vol. 17. No. 17. pp. 344 1-3452. 

Jackson, R.D.. P.N. Slater. and P.J. Pinter. 1983. "Discrimination of growth and water 

stress in wheat by various vegetation indices through clear and turbid 

atmospheres." Remore Sensing ofdle Environnient. Vol. 15. pp. 187-208. 

Jensen, R.J.. 1996. bitroditctory Digital Iniage Processing A Remore Sensing 

Prrspecriw. 2" Edition. Prentice Hall. New Jersey. 3 16 pp. 

Jelinski. D.E. and J. Wu. 1996. 'The modifiable areal unit problem and implications for 

landscape ecology". Lrindscape Ecology, Vol. 1 1. No. 3, pp. 12% 140. 



Jongman R.H.G.. C.J.F. Ter Braak, and O.F.R. Van Tongeren, 1995. Data Analysis in 

Conimcinity and kindscape Ecology. Cambridge Uni versi ty Press, New York. 

Jordon. C.F.. 1969. "Derivation of leaf area index from quality of Iight on the forest 

floor," Ecology. Vol. 50. pp. 663-666. 

Kaufman. Y.J. and D. Tanré. 1992. "Atmosphe~calIy Resistant Vegetation Index (ARVD 

for EOS-MODIS." IEEEE Transuctio~ls on Geoscience a ~ i d  Remote Sensing. Vol. 

30. NO. 2. pp. 261-270. 

Kriuth, R.J. and G.S. Thomas. 1976. "The tasseled cap - A gnphic description of the 

spectral-temporal development of agncultural crops as seen by Landsat." 

Proceedi~igs of rhe Syrposicorr oti Machine Processing of Remotely Sensed Dota. 

Purdue University. West Layfayette. Indiana. pp. 4 1-5 1. 

King. D.J.. 1997. "Low Cost Multispectral Digital Camen Imaging for Forest Modelling 

and Topognphic Mappi ng." Proceedilrgs of the Tliird International Airbonir 

Remore Sensing Conference and Erhibirion. Copenhagen, Denmark. July 7- 10. 

Vol. 2. pp. 397401. 

hndgrebe. D. 1998. First Annual Progress Report NASA Grant NAGWS-3975 for tlie 

period 2/1/97 ro 1/31/98. School of Electrical and Computer Engineering, Purdue 

Uni veni ty. 

Lambin. E.F. and D. Ehrlich. 1995. "Combining vegetation indices and surface 

tempenture for land-cover mapping at broad spatial scales." International 

Journal of Remote Sensing. Vol. 16. No. 3. pp. 573-579. 

Larsen. M.. 1999. "Individual Tree Top Position Estimation by Template Voting," 

Proceedings of the Foudi International Airborne Remote Sensing Conference 

134 



and ~rhibition/LI" Canadian Symposium on Reniote Sensing, Ottawa. Ontario. 

Canada, 3 1-24 June 1999. 

Lautenschlager. R. A.. 2000. "Cm intensive silviculture contn bute to sustainable forest 

management in nonhem ecosystems?" The Forest- Clironicle. Vol. 76. No. 2. 

pp. 283-295. 

Lautenschlager. R.A. and C. Nielsen. 1999. "Ontario's Forest Science Efforts Following 

the 1998 Ice Storm." Tlir Forest- Clironiele. Vol. 75, No. 4, pp. 633-63 1 .  

Legendre, P .  and M.J. Fortin. 1989. "Spatial Pattern and Ecological Anal ysis". Vegetatio, 

Vol. 80. pp. 107-138. 

Lévesque. J. and D.J. King, 1999. "Airbome Digital Camera Image Semivariance for 

Evüluation of Forest Structural Damage at an Acid Mine Site." Reniotr Seusing of 

Divirorrmr~ir. Vol. 68, pp. 1 12- 1 24. 

Lillesand. T M .  and R.W. Kiefer. 1994. Renrofe Serrsing and Image biterpretation, Third 

Editio~i. John Wiley & Sons. Inc.. Toronto, 750 pp. 

Lichtenhaler, H.K.. A.A. Gitelson. A.A.. and M. Lang. 1996a. "Non-destructive 

determination of chlorophyll content of leaves of a green and aurea mutant of 

tobacco by reflectance measurements." Jottmal of Plant Pliysiology. Vol. 148. pp. 

483493. 

Lichtenhaler, H.K., M. Lang. M. Sowinska, F. Heisel, and I.A. Mieh, 1996b. "Detection 

of vegetation stress via a new high resolution fluorescence imaging system," 

Jottntul of Plririt PIiyiology. Vol. 148. pp. 599-6 13. 



Liu. H.Q. and A. Huete. 1995. "A Feedback Based Modification of the NDVI to 

Mi nimize Canop y Bac kground and Atmospheric Noise." IEEE Transactions on 

Ceoscience a ~ i d  Remote Setising, Vol. 33. No. 2. pp. 457-465. 

Major. D.J.. F. Baret. and G. Guyot. 1990. "A ratio vegetation index adjusted for soi1 

brightness." Inremutional Joicrnal of Rentote Sensing, Vol. 1 1. No. 5 ,  pp. 727- 

740. 

Marceau. D.J., 1999. 'The Scale Issue in the Social and Naturd Sciences", Canadian 

JoiiniuI of Rrrno~r Sensing. Vol. 25. No. 4. pp. 347-356. 

Menon. R.N. and L.E. Harvey. 1997. "Analysis of seasonal changes in Jasper Ridge 

vegetation biochemistry and biophysiology using multi-temporal hypenpectnl 

data." Proceedings of zlir ASPRS Conference, Seattle. Washington, USA. 6- 10 

April 1997. 

Menon. R.. 1998. "Monitoring Cornmuni ty Hysteresis Using Spectral Shift Analysis and 

the Red-edge Vegetation Stress Index." Proceedings of the Seventh Annual JPL 

Airbonie Eanh Science Workrliop. NASA. Jet Propulsion Laboratory. Pasadena. 

California. Ianuary 11-16, 1998. 

Miller. J.R.. 200 1 .  Persona1 Communication. Department of Physics. York University. 

Miller. J.R.. E.W. Hare, and I. Wu. 1990. "Quantitative Chancterization of the 

Vegetation Red Edge Re flec tance. 1: An Invened-Gaussian Reflectance Model. " 

Inrematiorial Joi(rna1 of Remote Sensing. Vol. 1 1. No. 10, pp. 1755- 1773. 

Mohammed, G.H.. P.H. Sampson. S.I. Colombo, T.L. Noland, and J.R. Miller, 1997. 

Bioindicators of Forest Sustainability: Development of a Forest Condition Rating 



Systeni for Ontario, Forest Research Information Paper No. 137, Queen's Pnnter 

for Ontario. 22 pp. 

Novo, E.. M. Gastil. and J. Melack. 1995. "An Algonthm For Chiorophyll Using Fint 

Difference Transformations of AVIRIS Reflectance Spectn." Summaries of the 

Fifrh Annital JPL Airborne Eurth Science Worhliop. NASA Jet Propulsion 

Laboratory publication 95- 1, Jünuÿry 23-36. 1995. Vol. 1. pp. 12 1 - 114. 

Naturai Resources Canada. 1998. 'Turkey Lakes Toiennt Hardwoods Ecosystern 

Reseamh Project (TIMERP)." Unpublished Project Description. Canadian Forest 

Service. Saul t S te. Marie. ON. Itttp://\t*\i\v.a!fc. forest m. cdindex-en~reseurcI~ - 

e'//i~ rest ecologv-e/ tiirkt'vl<rke.s-e-Iitnil. 

Olthof, 1.. and D. J .  King, 1998. "Determination of Soi1 Propeny and Forest Structure 

Relations With Airbome Digital Camera Images Spectral and Spatial 

Information." Proceediqp of the 19"' Cunadiart Spnposiitrn on Rernote Sensing. 

Ottawa. ON. May. 1997. pp. 103-106. 

Ontario Ministry of Natunl Resources (OMNR), 1999. Ontario's Living Lcgucy land iise 

strutegy. Queen's Printer for Ontario. Toronto. ON. 136 pp. 

Openshûw. S., 1983. ï ï ~ e  Modificble Areal Unit Probleni. Concepts and Techniques in 

Modem Geogmphy (CATMOG). no. 38. GeoBwks, Norwich, England. 

Openshaw. S. and P.J. Taylor, 1979. "A million or so correlation coefficiecnts: three 

expenments on the modifiable areal unit problem." In Staristical Applications in 

the Spatial Sciemes. pp 127-14. Edited by N. Wrigley. Pion, London. 



Openshaw. S. and P.J. Taylor. 1981. 'The Modifieable Areal Unit Problem." In 

Quantitative Geogruplty: A Bntisr View. pp 60-69. Edited by N. Wrigley and R 

Bennett. Routledge and Kegan Paul. London. 

Pannatier. Y .. 1996. Starisrics und Computing VARIO WIN Sojhvare for Spatial Data 

Aiiafysis i ~ i  ZD. Springer-Verlag New York Inc.. New York. 

PCI. 1998. Using PCI Sofnuare. Volume 1. Version 6.3. PCI Geomatics. Richmond Hill. 

ON. 578 pp. 

Peddle. D.R.. 1999. "Improved Forest Information Extraction Through integration of a 

Canopy Reflectance Mode1 and an Evidential Reasoning Classifier." Proceedings 

of rlie Foiirtli Irirenlutioriul Airbonte Reniote Sensing Co~ference und 

~xliibitiod21"' Canadia~i Synposiiim on Reaiote Se~isiug. Ottawa. Ontario. june 

2 1-24. 1999, Vol. 2. pp. 1 15- 132. 

Peddle. D.R.. F.G. Hall and E.F. LeDrew. 1999. "Spectrd Mixture Analysis and 

Geometric Optical Reflectance Modelling of Boreal Forest Biophysical 

Stnicture." Reniotc Sensing of Environment. Vol. 67, No. 3. pp. 288-297. 

Peddle. D.R. and R.L. Johnson, 3000. "Spectral Mixture Analysis of Airborne Remote 

Sensing Irnagery for Improved Prediction of Leaf Area Index in Mountainous 

Terrain. Ken weskis Alberta." Canadian loiirnol of Reniote Sensing. Vol. 26. No. 

3. pp. 177-188. 

Phinn, S. R., P. Scanh, and D. Mitchell, 1999. "Estimation of Forest Structural 

Parameters for Forestry and Koala Habitat Monitoring in South-East Queensland, 

Australia." Proceedings of the Fourtlt International Airborne Remote Sensing 

Conference and Edtibition. Ottawa. ON. June 2 1-24. 1999, Vol. 2, pp. 179- 186. 

138 



Pinty. B. And M.M. Verstraete. 1991. "GEMI: a non-linear index to monitor global 

vegeiation frorn satellites." Vegetatio. Vol. 10 1. pp. 15-20. 

Prenzel. B.. 1000. Persona1 communication. Department of Geognphy, York University. 

Pnce. J.C.. 1997. "Spectral Band Selection for Visible-Near Infrared Remote Sensing: 

Spectral-Spatial Resolution Tradeoffs." IEEE Transactions or1 Geoscience und 

Romte St.iising. Vol. 35, No. 5. pp. 1277-1285. 

Qi. J. ,  A. Chehbouni. A.R. Huete, Y .H. Kerr. and S. Sorooshian. 1994. "A Moâified Soi1 

Adjusted Vegetation index." Reniote Sensing of Erivironme>it. Vol. -18. No. 2. pp. 

119-126. 

Riighu. P.P.. R. Poongodi. and Yegnanmyana. 1995. "A Combined Neural Network 

Approach for Texture Classification." Neural Nenvorks. Vol. 8. No. 6. pp. 975- 

987. 

Ray. T.W.. 1994. "A FAQ on Vegetation in Remote Sensing: Version 1.0." Ori-line 

pi<blicution from tlie Devisiori of Groiogical und P lanetary Sciences. Cali fomia 

Institute of Technology. FTP:kepler.gps.caltech.edu - /pub/Temll/rsvegfaq.txt 

Richardson. A.J., and C.L. Wiegand. 1977. "Distinguishing vegetation from soi1 

background information." Photograrnrnetric Engineering and Renzote Sensing. 

Vol. 43, pp. 1541-1552. 

Riou. R. and F. Seyler. 1997. 'Texture Analysis of Tropical Rain Forest Infrared Satellite 

Images." Pliotogrammetric Engineering and Remote Sensing, Vol. 63, No. 5 ,  pp. 

515-521. 



Rotunno. O.C., P.M. Treitz, E.D. Soulis, P.J. Howarth, and N. Kouwen. 1996. 'Texture 

Processing of Synthetic Aperture Radar Data using Second-Order Spatial 

S tatistics." Cornputers and Ceosciences, Vol. 22, No. 1, pp. 27-34. 

Roujean. J.L. and F.M. Breon. 1995. "Estimating PAR absorbed vegetation from bi- 

directional reflectance measurements." Reniute Sensing of Environment. Vol. 51. 

pp. 375-381. 

Rouse, J.W.. R.H. Haas. LA. Schell. and D.W. Deering, 1974. "Monitoring vegetation 

systems in the Great Plains with ERTS." NASMGSFC Tvpc III Final Repon. 

Greenbelt. Md. 37 1 pp. 

Rozgonyi. G.. 1995. Staristics for Engineers. University of Wollongong. Australia. On- 

Line Publication. http://engineering.uow .edu.au/Courses/Stats/index.htrnl 

Sürnpson. P.H.. 7000. Forest Cundition Assessmerrt: An Ewniria~ion of Scale. 

Stnictirre. und Fitnction Using Higli Spatiul Resolritioti Remore Sensing Data. 

M.Sc. Thesis. York University, 157 pp. 

Sampson. P.H.. G.H. Mohammed. S.J. Colombo. T.L. Noland, J.R. Miller. and P.J. 

Zarco-Tejada. 1998. BioYidicrimrs of Forest Sristait~abiligy Progress Report. 

Forest Research Information Paper No. 142, Queen's Printer for Ontario. 18 pp. 

Sampson, P.H.. G.H. Mohammed. P.J. Zarco-Tejda, J.R. Miller. T.L. Noland, D. Irving, 

P.M. Treitz. S.J. Colombo, and J. Freemantle, 2000. "Bioindicators of Forest 

Condition: A Physiological. Remote Sensing Approach," nie Forest- Clzronicle, 

Vol. 76. NO. 6. pp. 941-952. 

Schmuck, G.. J. Verdebout. S.L. Ustin. A.J. Siever, and S. Jacquemoud, 1998. 

"Vegetation and biochemical indices retrieved from a multitemporal AVIRIS data 

L40 



set." Centre for Spatial Technologies and Remote Sensing (CSTARS). 

http://cstars.ucdavis.edu/papers/sustin/a~culture/spieindicedpa~r.html. 

Seed. E. D.. and D. J. King. 2000. "Determination of Mixed Boreal Forest Stand 

Biophysical Structure Using Large Scale Airbome Digital Carnera imagery," 

Dnft paper, Carleton University. 

Seed. E. D.. D. J. King. P. K. E. Pellikka. 1999. "Multivariate Analysis of Low Cost 

Airbome CR Imagery For The Determination of Forest Canopy Structure." 

Procerdiqs of the Fourth Inten~utional Airborne Remote Sensing Conference 

und Erliibition. Ottawa, ON. June 2 1-24. 1999. Vol. 1. pp. 139-146. 

Sellers. P.J.. 1985. "Canopy reflectance. photosynthesis, and transpiration." 

Iitteniutional Joiirnal of Remote Sensing, Vol. 6 .  pp. 1335- 1372. 

Shapiro. S. S.. M.B. Wilk. and H.J. Chen. 1968. "A comparative study of various tests of 

normal it  y." Jo~iniul of the Anlericun Srutisticul Associutiori, Vol. 63, pp. L 3 43- 

1372. 

Spiinner. M A . .  L.L. Pierce. D.L. Petenon. and S.W. Running. 1990. "Remote sensing of 

temperate conifierous forest leaf area index. The influence of canopy closure, 

understory vegetation. and background reflectance." Intrniationul Journal of 

Remote Serising. Vol. 1 1. No. 1. pp. 95- 1 1 1. 

Si.-Onge. B.. 1999. 'Topographic Effects on the Texture of High-Resolution Foresr- 

Stand Image Meaured by the Semivariogram," Pliotogrmn~etric Engineering and 

Remote Sensing. Vol. 65. No. 8. pp. 923-935. 



Taylor. N.W. (Chair) 1999. "Competing realities: The boreal forest st risk." Report of the 

sirb-comniittee on boreal forest of the standing Seliate cornmittee un agricultirre 

and forestry. Ottawa, ON. 

Ter-Mi kaelian. M. and R.A. Lautenschlager. 2000. "Developing predic tive equations for 

leaf area and biornass for sugar bushes in eastem Ontario." Ontario Forest 

Researcli Institirte (OFRI) drafi dorunient. 28 pp. 

Thenkabail. P.S.. R.B. Smith. and E. De Pauw. 1999. "Hypenpectnl Vegetation Indices 

for Determining Agricultural Crop Characteristics." C E 0  Researcli Publication 

Srries. Centre for Earth Observation. Yale University. No. 1.39 pp. 

Tian. X. and G.E. Murphy. 1997. "Detection of Trimmed and Occluded Branches on 

Hwested Tree Stems usine Texture Anai ysis." In tematioriul Jo~rniül of Furesr 

E~rginerring. Vol. 8.  No. 2. pp. 65-74. 

Treitz. P.. 3001. "Variogram Analysis of High Spatial Resolution Remote Sensing Data: 

An Examination of Boreal Forest Ecosystems," bttemutional Joirntal of Remote 

Sensing, Vol. 22. No. 18. pp. 3895-3900. 

Treitz. P.M.. and P.J. Howarth. 1999. "Hyperspectral Remote Sensing for Estirnating 

Biophysical Parameters of Forest Ecosystems." Progress in Pliysical Geography, 

Vol. 13. NO. 3. pp. 359-391. 

Treitz. P M . .  P.J. Howarth. O.R. Filho. and E.D. Soulis. 2000. "Agricultunl Crop 

Classification Using SAR Tone and Texture Statistics," Canadian Journal of 

Remore Sensing. Vol. 26. No. 1. pp. 18-19. 

Trimble Navigation Limited. 1996. GeoErplorer II Operation Manual. Trirnble 

Navigation Limited, Sunnyvale. CA. 

143 



Upton. G.J.G.. and B. Fingleton, 1989. Spatial data analysis by example. Volume 2: 

Caregorical and directional data. Wi le y. Chichester, England. 

Ustin. S. L., M. O. Smith. D. A. Roberts, J. A. Garnon, and C. B. Field, 1992. "Using 

AVIRIS Images to Measure Temponl Trends in Abundûnce of Photosynthetic 

and Non photos ynthetic Canopy Components." Summnries of the Third Anniml 

JPL Airborne Geoscience Worksliop. Pasadena. CA. June 1-5. 1993. JPL 

Publication 92- 14. pp. 5-7. 

Vane, G.. J.E. Duval. and J.B. Wellrnan. 1993. Iniagi~ig spectroscopy of flte eanli utid 

otlter solar systrm bodies. In Remote Geochemical Analysis: Elemental and 

Mineralogical Composition. Cambridge University Press, Cambridge. pp. 121- 

143. 

Ventraete. M.M.. and B. Pinty. 1996. "Designing Optimal Spectral Indexes for Remote 

Sensing Applications." IEEE Trunsactions on Geoscience u~id Remote Sensing. 

Vol. 34. NO. 5. pp. 1354-1365. 

Vogelmann. J.E.. B.N. Rock. and D.M. Moss. 1993. "Red edge spectral measurernents 

from sugür maple leûves," I~iternutionul Joiinial of Remote Sensing. Vol. 14. No. 

8. pp. 1563- 1573. 

Wang, L. and D. He. 1990. 'Texture Unit, Texture Spectrum. and Texture Andysis." 

IEEE Transactions on Groscience and Remore Sensing. Vol. 28,  No. 4, pp. 509- 

512. 1990. 

Waring. R.H. and S.W. Running, 1998. Forest €coqstems: Analysis ut Multiple Scales. 

Second Edi tion. San Deigo: Acadernic Press. 1998. 



Woodcock. C.E. and Stnhler, A.H.. 1987. 'The factor of scale in remote sensing". 

Reniute Sensirig of Environment. Vol. 7 1, pp. 3 1 1-3 12. 

Yuan. X.. D. King. and J. Vlcek. 199 1. "Sugar Maple Decline Assessrnent Based on 

Spectral and Textural Analysis of Multispectnl Aenal Videography," Remore 

Sensing of Environment. Vol. 37. pp. 47-54. 

Xia. L.. 1994. "A two-mis adjusted vegetation index (TWVI)." International Journal of 

Remore Sensing. Vol. 15. No. 7. pp. lJ17- 14%. 

Zarco-Tejada. P.J.. 7000. Hyperspecrral Remte Serrsing of Clused Forest Canopies: 

Esrintarion of Clilorophyll Fluorescence and Pigment Content. PhD Thesis, Eath 

and Splice Science. York University. Toronto. 209 pp. 

Zxco-Tejada, P.J.. and J. R. Miller. 1999. "Optical Indices as Bioindicaton of Forest 

Condition h m  Hyperspectral CAS 1 data." Proceedings of rire 19"' Synrpositini of 

tiie Et1 ropeu~i Association of Remore Sensing hborutories ( EARSeL). Val lad01 id. 

Spain. March 3 1 - June 1. 1999.6 pp. 

Zxco-Tejûda. P.J.. J.R. Miller. G.H. Mohammed. T.L. Noland, and P.H. Sarnpson, 1999. 

"Canopy Optical Indices from Infinite Reflectance and Canopy Reflectance 

Models for Forest Condition Monitoring: Application to Hyperspectral CASI 

Daia," P m e d i n g s  of rlie IEEE 1999 Inteniutional Geoscience und Remote 

Sensing Symposium. IGARSS'99, Hamburg, Gemany, June 28 - July 2. 1999. 5 

PP. 

Zhou. J. and D. Civco. 1998. "Using the Wavelet Tnnsforrn to Extract Texture Features 

Frorn Remote Sensing Images." Proceedings of the First In~emational 



Confereuce 011 Geospatial Information in Agriculture and Foresty, M e  Buena 

Vista, Florida, USA. June 1-3. 1998. Vol. 1 . .  pp. 574-581). 



A.0 APPENDIX 









A. 1.2 Comninn Rroad-Iland Orthogonal Indices 

1 l nd i x  (PVI) I -- 

Nanw 1 Formula 

Weighted I>NIR - R * Pm, 
fer g = siope o f  soi1 l inc 

Vegeiat ion  I I 

Simple 
Vcgetüt ion 
lndex (VI)  

Index (WDVI )  
Green 

NIH - red 

lndex (NSI) 

Coniiiients 
Hig l i  vülues indicale vegctated arcas. Negütive vülues 
for iiiütcriüls thüt reflcct more i n  [hi: visible thirii 
infrrired (wüter, clouds, snow, etc.) 
Soriic discrepancy US IO the or igin o f  this index. 
Differcricc Vegetütiori lndex (DVI )  und Ashbuni's 
Vegctütion Index (AV I )  arc essentiülly the sanie. 
Al low for soi1 lines of different slopcs. 
Very scnsitivc to  ütmospheric change. 

A l low for soi1 liiies of d i f k r c n i  stopes. 
Very sensitive CO ütmosptieric change, 

Tüsseled Cap trünsforrnation designed t o  dctect grcen 
vegetation. C coefficients art: scnsor dependeni. 

Tasselcd Cap trünsforni;ition designcd i o  detect soi 1. 
C coefficients arc sensor dependent. Müny o f  the soi1 
indices are based on  ihe concepts o f  this index. 

Tüsselcd Cüp transfoniiaiion ihüt iypically shows i l ie 
deüd vçgoia~ion. C cocfficienis are sensor dependeni. 
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aimospheric effccts. C coefficients are sensor 
dependent. 
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A.2 Calibration Field Metrics (FH and ISD Sites) 

A.2.1 Quadratic DBH 
Units of Measure: cm 

I~tudv sitel Plot a 1 Plot b 1 Plot c 1 Plot d 1 Centre 1 Total 

1 ISD 15 1 37.38 1 37.18 1 19.46 1 46.65 1 25.06 1 31.27 

A.2.2 Arithmetic DBH 

ISD 3 
ISD 31 

, ISD 40 
ISD 5 

Units of Measure: cm 
- - - -- -- - - - - 

, Study Site Plot a Plot b Plot c Plot d Centre Total , 

FH A02 25.16 1 25.16 

31.38 
27.38 
25.72 
31.87 

- - 

FH A067 29.67 29.67 
ISD 12 3 1 . 6 6 . 3 3 . 1 9  32.75 34.88 31.74 32 .72 ,  
ISD14 , 21.28 33.75 27.89 32.33 38.74 30.41 
ISD 15 3 6 . 6 5 - 3 3 . 9 2  17.29 45.76 21.04 27.39 

30.15 
31.55 
32.24 
33.33 

1 ISD 31 1 25.02 1 28.72 1 29.90 1 30.94 1 1 28.80 1 

, ISD 21 
ISD23 

23.13 
31.47 
38.79 
21.36 

22.66 
. 23.53 

1 ISD 40 

24.08 
34.37 

, 27.49 
30.01 

1 ISD 3 

24.88 1 26.46 
,. 1 31.57 

1 29.8 
25.46 1 28.28 

30.43 

22.18 
17.84 

22.21 

28.93 

23.24 
28.90 

ISD 5 
29.40 

20.18 

_ 21.98 

24.57 
21.85 

30.36 
35.88 

28.32 27.69 

23.30 

19.43 
,. 27.69 

21.99 

22.46 
23.01 

23.23 

23.95 

- 25.57 
- 

25.28 

25.55 



A.2.3 Tree Height 
Units of Measure: m 

,Study Site Plot a Plot b Plot c ( Plot d 
FH A02 

. FH A063 

A.2.4 Crown Dismeter 
Units of Merisure: rn 

Centre 1 Total 

Study Site 
, FHA02 

, FH A064 
FH A065 
FHAû66 
FH A067 

, FH A063 - 1  - 

Plot a 

5.90 
5.1 3 
5.76 
6.64 

Centre 
4.65 

5.90 
5.1 3 
5.76 , 

6.64 

. Plot b [ Plot c 
1 

Total 
4.65 

4.88 

, ISD 12 1 5.31 

Plot d 

4.88 

ISD 14 
1SD 15 

, ISD 19 
ISD 21 
ISD 23 
ISD 3 

4.80 
, 5.92 

7.62 , 

5.63 

4.78 
8.51 
5.06 
6.51 
6.32 
5.49 

6.51 
. 6.99 
, 7.33 

6.64 
5.67 
5.48 
6.1 3 

5.90 
5.67 
6.90 
5.75 

5.98 
6.45 
9.66 
7 -68 

ISD 31 
, iSD40 

ISD 5 

5.47 
6.07 , 

5.33 

5.04 
. 4.95 

5.77 

6.73 
5.59 
5.89 

. 6.24 

6.26 
8.53 
6.24 

6.17 1 5.61 . 7.50 
6.25 

. 7.45 
6.1 9 
8.90 

, 5.77 
6.46 
5.04 

4.81 1 5.57 

8.1 0 
8.55 

,, 7.11 
, 4.88 

,. 6.50 
5.62 





A.2.7 Crown Depth 
Units of Measure: m 

Study Site 
FH A02 
FH A063 
FH A064 
FH A065 
ÇH A066 
FH A067 
ISD 12 
ISD 14 
ISD 15 
ISO 19 

ISD 31 1 9.06 1 12.24 1 11 22 1 9.84 1 1 10.46 

r 

Plot a Plot b / Plot c 
1 

ISD 23 
ISO 3 

10.77 
, 9.50 

10.80 
8.09 

A.2.8 Crown Width (major) 

Units of Measure: m 

Plot d 

10.46 
9.39 

ISD 40 
ISD 5 

1 

12.04 
10.16 
11.23 

. 8.85 

, Centre 
8.41 
9.26 
9.67 

8.05 
8.48 

8.81 
11.26 

Study Site 
FH A02 

Total 
8.41 
9.26 
9.67 

8.04 
- 9.85 

10.86 
9.72 
7.54 
11.59 

ISO 15 
ISD 19 
ISD 21 
ISD 23 
ISD 3 

8.04 
9.85 

10.67 
8.35 

12.49 
10.97 

FH A063 5.01 5.01 

Plot a 

ISD 40 1 5.29 

10.30 
9.20 
1 1.76 
12.15 

7.46 
4.60 
5.14 
5 . n  
4.65 

.. 10.81 
8.21 

9.33 
10.22 

Plot b 

7.32 

10.47 
11.02 
10.54 
9.32 

6.96 
.. 4.88 

4.20 
3.85 
4.78 

ISD 5 1 7.83 . 7.89 5 . 6 3  6.76 

10.47 
.. 11.03 

9.83 
9.64 
9.53 

, 12.99 
7.68 

.. 8.51 
10.35 

Plot c 

7.94 
5.62 1 6.62 * 

10.19 
8.33 

4.49 
5.40 
4.06 
6.43 
4.00 

- 11.31 

Plot d 

4.97 

9.82 
10.81 

7.90 
6.78 
4.49 

6.02 , 

Centre 
4.66 

Total , 

4.66 

5.02 

4.90 

5.92 , 

5.12 , 

4.51 
5.89 1 5.41 
4.37 1 4.32 

5.25 , 

4.40 



A.2.9 Crown Width (perpendicular) 
Units of Merisure: m 

ISD 12 6.01 5.66 8.43 1 7.36 
ISD 14 5.66 7.29 7.40 8.16 
ISD 15 9.56 8.28 6.46 1 1 A2 
ISD 19 5.76 6.38 6.86 8.57 
ISD 21 7.88 5.88 5.55 6.65 
ISD 23 6.86 1 6.06 7.79 7.1 0 

Study Site 

ISD 3 6.33 1 6.76 . 5.77 1 6.87 
ISD 31 , 7.20 1 6.23 7.36 1 8.63 

ISD 5 1 9.98 1 9.21 1 6.86 1 
I 

8.14 

FH A02 1 
FH A063 

Plot a 

A.2.10 Stem Density 
Units of Mesisure: #/ha 

I ~ t u â v  Site I plot a 

Plot b 1 Plot c 

ISD 14 
ISD 1s 
ISD 19 440 

Plot d 

ISD 21 725 
, ISD 23 575 

ISD 3 375 
ISD 31 750 
ISD 40 625 
ISD 5 375 

Centre Total 

Plot b 1 Plot c 1 Plot d 1 Centre 1 Total 



A.2.11 Height to the Base of the Crown 
Units of Merisure: m 

ISD 12 1 1.99 
ISD 14 
ISD 15 
ISD 19 

lSDD~ 1 6.59 
11.14 

ISD 31 10.84 
ISD 40 
ISD 5 10.60 

Plot b 1 Plot c 1 Plot d 1 Centre 1 Total 

A.2.12 LAI - Derived From Four Inner Rings 
Uniw of Mesure: unitless 

Study Site Plot a Plot b 
FH A02 

ISD 15 
ISD 19 
ISD 21 2.32 

1 ISD 23 1 2.45 1 3.14 
ISD 3 1 2.18 1 2.3 

, ISD40 3.1 4 3.73 
ISD 5 3.33 3.41 

Plot c 1 Plot d 1 Centre 1 Total 



A.2.13 LAI - Derived From Five Rings 
Unit of Measure: unitless 

, Study Site Plot a Plot b ( Plot c Plot d 1 Centre Total 
FH A02 2.954 2.954 
FH A063 3.512 3.512 

1 ISD 5 1 2.89 1 2.91 1 2.47 1 2.46 1 2.46 1 2.638 1 

, ISD 21 
, ISD23 

ISD 3 
ISD 31 

A.Z.1 J Percent Canopy Openness Derived From Hemispherical Photos 
Units of Measure: unitless 

2.19 
2.31 
2.31 
2.77 

I ISD 12 1 12.32 1 22.48 1 16.15 ( 16.48 1 11.46 1 15778 1 

2.3 , 

,, 2.85 
2.47 
3.37 

Study Site 
FH A02 

Plot b Plot a 

ISD 14 
ISD 15 
ISD 19 

ISD 31 1 8.14 1 5.01 1 5.42 / 8.33 1 1 6.306 1 

ISD 21 
ISD 23 
ISD 3 

2.38 1 2.38 

Plot c 

18.39 
12.19 
6.13 

2.14 
2.67 
2.62 

- 

1 

3.86 
2.65 
3.37 

12.61 
11 .O1 
13.78 

ISD 40 1 7.07 

2.278 
2.882 
2.454 
3.1 08 

2.72 
2.22 
2.68 

Plot d 

19.31 
6.06 
4.75 
11.74 
6.53 
11 -19 

5.81 1 4.7 

Centre 
6.36 

21.14 
6.56 
9.02 

ISD 5 1 6.53 , 6.02 1 9.03 
l 

Total 
6.36 

11 
2.94 
9.23 

4.67 

16.72 
8.47 
4.8 

6.028 , 

9.49 

10.91 
9.32 
1 1.98 

17.22 
,, 3.89 

10.34 

18.556, 
,, 7.434 , 

5.962 
p p  

12.47 
7.9 
8.97 

8.282 

- - -  - - 

11.746 
7.54 
1 1.03 



A.2.15 Number Of Trees 
Units of Measure: unitless 

Study Site Plot a Plot b Plot c 1 Plot d Centre Total 
FH A02 . 70 70 
FH A063 46 46 

A.2.16 Basal Area 
Units of Measure: m'/ha 

1 Studv Site 1 Plot a 1 Plot b 1 Plot c 1 Plot d 

- - 
F H A067 - 
ISD 12 32.1 5 35.88 30.49 30.45 
ISD 14 10.55 26.34 39.10 22.40 
ISD 15 21.95 1 29.86 11.89 1 21.36 

Centre 1 Total 



A.3 Validation Metrics (TLW) 

A3.1 Field Metrics = Hemispherical Photographs and DBH 

# 

1 

2 
3 
4 

, 5 
6 

19 ( clearcut 1 47.9 1 0.7 1 0.6 1 11.7 1 12.6 ] 

Tieatment 
clear cut 

shelterwood 

7 

control 
. clear cut 

clear cut 
clear cut 

Percent 
Canopy 

Opennesr 
46.1 
12.0 

control 

10 
I l  

[ 19 1 shelterwood 1 10.7 1 2.7 1 2.3 1 17.3 1 18.7 1 

. 26.2 
21.3 
20.2 
6.7 

, 8  out 8.7 
1 1 

12 
13 
14 
15 
16 

LAI 
From 4 
Rings 
0.8 
2.8 

6.2 

. clear cut 
clear cut 

3.0 

clear cut 
clear cut 

. control 
out 

control 

selection 17.0 2.3 1.9 27.6 
control 6.2 3.5 3.0 21.7 

1 28 1 shelterwood 1 8.7 1 2.9 1 2.6 1 27.4 1 29.2 1 

LAI 
From 5 
Rings 
0.7 
2.3 

, 27.5 
19.1 
16.2 
21 -2 

3.5 

31.3 

29.9 
25.7 

sheltewood 8.4 1 3.0 2.7 23.3 
shelterwood 26.7 1 1.5 , 1.3 21.2 

selection 22. t 24.9 
selection 19.5 1.9 1.7 27.4 

sheltennrood , 20.7 1.9 1.5 14.8 
shelterwood 13.0 2.4 1 2.2 21 .O 

23.0 
18.7 
15.6 

- 21.2 

2.4 1 2.1 

T 

2.7 

53.7 
37.5 
5.8 
9.4 
4.7 

28.0 
25.2 

,, 25.7 
30.6 
16.3 
23.4 

Arithmetic 
DBH (cm) 
11.4 
28.4 

2.2 
2.0 

. 3.0 

1.5 

2.6 , 

2.3 
13.6 
14.4 

17 ' selection 

29 
30 
31 

Quadratic 
DBH (cm) 
11.4 
31 -9 

1.7 
1.6 

22.9 

0.5 
0.9 
3.6 
2.9 
3.8 

18 

selection 
control 
control 

3.3 1 3.0 

24.9 
21.1 

1.3 

shelterwood 

control 
. clear cut 

clear cut 

23.0 

19.1 1 19.9 
12.0 1 12.2 

20.6 
25.7 

2.2 , 

2.0 

9.2 

1 7.1 
15.5 
25.5 
31.2 
27.0 

0.5 
0.9 
3.1 

19.6 
22.3 

54.7 
54.6 

16.3 
14.9 
23.2 

3.1 
s helterwood 

out 

2.6 1 27.6 
3.3 1 24.1 

0.5 
0.5 

3.4 6.9 

-- 

0.5 
0.5 

25.9 
30.4 

25.2 ' 
29.3 

2.9 

22.8 
,, 13.9 

26.3 , 

32.1 , 

23.0 
27.5 

27.2 , 

14.3 

23.3 2.6 

14.0 1 14.5 

20.5 



A.3.2 Field Metrics - Crown-Width Measurements 

t 1 clear cut 1 4.1 1 3.6 3.8 0.1 O. 1 
1 2 1 shelterwood 1 7.1 5.8 6.4 1 .O 1 .O 

# 

1 3 1 cofltrol 1 5.7 1 4.6 1 5.1 1 1.2 1 1.2 

Treatment 
Major Crown 

Width (m) 

1 5 1 clear cut 1 4.8 3.4 1 4.1 1 0.5 1 0.5 

Perpendicular 
Crown Width 

(m) 

1 1 1 
- - 1 8 1 out 1 6.3 5.0 5.6 1.3 1.3 

6 
7 

Crown 
. Diameter (m) 

1 17 1 selection / 6.2 1 4.8 1 5.5 0.6 1 0.6 

clear cut 
control 

[ 19 1 shelterwood 1 5.6 4.0 4.8 1 .O 1 0.9 

Crown 
Closure 

(circular) 

, 9 1 ciear cut I 4.5 

120 ( selection 1 6.0 5.0 5.5 1.1 1 t .O 

Crown 
Closure 
(ellipse) 

4.5 
5.6 

3.6 
4.0 
4.0 
3.6 
4.2 
4.6 
6.5 
5.6 

10 
11 
12 
t3  
14 
15 

121 1 control 6.5 1 4.8 5.7 1 1.6 1.6 
122 1 shelterwood ( 5.5 1 4.4 5.0 1 -2 1 1.2 

3.0 
4.4 

- 

4.0 
4.6 
4.7 
3.8 
4.5 
5.4 

1 16 ! contml 7.1 
1 1 

clear cut 
clear cut 

[ 23 1 shelterwood 1 4.9 1 3.7 1 4.3 1 0.7 1 0.7 

5.2 
5.5 

3.8 
5.0 

0.3 
0.5 
0.3 
0.1 
0.3 
1.2 

I ! 
-- -- - 

[ 27 / shelterwood 1 6.0 4.7 5.4 0.9 0.9 

0.3 
0.5 
0.3 
O. 1 
0.3 
1.1 

clear cut 
clear cut 
control 

out 

0.0 
1 .O 

1.8 
1.7 

1 

3.9 
4.8 
6.2 
7.8 7.1 

6.3 
r 

24 1 selection 

0.0 
1 .O 

1.8 
t .7 

5.9 
7.4 
4.8 

25 
26 

28 
29 
30 
31 
32 

, 33 
34 
35 

,36 

, selection 
sheltewood 

sheltennrood 
control 

. clear cut 

. char cut 
selection 
control 

, control 
shelterwood 

out 

--- 

0.5 
0.9 
0.8 

4.4 
5.2 
3.4 

- -  
T 

6.8 
6.3 
4.8 
6.2 
7.4 
8.2 
6.6 
6.1 
6.9 

- -- 

5.2 0.5 
6.3 0.9 

1.2 
1.4 
0.2 
0.4 
1 .O 
2.0 
1.4 
0.9 
1.4 

1.3 
1.4 
0.3 
0.4 
1 .O 
2.0 
1.5 
1 .O 
1.5 

-- 

5.2 6.0 

I 

5.4 
3.4 
4.6 
5.7 
6.8 
5.3 
4.9 
5.4 

4.1 

5.8 
4.1 
5.4 
6.5 
7.5 
6.0 
5.5 
6.1 

0.9 



A.3.3 Field Metrics - Measurements of Height 

# Treatment 

1 2 1 shelterwood 1 19.0 1 8.5 1 10.5 1 
clear cut 1 13.4 ( 2.8 

Tree 
height (m) 

10.6 

1 11 1 clear cut 1 15.4 1 5.2 1 1 0.2 1 

I 

4 
5 
6 
7 
8 
9 
10 

1 12 1 clear cut 1 17.2 / 9.2 1 7.9 1 

Base 
. height (m) 

1 1 3  1 clearcut 1 13.1 1 5.9 1 7.2 1 

Ctown 
Oepth (m) 

clear cut 
clear cut 
clear cut 

,~ controi 
out 

,, clear cut 
clear cut 

1 

1 14 1 control 1 17.2 1 6.9 1 10.3 1 

15.6 
16.3 
14.0 
18.1 
17.3 
15.3 
15.8 

[ 22 1 shelterwood 1 16.3 1 7.4 1 8.8 

15 
16 
17 

18 
19 
20 
21 

1 23 1 shelterwood 1 14.6 1 7.6 7.0 1 

6.3 
6.1 

,. 7.1 
8.0 
7.1 
7.2 

9.3 
10.2 
6.9 
1 O. 1 
10.2 
8.1 

1 26 1 shelterwood 1 16.9 1 8.3 1 8.7 1 

7.6 [ 8.2 

out 
control 

selection 
sheltenivood 

. sheltenivood 

24 1 selection 
25 1 selection 

9.4 
8.2 
7.3 
7.9 

A 7.6 

19.8 
18.3 
17.8 
18.0 
16.4 

1 31 1 clear cut 1 152 ( 7.3 7.8 1 

10.4 
10.1 
10.6 
10.1 
8.8 

19.5 
18.4 

32 1 selection 1 21.4 1 9.9 1 11.5 
I , 1 

9.4 
9.4 

selection 
control 

27 1 shelterwood 

1 33 1 control 1 19.9 1 9.0 1 10.9 
r I 

9.9 
8.2 

16.7 
. 16.9 

17.4 
14.1 

28 
29 
30 

1 34 1 control 1 19.6 1 8.0 ! 11.6 
1 I 

18.1 
18.0 

9.5 
10.2 

shelterwood 
control 

clear cut 

/ 35 1 shelterwood 1 18.4 1 9.2 1 9.3 I 

8.7 
8.6 

8.5 
7.7 
8.8 
6.8 

[ 36 ( out 1 20.8 ( 9.3 11.5 1 

8.2 
9.1 
8.6 
7.3 



A.3.4 Field Metrics - Based on Number of Trees 

1 5 clear cut 1 8.2 16.0 399.0 1 

4 
1 

2 
3 
4 

.. Treatment 
clear cut 

Baral Area 
. (m2/hs) 

0.5 

7 1 control 18.8 18.0 ! 448.9 
T 

shelterwood 
control 

clear cut 

6 1 clear cut 

# T m s  
2.0 

Stem Density 
(#ha) 
49.9 

- -  - 

16.0 
31.1 
4.3 

1 1 

0.9 

8 out 
9 1 clear cut 

[ 14 1 control 24.2 1 19.0 473.8 1 
[ 15 1 out 32.4 17.0 1 423.9 1 

r 

11 .O r 274.3 

1 .O 

20.0 
2.5 

10 1 clear cut 

16 ( control 27.1 ! 19.0 1 473.8 1 

21 .O 
6.0 

24.9 

8.5 
2.1 
1.7 
3.8 

11 
12 
13 

[ 17 1 select ion 1 8.3 10.0 249.4 1 

523.7 
149.6 

19.0 
8.0 

clear cut 
clear cut 
clear cut 

473.8 
199.5 

1 1 .O 
7.0 
3.0 
8.0 

- - 

274.3 
174.6 
74.8 
199.5 

, 18 1 shelterwood 
19 1 shelterwood 
20 1 selection 

1 30 1 ctear cut 2.8 1 7.0 174.6 1 
1 31 1 clear cut 1 2.9 7.0 174.6 1 

18.2 
13.7 
28.2 

22 
23 
24 
25 

, 26 
27 
28 

shelterwood 
shelterwood 

selection 
,. selection 

shelterwood 
shelterwood 
shelterwood 

16.0 
20.0 
16.0 

498.8 
399.0 
224.4 
249.4 
598.5 
374.1 
423.9 
473.8 , 29 1 control 

30.8 f 20.0 

32 
33 
34 
35 
36 

- -  

399.0 
498.8 
399.0 

20.0 
11.6 

18.4 
12.5 
16.2 
28.5 
27.6 

16.0 
9.0 
10.0 
24.0 
15.0 
17.0 
19.0 

select ion 
control 
control 

shelterwood 
out 

274.3 
423.9 
473.8 
349.1 
448.9 

15.0 
34.4 
20.2 
18.4 
32.6 

1 1 .O 
17.0 
19.0 
14.0 
18.0 



A.4 DGPS Information 

A.3.1 FH and ISD Plot Centres 

FH Projection: UTM Zone 17FH Daturn: WGS 84 
ISD Projection: UTM Zone 18 ISD Daturn: WGS84 

Study Site 1 EASTING 1 NORTHING] 

ISD 40 46701 5.98 5037278.97 , 

ISD 5 . 368100.05 491 4876.60 

ISO 21 490899.14 5004752.87 , 

5008704.54 , 

4955086.1 7 , 

5044784.66 

, ISD 23 513439.24 
ISD 3 
ISO 31 

405227.77 
487943.49 



A.1.2 TLW Plot Centres 

TLW Projection: UTM Zone 16 TLW Datum: WGS 84 

/ Plot # 1 EASTING 1 NORTHING 1 



A S  Sentivarience Analysis - Optimal Extracted Range Values ICr  Band 

Optimal Range in Metres Extracteû from the Ice Storm Damage 
and Forest Health Plot Sites 

Wavelenqth(nm): 403 416 424 431 438 446 453 461 468 476 483 490 498 
Retlectance Image: E-W 5 5  6 7  6 7  8 7 7 9 8 6 8 

1stDerivative:E-W 4 4 4  4 5 4 4 4  4  5 4  4  5 
2ndDeiivative:E-W 4  4  4  5 4  4 4 4  5  5 4 4 5  

ReflectanceImage:N-S 15 8 8 12 8 7  9 9 8 8 7  8 6 
IstDerivatlve:N-S 5 6  9 5 7  8 5 4 4  6  6 6  6  

2ndûerivative:N-S 9 6 6 IO 6  5  6 6  5  4 9 5 6 

Wavelength(nm): 
Retlectance Image: E-W 

1st Derivative: E-W 
2nd Derivative: E-W 

Reflectance Image: N-S 
1st Derivative: N-S 

2nd Derivatlve: N-S 

505 513 520 528 535 543 550 558 565 573 580 588 595 
9 7 7 7 7 7 7 7 7 7 7 7 7  
5 6 7 7 7 7 6 6 7 7 6 7 6  
6 6 5 6 6 6 7 7 7 6 6 5 4  
6 6 6 6 6 6 5 5 6 6 6 6 6  
5 6 6 6 5 6 5 6 6 6 7 7 5  
8 7 5 7 5 4 6 6 5 4 5 5 3  



-- - 

Wavelength(nm): 701 709 717 724 732 739 747 755 762 770 778 785 793 
ReflectanceImage:E-W 7 7 7 7 7 8 7 4 8 4 4 4 4 

1stDerivative:E-W 7 7 8 8 9 10 10 7 9 8 4 4 3 
2ndûerivative:E-W 7 10 12 9 8 8 8 8 8 7 8 4 4 

Reflectancelmage: N-S 6 6 6 6 6 5 5 4 6 4 4 4 3 
1stDerivative:N-S 7 6 7 7 10 11 17 5 t6 8 2 2 2 

2ndDeiivative:N-S 8 8 15 9 6 6 7 24 6 9 7 3 3 

Wavelength(nm): 801 808 816 824 831 839 047 854 862 870 878 885 893 
Reflectance1mge:E-W 4 4 4 3 4 4 4 4 3 4 5 4 4 

1stDerivative:E-W 3 6 8 4 5 4 3 3 4 4 4 3 8 
2ndDerivative:E-W 5 7 5 7 5 4 4 4 4 4 4 8 4 

Refîectancelmage:N-S 3 3 5 4 4 5 5 5 5 4 4 4 4 
1stDerivative:N-S 2 5 7 3 3 3 3 3 3 4 3 3 7 

2nd Derivative: N-S 4 5 4 6 4 3 3 2 4 3 5 6 4 

Wavetength (nm): 901 908 916 924 932 939 
Reflectance Image: E-W 3 4 4 4 4 5 

1st Derivative: E-W 5 4 4 5 6 11 
2nd Derivative: E-W 4 5 6 6 10 6 

Reflectance Image: N-S 5 5 5 5 5 6 
1stDerivative:N-S 5 4 6 6 7 33 

2nd Derivative: N-S 4 6 7 7 33 27 



A.6 CAS1 Image Wavelength Specifications 

Number of h a g e  Channels: 73 

Units nanometres 
Channel Wrivclrngth Haif-Bmdwidth 



A.7 Multiple Correlation Analysis Between the Field Metrics 

Crown Closure (circ) 

Num Trees 

Basal Area 

Stem Densitv 

Crown Crown Closure 

n=M 
DBHARIT~I 

Num Trees 
I 

Tree Hgt 

DBHouao 
R d . 9 7  
p=o.oOo 
R=-0.5 1 
p 4 . W  
R=O.56 
~ d . 0 2 5  

R=-OS 8 
pa.019 

1 Stem Density 
l 

1 n=16 ktem Density 
I Base Hgt (undcr-rtory ) 
Num l 

Trees 

krown 
Depth 

,, D B ~ A R ~ M  

R=-0.53 
~4.033 
R d . 6 5  
~ 0 . 0 0 7  

R=-0 -6 1 
p a . 0  1 Z 

Stem Denrity 
R d . 7 4  
p d . 0 0  l 

A 

R=0.84 R=-0.58 
TreeHgt p4I.W / p=0.017 

Base Hgt 

Canopy Width 1 

R=-0.78 
p=O.ooO 

(Major) Crown Diam. 



A.8 Test For Normality Of Field Data 

The Shapiro-Wilk test is the most commonly used quantitative test for normality when 
n d O .  If the data is normal. the value for W will be high and not significant (Shapiro et 
al.. 1968). The test uses the following hypotheses: 

Ho: there is no difference between the distri bution of the data set and a normal 
one 

HA: there is a difference between the distribution of the data set and normal 

If the P-Value is below 0.05 reject the Ho. 

The following field metrics where shown to approximate normal distributions according 
to the Shapiro-Wilk W statistic: basal area; crown depth; crown diameter. height to the 
crown base; LAI 5" ring, major crown width. nurnber of trees. tree height. perpendicular 
crown width; quadratic DBH; stem density. The distribution of these metrics. as well as 
the Shapiro-Wilkes test results are shown below. 



T a  ot N o m t y  for C r m  Dem 
ShapireWlik 'a= 93974. p< 3058 





Tsst of Normaty for %or Crown Wim 

Shapir~Wifk W= 95526. D< 5773 





Test of m a a t y  For 8arn Denoty 
Shagiro-Wtlk W= 95 1%. pc 5138 

Tast For Nomahty for Tree HeigM 
Sha~iro-WiUc 'N t  39320 a< 0626 



A8.1 Field Data Requiring Transformations 

The following field meuics were shown not to approximate normal distributions: circular 
crown closure; elliptical crown closure; LAI 4" ring; and percent canopy openness. The 
original disuibutions and the transformed normalized distributions are shown below. 

Circula Crown Closure 



Percent Canopy Openness 

Test for Nomlity of Percent Canopy Openness 
Shapiro-Wilk W= 77397, p< 0013 

4 6 Y 1 O 12 " tv 16 18 20 

Upper Boundanss (x  <= boundary) 

Nùnndizad Parcent Canopy Opsnness (transromad by SORT(x ) )  

ShapireWilk W= 82288. p< 0056 

- 
Normal 

1 5  3 0 3 5 0 O 4 5 Nomd 

Upper Boundanes (x <= boundary) 



LAI 4" Ring 

rest of Norrnaiity for LAI 4th Rmg 
Shapiro-Wik W= 85357. p< 0154 

Normalized LAI 4m Ring (transtoned ~y &J 

ShapireWilk W= 92297. p< 1883 

- Expected 
Normal 



Elliptical Crown Closure 




