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ABSTRACT

Hyperspectral remote sensing potentially allows for the development of image
processing techniques that could be applied over large areas to assess forest condition.
Current hyperspectral research for forestry tends to focus on deriving and modelling plant
physiological responses. Structural information is typically derived from a very different
type of image processing, using spatial techniques on high spatial resolution data. This
research involved the incorporation of hyperspectral and spatial processing techniques to
derive structural indices from Compact Airbome Spectrographic Imager (CASI)
hyperspectral data that were correlated with structural characteristics of sugar maple
stands.

Data collection for this work involved a field campaign to characterize the stand
and canopy structure of selected sugar maple stands in southeastern and central Ontario.
These stands covered a variety of canopy conditions ranging from varied silviculture
treatments applied in the Algoma region of central Ontario to various levels of damage
resulting from the 1998 ice storm in eastern Ontario. Hyperspectral CASI reflectance
data were collected for these areas in 1998 and 2000 respectively.

Hyperspectral image processing involved the calculation of first- and second-
derivative images from the reflectance data and subsequent semivariogram analysis to
characterize range and anisotropic information for each calibration site. These range
values were used to derive texture features from the reflectance and derivative data.

Correlation analysis was used to identify spectral, derivative, and texture indices that



were correlated to ground-based structural metrics. Indices that showed strong
correlations were then applied to validation sites to assess robustness.

Results illustrate that the integration of spatial and hyperspectral techniques
improve the relationships with ground-based structural metrics over what could be
derived using either technique alone for these data. For example, a dissimilanty texture
index applied to the second dernivative of the 505 nm channel has strong correlations with
percent canopy openness (significant at 95% confidence intervals) at the calibration sites
(r=0.83) and the control sites in the validation study area (r=0.82). By identifying
correlation patterns on the spectral and derivative curves (a technique that is not possible
with multispectral data). it has been demonstrated that hyperspectral data has unique and

valuable information to add to remote sensing of forest structure.
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Acer saccharum,

You reach up to the sky and release the breath of life through your open arms.

It grieves me that we butcher you, we carelessly poison you, slowly eliminate you.

How poorly we understand you.

Whisper the secrets of centuries through your leaves. | am listening.
Have patience, gentle ones, as [ struggle with your lessons.
[ will not abandon you. [ am your sister.

V. Thomas
August 19, 2000
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1.0 INTRODUCTION

There are approximately 418 million hectares of forest in Canada, almost half of
this nation’s land mass. Maintaining the sustainability, biodiversity, and long-term health
of Canada'’s forests through effective management is a subject of interest for a variety of
groups, including the federal and provincial governments, industry, environmental
groups, and the Canadian public in general. The National Forest Strategv (1998-2003) —
Sustainable Forests: A Canadian Commitment (Canadian Council of Forest Ministers
(CCFM), 1998) identified the need for a national framework of criteria and indicators for
sustainable forest management. This has been extended to the forest industry in Ontario,
through the Crown Forest Sustainability Act, 1994 and the Policy Framework for
Sustainable Forests (Ontario Ministry of Natural Resources (OMNR), 1998). which
require that Crown torests be managed in a way that will meet the social, economic, and
environmental needs of both present and future generations. In 1999, a strong emphasis
was placed on intensive silvicultural treatment practices, with recommendations put
forward in Canada’s Senate Subcommittee Report on the boreal forest and in Ontario’s
Living Legacy (Taylor, 1999 OMNR, 1999: Lautenschlager, 2000). Unfortunately,
current limitations in field survey techniques with regards to high costs, subjectivity, and
low spatial and temporal coverage severely limit decision making by forest resource
managers. Remote sensing and related technologies offer significant potential for
classification and monitoring of ecosystem classes, and the estimation of
ecological/biophysical parameters at multiple scales. This increases the ability of
foresters to consider the emerging concepts of landscape ecology when adopting
management strategies, and to research the importance of spatial arrangements of forests
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and processes within them for the functioning of organisms, groups, and ecosystems
(Farina, 1998).

There are several definitions of landscapes and numerous disciplines have
adopted the concepts of landscape ecology in an attempt to understand some of the
complex spatial interactions of life on Earth. Haber (in Farina, 1998, p. 2) came up with
a general definition of the landscape as “a piece of land which we perceive
comprehensively around us, without looking closely at single components, and which

‘

looks familiar to us.” This broad definition of a landscape (i.e., based on perception) is
suitable for remote sensing research, since the whole field of remote sensing is based on
obtaining different views or perceptions of the surface of the earth. Without the use of
remote sensing, human perception of the landscape is restricted to that which can be
viewed from the ground. Foresters survey field sites containing what they perceive to be
a reasonably homogeneous assemblage of plants to obtain average measurements for the
area. They then extrapolate to the larger surrounding area assuming that their definition
of homogeneity is maintained and that the larger area can be considered as a unit or
stand. Remote sensing has opened the door to allow the study of the forest ecosystem at
many levels, and to extend our perception of the forest landscape to regional, provincial,
national, and even global spatial scales. The potential for monitoring process and
function within the landscape at various temporal (and spatial) scales has also been
greatly enhanced with this technology. This is particularly true of spacebome sensors,
which can provide continuous coverage of large portions of the Earth’s surface.

Currently in the remote sensing community there is a divided research focus on

the potential of very high spatial and spectral (hyperspectral) resolution data for the
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analysis of forest ecosytems in terms of structural and physiological response. The
majority of current hyperspectral research focuses on deriving and modelling plant
physiological characteristics and responses. This is typically done at the laboratory/leaf
scale and is often “upscaled” to the canopy level using a variety of geometric-optical
canopy reflectance modelling techniques (Zarco-Tejada et al., 1999; Peddle and Johnson,
2000). In this manner, the goal of many research initiatives is to relate quantifiable leaf-
scale spectral response to the spectral reflectance captured at the airborme/canopy scales.
The driving goal behind typical hyperspectral research is to eventually move to satellite
platforms, without losing the integrity of detailed physiological information available at
the laboratory/leaf scale. Structural information, on the other hand, is typically derived
from spatial information available at high resolution airborne or satellite platforms, with
less consideration given to detailed spectral response. In this scenario, the focus has been
on spatial patterns within the image, often incorporating texture, geostatistics, or
component fraction techniques in an attempt to quantify the spatial arrangement and
pattern of the landscape.

With current technology, most hyperspectral data is obtained using airbomne
platforms. A hyperspectral data cube contains information both on the detailed
physiological canopy response and the spatial patterns and variations of canopy spectra.
However. the potential benefits of having detailed spectral information to supplement
high spatial resolution data have been largely ignored for structural research. There has
been little work done towards the integration of spatial and hyperspectral techniques for

the extraction of structural information. The focus of this research has been on the
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integration of hyperspectral and spatial techniques to extract spectral derivatives over
spatial extents that quantify structural information about the forest canopy.

Research questions on forest physiology and structure can be addressed by
hyperspectral remote sensing through the analysis of the electromagnetic response that is
captured by the sensor. The interaction between electromagnetic energy and the leaf has
been studied at both the laboratory and canopy scales for physiological research.
Relationships between the first and second derivatives of the spectral curve and cellular
biochemical processes have been established (i.e., Belanger, er al. 1995; Zarco-Tejada
and Miller, 1999: Treitz and Howarth, 1999; Sampson, 2000). By assessing the spatial
distribution and pattern of these processes as well as the pattern of shadow and gaps in

the canopy, this research relates the electromagnetic response to forest structure.

1.1 Hypothesis

It is hypothesized that there are quantifiable relationships between the spatial
distribution of hyperspectral response measured at airbome scales and ground-based
biophysical variables measured at the stand level. By incorporating both hyperspectral
and spatial techniques, structural indices can be derived from airborne hyperspectral data

to estimate biophysical charactenstics of sugar maple stands.

1.2 Objectives

To test the stated hypothesis, the following research objectives were addressed:
1. to develop a digital database of stand structural data for control sites and those

that have undergone natural or silvicultural-induced change;



2. to explore the use of hyperspectral image processing techniques, geostatistics and
texture analysis for identifying relationships between airbome hyperspectral data
and ground-based data; and

3. to derive empirical indices that are correlated with sugar maple biophysical
characteristics and demonstrate potential for predicting forest structural

parameters.

1.3 Study Sites

Ideally, in order to assess the utility of hyperspectral data for the monitoring of
forest biophysical parameters, one would hope to study the relationships under varying
structural conditions. In practice, this is quite difficult to achieve, since scientists are
often constrained to the torest conditions that exist at their study site at the time the
remote sensing data are collected. However, for this study, a unique opportunity existed
to access a range of forest structural conditions for sugar maple stands throughout
Ontario. Various sugar maple canopy structural conditions resulting from differing
silviculture treatment practices were available for study at the Turkey Lakes Watershed
study area north of Sault Ste. Marie. In addition, the destructive 1998 ice storm that
affected large portions of eastemm Ontario and southem Quebec provided a range of
natural occurring structural changes to sugar maple canopies. Finally, sugar maple stands
in central Ontario were studied. These had not been logged and were located outside the
area of damage from the 1998 ice storm. Combined, these sites encompassed the range
of canopy structural conditions most likely to be found in Ontario’s sugar maple stands.

This provided a comprehensive “testing ground™ for the utility of hyperspectral remote



sensing for the monitoring of forest biophysical parameters. The approximate locations of

the study sites within Ontario are shown in Figure 1.

Lake
Superior

Sault Ste Maric

XTurhey Lahes Hanvosting Impacts Pruject
® Furvst Health Plut Control Sites
* lee Sturm Damage Sites

9 lole} 200 miles

h TAO 3!0 km

Figure 1: Locations Of Study Sites Used For Calibration (Index Development) And Validation

1.3.1 Calibration Sites

Calibration sites included unmanaged sites (that were used as controils in the
development of indices) and managed sites that were damaged by the 1998 ice storm
(used as damaged sites for the development of indices). These sites were all selected
from previously studied forest plots set up by the Ontario Forest Research Institute
(OFRI). In 1996, OFR! created the Bioindicators of Forest Condition Project to “develop
a Forest Condition Rating (FCR) System to classify condition on a quantitative scale
from healthy to stressed, relative to an acceptable range of values” (Sampson, 2000. p.1).

This was an interdisciplinary project that involved the use of remote sensing and ground-
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based measurements of structural and physiological components of forest condition. One
of the aims of the project was to use airbormne nyperspectral remote sensing to overcome
the conventional labour-intensive approach required to measure the physiological
response of individual trees. As part of the Bioindicators of Forest Condition Project,
multiple sites were selected across Ontarto that covered a range of canopy conditions,
including sites damaged by the 1998 ice storm. The goal was to collect hyperspectral
data in the summer of 2000, which would correspond to a field campaign to characterize
physiological response. Through cooperation with OFRI, a concurrent field campaign
was designed to characterize the ground-based structural parameters for these sites.

OFRI then provided hyperspectral data for consideration of structural conditions.

1.3.1.1 1998 Ice Storm Damage (ISD) Sites

The ice storm of January 5-10, 1998 was one of the most destructive natural
disturbances ever recorded in North America (Lautenschlager and Nielson. 1999).
Throughout the St. Lawrence and Ottawa River valleys, as well as upstate New York,
parts of New England, and the Maritimes, extended periods of supercooled rain, which
froze on contact, caused extensive damage to the forest canopy (Lautenschlager and
Nielsen, 1999). Since that time, a variety of short- and long-term socio-economic and
ecological concems have been raised about dealing with the loss and damage caused by
the storm, as well as preventing future damage caused by similar storms.

The sugar maple stands in this area were severely damaged by the storm, resulting
in considerable effort being placed on understanding the impacts of the storm on the

production of maple syrup. In 1998, the Ontario Ministry of Natural Resources (OMNR)



assessed and categorized the damage of the ice storm to sugar maple stands privately
owned by maple syrup producers. Depending on the extent of the structural damage, each
location was categorized as having light, moderate, or severe damage. An
interdisciplinary sugar maple study was then established to:

“document how tapping effects sugar maple recovery probabilities; the

potential of cost-effective remedial treatments to speed recovery of, and

mitigate further damage to sugar maple stands; the effects of damage and
potential remedial treatments on sap production (volume and sweetness);

and some ecological consequences of damage and potential remedial

treatments (Lautenschlager and Nielson, 1999, p.636).”

The experiment consisted of 35 one-hectare plots on privately owned maple syrup
farms that accounted for the range of canopy damage classes. Each plot was 100 m x 100
m, divided into 50 m x 50 m quadrants. The quadrants were used to test the effect of
remedial ferulizer treatments, including: 1) no treatment; 2) the addition of phosphorus
and potassium: 3) the addition of lime and magnesium: and 4) the addition of
phosphorus, potassium, lime, and magnesium (Lautenschlager and Nielson, 1999).

Of these 35 plots, twelve were selected for the Bioindicators of Forest Condition
Project for the airbome hyperspectral mission (Figure 1). These plots covered the entire
range of canopy damage as assessed by the OMNR, with four plots in each category of
low, moderate, and severe damage. Stand structural data were coliected for each of these
twelve plots in June and July of 2000. The hyperspectral data for these plots were

collected in July, 2000. Due to poor flight conditions, two of the original twelve plots

were dropped from the mission, leaving ten ISD plots for the development of structural

indices.



1.3.1.2 Forest Health (FH) Sites

In 1985, a network of over 100 permanent hardwood Forest Health (FH) sites
(each containing a 60 m x 60 m plot) was established by the Ontario Ministry of the
Environment and Energy (OMEE), whose purpose was to assess acid rain and low-level
ozone damage to stands throughout Ontario (Sampson et al., 2000). Annual assessments
of these stands were completed to develop a historical database of crown condition in the
form of a Decline Index (DI). This index incorporated information on proportion of dead
branches in the canopy with chlorosis information to calculate a numerical value used to
categonize crown damage as low, moderate, or severe (Sampson et al., 2000). The DI
values were used to select six hardwood FH plots that covered a range of canopy
conditions. These six sugar maple stands were not used for the production of maple
syrup and were [ocated outside of the area atfected by the 1998 ice storm (Figure 1). For
the purpose of this research, they served as control or “natural” condition sites for the

development of structural indices.

1.3.2 Validation Site

1.3.2.1 Turkey Lakes Harvesting Impacts Project

The Turkey Lakes watershed (TLW) is located in the southern portion of the
Boreal Shield Ecozone, approximately 60 km north of Sault Ste. Marie, Ontario.
Characteristic tree species in the area include sugar maple (Acer saccharum Marsh.),
yellow birch (Betula allegheniensis Amold), red maple (Acer rubrum L.), white spruce
(Picea glauca). ironwood (Ostrya virginiana), balsam fir (Abies balsamea), and eastern

white cedar (Thuja occidentalis) (Natural Resources Canada (NRCan), 1998). The forest



in this watershed consists of tolerant hardwoods that have in the past been high-graded
for quality logs, resulting in a present day forest that is “an uneven-aged, generally
mature-to-overmature, old growth tolerant community. ...The percentage composition of
Acer spp. and Betula spp. is quite high (ca. >90% in total) (Sampson, 2000, p.33).” The
topography in this area of the Algoma Region is rugged, with shailow, Precambrian-
derived till soil (NRCan, 1998).

In 1979, a 1000 ha study area was established in the TLW by the Canadian Forest
Service (CFS) and other interest groups as part of a project to study the impacts of the
long-range transport of air pollutants on aquatic and terrestrial ecosystems (NRCan,
1998). Emerging from this project in 1997, the Turkey Lakes Harvesting Impacts Project
(TLHIP) was developed for the lower part of the watershed "to examine the impacts of
harvesting practices on the ecosystem and to calibrate a range of harvesting prescriptions
to this important forest type” (NRCan, 1998, htp://www.glfc.forestry.ca/index-
en/research-e/forest_ecology-e/turkeylakes-e.html).  In particular, the TLHIP was
designed to study the effects of human induced variations to the light regime, which is a
dominant growing force in closed canopy forest environments. As stated by NRCan
(1998: http://www.glfc.forestry.ca/index-en/research-e/forest_ecology-e/turkeylakes-
e.html), “any disturbance process that increases light penetration sets off a chain of
events, many of them interrelated, that change the structure, composition, function and
process within the stand.”

The TLHIP sites consisted of four silviculture treatment methods; control,
selected cut, shelterwood, and clear cut. Control sites were untreated in the experiment,
and consist of old-growth closed-canopy conditions. The selected cut (also referred to as
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selection) treatment is a system in which individual trees are selected and removed over a
large area, resulting in an uneven-aged stand. This system tends to be more common on
productive logging sites (Sampson, 2000). Shelterwood harvesting involves two or more
successive cuts which provide a source of protection and seed for regeneration. This
results in an even-aged stand, and tends to be more common on less productive sites
(Sampson, 2000). For this experiment, only the first cut had been made, meaning that the
shelterwood and selected cut sites would have very similar characteristics. Clear cut
harvesting involved the removal of most or all stems, in this case everything with a
diameter greater than 10 centimeters. Obviously this is not the preferred harvesting
method if the goal is to achieve a sustainable forest management practice. However, for
the purpose of the TLHIP, it served as the maximum site disturbance, with almost
complete canopy removal. For this research, 36 plots with an 11.3 m radius were
sampled within the TLW. The layout of the sample plots within the TLHIP site is
illustrated in Figure 2. These plots were used for validation (i.e., to test the robustness of
the derived indices on an independent dataset with different structural conditions in the

canopy).
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Figure 2: Validation Plots Within TLHIP Site

1.4 Thesis Outline

This research consists of four main components: 1) a comprehensive literature
search to determine the current state of research regarding hyperspectral remote sensing
of forest biophysical parameters; 2) an intensive field campaign to characterize the forest
biophysical parameters for the identified study site; 3) compilation of a digital database
containing the raw field data as well as calculated metrics; and 4) an image processing
phase used to relate the field parameters to the airbome hyperspectral data and various
denvatives/indices. The key information derived from the literature review is presented
in Chapter 2. Methods utilized for the field campaign, digital database compilation, and
image processing are presented in Chapter 3, followed by a presentation of major results

in Chapter 4. A discussion of these results and their implications for remote sensing of
12




forest ecosystems is presented in Chapter 5. Finally, the major conclusions drawn from

this work and recommendations for future research are presented in Chapter 6.
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2.0 BACKGROUND

Before discussing some of the issues that have arisen around hyperspectral remote
sensing and its potential for monitoring forest structure, it may prove useful to briefly
examine how hyperspectral remote sensing fits within the context of remote sensing in
general, and why it has generated such interest for forest ecosystem monitoring.

Lillesand and Kiefer (1994, p.1) define remote sensing as:

“the science and art of obtaining information about an object, area, or

phenomenon through the analysis of data acquired by a device that is not

in contact with the object, area, or phenomenon under investigation. ™
This includes the collection of any form of data, with common types including force,
acoustics, and electromagnetic (EM) energy. The research for this thesis concerns the
collection of EM energy for the purpose of monitoring the Earth’s surface, in particular
forest ecosystems. With such a broad definition, it becomes apparent that various aspects
of remote sensing science and the study of EM energy can be traced throughout human
history. perhaps as far back as ancient Greek civilization. As early as 300 BC. Anistotle
theorized about the nature of light and the transparency of certain objects in its presence
(Estes, 1997). Remote sensing using EM energy has existed since the evolution of
vision, which is simply a way for the body to sense EM energy in the visible portion of
the EM spectrum, convert this energy into signals for the brain, and process these signals
to allow humans and animals to study their surroundings.

Recent technological advances have allowed for the study of EM energy outside
the visible range. through the use of such devices as spectroradiometers, sonar, radar, etc.

As carly as the 1950’s, multispectral sensor technology allowed for the relatively crude
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spectral characterization of reflected and emitted EM energy (Estes, 1997). These
sensors collected digital imagery in 3 to 10 spectral bands, each of which contained broad
averages of EM energy (bandwidths of approximately 70-400 nm). Multispectral
satellites were launched in the 1960’s and 1970’s, with rapid progress made in the
development of analytical techniques for the image data collected (Landgrebe, 1998).
Earth scientists have found multispectral remote sensing useful for a variety of
applications, including forestry, agriculture, geology, oceanology - essentially any
application that could benefit from monitoring the landscape from different perspectives
(and scales) than is possible with human vision at the ground level.

Since the 1980’s, the development of airborne hyperspectral sensors has allowed
for the shift from the analysis of a few broad bands of noncontiguous, multispectral
imagery to the more complex retlectance spectroscopy (Goetz er al., 1985; Vane et al.,
1993, Landgrebe, 1998; Clark, 1999). Imaging spectroscopy has been performed in a
laboratory setting for the past 100 years, and can be defined as the study of reflected or
scattered light as a function of wavelength through use of a spectrometer (Clark, 1999).
In this sense, a hyperspectral remote sensing scanner is a special type of multispectral
scanner that records many bands of imagery at very narrow bandwidths. To create an
image, multiple spectrometers are aligned in an array to cover a ground area, creating a
recognizable image at any one spectral wavelength. This allows the spatial information
to be collected in the x-y dimension, with spectral information contained in the z
dimension, forming what is referred to as a data cube.

There are usually around 100 to 300 spectral bands of relatively narrow
bandwidths (i.e., 5-10 nm) in a hyperspectral dataset. Compared to the earth monitoring

15



remote sensing platforms developed prior to hyperspectral sensors, this represents a
dramatic increase in the amount and detail of spectral information available for any given
location on the surface of the earth. It has allowed for the generation of a spectral
signature for a given location, compared to the broad approximation based on the few
bands in a traditional multispectral sensor.

There are distinct advantages associated with hyperspectral data that have been
observed in the laboratory setting for some time. With a more complete spectral
signature, it is possible to identify different groups of materials on the Earth’s surface
based on their characteristic spectral response and, in many cases, it is possible to
determine the identity of individual members of such groups. Individual materials that
occur within a class (for example, specific minerals within a broader mineral group or
individual species of trees within a forest) often express their vanations in composition as
slight shifts in the peaks and troughs within the spectral curve continuum. In addition,
hyperspectral sensors have the ability to detect very subtle changes in the spectral
response of an object over time. This has led to considerable research into the utility of
hyperspectral remote sensing for the detection of vegetative stress and the eventual
detailed monitoring of vegetative health from satellite platforms.

Progress in the analysis of hyperspectral data has not been as rapid or successful
as originally anticipated (Landgrebe, 1998). This has been due to a variety of factors,
which relate to the size and complexity of hyperspectral datasets, limitations in computer
processing capabilities, environmental conditions introducing noise, and the sensitivity of
surface materials to environmental conditions causing variations in spectral reflectance.
To cover the same spatial extent as would be seen with a multispectral scanner, the
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datasets become very large, requiring the development of new processing techniques.
Ironically, most of these techniques have focused on extracting the most appropriate
wavelength ranges for a particular study, in order to eliminate redundant or less useful
bands. This then allows for analyses using processing techniques developed for
multipspectral data.

There are further complexities introduced when attempting to study vegetated
environments. Within-species reflectance from a vegetated surface will vary depending
on season, illumination, nutrient regime, availability of water, etc. Some studies have
illustrated that despite the original expectations of many remote sensing scientists, it has
not been possible to uniquely identify and separate all vegetative species (Hoffbeck and
Landgrebe. 1996). mainly due to the variability of vegetative response across space and
time. In response to the potentials and problems outlined above, hyperspectral research
with regards to vegetation analysis has been narrowly focused on deriving and modelling
plant physiological responses. This has been done by examining subtle variations in the
spectral signature and developing very specialized spectral indices. The complexities
introduced by the examination of structural information, which is a spatial phenomenon,
have curtailed research in this area. Research towards the utility of hyperspectral data for
the extraction of structural information for a forest ecosystem, specifically sugar maple

forest, has been largely unexamined to date and is the focus of this research.

2.1 Spectral and Hyperspectral Techniques

Spectral indices are transformations applied to image data, including ratios and

linear/nonlinear band combinations, specifically designed to enhance some aspect of the
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reflectance surface (Jensen, 1996). Govaerts ez al. (1999) describe a spectral index to be
a single number derived from some multivaniate function using two or more spectral
observations. The result of a spectral index is a single channel of data, where each pixel
contains a value that describes the characteristic for which the index was designed
(Jensen, 1996). One of the overall objectives in the design of vegetation indices is the
monitoring of vegetation through the measurement of spatial and temporal variations of
vegetation composition and photosynthetic activity (Dawson, 1998). More specifically,
the objective is the development of indirect measurements of biophysical parameters such
as leaf area index (LAI), fraction of absorbed photosynthetically active radiation (faPAR
or FPAR), biomass, and percent green cover (Sellers, 1985; Goward and Huemmrich,
1992; Treitz and Howarth, 1999), as well as geophysical measures of soil condition,
surface wetness, and plant stress.

In general, green vegetation exhibits several spectral response characteristics in
the visible and near infrared (NIR) portions of the EM spectrum that are different from
other materials on the earth’s surface. This includes 80-90% absorption by chlorophyll
in the visible range (Jensen. 1996), with a slight peak of reflectance in the green range,
known as the “green peak”. The “absorption well” in the red region of the EM spectrum
is followed by a dramatic increase in reflectance in the NIR of 40-50% (Jensen, 1996).
The transition area of the reflectance curve between absorption in the red region and
reflectance in the NIR is known as the “red-edge”, which has been shown in several
studies to be sensitive to vegetative stress (Mohammed er al., 1997; Sampson ez al.,

1998).
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Other surface materials have spectral response curves that are dramatically
different than vegetation in the visible/NIR region. Water absorbs almost all EM
radiation in the NIR portion of the spectrum. Materials such as soil and litter generally
exhibit a steady increase in reflectance with wavelength in this region (Goward, 1989).
These consistent differences in spectral response are the basis for the assumption that
indices can be designed to detect and measure the presence and condition of

photosynthetically active vegetation surfaces.

2.1.1 Narrow-Band Indices

Corresponding to the development of remote sensing technology, most of the
common spectral indices (e.g., Normalized Difference Vegetation Index (NDVI)) were
originally designed for broad-band sensors (A summary of the common broad-band
indices found in current literature is included in Appendix Al.l and Al.2). However,
standard laboratory spectroradiometer equipment and hyperspectral sensors can measure
radiance at a much finer spectral resolution. Where a broad-band sensor can provide one
value as an average of the most intense radiance in a certain range, a hyperspectral sensor
can provide a contiguous curve for the same area. It has been shown that stressed
vegetation will show a change in the red edge of the spectral reflectance curve which can
be described as a shift in the inflection point from longer wavelengths (red) towards
shorter wavelengths (blue). While spectroradiometers and hyperspectral sensors have the
ability to record these shifts, broad-band multispectral sensors are not. In fact, most of
the red edge is not even sensed for the more common broad-band sensors, which tend to

focus on the red and the NIR, and not the transitional region between them. This has led
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to the development of hyperspectral indices of two types. The first is the adaptation of
proven broad-band indices to hyperspectral datasets, which involves the selection of
appropriate narrow band(s) to use in place of the broad bandwidths discussed above. A
current issue undergoing research in this area is whether or not the hyperspectral data can
actually achieve higher correlations to biophysical parameters than the more general
broad-band sensors. Second, hyperspectral indices have been developed to accentuate
subtle spectral features on the continuous curve (Appendix A.1.3).

There has been some success in developing and relating hyperspectral indices to
various forest parameters at the leaf and (to a lesser degree) canopy levels. Most of these
relationships concern physiological rather than structural parameters, where changes in
these measurements have been related in some way to plant stress. These physiological
parameters include a variety of plant measures that can be analyzed in a controlled
laboratory setting, including fluorescence, chlorophyll a & b, light absorbing pigments,
proteins, nitrogen, lignin, carotenoid concentrations, and cellulose (Belanger, et al. 1995;
Zarco-Tejada and Miller, 1999: Treitz and Howarth, 1999; Sampson, 2000). In order to
understand and mode! such forest ecosystem processes as photosynthetic efficiency, leaf
litter decomposition rates, and net primary production, knowledge of these physiological
parameters is crucial (Dawson, 1998).

There has been less work done to relate spectral indices to forest structural
parameters, which would include anything that describes the physical presence of forest
vegetation. Most of these parameters would be very difficult to represent in a laboratory
setting and are very much a function of the scale of observation. Some examples of
structural parameters of interest include LAI, crown closure, tree height, tree density,
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biomass, leaf and canopy density, live stem size, live/dead volumes, and live/dead stem
density (Olthof and King, 1998; Treitz and Howarth, 1999; Sampson, 2000). To date,
research reported in the literature regarding forest structural parameters involves the use
of spatial statistics, textural analysis, and multiple regression/multivariate techniques
(Yuan et al., 1991; Hershey er al., 1998; Olthof and King, 1998; Davison et al., 1999;
Phinn er al., 1999; Seed er al., 1999; Seed and King, 2000).

Due to the nature of hyperspectral datasets, the techniques used to derive these
indices tend to be more involved than broad-band indices and very specific to a particular
application. Careful consideration must be made to the biophysical parameter of interest
and the best way of relating the parameter to the reflectance data. To reduce the number
of bands required and select the most appropriate band combination often requires
rigorous statistical procedures, which help identify the highest correlations between the
parameter of interest and the wavelength(s), width of the waveband, and/or their
combinations (Dawson, 1998; Merton, 1998; Schmuck er al., 1998; Goveartz et al.,
1999).

One area of current research focuses on the geometric characteristics of the red
edge and the movement of its inflection point. These relationships can be evaluated
through the calculation of first- and second-order derivatives. First-order derivative
transformations provide a slope curve that will help to emphasize any subtle differences
on the red-edge curve, which may point to useful information regarding absorption and
reflection features that would otherwise be obscurred (Elvidge and Chen, 1995; Novo et
al., 1995. Merton, 1998). The red-edge inflection wavelength (A;) can be found by
calculating the second derivative, with the inflection point being the value where the
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second derivative equals zero. There are a variety of theoretical applications for A
including the monitoring in spectral shifts for a vegetation community over time (Merton,
1998). This has been correlated to changes in chlorophyll, LAI leaf inclination angle,
and various plant stress factors (Merton, 1998; Mohammed et al., 1997; Sampson et al.,
1998). However, recalling the discussion above regarding the confounding factors with
broad-band indices, it becomes immediately apparent that hyperspectral calculations are
even more problematic beyond a laboratory setting.

First- and second-order derivatives have also been used for the development of
hyperspectral indices by integrating the area under the denvative curves of discrete
narrow-waveband spectra over the red-edge, or in areas that have been highlighted in
first-order derivatives to be areas of subtle or rapid change in slope (Elvidge and Chen,
1995 Thenkabail er al., 1999). Elvidge and Chen (1995) subtracted a iocal-derivative
baseline from their integrated indices to remove background effects, which they found to
improve the overall performance of the indices. They also reported using a Fourier
transform smoothing algorithm (Press er al., 1989) to smooth the reflectance spectra
before differentiating.

As was the case with the broad-band spectral indices, there are many
hyperspectral indices currently being developed for a variety of applications (Appendix
A.1.3 and A.1.4). One of the issues of concern regarding the utility of hyperspectral
datasets for vegetation indices is the overwhelming quantity of data that is associated
with each image. Determining the optimal wavelength bands (i.e., feature selection)
useful for the analysis of certain biophysical parameters has been a crucial technique used

to reduce the original dataset to a more manageable size. This is a challenging process
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and often requires the use of statistical regression and modelling techniques. Key to the
success of these techniques is a good understanding of the biophysical parameters of
interest. When examining the reflectance characteristics of a hyperspectral dataset in
general, it has been found that high spatial resolution is more significant than high
spectral resolution to identify surface types (Price, 1997). However, when analyzing the
specific spectral behavior of a certain parameter, very fine spectral resolution may be
required in one or more regions of the EM spectrum.

One analysis technique of interest is the use of multiple linear regression analysis
to relate biophysical parameters to reflectance. Thenkabail er al. (1999) describe the use
of a model to perform an analysis of this type, which calculated the best R® values for
one. two, four. and n-band combinations using reflectance as the independent variable
and biophysical parameters as the dependent variable (using the stepwise MAXR
procedure in the statistical package SAS). Thenkabail er al. (1999) describe the outputs
of this technique as a class of vegetation indices labeled the Optimal Multiple Narrow-
Waveband Reflectivity indices (OMNBR). These models (indices) can be tested to
determine how much of the variability of the biophysical parameter can be explained by
the narrow-waveband variables. Significance testing can be used to determine the utility
of additional wavebands, which provides a justifiable method of determining appropriate
wavelengths and prevents models from “over-fitting” the dataset (Blackburn, 1998;
Thenkabail. 1999). The OMNBR techniques can be very helpful in identifying regions
on the spectral reflectance curves that are important for certain biophysical parameters.
This would be especially useful if some optimal information about the parameter of

interest 1s not located in the red or NIR wavebands.



Similar regression approaches can also be taken to determine the best possible
band combinations to calculate narrow-band versions of the common broad-band indices
{e.g., NDVI). This has been accomplished by calculating all possible combinations of
NDVI and then correlating them with biophysical parameters (Merton, 1998; Thenkabail
et al., 1999). This provides a more rigorous procedure than simply selecting the peak
bands in the red/NIR regions. As well, it allows for the probability that the bands
selected for a narrow-band NDVI for one biophysical parameter (LAI for instance) may
not provide the highest correlation possible for another (e.g. biomass). These
considerations appear to be significant, as several authors have utilized different
wavelengths for the narrow-band NDVI calculations (Merton and Harvey, 1997; Merton,
1998 Thenkabail er al., 1999; Zarco-Tejada et al., 1999).

[t should be noted that when correlating a hyperspectral index to a biophysical
parameter, it is not necessary for the most appropnate relationship to be linear. There are
a variety of possible relationships between the index and the parameter of interest, which
will depend on how a model can be fit to the plot trends to give the best R? value.
However, one should view a lower R* value from a higher order relationship with caution
when selecting an appropriate model, as the results in regions which have not been
adequately sampled are highly suspect. Thenkabail er al. (1999) found that linear and
exponential relationships were the most satisfactory models for hyperspectral crop
indices. This can also be true when relating broad-band indices to biophysical
parameters, as found by Friedl et al. (1995) when relating NDVI (from Landsat TM) to

LAI and FPAR.



Other approaches to developing hyperspectral indices found in the literature
revolve around modelling the spectral response curve or the soil line in spectral space
(Merton, 1998; Govaertz, 1999). Merton (1998) created a linear model of the red-edge
geometry of the spectral reflectance curve, where the degree of concavity between the
upper portion of the red-edge curve and the linear model were used as a measure of
vegetation stress. However, in this case, the index was designed to be highly
interpretable and somewhat generic, where positive values indicate areas of high stress
and negative values indicate low stress. Merton (1998) also had some success relating
this index to NDVI for several vegetation communities. There was no report of any

attempt to relate this stress index to any specific biophysical parameter.

2.1.2 General Comments on Indices

Upon examination of the characteristics of hyperspectral datasets and the
techniques required to perform meaningful analysis with these data, it becomes
immediately apparent that most of the problems relating to the effectiveness of broad-
band indices will also affect the narrow-band indices. While the very specific nature of
most narrow-band indices allows for the possibility that confounding factors can be
reduced, the complexity of the datasets increases the potential for confusion. In order to
successfully exploit the detailed nature of hyperspectral datasets, it is evident that
detailed information on the study area at the time of observation is crucial (more so than
for most broad-band studies). This would also include observation conditions that could
affect the sensor, such as illumination conditions, orbital information, solar conditions,

etc. [t is then necessary to determine and account for the significance of these factors on
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the specific study of interest. The sheer magnitude and relative novelty of this task may
explain the variety of approaches noted in the literature for the development of
hyperspectral indices, as the remote sensing community is attempting to address a wide
range of issues in this area. Govaerts et al. (1999) have outlined a general approach for
the design of optimal spectral indices, which could be adopted in most cases to ensure
that the optimal spectral index is developed. However, the specific methodology for
finding an optimal solution is still completely dependent on the question being asked and
the data available to address it.

There is a key difference between the development of a hyperspectral index for
forest structural parameters and physiological characteristics. As noted above, most
indices denived for physiological parameters are developed in laboratory settings at the
leaf scale, followed by attempts to “scale-up”, usually through the use of canopy
reflectance models (e.g.. Grossman et al., 1994; Zarco-Tejada et al., 1999; Peddle, 1999).
Structural parameters on the other hand cannot really be measured in a laboratory. If the
goal is to relate an existing hyperspectral index to a parameter of interest, the procedures
would generally be similar in either case. However, when deriving a new index designed
specifically to enhance some structural characteristic, it would be very difficuit to
establish this relationship prior to image analysis. Based on the literature findings, it
seems evident that hyperspectral indices for forest structure will require additional spatial
considerations and inputs from a variety of processing techniques. Some of these
techniques include canopy reflectance modelling, spectral unmixing analysis, spectral
inversions, geostatistical analysis, multiple regression techniques, and statistical
significance testing. Careful consideration must also be made regarding the scale of
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observation and field analysis. While there is obviously great potential in this area, it is
clear that success has been somewhat limited to date, and research is really just

beginning.

2.2 Spatial Techniques

Remote sensing images of the Earth's surface have distinct spatial properties
charactenistic of the landscape at the scale of observation. However, for most
applications traditional remote sensing research has concentrated mainly on the spectral
response characteristics of objects or areas of interest. This information would then be
used to assess the health, status, and/or change in the natural environment over time.
Although it was recognized to be a potential contributing factor, little consideration was
given to the appropriate scale of study for the process of interest and the pattern of this
process across the landscape. This was, in part, due to the historical limitations on
remote sensing technology. which severely restricted the options for choice in the spatial
resolution of remotely sensed images from space. In many cases, the scientist would
simply select the best resolution possible in order to obtain all the spectral information
available for a study area. In recent years, advances in technology have enabled very
high spatial- and spectral-resolution satellites to be developed for the monitoring of
natural resources. This has opened the door for analysis of the landscape at many scales,
which has led to a present day focus on a variety of scale issues for remote sensing
analysis (e.g., Marceau, 1999).

One of the problems encountered by remote sensing scientists when using very

high spatial resolution data is the increased volume of data that must be collected to cover
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the same area that a coarser resolution sensor would traditionally have covered. This is
due to the obvious fact that coarser spatial resolution sensors require fewer picture
elements, or pixels, to cover the same area. This is compounded when considering the
increased spectral resolution of a suite of hyperspectral satellites to be launched over the
next ten years. With the increased number of spectral bands available for analysis, this
will further increase the data quantity by over 200 times the current data sources.
Without consideration of scale and pattern in datasets of this size, the sheer quantity of
the information will become unmanageable.

Another consideration that has become the focus of much recent attention is the
aggregation of datasets across multiple scales for the purpose of studying multi-scaled
spatial phenomena in the landscape. This has led to what is commonly referred to as the
Modifiable Areal Unit Problem (MAUP), described first by Openshaw and Taylor
(1979). The MAUP consists of two seperate but interrelated components; i.e., scaling
and zoning (Openshaw and Taylor, 1979, 1981: Openshaw, 1984; Jelinski and Wu, 1996;
Marceau, 1999). The scaling problem exists because of varying results that occur when
datasets are aggregated into fewer and fewer units for analysis. Zoning can be described
as the variation of results that exist due to the many possible methods of aggregating data
at the same scales, while still maintaining the same overall number of units (Openshaw
and Taylor, 1979, 1981; Openshaw, 1984: Jelinski and Wu, 1996; Marceau, 1999). The
implications of the MAUP on spatial data and its influence on spatial statistics of
estimation and significance testing has been further presented by Arbia (1989). To date,

one of the most promising hopes for managing the MAUP at an acceptable level has been



through the integration of spatial autocorrelation statistics with the analysis (Marceau,

1999).

2.2.1 Spatial Statistics

The main premise behind spatial statistics is the simple concept that points closer
together tend to be more similar than points farther apart. This is what is commonly
referred to as “The First Law of Geography”, and is the basis behind the analysis of
surface structure. The very concept of spatial structure implies that the fundamental
assumption behind classical inferential statistics, that observations are independent of
each other, cannot be applied. This means that statistical analysis of spatial data must
include consideration of the dependence of observations on each other and on location.

In current statistical methods, there are two ways to consider structure in spatial
data, either through trend surfaces or spatial autocorrelation statistics (Jongman er al.,
1995). Trend surfaces imply a gradual change with the landscape, where there is a direct
relationship between points. However, in reality, random variations and spatial clustering
are often present in the landscape, which confounds the assumptions behind trend surface
analysis. In contrast, spatial autocorrelation statistics suggest that short-range variation is
often correlated but random. In other words, points closer together tend to be more
similar than points farther apart, but there is no direct relationship between them
(Jongman er al., 1995).

A variable is autocorrelated (or regionalized) if it is possible to predict its value at
a given point in space by knowing its value at other locations (Legendre and Fortin,

1989). Typically, autocorrelation is described as being either positive or negative, where
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positive autocorrelation refers to the case when close or adjacent points have very similar
values and negative autocorrelation refers to the case of close or adjacent points having
unlike values (Legendre and Fortin, 1989). Another measure of the spatial variation of a
dataset is the semivanance. Semivanance of an increment Z(x;) — Z(x,) can be defined
as half of the variance of the increment (Jongman er al., 1995). Semivariograms are used
to describe spatial structure in the data or to interpolate surfaces based on a theoretical
model.

A semivariogram is a graph with semivariance plotted on the ordinate axis and
distance classes on the abscissa. The semivariogram is composed of three main
descriptive components, namely the range, sill. and nugget. According to Curran (1988),
the sill can be descnbed as the ordinate value at which the semivariogram levels off.
This corresponds to the vanance of the sumples. The range is defined as the distance at
which the levelling off occurs. This distance describes the extent of the spatial structure,
and can be considered the distance after which points are no longer correlated. The
nugget variance is simply the semivariance at distance 0.0 (the intercept), where a value
of non-zero implies intrinsic variability (sampling error) or variability at a smaller scale
than observed (Curran, 1988).

One of the problems with scale in remote sensing and the MAUP is that it is
always possible to reduce the resolution of the image pixels. When examining processes
in landscape ecology, it is known that very different processes are occurring even at the
microscale level. As remote sensing technology becomes capable of sensing at finer and
finer resolutions, some of these smaller processes will contribute more significantly to
EM response. As well, a variety of physiographic factors will influence the EM response
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at many levels. For this reason, the nugget variance is not particularly useful when
examining the semivariograms for a remotely sensed image. Rather it is much more
common to determine the range and sill values, and evaluate the shape of the
semivariogram curve in order to assess the characteristics of the landscape processes
which may be causing such EM response. It should be noted that there are many
instances in the natural landscape where a sill is never reached in the semivariogram
being analyzed. This indicates that remote sensing data often exhibits charactenstics of
being non-stationary. making autocorrelogram analysis inappropriate in these cases and
providing further impetus for a semivariogram approach (Curran, 1988).

The assumption that these graphs are independent of direction is called the
assumption of isotropy (Jongman et al. 1995), with semivariograms that assume
isotropy being referred to as all-directional or isotropic. However, in many instances
direction has a significant effect on the shape of these graphs. For example, when
considering a repetitive landscape such as rows of planted trees, one would expect a
periodic semivariogram when examining transects across the rows, but the shape along
the rows could be unbounded or aspatial. This directional effect is known as anisotropy
(Jongman er al.. 1995), and it has a significant impact on the interpretation of the

semivariogram.

2.2.1.1 Optimal Sampling
One of the objectives of performing spatial autocorrelation statistics on remotely
sensed data is to determine the optimal sampling size for the process under study. This is

done by examining the spatial extent of the structure in different directions and choosing
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the minimum extent as the optimal remote sensing resolution (Curran, 1988). This
considers the effect of anistropy when determining the appropriate spatiai resolution of
the dataset. However, it should be noted that by collecting square pixels, true
consideration of anistropy when considering optimal resolution is not possible. The ideal
situation would be the capability to adjust the shape and size of the pixel according to the
expected autocorrelation in the study area. However, this is an extremely impractical
approach when using remotely sensed data, where sampling methods are dependent on
the technological capabilities of the satellite (or airbome sensor) and the computers which
process the resulting images. By taking the minimum range, all of the necessary
structural information present in the data is captured while reducing the noise as much as
possible.

Woodcock and Strahler (1987) describe a technique for determining the optimal
sampling spacing by analyzing local variance. Here, the idea is that if the pixel size is
much smaller than the size of the object on the surface, the local variance (vaniance
between neighboring pixels) will be low. The variance will then increase as pixel size
increases until an inflection point is reached and the local variance begins to decrease
again. Woodcock and Strahler (1987) interpreted the inflection point to occur where the
pixel size is such that it minimizes the local autocorrelation. Hypannen (1996) used the
method of local variance to determine the optimal spatial resolution to study a boreal
forest environment. In this study, he created ten images with pixel resolutions ranging
from Im to 10m (by spatially averaging the values from a | m resolution dataset). He

then calculated the variance for windows of nine neighboring pixels and plotted this



against spatial resolution. This gave an indication of optimal sample size based on the

aggregation of square pixels.

2.2.1.2 Theoretical Semivariograms

Theoretical semivariograms have also been shown to be very useful for extracting
paramaters from the semivariogram (such as range and sill), as well as modeiling surfaces
through interpolation (kriging). To make use of the theoretical semivariogram, the
empirical semivariogram must first be calculated using the estimator described in
previous chapters of this paper. Once this has been done. the shape of the semivariogram
is examined, and an appropriate theoretical model is chosen to represent the data.

There is much to be learned about using the theoretical semivariograms to model
the empirical semivariogram. It can be easily shown that there is no satisfactory method
for choosing the best model. Often the shape of the semivariogram is such that more than
one of the theoretical models will fit the empirical semivariogram to approximately the
same degree of success. For remote sensing data analysis, theoretical semivariograms are
typically used to extract a variety of parameters from the image (Fleming, er al., 1999).
With imagery, surface interpolation is not often required, because a surface already exists
as an inherent characteristic of a raster dataset. Rather, interpolation techniques are used
to design appropriate field sampling campaigns (Fleming, er al., 1999). The selection of
the theoretical semivariogram is often not based upon the most appropriate model.
Rather, various forms of the spherical and exponential models are heavily preferred

because they provide an easily interpreted range and sill value (Curran, 1988; Curran and
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Atkinson, 1999). In this case, parameters are adjusted to provide the best possible fit

with this model.

2.2.1.3 Comments On Spatial Statistics

Applying spatial statistics to remotely sensed images is not a simple task. In
addition to the complications previously mentioned, it shouid also be noted that different
structural effects may be apparent for each wavelength band, as well as each direction.
This is simply a function of current remote sensing technology and the variation in
spectral response across wavelengths. To date, most remote sensing scientists consider
spatial autocorrelation for each band separately, rather than trying to incorporate the
bands into multivariate techniques. An exception to this trend was reported Sampson ez
al. (2000), who applied semivariogram analysis to features derived from principal
component analysis.

It is apparent that remote sensing scientists are only beginning to understand some
of the complexities involved with the application of spatial autocovariation techniques to
very high spatial and spectral resolution remote sensing datasets. To date, multivariate
techniques such as the Mantel correlogram and the partial Mantel tests (described in
Legendre and Fortin, 1989) are not even being successfully applied to these types of data.
In fact, the remote sensing community as a whole is struggling to fully understand the
implications of autocorrelograms and semivariograms when applied to issues such as
scaling of the landscape within an image.

With the problems anticipated from the huge influx of data expected with the

launch of hyperspectral and high spatial resolution satellites, it is obvious that the use of
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spatial autocorrelation techniques will be crucial for the elimination of data captured at
inappropriate scales for the study in question. Marceau (1999, p.355) suggests that
spatial statistical techniques such as autocorrelation and semivariogram analysis
“illustrate that it is possible to control and predict the MAUP effects to
some extent. But, most of all, they represent further steps toward the

derivation of theoretically sound and operationally practical methods to
deal with the issue.”

2.2.2 Texture for Forest Structure

Textwure features in an image relate intensity values of neighbouring pixels for a
specified window size, usually repeated over the entire image, providing some
description of the intrinsic spatial variability of the image (Raghu er al., 1995. Zhou and
Civco, 1998 Treitz et al., 2000). Visually, this is analogous to the appearance of
roughness in the image. Given this definition, there are a wide variety of algorithms that
have been developed to quantify image texture, including the spatial statistics described
in the section above. For the most part, texture tends to be broadly categorized into
structural and statistical measures (Tian and Murphy, 1997; Zhou and Civco, 1998).
Structural approaches are designed to describe repetitive patterns in terms of their
primitive elements and the geometrical relationships between them (Tian and Murphy,
1997). On the other hand. statistical approaches estimate parameters of random texture
that describe image roughness with neither repetitive pattern nor orientation (Tian and
Murphy, 1997). Other less frequently reported textural measures include fractals, texture
spectrum, spectral texture pattern matching, autoregressive models, log-normal random
field models, fourier analysis, and wavelet transforms (Wang and He, 1990; Gong et al.,
1992; Jensen, 1996; Zhou and Civco; 1998; St.-Onge, 1999; Treitz er al., 2000).

35



To date, the most common utility for texture analyses in remote sensing
applications has been for the improvement of image classification. This has resulted in
statistical texture measures being the most extensively and successfully applied, since
they meet the stochastic assumption of digital image classifiers (Jensen, 1996; Zhou and
Civco, 1998; Treitz et al., 2000). There are many first-order image statistics that can be
calculated for each band, including such measures as mean, standard deviation, variance,
entropy, skewness, kurtosis, etc. (Jensen, 1996). Although these measures have shown
statistically significant relationships with land cover types, second-order statistics have
been shown to be a superior method of texture representation, due in most part to the fact
that one or more first-order statistics are contained within the second-order measures
(Yuan et al., 1991; Treitz et al., 2000). These second-order statistics are based on gray-
level co-occurrence matrices (GLCM). As described by Zhou and Civco (1998, p. 575),
a GLCM “measures within-window frequency of pairwise occurrence of brightness
values of points separated by the vector defined by the inter-pixel distance and
orientation.” Based on the GLCM, a variety of second-order statistics can be derived.
including the angular second moment, contrast, and correlation (Yuan, 1991; Jensen,
1996: Zhou and Civco, 1998).  The neighbouring grey-level dependence matrix
(NGLDM) is another measure that has been used to calculate the large number emphasis
(LNE) and second moment texture (SMT) statistics for synthetic aperture radar (SAR)
data (Rotunno et al., 1996; Treitz er al., 2000).

The approaches discussed in the literature for textural assessment of forest
structure are quite varied, with no single technique showing a distinct superiority over
others. The most prevalent in the remote sensing literature is what can be described as an
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empirical/statistical approach that seems to be concentrated from research in geography,
environmental, and earth-science departments. This work focuses around using
regression techniques to relate field measurements such as basal area, crown closure, tree
height, diameter at breast height (DBH), stem density, etc. to image spectral, textural, and
structural (many researchers refer to geostatistics as a form of texture analysis) features.
Most commonly reported textural techniques from this group are first- and second-order
statistics (Yuan er al., 1991; Hay er al., 1996; Olthof and King, 1998; Seed er al., 1999;
Davidson et al., 1999) and/or geostatistics (Cohen and Spies, 1990; Bowers et al., 1994;
Hay er al., 1996: King, 1997; Hershey er al., 1998; Butson and King, 1999: Lévesque and

King, 1999; Phinn er al., 1999: St.-Onge, 1999).

2.3 Integration of Hyperspectral and Spatial Techniques

It is evident that the combination of spatial techniques with hyperspectral indices
is a logical extension to the assessment of forest structural parameters. Intuitively, the
ideal hyperspectral/spatial analyses should allow for the exploitation of the complete
spectral curve and examination of how aspects of interest on the curve vary spatially.
Given the current state of computer and image processing technologies, it is now quite
feasible to analyze the entire data cube without reducing it to a more “‘manageable” size.

One way of approaching this is to extend the spectral calculations that are
normally done on point locations to cover the entire image. For example, the current
method to calculate the red-edge inflection point is to select a specific pixel, extract the
spectral signature for that pixel, calculate the first and second derivatives of the spectral

curve and determine where within the red edge the inflection point is equal to zero
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(Merton, 1998). This is normally done with samples at the same spatial location over
time, to see if the location of the REIP is shifting over time. It is also possible to see if the
REIP is shifting over space. This can be accomplished by repeating the calculations for
the REIP for every pixel in the image, creating first- and second-derivative images, each
containing the same amount of channels as the original hyperspectral image. The second-
derivative image could then be used to determine the wavelength on the red edge where
the inflection point is equal to zero for each pixel in the image, resulting in a REIP image.
Texture and geostatistical analysis could then be completed on any or all of the images
(the original hyperspectral data, the first- and second-derivative images, or the REIP
image) as a way of incorporating both the spectral and spatial characteristics into index
development.

By approaching the analysis in this way, it is possible to explore many more
relationships than simply the spatial variations of the inflection point. Once the
derivative images are created, the spatial patterns of any promising feature of the
hyperspectal or derivative curves could then be examined. In this way, from an image
processing perspective, the hyperspectral dataset can be fully explored in a spatial
context. The predicted limiting factor when attempting to relate hyperspectral data to
field-based measurements would be the suitability of the field-based measurements for
hyperspectral analysis at the scale under consideration. The techniques discussed in this
chapter. along with other approaches currently being examined by various researchers,
promise an exciting future for the integration of remote sensing, landscape ecology, and

spatial statistics.
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3.0 METHODS

This chapter outlines the design and implementation of the field campaign, with
the objective to collect ground-based measurements of forest structure at sites that
corresponded to the collection of remotely-sensed data. Procedures used to analyze
these field data; collect and process the remotely-sensed data; and derive spectral indices

are described.

3.1 Field Data Acquisition

From May to July 2000, a field campaign was undertaken with the objective of
characterizing the structure of sugar maple stands in eastern and central Ontario (refer to
Chapter 1.3 for a description of these sites). Data collection for these sites, coincided
with a Compact Airbomme Spectrographic Imager (CASI) mission flown in July 2000.
The field campaign was extended to the TLW in July 2000 to collect a similar database

for silviculture treatment sites. The CASI data for the TLW were collected in July 1998.

3.1.1 Differential Global Positioning System (DGPS) Data

In May of 2000, initial GPS mapping was undertaken to record the plot
dimensions and significant features expected to be visible in the CASI imagery. At each
site. white panels were laid out as targets in locations visible from the sky. At a
minimum, three targets (approximately 9 feet x 9 feet) were used at each site, distributed
as evenly as possible around the exterior of the piot. Care was taken to ensure that the
targets were located such that they would not be obscured by canopy growth later in the

season. The precise locations of these targets were recorded using DGPS, and served as
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ground control points by which the CASI hyperspectral data could be corrected and
georeferenced. These data were collected using a Trimble Geoexplorer Il system and
differentially corrected to the Universal Tranverse Mercator (UTM) projection.

For many applications, the errors now associated with uncorrected GPS are small
enough for the coordinates to be used without differential correction. However, errors
associated with the ionosphere, the troposphere, ephemeris data, satellite clock drift,
measurement noise, and multipath can still cause inaccuracies in the order of +/- 10 to 20
metres (Trimble Navigation Limited, 1996). Any errors that are common to both the base
(i.e., reference) and roving GPS receivers can be eliminated using differential correction
(i.e., DGPS). For recreational and mapping grade receivers, including the Trimble
Geoexplorer used for the field campaign, this typically reduces planimetric error (i.e.,
x.y) to 1 to 5 m (Tnmble Navigation Limited, 1996). The ditferentially corrected
locations for the ISD and FH plots were used for planning and implementing the CASI

mission, and subsequently for linking ground-based data to the CASI hyperspectral data.

3.1.2 Mensuration Data

Some experimentation was required to design the most effective sampling scheme
to capture the characteristics of the trees that contributed to the forest canopy. For the
ISD plots, this initially consisted of sampling all trees with diameter at breast height
(DBH) > 10 cm that fell within a 17.6 m (=0.1 ha) radius of the centre of each quadrant
(described in Chapter 1.3.1.1). For each site, this would have covered approximately 0.4

ha, or about 40% of the total plot area (Figure 3).
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Figure 3: Initial Sampling Design

Field experience quickly illustrated that this design was prohibitively time
consuming. However, ground exploration of the sites indicated that for some locations
there was considerable variation between the quadrants, which would require sampling in
all quadrants. It was determined that a more appropriate approach was to reduce the
radius of the sampling areas, while increasing their distribution across the plots. By
reducing the sampling radius to 11.3 m (=0.04 ha, a radius also used for field
measurements by foresters at the CFS (Baldwin, 2000)), and centreing 5 locations on the
quadrant centres and plot centre, a 20% coverage was achieved while at the same time
capturing more of the existing variation within the plot. The following figure illustrates
the layout of the final sampling design. Note that due to time constraints, the centre plot
was not sampled for three of the ISD plots (ISD 19, ISD 31, and ISD 40). The site

averages for these three sites were derived from the quadrant sampling areas.

41



AN
%

Figure 4: Sampling Design For Ice Storm Damage Sites

Within each sampling area, every tree with a DBH > 10 cm was assessed for
DBH. height to the top of the crown, height to the crown base, width of maximum crown
axis, width of crown perpendicular to the major width axis, and species. Measuring
tapes, designed specifically for measuring stem diameter, were used to measure the
diameter of the tree at approximately 1.6 m above ground (i.e., breast height). Tree
heights were measured with laser vertex equipment (Haglof Vertex Hypsometer models 1
and 3). which consisted of a transponder and a receiver. To operate this equipment, the
transponder was held or attached to the tree at eye level. The vertex was taken away
from the tree, level to the transponder at least as far as the tree was tall. A cross-hair
sighting was then used to align the receiver with the transponder to get a measurement of
the distance from the tree. The vertex was then aimed at the apex of the tree crown to
obtain a measurement angle, followed by a similar reading to the base of the crown. The

vertex would compute height using triangle geometry.



There were several factors to be considered when using the vertex. Care was
taken to ensure the vertex was properly calibrated to the height of the person sampling.
Distance to the base of the tree was shown to have an impact on height calculations, with
longer distances providing more consistent results. This was easily explained when
considering the geometry of the calculations, where a slight variation in angle would have
a larger impact when the distance to the base was shorter. For this reason, the estimated
height of the tree was used as an approximate minimum guide for the base distance. It
was also necessary to come up with a consistent method for determining the base of the
crown. [t became apparent during the field exercise that the base of a sugar maple
canopy was not always distinct, with minor branches occurring all the way down the
trunk to almost ground level. It was determined, in consultation with personnel of the
CFS. that the most appropnate method was to select the bottom major limb as the crown
base, ignoring the smaller branches that grew down the tree (Baldwin, 2000). Canopy
widths were measured either using the laser vertex, with the transponder and receiver
held under opposite edges of the canopy, or with a tape measure.

As mentioned, previous field work by various groups in the TLW had resulted in
a considerable amount of mensuration data stored in various formats by several forest
scientists. Although these data were extensive, it was not consistent across all of the
sites, and did not contain all of the same measurements taken at the ISD and FH plots.
Therefore, the field work at this location was mainly completed to collect data missing
from the database. This included tree heights of all trees with DBH > 10 cm within an
11.3 m radius from the plot centre, as well as the two measures of canopy width.
Hemispherical photos were also taken at the centre of each plot. Scientists at OFRI and
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CFS provided the remainder of the data in either digital or hardcopy format. Refer to

Chapter 1.3.2 for a description of the size and layout of these plots.

3.1.3 Canopy Hemispherical Photography

To determine canopy closure, hemispherical photos were taken at each quadrant
and plot centre. This was done using a camera and fish-eye lens, at a height of one metre
above the ground. leveled. and oriented towards north. Care was taken to ensure that
there was a minimum of one metre overhead clearance from hanging branches.
Photographs were taken using sky, red. and blue filters for each location, preferably in
overcast conditions. In cases where the sky was clear, the camera was configured to have
the sun behind the trunk of a tree, minimizing the effects of sun glare.

To catalog any general observations, ground-, eye-, and canopy-level photographs
were taken at each site. Any unusual field characteristics were noted in the logs, and any

unusual or unidentified features were photographed.

3.2 Field Data Processing

With the exception of the hemispherical photos, all of the mensuration data
collected in the 2000 field campaign were in hardcopy format. To facilitate use of these
data for analysis, all data were entered into digital spreadsheet templates and/or GIS data
layers. This allowed for the calculation of forest metrics for analysis with the CASI data.
Due to external interests in the TLW, this database, which was far more extensive, was
developed separately in MS Access and integrated into ArcView GIS. Once all of the

data were in a digital format, average forest metrics were calculated.



3.2.1 Mensuration Data

Several forest metrics were calculated from the field measurements. Due to the

differences in plot size and layout between the ISD, FH, and TLW plots, there were some

variations in the calculation methods for each location.

For the ISD plots, average

parameters were calculated for the entire plot, as well as for each quadrant (i.e. A, B, C,

D as discussed in Chapter 1.3.1.1). Table | outlines the forest metrics used in this study,

with the exception of those determined from the hemispherical photos.

Table 1: Forest Metric Equations (Adapted From Hansen er al, 2001)
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3.2.2 Canopy Hemispherical Photography
Leaf area index (LAI) is an index often used to characterize the geometric

structure of a plant community, and can be described as the ratio of the leaf surface area
of a plant to the amount of ground surface beneath it. It is related to forest canopy light
penetration, snow accumulation and melt, interception, evapotranspiration, productivity,
and the carbon budget (Waring and Running, 1998). Quantifying LAI for a forest canopy
site is very difficult, and it is often approximated with “effective LAI", which is
calculated from some measurement of canopy gap fraction (derived in this case from
hemispherical photos). Digital image analysis to compute effective LAI and percent
canopy openness was completed using the Gap Light Analyzer Software v 2.0 (Frazer er
al.. 1999). The analysis consisted of three main steps: 1) image registration, where the
orientation (described above) and circular extent of the hemispherical photo were
identified; 2) image classification, where thresholding was used to create a binary image
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of visible and obscured sky (canopy openings and foliage); and 3) calculation of LAI and
percent canopy openness based on the classified image.

Hemispherical photographs were collected so that north was at the top of the
image (Figure 5). This facilitated geographic registration in a consistent manner for each
photo. The circular extent of the hemispherical photo was directly identified by manual

interpretation of the image.

Figure 5: Orientation Of The Hemispherical Photograph

Image classification of canopy openness and foliage required some
experimentation to select an appropriate threshold value. This required interpretation and
judgement in each case, as results varied considerably depending on acquisition
conditions.  In particular, cloud cover, which ranged from completely overcast to

completely cloud free, and sun angle, which ranged from low (early moming/late
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afternoon) to high (mid-day), caused two types of confusion in certain areas of the image.
The first and most common source of confusion occurred when leaf edges were sunlit
from the side or were directly in line with the sun and were mistaken for sky, resulting in
considerable underestimation of the vegetation component (Figure 6). The second source
of error occurred when dark blue sky was mistaken for vegetation, which resulted in

considerable overestimation of the vegetation component.

Figure 6: Leaf Edge Effects For a True Color and Threshold Image

Having three images for each site (true color, red filtered, and blue filtered)
assisted considerably in the reduction of these errors. In most cases, the blue component
of the blue-filtered image appeared to be the most effective for classification purposes,
significantly reducing the sky and leaf-edge effects. This can be noted in the
improvements with the blue component of the same image that was previously shown,

along with its threshold image (Figure 7).
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. 3

Figure 7: Blue Component and Threshold Hemispherical Image

Due to vanations in acquisition conditions, it was found that there was no simple
way of accounting for the confusion in an automated manner. The most effective method
for producing a binary image was the manual adjustment of the thresholds, chosen by
comparing the original image to the classified image and modifying the thresholds where
necessary (Prenzel, 2000). Once binary images were generated, percent canopy openness
was determined by calculating the proportion of the area of the hemisphere that was
foliage (black) or open sky (white). This information was input to effective leaf area
index algorithms to determine LAI, which were calculated based on the integration of

zenith angles of 0 to 60 degrees (LAl 4" ring) or 0 to 75 degrees (LAI 5" ring) (Frazer e

al., 1999).

3.3 Compact Airborne Spectrographic Imager (CASI) Data

The Compact Airborne Spectrographic Imager (CASI) was used to collect the
hyperspectral data for this research. CASI is a visible/near-infrared pushbroom imaging

spectrograph with a reflection grating and a two-dimensional CCD solid-state array
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measuring 512 x 288 pixels (Gray et al., 1997). CASl is capable of three sensor modes,
which vary in terms of spatial and spectral resolution. These include: mapping mode;
hyperspectral mode (72 spectral channels); and full-spectral mode (288 spectral

channels).

3.3.1 CASI Data Acquisition

CASI data were acquired from a Piper Navajo Chieftan aircraft in July, 1998 for
TLW and in July, 2000 for the ISD and FH sites. Mapping and hyperspectral mode data
were collected for all sites by the Centre of Research for Earth and Space Technology
(CRESTech) as part of the Bioindicators of Forest Sustainability Project. Mapping mode
data were collected at approximately 0.5 m spatial resolution (spatial resolution varies
according to altitude and velocity of the aircraft), with 7 spectral bands (Zarco-Tejada,
2000). These data were used to locate the field sites and plan the hyperspectral mission.
The hyperspectral mode data were collected at approximately 1.5 m spatial resolution for
the ISD and FH sites, and at approximately 2 m spatial resolution for TLW (Zarco-
Tejada. 2000). All hyperspectral data consisted of 72 spectral bands with approximately
7.5 nm spectral resolution (Appendix A.6). While the hyperspectral mode mission was
being flown, ground-based aerosol optical depth data were collected by scientists from
York University using a Micro-Tops III sunphotometer at multiple wavelengths (i.e., 40;

380; 440; 500: 670: 870: and 1020 nm) (Zarco-Tejada, 2000).

3.3.2 CASI Data Preprocessing

CASI data were collected at 12-bit radiometric resolution and pre-processed by

CRESTech to at-sensor radiance using calibration coefficients developed at CRESTech
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(Zarco-Tejada, 2000). The aerosol optical depth data collected in the field were used to
derive aerosol optical depth at 550 nm. This information was used with the CAMSS
atmospheric correction model to process the hyperspectral radiance data to ground
reflectance (Zarco-Tejada, 2000). Finally, these data were geo-referenced using DGPS
data collected on the aircraft. This process involved the resampling of the hyperspectral
data to 1.5 m square pixels for all of the ISD and FH sites, and 2 m square pixels for

TLW (Zarco-Tejada, 2000).

3.3.3 CASI Data Processing

The objectives of the hyperspectral image processing phase of this research were
to quantify the relationships between the field measurements of forest structure to the
CASI hyperspectral data.  These relationships were then used to develop structural
indices for the sugar maple environment. Hyperspectral and spatial techniques were
explored concurrently, and then combined to take advantage of the high spatial and
spectral resolution of the CASI data cube. Currently, the spectral curve and its derivatives
are normally considered at a single point irrespective of spatial pattern. However, by
creating calculus images, it is possible to explore the spectral curve and its derivatives to

discover spatial patterns.

3.3.3.1 Calculus Images

The following calculus secondary images were generated from the original
hyperspectral data: 1) first-derivative image; 2) second-derivative image; 3) red-edge

inflection point image; and 4) integral image (integrated over the entire spectrum).
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To generate the derivative and integral images, it was necessary to incorporate
computer programming techniques to iterate through the entire hyperspectral data cube.
For each spatial location, the entire spectral curve was extracted. Numerical
differentiation was performed using three-point, Lagrangian interpolation to create a new
derivative curve. This curve was then written to a new image, and a new derivative data
cube was generated in a pixel-by-pixel fashion. The second-derivative image was
generated using the same method, applied to the first-derivative cube. To generate an
“integral image”, a similar “pixel-by-pixel” approach was taken to extract the spectral
curves. In this case, a five-point Newton-Cotes integration formula was used to
approximate the single-value integral solution to the spectral curve.

As discussed in Chapter 2, the REIP is often an area of interest for vegetative
analysis. To examine the spatial variations of this value, a single image channel was
created, with each pixel containing the wavelength where the inflection point value of the
spectral curve was equal to zero. This was determined by examining the second-
derivative cube in the wavelength region where the red edge would occur, somewhere
between red and NIR regions of the EM spectrum (600-800 nm). Again, a computer
program was generated to examine the second derivative curve for each pixel within the
600-800 nm wavelength region. To determine the exact location of the REIP, the two
consecutive image channels where the shorter wavelength had a second derivative less
than zero and the longer wavelength had a second derivative greater than zero were
isolated. A linear interpolation was then calculated between these wavelengths to extract
the exact position where the inflection point was equal to zero. This was done for the
entire image to create a new “REIP” image. Note that this calculation is only valid for
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cases where the pixel actually contains vegetation. For other land-cover types, a value
for the REIP, while mathematically possible, would be meaningless. To ensure that non-
vegetated pixels did not confound the analysis, a value of zero was assigned to any pixel
where the sign of the second-derivative did not change from positive to negative over the
600-800 nm region.

3.3.3.2 Narrow-Band Indices

There has been considerable hyperspectral work completed at the leaf scale to
relate spectral reflectance to biochemical parameters such as chlorophyll a, chlorophyli
fluorescence, efficiency of radiation use, pigment, % nitrogen, % lignin, vegetative stress,
and photosynthetic capacity. This has resulted in a collection of narrow-band indices
reported in the literature (Appendix A.1.3 and A.1.4). To date, these indices have not
been correlated to forest structure parameters. To test them, the ratio-based narrow-band
indices presented in Appendix A.1.3 were calculated using the most closely matching
CASI channels. This resulted in 31 new channels, with each channel containing the

resulits of one of the narrow-band indices (Table 2).

Table 2: Creation of Existing Narrow-Band Index Image

Index Modified Formula
(Appendix A.1) (wavelength, nm)
PRIl (528-565)/(528+565)
PRI2 (528-573)/(528+573)
PRI3 (550-528)/(5504528)
PRI4 (573-543)/(573+543)
NDVII (831-671)/(831+671)
NDVI2 (778-671)/(7784671)
VOGI1 740/724
VOG2 (732-74N)(717+724)
VOG3 (732-747)/(7324724)
G_MI 747/550
G_M2 747/701
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LICI (801-679)/(801+679)
LIC2 438/694
LIC3 438/740
SRPI 431/679
NPQI (416-438)/(416+438)
NPCI (679-431)/(679+431)
Gl 558/679
SIPI (801-453)/(8014+648)
SR 778/679
CTRI 694/424
CTR2 694/762
RVSI [(717+755)/2)-732
VOG4 717/709 (1* deriv)
LIC4 integrate 453-679
ADR integrate 679-762
LPR max(679-747)
LP1G max(498-603)
LP2G min(498-603)
RO min(648-701)
RS max(701-770)

3.3.3.3 Geostatistical and Texture Analysis

Geostatistical results will vary based on wavelength and spatial resolution
(Sampson, 2000: Treitz, 2001). Since a single, optimal filter size does not exist across
the entire data cube, geostatistical analysis was performed prior to specifying an
appropriate filter size for texture calculations. To accomplish this, transects in the north-
south and east-west directions were extracted for each channel at every site.  For every

transect, empirical semivariograms were calculated (Jongman er al., 1995):

n-h
. Yiz(x, +h-Z(x))

yhy== 20-h (13)

Where:h = lag distance
Z = value at location x
N = number of data pairs separated by distance, h
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Once the semivariograms were calculated, the range values were estimated by
modelling the empirical semivariogram and extracting the range parameter from the
theoretical model. The spherical, exponential, linear, linear to sill, and gaussian models
were applied to each empirical semivariogram to estimate the range. An examination of
the results indicated that the spherical model most frequently provided the best fit to the
empirical semivariogram, giving the lowest residual sum of squares value and the highest
regression coefficient. To be consistent, the spherical model was used to extract range

values in all cases:

For h < Ag:
Yo =Co+CILS(V A)) - 0.5(V Ay)’ (14)
Forh > Ag:
tw=Co+C (15)
where: h = the lag distance interval
Co =nugget varniance > 0,
C  =structural variance > Co, and

Ag =range.

For each of the selected channels, minimum range values from this analysis were
used to select an appropriate filter size and shape for the generation of texture images.
The following first-order texture statistics were generated: 1) range; 2) mean; 3) variance;
4) entropy: and 5) skewness. Range, mean, and variance are common first-order statistics
that will not be explained further here. Entropy is a concept that is described in more
than one way in the literature. To fit the context of first-order texture in digital image
processing, entropy can be described as a measure of randomness or disorder in the
texture filter. It is low when the image is uniform within the filter (PCI, 1998). The
mathematical definition used to calculate entropy is shown below (Jensen, 1996).

55



ENT =qu‘%ln£ (16)

1=0

Where: f; = frequency of value occurring in the filter window
quant, = quantization level of the image (in this case 2'® = 0 t0 65535)
w = number of pixels in the image

First-order skewness can be described as the lack of symmetry in the filter. It is
reported as the coefficient of skewness (C;), and is calculated as follows (Rozgonyi,

1995):

(mean — median)

1 standard _ deviation (7

Second-order statistics based on the grey-level co-occurrence matrix (GLCM),
included: 1) mean; 2) vaniance; 3) homogeneity; 4) contrast; 5) dissimilanty; 6) entropy:
7) angular second moment; and 8) correlation. Mean, variance, and entropy are similar to
the first-order statistics, except that they are calculated for the GLCM, which describes
the frequency of occurrence of values relative to a specified distance and direction. For
this work, the shift was one pixel in both the X and Y positive directions, which is the
default (and the most common) shift reported for texture work (ENVI, 2000).

Homogeneity is a measure of local uniformity, with the reported value being high

when the GLCM is uniform. Itis defined by the following equation (Hall-Beyer, 2000):

N~

P,
y— (18)
cmol + (=)

Where: P = the normalized GLCM

ij =row, column location
n = number of pixels in the matrix
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Contrast and dissimilarity are both measures of local variance (essentially the
opposite of homogeneity), with high values indicating greater variance. Contrast can be

calculated with the following algorithm (Hall-Beyer, 2000):
ZP (i- (19)

Dissimilarity is very similar to contrast, except that it uses linear weighting in the

matrix:
N-l
YE,li-il (20)
1,120
Note that because this is a linear measure, this statistic is considered to be a first-
order calculation (Hail-Beyer, 2000). However, it is included with the second-order
texture features because it was calculated using the GLCM.
The angular second moment is described as another measure of local
homogeneity and can be considered the opposite of entropy. It incorporates the

normalized GLCM as a weight in itself, and is calculated with the following equation

(Hall-Beyer, 2000):
N-t .
2P/ 21
t.j=0
Finally, co-occurrence correlation measures the linear dependency of values of
neighbouring pixels, and helps to assess spatial autocorrelation in an image. If the range

of spatial autocorrelation is larger than the filter, this texture value tends to be high (Hall-

Beyer. 2000). It is calculated as follows (PCI, 1998):
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@ )0,)
Where: p, 6° = mean, variance
Once the texture images were generated, the correlation analysis was performed

for these indices, in an identical manner to that described in Chapter 3.3.3.

3.4 Correlation Analysis

Correlation analysis enabled the linkage between the field metrics and the
hyperspectral indices. Calibration correlation analyses involved the calculation of the
Pearson correlation coefficient between each calibration index and the field metrics.
These results were used to develop correlation curves, which illustrate the pattern in
correlation between the index and the metric across multiple channels (i.e., reflectance,
derivative, and texture). Results from this analysis allowed for the identification of

promising indices that were validated using the TLW dataset.

3.4.1 Calibration Data

To examine the relation of reflectance and its derivatives to the ground-based
biophysical variables, the mean, standard deviation, and variance values were extracted
from the hyperspectral data cube, caiculus images, and index images for each channel
and correlated with the mensuration data. This was done for each of the quadrant centres
as well as the centre of the plot (Note: only the plot centres were used for the FH plots,
which were not divided into quadrants). The extraction technique was designed to
average image values from an area that closely approximated the ground sampling effort.

To extract the values, the centre coordinate obtained in the GPS mission was used as the
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centre location for the extracted region. A fourteen by fourteen pixel region (21 m x 21

m; =0.04 ha) was then extracted, centreed around this coordinate (Figure 8).

Figure 8: Reflectance Extraction Regions With Sampling Regions Overlain

This approach differed from the technique utilized by Zarco-Tejada and Miller
(1999), where only the brightest pixels were selected in an attempt to reduce shadow
effects. However, in this case, it was more appropriate to incorporate effects of shadow,
as one would expect structural differences to be expressed as variations in reflectance.
Values for mean, standard deviation, and variance were then regressed against the
extracted region for each channel, to determine which regions were more closely related
to each biophysical parameter.

Due to the way the ISD plots were sampled, there were a variety of ways that the
image data could be related to the field metrics. Although there were five extraction
areas for the ice storm damage sites, it was important at this stage to consider the spatial
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dependency of the samples within each of the ice storm damage sites. Given the close
physical proximity of the extraction areas and the similar environmental conditions
within the entire plot, the five extraction areas could not be considered independent
samples. For this reason, the extraction areas were combined to form an average measure
for each ice storm damage plot, which would make up one independent sample for the

correlation analysis.

3.4.2 Validation Data

The geostatistical and texture analyses of the CASI data and their derivative cubes
completed the integration of spatial and hyperspectral techniques. The final stage in the
analysis was the validation of the indices, and an analysis to determine whether the
integration of spectral/spatial measures provided higher correlations with the field
parameters than either the spatial or hyperspectral techniques alone. Validation of the
optimal results was completed by testing the indices on the TLW dataset. Up to this
stage, the TLW dataset was not used in the analysis and served as an independent
validation site. Although the structural variations caused by silviculture treatment would
be different than the ice storm damage, the strength and robustness of the relationships

identified for the calibration sites (ISD and FH) could be validated.

3.4.3 Predictive Indices

The correlation analysis described above was used to identify strong relationships
between the calculated metrics from the study sites and hyperspectral data. These

relationships are typically reported as either the correlation coefficient (r) or the
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coefficient of determination (r’), which is a measure of explained variance. They are
very useful indications of the utility of remote sensing for the application under
consideration, and results are most often reported in this fashion, particularly when the
relationships are unknown prior to the study, as in the case of this research. However, if
a strong correlation is found, the index can be converted into a predictive measure by
determining the parameters of the equation describing the correlation (Hansen er al.,
2001).

Considering the index in a predictive manner represents the next phase of
research, which would allow discovered and proven relationships to be expressed in a
fashion that is directly useful for forest managers, enabling them to predict the value of a
forest metric for a certain area simply by applying the predictive index. This enables
research into the spatial distribution of a particular parameter of interest mapped directly
from the imagery, which could highlight change in the metric over time, or pinpoint areas
of concern that would require a more detailed ground evaluation. These maps can then
be integrated with other data sources using GIS, enabling very sophisticated
environmental analysis. For illustrative purposes, this was done for the strongest
relationship discovered in the analysis above that held for the validation data. Using a
metric in this fashion allows the forest metric of interest to be quantitatively mapped with
known accuracy. It should be noted that predictive measures are beyond the scope of this

research, and an example is only provided to illustrate the modelling potential of these

techniques.
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4.0 RESULTS

4.1 Introduction

Site level field metrics for each study area can be found in Appendix A.2
(calibration sites) and A.3 (validation sites). The original mensuration and GPS data
collected for this study have been digitally archived at the Laboratory for Remote
Sensing of Earth and Environmental Systems (LARSEES) in the Department of
Geography at Queen’s University. A list and description of the metrics calculated is
presented in Chapter 3.2.1.

All of the spatial data for this study are in the UTM projection, with a WGS84
datum. The study area spans three UTM zones. TLW is located in UTM zone 16, the FH
sites are in UTM zone 17, and the ISD plots are in zone 18. Differentially corrected
eastings and northings for the centres of each plot can be found in Appendix A.4.

Extensive computer code was developed in the Interactive Data Language (IDL)
to process the data for this study at almost every stage of the analysis. Though its length
prohibits its inclusion in this thesis, it has been digitally archived onto CD-ROM and can
be made available upon request. These software routines were used in the analysis to

calculate first- and second-derivative calculus images, texture measures, correlations, etc.

4.2 Spectral And Spatial Indices

Initial processing of the CASI data resulted in multiple spectral and spatial
indices, including: the CASI reflectance images; the first- and second-derivative images;
red-edge nflection point images: integral images: empirical and modelled

semivariograms for each of these images; and various texture derivatives for each of

62



these images (refer to Chapter 3.3.3). Note that the images derived from narrow-band
indices (Table 2) did not result in notable relationships (i.e., strong correlations) with

structural metrics and are not discussed further.

4.2.1 Hyperspectral, Calculus, Red-Edge Inflection Point (REIP), and Integral

Indices

The large volume of hyperspectral imagery and derivatives prohibits their display
here. Sample images from ISD plot 21, along with extracted spectral or derivative
curves, are presented in Figures 9-15. For illustration, a NIR reflectance composite,
containing two channels in the red edge and one in the NIR is presented in Figure 9. The
pale green illustrates the forest canopy in the middle of the image and a vegetated field in
the east of the image, both of which reflect strongly in the NIR (green channel).
Individual tree crowns and shadows can be identified within the 100 m x 100 m plot

(outlined in yellow).
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Figure 9: CASI Hyperspectral NIR Reflectance Composite - ISD 21

Red: 739 nm, Green: 816 nm. Blue: 709nm



The spectral reflectance curve for the crown in the centre of ISD 21 is illustrated
in Figure 10. It is consistent with typical vegetation response (Lillesand and Kiefer,
1994). Some notable features include the green peak at approximately 558 nm, the
beginning of the red edge at approximately 686 nm, the REIP in the vicinity of 724 nm,
and the oxygen absorption feature at 762 nm (Adler-Golden er al., 1999), which is also

approximately the end of the red edge.

Spectral Curve for Centre of ISD 21
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Figure 10: Spectral Reflectance Curve for Centre of ISD 21
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Figure 11 presents the first- and second-derivative curves corresponding to the
centre pixel (i.e., tree crown) for Figures 14 and 15 respectively. The REIP (=724 nm)
indicates the location where the reflectance curve changes from concave up to concave
down (see Figure 10). It can be identified as the maximum value along the first-
derivative curve (within the red-edge wavelengths: 600 - 800 nm) or the location where

the second derivative is equal to zero. Note that the oxygen absorption feature (at 762

nm) is greatly exaggerated on these curves.

First and Second Derivative Curves
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Figure 11: First- and Second-Derivative Curves For Centre of ISD 21
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The first-derivative image at 739 nm is shown for the same location in Figure 12.
Light areas indicate a larger change in reflectance between the reflectance channel at 739
nm and its adjacent channels (i.e., larger slope on the reflectance curve). Since 739 nm is
along the red edge, all vegetated areas (which would have a reflectance curve similar to

that shown in Figure 10) should appear brighter in the image.

Figure 12: First-Derivative Image , 739 nm - ISD 21
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Figure 13 represents the second-derivative image of the same area (739 nm).
Visual interpretation of the image is not intuitive, because it contains values describing
the rate at which reflection changed from one channel to another (i.e. acceleration on the
curve - or the quantity of slope change from one channel to the next). To interpret it
requires knowledge of the reflectance curve (Figure 10) and the derivative curve (Figure
11). At this wavelength, darker areas represent vegetation, because there is a large
decrease in slope change in this portion of the red edge. In other words, this wavelength

(739 nm) is the portion of the red edge that is concave down.

Figure 13: 2nd Derivative Image, 739 nm - ISD 21
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The REIP image in Figure 14 was calculated by interpolating the wavelength at
which the second derivative was equal to zero. The histogram indicates that most of the
REIP wavelengths range from 710 nm — 730 nm. I[n the REIP image, dark red is normal
healthy vegetation. Light orange and yellow represent vegetation for which the REIP
was shifted toward the blue end of the EM spectrum. This could be due to stress,
different species composition within the pixel, or variable canopy closure (some shadow
fraction). Green represents mixed pixels, with vegetation combined with other surface

features, as would occur in fields, shadows, etc. Blue and black are non-vegetated

surfaces.

REIP Histogram
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Figure 14: REIP Image and Histogram - ISD 21
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Integrating under the spectral curve also resulted in an image for each of the study
sites (Figure 15). Because the reflectance curve (Figure 10) contains only positive
values, the image can be thought of as the total area under the spectral reflectance curve
for each pixel. Darker values indicate a smaller area, meaning the reflectance in each
channel is low for that pixel (e.g., shadow and wet areas). Vegetation would tend to

exhibit green — red colours, because of the large area under the NIR region of the curve.

Figure 15: Integral Image for ISD 21

4.2.2 Geostatistical and Texture Indices

To consider anisotropic effects, transects were extracted in two perpendicular

directions from each image channel at each ISD and FH site. This equated to
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approximately 6,800 semivariograms to be modelled for the extraction of an optimal
range in the N-S and E-W directions. Sample N-S and E-W variograms and their
spherical models are presented in Figures 16 and 17 for ISD plot 21, at 739 nm. Range
values varied with wavelength and direction (i.e., ranging from 2 m to 33 m). Optimal

range values for each channel in the two perpendicular directions are presented in

Appendix A.S.
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Figure 16: N-S Semivariogram, ISD 21, 739 nm
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Isatropic Variogram

2.404E07

1.803E07

1.202E07

Semivariance

6.011E06

0.000EQ0 + + + + ——t + + -+ + 4 +
0.00 12.50 25.00 3750

Separation Distance (m)

50.00

Spherical model (Co = 1760000.0000; Co + C = 19440000.0000; Ao = 11.90; r2 = 0.595,
RSS = 2.360€E14)

Figure 17: E-W Semivariogram, ISD 21, 739 nm

ISD site 21, at 739 nm, was used to illustrate the calculated texture measures. In
this case, five first-order and eight second-order texture features were derived for each of
the reflectance images, first- and second-derivative images, the REIP image, and the
integral image. Figures 18-21 illustrate examples of the first-order texture images
derived from the reflectance, first- and second-derivative, and REIP images at 739 nm for
ISD 21 (outlined in purple). In these figures, range, mean, and variance are common
first-order statistics that are more intuitive for visual interpretation. Range and vanance
values are higher in areas that have greater variability, such as the forest canopy (when
derived from reflectance at 739 nm), and low in areas that are relatively uniform (i.e.
fields). First-order mean resembles the original image, only smoother (this texture

feature is commonly used to remove noise). Entropy, a measure of disorder or
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randomness in the image, is low when the image is uniform within the filter. Although
some variation can be seen in the field areas, the differences between most pixels were
very slight, with a few pixels having a dramatic variation. This gave the entropy images
a “binary” appearance, making them very difficult to interpret visually. Skew, described
in Chapter 3 as lack of symmetry, is low when change is uniform (or symmetrical) within
the filter (i.e., within the tree crowns of the reflectance image) and higher where the

change is non-symmetrical (i.e., fields with rows, forest plantations, etc.).

Figure 18: First-Order Texture From Reflectance - I1SD 21
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Figure 20: First-Order Texture From Second-Derivative Image- ISD 21
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Red-Edge Inflection Pot (REIP)

Figure 21: First-Order Texture From REIP - ISD 21

Figures 22 to 25 present examples of the second-order texture features derived
from the reflectance, first- and second-derivative, and REIP images at 739 nm for ISD
21. As discussed in Chapters 2 and 3, the second-order texture features are calculated
from the GLCM. Second-order mean and variance behave in a very similar manner to
first-order mean and variance. Contrast, dissimilarity, and homogeneity are three
methods of assessing local variance within the filter. Contrast and dissimilarity have
higher values in areas that had possess greater variance (i.e., the forest canopy at 739 nm)
and lower values for more uniform areas (i.e., fields). Homogeneity behaves in an
opposite manner, with higher values representing a more uniform area. Note that for this
texture derivative calculated on the reflectance image, most of the image appears

relatively uniform (because an adjacent pixel was specified as the neighbour), resulting in
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a dark image, with a few brighter areas (again giving a “binary” appearance). Subtle
differences are highlighted in the first- and second-derivative images providing more
meaningful results. Entropy and angular second moment are almost opposites of each
other. Angular second moment is a measure of certainty within the filter and can be
thought of as a measure of the presence of structure or pattern (Yuan et al., 1991). The
value will be high if the image is relatively smooth, and low if there is uncertainty or
randomness in the filter. At 739 nm (and the distance and direction specified, i.e., 1,1),
entropy and angular second moment do not provide any real insight to the study area.
This is likely due to multiple scattering within the canopy in the NIR (i.e., increased
variability), which make the generation of the GLCM using an adjacent pixel ineffective

for these two texture features in the NIR.

SecondOrder Texturs Measures 1SO Plot 2t

Figure 22: Second-Order Texture From Reflectance - ISD 21
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ISD Plot 21

Figure 24: Second-Order Texture From Second-Derivative Image — ISD 21
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Figure 25: Second-Order Texture From REIP - ISD 21

4.3 Correlation Results — Spectral Indices (Calibration)

One of the challenges in the analysis of field metrics and hyperspectral data was
the interpretation of a very large quantity of data/results. To gain an understanding of
sources of redundancy within the field data, the first statistical assessment of the data was
a multiple correlation analysis to identify how each of the field metrics related to one
another. This was done to quantitatively confirm that the ground-based measurements
were generally consistent with the expect results for a forest canopy. There are no
particularly surprising or unusual results arising from this analysis. The key relationships
are shown in Appendix A.7. As expected, both measures of DBH are highly correlated, as
are the measures of crown closure. Relationships between metrics that are direct inputs

into the calculations of other metrics are high. These included the relationships between
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crown diameter / crown width and between crown closure / crown width / crown
diameter.

Once the relationships within the field metrics were identified, it was then
possible to correlate the field metrics with imagery. By writing computer programs, it
was possible to explore thousands of relationships between (i) 246 individual channels
(71 CASI channels; 71 first-derivative channels; 71 second-derivative channels; | REIP
channel; | integral channel; and 31 narrow-band index channels), (ii) each of the forest
metrics, and (iii) field sites. The total number of relationship calculations exceeded
500,000. Computer programs were written to identify some key results, which are
presented below.

Significant relationships for the FH plots are presented in Table 3. At this stage in
the analysis, the highest correlation found out of all the wavelengths was extracted and
tested for significance, with no consideration given to consecutive channels with high
correlations or any patterns in correlation trends across wavelengths.  Results
demonstrate that in every case, the highest correlations for the metrics are found with the
denivative or REIP images. As expected, forest metrics that are highly correlated with
each other are also highly correlated to the image at the same wavelengths. This can be
seen with perpendicular crown width, major crown width, and crown diameter (all
reporting the highest correlation at 498 nm) as well as with stem density and number of
trees (854 nm). Note that the sample size for the control sites was very small (n=6),
which may have led to inaccuracies in the statistical results (partially accounting for the

high correlations).
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Table 3: Index Correlations Derived From FH Plots (n=6)

Structural Parameter r r INDEX: Image, | Extraction
Wavelength (nm) | Measure
DBHguag 0.99 | 0.99 | 1" Derivative, 535 Mean
Basal Area -0.93 | 0.88 | 1* Derivative, 893 | Variance
Crown Closure (ctrcular) -0.97 | 0.94 | 1* Derivative, 671 Vanance
Crown Diameter -0.92 | 0.85 | 2° Derivative, 498 | Std. Dev.
Crown Depth -091 | 0.83 | 2" Derivative, 626 | Std. Dev.
Crown Width (major) -0.91 | 0.83 | 2" Derivative, 498 | Std. Dev.
Crown Width (perpendicular) | -0.91 | 0.84 | 2° Derivative, 498 | Std. Dev.
Stem Density -0.95 | 0.89 | 2" Derivative, 854 Mean
Height to Crown Base -0.94 | 0.88 | 2" Derivative, 431 Mean
Tree Height 0.94 | 0.88 | 1 Derivative, 431 Mean
Number of trees -0.95 | 0.89 | 2™ Derivative, 854 Mean
LAI 4™ ring -0.88 | 0.77 REIP Std. Dev.
LAI 5" ring 0.97 | 0.93 | 2™ Derivative, 468 Mean
Percent Opening -0.98 | 0.95 | 2™ Derivative, 656 | Std. Dev.

Significant relationships for the ISD plots are presented in Table 4. For these
study sites, the openness of the canopy was more variable due to the damage cause by the
ice storm. This, combined with a larger sample size (n=10), contributed to the general
lowering of correlations. Again, results show that in every case, the highest correlations
for the forest metrics are found with the derivative images. Note that for all metrics the
wavelength of highest correlation varies from Table 3 to Table 4. This is due to the fact
that only the highest correlation was extracted, without consideration of the correlation
patterns across wavelengths. Examination of the correlation curves revealed that high
correlations do exist for the metrics at both locations, but the wavelength of highest
correlation differ. Note that high correlations of a few of the metrics in the visible region
(i.e., percent opening, LAI, height, and DBH) are consistent across FH plots (Tables 3)

and ISD plots (Table 4).
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Table 4: Index Correlations Derived From ISD (n=10)

Structural Parameter r r INDEX: Image, Extraction
Wavelength (nm) Measure
DBHguua 0.86 0.74 1* Derivative, 416 Variance
Crown Closure (circular) | 0.93 0.86 2" Derivative, 520 Mean
Crown Diameter 0.88 0.78 2™ Derivative, 595 Mean
Crown Depth -0.90 0.81 1* Derivative, 878 Variance
Crown Width (major) -0.92 0.85 2" Derivative, 870 | Std. Dev.
Crown Width 0.83 0.69 2" Derivative, 595 Mean
(perpendicular)
Stem Density 081 | 0.66 2™ Derivative, 924 Variance
Height to Crown Base -0.83 0.70 2" Derivative, 542 Variance
Tree Height 0.86 0.74 Reflectance, 408 Mean
Number of trees -0.81 0.66 2" Derivative, 924 | Variance
LAI 4" ring -0.87 | 0.75 2" Derivative, 431 Mean
LAI 5" ring 093 | 086 2™ Derivative, 446 Mean
Percent Opening -0.85 0.72 2™ Derivative, 446 Mean

To increase the robustness of the correlations between the field data and
hyperspectral features, the FH and ISD plots were pooled and analyzed together. The
results of these analyses are presented in Table 5, and demonstrate a general decrease in
correlations. Although a pattern in these results is difficult to detect. there are
consistencies when examining parameters that are highly correlated (i.e., measures of
crown closure, crown diameter and canopy width, and LAI and percent canopy opening).
Note the correlation of the derivative images at 498 nm to crown diameter/perpendicular
crown width, suggesting a spectral feature within blue/green region. Again, for most
metrics, the first- and second-derivative images contain the channel with the highest

correlations.
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Table 5: Index Correlations Derived From Pooled FH and ISD Plots (n=16)

Structural Parameter r r* | INDEX:Image, | Extraction
Wavelength (nm) | Measure
DBHgud 0.79 | 0.63 | 2°° Derivative, 831 | Mean
Basal Area -0.65 | 0.42 | 1* Derivative, 610 | Variance
Crown Closure (circular) 0.74 | 0.55| Reflectance, 431 Mean
Crown Closure (ellipse) 0.76 | 0.57 | Reflectance, 431 Mean
Crown Diameter -0.83 | 0.70 | 1* Derivative, 498 Mean
Crown Depth -0.73 | 0.54 | Reflectance, 686 Std. Dev.
Crown Width (major) 0.76 | 0.58 | 2" Derivative, 932 | Variance
Crown Width (perpendicular) | -0.87 [ 0.75 | 1 Derivative, 498 Mean
Stem Density -0.78 | 0.60 | 1* Derivative, 916 Mean
Height to Crown Base -0.85 | 0.73 | 1® Derivative, 535 | Variance
Tree Height -0.78 | 0.61 | 2™ Derivative, 409 | Mean
Number of trees -0.85 | 0.72 | 1* Derivative, 762 | Std. Dev.
LAI 4" ring -0.72 | 0.51 | 1* Derivative, 747 | Std. Dev.
LAI 5" ring -0.73 | 0.54 | I*' Derivative, 461 Mean
Percent Opening 0.81 |[0.66 | I’ Derivative, 747 | Std. Dev.

4.4 Correlation Results - Spectral/Spatial Indices (Calibration)

In many cases, geostatistical and texture analysis notably improved relationships
between forest metrics and the spectral/spatial indices. The highest correlations found
between the forest metrics and the geostatistical/texture indices for the pooled FH and
ISD sites are presented in Table 6. At first review, these results do not appear to have a
lot in common with Tables 3 to 5, mainly due to the presentation of the highest
correlation rather than correlation patterns. However, there are some observations than
can made from these results that are consistent amongst metrics. For example, the first-
and second-order derivative texture images have higher correlations than the reflectance
texture images. Second, texture improves the correlation for most metrics. Third, crown
diameter and perpendicular crown width once again have strong correlations for images
derived from the 498 nm data, suggesting a “real” feature at this wavelength. Finally, the

82



results have shown that presentation of the highest correlations found between the image
and the structural parameter without consideration of correlation patterns across
wavelengths can be very difficult to interpret (and possibly misleading). However,
presentation of results in this manner has been reported on multiple occasions (e.g.,
Merton, 1998: Thenkabail er al., 1999). These results suggest that a more appropriate
method to extract “optimal” or robust correlations would be an examination of the

correlation patterns across image channels.
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Table 6: Index Correlations For Texture Features From Pooled FH and ISD Sites (n=16)

Structural Parameter r r INDEX: Image, Extraction
Texture, Measure
Wavelength (nm)
DBHgua 0.82 [ 0.67 | 2" Derivative, skew, | Mean
893
Basal Area 0.84 | 0.71 | 2" Derivative, skew, | Std. Dev.
513
Crown Closure (circular) | 0.90 | 0.82 | 1* Derivative, 1* Mean
Order Variance, 793
Crown Closure (ellipse) | 0.90 |0.81 | I* Derivative, 1* Mean
Order Variance, 793
Crown Diameter -0.83 | 0.69 | 1* Derivative, I* Mean
Order Mean, 498
Crown Depth 0.86 | 0.73 | 1® Derivative, Variance

homogeneity, 641
Crown Width (major) 0.89 [ 0.79 | I* Derivative, 2™ Mean

Order Variance, 939
Crown Width -0.86 | 0.75 | I* Derivative, 1" Mean
(perpendicular) Order Mean, 498
Stem Density -0.77 | 0.60 | I* Derivative, 1* Mean
; Order Mean, 916
Height to Crown Base | -0.91 | 0.82 | 2*' Derivative, 2™ Mean
Order Variance, 513
Tree Height 0.87 | 0.75 | 2™ Derivative, Skew, | Std. Dev.
808
Number of trees 0.84 | 0.71 | I* Denivative, Skew, | Mean
641
LAI 4" ring -0.85 { 0.72 | 2™ Derivative, Variance
Dissimilarity, 755
LAI 5% ring 0.86 | 0.73 | 1" Derivative, Skew, | Mean
603
Percent Opening 0.92 | 0.85 | 2° Derivative, Skew, | Std. Dev.
648

4.5 Spectral/Spatial Regions of Correlation

Correlation curves for each metric were examined to extract indices with

promising correlations for two or more consecutive channels. These indices (along with
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the single highest correlations shown above) were then tested for robustness in the
validation analysis. This produced a large volume of information, with more than one
wavelength region investigated for each metric. To assist with the interpretation of
results, metrics were grouped according to their similarities. Within these groups, only

metrics that showed promise for the validation analysis are presented below.

4.5.1 DBH

Both measures used to estimate DBH (arithmetic and quadratic) are similar, with
the same general pattern in the correlation curves. Results indicate that quadratic DBH
has a slightly higher correlation with the reflectance data and their derivatives. The
variations in correlation between quadratic DBH and the reflectance and calculus image

channels are illustrated in Figure 26.
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Figure 26: Correlation Curve For Quadratic DBH

Although the magnitude of the correlation coefficients varies for each extraction

method, the pattern remains relatively consistent across the entire channel range. When
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examining the correlations derived from the pooled sites, no two consecutive channels
have a correlation with r > 0.7 (Figure 26). However, several regions exhibiting high
correlations are observed when examining FH sites, which suggests that there are high
correlations between DBH and the images for undamaged, closed canopy conditions. To
assess this, wavelength regions were identified where at least two consecutive channels
had a correlation of r > 0.9 for FH alone (Table 7). Although texture analysis produces a
higher correlation for the permutations of interest at a single wavelength (Table 6), none
of the texture measures improve the correlations across multiple wavelengths for this

metric.

Table 7: Extracted Channel Ranges For Quadratic DBH

Wavelength | Image Comments

Range (nm)

520-618 CASI reflectance 14 channels in the green/red
693-731 CASl reflectance | 6 channels in the red edge
505-543 First derivative 6 channels in the green
558-618 First derivative 9 channels in the green/red
641-663 First derivative 4 channels in the red
686-717 First derivative 5 channels in the red edge
513-565 Second derivative | 8 channels in the green
663-694 Second derivative | 5 channels in the red

4.5.2 Metrics Derived From Measures of Crown Width

There were five metrics derived from field measurements of crown width. These
included 1) major crown width; 2) perpendicular crown width; 3) crown diameter; 4)
circular crown closure; and 5) elliptical crown closure. Results illustrate two main
commonalities amongst the indices for these metrics: 1) channels along the red edge,

from the absorption well to approximately the REIP, have the highest correlations, and 2)
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use of standard deviation to extract reflectance values from the image result in the highest
correlations.

Examination of major and perpendicular crown width indicate that correlations
with the original reflectance and derivative images are generally low. Texture improves
correlations considerably for both metrics, resulting in strong correlations along the red
edge. Somewhat weaker relationships are also found in the biue region for both metrics.
Correlations across muitiple channels are notably stronger for perpendicular crown width
than for major crown width. Examination of both circular and elliptical crown closure
reveal multiple wavelengths in the green peak region and along the red edge to have
strong correlations with these metrics. Specifically, the original CASI reflectance image
is correlated to both metrics in multiple channels of the green region. After geostatistical
and texture analysis, the reflectance imagery had muiltiple channels with high
relationships in the blue and red edge. The derivative images are not as highly correlated
to these metrics. Circular crown closure relationships are slightly stronger than elliptical
relationships, although the two metrics have generally similar results. Crown diameter,
which was calculated using the mean of the two crown width measurements, generally
has low correlations (r<0.7) when examining multiple consecutive image channels.
Geostatistical and texture analysis, in particular second-derivative homogeneity, improve
the relationships in the NIR to give two consecutive channels with r>0.7. However, in
comparison with the other crown-width metrics, the relationships with crown diameter
are not promising.

To simplify the results for these metrics, only the most promising correlation
curves are presented below. It should be noted that there are multiple correlation curves
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(i.. there were multiple indices) for each metric that suggested potentially promising
ranges of channels. All indices that showed promise were investigated further in the
validation analysis. The range correlation curve for circular crown closure and the first-
order mean texture index for perpendicular crown width are illustrated in Figure 27. The
first-order mean texture index for perpendicular crown width is also illustrated. The most
promising consecutive wavelengths for the five metrics are listed in Table 8 (the lowest

correlations in the table were for crown diameter at r=0.7).
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Figure 27: Correlation Curves For Crown Width And Crown Closure
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Table 8: Channel Ranges (r>0.7) For Crown-Width Metrics

Maetric Wavelength Index Comments
Range (nm)
520-528 Skew of first derivative 2 channels in the
Major Crown green peak
Width 932-939 Standard deviation of second 2 channels in the
derivative NIR
686-701 First-order mean of CASI 3 channels in the
Perpendicular reflectance red edge
Crown Width 694-701 Dissimilarity of CASI 2 channels in the
reflectance red edge
Circular Crown 686-694 Range of CASI reflectance 3 channels in the
Closure red edge
483-498 Second-order mean of CASI 3 channels in the
Elliptical Crown reflectance blue
Closure 686-694 | Range of CASI reflectance 3 channels in the
red/red edge
Crown Diameter 785-793 Homogeneity of second 2 channels in the
derivative NIR

4.5.3 Metrics Derived From Measures of Tree Height

The three metrics related to measures of height include: 1) height to the base of
the canopy: 2) crown depth; and 3) tree height. For each of these metrics, geostatistics
and texture analysis considerably improve the relationships between the indices and the
metrics. Results indicated that height to the base of the canopy has notably higher
relationships with the data, with several wavelength regions and texture measures giving
a correlation coefficient greater than 0.85. Strong correlations for this metric are found in
the second-derivative for green wavelengths, and in sections of the red edge on both sides
of the inflection point for the reflectance and first-derivative images. Tree height and
crown depth indices have lower correlations, although several wavelength ranges were

identified that have correlation coefficients between r=0.7-0.8. For tree height and height
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to the crown base, first-order mean indices have the strongest relationships with the
metrics. Although the strength of the relationships varies, the general shape of the
correlation curve for these two metrics is very similar. Crown depth has stronger
relationships with second-order indices, including homogeneity and entropy.

The first-order mean index for height to the base of the canopy is the most
promising for the height metrics. Figure 28 illustrates the correlation curve for this
metric. Table 9 lists the most promising wavelength ranges identified for each of these

metrics, each of which is further examined in the validation analysis.
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Figure 28: Correlation Curve For Height To The Base Of The Canopy
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Table 9: Channel Ranges (r>0.7) For Height Metrics

Metric | Wavelength Index Comments
Range (nm)
550-558 First-order mean of second derivative | 2 channels in the green
Height 694-709 | First-order mean of first derivative 3 channels on the red
to edge
crown 701-724 | First-order mean of CASI reflectance | 4 channels on the red
base edge 1o the REIP
717-732 Variance of CASI reflectance 3 channels around the
REIP
558-565 First-order mean of first derivative 2 channels in the green
Tree 694-701 First-order mean of first derivative 2 channels in the red
height edge
701-717 First-order mean of CASI reflectance { 2 channels in the red
edge
595-610 | Entropy of first and second derivative | 3 channels in the
Crown green/red
depth 626-633 | Homogeneity of CASI Reflectance 2 channels in the red
717-732 | Homogeneity of first derivative 3 channels around the
REIP
923-931 Homogeneity of first derivative 2 channels in the NIR

4.5.4 Metrics Derived From Number of Trees

There were three metrics derived from the number of trees in the study plots.
These include: 1) basal area (which also incorporates DBH); 2) stem density; and 3)
number of trees. Basal area is not well correlated to images across consecutive channels.
Although texture does appear to improve the correlations in most wavelengths the
relationships are not strong enough to pursue with this multiple wavelength approach
(r<0.7). More promising are the results from the number of trees, and to a lesser extent
stem density. The number of trees within plots has strong correlations in the proximity of
the red edge ftor the reflectance and derivative images. Texture measures of skew and
first-order mean further strengthen these relationships, with targeted wavelengths having

r>0.8. The strongest relationships for stem density (r>0.7) occur in the first-order mean
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image in the NIR region of the spectrum. The first-order mean correlation curves for

number of trees and stem density are presented in Figure 29. The most promising

wavelength ranges that were targeted for further investigation are presented in Table 10.

Correlation Curves for Number of Trees and Stem Density
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Figure 29: Correlation Curve For Number Of Trees And Stem Density

Tabte 10: Channel Ranges (r>0.7) For Number Of Trees And Stem Density

Metric Wavelength Index Comments
Range (nm)
694-717 First-order mean of 4 channels on the red edge
CASI reflectance
Number of 641-648 Skew of first derivative | 2 channels in the red
Trees absorption well
724-747 First-order mean of first | 4 channels on the red edge,
derivative around the REIP
739-755 First-order mean of 2 channels on the red edge
second denvative
Stem Density 778-831 First-order mean of 8 channels in the NIR
(#/ha) CASI reflectance
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4.5.5 Metrics Derived From Hemispherical Photographs

The final group of metrics included those that were derived from the
hemispherical photographs, including LAI and percent canopy openness. LAI values
derived using the five rings (full field of view) have consistently lower correlations than
LAI derived from four rings (0-60° field of view), and are not discussed further here.
When examining LAI derived from the inner four rings, the correlations for the original
reflectance and calculus images are generally low.  Texture provides notable
improvements for all of the metrics derived from hemispherical photos. For LAI,
dissimilarity texture indices gives correlations of r>0.77 in the NIR of the first-derivative
image. Percent canopy openness is well correlated (r>0.8) to muitiple texture indices and
is the most promising of all metrics examined. Figure 30 illustrates the dissimilarity
correlation curves for both metrics, while Table 11 lists the more promising indices

investigated further in the validation analysis.
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Figure 30: Correlation Curves For Metrics Derived From Hemispherical Photos

Table 11: Channel Ranges (r>0.7) For Metrics Derived From Hemispherical Photos

Metric Wavelength Index Comments
Range (nm)
LAI 831-862 Dissimilarity of the 1* derivative | 4 channels in the
(4 rings) NIR
476-483 Range of CASI reflectance 2 channels in the
blue
498-505 Dissimilarity of CASI reflectance | 2 channels in the
Percent blue/green
Canopy 663-686 Dissimilarity of CASI reflectance | 4 channels in the red
Openness 603-610 Second Moment of 1* derivative | 2 channels in the red
641-648 Second Moment of 1* derivative | 2 channels in the red
801-808 Dissimilarity of 1* derivative 2 channels in the
NIR
846-862 Dissimilarity of 1* Derivative 3 channels in the
NIR
L 878-885 Dissimilarity of 1* Derivative 2 channels in the
NIR
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4.6 Validation of Indices

By examining the extracted wavelength ranges, a number of relationships were
discovered that agreed with the validation data from the TLW. All correlations were
tested for statistical significance. Only those indices that were statistically significant at
95% confidence intervals are reported here.

Several indices and wavelengths proved to have strong relationships with percent
canopy openness calculated from the hemispherical photos. Other metrics with which
developed indices are consistent include LAI, crown diameter, perpendicular canopy
width, number of trees, and crown depth. These metrics and their relationships for both
the calibration and validation sites (ice storm damage/FH and TLW respectively) are
presented in Tables 12 to 16. Results from the validation analysis highlight three
significant consistencies: 1) standard deviation is the most robust method to extract pixel
values from the images: 2) dissimilarity, second moment, and homogeneity appear to be
more robust than the other texture features examined; and 3) clear cut conditions are not

well correlated to the indices.
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Table 12: Validated Indices For Percent Canopy Openness (hemispherical photos)

Index Calibration Sites Validation Sites Comments
(FH and ISD) (TLW)
r r n r r n
Dissimilarity at 505 nm; 0.83 {0.69 16 §0.82 | 0.67 8 | Control
extracted by standard
deviation
Second Moment at 610 0.80 | 0.64 16 §0.81 |0.66 8 Shelterwood
nm; extracted by standard 0.70 {0.49 12 | Shelterwood &
deviation Selected Cut
Second Moment at 558 0.82 | 0.67 16 |0.86 | 0.74 8 Shelterwood
nm — 1* Derivative; 0.62 0.39 12 | Shelterwood &
extracted by standard Selected Cut
deviation
Second Moment at 648 0.85 [0.72 16 0.88 | 0.77 8 Shelterwood
nm - 1* Derivative; 0.75 | 0.56 12 | Shelterwood &
extracted by standard Selected Cut
deviation
Table 13: Validated Indices For LAI (derived from four inner rings)
Index Calibration Sites Validation Sites Comments
(FH and ISD) (TLW)
r r n r r n
#W_
Dissimilarity at 595 nm - | -0.65 | 0.43 16 §-0930.86 8 | Control
2" Derivative; extracted
by standard deviation
Dissimilarity at 717 nm- | -0.71 { 0.5 16 §-0.99 | 0.98 4 | Selected Cut

2™ Derivative; extracted

by standard deviation




Table 14: Validated Indices For Crown Diameter

Index Calibration Sites Validation Sites Comments
(FH and ISD) (TLW)

r

Homogeneity at 565 nm -
2™ Derivative; extracted
by standard deviation

Shelterwood

Homogeniety at 785 nm - | 0.70 | 0.49 16 §0.74 | 0.55 8 | Shelterwood
2™ Derivative; extracted 0.66 | 0.44 |13 | Shelterwood &
by standard deviation Selected Cut
Table 15: Validated Indices For Number Of Trees
Index Calibration Sites Validation Sites
(FH and ISD) (TLW) Comments
r r n |r r n

First Order Mean at 732 Selected Cut
nm - 1* Derivative;
extracted by standard
deviation

Second Order Mean at 732 | -0.81 | 0.66 16 {-0.89]0.79 5 Selected Cut
nm - 1™ Derivative:
extracted by standard

deviation
Table 16: Validated Indices For Crown Depth
Index Calibration Sites | Validation Sites Comments
(FH and ISD) (TLW)
r | n r e n

Entropy at 446 nm - 2" . Selected Cut
Derivative; extracted by 0.68 | 0.46 11 | Clear cut
variance

4.7 Predictive Indices

Percent canopy openness derived from the hemispherical photos possessed the
strongest relationships with the indices at both the calibration and validation sites.

Dissimilarity at 505 nm of the reflectance image, which has a high correlation with the
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pooled calibration sites and held for the control sites in TLW (Table 12), was selected to
derive predictive indices.  As mentioned in Chapter 3, development of predictive indices
is a future stage of research, which would be very useful for deriving structure maps at a
regional or provincial scale. For illustrative purposes, the correlation equation was
modelled from the scatterplot of the dissimilarity index versus percent canopy openness
to derive a predictive index (Figure 31). Results in Table 12 indicate that this predictive
index is only valid for control areas (undamaged, closed canopy) as well as the areas in

which the index was developed (ISD and FH).

Pearson Correlation Coefficient Analysis on Calibration Sites (FHP and ISD)
Dissimilarity of Hyperspeciral Reflectance at 505 nm vs. Percent Canopy Openness
Percent Canopy Openness = 1.2242 + 12752 " Dissimilarity iIndex
Correlation: r = .83282
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Figure 31: Pearson Correlation For Dissimilarity Index vs. Percent Canopy Openness
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With a correlation of r=0.83, the predictive index derived from the calibration
sites can be taken as the correlation equation in Figure 31:

% Canopy Openness = 1.2242 + 0.12752*(Dissimilarity of reflectance at 505 nm) (23)

The predictive index for percent canopy openness was then applied to the Turkey
Lakes image data to obtain a percent canopy openness map from which percent canopy
openness could be quantitatively extracted directly from each pixel for control areas. A
percent canopy openness map for two control areas in Turkey Lakes (Area #1 located
within the harvest treatment study area and Area #2 located outside of it), with the
validation sites outlined is displayed in Figure 32. Table 17 lists the area percentages for
openness in the control areas. These values were calculated within a GIS by dividing the
number of pixels of each percentage class (Figure 32) by the total number of pixels
within the two control areas (each has an area of 4 m°) and multiplying by 100%.
Statistics for the validation sites are included in Table 18. This table compares the mean
and maximum values of percent canopy openness predicted in the GIS for the validation
sites (Figure 32) with the mean value of percent canopy openness derived from the
hemispherical photos. Modelled predictions are within approximately 3-4% of the
known value for the validation sites. Again, this is presented as a demonstration of the

technique of deriving predictive maps. The results are only valid for the control areas

outlined in Figure 32.
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Figure 32: Percent Canopy Openness Map For Two Control Areas In TLW

Table 17: Percentage Area Derived From Modelled Percent Canopy Openness

Percentage Area of Control Area of Control
Openness (%) Area #1 (%) Area #2 (%)

0<1 0.6 0.67
1<2 17.5 19.34
2<3 37.7 39.71
3<4 26.3 25.39
4<§ 12.3 10.54
5<6 3.9 3.35

6<7 1.2 0.76

7<8 0.4 0.2

8§<9 0.1 0.04
9<10 0 0.01

10 + 0 0
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Table 18: Validation Statistics For Modelled Percent Canopy Openness

Statistics For The Control Areas

Area of Control Area #1 (m”) | 39532

Percent Canopy Openness Calculated From Hemispherical Photos in 6.19
Baldwin’s Validation Plot #7 (%)
Mean Extracted Percent Canopy Openness in Validation Site (%) 35

Max Extracted Percent Canopy Openness in Validation Site (%) 49

Area of Control Area #2 (m°) 57404

Percent Canopy Openness Caiculated From Hemispherical Photos in 8.69
Baldwin’s Validation Plot #8 (%)

Mean Extracted Percent Canopy Openness in Validation Site (%) 4.7

Max Extracted Percent Canopy Openness in Validation Site (%) 7.0

4.8 Summary of Significant Results

1.

= W9

W

9.

The derivative images provide links to structural parameters that would not be
detected otherwise, as subtle features on the reflectance curve are emphasized.
This supports the notion that hyperspectral techniques may provide additional
value to the assessment of forest structure.

Texture improves the correlations for most metrics.

The red edge and the REIP are common features of interest for several metrics.
Percent canopy openness calculated from hemispherical photos shows the greatest
modelling potential. Correlations remained strong during validation.
Hemispherical photos are an efficient and unbiased method of obtaining canopy
measurements.

Range values extracted by modelling the semivariograms vary according to
wavelength and direction.

Use of extracted range values as inputs to texture filter dimensions improve the
relationship between the spectral/spatial derivatives and the forest metrics.

Strong correlations exist between forest metrics and derivative images,
particularly for the undisturbed forest health plots. Correlations decrease when
using FH and ISD together.

Use of standard deviation to extract values from the remotely sensed image give
the most robust relationships.

10. Narrow-band indices did not demonstrate strong relationships to forest structural

parameters.
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5.0 DISCUSSION

Satellites carrying hyperspectral sensors (e.g., Hyperion, MODIS) are now
collecting data of the earth’s surface. It is necessary to strive to understand the
implications of interpreting detailed spectral data at coarser spatial scales and to develop
approaches that will enable us to efficiently utilize such a large quantity of data without
having to sacrifice any potentially beneficial trends in the data. Within the next ten years,
the amount of data being collected by hyperspectral satellites could easily render current
data warehousing facilities ineffective and cause current hyperspectral processing
techniques to be unmanageable, particularly for studies at regional, national, or global
spatial scales, unless more reliable and accurate automated approaches are developed.

Traditionally, feature extraction techniques are used to reduce the dataset to one
or more wavelengths on which to perform analyses. This follows from the multispectral
image-processing paradigm. Results from this research demonstrate that meaningful
patterns of relationships and wavelengths would have been overlooked if feature
extraction had been performed prior to the analysis. With this in mind, it became
necessary to devise methods to examine the results in an efficient manner to come up
with meaningful indices that could be validated elsewhere. Computer algorithms were
developed and applied to identify wavelengths and indices that had high correlations with
forest metrics. While it is possible that single channels (=10 nm bandwidth) with strong
correlations were overlooked, notable features on the spectral and derivative curves
involving two or more sequential channels were investigated. Future work in this area

could involve the development of algorithms to examine additional index/wavelength
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permutations (of which there were over 500,000), as well as combinations of multiple

wavelengths, for significant relationships.

5.1 Field Data

Design of the field sampling for this research required not only that the
mensuration data be collected to capture natural vanations occurring on the ground, but
also that the scale of vaniation captured would be detectable on the hyperspectral image.
Ideally, knowledge of spatial autocorrelation within the study area could be used to
design an appropriate sampling scheme. Unfortunately, this is not usually feasible for
remote sensing studies, as the imagery is collected during or after the field campaign and
the relationships between the metrics being sampled and the remotely sensed data are
unknown prior to the analysis. To address this, the sampling areas were designed to be
large enough to include several image pixels, with the objective of capturing the scale of
vanation expected within the image data.

Semivaniance analysis in this study illustrated that extracted range values varied
according to wavelength, a result consistent with the work of others (e.g. Sampson, 2000;
Treitz and Howarth. 2000; Sampson er al.. 2001: Treitz, 2001). This meant that a single
optimal field sampling size for the entire hyperspectral dataset did not exist. To
effectively capture vaniance within the field measures that would be applicable to the
CASI reflectance data, the minimum sampling size would have to be larger than extracted
range values presented in Appendix A.5. For most channels, the extracted range fell
between 4-8 metres, suggesting that the “objects” embedded in the CASI data are tree

crowns (i.e., the range values indicate a single tree). Sampling an 11.3 m radius (22.6 m
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diameter) area would include a significant number of “objects” to capture the variance of
the “objects” in the scene.

One of the issues arising from the field data collection was the accuracy of the
sampling techniques. The standard measure of DBH was simple and consistent
regardless of the time and conditions for sampling. However, estimates of other metrics
(e.g., canopy shape, LAI, percent canopy openness) were complicated by weather (i.e.,
wind) and illumination conditions. Foresters from the Canadian Forest Service (CFS)
and the Ontano Forest Research Institute (OFRI) were consulted to ensure the
measurement techniques were consistent with standard forestry practices.

Use of the laser vertex (Haglof Vertex Hypsometer models 1 and 3) for measuring
tree height proved to be a very efficient technique for sampling the large number of trees
considered for this study. Tree height measurements were the most difficult parameter to
measure in closed canopies, because of the challenge in identifying the apex of the crown
from a location that satisfied the geometrical requirements of the vertex. In addition,
occasional windy conditions caused the trees to sway, introducing variability to the
measurements. To promote consistency with the technique throughout the season, the
same two individuals used the instrument for the entire field season. It should be noted
that previously existing tree height measurements for TLW were not collected with the
same instrument. The accuracy of the technique was tested during the field season by
measuring against objects of a known height, and after the field season by comparing the
tree height measurements with previously collected tree heights in some of the same
plots. Comparisons confirmed that average height measurements for the sampling sites

were consistent between the two measuring techniques.
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The measuring of canopy widths had the most room for inconsistency in the
results, with at least two people needed to obtain the measurement. It required a
judgment as to the longest axis of the tree crown. In closed canopy conditions, it was
often difficult to separate one tree crown from the next. As a result, the technique often
required a third person to render a judgment from a location further from the tree.

The hemispherical photos provided the most objective view of the canopy at any
field site. They captured a permanent record of the canopy from below, intuitively
suggesting a direct link to the CASI imagery taken from above. Success achieved with
this sampling technique and the strong relationships between the percent canopy
openness and CASI imagery, even for the validation sites at TLW, illustrated that
hemispherical photos are very powerful tools for assessing forest canopy. Future work
on the characterization of forest structure for remote sensing analysis should further

explore this technique for estimating canopy conditions.

5.2 Spectral and Spatial Indices

5.2.1 Reflectance, Derivative, Red-Edge Inflection Point (REIP), and Integral
Indices

Examination of the initial dataset (prior to geostatisticai and texture processing)
fed to a number of observations that proved helpful in the interpretation of overall results.
As mentioned, the spectral reflectance curve illustrated in Figure 10 is consistent with
typical vegetation response (Lillesand and Kiefer, 1994). Some notable features
observed on the curves include the green peak at approximately 558 nm, the beginning of

the red edge at approximately 686 nm, the REIP in the vicinity of 724 nm, and the O;
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absorption feature at 762 nm (Adler-Golden er al., 1999), which also marks the end of the
red edge. The first- and second-derivative curves have considerably more variation, with
subtle changes in the reflectance curve being much more pronounced (Figure [l).
Vanations within the red edge are particularly notable in the second-derivative image,
which possesses a dip in the curve at 709 nm, as well as a bend in the curve at 739 nm.
These features are in addition to the REIP at approximately 724 nm, which explains why
results show multiple regions along the red edge that have strong correlations with forest
metnics. The shift from positive to negative values in the first- and second-derivative
curves also explains the positive and negative correlations illustrated in the correlation
curves in Chapter 4 (Figures 26 to 30).

The REIP image (Figure 14) represents a different form of data presentation than
the derivative or integral images. This image is a single channel, with each pixel
containing the actual wavelength at which the REIP occurred. Variations in the image
occur because of shifts in the location of the REIP, which are known to occur because of
vegelative stress, species variation, and shadow variability due to canopy structure
(Miller er al.. 1990: Sampson er al., 1998; Treitz and Howarth, 1999). Conversely, the
reflectance and calculus images convey the magnitude of response at specified
wavelengths, where variations in the image illustrate changes in magnitude of response.
Since one set of images (i.e., reflectance and calculus) contains variations in response at a
specific wavelength and the other (i.e., REIP) contains vaniations in wavelengths, the two
types of images are not directly comparable. For example, there are several instances
where there are strong correlations with the metrics centreed on the REIP (of which the
approximate location is known, = 724 nm) (Table 9. Table 10), but comparatively low
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correlations with the REIP image itself. Due to the spatial variations shown in the REIP
image, there is no actual way to measure the magnitude of response at the REIP. Since
the wavelengths around the REIP have strong correlations with the metrics, future work
could examine modelling the magnitude of response in this area, rather than modelling
the wavelength itself.

The integral image and the images derived from indices previously developed for
physiological relationships do not have notable relationships with forest structural
metrics. This is not a particularly surprising result, given that the various indices were
developed around specific biochemical properties (pigment concentrations, etc.), with no
consideration for spatial properties.

A comparison between the FH and ISD sites consistently demonstrated higher
correlations for the FH sites, which were chosen for this analysis to serve as natural
control sites. Compared to the ISD sites, the canopy of the FH sites are undamaged and
the plots themselves are not managed for maple syrup production, meaning that the six
FH sites have similar canopy conditions. This may be of particular importance when
considering below canopy measures such as DBH. For site-specific studies, relationships
between DBH and the crown have been established (Ter-Mikaelian and Lautenschlager,
2000). However, variability in the relationships due to site-specific factors (i.e., broken
canopy for the ISD sites) is not currently understood (Ter-Mikaelian and Lautenschlager,
2000). Relationships between DBH and reflectance from a forest with a closed canopy
(i.e.. FH sites) would not be expected to hold for forests with major limbs broken and
visible openings in the canopy in a somewhat random pattern (i.e., ISD sites) or
systematic pattern (i.e., TLW).
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Many of the highest correlations with metrics occur at wavelengths in the visible
portion of the spectral curve (Table 5: crown closure; crown diameter; crown width; tree
height; and LAI). This is important to note, since most hyperspectral techniques tend to
focus on the red edge (i.e., physiological response). Results illustrate that the visible
region, the red edge, and the NIR region all have a significant utility for multiple
structural measures (e.g. percent canopy openness: visible and NIR (Table 11); tree
height: visible and red edge (Table 9)). This information may prove useful in the future
development of multi-band indices, which focus on more than one region of the EM

spectrum.

5.2.2 Geostatistics and Texture Indices

Semivariogram analyses illustrate that extracted range values vary according to
wavelength (Appendix A.5), a result that is supported by others (e.g., Sampson, 2000:
Treitz and Howarth, 2000; Treitz, 2001). Although this has been reported for coarse
spectral resolution remote sensing data, it has not been previously demonstrated for all
wavelengths in a hyperspectral data cube. In this study, results reveal some cases of
consecutive wavelengths where the extracted range values do not change. This suggests
that the spectral scale required to detect spatial structure is coarser than the spectral
resolution in these regions. Changes in the optimal range do not always occur at the
same wavelengths when comparing the reflectance data to the first- and second-
derivative data. This illustrates the benefits of calculating semivariance for each channel,

rather than assuming a common range across all image channels.
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An obvious question stemming from the semivarniance analysis is whether or not
this type of analysis actually improves the relationship between remote sensing data and
forest metrics. Would improved relationships for some of the forest metrics (Table 6)
have occurred by simply selecting arbitrary filter dimensions and calculating texture
without consideration of semivariance? This question was addressed by comparing the
relationships determined from pre-texture indices (Table 5) to those derived from first-
order mean/variance texture. In the case of pre-texture analysis, image values were
extracted based on the mean, standard deviation, and variance for the entire sampling
area of the field site. First-order mean and variance texture calculations incorporate the
optimal range. Any cuase where first-order mean and/or variance texture produce higher
correlations than corresponding measures for pre-texture analysis illustrates improvement
as a funcuion of incorporating range estimates in the texture calculation. Several
examples of first-order mean indices having stronger relationships than the pre-texture
indices are presented in Tables 7 to 11. Results for number of trees, stem density, height
to the crown base, tree height, crown closure, crown diameter, and crown width show
improved correlations with texture features when the optimal range values are
incorporated into texture filter definition. This result is significant, in that range
extraction in this manner has not been reported in the literature.

A general examination of the texture indices reveals that texture improves the
relationships to all forest metrics (with the exception of DBH), particularly when
considering consecutive image channels. All forest metrics, with the exception of DBH,
tree height, and height to the base of the crown, are derived from some measurement of
the tree crown, suggesting a relationship between range and crown. As mentioned
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earlier, range was calculated to be between 4 to 8 m for most image channels. Most
measurements of crown width also fall within this range, further supporting the link
between range and crown. Range is generally associated with the largest element in the
scene (in this case along the transect), which corresponds to the tree crown for high
spatial resolution imagery (Cohen and Spies, 1990; Treitz and Howarth, 2000; Sampson,

2000).

5.3 Spectral/Spatial Indices and Forest Structure

The ability to develop an index at a given calibration site and later transfer it to
imagery at other sites with consistent accuracy was a key goal for this research. Part of
the challenge when developing an index to monitor forest structure was the wide variety
of canopy conditions that could be encountered in an image, particularly over such an
expansive landmass as Ontario. Remote sensing of forest structure, particularly for sugar
maple environments, is still relatively new with very few studies having been published
where the work has been tested across multiple environments. Some work has been
reported relating texture variables (contrast, entropy, angular second moment (ASM))
derived from multispectral video imaging to forest-decline indices extracted from
airphoto interpretation, giving correlations of r=0.79 between contrast and the photo-
decline index (Yuan e al., 1991). This was expanded to a two-variable model (contrast
and principle components) with r=0.85 between the texture and the photo-decline index
(Yuan er al., 1991). This work was then compared to ground-based modelling techniques
employed by the Ontario Ministry of Environment (OME). Results showed that for most

sites, there was a qualitative agreement with the OME model, which meant that both
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techniques ordered the sites in a similar fashion in terms of the average sugar maple
decline in the area (Yuan er al., 1991). However, there was no quantitative comparison
reported between the two methods.

Results from this research are mixed when trying to transfer indices from the
calibration sites in southern Ontario to the validation sites at TLW. Even within the
calibration sites, results vary when comparing indices developed from the FH sites alone
to the ISD sites and to indices developed from the pooling of all of the sites. Deciduous
forests are complex ecosystems, with many factors affecting crown architecture and
hence spectral reflectance. Other research has attempted to solve this problem by first
focusing on forest ecosystems that appear to be simpler to model or characterize.
Success has been reported for extracting structural parameters from coniferous forests in
flat terrain (Peddle er al., 1999), but considerable difficulty still exists when moving from
a coniferous environment to 2 mixed or deciduous environment (Peddle and Johnson,
2000). This work has shown some success in creating indices where relationships hold
for some validation sites, particularly for control, shelterwood, and selected cut sites (e.g.,
metrics for percent canopy openness, LAI, number of trees, crown depth, crown diameter
— Tables 12 to 16). Given the complex nature of the sugar maple ecosystem, the fact that
these indices are transferable to TLW is encouraging.

Throughout the analysis, the results demonstrate that for several metrics the first-
and second-derivative calculations improve correlations when compared to the
reflectance data and texture features applied. This represents a significant result, because
it shows that hyperspectral processing techniques contribute additional value to spatial
processing for forest structure. The first- and second-derivative calculations accentuate
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subtle variations that were insignificant in the original spectral reflectance curve. For
example, although an examination of the spectral reflectance curve (Figure 7) does not
reveal any notable features in the visible region other than the green peak associated with
vegetation, the first- and second-derivative curves (Figure 11) emphasize several small
but distinct features in the blue, green, and red wavelengths that are related to forest
metrics (e.g., Table 8: 483-498 nm are related to elliptical crown closure). This is further
emphasized by the results that demonstrate that most of the visible channel correlations
occur in the derivative images (Table 5). These findings raise a few questions as to the
nature of the derivative images themselves: 1) Are the subtle changes which are
emphasized in the derivative curves a function of atmospheric noise or do they represent
real features on the vegetation spectral curve? and 2) Why are the first- and second-
derivatives related to the physical properties of the forest?

To address the first of these questions, a clear understanding of the derivative
images is required. The information contained in each channel of the first-derivative
image could be described as the amount of change in reflectance from one channel to the
next, i.e. the slope of the reflectance curve. By definition, the sign of the data values
changes from positive to negative at any point on the spectral reflectance curve where the
slope changes. This would occur at notable features on the reflectance curve, including
the green peak, the absorption well in the red region, the REIP, and the NIR shoulder,
causing the correlation coefficient to change signs at these locations as well. This is
exaggerated even further for the second-derivative image, which contains values
describing the rate at which reflectance changes from one channel to another (i.e.
acceleration on the curve — or the quantity of slope change from one channel to the next).
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In this case, the change of sign from positive to negative is the result of the detailed shape
of the curve, rather than an actual abrupt change in reflectance.

It becomes apparent from the above description that atmospheric noise, which
may not be visibly apparent on the spectral reflectance curve, will be emphasized in the
derivative curves. It is well known that even with imagery that has been processed to
reflectance, like the CASI data used in this research, atmospheric absorption features are
not perfectly modelled/removed (Milier, 2001). This is due in part to a lack of
understanding of all of the effects of absorption and scattering in the atmosphere as well
as to difficulties in modelling the spatial variation of these processes (Miller, 2001). A
clear example of an atmospheric absorption effect that is plainly visible on the CASI
spectral reflectance curve is the oxygen absorption feature at 762 nm (Figure 10). This
feature has a dramatic effect on the first- and second-derivative curves (Figure 11),
which, if its atmospheric origins were not known, could easily be confused for a real
reflectance feature.

The confusion introduced by atmospheric features (and/or any other noise feature)
was addressed in this research by: 1) the multi-pixel approach used to extract pixel values
(i.e., within a 14 x 14 pixel study area, 196 pixels would be sampled to obtain a singie
value for the correlation analysis); and 2) the search for, and extraction of multiple
consecutive wavelengths with high correlations. In this manner, features that may have
resulted from atmospheric absorption and have high correlations with the forest metrics
would not be pursued in the validation analysis unless they affected more than a 20 nm
range of the spectral curve (i.e., each channel is approximately 10 nm wide). The chance
of any of the final indices being related to forest metrics due to atmospheric artifacts was
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further reduced by the validation analysis in TLW. These data were collected in a
different year, with inherently different atmospheric conditions.

The question regarding the relationship between forest structural metrics and first-
and second-derivative images should be expanded to include consideration of spatial
pattern: 1) To what can the relationship between the first- and second-derivative images
and the physical properties of the forest be attributed? 2) To what can the relationship
between spatial pattern (texture) and the physical properties of the forest be attributed?
and 3) How did these combine to produce the relationships found in this research?

Whether the research is addressing questions of forest structure or physiology,
that fact remains that the sensor is only detecting one thing - the quantity of EM response
that reaches it. To determine what causes relationships between the imagery and the
forest metnics, it is necessary to trace the path of short-wave radiation from the sun as it
travels through the atmosphere, where it is absorbed, transmitted, and reflected, to the
canopy surface where it undergoes the same processes. Incident short-wave radiation
reaches the forest canopy (i.e.. either direct short-wave radiation from the sun or diffuse
short-wave radiation from the sky) and interacts with leaves at the cellular level. Of this,
a portion is reflected towards the sensor. Further, energy is transmitted through the
canopy to interact with the understory and the ground surface. Portions of this energy
will also be reflected towards the sensor. The interaction between EM energy and the
leaf has been studied at both the laboratory and canopy scales. Relationships between the
first and second derivatives of the spectral curve and cellular biochemical processes have
been established in the literature. Many of the existing hyperspectral indices developed
for estimating physiological response are summarized in Appendix A.l. By relating the
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imagery to forest structure, this research is assessing the spatial distribution and pattern of
these cellular processes as well as the pattern of shadow and gaps in the canopy.

To gain an understanding of the structural relationships found in this research and
how they can be related back to our understanding of EM interaction with the forest
canopy, it is necessary to consider what is actually occurring in the structure of the forest
canopy in relation to the various metrics. The variable that was most easily modelled was
percent canopy openness. Let us first consider this metric and the relationships to
dissimilarity and angular second moment. The strongest relationships were found with
these texture features and percent canopy openness in the blue, red, and NIR (>800 nm)
wavelengths.

Low values of percent canopy openness (or high values of crown closure) imply a
closed canopy, with very few gaps or breaks. From a synoptic vantage point, these areas
would appear to be densely vegetated, with some *“shallow™ shadow features spread
rather evenly throughout the canopy as a result of the orientation of the leaves, or as the
result of some trees being taller than others, but with very few deep shadow areas that
might be associated with gaps in the canopy. Vanability (and dissimilarity) would be
highest in the NIR region of the EM spectrum, as the amount of reflectance from
vegetation is highest in this region. The blue and red regions would appear relatively dark
and uniform under closed canopy conditions (a function of chlorophyll absorption). As
percent canopy openness increases, more deep shadow areas will occur, increasing the
variability (and dissimilarity) of reflectance values likely to occur in the blue and red
regions. This effect would also be evident but less pronounced in the NIR region,
because multiple scattering in the canopy causes more variability in the amount of
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reflectance in the NIR. This explains why percent canopy openness is related to the
dissimilarity texture features of reflectance in the visible region, and to the first-
derivative image in the NIR (i.e., the first-derivative image emphasizes the subtle
differences in the texture features) (Tables 6, L1, and 12). With these physical factors in
mind, the dissimilarity texture features would be lowest in closed canopy conditions at
each wavelength. However the lowest dissimilanty values in the NIR would be higher
than the lowest values in the blue and red regions. As gaps are introduced to the canopy,
dissimilanty in all regions of the spectrum would increase, but the most obvious change
would occur in the visible wavelengths. Therefore, one would expect that as percent
canopy openness increases, the dissimilarity values would increase, resulting in a positive
correlation (Figure 30). Note that the opposite is true for crown closure, producing a
negative correlation between range and crown closure (Figure 27).

ASM can be considered the opposite of entropy (Hail-Beyer, 2000), and as such
can be considered a measure of the presence of distinct structure or organization of
patterns within the image (Yuan er al., 1991). Structure or pattern would be expected to
increase as gaps and shadows are introduced into the canopy, resulting in a positive
correlation between ASM and percent canopy openness. With this description of ASM,
the relationships would be expected to weaken in closed canopy or clear-cut conditions,
as was shown to be the case in the validation analysis (Table 12). As was the case with
dissimilarity, relationships with the percent canopy openness would be most evident in
the visible regions, since the multiple scattering effects in the NIR would introduce some

confusion to this calculation (Tables 11 and 12).
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LAI and crown diameter were found to have relationships with dissimilarity and
homogeneity respectively on the green peak and the red edge, which are wavelengths
known to be related to vegetation type, photosynthetic capacity, and efficiency of
radiation use (Gamon et al., 1995; Zarco-Tejada and Miller, 1999). Dissimilarity has
negative correlations with LAI, suggesting that as variability within the filter increases
(i.e. as more shadows and gaps are introduced), values for LAI decrease. In other words,
as gaps are introduced, a smaller fraction of the pixel is composed of leaf area.
Homogeneity can be described as essentially the opposite to dissimilarity (areas with
higher variance have lower values of homogeneity), which explains the positive
correlations found with crown diameter (Tables 8 and 14). In this case, as the size of the
crown increases and gaps are reduced within the filter, homogeneity increases.

First- and second-order mean texture features are negatively correlated with the
number of trees. This can be explained by the shadow and illumination effects caused by
the edge of individual crowns. More individual crowns cause increased edges between
them, introducing more shadowed pixels and bi-directional reflection effects, which
would lower the mean reflectance. This idea is supported by conclusions reported by
Olthof and King (1998) who suggested that higher texture values (in their case
“contrast”) occur along edges where two fractions meet, with low values occurring in
larger dark or bright areas. This would be expected to happen at all wavelengths,
however the vanability in reflectance in the NIR would decrease this effect somewhat.
Here again, the first derivative of the mean texture feature accentuate the subtle changes
in this region, allowing for a stronger correlation than for the reflectance image (Table
10).
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Finally, entropy for the second derivative of the blue region is related to crown
depth (Tables 9 and 16). Entropy is a measure of uncertainty within the filter and can be
thought of as a measure of the lack of structure or pattern (Yuan et al., 1991). The value
will be low if the image is relatively smooth, and high if there is more of a pattern. The
results indicate that as the pattern increases, crown depth increases as well. This finding
is supported by field observations, which note that in the broken canopy conditions of the
ISD plots, young trees have grown toward any gap with available sunlight (this would
have occurred in the two-year span between the ice storm and field work). Because there
is a lot of sunlight reaching lower levels of the forest, many of these trees have small
branches all the way down the trunk, making identification of the base of the crown very
difficult. This contrasts with the old growth in the TLW, where tree crowns are very
distinct, with few branches lower than the main canopy.

All of the relationships described above are strongly influenced by the effects of
shadow and variations in illumination. The ability to understand and characterize shadow
and its patterns within the image is critical to the extraction of structural information
about the forest. This need has been recognized in current research, and attempts to
relate shadow to structure have been reported (Yuan et al., 1991). Attempts to extract the
shadow component of a pixel have also been reported (Peddle er al., 1999), but the

complexity of sugar maple stands has thus far limited the success in this area.
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6.0 CONCLUSIONS & RECOMMENDATIONS

Perhaps more significant than the indices that were developed in this research is
the notion that the techniques used to develop them have proven to provide beneficial
information about the pattern of relationships along the spectral curve. The integration of
spatial and hyperspectral techniques do improve relaticnships with structural measures,
which suggests that further research in this area is warranted. Results in this research
demonstrate that meaningful relationships along the spectral and derivative curves would
have been entirely missed if feature extraction had been performed prior to the analysis,
because features on the spectrai, and hence the derivative curves, would not have been
captured. By accentuating correlation patterns on the spectral and derivative curves that
would not have been detectable using multispectral images, it has been demonstrated in
this work that hyperspectral imagery has unique and valuable information to add to
remote sensing of forest structure.

In many cases, the first- and second-derivative images improve correlations
between the hyperspectral data and forest structure metrics (e.g., Table 5). This is due to
the fact that subtle features on the spectral reflectance curve are emphasized on the first-
and second-derivative curves. This result illustrates the utility of applying hyperspectral
techniques to forest structure research. Further supporting this idea are strong
correlations with measures of the crown dimensions and the REIP (e.g., Figure 27), a
feature known to be related to physiological parameters (Zarco-Tejada et al., 1999).

The visible, red-edge, and NIR regions of the EM spectrum each contain features
that are correlated with forest structure. Several forest structural metrics have strong
correlations in multiple regions of the spectrum, illustrating a potential for multiband
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indices. For example, percent canopy openness (Tables 11 and 12) is highly correlated to
texture features in the blue, red, and NIR regions of the EM spectrum. This result
demonstrates the importance of investigating all regions of the EM spectrum detected by
the hyperspectral sensors, rather than focusing on the red edge as tends to occur for
physiological indices (Appendix A.1.4 and A.1.5).

Incorporating geostatistical (i.e., semivariance) results with texture analysis by
defining the filter dimensions with estimated range parameter improves the correlation
with the texture features and forest structure measures (e.g.. for number of trees, stem
density, height to the crown base, tree height, crown closure, crown diameter, and crown
width). Estimated range values vary according to wavelength and appear to be linked to
individual tree crowns (Appendix A.5). This supports the results of previous work (e.g.,
Sampson, 2000: Treitz and Howarth, 2000; Treitz, 2001).

Texture features improve correlations between the hyperspectral data and all
forest structure metrics (except DBH). Most prevalent in the results are: homogeneity:;
dissimilarity; and mean texture features. Dissimilarity texture features are negatively
correlated with estimates of LAI and positively correlated to percent canopy openness
(Table 11), suggesting a link with shadow fraction (Yuan er al., 1991; Peddle er al.,
1999). Mean texture features are negatively correlated to the number of trees within the
plots (Table 15), which is attributed to shadow and illumination effects along the edge of
the tree crowns (Olthof and King, 1998). Finally, homogeneity is positively related to
crown diameter (Table 14), indicating that as crown size increases and gaps in the canopy

are reduced, the image becomes smoother (i.e., more homogenous) within the filter.



To this point, emphasis has been placed on developing indices that are
transferable across sugar maple environments across Ontario. However, results indicate
that this may be too broad a study area to realistically expect one index to perform well
under all conditions. However, when considering the expansive area within south-eastern
Ontario over which the indices were developed, predictive indices could potentially
provide valuable information for this area. This would first require additional validation
sites, to assess the accuracy of the prediction maps. This could prove to be particularly
interesting when considering the temporal changes occurring in the canopy affected by
the ice storm as the health of the damaged canopies improve.

Although the results from this work show promise, considerable study needs to
be undertaken before hyperspectral remote sensing can extract forest structure in a
sufficiently practical and reliabie way to be useful for forest managers or government
reporting agencies. Clearly, use of this data is still very much in the research phase, with
limited understanding of how forest ecosystems are characterized or measured by
hyperspectral sensors operating at a given spatial resolution. With this in mind, the
following recommendations have been developed based on the results and issues

encountered within this study.

I.) There is an immediate need to assess the impact of moving to a coarser spatial
scale, while stil! maintaining the fine spectral resolution. A multi-scaled analysis
needs to be undertaken both for physiological and structural parameters to gain a
better understanding of the scaling phenomenon across landscapes with respect to

canopy reflectance.



2.) Greater effort is required to determine the most effective sampling strategy for

various structural parameters, particularly for “upscaling™ to coarser resolutions.

The objective use of field data should also be considered, since linking field data

to a remotely sensed image requires different considerations and sampling criteria

than currently used by forest managers to obtain stand-level information. This

again will require an analysis of the effect of scale on the representation of forest

parameters.

a.

This work should be completed with careful consideration of current and
anticipated forest management objectives. If hyperspectral satellite
technology is going to eventually prove useful to forest managers and
government reporting agencies, it must be suitable for addressing
problems they are currently considering. An understanding of how
variations in structural parameters are linked to ecosystem health at
various spatial scales is required. Keeping in mind that remote sensing
does not provide causal information, it is necessary to determine what
information needs to be extracted at the satellite scale and how that
information can actually be used by foresters once it has been
demonstrated to be accurate and reliable.

Given the success with hemispherical photography in this study, more
work should be completed to assess effective methods of relating above

and below canopy images to canopy structure. Hemispherical photos may
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3)

4.)

prove to be an effective and objective approach to determining canopy

shape from the ground.

As knowledge of the spatial and spectral processes occurring at the canopy
improves. more efforts should be directed towards automating the computer
processing and storage techniques. This will assist in reducing the size of the data
sets to be more manageable and eliminate the need for repetitive manual
calculations that may introduce error and in general make the use of this

technology unattractive to forest managers.

Spectral unmixing, a method to determine the shadow component of the imagery,
is a spatial technique that was not incorporated into this research. Work should be
completed to improve the effectiveness of spectral unmixing in a sugar maple
environment so that the success of the technique can be compared to
texture/geostatistical results. Once this has been completed, the potential of
combining the two approaches to extract shadow component could be considered.

This has significant application to analyzing hyperspectral data at satellite scales.

The REIP has been shown to be a feature of interest for both physiological and
structural investigations. A more detailed investigation of REIP spatial variations,
particularly when moving across scales should be undertaken. Underlying
ecosystem processes that are affecting this parameter need also to be investigated

at various scales.



6.)

7.)

8.

Validation results for percent canopy openness showed that multiple texture
features had relationships with calibration and one or more validation sites,
indicating that different texture features are more effective than others for
characterizing different silviculture treatments. To attempt to characterize a
greater range of silviculture treatments in the texture models, a multi-variable

relationship should be explored.

Further investigation is required into determining optimal distance and direction
parameters for generating the GLCM. The need for this was illustrated in Figures
22 1o 25 for ASM and entropy, which were not optimized at this wavelength (739
nm), most likely due to the vanability in the NIR (i.e., multiple scattering) as
compared to the visible regions. This made the adjacent pixel specified by the
distance and direction parameters an inappropriate choice for ASM and entropy in
the NIR. The utility of the range and anisotropic information derived from

semivariance analysis for these parameters should be determined.

Results indicate that reporting optimal wavelengths for structural parameters
based on the highest determined correlation between wavelengths and metrics can
be very misleading, because it ignores correlation patterns across wavelengths.
Efforts should be made to consider consecutive channels with high correlations

when reporting results.



The potential to extract structural information from hyperspectral data is
encouraging for the future analysis of satellite hyperspectral data. This potential suggests
that the applications of hyperspectral satellites for forest research are more widespread
than is commonly considered. If physiological and structural information can both be
extracted from the same data, a significant step forward in providing cost effective tools
for resource managers and government reporting agencies to repetitively monitor forest

ecosystems over large areas can be taken.
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A.1.2 Common Broad-Band Orthogonal Indices

Name Formula Comments Reference
Simple NIR - red High values indicate vegetated areas. Negative values | Richardson and Wiegand
Vegeltation for materials that reflect more in the visible than (1977),
Index (VI) infrared (water, clouds, snow, ¢tc.) Lillesand and Kiefer
Some discrepancy as to the origin of this index. (1994);,
Difference Vegetation Index (DVI) and Ashburn’s Ray (1994)
Vegetation Index (AVI) are essentially the same.
Perpendicular | sin(a) Pur —cos{a)p, ., Allow for soil lines of different slopes. Richardson and Wiegand
Vegetation Very sensitive to atmospheric change. (1977);
Index (PVI) Qi et al. (1994)
Weighted P —8*Poo Altow for soil lines of different slopes. Clevers (1988)
lefcreqce g = slope of soil line Very sensitive to atmospheric change.
Vegetation
Index (WDVI)
Green Cp +Cp,+C,p, +C,p, Tasseled Cap transformation designed to detect green | Kauth and Thomas (1976);
Vegetation CraonPres * Courfires * CrurbPrser * CousoPrae vegetation. C coefficients are sensor dependent. Jensen (1996),
Index (GVI) + Cresfras + CrasrPres Crist and Cicone (1984);
Jackson (1983)
Sail C\p, +C,p,+Cip,+C,p, Tasseled Cap transformation designed to detect soil. Kauth and Thomas (1976),
Brightness Crabran * CoansPraas + Crurbran + Crotines | € COCATicients are sensor dependent. Many of the soil | Jensen (1996);
Index (SBI) + CrusPinss # CrurPoan indices are based on the concepts of this index. Crist and Cicone (1984),
Jackson (1983)
Yellow Swuff | C,p, +C,p, +C,p, +C,p, Tasseled Cap transformation that typically shows the | Kauth and Thomas (1976);
Index (YSI) dead vegatation. C coefficients are sensor dependent. | Jensen (1996)
Non-such Cp +C,p,+Cyp, +C,p, Tasseled Cap transformation that illustrates Kauth and Thomas (1976);
Index (NSI) atmospheric effects. C coefficients are sensor Jensen (1996)

dependent.

0¢1
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A.2 Calibration Field Metrics (FH and ISD Sites)

A.2.1 Quadratic DBH

Units of Measure: cm

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 26.52 | 26.52
FH A063 - - - - 30.61 30.61
FH A064 - - - - 35.71 35.71
FH A065 - - . - 2358 | 2358
FH A066 - . - - 33,5 335
FH A067 - - - - 31.43 | 31.43
1SD 12 3420 | 36.13 | 3456 | 3755 | 34.76 | 3536
iSD 14 2210 | 3492 | 3008 | 33.78 | 43.04 | 33.11
ISD 15 37.38 | 3718 | 1946 | 4665 | 2506 | 31.27
ISD 19 18.10 | 27.41 26.65 | 31.71 - 24.18
ISD 21 2428 | 2313 | 2485 | 26.69 | 2069 [ 24.01
ISD 23 2595 | 2204 | 3299 | 2482 | 31.05 | 26.75
ISD 3 31.38_| 30.15 | 23.13 | 2408 | 2488 | 26.46
ISD 31 27.38 | 3155 | 3147 | 34.37 - 31.57
ISD 40 2572 | 3224 | 3879 | 27.49 - 29.8
ISDS 31.87 | 33.33 | 21.36 | 30.01 2546 | 28.28
A.2.2 Arithmetic DBH
Units of Measure: cm
Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 25.16 | 25.16
FH A063 - - - - 28.36 | 28.36
FH A064 - - - - 32.91 32.91
FH A065 - - - - 2199 | 21.99
FH A066 - . . - 30.40 | 30.40
FH A067 - . . - 29.67 | 29.67
ISD 12 3166 | 3319 | 3275 | 3488 | 31.74 | 32.72
ISD 14 2128 | 3375 | 27.89 | 3233 | 38.74 | 30.41
ISD 15 3665 | 3392 | 1729 | 4576 | 21.04 | 27.39
ISD 19 17.05 | 2322 | 25.12 | 28.27 . 21.49
ISD 21 2266 | 2218 | 2324 | 2457 19.43 | 22.46
ISD 23 2353 | 1784 | 28.90 | 21.85 | 2769 | 23.01
ISD 3 3043 | 2893 | 2198 | 2330 | 2385 | 2528
ISD 31 25.02 | 2872 | 2990 | 3094 - 28.80
ISD 40 22.21 2940 | 35588 | 21.99 - 25.55
ISDS 30.36 | 2832 | 2018 | 2769 | 2323 | 2557
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A.2.3 Tree Height
Units of Measure: m

Study Site Plota | Plotb | Plotc | Plotd | Centre | Total
FH AQ2 - - - - 22.18 22.18
FH A063 - - - - 22.43 22.43
FH A064 - - - - 30.18 30.18
FH A065 - - - - 16.76 16.76
FH A066 - - - - 18.40 18.40
FH A067 - - - - 23.94 23.94
ISD 12 22.76 | 2322 | 21.61 21.81 22.48 | 22.41
ISD 14 17.25 | 21.15 19.21 2043 | 22.76 | 20.04
ISD 15 17.73 | 17.04 13.98 19.18 14.53 15.83
ISD 19 15.79 18.19 | 2295 | 23.77 - 18.86
1SD 21 17.48 18.13 20.74 16.58 16.22 18.08
ISD 23 17.05 14.36 18.09 17.35 20.32 16.93

iSD3 20.53 18.08 18.03 18.68 20.42 19.18
ISD 31 19.90 22.76 23.28 21.56 - 21.77
ISD 40 17.21 21.14 19.05 16.19 - 18.16
ISD5 21.86 | 20.47 19.54 | 20.21 21.41 20.68
A.2.4 Crown Diameter
Units of Measure: m

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH AQ2 - - - - 4.65 4.65
FH A063 - - - - 4.88 4.88
FH AQ64 - - - - 5.90 5.90
FH A065 - - - - 5.13 5.13
FH A066 . - - - 5.76 5.76
FH AQ67 - - - - 6.64 6.64
1SD 12 5.31 4.80 6.64 5.98 6.73 5.90
iSD 14 4.78 5.92 5.67 6.45 5.59 5.67
iSD 15 8.51 7.62 5.48 9.66 5.89 6.90
ISD 19 5.06 5.63 6.13 7.68 - 5.75
ISD 21 6.51 5.04 4.81 5.57 5.77 5.47
ISD 23 6.32 4.95 7.11 6.50 6.46 6.07

ISD 3 5.49 5.77 4.88 5.62 5.04 5.33
ISD 31 6.17 5.61 6.26 7.50 - 6.51
ISD 40 6.19 8.10 8.53 6.25 - 6.99

ISD5 8.90 8.55 6.24 7.45 6.24 7.33
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A.2.5 Crown Closure - Circular
Units of Measure: unitless fraction

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 1.36 1.36
FH A063 - - - - 0.96 0.96
FH A064 - - - - 1.04 1.04
FH A065 - - - - 1.08 1.08
FH A066 - - - - 0.62 0.62
FH AQ67 - - - - 1.23 1.23
ISD 12 0.88 0.71 1.16 0.81 1.63 1.04

ISD 14 0.53 0.78 1.50 0.90 0.80 0.90
ISD 15 1.16 1.39 1.10 1.01 1.03 1.14
ISD 19 1.04 1.41 1.54 1.73 - 1.32
ISD 21 2.64 2.00 1.86 1.61 1.75 1.97
ISD 23 1.97 1.51 1.46 1.20 1.28 1.48
ISD 3 1.05 1.16 0.97 1.40 1.31 1.18
ISD 31 2.44 1.86 2.23 1.97 - 2.08
iSD 40 2.28 4.37 1.53 3.44 - 2.91
ISD 5 2.50 2.51 1.57 2.14 1.85 2.11

A.2.6 Crown Closure - Ellipse

Units of Measure: unitless fraction

Study Site; Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 1.35 1.35
FH A063 - - - - 0.95 0.95
FH A064 - - - - 1.03 1.03
FH A065 - - - - 1.05 1.05
FH A066 . - - - 0.62 0.62
FH A067 - - - - 1.21 1.21
ISD 12 0.85 0.68 1.05 0.74 1.54 0.97
ISD 14 0.50 0.73 1.29 0.81 0.72 0.81
ISD 15 1.14 1.38 1.05 0.96 1.01 1.1
ISD 19 1.02 1.37 1.51 1.68 - 1.29

ISD 21 2.45 1.92 1.80 1.51 1.67 1.87
ISD 23 1.95 1.37 1.44 1.19 1.23 1.43
ISD 3 1.00 1.09 0.92 1.29 1.27 1.12
ISD 31 2.35 1.82 2.1 1.90 - 2.00
i1SD 40 2.21 4.32 1.52 3.15 - 2.80
ISD5 2.44 2.49 1.55 2.11 1.83 2.08
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A.2.7 Crown Depth
Units of Measure: m

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - . - 8.41 8.41
FH A063 - - - - 9.26 9.26
FH A064 - - - - 9.67 9.67
FH A065 - - - - 8.04 8.04
FH A066 - - - - 9.85 9.85
FH A067 . - - - 10.47 10.47

ISD 12 10.77 1204 | 1086 | 1030 | 11.02 11.03
ISD 14 9.50 10.16 9.72 9.20 10.54 9.83
ISD 15 10.80 11.23 7.54 11.76 9.32 9.64
ISD 19 8.09 8.85 11.58 | 12.15 - 9.53
ISD 21 8.95 9.28 10.50 9.55 9.54 9.60
ISD 23 10.46 8.05 10.67 | 10.81 12.99 10.19
ISD 3 9.39 8.48 8.35 8.21 7.68 8.33
ISD 31 9.06 1224 | 11.22 9.84 . 10.46
ISD 40 8.81 12.49 9.33 8.51 - 9.82
ISD 5 11.26 | 1097 | 1022 | 10.35 | 11.31 10.81

A.2.8 Crown Width (major)

Units of Measure: m

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH AQ2 - - . . 4.66 4.66
FH A063 - - - - 5.01 5.01
FH A064 - - - - 5.87 5.87
FH A065 - - - - 5.16 5.16
FH A066 - - - - 5.69 5.69
FH AQ67 - - - - 6.88 6.88

ISD 12 4.61 3.94 4.85 4.60 5.41 4.70
ISD 14 3.90 4.55 3.93 4.74 3.94 4.15
ISD 15 7.46 6.96 4.49 7.90 5.02 5.92
ISD 19 4.60 4.88 5.40 6.78 - 5.12
ISD 21 5.14 4.20 4.06 4.49 4.90 4.51
ISD 23 5.77 3.85 6.43 5.89 5.41 5.25
ISD 3 4.65 4.78 4.00 4.37 4.32 4.40
ISD 31 5.14 4.98 5.16 6.37 - 5.52
ISD 40 5.29 7.32 7.94 4.97 - 6.02
ISD 5 7.83 7.89 5.63 6.76 5.62 6.62
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A.2.9 Crown Width (perpendicular)

Units of Measure: m

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 4.64 4.64
FH A063 - - - . 4.75 4.75
FH A064 - - - - 5.94 5.94
FH A065 - - - - 5.09 5.09
FH A066 - - - - 5.83 5.83
FH A067 - - . - 6.40 6.40
ISD 12 6.01 5.66 8.43 7.36 8.05 7.10
ISD 14 5.66 7.29 7.40 8.16 7.23 7.18
ISD 15 9.56 8.28 6.46 11.42 6.77 7.87
ISD 19 5.76 6.38 6.86 8.57 - 6.50
ISD 21 7.88 5.88 5.55 6.65 6.64 6.43
ISD 23 6.86 6.06 7.79 7.10 7.50 6.89
ISD 3 6.33 6.76 5.77 6.87 5.77 6.27
ISD 31 7.20 6.23 7.36 8.63 - 7.50
ISD 40 7.08 8.87 9.1 7.53 - 7.97
ISD S 9.98 9.21 6.86 8.14 6.85 8.05
A.2.10 Stem Density
Units of Measure: #/ha
Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 700 700
FH A063 - - - - 460 460
FH A064 . . - - 350 350
FH A065 - . - - 480 480
FH A066 - - - - 210 210
FH A067 - . - - 330 330
ISD 12 350 350 325 275 400 340
ISD 14 275 275 550 250 300 330
ISD 15 200 275 400 125 300 260
ISD 19 440 500 500 325 - 440.91
ISD 21 725 900 925 600 625 755
ISD 23 575 700 350 325 350 460
ISD 3 375 400 475 525 600 475
ISD 31 750 675 625 410 - 559.0909
ISD 40 625 750 250 950 - 643.75
ISDS 375 375 475 450 525 440
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A.2.11 Height to the Base of the Crown

Units of Measure: m

Study Site| Plota | Ploth | Plotc | Plotd | Centre | Total
FH AQ2 - - - - 13.77 13.77
FH AG63 - - - - 13.17 13.17
FH AO64 - - - - 13.36 13.36
FH A065 - - - - 8.72 8.72
FH A0G6 - - - - 8.54 8.54
FH A067 - - - - 13.46 13.46
ISD 12 11.99 11.19 10.75 11.51 11.46 11.38
ISD 14 7.75 10.98 9.50 11.23 12.22 10.21
ISD 15 6.93 5.81 6.44 7.42 5.21 6.19
ISD 19 7.70 9.34 11.37 11.62 - 9.34
ISD 21 8.53 8.85 10.24 7.03 6.68 8.48
1SD 23 8.59 6.31 7.41 6.55 7.33 6.74
ISD3 11.14 9.61 9.68 10.47 12.74 10.85
ISD 31 10.84 10.52 12.06 11.72 - 11.31
ISD 40 8.40 8.65 9.72 7.68 - 8.33
ISD 5 10.60 9.49 9.32 9.86 10.10 9.86
A.2.12 LAl - Derived From Four Inner Rings
Units of Measure: unitless
Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - - 3.428 3.428
FH A063 - - - - 3.094 3.094
FH A064 - - - - 3.114 3.114
FH AQ65 - - - - 3.218 3.218
FH A066 - - - - 2.896 2.896
FH A067 - - - - 3.1275 | 3.1275
ISD 12 2.49 1.56 1.94 2.15 2.41 2.1
ISD 14 1.86 1.7 1.58 1.8 1.85 1.758
iISD 15 2.22 3.61 2.98 4.55 4.06 3.484
ISD 19 3.18 3.71 2.96 3.53 - 3.386
ISD 21 2.32 24 2.55 2.55 2.52 2.468
ISD 23 2.45 3.14 4.43 2.81 3.21 3.208
ISD 3 2.18 2.3 2.92 24 2.49 2.458
ISD 31 3.19 4.06 343 3.02 - 3.5
ISD 40 3.14 3.73 3.98 3.42 - 3.482
ISD 5 3.33 3.41 2.97 2.86 2.73 3.06
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A.2.13 LAI - Derived From Five Rings

Unit of Measure: unitless

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 - - - . 2954 | 2954
FH A063 - - - - 3.512 | 3512
FH A064 - - - - 2744 | 2744
FH A065 - - - . 2874 | 2874
FH A066 - - - . 2632 | 2632
FH A067 - - - . 2.7425 | 2.7425
ISD 12 2.36 1.51 1.9 2.08 2.29 2.028
ISD 14 1.92 1.66 1.58 2 1.77 1.786
ISD 15 2.13 3.03 2.98 4.01 N 3.172
ISD 19 2.96 3.27 2.89 3.27 - 3.116
ISD 21 2.19 2.3 2.38 2.38 2.14 2.278
ISD 23 2.31 2.85 3.86 2.72 2.67 2.882
ISD 3 2.31 2.47 2.65 2.22 2.62 2.454
ISD 31 2.77 3.37 3.37 2.68 - 3.108
ISD 40 2.86 3.08 3.28 3.48 - 3.108
ISD 5 2.89 2.91 2.47 2.46 2.46 2.638

A.2.14 Percent Canopy Openness Derived From Hemispherical Photos
Units of Measure: unitless

Study Site | Plota | Plotb | Plotc | Plotd | Centre | Total
FH AQ02 - - - - 6.6 6.36
FH A063 - - - - 5.764 5.764
FH AQ64 . - - - 7.766 7.766
FH A065 - - - - 7.182 7.182
FH A066 - - - - 8.856 | 8.856
FH A067 - - - - 7.5825 | 7.5825

ISD 12 1232 | 2248 | 16.15 | 16.48 11.46 | 15.778
ISD 14 18.39 | 19.31 2114 | 16.72 17.22 | 18.556
ISD 15 12.19 6.06 6.56 8.47 3.8 7.434
ISD 19 6.13 4.75 9.02 4.8 - 5.962
ISD 21 12.61 11.74 11 10.91 12.47 | 11.746
ISD 23 11.01 6.53 2.94 9.32 7.9 7.54

ISD 3 13.78 | 11.19 9.23 11.98 8.97 11.03
iISD 31 8.14 5.01 5.42 8.33 . 6.306
ISD 40 7.07 5.81 4.7 4.67 - 6.028
ISD 5 6.53 6.02 9.03 9.49 10.34 8.282
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A.2.15 Number Of Trees
Units of Measure: unitless

Study Site| Plota | Plotb | Plotc | Plotd | Centre | Total
FH A02 . - - - 70 70
FH A063 - - - - 46 46
FH A064 - - - - 35 35
FH A065 - - - - 48 48
FH A066 - . - - 21 21
FH A067 - - - - 33 33
ISD 12 14.00 14.00 13.00 11.00 16.00 | 68.00
iISD 14 11.00 11.00 | 22.00 10.00 12.00 | 66.00
ISD 15 8.00 11.00 16.00 5.00 12.00 52.00
ISD 19 44.00 | 20.00 | 20.00 13.00 - 97.00
ISD 21 2900 | 36.00 | 37.00 | 24.00 | 25.00 | 151.00
ISD 23 23.00 | 28.00 14.00 13.00 14.00 | 92.00
ISD 3 15.00 16.00 19.00 | 21.00 | 24.00 95.00
ISD 31 3000 | 27.00 | 25.00 | 41.00 . 123.00
ISD 40 25.00 30.00 10.00 38.00 . 103.00
ISDS 15.00 15.00 19.00 18.00 | 21.00 | 88.00
A.2.16 Basal Area
Units of Measure: m*/ha
Study Site | Plota | Plotb | Plotc | Plotd | Centre | Total
FH AQ2 - - - - 38.68 38.68
FH A063 - - - - 33.84 33.84
FH A064 - - - - 35.34 35.34
FH A065 - - - - 20.95 20.95
FH A066 . - - - 18.51 18.51
FH A067 - - - - 25.61 25.61
ISD 12 32.15 35.88 | 30.49 3045 | 37.95 33.39
ISD 14 1055 | 26.34 | 39.10 | 2240 | 4365 28.41
ISD 15 2195 | 29.86 11.89 | 21.36 14.80 19.97
ISD 19 11.32 29.50 27.88 25.66 - 20.25
ISD 21 3358 | 37.83 | 4488 | 33.57 | 21.01 34.17
ISD 23 30.41 26.72 | 29.93 15.73 | 26.51 25.86
ISD3 29.00 | 28.55 19.95 | 23.91 29.17 | 26.11
ISD 31 44.16 | 52.78 | 48.63 | 38.05 - 43.76
ISD 40 3246 | 6122 | 29.55 56.40 - 44.91
ISDS 29.91 32.72 17.02 | 3182 | 26.72 27.64
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A.3 Validation Metrics (TLW)

A.3.1 Field Metrics - Hemispherical Photographs and DBH

Percent LAl LAl
Canopy | From4 | From 5 | Arithmetic | Quadratic

# | Treatment |Openness| Rings | Rings | DBH (cm) | DBH (cm)
1 clear cut 46.1 0.8 0.7 11.4 11.4
2 | shelterwood 12.0 2.8 2.3 28.4 31.9
3 control 26.2 24 2.1 23.0 27.5
4 clear cut 213 2.2 1.7 18.7 19.1
5 clear cut 20.2 2.0 1.6 15.8 16.2
6 clear cut 6.7 3.3 3.0 212 21.2
7 control 6.2 35 3.0 21.1 23.0
8 out 8.7 3.0 2.7 229 24.9
9 clear cut 479 0.7 0.6 11.7 12.6
10| clear cut 31.3 1.5 1.3 19.1 19.9
11 clear cut - - - 12.0 12.2
12| clear cut 53.7 0.5 0.5 16.3 17.1
13| clear cut 37.5 0.9 0.9 14.9 15.5
14 control 5.8 3.6 3.1 23.2 25.5
15 out 9.4 2.9 2.6 27.6 31.2
16 control 4.7 38 3.3 24.1 27.0
17| selection 13.6 2.6 2.2 19.6 20.6
18 | shelterwood 14.4 2.3 2.0 22.3 25.7
19 | shelterwood 10.7 2.7 2.3 17.3 18.7
20| selection 17.0 2.3 1.9 27.6 29.9
21 control 6.2 3.5 3.0 21.7 25.7
22 | shelterwood 8.4 3.0 2.7 23.3 28.0
23 | shelterwood 26.7 1.5 1.3 21.2 25.2
24 | selection 22.1 1.7 1.6 249 25.7
25| selection 19.5 1.9 1.7 27.4 30.6
26 | shelterwood 20.7 1.9 1.5 14.8 16.3
27 | shelterwood 13.0 2.4 2.2 21.0 23.4
28 | shelterwood 8.7 2.9 2.6 274 29.2
29 control - - - 228 27.2
30| clearcut 54.7 0.5 0.5 13.9 14.3
31 clear cut 54.6 0.5 0.5 14.0 14.5
32| selection - - - 25.2 26.3
33 control - - - 29.3 32.1
34 control 9.2 3.1 2.6 20.5 23.3
35 | shelterwood - - - 23.0 25.9
36 out 6.9 3.4 2.9 27.5 30.4
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A.3.2 Field Metrics - Crown-Width Measurements

Perpendicular Crown Crown
Major Crown | Crown Width Crown Closure | Closure

# Treatment Width (m) (m) Diameter (m) | (circular) | (ellipse)
1 clear cut 4.1 3.6 3.8 0.1 0.1
2 | sheiterwood 7.1 5.8 6.4 1.0 1.0
3 control 5.7 4.6 5.1 1.2 1.2
4 clear cut 5.9 4.0 4.9 0.3 0.3
5 clear cut 4.8 3.4 4.1 0.5 0.5
6 clear cut 4.5 3.0 3.8 0.0 0.0
7 control 5.6 4.4 5.0 1.0 1.0
8 out 6.3 5.0 5.6 1.3 1.3
9 clear cut 4.5 3.6 4.0 0.3 0.3
10 clear cut 5.2 4.0 4.6 0.5 0.5
11 clear cut 5.5 4.0 4.7 0.3 0.3
12 clear cut 3.9 3.6 3.8 0.1 0.1
13 clear cut 4.8 4.2 4.5 0.3 0.3
14 controi 6.2 4.6 5.4 1.2 1.1
15 out 7.8 6.5 7.1 1.8 1.8
16 control 7.1 5.6 6.3 1.7 1.7
17 selection 6.2 4.8 5.5 0.6 0.6
18 | sheiterwood 6.7 5.5 6.1 1.4 1.3
19 | sheiterwood 5.6 4.0 4.8 1.0 0.9
20 selection 6.0 5.0 5.5 1.1 1.0
21 control 6.5 4.8 5.7 1.6 1.6
22 | shelterwood 5.5 4.4 5.0 1.2 1.2
23 | shelterwood 4.9 3.7 4.3 0.7 0.7
24 selection 5.9 4.4 5.2 0.5 0.5
25 selection 7.4 5.2 6.3 0.9 0.9
26 | shelterwood 4.8 3.4 4.1 0.9 0.8
27 | sheiterwood 6.0 4.7 5.4 0.9 0.9
28 | shelterwood 6.8 5.2 6.0 1.3 1.2
29 control 6.3 5.4 5.8 1.4 1.4
30 clear cut 4.8 3.4 4.1 0.3 0.2
31 clear cut 6.2 4.6 5.4 0.4 0.4
32 selection 7.4 5.7 6.5 1.0 1.0
33 control 8.2 6.8 7.5 2.0 2.0
34 control 6.6 5.3 6.0 1.5 1.4
35| shelterwood 6.1 49 55 1.0 0.9
36 out 6.9 5.4 6.1 1.5 1.4
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A.3.3 Field Metrics - Measurements of Height

Tree Base Crown

# Treatment height (m) | height (m)| Depth (m)
1 clear cut 13.4 2.8 10.6
2 shelterwood 19.0 8.5 10.5
3 control 16.7 7.8 8.9
4 clear cut 15.6 6.3 9.3
5 clear cut 16.3 6.1 10.2
6 clear cut 14.0 7.1 6.9
7 control 18.1 8.0 10.1
8 out 17.3 7.1 10.2
9 clear cut 15.3 7.2 8.1
10 clear cut 15.8 7.6 8.2
11 clear cut 15.4 5.2 10.2
12 clear cut 17.2 9.2 7.9
13 clear cut 13.1 5.9 7.2
14 control 17.2 6.9 10.3
15 out 19.8 9.4 10.4
16 control 18.3 8.2 10.1
17 selection 17.8 7.3 10.6
18 shelterwood 18.0 7.9 10.1
19 shelterwood 16.4 7.6 8.8
20 selection 18.1 8.7 9.4
21 control 18.0 8.6 9.4
22 shelterwood 16.3 7.4 8.8
23 shelterwood 14.6 7.6 7.0
24 selection 19.5 9.9 9.5
25 selection 18.4 8.2 10.2
26 sheiterwood 16.9 8.3 8.7
27 sheiterwood 16.7 8.5 8.2
28 shelterwood 16.9 7.7 9.1
29 control 17.4 8.8 8.6
30 clear cut 14.1 6.8 7.3
31 clear cut 15.2 7.3 7.8
32 selection 21.4 9.9 11.5
33 control 19.9 9.0 10.9
34 control 19.6 8.0 11.6
35 shelterwood 18.4 9.2 9.3
36 out 20.8 9.3 11.5
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A.3.4 Field Metrics - Based on Number of Trees

Basal Area Stem Density
# Treatment (m*Ma) # Trees (¥/ha)
1 clear cut 0.5 2.0 49.9
2 shelterwood 16.0 11.0 274.3
3 control 31.1 21.0 523.7
4 clear cut 4.3 6.0 149.6
5 clear cut 8.2 16.0 399.0
6 clear cut 0.9 1.0 24.9
7 control 18.8 18.0 448.9
8 out 20.0 19.0 473.8
9 clear cut 2.5 8.0 199.5
10 clear cut 8.5 11.0 274.3
1 clear cut 2.1 7.0 174.6
12 clear cut 1.7 3.0 74.8
13 clear cut 3.8 8.0 199.5
14 control 24.2 19.0 473.8
15 out 32.4 17.0 423.9
16 control 271 19.0 473.8
17 selection 8.3 10.0 249.4
18 shelterwood 18.2 16.0 399.0
19 shelterwood 13.7 20.0 498.8
20 selection 28.2 16.0 399.0
21 control 29.7 23.0 573.6
22 shelterwood 30.8 20.0 498.8
23 shelterwood 20.0 16.0 399.0
24 selection 11.6 9.0 224.4
25 selection 18.4 10.0 249.4
26 shelterwood 12.5 24.0 598.5
27 sheiterwood 16.2 15.0 374.1
28 shelterwood 28.5 17.0 423.9
29 control 27.6 19.0 473.8
30 clear cut 2.8 7.0 174.6
31 clear cut 2.9 7.0 174.6
32 selection 15.0 11.0 274.3
33 control 34.4 17.0 423.9
34 control 20.2 19.0 473.8
35 shelterwood 18.4 14.0 349.1
36 out 32.6 18.0 448.9
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A.4 DGPS Information

A.4.1 FH and ISD Plot Centres

FH Projection: UTM Zone 17FH Datum: WGS 84

ISD Projection: UTM Zone 18

ISD Datum: WGS84

Study Site | EASTING | NORTHING
FH A02 | 645759.74 | 5048495.00
FH A063 | 716543.07 | 4958944.73
FH A064 | 700505.80 | 4982318.38
FH A065 679128.93 | 4997341.99
FH AD66 | 659720.83 | 4992028.98
FH A067 | 666661.24 | 5002380.17

ISD 12 458515.20 | 4980876.92
ISD 14 378476.62 | 4975366.33
ISD 15 449778.72 | 4949192.79
ISD 19 354164.26 | 4908623.72
ISD 21 490899.14 | 5004752.87
ISD 23 513439.24 | 5008704.54
ISD 3 405227.77 | 4955086.17
ISD 31 487943.49 | 5044784.66
ISD 40 467015.98 | 5037278.97
ISD 5 368100.05 | 4914876.60
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A.4.2 TLW Plot Centres

TLW Projection: UTM Zone 16

TLW Datum: WGS 84

Plot # | EASTING | NORTHING
1 695365.96 | 5215973.40
2 695351.95 | 5216083.62
3 695563.48 | 5216068.69
4 695310.71 | 5215740.57
5 695388.88 | 5215745.37
6 695381.99 | 5215869.70
7 695224.75 | 5215851.08
8 695175.90 | 5215715.02
9 695302.12 | 5215472.29

10 695255.35 | 5215493.54
11 695259.34 | 5215538.30
12 695544.65 | 5215605.13
13 695527.55 | 5215523.66
14 695601.59 | 5215486.97
15 695631.71 | 5215614.95
16 696149.70 | 5215147.92
17 696184.75 | 5215209.36
18 696206.70 | 5214894.31
19 696292.17 | 5214829.58
20 695863.43 | 5214998.19
21 696043.90 | 5214995.31
22 695835.05 | 5215123.93
23 695835.04 | 5215198.57
24 695856.83 | 5215164.96
25 695877.31 | 5215261.26
26 696550.24 | 5214744.74
27 696570.39 | 5215330.50
28 696562.09 | 5215386.05
29 696151.15 | 5214996.35
30 695278.24 | 5215586.81
K} 695392.25 | 5215662.67
32 695056.91 | 5215970.14
33 695119.50 | 5215881.51
34 695699.95 | 5216130.11
35 695815.12 | 5216305.71
36 695773.05 | 5215549.60
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A.5 Semivariance Analysis - Optimal Extracted Range Values Per Band

691

Optimal Range in Metres Extracted from the lce Storm Damage
and Forest Health Plot Sites

Wavelength (nm): 409 416 424 431 438 446 453 461 468 476 483 490 498
Reflectance Image: E-W 5 5 6 7 6 7 8 7 7 9 8 6 8
1st Derivative: E-W 4 4 4 4 5 4 4 4 4 5 4 4 5

2nd Derivative: E-W 4 4 4 5 4 4 4 4 5 5 4 4 5
Refleclance Image: N-S 15 8 8 12 8 7 9 9 8 8 7 8 6
1st Derivative: N-S 5 6 9 5 7 8 5 4 4 6 6 6 6

2nd Derivative: N-S 9 6 6 10 6 5 6 6 5 4 9 5 6
Wavelength (nm):| 505 513 520 528 535 543 550 558 565 573 580 588 595]
Reflectance image: E- 9 7 7 7 7 7 7 7 7 7 7 7 7
1st Derivative: E- 5 6 7 7 7 7 6 6 7 7 6 7 6

2nd Derivative: E- 6 6 5 6 6 6 7 7 7 6 6 5 4
Reflectance Image: N- 6 6 6 6 6 6 5 5 6 6 6 6 6
1st Derivative: N- 5 6 6 6 5 6 5 6 6 6 7 7 5

2nd Derivative: N- 8 7 5 7 5 4 6 6 5 4 5 5 3
Wavelength (nm): 603 610 618 626 633 641 648 656 663 671 679 686 694
Reflectance Image: E-W 7 8 8 8 8 7 7 8 8 8 8 8 8
1st Derivative: E-W 7 7 6 6 6 6 8 7 6 5 5 8 8

2nd Derivative: E-W 5 4 5 4 5 5 5 6 5 6 8 8 7
Refiectance Image: N-S 6 6 6 6 6 5 5 5 6 6 6 6 6
1st Derivative: N-S 5 5 6 5 5 6 6 5 5 5 8 6 6

2nd Derivative: N-S 5 3 5 3 5 4 5 5 5 6 6 7 7




0L1

Wavelength (nm): 701 709 717 724 732 739 747 755 762 770 778 785 793
Reflectance Image: E-W 7 7 7 7 7 8 7 4 8 4 4 4 4
1st Derivative: E-W 7 7 8 8 9 10 10 7 9 8 4 4 3
2nd Derivative: E-W 7 10 12 9 8 8 8 8 8 7 8 4 4
Reflectance Image: N-S 6 6 6 6 6 5 5 4 6 4 4 4 3
1st Derivative: N-S 7 6 7 7 10 11 17 5 6 8 2 2 2
2nd Derivative: N-S 8 8 15 9 6 6 7 24 6 9 7 3 3
Wavelength (hm): 801 808 816 824 831 839 847 854 862 870 878 885 893
Reflectance Image: E-W 4 4 4 3 4 4 4 4 3 4 5 4 4
1st Derivative: E-W 3 6 8 4 5 4 3 3 4 4 4 3 8
2nd Derivative: E-W 5 7 5 7 5 4 4 4 4 4 4 8 4
Reflectance Image: N-S 3 3 5 4 4 5 5 5 5 4 4 4 4
1st Derivative: N-S 2 5 7 K] 3 3 3 3 3 4 3 3 7
2nd Derivative: N-S 4 5 4 6 4 3 3 2 4 3 5 6 4
Wavelength (nm): 901 908 916 924 932 93

Reflectance Image: E-W 3 4 4 4 4 5

1st Derivative: E-W 5 4 4 5 6 1

2nd Derivative: E-W 4 5 6 6 10 6|

Reflectance image: N-S 5 5 5 5 5 6

1st Derivative: N-S 5 4 6 6 7 33

2nd Derivative: N-S 4 6 7 7 33 27




A.6 CASI Image Wavelength Specifications

Number of Image Channels: 72

Channel Wavelength Half-Bandwidth

Units  nanometres
1 408.7283
2 416.1284
3 423.5341
4 430.9455
5 438.3626
6 445.7854
7 453.2138
8 460.6478
9 468.0874
10 475.5325
11 482.9832
12 490.4395
13 497.9012
14 505.3684
13 512.8411
16 520.3192
17 527.8026
18 535.2915
19 542.7858

20 550.2853
21 557.7903
22 565.3005
23 572.8159
M 580.3367
25 587.8627
26 595.3938
27 602.9302
28 610.4717
29 618.0184
30 625.5702
3! 633.1271
32 640.6890
33 648.2560
34 655.8281
35 663.4052

4.2739
4.2761
4.2782
4.2803
4.2825
4.2846
4.2867
4.2888
4.2909
4.2930
4.2950
4.2971
4.2992
4.3012
4.3033
4.3053
4.3073
4.3093
4.3113
4.3134
4.3153
4.3173
4.3193
4.3213
4.3232
4.3252
4.3271
4.3290
4.3310
4.3329
4.3348
4.3367
4.3386
$.3405
4.3423

36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
n

670.9872
678.5742
686.1661
693.7629
701.3647
708.9713
716.5828
724.1991
731.8202
739.4461
747.0768
754.7122
762.3523
769.9971
777.6466
785.3007
792.9595
800.6228
808.2908
815.9633
823.6404
831.3219
839.0080
846.6985
854.3935
862.0929
869.7968
877.5049
885.2175
892.9344
900.6556
908.3811
916.1108
923.8448
931.5831
939.3256
947.0723

4.3442
4.3461
4.3479
4.3497
4.3516
4.3534
4.3552
4.3570
4.3588
4.3606
4.3624
4.3641
4.3659
4.3677
4.3694
4.3712
4.3729
4.3746
4.3763
4.3780
4.3797
4.3814
4.3831
4.3848
4.3865
4.3881
4.3897
4.3914
4.3930
4.3947
4.3962
4.3979
4.3994
4.4010
4.4026
4.4042
4.4058
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A.7 Multiple Correlation Analysis Between the Field Metrics

N=16 Crown Crown Closure
Closure (circ) [(ellipse)
R=0.998,
Crown Closure (circ) p=0.000
R=0.71 R=0.69
Num Trees p=0.002 p=0.003
R=0.62 R=0.61
Basal Area p=0.011 p=0.013
R=0.67 R=0.66
Stem Density p=0.005 p=0.005
n=16 DBHOUAD DBH,\R]T“
DBHgritu R=0.97
p=0.000
Num Trees R=-0.51 R=-0.53
p=0.044 p=0.033
Tree Hgt R=0.56 R=0.65
p=0.025 p=0.007
Crown Depth R=0.55
p=0.029
Stem Density =-0.61 =-0.58
p=0.012 p=0.019
n=16 Stem Density Canopy Width
Base Hgt |(under-story) Stem Density |(Major) Crown Diam.
Num R=0.74
Trees p=0.001
Basal R=0.63
Area p=0.008
R=0.84 =-0.58
Tree Hgt | p=0.00 p=0.017
=-0.78
Base Hgt p=0.000
Crown R=0.67 R=0.70
Depth p=0.005 p=0.003




A.8 Test For Normality Of Field Data

The Shapiro-Wilk test is the most commonly used quantitative test for normality when
n<50. If the data is normal, the value for W will be high and not significant (Shapiro er
al., 1968). The test uses the following hypotheses:

Ho: there is no difference between the distribution of the data set and a normal
one

Ha: there is a difference between the distribution of the data set and normal
If the P-Value is below 0.05 reject the Ho.

The following field metrics where shown to approximate normal distributions according
to the Shapiro-Wilk W statistic: basal area; crown depth; crown diameter, height to the
crown base; LAI 5™ ring, major crown width, number of trees, tree height, perpendicular
crown width; quadratic DBH; stem density. The distribution of these metrics, as well as
the Shapiro-Wilkes test results are shown below.

Test For Normalty ot 5asal Area
Srapiro-Witk W= 34092 p< 3605

No ol obs

— Expected
Normal

Upper Beunaanes (x <= bounaary)
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Shapiro-Witk W= 93974, p< 3458

Test of Normaaty for Crown Depth

ns
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1

03

1

S U SO
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S0 0 ON

w
(RIS

Toundary)

Upoer Bounganes (x <

ast “or Normanty For Crown Ciameler

= 97155, p< 3630

Shapiro-wilk W

5
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Normal
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No of obs

No ol obs

a

(¢4

Test of Normauty For Heignt to the Crown Base
Shapro-Wilk W= 94486, p< 4128

- — Expectsd
5 Normai
Upoer Bounaganes (x <= boundary)
Test tor Normaity of LAI Sth Ring
Shapiro-Wilk W= 35831 p< 6312
— Expected
Normal

Upper Boundanes (x <= boundary)
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Tast of Normaity tor Major Crown Wicth

Shaptro-VWillk W= 95526, p< 5773

$30 0 OH

bourcary)

Upper Boundanes {1 <

Number of Trees

Tast For Narmaity of

bt

Latl

500 JO Oy

boundary)

Upper Souncanes (x <
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Tast of Normaity For Perpendicular Crown Widtn

Shapiro-Wik W= 96190, p< 6364

5Q0 o ON

bouncary)

Upper Bounaanes (x <

Test For Normatty For Quadranc DBH

34461, p< 4093

napiro-Witk W=

S

~2

~

~

0010 ON

Jundanes (x <= boundary)

&

Upper
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No of obs

No of obs

"

[

S ——

Test of Normaity For Stam Density
Shapiro-Wilk W= 95150, p< 5138

Upper Boundarias (x <= boundary)

Tast For Normaity for Tree Height
Shapiro-Wilk ‘W= 39320, p< 0626

3 18 18 20 22 ) 6
Upper Bounganes (x <= doundary)

— Expectea
Normal

— Expected
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A8.1 Field Data Requiring Transformations

The following field metrics were shown not to approximate normal distributions: circular
crown closure; elliptical crown closure; LAI 4" ring; and percent canopy openness. The
original distributions and the transformed normalized distributions are shown below.

Circular Crown Closure

Tast gt Normabty For Circutar Crown Closure
Snapiro-Wilk W= 87528 p< 0328
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Oi”"' il daziid A il k¥ — Expected
0o 35 10 15 29 28 30 Normal
Upper Soundanas (x <= dbouncary}
Mormahkzadg Circuar Crown Closure (transformed dy In+ 1)
Shapiro-Wilk W= §5845 p< 5518
5
4
33 o 1
3 ’f.izijl' i
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3 77
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08 ¢} 12 13 16 18
Upper Boundanes (x <= boundary)
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Percent Canopy Openness

No of obs

o ot obs

Test for Narmalty of Percent Canapy Opennass
Shapiro-Wilk W= 77397, p< 0013

R4
g
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% ]
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Upper Boundanes (x <= boundary)
Normahzea Percent Canopy Opennass (transtormsad by SQRT(x}))
Shapiro-Wilk W= 82288, p< 0056
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180



LAI 4™ Ring

Test of Normality for LAl 4th Ring
Shapiro-Witk W= 85357, p< 0154

'
Pl
[=]
k)
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z
— Expected
Normal
Upper Boundanes (x <= boundary)
Normalzed LAl 4th Ring (transtormed by x|}
Shapiro-Wilk W= 92297 p< 1883
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Elliptical Crown Closure

Tast of Normauty For Eillptical Crown Closure
Shapiro-Wiik W= 88581, p< 478

IS

Ho ol obs

ur
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iJoper Bouncanes {x <= boundary)

Normahzed Elptcal Crown Ciosure (transformed by In+ 1)
Shapire~yVik W= 36334, p< 827
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