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ABSTRACT 

Application of Mult iwiable and Intelligent Control S trategies for Improving 

Plasma Characteristics in Reactive Ion Etching 

Nicolae Tudoroiu 

Concordia University: 200 1 

Reactive Ion Etching (RIE) is a critical technology for modern VLSI circuit fab- 

rication and is used at many stages of the manufacturing process. Several real-tirne 

control strategies such as Proportional-lntegral (PI) self-tuning, Linear Quadratic 

Gaussian ( L QG),  stochast ic adap tive control, neurocontrol, robust and hierarchical 

control based on both linear and nonlinear models of the Plasma Generation Subsys- 

tem (PGS) are developed to improve plasma characteristics in the Reactive Ion Etch- 

ing process. The proposed approaches result in superior accuracy and performance 

when compared to results that are available in the Iiterature. The identification pro- 

cess (prediction error approach) to determine linear Auto Regressive Moving Average 

(ARMA)  models of the PGS is based on the computationally efficient recursive least 

squared (RLS) procedure. This is an alternative to the use of Kalman filter that is 

based on state estimation. The massively parallel processing, nonlinear mapping, arid 

self-learning abilities of neural networks are exploited in the development of intelli- 

gent control systems. Neurocontrollers enhance RIE manufacturability and may be 

used for process optimization, control, and diagnosis. A hierarchical real-time con- 

trol strategy is developed that automatically selects during each specific operating 

interval the  best real-time control strategy for tracking the dc seif bias voltage and 

fluorine concentration set points. It is shown that the proposed methodology results 

in higher performance and is computationally more efficient than that using a single 

control strategy that is dependent on a range of operating conditions. 
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Chapter 1 

Introduction 

This thesis is rnotivated by the fact that presently rnost semiconductor manufac- 

turing equipments are designed to be operated in an open-loop mode. Consequently, 

the manufacturing performance of these equipments are not as good as desired. 

In order for the Canadian semiconductor industry improve its competitiveness. it 

is critical that its fabrication facilities produce highly advanced products at low cost. 

To achieve these goals, these fabrication facilities must be equipped with processing 

systems which can perform t heir functions wit h very high accuracy and t hrough- 

put b u t  with low overall costs. Reactive Ion Etching (RIE) is a critical technology 

for modern V I S 1  circuit fabrication which is used in many stages of the manufac- 

turing process [l]. Silicon dioxide films are of significant interest as an interlayer 

dielectric material for integrated circuits and multichip modules (MCIIf's). The pat- 

terning of these films is of crucial importance in semiconductor rnanufacturing. RIE 

in radio-frequency (RF)  glow discharges is among the most commonly used methods 

for forming patterns via holes in between metal layers of an MCM and for achieving 

the level of detail necessary to define small features in film (21. 

Etching is a process through which a desired pattern is transferred to a silicon 



wafer by rernoving material, such as silicon (Si) or silicon dioxide (Sioz) via the 

interaction of fluorine [FI or other chernicals such as chlorine or bromine with the 

wafer and exhausting the reaction products [Il. Some of the most important variables 

used for determining the success of the  etchïng process are selectiuity, u n i f o m i t y ,  

anisotropy, and etch depth: 

(i) selectivity refers to the ability to  etch, for example, Si without etching either 

Si02 or photoresist. 

(ii) unifomity is the requirement that etching be spatially uniform across the 

\va fer. 

( iii ) anisotropy is the ability to etch vertically while minirnizing horizontal etch- 

ing. thus creating vertical walIs, and 

( i v )  etch depth is the ability to remove exactly a desired amount of material. 

The relative importance of t hese characterist ics depends upon the function of 

the  layer being etched. For instance, during fabrication of a transistor gate region, 

a polysilicon Iayer is etched down to the gate oxide. Selectivity to the oxide is of 

primary importance since only a small variation in the oxide layer is tolerable. 

The other key requirement is critical dimension control ( etch d e p f h  ). Experirnents 

can be designed to locate an operating point which offers good performance in the 

characteristics of most importance while maintaining adequate performance in the 

characteristics of secondary interest. Models generated from experimental data are 

used to achieve this goal. Better control of these variables translates directly into 

improved yield, finer line widths and hence higher device density and higher through- 

put. 

The physical and chernical mechanisms involved in RIE process are very cornplex 

and are not full- understood at the present time. Since the focus of this research is 

on the clemonstration of the potential benefits of using feedback control systems, an 



extremely simple plasma process is used: namely a CF4 gas system for the etching of 

unmasked wafers wit h a material stack of polysilicon subst rate. This simple system 

has been studied extensively with many known material parameters and aIso a rea- 

sonably advanced understanding of the etch mechanisms and pathways is available 

[Il. The plasma process could increase in complexity by adding hydrogen, chlorine 

or oxygen to enhance the selectivity and etch rate, and A,/& for actinometry. AIso, 

if the number of wafers in reactor chamber increases the performance of the etching 

process decreases, especially the etch rate or etch depth. 

RIE is a low pressure. [ou: t e m p e r a t u r e  plasma system. The plasma is generated 

by capacitively coupling a R F  (13.56 -MHz) power source to  one electrode, which 

has a smaller surface area than the ground electrode. This leads to  dissociation and 

ionization of the feed gas. Consequently. it generates a chemically active mixture of 

electrons, ions and free radicals. Due to the fact that the electrons are more mobile 

than ions. a dc self bias voltage is developed across the electrodes to achieve current 

continuity. This self bias voltage accelerates ions tomard the surface of the wafer. 

The free radicals diffuse to the surface of the wafer where they react with the exposed 

silicon surface. The surface reactions are quite complicated and are not completely 

understooci. However: in simple terms, the fluorine atoms react with silicon atoms 

and produce various volatile components such as SiF4 and SiF2: desorbed possibly 

with the aide of the impinging ions. In addition, the impinging ions further enhance 

these etching processes. On the other hand, various polymers are formed as a result 

of chemicd reactions between the  radicals and the surface material. These inhibit 

the etching process. The polymers formed on the side walls are largely unaffected 

by the ion bombardment and thus facilitate highly  an i so t rop ic  e t ch ing  [l]. Polymers 

on the horizontal surface are removed by the i m p i n g i n g  ions, provided the polymer 

film is not too thick and the ions have sufficient energy? and this allows the etching 



process to continue. The impinging ions can also physicdy sput ter Si atoms, tktereby 

etching the wafer surface, or cause surface activation, thereby speeding up the etch 

process. For this reason it is useful to conceptualize RIE as consisting of two distinct 

but interacting mechanisms: 

(i) chemical etching caused by radicals, and 

(ii) physical etching caused by ion bombardment [Il. 

Therefore, et ch characterist ics can be adj usted by carefully controlling the plasma 

species composition and ion energy. 

The la& of feedback control in these systems is generally considered as one of the 

main challenging problems facing the semiconductor manufacturing industry. This in 

particular is a major impediment to reliable operation of low pressure reactive plasma 

spstems [Il. 

The  principal motivation for introducing advanced control techniques in these sys- 

tems is that by controlling appropriate plasma parameters (the concentrations of the 

reactive radicals and ions and ions energy). it is possible to improve the etch perfor- 

mance of the reactive ion et chers, nameIy their selectivity, uniformity. anisotropy and 

etch depth. The current state of knowledge in RIE does not yet allow for a defini- 

tive choice of the key plasma parameters to be controlled. For example in [31 four 

measured variables (namely [FI,, [C F2], radicals [CO,], and hios), four manipulated 

variables (namely % Oz, pressure, p w e r ,  and flow rate) and seven performance vari- 

ables (namely Si etch ra te ,  SiOz etch rate, Si / SiO2 selectivity, SiOz anisotropy, 

Si  uni formity, Si02 uni formity, and S i  anisotropy) were considered for the RIE 

of silicon and silicon dioxide in CF4/02  and CF4/& plasma. Furthermore, in [4], 

[SI-[8] only two manipulated variables (namely power and throtile valve position), 

two measured variables of the key plasma parameters to be controlled (namely 

and [ F I ) ,  and four performance variables for RIE (namely etch depth, selectivity, 



uni forrnity, and anisotropy) were considered. There has been a major interdisci- 

plinary effort a t  many major US universities and institutes, such as the University of 

Michigan, the University of California a t  Berkeley, the University of Texas at Austin, 

Georgia Institute of Technology, Carnegie Mellon University, the University of Col- 

orado and Massachusetts lnstitute of Technology, to name a few, for improving the 

manufacturing characteristics of semiconductor processing equipment [Il, [9]. 

The interest in use of plasma processes is increasing, particularly in thin film etch- 

ing for VLSI applications. Plasma processing allows a more effective control of the 

composit.ion and the profile for these components and processes. Vital requirements 

such as achieving robustness and high quality of the electrical connections and mini- 

mum feature sizes for the .MOS devices are obtained by cont rolling the main etching 

characteristics of the process, such as the etching rate, anisotrop y,  selectivity and 

uniformitty. For instance, high etching rates for acceptable throughput in single wafer 

tools as wafer sizes increase, anisotropic profiles, selectivity over thin gate oxides, uni- 

formity and directionality of plasma processes can al1 be optimized for a particular 

application t hrough appropriate select ion of the chemical reactants and the operating 

conditions. 

Bet ter understanding of etching processes will allow imp roved cont rol of the etch- 

ing characteristics vital to the present and future productivity of the VLSI fabrication 

process. A few studies of polysilicon etching in CF3Cl (Freon 13) have been published 

and interesting and encouraging results have been reported [IO], [Il], [l?]. 

In [Il]  the plasma etching of heavily phosphorus doped polysilicon (an important 

gate and interconnect material for MOS devices) with the chlorofluorocarbon gas, 

C F3Cl. is exarnined. The aut hors are interested in identifying and investigating the 

important physical processes responsible for polysilicon etching in CF3CI/Ar dis- 

charges. A method is presented by which polysilicon etching in a CF3Cl plasma is 



described successfully by a statistical model. The observed characteristics in terms of 

physical plasma properties inferred from an electrical impedance model are d s o  inter- 

pret ed. Wi t h t his model physical propert ies of the plasma, including time-averaged 

bias voltage can be predicted. Increasing demands on etching processes for improved 

t hroughput , uniformity profiles and selectivi ty require better control of these et ching 

characteristics. To place etching process design and control on a more rational basis, 

models for the etching process need to be formulated. Thus for polysilicon etching 

in CF4 discharges predictive kinetic models have been formulated. In such models, a 

set of chemical reactions is proposed to simulate radical and ion formation and loss, 

transport and surface reaction. The steady-state solut ions of the resulting ordinary 

differential equations are obtained. However, rate constants for most of the react ions 

in the model are not known and must be estimated. Consequently, these models nec- 

essarily contain at least 10 fitted or estimated parameters. The present inability of 

kinetic rnodels to predict trends in plasma properties or etching characteristics is not 

surprising given the present lack of knowledge on fundamental chemical and physical 

processes involvecl in plasma etching. In [ I l ]  the plasma processes modelling prob- 

lem was divided into a series of more manageable tasks. First. each etching process 

"response" ( etching rate or total ion flux) is characterized experimentally in terms 

of externally controlled variables, or ';factors" (pressure or power input). Response 

surface met hodology, an experimental design and data analysis strategy, is used to 

examine efficiently the etching response over wide factor ranges. The resulting data 

set is used wi th statistical analysis techniques to generate polynomial representations 

of etching process responses. The polynomial response models are valuable for pro- 

cess design in cases where predictive kinetic models are unavailable. Through an 

electrical impedance model for the plasma, the external variables are related to phys- 

icallj- significant plasma properties (e-g., electron density). The etching responses are 



then examined in light of the physical properties predicted by the impedance model. 

Response surface methodology is helpful in this endeavour, as polynomial response 

models are easily converted into contour plots of etching responses but not very accu- 

rately. In [ I l ]  expressions are derived for bulk plasma resistance, sheath capacitance, 

potential drop across the sheaths, bulk electric field, and electron density, using a 

simple electrical model of a radio-frequency (RF)  discharge. Each of these quantities 

varies with temporal position in the R F  cycle. 

In 1101 the authors present an experimental technique for measuring total posi- 

tive ion bombardment fluxes and energy distribution. An empirical description using 

the mean ion energy provides a good representation of the ion energy distribution 

over a wide range of conditions. These results alloiv estimation of ion energy distri- 

bution in other parallel plate reactors. In [IO] the ion bombardment of the surface 

during etching-ion energy is predicted using the plasma impedance results and a sim- 

ple elastic collision model for ion transport through the plasma sheath is examined. 

The results obtained are crucial to the formulation of kinetic models of etching rate 

and directionality studied in [12]. In [12] the authors develop three kinetic models, 

based on experirnentallq- and t heoret ically estimated plasma propert ies. These models 

include both chemical and ion-assisted processes. and therefore. predict etching di- 

rectionalitÿ. as well as etching rate. The results indicate the importance of relatively 

low energy ( i30eV) ion bombardment. and suggest that the dominant loss process 

for the chemical etchant is diffusion-limited recombination a t  the electrode surfaces. 

The present understanding of plasma chemistry, and in particular, the surface 

processes involved in etching is lirnited. It is well known that energetic ion bombard- 

ment can have profound effects on thin film etching, but the details of the physical 

processes responsible for ion production and transport are not clear. Consequently: 

formulating a complex kinetic model for the etching process may not be fruitful ât 



present. -4 simple model, incorporating variables of known physical importance al- 

lows evaluation of the etching process at a level cornmensurate with the basic data 

available. In [3] process control strategies for reactive ion etching of silicon and sil- 

icon dioxide in C F 4 / 0 2  and C F4/& plasma are developed. The authors take into 

consideration four measured variables, four manipulated variables, and seven perfor- 

mance variables? and develop a MIMO model (four inputs, four outputs), which is 

very cornplext difficult to manipulate and does not take into account the dynamics of 

the wafer characteristics with respect to the plasma parameters. 

Relative Gain A m y  (RGA)  analysis and Singvlar Value Decomposition (S V D )  

methods are used to select manipulated/process variable control loop pairings for 

feedback control and to evaluate potential difficulties in control systern performance. 

However. these niethods do not guarantee consistent results and deal only with steady- 

state representation of the system. 

The deveIopment of real-time control techniques for improving the manufacturing 

characteristics of reactive ion etching process is well documented in [Il. The over- 

al1 goal is to redesign the RIE machine for enhanced controllability and improved 

performance. To achieve this, the research is directed towards: 

( i)  control-oriented modelling and identification of the physico-chemical processes 

involved in RIE. A control-oriented mode1 m u t  capture the significant dynamics of 

the physical system and be suitable for control design. 

(ii) analysis and improvement of the controllability and observability properties 

of RIE. 

(iii) design and implementation of a hierarchical controller for the RIE. 

The objective in [II is to develop sufficiently general methods and results t hat allow 

irnplementat ion of real-time feedback cont rol systems to a large class of RIE machines 

with a minimal amount of tuning. Based on a novel decomposition of the  process, the 



authors present a general strategy for the control of RIE. The principal idea is that 

by controlling appropriate plasma isey parameters, it is possible to improve the etch 

performance of these machines. In [l] and [4]-[81, the bias voltage, Liia,, and fluorine 

concentration [FI are used as the key plasma parameters to be controlled and power of 

RF generator and throttle value position are selected as input variables. Based on the 

measured output data, and using standard identification algorithms, the authors in 

[l] have constructed a two-input, two-output model mapping small perturbations in 

power (Watts) and throttle valve (% opening) to the  VL;., (Volts) and [FI signals. The 

idea is very interesting and although the model is very simple and easy to manipulate, 

it may not be able to capture aIl the dynamics of the  plasma. Specifically, the problem 

of representing the dynamics of the wafer still remains unanswered. 

In [Sj  esperimentai results are presented on nonlinear models of the Hammerstein 

type fcr a reactive ion etcher. and a nontinear tracking controller is implemented- This 

is motivated by the observation t hat the RIE exhibits significant nonlinear behaviour. 

In [Y] a simple nonlinear model structure is used that is an input static nonlinear 

block (polynomial of second degree) in series with a linear time-invariant system. 

The model is improved cornpared to linear models since it takes into consideration 

the nonlinearity of the throttle vaIve actuator. However. the problem of capturing 

the dynamics of the wafer, and whether the mode1 is capable of capturing a11 the 

dynamics of the plasma still needs to be investigated. 

The experimental results demonstrate that the closed-loop predictions are very 

close to the observed data, and that the controller provides the capability of command 

following large excursions in the operating space. In [ï] a dynamic model describing 

the relationship between the various physical variables of interest such as etch depth, 

etch rate and reflected light intensity is presented, and an extended Kalman filter 

is used to estimate the etch depth by processing reflectometry data for fast in-situ 



etch rate measurements. This is motivated by the fact that in etching and deposition 

processes, the capability of measuring thin film thichess is very useful. Single or 

multiple wavelength reflectometers are commonly used for bot h in-situ and ex-situ 

measurements of film thickness. Techniques for in-situ red-time measurement of etch 

(or deposition) rate c m  be of great benefit in process development, on-line process 

diagnostic, and real-time feedback control. The fundamental idea here is to use 

nonlinear estimation theory, namely the Extended Kalman filter method for a simple 

dynamic model that combines the etching process with an optical model for reflection 

from a stack of paralle1 thin films. Problems that remain still open are selectiuity, 

uniformity and anisotropy characterizations. A similar idea is developed in [6j where 

~ t c h  rat E and E tch depth are estimated from dual-wavelengt h reflectometry data. 

Ijsing the estimated etch rate. an etch rate stabilization is achieved bÿ using feedback 

control by actuating forward power in real-time. Using the estimated etch depth to 

trigger an end point. the authors dernonstrate that it is possible to get an 83% final 

thickness variation over timed etches. The results depend very much on whether 

the  moclel of the Plasma Generation Subsystem is accurate or not- To reduce the 

loading effect in RIE. 181 develops a real-time closed-loop control systern. Recently. 

ernpirical RIE models based on neural networks [13/, [14], [15] have been shown to 

exhibit superior performance in accuracy, predictive capability: and robustness over 

more traditional st atistical approaches (regression methods) . Neuromodel predictions 

of the RIE process outputs are used in conjunction with genetic algorithms and other 

optimization techniques to optimize the etching process performance as well as for 

reci pe synt hesize. More recent ly, adap tive learning techniques which utilise neural 

networks combined wi th st atistical experimental design methods have been applied to 

semiconductor manufacturing 11 61, [14]. The neuromodels have shown good accuracy 

because these models fit well to experimental input-output data, and the  nonlinearity 



of the process is well reflected in the network. Algorithms based on adaptive learning 

techniques were developed that enable these networks to adapt through a trial-and- 

error procedure. In t his adaptive process, the  connection strengt hs between the active 

elements of the network are gradually modified until the network exhibits a desired 

behaviour. Several other neural network based plasma etch models have also appeared 

in the literature [13], [l?], [18], [15j. Some recent research is focused on developing 

more specific and advanced structures and algorithms, such as exponentially weighted 

moving average (E WMA) neurocontrollers [19]. These networks are integrated in 

the overall intelligent control structures of the plasma etching processes to maintain 

process targets over extended periods for improved product quality and decreased 

machine downtirne [19] [14]. Proper choice of neurocontroller parameters (weights) 

is critical to the performance of these systems. 

&4t the present time RIE'S are typically supplied with a PID controller for regu- 

lat ing the chamber pressure. In addition, several of the actuators, such as the mass 

flowrneters and the RF power generation unit, have interna1 controllers in order to 

make t k e m  less sensitive to  variations in operating environment. These actuators 

influence the act ual etch process by affecting the plasma characteristics. Currently. 

the only plasma property which is stabilized by using feedback control is the pressure. 

It is cornmonly acknorvledged that the RIE process is not very robust and requires 

frequent tuning to achieve acceptable yields. The research described in this thesis 

is directed toward the application of a real-time control systems theory to RIE. The 

main thrusts of this research are as follows: 

(i) control-oriented modelling and identification of the physico-chemical processes 

involved in the RIE process (linear ARIMA models and neuromodels), and 

( ii ) controller design for the RIE using real-time multivariable cont rol strategies 

(minimum variance stochastic adaptive control: robust control. self-tuning control 



and neurocontrol). 

From a control engineering viewpoint, the RIE process represents an interesting 

challenge in several different ways. The key issiie is the fact that many of the crucial 

etch parameters that need to he controlled cannot, at present time, be measured in 

real-tirne. This necessitates indirect control strategies wherein plasma parameters are 

used for feedback to achieve tight control of the etch characteristics. 

1.1 Summary 

The objective of this thesis i s  to develop MTMO real-timn control strategies for im- 

proving plasma. characteristics in the reactive ion etching process. 

Vital reqirirements for achieving robiistness and high qiiality of the electrical con- 

nections, uniformity profiles and minimum feature sizes for MOS devices require bet- 

ter control of the main etching characteristics of the process, namely etching rate, 

nnisotropy, selectivity and uniformity. The priority in oilr research is focused 

more iipon practical aspects in ordsr to implement the most appropriate conven- 

tional and nonconventional control strategies that are needed for addressing some of 

the difficulties that the plasma system commiinity crirrently faces- 

This goal is motivated by the following main factors: 

(i ) Presently most serniconductor manufacturing equipment is designed to be oper- 

ated in an open-loop mode and conseqiiently the rnanr~factiiring performance of 

this equipment is not as good as desired. 

(ii) The reactive ion etching process is a critical technology for modern VLSI circuit 

fabrication at  various manufacturing process stages. 

( i i i )  High complexities such as nonlinearities, a MIMO process, and operating at low 



pressirre, have made the reactive plasma systems as interesting rescarch topic 

in plasma comxnunity. In the Iast decade this has captured a lot of attention of 

the specialists from systems and control field to  solve practical aspects of the 

control problems of these systems in closed-loop. 

( iv )  This field of research offers an excellent opportunity to researchers and to spe- 

cialists from the control area to apply dynarnic systems analysis, synthesis, and 

control methods to study reactive ion etching systems. 

( w )  By this research we could partially fil1 the void that exists due to the lack of 

feedback control in these systems. This is presently considereci as one of the 

main problems facing the semiconductor manufacturing industry. 

(v i )  Our results could also be extended and applied to other industrial applica- 

tions such as chemical vapour deposition ( CVD), anisotropic wet etching silicon 

( TMA H )  , plasma enhanced chemical vapour deposition ( PECVD) , low plasma 

chemical vapour deposition (LPCVD), etc. 

The research is based on the main idea that by controlling appropriate plasma 

parameters, namely the concentration of the fluorine reactive radicals and ions [FI, 

and theirs energy reflected in Vbiasi one could ensure satisfactory tracking for the 

etching rate or equivalently etch depth (being one of the most important etching 

characteristics). 

Specifically, in this thesis we wiIl present some results concerning the models of 

the PGS, narnely the coupled and decoupled cases with or without delay (Chapter 

3), the design of real-time multivatiable feedback conventional and nonconventional 

control strategies, namely PT self-tuning adaptive controller hased on rninimimtion 

of a quadratic cost function, a Linear Quadratic Gaussian scheme (LQG) ,  minimum 

variance stochastic adaptive control, robust control, and neurocontrol (Chapters 4-7). 



In the last chapter (Chapter 7) we will compare the performances of al1 the a lge  

rithms developed in this thesis and we will select the best structure for a real-tirne 

feedback control strategy using a hierarchical control approach. The hierarchical con- 

trol strategy that is capable of detennining at  each sampling interval which controller 

is t h e  most siritable choice t o  h e  employed will be of g r m t  benefit. Tn order to have  

a criterion for comparing the performances of different control strategies, we will 

t ranslate  t h e  resiilts obtained in Chapters  4 6  for t h e  PGS into performances of t h e  

wafer subsystem, namely etch rate or etch depth. The main objective of our proposed 

control strategies is to keep the etch depth at  a desired target value in the face of 

variations in the process disturbances, namely Cf i  flow-rate disturbances, loading 

distirrbances, and oxygen distiirbances. T h e  results obtairied confirm t h e  iitility of 

oiir proposed strategies to control t h e  e tching  process despite t h e  drift  diiring a n  

etch. However, these algorithms can also be used as a research tool for evaluating 

complicated gas kinetics. The controllers c m  drive the film properties, namely etch 

depth,, nnisotropy, selectivity and un i fomi t y  to desired regimes b a s d  on impor tant  

gas species and dc: indiiced voltage in an  opt imal  fashion. 



Chapter 2 

Overview of RIE: Equipment and 

System 

In this chapter a brief description of the RIE equipment is provided. This description 

is given from a control system perspective. The emphasis is on the overall system 

behaviour rat her t han on an  individual p hysical/chemical processes. It  is well known 

in the plasma literature that the RIE process is highly n o n h e a r  and rnultiuariable [ I I .  
Existing plasma systems attempt to control the important wafer etch characteristics 

with the input variables pressure. applied R F  power, and gas JO,E rates. Kowever, 

there is no standard and known way to use these inputs to predict the etch perfor- 

mances in different machines or in identical machines, or even in the same machine on 

two different runs (11. This is due to the variations in plasma properties and distur- 

bances and the fact that there is a significant amount of uncertainty in the open-loop 

system. This is the main reason why we believe that the five real-time feedback con- 

trol strategies developed in this thesis will be of great potential benefit to the control 

of RIE process. 



Figure 2.1: Plasma reactor etclhing system 

2.1 The Reactor 

The plasma reactor that is used in this thesis is a n  Applied Materials 8300 Hex- 

ode Reactive Ion Etcher used at the Control Systerns Laboratory of the University 

of Michigan. from where experimental input-output data set for difTerent operating 

points was obtained. This reactor is equipped with a data acquisition system. ac- 

tuators and sensors appropriate for real-time feedback control. The  configuration of 

parallel plate Plasma Reactor Etching System t y p e  LOOOTP is presented in Figure 

9.1. A simplified block representation of this configuration is shown in Figure 2.2. 

The parallel plate system has a bottom electrode with a diameter of 29.2 cm, 34.3 

cm top electrode, and variable electrode spacing s e t  by the user at  3.81 cm. The 

power source is a 600 W, 13.56 MHz R F  power generator capacitively coupled to 

each electrode through an automatic tuning network impedance matching system. 

Each electrode is equipped with an R F  plasma dark space shield to prevent parasitic 



Figure 2.2: Plasma reactor etching system - simplified block diagram. 

plasma from forming outside of the shields. 

2.2 Actuators and Sensors 

To regulate the exhaust of reactant gases from the chamber, the reactor is equipped 

with a throttle valve. For improved control capability this valve was sized to be 

small, thus moving its operating region away from the saturation with a low leakage 

conductance when fully closed for a rapid response time for the measurement of the 

actual valve position. We will consider in the thesis two cases: the first case where 

the valve is a linear element and the second case, which is closer to reality, where the 

valve is a nonlinear element with the nonlinearity given by a second order polynomial 



[8] or of a hysteresis type [Il. 

The throttle valve controller allows remote control of the valve. The R F  power 

actuator includes a 13.56 MHz generation unit and a matching network. In order to 

increase the range of flows that can be achieved, an additional mass flow controller h a  

been added. The bias voltage is measured through an inductive tap into powered elec- 

trode. Pressure in the chamber is monitored by a Baraton Capacitance Manometer 

which is sensitive to pressures between 1 mTorr and 100 mTorr, where 20 mTorr is a 

typical operating point for the RIE process in the above system. The fluorine concen- 

tration is measured via optical emission spectroscopy using act inometry, with argon 

as the calibration species. Light from the plasma glow is modulated to approximately 

2KHz by a mechanical chopper, then passed through a pair of monochromators which 

select specific wavelengths in the fluorine and argon spectra [Il. The light signals are 

then converted to electrical signals by photomultiplier tubes and demodulated via 

lock-in amplifier. 

2.3 RIE System: Decomposition and Control 

Motivated by the ideas developed in [II, a real-time control system for improving the 

manufact uring characteristics of reactive ion etchers is developed in 1-11. In this work, 

the RIE system is decomposed into two functional blocks: 

( 2 )  the plasma generat ion subsystem (PGS), and 

(ii) the wafer etch subsystem (WES). 

The above sequential processes separate the generation of the important chernical 

and physical species from the action of etching the surface of the wafer. The inputs 

to the plasma generation subsystem are: 

(i) t.he thrvttle position, and 



Figure 2.3: The  decomposed structure of the RIE system 

(ii) the applied RF power 

The outputs of the plasma generation subsystem are the key plasma parameters 

responsi ble for etching, namely 

(i) t h e  b6ins: and 

(ii) the fluorine concentration [FI,  

where represents an est imate  of the  mechanical energy O f the  impinging ions 

and [FI represents the concentration of the chemical compounds ( f luor ine)  involved 

in etching. 

The WES is driven by the key plasma parameters and its outputs represent quan- 

t ities crucial to  the etch performance. The above decomposition act ually represents 

a physical separation, that is 

( i  ) the PGS represents the  bulk plasma. and 

(ii) the WES represents the  wafer surface phenornena, and  the interface is the 

boundary layer. 

The decomposition suggests a suitable control structure for the RIE system as 

shoivn in Figure 2.3. While this decomposition is based on sound physical principles, 

it is not completely accurate as there is a certain amount of feedback coupling from 

the wafer surface reactions to  the  plasma. 



The key idea is to regulate the inputs to the WES by precisely controlling the 

outputs of the PGS. The RIE system is susceptible to disturbances which increase 

the variance of the output characteristics regardless of the operating point selected. 

Disturbances that affect the RIE process include: 

(i) the load 

(ii) the chamber seasoning 

(iii) the variation in the R F  power generator and matching network 

( i v )  the variation in the mass flow controllers, and 

(v )  the water vapour and other contaminants. 

Here, load refers to the total surface area of material to be etched, which is a 

function of the number of wafers and the pattern on each wafer. In that work a 

multivariable feedback control is designed which is capable of compensating these 

disturbances and thereby reducing the process variance. By applying this form of 

multivariable feedback control to RIE, the effect of the variations in the load on the 

rate is dramaticallÿ reduced. Typically, when the load is increased the etch rate 

decreases. This phenomenon iç commonly known as the loading eflect. The loading 

eflect is known to be significant in certain etch chernistries such as fluorine etching 

of silicon. The loading effect is undesirable because it is a source of variance in 

elch rate. Because of the variance in the etch rate, selection of the appropriate etch 

time is difficult- Selection of the proper etch time becomes even more difficult when 

considering that the etch" rate also changes during an etch due to the loading effect. 

Because of non uniformity, wafers are typically overetched to ensure that al1 material 

is removed. As the end of the etch approaches, less material is left and the etch 

rate increases. The side walls become the focus of the etchant and any additional 

etch time contributes at a greater rate to the undercut, one of the wafer qualities of 

interest. Consequently, the process yield may be reduced and costly tria1 runs are 



necessary to establish the proper etch time for new loads. The key idea is to regulate 

the inputs to the WES by precisely controlling the outputs of the PGS- What remains 

to  be investigated is the problem of determining a supervisor- controller to perform 

the high-level ce11 control function that includes on line monitoring and diagnostics as 

weil as postprocessing analysis of the data for the purposes of sequential optimization, 

quality control, etc. To solve this problem it is necessary to develop a controller 

around WES which will translate desired etch characteristics into set points for the 

PGS control system. 

With the existing sensor technolog- it is very difficult to measure the key wafer 

etch parameters, namely selectiuity, anisotropy, etc., in real time during the etch pro- 

cess. Therefore? for real time feedback control, an indirect strategy is necessary. The 

decomposition of the etching process is very important because the modeling ta& for 

the \l'ES would involve reiating the effects of the key plasma parameters to the etch 

performance. This is much more direct than trying to build a single mode1 from the 

equipment inputs to the etch characteristics. The switch from specifying the process 

parameters in terms of (power.  fhrottle calzx) to (Liias: [ F I )  is a significant change of 

vietvpoint. The new set points are in many ways more directly related to the overall 

etch performance. In other words tightly regulating them should eliminate much of 

the variances seen in the plasma systems. As stated above, it  will be necessary to 

relate desired etch rate,  selectiuity, anisotropg, uniformity to  the key plasma param- 

eters. This is the purpose of the WES controller. This controller would also operate 

in real-time, but perhaps would operate on a slower time scale than the plasma con- 

troller. The sampling rate for the Plasma Generation Subsystem is 20 Hz. The reactor 

is also instrumented with an in-situ spectral reflectometry system, which samples 798 

wavelengths between 400 and SOO nm every 0.5 s for 2 Hz sampling rate, resulting 

in the PGS being 10 times faster than WES. Presently, the details of this second 





Chapter 3 

Modeling and Validation 

3.1 Linear Plasma Generation Subsystem Models 

3.1.1 System Identification 

In order to build rnodels for the Plasma Generation Subsystem (PGS), an experi- 

mental identification approach is needed. Generally? a region of operating points is 

delineated in the space of pressure, [CF4J jlow rate, and power corresponding to the 

RIE region of the plasma parameters space. Specifically power ranges from 900 to 

1300 Watts, pressure ranges from 20-30 m'Torr, and flow rate ranges from 20-40 stan- 

dard conventional cubic meters (sccm) 111. Typical values of 1000 Watts, 20 mTorr, 

and 30 sccm are selected as a nominal operating point. The identification experi- 

ments involve application of step increments to the power and throt tle inputs from 

their nominai values. T h e  experiments are done without a wafer in the chamber, 

because the modifications to the system identification with a wafer being etched are 

quite st raightforward. 

In the PGS, the controi inputs are R F  power, throttle position. and CFd/Ar jlow. 

The disturbances are Ioad and water uapours. The state of the plasma system are 



the fluorine concentration [FI; and de bias voltage, hias. Fluorine is the dominant 

etchant species and hias is used as a meaçure of the physical energy of the irnping- 

ing ions. Multivariable feedback control strategies reported in the literature [IO], 

[Il], [12] use %H2/%02, pressure, R F  power, fEow rate to control hias, [CFZ], [FI, 

[H]/[COz], but the models are more complex and very difficult to control, due to 

poorly condi t ioned systems wit h strong interactions between the  input and the out- 

put variables. The models in [l], [20], 141-[8], [21] are simpler since they use only 

two independent input variables, namely R F  power and throttle value to control two 

independent output variables, namely lGios and [FI. We dso choose these variables 

since the plasma variables and [FI are more directly related to the etch rate and other 

output characteristics when compared to the R F  pomer and pressure, which are held 

constant conventionall. The disturbances mostly affect the PGS and not WES? so by 

controlling the plasma variables. the effects of these disturbances can be mitigated. 

To design a real-time control strategy first a linear model of the  plant is obtained 

about an operating point. 

3.1.1.1 Linear ARMA Models 

Gsing the available experimental input-output data set a rnultivariabie Auto Regres- 

sive Moving -Average ( - i R M A )  model of second-degree is considered 



the output of the coloured noise filter, res~ectively, and 

A(q) = Izq2 + A l q  + A2, B(Q) = &q2 + B L ~  + Bz? C(q) = COQ + Cl? 

col Co2 

Co3 Co4 cl3 cl4 

The mode1 (3.1) can be expressed in one of the following four forms: 

( i )  Coupled case with pure delay: 

This is obtained from the general structure (3.1) by setting 

Ba = 0212 (defined as a 2x2 dimensional matrix with al1 its elements equal to 

zero) 

(ii) Coupled case ,without delay: 

This is obtained from the general structure (3.1) by setting 

(iii ) Decoupied case with pure delay: 

This is obtained from the general structure (3.1)  by setting 

BO = 0 2 1 2  7 B1 = diag(bl l7b14) . B2 = (621: b24) 3 CO = diag(c~17 ~ 0 4 )  

Cl = diag(c l l .  cl4), where Bi, B2, Co, Ci represent diagonal 2x2 matrices. 

(iv) Decoupled case mithout delay: 

This is obtained from the general structure (3.1) by setting 

Bo = diag(boll bo4) , Bi = diag(bi l ,bi4)  , Bz = 0 2 = 2  , Co = d i a g ( ~ 1 ,  co4) 

Cl = diadcl 1 7  ci4 ) 

In the above two decoupled cases a e  can consider the multivariable system as two 

independent SIS0 loops which may be expressed in the following two forms: 



(i) Decoupied case with pure defay: 

Based on the available experimental input-output data set for the  particular case of 

uncoloured noise u-e get: 

B I ( - . )  = 4.1996~ -3.9367, & ( z )  = 0.0001r -0.0001, 
- 

-Il(r)  = z2 -0.5016~ -0.4906, -42(z) = z2 -0.9482~ -0.0433. 

(ii) Decoupied case mithout delay: 

Based on the same experimental input-output data set for t h e  particular case of 

uncoloured noise we get: 
- - 
Bi(=) = -2.6879~ i2.939, B2(z )  = -0.00001r i0.00002? 
- 

-Al ( - )  = z2 -0.4978~ -0.4941, -J2(z)  = z2 -0.9155~ -0.0449. 

Similarly. the coupled PGS models of (3.1) may be expressed in the  following two 

forms: 

( i )  Coupled case with pure delay: 





Figure 3.1 : System representation in A RIMA (Auto Regressive Integrated Moving 
-4verage) model with stochastic disturbances 
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The schematic of the overall system considered can be represented as shown in 

Figure i3.1. 

RF Power 

An adaptive control Iaw based on this model will not have an integral action 

because of the stationary character of the disturbances. To design a control law 

with integral action that is capable of dealing with noastationary disturbances, a 

disturbance process with stationary increments is postulated [%2]: 

"2 
Conmller 2 Flounne c o n ~ c n ~ o n  

or equivalently: 

AC&) = K ( z )  

4C2(z) = &(z) 

where A =r - 1 is the first-order difference operator. In this case we get the general 

representation of the  process by the ARIM.4 (Auto Regressive Integrated Moving 

-Average) model integrated in our proposed hiIn/fO real-time control strategies that 

are developed later in Chapters 4-7: 



(i) Coupled ARIMA rnodel without delay 

(iij Couplcd ARIMA mode1 with pure delay 

( i i i )  Decoupled AR IMA rnodel without dela y 

(ic) Decoupied A R M A  rnodel with  pur^ delay 

where AY(z) = ( z  - l ) Y ( r ) ,  and 4 U ( z )  = (r - l ) U ( z )  

hlthough the form of the above models are linear. the  mode1 coefficients are time 

varying and are to be estimated in real-time. These models are preferred for adaptive 

control because they lead to algorithms that can be easily implemented on a digital 

cornputer. The above models are used in Chapter 3 to irnplement multivariable 

adaptive control strategies based on the minimization of a quadratic cost funct ion, 



namely PI self-tuning adaptive control. 

3.1.1.2 nansfer Matrix Representation 

To measure the interactions between the input and output system vaiables to de- 

termine suitable pairs among them, Relative Gain Array (RGA) and Singdar Value 

Decomposition (SVD)  techniques may be  used. However, they would require a trans- 

fer matris representation of the ARMA models. Based on the measured input-output 

data. and using the standard identification for our system. Le.. the  PGS system under 

investigation, ive obtain the follotving transfer matrices for the coupled case uiith pure 

and for the  coupled case without delay: 

ivhere  tliese matrices are calculated directly from the equations (3.6)-(3.9): 

for the coupled ARMA models without delay, and 

for the coupled -4RMA models with pure delay. 

3 O 



The coefficients of the polynomiais ARMA rnodels ÀI, 22, B I ,  B2; D I ,  and bz are 
computed by the dgorithm during the identification process based on the available 

experimental input-output data set. The above transfer matrix representations of 

the ARMA models will be used in Chapter 6 to implement a M I i W  real-time robust 

control st rat egy using standard HOD control techniques. 

3.1.1.3 Linear State-Space Representation 

Alternatively, a discrete-time state-space representation of the PGS m a -  be expressed 

as 

y(k) = 1 y l (k )  yz(k) J represent the state vector. input vector: and the output 

vector of the PGS system, respectively. For this representation we set x2 = y1 and 

x4 = y*. to give some physical significances to the xi 's ,  i=l, ...: 4. Furthermore: 

w ( k ) .  v ( k )  are uncorrelated (for Linear Quadratic Gaussian control algorithm 

developed in Section 4.2) or correlated (for stochastic adaptive control algorit hm 

developed in Section 4.3) zero-mean Gaussian random vectors representing the 

effects of process fluctuations and rneasurement noise, respectively, i.e., 

E(w) = E ( v )  =O, E(wwT) = Qw (covariance matrix of w ( k ) ,  a symrnetric positive 

definite matrix), ~ ( v v ~ )  = R, (covariance matrix of u(k), a symmetric positive 

definite matrix), and E(wvT)  = Ry, (cross-correlation matrix, and R,*. =O for w 

and v uncorrelated). Based on the available experimental input-output data set t he  



following values for the matrices are obtained: 

O 1 0 0  - 1.0683 O. 175 
CF[ 0 0 0 1  ] D G = [  

-0.0059 0.00035 

The above representation is used in Chapters 4-7 to implement multivariable adap- 

tive control strategies based on the minimization of a quadratic cost function, Linear 

Quadra f igue Gaussian (L QG)-scheme, stochastic minimum variance adapt ive cont rol 

(SM C'A C) : intelligent and robust control. 

3.1.2 Simulations and Mode1 Validation 

In order to determine if the models represent a good approximation to the physical 

system, experimental tests are performed. The models were identified by exciting 

bot h system actuators toget ber, Le.. varying throttle valve opening and RF power 

simultaneously. In principle. our Iinear models should predict the response to srnail 

simultaiieous variations in the actuators (1%-5% of their set points) with the same 

fidelit- as they predict the response to individual variations. For the operating point 

were selected the following values of the R F  power, pressure and Joui rate: 1000 

Watts, 20 mTorr, and 30 sccm. In practice, however, the models may fail to accurately 

describe the system response due to neglected effects of nonlinearities of the plasma 

process and actuators. Physical limitations for the throttle valve created by the 

mechanical problems experienced during the opening represent one of the main source 

of this failure. 

Using Matlab subroutines from the Systenl Identification Toolbox open-loop sim- 



l 1 

Coupled models without delav I 4.09 I 0.014 I 

Linear ARMA PGS models 
Coupled models wi t h delay 

&a, e [Volts] 
3.839 

Decoupled models with delay (crosccouplings) 
Decoupled models with delay (direct-cou pli ne;^) 

Table 3-1: Performance comparison for the linear ARMA models. 

[FI e [%j 
0.014 

- .  L V I ,  I 

dations were performed for each model to  see if the models match well with the 

- 

11 -996 
, 9.465 

Decoupled models wit hout delay 

experimental input-output data set (the second half of the data set was used to serve 

0-143- 
0.1 

12.0007 1 0.142 

as validation data). The first half of the data set was used to estimate the coefficients 

of the models. During the identification process, after several experiments. it was 

possible to conclude that the lowest order ARMA models yielding stable results that 

match well the experimental input-output data set was the second-order models. For 

each mode1 two cases were studied: 

( i) with pure delay, and 

(ii) without drlay. 

The resuits of these simulations are synthesized in Table 3.1, and presented in 

Figures 3.2-3.21. In this table we present for each model the standard deviation errors 

between the  model and the experimental data set for hias and fluorine concentration 

[FI (4. 

The coupled PGS models with pure delay represented in Figures 3-2-3.3 fit exper- 

imental input-output data set with the standard deviation errors e = 3.839 [Volts] 

for I/b;,,, and e = 0.014 [%] for [FI,  and the coupled PGS rnodels without delay rep- 

resented in Figures 3.6-3.7 fit the same data with the standard deviation errors e = 

4.09 [Volts] for I / b i a s ,  and e = 0.014 [%] for [FI. The decoupled PGS models with 

pure delay represented in Figures 3.4-3.5, 3.8-3.9 fît the experirnental input-output 

data set with the standard deviation errors e =11.996 [Volts] for Pi;,,, and e = 0.0113 



[%] for [FI,  respectively e = 9.465 [Volts] for I/si.,, and e = 0.1 [%] for [FI. The 

decoupled PGS models witheut delay depicted in Figures 3.10-3.11 fit the same data 

with the standard deviation errors e =12.007 [Volts] for Vi;.,, and e = 0.0142 [%] for 

[FI. Good accurâcy for these models is obtained if the maximum magnitude of the 

deviation error e doesn't exceed 10 Volts (3% of the Kias setting point) for and 

0.1% for [FI (7% of [FI setti-ng point). These statistics reveal that the best match of 

the experimental input-outpmt data set is perforrned by the coupled PGS models with 

pure delay closely followed b37 the PGS models without delay (almost the same stan- 

dard deviation errors) and decoupled (direct-couplings) PGS models with pure delay 

which yield the smallest standard deviation errors with respect to their maximum 

magnitude. For this reason -we can use one of the first two coupled PGS models to 

build our i t II~lfO real-time control strategies presented in details in Chapters 4-7, and 

decoupled PGS models with dela- to build PI self-tuning control strategy in Section 

4.1.:3. 

To test the fidelity of o u r  models in describing simultaneous actuator variations, 

two simultaneous pseudo-random binary signals (PRBS) were applied to the actuators 

as depicted in Figures 3.12-321. The mismatch in Figures 3.5-3.1.5 can be explained 

by a weak cross-couplings be-tween the input and output variables of the PGS plant. 

The spikes and the small discontinuities in some of these figures are due to the spikes 

existing in the experimental d a t a  set. The PRBS applied to the throttle position for 

the coupled PGS models w i t b  and without delay represented in Figures 3.12-3.13, and 

Figures 3.16-3.11, respective1 y was given a slower switching rate because the dynamics 

associated with the throttle a r e  slower than those associated wi th the power input. 



(a) Coupled case nith pure delay: 

Figure 3.2: The performance of the coupled PGS mode1 with pure delay on the Pi,, 
for the open-Ioop system. 
Legend: (a)  mode1 output: (b )  experirnental data set; (c) representation error 
performance. 

Figure 3.3: The performance of the coupled PGS mode1 with pure delay on [FI for 
the open-loop system. - - 
Legend: (a) mode1 output; (b) experimental data set; (c) representation error 
performance. 



Figure 3.1: The performance of the decoupled PGS mode1 with p u r e  delay on the 
biias (cross-couplings: hias - R F  power) for the open-loop system. 
Legend: (a) model output; ( b )  experimental data set; (c) representation error 
performance. 

Figure 3.5: The performance of the decoupled PGS model with pure delay on [FI 
(cross-couplings: [FI - throttleposition ) for the open-loop system. 
Legend: (a) model output; (b)  experimental data set; (c) representation error 
performance. 



Figure 3.6: The performance of the coupled PGS model without delay on the Léi,, 
for the open-loop systern. 
Legend: (a) model output: (b)  experimental data set; (c) representation error 
performance. 

Figure 3.7: The performance of the coupled PGS mode1 without delay on [FI for the 
open-loop system. 
Legend: (a) mode1 output: (b)  eqerimental data set; (c) representation 
performance. 



Figure 3.8: The performance of the decoupled PGS 
L i i a ,  for open-loop system ( L e i i a ,  - t hrott l e  position). 
Legend: (a) model output; ( b )  experimental data set; 
performance. 

model with pure delay on 

(c) representation error 

the 

Figure 3.9: The performance of the decoupled PGS model with pure d e h y  on [FI for 
the open-loop system ([FI - R F  power). 
Legend: (a) model output; (b) experimental data set; (c) representation error 
performance. 



Figure 3.10: The performance of the decoupled PGS mode1 without delay on the Ki,, 
for the open-loop system. 
Legend: (a) mode1 output: (b) experimental data set: (c) representation error 
performance. 

Figure 3.1 1: The performance of the decoupled PGÇ mcdel withoat delay on [FI for 
the open-loop system. 

- - 

Legend: (a) mode1 output; ( b )  experimental data set; (c) representation error 
performance. 



Figure 3.12: The  open-loop system response to simultaneous PRBS inputs of the 
coupled PGS model with pure deZay? i&,, . 
Legend: (a)  model output; (b)  experimental data set; (c) re~resentation error 
performance. 

Figure 3.13: The open-loop system response to simultaneous PRBS inputs of the 
coupled PGS model with pu re  delay, [FI. 
Legend: (a) model output; (b ) experimental data set ; ( c )  representation error 
performance. 



Figure 3-14: The open-loop system response to simultaneous PRBS inputs of the 
decoupled PGS model with pure dela y (cross-couplings), Vgia,. 
Legend: (a) mode1 output; (b) experimental data  set; (c) representation error 
performance. 

Figure 3.1.5: The open-loop system response to  simultaneous PRBS inputs of the 
decoupled PGS model with pure d e h  y (cross-couplings), [FI. 
Legend: ( a )  model output; (b)  experimental data set; (c) representation error 
performance. 



Figure 3.16: The open-loop system response to simultaneous PRBS inputs of the 
coupled PGS model without delay, I/6i<is- 
Legend: (a) model output: (b )  experimental data set; (c) representation error 
performance. 

Figure 3.17: The open-bop system response to simultaneous PRBS inputs of the 
coupled PGS mode1 without delay, [FI. 
Legend: (a) model output; (b) experiment al data set; (c) representation error 
performance. 



Figure 3.18: The open-loop system response to simultaneous PRBS inputs of the 
decoupled PGS mode1 with pure delago I**iias. 
Legend: (a) mode1 output; (b)  esperiniental data set; (c) representation error 
performance. 



Figure 3.19: The open-Ioop system response to simultaneous PRBS inputs of the 
decoupled PGS model with pure delay, [FI. 
Legend: (a) model output; (b) experimental data set: ( c )  representation error 
performance. 

3.2 Control System Analysis Techniques 

In this section, we develop some techniques to measure the interactions between the 

input and output system variables to determine suitable pairs among them. namely 

we consider Relative Gain  A n a  y ( R  GA) and Singular L,hlue Decomposition ( S  VD) 

techniques- By taking into account these interactions, we are able to build more 

appropriate MIMO models in coupled or decoupled forms as described in the Section 

3.1. 

3.2.1 Relative Gain Array ( RGA ) 

This technique uses an interaction measure as a tool for the design of multivariable 

control systems to overcome theoretical and practicai deficiencies of the system ma- 

trir  representation. The term interaction is used here because in practice it is often 

desirable to control multivariable processes as if they were made up of isolated sin- 

gle variable processes. The resulting loops are in interaction with each other. An 



Figure 3.20: The open-loop system response to simultaneous PRBS inputs of the 
decoupled PGS model without delay; hias. 
Legend: (2) mode1 output: (b)  experimental data set; ( c )  representation error 
performance. 

Figure 3.21: The open-loop system response to simultaneous PRBS inputs of the 
decoupled PGS model without delay, [FI. 
Legend: (a) model output: (b) experimental data set; ( c )  represent at ion error 
performance. 



interaction measure attempts to answer the question: how is the measured transfer 

function between a given manipulated variables (power and throttle position) and a 

given controlled variables (1/6,, and [FI)  affected by the complete control of al1 other 

controlled variables. The measure taken to answer this question is the product of 

two gains represeoting the process gain in an isolated loop and the apparent process 

gain in the same loop when al1 other control loops are closed [3]. The first gain is the 

steady-state gain in open-loop and is given by 

H( l )  = { h m - }  21 i=l..--, n , j=l.---,n = lim H ( z )  
z+L 

where H ( z )  is the matrix transfer function of the PGS of dimension n x n. Let us 

now set 

'( ) = H-l (  1 ) = (^lij)i=L,..., n ,  j=l, ..., n (3.25) 

which represents the second steady-state gain matrix. 

An input-output control loop is said to be noninteracting with other loops in a 

process if t h e  steady-state gain of the loop is relatively insensitive to whether other 

loops are open or closed [3]. 

The "relative gain" was formulated by Bristol 1-21 as: 

The matrir of al1 relative gains for a process represents the RGA defined according 

to: 

''-4 = Ii=1,2,  j=1,2 (3.2'7) 

This matrix is used to determine the pairings of manipulated and controlled variables 
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in single loops (SISO) such that the relative gains of the input-output pairings are 

positive and close to unity. Several properties of the RGA [3], [23] that are worth 

noting are as follows: 

(i) The sum of any row or column is equal to unity. 

(ii) Reordering the rows or columns of the steady-state gain matrix results in the 

same reordering of RGA . 

(iii) The RGA is not affected by scaling of process inputs or outputs. 

(iv) If the steady-state gain matrix is triangular or diagonal. then the corresponding 

RGA is the identity matrix. 

( u )  Measures much larger than one imply a " nearly " singular gain matrix. 

(vi)  The transfer function between yi and u j  with al1 other loops closed will be 

non-minimum phase if ,u, is negative . 

(v i i )  A SISO closed-loop system controlled by a negative feedback controller must be 

stable if t,he controller is assigned to variable pairs with positive measure. The 

same system with negative measure will be stable only if the loop has positive 

feedback. 

The above rneasure can serve as a design tool to select preferred processes and to 

specify the control structure once a process is selected. The control structure is 

specified by one to  one pairing of the controlled and manipulated variables as a basis 

for control. The  above properties suggest that the measure corresponding ta the 

paired variables should be positive and as close as possible to one, negative numbers 

or much larger than one being particularly undesirable. The above design procedure 

is simple to use. Using this technique, we can simplify the structure of the mode1 by 



decoupling it into SIS0 closed loops. For these models we can perform maoy feedback 

control system strategies or we can adapt easily the existing control strategies from 

the literature. Eowever, it is possible in some situations that these simplifications can 

lead to poorly conditioned systems, and for this reason one has to find alternative 

multivariable feedback control strategies for the A4IMO systems . 

By applying the above definitions to our PGS system under investigation, we 

obtain the following steady-state gains in open-loop for the coupled case with delay: 

and for the coupled PGS model without delay. we get : 

ivhere H (  1) and Hd(l) are calculated by replacing z = 1 in the  expressions of the 

transfer matrices given by (3.20)-(3.31). 

The relative gain matrices RG';ld ( with dcla y )  and 

respect ively: 
" 

1 0.5917 0.4083 
RGA = 

RGA ( without delay) become, 

Froni the RGAd matrix we can see that the recommended pairings for PGS are 

found to occur on the off diagonal elements (positive and close to one), namely throttle 

position controls Juorine concentration [FI. power controls \ f i , ,  for the cozlpled case 
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with pure delay. For the coupled case without delay, we observe the difficulty in the 

interaction between input and output variables. In this last case throttle position 

controls I/ii,, and power controls fluorine concentration [FI. Therefore, in the first 

case we can use a decoupled control structure with two SIS0 loops acting as two 

independent loops. The control strategies clearly now become simpler compared to 

the MIMO coupled case. 

3.2.2 Singular Value Decomposition Method ( SVD ) 

In [3] SI,-D was used as a technique that requires only steady-state gain information, 

where H (  1 ) is given in (3.24). U is an m x m orthogonal matrir. for which the 

columns are eigenvectors of CGT, 2 is the singular value matrix of r singular values 

(oi) in descending order (oi's are positive square roots of the non-zero eigenvalues of 

GTG : non-zero eigenvalues of GTG = non-zero eigenvalues of G G ~ ) .  and I.* is an 

n x  n orthogonal matrix' for which the columns are eigenvectors of GTG . 

If G is the matrix of steady-state gains between the manipulated and controlled 

variables, then ci represents the ideal decoupled gain of the open-loop process between 

manipulated and controlled variables for the direction i [3]. This technique can be 

applied to either square or non-square systems; whereas the RGA can be applied 

only to square systems. The additional information that is obtained frorn SVD is 

the condition number of the steady-state gain matrix as the ratio of the largest aod 

the smallest singular values. The condition number is used to identify the potential 

problems for cont rolling a process since it is a measure of the coupledness of the control 



problem. .A large condition number indicates the high sensitivity of the system. When 

the relative sensitivity in one multivariable direction is low, then a complete control 

objective cannot be met. Since RGA does not provide conclusive evidence of the 

nature of the interactions between the loops it  is preferred to explore the use of SVD 

techniques in our problem. As an illustration, for our with delay system we have 

CITe conclude t hat the  resulting condition nunber (fi) = 177-7098, which is relatively 

large and indicates a poorly conditioned process. Also, for the without delay case, ne 

have 

and the resulting condition number (H) = 4624.9655, which is even larger than the 

previous case, indicating a more poorly conditioned process. 

The source of the above problem is revealed by studying the right singular matrices 

( Lr,T. [yT): that is 
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This structure represents the transformation of the input vector u E U whose 

space C i  is defined by the set of vectors ( ( i l ,  Cr2)  (the rows of the matrix uT) into a 

output vector y E Y whose space Y is generated by the set of orthonormal vectors 

(li: 1'2) (the columns of the rnatrix Y): where 

CTl = dLlu l  + d12u2.  is the moaf sensitive (bes t )  control direction. 

LiZ = (IZ1uL + d2*u2 is the worsi! control direction, independent 

Yi = cliyl + ~127~2: is the most sensitive obserued direction: and 

Y i  = czly, + ~221~2' is the least observable direction, independent of I'; [3]. 

The above formulation can be summarized as follows 

Inputs: [ throt t ie  position power ] = [ ul u, ] 
kiins 

Outputs: 
f luor ine  concentration ] = [i:] 

L d 

SVD can also be used to determine suitable control loop pairings [12]: [3], namely 

the so-called natural loop pairings. The best controllable direction is paired with 



the best observable directi on and the worst controllable direction is paired with the 

least observable direction. Therefore Yl is paired with Ul and Y i  is paired with U2. 

In addition each principal component direction is assumed to be composed of only 

one space dimension, i.e, omly one component 

other components are equal  to zero, namely 

of each vector k;: or Ui is one, and al1 

Y 1 = [ l  

met in real 

. O I , & = [ O  l ] , a n d U i =  [i 1, LJ* = [ r  ] - since this situation is .-.ely 

.ity? therefore, in practice, the space variable with the largest coefficient is 

taken to be  the only component. If some or al1 of the coefficients have nearly equal 

values, t hen using a c o n t r d  structure with SIS0 loops will result in an unsatisfactory 

response. In our system, f a -  both cases, throttle position would be paired with 1/6;,,, 

and R F  POWET mith the [FI; and so for the first case with delay we get a result that 

is opposite to the one obt~tined using the RGA technique and for the second case i-e., 

without delay. ive obtain t h e  same result. The last principal component of Cd and U 

is composed entirely of R F  power (one coefficient in Ch is close to unity (0.993) and 

the other is near zero (O.10i99) and one coefficient in Ly is closed to unity (0.9999) and 

the other is near zero (0.0151), and has a singular value (02 = 0.0102 for the first 

case and ~2 = 0.0029 for t h e  second case). Thus, the system is relatively unaffected 

by R F  power and the cont rol objectives and fluorine concentration [ F I )  cannot 

be achieved. This method reveals that the first case with delay is better than the 

second one without delay. However, both SIS0 ARIMA models still remain incapable 

of capturing al1 the dynarnics of the PGS and of reflecting accurately the physical 

phenornenom within the reeactive ion etching plasma process. 



3.3 Nonlinear Models: RIE Neuromodels 

Process modelling permits an engineer t o  manipulate and optimize the process ef- 

ficiency with a minimum amount of experimentation. An accurate process mode1 

offers a cornpetitive edge in today7s complex and compet itive semiconductor manu- 

facturing. As discussed in the previous sections, precise modelling of the RIE frorn 

a fundamental physical standpoint is difficult due to the extremely complex nature 

of particle dynamics within a plasma. Recently, empirical RIE models derived from 

neural networks [-1: [16], [14] have been shown to exhibit superior performance in 

accurac). predictive capability, and robustness over more traditional statistical ap- 

proaches (regression rnethods). Neuromodel predictions of the RIE process outputs 

are used in conj unction wit h genetic algorit hms and ot her opt imization techniques to 

optimize the etching process performance and for recipe synthesize. 

One of out goals in this thesis is to determine an appropriate neuromodel for the 

highly compleï PGS t hat talies into account the nonlinearity of the actuator ( throttle 

value).  The experimental input-output data set ail1 be used to train feedforward 

neural networks using an error backpropagation algorithm. We will focus our at- 

tention on matching mode1 predictions with measurements for network learning and 

generalization. For this purpose our proposed neural networks consist of three layers 

configured in different architectures, ranging from a 2-10-2 network to  a 1-10-2 and 6- 

10-2 structures al1 being trained by the Levenberg-Marquardt backpropagat ion error 

algorit hm [NI. 

Even though a simple steepest descent gradient algorithm can be efficient, there 

are situations when moving the weights within a simple learning step along the neg- 

ative gradient vector by a fixed proportion will yield a minor reduction of error. For 

flat error surfaces for instance, too many steps may be required to compensate for 



s m d l  gradient values. Furthexmore, the error contours rnay not be circular and the 

gradient vector may not point toward the minimum. To avoid these situations one 

may replace the gradient descent method by the Gauss-Newton optimization method, 

which uses the second derivative of the error function E, namely its Hessian matrix 

H(w) = V: E = V(V, E). To update the weights, a recursive Gauss-Newton opti- 

mization dgorithm may be expressed in the following matrix form 

Because the Hessian matrix rnay be singular: it can be made invertible by using 

the Levenberg-Marquardt rel~xat ion as follows: 

where p is a relaxation parameter and I is an identity matrix. The Levenberg- 

Marquardt algorithm is preferred for a small number of weights because the  compu- 

tational speed of the inverse Hessian matrix decreases when the number of the mreights 

increases. Ot herwise, the steepest descent opt imization algorit hm is preferred. 

The backpropagation algorithm attempts to minimize the error between the out- 

put of the network when compared to the target or the desired response. The  number 

of hidden neurons and layers are varied to provide optimal network performance. 

The development of an optimal neural network structure is complicated by the 

fact that backpropagation networks contain several adjustabIe pararneters for which 

the optimal values are initially unknown. These include structural parameters (such 

as the number of hidden layer neurons, initial weights and biases) as well as learning 

parameters (such as the learning rate, momentum, and error goal). The  learning 

rate determines the speed of convergence by regulating the step size. However, the 



network may settle far away from the global minimum of the error surface if the 

learning rate is too large. On the other hand, srnalier rates can ensure stability of 

the network by diminishing the gradient of noise in the weights, but result in longer 

training times [2] ,  [14]. For this reason the algorithm is improved by introducing an 

adaptive Iearning scheme which decreases considerably the training time. 

A smaller training tolerance usually increases learning accuracy, but can also result 

in less generalization capability as well as longer training time [2], [14]. Conversely, a 

larger tolerance enhances convergence speed at the expense of accuracy in learning. 

It is shown in the literature that a single hidden layer is sufficient for learning any 

function, but the number of hidden neurons can grow without a bound [161. This of 

course. may result in a network with a large number of connections which defeats the 

main purpose of having an accurate prediction. By increasing the number of hidden 

layers, each consisting of sigrnoidal nodes: the complexity of the network can increase 

more rapidly than the number of connections. The optimum network architecture 

should have a minimum number of connections and produces a low cross-validation 

error. 

Development of neural network models typically consists of considerable training 

and testing. The objective is to find a network that will perform well on the test data. 

For the training set we will select the first half of the experimental input-output data 

set to update the weight matrices and use the other half as the test set. Network 

performance is measured by the root rnean squared error, a which is given by: 

where n is the size of the test set, y; is the measured value of the output, and y; is 

the response provided by the neural networks. 



Ail the neural network architectures proposed in this section are trained on the 

experimental data set to learn the  mapping from inputs to outputs of the process 

model. A small network with only ten hidden neurons was sufficient to generate this 

mapping. To avoid overfitting we limited the nurnber of neurons to the fewest as 

possible as long as the network converges to the desired error level. The training was 

terminated once the error goal was achieved. 

The input variables to the neural network models are u l  =throttle valve position 

and u2 = RFpower  and the outputs are y1 =hias induced and y2 =fluorine con- 

centration [FI.  Present values of the output variables or delayed output and input 

variables can also be used as inputs to the model? depending on the complexity of 

the represent at ion of the PGS considered. 

Our proposed four neuromodel structures are described in detail below: 

(i) nonlinear static model (2-10-2). The neural network objective is to represent 

a static model of the PGS which is assumed to be expressed as a nonlinear 
T T 

function f where u(k) = [ ul(k) u 2 ( k )  ] . y(k) = [ y,(k) y2(k) ] - and 

(ii) nonlinear Jirst-order ,mode[ (4-1 0-2). In t his case the delayed plant output y ( k  - 

1) is used in addition to the present plant input u(k) as input variables i-e., the 

dynamic input-output model is assumed to be expressed as a recursive equation 

of first-order 

(iii) nonlinear second-order model (6-1 0-2). In this case the delayed plant outputs 

y(k - 11, y(k - 2 )  are used in addition to the plant input u(b) as input vectors, 
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i-e., the dynarnic input-output mode1 is assumed to be expressed as a recursive 

equation of second-order 

(zv) nonl inear  Jrs t -order  n o d e l  (6-10-2) wzth delayed inpu t  vector u(k - 1). In this 

case the delayed output y ( )  - 1) and the delayed input u(k  - 1) are used in 

addition to the plant input u(k) as input vectors, i.e., 

The results of the simulations presented in the next section show that the last two 

neuromodel representations yield the best performance due to the presence of their 

interna1 feedback and the delayed input signals as input vectors to the networks. 

-ifter constructing the neural network-based models we are now able to develop 

neurocont rollers t hat rnust rneet the following performance objectives for the closed- 

loop system: 

(i) tracking the teference target wit hout delay. 

(ii) preventing disturbances from influencing the output, and 

(iii) rejecting noise, i-e., not responding to spurious fluctuations. 

It is known that objectives (i) and (iii) are sometimes mutually exclusive. In 

other words, a neurocontroller that improves both the speed of the response and 

rejects noise is: in general, very challenging to design. 

a ï  



Table 3.2: Performance comparison for the neuromodels. 

Neurornodel 
Static representat ion 

Firs t-order 
Second-order 

First-order with delayed input 

3.4 Neuromodel Simulation Results 

In this section we design several neuromodels capable of learning and generalizing 

accurately the highl- nonlinear dynamics of the PGS plant in open-loop. The results 

of the training phase and the capability of the neural network models to learn and 

represent the experirnental input-output data set are presented belon-. In Table 3.2 

ive synt hesize the performance of t hese neurornodels represented by the standard 

deviat ion errors between the models and the experimental data  set (e).  The nonlinear 

static model network fit the experimental input-output data set (not shown) in the 

testing phase with the standard deviation errors of e = 2.992S9 [Volts] for and 

e = 0.0256 1x1 for [FI. The nonlinear first-order model network fit the same data 

with the standard deviation errors of e = 1.387 [Volts] for Pi;,, and e = 0.0159 

[W] for [FI. The  best fit is performed by the nonlinear second-order model network 

depicted in Figures 3.26-3.27 which fit the experimental input-output data with the 

smallest standard deviation errors of e = 1.3516 [Volts] for hias and e = 0.0121 [%] 

for [FI. Finally, the nonlinear first-order model network wit h delayed control results 

in standard deviation errors of e = 1.387 [Volts] for Ki., and e = 0.0172 [%] for [FI. 

The maximum magnitude of these standard errors is the  same as for linear ARMA 

models developed in Section 3.11 1. 

&,, e [Volts] 
2.99289 

1.387 
1.3316 
1-38? 

[FI e [%] 
0-0256 
0.0159 
0.0131 
0.0172 



3.5 Summary 

In this chapter, we have developed four linear and four nonlinear models for the PGS 

process. In the decoupled PGS models, we can consider the multivariable PGS plant 

as two independent SIS0 loops, for which we will develop in Chapter 4 a real-time 

feedback cont rol s trategy, namely a PI sel/-tuning adaptive controller. To determine 

suitable pairs between the input variables and the output variables, we used RGA and 

SVD techniques. Using the coupled PGS models wüh  pure delay in state-space rep- 

resentat ion. we will develop later real-time multi-input rnulti-output ( M i M o )  control 

strategies such as Linear Qvadratic Gaussian (LQGJ control (Section 4 2 ) ,  stochastic 

minimum variance adaptive control (Section 4.3) and robust control (Chapter 7) .  The 

neuromodels will be used in Chapter 5 to build four real-time neurocontrol strategies 

which \vil1 ensure the stability, good tracking error and robustness of the RIE systern 

in closed-loop. 

-4s a consequence of our mode1 validation results, by computing the standard 

deviation errors between the mode1 output and the measured output, we can conclude 

that the ARiMA models ( i)_ ( ii) provide accurate fit of the experimental input-output 

data sets and work well in a srnaIl operating range. The nonlinear models such as 

neural network models (i)-(iu) work well in larger operating range, and capture the 

nonlinearities of the actuators and the plant. 

Among the important problems investigated here are the optimization of the ar- 

chitecture of the neural networks and the type of networks used to obtain a good fit 

with the experimental input-output data set. The training used for determining the 

neural network models of the RIE system is based on dynamic/static backpropagation 

using the Levenberg-Marquardt algorithm. 



Figure :3.32: Generalizat ion result s for the nonlinear static represent at ion for the dc 
l**b;as. 
Legend: (a) neuromode1 output: (b)  experimental data set; (c) representation error 
performance. 

Figure 3.33: Generalization results for the nonlinear static representation for the 
fluorine concentration [FI. 
Legend: ( a )  neuromodel output; (b) experirnental data set; (c) representation error 
performance. 



Figure 3.24: Generalization results for the nonlinear first-order representation for the 
dc Ki,,. 
Legend: (a) neuromodel output; (b)  experimental data  set; (c) representation error 
performance. 
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Figure 3-25: Generalization results for the nonlinear first-order representation for the 
fluorine concentration [FI. 
Legend: (a) neuromodel output: (b) experimental da ta  set; (c) representation error 
performance. 



Figure 3 -26: Generalizat ion results for the nonlinear second-order representat ion for 
the dc \ ,L ias .  
Legend: (a) neuromodel output; ( b )  experimental data set: (c)  representation error 
performance. 

Figure 3.27: Generalization resuits for the nonlinear second-order representation for 
the  fluorine concentration [FI. 
Legend: ( a )  neuromodel output; (b)  experimental data set; (c) representation error 
performance. 



Figure 3-28: Generalization results for the nonlinear first-order representation with 
control delayed for the dc l&;,,. 
Legend: (a) neuromodel output; ( b)  experimental data set; (c) representation error 
performance. 
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Figure 3.29: Generalization results for the nonlinear first-order representation wit h 
control delayed for the fluorine concentration [FI. 
Legend: (a)  neuromodel output: (b) experimental data set; (c) re~resentation error 
performance- 



Chapter 4 

MIMO Feedback Control Strategies 

4.1 Adaptive Controllers Based on Quadratic Cost 

Function Minirnization 

4.1.1 Introduction 

,4utomatic tuning of controllers for indust rial processes has received bot h theoretical 

and practical interest for many years. Self-tuning control is one approach to the 

automatic tuning problem. -4 self-tuning controller has three main elements: 

(i) .A standard feedback law in the form of a difference equation that acts upon 

a set of values such as the measured output and feedforward signals and the curent  

set-point to provide the new control action, 

(ii) A recursive parameter estimator that monitors the plant's inputs and outputs 

and computes an estimate of the plant dynamics in terrns of a set of parameters in a 

prescribed structural model, and 

( i i i )  The parameter estimates that are fed into a control design algorithm which 

then provides a new set of coefficients for the feedback law. The control design 



algorit hm simply accepts current estimates and ignores their uncertainties. 

Appropriate modifications to the basic algorithms and their relative robustness are 

still open topics for current research. The application of self-tuning control strategies 

started wit h the development of self-adaptive systems in the aircraft industry for 

changing flight conditions. The usefulness of linear adaptive control techniques is still 

debated in the control system community. The principal reason is that al1 controlled 

processes for which linear adaptive control systems might be suit able are essentially 

nonlinear and stochastic, and therefore difficult to control and to analyse. If they 

were not nonlinear t hey codd be opt irnally controlled by classical linear controllers; 

and if they were not in some way uncertain, or stochastic, there would be no need 

for learning in the form of self-adjustment or estimation of coefficients. Nonlinear, 

stochastic problems are difficult to study analytically because, there can be in general 

no analytic solutions to them. In particular no general design procedures are available 

for designing controllers for nonlinear stochastic processes. 

Self-tuning control techniques can be classified into two main categories: 

(i) explicit method* where the process model is used and the control is based 

on estiniated model parameters which do not directly appear in the control law. At 

each sampling interval, the parameters in the process model are estimated recursively 

from input-output data of the PGS and the controller parameters are then updated as 

shown in Figure 4.1. This approach is the b a i s  for the self-tuning control approach. 

The dynamic model is assumed to  be either a linear input-output difference equation 

or a linear discrete-time state space representation with constant parameters. The 

parameter estimator is designed based on the RLS algorithm. The controller is de- 

signed in such a way that it minimizes a quadratic cost function with the form given 

by (4.3)-(4.4) [2%]. 

(ii) implicit methods where the process model is converted into a predictive form 



Figure -2.1: Self-tuning controlIer for the PGS 

that allows the future process output to be predicted from the current and past vdues 

of the input and output variables by using a predictive model as shown in Figure 4.1. 

In this case. the control larv parameters are directly updated from the input-output 

measurements. 

In this figure, the blocks Calcul f and Calcul 2 represent the subroutines for 

the RLS procedure, and the /ou. pass Filter 1 and Filter 2 blocks are used to fiIter 

the white noises el and €2. These filters have the same significance as Nl and Ai2 

defined in the Chapter 13, equation ( 3 . 1 ) .  

4.1.2 Design of the Predictive Models of the PGS 

In this section, we design an adaptive seij-tuning controller based on minirnization of 

a quadratic cost function described by equations (4.3), (4.4)' known in the literature 

as minimum variance control, or minimum regdation (221. 

Minimum variance control (251, [22] is applied here to our decoupled PGS models 

with pure delay (direct - couplings) represented in the Figures 3.8-3.9 to compare 

wi th other advanced control algorithms such as neurocontrolIers and robust controllers 



that are developed subsequently in the thesis. The process model can first be written 

in the predictive form [25]: 

where 

Y17 y2 are defined as y, - y,,,, y2 - y,,, 

u1. u2 are defined as ul - u l s ,  , u 2  - u2sp 

ylsp7 y 2 S p ,  ulsp7 uZsp denoting the steady-state values of yl, ,y2:  a n d u i ,  u2, 

respectively. 

The objective is to design two controllers that minirnize the following cost functions: 

where Y 1 ( k  + 1) G2(k + 1) represent the one step ahead (given by the pure delay) 

predicted values of the bi,, and fluorine concentration [FI computed by the RLS 

estimation algorithm [35], (-61, [27], [22], [25] .  The model of the process (4.1)-(4.2) 

can be rewritten in the form indicated in [Z]: 1251 as: 

where 



Ayi(k + 1) = yi(k + 1) - y;(k), Au;(k + 1) = ~ ; ( k  +.1) - ~ i ( k ) ,  and 

Aei(k + 1) = e;(k + 1) - e;(k), i = 1, 2, represent the first order difference of the 

output' input, and error, respectively, and the  poiynomids Fi , F2 El , E2 are o f  

degrees nj; ? ni,, ne, . ne, , and satisfy the Diophântine equations [22]: 

with n representing the time delay in the closed-Ioop, and 

ne, = ne, = n - 1(= O for pure delay), n ~ ,  = max(n,,' ne, - n): 

Therefore, the mode1 of the process reduces to  



Minimizing the cost functions JI in (4.3) and J2 in (4.4) yield the self-tuning 

control laws [22] : 

where for the pare delay case Ri = 2 and R2 = z, with rl' r2 representing the 

weights of the control in JI and J2,  respectively, and b t l ,  bzl representing the elements 

of the matrices B1 y B2 introduced in equation (3.1) to describe the PGS dynamics. 

The minima of the  cost functions Ji and J2 are reached for Ri = R2 = O: and therefore 

we get the minimum variance control laws for the self-tuning controller. 

Remarks: 

The design of the sel/-tuner includes the specification of the following model 

parameters: 

(i) rnodel orders: na, na, . n b ,  _ n b ,  : n,, : n,, 

(ii ) time dela); parameter n (n  = 1' for pure  d r l a y )  

Generall- larger values of the mode1 parameters should not be chosen because 

the controller will take longer to tune. 

The control action, therefore, depends on the predicted values of the one step 

ahead model. 

The predicted values of K1(k + 1) and i2(k + 1) can be calculated from the 

process input and output values according to equations: 



Figure 4.2: Block diagram for the predictive control scheme 

wliere BI . B, . Cl : C; : ÊL _ Ê2 , FI . F2 are estimated by the R L S  algorithm. 

By solving the Diophanaine equations (4.7)-(4.8) using the er~erirnental  input- 

output data set for this mode1 ((u, : y,)  , (u2 , y2 )  interactions). i v e  get the con- 

trol law for the self-tuners in each loop. 

The algorithm is similar to t h e  one step ahead control algorithm. where 

are fixed a t  their target values. The explicit identification procedure has the dis- 

advantage that the coefficients El , E2, FI , F2 have to be calculated on line at 

each sampling interval from t -he Diophantine equations (4.7)-(4.8). Solution of the 

Diophantine equation can be avoided if the coefficients of the polynomials E l ,  E2, 

FI F2 are identified directly. If we introduce the variables Q > L  and 6, defined as: 

6 , ( k  + 1) = + 1) + RiAzuL(k), and 6 * ( k  + 1 )  = Y2(k  + 1 )  + RZAUZ(~). the re- 



gression model for identifying the implicit parameters El , &, FI F2 is obtained as 

follows 

The above forms still cause difficulties to estimate these variables by solving the 

highly complex Diophantine equations a t  each sâmpling time. Building a PI self- 

tuning adapt ive controller based on this procedure is not computationally efficient. 

In practice we can simplify this procedure considering the variables Q > i ,  as polynomials 

of first-order in the following form: 

where a i ( z - ' )  = Fi(=-'), and fli(z-')=Gi(z-') + Ri are obtained by the parameter 

identification expression given in equation (3.1) or estimated directly using a RLS 

procedure presented in detail in Section -2.1.4. By adding supplementary terms 

(second-order or higher) to the equation (4.21) we can build a Proportional Integrai 

D r ~ v a t i u e  (PID) self-tuning controller or more other sofisticated control laws. 

4.1.3 PI Self-Tuning Controller 

Our goal is to design a standard PI self-tuning controller for the  decoupied PGS model 

with pure deiay in the predictive form given by equations (4.1)-(4.2). The objective 

of this approach is to  build a standard controller to be used easily in practice and 

to have a reference model so as to compare the results obtained by applying this 

algori thm wi t h the  ot her algori thms developed in t his chap ter and in Chapters 5-7- 



The equations (4.19) and (4.20) for the PI seij-tuning controller could be represented 

in the following predictive forms: 

A 

where &-, & appear in equation (4.21), and are estimated directly using a RLS 

procedure (Section 4.1.4). The PI control iaw then takes the form [22]: 

This approach is implicit because the predictive model parameters appear directly 

in the control law. As the number of parameters increases the initial estimates become 

increasingly important and poor estimates may result in an extended period of poor 

performance and even lead to instability [BI. 

4.1.4 The RLS Procedure 

To estimate the parameters in the PI self-tuning controllers, one may use the RLS 

algorithm. This algorit hm identifies the model parameters using the experiment al 

input-output data set. In order to set up the regressor vectors the predictive equations 

(4.22)-(4.23) are rewritten at the sampling tirne k as: 



Using the vector notation these equations may be written in the form: 

where the regressor vectors !DI, Q2 are given by 

and puameter vectors 01, e2 have the form 

The updates for the parameter vectors 01: e2 are performed according to [22] 

1 
Pi(k) = - [ I  - l ï*i(k)Qi(k - l)] Pi(k - 1) (4.36) 

Ai 

where 11-i and Pi, i = 1, 2 represent the Kalrnan filter gains and covariance matrices 

of the estimation errors, respectively. P:s are positive definite measure of the 

parameter estimate errors and tend to decrease as k increases. The above equation 

requires an initial estirnate of the pararneter vectors bi and Pi. Usually Pi(0) is 

chosen as a diagonal matrix. Large diagonal values (e.g.104 or higher) indicate that 
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Table 4.1: Closed-loop system performance of the PI self-tuning control strategy. 

the confidence in Ôi(0)  is poor and will cause initially rapid changes in 6;. If these 

Convergence 
very good 

matrices are not weU initialized i t  is possible a degradation of the system 

E 

0.0015 [Volts] 
I.iifJJIF] 1 t7-[s] 1 t i [s]  

Vbias 1 80 [ 35 

performance in the closed-hop. Srnall values indicate that Ô;(o) is a good estimate 

%OS 
2 Wolts] 

A 

and will cause slow changes in O;.  

4.1.5 Simulation Results 

ive design in this section a standard PI sey-tuning adaptive controller based on 

minimization of a quadratic cost function (4.3)-(4.4) (minimum variance regulation), 

capable of performing fast transient and good tracking error for the PGS in closed- 

loop. Aiso. the algorithm can take into account the physical constraints due to the 

rate of change in the input variables throttle value and RF power actuators b y  setting 

minimum and maximum bounds for these inputs: O 5 ul  5 100 (% opening), and 

O 5 u2 5 5000 [Li'attsl, such that  each time when u i  and uî reach the minimum or 

maximum values then u; = u;,,, or u,  = u;,i,, until u;, i=l, 2: given by the algorithm 

take values between the input bounds. The algorithm is deveIoped for the decoupled 

PGS mode!  wi th  pure delay depicted in Figures 3.8-3.9 to serve as comparison for the 

other advanced algorithms which are developed later in the thesis in neurocontrollers 

and robust controllers chapters. To estimate the parameters of the PI self-tuning 

controller we use the standard RLS es t imat ion  algorithm initialized b y  the following 

values of the parameters: 
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Figure 4.3: The performance of the PI self-tuning controller on the puonne concen- 
tration [FI for the closed-loop system. 
Legend: The dot line designates the evolution of [FI and the solid line designates the 
set point. 

@ d o )  = [ 0.5 1 2500 1-  %(O) = [ 0.5 -0.1 1, and i l iz  = 0.98. 

These values of t he  parameters were obtained by trials' monitoring for each trial 

the  systern performance in closed-loop (fast t ransient and good tracking error). Ana- 

Iyzing bot h the open-loop and the closed-loop simulations revealed t hat the algorithm 

works ive11 and provides satisfactory results. The  results of the simulations for the 

closed-loop PGS system without changes in the set point are shown in Figures 4.3-1.6' 

and wit h changes in t he  set points are given in Figures 4.7-4.10. These results reveal 

good tracking error and good convergence of t h e  self-tuning PI algorithm for the both 

cases. The performance cornparison of the results for the closed-loop and open-loop 

system are presented in Figures 4.11-4.12. Also, we synthesize the closed-loop system 

performance of this control strategy, narnely t h e  settling time (t ,) ,  rise time (t;) ,  over- 

shoot (%OS), steady-state error (c) and the convergence of the algorithm for Qiar 

and [FI in Table 4.1. 



Figure 4.4: The performance of the  PI self-tuning controller on the dc t$;,, for the 
closed-loop system. 
Legend: The dot line designates the  evolution of the Vbh, and the solid Iine designates 
the  set point. 

Figure 4 5 :  The performance of the PI self-tuning controller on the R F  power for the 
closed-loop system. 



Figure 1.6: The performance of the PI self-tuning controller on t h e  throttk position 
for the closed-loop systern. 

Figure 4.7: The performance of the PI sel/-tuning controller on t h e  dc I/ii.. for the 
closed-loop system with changes in the set points. 
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Figure ?.Y: The performance of the PI self-tuning controller on the [FI for the closed- 
loop system with changes in the set points. 

Figure 4.9: The performance of the PI self-tuning controller on the throttle position 
for the closed-loop system. with changes in the set points. 
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Figure 4.10: The performance of the PI seu-tuning controller on the R F  power for 
the closed-loop system with changes in the set points. 

Figure 4.1 1: The performance comparison results for the I/iias for the open-loop and 
closed-loop system with the PI selj-tuning controller. 



Figure 4-12: The performance comparison results for the fluorine concentration [FI 
for the open-loop and closed-loop system with the PI self-tuning controller. 

4.2 Real-Tinie Reactive Ion Etching Multi-Input Multi- 

Output Control based on the Linear Quadratic 

Gaussian Scheme 

4.2.1 Linear Quadratic Gaussian Controller (LQG) 

In this section? we propose to use Linear Quadratic Gaussian (LQG) strategies [%9]; 

due to their conceptual simplicity and their ability to handle systematically coupled 

dynamics. Given the model of the plasma generation subsystem in the state-space 

representation form, an Linear Quadratic Gaussian (LQG) controller is designed and 

tuned to meet certain desired performance specifications. We use in this approach the 

linear plant model represented in a state-space representation by the equations (3.22)- 

(:3.23) where the process and the measurement noise ( w ( k )  and u ( k ) ,  respectively) is 



assumed to be zero-mean Gaussian and uncorrelated. In order to obtain a unique 

solution to the design problem the Reactive Ion Etching system (RIE) must be both 

controllable and observable. 

To eliminate steady-state errors when the set points are constant we add an inte- 

gral control action represented by the accumulator block as shown in Figure 4.13. The 

accurnulator dynamics is described in the state space forrn by the discrete equation 

T 
where q(k) = [ g , ( ~  ~ ( k )  ] represents the state vector of the accumulator The 

input to  the accumulator is the error signals e(k) (defined as the difference between 

the reference signal r ( k )  and the measured process variables y(k)). Once the 

feedback control is designed such that q ( k )  converges to a steady state value then 

y(k)  must converge to the reference input r ( k )  (since e(k) +O). Defining the 

extended or augmented state vector by 

the full order augmented dynamics of the PGS in closed-loop can be written in 

state-space representation as 

with appropriate definitions for the matrices A, B, C ,  D, and E: 



BG 
7 c = [ CG O,,, ] , O  = DG, 

-DG 

where from our experimental data set used in identification process of the PGS the 

following values for the matrices .4c, BG, CG, and DG were obtained: 

Using the separat.ion principle [-SI, [%9]. [30]. the LQG controller is now designed in 

two steps: 

( i )  Linear Quadrat ic  Estimator design (LQE) (lialman mer design), and 

( i i )  Linear Quadrat ic  Reguiator design (LQR) ( Full-date feedback design) 

4.2.1.1 Linear Quadratic Estimator design (LQE) 

In this step an  estimator for the process state vector x ( k ) ,  denoted by ?(k), is 

designed since only y(k) is assumed to be measurable. The algorithm cornputes the 

estimate of the PGS state, Î(k)' by employing a steady-state Kalman filter [29] with 

s2 



the dynamic state equation governed by 

?(k + 1) = A&(k) + & ~ ( k )  + lc[y(k) - CcAc5(k) - CcBGu(k)] (4.41) 

where Ke is the Kalman gain matrix that is given by 

h; = AG[S - S C ~ ( C ~ S C ~  + & ) - l ~ ~ S ] ~ G ~ t L  (4.42) 

where S is the unique positive definite solution of the algebraic Riccati equation [29] 

The Kalrnan filter generates a state estimate that minimizes the variance of the 

estimation error where R, and Q ,  are the covariance matrices for the noise 

processes v (k) and w(P) respect ively. To achieve a "good dynamic performance, 

the covariance matrices R, and Q, are chosen as diagonal matrices such that the 

estimator bandwidth is approximately four times the bandwidth of the  closed-loop 

system [BI, [-SI, [30]. 

4.2.1.2 Linear Quadmtic Regulator design ( L  QR) 

In this step a feedback gain matrix li is computed such that when 

is applied to the full order system (4.39), the resulting closed-loop system is stable, 

Le., the eigenvalues of the matrix ( A  - BK 1 are al1 inside the unit circle. Since the 

state of the accumulator, q ( k ) ,  is available for use in the controller: the control may 



now be implemented as follows 

To obtain a stabilizing state feedback gain matrix, we use the deterrninistic for- 

mulation of linear quadratic optimal control (LQR), in which t h e  process noise w ( k )  

and reference r ( k )  are assumed to be zero. The control is selected to minirnize the 

following quadrat ic function 

Consequently. the feedback gain matrix I< is given by [28], [29j. 1311 

where P is a solution to the algebraic Riccati equation [29j 

Under full controllability and observability of ( A ?  B, Cl, a unique positive definite 

solution to P does exist. 

The weighting matrices Q and R are chosen to be diagonal sa that increasing a 

nonzero term in Q has the efFect of reducing the rate of the response in the correspond- 

ing process variable, and increasing a nonzero term in R makes the corresponding 

control input less agressive. For practical reasons we choose Q a n d  R such that the 

closed-loop system bandwidth is approximately one tenth of the sampling frequency 

[-SI. 



Figure 4-13: Block diagram of the LQG controller 

4.2.2 Simulation Results 

In this section ive design a real-time ;CIIZ./O L QG control strategy capable to perform 

in stochastic eovironment fast transient and good tracking errar for the PGS in closed- 

loop. For t h e  simulations we choose Q, = 0.001 I4 and Rv = 3.512 values obtained by 

trials and monitoring for each trial the closed-loop system performance (fast transient 

and good tracking error). The solution to the Linear Quadrat ic  Eslimation problem 

( L Q E )  has the following form: 



It can be shown easily that the matrices ( A ,  B, C) of the RIE extended system 

sat isfy the full cont rollabili ty and O bservabili ty  cri teria. T herefore, the L QR problem 

has a unique positive definite solution P. For example by setting Q = 1216 and 

R = lOO& nre get: 

Regulation of the process variables in the  RIE system requires a multivariable 

controller that can Vary two inputs (manipulated variables) sirnultaneously to track 

setpoints for t h e  two process variables. Also, the measurements of the plasma process 

variables, particularly fluorine concentration are contaminated by the noise measure- 

ment. The sensor noise is very close to a white, Gaussian one. For these reasons, we 

have selected the Linear Quadratic Gaussian ( L  QG) as a suitable multivariable con- 

trol strategy to be applied to the RIE system. This control strategy facilitates the use 

of in-situ sensing to  modify inputs in real-time, providing considerable information 

about the process and wafer state. The closed-loop system performance of this control 

strategy, namely the settling time (t,), rise tirne (t;), overshoot (%OS), steady-state 

error (e)  and the convergence of the algorithm for hias and [FI are presented in Table 

4.2. The simulation results for the closed-loop system with changes in the set points 

are presented in Figures 4.14-4.17. For constant set points the evolution of the control 



Table -1.2: The closed-loop system performance of the LQG control strategy. 

&im/[F] 
Vbias 

Figure 1.14: The performance of the LQG controller on the throttle position of the 
closed-loop system with changes in the set points. 

and outputs of the closed-loop system are presented in Figures 1.18-4.21. The effects 

tr[s] 
15 

of the noise on the controI and the  outputs are shown in Figures 4.22-4.23. where the 

weighting matrices are tuned with the values: Q = 1'216, R = 100121 Q ,  = 0.001f4. 

and R, = 3..512. 

By analyzing the above simulations we can conclude that very good results are 

ti[s] 
5 

obtained in the deterministic case. Moreover, the control strategy has also performed 

sat isfact,orily in the stochastic environment. The figures reveal the significant impact 

%OS 1 E 

45[Volts]fO.O014[Volts] 

of the noise in [FI level and in the Va;,, level during the transient and the steady-state 

Convergence 

verygood 

evolution. The LQG algorithm has good convergence properties and can be used in 

real-time control since it is computat ionally efficient due its low complexity, and the 

small number of operations involved in the computation process. 



Figure 4.15: The performance of the L QG controller on the power of the closed-loop 
system with changes in the set points. 

Figure 4.16: T h e  performance of the L QG controller on GiaS of t h e  closed-loop system 
with changes in the set points. 
Legend: The star denotes the evolution of Kios and the solid line is the Gias set 
points. 
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Figure 4.17: 
with changes 
Legend: The 

The performance of the LQG controller on [FI of closed-loop 
in the set points. 
solid line curve designates the evolution of [FI 

set point 
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Figure 4.18: The performance of the L QG controller on kaia, of the closed-loop system. 
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Figure 1.19: The  performance of the LQG controller on [FI of the  closed-loop system. 

Figure 4.20: The performance of the LQG controller on t h e  throttle position of the 
closed-loop system. 



Figure 4-21: The performance of the LQG controller on the power of the closed-loop 
system. 

Figure 4.22: The performance of the LQC controller on the de I/s,, of the closed-loop 
system contaminated by noise. 



Figure 4-23: The performânce of the LQG controller on [FI of the closed-loop system 
contaminated by noise. 

4.3 Coupled Real-Time Multi-Input Multi-Output 

Stochastic Adaptive Control Strategy of the PGS 

In this section we consider a real-time MIMO stochastic adaptive control strategy 

developed as a combination of the system identification scheme based on the minimum 

variance principle approach and the control law strategy derived from minimization 

of a per-interval performance index. The high efficiency and high performance of this 

control strategy is utilized for developing our real-time MIMO control scheme for the 

RIE system. This approach, as demonstrated below, results in superior accuracy and 

performance. We believe that this control strategy is suitable for implementation 

in our MIMO RIE system expressed in the state-space representation forrn. The 

potential advantages of this control strategy when applied to RIE system are as 

follows: 



(i) process recipes are defined in terms of the desired physical and chemical pro- 

cesses occurring in the plasma generation subsystem and on the wafer. 

(ii) the stochastic adaptive controller can compensate for progressive drifts in 

real-time, namely changes to components of the RIE system such as the mass flow 

c~ntrollers~ t hrottle valve, pumps, and variations in loading effect . 

(iii)  the stochastic adaptive controller con also compensate for drift which occurs 

during the process, in principle reducing process variability. Drifts during the process 

can be caused by physical or chemical changes to the reactor during deposition due 

to wall heating or deposition. 

(iu) failure detection and fault ~Iassification is enhanced because in-situ sensor- 

based stochastic adaptive controller provides considerable information about the pro- 

cess and wafer state, 

( v )  the identification process (prediction error approach) is based on the state- 

space innovation model, which eliminates the use of the Kalman filter algorithm for 

the state estimation, thus resulting in a computationally efficient scheme. 

( v i  ) the tracking control law is generated using per-interval performance index 

optimized for a regulation problem (one step ahead prediction). This approach en- 

sures higher performance and is computationally more efficient as compared to the 

dynamic programrning approach. 

It is assumed that the PGS system is an unknown strictly proper plant to be 

controlled which is characterized by a general stochastic state-space model, namely 

were the elements of the matrices -4(k), B(k) and C(k) are time dependent and 
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x(k), y ( k )  and u ( k )  are the state, output and input vectors, respectively. A ( k ) ,  

B ( k )  and C ( k )  are unknown system matrices, w ( k )  and v ( k )  represent wicorrelated 

zero-mean Gaussian modelling errors and disturbances with the following statistics: 

w ( k )  - N {O' &(k) ) ,  v ( k )  - N { O ,  &(k)}; and xo is the initial state having a Xo 

mean and a covariance matrix R,, ( k )  , i-e, xo - N {Xo,  Rzo). 

It is desired to adaptively control the plant in order to minimize the following 

performance index: 

subject to the constraints of equations (4.52) and (4.53), where yd(k) is the desired 

output tracking signal, Q and R are symmetric positive definite weighting matrices, 

and E {*} denotes the expectation operator. To effectively control the unknown plant 

given by (4.5?)? (4.53): the plant dynamics must be identified and be known to the 

controller. Therefore, the control strategy for the PGS system consists of the following 

two main stages, namely 

( a )  identification of the plant using a stochastic identification algorithm, and 

(ii) the control law design using a stochastic control scheme. 

For the first stage, we consider B(k), a vector of the unknown parameters of the 

process to be identified, which may be originating from the elements of the system 

matri ces A(k)  , B ( k )  and C ( k )  as well as the covariance matrices & ( k )  , R, , R,, . In 

other words, the state-space mode1 (4.52), (4.53) may be  rewritten as 



In the identification process, it is useful to associate with the above general state 

space-model, the state-space innovations model of the following form 1321: 

where e(k, 0) = C ( O ) x ( k ,  O )  is the predicted output, ~ ( k ,  9 )  = y(k) - Q(k, 8) is the 

prediction error, K ( 0 )  E ~ ~ ' ~ ~ ~ ~ ' ~ ~ ( d i r n X  and dimY being the dimensions of the 

state space A7 and output space Y, respectively) is the steady-state Kalman filter 

rnatrix with unknown elernents to be determined by t.he algorithrn, and ê(k) is the 

estimate of O(k) given by 

where L(k) is the identification gain to be determined subsequently. -4s indicated 

below this gain is expressed in a recursive form in step (i) of the stochastic minimum 

variance adaptive controI algorit hm. In the identification process the Kalman filter 

gain I ï ( 0 )  of the state-space innovations model is explicitly parametrized in terms of 

B(k) which requires an indirect computation of A'(k) through the Kalman filter 

algori t hm. The identification part of the control strategy is computationally more 

efficient than the modified extended Kalman filter algorithm, since the state-space 

innovations model eliminates the computation of the Kalman gradient VsK(B)  with 

respect to 6 via the Kalman gain algorithm. Also, in this case the execution of the 

Kalrnan filter for the state estimation is not needed since the Kalman gain I<(6) is 

directly parametrized by 0 ( k )  which is considered as a Markov-Gauss process [32] : 



where n ( k )  and c(k)  are uncorrelated zero-mean Gaussian modeling and prediction 

errors, respect ively, wit h the covariance matrices & (k) and Re ( k )  . The control part 

of the adap tive st rat egy uses the per-interval performance index (Gd),  which is 

comput at ionally more efficient t han the dynamic programrning algorit hm, and 

which yields good tracking error and fast transient as shown later in Section 4.3.1. 

The control law u(k) that minimizes the per-interval performance index (4.54) 

subject to the constraints of the state-space mode1 (4.55)-(4.56) is given by 

and where the variables required in the algorithm may be determined by using the 

following recursive expressions: 

( i) Computation of the gain L(k)  

( ii) S tochastic minimum mriance adaptive identification 



(izi) Control law for the closed-loop system 

where 

and 

l<(B(k) )  = l i ( û ( k  - 1)) + ~ ( k ) e ( k .  ê). 

4.3.1 Simulation Results 

Our goal in this section is to design a real-time MIhlO stochastic adaptive control 

strategy capable of operating effectively to work well in a stochastic environment and 

yielding fast transient and good tracking error. For simulation purposes and to com- 

pare our results, we consider the model already used in the LQG control problem. 

This model was developed in Section 4.3.1 and is given by (3.22)-(3.23). The plant 

is paranietrized by B(k)  as a 20x1 vector of unknown parameters to be identified for 

the systern matrices A ( k ) ,  B ( k ) ,  C ( k )  and the Kalman gain matrix K ( ê )  as shown 

explicitly below: 



0 1 0 0  
, and I ( k ,  6) = 

0 0 0 1  

I 
The mat ris ~ ( 8 ,  z, u, E ) ~ ~ ~ ~  has the following elernents : 

where M ( i :  j )  = O for al1 other i's and j - s  different than the above values, u,, = 
1 

is the optimal control for the closed-loop system, and 

- 1 1 i î  the prediction error. 

For the proposed algorithm the covariance matrix and the weighting matrices Q 

and R of the performance index J ( k )  are assigned so as to increase the effect of the 

control or of the system output. The improved performance of the stochastic min- 

imum variance adaptive control aigorithm can be seen in Figures 4.24-4.27. These 

figures also show a fast adaptation speed and convergence. In the identification pro- 

cess, the highly oscillatory property of the adaptive control signal cont ri butes largely 

to exciting the system dynamics for yielding good identification. For a deterrninistic 
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Table 4-3: The closed-loop system performance of the Stochastic minimum variance 

k s / [ F ]  
kas 
[FI 

adaptive control strategy. 

control environment, perfect tracking at  steady-state can be obtained. The following 

&[SI 
100 
50 

parameters are selected for the controller in our simulation results: 

$(O) = 1 1, )(O) = 020x,, &(O) = 50.2 * U20x20 (rnatrir with dl the rlernents 

ti[s] 
5 
5 

L J 
equal to one), Q(0)z-,xz =0..581 + U20x2, P ( 0 )  = 0.81 * Goxzo (covariance matrix), 

Meanu  = O, 

Q = [':O ,Ooo ] (the output weighting rnatrix in the performance index JI.)): 

- 

%OS 
200[Volts] 

22 [%] 

01001 j 0 
(the input weighting matrix in the  performance index 

J ( k )  - 

The closed-loop system performance of t his control strategh namely the settling 

E 

129[Volts] 
0.05 [%] 

time (t,). rise time ( t i ) :  overshoot (%OS) ,  steady-state error (c)  and the convergence 

of the algorithm for Pi,, and [FI are presented in Table 1.3. 

Convergence 

good 
good 

The results of the simulations are presented in Figures 4.24-427 for the case with- 

out changes in the set point and in Figures 4.28-4.29 for the case with changes in 

the set points. These figures reveal good tracking performance in steady-state for 

I/&, and [FI and a smooth control effort for both the actuators throttle value and 

R F  power, as depicted in Figures 4.24-4.25. Also, the simulations reveal a strong 

dependence of the computation speed of the algorithm with the  number of samples 

and the poor estimation of the parameters in the first period of the transient with 
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Figure 4.24: The performance of the minimum variance adaptive controller on the 
throttle position of the closed-loop system. 

a degradation of the performance. but in the second period of the transient (after 2 

seconds) the algorithm works properly having enough informations about the system, 

and estimates well these parameters. The algorithm is not quite robust to the varia- 

tions in the tuning parameters, namely on the initial values of the covariance matrices 

PIO), &(O): and the weighting matrices Q and R. If the algorithm is not initialized 

properly its performance could be affected and get degraded. Unfortunately due to 

the nonlinear nature of the algorithm a forma1 procedure for tuning these parameters 

are not available, and consequently in practice one has to resort to some trial and 

error to determine the best tuning quantities. 

4.4 Summary 

In this chapter we have developed three real-time feedback control strategies to ma- 

nipulate fluorine concentration ( [ F I )  and induced dc voltage (V&)  across the reactor 

electrodes in an RIE system. The control strategies are based on PI self-tuning adap- 



Figure 4.25: The performance of the minimum variance adaptive controller on the 
R F  pozcer of the closed-loop system. 

set point 

Figure 4.26: The performance of the minimum variance adaptive controller on the dc 
Vbias of the closed-100p system. 



Figure 4.27: The performance of the minimum variance adaptive controller on the 
fluorine concentration [FI of the closed-loop system. 

Figure 4.28: The performance of the minimum variance adaptive controller on the dc 
I/bias for the closed-loop system with changes in the set points. 



Figure 4.29: The performance of the minimum variance adaptive controller on [FI for 
the closed-loop system with changes in the set points. 

tive controller, Linear Quadratic Gaussian ( LQG) scheme and minimum variance 

stochastic adaptive control. The controlled species were measured by quadrupole 

rnass spectrometry with direct effect on the outcome of the performance variables. 

This demonstrates the feasibility of our control strategies in the sense that an in- 

situ sensor-based cont roller is capable of reducing significant ly the variations of the 

process variables. The results obtained confirm the utility of our proposed strategies 

to control the etching process with drifts. Moreover, these algorithms can be used 

as a research tool for evaluating cornplicated gas kinetics. The controllers can drive 

the film properties, nameIy etch dep th, anisotrop y, seLectiuity and unqormity to de- 

sired regimes based on important gas species and dc in induced voltage in an optimal 

fashion- -41~0. the mass flow controller offset experiments [21], [37] demonstrate the 

utility of real-tirne sensing and control for disturbance rejection. 



Chapter 5 

Intelligent Cont rol Strategies 

In this chap ter we develop neuromodels used to cons truct intelligent controllers real- 

time neurocontrol strategies. Application of neural networks to control systems have 

becorne increasingly important. The massive parallel processing, nonlinear mapping, 

and self-learning abilities of neural networks have been the motivating factors for 

development of "intelligent7' control systems- Our objective in this thesis is to demon- 

strate t hat the  RIE neuromodels integrated in intelligent control architectures offer 

advantages in bot h accurac- and robustness over traditional statistical models. 

In [ls] a method to develop plasma etching neuromodels is presented which out- 

performs the predictions of statistical regression models from limited experimental 

data. In fact: in nearly every one of these studies, the authors found that building 

accurate plasma etching neuromodels generally requires fewer training experiments 

than classical statistical methods. Also, in [13] neural networks are used to mode1 

etch rate, etch anisotropy. spatial variations in etch rate (Le., etch uniformity), and 

etch selectivity. Our goal here is to built accurate and robust neurocontrollers, and 

to explore their potential benefits as measured by their ability to attenuate the ef- 

fects of exogenous perturbations on the etch characteristics. It is not clear a priori 



whether good control of Vak, and F will lead to stabilization and control of the etch 

characteristics. Etch rate data is collected in real-time using the interference of laser 

light reflected off of the laser surface. 

5.1 Inverse Dynamics Neuromodels for the Plasma 

* Generation Subsystem (PGS) 

In recent years, there has been a number of neuro-control learning schemes proposed 

in the literature. Among these, the inverse model neurocontrol approach, deveIoped 

by Widrow and Stearns and Psaltis et al. [33], [34] has been one of the most viable 

techniques for implementation of neural networks in control. One reason for its utility 

is its simplicity. Once the network has learned the inverse model of the plant, it is 

configured as a direct controller for the system. We chose to investigate the inverse 

dynamics cont rol technique because of its ease of implementation. The objective of a 

nonhear  dynamic inversion is to invert the dynâmic equations of the plant directly in 

order to find the control necessary to yield the given output. In this t hesis we perform 

this operation using neuromodels capable of learning the highly nonlinear inverse 

dynamics of the plasma process. We describe several architectures for the  inverse 

dynamics of the RIE process. To learn the inverse dynamics of the plant, we train 

the neurocontrollers off-line. By applying the desired range of inputs to the plant, its 

corresponding outputs can be obtained and a set of training patterns can be selected. 

Once trained, the networks could be used to produce the appropriate contrql input 

as a function of the desired plant output. The perfor~znce of the neural networks 

based on these input vectors are observed by configuring it directly to control the 

plasma et ching process. Based on these observations, the neural network structures 

that give the best performances are then used in the neurocontrol structures of the 



PGS system. 

5.2 Neurocontroller Structures 

In this section four nonlinear neurocontroller structures (inverse dynarnics neuromod- 

els) for the PGS system are developed, namely 

(i) nonfinear static neurocontroller 

(ii) nonlinear first-order neurocontroller 

(iii) nonlinear second-order neurocontroller 

(iv) nonlinear first-order controller with delayed control 

To learn the inverse dynamics model of the PGS system, we use the same neural 

network architectures that were developed in Chapter 3, Section 3- Each inverse neu- 

romodel is then configured as a direct controller for the PGS system. The results of 

the simulations presented in the next section demonstrate that the neurocontrollers 

perform very well and offer encouraging advantages as compared to the other con- 

vent ional met hods. 

The structures proposed in this section are described in more details below: 

(i) Nonlinear static neurocontroller (2-8-2): This architecture is equivalent to the 

neural network model developed in Section 3.3, and is repeated here for conve- 

nience: 

(ii) Nonlinear first-order neurocontroller ( M M )  : This architecture is equivalent to 

the first order nonlinear model introduced in Section 3.3, and is repeated here 

as follows: 

~ ( k )  = g ( ~ ( k ) ,  Y@ - 1)) (5 .2 )  



(iii) Nonlinear second-order neurocontroller (6-8-2): This axchitecture is equivdent 

to the second-order nonlinear model given in Section 3.3, and is repeated here as 

foIlows: 

~ ( - 1  = ~ Y ( ~ ) T  - ' 1 ,  - 2)) (5*3) 

( i v  ) Nonlinear first-order nevrocontroller with dela yed control(6-8-2): Th- 1s architec- 

ture is equivalent to the first-order nonlinear model introduced in Section 3.3, 

and is repeated here for convenience: 

5.2.1 Simulation Results 

Our objective in t his section is to design several neurostruct ures capable of learning 

and generalizing accurately the inverse dynamics of the PGS, and representing ef- 

fectively the experimental input-out put data. The above neurostructures are trained 

off-line using backpropagat ion error algorit hm wi t h adapt ive learning rate and mo- 

mentum [2]. The simulation results for off-line training are presented in Figures 

1 -  Before training the networks weights and biases are initialized with Nguyen- 

Widrow initial conditions (srnall random values) [24]. The training parameters are 

initialized to the following values: error goal = 0.01, learning rate = 0.02, and mo- 

mentum = 0.95. The number of the epochs to reach the error goal varied depending 

on the initial conditions of the weights and biases and the number of hidden neurons. 

By trial and error we determined that 8 hidden neurons are sufficient to  design an 

appropriate neurostructure. 

In the Table 5.1 we synthesize the performance of t hese neurocontrol models rep- 

resented by the  standard deviation errors between the models and the experimental 



Neurocont rol 

S tatic representation 

Table 5.1: Performance comparison for the neuromodels. 

1 First-order with delayed input I 
1 

data set ( e ) .  The maximum magnitude of these standxd deviation errors is 2.5 [%] 

for the throttle position and 15 [Watts] for the R F  power. The nonlinear static neuro- 

Throttle Position e [%j 
2.3894 

2.3814 

controller in testing phase fits the experimental data set, as shown in Figures 5.1-5.2, 

with standard deviation errors of e = 12.1474 [Watts] for the RF power actuator and 

e = 2.3594 [%] for the throttle position actuator. The nonlinear first-order neuro- 

RF power e [Watts] 
12.1474 

11.9207 

controller in testing phase fits the experimental data set, as shown in Figures 5.3-5.4, 

with standard deviation errors of e = 2.3879 [%] for the throttl e position actuator and 

e = 12.137 [watts] for the R F  power. The nonlineâr second-order neurocontroller in 

the testing phase fits the es~erirnental data set; as shown in Figures 5.5-5.6, with the 

smallest standard deviation errors of e = 2.3785 [XI for the throf t l e  position actuator 

and e = 11.9156 [Watts] for the RF power actuator. The nonlinear first-order neu- 

rocontroller wit.h delayed input fits the experimental data set: as shown in Figures 

5.7-5.S, with the standard deviation errors very close to the third structure. The 

above neurocontrollers will be used for the closed-loop real-time strategies developed 

in the next section. 

5.3 Real-Time Neurocontrol Strategies 

After training the neuromodels to learn accurately the inverse dynamics of the pro- 

cess in al1 the four architectures, each neural network controller is now configured as 

a direct controller for the PGS system as shown in Figures 5.9-5.12. Although the 
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Figure 5.1: Generalization results for the nonlinear static neurocontroller for the 
throttle position. 
Legend: ( a )  neuromodel out put; (b)  ex~erimenta.1 data set; (c) representation error 
performance. 
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Figure 5.2: Generalization results for the nonlinear static neurocontroller for the 
R F  power. 
Legend: ( a )  neuromodel output: (b) experimental data set; (c) representation error 
performance. 
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Figure 5.3: Generalization results for the nonlinear first-order neurocontroller for the 
t hrottle position. 
Legend: (a) neurornodel output: (b)  experimental data set ; (c) re~resentation error 
performance. 
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Figure 5.4: Generalization results for the nonlinear first-order neurocontroIler for the 
R F  power. 
Legend: (a) neurornodel output; (b )  experimental data set; (c) representation error 
performance. 
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Figure 5.5: Generalization results for the nonlinear second-order neurocontroller for 
the throttle position. 
Legend: (a)  neuromodel output: (b)  experirnental data set; (c) representation error 
performance. 
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Figure 5.6: Generalizat ion results for the nonlinear second-order neurocont roller for 
the R F  power. 
Legend: (a) neuromodel out put; (b ) experimental data set; ( c )  representat ion error 
performance. 
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Figure 5.7: Generalization results for the nonlinear first-order neurocontroller wi t h 
delayed control for the throttle position. 
Legend: (a) neuromodel output; (b) erperimental data set; ( c )  representation error 
performance. 
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Figure 5.8: Generalization results for the nonlinear first-order neurocontroiler wi t h 
delayed control for the R F  power. 
Legend: (a) neuromodel output; (b j  experimental data set; (c) representation error 
performance. 



inverse neuromodel control scheme is similar in architecture to a conventional feed- 

back control scheme, the neurocontroller property is similar to that of a traditional 

self-tuning adaptive controller. In the direct self-tuning control scheme, an a priori 

knowledge of the plant's mathematical model is required and the plant's parameters 

need to be estimated through an estimation scheme, such as the popular least-squares 

parameter estimation algorithm [22], [35]. From the estimates of the plant's param- 

eters, the controller is then able to generate the correct control input through an 

inverse mathematical model of the plant. The inverse mode1 neurocontrol approach 

is more robust and simpler in this respect since it is not necessary to derive the math- 

ematical model of the plant for implementation. The ability of neural network models 

to Iearn and generaiize based on the input-output behaviour of a process has a great 

advantage where many control problems can now be treated with less precision and 

advanced knowledge of the plant. The use of the nonlinear sigrnoidal functions in 

the hidden Iayers of the neural networks has also made it possible to consider highly 

nonlinear control systems where many traditional adaptive and conventional control 

techniques may be insufficient. Moreover, it is applicable to cornplex and ill-defined 

plants when mathematical modeling is difficult. Another advantage of using neural 

networks is that it can also be trained on-line to further improve its performance. 

In the basic inverse mode1 approach, the neurocontroller can be trained on-line by 

minirnizing the system's performance error. A more suitable approach for training 

the neurocontroller on-line is to adapt the architecture of an indirect adaptive control 

scheme where the identification model is replaced by a neural network similar to one 

of the architectures presented in the previous section. 

In order for the proposed neurocontrollers to operate as controllers, the input 

vector y(k) is replaced by the desired plant output (Le., the set point, y, (k))  and the 

remaining input signals remain unchanged (as feedback signals of the delayed outputs 



Figure 5.9: The first neurocontrol strategy- 

Figure 5.10: The second neurocont roi st rategy 

from the neuromodels) as shown in the  Figures 5.9-5.12. 

With respect to the above configuration the following four neurocontrol strategies 

are proposed: 

( 2 )  Nonlinear neurocontroller and neuromodel of the plant in static representation 

as depicted in Figure 5.9. 

(ii) Nonlinear first-order neurocontroller and the first-order neurornodel of the 

plant as depicted in Figure 5.10. 

(iii) Nonlinear second-order neurocontroller and the second-order neuromodel of 

the plant as depicted in Figure 5.11. 

( iv ) Nonlinear first-order neurocontroller and the first-order neuromodel of the 

plant with delayed control as depicted in Figure 5-12. 
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Figure 5.1 1: The third neurocontrol strategy. 

Figure 5.12: The fourth neurocontrol strategy. 



The simulation results performed for the above architectures are discussed in the 

next section. 

Each of the above neurocontrollers are trained to learn the inverse dynamics of 

each channel of the PGS process by using the respective channel's output data to- 

gether with some corresponding delayed output values as the input patterns and 

the corresponding channel's input data as target patterns. The PGS neural network 

models are trained to learn the feedforward dynamics of each chamel by using the 

input data together with some delayed output data as the input patterns and the 

corresponding output data as the target patterns. For training a neural network to 

learn the inverse or the feedforward dynamic mode1 of the plant off-line training based 

on Levenberg-Marquardt backpropagation error algorithm [24] is used as described 

before. Since the neural networks are highly nonlinear, it is difficult to determine 

analytically which mode1 has completely learned the true plant inverse and feedfor- 

ward dynamics. A simple and a reliable method to establish the performance of these 

networks is to test each of these neuromodels on-line as configured in our proposed 

neurostructures shown in Figures 5.9-5.12 

5.3.1 Simulation Results 

Our goal in this section is to design severat real-time i l l IM0 intelligent control strate- 

gies and to select amongst thern the most suitable one which ensures among others 

the stability of the PGS system in closed-loop, good tracking error, robustness to 

changes in the set points and operate effectively in a large operating range. 

The closed-loop system performance of these neurocontrol strategies, narnely the 

settling time (t ,) ,  rise time ( t ; ) ,  overshoot (%OS), steady-state error (c) and the 

convergence of the algorithm for and [FI are presented in Table 5.2. The simu- 

lations results are presented in this section. In these simulations, as shown in Figures 
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1 Neurostructure 1 t,lsll 1 t;[sl 1 %os E 1 Conv- 1 
1 , 'L'L , - L a  , I I - 

l 

1 First structure 1 1/- 1 0.5/-  1 22 [Volts]/- 1 22 [Volts]/- 1 bad f 

Table 5.2: The closed-loop system performance of the neurocontrol strategies. 

Second structure 
Third structure 
Fourth structure 

5.13-5.13, the set points are taken as: y,,= 355 [Volts] and y,, = 1.4 [%]. During the 

simulations with the nonlinear mode1 of the PGS plant, changes in the set points are 

taken into consideration and so we are able to choose the neurocontroller that gives 

the best performance for these changes. The changes in the set points for the third 

neurocont roller occur at the same time as in the open-loop simulations as depicted 

in Figures 5.17-5-18. The first case (Figures 5.13-5.14) results in the largest errors 

and the convergence is relatively poor during training. The evolution of the actuators 

throttle zalue position and RF po-wer for this case (Figures 5.15-5.16) is very smooth 

2/0.5 
2/1 

2.5/ 2 

and without significant variations around the operating point. This implies that the 

control effort to maintain the key plasma parameters Vbias and puonne concentration 

[FI at their set point values remain well behaved. By only one input vector u(lc), it 

is clear that the neurocontroller is unable to perforrn satisfactorily as a controller, as 

it has only the desired plant output to deal with. The third case (Figures 5.17-5-18) 

produces the best performance with the minimum absolute error. Also, the evolution 

of the actuotors t hrottle value position and RF power are very smooth with small 

changes around the operating point. Since two of the three input vectors are a de- 

layed plant output, the neurocontroller can act very quickly to changes in the plant 

output, thus yielding rapid and accurate performance. For the second and fourth 

cases (Figures 5.13-5.14) the neurocontrollers results show some output overshoots. 

thus the controllers are not able to provide accurate tracking of the set points. With 

additional delayed plant outputs used as input vectors, a smoothing effect is achieved 

-/: 
1.5/- 
2/1 

* 

-1- 
7 [Volts]/- 
4 /Volts]/- 

10 [~blts]/5'  [%] 
1.36 [Volts]/O.O15 [%] 
1.36 [Volts1/0.025 [%l 

good 
very good 
very good 



Figure 5.13: The evolution of the dc hias for the closed-loop system. 

at the output of the neurocontroller, however a delay is also introduced in reacting 

to the plant behaviour. This could be due to the fact that the PGS plant is dom- 

inated as a second-order plant, and so the modeling errors generate a mismatch in 

its input vectors to follow the actual dynamics of the plant, which could lead to an 

imperfect inverse model learning. For the first case, the error converges during the 

training to a relatively smaller d u e  compared to the other cases, however, its recall 

performance is very poor as the true inverse model cannot be obtained by using the 

particular input. The reason the fourth case converges quickly during the training 

stage is that the outputs of the neurocontroller follow the target values rapidly but it 

h a ,  however, not generalized properly over the entire input range. The third neuro- 

controller structure seems to be the most suitable one for controlling the PGS system 

in closed-loop. 
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Figure 5.14: The ewlution of the fluorine concentration [FI for the closed-loop system 
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Figure 5.1.5: The evolution of the throttle position for the closed-loop system. 
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Figure 5.16: The evolution of the R F  power for the closed-loop system. 
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Figure 5.17: The performance comparison results for the hias for the open-loop and 
closed-loop systern wit h the neurocontroller. 



Figure 5.18: The performance comparison results for [FI for the open-loop and closed- 
loop system with the neurocontroller. 

In this chapter, we have developed four nonlinear neuromodels for the  PGS process as 

well as four neurocontroIIers to control the plasma etching process. These neural net- 

works are used to construct four real-time neurocontro1 strategies that are capable of 

ensuring the stability of the RIE system in closed-loop and to perform a good tracking 

performance such as 1.36 [Volts] and 0.015 [%] steady-state error for G i s  and [Pl, 

respectively. Following our validation results obtained by cornputing the standard 

deviation errors between the  mode1 output and measured output, we can conclude 

that the neuromodels (iii) and (iu) are accurate and can fit the experimental input- 

output data set quite satisfactorily. Our results for identification of the nonlinear 

inverse dynamics of the process through neurocontrollers indicate that they are able 

to be valid in a large operating range and are capable of capturing the nonlinearities 

of the actuators and of the plant as compared to linear models which are valid in 

only a small operating region. Among the important contributions of this chapter are 



the development of neural network architectures used for obtaining a good fit with 

the experimental input-output data set. The learning algorithm used for deterrnining 

the neural network parameters (weights) is the dynamic/static backpropagation with 

off-line Levenberg-Marquardt algori thm. From the simulation results we observe that 

the third neurocontrol structure yields the best performances in both learning and 

generalization and is capable of reaching the steady-state error goal (1.36 [Volts] for 

I/bias and 0.015 [%] for [FI) relatively faster than the other cases (10 samples). The 

real-t ime feedback neurocont rollers manipulate important gas species (fluorine con- 

centration [FI and induced dc Voltage [fii, ,]) across the reactor electrodes in the RIE 

system. The cont rolled species were measured by quadrupole mass spectrometry with 

direct efEect on the outcome of the performance variables. This reveals the feasibility 

of our neurocont roller design, namely an in-sit u sensor-based cont roller is capable 

of reducing the process variations. The simulation results provide good performance 

wit h the minimum absolute error and reveal that the third real-time neurocontroller 

strategy seems to be the most suitable to control the PGS in closed-loop. Since two 

of the t h e  input vectors are deIayed plant output, the neurocontroller can act very 

quickly to changes in the plant output, thus yielding precise and accurate response 

with good tracking performance. The neurocontrol strategies developed in this chap- 

ter can be used as a tooI for evaluating complicated gas kinetics. 



Chapter 6 

Multi-Input Multi-Output Robust 

Control 

The real problem in robust multivariable feedback control system design is to syn- 

thesize a control law which maintains system response and error signals to within 

prespecified tolerances despite the effects of uncertainty in the system. Uncertainty 

is a major issue in most control system design and may take many forms, but among 

the most important ones one could mention noise/disturbance signals, transfer func- 

tion modelIing errors, and unmodeled nonlinearities. This motivates one to seek a 

quantitative measure for the size of the uncertainty, using different tools like H2 and 

H m  norms. The multivariable nature of a problem introduces another aspect that 

can be accounted for through the use of singular value gain measure. The singular 

values of the transfer rnatrix G(z) of the PGS given by (3.21), and denoted by oi(ju), 

are functions of frequency w (sometimes referred to as the principal gains of G(z)), 

where the compler variable r is given by z = exp(jwT,), and T, being the sampling 

period for the plasma RIE process. In MIMO feedback control system design several 

performances and robust stability requirements can be expressed in terrns of specifi- 



cations on the maximum singular values of a particular closed-loop transfer matrix. 

In fact, the gain of a multivariable system (measured in terms of the induced matrix 

norm) is between the  smallest and largest principal gains, o,,(ju) and o,.,(jw) (361. 

Most of the  conditions required on the singular values of a system are similar to those 

needed on the gain of a scalar system. For example, for a negative feedback system 

with plant G ( z )  and controlier F ( r ) ,  for "good" performance o,,,((l + GF)-') and 

cmaZ((l + GF)-lG) should be srnall, particularly at low frequencies [36]. Similarly 

for good robust stability properties o,. ,(F(I + GF)- l )  and o,,,(GF(I + GF)-')  

should be small, normally in the high-frequency range, where uncertainty is higher. 

The loop-shaping design rules are similar to  tbose for a SISO system but take into 

account the mapping from matrix to scalar quantities through the singular values. 

For a SISO system, when the loop gain is greater than unity, the  sensitivity function: 

tends to zero and the  closed-loop transfer function tends to unity. For MIMO control 

systems the tracking error signal e, the control u and the plant output y are weighted 

by transfer rnatrix specifications w(z), W2(2),  and U.j(z), which play an impor- 

tant role in ensuring the  desired disturbance attenuation, and the desired stability 

margins for the multivâriable feedback design subject to additive and multiplicative 

plant perturbations [36] .  In order to quantify the multivariable stability margins and 

performance of the  system, the singular values of the following sensit ivity matrices 

are utilized: 



The two matrices S(Z)  and T ( r )  are known as the sensitivity and complementary 

sensitivity functions, respectively, and the matrix R ( z )  as control sensitivity 

function. The singular value Bode plots of each of these transfer matrices play an 

important role in multivariable robust control design. The singular values of the 

matrix S(z) detemines disturbance attenuation, since S(z )  is in fact the closed-loop 

transfer matrix from the additive disturbance to the plant output y. In [36], it is 

shown that a disturbance attenuation performance specification may be expressed as 

where 1 WC' (ezp(jw~,)) 1 is the desired disturbance attenuation factor: and T, is the 

sampling period. -4llowing bfi(exp(js;T,)) to depend on frequency u: enables one to 

specify a different attenuation factor for a given frequency S. 

Furt hermore, we can specify the stability margins of the system by the singular 

vaIue inequali ties 

nhere 1 l.t;(exp( juT,)) 1 and 1 W'(e+p(jwT,)) [ are the respective sizes of the largest 

anticipated additive and multiplicative plant perturbations. It is a common practice 

to lump the effects of al1 the plant uncertainties into a single fictitious multiplicative 

perturbation, so that the overall control design requirements may be alternat iveiy 

expressed by the following singular value inequalities 

i 
~,(S(ezp(jwT~))) 3 ~W&xp(jwT.))~ 



To choose the design specifications represented by the weighting functions Wi ( z  ) 

(performance specifications such as disturbance attenuation) and W3(2) (robustness 

specifications such as roll-off frequency, stability margin), the O db crossover frequency 

in the Bode plot of Wl(exp(jwT,))  must be sufficiently below the O db crossover 

frequency of WC' (exp(jwT,) ). More precisely, we require 

The recently developed H", frequency-weighted LQG, LQG loop transfer recovery 

(LQG jLTR). and p-synthesis theories have made multivariable loop shaping a stan- 

dard technique. The  H" theory provides a direct, reliable procedure for synthesiz- 

ing a controller that  optimally satisfies singular-value loop shaping specifications. 

The frequency-weighted LQG optimal synthesis theory known as H Z  theory and 

LQG; L'TR lead to somewhat less direct. but nonet heless highly effective iterative 

procedures for rnanipulating the singular value Bode plots to satisfy singular value 

loop shaping specifications. 

6.1 Robust Controller Architecture and State-Space 

Representation 

The structure of the robust control system for the PGS in closed-loop is represented 

in Figure 6.1. In this structure we use a compensator after the controller in order 

to  decrease the amplitude of the oscillations during the transient phase for which we 
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Figure 6.1: Robust controller architecture for the PGS process. 

select the transfer function of t h e  form: 

The proportional feedback block used to control independently each output has 

coefficients given by the matrix: 

The HZ and Hm synthesis methods are especially powerful tools for designing 

robust multivariable feedback control systems to achieve singular-value shaping spec- 

ifications. 

By defining: 



yC(k) = 1 yLc(k) y2c(k) ] , as the reference input vector, output vector, weighted 

output vector, error vector, controller output vector and plant input vector, 

respectively, and letting T'pL-p(r) denote the transfer matrix from Us, to Y,,, the 

H2 and H m  discrete norms (corresponding to Figure 6.1) are defined as follows: 

H 2  norm: 

HCC norm: 

The PGS plant G(r) = CG(zl  - . . ~ c ) - ' B ~  + DG is "augrnented" with vveighting 

transfer matrices N,rl(z) = Cw,(z~-.-lw,)-L+Dwk~ W&) = Cw2(d-=1Urr) -L+Dw27 and 

M.;(r) = C, (-1 - -A,,)-' + Dw3 + Pnrn + ..- + P1z + Po (possibly improper) penalizing 

the error signal. control signal and output signal, respectively (as in the block diagram 

shorvn in Figure 6.2) such that the augmented system can be represented in the 

following state-space representation form: 



aith the closed-Ioop transfer matrix P ( z )  = 

order of the PGS plant and of the weighting transfer matrices, res~ectively) [36]. 

Now; if we denote by 

the mat rices -4. Bi. B2: Cl, CZ, Dl2, &, D22 can be expressed by the following 

expressions 1361: 

The closed-loop transfer matrix TyspL~sp~ known as weighted rnixed sensitivity, is given 
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Figure 6.2: The  simplified block scheme of the augmented plant. 

and which has a significant role in designing for a robust control for the closed-loop 

6.2 Optimal Robust Control Problems 

With respect to  the definitions (6.1 1)-(6.1%) and the state-space realization of the 

augmented plant (6.13)-(6.15) we are now in a position to formulate the HZ and Hm 

optimal design problems as foilow: 

Given a state-space realization of the "augmented" PGS plant P ( z ) .  End a stabi- 

lizing feedback control Iaw: 



subject to additive and multiplicative plant perturbations such that the HZ or Hm 

discrete norms of the closed-loop transfer rnatrix 

are sufficient ly "small" (less than or equal to one). i .es, 

H2 optimal control: 

Hwopt imal controI: 

standard H" control ( Smali-Gain pr0ble.m): 

To solve the above problems, we use the design procedure presented in [36j and 

the weighting functions W, ( z ) ,  Wz(r) ,  W3(z) (design ~~eci f ica t ions)  to augment the 

plant G(r). The H2 - norm optimal control prublem is equivalent to a conventional 

Linear Quadratic Gaussian optimal control problem using the following steps: 



(i) Linear Quadratic Estimator Design (LQE) (Kdman filter design) 

This procedure computes the estimate of the  augmented PGS state, ?($), using a 

steady-state ICalman filter [36] with the dynamic state equation 

where I i ,  is the Kalman gain matrix and is given by 

where S is the unique positive definite solution of the above algebraic Riccati 
T T 

equation. and c l @ )  = [ u l ( k )  u2(b)  ] , vz(k)  = [ ul.(k)  u&) ] . The Kalman 

filter generates a state estimate that minirnizes the variance of the estimation error 

where R ,  and Qu, are the covariance matrices with correlated white plant noise w ( k )  

and white measurement noise v ( k ) :  respectively, having a cross-correlation matrix 

(ii) Linear Quadratic Regulator Design (LQR) (hiil-state feedback design) 

This procedure computes a feedback gain matrix Ii such that when 

is applied to the augmented full-order system (6.13), the resulting closed-loop system 

is stable, i.e., all the poles of the closed-loop system are ioside the unit circle. This 



control is selected to minimize the following quadratic function: 

The feedback gain matrix 1< [36] is then given by: 

where P is the unique positive definite solution to the discrete time matrix algebraic 

Riccati equat ion: 

A'P+ P A -  PB~R-'B:P+& = O  (6.28) 

The H2 optimal controller has a transfer matrix of the following form: 

The disturbance attenuation specifications and the stability margin specifications 

given by the inequalities (??)-(6.8): may be erpressed into a single infinity norm 

specificat ion of the form 

where 

This funct ion is known as the mixed-sensitivity cost mat rix since it penalizes 

bot,h the sensitivity matrix S and complernentary sensitivity matrix T .  The mixed- 

sensitivity approach for the robust control design is a direct and an effective way of 



achieving multivariable loop shaping. 

To find a stnbilizing controller F ( z )  such that I I T ~ ~ ~ ~ ~ I ~  5 1, we will f is t  start 
00 

with H2 synthesis and then apply Hm techniques to determine the actual design 

limitations. The Tu,,us, singular value Bode plot associated with each design will 

indicate how close the design is to the specifications. For the design problem, in the 

structure of the weighting matrices (Wi, in general), one parameter appears explicitly, 

denoted by 7. with respect to which one has to iterate several times until a suitable 

design is obtained. In this case. the standard Hwcontrol problem is referred to as 

the HmSmall-Gain problem. Both HWand H2 synthesis are often used together. with 

H2 synthesis being used as a first try to get a sense for what level of performance 

is achievable. Then. an Hm performance criterion is selected and the H" synthesis 

theory is used to do the final design work [36]. If one imposes overly demanding 

design requirernents then the minimal achievable Hw norm may be greater than one7 

in which case there is no solution to the standard Hw control problem (that is to find 

a controller for which I I T ~ ; ~ ~ ~ ~ I I  5 1)- In [36] ,  four conditions for the existence of a 
œ 

solution to the standard HZ control problem are provided? namely 

(i) Dl1 is sufficiently small. Le.' there must erist a constant feedback control law 

F(r) such that the closed-loop D matrix satisfies o,,,(D) < 1 

(ii) Riccati control matrix P given by (6.28) is positive semidefinite 

(iii) Ricatti observer matrix S given by (6.24) is positive semidefinite 

The optimal value for the parameter y' denoted bp x,,, is given by solving the 

Small-Gain HO" problem. To determine and observe the effects of the compensator, 



the feedback block and the weighting functions, the followirig scenarios to the control 

structure given in Figure 6.1 are now investigated, specifically 

(i) without the compensator 

(ii) with the cornpensator 

(iii) with the compensator and weighted control 

(iv ) with the compensator and weighted error, control and output. 

6.3 Robust Control Structures 

Case 1: The Robust Control Structure without Compensator 

For this case the parameters k1 and k2 in (6.10) are tuned by trial and error to get 

the smallest possible steady-state tracking errors, resulting in k, = 0.001. k-2 = 0.005. 

M.; = 7 * 1 2 :  and = 12. Using the Matlab subroutine for Hm7 the optimal value 

for 7 is obtained as 70pi= 1.414. The results of the H E  synthesis are presented in 

Figures 6.3-6.6 without changes in the set points and in Figures 6-7-6.8 for changes 

in the set points. From these simulations. we can observe that very good results are 

obtained in stabilizing the system after a brief settling time. but at the cost of a high 

transitory oscillations. The controller structure is very robust to changes in the set 

points, and the system is stabilized with very small tracking errors. 

Case 2: Robust Control Structure with Compensator 

This structure is used to reduce the amplitude of the transient oscillations based 

on the integral effect of the compensator structure. The values for the parameters 

are determined by tria1 and error using the Matlab subroutine for Hm technique to 

get the smallest possible steady-state tracking errors for the PGS in closed-loop as 

follows: 



k1 = 0.3, k2 = 0.07, a1 = 0.102, a2 = -0.2, b1 = 0.3, and b2 = -0.51 (see 

equation(6.9)), and 
r 

for the case with changes in the set points and k1 = 0.001, k2 = 0.005, al = -0.302, 

a2 = -0.33, bl = 0.3, and b2 = -0.51, and 

for the case without changes in the set points. The weighting functions have the 

same structure as in the first case. Using the Matlab subroutine for H" technique 

we get ,,,= 1.414' which is the same as in the first case since the weighting 

functions are not changed. The simulation results are presented in Figures 6.3-6.6 

for the case tvith no changes in the set points and in Figures 6.7-6.8 for the case 

with changes in the set points. From these simulations one may observe that the 

amplitude of the oscillations are reduced considerably when compared to the 

previous case. 

Case 3: Robust Control Structure with Compensator and Weighted Con- 

trol 

The weighted control case attempts to optimize the control effort as much as possible 

to perforrn good tracking error with small oscillations. In this case the control is 

weighted by the weighting transfer rnatrix W2(2) which is chosen to ensure that the 

D12 matrix of P ( z )  is full rank as a necessary condition for having a solution to the 

HW control problem. This is achieved by tuning the parameters using the Matlab 

subroutine for Hostechnique with the following values: 



k1 = 0.12? k2 = 0.0017 a l  = -0.302: a2 = -0.33, bl = 0-3, b2 = -0.51 and 

It is our conclusion that this scenario is perhaps the best control structure for 

yielding small tracking errors, fast response and high robustness to the changes in the 

set points. The simulation results are presented in Figures 6.3-6.6 with -jOpt= 1.375. 

Case 4: Robust Control Structure with the Compensator and Weighted 

Error, Control and Output 

In this case al! the possible outputs of the PGS system, namely error, control and 

plant out put are weighted by the appropriate weighting t ransfer mat rices H'; ( z ) ,  

I.l.,>(t), and FVi(z). By example: now we seek for the following singular value design 

specificat ions: 

(i) Robustness Specifications (stability rnargin) expressed by \4;;(z): chosen with 

respect to the requirements imposed by the application, and here in our case, assumed 

to perform, e.g., -4Odb/decade roll-off and at least -20db at 100 rad/sec. 

(ii) Performance Specifications (disturbance attenuation) expressed by Wl (2) so 

as to minirnize the sensitivity function. Note that we have 



where these weighting matrices are selected to meet the design specifications for the 

sensitivity function S and the complementary sensitivity function T=(I - S) 

(disturbance at  tenuat ion, s tabili ty margin) as well as the four existence conditions 

for a feedback control law as required in the standard Hmcontrol problem (see 

Section 4.2). The weighting matrix I%(r) is chosen to assure that the DI2  matrix of 

P ( z )  is full rank to solve the H'" control problem. The parameter y is initially set 

to  1 and later decreased until y,,,= 0.0099487 is reached by the y-synthesis 

algorithm. The values of the tuned parameters for this structure are given by: 

The closed-loop system performance of t hese robust control strategies, namely 

the settling time (t,),  rise time ( t ;) ,  overshoot (%OS)' steady-state error (e) and the 

convergence of the algorit hm for Gia. and [FI are presented in Table 6.1. 

The results of the simulations are presented in Figures 6.3-6.8. In Figure 6.7 the 

Vbias doesn't reach the steady-state after 5200 samples, however this state will 

eventually reach a steady-state after a long time, and so for this scenarios the 
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Table 6.1: The closed-loop performance system of the control robust strategies. 

performance is not as good as desired. These results illustrate the robustness of this 

control strategy as the set points are varied. This algorithm is arnong the most 

ti[s] 
O.?/- 
0.51- 
0.41- 
-/- 

Structure 
First 

Second 
Third 
Fourth 

effective control strategies for the highly nonlinear PGS control system. 

Conv- 
good 

very good 
very good 

bad 

t,[s][ 
315 
3/5 

3 / 4 5  
0.5/ 5 

%OS 
850 [Volts]/55 [%] 
550 [Volts]/55 [%] 
250 [Volts]/55 [%] 

- /55% 

6.4 Summary 

c 

0.35 [Volts]~0.001 [%] 
0.36 [VoIts],/0.001 [%] 
0.34 [Volts]/0.0009 [%] 
300 [Volts]/0.0009 [%] 

In this chapter we have developed a M I M 0  real-time robust control strategy using 

standard H" control techniques. The contri butions of the compensator, the feedback 

block and the weighting matrices in the control structure depicted in Figure 6.1 are 

invest igated, namely the closed-loop system 

(i) without compensator 

(ii) with compensator 

(iii) with compensa for  and weight ed control, and 

(iv) with compensator and weighted error, control and output. 

For each of the above cases we study the behaviour of the robust controller to  

changes in the set points. The results of the simulations indicate that the third struc- 

ture yields the highest performance in terms of the tracking error in the steady-state, 

fast response and high robustness to changes in the set points in the presence of dis- 

turbances and parameter variations in the PGS system. This algorithm is among the 

most effective coootrol strategies considered in t his chapter and t hesis for controlling 

a highly nonlinear PGS system. 



Figure 6.3: The performance of the robust controller on the throttle position for the 
closed-loo p sys t em. 
Legend: The star designates the first case, the dot designates the second case: the "x" 
designates the third case, and the solid line designates the fourth case. 



Figure 6.4: The performance of the robust controller on the R F  pouyer for the closed- 
loop system. 
Legend: The star designates the first case, the dot designates the second case, the  'k7' 
designates the third case, and the solid line designates the fourth case. 



Figure 6.5: The performance of the  robust controller on the for the closed-loop 
system. 
Legend: The star designates the first case, the dot designates the second case, the 'Y 
designates the third case; and the solid line designates the fourth case. 



Figure 6.6: The performance of t h e  robust controller on the jluon'ne concentration 
[FI for the closed-loop system. 
Legend: The star designates the first case, the dot designates the second case? the 'k" 
designates the third case, and the solid line designates the fourth case. 



Figure 6.7: The performance of the robust controller on the I*gias for the closed-loop 
system-with changes in the  set points. 
Legend: The star designates the first case; the dot designates the second case, the 'k" 
designates the third case, and the solid line designates the fourth case. 
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Figure 6.8: The performance of the robust controller on the fluorine concentration 
[FI for the  closed-loop system with changes in the set points. 
Legend: The star designates the first case, the dot designates the second case, the 'k" 
designates the t hird case, and the solid line designates the fourt h case. 



Chapter 7 

Performance Comparison of the 

Proposed Real-Time Control 

S t rat egies 

7.1 Wafer Performance 

The real-tirne robust control strategies develo~ed in this thesis use the process vari- 

ables Gia, and [FI with the attention being focused on modelling, control and analysis 

of the PGS system. In these control strategies the real-time controller maintains the 

desired Pi;,, and [FI set points for the duration of an etch cycle. However, in order 

to have a criterion for cornparing the performance of different control strategies, we 

have to translate the results obtained so far for the PGS system into performance of 

the wafer subsystem, namely etch rate or etch depth. The main objective here is to 

keep the  etch depth at a desired target value in the face of variations in the process 

dist urbances, namely C F4 flow-rate dist urbances, loading dist urbances, and oxygen 

disturbances. In [21] the simplified Mogab-Flamm wafer mode1 was used which as- 



sumes that the etch rate is directly proportional to the fionne concentration [FI, and 

the coefficient of the proportionality depends only on the operating point. Therefore, 

to study the etch rate performance of the wafer, or equivalently the etch depth, we 

can consider the perf'ormance of the PGS system in terms of [FI. To choose the "best7' 

real-time control strategy we can select the controller that yields the best tracking 

error with respect to the fluorine concentration [FI set points. 

7.1.1 Experiments Results 

The effect of the disturbances in [?II is studied at two operating points: operating 

point A (op A) a t  1000 Wo 20 m'Torr, and 30 sccm, and operating point B (op B) at 

1000 MT, 30 mTorr, and 30 sccm. Operating point A. because of its lower pressure, 

uses much more ion bornbardment for etching than operating point B. The ions collide 

less with other particles in the sheath and, therefore, are able to develop more kinetic 

energy. For each operating point. the ioad was varied from 1 to 5 wafers. The etch 

rate was measured on unpatterned wafers of 600 nm polysilicon on 32 nm silicon 

dioxide on silicon. This stack of materials provides a nice reflection from the incident 

reflect omet ry light sources, t hereby enabhg  the acquisition of good reflectomet ry 

data [21]. Bare silicon wafers were used for additional loading. The etch rate for 

polysiLcon is about the same as that for silicon. The change in etch depth as rneasured 

by the white light reflectometry data was used to calculate an average etch rate. The 

impact of the water vapour disturbance is also studied in [21]. The magnitude of the 

water vapour disturbance depend upon the humiditp in the clean room, the polymer 

buildup on the chamber wdls, and the time that the chamber was left open to load 

the wafers. 



7.2 Performance Cornparison and Feasibility of the 

Algorithms 

Our efforts on real-time control have concentrated on feeding back plasma variables 

to attenuate the effects of process disturbances. Additional results on two-input , two- 

output controllers which regulate estimated fluorine concentration and bias voltage 

are reported in [Il; [4]-[8], [37]. Also substantial contributions for modelling and 

control of RIE systems are found in [IO], [12], [20], [21, and [18]. 

The performance achieved by our proposed real-time control strategies is compared 

by depicting the results in the same graph as shown in Figures 7.1-7.4. The legend 

used in these figures is as follows: 

1. PIseij-tuning control algorithm [Al]. 

2. LQG control algorithm [A2]. 

3. Intelligent control strategy [A3]. 

4. Stochastic minimum variance adaptive control strategy [-A4]. 

5 Robust control strategy [*A5] 

For each operating condition, we can see that the best performance for the Ch, as 

depicted in Figure 1.1 is obtained. in order, by the strategies A3. .45, A i .  .A2, and A,, 

and for the fluorine concentration [FI ,  as depicted in Figure 7.3 by the strategies A3, 

As, A*. A i ,  and -4,. For the .A2 and A4 strategies; we have a small decrease in per- 

formance due to the stochastic environment (disturbance variations). By taking into 

account control effort, as depicted in Figures 7.5-7.6 for comparing the performances 

of these strategies, we can state that the best overall performance is achieved in order 

by the controllers As; A3, Ai ,  .A2, and A4. Note that by changing the operating con- 

di tion this order may also change, therefore i t  is possible that one controller performs 

better than others in a given operating condition. As far as the evolution of the flu- 



Figure 7.1: The evolution of the  dc I,$i,, in closed-loop system for al1 the control 
strategies (the first period of the transient). 

Figure 7.2: The evolution of the dc I./bias in closed-loop system for al1 the control 
strategies (the second period of the transient ). 



Figure 7.3: The evolution of the fluorine concentration [FI in closed-loop for al1 the 
control strategies ( the  first period of the transient). 

Figure 7.4: The evolution of the f i o h n e  concentration [FI in closed-loop for al1 the 
control strategies (the second period of the transient). 



Figure 7.5: The evolution of the thrott[e-position in closed-loop for all the control 
strategies. 

Figure 7.6: The evolution of the power in closed-loop for a11 the control strategies. 



Algorit hm 

I L - J  1 I 1 1 d y - - 

SMVAC [A4] 1 100150 1 1.29 1 0.05 1 good 

L - - 
LQG I A ~ ]  

I - 
[ R O ~ U S ~  contioi [ A ~ ]  i 2.5/4.5 0.31 1 0.0009 1 very g00d 1 

Gias/[F] t,[sec] 

Table 7.1: Performance comparison for the algorithms Al-& - 

orine concentration for the Al-& cases is concerned, as shown in Figure 7.3, we can 

conclude that the best performance for the same operating condition is obtained in 

the following order: As, Ag, Aî.  Al ,  and -A4 Generdy a hierarchical control strategy 

that is capable of determining at each sampling interval which controller is the most 

suitable choice to be empioyed will be of great use. Other performance indicators such 

as the settling time (t ,) ,  steady-state error for Vbias and [FI (e)  and the convergence 

achievecl by the algorithms - A5 developed in this thesis are presented in Table 

c. 

r .l as a synthesis of the performance presented in details (settling time. rise time, 

overshoot. steady-state error and convergence) in the Tables 4.1-4.3, 5.2, 6.1. From 

this table and from the overall simulation results we could conclude that almost a11 

the ~roposed algorithms have a good convergence, are computationally efficient due 

to their modular structure and recursive form ai th  a relative small number of opera- 

tions involved in the computation process, are feasible to be implemented in practice, 

and have very close steady-state errors. Dunng the transient, the behaviour of the 

cont rollers are completely different as far as the oscillations, the set tiing time, the 

actuator efforts, the capability of working well in a large region around the operating 

point, are concerned. 

Self-tuning PI FAI] 
Kias e [Volts] 

f 5/75 

The self-tuning PI control approach [Al] is proposed as a standard controller 

easy to use in practice. The algorithm is developed for the MIMO decoupled PGS 

mode1 with pure delay in comparison with [22], [25] which gave a general approach for 

80/60 0.0015 

Neurocontrol [A31 
0.00001 0.0014 

[FI e [%] 
- - 

very good 
0.015 

Convergence 

0.00002 

verv eood 2 /1  

verv ~ o o d  

1-36 



SISO systems, and [l) that studied the possibility of using a standard PI controller 

structure for MIMO coupled PGS model identification approach. 

The self-tuning PI algorithm is simple, convergent, fast, computationally efficient, 

and is feasible to be irnplemented in practice, however it works well only in a srnall 

region around the operating point for which it was designed for. Generally, larger 

values of the model parameters wiLl cause the controller to take longer to fine tune 

itself. The control action, therefore, depends on the predicted values of the one-step 

ahead model in time, and the algorithm works well when the number of parame- 

ters is small. '4s the number of parameters increases the initial estimates become 

increasingly important and poor estimates may result in an extended period of poor 

performance and this could even lead to instability. 

Also. good performance is given by the stochastic minimum variance identification 

algorithm [A4] when applied to the MIMO coupled RIE system having 12 unknown 

parameters. For cornparison the approach in [32]  is applied only to SISO systems with 

two unknown parameters. The simulation results depicted in Figures 4.24-4.27 show 

a fast adaptation and convergence. In the identification process. the highly fluctuat- 

ing behaviour of the adaptive control signal contributes greatly to the excitation of 

the system dynamics required for a convergence. For a deterministic control environ- 

ment. perfect tracking at steady-state c m  be obtained, since the control effort u(k) 

is not being constrained by the disturbances. The identification part of the control 

strategy is computationally more efficient than the modified extended Kalman filter 

algorithm. because the state-space innovations model eliminates the computation of 

the Kalman gradient V e I C ( B )  with respect to û via the Kalman filter gain algorithm. 

Also. in this case the execution of the Kalrnan filter for the state estimation is not 

needed since the Kalman gain [<(O) is directly parametrized by B(k) considered as 

a Markov-Gauss process [32]. The control part of the proposed strategy uses the 



per-interval performaoce index (4.54); which is computationally more efficient than 

the  dynamic programrning algorithm, and yields a higher performance compared to 

a general performance index. The algorithm is therefore feasible and cari be easily 

implemented in practice in real-time, however it works well only in a small region 

of the operating point and is perhaps most sensitive to the deviations around the 

operating pointsThe LQG algorithm [Az] has good convergence properties and can be 

implemented in real-time. It is cornputationaIly efficient and is sirnilu in performance 

to the approach developed in [29], and was chosen in this thesis because we found it 

to  be well adapted to the specifics of the plasma etching process (more disturbances, 

measurement and process noise contamination), and consequently operates properly 

in the stochast ic environment. 

-411 the three linear controllers Al, -A2: and Aq applied to the highly nonlinear 

MIMO plasma generation subsystem (PGS) can achieve their desired performance 

characteristics for only small regions around the operating points for which they were 

designecl for. The transient behaviour at the beginning of the etch process may force 

the system into regions outside of which the Linear controller can be applied safely. 

Higher fidelity neuromodel architectures and real-time nonlinear neurocontrol 

strategies [-A3] for the PGS system in closed-loop are developed to improve substan- 

tially the plasma characteristics. En comparison with the structures developed in the 

plasma literature [2], [9], [19], [14] our approach is conceptually different, the algo- 

rithms are more efficient, faster, more accurate and more suitable to be implement in 

real-time for controlling the reactive ion etching processes. To implement t hese neu- 

rocontrol strategies in real-time, we need accurate real-time sensors and high speed 

microprocessors and parauel processing architectures to perform off-line training, on- 

line parameter adjustments, mode1 processing, and feedback control processing. 

Similar performance is obtained by using a real-time robust control strategy [As] 



which responds more accurately to  the variations in the plasma parameters, distur- 

bances, and the changes in the set points. The proposed structure for this control 

strategy is introduced for the first time in the literature to  control the performance 

of the reactive ion etching process. It seems that this dgorithm is perhaps the best 

control structure yielding small tracking errors? fast response and high robustness to  

changes in the set points in presence of disturbances and parameter variations in the 

highly nonlinear P GS sys tem. 

7.3 Real-Time Control Integration in Multi-Input Multi- 

Output Reactive Ion Etching Systems 

Our goal is to reduce the variance of the etch characteristics by integrating the real- 

time control of the  plasma and process variables. The real-time controller A5: de- 

veloped in this thesis adjusts the reactor input variables to maintain the plasma 

parameters a t  constant set-point values. The idea is to use real-time plasma sensors 

to moni tor key plasma parameters and design a real-time multivariable controller to  

control the PGS- The controlled species were measured by quadrupole mass spectrom- 

etry wit,h direct eEect on the outcome of the performance variables. This verifies the 

feasibility of our control strategy, in other words an in-situ sensor based controller 

is capable of reducing process variations. The results obtained confirm the utility 

of our proposed strategies to control the etching process despite the drift during an  

etch. However, these algorithms can also be used as a research tool for evaluating 

complicated gas kinetics. The controllers can drive the film properties, namely etch 

depth, anisotropy, selectivity and u n i f o n i t y  to desired regimes based on important 

gas species and dc induced voltage in an  optimal fashion. -41~0, the mass flow con- 

troller offset experiments [XI, [37] demonstrate the utility of real-time sensing and 



control for disturbance rejection. At this time we are using the bias voltage, hios sig- 

nal from the RF matching network and an optical ernission spectroscopy (with A, as 

an act inometer) based measurement for the concentration of the main et chant species 

fluorine: [FI,  as the key plasma variables. The real-time two-input, twwoutput con- 

troller As is designed to provide set point tracking (on hias and [FI ) ,  and disturbance 

attenuation in a large regions of the RIE parameter space. The output of the wafer 

etch subsystem (WES) namely, etch depth, is assumed to be monitored by one or 

more reflectometers, or can be estimated by Kalman filters to provide set points for 

the plasma real-time control module. The use of plasma real-time robust controller 

has the following advant ages: 

( i )  dynamic plasma disturbances rejection, 

(ii) maintenance of plasma variables at desired values, and 

( iii ) diagnoses capabilities in the plasma subsystem. 

As for as the disadvantages of using onIy the plasma real-time controller, without 

using any information on the output of the wafer etch subsystem, one can enurnerate 

the following issues: 

(i) plasma sensor drift may cause the etch process to drift 

(ii ) the etch disturbances are not controlled, and 

(iii) the cost of real-time sensors. 

The integrated approach combines the benefit of better disturbance rejection, 

more relevant control variables, and diagnosis on two different time scales. 

7.4 Hierarchical Real-Time Control Strategies 

In the previous section, we saw that if the operating conditions are changed, that could 

also change the best control strategy among the A l ,  A2, A3, Aq, and .45 configurations. 



Figure 7-7: Hierarchical control st rategy structure. 

To select the  best control strategy for each sample interva1 we have conceived a 

hierarchical control structure depicted in Figure 7.7. The main idea behind this 

cont roi strategy consists of select ing for each sarnpling interval the best algorithm 

that is capable of yielding the closest value of the fluorine concentration with respect 

to the desired value (set point) or equivalently the best tracking error with respect 

to the fluorine concentration. The hierarchical control strategy compares for each 

sampling interval the tracking error resulting from each algorithm and then selects 

the best algorithm that results in the smallest tracking error. 

The results of the selection are depicted in Figures 7.8-7.9 for four assumed sectors 

of the system trajectory for the sake of clarity. From these figures, we can observe that 

in the first sector, the best control strategies selected are A3 and Ag, for the second 

sector we obtained As and Al, with high frequency Al due its the best tracking 

error achieved in the steady-state, for third sector we obtained Al, and for the Iast 

sector of the trajectory, we obtained Ai,  A2 with high frequency Aî due its the 

best tracking steady-state error compared wit h ot her strategies developed in t his 

thesis. The  above resuIts demonstrate the fact that each control strategy yields 



a diRerent performance a t  various points of the system trajectory- The hierarchical 

control strategy performs the best selection of the control strategy talcing into account 

the tracking error for each configuration with minimum control effort so to achieve 

cont inuousl y the best overall control performance. The overall performance obt ained 

by this control strategy is represented in Figures 7.10-7.11. These figures reveal some 

peaks along the trajectory due to the switcbing from one algorithm to another, but 

the generd trend is to reach the steady-state after a very short transient interval. 

The peaks in the throttle position ând in the R F  power depicted in Figures 7.12-7.13 

appear due to the brief time switch and fast return of the robust control strategy 

[A5] and PI seif-tuning control strategy (.41). Almost for the first three sectors of 

the trajectory. the control effort is piecewise constant and has a smooth evolution 

in the last sector due to the choice of configurations Ag, A3: Ai  and A2 which yield 

the best t racking performance. We can conceive ot her control structures by select ing 

different models instead of selecting a control algorithm, or alternatively using mixed 

structures tha t  combine a control algorithm and the mode1 simultaneously. 

7.5  Summary 

In this chapter. we attempted to select the best real-time control strategy by per- 

formance cornparisons of the real-time control strategies developed in Chapters 4-6, 

narnely PI self-tuning adaptive cont roller, L QG controller, stochastic minimum vari- 

ance adaptive controller, intelligent controller, and robust controller. To realize this, 

we use the Mogab-Flamm mode1 of the wafer [21] which assumes that the etch rate 

is directly proportional to the fluorine concentration, [FI. 

In this chapter we have also developed a hierarchical control strategy to select 

the best real-time feedback control strategy for each sampling time interval. The hi- 
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Figure 7.8: The selection index of the best per-interval control strategy divided into 
four sectors of the trajectory 
Legend: (a) The first sector of 1000 samples designates the interval [ l ,  1000]: 
(b) The second sector of 1000 samples designates the interval (1001, 20001; 
(c) The third sector of 1500 samples designates the interval [2001' 33003; 
(d)  The fourth sector of 1703 samples designates the interval [3501. 52031. 

Figure 7.9: The overall select ion index of the best per-interval control st rategy. 



Figure 7.10: The evolution of the hias in closed-loop selected by the hierarchical 
control strategy without input constraints. 
Legend: The star designates Viia, calculated by the algorithm. and the solid line 
designates the Pbias set point. 

Figure 7.11: The evolution of the fluorine concentration [FI in closed-loop selected 
by the  hierarchical control strategy \vit hout input constraints. 
Legend: The star designates [FI calculated by the algorithm, and the solid line des- 
ignates the [FI set point. 



Figure 7-12  The evolution of the throttle position in closed-loop selected by the 
hierarchical control strategv wit hout input constraints. 

Figure 
control 

7.13: The evolution of the power in closed-loop selected by the hierarchical 
strategy without input constraints. 



erarchical control st rateg). performs the bes t select ion of the control strategy taking 

into account the tracking error of each configuration with minimum control effort 

to achieve continuously the best overall control performance. This control strategy 

confirms that the choice of the best per-interval control action for the PGS system 

would achieve good performance for the etching process. We can justify this conclu- 

sion by considering the results depicted in Figures 7.10, 7.11 for the &;,,, and fluorine 

concentration [FI in closed-loop PGS system. From these simulation results, we can 

observe that after a few sarnples (fast transient) both process variables reach the set 

points with good tracking performance. 



Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

To place etching process design and control on a more rational basis, we have devel- 

oped in this research both linear and nonlinear rnodels of the PGS system as well as 

five k4IIbf O real-tirne control strategies yieiding superior performance in a stochast ic 

environment. From both theoretical and practical perspectives the following obser- 

vations can be made: 

'Rie algorithrns use a second-order ARIM-4 model of the  et ching process based 

only on the experimental input-output data, and a linear model in state-space 

representation. We have also explored the possibili ty of using neural networks 

for modelling and control of the RIE system in real-time since precise modelling 

of the RIE is difficult due to the extremely complex nature of the particle dy- 

namics within plasma. The developrnent of the neurornodels requires consider- 

able training and testing. For the  training set, the first half of the experimental 

input-output data is selected to  adjust the weight matrices, and the other half 

is used as the testing set. 



The above models represented our basic support for developing multivariable 

and intelligent control strategies, namely PI self-tuning controller, L QG con- 

troller, stochastic adaptive control using minimum variance identification, ro- 

bust control, and hierarchical cont rol strategies. 

AI1 the controllers are developed to directly affect the transient behaviour of the 

PGS system in closed-loop and al1 the real-time control strategies are intended 

for on-line use. 

Past design experience and a priori information on system dynamics has been 

incorporated into the adaptive system design. 

Addition of sensors to the adaptive system such as plasma spectrometers and 

reflectometers, could improve the state estimation and parameter identification 

algorit hms substantially. 

The algorithms developed could avoid excessive changes in the control input bÿ 

taking into account the physical limitations of the  throttk u a l v ~  and R F  power 

act uators, 

-4 self-tuning regulator was designed by assuming that the system to be con- 

trolled is not open-loop minimum-phase and each loop has the sarne tirne delay. 

The algorithm is relatively simple, reliable and robust. 

As the level of disturbances increase, the convergence rate of the performance 

index J ( k )  for the PI self-tuning control, LQG control and stochastic adaptive 

control algorit hms will decrease. The tracking performance may degrade as the 

noise levels increase. 

Perfect tracking can be obtained for the deterministic (Le. w(b)=O and v(b)=O) 

case. 



The neurornodels were able to capture the nonlinearities in the throttle valve 

actuator and to ensure an accurate representation of the dynarnics of the RIE 

process. 

The development of an optimal neuromodel was complicated by the fact that 

back-propagation networks contain several adjustable parameters Le., nurnber 

of hidden layers and hidden neurons, leaming rate, momentum, error goal, etc., 

for which the optimal values are initially unknown. 

The convergence of the neuromodels also depends on the experimental input- 

output da ta  set used to train the neural networks. 

Even if the prescribed error goal is reached during the training phase by the 

neural networks this fact does not necessarily dways guarantee good perfor- 

mance. This should be verified in the testing phase (generalization) where it is 

possible to discover that the neural networks were not capable of learning the 

experimental input-output data sets. 

The neurocontrollers eliminate the need for an experienced engineer to tune 

the  parameters and can be more easily applied to reactive ion etching process- 

Furt hermore. the real-time neurocontrol strategies for the reactive ion etching 

systems can support the efforts of process and equipment engineers by reducing 

the number of off-line experiments that must be performed, and by eliminating 

the need for building extra equipment prototypes. 

Proper choice of neurocontroller parameters (weights) is critical to the perfor- 

mance of RIE systems- 

The real-tirne neurocontrol strategy is very robust to a wide range of input 

command signals, as well as varying initial conditions and different noise levels- 



Robust control design ensures that closed-loop stability and performance spec- 

ifications are insensitive to  unknown components of the plasma dynarnics [36]. 

The proposed real-time robust control strategy for RIE system is capable of pro- 

ducing the required transient and steady-state performances by suitable choice 

of feedback loop, compensator, and controller parameters. 

In this thesis, a robust control algorithm that ensures stability of the RIE system 

in closed-loop has been developed with reduced sensitivity to al1 the changes 

that can occur in the parameters of the etching process. Towards this end we 

have used generalized H z  and Hmstrategies as described in [361. 

The performance of the robust control strategy depends also on the selection of 

the weighting functions kl/; ( s ) .  M.;(s), and I+>(s)- 

In a performance comparison of the proposed control strategies. it was observed 

that neurocontrol. robust control, LQG: and stochastic minimum variance adap- 

tive control yield the best performance. 

The performance of these control strategies differ with respect to the range of 

operating conditions. To choose the best strategy when the operating conditions 

change, we have proposed a hierarchical control strategy to generate the best 

per-interval control action for the PGS system. 

The  correlation between the etch rate and fluorine concentration is the main 

reason for relating the wafer performance to the PGS performance. This has 

motivated us to only focus on developing control strategies to ensure tight con- 

trol of the PGS outputs, i.e., Kias and fluorine concentration: [FI. 



8.2 Contributions 

Among the main contributions in this thesis, we list the following: 

Development of linear models of the P-GS, namely second-order coupled and 

decoupled MIMO models with pure d e l a y  and without delay,  validated and sim- 

ulated in Figures 3.2-3.21. These modeHs were developed corresponding to the 

operating point provided by the experiimental input-output data. The most 

accurate of these models seems to be t h e  coupled MIMO PGS mode1 with pure 

delay. This was used to build the stochairstic adaptive control, LQG and robust 

control strategies. 

Development of four nonlinear neuromodtels for the PGS system and controllers, 

and four real-time neurocontrol strategies with the simulated results shown in 

Figures 5.13-5.167 3.22-329. and Figures 5.1-5.8 respectively. The most accu- 

rate neuromodel which fits the experime-ntal input-output data seerns to be the 

second-order nonlinear PGS neuromode-1. This neuromodel is able to capture 

the nonlinearities of the throttle value a c t u a t o r  and to operate in a wide range 

of operating conditions. The best suitable neurocontroller structure cc-hich more 

accurately learns the inverse dynamics o f  the plant uses the same neuromodel 

structure i-e., second-order nonlinear PGS inverse neuromodel. The structure 

of these neuromodels appears for the first  time in the plasma literature. 

Development of a novel real-time robus- t control strategy structure which re- 

sponds more accurately to the variation s in plasma parameters, dist urbances, 

and changes in the set points. 

Development of a novel hierarchical reatl-time control strategy capable of se- 

lecting the best per-interval control using the architecture depicted in Figure 

167 



7.7. This architecture is proposed for the first time in the plasma literature to 

control the PGS system in closed-loop. 

Development of practical aspects of real-time feedback control strategies to ad- 

dress a r ed  application problem, namely design of real-time MIMO control 

strategies for the highly nonlinear RIE process to improve the manufacturing 

characteristics of the plasma- 

8.3 Future Work 

The problem of proof of stability for the neurocontrol strategies would be a challenging 

effort which is essential for dynamic systems analysis. synthesis, and control. This is 

one aspect of the future work to be carried out- Possible approaches wouId be to use 

the performance index J ( k )  as a Lyapunov function, and show that it satisfies the 

Lyapunov stability criteria, or associating the control algorit hm nit h a set of nonlinear 

time-varying determinist ic differential equations [El, and t hen studying the stability 

of these equations that are related to the stability of the closed-loop adaptive system. 

For XlIMO coupled systems. a suboptimal alternative which is inherently less sen- 

sitive to t ime delay variations and non-minimum phase behaviour is t h e  multivariable 

pole assignment method. Using the design methodology presented in [2]: it ni11 be 

interesting to extend our control design to  an on-Iine stochastic regulator, namely a 

self-tuning algorit hm based on the minimum variance principle. 

A self-organizing fuzzy logic cont roller using aut O regressive moving average mode1 

will be another interesting approach to consider in this research. This algorithm could 

be a design met hodology for on-line self-organizing fuzzy logic cont rollers wit hout 

using any plant mode1 [38]. The control algorithm obtains the control rules for a 

systern about which little knowledge is available. Compared with conventional fuzzy 



logic control when knowledge about the system for developing control rules has to 

be supplied by an expert, the proposed fuzzy logic controller needs no expert in 

developing control rules. The proposed self-organizing fuzzy controller will be a rule- 

based type of controller which learns on Iine how to control the system, and should 

be possible to use for the reactive ion etching process. The algorithm will combine 

system identification and control knowledge that are obtained through learning and 

experience. 

Future research could also be directed towards stochastic dual adaptive control 

and stochastic adaptive neurocontrol strategies. In this context. it d l  be useful to 

extend t.he stochastic adaptive control results discussed in Chapter 4 for developing a 

neural self- t uning adaptive cont rol algorithm for nonlinear systems. Here the implicit 

identification may be performed by a neural network based on minimum variance, 

Newton and gradient optimizations with the advantage of increasing the computa- 

tional capobilit,?. due to the parallel processing structure [32]. The neural identifica- 

tion schemes and the control law should be robust and computationalIy efficient for 

real-t ime adapt ive control design for the P GS. 

Another future direction could be a robust neurocontrol design. In this approach 

the  neurocontroller structure will be determined so as to be able to subsume the 

mapping classes necessarÿ to satisfy the given robustness requirements. The neu- 

rocontrolIer will be trained so that these requirements are actually satisfied. The 

means to enable the training algorithm to find the solution satisfying these require- 

ments is through the choice of the appropriate cost function. The most important 

part of the cost function that incorporates robustness requirements is the set of train- 

ing exain ples. These two aspects, neurocontroller structure and training examples 

will forrn the basis for developing a theoretical foundation for implementing a robust 

neurocontroller for the PGS system. based on the met hodology outlined in [39j. 



The sirnilari ties between the reactive ion etching process and the other chemical 

processes, such as chemical vapour deposition (CVD), anisotropic wet etching sili- 

con ( TM-4 H) plasma enhanced chemical vapour deposition (PEC VD ), low plasma 

chemical vapour deposition (LPCVD),  etc., may give us the opportunity to further 

improve the theoretical approach (computationd efficiency, convergence, stability, 

and robustness), and to extend the application field of the algorithms developed in 

this thesis to these other processes. 

Finally, it is envisaged that the semiconductor manufacturing processes will still 

remain an open field and provide a great opportunity for much further applications 

of the systems and control techniques. 
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