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Abstract

ADHESIVE FAILURE WITH ADHEREND YIELDING:
EXPERIMENTS AND MODELS

An M.A.Sc. Thesis, 2001
by
Ruxing Wang

Department of Mechanical and Industrial Engineering,
University of Toronto

An adhesive sandwich model, which treats adnerends as bilinear and adhesive as
nonlinear, was presented. Both the bending and the shear deformations in adherends were
accounted. Stresses and strains in the adhesive were solved from 6 differential equations using a
finite-difference method and compared with other models. A reasonable agreement was
observed. A peel model was developed using the sandwich model for the attached part of peel
joints. Peel tests were conducted on 9 configurations: combinations of 1, 2, 3 mm peel thickness
and 30°, 60°, 90° peel angles. Various parameters were calculated and compared with either the
finite element models or the experiments. A critical von Mises strain & criterion and critical
fracture energy G. criterion were proposed. The G. criterion showed its dependence on phase
angles. The load predictions for 9 peel configurations achieved an average discrepancy with

experiments of 11% for £ and 5.6% for G, criterion.
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Chapter 1 Introduction

1.1 Introduction

Adhesively bonded sheets in vehicles have many advantages over welded or riveted ones in
terms of increased rigidity, less stress concentration and avoidance of local buckling failure.
Even though recent advances in adhesive formulation have allowed adhesives with exceptionally
good mechanical properties to be produced, their application is still restricted to non-critical
joints. A number of fundamental issues need to be addressed before their potential mainstream
application can be seen in automobile industry [1]. The prediction of reliability of a joint under
service conditions is important, but an issue remaining at the top of the agenda for the

automobile applications however, is when and how an adhesive sheet joint will fail during

impact loading, or so-called crash-worthiness.

There exists no robust and accurate adhesive failure model so far in cases where the
adherends undergo large-scale yielding. Several factors complicate the modeling of adhesive
failure and render a purely theoretical strength prediction of the joint very difficult. First of all,
the lack of sufficient knowledge on a common failure mechanism of various adhesive joints is
limiting our capability to formulate a universal adhesive failure model. For instance, the cohesive
fracture failure of the adhesive in a Double Cantilever Beam (DCB) joint is characterized by
many micro-cracks propagating in the way of void nucleation and coalescence ahead of the main
crack. However, the interfacial failure of a peel joint exhibits only a main crack at the root with a

microscopically small damage zone. Secondly, in the case of high strain-rate impact loading, the



time-dependant visco-elastic response behavior of the adhesive may alter its quasi-static loading

behavior. In addition, adhesive in-service degradation due to long periods of exposure to either
high temperature or high humidity imposes additional difficulties on the modeling of adhesive
failure. Last but not least, an extreme situation worthy to be noted, and it is contrary to the
cohesive failure mode which is usually anticipated, is that an adherend-adhesive interface failure
will occur on a macro scale when surface preparation or material quality are poor. Consequently,
this mode of failure cannot be predicted using any theoretical technique [2]. This is particularly
true in the case of bonded thin sheets joint where the load is highly concentrated in the small
region near the adherend surface. Therefore in this thesis, all joints are assumed as being

manufactured to specifications and so-called adherend-adhesive interface failure is not expected

to occur.

The failure of adhesive in joints is correlated with the degree of constraint and the mode of
loading imposed by the adherends. Therefore, an adhesive failure model has to be built in the
context of adherend constraint or at least be able to interpret the constraint. The presence of
plastic deformation in adherends will certainly accelerate the failure of the adhesive joint by
decreasing the degree of constraint. So far, research has been done successfully in predicting the
ultimate fracture loads of a wide range of elastic adhesive joint geometries under combinations
of mode-I and mode-II loading [3, 4]. The motivation of this present project is built on removing
the above restriction of elastic deformation, because these approaches become invalid when

adhesive is used to bond thin metal sheets when those two sheets yield under impact loading as

in the case of a crash.



1.2 Literature Review

Adhesive joints can be generally grouped into two classes. The first class is the relatively
simple case where adherends remain elastic and therefore linear elastic fracture mechanics
applies [5, 6]. The second class is more complicated, since it deals with the situation where
adherends undergo plastic deformation [7, 8]. For the first class, the existing methods which
have been used to predict the strength of adhesive joints fall into two general categories. One is
based on the calculation of strain and stress with failure presumed to correspond to critical
values. The other stems from the theory of fracture mechanics where the concept of critical strain
energy rate, G, , is adopted as an adhesive failure criterion. While some researchers found that G,
correlates well with the failure [9, 10] and therefore followed the second approach, others did not
agree so. It has been argued that since most structural adhesives are toughened and quite ductile,
they do not present sharp cracks and therefore fracture mechanics is invalid [11]. The 5-20 mm
long damaged adhesive load-bearing zone discovered in Double Cantilever Beam fracture tests is

a direct evidence of the non-existence of a sharp crack [50].

The classical mechanical analysis of adhesive joints was approached in a simplified way
by Hart-Smith {12}, who assumed that only the shear components of stress and strain were
significant. Crocombe [13] developed an adhesive sandwich model which accommodated the
non-linearity of both adhesive and adherend, and used the Von Mises yielding criterion to
characterize the failure of the adhesive. In his model, the adhesive’s constitutive relation can be
any continuous mathematical function, thereby providing the flexibility in adopting other
possible adhesive failure criteria into the model, i.e., transplanting a fracture failure model into

this classical joint analysis. Unfortunately, in all of Crocombe’s papers, the predictions of joint



failure loads were not pursued by utilizing this analytical model, because a satisfied adhesive
model, which can interpret the hydrostatic stress and stress tri-axiality in constrained adhesive

layer, was far from being established and applied as an adhesive failure criterion.

A group of other investigators studied adhesive joints using a fracture mechanics
approach. Tvergaard and Hutchinson [14, 15] have developed an Embedded Process Zone model
(EPZ) in conjunction with finite element analysis to simulate the fracture process occurring
ahead of the crack tip in homogeneous materials. The EPZ model is intended to characterize the
force and displacement response inside the “process zone” as a crack initiates, grows and finally
leads to the separation of the joint. The force and displacement relation, presented in forms of
traction forces resulting from normal and tangential displacements respectively, are characterized
mainly by the work of separation per unit area of crack advance (I',) and the peak stress ()
supported by the bonding traction. These parameters model Mode [ (pure separation) and Mode
II (pure sliding) loading, and for any mixed mode, there is a generalized mixing rule to obtain the
combination of those two. However, it is worth noting that the EPZ model is really not a pure
fracture mechanics concept. The advantage of using EPZ modeling is that it simplifies the
characterization of adhesive fracture failure. Thouless [16], to further explore the applicability of
EPZ model in adhesive joints, used this model to predict the strength of T-peel specimens by the
following steps: Firstly all parameters of the model (i.e., I'; and & ) were calibrated with several
wedge tests using the same adhesive and adherends. Then a process zone model was
incorporated into the T-peel finite element model for load and deformation prediction. His recent
papers [17] have shown that this approach works in both mode [ and II loading, but its viability

in mixed mode loading remains to be seen. At the same time, Liechti has taken the same



gpproagh in modeling the fracture process zone of adhesives, calling it a “DZM” model - the
Damaged Zone Model [18, 19].

In summary, throughout the history of research on adhesive joints, a large number of
approaches have been proposed in the literature, with different focus and assumptions. Some
suffer from the fact they are too hypothetical and idealized in order to allow the derivation of a
closed form solution. Others require the establishment of finite element model for every single
joint geometry in order to implant either the EPZ or DZM model and therefore be capable of
predicting the corresponding fracture load. This is in the violation of principles of simplicity and
ease of use for engineering design purposes. In general, a complete approach for predicting the
strength of an adhesive joint should consider not only the appropriate modeling of adhesive

failure, but also the material properties and modeling of the adherends, adherend pretreatment,

adhesive curing, and adhesive thickness.

1.3 A brief outline of the present approach

In the pursuit of finding a generally applicable failure prediction approach, a standard
model is in our interest, which avoids the case-to-case dependence on the geometry and loading.
An adhesive sandwich model with arbitrary loads, as illustrated in Fig. -1, can be always
extracted regardless of the complexity of the joint configuration [4, 10]. The rational for
analyzing joints this way lies in the fact that they always fail at the end of bonding overlap [4],
while the loads at the ends of the sandwich can be always determined by either free-body

analysis or provided by finite element solutions.
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Fig. 1-1 The general adhesive sandwich with end loads separated from a few typical joints

An analytical approach is in our interest for the ease of further applying it to other
applications. Using the first principles of force equilibrium and plastic beam bending theory,
Crocombe [13] presented a set of six first-order differential equations and numerically solved
those equations by a finite difference method. This approach takes into account the non-linearity
of adhesive and adherend deformation. In this thesis, Crocombe’s sandwich model was made
more general and accurate by relaxing some of its restrictions. The effect of plane stress or strain
assumptions was also evaluated and compared. The numerical solution to the modified models
provided the relatively more accurate calculation of stress and strain distribution inside the
adhesive layer. To validate the modified analytical sandwich model, benchmarking was done

with both FEM and other specialized theoretical models.



The modified sandwich models were then further applied to peel applications. Rather
than analyzing the crack growth process from the initiation to the stabilized stage of peel, our
objective was to find an analytical way of predicting the steady state peel strength directly. By
referring to the theory that Moidu et al. [20] had already developed for steady state peel based on
the principle of a global energy balance, the curvature and root rotation from the detached
adherend of the peel specimen was calculated and iterations made until they matched the resuits
from the sandwich analysis for the still adhesively attached adherends. The shear and tensile
plastic deformation in the adhesive layer was quantified corresponding to experimentaily
measured peel loads under given peel configurations, and at the same time the fracture energy
was calculated. Finally using the data from various peel configurations, an appropriate adhesive
failure criterion was formulated. The next step was then to apply the proposed adhesive failure
criterion to predict the peel strength with various peeling configurations, i.e., different
combinations of peeling adherend thickness and peel angles. The predicted peel strength was

then compared with experimental measurement and the accuracy of the predictions was

evaluated.

1.4 Objectives

The objectives of this thesis certainly served the overall goals of our research project “Predicting
the strength of adhesive bonding with adherends undergoing extensive plastic deformation”
jointly funded by CAMM and Alcan Inc. Specifically four objectives as follows were covered in

this thesis:



1. Develop an analytical model for a general adhesive sandwich with yielding adherends and

adhesive, and taking arbitrary loading.

2. Establish an analytical peel model capable of handling flexible-to-rigid peel geometries and
capable of further treating flexible-to-flexible peel joints.

3. Obtain experimental data for the peeling of thin sheets of different thickness at several peel
angles. These thin sheets are bonded to a rigid substrate.

4. Investigate various adhesive failure criteria in the peel model to correlate with experimental

.data

1.5 The outline of Thesis

In Chapter 2, an improved adhesive sandwich model is developed based on Crocombe’s
approach. The new model considers the shear deformation of adherends due to direct shear
forces and therefore changes the onset of yielding in adherends based on Von Mises yielding
criterion. The shear curvature is added into a system of governing differential equations and a
numerical approach is adopted to find the solution. Under different plane strain and stress
conditions, three different models are developed and corresponding codes are implemented in
Fortran.

In Chapter 3, the “Z” plane strain model developed in Chapter 2 are examined by applying
it to a sample adhesive sandwich case and then comparing the result of this mode! with the
results from Crocombe’s model and finite element analysis. The total strain energy stored in the
sandwich system is calculated and balanced with the external work done. Finally discussions are

made with regard to the results of these improved models.



In Chapter 4, a new peel analytical model is outlined and analyzed. The comparison is
made and discussed between the results from different methods, i.e., finite element analysis and
analytical model of Moidu et al [20].

In Chapter 5, the experimental setup for the peel test is introduced. The specimen
preparations and experimental procedures are provided. The peel tests on two adhesives are
conducted and the steady state peel loads are obtained for 9 different peel configurations (3 peel
adherend thicknesses and 3 peel angles).

In Chapter 6, the peel loads of the 9 different peel configurations are applied to the
analytical peel models in order to extract a common adhesive failure criterion for the adhesive
peel joints. Both the strain based and fracture energy based failure criteria are investigated and
evaluated. Fortran codes based on those two adhesive failure criteria are written then to predict
the failure loads of the peel joints actually tested in Chapter 5 and the accuracy of the predictions
is evaluated.

Chapter 7 summarizes the research works in this thesis. General conclusions are drawn.

The limitation of the approaches and models are discussed and recommendations are made for

future work.



Chapter 2 The development of a modified fully non-linear
adhesive sandwich model

2.1 Sandwich representation of general adhesive joints

As was discussed in the Chapter 1, virtually for any bonding geometry, an adhesive
sandwich with the ends subject to loads can always be isolated. An arbitrary element (dx) cut
from this sandwich is shown in Fig. 2-1. It is the objective of this chapter to analyze strains and
stresses in the adhesive layer, and then an overall energy balance corresponding to the specified

boundary loads will be performed. In the past, several models considering a non-linear adhesive

Vi Vi t+dVix

) Tlx+dT|lx
y
Mlx+dMlx

Adhesive thickness(t/2) X

Fig. 2-1 Diagram of an element from the adherend-adhesive sandwich

have been studied either analytically or numerically [21, 22]. Crocombe was able to obtain an

analytical model with less restrictive assumptions and general applicability [13]. In his model,
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- the stress-strain curve of the adhesive is modeled by a mathematical formula (Prager model),

while the adherends are considered as bi-linear, which is very reasonable for aluminum alloys.
However, the onset of yielding in the adherends can significantly affect the stress and strain
distribution in the adhesive layer, therefore a more accurate adherend yielding model is required
for the general case. In addition, it will be more useful if the input format for the adhesive stress

— strain behavior can be of an arbitrary form instead of a theoretical model.

2.2 Sandwich joint analysis

The overall mathematical modeling of the sandwich joint can be divided into two sections:
joint analysis and comprehensive modeling of the adherend. The non-linear adherend model will
be covered in the second section. In this joint analysis section, both the adherends at the top (1)
and bottom (2) are treated as beams subject to arbitrary loads of either bending moment (M,
M;s, M3, M>>), tensile force (T}, Tya, T3, T3;) or direct shear force (Vyy, Vi, Vay, V32) at the
ends, and lying on the foundation of either an elastic or plastic adhesive layer, depending on the
location along the adhesive bond line (x direction in Fig. 2—1).

In addition to the general assumptions discussed in Chapter 1, the following lists the
assumptions made for the present modified model and compares them with Crocombe’s model
[13):

1. In both models, the function of the adhesive is to provide the traction and separation
resistance to both top and bottom adherends. Therefore, the function of the adhesive layer is
treated as coupled non-linear tensile and shear springs bringing the two adherends together.

Here the definition of “springs” is described as the adhesive’s unidirectional load and

11



displacement response either in tension or in shear, without taking into account the

complexity of stresses in the adhesive layer.

. In both models, longitudinal shear stress (7,) and transverse tensile stress (g;) are considered

and assumed uniform across the thickness of the adhesive layer. The square edge end effect

on stresses is neglected.

. Only plane strain was analyzed in Crocombe’s model, while in the present modified model

both plane strain and plane stress in the joint lateral direction (Z) are considered separately.

. Crocombe’s model neglects the longitudinal stress o. In this modified model, two different

cases were studied: one assumes ;=0 which is exactly same in Crocombe’s model, while
another considers &=0 by which therefore o is finite. The significance of taking oy into

consideration is demonstrated.

. Inrecognition of the nature of non-existence of sharp cracks in damaged adhesives, the stress

concentration in the adhesives is neglected in both models.

. The Kanninen correction [23], which was originally developed for modeling the fact that the

adherend is not acting as a true built-in cantilever beam in a DCB fracture specimen, is also

investigated here in the modified model. Crocombe’s model did not consider this correction.

. In both models, the Von Mises yielding criterion is adopted for both the failure of the

adhesive and the yielding of the adherends.

. Usually, the shear deformation due to bending shear is distributed parabolically across the

thickness of the adherends. Crocombe’s model neglects the shear deformation. In order to

simplify the analysis a uniform distribution is assumed in this new model.

12



By referring to the diagram in Fig. 2-I, the fundamental equations can be drawn based

on the load equilibrium of an element from adherend 1 :

av, dM 1
Ix=z.’ 4:0, — by __(h-t 2-1

where o and 7 are the stresses in the adhesive layer ox and 7, respectively. The corresponding

strains £and y can be defined in terms of the relative displacement of the adherends as follows:

e=(v, -v,)/t, 7=, ~u,)t 2-2)

where v;, u; and v, u> represent the vertical and horizontal displacements, as shown in Fig. 2-1,

at the interfaces with the adhesive for adherend | and adherend 2, respectively.

The principal procedure of deriving six first order differential equations can be found in
[13]. In this thesis, the equations differ not only because of the different adhesive and adherend
models, (i.e., plane strain or plane stress), but also from the adhesive tensile and shear foundation

models with or without the Kanninen correction [23] of adherend compliance for a finite beam

on a foundation.

2.2.1 Plane strain adhesive and adherends (& =0)

This is the case Crocombe studied in [13], resulting in six first order differential

equations:

ar, __Ey 2-13)

& 21+v,)
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av, _ Ee
e 1-v}
avt., _, _(n +1)E,
dx e 4il+v,,jy
d
%={K,’;'“(-hl/2+el)_1(27_t-"’(h2/2+e2)}/r
4 _c
dx
dac
== (k,,~K )t

adherend as follows:

Kl.r = -/;(T;.r’le’Ml.r) ? sz = fz(Tz.ananx)

KIC‘M = ./; (T;r ’ Ml.r ) ’ KIT.;M = fi (Tzr 2 M!.t )

Tz.: =Tn +T, —TI

X

ViesVy+Vy =V,

X
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2-4)

(2-9)

(2-6)

2-7

2-8)

where T, Vix, My ¥ € and C are six unknowns; K;, , K" and K>, , K;;"are the local
curvatures for adherend 1 and adherend 2, respectively. Among them X, and K, are total
curvatures, and K/**'and K" are curvatures due to 7 and M only. E; is secant modulus of the
adhesive, defined as Equation (2-37); e; and e; are the offset of the neutral axis due to tensile

force for adherend 1 and adherend 2, respectively; and v, is the plastic Poisson ratio of the

adhesive. These curvatures are all implicit functions of local loads for the corresponding

2-9)

2-10)

The local loads (7>, V2, Mx ) for adherend 2 can always be derived by an overall force

2-11)
2-12)



M§x=(M!|+M2|)'M:x+ Vll.+V2l)x+(Tll—Tl.:)h. 2-13)
where 73, 154, Vi1,V>1, My1, M, are arbitrary boundary loads on the left hand side of the

sandwich element in Fig. 2-1, and A’is defined as

. A+h +h,
> ( )

Therefore, K>, can always be interpreted as a function of 7, V), and M, as

h

K!x =.f5(7'!x’Vl.r’Mlx)9 K;‘.;M =-f6(7;x’Ml.t) (2— 15)

2.2.2 Plane strain adhesive (& =& = 0) and plane strain adherends (&. = 0)

This case will be termed as “X-~Z" double plane strain model hereinafter. The derivation

procedure is similar to the above, but the differential equations are modified as:

d:: ) ﬂi};p 2-16)
dc:: b, Elfzu;)("ﬂ -1 2-17)
s (: 111'3? ’ @-18)
% = KM= 12+¢)- KM (hy 12+, i1 2-19)
%ﬂj 2 -20)
%f:(K“ -Ku)/ @-21)
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Where in all above, definitions of parameters are same as from Eq. (2-3) to (2-8), but the

derivation of the adhesive secant modulus is different and will be explained in the following

adhesive model section.

2.2.3 Plane stress adhesive (0. = 0) and plane stress adherends (o- = 0)

Again, similar to the procedure for the plane strain case (& = 0), only the final equations

are given here as:

dr, Ey ,
=0, 2-22

dx 2(l+u,,) ( )

av., _ E.c 223
o - F

Ly, - (b, + )E, (2-24)
dx 4l+v,

d. ,

‘Zx}:" = {Kll.r"" —h/2+e)-KM(h/2+e, )}/’ (2-25)

de

—=C 2-26

dx ( )

dC

— =K. =K )t 2-27)

2.2.4 Kanninen correction of foundation constant

This model applies to the flexible-to-rigid peel situation. The introduction of additional
compliance from the adherend beam itself will affect the resultant strains and stresses in the
adhesive of the sandwich. Here only the “X~Z" plane strain adhesive (& = & = 0) plus plane
strain adherend (& = 0) model was modified to take this correction into account. The total

foundation compliance is calculated based on the compliance of both the adhesive and the
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adherend. More details on the derivation can be found in [3, 20]. Only final equations are given

here :

ar,, _[20+v,) 3n T
& E 2E , | 7

N

dV1x= (U,,—1+20;)+ hn _IS
dx (v, -1E, ~2E,,

a, _, _(rof2+w,) 3m T
dx o2 E 2E,,

5

d _
% AKIM (b 124 e)~ KDY (1 12+ e,
€ _c

dx

dC

—CE- = (KZ.\- —Kl.r)/t

2.2.5 Generalized mathematical problem

(2 -28)

(2-29)

2-30)

@2 -31)

(2-32)

(2-33)

where E, 4 is the local secant modulus of adherend 1 at the interface with the adhesive.

By summarizing the above four sets of first order differential equations developed for the

different models of either the adhesive or the adherends, a general mathematical problem can be

stated for all of them. If the unknown variables are assigned as a vector Y, a general form is

obtained as :

where i=1,2.....,m,and ¥ =

Y =f b, Y,)
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In this case, n =6, and the corresponding six general boundary-value equations at x = 0

and x = L can be expressed as:

g [r)y(L)x]=0 where i=1,2....., 6 (2-35)

where vector Y= [T;x, VieM,, y,s,C]T (2-36)

2.3 Non-linear adhesive model

The Von Mises adhesive failure model is implemented in this analysis. However, other
potential fracture failure models, e.g. EPZ traction-separation model, can also be applied in this
analysis and the modification of corresponding numerical codes should be minimum. The
uniaxial tensile stress-strain curve for the adhesive can be defined using an equation or as a series
of data contained in a data file as shown in Fig. 2-2. These discrete data sets are then
interpolated by using a spline technique to get a smooth representation of a continuous curve.
When inputting the data, the first derivative of stress vs. strain at the zero strain point and the
ultimate strain point are also required in order to make better extrapolation during the

intermediate iteration stages of solving the model numerically.

Three types of adhesive stress state are considered as listed below. The difference

produced by using these different adhesive models will be illustrated in Chapter 4 during the peel
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Fig. 2-2 Spline interpretation of discrete uniaxial stress and strain inputs

application of the sandwich models. In this Chapter, only equations for these adhesive models

will be given and discussed in turn.

MODEL #1 —— Plane Stress Adhesive Model (o= = 0)

MODEL #2 —— Z direction Plane Strain Adhesive Model (& = 0)

MODEL #3 —— X and Z Direction Plane Strain Adhesive Model (& = Oand & = 0)
In order to cope with the non-linear behavior of the adhesive, an equivalent instantaneous

modulus called the secant modulus is adopted as shown in Fig. 2-2, and defined as:
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E =2 2-37)
83

where o, is the adhesive Von Mises stress which can be calculated for the different models in

terms of the component stresses (o and 7) as:

Model #1 o, =(o?+302) (2 -38)
Model #2 . ={l-v, +v})p? +3r* }* (2-39)
3 0S5
Model #3 o = {(1- s ] o +313} 2 - 40)
1-v,

The corresponding Von Mises strain & based on the above three models can be found by

combining Eq. (2-37) to Eq. (2-40). They are:

Model #1 &, ={2+0.75 y/(1+v, }}” @2-41)
Model #2 g, ={t-v, +02 ) +0.750-0, Fr? I M1.0-02) Q2-42)
) 0.5
Model #3 g, = Mﬁz +0.757% Ml +v, ) Q- 43)
(v, -1+203F

where the plastic Poisson’s ratio v, is :

v, = %[1 —%—(1 - 20)] (2-449)

where v is the elastic Poisson ratio of the adhesive. Strictly speaking the value of v, should
depend on the state of stress, but its effect was found to be minimal [13] and thus a constant
value of 0.47 has been used for the adhesive throughout this thesis. The validity of this

approximation is discussed in later chapters.
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2.4 Bi-linear adherend analysis

In this section, the adherend’s longitudinal response is investigated based on either a
plane strain (&2 = 0 ) or a plane stress assumption ( - = 0). Then a general non-linear adherend
beam analysis is performed. The analysis can be applied to both adherends, and therefore the

subscript notation for the upper and lower adherend (1 and 2) is dropped for simplification.

2.4.1 Bi-linear adherend material models

The Von Mises yield response of the bi-linear adherend as illustrated in Fig. 2-3, is

described by:

E,e, if--¢.<¢,

= 2-45
e {a},,, +E, (ae —s_v,,) if --¢,>¢, ( )

where o,, = E, £, and E, =aF,,.

Under the Von Mises yielding criterion, the onset of yielding in the x-direction will differ
from plane strain to plane stress. In order to analyze the local stress distribution across the
thickness of the adherends (i.e., tensile stress due to local bending moment (M) and axial force
(7) or shear stress due to local shear force (), the concept of longitudinal stress and strain is
proposed as illustrated in Fig. 2-3. In this figure, the “Von Mises” curve is a given uniaxial o, -
& material property of the adherends. The “longitudinal #1” curve is a calculated x-direction

longitudinal o; - & response based on the given o, - & curve when shear stress 7 due to shear
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o - -force ¥ is neglected. This is the case Crocombe used in his analysis by applying the following

equations:
8.! .
o =L if &< g, (2 - 46)
E. —&
o.=0, +Ep[ ‘_vzyf’ if & > &p 2-47
p

If the shear stress 7 due to V is taken into account, which is the case of this new model,
then the x-direction longitudinal o - & response is transformed into the curve “longitudinal #2”.
This new curve can be further classified as bi-linear and non-linear under two situations: when r

< Teriticat and When 7 2 Teyiricals

A
Stress & Longitudinal #1
T oor=0
von Mises
03,,, < tcnm:ul
Longitudinal #2
T 2 Tcrilr'cal
0}p.x
y : -
0 .
Epx Strain

Fig. 2-3 Bi-linear approximation of both longitudinal and Von Mises stress-strain response

under plane strain assumption for the adherend.
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where 7., = 7’5'1 . The mathematical expressions of o - & responses for “longitudinal #2™ for

both plane strain and plane stress are given below. The derivation of these equations can be

found in Appendix A. For both cases, the methodologies are similar, but the results are different.

e Plane strain( & = 0)

If r<r,,.  then for both linear elastic (O - C) and plastic (C — C') stages, the

longitudinal adherend stress o can be calculated by

R iHJ3}

X

if &< gpx (2-48)
(l v, + U; )5

|-

4
-

r

(-0, +0}) , 30-v,f
c +E,,,l:—6——— 3

') 3
W _Uz)z &, +Z( _vg)l },1:| _Epls,vp -37?

= , if & > &px (2—49)

*(I-U*'f-t)z);*********”””
p el

where & and o are x-direction longitudinal strain and stress in the adherend. g, is a yielding

strain corresponding to the bi-linear longitudinal o, — & curve. ris the shear stress on adherend

sections and assumed uniform across the thickness. The corresponding adherend shear strain is

given by
2r(1+0v,) free.
E - critica
= 7 -5
4 2tcnr.rcal (l +0, ) + Z(f = Teruical Xl + Up) [ff >7 (2 0)
Ed Epl crical
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- - where v, is the elastic Poisson ratio and v, is the plastic Poisson ratio for the adherend.

The differentiation of o; with respect to & gives the corresponding longitudinal Young’s

modulus for both linear elastic and non-linear plastic stages as

2-51)

Eel..r = Ed') if &x < %’p.x
1-v,
1
(l—v,,+uf,) 2,3 1 2 i
£, G'yp+Ep, —(ljz—)z-—é‘x+z 0 w4 —Ep,é'yp
(l—u,, +vf,)2 r g
Epl..r = 1

o +E (l.—._!ﬁ’_.*‘__v"z’)gz.{.i 1 }/2
S B R R

X if & > Gyp_x

1
[(l-vﬁvﬁ), 30 72}2

(1-v2) £*7 1+,

Where the longitudinal yielding strain &, « is given by

£y = (-»:) [s’.—;- l y{l
wp.x (l -Up N vi );l_ w 4 m

Equation (2 — 52) can be approximated by the following:
E,

E, = - if &> gpx
Y]

'.)l-—

-

[N

~E,€, | -3
2-52)
2-53)
(2~ 54)

if r2r,,., then &, =0, any loading, either tensile (7) or bending (M) will lead the

adherend into the immediate non-linear yielding stage, shown as the curve “O-D" in Fig. 2-3. In

this case, the corresponding longitudinal Young’s modulus should be obtained from Eq. (2 - 52).
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But here, for a reason which will-be explained in the example section, a concept of equivalent

modulus for this particular non-linear plastic stage is proposed and given by

]
19 ) =

o +E,,,{(l(—vp+v;)sz+i-(lnv” | -E,e, | -37

E,, =% - 1 2-55)

¢® Plane stress(o- = 0)

Under this assumption, if r< 7, then the longitudinal o - & response is given by

riticul
]
301 ?
a", = E‘,Zl 6’: +— S y'.' —32-1 if ExS %*p'x (2— 56)
' 41+v,
1
! 2 2
. 3 1 2 |2 :
c, = oy,,+E,,,lia_;+z o ,y“} ~-E,c, -37? ife> gps 2-57)
P

_ The corresponding modulus for both stages can be evaluated by

E,.=E, if & < gpx (2 -58)

1
2

£, c:ry,,+Ep,.¢;j+i ! v’ -E,e,
4il+vp’—2 [

————
_‘h
+
F
+
c —
o
&
|-

] 2
31 2 2
o, +E, el+= | -E,e, | -3c?
w pll: 4 l+v,, 4 J pt w}

25



where the longitudinal yielding strain ¢, is determined by

, 31 2
Eypx =[s,,, ileo ] 71] (2 - 60)
p

If r27,,., then & . =0. With Eq. (2 - 53), the corresponding equivalent plastic modulus
wx

becomes

~
~)—

|-

E, =—-t= 2-61)

2.4.2 Examples of calculation

This section is intended to demonstrate, by taking a particular example of AA5754-0
adherend material as listed in Table 2—1, how the inclusion of shear strain y and stress 7 in the
adherend and the plane stress (g = 0) or plane strain (& = 0) assumption of the adherend will
change both the longitudinal #1 and longitudinal #2 curves. Equations from (2 — 46) to (2 - 61)

are used in the calculation. All calculations were carried out in Mathcad &.

First of all, the question of using either Eq. (2 — 52) or (2 — 55) for the calculation of E,;.

under the condition of¢,,, =0 whenr 27, for the plane strain (¢ = 0) case needs to be

addressed. The curves from both Eq. (2 — 52) and (2 ~ 55) are drawn by applying the material
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~ properties of AA5754-0. The comparison made then between these two curves showed

technically it is more reasonable to use Eq. (2 — 55) rather than Eq. (2 — 52) to calculate £,
because Eq. (2 — 55) has a better transition of the E,, value for overall longitudinal strain &
starting from zero, while Eq. (2 — 52) has a spike at the region very close to the origin. From Eq.
(2 - 52), E i« is zero when &, equals zero, this is not only physically unrealistic, but also will
certainly cause convergence problems of the numerical calculation. Therefore, this equation is

not suitable to be used as the way of calculating the modulus as was done when r <, . The

concept of Eq. (2 — 55), as explained by the equation itself, is similar to the secant modulus
which has been used through out this thesis to deal with the non-linearity of adhesives. Under

the same consideration, Eq. (2 —61) is used instead of Eq. (2 — 59) to compute £, for the plane

stress (o = 0) case.

Table 2.1 The mechanical properties of adherend AA5754-0O and the adhesive used in [13])

Adherend AA5754-0 Adhesive
Elastic Modulus (MPa) E.~71,000 Elastic Modulus (MPa) E.=5,740
Plastic Modulus (MPa) | E,~483 Plastic Modulus (MPa) | E,~408
Yielding Stress (MPa) 6,,=100 Stress Asymptote* (MPa) | 4=63

* Note: For the definition, see Equation (3 — 1) in Chapter 3.

Figures 2-5 and 2-6 give an example of the calculation based on the bending of 1 mm

thickness AAS5754-0 alloy sheet under plane strain and plane stress conditions, respectively.
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9000 - ——Eq.(2 - 55)
8000 - ----Eq.(2-52)

Equivalent modulus E ,;, (MPa)

0 T L ) I

0 0.002 0.004 0.006 0.008 0.01
Longitudinal strain &,

Fig. 2-4 Comparison of Eq. (2 - 52) and Eq. (2 — 55) when 1> tiica for the plane strain

bending of 1mm thickness AA5754-0O plate.

o,
The critical shear stress Zo.cr =57.7 MPa was calculated by the formula 7., = T‘; , and the

* r=43 MPa ” case is arbitrarily chosen for demonstration.

From Fig. 2-5, it can be seen even without the shear (r = 0), the &; - & response
(Longitudinal #1) is still different from the Von Mises response. This is because of the plane
strain condition (& = 0). The longitudinal yielding stress (g;;, ) and strain (,,) decrease with
increasing shear stress . When the shear stress 7 < 7, , the longitudinal o, - & response
remains bi-linear, and £, and E,, are the same as the case when 7= 0. Once 7> Z,ijcar , then
the o; - & response gets complicated. The adherend enters into an immediate non-linear plastic

yielding stage. Equations (2 — 46) and (2 — 47) were used for calculating the curve “Longitudinal
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120 A R — il —— .
f Von Mises
100 A /
) =43 -
S 80 - R
:; von Mises stress , o
§ 604 !/ ---- Longitudinal #1, 6 (1= 0)
@ — - -~ Longitudinal #2, 6,2 (0< T =43< Teriica)
40 1 ,/ ... Longitudinal #2, 63 (T < Teritica) .o
20 -ﬂ .......................... \
-------- T = Teritica=7.7MPa
.... -
0 + . — — T
0 0.002 0.004 0.006 0.008 0.01
Strain

Fig. 2-5 Longitudinal o - & responses for the bending of | mm thick AA5754-0 sheet

under plane strain assumption (& = 0).

#17; Equations (2 — 48) and (2 — 49) were used for the curve “Longitudinal #2, o> (0< r=43<

Teriicat)” and equation (2 — 49) alone for the curve “Longitudinal #2, 63 ( = Tormical)”

Figure 2—6 basically shows the same trends as Fig. 2-5 except that when 7 < 7,y , the
longitudinal modulus £, for the elastic stage and E, for the plastic stage are the same as the
ones for the corresponding stages of the bi-linear Von Mises curve, respectively. The curve

“Longitudinal #1” is exactly same as the Von Mises curve; The curve “Longitudinal #2, o, (0<
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r=43< 7.,iicar)” Were calculated by equations (2 — 56) and (2 ~ 57); Equation (2 — 57) alone was

used for the curve “Longitudinal #2, 633 ( 7= Tiica)”

120
r=0MPa
100 4
80 1
=43 MPa .

- - -
- ——— v —— =
- - - —— e S S
- - -
—— -~ — -

von Mises stress & longitudinal #1, o, & o (= 0)

Stress (MPa)
o
[}

o
(=)
1

_——— Longitudinal #2 » Ox2 (O< T=43< tcrin‘cal)
------- Longitudinal #2, 6.3 (t < Tritica) e

20 1/ T Kt’_" rcritinaf’"57.7MPa
0 e - - , i}
0 0002 0004 0006 0008 00l

Strain
Fig. 2-6 Longitudinal o; - & responses for the bending of 1 mm thick AA5754 — O sheet

under plane stress assumption (. = 0).

243 Bi-linear adherend beam analysis

In this section, the calculation of K, K", K, , KI**', e, and e; are analyzed based on

Ix?*
plate bending theory. Since only one arbitrarily loaded adherend is investigated here, the
subscript notation (1, 2) for the upper and lower adherend has been dropped from the generalized

equations. As in the previous adherend material model section, both the plane stress and plane
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strain assumptions were studied. The following modifications were made to improve Crocomb’s

approach [13]:

o The contribution to the early onset of adherend yielding by shear deformation due to shear
force V' was taken into consideration. It was assumed that the uniform distribution of shear
stress and strain across the thickness & instead of a parabolic distribution. This assumption
was justified by the adherend’s very limited thickness (1 — 3 mm).

o The adherend curvature due to shear deformation was included in addition to the curvature
due to bending.

e A plane stress model was also studied in addition to a plane strain model.

o Five categories of adherend stress distribution may possibly occur as the values of the
moment M, tension T and shear V vary. Categories #1 to #4 were similar to Crocombe’s
analysis [13], but the calculation of longitudinal stress-strain response, i.e., 6;,, and &, , was
different. The category #5 is a new category to Crocombe’s analysis.

@ The energy balance calculation was conducted based on elastic and plastic strain energy for

both adhesive layer and the two adherends of the sandwich.

Of particular importance, the sign conventions of 7, M and V as shown in Fig. 2-1 will be
followed strictly throughout this thesis. Before moving onto the subject of the analysis of the 5

stress categories, some general issues need to be addressed.
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2.4.3.1 General definitions and derivations

1. Total curvature

The causes of curvature can be classified into two types and the total curvature is then
obtained by the rule of superposition as:
K = K™ + K" (2-62)
where K7 is the bending curvature due to bending moment (M) and tensile force (7T), while

K" is the shear curvature due to the shear force (V).

The adherend is modeled under either plain stress or plane strain. For each of these two
cases the strain is assumed to vary linearly with the distance from the neutral axis. The
longitudinal properties such as elastic Young’s modulus E,;,, plastic Young's modulus E,,,,

yielding strain g, . and yielding stress g;, . can all be found in Section 2.4.1.

As illustrated in Fig. 2-8 to Fig. 2 -11, at a distance Z ( the elastic semi-depth ) from the
neutral axis, the strain reaches the yielding strain g, and the value of Z can be related to the

adherend bending curvature X' as:

, & 10
KTM = 2w 2 T ~63
Z ZE (2 )

el .x

where the calculation of Z is to be discussed further in each of 5 categories.
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The shear curvature XK' is due to the shear deformation along the section of the
adherend. The calculation of it requires a known shear stress distribution across the section. An

assumption is made here in the attempt to simplify the analysis [24):

Ky _ dzur _ drneulml = __l_ drnﬂ"’al (2 - 64)

T dix i G dx

where u, is the vertical deflection of the adherend due to shear deformation, and G, ¥rewras »

Tnewrrat are the shear modulus, the shear strain and stress respectively at the physical centroid of

the adherend.

The expression of Ze..q is derived in a later section.

2. Tensile stress distribution across the section of adherend

The determination of tensile stress requires the application of the bi-linear longitudinal -,
response derived in Section 2.4.1. At a general distance y from the neutral axis, the tensile stress
can be evaluated as

o_x = {a_vp,.r + Epl..rKM,T(y— Z)= ayp,,r +aa_m,.r - Z)/Z 'f(y 2z (2 _ 65)

O ypsy fly<2)
where a is defined in Eq. (2 - 45) as the ratio of the plastic modulus £, to the elastic modulus

E,; of the adherend.
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e ao e A S

‘This equation is used to evaluate the tensile stress o distribution across the section of adherend
by using the balance with moment (M) and tension (7) as:
hi2 hi2

T= f[o.dy and M= [yody (2 - 66)

~h12 -hi2

The derivation of the o distribution, z and e (neutral axis offset) is detailed in each of 5

categories.

3. Shear stress at the neutral axis and its distribution assumption across the section

of adherend

As mentioned above, the analysis of deformation due to shear under a general loading can
be decomposed into two simple cases as shown in Fig. 2-7. A superimposition of Casel and

Case 2 is then performed to get the total shear stress at the neutral axis.

V+dV V+dV
T T+dT T+dT
-— CASE 2 — + CASE | =
. A
-— M l MidM M l M+dM
c

Fig. 2-7 Superimposition of shear stress and deformation in adherends

® ForCase ]

If M is less than a critical value M,,;co; such that the surfaces of the adherend remain elastic,

then shear stress 7, can be calculated based on the parabolic distribution as:

34



vi(eY :
[ -y < _
7, 5] [(2) y ] if MsM,_,.. (2-67)

where M,,i;i.a; can be calculated as

=0, h*/6 2-68)

critrcal — < yp

M
Ty reaches a maximum at the neutral axis. That is

3V
T =l =————=—AV 2-69
neutral max th ( )

3
here A=———
wnere 2bh

If M > Meyyicar, which means the surfaces have yielded, then the calculation of the 7, distribution
is rather analytically complicated. However as with the elastic case, 7, still reaches the

maximum at the neutral axis and can be evaluated by

Tncutrat = Tonax = - a)+3a}§ I ] -8BV (2-170)
16(1-a)+2ah’ / F

Lz(l a)+3ah’ /1]
T 16(1-a)+ 20k /1

where

E
@ =—-2% the ratio of longitudinal plastic modulus to elastic modulus of adherend

E

el x

r is the distance to neutral axis from the onset location of yielding in adherend,

which can be found by solving the following polynomial equation:
O'_VP_J[%.—(I -a)+ 112 Ips -2 r2(1- a)} M=0 Q-71)

® For Case #2
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The calculation of shear stress 7, due to tension requires a known o distribution across the
section resulting from the tensile force 7. But due to the nature of the bi-linear adherend material
property, it is very complicated to obtain the exact distribution of o;. Therefore an assumption of

uniform distribution is applied here, which leads to an average shear stress as:
T 2-72)

1 1
Toeural = Taverage = ; z',‘vydy = E
hit

where ris the shear stress of the adherend at the adhesive interface.

To summarize, the total shear stress at neutral axis for the general load case is :

- AV + lr {f(M S Mcmlcal )
r - 2 @2-73)

neutral
- BV +é‘r !f(M > Mcnm:ul )

4. The calculation of shear curvature K"

From Eq. (2 -64), the calculation of K" requires known it—;:i"’- The differentiation of

Tveurral With respect to x gives

d - AO' + l'd_r !f(M < Mr:mu'ul)
r:;.m/ _ 2 dx 2-74)
- BO'+ 5'&; #(M > Mcrmcul)

dr
where — is given b
e o isg y
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USRSEPEEIDT

i{ —_ Gadv _d_y_ - ES [dul _ duz
de " de 2(1+v,)

dc dx
__E {[—KT"” ﬂ+ E,(l-vfp)]_[K’r.u f’;.‘_n_’(l_—_v_’zﬂ_)}} 2-175)

“ali+o,)|] Y 2 EX™a 2 EMmp,

where Ei™and E4™ are the secant Young’s modulus at the interfaces between the adhesive

and adherend 1 and adherend 2, respectively; v, and w3, are the plastic Poisson ratio for

adherend 1 and adherend 2.

This equation can be substituted into Eq. (2 — 64) for calculating the shear curvature of each

adherend as:

, . . T (1-v} T, \1-0?
K’ = Z_E;_; _l_ _Kll‘,M h_;+ I.\'( dmvlp) —| KM h_2+ -x(‘”pv-p) +D g @ - 76)
E“™| 4t 2 E“Mp * 2 EWm, (1+v,)

where D = 4 if M < M iicat, and D = Bif M 2 M_.isjcai

2.4.3.2 Category #1 —— fully elastic adherend bending

The adherend surface stresses (o, and 6,) and the stress distribution are illustrated in Fig.
2-8. Superimposing the elastic bending stress and tensile stress gives

T 6M T 6M
AP *“h R ( )

The neutral axis offset (¢) and the ficticious elastic semi-depth (z) can be found by

2 h3
Th 2= Q2-78)

12M 12M

e=
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Fig. 2-8 Category #1 or #5 o distribution due to AMand T

2.4.3.3 Category #2 —— fully plastic adherend bending

As with category #1, the explicit expressions can be obtained with referring to Fig. 2-9

as follows :
r h 1
0,=0,, l+a(e+5—z)/z 2-79
o, =a‘,,,jl+a(e——h~-—z)/z (2-80)
JH i 2 J
where e and z are found to be
T -ho h?
e=z[1+ ( .__Y.P_'-') , 2= b .E 2 -81)
heo, . 12M
o,

Fig. 2-9 Category #2 o distribution dueto M and 7
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This category can be then further divided into 4 sub-categories depending on different
sign combinations of T and M. The classification of these categories has been specified in the

Fortran Code and is not repeated here.

2.43.4 Category #3 opposite yielding on both surfaces

Figure 2 -10 gives the positive sign convention for all loads and resultant variables. In
this case, both surfaces are yielded, but one in tension and the other in compression. The

equations provided are all implicit, and a numerical solution is needed to get a solution for e, z,

o, and gy The surface stresses are :

c,=0,, [l +a(e + -g - z)/ z] (2-82)

o, =—o'mx[l+a(—e—-g—z)/z] (2-83)

where ¢ and z can be obtained simontaneously through solving the following two equations:

Tz-eq,, [2z+a(h-22)]=0
» K M ah’ =0 (2-84)
2 +3z]e’ —— -
Toge 4+(I—a)a'y,u] il—-a)

In the case of different direction of loads, an appropriate sign change of equations is
required. This category is then further divided into 4 sub-categories depending on different
combinations of 7 and M. In the cases when either M, T or both of them are negative, -M or -T
or both are used to replace 7, M in Equation (2 —~ 84). The detailed classification of these

categories can be found in the Fortran Code and is not repeated here.
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.
M4

Oh

Fig. 2-10 Category #3 o distribution due to M and T

2.4.3.5 Category #4 yielding only on one of the adherend surfaces

This category is very similar to category #3 except only one surface has yielded, while
the other remains elastic. For the loading shown in Fig. 2-11, only the upper surface has been
yielded, and the following equation can be used to solve for e and z numerically which are then

substituted into Eq. (2 -86) for o, and o :

Tz-ec,, [2z+a(h-2z)]=0
. A M ah’ =0 (2-85)
2 +3zle* -—+ -
1° "4 =, ] a1-a)
The surface stresses o, and o; can be evaluated by
3]
h 2
c,= a'ﬂ,_x[l + a(e + 3 z)/ z:l , Oy, =—0,, — (2 -86)

with e and z solved using Eq. (2 — 85).
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Fig. 2 -11 Category #4 o, distribution dueto Mand T

Again an appropriate sign change of equations is required depending on the combination
of loading direction as explained in category #3. The classification of 4 sub-categories has been

specified in the Fortran Code and is not repeated here.

2.4.3.6 Category #5 yielding due to shearing alone

This is the situation where the average shear stress t due to shear forces is already in
excess of the critical stress (7). The tensile stress distribution of the o, due to bending and
tension follows the plastic stage behavior of the adherend, i.e., the stage “O — D” in Fig. 2-3 .
This case is similar to category #1 except the Young’s modulus used here is E,;, instead of E,;,

as in category #1. While the o, , o, and e can be evaluated using

T oM T oM
TR TR P TR TR @-8

™ _ o,,.n
e--———12 , z= 12 (2-88)
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From above definitions, it is noted that z does not really exist in this case because it lies
beyond the adherend surface. It is an artificial definition. The bending curvature K™ in this

case is calculated using:

2t (2-89)

Refer to Fig. 2-8 for the diagram of the o distribution.

2.5 Numerical solution

With all the necessary equations now derived, the next step is to solve them. The nature
of this set of equations is very complicated. There are six primary first order differential
equations, which are nonlinear. The remaining support equations require either to solve a set of

nonlinear equations for K,,, K/, K, , K;*, e; and e; or particularly to interpolate data such

as E; from the discrete input of an adhesive Von Mises response.

The mathematical problem presented here is a boundary value problem. There are two
main classes of ordinary differential equations: those in which all boundary conditions are
specified at one point are termed initial-value problems, while those with all boundary conditions
distributed along two or more points are called boundary-value problems. Two methods are
commonly used to solve boundary-value problems; they are the shooting method and the direct
method. The first is based on the Runge-Kutta method, and a trial and error technique is used. An
attempt was made to develope a code in Mathcad @ using this shooting method, but

unfortunately in the end the solver was not sufficiently robust and efficient. This method was
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m——mee - - -gbandoned because this disadvantage may lead to difficulties in further applying this to solve
peel geometries as in Chapter 3. The second method is based on the finite-difference technique,
and the methodology of this technique can be found in {25, 26]. A solver (DBVFPD) from the
IMSL library [27] was found to be capable of solving a boundary-value problem using the finite-
difference technique. This solver has been used successfully with a large range of joint

configurations and load combinations, and is similar to the one used by Crocombe [13].

2.5.1 Implementation of DBVFPD solver from IMSL Library

Only the essential aspects of the computing codes are presented here in this section. The
IMSL library reference manual furnishes more details if a better understanding of the process
diagram presented in Fig. 2-12 is required. A flow chart showing the logical order of solving the
general Equation (2 — 34) is illustrated in Fig. 2-13. The difference in solving specific sets of
equations, such as the ones beginning with either Eq. (2 - 3), Eq. (2 - 16), Eq. (2 -22) or Eq. (2
— 28), only remains in providing relevant supporting subroutines to the solver. A special non-
linear solution technique is used to obtained a solution for the six unknown variables, 7, M, V,

o and C. This is described bellow. The entire Fortran code is provided on the CD found in the

Appendix B.

2.5.1.1 Solution process flow chart

From Fig. 2-12, it can be seen that meshing, the formulation of discrete equations,

convergence testing, solutions, mesh refinement and then solution corrections are all carried out

43
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eps =eps + d(eps) [F;(Y )=0 Equation Assembl;}

Increase
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) [K)=dF1dy

| Jacobian Matrix/

i [kl = F(Y’i

l P
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Fig. 2 —12 Brief process description of DBVPFD solver from IMSL
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within' the IMSL routine DBVPFD. Based on the finite difference technique, the mesh is defined
as a series of points on which a set of differential equations are discretized and transformed into
linear algebraic equations. A cluster of subroutines surrounding DBVPFD are provided to
perform different functions as outlined in the Table 2-2 of Section 2.5.1.4, and they

communicate with each other as portrayed in the flow chart of Fig. 2-13.

To begin the calculation, the information on the geometry of the joint and the material
properties of both adhesive and adherends needs to be input. The initial mesh grids and guess
values for unknown variables are to be provided in compliance with the prescribed boundary
conditions. A data file containing the mechanical properties of the adhesive is used to allow for
the maximum degree of flexibility in specifying the adhesive failure model. In order for
DBVPFD to solve the equations, the FCNEQN subroutine is provided to evaluate the first
derivative of each unknown variable, which is the right hand side of each differential equation, at
every mesh point. The FCNJAC subroutine is designed to calculate the Jacobian matrix K of a
set of algebraic equations by combining the finite difference equations of each variable at each

mesh grid point together with the necessary boundary equations for every mesh refinement step.

The FCNPEQ subroutine is basically a six-element vector calculated based on d(ij It is used
eps

to adjust the increment for the non-linearity of the original equations until “eps” equals unity,
which means the original full nonlinear equation is solved. The concept of this increasing non-

linearity is explained later in Section 2.5.1.2. In all these subroutines, the values of E;,
K, .KlM, K,, KI', e and e; are needed for every mesh point. The KANDE subroutine is

written to choose a particular category out of 5 possible ones for either adherend 1 or adherend 2
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based on corresponding local loads at each mesh point, and therefore return the values of X,

K,., e; and e>. The logic of determining which category will apply is illustrated in Fig. 2-13.

Figure 2-14 illustrates a typical diagram of the computing code with all subroutines

implemented. The function of each subroutine is briefly explained in Table 2-2.

2.5.1.2 Reformulation of the non-linear equations (non-linear solution technique)

Due to the nature of the DBVFPD solver, it requires the introduction of a parameter “eps™
to be embedded into the criginal differential equations such that when eps is zero, the whole set
of equations are transformed into linear equations. Gradually increasing the value of “eps”
increases the degree of non-linearity until the true full non-linear problem is obtained and solved
when “eps™ reaches unity. In this section, only the set of equations from Eq. (2 - 3) to Eq. (2~ 8)
for the plain strain (£.=0) adhesive and adherends model is taken as an example, since the same
principle applies to the other equation sets, from Eq. (2 ~ 16) to Eq. (2 - 21) and from Eq.(2 -

22) to Eq. (2 -27) of other two models.

In Egs. 2 - 3) to (2 - 8), items such as £, K, , KM, K,., K'Y, e; and e; are all

nonlinear factors with implicit and complicated expressions. The target of reformulation is then
to have all of them become their own corresponding values for the pure elastic case when “eps”
is zero and restore the original non-linearity when “eps™ is increased to unity. The elastic

adhesive and adherends analysis of adhesive sandwich joints [4, 8} has shown that the first
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and adhesive local shear r
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due to shear deformation
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No
Calculate the If io,|>0
category #2 for p————>p l "' die _____.Yes
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Calculate the If v
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Outputs of adherend
bending curvature Ky,
O Op. 2and e

Fig. 2-13 The logic of deciding upon the suitable category for adherend at each local mesh point
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derivative of the adhesive shear strain y and the second derivative of the adhesive tensile strain &

can be expressed as:

p, =4 | {T,]"[l+z_2+6!l—uzE'}+6Mlx[l—vz_hz(l—uz)}_(i(l—uZXV”+Vz,)x

dv E hyt . , h, h; h,
(@, +T)- 6("“’XM“; My 2Tk )} @-90)
Da =£§_ = Mu "'le +(Vn "'Vzl)x‘Mu -A.(Tu ‘Tu)h' _Mu 2-91)
dx D| D2
where
3 3
h, +h, E, h E.h 2-92)

While the adhesive secant modulus can be modified into

£ =% - k& —epsk,, +epso, _ Fleps.,7) @ -93)
£, &,

where f is an implicit function of eps, £ and y The calculation of f depends on the effective

adhesive model and the input curve of adhesive’s o, - & response.

The transformed equations become:

dT;x _ f(eps,e,y)y _

dc  21+v,) @-99
dv,. _ fleps,e.7)e ~

dx 1-v? (2-95)
dM . (h +1)f(eps.&,7)
ey _ -

dx e 4l+v,) (2-96)
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; |
% =D, —epsD, +epsiKTM (- b 12+e,)~ KT (hy /2 + e, M1 2-97)
de

e ( )
% =D, —epsD, + eps{Kz,, -K,, }/l 2-99)

When eps =1, this set of equations becomes equivalent to Eq. (2 — 3) to Eq. (2 - 8).

2.5.1.3 Initial guess and boundary conditions

Given the proven robustness of the DBVFPD solver in these types of problems, the initial
guess values can be very approximate. If values of some unknown variables at both ends of the
sandwich are given as boundary conditions, then linear interpolation should be used to better
estimate initial guess values for these corresponding unknown variables at all initial meshing
grids. Otherwise, simply provide the guess values of a constant distribution on the initial mesh

points.

The boundary conditions can be different from one case to another. They can be
prescribed loads acting anywhere on the adherends of the joint, or they can be prescribed strains
in the adhesive layer at the ends or somewhere along the overlap of the sandwich. However,
there is a limit on the number of boundary equations. In this thesis, only six boundary equations
are provided as specified loads (7,V,M) as shown in Fig. 1-1 at both ends of the top adherend of

the sandwich joint.
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2.5.1.4 Brief descriptions of each subroutine in the codes

Different codes were developed for the adhesive sandwich with different adhesive and
adherend model assumptions, i.e., plane stress or plane strain. These codes were all written in
Compagq’s Visual Fortran package. Since the structures and diagrams are the same for every
code, only the typical logic connections between all subroutines, whether user-supplied or
provided by the math library, were illustrated in Fig. 2—13. Table 2-2 summarizes the functions
of each subroutine in the different codes. For convenience, some subroutines used in Chapter 3

for calculating peel applications are also included and will not be repeated in Chapter 3.

Table 2-2 List of functions for all subroutines in the codes

No | Subroutine Functions
1 | ATTACHED A subroutine used for solving a adhesive sandwich model
2* DBVPFD A finite difference differential equation solver from IMSL
3 FCNEQN Calculation of the first order differential values of unkown vector ¥
4 FCNJAC Evaluation of Jacobian matrix dFi/dYi
5 KANDE Determination of appropriate category for given adherend and loads
6 Catagl Calculation of e, z, k,0, and o for category #1
7 Catag2 Calculation of e, 2, k,0, and o for category #2
8 Catag3 Calculation of e, z, k,0, and o) for category #3
9 Catag4 Calculation of e, z, k,0, and o; for category #4
10 Catag5 Calculation of e, z, k,0, and o) for category #5
11 Energyl Calculation of sectional strain energy U, and U,,, under category #1
12 Energy?2 Calculation of sectional strain energy U, and U,, under category #2
13 Energy3 Calculation of sectional strain energy U, and Uj> under category #3
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14 Energyd Calculation of sectional strain energy U,, and U,; under category #4

15 Energy5 Calculation of sectional strain energy U, and Uy, under category #5

16 Adhenergy | Calculation of total strain energy for attached part of given adherend

17 Adsenergy Calculation of total strain energy for adhesive layer

18 EPSD A function calculating Von Mises stress from known Von Mises

strain based on bi-linear material property of adherends

19 ESECS Calculating the secant modulus based on adhesive Von Mises

material response. This secant modulus has a built-in non-linear
factor “eps”
20 ESECDER A subroutine calculating the derivative of adhesive secant modulus
with respect to adhesive Von Mises strain
21 SIGEA A subroutine calculating Von Mises stress from known Von Mises
strain based on the input of adhesive Von Mises curve. The

calculated Vo Mises stress has a built-in non-linear factor “eps”

22 | SIGEADER | A subroutine calculating the derivative of adhesive secant modulus

with respect to adhesive Von Mises strain
23 SIGEAPP A subroutine calculating the derivative of adhesive Von Mises
stress with respect to non-linear parameter “eps”
24 SIGED A subroutine calculating adherend longitudinal strain vs. stress
relationship
25 FUNCT3 A function evaluating non-linear equations Eq. (2 — 83) for category
#3
26 FUNCT4 A function evaluating non-linear equations Eq. (2 — 84) for category
#4
27 LSJAC3 A function calculating Jacobian matrix for non-linear equations Eq.
(2 — 83) of category #3
28 LSJAC4 A function calculating Jacobian matrix for non-linear equations Eq.
(2 — 84) of category #4
29 LINEMK A subroutine used to find bending moment based on curvature,

Refer to [20, 36, 38] for relevant equations.
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30 | DCSDER | A functiontocalculate the first derivative of Von Mises stress with
respect to strain for the Von Mises input data of the adhesive
31 DCSVAL A function used to interpolate values of the adhesive Von Mises
discrete stress-strain input data
32 | FRACTURE | A subroutine used to calculate the critical fracture energy release
rate G, of peel specimens
33 ESECD Calculating the local secant modulus of adherend at the interface
with adhesive
34 NESECD Calculating the local secant modulus of adherend at the neutral axis
35 COEFAB Calculating either the coefficient “A” or “B” in Eq. (2 — 75)
36* DZPLRC A polynominal equation solver
3™ DNEQNIJ A solver from IMSL for solving a set of non-linear equations
38 INTEGAL An integration subroutine for Eqg. (2 — 106)
39 SPESECS A subroutine calculating the full nonlinear secant modulus which
corresponds to “eps=1". This subroutine is a particular case of the
subroutine ESECS.
40 SPSIGEA A full non-linear stress - strain response subroutine. This is a
particular case of the subroutine SIGEA when “eps=1"".
41 ADSFCTI1 A full non-linear adhesive tenstile stress subroutine, this calculates
the adhesive tensile stress when “eps=1".
42 ADSFCT2 A full non-linear shear stress subroutine, this calculates the
adhesive shear stress when “eps=1".

Note: In the No. column, the subroutine number with suffix “** denotes that the corresponding

subroutine is from the IMSL library. Otherwise the subroutine was user developed.

2.5.2 Strain energy and balance

Once the equations have been solved, then all stresses, strains and their distribution can
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- be retrieved in both the adherends and adhesive. The strain energy stored in a particular section

of the adherend can be calculated by integrating the strain energy density over the section, but
the calculation depends on the stress category it falls into. The integration of this sectional strain
energy over whole sandwich overlap region will then give the total strain energy stored in this
adherend. The formulas for calculating strain energy for the 5 different stress categories of the

adherends and for the adhesive layer are given below.

2.5.2.1 Category #1

The total strain energy consists of tensile and shear energy. The x-direction tensile

energy across the section can be given by

hi2
2
gxo-xdy = _[2:;_, dy (2-100)
~-hi2

hi2

U, =

0| —

hi2

Substituting the distribution of o, from category #1 into above equation gives

1 |[12Mm2 17
U = . +— 2-101
: z%[ A ,,] @-101)

The shear energy across the section is calculated by

% =L[~£+lrj-h 2-102)
2.5.2.2 Category #2

The x-direction tensile strain energy is given by
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WL PN,

h12 R/Y

= [ey),dy= I[z EypsOps + ( +oo,, Ye. -¢ )] 2-103)

=hi2 -hi2

Substituting the distribution of o; from category #2 into above equation gives

Ux=(a“_a") h+(o'u+a'¢,) h 1 gypxaw_m h 2-104)
UE,, 8E, .. 20T B

The shear energy across the section is calculated by

v = 1( Lileln (2-105)
Y260 h 2

2.5.2.3 Category #3

The calculation of strain energy in this case needs to be classified further into 4 sub-
categories as mentioned in Section 2.2.2.4. Here we give only a sample category as shown in
Fig. 2-10. This time, the longitudinal tensile stress o, and shear stress 7, were transformed to

principal stresses o; and 0, and the total strain energy can be calculated as

ht2 hi2

U= ey U= [e.(My (2~ 106)

-h/2 -h/2

where ¢,(y) and e,(y) are tensile energy intensity functions and can be evaluated by

ol o; .
e = and e,(y)= if ororo; S0 2-107
g lz .51’ 3[‘ o 22 .31’ .5[’ :
- - + d e, = - + fo o >0 2-108
() 2E, 2E, and e,(y) 2E, 2E, 2E, o101 a: >y ( )
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The integration of Eq. (2-106) is conducted separately in three regions, which are
h h . o .
—E,—(e +2), f-(e+2), (z—e)} and (z—e),i . In each region, the longitudinal tensile stress

ox is linearly distributed, while the shear stress 7, across the section is assumed uniform. All

details in calculation can be found in the Subroutine “energy3” of the Fortran Code.

2.5.2.4 Category #4

The strain energy calculation for this category is very similar to category #3 except in this
case the integration of Eq. (2 - 106) is performed in two separate regions as {— g,(z —e)} and
{(z -e), g} . Relevant details regarding the calculation can be found in the Subroutine “energy4”

of the Fortran Code.

2.5.2.5 Category #5

In this case the x-direction tensile energy across the section can be given by:

1 |[12m?* T
U, = +— (2-109)
2E,, [ W h ]

The shear energy across the section is calculated by

2

[ E 1+ 1+

U, = [_£+lr] nilor( En B \Uro,Miro) 2-110)
2E,.\ h 2 4 Pll+v, 1+v E.E,
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In summary, an example of the energy calculation on a sandwich sample is given in the

next Chapter and a total energy balance is performed to verify the model and analysis.
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Chapter 3 The evaluation of the modified fully non-linear
adhesive sandwich model

In this Chapter, the adhesive sandwich model developed in Chapter 2 is evaluated and
compared with other models. Non-linear adhesive behavior is modeled using the modified Prager

model, while the adherends are bi-linear materials. The results are discussed.

3.1 Comparison with Crocombe’s model and the FE model

3.1.1 Adhesive sandwich

For a given example of an adhesive sandwich configuration and applied loads as shown
in Fig. 3-1, results from the modified model, Crocombe’s model and finite element model were
calculated. The comparison of these different models focuses on the stress and strain in the

adhesive layer of the sandwich joint.

This particular adhesive sandwich example was used by Crocombe [13], the adherends

were modeled as bilinear, and the nonlinear adhesive was described using the Prager formula:
o, = Atanh[(E, - £, )6,/ A+ E . G-1)

where A is asymptote value of the curve, E; is the elastic Young’s modulus, and E,, is the plastic
Young’s modulus. These adhesive properties are given in Fig. 3—1 together with the adherend

and adhesive material properties.
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———————— 12.5Smm———

380 smm  Adherend. d
‘l? < Adhesive

. X
Jmm Adherend. T 380
Nmm/mm

n
v

Adherend parameters: E.,~70 GPa, E,=2GPa, 0;,=300 MPa
Adhesive parameters: E.~5.74 GPa, E,~408 MPa, 4=63 MPa

Fig. 3-1 The sample sandwich joint in [13] and corresponding parameters

3.1.2 Comparison and discussion

[n [13], a corresponding finite element sandwich analysis was also presented. However,
another version of the FE analysis was executed in ANSYS by a current master degree student,
Jun Cui. Comparison were made between the results from this FE model, Crocombe’s model

and the present modified sandwich model as illustrated in Figs. 3-2 and 3-3. For details of the

FE model by Jun Cui, see [53].

Figure 3—2 plots the adhesive stresses from 3 models as a function of distance from the
left end of the sandwich in Fig. 3—1. The modified model uses the plane strain adhesive and
adherends (5. = 0) assumption. The peel stress is defined as the tensile stress normal to the
adherend bounding surfaces. As the stress distributions are symmetric about the center of the
joint, they are shown for only half of the joint overlap. The finite element data are taken from the

nodes at the center line of the adhesive layer. It is seen that the overall agreement of both the
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Fig. 3-2 Adhesive stresses based on the modified model, Crocombe’s model [13] and finite element analysis [53]
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Fig. 3-3 Adhesive strain based on the modified model, Crocombe’s model[13] and finite element analysis[28]




mgci_iﬁgd and_Crocombe’s model w1th the ﬁmte element result is reasonable. The adhesive Von
Mises stress and shear stress from the modified model are generally closer to the finite element
results than the results from Crocombe’s model. This means the consideration of shear
deformation does improve the model. The main discrepancy lies at the end region of the joint
where all finite element stresses reach a peak value and then reduce at the edge. Both the present
modified model and Crocombe’s model fail to show this local maximum. As explained in
Crocombe’s paper [13], there are three main factors contributing to this difference: namely, the
square edge effect, free surface effect and the effect of neglecting the adhesive longitudinal
stresses. First of all, the square edge is modeled by the finite element analysis, while none of
other two analytical models is able to capture this detail. The square edge gives rise to a point of
singularity akin to a crack and there is a region of very high strain gradient at this point which
causes a large variation of stress across the adhesive thickness. Thus the finite element data,
taken on the center-line is somewhat reduced at th;: overlap ends compared with other two
models. Secondly, the square edge is a free surface and theoretically can sustain no shear stress.
The finite element is able to model this and therefore the shear stress displays a sharp drop at the
ends, but the other two models are not able to do so. Finally, by neglecting the adhesive
longitudinal direct stress, which is tensile at the end of the overlap, both the modified model and
Crocombe’s model tend to predict a premature yielding of the adhesive and this contributes to

the lower peel stress distribution.

Similarly, Fig. 3—-3 plots the adhesive strains from 3 models. The comparison of the
strain results between the modified model and Crocombe’s model has shown that both the peel

strain and shear strain at the end region calculated by the modified model are higher than the
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correspondmg ones from Crocombe’s quel, and the strain r¢§ults from the modified model are
actually in better agreement with the finite element results. The inclusion of the shear
deformation in the adherend contributes to the high strains because the adherends undergo a
greater degree of curvature.

By taking the longitudinal direct stress into the consideration by employing an
assumption of the plane strain adhesive (& = &= 0) and plane strain adherends (only &= 0), the
adhesive stresses are calculated again and plotted in Fig. 3—4 together with the stresses from the
finite element model and the previous modified model which assumes no longitudinal direct
stress. It is seen that the peel stress at the root (x = 0) rises to a higher level than the previous
modified model, and the region of tensile peel stress is also shortened to become closer to the
one from finite element analysis. This result helps explain the conclusion drawn above, that the
peel stress from the previous modified model (plane strain adhesive (& = 0)) is lower than the
corresponding results from the finite element model du.e to the neglect of the longitudinal direct
stress.

In sandwich joint cases, the free surface of the adhesive joint would not lie immediately
at the overlap end because of excessive adhesive forming at the ends, and the actual strain and
stress at that point might not be as much as predicted by the finite element method. But if these
models are applied to cracked specimens, e.g., a steady state peel specimen, then free surface
may become a concern.

A particular point worthy to be noted, and this, incidentally, may be probably the best
assessment of the modified joint analysis model, is that from Fig. 3—2, both the equivalent
stresses (Von Mises stresses) from the finite element model and the modified joint analysis

model follow a very similar path. As both models were specified the same stress-strain curve for
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the adhesive. In the finite element analysis the longitudinal strain contributes to the Von Mises
stress. However, in the modified joint analysis model this stress component is neglected and
therefore this peel stress needs to be higher to reach the same degree of Von Mises stress at the

ends. This is evident in Fig. 3-3 of the peel strain plots.

3.1.3 An energy balance check

An energy balance check was performed on the sandwich using the theory described in
Chapter 2. A moment of 380 Nmm/mm applied at the both ends of the sandwich produced a
rotation of 5.7° at both ends. The total energy input due to this bending moment can be

calculated by integrating the moment over the rotation angle as follow:

)
w o= ["M(8)d6 G-1)

where the function M(6) can be obtained numerically by running the code repeatedly using
different moment input, as plotted in Fig. 3-5.

The integration of the moment over the rotation from the curve in Fig. 3-5 as per Eq. (3—
1) gave an energy input of 21.1 J/mm at one end. The total energy input at two ends of the
sandwich was then 42.2 J/mm. At the same time, the strain energy stored in the top adherend was
16.4 J/mm, while the bottom one is 16.0 J/mm. The strain energy contained in the adhesive was
8.4 J/mm. Therefore, the total strain energy stored in this sandwich system was 40.8 J/mm. This
is 1.4 J/mm smaller than the work done on the sandwich. Within the calculation errors, the

whole adhesive sandwich can be considered balanced in terms of energy since the discrepancy is

only 3%.
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Fig. 3-5 The simulated moment v.s. end rotation angle response from the adhesive sandwich as

described in Fig. 3-1

3.2 Comparison with Yamada’s beam on foundation model

Yamada's model [28, 29], developed for analyzing the stress distribution in a solder joint,
was based on the assumption that an elastic beam is attached to an elastic-perfectly plastic
foundation and is subject to a concentrated shear force and moment at one free end. The
limitation of this model is that the shear deformation in the solder was not considered. Figure 3-
6 shows the loads and geometry of the joint. L, is the length of the plastic region where the
foundation tensile stress reaches the yield stress. L, is the length of the elastic foundation. More

details can be found in Yamada’s paper [29].
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Geometry: A=2 mm, L=100 mm, =0.25 mm
Material property: Adherend Young’s modulus £ =70 GPa, foundation modulus
E,=5.74 GPa, foundation yielding stress ¢, = 63 MPa.

End loads: M =114 Nmm/mm, F =0
Fig. 3-6 An example of Yamada’s beam on elastic-perfectly plastic foundation model
In order to make a valid check on the present modified sandwich model, the fundamental
equations as listed in Chapter 2 have to be reformulated to eliminate shear deformation in the

adhesive layer, i.e., the adhesive shear strain and stress are zero. Under the assumption of plane

stress, therefore four first order differential equations can be drawn as:

V,
ﬂ Es G-2)

lx=V _(hl+,)Esy (3_3)
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= =C G-4
e = (K=K -9

where all variables follow the same definition as in Chapter 2. The material properties used for
the elastic beam and foundation are also listed in Fig. 3-6. Both Crocombe’s approach and

modified approach were used to solve for four unknowns: Vi, M;,, € and C. The tensile strain

and stress distributions in the foundation are illustrated in Fig. 3—7 and Fig. 3-8, respectively.
Both the stress and strain plot show that the results from Crocombe’s model are in
excellent agreement with Yamada’s results. The reason is that Crocombe’s approach, as in
Yamada’s model, did not consider the shear deformation in the adherend. However, the present
modified model included the contribution from the shear deformation in the adherend and
therefore predicted a relatively higher degree of tensile strain in the foundation. Even though the
shear force F" was chosen as zero in this example, the bending moment still contributes to the
shear deformation which leads to a greater curvature in the adherend. Theoretically, the bigger
the shear force F, the bigger the difference in predicted foundation stresses and strains between
the present modified approach and Crocombe’s approach. From Fig. 3-7, it is observed that the
plastically yielded foundation length L, is 0.10 mm for the present modified model and 0.21 mm
for both Yamada and Crocombe’s models. The yielded zone L, from the modified model is
shorter because in this model the adherend is modelled as more compliant. It is also evident that
the modified model predicted less compression in the region after zero stress point, while for the

overall length of load bearing zone (L, + L. ) in the foundation, all of the models give very close

results.
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Fig. 3-7 Adhesive stresses from the modified model, Crocombe’s model [13] and Yamada’s model [29] for an elastic beam on elastic
perfectly-plastic foundation as shown in Fig. 3-6
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Fig. 3-8 Adhesive strains from the modified model, Crocombe’s model [13] and Yamada’s model [29] for an elastic beam on elastic
perfectly-plastic foundation as shown in Fig. 3-6



7 T!nis comparison is encouraging in the sense that even though Yamada’s model adopted a
theoretical solution to the fundamental governing equations while both the modified model and
Crocombe’s model used a numerical approach, the solutions are similar. In addition, Yamada’s
model is only able to handle the simple elastic case, but both the modified and Crocombe’s can

considered more complicated situations. Generally, the approach taken in this thesis is quite

accurate.
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Chapter 4 Peel Application

In this chapter the adhesive sandwich models developed in Chapter 2 are applied to flexible-
to-rigid peel joints in conjunction with the beam bending theory for the detached peel adherends.
A completely new peel analysis is presented. An aim of this chapter is to prepare an analytical
approach for further work in Chapter 5 of predicting the peel force for different peel

configurations of a given adherend — adhesive system.

It was noted that the primary objective of this thesis was the development of a sandwich
model and adhesive failure criterion for cases in which adherends yield. In this sense, the
investigation of peel geometries was undertaken only as a practical means of applying loads to

the ends of a sandwich.
4.1 Introduction

4.1.1 Background

Peel tests have been extensively used to measure the adhesion strength in various
applications such as in the electronic packaging industry. In a flexible-to-rigid peel test, a
relatively thin and flexible adherend is pulled apart from a rigid substrate to which the flexible
one is joined by a layer of adhesive (as shown in Fig. 4-1). At the steady state of peeling, the
force applied separating the flexible from the rigid adherend is termed the “peel force™. There are
many parameters determining the peel force, and a large amount of experimental and theoretical
work exists on characterizing these intrinsic parameters [30-39].

In the absence of plastic deformation, the peel force is a direct measure of the adhesive

fracture energy. However, in the case of structural epoxy adhesive joints with high strength,
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plastic dissipation will take place in the flexible adherend and adhesive, consuming a large
portion of energy input through the external work of the peel force. Researchers have been
interested in finding an accurate way of predicting the plastic dissipation and thereby enabling

them to extract the fracture energy of the peel.

Flexible peel arm

Adhesive Layer

Rigid Substrate
//F///////T//f)

t
Detached Attached —»

Fig 4 —1. A sketch of typical flexible to rigid peel test

Spies (in 1953) was perhaps the first to present a theoretical analysis of the mechanics of
elastic peeling. He considered the still-attached part of the flexible amm as an elastic beam on an
elastic (Winkler) foundation and the detached part of the beam as an elastic beam under large
displacement (elastica). Similar elastic models have also been presented by many others such as
Bikerman (in1957), Jouwersma (in 1960), Gardon (in 1963), Gent and Hamed (in 1975). A
numerical solution of the elasto-plastic peel problem has been presented by Crocombe and

Adams [30}] using the finite element method to calculate the stress distribution.
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Chen and Falvin [31] pioneered the research in taking the plastic dissipation into the
account when analyzing the total energy balance of the peel joint. An approximate solution of
peel stresses in the adhesive layer was presented. Gent and Hamed [32] did the same thing based
on elementary beam theory. Crocombe and Adams [33] further extended their elastic peel into
plastic peel in the finite element model. Based on a general elastic-plastic slender beam theory, a
relatively complete analysis was performed by Kim and Kim [34] and Kim and Aravas [35] by
taking account of elastic unloading and reverse plastic bending. A closed form solution related
the root curvature and plastic dissipation with the peel force, peel angle, adherend properties and
root rotation angle. Williams [36] tried to correlate the root rotation with the adherend
compliance in the pest test, but he made the assumption that the attached part of the peel
adherend behaves elastically while the detached part is considered as an elasto-plastic beam.
Kinloch et al. [37] adopted the slender elasto-plastic beam bending theory for both the detached
and attached parts, and the approach of Williams [36] was followed. Good agreement was found

between experimentally measured root angles and predicted ones.

Moidu et al. [20, 38] made several improvements in order to accurately determine the
adhesive fracture energy during peel. Firstly, the prediction of plastic dissipation in the adherend
was revised for a bilinear adherend based on slender beam bending theory, and the work
hardening and the reverse plastic bending of the adherend were taken into account. Secondly, an
elastic foundation which captures both the tensile and shear deformation was presented. In this
foundation model, considering the fact that the attached part of the adherend does not act as a
true built-in cantilever, the adherend compliance was modified by using Kanninen’s [23]

approach of correction for a double cantilever beam (DCB). This peel analysis was used by
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Sargent [39] in his peel tests, and good agreement was observed between the theory and

experiment.

4.1.2 Problems

Nevertheless, those restrictions in Moidu’s approach and others pose problems in several

aspects and they need to be solved as follows:

@ The simplification of the adhesive layer only as a foundation, as all previous researchers did,
has made it impossible to model the failure of the adhesive layer by applying an appropriate
failure criterion. In order to further explain how the critical fracture energy changes with the
bonding geometry for a given adhesive system, the correlation between the stresses and
strains in the adhesive and the constraint provided by both the flexible adherend and rigid
substrate need to be interpreted and quantified if possible.

e Most structural epoxies are toughened and exhibit some degree of ductility, therefore the
adhesive layer in the peel specimen needs to be treated as an elasto-plastic nonlinear
foundation. Both the tensile and shear deformation need to be considered.

¢ The modeling of the still-attached adherend as a bending beam on a foundation subject only
to moments is not comprehensive and generalized. A more general model should take shear
and tensile loading into account.

e Most approaches developed in past research have only studied the flexible-to-rigid peel
geometry. But in potential applications of automobile industry, two thin sheets joint maybe

required, such as “T” peel. Therefore, the peel analytical model developed should be

universal.
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4.1.3 Approach

The approach taken in this peel analysis is illustrated in Fig. 3-2. The overall peel
adherend is divided at the peel root. The detached part, which is to the left of the peel root, is
treated as an elasto — plastic slender beam in pure bending, while the detached part is considered
as a part of an adhesive sandwich with a sufficient length L so that the boundary conditions at x
=L are known. It is assumed and in fact proven that the curvature of flexible adherend reaches a
maximum value at the root. The curvatures and root rotations calculated for both the detached

and attached parts of the adherend should match at the peel root (x = 0).

?y

0 !
Detached | Attached — + X
Vu T -T Vu Vi2
> ..-l.l..|..--l.l. - Tz
Miu | My SR M,

Fig4 —2 Decomposition of peel into detached peel strip and attached sandwich dividing at

peel root where peel curvature and root rotation match and are maximum.
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4.2 Peel analysis

4.2.1 Energy balance in steady-state peel

With a constant peel angle, after the initial crack grows and propagates a certain distance,
the peel force begins to stabilize. The adhesive fracture energy, G., can be derived from an
energy balance [20, 38]:

G. =W

ext

-Wel _Wpl —th (4_1)

where W.,, is the external work done by the peel force F, W,, is the stored elastic energy in
tension in the peeling arm, W, is the energy dissipated during tensile deformation of the peeling
arm, and W), is energy dissipated during the bending of the peeling arm. The external work per

unit area may be calculated by [20, 38]:

W, = %(H- £ —cosf) “4-2)

where F is the peel force, b is the width of the peeling arm, @ is the peel angle, and & is the
tensile strain in the detached part of the peeling adherend. Usually, W., and #,, are negligible

compared to Wp,.

4.2.2 Plastic energy dissipation and equations for detached part

Figure 4-3 shows a sketch of the peeling arm’s loading and unloading process in terms of

the moment—curvature (m-k) relationship and corresponding physical locations on the arm.
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Depending on whether the root curvature k; is sufficiently large or not, every section on the
peel arm will go through the stage of elastic bending (O — A), elastic-plastic bending (A - B),

elastic unloading (B — C) and reverse plastic bending(C ~ D), or all stages but without reverse

plastic bending (C — D).

m,
B (mg, kg)
0 K
\ Bottom adherend > D
(a) (b)

Fig. 4-3 (a) Peeling process and (b) corresponding m-k representation

It is convenient to normalize the moment and curvature with respect to the collapse

moment M, and elastic limit curvature K., respectively [34] as follows:

M K @-3)

where for plane stress of the adherend, M, and X, are defined as:

h? 2
M, =2 g 4-4)
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while for plane strain of the adherend, A, and X, are:

h 20
M =O')P.x 1 , Ke=E JP; (4_5)
1

el x

For the definition of oy, . and E,,,, refer to Section 2.4 of Chapter 2.

The mathematical m—k relationship for all stages (O — A - B — C — D) can be found in
[30-32], and W, can be obtained by calculating the area under O — A - B — C - D envelope in

Fig. 4-3 and converting to non-normalized values as:

ky 2
W,=MK(1-a) 2+-——-1
I’b 0 t.’( a{ 3 3k8 ]

for 1<k,,s(1+L) @-6)
l-a

1

th = M"Ke{.;_a(l—QXZ—a)k; +[2(l-—a)2 ..a(l —aXZ-—a)]kB +§kﬁT‘;‘)

Ra-a) -@-e){ta-e)-6(-a))+@-a)(+a)-4(-a)2-a)-(-a)

for &, z(n—l—) @-7)

|-
The term [l + —l—) is the threshold for the root curvature k;, which determines whether in the

|-

m—k diagram the overall bending process will have a reverse bending stage C-D included.
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Further manipulation of analysis [35] on the detached part of the peeling adherend
produces the correlation between the root curvature &, root rotation angle ¢ and peel force F

as:

le::Ke [1-cos(6 - ¢)]= %l for 1<k,< [1 + I_-IZ) 4-8)

F [t - cos(o - ¢)] = %[l -(-a) }k; + [2(1 -a) -a(l-a)2 —a)]k,

bM K,

[

+ 3(7286‘_’_—);)[6(1 —az)—(4—az2 )]+(2 —a)(l+a)-4(1-a)2-a)

for &, 2(!-@-#) 4-9)

In the above equations, the calculation of k,requires the root rotation angle ¢, and

therefore the attached part of the peeling arm needs to be analyzed for an additional constraint.

4.2.3 Adhesive sandwich model analysis for the attached part

The theory of adhesive sandwich analysis has been described in Chapter 2. As
illustrated in the right-hand side of Fig. 4-2, if the boundary condition is known, the root angle ¢
and root curvature k5 can then be calculated based on the solution of the general equations (2—-34,

2-35, 2-36) in Chapter 2 and matched with their counterparts from the detached part as:

K=K, at root (x =0) 4 -10)

¢“* = arctan(C) at root (x = 0) (4-11)
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where K;° and ¢“° are the root curvature and rotation angle from the detached part solution;
K, and arctan(C) at x = 0 are the root curvature and rotation angle from the attached sandwich

solution. These two conditions are in nature equivalent to each other. If one is met, the other is

satisfied automatically.

For flexible-to-rigid peel, assuming L is sufficiently large, then the right-hand side
boundary forces (72, V2, My, T>z, V323, M2, ) in Fig. 4-2 can be all zero. The boundary forces on

left-hand side are equal but in opposite directions for top and bottom adherends; that is:

T, =-T,; Vy=-T; M,=-M, 4-12)

If the peel is flexible-to-flexible, then boundary forces on right side and T5,, ¥>; and M>, have to

be specified as known or can be directly calculated based on force equilibrium.

A simple force balance on the detached peel adherend gives
T,, = Fcos(9) 4-13)
V,, =—Fsin(g) (4 -14)

The bending moment M, ; is related to the maximum curvature kg at the root as follows [10]:

M, =-mM, =—M,,§k8 if kp<1 @-15)
1) 2 .
M, =-mM,=-M,[(l-a)l-— |+Zak, if kp>1 (4 -16)
3k2) 3
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In summary, Eqs. (4 -10) to (4 —16) imply that an additional relationship between &; and ¢ can
be established in a very complicated way, but can be expressed as

flky.0)=0 @-17

4.2.4 Numerical solution

The solution of kz and ¢ can be obtained by jointly solving Eq. (4-8) or Eq. (4-9) and
Eq. (4-17) numerically. These equations are all highly nonlinear, and Eq. (4—17) does not have
an explicit expression. An iterative technique such as the Newton-Raphson method is employed

and Fig. 4—4 shows a typical diagram for all Fortran codes involving different adhesive sandwich

models.

Several codes were written to solve for the peel analysis based on different adhesive and peel

adherend model assumptions listed as:

1. Both the adhesive and adherend were assumed to be in plane stress (o = 0). Hereinafter

called the plane stress model.

2. Both the adhesive and adherend are in plane strain in the lateral direction (& = 0) but the
adhesive is in plane stress in the longitudinal direction (o; = 0). Hereinafter called the “Z”

plane strain model.

3. The adherend is in plane strain in the lateral direction (& = 0) and the adhesive is in plane

strain in both x and z directions (& = & = 0). Hereinafter called the “X~Z" double plane

strain model.
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[ An initial guess of k3 ]

Evaluate the reaction forces
T11,V11,M),; at root

|

Specify other boundary
conditions for attached
( Using Newton peel adherend
Raphson to find a

new kg

* LSolve adhesive sandwich]

for root rotation ¢

Calculate the detached
part for root rotation ¢

No

If '¢am _¢dm

[Output ks and ¢and J

post processing

Fig. 4 — 4 The diagram of iterative technique for solving non-linear equations of peel models
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For all three peel models, the bottom adherend can be either rigid or non-rigid with a
specified finite thickness. In addition, the codes developed in models 2 and 3 were further
modified, as described in Section 2.2.4, to take Kanninen’s [23] correction for adherend root
compliance into account, and results will be further discussed in the next section.

The post processing after solving for kg and ¢ involves energy balance analysis, calculation

of apparent critical fracture energy G. and the retrieval of stress and strain distributions along the

adhesive bonding line.

4.3 Results and discussions

This section uses a postulated peel configuration to test the new models and comparison is

made with other existing models.

4.3.1 Comparison with FEM and Moidu’s peel models

In order to verify the new peel analysis, comparisons were made with other available
approaches such as finite element analysis and Moidu’s [20, 53] analytical model. The peel
configuration used was flexible-to-rigid peel; a 1 mm thick aluminum strip was peeled from a
rigid base to which it was bonded by an adhesive. The aluminum and adhesive material
properties are listed in Table 2-1 in Chapter 2. The peel force F was 14.7 N/mm, the peel angle
@ was 90°. The elastic Poisson ratio for both adhesive and adherends is 0.37. The plastic Poisson
ratio in the finite element model is 0.5. The peel and shear stresses and strains were calculated

and the results were compared between these different models.
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250 7

& Peel stress - Z plane strain (0.47)
—*= Peel stress - X-Z plane strain (0.47)
—8— Peel stress - X-Z plane strain (0.4)
—@= Peel stress - FE model (0.5)

—* Peel stress - Moidu's model (0.47)
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Fig. 4-5 (a) Adhesive peel stresses from full non-linear peel analysis, Moidu’s peel analysis [20] and finite element peel analysis [53].
Two plastic Poisson ratios (0.4 and 0.47) for the adhesive were used as indicated.
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Fig. 4-5 (b) Adhesive shear stresses from full non-linear peel analysis, Moidu’s peel analysis [20] and finite element peel analysis
[53]. Two plastic Poisson ratios (0.4 and 0.47) for the adhesive were used as indicated.
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Fig. 4 — 6(a) Adhesive peel strains from full non-linear peel analysis and finite element peel analysis [53]. Two plastic Poisson ratios
(0.4, 0.47) for the adhesive were used as indicated.
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Fig. 4 — 6(b) Adhesive shear strains from full non-linear peel analysis and finite element peel analysis [53]. Two plastic Poisson ratios
(0.4, 0.47) for the adhesive were used as indicated.



Figures(4—5 (a) and (b) show the adhesive tensile and shear stress distributions in the x-

direction (Fig. 4-2) calculated using different approaches. The results from the double plane

strain (& = & = 0) model were calculated for two different adhesive Poisson ratios (v, = 0.47 and
v, = 0.4). It is seen that the result, particularly the peel stress, is sensitive to the value of Poisson
ratio for this model. However, the modified plane strain (& = 0) model is not as sensitive to the
value of the adhesive Poisson ratio, therefore only the results for one Poisson ratio (v, = 0.47)
are plotted. For the double plane strain (& = & =0) model, only the results of Poisson ratio (v, =
0.47) will be discussed. Again, the finite element analysis was carried out by Jun Cui, an
M.A . Sc. student working on this project. The Poisson ratio used in this FE analysis is 0.37 for
the elastic and 0.50 for the plastic. Further details can be furnished in his thesis [53]. The results

of Moidu’s model are based on the theory developed in the paper [20].

Figures 4-6 (a) and (b) show the adhesive tensile and shear strain distributions in the

-adhesive layer using these different approaches. The strain results also show the same trend as

the stresses. It can be concluded that the effect of different adhesive constraint models on the
strains in the adhesive layer is significant. Besides, the plastic Poisson ratio of the adhesive is
also sensitive to the adhesive plane strain model (& = & =0).

For both the adhesive stress and strain, the discrepancy of the results between each of the
analytical models and the finite element model decreases with the distance from the peel root. A
relatively large difference occurs in the region close to the root. All analytical models predict
that the adhesive strain and stress are maximum at the root, while the finite element analysis
shows that stress and strain reduces in the root region, which is the end of the joint overlap.
There are three reasons, as has been discussed in Section 3.1.2 in Chapter 3 and Crocombe

analyzed in his paper [13], contributing to this phenomenon: the square edge, the free surface

89



and neglecting the adhesive longitudinal stress o;. In the stress plots (Fig. 4-5), the double “X-
2 plane strain (& = & = 0) model calculated lower level of peel stress than the FE model except
in the root adjacent region. While the “Z” plane strain (& = 0) model gave higher value for the
shear stress and lower for the peel stress. In the strain plots (Fig. 4-6), the double “X-Z” plane
strain (& = & = 0) model calculated lower level of peel and shear strains than the FE model
except in the root adjacent region, while the “Z2” plane strain (& = 0) model gave higher
prediction of peel and shear strains.

Overall, the “Z” plane strain (& = 0) model seems to have better agreement with the finite
element result in the region close to the root. However, moving further away from the root, the
double “X-Z" plane strain (& = & = 0) model gives better predictions than the “Z” plane strain (&
= 0) model. None of these two models gave the same result as the FE model over the entire
adhesive bond region. The stress and strain plots in Figs 4-5 and 4-6 show that in the most of
adhesive region, the curve from the FE model, whether the stress or strain, somewhat lies
between the two corresponding curves for the “Z” plane strain (& = 0) model and the double “X-
Z” plane strain (& = & = 0) model. Therefore, a potential good model might be the one which
combines both the “Z” plane strain model and the “X-Z" plane strain model by applying a
weighting factor on them. Our hypothesis is that all along the adhesive bonding line, lateral
tensile strain (&) is zero, but the longitudinal strain (&) varies from zero at the sufficient distance
from the root, to such a finite value that the corresponding longitudinal stress (o ) is zero. Due
to the limited duration of this thesis research, this proposed new model was not developed in this

thesis.



4.3.2 The effect of Kanninen correction on adhesive foundation

It is believed that the compliance of the flexible adherend reduces the total stiffness of the
adhesive foundation [23]. Based on above modified peel models, the Kanninen correction was
introduced to calculate the effective foundation stresses o; and 17, in the adhesive layer as:

For the "X-Z" double plane strain (& = & = 0) model, the foundation stresses are:

_ '2(1 +v,,) 3h, -
T, = - E + 2’Eaah] 4 4-18)
r(u _1.,.202) r 1
_ P P 1 -
o, = - (up —l)E,. + ZIE,,,,,,} £ 4-19)

For the “Z” plane strain (o; = & = 0) model, the foundation stresses are:

201+ v a
T, = ( £ )+ 3h 4 (4 -20)
o | E, 2E,,
[ 1-02 -!
o, = ( U”)+ u £ “4-21)
) E, 2E 4

where £ is the local secant modulus of the adhesive, and £, is the local equivalent modulus

of the adherend defined as:
o.r'leulml
E“‘”' = :u-umll (4 ‘22)
&

¢

where o™, £ are Von Mises stress and strain at the neutral axis of the adherend. £, is

¢ ? Te

calculated by the subroutine “NESECD” in the Fortran codes.
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The analysis was carried out based on the above modified foundation stresses. The peel and
shear stresses in the adhesive foundation were calculated and illustrated in Fig. 4 -7 (a) and (b)
for both models with and without considering the effect of Kanninen correction. Fig. 4-8 (a) and
(b) shows the plots of the strains. As can be seen from the strain plots, the strain results from
Kanninen corrected models have higher degree of strains than the non-corrected corresponding
models. The “Z” plane strain model has higher strain level than the “X-Z double plane strain
model, but the stresses are lower because the adhesive layer is modeled as less stiff. In both the
Kanninen corrected models, the stiffness of foundations is reduced due to the inclusion of
adherend compliance, therefore the loading zone is distributed over a longer region. The peel
stress plot in Fig. 4-7(a) shows that the peel stress curves for both the “Z” plane strain (Kanninen
corrected) and “X-Z" plane strain (Kanninen corrected) have a small peak close to | mm from the
peel root. This is because the sharp transition of adherend’s stiffness from the elastic to plastic
stage due to the nature of bi-linear model. It is seen that both peel stresses in Eq. (4-19) and ( 4-
21) are related to the stiffness of the adherend, £, .

The inclusion of Kanninen correction on the finite beam compliance did not improve the
adhesive stress and strain prediction in the peel joint. It significantly increased the adhesive
strains to an unrealistic level. However, in the case of “T” peel, because it is a finite bottom
beam instead of the rigid substrate as is in the flexible-to-rigid peel, the Kanninen foundation
correction may still need to be considered.

In summary, this chapter examined three peel models and compared these models with
the finite element model and Moidu’s model [20] in litsrature. The new models considered the
non-linear adhesive behavior and were able to handle the plasticity in the adhesive. The

modeling of the adherend was also more comprehensive than Moidu’s peel model. Under overall
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evaluation, the “X-Z" double plane strain model has a better agreement with the FE model
results. But the discrepancy, as already discussed in last two sections, still exists to an extent that
a better model with the combination of both the “X-Z" double plane strain and the “Z” plane

strain model is worth investigation.
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Fig. 4-7 Foundation stresses from the *Z" plane strain and “X-Z" double plane strain models
with or without considering Kanninen’s beam compliance correction. Poisson ratio 0.47 was
used.
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Fig. 4-8 Adhesive strains from the “Z” plane strain and “X-Z" double plane strain models with or
without considering Kanninen’s beam compliance correction. Poisson ratio 0.47 was used.

95




Chapter 5 The measurement of flexible-to-rigid peel
strength

Peel tests were conducted on flexible-to-rigid peel joints w1th two adhesives, various
thickness of the peel adherend (1, 2 and 3 mm) and peel angles (30° 60° and 90°). The
measured peel forces were then applied to the peel models developed in Chapter 4 to perform
peel analyses. The adhesive system used in all peel tests was: AA5754-O flexible adherend +
adhesive + AA6061-T6 rigid adherend. The pretreatment used before adhesive bonding was
the chrome-free conversion coating developed by Henkel. A universal peel jig was

developed for carrying out peel tests capable of 6 different angles.

5.1  Experimental method

Two adhesives were chosen in this study: Terokal 4551 from Henkel and Betamate
1044-3 from Essex. These two adhesives arc one-part thermosetting epoxies. Tensile tests
were performed on 1 mm thick bulk adhesive dumb bell specimens [48] and gave the uniaxial
stress—strain curves for these two adhesives as plotted in Fig. 5-1. These adhesive specimens
were cut from an adhesive wafer cast using two steel plates with polished surfaces and coated
with a mold release agent. A 1 mm diameter steel wire was used to control the wafer
thickness. Two samples from 1 wafer for Betamate 1044-3 were tested using an Instron 4000
tensile load frame at 0.5 mm/min loading rate. The Terokal 4551 adhesive samples was tested
by S. Sareskani ( M.A.Sc. student) on an ATM 1000 N load frame. Also given in Fig. 5-1
are the stress-strain curve and its bi-linear approximation for aluminum alloy AA5754-O
from [49].

Two series of peel tests were conducted for each of these two adhesives. Each series

of peels used the same adhesive, adherend and adherend surface preparation, but varying the
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Fig. 5 -1 Uniaxial tensile tests for adhesives (a) Betamate 1044-3

(b) Terokal 4551 (c) adherend AA5754-0 bi-linear approximation

The relevant constants from Fig 5.1 are :

Betamate 1044-3 — E_=2580 MPa, g, , = 32.0 MPa, ¢,,=0.014 ;
Terokal 4551 — E_=1830 MPa, o, , =23.6 MPa, ¢,,=0.015;

AAS754-0 —E,=71.0 GPa, E,=0483 GPa, o, =100 MPa

peel adherend thickness and peel angle.
The peel specimens were made of three different thickness of AA5754-0 sheet (1, 2
or 3 mm) bonded to a rigid 12.7 mm thick AA6061-T6 aluminum plate by either adhesive

Betamate 1044-3 or Terokal 4551. They were all approximately 20 mm in width. A peel
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load jig was designed, as shown in Fig. 5-2 for carrying out peel tests with various

- configurations. Peel specimens could be clamped into the trough of a supporting beam with

which a triangle fixture is formed. Five screws on each side of the trough were used to hold
the bottom thicker adherend in place and thus also increase the rigidity of the substrate. The
triangle fixture was adjustable in its assembly allowing 6 different peel angles to be obtained.

The load jig was mounted on two linear bearings (THOMSON SSUPB - 12). The bearings
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Fig. 5-2 The schematic of peel jig for various tests at constant peel angle 6



could travel with minimum friction on a 19.05 mm diameter stainless steet rail which was
fixed at the ends by two end supports. The jig moved together with the peel specimen along
the rail horizontally as the peel propagated, keeping the peel angle constant. An ATM 2200 N
tensile load frame with computerized data acquisition system was used under stroke control
for all peel tests. For each test, the curve of peel force v.s. displacement was recorded by a

computer. But only the peel force at steady state was of interest in this research.

5.2  Adherend pretreatment and adhesive bonding procedures

Each specimen was prepared using following procedures:

e Metal preparation and chemicals

Thin aluminum alloy AA5754-O sheets as peel adherend and thick AA6061-T6 plates as
rigid adherend were bonded together. Before bonding, both adherends were cut to
approximately same width (90 mm), but the rigid adherend was cut to 320 mm length and the
flexible one to 430 mm length; 110 mm longer as a tail which was not bonded to the rigid
adherend. The reason for doing this was that plastic yielding occurred in the tail piece before
the adhesive crack propagated. This helped the peel test reach earlier stabilization of peel
force and therefore reduce the minimum length of bonded specimen required to obtain a
steady state peel force. Pure acetone (99% volume concentration) was used to degrease the
surfaces of the adherends. Alumiprep 33 and Alodine 5200 were chemicals supplied by

Henkel for producing a chrome-free conversion coating on the surfaces before bonding.
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e Pretreatment procedures

. Wipe the bare aluminum plate using lint-free tissue soaked with acetone on the

surface where adhesive is going to be applied, until the surface gets sufficiently clean

{when there is no grease or residue visible on the tissue).

. Rinse the surface with distilled water. Once there is no break-down of water film on

the surface, this means the surface is clean enough.

. Under a fume hood, spray 5% Alumiprep 33 solution onto the surface of the

horizontal aluminum plates for 5 seconds, and then leave wet for 3 minutes. DO NOT
let the surfaces dry during this period by simply re-spraying the drying spoi if any.

The purpose of this chemical is to not only produce a chemically clean and corrosion
free aluminum surface, but also prepare the surface of aluminum for the coating in the

next stage.

. After 3 minutes of wetting, rinse with distilled water completely.

. Spray 7.5% Alodine 5200 solution for 3 seconds on the surface which has just been

rinsed, and then again let it wet through for 3 minutes. During this 3-minute dwelling
time, there are a series of chemical reactions going on which create a thin layer of
coating on the surface of aluminum. This coating serves to improve the mechanical

bond between the aluminum substrate and the adhesive layer and therefore the overall

bonding strength.

. Rinse Alodine 5200 off the surface immediately after 3 minutes. Longer than a 3

minute wetting period will lead to an overweight coating which can reduce the
bonding strength. The required coating weight is 54 —160 mg/m>. This was checked

using X-ray fluorescence at Henckel.
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7. Put the pretreated aluminum- plate into an electrically heated oven and dry it for

approximate 15 minutes at 80°C

8. CAUTION: Always avoid touching the pretreated surface.

e Bonding and curing

1.

0.4 mm thick Teflon shims were used to keep the bond line thickness uniform. Eight
spacers were used for each bonded sample, with 3 on each side and 1 at each end.
Always apply the adhesive in the middle region of the bonding area. By clamping the
joint with eight 2-inch paper clips after closing the joint, let the adhesive flow and
spread evenly between the two surfaces of the plates. By doing this rather than
spreading the adhesive everywhere in the bonding area, we can minimize trapping air
bubbles into the bonding line and therefore avoid defects.

After the joint is clamped, excessive adhesive will ooze out of the edges, periodic
removal of this excessive adhesive is required in order to reduce the resistance of
internal adhesive flow.

Place the joint together with the papers clips which hold the joint into a preheated

oven. A forced-convection oven is required which has even temperature distribution.

60 minutes is required to cure the adhesive completely at a temperature of 180°C.

e Specimen cutting

The 430 mm x 90 mm bonded joints were then cut into 3 pieces of final peel

specimens with approximate width of 20 mm. A table saw was used to cut a total 45
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specimens for this thesis. Special attention was given to ensure the maximum degree of
constant width and prevent overheating of the specimen during cutting by spraying sufficient
coolant and cutting slowly.

In this thesis, a total of 3 batches of Terokal 4551 and 2 batches of Betamate 1044 -3
specimens were made. Each batch had 9 peel specimens with 3 specimens for each of three
different thickness (1, 2, 3 mm). The adhesive Terokal 4551 was from two different supply
batches from Henkel and it was unfortunate that a great variation was discovered between
these two batches of adhesive. Two batches of Betamate 1044-3 adhesive joints were made of

a single commercial supply batch from Essex. See Table 5-2 for detailed batch designations.

5.3 Experimental observations and resuits

e Observations and results

Quite different from DCB fracture tests, no obvious “damage zone” existed ahead of
the crack tip for all 1, 2 and 3 mm peel specimens of two adhesives. The locus of adhesive
failure always lay near the flexible adherend side of the adhesive layer. Figure 5-3 presents a
picture of the crack propagation for a 3 mm peel joint with Betamate 10443 adhesive. The
picture was taken using a Kodak MDS 100 Digital camera and a 40X microscope. The
images of the peel root region at steady state were taken with the digital camera and the
curvature at the root was processed for each peel for later use in the peel analysis. Figure 5-4
shows a typical picture of 60°peel for a 2 mm Betamate 10443 peel joint. The root radius R
and root rotation @z were calculated using the image processing software Windig25. In this
software, spline fitting was used to simulate the curve in overlapped segments and the

curvature and slope angle values were retrieved at the peel root.
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Peel adherend

Adhesive layer

Rigid adherend

Fig. 53 A typical image of crack propagation in the adhesive layer ( The broken ligaments

are paper liquid coating)

Fig. 5—4 A typical image of peel curvature and rotation at the peel root
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For all valid peel tests, a small layer of residual adhesive was left on the surface of the

- . flexible peel adherend while most of adhesive remained on the surface of the rigid substrate.

The 3 mm peel adherend or 30° peel had more residual adhesive than 1| mm peel or 90°
respectively. Table 5-1 lists the average thickness of residual adhesive measured using an
electronic coating thickness meter (Positector 6000). Four measurements were read for each
specimen and about four specimens for each configuration. The overall trend seems to be that
the thicker the adherend and the lower the peel angle, the greater amount of the residual
adhesive was left on the surfaces of the peel adherends. Hence the amount of residual
adhesive increases as the peel root radius increases. The locus of failure was obviously

cohesive from both the visual assessment and measurement. Therefore cohesive failure is

assumed in this peel analysis.

Table 5 — 1 The thickness of residual adhesive layer on flexible adherend after peeling

Peel Imm|Imm/|/Ilmm|{2mm|2mm |[2mm | 3mm | 3mm | 3mm
configuration | 30° | 60° | 90° | 30° | 60° | 90° | 30° | 60° | 90°

Thickness

(um) 42 38 35 52 46 38 63 55 50

The peel crack only propagates in a stable manner at a low loading speed. The first batch
of Terokal 4551 specimens and a few Betamate 10444 samples from the first batch were
tested under 10 mm/min cross-head speed. Due to the friction resistance between the bearing
and rail, the peel jig was not able to advance smoothly while the load frame was peeling the
specimen. “Stick-slip” type of movement of the linear bearings produced a magnitude of 5 —
8 mm jumps with the peel jig as a whole. Jumps were observed for all peel tests. This
movement caused a fluctuation of the steady state peel force. The higher cross-head speeds
resulted in larger jumps. Figure 5-5(a) shows a typical fluctuation in the recorded force —
displacement curve for peel tests at 10 mm/min cross-head speed. After experimental
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Fig. 5 -5 Recorded peel force versus displacement curves for 60° peel test of a 3 mm peel

specimen [19.9 mm wide for (a) and 20.7 mm for (b)] at 2 different speeds.
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investigation of the cause of friction with the bearings, it was discovered that a lower cross-
head speed could significantly reduce the amplitude of the jumps down te 2 mm and maintain
almost constant movement of the peel jig. Figure 5-5(b) show the significant elimination of
the “stick-slip” effect for a peel test of a same specimen tested as Fig 5-5(a) condition but at
2.5 mm/min load speed. The variation of peel angle due to this “stick-slip” effect was then
reduced from 0.8° to 0.2° on average. Since then, for most of the peel tests, the load frame
speed was set at 2.5 mm/min, which was the lowest speed setting.

For Betamate 1044-3 peel joints, 36 measurements were obtained from 18 specimens
with various peel configurations. On average, 4 measurements were taken in total to evaluate
the peel force for each particular configuration, i.e. thickness of the peel adherend and peel
angle. Each of these 4 measurements was calculated from the average of the peak force
values of the steady state peel curves. The peak force in local regions as shown in the curves
of Fig. 5-5, is caused by the fluctuation of tension force in the loading cable, which was due
to the “stick-slip” movement of the peel jig. A program was written in Fortran (in Appendix
C) to find the set of local maxima in the steady peel force over a particular distance. These
maxima were then averaged for each trace. The overall averages of the steady state peel
forces are shown in Fig. 5-6. The length of the cross-head movement over which the average
peak force value was calculated is given in Table 5-2. Also listed in the table are average
peak force and its standard variation for each particular measurement within a single
specimen. Table 5-3 gives the measured root curvature K and root rotation angle gz using
the image processing technique mentioned in the beginning of this section for each peel
configuration. As expected, it is seen that at the same peel angle 6, the curvature K increases
as the peel adherend thickness decreases; while for the same adherend thickness, Kz

increases as the peel angle # increases.
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Fig. 5- 6 Average steady state peel forces and standard deviations for 30", 60" and 90" peels of 1,2 and 3 mm
peel joints for adhesive Betamate 1044 — 3. 2 — 4 measurements were averaged for each pont (see Table 5-2 ).



Table 5-2 Average peak peel forces and standard deviations within a specimen and between
specimens for 1, 2, and 3 mm Betamate 10443 adhesive peel joints at 30°, 60°, and 90°.

Average I mm 2 mm 3 mm
/
Test variation
/
No. peel length | 90° | 60° | 30° | 90° | 60° | 30° | 90° | 60° | 30°

Average ] 69.6 |
1 Stnd. dev. | ' 0.864
Peel length ' 3 1 1.9
(cm) T
Average 7.50 | 13.4222.00|65.73
2 Stnd. dev. 0.783 N 0.107 | 0.379 | 1.46
Peel length 2.8 . 43 | 5.1 [ 20
(cm) '
Average N/A | N/A | N/A 18.41 | 51.1 | 13.3 | 20.1 | 68.9
3 Stnd. dev. | N/A | N/A | N/A 0.331] 1.51 |0.278| 1.06 | 1.03
Peel length | N/A | N/A | N/A 5.8 1.7 7.1 46 | 1.5
(cm)

Average N/A | N/A | N/A | 819 | 14.0 | 53.7 | 13.0 | 224 | 69.4

4 Stnd. dev. | N/A | N/A | N/A |0.317 1 0.307 | 2.54 [0.134{0.333 |0.969

Peellength | N/A | N/A [ N/A | 3.5 1.6 | 21 55 2.7 | 1.2
(cm)
Grand average 682 | 12.1 | 352 | 843 | 16.2 | 50.7 | 12.2 | 20.8 | 68.4

Standard deviation | 0.42 | 0.32 | 0.12 | 0.79 | 1.97 | 244 | 2.00 | 1.72 | 1.79

Note:

1. All units to be N/mm unless otherwise specified

2. The shaded measurements correspond to the sample from preparation batch No.l,
otherwise, they belong to preparation batch No. 2.

3. The standard deviation in the last row is listed as an overall standard deviation from ail

peel force measurements.
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- - Simtlarly, the root rotation angle ¢z has the same trend as the curvature.

For Terokal 4551 peel tests, a total of 3 batches of peel specimens were fabricated. The
results from 42 measurements in total have shown that there existed a very large degree of
batch-to-batch variation for this adhesive. Henkel claimed that the reason for this variation
was that this adhesive was still under development at that time. Therefore the results of peel
forces for Terokal 4551 peel tests and corresponding results from peel analysis, both given
in Appendix B, must be treated with caution. Unfortunatety, no conclusions can be drawn

from the results of this adhesive’s peel tests.

Table 5 — 3 The experimentally measured root curvature Kz and root rotation angle ¢g for

each peel configuration of adhesive Betamate 10443 peel specimens

Peel Ilmm|Ilmm|Imm|[2mm 2mm {2mm [ 3mm | 3mm | 3mm
configuration | 30° | 60° | 90° | 30° | 60° | 90° | 30° | 60° | 90°
Root
curvature | 0.070 | 0.082 | 0.093 | 0.022 | 0.034 | 0.035 | 0.017 | 0.020 | 0.023
KB( l/mm)
Root
Rotation 4.0 4.7 53 1.3 2.0 2.0 1.0 1.2 1.3
@p (degree)

Note: One measurement was taken for each configuration.

5.4 Discussion

The peel test is subject to variations for several reasons: The quality of pretreatment and
defects such as trapped air bubbles during the bonding can cause large variations in the
measured peel forces. The “stick-slip” movement of the peel jig caused the fluctuation of
steady state peel forces as well, but this problem could be significantly eliminated by

reducing the loading speed. The only drawback of extremely low speed was increased test

110



R T T A 4 s A

duration. In some peel tests, the recorded peel force v.s. cross-head displacement showed that

the peel force at steady state exhibited either an overall downwards or upwards trend, or at

some points the peel force experienced a sudden dip and then returned to the previous force
level. The cause of the first phenomenon was that the specimen was not cut to a sufficiently
uniform width, therefore, the peel force increased as the width of the specimen increased
and vice versa. In this case, the peel forces were calculated over the averaged width. The
second phenomenon was due to local bonding defects in the specimen, either a pretreatment
problem or a trapped air bubble. In this situation the peel forces were eliminated.

From the experimental peel forces shown in Fig, 5-6, 3 mm peel specimens gave a
relatively larger variation than 1 mm peel specimens. The cause of this is likely, in the
author’s opinion, due to variations in the larger degree of plastic dissipation related to the
thicker peel adherend. Another reason might be that thicker adherend has higher peel force
level and correspondingly a larger moment at the peel root, therefore a small variation in the
bond strength of the adhesive could cause bigger changes in the peel forces. From the
recorded peel force vs. displacement curves, it was observed that a 3 mm peel specimen
required a longer peel length to reach a steady state peel force than a 1 mm peel specimen at
the same peel angle. For the same thickness peel specimen, 90° degree peel tests needed a
longer period of stabilization than the 30° peel test. For the adhesive system used in this
research, 3 mm peel required a minimum of 8 — 9 cm initial peel length for stabilization at
90° and 4 — 5 ¢cm at 30°. While 2 mm required a minimum of 5 — 6 cm initial peel length for

stabilization at 90" and 3 — 4 cm at 30’, and 1 mm required a minimum of 3 — 4 cm for

stabilization at 90" and 2 - 3 cm at 30",
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Chapter 6 The prediction of flexible-to-rigid peel strength

The peel forces measured in Chapter 5 were applied to the peel models developed in
Chapter 4 to perform peel analyses. Various resulting parameters in the adhesive layer,
particularly at the peel root, were evaluated in an attempt to find a feasible failure criterion
for predicting the strength of new peel joints made out of same adhesive—adherend system
but in different configurations, i.e. different peel adherend thickness and peel angles. After
this calibration procedure of the failure criterion, the approach was used to predict peel forces

of these experiment peel tests and the accuracy of prediction was evaluated.

6.1 Peel Analysis

With the measured peel forces and the uniaxial stress—strain curve of the Betamate 1044—
3 adhesive, the three peel models developed in Chapter 4 were applied to calculate various
parameters in the adhesive layer. The approach used here was that by matching the model
peel force with the experimental peel force, the critical Von Mises strain &, at the peel root
and the critical fracture energy release rate G. were retrieved. Some of the other results such
as root radius, R, and root rotation angle, @» , were compared with the experimental
measurements to verify the accuracy of each model. While other parameters such as the
maximum Von Mises strain at the root and the fracture energy, G. , in the adhesive layer
were analyzed and compared based on different peel configurations in order to look for a

common failure criterion for the given adherend-adhesive peel system.

Table 6-1 lists the critical fracture energy G, root curvature K, (= %) , and root rotation

angle ¢, under various peel configurations of adhesive Betamate 1044-3 specimens based
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on the three peel models described in Chapter 4. These three models are, the plane stress
model (plane stress for both adherend and adhesive layer); “Z” plane strain model (£.=0) for
both adherend and adhesive; and “Z” plane strain model (£.=0) for the adherend and “X-Z"
double plane strain (g =&=0) for the adhesive. The calculated corresponding results based
on Moidu’s model [20] are also given by assuming that the adhesive behaves elastically.

The calculation of G. used an overall energy balance approach as described in Section
4.2.1 of Chapter 4. The theoretical root curvature ks was the best matched curvature between
the solution from the detached part and still-attached part of the peel adherend. Section 4.2.3
of Chapter 4 explained the theory and its numerical implementation. The experimental root
curvature was calculated using an image process technique as described in Section 5.3 of
Chapter 5.

6.2 Discussion

From the G. comparison columns of Table 6-1, the plane stress model predicted the
highest values of G. for each peel configuration because it assumed the highest adherend
compliance. The “Z” plane strain model has the same modeling of the adherend as the “X-Z"
double plane strain model in terms of the adherend compliance, but G. from the “Z” plane
strain model is higher than the one from the “X-Z” double plane strain model. This is
because the adhesive in the first peel model is modeled weaker than in the second model,
therefore in the first model, the plastic energy dissipation in the adherend appears to be less
due to a smaller root curvature. The “X-Z” double plane strain model and Moidu’s model
produced the best agreement on G results. For all four models at same adherend thickness,
the G, calculated for 30° differs greatly from G. for 60° and 90° which are very close. Also,
for all four models at same peel angle, G. is not as sensitive to the thickness as to the angle. In
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Table 6 -1 Calculated G,, K ,and ¢, for various peel configurations under different models and comparison with corresponding

experimental results

Peel Fracture Energy G, Root Curvature Kp Root Angle ¢s
configurations (J/m?) (1/mm) (degree)
Thickness| Angle/ | Plane | "Z" Plane |Moidu|“X-Z"{ Plane | “2” | Moidu | “X-Z" Exp. |Emor®| Plane “Z' | Moidu Exp. “X-Z"

/ angle _|thickness] Stress | Strain | model | Strain | Stress | Strain | Model | Strain | result (%) Stress | Strain | model Result S!rain
30° |2406| 2148 |1027(1253]0.0520.050]0.075]0.064| 0.070 | -9.3 8.53 7371 2.79 4.00 3.69

Imm | 60° |1309| 1231 | 862 | 909 |0.096|0.085(0.101 |0.090| 0.082 | 98 | 595 | 548 | 3.03 470 3.50
90° 11026 975 | 766 | 801 |0.115]0.101 [0.115{0.103| 0.093 | 108 | 584 | 5.41 | 3.11 5.29 3.82
30° (2208 2054 |1061]1242}0.026]0.023]0.030]0.026} 0.022 | 182 | 478 | 4.36 | 1.77 1.26 2.23
2mm | 60° [1186] 1132 | 836 | 897 [0.037]0.032]0.037[0.033] 0.034 | 29 | 346 | 3.22 | 1.84 1.97 2.18
90° | 860 | 834 | 682 | 723 |0.040|0.035(0.039(0.035]| 0.035 | 0.0 | 321 | 3.03 | 1.77 2.01 2.23
30° |2202] 2119 |1283]1324]0.016{0.014]0.019/0.015| 0.017 | -13.3 | 3.54 | 337 | 1.50 1.03 1.74
3mm | 60° [1347] 1301 | 957 |1050]0.022}0.01910.022]0.019| 0.020 | -53 | 2.86 | 2.70 | 1.49 1.19 1.85
90° 1223] 1190 | 958 |1031]0.0260.022]0.025{0.023| 0023 | 00 | 3.10 | 294 | 1.63 1.33 2.15
1 mm |2406] 2148 {1027]1253]|0.052{0.050}0.075{0.064| 0070 | 93 | 853 | 737|279 | 4.00 3.69
30° | 2mm [2208] 2054 |[1061[1242]0.026{0.023[0.030]0.026] 0.022 | 182 | 478 | 436 | 1.77 1.26 2.23
3mm [2202]| 2119 |1283]1323]0.016]0.014|0.019|0.015| 0.017 | -13.3 | 3.54 | 3.37 | 1.50 1.03 1.74
1 mm [1309] 1231 | 862 [ 908 [0.0960.085[0.101]0.090] 0.082 | 98 | 595 [ 548 |3.03| 470 [ 3.50
60° |2mm |1186| 1132 | 836 | 896 |0.0370.032]0.03710.033]| 0.034 | 29 | 346 | 322 | 1.84 1.97 2.18
3mm |1348| 1301 | 957 | 1049]|0.022 | 0.019]0.0220.019] 0.020 | -53 286 | 2.70 | 1.49 1.19 l‘.85
1 mm [1026| 975 | 766 | 800.0.115]0.101|0.115]0.103| 0.093 | 108 | 584 | 541 | 3.11 5.29 3.82
90° |2mm | 860 | 834 | 682 | 722 | 0.040|0.035]0.0391{0.035| 0.035 0 321 {3.03] 177 2.0t 2.23
Imm [1223] 1190 | 958 |1031]0.026 | 0.022|0.025{0.023 | 0.023 0 3.10 | 294 | 1.63 1.33 2.15
* Note : Error analysis was made between the curvature data from “X-Z" double plane strain mode! and the experimental measurements




another words, the G, has stronger dependence on the peel angle than on the thickness.

The root curvature ks comparison shows that the “X-Z” double plane strain model gave
the best prediction. The error percentage column in Table 6-1 listed a maximum absolute
error of 25 % when comparing this model with the experimental measurement. The “X-Z"
double plane strain model had the highest curvature prediction because the adhesive in this
model was modeled as the most restrained one. The evaluation of &5 and G. listed in Table 6
1 shows that in general, the sensitivity of model to the curvature calculation is much less than
the sensitivity of model to G.. The overall root angle ¢, result has the same trend as the root
curvature kg , because ¢ and kg are closely related.

It can be concluded therefore that the results from “X-Z" double plane strain (&. =&.=0)
peel model have the best agreement with the experimental measurements in terms of the root
curvature Kjp, and root angle ¢, . This peel model also produced the closest agreement with
Moidu’s model [20], but with a smaller G. and larger k3. Moidu’s model over predicts the
deformation of the peel adherend by overestimating the strength of the adhesive layer,
because the elastic adhesive in Moidu’s model overestimated the strength of adhesive at
yielding stage, which particularly occurred in the peel root region, and therefore provided an

exaggerated resistance to the bending of peel adherend at the root. This is evident in Table 6—

1 where the calculated curvature K, = (%J is larger and the root angle ¢ is smaller than the

corresponding “X-Z" double plane strain (&.=£.=0) peel model results. Given that the total
work done externally is the same, it is understandable that all G, values from Moidu’s model
are smaller than corresponding “X-Z” double plane strain (s.=£=0) peel model results,
because Moidu’s model calculated more dissipated energy in the peel adherend. Since the

“X~Z" double plane strain (€. =&=0) peel model is the best model for peel, further discussion
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is focused on the results from this model unless otherwise specified.
~ Table 6-2 (a) gives the tensile and shear energy densities locally at the peel root and the

corresponding local load partitioning parameter — the local mode ratio expressed in terms of

the phase angle ¢, at the crack tip as:

e =arctan( "—] 6-1)
e

tensile

where ensite and egseq- are two components of the total energy density e, defined as the local
tensile (mode ) energy component and the shear (mode II) energy component at the crack

tip. €ensie and eheqr can be calculated as following:

l € B 2
e =-2—j0 Es_é‘ de (6-2)

tensile

1

€ shear =§(l+—v:)f35,72d7 (6-3)

where £and yare tensile strain and shear strain in the adhesive layer, and &; and y; are strains
at the peel root. £ is the secant modulus of the adhesive, which is a function of both £and y.
Phase angles calculated based on four peel models listed in Table 6-2(a) all show a small
range of variation within the 9 peel configurations. However, the overall trend is that a
smaller peel angle and thicker adherend produced a larger local phase angle ¢,.

The total mode I energy G, and mode I energy G/, in the adhesive layer, also termed as
the total tensile and shear strain energy in the load bearing zone, which is defined as the
bonding area where the stresses exist, are given in Table 6-2 (b). The average mode ratio in
terms of phase angle (Png) is calculated using Eq. (6—4). For all peel models, the calculated

average phase angle ¢, . also shows a small variation over the various configurations. It’s

found to be less sensitive to the peel adherend thickness than the local phase angle. Its
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Table 6 — 2(a) The local energy densities and phase angle at the root calculated by different peel models as listed in the table.

Peel

Total Local Energy Local Tensile Energy Local Shear Energy Local Phase Angle ¢p
Density e Density eensite Density espear (degree)
Configurations (xlO”J/mm3 ) (x10°)/mm?) (x10°)/mm’) :
Thicknes | Angle | Plane | “Z” [“X-Z"{ Plane { “Z2” |“X-Z"| Plane | “Z” |“X~Z"| Plane | “Z” [Moidu|“X-2"
s/ / Stress | Plane | Plane | Stress | Plane | Plane | Stress | Plane | Plane | Stress | Plane Plane
angle (thicknes Strain | Strain Strain | Strain Strain | Strain Strain Strain
)

30° 198 | 1.77 1.62 1.01 1.04 0.87 0.97 0.73 0.75 4.5 400 | 385 | 429

1 mm 60° 1.16 | 1.15 1.27 0.63 0.70 0.85 0.53 0.45 043 425 387 | 399 | 354

90° 1.05 | 1.05 1.31 0.54 0.61 0.87 0.51 0.44 0.44 4.1 402 | 420 | 353

30° 198 | 1.84 1,80 0.88 0.99 0.87 1.10 0.84 0.93 483 27 | 922 ] 460

2mm 60° 1.24 | 1.25 1.50 0.60 0.69 0.91 0.64 0.55 0.59 45.9 418 | 43.8 | 388
90° 1.09 | 1.10 1.44 0.51 0.59 0.88 0.58 0.51 0.56 47.1 429 | 460 | 38.7

30° {209 1.99 2,05 0.90 1.06 0.94 1.20 0.92 1.11 49.2 430 | 438 | 738

3mm 60° 149 | 1.51 1.87 0.71 0.83 1.06 0.78 0.68 0.82 46.5 422 {455 414
90° 1.53 | 1.55 2,09 0.68 0.81 1.14 0.85 0.75 0.95 483 439 | 472 | 424

Imm | 198§ 1.77 | 162 | 101 | 104 | 087 | 097 [ 073 | 075 | 445 | 400 | 385 | 429

30° 2mm | 198 1.84 1.80 0.88 0.99 0.87 1.10 0.84 0.93 48.3 27 | 422 | 460

3mm { 2.09 1.99 2,05 0.90 1.06 0.94 1.20 0.92 1.11 49.2 43.0 | 438 | 73.8

Imm | 1.16 1.15 1.27 0.63 0.70 0.85 0.53 0.45 043 42.5 387 | 399 | 354

60° 2mm | 124 | 1.25 1.50 0.60 0.69 0.91 0.64 0.55 0.59 45.9 418 | 438 | 388

3mm | 149 1.51 1.87 0.71 0.83 1.06 0.78 0.68 0.82 46.5 422 |1 455 | 414

Imm | 1.05 | 1.05 1.31 0.54 0.61 0.87 0.51 0.44 0.44 44.1 402 | 420 | 353

90° 2mm | 1.09 | 1.10 1.44 0.51 0.59 0.88 0.58 0.51 0.56 47.1 429 | 46.0 | 38.7

3mm | 1.53 1.55 2.09 0.68 0.81 1.14 0.85 0.75 0.95 48.3 439 | 472 | 424
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‘dependence on peel angles reduces as the peel angle increases from 30° to 60° and maintains

almost constant within 60° to 90° range. For the convenience of comparison, the local phase

angles from Table 6 — 2 (a) are listed again in this table.

P =arctan(J?] (6-4)
!/

where G, and G/, are calculated by :

G, =fw(f()l 2“’3}“”‘ (6-5)

G, = .L““ I:’(—‘ —6':')—) -d7:| (6-6)

It is well known from elastic DCB fracture mechanics, that the fracture energy G is a
unique monotonically increasing function of phase angle ; this correlation is defined as the
fracture envelope for a given adhesive system [3]. Table 6-2(b) shows that G. and the
corresponding local phase angle ¢; at the root do not clearly follow this trend. Also the local
phase angle concept is found to be very sensitive to the models because of the sensitivity of
stress and strain at the peel root to the peel models. In addition, the local phase angle varies
along the adhesive bonding line significantly as shown in Fig. 6-1. The average phase angle
@y Seems to be a better parameter for mode ratio partitioning than the local phase angle
because it considers the overall quantities and avoids the local uncertainty. Hereafter the
average phase angle is referred to as the phase angle unless otherwise specified. As listed in
Table 6-2 (a), the fracture energy G. shows its insensitivity to the thickness of peel adherend,
but it’s obviously a function of peel angle. The dependence of G. on peel angle can be

explained due to the dependence of phase angle on the peel angle as shown in Fig. 6-2.
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Figure 6-2 shows that the variation of phase angles for peel joints of different thickness but at

100
90 -
3 -
-é" 70 -
L 60 -
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8 50 -
Q
é 40 A
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<
g 20 -
-
10 A — 3mm at 60 degree
0 1 ¥ T T T L]

0 2 4 6 8 10 12 14

Distance from the root (mm)

Fig. 61 The local phase angle distribution along the bonding line for 3 mm and 60° peel of
Betamate 1044-3 adhesive peel specimen. The pattern of this distribution is typical for all

other peel specimens.

a given peel angle is small, but it increases as the peel angle increases. For all thicknesses, the
phase angle increases as the peel angle decreases; but the change of phase angle is very smalil
within the range of 60° — 90 peel angles. Again the insensitivity of G to the thickness of the
peel adherend is due to the small variation of the phase angle with respect to different
thickness of the adherend. Figure 62 shows the plot of G, versus the phase angles @, for
30°, 60°, and 90° peel angles. It was expected that the phase angle at larger peel angle is
smaller and this translates into the corresponding lower level of G.. As seen from Fig 6-2,

the trend of monotonic increasing G, with phase angle has been traced between 90° and 30°,

90° and 60°, but is not clear between 90° and 60° due to large variation of both G, and ¢, .
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Fig. 6-2 The average and standard deviation of phase angles ¢, for 1,2 and 3 mm
Betamate 1044-3 at 30°, 60° and 90° peel angles.
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Fig. 6-3 The correlation of average and standard deviation of G, versus ¢, for Betamate
1044-3 at 1, 2 and 3 mm adherend at 30°, 60° and 90° peel angles.
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- The insufficient data is possibly accountable for these variations.

6.3 The formulation and calibration of potential adhesive failure criteria

The formulation of an adhesive failure criterion requires a thorough analysis of all peel
results and looking for parameters with correlations. References [33] and [3] show that both
strain and fracture energy approaches are capable of characterizing the failure of adhesives
under their own valid regimes. A failure criterion of mode ratio dependent critical fracture
energy release rate G, serves well in applications of elastic adhesive joints, i.e., Double
Cantilever Beam (DCB), Cracked Lap Shear (CLS), Single Lap Shear (SLS) and Double Lap
Shear (DLS) joints etc. [48]. However, the application of this criterion has not been seen in
the load prediction of joints with a large degree of plastic deformation in the adherends. On
the other hand, in his FEM peel model, Crocombe [33] investigated a failure criterion of Von
Mises critical strain. This failure criterion worked well for a single thickness of peel
adherend; however, it was not useful for other peel joints with same materials but different
thickness. In this section, both failure criteria are studied for the particular adhesive—

adherend (Betamate 1044-3 adhesive and AA5754-0 adherends) system in this thesis.

6.3.1 Critical Von Mises strain failure criterion

Table 6-3 lists the apparent Von Mises critical strain at the peel root for three different
peel models as stated. The results from “X-Z” double plane strain model show that the
ultimate strain is less sensitive to the peel angle than to the thickness of the peel adherend.
Figure 64 illustrates this for both the average and the variation of the apparent Von Mises

critical strain for different peel angles at a given thickness. The variation is considered
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insignificant in comparison to the magnitude of the strains. The average strains apparently

increase with the thickness of the peel adherend.

Table 6-3 Calculated apparent critical Von Mises strain for various peel configurations

under different models

Peel configurations Maximum Von Mises strain at the root
Thickness Angle/ Plane stress | “Z” plane strain | “X-Z" double plane

/angle thickness strain

30° 0.079 0.069 0.029

1 mm 60° 0.046 0.045 0.021

90° 0.042 0.041 0.021

30° 0.078 0.071 0.033

2mm 60° 0.049 0.049 0.025

90° 0.043 0.043 0.024

30° 0.082 0.077 0.038

3 mm 60° 0.059 0.059 0.031

90° 0.060 0.060 0.035

I mm 0.079 0.069 0.029

30° 2 mm 0.078 0.071 0.033

3 mm 0.082 0.077 0.038

1 mm 0.046 0.045 0.021

60° 2 mm 0.049 0.049 0.025

3mm 0.059 0.059 0.031

1 mm 0.042 0.041 0.021

90° 2 mm 0.043 0.043 0.024

3 mm 0.060 0.060 0.035

As listed in the table, the predicted critical strains from the plane stress and “Z” plane

strain model seem all unrealistic because they are much higher than the ultimate strain
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(0.038) of the adhesive from the uniaxial tensile test. None of them was chosen as a failure
criterion because their critical strain values did not correlate with either the thickness or the
angle of peel. For each peel specimen, the calculated critical strains from the plane stress and
“Z” plane strain model are very close, while they are all higher than the strain from the “X-2
double plane strain model. Therefore it may be concluded that the accuracy of adhesive

modeling is important to define a strain based adhesive failure criterion.

0.04
o avg. over 30, 60, 90 degree

2 0.035 * 30 degree
«; 4 60 degree y
£ ] 0 90 degree
£ 0031
[72]) X
4 ‘ T
p>
£ 0.025 -
> i )
E 4
5 0.02 - T

0.015 -

0 4

1 2
Peel adherend thickness (mm)

Fig. 6-4 The peel adherend thickness dependent critical Von Mises strains failure criterion

for 1, 2 and 3 mm Betamate 1044-3 adhesive peel joints

6.3.2 The critical fracture energy G. failure criterion

This failure criterion utilizes the correlation between the critical fracture energy G. and
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phase angle ¢ as roughly established in Fig. 6-5, i.e. the fracture envelope. This figure
" summarized and was plotted based on the relevant data provided in Table 6-2 (a) and (b).
The standard deviation of G, and ¢ are also shown in Fig. 6-5. Compared with Fig. 6-3, this
envelope has combined the phase angles and G, values into one point within the 60°-90° peel
angle range because both the phase angle and G. are insensitive to the peel angle in this

range. This is a relatively primitive envelope because insufficient data have been

1400

1300 - o 30 degree and 1,2,3 mm {
~ 1200 - A 60 - 90 degree and 1,2,3 mm

2

Fracture energy G, (J/m

g 2 8 8 8 g

T T T T T T L E— T T T T T T T LI L

35 40 45 50
Average phase angle (degree)

W
o

Fig. 6-5 The fracture envelope (G. vs. average o) for 1, 2 and 3 mm Betamate 1044-3

adhesive peel joints

obtained to cover other mode ratios within the range. The approach taken here is that, within
the limited range of thickness for peel adherends, i.e., 1-3 mm, a fracture envelope can be

constructed with respect to a narrow band of phase angles. This envelope is different from the
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_fracture envelope developed in elastic joint cases. It is also unique in terms that the phase

angle defined here is based on an average over the entire loading zone.

The critical fracture energy G. calculated for all 1044-3 peel joints has shown that at
least within the 1 to 3 mm range of peel adherend thickness, G. is largely independent of the
peel adherend thickness and varies with peel angle. The failure criterion is that joints will fail

once the fracture energy release rate reaches the critical value of G. corresponding to a

particular phase angle.

6.4 Maodification of the critical Von Mises strain failure criterion

The dependence of critical Von Mises strain on the thickness of the peel adherend, as
was illustrated in Fig. 64, is thought to be due to the effect of increasing degree of constraint
in the adhesive layer imposed by the increasing degree of rigidity as the thickness increases.
It was our hypothesis that, by making the following modifications to the current “X-Z"
double plane strain model, the degree of constraint due to the thickness of the peel adherend
could be taken into the account, and therefore the dependence of the critical Von Mises

strain on the peel adherend thickness could be minimized.

6.4.1 Modification of the Von Mises stress — strain response

Kody and Lesser [49, 50] investigated the correlation between the yielding in epoxies
and the constraint associated with the state of stress. o, and&_ are denoted as the yield stress
and strain respectively in the absence of hydrostatic stress. When &; = 0.2%, a modified Von

Mises yielding criterion was therefore proposed as:

o, =0, - uc, (6-7)
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where o, is the mean stress for a multiaxial stress state and is also called the hydrostatic

~ stress, o, is the modified Von Mises yield stress for the plastic stage, and p is a constant

factor depending on the type of adhesive. For the “X-Z" double plane strain model, &, in the

adhesive can be calculated by:

g =

m

W | =

2v v, -1
(0, +0,+0.)=1| 22 p1| 22— 4 (6-8)
Yo 31—, v,-1+2,

In the implementation of this scheme into the existing Fortran code, the instantaneous

correction of o, which is the original input of uniaxial Von Mises stress, is performed to
obtain g, at each mesh point along the adhesive bond line during each iteration by calculating
o, and therefore g, based on the concurrent local g, value. Further reference can be made

to the Fortran code developed if necessary.

The calculations were carried out for the 90° peel angle with 1, 2 and 3 mm thick peel
adherends using the measured peel forces listed in Fig. 5-6 and material properties of
adhesive 1044-3 and adherend AAS5754-O (Fig. 5-1 of Chapter 5). The results of the
apparent critical Von Mises strain at the root are listed in Table 64, together with the results
from the non-modified “X-Z" double plane strain model. The differences of the critical
modified Von Mises strains between different thickness of peel adherends at 90° peel angle
does not diminish. It is concluded therefore, at least for the current peel analytical model, that
the influence of hydrostatic stress on yield behaviour does not account for the variation in the
critical Von Mises strain.

Nevertheless, it is worth noting that the “X-Z" double plane strain model may not have
captured sufficiently accurate information concerning the constraint. The analysis from the

finite element simulation for the same cases in Table 6 — 4 has shown an opposite trend of o,

variation with the thickness of peel adherends, i.e. in FEM analysis [51], calculated o;,
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increases as the peel adherend gets thicker, while the analytical “X-Z" double plane strain
peel model gives the opposite trend. This contradiction is largely due to the limitation of this

current analytical peel model.

Table 64 The apparent critical Von Mises strains and stresses at the peel root for Von

Mises adhesive model and modified adhesive Von Mises yielding model ( p=0.1")

Adhesive material yielding model Immat 90° | 2mm at 90° 3mm at 90°
Critical Von Mises strain 0.021 0.024 0.034
at peel root
Critical modified Von Mises strain 0.024 0.027 0.039
at peel root
Critical Von Mises stress 38.5 40.1 41.0
at peel root(MPa)
Critical modified Von Mises stress 264 27.8 28.1
at peel root (MPa)

"Note: pisa constant figure and taken from [49, 50] for common epoxies

6.4.2 The correction of Kanninen’s beam compliance

The theory behind this Kanninen’s correction technique has been depicted in Section
2.2.4 of Chapter 2. The motivation for performing this correction was similar to using the
modified Von Mises yielding model for the adhesive as described above. Table 6-5 shows
the critical strain and stress of the adhesive at the peel root, together with the results from the
unmodified “X-Z" double plane strain model. Unfortunately, the difference of the critical
strains for different thickness of peel adherends at 90° peel angle increases again rather than
decreases. The Kanninen correction fails to help in the effort to formulate a generalized

failure criterion for adhesive in peel joints.
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Table 6 — 5 The critical Von Mises strain and stress at the peel root for “X-Z" double plane

strain peel models with and without the Kanninen correction for the foundation

Peel models with or without 1mm at 90° 2mm at 90° 3mm at 90°
Kanninen correction
Critical Von Mises strain at peel 0.021 0.024 0.034
root without correction
Critical Von Mises strain at peel 0.037 0.044 0.066
root with correction
Critical Von Mises stress at peel 385 40.1 41.0
root without correction (MPa)
Critical Von Mises stress at peel 23.5 21.9 22.1
root with correction (MPa)

In summary, these model modifications were done in an attempt to find a thickness
independent failure criterion of Von Mises critical strain. The justification for doing this is
that the current “X-Z" double plane strain peel models may not have captured two issues
which are all related to the quantification of constraint in adhesive layer: hydrostatic stresses
in the adhesive and finite beam compliance on the adhesive foundation. However, the results

did not improve the failure criterion.

6.5  Prediction of peel forces

Prediction of strength for the flexible-to-rigid peel geometry with different peel
adherend thickness and peel angles is a primary step towards the prediction of strength for
general joints where both adherends are plastically deformed. Even though, in the flexible-to-
rigid peel, only one adherend is significantly deformed, the mechanics behind the failure of
the adhesive are the same. With the failure criteria established in the last section, this section

investigates the accuracy of peel load prediction for the configurations described in the last
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peel test section. Two Fortran codes were written for peel load prediction: one based on the

~ critical Von Mise strain and the other based on the critical fracture energy release rate G, as

plotted in Fig. 64 and Fig. 6-5, respectively. [teration was used to match either the Von
Mises strain at the peel root or the adhesive joint energy release rate, calculated under the
prescribed increasing load, with the critical values from the failure criterion which have been
formulated in Section 6.3.1 and 6.3.2. Table 6-6 lists the predicted results of both the total
peeling force and dimensionless root curvature kg based on the two different criteria. kz has
been defined in Eq. (4 — 3) of Chapter 4. The comparison of predicted peel force with
measured peel force shows that both failure criteria worked reasonably well. All predictions
are within the range of +13% discrepancy. However, from overall perspective, the average
prediction error by the strain criterion is 11% while the G, criterion gives 5.9% accuracy. The
fracture energy G. criterion therefore gave better predictions than the critical Von Mises
strain criterion.

In summary, the critical Von Mises strain failure criterion is a thickness dependent
failure criterion. Within the range of 1 —3 mm adherend thickness, the critical strain increased
linearly with the thickness. The critical fracture energy G, criterion is a phase angle
dependent failure criterion. The Table 6 — 2 (b) in has shown that the average phase angle is a
thickness independent variable. Its dependence on the peel angle is also weak within the peel
angle range of 60° — 90°. But the phase angle then increases when the peel angle decreases

from 60° to 30°.

6.6 The correlation between the size of loading zone and critical energy G,

The loading zone in the adhesive bond line of a peel joint is defined here as the region
from peel root where the Von Mises stress is maximum to the point where the Von Mises

stress is 15% of the yielding stress. It may be viewed as a measure of bondline constraint. All
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loading zone lengths were calculated for the nine different peel configurations as stated in
Chapter 5 for adhesive Betamate 10443 peel joints. Figure 6-6 plots the critical fracture
energy G, v.s. the corresponding length of loading zone for each of these nine peel
configurations. Figure 6-7 gives the correlation between the average phase angle and the
loading zone length. Both figures illustrate that G. and ¢@,, increase with the length of
loading zone. Given the limited range of ¢, over the nine peel configurations, a linear
representation is reasonable for the correlation of ¢, with the length of loading zone.

It is noted that while in elastic adhesive joints, the critical fracture energy G. is a
unique function of phase angle, this may be not necessary true in plastically deformed peel
joint cases. It is hypothesized that in the latter case, G will be a function of phase angle and
the degree of bondline constraint. However, the correlation between the average phase angle
and the length of loading zone implies that as long as G. is dependent on the phase angle,
then the length of loading zone is no longer an independent variable; i.c., constraint increases
with increasing phase angle. Therefore, a correlation between G. and phase angle is also,
implicitly, a correlation with constraint. The statistical analysis of correlation between G. and
®avgs Oavg and peel angle 6, @n, and the loading zone length requires more peel data to be
obtained. Due to the limited duration of this thesis, therefore this work is left but strongly
recommended in the future.

However, the last but not the least, the prediction of peel forces based on G. criterion
requires an iterative technique. That is when the input peel force is increased, the phase angle
is calculated and corresponding critical G. is looked up from the criterion envelope. If the
calculated intermediate G. is less than the critical G, , then the peel force is increased until

the intermediate G. is greater than the critical G,
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Fig. 67 The average phase angle @, vs. damage zone length for 1,2 and 3 mm Betamate
10443 adhesive peel joints at 30° 60° and 90° peel angles
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Chapter 7 Limitations, Recommendations and Conclusions

7.1 Summary and conclusions

The analytical method presented is intended to be a first step towards developing a
general engineering approach capable of predicting the strength of thin sheet adhesive joints
in situations where adherends are plastically deformed. The fracture failure criterion
formulated for elastic cases is not valid in these sheet joints because the deformation in the
adherends alters the distribution of stress and therefore the size of the loading zone in the

adhesive layer. The scope of this thesis included two parts: adhesive joint modeling and

adhesive failure load prediction.

e Sandwich Model

For the joint modeling, a generic adhesive sandwich model with arbitrary load boundary
conditions was developed for analyzing the tensile, shear stress and tensile and shear strain in
the adhesive layers. This model was then used to develop a peel model. Both the sandwich
and peel models were capable of capturing the non-linearity of the adhesive and the adherend
into the stress and strain analysis of a joint under plastic loading conditions. The adhesive
sandwich model has been improved from Crocombe’s original approach in several respects,
particularly the inclusion of shear deformation analysis for the adherends. The numerical
codes implemented in Fortran provided a robust solution of a set of 6 first order differential
equations, which are the model’s governing differential equations. The derivations of

equations are based on expressions for the total curvature, bending curvature and neutral axis
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offset of a bi-linear plastic beam subject to an arbitrary combination of shear, tensile forces

- and moment loading. Reasonable- correlation was observed in the comparison of this

sandwich model with the finite element method.

o Peel Model

The peel analytical model used a different approach from Moidu [23] for the analysis of
the attached part of the peel adherend, but the analysis for the detached part remained the
same. The model was able to handle three different types of adhesive stress conditions;
namely plane stress, “Z” plane strain (& = 0) and “X-Z” double plane strain (& = & = 0).
This new peel model not only eliminates the major restriction in Moidu’s model that the
adhesive behaves elastically, but also provides a more accurate modeling of the attached part
of the peel adherend. A Newton — Raphson iteration technique was used to solve a curvature
continuity equation formulated at the peel root of the joint for both the attached and detached
parts of the peel adherend. The comparison of results from this peel model, the FEM model
and Moidu’s model showed acceptable agreement. In addition, the peel model was improved

in the following areas:

1. The treatment of the still-attached part of the flexible adherend as a beam carrying not
only the bending moment but also tensile and shear force, provides a more accurate
analysis of adherend yielding and therefore the deformation. Not only the bending

curvature but also the shear curvature has been considered.

2. The adhesive stress-strain response follows a Von Mises curve given by the uni-axial

tensile test of the adhesive, but the potential applications can be some other adhesive
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response such as the traction-separation fracture model. The adhesive’s constitutive

relation can be given by any non-linear formula, or even in the form of discrete data.

3. Either plane strain or plane stress assumptions in the adhesive layer were considered and

the difference in the results were evaluated.

The comparison of the new peel model with corresponding results from FEM peel models
has shown that the “X-Z"” double plane strain (& = & = 0) peel model produces the best
agreement. Therefore the analysis and prediction focused on this model. The failure criterion
was formulated before making any prediction. Adhesive failure criteria that were investigated

were based on either critical strain or fracture energy.

A system of adhesive Betamate 1044-3 and adherend AA5754-O was chosen for peel
experiments. The data from these peel tests were analyzed and led to the formulation of two
adhesive failure criteria: one is based on critical strain at the peel root and another based on
critical fracture energy. The strain criterion was dependent on adherend thickness while the
fracture energy criterion was phase angle dependent. Both failure criteria were applied to
predict peel loads for nine configurations: a three by three test matrix for three different peel
angles with three different thicknesses (1, 2 and 3 mm) of peel adherends. The overall
predicted result showed a maximum error of 13% for both failure criteria, with the critical

fracture energy criterion being more consistent and involving fewer parameters.

Unsuccessful attempts were made to correct the critical strain failure model in order to
include the varying constraint imposed on the adhesive by the different thickness of

adherends, and therefore eliminate the criterion’s dependence on the adherend thickness. The
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investigation of the relationship between the phase angles and the sizes of loading zones for

all peel configurations showed that the phase angle was correlated well with the tength of the

loading zone. Therefore the conclusion that the fracture energy criterion depends only on the

phase angle can be justified.

7.2 Limitations of approach

1.

2.

The modeling approaches in this thesis were limited by the following conditions:

The detailed investigation by the finite element model has shown that the accurate

modeling of strain conditions in the adhesive layer requires the combination of both the
plane strain (& = 0) model and double plane strain (g = & = 0) model. In the region
close to the peel root, the adhesive behaves more under plane strain (& = 0) while as it
moves away from the root, double plane strain (& = & = 0) mode begins to dominate. In
this thesis, the simplification of taking o: = 0 in plane strain (¢ = 0) model or

Ev, e
= “—-—— in the double plane strain (¢ = & = 0) model caused a significant
iv , —1+2v;, j

x

portion of the discrepancy between FE model results and the results from these two

models.

The assumption of uniform shear stress through the thickness of the adherend may lead
to inaccuracy of adherend modeling, but the significance of its effect may vary with the
peel configurations since shear deformation becomes less dominant when the peel angle
is smaller and the peel adherend becomes thinner. In addition the treatment of uniformity

for all parameters, i.e., the tensile and shear strains and stresses across the thickness of the
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adhesive layer may underestimate the stress and therefore predict yielding of the adherend

at an erroneously high load.

. The use of the secant modulus concept as described in Fig. 2-5 to cope with plasticity in

the non-linear adhesive did not distinguish between the adhesive Poisson ratio for the
elastic stage and the plastic stage. For the most successful double plane strain (& = & = 0)
model, the adhesive’s Poisson ratio is sensitive to the results of stress and strain
distribution. Therefore, the Poisson ratio for the elastic and the plastic stage should be

treated differently. Otherwise a corresponding discrepancy may occur in the result.

. Given the fact that a clearly damaged zone ahead of the crack tip in the adhesive layer of

all peel tests is not observed, therefore, the simplification of not considering the
concentration effect at the crack tip (root) may pose a problem in cases where a sharp
crack exists as in a relatively brittle adhesive. However, this may not be an issue for more

ductile adhesives where failure may not occur as fracture at a sharp crack.

. The analysis of the detached part of the peel adherend needs to be investigated to include

the contribution of tensile and shear forces to the curvature. This is critical to the accurate
determination of curvature at the root, the calculation of the total plastic energy

dissipation in the adherend and, therefore the critical fracture energy of peel.

. Although Section 5.3 developed a peel model using a modified Von Mises adhesive yield

response that approximated the effect of hydrostatic stress, the application was very

limited due to the fact that the calculation of the hydrostatic stress was based on a very

rough estimate of o;.
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7.3 Recommendations for future work

The adhesive sandwich model, which is at the core of modeling either flexible-to-rigid
peel or flexible-to-flexible peel, can be improved as follows:

1. Of top priority, sufficient peel tests at more peel angles and peel adherend thickness are
required in order to define a better fracture envelope and have a better understanding of
the correlation between G. and various parameters as adhesive constraints. In addition,
similar tests with other adhesives, either more brittle or more ductile, are needed in order
to gain more confidence.

2. Based on the sensitivity of the peel results to the adhesive’s Poisson ratio in the “X-Z”
double plane strain peel model, an evaluation should be performed to determine how
inaccuracy in the elastic modulus, yield stress and Poisson ratio of the adhesive will affect
the model’s output. It may be that variations in these properties do not affect the model’s
usefulness since they may simply cause a change in the critical strain or fracture energy.

3. The longitudinal tensile strain & in the adhesive layer should be included in the
fundamental governing equations because the finite element modeling has shown its
significance. Therefore, the corresponding o needs to be included into the force
equilibrium equations even though the approach might be mathematically difficult. It is
the author’s preliminary recommendation that an alternative way of considering changes
in longitudinal constraint in the adhesive layer is to use the combination of both o; = 0
and & = 0 plane strain models. That is, in the adhesive region away from the damaged
zone, the & = 0 model is dominant, but in the area of damaged zone, the o; = 0 mode
gradually takes over until it fully controls at the edge of the adhesive sandwich (peel

root).
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4. The bi-linear beam bending analysis for the detached peel adherend might consider the

effect of neutratl axis offset due-to tension and shear deformation due to shear forces. In
other words, the pure bending moment and curvature (m - k) correlation may not be

accurate for modeling the detached part of peel adherend.

. A recommended approach for calculating plastic deformation in the adhesive layer, is to

separate the elastic strains from the plastic strains. Hooke’s law with elastic Poisson ratio
and elastic Young’s modulus can be used to relate stress and elastic strain for the elastic
stage. For the plastic stage, a set of equations analogous to Hooke’s law, with plastic
Poisson ratio and secant plastic modulus can be adopted to establish the correlation
between stress and plastic strain. The total strain, which is then the sum of elastic and
plastic strains, is considered to be the effective total strain equivalent to the Von Mises
strain. Details can be found in [52]. The justification of doing this is that the stresses and

strains in the adhesive layer are sensitive to the Poisson ratio of the adhesive.

. The formulation of the adhesive failure criterion may need to correlate the critical

parameter, whether it is strain or fracture energy, with the degree of constraint (triaxiality

if stress) and/or the length of the loading zone (the stress concentration in the adhesive

layer).

. The definition of mode ratio should be studied because the mode ratio based on the

traditional definition varies significantly along the adhesive bond line. The average

concept seems better in characterizing load partitioning.

. Other adhesive failure models such as modified Von Mises model, which considers the

hydrostatic stress effect on adhesive yielding, or the Embedded Process Zone (traction-

separation law) model of fracture should be investigated further.
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Appendix A

The longitudinal ¢ — € response of bi-linear adherend plane strain and
plane stress

® Plainstrain(e = 0)

Eq. (2 — 45) gives Von Mises stress-strain relationship of bi-linear adherend:

¢

E e if —-€ <¢g
el “e f e w (A—'l)
ay,,+Ep,(ee—ayp) if--¢,>¢,

where o, =E,¢,, and E, =aE,,.
For plane strain case, the following two equations relate the Von Mises stress g, to the

longitudinal stress oy and the Von Mises strain &, to the longitudinal stress & , respectively as:
ae={(l—-u,,+vf,)5f+3r2 e (A-2)
e, ={i-v, +02 )} +0.75(1-0, F r* ¥ /1.0-03) (A-3)

Define artificial stress and strain variables, o. and &, , respectively as follows:

o =0l -3 =(l-u,,+v§)o'sa', (A-4)
0.5
-___Jz 0'75(1_%)1 2_{1—1//,4-",2,] £ (A-5)

e &~ Yy = 5
(-v;f (-v;f
Therefore, the longitudinal stress o can be calculated by

) Joi-3r?
o= 9. = (A_6)

* (I—Up +uf,)0‘5 - (l—vp -H.);)M
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Substituting Eq. (A - 1) into above equation gives:

f VE,€l-37? .
A fe. S5,
(l -v, +v )
o, =9 3 (A—7)
\[FE €y +E E. yp) -37°
0.5 ifsl‘ > 8)’!’
| (l -v, +v, )
By setting & =¢,, in Eq. (A - 5) and solving for & , we have following:
-0:) 1
1-v, , 3 1 L
€px =_ﬂ_l[€;p_z 1 a}’-:l (A-8)
(1-v, +u3 T

Substituting Eq. (A — 2), Eq. (A - 3) and Eq. (A - 8) into Eq. (A-7), Eq. 2-48)and Eq. 2 -

49) can be derived.

Equation (2 — 50) is derived by assuming that the shear stress and strain response of the adherend

follows the bi-linear relation as:

Ge if —-7< T ernca
- e f neal (A-9)
}’ypGel + c;pl (}' - }'yp ) !f -=T> tcnlr’cal

where G, and G are the elastic and plastic shear modulus of the bi-linear adherend. y, is the

yielding shear strain. All of them are calculated as:
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E
G, =714 A-10
"2+ A-19

E
G,=—+2 A-11
“ 2il+vp) ( )
r"llll.’ﬂ
},yp =.‘G_'_ (A— 12)

el

Substituting above three equations into Eq. (A — 9) and solving for y produce Eq. (2 — 50).

Equation (2 — 51) is obtained by differentiating equations (2 — 48) with respect to &:

E _da,={"""’{(l(1".f)")’*’g:);} } .

4 de (1 -v?)

1| -

’ £, (l -V, +v, )
Equation (2 - 52) is obtained by differentiating equations (2 — 49) with respect to &. Equation (2

—55) is produced by substituting Eq. ( 2 — 49) for o.
e Plane stress( 0. = 0)

For plane stress case, the following two equations relate the Von Mises stress o, to the

longitudinal stress o; and the Von Mises strain &, to the longitudinal stress & , respectively as:
o, =(o? +3c%)” (A-14)
& =2 +0.75 y /1 +v, FJ° (A-15)

The artificial stress and strain variables, o, and &, , become as following, respectively:
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o, =\ol-3r* =0, (A-16)

.|, 0sl-v,F
= ’ e 2 AL A-17
Se ge (]_V;)g 7 8.\' ( )

Therefore, the longitudinal stress o, can be calculated by

, =0, = ol -37’ (A-18)

Substituting Eq. (A — 1) into above equation gives:

Ele —3r° ife, <¢
o, = e yp if ”» (A-18)
‘/[Ee,eyp +E, (s‘, ~£,, )]Z -37? ife, >¢,,
By setting &, =g, in Eq. (A - 17) and solving for & , we have following:
A T B
£, =|€Ep—— : (A-19)

Substituting Eq. (A — 14), Eq. (A - 15) and Eq. (A - 19) into Eq. (A - 18), Eq. (2 — 56) and Eq.
(2 - 57) can be derived.

Equation (2 — 58) is obtained by differentiating equations (2 — 56) with respect to &:

2
Ef,ei-a-—s- ! y? =372
do H{l+v,
E, =%%_ =E, (A -20)

=
“ de £,

Equation (2 — 59) is obtained by differentiating equations (2 — 57) with respect to &,.

Equation (2 — 61) is produced by substituting Eq. ( 2 — 57) for a;.
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Appendix B

The measurement of peel forces for Terokal 4551 peel tests

Table B-1(See Note 1) Average peak peel forces and standard variations within a specimen
and between specimens for 1, 2, and 3 mm Terokal 4551 adhesive peel joints at 30°, 60° and

90°.

Average 1 mm 2 mm 3 mm
/
Test variation

/
No. |peellength [ 90° | 60° | 30° | 90° | 60° | 30° [ 90° | 60° | 30°

Average
l Variation

Peel length
(cm)

Average

2 Variation

Peel length
(cm)

Average 3.01 | 650 | 30.86 | 7.25 | 13.28 | 53.38 | 14.98 | 24.83 | 73.32

Standard Deviation | N/A | 034 | 254 | 143 | N/A | 192 | 122 | 0.38 | 292

Note:

1.

The use of this table is restricted for reference only because a significant batch-to-batch
variation was discovered in this adhesive. Some of the peel tests were even not able to
reach a stead state and therefore were removed from this table.

All units to be N/mm unless otherwise specified

3. The shaded measurements correspond to the sample from preparation batch No.l,

otherwise, they belongs to preparation batch No. 2 or No.3. However, the measurements

from batch No.2 and No.3 were all removed.
The standard deviation in the last row is listed as an overall standard deviation from all

peel force measurements.
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Fig. B~ 1 Average steady state peel forces and standard deviations for 30°, 60" and 90° peelsof 1,2 and 3 mm
peel joints for adhesive Terokal 4551. ] — 2 measurements were averaged for each point (see Table B—1 ).



. Sandwichdoublestrain.f:

Appendix C

CD disc containing all Fortran codes as listed developed in this thesis

. Sandwichstress.f- A sandwich model based on the plane stress (o; = 0)

assumption for both the adhesive and adherends.

. Sandwichstrain.f- A sandwich model based on the plane strain (5 = 0)

assumption for both the adhesive and adherends.
A sandwich model based on the plane strain (& = 0)

assumption for both the adherends and double plane strain (& = o = 0) for the adhesive.

. Peelstress.f: : A peel model based on the plane stress (o = 0)

assumption for both the adhesive and adherends.

. peelstrain.f: A peel model based on the plane strain (5 = 0)

assumption for both the adhesive and adherends.

. Peeldoublestrain.f-———e~eceeeeeewA  peel model based on the plane strain (5 = 0)

assumption for both the adherends and double plane strain (& = o; = 0) for the adhesive.

. Pdnstrain.f— A peel force prediction model based on the critical Von

Mises failure criterion and the double strain peel model: peeldoublestrain.f

. Pdnenergy.f: A peel force prediction model based on the critical

fracture energy Ge failure criterion and the double strain peel model: peeldoublestrain.f

. Maxpick.f: A Fortran code written for. data processing of the

steady peel forces, as describe in the thesis.
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