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An adhesive sandwich model, which treats adiierends as bilinear and adhesive as 

nonlinear, was presented. Both the bending and the shear deformations in adherends were 

accounted. Stresses and strains in the adhesive were solved fiom 6 differential equations using a 

finitedifference method and compared with other models. A reasonable agreement was 

observed. A peel model was developed using the sandwich model for the attached part of peel 

joints. Peel tests were conducted on 9 configurations: combinations of 1,2, 3 mm peel thickness 

and 30°, 60°, 90° pee1 angles. Various parameters were calculated and compared with either the 

finite element models or the experiments. A critical von Mises strain E, criterion and critical 

fracture energy Gc critenon were proposed. The G, criterion showed its dependence on phase 

angles. The load predictions for 9 peel confiigurations achieved an average discrepancy with 

experiments of 11% for E, and 5.6% for Gc criterion. 
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Chapter 1 Introduction 

1.1 Introduction 

Adhesively bonded sheets in vehicles have many advantages over welded or riveted ones in 

ternis of increased rigidity, less stress concentration and avoidance of local buckling failure. 

Even though recent advances in adhesive formulation have allowed adhesives with exceptionally 

good mechanical properties to be produced, their application is still restricted to non-critical 

joints. A number of fundamental issues need to be addressed before their potential mainstream 

application cm be seen in automobile industry [ I l .  The prediction of reliability of a joint under 

service conditions is important, but an issue remaining at the top of the agenda for the 

automobile applications however, is when and how an adhesive sheet joint will fail during 

impact loading, or so-cal led crash-worthiness. 

There exists no robust and accurate adhesive failure model so far in cases where the 

adherends undergo large-scale yielding. Several factors complicate the modeling of adhesive 

failure and render a purely theoretical strength prediction of the joint very dificult. First of dl ,  

the lack of suficient knowledge on a common failtue mechanism of various adhesive joints is 

limiting our capability to formulate a universai adhesive failure model. For instance, the cohesive 

fracture failure of the adhesive in a Double Cantilever Beam (DCB) joint is characterized by 

many micro-cracks propagating in the way of void nucleation and coalescence ahead of the main 

crack. However, the interfacial failure of a peel joint exhibits only a main crack at the root with a 

microscopically small damage zone. Secondly, in the case of high süain-rate impact loading, the 



tirne-dependant visco-elastic response behavior of the adhesive may alter its quasi-static loading 

behavior. In addition, adhesive in-service degradation due to long periods of exposure to either 

high temperature or high humidity imposes additional difficulties on the modeling of adhesive 

failure. Last but not least, an extreme situation worthy to be noted, and it is conûary to the 

cohesive failure mode whic h is usuall y anticipated, is that an adherend-adhesive interface fai lure 

will occur on a macro scale when surface preparation or material quality are poor. Consequently, 

this mode of failure cannot be predicted using any theoreticai technique [2]. This is particularly 

true in the case of bonded thin sheets joint where the load is highly concentrated in the small 

region near the adherend surface. Therefore in this thesis, al1 joints are assurned as being 

manufactured to speci fications and so-called adherend-adhesive interface failure is not expec ted 

to occur. 

The failure of adhesive in joints is correlated with the degree of constraint and the mode of 

loading imposed by the adherends. Therefore, an adhesive failure mode1 has to be built in the 

context of adherend constraint or at least be able to interpret the constraint. The presence of 

plastic defomation in adherends will certainly accelerate the failure of the adhesive joint by 

decreasing the degree of constraint. So far, research has been done successfully in predicting the 

ultimate frafture loads of a wide range of elastic adhesive joint geometries under combinations 

of mode-1 and mode41 loading [3,4]. The motivation of this present project is built on removing 

the above restriction of elastic defomation, because these approaches become invalid when 

adhesive is used to bond thin metal sheets when those two sheets yield under impact loading as 

in the case of a crash. 



1.2 Literature Review 

Adhesive joints can be generally grouped into two classes. The first class is the relatively 

simple case where adherends remain elastic and therefore linear elastic fracture mechanics 

applies [5, 61. The second class is more complicated, since it deals with the situation where 

adherends undergo plastic deformation [7, 81. For the first class, the existing methods which 

have been used to predict the strength of adhesive joints fa11 into two general categories. One is 

based on the calculation of strain and stress with failw presurned to correspond to critical 

values. The other stems fkom the theory of fracture mechanics where the concept of critical strain 

energy rate, G, , is adopted as an adhesive failure criterion. While some researchers found that Gc 

correlates well with the failure [9, 1 O] and therefore followed the second approach, othen did not 

agree so. It has been argued that since most structural adhesives are toughened and quite ductile, 

they do not present sharp cracks and therefore fracture mechanics is invalid [ l  I l .  The 5-20 mm 

long darnaged adhesive load-bearing zone discovered in Double Cantilever Bearn Fracture tests is 

a direct evidence of the non-existence of a sharp crack [SOI. 

The classical mechanical analysis of adhesive joints was approached in a simplified way 

by Hart-Smith [12], who assumed that only the shear components of stress and m i n  were 

significant. Crocombe [13] developed an adhesive sandwich model which accommodated the 

non-linearity of both adhesive and adherend, and used the Von Mises yielding criterion to 

characterize the failure of the adhesive. In his model, the adhesive's constitutive relation can be 

any continuous mathematical function, thereby providing the flexibility in adopting other 

possible adhesive failure criteria into the model, i.e., transplanting a fracture failure model into 

this classical joint analysis. Unfortunately, in al1 of Crocombe's papers, the predictions of joint 



failure loads were not pursued by utilizing this anaiytical model, because a satisfied adhesive -- - = -  

model, which can interpret the hydrostatic stress and stress tri-axiality in constrained adhesive 

layer, was far from king established and applied as an adhesive failure criterion. 

A gmup of other investigators studied adhesive joints using a fracture mechanics 

approach. Tvergaard and Hutchinson [14, 151 have developed an Embedded Process Zone model 

(EPZ) in conjunction with finite element analysis to simulate the fracture process occumng 

ahead of the crack tip in homogeneous matenals. The EPZ model is intended to characterite the 

force and displacement response inside the "process zone" as a crack initiates, grows and finally 

leads to the separation of the joint. The force and displacement relation, presented in foms of 

traction forces resulting from normal and tangential displacements respectively, are characterized 

mainly by the work of separation per unit area of crack advance (ro) and the peak stress (d ) 

supported by the bonding traction. These parameters model Mode 1 (pure separation) and Mode 

11 (pure slidinp) loading, and for any mixed mode, there is a generalized mixing rule to obtain the 

combination of those two. However, it is worth noting that the EPZ model is really not a pure 

fracture mechanics concept. The advantage of using EPZ modeling is that it simplifies the 

characterization of adhesive fiacture failure. Thouless [16], to further explore the applicability of 

EPZ model in adhesive joints, used this model to predict the strength of T-peel specimens by the 

following steps: Firstly al1 parameters of the model (i.e., T, and i? ) were caiibrated with several 

wedge tests using the sarne adhesive and adherends. Then a process zone model was 

incorporated into the T-peel finite element model for load and deformation prediction. His recent 

papers [17] have shown that this approach works in both mode I and II loading, but its viability 

in mixed mode loading remains to be seen. At the sarne time, Liechti has taken the same 



approach in modeling the fracture process zone of adhesives, cailing it a "DZM" model - the 

Damaged Zone Mode1 [ I 8, 191. 

In sumrnary, throughout the history of research on adhesive joints, a large number of 

approaches have been proposed in the literature, with different focus and assumptions. Some 

suffer frorn the fact they are too hypothetical and idealized in order to allow the derivation of a 

closed form solution. Others require the establishment of finite element model for every single 

joint geometry in order to implant either the EPZ or DZM model and therefore be capable of 

predicting the corresponding fracture load. This is in the violation of principles of simplicity and 

ease of use for engineering design purposes. In general, a complete approach for predicting the 

strength of an adhesive joint should consider not only the appropriate modeling of adhesive 

failw, but also the material properties and modeling of the adherends, adherend pretreatment, 

adhesive curing, and adhesive thic kness. 

1.3 A brief outline of the present approach 

In the punuit of finding a generally applicable failure prediction approach, a standard 

model is in our interest. which avoids the case-to-case dependence on the geornetry and loading. 

An adhesive sandwich mode1 with a r b i w  loads, as illustmted in Fig. 1-1, cm be always 

extracted regardless of the complexity of the joint configuration [4, 101. The rational for 

analyzing joints this way lies in the fact that they always fail at the end of bonding overlap 141, 

while the loads at the ends of the sandwich can be always determined by either fiee-body 

analysis or provided by finite element solutions. 



Fig. 1-1 The general ûdhesive sandwich with end loads separated from a few typical joints 

An analytical approach is in our interest for the ease of further applying it to other 

applications. Using the first principles of force equilibriurn and plastic beam bending theory, 

Crocombe [13] presented a set of six first-order differential equations and numerically solved 

those equations by a finite difference method. This approach takes into account the non-linearity 

of adhesive and adherend deformation. In this thesis, Crocombe's sandwich model was made 

more general and accurate by relaxing some of its restrictions. The effect of plane stress or strain 

assurnptions was also evaluated and compared. The numerical solution to the modified models 

provided the relatively more accurate calculation of stress and strain distribution inside the 

adhesive layer. To validate the modified analytical sandwich model, bencharking was done 

with both FEM and other specialized theoretical models. 



The modified sandwich models were then m e r  applied to peel applications. Rather 

than analyzing the crack growth process from the initiation to the stabilized stage of peel, our 

objective was to find an analytical way of predicting the steady state peel strength directly. By 

refemng to the theory that Moidu et al. [20] had already developed for steady state peel based on 

the principle of a global energy balance, the curvature and root rotation from the detached 

adherend of the peel specimen was calculated and iterations made until they matched the results 

from the sandwich analysis for the still adhesively attached adherends. The shear and tensile 

plastic deformation in the adhesive layer was quantified corresponding to experimentally 

rneasured peel loads under given peel configurations, and at the sarne time the fracture energy 

was calculated. Finally using the data from various peel configurations, an appropriate adhesive 

failure criterion was formulated. The next step was then to apply the proposed adhesive failure 

criterion to predict the peel strength with various peeling configurations, Le., different 

combinations of peeling adherend thickness and peel angles. The predicted peel strength was 

then compared with experimentd measurement and the accuracy of the predictions was 

evaluated. 

1.4 Objectives 

The objectives of this thesis certainly served the overall goals of our research project "Predicting 

the strength of adhesive bonding with adherends undergoing extensive plastic deformation" 

jointly fimded by CAMM and AIcan Inc. Specifically four objectives as follows were covered in 

this thesis: 



Develop an analytical model for a general adhesive sandwich with yielding adherends and 

adhesive, and taking arbitmy loading. ' ! 

Establish an analytical peel model capable of handling flexible-to-rigid peel geometries and 

capable of funher treating flexible-to-flexible peel joints. 

Obtain experimentai data for the peeling of thin sheets of different thickness at several peel 

angles. These thin sheets are bonded to a rigid substnite. 

Investigate various adhesive failure criteria in the peel model to correlate with experimental 

.data 

1.5 The outline of Thesis 

In Chapter 2, an improved adhesive sandwich mode1 is developed based on Crocombe's 

approach. The new model considers the shear deformation of adherends due to direct shear 

forces and therefore changes the onset of yielding in adherends based on Von Mises yielding 

criterion. The shear curvature is added into a system of goveming differential equations and a 

numerical approach is adopted to find the solution. Under different plane strain and stress 

conditions, three differen: models are developed and corresponding codes are implemented in 

Fomm. 

In Chapter 3, the 'T' plane strain mode1 deveioped in Chapter 2 are exarnined by applying 

it to a sample adhesive sandwich case and then comparing the result of this model with the 

results fiom Crocornbe's model and finite element analysis. The total strain energy stored in the 

sandwich system is calculated and balanceci with the extemal work done. Finally discussions are 

made with regard to the results of these improved models. 



. . 
In Chapter 4, a new peel analytical model is outlined and analyzed. The cornparison is 

made and discussed between the results from different methods, Le., finite element analysis and 

analytical model of Moidu et al [20]. 

In Chapter 5, the experimental setup for the peel test is introduced. The specimen 

preparations and experimental procedures are provided. The peel tests on two adhesives are 

conducted and the steady state peel loads are obtained for 9 different peel configurations (3 peel 

adherend thicknesses and 3 peel angles). 

In Chapter 6, the peel loads of the 9 different peel configurations are applied to the 

analytical peel models in order to extract a cornrnon adhesive failure criterion for the adhesive 

peel joints. Both the strain based and fracture energy based failure criteria are investigated and 

evaluated. Fortran codes based on those two adhesive failure criteria are written then to predict 

the failure loads of the peel joints actually tested in Chapter 5 and the accuracy of the predictions 

is evaluated. 

Chapter 7 summarizes the research works in this thesis. General conclusions are drawn. 

The limitation of the approaches and models are discussed and recommendations are made b r  

future work. 



Chapter 2 The development of-a modified fûlly non-linear 
adhesive sandwich model 

2.1 Sandwich representation of general adhesive joints 

As was discussed in the Chapter 1, virtually for any bonding geometry, an adhesive 

sandwich with the ends subject to loads can always be isolated. An arbitrary element (cix) cut 

from this sandwich is shown in Fig. 2-1. It is the objective of this chapter to analyze strains and 

stresses in the adhesive layer, and then an overall energy balance correspondhg to the specified 

boundary loads will be performed. In the past, several models considering a non-linear adhesive 

Tl, 

Fig. 2-1 Diagram of an element from the adherend-adhesive sandwich 

have been studied either analytically or numerically [2 1, 221. Crocombe was able to obtain an 

analytical model with less restrictive assumptions and general applicability 1131. In his model, 



the stress-sfrain curve of  the adhesive is modeled by a mathematical formula (Prager model), 

while the adherends are considered as bi-linear, which is very reasonable for aluminum ailoys. 

However, the onset of yielding in the adherends cm significantly affect the stress and strain 

distribution in the adhesive layer, therefore a more accurate adherend yielding mode1 is required 

for the general case. In addition, it will be more usefùl if the input format for the adhesive stress 

- strain behavior can be of an arbitrary form instead of a theoretical model. 

2.2 Sandwich joint analysis 

The overall mathematical modeling of the sandwich joint can be divided into two sections: 

joint anaiysis and comprehensive modeling of the adherend. The non-linear adherend model will 

be covered in the second section. In this joint analysis section, both the adherends at the top (1) 

and bottom (2) are treated as beams subject to arbitrary loads of either bending moment (Ml,, 

Ml2, Mzl, &), tensile force (Tl,, Tl2, Tzl, T22) or direct shear force (YlI, VI?. V'/, Y,,) at the 

ends, and Iying on the foundation of either an elastic or plastic adhesive layer, depending on the 

location along the adhesive bond line (x direction in Fig. 2-1). 

In addition to the general assumptions discussed in Chapter 1, the following lists the 

assumptions made for the present modified model and compares them with Crocombe's model 

[13]: 

1. In both models, the fiction of the adhesive is to provide the traction and separation 

resistance to both top and bottom adherends. Therefore, the function of the adhesive layer is 

treated as coupled non-linear tensile and shear springs bringing the two adherends together. 

Here the definition of "springs" is descnbed as the adhesive's unidirectional load and 



displacement response either in tension or in shear, without taking into account the 

complexity of stresses in the adhesive layer. 

2. In both models, longitudinal shear stress (s,) and transverse tensile stress (a,) are considered 

and assurned unifonn across the thickness of the adhesive layer. The square edge end effect 

on stresses is neglected. 

3. Only plane strain was analyzed in Crocombe's model, while in the present modified model 

both plane stmin and plane stress in the joint lateral direction (2) are considered separately. 

4. Crocombe's model neglects the longitudinal stress ox, In this modified rnodel, two different 

cases were studied: one assumes q=0 which is exactly same in Crocombe's model. while 

another considers &r=O by which therefore O, is finite. The significancs of taking a, into 

consideration is dernonstrated. 

5. In recognition of the nature of non-existence of sharp cracks in damaged adhesives, the stress 

concentration in the adhesives is neglected in both models. 

6. The Kanninen correction [23], which was orîginally developed for modeling the fact that the 

adherend is not acting as a tnie built-in cantilever beam in a DCB fracture specimen, is also 

investigated here in the modified model. Crocombe's model did not consider this correction. 

7. In both models, the Von Mises yielding critenon is adopted for both the failure of the 

adhesive and the yielding of the adherends. 

8. Usually, the shear defocmation due to bending shear is distributed parabolically across the 

thickness of the adherends. Crocombe's model neglects the shear deformation. In order to 

simplim the analysis a uniform distribution is assumed in this new model. 



By refemng to the diagram in Fig. 2-1, the fùndamental equations can be drawn based 

on the load equilibriurn of an element h m  adherend 1 : 

where aand s are the stresses in the adhesive layer q and r, respectively. The corresponding 

strains &and y can be defined in ternis of the relative displacement of the adherends as follows: 

where VI, ul and vl, u2 represent the vertical and horizontal displaceernts, as shown in Fig. 2-1, 

at the interfaces with the adhesive for adherend 1 and adherend 2, respectively. 

The principal procedure of deriving six first order differential equations can be found in 

[13]. In this thesis, the equations differ not only because of the different adhesive and adherend 

models, (i.e., plane strain or plane stress), but also from the adhesive tensile and shear foundation 

models with or without the Kanninen correction [23] of adherend cornpliance for a finite beam 

on a foundation. 

2.2.1 Plane strain adhesive and adherends (g = O) 

This is the case Crocombe studied in [13], resulting in six first order differential 

equations: 



where Ti, 

(2 - 8) 

Y,, MID p E and C are six unknowns; Klx , ~ , y ' a n d  Kr, , K;iMare the local 

curvatures for adherend 1 and adherend 2, respectively. Among them Ki,  and KZer are total 

curvatures, and K,';" and K;:? are curvatures due to T and M only. Es is secant modulus of the 

adhesive, defined as Equation (2-37); el and er are the offset of the neutral axis due to tensile 

force for adherend 1 and adherend 2, respectively; and v, is the plastic Poisson ratio of the 

adhesive. These curvatures are al1 implicit fictions of local loads for the corresponding 

adherend as follows: 

K ~ . v = ~ ( ~ . v ~ k ~ ~ ~ . r )  9 K~.r=h(~*.r ,vz.r ,~Lr)  (2 - 9) 

The locai loads (TA, V', Mn ) for adherend 2 can always be derived by an overall force 

balance: 



4, = (MM + M a  )-4, + (6, + Y,, )x + @II - -~,.t h' (2 - 13) 

where 7 ' 1 ~  T21, VI /, V.1, M l / ,  MZI are arbitrary boundary loads on the lefi hand side of the 

sandwich element in Fig. 2-1, and h 'is defined as 

Therefore, Kz, can always be interpreted as  a function of TI* , VtX and M x  as 

2.2.2 Plane strain adhesive (&, = - = 0) and plane strain adherends (- = 0) 

This case will be termed as "X-2" double plane strain mode1 hereinafier. The denvation 

procedure is similar to the above, but the differential equations are modified as: 



--=-- Where in ail above, definitFons of parameters are same as fiom Eq. (2-3) to (2-8), but the 

derivation of the adhesive secant modulus is different and will be explained in the following 

adhesive model section. 

2.2.3 Plane stress adhesive (o = 0) and plane stress adherends (q = 0) 

Again, similar to the procedure for the plane strain case (E,  = O), only the tinal equations 

are given here as: 

2.2.4 Kanninen correction of foundation constant 

This model applies to the flexible-to-rigid peel situation. The introduction of additional 

compliance from the adherend beam itself will affect the resultant strains and stresses in the 

adhesive of the sandwich. Here only the "X-Z' plane strain adhesive (E, = c = O )  plus plane 

strain adherend (G = O)  model was rnodified to take this correction into account. The total 

foundation compliance is calculated based on the compliance of both the adhesive and the 



--SE .- y adhennd. More details OH the derivation cm be fiund in [3,20]. Only final equations are given 

here : 

where Eodh is the local secant moduIus of adherend 1 at th 

2.2.5 Generalized mathematical problem 

e interfac e with the adhesive. 

By summarizing the above four sets of first order differential equations developed for the 

different models of either the adhesive or the adherends, a general mathematical problem can be 

stated for al1 of them. I f  the unknown variables are assigneci as a vector Y, a general form is 

obtained as : 

* dK 
where i=1,2 ......, n,and Y, =- dx 



In this case, n = 6, and the corresponding six general boundary-value equations at x = O 

and x = L can be expressed as: 

2.3 Non-linear adhesive model 

The Von Mises adhesive failure model is implemented in this analysis. However, other 

potential fracture failure models, e.g. EPZ traction-separation model, can also be applied in this 

analysis and the modification of conesponding numerical codes should be minimum. The 

uniaxial tensile stress-strain curve for the adhesive can be defined using an equation or as a series 

of data contained in a data file as shown in Fig. 2-2. These discrete data sets are then 

interpolated by using a spline technique to get a smooth representation of a continuous curve. 

When inputting the data, the first derivative of stress vs. strain at the zero strain point and the 

ultimate strain point are also required in order to make better extrapolation during the 

intemediate iterat ion stages of solving the model numencall y. 

Three types of aûhesivc stress state are considered as listed below. The difference 

produced by using these different adhesive models will be illustrated in Chapter 4 during the peel 



Spline 

Discrete input points 

O 0.02 0.04 0.06 0.08 0.1 0.12 
S train 

Fig. 2-2 Spline interpretation of discrete uniaxial stress and strain inputs 

application of the sandwich models. In this Chapter, only equations for these adhesive models 

will be given and discussed in turn. 

MODEL #1- Plane Stress Adhesive Mode1 ( s = 0 ) 

MODEL #2 - Z direction Plane Saain Adhesive Mode1 ( E, = 0 ) 

MODEL #3 - X and Z Direction Plane Strain Adhesive Model (G = O and &, = 0) 

In order to cope with the non-linear behavior o f  the adhesive, an equivalent instantaneous 

modulus called the secant modulus is adopted as shown in Fig. 2-2, and defined as: 



where s, is the adhesive Von Mises stress which can be caiculated for the diflerent models in 

terms of the component stresses (aand 7) as: 

Mode1 # t oe = (oz + 32')0.5 

Mode1 #2 o, =@op + v j b 2  +3r2 r" 

Mode t #3 

The conesponding Von Mises strain t; based on the above three models can be found by 

combining Eq. (2-37) to Eq. (2-40). They are: 

Mode1 # 1 E, = (E2 + 0.75 YZ~(l +opr )Oa5 (2 - 41) 

where the plastic Poisson's ratio v,  is : 

v,, = y * - 3 1 - 2 " ) ]  2 

where v is the elastic Poisson ratio of the adhesive. Strictly speaking the value of v, should 

depend on the state of  stress, but its effect was found to be minimal [13] and thus a constant 

value of 0.47 has been used for the adhesive throughout this thesis. The validity of this 

approximation is discussed in later chapters. 



2.4 Bi-linear adherend analysis 

In this section, the adherend's longitudinal response is investigated based on either a 

plane stmin (E, = O ) or a plane stress assumption ( = O ). Then a general non-linear adherend 

beam analysis is performed. The analysis can be applied to both adherends, and therefore the 

subscri pt notation for the upper and lower adherend (1 and 2) is dropped for simplification. 

2.4.1 Bi-linear adherend material models 

The Von Mises yield response of the bi-linear aàherend as illustrated in Fig. 2-3, is 

described by: 

where a, = E , , E ~  and E,, = 6. 

Under the Von Mises yielding critenon, the onset of yielding in the x-direction will differ 

from plane strain to plane stress. In order to anaiyze the local stress distribution across the 

thickness of the adherends (i.e., tensile stress due to local bending moment (M) and axial force 

(2') or shear stress due to local shear force (O), the concept of longitudinal stress and strain is 

proposed as illustrated in Fig. 2-3. In this figure, the "Von Mises" curve is a given uniaxial 4 - 
matenai property of the adherends. The "longitudinal #1" curve is a calculated x-direction 

longitudinal 4, - 6, response based on the given 4 - 4 cume when shear stress r due to shear 



> -  force Y is mglecnd. This is die case Crocombe used in his anaiysis by applying ihe following 

equations: 

If the shear stress r due to V is taken into account, which is the case of this new model, 

then the x-direction longitudinal 4, - E, response is transfomed into the curve "longitudinal #Y. 

This new curve can be M e r  classified as bi-linear and non-linear under two situations: when r 

< &ri,icd and when 2 &ritical, 

Fig. 2-3 Bi-linear approximation of both longitudinal and Von Mises stress-strain response 

under plane strain assumption for the adherend. 



-- - - 

. The mathematical expressions of  cr, - t; responsa for "longitudinal #2" for where L l , ,C ' , ,  = - f i  
bath plane strain and plane stress are given below. The denvation of these equations can be 

found in Appendix A. For both cases, the methodologies are similar, but the resuits are different. 

Plane strain( E, = 0 )  

If r < r,,,, , then for both linear elastic (O - C) and plastic (C - C') stages, the 

longitudinal adherend stress a, can be calculated by 

where E, and are x-direction longitudinal strain and stress in the ctdherend. q,,,,.,, is a yielding 

strain corresponding to the bi-Iinear longitudinal cr, - E, curve. r is the shear stress on adherend 

sections and assumed uniform across the thickness. The corresponding adherend shear strain is 

given by 



- -- - where u, is the elastic Poisson ratio and g is the prastic Poisson ratio for the adherend. 

The differentiation of  4 with respect to t; gives the corresponding longitudinal Young's 

modulus for both linear elastic and non-linear plastic stages as 

Where the longitudinal yielding strain t;,, is given by 

Equation (2 - 52) cm be approximated by the following: 

If r 2 t,,, then E ~ ~ ,  = 0, any loading, either tende (7') or bending (M) will lead the 

adherend into the immediate non-linear yielding stage, shown as the curve "O-D" in Fig. 2-3. In 

this case, the corresponding longitudinal Young's modulus should be obtained fiom Eq. (2 - 52). 



- - - -  - - But here, for a reason which wiB be ex pl^^ im the exampte section, a concept of equivalent 

modulus for this panicular non-linear plastic stage is proposed and given by 

Plane stress ( s = 0 ) 

Under this assumption, if r c rc,,,cd, then the longitudinal a, - E, response is gh 

ne conespondingmoddus for bth-stages can be-evduated by 



where the longitudinal yielding strain E,, is determined by 

If r t r,,, then E-,~,, = O .  With Eq. (2 - 53), the corresponding equivalent plastic modulus 

becomes 

-- 

E x  

Examples of calculation 

This section is intended to demonstrate, by taking a particular example of AA5754-0 

adherend material as listed in Table 2-1, how the inclusion of shear strain y and stress r in the 

adherend and the plane stress (a, = O) or plane strain (G = O) assumption of the adherend will 

change both the longitudinal #l and longitudinal #2 cmves. Equations h m  (2 - 46) to (2 - 61) 

are used in the calculation. All caiculations were carried out in Mathcad a. 

First of dl, the question of using either Eq. (2 - 52) or (2 - 55) for the calculation of EP,j 

under the condition of&,, = O when 7 2 r,,, for the plane strain (G = O) case needs to be 

addressed. The curves fiom both Eq. (2 - 52) and (2 - 55) are drawn by applying the material 



-A- - -- properfies of AA5754-O. The cornparison made then befween these two curves showed 

technically it is more reasonable to use Eq. (2 - 55) rather than Eq. (2 - 52) to calculate Epl,, 

because Eq. (2 - 55) has a better transition of the Epl,, value for overall longitudinal strain 8, 

starting fiom zero, while Eq. (2 - 52) has a spike at the region very close to the origin. From Eq. 

(2 - 52), Epl,, is zero when E, equals zero, this is not only physically unredistic, but also will 

certainly cause convergence problems of the numericd calculation. Therefore, this equation is 

not suitable to be used as the way of calculating the modulus as was done when 7 c rcr,,,,a, . The 

concept of Eq. (2 - 55), as explained by the equation itself, is similar to the secant modulus 

which has been used through out this thesis to deal with the non-linearity of adhesives. Under 

the same consideration, Eq. (2 - 6 1) is used instead of Eq. (2 - 59) to compute Epl,, for the plane 

stress (a= = 0) case. 

* Note: For the definition, see Equation (3 - 1) in Chapter 3. 

Table 2.1 The mechanical properties of adherend AA5754-0 and the adhesive used in [13] 

Figures 2-5 and 2-6 give an example of the calculation based on the bending of 1 mm 

thickness AA5754-0 alloy sheet under plane strain and plane stress conditions, respectively. 

.. 
Adherend AA5754-0 

Elastic Modulus (MPa) 

Plastic Modulus (MPa) 

Yielding Stress (MPa) 

Adhesive 

Eep7 1,000 

Ep&83 

q,= 1 00 

Elastic Modulus (MPa) 

Plastic Modulus (MPa) 

Stress Asymptote* (MPa) 

Ee~5,740 

Ep,=408 

A=63 



- Eq. (2 - 55 )  
---- Eq. (2 - 5 2 )  

O 0.002 0.004 0.006 0.008 0.0 1 
Longitudinal strain &, 

Fig. 2-4 Cornparison of Eq. (2 - 52) and Eq. (2 - 55) when r > rcriliai for the plane strain 

bending of lmm thickness AA5754-0 plate. 

The critical shear stress r,,,,, =57.7 MPa was calculated by the formula rcr,,,,, = 5 , and the 

" 2=43 MPa " case is arbitrarily chosen for demonstration. 

From Fig. 2-5, it can be seen even without the shear (z  = O), the a, - &, response 

(Longitudinal # I )  is still different h m  the Von Mises response. This is because of the plane 

strain condition (e = O). The longitudinal yielding stress (qp,d and strain (tj,,) decrease with 

increasing shear stress r. When the shear stress z < the longitudinal a, - 6, response 

remains bi-linear, and Eels and Epls are the same as the case when r = O. Once r > rmca1 , then 

the 4 - a; response gets complicated. The adherend enten into an immediate non-linear plastic 

yielding stage. Equations (2 - 46) and (2 - 47) were used for calculating the curve "Longitudinal 

28 



i Von Mises 

J - von ~ i s e s  stress , q 
1 

/ - - - * -  
Longitudinal # 1 , OX I (1 = O) 

O 0.002 0.004 0.006 0.008 0.0 1 
Strain 

Fis. 2-5 Longitudinal a, - 6, responses for the bending of I mm thick AA5754-0 sheet 

under plane strain assumption ( = O ). 

#l"; Equations (2 - 48) and (2 - 49) were used for the curve "Longitudinal #2, a,. (O< r =43< 

~CritiCai)" and equation (2 - 49) alone for the curve "Longitudinal #2, ~~3 ( r = h l ) ' ' .  

Figure 2-6 basically shows the same trends as Fig. 2-5 except that when r < r,,h,l , the 

longitudinal modulus E e / ,  for the elastic stage and EPr, for the plastic stage are the same as the 

ones for the corresponding stages of the bi-linear Von Mises curve, respectively. The curve 

"Longitudinal # 1" is exactly same as the Von Mises curve; The cuve "Longitudinal #2, qv2 (Oc 



-_. . r =43< iCrieuI)" were d d a t e d  by eqnations (2 - 56) and (2 - 57); Equation (2 - 57) alone was 

used for the curve "Longitudinal #2, ( ? = ~CritiCOI)yy. 

IO* { 

O 0.002 0.004 0.006 0.008 0.0 1 
Strain 

Fig. 2-6 Longitudinal 4 - E, responses for the bending of 1 mm thick AM754 - O sheet 

under plane stress assumption (a, = 0). 

2.4.3 Bi-linear adherend beam anaIysis 

In this section, the calculation of K,, , K:" , K,, , K : ; ~ ,  el and e? are analyzed based on 

plate bending theory. Since only one arbitrarily loaded adherend is investigated here, the 

subscript notation (1, 2) for the uppr and lower adherend has been dropped fiom the generalized 

equations. As in the previous adherend material mode1 section, both the plane stress and plane 



_ . _ _ - _ -  _ - strain assumptiotls were studied. The following modificafims were made to improve Crocomb's 

approach [13]: 

The contribution to the early onset of adherend yielding by shear deformation due to shear 

force V was taken into consideration. It was assumed that the unifonn distribution of shear 

stress and strain across the thickness h instead of a parabolic distribution. This assumption 

was justified by the adherend's very limited thickness (1 - 3 mm). 

a The adherend curvahve due to shear deformation was included in addition to the curvature 

due to bending. 

* A plane stress model was also studied in addition to a plane strain model. 

O Five categories of adherend stress distribution may possibly occur as the values of the 

moment M, tension T and shear V vary. Categories #1 to #4 were similar to Crocombe's 

analysis (1 31, but the calculation of longitudinal stress-strain response, Le., a,, and qp,,, , was 

different. The category #5 is a new category to Crocombe's analysis. 

The energy balance calculation was conducted based on elastic and plastic strain energy for 

both adhesive layer and the two adherends of the sandwich. 

Of particular importance, the sign conventions of T, M and Vas s h o w  in Fig. 2-1 will be 

followed strictly throughout this thesis. Before moving ont0 the subject of the analysis of the 5 

stress categories, some general issues need to be addressed. 



- .--- 2-.4;3. f Generai definitions an& derivations 

1. Total curvature 

The causes of curvature can be classified into two types and the total curvature is then 

obtained by the mle of superposition as: 

KICJIU/ = K T . M  + K Y  (2 - 62) 

where K"-"' is the bending curvature due to bending moment (M) and tensile force (T),  while 

K V  is the shear curvature due to the shear force (Y). 

The adherend is modeled under either plain stress or plane strain. For each of these two 

cases the strain is assumed to Vary linearly with the distance from the neutral axis. The 

longitudinal properties such as elastic Young's modulus E e r ,  plastic Young's modulus Eyp,,t, 

yielding strain E , ,  and yielding stress qp,,, can al1 be found in Section 2.4.1. 

As illustrated in Fig. 2-8 to Fig. 2 -1 1, at a distance Z ( the elastic semi-depth ) from the 

neutrai mis, the strain reaches the yielding strain +,, and the value of Z can be related to the 

adherend bending curvature K '*" as : 

where the calculation of Z is to be discussed M e r  in each of 5 categories. 



The shear curvature K' is due to the shear deformation along the section of the 

adherend. The calculation of it requires a known shear stress distribution across the section. An 

assumption is made here in the attempt to simplifi the analysis [24]: 

where u, is the vertical deflection of the adherend due to shear deformation, and G, y,,,/ , 

rneuIr4/ are the shear modulus, the shear strain and stress respectively at the physical centroid of 

the adherend. 

The expression of r w  is derived in a later section. 

2. Tensile stress distribution across the section of adherend 

The determination of tensile stress requires the application of the bi-linear longitudinal a,-&, 

response derived in Section 2.4.1. At a general distance y fiom the neutral mis, the tensile stress 

can be evaiuated as 

where a is defined in Eq. (2 - 45) as the ratio of the plastic modulus Ed to the elastic modulus 

Eer of the adherend. 



- - - - - Thisequation is  used to d u a t e  thetensite stress 4 distniution across the section of adherend 

by using the balance with moment (M) and tension (7) as: 

h l 2  h / 2  

T =  b d y  and M =  lya,dy 

The derivation of the fi distribution, z and e (neutral axis offset) is detailed in each of 5 

categories. 

3. Shear stress at the neutral axis and its distribution assumption across the section 

of adherend 

As mentioned above, the analysis of deformation due to shear under a general loading can 

be decomposed into two simple cases as show in Fig. 2-7. A superimposition of Casel and 

Case 2 is then performed to get the total shear stress at the neutrd axis. 

Fig. 2-7 Superimposition of shear stress and defonnation in adherends 

For Case 1 

If M is less than a critical value McritiCal such that the surfaces of the aâherend remain elastic, 

then shear stress r, can be calculateci based on the parabolic distribution as: 



where MElltical can be calculated as 

M c r ~ t t l  = ~ , , ~ h '  16 

r, reaches a maximum at the neutral axis. That is 

3 where A = - 
2bh 

If M > Mm, which means the surfaces have yielded, then the calculation of the r .  distribution 

is rather analytically complicated. However as with the elastic case, r,. still reaches the 

maximum at the neutrai axis and can be evaiuated by 

- - ~[12(1 -a)+ 3ah' I r ' ]  
fneurnrl - fmax - - = -BV 

16(1 -a)+ îah3 1 r 3  

where B = 
P2(1 -a)+3d2 / r 2 ]  

16(1 -a)+2ah3 Ir3 

E,, ,.r a=- the ratio of longitudinal plastic modulus to elastic modulus ofadherend 
E d , x  

r is the distance to neutrai axis fiom the onset location of yielding in adherend, 

which can be found by solving the following polynomial equation: 

For Case #2 



- 

The calculation of shear stress s, due to tension requires a known 4 distribution across the 

section resulting fiom the tensile force T. But due to the nature of the bi-linear adherend niaterial 

property, it is very complicated to obtain the exact distribution of a, Therefore an assumption of 

uniform distribution is applied here, which leads to an average shear stress as: 

where T is the shear stress of the adherend at the adhesive interface. 

To sunimarize, the total shear stress at neutral axis for the general load case is : 

4. The calculation of shear cwature  K" 

From Eq. (2 -64), the calculation of KY requires known drne,,  . The differentiation of 
dr 

r,.,~ with respect to x gives 

d? 
where - is given by 

dw 



where  and E"' are the secant Young's modulus at the interfaces between the adhesive 

and adherend 1 and adherend 2, respectively; VI, and v2p are the plastic Poisson ratio for 

adherend 1 and adherend 2. 

This equation cm be substituted into Eq. (2 - 64) for calculating the shear curvature of each 

adherend as: 

where D = A if M < McriIiCCII , and D = B if M 2 Mcrilical 

2.4.3.2 Category # 1 - fully elastic adherend bending 

The adherend surface stresses (a. and a) and the stress distribution are illustrated in Fig. 

2-8. Superimposing the elastic bending stress and tensile stress gives 

The neutrai axis offset (e) and the ticticious elastic semi-depth (2) cm be found by 



Fig. 2-8 Category #l  or #5 distribution due to M and T 

2.4.3.3 Category #2 - fully plastic adherend bending 

As with category #1, the explicit expressions can be obtained with refemng to Fig. 2-9 

as follows : 

where e and z are found to be 

? 

Fig. 2-9 Category #2 q distribution due to M and 7' 
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This category cmi be thm fÙrther divided into 4 sub-cafegories depending on different 

sign combinations of T and M. The classification of these categories has been specified in the 

Fortran Code and is not repeated here. 

2.4.3.4 Category #3 - opposite yielding on both surfaces 

Figure 2 -10 gives the positive sign convention for dl loads and resultant variables. In 

this case, both surfaces are yielded, but one in tension and the other in compression. The 

equations provided are al1 implicit, and a numerical solution is needed to get a solution for e, z, 

a, and ab The surface stresses are : 

where c and t can be obtained simontaneously through solving the followinp two equations: 

In the case of different direction of loads, an appropriate sign change of equations is 

required. This category is then M e r  divided into 4 sub-categories depending on dift'erent 

combinations of T and M. In the cases when either M. T or both of them are negative, -M or -T 

or both are used to replace T, M in Equation (2 - 84). The detailed classification of these 

categories can be found in the Fortran Code and is not repeated here. 



Fig. 2-1 0 Category #3 4 distribution due to M and T 

2.4.3.5 Category #4 - yielding only on one of the adherend surfaces 

This category is very similat to category #3 except only one surface has yielded, while 

the other remains elastic. For the loading shown in Fig. 2-1 1 ,  oniy the upper surface has k e n  

yielded, and the following equation can be used to solve for e and 2 numerically which are then 

substituted into Eq. (2 -86) for 4 and cp, : 

The surface stresses oa and a b  can be evaluated by 

with e and z solved using Eq. (2 - 85). 



Fig. 2 -1 1 Category #4 O, distribution due to M and T 

Again an appropriate sign change of equations is required depending on the combination 

of loading direction as explained in category #3. The classification of 4 sub-categories has been 

specified in the Fortran Code and is not repeated here. 

2.4.3.6 Category #5 - yielding due to shearing alone 

Thi s is the siti on where the average shea u stress r due to shear forces is already in 

excess of the critical stress ( r m ) .  The tensile stress distribution of the cr, due to bending and 

tension follows the plastic stage behavior of the adherend, Le., the stage "O - D" in Fig. 2-3 . 

This case is similar to category # I  except the Young's modulus used here is Epl,, instead of Eer,v 

as in category #1 .  While the 4, a and e can be evaluated using 



-a___- - 
From above &finitions, it is ~ e d  tbat r does not d l y  exist in this case because it lies 

beyond the adherend surface. It is an artificial definition. The bending curvature K~*"' in this 

case is calculated using: 

Refer to Fig. 2-8 for the diagram of the 4 distribution. 

2.5 Numerical solution 

With al1 the necessary equations now derived, the next step is to solve them. The nature 

of this set of equations is very complicated. There are six pnmary first order differential 

equations, which are nonlinear. The remaining support equations require either to solve a set of 

nonlinear equations for K,, , K : ~ ! ,  Kz, , ~f,"", e, and ez or particularly to interpolate data such 

as Es fiom the discrete input of an adhesive Von Mises response. 

The mathematical problern presented here is a boundary value problem. There are two 

main classes of ordinary differential equations: those in which dl boundary conditions are 

specified at one point are termed initial-value problems, while those with dl boundary conditions 

distributed dong two or more points are called boundary-value problems. Two methods are 

cornmonly used to solve boundary-value problems; they are the shooting method and the direct 

rnethod. The first is based on the Runge-Kutta method, and a triai and enor technique is used. An 

attempt was made to develope a code in Mathcad 6 uskg this shooting method, but 

unfortunately in the end the solver was not sufficiently robust and efficient. This method was 



--- - - - -abandoned because this disadvantage may read to difficdties in M e r  applying this to solve 

peel geometries as in Chapter 3. The second method is based on the finite-difference technique, 

and the methodology of this technique can be found in [25, 261. A solver (DBVFPD) fiom the 

IMSL library [27] was found to be capable of solving a boundary-value problem using the finite- 

difference technique. This solver has k e n  used successfully with a large range of joint 

configurations and load combinations, and is similar to the one used by Crocombe [13]. 

2.5.1 Implementation of DBVFPD solver fiom IMSL Library 

Only the essential aspects of the computing codes are presented here in this section. The 

IMSL li brary reference manual furnishes more details if a better understanding of the process 

diagram presented in Fig. 2-12 is required. A flow chart showing the logical order of solving the 

general Equation (2 - 34) is illustrated in Fig. 2-13. The difference in solving specific sets of 

equations, such as the ones begiming with either Eq. (2 - 3), Eq. (2 - 16), Eq. (2 - 22) or Eq. (2 

- 28), only remains in providing relevant supporting subroutines to the solver. A special non- 

linear solution technique is used to obtained a solution for the six unknown variables, T, M, Y,  

u and C. This is described bellow. The entire Fortran code is provided on the CD found in the 

Appendix B. 

2.5.1.1 Solution process flow chart 

From Fig. 2-12, it can be seen that meshing, the formulation of discrete equations, 

convergence testing, solutions, mesh =finement and then solution corrections are al1 canied out 



variables output u 
Fig. 2 -12 Brief process description of DBVPFD solver fiom IMSL 



within the IMSL routine DBVPFD. Basedon the finite difference technique, the mesh is defined 

as a series of points on which a set of differential equations are discretized and transfomed into 

linear algebraic equations. A cluster of subroutines surrounding DBVPFD are provided to 

perform different functions as outlined in the Table 2-2 of Section 2.5.1.4, and they 

communicate with each other as portrayed in the flow chart of Fig. 2-1 3. 

To begin the calculation, the information on the geometry of the joint and the material 

properties of both adhesive and adherends needs to be input. The initial mesh grids and guess 

values for unknown variables are to be provided in cornpliance with the prescribed boundary 

conditions. A data file contriining the mechanical properties of the adhesive is used to allow for 

the maximum degree of flexibility in specifying the adhesive failure model. In order for 

DBVPFD to solve the equations, the FCNEQN subroutine is provided to evaluate the first 

derivative of each unknown variable, which is the right hand side of each differential equation, at 

every mesh point. The FCNJAC subroutine is designed to calculate the Jacobian matrix K of a 

set of algebraic equations by combining the finite difference equations of each variable at each 

mesh grid point together with the necessivy boundary equations for every mesh refinement step. 

dF 
The FCNPEQ subroutine is basically a six-element vector catcutated based on - d(eps). If is used 

to adjust the increment for the non-linearity of the original equations until "eps" equals unity, 

which means the original full nonlinear equation is solved. The concept of this increasing non- 

linearity is explained later in Section 2.5.1.2. In al1 these subroutines, the values of Es, 

K , K K K:?, el and e? are needed for every mesh point. The KANDE subroutine is 

written to choose a particula. category out of 5 possible ones for either adherend 1 or adherend 2 



----- based on corresponding T O C ~  loads at each mesh point, and therefore rem the values of K,, , 

K,, , e, and e2. The logic of determinhg which category will apply is illustrated in Fig. 2-13. 

Figure 2-14 illustrates a typical diagram of the computing code with ail subroutines 

implemented. The bct ion of each subroutine is bnefly explained in Table 2-2. 

2.5.1.2 Refonnulation of the non-linear equations (non-linear solution technique) 

Due to the nature of the DBVFPD solver, it requires the introduction of a parameter "eps" 

to be embedded into the original differential equations such that when eps is zero, the whole set 

of equations are transformed into linear equations. Gradually increasing the value of "eps" 

increases the degree of non-linearity until the tnie full non-linear problem is obtained and solved 

when "eps" reaches unity. In this section, only the set of equations fkom Eq. (2 - 3) to Eq. (2 - 8) 

for the plain smin (&=O) adhesive and adherends mode1 is taken as an exarnple, since the same 

principle applies to the other equation sets, from Eq. (2 - 16) to Eq. (2 - 21) and from Eq.(2 - 

22) to Eq. (2 -27) of other two models. 

In Eqs. (2 - 3) to (2 - 8), items such as Es, K,, , K:", KK2.t, Kli",  el and e' are al1 

nonlinear factors with implicit and complicated expressions. The target of reformulation is then 

to have al1 of them become their own corresponding values for the pure elastic case when "eps" 

is zero and restore the original non-linearity when "eps" is increased to unity. The elastic 

adhesive and adherends andysis of adhesive sandwich joints [4,8] bas show that the first 
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Fig. 2-1 3 The logic of deciding upon the suitable category for adherend at each local mesh point 











--= - - 

derivative of the adhesive shear strain yand the second derivative of the adhesive tensile strain E 

can be expressed as: 

where 

While the adhesive secant modulus can be modified into 

where f is an implicit function of eps, E and y. The calculation of /depends on the effective 

adhesive mode1 and the input curve of achesive's - ç response. 

The transformed equations become: 



When eps =1, this set of equations becomes equivalent to Eq. (2 - 3) to Eq. (2 - 8). 

2.5.1.3 Initial guess and boundary conditions 

Given the proven robustness of the DBVFPD solver in these types of problems, the initial 

guess values can be very approximate. If values of some unknown variables at both ends of the 

sandwich are given as boundary conditions, then linear interpolation should be used to better 

estimate initial guess values for these corresponding unknown variables at al1 initial meshing 

grids. Otherwise, simply provide the guess values of a constant distribution on the initial mesh 

points. 

The boundary conditions cm be differnit h m  one case to another. They c m  be 

prescribed loads acting anywhere on the adherends of the joint, or they can be prescribed strains 

in the adhesive layer at the ends or somewhere dong the overlap of the sandwich. However, 

there is a limit on the number of boundary equations. In this thesis, only six boundary equations 

are provided as specified loads (T,V&f) as shown in Fig. 1-1 at both ends of the top adherend of 

the sandwich joint. 



2.5.1.4 Brief descriptions of each subroutine in the codes 

DifTerent codes were developed for the adhesive sandwich with different adhesive and 

adherend model assumptions, i.e., plane stress or plane seain. These codes were al1 written in 

Compaq's Visual Fortran package. Since the structures and diagrams are the sarne for every 

code, only the typical logic connections between dl subroutines, whether user-supplied or 

provided by the math library, were illustrated in Fig. 2-13. Table 2-2 surnmarizes the fùnctions 

of each subroutine in the different codes. For convenience, some subroutines used in Chapter 3 

for calculating peel applications are also included and will not be repeated in Chapter 3. 

Table 2-2 List of functions for al1 subroutines in the codes 

1 6 1 Catagl I Calculation of e, z, k,a, and a for category #1 I 
1 7 1 Catag2 1 Calculation of e, z, k,oa and a for category #2 I 

Functions 

A subroutine used for solving a adhesive sandwich mode1 

A finite difference differential equation solver from IMSL 

Calculation of the first order differential values of unkown vector Y 

Evaluation of Jacobian matrix dFUdYi 

Detemination of appropriate category for given adherend and loads 

No 

1 

2 * 
3 

4 

5 

Subroutine 

ATTACHED 

DBVPFD 

FCNEQN 

FCNJAC 

KANDE 

8 

9 

1 13 1 Energy3 1 Calculation of sectional strain energy Ucl and Uo2 under category #3 

10 

11 

12 

Catag3 

Catag4 

Calculation of e, z, k , ~  and for category #3 

Calculation of e, z, k,cr, and for category #4 

Catag5 

Energy 1 

Energy2 

Calculation of e, z, k , ~  and for category #5 

Calculation of sectional strain energy Ll, and UV under category #1 

Calcullition of sectional strain energy Ux and II, under category #2 



I stnlln based on bi-linear materiai property of adherends l 

1 E-4 
1 

EnergyS 

Adhenergy 

Adsenergy 

EPSD 

ESECS 

Catcutation of3ectionat seain energy (Io, and Uo2 under category #4 

Calculation of sectionai strain energy Ll, and U, under category #5 

Caiculation of total strain energy for attached part of given adherend 

Calculation of total strain energy for aâhesive layer 

A function calculating Von Mises stress Rom known Von Mises 

ESECDER 

SIGEA 

SIGEADER 

SIGED 

~alculating the secant modulus based on adhesive Von Mises 

materiai response. This secant modulus has a built-in non-linear 

factor "ep" 

A subroutine calculating the derivative of adhesive secant modulus 

with respect to adhesive Von Mises strain 

A subroutine calculating Von Mises stress from known Von Mises 

strain based on the input of adhesive Von Mises curve. n e  l 
calculated Vo Mises stress has a built-in non-linear factor "eps'" 

A subroutine calculating the derivative of adhesive secant modulus I 
1 with respect to adhesive Von Mises strain 

A subroutine calculating the derivative of adhesive Von Mises 

stress with respect to non-linear parameter "eps" 1 
A subroutine calculating adherend longitudinal stmin vs. stress I 

relationship 

A function evaluating non-linear equations Eq. (2 - 83) for category 

A function evaluating non-linear equations Eq. (2 - 84) for category 

#4 

A function calculating Jacobian matrix for non-linear equations Eq. 

(2 - 83) of category #3 

A fiuiction calculating Jacobian matrix for non-linear equations Eq. 

(2 - 84) of category #4 

A subroutine used to find bending moment based on curvature, 

Refer to [20, 36,381 for relevant equations. 



1 30C 1 MiSDER A fùnctioa to-cdcdate the first derivative of Von Mises stress with 

31* 

32 

I I I with adhesive 

DCSVAL 

33 

respect to strain for the Von Mises input data of the adhesive 

A function used to interpolate values of the adhesive Von Mises 

FRACTURE 

discrete stress-strain input data 

A subroutine used to calculate the critical fracture energy release 

ESECD 

35 

36* 

37* 

38 

39 

rate G, of peel specimens 

Calculating the local secant modulus of adherend at the interface 

- 

- 

Note: In the No. colurnn, the subroutine number with suffix "*" denotes that the corresponding 

subroutine is fkom the IMSL library. Othenvise the subroutine was user developed. 

34 

COEFAB 

DZPLRC 

DNEQNJ 

INTEGAL 

SPESECS 

40 

41 

42 

2.5.2 Strain energy and balance 

Calculating either the coefficient "A" or "B" in Eq. (2 - 75) 

A polynominal equation solver 

A solver from IMSL for solving a set of non-linear equations 

An integration subroutine for Eq. (2 - 106) 

A subroutine calculating the full nonlinear secant modulus which 

corresponds to "eps=l". This subroutine is a particular case of the 

subroutine ESECS. 

Once the equations have been solved, then al1 stresses, strains and their distribution can 

- 
- 
- 
- 

- 

- 

- 

- 

- 

NESECD 

SPSIGEA 

ADSFCTI 

ADSFCT2 

Calculating the local secant modulus of adherend at the neutral axis 

A full non-linear stress - strain response subroutine. This is a 

particular case of the subroutine SIGEA when "eps=l". 

A full non-linear adhesive tensile stress subroutine, this calculates 

the adhesive tensile stress when "eps= 1 ". 
A full non-linear shear stress subroutine, this calculates the 

adhesive shear stress when "eps= 1". 



be rictneved in bodr the acherends mckaâhesive. The saain energy stored in a particular section 

of the adherend cm be calculated by integrating the seain energy density over the section, but 

the calculation depends on the stress category it falls into. The integration of this sectional strain 

energy over whole sandwich overlap region will then give the total strain energy stored in this 

adherend. The formulas for caiculating strain energy for the 5 different stress categories of the 

adherends and for the adhesive layer are given below. 

2.5.2.1 Category # 1 

The total strain energy consists of tensile and shear energy. The x-direction tensile 

energy across the section can be given by 

Substituting the distribution of a, fiom category #1 into above equation gives 

The shear energy across the section is calculated by 

2.5.2.2 Category #2 

The x-direction tensile strain energy is given by 



Substituting the distribution of 4 fiom category #2 into above equation gives 

The shear energy across the section is calculated by 

2.5.2.3 Category #3 

The calculation of strain energy in this case needs to be classified Furthet into 4 sub- 

categones as mentioned in Section 2.2.2.4. Here we give only a sample category as s h o w  in 

Fig. 2-10. This time, the longitudinal tensile stress 6 and shear stress z, were transfomed to 

principal stresses a, and m, and the total strain energy can be calculated as 

where el (y) and e2 (y) are tensile energy intensity functions 

of 
7 

0; 
e b ) = -  and e&)= - if ai or 02 l d y p  

2 4 ,  *Ed 

(2 - 106) 

and can be evaluated by 

(2 - 107) 

b2 0Rf e,(y)='-- +- n-ip and ezb)=--- O' =-" +% i foloro2 i q p  (2 - 108) 
2& 2E,, 2 E ,  Z E ,  2 4  



The integnition of Eq. (2-106) is conducted separately in three regions, which are 

{- ,-(e + I)} , (- (e + z), (z - e)} and (i - e), . In each region, the longitudinal tensile stress i s} 
a, is linearly distributed, while the shear stress 7, across the section is assumed uni fo m. AI1 

details in calculation can be found in the Subroutine "energy3" of the Fortran Code. 

2.5.2.4 Category #4 

The strain energy calculation for this category is very similar to category #3 except in this 

case the integration of Eq. (2 - 106) is performed in two separate regions as - -, t - e )  and i 1 
{(i - e), 5 )  . Relevant details regarding the calculation can be found in the Subroutine "energy4" 

of the Fortran Code. 

2.5.2.5 Category #5 

In this case the x-direction tensile energy across the section c m  be given by: 

The shear energy across the section is calculated by 



In summary, an example of the energy cafcufation on a sandwkh sample is given in the 

next Chapter and a total energy balance is perfonned to ver@ the mode1 and analysis. 



-- Chapter 3 The evaluation of the modified fûlly non-linear 
adhesive sandwich model 

In this Chapter, the adhesive sandwich model developed in Chapter 2 is evaluated and 

compared with other modeis. Non-linear adhesive behavior is modeled using the modified Prager 

model, while the adherends are bi-linear materials. The results are discussed. 

3.1 Cornparison with Crocombe's model and the FE model 

3.1.1 Adhesive sandwich 

For a given exarnple of an adhesive sandwich configuration and applied loads as shown 

in Fig. 3-1, results from the modified model, Crocombe's model and finite element model were 

calculated. The cornparison of these different models focuses on the stress and strain in the 

adhesive layer of the sandwich joint. 

This particular adhesive sandwich example was used by Crocombe [13], the adherends 

were modeled as bilinear, and the nonlinear adhesive was descri bed using the Prager formula: 

where A is asymptote value of the curve, Eel is the elastic Young's modulus, and Efi is the plastic 

Young's modulus. These adhesive properties are given in Fig. 3-1 together with the adherend 

and adhesive material properties. 



2mm Adhemd. + 
w ,. Adhesive 

) 380 
X * Adherend. f 2mm 

Nmrn/mm 
w 

Adherend parameten: Eer70 GPa, E$2 GPa, %=300 MPa 

Adhesive parameters: Ee5.74 GPa, E@08 MPa, A=63 MPa 

Fig. 3-1 The sample sandwich joint in [13] and corresponding parameters 

3.1.2 Comparison and discussion 

In [13], a corresponding finite element sandwich analysis was also presented. However, 

another version of the FE analysis was executed in ANSYS by a current master degree student, 

Jun Cui. Comparison were made between the results from this FE model, Crocombe's model 

and the present modified sandwich model as illustrated in Figs. 3-2 and 3-3. For details of the 

FE model by Jun Cui, see [53]. 

Figure 3-2 plots the adhesive stresses h m  3 models as a function of distance from the 

lefi end of the sandwich in Fig. 3-1. The modified model uses the plane strain adhesive and 

adherends (G = O) assurnption. The peel stress is detined as the tensile stress normal to the 

adherend bounding surfaces. As the stress distributions are symmetric about the center of the 

joint, they are show for ody half of the joint overlap. The finite element data are taken from the 

nodes at the center line of the adhesive layer. It is seen that the overall agreement of both the 
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Distance fiom left end (mm) 

Fig. 3-2 Adhesive stresses based on the modified model, Crocombe's model [13] and finite element analysis [53] 



2 3 4 
Distance from left end (mm) 

Fig. 3-3 Adhesive strain based on the modified mode], Crocombe's model[l3] and finite element analysis[28] 



modified and Crocombe's model with the finite element result is reasonable. The adhesive Von 
- - 

Mises stress and shear stress fiom the modified model are generally closer to the finite element 

results than the results h m  Crocombe's model. This means the consideration of shear 

defomiation does improve the model. The main discrepancy lies at the end region of the joint 

where al1 finite element stresses reach a peak value and then reduce at the edge. Both the present 

modified model and Crocombe's model fail to show this local maximum. As explained in 

Crocombe's paper 1131, there are three main factors contributing to this difference: namely, the 

square edge effect, fiee surface effect and the effect of neglecting the adhesive longitudinal 

stresses. First of dl ,  the square edge is modeled by the finite element analysis, while none of 

other two analytical models is able to capture this detail. The square edge gives rise to a point of 

singularity akin to a crack and there is a region of very high strain gradient at this point which 

causes a large variation of stress across the adhesive thickness. Thus the finite element data, 

taken on the center-line is somewhat reduced at the overlap ends compared with other two 

models. Secondly, the square edge is a free surface and theoretically can sustain no shear stress. 

The tinite element is able to model this and therefore the shear stress displays a sharp drop at the 

ends, but the other two models are not able to do so. Finally, by neglecting the adhesive 

longitudinal direct stress, which is tensile at the end of the overlap, both the modified model and 

Crocombe's model tend to predict a premature yielding of the adhesive and this contributes to 

the lower peel stress distribution. 

Similarly, Fig. 3-3 plots the adhesive strains fiom 3 models. The comparison of the 

strain results between the modified mode1 and Crocombe's modef has shown that both the peel 

strain and shear strain at the end region calculated by the modified model are higher han the 



corresponding ones from Crocombe's model, and the strain results fiom the modified model are 

actually in better agreement with the finite element results. The inclusion of the shear 

deformation in the adherend contributes to the hi& strains because the adherends undergo a 

greater degree of curvature. 

By taking the longitudinal direct stress into the considenition by employing an 

assumption of the plane svain adhesive (8, = = 0) and plane strain adherends (only E, = O), the 

adhesive stresses are calculated again and plotted in Fig. 3 4  together with the stresses fiom the 

finite elernent model and the previous modified model which assumes no longitudinal direct 

stress. It is seen that the peel stress at the root (x = O) rises to a higher level than the previous 

modified model, and the region of tensile peel stress is also shortened to become closer to the 

one from finite element analysis. This result helps explain the conclusion drawn above, that the 

peel stress fiom the previous modified model (plane strain adhesive (E, = O)) is lower than the 

corresponding results fkom the finite element model due to the neglect of the longitudinal direct 

stress. 

In sandwich joint cases, the fiee surface of the adhesive joint would not lie immediately 

at the overlap end because of excessive adhesive forrning at the ends, and the actual strain and 

stress at that point might not be as much as predicted by the finite element method. But if these 

models are applied to cracked specimens, e.g., a steady state peel specimen. then fiee surface 

may become a concem. 

A particular point worthy to be noted, and this, incidentally, may be probably the best 

assessment of the modified joint analysis model, is that fiom Fig. 3-2, both the equivalent 

stresses (Von Mises stresses) fiom the finite element model and the modified joint analysis 

model follow a very similar path. As both models were specified the sarne stress-strain cuve for 





the adhesive. In the finite element analysis the longitudinal seain contributes to the Von Mises 

stress. However, in the modified joint analysis mode1 this stress component is neglected and 

therefore this peel stress needs to be higher to reach the same degree of Von Mises stress at the 

ends. This is evident in Fig. 3-3 of the peel strain plots. 

3.1.3 An energy balance check 

An energy balance check was perfonned on the sandwich using the theory described in 

Chapter 2. A moment of 380 Nrnm/rnm applied at the both ends of the sandwich produced a 

rotation of 5.7' at both ends. The total energy input due to this bending moment can be 

calculated by integrating the moment over the rotation angle as follow: 

where the function M(@ can be obtained nurnerically by m i n g  the code repeatedly using 

different moment input, as plotted in Fig. 3-5. 

The integration of the moment over the rotation fiom the curve in Fig. 3-5 as per Eq. (3- 

1) gave an energy input of 2 1.1 J l m  at one end. The total energy input at two ends of the 

sandwich was then 42.2 J/mm. At the same tirne, the strain energy stored in the top adherend was 

16.4 J l m ,  while the bottom one is 16.0 J/rnrn. The strain energy contained in the adhesive was 

8.4 J/mm. Therefore, the total strain energy stored in this sandwich system was 40.8 Jlmm. This 

is 1.4 J/mm smdler than the work done on the sandwich. Within the calculation errors, the 

whole adhesive sandwich can be considered balanced in ternis of energy since the discrepancy is 

only 3%. 
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Fig. 3-5 The simulated moment V.S. end rotation angle response fiom the adhesive sandwich as 

described in Fig. 3-1 

3.2 Cornparison with Yamada's beam on foundation model 

Yamada's model [28,29], developed for analyzing the stress distribution in a solder joint, 

was based on the assumption that an elastic bearn is attached to an elastic-perfectly plastic 

foundation and is subject to a concentrated shear force and moment at one fke end. The 

limitation of this model is that the shear deformation in the solder was not considered. Figure 3- 

6 shows the loads and geomeûy of the joint. L, is the length of the plastic region where the 

foundation tensile stress reaches the yield stress. Le is the length of the elastic foundation. More 

details can be found in Yamada's papa [29]. 



Geornetry: h=2 mm, L=100 mm, ~ 0 . 2 5  mm 

Material property: Adherend Young's modulus E = 70 GPa, foundation rnodulus 

E,=5.74 GPa, foundation yielding stress g= 63 MPa. 

End loads: M = 1 14 Nmm/rnm, F = O 

Fig. 3-6 An example of Yamada's beam on elastic-perfectly plastic foundation model 

In order to make a valid check on the present moditied sandwich model, the fundamental 

equations as listed in Chapter 2 have to be reformulated to eliminate shear deformation in the 

adhesive layer, i.e., the adhesive shear strain and stress are zero. Under the assurnption of plane 

stress, there fore four first order differential equations can be d m  as: 



where dl variables follow the same definition as in Chapter 2. The material properties used for 

the elastic beam and foundation are also listed in Fig. 3-6. Both Crocombe's approach and 

modified approach were used to solve for four unknowns: VIX, M l ,  E and C. The tensile strain 

and stress distributions in the foundation are illustrated in Fig. 3-7 and Fig. 3-8, respectively. 

Both the stress and strain plot show that the results fiom Cmcombe's model are in 

excellent agreement with Yamada's results. The reason is that Crocombe's approach, as in 

Yarnada's model, did not consider the shear defomation in the adherend. However, the present 

modified model included the contribution fiom the shear defomation in the adherend and 

therefore predicted a relatively higher degree of tensile strain in the foundation. Even though the 

shear force F was chosen as zero in this example, the bending moment still contributes to the 

shear deformation which leads to a greater curvature in the adherend. 'Theoretically, the bigger 

the shear force F, the bigger the difference in predicted foundation stresses and strains between 

the present modified approach and Crocombe's approach. From Fig. 3-7, it is observed that the 

plastically yielded foundation length L, is 0.10 mm for the present modified model and 0.2 1 mm 

for both Yamada and Crocombe's models. The yielded zone 4 from the modified model is 

shorter because in this model the adherend is modelled as more cornpliant. It is also evident that 

the modified model predicted less compression in the region d e r  zero stress point, while for the 

overall length of load bearing zone (Lp + Le ) in the foundation, dl of the models give very close 

resuî ts. 
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Fig. 3-7 Adhesive stresses from the modified model, Crocombe's model [13] and Yarnada's model [29] for an elastic beam on elastic 
perfectly-plastic foundation as shown in Fig. 3 4  
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Fig. 3-8 Adhesive strains from the modified model, Crocombe's model [13] and Yarnada's mode1 1291 for an elastic beam on elastic 
perfectl y-plastic foundation as show in Fig. 3-6 



-.- - - 

This cornparison is encouniging in the sense that even though Yamada's model adopted a 
- 

theoretical solution to the fùndarnental goveming equations while both the modified model and 

Crocombe's model used a numerical approach, the solutions are similar. In addition, Yarnada's 

model is only able to handle the simple elastic case, but both the modifed and Crocombe's can 

considered more complicated situations. Generally, the approach taken in this thesis is quite 

accurate. 



Chapter 4 Peel Application 

In this chapter the adhesive sandwich models developed in Chapter 2 are applied to flexible- 

to-rigid peel joints in conjunction with the bearn bending theory for the detached peel adherends. 

A completely new peel analysis is presented. An airn of this chapter is to prepare an analytical 

approach for M e r  work in Chapter 5 of predicting the peel force for different peel 

contixgurations of a given adherend - adhesive system. 

It was noted that the primary objective of this thesis was the development of a sandwich 

mode1 and adhesive failure critenon for cases in which adherends yield. In this sense, the 

investigation of peel geometries was undertaken only as a practical means of applying loads to 

the ends of a sandwich. 

4.1 Introduction 

4.1. I Background 

Peel tests have k e n  extensively used CO measure the adhesion strength in various 

applications such as in the electronic packaging industry. In a flexible-to-rigid peel test, a 

relatively thin and flexible adherend is pulled apart from a rigid substrate to which the flexible 

one is joined by a layer of adhesive (as shown in Fig. 4-1). At the steady state of peeling, the 

force applied separating the flexible fiom the tigid adherend is tenned the "peel force". There are 

many parameters deteminhg the peel force, and a large amount of expenmental and theoretical 

work exists on characterizhg these Uitrinsic parameters [30-391. 

In the absence of plastic defornation, the peel force is a direct measure of the adhesive 

fracture energy. However, in the case of structural epoxy adhesive joints with high strength, 



plastic dissipation will take place in the flexible adherend and adhesive, consurning a large -- - - - 

portion of energy input through the extemal work of the peel force. Researchers have been 

interested in finding an accurate way of predicting the plastic dissipation and thereby enabling 

them to extract the fracture energy of the peel. 

Flexible pcel a m  
7 

Adhesive Layer 
Rigid Substrate 

I l / /  

Detached - Attached 

Fig 4 -1. A sketch of typical flexible to rigid peel test 

Spies (in 1953) was perhaps the first to present a theoretical anaiysis of the mechanics of 

elastic peeling. He considered the still-attached part of the flexible ami as an elastic beam on an 

elastic (Winkler) foundation and the detached part of the beam as an elastic beam under large 

displacement (elastica). Sirnilar elastic models have also ken presented by many others such as 

Bikerman (in1957), Jouweama (in 1960), Gardon (in 1963), Gent and Hamed (in 1975). A 

numerical solution of the elasto-plastic peel problem has been presented by Crocombe and 

Adams [30] using the fh t e  element method to calculate the stress distribution. 



Chen and Falvin 1311 pioneered the reseacch in taking the plastic dissipation into the 

account when analyzing the total energy balance of the peel joint. An approximate solution of 

peel stresses in the adhesive layer was presented. Gent and Hamed [32] did the same thing based 

on efementary beam theory. Crocombe and Adams [33] further extended their elastic peel into 

plastic peel in the finitc element model. Based on a general elastic-plastic slender beam theory, a 

relatively complete analysis was performed by Kim and Kim 1341 and Kim and Aravas 1351 by 

taking account of elastic unloading and reverse plastic bending. A closed fom solution related 

the root curvature and plastic dissipation with the peel force, peel angle, adherend properties and 

root rotation angle. Williams 1361 tned to correlate the root rotation with the adherend 

compliance in the pest test, but he made the assumption that the attached part of the peel 

adherend behaves elastically while the detached part is considered as an elasto-plastic beam. 

Kinloch et al. [37] adopted the slender elasto-plastic beam bending theory for both the detached 

and attached parts, and the approach of Williams [36] was followed. Good agreement was found 

between experimentally measured root angles and predicted ones. 

Moidu et al. [20, 381 made several improvements in order to accurately determine the 

adhesive fiacture energy during peel. Firstly, the prediction of plastic dissipation in the adherend 

was revised for a bilinear adherend based on slender bearn bending theory, and the work 

hardening and the reverse plastic bending of the adherend were taken into account. Secondly, an 

elastic foundation which captures both the tensile and shear defortnation was presented. In this 

foundation model, considering the fact that the attached part of the adherend does not act as a 

true built-in cantilever, the adherend compliance was modified by using Kaminen's [23] 

approach of correction for a double cantilever beam (DCB). This peel analysis was used by 



Sargent [39] in his peel tests, and good agreement was observed between the theory and 

expriment. 

4.1.2 Problems 

Nevertheless, those restrictions in Moidu's approach and others pose problems in several 

aspects and they need to be solved as follows: 

The simplification of the adhesive layer only as a foundation, as dl previous researchers did, 

has made it impossible to model the failure of the adhesive layer by applying an appropriate 

failure criterion. In order to M e r  explain how the criticaï hzture energy changes with the 

bonding geometry for a given adhesive system, the correlation between the stresses and 

strains in the adhesive and the constraint provided by both the flexible adherend and rigid 

substrate need to be interpreted and quantified if possible. 

rn Most structural epoxies are toughened and exhibit some degree of ductility, therefore the 

adhesive layer in the peel specimen needs to be treated as an elasto-plastic nonlinear 

foundation. Both the tensile and shear deformation need to be considered. 

The modeling of the stilt-attached aâhemd as a bending beam on a foundation subject only 

to moments is not comprehensive and genedized. A more general model should take shear 

and tensile loading into account. 

rn Most approaches developed in past research have only studied the flexible-to-rigid peel 

geometry. But in potential applications of automobile industry, two thin sheets joint maybe 

required, such as "T' peel. Therefore, the peel analytical model developed should be 

universai. 



4.1.3 Approach 

The approach taken in this peel analysis is illustrated in Fig. 3-2. The overall peel 

adherend is divided at the peel root. The detached part, which is to the lefi of the peel root, is 

treated as an elasto - plastic slender beam in pure bending, while the detached part is considered 

as a part of an adhesive sandwich with a sufficient length L so that the boundary conditions at x 

=L are known. It is assurned and in fact proven that the cumature of flexible adherend reaches a 

maximum value at the root, The curvatures and root rotations calculated for both the detached 

and attached parts of the adherend should match at the peel root (x = 0). 

Detached 1 Attached - x  

v 2  Adhesive bond thickness (t) v22 

Fig 4 - 2 Decomposition of peel into detached peel strip and attached sandwich dividing at 

peel root where peel curvature and root rotation match and are maximum. 
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4.2 Peel analysis 

4.2.1 Energy balance in steady-state peel 

With a constant peel angle, &er the initial crack grows and propagates a certain distance, 

the peel force begins to stabilize. The adhesive fracture energy, G ,  can be derived fiom an 

energy balance [20,38]: 

Gc = K r ,  - w, - w, - w, (4 - 1) 

where W,, is the external work done by the peel force F, W,, is the stored elastic energy in 

tension in the peeling am, W ,  is the energy dissipated during tensile deformation of the peeling 

ami, and Wpb is energy dissipated during the bending of the peeling m. The extemal work per 

unit area may be calculated by [20, 381: 

where F is the peel force, b is the width of the peeling arm, B is the peel angle, and E, is the 

tensile strain in the detached part of the peeling adherend. Usually, W,, and W, are negligible 

compared to Wpb. 

4.2.2 Plastic energy dissipation and equations for detached part 

Figure 4-3 shows a sketch of the peeling arm's loading and unloading process in terms of 

the moment-curvature ( m 4 )  relationship and correspondhg physical locations on the m. 
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Depending on whether the root curvature ke is sufiiciently large or not. every section on the 

peel ami will go through the stage of elastic benàing (O - A), elastic-plastic bending (A - B), 

elastic unloading (B - C) and reverse plastic bending(C - D), or al1 stages but without reverse 

plastic bending (C - D). 

\ Bottom adherend \ 

(a) 09 

Fig. 4-3 (a) Peeling process and (b) corresponding m-k representation 

It is convenient to normalize the moment and curvature with respect to the collapse 

moment 1% and elastic limit curvature Ke, respectively [34] as follows: 

M m=- K &=- 
Mo ' K, 

where for plane stress of the adherend, Mo and K. are d e h d  as: 



while for plane strain of the adherend, Mo and k; are: 

For the definition of O,, and Ee/,,, refer to Section 2.4 of Chapter 2. 

The mathematical m-k relationship for al1 stages (O - A - B - C - D) can be found in 

[30-321, and Wpb cm be obtained by calculating the area under O - A - B - C - D envelope in 

Fig. 4-3 and converting to non-nomalized values as: 

is the threshold for the root curvature k, , which determines whether in the 

n-k diagram the overail bending process will have a reverse bending stage C-D included. 



Further manipulation of analysis [35] on the detached part of the peeling adherend 
-SA=- 

produces the conelation between the root curvature k, , mot rotation angle # and peel force F 

as: 

for k k , S  l + -  ( *'a) 

for k,21+- ( l'fi) 

In the above equations, the calculation of k, requires the root rotation angle 4, and 

therefore the attached part of the peeling ami needs to be analyzed for an additional constraint. 

4.2.3 Adhesive sandwich mode1 analysis for the attached part 

The theory of adhesive sandwich analysis has been descnbed in Chapter 2. As 

illustnited in the right-hand side of Fig. 4-2, if the boundary condition is known, the root angle # 

and root curvature ke can then be calculated based on the solution of the general equations (2-34, 

2-35, 2-36) in Chapter 2 and matched with theu counterparts fiom the detached part as: 

at root (x =O) 

at mot (x = 0) 



---. - - 
where K r  and #'la are the root cwature and rotation angle fiom the detached part solution; 

KI, and arctan(c) at x = O are the root curvature and rotation angle from the attached sandwich 

solution. These two conditions are in nature equivalent to each other. If one is met, the other is 

satisfied automatically. 

For flexible-to-rigid peel, assuming L is sufficiently large, then the right-hand side 

boundary forces (T,h V12, M12, TJ2, V'?, ) in Fig. 4-2 can be al1 zero. The boundary forces on 

lefi-hand side are equal but in opposite directions for top and bottom adherends; that is: 

If the peel is flexible-to-flexible, then boundary forces on right side and Tri, Vrl and M2/ have to 

be specified as known or c m  be directly calculated based on force equilibrium. 

A simple force balance on the detached peel adherend gives 

q ,  = F COS(@) (4 -13) 

V,, =  sin(^) (4 -14) 

The bending moment Mf is related to the maximum curvature ke at the root as follows [ l  O]: 

2 M , ,  = -m, Mo = -Mn 7 A, 



in summary, Eqs. (4 - 10) to (4 - 16) imply that an additional relationship between ke and # can 

be established in a very complicated way, but can be expressed as 

f(k,94)=0 

4.2.4 Numerical solution 

The solution of ka and ( can be obtained by jointly solving Eq. (4-8) or Eq. (4-9) and 

Eq. (4-17) numerically. These equations are al1 highly nonlinear, and Eq. (4-17) does not have 

an explicit expression. An iterative technique such as the Newton-Raphson method is employed 

and Fig. 4-4 shows a typical dia- for al1 Fortran codes involving different adhesive sandwich 

models, 

Several codes were written to solve for the peel analysis based on different adhesive and peel 

adherend model assumptions listed as: 

1. Both the adhesive and adherend were assumed to be in plane stress (a, = O). Hereinafter 

called the plane stress model. 

2. Both the adhesive and adherend are in plane saain in the lateral direction (E, = 0) but the 

adhesive is in plane stress in the longitudinal direction (4 = O). Hereinafier called the "2" 

plane strain model. 

3. The adherend is in plane strain in the lateral direction (G = 0) and the adhesive is in plane 

strain in both x and z directions (6, = = O). Hereinafter called the "X-2" double plane 

strain model. 



An initial guess of AB B 

Using Newton 

Raphson to find a 

1 newkB j 

Evaluate the reaction forces 

7'1 19 VI / , M l  I at mot 

1 conditions for attached I 
peel adherend I 

- -- 

( Solve adhesive sandwich] 

for rmt rotation p i-' 
1 Calculate the detached l 1 part for rooi rotation qP 1 

Output k g  and 4 and 4 1 p s t  processing ( 

Fig. 4 - 4 The diagram of iterative technique for solving non-linear equations of peel models 
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For al1 three peel models, the bottom adherend cm be either ngid or non-rigid with a 

specified finite thickness. in addition, the codes developed in models 2 and 3 were M e r  

modified, as described in Section 2.2.4, to take Kaminen's [23] correction for adherend root 

cornpliance into account, and results will be further discussed in the next section. 

The pst processing after solving for ke and ) involves energy balance analysis, calculation 

of apparent critical fracture energy G, and the retrieval of stress and strain distributions along the 

adhesive bonding line. 

4.3 Results and discussions 

This section uses a postulated peel configuration to test the new models and cornparison is 

made with other existing models. 

4.3.1 Cornparison with FEM and Moidu's peel models 

In order to veri@ the new peel analysis, cornparisons were made with other available 

approaches such as finite element analysis and Moidu's [20, 531 analytical model. The peel 

configuration used was flexible-to-rigid peel; a 1 mm thick aluminum strip was peeled fiom a 

rigid base to which it was bonded by an adhesive. The aluminurn and adhesive material 

pmperties are listed in Table 2-1 in Chapter 2. The peel force F was 14.7 N/mrn, the peel angle 

Bwas 90". The elastic Poisson ratio for both adhesive and adherends is 0.37. The plastic Poisson 

ratio in the finite element model is 0.5. The peel and shear stresses and strains were calculated 

and the results were compared between these different rnodels. 



Peel stress - Z plane strain (0.47) - Peel stress - X-Z plane strain (0.47) 

Peel stress - X-Z plane strain (0.4) - Peel stress - FE model (0.5) - Peel stress - Moidu's model (0.47) 

O 0.5 1 1.5 2 2.5 3 
Distance fiom the root (mm) 

Fig. 4-5 (a) Adhesive peel stresses fmm full non-linear peel analysis, Moidu's peel analysis [20] and finite element peel analysis 1531. 
Two plastic Poisson ratios (0.4 and 0.47) for the adhesive were used as indicated. 
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Shear stress - Z plane ~train (0.47) - Shear stress - X-Z plane strain (0.47) - Shear stress - X-Z plane strain (0.4) - Shear stress - FE model (0.5) - Shear stress - Moidu's model (0.47) 

O 0.5 f 1.5 2 2.5 3 
Distance fiom the root (mm) 

Fig. 4-5 (b) Adhesive shear stresses from full non-linear peel analysis, Moidu's peel analysis [20] and finite element peel analysis 
[53]. Two plastic Poisson ratios (0.4 and 0.47) for the adhesive were used as indicated. 



Peel strain - Z plane strain (0.47) - Peel strain - X-Z plane strain (0.47) - Peel strain - X-Z plane strain (0.40) 

O 0.5 1 1.5 2 2.5 3 
Distance from the root (mm) 

Fig. 4 - 6(a) Adhesive peel strains from full non-linear peel analysis and finite element peel analysis (531. Two plastic Poisson ratios 
(0.4,0.47) for the adhesive were used as indicated. 



-Shear ~train - Z plane ~train (0.47) - Shear strain - X-Z plane strain (0.47) - Shearl strain - X-Z plane strain (0.40) - Shear strain -FE mode1 (0.5) 

O 0.5 1 1.5 2 2.5 3 
Distance from root (mm) 

Fig. 4 - 6(b) Adhesive shear strains from full non-linear peel analysis and finite element peel analysis [53]. Twn plastic Poisson ratios 
(0.4,0.47) for the adhesive were used as indicated. 



Figures 4-5 (a) and (b) show the adhesive tensile and shear stress distributions in the x- 

direction (Fig. 4-2) calculated using diRecent approaches. The results fkom the double plane 

strain ( E ~  = g = O) mode1 were calculated for two different adhesive Poisson ratios (O,, = 0.47 and 

v, = 0.4). It is seen that the result, particularly the peel stress, is sensitive to the value of Poisson 

ratio for this model. However, the modified plane strain (G = O) model is not as sensitive to the 

value of the adhesive Poisson ratio, therefore only the results for one Poisson ratio (op = 0.47) 

are plotted. For the double plane strain (8, = E, = 0) model, ody the results of Poisson ratio (0, = 

0.47) will be discussed. Again, the finite elernent analysis was carried out by Jun Cui, an 

M.A.Sc. student working on this project. The Poisson ratio used in this FE analysis is 0.37 for 

the elastic and 0.50 for the plastic. Further details cm be Mished in his thesis 1531. The results 

of Moidu's model are based on the theory developed in the paper [20]. 

Figures 4-6 (a) and (b) show the adhesive tensile and shear strain distributions in the 

.adhesive layer using these different approaches. The strain results also show the same trend as 

the stresses. It can be concluded that the efiect of different adhesive constraint models on the 

strains in the adhesive layer is significant. Besides, the plastic Poisson ratio of the adhesive is 

also sensitive to the adhesive plane strain model (gr = = 0). 

For both the adhesive stress and strain, the discrepancy of the results between each of the 

analytical models and the finite element model decreases with the distance fiom the peel root. A 

relatively large difference occurs in the region close to the root. Al1 analytical models predict 

that the adhesive strain and stress are maximum at the mot, while the finite element analysis 

shows that stress and strain reduces in the rmt region, which is the end of the joint overlap. 

There are three reasons, as has been discussed in Section 3.1.2 in Chapter 3 and Crocombe 

analyzed in his papa [13], contributing to this phenornenon: the square edge, the fkee surface 



and neglecting the adhesive longitudinal stress a, In the stress plots (Fig. 4-5), the double "X- 

2' plane strain (8, = c = O) model calculated lower level of peel stress than the FE model except 

in the mot adjacent region. While the '2" plane strain (E, = O) model gave higher value for the 

shear stress and lower for the peel stress. In the strain plots (Fig. 4-45), the double "X-Z' plane 

strain (E+ = c = O) mode1 calculated lower level of peel and shear strains than the FE mode1 

except in the root adjacent region, while the "2" plane strain (E, = O) model gave higher 

prediction of peel and shear strains. 

Overall, the "2" plane strain (q = O) model seems to have better agreement with the finite 

element result in the region close to the root. However, moving fiirther away from the root, the 

double "X-2" plane strain (E, = E, = O) model gives better predictions than the bbZ" plane strain (G 

= 0) model. None of these two models gave the sarne result as the FE model over the entire 

adhesive bond region. The stress and strain plots in Figs 4-5 and 4-6 show that in the most of 

adhesive region, the curve fiom the FE model, whether the stress or strain, somewhat lies 

between the two corresponding curves for the "2" plane strain (G = O) model and the double "X- 

2" plane smiin (E, = E, = 0) model. 'ïherefore, a potential good model might be the one which 

combines both the "Z' plane strain mode1 and the "XZ" plane strain model by applying a 

weighting factor on them. Our hypothesis is that al1 along the adhesive bonding linr, lateral 

tensile strain (G) is zero, but the longitudinal strain (cX) varies fkom zero at the suficient distance 

fiom the root, to such a finite value that the corresponding longitudinal stress (4 ) is zero. Due 

to the limited duration of this thesis research, this proposed new mode1 was not developed in this 

thesis. 



--. 
4.3.2 The effect of Kanninen correction on adhesive foundation 

It is believed that the cornpliance of the flexible adherend reduces the total stifhess of the 

adhesive foundation [23]. Bûsed on above modified peel models, the Kanninen correction was 

introduced to calculate the effective foundation stresses q. and r, in the adhesive layer as: 

For the "X-2'' double plane strain (8, = = 0) model, the foundation stresses are: 

For the "F' plane strain (a, = E, = 0) model, the foundation stresses are: 

where E, is the local secant modulus of the adhesive, and Eudh is the local equivalent modulus 

of the adherend defined as: 

nr.uirul where a, , &ytmf are Von Mises stress and strain at the neutrai axis of the adherend. E,, is 

calculated by the subroutine "NESECD in the Fortran codes. 



The analysis was carried out based on the above modified foundation stresses. The peel and 

shear stresses in the adhesive foundation were caiculated and illustrated in Fig. 4 -7 (a) and (b) 

for both models with and without considering the effect of Kanninen correction. Fig. 4-8 (a) and 

(b) shows the plots of the strains. As can be seen h m  the strain plots, the strain results fiom 

Kanninen corrected models have higher degree of strains than the non-corrected corresponding 

models. The "2'' plane strain model has higher strain level than the "X-2" double plane strain 

model, but the stresses are lower because the adhesive layer is modeled as less stiff. In both the 

Kanninen corrected models, the stifiess of foundations is reduced due to the inclusion of 

adherend compliance, therefore the loading zone is distributed over a longer region. The peel 

stress plot in Fig. 4-7(a) shows that the peel stress curves for both the "Z" plane strain (Kanninen 

corrected) and "X-2" plane strain (Kanninen corrected) have a small peak close to 1 mm from the 

peel root. This is because the sharp transition of adherend's stifiess fiom the elastic to plastic 

stage due to the nature of bi-linear model. It is seen that both peel stresses in Eq. ( 4-1 9) and ( 4- 

2 1) are related to the stiffness of the adherend, E,, . 

The inclusion of Kanninen correction on the finite beam compliance did not improve the 

adhesive stress and strain prediction in the peel joint. It significantly increased the adhesive 

strains to an unrealistic level. However, in the case of "T' peel, because it is a finite bottom 

beam instead of the rigid substrate as is in the flexible-to-rigid peel, the Kanninen foundation 

correction may still need to be considered. 

In summary, this chapter examined tluee peel models and compared these models with 

the finite elernent model and Moidu's model [20] in litcranire. The new models considered the 

non-linear adhesive behavior and wete able to handle the plasticity in the adhesive. The 

modeling of the adherend was also more comprehensive than Moidu's peel model. Under overall 



evaluation, the "X-2" double plane strain model bas a better agreement with the FE model 
--EL - - 

results. But the discrepancy, as already discussed in last two sections, still exists to an extent that 

a better model with the combination of both the "X-Z' double plane strain and the "2' plane 

seain model is worth investigation. 



\ - Z plane strain (Kanninen correction) 

\ - X-Z plane strain (Kanninen correction) 

\ - Z plane strain 

\ - X-Z plane strain 

Distance fiom the root (mm) 

(a) 

- Z ptane ~train (Kanninen correction) - X-Z plane strain (Kanninen correction) 

+ Z plane stress 
/ - X-Z plane strain 

1 1.5 2 
Distance from the root (mm) 

(b) 
Fig. 4-7 Foundation stresses h m  the "2' plane strain and 4'xZ' double plane strain models 
with or without considering Kanninen's beam cornpliance correction. Poisson ratio 0.47 was 

used. 
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X-Z plane strain (Kanninen correction) - Z plane strain - X-Z plane strain 
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O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Distance fkom the root (mm) 

(b) 
Fig. 4-8 Adhesive strains from the "Z' plane strain and "X-2" double plane strain models with or 

without considering Kaminen's beam cornpliance correction. Poisson ratio 0.47 was used. 



Chapter 5 The mesurement of flexible-to-rigid peel 
strength 

Peel tests were conducted on flexible-to-rigid peel joints with two adhesives, various 

thickness of the pe l  adherend (1, 2 and 3 mm) and peel angles (30°, 60' and 90'). The 

measured peel forces were then applied to the peel models developed in Chapter 4 to perform 

peel analyses. The adhesive system used in al1 peel tests was: AA5754-0 flexible adherend + 

adhesive + AA6O6 1 -T6 rigid adherend. The pretreatment used before adhesive bonding was 

the chrome-fiee conversion coating developed by Henkel. A universal peel jig was 

developed for carrying out peel tests capable of 6 different angles. 

5.1 Experimental method 

Two adhesives were chosen in this study: Terokal 4551 from Henkel and Betamate 

1044-3 fiom Essex. These two adhesives arc one-part thermosetting epoxies. Tensile tests 

were performed on I mm thick bulk adhesive dumb bel1 specimens [48] and gave the uniaxial 

stress-strain c w e s  for these two adhesives as plotted in Fig. 5-1. These adhesive specimens 

were cut fiom an adhesive wafer cast using two steel plates with polished surfaces and coated 

with a mold release agent. A 1 mm diameter steel wire was used to control the wafer 

thickness. Two samples fiom 1 wafer for Betamate 1044-3 were tested using an Instron 4000 

tensile load fiame at 0.5 rndmin loading rate. The Terokal455 1 adhesive samples was tested 

by S. Sareskani ( M.A.Sc. student) on an ATM 1000 N load frame. Also given in Fig. 5-1 

are the stress-strain curve and its bi-linear approximation for aluminum alloy AA5754-0 

fiom [49]. 

Two series of peel tests were conducted for each of these two adhesives. Each series 

of peels used the same adhesive, adherend and adherend surface preparation, but varying the 
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Fig. 5 -1 Uniaxial tensile tests for adhesives (a) Betamate 1044-3 

(b) Terokal455 1 (c) adherend AA5754-0 bi-linear approximation 

The relevant constants fiom Fig 5.1 are : 

Betamate 1044-3 - E,=2580 MPa, O,, .- , = 32.0 MPa, 6,,=0.014 ; 

Terokal455 1 - E,=1830 MPa, q,, =23.6 MPa , ~ ~ ~ = 0 . 0 1 5 ;  

AA5754-0 - E,=7 1 .O GPa, Ep,=0.483 GPa , a, =100 MPa 

peel adherend thickness and peel angle. 

The peel specimens were made of three different thickness of  AA5754-0 sheet ( 1 ,  2 

or 3 mm) bonded to a rigid 12.7 mm thick AA606LT6 aluminum plate by either adhesive 

Betamate 1044-3 or Terokal 455 1. They were al1 approximately 20 mm in width. A peel 



load jig was designed, as shown in Fig. 5-2 for carrying out peel tests with various 

-A--- -- - coRfigUratiorts. ke1 specimms codd be ctampect into the trough of a supponing beam with 

which a triangle fixture is fomed. Five screws on each side of the trough were used to hold 

the bottom thicker adherend in place and thus also increase the rigidity of the substrate. The 

triangle fixture was adjustable in its assembly allowing 6 different peel angles to be obtained. 

The load jig was mounted on two linear bearings (THOMSON SSUPB - 12). The beatings 

Cable to 
load frame 

Peel specimen 
\ ! Screws on 

A - A Section 

Adjustable peel 
fixture assembly 

Fig. 5-2 The schematic of peel jig for various tests at constant peel angle 8 



could travel with minimum friction on s 19.05 mm- dimeter stainless steel raik &ch was 

fixed at the ends by two end supports. The jig moved together with the peel specimen dong 

the rail horizontally as the peei propagated, keeping the peel angle constant. An ATM 2200 N 

tensile load frame with computerized data acquisition system was used under stroke control 

for al1 peel tests. For each test, the curve of peel force V.S. displacement was recorded by a 

computer. But only the peel force at steady state was of interest in this research. 

5.2 Adherend pretreatrnent and adhesive bonding procedures 

Each specimen was prepared using following procedures: 

Meta1 preparation and chemicals 

Thin aluminum alloy AA5754-0 sheets as peel adherend and thick AA606 1 -T6 plates as 

rigid adherend were bonded together. Before bonding, both adherends were cut to 

approximately sarne width (90 mm), but the rigid adherend was cut to 320 mm length and the 

flexible one to 430 mm length; 1 10 mm longer as a tail which was not bonded to the rigid 

adherend. The reason for doing this was that plastic yielding occurred in the tail piece before 

the adhesive crack propagated. This helped the peel test reach earlier stabilization of peel 

force and therefore reduce the minimum length of bonded specimen required to obtain a 

steady state peel force. Pure acetone (9% volume concentration) was used to degrease the 

surfaces of the adherends. Alumiprep 33 and Alodine 5200 were chemicals supplied by 

Henkel for producing a chrome- free conversion coating on the surtaces be fo re bonding. 



---- 2 - L  

Pretreatment procedures 

1. Wipe the bare alurninum plate using lint-fkee tissue soaked with acetone on the 

surface where adhesive is going to be applied, until the surface gets suffciently clean 

(when there is no grease or residue visible on the tissue). 

2. Rinse the swface with distilled water, Once there is no break-down of water film on 

the surface, this means the surface is clean enough. 

3. Under a fume hood, spray 5% Alumiprep 33 solution ont0 the surface of the 

horizontal aluminum plates for 5 seconds, and then leave wet for 3 minutes. DO NOT 

let the surfaces dry during this period by simply re-spraying the drying spot if any. 

The purpose of this chemical is tu not only produce a chemically clean and corrosion 

free aluminum surface, but also prepare the surface of alurninum for the coating in the 

next stage. 

4. After 3 minutes of wetting, rinse with distilled water completely. 

5. Spray 7.5% Alodine 5200 solution for 3 seconds on the surface which has just k e n  

rinsed, and then again let it wet through for 3 minutes. During this 3-minute dwelling 

time, there are a series of chemical reactions going on which create a thin layer of 

coating on the surface of aluminum. This coating serves to improve the mechanical 

bond between the aluminum substrate and the adhesive layer and therefore the overall 

bonding strength. 

6. Rinse Alodine 5200 off the suface immediately d e r  3 minutes. Longer than a 3 

minute wetting period will lead to an overweight coating which can reduce the 

bonding strength. The repuireci coating weight is 54 -160 mg/m2. This was checked 

using X-ray fluorescence at Henckel. 
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--- - - 7. Put the pretmted duminum plate into an etc*ricatly heated o v m  and &y it for 

approximate 15 minutes at 8 0 ' ~  

8. CAUTION: Always avoid touching the pretreated surface. 

Bonding and curing 

1. 0.4 mm thick Teflon shims were used to keep the bond line thickness uniform. Eight 

spacen were used for each bonded sample, with 3 on each side and 1 at each end. 

2. Always apply the adhesive in the middle region of the bonding area. By clamping the 

joint with eight 2-inch paper clips afier closing the joint, let the ad5esive flow and 

spread evenly between the two surfaces of the plates. By doing this rather than 

spreading the adhesive everywhere in the bonding area, we can minimize tnipping air 

bubbles into the bonding line and therefore avoid defects. 

3. Afler the joint is clamped, excessive adhesive will ooze out of the edges, periodic 

removal of this excessive adhesive is required in order to reduce the resistance of 

intemal adhesive flow. 

4. Place the joint togethet witb the papers clips which hold the joint into a preheated 

oven. A forced-convection oven is required which has even temperature distribution. 

60 minutes is required to cure the adhesive completely at a temperature of 180'~.  

Specimen cutthg 

The 430 mm x 90 mm bonded joints were then cut into 3 pieces of final peel 

specimens with approximate width of 20 mm. A table saw was used to cut a total 45 
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specimens for this thesis. Special attention was given to ensure the maximum degree of 

constent wridth d pievent overheatingof the specbduring cuning by spraying suficient 

coolant and cutting slowly . 

In this thesis, a total of 3 batches of Terokai 455 1 and 2 batches of Betamate 1044 -3 

specimens were made. Each batch had 9 peel specimens with 3 specimens for each of three 

different thickness (1, 2, 3 mm). The adhesive Terokal 4551 was fiom two different supply 

batches fiom Henkel and it was unfortunate that a great variation was discovered between 

these two batches of adhesive. Two batches of Betamate 10443 adhesive joints were made of 

a single commercial supply batch fiom Essex. See Table 5-2 for detailed batch designations. 

5.3 Experimental observations and results 

Observations and results 

Quite diflerent fiom DCB fracture tests, no obvious "damage zone" existed ahead of 

the crack tip for al1 1,2  and 3 mm peel specimens of two adhesives. The locus of adhesive 

failure always lay near the flexible adherend side of the adhesive layer. Figure 5-3 presents a 

picture of the crack propagation for a 3 mm peel joint with Betamate 1044-3 adhesive, The 

picture was taken using a Kodak MDS 100 Digital camera and a 40X microscope. The 

images of the peel root region at steady state were taken with the digital carnera and the 

curvature at the root was processed for each peel for later use in the peel analysis. Figure 5-4 

shows a typical picture of 60°peel for a 2 mm Betamate 1WI-3 peel joint. The root radius R 

and root rotation 4B were caiculated using the image processing software Windig25. In this 

software, spline fitting was used to simulate the curve in overlapped segments and the 

curvature and slope angle values were retrieved at the peel root. 

1 O3 



Peel adherend 

Adhesive layer 

Rigid adherend 

Fig. 5 - 3 A typical image of crack propagation in the adhesive layer ( The broken ligaments 

are paper liquid coating) 

Fig. 5 - 4 A typical image of peel curvature and rotation at the peel mot 
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For dl valid peel tests, a smdl layer of residual adhesive was lefi on the surface of the 

--- - .  - - - flexible peel adherend while mw&of adhesive mnained on the sut f ixe  of the rigict substrate. 

The 3 mm peel adherend or 30" peel had more residual adhesive than 1 mm peel or 90' 

respectively. Table 5-1 lists the average thickness of residual adhesive measwd using an 

electronic coating thickness meter (Positector 6000). Four measurements were read for each 

specimen and about four specimens for each contiguration. The overall trend seems to be that 

the thicker the adherend and the lower the peel angle, the greater amount of the residual 

adhesive was left on the surfaces of the peel adherends. Hence the amount of residual 

adhesive increases as the peel root radius increases. The locus of failure was obviously 

cohesive fiom both the visual assessrnent and measurement. Therefore cohesive failure is 

assumed in this peel analysis. 

Table 5 - 1 The thickness of residual adhesive layer on flexible adherend afier peeling 

The peel crack only propagates in a stable manner at a low loading speed. The first batch 

of Terokal 455 1 specirnens and a few Betamate L W  samples fiom the first batch were 

tested under 10 &min cross-head speed. Due to the fiction resistance between the bearing 

and rail, the peel jig was not able to advance smoothly while the load fiame was peeling the 

specimen. "Stick-slip" type of movement of the linear bearings produced a magnitude of 5 - 

8 mm jumps with the peel jig as a whole. Jumps were observed for al1 peel tests. This 

movement caused a fluctuation of the steady state peel force. The higher cross-head speeds 

resulted in larger jumps. Figure 5-5(a) shows a typical fluctuation in the recorded force - 

displacement curve for peel tests at 10 mmhin cross-head speed. After experimental 
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Peel 
configuration 

Thickness 
(um) 

1mm 
30' 

42 

1mm 
60' 

38 

3mm 
90' 

50 

Imm 
90' 

35 

2mm 
30' 

52 

2mrn 
60' 

46 

3 m m  
30' 

63 

2mm 
90' 

38 

3mm 
60' 

55 



O 5 10 15 20 
Cross-head disp. (mm) 

(a) 1 0 mm/ min 

- 1044-3 mm-60 peel 

O 2 4 6 8 10 
C ross-head disp.(cm) 

(b) 2.5 Mn/ niin 

Fig. 5 -5 Recorded peel force versus displacement curves for 60" peel test of a 3 mm peel 

specimen L19.9 mm wide for (a) anci 20.7 mm for (b)] at 2 different speeds. 



investigation of the cause of friction with the bearings, it was discovered that a lower cross- 

heodspeedcould significantly d u c e  theamplitude of the jumps dom to 2 mm ami maintain 

alrnost constant movement of the peel jig. Figure 5-5(b) show the significant elimination of 

the "stick-slip" effect for a peel test of a same specimen tested as Fig 5-5(a) condition but at 

2.5 mmlmin load speed. The variation of peel angle due to this "stick-slip" effect was then 

reduced fiom 0.8' to 0.2' on average. Since then, for most of the peel tests, the load h e  

speed was set at 2.5 mm/min, which was the lowest speed setting. 

For Betamate 1044-3 peel joints, 36 measurements were obtained from 18 specimens 

with various peel configurations. On average, 4 measurements were taken in total to evaluate 

the peel force for each particular configuration, Le. thickness of the peel adherend and peel 

angle. Each of these 4 measurements was calculated fiom the average of the peak force 

values of the steady state peel curves. The peak force in local regions as show in the curves 

of Fig. 5-5, is caused by the fluctuation of tension force in the loading cable, which was due 

to the "stick-slip" movernent of the peel jig. A program was written in Fortran (in Appendix 

C) to find the set of local maxima in the steady peel force over a particular distance. These 

maxima were then averaged for each trace. The overail averages of the steady state peel 

forces are shown in Fig. 5-6. The length of the cross-head movement over which the average 

peak force value was calculated is given in Table 5-2. Also listed in the table are average 

peak force and its standard variation for each particular measurement within a single 

specimen. Table 5-3 gives the measured root curvature KB and root rotation angle 4B using 

the image processing technique mentioned in the beginning of this section for each peel 

configuration. As expected, it is seen that at the sarne peel angle 8, the curvature Ke increases 

as the peel adherend thickness decreases; while for the same aâherend thickness. Kg 

increases as the peel angle B increases. 



1 mm-30,60 and 90 degree 

2mm-30,60 and 90 degree 

A 3mm-30,60 and 90 degree 

25 35 45 55 65 75 85 95 
Peel angle (degree) 

Fig. 5- 6 Average steady siate peel forces and standard deviations for 30°, 60' and 90' peels of  1,2 and 3 mm 
peel joints for adhesive Betamate 1044 - 3.2 - 4 measurements were averaged for each pont (see Table 5-2 ). 



--A .*, - . Table 5-2 Average peak peel forces and standard deviations within a specimen and between 

specimens for 1.2, and 3 mm Betamate 1044-3 adhesive peel joints at 30°, 60°, and 90'. 

Test 

No. 

1 

.2  

3 

4 

variation 
/ 

peel length 

NIA NIA NIA 8.19 14.0 5 3 . 7  13.0 Avenige l l 1 l 1 I l 
Stnd. dev. 1 N/A 1 N/A 1 N/A 1 0.317 ( 0.307 1 2.54 1 0.134 

Peel tength NIA 3.5 1.6 2.1 5.5 ' N A  
' 

N/A 
' 

(cm) 
average 6.82 12.1 35.2 8.43 16.2 50.7 12.2 

I 

Standard deviation 0.42 0.32 0.12 0.79 1.97 2.44 2.00 

Note: 

1 . Al1 units to be N/mm unless otherwise specified 

2. The shaded measurements correspond to the sample h m  preparation batch No.1, 

otherwise, they belong to preparation batch No. 2. 

3. The standard deviation in the last row is listed as an overall standard deviation f?om dl 

peel force measurements. 



-- --- - - Simitariy, theroot rotation angie 6 bthe sametrend asthe cmmtttre. 

For Terokal455 1 peel tests, a total of 3 batches of peel specimens were fabncated. The 

results nom 42 measurements in total have shown that there existed a very large degree of 

batch-to-batch variation for this adhesive. Henkel clairned that the reason for this variation 

was that this adhesive was still under development at that time. Therefore the results of peel 

forces for Terokal455 1 peel tests and corresponding results fiom peel analysis, both given 

in Appendix B, must be treated with caution. Unfortunately, no conclusions cm be drawn 

fiom the results of this adhesive's peel tests. 

Table 5 - 3 The experimentally measured rwt cwature KB and mot rotation angle +B for 

each peel configuration of adhesive Betamate 1044-3 peel specimens 

Note: One measurement was taken for each configuration. 

Peel 
configuration 

Root 
curvature 
& (1/111171) 

Root 
Rotation 

#B (degree) 

5.4 Discussion 

The peel test is subject to variations for several reasons: The quality of pretreatment and 

defects such as trapped air bubbles during the bonding can cause large variations in the 

measured peel forces. The "stick-slip" movement of the peel jig caused the fluctuation of 

steady state peel forces as well, but this problem could be significantly eliminated by 

reducing the loading speed. The only drawback of extremely low speed was increased test 

lmm 
30' 

0.070 

4.0 

1mm 
60' 

0.082 

4.7 

lmm 
90' 

0.093 

5.3 

2mm 
30' 

0.022 

1.3 

2mm 
60' 

0.034 

2.0 

2mm 
90' 

0.035 

2.0 

3mm 
30' 

0.017 

3mm 
60' 

0.020 

3mm 
90' 

0.023 

1.0 1 1.2 
1 

1.3 
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duration. In some peel tests, the recorded peel force V.S. cross-head displacement showed that 

-- ,-. - &- ..- - the peek fwce at s t d y  stale exhibitdeithet a n o v d t  d o w n w d s  or upwards trznd, or at 

some points the peel force experienced a sudden dip and then returned to the previous force 

level. The cause of the first phenomenon was that the specimen was not cut to a sufficiently 

unifom width, therefore, the peel force increased as the width of the specimen increased 

and vice versa. In this case, the peel forces were calcdated over the averaged width. The 

second phenomenon was due to local bonding defects in the specimen, either a pretreatment 

problem or a trapped air bubble. In this situation the peel forces were eliminated. 

From the experimental peel forces shown in Fig. 5-6, 3 mm peel specimens gave a 

relatively larger variation than 1 mm peel specimens. The cause of this is likely, in the 

author's opinion, due to variations in the larger degree of plastic dissipation related to the 

thicker peel adherend. Another reason might be that thicker adherend has higher peel force 

level and correspondingly a larger moment at the peel root, therefore a small variation in the 

bond strength of the adhesive could cause bigger changes in the peel forces. From the 

recorded peel force vs. displacement curves, it was observed that a 3 mm peel specimen 

required a longer peel length to reach a steady state peel force than a 1 mm peel specimen at 

the same peel angle. For the same thickness peel specimen, 90' degree peel tests needed a 

longer period of stabilization than the 30' peel test. For the adhesive system used in this 

research, 3 mm peel required a minimum of 8 - 9 cm initial peel length for stabilization at 

90' and 4 - 5 cm at 30'. While 2 mm required a minimum of 5 - 6 cm initial peel length for 

stabilization at 90° and 3 - 4 cm at 30°, and 1 mm required a minimum of 3 - 4 cm for 

stabilization at 90' and 2 - 3 cm at 30°. 



Chaptet 6 The prediction of flexible-to-rigid 

The peel forces measured in Chapter 5 were applied to the peel 

peel strength 

models developed in 1 

Chapter 4 to perform peel analyses. Various resulting parameters in the adhesive layer, 

particularly at the peel root, were evaluated in an attempt to find a feasible failure criterion 

for predicting the strength of new peel joints made out of same adhesive-adherend system 

but in different configurations, Le. different peel adherend thickness and peel angles. AAer 

this calibration procedure of the failure criterion, the approach was used to predict peel forces 

of these experiment peel tests and the accuracy of prediction was evaluated. 

6.1 Peel Analysis 

With the measured peel forces and the uniaxial stress-strain curve of the Betamate 1044- 

3 adhesive, the three peel models developed in Chapter 4 were applied to calculate various 

parameters in the adhesive layer. The approach used here was that by matching the model 

peel force with the experimental peel force, the critical Von Mises strain E, at the peel root 

and the critical fracture energy release rate Gc were retrieved. Some of the other results such 

as  root radius, R, and root rotation angle, & , were mpared  with the experimental 

measurements to veri@ the accuracy of each model. While other parameters such as the 

maximum Von Mises strain at the root and the fracture energy, G, , in the adhesive layer 

were analyzed and compared based on different peel configurations in order to look for a 

comrnon failure criterion for the given adherend-adhesive peel system. 

Table 6 1  lists the critical fracture energy Ge mot cwature K, = - , and root rotation ( a) 
angle 6 under various peel configurations of adhesive Betamate 1044-3 specimens based 
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on the three peel models described in Chapter 4. These three models are, the plane stress 

model @lane stress for both adherend and adhesive layer); "2" plane strain model &=O) for 

both adherend and adhesive; and "2" plane strain model (&=O) for the adherend and "X-2" 

double plane strain (E, =4=O) for the adhesive. The caiculated corresponding results based 

on Moidu's model [20] are also given by assuming that the adhesive behaves elastically. 

The calculation of Gc used an overall energy balance approach as described in Section 

4.2.1 of Chapter 4. The theoretical root curvature 4 was the best matched curvature between 

the solution fiom the detached part and still-attached part of the peel adherend. Section 4.2.3 

of Chapter 4 explained the theory and its numerical implementation. The experimental root 

curvature was calculated using an image process technique as described in Section 5.3 of 

Chapter 5. 

6.2 Discussion 

From the Gc cornparison columns of Table 6 1 ,  the plane stress model predicted the 

highest values of Gc for each peel configuration because it assumed the highest adherend 

compliance. The "Z " plane strain model has the same rnodeling of the adherend as the "X-Z " 

double plane strain model in terms of the adherend compliance, but Gc fiom the "2" plane 

strain model is higher than the one h m  the "X-2'' double plane strain model. This is 

because the adhesive in the first peel mode1 is modeled weaker than in the second model, 

therefore in the first model, the plastic energy dissipation in the adherend appears to be less 

due to a smaller root curvature. The "X-Z" double plane strain mode1 and Moidu's mode1 

produced the best agreement on Gc results. For al1 four models at same adherend thickness, 

the Gc calculated for 30" differs greatly fiom Gc for 60' and 90° which are very close. Also, 

for al1 four models at same peel angle, G, is not as sensitive to the thickness as to the angle. In 
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Table 6 -1 Calculated G, K, and &, for various peel configurations under different models and comparison with corresponding 

experimental results 

1 Peel 1 Fracture Energy Gc 1 Root Curvature Ks 1 ~ o o t  Angle 4B I 
'de e) ~(1 Moidu X-2" Exp. Error Plane 

~ o â e i  I Lin I remit I (./o) I S ~ S E  

'%* 
Strain 

1 L 

* Note : E m r  analysis was made between the curvature data 



another words, the Gc has stronger dependence on the peel angle than on the thickness. 

The root cwature kB cornparison shows that the "X-2" double plane strain model gave 

the best prediction. The error percentage column in Table 6 1  listed a maximum absolute 

error of 25 % when comparing this model with the experimental measurement. The "X-2" 

double plane strain model had the highest curvature prediction because the adhesive in this 

model was modeled as the most restrained one. The evaiuation of kB and Gc listed in Table 6- 

1 shows that in general, the sensitivity of model to the curvature calculation is much less than 

the sensitivity of model to G,. The overall root angle h result has the same trend as the mot 

cuwature kB , because q& and ks are closely related. 

It can be concluded therefore that the results fiom "X-2" double plane strain (c =c=O) 

peel model have the best agreement with the experimental measurements in terms of the root 

curvature KB, and root angle @B. This peel model also produced the closest agreement with 

Moidu's model [20], but with a smaller Gc and larger kB. Moidu's mode1 over predicts the 

deformation of the peel adherend by overestimating the strength of the adhesive layer, 

because the elastic adhesive in Moidu's model overestimated the strength of adhesive at 

yielding stage, which particularly occurred in the peel root region, and therefore provided an 

exaggerated resistance to the bending of peel adherend at the root. This is evident in Table 6 

1 where the calculated curvature K, = is larger and the root angle q& is smaller than the 

corresponding "X-2" double plane strain &=-=O) peel model results. Given that the total 

work done extemally is the same, it is understandable that al1 Gc values fiom Moidu's model 

are smaller than conesponding "X-Z" double plane strain &=&=O) peel model results, 

because Moidu's model calculated more dissipated energy in the peel adherend. Since the 

"X-2" double plane strain (E =E=O) peel model is the best model for peel, M e r  discussion 



is focused on the results fiom this mode1 unless otherwise specified. 

Table 6-2 (a) gives the tensile and shear energy densities locaily at the peel root and the 

corresponding local load partitioning parameter - the local mode ratio expressed in terms of 

the phase angle pB at the crack tip as: 

where e,,ml, and eskar are two components of the total energy density e, defined as the local 

tensile (mode 1) energy component and the shear (mode II) energy component at the crack 

tip. el& and erhear can be calculated as following: 

where E and y are tensile strain and shear strain in the adhesive layer, and 8 ,  and yx are strains 

at the peel root. Es is the secant modulus of the adhesive, which is a function of both &and y. 

Phase angles calculated based on four peel models listed in Table 6-2(a) al1 show a small 

range of variation within the 9 peel cod~gurations. However, the overall trend is that a 

smaller peer angfe and thicker adherend produced a larger Iocd phase angle (p,. 

The total mode I energy G, and mode II energy G ,  in the adhesive layer, also termed as 

the total tensile and shear strain energy in the load bearing zone, which is defined as the 

bonding area where the stresses exist, are given in Table 6-2 (b). The average mode ratio in 

tenns of phase angle (q>,) is calculated using Eq. (6-4). For al1 peel models, the calculated 

average phase angle pOVg also shows a small variation over the various configurations. It's 

found to be less sensitive to the peel adherend thickness than the local phase angle. Its 



Table 6 - 2(a) The local energy densities and phase angle at the root calculated by difierent peel models as listed in the table. 

Peel 1 Total Local Energy 1 Local Tensile Energy 1 Local Shear Energy 1 Local Phase Angle <ps 

Configurations 
'hicknes 

s / 
angle 

1mm 

2mm 

3mm 

30" 

60' 

90" 

Angle 
/ 

thicknes 
S 

30" 
60' 

90" 
30" 
600 
90" 

30' 
60" 
9û0 

1 mm 
2 mm 
3mm 

1 m m  

2mm 
3mm 

1mm 
2mm 
3 mm 

Density e 

"X- 2' 
Plane 
S t ~ i n  

1.62 
1.27 
1.31 
1;80 
1.50 

1*44 
2,05 
1.87 
2.09 
1,62 
1.80 
2.05 

1-27 

1.50 
1-87 
1-31 

1-44 
2.09 

(X 

Plane 
Stress 

1.98 
1.16 
1.05 
1.98 
1.24 
1.09 
2.09 
1.49 
1.53 
1.98 
1.98 
2.09 
1.16 

1.24 
1.49 
1.05 
1.09 
1.53 

Density etm~,,r 
1 0-3 .I/mm3) 
"2" 

Plane 
Strain 

1.77 
1.15 
1.05 
1.84 
1.25 

1.10 
1.99 
1.51 
1.55 
1.77 
1.84 
1.99 

1.15 

1.25 
1.51 
1.05 
1.10 
1.55 

( x 
Plane 
Stress 

1.01 
0.63 
0.54 
0.88 
0.60 
0.51 
0.90 
0.71 
0.68 
1.01 
0.88 
0.90 
0.63 

0.60 
0.71 
0.54 
0.51 
0.68 

Density e ~ h ~  (delwe) 
1 O"J/ mm3) 
'2" 

Plane 
Strain 

1.04 
0.70 
0.61 
0.99 
0.69 
0.59 

1.06 
0.83 
0.81 
1.04 
0.99 
1.06 

0.70 

0.69 
0.83 

0.61 
0.59 
0.81 

( x  
Plane 
Stress 

0.97 
0.53 
0.51 
1.10 
0.64 

0.58 
1.20 
0.78 
0.85 
0.97 
1.10 

1.20 
0.53 
0.64 
0.78 
0.51 
0.58 
0.85 

"X- 2" 
Plane 
Strain 

0.87 
0.85 
0.87 
0.87 
0.91 
0.88 

0.94 
1.06 
1.14 
0.87 
0.87 
0.94 

0.85 

0.91 
1.06 
0.87 
0.88 
1.14 

Moidu 

38.5 
39.9 
42.0 
42.2 
43.8 
46.0 

43.8 
45.5 
47.2 

Plane 
Stress 

44.5 
42.5 
44.1 
48.3 
45.9 
47.1 
49.2 
46.5 
48.3 

l O" ~ l m m ~ )  
"Z" 

Plane 
Strain 

0.73 
0.45 
0.44 
0.84 
0.55 
0.51 
0.92 
0.68 
0.75 
0.73 
0.84 
0.92 

0.45 
0.55 
0.68 
0.44 
0.51 
0.75 

i 

'2" 
Plane 
Strain 

40.0 
38.7 
40.2 
42.7 
41.8 
42.9 
43.0 
42.2 
43.9 

"X-2' 
Plane 
Strain 

0.75 
0.43 
0.44 
0.93 
0.59 
0.56 
1.11 
0.82 
0.95 

0.75 
0.93 
1.11 

0.43 
0.59 
0.82 
0.44 
0.56 
0.95 

44.5 
48.3 

49.2 

42.5 
45.9 
46.5 
44.1 
47.1 
48.3 

40.0 
4 2 7  

43.0 

38.7 
41.8 
42.2 
40.2 
42.9 
43.9 

38.5 
42.2 

43.8 

39.9 
43.8 
45.5 
42.0 
46.0 
47.2 





dependence on peel angles reduces as the peel angle increases fkom 30' to 60° and maintains 

almost constant within 60° to 90' range. For the convenience of comparison, the local phase 

angles fiom Table 6 - 2 (a) are listed again in this table. 

where GI and G,, are calculated by : 

It is well known fiom elastic DCB fracture mechanics, that the fkacture energy G, is a 

unique monotonically increasing fùnction of phase angle q; this correlation is defined as the 

fracture envelope for a given adhesive system [3]. Table &2(b) shows that G, and the 

corresponding local phase angle at the root do not clearly follow this trend. Also the local 

phase angle concept is found to be very sensitive to the models because of the sensitivity of 

stress and strain at the peel root to the peel models. h addition, the local phase angle varies 

dong the adhesive bonding line significantly as s h o w  in Fig. 6-1.  The average phase angle 

p,,, seems to be a better parameter for mode ratio partitioning than the local phase angle 

because it considers the overall quantities and avoids the local uncertainty. Hereafler the 

average phase angle is referred to as the phase angle unless otherwise specified. As listed in 

Table 6-2 (a), the fracture energy G, shows its insensitivity to the thickness of peel adherend, 

but it's obviously a function of peel angle. The dependence of G, on peel angle can be 

explained due to the dependence of phase angle on the peel angle as shown in Fig. 6-2. 



Figure 6-2 shows that the variation of phase angles for peel joints of diRerent thickness but at 

O 2 4 6 8 10 12 14 

Distance fiom the root (mm) 

Fig. 6-1 The local phase angle distribution dong the bonding line for 3 mm and 60' peel of 

Betamate 1 044-3 adhesive peel specimen. The pattern of this distri but ion is typical for al l 

other peel specimens. 

a given peel angle is small, but it increases as the peel angle increases. For al1 thicknesses, the 

phase angle increases as the peel angle decreases; but the change of phase angle is very smaiî 

within the range of 60° - 90' peel angles. Again the insensitivity of Gc to the thic kness of the 

peel adherend is due to the small variation of the phase angle with respect to different 

thickness of the adherend. Figure 6-2 shows the plot of G, versus the phase angles q>, for 

30°, 60°, and 90" peel angles. It was expected that the phase angle at larger peel angle is 

smaller and this translates into the corresponding lower level of G,. As seen fiom Fig 6 2 ,  

the trend of monotonie increasing G, with phase angle has been traced between 90' and 30', 

90' and 60°, but is not clear between 90' and 60' due to large variation of both G, and q>, . 
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Avg. ava 1,2,3 mm 

0 lmm - 
0 2mm 
0 3mm 

- 

I ,. I 
I I I I 1 1 I 

Fig. 6 2  The average and standard deviation of phase angles (p, for 1,2 and 3 mm 

Betamate 1044-3 at 30°, 60' and 90' peel angles. 

1400 1 

0 30 degree 
O 60 degree 

A 90 d w  

30 35 40 45 50 
Average p h  angle (del?=) 

Fig. 6 3  The correlation of average and standard deviation of G, versus ~ o ,  for Betamate 

1044-3 at 1,2 and 3 mm adherend at 30°, 60' and 90' peel angles. 



6.3 The formulation and calibration of potential adhesive failure citena 

The formulation of an adhesive failure criterion requires a thorough analysis of al1 peel 

results and looking for parameters with correlations. References [33] and [3] show that both 

strain and fracture energy approac hes are capable of characterizing the failure of adhesives 

under their own valid regimes. A failure cntenon of mode ratio dependent critical fracture 

energy release rate Gc serves well in applications of elastic adhesive joints, i.e., Double 

Cantilever Beam (DCB), Cracked Lap Shear (CLS), Single Lap Shear (SM) and Double Lap 

Shear (DLS) joints etc. [48]. However, the application of this cntenon has not ken  seen in 

the load prediction of joints with a large degree of plastic deformation in the adherends. On 

the other hand, in his FEM peel model, Crocombe [33] investigated a failw criterion of Von 

Mises critical strain. This failure criterion worked well for a single thickness of p e l  

adherend; however, it was not usehl for other peel joints with same materials but different 

thickness. In this section, both failure criteria are studied for the particular adhesive- 

adherend (Betamate 1044-3 adhesive and AA5754-0 adherends) system in this thesis. 

6.3.1 Critical Von Mises strain failure criterion 

Table 6 3  lists the apparent Von Mises critical strain at the peel root for three different 

peel models as stated. The results fiom "XZ" double plane seain model show that the 

ultimate strain is less sensitive to the peel angle thaa to the thickness of the peel adherend. 

Figure 6 4  illustrates this for both the average and the variation of the apparent Von Mises 

cntical sttain for different peel angles at a given thickness. The variation is considered 



insignificant in cornparison to the magnitude of the strains. The average strains apparently 
- - 

increase with the thickness of the peel adherend. 

Table 6-3 Calculated apparent critical Von Mises strain for various peel confiigurations 

under different models 

I 
1 /angle 1 thickness 1 1 1 strain I 

Peel configurations 

As listed in the table, the predicted criticd strains from the plane stress and "2' plane 

Maximum Von Mises strain at the root 

Thic kness 

strain mode1 seem d l  umalistic because they are much higher than the ultimate saain 
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Angle/ "X-2" double plane Plane stress "2" plane strain 



(0.038) of the adhesive h m  the uniaxial tensile test. None of them was chosen as a failure 

criterion because their critical strain values did not correlate with either the thickness or the 

angle of peel. For each peel specimen, the calculated critical strains from the plane stress and 

"2' plane strain mode1 are very close, while they are al1 higher than the strain fiom the "X-2" 

double plane strnin model. Therefore it may be concluded that the accuracy of adhesive 

modeling is important to define a strain based adhesive failure criterion. 

0 avg. over 30,60,9û degree T 

1 2 3 
Peel aùherend thickness (mm) 

Fig. 6-4 The peel adherend thichess dependent critical Von Mises strains failure criterion 

for 1,Z and 3 mm Betamate 1044-3 adhesive peel joints 

6.3.2 The critical fiachire energy G, failure criterion 

This failure criterion utilizes the conelation between the critical fracture energy Gc and 
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phase angle y> as roughly established in Fig. 6 5 ,  Le. the fracture envelope. This figure 

- --- 
s k a r i z e d  and was plotted based on the relevant data provided in Table 6-2 (a) and (b). 

The standard deviation of Gc and pare also show in Fig. 6 5 .  Comped with Fig. 6-3, this 

envelope has combined the phase angles and Gc values into one point within the 6O0-90' peel 

angle range because both the phase angle and Gc are insensitive to the peel angle in this 

range. This is a relatively primitive envelope because insuficient data have been 

O 30 degree and 1,2,3 mm 

A 60 - 90 degree and 12,3 mm 

35 
Average Phase%gle (degree) 

45 

Fig. 6-5 The fracture envelope (G, vs. average 9) for 1,2 and 3 mm Betamate 1044-3 

adhesive peel joints 

obtained to cover other mode ratios within the range. The approach taken here is that, within 

the limited range of thickness for peel adherends, Le., 1-3 mm, a fracture envelope can be 

constructed with respect to a narrow band of phase angles. This envelope is different fiom the 



hcnire endope developed in elastic joint cases, It is also unique in terms that the phase 

angle defined here is based on an average over the entire loading zone. 

The critical fracture energy Gc calculated for al1 1044-3 peel joints bas shown that at 

least within the 1 to 3 mm range of peel adherend thickness, Gc is largely independent of the 

peel adherend thickness and varies with peel angle. The failure criterion is that joints will fail 

once the hcture energy release rate reaches the critical value of Gc conesponding to a 

particular phase angle. 

6.4 Modification of the critical Von Mises strain failure criterion 

The dependence of critical Von Mises strain on the thickness of the peel adherend, as 

was illustrated in Fig. 6 4 ,  is thought to be due to the effect of increasing degree of constraint 

in the adhesive layer imposed by the increasing degree of rigidity as the thickness increases. 

It was our hypothesis that, by making the following modifications to the current "X-2" 

double plane strain model, the degree of constraint due to the thickness of the peel adherend 

could be taken into the account, and therefore the dependence of the critical Von Mises 

strain on the peel adherend thickness couid be minimized. 

6.4.1 Modification of the Von Mises stress - strain response 

Kody and Lesser [Ag, 501 investigated the correlation between the yielding in epoxies 

and the constraint associated with the state of stress. a," ami 8; are denoted as the yield stress 

and strain respectively in the absence of hydmstatic stress. When E," > 0.2%, a modifird Von 

Mises yielding criterion was therefore proposed as: 



where a, is the mean stress for a multiaxial stress state and is also called the hydrostatic 

stress, a, is the modified Von Mises yield stress for the plastic stage, and p is a constant 

factor depending on the type of adhesive. For the "X-2" double plane saain model, a, in the 

adhesive can be calculated by: 

In the implementation of this scheme into the existing Fortran code, the instantaneous 

correction of a:, which is the original input of uniaxial Von Mises stress, is perfomed to 

obtain 4 at each mesh point along the adhesive bond line during each iteration by calculating 

om and therefore q based on the concurrent local a, value. Further reference can be made 

to the Fortran code developed if necessary. 

The calculations were carried out for the 90' peel angle with 1, 2 and 3 mm thick peel 

adherends using the measured peel forces listed in Fig. 5-6 and material properties of 

adhesive 1044-3 and adherend A M 7 5 4 4  (Fig. 5-1 of Chapter 5). The results of the 

apparent critical Von Mises strain at the root are listed in Table 6 4 ,  together with the results 

from the non-modified "X-Z' double plane strain model. The differences of the critical 

modified Von Mises strains between different thickness of peel adherends at 90" peel angle 

does not diminish. It is concluded therefore, at least for the current peel analytical model, that 

the influence of hydrostatic stress on yield behaviour does not account for the variation in the 

critical Von Mises strain. 

Nevertheless, it is wonh noting that the "X-2" double plane strain model may not have 

captured sufficiently accurate information concerning the constraint. The analysis from the 

finite element simulation for the same cases in Table 6 - 4 has shown an opposite trend of 4 

variation with the thickness of peel adherends, i.e. in FEM analysis [SI], caiculated a, 
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increases as the peel adherend gets thicker, while the analyticd "X-Z" double plane strain 

---- - 
peel mode1 gives the opposite trend. This contradiction is largely due to the limitation of this 

current analytical peel model. 

Table 6 4  The apparent critical Von Mises strains and stresses at the peel root for Von 

Mises adhesive model and modified adhesive Von Mises yielding model ( p=O. 1 ' ) 

Adhesive material yielding model 1 , ,, at 9 0 ~  1 
Critical Von Mises strain 1 0.021 1 0.024 1 0.034 

at peel root 

Critical modified Von Mises strain 

' Note : p is a constant figure and taken fiom [49,50] for common epoxies 

6.4.2 The correction of Kanninen's beam cornpliance 

at peel mot 

Critical Von Mises stress 

at peel root(MPa) 

Critical modified Von Mises stress 

at peel root (MPa) 

The theory behind this Kanninen's correction technique has been depicted in Section 

0.024 

2.2.4 of Chapter 2. The motivation for perfonning this correction was similar to using the 

modified Von Mises yielding model for the adhesive as described above. Table 6-5 shows 

the critical strain and stress of the adhesive at the peel mot, together with the results tiom the 

unmodified "X-Z' double plane strain model. Unfortunately, the difference of the critical 

38.5 

26.4 

snains for different thickness of peel adherends at 90' peel angle increases again rather than 

decreases. The Kanninen correction fails to help in the effort to formulate a generalized 

failure critenon for adhesive in peel joints. 

0.027 0,039 

40.1 

27.8 

41 .O 

28.1 



- - 

Table 6 - 5 The critical Von Mises strain and stress at the peel root for "X-2" double plane 

---A-.- - 

strain peel models with and without the bnninen correction for the foundation 

Peel models with or without I 1rnmat90~ I 2mmat90° I 3rnmat9o0 I 
Kanninen correction 

Critical Von Mises strain at peel 

mot without correction 

Critical Von Mises strain at peel 

root with correction 

Critical Von Mises stress at peel 

root with correction (MPa) 

0.02 1 

Critical Von Mises stress at peel 

root without correction (MPa) 

In summary, these mode1 modifications were done in an attempt to find a thickness 

independent failure criterion of Von Mises cntical strain. The justification for doing this is 

that the current "X-2' double plane strain peel models may not have captured two issues 

which are al1 related to the quantification of constraint in adhesive layer: hydrostatic stresses 

in the adhesive and finite barn cornpliance on the adhesive foundation. However, the results 

did not improve the failure criterion. 

0.037 

6.5 Prediction of peel forces 

0.024 

3 8.5 

Prediction of strength for the flexible-to-rigid peel geometry with different peel 

adherend thickness and peel angles is a primary step towards the prediction of strength for 

general joints where both adherends are plastically deformed. Even though, in the flexible-to- 

rigid peel, only one adherend is significantiy defomed, the mechanics behind the failure of 

the aùhesive are the same. With the failure criteria established in the last section, this section 

investigates the accuracy of peel load prediction for the configurations described in the last 

0.034 

0.044 0.066 

40.1 41 .O 





peel test section. Two Fortran codes were written for peel load prediction: one based on the 
.. - --- 

critical Von Mise ~train and the other based on the critical fracture energy release rate Gc as 

plotted in Fig. 6-4 and Fig. 6 5 ,  respectively. Itemtion was used to match either the Von 

Mises strain at the peel root or the adhesive joint energy release rate, calculated under the 

prescribed increasing load, with the critical values fiom the failure criterion which have been 

fomulated in Section 6.3.1 and 6.3.2. Table 6-6 lists the predicted results of both the total 

peeling force and dimensionless root curvature kB based on the two different criteria. ka has 

been defined in Eq. (4 - 3) of Chapter 4. The comparison of predicted peel force with 

measured peel force shows that both failure criteria worked reasonably well. Al1 predictions 

are within the range of f 13% discrepancy. However, fiom omrall perspective, the average 

prediction error by the strain criterion is 11% while the G, criterion gives 5.9% accuracy. The 

fracture energy G, critenon therefore gave better predictions than the critical Von Mises 

strain criterion. 

In summary, the critical Von Mises strain failure criterion is a thickness dependent 

failure criterion. Within the range of 1 -3 mm adherend thickness, the critical strain increased 

Iinearly with the thickness. The citical fracture energy Gc criterion is a phase angle 

dependent failure criterion. The Table 6 - 2 (b) in has show that the average phase angle is a 

thickness independent variable. Its dependence on the peet angle is also weak within the peel 

angle range of 60' - 90'. But the phase angle then increases when the peel angle decreases 

fiom 60' to 30'. 

6.6 The correiation between the size of loading zone and critical energy Gc 

The loading zone in the adhesive bond line of a peel joint is defined here as the region 

from peel rmt where the Von Mises stress is maximum to the point where the Von Mises 

stress is 15% of the yielding stress. It may be viewed as a mesure of bondline constraint. Al1 
13 1 



loading zone lengths were calculated for the nine different peel configurations as stated in 

Chapter 5 for adhesive Betamate 1044-3 peel joints. Figure 6-6 plots the critical fracture 

energy Gc V.S. the corresponding length of loading zone for each of these nine peel 

configurations. Figure 6-7 gives the comlation between the average phase angle and the 

loading zone length. Both figures illustrate that Gc and p, increase with the length of 

loading zone. Given the limited range of pag over the nine peel configurations, a linear 

representation is reasonable for the correlation of q>,, with the length of loading zone. 

It is noted that while in elastic adhesive joints, the critical fracture energy Ge is a 

unique fùnction of phase angle, this may be not necessary true in plastically defomed peel 

joint cases. It is hypothesized that in the latter case, Gc will be a bction of phase angle and 

the degree of bondline constraint. However, the correlation between thi average phase angle 

and the length of loading zone implies that as long as Gc is dependent on the phase angle, 

then the length of loading zone is no longer an independent variable; Le., constraint increases 

with increasing phase angle. Therefore, a correlation between G, and phase angle is also, 

impl icitl y, a correlation with constraint. The statisticai analysis of correlation between Ge and 

p,,, pm and peel angle 0, pmg and the loading zone length requires more peel data to be 

obtained. Due to the limited duration of this thesis, therefore this work is lefi but strongly 

recommended in the fiiture. 

However, the 1st but not the least, the prediction of peel forces based on Ge criterion 

requim an iterative technique. That is when the input peel force is increased, the phase angle 

is calculated and corresponding critical Gc is looked up h m  the criterion envelope. If the 

caiculated intermediate Gc is less than the critical Gc , then the peel force is increased until 

the intemediate G, is greater than the critical Gc 



Fig. 6-6 The critical fracture energy Gc vs. damage zone length for 1,2 and 3 mm 

Betamate 1044-3 adhesive peel joints at 30°, 60' and 90' peel angles 

O 1 2 3 4 5 
h d i n g  zone length (mm) 

Fig. 6-7 The average phase angle pm vs. damage zone length for 1,2 and 3 mm Betamate 

1044-3 adhesive peel joints at 30°, 60' and 90' peel angles 



Chapter 7 Limitations, Recommendations and Conclusions 

7.1 Summary and conclusions 

The analytical method presented is intended to be a first step towards developing a 

general engineering approach capable of predicting the sangth of thin sheet adhesive joints 

in situations where adherends are plasticall y deformed. The fracture failure cri terion 

formulated for elastic cases is not vdid in these sheet joints because the deformation in the 

adherends altea the distribution of stress and therefore the size of the loading zone in the 

adhesive layer. The scope of this thesis included two parts: adhesive joint modeling and 

adhesive failure load prediction. 

Sandwich Mode1 

For the joint modeling, a generic adhesive sandwich model with arbitrary load boundary 

conditions was developed for analyzing the tensile, shear stress and tensile and shear strain in 

the adhesive layers. This model was then used to develop a peel model. Both the sandwich 

and peel models were capable of capturing the non-linearity of the adhesive and the adherend 

into the stress and strain anaiysis of a joint under plastic loading conditions. The adhesive 

sandwich model has been improved h m  Crocombe's original approach in several respects, 

particularly the inclusion of shear defomation analysis for the adherends. The numencal 

codes implemented in Fortran provided a robust solution of a set of 6 first order differential 

equations, which are the model's goveming differential equations. The derivations of 

equations are based on expressions for the total curvanire, bending curvanûe and neutral axis 



o t k t  of a bi-linear plastic bearn subject to an arbiûary combination of shear, tensile forces 

-- A-- and moment loeding. ReasonaMe comlation was o M  in the cornparison of this 

sandwich model with the finite element method. 

Peel Model 

The peel analytical model used a different approach from Moidu 31 for the analysis of 

the attached part of the peel adherend, but the analysis for the detached part remaineci the 

same. The model was able to handle three different types of adhesive stress conditions; 

narnely plane stress, '2" plane strain (G = 0) and "X-2" double plane strain (E, = E, = 0). 

This new peel model not only eliminates the major restriction in Moidu's model that the 

adhesive behaves elastically, but also provides a more accurate modeling of the attached part 

of the peel adherend. A Newton - Raphson iteration technique was used to solve a curvanire 

continuity equation forrnulated at the peel root of the joint for both the attached and detached 

parts of the peel adherend. The comparison of results fkom this peel model, the FEM model 

and Moidu's rnodel showed acceptable agreement. In addition, the peel model was improved 

in the following areas: 

1. The treatrnent of the still-attached part of the flexible adherend as a beam carrying not 

only the bending moment but also tensile and shear force, provides a more accurate 

analysis of acherend yielding and therefore the deformation. Not only the bending 

cwvature but also the shear cwature has ken considered. 

2. The adhesive stress-strain response follows a Von Mises curve given by the uni-axial 

tensile test of the adhesive, but the potential appiications cm be some other adhesive 
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response such as the traction-separation fracture model. The adhesive's constitutive 

------- - relation oan be given by any non-linear fomnila-, or tvnt in the form of discrete data. 

3. Either plane strain or plane stress assurnptions in the adhesive layer were considered and 

the difierence in the results were evaluated. 

The cornparison of the new peef model with corresponding results fiom FEM peel models 

has shown that the "X-2" double plane strain (8, = = O) peel model produces the best 

agreement. Therefore the analysis and prediction focused on this model. The failure criterion 

was forrnulated before making any prediction. Adhesive failure criteria that were investigated 

were based on either critical strain or fracture energy. 

A system of adhesive Betamate 1044-3 and adherend AA5754-0 was chosen for peel 

experiments. n i e  data from these peel tests were analyzed and led to the formulation of two 

adhesive failure criteria: one is based on critical strain at the peel root and another based on 

critical fracture energy. The strain criterion was dependent on adherend thickness while the 

hcture energy criterion was phase angle dependent. Both failure criteria were applied to 

predict peel loads for nine configurations: a three by three test matrix for three different peel 

angles with three different thicknesses (1, 2 and 3 mm) of peel adherends. The overall 

predicted result showed a maximum error of 13% for both failure criteria, with the critical 

fracture energy criterion k ing  more consistent and involving fewer parameters. 

Unsuccessfùl attempts were made to correct the critical strain failure model in order to 

include the varying constraint imposed on the adhesive by the different thickness of 

adherends, and therefore eliminate the criterion's dependence on the adherend thickness. The 



investigation of the relationship between the phase angles and the sizes of loading zones for 

- ---- -- dl- peel eonfigurstions showed dtat the phase angle- was comlated wet t with the tength of the 

loading zone. Therefore the conclusion that the fracture energy criterion depends only on the 

phase angle can be justified. 

7.2 Limitations of approach 

The modeling approaches in this thesis were limited by the following conditions: 

1. The detailed investigation by the finite element model has shown that the accurate 

modeling of strain conditions in the adhesive layer requires the combination of both the 

plane strain (6: = O) model and double plane strain (E, = E, = O) model. In the region 

close to the peel root, the adhesive behaves more under plane strain (e = O) while as it 

moves away fiom the root, double plane strain (E, = = O) mode begins to dominate. In 

this thesis, the simplification of taking 6 = O in plane strain (4 = O) model or 

E,PI,& 
= (W) in the double plane strain (E, = = O) model caused a significant 

portion of the discrepancy between FE model results and the results from these two 

models. 

2. The assumption of uniform shear stress through the thickness of the adherend may lead 

to inaccuracy of adherend modeling, but the significance of its effect may Vary with the 

peel configurations since shear deformation becomes less dominant when the peel angle 

is smaller and the peel adherend becomes thinner. in addition the treatment of uniformity 

for al1 parameters, Le., the tende and shear strains and stresses across the thickness of the 



adhesive layer may underestimate the stress and therefore predict yielding of the adherend 

at an emneousty high I d .  

3. The use of the secant modulus concept as described in Fig. 2-5 to cope with plasticity in 

the non-linear adhesive did not distinguish between the adhesive Poisson ratio for the 

elastic stage and the plastic stage. For the most successful double plane strain (6; = E; = 0) 

model, the adhesive's Poisson ratio is sensitive to the results of stress and strain 

distribution. Therefore, the Poisson ratio for the elastic and the plastic stage should be 

treated differently. Otherwise a corresponding discrepancy may occur in the result. 

4. Given the fact that a clearl y damaged zone ahead of the crack tip in the adhesive layer of 

al1 peel tests is not observed, therefore, the simplification of not considering the 

concentration efTect at the crack tip (mot) may pose a problem in cases where a sharp 

crack exists as in a relatively brittle adhesive. However, this may not be an issue for more 

ductile adhesives where failure may not occur as fracture at a sharp crack. 

5. The analysis of the detached part of the peel adherend needs to be investigated to include 

the contribution of tensile and shear forces to the curvature. This is critical to the accurate 

determination of curvature at the mot, the calculation of the total plastic energy 

dissipation in the adherend and, therefore the critical fracture energy of peel. 

6. Although Section 5.3 developed a peel model using a modified Von Mises adhesive yield 

response that approximated the effect of hydrostatic stress, the application was very 

limited due to the fact that the calculation of the hydrostatic stress was based on a very 

rough estimate of 4. 



7.3 Recomendsrtions for fbture work 

The adhesive sandwich model, which is at the core of modeling either flexible-to-rigid 

peel or flexible-to-flexible peel, can be irnproved as follows: 

1. Of top priority, suflïcient peel tests at more peel angles and peel adherend thickness are 

required in order to define a better fracture envelope and have a better understanding of 

the correlation between Gc and various parameters as adhesive constraints. In addition, 

similar tests with other adhesives, either more brittle or more ductile, are needed in order 

to gain more confidence. 

2. Based on the sensitivity of the peel results to the aàhesive's Poisson ratio in the "X-2" 

double plane strain peel model, an evaluation should be perfomed to determine how 

inaccurac y in the elastic modulus, yield stress and Poisson rdtio of the adhesive will affect 

the model's output. It may be that variations in these properties do not affect the model's 

usefùlness since they may simply cause a change in the critical stniin or fracture energy. 

3. The longitudinal tensile strain &- in the adhesive layer should be included in the 

fundamental goveming equations because the finite element modeling has shown its 

significance. Therefore, the corresponding 4 needs to be included into the force 

equilibrium equations even though the approach might be mathematically difticult. It is 

the author's preliminary recommendation that an alternative way of considering changes 

in longitudinal constraint in the adhesive layer is to use the combination of both 4 = O 

and cx = O plane strain models. That is, in the adhesive region away fiom the damaged 

zone, the E, = O mode1 is dominant, but in the area of damaged zone, the 4 = O mode 

gradually takes over until it M l y  contmls at the edge of the adhesive sandwich (peel 

roo t). 



4. The bi-linear beam bending analysis for the detached peel adherend might consider the 

---A - effkct of neutrd axis offket duc to tension and shem deformation due to sheat, forces. fn 

other words, the pure bending moment and curvature (m - k) correlation may not be 

accurate for modeling the detached part of peel adherend. 

5. A recommended approach for calculating plastic deformation in the adhesive layer, is to 

separate the elastic strains fkom the plastic srrains. Hooke's law with elastic Poisson ratio 

and elastic Young's modulus can be used to relate stress and elastic strain for the elastic 

stage. For the plastic stage, a set of equations analogous to Hooke's law, with plastic 

Poisson ratio and secant plastic modulus can be adopted to establish the correlation 

between stress and plastic strain. The total strain, which is then the sum of elastic and 

plastic strains, is considered to be the effective total strain equivalent to the Von Mises 

strain. Details can be found in [52]. The justification of doing this is that the stresses and 

strains in the adhesive layer are sensitive to the Poisson ratio of the adhesive. 

6. The formulation of the adhesive failure cntenon may need to correlate the critical 

parameter, whether it is strain or fracture energy, with the degree of constraint (triaxiality 

if stress) and/or the length of the loading zone (the stress concentration in the adhesive 

layer). 

7. The definition of mode ratio should be studied because the mode ratio based on the 

traditional definition varies significantly dong the adhesive bond line. The average 

concept seems better in characterizhg load partitioning. 

8. Other adhesive failure models such as modified Von Mises model, which considers the 

hydrostatic stress effect on adhesive yielding, or the Embedded Process Zone (traction- 

separation law) model of fracture shouid be investigated M e r .  



-*- - 
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The longitudinal a - E response of bi-linear adherend plane strain and 
plane stress 

Plainstrain(g=O) 

Eq. (2 - 45) gives Von Mises stress-saain relationship of bi-linear adherend: 

where a, = EelcSP and EN = aE, . 

For plane strain case, the following two equations relate the Von Mises stress a, to the 

longitudinal stress -and the Von Mises strain F, to the longitudinal stress E, , respectively as: 

a, = {(l -op + u:, ),,2 + 3r2 )OJ (A - 2) 

Define artificial stress and strain variables, a: and 8: , mspectively as follows: 

Therefore, the longitudinal stress a, can be calculated by 



Substiniting Eq. (A - 1 )  into above equation gives: 

By setting E, =E, in Eq. (A - 5) and solving for 6, , we have following: 

Substituting Eq. (A - 2), Eq. (A - 3) and Eq. (A - 8) into Eq. (A - 7), Eq. (2 - 48) and Eq. (2 - 

49) can be derived. 

Equation (2 - 50) is denved by assuming that the shear stress and strain response of the adherend 

follows the bi-linear relation as: 

where Gel and Gpl are the elastic and plastic shear modulus of the bi-linear adherend. y, is the 

yielding shear strain. Al1 of them are calculated as: 



G e l  = 
4 

2 0  + v e  ) 
(A - 10) 

(A- I l )  

Substituting above three equations into Eq. (A - 9) and solving for y produce Eq. (2 - 50). 

Equation (2 - 5 1) is obtained by differentiating equations (2 - 48) with respect to 8,: 

Equation (2 - 52) is obtained by differentiating equations (2 - 49) with respect to E, Equation (2 

- 55) is produced by substituting Eq. ( 2 - 49) for 4. 

a Plane stress(q = O )  

For plane stress case, the following two equations relate the Von Mises stress q to the 

longitudinal stress %and the Von Mises strain to the longitudinal stress 6, , respectively as: 

O, =(mL +3r2)OJ (A - 14) 

E, = (E2 +0.75 y 2 / ( l  +u,,)iY (A - 15) 

The artificiai stress and strain variables, a: and E: , become as following, respectively: 



Therefore, the longitudinal stress can be calculated by 

crx =O: = Jcr; -3r2 

Substituting Eq. (A - 1) into above equation gives: 

(A - 16) 

(A- 17) 

By setting E, =cyp in Eq. (A - 17) and solving for s, , we have following: 

Substituting Eq. (A - 14), Eq. (A - 15) and Eq. (A - 19) into Eq. (A - 18), Eq. (2 - 56) and Eq. 

(2 - 57) can be derived. 

Equation (2 - 58) is obtained by differentiating equations (2 - 56) with respect to E;: 

Equation (2 - 59) is obtained by differentiating equations (2 - 57) with respect to 6, 

Equation (2 - 6 1) is produced by substituthg Eq. ( 2 - 57) for a, 



Appendix B 
L - S  

The measurement of peel forces for Terokal455 1 peel tests 

Table El (See  Note 1) Average peak peel forces and standard variations within a specimen 

and between specimens for 1,2, and 3 mm Terokal455 1 adhesive peel joints at 30°, 60'. and 

90". 

Note: 

Test 

No. 

The use of this table is restricted for reference only because a significant batch-to-batch 

variation was discovered in this adhesive. Some of the peel tests were even not able to 

reach a stead state and therefore were removed fiom this table. 

Al1 units to be N l m  unless otherwise specifted 

The shaded measurements conespond to the sample h m  preparation batch No. 1, 

otherwise, they belongs to preparation batch No. 2 or No.3. However, the measurements 

h m  batch No.2 and No.3 were al1 removed. 

The standard deviation in the last row is listed as an overall standard deviation fiom al1 

peel force measurements. 

151 

Average 
/ 

variation 
/ 

peellength 

l m  

90' 

2 mm 

60" 

3 mm 

30' 90' 30' 90' 60' 60' 30' 





CD disc containhg al1 Fo.rtr'an codes as listed deveioped in this thesis 

1. Sandwichstressof A d w i c h  mode1 bascd on the plaile stress (CG = 0) 

assumption for both the adhesive and adhemds. 

2. Sandwichstraù~f A sandwich moQl bwd on the plane strain (s; = 0) 

assumption for boîh the adhesive and adberradS. 

3. Sandwichdoub1tStrain.f-A sandwich m&l baseû on the plane sûain (6; = O) 

BSSUrnption for both the adhercnds ad double piaae strain (G = 9 = O) for the adbesive. 

4. Pafstrcss.f A psel m d  baccd on the plme stms (ci; = 0) 

8ssumption for both thc adhtsive and adhemds. 

5. pe1stiain-f A pecl mode1 ba#d on the plam s&'ain (g 0) 

assumption for b t h  the adhesive and adhacnb. 

6. Peeldoub1cstrain.f A p a l  mode1 baccd on the plane oriain (4 a 0) 

~ssulllption for both the adhemds and double plane strain (G = qr = O) for the adhesive. 

7. Pdnstrain.f A peel force prcdiction m&l b d  on the critical Von 

Mises filue criterion and the &&le amin p l  model: pceIdoub1eStrain.f 

8. Pdntncrgy.f A pcel f9ree prcdiction rnodei bared on the critical 

nschin magy Gc failure critcrion and the double sbain peel m u :  pœidoub1eStrain.f 

9. Maxpick.f A Fortran coda for. daîa pccsing of the 




