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ABSTRACT

Surface Acoustic Wave (SAW) devices are key components in RF and IF stages

of many electronic systems. A Surface Acoustic wave is a mechanical wave, which

is excited on the surface of a piezoelectric substrate, when an alternating electric

voltage is applied through a comb-like interdigital transducer (electrodes) patterned

on it. Most SAW applications to date have been in the sub-2GHz region, but emerg-

ing applications require SAW devices at higher frequencies. The traditional models

are inadequate to account for pronounced second order effects at the GHz range

and also new microfabrication techniques are required to obtain quality devices as

the critical dimensions shrink into the nano-scale range at these frequencies. The

finite element method (a numerical method of solving differential equations) has

the potential to account for these effects and ever increasing sub-micron process-

ing capabilities of LIGA (X-ray lithography) present a promising outlook for high

frequency SAW device modeling and fabrication respectively.

A finite element model has been developed using commercial software ANSYS

for one port SAW resonators and is presented in this thesis. The one port SAW

resonators are generally connected in form of ladder networks to form low-loss SAW

filters. The spacing between the electrodes and the velocity of the SAW deter-

mine the frequency of operation of these devices. A finite element model has been

developed for three different types of SAW devices namely Rayleigh, leaky and longi-

tudinal leaky SAW (LLSAW). The LLSAW has higher velocity as compared to other

two types and hence considered in this work as a good prospect for high frequency

SAW devices.

A full finite element model could not be solved due to high computing require-

ments and hence some assumptions were made and the results were validated against

published results in the literature. The results indicate that even with simplifying as-
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sumptions and approximations FE model provides reasonably accurate results, that

can be used in device design. Some of the simulations (in LLSAW based devices)

in this work were also done with a view towards using LIGA (X-ray lithography)

for fabrication of high frequency devices as they have the capability for high aspect

ratios.
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1. Introduction

1.1 Surface Acoustic Wave Devices - An Introduction

There has been a tremendous growth in the telecommunications industry over the

past few decades with a subsequent increase in demand for high quality compo-

nents. Surface Acoustic Wave (SAW) devices have emerged as a key component

in radio-frequency (RF) and intermediate-frequency (IF) stages of many commu-

nication systems such as satellite receivers, remote control units, keyless entry sys-

tems, television sets, and mobile phones, thereby greatly contributing to the growth.

Worldwide production of SAW devices counts to hundreds of millions annually. As

the SAW devices evolved, their complexity grew many fold with the requirement

for better performance and models for prediction. In particular, usage of SAW

devices in wireless communication systems demands higher operating frequencies,

wider bandwidths, smaller sizes and lower insertion losses. Consequently, there is a

pressing need for improved techniques in device fabrication and response prediction.

Surface acoustic waves are essentially mechanical waves (conventionally called

acoustic waves) which propagate on the surface of an elastic medium with most of

its energy concentrated near the substrate surface. In general, piezoelectric sub-

strates such as lithium niobate, lithium tantalate, and quartz are used as elastic

medium. The physical phenomenon on which the SAW devices is based is piezo-

electricity, i.e. the virtue by which certain materials produce electrical charge when

mechanically strained or vice versa. The most important part of a SAW device

is the interdigital transducer (or electrodes as shown in Figure 1.1), IDT, that are

patterned on the surface of the piezoelectric substrate using lithographic techniques.

When an alternating electric input signal is applied to the electrodes, the electric
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field penetrates the piezoelectric substrate and surface acoustic waves are induced

due to piezoelectric coupling. Similarly, charge accumulates on the electrodes in

response to the acoustic waves, which in turn induces secondary acoustic waves. In

this manner, IDTs can act as transmitters, receivers and reflectors collectively [1].

Figure 1.1: IDT in a SAW device

1.1.1 Classification of Acoustic Devices

SAW devices can be grouped under a broader classification of microwave acoustic

devices [2]. Microwave acoustic devices can be defined as the ones which convert

electromagnetic waves into acoustic waves for useful functions. They can be primar-

ily divided into 3 groups depending on the type of primary waves that propagate.

• Bulk Acoustic Wave (BAW) devices: Waves in these type of devices

propagate through the bulk and their frequency of operation depends on the

thickness of the piezoelectric film. Although their velocity of propagation

(phase) is higher than that of SAW, their frequency of operation is much lower

due to the need for ultra thin films. But a significant advantage of these kind

of devices is that they have high power handling capability and lower losses.

• Surface Acoustic Wave (SAW) devices: Surface acoustic waves are ex-

cited by interdigital electrodes and propagate on the surface of the piezoelectric
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substrate. These are often called Rayleigh waves after their discoverer. Due

to compatibility with microfabrication techniques, mass production is possible

and also the capability of small features (with microfabrication) makes higher

frequencies achievable. But compared to devices based on other waves, the

limitations are lower phase velocity which limits the frequency of operation

and lower power handling capabilities.

• Pseudo SAW (PSAW) devices: This type of wave propagation combines

both the attributes of BAW and SAW. They have a component of bulk wave

radiating into the substrate which can be controlled or trapped to the surface

by interdigital electrodes or gratings on the surface. They have higher phase

velocity and better power handling capabilities than SAW and at the same

time are suitable for production by lithographic techniques. These features

make PSAW devices attractive for higher operating frequencies.

1.1.2 Features of SAW and PSAW Devices

A single SAW device package with piezoelectric substrate and interdigital electrodes

can perform complex signal processing such as bandpass filtering in a very com-

pact physical package, which otherwise might require bulky high quality resonators.

They are small, rugged and light weight which makes them a good choice for highly

integrated wireless tranceivers. PSAW devices possess some additional merits in ad-

dition to the ones shared with the SAW counterparts. In addition to having higher

phase velocity as compared to SAW, they have higher piezoelectric coupling (better

ability to convert the electrical energy into mechanical and vice versa) which trans-

lates into wider operational bandwidth and lower insertion losses. Mass production

is possible using techniques similar to semiconductor microfabrication which enables

excellent reproducibility of these devices [3].

Acoustic wavelength λ is given by v/f where v is the velocity of SAW and f the

frequency. The periodicity of the required interdigital electrodes is related to the

acoustic wavelength λ, and is typically λ/2 as shown in Figure 1.2. The surface wave

velocity is typically five orders of magnitude smaller than that of electromagnetic

3



Figure 1.2: IDT periodicity and wavelength

waves in free space and therefore the wavelength is also much smaller at the same

frequency, which translates into smaller device sizes. Contrastingly, these devices

becomes unmanageably large at low frequencies and unmanageably small at high

frequencies. For instance, SAW propagating with a velocity of 3000 m/s at 1 MHz

will have wavelength of 3 mm or finger widths around 0.75 mm and wavelength of

300 nm or finger widths of 75 nm at 10 GHz. Both of these extremes represent

fabrication challenges using contemporary fabrication technologies and hence SAW

devices to date have mainly been realized from a few MHz to a couple GHz.

1.1.3 SAW Devices - Applications

Surface acoustic wave devices can be broadly categorized into 4 divisions based on

their type of device operation and applications [3].

1. Bi-directional IDTs: This device operates with waves propagating in both the

directions and includes devices such as delay lines and transversal filters. The

device shown in Figure 1.3 is a basic delay line with distance between the input

and output IDTs dictating the delay time. Since surface acoustic waves travel

much slower than electromagnetic waves, longer delays are possible with small
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Figure 1.3: Bidirectional IDT: Delay line and transversal filter

device sizes. A similar configuration can also be used as a transversal bandpass

filter with the IDT pitch as half the SAW wavelength. When the frequency is

varied, the waves generated by the IDT pairs will not be in phase and the wave

amplitude will decrease giving rise to bandpass action. The frequency response

can further be synthesized by apodizing the IDTs, i.e. changing the finger

overlap length with distance and also by altering the distance between the

IDTs [2]. The waves are generated on both sides of the IDT and subsequently

only half the power reaches the output IDT. Similarly, by reciprocity only half

the acoustic power is reconverted into electrical energy at the output IDT.

The other half is re-converted into SAW and sent back towards the source due

to the piezoelectric effect. This causes a 6 dB loss and together with other

second order effects, such as load mismatch and resistive losses, the losses

typically increase to 15-20 dB. Bi-directional IDT devices are often employed as

delay lines for oscillators, clock recovery filters for fiber optics communications

repeater stages, IF filters for mobile/wireless receivers and pagers, etc.

2. Resonators and resonator filters: The SAW resonator shown in Figure 1.4 is

of one port configuration with only one set of IDT and 2 sets of reflectors on

either side. The waves generated by the IDTs at a particular frequency (deter-
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Figure 1.4: SAW resonator with reflectors

mined by the period of the IDT) are constructively reflected by reflectors. The

distance between the reflector centres is set to be half of the SAW wavelength

enabling in-phase reflections at that particular frequency. At other frequen-

cies, the waves get reflected out-of-phase and consequently die out resulting

in a highly frequency selective resonator. The reflected waves form a standing

wave pattern which is fundamental to device operation and such resonators are

widely used in oscillators and ladder filters. The ladder filters are constructed

by connecting the SAW resonators as impedance elements in the form of a lad-

der network [2]. The series arm resonant frequency is selected together with the

parallel arm anti-resonant frequency to get bandpass filter action. Resonator

filters are often used in automotive keyless entry, medical alert transmitter

circuits and in RF front-ends for wireless and mobile receivers.

3. Unidirectional IDTs: High losses incurred due to the bi-directionality of the

IDT can be partially compensated by excitation of waves in one direction

only. This is made feasible by smart use of the reflectivity of the IDT fingers.

Generally some degree of asymmetry is introduced in the IDT such as two

thickness metallization, use of reflectors between electrodes, electrodes with
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different widths, etc, [4]. These techniques attempt to reinforce the waves

launched in one direction by virtue of internal reflections. High frequencies (as

compared to the bi-directional case) are not always attainable because ultra

thin electrodes are required at times for unidirectional SAW excitation. Uni-

directional IDTs are employed in low-loss IF filters (typically< 3dB) for mobile

and wireless circuits and RF front-end filters for mobile communications.

4. Nonlinear devices: Increased power densities at the substrate surface results

in a nonlinear response between the input and output signals. The mechanical

deformation caused by the electrical input is no longer perfectly elastic. When

the power levels are sufficiently high, SAW devices start to operate in nonlinear

mode. Since the penetration depth is low for SAW as compared to PSAW and

BAW, higher power densities are easier to achieve and consequently these

devices are often employed for nonlinear operation. SAW convolvers are often

used in spread spectrum communications and a simple unit consists of 2 IDTs,

one for the coded input signal and another for the reference signal with a metal

film in between them acting as the third port delivering a correlated output.

1.2 Research Motivation and Focus

The ever-increasing growth of telecommunication devices and technologies, causing

a demand for bandwidth, has forced the emerging applications to move further up

in the frequency scale. Bluetooth and Wireless Local Area Networks (WLANs)

operating at 2.45 GHz and 5-6 GHz are telling examples of this trend [5]. The

features, merits and applications described in the previous section make the SAW

devices attractive in the high frequency range and this has led to increase in demand,

especially above the 2 GHz range. The velocity of propagation and linewidth of

electrodes (directly linked to the wavelength of SAW being excited) are the two

parameters on which the accomplishment of higher operating frequencies depend as

specified by the relation f = v/λ. Clearly, an increase in velocity of propagation

of SAW or a decrease in wavelength of IDT patterns corresponding to the SAW
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being excited, increases the frequency of operation. This opens up three avenues

for research towards acquiring higher frequencies of operation, namely, searching for

materials propagating SAW at a higher velocity, by effective utilization of different

surface modes that travel with higher velocities, and developing new reproducible

techniques for fabrication of high quality sub-micron electrode fingers.

1.2.1 Materials for Higher Velocities and Performance

Piezoelectric materials like quartz and lithium-niobate have been traditionally used

in SAW device production, but recently there has been increased activity in the

search for materials that propagate SAW more effectively and swiftly, with an eye

towards achieving higher frequencies. Non-piezoelectric substrates such as silicon

and sapphire have been employed in SAW devices for quite some time facilitated

by the deposition of thin film piezoelectric materials [6] such as ZnO (Zinc Oxide)

for electrical excitation of acoustic waves. But since the materials have propagation

velocities close to the conventional values, they did not offer much of an improve-

ment in frequency ranges. But recently, usage of diamond film [7] in combination

with a ZnO piezoelectric layer has shown promise towards realization of high fre-

quency devices without crossing the sub-micron fabrication barrier. With diamond

having propagation velocities around 10, 000 m/s, Nakahata et al. have fabricated

a narrow band filter at 2.45 GHz with electrode widths around 1 µm. Nitride film

based devices such as GaN (Gallium nitride) thin film filters [8] and AlN (Aluminum

Nitride) on SiC (Silicon Carbide) [6] substrates, propagating SAW at 5803 m/s and

around 6000 m/s respectively, have also been reported in the literature. Thin films

of dielectric materials are also often deposited on the substrates for useful modifi-

cation of SAW propagation properties, improved coupling and reduced temperature

effects [6]. With improved methods to process high quality materials and effectively

apply them in device production, the prospects for production of high frequency

SAW components looks bright.
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1.2.2 Modes for Higher Frequencies

Rayleigh waves that die out within two to three wavelengths in depth from the

surface, typically have velocities around 3000 m/s. But there are some crystal

cuts (explained in Chapter 3) such as YX-128◦ Lithium niobate (LiNbO3) which

propagate Rayleigh SAW at velocities close to 4000 m/s. Nevertheless, to achieve

frequencies of operation above 1 GHz, linewidths less than 1 µm are needed. So,

pseudo-SAW modes with higher velocities such as leaky SAWs and surface transverse

waves (STW) are getting increased attention due to their potential for achieving

higher operating frequencies. Table 1.1 shows a comparison of leaky and surface

transverse wave to that of Rayleigh wave velocities in different materials. With

Table 1.1: Rayleigh and pseudo-SAW velocities in different materials [3]

Wave type Material and cut Velocity (m/s)

Rayleigh Quartz-ST 3158

SAW YZ-LiNbO3 3488

YX-128◦ LiNbO3 3992

Leaky LST-Quartz 3948

SAW 64◦YX LiNbO3 4478

36◦YX LiTaO3 4112

Surface Y-cut ST quartz 4990

transverse 36◦YX LiTaO3 4211

wave (STW) 35.5◦(AT)Y-cut Quartz 5100

velocities above 4000 m/s, devices based on leaky and surface transverse waves are

being increasingly employed in the lower GHz (1-3 GHz) region. In particular, STW

based devices above 2 GHz have been reported by Avramov et al. [9].

More recently, a second order leaky SAW mode called longitudinal leaky SAW
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(LLSAW) with velocities above 6000 m/s have been reported to exist in several

substrates. Longitudinal leaky waves with a velocity of 6700 m/sec on lithium

tetraborate (Li2B4O7) have been reported by Sato and Abe [10]. They have also

fabricated filters at 1.2 GHz and 1.5 GHz without using sub-micron fabrication

techniques [11]. Similarly, LLSAW on YZ-LiNbO3 with velocities around 6100 m/s

have been used at 2.5 GHz [12] and 5.2 GHz [13] by Makonnen et al. Also, different

crystal cuts of the same materials are also often explored in order to strike a balance

with velocity, temperature effects, insertion losses and other propagation issues.

1.2.3 Sub-micron Fabrication for High Frequency SAW Devices

SAW devices are predominantly built using similar photolithographic patterning

techniques used in the semiconductor industry. SAW devices are typically produced

by a simple repeatable technique called lift-off process as depicted in Figure 1.5

(subsequent steps are indicated by block arrows). The process involves coating the

substrate with resist material and subsequently exposing areas of interest to optical

light using a mask produced by a similar process. The exposed regions are washed

away using suitable chemicals forming the development step after which the whole

area is metallized and the remaining resist is dissolved chemically and lifted off,

leaving metal conductors standing on the substrate. Also other techniques such

as etching are used in fabrication wherein, the metal is deposited on the substrate

directly after which it is patterned using a resist and then etched away. Fabricating

sub-micron electrodes is quite challenging using optical lithography, for instance

Ultra-Violet (UV) and deep UV lithography, but by useful techniques such as off-

axis illumination, SAW resonators have been fabricated at 2.45 GHz [14] and 3.15

GHz [15]. Electron beam (e-beam) lithography has been used to fabricate SAW

resonators at 10 GHz with electrode widths below 100 nm [16]. But fabrication using

e-beam lithography is an extremely slow serial writing process with low throughput

which is suitable only for prototyping and not mass production.
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Figure 1.5: Lift-off process

Fabrication Using X-ray Lithography

A relatively unexplored technique for SAW device fabrication is X-ray Lithography,

which is also sometimes part of the LIGA process (German Acronym for X-ray

Lithography, Electroplating and Moulding). Short wavelength hard X-rays are used

for lithography which is generally sourced from a synchrotron. An X-ray sensitive

polymeric material coated on top of the substrate is exposed to high energy X-rays

through a patterned mask. The exposed regions can be washed away using suitable

chemicals and a metal layer could be deposited on it. Lift-off process explained

in the previous section could be used to produce free standing electrodes on top

of the substrate. The additional promising feature of LIGA, the prospect of high
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throughput and mass fabrication using “hot embossing” could be pursued later. In

this process, a metal mould obtained using electroplating could be used to replicate

SAW structures on softened resist without exposure. Well defined structures with

excellent sidewall quality and sub-micron features, around 400 nm are currently

possible using X-ray lithography (XRL) [17]

X-ray lithography with etching technique has been used by Yoshioka et al. to

fabricate SAW filters with linewidths in the range of 1.7-0.6 µm [18]. The typical

electrode thickness of SAW devices would be around 5% (height to wavelength ratio)

but for the high velocity LLSAW, the optimal thickness ratio is often around 10%

which is easily attainable using XRL technology, which specializes in high aspect

ratio structures, even at reduced metallization ratios as opposed to some other tech-

nologies. Although the extremely high aspect ratio capabilities (height to width ratio

as high as 100:1) possible with XRL is not likely required for traditional modes, they

could present some interesting structural possibilities for research into new architec-

tures. And finally, the possible finer resolution that is improving all the time and

the mass production potential make XRL a good choice for SAW device fabrication.

1.2.4 Need for Better Models

As the frequency of operation increases, the electrode thickness is no longer negligible

compared to the SAW wavelength. Rather, the electrode mass (thickness) affects the

centre frequency of the device to a great extent. With newer modes like Longitudinal

Leaky SAW, the electrode thickness becomes even more critical. Also, operations of

these kind of devices clearly belong to two realms namely, mechanical and electrical

(piezoelectric). So models which are not completely derived from first principles

(or based on electrical aspects alone), such as equivalent-circuit models and matrix

models do not fully characterize the physics of SAW propagation and would fail to

capture the high frequency effects. So a model which takes into account the complete

set of partial differential equations (PDE) defining the problem, is needed.

Finite element modeling is one such method which solves the partial differential

equations numerically by subdividing the whole domain into finer meshes called el-
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ements. Finite element method (FEM) is a powerful technique to solve PDEs and

has long been used by engineers to solve mechanical, structural, and electrical prob-

lems. There are also other pure numerical solvers such as Green’s function method,

boundary element method and finite difference methods. But they are not as popu-

lar as FEM to have fully developed commercial softwares to help in easier modeling

of devices. There exists a lot of literature on usage of FEM to model Acoustic

wave devices, but many of them are limited to Bulk wave type. BAW resonators

in piezoelectric media have been modeled by Lerch [19] , Makkonen [20] and others

using FEM formulation. Even though extension of such models to SAW devices

is straightforward and potentially as accurate, not much progress has been made

due to intensive computational and consequent memory requirement. BAW devices

are generally made of thin films whereas SAW devices are generally constructed on

thicker substrates and sometimes on layered substrates,making the computational

requirements shoot up exponentially. But the imminent widespread usage of 64

bit computing and solving of 111 million degrees of freedom (number of unknowns)

by SGI, Intel and ANSYS [21] presents good prospects for solving full scale SAW

models using FEM in the near future.

Coupling-of-Modes (COM) model is another successful model which is widely

used in the industry because of its speed and effectiveness to model SAW and PSAW

modes. But parameters needed to model the devices using COM theory, need to

be introduced from outside. Often, one port SAW resonators are fabricated [22]

and parameters are measured to be input as COM parameters in a simulation. But

analyzing structures with different metallization ratio and thickness becomes an

expensive and time consuming approach if devices were to be fabricated every time

in order to extract the parameters. Numerical models such as FEM can be used

in place of real-device-fabrication, to extract the required parameters for further

micro-acoustic device design and can be an efficient tool in the design of new SAW

devices and structures.
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1.3 Thesis - Objectives

The purpose of this thesis is to develop an accurate finite element model for one-port

SAW resonators. Even though the potential accuracy of finite element calculations

has been known for sometime, they were not applied to SAW devices due to lack of

computing resources and time constraints. But recent advances in computing tech-

nology and promising future improvements warrants a fresh look at the capabilities

of finite element modeling in SAW device design. The research work was focussed

on the following specific objectives for this thesis work:

• Review existing models that are used for SAW device design and illustrate

the need for simulators that are based on first principles to account for high

frequency and structural effects.

• Development of a finite element model using commercial software ANSYS and

verification and validation of results with the ones in literature.

• Extension of the finite element model to more complex leaky SAW resonators

and comparison with measured resonator results.

• Modeling of longitudinal leaky SAW resonators in the perspective that the high

mode velocity can be used in the realization of high frequency SAW resonators.

1.4 Thesis Organization

This thesis work has been organized in to 6 chapters and the contents are briefly

outlined as follows:

Chapter 2 provides the mathematical base for the problem at hand and discusses

the properties of various waves, which would be useful in FE modeling of the devices

based on them.

In Chapter 3, the existing SAW device models are briefly discussed along with

their shortcomings. The assumptions approximations and other basic details about

finite element modeling of SAW resonators is also provided in this chapter.
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In Chapter 4, the results are presented for Rayleigh SAW and leaky SAW based

devices. The results are compared to published as well as some measured test results.

Chapter 5 deals with the FE modeling of LLSAW based SAW devices and the

effect of metallization ratio and electrode height on the resonator response.

In Chapter 6, the summary of this thesis, conclusions of this research and some

future research directions in this field are provided.

15



2. Surface Acoustic Waves - Physics

2.1 Elastic Waves

A basic understanding of elastic wave propagation and brief overview of differen-

tial equations governing it explains the complexity in solving surface acoustic wave

problems. It is also highly useful in the simulation of SAW resonators using the

finite element method, as it helps in making valid assumptions and approximations.

The material types and properties also dictate what kind of waves propagate on the

substrate warranting a brief overview.

Waves are nothing but propagation of energy from one point to another in a

medium. Elastic waves in particular are the ones which propagate through a medium

without causing permanent deformation to it. A very basic classification of elastic

waves yields two types namely, longitudinal and shear waves [23]. The classifica-

tion is based on the polarization of particle displacement in the medium. It is also

worth mentioning that polarization is the direction (in a particular co-ordinate sys-

tem) of the displacement of the particles in the medium, vibrating to aid in wave

propagation.

• Longitudinal waves: These are also known as compression waves and the

wave propagation takes place by particle displacement (polarization) in the

direction of wave vector as shown in Figure 2.1. During longitudinal wave

propagation, the distance between planes containing a certain number of par-

ticles varies and consequently, the volume occupied by a given number of

particles is not a constant.

• Shear waves: Shear or transverse wave propagation is due to particle dis-

placement in the direction perpendicular to wave vector (Figure 2.1) and is
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Figure 2.1: Elastic waves - Types [23]

not accompanied by variation in volume as opposed to the longitudinal case.

But in many practical cases such as surface acoustic waves, simple wave propagation

explained above is not possible. The displacements are often complex and a mixture

of these two types of wave propagation. A closer look at the wave propagation

equations reveals some of the issues pertaining to surface wave propagation.

2.2 Acoustic Wave Terminologies

The understanding of wave propagation equations and subsequent solving of them

involves some basic understanding of the concepts involved in it. So, a set of terms,

variables and indices used in acoustic wave propagation are explained in this section.

Stress may be defined as the force acting on a unit area (N/m2). The strain is

the deformation per unit length and hence a dimensionless quantity. The stress is

linearly proportional to the strain and is related by a proportionality constant called

the stiffness coefficient C, and is termed as the Hooke’s law. If all the quantities

are considered with a co-ordinate axes as reference, components of stress and strain

arise. The strain is given by,

Sij =
1

2

(

∂ Ui

∂ j
+

∂ Uj

∂ i

)

(2.1)
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where, Sij are the strain components and i, j = X, Y, Z co-ordinate directions. Also,

it is worth mentioning that the indices or subscripts with i, j, k, l in this work always

represents the X, Y, Z co-ordinate directions. In the Equation 2.1, if i = j it is the

normal strain and if not it is the shear strain. This gives rise to three normal strains

and six shear strains in a three dimensional co-ordinate system. These elements can

be arranged in a matrix form with normal strains as diagonal elements and shear

strains as off-diagonal elements constituting a second order tensor (indicates the two

subscripts of the strain).

The stress being linearly proportional to strain, must also be a second order

tensor with normal and shear stress components and is given by Tij . The relation

between corresponding stress and strain components is given by,

Tij = Cijkl Skl (2.2)

where Cijkl (ijkl = X, Y, Z) are stiffness constants. Each subscript index can have

3 values (X,Y,Z) and hence the total number of stiffness constant is equal to 3 ×
3 × 3 × 3 = 81. In elastic non-ferroelectric materials the stress matrix is symmetric

in nature and consequently Tij = Tji [24]. Due to this symmetry, the stiffness

constants obey the following relation:

Cijkl = Cjikl = Cijlk = Cjilk = Cklij (2.3)

This symmetry in turn reduces the number of independent stiffness constants to

21 [24]. In isotropic materials only two independent constants exist and in the most

piezoelectric materials the number of independent constants is only six or seven.

It is useful to provide one stress component in Equation 2.2 as an example, that

would help in understanding the summation of repeated subscripts in the equation

and is given by,

Txx = CxxxxSxx + CxxxySxy + CxxxzSxz +

CxxyxSyx + CxxyySyy + CxxyzSyz +

CxxzxSzx + CxxzySzy + CxxzzSzz (2.4)
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The tensors discussed being symmetric, can be represented by one subscript rather

than two (components with 4 subscripts will represented by 2). The notation that

is generally followed is given in Table 2.1 [24].

Table 2.1: Reduction of subscripts

I ij

1 xx

2 yy

3 zz

4 yz,zy

5 xz,zx

6 xy,yx

With this reduction in subscript notation, Equation 2.4 can be rewritten as,

T1 = C11S1 + C12S2 + C13S3 + 2C14S4 + 2C15S5 + 2C16S6 (2.5)

All other stress components can be written in a similar way and it is worthwhile to

note that there are 36 components in stiffness matrix from C11 to C66 (a 6×6 matrix).

This matrix is symmetric in nature and therefore could have only 21 independent

constants, as noted previously.

In addition to the stress and strain components, the electrical constitutive rela-

tion of D = ǫE also has corresponding components and is given by,

Di = ǫij Ej (2.6)

where i, j = X, Y, Z, D is the electric displacement field vector, ǫ the permittivity

matrix and E the electric field vector. The permittivity matrix is a 3 × 3 matrix

with mostly diagonal elements. Due to rotations for crystal cuts it might have off

diagonal elements often, but nevertheless remains symmetrical.

19



A brief description about the terminologies involved in the acoustic wave equa-

tions was explained in this section and if more details are required about these

topics, the reader is referred to [24].

2.3 Wave Propagation Equation

In this section, the basic wave equation formulation for a non-piezoelectric elastic

medium is discussed. The reduction in subscript order (explained for the sake of

reader understanding) discussed in the previous section is not implemented in the

equations that follow for the sake of consistency with other formulations in the

literature and clarity.

The basic wave equation is based on the fundamental law of dynamics given by,

F =
∂ Tij

∂ Xj
(2.7)

where F is the force density per unit volume, Tij is the stress tensor and Xj are

the axes of three co-ordinate direction (Xx = X,Xy = Y,Xz = Z). Then the wave

equation for displacements in an elastic, homogeneous, anisotropic (characteristics

different in different direction) as well as isotropic (characteristics same in all direc-

tions) medium is expressed as,

ρ
∂2 Ui

∂t2
=

∂ Tij

∂Xj
(2.8)

Where ρ is the mass density of the elastic medium and Ui are the displacements in

respective co-ordinate directions. Equation 2.2 can also be written as [23],

Tij = Cijkl
∂Ul

∂Xk
(2.9)

and summation over repeated indices implied, the full wave equation is given by,

ρ
∂2 Ui

∂t2
= Cijkl

∂2 Ul

∂Xj ∂Xk
(2.10)

Equation 2.10 is a set of 3 equations for displacements Ux,Uy,Uz in 3 co-ordinate

directions. The ijkl takes all possible combinations of X, Y, Z values and are repeat-

edly summed in the right-hand side of the equation. The size of the wave equation
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depends on the number of stiffness constants existing for a particular material. For

instance, many entries are zero for materials that are isotropic or cubic (symmetry)

and the equations are smaller, whereas for general piezoelectric materials fewer en-

tries are zero and the equation can be lengthy. The other important thing to note in

Equation 2.10 is that it represents wave propagation in a non-piezoelectric medium

as noted before, but provides useful information about wave propagation in media

and can be directly extended to piezoelectric case.

2.4 Wave Solutions in Unbounded Anisotropic Media

An unbounded medium is one which is infinite in all directions (of three co-ordinate

axes) and the simplest solution for the wave equations in such media can be plane

waves given by,

Ui = Ai exp[jk(lii− vt)] (2.11)

where Ai is the amplitude of displacement, k.li is the wave vector (li describes the

direction cosines of wave vector) and v is the velocity of wave [25].

Equation 2.11 represents three waves with different polarizations propagating in

a given direction, i.e, a wave with displacement component only in the wave vector

direction, a wave with displacement component in direction perpendicular to the

wave vector direction and a wave with displacement component in the direction per-

pendicular to the plane in which the wave vector exists. The three waves are one

quasi-longitudinal and two quasi-shear waves, categorized according to the polariza-

tion of the displacement of the corresponding waves. They are called quasi waves

because of the fact that almost none (except for certain propagation directions at

which modes become pure) of them have displacement components either in the

direction of wave propagation or perpendicular to it but rather make a small angle

to the propagation vector and its normals. Nevertheless, the polarizations of the

three waves are always mutually perpendicular to each other. The velocity of the

quasi-longitudinal wave is always higher than that of quasi-shear waves and also the

shear waves have different velocities which are in turn classified as fast and slow

shear waves depending on their velocities. This kind of wave propagation is true
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only for unbounded media and all these modes propagate at all frequencies. But

once the medium is bounded or finite, mechanical boundary conditions should be

satisfied and these waves cannot propagate independently. This prompts a look into

surface wave solutions for bounded finite media [23].

2.5 Surface Wave Solutions in Bounded Media

A co-ordinate system shown in Figure 2.2 is assumed for surface wave solutions with

the surface at Z = 0 and extending to negative infinity. The wave vector is assumed

to be in the XY plane, i.e parallel to the surface of the medium which is unbounded

in the X and Y directions.

Figure 2.2: Co-ordinate system for surface wave solutions [25]

Surface wave solutions are those in which displacements decay with depth below

the substrate surface and are straight crested, i.e there is no dependence of the

displacement at any depth on the distance measured perpendicular to the sagittal

plane [23] (plane containing wave vector and normal to the surface as shown in
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Figure 2.2). Such a solution can be written in the form in which the Z dependence

is treated as part of the amplitude term and wavelike properties depending on the

X and Y components and is given by,

Ui = Ai exp(jkl3z) exp[jk(l1x + l2y − vt)] (2.12)

It can also be written in terms of θ as,

Ui = = Ai exp(jkl3z) exp[jk(cos(θ)x + sin(θ)y − vt)] (2.13)

These solutions (with l1 and l2 or θ known) can be substituted into the Equation 2.10

and a 3× 3 matrix is formed which when equated to zero (for non-trivial solutions),

results in a sixth order equation in l3 with v as a parameter. A sixth order equation

has six roots with three complex conjugate pairs. For surface wave solutions, the

value of l3 must lead to displacement components vanishing as z → −∞. The roots

in the upper half of the complex planes leads to solutions which makes displacements

grow to infinity at z = −∞. Contrastingly, the other three roots on the lower half

complex plane leads to surface wave solutions for which the displacements vanish

at infinite depth. The phase velocity is the same for each value of l3 and is deter-

mined from the boundary condition matrix. A linear combination of the solutions

in Equation 2.12 or 2.13 for each l3 value in the lower half complex plane forms the

assumed solution and is given by,

Ui =

3
∑

r=1

Ai,r exp(jkl
(r)
3 z) exp[jk(cos(θ)x + sin(θ)y − vt) (2.14)

From Equation 2.14 it can be seen that there are 3 displacement amplitudes for

each root and for 3 displacements there are totally 9 amplitudes. To determine

these amplitudes and the phase velocity of the surface wave the boundary conditions

should be satisfied at the surface.

2.5.1 Surface Boundary Conditions

The boundary condition that should be satisfied for the surface wave solution is that

the surface at z = 0 should be stress free, i.e, no surface forces should be acting on
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it. The stress free condition can be written from Equation 2.9 for stress as,

Ti3 = Ci3kl
∂ul

∂uk
= 0, at z = 0 for i = 1, 2, 3 (2.15)

or simply as,

T13 = T23 = T33 = 0, at z = 0 (2.16)

Substituting the assumed solution (Equation 2.14) into the set of boundary condi-

tions gives rise to another set of three homogeneous equations in terms of unknown

displacement amplitudes. A 3 × 3 boundary condition matrix is formed and for

non-trivial solutions to exist, the determinant must be equated to zero. The dis-

placement amplitudes that ought to be found may be complex and as a consequence

the boundary matrix determinant is also complex. For any particular value of v

(in the l3 component), it is almost improbable to give a determinant value equal to

zero. The equation can be algebraically very complex to give an explicit analytic

expression for the amplitudes. Instead, a set of successive values of velocities is sub-

stituted in the equation to find a particular value for which the determinant vanishes

(both the real and imaginary parts should vanish). Nevertheless, explicit relations

can be found out in certain special cases such as in isotropic media as reported by

Farnell [25].

The velocity of surface waves remains constant in the case of isotropic media,

whereas it is a function of propagation direction in the anisotropic case. For each

direction a set of velocities should be successively checked for the boundary condition

to vanish in order to find out the correct velocity. A plot of variation of phase velocity

in XY plane of LiNbO3 is shown in Figure 2.3 [25]. In the plot, the phase velocities

are normalized to the shear wave velocity in the [100] direction (i.e the X direction).

Evaluation of phase velocities for different directions was highly useful for SAW

devices because, directions with higher phase velocities are often chosen for device

fabrication to attain higher frequencies of operation. For example, in Figure 2.3 the

phase velocity of surface wave varies as the direction of propagation is varied from

X-axis (0◦) and peaks when the direction of propagation is around 30◦.
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Figure 2.3: Normalized phase velocity as a function of direction in XY plane of

LiNbO3 [25]

2.5.2 Displacement Profile for Surface Waves

The homogeneity of the wave solution equations and boundary condition equations

allows only for solutions of amplitudes to be found in terms of other amplitude(s).

Also, the choice of displacement component to divide through, to find others in terms

of it, is compounded by the fact that for certain special directions some displacement

components are zero. So, effectively there are only two displacement components,

which are confined to the sagittal plane.

In isotropic media, the roots or the values of l3 are always on the imaginary axis,

giving rise to purely exponential decay of displacements in the negative z direction

as shown in the Figure 2.4. But in the case of anisotropic media, the roots are not

restricted to imaginary axis in complex plane, but rather allowed to take complex

values. The real parts in the roots causes the amplitudes of the displacements to

oscillate with depth. Even though the real part may be viewed as part of the wave
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Figure 2.4: Longitudinal and vertical displacement variation in isotropic media [25]

vector, it is convenient to view the propagation vector as one parallel to the substrate

and allow the complex root to be part of decaying component. This will allow the

displacement amplitudes to be exponentially damped sinusoids as opposed to the

simple exponential decay in the isotropic case. A typical variation of transverse and

longitudinal displacements with depth for anisotropic case is shown in Figure 2.5.

The surface wave solutions explained until now are called Rayleigh waves, named

after their discoverer. These waves die down within 2 to 3 wavelengths and the

particle displacements are strictly confined to the sagittal plane as depicted in Fig-

ure 2.6(a). The longitudinal and vertical transverse components have a phase dif-

ference of π/2 and their amplitudes do not decrease in the same way as shown in

Figures 2.4 & 2.5. Thus the particle displacement at any depth is described by an

ellipse and the shape of the ellipse changes with depth due to the change in relative

magnitudes of Uz and Ux with depth.

26



Figure 2.5: Longitudinal and vertical displacement variation with depth. Propaga-

tion in [100] axis of anisotropic nickel [25]

(a) Rayleigh wave (b) Sagittal Plane

Figure 2.6: Rayleigh wave with displacements in the sagittal plane [23]
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2.6 Surface Waves With Piezoelectric Effects

The materials used in SAW devices are mostly piezoelectric and hence the piezo-

electric effect which makes the wave equation a coupled (between mechanical and

electrical domains) one, needs to be considered. In a piezoelectric material, the

mechanical equations of motion discussed in the previous sections and Maxwell’s

equations for the electrical behavior are coupled through two constitutive equations

given by,

Tij = Cijkl Skl − ekij Ek (2.17)

Di = eikl Skl + ǫik Ek (2.18)

where Skl is the strain tensor (second rank), ekij is the third rank piezoelectric

tensor, Ek is the electric field in three directions, Di is the component of electric

displacement and ǫik is the symmetric permittivity matrix. The Equation 2.17 is

an extension of Hooke’s law which espouses the relation between stress and strain

in a material. In a piezoelectric material, the electric field produces an additional

mechanical stress which is indicated in the equation as an additional term. Similarly,

the inverse effect produces an additional term in the electric displacement relation

as shown in Equation 2.18

As the velocity of acoustic waves are five orders smaller in magnitude as compared

to electromagnetic waves, the frequency of the electric field waves can be considered

to be small enough to categorize them as quasi-static. In such a case, the curl of

the electric field can be assumed to vanish reducing the Maxwell’s equation to,

∇ × E = 0, (2.19)

enabling us to write electric field as the negative gradient of the scalar potential

given by the following equation:

E = −∇ φ (2.20)

Magnetic fields are rarely of interest in surface acoustic wave problems and hence

Maxwell’s equations concerning them are disregarded. The piezoelectric materials
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are almost perfect insulators reducing the remaining Maxwell’s equation to,

∇ . D = 0 (2.21)

The components of strain in Equations 2.17 and 2.18 are the same as in Equation 2.1.

Substituting the relations for Sij and E into the piezoelectric constitutive equations

and henceforth into the wave equation and Maxwell’s equation provides a system of

coupled wave equations given by,

ρ
∂2Ui

∂t2
− Cijkl

∂2Uk

∂xj ∂xl

− ekij
∂2φ

∂xk ∂xj

= 0 , (2.22)

eikl
∂2Uk

∂xi ∂xl
− ǫik

∂2φ

∂xi ∂xk
= 0 (2.23)

Surface wave solutions similar to the ones in non-piezoelectric case is assumed for

the piezoelectric case, i.e., straight crested waves with displacements decaying below

the substrate surface. A solution is also assumed for the potential in the medium,

along with expressions for displacements in three directions. Again, the wave vector

is in the XY plane and the Z-dependence of the wave is regarded as part of the

amplitude term in the solution. The assumed solutions for the displacements are

the same as for the non-piezoelectric case (given by Equation 2.12) and the solution

for potential in the medium is given by,

φ = A4 exp(jkl3z) exp[jk(l1x + l2y − vt)] (2.24)

where A4 is the amplitude of potential that is to be determined using boundary

condition equations. The solutions are substituted back into the wave equations

given by Equations 2.22 and 2.23 to get a 4 × 4 matrix in terms of l3 with v as a

parameter. An eighth order equation thus formed is equated to zero for non-trivial

solutions and in general has 8 roots (real or complex pairs). As before, the upper

half plane roots that lead to displacements and potentials growing with depth are

not taken into account and the four roots in the lower half of the complex plane are

only considered as they correspond to surface wave solutions.

The displacements and potential are assumed to be linear combinations of four

terms (corresponding to 4th root) as opposed to three terms in the non-piezoelectric
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case, as shown in the following equations:

Ui =

4
∑

r=1

Ai,r exp (jk l
(r)
3 z) exp [jk(l1x + l2y − vt)] (2.25)

φ =
4

∑

r=1

A4,r exp (jk l
(r)
3 z) exp [jk(l1x + l2y − vt)] (2.26)

The boundary conditions should be satisfied at the surface in order to determine the

appropriate phase velocity and amplitudes of surface waves. Being a piezoelectric

case, mechanical and electrical boundary conditions need to be satisfied simultane-

ously. The mechanical boundary condition is given by stress-free surfaces, i.e.

Ti3 = Ci3kl
∂ul

∂uk

+ eki3
∂φ

∂ul

= 0, at z = 0 for i = 1, 2, 3 (2.27)

The electrical boundary condition is imposed by Maxwell’s equations, the normal

component of D being continuous across the air/substrate interface:

D3 = −ǫ0
∂ φ

∂ x3
for z > 0

D3 = e3kl
∂ Uk

∂ xl
− ǫ3k

∂ φ

∂ xk
for z < 0

Combining both the relations, at z = 0, the boundary condition becomes,

e3kl
∂ Uk

∂ xl
− ǫ3k

∂ φ

∂ xk
− kǫ0φ = 0 (2.28)

When the assumed solutions are substituted into the mechanical and electrical

boundary conditions, we get a set of four homogeneous equations in terms of un-

known amplitudes as before. The search procedure for roots and the appropriate

velocity is the same as before for the of non-piezoelectric case, the only differences

being four lower half plane roots, 4×4 boundary condition matrix and determination

of potential in the medium.

2.7 Leaky Wave Solutions

Surface wave modes can be differentiated from each other by the phase velocity

region in which they exist. It was already mentioned that there are 3 types of waves

that can propagate in an unbounded anisotropic media, namely two shear (slow and
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fast) and one longitudinal (fastest) waves. The surface Rayleigh wave mode which

consists of four decaying terms beneath the surface, almost always has its velocity

slower than the slowest shear wave. But in certain isolated directions, the Rayleigh

mode velocity exceeds the velocity of slowest shear wave. In the neighbourhood of

such directions, a special type of ‘surface wave’ called ‘leaky surface wave’ propagates

in the medium. The leaky waves also possesses velocity that is always higher than the

slow shear waves but lesser than that of fast shear waves. The velocities of Rayleigh

wave and leaky wave propagating in various directions of LiNbO3 substrate is shown

in Figure 2.7.

Figure 2.7: Phase velocity of leaky wave, Rayleigh wave propagating on LiNbO3

substrate as a function of angle from x-axis [26]

For the velocities shown in Figure 2.7 the 4× 4 matrix discussed before does not

reduce to zero, rather a small non-zero imaginary part of the determinant remains

(real part reduces to zero). This in turn affects the boundary condition matrix and

31



the stress-free surface boundary conditions are not satisfied. But if the components

of the wave vector in the XY plane (i.e. l1 and l2) are allowed to have a small

imaginary part, the matrix vanishes completely and satisfies stress free boundary

condition. The small imaginary part of the components of wave vector correspond

to the attenuation of the wave in the propagation direction. In the isolated direction

itself, the Rayleigh wave has only two (or three in piezoelectric case) highly damped

terms (imaginary part of last root of l3 goes to zero), whereas for the leaky wave,

a small third term representing a bulk wave radiating into the solid exists. This

component of the wave carries some energy away from the surface thus leading to

non-conformity to original condition of displacements vanishing at infinite depth. It

is because of this small radiating term, these type of solutions are called ‘pseudo’ or

‘leaky’ surface waves. A closer look at the roots calculated by Farnell [25] for prop-

agation vector 30◦ from the [100] axis in copper crystal (non-piezoelectric) reveals a

lot of information.

l1 =
√

3
2
(1 + i9.1 × 10−5),

l2 = 1
2
(1 + i9.1 × 10−5),

l
(1)
3 = 0.609 − i0.297,

l
(2)
3 = −0.609 − i0.297,

l
(3)
3 = −0.544 + i3.1 × 10−4

It can be noted that direction cosines l1 and l2 have a small imaginary part

representing attenuation in the direction of wave propagation. The first two roots

(l1 and l2) have negative imaginary part (lower half plane) signifying displacements

decaying with depth. The third root namely, l
(3)
3 has a small positive imaginary

part (3.1 × 10−4) causing the amplitude of displacements to increase slowly with

depth. The weighting factor (displacement amplitudes) for the first two roots are

generally higher than that for the third root causing the overall displacements to

be dictated by the rapidly decaying (first two roots) terms. The displacements die

down rapidly near the surface and does not regain (due to growing third term) its

surface value until a depth of few thousand wavelengths. So these type of waves

satisfy the experimental conditions for surface waves and are easily observable. If
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piezoelectric effects are taken into account, there are four roots that define surface

wave behavior. For leaky wave solutions in piezoelectric media, three of the roots

make displacement amplitudes decay with depth (instead of two) whereas the fourth

root makes amplitude slowly grow into the substrate.

Longitudinal leaky waves are another type of solution that satisfy experimental

conditions for surface waves. They have two components radiating energy in to the

substrate (two roots cause displacement amplitudes to grow) [10] as opposed to one

root in the leaky wave case discussed before. The longitudinal leaky waves are often

called second order leaky SAW which have their phase velocity more than that of

fast shear bulk wave and slightly slower than that of longitudinal wave. A small

relation showing the phase velocities of various types of waves in a medium is shown

as follows:

vR < vS1 < vL1 < vS2 < vL2 < vL

where vR, vS1, vL1, vS2, vL2, vL are velocities of Rayleigh, slow shear, first leaky,

fast shear, second leaky and longitudinal waves respectively. The displacements of

particles in longitudinal leaky mode is confined to sagittal plane similar to that

of Rayleigh mode(though with dominant longitudinal displacements and hence the

name), whereas the first leaky mode generally has displacements in the third direc-

tion too.

2.8 Need for Numerical Solvers

The solutions of the partial differential equations described here only provides rela-

tive values of displacements and potentials of particles in the medium. Due to the

homogeneity of equations, it is difficult to find absolute values for these variables.

But usage of numerical techniques provides approximate solutions (absolute values)

which are accurate enough (if properly formulated) for all practical purposes. The

basic technique can be to divide the continuous domain into discrete sub-domains

to get a finite amount of solution data through repeated iterations at finite number

of points in the continuum. Such a process is called discretization and is a vital step

in many numerical methods to solve partial differential equations.
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The wave solutions discussed in the previous sections are waves that propagate on

the free surface of the material. It can be quite complex to incorporate the effect of

disturbances such as electrical/mechanical perturbations in the analytical solution.

Effect of the mass of the electrode which is generally made of a material other

than the substrate, is to slow the propagating wave mode. Such effects due to finite

electrode mass which affect wave propagation are called mass loading effects. Similar

effects can also be seen in the case of electrical open or shorting of the electrodes.

Incorporation of such effects is fairly straight forward in numerical techniques which

might not be possible without it. Also, the calculation of electrical properties such

as admittance of the structures is possible with the implementation of numerical

techniques.
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3. Modeling of SAW Devices

The development and evolution of present day SAW devices has been possible

only due to simultaneous efforts to simulate these devices. The physical develop-

ment and theoretical modeling of devices go hand-in-hand, both contributing to the

other. Various models have been used since the introduction of SAW devices in the

late 1960’s to the present date and it has been a constantly evolving process. In

this chapter, the underlying assumptions, abilities, pitfalls, and potentials of vari-

ous models are discussed, eventually leading into finite element modeling for SAW

resonators.

3.1 Early SAW Models

3.1.1 Delta Function Model

The delta function model is one of the earliest and simplest of SAW models to be

developed for bi-directional IDT response prediction. The model is a very basic

one, and cannot determine input/output impedance level, bulk wave interference or

harmonic operation of devices [3]. It can only provide relative insertion loss of the

device as a function of frequency. Nevertheless, it provides excellent preliminary

design information regarding bandwidth, rejection levels, and sidelobes.

In the delta function model, each electrode on top of the piezoelectric substrate

is assumed to be a delta function source. The voltage on the electrode fingers alter-

nate in polarity with their centres spaced λ/2 at the centre frequency. The complex

electric fields are assumed to be normal to the substrate with distribution approx-

imated as two delta function sources (due to opposite voltage polarity, opposite

charges move to the edges of the electrode) or can be simplified to one source per

electrode as shown in the Figure 3.1. It should also be noted that the arrows in the
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Figure 3.1 are not electric field lines but are delta function sources (direction indi-

cates positive and negative). These delta sources are summed to get the resultant

Figure 3.1: Delta function model - Electric field lines approximated as delta function

sources

response of the input, output or both IDTs together.

A reference point at the centre of the centre electrode (x = 0) is assumed for

summing the distributed delta function contributions and the summation yields the

frequency response of one set of IDT (input or output). The amplitudes of delta

sources are assumed to be constant but the phase contribution changes for each elec-

trode according to the distance from the reference point. The frequency response

for the IDT modeled using the delta function approximation (using simplified rep-

resentation) is given by,

Hin (f) =
n

∑

−n

(−1)n An exp (−jβxn) (3.1)

where, Hin(f) is the frequency response of the input IDT, n is the number of elec-

trode pairs, (−1)n signifies the alternating electrode polarity, An is the weighting

factor given by the finger apodization overlap. The exp(−jβxn) term gives the

phase contribution of each electrode with β the propagation constant and xn the

distance from the reference point. The relation given in Equation 3.1 is simplified

using trigonometric identities and close to the centre frequency, the response is often
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approximated to a sinc function given by sinx/x. The total frequency response of

the input and output IDT pairs is given by,

H (f) = |Hin (f)| · |Hout (f)| , (3.2)

where, Hout(f) is the response of the output IDT and is given by,

Hout (f) =
m

∑

−m

(−1)m Am exp (−jβxm) (3.3)

where m is the number of electrode pairs in the output IDT.
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(a) Filter response with 3 output IDT pairs
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(b) Filter response with 19 output IDT pairs

Figure 3.2: Sample IDT filter response with 19 input IDT pairs using delta function

modeling

It should also be noted that the responses calculated using the delta function

model have no acoustic path effects and are determined only by the IDT pairs.

Sample IDT SAW filter responses with 19 input IDT pairs were calculated using

the delta function model and are shown in Figure 3.2. It can be observed from

the responses that, with increase in the number of output IDT pairs, the side lobes

decrease in magnitude and also the response becomes narrower.
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3.1.2 Equivalent Circuit Model

The equivalent circuit model is a three port model, two acoustic and one electric

ports to describe the response of a SAW device. The electrical equivalent of the two

acoustic ports is represented as a SAW transmission line and the third electrical port

is the one in which voltages are applied and sensed. The electric field is assumed

to be crossed field, i.e., the field lines are assumed to be normal to the piezoelectric

substrate surface similar to the one in a parallel plate capacitor. The real electric

field and the cross-field approximation is shown in Figure 3.3.

Figure 3.3: Electric field - Real case and approximation

Smith et al. formulated an equivalent circuit model for SAW devices based on

the crossed field model developed by Mason for launch and detection of bulk acoustic

waves [27]. In this model, the acoustic forces are converted into electrical voltages

and SAW velocities are converted into equivalent currents. These transformations

allow the mechanical characteristic admittance (similar to the transmission line char-

acteristic impedance which is expressed in ohms) to be expressed as an equivalent

transmission line characteristic admittance in mhos as,

G0 =
ω0 Cs k

2

2 π
(3.4)

where, ω0 = 2πf0, f0 is the centre frequency, k is the electro-mechanical coupling
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Figure 3.4: Mason equivalent circuit used by Smith et al. for SAW equivalent circuit

model [27]

coefficient and Cs is the static electrode capacitance of one periodic section. The

centre frequency can be determined from the known surface wave velocity (v) and

period of the IDT, the capacitance can be experimentally or theoretically deter-

mined and the k2 values can be approximated by −2∆v/v([27], [3]), where ∆v is the

perturbation in wave velocity when the piezoelectric surface is electrically shorted

by a thin metal film and it can be theoretically determined.

The equivalent circuit shown in Figure 3.4 is just that of one period and the

equivalent circuit of the entire section of IDT is formed by connecting acoustic ports

in cascade and electrical ports in parallel. If the IDT is a generator, the emergent

acoustic waves are assumed to be absorbed completely (without reflections) by the

receiver and has a matched termination at its acoustic ports and vice versa. The

3-port matrix equation is given by [27],











I1

I2

I3











=











−jG0cotNθ jG0cscNθ −jG0tan(θ/4)

jG0csc Nθ −jG0cotNθ jG0tan(θ/4)

−jG0tan(θ/4) jG0tan(θ/4) jωCT + 4jNG0tan(θ/4)





















V1

V2

V3











(3.5)
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where, CT = NCs (total IDT capacitance), N being the number of electrode pairs

and θ = 2πf/f0 the electrical transit angle through one period (centre to centre

distance of successive electrodes), expressed in radians. The overall equivalent circuit

of a SAW IDT is shown in Figure 3.5. The input admittance for this circuit is given

as:

Y3(f) = Ga(f) + Ba(f) + jωCT (3.6)

Ga(f) and Ba(f) is defined as the radiation conductance and susceptance respec-

Figure 3.5: Equivalent circuit for a SAW IDT using crossed-field model

tively which are given by:

Ga(f) ≈ 8N2G0

∣

∣

∣

∣

sinX

X

∣

∣

∣

∣

2

(3.7)

Ba(f) = 8N2G0
[sin(2X) − 2X]

2X2
(3.8)

where X = Nπ(f−f0)/f0. The radiation susceptance is a reactive parameter (±jB)

that goes to zero at the centre frequency. This term is often omitted in calculations

near the centre frequency because it is often negligible when compared to the total

IDT capacitance term.

More recently, improvements have been made to the equivalent circuit model

to incorporate various second order effects. The reflectivity of the electrodes is
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incorporated by differing the characteristic admittances for the metallized and non-

metallized regions. Energy storage in electrodes/discontinuities is important in the

case of leaky SAW based devices and harmonic operation of SAW IDTs. This is

accounted for by including shunt susceptances at the electrode discontinuities (of

the equivalent circuit). Also, the unidirectional SAW devices, arbitrary metallization

ratios and different polarity sequences (of electrodes) can be modeled by extension

of the equivalent circuit model to a more generalized form [3].

3.2 Current SAW models

3.2.1 Coupling-of-Modes (COM) Model

The coupling of modes model is a one dimensional model which gives solutions to

the differential equations outlined in the previous chapter in one dimension. The

depth of penetration is not considered in the COM model; only the wave amplitudes,

variation of acoustic properties and interaction of waves in the propagation direction

are taken into account. The one dimensional wave equation for a freely propagating

medium without electrical coupling is given by,

d2

dx2
ϕ (x, t) =

1

v2

d2

dt2
ϕ (x, t) (3.9)

The field ϕ(x, t) in the equation can be described as displacement, stress or electrical

potential but generally it is normalized to the power flow [28]. The direction X is

the direction of propagation as shown in Figure 3.6 and v is the velocity of the freely

propagating SAW. The wave equation being an unloaded one (wave propagating on

a free surface) yields a set of unperturbed solutions to the propagation problem. In

this model, only two counter-propagating modes are considered, i.e., the forward

(ϕ+(x)) and backward (ϕ−(x)) propagating modes as shown in the Figure 3.6.

When the wave equation becomes loaded due to the presence of transducer (grat-

ing) or a periodic perturbation, the forward and backward propagating waves couple

due to the presence of reflections. The loaded wave equation is given by [28],

(

d2

dx2
+ β2

0

)

ϕ(x) = −ζ(x)β2
0ϕ(x) (3.10)
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Figure 3.6: Counter-propagating waves in COM model

where, β0 = ω/v0 is the propagation constant for the free surface, ζ(x) the periodic

load density. Also, the quantity β is the unknown wave number or propagation con-

stant of the solution. The solutions to the equation are the eigenmodes propagating

in the medium and they consist of infinite set of discrete harmonics (fundamental

harmonic has the wavenumber β). The harmonics involved are not independent of

each other but rather coupled. When solutions of this kind are substituted back into

the loaded wave equation (Equation 3.10), it results in an infinite number of linear

homogeneous equation to be solved [28].

There are two approaches to reduce it into a finite system of equations. They

are the algebraic and the differential approach respectively. The algebraic method

reduces it to finite system of equations by considering only few harmonics and in

general numerical methods (like FEM) are employed to solve the system of equations.

The differential approach involves transformation of the reduced algebraic equations

into linear differential equations and then solving them. It should also be noted that

the Equation 3.10 is an ordinary differential equation which is used for simplicity

and for developing the differential form of the COM model which is one dimensional.

But it is worth mentioning that the algebraic method mentioned solves the partial

differential equations outlined in Chapter 2.

In general, coupling is strong between incident and reflected waves, if the period
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of the grating (p) is close to half of the wavelength (λ = 2p). The waves travel-

ing in either direction get reflected constructively and destructively at two discrete

frequencies forming a stopband. This characteristic is fundamental to waves prop-

agating in a periodically perturbed medium. This condition is known as the Bragg

condition and the reflections are known as Bragg reflections.

Since the two waves (traveling in either direction) have a strong coupling, other

interactions are negligible and only these two counter-propagating waves are consid-

ered in the differential form of the COM model. Close to the centre frequency, the

propagation constant β can be written as a small deviation from the propagation

constant at the centre frequency (2π/λ = π/p). It is given as,

β =
π

p
+ q (3.11)

The counter-propagating waves ϕ+(x) and ϕ−(x) can be separated into slow (R(x)

and S(x)) and fast (exponential terms) varying phase oscillations as,

ϕ+(x) = R(x)exp(−jπx/p)

ϕ−(x) = S(x)exp(jπx/p) (3.12)

Since we are considering only two counter-propagating modes in this model,

ϕ(x) = ϕ+(x) + ϕ−(x) (3.13)

Substituting this expression for ϕ into the loaded wave equation, and assuming

the perturbations to be weak (which is valid in case of typical gratings which are

weak reflectors), eliminates the second order derivatives of the wave equation and

presents a set of two first order differential equations to solve [28]. The piezoelectric

effect generates the SAW in devices and should be taken into account. This adds

another electrical coupling term to the differential equation and the voltage drop in

the grating is assumed to be negligible making it spatially independent. Also, due

to the inverse of piezoelectric effect, a charge develops on the electrodes due to the

propagation of SAW. The induced charge causes a current I(x), to flow through the

electrodes which can also be written in a differential form. The three first order
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differential equations derived from COM model is presented as follows [28]:

dR(x)

d x
= −jδR(x) + jκS(x) + jαV,

dS(x)

d x
= −jκ∗R(x) + jδS(x) − jα∗V, (3.14)

dI(x)

d x
= −2jα∗R(x) − 2jαS(x) + jωCV.

where δ is the de-tuning factor given by,

δ =
2π(f − f0)

v
− jγ.

In the equations, the independent parameters κ, α, v, γ, and C are reflectivity due to

perturbations, transduction coefficient, SAW velocity, attenuation and capacitance

per unit length respectively. The asterisk symbol signifies the complex conjugate of

the concerned parameters.

The first order differential equations (in Equation 3.14) are inhomogeneous in

nature and the final solution consists of two parts namely homogeneous and par-

ticular solutions. For the homogeneous solutions, the driving force or voltage are

not considered and they provide the eigenmodes and the dispersion curves for the

system. The dispersion relation gives the dependence of the propagation constant

on the frequency and the quantity q is given by,

q = ±
√
δ2 − κ2 (3.15)

The particular or forced solution deals with the generation problem and the wave-

length corresponding to this solution is always 2p or λ [28]. Though the separation

of solution into two parts is applied to the reduced first order differential equations,

it remains the same for all inhomogeneous differential equations and the solutions

found out using numerical methods would also have similar properties.

In some of the cases, say structures with constant independent parameters, closed

form solutions can be found for the SAW devices using the COM equations (Equa-

tion 3.14), owing to its simplicity. In the following section, an important result

(admittance of the periodic structure) arising from the solution is presented. This
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feature enables fast simulation of device responses using the COM model and is rea-

sonably accurate for Rayleigh and leaky SAW modes. Also, it can be used to model

a variety of SAW devices such as SAW resonators, low-loss filters, ladder filters, etc.

But the parameters outlined above cannot be determined from the theory itself

and need to be initially introduced from outside. The parameters can be extracted

by physically fabricating the device and measuring from it [22] or theoretically de-

termined from numerical simulations [28]. Quite often, a one port synchronous (the

reflecting grating extends as a continuation of the transducer) SAW resonator is

built as a test structure to extract the parameters. The prime disadvantage of ex-

perimental measurement is that these COM parameters are a function of structure

(width and height of the electrodes) and orientation/material of the substrate. So,

when a range of structures (with differing electrode heights and widths) and sub-

strates need to be modeled for optimized device response, it becomes necessary that

devices with different structures and substrates be fabricated every time to measure

the parameters. Also, the process of fabricating the device involves considerable

time, effort and resources making it an expensive one. For this reason, extraction of

COM parameters using numerical techniques is an attractive option.

3.2.2 P-matrix Model

The P-matrix model can be considered as an extension of the COM model, wherein

the linear COM equations (given by Equation 3.14) are described by a matrix of

elements. Alternatively, it can also be seen as a matrix representation of three ports

(similar to the equivalent circuit model shown in Figure 3.4), two acoustic and one

electric ports. The acoustic ports are characterized by a scattering matrix (upper

left 2 × 2 matrix) [29] and the electric port is characterized by admittance terms.

The P-matrix representation of an IDT shown in Figure 3.7 is given by,
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Figure 3.7: P-matrix representation of an IDT

where a1, a2 and b1, b2 are the incident and reflected waves at the two acoustic ports

respectively. P11 and P22 are the reflection coefficients whereas P12 and P21 are the

transmission coefficients (similar to the scattering matrix). The remaining terms P13

and P23 correspond to the excitation coefficient of the IDT and the term P33 clearly

represents the admittance of the structure relating the current in the electrode (I)

and the drive voltage (V). P31 and P32 terms represent the current generated by the

waves arriving at the acoustic ports.

Admittance or P33 that could be calculated from simulations is the most useful

in device design and P33 for the case of structure with symmetry and constant

parameters is presented in this section. For information on other elements of the

matrix, the reader is directed to [28]. The admittance component P33 consists of two

parts namely, homogeneous (HS) and particular solution (PS) parts. For the highly

important case of bi-directional uniform structures, the transduction and reflectivity

constants are not complex but real. For this case the admittance is given by,

P33 = PHS
33 + P PS

33 (3.17)

where,

PHS
33 = −4α2(δ + κ)[(δ + κ)(1 − cos(qL)) − iqsin(qL)]

q3(qcos(qL) + iδsin(qL))
(3.18)

P PS
33 = −i 4α2

δ − κ
L+ iωCL (3.19)
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In Equation 3.19, L is the length of the device and clearly for long structures, the

particular or excited solution part dominates the whole admittance. The resonance

and anti-resonance pattern of the response is dictated by the excited solution part of

the admittance. A simple COM module was developed using MATLAB for the 36◦

Y-cut X propagating LiTaO3 resonator using the independent parameters published

in [30]. The values of the parameters are v = 4149 m/s, κp = 5%, αp = 79 × 10−5

Ω−1/2, γp = 2.9× 10−4 dB/λ and Cn = 57× 10−5 pF/µm/period. The period of the

simulated structure is 3µm, the length L = 200λ, and the results are presented in

Figure 3.8. It can be seen from the plot that the effect of the homogeneous solution

contribution is negligible to the overall admittance of the device even for a nominal

device length of 200λ. In general the device length is much longer and effectively the

excited solution part can be taken as the admittance of the device for all practical

purposes unless the device is short in length.

In SAW devices it is common to have different substructures such as IDTs, re-

flectors and absorbers. The substructures can be treated independently for which

the P-matrices are determined individually and then cascaded to get the P-matrix

for the whole device. The expression for admittance presented in this section is

valid for a long device, but in general different substructures are modeled sepa-

rately and cascaded together to get better results without resorting to closed form

solutions. The COM model is more suitable and easier to handle if the structures

are uniform throughout the device, whereas if the reflection and transduction vary

in the structures, it is convenient to calculate the device response using P-matrix

model [28]. Nevertheless, it should be kept in mind that the P-matrix model is

similar to COM model and the parameters should be input after experimental or

numerical determination for successful simulation of device responses.

3.3 Finite Element Analysis (FEA) for SAW Devices

The SAW propagation problem is governed by differential equations given in equa-

tions [2.22 and 2.23] and must be solved along with the complexities in geometry

of the device, properties of materials (along with that of electrodes) and boundary
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Figure 3.8: Admittance of the YX-36◦ LiTaO3 resonator using COM model showing

the importance of particular solution over homogeneous solution(Period = 3µm,

Length = 200λ)

conditions. The finite element method provides numerical solutions to such prob-

lems defined by differential equations. Only some basic procedures and techniques

used in finite element formulations will be presented here and a detailed theory can

be found in [31].

In the finite element method, the problem domain is discretized into smaller re-

gions called elements which are connected at specific points called nodes (shown in

Figure 3.9). The elements created may be two or three dimensional and can have

triangular,quadrilateral, tetrahedral or brick shapes depending on the dimesional-

ity. The solution to the unknowns (field variables such as displacement, potential,

stress, etc) are determined at these nodes and these unknowns are known as degrees

of freedom (DOF). The continuum has infinite degrees of freedom, whereas the dis-

cretized domain has finite number of DOF, contributing to the name finite element
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method. The continuity of the solution (since solutions are determined at specific

points, the nodes) is taken care of by introduction of shape functions or interpolation

functions. The choice of these functions determines or approximates how the field

varies across a single element domain. Normally, a polynomial function is chosen as

a shape function and the number of nodes assigned to a particular element defines

the order of the polynomial. For instance, a linear element has two nodes per side

whereas a quadratic element has 3 nodes per side or edge. The approximation of

the field by the interpolation function is given by,

φ(x) =
∑

i

N(x)iφi

where φ(x) is the field approximation across the element, N(x) is the shape function

and φi is the unknown field value at the node. The difference in using a linear shape

function and quadratic shape function is shown in Figure 3.10. In the Figure 3.10,

an element and its nodes are shown along the X axis and the displacement in X

direction (field variable) is shown in Y direction. Clearly, the approximation is quite

different in the two cases presented and element type should be chosen according to

nature of the correct solution. Choosing an element type is thus a matter of sound

engineering judgment and deeper understanding of the problem at hand. The effects

of using linear and quadratic elements for SAW propagation problem are discussed

in the coming chapters. Also it is important that the data defining the material

Figure 3.9: Discretization of problem domain in FEM

properties such as density, stiffness, etc., be specified at the start of the analysis.
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Figure 3.10: Field approximation by linear and quadratic elements

Once the element type is defined, the solution to the differential equation is ap-

proximated to the continuous function and expressed in terms of the unknown nodal

values φi for a single element. A system of equations in terms of unknown nodal

values is formulated for that element and subsequently for the whole domain. This

assembly of algebraic equations should conform with the practical rule that nodes

shared by the elements should have the same values for the field variables. The sys-

tem of equations thus formed cannot be solved without the application of boundary

conditions because the system remains indeterminate. All the boundaries need to

be addressed properly before the final solutions could be relied upon. And finally,

the resulting system of equations are solved by appropriate numerical techniques.

The numerical technique used in ANSYS for solving the system of equations, is not

the focus of this research and will not be discussed in this thesis.

3.3.1 ANSYS as Simulator

The finite element method is a numerical method which is not of much value without

the use of a computer due to the number of equations that need to be solved in order

to arrive at a solution. There has been some efforts by engineers and scientists to

simulate SAW devices using finite element methods and can be seen in [32], [33], [34].
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Most of the results have been accomplished after writing custom codes based on the

early work done by Allik and Hughes [35] on variational formulation for piezoelectric

analysis. Commercial software for FEA had been in use for quite sometime but

the level of maturity required for successful simulation of piezoelectric devices had

not been possible until recently. The finite element method in itself is a straight

forward one, but it requires considerable amount of time and effort to develop a

finite element program from scratch. For this reason, one of the most popular finite

element software, ANSYS has been used in this research work. Also, the following

features prompted the usage of ANSYS for development of a finite element model:

• Well developed piezoelectric coupled field solver.

• Good graphical user interface (GUI) for creation of model geometry and solv-

ing.

• Excellent post-processing capabilities to sort and display results.

• Well scripted user’s help and tutorial kit.

The steps involved in development and solving of a problem using ANSYS are:

• Pre-processing: The geometry of the model is drafted in this step along

with the selection of element type (essentially the shape function) for meshing

the structure. This is the most time consuming part of the work with much

emphasis going towards proper element selection and input of appropriate

material properties. There are a handful of coupled field elements in ANSYS

from which an appropriate one (to be discussed in detail) is selected and used

for SAW analysis. After the design of geometry, the problem domain is meshed

according to the accuracy needs and available computer resources. If the

structure is finely meshed, more accurate results are obtained but the memory

and time requirements to solve the problem increases proportionately. So,

often a balance is achieved between the two conflicting parameters namely,

accuracy and size of the problem, the problem is solved optimally.
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• Solving: The application of boundary conditions can be categorized either un-

der a pre-processing or solving step but it is of utmost importance for achieving

an accurate solution. The externally applied loads and excitation are supplied

at this stage and it is an electrical voltage in the case of SAW devices. The

defining part of the solving stage is the specification of the type of analysis

that needs to be done. For instance in a static analysis, a static load is applied

to the structure and its response is studied. Such an analysis is of no use in

SAW finite element model, but the two following analyses need to be done for

some useful results.

– Modal analysis: This requires the solving of the eigenvalue problem with

the aim of achieving the eigenmodes propagating in a structure. Exter-

nal loads (drive voltage) are not applied to the structure in this case

with the electrodes either shorted or open. Even if some drive voltage is

applied, ANSYS converts it into a short and calculates the eigenmodes.

In essence, the modal analysis calculates the homogeneous solution (HS)

of the differential equations involved. This analysis can be used as the

starting point for other detailed analysis such as transient or harmonic

analysis to determine the time step or frequencies of interest [36].

– Harmonic analysis: Once the frequency around which the required mode

exists is determined, a frequency sweep is done to determine the response

of the structure or device around those frequencies. The driving voltage

applied in the harmonic analysis would be a cyclic one (sinusoidal one)

and a steady state response is obtained as an output. Also, the harmonic

analysis provides the excited or particular solution (PS) of the differential

equation and is highly useful in determining the admittance of the device.

The number of frequency points should also be kept optimal because it

also determines the time and memory required to calculate the solution.

• Post-processing: The finite element solution is given by a set of numbers

which needs to be interpreted by the user in a proper way. The ANSYS post-
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processor has nice features to help the user in this regard. The results from the

modal analysis in ANSYS, not only provides modal frequencies but also the

shapes of the modes in a visual manner. Colorful displacement, electric field,

stress/strain contours (and many more) can be produced through the ANSYS

postprocessor and regions of interest can be zoomed in and investigated. Many

built-in mathematical functions are available in ANSYS which are highly useful

in calculating quantities such as admittance of the structure.

3.3.2 One Port SAW Resonator

A small introduction to SAW resonators was given in the first chapter but a deeper

insight is required in order to establish that one port SAW resonators can be mod-

eled best by the finite element methods. In a one port SAW resonator, surface

acoustic waves emitted from either side of the IDT are reflected in-phase at the

centre frequency by the reflection gratings giving rise to a standing wave pattern. A

synchronous one port SAW resonator is one in which the reflector gratings on either

side of the IDT are formed as a continuation of the IDT. The basis of operation for

(a) One port SAW resonator (b) Lumped element equivalent circuit

Figure 3.11: SAW resonator and equivalent circuit [37]

a SAW resonator is the Bragg’s reflection condition as noted before in Section 3.2.1.

The waves get reflected in phase at the centre frequency and the reflectivity can be
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close to unity if the number of reflectors is sufficiently large. Under this condition,

propagation of waves into the media is prohibited and the frequencies between which

it happens is called the stopband.

An ideal lumped element equivalent circuit is shown in Figure 3.11(b), and it

should not be confused with the equivalent circuit model discussed earlier in this

chapter. The lumped equivalent circuit is just a circuit that gives frequency response

similar to that of SAW resonator, rather than a model simulating acoustic wave be-

havior and consequently describing the electrical response. It consists of a series

resonance circuit with L1, C1 and R1 elements shunted by a capacitor C0. The

inductor, capacitor and resistor in the series branch represent the equivalent mo-

tional parameters of the SAW series resonance and the shunt capacitance represents

the IDT capacitance. The series (resonant) and parallel (anti-resonant) resonant

frequencies are given by the following formulae:

fs =
1

2π
√
L1.C1

(3.20)

fp = fs .

√

1 +
C1

C0

(3.21)

The ratio C1/C0 is important in the design of SAW resonators as it determines the

separation between resonant and anti-resonant frequencies which are often offset

for optimal device performance [3]. A typical admittance curve (magnitude) show-

ing resonant and anti-resonant frequency of a one port SAW resonator is shown in

Figure 3.12. One-port SAW resonators with such responses are highly useful in con-

structing low-loss high frequency filters. They are connected as impedance elements

in ladder networks where the location of resonant and anti-resonant frequency is of

high importance.

The parameters that determine the centre frequency and performance of the

SAW resonator are the metallization ratio, electrode/reflector height, number of

IDT pairs/reflectors and acoustic aperture. The metallization ratio is defined as the

ratio of the width of the electrode (a) to the period of the structure d (shown in

Figure 3.13). The electrode height is always represented as a fraction of acoustic

54



Figure 3.12: Typical admittance curve of one port SAW resonator

wavelength and hence given as a percentage value throughout this work.

Metallization ratio =
a

d

Electrode height =
h

λ
=

(

h

2 · d × 100

)

%

Figure 3.13: Metallization ratio and electrode height
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3.3.3 Limitation of the Finite Element Method

A typical one port SAW resonator is on the order of 500 − 1000λ (transducer and

reflectors together) long, 50 − 100λ wide in the lateral direction (aperture) and a

depth of up to 100λ as shown in Figure 3.14. It is a well known that the degree of

discretization of the model is directly proportional to the accuracy of the results.

In the problem of interest, one might assume to have at least 10 − 20 first order

(linear) elements per wavelength would be required to get reasonably accurate re-

sults. Calculating optimistically, the total number of elements required for the whole

Figure 3.14: Dimensions of a SAW resonator

device (without electrodes and reflectors) gives,

Number of elements = 500 × 50 × 100 × 10 = 2.5 × 107.

A piezoelectric problem has four degrees of freedom namely, displacement in X

direction (Ux), displacement in Y direction (Uy), displacement in Z direction (Uz)

and potential (φ). So the total number of unknowns can be calculated to be,

Total number of unknowns = 2.5 × 107 × 4 = 1 × 108.

Clearly, this number of equations would need to be solved in order to arrive at a

complete solution. Also, it should be kept in mind that this is a conservative estimate

and the actual number could be much more if we take into account the IDT, reflectors

and more accuracy. Solving this many equations is possible only by powerful super

computers whose cost and time required (to solve) is not justified. Some valid

approximations are required to reduce the size of the model to a manageable level.

56



3.3.4 Assumptions for Reduced Finite Element Model

Attempts at simulating SAW using a finite element model has been possible until

now only due to some approximating assumptions [32], [33]. The main approxima-

tions are presented here as follows:

Reduction to 2 dimensions: The surface acoustic waves are straight crested, i.e.,

if the profile of the wave is observed at different places in the lateral direction as

shown in Figure 3.15, it can be found to be similar. In other words, the waves do

not hold much important information as one traverses in the lateral direction. The

Figure 3.15: Reduction of model to 2 dimensions

effect is almost negligible in most of the useful modes put to use in the SAW devices,

and the entire characteristics can be described by a 2 dimensional model.

Reduction of model depth: The depth of penetration of SAW was discussed in

Chapter 2 and a plot of various displacement components against depth was shown

in Figure 2.5 for anisotropic nickel. It can be seen that the displacements die down

to less than 5% of the initial values within 3 wavelengths for purely surface mode

solutions. This feature of SAW enables us to model only 5 − 10 wavelengths of

the substrate depth and reduce the amount of unnecessary calculations in solving a

model with full depth.

Periodicity of the structure: If the waves propagating on the substrate and

structures on top of it are spatially periodic as shown in Figure 3.16, then one wave-

length or period is enough is to characterize the whole device [33]. The synchronous

uniform one port resonator satisfies this criteria and can be readily modeled using
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finite element method using this approximation. The modeling of one wavelength of

the device is possible only if the boundaries are treated in a proper way, i.e., either

a infinite periodic boundary condition or an absorbing boundary condition need to

be applied. The boundary conditions are discussed in a greater detail in the coming

sections. A typical resonator has about 500− 1000 periodically arranged electrodes

Figure 3.16: Periodic structure in a resonator

and can thus be modeled as an infinitely extended periodic structure with a single

wavelength as the base (simulated) structure. Even a single electrode (or half wave-

length) is enough to model the device, but one full wavelength has been simulated

throughout this work both for clarity and ease of implementation.

3.3.5 Crystal Cuts - Conventions and Implementation

Various crystal types and angles at which they are cut to form a substrate were

mentioned in Table 1.1. Crystal cuts and angles are of prime importance in the

design and modeling of SAW devices as they dictate the material properties and

ultimately the device response. Piezoelectric crystals have their own crystal axes

(X’, Y’ and Z’) and they are different from the cartesian axes X, Y and Z. The

direction of cut is specified with the name of the substrate and for instance, if a

substrate is X-cut, then the cut face is perpendicular to the X’ direction of the

piezoelectric crystal. The axes and orientation of two crystals, X-cut and 64◦ Y-cut

orientations are shown in Figure 3.17.
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(a) X-cut crystal (b) 64◦ rotated Y-cut crystal

Figure 3.17: Different crystal cuts

The piezoelectric crystals are generally rotated about their axes by certain angles

and then cut. They are specified by a set of angles called Euler angles. These are

a set of three angles (ϕ, ϑ, ψ) specifying consecutive rotations about the crystal

axes. There are various conventions for specifying the order of rotation and the one

followed in this work is consecutive rotations about Z’, X’ and Z’ axes respectively

as followed in [24]. The rotations specified by the euler angle sets are shown in

Figure 3.18.

Figure 3.18: Euler angles - Crystal cut rotations

The properties of crystals are different in different directions and they need to

be implemented in the FEM for different crystal cuts. The properties that need

to be input for successful finite element solution are 6 × 6 stiffness matrix, 3 × 6

piezoelectric matrix, 3× 3 dielectric matrix, and density. Density remains the same
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for all crystal cuts but all other properties change for each distinct crystal cut.

Material properties for modeling were taken from [24] and the values given in the

book are for Euler angles (0◦, 0◦, 0◦). But with a procedure called transformation of

co-ordinates, it is possible to calculate the transformed matrices for differing crystal

cuts. The procedure is explained in detail by Auld [24] and the transformed matrices

for a specific case of YX-128◦ cut LiNbO3 is presented in Appendix A. A separate

program was written in MATLAB software for transformation of the matrices which

were then used in the ANSYS model. In ANSYS, direct implementation of crystal

cuts is possible, but it follows a different convention (Z’,X’,Y’ rotations) and it

cannot be implemented for 2 dimensional models. For this reason, the prominent

(Z’, X’, Z’) convention is used throughout this work.

3.3.6 Modeling of Periodic Structures

The development of finite element model for SAW propagation is bounded by ap-

proximations discussed previously and involves the following steps:

1. Design of Geometry: The periodic structure is modeled as an infinite grat-

ing and only a wavelength of the substrate is created for simulation purposes.

Firstly, the type of element (2D) is chosen from the coupled field element

library of ANSYS and its physical properties are defined. The plane strain

condition should be specified for the element type, i.e., all the gradients in the

third direction should be assumed to be zero. The depth of the substrate is

limited to 10 wavelengths to limit the size of the problem. Also electrodes of

required height are defined on top of the substrate and Aluminum has been

used in this work throughout unless otherwise specified. Also, a vacuum or

air could be modeled above the substrate but is not considered here due to

the fact that only materials with high dielectric constants (ǫr ≈ 40), Lithium

niobate and lithium tantalate has been used [34]. If materials like quartz (have

low dielectric constant) are modeled, vacuum layer may be considered. The

surface charge on the air-electrode interface becomes quite important due to

the fact that it is calculated as 1/ǫr times the charge on the electrode-substrate
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interface and has been included in the finite element calculations by Hofer and

Lerch [38]. The relative permittivity of quartz is approximately equal to 4.5

which would introduce a considerable error if air layer is not considered.

2. Material properties: The material properties of the piezoelectric substrate

are input as matrices after the required transformation for crystal cuts. AN-

SYS uses a convention that is different from the widely used method [24] for

matrix ordering. The required corrections were made to conform to the AN-

SYS conventions [36]. Also the material properties such as density, modulus

of elasticity and poisson ratio must be specified for the electrode material.

3. Meshing: The shapes of the elements used in simulations are either rectan-

gular (2D elements) or brick (3D elements) throughout. Also, the fact that

the displacements are largest near the substrate surface for SAW has been

considered in minimizing the size of the problem. The domain is discretized

to higher densities near the surface than near the bottom. Also, the electrodes

are meshed to higher degrees of density. ANSYS 8.0 (intermediate university

version) has been used which has the maximum node limit of 32000 and the

size of the problem had to be kept within that limit throughout. A one wave-

length solid and meshed model is shown in Figure 3.19. Only 2 wavelengths

is shown in the depth direction for the sake of clarity and it can be seen that

the meshing density decreases with depth. But the meshing density is kept

constant in the direction of propagation.

4. Boundary conditions: The application of boundary conditions is the most

critical part of arriving at finite element solutions. The four boundaries (ΓL,

ΓT , ΓR, ΓB) shown in Figure 3.20 need to be treated with care. Stress-free

boundary conditions should be specified at the top of the substrate and elec-

trodes as discussed in Chapter 2; i.e., there should be no mechanical constraints

on that surface. Dirichlet boundary condition can be applied at the bottom

surface ΓB, with displacements dying down within 3 to 4 wavelengths. The

left and right boundaries ΓL and ΓR can be allowed to have phase differences
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(a) Solid model (unmeshed) (b) Meshed periodic structure

Figure 3.19: Meshing

to allow arbitrary propagation of waves in the medium. This formulation

would require an absorbing condition at both the boundaries which is beyond

the capability of ANSYS at this moment. This kind of absorbing boundary

could also be applied to the bottom surface if available. Also, if a FEM/BEM

(Boundary element method) coupling is available, the electrodes could be mod-

eled using FEM and the substrate could be modeled using BEM and the whole

device could be simulated. Nevertheless, a stricter periodic boundary condi-

tion wherein the left and right boundaries are forced to have the following

constraints [32] was assumed,

UL = UR (3.22)

φL = φR (3.23)

where UL, UR and φL, φR are displacements and potential at left and right

boundaries respectively. If only one period (half wavelength) of the structure is

modeled, the boundaries are forced to have opposite values (In Figures 3.19(b)

and 3.20 full wavelength is shown).
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This boundary condition restricts the results to waves with wavelengths twice

the period of the structure. This approximation is similar to the COM model

(which is considered quite accurate for SAW and LSAW based devices) wherein

only two counter-propagating modes are considered. Consequently, the results

of both the FEM (with infinite periodic boundary condition) and COM are

very accurate only around a small frequency band around the resonance. The

resonance anti-resonance pattern that is important for device design lies within

this band of frequencies. Even outside this band of frequencies, the electrical

response of the device purely depends on the electrical characteristics (capac-

itance of the transducer, contact pads, inductance of connecting wires, etc)

rather than on acoustic activity [28]. So, the electrical response (due to acous-

tic activity) determined by applying this boundary condition can be quite

useful in device design. These simulations can also be highly useful in extract-

ing parameters for the COM model which otherwise might require fabrication

of the device and measurement of parameters. Also, this boundary condition

assumes that there are infinite number of electrodes extending on either side

of the boundaries which is also quite valid considering that there are hundreds

of electrodes in a typical SAW resonator.

After the application of boundary conditions, a modal analysis is performed to

determine the eigenvalues and vectors of the problem. The modal analysis gives

the two stopband edges of the resonator (dispersion) and the harmonic analysis

(particular solution) can be used to determine the admittance of the device similar

to the discussion in Section 3.2.2. Since the length of the device in infinite in this

finite element formulation, the contribution of the homogeneous solution is negligible

to the device admittance (as seen from Equation 3.19) and thereby neglected in this

work. Only the particular solution (with λ = 2p) is taken into account and utilized

in calculation of admittance.

The absolute displacements and electric field distribution can be determined

only through harmonic analysis. The electric field (intensity) vectors calculated

using ANSYS for a YX-128◦ LiNbO3 single wavelength structure are shown in Fig-
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Figure 3.20: FE model of periodic structure

ure 3.21. The calculated electric field (intensity) vector shown in Figure 3.21 can be

compared to the real electric field in the devices shown in Figure 3.3. It is similar

to the real electric field present in the devices and proves that the finite element

calculation provides a more realistic representation of electric field as compared to

approximations in other models. Further validation of the simulator is presented in

the coming chapter and the model is extended to leaky SAW mode propagation.

3.4 Chapter Summary

Some of the early day SAW models such as delta function model and equivalent

circuit models were discussed in brief with their accompanying assumptions. It

was followed with a description of newer developments such as COM and P-matrix

models which are more suitable for present day devices, but the requirement for

parameters to be inserted from outside prompts a look at more fundamental wave

simulators. The full set of partial differential equations governing the problem are

considered in finite element solutions and hence chosen as a simulator in this research

work. The admittance of a YX-36◦ LiTaO3 resonator calculated using COM/P-

matrix model with parameters from published results was also presented in this
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Figure 3.21: Electric field vectors in a periodic structure

Chapter to explain the contribution of homogeneous and particular solutions to the

electrical characteristic of the device.

The solution method using finite element analysis was briefly discussed along

with the usage of commercial software ANSYS for this work. The size of the problem

is extremely huge if a full solution is to be obtained; so the problem was reduced

to a 2 dimensional one by considering the straight crested nature of the surface

waves. Also, the consideration of periodic structure such as a one port resonator

would further reduce the size of the problem by enabling the simulation of just one

wavelength of the device. The crystal cut implementation in ANSYS, design of

geometry, meshing of the problem domain, application of boundary conditions and

the similarity of the electric field representation by FEM were also described.
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4. FEM Results for One Port SAW Resonator and Validation of

ANSYS Simulator

The finite element models developed using ANSYS in this work are compared to

results listed in the literature. Firstly, the simulation results for the relatively simpler

case of Rayleigh waves are presented and the simulator is validated against published

results. Later the more complex leaky waves are modeled taking into consideration

the properties of these waves as described in Chapter 2. Two substrate cuts have

been used in modeling of Rayleigh SAW based devices namely, Y-Cut Z propagating

lithium niobate (written as YZ-LiNbO3) and 128◦ Y-Cut X propagating lithium

niobate (YX-128◦LiNbO3). Also, a 36◦ Y-cut X propagating lithium tantalate (YX-

36◦LiTaO3) and YX-42◦LiTaO3 substrate cuts have been used for modeling leaky

SAW resonators. All the finite element simulations presented in this work were done

on a 4 processor (Ultra spark 3), SUN V480R (Sunfire) system (1GHz) with 16 GB

of RAM. The modal analyses typically took less than a minute for all simulations

and a harmonic analysis with 100 frequency points and 20000 nodes (4 degrees of

freedom) took roughly around 2 hours to complete.

4.1 SAW Propagation on a Free Surface

4.1.1 Rayleigh SAW on YZ-LiNbO3

The propagation of Rayleigh SAW on a free surface of Y-Cut Z propagating LiNbO3

was investigated using FEM. A linear 2D element (PLANE13 in ANSYS), was used

for the purpose. The PLANE13 element is a general coupled field 2D element in

ANSYS for which the piezoelectric degrees of freedom (Ux, Uy and φ ) can be

represented. The plane strain condition specifying the independence of degrees of

freedom on the third coordinate should also be explicitly specified for the PLANE13

element. The Euler angle set for this double rotated YZ crystal cut is (0◦, 90◦, 90◦)
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as specified in [3]. The transformations are done for the material property matrices

accordingly as discussed in the previous chapter and in the appendix.

The wavelength of the SAW was set to be 4µm, which is the length of the simu-

lation domain in the propagation direction. The periodic boundary condition, i.e.,

the nodes at right and left boundaries having the same displacements and potential

were applied at the boundaries along with the stress free boundary condition at the

top surface. A modal analysis was performed without applying any drive voltage

to determine the propagating modes in the substrate. A range of frequencies were

checked to identify any propagating modes. The modal analysis gives the frequency

at which a particular mode resonates for a given wavelength. The solution consists

of a set of increasing eigenfrequencies in the specified range that satisfy the applied

boundary conditions. In the solution set there will be a pair of eigenfrequencies

representing the Rayleigh SAW. This pair represents the two edges of the stopband

and is quite useful in determining the velocity of the SAW. A strong resonance is

formed at one edge (frequency) of the stopband due to constructively interfering

eigenmodes (propagating in either direction) and they destructively interfere at the

other edge. The two stopband edge frequencies are given by fsc+ and fsc−. There is

no propagation into the media in this band of frequencies and is called the stopband.

Once the frequencies are found, the deformed shape of the structure can be viewed

using ANSYS. However absolute values of displacement cannot be found, instead

relative values can be displayed. For a SAW resonator with electrodes on top, the

modal analysis would give two frequencies as Rayleigh SAW modes representing two

edges of the stopband. But for propagation on a free or fully metallized surface, the

two modes degenerate into one at the same frequency (indicating the absence of

stopband in either case).

The velocity of propagation of Rayleigh SAW on the free surface of YZ-LiNbO3

has been published many times and it is used to compare and validate the accuracy

of the ANSYS simulator. The calculated free surface velocity has been reported to

be around 3488 m/s [3] [39] by Campbell, Adler and others. The Table 4.1 gives the

frequencies at which the Rayleigh mode propagates with a wavelength of 4µm as
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determined from the modal analysis. The velocities were calculated using the modal

frequency and wavelength for different meshing densities.

Table 4.1: Rayleigh wave velocities calculated using different mesh densities

Wavelength (µm) Frequency (MHz) Velocity (m/s)

12 Elements 4 883 3532.3

16 Elements 4 878.46 3514.0

24 Elements 4 875.2 3500.8

32 Elements 4 874.1 3496.4

40 Elements 4 873.55 3494.2

If the published velocity value of 3488(m/s) is assumed correct,then the error

values for various meshing densities can be calculated.These are plotted in Figure 4.1.

It can be seen from that the error percentage drops from above 1% to 0.1% if the

number of elements is increased from 12 elements per wavelength to 40 elements

per wavelength. Clearly, the finite element solutions become more accurate once the

number of elements per wavelength is increased.

In ANSYS 8.0 there is also a 2D quadratic coupled field element (PLANE223)

that could be used to model the SAW periodic structure. The elements have 8 nodes

per element with one mid-side node on each side. There are also results published

in literature for which higher order elements (4th) have been used in SAW simula-

tions [40]. But ANSYS does not have higher order elements other than a quadratic

element and only its suitability was assessed. The problem domain was kept the

same along with boundary conditions and the type of analysis. Only the type of

element was changed and the frequency at which the Rayleigh mode propagates

was determined. It can be seen from the Table 4.2 that quadratic elements with 24

per wavelength provides a high level of accuracy that is sufficient for all practical

purposes. For this reason, quadratic elements have been used throughout this work
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Figure 4.1: Percentage of error in velocities for differing mesh densities

unless otherwise specified.

Table 4.2: Free velocity calculation using quadratic element

Wavelength (µm) Frequency (MHz) Velocity (m/s) Error

24 Elem 4 872.38 3489.5 0.04%

YZ-LiNbO3 has a moderate velocity for Rayleigh SAW and hence is not a suit-

able one for development of high frequency SAW devices unless critical sub-micron

technologies are applied. But as shown in the coming chapter, a high velocity LL-

SAW mode propagates on it which could be highly useful for development of high

frequency SAW devices assuming realistic fabrication capabilities.
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4.1.2 Rayleigh SAW on YX-128◦ LiNbO3

Another prominent cut that propagates Rayleigh SAW and is being widely used in

SAW devices is YX-128◦ LiNbO3. It has one of the highest Rayleigh SAW velocities

among the crystal cuts in use. The Euler angle set for this cut is given by (0◦, 38◦, 0◦)

which transforms and aligns the direction of SAW propagation with the co-ordinate

X and Y axes. Because of its higher accuracy with lesser number of elements, the

2D quadratic element was used to determine the free surface velocity of this cut.

The modal analysis yielded a modal frequencies of 1 GHz (degenerate) for 4 µm

structure. This translates into a velocity of 4000 m/s as compared to a velocity of

3992 m/s found in the literature [3].

A harmonic analysis was performed for this periodic structure around the iden-

tified modal frequencies. In a harmonic analysis, an alternating drive voltage is

applied on the electrodes to determine the frequency response of the structure. In

this case a balanced voltage of ±0.1V (peak to peak 0.2V) was applied.

A harmonic analysis on a free surface is equivalent to a device with electrodes

of zero width and height. For simulating electrodes with zero width and height,

the driving voltage is directly applied to the surface on one node per electrode.

Although such devices do not exist in reality, it is highly useful to study the response

of such structures. The displacement profile of the SAW at the resonant frequency,

calculated using the harmonic analysis is shown in Figure 4.2(a). The components

of displacements in X (propagation) and Y (depth) directions plotted against the

depth co-ordinates can be compared to the oscillatory displacement components of

anisotropic nickel substrate in Figure 2.5. Both the displacements and the electric

potential die down within 2 to 3 wavelengths as seen from from Figure 4.2 and is

completely typical of Rayleigh SAW propagation. It can also be seen in Figure 4.3

that on the surface of the substrate, the X and Y displacements are 90◦ out-of-phase

with each other, which is one of the important properties of Rayleigh SAW.

The results presented above substantiates the assumptions made in finite element

modeling of SAW propagation and can indeed be extended to model the propagation
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Figure 4.2: Displacement and potential for SAW in YX-128◦ LiNbO3 at resonant

frequency
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of SAW in periodically perturbed structures such as resonators.
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Figure 4.3: Phase difference between displacement components for Rayleigh wave

4.2 Finite Element Results for Periodic Structure

The propagation properties and electrical response of YX-128◦ LiNbO3 synchronous

one port resonator is discussed in this section. A synchronous one port resonator

is spatially periodic and only one wavelength of the device is modeled by applying

periodic boundary conditions. The modeled structure assumes the electrodes to

be infinitely extending on both the sides, which is comparable to the hundreds of

electrodes and reflectors originally present in the device. The period of the structure

is kept to be 2µm, so that it can be used to compare the free surface velocity value

calculated in the previous section with 4µm wavelength.

The frequency of operation of the SAW resonator determines the electrode di-

mensions, especially the period of the electrode structure. Apart from the period,

metallization ratio and electrode height are also extremely important. They deter-
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mine the mass of the electrode on top of the substrate which slows down the velocity

of SAW and affects the reflectivity of the electrodes. A modal analysis was performed

with varying metallization ratios and electrode heights and the results are compared

to values of velocities and reflectivity calculated by Plessky and Koskela [28].

4.2.1 Modal Analysis

The geometry was discretized using quadratic elements (PLANE223) with 40 ele-

ments per wavelength. Aluminum was used as electrode material with appropriate

properties (desnity, bulk modulus and Poisson’s ratio). A modal analysis was per-

formed which gives two eigenfrequencies (fsc+ and fsc−) that are the edges of the

stopband. Since there is no propagation into the media in this band of frequencies,

the velocity is determined from the pair (of eigenfrequencies) using the formula [28]:

v = (fsc+ + fsc−) p (4.1)

where, v is the velocity, p is the period or pitch of the electrode structure and fsc+,

fsc− are the two modes (edges of stopband) determined by the modal analysis. The

SAW modes cannot be determined from just the list of eigenfrequencies alone, but

can be identified from the eigenvectors (mode shapes) displayed using ANSYS. The

modes shapes are distinctly different at the two edges as shown in Figure 4.4 with

one of the modes having zero displacement component in X direction (fsc−) at both

the ends and the other having zero displacement component in Y direction (fsc+) at

the ends. These modes have also been referred to as symmetric and anti-symmetric

SAW modes [33], depending on the symmetry of the electric potential about the

centres of electrodes. The identification of these mode types is important because it

determines the sign of the reflectivity per electrode as can be seen from the equation:

κp = π
fsc+ − fsc−

fsc+ + fsc−
(4.2)

where, κp is the reflectivity per electrode. This relation is derived as a zero of the

dispersion relation given in Equation 3.15. It is found as a zero of the equation due

to the fact that the deviation quantity q goes to zero in the stopband frequencies.
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(a) 1st mode (fsc+) at 971.5 MHz (b) 2nd mode (fsc−) at 964.75 MHz

Figure 4.4: Mode Shapes for SAW propagation

A set of simulations were done for varying metallization ratios (MR) and elec-

trode heights. The modes determined by the modal analysis for MR of 0.6 and h/λ

of 3% is shown in Figure 4.4. The velocity of SAW and the reflectivity per electrode

was calculated using the formulae given in Equations 4.1 and 4.2. The fsc− mode

(symmetric) shown in Figure 4.4(b) has a lower frequency than the fsc+ (antisym-

metric) mode and subsequently has a positive reflectivity as shown in Table 4.3. The

sign of the reflectivity (κ) determines the frequency at which the electrical resonance

occurs.

The velocity values have a shown a considerable decrease from the free surface

velocity of 4000 (m/s) calculated previously. This decrease is due to the mass

loading effect described previously and the values computed are compared to the

ones calculated by [28] using FEM/BEM calculations. Also, the reflectivity values

are slightly different; nevertheless, the trend of decreasing velocities and switching

of negative reflectivity to positive values with increasing MR is effectively modeled

by the finite element simulations. The two parameters extracted are very useful

and can be used in further simulations if a COM model were developed. The other
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Table 4.3: Velocity and reflectivity calculated using FEM

MR h/λ Velocity (m/s) Reflectivity Velocity (m/s) [28] Reflectivity [28]

0.4 3.0% 3897 −0.008 3875 −0.017

0.4 3.4% 3889 −0.005 3868 −0.012

0.5 2.4% 3894 −0.003 3872 −0.008

0.5 3.0% 3883 +0.002 3861 +0.004

0.6 3.0% 3872 +0.011 3851 +0.019

parameters namely, transduction coefficient (α), capacitance per unit length (C)

and attenuation (γ) can be found by using fitting techniques once the admittance

of the structure is found. A full COM model would be required for this extraction

of parameters using fitting technique and hence is not part of this work.

4.2.2 Harmonic Analysis

An alternating drive voltage was applied on the electrodes around the modal fre-

quencies determined using the previous analysis. As explained in Chapter 3, the

harmonic analysis involves finding the particular solution for the problem and the

wavelength pertaining to this solution remains 2p. The complex admittance of the

structure representing the response of the one port SAW resonator can be determined

from the charge getting collected at the electrode [34]. In the harmonic analysis,

the electric potential of the nodes belonging to one electrode are kept constant (cou-

pled to one another to be same). Complete complex charge Q (or current) on the

entire electrode can thus be got and the complex admittance of the device can be

determined from the following relation [34],[41]:

Y =
j ω Q

V
(4.3)
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where, Y is the complex admittance, j the imaginary number, ω the angular fre-

quency and V the drive voltage.

Figure 4.5: Admittance of YX-128◦ LiNbO3 resonator calculated using FEM and

COM model (with MR-0.5 and h/λ=3 %)

Admittance calculated for a resonator with MR of 0.6 and h/λ = 3% using

the formula in Equation 4.3 is shown in Figure 4.5. The admittance plotted in

the figure is the magnitude of the complex quantity. The plot shows resonance at

971 MHz and anti-resonance at 1 GHz similar to the plot showing a typical SAW

resonator response in 3.12 of chapter 3. The centre frequency also matches with

the value determined by the modal analysis (fsc+ = 971.5 MHz). The results from a

COM/P-Matrix model is also presented in Figure 4.5. The parameters for the model

were used from FEM modal analysis and partly from published results [28]. The

velocity (v) and reflectivity (κ) calculated using FEM for MR= 6 and h/λ=3% (refer

Table 4.3) were used in the COM simulation. The transduction coefficient (α) and

capacitance parameters were taken from the published results for the same MR and
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electrode height. The value of admittance calculated is above 102
℧ at the resonant

frequency which in the case of real devices would be a bit lower due to attenuation

mechanisms that are unaccounted for here. Although, a small value of attenuation

(about 2 dB/λ) was used for the COM model and a small damping ratio (0.0005,

using DMPRAT command in ANSYS) was assumed for FEM. Also, the simulations

assume that the devices have infinite aperture which in reality might be around

30-50 wavelengths. This will be discussed further in detail, in the following section

with 3D finite elements to find out the effect of aperture. The device length (with

same p=2 µm as FE model) and aperture were assumed to be really high in COM

(L above 2000 and aperture more than 300) to match the results of FEM which

assumes infinite boundary condition.

Figure 4.6: Ux displacement contour showing minimum and maximum displacement

regions
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Figure 4.7: Uy displacement contour showing minimum and maximum displacement

regions

The displacement and potential contours are shown in Figures 4.6, 4.7, and 4.8

for the single period structure. It can be seen that the displacements are in the order

10−10 m with the wavelength being 4µm. Since the displacement is three orders less

than the dimensions of the structure, the displacements are multiplied by a factor

of 1000 and displayed to view the deformation. Roughly only two wavelengths of

depth is shown in the Figure 4.8 and it can observed that both the displacements

and potentials die down to near zero values after reaching a maximum within 0.2λ,

which is completely typical of Rayleigh SAW waves.
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Figure 4.8: Potential contour showing maximum and minimum potential regions

4.3 SAW Resonator Response Using 3D Finite Elements

The results discussed until now were performed using 2D finite elements by consider-

ing that the devices are of infinite aperture (extending in the lateral direction). The

size of the problem would increase unmanageably if a 3D structure was modeled,

even with the consideration of the periodic boundaries in the propagation direction.

Therefore, a plane strain condition (built-in to ANSYS for 2D elements) was applied

to the 2D structure to model the straight crested SAW.

3D elements can also be used in simulations with plane strain conditions. This

is possible by modeling a thin strip of the piezoelectric substrate and applying zero

displacement constraint in the third direction. This is valid in the case of Rayleigh

SAW as it does not have displacement components in that direction. With this

constraint the SAW would still be straight crested and would propagate in the X
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co-ordinate direction. The purpose of these simulations is two-fold. It is used to

study the effect of aperture and is also useful in extending the model to leaky SAW

propagation.

Figure 4.9: 3D mesh of YZ-LiNbO3 resonator

A YZ-LiNbO3 substrate was used in this study and SOLID5, a 3D linear element

was used for meshing the structure. Earlier in this Chapter, the velocity of Rayleigh

waves in YZ-LiNbO3 was studied, but the electrical response was not presented.

Also, this cut is an important one with another type of SAW namely LLSAW prop-

agating on this substrate which is presented in Chapter 5. The calculated electrical

characteristic would be used to compare the resonant frequencies of two types of

resonators (utilizing different SAWs) with the same IDT periods. The simulations

were performed to study the effects of aperture (or strip thickness) and the feasibility

of using 3D elements in finite element solutions. For this reason, a simple structure
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without metal electrodes was modeled. The drive voltage was directly applied to

the substrate through ”fictitious” electrodes separated by a period of 2µm. The

structure was meshed with a density of 24 elem/λ and the thickness of the strip

was modeled to be one such element length. The meshed structure is shown in Fig-

ure 4.9. The boundary conditions applied were similar to the 2D model. Also, the

full 6×6 stiffness matrix, 3×6 piezoelectric matrix and 3×3 dielectric matrix need

to be input for material properties in the 3D modeling of resonators.

The admittance of the structure was calculated as before and is shown in Fig-

ure 4.10. The plot shows resonance and anti-resonance at 866 MHz and 875 MHz

respectively, similar to the ones calculated for YX-128◦ LiNbO3 resonator. The value

of admittance calculated for this model is in the order of 10−5
℧ whereas the one in

the 2D model was as high as 102
℧. The admittance is derived from charge flowing

(current) in the electrode as seen from the Equation 4.3. Because only a thin strip

was used, the amount of charge flowing through would be small, contributing to the

low admittance.

So, to study the effect of this strip thickness, the thickness was increased 6

times by increasing the number of strips to 6 (1/4th of the λ) and the admittance

was calculated. It is also plotted in Figure 4.10 (lighter curve) and can be seen

that the value of admittance increases with increase in strip thickness. Though the

admittance value is exactly multiplied by a factor of 6, the total number of strips

suggesting a linear increase, it remains to be studied if the increase in admittance

would be linear with increase in aperture of the model. This could not be studied in

further detail due to the aforementioned limit on the number of nodes that could be

simulated using ANSYS. But nevertheless, this reasonably explains the low value of

admittance and suggests that, if modeled to the exact aperture of the resonator, the

3D simulations might provide values that are close to the ones in the real device. The

attenuation values in real devices are due variety of effects including temperature,

and affect the admittance characteristics of the device. Due to the non-inclusion of

these attenuation effects and the low values of admittance in simulations with 3D

elements all the admittance values presented henceforth are normalized.

81



840 850 860 870 880 890 900  
10

−8

10
−7

10
−6

10
−5

10
−4

Frequency (MHz)

A
dm

itt
an

ce
 (

m
ho

s)

Admittance vs Frequency

1 strip
6 strips

Figure 4.10: Admittance calculated for varying strip thickness

4.4 Leaky SAW Based Resonators

Leaky SAW based devices have become more popular due to the higher velocity

and power handling capabilities. A brief introduction to leaky SAW based devices

was given in Chapter 1 and physical properties were discussed in the Chapter 2.

Together with the advantages of higher velocity and subsequent achievement of

higher frequencies comes the challenges in modeling these waves effectively.

4.4.1 Issues in Modeling

Leaky SAW has some properties that are distinctly different from the Rayleigh SAW

discussed until now. The essential differences and the changes made in the model

due to it are discussed as follows:

• Leaky wave has displacement components in all the three directions [42], [43]

and strict 2D elements used in RL wave cannot be used in this case. 3D el-

ements similar to the ones used in the previous section need to be employed.

82



Though there are displacements in the third direction, the waves are nev-

ertheless straight crested and plane strain conditions (manually) need to be

applied. The degrees of freedom (Ux, Uy, Uz and volt) need to be coupled

to have the same displacement (unknown) and potential values as shown in

the Figure 4.11. The difference in usage of 3D elements for Rayleigh SAW

simulation in the previous section was that the displacement in third direction

was completely constrained but in this case the displacement is allowed but

not the strain.

Figure 4.11: Plane strain condition for 3D model

• This wave does not die out completely within 2 or 3 wavelengths as seen in

the Rayleigh wave case. This implies that the depth of the model needs to be

increased. So, the depth of the model was designed to be 25λ in this simulation

for leaky waves.

• In leaky SAW devices, the periodic electrodes apart from launching the waves,

serve to trap the energy at the surface and make them behave as a surface

wave. For this reason, simulations without the electrodes do not provide results
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showing resonant behavior similar to the Rayleigh wave. So all the simulations

for the leaky wave based devices were always done with electrodes on top of

the substrate.

• Since 3D elements are used in simulations, the property matrices need to be

input in full after the required transformation. The transformation of 3 × 3

dielectric matrix for the required crystal cuts usually results in off-diagonal

elements. In ANSYS, only the quadratic element (SOLID226) has the capa-

bility to accept off-diagonal elements and hence only quadratic elements have

been used in the simulation of leaky waves in this work.

4.4.2 36◦ YX- Lithium Tantalate Resonator

36◦ YX- LiTaO3 is one of the most prominent cuts that propagate the first order

leaky SAW and has been widely used in the design of SAW resonators for filtering

purposes. A resonator was modeled using FEM, similar to the one fabricated by

Koskela et al. [44], to compare the frequency response of the modeled resonator to

the published results. The resonator was modeled taking into account the issues in

modeling leaky SAW discussed in the previous section. The design parameters of

the modeled resonator [44] is presented in Table 4.4. The finite element model is of

Table 4.4: Fabricated 36◦ YX-LiTaO3 LSAW resonator parameters

Number of IDT electrodes 120

Number of reflectors 50 (one each side)

Periodicity(Pitch) 2.214µm

Metallization ratio 0.5

Electrode height (h/λ) 5.6%(Al)

Aperture 70µm

the same specifications as the one fabricated by Koskela et al. The number of IDT
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fingers and reflectors were not considered in the simulations since periodic boundary

conditions were applied and the model was designed for just one wavelength. Also,

the full aperture was not modeled due to ‘maximum number of nodes’ constraint

and only a thin strip (one) with thickness 0.276µm was modeled. This thickness of

the strip is the same as the width of the one element in the propagation direction,

which was meshed with a density of 16 elements per wavelength.

Modal analysis was performed for the periodic structure, but leaky mode reso-

nant frequencies were not attained as a result. This could be due to a pure numerical

limitation of the simulator coupled with the complexity of the leaky wave. Detec-

tion of leaky modes have proved to be both elusive and required multiple tries as

reported by [40]. Also, there is a possibility of modes that could be missed due

to limitations in numerical calculation methods that are used in ANSYS [36]. For

this reason, a harmonic analysis was conducted to ascertain the presence of leaky

modes and to directly calculate the electrical response of these structures. For the

harmonic analysis, the range of frequencies was taken to be same as that of the work

to which this model is being compared. The frequency range was from 860 MHz to

960 MHz. A resonance peak was observed in the frequency range at 900 MHz and

the displacement profile was observed to ascertain whether it was a leaky mode.

The displacement profile is shown in Figure 4.12. The displacements in the sagit-

tal plane is shown in Figure 4.12(a) and that of the displacements normal to the

sagittal plane is shown in Figure 4.12(b). It can be seen that the shear displacements

in the normal direction is considerably more than the displacements in the sagit-

tal plane. This is similar to the displacement profile reported by Rosler et al. [42]

for leaky waves in 36◦ YX-LiTaO3. Also the leaky wave property of displacements

rapidly decaying in 2 to 3 wavelengths but regaining some of the displacement com-

ponents after few wavelengths in depth can be seen from the contour plot (Figures

4.13(a) and 4.13(b)) showing X and Y components of displacements. It should also

be noted that the entire 25 wavelengths of depth has been shown in the contour

and the displacements exist even near the bottom of the model. This type of dis-

placement profile clearly suggests that the mode being excited is a first order leaky
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(a) Displacements in sagittal plane (b) Shear displacements in direction normal to

sagittal plane

Figure 4.12: Displacement profile for leaky SAW

SAW.

The electrical response calculated and measured by Koskela et al has been com-

pared to the results of the finite element simulation in Figure 4.14. The shape of

response calculated using FEM is mostly similar to the fabricated resonator as seen

from Figures 4.14(a) and 4.14(b). But some marked deviations do exist between the

two results. For instance, the centre frequency of the FEM modeled resonator is at

900 MHz and that of reference is at 906 MHz. The low value of admittance problem

had been addressed earlier and hence normalized results are presented. There are

also some differences with ripples in the pre-resonant and post-resonant frequencies.

Some of the differences between the FEM modeled structure and the reference

resonator regarding the number of electrodes and reflectors has been already out-

lined. Also, the size of the model could not exceed more than 32000 node due to

usage of ANSYS 8.0 intermediate version. So to model 25 wavelength depth in this

case, the mesh density in the direction of the wave vector was reduced to 16 ele-
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(a) X displacement contour (b) Y displacement contour

Figure 4.13: Contours showing persistent leaky SAW displacements

ments per wavelength. This could have reduced the accuracy of the centre frequency

prediction. The measured resonator response in Figures 4.14(a) and 4.14(b) would

have contributions from bulk wave excitation and finite resistance (conductance in

this case) of the electrodes on top of the substrate that are not accounted for in

this FE simulation. The unaccounted conductance value might be the reason for

the lower value of the real part of admittance in the FEM calculated response. The

application of strict periodic boundary conditions at the left and right boundaries

results in excitation of one type of wave only. If all types of waves need to be

accounted for in the one wavelength structure, removal of strict boundary condi-

tions and application of absorbing boundary conditions is deemed necessary [34].

This type of boundary condition is currently out of scope for piezoelectric elements

in ANSYS and hence was not implemented. In spite of these limitations, the FE

results have been relatively accurate indicating the efficacy of the simulator.
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Figure 4.14: Comparison of FEM calculated admittance to measured response from

[44]
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4.4.3 Mass Loading in Leaky Resonators

Thicker electrodes have been used in leaky SAW based devices for attaining better

performances. Kawachi et al. [45] have used thick electrodes made of aluminum with

h/λ around 10 % for lower losses and better electro-mechanical coupling. Similar

results of better performance with thicker electrodes have also been reported by

Wallner et al. [46] for these 36◦-42◦ cuts. So, a simulation was performed on YX-42◦

LiTaO3 resonator to determine the effect of electrode mass loading.

This cut of lithium tantalate is pretty similar to the 36◦ cut in the sense that

both propagate leaky SAW at around similar velocities. 42◦ YX-LiTaO3 is a rela-

tively newer cut, but is gaining popularity due to its superior characteristics. The

propagation loss is minimal and the Q-factor of the resonators fabricated are higher

for this cut without affecting other performances [45].

The pitch of the resonator was kept modeled as 3µm, the metallization ratio

was 0.5 and h/λ was 5%. To study the effect of mass on LSAW propagation, a

material with higher density was considered instead of increasing the thickness of

electrodes on top of the substrate. The electrodes used in the simulations until

now were aluminum which has a density of 2700 kg/m3. Gold electrodes were used

instead of it, which has a density of 19300 kg/m3. The reason for using gold in this

study is that it is more commonly used in X-ray lithography as explained in Chapter

1, whereas an aluminum metallization process is less well developed. Therefore, it

may be easier to build a first proof of principal prototype using gold. Nickel is

another material that is common in X-ray lithography, but it has a lower density

than gold (but higher than aluminum). The response of the leaky resonator with

both aluminum and gold is presented in Figure 4.15.

The admittance plot shows two distinctly different resonant frequencies as ex-

pected. The centre frequency has shifted from 668 MHz to 510 MHz signifying the

effect of the heavier electrodes on the leaky SAW propagation. The result might

look a bit overestimated regarding the shifting down of frequency, but is plausible

considering the density of gold being roughly 7 times as that of aluminum. The other
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Figure 4.15: Effect of mass loading

interesting difference is the disappearance of ripples present in the aluminum case

after the anti-resonance frequency. It suggests that the extra mass could be good

for the resonators and can indeed improve the performance of the device. Simul-

taneously, it should also be considered that the centre frequency shifts down with

increase in mass of the electrodes. It clearly is a trade off that should be weighed

against the performance during the design of resonators.

4.5 Chapter Summary

Firstly, Rayleigh SAW based resonators on YZ-LiNbO3 and 128◦ YX-LiNbO3 were

investigated. The Rayleigh SAW velocities of both the cuts were determined and

the higher velocity of around 3900 m/s (with electrodes) in 128◦ cut is one of the

highest for this type of SAW. This makes it a better choice for attaining high fre-

quency SAW devices. The accuracy of the FE simulations were evaluated based on

the results published in the literature. The results suggested that an increase in
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mesh density reflects an increased accuracy accordingly. Further, two of the param-

eters namely velocity (v) and reflectivity (κ) were determined for 128◦ YX-LiNbO3

based resonators for the one dimensional COM model and results were compared to

published results. Also, the parameters extracted from FEM modal analysis, were

used in COM simulations to compare the results of the harmonic analysis for 128◦

YX-LiNbO3 resonator with MR=0.6 and h/λ=3%.

Leaky SAW based resonators modeled using 3D elements were discussed in sec-

tions 4.4 and 4.5. The important differences in modeling between the two types of

waves (Rayleigh and leaky) was explained and subsequently results were presented

for YX-36◦ and 42◦ LiTaO3 cuts. The results of the 36◦ cut resonator was compared

to the result published in literature and that of 42◦ cut was presented to highlight

the effect of massloading. The simulation results with regards to prediction of reso-

nance and antiresonance frequencies were within 1%. Considering the limitations of

node limit, simplifications, and boundary conditions it could be deemed acceptable.

The comparatively low value of admittance was addressed and attributed to the

modeling of the periodic structure as a thin strip instead of the full aperture of the

device. Also, for this reason the admittance values were normalized and presented.

The leaky SAW based devices can be useful for high frequency SAW devices but

is limited by the fact that these waves travel just 200 m/s faster than the Rayleigh

waves in YX-128◦ cut. If materials or modes that propagates SAW at least 1000

m/s faster than these waves could be identified and used, it would be highly useful

in achieving higher frequencies of operation. The next chapter discusses one such

kind of SAW, along with the modeling issues and results.
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5. Longitudinal Leaky SAW for Higher Frequencies

5.1 Introduction

The research approaches to increase the frequencies of operation were listed in Chap-

ter 1 and the one pursued in this work was to look for modes propagating at higher

frequencies. Longitudinal waves are the fastest acoustic waves in solids. But they

can travel only in unbounded solids and once the solid is bounded (which is the case

in devices), the longitudinal waves alone cannot satisfy the stress free boundary con-

dition and are always coupled with the fast shear wave [12]. For this reason, their

velocity is between that of fast shear and longitudinal waves.

This type of wave solution has two components growing into the substrate (as

compared to one in first order leaky SAW), making it more leaky than the Leaky

SAW seen in the previous chapter and are called second order leaky SAW. Also

another important difference between the two types of leaky SAWs is that the dis-

placement component is confined to the sagittal plane in the second order leaky

SAW. It has a combination of longitudinal and shear displacements that are con-

fined to the sagittal plane similar to that of Rayleigh wave. But the longitudinal

component of displacement dominates over the shear component and hence it is also

called a longitudinal leaky SAW (LLSAW).

This type of leaky SAW exists in several types of substrate materials but initially

they were known to possess a high degree of attenuation and subsequently were ruled

out for use in devices. Later, Isobe et al. investigated the propagation of LLSAWs

on LiNbO3 and LiTaO3 substrates [47]. They reported thick electrodes (above 8%

for Al) on top of substrates could effectively trap the leaky SAWs to the substrate

surface and reduce their attenuation into the substrate in the form of bulk acoustic
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radiations. More importantly these waves were found to travel at velocities in excess

of 6000 m/s in LiNbO3 and around 5800 m/s in LiTaO3 presenting brighter prospects

for high frequency SAW devices.

YZ-LiNbO3 substrates that propagate Rayleigh SAW also propagates LLSAW,

albeit at a different velocity therefore showing up as a resonant peak at a different

frequency. Devices based on LLSAW have been investigated by Makkonen et al. on

YZ-LiNbO3 substrates. Devices have been fabricated [12] and simulated [48] from

1.5 GHz to 2.5 GHz by them. For simulation purposes, they have used FEM for the

electrodes alone and the Green’s function method for the substrate part as compared

to the pure FEM in this work. The displacement profile and frequency response of

LLSAW has also been calculated [48] to which results of the pure FEM model in

this work would be compared.

Since the displacement components of LLSAW are confined to the sagittal plane,

they can be modeled using 2D elements similar to the Rayleigh wave devices. But

this mode being a leaky one, the displacements do not die down completely within 3

or 4 wavelengths. Instead, they exist even at depths around 40 wavelengths similar

to the first order leaky SAW observed in the previous chapter. For this reason, the

depth of model was increased to 40 wavelengths or more in these simulations. The

effect of reducing the model depth was also analyzed before deciding on the depth of

the model. Only one wavelength of the resonator was modeled and periodic bound-

ary conditions similar to other cases was also applied. Before analyzing the effect

of depth of the model, metallization ratio and electrode width, the displacement

profile of the LLSAW was investigated to confirm the excitation of LLSAW during

the simulations.

5.2 Displacement Profile of LLSAW

A harmonic analysis was conducted for a range of frequencies and at the frequency

of resonance (when displacements are maximum), the deformed shaped of the single

wavelength structure is shown in Figure 5.1(a) and the general schematic of LL-

SAW given in [48] is shown in Figure 5.1(b). The deformed shape and the general

93



(a) LLSAW displacement displayed using

ANSYS

(b) LLSAW schematic from [48]

Figure 5.1: LLSAW displacements

schematic are quite similar suggesting that the excited mode is indeed LLSAW.

Also, the longitudinal and shear components of displacements are plotted against

the depth in Figure 5.2. It can be seen that the longitudinal displacement com-

ponent dominates near the top of the substrate and dies down rapidly (but not to

zero) whereas the shear displacement component is smaller as compared to it. The

displacement profile is shown only for four wavelengths for the sake of better com-

parison to that of published results. Though not shown in figures, the displacement

components does not die down until the whole depth of the model due to the leaky

nature, validating the idea of modeling more than 40 wavelengths in depth. The

displacement in third direction is shown to be zero in the published result which was

not taken into account in FEM simulation due to the usage of 2D elements. The

effect of reducing the model depth to lesser number of wavelengths on the electrical

response of the LLSAW resonator model is discussed in the next section.
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Figure 5.2: LLSAW longitudinal and shear displacement variation with depth (FEM

calculated and published FEM/BEM result [48])

5.3 Effect of Depth on LLSAW Resonator Model

FEM simulations were done for LLSAW based models on YZ-LiNbO3. The period-

icity of the resonator was 2 µm, the metallization ratio was 0.5 and the electrode

height was 7.5 %. The depth of the model was varied from 40 wavelengths to 20

wavelengths and its effect was investigated. The admittance of the structure was

calculated for varying depth and it is shown in Figure 5.3. When the depth was 40

wavelengths the resonance was at 1570 MHz and it increased to 1580 MHz when

depth was reduced to 30 wavelengths. It was also accompanied by increased ripples

in the response. When the model depth was further reduced to 20 wavelengths, the

peak of resonance was affected which split into two and the ripples also increased.

This clearly suggest that reducing the model depth would adversely affect the re-

sponse of the resonator structure due to leaky nature of the waves. For this reason,

the simulations were performed with a model depth of more than 50 wavelengths in
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the responses discussed in the following sections.
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Figure 5.3: Effect of reducing model depth on LLSAW resonator model response

5.4 LLSAW resonator on YZ-LiNbO3

A LLSAW resonator was modeled using FEM similar to the resonator fabricated

and tested by Holmgren et al. [49]. The specifications of the resonator are given in

table 5.1. The FEM model was also designed for such specifications except for the

electrode height being 8 %. Also, the number of electrodes, reflectors and aperture

are immaterial to the simulations due to its periodic and 2D nature.

The published test resonator results and FEM calculated results are shown in Fig-

ure 5.4. The FEM results show the resonant peak at 1535 MHz and anti-resonance

at 1600 MHz as compared to resonance at 1540 MHz and anti-resonance at 1610

MHz of the published measured result. The slight difference might be due to minor

difference in electrode heights and simulation artifacts. The ripples in the FEM cal-
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Table 5.1: YZ-LiNbO3 LLSAW resonator parameters

Number of IDT electrodes 151

Number of reflectors 37 (one each side)

Periodicity(Pitch) 2µm

Metallization ratio 0.6

Electrode height (h/λ) 7.9%(Al)

Aperture 64µm

culated result might be due to artificial termination model depth and the reflections

arising out of it. The resonance curve calculated by FEM is also sharper than that

of published result, due to the fact that losses occurring in the real device due to

thermal effects and resistive losses are unaccounted for in this simulation.
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Figure 5.4: YZ-LiNBO3 LLSAW resonator results compared to published result

in [49]
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From the centre frequency of the resonator the velocity of these LLSAWs can

be calculated to be around ≈ 6150 m/s on the YZ-LiNbO3. The Rayleigh SAW on

the same substrate travels around ≈ 3400 as seen in the previous chapter. Thus the

same substrate can be used to attain frequencies as high as 1.8 times with the same

electrode widths, when LLSAW mode is as a resonant mode. Another interesting

feature of these modes is that they have a higher bandwidth than other modes. It

can be calculated using the formula,

BW =
fa − fr

fa

(5.1)

where fa andfr are resonant and anti-resonant frequencies. The bandwidth of the

modeled resonator was thus calculated to be 0.0406. For the Rayleigh wave on the

same resonator it could be calculated to 0.011. With the high velocity and bandwidth

these LLSAW modes can be highly useful in the design of wide bandwidth high

frequency filters.

5.4.1 Effect of Metallization Ratio and Electrode Height

To study the effect of the metallization ratio on centre frequency and in general the

response of the LLSAW FEM model, a series of simulations were done. The pitch

of the periodic structure was kept as 2 µm, the electrode height (h/λ) was kept

constant at 8 % and the metallization ratio was varied from 0.7 to 0.3 in steps of

0.1. The model depth was kept above 50 wavelengths for all the simulations. One

of the main effects of varying the MR is mass loading and the results are presented

in Figure 5.5.

From the plot, it can be seen that the centre frequency decreases from 1542 MHz

to 1535 MHz and 1528 MHz with the increase in MR to 0.6 and 0.7 respectively. This

downshift in frequency was expected and can be attributed to the increase in mass

of the electrode which tends to slow the wave velocity and subsequently decrease

the frequency. When the MR was further reduced to 0.4, the centre frequency did

increase, but very marginally as can be seen from the Figure 5.5. Importantly, for

the MR of 0.3 the centre frequency had shifted down to around ≈1530 MHz. This
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Figure 5.5: Resonator response for varying metallization ratios with h/λ = 8%

could be due to the fact that there is less contact area between the electrode and

substrate which might lead to less intense excitation of LLSAW causing a downshift

of frequency. Also, it could be seen that the ripples in the response increases for

both increasing and decreasing metallization ratios. This is due to the limitations

of the simulator discussed before. But the ripples are the lowest for the MR of 0.5

with electrode height of 8 %. It suggests that there is an optimal height for which

the simulator gives ripple free response. So, the simulator can very well be used to

find this optimal electrode height for the corresponding metallization ratio.

Another interesting effect of varying the MR of the electrode structure results

in variation of the bandwidth of the resonators. It can be observed that the band-

widths are maximum when the MR is 0.5 and 0.6 with a decrease in value for both

metallization ratios greater and lesser than them. It is the lowest for the MR of 0.3.

This study clearly suggests that the centre frequency reduces both with the increase

and decrease of MR from around 0.4 to 0.5 and also the bandwidth is maximum at
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around 0.5 to 0.6.
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Figure 5.6: Resonator response for varying electrode heights with MR of 0.5

The study of varying metallization ratios suggested that there are optimal elec-

trode height values for each MR. So a set of simulations were conducted for varying

electrode heights (keeping MR constant). The results for MR of 0.5 is presented in

Figure 5.6. The electrode heights were varied from 7.25 % to 9.25 % in steps of 0.25

%. It can be seen that there is a consistent decrease of centre frequencies with in-

crease in electrode heights due to the effect of mass loading. Also, the resonant and

anti-resonant frequencies reduce in frequency level similarly as the electrode heights

are varied, suggesting that the bandwidth of the devices remains fairly constant

with increase or decrease in electrode heights. But the values of maximum admit-

tance drops on either side of the optimal value of electrode height accompanied by

increased ripples in the response.

The optimal height for the case of MR=0.5 was 7.75% to 8%. The ratio of
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Figure 5.7: Resonator response for varying electrode heights with MR of 0.3

electrode height to width for this case can be calculated to be 31% to 32%. So, a set

of simulations were conducted to find the optimal electrode height for the case of

MR=0.3. The results are presented in Figure 5.7. The response is similar to the case

of MR=0.5 that the centre frequencies decreased with increase in electrode heights.

It can also be observed that the optimal height (h/λ) for this MR=0.3 is around

7.25%. The electrode height to width ratio can then calculated to be ≈ 48%. Such

high ratios are more critical at smaller electrode widths for high frequency devices

and present good prospects for XRL fabrication of LLSAW devices.

From these studies it can be concluded that the MR ratio affects the bandwidth

of the device and electrode height affects the centre frequency more consistently. So,

in the design of filters using these resonators, the MR with required bandwidth need

to be determined at first, followed by determination of an optimal electrode height

for this MR. Also, the results of these FEM simulations being consistent with the

published results, they can be trusted in device design.
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5.5 Chapter Summary

The LLSAW propagation on YZ-LiNbO3 substrate was investigated with an objec-

tive of increasing the frequency of operation without changing the period of the

electrodes. The LLSAW being a high velocity mode, increased the centre frequency

of the resonator from 865 MHz to 1535 MHz with the same electrode period of 2µm.

This 2 µm (electrode width - 1 µm) can be easily fabricated using contemporary

technology. The newly emerging technology, LIGA, presently has the capability to

fabricate 400 nm structures [17], and could take the operating frequencies to the 4

GHz range. The displacement profile calculated using FEM was compared to the

published results calculated using FEM/BEM technique. The LLSAW mode being

highly leaky, the depth of the model was increased to above 50 wavelengths after

studying the effects of reducing the model depth.

A LLSAW resonator was modeled using FEM with the same parameters as the

test resonator for which the results were published in literature. The responses were

mostly similar and the minor differences were attributed to simulator limitations and

subsequent approximations. The effect of metallization ratio and electrode height

were separately studied by keeping the other parameter a constant. The metalliza-

tion ratio had a pronounced effect on the bandwidth of the device in addition to

changing the effect on the centre frequency. In contrast, the electrode height had a

more consistent effect on the centre frequency of the resonator and did not seem to

affect the bandwidth of the device. Also, if the MR was decreased to 0.3 the optimal

height does not reduce proportionally, but decreases only marginally. This in turn

increases the electrode height to width ratio and presents good prospects for XRL

fabrication of such SAW devices.
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6. Summary, Conclusions and Future Work

6.1 Summary

This main purpose of this research was to provide a finite element model for one

port SAW resonators. Even though the accuracy of the finite element method was

known to designers, it was not pursued due to the huge computing requirements

and time. Consequently, very few FE results were published for the SAW devices.

For most of the FEM models in the literature, custom FE codes have been written

to accomplish the published results. But after careful research and necessities for

modeling SAW using FEM, the well developed commercial FE software ANSYS was

used in this work.

In the course of this thesis, various models that are in use for the design of SAW

devices such as delta function model, equivalent circuit model, COM model and

P-matrix model were discussed. The inadequacies of these models were also briefly

outlined and were attributed to the simplifying assumptions. A Finite element model

which considers the full set of partial differential equations describing the problem

possibly eliminates the simplifying assumptions of other models.

Development of a full level SAW model using FEM was not possible due to the

node limit of the software (which in turn is dependent on computing requirements)

and the size of the problem. So, the properties of Rayleigh wave, Leaky SAW and

LLSAW were discussed in detail to aid in the model size reduction. Due to the

uniform nature of the SAW and absence of displacement in the third direction, the

model was reduced to quasi two dimensions for modeling the Rayleigh SAW based

devices. Due to the periodic nature of the SAW resonators, only one wavelength of

the device was modeled. Also, the depth of the model was determined according to
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the nature and type of the SAW device that was being modeled. For instance, only

ten wavelength depth was considered for the case of Rayleigh SAW propagation,

whereas it was increased to 25 wavelengths for 1st order leaky SAW and above 50

wavelengths for 2nd order leaky SAW.

The accuracy of linear and quadratic elements in FEM were determined by com-

paring the computed free velocities of Rayleigh SAW on YZ-LiNbO3 substrate. The

accuracy was found to increase with increasing mesh density of linear elements and

similar accuracy could be achieved by using lesser number of quadratic elements.

So for most of this work quadratic elements were used in the simulations. The

velocity of Rayleigh SAW was determined to be around 3480 m/s for YZ-LiNbO3

and 4000 m/s for YX-128◦ LiNbO3. Considering the fact that Rayleigh SAW was

the slowest acoustic wave in a solid, 4000 m/s (free surface, loaded surface around

3850-3900 m/s) is quite high which led to the further analysis of the wave in YX-

LiNbO3. A set of simulations were done for resonators with various metallization

ratios and electrode heights to find out the velocity (v) and reflectivity (κ) of the

structures. These values were compared to the published literature results for ver-

ification and validation. Also, models based on phenomenology such as COM and

p-matrix methods, require parameters to be introduced from outside for their oper-

ation. The velocity and reflectivity values calculated using FEM could be used in

these phenomenological models for further simulations and device design.

The finite element model developed for the Rayleigh SAW based device was

extended to leaky SAW by making appropriate adjustments to the model. The first

order leaky SAW generally has displacements in the third direction also to satisfy the

boundary conditions; so 3D elements were used in the analysis of leaky SAW based

devices. A leaky SAW based resonator on YX-36◦ LiTaO3 was simulated and its

response was compared to a result published in the literature for a resonator with the

same specifications. Also the results of a 42-YX◦ LiNbO3 resonator was used to study

the effects of electrode mass loading. The resistance of the electrodes, capacitance

of the IDT fingers and other bulk wave effects were not added to the simulations.

Nevertheless, the predicted response was reasonably similar to the measured results
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with respect to velocity and resonance anti-resonance frequencies (both within 1%).

The velocity of these first order leaky waves were only marginally faster (around

4050 m/s on loaded surface) than the high Rayleigh SAW wave velocity in YX-

128◦ LiNbO3. Clearly, these waves cannot increase the frequencies of operation to

very high values unless fine structures are fabricated. So the research approach was

directed towards analysis of modes traveling at higher velocities. Second order leaky

SAW or LLSAW mode was found to travel at velocities in excess of 6000 m/s and

hence FE model was developed for LLSAW resonators.

A FEM model was developed for YZ-LiNbO3 LLSAW resonator with design

specifications similar to the test resonator whose results were published in the lit-

erature. The centre frequency of this resonator was 1535 MHz, which is 1.8 times

that of a Rayleigh SAW resonator (centre frequency-865 MHz) fabricated with the

same period. Also, the bandwidth of the LLSAW resonator was higher than that

of Rayleigh SAW resonator suggesting that these modes could help in the design

of high frequency wide band filters. To determine the parameters which affect the

bandwidth and centre frequencies, a series of simulations were done for various

metallization ratios and electrode heights. Also, the case of MR=0.3 was studied

in particular to investigate the possibility of using XRL for fabrication of LLSAW

devices because of the high electrode height to width ratio required.

6.2 Conclusions

A finite element model has been developed using Commercial software ANSYS, that

reduces the time to write custom codes for numerical simulations. It has also been

proved that the results obtained using FEM are reasonably accurate considering the

fact that quite a few approximations and assumptions were made in order to bring

the size of the problem to a reasonable level. A brief review of current modeling

methods also revealed that almost all of them required parameters to be introduced

from outside. The FEM calculated responses are from first principles and the only

inputs to the FE simulator were material properties and the geometry of the device.

In fact, some of the results calculated using FEM were used in simulation of a SAW
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resonator response using the COM model.

The resonance anti-resonance pattern of SAW resonators have generally been

well predicted by the FEM model, but the prediction of the exact admittance has

not been possible due to the application of infinite boundary condition and non-

inclusion of various attenuation effects. Also, contributions to the admittance due

to other propagating modes in the medium have not been included in the model

which could have made the calculated results to vary from that of published results.

The limitation of this simulator is mainly due to the constraint on the computing

resources but not due to the (FE) method itself. The variation of the resonant

(centre) frequency with changing electrode mass has been predicted well and is one

of the main highlights of the FEM model. This effect can only be modeled by a

numerical method and could be highly useful in design of ladder filters and networks.

The literature and reports indicated that usage of FEM for leaky SAW based

resonators has been scarce and it was found that by modeling a greater depth for

these kind of devices, results that could be useful in device design can be attained.

The second order leaky SAW was investigated in a greater detail using FEM because

of its high velocity and the potential to increase the frequencies of operation to the

5 GHz range and beyond. The results of LLSAW resonators indicated that greater

depths need to be modeled in order to get ripple free responses and also other

attenuation effects need to be accounted for in order to get more accurate results.

Nevertheless, the preliminary results indicated that LLSAW devices present good

prospects for high frequency SAW device fabrication using X-ray lithography.

6.3 Recommendation for Future Work

This research work can be extended in the following directions to achieve the full

advantages of the finite element methods and to study some new exciting structures:

1. A COM/P-matrix model could be developed that is dependent on finite ele-

ment solution for the required external parameters. The velocity and reflectiv-

ity of resonatord were determined in this work and other required parameters

could be obtained from the admittance of the resonator determined from the
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FEM, by using appropriate fitting techniques.

2. The FE model was developed for a single wavelength structure by applying a

strict periodic boundary condition which allowed excitation of only one mode

at a time. This was due to the non-availability of absorbing boundaries for

piezoelectric elements in ANSYS. If absorbing boundary conditions could be

implemented in the future, it would help in studying the interaction of SAW

and bulk acoustic waves.

3. Non-traditional transducer architecture such as slanted electrodes, electrodes

entrenched into the substrate, etc., could be analyzed and investigated.

4. Though a full level FEM SAW model could not be implemented immediately,

the imminent usage of 64 bit computing and advances in memory technology

presents good prospects for bigger FE models for SAW devices. Then the full

aperture of the device could be modeled and the effects of beam steering could

be studied.

5. The effect of the metallization ratio, electrode height, and height to width

ratio could be studied in a greater detail with a perspective for fabrication

capabilities. Also, newer materials for electrodes could be investigated and

their mass loading effects could also be studied.
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APPENDIX A. Transformation of Matrices with Euler Angles

The Euler angles given by (ϕ, ϑ, ψ) rotate the crystal axes and align them with

the required cartesian co-ordinate axes. During such rotations, the stiffness matrix,

piezoelectric matrix and dielectric matrix (described in Chapter 2)also gets trans-

formed accordingly and those values need to be input for successful FE simulations.

There are many conventions that could be followed to achieve this purpose and the

convention used by [24], has been used in this work. The formulae used in transfor-

mation has been adapted from [24] and the interested user is referred to the same.

A MATLAB routine was written to accomplish the transformation of matrices and

the results for only one of the cuts (YX-128◦ LiNbO3, a 128◦ Y-cut X propagat-

ing substrate) used in this work has been presented here. The data available in

the books apply to Euler angle set (0◦, 0◦, 0◦) and for other rotations transformed

matrices need to be found.

[c] =




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






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
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
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2.03 0.53 0.75 0.09 0.0 0.0

0.53 2.03 0.75 −0.09 0.0 0.0

0.75 0.75 2.45 0.0 0.0 0.0

0.09 −0.09 0.0 0.6 0.0 0.0

0.0 0.0 0.0 0.0 0.60 0.09
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[ǫ] =


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44 0 0

0 44 0

0 0 29
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
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

(A.3)

The Euler angle for YX-128◦ LiNbO3 is (0◦, 38◦, 0◦) and the transformed matrices

for this Euler angle are given by,
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(A.6)

The transformed matrices cannot be directly input into ANSYS but need to

be rearranged according to ANSYS conventions. The Piezoelectricity chapter of

ANSYS documentation discusses this in detail [36].
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