
SIMON HALLÉ

AUTOMATED HIGHWAY SYSTEMS:

PLATOONS OF VEHICLES VIEWED AS A

MULTIAGENT SYSTEM

Mémoire présenté
à la Faculté des études supérieures de l’Université Laval
dans le cadre du programme de mâıtrise en Informatique
pour l’obtention du grade de Mâıtre ès sciences, (M.Sc.)

FACULTÉ DES SCIENCES ET DE GÉNIE
UNIVERSITÉ LAVAL

QUÉBEC

JUIN 2005

c©Simon Hallé, 2005

Résumé

La conduite collaborative est un domaine lié aux systèmes de transport intelligents,

qui utilise les communications pour guider de façon autonome des véhicules coopératifs

sur une autoroute automatisée. Depuis les dernières années, différentes architectures

de véhicules automatisés ont été proposées, mais la plupart d’entre elles n’ont pas, ou

presque pas, attaqué le problème de communication inter véhicules.

À l’intérieur de ce mémoire, nous nous attaquons au problème de la conduite col-

laborative en utilisant un peloton de voitures conduites par des agents logiciels plus

ou moins autonomes, interagissant dans un même environnement multi-agents: une

autoroute automatisée. Pour ce faire, nous proposons une architecture hiérarchique

d’agents conducteurs de voitures, se basant sur trois couches (couche de guidance,

couche de management et couche de contrôle du trafic). Cette architecture peut être

utilisée pour développer un peloton centralisé, où un agent conducteur de tête coor-

donne les autres avec des règles strictes, et un peloton décentralisé, où le peloton est vu

comme une équipe d’agents conducteurs ayant le même niveau d’autonomie et essayant

de maintenir le peloton stable.

Abstract

Collaborative driving is a growing domain of Intelligent Transportation Systems (ITS)

that makes use of communications to autonomously guide cooperative vehicles on an

Automated Highway System (AHS). For the past decade, different architectures of

automated vehicles have been proposed, but most of them did not or barely addressed

the inter-vehicle communication problem.

In this thesis, we address the collaborative driving problem by using a platoon of cars

driven by more or less autonomous software agents interacting in a Multiagent System

(MAS) environment: the automated highway. To achieve this, we propose a hierarchical

driving agent architecture based on three layers (guidance layer, management layer and

traffic control layer). This architecture can be used to develop centralized platoons,

where the driving agent of the head vehicle coordinates other driving agents by applying

strict rules, and decentralized platoons, where the platoon is considered as a team of

driving agents with a similar degree of autonomy, trying to maintain a stable platoon.

Avant-propos

Je voudrais remercier tous ceux qui ont rendu possible l’aboutissement des recherches

effectuées à l’intérieur de mon projet de Mâıtrise. J’aimerais tout d’abord remercier

mon directeur de recherche, M. Brahim Chaib-draa, pour sa grande disponibilité, son

soutien, ses idées, ainsi que ses précieux conseils.

J’aimerais ensuite remercier les personnes qui ont travaillé avec moi sur le projet

Auto21, sans qui nous n’aurions pu achever tous les délivrables de ce projet. Un merci

spécial à Phil, Vince et Charly, pour leur travail intense sur le simulateur, l’équipe de

l’Université de Sherbrooke, ainsi que Julien, qui a mis tous ses efforts à comprendre

mon québécois pour me donner un support bien apprécié dans mes recherches.

J’aimerais de plus remercier le personnel de département d’IFT-GLO: Lynda avec

qui tous les problèmes se règlent en deux temps trois mouvements, Gilles qui peut nous

construire un meuble de bureau en quelques minutes et tous les autres.

Ensuite, je ne peux passer à côté de tous les membres du Damas, avec qui on peut

échanger sur nos problèmes, tout en prenant une petite pause question de se reposer

l’esprit. Merci à ceux qui ont organisé des activités et à ceux qui sont venus à celles

que j’ai organisées, on s’est toujours bien amusé. Et puis que serait le Damas, sans

ses machines à cafés qui transforment un lendemain de veille en une journée de travail

productive, alors merci à: Mr. Coffee I, II et III. En plus des membres du Damas,

merci à mes ami(e)s Jeff, Jean-Seb, les anciens du bac, enfin tous ceux sur ma liste de

contacts msn, et merci au pub de l’Université pour ses 5 à 7, se transformant en 5 à 2.

Finalement, j’aimerais dédier ce mémoire à mes parents. Claude, mon père et

Lisette, ma mère, qui m’ont soutenu autant moralement que financièrement et qui

m’ont toujours encouragé à foncer et aller plus loin. Merci pour tout, cela n’aurait pas

été possible sans vous.

Simon Hallé

Contents

1 Introduction 1

1.1 Problem Description . 2

1.1.1 Auto21 Project . 3

1.1.2 Autonomous Driving . 4

1.1.3 Intelligent Transportation Systems & Artificial Intelligence . . . 8

1.1.4 Intelligent Transportation Systems Simulation 10

1.2 Motivations relating to Intelligent Transportation Systems 11

1.2.1 Traffic . 11

1.2.2 Safety . 12

1.2.3 Environment . 12

1.2.4 Efficiency . 13

1.2.5 Social Aspects . 14

1.3 Motivations relating to Collaborative Driving System 14

1.3.1 Possible Deriving Applications 15

1.3.2 Communication and Cooperation in ITS 16

1.3.3 Collaborative Driving System Simulation 17

1.4 Thesis Objectives . 19

1.5 Thesis Organization . 21

2 Agents and Muliagent Systems 22

2.1 Single Agent Architectures . 23

2.1.1 Reactive Agents . 24

2.1.2 Deliberative Agents . 24

2.1.3 BDI Agents . 25

2.2 MAS Architectures . 27

2.2.1 Social Laws . 29

2.2.2 Joint Intentions . 30

2.2.3 Distributed planning . 31

2.2.4 Multiagent Teamwork . 32

3 Agent Oriented Driving Simulator 39

3.1 Simulator’s Engine . 41

vi

3.2 3D Environment . 42

3.3 Vehicle Dynamics . 44

3.3.1 Dynamics Specifications . 44

3.3.2 Dynamics Software Engineering 52

3.4 Sensory System . 54

3.4.1 Sensors Specifications . 54

3.4.2 Sensors Software Engineering 55

3.5 Inter-Vehicle Communications . 56

3.5.1 Communication System Specifications 56

3.5.2 Communication System Software Engineering 57

3.6 Driving System Interface . 58

3.6.1 Driving System Specifications 60

3.6.2 Driving System Software Engineering 60

3.7 Collaborative Driving Scenarios . 62

3.7.1 Driving Scenarios Specifications 62

3.7.2 Driving Scenarios Engineering 63

3.8 Summary . 64

4 Auto21 Driving Agent Architecture 66

4.1 Automated Driving Systems . 66

4.1.1 Communicative Control . 68

4.1.2 Collaborative Driving Systems 69

4.2 Hierarchical Representation . 72

4.2.1 Guidance Layer . 75

4.2.2 Management Layer . 77

4.2.3 Traffic Control Layer . 80

4.3 Auto21 Architecture Software Engineering 81

4.3.1 Intelligent Sensing Sub-Layer Engineering 83

4.3.2 Vehicle Control Sub-Layer Engineering 83

4.3.3 Management Layer Engineering 85

4.4 Auto21 Architecture Integration Schemes 88

4.4.1 Sensing Scheme . 88

4.4.2 Lower-Level Controller Scheme 89

4.4.3 Upper-Level Controller Scheme 90

4.4.4 Agent Oriented Planning Scheme 96

4.4.5 Inter-Vehicle Coordination Scheme 97

4.4.6 Traffic Management Techniques 99

4.5 Conclusion . 100

5 Driving Agents Coordination 101

5.1 Inter-Platoon Coordination Model . 102

vii

5.1.1 Centralized Inter-Platoon Coordination 102

5.1.2 Decentralized Inter-Platoon Coordination 104

5.2 Intra-Platoon Coordination Model . 106

5.2.1 Centralized Intra-Platoon Coordination 108

5.2.2 Decentralized Intra-Platoon Coordination 109

5.2.3 Teamwork Oriented Intra-Platoon Coordination 112

5.2.4 Discussion . 119

6 Driving Agents Engineering 120

6.1 Multiagent System Modeling . 121

6.1.1 Agent UML Level 1: Agent Model 121

6.1.2 Agent UML Level 2: Coordination Protocols Model 123

6.1.3 Agent UML Level 3: Agents’ State Transition 125

6.2 JACK Agent-Oriented Modeling . 128

6.2.1 JACK Programming Language 129

6.2.2 JACK Agents’ Capabilities in Auto21 130

6.2.3 JACK Agents’ Plans Execution Framework in Auto21 131

6.2.4 Auto21 Agents’ Knowledge Base 133

6.2.5 Auto21 Agents’ Communication System 135

6.2.6 Auto21 Agents’ Coordination System 138

6.2.7 Auto21 Agents’ Driving System 140

6.2.8 Discussion . 145

6.3 Teamwork Oriented Modeling . 145

6.3.1 Teams Shared Beliefs . 146

6.3.2 Team Operators . 148

6.3.3 Formation of Dynamic Teams 149

6.3.4 Discussion . 151

6.4 Driving Agent Coordination Experiments 151

6.4.1 Coordination Models Limitations 152

6.4.2 Evaluation Model . 153

6.4.3 Simulation Results . 155

6.4.4 Models Analysis . 164

6.4.5 Discussion . 168

7 Conclusions 169

7.1 Contributions . 170

7.2 Concluding Remarks . 171

7.3 Future Work . 172

List of Tables

3.1 Equations for the longitudinal and side wheel slip. 49

6.1 Total of messages and plans used by coordination model. 165

List of Figures

1.1 Platoon of automated vehicles on an Automated Highway System, de-

veloped by the PATH project [Hedrick et al., 1994]. 5

1.2 The three steps of the removal (split) and insertion (merge) of a vehicle

in the platoon. 6

1.3 Distronic Adaptive Cruise Control in a Mercedes-Benz [Mercedes-Benz,

2004]. 9

1.4 ITS architecture of the ASHRA association [AHSRA, 2004]. 10

2.1 The general model of an agent interacting with the environment through

sensors and effectors, from Russell and Norvig [2003]. 23

2.2 Reasoning process of a BDI agent, from Wooldridge [1999]. 25

2.3 Typical structure of a Multiagent System, from Jennings [2000]. 28

2.4 Roles involved in a team of attack helicopters, from Tambe [1997]. . . . 33

2.5 Domain level team operators in an example of the attack helicopter do-

main from Tambe and Zhang [2000]. 35

2.6 Decision tree with probability and rewards for communicative acts in

STEAM [Tambe and Zhang, 2000]. 37

3.1 Screen shot of a merging vehicle inside the HESTIA 3D simulator. . . . 40

3.2 The simulator’s engine main loop flow. 41

3.3 The general model of the vehicle simulation environment. 43

3.4 Abstract model of a car driveline dynamics. 46

3.5 Wheel slip calculation using Burckhardt method. 48

3.6 Tire side slip angle calculation using the single-track model. 49

3.7 Class diagram based on the auto21.object.vehicle package, which repre-

sents the vehicle objects and their dynamics simulation classes. 53

3.8 UML Class diagram of the simulator’s sensors model. 56

3.9 UML Class diagram of the simulator’s communication model. 59

3.10 Class diagram of the Auto21 driver infrastructure for agents. 61

3.11 Abstracted model of the driving scenarios and log creation systems. . . 63

4.1 Architecture used for the PATH project in Howell et al. [2004]. 71

4.2 Auto21 hierarchical agent architecture. 74

x

4.3 Intelligent Sensing sub-layer: detail. 76

4.4 Vehicle Control sub-layer: detail. 78

4.5 A global view at the Auto21 architecture’s design model. 82

4.6 Overview of the data structure and listener types in the Auto21 Intelli-

gent Sensing sub-layer. 84

4.7 Overview of the relation between the different components of the Vehicle

Control sub-layer. 86

4.8 The components relating to the Planning sub-layer, inside the architec-

ture’s hierarchy. 87

4.9 Model of the vehicle’s desired velocity using a MPCC controller. 94

4.10 Model of the Belief Desire Intention (BDI) agent oriented Planning sub-

layer. 97

5.1 Centralized decision making using a Traffic Control layer. 103

5.2 Decentralized decision making using mobile agents. 105

5.3 Vehicle state transitions handled by the intra-platoon coordination. . . 106

5.4 Four coordination models of the merge and split manoeuvres. 107

5.5 Split task team’s role organization. 114

5.6 Platoon team operators tree. 115

5.7 The three steps of the removal (split) and insertion (merge) of a vehicle

in the platoon. 117

6.1 Class diagram of the possible JACK Agent deriving from a common

abstract agent skeleton. 122

6.2 AUML agent diagram of the JACK follower agent (AgJackFollower). . . 123

6.3 Agents’ identifications for the merge example. 124

6.4 AUML Level 2 state diagram of the merge protocol. 125

6.5 AUML Level 2 protocol diagram of the merge protocol. 126

6.6 AUML Level 3 state diagram of the merge protocol focusing on the

merger’s follower agent (Gap Creator role). 127

6.7 AUML Level 3 state diagram of the merge protocol focusing on the leader

agent. 127

6.8 AUML Level 3 state diagram of the merge protocol focusing on the

merger agent. 128

6.9 JACK components’ relationships inside an Auto21 driving agent. 129

6.10 JACK capabilities usage by both the follower and leader agents. 131

6.11 Running loop of the JACK planning system. 132

6.12 JACK oriented beliefs structures and respective Cursors for planning

usage. 134

6.13 Class diagram of the main Java and JACK classes related to inter-vehicle

communications. 137

xi

6.14 Statechart diagram for the agents’ possible driving modes. 141

6.15 Activity diagram representing the transition occurring during an emer-

gency event. 143

6.16 The three steps of the removal (split) and insertion (merge) of a vehicle

in the platoon. 144

6.17 Classes and tasks involved in the creation of virtual vehicles. 145

6.18 Model of the main classes involved in the team-oriented infrastructure. 147

6.19 Diagram describing activities relating to each belief structure class in the

scenario of shared belief states. 150

6.20 Noisy merge test scenario through the six main platoon states. 154

6.21 Vehicles’ velocity in a noisy merge scenario using the centralized model. 156

6.22 Vehicles’ velocity in a noisy merge scenario using the teamwork model. 157

6.23 Vehicles’ acceleration in a noisy merge using the centralized model. . . 157

6.24 Vehicles’ acceleration in a noisy merge using the teamwork model. . . . 158

6.25 Inter-vehicle time distances in a noisy merge scenario using the central-

ized model. 158

6.26 Inter-vehicle time distances in a noisy merge scenario using the teamwork

model. 159

6.27 Difference with the inter-vehicle time distances and the safe distance, in

a noisy merge scenario using the centralized model. 160

6.28 Difference with the inter-vehicle time distances and the safe distance, in

a noisy merge scenario using the teamwork model. 160

6.29 Difference with the inter-vehicle time distances and the safe distance of

the merging vehicle, in two merge scenarios using the centralized model. 161

6.30 Difference with the inter-vehicle time distances and the safe distance of

the merging vehicle, in two merge scenarios using the teamwork model. 162

6.31 Difference with the inter-vehicle time distances and the safe distance of

the merging vehicle, in three merge scenarios using different coordination

models. 163

6.32 Difference with the inter-vehicle time distances and the safe distance of

the splitting vehicle, in three split scenarios using different coordination

models. 164

List of Algorithms

1 BDI-interpreter . 26

2 function Guide-Time-Gap(kb, interV ehicleT ime) 93

3 function Guide-MPCC(kb, mpV elo, mpPos, mpTime) 95

Chapter 1

Introduction

During the past decades the amount of vehicles driven on North America’s major cities’

road system has increased at such a rate that we can not keep up by always adding more

lanes to our highways [Randall et al., 2000]. Indeed, it is expected that the demand on

America’s roadways will double by the year 2020 [Network, 2004], meaning that this

increase in road users will bring along more pollution, accidents, stress, waste of time.

Although the number of accidents are slowly decreasing with the increasing number of

drivers in Canada [Gutoskie, 2001], it is estimated that more than 90% of all driving

accidents are caused by human errors such as fatigue, inattention, or intoxicated driving

[Smiley and Brookhuis, 1987]. Apart from having to face these problems, tomorrow’s

Canadian driver is always trying to keep up with time by talking on the phone, putting

on her makeup or reading while driving, and thus, could use some help to drive his or her

car. An answer to our twenty-first century driver’s prayers could then be found in a new

technology, gaining popularity all over the world, known as Intelligent Transportation

Systems (ITS). These systems can be seen as a complex set of technologies that are

derived from information and computer technologies, as well as applied to transport

infrastructure and vehicles [Lin and Leung, 2002].

It is shown that ITS may provide potential capacity improvements as high as 20

percent [Stough, 2001], which would also lead to fewer pollution caused by both the

reduction of time the vehicles spend on the highway and a low emission intelligent

driving model based on smooth speed and acceleration changes [Barth, 1997]. Other

benefits of ITS include: (i) increased safety; (ii) time savings; (iii) reliable transportation

system; (iv) enhanced productivity for the domain of transportation [Gillen et al., 2000],

etc. However, in order to benefit the most from ITS, all the technologies must be used

as whole and they should collaborate to gain maximum efficiency.

Chapter 1. Introduction 2

At the moment, ITS is being used as part automated controllers in luxury vehicles

including Intelligent Cruise Control (ICC)1 and warning or collision avoidance systems.

Other services relating to the road infrastructures are also being offered in the form of

communicated information relating to maps, service locators or anti-theft systems. In

addition, the communication systems relating to ITS are also being improved radically

through research, on the road infrastructure and vehicle level, to create information net-

works through a dynamic intranet based on moving vehicles. Following the same path,

the Canadian government is now looking for a newer approach to its transportation

system, which would include more and more ITS technologies [ITS, 1999].

Being aware of all those facts, we propose to use all the current technologies re-

lating to communicated traffic information and automated vehicle controllers inside a

Collaborative Driving System (CDS)2 A CDS is a system, based on inter-vehicle com-

munications, in which vehicles collaborate by exchanging information or request, in

order to drive autonomously (more or less) in formations of vehicles. Thus, CDS is the

ultimate form of ITS where the driver can be removed at some point and it is also a

logical achievement of all the services offered by the ITS.

In this thesis we describe the research process that led us to the elaboration of

a CDS prototype for the Auto21 project. This first chapter begins with a detailed

representation of the problems we addressed (Section 1.1). The following sections depict

the reasons that motivate us to address a problem relating the Intelligent Transportation

Systems (Section 1.2) and the reasons that motivate the development of a Collaborative

Driving System (Section 1.3). Finally, the objectives of this thesis are described in

Section 1.4, followed by a presentation of the thesis organization in Section 1.5.

1.1 Problem Description

Out of all the technological equipments people use in their every day life, the automobile

is probably the most complex one. Indeed, technological advances available for vehi-

cles are growing rapidly, often helping to reduce the negative effects of transportation

systems, such as pollution, traffic and safety. Among the technologies making vehicles

“intelligent”, the ones relating to driver’s assistance or autonomous driving are very

complex issues. This type of system has to respond to real time critical situations as

car malfunctions or cars suddenly braking in front of you. As more driving tasks are

1Also known as Adaptive Cruise Control (ACC), ICC uses sensors to automatically maintain fol-
lowing distances.

2CDS is sometimes called Co-operative Driving System.

Chapter 1. Introduction 3

being handled by the vehicle itself, and more gadgets are appearing in your car, two

problems arise: conflicts between these automated tasks and the human driver’s accep-

tance or disturbance from these technologies. For example, automated route finders,

using a digital map and a Global Positioning System (GPS), often have disturbing ef-

fects on most drivers that cannot always stay focused on both the map and the road.

Therefore, making a vehicle more “intelligent” by adding new technologies is one thing,

but making the vehicle easier to drive for a human is another, which results in a prob-

lem that can be addressed through a system incorporating all these technologies, like

the CDS.

As many countries are battling in the race for autonomous vehicles, Canada is

covering many aspects through the Auto21 network. This network and the definition

of the project covering the autonomous vehicles aspects are described in Section 1.1.1.

Following this description, the problem of autonomous driving systems is presented in

Section 1.1.2. Then, the problems concerning the current ITS technologies are detailed

in Section 1.1.3, while the difficulties in choosing the right test environment for our

CDS are presented in Section 1.1.4.

1.1.1 Auto21 Project

The Canadian government through the Canadian Networks of Centres of Excellence

(NCE)3 and the help of more than 120 industry, government and institutional partners

supports a network called Auto21 [Auto21, 2004] [DAMAS-Auto21, 2004], which brings

together most of the Canadian researcher relating to the automobile domain. As its

main goal, this networks aims to strengthen the competitive position of Canada in the

automotive industry, our most important industry. The Network currently supports

over 230 researchers working at more than 35 academic institutions, government re-

search facilities and private sector research labs across Canada and around the world.

The researches on Collaborative Driving System (CDS) are done within the network as

part of one of the six themes which is called Intelligent Systems and Sensors [Auto21,

2004]. The CDS project is led by Dr. François Michaud4 and involves the University of

Sherbrooke, Calgary and Laval University. As its main goal, this project aims at creat-

ing the prototype of a system allowing vehicles to coordinate in high-density highway

traffic (CDS presented in Section 1.3). To do so, each university has different fields of

expertise that are required to complete this multi-disciplinary application and which

are briefly described here:

3For more information, visit http://www.nce.gc.ca
4For more information, visit http://www.gel.usherb.ca/michaudf/

http://www.nce.gc.ca
http://www.gel.usherb.ca/michaudf/

Chapter 1. Introduction 4

• The University of Calgary, being specialized in the field of telematics with the de-

partment of Geomatics engineering, has been assigned the research on Intelligent

Sensors for Vehicle Perception and Navigation.

• Laval University, through Dialog, Automatic Learning and Multiagent Systems

(DAMAS)5 Laboratory, is involved in the Coordination and Communication Ar-

chitectures sub-project that is detailed in this thesis.

• Sherbrooke University, through the Research Laboratory on Mobile Robotics and

Intelligent Systems (LABORIUS)6, is involved in the two previous sub-project as

well as the Integrated Navigation, Guidance and Control sub-project.

1.1.2 Autonomous Driving

The previous section described the Auto21 research project that focuses on the col-

laborative driving research domain, which aims at creating automated vehicles which

collaborate in order to navigate through traffic. In this sort of driving, one generally

form a platoon, which is a group of vehicles whose actions on the road are coordinated

using communications. The first vehicle of a platoon is called the platoon leader and its

role is to manage the platoon and guide it on the road at an undefined level of author-

ity. The other vehicles are called followers and their main goal is to maintain a specific

distance in time with the preceding vehicle using information from sensor(s). Figure 1.1

shows a real platoon of vehicles formed of automated vehicles from the PATH project7,

evolving on an Automated Highway System (AHS). Within the previously defined

Auto21 project, different levels of system functionality have been defined to extend the

project through time and needs. As it is the basic need of this project, all the different

levels need to support and maintain a platoon structure during such events as vehicle

leaving or entering their platoon through different possible emergencies. Three levels

of autonomy specify the leader and the followers’ tasks and roles inside our project:

• In the first level of autonomy (autonomous longitudinal control), only the relative

distance and velocity of the cars are actively controlled in a type of generalized

and distributed “cruise control system”, although drivers still steer their vehicles

manually. A possible usage of the system at this level could be achieved using a

driver assistance interface providing steering actions orders to the driver as a lane

changes for example. This way, the system could control the vehicle’s brake and

gas as long as the vehicle is part of, or switching from different platoons.

5For more information, visit http://www.damas.ift.ulaval.ca
6For more information, visit http://www.gel.usherb.ca/laborius/
7For more information on California PATH, at UC Berkeley, visit http://www.path.berkeley.edu

http://www.damas.ift.ulaval.ca
http://www.gel.usherb.ca/laborius/
http://www.path.berkeley.edu

Chapter 1. Introduction 5

• In the second level of autonomy (semi-autonomous longitudinal-lateral control),

the lateral and longitudinal motion of each vehicle are autonomously controlled

relatively to the one preceding it, all the way to the first “lead car”, in a form of

generalized car-train with a specially equipped lead car and trained driver. Again,

a possible immediate use of the second level could be done using such lead cars

that would co-exist in a given urban center, each with its own generic destination,

much like a conventional train or bus, but with the added freedom of “getting off

the train with your car”.

• Finally, in the third level of autonomy (fully autonomous longitudinal-lateral con-

trol), the addition of cooperative steering, using the road and the telematic infras-

tructure as a guide for absolute motion control, will provide autonomous road-

following capabilities. Thus, each vehicle in the third autonomy is able to take the

role of a leader, meaning that platoons are completely and autonomously manage-

able. This final level complicates the problem of coordination, as we eliminate the

master entity called the leader, which centralized the coordination for a platoon

formation. On the other hand, giving autonomy over collaborative issues to each

vehicle allows for much more flexibility, which is crucial for platoons evolving in

dense traffic.

Figure 1.1: Platoon of automated vehicles on an Automated Highway System, developed

by the PATH project [Hedrick et al., 1994].

At the moment only the first level has been developed and represents the research

described in this thesis. The various achievement levels that were just mentioned guar-

antee that a functional system will be available at every step of this long-term project.

To achieve this, the different functional systems should also evolve through software

simulation, simulation with robots and finally, using real vehicles on a test road.

Chapter 1. Introduction 6

For a better understanding of the problems that must be resolved to maintain a

stable platoon formation, the two main disturbances in the platoon formations are

described below. Those two “disturbance”, called split (vehicle exiting the platoon)

and merge (vehicle entering the platoon), are represented in Figure 1.2 and can be

detailed as follows:

 S3

 S2

 S1

L
1

F
1

F
2

F
3

L
2

L
1

F
1

F
2

F
3

L
2

L
1

F
1

F
2

F
3

L
2

 S1

 S2

 S3

L
1

F
1

F
3

F
4

F
2

L
1

F
1

F
3

F
4

F
2

L
1

F
1

F
3

F
4

F
2

F
2

Vehicle Entrance Vehicle Exit

TRAFFIC FLOW

TRAFFIC FLOW

TRAFFIC FLOW TRAFFIC FLOW

TRAFFIC FLOW

TRAFFIC FLOW

Figure 1.2: The three steps of the removal (split) and insertion (merge) of a vehicle in

the platoon.

A Vehicle splitting happens when a vehicle member of a platoon decides to leave it,

thereby forming two non-empty platoons. To execute this manoeuvre, the splitter (F2

in Figure 1.2) must communicate its intention of leaving the platoon, so the platoon

formation modifies the distances at the front and rear of the splitting vehicle as shown in

step 1 (S1) of Figure 1.2. When this new formation gains stability, the splitting vehicle

F2 can change lane, while the rest of the platoon followers keep the same distances.

When the splitting vehicle safely left the platoon (S2), the gap created for its departure

can be closed, thus forming back the precedent platoon, minus one vehicle (S3).

A Vehicle merging is the exact opposite of a split manoeuvre: two non-empty pla-

toons merge together to become one. This manoeuvre requires a platoon formed of

only one vehicle, which is L2 in Figure 1.2, to communicate to another platoon its will

to join it. Moving from S1 to S2, the latter platoon reacts by creating a safe space and

communicating to the merging vehicle the dynamic position of this space in its platoon.

The merging vehicle modifies its velocity to join the meeting point, verifies if it is safe

to merge and changes lane to enter the platoon formation and leave S2 to go to S3.

Once the merged vehicle has stabilized its inter-vehicle distance, the platoon can reach

its precedent formation plus one vehicle, by diminishing the distances with the new

Chapter 1. Introduction 7

vehicle. Although, the steps of the merge manoeuvre may differ from one coordination

approach to another, this represents the general pattern of the merge manoeuvre.

Within the CDS project of Auto21, the problem of platoon driving within the three

levels of autonomy presented above has been separated in three different sub-projects.

Each sub-project has a common goal of creating a CDS that supports platoons of

autonomous vehicles, but they attack very particular aspects of this problem.

• Intelligent Sensors for Vehicle Perception and Navigation is a sub-project that

studies different types of sensors to provide a higher level of information on the

vehicles’ surrounding environment. To do so, optimal sets of sensors have to be

developed and tested on vehicles. Algorithms for data fusion and filtering should

also be developed considering the information required by the deliberative system.

The information that the navigation system should provide includes: detection of

obstacles, detection of neighboring cars, measurement of relative motion, absolute

positioning, etc.

• Integrated Navigation, Guidance and Control sub-project has to develop a system

in charge of determining the desired dynamical state of the vehicle and applying

actions relating to lateral and longitudinal motion in order to acquire those states.

At a lower level, this project has to develop controllers, for both the steering wheel

and gas and brake pedals, that act in collaboration with the guidance system,

using low-level data from the sensors. For the guidance system, such things as

the platoon configuration, vehicle’s destination and safety issues are taken into

account to specify the desired vehicle states to the controllers. The guidance

algorithms also need to resolve problems as the platoon’s string stability and

focus on the robustness of this driving architecture.

• Coordination and Communication Architectures is the third sub-project, working

in relation with the navigation system by using the information it provides on the

vehicle’s environment in order to reason about collaborative driving issues in a

platoon configuration. By coordinating its vehicle’s actions, the communication

architecture advises the guidance system, developed in the previous sub-project.

The main coordination aspects that are handled are: the support of a vehicle’s

entrance and exit from the platoon, a vehicle’s lane changes and entrance or exit

from the highway, and the maintenance of stability with other vehicles member

of the same platoon.

The first two sub-projects mainly concern the university of Sherbrooke and Calgary,

while the last sub-project relates to the research detailed in this thesis.

Chapter 1. Introduction 8

1.1.3 Intelligent Transportation Systems & Artificial Intelli-

gence

As the name Intelligent Transport Systems invokes it, these systems must provide AI-

based responses to their users. Although this should be true, most of the Intelligent

Transportation Systems (ITS) technologies we have seen so far are based on reactive

systems. This type of system does not reason or deliberate using exhaustive planning

with up to date knowledge bases and elaborate communications, so their actions are

very limited.

ITS have mostly focused on the reactive control aspects of automated vehicles, but

very few research has been done on the cooperation and coordination of these tasks. In

fact, at the vehicle level, Artificial Intelligence (AI) has mostly been used for applica-

tions relating to longitudinal control such as Adaptive Cruise Control [Winner et al.,

1996] and its enhanced versions, like the Semi-Autonomous Adaptive Cruise Control

(SAACC) [Rajamani and Zhu, 2002] detailed in Section 4.1. On the other hand, the ve-

hicle’s lateral control is a research area for which applicable solutions have only started

to emerge and some have been successful in experimental conditions [Rajamani et al.,

2000]. But this technology has to succeed in many more test scenarios since the two

dimension control environment is much more complex than the one dimensions of the

longitudinal control. In addition, the lane change control algorithms will require severe

logical checks to ensure its functionality in uncertain situations. For this reason, auto-

mated lateral control, as lane following will not be applicable to commercialized cars in

the years to come, so we do not address this problem in our research.

Apart from lower-level control functions, much more complex applications have also

been developed for the platoon architectures and were used in real life situations. Such

a demonstration was done during Demo 2000 in Japan, by car constructors and projects

as the University of California at Berkeley’s PATH project [Hedrick et al., 1994] and

Japanese research programs as ASHRA8 and Tsugawa et al. [2001]. Although the com-

municative and guidance approaches presented in those projects proved to be successful,

they did not address the problem of the vehicle formation’s flexibility and their com-

munications’ efficiency as important issues. As a result, their coordination models have

mostly been using communication protocols based on hard coded platoon states, instead

of generic states that would be able to respond to any situation. From the informa-

tion that these projects made available, their architecture is centered on the platoon,

seen as a static formation and, most of the time, on its leader, thus restricting the

8For more information on Japan’s Advanced Cruise-Assist Highway System Research Association,
visit http://www.ahsra.or.jp

http://www.ahsra.or.jp

Chapter 1. Introduction 9

collaboration possibilities. Moreover, their collaboration models were kept simple and

required scripted plans to react to unforeseen situations. To conclude these remarks, it

must be mentioned that most of the national projects as the American and Japanese

ones presented the fully autonomous platoon architecture as the highlight of their re-

spective project [PATH, 2004], using a demo version developed at the beginning of the

project, which was then left aside. Hence, for the past years, researchers concentrated

their efforts on the longitudinal and lateral control to be used as intelligent cruise con-

trol and left enormous amount of work for the collaborative/networking part of their

architecture.

As it has been shown, the problem of longitudinal control is well defined and solu-

tions are now being applied to luxury vehicles as some Mercedes-Benz models, shown

in Figure 1.3, which is now available with a distronic adaptive cruise control capable

of maintaining inter-vehicle distances. But a great amount of research has yet to be

achieved to combine these vehicle control systems with the available route planning

systems, in the most efficient manner. As it is represented in Figure 1.4, ITS infras-

tructures offer multiple services that are very complex and require more coordination

among them. Following from these facts, a “merging” system incorporating both the

vehicle control and traffic information systems, through a Multiagent approach, seems

inevitable. Accordingly, the problem of modelling a Collaborative Driving System as a

Multiagent System (MAS), focusing on inter-vehicle coordination, was defined as the

most propitious problem to address as part of this thesis and for the Auto21 project’s

research at DAMAS laboratory.

Figure 1.3: Distronic Adaptive Cruise Control in a Mercedes-Benz [Mercedes-Benz,

2004].

Chapter 1. Introduction 10

Figure 1.4: ITS architecture of the ASHRA association [AHSRA, 2004].

1.1.4 Intelligent Transportation Systems Simulation

The last problem to be addressed as part of this thesis is the one of finding a suitable

environment to test our autonomous driving system. As possible test environments,

the following options can be considered: (i) a group of real vehicles; (ii) mobile robots;

(iii) or a simulation software. Real vehicles have the advantage of representing the real

environment in which the system will evolve and thus, being a good proof of the system

feasibility. On the other hand, real vehicles are very expensive, they must be used on

a dedicated highway and they may be harmful to people, depending on the type of

tests that are executed. Mobile robots are also expensive and, as it is the case for real

vehicles, they must be equipped with the necessary sensors and communication devices,

which may also be very expensive.

On the other hand, a software simulator does not have the previous disadvantages,

although it never reaches the same level of reliability as real vehicles. A software

simulator is easier to use, since it does not require a dedicated space, expensive resources

and people to manoeuvre, and it can be used in a running loop on customizable time

frames. However, intelligent vehicles software simulators may be expensive and require

expensive computers, depending on the level of detail of the vehicle model and the scale

of the traffic simulation.

Chapter 1. Introduction 11

1.2 Motivations relating to Intelligent Transporta-

tion Systems

ITS have been introduced to the domain of transportation as an answer to many prob-

lems that they are already starting to resolve. Indeed, this technology has been very

useful in such aspects as: (a) traffic on highways; (b) safety while driving; (c) effects of

vehicle on the environment; (d) efficiency in transportation industries; (e) and different

social aspects relating to drivers. As these are probably the most important consider-

ations relating to vehicle transportation, their enhancement through ITS constitutes a

major motivation to the development of a Collaborative Driving System.

1.2.1 Traffic

As it was mentioned in this chapter’s introduction, the vehicle traffic on roads is a

major problem that can be resolved using ITS. Up until now, the only solution was to

build more roads, and from 1990 to 1995, the overall road system length has increased

by more than 13,000 kilometers in Canada [Randall et al., 2000]. Furthermore, the

highways formed of more than three lanes, which constitute the type of road usually

extended to increase traffic capacity in major cities, grew by almost seven percent (even

more for the United States and Mexico) in only five years [Randall et al., 2000]. Taking

these facts into account, it is obvious that Canada has an urgent need for an alternative

solution to its traffic problems.

As mentioned earlier, ITS have a proven capacity to improve traffic flow, and this

is especially true when using technologies as the Adaptive Cruise Control (ACC) and

the platoon model. Considering the fact that the instability in the traffic flow is the

first cause of the usual traffic jams, stabilizing the traffic flow using ACC within a

platoon will ultimately improve the highways capacity [Liang and Peng, 2000]. In-

deed, studies on the platoon string stability using inter-vehicle communications showed

a great improvement in the flow of vehicles that were used in platoon formations

[Darbha and Rajagopal, 1998]. Moreover, using a dedicated highway for automated

vehicles, the traffic equilibrium can be reached and maintained more easily at the high-

way level, increasing even more the benefits of this technology. Apart from the traffic

stability the capacity of existing highways can also be increased using this form of au-

tomated driving. This can be done by reducing distances between vehicles until they

reach the minimal safe distance, considering the controllers’ capabilities and the road

condition.

Chapter 1. Introduction 12

1.2.2 Safety

Safety being a very important issue, it is a great incentive to improve automated driv-

ing tasks and vehicle emergencies systems, which are directly linked to our CDS. Al-

though Canada’s fatality rate per 10,000 motor vehicles registered decreased from 1.79

in 1996 to 1.63 during 1998, its international ranking among Organization for Economic

Co-operation and Development (OECD) member countries decreased to 9th from 8th

during 1996 and 1997, according to Gutoskie [2001]. According to the same author, the

national target calls for a 30% decrease in the average number of road users killed and

seriously injured for the 10 years to come.

These numbers show that actions must be taken and automated driving systems

could be very effective in resolving this problem. Indeed, technologies precursive to

CDS, as the Collision Warning Systems (CWS) have improved the driver’s reaction

time to emergencies and thus, lowered accidents. It has been argued that if an extra

half a second of warning time, is provided to a driver, 60% of collisions can be avoided

and with one second of warning time this portion increases to 90% [Woll, 1997]. Thus

an important amount of collisions could be avoided using CDS, as this system’s sen-

sors are directly linked to the effectors and have a faster reaction time to warnings

than humans. Moreover, Touran et al. [1999] showed that the probability of a rear-end

collision between a lead car and a car equipped with Autonomous Intelligent Cruise

Control (AICC) is significantly lower compared to unequipped cars.

Finally, if we consider the arguments on the string stability, presented in the latter

Section 1.2.1, safety enhancement can also be derived from the same facts. Hence, a

stable vehicle formation lowers the acceleration and deceleration of each vehicle, thus

lowering the possibility of collisions, often caused by unstable traffic flow leading the

drivers to apply high decelerations.

1.2.3 Environment

Another major societal issue relating to the use of automobiles is its environment im-

pacts. Following from new Canadian regulations, the automobile industry had to im-

prove the negative impacts of their vehicles, but there are still a lot of efforts left to

be done. Indeed, the automobile remains a major source of pollutants as the Cana-

dian emissions of CO2, and contributes to increasing the concerns of global warming

[Smith, 1993]. The Transportation sector (excluding pipelines) represents one of the

largest sources of emissions in Canada, accounting for 24.7% of total emissions in 2001

Chapter 1. Introduction 13

(177 Mt) [Jaques, 2003]. For Canada’s major cities as Vancouver, Calgary, Toronto,

Ottawa, Montreal, and Quebec City, cars have a very important influence on the air

quality which influences the citizens’ well-being.

Liang and Peng [2000] proved that an Adaptive Cruise Control (ACC) could reduce

the average acceleration level of a vehicle, which in return lowers the vehicle fuel con-

sumptions and emissions. Furthermore, Bose and Ioannou [2001] showed that as much

as 60% reduction in the air pollution could be achieved, if 10% of the current vehicles

would be equipped with ACC. Because vehicles part of a CDS can easily maintain a

stable velocity, as well as a close distance with their preceding vehicle, they can reduce

the wind resistance applied on their vehicle. Therefore, platoon members have lower

fuel consumptions, which is another important factor motivating the use of CDS.

1.2.4 Efficiency

By enhancing highways capacity and providing optimal route planning, ITS traffic man-

agement systems can greatly improve the efficiency of Canada’s road network. This kind

of benefit results from the operational efficiency gained by larger organizations making

a wide use of the road network. Thus, city or national bus transit, freight transporta-

tion companies, emergency vehicles and many more could profit from advances in ITS,

at the productivity level. For both users relating to carriers and state agencies, there

is a positive impact on the productivity when using ITS related to guidance or traf-

fic management systems, as they provide significant cost savings and improved service

[Proper, 1999].

In particular, ITS technologies relating to vehicle location systems have great impact

on fleet management based on a vast road network. As shown in Gillen et al. [2000],

Automatic Vehicle Location (AVL) applied to public transit allows transit managers

to better utilize resources and generate cost savings. In addition, vehicle navigation

devices, when deployed in a wider area, can greatly improve travel time, a well as

travel planning time, as opposed to the use of standard maps [Inman et al., 1996].

At last, preliminary analysis revealed that the throughput generated using AHS was

increased of 300% for autonomous driving vehicles in platoon formations, and 200%

for non-platooned vehicles. Moreover, analysis based on freeways in Long Island and

Washington DC, predicted that these capacity improvements could reduce travel time

by 38% to 48% [Stevens, 1995]. AHS and the different navigation technologies relating

to ITS thus have tremendous impact on the economy and this fact is enhanced when

using CDS to form platoons.

Chapter 1. Introduction 14

1.2.5 Social Aspects

Social issues represent aspects of driving that may not be as obvious as the previous

points, but that still need to be improved. Road rage is a rising problem, broadly

publicized lately, which is usually caused by stressed drivers or unrespectful driving

behaviour from other drivers. In fact, impaired driving and road rage constitute the

most important anti-social behaviours and they even seem to be on the rise [Elliott,

1999]. In addition to the current societal problems, the drivers’ possible distractions

are growing since the appearance multimedia technologies available in cars. These

technologies, along with cellular phones, are now broadly used and they constitute a

major cause of risky driving behaviours’ growth [Beirness et al., 2002].

As a solution to these problems, using an automated driving system can reduce the

driver’s mental workload to a certain degree [Stanton and Young, 1998], which should

improve the driver’s behaviour while driving. As the driver gets used to the system,

a greater predictability and smoothness of the vehicle handling reduces, in most cases,

the driver’s stress. As stress should be reduced and distracting technologies should

affect less drivers with automated driving vehicles, anti-social driving behaviours would

decrease. Moreover, using a fully automated driving system, the problems of impaired

driving would be history, considering that humans would not have to drive anymore.

1.3 Motivations relating to Collaborative Driving

System

The motivation for the development of a Collaborative Driving System comes in part

from the previous motivations of ITS, but also from the benefits surrounding the de-

velopment of such a system. Canada has far more to go to meet the advances, in

the domain of intelligent vehicles, that some countries as the USA and Japan have

reached. In addition, ITS infrastructures are now being developed across the nation

and the Collaborative Driving System (CDS) proposed in this thesis would constitute

their smartest and most efficient use. A collaborative system embracing the currently

available vehicle controllers would resolve the previous problem of conflicts between the

different vehicles’ automation systems. Such a system would ultimately lead to a fully

autonomously driven vehicle which would also resolve problems relating to the human

driver’s acceptance, currently being studied.

More specifically, the motivations for our research on CDS relate to the impact of

Chapter 1. Introduction 15

our work inside the sub-project of Coordination and Communication Architectures. Our

work first results in an application that can be reused for other similar problems, which

is a great source of motivation, as shown in Section 1.3.1. Another source of motivation

is based on the communication and cooperation infrastructure that will be developed

as part of our CDS, as explained in Section 1.3.2. A final motivation for this project is

presented in Section 1.3.3, which describes the motivation in building our own software

simulator.

1.3.1 Possible Deriving Applications

Within the CDS described in this thesis, the problem of maintaining a stable platoon of

automated cars on the highway is being resolved. However, the methodology that is used

to resolve this problem may also resolve similar problems part of different domains. In

fact, various dynamic systems that evolve in a transportation related environment share

several needs and goals, and could also be automated at a certain degree, as we plan

to do with cars. Girard et al. [2001] presented four similar applications of networked

multi-vehicle systems: (1) Mobile Offshore Base (MOB); (2) Automotive Applications

(AA) using platooning strategies; (3) Unmanned Combat Air Vehicles (UCAV); (4)

Autonomous Underwater Vehicles (AUV). As these applications all relate to the control

of a certain group of vehicles equipped with sensors and effectors, that communicate

to coordinate their actions, they can share a common agent-based generic architecture.

Thus, considering that abstract manoeuvring and communication behaviours can be

shared among these applications, it is possible to share a common application core.

If we focus on the domain of automobile, many applications, using a CDS to form

platoons, can be outlined. In the public sector, CDS can be used for public transit as the

PATH project has done using platoons of buses. Then, emergency vehicles could also

find great improvements in their efficiency, as automated driving would enable them

to get prepared or perform rescue tasks while driving. As mentioned in Section 1.2.4,

freight transportation companies would be more efficient by regrouping their trucks

in platoon formations using automated guidance systems. Other derived applications

could be developed, as for example, the use of CDS in small electric vehicles, within

retirement villages where elders, which often suffer from different disabilities, could

be moved around more easily. Moreover, an autonomous driving vehicle could also be

used by rental cars companies or for valet parking services, since the unmanned vehicles

could return back to a specific destination autonomously. Finally, different applications

relating to militaries are foreseen. For instance, the creation of unmanned military

convoys transporting goods during dangerous missions could be based on a CDS and it

would result in no human losses.

Chapter 1. Introduction 16

1.3.2 Communication and Cooperation in ITS

As mentioned in Section 1.1.3, recent advances in ITS are starting to build a commu-

nication infrastructure dedicated to vehicle guidance and traffic management. Private

companies are also part of this technologic boom, as new models for communication

networks using vehicles are being proposed by companies like Nortel and Siemens. Ma-

jor car manufacturers are using more and more communication devices in their vehicles

and have plans, in association with telecommunication corporations, for vehicle-oriented

Wireless Local Area Network (WLAN) [Holfelder, 2003]. Thus, as the communication

structure is being built, information from road-side sensors are also starting to be ex-

changed for navigation and traffic management purposes.

Furthermore, vehicles should also take part in this network by both sending informa-

tion about their state and intentions, and receiving the same information from others,

in order to plan driving actions. Communication among vehicles using CDS or ACC

is very profitable for automated driving in formation of many vehicles. Swaroop et al.

[1994] demonstrated that a constant spacing platoon is stable only if certain types of

vehicle-to-vehicle communication are available. Xu et al. [2002] also shown the benefits

of communication as an addition to standard ACC, which resulted in faster response

time and a smoother and safer reaction, resulting in a more comfortable ride.

Most of the result on the use of inter-vehicle communications related to cruise control

technologies and not much to complex guidance and control systems as the CDS. Using

complex communication messages, control and guidance systems could communicate

information about their driving actions through protocols relating to intra or inter-

platoon tasks. A convenient system model in which we could include the inter-vehicle

guidance and coordination issues could be the Multiagent System (MAS). Indeed,

agent based transport logistics systems have been used to analyze the data provided

by road-based sensors, and they proved to be useful in representing and managing

traffic information [Davidsson et al., 2004]. MAS have also been used in the domain

of transportation for applications such as real-time traffic lights control and presented

much more efficient results [Dresner and Stone, 2004], and in some cases safer results

[Conde et al., 2004], than the current reactive systems.

Wada et al. [2004] have shown that for their prototype of autonomous vehicle, one

of the major requirement was for the vehicle to support additional resources without

administrative overhead and to offer in-vehicle networks that are flexible and scalable.

This relates to what was mentioned in Section 1.1.3 about the current ITS flexibility

needs which could be resolved through a Multiagent System. Such system provides a

wrapping layer over the multiple sensing and actuating technologies as well as interop-

Chapter 1. Introduction 17

erability through the Agent Communication Language (ACL). This type of wrapper

is detailed in Chapter 2, which presents different agent-based architectures along with

agent-based coordination techniques. These techniques have been used in many en-

vironments, to handle distributed autonomous applications, as it is the case for our

platoon of vehicles. As some examples, we can point out successful uses of a MAS that

motivate its use in our CDS:

• Agents for industrial systems management, as the ARCHON project which led to

many applications as a power distribution system in Spain [Jennings et al., 1995].

• Agents for spacecraft control consisting in a real-time in-flight diagnosis applica-

tion [Georgeff and Lansky, 1987].

• Frigates resource management and positioning in a real-time combat environment,

as the NEREUS project [Morissette et al., 2004].

• Management of different rescue teams acting in a large simulated urban disaster,

to save lives and minimize building damages [Paquet et al., 2004].

• Multi Agent Based Simulation used to synthesize social behaviours of humans or

any dynamic objects [Moss and Davidsson, 2001].

• Agents for workflow and business process management as the ADEPT system

[Jennings et al., 1996].

• Tactical air traffic controller agents that help alleviate air traffic congestion, as

the OASIS system [Ljungberg and Lucas, 1992].

1.3.3 Collaborative Driving System Simulation

As mentioned in Section 1.1.4, considering the different complications relating to the use

of real cars or robots to test our CDS, it was more advisable to use a software vehicle

simulator, at least for the initial phases of development. The choice of a software

simulator was motivated by the following aspects, which also drove our choice for the

right simulator: (a) a low cost; (b) reasonable computing power needs; (c) reliability;

(d) respond to our ITS needs; (e) easy to use and extend; (f) able to interface with

the Java language. More specifically, the chosen software simulator had to support

the following requirements, relating to CDS: (i) simulate the vehicle dynamics with

a complete vehicle model (with a certain degree of details); (ii) simulate internal and

external vehicle sensors; (iii) simulate different types of inter-vehicle communication

systems; (iv) simulate manageable vehicle models; (v) manage platoon scenarios in

Chapter 1. Introduction 18

batch testing with possible uncertain events; (vi) keep a simulation log on vehicle and

driving agents aspects.

Given those needs, the two main possibilities are to either build our own simulator

or buy one. Building its own simulator requires more time and software simulation

knowledge, but gives total control over the simulator’s source code. In fact, a CDS

simulator can be built over an existing open source simulator project or using available

libraries, and this can reduce the programming task. On the other hand, if there is a

simulator available on the market, that exactly suits your needs, it may be the best

option. Thus, considering that we had software developer resources available at the

DAMAS laboratory, it was more advisable to either choose a simulator we could easily

extend or to build our own simulator.

As a first glance at the available simulators relating to autonomous vehicles, we

looked at simulators from two similar projects: California PATH’s Smart AHS Simula-

tor [Kourjanski et al., 1998] and Carnegie Mellon’s Simulated Highways for Intelligent

Vehicle Algorithms (SHIVA) [Sukthankar et al., 1998]. PATH’s simulator answers to

most of our requirements as it was built to test autonomous vehicle platoon formations,

but it was programmed using a new language called SHIFT and it requires Silicon

Graphics supercomputers. SHIVA simulator was programmed in C++, which can be

easily interfaced with Java, but it requires Sun Sparc Stations to run, it has a poor

documentation and it does not offer licensing possibilities with source code access.

Other free vehicle simulators and some open source ones are also available through the

Internet, but most of them are either too abstract or oriented for gaming purposes.

Detailed vehicle simulators, like CarSim9, are also available, but usually at expensive

cost and they cannot be extended for the autonomous driving implementation needs,

since their source code is not available. Finally, we also analyzed traffic simulators that

mainly simulate vehicles at a higher level, like the microscopic traffic simulation pack-

age Paramics, developed by Quadstone10. Similar simulators that can simulate road

network’s through a social network at a very high macro-level of traffic representation

are available [Balmer et al., 2004], but all of them suit traffic management needs, so

they were not considered in our final choice.

Considering all these options, we concluded that the best choice was to build our

own in simulator using some available libraries to lower the programming task. Using

Java programming language and its variety of free libraries and open source code, we

knew that our simulator could easily interface with our driving agents, also programmed

in Java. Therefore, the choice of building our own Java-based simulator responded to

9For more information, visit http://www.carsim.com
10For more information, visit http://www.paramics-online.com

http://www.carsim.com
http://www.paramics-online.com

Chapter 1. Introduction 19

our motivations in having a simulation software that respects our specific needs, with

total control over the source code.

1.4 Thesis Objectives

According to the Auto21 project’s initial tasks decomposition for the theme F: Intel-

ligent Systems and Sensors [Auto21, 2004], different milestones have been established

and divided within working groups according to research specialization and university

affiliation. The Collaborative Driving Systems project’s objectives have been briefly

summarized in these lines:

This research project aims at developing a prototype of Collaborative

Driving System (CDS) that can be used as part of a Canadian Automated

Highway System (AHS). The objectives of this research should be to pro-

vide a recommendation and description for an intelligent navigation, guid-

ance and cooperation system. The description of the different architectures

should be merged together into one fully operative CDS that should be fault

tolerant, efficient and robust, while focusing on safety. The CDS prototype

should be developed and tested using software simulation, robots and vehi-

cles to validate the system’s motivations that were presented in Section 1.2

and more importantly, demonstrate the system’s robustness. As presented

in Section 1.1.2, the first model should be an answer to the vehicle’s longi-

tudinal control in a model relating to an Adaptive Cruise Control (ACC)

system, used in a platoon formation.

Furthermore, the sub-project assigned to DAMAS (Coordination and Communication

Architectures) has been defined as follows:

This project has to conduct a survey about potential architectures in-

corporating the main components of the CDS (sensing, control and com-

munication) as one system that can be used in each vehicle, to cooperate

with the highway’s infrastructures. Within this architecture, the research

should focus on the usage of communication systems and possible coordi-

nation techniques. In a first phase, this project should resolve the prob-

lem of coordination inside a same platoon (intra-platoon) and in second

phase, between neighboring platoons (inter-platoon). The coordination sys-

tem should demonstrate its ability to handle events such as lane changes and

Chapter 1. Introduction 20

vehicle merging and leaving platoons, and it should maintain the platoon

stable through different possible disturbances. As part of our objectives, the

complexity of the approaches, the ability to handle unanticipated event and

the amount (in quantity and from/to whom) of communication required to

reach an efficient level of coordination are examined.

Accordingly, the objective of our research project mainly consists in studying different

architectures related to automated transport systems and the coordination of agents.

This study should then lead to the conception of a MAS suiting most of our needs, and

to the conception of a simulated system to prove our affirmations. The tasks required

to meet these objectives can be summarized in the following points:

• Study different architectures and techniques used for automated vehicles.

• Design a flexible architecture, specific to this project, suiting the different sub-

projects needs: Perception and Navigation, Guidance and Control, Coordination

and Communication.

• Analyze and develop coordination techniques within the previous architecture, to

point out the pros and cons of each one.

• Design and develop the selected coordination technique(s) into a collaborative

driving application, where agents guide the vehicles to respond to the platooning

problematic.

• Analyze and design a highway simulator with specific vehicle technology require-

ments, to test and evaluate the developed Collaborative Driving System (CDS).

• Implement and develop the previous simulator, according to gradual simulation

needs.

• Analyze the coordination and communication aspects of the platooning manoeu-

vres under various simulated scenarios and conclude on the performances of the

proposed CDS.

Although a fully autonomous platoon architecture may seem out of reach, consider-

ing the current available technology, a gradual application of the collaborating system,

as presented in the problematic is feasible. Hence, even though the lateral controllers

are not currently applicable to commercialized vehicles, our coordination model will

be usable by assigning tasks that cannot be safely automated, directly to the human

driver. Using an interface between the driver and the CDS, as a communication system

through the vehicle’s speakers, the CDS could request tasks as change lane to the driver.

This way, the inter-vehicle tasks coordinated through our system could be applied, at

Chapter 1. Introduction 21

any time within the development phases, by either using an automated controller or the

human driver, for different vehicle control issues. Accordingly, to set the basis of our

CDS, we decided to focus on developing a functional demo supporting the automated

platoon formation. Since we aim to study approaches for collaborative driving, this

research project mostly focuses on the collaboration between platoon members.

As mentioned earlier, the leading vehicle also includes sensing and communication

devices, but it is driven by a human for the initial phase. Thus, every platoon members,

including the leader, are considered as agents, which can sense and communicate with

each others. The only difference between those agents is the actions they can perform,

as the leader only communicates, while the followers can also control the gas and brake

pedals, and later, the steering wheel.

1.5 Thesis Organization

This thesis is organized in such a way that agent and Multiagent general architec-

tures are first presented in Chapter 2, along with different Multiagent coordination

techniques, by putting the emphasis on Teamwork for agents. Before describing the

MAS we developed for Auto21, the simulation environment in which our driving agents

evolve is presented in Chapter 3, which details every modules of our simulator and how

this simulator supports the test scenarios presented as part of our results. Afterwards,

Chapter 4 presents the architecture we developed for the Collaborative Driving System

of Auto21 and details the coordination and control aspects, as well as the implementa-

tion process of this architecture. The inter and intra-platoon coordination models that

enable our vehicles to collaborate are then described in Chapter 5, which focuses on

centralized and teamwork intra-platoon coordination models. Finally, the development

of our agents inside our simulator, according to the previous architecture, is explained

in Chapter 6, which also focuses on the centralized and teamwork coordination models.

This chapter ends with a presentation and a discussion on the simulation results relat-

ing to intra-platoon coordination test scenarios. To conclude, Chapter 7 summarizes

our different achievements and results, and ends by detailing possible future works for

the CDS project of Auto21.

Chapter 2

Agents and Muliagent Systems

From its debut, around 1943 [Russell and Norvig, 2003], Artificial Intelligence (AI) has

been a leading research area of computer science, which proposes a rational approach to

realize a given task. In order to use techniques relating to AI in different environments

and provide a reasoning system closer to the “human” model, the agent paradigm has

widely been used in the past decades. The term “agent” has been used for many purpose

and may be a little confusing at that point. For this reason, this chapter clarifies the

different possible architectures of agents that relate to different types of environment

and levels of complexity. A given environment has specific properties that can be seen

as a level of challenge for an agent. If the environment in which our agent evolves

forces it to reason about its goals before acting, a deliberative architecture should be

considered. In simpler environments, a reactive architecture is more appropriate, while

other environments may necessitate reactive and deliberative behavior, thus requiring

a hybrid agent architecture. Finally, in other types of environment, an agent must

interact with other agents in order to collaborate or compete for a given goal. In

this context, the term Multiagent System (MAS) is used to qualify a system in which

distributed agents must interact with each others. In this thesis, a MAS is used to

model the automated driving system installed on each vehicle to autonomously drive a

vehicle and collaborate with others.

This chapter does not propose a vast introduction to intelligent agents, since this

subject has been covered many times, so the reader should refer to Russell and Norvig

[2003] for a complete introduction. Instead, only the agent and MAS aspects relating

to our Collaborative Driving System (CDS) and autonomous driving agents are covered

in the following sections. First, Section 2.1 describes the agent paradigm and presents

the major architectures that can be used to develop an agent. Then, Section 2.2 de-

scribes the problems that are addressed by a Multiagent System and presents different

Chapter 2. Agents and Muliagent Systems 23

architectures that can used to coordinate agents.

2.1 Single Agent Architectures

An agent is usually described as anything that can perceive its environment through sen-

sors and act upon that environment through effectors (actuators) [Russell and Norvig,

2003]. Another definition given by Wooldridge [2002] formally and briefly defines an

agent as a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objectives. More

applicatively, an agent is an autonomous entity that is usually goal driven, meaning

that all of its actions will be done in accordance with a specific goal, pursued by the

agent. The actions applied by the agent are therefore a response to a percept or a

sequence of percept that defines the agent’s view of its environment.

The general representation of an agent is shown in Figure 2.1, where the question

mark represents the agent’s reasoning system. The reasoning system defines the agent’s

rationality, which in turn defines the agent’s autonomy. At the lowest level of auton-

omy, an agent mainly relies on its built-in knowledge, while at the highest level, the

agent’s experience (beliefs acquired through time) is also determining on its behaviour.

These different levels of autonomy can be acquired through different categories of agent

architectures, going from a simple reactive agent to a complex deliberative agent. The

following sections present those architectures, starting with the simple reflex (purely

reactive) agent in Section 2.1.1, followed by the deliberative agent (agent with states)

in Section 2.1.2 and the Belief Desire Intention (BDI) agent in Section 2.1.3.

Figure 2.1: The general model of an agent interacting with the environment through

sensors and effectors, from Russell and Norvig [2003].

Chapter 2. Agents and Muliagent Systems 24

2.1.1 Reactive Agents

A reactive agent is an agent that chooses an action without any reference to its history.

Its decision is only based on the present state of the environment and therefore, its

decision function can be represented as:

action : Per → Ac

Where the agent’s action Ac is executed in reaction to a percept Per from the environ-

ment.

2.1.2 Deliberative Agents

A deliberative agent, on the other hand, uses a decision function based on a sequence

of environment states represented by the agent’s internal state. In this case, the agent’s

internal state I is determined by its previous state and its new percept Per: I×Per →
I. Using its internal state, the decision function of a deliberative agent can be defined

as:

action : I → Ac

This decision function applies the mapping between states and actions considering two

possible reasons: a goal or a utility. In the case of a “goal-based agent”, a goal is defined

as a state of the environment and the agent must apply a series of actions leading to

this state. The agent needs knowledge about the results of its actions to apply the right

action, leading to the right goal. In the case of our autonomous driving agents, a goal

may be defined as a lane change and the agent will apply a steering action for a certain

time, to achieve the goal of being in the other lane.

In contrast, a “utility-based agent” does not have a specific goal, but it uses a utility

function instead. This function maps a state with a real number that defines the value

of the state or the desire the agent should have toward this state. Again, by having

a knowledge about the results of its actions, the agent can choose which action can

lean him to the highest value state. For instance, if an autonomous driving agent just

entered the highway, its utility function will assign a high value to the state of being in

the leftmost lane, thus leading the agent to change lane.

Chapter 2. Agents and Muliagent Systems 25

2.1.3 BDI Agents

The BDI agent is probably one of the most popular agent architecture, since it is

versatile and flexible, and it can be seen as a combination of a goal-based and a utility-

based agent. This architecture originated in the work of the Rational Agency project

at Stanford Research Institute in the mid-1980s. Afterwards, the architecture has been

extended in many different ways considering application or programming languages

requirements. However the general concept based on beliefs, desires, and intentions has

always been the same.

Figure 2.2 presents the reasoning process of a BDI agent starting from the entrance

of new percepts to the execution of a new action, as presented in Wooldridge [1999].

This architecture regroups seven major components, which can be described as:

Beliefs Revision Function

Beliefs

Option Generator Function

Filtering Function

Action Selector Function

Sensors Input

Action Output

Desires

Intentions

Figure 2.2: Reasoning process of a BDI agent, from Wooldridge [1999].

Beliefs Revision Function: A function using the new percepts as its entrance, to

determine the agent’s new beliefs considering its current beliefs.

Beliefs: The information or knowledge that the agent currently has about its environ-

ment.

Chapter 2. Agents and Muliagent Systems 26

Option Generator Function: A function that determines the agent’s possible op-

tions (i.e. desires), considering the agent’s current beliefs and intentions.

Desires: The desires that are currently held as possible options for the agent.

Filtering Function: A function representing the agent’s deliberative process. This

function determines the agent’s intentions considering its desires, the current belief

state and its current intentions.

Intentions: The agent’s intentions characterize its current state of mind. They can be

seen as persistent goals and once an agent adopts a new intention, this intention

constrains its future deliberative process.

Action Selector Function: A function that determines the actions this agent should

execute, in order to act in accordance with its intentions.

For a better understanding of the action generation process of a BDI agent, al-

gorithm 1 presents Rao and Georgeff [1995]’s BDI-interpreter. In this algorithm,

event-queue (sensor inputs), beliefs, desires, and intentions are considered as global

structures. The option-generator determines the agent’s new desires, which are used

to determine new intentions using the update-intentions function. Using these new

intentions, the agent executes the proper actions with the execute function. New sen-

sor inputs are then retrieved with the get-new-external-events function, to update the

event-queue. Finally, the satisfied or impossible desires and intentions are removed

using the drop-successful-attitudes and drop-impossible-attitudes functions.

Algorithm 1 BDI-interpreter

initialize-state();

loop

options := option-generator(event-queue);

selected-options := deliberate(options);

update-intentions(selected-options);

execute();

get-new-external-events();

drop-successful-attitudes();

drop-impossible-attitudes();

BDI extensions

As mentioned earlier, the BDI architecture has been used and extended for different

purposes over the past years. The JACK Intelligent AgentsTMagent oriented program-

ming language, presented in Section 6.2.1, is an example of such an extension for a

Chapter 2. Agents and Muliagent Systems 27

programming language. JACK has been used to develop our driving agents, for the

Auto21 CDS project and therefore, our agent architecture, detailed in Chapter 6 is

an extension of the BDI architecture. Other extensions of BDI have been realized for

different applications and one of these applications is presented below.

The Procedural Reasoning System (PRS) architecture [Georgeff and Ingrand, 1990]

is considered as an extension of the BDI model and it has also inspired JACK’s agent-

oriented language. PRS is a general purpose hybrid architecture that is well suited

for real-time control environments like the CDS domain. This architecture has been

experimented in the Reaction Control System (RCS) of a space shuttle that had to be

“fault resistant”. This means that PRS is able to respond to any malfunctions and it

corresponds to a robust model, appropriate for the control of vehicles.

PRS defines a complete agent reasoning system by interconnecting the agent’s belief

database with its goals and by using a library of plans called Knowledge Areas (KAs)

that represent the agent’s intentions. The core of the agent’s reasoning is based on an

interpreter or inference mechanism that selects the appropriate plans considering the

current beliefs and goals. In PRS, a plan is considered as a recipe of actions to execute

in time or according to specific states (similar to JACK). Once a plan is selected, it is

executed by placing the plan in an intention set, controlled by a task manager.

2.2 MAS Architectures

The previous architectures focused on developing an individual agent, but did not

address the problem of multiple agents interacting in the same environment. This issue

is examined by a Multiagent System (MAS) architecture, which regroups distributed

agents seeking a different or similar goal, together or in competition. A MAS can be

described through the definition of a Multiagent environment, which was summarized

by three major characteristics by Huhns and Stephens [1999]:

• Multiagent environments contain agents that are autonomous and distributed,

and may be self-interested or cooperative.

• Multiagent environments provide an infrastructure specifying communication and

interaction protocols.

• Multiagent environments are typically open and have no centralized designer.

A generic example of a MAS is given in Figure 2.3, which is Jennings [2000]’s illustration

of different groups of agents evolving in the same environment. The sphere of influence

Chapter 2. Agents and Muliagent Systems 28

represent the relation of dependency that agents may have among themselves. If we

relate to our CDS, each agent is a vehicle driver and the organizations are platoons of

vehicles. The environment is the highway and each vehicle influences its neighboring

vehicles. The interaction among platoon members (intra-platoon) and among different

platoons (inter-platoon) is defined by the coordination models that are presented in

Chapter 5.

organizational relationship

interaction agent

sphere of influence

Figure 2.3: Typical structure of a Multiagent System, from Jennings [2000].

To resolve the interactions between the agents of our system, a coordination mech-

anism must be deployed. As part of the research on MAS, different coordination ar-

chitectures have been proposed and this section presents the ones that have influenced

the choice of the coordination architecture of our CDS. Section 2.2.1 presents a coor-

dination model based on social laws, which controls the agent’s communications using

a set of laws. Then, the coordination models presented in the following sections can

be seen as extensions of the previous BDI and PRS architectures, adapted to resolve

problems in groups of agents. First, Section 2.2.2 shortly presents the joint intentions

coordination model, which is an introduction to the concept of teamwork. Then, Sec-

tion 2.2.3 defines coordination models that are based on distributed planning or Shared

Plans (SP). Finally, Section 2.2.4 describes the most important coordination model of

this thesis: the Multiagent teamwork coordination.

Chapter 2. Agents and Muliagent Systems 29

2.2.1 Social Laws

Social laws can be seen as conventions on the communicative behaviors of autonomous

agents. In our CDS, social laws are proposed as one of our intra-platoon coordination

models, presented in Section 5.2.2.

The use of social laws to restrict agents’ actions in a group has been done to regulate

cooperative actions without necessitating additional communications. By determining

a pattern of behavior either manually, by its designer or through learning from the

agents, laws can be defined to regulate the agents’ behavior. The emergence of the laws

through learning can be realized using a number of strategies.

Simple Majority: Agents will define laws according to their observation of similar

patterns of execution from other agents.

Simple Majority with agent types: This corresponds to the previous update func-

tion, but the agents are regrouped by similar types that can observe each others

and communicate to share knowledge and favor the emergence of common laws.

Simple majority with communication on success: This strategy is attractive to

environment with limited communications, as agents only communicate strate-

gies when these strategies have proven to be successful throughout the agent’s

experiences. This is also the most interesting approach for social laws emergence

for an application like CDS, since it should minimize sharing of noisy or unstable

policies, as well as the overall communications.

To avoid unexpected behaviors, the social laws can be defined offline, which relates

to the design of mechanisms. Using constraints defined as a pair of action with a

relative environment state, a set of laws can be developed to constrain such actions

from being executed. In our application, we chose the offline approach and we based

our coordination model on Shoham and Tennenholtz [1995]’s social laws formalism.

This formalism defines a social agent using a tuple (S,L, A, SL, T) where

• s ∈ S is the state of the environment.

• ϕ ∈ L is a first order sentence of a language relating to the previous state.

• a ∈ A are the agent’s possible actions

• sl ∈ SL are the agent’s social laws that, for a given law sl1, restrict different

actions considering an agent state (ai, ϕi) ∈ sl1.

• T is the total transition function defined as T : S × A × SL× → 2S

Chapter 2. Agents and Muliagent Systems 30

In their model, Shoham and Tennenholtz [1995] use a transition function T to do

the mapping between states, actions and social laws. As mentioned before, social

laws are used to restrict the actions of an agent. Thus, when an agent is in a state

corresponding to a social law, a transition will be realized to prohibit the agent from

executing a specific action. More specifically, if the agent’s state satisfies a sentence in

the language (denoted as s |= ϕ), the transition function verifies if the sentence ϕ refers

to a social law in SL. If a social sl for which (a, ϕ) ∈ sl is found, then the transition

T (s, a, sl) = ∅ is applied, and the agent is not allowed to execute the action a. In

our application, the set of actions A refers to communicative actions and the social

laws allows our driving agent to determine when they should communicate (execute an

action in A), without requiring further communications.

2.2.2 Joint Intentions

The joint intentions model is another form of coordination, which uses the intentions

from the previous BDI agent model, instead of laws, to coordinate the actions of agents

that collaborate to achieve a common goal. The joint intentions model is at the origin

of the teamwork coordination model, presented in Section 2.2.4. In this model, agents

share their individual intentions (determined inside the BDI model) and try to find

common intentions, to coordinate their efforts on achieving the goal relating to this

intention.

The notion of Joint Persistent Goal (JPG) was proposed by Levesque et al. [1990]

to complete the joint intentions model and ensure that agents commit to their intention

until the goal has been achieved. In a JPG, a group of agents have a collective com-

mitment about some goal ϕ, which refers to an intention ψ. Therefore, once a group

of agents determine that they have a similar intention ψ, they share a Joint Persistent

Goal ϕ, which guides their individual goals as follows:

1. Initially, every agent does not believe that the goal ϕ is satisfied;

2. Every agent i then has a goal of ϕ until the termination condition is satisfied (4);

3. Until the termination condition is satisfied:

• if any agent i believes that the goal is achieved, then it will have the goal

that this becomes a mutual belief;

• if any agent i believes that the goal is impossible, then it will have the goal

that this becomes a mutual belief;

Chapter 2. Agents and Muliagent Systems 31

• if any agent i does not have ψ as a local intention anymore, then it will have

the goal that this becomes a mutual belief;

4. The termination condition is that it is mutually believed that either:

• the goal ϕ is satisfied;

• the goal ϕ is impossible;

• the intention ψ for the goal is no longer present;

2.2.3 Distributed planning

Another coordination model which has been reused inside the teamwork model is the

distributed planning. Distributed planning can be achieved in many different ways, but

this section only details a model that relates to the coordination of plans inside a team.

Before detailing this particular model, the three major forms of distributed planning in

a MAS are described by relating to the definition of Durfee [1999]:

Centralized planning for distributed plans: In this model, a centralized planning

system develops a plan for a group of agents, in which the division and ordering

of labor is defined. This “master” agent then distributes the plan to the “slaves”,

who then execute their part of the plan.

Distributed planning: In this model, a group of agents cooperates to form a central-

ized plan. Typically, each agent is a “specialist” in a specific aspect of the overall

plan and will contribute to a part of it. However, the agents that form the plan

will not be the ones to execute it, since their role is merely to generate the plan.

Distributed planning for distributed plans: In this model, a group of agents co-

operate to form individual plans of actions, dynamically coordinating their actions

along the way.

The third form of distributed planning is the most complex one, but it is also the

form that relates the most to the coordination of autonomous driving agents, inside a

CDS. The distributed planning for distributed plans can be achieved through different

models of Shared Plans (SP) as: the Partial Global Planning (PGP) [Durfee and Lesser,

1987]; and the Partial Shared Plans (PSP) [Grosz and Kraus, 1996, 1999].

The PGP can be summarized by three iterated stages an agent goes through, when

using this planner:

Chapter 2. Agents and Muliagent Systems 32

1. Each agent decides what its own goals are, and generates short-term plans in

order to achieve them.

2. Agents exchange information to determine where plans and goals interact.

3. Agents alter local plans in order to better coordinate their own activities.

The PSP is similar to the PGP, but it is based on joint intentions, presented in

Section 2.2.2, and it is usually used by teamwork models to execute the plans of a

team of agents. In this model, shared intentions and plans are well distinguished from

individual ones within respective execution, although they have hierarchical relations

with each others. Therefore, when agents come to a joint intention towards a goal, the

PSP constrains each agent to execute local plans that are compatible with this joint

intention. Note that PSP is defined as a complete architecture in Grosz and Kraus

[1996], but for the purpose of this thesis, we will not go further in its description.

Nevertheless, Section 2.2.4 gives more details on the plan (operator) hierarchy and

shows the relation between shared and individual plans.

2.2.4 Multiagent Teamwork

The teamwork coordination model is based on the joint intentions model and the Partial

Shared Plans (PSP) model, which were presented earlier. In the teamwork model,

agents are regrouped in teams, in which each agent has a specific role that guides

its actions. Teamwork for agent has been a very popular subject for the past years

and many different architectures have been developed: PTS [Stone and Veloso, 1999],

DTCP [Zhang et al., 2004], RETSINA [Giampapa and Sycara, 2002], etc. For our CDS,

we selected the STEAM architecture, defined by Tambe and Zhang [2000], since it

suited all of our needs. Therefore, this section details the STEAM architecture, which

is presented inside our application later in Section 5.2.3.

STEAM stands for Shell for TEAMwork, it is based on the joint intentions theory

(Section 2.2.2) and it uses a planning system based on the Shared Plans (SP) theory

(Section 2.2.3). Accordingly, STEAM plans, which are called operators, are organized

in a hierarchy similar to the PSP of Grosz and Kraus [1996]. Another similar, but

not necessarily related hierarchy is applied to the agent roles included inside a team

formation. Thus, a team structure in STEAM contains one or many different roles that

must be filled by one or many agents, in order to form a joint intention and begin the

execution of the team’s tasks.

Chapter 2. Agents and Muliagent Systems 33

STEAM Team Structures

In STEAM, a team may have a flat or a hierarchical organization where a team may be

recursively composed of subteams. Each team is composed of roles (and/or sub-teams),

which can be of two types:

Persistent roles: These are long-term assignments of roles to the individuals or sub-

teams in the organization. For example, in our CDS, the persistent roles are the

ones of the leader and the followers, as shown in Section 5.2.3. Typically, this role

assignment will not change in the short term.

Task-specific roles: These are shorter-term assignments of roles based on the current

task and situation. For instance, in our CDS, the roles that are required to execute

a merge or split manoeuvre in the platoon are task-specific roles.

An example of the roles that may be required for a team in a different domain than

CDS was presented in Tambe [1997]. This team is presented in Figure 2.4, which shows

a team of attack helicopters on a mission. In this team, transport helicopters have static

roles that are persistent since they relate to the type of helicopter. However, the escorts

surrounding the transports may become attackers at some point during the mission, so

they are task-specific roles.

The assignment of roles to agents or subteams is based on their capabilities and

their current state. However, this assignment may not be provided ahead of time, so

individuals may need to volunteer or be requested to fill in the roles. For instance,

in our CDS, agents that are not leaders are defined as followers at their initialization.

On the other hand, the roles involved in a manoeuvre of merging or splitting from a

platoon will be assigned to agents considering their position in the platoon.

LANDING ZONE

LAND

SEA

TRANSPORTS

ESCORT

ESCORT
TRANSPORTS

ESCORT

ESCORT

Figure 2.4: Roles involved in a team of attack helicopters, from Tambe [1997].

Chapter 2. Agents and Muliagent Systems 34

STEAM Teams and Joint Intentions

Before assigning roles to agents, a team must be formed and this requires all team

members to have a common goal. As presented in Section 2.2.2, the joint intentions

allow agents to communicate their individual intentions and form groups that stick

to this intention until the goal is either achieved or impossible, in a Joint Persistent

Goal (JPG).

By using the joint intentions model, a team in STEAM ensures that each member

shares the same goal and that they will not deviate from this goal until its teammates

all agree about it. In our CDS, the joint intention of inserting a vehicle in the platoon

(execute a merge task) arises when the members of a merge task-team A mutually

believe that a vehicle i wants to merge the platoon. Thus, in the joint intention model

of Levesque et al. [1990], this situation could be denoted as JPG(A, [Insert Vehicle]),

meaning that the task team A has the joint persistent goal of achieving the team action

of inserting a vehicle in the platoon. In the precedent context, the joint intention model

also defines the precondition of the team plan [Insert Vehicle] (detailed in the next

section), which is: the vehicle i is not currently in the platoon; and its postcondition,

which is: the vehicle i is in the platoon.

The joint intention model also specifies a protocol to establish mutual belief, known

as the request-confirm protocol [Smith and Cohen, 1996]. But considering that in our

case, the mutual belief comes from a broadcasted communication from the task initiator

(merger or splitter), we do not need such a protocol and it is not presented in this thesis.

STEAM Domain-Level Operators

The domain-level operators relate to the agents’ individual plans and the team’s Shared

Plans (SP) that are particular to the agent’s domain of application. In STEAM, domain-

level operators are structured inside an operator hierarchy in the same way as the agent

plan architecture of [Rosenbloom et al., 1991].

As with individual operators, team operators also consist of: (i) precondition rules

to help their activation; (ii) an operator application rules to apply active operators;

and (iii) termination rules to terminate active operators. However, while an individual

operator applies to an agent’s private state (its private beliefs), a team operator applies

to an agent’s team state. A team state is the agent’s abstract model of the team’s

mutual beliefs about the world. The mutual beliefs may be synchronized through

Chapter 2. Agents and Muliagent Systems 35

communication, using the SC operator presented below or by making the assumption

that a certain belief was perceived by all team members.

For a better understanding of the domain-level operators, Figure 2.5 illustrates an

example of the individual and team operators present in the domain of attack heli-

copters, detailed in Tambe and Zhang [2000] . The key novelty in the STEAM opera-

tor hierarchy is the addition of team operators in the tree. Thus, operators shown in

brackets (i.e. []), such as [Engage] are team operators and others are individual opera-

tors, which express an agent’s own activities. At any time, only one path through this

hierarchy is active in an agent. This fact is ensured by our plan execution framework,

presented in Section 6.2.3. Note that the same operator hierarchy tree was defined

for our CDS, but it is only presented in Section 5.2.3, since this is a introduction to

STEAM.

High
level

Low
level

Contour NOE

Mask

Select−
Mask

Unmask

Dip

Engage

Employ
weapons

Fly−flight−plan

EXECUTE−MISSION

............Travelling

Fly−control
route

[]

[]

][[
[]

][

Initialize
hover

Maintain
position

Goto−new
mask−location

Prepare−to
return−to−base

............

]

Return−to
control−point

............

Figure 2.5: Domain level team operators in an example of the attack helicopter domain

from Tambe and Zhang [2000].

As the SP model of Grosz and Kraus [1996], the joint intentions relating to a team

operator define the subset of plans that can be executed by an agent in a specific role.

More specifically, a role in STEAM contains a specification that constrains its agent

to a subset of individual operators inside the team operator. For instance, if an agent

in the domain of the attack helicopter fills the transport role and its team initiates

the [Engage] team operator, it will not be allowed to execute the “Employ Weapon”

individual operator because of its role definition (a transport unit).

STEAM Operators

To complete STEAM’s team-oriented framework, three categories of operators have

been defined: CP, MR, and SC. These operators have the advantage of being handled

Chapter 2. Agents and Muliagent Systems 36

by the framework, so they do not require any additional development by their users

(agent developer). Once a team is formed, through a joint intention, these operators

monitor specific dynamic aspects of the team and they ensure the coherence of the

activities of the team. To preserve coherence, each operator can communicate with

other team members and “automatically” coordinate with others when new aspects

arise during the execution of the team’s task.

First, the Coherence Preserving (CP) operator’s function is to ensure coherent initi-

ation and termination of team operators. A CP action can be seen as a communicative

act to inform others, if the agent discovers that the currently selected team operator is

either achieved, unachievable, or irrelevant. Consequently, this operator maintains the

coherence of the joint intention, as it was shown in Section 2.2.2.

Second, the Monitor and Repair (MR) operator’s function is to detect if a team

task is unachievable due to unexpected member failure. In other words, this operator

preserves the roles constraints within the team. When defining team formations, the

required roles and the amount of agents that must fill each role must be specified. In

addition, the relation between these roles must also be specified to ensure that the

team is always “logically coherent”. For this purpose, STEAM supports the definition

of AND (
∧

), OR (
∨

), and Role dependency (=⇒) relations among its teams’ roles.

Thus, if two roles are in an AND (
∧

) relation, the failure of one role will result in the

execution of a MR operator that finds another agent to fill this role. In an OR (
∨

)

relation both roles must fail and in a Role dependency R1 =⇒ R2, only the failure of

role R2 will be critical.

Third, the Selective Communication (SC) operator’s function is to communicate

for the team operators’ synchronization and termination. This is probably the most

useful operator of STEAM since it integrates decision theoretic communication selec-

tivity and provides a manageable way to ensure mutual beliefs inside the team. In a

few words, this operator monitors the agent’s local knowledge and compares it with

the team’s mutual beliefs to decide whether or not the agent should communicate its

new knowledge to other team members. The SC operator is close to Tambe’s latest

infrastructure: COM-MTDP (Communicative Mutiagent Team Decision Problem)

[Pynadath and Tambe, 2002], in which communication selection’s optimality is consid-

ered, as opposed to STEAM, which uses decision-theoretic communication selectivity.

SC operators thus verify if a communication within a team must be done, according to

the domain’s communication costs and benefits. Not only that, but the selective com-

munication also verifies the likelihood that the information it wants to communicate,

is already common knowledge.

Chapter 2. Agents and Muliagent Systems 37

Figure 2.6 shows a decision tree representing the Selective Communication (SC)

decision the agent must take, as part of the STEAM framework [Tambe and Zhang,

2000]. The first 2 branches represent the choice of communicating or not, which are

then divided by the probability ρ that the information (belief) the agent wants to

communicate is not known by its teammates. Furthermore, a third pair of branches

is added to specify the probability σ that this information opposes a threat to the

execution of the current team operator. This last probability represents the significance

of the new information compared to the current mutual belief, for the current team

operator. To make a decision on the communication of a new belief, a team member

must verify if the expected utility of making this communication EU(C) is higher than

the expected utility of not communicating EU(NC). EU(C) is defined as:

EU(C) = σ ∗ S − (Cc + (1 − σ) ∗ Cn)

No COMM
Cost = 0

COMM
Cost = Cc

Reward

0

S

S-Cmt

0
S

-Cn

X0

1−σ

σ

1−σ

σ

1−σ

σ

ρ

1−ρ

1

Figure 2.6: Decision tree with probability and rewards for communicative acts in

STEAM [Tambe and Zhang, 2000].

Within this definition, the EU is a reward S for the synchronization of the team’s

belief during the execution of a team operator, minus the Cost of communication Cc

and the Cost of nuisance Cn. Cn is used in probability 1 − σ, which is the probability

that the information to communicate opposes a threat to the current team operator.

EU(NC) is defined in the same way:

EU(NC) = σ ∗ S − (ρ ∗ σ ∗ Cmt)

Chapter 2. Agents and Muliagent Systems 38

Where the Cost of nuisance is replaced by Cmt: the cost for miscoordination. These

two definitions give us the equation to make a decision on the Selective Communication

(SC), thus communicating when the EU(C) > EU(NC), i.e., iff:

ρ ∗ σ ∗ Cmt > Cc + (1 − σ) ∗ Cn

STEAM Evaluation

As shown in Tambe and Zhang [2000], STEAM’s flexibility and reusability are some of

the major advantages of using this team framework. Indeed, by providing three types

of team operators ensuring the team coherence and automatically managing the team’s

communications, STEAM presents flexible framework to develop a MAS. As it will

be shown in Section 6.4, using STEAM makes the development of agents and their

plans a lot easier since many communication plans are already developed as part of the

framework.

Another important advantage of STEAM is its selective decisions on communica-

tions. Tambe and Zhang [2000] showed that STEAM allowed agents to perform well

with fewer messages than other messaging theories. However, better results on commu-

nication selectivity could probably be achieved by using an architecture as COM-MTDP

[Pynadath and Tambe, 2002], but for the moment, STEAM provides the right level of

selectivity for the needs of our CDS.

Chapter 3

Agent Oriented Driving Simulator

Most software development projects in computer science require a testing environment

to ensure a robust and fault tolerant product. In the case of our application such an

environment is required to test the Multiagent System (MAS) we built to support the

Collaborative Driving System (CDS) of the Auto21 project, in accordance with the

theory on intelligent agents presented in the previous chapter. Recent publications in

agent oriented project management [Knublauch, 2002] proposed a series of test cases

and unit tests that should be applied through the development process of the agent’s

behaviors. Thus, to perform those test and support our development phase, an agent

oriented driving simulator was built and will be described in this chapter.

As mentioned in Chapter 1, we had to build our own simulator for the Auto21

project because most of the simulators currently available on the market did not suit our

specific needs. Indeed, our simulator requires a lower level of micro traffic simulation

and a higher level of vehicle dynamics and sensory system simulation. In order to

facilitate the development process of our simulator, we started its development from

a frame of simulator available at Dialog, Automatic Learning and Multiagent Systems

(DAMAS) laboratory [NEREUS, 2004], which was used as an event clock. To extend

this frame to the simulation of a CDS including detailed vehicle dynamics, we used Java

3D APITM, which provides a three dimension environment in which we could include

3D shapes of vehicles. Then, we adapted the Java3D environment considering the

requirements of automated driving systems, by providing different hierarchical levels of

simulated objects along with their dynamics and the required sensory, actuation and

communication systems. Such a vehicle simulation model including sensing, actuation

and communication functionalities enabled us to create an interface that any type of

driver can use to drive the vehicle. Therefore, our simulator provides an interface with

the simulated vehicles, so the intelligent driving agents that are presented in following

Chapter 3. Agent Oriented Driving Simulator 40

chapters can easily be added to our simulator environment and drive these vehicles.

A development process of about two years at our laboratory resulted in a simulator

called Highway Environment Simulator for Travelling Intelligent Agents (HESTIA)1,

which is represented by a screen-shot in Figure 3.1. This screen-shot shows the main

3D environment Graphic User Interface (GUI) including a platoon of vehicles moving

on a straight road, along with the simulation results graphics at the bottom of the

screen. This simulator can be used to simulate a driving system ranging from a simple

Adaptive Cruise Control (ACC) to a complete CDS, and it offers to developers the

possibility to extend the simulator, as we have complete control over the source code.

The following sections describe the HESTIA simulator starting with an overview of

its engine in Section 3.1, the 3D environment in Section 3.2, and all the components

simulated inside each vehicles in the following sections. To end this chapter, Section 3.6

presents the interface between our drivers (driving agents) and the simulated vehicle,

while Section 3.7 describes the system developed to automatically execute collaborative

driving scenarios.

Figure 3.1: Screen shot of a merging vehicle inside the HESTIA 3D simulator.

1Hestia is the Greek goddess who symbolized the alliance of the Metropolis with the smaller settle-
ment, which can be seen as the source of the road networks.

Chapter 3. Agent Oriented Driving Simulator 41

3.1 Simulator’s Engine

The simulator’s engine is the core of the simulator, which controls the time steps of

the main running loop. In our case, the simulation runs in continuous time and it is

controlled by time step events, which notify the simulated objects of new time steps.

Each time step has been set to a value of 20ms, which was considered as the highest

value we could use to receive substantial results from the differential equations of the

vehicle dynamics. Moreover, the choice of events to regulate time inside the simulator’s

engine allows the HESTIA simulator to run in both discrete (if required) and continuous

time, which is very useful.

For a better understanding of the simulator’s running loop, Figure 3.2 shows the

relation between the simulator’s engine and the simulated objects. The engine sends

time step events to a ”Simulated Object“ at a time sequence specified in a configuration

file and these time step events refer to a time quantum value specified in the same file.

A ”Simulated Object“ can be any type of moving 3D object ranging from a bicycle to

a boat, which can run inside our simulator. Note that in the current version of our

simulator, only the “Simulated Vehicle“ object, representing a car, extends the ”Simu-

lated Object“ and therefore, only cars run in our simulator. The “Simulated Vehicle“,

which is detailed in the following sections, includes the vehicles’ sensors, actuators,

communication system and an interface with its driver.

Simulator Engine

Simulated Object

2. Simulate Dynamics

3. Animate 3D Object

Simulated Vehicle

1. Update Driver

time step event

Main Loop

- Update Sensors
- Query Actuators

Figure 3.2: The simulator’s engine main loop flow.

As Figure 3.2 shows it, once an ”Simulated Object“ receives a time step event, the

Chapter 3. Agent Oriented Driving Simulator 42

”Update Driver“ method of “Simulated Vehicle“ is called (action 1. in Figure 3.2).

Action 1. results in the update of the vehicle sensors, if necessary, and the query of

new actuation commands through the driver’s interface. Then, the simulated object

dynamics are updated in action 2. according to the actuation command queried in

action 1. At last, the 3D object is modified (translations and rotations, in action 3.)

considering the time step and the motion calculated by the dynamics simulation model

in action 2.

3.2 3D Environment

The 3D environment of our simulator is composed of a straight road on which automated

vehicles drive in a longitudinal manner as presented in the example of Figure 3.1. The

current vehicle dynamics only support two dimensions so the third dimension (z axis) is

only used by sensors that recognize the vehicles’ different shapes in the three dimensions.

In this 3D environment, objects like our 3D vehicles can be assigned different behaviors,

which allows us to implement sensors that retrieve vehicles’ information, as it is shown

in Section 3.4. Since the road is also a 3D object, it can be assigned properties like its

friction coefficient, which can be retrieved to modify the vehicle tires’ behavior.

Besides the previous 3D objects’ features, the choice of Java 3D was motivated by

the facts that:

• Java 3D provides a high-level object-oriented programming paradigm that enables

a rapid deployment of new 3D features on our simulator, while reusing our code.

• Java 3D’s support, through Java’s developers community, brings a wide variety

of tools and extensions to Java 3D, often in open source code.

• Java 3D also provides support for runtime loaders enabling us to import models

of vehicles from practically anyone, like vendor-specific CAD formats.

• Java 3D draws its ideas from existing graphics APIs and from new technologies.

Java 3D’s graphics constructs synthesize the best ideas found in low-level APIs

such as Direct3D, OpenGL, QuickDraw3D, and XGL

• The agent-oriented tools we are using (like JACK Agent) are also Java APIs and

most of our programmers are acquainted with Java.

• Java 3D is part of the JavaMedia suite of APIs, making our simulator available

on a wide range of platforms.

Chapter 3. Agent Oriented Driving Simulator 43

We developed our simulator’s 3D environment and the vehicle simulation model ac-

cording to a general model that is presented in Figure 3.3. This model shows how the

simulated environment is being used by our driving agents that act on the simulated

inter-vehicle communications, presented in Section 3.5 and the vehicle’s controller, sup-

ported by the driving system interface, described in Section 3.6. The vehicle controllers

are directly related to the simulated vehicle dynamics, detailed in Section 3.3. In addi-

tion, the agents in our CDS can use one or many sensors that are implemented using

Java 3D tools, which enable the simulated sensors to recognize 3D vehicle shaped and

retrieve the associated vehicle data, as it is shown in Section 3.4. Finally, a Scenario

Manager and a Log Manager have been developed to execute collaborative driving sce-

narios and keep a log of the details of their execution, as it is shown in Section 3.7.

All the previous components are described in this chapter by defining the specifica-

tions we used to create their simulation model and by defining the software engineering

model we used to develop them inside the simulator software. Figure 3.3 is therefore

referenced in each software engineering section to highlight the relation between the

different components.

Driver Agent

Vehicle's
3D Shape

Sensory
System

Vehicle
DynamicsVehicle Data

Inter-Vehicle
Communications

Vehicle
Controllers

3D
environment

Driving System Interface

Represents Represents Commands

Uses

Represents

UsesUses Uses

Defines

Defines

Uses

Scenario
Manager

Commands

Log Manager

Simulated Vehicle

MonitorsMonitors

Uses

Defines

Monitors

Monitors

Monitors

Figure 3.3: The general model of the vehicle simulation environment.

Since different types of vehicles should be tested inside this simulator, we made

it easier to define car specifications for the simulator’s users. Hence, an XML file,

representing a vehicle model class, can be edited to specify the 3D model of the vehicle

and the vehicle’s specification data, like its weight, length, the properties of its engines,

etc. In addition, the different devices used by the automated driver can be customized

Chapter 3. Agent Oriented Driving Simulator 44

in this file to include different sensor classes or communication transceiver/receiver

classes. The XML files is loaded at startup to make the vehicle model available for the

platoon scenarios or to manually add specific vehicles on the highway.

3.3 Vehicle Dynamics

A vehicle dynamics simulation can get very complex when it is being detailed at a high

level, so we decided to use a simplified version of the vehicle’s components dynamics,

which makes the simulated vehicles less “process intensive” and still offers relatively

good dynamic behaviors. This means that our level of details is much lower than other

single vehicle car simulators like CarSim2, a costly simulator widely used to analyze

the behavior of four-wheeled vehicles under every aspect of their mechanical compo-

nents. Our simulator uses an abstracted dynamics model to allow us to run multiple

cars or car platoons in real-time, in the simulator. Nevertheless, our simulated vehicle

model includes longitudinal and lateral vehicle dynamics, wheel model dynamics, engine

dynamics, torque converter model, automatic gear shifting and throttle/brake actua-

tors. The engine and transmission torque converter and differential were translated

from a model developed under MATLAB/SIMULINK by our partners at Sherbrooke

University [Huppe et al., 2003]. The wheel model and vehicle’s lateral and longitudi-

nal dynamics have been developed according to a single-track model, as well as the

theory on the chassis’ motions models, described in Kiencke and Nielsen [2000]. The

detailed theory on the vehicle dynamics simulation model is described in Section 3.3.1,

while Section 3.3.2 presents the implementation of the dynamics model in the simulator

infrastructure.

3.3.1 Dynamics Specifications

In order to present a wide overview of the theory on the vehicle dynamics, this system

can be divided in three main categories: (i) the driveline; (ii) the wheel model; (iii)

the vehicle model. For each category and throughout this section, different variables

relating to a vehicle dynamics are being used according to current definitions:

2For more information, visit http://www.carsim.com

http://www.carsim.com

Chapter 3. Agent Oriented Driving Simulator 45

vDs : angular velocity of the drive shaft

vTu : angular velocity of the torque converter’s turbine

RatioTr : transmission ratio

RatioDi : differential ratio

v̇W : angular acceleration of the wheels

RW : radius of the wheels

TDs : torque of the drive shaft

TBrake : torque of the brakes

FW : traction force of the wheels

IW : inertia of the wheels

vW : rotational equivalent wheel velocity

vWGC : wheel ground contact point velocity

vCoG : velocity at the vehicle’s Center of Gravity

vwind : environment’s wind velocity

ψ̇ : yaw rate

ψ : yaw angle

sL : longitudinal slip

sS : lateral (side) slip

sRes : resultant wheel slip

αR : rear tires side slip angle

αF : front tires side slip angle

β : vehicle body side slip

δW : front wheels turn angle

lR : distance from Center of Gravity to rear axle

lF : distance from Center of Gravity to front axle

µ : friction co-efficient

TUIn : undercarriage to inertial co-ordinates transformation matrix

mCoG : mass at the Center of Gravity

ẍIn, ÿIn, z̈In : acceleration in the inertial co-ordinate system

FWS : lateral (side) friction force of the wheels

FWL : longitudinal friction force of the wheels

FXij, FY ij : traction forces from the rear and front, left and right wheels

FZCij : vertical chassis forces on the rear and front, left and right wheels

FR : friction between the tire and road surface

Fwind : wind (drag) resistance

FG : gravitational force

Caer : co-efficient of aerodynamic drag

JZψ̈ : torque around the Center of Gravity’s z axis

Chapter 3. Agent Oriented Driving Simulator 46

Driveline Model

The model of our simulated vehicle’s driveline is described in Figure 3.4, which shows the

flow of torque created by the main components inside the vehicle’s driveline. Hence, the

driveline starts with the torque created by the engine’s combustion, which is subtracted

from its internal friction torque and the external load created by the clutch torque, to get

the engine’s revolution. Then, the engine causes the rotation of the flywheel which is the

entrance of the torque converter. Basically, the flywheel works on the pump that makes

the torque converter’s turbine spin. This creates the turbine torque that directly acts

on the transmission, which applies a transmission ratio depending on the current gear,

to turn the propeller shaft. Notice that we are using an automatic transmission (which

explains the torque converter) in the driveline model. The automatic gear shifting is

done according to two reference tables, given by the car constructor, which return a

downshift and an upshift velocity according to the current gear and gas throttle.

traction torque
traction force

differential transmission engine
torque

converter

engine
torque

turbine
torque

transmission
torque

brake torque
drive torquewheel shaft

Figure 3.4: Abstract model of a car driveline dynamics.

Another conversion ratio is finally applied on the propeller shaft’s angular velocity

to get the drive torque. This ratio relates to the differential’s action and its resulting

torque enables us to get the angular velocity of the drive shaft. The final part of the

driveline that we just described can be summarized as:

vDs =
vTu

(RatioTr)(RatioDi)
(3.1)

Where vDs represents the angular velocity of the drive shaft, given by the angular ve-

locity of the torque converter’s turbine, vTu, divided by the product of the transmission

and differential ratios. The resulting rotation of the drive shaft determines the rota-

tion of the wheels, by subtracting the brake and traction torque. More specifically, the

brake torque results from the pressure applied on the brake pedal, while the traction

torque results from the traction force that makes the vehicle move on its longitudinal

Chapter 3. Agent Oriented Driving Simulator 47

axis. This can be summarized by the following equation, which determines the wheel’s

angular acceleration v̇W :

v̇W =
TDs − TBrake − 2 · RW · FW

IW

(3.2)

In equation 3.2, the traction torque is referenced by the wheel radius RW times the

traction force on the wheel FW , which is multiplied by 2, for the two wheels. The three

torques are then summed to get the total torque, which is divided by the inertia value

of the rear wheels and the drive shaft to get the wheels’ angular acceleration, source of

their angular velocity. The traction force is detailed later on in the wheel model, but

it basically represents the friction force resulting from the wheels’ velocity and angle,

the type of tire and the road’s condition. As it will be shown in the description of

the vehicle model, the traction force makes the vehicle move and it also represents the

negative charge that the engine must fight to make the wheels turn.

Wheel Model

The wheel model that has been developed in the HESTIA simulator uses the wheels’

current angular velocity and turn angle as inputs to deliver the vehicle’s front and

rear traction forces. As a first step, the wheel model must determine the differential

angles in the movement of the vehicle’s Center of Gravity (CoG) with the front and rear

wheels. Following from this, the tire side slip angle can be found by using a single-track

model [Kiencke and Nielsen, 2000]. This angle is then used along with the wheel axle

velocity vector and the wheel ground contact point vector to determine the derivation

of the wheels’ slip. Then, the frictional forces of the wheels can be determined using

an estimate of the friction co-efficient and the previous wheel slip information. The

traction force is finally given by the transformation of the frictional forces vectors from

the wheel system to the vehicle’s undercarriage system, by considering the wheels’ turn

angle (front wheels).

The previous representation of the wheel model was rather brief, so the parameters’

calculation are now detailed a little bit more. The wheel slip used to measure the

frictional forces can be described as the difference between the rotational equivalent

wheel velocity and the CoG velocity (wheel ground contact point velocity). The first

velocity is referenced as vW and the latter velocity as vWGC , in Figure 3.5. The wheel

slip is calculated as the difference between these two vectors, projected on the vector

vWGC , which represents the real wheel velocity. This way, longitudinal slip sL occurs

when the engine makes the drive shaft turn faster than the current rotation of the

wheels, while lateral slip, or side slip sS, occurs when the wheels are being turned at an

Chapter 3. Agent Oriented Driving Simulator 48

δ

v

s

s

W α

vWGC

W

L

S

v

W sin

α

v
W cos

α

longitudinal
vehicle axis

Figure 3.5: Wheel slip calculation using Burckhardt method.

angle different from the current rotation angle of the vehicle CoG. To find the lateral

slip, we must calculate the angle α between vectors vW and vWGC , for both the front

and rear sets of wheels.

The rear tires side slip angle αR is caused by the lateral force of the vehicle’s CoG,

which creates the vehicle body side slip angle β and the yaw rate ψ̇. ψ̇ represents in

a way, the angular velocity of the vehicle on the z axis, as shown in Figure 3.6. The

value of αR can be formalized by the following equation:

αR = −β +
lR · ψ̇
vCoG

(3.3)

On the other hand, the yaw rate ψ̇ has the inverse effect on the front wheels’ slip angle

αF . This is shown in Figure 3.5, where the front wheel is also affected by its turn angle

δW . More specifically, this fact is represented by:

αF = −β + δW − lF · ψ̇
vCoG

(3.4)

Once, we have the side slip angles α, the difference between vector vW and vWGC , for

both the rear and front wheels, enables us to find the side and longitudinal slip (sS and

sL). vW is determined from the rotation of the wheels on the drive shaft (from v̇W in

equation 3.2) and vWGC is determined from the vehicle’s body velocity. In our case, we

simplified the equations for vWGC and did not take in consideration the yaw rate body

side slip angle to determine this velocity, like it was proposed in Kiencke and Nielsen

[2000]. Moreover, since we are using a traction on the rear wheels only, the front

wheels’ velocity vW is the same as the wheel’s real contact point velocity vWGC , but the

difference comes from the side slip angle α, as shown by the equations in Table 3.1.

Chapter 3. Agent Oriented Driving Simulator 49

ψ
.

β

δ

v

F

X

Y

CoG

l

l

α

WSF

CoG

vWRR

αF

FWLF

FWLR

FWSR

vWF

WCoG

CoG

F

R

Figure 3.6: Tire side slip angle calculation using the single-track model.

Braking Driving

vW · cos α ≤ vWGC vW · cos α > vWGC

Longitudinal slip sL = vW ·cos α−vWGC

vWGC
sL = vW ·cos α−vWGC

vWGC ·cos α

Side slip sS = vW ·sin α
vWGC

sS = tan α

Table 3.1: Equations for the longitudinal and side wheel slip.

Chapter 3. Agent Oriented Driving Simulator 50

From the two slip values, we can calculate the resulting wheel slip, which is simply

sRes =
√

s2
L + s2

S. The resulting slip value allows us to calculate the friction co-efficient

µ, by using the method of Burckhardt [1993], defined as:

µ(sRes) = c1 · (1 − e−c2·sRes) − c3 · sRes (3.5)

Where c1, c2, c3 are constant given for specific types or road. Thus, a vehicle’s low-level

controller that needs to get a maximum acceleration could use this formula to find

the wheel slip at which it gets the highest friction coefficient µ. Having this µ value,

the controller could modify the gas or brake percentage to slip just enough to get the

maximum grip. For more information on typical roads friction coefficient curves, refer

to Kiencke and Nielsen [2000].

In summary, by using the previous equations, we found the values for: the friction

co-efficient; the side, longitudinal and resulting slip; and the side slip angle. These

values are then used as inputs to formulas described in Kiencke and Nielsen [2000],

which apply an attenuation factor relating to the type of tire, in order to determine

the longitudinal and side friction by transforming the wheel contact force. The later

force is based on the gravitational force and the vehicle’s weight, which act on both the

rear and front drive shafts, depending on the vehicle’s acceleration. Note that in our

model we do not simulate the vehicle’s suspension. Once we followed the method of

calculation of the friction force of the two sets of wheels’, we simply have to transform

the forces on the front axle using the wheel turn angle δW , to get the traction at the

front: FXF and FY F . For a better understanding the readers may refer again to Figure

3.6, showing the friction force acting on the front and rear wheels, identified as FWS for

the side force and FWL for the longitudinal force.

Vehicle Model

Once the traction force being applied on each wheel of the vehicle model has been

determined, other resistance forces can be added to the vehicle model. Thus, the wind

resistance (drag), the rolling resistance and the gravitational force are added to the

traction forces to get the final resulting forces on the vehicle body. Following from this

summation, we finally transform the forces from the CoG or undercarriage coordinate

system to the vehicle’s inertial coordinate system, by using the transformation matrix

TUIn:

mCoG ·

⎡
⎢⎣

ẍIn

ÿIn

z̈In

⎤
⎥⎦ = TUIn ·

⎡
⎢⎣

FXFL + FXRL + FXFR + FXRR + FwindX + FGX + FR

FY FL + FY RL + FY FR + FY RR + FwindY + FGY

FZCFL + FZCRL + FZCFR + FZCRR + FwindZ + FGZ

⎤
⎥⎦

Chapter 3. Agent Oriented Driving Simulator 51

In this transformation, TUIn represents a transformation matrix for rotating the forces

vector from the undercarriage to the inertial co-ordinate system. In our application,

we only apply a rotation along the z axis, since we only consider the yaw rate and

we do not calculate any force creating pitch and roll angles on the vehicle. This is

because the roads we simulate in the current scenarios do not include any elevation and

the suspension is not modeled. Nevertheless, the gravitational force on the z axis is

still used to calculate the rolling resistance and the wheels’ friction force, as mentioned

before. In the previously transformed matrix, the rolling resistance, which refers to the

friction between the tire and road surface, is represented by FR and it is calculated from

the equation:

FR = −RRR0 · FZ − RRR1 · FZ · vCoGX

TRR0

(3.6)

In equation 3.6, RRR represents a constant of resistance assigned to the current road

and TRR is a resistance considering the type of tire being used. Thus the rolling

resistance will increase with the weight of the car and its velocity. In addition to the

rolling resistance, the wind (drag) resistance is also added to the undercarriage system:

⎡
⎢⎣

FwindX

FwindY

FwindZ

⎤
⎥⎦ =

⎡
⎢⎣
−CaerX · (vCoGX − vwindX · cos ψ − vwindY · sin ψ)2

−CaerY · (vCoGY − vwindX · sin ψ − vwindY · cos ψ)2

0

⎤
⎥⎦

Even though the current scenarios do not specify the environment’s wind velocity vwind,

the wind resistance comes from the co-efficient of aerodynamic drag Caer, referring to

the vehicle’s body shape, which increases with the vehicle’s velocity. Once all the forces

of the vehicle’s inertial system have been calculated, we simply transform them into

the vehicle’s acceleration using F = m · a, which enables us to get the vehicle’s new

velocity and move it to its new position in the environment.

The final movement that is applied on the 3D vehicle object is a rotation on the

z axis. The angle of rotation is given by the angular acceleration around the z axis,

which is the quotient of the torque around this axis, divided by the vehicle’s inertia.

This torque refers to the yaw rate, defined in equation 3.7, for which lF and lR are

described in Figure 3.6:

JZψ̈ = (FY FR + FY FL) · lF − (FY FR + FY FL) · lR (3.7)

For more information or the details on the vehicle dynamics equations, an extensive

representation is given in Kiencke and Nielsen [2000] and another overview of the lon-

gitudinal model is available in Huppé [2004].

Chapter 3. Agent Oriented Driving Simulator 52

3.3.2 Dynamics Software Engineering

The vehicle dynamics model is presented in Figure 3.3, where it uses the actuators’ com-

mands to calculate the vehicle’s new dynamics data, stored in a vehicle data structure.

To implement the vehicle dynamics models, we decided to use the same polymorphism

that modeled the hierarchy of our simulator’s objects. Within this model, the dynamics

equations are separated inside the classes of objects to which they relate, as part of a

hierarchy going from a simple moving object, to a motor vehicle and finally, to a car

like a sedan. To speed up the process time required to simulate the dynamics of our

vehicles, some of the previous equations have been partially modified since they are

called very often by the simulator’s engine. Indeed, the vehicle dynamics data must be

updated at a very high rate, using a low value of delta time to demonstrate a good be-

havior and therefore, the update functions represent the first part to optimize in order

to run more vehicles in real time.

The classes involved in dynamics simulation are presented in Figure 3.7, which also

shows an overview of the hierarchy of objects running inside our simulator. First, the

hierarchy of objects starts with SimObject3D, which derives from a Java 3D class that

enables our objects to run in the 3D environment. This class is then extended by Ani-

matedObject3D, representing an object that can be moved at run-time (not a road or a

post light). AnimatedObject3D and its further descendants use two objects as attributes

to represent their dynamics information: the AnimatedObjectDynamic class representing

the basic object dynamics and the AnimatedObject3DData class, representing the basic

object dynamics data. Other objects deriving from AnimatedObject3D, like RoadVehi-

cleCore and CarCore, have access to the same internal objects, but they have to cast

them in more advanced versions, referring to their specific needs. For example, a Road-

VehicleCore is using the AnimatedObject3DData object as a RoadVehicleData and the

AnimatedObjectDynamic object as a RoadVehicleDynamic. Thus, vehicle dynamics data

relating specifically to a car are included inside CarData and their dynamics simulation

functions in CarCoreDynamic. For instance, the equation relating to any type of vehicle

like the engine, transmission, brakes, suspension (not simulated here) are defined inside

the RoadVehicleDynamic class, while the wheel model and part of the previous vehicle

model is inside the CarCoreDynamic.

Finally, our software engineering model is very beneficial for the creation of new

types of vehicles inside the simulator, which is more likely to happen. For example, a

motor bike, a van or any type of truck could extend the RoadVehicleCore class for their

specific properties and only implement specific dynamics models for their wheels and

chassis, which makes the development task a lot easier. Moreover, using our dynamics

model, we can manage to minimize the amount of different classes loaded in the virtual

Chapter 3. Agent Oriented Driving Simulator 53

C
a

rB
ra

k
e

+
ap

pl
yB

ra
ke

D
yn

am
ic

 :
 d

ou
bl

e
+

C
ar

Br
ak

e

C
a

rD
a

ta

+
C
ar

D
at

a

C
a

rC
o

re
D

yn
a

m
ic

+
C
ar

C
or

eD
yn

am
ic

R
o

a
d

V
e

h
ic

le
D

a
ta

+
se

tG
as

Fl
ow

 :
 v

oi
d

+
ge

tW
id

th
 :

 d
ou

bl
e

+
ge

tT
op

V
ie

w
 :

 T
ra

ns
fo

rm
3D

+
to

St
rin

g
:

St
rin

g
+

ge
tR

pm
 :

 d
ou

bl
e

+
ge

tL
en

gt
h

:
do

ub
le

+
ge

tH
ei

gh
t

:
do

ub
le

+
se

tG
ea

r
:

vo
id

+
ge

tF
ro

nt
V
ie

w
 :

 T
ra

ns
fo

rm
3D

+
se

tR
pm

 :
 v

oi
d

+
R
oa

dV
eh

ic
le

D
at

a
+

cl
on

e
:

O
bj

ec
t

+
se

tT
ra

ct
io

nW
he

el
V
el

o
:

vo
id

+
ge

tG
as

Fl
ow

 :
 f

lo
at

+
ge

tM
ax

Br
ak

e
:

flo
at

+
se

tS
te

er
A
ng

le
 :

 v
oi

d
#

ge
tS

pe
ci

fic
at

io
nD

at
a

:
R
oa

dV
eh

ic
le

Sp
+

ge
tS

te
er

A
ng

le
 :

 f
lo

at
+

ge
tT

ra
ct

io
nW

he
el

V
el

o
:

do
ub

le
+

ge
tR

ea
rV

ie
w

 :
 T

ra
ns

fo
rm

3D
+

R
oa

dV
eh

ic
le

D
at

a
+

ge
tG

ea
r

:
in

t
+

ge
tM

as
s

:
do

ub
le

+
se

tB
ra

ki
ng

Fo
rc

e
:

vo
id

+
R
oa

dV
eh

ic
le

D
at

a
+

ge
tM

ax
G

as
 :

 f
lo

a t
+

ge
tB

ra
ki

ng
Fo

rc
e

:
flo

at

R
o

a
d

V
e

h
ic

le
D

yn
a

m
ic

 _
w

he
el

FF
F

:
V
ec

to
r3

d
-t

ot
al

R
es

is
ta

nc
e

:
V
ec

to
r3

d
#

_t
ra

ns
m

is
si

on
 :

 C
ar

Tr
an

sm
is

si
on

 _
w

he
el

FF
R
 :

 V
ec

to
r3

d
#

_c
ar

Br
ak

e
:

C
ar

Br
ak

e
#

_m
ot

or
 :

 C
ar

M
ot

or
 _

co
nd

iti
on

 :
 R

oa
dC

on
di

tio
ns

#
_d

iff
er

en
tia

l_
sl

ip
 :

 d
ou

bl
e

+
R
oa

dV
eh

ic
le

D
yn

am
ic

+
cl

on
e

:
O

bj
ec

t
#

ge
tF

ric
tio

nC
oe

ff
ic

ie
nt

 :
 d

ou
bl

e
+

ap
pl

y
:

vo
id

+
ca

lc
D

er
iv

R
ea

rW
he

el
V
el

o
:

vo
id

+
do

C
ol

lis
io

n
:

vo
id

+
W

he
el

V
el

oc
ity

V
ec

to
r

+
V
el

oc
ity

V
ec

to
r

R
o

a
d

V
e

h
ic

le
S

p
e

ci
fi

ca
ti

o
n

D
a

ta

+
ge

tM
as

s
:

do
ub

le
+

ge
tW

id
th

 :
 d

ou
bl

e
+

ge
tW

he
el

Ba
se

 :
 d

ou
bl

e
+

ge
tM

ax
Br

ak
e

:
flo

a t
+

ge
tW

he
el

R
ad

iu
s

:
do

ub
le

+
ge

tD
ra

gC
on

st
an

t
:

do
ub

le
+

ge
tW

he
el

W
id

th
 :

 d
ou

bl
e

+
cl

on
e

:
O

bj
ec

t
+

ge
tM

ax
G

as
 :

 f
lo

at
+

ge
tC

O
G

H
ei

gh
t

:
do

ub
le

+
ge

tH
ei

gh
t

:
do

ub
le

+
ge

tW
he

el
Fr

ic
tio

nF
ac

to
r

:
do

ub
le

+
ge

tF
ro

nt
To

C
G

 :
 d

ou
bl

e
+

to
St

rin
g

:
St

rin
g

+
R
oa

dV
eh

ic
le

Sp
ec

ifi
ca

tio
nD

at
a

+
ge

tW
he

el
In

er
tia

 :
 d

ou
bl

e
+

R
oa

dV
eh

ic
le

Sp
ec

ifi
ca

tio
nD

at
a

+
ge

tR
ea

rT
oC

G
 :

 d
ou

bl
e

+
ge

tL
en

gt
h

:
do

ub
le

+
ge

tW
he

el
W

ei
gh

t
:

do
ub

le

Co
m

m
un

ic
at

in
gO

bj
ec

t
R

oa
d

V
eh

ic
le

C
or

e

Au
to

21
Si

m
Co

ns
ta

nt
s

C
a

rT
ra

n
sm

is
si

o
n

#
_t

ra
ns

m
is

si
on

R
at

io
N

ow
 :

 d
ou

bl
e

#
_t

hr
ot

tle
D

ow
nR

ef
er

en
ce

 :
 in

t[
]

#
_f

in
al

D
riv

eR
at

io
 :

 d
ou

bl
e

#
_t

or
qu

eT
oW

he
el

 :
 d

ou
bl

e
#

_t
C
on

fir
m

 :
 d

ou
bl

e
#

_t
ra

ns
m

is
si

on
R
at

io
 :

 d
ou

bl
e[

]
#

_u
pS

hi
ft

Ta
bl

e
:

in
t[

][
]

#
_t

hr
ot

tle
U

pR
ef

er
en

ce
 :

 in
t[

]
#

_g
ea

r
:

in
t

#
_t

or
qu

eT
oM

ot
or

 :
 d

ou
bl

e
#

_d
t

:
do

ub
le

#
_t

C
on

fir
m

C
pt

 :
 d

ou
bl

e
#

_d
ow

nS
hi

ft
Ta

bl
e

:
in

t[
][

]

+
do

w
nS

hi
ft

 :
 d

ou
bl

e
+

ge
tG

ea
r

:
in

t
+

ge
tT

or
qu

eT
oM

ot
or

 :
 d

ou
bl

e
+

ge
ar

Sh
ift

 :
 v

oi
d

+
ra

te
Li

m
ite

r
:

do
ub

le
+

ge
tT

or
qu

eT
oW

he
el

 :
 d

ou
bl

e
+

ap
pl

yT
ra

ns
m

is
si

on
D

yn
am

ic
 :

 v
oi

d
+

up
Sh

ift
 :

 d
ou

bl
e

+
C
ar

Tr
an

sm
is

si
on

C
a

rC
o

re

Au
to

21
Si

m
Co

ns
ta

nt
s

C
a

rM
o

to
r

#
_e

ng
in

eI
ne

rt
ia

 :
 d

ou
bl

e
#

_M
ot

or
Sp

ee
dR

ot
 :

 d
ou

bl
e

#
_d

t
:

do
ub

le
#

_c
ar

En
gi

ne
To

rk
 :

 in
t[

][
]

#
_t

hr
ot

tle
R
ef

er
en

ce
 :

 in
t[

]
#

_e
ng

in
eS

pe
ed

R
ef

er
en

ce
 :

 in
t[

]

+
ap

pl
yM

ot
or

D
yn

am
ic

 :
 d

ou
bl

e
-m

ot
or

To
rq

ue
 :

 d
ou

bl
e

-r
ad

To
R
pm

 :
 d

ou
bl

e
-r

m
pt

or
ad

 :
 d

ou
bl

e
+

C
ar

M
ot

or
+

ge
tr

pm
 :

 d
ou

bl
e

C
a

r

Se
ns

or
sC

on
st

an
t

R
oa

d
V

eh
ic

le

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

si
m

u
la

to
r.

a
u

to
2

1
.o

b
je

ct
.A

n
im

a
te

d
O

b
je

ct
3

D
R

o
tD

yn
a

m
ic

#
_a

ng
ul

ar
A
cc

el
er

at
io

n
:

do
ub

le

+
se

tR
ot

at
io

n
:

vo
id

+
ap

pl
y

:
vo

id
+

A
ni

m
at

ed
O

bj
ec

t3
D

R
ot

D
yn

am
ic

+
cl

on
e

:
O

bj
ec

t

Cu
st

om
Co

nt
ex

tM
en

u
Si

m
O

bj
ec

t3
D

Sh
ap

e
Se

ria
liz

ab
le

ca
.u

la
va

l.i
ft

.d
am

as
.s

im
u

la
to

r.
au

to
2

1
.o

b
je

ct
.S

im
O

b
je

ct
3

D

An
im

at
ed

O
bj

ec
tI

nt
er

fa
ce

ca
.u

la
va

l.i
ft

.d
am

as
.s

im
u

la
to

r.
au

to
2

1
.o

b
je

ct
.A

n
im

at
ed

O
b

je
ct

3D

ca
.u

la
va

l.i
ft

.d
am

as
.s

im
u

la
to

r.
au

to
2

1
.o

b
je

ct
.A

n
im

at
ed

O
b

je
ct

D
yn

am
ic

#
_p

re
vF

or
ce

s
:

V
ec

to
r3

d
#

_r
ea

lA
cc

el
er

at
io

n
:

V
ec

to
r3

d
#

_r
ea

lW
C
V
el

oc
ity

 :
 V

ec
to

r3
d

#
_n

et
Fo

rc
es

 :
 V

ec
to

r3
d

#
_d

at
a

:
A
ni

m
at

ed
O

bj
ec

t3
D

D
at

a
+

EA
R
TH

_G
R
A
V
IT

Y
:

do
ub

le
+

M
IN

_V
EL

O
 :

 d
ou

bl
e

+
A
ni

m
at

ed
O

bj
ec

tD
yn

am
ic

+
se

tF
or

ce
s

:
vo

id
+

ad
dF

or
ce

s
:

vo
id

+
cl

on
e

:
O

bj
ec

t
+

se
tP

os
iti

on
 :

 v
oi

d
+

re
se

tF
or

ce
s

:
vo

id
+

ap
pl

y
:

vo
id

#
ge

tG
ra

vi
ty

 :
 d

ou
bl

e

ca
.u

la
va

l.i
ft

.d
am

as
.s

im
u

la
to

r.
au

to
2

1
.o

b
je

ct
.A

n
im

at
ed

O
b

je
ct

3
D

D
at

a

+
se

tH
ea

di
ng

 :
 v

oi
d

+
ge

tA
cc

el
er

at
io

n
:

V
ec

to
r3

d
+

re
se

tH
ea

di
ng

 :
 v

oi
d

+
se

tP
os

iti
on

 :
 v

oi
d

+
ge

tW
C
V
el

oc
ity

 :
 v

oi
d

+
ge

tP
os

iti
on

 :
 v

oi
d

+
se

tW
C
V
el

oc
ity

 :
 v

oi
d

+
A
ni

m
at

ed
O

bj
ec

t3
D

D
at

a
+

se
tL

C
V
el

oc
ity

 :
 v

oi
d

+
ge

tH
ea

di
ng

 :
 d

ou
bl

e
+

ge
tL

C
V
el

oc
ity

 :
 v

oi
d

+
A
ni

m
at

ed
O

bj
ec

t3
D

D
at

a
+

ge
tL

C
V
el

oc
ity

 :
 V

ec
to

r3
d

+
se

tA
cc

el
er

at
io

n
:

vo
id

+
ge

tM
as

s
:

do
ub

le
+

cl
on

e
:

O
bj

ec
t

+
ge

tW
C
V
el

oc
ity

 :
 V

ec
to

r3
d

+
ge

tP
os

iti
on

 :
 P

oi
nt

3d

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

si
m

u
la

to
r.

a
u

to
2

1
.o

b
je

ct
.A

n
im

a
te

d
O

b
je

ct
3

D
R

o
ta

ti
o

n
D

a
ta

+
ge

tI
ne

rt
ia

 :
 d

ou
bl

e
+

ge
tA

ng
ul

ar
V
el

oc
ity

 :
 d

ou
bl

e
+

A
ni

m
at

ed
O

bj
ec

t3
D

R
ot

at
io

nD
at

a
+

se
tA

ng
ul

ar
V
el

oc
ity

 :
 v

oi
d

+
cl

on
e

:
O

bj
ec

t

C
a

rS
p

e
ci

fi
ca

ti
o

n
D

a
ta

+
C
ar

Sp
ec

ifi
ca

tio
nD

at
a

+
C
ar

Sp
ec

ifi
ca

tio
nD

at
a

+
cl

on
e

:
O

bj
ec

t

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

si
m

u
la

to
r.

a
u

to
2

1
.o

b
je

ct
.A

n
im

a
te

d
O

b
je

ct
3

D
R

o
tS

p
e

cD
a

ta

+
A
ni

m
at

ed
O

bj
ec

t3
D

R
ot

Sp
ec

D
at

a
+

ge
tI

ne
rt

ia
 :

 d
ou

bl
e

F
ig

u
re

3.
7:

C
la

ss
d
ia

gr
am

b
as

ed
on

th
e

au
to

21
.o

bj
ec

t.
ve

hi
cl

e
p
ac

ka
ge

,
w

h
ic

h
re

p
re

se
n
ts

th
e

ve
h
ic

le
ob

je
ct

s
an

d
th

ei
r

d
y
n
am

ic
s

si
m

u
la

ti
on

cl
as

se
s.

Chapter 3. Agent Oriented Driving Simulator 54

machine and if the code that defines the dynamics must be optimized, this model allows

us to make the modifications at one place only.

3.4 Sensory System

The sensory system is briefly presented, since the research on this subject is not a

major concern at the moment and more details on the recommended types of sensor

will be given in Section 4.4.1. Besides, research at the university of Calgary is in

charge of determining the type of sensors that should be used inside our vehicle and

only following from that, we can start implementing a detailed simulation model of the

proposed sensors. For this reason, the following section only presents the specifications

of two types of external sensors and ends by presenting the model of implementation

of both the external and internal vehicle sensors in the simulator.

3.4.1 Sensors Specifications

The external sensors that are currently being simulated inside the HESTIA simulator

are a front laser and a Global Positioning System (GPS). The laser is mounted on the

vehicle’s front bumper and it has a range of 100m. This sensor outputs the distance

with the front vehicle, with an accuracy of ±5% of the distance and the difference of

velocity with the same vehicle with an accuracy of ±0.1 km/h. Its update rate is 10 Hz

and it uses a very narrow beam with an angular coverage of about ±1̊ on the azimuth

and elevation plans. At the moment, we do not consider the weather conditions that

greatly affect the behavior of this type of sensor (mostly for the laser) and our model

needs to be enhanced to simulate a more realistic accuracy. Our simulated laser also

outputs the delta acceleration value, by applying a differential on the delta velocity,

already calculated by the laser.

The GPS we are simulating is somehow “unrealistic” for the currently available

technology. Its update rate is 4 Hz and its accuracy is ±1 m, which is much better

than the update rates of 1 Hz and accuracy of ±3 m of most GPS. To explain these

results, we could consider that our GPS is in fact a Differential Global Positioning

System (DGPS) [Wolfe et al., 2000], which compares the information of multiple GPS

to increases its accuracy. However, this inconsistence should be fixed following the

project’s advances.

Chapter 3. Agent Oriented Driving Simulator 55

Finally, the internal sensors that are simulated inside the HESTIA simulator are only

used to retrieve internal vehicle information, without adding noises of any kind. The

internal sensors that are regrouped in each vehicle include: speedometer, accelerometer,

yaw meter, gyroscopes for heading and pitch, sensors on the actuators (steering, gas,

brake), etc. Therefore, with our internal sensor simulation model, the speedometer

retrieves a perfect velocity value in real-time, and so do all the other internal sensors.

3.4.2 Sensors Software Engineering

The sensory system is presented in Figure 3.3 as part of our simulated vehicle model in

Figure, where it uses both the vehicle’s 3D shape information and the vehicle’s internal

data to provide internal sensors information to the driver. The sensory system also

uses the 3D environment to provide the information required to simulate the external

sensors.

The laser and GPS sensors are simulated inside our simulator by using tools provided

by the Java 3D environment. Even though we are only using two types of sensors at

the moment, the system was designed in such a way that other sensors, similar to the

laser, can be easily added. Following from the recommendations on sensors, we should

add other sensory units like: sonar, radar (Doppler, millimeter wave), camera, lidar,

etc. The internal sensors we mentioned before are implemented by adding a filtering

sensor interface over the available vehicle dynamics data.

Figure 3.8 shows the UML diagram of the sensory system developed inside the

simulator. This diagram shows that the RoadVehicle object can include any sensor

defining the Sensor class, which is then sub-classed by the internal and external sensors

categories. Sensors are added to the vehicle by using the vehicle model definition file

loaded at startup. To implement the model of laser that was defined in the section on

specifications, we used the FrontLaserSensor class. This class uses JAVA 3D’s picking

tools to create a 3D laser beam that intersects with the closest vehicle it scans and

returns the vehicle’s reference and distance. Once it has the reference on the closest

vehicle, it can retrieve its dynamics state and filter it according to the laser model. In

contrast, other sensor instances (internal sensors), shown in Figure 3.8, simply use the

data stored in the vehicle object, which makes them easy to program.

Chapter 3. Agent Oriented Driving Simulator 56

SensorsConstant
FrontLaserSensor

+getLastVelocity : double
+getData : Map
+getType : int
#pickClosestObject : PickResult
+getDistance : double
+getVelocity : double
+FrontLaserSensor
+updateData : void
+FrontLaserSensor
+getLastDistance : double

SensorsConstant
InternalVehicleDataSensor

+InternalVehicleDataSensor
+getGasFlow : float
+getBrakingForce : float
+InternalVehicleDataSensor
+getType : int

Sensor

+updateData : void
+getName : String
+getType : int
+Sensor
+Sensor

SensorsConstant
HeadingSensor

+HeadingSensor
+HeadingSensor
+getType : int
+getHeading : double

ExternalSensor

SensorsConstant
RoadSensor

+pickRoad : PickResult
+getDistanceToLeft : double
+RoadSensor
+RoadSensor
+getDistanceToRight : double
+getType : int

SensorsConstant
AccelerationSensor

+AccelerationSensor
+getType : int
+AccelerationSensor
+getAcceleration : double

SensorsConstant
GPSSensor

+getPosition : Point3d
+getType : int
+GPSSensor
+GPSSensor

SensorsConstant
InternalSensor

SensorsConstant
Speedometer

+Speedometer
+getType : int
+getSpeed : double
+Speedometer

SensorsConstant
ca.ulaval.ift.damas.simulator.auto21.object.vehicle.RoadVehicle

#_communications : HashMap
#_core : RoadVehicleCore
#_sensorsByName : HashMap
#_sensorsByType : HashMap

Figure 3.8: UML Class diagram of the simulator’s sensors model.

3.5 Inter-Vehicle Communications

The communications modeled inside our simulators are vehicle-to-vehicle communi-

cations used to exchange information between moving vehicles. At the moment, the

simulated media is a radio transmitter/receiver onboard each vehicle for two ways,

point-to-point and multipoint communications. The general communication model in-

cludes adjustable delay and throughput which makes it easier to implement different

radio frequencies or other communication medias. The presentation of the simulator’s

communication system begins by giving specifications on the radio simulation model in

Section 3.5.1, and it is followed by the description of the general model of implementa-

tion inside the Auto21 simulator.

3.5.1 Communication System Specifications

The radio communications simulated at the moment is an Ad-Hoc network infrastruc-

ture in which terminals located on vehicles communicate with one another while the

vehicles are in motion. The radio devices communicate at an unspecified frequency, at

a maximum range of 100m. The transmission rate used in the current simulations is

Chapter 3. Agent Oriented Driving Simulator 57

approximately 1000 bauds.

The time required to send data from one vehicle to another can be adjusted from

the instant a request is made to the transceiver, to the instant another vehicle’s receiver

retrieves the entire data. This transmission time is calculated by function TT , which

calculates the time required to reach the communication receiver of vehicle j, when a

message m is sent from the communication transmitter of vehicle i:

TTij(m) = 2 · (F1(σm) + F2(σm)) + F3(δij) (3.8)

In equation 3.8, function F1, F2 and F3 calculate three different transmission delays

that can be adjusted according to the simulated communication devices. The first

function (F1), represents the time to modify the message’s structure, in order to the

meet the specifications of the communication protocol used in our system. The second

function (F2) refers to the transmission time per bite required to send the packets of

data. These two functions depend on the message’s size in bites σm and they are added

two times to consider both the encoding and decoding tasks executed by the transmitter

and the receiver. The last function (F3) represents the transmission time of packets

per meter, which depends on the distance between the transmitter and the receiver δij.

At last, note that the communication model that we currently simulate could include

more details in a future versions. But this model represents a preliminary implementa-

tion, since we have not decided the exact communication media that will be used in the

Auto21 application. Consequently, the current communication model does not calcu-

late the doppler effects due to the relative motion of vehicles and the communications

between vehicles never fails as long as they are in the allowed radio transmission radius.

3.5.2 Communication System Software Engineering

As shown in Figure 3.3, the inter-vehicle communications of our simulator are used

by the driving agents to provide the collaboration aspects required in a MAS. In

this figure, the inter-vehicle communications use the information about other vehicles

in the 3D environment to calculate the message transmission times. To develop the

communication infrastructure inside the HESTIA simulator, we decided to use a client-

server like model. This way, clients are communication modules that can receive and/or

send messages. Such communication modules can be attached to any 3D objects loaded

inside our highway environment, which means that a transceiver object can be either

mounted on a light post or a moving car. In the same communication model, the server

is a communication manager that administers every outgoing messages to dispatch them

to the right receivers, at the right time. Hence, we could say that the manager (server)

Chapter 3. Agent Oriented Driving Simulator 58

represents the dynamics of the communication system. This is why the manager is the

only class that has to be extended for specific communication technologies (like the

radio communications), in order to model their specific dynamics.

Figure 3.9 shows the class diagram of the communication system and its main com-

ponents. In this diagram, the only class relating to the radio system is the RadioCom-

municationManager that extends CommunicationManager, around which all the commu-

nication process evolves. When a CommunicationModule implementing the Communica-

tionSender interface wants to send a message, it contacts the CommunicationManager,

which has a list of all the CommunicationListener (receivers) in the environment. At

that moment, the manager processes each admissible receiver using “technology spe-

cific” methods (in our case, the radio). Different instances of the sent message are

generated for every receivers that are within reach and enqueued in a buffer, along with

their arrival time. Generic methods in the RadioCommunicationManager class finally

send these messages to the appropriate CommunicationListener, at the right time.

In the diagram of Figure 3.9, the SimCommMessage class represents the messages

used at the simulator-level. When an agent wants to send a message, it uses the Message-

Content class or one of its children and sends it using the VehicleCommunicationModule.

Note that a vehicle may contain more than one VehicleCommunicationModule, which are

defined in the vehicle model file and available through RoadVehicle, at runtime.

3.6 Driving System Interface

The driver interface is now briefly defined, since it does not represents a very interesting

aspect on the vehicle simulation point of view. This interface mainly represents the link

between the vehicle’s driver, a driving agent in our case, and the simulated vehicle. The

driver interface specifies the access rights that our drivers have in order to simulate a

realistic environment in which the driver cannot have access or interfere directly with

the vehicle dynamics. Therefore, the only assumption we make about the driver is that

it has specific read and write rights. Our vehicles’ drivers can be the driving agents

presented in this thesis or any other entity as a user controlling the vehicle with the

keyboard.

Chapter 3. Agent Oriented Driving Simulator 59

interface
message.MessageContent

+clone : Object
+toString : String
+getOntology : byte
+getSize : int

Serializable
message.BasicCommMessage

#_content : MessageContent
#_to : MessageReceiver
#_from : int

+clone : Object
+setContent : void
+getFrom : int
+BasicCommMessage
+getTo : MessageReceiver
+getSize : int
+setTo : void
+toString : String
+setFrom : void
+getContent : MessageContent
+BasicCommMessage

interface
CommunicationSender

+send : void

RadioCommunicationManager

#RADIO_DELAY : long
#RADIO_PACK_DELAY : long
#RADIO_PACK_PRE_BIT_DELAY : lon
#RADIO_PER_BIT_DELAY : double

+RadioCommunicationManager
+filterMessage : MessageBroadcastQu
+getComunicationType : String

interface
CommunicationConstants

+RADIO_COMMUNICATION : String

interface
CommunicationListener

+handleMessage : void

interface
message.SimCommMessage

+TO_ALL : int

+setContent : void
+getContent : MessageContent
+getSize : int
+setTo : void
+clone : Object
+setFrom : void
+getFrom : int
+toString : String
+getTo : MessageReceiver

CommunicationModule

+removeCommunicationModule : void
+reset : void
+removeCommLogListener : void
+isReady : boolean
+getObject : CommunicatingObject
+addSentCommLog : void
+CommunicationModule
+getCommunicationType : String
+addReceivedCommLog : void
+getWaitingTime : long
+addCommLogListener : void

CommunicationManager

+sendCommMessage : void
+addCommunicationModule : void
#checkForArrivals : void
+removeCommunicationModule : void
+CommunicationManager
#dispatchMessage : void
+CommunicationManager
+filterMessage : MessageBroadcastQu
+getComunicationType : String
#processMessages : void

VehicleCommunicationModule

+send : void
+addCommunicationListener : void
+isReady : boolean
+removeCommunicationListener : void
#fireVehicleCommunicationMessage :
getVehicle : RoadVehicleCore

+VehicleCommunicationModule
+handleMessage : void

Figure 3.9: UML Class diagram of the simulator’s communication model.

Chapter 3. Agent Oriented Driving Simulator 60

3.6.1 Driving System Specifications

The access rights given by the driving system concern read and write permissions about

the three main classes it can use (as shown in Figure 3.3): (i)Communication Module;

(ii)Sensors ; (iii)Controller. The Controller can be modified by the driver in order to

change its actions on: the gas pedal, the brake pedal, the steering wheel. The Sensors

use the driver to notify it about the new data it senses, considering a constant refresh

time and the driver can use the Sensors to get the latest sensed data. Finally, the

Communication Module uses the driver to notify it of the arrival of a new message in

its buffer, if this module is a receiver. If the module is a transceiver (or both), it can be

used by the driver to transmit messages, the same way it has been presented in Section

3.5.

3.6.2 Driving System Software Engineering

Figure 3.3 represents the driving system interface as the group formed by the inter-

vehicle communications, the sensory system and the vehicle controllers. This interface

is in fact the only direct link with the vehicle object, which runs in the simulator’s main

loop. Therefore, it enables a driver, as a driving agent, to act or receive information

from the vehicle in an asynchronous way, without having to wait for its turn in the

simulator’s running loop.

The driving system has been developed in accordance with the class diagram shown

in Figure 3.10. The basic interface of Driver is implemented by different levels of driver,

until it reaches drivers relating to specific types of agents, developed with the JACK

agent language (at the bottom). Within this driver hierarchy, automated drivers based

on JACK agents extend the JackAuto21Driver class, while automated drivers with non-

JACK agent drivers extend Auto21Driver class and non-automated drivers, controlled

by a joystick or the keyboard, can simply implement the Driver interface. The RoadVe-

hicleCore class uses the Driver interface to get the changes on its actuator and modify

the dynamics at every simulation time step. The access rights given to the drivers are

controlled by the vehicle public interface, which is represented by the RoadVehicle class.

The RoadVehicle class encompass the three major devices used by the driver, which

were presented in Figure 3.3: (i) the Communication Module; (ii) the Sensors ; (iii) the

Controller.

Another benefit that should be mentioned about the driving system interface is that

it controls the interactions between the agent thread and the simulator’s engine. Since

Chapter 3. Agent Oriented Driving Simulator 61

C
lo

ne
ab

le
in

te
rf

ac
e

ca
.u

la
va

l.i
ft

.d
am

as
.s

im
u

la
to

r.
au

to
2

1
.d

ri
ve

r.
D

ri
ve

r

+
di

sp
os

e
:

vo
id

+
ac

t
:

vo
id

+
re

se
t

:
vo

i d
+

ge
tN

am
e

:
St

rin
g

+
cl

on
e

:
O

bj
ec

t

ca
.u

la
va

l.i
ft

.d
am

as
.f

cd
.d

ri
ve

r.
Ja

ck
A

u
to

2
1

D
ri

ve
r

#
se

tA
ge

nt
 :

 v
oi

d
+

Ja
ck

A
ut

o2
1D

riv
er

+
Ja

ck
A
ut

o2
1D

riv
er

+
Ja

ck
A
ut

o2
1D

riv
er

+
ge

tJ
ac

kA
ge

nt
 :

 J
ac

kA
ut

o2
1A

ge
nt

A
ge

nt
R
ol

es
Ba

si
cW

or
ld

Pe
rc

ep
tL

is
te

ne
r

Ba
si

cF
ro

nt
V
eh

Pe
rc

ep
tL

is
te

ne
r

Ba
si

cV
eh

D
yn

Pe
rc

ep
tL

is
te

ne
r

in
te

rf
ac

e
ca

.u
la

va
l.i

ft
.d

am
as

.f
cd

.a
g

en
t.

D
ri

vi
n

g
A

g
en

t

+
re

se
t

:
vo

id
+

ge
tR

ol
e

:
in

t
+

te
rm

in
at

e
:

vo
id

+
se

tR
ol

e
:

bo
ol

ea
n

Se
ns

or
sC

on
st

an
t

ca
.u

la
va

l.i
ft

.d
am

as
.s

im
u

la
to

r.
au

to
2

1
.o

b
je

ct
.v

eh
ic

le
.R

oa
d

V
eh

ic
le

+
R
oa

dV
eh

ic
le

 g
et

C
or

e
:

R
oa

dV
eh

ic
le

C
or

e
+

ge
tS

en
so

rB
yT

yp
e

:
V
ec

to
r

+
cl

on
e

:
O

bj
ec

t
+

ad
dS

en
so

r
:

vo
id

+
ad

dC
om

m
un

ic
at

io
nM

od
ul

e
:

vo
id

+
ge

tN
am

e
:

St
rin

g
+

ge
tS

en
so

rs
By

Ty
pe

 :
 M

ap
+

di
sp

os
e

:
vo

id
+

R
oa

dV
eh

ic
le

+
st

ee
r

:
vo

id
+

fin
al

iz
e

:
vo

id
+

re
m

ov
eC

om
m

un
ic

at
io

nM
od

ul
es

 :
 v

oi
d

+
re

m
ov

eS
en

so
rs

 :
 v

oi
d

+
ge

tS
en

so
rs

By
N

am
e

:
M

ap
+

se
tG

as
 :

 v
oi

d
+

br
ak

e
:

vo
id

+
ge

tC
om

un
ic

at
io

ns
 :

 M
ap

+
ge

tS
en

so
rB

yN
am

e
:

Se
ns

or
+

ge
tC

om
m

un
ic

at
io

nM
od

ul
e

:
V
eh

ic
le

C
om

m
un

ic
at

io
nM

od
ul

e
+

ge
tV

eh
ic

le
Sp

ec
ifi

ca
tio

n
:

R
oa

dV
eh

ic
le

Sp
ec

ifi
ca

tio
nD

at
a

A
ni

m
at

ed
O

bj
ec

t3
D

Co
m

m
un

ic
at

in
gO

bj
ec

t
ca

.u
la

va
l.i

ft
.d

am
as

.s
im

u
la

to
r.

au
to

2
1

.o
b

je
ct

.v
eh

ic
le

.R
oa

d
V

eh
ic

le
C

or
e

+
cl

on
e

:
O

bj
ec

t
+

ge
tT

ra
ct

io
nW

he
el

V
el

o
:

do
ub

le
+

ge
tN

am
e

:
St

rin
g

+
R
oa

dV
eh

ic
le

C
or

e
+

se
tT

ra
ct

io
nW

he
el

V
el

o
:

vo
id

+
R
oa

dV
eh

ic
le

C
or

e
+

to
St

rin
g

:
St

rin
g

+
ge

tF
ro

nt
V
eh

ic
le

D
is

ta
nc

eW
ith

ou
tS

en
so

rs
 :

 d
ou

bl
e

+
se

tD
riv

er
 :

 v
oi

d
+

ge
tA

ng
ul

ar
V
el

oc
ity

 :
 d

ou
bl

e
+

ge
tT

op
C
am

er
a

:
C
am

er
a

#
fin

al
iz

e
:

vo
id

+
ge

tC
om

un
ic

at
io

ns
 :

 M
ap

+
ru

n
:

vo
id

+
ge

tH
ei

gh
t

:
do

ub
le

+
sh

ou
ld

Be
R
em

ov
ed

 :
 b

oo
le

an
+

ge
tI

nt
er

io
rC

am
er

a
:

C
am

er
a

+
ge

tB
ra

ki
ng

Fo
rc

e
:

flo
a t

+
re

m
ov

eD
riv

er
C
ha

ng
eL

is
te

ne
r

:
vo

id
+

ge
tG

as
Fl

ow
 :

 f
lo

a t
+

ge
tW

id
th

 :
 d

ou
bl

e
+

R
oa

dV
eh

ic
le

C
or

e
+

ge
tL

en
gt

h
:

do
ub

le
+

ge
tV

eh
ic

le
Sp

ec
ifi

ca
tio

n
:

R
oa

dV
eh

ic
le

Sp
ec

ifi
ca

tio
nD

at
a

+
se

tN
am

e
:

vo
id

+
ge

tM
as

s
:

do
ub

le
+

ge
tS

te
er

A
ng

le
 :

 f
lo

a t
 s

et
Pu

bl
ic

In
te

rf
ac

e
:

vo
id

+
ge

tR
pm

 :
 d

ou
bl

e
+

ge
tP

ub
lic

In
te

rf
ac

e
:

R
oa

dV
eh

ic
le

+
ad

dD
riv

er
C
ha

ng
eL

is
te

ne
r

:
vo

id
+

se
tS

te
er

A
ng

le
 :

 v
oi

d
+

ge
tI

ne
rt

ia
 :

 d
ou

bl
e

+
cu

st
om

iz
eT

hi
s

:
vo

id
+

se
tB

ra
ki

ng
Fo

rc
e

:
vo

id
+

se
tA

ng
ul

ar
V
el

oc
ity

 :
 v

oi
d

+
ge

tD
riv

er
 :

 D
riv

e r
+

ge
tG

ea
r

:
do

ub
le

+
se

tG
as

Fl
ow

 :
 v

oi
d

ca
.u

la
va

l.i
ft

.d
am

as
.f

cd
.d

ri
ve

r.
A

u
to

2
1

D
ri

ve
r

+
ge

tG
as

 :
 f

lo
at

#
fin

al
iz

e
:

vo
id

+
se

tB
ra

ke
 :

 v
oi

d
+

A
ut

o2
1D

riv
er

+
ac

t
:

vo
id

+
in

it
:

vo
id

+
A
ut

o2
1D

riv
er

+
di

sp
os

e
:

vo
id

+
st

ee
r

:
vo

id
+

re
se

t
:

vo
id

+
ge

tN
am

e
:

St
rin

g
+

A
ut

o2
1D

riv
er

+
ge

tS
te

er
 :

 f
lo

at
+

se
tR

ol
e

:
vo

id
+

se
tG

as
 :

 v
oi

d
+

ge
tA

ge
nt

ID
 :

 in
t

#
se

tA
ge

nt
 :

 v
oi

d
+

ge
tA

ge
nt

 :
 D

riv
in

gA
ge

nt
+

cl
on

e
:

O
bj

ec
t

+
ge

tB
ra

ke
 :

 f
lo

at

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.d
ri

ve
r.

Ja
ck

H
u

m
a

n
D

ri
ve

r

+
cl

on
e

:
O

bj
ec

t
+

Ja
ck

H
um

an
D

riv
er

+
Ja

ck
H

um
an

D
riv

er
+

Ja
ck

H
um

an
D

riv
er

+
in

it
:

vo
id

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.d
ri

ve
r.

Ja
ck

Fo
ll

o
w

e
rD

ri
ve

r

+
Ja

ck
Fo

llo
w

er
D

riv
er

+
Ja

ck
Fo

llo
w

er
D

riv
er

+
in

it
:

vo
id

+
Ja

ck
Fo

llo
w

er
D

riv
er

+
cl

on
e

:
O

bj
ec

t

A
ge

nt
Be

lie
fs

Co
ns

ta
nt

s
Ag

en
tT

as
kE

xe
cu

to
r

ca
.u

la
va

l.i
ft

.d
am

as
.f

cd
.a

g
en

t.
Ja

ck
A

u
to

2
1

A
g

en
t

+
ad

dP
er

ce
pt

io
n

:
vo

id
+

ge
tP

os
iti

on
In

Pl
at

oo
n

:
in

t
+

re
m

ov
eC

on
tr

ol
St

at
us

Li
st

en
er

 :
 v

oi
d

+
in

iti
al

iz
eR

ol
e

:
bo

ol
ea

n
+

Ja
ck

A
ut

o2
1A

ge
nt

+
ge

tA
ct

ua
to

rS
ta

te
 :

 in
t

+
ge

tA
ge

nt
ID

 :
 in

t
+

se
tP

er
ce

pt
io

nS
ys

te
m

 :
 v

oi
d

+
ge

tR
ol

eS
ta

te
 :

 in
t

+
ge

tP
er

ce
pt

io
nS

ys
te

m
 :

 P
er

ce
pt

io
nS

ys
te

m
+

re
m

ov
eL

on
gG

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

vo
id

+
ad

dC
on

tr
ol

St
at

us
Li

st
en

er
 :

 d
ou

bl
e[

]
+

ad
dT

as
k

:
bo

ol
ea

n
+

ad
dT

im
eT

as
k

:
bo

ol
ea

n
+

is
Ta

sk
R
ol

e
:

bo
ol

ea
n

+
se

tN
ew

Pl
at

oo
n

:
vo

id
+

re
m

ov
eF

ro
m

Pl
at

oo
n

:
vo

id
+

ne
ed

Fr
on

tP
er

ce
pt

 :
 b

oo
le

an
+

Ja
ck

A
ut

o2
1A

ge
nt

+
ad

dP
er

ce
pt

io
n

:
vo

id
+

ne
ed

W
or

ld
Pe

rc
ep

t
:

bo
ol

ea
n

+
ad

dL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
do

ub
le

[]
+

is
St

at
ic

R
ol

e
:

bo
ol

ea
n

+
fir

eR
ol

eS
ta

te
C
ha

ng
ed

 :
 v

oi
d

+
se

tA
ct

ua
to

rS
ta

te
 :

 v
oi

d
+

ad
dP

er
ce

pt
io

n
:

vo
id

+
ad

dL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
do

ub
le

[]
+

ge
tP

la
to

on
ID

 :
 in

t
+

ca
nc

el
Ta

sk
 :

 b
oo

le
an

+
se

tR
ol

e
:

bo
ol

ea
n

+
ad

dT
oP

la
to

on
 :

 v
oi

d
+

se
tR

ol
eS

ta
te

 :
 v

oi
d

+
re

m
ov

eL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ne
ed

D
yn

am
ic

Pe
rc

ep
t

:
bo

ol
ea

n
+

ge
tR

ol
e

:
in

t
+

re
se

t
:

vo
id

+
se

tN
ew

Pl
at

oo
n

:
vo

id
+

ad
dA

ge
nt

St
at

eL
is

te
ne

r
:

vo
id

+
re

m
ov

eA
ge

nt
St

at
eL

is
te

ne
r

:
vo

id
+

ad
dD

is
ta

nc
eT

as
k

:
bo

ol
ea

n

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.d
ri

ve
r.

Ja
ck

Le
a

d
e

rD
ri

ve
r

+
Ja

ck
Le

ad
er

D
riv

er
+

in
it

:
vo

id
+

Ja
ck

Le
ad

er
D

riv
er

+
cl

on
e

:
O

bj
ec

t
+

Ja
ck

Le
ad

er
D

riv
er

F
ig

u
re

3.
10

:
C

la
ss

d
ia

gr
am

of
th

e
A

u
to

21
d
ri

ve
r

in
fr

as
tr

u
ct

u
re

fo
r

ag
en

ts
.

Chapter 3. Agent Oriented Driving Simulator 62

these two threads run in parallel, the driver interface allows the agents to modify data

in an asynchronous way, even though this data is inside the simulator’s running loop.

This way, the driving agent can set a new value of gas throttle asynchronously and

this new value will be queried by the simulator’s engine at the next time step, without

interfering with the agent’s reasoning.

3.7 Collaborative Driving Scenarios

The main purpose of the HESTIA simulator is to test and improve the different models

of Collaborative Driving System (CDS) that should be developed as part of the Auto21

project. To realize this task, the simulator must provide tools to automate the creation

of test cases or scenarios and monitor the reaction of our system. Such tools have been

developed as part of our simulator and they are described below, by referring to the

Scenario Manager and the Log Manager. The Scenario Manager launches collaborative

driving scenarios and manages each scenarios’ tasks according to events specified in

a scenario file. The Log Manager monitors the information about the state of the

simulation through time and writes the details of each state to a log file.

3.7.1 Driving Scenarios Specifications

The different possible test cases we provide as part of our Scenario Manager are almost

infinite. Currently, the Scenario Manager supports the automatic activation of the

following agent tasks: (i) merge; (ii) split; (iii) follow. Moreover, the following driving

tasks can also be automatically generated: (i) changing lane; (ii) driving at a specific

velocity; (iii) driving at a specific acceleration; and (iv) maintaining a specific time

or distance gap with the preceding vehicle. In order to automatically activate these

tasks, the Scenario Manager offers to its users the possibility to specify the pre- and

post-conditions that trigger the tasks. The current possible conditions (pre or post) are:

a vehicle’s specific velocity, acceleration, position (x or y), or distance with preceding

vehicle; the scenario time; and a driving agent’s role with its role’s state.

Using the supported task definitions along with any combination of conditions, a

vast variety of tests cases can be generated inside a scenario. However, the simulation

results presented in this thesis mainly use the merge and split agent tasks, as it will be

shown in Chapter 6.

Chapter 3. Agent Oriented Driving Simulator 63

3.7.2 Driving Scenarios Engineering

The two main components that compose the collaborative driving scenarios are shown

inside the simulator software model in Figure 3.3. The Scenario Manager monitors the

information on the state of the simulated vehicles and the 3D environment to trigger

tasks that are executed by the driving agent. On the other hand, Log Manager monitors

the Scenario Manager, the state of the simulated vehicles and the state of the vehicles’

drivers to write this information to a log file.

The general model used to develop the scenarios and logs of our simulator is pre-

sented in Figure 3.11. This model shows the relationship between the XML scenario

description files, creating a series of events in the simulation, and the simulation ob-

servers, recording logs to files throughout the simulation. A Batch Scenario Manager is

used to automatically run multiple scenarios, which is very useful to support reinforce-

ment learning functions for our Collaborative Driving System (CDS). Each scenario is

managed by the Scenario Manager, which creates a series of threads called Scenario

Events. These events represent our test cases and they monitor the simulation to trigger

a task considering a specific pre-condition and end the same task on a specific post-

condition. The task(s) that can be triggered as part of a Scenario Event may concern

the driver (agent), the vehicle or the highway environment. At the moment, these tasks

are mainly used to modify the driver’s behavior, but it can also be used to simulate

a breakdown of the car, its sensors or its communication system, or animate different

objects or humans on the road.

Batch Scenario
Manager Scenario Manager Scenario Events

Pre-Condition

Post-Condition

Task

Agent Oriented
Log Maker

Vehicle Oriented
Log Maker

Log MakerLog File Writer

Log Manager Agent Vehicle Environment

Scenarios

Log Files

n 1 1 1 1 n
1

n

1 n
1

n

1 0,n
1
1

n 1

n

1

0,n 0,n

Figure 3.11: Abstracted model of the driving scenarios and log creation systems.

Every time a simulation runs in the HESTIA simulator, our Log Manager can record

Chapter 3. Agent Oriented Driving Simulator 64

the information about the drivers’ actions, the vehicles dynamics data, communications,

sensed data, or other events. The log system is loaded at startup, from XML files

relating to the definition of different Log File Writers. Each Log File Writer includes

one or many log makers, as shown in Figure 3.11, depicting log makers for the driver

(agent), the vehicle and the environment. At their creation, log makers monitor a part

of the simulation using events or a timer. The Log File Writer ’s thread queries them

when processing time is available and outputs the merged data from each log maker to

a temporary file. All the temporary files are finally brought together inside an Excel

workbook, by the Log Manager, at the end of the scenario.

The overall system enables us to run a series of simulations for a day, a week or more

and gather the results to either analyze the reaction of our CDS to different events or

learn from one scenario to another.

3.8 Summary

The simulator that has been described in this chapter regroups all the basic components

required to simulate either a simple ACC or a complex Collaborative Driving System

(CDS). The vehicles dynamics are detailed at a level that presents realistic behaviors

and their code has been optimized to enable a large amount of vehicles to run in a same

simulation in real-time. The sensors, communications and driving systems present all

the requirements of a standard automated driving system. The scenario creation system

enables the test the CDS in all sorts of situations, while the log system is very useful

to analyze and learn from the behaviors of our drivers.

Obviously, this simulator can still benefit from further enhancement, depending on

the priorities of the future phases of the Auto21 project. For instance, many aspects

of the GUI could be improved, the 3D environment could be more representative of

the targeted highways, the vehicles’ technological components’ simulation could also be

improved, and useful tools could be added to the simulator. To this end, the different

simulator enhancements are now listed as suggestions:

• The interface could be more user friendly. This way, our simulator could be

used by people who are not working on the project, while facilitating our own

interactions with the simulator.

• We could benefit a lot more from the Java 3D API, by adding different effects

like vehicles’ sounds, wheels that actually rotate and turn, and by supporting a

Chapter 3. Agent Oriented Driving Simulator 65

joystick for manual driving. In addition, the vehicles’ 3D models could relate to

a specific type of car and the highway could be detailed a little more.

• The current road is straight, but it could include different highway exit and entry

points, and include changing road and weather conditions.

• Tools to support reinforcement learning could be developed or included as an

infrastructure, part of our simulator. This would enable its users to develop

learning functions on different aspects of our driving system.

• New sensors and communication system could be modeled, considering the rec-

ommendations of industrial partners in Auto21.

• The models of human drivers could be included inside the simulated scenarios, in

order to increase traffic and study different aspects of collaborative driving.

• Different modules of the simulator could be distributed on many computers in

order to increase the processing power.

• If we decide to include a greater amount of vehicles, in order to increase traffic, the

dynamics simulation model of these vehicles could be calculated using discretized

time, which would greatly improve their processing time.

Chapter 4

Auto21 Driving Agent Architecture

The development of complex real-time systems like the Collaborative Driving System

(CDS) requires a robust architecture that supports problem specific requirements and

possesses a series of attributes that most real-time control systems require. This chapter

aims to detail the architecture defined for the Auto21 project and explain its develop-

ment process and objectives. To this end, the chapter begins with Section 4.1, by pre-

senting different automated driving systems currently used as part of similar projects.

Then, Section 4.2 describes the architecture we developed (the Auto21 architecture

[Auto21, 2004]), by presenting real-time architectures’ requirements, and giving details

on each divisions of this architecture. This is followed by the Section 4.3, presenting

the software engineering of our architecture, while Section 4.4 concludes this chapter

by presenting the techniques of implementation of such architecture.

4.1 Automated Driving Systems

Before describing the Auto21 driving architecture, we first specify the requirements of

such an architecture in terms of “autonomous driving”. First, it should be specified

that our Collaborative Driving System (CDS) aims to realize “driving manoeuvres” to

which we refer to, when describing the coordinated driving tasks including: (i) platoon

following; (ii) platoon splitting (leaving); (iii) platoon merging (entering). Moreover, we

also refer to the term “driving actions”, when describing automated driving tasks like:

(i) changing lane; (ii) maintaining a velocity; (iii) maintain an inter-vehicle distance; etc.

The reference to driving manoeuvres and actions will be kept accordingly, throughout

this chapter and the following ones.

Chapter 4. Auto21 Driving Agent Architecture 67

The requirements of the Auto21 architecture can be detailed with the following

list of functionalities. These functionalities often relate to other autonomous driving

systems, which are described afterwards.

Surrounding objects (vehicles) sensing: One or many functions that use different

sensors to determine the relative position of surrounding vehicles. These functions

should be based on data fusion algorithms, which have the ability to give a precise

representation of the state of neighbor vehicles.

Vehicle positioning: A function that determines the global position of the vehicle in

real-time.

Inter-vehicle communication management: A set of functions using the vehicle’s

communication devices to send and receive messages according to a predetermined

protocol.

Driving manoeuvres coordination: Different functions that use the communica-

tion system to coordinate driving actions taking part in a predefined plan struc-

ture. These functions handle all the manoeuvres that necessitate more than one

vehicle.

Traffic management: Functions that use the vehicle’s communication devices to re-

ceive recommendations on driving manoeuvres to execute, in order to improve the

overall traffic.

Driving action planning: Functions that coordinate the actions of a single vehicle.

As opposed to the “driving manoeuvres coordination”, these functions are used

for a manoeuvre or a higher-level driving action that only involves the vehicle

being driven. In this case, a driving action is the action of modifying the vehicle’s

actuators: steering wheel, gas and brake pedals.

Adaptive cruise control: A function that maintains a safe distance with the preced-

ing vehicle. This function uses a sensor or a vehicle state, communicated by the

vehicle being followed.

Real-time emergency reactions: Functions that react to predefined problematic

situations or dangerous states, often learned over time.

Note that the previous functionalities represent the complete requirements of a

fully autonomous system, which is not an immediate objective for the upcoming years.

However, our architecture should support all those functionalities, even though only a

part of them are actually implemented within the first phase of the project, depicted

in this thesis.

Chapter 4. Auto21 Driving Agent Architecture 68

4.1.1 Communicative Control

Communicative control technologies, known as Cooperative Adaptive Cruise Control

(CACC), are presented in this section because they implement some of the basic func-

tionalities required for our architecture. In fact, most of the CACC, depending on

their purpose and the sensors they use, provide the following functionalities: Surround-

ing objects sensing, Vehicle positioning, Adaptive cruise control, Real-time emergency

reactions. A CACC is based on a simpler control technology called Adaptive Cruise

Control (ACC) [Winner et al., 1996], which controls only the vehicle’s gas and brake

throttle, to maintain a safe distance with the front vehicle. The ACC operates together

with the manually driven vehicle and has minimal sensors requirements: a simple laser

or sonar. It has the benefit of moderating the vehicle’s acceleration, to enhance comfort

during traffic disturbance situations [Ioannou and Stefanovic, 2003].

The concept of the CACC is the same as ACC, except that in CACC, the vehicles

use a communication system to share information with their neighbors. In the first

experiments on CACC, the preceding vehicle continuously transmitted the acceleration

and braking capacity information to the follower via point-to-point vehicle-vehicle com-

munication [VanderWerf et al., 2001]. This simple model gave promising initial results,

although the inter-vehicle communication policy had to be improved. Consequently,

other models followed the simple model of CACC and some of them focused on the in-

teraction between the human-driven vehicles and the controlled vehicles. Hedrick et al.

[2003] simulated CACC equipped vehicles merging the lane of a highway formed of

both manually driven and partially automated (ACC/CACC) vehicles and tested dif-

ferent acceleration/deceleration scenarios. Compared with the original implementation

of the CACC, the model of Hedrick et al. [2003] used event-driven communication, in

which a vehicle may communicate before changing lane, entering the highway or when

it senses a high deceleration. This resulted in vehicles reacting with softer accelera-

tion/deceleration when a vehicle was merging a lane, because of the longer reaction

time provided by the vehicle-vehicle communications.

In a similar project, Rajamani and Zhu [2002] proposed a technology called Semi-

Autonomous Adaptive Cruise Control (SAACC), which was presented as a platoon of

vehicles that could be deployed in a near future. The priority for this application was

to ensure string stability of the vehicles that are closely following each others, such

that vehicle-to-vehicle spacing error does not grow toward the end of the platoon. The

model of controller they proposed includes two hierarchical layers, where the upper-

level determines the desired acceleration to ensure the stability of the string of vehicles,

and the lower-level commands the throttle and brake required for this acceleration. The

upper-level control function uses communication from the preceding vehicle to adjust its

Chapter 4. Auto21 Driving Agent Architecture 69

acceleration, which eliminates the need for a centralized coordination station, required

in most platoon models. The vehicles used in the SAACC model were ACC equipped

vehicles with a radio receiver at the front and a transceiver at the back. This way, when

the vehicle preceding the SAACC equipped vehicle can communicate, both vehicles can

form a tight platoon. And when the preceding vehicle cannot communicate, the SAACC

can still be used as a simple ACC. As their first results, Rajamani and Zhu [2002]

simulated manoeuvres at string unstable frequency where the leader was disturbing

following vehicles. They showed that this controller was able to reduce the disturbances

and keep the string stable.

Other CACC systems have been proposed as control functions that relied on their

communication system at the point they could eliminate the need for sonar, laser or

other sensors [de Bruin et al., 2004]. In this case, vehicles are equipped with a Global

Positioning System (GPS) and a communication system, used to share information on

the vehicles’ position with other vehicles inside a Wireless Local Area Network (WLAN).

The longitudinal control function, used in this case, includes the estimated distance

from the controlled vehicle’s position to the front vehicle’s communicated position.

For their part, de Bruin et al. [2004] developed a CACC system that used a mailbox

mechanism to manage the inter-vehicle communications. Their system includes: (i) the

concept of a world model used by the mailbox to compare the information it receives;

(ii) the verification of messages’ consistency; (iii) the ability to forward messages when

necessary. Due to the generic implementation of the world model, their system offers

the advantage of being separated from the applications’ logical relations, which makes

this model of CACC easier to maintain.

4.1.2 Collaborative Driving Systems

A Collaborative Driving System (CDS) usually tries to form a platoon of vehicles, which

is very close to the previous CACC, although following distances are shorter and the

coordination techniques it uses are more elaborated. Car platoons aim to maintain

very close following spaces between the vehicles to increase highway capacity, while

in a standard ACC, the main objective is to maintain a safe distance to relieve the

driver from spacing adjustments. The platoon’s goal is achieved using an inter-vehicle

coordination system, which is the core of the CDS, as this section shows it, with different

examples.

The first objective of the CDS is to maintain the string of vehicles stable inside the

platoon. This issue is even more important in the case a CDS than for simpler models

like the SAACC, because of the following reasons:

Chapter 4. Auto21 Driving Agent Architecture 70

1. The platoon communication infrastructure makes it easier to support the coordi-

nation techniques required to maintain this stability.

2. If the string does not maintain its stability, vehicles are not able to follow each

others at closer distances (which is the purpose of the platoon formation).

3. If the string does not maintain its stability, we cannot ensure a global safety when

vehicles enter and leave the platoon.

The second and third reasons summarize the tasks that the CDS has to perform,

in order to keep the platoon stable, while the first reason highlights the fact that the

two previous tasks are more easily achievable within the platoon communicative infras-

tructure. This infrastructure may be based on road-to-vehicle communications and/or

vehicle-to-vehicle communications, similar to the WLAN. The projects described below,

taken from three different countries, present different CDS projects making different use

of their communication infrastructure.

The American CDS project

The PATH project, at the University of Berkeley in California represents a very well

known implementation of a CDS on real vehicles [PATH, 2004]. In this project, pla-

toons of vehicles use both lateral and longitudinal controllers to follow each others

through a road equipped with magnetic nails. The automated vehicles developed by

the PATH project are coordinated by both vehicle-to-vehicle and road-to-vehicle com-

munications, using a road-side infrastructure for traffic management purpose. The

general architecture proposed by the PATH project was initially used for the platoon

of cars on Automated Highway System (AHS) [Hedrick et al., 1994], but it has further

been reused for platoons of trucks, buses and even Mobile Offshore Base (MOB) (oil

rigs) [Howell et al., 2004].

PATH’s general architecture contains three hierarchical layers that are presented in

Figure 4.1. The regulation layer is the lowest layer of control in which control laws are

given as vehicle states or observation feedback policies to control the vehicle dynamics.

The coordination layer contains the control and observation subsystems responsible for

safe execution of the basic manoeuvres such as manual control, speed regulation or

distance tracking. The supervisory layer contains the control and observation strate-

gies that may trigger the coordination of manoeuvres through inter-vehicle protocols.

Howell et al. [2004] proposed a decentralized coordination model to implement this

layer, but the details on its protocols management was not given. Hence, the most

accurate coordination model proposed inside the PATH project, and probably the most

Chapter 4. Auto21 Driving Agent Architecture 71

interesting and complete one, is the model proposed by Bana [2001], which is presented

in Section 4.4.5.

Database (device drivers)

Regulation Layer

Coordination Layer

Throttle Brakes

Speed Distance

des. accel.vehicle state

a_des, v_des, d_des
and veh. ID

Indiv. In
Platoon

performance
status

Supervision Layer

maneuver

Script Driver

maneuver
status

Figure 4.1: Architecture used for the PATH project in Howell et al. [2004].

The Japanese CDS project

For their part, Tsugawa et al. [2001] developed a platoon architecture similar to PATH’s

CDS, expect that they did not use a road side infrastructure to coordinate their pla-

toons. Their vehicles use a GPS and a laser sensor to follow each others in the platoon.

They developed a WLAN (communication network formed by neighboring vehicles)

model based on a token-ring [Sakaguchi et al., 2000], which is used to communicate

each vehicle’s dynamic state inside a neighborhood.

The Japanese project takes advantage of their communication system to support the

implementation of Differential Global Positioning System (DGPS) [Wolfe et al., 2000],

which increases the GPS accuracy by comparing and merging all the vehicles’ GPS

data. Other vehicles’ position information is also used to maintain relative distances

and to coordinate manoeuvres like a vehicle splitting or merging from the platoon. In

their coordination model, vehicles that request the execution of a manoeuvre must send

Chapter 4. Auto21 Driving Agent Architecture 72

a message through the network and each vehicle has to accept the proposition for the

manoeuvre to take place. This communication model ensures a certain degree of safety,

but it does not try to decrease the amount of communicated data nor does it addresses

the problem of large neighborhoods of vehicles.

The French CDS project

The French project ARCOS [Blosseville et al., 2003] aims to develop a communication

infrastructure for vehicles equipped with ACC. Their inter-vehicle communication sys-

tem enables vehicles to share their dynamic state and different sensed data. In the

ARCOS project the collaboration among vehicles is done in order to provide the fol-

lowing functions: (i) notifying hazardous events to vehicles; (ii) regulating headways;

(iii) anticipating collisions; (iv) preventing road departure. Another similar European

project called CarTALK 2000 [Morsink et al., 2002] is focusing on driver assistance

systems based on inter-vehicle communication. The main objectives of this project

are the development of cooperative driver assistance systems and the development of a

self-organizing ad-hoc radio network that will enhance the functions offered by current

vehicles’ ACC.

4.2 Hierarchical Representation

The architecture that has been specifically developed for the Auto21 project provides

the functionalities supporting the CDS in similar way to the American and Japanese ar-

chitectures. This architecture is based on previous real-time hierarchical agent-oriented

architectures and it uses the CACC technologies, presented earlier, as its lower layer.

During the modelling phase of our architecture, many factors have been considered by

analyzing similar architectures, as presented in [Hallé et al., 2003]. In this thesis, we

retained the following characteristics for the Auto21 architecture:

Flexibility: The architecture should have a flexible structure so that components can

be easily changed or added during the development process or at a later time.

Modularity: The architecture should be based on a modular structure. A complex

system, such as the one used for collaborative driving, should be divided into

smaller sub-components which can be individually designed, implemented and

tested.

Chapter 4. Auto21 Driving Agent Architecture 73

Expendability: The architecture should be easily expandable. The system must be

developed incrementally, and the additional components should not interfere with

the previously tested components.

Real-Time Monitoring and Control: The architecture should be able to monitor

events and react in real-time. Apart from the deliberative system, a reactive part

of the architecture must generate control signals in deterministic time, under any

circumstances. This ensures that the control system reacts at all time and during

any situation.

Reliability and Robustness: The architecture must be able to execute planned se-

quences of actions under conditions of uncertainty. This guarantees that the

system can rapidly responds to unexpected events such as component failures. It

also provides a safe infrastructure to manage concurrent real-time activities.

The resulting architecture, is the one used to model the driving agents of the Auto21

project. Throughout this thesis we refer to the Auto21 architecture by using its global

model, presented in Figure 4.2. This figure represents the hierarchical organization

of layers, sub-layers and modules that support the CDS functionalities enumerated in

Section 4.1, as well as the architecture characteristics that were just mentioned.

The decomposition of the different modules of our architecture, relating to specific

functions, has been done considering the Auto21 Collaborative Driving System (CDS)

project’s decomposition. Such a decomposition provides the flexibility, modularity and

expendability required for our architecture. This way, our partner from the University

of Calgary, being specialized in geomatics, has been assigned the Intelligent Sensing

sub-layer. Our second partner, the robotic laboratory at the University of Sherbrooke,

is focusing on the Vehicle Control sub-layer. Sherbrooke also works closely with Calgary,

on the Intelligent Sensing, to provide sensing requirements. Our partners at Sherbrooke

have also been assigned the development of a general cooperation strategy, so they are

collaborating with us, to develop the Management layer.

The technologies on adaptive controllers presented in Section 4.1.1 are similar to

the base of our architecture, which includes the Vehicle Internal Perception module

and Vehicle Control sub-layer. The Vehicle Control ensures real-time monitoring and

control using a lower-level controller that is directly linked to the lower level perceptions.

A higher-level of sensing and control allows the Guidance layer to provide modular

guidance functionalities which makes the planning process a lot easier. Such plans

are generated as part of the Management layer. Along with the Vehicle Control, the

Planning sub-layer ensures reliability and robustness required for this CDS, at both the

reactive and long term levels. Hence, plans are generated and used in a similar way to

the CACC, which supports following, merging and splitting manoeuvres.

Chapter 4. Auto21 Driving Agent Architecture 74

Traffic Control Layer
(Road-side ITS equipment)

Manners, rules, ethic
Traffic real-time information

Management Layer

Coordination

Guidance Layer

Intell igent
Sensing

dynamics

acceleration

yaw

radar
gas / brake pedal

steering wheel

Internal Sensors

Vehicle Actuators

Intra-platoon
communications

(input)

S
en

si
ng

 d
at

a,
S

ta
te

 v
ar

ia
bl

es

Vehicle
Control

Vehicle
Internal

Perception

Navigation

Sensed
data

Linking

Networking

Planning

Inter-platoon
communications

(input)

Inter-platoon
communications

(output)

Intra-platoon
communications

(output)
Coordinating

actions

Modules

Sub-layer

Layer

intra-platoon
actions

inter-platoon
actions

Cooperative
Plans

Road-vehicle communication criteria

. . .

Lower-Level
Controller

Upper-Level
Controller

 D
esired state

Figure 4.2: Auto21 hierarchical agent architecture.

Chapter 4. Auto21 Driving Agent Architecture 75

The model we used for the Guidance layer is similar to the architecture presented by

Tsugawa and the PATH project. Since the coordination level is an important aspect of

our research project, it will be detailed in Chapter 5. However, aspects as the platoon

string stability or traffic management are not elaborated in the description of our archi-

tecture. As part of the Coordination sub-layer, we included a Linking module, which

collaborates with the Networking module to ensure that our architecture is expand-

able. This expendability supports the coordination of many platoons in collaboration

with a Traffic Control layer, if this is necessary. For a better understanding, each layer

is detailed below starting from the bottom Guidance layer in Section 4.2.1, following

with the middle Management layer in Section 4.2.2 and ending with an overview of the

Traffic Control in Section 4.2.3.

4.2.1 Guidance Layer

The functions of the Guidance layer consist of sensing changing states around the ve-

hicle and activating the longitudinal actuators (gas/brake pedal) or lateral actuators

(steering wheel). The Guidance layer’s function within our architecture includes out-

putting sensed data and vehicles’ state variables to the vehicle Management layer and

receiving steering and vehicle velocity commands from the same Management layer.

These considerations have led us to divide the guidance functionalities in Intelligent

Sensing and Vehicle Control sub-layers, as depicted in Figure 4.2. Below, we propose

different ways to implement the Guidance layer within its sub-components, although

the methodology that will be used to respect the components’ requirements can be

changed through time.

Intelligent Sensing Sub-Layer

The Intelligent Sensing sub-layer acts as the entry point of our control system. It

transmits raw information about the state inside and outside the vehicle for fast re-

sponses. It also sends filtered data to a deliberative system (Management layer), for

a longer and more accurate reasoning. To achieve these tasks, our sensing system re-

quires different sensors capable of working precisely in different types of environment,

along with data fusion functions that create a global representation of the environ-

ment. In addition to the external sensors, we use internal vehicle dynamics sensors like:

speedometer, accelerometer, yaw meter. This enables the Intelligent Sensing sub-layer

to retrieve information about the driven vehicle’s state. For a better understanding,

the Intelligent Sensing sub-layer’s internal organization is presented below, while ref-

Chapter 4. Auto21 Driving Agent Architecture 76

erences to research advances concerning the sensing problem inside the Auto21 project

are described in Section 4.4.1.

Inside our application, sensors are grouped in accordance with the percept types to

which they relate. These groups are presented in Figure 4.3, which shows sensors on

the left and the sensors’ respective category to the right. Possible categories of sensed

data include: (i) the front target state, (ii) the vehicle’s chassis dynamic state, (iii) the

engine state, etc. The Navigation module (part of the Intelligent Sensing sub-layer) is

formed by data fusion and filtering algorithms. These algorithms generate higher-level

information on the platoon and vehicle states. On the other hand, the Vehicle Internal

Perception module produces lower-level data that can provide a quicker response time.

Intel l igent
Sensing

Chassis
dynamic

state

Engine
State

Front
Target
State

cameras

Vehicle
Control

Vehicle
Internal

Perception

Navigation

Vehicle
Specifications

radar

laser

sonar

speedometer

accelerometer

yaw gyro

engine interface

Management
Layer

Figure 4.3: Intelligent Sensing sub-layer: detail.

At the moment, we consider that the Intelligent Sensing sub-layer should output

the following information to the Management layer and/or the Vehicle Control with an

unspecified precision:

• The vehicle’s global position in three dimensions.

• The vehicle’s front object’s (vehicle) distance and difference of velocity at a range

smaller than 100m.

• The vehicle’s velocity and acceleration.

• The vehicle’s heading and yaw rate.

• The traction wheels’ angular velocity.

• The engine’s revolution and the transmission’s gear number.

Chapter 4. Auto21 Driving Agent Architecture 77

• The vehicle’s current brake and gas percentage.

• The vehicle’s current steering angle.

Vehicle Control Sub-Layer

The Vehicle Control sub-layer directly acts on the vehicle’s actuators (pedals and steer-

ing wheel) and receives information from the Intelligent Sensing sub-layer and orders

from the Management layer, as shown in Figure 4.2. To address the requests on desired

vehicle states from the Management layer, the Vehicle Control sub-layer has been di-

vided in two parts: Upper-Level Controller and Lower-Level Controller. This division

is presented in Figure 4.4, which is a detailed version of the Vehicle Control sub-layer.

The Upper-Level Controller responds to the state requests from the Management layer,

while the Lower-Level Controller acts on the vehicle’s actuators. In the case of the

Upper-Level Controller, a state request refers to an order to bring the vehicle in a

specific vehicle dynamics state, which can be described using the following vehicle re-

quests: inter-vehicle spacing, vehicle velocity, global meeting point (described later),

lane change, etc. Requests on the vehicle’s state may also include a specification on the

actuator reaction time, for smoother or sharper responses.

In the model of Figure 4.4, the Upper-Level Controller is shown as acting on two

possible types of Lower-Level Controller : the Lower-Level Longitudinal Controller and

the Lower-Level Lateral Controller. The Lower-Level Longitudinal Controller receives

request on vehicle acceleration from longitudinal control algorithms (detailed in Sec-

tion 4.4.3), situated inside the Upper-Level Controller. The acceleration requests are

applied by the Lower-Level Longitudinal Controller by setting the necessary brake or

gas throttle percentage. Similarly, the Lower-Level Lateral Controller applies steering

command on the vehicle’s actuator, considering the request on vehicle orientation given

by the Upper-Level Controller. As Figure 4.4 shows it, the vehicle actuators that are

required for control tasks are: (i) a gas throttle actuator; (ii) a brake actuator; and (iii)

a steering wheel actuator.

4.2.2 Management Layer

The Management layer has the task to determine the movement of each vehicle un-

der the cooperative driving constraints using data from: (a) the Guidance layer; (b)

vehicles coordination constraints through the inter-vehicle communication; and (c) the

Traffic Control layer through the road-vehicle communication (refer to Figure 4.2). To

Chapter 4. Auto21 Driving Agent Architecture 78

Vehicle Control

Lower-Level Controller

Upper-Level Controller

Lower-Level
Longitudinal
Controller

Engine Throttle Vehicle Brakes

Intel l igent
Sensing

Sensed
Data

pressure (%) pressure (%)

Lower-Level
Lateral

Controller

Steering Wheel

steering angle
(rad)

acceleration
(m/s2)

heading
(rad)

Desired state

Management
Layer

Figure 4.4: Vehicle Control sub-layer: detail.

Chapter 4. Auto21 Driving Agent Architecture 79

determine the movement of each vehicle under the cooperative constraints, this layer

needs to reason on the place of the vehicle in the platoon when this platoon remains

unchanged (intra-platoon coordination), and its place in a new platoon when this pla-

toon changes (inter-platoons coordination). The intra-platoon coordination is handled

by the Networking module and the inter-platoon coordination, by the Linking module,

together forming the Coordination sub-layer. Generally, the task of the Linking module

consist of communicating with the Traffic Control layer to receive suggestions on lane

change actions to perform. Once the Linking module has chosen an action to perform,

the manoeuvres involved in this action (likely splitting or merging a platoon) are coor-

dinated through intra-platoon policies. Each manoeuvre is defined by one or a series of

plans that is managed in time using the Planning sub-layer.

Planning Sub-Layer

The Planning sub-layer has a strong link with the Coordination sub-layer since both are

part of the same layer (Management) and the Coordination sub-layer uses the Planning

sub-layer to create and maintain cooperative plans (refer to Figure 4.2). In a first time,

the Planning sub-layer is responsible of maintaining a platoon formation plan with other

vehicles, by using the Networking sub-layer. For the Planning sub-layer, a platoon

formation plan is a set of driving actions in time or according to events, that should be

taken to maintain the platoon formation. In a second time, the Planning sub-layer uses

complex driving plans that request driving actions from the Vehicle Control sub-layer

inside the Guidance layer. Those driving plans constitute the different steps to execute

as part of a driving task (manoeuvre), delimited by both a pre- and post-condition.

Coordination Sub-Layer

As shown in Figure 4.2, the Coordination sub-layer is divided in intra-platoon needs

handled by the Networking module, and inter-platoon needs handled by the Linking

module. The Linking module is detailed in Section 5.1 where two models of inter-

platoon coordination are presented: centralized and decentralized. Both models use a

traffic management function based on vehicles’ cost on the highway, which is detailed

in Section 4.4.5. To provide the required traffic management functions, the model that

implements the Linking module can use information from the Traffic Control layer,

as shown in Figure 4.2. Other models of implementation of the Linking module, like

the decentralized model, use a communication based on a mobile Ad-Hoc network to

replace the Traffic Control layer. The mobile Ad-Hoc network allows vehicles to share

Chapter 4. Auto21 Driving Agent Architecture 80

traffic information without requiring a road based infrastructure.

The main task of the Linking module evolves around the lane change actions. It

must determine when a vehicle should do a lane change, by coordinating itself with

neighboring vehicles and making the resulting manoeuvre safe to execute. Once the

Linking module has determined that it can safely execute a lane change, the Networking

module coordinates the driving actions involved in the manoeuvre.

The Networking module being the most important subject of this research, it will be

detailed in Section 5.2. Since it handles the intra-platoon coordination, the Networking

module must coordinate manoeuvres as: (i) following a vehicle; (ii) merging a platoon;

and (iii) leaving a platoon. The two latter manoeuvres are directly related to the

lane change driving action. In this context, three main coordination models have been

defined for the intra-platoon actions: (i) a centralized networking based on the platoon’s

leader; (ii) a decentralized networking model based on social laws; (iii) a networking

system based on teamwork for agents.

To clarify the two different types of coordination involved in the Coordination sub-

layer, it should be recalled that for the inter-platoon coordination, a centralized model

refers to the centralization on a road-side system. And for the intra-platoon coordina-

tion, the centralized model refers to the centralization on the platoon’s leader

4.2.3 Traffic Control Layer

The Traffic Control layer presents the traffic regulation and management systems that

optimize traffic by guiding vehicles and platoons. As Figure 4.2 shows it, the Traffic

Control layer is based on a road-side infrastructure, which provides all the necessary

information on the traffic-flow, in real-time. Hence, the Traffic Control layer works

closely with the different vehicles’ Linking module, which provides the information on

these vehicles’ state, gathered to map the traffic-flow. The vehicles’ Linking module

is also being used by the Traffic Control layer to suggest optimal driving actions to

vehicles, using the observations on specific traffic neighborhoods.

It should be mentioned that our architecture presents the Traffic Control layer, only

as a suggestion. Therefore, the model that will be used for the Linking module will

determine whether or not this layer should be developed. This means that in a decen-

tralized model of the Linking module, a road-side infrastructure would not be required,

but could be replaced by a mobile network based on wireless communications, as the

Advanced Intelligent Mobile Entertainment (AIME) proposed by Nortel Networks and

Chapter 4. Auto21 Driving Agent Architecture 81

Redknee.com1. However, the function or heuristic behind the traffic management sys-

tem can be defined immediately, as we do it in Section 4.4.6, but the way suggestions on

driving actions are communicated to vehicles depends on the model of Linking module:

centralized or decentralized.

For the moment, we only define the main functions of the Traffic Control layer and

all other aspects are left aside for its future development. We must keep in mind that the

details of implementation of the Traffic Control layer will be greatly influenced by the

existing inter-vehicle communication infrastructure and possible road-side information

systems developed by car builders or transport Canada. As a first draft, the Auto21

architecture, in Figure 4.2, presents this layer as a road-side infrastructure composed

of sign boards, traffic signals and road-vehicle communications, as well as a logical part

including: social laws, social rules, weather-manners and other ethics, etc.

4.3 Auto21 Architecture Software Engineering

Now that the Auto21 architecture has been detailed, the architecture’s software engi-

neering models can be presented. The software models provide a better understanding

of our automated driving system’s capabilities inside its testing environment (the sim-

ulator presented in Chapter 3).

Figure 4.5 represents a global view of the software models referring to the Guidance

and Management layers of Figure 4.2. Each component in this figure refers to the pre-

vious architecture, as indicated by the dotted lines surrounding the right component(s).

The rounded boxes represent the most important components of our engineering model

and names written in parenthesis, at the bottom of these boxes refer to the Java class

used to implement this component. For instance, the Upper-Level Controller refers to a

class called BasicVehicleGuidance in our application, which uses a set of Guidance Func-

tions answer to the Jack Auto21 Agent class. The latter class represents an Auto21

Agent, which is equal to the Management layer of our architecture. The Intelligent Sens-

ing sub-layer is represented in our application by the PerceptionSystem class, which is

provides data on the environment to the two previous components and the Lower-Level

Controller. This controller is represented in our application by the BasicVehicleControl

class, which acts directly on the Auto21 Driver interface. This interface represents the

link with our simulator’s actuators (refer to Section 3.6) for the moment, but it could

1More information on the AIME is available as a news release at http://www.nortelnetworks.com/
corporate/news/newsreleases/2000b/07 06 0000377 aime redknee.html

http://www.nortelnetworks.com/corporate/news/newsreleases/2000b/07_06_0000377_aime_redknee.html
http://www.nortelnetworks.com/corporate/news/newsreleases/2000b/07_06_0000377_aime_redknee.html

Chapter 4. Auto21 Driving Agent Architecture 82

also refer to the vehicle’s CAN-Bus2 in the case of a real vehicle.

Intelligent Sensing
(PerceptionSystem)

Auto21 Agent
(JackAuto21Agent)

Lower-Level Controller
(BasicVehicleControl)

Auto21 Driver

Guidance Functions

Jack Plans

Knowledge Base

DatabaseVehicle Sensors

Sensed Data

Raw Data

Vehicle State

Deamons

Modify

Modify

Owns

Uses

Modify

Act on

Act on

Act on

Management Layer

Guidance Layer
Knowledge Base

Upper-Level Controller
(BasicVehicleGuidance)

Owns

Figure 4.5: A global view at the Auto21 architecture’s design model.

For a better understanding of each hierarchical divisions presented in Figure 4.5, a

detailed presentation referring to the actual classes developed in our application is given

in the next sections. Note that the emphasis is on the Guidance Layer, which is detailed

within software models of its two sub-layers, since the Management is already detailed

in Chapter 6 from an agent-oriented point of view. Therefore, Section 4.3.1 details

the PerceptionSystem that refers to the Intelligent Sensing sub-layer, while Section

4.3.2 describes the Vehicle Control sub-layer. Instead the agent-oriented theory behind

the Management layer, the final section (Section 4.3.3) describes the general model

of implementation of JACK Plans, which are the direct users of the Guidance layer.

Section 4.3.3 gives a better understanding of the relation between the Guidance layer’s

controllers and the Auto21 Agent, while the same relation from the “agent’s point of

view” is detailed in Chapter 6.

2The Controller Area Network (CAN) Bus is is a serial communication system used on many motor
vehicles to connect individual systems and sensors, as an alternative to conventional multi-wire looms.

Chapter 4. Auto21 Driving Agent Architecture 83

4.3.1 Intelligent Sensing Sub-Layer Engineering

Our architecture’s Intelligent Sensing sub-layer (detailed in Figure 4.3) has been im-

plemented in a main class called Perception System. This class receives a direct feed

from the vehicle’s sensors and dispatches the sensed information to registered listeners

in the form of raw data or high-level vehicle states. Figure 4.6 represents this class’

functions as part of the links going from the sensors to higher level data structures and

finally to different categories of perception listeners. These listeners are the different

levels of control defined in our initial architecture, which have specific perceptual needs.

Furthermore, the perception listeners’ databases (the Database and Knowledge Base in

Figure 4.5) are directly related to the categories of sensed data defined in Figure 4.6.

To create such structured sets of filtered data, the perception system is using data fu-

sion algorithms. For the moment, the data fusion algorithms have been implemented

in an abstracted way, as part of this shell, and should be refined following from the

conclusions of the researches realized by our partners at the University of Calgary.

4.3.2 Vehicle Control Sub-Layer Engineering

The vehicle control classes have previously been presented in Figure 4.5, but they are

described in this section by detailing the set of control functions they use. As an elab-

orate representation, we refer to the actual classes in our application, so the previous

Lower-Level Controller and Upper-Level Controller classes will be called BasicVehicle-

Control and BasicVehicleGuidance, as it was mentioned at the bottom of their box, in

Figure 4.5. To remind the definition of those two concepts, BasicVehicleControl refers

to a Lower-Level Controller, while BasicVehicleGuidance refers to an Upper-Level Con-

troller. As it will be explained, these two classes are abstract classes and they are

extended by specialized versions that add methods to respond to specific needs.

For instance, the BasicVehicleGuidance class is a guidance system that is further

specialized by two other sub-implementations, as shown in Figure 4.7. Each guidance

system uses a set of Guidance Functions that represent longitudinal or lateral control

algorithms and that must derive from the GuidanceFunction class. The BasicVehicleGuid-

ance can be used for a standard vehicle with limited automation, thus requiring limited

sensors and Guidance Functions. This is represented by the fact that it only uses two

driving functions (velocity and acceleration) and only requires the data from the vehicle

dynamics Knowledge Base (VehDynKB). The same reasoning applies to the GlobalVe-

hicleGuidance, which is a guidance system for a vehicle equipped with a GPS that has

steering actuation capabilities. The VehicleGuidance class further derives GlobalVehi-

Chapter 4. Auto21 Driving Agent Architecture 84

Speedometer

Laser Sensor

Accelerometer

GPS

Yaw Meter

Internal Engine Meters

Wheel Revolution

. .
 .

Front Vehicle
Perception

Chassis Dynamic
State

Compass

Gyroscope

Sonar

Sensed Data
Structures

Vehicle Sensors

Gaz/Break Throttle

Vehicle Global
State

Engine Torque
Dynamic State

. .
 .

Perception System
Functions Perception

Listeners

RawData
Listener

Navigation
Listener

Vehicle State
Listener

Transfer to
Databases

Figure 4.6: Overview of the data structure and listener types in the Auto21 Intelligent

Sensing sub-layer.

Chapter 4. Auto21 Driving Agent Architecture 85

cleGuidance to implement the ACC functions and requires a laser or any type of sensors

that provides the data structure required to update the FrontVehKB.

The Lower-Level Controller is implemented in a first time by the BasicVehicleControl

class. This class is used by the BasicVehicleGuidance to transform orders for vehicle

acceleration in brake or gas throttle percentage. The BasicVehicleControl class is further

derived by VehicleControl, which is used for vehicles automated with ACC. Since the

ACC requires a front vehicle sensing device to provide collision avoidance in situations

of emergency braking, we defined a specific class for its purpose (VehicleControl), which

makes the BasicVehicleControl more flexible.

A final observation that could be made about the Upper-Level Controller is that

it is roughly easy to implement new lateral or longitudinal control algorithms in our

CDS architecture. These algorithms refer to the group of functions extending the

GuidanceFunction class, which are identified as the Longitudinal Control Algorithms in

Figure 4.7. The GuidanceFunction class already includes all the necessary methods to

integrate the Guidance Function with the rest of the application, so a new algorithm

can be added by writing its code inside a simple method. Therefore, only four simple

steps are required to develop a new Guidance Function: (i) implement the control

algorithm in the guide() method; (ii) give a unique identifier to this function; (iii)

specify its percepts needs; (iv) add this new Guidance Function class to a class that

extends BasicVehicleGuidance. For a better understanding of the control algorithms

presented in Figure 4.7, Section 4.4.2 presents some examples of the algorithms used

for the Auto21 CDS.

4.3.3 Management Layer Engineering

Inside the Management layer, we previously a Planning sub-layer that generates plans

to drive the vehicle during different manoeuvres and a Coordination sub-layer that

communicates with other vehicles based on pre-defined coordination protocols. Both of

these functions have been implemented in our application by using JACK Plans, which

are sophisticated action recipes that can be used by a JACK agent (more details in

Section 6.2). Since an action can be either to use act on a controller of the Guidance

layer, call another plan, or communicate with another agent, we managed to develop

our architecture’s Management layer’s hierarchy in a JACK Plan model.

The general model of Figure 4.8 presents the Auto21 architecture’s components on

the right and the toolkits we used to implement each component, on the left. The

Networking module and the Planning sub-layer are implemented in our application, by

Chapter 4. Auto21 Driving Agent Architecture 86

G
ui

da
nc

eF
un

ct
io

n

La
te

ra
lG

ui
da

nc
e

B
as

ic
La

te
ra

lG
ui

da
nc

e
C

ha
ng

eL
an

eG
ui

da
nc

e
D

yn
M

ee
tP

tG
ui

da
nc

e
A

cc
el

er
at

io
nG

ui
da

nc
e

Ve
lo

ci
ty

G
ui

da
nc

e

B
as

ic
Ve

hi
cl

eG
ui

da
nc

e

Ve
hi

cl
eG

ui
da

nc
e

G
lo

ba
lV

eh
ic

le
G

ui
da

nc
e

Pl
at

oo
nG

ap
G

ui
da

nc
e

Ve
hD

yn
K

B

W
or

ld
K

B

Fr
on

tV
eh

K
B

B
as

ic
Ve

hi
cl

eC
on

tro
l

Ve
hi

cl
eC

on
tro

l

D
is

ta
nc

eG
ui

da
nc

e
Ti

m
eG

ui
da

nc
e

U
pp

er
-L

ev
el

 C
on

tro
lle

r

Lo
ng

itu
di

na
l C

on
tr

ol
 A

lg
or

ith
m

s
La

te
ra

l C
on

tr
ol

 A
lg

or
ith

m
s

Lo
w

er
-L

ev
el

 C
on

tro
lle

r

F
ig

u
re

4.
7:

O
ve

rv
ie

w
of

th
e

re
la

ti
on

b
et

w
ee

n
th

e
d
iff

er
en

t
co

m
p
on

en
ts

of
th

e
V
eh

ic
le

C
on

tr
o
l
su

b
-l
ay

er
.

Chapter 4. Auto21 Driving Agent Architecture 87

using a library of JACK plans. The Upper-Level Controller is implemented using the

GuidanceFunctions that were presented in Section 4.3.2, while the Lower-Level Controller

is implemented inside the BasicVehicleControl, as it was shown earlier, in Figure 4.5. The

implementation toolkits that are shown in Figure 4.8 are all used in a hierarchical way.

Indeed, JACK plans relating to coordination protocols use plans from the Planning sub-

layer to execute actions involved in a manoeuvre. Then, the plans relating to driving

manoeuvres use the Guidance Functions to execute specific driving actions and the

Guidance Functions use the BasicVehicleControl to apply their actions on the vehicle’s

actuators.

Upper-Level Controller

Lower-Level Controller

Networking Module

Planning Sub-Layer

Split Rear Protocol
Split Inside Protol
...

Maintain Acceleration
Emergency Braking
...

Follow Vehicle
Maintain Velocity
...

Change Lane
Drive to Meeting Point

...
Follow Virtual Vehicle

Architecture ComponentsImplementation Toolkit

C
lo

se
r t

o
th

e
do

m
ai

n
le

ve
l

JACK Plans

BasicVehicleGuidance

BasicVehicleControl

Vehicle Control Sub-Layer

use

use

use

Figure 4.8: The components relating to the Planning sub-layer, inside the architecture’s

hierarchy.

The implementation toolkit’s hierarchy presented in Figure 4.8 also points out the

fact that the higher a plan or function is in the hierarchy, the farther it is from the

domain level (automated driving). Thus, the coordination plans can be developed in

an abstracted way that is not concerned by any modifications relating to the vehicle.

This makes our Collaborative Driving System easier to maintain and enables us to test

Chapter 4. Auto21 Driving Agent Architecture 88

different types of vehicle controllers.

4.4 Auto21 Architecture Integration Schemes

The architecture of the Auto21 CDS has been presented along with its model of software

design, so we can now focus on the schemes behind the integration of each component

of the architecture inside its execution environment (the simulator). These schemes

refer to a vast range of research domains that have been studied by our group and our

partners in Auto21. Thus, the schemes used to integrate the Intelligent Sensing sub-

layer of our architecture are presented using the work of our colleagues at the University

of Calgary, in Section 4.4.1. For the Vehicle Control sub-layer, we present in Section

4.4.2, the research done at the University of Sherbrooke along with our own research

in Section 4.4.3. Finally, the schemes that we used to integrate the Planning and

Coordination sub-layers and the Traffic Control layer are presented in Sections 4.4.4,

4.4.5, and 4.4.6.

4.4.1 Sensing Scheme

The schemes that have been used to integrate the Intelligent Sensing sub-layer inside

our CDS are presented here, by referring to our partners’ researches, at the University of

Calgary. Note that these schemes have not been developed in the CDS we are currently

using, since our partners did not publish their final conclusions on the required sensing

devices.

Before describing the concept proposed by our partners to analyze the data from our

vehicles’ sensors, we now describe the types of sensors we plan to use. The initial sensing

devices that have been considered as part of our colleagues’ research are: GPS receivers,

inertial navigation systems, millimiter wave radar, video imaging, laser ranging and

sonar. The research programs on autonomous driving vehicles that were presented in

Section 4.1.2 have proposed the following sensors, which should also be considered in

our future investigations: different types of laser, different long and short range radars

and lidars.

Using the previous list of sensors, our partners proposed different models to analyze

and improve the data received from the sensors. They first tested the sensors on man-

ually driven vehicles. Then, they focused on the positioning systems and the problem

Chapter 4. Auto21 Driving Agent Architecture 89

of using GPS in a urban environment and by doing so, results on perception within

a platoon of vehicles are now appearing. They also managed to improve the position

received from GPS in a urban environment that interferes with the GPS’s signals. In

a first step, they used Doppler information and GPS augmentation with a rate gyro

to filter the data [Mezentsev et al., 2002]. Then, they developed algorithms for map

matching using methods such as Kalman filtering [Basnayake and Lachapelle, 2003]

and fuzzy logic [Syed and Cannon, 2004], which resulted in an improved and reliable

position output using noisy inputs. Finally, our colleagues also tested different sensors

for vehicles positioning in a platoon of four vehicles driven by humans executing such

manoeuvres as splitting and merging [Cannon et al., 2003]. Within this platoon con-

text, they focused on an approach using a GPS with a moving base station and received

centimeter level position results that were available for and about every car within the

platoon.

4.4.2 Lower-Level Controller Scheme

The schemes used to integrate the Lower-Level Controller in our CDS, part of the Ve-

hicle Control sub-layer of Figure 4.4, are now defined. It should be recalled that the

Lower-Level Controller receives vehicle acceleration commands from the Upper-Level

Controller and modifies the vehicle’s brake and gas throttle actuators to attain its tar-

get. Although Figure 4.4 showed both lateral and longitudinal Lower-Level Controllers,

only the longitudinal one has been defined. The work on the Lower-Level Controller,

which is now presented, was provided by our partners at the University of Sherbrooke.

The initial function proposed by our partners to implement the Lower-Level Longi-

tudinal Controller transforms the desired acceleration into its respective traction force

and torque, as defined in the vehicle’s wheel model (described for our simulator in Sec-

tion 3.3.1). The wheel torque can then be transformed into the right engine torque,

which finally results in the required gas throttle, when referring to a map of throttle

versus engine revolutions [Huppe et al., 2003].

In a second approach that our partners proposed for the Lower-Level Longitudinal

Controller, they focused on the analysis of the platoon string stability. In this context,

Sherbrooke’s team tried to minimize the oscillations considering the inter-vehicle spac-

ing inside the platoon. To ensure this stability, our partners guided their lower level

longitudinal controller using an algorithm based on pentic polynomial in time, which

limits the control efforts (i.e. high accelerations). Results in the robotic environment

showed the stability of the string in different situations, as well as smoother reactions

to vehicle entrance in the platoon [Huppe et al., 2003].

Chapter 4. Auto21 Driving Agent Architecture 90

4.4.3 Upper-Level Controller Scheme

The Upper-Level Controller has been defined from the architecture point of view in

Figure 4.4, but it is now presented by showing the schemes that were used to integrate

with the rest of our application. The Upper-Level Controller is implemented by “multi-

purpose” control algorithms that can be used by the Planning sub-layer to give driving

action orders. All the control algorithms of the Upper-Level Controller have one thing

in common, they use the driving action orders in input and they output a command

of vehicle acceleration, applied by the Lower-Level Controller. To recall the place that

the control algorithms take in our architecture, the reader can refer to Figure 4.7 where

“practical” algorithm can be integrated to our CDS as part of Java classes deriving from

the GuidanceFunction class. Since theory and practice are often very different one from

another, the theoretical control algorithms is first presented. Afterwards, the specific

algorithms, which have been programmed and adapted to our application for specific

purposes, are described using some examples.

Theoretical Control Algorithms

Theoretical models of the Upper-Level Controller ’s algorithms have been proposed by

both our team and our partners at the University of Sherbrooke. The algorithms from

Sherbrooke are first presented, followed by ours.

Our partners proposed an inter-vehicle distance control function to implement the

Upper-Level Controller, used as part of a platoon of vehicles. This function takes in

consideration a controlled vehicle i’s position (ei), velocity (ėi) and acceleration (ëi)

relative to the vehicle it follows and their respective errors. The same control func-

tion always verifies the vehicle stability inside the platoon by considering the different

control gains that must be respected [Huppe et al., 2003]. To ensure the stability, the

control function calculates the optimal gains using a Linear Quadratic Regulator (LQR),

which gives a representation of the gains in function of previous parameters (ei, ėi, ëi)

and a given control effort (the output of this controller). Another approach, using a

Kalman filter, has been considered by our partners, to estimate the parameter on the

relative acceleration (ëi) and its error. Instead of having to explicitly calculate the

parameters, this method uses additional sensors or simply receives the information via

communications.

At last and in parallel with Sherbrooke’s work, we developed algorithms for both

the lateral and longitudinal control issues inside the Upper-Level Controller. Our al-

Chapter 4. Auto21 Driving Agent Architecture 91

gorithms also include two categories of inter-vehicle distances maintenance functions,

where one uses a gap in time (in seconds) and the other uses a distance (in meters).

As an initial implementation, two different longitudinal control algorithms were devel-

oped inside the Upper-Level Controller : an algorithm based on an equation using front

distance and relative velocity and an algorithm using a neural network, learning the

required velocity for its vehicle, at a specific range of velocity and inter-vehicle distances

[Hallé et al., 2003]. The latter controller suffered from an inexhaustive learning phase

due to the simulator status at that time, even though it managed to provide smoother

reactions at the price of poor reaction time to critical scenarios. Similarly, the first

controller also calculated a velocity to command to the Lower-Level Controller, but it

was in accordance with the relative velocity with the preceding vehicle and their inter-

vehicle distance. Furthermore, two different longitudinal control algorithms, outputting

requests on acceleration, have recently been used in our CDS [Hallé et al., 2004]. These

algorithms both use a different gap type: a distance in meters similar to the controller

proposed by Tsugawa et al. [2001] and a distance in seconds, similar to the controller of

Daviet and Parent [1996]. At the moment, we use an implementation of both of these

algorithms inside our Upper-Level Controller, which enables the request of either a gap

in time or in distance, depending on the actions required by the driving manoeuvre

being executed.

Finally, we also proposed a lateral control algorithm to perform lane changes driving

actions. This controller is part of the Upper-Level Controller which acts on the Lower-

Level Lateral Controller, but does not form a complete lateral controller. Indeed, it only

performs one lateral behavior (lane changing), without being able to follow vehicles

moving laterally or follow curves on the road. The lane change behavior that has been

used is the one from Hatipoglu et al. [2003], where the vehicle has to follow the path

defined by a positioning function, in order to change lane. This function is a simple

sigmoid function p(t) = 1/1 + e(−αt). and it is being used to control the wheel angle

according to d2p/dt. In these functions, α is used to control the duration of the driving

action and d represents the distance with the target lane. Again, we assume that the

road curative does not change during the lane change driving action.

Practical Control Algorithms

When the control algorithms have been implemented in the driving system currently

running in our simulator, they had to be slightly modified and adapted considering their

behavior throughout the different scenarios. Thus, the details on the exact algorithms

being used inside the simulated CDS’s Upper-Level Controller are now presented. First,

the longitudinal control algorithm that maintains a specified distance in time is detailed

Chapter 4. Auto21 Driving Agent Architecture 92

to demonstrate how to use it inside our application. Then, another longitudinal control

algorithm example will be presented to demonstrate how the Upper-Level Controller

supports the merge manoeuvre.

The longitudinal control algorithm, which is now described, has recently been used

in Hallé et al. [2004] to maintain inter-vehicle distances inside our platoon formations.

It is based on Daviet and Parent [1996]’s time gap function represented as:

ai = δa +
1

h
(δv + k(δx − (gap · vi−1))) (4.1)

where ai is the acceleration of the ith vehicle in the platoon, δa is the difference of

acceleration, δv is the difference of velocity, δx is the inter-vehicle distance and gap is

the desired time between vehicles.

Our implementation of control function 4.1, as used in our application, is represented

by Algorithm 2. The Guide-Time-Gap function represents the abstract version of the

actual implemented controller, where new ratio that have been tuned up during the

simulation process were added. The additions we have made enables the function to

react to more or less critical situations and moderate the reaction of the Upper-Level

Controller when closing on the front vehicle. Guide-Time-Gap uses as inputs a list

of variables that are taken from the up to date knowledge base kb, and the desired time

gap interV ehicleT ime.

The knowledge kb base refers to a data structure that was presented earlier in Figure

4.5, which represents an historic of sensed data. When new information is sensed by the

Intelligent Sensing sub-layer, it is added to this knowledge base. The addition of new

information to the knowledge base is also used to trigger the update of our Upper-Level

Controller, which only recalculates its acceleration command when the environment

changes. Thus, a daemon monitors the knowledge base and if the data received by the

sensor has a high value of difference with the current knowledge, it calls an update on

the current control algorithm, in the Upper-Level Controller.

Algorithm 2 uses its inputs to first verify if the current environment is considered

as an emergency state (Is-Emergency-State()). Then, it calculates a brake value

(brakeF ilter) to add if the controlled vehicle is too close to the preceding vehicle. It

finally adds the brake value to the control function of Daviet and Parent [1996], and

lowers the returned acceleration, if this one is not comfortable (considering ComfBrake

and ComfAccel).

The other longitudinal control algorithm that is presented as part of our examples

of implementation of the Upper-Level Controller, is a “meeting point” control function.

Chapter 4. Auto21 Driving Agent Architecture 93

Algorithm 2 function Guide-Time-Gap(kb, interV ehicleT ime)

returns accel, the commanded acceleration to the low-level controller

{All the vehicle’s state data are implicitly taken from the input kb}
inputs: kb, the up to date knowledge base of the driven vehicle

velocity, the vehicle’s last velocity (from kb)

δt, time gap with the front vehicle (from kb)

δa, acceleration difference with the front vehicle (from kb)

δv, velocity difference with the front vehicle (from kb)

δx, distance gap with the front vehicle (from kb)

interV ehicleT ime, the commanded inter-vehicle gap in time

local variables: safeDistance, the safe distance in meters for this state

rt, the refresh time of the sensors’ data

brakeF ilter, a negative acceleration value filtering the result

accel, the acceleration to command

k1, the scalar k from control equation [Daviet and Parent, 1996]

k2, a damping ratio, as the vehicle is close to safeDistance

constants: MinDistance, qualifies an important difference in states values

ComfAccel, the comfortable acceleration value

ComfBrake, the comfortable negative acceleration value

C, an adaptive weight for the difference of acceleration

if Is-Emergency-State(kb) then

return highbrakingvalue

safeDistance ← min(interV ehicleT ime × velocity,MinDistance)

rt ← get refresh time from kb

k1 ← min(1/rt, 3/velocity)

k2 ← |interV ehicleT ime − δt| / rt

if δt < interV ehicleT ime then

brakeF ilter ← (interV ehicleT ime − δt) / interV ehicleT ime

accel ← δa×C + k2/(rt×C) × (δv + k1 × (δx − safeDistance)) - brakeF ilter

{Ensures a comfortable acceleration}
if accel > ComfAccel then

return ComfAccel × √
accel/ComfAccel

else if accel < ComfBrake then

return ComfBrake × √
accel/ComfBrake

else

return accel

Chapter 4. Auto21 Driving Agent Architecture 94

We developed this function from scratch, to provide a support to the driving plan used

when a vehicle is merging a platoon. This algorithm, which could be called a Meeting

Point Cruise Control (MPCC), is used when a vehicle is not currently driving inside

a specific platoon formation, but needs to coordinate with this platoon, at a specific

position on the highway. Currently, the MPCC only acts on longitudinal actuators with

a meeting point in one dimension, supporting only a straight road.

Algorithm 3 presents this control algorithm along with two input variables that are

the up to date knowledge base and the desired “dynamic” meeting point’s information.

The meeting point is described by a constant velocity, an initial longitudinal position

and an initial time. Briefly, the Guide-MPCC function commands a velocity to reach

the meeting point, by considering that the point was initially at mpPos meters, at

mpTime seconds and that the point is moving at a velocity of mpV elo m/s. Guide-

MPCC chooses a velocity to follow the curve shown in Figure 4.9. Thus, it uses a

much higher velocity at the beginning, to reach the meeting point and slowly meets

the constant velocity when it gets closer to the meeting (time n on the graphic). Since,

the velocity and acceleration control functions used by the MPCC function react with

a certain delay to meet the desired dynamic state, the MPCC function has to take

the delay factors in consideration. Therefore, the MPCC function orders velocities

considering the delays and smoothly meets the meeting point. Finally, the MPCC

returns the acceleration given by the GUIDE-VELO function in order to meet the

desired velocity.

Maximum
Acceleration

Maximum
Deceleration

Maximum
Delta Velocity

time (s)

ve
lo

ci
ty

 (m
/s

)

0 1 2 ninit

init+1

init+2

init+MAX_
DELTA_VELO

...

3 ...

Vehicle Velocity under MPCC control

Figure 4.9: Model of the vehicle’s desired velocity using a MPCC controller.

Chapter 4. Auto21 Driving Agent Architecture 95

Algorithm 3 function Guide-MPCC(kb, mpV elo, mpPos, mpTime)

returns accel, the commanded acceleration to the low-level controller

{All the vehicle’s state data are implicitly taken from the input kb}
inputs: kb, the up to date knowledge base of the driven vehicle

velocity, the vehicle’s last velocity (from kb)

position, the vehicle’s last position (from kb)

time, the last sensed data’s time (from kb)

acceleration, the vehicle’s last acceleration (from kb)

mpV elo, the meeting point constant velocity

mpPos, the meeting point initial position

mpTime, the meeting point initial time

local variables: deltaT ime, time elapsed from the initial meeting settings

deltaV elo, difference of velocity with the meeting velocity

timeToV elo, time in sec. to reach the meeting velocity

mpDistance, distance from the initial meeting position

distanceToV elo, distance covered to reach meeting velocity

commandV elo, velocity to order to the velocity controller

constants: HalfVehLength, half of a standard vehicle length

MaxDeltaVelo, maximum velocity difference with mpV elo

MaxDeltaAccel, maximum acceleration to maintain mpV elo

if Is-Emergency-State(kb) then

return highbrakingvalue

deltaT ime ← time − mpTime

deltaV elo ← velocity − mpV elo

mpDistance ← deltaT ime × mpV elo/1000 + mpPos − (position+ HalfVehLength)

timeToV elo ← Get-Time-Reach-Velocity(velocity, mpV elo) / 1000

distanceToV elo ← timeToV elo × deltaV elo

if distanceToV elo × sign of mpDistance ≥ mpDistance × sign of mpDistance

then

return Guide-Velo(kb, mpV elo)

else if |mpDistance| < 1 ∧ |deltaV elo| < 0.5 then

return Guide-Velo(kb, mpV elo + mpDistance/timeToV elo + deltaV elo)

else

commandV elo ← mpV elo + MaxDeltaVelo × sign of mpDistance

if velocity � commandV elo ∧ |accceleration| < MaxDeltaAccel then

return velocity

else

return Guide-Velo(kb, commandV elo)

Chapter 4. Auto21 Driving Agent Architecture 96

4.4.4 Agent Oriented Planning Scheme

In Section 4.3.3, we presented how the Planning sub-layer was being used in our appli-

cation, in relation to other components of our architecture. One of these components

is the Networking module, which includes communication protocols that require the

plans relating to driving manoeuvres, available inside the Planning sub-layer, as shown

in Figure 4.8. In order to explain how the Planning sub-layer performs the tasks re-

quired by other components, this section describes the schemes behind the integration

of the Planning sub-layer, according to the flow of activities that generate driving plans

inside our CDS. This flow is based on a model presented in Section 2.1.3, called the

Belief Desire Intention (BDI) agent model Rao and Georgeff [1995], which is explained

below.

A global view of the activities generated inside the Planning sub-layer by the BDI

model is presented in Figure 4.10. Plans that are executed inside the Planning sub-

layer refer to intentions that could be either a Joint Intention or a Local Intention.

A Local Intention is triggered when the agent’s current beliefs relate to a desire the

agent already had and make this desire, a possible intention. This “match” between

the beliefs and desires raises the Local Intention and/or a possible Joint Intention that

has to be coordinated with other agents (i.e., an intention to merge a platoon). A Joint

Intention coming from another agent, like agent ’j’ in the example of Figure 4.10, also

relates to a plan inside the Planning sub-layer.

Considering the interactions with the Networking module, the plans are being used

in a sort of Partial Shared Plans (PSP), as depicted in Section 2.2. Using this model

of Planning sub-layer, individual plans resolve coordination issues by negotiating with

vehicles involved in the collaborative task and by creating a mutual PSP that relate to

the Joint Intention.

To support the flow of activity presented in Figure 4.10, our plans include contextual

issues according to the agent’s beliefs. These plans specify the details of their execution,

as well as pre- and post-conditions relating to the agent’s intentions. Thus, the kind of

planner we developed for the Planning sub-layer relates to the Procedural Reasoning

System (PRS) architecture presented in Section 2.1.3. The choice of “recipe” type of

plans should be both a flexible and time efficient solution for our agents. Even though

the plans execution is not completely predictable, as it considers evolving contextual

issues, the overall CDS benefits from such a planning system that helps keeping track

of the agents’ adopted strategies and current intentions. Hence, plans’ structures can

be kept in a database and relate with certain driving categories, which helps agents

to share their intentions. It should finally be mentioned that considering the type

Chapter 4. Auto21 Driving Agent Architecture 97

Beliefs Desires

match

Local Intention

Planning Sub-Layer

Joint Intentions

Coordination Sub-Layer

Possible Joint
Intention

Following Agent 'i' Following Agent 'j'

Coordination Sub-Layer

. . .

Figure 4.10: Model of the BDI agent oriented Planning sub-layer.

of coordination used in the Networking module, the Joint Intentions may only be the

leader’s intention in the case of a centralized coordination, as described in Section 5.1.1.

4.4.5 Inter-Vehicle Coordination Scheme

The following section presents an overview of the methodology we decided to use to co-

ordinate multiple vehicles evolving in a same neighborhood. As it is presented below, we

use a methodology proposed by Bana [2001], which is more appropriate for the coordi-

nation of automated vehicles than other traffic management schemes [Davidsson et al.,

2004]. The methodology of Bana [2001] allows vehicles to coordinate actions like lane

changes by giving priorities to the actions they desire, based on their importance. This

coordination methodology is implemented inside the Linking module, in charge of inter-

platoon coordination, as it was explained in Section 4.2.2. The Linking module works

closely with the Traffic Control layer in the case of a centralized linking coordination.

It also gives driving manoeuvres orders to the Networking module, following from its

coordination process, which is explained below.

The coordination methodology of Bana [2001] is presented below by starting with

the description of its symbols, while two examples referring to this methodology are

given in Section 5.1. The symbols used in the inter-vehicle coordination functions of

Chapter 4. Auto21 Driving Agent Architecture 98

Bana [2001] are described in the following list:

• ui: the action of a single vehicle i.

• u: the vector of actions of vehicle 1 to n (u1, ..., un).

• ui: = the vector including the coordinated action of vehicle i and the actions of

its co-manoeuvring vehicles.

• Ci: the cost of the current vehicle i (according to its position and state)

• Ci
ui

: the cost of the state of vehicle i after the execution of a safe set of actions

ui = (u1, ..., un).

• N i: the neighborhood of vehicle i.

In the definition of Bana [2001]’s methodology, a cost is associated with vehicles

according to their state on the highway (their current lane number and destination),

which must be minimized by planning actions according to this function:

Ci
u∗

i
= minui

(Ci
ui

) (4.2)

In order to coordinate an action ui that affects other vehicles, vehicle i’s Planning sub-

layer generates a set of possible actions relating to its local intentions. The Linking

module then chooses an action u∗
i that minimizes its cost Ci

u∗
i

(the cost reducing ac-

tion), according to a domain-level heuristic presented in Section 4.4.6. To choose the

minimum cost action, the Linking module assigns a cost to the different states its ve-

hicle can be in, by considering the current traffic information of its neighborhood. The

cost reducing action is then communicated by agent i and by other agents in a same

neighborhood, in order to share each others’ action propositions. Finally, the Traffic

Control determines the vehicle with the highest cost (highest priority) in a specific

neighborhood and accepts the action it proposed.

Once a priority action has been chosen (let say it was agent i’s action), neighbor

vehicles involved in the action or manoeuvre of agent i are given safety permissions.

These safety permissions command neighbor vehicles to take i’s co-manoeuvring actions

instead of taking their own actions. For other neighbor vehicles, which have not been

given safety permissions, the same priority process is used until every agent has been

assigned an action. If agent j was next in line, the Linking module verifies if its action

does not conflict with i’s action, by considering if the required co-manoeuvring vehicles

are available and if certain safety factors are respected. Consequently, each possible

vehicle j, which is in i’s neighbors (jεN i), chooses an action to execute according

to its impact on i’s coordinated action (ui). Thus, the choice of j’s action is done

Chapter 4. Auto21 Driving Agent Architecture 99

in accordance with a function that minimizes the maximum cost of vehicles in the

neighborhood N i:

maxjεN iCj
u∗

i
= minui

(maxjεN iCj
ui

) (4.3)

Where Cj
ui

is the cost of vehicle j’s state, after the coordinated action ui has been

executed. Using this cost function, subsequent vehicles j are forced to choose an action

which brings them in a state that does not interfere with i’s cost. Therefore, the

coordination between vehicles in the neighborhood N i is ensured, since all the actions

accepted by the Traffic Control layer are considered as safe. Detailed steps, to define

how this coordinated action is applied in collaboration with the neighborhood, are

presented in PATH’s report [Bana, 2001], but is not presented here.

4.4.6 Traffic Management Techniques

The task of managing traffic flow on our automated highway is realized in relation with

the inter-vehicle coordination methodology, implemented inside the Linking module

and presented in Section 4.4.5. As mentioned in Section 4.2.3, the traffic management

methods are implemented inside the Traffic Control layer of our architecture (refer to

Figure 4.4), who’s function is to regulate the traffic flow. The Traffic Control layer

may be developed as part of the a road-side infrastructure or a wireless mobile network,

depending on the chosen inter-platoon coordination model (refer to Section 5.1).

The Traffic Control layer is implemented by an algorithm that receives real-time

information about vehicle density and velocity profile on the road. This algorithm was

inspired by a strategy proposed by Bana [2001], which works in accordance with its

inter-vehicle coordination methodology, described in Section 4.4.5. Within the model

proposed by Bana [2001], the Traffic Control layer determines the entry flow rate for a

specific neighborhood in a link L, which refers to a highway segment controlled by a set

of sensors. Then, it guides the link’s cruise velocity vL, as well as the maximum platoon

size (length) PL, by communicating with the vehicles’ Linking module. In addition, the

Traffic Control layer determines the required actions by vehicles at every lane, in the

form of lane change suggestions. To achieve this, it uses a representation of a vehicle’s

status, defined by the position of the vehicle in a platoon: Alone, Head, Tale, Follower,

its lane number, and its type: entering or leaving the highway. The vehicle’s status then

determines its cost and its priority for actions within its neighborhood, in accordance

with equations 4.2 and 4.3.

Chapter 4. Auto21 Driving Agent Architecture 100

4.5 Conclusion

In this chapter we presented a hierarchical architecture, which is being used to resolve

the problems of control and coordination of our real-time Collaborative Driving System

(CDS). Section 4.3 presented the analysis and resulting models that enabled us to

develop the drivers’ architecture. The software engineering process of our architecture

was based on design patterns and object oriented concepts, that enabled us to have

a flexible structure that can be modified with a certain ease. Given these facts, the

components of our architecture and the developed classes and code can be more easily

exported, as we plan to do with other simulators or vehicles. In addition, this flexible

architecture helped us to test the different integration schemes surrounding the ones we

presented in Section 4.4.

Chapter 5

Driving Agents Coordination

The coordination of automated vehicles is one of the major problems that must be re-

solved in order to build a Collaborative Driving System (CDS). To resolve this problem,

an heuristic based on vehicles’ cost on the highway, similar to the one presented in Sec-

tion 4.4.5, has been used to implement the Coordination sub-layer of our architecture

(refer to Figure 4.2). This sub-layer is divided in two modules that represent the two

coordination aspects depicted in this chapter: inter-platoon coordination supported by

the Linking module and the intra-platoon coordination supported by the Networking

module.

This chapter describes different methods of inter and intra-platoon coordination,

by starting with the inter-platoon coordination problem. Thus, Section 5.1 presents

two coordination models that can be used to implement the Linking module of our

architecture: centralized inter-platoon coordination model, decentralized inter-platoon

coordination model. Note that the inter-platoon coordination models only constitute

a solution we propose to resolve this problem and have not been developed in our

application, as opposed to the intra-platoon coordination models.

Following the description of two inter-platoon coordination models, three models

of intra-platoon coordination are presented in Section 5.2: centralized intra-platoon

coordination, decentralized intra-platoon coordination, and teamwork intra-platoon co-

ordination. In that section, the coordination of a single driving manoeuvre (split or

merge) inside a single platoon is presented in much more details, by describing how

each intra-platoon coordination model resolves the task of coordinating neighboring

vehicles’ actions.

Chapter 5. Driving Agents Coordination 102

5.1 Inter-Platoon Coordination Model

The inter-platoon coordination is the highest level of coordination inside our architec-

ture, presented in Figure 4.2 and it is supported by the Linking module that collaborates

with the Networking module for the intra-platoon manoeuvres. The Linking module fo-

cuses on two important aspects of autonomous cooperative driving: the vehicles’ safety

and traffic optimization. In order to optimize the traffic flow, suggestions are given to

vehicles, in the form of lane changes orders, which result in platoon merge and split ma-

noeuvres. To realize its tasks, the Linking module uses a coordination heuristic, which

was presented in Section 4.4.5, and deploys it through two possible coordination models

that are presented below. Before describing the inter-platoon coordination models, the

reader should understand that a vehicle is involved in the coordination process when

it merges or creates its first platoon and it ends when the vehicle has left a platoon to

switch to manual driving.

5.1.1 Centralized Inter-Platoon Coordination

The centralized inter-platoon coordination is a model which considers the existence of a

road-side Traffic Control system, defined in Section 4.2.3, and inspired by the road-side

system used in the PATH project [Bana, 2001]. The centralized model simplifies the

coordination task a lot more than the decentralized model, presented in Section 5.1.2,

since it implements the inter-vehicle coordination heuristic (Section 4.4.5) inside one

“master entity”.

Figure 5.1 represents the example of two platoons P1 and P2 following each others in

lane 2 and two vehicles in the neighboring lane (lane 1). In this figure, the initial state is

defined by vehicles L3 and L4, which just entered on the highway and need to change to

lane 2 where platoon P1 and P2 already reside. Simultaneously, vehicles F25 and F13,

already part of platoons P1 and P2, both try to coordinate manoeuvres to split from

their respective platoon, because they need to join the right lane to exit the highway.

In this situation, different information is exchanged between the Traffic Control layer

and the vehicles’ Linking module, in order to coordinate the lane changes of those

vehicles. At the final step of this coordination, the Traffic Control layer communicates

to neighboring vehicles, the manoeuvres that can be safely executed. These vehicles

finally execute the safe manoeuvres and coordinate this execution by using one of the

intra-platoon coordination presented in Section 5.2.

In more details, the inter-platoon coordination process begins when the Planning

Chapter 5. Driving Agents Coordination 103

sub-layer of vehicles L3, L4, F25 and F13 orders the Coordination sub-layer to change

lane in order to minimize its vehicle’s local cost. At that moment, the four vehicles pro-

pose inter-platoon manoeuvres in the form of actions to coordinate, described by: uL3,

uL4, uF25, uF13 (shown in Figure 5.1). Recall that the description of symbols relating to

the coordination of agents’ i actions ui was presented in Section 4.4.5. The proposition

of actions ui is realized by the Linking module of each vehicle, which communicates

with the highway’s Traffic Control layer.

Following the proposition of actions by vehicles L3, L4, F25 and F13, the Traffic

Control determines that vehicles L3 and L4 have the priority, because it is more im-

portant to empty the right lane as fast as possible. Thus, the Traffic Control informs

concerned vehicles, that a merging manoeuvre for both vehicle L3 and L4 will be exe-

cuted. The proposed actions uF25 and uF13 are therefore rejected and actions u∗
L3 and

u∗
L4 are executed. The actions that are executed can represented as two sets of actions:

• u∗
L3 := {uL3} ∪ {up : p ∈ NL3(uL3)}

• u∗
L4 := {uL4} ∪ {uq : q ∈ NL4(uL4)}

This represents the mergers’ actions (uL3 and uL4), along with the co-manoeuvring

actions from vehicles p and q in the neighborhoods NL3 and NL4. In the example of

Figure 5.1, vehicles p are represented by the vehicles of platoon P2, while vehicles q are

represented by platoon P1 which is split in two, to create a second platoon P3. The

resulting co-manoeuvring actions are uP1, uP2 and uP3, which are coordinated with pla-

toons P1, P2 and the newly formed platoon P3. This means that considering the type

of intra-platoon coordination (centralize, decentralized, teamwork), an interface inside

the Linking module specifies which vehicle(s) act(s) as the platoon x’s representative(s)

and receive(s) the co-manoeuvring action uPx.

ROAD SIDE INFRASTRUCTURE
TRAFFIC CONTROL LAYER

L1 F1
1

F1
2

F1
4

L4

TRAFFIC FLOW

uL4

L3

F2
4

F2
5

uL3

uF13uF25

. . .

uP2 uP1 uP3

F1
3

P2 P1
P3La

ne
 1

La
ne

 2

Figure 5.1: Centralized decision making using a Traffic Control layer.

Chapter 5. Driving Agents Coordination 104

As it has been shown, the implementation of the Traffic Control functions into only

one big system, centralizing all of the traffic knowledge, makes the administration and

coordination tasks simpler, but necessitates a large amount of communications from and

to each vehicles on the highway. In addition, it requires sensors at different segments

on the road to monitor traffic, so it relies on the existence of such an infrastructure.

5.1.2 Decentralized Inter-Platoon Coordination

Instead of using road-based sensors, vehicles’ sensors along with their inter-vehicle com-

munication system, could be used to realize the inter-platoon coordination, inside the

Linking module. Such a coordination is defined as decentralized and it has the benefit

of not requiring the addition of costly Intelligent Transportation Systems (ITS) equip-

ment. The decentralized inter-platoon coordination model creates a merging interface

through each vehicle’s Linking module and optimizes the communications by minimiz-

ing the round trips usually necessary to come to mutual intentions between platoons.

On the other hand, the decentralized coordination is more complex, so to handle it, we

decided to use an approach including mobile agents which can resolve both the coordi-

nation and communication problems. Within this approach, a mobile agent acting on

the behalf of a platoon coordinates itself with others by using less bandwidth, since its

coordination is done locally, as it is described in this section.

In our decentralized model, mobile agents can move across the different platoon

representative vehicles, which include an onboard system that contains a Knowledge

Base (KB) of the neighborhood traffic. The mobile agent coordination model we are

considering is a blackboard model for indirect coordination [Cabri et al., 1997]. To apply

the mobile agent model to collaborative driving, the neighborhoods organization that

was presented in Section 4.4.5 is also being used in this model. Each neighborhood has

its own blackboard which resides on the biggest, previously elected, platoon. Within

this model, every platoon representatives in the neighborhood can locally coordinate

themselves on the blackboard in an asynchronous way, which lowers the latency times.

The blackboard model is presented in Figure 5.2 where mobile agents representing

neighbor platoons are sent to the blackboard situated on platoon 1. From this black-

board, they coordinate themselves with platoon 1’s representative (M.A.1) using the

same vehicle states cost assignment function that the centralized model, which was in-

troduced in Section 4.4.5. Mobile agents can then share the knowledge they acquired

through the different blackboard they visited so far. They can also gain new knowledge

stored in the blackboard, which comes from other mobile agents that visited it. This

way, a mobile agent can retrieve information about the driving agents’ intentions in the

Chapter 5. Driving Agents Coordination 105

platoon it represents. It can also manage to set the vehicle’s cost (relating to Section

4.4.5) and inform platoon members about their actions’ priority.

In the example represented by Figure 5.2, we considered two platoons P1 and P2

following each others in lane 2 and two other platoons P3 and P4 following each others

in lane 1. We suppose that both platoon P1 and P2 want to remove a vehicle from their

platoon (split), but they need to ensure that this manoeuvre can be safely executed.

Therefore, the representative of each platoon Pi in a same neighborhood sends a mobile

agent M.A.i with the information about its platoon’s intentions. All the mobile agents

gather on a blackboard and share their intentions. In our example, a split manoeuvre

is proposed by M.A.1 and M.A.2, but safety rules only allow one platoon to execute

a manoeuvre that modifies its length (like the split) at the same time, when these

platoons are following each others. If we suppose that platoon P2 has the highest

cost, M.A.1’s proposition is rejected and the split inside P2 is accepted. Consequently,

M.A.2 has to coordinate co-manoeuvring actions with M.A.4 and perhaps M.A.1 and

M.A.3, if it is required to ensure safety. For instance, P4’s co-manoeuvring action is to

accelerate or create a gap to enable the vehicle splitting from P2 to change lane, while

P1’s co-manoeuvring action may be accelerating to allow P2 to create a gap to safely

execute the split.

La
ne

 1
La

ne
 2 P2

P1

L1 F1
1

F1
2

F1
3

L2B
la

ck
bo

ar
d

M.A.2

TRAFFIC FLOW

F2
1

F2
2

M.A.1

M.A.4

M.A.3

P3

F3
1

F3
2

P4

L4 F4
1

F4
2

L3

Figure 5.2: Decentralized decision making using mobile agents.

Our model based on mobile agents is beneficial on communicative aspects, since

mobile agents can coordinate themselves with available agents and leave information

for upcoming ones on the blackboard. Nevertheless, the mobile agent model could still

consider using a road-based Traffic Control layer if such an infrastructure exists. Mo-

bile agents could then be sent from this layer and from the Linking module to provide

more information on traffic segments. Eventually, to address the problem of “inter-

neighborhood” coordination, the result of the coordination realized on the blackboard

of a specific neighborhood could be further coordinated in a second level of hierarchy,

which would use the mobile agent with the highest priority to represent this neigh-

borhood. This second level of hierarchy would gather mobile agents from a larger

neighborhood, similar to road segments, and would resolve the problem of coordination

Chapter 5. Driving Agents Coordination 106

for interconnecting neighborhoods, thus ensuring their safety.

In the decentralized inter-platoon coordination model that has been presented, we

are using one mobile agent per platoon, which is a solution that could lower communi-

cations by diminishing the amount agents travelling on the network. The mobile agent

model also contributes to the growth of available bandwidth and the diminution of

network latency [Lange and Oshima, 1999]. Finally, note that many details of imple-

mentation have not been settled at this time, since this is an initial proposition and the

inter-platoon coordination problem is not the main focus of our research at the present

time.

5.2 Intra-Platoon Coordination Model

The intra-platoon coordination is handled by the Networking module described in Fig-

ure 4.2. This module receives orders in the form of manoeuvres to execute, from our

architecture’s Linking module. To realize the task of coordinating neighboring vehi-

cles’ manoeuvres, the Networking module can be developed based on three possible

models described below: (i) centralized intra-platoon coordination; (ii) decentralized

intra-platoon coordination; and (iii) teamwork intra-platoon coordination. Briefly, each

intra-platoon coordination model has to support the state transition shown in Figure

5.3. According to this figure, a coordination model has to enable a vehicle, driven man-

ually or inside a platoon, to change lane, thus leaving its previous state, and safely reach

the other lane, thus acquiring a new state: Manual Driving or In-Platoon Driving. Note

that at the moment, the lane changes are considered as automated driving modes, but

they could also represent the simulation of a human driver’s lane change, if we estimate

that this task is too dangerous to be automated.

Automated Modes

In-Platoon Driving Manual Driving

SPLIT

MERGE

Figure 5.3: Vehicle state transitions handled by the intra-platoon coordination.

Because the coordinated driving actions involved in a merge or split manoeuvre are

Chapter 5. Driving Agents Coordination 107

directly linked to our architecture’s distributed Planning sub-layer, we defined a com-

parison of possible intra-platoon coordination approaches from Durfee’s representation

of distributed planning [Durfee, 1999], presented in Section 2.2. As a brief recapitula-

tion, Durfee defined planning models for Multiagent systems as either: centralized plan-

ning for distributed plans, distributed planning for centralized plans, distributed planning

for distributed plans. The first, centralized planning model can be compared to coor-

dination models used so far for platoons architecture centralized on the leader, as it is

the case in the PATH project [Varaiya, 1993]. Within the centralized planning model,

the distributed plans can include synchronization actions, leaving more flexibility to

the plan executors, as it was done in a recent version of PATH’s architecture [Bana,

2001]. On the other hand, the fully decentralized distributed planning for distributed

plans can be implemented using a novel approach to inter-vehicle coordination in CDS:

teamwork for driving agents [Hallé and Chaib-draa, 2004]. For a better understand-

ing, four models reaching from centralized planning for distributed plans to distributed

planning for distributed plans are presented in Figure 5.4, where the inter-vehicle com-

munication involved in each model is highlighted. This figure briefly represents the fact

that the decentralized model uses a minimal number of agents and the teamwork model

uses most agents that communicate depending on the situation. Note that for each of

these approaches, the guidance and control systems are decentralized for every vehicle

involved [Huppe et al., 2003].

SPLIT COORDINATION

Hard-Centralized
Centralized
Decentralized
Teamwork

L F1 F2

S

S

MERGE COORDINATION

1..n messages

L F1 F2

M

M M

TRAFFIC FLOW

0..n messages

vehicle movement

Figure 5.4: Four coordination models of the merge and split manoeuvres.

To highlight the differences between the intra-platoon coordination models presented

in Figure 5.4, each model is formally represented by describing its communication policy,

based the agent’s belief state. Such policy represents the rules that force an agent to

communicate in reaction to a specific belief about its platoon’s dynamic state or another

agent’s intention to execute a manoeuvre. In order to present these communication

policies, the following notation relating to an agent’s possible states and communication

protocols has been defined:

Chapter 5. Driving Agents Coordination 108

• An agent’s platoon’s identification p: P = IN

• An agent’s intra-platoon manoeuvre υ, that is executed in platoon p (where

S=Split, F=Follow, M=Merge): Υp = {S, F , M}

• An agent’s position ω inside a relative platoon p: Ωp = {2, 3, ..., MaxPlatoonSize}

• An agent’s role γ in a team θ (for the teamwork model): Γθ = {Splitter, Observer,

Gap Creator, ...}

• An intra-platoon coordination model λ (where C=Centralized, D=Decentralized,

and T=Teamwork): Λ = {C, D, T}

• A communication protocol σλυ that can be executed to coordinate a manoeuvre

υ using a model λ: Σλ = ΣC × ΣD × ΣT = {σCS
, ...} × {σDS

, ...} × {σTS
, ...}

According to this model, the Networking module’s reasoning about other vehicles’

intentions can be represented by using a simple communication policy as: πλ
iΣ : Bλ

i
→
Σλ

i . Where Bλ
i represents the agent i’s belief state, which is defined according to each

coordination model λ’s specific considerations. It must finally be mentioned that the

position defined by Ωp considers the vehicle’s global longitudinal position. Such a

representation was required to determine what should be the vehicle’s position in the

platoon; this way, the vehicle does not need to be in the same lane as the platoon, to

determine its relative position (in the case of a merge).

5.2.1 Centralized Intra-Platoon Coordination

A centralized intra-platoon coordination means that the task of communication exe-

cuted to coordinate the vehicle formation is centered on one vehicle: the leader. In

this case, the leader is the head vehicle of the platoon, and as mentioned earlier, it

is driven by a human (simulated) in our first phase of development. To maintain the

platoon formation, the leader is the only entity that can give orders, in which case the

followers only apply requested changes. During a “centralized” split manoeuvre, three

vehicles are involved: the leader, the splitter, the vehicle following the splitter (if it

exists). During a merge, the same configuration of vehicles is involved: the leader, the

merger, the vehicle which will follow the merging vehicle (if it exists). For both of these

manoeuvres, the merger or splitter communicates its need to do a manoeuvre, and then

the leader gives requests for inter-vehicle distance, change of lane, meeting point or

velocity to respect, to vehicles involved in the manoeuvre.

Chapter 5. Driving Agents Coordination 109

For the merge manoeuvre, we have defined two sub-models of the initial centralized

intra-platoon coordination. The first one simplifies the task and involves only two

vehicles, by requesting the merging vehicle to always merge at the end of the platoon.

We refer to this type of coordination as the Hard-Centralized model. In a second model,

simply called the Centralized model, the leader specifies the optimal in-platoon merging

position, considering the merging vehicle’s position (parallel to the platoon). This way,

the Centralized model involves three vehicles, if the merging vehicle’s position is in front

or farther than the platoon’s tail vehicle.

According to the previous formalism, the leader i uses the following communication

policy to collaborate with a merging or splitting agent j:

πC
iΣ : Pi × Υp

j × Ωp
j
→ ΣC

i (5.1)

To represent the application of policy 5.1, we show as a representative example, the

leader’s beliefs state, resulting in the execution of a communication protocol that coor-

dinates the merge manoeuvre. In this case, an agent L1, leader of platoon 4 reacts to

a merge request by using the communication protocol σCM
(CM : Centralized Merge)

with a manoeuvring agent ma, if its belief state becomes:

• pL1 = 4

• τ 4
ma = M

• ω4
ma ∈ [1,MaxP latoonSize]

It should finally be mentioned that the followers are restricted to apply requests

from the leader in the centralized model. Therefore, their communication policy is a

simple request-confirm protocol that does not need to be detailed.

5.2.2 Decentralized Intra-Platoon Coordination

In the concept of a decentralized platoon, the leader is still the platoon representative,

but this is only for inter-platoon coordination. Thus, every platoon member has a

knowledge of the platoon formation and is able to react autonomously, by communicat-

ing directly with others. An agent’s common knowledge is initialized when it enters the

platoon and is updated using the broadcasted information about new vehicles’ merge or

split (done at the end of such manoeuvres). This is similar to the platoon coordination

of Sakaguchi et al. [2000] presented in Section 4.1.2, except that our model does not

involve all the platoon members in the execution of a manoeuvre. Indeed, the agents in

Chapter 5. Driving Agents Coordination 110

our decentralized model are only informed at the end and start of a manoeuvre, whereas

the model of Sakaguchi et al. [2000] informs each agent at every step of the manoeuvre

through its token ring infrastructure. Our decentralized model is described below, by

presenting the theory behind the decisions on communication of this model: social laws.

The concept of social laws in the merge and split manoeuvres is briefly presented and

followed by its theoretical representation, which highlights the differences between the

beliefs used for the communications inside this model as opposed to the centralized and

teamwork models.

In the decentralized intra-platoon coordination model, the leader is only in charge

of maintaining the manoeuvres’ safety by notifying others of any emergencies, similarly

to the centralized approach. For the split manoeuvre only two vehicles are involved:

the splitter and the vehicle following the splitter (if it exists). For the merge, once

the merging vehicle has chosen a platoon, only two vehicles are involved as well: the

merger, the vehicle which will follow the merged vehicle after the merge (if it exists).

For these two manoeuvres, we eliminate the intermediate that was the leader, because

every platoon members have the knowledge of their platoon configuration. Using social

laws, the action of creating a safe gap for the split and merge manoeuvres is handled

by a platoon member (a follower), which uses its own belief, without communicating

with the leader. For instance, the intention of creating a safe gap will only be allowed

(through social laws) for the vehicle at the right distance from the merging vehicle,

while the other platoon members determine (through social laws) that it is not their

task. Furthermore, the same reasoning applies to the vehicle behind the splitter, which,

according to social laws, decelerates to let the vehicle leave the platoon, following from

its intention to split.

In our model of decentralized intra-platoon coordination, we refer to strategies on so-

cial laws that restrict or dictate the agent’s behaviors [Shoham and Tennenholtz, 1995]

and its relative plans. These laws can then determine an agent’s possible communica-

tive action(s) when the agent’s belief about another agent’s intention is modified. The

decision on communications, based on social laws, is represented using the previous

policies’ formalism:

πD
iΣ : Pi × Υp

j × Ωp
i × Ωp

j
→ ΣD
i (5.2)

In this case, and as opposed to policy 5.1, the agent i can be any vehicle that uses the

beliefs about its own state and the state of the agent initiating the manoeuvre (agent

j). By relating to the example of the merge manoeuvre, an agent ag’s communications

can be determined by agent ag’s state and the merging agent ma’s state, in accordance

with the policy of the decentralized model πD
iΣ. Hence, agent ag being in platoon 4, will

communicate with the decentralized merge protocol σDM
, if its belief state becomes:

• pag = 4

Chapter 5. Driving Agents Coordination 111

• τ 4
ma = M

• ω4
ag = ω4

ma − 1

• ω4
ma ∈ [1,MaxP latoonSize]

For a better understanding of the mechanics behind the social laws and how they

relate to the communication policy 5.2, a description according to the formalism of

Shoham and Tennenholtz [1995] is finally presented. As Section 2.2 described it, a

social law’s action a ∈ A is defined as a communicative action or protocol that agent

i uses with agent j. ϕ ∈ L is the social law’s set of general sentences, which in our

application, can represent a sentence about the position of agent i’s vehicle, relative to

agent j’s vehicle. Finally, s ∈ S represents in our application, the states of the driven

vehicle and neighboring vehicles and sl ∈ SL are different social laws restricting vehicles

that should collaborate in this manoeuvre. Again, in order to relate to the social laws’

representation of sentences, states and actions, refer to Section 2.2.

If we use the social law formalism to represent the decision to communicate σDM
in

our previous example, the steps leading to a decision could be seen as follows. First,

the opposite of the initial state of agent ag (ω4
ag �= ω4

ma − 1 instead), let say state s1,

would satisfy a more general sentence ϕ1 in L. This sentence could have the form of

Manoeuvring Vehicle Is, or Will Be, in Front of my Vehicle, which would relate to

different belief states, including s1. In this case, s1 |= ϕ1 would hold, and a social

law sl1 describing the previous policy 5.2 would accept (σDM
, ϕ1) ∈ sl1, which regu-

lates the decentralized communication protocol for the merge. Finally, the transition

T (s1, σDM
, sl1) = ∅ would lead non-collaborative platoon members to “no reactions” on

the arrival of a message notifying them of ma’s intention to merge. On the other hand,

the agent that “should” collaborate in the merge manoeuvre (let say agent ca) would

apply another transition T , referring to the policy defined by πD
iΣ. This transition would

lead the agent ca to the execution of σDM
.

In conclusion, the policies based on social laws make the intra-platoon coordination

simpler, as agents are largely restricted in their messaging possibilities and very few

agents are included in the coordination process. The restrictions could be relaxed by

detailing the social laws, thus enabling more agents to intervene in the coordination

process, which could increase safety. On the other hand, as this is an initial proposition

for the decentralized model, it will be kept as is, to show the difference of using a low

communication model. Using a policy relating to social laws, the decentralized model

is not very flexible and the addition of new laws may reach its limit, get too complex

or raise conflict issues.

Chapter 5. Driving Agents Coordination 112

5.2.3 Teamwork Oriented Intra-Platoon Coordination

The decentralized model, leads us to the development of a more organized decentralized

concept, which is the model of teamwork, gaining in popularity in the field of Multiagent

System. In order to develop teams of agents for the Auto21 CDS, we had to provide a

Team Oriented Programming (TOP) [Pynadath et al., 1999] infrastructure that enables

agents to be assigned roles, as part of predefined team structures. Consequently, the

STEAM architecture was picked to model our own infrastructure, because it provides

a hierarchy of roles and team operators that can be monitored to ensure safety during

tasks execution Tambe and Zhang [2000]. Moreover, the STEAM architecture provides

domain-independent directives that enable our driving agents to support responsibilities

and commitments to the platoon (team) manoeuvres.

This section first presents a theoretical representation of the teamwork model, which

should provide a better understanding of the decision on communication aspects made

in the teamwork model, in comparison with the centralized and decentralized models.

Following the presentation of the theoretical teamwork policy, the team formations

used for tasks involved in our CDS are described, to end with the presentation of some

examples relating to the use of STEAM’s architecture in the Auto21 project.

Teamwork Theoretical Representation

The theoretical communication policy of the teamwork coordination model can be rep-

resented using the formalism introduced earlier. However, the policy of the teamwork

oriented coordination is different from the previous models (centralized and decentral-

ized) because the belief state of an agent results in an intention for a role in the team

and not directly in a protocol of communication Σ, like the previous policies. Hence,

agent i’s intention for a role in a team Θ, initiated by agent an j in platoon p, is defined

by:

πT
iΘ : Pi × Γθ

j × Υp
j × Ωp

i × Ωp
j
→ Intention(Γθ

i) (5.3)

Compared with policies 5.1 and 5.2, policy 5.3 requires more beliefs about other neigh-

boring agents (team members) to take a decision relating to communications. Therefore,

the teamwork model involves more communications at the beginning and the end of a

manoeuvre to ensure that the beliefs required by the teamwork communication policy

are shared by all team members.

Following from an intention towards a role, agent i requests this role to other team

members, using a simple request and confirm protocol. If this role assignment is ac-

Chapter 5. Driving Agents Coordination 113

cepted, agent i starts communicating with other team members, according to its team

oriented communication framework. The STEAM architecture defines a generic com-

munication policy, which is apart from the domain level (CDS) and is further detailed

in this section. Therefore, the teamwork coordination model includes two policies on

communication that can be defined as πTR
iΣ for the role request policy and πTS

iΣ for

STEAM’s team communication policy:

πTR
iΣ : Intention(ΓΘ

i)
→ ΣT
i (5.4)

πTS
iΣ : ΓΘ

i × BT
Θ
→ ΣT

i (5.5)

The policy 5.4 represents the role request protocol, which, in our case, is a request

and confirm protocol. This policy depends on the TOP framework and is only used

to assign roles during the team formation. The second policy (5.5) is triggered once

the agent i is part of the team Θ and it is used to select communications based on

the team’s belief state BT
Θ. The selection of messages is realized by using STEAM’s

Selective Communication (SC) actions (Section 2.2.4), which are detailed in a CDS

perspective, in this section. Note that a third policy could have been defined for the

team initiator (i.e. merger, splitter), to represent its intention to form the team. It

would basically be the same as πT
iΘ, except that it would only use local beliefs. But

since the intention to form a team emerges from the Planning sub-layer (as shown in

Section 4.4.4), it is not concerned by the networking policies described here.

Auto21 Team Formations

For the Auto21 project, we have defined three major teams: the “platoon formation”,

the “split task” team, the “merge task” team. The first team, is a persistent team, using

persistent roles, for long-term assignments as it is the case for the platoon formation.

The two latter are task-teams using task-specific roles, for shorter-term assignments, as

those teams do not exist after the task completion. Figure 5.5 illustrates the formation

used for a “split task” team, where the leaf nodes represent roles and the internal

node represents a sub-team of observers, which is detailed later. Moreover, Figure 5.6

depicts the operators used by these formations in a tree, similar to Soar’s plan hierarchy

[Rosenbloom et al., 1991]. In the tree’s hierarchy, team operators are surrounded by

brackets (i.e.[]), while the other operators are standard individual operators.

The operator tree is finally used to manage team tasks execution by constraining

each roles to specific operators inside this hierarchical tree. In this context, agents

evolving in the team infrastructure are able to execute two possible types of operator:

Chapter 5. Driving Agents Coordination 114

domain level, as described in the tree of Figure 5.6, and architecture-level (STEAM

operators), as defined in Section 2.2.4.

Split Team

Splitter Virtual Vehicle Gap Creator Safety Observers

Task Observers

. . .

Figure 5.5: Split task team’s role organization.

The “platoon formation” team is the simplest team, where every agent holds the

intention of maintaining a stable and safe platoon formation, which regulates their

communications on critical or unsafe situations. This team is the simplest one since, at

the moment, we consider that each platoon member has the same task, which consists

of following the front vehicle in a safe manner. Hence, this formation only requires two

persistent (long-term assignments) roles:

• A leader which is filled by the head vehicle that mainly communicates with others

using SC actions (refer to Section 2.2.4). Since the goal here, is to maintain a stable

platoon formation, an unsafe deceleration can be seen as a percept that could endanger

the goal achievement, therefore influencing the leader to inform others of this fact

using SC actions. The probability of such a communicative act is discussed later.

• Follower is a role filled by all the platoon members that are not at the head. At

the moment, each follower’s goal is to maintain the safe inter-vehicle distance with

the preceding vehicle. Since we managed to keep the platoon stable during platoon

driving scenarios that did not include any vehicle entrance or exit, an agent in this

role does not communicate to others. Thus, the task of maintaining a safe distance is

realized by using the vehicle’s front sensor and possible information from the leader.

The “merge task” team being similar to the “split task” team, we only depict the

merge. This team is centered around the [Insert vehicle] team operator, shown in Figure

5.6, which is executed either as an insertion at the end or an insertion within the

platoon. The insertion at the tale being simpler, we did not detail its branch in the

operators’ hierarchy tree. As shown in Figure 5.5, there are four different roles and one

sub-team involved in the split (similar to merge), which are detailed below. In order

to identify the agents relating to vehicles involved in the merge and split manoeuvres,

Figure 5.7 is used to describe the different agent roles used inside the “merge task”

team.

Chapter 5. Driving Agents Coordination 115

[D
R

IV
E

PL
A

TO
O

N
]

[F
ol

lo
w

 le
ad

er
]

[In
se

rt
in

si
de

 p
la

to
on

]

C
re

at
e

sa
fe

ex

it
ga

p

S
im

ul
at

e
ve

hi
cl

e
M

ai
nt

ai
n

in
te

r-
ve

hi
cl

e
di

st
an

ce

[In
se

rt
ve

hi
cl

e]
[R

em
ov

e
ve

hi
cl

e]

[In
se

rt
at

 p
la

to
on

 ta
il]

[R
em

ov
e

in
si

de
 p

la
to

on
]

[R
em

ov
e

at
 p

la
to

on
 ta

il]

[M
on

ito
r t

as
k

sa
fe

ty
]

[M
er

ge
 P

la
to

on
]

C
re

at
e

sa
fe

en

tra
nc

e
ga

p

O
bs

er
ve

 h
ig

h
ve

lo
ci

ty
 g

ap
s

M
ov

e
to

dy

na
m

ic

po
si

tio
n

Fo
llo

w

vi
rtu

al

ve
hi

cl
e

C
ha

ng
e

la
ne

M
on

ito
r

fro
nt

ga
ps

M
ai

nt
ai

n
ve

lo
ci

ty
M

ai
nt

ai
n

in
te

r-
ve

hi
cl

e
di

st
an

ce

...
...

...
...

...
...

M
ai

nt
ai

n
in

te
r-

ve
hi

cl
e

di
st

an
ce

[V
irt

ua
l

D
riv

in
g]

S
im

ul
at

e
ve

hi
cl

e
M

ai
nt

ai
n

in
te

r-
ve

hi
cl

e
di

st
an

ce

Fo
llo

w

vi
rtu

al

ve
hi

cl
e

C
ha

ng
e

la
ne

M
on

ito
r

fro
nt

ga
ps

M
ai

nt
ai

n
in

te
r-

ve
hi

cl
e

di
st

an
ce

[V
irt

ua
l

D
riv

in
g]

O
be

rv
e

ob
st

ac
le

s

[S
pl

it
P

la
to

on
]

[M
on

ito
r

sa
fe

ty
]

...
...

...

F
ig

u
re

5.
6:

P
la

to
on

te
am

op
er

at
or

s
tr

ee
.

Chapter 5. Driving Agents Coordination 116

• A Merger is the role filled by the agent which initiates the “merge task” team by

broadcasting its will to merge a platoon (vehicle L2 in Figure 5.7). The operators

restricting the merger’s actions are the ones within the [Merge Platoon] team operator.

The Move to dynamic position operator is used by the merger when the task team has

the belief about the entry position for the merging vehicle. The Merger role also uses

the Follow virtual vehicle operator, which is a virtual representation of L2 ’s future

preceding vehicle (F1). This virtual vehicle is followed by L2 before it actually

senses the real vehicle with its laser. Finally, the Change Lane operator is used here,

to switch to the platoon’s lane and complete the merge. When the merger is stable in

the platoon, a Coherence Preserving (CP) action is broadcasted in order to manifest

the achievement of the team’s goal. Considering those operators, the Merger role has

an “AND” logical relation with the rest of the team, as defined for teams in STEAM

(Section 2.2.4), since its performance is crucial to this manoeuvre.

• Gap Creator is a role taken by the agent driving the vehicle behind the merging

position, in the platoon (vehicle F2 in Figure 5.7). Within this role, an agent defines

the entry position for the merger, since its vehicle will be behind the merger after

the lane change. The Gap Creator role requires its filler to execute the Maintain

inter-vehicle distance operator, which maintains a distance large enough to safely fit

a vehicle. Then it has to execute the Monitor front gaps operator when the merger is

changing lane. A high gap between the last front vehicle percept reading indicates the

arrival of the merging vehicle in the platoon. This is followed by a new inter-vehicle

distance goal. The Gap Creator ’s operators are included in the [Merge Platoon] team

operator, since the aforementioned individual operators are directly linked with the

merger’s operators execution. Considering the specifications on role relations for our

STEAM oriented team, this role is also in an AND relation.

• Virtual Vehicle is a role that was introduced to ensure a stable task execution. This

role helps the task executor, when it is in a different lane, to follow the vehicle

that was or will be in front of it. In the split and merge manoeuvres, this role

is taken by vehicle number F1 from Figure 5.7. Within the [Split Platoon] team

operator, the Virtual Vehicle role applies the Simulate Vehicle operator that results

in the communication of information about its velocity, if it is modified after the

splitting vehicle has changed lane and before the split manoeuvre is over. Within

the [Merge Platoon] team operator, the same operator is applied after vehicle F1 has

transmitted an initial representation of itself to the merging vehicle. This role thus

ensures a safe entrance of the merger and eliminates the need to create a virtual

representation of the merger to help its future preceding vehicle (F2). Indeed, since

vehicle F2 is filling the Gap Creator role, which forces him to respect a safe gap with

F1, and the merging vehicle is also keeping distance with the virtual representation

of F1, both have the same reference. Thus eliminating the need to create a virtual

Chapter 5. Driving Agents Coordination 117

vehicle for the Gap Creator (F2). As its predecessor, the Virtual Vehicle role is in

an AND relation for the [Insert platoon] operator.

• Safety Observers is a role taken by one or more agents. The constraint on the role

fillers, is that they must be in a position ahead from the task executor, so they can

monitor dangers in advance. Using the communication selectivity presented next,

agents in the Safety Observers role communicate their belief about dangers or unsafe

deceleration to others, by taking in account the dangers of sudden movements during

a task execution. Agents filling in this role conjointly execute the [Monitor task safety]

safety team operator, therefore executing observation plans individually. The Safety

Observers role can be filled in by multiple agents, which have an OR relation. The

combination of the Safety Observers’ operators with the rest of its team is done using

a (=⇒) role dependency. This means, that the execution of the three precedent roles

is crucial to achieve the goal and maintain this role, but the execution of the Safety

Observer role is not critical.

 S3

 S2

 S1

L
1

F
1

F
2

F
3

L
2

L
1

F
1

F
2

F
3

L
2

L
1

F
1

F
2

F
3

L
2

 S1

 S2

 S3

L
1

F
1

F
3

F
4

F
2

L
1

F
1

F
3

F
4

F
2

L
1

F
1

F
3

F
4

F
2

F
2

Vehicle Entrance Vehicle Exit

TRAFFIC FLOW

TRAFFIC FLOW

TRAFFIC FLOW TRAFFIC FLOW

TRAFFIC FLOW

TRAFFIC FLOW

Figure 5.7: The three steps of the removal (split) and insertion (merge) of a vehicle in

the platoon.

Intra-Team Communications

The Selective Communication (SC) actions taken from STEAM are used to synchro-

nize mutual beliefs within the execution of team operators. For the precedent “merge

task” team, the agent that fills in the Virtual Vehicle role communicates changes to

its virtual representation (a new velocity for example) if it believes that the merging

Chapter 5. Driving Agents Coordination 118

vehicle does not pick him up on its sensor and that this velocity change is important

enough. To illustrate this situation, Section 2.2.4 already described a decision tree

referring to probabilities about these beliefs, in Figure 2.6, which represented the Se-

lective Communication (SC) of the STEAM framework [Tambe and Zhang, 2000]. As

opposed to the general application of SC actions proposed in STEAM, we do not use

them for task team formation and dissolution. This means that SC actions are not used

for the CP actions, which notify of the [Insert vehicle] and [Remove vehicle] operators’

achievement or creation. Thus, the purpose of SC in our model is to apply a selection

over the communication sent to maintain mutual beliefs during the execution of a team

operator. By relating to the previous example, the agent filling the Virtual Vehicle role

uses the tree defined in Figure 2.6 to make a decision on whether it will communicate an

update on its position, thus synchronizing the team’s belief on its virtual representation.

This is reflected by the function defined in Section 2.2.4 which takes in consideration

the expected utility of communicating and not communicating:

EU(C) > EU(NC) = ρ ∗ σ ∗ Cmt > Cc + (1 − σ) ∗ Cn

In the merge example, the cost for communication Cc is higher than normal, since more

communications are involved during a manoeuvre and we do not want to saturate the

network. Then, if the vehicle F1 has to modify its velocity during the merge, the

probability ρ that this new information on F1 ’s velocity is commonly known, mainly

depends on the probability P(L2,F1) that the merging vehicle L2 has F1 in its sensor’s

range (if it is in the platoon). Furthermore, probability σ that this information opposes

a threat to the merge manoeuvre depends on the difference between F1 ’s knowledge

about its velocity and the team’s belief. If the team is highly out of synchronization,

the agent communicates at a higher probability. As a final note, it should be mentioned

that the Cmt and Cn costs are set to an average-low value for this type of task.

Since the decision-theoretic communication selector is available through the SC ac-

tions, part of the TOP framework, we are using it within all of the teams and roles

presented earlier. Team knowledge relating to sub-operators’ pre- and post-conditions

is awarded a great value for σ and Cmt to insure the communication of this type of

information, even though agents may have doubts on the team’s belief about it. More-

over, these probabilities should be adapted through testing, like it has been done for

domains like the RoboCup soccer challenge [Nair et al., 2004], where data traces of

team behaviors were used to learn their probabilities’ distribution. This approach pro-

poses an offline learning approach on patterns of communication within the team that

can be applied to specify the probabilities of the SC operators.

Chapter 5. Driving Agents Coordination 119

5.2.4 Discussion

The three to four networking models previously presented for intra-platoon coordina-

tion are the main topic of our research on automated vehicles communication systems,

so they should be enhanced in the following phases of this project. As presented in

Chapter 4, the intra-platoon coordination takes place inside our architecture’s Manage-

ment layer, which makes it dependent on the sensing, control and planning systems.

Considering that we only rely on the fact that the Guidance layer provides the required

environment state information and driving functions to the Management layer, our ar-

chitecture gives us much flexibility on the choice of model that will finally be used to

develop our Networking module.

As part of the proposed coordination models, the centralized model is the easiest one

to implement, because its coordination functions can be developed for the leader only,

while other agents just have to provide the functions to execute the leader’s orders. As

it was shown in policy 5.1, the centralized communications only require one agent (the

leader) to have beliefs about its platoon members in order to coordinate split and merge

manoeuvres through communications. However, the centralized system does not provide

much flexibility if the followers require more autonomy in their driving actions. The

decentralized model is more complex considering that the agents have more autonomy

and there must not be any conflict in their intentions, since the execution of their

driving task is done in real time. While the goal of the decentralized approach is partly

to lower the communications between vehicles (by eliminating the leader), a safe driving

behavior also needs to be guaranteed, although this may raise the number of exchanged

messages in problematic situations. As policy 5.2 highlights it, each platoon members

must keep beliefs about their own state and other platoon members’ states in order

to support the decentralized communication protocols ΣD. The teamwork approach,

on the other hand, is the most complex model, but it can be developed easily if the

frame of the TOP infrastructure is available. This approach makes the overall system

highly flexible, as agents already have a high value of autonomy, but again, this may

be a problem considering different role allocation or possible reallocation. At last, note

that this model and the decentralized model promote a communication system with

the ability to broadcast easily in the vehicle’s neighborhood, since the group or team

surrounding the vehicle requires an up to date belief state about their neighbors at all

time in order to support the communication policies 5.2 and 5.3.

Chapter 6

Driving Agents Engineering

Software engineering is a very important aspect in building highly flexible agents that

can be modified to test and improve our driving system. This type of engineering is

realized through an analysis phase from which emerges models and diagrams repre-

senting different development phases in a standardized notation like the Unified Mod-

eling Language (UML). UML is an appropriate choice to describe Java classes issued

from the object-oriented paradigm, but in order to describe agent-oriented concepts,

another notation is required. In this chapter, we first introduce an analysis of the Mul-

tiagent System (MAS) we developed, by using the newly adopted standard of Agent

UML (AUML)1. This introduction provides a good understanding of our driving agents’

general structures and their flow of activities when they coordinate with other agents.

Following from the AUML analysis, details are provided on the agent-oriented software

engineering, by relating to our driving agents’ implementation in the JACK language.

This should provide a good understanding of the tools and infrastructures that have

been developed to support the architecture requirements presented in Chapter 4. Fi-

nally, this chapter details the infrastructure that was developed in JACK to support

the teamwork coordination model presented in Section 5.2.3.

The presentation of the agent-oriented engineering in the Auto21 project begins with

the AUML models in Section 6.1, followed by the JACK-oriented models in Section 6.2,

and the teamwork-oriented models in Section 6.3. To end this chapter, simulation

results on the driving agents’ behaviors in platoon formations is presented in Section

6.4 by focusing on the centralized and teamwork models of intra-platoon coordination.

1For more information on AUML, visit http://www.auml.org

http://www.auml.org

Chapter 6. Driving Agents Engineering 121

6.1 Multiagent System Modeling

The analysis of the Management layer of our architecture (refer to Section 4.2.2) is

now presented using a new standard brought by Foundation for Intelligent Physical

Agents (FIPA), which is called Agent UML (AUML). AUML extends a series of diagram

types that most developers are familiar with, from working with UML. Three levels

of abstraction have been defined as part of the Agent Interaction Protocols (AIP) and

are presented in their application for our Collaborative Driving System (CDS)’s agents.

The first level includes the agent diagrams similar to class diagrams, the second level

includes state or statechart diagrams, collaboration diagrams, protocol diagrams, activity

diagrams for the whole Multiagent System (MAS), and the third level includes different

state diagrams depicting a single agent’s possible states transitions. AUML’s suite of

diagrams has been used to model and engineer our architecture’s Coordination sub-

layer (mostly for the Networking module), which was introduced in Chapter 4, and the

resulting diagrams are presented in this section. In the following examples, the focus

will be on the centralized coordination, since it presents a more understandable view of

the behavior of the intra-platoon coordination.

6.1.1 Agent UML Level 1: Agent Model

The first level of AUML modeling defines the classes of agents available in our system

and the functionalities they provide on the communicative or actuating actions level.

Figure 6.1 represents a UML diagram that details the functions of the different agents

on a “programming” point of view along with the classes hierarchy that highlights the

polymorphism used for the implementation of these agents. The DrivingAgent interface,

on top of the diagram, defines the basic functionalities an agent must implement to be

used as part of our simulated automated vehicles, which are basically vehicle sensing

and actuating requirements. This interface is further implemented by the abstract Jack-

Auto21DrivingAgent class, which provides the actual implementation of generic driving

agents functions as well as functionalities relating to the use of the JACK agents frame-

work, as presented in Section 6.2. JackAuto21DrivingAgent also extends the Agent class

from JACK, which enables our agents to be taken in charge by JACK framework’s

task manager. At last, different classes of agents that include specific actuating and

communicating functions are shown at the bottom of this diagram.

To provide a representation which is more appropriate than Figure 6.1’s UML dia-

gram, we detailed our agents’ functionalities and behaviors using an AUML agent dia-

gram, which has been proposed by Bauer [2001]. As an example, Figure 6.2 represents

Chapter 6. Driving Agents Engineering 122
A
ge

nt
R
ol

es
Ba

si
cW

or
ld

Pe
rc

ep
tL

is
te

ne
r

Ba
si

cF
ro

nt
V
eh

Pe
rc

ep
tL

is
te

ne
r

Ba
si

cV
eh

D
yn

Pe
rc

ep
tL

is
te

ne
r

in
te

rf
ac

e
ca

.u
la

va
l.i

ft
.d

am
as

.f
cd

.a
g

en
t.

D
ri

vi
n

g
A

g
en

t

A
ge

nt
Be

lie
fs

Co
ns

ta
nt

s
Ag

en
tT

as
kE

xe
cu

to
r

ca
.u

la
va

l.i
ft

.d
am

as
.f

cd
.a

g
en

t.
Ja

ck
A

u
to

2
1

A
g

en
t

+
Ja

ck
A
ut

o2
1A

ge
nt

+
ca

nc
el

Ta
sk

 :
 b

oo
le

an
+

ad
dD

is
ta

nc
eT

as
k

:
bo

ol
ea

n
+

ad
dT

im
eT

as
k

:
bo

ol
ea

n
+

re
se

t
:

vo
id

+
ad

dT
as

k
:

bo
ol

ea
n

+
ge

tP
la

to
on

ID
 :

 in
t

+
ge

tR
ol

e
:

in
t

+
ge

tP
os

iti
on

In
Pl

at
oo

n
:

in
t

+
is

Ta
sk

R
ol

e
:

bo
ol

ea
n

+
re

m
ov

eA
ge

nt
St

at
eL

is
te

ne
r

:
vo

id
+

fir
eR

ol
eS

ta
te

C
ha

n g
ed

 :
 v

oi
d

+
ad

dP
er

ce
pt

io
n

:
vo

id
+

re
m

ov
eF

ro
m

Pl
at

oo
n

:
vo

id
+

ad
dP

er
ce

pt
io

n
:

vo
id

+
ad

dA
ge

nt
St

at
eL

is
te

ne
r

:
vo

id
+

ge
tP

er
ce

pt
io

nS
ys

te
m

 :
 P

er
ce

pt
io

nS
ys

te
m

+
ne

ed
Fr

on
tP

er
ce

pt
 :

 b
oo

le
an

+
ad

dC
on

tr
ol

St
at

us
Li

st
en

er
 :

 d
ou

bl
e[

]
+

se
tN

ew
Pl

at
oo

n
:

vo
id

+
in

iti
al

iz
eR

ol
e

:
bo

ol
ea

n
+

re
m

ov
eL

at
G

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

vo
id

+
se

tR
ol

e
:

bo
ol

ea
n

+
re

m
ov

eL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ge
tR

ol
eS

ta
te

 :
 in

t
+

se
tR

ol
eS

ta
te

 :
 v

oi
d

+
is

St
at

ic
R
ol

e
:

bo
ol

ea
n

+
te

rm
in

at
e

:
vo

id
+

ad
dL

at
G

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

+
se

tA
ct

ua
to

rS
ta

te
 :

 v
oi

d
+

se
tN

ew
Pl

at
oo

n
:

vo
id

+
ne

ed
W

or
ld

Pe
rc

ep
t

:
bo

ol
ea

n
+

Ja
ck

A
ut

o2
1A

ge
nt

+
ge

tA
ct

ua
to

rS
ta

te
 :

 in
t

+
re

m
ov

eC
on

tr
ol

St
at

us
Li

st
en

er
 :

 v
oi

d
+

se
tP

er
ce

pt
io

nS
ys

te
m

 :
 v

oi
d

+
ad

dT
oP

la
to

on
 :

 v
oi

d
+

ne
ed

D
yn

am
ic

Pe
rc

ep
t

:
bo

ol
ea

n
+

ad
dL

on
gG

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

+
ad

dP
er

ce
pt

io
n

:
vo

id
+

ge
tA

ge
nt

ID
 :

 in
t

Au
to

21
Co

ns
ta

nt
s

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.c

e
n

tr
a

li
ze

d
.a

g
e

n
ts

.l
e

a
d

e
r.

A
g

Ja
ck

Le
a

d
e

r

+
ad

dT
oP

la
to

on
 :

 v
oi

d
+

re
m

ov
eF

ro
m

Pl
at

oo
n

:
vo

id
+

ad
dC

on
tr

ol
St

at
us

Li
st

en
er

 :
 d

ou
bl

e[
]

+
re

m
ov

eL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ad
dT

as
k

:
bo

ol
ea

n
+

re
m

ov
eC

on
tr

ol
St

at
us

Li
st

en
er

 :
 v

oi
d

+
A
gJ

ac
kL

ea
de

r
+

se
tE

na
bl

ed
 :

 v
oi

d
+

ad
dL

on
gG

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

+
re

m
ov

eL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ad
dL

at
G

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

Au
to

21
Co

ns
ta

nt
s

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.t

e
a

m
w

o
rk

.a
g

e
n

ts
.l

e
a

d
e

r.
A

g
Ja

ck
Le

a
d

e
r

+
ad

dT
as

k
:

bo
ol

ea
n

+
re

m
ov

eL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ad
dC

on
tr

ol
St

at
us

Li
st

en
er

 :
 d

ou
bl

e[
]

+
ad

dL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
do

ub
le

[]
+

re
m

ov
eF

ro
m

Pl
at

oo
n

:
vo

id
+

ad
dL

at
G

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

+
ge

tA
ge

nt
Ty

pe
 :

 C
la

ss
+

se
tE

na
bl

ed
 :

 v
oi

d
+

re
m

ov
eL

on
gG

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

vo
id

+
A
gJ

ac
kL

ea
de

r
+

re
m

ov
eC

on
tr

ol
St

at
us

Li
st

en
er

 :
 v

oi
d

+
ad

dT
oP

la
to

on
 :

 v
oi

d

Be
lie

fs
Co

ns
ta

nt
s

In
tr

aP
la

to
on

M
es

sa
ge

Ty
pe

s
ca

.u
la

va
l.

if
t.

d
a

m
a

s.
fc

d
.a

g
e

n
t.

ja
ck

.c
e

n
tr

a
li

ze
d

.a
g

e
n

ts
.f

o
ll

o
w

e
r.

A
g

Ja
ck

Fo
ll

o
w

e
r

+
ad

dT
as

k
:

bo
ol

ea
n

+
in

iti
al

iz
eR

ol
e

:
bo

ol
ea

n
+

ad
dT

oP
la

to
on

 :
 v

oi
d

+
re

m
ov

eL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

re
m

ov
eC

on
tr

ol
St

at
us

Li
st

en
er

 :
 v

oi
d

+
re

m
ov

eL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

se
tN

ew
Pl

at
oo

n
:

vo
id

+
ad

dL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
do

ub
le

[]
+

A
gJ

ac
kF

ol
lo

w
er

+
se

tA
ct

ua
to

rS
ta

te
 :

 v
oi

d
+

ad
dC

on
tr

ol
St

at
us

Li
st

en
er

 :
 d

ou
bl

e[
]

+
in

it
:

vo
id

+
se

tR
ol

e
:

bo
ol

ea
n

+
ad

dL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
do

ub
le

[]
+

re
m

ov
eF

ro
m

Pl
at

oo
n

:
vo

id
+

A
gJ

ac
kF

ol
lo

w
er

+
se

tR
ol

eS
ta

te
 :

 v
oi

d
+

ge
tA

ct
ua

to
rS

ta
te

 :
 in

t

Be
lie

fs
Co

ns
ta

nt
s

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.t

e
a

m
w

o
rk

.a
g

e
n

ts
.f

o
ll

o
w

e
r.

A
g

Ja
ck

Fo
ll

o
w

e
r

+
re

m
ov

eL
at

G
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ad
dL

at
G

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

+
ad

dT
oP

la
to

on
 :

 v
oi

d
+

ad
dT

as
k

:
bo

ol
ea

n
+

re
m

ov
eC

on
tr

ol
St

at
us

Li
st

en
er

 :
 v

oi
d

+
A
gJ

ac
kF

ol
lo

w
er

+
re

m
ov

eL
on

gG
ui

da
nc

eS
ta

tu
sL

is
te

ne
r

:
vo

id
+

ad
dL

on
gG

ui
da

nc
eS

ta
tu

sL
is

te
ne

r
:

do
ub

le
[]

+
ad

dC
on

tr
ol

St
at

us
Li

st
en

er
 :

 d
ou

bl
e[

]
+

re
m

ov
eF

ro
m

Pl
at

oo
n

:
vo

id

F
ig

u
re

6.
1:

C
la

ss
d
ia

gr
am

of
th

e
p
os

si
b
le

J
A

C
K

A
ge

n
t

d
er

iv
in

g
fr

om
a

co
m

m
on

ab
st

ra
ct

ag
en

t
sk

el
et

on
.

Chapter 6. Driving Agents Engineering 123

the agent diagram of a AgJackFollower agent (follower agent) which references same

class, from the centralized package, presented in Figure 6.1. For a better understanding,

Figure 6.2’s diagram includes the links with other classes, as the SimulationRoadVehicle,

which includes the agent’s actuators. As an improvement to agent-oriented modeling,

Figure 6.2’s diagram defines the agent’s possible roles at the top of the agent box: Fol-

lower, Splitter, Merger. Besides that, the agent attributes presented on this diagram

are only the ones relating to the agent’s state (belief state) and the functions beneath

are actions that the agent can execute on its environment, while the other functions

listed at the bottom are standard Java methods. The bottom of the agent structure

represents the “library” of communicative acts the agent can execute as part of specific

protocols. In this example three protocols from the centralized coordination model are

presented with the messages used by “follower” agents.

0, 1 1

cfp-merge / Merge Protocol

Accept / Merge Protocol

inform(position) / Merge Protocol

Merge / Merge Protocol

inform-done / Merge Protocol

Request / Split Protocol

Reject / Merge Protocol inform-done / Split Protocol

inform(velocity) / Lead Protocol

inform(position) / Lead Protocol

JackFollower / Follower, Splitter,
Merger

-Internal_vehicle_data
-Surrounding_vehicles_information
-Other_vehicles _information

-Change_lane(distance)
-Drive_to_meeting(meeting_point)
-Follow_virtual_vehicle(virtual_ref)
-Follow_front_vehicle(dst)
-Communicate(msg, to)

-Set_following_distance(dst)
-Set_velocity(velo)
-Set_acceleration(accel)
+addPercept(percepts)

+initialize()
+name()
+reply()
+send()
+startAgent()
+postEvent()

aos.jack.jak.agent.Agent

+Steer_vehicle()
+Press_gaz()
+Press_brake()

«interface»
ca.ulaval.ift.damas.fcd.agent.DrivingAgent

+SetGaz()
+SetBrake()
+SetSteer()

SimulationRoadVehicle

VehicleInternalSensor

VehicleExternalSensor

SimObject3D

1

0,n

1

0, n

Figure 6.2: AUML agent diagram of the JACK follower agent (AgJackFollower).

6.1.2 Agent UML Level 2: Coordination Protocols Model

As the first level of AUML briefly defined the agents’ structure, hierarchy and possi-

ble actions, the second level, proposed by Odell et al. [2000], is useful to highlight the

Chapter 6. Driving Agents Engineering 124

agents’ collaboration process in reference to the communicative acts presented at the

bottom of the agent diagram. The protocol that will be shown as an example is the

merge protocol, which is richer in interactions and can relate to the split protocol, as the

agents involved in the manoeuvre are basically the same. Only the level 2 state diagram

and protocol diagram are presented here, since they provide all the information required

to understand and model the coordination process, and the other level 2 diagrams only

present different points of view about the same information. These two diagrams also

provide a better understanding of the pre- and post-conditions surrounding the commu-

nicative actions of our driving agents. In this context, they ensure coherence between

the state transitions of the intra-platoon manoeuvres and ensure their completion. For

a better understanding of the following coordination examples, Figure 6.3 shows the

vehicles and respective agents involved in the merge manoeuvre, where agent 1.x is the

vehicle which creates the gap for the merging vehicle 2.1.

1.1

TRAFFIC FLOW

1.2 1.x

2.1

Figure 6.3: Agents’ identifications for the merge example.

The state diagram presented in Figure 6.4 represents the conversation used to man-

age the merge manoeuvre, between platoon 1’s leader and the merging vehicle 2.1 (refer

to Figure 6.3). This diagram clarifies the behavior of our agents’ Networking module

by specifying the messages that must be sent in reaction to the belief state of the agents

involved in the merge manoeuvre. The states of the merge manoeuvre are represented

by the rounded shaped boxes and the arrows represent the possible messages, with the

ID of its sender. These states dictate the agents’ possible messages, while the state

transitions occur following from such messages. In this example, vehicle 2.1 is Free

until it sends a Call For Proposal (CFP-Merge) to a nearby platoon. At that moment,

the conversation is in an Open state until the manoeuvre has been realized or someone

stops it.

To model the flow of messages between the possible roles our agents can take, the

protocol diagram is a convenient solution inspired from UML’s sequence diagram, which

has always been used by FIPA to model protocols. In our case, the protocol diagram

has been used to model the three categories of intra-platoon coordination protocols

presented in Section 5.2 and ensure the coherence of the inter-agent communications

during the simulation scenarios. Figure 6.5 shows such a diagram, which represents the

messages exchanged between the three agents involved in the merge manoeuvre, within

their respective roles. It should be mentioned that our protocol extends the Contract

Net template of protocol for Multiagent System [FIPA, 2002] and provides a practical

Chapter 6. Driving Agents Engineering 125

OPEN CLOSED1.1: Not Understood

1.1: Refuse

Reneged

Canceled

1.1: Propose 2.1: Move in Merge Position 2.1: Ready To Merge2.1: Accept2.1: CFP-Merge

1.1: Cancel

1.1: Cancel

2.1: Renege

2.1: Reject

Free Proposition Initiated Merge Done

2.1: Cancel

2.1: Merged Platoon

1.1: Cancel

2.1: Cancel

Commited to join MergingIn Merge PositionMerge Proposed

Figure 6.4: AUML Level 2 state diagram of the merge protocol.

way for agents to negotiate the merge manoeuvre participants, at the beginning of the

collaboration. The different lifelines (vertical lines) represent the agent’s roles and the

activation bars (vertical rectangles) on the same lines refer to the agent’s deliberative

process. In this example, once vehicle 2.1 has accepted platoon 1, a specific role change

occur for him and the leader agent. Furthermore, this role change also represents a

switch between the Linking module of our architecture, which relates to the Free and

Platoon representative roles, and the Networking module, which relates to the Merger

and Merge Organizer roles. A final observation about Figure 6.5’s protocol diagram

is that it represents the bridge between the design of the Networking module and its

implementation in JACK, which is detailed in Section 6.2. Indeed, the diamond boxes

appearing on some transitions represent logical conditions part of an agent’s plans,

while the activation bars represent JACK’s plans.

6.1.3 Agent UML Level 3: Agents’ State Transition

The AUML level 2 diagrams that we just presented showed the coordination process of

the complete MAS of our CDS, but did not detail each agent’s “local” actions within

the merge manoeuvre. The level 3 of AUML on the other hand, can provide a better

understanding of the deliberative process that must be implemented inside a single

agent’s Coordination sub-layer, in relation with the Planning sub-layer. Apart from

detailing the states an agent goes through, the level 3 diagrams also point out the

preconditions leading to an agent’s actions and state changes. Therefore, this type

of diagram represents the guidelines that should be followed to provide reliable and

robust transitions during the coordination and the driving process, supported by the

agent coordination system presented in Section 6.2.6 and the agent driving system

presented in Section 6.2.7.

Chapter 6. Driving Agents Engineering 126

X

Vehicle 1.xVehicle 2.1 Vehicle 1.1

"Role: Free"

cfp(merge)

refuse (not suitable vehicle)

not understood

propose

X

reject-proposal(not
suitable paltoon)

accept-proposal(merge) request(Merge gap)"role change"

X

failure(no space)

inform-done(merge gap)

Objet1

inform(atPlatoonLevel)

Cancel(merge)

inform-done(atMergePosition)

request(Maintain velocity)

request(MergeIn)

Request(ClosePlatoon) Request(ClosePlatoon)

Objet1

request(moveAtPositionX)

"Role: Merger" "Role: Platoon
representative"

"Role: Merge
Organizer"

"Role: Merge Splitter"

"role change"

"inform-done" can as well be
launched at any time after it

received the "request(Merge Gap)"

dead -
line

Figure 6.5: AUML Level 2 protocol diagram of the merge protocol.

Chapter 6. Driving Agents Engineering 127

[Able to create merge gap] /
Create gap

Merge vehicle ready /
Maintain velocity

Vehicle merged in /
Close gap

from Leader’s
Statechart Request Merge Gap /

Receive request

[Unable to create] /
Cancel

Ready for merge

Gap Created

Received Request

Merged

Canceled

null

Merge Splitter

Figure 6.6: AUML Level 3 state dia-

gram of the merge protocol focusing on

the merger’s follower agent (Gap Cre-

ator role).

[Not Suitable
Vehicle] /
Refuse

CFP Merge Made
Receive CFP

[Suitable Vehicle] /
Propose

Critical change to
platoon /
Cancel

Platoon ready for merge /
Command merge

to Merger’s
Statechart

Proposition accepted /
Create Merge Gap

Proposed

Reject Received CFP

null

Canceled

Merged

Merge request treated

to Merger’s
Statechart

to Follower’s
Statechart

Platoon Representative

Merge Organizer

Figure 6.7: AUML Level 3 state diagram of

the merge protocol focusing on the leader

agent.

The three agents involved in the centralized coordination of the merge manoeuvre

are detailed within their state transition, using level 3 state diagrams in Figures 6.6, 6.7

and 6.8. Details are provided on each state transitions, by giving a short description of

the event, condition and action involved in the transition, on top of the arrows going

from one state box to another. In this short description, the event that triggered the

transition is written first, followed by the transition condition, which is surrounded by

“[]”, and the actual transition action, written after the “/” sign. Note that interactions

between each agent’s state diagram is possible using the dotted arrows, which usually

outline the inter-agent communications, part of the coordination protocol.

In more details, Figure 6.6 represents the vehicle following the merging vehicle

throughout the progression of the manoeuvre, by defining its collaboration with the

leader. Figure 6.7 shows how the leader manages this manoeuvre by coordinating both

the merger and its follower in a transition similar to the protocol presented earlier in the

second level of AUML. Finally, the statechart of the merger, referencing the previous

leader’s protocol, is presented in Figure 6.8.

Chapter 6. Driving Agents Engineering 128

Free

null

Need a Platoon /
CFP Merge

Called for Proposal

Suitable platoon
proposed /
Accept

Accepted

from Leader’s Statechart

Not suitable
platoon proposed /
Reject

Move in merge
position

In Merge Position

Merge gap ready /
Merge in

Merged

Reneged

Critical Change /
Renege

to Leader’s
Statechart

Merger

Figure 6.8: AUML Level 3 state diagram of the merge protocol focusing on the merger

agent.

6.2 JACK Agent-Oriented Modeling

In the previous section, we presented the communicative behaviors that the driving

agents should reflect in our CDS. Now, we detail how such a behavior was attained, by

detailing the programming tools we used to develop the Auto21 agents. This description

is based on JACK’s agent programming framework and it should provide a better

understanding on how the agents reason in the test scenarios we simulate.

As mentioned earlier, the JACK oriented agent model used to develop the Auto21

agents is based on the Procedural Reasoning System (PRS) architecture, proposed by

Georgeff and Ingrand [1990] and detailed in Section 2.1.3. Therefore, this section is

separated in sub-sections relating to the main components of the PRS architecture, as

well as the components we added to create a complete agent infrastructure supporting

our Collaborative Driving System (CDS). This presentation focuses on Java and JACK

classes and the software infrastructure that was created to implement the functionalities

of the Planning sub-layer and the Networking module. More details on the additions

to the Networking module’s software infrastructure, in order to support the teamwork

model, are given in Section 6.3.

The current section begins with an overview of the main components of JACK’s pro-

gramming language. Then, Section 6.2.2’s description of JACK’s “Capability” should

give an overview of the organization of our agents’ behaviors into capabilities. This

description is followed by the presentation of three components that are essential to

provide our agents with the ability to reason, act and collaborate: (i) planning sys-

tem; (ii) communication system; (iii) knowledge bases. Each component is presented

in Figure 6.9 along with its relation with the agent’s driving and coordination systems.

The “Jack Plans” of Figure 6.9 are included inside JACK capabilities and they are

presented in Section 6.2.3, which details the steps of their execution inside JACK’s

framework. The “Auto21 Knowledge Base” represents an historic of sensed data that

Chapter 6. Driving Agents Engineering 129

Auto21 Communication System

Auto21 Coordination System

Auto21
Knowledge

Bases

Jack Capability

Jack Plans

Auto21 Driving System

Jack Capability

Jack Plans

Jack Capability

Auto21 Jack Agent

Figure 6.9: JACK components’ relationships inside an Auto21 driving agent.

enables plans to reason about their environment, and it is presented in Section 6.2.4.

The “Auto21 Communication System” represents the agent’s communication protocol

manager and it is described in Section 6.2.5. Following the description of these three

components, the agent’s coordination and driving systems are presented in Sections

6.2.6 and 6.2.7. This should provide a better understanding of the way the Management

layer of our architecture (refer to Figure 4.2) was modeled inside JACK agents. The

coordination system represents the Networking module of our architecture (the Linking

module has not been implemented), while the driving system represents the Planning

sub-layer. Both of them have been developed with JACK plans included in separate

JACK capabilities. As mentioned in Section 6.1.2, our coordination protocols, designed

with Figure 6.5, were developed by implementing the activation bars of this diagram

with JACK plans. The same applies to the transition arrows of the state diagrams

presented in Section 6.1.3, which represent the model of state transition that has been

developed with JACK plans, as part of the coordination and driving systems.

6.2.1 JACK Programming Language

Being inspired by the PRS architecture, JACK is also a software representation of

the Belief Desire Intention (BDI) agent model of Rao and Georgeff [1995] described in

Section 2.1.3. The concept of the BDI agent is applied in JACK by using four dynamic

structures along with a queue of internal and external events. Basically, the event queue

generates a list of options in accordance with the BDI agent’s desires. These options use

a belief database to match the current situation with a plan in a library that represent

the agent’s possible intentions. Once an intention is chosen by the agent, the relating

plan is executed and monitored by a task manager, as a Finite State Machine (FSM).

Chapter 6. Driving Agents Engineering 130

More specifically, JACK framework implements the previous concepts by using five

main classes that can be extended for specific usage:

Plans: Plans are pre-compiled procedures that depend on a set of conditions to be

applicable. They answer to internal or external events using relevance and context

criterions defined in JACK language’s documentation [AOS, 2004]. Moreover,

plans are closely related to event types (like BDI events) and settings, since they

occur when an event arise.

Events: Events are messages that are handled by plans and can be sent from the agent

itself or from an object that has a reference on this agent. JACK offers a number of

event models for different needs, represented as: internal stimuli, external stimuli

and motivations, as well as a another category for inter-agent message events.

Beliefsets: A beliefset provides a data structure that enables the agents to collect,

query and infer on a database of knowledge. The beliefset’s queries are very useful

to determine an agent’s environmental context, which is a criterion to determine

the plans to execute on a specific event.

Capabilities: A capability is used to describe an agent’s behavior or role. An agent

can have zero to n capabilities. Each capability regroups a set of agent internal

components that define: (i) the internal or external events the agent can send or

respond to; (ii) which beliefs database (beliefset) it instantiates or refer to; (iii)

and which plans it can use to act or reason.

Task Managers: Task managers govern how an agent handles the concurrent execu-

tion of plans, when they are committed to more than one task execution.

6.2.2 JACK Agents’ Capabilities in Auto21

JACK’s capability is the first structure to be analyzed in this section since it embraces

most of JACK’s other structures in what is the agent-oriented programs’ version of

classes’ inheritance. Capabilities enabled us to define a set of behaviors relating to the

agent components, defined in Sections 6.2.4, 6.2.5, 6.2.6 and 6.2.7, which we reused for

other agents. Figure 6.10 shows an informal model of the capabilities used by both

the following vehicles’ agent and the leader vehicle’s agent. Each capability is briefly

described within its box, by mentioning the major Knowledge Base (KB) and JACK

plans it uses to provide the required behaviors.

The capability model of Figure 6.10 shows that the leader and follower can share

some capabilities, which makes the implementation of new agents easier. CapEnterPal-

toon and CapLeavePlatoon include plans to coordinate the split and merge manoeuvres

Chapter 6. Driving Agents Engineering 131

AgJackLeader

JackAuto21Agent

CapVehicleComm
- Uses Vehicle
Communication Module
- Uses/Modifies
Conversation KB

AgJackFollower

JackAuto21Agent

#h
as #h
as

CapLinkingMod
- Uses Inter-Platoon
Manage. Procotol Plans
- Uses Platoons KBs

#has

CapSenseVehicle

- Uses/Modifies Percept
KB

#has #has

CapMergePlatoon
- Uses Merge Protocol
Plans
- Uses Platoon KB

CapSplitPlatoon
- Uses Split Protocol
Plans
- Uses Platoon KB

CapManagePlatoon
- Uses Merge/Split
Protocol Plans
- Uses/Modifies Platoon KB

#has#h
as

#has

#has #has

#h
as

CapHumanDriving

- Uses Human Driving
Plans
- Uses Percept KB
- Uses VehicleGuidance

CapAuto21Driving
- Uses Driving
Manoeuvre Plans
- Uses Percept KB
- Uses VehicleGuidance

- Uses Merge/Split Gap
Creation Protocols
- Uses Emergency
Situation Plans

Networking Module Linking Module

Planning Sub-Layer

Figure 6.10: JACK capabilities usage by both the follower and leader agents.

and refer to the protocol required for a vehicle that wants to leave or enter a platoon.

CapManagePlatoon includes the plans used to reply to a request from a vehicle entering

and leaving the platoon, meaning that these plans are used as answers to the plans

of CapEnterPaltoon and CapLeavePlatoon, inside the same protocols. As Figure 6.10

highlights it, the previous capabilities represent the implementation of the Networking

module of our architecture, while the CapLinkingMod of the agent AgJackLeader repre-

sents the architecture’s Linking module (refer to our architecture model in Figure 4.2).

CapManagePlatoon is linked to both the AgJackLeader and the AgJackFollower, but the

follower only has this capability in the case of a decentralized or teamwork intra-platoon

coordination model (refer to Section 5.2).

6.2.3 JACK Agents’ Plans Execution Framework in Auto21

The JACK plans that each capability “owns”, according with its behavior, is now

detailed by describing the way a plan is launched and executed in JACK. In our case,

JACK’s plans execution framework is being used for two major purposes: first for

coordination issues and second as a recipe for a driving manoeuvre. If we relate to the

Auto21 architecture of Figure 4.2, this means that JACK’s plans execution framework is

being used to execute driving plans for the Planning sub-layer, as well as plans referring

to coordination protocols for the Coordination sub-layer. As it will be shown later in

this section, the plans’ execution is triggered by events that are launched by an agent, a

capability, a beliefset, an automatic event or another plan. In Figure 6.11, the different

event senders, inside the Auto21 agents, are presented along with their relation with

Chapter 6. Driving Agents Engineering 132

groups of capabilities. These groups outline capabilities having plans responding to

similar types of events.

Input Events Capabilities Plans Execution Framework

Communication
Module

Scenario
Tasks

Tasks
Intentions

Perception
KB

Coordination
Plans

Inter-Vehicle
Messages

Intention
Events

Driving
Task Events

D
eam

on

MergeCap
SplitCap
LinkingCap
ManageCap

MergeCap
SplitCap

AgJackFollower

Auto21Driving
HumanDriving

Handled by

Handled by

Handled by

Set of
Relevant Plans

Set of
Relevant Plans

Set of
Relevant Plans

Plans Management

Set of Plans

Contextual
Filtering

Plan Selector

Contextual Plan Bindings

Plan Executer

Monitor
Logical
Failure

Success

P
lan Failure

plan 1 plan nplan 2

n plans

Priority
Filtering

n plans

...

... ...

1 plan

Coordination

Agent Roles

Driving

Jack Capability

Jack Agent

Jack Agent

Jack Automatic Event

Jack Plans

Figure 6.11: Running loop of the JACK planning system.

Plans relating to the same type of event are selected considering their relevance to

this specific event and they are sent to the Plan Management system, shown at the

right of Figure 6.11. Relevant plans are further filtered considering the current context,

which is defined by the beliefsets. If more than one plan goes through all these filtering

steps, one of them is selected upon a specified priority (“Plan Selector” from Figure

6.11) and the others are left in the queue.

Once the highest priority plan has been instantiated, it is executed one or many

times considering the different possible contextual bindings, as shown inside the “Plan

Selector”. A contextual binding is specified as a query to the beliefset, in a method

called “context”, and all the possible matches with the beliefset query result in running

a different plan binding. For example, contextual bindings can be used to send a

message to each members of a specific platoon in parallel, by developing only one plan,

who’s task is to send a message to the agent defined in the context. In this case,

the contextual method would be “get agents in platoon #2”, which would result in

plan instances being created for each platoon member and messages being sent to each

member as part of each plan instance.

At the instant a JACK plan begins its execution (“Plan Executer” in Figure 6.11),

the success of logical statements inside the plan is always monitored to determine if the

Chapter 6. Driving Agents Engineering 133

plan has failed or not. Logical statements can be defined in the form of different queries

to the beliefsets or by using logical statements, as part of predefined JACK statements,

executed in the form of a Finite State Machine (FSM) [AOS, 2004]. A logical statement

can be seen as a statement that launched an action inside a plan with the possibility of

specifying a logical condition that has to be maintained while the action is executed.

A logical condition refers to the state of the environment, defined by the agent’s KB,

which is described in Section 6.2.4 with an example of logical statements.

In brief, JACK’s plans execution framework offers the possibility of executing plans

according to specific events, by considering the state of agent’s environment. By adding

the notion of logical statements, JACK’s framework can verify if specific conditions

have been achieved or maintained during the execution of the plan. This enables us

to determine if a problem occurred (logical condition not respected) and resolve it, if

possible.

6.2.4 Auto21 Agents’ Knowledge Base

The agents developed for the Auto21 project use a structure called Knowledge Base

(KB) that provides an historic of the agent’s states in time. Such a structure is

used by every agent, as shown in Figure 6.2 that presents an AUML agent diagram,

which includes KBs presented as different sources of information and data (i.e. inter-

nal vehicle data) at the top of the agent box. A KB enables JACK plans to reason about

the current state of their vehicle and environment, by using the logical statements that

were introduced in the previous section. In this section we introduce JACK’s KB class,

called a beliefset, and the KB classes that we developed in Java. This introduction is

completed with the presentation of a KB monitoring class provided by JACK’s API

called Cursor, and an example of the use of KBs through Cursors inside our JACK

plans.

As an example of the usage of KBs within our driving agents, Figure 6.12 presents

the class hierarchy of some beliefsets and Java KBs with the respective JACK Cur-

sors we extended for the Auto21 driving agents. The KB classes that we used for

the Auto21 agent extend either the ClosedWorld class (for JACK beliefsets) or the

AbstractKnowledgeBase class (for the Java KBs we developed). To provide support

for the logical statements of our JACK plans, we have implemented a series of Cursor

acting as observers on the Java KBs. Some of these Cursors are presented on top of

the plan structure of Figure 6.12, as an example. BelVehiclesVirtuality. Cursor repre-

sents a daemon (database observer that triggers an event) on the beliefset of virtual

vehicles (BelVehiclesVirtuality), VelocityCursor is a velocity daemon on the vehicle’s dy-

Chapter 6. Driving Agents Engineering 134

-Term1

*

-Term2 *

-Term1

*

-Term2 *

-Term1

*

-Term2 *

-Term1

*

-Term2 *

«utilise»

ClosedWorld

Observable

AbstractKnowledgeBase

BelVehiclesVirtuality FrontVehicleKB VehicleDynamicKB PlatoonMembersKB

Cursor

ClosedWorldCursor

BelVehiclesVirtuality.__Cursor FrontDeltaVeloCursor

Change

VelocityCursorEmergencyPlatoonStateCursor

«utilise»

«utilise»

«utilise»

Pl
an

Context Body
- BelVehiclesVirtuality.get(x)

- @insist(FrontDeltaVeloCursor, event2)
- @maintain(!EmergencyPlatoonStateCursor, event1)
- @wait_for(VelocityCursor)

Figure 6.12: JACK oriented beliefs structures and respective Cursors for planning usage.

Chapter 6. Driving Agents Engineering 135

namics KB (VehicleDynamicKB), FrontDeltaVeloCursor is a velocity daemon on the front

vehicle KB, and EmergencyPlatoonStateCursor is an emergency situation daemon on the

platoon members KB (PlatoonMembersKB).

In order to understand how beliefsets, KBs and Cursors are used, the bottom of

Figure 6.12 shows a box representing a JACK plan using Cursors in two possible ways.

First, a Cursor can be used as part of the plan’s context method, with the purpose of

selecting and instantiating one or many plans, as it was shown in Figure 6.11. Second,

Cursors can be used inside the plan’s body to monitor the achievement of specific logical

conditions.

In the example presented in Figure 6.12, logical statements provided by JACK’s

framework are used to ensure that the steps of the plan are applied according with

the state of the environment, described by the agent’s KBs. Thus, the BelVehiclesVir-

tuality.get(x) method is used in the plan’s context to get all the virtual vehicles inside

BelVehiclesVirtuality and instantiate a plan for each one. The @wait for(VelocityCursor)

statement allows the plan’s body to wait for its vehicle to reach a specific velocity value

in VehicleDynamicKB before executing further actions. The @maintain(!EmergencyPla-

toonStateCursor, event) statement monitors the changes to PlatoonMembersKB in order

to ensure that the condition of “no emergency” is maintained during the execution of the

action relating to “event1”. The last statement, @insist(FrontDeltaVeloCursor, Event),

monitors FrontVehicleKB to ensure that a specific inter-vehicle velocity condition will

be reached, by executing the action relating to “event2” until the velocity condition is

reached.

6.2.5 Auto21 Agents’ Communication System

To provide our agents with the ability to send and receive messages according to a

particular standard, we developed an agent-oriented communication system. Our com-

munication system was developed as part of a JACK capability (CapVehicleComm) and

its tasks are to filter the messages that the agent sends and receives, according to basic

conversation protocol management functions. Within this section, the presentation of

the Auto21 communication system begins with a description of the process involved in

receiving and sending inter-agent messages. This is followed by the a detailed repre-

sentation of the protocol management class (ConversationManager), which ensures that

our agents communicate according to the rules of our communication protocols.

Before going further, it should be mentioned that our communication system uses

the inter-vehicle communication devices presented in Section 3.5, even though JACK al-

Chapter 6. Driving Agents Engineering 136

ready provides an inter-agent messaging infrastructure. JACK’s communication frame-

work is based on a communication layer called the DCI network and uses the UDP

transport protocol [AOS, 2004], which is more useful for web-oriented agents than

“simulation-oriented” agents like ours. Indeed, our inter-agent communications must

simulate the restrictions and latency times of a radio network, which would have made

the use of JACK’s communication infrastructure problematic.

Consequently, we cannot use JACK’s communication infrastructure, and this is

why we developed our own communication sending/receiving system inside the CapVe-

hicleComm capability. A general view of the classes involved in this system is provided

by the UML class diagram of Figure 6.13. This capability includes both the vehicle’s

communication devices (like a radio) and the agent conversation manager, which is pre-

sented later. The communication devices are used to send the agent’s own messages,

which are generated by the coordination system (Section 6.2.6), and to receive mes-

sages sent by other vehicles. When CapVehicleComm receives a message from another

vehicle, it filters the message using the information provided by the message’s class

(VehicleMessage). For instance, CapVehicleComm verifies if the message is addressed

to the agent it represents, by considering its ontology: intra-platoon, inter-platoon,

intra-team. If the message goes through this filter, it is sent to the agent coordination

system’s plans (described in Section 6.2.6) using either a EvRcvInterPltnMsg (event of

a received inter-platoon message) or a EvRcvIntraPltnMsg (event of a received intra-

platoon message). If no plan can handle a message that was addressed to this agent,

because it is not part of any protocol, a default plan called PlUnhandledIntraMsg will

respond with a default “Not Understood” message.

On the other hand when CapVehicleComm is used to send messages to others, the

process is simpler than receiving a message. In this case, plans from the coordination

system raise a EvSndVehMsg event which is handled by a plan from the CapVehicleComm

capability. Since EvSndVehMsg includes attributes on the conversation this message

relates to, the most appropriate plan from CapVehicleComm is triggered to finally send

the message using the inter-vehicle communication devices.

To ensure that messages are being sent and received according to our communication

protocols, each entering and leaving message must be added to the ConversationManager

class, presented in Figure 6.13. This class only acts as a conversation KB which returns

true or false on its different possible “add message” methods to specify if the manager

is able to add a message to the current conversation. Therefore, when an Auto21 agent

receives a message, it is handled by a plan from the coordination system (detailed in

Section 6.2.6), which calls the “add message” method of ConversationManager to make

sure that this message was received in accordance with its protocol. For example, if

Chapter 6. Driving Agents Engineering 137

in
te

rf
ac

e
ca

.u
la

va
l.i

ft
.d

am
as

.s
im

u
la

to
r.

au
to

2
1

.c
om

m
u

n
ic

at
io

n
.C

om
m

u
n

ic
at

io
n

Li
st

en
er

at
tr

ib
ut

es

op
er

at
io

ns

+
ha

nd
le

M
es

sa
ge

 :
 v

oi
d

V
ec

to
r

Co
m

pa
ra

bl
e

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
k

n
o

w
le

d
g

e
.C

o
n

ve
rs

a
ti

o
n

K
n

o
w

le
d

g
e

at
tr

ib
ut

es

#
_i

nt
er

lo
cu

to
rI

D
 :

 in
t

#
_o

ng
oi

ng
 :

 b
oo

le
an

op
er

at
io

ns

+
el

em
en

tA
t

:
O

bj
ec

t
+

st
ar

tC
on

ve
rs

at
io

n
:

vo
id

+
is

C
on

ve
rs

at
io

nO
ve

r
:

bo
ol

ea
n

+
fir

st
El

em
en

t
:

O
bj

ec
t

+
co

m
pa

re
To

 :
 in

t
+

en
dC

on
ve

rs
at

io
n

:
vo

id
+

ad
d

:
bo

ol
ea

n
+

la
st

El
em

en
t

:
O

bj
ec

t
+

ge
tC

on
ve

rs
in

gA
ge

nt
ID

 :
 in

t
+

C
on

ve
rs

at
io

nK
no

w
le

dg
e

Pl
an

Ba
si

cM
es

sa
ge

Ty
pe

s
ca

.u
la

va
l.

if
t.

d
a

m
a

s.
fc

d
.a

g
e

n
t.

ja
ck

.c
o

m
m

u
n

ic
a

ti
o

n
.p

la
n

.P
lD

e
fa

u
lt

N
U

R
e

p
ly

at
tr

ib
ut

es

op
er

at
io

ns

cl
as

se
s

Pl
an

Co
m

m
un

ic
at

io
nC

on
st

an
ts

In
tr

aP
la

to
on

M
es

sa
ge

Ty
pe

s
Ba

si
cM

es
sa

ge
Ty

pe
s

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.c

o
m

m
u

n
ic

a
ti

o
n

.p
la

n
.P

lS
e

n
d

N
o

Fa
il

u
re

M
sg

at
tr

ib
ut

es

op
er

at
io

ns

cl
as

se
s

Co
m

pa
ra

bl
e

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
k

n
o

w
le

d
g

e
.V

e
h

ic
le

M
e

ss
a

g
e

K
n

o
w

le
d

g
e

at
tr

ib
ut

es

#
_o

th
er

A
ge

nt
ID

 :
 in

t
#

_m
es

sa
ge

 :
 V

eh
ic

le
M

es
sa

ge
#

_m
es

sa
ge

Ti
m

e
:

do
ub

le
op

er
at

io
ns

+
V
eh

ic
le

M
es

sa
ge

Kn
ow

le
dg

e
+

V
eh

ic
le

M
es

sa
ge

Kn
ow

le
dg

e
+

ge
tM

es
sa

ge
 :

 V
eh

ic
le

M
es

sa
ge

+
ge

tT
im

e
:

do
ub

le
+

co
m

pa
re

To
 :

 in
t

+
ge

tC
on

ve
rs

in
gA

ge
nt

ID
 :

 in
t

BD
IG

oa
lE

ve
nt

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.c

o
m

m
u

n
ic

a
ti

o
n

.e
ve

n
t.

E
vR

cv
In

te
rP

lt
n

M
sg

at
tr

ib
ut

es

+
_m

es
sa

ge
 :

 V
eh

ic
le

M
es

sa
ge

op
er

at
io

ns

+
re

ce
iv

ed
 :

 E
vR

cv
In

te
rP

ltn
M

sg
-r

ec
ei

ve
d_

bo
dy

 :
 E

vR
cv

In
te

rP
ltn

M
sg

+
ge

tV
ar

ia
bl

e
:

O
bj

ec
t

+
ge

tD
oc

um
en

ta
tio

n
:

St
rin

g
+

va
ria

bl
eT

yp
es

 :
 S

tr
in

g[
]

+
Ev

R
cv

In
te

rP
ltn

M
s g

+
st

at
eI

nf
o

:
St

rin
g

+
va

ria
bl

eN
am

es
 :

 S
tr

in
g[

]

BD
IG

oa
lE

ve
nt

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.c

o
m

m
u

n
ic

a
ti

o
n

.e
ve

n
t.

E
vR

cv
In

tr
a

P
lt

n
M

sg
at

tr
ib

ut
es

+
_h

an
dl

ed
 :

 b
oo

le
an

+
_m

es
sa

ge
 :

 V
eh

ic
le

M
es

sa
ge

op
er

at
io

ns

+
Ev

R
cv

In
tr

aP
ltn

M
sg

+
st

at
eI

nf
o

:
St

rin
g

+
ge

tD
oc

um
en

ta
tio

n
:

St
rin

g
+

ge
tV

ar
ia

bl
e

:
O

bj
ec

t
+

re
ce

iv
ed

 :
 E

vR
cv

In
tr

aP
ltn

M
sg

+
va

ria
bl

eN
am

es
 :

 S
tr

in
g[

]
-r

ec
ei

ve
d_

bo
dy

 :
 E

vR
cv

In
tr

aP
ltn

M
sg

+
va

ria
bl

eT
yp

es
 :

 S
tr

in
g[

]

Pl
an

Ba
si

cM
es

sa
ge

Ty
pe

s
ca

.u
la

va
l.

if
t.

d
a

m
a

s.
fc

d
.a

g
e

n
t.

ja
ck

.c
o

m
m

u
n

ic
a

ti
o

n
.p

la
n

.P
lU

n
h

a
n

d
le

d
In

tr
a

M
sg

at
tr

ib
ut

es

op
er

at
io

ns

cl
as

se
s

Pl
an

Co
m

m
un

ic
at

io
nC

on
st

an
ts

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
ja

ck
.c

o
m

m
u

n
ic

a
ti

o
n

.p
la

n
.P

lS
e

n
d

C
o

m
m

M
sg

at
tr

ib
ut

es

op
er

at
io

ns

cl
as

se
s

M
es

sa
ge

Co
nt

en
t

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
co

m
m

u
n

ic
a

ti
o

n
.V

e
h

ic
le

M
e

ss
a

g
e

at
tr

ib
ut

es

#
_c

on
te

nt
 :

 O
bj

ec
t[

]
#

_t
o

:
in

t
#

_f
ro

m
 :

 in
t

#
_s

iz
e

:
in

t
#

_m
es

sa
ge

Ty
pe

 :
 b

yt
e

#
_o

nt
ol

o g
y

:
by

te
op

er
at

io
ns

+
ge

tT
o

:
in

t
+

ge
tF

ro
m

 :
 in

t
+

ge
tS

iz
e

:
in

t
+

V
eh

ic
le

M
es

sa
ge

+
V
eh

ic
le

M
es

sa
ge

+
cl

on
e

:
O

b j
ec

t
+

to
St

rin
g

:
St

rin
g

+
ge

tO
nt

ol
og

y
:

by
te

+
ge

tC
on

te
nt

 :
 O

bj
ec

t[
]

+
ge

tM
es

sa
ge

Ty
pe

 :
 b

yt
e

+
V
eh

ic
le

M
es

sa
ge

C
ap

ab
ili

ty
M

es
sa

ge
O

nt
ol

og
y

Ba
si

cM
es

sa
ge

Ty
pe

s
ca

.u
la

va
l.

if
t.

d
a

m
a

s.
fc

d
.a

g
e

n
t.

ja
ck

.c
o

m
m

u
n

ic
a

ti
o

n
.C

a
p

V
e

h
ic

le
C

o
m

m
at

tr
ib

ut
es

+
_e

vS
nd

M
sg

 :
 E

vS
nd

V
eh

M
sg

+
_c

om
m

D
ev

ic
es

 :
 H

as
hM

ap
+

_e
vI

nt
er

M
s g

 :
 E

vR
cv

In
te

rP
ltn

M
sg

+
_c

on
vM

an
ag

er
 :

 C
on

ve
rs

at
io

nM
an

ag
er

+
_e

vI
nt

ra
M

sg
 :

 E
vR

cv
In

tr
aP

ltn
M

sg
op

er
at

io
ns

+
ha

nd
le

M
es

sa
ge

 :
 v

oi
d

+
se

tC
om

m
un

ic
at

io
nD

ev
ic

e
:

vo
id

+
ad

dC
om

m
un

ic
at

io
nD

ev
ic

e
:

vo
id

+
ge

tD
oc

um
en

ta
tio

n
:

St
rin

g
+

se
nd

V
eh

ic
le

M
es

sa
ge

 :
 v

oi
d

Ev
en

t
ca

.u
la

va
l.

if
t.

d
a

m
a

s.
fc

d
.a

g
e

n
t.

ja
ck

.c
o

m
m

u
n

ic
a

ti
o

n
.e

ve
n

t.
E

vS
n

d
V

e
h

M
sg

at
tr

ib
ut

es

+
ST

A
R
T_

C
O

N
V
 :

 in
t

+
FO

LL
O

W
_C

O
N

V
 :

 in
t

+
EN

D
_C

O
N

V
 :

 in
t

+
_r

ec
ei

ve
r

:
in

t
+

N
O

_F
A
IL

U
R
E

:
in

t
+

_m
es

sa
ge

 :
 V

eh
ic

le
M

es
sa

ge
op

er
at

io
ns

+
fo

llo
w

C
on

ve
rs

at
io

n
:

Ev
Sn

dV
eh

M
sg

+
no

Fa
ilu

re
 :

 E
vS

nd
V
eh

M
sg

+
st

ar
tC

on
ve

rs
at

io
n

:
Ev

Sn
dV

eh
M

sg
+

en
dC

on
ve

rs
at

io
n

:
Ev

Sn
dV

eh
M

sg

O
bs

er
va

bl
e

Au
to

21
Ag

en
tC

on
st

an
t

ca
.u

la
va

l.
if

t.
d

a
m

a
s.

fc
d

.a
g

e
n

t.
k

n
o

w
le

d
g

e
.C

o
n

ve
rs

a
ti

o
n

M
a

n
a

g
e

r
at

tr
ib

ut
es

#
_c

on
ve

rs
at

io
ns

 :
 H

as
hM

ap
op

er
at

io
ns

+
cl

ea
r

:
vo

id
+

en
dC

on
ve

rs
at

io
n

:
bo

ol
ea

n
+

ad
dM

es
sa

ge
To

C
on

ve
rs

at
io

nT
oA

ll
:

bo
ol

ea
n

+
ad

dM
es

sa
ge

To
C
on

ve
rs

at
io

n
:

bo
ol

ea
n

+
ad

dM
es

sa
ge

 :
 b

oo
le

an
+

C
on

ve
rs

at
io

nM
an

a g
er

+
ad

dS
in

gl
eM

sg
C
on

ve
rs

at
io

n
:

bo
ol

ea
n

+
is

C
on

ve
rs

in
gW

ith
 :

 b
oo

le
an

+
ge

tC
on

ve
rs

at
io

n
:

C
on

ve
rs

at
io

nK
no

w
le

dg
e

+
ad

dN
ew

C
on

ve
rs

at
io

nM
es

sa
ge

 :
 b

oo
le

an

F
ig

u
re

6.
13

:
C

la
ss

d
ia

gr
am

of
th

e
m

ai
n

J
av

a
an

d
J
A

C
K

cl
as

se
s

re
la

te
d

to
in

te
r-

ve
h
ic

le
co

m
m

u
n
ic

at
io

n
s.

Chapter 6. Driving Agents Engineering 138

a plan is created to receive the answer about a vehicle’s position, the “add message”

method of ConversationManager will be invoked as part of the plan’s context (refer to

Section 6.2.3). If there is no conversation taking place at that moment (the answer is

not a valid reply), the “add message” method fails, and this plan is not chosen (context

fails). The agent then returns a “Not Understood” message to the sender, since it never

asked for information about this vehicle’s position.

Finally, the ConversationManager class can also be used as an inter-agent messages

historic, since conversations are indexed inside this class’ KB. This way, plans that are

part of our coordination system can query the ConversationManager to retrieve a conver-

sation with a specific agent and verify which messages have been exchanged with him.

The knowledge on a conversation is returned in the form of a ConversationKnowledge

object which contains 1 to n VehicleMessageKnowledge objects, both defined in Figure

6.13.

6.2.6 Auto21 Agents’ Coordination System

The previous sections presented the agent engineering components that we developed

to provide our agents with a plans execution framework, a communication system and

knowledge bases. The following sections describe how these components are used inside

the agent-oriented design of our architecture’s Management layer, starting with the

coordination system. This system refers to our architecture’s Coordination sub-layer,

but since we only developed the Networking module so far, it only instantiates the

Networking functions through a series of plans (coordination plans) part of the Merge,

Split and Manage capabilities (refer to Figure 6.10). These coordination plans have

been defined in the AUML agent diagram of Figure 6.2, which shows at the bottom of

the agent box, the parts (circles representing plans) of different coordination protocols

handled by this agent. The coherence of these plans is ensure by JACK’s plans execution

framework, described in Section 6.2.3, which support the steps of the coordination

models defined in Section 5.2. The coordination plans also use the Knowledge Bases

detailed in Section 6.2.4 to trigger a driving manoeuvre and its relating coordination

plans or to execute and reason about the manoeuvres currently being coordinated.

Finally, the coordination plans use the communication system that was presented in

Section 6.2.5 to support the input/output of the coordination process. This section first

presents the state transitions involved in the coordination process and then, it shows

how the coordination system synchronizes the plans associated with these transitions.

For a better understanding of the tasks of the coordination system, you may refer

to the protocol diagram that was presented earlier in Figure 6.5. In this figure, the

Chapter 6. Driving Agents Engineering 139

transitions (horizontal lines) represent the inter-agent messages sent and received as

part of the coordination process, while the life lines (vertical rectangles) represent the

coordination plans. As another similarity with Figure 6.5’s diagram, the coordination

system assigns a role to agents, according to the task they executed in the coordination

protocol. This role is then placed in different states (in progress, success, reneged, cancel,

reject) to ensure the coordination between an agent’s own intentions. The AUML level

3 diagrams presented in Section 6.1.3 describe those states in more details for the merge

manoeuvre. For each agent, reneged, reject and cancel states refer the failure of the

manoeuvre for this role. Furthermore, the “Merged” state represents the success state

of the role and all the other states following “null” represent in progress states. Note

that the transition between an agents’ roles is considered as setting the previous role

to the success state and the new role to in progress.

By presenting the transitions between an agent’s role states, Figure 6.5 outlines the

fact that an agent can only execute one task at a time. Our agents’ coordination system

is therefore responsible for synchronizing an agent’s roles execution in accordance with

the transitions of Figure 6.5, as well as the state transitions of Figures 6.6, 6.7, and

6.8. Our agents’ possible roles include: Split, Merge, Follow, Lead, Free, SplitForMerge,

SplitForSplit, SafetyObserver, VirtualVehicle, GapCreator. These roles are separated in

categories and the roles considered as “task roles” are synchronized by the coordination

system which allows the agent to fill only one on these roles at a time. The “task roles”

include: Split, Merge, SplitForMerge, SplitForSplit, GapCreator. To support this role

restriction, the JackAuto21Agent agent class informs our coordination plans about the

“task roles” they have the right to execute, by referring to a priority list of categories

of “task roles”. Basically, JackAuto21Agent gives permissions for certain “task roles”

and informs a coordination plan if its role can no longer be executed, as shown below.

When a task-oriented coordination plan is initialized, it first verifies if it has the

permission to fill its task role, by calling the JackAuto21Agent class, before executing

any communicative action. If the permission is given, the plans monitor the validity of

this role throughout the protocol’s execution, in order to stop the coordination if the role

becomes invalid (canceled, reneged or reject). For example, when a coordination plan

relating to the Split role begins its execution, it first raises a “@maintain(role state, role

type)” logical statement (refer to Section 6.2.4). If the condition on the role’s “state”

is not maintained, the plan fails and the role is cancelled. Other failures may come

from plan execution problems, but they have the same result, where the role is placed

in a cancel state to inform other agents of this failure. Once a role has been cancelled,

the agent immediately switches from the task role to its “default role”, which in most

cases is a Follow role (when the vehicle is in a platoon) or a Free role. Therefore, our

coordination system based on plans’ synchronization ensures a certain degree of safety

Chapter 6. Driving Agents Engineering 140

when executing our agents’ tasks and it guarantees that the agent always executes its

default role if a failure occurs.

6.2.7 Auto21 Agents’ Driving System

The Auto21 agent-oriented driving system represents our architecture’s Planning sub-

layer (refer to Figure 4.2) and the driving manoeuvres (and actions) it can execute.

The driving actions presented by the driving system are described in the AUML agent

diagram of Figure 6.2, which shows, in the middle of the agent box, a list of some of those

actions. The main tasks of the driving system are to synchronize the different driving

manoeuvres that the agent may want to execute at the same time and to synchronize

the agent’s access to the guidance functions presented in Section 4.3.3.

To resolve the manoeuvres synchronization problem, we defined a set of driving

modes that the driving system could be in, to provide a solution similar to the task

synchronization resolved by the previous agent coordination system. This way, a driving

plan initiating a specific manoeuvre (higher-level driving plan) has to set and maintain

a specific driving mode in the JackAuto21Agent agent class, as it is shown in this section.

In a different way, plans that act directly on the guidance functions from Section 4.3.3,

which we call lower-level driving plans, are synchronized using a plan locking system.

Thus, when a lower-level driving plan is initialized, it is locked and is the only one that

can act on the guidance functions, as shown below.

Higher-Level Driving Plans Synchronization

A representation of the higher-level driving plan synchronization system, based on driv-

ing mode, is given by the state diagram of Figure 6.14. This diagram shows that the

driving system can be in four possible modes: Emergency, Automated, In Platoon,

Manual, which have predefined transitions between each others. To support these tran-

sitions, we associate a specific driving mode which each higher-level driving plan to

dictate which driving mode must be initialized before executing such plan.

For instance, if the agent is executing the Human Behaviors plan in the Manual

Driving mode (refer to Figure 6.14) and it suddenly wants to execute the Cruise Con-

trol plan from the Automated Driving mode, the agent must switch to the Automated

Driving mode. In this case, the Manual Driving mode is cancelled and the Human Be-

haviors plan no longer has the authorization to run, thus enabling the Cruise Control

Chapter 6. Driving Agents Engineering 141

In platoon Driving

ACC/CACC Plans

Emergency Driving

Emergency Plans

Safe Driving Plans

Manual Driving

Human Behaviors

Automated Driving

Cruise Control Plans

Virtual Vehicle Plans

Change Lane Plans

system failure/move to safe position

safe state regained[in platoon]/follow vehicle

Maintained unsafe platoon state/safe platoon exit

human query/human control

start merge protocol/coordinate entry point

merge protocol ended/follow vehicle

system failure/move to safe position
script event/script action

start split protocol/follow virtual vehicle

split protocol ended/human control

Figure 6.14: Statechart diagram for the agents’ possible driving modes.

plan to be executed. To support the synchronization on driving modes, the plans are

only authorized to execute their driving tasks while the driving mode is maintained, by

using the “@maintain(driving mode)” logical statement. This solution is similar to the

solution presented for the coordination system (Section 6.2.6) and it enables the agent

driving system to respect the states transitions of Figure 6.14.

Lower-Level Driving Plans Synchronization

Once the driving system has acquired a driving mode, the different plans relating to this

mode can execute lower-level driving plans that act directly on the guidance functions.

For a better understanding, the relation between the lower-level driving plans and the

guidance functions is also represented in our architecture, in Figure 4.2, where the

“Desired state” arrow going from the Planning sub-layer to the Vehicle Control sub-

layer refers to this relation.

In order to coordinate the different lower-level driving plans that can be executed at

the same time, each plan has been assigned a level of priority and a plan locking system

has been developed. Hence, a lower-level driving plan that uses a guidance function has

to be in a “locked” status to run. If the plan fails to be locked because another plan

is already locked or a higher priority plan unlocks it, the rest of the JACK procedure

that called it also fails.

For example, if the driver is in the follow role, a plan from the coordination system

Chapter 6. Driving Agents Engineering 142

calls an Adaptive Cruise Control (ACC) driving plan, thus initializing the In Platoon

Driving mode and locking the ACC plan. While acquiring the right inter-vehicle dis-

tance, if the sensors fail and a higher priority driving plan is launched to resolve the

situation, the ACC plan fails. This situation is represented by the “system failure”

transition going from the In Platoon Driving mode to the Emergency Driving mode, in

Figure 6.14. In this example, the failure to keep the driving plan locked results in a chain

of events, detailed below, that makes the In Platoon Driving mode fails and finally, the

follow role fails. Therefore, the plan locking system resolves conflicts among lower-level

driving plans and supports the coordination of driving actions through JACK’s plans

execution framework.

To provide a better understanding of the way the driving system handles emergen-

cies, Figure 6.15 represents a UML activity diagram that depicts the classes and actions

involved in an emergency event. The emergency event is first launched using a Cursor

on emergency states and it is handled by PreEmergencyPlan, which makes sure this is

a confirmed emergency situation before setting the driving mode to Emergency and

cancelling other driving plans. This leads to the possible execution of EmergencyPlan,

since the diamond boxes represent a decision activity. Subsequently, the SafeDriving-

Plan will be locked and a chain of possible alternative activities will ultimately set the

driving mode to “idle” and meet the ending condition of this activity. Of course, in a

brighter set of events, it is possible to reach the In Platoon Driving mode and cancel the

emergency plans after the emergency event was raised, but this diagram only depicts

the activities related to the complete execution of the emergency scheme.

Virtual Vehicle Driving

When our driving agents enter or leave a platoon, they must go through the Automated

Driving mode, which includes the change lane driving actions occurring in “semi-blind”

situations. This situation is caused by the incapacity of our vehicles’ front laser to

receive a good perception of the front vehicles that are not in the same lane. To resolve

this perception problem, we developed a virtual vehicle driving system, which is detailed

below. First, the perception problem is described by referring to Figure 6.16, which

shows that a merging vehicle L2 must go from state S2 to S3 and keep a specific

distance with vehicle F1 that is not always in its sensor range (red cone). In the case

of a split, vehicle F2 has the same problem when going from state S1 to S2, so it must

rely on another source of perception than its sensors.

The virtual vehicle driving model that we developed to resolve the previous per-

ception problem modifies the information provided by our sensors (when they cannot

Chapter 6. Driving Agents Engineering 143

E
vE

m
e

rg
e

n
cy

A
u

to
m

a
ti

c
E

m
e

rg
e

n
cy

 E
ve

n
t

P
re

E
m

e
rg

e
n

cy
P

la
n

V
e

ri
fy

 E
m

e
rg

e
n

cy
 S

ta
te

E
m

e
rg

e
n

cy
P

la
n

C
o

o
rd

in
a

ti
o

n
 E

m
e

rg
e

n
cy

 A
ct

io
n

s

P
la

n
Lo

ck
e

r

Lo
ck

 S
a

fe
 P

la
n

U
n

lo
ck

 C
u

rr
e

n
t

P
la

n

S
a

fe
D

ri
vi

n
g

P
la

n

S
a

fe
ly

 L
e

a
ve

 P
la

to
o

n

S
a

fe
ly

 S
to

p
 V

e
h

ic
le

D
ri

vi
n

g
M

o
d

e

S
e

t
Id

le
 M

o
d

e

S
e

t
E

m
e

rg
e

n
cy

 M
o

d
e

[p
la

n
 l

o
ck

e
d

]

[n
o

 l
o

ck
e

d
 p

la
n

]

[i
n

 p
la

to
o

n
]

[n
o

 e
m

e
rg

e
n

cy
]

[e
m

e
rg

e
n

cy
]

C
o

m
m

u
n

ci
a

te
 E

m
e

rg
e

n
cy

 S
ta

te

[a
lo

n
e

]

F
ig

u
re

6.
15

:
A

ct
iv

it
y

d
ia

gr
am

re
p
re

se
n
ti

n
g

th
e

tr
an

si
ti

on
o
cc

u
rr

in
g

d
u
ri

n
g

an
em

er
ge

n
cy

ev
en

t.

Chapter 6. Driving Agents Engineering 144

 S3

 S2

 S1

L1 F1 F2 F3

L2

L1 F1 F2 F3

L2

L1 F1 F2 F3L2

 S1

 S2

 S3

L1 F1 F3 F4

F2

L1 F1 F3 F4

F2

L1 F1 F3 F4F2F2

Vehicle Entrance Vehicle Exit

TRAFFIC FLOW

TRAFFIC FLOW

TRAFFIC FLOW TRAFFIC FLOW

TRAFFIC FLOW

TRAFFIC FLOW

Figure 6.16: The three steps of the removal (split) and insertion (merge) of a vehicle in

the platoon.

sense the preceding vehicle) and gives this new information to our guidance functions.

With this model, the guidance functions, like the ACC functions we used to drive in

the platoon, can be reused during the lane change. This smoothes the control effort

changes caused by the modification of the state in front, without any necessary changes

to the Guidance layer. Thus, we simply modify the information inside the Knowledge

Base (KB) of the guidance functions to give these functions a virtual belief of the vehicle

to follow.

Figure 6.17 shows the FrontVehFilter class, used by higher-level driving plans to filter

the guidance KB’s knowledge. Other classes involved in the virtual vehicles creation

are shown in this diagram along with a brief summary of their activities inside their

box. The two main virtual vehicle creation plans are PlCreateVirtualVehicle and PlCre-

ateVirtualCommVehicle. The PlCreateVirtualVehicle plan is used by vehicle F2 in the

merge example of Figure 6.16 and vehicle F3 in the split example. This plan allows

them to modify the FrontVehFilter when they sense that a vehicle has entered or left the

platoon, in order to keep their distance until the manoeuvre is completed. On the other

hand, the PlCreateVirtualCommVehicle plan is only used in the teamwork coordination

model (refer to Section 5.2.3) by the merging or splitting vehicle to create a virtual

vehicle from communicated information. This plan uses a Java class called VirtualCom-

mVehicleMaker, which directly acts on the FrontVehFilter by considering its own vehicle

dynamic percepts and the dynamic state that F1 communicated about its vehicle.

Chapter 6. Driving Agents Engineering 145

PlCreateVirtualVehicle PlCreateVirtualCommVehicle

AbstractKnowledgeBase

Vehicle Guidance

FrontVehFilter

AbstractVirtualVehicleMaker

VirtualCommVehicleMaker
VirtualLaserVehicleMaker

BasicFrontVehPercept

BasicVehDynPercept

Intelligent Sensing

maintain virtual belief
 - filter front KB
 - set following controller

maintain virtual belief
 - intialize, start communicative
 virtual vehicle
 - set following controller

On new vehicle percept
 - modify virtual vehicle info
 - call update function

update virtual vehicle
 - compute new position from
 vehicle dynamic state
 - modify front filter

modify front time
 - use constant value
 - use gap value
modify front distance
 - use constant value
 - use gap value

filter data on new percepts

call guidance updates

Figure 6.17: Classes and tasks involved in the creation of virtual vehicles.

6.2.8 Discussion

JACK’s agent-oriented programming environment proved itself very useful in support-

ing coordination and driving issues in our real-time environment. The additions we

have made to the plans execution framework allowed the Auto21 agents to synchronize

their tasks at different levels of hierarchy including the coordinated manoeuvres and the

different possible driving plans. The overall agent infrastructure is both reliable and

robust, which allows us to safely perform the tasks required to drive inside a platoon.

Even though agent-oriented softwares development usually represents a more fastidious

task than object oriented development, the generic plans execution framework that was

extended along with JACK’s capability structures makes further agents’ improvement

tasks easier to perform.

6.3 Teamwork Oriented Modeling

Section 6.2 already presented many aspects of the agent-oriented architecture that are

being used by agents in each of the intra-platoon coordination models that were de-

scribed in Section 5.2. To complete the description of the agent-oriented infrastructure

Chapter 6. Driving Agents Engineering 146

that we developed for the Auto21 project, we now focus on agent engineering aspects

that are specific to the teamwork model. Our team oriented infrastructure has been

developed over the agent infrastructure presented in Section 6.2 and includes the pre-

vious agents’ coordination system, as well as the agents’ driving systems. For a better

understanding of the teamwork architecture we developed, as well as the teams in-

volved in this intra-platoon coordination model, refer to Section 5.2.3, which gives an

introduction necessary to the understanding of the teamwork software models presented

below.

The team-oriented infrastructure presented in this section uses and extends Java and

JACK components in order to relate to the STEAM [Tambe and Zhang, 2000] team-

work architecture and our specific needs. At the moment, JACK is also developing an

extension to support Team Oriented Programming (TOP), called JACK TeamsTMthat

supports the vision of shared plans and beliefs, and team formation using roles. Al-

though this extension to JACK looks promising, it is not complete at the moment and

lacks a lot in documentation to realize dynamic task-team formation or to be used

with our custom simulated communication devices. Therefore, we have developed our

own TOP extension to JACK, being inspired by JACK TeamsTM, although it will be

possible in a near future to merge to AOS’ new extension.

Figure 6.18 gives an overview of the different components that have been added to

the Auto21 agent-oriented model (presented in Section 6.2) to provide a TOP infras-

tructure. JACK’s components are presented in boxes with shadows, while Java classes

are presented in normal boxes. The agents that evolve in our team formations are Tea-

mAgent agents and they all have the teamwork capability named CapTeamwork, which

includes all the necessary data structures and generic plans based on STEAM, allowing

a basic support for the agent’s roles management. The other capability presented in

this figure is CapRoleX, which is an example of capability relating to any specific role X

(X = Split, Merge, Virtual Vehicle, etc.). CapRoleX allows the agent to perform the role

X’s actions by using all the necessary plans to support this role’s coordination protocols

and manoeuvres. Therefore, an agent can have as many CapRoleX capabilities as it

can perform roles. As a final note, Java Knowledge Base (KB) structures and JACK

beliefsets have been added to the KBs that were presented in Section 6.2.4 to provide

a set of local and team beliefs observing each others’ changes, as explained below.

6.3.1 Teams Shared Beliefs

In order to support the teamwork coordination model, we developed additional Knowl-

edge Base (KB) for different purposes and one of these KBs is a team beliefset that

Chapter 6. Driving Agents Engineering 147

RoleDefinition

CapRoleX

TeamAgent

CapTeamwork TeamFormationKB

PlatoonMembersKB BelPlatoon BelTeams

JackBeliefSetObserver

Observer

Observer

+ Precondition: bool
+ Postcondition: bool

InitRoleX Plan
RoleX Plan1
RoleX Plan2
 ...

setRoleState

Pre/Postcondition

use

refers

observe

observe

observeobserve

+ setRole
+ setRoleState

PlatoonMemberBelief
Vehicle ID
Platoon Position
Neighbor Position
... observe

+ addMember
+ removeMember
+ getMember
...

+ STEAM-SC
+ possibleRoles: Vector

STEAM-MR Plan
STEAM-CP Plan
RoleQuery Plans
TeamFormation Plan

TeamType ID
Roles Requirement
 # role ID
 # cardinality
 # priority
#LogicalRelations
Costs: Cc, Cn, Cmt
...

Team ID
Type
Size
State
Members

Vehicle ID
Position
Role
State
DynamicVehicleBeliefDynamicVehicleBelief

Velo
Distance
...

use
use

use

use plans

use/modify use

use
use

use

use

has

FrontDynamicKB VehicleDynamicKB

Figure 6.18: Model of the main classes involved in the team-oriented infrastructure.

Chapter 6. Driving Agents Engineering 148

stores the team’s shared beliefs. This beliefset, called BelPlatoon (refer to Figure 6.18),

represents the shared KB of the team formation and it is linked with the agent’s local

KB, called PlatoonMembersKB, that was presented in Section 6.2.4. Therefore BelPla-

toon includes the beliefs about each members dynamic states (velocity, position at a

specific time, role, acceleration, etc.) and other useful information like their platoon ID,

their position in this platoon and their position according to the local agent’s surround-

ings (front, rear, left, right). PlatoonMembersKB and BelPlatoon take in consideration

each others’ changes, so whenever a new belief is communicated by a team member,

the update on BelPlatoon triggers a similar update on the agent’s local KB: PlatoonKB.

In the same way, the addition of a new knowledge in PlatoonKB may trigger a similar

addition in BelPlatoon. This happens if the agent presumes that this new knowledge is

already known by other team members, or if the agent decides to communicate (share)

this new knowledge using the Selective Communication (SC) operator. Only the latter

reason has been implemented in our application, as shown later in this section, since the

first reason brings a lot of uncertainty. In summary, the relation between the agent’s

two main KBs is BelP latoon ⊆ PlatoonMembersKB.

Apart from the team’s shared beliefset, the teamwork capability CapTeamwork also

uses a BelTeams beliefset that represents all the team formations currently known by

this agent, as shown in Figure 6.18. In addition to this beliefset, the different possible

types of teams are defined inside a static KB called TeamFormationKB. This KB is used

by CapTeamwork since it contains all the information required to form and use a team,

as well as the teams’ logical roles relations.

6.3.2 Team Operators

To create the Team Oriented Programming (TOP) infrastructure required to implement

the teamwork intra-platoon coordination model, all of the STEAM related operators

and beliefs have been developed inside the CapTeamwork capability. This capability

includes all the STEAM operators that were described in Section 2.2.4: (i) Monitor and

Repair (MR); (ii) Coherence Preserving (CP); and (iii) Selective Communication (SC).

To support MR operators, “MR plans” have been developed to communicate MR

oriented messages whenever a conflicting role state arises. For example, the plans

presented inside the CapRoleX capability, in Figure 6.18, relate to a role X and they

will ultimately set this role to an ending state, like success or failed, by calling the

setRoleState method from TeamAgent. This method verifies if the role’s post-condition

has really been met, in the case the state was set to success. By calling the Postcondition

method defined in the RoleDefinition interface, the role capability (CapRoleX) returns

Chapter 6. Driving Agents Engineering 149

a boolean expression relating to whether or not the role has realized its goal. In the

latter case, a “MR plans” is raised from CapTeamwork.

CP operators have not been developed in the current TOP infrastructure, but they

should be implemented inside the CapTeamwork capability to react to the same type of

event as the previous MR actions. This task should be realized by using the logical role

relations defined for each team formation, inside the TeamFormationKB.

Finally STEAM’s SC operators are available in CapTeamwork and they are used to

determine if a new local knowledge should be communicated to other team members.

Figure 6.19 presents an example of the use of SC operators by depicting all the classes

involved in the execution of such an operator. The flow of events is described by each

rounded box representing activities and by arrows that represent information exchanged

in the form of events and method calls. Figure 6.19 first shows that a new DynamicVe-

hicleBelief (new distance) can represent a modification to the PlatoonMembersKB that

is important enough to notify its observers. CapTeamwork being one of those observers,

the SC operator is triggered to verify if this new belief should be communicated to the

team. By verifying the status of its agent’s beliefs, the SC operator may communicate

the new belief (new distance) and update its team belief, considering the value returned

by the SC function presented in Section 5.2.3.

6.3.3 Formation of Dynamic Teams

When an agent is part of a platoon formation where it only follows the preceding

vehicle, it is considered as having the follower role in the “platoon formation” team,

presented in Section 5.2.3. This team is considered as a static (persistent) team, which

is the default team the agent is in when it leaves a task team. Therefore, an agent

can leave its static team, only to form a task team and it automatically retrieves its

status in the static team (if it has not left the platoon) when the task team is over,

without necessitating any communications. The task teams include the “merge task”

team and the “split task” team, which are the most complex teams because they are

formed dynamically using the framework presented below.

The formation of dynamics teams (task teams) is supported by CapTeamwork, which

includes two categories of team formation plans: (1) plans that initialize and form a

team; and (2) plans that answer to other agents’ queries to fill a role in their team. The

first category of plan is triggered by the plan described as InitRoleX inside CapRoleX,

in Figure 6.18. This plan launches the TeamFormation plan inside CapTeamwork, which

represents a generic method to form any team. The TeamFormation plan uses TeamFor-

Chapter 6. Driving Agents Engineering 150

C
ap

Te
am

w
or

k
Pl

at
oo

nM
em

be
rs

K
B

B
el

Pl
at

oo
n

Pl
at

oo
nM

em
be

rB
el

ie
f

D
yn

am
ic

Ve
hi

cl
eB

el
ie

f

fro
nt

 d
is

ta
nc

e
 =

 0
.2

D
is

ta
nc

e
ch

an
ge

/
in

fo
rm

 o
bs

er
ve

rs
st

at
us

 c
ha

ng
e

cr
iti

ca
l/

in
fo

rm
 o

bs
er

ve
rs

P
la

to
on

 k
no

w
le

dg
e

m
od

ifi
ca

tio
n

lo
ca

l p
la

to
on

 k
no

w
le

dg
e

ch
an

ge
 /

in
fo

rm
 o

bs
er

ve
rs

Se
le

ct
iv

e
C

om
m

un
ic

at
io

n:

- i
f(f

ro
nt

 v
eh

ic
le

 in
 te

am
)

 rh

o
=

 h
ig

h
va

lu
e

X

 d
iff

(n
ew

 d
is

ta
nc

e,

 o

ld
 d

is
ta

nc
e)

- s
ig

m
a

=
 d

is
ta

nc
eS

ta
te

(

 n
ew

 d
is

ta
nc

e)

/re
tu

rn
 k

no
w

le
dg

e
G

et
 lo

ca
l f

ro
nt

ve

hi
cl

e
di

st
an

ce

M
od

ifi
y

m
em

be
r s

ta
tu

s

G
et

 te
am

 fr
on

t
ve

hi
cl

e
di

st
an

ce
/re

tu
rn

kn

ow
le

dg
e

- i
f(r

ho
 X

 s
ig

m
a

X
 C

m
t >

 C

c
+

(1
-r

ho
) X

 C
n)

Te
am

Fo
rm

at
io

nK
B

/re
tu

rn

kn
ow

le
dg

e

Te
am

-c
om

m
un

ic
at

e(

 n

ew
 d

is
ta

nc
e)

te
am

 b
el

ie
f

ch
an

ge
Te

am
 b

el
ie

f (
lo

ca
l)

m
od

ifi
ca

tio
n

G
et

 C
c,

 C
n,

 C
m

t

F
ig

u
re

6.
19

:
D

ia
gr

am
d
es

cr
ib

in
g

ac
ti

v
it

ie
s

re
la

ti
n
g

to
ea

ch
b
el

ie
f
st

ru
ct

u
re

cl
as

s
in

th
e

sc
en

ar
io

of
sh

ar
ed

b
el

ie
f
st

at
es

.

Chapter 6. Driving Agents Engineering 151

mationKB to get the team definition and send a team formation query to every possible

team members.

On the other hand, the second category of plan is triggered by the arrival of a mes-

sage sent by another agent that wants to form a team. To answer this team formation

query, the RoleQuery plan from CapTeamwork uses its possibleRoles method to return

a set of possible roles that the agent can fill in the team. For instance, an agent in a

position preceding the entrance gap of a merging vehicle has the Virtual Vehicle role at

the highest priority in the set of roles returned by possibleRoles. At last, the RoleQuery

plan replies to the initial team formation query by specifying the role it wants to fill in

that team, which is the one having the highest priority.

6.3.4 Discussion

Even though not all the TOP components have been implemented in our application, ev-

erything was initially defined to support them. Further possible additions may include

the use of “unachievable conditions” inside the roles’ definitions of the TeamForma-

tionKB. These conditions could be implemented inside automatic events (supported by

JACK), which would trigger “MR plans” at any moment, in the event a role would be-

come unachievable. Furthermore, as it was mentioned before, logical relations between

roles operators could be added in the definition of team structures in TeamFormationKB.

CP operators could then be implemented as plans inside CapTeamwork and they would

be triggered by observers monitoring team members’ logical role relations inside BelPla-

toon.

6.4 Driving Agent Coordination Experiments

The intra-platoon coordination models presented in Chapter 5 have been implemented

using the models presented in this chapter and finally tested using the simulator pre-

sented in Chapter 3. The test that we ran in our simulator allowed us to get a first

glance at the behaviors of our CDS and compare different intra-platoon coordination

approaches. First, the centralized coordination model from Section 5.2.1, developed in

accordance with the agent model of Section 6.2, was tested with platoon merge and split

scenarios inside the simulator. Then, the same scenarios were used to test the teamwork

coordination model from Section 5.2.3, developed in accordance with the agent model

of Section 6.2 and 6.3. Finally, the decentralized model presented in Section 5.2.2 was

Chapter 6. Driving Agents Engineering 152

partly implemented and therefore only preliminary results referring to this model are

presented here.

Before presenting the results based on software simulation scenarios, the limitations

of our three coordination models are presented in Section 6.4.1. Afterwards, Section

6.4.2 describes the evaluation model we used for our preliminary test scenarios. Section

6.4.3 then presents the simulation results, followed by the analysis of each coordination

model in Section 6.4.4. To conclude, Section 6.4.5 discusses the results and analysis of

our intra-platoon coordination models.

6.4.1 Coordination Models Limitations

A Collaborative Driving System being a very complex system, many issues have been

left aside within the first phase of development, related in this thesis. In order to focus

on coordination aspects, control and realistic sensing issues have not been excessively

detailed, since they were not considered as a priority. Therefore, the impact of a better

control and sensing system should be considered during the analysis of our results on

platoon coordination.

For instance, the simulated vehicle model presented in Section 3.3 can bias the

longitudinal acceleration value when a high gas or brake throttle is applied. Likewise,

when a vehicle is changing lane during a split or merge manoeuvre, the lateral and

angular accelerations may also differ from a real driving environment. The lower-level

controller presented in Section 4.4.2, which applies the right throttle or brake values

considering an order on acceleration, is also a factor influencing our results. Since

lower-level control issues were not mandated in our sub-project, the lower-level control

was only developed to provide the basic functions required to support the coordinated

driving tasks. Therefore, the improvement of this controller could also improve the

results we present later in this section.

The sensing issues should also be considered as an important factor, influencing our

results. First, the simulation model of our vehicles’ sensors, presented in Section 3.4,

provides in most cases a perfect information on the environment. Thus, our sensors

do not modify the sensed data, in order to simulate the right error factor of the sensor

units. Second, the current implementation of the Intelligent Sensing sub-layer of our

architecture, presented in Section 4.4.1, does not filter the sensors’ data to improve the

values and give a better representation of the environment. Consequently, the sensed

data provided by our CDS are not perfectly simulated and the two previous issues

should be considered when analyzing our results.

Chapter 6. Driving Agents Engineering 153

6.4.2 Evaluation Model

The evaluation model used to analyze the results of the teamwork and centralized co-

ordination models are based on platoon splitting and merging scenarios. Each scenario

is simulated in the software environment presented in Chapter 3, on a straight road,

with the same dynamics, sensing and communication models. Scenarios as the platoon

split and merge are executed at a velocity of 20m/s, when the platoon is stable (each

member can maintain the right inter-vehicle distance and their velocity is stable) and

they end when the platoon becomes stable again (the platoon is formed plus or minus

one vehicle in the case of a merge or split). The inter-vehicle distance maintained by

the vehicles, when they follow each others inside a platoon is a gap of 0.2 sec., while

the gap created to allow lane changes (in front and behind the lane changing vehicle) is

0.5 sec. For each scenario, the Guidance layer presented in Section 4.2.1 is used by our

driving agent and the control algorithm 2 is used to maintain inter-vehicle distances.

Thus, only the way our agents communicate changes inside the results presented in

Section 6.4.3. This section uses graphics on the vehicles’ dynamic values, which high-

light the differences between our coordination models. These results and additional

information are then analyzed in Section 6.4.4, which points out the key differences and

advantages/disadvantage of each coordination model.

The metrics used to analyze the teamwork and centralized models include:

1. the platoon members’ acceleration.

2. the platoon members’ velocity.

3. the followers’ inter-vehicle distances.

4. the difference between each follower’s inter-vehicle distance and the safe inter-

vehicle distance.

These metrics are first presented inside a specific scenario: a noisy platoon merge

scenario. The states or steps the platoon goes through when executing such a scenario

are illustrated in Figure 6.20. The scenario starts with state S1, when vehicle 3 requests

to merge the platoon lead by vehicle 1. Following this request, at state S2, a gap is

created between vehicle 2 and 4, while vehicle 3 waits for stability before changing lane.

From state S2 and until state S3, vehicle 1 decelerates of -0.5m/s2 to reach a velocity

of about 17m/s. This deceleration results in the deceleration of vehicle 2 (following

vehicle 1) in state S3. At state S3, vehicle 1 stops decelerating to accelerate of 0.5m/s2

to reach back a velocity of 20m/s in state S5. At state S4, vehicle 3 starts changing

lane, while vehicle 1 and 2 accelerate to reach back the velocity of 20m/s. During state

S4, the noise created by the previous deceleration of vehicle 1 and 2 makes the merge

Chapter 6. Driving Agents Engineering 154

manoeuvre more complicated, as vehicle 3 must respect a safe distance (in time) of 0.5s

with vehicle 2 when it enters the platoon. At state S5, vehicle 3 has merged the platoon

and vehicle 2 is still accelerating to reach the right distance with vehicle 1 (0.2s). The

distance between vehicle 2 and 3, in state S5 depends on the coordination model and

differs from one model to another, as shown in the graphics below. Finally, at state S6,

the platoon is completely stable and all vehicles in the platoon have a distance of 0.2s

between each others.

 S2

 S1

1 2 4

1 2 4

TRAFFIC FLOW

vL1 20 m/s

aL1 0 m/s2

3
3

TRAFFIC FLOW

 S6

1 2 43

TRAFFIC FLOW

 S3

1 2 4

3

TRAFFIC FLOW

 S4

1 2 4

3

TRAFFIC FLOW

a

a

a

a

a

aaa
vL2 20 m/s

aL2 0 m/s2

vL1 20 m/s

aL1 -0.5 m/s2

vL2 20 m/s

aL2 0 m/s2

vL1 17 m/s

aL1 0.5 m/s2

vL2 20 m/s

aL2 -0.8 m/s2

vL1 19 m/s

aL1 0.2 m/s2

vL2 16 m/s

aL2 0.8 m/s2

vL1 20 m/s
aL1 0 m/s2

vL2 20 m/s
aL2 0 m/s2a a

 S5

1 43

TRAFFIC FLOW
a a

vL1 20 m/s
aL1 0 m/s2

vL2 18 m/s
aL2 0.4 m/s2

2

Figure 6.20: Noisy merge test scenario through the six main platoon states.

Following the presentation of results based on the previous four metrics with the

noisy merge scenario, metric number 4 is used to analyze two possible instances of the

noisy merge scenario for each coordination model (centralized and teamwork). The same

metric is finally used to analyze results on the splitting scenario, when this scenario is

executed without any noise (instability), using the centralized model with noise, and

using the teamwork model with noise. Note that the noise in the split scenario is

added in the exact same way as the merge scenario in Figure 6.20, where the leader

decelerates about 2 seconds before the splitter changes lane. Finally, the last evaluation

model, detailed in Section 6.4.4, analyzes the average amount of exchanged messages

and the agent framework of each coordination model: centralized, hard-centralized,

decentralized, teamwork.

As mentioned in Section 6.4.1, our control and sensing models are limited consider-

ing their realism, and therefore our evaluation does not use metrics as the gas and brake

throttle values. Moreover, information relating to detailed analysis of the platoon stabil-

ity, as the oscillation between vehicles, is not used to analyze our coordination models,

since our lower-level controller may represent itself a source of instability. Results based

on “crash” scenarios have also been omitted in our comparison of coordination models,

since they only diverged on the communication protocol basis and not on the vehicles’

Chapter 6. Driving Agents Engineering 155

behaviors.

Finally, further test scenarios should include a variety of uncertain events as compo-

nents failures (sensors, communication system, vehicle’s components, etc.) or different

driving conditions (traffic, weather, road, etc.) that could be arranged in different ways

in order to generate multiple test scenarios. This would allow us to compare the ability

of each coordination model to respond to uncertainty, which is a very important aspect

that will nevertheless be mentioned in Section 6.4.4.

6.4.3 Simulation Results

As it was previously mentioned, preliminary simulation results have been collected

according to four metrics, through different test scenarios. These initial test scenarios

only evaluate the teamwork and centralized coordination model, while the other two

coordination models presented in Section 5.2 (hard-centralized and decentralized) are

only analyzed in Section 6.4.4. The hard-centralized model presents the same results as

the centralized model in the case of a split manoeuvre, while in the case of the merge

manoeuvre, it only differs in the time it takes to place the merging vehicle at the end

of the platoon. Therefore, this difference is only suitable to compare the impact of

the hard-centralized model on the global traffic, but not to compare the impact on the

platoon members according to our metrics. On the other hand, the decentralized model

cannot be compared using the same simulation results, since at the moment, it does

not fully supports the simulation scenarios presented in this section.

To begin with, the simulation results of a noisy (unstable) merge scenario are pre-

sented using our previous four metrics. The same scenario was executed with both the

centralized and teamwork coordination models and the graphics presented below show

the behavior of each vehicle involved in this manoeuvre. This scenario is first described,

then follows an analysis of the results shown in each graphic.

The noisy merge scenario begins in state S1 of Figure 6.20, when vehicle 3 wants to

merge the platoon lead by vehicle 1 and formed by two followers: vehicle 2 and 4. At

that moment, all the vehicles try to maintain a velocity of 20m/s, as shown in Figures

6.21 and 6.22. At time 15s in the centralized model and 16.5s in the teamwork, the

merging vehicle starts decelerating to meet the entrance point of the platoon, as shown

in Figures 6.23 and 6.24 respectively. Around the same time, vehicle 4 also decelerates

to create the gap between this vehicle and vehicle 2 (gap of 0.5s). Following these events,

the merging vehicle (vehicle 3) manages to meet the platoon’s entry point around time

35.5s for the centralized model and 36.5s for the teamwork model (state S2 in Figure

Chapter 6. Driving Agents Engineering 156

6.20). At that time, vehicle 3 is ready to change lane and merge the platoon. However,

around the same time, the “noise” or instability is added to the merge scenario. This

noise comes from a sudden deceleration from the leader (vehicle 1) as shown in Figures

6.23 and 6.24. This deceleration is kept for 5 seconds and causes the platoon string to

become unstable, which makes the lane change of vehicle 3 more difficult. During this

moment of instability, vehicle 3 steers to change lane and enters between vehicle 4 and

2 (state S4 in Figure 6.20). When vehicle 4 senses vehicle 3 with its front laser sensor

and vehicle 3 senses vehicle 2, both vehicle have to adjust their velocity to maintain an

inter-vehicle distance of 0.5s This fact is shown in Figure 6.25 and 6.26, after time 35s,

when vehicle 3 finally senses a vehicle in front, and the distance sensed by vehicle 4

becomes much lower. Recall that the front distances are calculated in seconds and they

represent the inter-vehicle distance in meters divided by the vehicle’s velocity. Finally,

around time 44s vehicle 3 and 4, in both the centralized and teamwork models, have to

close the platoon by accelerating to maintain an inter-vehicle distance of 0.2s instead

of the previous 0.5s.

-4

-2

0

2

4

5 15 25 35 45

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

-0,5

-0,25

0

0,25

0,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4
Vehicle 3
Vehicle 2

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

16

18

20

22

5 15 25 35 45

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

Figure 6.21: Vehicles’ velocity in a noisy merge scenario using the centralized model.

The noisy merge scenario enables us to highlight the differences between the team-

work and centralized coordination models, when the platoon becomes unstable during

the merge of vehicle 3 (the lane change). By comparing the curves in Figures 6.21, 6.22,

6.23 and 6.24, the acceleration and velocity values of vehicle 1 and 2 are practically the

same since they are not affected by the merge occurring behind. However, vehicle 3 and

4 reach lower velocities (higher delta velocity) after time 35s (state S4 in Figure 6.20)

in the centralized model and their acceleration fluctuates more than the same vehicles

in the teamwork model. Moreover, the instability added to this scenario creates a major

problem for the centralized model to keep safe inter-vehicle distances between vehicle

4, 3 and 2, as shown in Figure 6.27 and 6.28. These figures show the difference between

the inter-vehicle distances kept in front of vehicles 2, 3 and 4, and the front distance

Chapter 6. Driving Agents Engineering 157

-4

-2

0

2

4

5 15 25 35 45

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

-0,5

-0,25

0

0,25

0,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

16

18

20

22

5 15 25 35 45

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

Figure 6.22: Vehicles’ velocity in a noisy merge scenario using the teamwork model.

-0,5

-0,25

0

0,25

0,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4
Vehicle 3
Vehicle 2

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

16

18

20

22

5 15 25 35 45

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

-4

-2

0

2

4

5 15 25 35 45

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

Figure 6.23: Vehicles’ acceleration in a noisy merge scenario using the centralized model.

Chapter 6. Driving Agents Engineering 158

-0,5

-0,25

0

0,25

0,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

-4

-2

0

2

4

5 15 25 35 45

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

Figure 6.24: Vehicles’ acceleration in a noisy merge scenario using the teamwork model.

-0,25

0

0,25

0,5

D
is

ta
nc

e
(s

)

Vehicle 4
Vehicle 3
Vehicle 2

-4

-2

0

2

4

5 15 25

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

18

20

22

Ve
lo

ci
ty

 (m
/s

)

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

Figure 6.25: Inter-vehicle time distances in a noisy merge scenario using the centralized

model.

Chapter 6. Driving Agents Engineering 159

-4

-2

0

2

4

5 15 25

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

Figure 6.26: Inter-vehicle time distances in a noisy merge scenario using the teamwork

model.

considered as “safe”. In other words, these graphics show the ability of each vehicle

to keep a safe distance with the preceding vehicle, which refers to the “error factor”

that should correspond to a value of zero. In these two graphics (Figure 6.27 and 6.28),

starting from time 16s, the front vehicle of vehicle 4 is considered as vehicle 3 and the

safe distance is 0.5s, which explains a peak in vehicle 4’s distance. The interesting

difference between Figure 6.27 and 6.28 occurs at time 35s, when vehicle 3 changes lane

to merge the platoon. In Figure 6.27, the vehicle 3 using the centralized coordination

has difficulties keeping the distance at zero and the “error factor” reaches -0.08s and

0.04s Apart from being unsafe, the interval of 1.2s between these two distances values

was created in only 4 seconds, which represents a great instability. On the other hand,

the vehicle 3 using the teamwork coordination model (Figure 6.28) receives information

on vehicle 2’s position and velocity through the communication dictated by the “virtual

vehicle” role, presented in Section 5.2.3. Vehicle 2 communicates this information in

response to its sudden deceleration, resulting from the deceleration of vehicle 1. This

allows vehicle 3 to have the knowledge of vehicle 2’s new state and adjust to its velocity

before or while changing lane. As a result, the “error factor” on vehicle 3’s inter-vehicle

distance only reaches -0.025s and 0.025s. Therefore, the teamwork model manages to

keep safer distances and minimize the instability, as shown by its lower accelerations

and changes in velocity.

In a different analysis, we decided to show two possible “turn of events” for the

centralized coordination model used in a noisy merge scenario. In the previous noisy

merge scenario, the centralized model managed to realize the merge manoeuvre in a

time comparable to the teamwork model, but the results were not as safe. In contrast,

if the noise appears a slight second before the merger changes lane, the leader senses the

Chapter 6. Driving Agents Engineering 160

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

16

18

20

22

5 15 25 35 45

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

-4

-2

0

2

4

5 15 25 35 45

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Vehicle 4
Vehicle 3
Vehicle 2
Vehicle 1

-0,5

-0,25

0

0,25

0,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4
Vehicle 3
Vehicle 2

Figure 6.27: Difference with the inter-vehicle time distances and the safe distance, in a

noisy merge scenario using the centralized model.

0

0,5

1

1,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

-4

-2

0

2

4

5 15 25

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

-0,5

-0,25

0

0,25

0,5

5 15 25 35 45

Time (s)

D
is

ta
nc

e
(s

)

Vehicle 4

Vehicle 3

Vehicle 2

Figure 6.28: Difference with the inter-vehicle time distances and the safe distance, in a

noisy merge scenario using the teamwork model.

Chapter 6. Driving Agents Engineering 161

noise in time and waits to gain stability before commanding the merger to change lane.

In this case, vehicle 3 changes lane later, but the inter-vehicle distances are kept to safer

values as shown in Figure 6.29. In this figure the “unsafe”, but faster merge ends at

time 43.5s (when the safe distance rises because of the new safe inter-vehicle distance

of 0.2s) for vehicle 3, while the slower but safer merge ends at 54.5s. In conclusion,

the results based on the centralized model can be as safe or safer than the results we

showed from the teamwork model, at the cost of a slower execution time.

-0,3

-0,1

0,1

0,3

17 27 37 47 57

Time (s)

D
is

ta
nc

e
(s

)

Centralized -
fast
Centralized -
slow

Figure 6.29: Difference with the inter-vehicle time distances and the safe distance of

the merging vehicle, in two merge scenarios using the centralized model.

The safest results in a noisy merge scenario can be achieved by using the teamwork

model with more communications from the “virtual vehicle”. This fact is shown in

Figure 6.30, which presents the different safe distances kept by vehicle 3 in the teamwork

model. This figure compares a scenario where the “virtual vehicle” communicates 3

messages about its position and velocity, with a “virtual vehicle” communicating only

1 message. By adjusting the variables of the SC team operator, presented in Section

5.2.3, we managed to lower or raise the interval of messages sent by the “virtual vehicle”.

This resulted in a safer and faster execution of the merge manoeuvre in the case of a

“virtual vehicle” sending more messages. Consequently, the teamwork model allows us

to adjust the SC operator in order to spare the communication bandwidth or use all

the bandwidth to enable a better and safer execution of the platoon manoeuvres.

By comparing the results of a normal merge scenario with noisy merge scenarios

based on both the centralized and teamwork models like we did in Figure 6.31, it is easier

to draw conclusions on our coordination models. This figure shows the three major

possible different results on the safe distance kept by vehicle 3 during its merge. During

a normal merge scenario, without any noise, the vehicle 3’s error on the front distance

Chapter 6. Driving Agents Engineering 162

-0,2

-0,1

0

0,1

0,2

0,3

17 27 37 47

Time (s)

D
is

ta
nc

e
(s

)

Teamwork -
Less Messages
Teamwork -
More Messages

Figure 6.30: Difference with the inter-vehicle time distances and the safe distance of

the merging vehicle, in two merge scenarios using the teamwork model.

only reaches -0.015s and 0.015s, which results in a merge manoeuvre being executed

in a very safe way. On the other hand, a noisy merge scenario coordinated with the

teamwork model makes it more difficult for vehicle 3 to keep a safe front distance during

the lane change occurring around time 37s. However, the “error factor” on the distance

kept using the teamwork model is less than half the error of the centralized model in the

same situation: -0.08s and 0.04s for the centralized model; -0.025s and 0.025s for the

teamwork model. Another interesting difference between these two coordination models

is the time they require to execute the noisy merge scenario. Indeed, the centralized

model manages to execute the lane change task faster than the teamwork model, since

the teamwork model required more time at the very beginning of the merge manoeuvre

to form the merge team. On the other hand, the teamwork model completes the merge

manoeuvre faster than the centralized model since it does not require as much time to

stabilize the platoon after the entrance of vehicle 3 in the platoon.

In the scenario of a vehicle splitting from a platoon, similar conclusions can be

drawn. In Figure 6.32, the results on the error of vehicle 3’s (the splitting vehicle) front

distance are compared when using a scenario without noise (normal), the teamwork

coordination model with noise and the centralized model with noise. In this example,

the execution of vehicle 3’s lane change happens at time 21.5s on the three curves

and the following results differ greatly. When the lane change is execute, it should

be recalled that the splitting vehicle must maintain a safe distance with its preceding

vehicle in the platoon it just left, until the splitting vehicle completely and safely reaches

the other lane. Therefore, even though the splitting vehicle does not sense its preceding

vehicle in the platoon, it must continue keeping a safe distance with it.

Chapter 6. Driving Agents Engineering 163

-0,2

-0,1

0

0,1

0,2

0,3

17 27 37 47

Time (s)

D
is

ta
nc

e
(s

)

Noisy Centralized

Noisy Teamwork

Normal

Figure 6.31: Difference with the inter-vehicle time distances and the safe distance of

the merging vehicle, in three merge scenarios using different coordination models.

In the case of the normal scenario shown in Figure 6.32, the safe distance is kept

quite easily. The teamwork has a little more difficulties to keep the safe distance since

its results are based on a noisy split scenario where the leader decelerates during the

lane change. But the information communicated by the “virtual vehicle” (vehicle 2)

around time 27s allows vehicle 3 to accelerate and keep a safe distance even though it

does not sense vehicle 2 on its sensor anymore. With the centralized model executed in

the same noisy split scenario, vehicle 3 has much more difficulties to keep a safe distance

with vehicle 2 after it has changed lane (time 21.5s). After the lane change and before

the split has been complete, the safe distance reaches a value of -0.7s because the leader

decelerated and vehicle 3 was not aware. This means that vehicle 3 is beside vehicle 2

around time 30s (when the split manoeuvre ends), which may causes both vehicles to

touch each others.

By summarizing the previous results, our test scenarios demonstrated that the team-

work coordination model was more appropriate when the platoon becomes unstable or

when uncertain events arise. However, the centralized model ensures a limited amount

of messages, as shown in the next section, even in unstable situations where the team-

work requires more messages to ensure safety. On the other hand, the execution time

in unstable situations with the centralized model can be a lot slower. Apart from being

safer than the centralized model, the teamwork model diminishes platoon instability,

which create waves inside the overall highway traffic. Indeed, the deceleration of ve-

hicle 1 and 2 in our noisy merge scenario creates a wave, which is stopped quickly

in the teamwork model. This fact can be illustrated by the variations in acceleration

we showed earlier, where the teamwork model resulted in smaller variations than the

centralized model, for the same scenario.

Chapter 6. Driving Agents Engineering 164

-0,7

-0,5

-0,3

-0,1

0,1

0,3

5 15 25

Time (s)

D
is

ta
nc

e
(s

)

Noisy Centralized

Noisy Teamwork

Normal

Figure 6.32: Difference with the inter-vehicle time distances and the safe distance of

the splitting vehicle, in three split scenarios using different coordination models.

6.4.4 Models Analysis

In the previous section, graphics on the dynamic states of the vehicles involved in

the split and merge manoeuvres using both a centralized and teamwork coordination

model were presented. Now, all four intra-platoon coordination models: centralized,

hard-centralized, decentralized, teamwork, presented in Section 5.2, are analyzed based

on different aspects, but mainly communication and flexibility issues.

To begin this analysis, the amount and size of broadcasted messages during the

split and merge manoeuvres in the average scenario, for each of the four coordination

models, are presented in Table 6.1. “Nb Messages” represents the number of messages,

of any size, that have been broadcasted to one or many vehicles during this manoeuvre.

“Messages Size” is the total amount of bits that have been transmitted through messages

during this manoeuvre. Table 6.1 also presents the amount of “JACK plans” required to

support each coordination model, showing the flexibility of their respective framework.

These JACK plans refer to the coordination plans presented in Section 6.2.6, making it

possible to support a specific manoeuvre, with a specific communication protocol. Note

that strategies on decentralized approaches are still under development, so the results

on the decentralized model presented in this table are only initial results that may vary

depending on the extension that should be added in the future.

By using the results presented in Table 6.1, along with the results presented in

Section 6.4.3, each coordination model were analyzed and their respective advantage

and disadvantage are summarized as follows:

Chapter 6. Driving Agents Engineering 165

Table 6.1: Total of messages and plans used by coordination model.
Nb Messages Messages Size JACK Plans

Coordination Merge Split Merge Split Merge Split

Centralized 9 6 506 112 18 14

Hard-Centralized 7 - 486 - 16 -

Decentralized 10 7 674 290 20 13

Teamwork 11.25 8.25 882 454 10 8

1. The hard-centralized model:

Advantage: It exchanges the lowest amount of messages for the merge manoeu-

vre since it forces the merging vehicle to insert itself at the end of the platoon

(refer to Table 6.1). This model sometimes has a faster execution time than

the centralized model, since it does not wait for the platoon to create a

merging gap before changing lane.

Disadvantage: Depending on its position and the current traffic on the highway,

this model may require more time for the merging vehicle to place itself at the

right position. To prove this fact, test scenarios in dense traffic situations will

have to be realized, so at the moment, this is only an hypothetical analysis.

Another disadvantage that should be proven through further test scenarios is

the traffic disturbance that a merge manoeuvre, coordinated with the hard-

centralized model, should create. As the merger must reach the platoon’s

tail by either accelerating or decelerating (considering its position), it creates

traffic waves, which diminish the highway’s capacity.

2. The centralized model:

Advantage: It requires a low amount of messages to coordinate the split and

merge tasks, as shown in Table 6.1. This can be explained by the fact

that the leader coordinates every aspect of the manoeuvres and following

agents do not have to request and confirm the role of each vehicle in the

manoeuvre, so the leader can only request tasks from other vehicles. In

addition, in other models like the decentralized and teamwork models, each

platoon leader must have a knowledge of their platoon formation to respond

to split and merge requests, while the centralized model only requires one

agent to have this knowledge: the leader. A final reason explaining this low

amount of messages compared with the teamwork model is the fact that the

centralized model does not send messages to update the state of the splitter

or merger’s front vehicle when this vehicle changes lane.

Chapter 6. Driving Agents Engineering 166

Disadvantage: The latter reason explaining the lower amount of messages sent

in a centralized model results in a disadvantage mentioned in Section 6.4.3.

During our “noisy” merge and split scenarios, the merging and splitting

vehicles had more problems keeping safe distances when they changed lane.

This resulted in dangerous situations or in a manoeuvre that required a lot

more time to be executed, as shown in Figure 6.29. Another disadvantage of

the centralized model is the fact that in average, more than three quarters of

the messages were sent or received by the leader, creating a bottleneck for this

vehicle. As for the previous model, the centralized coordination uses static

coordination protocols supported by the leader, which has the disadvantage

of not allowing much flexibility on the coordination of unexpected situations.

Indeed, during a merge manoeuvre, if the platoon velocity changes after the

meeting point had been communicated to the merging vehicle, the leader

will either cancel the task or wait until it retrieves its previous state. In the

case of the “slow centralized” example presented in Figure 6.29, the platoon

was able to retrieve its previous state after 10 seconds, but in the case of

dense traffic, the leader would have to cancel the task, as opposed to the

teamwork model which can communicate the new platoon state through the

“virtual vehicle”. Finally, a model centralized on one unit is less flexible and

robust since the whole platoon relies on only one vehicle. For instance, if the

leader has problem with its communication devices, it could cause all of its

followers to crash.

3. The decentralized model:

Advantage: This model has more flexibility than the centralized model since the

leader and its followers have a similar degree of autonomy. The decentralized

model has the advantage of involving only two vehicles, while the rest of the

platoon only has to update its knowledge at the beginning and end of a

manoeuvre. Therefore, the leader is not “flooded” by all the messages, as

opposed to the centralized model, and fewer vehicles have to communicate,

as opposed to the teamwork model.

Disadvantage: Since the decentralized model is not based on a common archi-

tecture (like STEAM) and it only relates to social laws, its communication

protocols are developed in a “static”, less generic way. This makes the exten-

sion of the decentralized model more complicated since specific laws have to

be developed for every situations, which explains the high amount of plans

required to support this model (refer to Table 6.1). Like we mentioned it for

the centralized model, the decentralized model is not as safe as the teamwork

model, which can update the platoon state through the “virtual vehicle”. In

Chapter 6. Driving Agents Engineering 167

fact, this model is probably the most unreliable coordination model in dan-

gerous situations, since it only involves two vehicles close to each others and

does not have any percepts about the situation ahead of the platoon. How-

ever, this fact should be proven through test scenarios involving multiple

uncertain events. Finally, this model also needs to communicate to initial-

ize and maintain common knowledge within the platoon, which explains a

higher amount of messages than the centralized model.

4. The teamwork model:

Advantage: By using this coordination model, more vehicles are involved in a

manoeuvre, but this has the advantage of dividing equally the communi-

cation load involved in the coordination. As mentioned previously, and as

proved in Section 6.4.3, the teamwork model is the coordination model that

can handle uncertain situations or other types of instability in the platoon.

Indeed, vehicles executing a manoeuvre can adapt themselves to dynamic

changes, as other models (centralized, decentralized) either have to wait for

stability, cancel the task or execute it in an “unsafe” manner. Another ad-

vantage of the teamwork model is its TOP framework, which extends the

STEAM architecture, as presented in Section 6.3. This framework enabled

us to lower the amount of coordination plans required for teamwork, since

only plans specific to the CDS had to be created to support the teamwork

coordination in Auto21. Table 6.1 showed that almost half of the total of

plans of the other coordination models were required to develop the team-

work model. Therefore, this generic framework has the advantage of making

extensions to the teamwork model easier to develop.

Disadvantage: The most important disadvantage of the teamwork may be the

amount of communications it requires. In order to assign roles and maintain

a common belief inside the teams, vehicles in the teamwork model exchange

more messages than the centralized model, as shown in Table 6.1. More-

over, the teamwork model also exchanges more messages than the decen-

tralized model, but this is explained by the fact that other vehicles (mainly

the “virtual vehicle”) sometimes have to communicate updates on the pla-

toon state during unstable situations. Another communication aspect that

may be problematic is the fact that vehicles executing roles as the “safety

observer” and “virtual vehicle” (presented in Section 5.2.3) use Selective

Communication (SC) operators that communicate depending on variable

probabilities. Thus, the amount of communication may escalate, during un-

stable situations, but the SC operators should set their variable in relation

with the available bandwidth, and this should resolve the problem.

Chapter 6. Driving Agents Engineering 168

6.4.5 Discussion

Our simulation results gave us a great perspective at the behaviour of our coordination

models, which enables us to lead further research considering aspects of CDS as inter-

vehicle communications, execution time and vehicles’ safety. The hard-centralized or

centralized models present a good option if the most important issue is to minimize

communications and lower the autonomy of the followers, in order to prevent ‘un-

wanted” behaviors. The decentralized and teamwork models on the other hand, can be

benefit on the execution time and the autonomy they give to followers often results in

increasing safety, because followers decide which action to execute instead of receiving

ordered actions by the leader. Nevertheless, the greater autonomy proposed by those

two models can raise problems in future test scenarios, since the task of coordinating

vehicles in a decentralized way is more complex than coordinating them using a master

entity like the leader. A final note that should be mentioned about the decentral-

ized and teamwork models is that they rely on a broadcasting communication system

(point-to-multipoint) to exchange messages among neighboring (platoon members) ve-

hicles. Therefore, the amount of communication they require would greatly increase if

we would use point-to-point communications.

Finally, by “theoretically” comparing our coordination models with similar models

like Sakaguchi et al. [2000]’s platoon architecture based on a token-ring (presented in

Section 4.1.2), our models, and mainly the teamwork model, manage to minimize com-

munications since they do not communicate on a constant interval. However, in order

to provide a demonstration version of our CDS on real vehicles, multiple test scenarios

involving uncertain events will have to be executed in our simulator. This should enable

the teamwork model to learn and adapt the variables of its SC operators considering

different contexts for each manoeuvre.

Chapter 7

Conclusions

This thesis began with the description of the Auto21 project and different problems

relating to Intelligent Transportation Systems (ITS). Then, a wide overview of the

motivations behind the development of a Collaborative Driving System (CDS) was pre-

sented and details were given on the motivation behind our research project. Then we

defined the objectives of the CDS project in Auto21 and more specifically the objectives

of the project relative to DAMAS laboratory, to end with the objectives of this thesis.

The following chapter presented an introduction to agent and Multiagent systems,

followed by details on the agent coordination models that related to the models we tested

for the coordination of our platoons. Then, the simulator we developed at DAMAS

(the HESTIA simulator) was described by focusing on aspects such as: (i) the 3D

environment; (ii) the vehicle dynamics; (iii) the sensory system; (iv) the inter-vehicle

communications; (v) the driving system interface; and (vi) the collaborative driving

scenarios. After the presentation of our simulated driving environment, the Auto21

driving agent architecture was described. This description began with a brief overview

of other Collaborative Driving System (CDS), followed by the description of our hier-

archical decomposition, the architecture’s software engineering, and the techniques and

schemes behind the integration of our architecture. Following this description, the archi-

tecture’s Coordination sub-layer was detailed by presenting different models of inter-

and intra-platoon coordination. The integration of the architecture inside an agent-

oriented model was finally presented in the last chapter. This presentation began with

an overview of the Agent UML (AUML) methodology and was followed by the descrip-

tion of the agent oriented models we used to develop our Multiagent System (MAS).

These models provided a more applicative view at our autonomous driving system and

focused on the communication aspects, handled by the agent framework. To end this

chapter, results on simulation scenarios focusing on the coordination aspects of our

Chapter 7. Conclusions 170

agents were presented and analyzed.

7.1 Contributions

This thesis brought many contributions to both the fields of MAS and CDS. These

contributions can first be described by relating to the objectives presented in Section

1.4, which have been achieved in this thesis.

• The architectures and techniques that should be used to build automated vehicles

have been studied and presented. A detailed report on these architectures was

produced written in Hallé et al. [2003] to complete this thesis.

• A flexible and reusable real-time control architecture was developed considering

the specific needs of our CDS project.

• Different coordination techniques, to be used inside the previous architecture,

were analyzed and the most promising ones were developed and presented in this

thesis.

• The previous coordination techniques were adapted to the problem of coordination

of a platoon of vehicles. They were incorporated inside our driving agent model

considering our driving environment’s specifications.

• Different vehicle simulators were analyzed and a CDS simulator was designed.

This simulator was designed considering the specific needs of our CDS project and

considering the languages and frameworks used to develop our driving agents.

• The previous design of simulator was developed and adapted to the needs of our

project, throughout its progress.

• The coordination and communication models we proposed for our CDS were tested

under different platoon scenarios and an analysis presented the advantage and

inconvenient of each model.

In addition to the contributions relating to our initial objectives, this thesis also

contributed to advances in different areas:

• In the area of simulation of autonomous driving systems, our simulator provided

a first implementation of such simulator in Java. Moreover, our simulator is

probably one of the only simulator of its category that can run on a normal

computer, which is a major advantage.

Chapter 7. Conclusions 171

• In the area of simulation at the DAMAS laboratory, this new knowledge in simu-

lation environment is very benefic to other members. In addition, our simulator

is reusable for other similar projects.

• In the area of agent engineering, the use of the new methodology of AUML rein-

forced the popularity of agent-oriented engineering concepts, which are not very

well known at the moment. More specifically, the models relating to the im-

plementation of an agent framework based on JACK presented one of the rare

high-level framework using JACK.

• In the area of real-time control, the integration of our architecture inside an agent-

oriented model presented a practical application of agent models like BDI, as a

“wrapping” entity for vehicle controllers and sensors technologies.

• In the area of agent teamwork, our implementation of the STEAM architecture

with an extension specific to the domain of CDS provided a new working appli-

cation of this theory and helped increasing the popularity of teamwork models.

• In the area of communication for automated driving systems, we developed a

novel approach based on the teamwork model, which presented promising results.

Moreover, the models of decentralized intra- and inter-platoon coordination also

presented new concepts for this domain, but their results are still to come.

7.2 Concluding Remarks

To conclude this thesis, it should be recalled that the use agent teamwork models

look promising for the CDS domain and these models should be pushed forward a lot

more. Our research, based on Multiagent System (MAS) is different from previous

research project on automated platoon of vehicles, since we propose a decentralized

communication approach and the theory of teamwork is the key to it.

It should also be mentioned that compared to similar CDS projects as the PATH

project, our project only employed a very small team, but we managed to develop a

working demonstration of an automated platoon of vehicles. Of course, our advances

were not the same, but as a first step in the development of a CDS in Canada, we can

be proud of what we have accomplished.

Finally, the Collaborative Driving System presented in this thesis could be used

in a fully autonomous system, using vehicles equipped with longitudinal and lateral

guidance system. But within the presented scenarios, we did not specify if the lateral

Chapter 7. Conclusions 172

control was automated or a simulation of a human driver, thus we are still opened to

both avenues. This collaboration system could then be used in a navigation system

inside a car as an Adaptive Cruise Control (ACC), which would more easily acquire the

public’s favor.

7.3 Future Work

The research presented in this thesis related to a vast field of research going from vehicle

simulators, to vehicle automated controls and agent coordination methodologies. Since

this was a first, in the development of CDS at DAMAS and inside the Auto21 project,

we had to focus on all these fields at once, but now that the bases of our project are

set, we can move on and extend our coordination techniques. The key to success, if we

want to compete with projects as PATH, will be to centralize our efforts on specific and

innovative aspects of inter-vehicle communications for automated vehicles.

As this project’s future works, the longitudinal guidance system should be improved,

which could enable us to lower the communication probabilities in the selective com-

munication decisions of the Team Oriented Programming (TOP) infrastructure. The

different coordination strategies should be further extended and many more scenarios

involving uncertainty should be taken into account using the simulator. These addi-

tional simulation scenarios should include at some point “simulated human driver” to

show the behavior of our system in mixed traffic. Finally, the teamwork model should

also be extended using RMTDP role re-allocation strategies [Nair et al., 2003] and re-

inforcement learning applied to the decisions on communication, to improve the results

involved in those new simulation scenarios.

Bibliography

AHSRA (2004). Evolving ahs. [Online]. http://www.wrsn.net/aboutus.htm, (ac-

cessed the 24th of August 2004).

AOS (2004). JACK Intelligent AgentsTM 4.1. Software Agents Development Framework.

Auto21 (2004). [Online]. http://www.auto21.ca/, (accessed the 30th of April 2004).

Balmer, M., Cetin, N., Nagel, K., and Raney, B. K. (2004). Towards truly agent-based

traffic and mobility simulations. In Proceedings of 3rd International Joint Conference

on Autonomous Agents and Multi Agent Systems, volume 1, pages 60–67, New York,

USA.

Bana, S. V. (2001). Coordinating automated vehicles via communication. Ucb-its-prr-

2001-20, University of California, Berkeley.

Barth, M. J. (1997). Automated Highway Systems, chapter The Effect of AHS on the

Environment, pages 265–292. Plenum Press, New York.

Basnayake, C. and Lachapelle, G. (2003). Accuracy and reliability improvement of

standalone high sensitivity gps using map matching techniques. In Proceedings of

Annual Meeting, U.S. Institute of Navigation, pages 209–216, Albuquerque, N.M.

Bauer, B. (2001). Uml class diagrams revisited in the context of agent-based systems.

In Ciancarini, P. and Weiss, G., editors, Proceedings of Agent-Oriented Software En-

gineering (AOSE 01), number 2222 in LNCS, pages 1–8, Montreal, Canada. Springer-

Verlag.

Beirness, D., Simpson, H., and Desmond, K. (2002). The road safety monitor 2002:

Risky driving. Technical Report 02H, Traffic Injury Research Foundation.

Blosseville, J. M., Hoc, J. M., Riat, J. C., Wautier, D., d. l. Bourdonnaye, A., Artur,

R., Tournié, E., Narduzzi, C., and Gerbenne, E. (2003). French contribution to the

functional analysis of 4 key active safety functions (arcos project). In Proceedings of

the 10 th ITS World Congress, Madrid, Spain.

http://www.wrsn.net/aboutus.htm
http://www.auto21.ca/

BIBLIOGRAPHY 174

Bose, A. and Ioannou, P. A. (2001). Evaluation of the environmental effects of intelligent

cruise control vehicles. Journal of the Transportation Research Board, 1774:90–97.

Burckhardt, M. (1993). Fahrwerktechnik: Radschlupf-Regelsysteme. Vogel-Verlag,

Würzburg.

Cabri, G., Leonardi, L., and Zambonelli, F. (1997). Coordination in mobile agent

applications. Technical report no. dsi-97-24, Universita di Modena.

Cannon, M., Basnayake, C., Crawford, S., Syed, S., and Lachapelle, G. (2003). Precise

gps sensor subsystem for vehicle platoon control. In Proceedings of ION GPS/GNSS-

2003, pages 213–224, Portland, OR.

Conde, C., Ángel Serrano, Rodŕıguez-Aragón, L. J., Pérez, J., and Cabello, E. (2004).

An experimental approach to a real-time controlled traffic light multi-agent applica-

tion. In Proceedings of AAMAS-04 Workshop on Agents in Traffic and Transporta-

tion, pages 8–13, New York, USA.

DAMAS-Auto21 (2004). [Online]. http://www.damas.ift.ulaval.ca/projets/auto21/,

(accessed the 30th of April 2004).

Darbha, S. and Rajagopal, K. (1998). Intelligent cruise control systems and traffic

flow stability. California PATH Research Report UCB-ITS-PRR-98-36, Texas A&M

University.

Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., and Wernstedt, F. (2004).

Agent-based approaches to transport logistics. In Proceedings of AAMAS-04 Work-

shop on Agents in Traffic and Transportation, pages 14–24, New York, USA.

Daviet, P. and Parent, M. (1996). Longitudinal and lateral servoing of vehicles in a

platoon. In Proceedings IEEE of the Intelligent Vehicles Symposium, 1996, pages

41–46.

de Bruin, D., Kroon, J., van Klaveren, R., and Nelisse, M. (2004). Design and test

of a cooperative adaptive cruise control system. In Proceedings of the 2004 IEEE

Intelligent Vehicles Symposium, pages 392– 396. Delft University of Technology.

Dresner, K. and Stone, P. (2004). Multiagent traffic management: A reservation-based

intersection control mechanism. In Proceedings of 3rd International Joint Conference

on Autonomous Agents and Multi Agent Systems, volume 2, pages 530–537, New

York, USA.

Durfee, E. (1999). Distributed problem solving and planning. In Weiss, G., editor,

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pages

121–164. MIT Press, Cambridge, MA.

http://www.damas.ift.ulaval.ca/projets/auto21/

BIBLIOGRAPHY 175

Durfee, E. and Lesser, V. (1987). Using Partial Global Plans to Coordinate Distributed

Problem Solvers. In Proceedings of the Tenth International Joint Conference on

Artificial Intelligence, pages 875–883.

Elliott, B. J. (1999). Road rage: media hype or serious road safety issue? In Proceedings

of the Third National Conference on Injury Prevention and Control, Australia.

FIPA (2002). Contract net interaction protocol specification. Tech-

nical Report SC00061G, Foundation for Intelligent Physical Agents.

http://www.fipa.org/specs/fipa00061/SC00061G.html, (accessed in April

2004).

Georgeff, M. and Ingrand, F. (1990). Real-time reasoning: The monitoring and control

of spacecraft systems. In Press, C. S., editor, Proceedings of the Sixth IEEE Confer-

ence on Artificial Intelligence Applications(CAIA 90), volume 1, pages 198–205, Los

Alamitos, Calif.

Georgeff, M. and Lansky, A. (1987). Reactive reasoning and planning. In Proceedings

of the 6th National Conference on Artificial Intelligence (AAAI-87), pages 677–682.

Giampapa, J. A. and Sycara, K. (2002). Team-oriented agent coordination in the

retsina multi-agent system. Technical Report CMU-RI-TR-02-34, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA. Presented at AAMAS 2002 Workshop

on Teamwork and Coalition Formation.

Gillen, D., Chang, E., and Johnson, D. (2000). Productivity benefits and cost efficiencies

from its applications to public transit: The evaluation of avl. California PATH

Working Paper UCB-ITS-PWP-2000-16, University of California, Berkeley.

Girard, A. R., de Sousa, J. B., and Hedrick, J. K. (2001). An overview of emerging re-

sults in networked, multi-vehicle systems. In Proceedings of the 40th IEEE Conference

on Decision and Control, volume 2, pages 1485–1490, Orlando, Florida.

Grosz, B. and Kraus, S. (1999). Foundations and Theories of Rational Agencies, vol-

ume 14, chapter The Evolution of SharedPlans, pages 227–262. Kluwer Academic.

Grosz, B. J. and Kraus, S. (1996). Collaborative plans for complex group action.

Artificial Intelligence, 86(2):269–357.

Gutoskie, P. (2001). Canada’s road safety targets to 2010. Technical Report TP 13736

E, Transport Canada.

Hallé, S. and Chaib-draa, B. (2004). Collaborative driving system using teamwork for

platoon formations. In Proceedings of AAMAS-04 Workshop on Agents in Traffic

and Transportation, pages 35–46, New York, USA.

http://www.fipa.org/specs/fipa00061/SC00061G.html

BIBLIOGRAPHY 176

Hallé, S., Chaib-draa, B., and Laumonier, J. (2003). Car platoons simulated as a

multiagent system. In Muller, J.-P. and Seidel, M.-M., editors, Proceedings of Agent

Based Simulation 4 (ABS4), pages 57–63.

Hallé, S., Laumonier, J., and Chaib-draa, B. (2004). A decentralized approach to

collaborative driving coordination. In Proceedings of the 7th IEEE International

Conference on Intelligent Transportation Systems (ITSC’2004), Washington, D.C.,

USA.

Hallé, S., Gilbert, F., Laumonier, J., and Chaib-draa, B. (2003). Architectures for

collaborative driving vehicles: From a review to a proposal. Rapport de recherche

DIUL-RR-0303, Université Laval, Ste-Foy, Québec.

Hatipoglu, C., Ozguner, U., and Redmill, K. A. (2003). Automated lane change con-

troller design. IEEE Transaction on Intelligent Transportation Systems, 4(1).

Hedrick, J., Sengupta, R., Xu, Q., Kang, Y., and Lee, C. (2003). Enhanced ahs safety

through the integration of vehicle control and communication. California PATH

Research Report UCB-ITS-PRR-2003-27, University of California, Berkeley.

Hedrick, J. K., Tomizuka, M., and Varaiya, P. (1994). Control issues in automated

highway systems. IEEE Control Systems Magazine, 14(2):21–32.

Holfelder, W. (2003). Special report on intervehicle real-time communication. Berkeley

Wireless Research Center Seminar. DaimlerChrysler Research and Technology North

America.

Howell, A. S., Girard, A. R., Hedrick, J. K., and Varaiya, P. P. (2004). A real-time hier-

archical software architecture for coordinated vehicle control. In Automotive Software

Architecture Workshop 2004, San Diego, CA. To be published in LNCS.

Huhns, M. N. and Stephens, L. M. (1999). Multiagent systems and societies of agents. In

Weiss, G., editor, Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, pages 79–120. The MIT Press, Cambridge, MA, USA.

Huppe, X., de Lafontaine, J., Beauregard, M., and Michaud, F. (2003). Guidance

and control of a platoon of vehicles adapted to changing environment conditions.

In Proceedings of IEEE International Conference on Systems Man and Cybernetics,

2003., volume 4, pages 3091–3096.

Huppé, X. (2004). Guidance et commande longitudinale d’un train de voitures adaptés

aux conditions routières et climatiques canadiennes. Master’s thesis, Université de

Sherbrooke, Sherbrooke, Canada.

BIBLIOGRAPHY 177

Inman, V., Sanchez, R., Bernstein, L., and Porter, C. (1996). Travtek evaluation

orlando test network study. Final Report FHWA-RD-95-162, Federal Highway Ad-

ministration.

Ioannou, P. and Stefanovic, M. (2003). Evaluation of the acc vehicles in mixed traffic:

Lane change effects and sensitivity analysis. PATH Research Report UCB-ITS-PRR-

2003-03, University of Southern California.

ITS, T. C. (1999). An intelligent transportation systems plan for canada: En route to

intelligent mobility. Executive Summary TP 13501 E, Transport Canada.

Jaques, A. (2003). Canada’s greenhouse gas inventory. Technical report, Environment

Canada, Ottawa, Canada.

Jennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence,

177(2):277–296.

Jennings, N. R., Corera, J., and Laresgoiti, I. (1995). Developing industrial multi-agent

systems (invited paper). In Proceedings of 1st Int. Conf. on Multi-Agent Systems

(ICMAS ’95), pages 423–430, San Francisco, USA.

Jennings, N. R., Faratin, P., Johnson, M. J., Norman, T. J., O’Brien, P., and Wiegand,

M. E. (1996). Agent-based business process management. International Journal of

Cooperative Information Systems, 5(2&3):105–130.

Kiencke, U. and Nielsen, L. (2000). Automotive Control Systems: For Engine, Driveline

and Vehicle. Springer Verlag.

Knublauch, H. (2002). Extreme programming of multi-agent systems. In Proceedings of

the first international joint conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2002), pages 704–711, Bologna, Italy. ACM Press.

Kourjanski, M., Gollu, A., and Hertschuh, F. (1998). Implementation of the smar-

tahs using shift simulation environment. In Proceedings of The SPIE Conference on

Intelligent Systems and Advanced Manufacturing, volume 3207, pages 3207–23.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents. Commu-

nications of the ACM, 42(3):88–89.

Levesque, H. J., Cohen, P. R., and Nunes, J. H. T. (1990). On acting together. In

Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90),

pages 94–99, Los Altos, CA.

Liang, C.-Y. and Peng, H. (2000). String stability analysis of adaptive cruise controlled

vehicles. JSME International Journal Series C, 43(3):671–677.

BIBLIOGRAPHY 178

Lin, W. and Leung, H. (2002). Comparison of vehicle detectors used in intelligent

transportation systems. Technical report, NCE, Auto’21.

Ljungberg, M. and Lucas, A. (1992). The OASIS air-traffic management system. In

Proceedings of the Second Pacific Rim International Conference on Artificial Intelli-

gence (PRICAI ’92), Seoul, Korea.

Mercedes-Benz (2004). Distronic adaptive cruise control. [Online].

http://mbusa.com/brand/models/tech_demos/distronic.html, (accessed the

24th of August 2004).

Mezentsev, O., Lu, Y., Lachapelle, G., and Klukas, R. (2002). Vehicular navigation in

urban canyons using a high sensitivity receiver augmented with a low cost sensor. In

Proceedings of ION GPS, pages 363–369, Portland, OR.

Morissette, J.-F., Chaib-draa, B., and Plamondon, P. (2004). Resource allocation in

time-constrained environments: The case of frigate positioning in anti-air warfare.

In Proceedings of Modelling, Computation and Optimization in Information Systems

and Management Sciences (MCO), Metz, France.

Morsink, P., Cseh, C., Gietelink, O., and Miglietta, M. (2002). Design of an application

for communication based longitudinal control in the cartalk2000 project. In Pro-

ceedings of IT Solutions for Safety and Security in Intelligent Transport (e-Safety),

Lyon.

Moss, S. and Davidsson, P., editors (2001). Multi Agent Based Simulation, volume 1979

of LNAI. Springer Verlag.

Nair, R., Tambe, M., and Marsella, S. (2003). Role allocation and reallocation in multi-

agent teams: Towards a practical analysis. In Proceedings of the second International

Joint conference on agents and multiagent systems (AAMAS), pages 552–559.

Nair, R., Tambe, M., Marsella, S., and Raines, T. (2004). Automated assistants for

analyzing team behaviors. Journal of Autonomous Agents and Multiagent Systems

(JAAMAS), 8(1):69–111.

NEREUS (2004). [Online]. http://damas.ift.ulaval.ca/projets/TeamWork, (ac-

cessed the 30th of September 2004).

Network, W. R. S. (2004). Committed to safer roads across the world. [Online].

http://www.wrsn.net/aboutus.htm, (accessed the 3rd of August 2004).

Odell, J., Parunak, H., and Bauer, B. (2000). Extending UML for agents. In Proceedings

of the Agent-Oriented Information Systems Workshop at the 17th National conference

on Artificial Intelligence.

http://mbusa.com/brand/models/tech_demos/distronic.html
http://damas.ift.ulaval.ca/projets/TeamWork
http://www.wrsn.net/aboutus.htm

BIBLIOGRAPHY 179

Paquet, S., Bernier, N., and Chaib-draa, B. (2004). Comparison of different coordina-

tion strategies for the robocuprescue simulation. In Proceedings of The 17th Interna-

tional Conference on Industrial & Engineering Applications of Artificial Intelligence

& Expert Systems, LNAI 3029, pages 987–996, Ottawa, Canada. Springer-Verlag.

PATH, C. (2004). [Online]. http://www.path.berkeley.edu/PATH/Publications/Media,

(accessed the 9th of August 2004).

Proper, A. T. (1999). Its benefits: 1999 update. Technical Report FHWA-OP-99-012,

Mitretek Systems Inc.; U.S. Department of Transportation.

Pynadath, D., Tambe, M., Chauvat, N., and Cavedon, L. (1999). Toward team-oriented

programming. In Proceedings of the 6th International Workshop on Intelligent Agents

VI, Agent Theories, Architectures, and Languages (ATAL), volume 1757, pages 233–

247.

Pynadath, D. V. and Tambe, M. (2002). The communicative multiagent team decision

problem: Analyzing teamwork theories and models. Journal of AI research, 16:389–

423.

Rajamani, R., Tan, H.-S., Law, B. K., and Zhang, W.-B. (2000). Demonstration of

integrated longitudinal and lateral control for the operation of automated vehicles in

platoons. IEEE Transactions on Control Systems Technology, 8(4):695–708.

Rajamani, R. and Zhu, C. (2002). Semi-autonomous adaptive cruise control systems.

IEEE Transactions on Vehicular Technology, 51(5):1186–1192.

Randall, L., Allen, J., and Salido, R. A. (2000). North american transportation in

figures. Technical Report BTS00-05, U.S. Department of Transportation; Statistics

Canada et al., Washington, DC.

Rao, A. S. and Georgeff, M. P. (1995). Bdi agents: from theory to practice. In Pro-

ceedings of the First International Conference on Multiagent Systems, pages 312–319,

San Francisco. The MIT Press.

Rosenbloom, P. S., Laird, J. E., Newell, A., and McCarl, R. (1991). A preliminary anal-

ysis of the soar architecture as a basis for general intelligence. Artificial Intelligence,

47(1-3):289–325.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: Modern Approach. Prentice

Hall Series in AI, Upper Saddle River, NJ, 2nd edition.

Sakaguchi, T., Uno, A., Kato, S., and Tsugawa, S. (2000). Cooperative driving of

automated vehicles with inter-vehicle communications. In Proceedings of the IEEE

Intelligent Vehicles Symposium 2000, pages 516–521, Dearbsorn, MI, USA.

http://www.path.berkeley.edu/PATH/Publications/Media/

BIBLIOGRAPHY 180

Shoham, Y. and Tennenholtz, M. (1995). On social laws for artificial agent societies:

Off-line design. Artificial Intelligence, 73(1-2):231–252.

Smiley, A. and Brookhuis, K. (1987). Alcohol, drugs and traffic safety. Road users and

traffic safety, pages 83–105. J.A. Rothengatter & R.A. de Bruin (Eds.), Assen: Van

Gorcum.

Smith, I. and Cohen, P. (1996). Towards semantics for an agent communication lan-

guage based on speech acts. In Proceedings of the National Conference on Artificial

Intelligence (AAAI).

Smith, M. (1993). Environmental implications of the automobile. SOE Fact Sheet 93-1,

Environment Canada, Ottawa, Canada.

Stanton, N. A. and Young, M. S. (1998). Vehicle automation and driving performance.

Ergonomics, 41(7):1014–1028.

Stevens, W. (1995). Summary and assessment of findings from the precursor analy-

sis of automated highway system. Technical Report WN95W0000124, The MITRE

Corporation.

Stone, P. and Veloso, M. (1999). Task decomposition and dynamic role assignment for

real-time strategic teamwork. In Muller, J. P., Singh, M. P., and Rao, A. S., editors,

Intelligent Agents V — Proceedings of the Fifth International Workshop on Agent

Theories, Architectures, and Languages (ATAL-98), volume 1555 of Lecture Notes in

Artificial Intelligence, pages 293–308. Springer-Verlag, Heidelberg.

Stough, R. R. (2001). Intelligent Transportation Systems: Cases and Policies. Edward

Elgar Pub. LTD.

Sukthankar, R., Hancock, J., and Thorpe, C. (1998). Tactical-level simulation for

intelligent transportation systems. Journal on Mathematical and Computer Modeling,

27(9-11).

Swaroop, D., Hedrick, J. K., Chien, C., and Ioannou, P. (1994). A comparison of spac-

ing andheadway control laws for automatically controlled vehicles. Vehicle System

DynamicsJournal, 23(8):597–625.

Syed, S. and Cannon, M. (2004). Fuzzy logic based-map matching algorithm for vehi-

cle navigation system in urban canyons. In Proceedings of ION National Technical

Meeting, San Diego, CA.

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Re-

search, 7:83–124.

BIBLIOGRAPHY 181

Tambe, M. and Zhang, W. (2000). Towards flexible teamwork in persistent teams:

extended report. Journal of Autonomous Agents and Multi-agent Systems, special

issue on Best of ICMAS 98, 3:159–183.

Touran, A., Brackstone, M., and McDonald, M. (1999). A collision model for safety

evaluation of autonomous intelligent cruise control. Accident Analysis & Prevention,

31(5):567–578.

Tsugawa, S., Kato, S., Tokuda, K., Matsui, T., and Fujii, H. (2001). A cooperative

driving system with automated vehicles and inter-vehicle communications in demo

2000. In Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference,

pages 918–923.

VanderWerf, J., Kourjanskaia, N., Shladover, S., Krishnan, H., and Miller., M. (2001).

Modeling the effects of driver control assistance systems on traffic. Technical Report

Paper No. 01-3475, U.S. National Research Council Transportation Research Board

80th Annual Meeting, Washington D.C.

Varaiya, P. (1993). Smart cars on smart roads: problems of control. IEEE Transactions

on Automatic Control, 32.

Wada, M., Mao, X., Hashimoto, H., Mizutani, M., and Saito, M. (2004). ican: pursuing

technology for near-future its. IEEE Intelligent Systems, 19(1):18–23.

Winner, H., Witte, S., Uhler, W., and Lichtenberg, B. (1996). Adaptive cruise control

system aspects and development trends. SAE technical paper no. 961010, Special

Publication SP-1143, Detroit, USA.

Wolfe, D. B., Judy, C. L., Haukkala, E. J., and Godfiey, D. J. (2000). Engineering the

world’s largest dgps network. In Proceedings of OCEANS 2000 MTS/IEEE Confer-

ence and Exhibition, volume 1, pages 79–87.

Woll, J. D. (1997). Radar-based adaptive cruise control for truck applications. SAE

Technical Paper 973184, Eaton Vorad Technologies.

Wooldridge, M. (1999). Multiagent Systems: A Modern Approach to Distributed Arti-

ficial Intelligence. The MIT Press, Cambridge, MA.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems. John Wiley and Sons

Ltd.

Xu, Q., Hedrick, K., Sengupta, R., and VanderWerf, J. (2002). Effects of vehicle-vehicle

/ roadside-vehicle communication on adaptive cruise controlled highway systems.

In Proceedings of IEEE Vehicular Technology Conference (VTC), pages 1249–1253,

Vancouver, Canada.

BIBLIOGRAPHY 182

Zhang, Y., Volz, R. A., Ioerger, T. R., and Yen, J. (2004). A decision-theoretic approach

for designing proactive communication in multi-agent teamwork. In Haddad, H.,

Omicini, A., Wainwright, R. L., and Liebrock, L. M., editors, Proceedings of the 2004

ACM Symposium on Applied Computing (SAC), pages 64–71, Nicosia, Cyprus. ACM.

	Introduction
	Problem Description
	Auto21 Project
	Autonomous Driving
	Intelligent Transportation Systems & Artificial Intelligence
	Intelligent Transportation Systems Simulation

	Motivations relating to Intelligent Transportation Systems
	Traffic
	Safety
	Environment
	Efficiency
	Social Aspects

	Motivations relating to Collaborative Driving System
	Possible Deriving Applications
	Communication and Cooperation in ITS
	Collaborative Driving System Simulation

	Thesis Objectives
	Thesis Organization

	Agents and Muliagent Systems
	Single Agent Architectures
	Reactive Agents
	Deliberative Agents
	BDI Agents

	MAS Architectures
	Social Laws
	Joint Intentions
	Distributed planning
	Multiagent Teamwork

	Agent Oriented Driving Simulator
	Simulator's Engine
	3D Environment
	Vehicle Dynamics
	Dynamics Specifications
	Dynamics Software Engineering

	Sensory System
	Sensors Specifications
	Sensors Software Engineering

	Inter-Vehicle Communications
	Communication System Specifications
	Communication System Software Engineering

	Driving System Interface
	Driving System Specifications
	Driving System Software Engineering

	Collaborative Driving Scenarios
	Driving Scenarios Specifications
	Driving Scenarios Engineering

	Summary

	Auto21 Driving Agent Architecture
	Automated Driving Systems
	Communicative Control
	Collaborative Driving Systems

	Hierarchical Representation
	Guidance Layer
	Management Layer
	Traffic Control Layer

	Auto21 Architecture Software Engineering
	Intelligent Sensing Sub-Layer Engineering
	Vehicle Control Sub-Layer Engineering
	Management Layer Engineering

	Auto21 Architecture Integration Schemes
	Sensing Scheme
	Lower-Level Controller Scheme
	Upper-Level Controller Scheme
	Agent Oriented Planning Scheme
	Inter-Vehicle Coordination Scheme
	Traffic Management Techniques

	Conclusion

	Driving Agents Coordination
	Inter-Platoon Coordination Model
	Centralized Inter-Platoon Coordination
	Decentralized Inter-Platoon Coordination

	Intra-Platoon Coordination Model
	Centralized Intra-Platoon Coordination
	Decentralized Intra-Platoon Coordination
	Teamwork Oriented Intra-Platoon Coordination
	Discussion

	Driving Agents Engineering
	Multiagent System Modeling
	Agent UML Level 1: Agent Model
	Agent UML Level 2: Coordination Protocols Model
	Agent UML Level 3: Agents' State Transition

	JACK Agent-Oriented Modeling
	JACK Programming Language
	JACK Agents' Capabilities in Auto21
	JACK Agents' Plans Execution Framework in Auto21
	Auto21 Agents' Knowledge Base
	Auto21 Agents' Communication System
	Auto21 Agents' Coordination System
	Auto21 Agents' Driving System
	Discussion

	Teamwork Oriented Modeling
	Teams Shared Beliefs
	Team Operators
	Formation of Dynamic Teams
	Discussion

	Driving Agent Coordination Experiments
	Coordination Models Limitations
	Evaluation Model
	Simulation Results
	Models Analysis
	Discussion

	Conclusions
	Contributions
	Concluding Remarks
	Future Work

