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Abstract

Roughly speaking, a separating algebra is a subalgebra of the ring of invariants whose

elements distinguish between any two orbits that can be distinguished using invari-

ants. In this thesis, we introduce the notion of a geometric separating algebra, a more

geometric notion of a separating algebra. We find two geometric formulations for the

notion of separating algebra which allow us to prove, for geometric separating alge-

bras, the results found in the literature for separating algebras, generally removing

the hypothesis that the base field be algebraically closed. Using results from algebraic

geometry allows us to prove that, for finite groups, when a polynomial separating al-

gebra exists, the group is generated by reflections, and when a complete intersection

separating algebra exists, the group is generated by bireflections. We also consider

geometric separating algebras having a small number of generators, giving an upper

bound on the number of generators required for a geometric separating algebra. We

end with a discussion of two methods for obtaining new separating sets from old.

Interesting, and relevant examples are presented throughout the text. Some of these

examples provide answers to questions which previously appeared in print.
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Chapter 1

Introduction

Suppose we want to decide if two polygons are the same, how do we do this? First, of

course, we need to precisely define what “the same” means. We could take the same to

mean congruent, that is, one polygon can be obtained from the other by translations,

reflections and rotations; the idea being that a polygon remains the same if we move

it around the plane, or reflect it with respect to a line. We have just described a

group action on a set. The set in question is the set of polygons, and the group is

the group generated by translations, reflections, and rotations of the plane. Elements

of the group will be transformations of the plane that are built up from translations,

rotations, and reflections, and a group element sends a polygon to its image under

the transformation. This group action partitions the set of polygons into equivalence

classes. Saying that two polygons are the same corresponds exactly to saying that

they belong to the same equivalence class, or in other words they belong to the same

group orbit.

In order to decide if two polygons are in the same equivalence class, we need to find

properties that are common to all elements belonging to the same equivalence class.

There are various objects and numbers we may associate to a polygon: for example,

the number of sides, the length of the sides, the length of the diagonals, the area, the
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CHAPTER 1. INTRODUCTION 2

angles between sides, etc. One may consider this association as a function: a function

from the set of polygons to the set of objects (or numbers). Such a function will be

called invariant if it takes the same value on all elements in each equivalence class.

Clearly, if two polygons do not have the same number of sides, or the same area, or

sides of the same length, then they are not the same. A square and a triangle are

not the same because they do not have the same number of sides. But two polygons

may have the same number of sides and still not be the same. So the invariant

“number of sides” is not sufficient to decide if two polygons are the same. Let us

add another invariant, say the length of the sides. For the triangles, this is enough.

Indeed congruent triangles are a staple of high school planar geometry. Also knowing

2 angles and the side between them, or knowing two sides and the angle between

them, are also valid criteria to decide if two triangles are the same. These are other

separating sets. For polygons in general, however this is not enough. It is not too

hard to find two quadrilaterals having sides of the same length, but which are not the

same.

We need more invariants. What if we throw in the distance between any two

points? This might work for quadrilaterals. But the length of the sides must be

distinguished from the length of the diagonals. Indeed, Boutin and Kemper [3] give

an example of two sets of 4 points in the plane, which have the same distribution

of distance between any two points, but which are not the same, meaning that you

can not get one by moving around the other one, or reflecting it. But if we know

which 4 of the distances are the length of the sides, can we separate quadrilaterals?

Certainly, if we know 3 angles, and the length of the sides between them, we can

separate quadrilaterals. In general, we can separate n-sided polygons using n − 1

angles, and the length of the sides between them. But do we really need all this

information?

Let us consider another example, one which is closer to our setting. We consider
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the problem of deciding if two square matrices represent the same linear transforma-

tion. For one thing, they should be of the same size. Let us assume they are, then

Linear Algebra tells us that two matrices will represent the same linear transformation

if they are conjugate, that is, A and B correspond to the same linear transformation

if there exists an invertible matrix P such that A = P−1BP . As in the previous

example, two matrices will be “the same” if they are in the same equivalence class

for a group action. The group here is the group of invertible n× n matrices, usually

called the general linear group. It acts via conjugation on the set of n× n matrices.

If we view the n × n matrices as a n2-dimensional vector space, then this action is

linear. A first invariant to consider would be the characteristic polynomial (or the

eigenvalues). This invariant alone is not enough to decide if two matrices represent

the same linear transformation. For example, 1 0

0 1

 , and

 1 1

0 1


do not correspond to the same linear transformation, but they have the same charac-

teristic polynomial. If we also include the geometric multiplicities of the eigenvalues,

then we have a separating set.

This second examples fits within the general setting in which we will be working

throughout this text. We consider algebraic groups acting linearly on vector spaces.

We are interested in the actions of any group, not just general linear group, but also

finite groups and other infinite groups, and we work over any field, of any character-

istic, algebraically closed or not. The functions we are interested in are polynomials,

and the invariants are polynomials which take the same value on all elements of each

orbit. In the previous example, the characteristic polynomial, or more exactly its co-

efficients, is a polynomial invariant, but the geometric multiplicities are not. Ideally,

we would like to say a set is a separating set if it separates the equivalence classes.

Usually, however, even with all the polynomial invariants, there usually are orbits
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which cannot be separated. The previous example is in that category: polynomial

invariants alone are not enough to decide if two matrices represent the same linear

transformation. Therefore, we must be satisfied with calling a set a separating set, if

it separates the orbits that can be separated using polynomial invariants.

Here is an outline of the content of this text:

Chapter 2 tells the (short) story of the study of separating invariants through

reviews of the published, and not yet published papers and book chapters written

about separating invariants.

Chapter 3 sets up the scene. We describe the general setting of Invariant Theory,

and quickly move on to define the notions of separating algebra and introduce the

notion of geometric separating algebra. The core of the chapter consists of the two

geometric formulations of our new definition, and some of their consequences.

In Chapter 4, we consider nice separating algebras. We provide a number of

interesting, and informative examples, but more importantly, we prove general results

linking the existence of particularly nice separating algebras to the geometry of the

representation. These are the central results of this text. We show that only reflection

groups may have polynomial separating algebras, only bireflection groups may have

graded complete intersection separating algebras.

Chapter 5 consists mostly of examples, but also we give an upper bound on the

minimal size of a separating set which depends only on the dimension of the repre-

sentation.

In Chapter 6, we discuss two methods for obtaining separating sets from other

separating sets. Our main input is to highlight, via examples, the close relationship

between polarization and separating invariants.

Chapter 7 concludes this text with a discussion of possible future work.



Chapter 2

Literature Review

The study of separating invariants is a new trend in invariant theory, initiated by

Derksen and Kemper in their 2003 book Computational Invariant Theory [11]. In

this book, which is an excellent reference book on invariant theory, there are two

sections dedicated to separating invariants: Section 2.3, and Section 3.9. They give a

definition and obtain some interesting results: they show finite separating sets always

exist; they show separating invariants of finite groups satisfy Noether’s bound, that

is, they show that the invariants of degree at most |G| form a separating set; they

show that for reductive groups over algebraically closed fields, separating algebras are

very closely related to the ring of invariants: the extension is finite, and the extension

of fields of fractions is purely inseparable.

In his 2003 paper Computing Invariants for Reductive Groups in Positive Char-

acteristic [28], Kemper gives an algorithm which computes a separating set as an

intermediate step to computing the ring of invariants. To do this, he gives an alter-

nate criterion for being a separating set which relies on a Gröbner basis computation,

and exploits the close relationship between graded separating algebras and the ring

of invariants.

5



CHAPTER 2. LITERATURE REVIEW 6

In their 2008 paper Polarization of Separating Invariants [14], Draisma, Kem-

per, and Wehlau reconsider a classical tool, polarization, from the point of view

of separating invariants. They show that the polarization of separating invariants

yields separating invariants. They introduce a computationally cheaper version of

polarization which also yields separating invariants. Note that the 2007 paper Vec-

tor Invariants in Arbitrary Characteristic [16] of Grosshans contains similar results

concerning polarization, although the step where one recognises his result is about

separating invariants is missing.

In his 2007 paper Typical Separating Invariants [13], Domokos introduces a weaker

polarization, and shows that it sends separating sets to separating sets, but more

importantly he shows that when polarizing, one only needs to consider polarized

invariants involving a restricted number of copies.

In Separating Invariants [29], Kemper generalizes the notion of separating set, and

separating subalgebra to more general rings of functions. He also shows that some of

the earlier results still hold. For example, there is still a finite separating set.

In their recent preprint Characterizing Separating Invariants [32] Neusel and Sezer

consider separating sets of two important classes of groups: finite abelian groups, and

p-groups in characteristic p. They exhibit a small separating set for abelian groups,

whose size depends only on the dimension of the representation.

My recent preprint Separating Invariants and Finite Reflection Groups [15], con-

tains some of the main results from this thesis. Namely, the main results of Chapters

3 and 4.

Although not the main focus of that paper, Derksen and Kemper mention sep-

arating invariants in their 2008 paper Computing Invariants of Algebraic Groups in

Arbitrary Characteristic [12]. An interesting result characterizing separating algebras

in positive characteristic appears in a remark.



Chapter 3

Orbit Separation, Separation,

Geometric Separation

We start by establishing the setting and the notation with which we will be working

throughout this text. We consider a linear algebraic group G, and V , a n-dimensional

representation of G over a field k of characteristic p ≥ 0. We write k[V ] for the

symmetric algebra on the vector space dual V ∗ of V . If x1, . . . , xn is a basis for V ∗,

then k[V ] = k[x1, . . . , xn] is a polynomial ring in the n variables x1, . . . , xn. The

polynomial ring k[V ] is a standard graded k-algebra, graded bydegree.

The action of G on V induces an action on k[V ] via by extending the following

action of G on V ∗

(σ · f)(v) = f(σ−1 · v),

where σ is an element of G, f is in k[V ], and v is in V . The ring of invariants,

denoted k[V ]G, is the ring formed by the elements of k[V ] left fixed by the action of

G. Since the G-action preserves degree, k[V ]G is a graded subalgebra of k[V ].

7



CHAPTER 3. GEOMETRIC SEPARATION 8

3.1 Separation

Elements of k[V ] are functions from V to k, and elements of k[V ]G are constant on the

G-orbits. Indeed, if f is an invariant, σ is an element of G, and u belongs to V , then

f(σ · u) = (σ−1 · f)(u) = f(u). Thus, for u and v in V , if there is an invariant f such

that f(u) 6= f(v), then we may conclude that u and v belong to distinct orbits. In

this situation, we say that f separates u and v. A natural definition for a separating

set would be to require that it separates elements u and v whenever they belong to

distinct orbits. The ring of invariants, however, generally does not distinguish the

orbits (see Example 3.1.1). Hence, this natural definition of separating set is not very

useful.

Example 3.1.1 (Example 2.3.1 in [11]) Let G = C∗ be the multiplicative group of C

acting on a 2-dimensional vector space V over C via scalar multiplication. The ring

of invariants is C. Indeed, if f is an homogeneous polynomial of degree d, then for

any t in C∗, t · f = tdf . Hence f is invariant if and only if d = 0 or f = 0, that

is, if and only if f is constant. The invariants do not separate any points of V . In

contrast, there are infinitely many orbits: one is the origin, the others are the lines

through the origin minus the origin. /

Derksen and Kemper [11, 28] define a separating set as a set E such that whenever

two points of V can be separated by an invariant, they can be separated by an element

of E. More formally, they make the following definition:

Definition 3.1.1 (Derksen and Kemper [11, 28]). A subset E of k[V ]G is a separating

set if and only if, for all u, v in V , if there exists f in k[V ]G such that f(u) 6= f(v),

then there exists h in E such that h(u) 6= h(v). A subalgebra A ⊂ k[V ]G satisfying

this condition is called a separating algebra. Note that if a subalgebra of k[V ]G is

generated by a separating set, then it is a separating algebra.
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We now consider a simple example which shall accompany us throughout this

text.

Example 3.1.2 Let C3 = 〈σ〉 be the cyclic group of order 3 acting on C2 via

σ 7→

 ζ3 0

0 ζ3

 ,

where ζ3 is a primitive third root of unity. If x1, x2 form the dual basis to the usual

basis for C2, then

C[V ]C3 = C[x3
1, x

2
1x2, x1x

2
2, x

3
2],

where {x3
1, x

2
1x2, x1x

2
2, x

3
2} forms a minimal set of generators. On points where x1 is

zero, x1x
2
2 is also zero, and on other points

x1x
2
2 =

(x2
1x2)2

x3
1

.

Thus, the value of x1x
2
2 at a point is entirely determined by the value of the three other

generators. Therefore, x1x
2
2 does not separate additional points, and {x3

1, x
2
1x2, x2} is

a separating set. /

This example illustrates that the notion of separating set is distinct from the

notion of generating set. Since generating sets separate, following Kemper [29], we

may say that separating sets are generalised generating sets. Moreover, this example

shows how separating algebras can have a much nicer structure than the ring of

invariants. In the example, we get a hypersurface separating algebra when the ring

of invariants is not even a complete intersection.

Example 3.1.3 (Separating the Points on a Line)

The purpose of this example is to study the notion of separating set in a simple

situation: the 1-dimensional representation of the trivial group over C. We will
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see that, while separating sets are fairly easy to find, it is hard to describe general

separating sets precisely.

If V is the 1-dimensional representation of the trivial group over C, then the ring

of invariants is C[V ] = C[x], a polynomial ring in one variable. The orbits of the group

action are just the points of C. By definition, the set {f1, . . . , fr} is a separating set

if for any two distinct elements a and b of C, there is an i such that fi(a) 6= fi(b).

We will consider more closely separating sets of size 1 and 2. We start with

separating sets of size one. Suppose the polynomial f = αmx
m+αm−1x

m−1 + . . .+α0

forms a separating set. In particular, f separates non-zero elements from zero. Thus,

for any a 6= 0 in C, f(a) 6= f(0), that is, the only linear factor in C[x], of

f − f(0) = αmx
m + αm−1x

m−1 + . . .+ α1x

is x. Thus, f = αmx
m + α0. Now, take b to be any nonzero element of C. If a 6= b,

since f separates points, f(a) 6= f(b). In other words, the only root of f − f(b) is b.

But f − f(b) = αm(xm − bm), thus (xm − bm) = (x − b)m. As b is nonzero, m must

be 1, and f = α1x + α0 is a linear polynomial. On the other hand, if f is a linear

polynomial, then it will take distinct values on distinct points, and so it will separate

points.

We now consider geometric separating sets of size 2. Suppose {f1 = αmx
m + . . .+

α0, f2 = βnx
n + . . . + β0}, where m ≤ n, is a separating set. We will consider fixed

values of m successively. First, if f1 has degree 1, then it separates, and there are no

restrictions on f2.

Suppose f1 has degree 2. The first step is to replace f1 with a simpler polynomial

which separates the same points. We have

f1 = α2x
2 + α1x+ c

= α2

(
x2 + α1

α2
x+ α0

α2

)
= α2

((
x+ α1

2α2

)2

+ α0

α2
− α2

1

4α2
2

)
.
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After the change of variable y = x + α1

2α2
, the polynomial f1 is now given by f1 =

α2

(
y2 + α0

α2
− α2

1

4α2
2

)
. Note that for any polynomial h, and any nonzero constant γ,

the polynomials h + γ and γh will separate exactly the same points as h. Indeed,

if a and b are elements of C, then h(a) 6= h(b) if and only if h(a) + γ 6= h(b) + γ if

and only γh(a) 6= γh(b). Thus, f ′1 = 1
α2

(
f1 − α0

α2
+

α2
1

4α2
2

)
= y2 will separate exactly

the same points as f1, and so {f1, f2} is a separating set if and only if {f ′1, f2} is a

separating set. Thinking of f2 as a polynomial in y, we form f ′2 by subtracting from

f2 the constant term and powers of f ′1 to remove all terms of even degree. Then,

{f ′1, f2} is a separating set if and only if {f ′1, f ′2} is a separating set. Indeed, if f ′1

separates a and b, then both sets separate a and b, if not, then f ′1 takes the same

value on a and b, and (f2 − f ′2)(a) = (f2 − f ′2)(b). Thus, f2 separates a and b if and

only if f ′2 separates a and b. {f ′1, f ′2} is a separating set if and only if for any point a

in C, the only b in C such that both f ′1(a) = f ′1(b) and f ′2(a) = f ′2(b) is a. In other

words, {f ′1, f ′2} is a separating set if and only if, for all a in C, the only common

root of f ′1 − f ′1(a) and f ′2 − f ′2(a) is a. But f ′1 − f ′1(a) = y2 − a2 = (y − a)(y + a).

Note that if a = 0, then the only root of f ′1 − f ′1(a) is 0, and so by default the only

common root of f ′1 − f ′1(a) and f ′2 − f ′2(a) is a = 0. Thus {f ′1, f ′2} is a separating set

if and only if, for all nonzero a in C, f ′2(a) 6= f ′2(−a). As f ′2 only has terms of odd

degree, f ′2(−a) = −f ′2(a). Therefore, {f ′1, f ′2} is a separating set if and only if f ′2 has

no nonzero roots, i.e., as a polynomial in y, f ′2 is of the form f ′2 = β2k+1y
2k+1 for some

k ≥ 1. We conclude that, as polynomials in the original variable x, a separating set

of size 2 where f1 has degree 2 will be of the form:

f1 = α2x
2 + α1x+ α0

f2 = β2k+1

(
x+ α1

2α2

)2k+1

+ h

((
x+ α1

2α2

)2
)
,

where αi and β2k+1 belong to C, and α2 and β2k+1 are nonzero, k ≥ 1, and h is a

polynomial in one variable. Generally, a pair of polynomials of this form will be a
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separating set.

Next, we consider separating sets of size 2 where f1 has degree 3. Again, we want

to find a simpler polynomial which separates the same points as f1. We have

f1 = α3x
3 + α2x

2 + α1x+ α0

= α3

((
x− α2

3α3

)3

+

(
α1

α3−
α2

2
3α2

3

)
x+

α3
2

27α3
3

+ α0

α3

)
= α3

((
x− α2

3α3

)3

+
(
α1

α3
− α2

2

3α2
3

)(
x− α2

3α3

)
+ α2

3α3

(
α1

α3
− α2

2

3α2
3

)
+

α3
2

27α3
3

+ α0

α3

)
.

After the change of variable y = x− α2

3α3
, we form f ′1 by multiplying f1 by an α−1

3

and subtracting the constant term. Thus, f ′1 = y3 + γy, where γ =
(
α1

α3
− α2

2

3α2
3

)
. As

before, {f1, f2} is a separating set if and only if either {f ′1, f2} is a separating set.

For a in C, f1 and f2 separate an arbitrary b from a if and only if f ′1(a) 6= f ′1(b) or

f2(a) 6= f2(b), that is, the only common root of f ′1 − f ′1(a) and f2 − f2(a) is a. We

have

f ′1 − f ′1(a) = y3 + γy − a3 − γa = (y − a)(y2 + ay + a2 − γ2).

For each a, the linear factor (y− a) can have multiplicity 1, 2, or 3 in f ′1− f ′1(a). We

will treat these 3 cases separately. First, let us consider the points a where (x − a)

has multiplicity 1 in f ′1 − f ′1(a). In this situation, f ′1 and f2 separate points from a if

and only if, f ′1 − f ′1(a) and f2 − f2(a) have no other common root than a, that is, as

polynomials in y, gcd(y2 + ax+ a2− γ2, f2− f2(a)) = 1. We can answer this question

for all a’s at once by considering y2 + ay + y2 − γ2 and f2 − f2(a) as polynomials in

y and a and asking if the multivariate resultant is nonzero everywhere.

Suppose, now, that y − a is a multiple root. We have that

y2 + ay + a2 − γ2 = (y − a)(y + 2a) + 3a2 − γ2.

Thus, (y − a) divides y2 + ay + a2 − γ2 if and only if 3a2 − γ2 = 0, i.e., when

a = ± γ√
3
. Note that the only way (y − a) can be a triple root is if γ = a = 0. When
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γ 6= 0, then y − a is a double root if and only if a = ± γ√
3
, and for those values of a,

y2 + ay + a2 − γ2 = (y − a)(y + 2a), and so f ′1, f2 separate other points b of C from

± γ√
3

if and only if f2

(
2 γ√

3

)
6= f2

(
− γ√

3

)
, and f2

(
−2 γ√

3

)
6= f2

(
γ√
3

)
.

The next case to consider is when γ = 0, i.e., f ′1 = y3. We form f ′2 by subtracting

the constant term of f2, and powers of f ′1 so that the resulting polynomial only has

terms of degree coprime to 3. The set {f ′1, f ′2} separates the same points as {f ′1, f2}.

{f ′1, f ′2} will be a separating set if and only if f ′2 has no nonzero roots (specialize the

argument of Proposition 3.1.1). This forces f ′2 to be a monomial. Thus, when f1, f2 is

a geometric separating set, where f1 = α3x
3+α2x

2+α1x+α0 and 0 = γ =
(
α1

α3
− α2

2

3α2
3

)
,

f2 will be of the form: f2 = βk
(
x− b

3a

)k
+ h

((
x− b

3a

)3
)

, where βk is in C, k ≥ 1 is

not divisible by 3, and h is a polynomial in one variable over C.

Already, our method does not yield a general formula for separating sets of size

2 with f1 of degree 3: what we get is an “easy” to check criterion to decide if a

given pair of polynomials forms a separating set. We could follow the same process,

to obtain easy to check criteria for deciding if two polynomials form a separaing set

when f1 has degree 4, or 5. But our method can not take us any further. Indeed, if

f1 has degree m, finding those points u for which (x− u) may have multiplicity more

that 1 in f1 − f1(u), requires factoring a polynomial of degree m − 1. If we do not

assume f1 is in any special form, the polynomial we want to factor will be general.

This example shows how quickly things get rather complicated.

There is, however, one case which we can describe fully for all m:

Proposition 3.1.1 Let V be the 1-dimensional representation of the trivial group

over an algebraically closed field k of characteristic p ≥ 0. Let f1 = xm, where m > 1

and p - m, and let f2 be a polynomial with degree at least m. Suppose {f1, f2} is a

separating set, then f2 is of the form f2 = βxk + h(f1), where m - k, β is in k, and h

is in k[z].
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Proof. Suppose {f1 = xm, f2} is a separating set. We form f ′2 by substracting the

constant and all terms with degree a multiple of m. We obtain f2 = f ′2 +h(f1), where

all terms in f ′2 have degree not divisible by m and h is a polynomial in one variable

over k. We can then write f ′2 = g1 + . . . + gm−1, where all terms in gi have degree

congruent to i modulo m. Note that {f1, f2} is a separating set if and only if {f1, f
′
2}

is a separating set. For all u in k,

f1 − f1(u) = xm − um =
m−1∏
j=0

(x− ζjmu),

where ζm ∈ k is a primitive m-th root of unity. Thus, f1, f
′
2 is a separating set if and

only if, for all nonzero u in k and j = 1, . . . ,m− 1, f ′2(u) 6= f ′2(ζjmu). For all nonzero

u in k and j = 1, . . . ,m− 1, we have

f ′2(ζjmu) = g1(ζjmu) + . . .+ gm−1(ζjmu) = ζjmg1(u) + . . .+ ζ(m−1)j
m gm−1(u),

and f ′2(u) = g1(u) + . . .+ gm−1(u). Thus,

f ′2(u)− f ′2(ζjmu) = (1− ζjm)g1(u) + . . .+ (1− ζ(m−1)j
m )gm−1(u).

As f1, f
′
2 separate, it follows that f ′2(u) − f ′2(ζjmu) is non-zero for all 0 6= u ∈ k, and

so of the form βuk for some k ≥ 1 and β ∈ k. As the gi’s are linearly independent,

and their coefficients are all nonzero whenever ζjm is still a primitive m-th root of

unity, it follows that all but one of the gi’s are zero. Therefore, f2 is of the form

f2 = βxk + h(f1), where m - k, β ∈ k and h is a polynomial in one variable over

k.

/

3.2 Geometric Separation

In this section we introduce the notion of geometric separating set, a new notion

of separating invariants which has the advantage of being stable under algebraic
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extensions of the base field. We give two geometric formulations of this notion in

which lies the strength of our new definition.

The notion of separating invariants introduced by Derksen and Kemper has proven

itself to be quite interesting. It does, however have its limitations: many of the results

in the literature require the base field to be algebraically closed. Indeed, the notion

of separating set behaves rather differently over non-algebraically closed fields, and

its behavior over finite fields diverges even more from the situation over algebraically

closed fields. For example, Kemper proved that over algebraically closed fields, graded

separating algebras have the same dimension as the ring of invariants, but this result

does not always hold over finite fields (Example 3.2.1).

Let k be an algebraic closure of k and let V = V ⊗k k. Then k[V ] ⊂ k[V ] and so

any element f ∈ k[V ] can be considered as a function V → k. Moreover, the action

of G on V extends to an action on V , and so k[V ]G ⊂ k[V ]G.

Definition 3.2.1. A subset E of k[V ]G is a geometric separating set if and only if,

for all u and v in V , if there exists f in k[V ]G such that f(u) 6= f(v), then there

exists h in S such that h(u) 6= h(v). If A ⊂ k[V ]G is a subalgebra satisfying this

property, then A is a geometric separating algebra. Note that a subalgebra generated

by a geometric separating set is a geometric separating algebra.

Clearly, over algebraically closed fields, separating sets and geometric separat-

ing sets coincide, hence, the separting set obtained in Example 3.1.2 is a geometric

separating set. But separating sets are not always geometric separating sets:

Example 3.2.1 Let G = C3 be the cyclic group of order 3 acting on a 2-dimensional

vector space V over the field F2 as follows:

G := 〈σ〉 =

〈 1 1

1 0

〉 .
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If x, y form a basis for V ∗ dual to the usual basis for V , then by Example (i) in Annex

B of [1], the ring of invariants is minimally generated by

f1 = x2 + xy + y2,

f2 = x3 + x2y + y3, and

f3 = x3 + xy2 + y3.

As functions on V , however, f1,f2, and f3 coincide (just check the value of the 3

polynomials on the 4 points of V ). Thus, only one is needed to separate the orbits, and

despite the ring of invariants being 2-dimensional, there are 1-dimensional separating

algebras.

In contrast, on V , f1, f2, and f3 do not correspond to the same function, and

taking f1 alone does not yield a geometric separating set. /

It is easy to see that our modification of Derksen and Kemper’s definition avoids

many problems. Its real strentgh, however, lies in the two geometric formulations

presented later in this section. In fact, throughout this text they will let us recover

most of the results found in the literature, often removing the requirement that k be

algebraically closed.

3.2.1 The Separating Scheme

In this subsection, we give a first geometric formulation of the definition of a geometric

separating algebra. We start by defining the separating scheme, a geometric object

which can be used to detect when a subalgebra is a geometric separating algebra.

The separating scheme is an extension to general groups and fields of some ideas of

Kemper [28] for reductive groups over algebraically closed fields. We let V denote

the affine scheme Spec(k[V ]); when writing V , whether we mean the affine scheme or

the vector space should be clear from the context. We also write V//G for the affine

scheme corresponding to k[V ]G.
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Definition 3.2.2. The separating scheme SG is the unique reduced scheme having the

same underlying topological space as the product V ×V//GV , i.e., SG := (V ×V//GV )red.

Since all the schemes involved are affine,

V ×V//G V = Spec
(
k[V ]⊗k[V ]G k[V ]

)
.

If δ : k[V ]→ k[V ]⊗k k[V ] is the map which sends f ∈ k[V ] to δ(f) = f ⊗ 1− 1⊗ f ,

then, for any subalgebra B ⊂ k[V ],

k[V ]⊗B k[V ] ∼=
k[V ]⊗k k[V ]

(δ(B))
.

Hence, we have the identity

k[V ]⊗k[V ]G k[V ] ∼=
k[V ]⊗k k[V ]

(δ(k[V ]G))
,

and the separating scheme may be viewed as the closed subscheme of V × V with

ideal
√
δ(k[V ]G).

Theorem 3.2.1 If A ⊂ k[V ]G is a subalgebra, then the following statements are

equivalent.

1. A is a geometric separating algebra;

2. if W = Spec(A), then the natural morphism SG → (V ×W V )red is an isomor-

phism;

3. the ideals (δ(A)) and (δ(k[V ]G)) have the same radical in the ring k[V ]⊗k k[V ],

that is,
√

(δ(A)) =
√

(δ(k[V ]G)).

Proof. First, we prove (3) and (2) are equivalent. As V , V//G, and W are affine

schemes, V ×V//G V = Spec(k[V ]⊗k[V ]G k[V ]), and

V ×W V = Spec(k[V ]⊗A k[V ]).
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Thus, (2) is equivalent to saying the k-algebra homomorphism

k[V ]⊗k k[V ]√
δ(A)

→ k[V ]⊗k k[V ]√
δ(k[V ]G)

is an isomorphism, that is,
√
δ(A) =

√
δ(k[V ]G).

We now prove (3) and (1) are equivalent. If A is a geometric separating algebra,

then for any u and v in V , f(u) = f(v) for all f in k[V ]G if and only if h(u) = h(v)

for all h in A. We can rewrite this statement as:

I
V

2(u, v) ∩ (k[V ]⊗k k[V ]) ⊃ δ(k[V ]G)

if and only if

I
V

2(u, v) ∩ (k[V ]⊗k k[V ]) ⊃ δ(A),

where I
V

2(u, v) denotes the maximal ideal of k[V ]⊗k k[V ] corresponding to the point

(u, v) of V × V .

Since the maximal ideals of k[V ]⊗k k[V ] are in bijection with Galois orbits of the

maximal ideals of k[V ] ⊗k k[V ], the maximal ideals of k[V ] ⊗k k[V ] are exactly the

primes of the form

I
V

2(u, v) ∩ (k[V ]⊗k k[V ]) .

As k[V ]⊗k k[V ] is a finitely generated k-algebra, by Theorem 5.5 of [31], the radical

of an ideal I is given by the intersection of all maximal ideals containing I. Therefore,√
δ(k[V ]G) =

√
δ(A).

Remark 3.2.1. The proof of Theorem 3.2.1 implies that a subset E ⊂ k[V ]G is a

geometric separating set if and only if
√
δ(k[V ]G) =

√
δ(E).

As a consequence of Theorem 3.2.1 every representation of any linear algebraic

group admits a finitely generated geometric separating algebra. Our proof, however,

is essentially the same as the proof of Theorem 2.3.15 of [11].

Proposition 3.2.2 There always exists a finite geometric separating set.
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Proof. As the ring k[V ] ⊗k k[V ] is Noetherian, there exist f1, . . . , fm ∈ k[V ]G such

that

(δ(k[V ]G) = (δ(f1), . . . , δ(fm)).

By Remark 3.2.1, {f1, . . . , fm ∈ k[V ]G} is a separating set.

This result is particularly interesting because rings of invariants are not always

finitely generated (see Example 2.1.4 in [11]).

The following theorem is a generalization of Proposition 2.3.10 of [11], the proof,

however, is rather different. In fact, we obtain this result as a special case of Theorem

3.1 of [23].

Theorem 3.2.3 Suppose that A ⊂ k[V ]G is a geometric separating algebra, and

suppose k has characteristic p ≥ 0. If p > 0, then Q(A) ⊂ Q(k[V ]G) is a purely in-

separable field extension, and if p = 0, Q(A) = Q(k[V ]G). Here, Q(A) and Q(k[V ]G)

denote the fields of fractions of A, and k[V ]G, respectively (See Appendix A).

Proof. Suppose that A ⊂ k[V ]G is a separating algebra, then by Theorem 3.2.1√
δ(A) =

√
δ(k[V ]G).

Take b ∈ Q(k[V ]G), then b = f/g, where f, g ∈ k[V ]G and g 6= 0. In the tensor

product k(V )⊗k k(V ),

(g ⊗ g)(f/g ⊗ 1− 1⊗ f/g) = f ⊗ g − g ⊗ f

= (1⊗ g)(f ⊗ 1− 1⊗ f)− (1⊗ f)(g ⊗ 1− 1⊗ g).

In the tensor product k[V ]⊗k k[V ],

(1⊗ f)(g ⊗ 1− 1⊗ g) + (1⊗ g)(f ⊗ 1− 1⊗ f) ∈ (δ(k[V ]G)).

Thus there exists an N ≥ 0 such that

((1⊗ f)(g ⊗ 1− 1⊗ g) + (1⊗ g)(f ⊗ 1− 1⊗ f))N ∈ (δ(A)).
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As g ⊗ g is not a zero divisor in the tensor product k(V ) ⊗k k(V ), it follows that in

that ring, ((f/g⊗1−1⊗ f/g))N in the ideal (δ(Q(A))), and so ((b⊗1−1⊗ b))N = 0

in the tensor product k(V )⊗Q(A) k(V ).

Suppose p > 0. For k large enough, we will have

0 = ((b⊗ 1− 1⊗ b))pk = bp
k ⊗ 1− 1⊗ bpk .

As Q(A) is a field, this implies that bp
k ∈ Q(A)(see Lemma A.0.2).

On the other hand, when k has characteristic zero, so does Q(A). It is a perfect

field and so does not have any purely inseparable extensions (finite or not). Moreover,

as k(V ) is a field, it is reduced, and so its prime spectrum Spec(k(V )) is reduced. It

follows that for all finite purely inseparable extension L of Q(A),

Spec(k(V ))⊗Q(A) L = Spec(k(V ))⊗Q(A) Q(A) = Spec(k(V ))

is reduced, and so by Proposition 4.6.1 in [17], Spec(k(V )) ×Spec(Q(A)) Spec(k(V ))

is also reduced. Thus, the ring k(V ) ⊗Q(A) k(V ) is reduced, and as such does not

have any nonzero nilpotent elements. Thus b ⊗ 1 − 1 ⊗ b = 0 in the tensor product

k(V )⊗Q(A) k(V ), and by Lemma A.0.2, b ∈ Q(A).

3.2.2 Reductive Groups

For reductive groups, we obtain a second geometric formulation for the definition of

geometric separating algebra, which calls on the notion of radicial morphism. Recall

that, a morphism of schemes f : X → Y is said to be radicial (or universally injective)

if for all fields F, the corresponding map of F-points is injective (Definition 3.5.4 in

[17]).

Theorem 3.2.4 If G is reductive, then a finitely generated k-algebra A is a geometric

separating algebra if and only if the morphism of schemes θ : V//G → W = Spec(A)

corresponding to the inclusion A ⊂ k[V ]G is a radicial morphism.
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Proof. We write γ for the morphism of schemes corresponding to the inclusion of

k[V ] inside of k[V ]. By definition, a subalgebra A ⊂ k[V ]G is a geometric separating

algebra if and only if for u, v in V , θ(π(γ(u))) = θ(π(γ(v))) implies π(γ(u)) = π(γ(v)),

that is, A is a geometric seprating algebra if and only if θ is injective on k-points in

the image of V .

On the other hand, since G is reductive, π is surjective (Lemma 1.3 in [26]),

and any map Spec(k) → V//G factors through V . Since V → V is also surjective,

Spec(k) → V factors through V . Thus, all k-points of V//G are in the image of V .

Therefore, A is a geometric separating algebra if and only if θ is injective on k-points.

Clearly, if θ is radicial, it is injectective on k-points. On the other hand, if θ is

injective on k-points, then the corresponding diagonal map V//G→ V//G×W V//G is

surjective on k-points (see argument of 1.8.7.1, [20]). That is, as V//G and W are of

finite type over k, the image of the diagonal morphism contains all the closed points.

The product V//G ×W V//G is also of finite type over k. Thus by Theorem 1.8.4

of [20], the image of the diagonal morphism closed points. is the whole underlying

topological space. Hence, the diagonal morphism is surjective, and by Proposition

1.8.7.1 in [20], the morphism θ is radicial.

Corollary 3.2.5 If G is reductive, and A is a geometric separating algebra, then

dimA = dim k[V ]G. In particular, a geometric separating set must contains at least

n elements.

3.2.3 Graded Geometric Separating Algebras for Reductive

Groups

When G is reductive, the relationship between grade separating algebras and the ring

of invariants is very close.
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Proposition 3.2.6 Let A ⊂ k[V ]G be a graded subalgebra. If the map of schemes

θ : V//G→ W = Spec(A) is injective, then the extension A ⊂ k[V ]G is integral.

Proof. Let A+ and k[V ]G+ denote the maximal graded ideal of A, and of k[V ]G re-

spectively. Let p be a proper prime ideal of k[V ]G containing A+k[V ]G. It follows

that

A+ ⊂
(
A+k[V ]G ∩ A

)
⊂ (p ∩ A) ⊂ A.

As A+ is maximal, p ∩ A = A+.

On the other hand, A+ = k[V ]G+ ∩ A. Therefore, the injectivity of θ implies that

p = k[V ]G+, and the radical of A+k[V ]G in k[V ]G is k[V ]G+. It follows that

k[V ]G

A+k[V ]G

has Krull dimension 0, i.e., it is a finite dimensional k-vector space. By the graded

version of Nakayama’s Lemma (Lemma 3.5.1 in [11]), k[V ]G is a finite A-module, and

so the extension A ⊂ k[V ]G is integral.

Corollary 3.2.7 If G is reductive, and if A ⊂ k[V ]G is a graded geometric separating

algebra, then the extension A ⊂ k[V ]G is integral.

Proof. By Theorem 3.2.4, the morphism of schemes θ : V//G → W is radicial. As

radicial morphisms of schemes are injective (Proposition 3.5.8 in [17]), and as A is

graded, the conclusion follows directly from Proposition 3.2.6.

Following [11, 28] we get an even more precise description of the relationship

between graded geometric separating subalgebras and the ring of invariants. We

obtain an analog to Theorem 1.6 of [28] and Theorem 2.3.12 in [11].

Theorem 3.2.8 If G is reductive, and if A ⊂ k[V ]G is a graded geometric separating

algebra, then ˆ̃A = k[V ]G, that is, the purely inseparable closure in k[V ] of the nor-

malization of A is equal to the ring of invariants (See Definitions A.0.4 and A.0.5 in

Appendix A).
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Proof.

⊂: As k[V ]G is integrally closed (Proposition 2.3.11 in [11]), Ã ⊂ k[V ]G, And so the

desired inclusion holds in characteristic zero. Suppose p > 0, and take f in the purely

inseparable closure of Ã in k[V ]. There exist an m ≥ 0 such that fp
m ∈ Ã. For σ ∈ G,

we have (σ · f − f)p
m

= σ · fpm − fpm = 0. Thus, σ · f − f = 0, and so f ∈ k[V ]G.

⊃: Take f ∈ k[V ]G. As the extension Q(A) ⊂ Q(k[V ]G) is purely inseparable, there

exist a m such that fp
m ∈ Q(A). But f is integral over A, thus so is fp

m
, and as it

is also in Q(A), it follows that fp
m ∈ Ã. Hence, f ∈ ˆ̃A, and we are done.

Although the converse of Theorem 3.2.8 does not hold in general, in positive

characteristic, following Derksen and Kemper [12] (Remark 1.3), we obtain a sim-

ilar characterization of geometric separating algebra. We use a slight variation of

Sublemma A.5.1 of Wilbert van der Kallen [39]. Our proof is also essentially his.

Proposition 3.2.9 Let A ⊂ B be a finite extension of finitely generated algebras

over a field k of characteristic p > 0. Set Y = Spec(A), and X = Spec(B), and

suppose that the map of schemes corresponding to the inclusion is radicial. Then for

all b ∈ B there exists an m such that bp
m ∈ A.

Proof. We will argue by induction on the dimension of A.

As the extension A ⊂ B is finite, B is finitely generated over A as an A-module,

say by b1, . . . , bd. Let p1, . . . , ps be the minimal primes (A is a finitely generated

k-algebra, so there is a finite number of minimal primes).

Suppose we can show that for every i, j, we have mi,j such that bp
mi,j

j ∈ A+ piB.

Then for every i, we have mi such that bp
mi ∈ A + piB for all b ∈ B (every b is a

A-linear combinaison of the bi’s, so we can just take mi to be the maximum of the

mi,j’s). Then, for all b ∈ B, bp
m1+...+ms ∈ A+ p1 . . . psB. Since

p1 . . . ps ⊂ p1 ∩ . . . ∩ ps ⊂
⋂

p is prime

p =
√

0,
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(every ideal contains a minimal ideal ) the ideal p1 . . . ps is nilpotent, and so we can

find a m such that for all b ∈ B, bp
m ∈ A. As the extension A ⊂ B is finite, for each pi

there exists a prime ideal qi such that pi = qi ∩A, and thus the map A/pi → B/piB

into an inclusion. Moreover, the corresponding map of schemes is radicial. Indeed,

given a homomorphism f : A/pi → F where F is any field, we get a homomorphism

A→ F. In turn, as the inclusion A ⊂ B is radicial, we get a map B → F which must

factor through B/piB. It follows that it will suffice to show the proposition holds for

the extensions A/pi ⊂ B/piB. Therefore we can assume A is a domain.

Let r denote the nilradical of B. Suppose we can show that for all b ∈ B, there

is a m such that bp
m ∈ A + r, then we can also find a u such that bp

u ∈ A. So

it will suffice to prove the proposition for the extension A ⊂ B/r. Note that the

inclusion will remain radicial. Thus we may assume that B is reduced. But then one

of the components of X must map onto Y , so bijectivity implies there is only one

component. In other words B is also a domain.

Choose t so that the field extension Q(A) ⊂ Q(ABpt) is separable (so it is the

separable closure of Q(A) in Q(B)). Clearly the inclusion A ⊂ ABpt is still radicial.

If we suppose the proposition holds for the extension A ⊂ ABpt , then for all b ∈ B

there exists a m such that bp
t+m

= (bp
t
)p
m ∈ A, i.e., the proposition holds for A ⊂ B.

Thus we may assume that the extension Q(A) ⊂ Q(B) is separable. The fact that the

homomorphism is radicial, however, implies that this same extension Q(A) ⊂ Q(B)

is purely inseparable, thus Q(A) = Q(B).

We now consider the case where Q(A) = Q(B). Let c be the conductor of A ⊂ B.

So c = {b ∈ B | bB ⊂ A}. We know it is non-zero (because B is a finite A-module,

and Q(A) = Q(B)). If it is the unit ideal, then B ⊂ A and we are done. Suppose it

is not. By induction applied to A/c ⊂ B/c, we have that for each b ∈ B there is a m

such that bp
m ∈ A+ c = A. We are now done.

We then obtain the following characterisation of geometrically separating algebras



CHAPTER 3. GEOMETRIC SEPARATION 25

in characteristic p > 0 (when k[V ]G is finitely generated):

Corollary 3.2.10 Suppose k has positive characteristic. If G is reductive, and if

A ⊂ k[V ]G is a graded subalgebra, then A ⊂ k[V ]G is a geometric separating algebra

if and only if Â = k[V ]G.

Proof. Suppose that Â = k[V ]G, and take u, v ∈ V such that f(u) = f(v) for all f ∈

A. For each h ∈ k[V ]G there exists r ∈ N such that hp
r ∈ A, hence, hp

r
(u) = hp

r
(v).

Furthermore,

hp
r
(u) 6= hp

r
(v) ⇒ hp

r
(u)− hpr(v) 6= 0

⇒ (h(u)− h(v))p
r 6= 0

⇒ h(u)− h(v) 6= 0

⇒ h(u) 6= h(v).

Thus, A is a geometric separating algebra.

On the other hand, suppose A ⊂ k[V ]G is a graded geometric separating algebra.

Theorem 3.2.4 implies the map of schemes V//G→ W is radicial, and Corollary 3.2.7

implies the extension A ⊂ k[V ]G is finite. Thus, by Propostion 3.2.9 every element of

k[V ]G is a p-th power of an element of A, and so Â ⊃ k[V ]G. If h is in Â, then there

exists r in N such that hp
r

is in A. Let σ be any element of G, then

σ · hpr = hp
r ⇒ (σ · h)p

r − hpr = 0

⇒ (σ · h− h)p
r

= 0

⇒ σ · h− h = 0.

,

and so, Â ⊂ k[V ]G.

3.2.4 Finite Groups

In this subsection, we concentrate on finite groups. As the ring of invariants separate

orbits, we obtain a more concrete description of the separating scheme, which we

exploit in Chapter 2.
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We start with a proof that the ring of invariants separate orbits.

Definition 3.2.3. Let G be a finite group acting linearly on the n-dimensional k-

vector space V . We define FT,U as follows

FT,U =
∏
σ∈G

(
T −

n∑
i=1

U i−1σ · xi

)
,

Where T, U are formal variables. Let k[coeffFT,U ] be the subalgebra of k[V ] generated

by the coefficients of FT,U as a polynomial in T and U .

Proposition 3.2.11 (Lemma 2.1 in [14]) If G is a finite group, then, k[coeffFT,U ]

is a geometric separating algebra. In particular, k[coeffFT,U ] separates the G-orbits.

Proof. Let G act trivially on T and U , then we see that elements of G act on F by

permuting the factors. Thus F , and its coefficients, are invariant.

Take u, v ∈ V such that the coefficients of F agree on u and v, then F (u) = F (v),

and since k[T, U ] is factorial, ,

F (u) =
∏
σ∈G

(
T −

n∑
i=1

U i−1σ · ui

)
, and F (v) =

∏
σ∈G

(
T −

n∑
i=1

U i−1σ · vi

)
have the same factors. In particular, for some τ ∈ G,

T −
n∑
i=1

U i−1ui = T −
n∑
i=1

U i−1τ · vi.

Hence, for i = 1, . . . , n, ui = τ · vi, that is, u = τ · v. It follows that u and v are in

the same orbit, and so f(u) = f(v) for any f ∈ k[V ]G, and so the coefficients of FT,U

for a geometric separating set.

As the coefficients of F all have degree at most |G|, we obtain:

Corollary 3.2.12 (Lemma 2.1 in [14] and Corollary 3.9.14[11]) If G is a

finite group, then the k-algebra generated by the invariants of degree at most |G| is a

geometric separating algebra.



CHAPTER 3. GEOMETRIC SEPARATION 27

Proposition 3.2.13 If G is a finite group, then the separating scheme is a union

of |G| linear subspaces, each of dimension n. There is a natural correspondence

between these linear spaces and the elements of G. Moreover, if Hσ and Hτ denote

the subspaces corresponding to the elements σ and τ of G, respectively, then the

dimension of the intersection Hσ ∩Hτ is equal to the dimension of the subspace fixed

by τ−1σ in V .

Proof. For each σ ∈ G, let Hσ be the graph of σ, that is

Hσ = {(u, σ · u) ∈ V × V | u ∈ V }.

Hσ is a linear space of dimension n. For elements σ and τ of G, the intersection

Hσ ∩Hτ is

{(u, v) ∈ V × V | u ∈ V and v = σ · u = τ · u}.

Hence, Hσ ∩Hτ is isomorphic to the fixed space of τ−1σ. Next, we show that

SG =
⋃
σ∈G

Hσ.

For each σ ∈ G, Hσ is given as a closed subscheme of V × V by the ideal (f ⊗ 1 −

1⊗ σ−1f | f ∈ k[V ]). Thus, in algebraic terms, we want to show that

k[V ]⊗k k[V ]√
(δ(k[V ]G))

=
k[V ]⊗k k[V ]

∩σ∈G(f ⊗ 1− 1⊗ σ−1f | f ∈ k[V ])
.

As G is finite, the ring of invariants separates orbits in V (Proposition 3.2.11), thus

for u and v in V , f(u) = f(v), for all f in k[V ]G, if and only if there exists σ in G

such that u = σv. In other words, δ(k[V ]G) ⊂ I
V

2(u, v) ∩ (k[V ]⊗k k[V ]), if and only

if

∩σ∈G(f ⊗ 1− 1⊗ σ−1f | f ∈ k[V ]) ⊂ I
V

2(u, v) ∩ (k[V ]⊗k k[V ]).

Therefore,
√

(δ(k[V ]G)) = ∩σ∈G(f ⊗ 1− 1⊗ σ−1f | f ∈ k[V ]).



CHAPTER 3. GEOMETRIC SEPARATION 28

Example 3.2.2 We now revisit Example 3.1.2. By Proposition 3.2.13 we know that

the separating schemes consist of three 2-dimensional linear subspaces. They are

given by

H1 : {(a, b, a, b) | a, b ∈ C},

Hσ : {(a, b, ζ3a, ζ3b) | a, b ∈ C},

and

Hσ2 : {(a, b, ζ2
3a, ζ

2
3b) | a, b ∈ C}.

Thus the 3 planes intersect in exactly 1 point, the origin. /

Example 3.2.3 We reconsider the easy example of the trivial group acting on a 1-

dimensional representation which we visited in Example 3.1.3. But this time, we

allow more general fields. Theorem 3.2.1 and Proposition 3.2.13 provide us with a

computational criterion for geometric separability.

By Proposition 3.2.13, the separating scheme is given by the ideal I(SG) = (x−y),

thus {f1, . . . , fr} is a geometric separating set if and only if√
(δ(f1), . . . , δ(fr)) = (x− y),

which is equivalent to saying

(δ(f1), . . . , δ(fr)) = (x− y)kC[x, y],

for some k ≥ 1. As reduced Gröbner Bases are unique (for a fixed monomial order),

and since {(x − y)k} is a reduced Gröbner basis for the ideal (x − y)kC[x, y] for the

monomial ordering grevlex with x > y (for example), we have:

Proposition 3.2.14 Let V be the 1-dimensional representation of the trivial group

over an algebraically closed field k. The subset f1, . . . , fr ∈ k[x] is a geometric sepa-

rating set if and only if the reduced grevlex Gröbner basis of the ideal (δ(f1), . . . , δ(fr))

is (x− y)k, for some k ≥ 1

/



Chapter 4

Well-Behaved Geometric

Separating Algebras

This chapter concentrates on well-behaved separating algebras. One can often find

geometric separating algebras that are better behaved than the ring of invariants. For

example, in Example 3.1.2, there is a hypersurface separating algebra when the ring

of invariants is not even a complete intersection. More impressively, recall that there

always is a finitely generated separating algebra (Proposition 3.2.2), even when the

ring of invariants is not finitely generated.

In the following, we give more examples where very nice geometric separating

algebras can be found, and we discuss limitations to how nice separating algebras can

be given a representation of a group G. These limitations are consequences of the

strong relationship between geometric separating algebras and the ring of invariants

for reductive groups.

29
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4.1 Polynomial Geometric Separating Algebras

The simplest structure a finitely generated k-algebra may have is that of a polynomial

ring. The question of when the ring of invariants is a polynomial ring has been

central in the Invariant Theory of finite groups. In characteristic zero, and in the

non-modular case in general, there is a characterization of representations for which

the ring of invariants is polynomial, but in the modular case the question is still open.

In this section, we generalize the existing results to geometric separating algebras, and

obtain both a characterization of the representations for which a polynomial geometric

separating algebra exists in the non-modular case, and a necessary condition in the

modular case.

Recall that an element σ of G acts as a reflection on V if it fixes a codimension

one subspace in V .

Theorem 4.1.1 Let G be a finite group. If there exists a geometric separating algebra

which is a polynomial ring, then the action of G on V is generated by reflections.

Proof. Suppose a separating algebra A is a polynomial ring. By Corollary 3.2.5,

A is n-dimensional, thus A is generated by n elements. It follows that the ideal

(δ(A)) is also generated by n elements. Indeed, if f and g are elements of A, then

δ(fg) = (f ⊗ 1)δ(g) + (1 ⊗ g)δ(f), thus generators for A are generators for δ(A).

Therefore, V ×W V is a complete intersection, and in particular, it is Cohen-Macaulay.

As V ×WV is Noetherian, Hartshorne’s Connectedness Theorem (Corollary 2.4 in [21])

implies that V ×W V is connected in codimension 1, and thus so is SG = (V ×W V )red.

Consider the irreducible components H1 and Hσ of SG corresponding to the iden-

tity and an arbitrary element σ of G, respectively. As SG is connected in codimension

1, there is a sequence of irreducible components

H1 = Hσ0 , · · · , Hσr = Hσ,
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such that Hσi ∩ Hσi+1
has codimension 1. By Proposition 3.2.13, σ−1

i σi+1 fixes a

subspace of codimension 1, and so acts as a reflection on V . Thus,

σ = 1−1σ = σ−1
0 σr = (σ−1

0 σ1)(σ−1
1 σ2) · · · (σ−1

r−1σr)

is a product of reflections on V . Therefore, the action of G on V is generated by

reflections.

As the ring of invariants is a geometric separating algebra, Theorem 4.1.1 is a

generalization of the following result of Serre. Moreover, our method provides a new

proof for this result.

Theorem 4.1.2 (Serre [36]) Let G be a finite group. If k[V ]G is polynomial, then

G acts on V as a reflection group.

In the non-modular case, the converse holds:

Theorem 4.1.3 (Shephard and Todd [37], Chevalley [9], Serre, Clark and

Ewing [10]) Let G be a finite group, and suppose |G| is invertible in k. The ring of

invariants is polynomial if and only if the action of G on V is generated by reflections.

As a corollary to Theorem 4.1.1 and the more classical Theorem 4.1.3, we get a

characterization of the existence of separating algebras which are polynomial rings

which generalizes Theorem 4.1.3.

Theorem 4.1.4 Let G be a finite group and let V be a finite dimensional representa-

tion of G over the field k. Suppose further that the characteristic of k does not divide

the order of G. There exists a geometric separating algebra which is a polynomial ring

if and only if the action of G on V is generated by reflections.

Proof. One direction is given by Theorem 4.1.1, and as the ring of invariants is a

geometric separating algebra, the other is an immediate consequence of the part of
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the result of Shephard and Todd [37], Chevalley [9], Serre, and Clark and Ewing [10]

which establishes that reflection groups have polynomial ring of invariants.

Note that Theorem 4.1.4 implies that, in the non-modular case, there exists a

polynomial separating algebra if and only if the ring of invariants in polynomial. A

consequence of Theorem 3.2.8 is that in characteristic zero, graded separating algebras

which are polynomial rings are the ring of invariants. This, however, does not hold

in positive characteristic:

Example 4.1.1 Let k be a field of characteristic p > 0. Let V be the 1-dimensional

representation of the trivial group over k. Then k[V ] = k[V ]G = k[x], hence the

ring of invariants is polynomial. The subalgebra k[xp] is a polynomial ring, and a

separating algebra, but it is strictly included in k[x], the ring of invariants.

Another related remark is that Theorem 4.1.4 is new even in characteristic zero,

because the statement does not include the assumption that the separating algebra

be graded.

In the following examples, we find nontrivial polynomial separating algebras. They

show that Theorem 4.1.1 is a strict generalization of Serre’s result: there are cases

where Serre’s result does not apply, but where Theorem 4.1.1 does.

Example 4.1.2 Let k be a field of characteristic p, containing a root z of the polynomial

Zp − Z − 1. First, note that this polynomial is irreducible over Fp. Let G ≤ GL(V )

be the group given by

G = 〈r, s, t〉 =

〈


1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 ,


1 0 0 1

0 1 0 0

0 0 1 z

0 0 0 1


〉
.

Let {y2, x2, y1, x1} be the dual basis for V ∗.
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First, we prove that the ring of invariants of G, k[V ]G, is generated minimally by

x1, x2, M1, M2, and h, where

M1 = (yp1 − x
p−1
1 y1)p − (xp1)p−1(yp1 − x

p−1
1 y1),

M2 = (yp2 − x
p−1
2 y2)p − (xp1 − x

p−1
2 x1)p−1(yp2 − x

p−1
2 y2),

h = (xp−1
1 − xp−1

2 )(yp1 − x
p−1
1 y1)− xp−1

1 (yp2 − x
p−1
2 y2).

Let H = 〈r, s〉, and L = 〈r, s, t1, t2〉, where

t = t1t2 =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 z

0 0 0 1

 .

The representation V , when restricted to the group H ∼= Cp × Cp, is the direct sum

of two copies of the 2-dimensional representation of the cyclic group Cp. Therefore,

the ring of invariants of H is

k[V ]H = k[x1, Y1 = yp1 − x
p−1
1 y1, x2, Y2 = yp2 − x

p−1
2 y2].

Now, we consider the group L. We will show that

k[V ]L = k[x1,M1 = Y p
1 −X

p−1
1 Y1, x2,M2 = Y p

2 −X
p−1
2 Y2],

where X1 = xp1, and X2 = xp1 − x
p−1
2 x1. M1 and M2 are the norm under the action of

L of y1 and y2 respectively. Thus M1 and M2 are L-invariant. Next, consider the zero

set in V corresponding to the ideal J = (x1,M1, x2,M2) in k[V ]. By Proposition 5.3.7

in [38], showing that the zero set of J is the origin will show that {x1,M1, x2,M2}

forms an homogeneous system of parameters in k[V ], and hence, also in k[V ]L. Take

v ∈ V in the zero set of J . If we write

v =


a

b

c

d

 ,
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then x1(v) = x2(v) = 0 implies that b = d = 0. Thus, M1(v) = cp
2

and M2(v) = ap
2
.

Therefore, M1(v) = M2(v) = 0 implies that a = c = 0, and so v is the origin. Since

the product of the degrees of {x1,M1, x2,M2} is 1 · p2 · 1 · p2 = p4 = |L|, by Theorem

3.7.5 in [11], it follows that {x1,M1, x2,M2} generates the ring of invariants of L

as desired. Writing M1 and M2 the way we did highlights the connection between

the invariants of G and those of two copies of the 2-dimensional representation of

Cp. We will follow the computation of the ring of invariants of two copies of the

2-dimensional representation of Cp as in [4]. As in [4], there is an extra G-invariant

U = X2Y1 −X1Y2, related to the previous ones by the relation:

Up −Xp
2M1 +Xp

1M2 − (X1X2)p−1U = 0.

But here, X1 and X2 are not irreducible invariants. Their greatest common divisor

in k[V ]G is x1, hence,

h = U/x1 = (xp−1
1 − xp−1

2 )Y1 − xp−1
1 Y2

is also G-invariant (and thus H-invariant).

We will show that G ≤ L together with the H-invariant h satisfy the hypothesis

of Proposition 3.1 of [6]. The first step is to note that G has index p in L. Next, since

L = 〈G, t1〉, we consider (t1 − 1)(h). Note that

t1(Y1) = Y1,

t1(Y2) = Y2 −X2,

t−1
2 (Y1) = Y1 +X1, and

t−1
2 (Y2) = Y2.

We have:

t1(h) = t1(xp−1
1 Y1 − (xp−1

1 − xp−1
2 )Y2)

= x− 1p−1Y1 − (xp−1
1 − xp−1

2 )(Y2 −X2)

= h+ (xp−1
1 − xp−1

2 )X2

= h+ (xp−1
1 − xp−1

2 )xp−1
1 ,
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and so, (t1−1)h = (xp−1
1 −xp−1

2 )xp−1
1 is G-invariant. The elements of k[V ]H are linear

combinaisions of polynomials of the form xa1x
b
2Y

c
1 Y

d
2 , where a, b, c, d are nonnegative

integers. We have:

t1(xa1x
b
2Y

c
1 Y

d
2 ) = xa1x

b
2Y

c
1 (Y2 −X2)d = xa1x

b
2Y

c
1 (Y d

2 +X2A),

where A is a polynomial in X2 and Y2. We also have:

t−1
2 (xa1x

b
2Y

c
1 Y

d
2 ) = xa1x

b
2(Y1 +X1)cY d

2 = xa1x
b
2(Y c

1 +X1B)Y d
2 ,

where B is a polynomial in X1 and Y1. It follows that X1 divides (t−1
2 −1)(xa1x

b
2Y

c
1 Y

d
2 ),

and X2 divides (t1 − 1)(xa1x
b
2Y

c
1 Y

d
2 ). If c ∈ k[V ]G is any G-invariant, then

t1(c) = t1t2t
−1
2 (c) = t−1

2 t(c) = t−1
2 (c),

hence, both X1 and X2 divide (t1 − 1)(c) = (t−1
2 − 1)(c), and so

(t1 − 1)(h) = (xp−1
1 − xp−1

2 )xp−1
1 = lcm(X1, X2)

divides (t1 − 1)(c). Therefore, the hypotheses of Proposition 3.1 of [6] are verified,

and so k[V ]G = k[V ]L[h], as desired.

Thus, k[V ]G is an hypersurface. A generating relation is given by

hp − (xp−1
1 − xp−1

2 )pM1 + xp
2−p

1 M2 − (xp1(xp−1
1 − xp−1

2 ))p−1h = 0,

which we can rewrite as

hp = (xp−1
1 − xp−1

2 )pM1 − xp
2−p

1 (M2 − (xp−1
1 − xp−1

2 )p−1h).

Hence, h is in the purely inseparable closure of

k[x1, x2,M1,M
′
2 = (M2 − (xp−1

1 − xp−1
2 )p−1h)],

and so, by Corollary 3.2.10, S = {x1, x2,M1,M
′
2} is a geometric separating set which

generates a polynomial geometric separating algebra. /
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The following example arose in [7] as an example of rigid group with a non-

polynomial ring of invariant.

Example 4.1.3 Let k be a field of characteristic p. Let G be the subgroup of GL4(k)

given by

G = 〈r, s, t〉 =

〈


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 ,


1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1


〉
.

Let y2, y1, x2, x1 be the dual basis for V ∗. By Theorem 4.4 of [6], if k = Fp, the

ring of invariants k[V ]G is a hypersurface minimally generated by x1, x2, M1, M2,

and h, where

M1 = (yp1 − x
p−1
1 y1)p − (xp2 − x

p−1
1 x2)p−1(yp1 − x

p−1
1 y1),

M2 = (yp2 − x
p−1
2 y2)p − (xp1 − x

p−1
2 x1)p−1(yp2 − x

p−1
2 y2),

h = x1(yp1 − x
p−1
1 y1) + x2(yp2 − x

p−1
2 y2),

with the relation hp − xp1M1 − xp2M2 − (x1x2(xp−1
1 − xp−1

2 ))p−1h = 0.

In fact, this result holds over any field of characteristic p. A proof could be

obtained by the same method as in Example 4.1.2.

We can rewrite the relation as

hp = xp1M1 + xp2M2 + (x1x2(xp−1
1 − xp−1

2 ))p−1h

As in Example 4.1.2 we change our generators to eliminate the h on the right
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hand side, however, this time there are infinitely many ways of doing so. Indeed, in

(x1x2(xp−1
1 − xp−1

2 ))p−1 =
∑p−1

i=0

(
p−1
i

)
(−1)p−1−ix

(i+1)(p−1)
1 x

(p−i)(p−1)
2

= (−1)p−1
∑p−1

i=0 x
(i+1)(p−1)
1 x

(p−i)(p−1)
2

(
since

(
p−1
i

)
= (−1)i

)
xp1 divides all but the first term and xp−1

2 divide all but the last. Thus for each

(p− 2)-tuple a ∈ kp−2, we can rewrite the relation as

hp = xp1

(
M1 +

(
x

(p−1)2

1 xp−1
2 + (−1)p−1

∑p−2
i=1 aix

i(p−1)−1
1 x

(p−i)(p−1)
2

)
h
)

+

xp2

(
M2 +

(
x

(p−1)2

2 xp−1
1 − (−1)p−1

∑p−2
i=1 (ai − 1)x

(i+1)(p−1)
1 x

(p−i)(p−1)−p
2

)
h
)
,

Thus, for each a = (a1, . . . , ap−2) ∈ kp−2, setting

M1,a = M1 +

(
x

(p−1)2

1 xp−1
2 + (−1)p−1

p−2∑
i=1

aix
i(p−1)−1
1 x

(p−i)(p−1)
2

)
h,

and

M2,a = M2 +

(
x

(p−1)2

2 xp−1
1 − (−1)p−1

p−2∑
i=1

(ai − 1)x
i+1)(p−1)
1 x

(p−i)(p−1)−p
2

)
h,

yields a polynomial geometric separating algebra: k[x1, x2,M1,a,M2,a]. /

4.2 Complete Intersection and Hypersurface Geo-

metric Separating Algebras

In this section, we give a necessary condition on a representation of a finite group

for the existence of a complete insersection separating algebra. We also include an

example of Harm Derksen which shows that such nice separating algebras do not

always exist. Our proof extends the argument used by Kac and Watanabe to prove
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their Theorem A in [25]. Moreover, it exploits the second geometric formulation of

the notion of geometric separating algebra.

Theorem 4.2.1 Let G be a finite group. If there exists a graded geometric separating

algebra which is a complete intersection, then the action of G on V is generated by

bireflections.

Proof. Without loss of generality, we may assume that the base field is algebraically

closed. Indeed, if A is a complete intersection graded geometric separating algebra

inside of k[V ]G, then A⊗k k is a complete intersection and a graded geometric sepa-

rating algebra inside of k[V ]G. Assuming the theorem holds over algebraically closed

fields, it follows that G is generated by bireflection on V . Thus, the action of G on

V is also generated by bireflections.

Since G is finite, it is reductive, and so Theorem 3.2.4 implies that θ is a radicial

morphism. As A is graded, Corollary 3.2.7 implies θ is finite. Finally, since θ is

dominant and finite it is also surjective.

Now, let k̂[V ], k̂[V ]G, and Â be the completions of k[V ], k[V ]G, and A at their max-

imal graded ideal k[V ]+, k[V ]G+, and A+, respectively. A scheme is simply connected

if and only if there are no nontrivial étale coverings ([22], Example 2.5.3). Hence,

taking completions yields simply connected objects. The G-action on k[V ] extends to

a G-action on k̂[V ], and k̂[V ]G = (k̂[V ])G. Thus Spec(k̂[V ]G) = V̂ //G, and the finite

morphism π lifts to the quotient morphism π̂ : V̂ → V̂ //G, which remains finite. Since

k̂[V ]G = k[V ]G ⊗A Â (Theorem 9.3A in [22]), taking the the completion corresponds

to doing a base change. Hence, θ lifts to a morphism θ̂ which is radicial, surjective,

and finite, since all three properties are preserved by base changes: see Propositions

3.5.2 and 3.5.7 in [17], and 6.1.5 in [18].

For σ in G we let V̂ σ denote the subscheme of fixed points of σ on V̂ . Let L be the

union of all the V̂ σ’s with codimension at least 3, and put M = π̂(L), and N = θ̂(M).
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Since W is a complete intersection, Proposition 3.2 of [21] implies Ŵ = Spec(Â) is

also a complete intersection. Since π̂ and θ̂ are finite, N has codimension 3 in Ŵ .

Hence, by Lemma 1 from [25], Ŵ \ N is simply connected. As the restriction of θ̂

to V̂ //G \M is radicial, surjective, and finite, by Theorem 4.10 of [19] it follows that

(V̂ //G) \M is also simply connected.

The scheme X = V̂ \ L is integral (see 2.1.8, [17]). Indeed, X is irreducible, and

the local rings at points of X are localisations of the local rings at points of V̂ , thus

integral domains. Furthermore, X has an induced G-action, and (V̂ //G) \N = X//G.

Since X//G is simply connected, Lemma 2 from [25] implies that G is generated by

the set {Gx | x ∈ X = V̂ \ L}, where Gx is the subgroup of G fixing x. But by the

definition of V̂ \ L, an element σ belongs to Gx for some x ∈ V̂ \ L if and only if

codim(V̂ σ) ≤ 2. Hence, G is generated by bireflections.

Nice properties of invariant rings are generally inherited by the invariant rings

of isotropy subgroups. In [27], Kemper brings together all these results. Is the

same true of separating algebras? If k[V ]G has a nice separating algebra will k[V ]GU

have an equally nice separating algebra? At the moment this remains unknown.

However, using a result found in [27], which relates the two invariant rings, and using

an argument similar to the one of Theorem 4.2.1, we can show that when there is

a complete intersection geometric separating algebra, not only is G generated by

bireflections, but so is every isotropy subgroup of the form Gu, where u is a closed

point in V .

Theorem 4.2.2 Let G be a finite group. If there exists a graded geometric separating

algebra which is a complete intersection, then all the isotropy subgroups of points of

the action of G on V are generated by bireflections.

Proof. Without loss of generality, we may assume that the base field is algebraically

closed. Indeed, if A is a complete intersection graded geometric separating algebra in
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k[V ]G, then A⊗k k is a complete intersection graded geometric separating algebra in

k[V ]G. If u is a closed point in V , then it is a closed point in V . Assuming the theorem

holds over algebraically closed fields, it follows that the action of Gu is generated by

bireflection over V . Thus, the action of Gu on V is also generated by bireflections.

Since G is finite, it is reductive, and so Theorem 3.2.4 implies that θ is a radicial

morphism. As A is graded, Corollary 3.2.7 implies θ is finite. Finally, since θ is also

dominant and finite morphisms are closed, θ is surjective.

Take u to be a closed point of V . Write πG for the quotient morphism V → V//G,

and write πGu for the quotient morphism V → V//Gu. Let k̂[V ]GπG(u), and Âθ(πG(u))

be the localization of k[V ]G and A, at the maximal ideals corresponding to πG(u),

and θ(πG(u)), respectively. Let k̂[V ]0, and ̂k[V ]GuπGu (0) be the completion of k[V ] and

k[V ]GuπGu (0) at their maximal graded ideal.

A scheme is simply connected if and only if it there are no nontrivial étale coverings

(see Example 2.5.3 in [22]). Hence, as complete local rings satisfy Hensel’s Lemma ,

taking completions yields simply connected objects. The action of Gu on k[V ] extend

to an action of Gu on k̂[V ]0. Moreover, ̂k[V ]GuπGu (0) = k̂[V ]
Gu

0 . Thus Spec( ̂k[V ]GuπGu (0)) =

V̂0//Gu. Hence, the finite morphism πGu lifts to the quotient morphism π̂Gu : V̂0 →

V̂0//Gu, which remains finite. Since k̂[V ]GπG(u) = k[V ]G ⊗A Âθ(πG(u)) (Theorem 9.3A

in [22]), taking the completion corresponds to doing a base change. Hence, θ lifts to

a morphism θ̂ which is radicial, surjective, and finite, since all three properties are

preserved by base changes: see Propositions 3.5.2 and 3.5.7 in [17], and 6.1.5 in [18].

For σ in Gu we let V̂0

σ
denote the subscheme of fixed points of σ on V̂0. Let

L be the union of all the V σ’s with codimension at least 3, and put M = π̂Gu(L).

By Proposition 1.3 of [27], k̂[V ]GπG(u) and ̂k[V ]GuπGu (0)0
are isomorphic. Let N be the

image in k̂[V ]GπG(u) of M under this isomorphism, and let O = θ̂(M). Since W is a

complete intersection, Proposition 3.2 of [21] implies Ŵ = Spec(Â) is also a complete

intersection. Since π̂Gu , and θ̂ are finite, N has codimension 3 in Ŵ . By Lemma 1
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from [25], Ŵ \ N is simply connected. As the restriction of θ̂ to Ŵ \ N is radicial,

surjective, and finite, by Theorem 4.10 of [19] it follows that (V̂ //G) \ N is simply

connected. Since k̂[V ]GπG(u) and ̂k[V ]GuπGu (0) are isomorphic, so are k̂[V ]GπG(u) \M and

̂k[V ]GuπGu (0) \N , and so ̂k[V ]GuπGu (0) \N is also simply connected.

Furthermore, V̂0\L is an integral scheme with an induced Gu-action. Furthermore,

(V̂0//Gu)\N = (V̂0 \L)//Gu. Since (V̂0//Gu)\N is simply connected, Lemma 2 in [25]

implies that Gu is generated by the set {Gx | x ∈ V̂ \ L}. But by the definition of

V̂ \ L, an element σ belongs to Gx for some x ∈ V̂0 \ L if and only if codim(V̂ σ
0 ) ≤ 2.

Hence, Gu is generated by bireflections.

It would be interesting to see if this result could be extended to more general

isotropy subgroups. Perhaps considering actions of algebraic groups on more general

geometric objects would put us on the right track.

The following example, which precedes our results, shows that separating hyper-

surfaces cannot always be found. But it is a representation of an infinite group,

and the method used does not appear to be adaptable to build a similar example of

a finite group. This example motivated our interest in hypersurface, and complete

intersection separating algebras for finite groups.

Example 4.2.1 (Harm Derksen) Let the element t of G = C∗ act on the polynomial

ring C[x1, x2, x3, y1, y2], as 

t 0 0 0 0

0 t 0 0 0

0 0 t 0 0

0 0 0 t−1 0

0 0 0 0 t−1


.

Monomials are sent to scalar multiples of themselves, and so the ring of invariants is
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generated by monomials. In fact,

C[V ]C
∗

= C[x1y1, x2y1, x3y1, x1y2, x2y2, x3y2].

The dimension of C[V ]C
∗

is equal to its transcendence degree (i.e., the maximal num-

ber of algebraically independent elements). The set {x1y1, x3y1, x1y2, x2y2} forms a

transcendence basis for C[V ]C
∗
. Indeed, they are clearly algebraically independent,

and we have the relations

(x1y1)(x3y2) = (x3y1)(x1y2) and (x2y2)(x1y1) = (x2y1)(x1y2),

which give x3y2 and x2y2 as roots of polynomials in the other generators. Thus,

C[V ]C
∗

has dimension 4.

As C∗ is reductive, by Corollary 3.2.5, geometric separating algebras have dimen-

sion 4. Thus, a geometric separating algebra is a hypersurface if it is generated by 5

elements. We will prove that there are no geometric separating sets of 5 elements.

Suppose, by way of contradiction, that f1, f2, f3, f4, f5 is a geometric separating

set. As the fi’s are invariant, we can write:

fi = Fi(x1y1, x2y1, x3y1, x1y2, x2y2, x3y2),

where each Fi is a polynomial in C[z1, z2, z3, z4, z5, z6]. The ideal generated by the 5

polynomials

Fi(z1, z2, z3, 0, 0, 0)− Fi(0, 0, 0, z4, z5, z6), i = 1, . . . , 5

corresponds to a subvariety of C6 which is either empty or has dimension at least 1.

As the point (0, 0, 0, 0, 0, 0) is a common zero, there are infinitely many solutions. In

particular there is a non-zero solution (a, b, c, d, e, f). Put

u = (a, b, c, 1, 0) and v = (d, e, f, 0, 1) ∈ V.
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Then for all i = 1, . . . , 5

fi(u) = Fi(a, b, c, 0, 0, 0) = Fi(0, 0, 0, d, e, f) = fi(v),

that is, the fi’s do not separate u and v. However, we have

x1y1(u) = a, x1y1(v) = 0,

x2y1(u) = b, x2y1(v) = 0,

x3y1(u) = c, x3y1(v) = 0,

x1y2(u) = 0, x1y2(v) = d,

x2y2(u) = 0, x2y2(v) = e,

x3y2(u) = 0, x3y2(v) = f,

and as (a, b, c, d, e, f) is non zero, this is a contradiction. We conclude that no geo-

metric separating algebra is a hypersurface. /

4.3 Cohen-Macaulay Geometric Separating Alge-

bras

In characteristic zero, and in the non-modular case in general, the ring of invariants is

always Cohen-Macaulay, thus Cohen-Macaulay separating algebras always exist. In

the modular case, the ring of invariants is not Cohen-Macaulay in general. In fact, for

almost all modular representations of a group G, the ring of invariants is not Cohen-

Macaulay. Is there always a Cohen-Macaulay geometric separating algebra? This is

certainly a hard question. It is not clear how it should be attacked. The result we have

related to this question is an example where there is a Cohen-Macaulay separating

algebra, but where the ring of invariants is not Cohen-Macaulay.
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Example 4.3.1 Let G act on a 7-dimensional vector space V over F2 as follows:


I4 0

α 0 0 δ

0 β 0 δ

0 0 γ δ

I3

 | α, β, γ, δ ∈ k


Proposition 4.3.1 (Example 9.0.8, [8]) If G is as above, then F2[V ]G is not

Cohen-Macaulay.

Proposition 4.3.2 Let G be as above, and suppose that p = 2, then there exists a

Cohen-Macaulay separating algebra.

Proof. Let x1, x2, x3, x4, y1, y2, y3 be the dual basis for V ∗. We start by showing that

E = {x1, x2, x3, x4, n1, n2, n3, n1,2, n1,3}, where

n1 = y1(y1 + x1)(y1 + x4)(y1 + x1 + x4),

n2 = y2(y2 + x2)(y2 + x4)(y2 + x2 + x4),

n3 = y3(y3 + x3)(y3 + x4)(y3 + x3 + x4),

n1,2 = (y1 + y2)(y1 + y2 + x1)(y1 + y2 + x2)(y1 + y2 + x1 + x2),

n1,3 = (y1 + y3)(y1 + y3 + x3)(y1 + y3 + x3)(y1 + y3 + x1 + x3)},

forms a separating set. Note that n1, n2, n3 are linear in the yi variables, and n1,2, n1,3

are linear in the sums (y1 + yi). Suppose that all the elements of E take the same

value on the elements u and v of V . The first thing to notice is that we will have

u = (w1, w2, w3, w4, u1, u2, u3) and v = (w1, w2, w3, w4, v1, v2, v3), then n1(u) = n1(v)

implies n1(u1 − v1) = 0, that is, either u1 = v1, u1 = v1 + w1, u1 = v1 + w4,

or u1 = v1 + w4. Similarly n1(u) = n1(v) implies either u2 = v2, u2 = v2 + w2,

u2 = v2 +w4, or u2 = v2 +w4, and n3(u) = n3(v) implies either u3 = v3, u3 = v3 +w3,
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u3 = v3 + w4, or u3 = v3 + w4. Thus,

u =


I4 0

α 0 0 δ1

0 β 0 δ2

0 0 γ δ3

I3

 v,

where α, β, γ, δ1, δ2, δ2 ∈ F2.

Now, if we suppose n1,2(u) = n1,2(v), then n12(u1 + u2 − v1 − v2) = 0, and so

either u1 + u2 = v1 + v2, u1 + u2 = v1 + v2 + w1, u1 + u2 = v1 + v2 + w2, or

u1 + u2 = v1 + v2 + w1 + w2. But u1 + u2 = v1 + v2 + αw1 + βw2 + (δ1 + δ2)w4 ,

thus δ1 = δ2. Similarly, we obtain that δ1 = δ3. Therefore, u and v are in the same

orbit. Note that, unlike many of the other examples presented in this text, we found

a separating set without computing the ring of invariants.

In the rest of the argument, we will be using the computational algebra software

Magma [2] for our computations, and for verifying that polynomials belong to cer-

tain ideals. Taking x1, x2, x3, x4, n1, n2, n3 as primary invariants, we get 4 secondary

invariants which we denote by h1, h2, h3, h4. As n1,2 = n1 +n2 + (x1 +x2 +x4)h1, and

n1,3 = n1 + n3 + (x1 + x3 + x4)h2, the set {x1, x2, x3, x4, n1, n2, n3, h1, h2} is a separt-

ing set, and A = F2[x1, x2, x3, x4, n1, n2, n3, h1, h2] is a separating algebra. We shall

show that A is Cohen-Macaulay. We do this by proving that x4, n2, n1, x1, x2, x3, n3

forms a regular sequence. To obtain the ideal of relations between x1 ,x2, x3, x4, n1,

n2, n3, h1, and h2, we take the relation ideal of the ring of invariants and elim-

inate the variables h3 and h4. This ends up getting rid of the “bad” relations,

the ones that cause the ring of invariants not to be Cohen-Macaulay. If we view

x1, x2, x3, x4, n1, n2, n3, h1, h2 as variables, then we get A as a quotient of the polyno-

mial ring S = F2[x1, x2, x3, x4, n1, n2, n3, h1, h2], that is, A ∼= S/I. As A is a domain,

I is prime, and any element not contained in I is regular in A ∼= S/I. In particular,

x4 is regular sequence. The ideal (I, x4), is again prime. Since n2 does not belong to
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(I, x4), n2 is regular in A/(x4) ∼= S/(I, x4). The ideal (I, x4, n2) is again prime, and

since it does not contain n1, n1 is regular in A/(x4, n2) ∼= S/(I, x4, n2). The ideal

(I, x4, n2) is not prime, but it is primary, and so elements taken outside its radical are

regular in the quotient A/(x4, n2, n1) ∼= S/(I, x4, n2, n1). In particular, x1 is not in

the radical of (I, x4, n2, n1), and so x1 is regular in A/(x4, n2, n1) ∼= S/(I, x4, n2, n1).

The ideal (I, x4, n2, n1, x1) is again primary, and its radical does not contain x2. The

ideal (I, x4, n2, n1, x1, x2) is also primary, and its radical does not contain x3. Finally,

the ideal (I, x4, n2, n1, x1, x2, x3) is primary as well, and its radical does not contain

n3. We conclude that x4, n2, n1, x1, x2, x3, n3 forms a regular sequence as desired, and

so A is Cohen-Macaulay.

/



Chapter 5

Small Separating Sets

This chapter is all about geometric separating sets, and especially small ones. We

give a bound on the minimal size possible for a separating set over algebraically closed

fields, and compute some separating sets explicitely.

5.1 A bound on the size of Small Separating Sets

For reductive groups, Corollary 3.2.5 says separating sets must have at least n ele-

ments. In this section, we give an upper bound on the size of small separating sets

depending only on the dimension of the representation. Our result, however, holds

only over algebraically closed fields.

Proposition 5.1.1 1 If V is a n-dimensional representation of G, then a separating

set of size 2n+ 1 exists.

Proof. Suppose {f1, . . . , fs} is a finite separating set (we know such a set exists by

1This approach was suggested by Corrado De Concini and Friedrich Knop at a conference at the
Fields Institute in summer 2006 . Antonio Laface, then a postdoctoral fellow at Queen’s University
also provided some help in fixing up the details. It now appears that Gregor Kemper and Harm
Derksen were aware of this bound as early as 2004. Kemper did not appear to be aware of this bound
in his later publications on separating invariants.

47
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Proposition 3.2.2). We have the following commutative diagram

V = kn φ−→ ks

i ↓ ↓ j

Pn ψ−→ Ps

with

φ : (x1, . . . , xn) 7−→ (f1(x1, . . . , xn), . . . , fs(x1, . . . , xn)),

i : (x1, . . . , xn) 7−→ [1 : x1 : . . . : xn],

j : (y1, . . . , ys) 7−→ [1 : y1 : . . . : ys],

ψ : [x0 : x1 : . . . : xn] 7−→ [xd0 : F1(x0, x1, . . . , xn) : . . . : Fs(x1, . . . , xn)],

where d = maxi{deg fi}, and Fi is the result of the homogenization (using x0) of

fi to an homogeneous polynomial of degree d for all i.

Let H be an hyperplane in Ps. Given q /∈ H we can project Ps \ {q} on H from

q, and so get a map:

πq : Ps \ {q} → H = Ps−1.

Suppose this map is defined and injective on ψ(Pn). The image of the open affine

j(ks) is contained in an open affine U ⊂ Ps−1 and so the restriction of π to j(ks) gives

a map

τ : ks −→ U = ks−1.

As πq is injective on ψ(Pn), τ is injective on φ(kn). The map τ is given by

τ : (y1, . . . , ys) 7→ (τ1(y1, . . . , ys), . . . , τs−1(y1, . . . , ys)),

where the τi’s are polynomials

Then {hi = τi(f1, . . . , fs) | 1 ≤ i ≤ s − 1} separates. Indeed, take u, v ∈ V = kn

and suppose that hi(u) = hi(v) for each i, then as τ is injective on the image of

φ = (f1, . . . , fs), it follows that fj(u) = fj(v) for all 1 ≥ j ≥ s. Finally, since the fj’s

separate, f(u) = f(v) for all f ∈ k[V ]G.
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So whenever we can choose q such that the projection π from q onto H is injective

we can get a finite separating with one less element. The projection πq will be injective

on ψ(Pn) when any line going through q intersects ψ(Pn) in at most one point, i.e.,

when no secant of ψ(Pn) contains q. So picking a point q in

(Ps \H) ∩ (Ps \ sec(ψ(Pn))

will make the projection π injective on ψ(Pn). As long as neither of these sets is

empty, their intersection is nonempty (they are open sets). Thus, the intersection

will be empty if and only

dim(sec(ψ(Pn))) = s.

But,

dim(sec(ψ(Pn))) ≤ 2 dim(ψ(Pn)) + 1 ≤ 2n+ 1.

Indeed, ψ(Pn) has the same dimension as the ring of invariants, which, in turn, has

dimension less than n.

So when 2n+ 1 < s, we can get a separating set of size s− 1. This guarantees the

existence of a separating set of size at most 2n+ 1.

5.2 Small Separating Sets

In this section, we construct small separating sets for various families of examples. We

start with finite dimensional representations of cyclic groups, then consider abelian

subgroups of GL(2,C), and finally non-abelian subgroups of GL(2,C) with monomial

action.
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5.2.1 Finite Dimensional Representations of Finite Cyclic

Groups

Another interesting class of examples in invariant theory are the invariants of the rep-

resentations of finite cyclic groups. They are some of the best understood examples.

Proposition 5.2.1 If V is a n-dimensional representation of the cyclic group of order

m over a field k containing a primitive m-th root of unity, then there is a separating

set consisting of n+
(
n
2

)
monomials.

Proof. If V is a n-dimensional representation of the cyclic group of order m over a

field containing a primitive m-th root of unity, then there is a basis for which it is

given by:

σ 7→


ζm1 · · · 0 0

...
. . .

...
...

0 · · · ζmn−1 0

0 · · · 0 ζmn

 ,

where mi|m, and ζmi is a primitive mi-th root of unity. We will show that the set

E = {xmii , x
aj,k
j x

bj,k
k | i = 1, · · · , n, and 1 ≤ j < k ≤ n},

where aj,k is minimal such that there exist bj,k < mk with x
aj,k
j x

bj,k
k invariant, is a

geometric separating set.

If the xmii agree on u and v, then we know that ui = ζαimivi. Since by Proposition

5.2.3, for each pair (i, j), Ei,j = {xmii , x
ai,j
i x

bi,j
j , x

mj
j } is a geometric separating set

for the corresponding subrepresentation, we get that all the α’s are equal by looking

at each 2-dimensional subrepresentation corresponding to (xi, xj). Note that when

vi = 0, we already know that ui = 0, and putting any value for αi will do.
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Proposition 5.2.2 Let G = 〈σ〉 be the cyclic group of order m, and consider the

n-dimensional representation

σ 7→


ζd1
m · · · 0 0
...

. . .
...

...

0 · · · ζdn−1
m 0

0 · · · 0 ζm

 ,

where ζm is a primitive mth root of unity, and dn−1|dn−2| . . . |d1|m. Then there exists

a separating set of size 2n− 1.

Proof. For k = 2, · · · , 2n, for k odd, set

fk =
∑

1 ≤ i ≤ j ≤ n

i+ j = k

xix
di
dj

(m
di
−1)

j ,

and for k even, set

fk = x
m/di
k/2 +

∑
1 ≤ i ≤ j ≤ n

i+ j = k

xix
di
dj

(m
di
−1)

j ,

This coresponds to adding the terms on the diagonal of the following triangle:

x
m
d1
1 x1x

d1
d2

( m
d1
−1)

2 x1x
d1
d3

( m
d1
−1)

3 · · · x1x
d1

dn−1
( m
d1
−1)

n−1 x1x
d1( m

d1
−1)

n

x
m
d2
2 x2x

d2
d3

( m
d2
−1)

3 · · · x2x
d2

dn−1
( m
d2
−1)

n−1 x2x
d2( m

d2
−1)

n

x
m
d3
3 · · · x3x

d3
dn−1

( m
d3
−1)

n−1 x3x
d3( m

d3
−1)

n

. . .
...

...

x
m

dn−1

n−1 xn−1x
dn−1( m

dn−1
−1)

n

xmn
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By Proposition 5.2.1 the terms in the triangle form a separating set. We will

prove by induction on n that f2, . . . , f2n forms a geometric separating set. It suffices

to show that we can express all the terms of the triangle in terms of the diagonal

sums fi. If xn = 0, then the whole last column is zero, fn = 0, and by the induction

hypothesis, f2, . . . , fn−1 form a geometric separating set. Suppose xn 6= 0, then we

may divide by x
m
dn
n . We express the terms in the first n − 1 colums using elements

of the last colum that lie on the same line, or below, and we get elements of the

last column by substracting all the other terms of the appropriate fi. Doing this,

diagonal, by diagonal, starting at the bottom, will ensure that at each step we are

using only terms we already know. We have

x
m
di
i =

(
xix

di
dn

(m
di
−1)

n

)m
di

(xmn )

“
m
di
−1

” ,

and

xix
di
dj

(m
di
−1)

j =

xix
di(

m
di
−1)

n

xjxdj
„
m
dj
−1

«
n


di
dj

“
m
di
−1

”

(xmn )

“
m
di
−1

” .

and so we are done.

Although we cannot provide a proof, we believe that this “triangle trick” will work

in general. The problems we encounter when trying to come up with a proof is, on

one hand, that whether the trick works or not depends on how we order the primitive

roots of unity on the diagonal, on the other hand, it is a bit hard to find the correct

notation. Here is an example not covered by the proposition, for which we can make

the trick work.

Example 5.2.1 Let G be the cylic group of order 12, and let k be a field containing a
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primitive 12-th root of unity ζ12. We consider the representation given by

σ 7→



ζ6
12 0 0 0 0

0 ζ3
12 0 0 0

0 0 ζ4
12 0 0

0 0 0 ζ2
12 0

0 0 0 0 ζ2
12


.

Then by Proposition 5.2.1 the terms in the following triangle form a separating set:

x2
1 x1x

2
2 x1x

3
4 x1x

3
5

x4
2 x2

2x
3
4 x2

2x
3
5

x3
3 x3x

4
4 x3x

4
5

x6
4 x4x

5
5

x6
5

The empty spots correspond to the 2-dimensional representations which have poly-

nomial invariants. We will prove that x6
5, x4x

5
5, x6

4+x3x
4
5, x3x

4
4+x2

2x
3
5, x3

3+x2
2x

3
4+x1x

3
5,

x1x
3
4, x1x

2
2, and x2

1 form a separating set. We have

x6
4 =

(x4x
5
5)

6

(x6
5)

5 ,

and so x3x
4
5 = (x6

4 + x3x
4
5)− x6

4. Next,

x3x
4
4 =

x3x
4
5 (x4x

5
5)

4

(x6
5)

4 ,

and so x2
2x

3
5 = (x3x

4
4 + x2

2x
3
5)− x3x

4
4. Next,

x3
3 =

(x3x
4
5)

3

(x6
5)

2 ,

and

x2
2x

3
4 =

x2
2x

3
5 (x4x

5
5)

3

(x6
5)

3 ,

and so x1x
3
5 = (x3

3 + x2
2x

3
4 + x1x

3
5)− x3

3 − x2
2x

3
4. /
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5.2.2 Finite Subgroups of GL(2,C)

Example 5.2.2 (Finite abelian subgroups of GL(2,C)) Note that the results presented

here are a special case of the result presented by Neusel and Sezer for representations

of abelian groups. The separating sets we find here are of size 3, which is the minimum

possible for groups that are not reflection groups.

Following Huffman [24], if G is a finite abelian subgroup of GL(2,C) of exponent

e, then G ∼= Ze × Zf , where g = e/f ∈ Z. Let ζe be a primitive e-th root of unity.

Furthermore,

G =

〈 ζv1
e 0

0 ζv2
e

 ,

 ζge 0

0 ζgde

〉 ,
with (j, e) = 1, v1|e, v2|ej, (v1, v2) = 1, d|e, and (d, v1) = (d, v2) = 1 (see Lemma 2.1

in [24]).

Set m = e/v1 and n = ej/v2, then Huffman (Theorem 3.1 in [24]) proves that the

ring of invariants C[V ]G is generated by

{xm, yn} ∪ {xlfv2+k(l)mylfv1 | 0 ≤ lfv1 < n and 0 ≤ lfv2 + k(l)m < m}.

Note that for each l there is a unique k(l) satisfying the given property. Also, if

the ring of invariants is polynomial, there will be no l satisfying the condition. Fur-

thermore, in this case, we know automatically that there is a polynomial separating

algebra (as the ring of invariants separates).

Proposition 5.2.3 Suppose the ring of invariants is not polynomial, then the set

{xm, ym, xfv2+k(1)myfv1} separates.

Proof. First recall that as

{xm, yn, xlfv2+k(l)mylfv1 |0 < lfv1 < n, 0 < lfv2 + k(l)m < m}

generates the ring of invariants, it also separates. Thus, it will suffice to express these

invariants in terms of xm, yn, and xfv2+k(1)myfv1 . If xm = 0 at a point, then x = 0
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and so xlfv2+k(l)mylfv1 = 0 for all l. Note that yn is not determined when x = 0, and

so we really need it. For points where xm 6= 0, we have

xlfv2+k(l)mylfv1 =
(xfv2+k(1)myfv1)l

(xm)lk(1)−k(l)

/

Example 5.2.3 (Finite Non-abelian monomial subgroups of GL(2,C)) The separating

sets we construct here are of size 3 or 4. We do not know if the separating sets of

size 4 generate complete intersection rings. In any case 4 is smaller than 2n+ 1, the

bound we get in Proposition 5.1.1.

Consider finite non-abelian subgroups of GL(2,C) which have monomial action,

that is, each group element sends monomials to monomials. These groups corresponds

to type 2 of Huffman’s classification of finite subgroups of GL(2,C) ([24], Lemma 2.2).

Following Huffman, if G is a non-abelian finite subgroup of GL(2,C) with monomial

action, then

G =

〈 ζe 0

0 ζje

 ,

 1 0

0 ζge

 ,

 0 1

α 0

〉 ,
where ζe is a primitive e-th root of unity and α, a primitive 2b-th root of unity.

Moreover, the integers, e, g, f = e/g, b, and j satisfy the following four relations:

1. (e, j) = 1

2. g|(j2 − 1)

3. 2b|e

4. 2b

(2b,f)
|(j − 1)

Invariants are linear combinations of polynomials of the form xlyl and xkyl+βxlyk.

Furthermore, Huffman shows:
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Lemma 5.2.4 (Lemma 3.2 in [24])

If m = lcm
(

g
(g,j+1)

, 2b

(2b,f)

)
, then,

1. xlyl ∈ k[V ]G if and only mf |l;

2. if k 6= l, then xkyl+βxlyk ∈ k[V ]G if and only if e|(k+jl), f |l, f |k, and β = αl;

3. moreover if k 6= l and xkyl + βxlyk ∈ k[V ]G, then 2b|(k + l);

It follows that the invariants are linear combinations of polynomials in the set

E = E1 ∪ E2, where E1 =
{
xlmfylmf | l ∈ N

}
, and

E2 =
{
xkfylf + αlfxlfykf | g|(k + jl), where k 6= l ∈ N

}
.

Note that if xkfylf + αlfxlfykf is in E2, then part 3 of the lemma implies that

2b/(2b, f) divides k + jl.

We can, in fact, give a more precise description of the invariants in E2. But first,

we recall a well known result from number theory. We refer to [30], although this

result can be found in any book on elementary number theory.

Theorem 5.2.5 (Theorem 6.3 in [30]) If a, b, and c are integers, and set d =

(a, b), then the diophantine equation aw+ bu = c admits integer solutions if and only

if d|c, in which case the solutions are given by w = w0 − t bd , and u = u0 + ta
d
,where

t is any integer and w = w0, u = u0 gives a particular solution to the diophantine

equation.

We now go back to our situation.

Proposition 5.2.6 Let u0 be minimal among the positive integers for which there

exists an integer w0 such that gw0 − (j + 1)u0 = (g, j + 1). The invariants in E2 are

given by xkfylf +αlfxlfykf , where l = u0a+t g
(g,j+i)

, and k = u0a+t g
(g,j+i)

+a(g, j+1),

where a and t are integers such that u0a+ t g
(g,j+i)

≥ 0.
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Proof. On one hand, we show that if l and k are as above, then xkfylf + αlfxlfykf is

invariant. It suffices to show that g|(k + jl). We have

k + jl = u0a+ t g
(g,j+1)

+ a(g, j + 1) + j
(
u0a+ t g

(g,j+i)

)
= (j + 1)u0a+ (j + 1)t g

(g,j+i)
+ a(g, j + 1)

= (gw0 − (g, j + 1))a+ tg (j+1)
(g,j+1)

+ a(g, j + 1)

= gw0 + tg (j+1)
(g,j+1)

≡ 0 (mod g).

On the other hand, suppose that k and l satisfy g|(k+jl), that is, xkfylf+αlfxlfykf

is invariant. First, since k − l = k + jl − (j + 1)l, (g, g + 1) divides k − l. Hence,

k = l + a(g, j + 1), where a is an integer. Thus, g|(k + jl) translates to

gx = l + a(g, j + 1) + jl = (j + 1)l + a(g, j + 1),

for some integer x, and equivalently, gx− (j+ 1)l = a(g, j+ 1). By Theorem 5.2.5, it

follows that l = u1 +t ag
(g,j+1)

, where {w1,u1} is a particular solution to the diophantine

equation gw − (j + 1)u = ga. Finally, we note that w = aw0 and u = au0 give a

solution to the diophantine equation gw− (j + 1)u = ag, thus, l = au0 + t ag
(g,j+1)

, and

k = l + a(g, j + 1) = au0 + t ag
(g,j+1)

+ a(g, j + 1), for some integer t.

To make the following easier to read (or at least faster to write), let us introduce

a shorthand notation for invariants of the form xkfylf + αlfxlfykf . We will denote

the invariant xkfylf + αlfxlfykf by [k, l]. As

(xkfylf + αlfxlfykf )(xk
′fyl

′f + αl
′fxl

′fyk
′f ) =

x(k+k′)fy(l+l′)f + α(l+l′)fx(l+l′)fy(k+k′)f

+ αl
′f
(
x(k+l′)fy(l+k′)f + α(l+k′)fx(l+k′)fy(k+l′)f

)
,

we have

[k, l][k′, l′] = [k + k′, l + l′] + αl
′f [k + l′, l + k′].

What if k+ l′ = l+ k′ or k+ k′ = l+ l′ ? Well, first note that since k 6= l and k′ 6= l′,

these two equalities cannot be both satisfied at the same time. The term where we
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do not have equality will be invariant, indeed,

k + k′ + j(l + l′) = k + jl + k′ + jl′ ∼= 0 (mod g),

and

k + l′ + j(l + k′) = k + jl + l′ + jk′ ∼= l′ + j(−jl′) ∼= 0 (mod g).

It follows that even for the term where there is equality, the corresponding element is

invariant, and so it is either zero or 2 times a power of xmfymf . In this new notation,

elements of E2 are of the form:

[au0 + a(g, j + 1) + t
g

(g, j + 1)
, au0 + t

g

(g, j + 1)
].

We can extend the new notation to elements of E1 by observing that xmfymf corre-

sponds to 1
2
[m,m].

Proposition 5.2.7 Put

h1 = 1
2
[m,m],

h2 = [g, 0],

h3 = [u0 + (g, j + 1), u0], and

h4 =
[
u0 + (g, j + 1) + g

(g,j+1)
, u0 + g

(g,j+1)

]
.

Then, {h1, h2, h3, h4} is a separating set. If m = g/(g, j + 1), then h4 = h1h3, and so

{h1, h2, h3} is a separating set. Furthermore, if g divides j + 1, then only one of h3

or h4 is needed to separate

Proof. We will express all the elements of E in terms of h1, h2, h3, and h4. Clearly,

elements of E1 are powers of h1. Before we consider elements of E2, note that since

e = fg and 2b|e, then 2b

(2b,f)
|g, and so m|g.

On the points where h1 = 0, one of x or y must be zero and so all the elements

of E are zero except for those of the form xkf + ykf or ylf + αlfxlf . Let us see how
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the conditions given in the lemma translate in these cases. For invariants of the form

xkf +ykf we get g|k. On the other hand, for invariants of the form ylf +αlfxlf , we get

g|jl, which implies that g|l, and so αlf = 1. Therefore, the only non-zero elements of

E are of the form xke + yke, for some k ∈ N. As one of x or y must be zero, these are

clearly powers of f2.

Before considering points where h1 6= 0, we establish a few facts. First, we show

that if [k, l] is in E2, then m|(k+ l). Indeed, as g|(k+ jl), k = ga− jl for some a ∈ Z

and so

l + kj = l + j(ga− jl) = (1− j2)l + jga ≡ 0 (mod g),

i.e., g|(j + kl). It follows that g divides k + jl + l + jk = (j + 1)(k + l), and so that

g/(g, j + 1) divides k + l. But 2b/(2b, f) divides k + l, therefore, m|(k + l).

Now, we prove that m|2g/(g, j + 1). Suppose [k1, l1] and [k2, l2] denote invariants

such that k1 − k2 = l1 − l2 = g/(g, j + 1), this is possible because of the previous

proposition and (in particular the two invariants will correspond to the same a), then

2 g
(g,j+1)

= 2(k1 − k2) = k1 − k2 + l1 − l2
= k1 + l1 − (k2 + l2) ≡ 0 (mod m).

As g/(g, j+ 1) divides m, this leaves only two possibilities, either m = g/(g, j+ 1) or

m = 2g/(g, j + 1).

As [k, l] = αl[l, k], it is enough to consider the cases where k > l. For any

invariant [k, l] in E2, we will prove that one can express [k, l] in terms of h1, h2, h3,

h4 by (strong) induction on the difference k − l. Suppose k − l = (g, j + 1), then

k = u0 + (g, j + 1) + t g
(g,j+1)

and l = u0 + t g
(g,j+1)

for some t ∈ Z. If m = g
(g,j+1)

,

then [k, l] = ht1h3. If m = 2 g
(g,j+1)

and t = 2s, [k, l] = hs1h3, but if t = 2s + 1, then

[k, l] = hs1h4.

Now, assume the result holds for invariants such that k− l < a(g, j+ 1). Suppose

that k− l = a(g, j + 1), then k = au0 + a(g, j + 1) + t g
(g,j+1)

and l = au0 + t g
(g,j+1)

for
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some t ∈ Z. If m = g
(g,j+1)

, then

[k, l] = ht1([(a− 1)u0 + (a− 1)(g, j + 1), (a− 1)u0]h3

− [au0 + (a− 1)(g, j + 1), au0 + (g, j + 1)]).

As au0 + (a − 1)(g, j + 1) − (au0 + (g, j + 1)) = (a − 2)(g, j + 1), by the induction

hypothesis, we are done. Note that if a = 2 by a previous remark the last element is

either zero or the double of a power of h1. If m = 2 g
(g,j+1)

and t = 2s, then

[k, l] = hs1([(a− 1)u0 + (a− 1)(g, j + 1), (a− 1)u0]h3

− [au0 + (a− 1)(g, j + 1), au0 + (g, j + 1)]).

Conversely, if m = 2 g
(g,j+1)

and t = 2s+ 1, then

[k, l] = hs1([(a− 1)u0 + (a− 1)(g, j + 1), (a− 1)u0]h4

− [au0 + (a− 1)(g, j + 1) + g
(g,j+1)

, au0 + (g, j + 1) g
(g,j+1)

]).

Hence, by the principle of induction, we are done, and {h1, h2, h3, h4} separates.

Now, suppose g divides j + 1. Then

m = lcm

(
g

(g, j + 1)
,

2b

(2b, f)

)
= lcm

(
1,

2b

(2b, f)

)
=

2b

(2b, f)

But m divides 2g/(g, j+1), i.e., m|2. It follows that 2b/(2b, f) divides 2, which means

that 2b|2f . Therefore, 2b divides either u0f or (u0 + 1)f = (u0 + g
(g,j+1)

)f , i.e.,

αu0f = 1 or α(u0+ g
(g,j+1)

)f = 1.

If m = 1 = g
(g,j+1)

, then h4 = h3h1, and so {h1, h2, h3} separates.

If m = 2, then h1 = 1
2
[2, 2], and there are two cases to consider. If u0 is even,

h3 = [u0 + (g, j + 1), u0] = [u0 + g, u0] = h
u0
2

1 h2,

and so {h1, h2, h4} separates. If u0 is odd,

h4 = [u0 +
g

(g, j + 1)
+ (g, j + 1), u0 +

g

(g, j + 1)
] = [u0 + 1 + g, u0 + 1] = h

u0+1
2

1 h2,

and so {h1, h2, h3} separates.
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/

A next step could be to find separating sets, preferably of minimal size, for the

remaining types of finite subgroups of GL(2,C).



Chapter 6

New Separating Sets From Old

Separating Sets

6.1 Polarization

The purpose of this section is to present methods for obtaining new separating sets

from known separatings sets. We discuss polarization and the Noether map.

Classically, polarization is a method for obtaining vector invariants. In character-

istic zero, and in the non-modular case in general, one obtains a generating set for

the invariants of a certain number of copies of a representation V , from the invariants

of a smaller number of copies of the same representation V . But in the modular case,

the polarization of a generating set does not generate the ring of invariants in gen-

eral. However, Draisma, Kemper, and Wehlau [14], as well as Domokos [13] showed

that the polarization of separating invariants, or some weaker version of polarization,

yields separating invariants. We adapt their results to our new notion of separat-

ing algebra, and highlight the relation between geometric separating invariants and

polarization.

We start with the definition of polarization.

62
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Definition 6.1.1. Let V and W be finite dimensional vector spaces over any field

k, and write V m for the direct sum of m copies of V . k[V m ⊕W ] denotes the ring

of functions on V m ⊕W . If {x1, . . . , xk} is a basis for V ∗ and {y1, . . . , yl} is a basis

for W ∗, then we obtain a basis {xi,ν | i = 1, . . . ,m, ν = 1, . . . , k} ∪ {y1, . . . , yl} of

(V m ⊕ W )∗ by defining xi,ν(v1, . . . , vm, w) = xν(vi), and yi(v1, . . . , vm, w) = yi(w).

Then

k[V m ⊕W ] = k[xi,ν , yj | i = 1, . . . ,m, ν = 1, . . . , k, i = 1 . . . , l].

Let n be another positive integer, and for i = 1, . . . ,m and j = 1, . . . , n, let ai,j be

indeterminates. Define a homomorphism

Φ : k[V m ⊕W ] −→ k[V n ⊕W ][a1,1, . . . , am,n]

xi,ν 7−→
∑n

j=1 ai,jxj,ν

yi 7−→ yi

.

For any f ∈ k[V m ⊕ W ] the polarization of f , Polnm(f) is the set of all non-zero

coefficients of Φ(f) seen as a polynomial in the ai,j’s.

The following theorem of Weyl, and especially the fact that it does not hold in the

modular case (See Example 0.2 in [14]), motivated the investigation of polarization

from the point of view of separating invariants.

Theorem 6.1.1 (Weyl, Theorem 2.5A in [40]) Let G be a group acting linearly

on two finite dimensional vector spaces V and W over a field k of characteristic zero.

Let n and m be positive integers such that m ≥ min{dimk(V ), n}. If S ⊂ k[V m⊕W ]G

is a generating set of invariants, then Polnm(S) ⊂ k[V n ⊕W ]G is also generating.

Switching our focus to geometric separating invariants yields a separating invari-

ants version of Weyl’s result.

Theorem 6.1.2 (c.f. Theorem 1.4 in [14]) Let G be a group acting linearly on

two finite dimensional vector space V and W over a field k. Let n and m be positive
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integers such that m ≥ min{dimk(V ), n}. If S ⊂ k[V m⊕W ] is a geometric separating

set of invariants, then Polnm(S) ⊂ k[V n ⊕W ] is also a geometric separating set.

Proof. If S ⊂ k[V m ⊕W ]G is a geometric separating set, then it also is a geometric

separating set in k[V
m⊕W ]G, applying Theorem 1.4 of [14], we get that Polnm(S) is

a geometric separating set in k[V
n ⊕W ]G. But Polnm(S) ⊂ k[V n ⊕W ], thus Polnm(S)

is a geometric separating set in k[V n ⊕W ].

In the case of finite groups, we can get away with a computationally “cheaper”

alternative to polarization.

Definition 6.1.2. As before, let V and W be finite dimensional vector spaces over

any field k. The set {xi | i = 1, . . . , k}∪{y1, . . . , yl} of V m⊕W is a basis for (V ⊕W )∗,

and

k[V ⊕W ] = k[xi, yj | i = 1, . . . , k, i = 1 . . . , l].

Let n be a positive integer, and U be an indeterminate. Define an homomorphism

Φ : k[V ⊕W ] −→ k[V n ⊕W ][U ]

xi 7−→
∑n

j=1 U
j−1xi,j

yi 7−→ yi

.

For any f ∈ k[V ⊕W ] the cheap polarization of f , Polncheap(f), is the set of all non-zero

coeffincients of Φ(f) seen a a polynomial in a.

Theorem 6.1.3 (c.f. Theorem 2.4 in [14]) Let G be a finite group, and let V and

W , be finite dimensional representations of G. Suppose S ⊂ k[V ⊕W ] is a geometric

separating set, then Polncheap(S) ⊂ k[V n ⊕W ]G is also a geometric separating set.

Proof. We prove this result as a consequence of Theorem 2.4 in [14] in the same way

as was done for the previous result.

If S ⊂ k[V ⊕ W ]G is a geometric separating set, then it also is a geometric

separating set in k[V ⊕ W ]G. As k is infinite, we apply Theorem 2.4 of [14], and



CHAPTER 6. NEW SEPARATING SETS FROM OLD SEPARATING SETS 65

obtain that Polncheap(S) is a geometric separating set in k[V
n⊕W ]G. But Polncheap(S) ⊂

k[V n ⊕W ], thus Polncheap(S) is a geometric separating set in k[V n ⊕W ].

In contrast with Theorem 2.4 of [14], we do not have to assume that either S

generates k[V ⊕W ]G as a k-algebra, or S is a (geometric) separating set and k large

enough. The following example illustrates that this requirement is unavoidable when

considering separating sets rather than geometric separating sets:

Example 6.1.1 (Example 3.2.1 continued) We revisit Example 3.2.1 once more. Recall

that G was the cyclic group of order 3 acting on a two dimensional vector space over

F2 via

σ 7→

 1 1

1 0

 .

Then the ring of invariants F2[V ]C3 is minimally generated by 3 polynomials f1, f2,

and f3. Since all three correspond to the same function over V , picking any one gives a

separating set. Say we pick f1 = x2+xy+y2. We will see that the cheap polarization of

f1 does not yield a separating set in F2[2V ]C3 . If x1, y1 are the coordinates for the first

copy of V , and x2, y2 the coordinates for the second copy, then the cheap polarization

of f1 is the set of coefficients of the following polynomial in the indeterminate U :

(x1 + Ux2)2 + (x1 + Ux2)(y1 + Uy2) + (y1 + Uy2) =

(x2
1 + x1y1 + y2

1) + (x1y2 + y1x2)U + (x2
2 + x2y2 + y2

2)U2,

i.e., Polncheap(f1) = {x2
1 + x1y1 + y2

1, x1y2 + y1x2, x
2
2 + x2y2 + y2

2}. The two points

(1, 1, 1, 1), and (1, 1, 1, 0) in V 2 clearly belong to distinct orbits, but all 3 polynomials

in Polncheap(f1) take the same value on both points. Since for finite groups the ring of

invariants distinguishes the orbits, we conclude that Polncheap(f1) is not a separating

set. /
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In the case of the action of a cyclic group of order 2 acting via multiplication

on a n-dimensional vector space, the separating set obtained via cheap polarization

corresponds to the separating set obtained from the “triangle trick” from Section 5.2.1:

Example 6.1.2 (c.f. Section 5.2.1) Let k be a field of characteristic not 2. Let G be

the cyclic group of order 2. Suppose the representation V consist of n copies of the

non-trivial faithful 1-dimensional representation W of G. k[W ]G = k[x2]. Polncheap(x2)

is the set of coefficients of(
n∑
i=1

xiU
i−1

)2

=
∑

0 ≤ k ≤ 2(n− 1)

2|k

x2
k+2

2

+

2(n−1)∑
k=0

( ∑
i+j=k+2

xixj

)
Uk.

The coefficients of the various powers of U correspond to the sum of the terms on the

diagonals of the triangle. The set of elements of the following triangle correspond to

the full polarization of x2.

x2
1 x1x2 x1x3 · · · x1xn−1 x1xn

x2
2 x2x3 · · · x2xn−1 x2xn

x2
3 · · · x3xn−1 x3xn

. . .
...

...

x2
n−1 xn−1xn

x2
n

/

6.2 The Noether Map

In this section we consider the relationship between geometric separating invariants

and the Noether map, which was introduced by Emmy Noether herself in her 1915

paper [35]. We became interested in the Noether map (in the context of separating



CHAPTER 6. NEW SEPARATING SETS FROM OLD SEPARATING SETS 67

invariants) while reading [33]. We eventually realised that related results had been

proved in a previous paper by Campbell, Hughes, and Pollack [5]. We will present a

hybrid of the approaches suggested by the two papers.

We start by defining the Noether map. Let G be a finite group acting on the

n-dimensional vector space V over the field k. Let {ei} be a basis for V , and {xi} be

the dual basis for V ∗. Let kG be the group algebra. Set V (G) = kG⊗ V , then

V (G) =
⊕
σ∈G

n⊕
i=1

σ ⊗ ei,

that is, {σ ⊗ ei | σ ∈ G, i = 1, . . . , n} forms a basis for V (G). Let {xσ,i} be the dual

basis for V (G)∗. The group Σ|G| of permutations on the |G| elements elements of G

acts on V (G) in the following way: if τ is in Σ|G| and, σ in G, then, for 1 ≤ i ≤ n,

τ · (σ ⊗ ei) = (τ(σ))⊗ ei.

The induced action on V (G)∗ is given as follows

(τ · xσ,i)(υ ⊗ xj) = xσ,i((τ
−1(υ))⊗ xj) =

 1 if τ−1(υ) = σ and i = j,

0 otherwise,

that is, τ · xσ,i = xτ(σ),i.

Define a map ηG : k[V (G)] → k[V ] of k-algebras by ηG(xσ,i) = σ · xi. Let G act

on V (G) via γ · (σ⊗ ei) = (γσ)⊗ ei, where γ and σ are elements of G, and 1 ≤ i ≤ n.

This gives an embedding of G into Σ|G|. The map ηG is G-equivariant, as for γ and

σ in G, and 1 ≤ i ≤ n,

ηG(γ · xσ,i) = ηG(xγσ,i) = (γσ) · xi = γ · (σ · xi) = γ · ηG(xσ,i).

As invariants under Σ|G| are, in particular, invariants under G, we can define the

Noether map η
Σ|G|
G : k[V (G)]Σ|G| → k[V ]G as the restriction of ηG to the ring of

invariants k[V (G)]Σ|G| . This is the definition found in [5]. In [33], the Noether map

ηGG : k[V (G)]G → k[V ]G is the restriction of ηG to the invariants of G.
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We can now prove the following proposition, Proposition 4 in [5]. In that paper,

the hypotheses are stronger, but the proof provided actually requires only what we

include here.

Proposition 6.2.1 (Proposition 4 in [5]) If G is a finite group, then

1.
̂

Im(η
Σ|G|
G ) ⊂ k[V ]G,

2. ∀f ∈ k[V ]G, f |G| ∈ Im(η
Σ|G|
G ).

Proof. The first part follows from Corollary 3.2.10 since Im(η
Σ|G|
G ) ⊂ k[V ]G.

Now, take f ∈ k[V ]G. Define h =
∏

σ∈G f(xσ,1, . . . , xσ,n) ∈ k[V (G)]. Then h is

Σ|G|-invariant, and η
Σ|G|
G (h) = f |G|.

Before we give our new proof of Proposition 1.2 of [33], we recall the definition of

the transfer and a result concerning it.

Definition 6.2.1. Let G be a finite group. The transfer TrG is defined as the map

TrG : k[V ] −→ k[V ]G

f 7−→
∑

σ∈G σ · f.

Lemma 6.2.2 (See [33] and [34]) Let G be a finite group. If TrGis the transfer,

then,

1. Im(TrG) ⊂ Im(η
Σ|G|
G ), and

2. Q(k[Im(TrG)]) = k(V )G. Therefore, Q(Im(ηGG)) = k(V )G.

Proof. 1. If h ∈ Im(TrG), then there exists a f ∈ k[V ] such that

h = TrG(f) =
∑
σ∈G

σ · f.

The element

H =
∑
σ∈G

σ · f(x1,1, . . . , x1,n) ∈ k[V (G)]
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of k[V (G)] is Σ|G|-invariant, and so h = ηG(H) = η
Σ|G|
G (H).

2. By 1, we have the inclusion Q(k[Im(TrG)]) ⊂ k(V )G. Take f ∈ k[V ]G, and take

h ∈ k[V ] such that TrG(h) 6= 0 (such a h exists, by Lemma 3.7.2 in [1]), then

f =
fTrG(h)

TrG(h)
=

TrG(fh)

TrG(h)
∈ Q(k[Im(TrG)]).

Taking fields of quotient on each side gives the second inclusion.

Corollary 6.2.3 (Proposition 1.2 in [33]) If G is a finite group,then,
˜

Im(η
Σ|G|
G ) =

k[V ]G.

Proof. By part 2 of Lemma 6.2.2, Im(η
Σ|G|
G ) and k[V ]G have the same field of fractions,

and by 2 of Proposition 6.2.1 the extension Im(η
Σ|G|
G ) ⊂ k[V ]G is integral, thus we

obtain the desired conclusion.

In the case of p-groups we get the following easy corollary to Proposition 6.2.1.

Corollary 6.2.4 If G is a p-group, and k has characteristic p > 0, then Im(η
Σ|G|
G ) is

a geometric separating algebra.

Proof. Since |G| is a power of p, Proposition 6.2.1 implies that
̂

Im(η
Σ|G|
G ) = k[V ]G,

and then Lemma 3.2.10 implies Im(η
Σ|G|
G ) separates.

In fact, this result holds for finite groups in general:

Proposition 6.2.5 If G is a finite group, then Im(η
Σ|G|
G ) contains the coefficients of

the polynomial FT,U . In particular, Im(η
Σ|G|
G ) is a geometric separating algebra.

Proof. Consider the polynomial H defined as follows

H =
∏
σ∈G

(
T −

n∑
i=1

U i−1xσ,i

)
,
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where T and U are formal variables. Its coefficients are Σ|G|-invariants. Taking the

image of these coefficients under the Noether map, we get the coefficients of

FT,U =
∏
σ∈G

(
T −

n∑
i=1

U i−1σ · xi

)
.

Remark 6.2.1. An alternate proof of this result is found in the example ending the

introduction of Neusel and Sezer’s recent paper [32]. They make use of Proposition

2.2 of [33], where they show that the purely inseparable closure of the image of the

Noether map is the ring of invariants. Of course, their Noether map has a slightly

bigger image (there are more G-invariants than Σ|G|-invariants).

Proposition 6.2.5 can be extended further:

Proposition 6.2.6 Let G be a finite group. The Noether map sends geometric sep-

arating sets to geometric separating sets.

Proof. Take V (G)//Σ|G| = Spec(k[V (G)]Σ|G|). By Proposition 6.2.5, the image of the

transfer is a geometric separating algebra. Equivalently, the morphism of schemes

φ : V//G → V (G)//Σ|G| corresponding to the Noether map η
Σ|G|
G is radicial. Indeed,

as G is finite, the ring of invariants is finitely generated, and we may use the second

geometric formulation of separation.

If B ⊂ k[V (G)]Σ|G| is a geometric separating algebra, and A = η
Σ|G|
G (B), then the

following diagram commutes:

k[V (G)]Σ|G|
η

Σ|G|
G−−−→ k[V ]G

ι1

x xι2
B −−−−−→

η
Σ|G|
G ◦ι1

A,
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where ι1, and ι2 are the inclusion morphism. TakingW = Spec(A), andX = Spec(B),

it follows that the corresponding diagram commutes as well:

V (G)//Σ|G|
φ←−−− V//G

π1

y yπ2

X ←−−−
ψ

W.

As B is a geometric separating algebra, π1 is radicial. As φ is also radicial, Proposition

3.5.6 of [17] implies that π1 ◦ φ = ψ ◦ π2 is also radicial, and then so is π2. Hence,

we conclude that A is a geometric separating algebra, and so the Noether map sends

geometric separating separating sets to geometric separating sets.

6.3 The Relationship between k[coeffFT,U ], the Im-

age of the Noether Map, and Cheap Polariza-

tion

In this section we explore the relationship between k[coeffFT,U ], the Image of the

Noether map and Cheap Polarization. Recall that we proved that the image of

the Noether map is a geometric separating algebra by showing that it contains the

coefficients of FT,U , and thus k[coeffFT,U ] ⊂ Im(η
Σ|G|
G ). How close are k[coeffFT,U ]

and Im(η
Σ|G|
G ) in general? We consider a few examples.

Example 6.3.1 (Example 1 in [33]) Let k be a field of characteristic 2. Set

G = 〈σ〉 =

〈
0 1 0

1 0 0

0 0 1


〉
,

then the ring of invariants is k[V ]G = k[x1 + x2, x1x2, x3] and

Im(η
Σ|G|
G ) = k[x1 + x2, x1x2, x

2
3, (x1 + x2)x3].
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In [33] they are interested in a slightly different Noether map ηGG, but in the present

case G = C2 = Σ2, and so a new computation is not required. We consider the

separating algebra k[coeffFT,U ]. It is generated by the coefficients of

FT,U =
(
T −

∑3
i=1 U

i−1xi
) (
T −

∑3
i=1 U

i−1σ · xi
)

= T 2 − T [(x− 1 + x2) + U(x1 + x2)] + x1x2 + U(x2
2 + x2

1)

+ U2(x3(x1 + x2) + x1x2) + U3(x3(x1 + x2)) + U4x2
3.

Thus,

k[coeffFT,U ] = k[x1 + x2, x1x2, x
3
3, (x1 + x2)x3] = Im(η

Σ|G|
G ).

/

Example 6.3.2 Let k be a field of characteristic 3. Let G be the cyclic group of order

3, and let V be the 2-dimensional irreducible representation, i.e.,

G = 〈σ〉 =

〈 1 0

2 1

〉 ∈ GL(V ).

The ring of invariants is k[V ]G = k[x2, x
3
1 + 2x1x

2
2]. Consider the polynomial FT,U

given by

FT,U = (T − (x1 + Ux2))(T − ((x1 + x2) + Ux2)(T − ((x1 + 2x2) + Ux2)

= T 3 + T (2x2
2) + (x3

1 + 2x1x
2
2) + U(2x3) + U3(x− 23),

and so k[coeffFT,U ] = k[x2
2, x

3
2, x

3
1 + 2x1x

2
2]. Clearly Q(k[coeffFT,U ]) = k(V )G, but

k[coeffFT,U ] 6= k[V ]G.

Now, let’s look at the image of the Noether map. For this purpose, we need to

compute k[V (G)]Σ|G| .

Using Magma [2], we find that the ring of invariants k[V (G)]Σ|G| is generated

minimally by 10 polynomials which we omit here for space.
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Their image under the Noether map η
Σ|G|
G , is

{2x2
2, x

3
2, x

3
1 + 2x1x

2
2, x

4
2 + 2x1x

3
2 + 2x3

1x2},

and so the image of the Noether map is k[x2
2, x

3
2, x

3
1 + 2x1x

2
2] = k[coeffFT,U ]. /

In the last two examples, the image of the Noether map coincided with k[coeffFT,U ],

but this is not true in general.

Example 6.3.3 Let k be a field of characteristic 5, and let G be the eighth group of the

Shephard-Todd classification of reflection groups. When acting on a 2-dimensional

vector space over k it is given by

G =

〈 1 0

0 2

 ,

 4 3

3 4

〉 ⊂ GL(V ).

This is a non-modular reflection group, and so its ring of invariants is polynomial. On

the other hand, if we compute the coefficients of FT,U , using Magma [2], we find that

the k-algebra they generate, k[coeffFT,U ], is minimally generated by 5 invariants. /

Combined with cheap polarization, the Noether map gives us a method to obtain

separating invariants for any finite dimensional representation of any finite group.

Indeed, if V is a n-dimensional representation of a finite groupG, start with generators

for the symmetric polynomials in |G| variables, i.e., generators for the invariants

of the permutation representation of the symmetric group on |G| elements. Then,

cheap-polarize them to n copies of the permutation representation of Σ|G| to obtain

a separating set for the action of Σ|G| on V (G). Finally, apply the Noether map.

Example 6.3.4 Let G be as in Example 6.3.2. Let W be the permutation represen-

tation of Σ|G| = Σ3,where {x1, xσ, xσ2} is the dual basis for U∗. Then, by Theorem

3.10.1 of [11], the ring of invariants k[U ]Σ3 is given by

k[U ]Σ3 = k[x1 + xσ + xσ2 , x1xσ + x1xσ2 + xσxσ2 , x1xσxσ2 ].
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The cheap polarization of the generators give us

Pol2cheap(x1 + xσ + xσ2) = {x1,1 + xσ,1 + xσ2,1, x1,2 + xσ,2 + xσ2,2},

Pol2cheap(x1xσ + x1xσ2 + xσxσ2) =

{x1,1xσ,1 + x1,1xσ2,1 + xσ,1xσ2,1, x1,2xσ,1 + x1,2xσ2,1 + xσ,2xσ2,1

+ x1,1xσ,2 + x1,1xσ2,2 + xσ,1xσ2,2, x1,2xσ,2 + x1,2xσ2,2 + xσ,2xσ2,2},

and

Pol2cheap(x1xσxσ2) =

{x1,1xσ,1xσ2,1, x1,2xσ,1xσ2,1 + x1,1xσ,2xσ2,1 + x1,1xσ,1xσ2,2,

x1,1xσ,2xσ2,2 + x1,2xσ,1xσ2,2 + x1,2xσ,2xσ2,1, x1,2xσ,2xσ2,2}.

Applying the Noether map we obtain

η
Σ|G|
G (Pol2cheap(x1 + xσ + xσ2)) = {0, 0}

η
Σ|G|
G (Pol2cheap(x1xσ + x1xσ2 + xσxσ2)) = {2x2

2, 0, 0}

η
Σ|G|
G (Pol2cheap(x1xσxσ2)) = {x3

1 − x2
2x1, 2x

3
2, 0, x

3
2}

This corresponds exactly to the coefficients of FT,U .

In the previous example the process of polarizing the elementary symmetric poly-

nomials and then applying the Noether map gives us the coefficients of the T, U -

separating polynomial. This is not a coincidence:

Proposition 6.3.1 Let G be a finite group, and let V be a n-dimensional represen-

tation over k. The process of cheap-polarizing the elementary symmetric polynomial

on |G| variables to n copies, and then applying the Noether map yields the coefficients

of the T, U-separating polynomial FT,U .

Proof. Let W be the permutation representation of Σ|G|, and let {xσ | σ ∈ G} be

the dual basis for W ∗. Also, as before, {xσ,i | σ ∈ G, 1 ≥ i ≥ n} is the basis for
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V (G)∗. We assume here, that the Noether map does not affect T and U , and that

cheap-polarization does not affect T . Then since both maps are multiplicative, we

have:

FT,U =
∏

σ∈G (T −
∑n

i=1 U
i−1σ · xi)

=
∏

σ∈G

(
T −

∑n
i=1 U

i−1η
Σ|G|
G (xσ,i)

)

= η
Σ|G|
G

(∏
σ∈G (T −

∑n
i=1 U

i−1xσ,i)
)

= η
Σ|G|
G

(∏
σ∈G

(
T − Polncheap(xσ)

))
= η

Σ|G|
G

(
Polncheap

(∏
σ∈G (T − xσ)

))
Finally, as the coefficients of

∏
σ∈G (T − xσ) are the elementary symmetric polyno-

mials in the xσ’s, which are, by Theorem 3.10.1 of [11], the generators of the ring of

invariants of the permutation representation of Σ|G|. Thus, we are done.



Chapter 7

Concluding Remarks

The main results of this thesis are found in Chapters 3 and 4. They are the geometric

formulations of the notion of geometric separating algebra, and the results linking the

existence of nice geometric separating algebras to the geometry of the representation.

The results presented in this text shed light on many avenues for future work.

Although the focus of this text has been mostly on finite groups, the two formula-

tions for the notion of a geometric separating algebra, presented in Chapter 3, make

sense for reductive groups in general. It would be interesting to study more general

reductive groups. It may be that we could get a good enough handle of the separating

scheme to link its geometry to the geometry of the representation.

Another interesting avenue would be to consider actions of algebraic groups on

more general geometric objects. It may be that our definitions still make sense, and

we may be able to reproduce, or even extend some of our results.

More concretely, it has not yet been established if the converses of the main results

of Chapter 4 hold. Also, a proof that there is a separating set of size 2n− 1, for any

diagonal representation still escapes us.
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Appendix A

Commutative Algebra: Some

Definitions, Results and Notation

Definition A.0.1. Let A be a comutative ring, and let S be a multiplicative subset

(i.e. a set closed under multiplication), We define the localization S−1A as the quotient

of A× S by the equivalence relation v defined as follows:

(a, s) v (a′, s′)⇔ as′ − a′s is a zero divisor,

for any (a, s), (a′, s′) ∈ A× S.

Definition A.0.2. Let A be an integral domain, then Q(A) denotes its field of

fractions, namely the localization S−1A, where S = {s ∈ A | s 6= 0}.

The construction given in this definition is exactly the construction used to obtain

the rational numbers from the integers. In this light, for convenience we will use the

following notation, analogous to the notation of rational numbers, for the field of

fractions of any domain A:

Q(A) =

{
f

g
| f, g ∈ A , g 6= 0

}
.
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Lemma A.0.2 (known) Let k ⊂ F be an extension of fields of characteristic p ≥ 0,

and consider the tensor product F ⊗k F . If for f ∈ F ,

f ⊗ 1− 1⊗ f = 0

in the tensor product F ⊗k F , then f ∈ k.

Proof. Let {fα}α∈A be a basis for F over k. Then {fα ⊗ fβ}(α,β)∈A×A is a basis for

the tensor product F ⊗k F over k. Suppose

f ⊗ 1− 1⊗ f = 0,

and assume f =
∑

α∈A aαfα, then

0 =
(∑

α∈A aαfα
)
⊗ 1− 1⊗

(∑
α∈A aαfα

)
=

=
∑

α∈A aα(fα ⊗ 1)−
∑

α∈A aα(1⊗ fα)

Let α0 be the only α ∈ A such that fα ∈ k, then aα0(fα0⊗1−1⊗fα0) = 0 and all

the remaining terms are distinct basis elements. It follows that aα = 0 for all α 6= α0,

and so f ∈ k.

Definition A.0.3. Let B be a k-algebra. We define a map δ:

δ : B → B ⊗k B

b 7→ b⊗ 1− 1⊗ b.

Within this document we will call any such map δ. Which one we refer to should be

clear from the context.

Proposition A.0.3 Let B be a k-algebra, and let A ⊂ B be a subalgebra. Then

B ⊗A B ∼=
B ⊗k B

(δ(A))
.
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Proof. It will suffice to show that B⊗kB
(δ(A))

satisfies the universal property defining the

tensor product B ⊗A B. Define

θ : B ×B −→ B⊗kB
(δ(A))

(b1, b2) 7−→ b1 ⊗ b2 + (δ(A))
.

The k-bilinearity of the tensor product insures that θ is a well defined k-bilinear map.

Take a ∈ A, and (b1, b2) ∈ B ×B, then

θ(ab1, b2) = (ab1)⊗ b2 + (δ(A))

= (a⊗ 1)(b1 ⊗ b2) + (1⊗ a− a⊗ 1)(b1 ⊗ b2) + (δ(A))

= (1⊗ a)(b1 ⊗ b2) + (δ(A))

= b1 ⊗ (ab2) + (δ(A))

,

thus, θ is A-linear.

Let C be any A-algebra and let f : B × B → C be a A-linear map. We can then

define a map f̃ : B⊗kB
(δ(A))

→ C by setting

b1 ⊗ b2 + (δ(A)) 7→ f(b1, b2),

and extending linearly. This map is well defined since

f̃(1⊗ a− a⊗ 1 + (δ(A))) = f(1, a)− f(a, 1) = af(1, 1)− af(1, 1) = 0,

and f = f̃ ◦ θ by construction.

Definition A.0.4. Let A be a domain. We define the normalization Ã of A to be

the integral closure of A in its field of fractions Q(A). If Ã = A, the we say that A is

a normal domain.

Definition A.0.5. Let A ⊂ B be domains of characteristic p > 0, then the purely

inseparable closure of A in B is defined to be

Â = {f ∈ B | ∃r ∈ N, fpr ∈ A}.

If A and B have characteristic zero, we set Â = A.
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