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ABSTRACT 

Daily and Intradaily Stochastic Covariance: 
Value at Risk Estimates for the Foreign Exchange Market 

George Komas 

The importance of time varying voIatility in securities prices (e.g. GARCH) has 

by now been arnply established in the literature, both in terrns of the magnitude 

and pervasiveness of the phenomenon, and in terms of its significance for risk 

management in institutional portfolios. Less attention has been devoted to 

multivariate conditional heteroskedasticity, in spite of the fact that secwities are 

typically held in portfolios rather than in isolation. Recently, Kroner and Ng 

(1995) have introduced a method for nesting the four most commonly used 

multivariate GARCH models, allowing for comparative tests of the performance 

of the models. We propose to apply the Kroner and Ng technique to both daily 

and intradaily returns on foreign exchange rates, to obtain performance 

estimates. These conditional covariances will then be used to calculate value at 

risk (VaR) forecasts for foreign currency portfolios. Daily and intradaily VaR 

forecasts will be evaluated and compared. 
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1. INTRODUCTION: 

Much research has been devoted to the notion of market volatility since Harry 

Markowitz's pioneering work on the risk-return relationship in the early 1950's. Since this 

relationship was first introduced to the financial community, acadernics and practitioners 

alike have addressed the ever-present role that volatility plays in financial management. 

Furtherrnore, the globalization of the world economies as well as the sophistication of the 

financial contracts now in existence has necessitated a better understanding of market 

volatility for effective portfolio management. 

In recent years, heightened awareness of market volatility and market risk has been 

brought about by some highly publicized losses, Orange County and Daiwa to name a few. 

On account of these and othcrs, financial institutions have placed greater importance on 

their risk management practices. Better management of financial risks that are affected by 

market volatility requires better quantification of volatility itself. Therefore, the risk 

management comrnunity hm begm to scrutinize its risk quantification models and can no 

longer take for granted the assumptions underlying volatility measurement. 

Particular attention to risk quantification models has been paid by the regulators of the 

financial community, for it is the regulatory bodies that must ensure the fmancial stability 

of the institutions to which investor wealth is entrusted. An exarnple of regulatory 

initiatives in risk management is portrayed by the recent legislation imposed by federal 

agencies on the chartered banks, as proposed by the Basle Cornmittee on Banking 

Supervision (1997). The Basle Cornmittee's document has as its main purpose to outline 

the principles by which the banking comrnunity must operate and manage its affairs. One 

of the focal points of this report is on the management and accurate measurement of 



portfolio market risk. Specifically, the accord stipulates that regulatory authorities within 

each country develop a means of assessing and validating the intemal models used by the 

chartered banks in their risk management practices. To accomplish this, a standardized risk 

measure was needed to set risk based capital requirements across different institutions. It 

was this need that gave rise to the tool now referred to as Value at Risk. 

Value at Risk, or VaR, is a model adopted by the risk management cornrnunity as a 

means of estimating maximal portfolio devaluation associated with adverse market 

movements. Not only has Val2 been accepted as an excellent risk-monitoring tool, but it is 

used extensively in capital allocation decisions as well. One of its appealing features is that 

it is a summary measure of portfolio, or firm-wide, market risk. It expresses in a single 

number the arnount of money that a firrn may lose during a given time horizon due to 

adverse market movements. 

In order for a VaR model to estimate the "capital-at-risk" of a portfolio, certain 

assumptions pertaining to market movements must be made. Specifically, assumptions 

must be made on how the assets, or market factors, that constitute the portfolio evolve 

over time. Clearly, any model used to describe asset or market factor returns requires an 

assumption, either explicit or implicit, on the volatility of these variables. In the case of 

VaR, as in other areas of finance such as asset pricing or hedging, the choice of volatility 

assumption is crucial. The dependency of VaR estimates on the underlying volatility 

assumption has been extensively docurnented in the risk management literature. 

Much of the research on market volatility has been focused on its temporal dynamics. 

Since the introduction of the univariate ARCH (Engle 1982) and GARCH (Bollerslev 

1986) processes, models of time-varying volatility have gained increased attention in the 



literature. Unfortunately, much less attention has been paid to tirne-varying covariance 

effects, regardless of the fact that securities are typically held in portfolios rather than in 

isolation. From a risk management perspective of an institutional portfolio, the effects of 

covariance on portfolio volatility play an important role for the reason stated above. 

Therefore, in order for a risk management practice to be effective in its mandate, the 

proper rneasurement/estimation of the entire covariance inatrix must be addressed. 

From a purely academic standpoint, the estimation of the covariance matrix for a 

portfolio of assets presents an interesting study. A consistent and robust estimate would 

provide some empirical evidence on the behavior of not only the variability of individual 

market factors, but also on the CO-movement of these factors and therefore would 

contribute to our understanding of the price process of the portfolio. From a practitioner's 

perspective, the value associated with such a study is quite different. The use of a specific 

volatility model in the context of Val3 is constrained by the model's ability to provide 

accurate and reliable volatility forecasts. In other words, the predictive power of a 

particular model is of utmost importance. In what follows, we will attempt to address both 

of these issues in the following manner: First, we will study an area that has received little 

attention in the literature, narnely, heteroskedasticity in covariance. To accomplish this 

task, we will be using a multivariate pararneterization of the covariance matrix recently 

proposed by Kroner and Ng (1995) entitled the General Dynamic Covariance (GDC) 

model. This model is a hybrid of the four most comn~only used multivariate GARCH 

models while still allowing for time variation in the covariance terrns. In addition, we will 

contrast the results of the GDC to the less sophisticated Constant Correlation model of 

Bollerslev (1990). As part of the study, we will derive estimates of the covariance matrix 



at the daily, as well as at various intradaily levels. The aim of this approach is to take 

advantage of the high fiequency price data that is now readily available and draw some 

inference on the temporal relationship between low and high fiequency estimates of the 

covariance matrix. Second, we will be using the estimated variance-covariance matrices to 

detemine the VaR for a hypotheticai foreign currency portfolio. These estimates will then 

be compared to results obtained by JP Morgan's RiskMetricsTM methodology, which has 

developed into the benchmark for VaR estimation arnong risk management professionals. 

The structure of this paper is as follows: the next section is devoted to a review of the 

literature on both VaR and conditional heteroskedasticity in the foreign currency market. 

We will outline the most comrnonly used VaR and multivariate GARCH models as well as 

sumrnarize recent empirical results in studies of the market microstructure. The third 

section will be used to describe the study in detail, as well as provide the empirical results 

of the estimations and the data analysis. Furthemore, we will compare the predictive 

performance of the two volatility models as well as contrast the Val2 estimates based on 

the GDC and RiskMetricsTM models. Section four is reserved for a sumrnary discussion of 

the paper and some concluding remarks. 



2. LITERATURE REVIEW 

2.1. Value at Risk 

In spite of the fact that VaR is a relatively new topic in risk management, much 

research has already been devoted to exploring its usehlness and shortcornings. Although 

a myriad of VaR models do exist today, each with differing assumptions and 

methodologies, they al1 attempt to address the same issue - what is a portfolio's expected 

decline in value with a pre-described probability. More formally, VaR may be considered a 

summary measure that defines the expected maximum loss over a target horizon within a 

given codidence interval (Jorion 1997). 

Although a change in the value of a portfolio can be attributed to nurnerous different 

risk components, VaR typically attempts to estimate portfolio devaluation fiom the 

standpoint of market risk. Market risk involves the uncertainty of f i e  earnings resulting 

fiom changing market conditions (e.g. prices, rates) (JP Morgan 1995). AI1 of the VaR 

models used today to monitor the market risk of a portfolio can be classified in one of two 

categories, they are either 1) Analytical models or 2) Simulation models. 

The analytical models used in VaR estimation are functions of the position sensitivity 

of the portfolio to the underlying market factors and to the estimated changes in these 

market factors. A good interpretation of the latter is given in Zangari (1 997), 

estimated value change = f@ositjon sensitjviîy, estimated rate/price change). ( 

Essentially, Val2 estimates that rely on analytical approaches arnount to 

1 1 

local 

approximations of the change in portfolio value in much the same way as a Taylor series 

expansion is used to approximate the change in function value given a change in the 

independent variables. FurSierrnore, the degree of sensitivity used in any analytically 



based VaR mode1 will Vary, ultimately depending on the composition of the portfolio 

itself. For the case of strictly linear payoffsl, the first order moment is adequate (delta). In 

the presence of bonds or derivative securities with non-linear payoff structures, the second 

order moment is usuaIly included (gamma). Using the above approximation results, one 

then can produce an estimate of portfolio value change given changes in the underlying 

market factors. 

Simulation methods, more commonly referred to as full valuation methods, rely on 

revaiuing the portfolio under different market conditions or scenarios. Specification of 

these scenarios varies by VaR mode1 and may include both subjective and objective 

information with regards to market movements. In spite of the fact that different 

simulation models use different approaches in generating these scenarios, the end result 

remains the same: to produce an estimate of the change in portfolio value given the 

sensitivity of the portfolio to the market factors that affect it. 

From the above description of analytical and simulation models, it is evident where 

they differ. It is in their measurement of the market risk of a portfolio of assets. The 

analytical approach uses well defined fùnctional characteristics of the pricing formulae to 

approximate the effect of market movements, whereas the simulation-based VaR models 

use the computationally more intensive approach of re-calculating the value of the 

portfolio under specified market conditions. In fact, the aforementioned classes of VaR 

models do differ in another respect. Specifically, they differ in their treatment of the 

estimated changes in the underlying market factors that affect 

different asswnptions on the volatility of these market factors. 

portfolio value by imposing 

This particular difference in 

E.g. equity or foreign exchange positions with no optionality. 



Val3 models has been the element that has received the most attention in the risk 

management literature. Furthemore, it has been the driving force behind much of the 

research that has been conducted in the search for a better method of estimating portfolio 

or firrn-wide VaR. What follows is a description of the three most widely used VaR 

models in risk management today. The first two fa11 under the category of simulation 

models, whereas the last one is an analytical mode1 and is the main focus of this paper. 

2.1.1. Historical Simulation 

Historical simulation is by far the most straightfonvard of al1 the VaR models to 

implement and to understand (Linsmeier 1996). As its narne implies, this method uses the 

fiill valuation approach to VaR estimation, but its relative ease of use stems fiom the way 

in which changes in the underlying market factors are estimated. Historical simulation 

methods rnake no explicit assurnptions as to the probabilistic nature of asset r e t m s  or on 

the market factors influencing prices, but instead, rely solely on the recorded historical 

movements of the markets (Zangari 1997). Clearly, the only assurnption that proponents 

of the Historical simulation method make, is that the past is a good guide for future price 

movements. 

In order to calculate the VaR for a portfolio of assets, choices must be made with 

respect to the holding period and confidence level (or critical region) for which the 

resulting VaR is representative. When using historicai simulation, an additional choice 

must be made concerning the histoncal period from which estimated changes in the 

underlying factors are derived. Essentially, implementation of this method subjects the 

portfolio to historical changes in market rates and prices over the pre-specified period. 

From this, we are able to build an empirical distribution of portfolio gains and losses for 



the next investrnent horizon retrospectively (RiskMetricsTM 1995). The resulting 

distribution c m  then be used to read off the loss that is exceeded x% of the time, where x 

is the chosen size of the critical region. This loss would then be the portfolio VaR for the 

next time period. 

The methodology outlined above is the most basic of al1 the full valuation approaches. 

Its strengths are in its simplicity, in the objective manner with which die distribution is 

generated and in its independence of statistical andor distributional assumptions. Its 

disadvantage lies in the single sarnpIe path approach it takes to Val3 estimation. The 

underlying assumption is that the factors affecting portfolio value will change in exactly 

the sarne fashion in the next penod as they did in the previous one. Clearly, this Iimitation 

precludes the use of sensitivity analysis to ascertain how the VaR would change under 

different assumptions of market factor volatility (Simons 1996). 

The restrictive nature of the historical simulation model described above has led 

practitioners to a different, but related, full valuation model called stress testing. This 

approach requires the specification of numerous sets of market scenarios upon which the 

valuation of the portfolio is desired. Using each of these sets, a range of plausible portfolio 

returns c m  be generated. Assigning an occurrence probability to each return fully specifies 

an empirical distribution of portfolio value, from which, the VaFt can be obtained as in the 

historical simulation approach (Jorion 1997). 

The stress testing method, although alleviating the problem inherent in historical 

simulation, suffers fiom its own drawbacks. First, the changes in the market factors are 

detennined in a manner that is cornpletely subjective since the scenarios are not necessarily 

selected to be representative of current or future market conditions. Furthemore, There is 



no guideline imposed by the method as to the inclusion or exclusion of one scenario over 

another. Second, even if al1 the improbable market outcornes could be removed fiorn the 

analysis leaving only the most probable ones, the act of arbitrarily attaching a probability 

to each return in the remaining set would most certainly bias the estimate of portfolio 

v a .  

2.1.2. Structured Monte Carlo Simulation 

It is clear how the drawbacks of both the historical simulation and the stress testing 

methods could Iead to misrepresentation of portfolio VaR. The need for a more 

comprehensive VaR rnethodology led to the development of another full valuation 

approach called Structured Monte Car10 Simulation, or simply, Monte Carlo Simulation. 

Monte Carlo Simulation c m  be viewed as a generalization of the previous two 

methodologies discussed. By removing the need for user defined scenarios and by 

introducing more flexibility into the model, the Monte Carlo approach is a more systematic 

approach to VaR estimation. 

In contrast to the other two full vaiuation methods, Monte Carlo introduces nurnerous 

scenarios to the VaR model through the use of explicit statistical assumptions. These 

assumptions are expressed in the form of probability distributions for changes in the 

underlying market factors. Once this is done, estimated changes in the market factors can 

be simulated using standard numerical techniques and the resulting distribution of portfolio 

profits and losses c m  be obtained. Repeating this procedure nurnerous times produces a 

set of profit and loss distributions, from each of which an estimate of portfolio VaR can be 

derived. Since the relationship between simulated paths and VaR estimates is one to one, 

the expected portfolio VaR using this methodology reduces to the arithmetic (possibly 



weighted) average of the set of VaR estimates obtained fiom the set of simulated paths. It 

should be clear to the reader at this point that Monte Carlo Simulation allows for a wider 

spectrum of possible portfolio profits and losses in the resulting distribution since it 

accounts for many different portfolio paths rather than just a select few (RiskMetricsTM 

1995). 

Clearly, Monte Car10 Simulation allows for a more comprehensive approach to VaR 

estimation. Its flexibility, as well as its ability to capture potential movements in the capital 

markets, makes it a very appealing alternative to the other static fbll vafuation methods. 

Unfortunately, the advantages offered by Monte Carlo Simulation are overshadowed by 

the one disadvantage that deters many financial institutions fiom implementing it. The 

level of sophistication required by both the end-user and the necessary information 

processing technology is quite high. For exarnple, if one were to generate 1,000 sample 

paths for a portfolio of 1,000 assets, the total nurnber of necessary valuations would corne 

to 1,000,000 (Jorion 1997). 

2.1.3. Variance-Covariance Approach 

As an alternative to the computationally intensive or inflexible full valuation VaR 

models, analytical approaches to VaR estimation have been developed. The most widely 

used analytical method is referred to as the Variance-Covariance approach. As its name 

implies, this method relies on the existence of the covariance matix for the portfolio 

factors and makes use of the concepts of modern portfolio theory (Markowitz 1952) to 

detexmine expected changes in portfolio value. 

The most disceniible difference between the full valuation models already discussed 

and the Variance-Covariance approach is in the estimation of changes in the underlying 



factors. In contrast to the other models, the Variance-Covariance method is based on the 

assumption of a joint distribution2 between the porrtfolio factors. Given this distributional 

assumption and an estimate of the covariance rnatrix (which is derived from historical time 

series), we are then able to fùlly speci& the distribution of portfolio profit4oss and 

determine the percentile corresponding to the portfolio VaR (Zangari 1997). 

In order to estimate the portfolio VaR under the Variance-Covariance approach, we 

must first detemine the variance of the portfolio. Referring to the method introduced by 

Markowitz, the portfolio variance is given as: 

where n denotes the number of factors in the portfolio and y is the amount invested in the 

factor j. Once the portfolio variance is determined, we can make use of the symrnetry 

property of the normal distribution to ascertain the poïtfolio VaR. Therefore, for a given 

level of confidence a, the corresponding percentile c m  be obtained fiom standard normal 

tables. Thus producing a VaR estimate of: 

VaR, = a,z, (3) 

Given the symrnetry of the normal distribution as well as the fact that surns of normal 

distributions are also normal, it is clear how efficient a fianiework the Variance- 

Covariance rnethod is in estimating portfolio VaR. Many studies however have criticized 

this approach. The source of the criticism is rooted in the normality assumption of factor 

returns. It has been extensively documented in the finance literature that factor, or asset 

' Previous studies usually employ a joint normal distribution. 



returns, exhibit much fatter tails (Le. kurtosis), hence much more peaked, than what is 

descri bed by the standard normal distribution @ollerslev 1 986). 

2.1 -4 Value at Risk - Comparative Studies 

Since its inception, VaR has been held in high regard as an effective risk management 

tool. Its ability to summarize risk based capital requirements in a single nwnber has led the 

risk management cornrnunity to adopt this approach as the de facto standard in risk 

measurement (Jorion 1997). The only question that remains unanswered is which method 

produces better estimates of portfolio VaR. From the description of the VaR models given 

above, it is clear that substantial differences between models exist in their volatility 

assurnptions. Moreover, perhaps it is this difference that precludes any of the existing 

studies fiom providing any definitive results on model superiority. The purpose of this 

section is to explore a few of the studies that have been undertaken as weil outline the 

conclusions that have been drawn. 

As regulators irnposed deadlines on the chartered banks for the adoption of VaR risk 

reporting, many practitioners and academics studied the available methodologies in search 

of the most cornprehensive VaR model. From this search, a host of results have emerged 

al1 echoing the same theme: VaR estimates are extremely sensitive to the choice of 

assurnptions underlying the model and that there is no one model that is superior to the 

others in al1 circumstances. 

In Beder (1995), the author investigates three portfolios and estimates VaR using 

three methodologies: 1) Historical Simulation, 2) Monte Carlo with a RiskMetricsTM 

covariance rnatrix and 3) Monte Carlo with a BIS/Basle covariance rnatrix. Furthemore, 

the author varies the holding period upon which the VaR estimates were computed as well 



as the historical window from which the state variable covariance matrix is derived. The 

results provided indicate large discrepancies between, as weI1 as within the various 

methodologies, implying that VaR is highly sensitive to the choice of assumptions. In 

addition, the discrepancies did not follow a discemible pattern as the complexity of the 

portfolio was increased fkom a fixed income portfolio to a portfolio consisting entirely of 

equity index options. 

In a different study, Hendricks (1996) estimated VaR on a Iiypothetical foreign 

currency portfolio and found different results. The author contrasts the variance- 

covariance approach (both equally weighted and exponentially weighted moving average 

estimates of volatiiity were used) with the historical simulation approach and reports that, 

for estimates with varying historical windows, the two approaches do not produce VaR 

estirnates which differ substantially on average. One of the interesting findings of this 

study is that volatility models that use longer historical windows produce less variable 

VaR estimates over time, an intuitiveIy appealing result. This is evident since finite- 

window rnoving average models produce "shadows" which generate non-uniform 

estimates of volatility, a phenornenon which is well documented in the literature (Diebold 

1987). 

In a recent study on non-linear VaR, Fallon (1996) tested the performance of various 

variance-covariance inethods on a derivatives portfolio by incorporating both delta and 

gamma components, while maintaining a heteroskedastic covariance structure 

(multivariate GARCH) for the underlying state variables. By including the second order 

moment in the Taylor's series approximation to the change in portfolio value, Fallon finds 

the resulting distribution of the mark-to-market profit and loss to be a non-central X2 



distribution. In a sirnilar paper, Jones and Schaefer (1997) later confirrned this result. In 

spite of the fact that Fallon employed a restrictive constant correlation model for the state 

variables, he finds that this multivariate parameterization outperforrned the other VaR 

models tested, even though out-of-sample tests of the volatility assumption seem to 

provide little or no predictive power3. 

Given the preliminary findings of the first two studies described above, it is not 

difficult to appreciate the dependency of VaR on the underlying assumptions. Two main 

points arise fiom these studies: the first is that different approaches to VaR estimation may 

produce different results. This is not difficult to envision since the various VaR 

methodologies explored do differ in their volatility assumptions as well as in the way that 

they use historical data. Second, these studies show that cornparisons of VaR estirnates 

based on similar methodologies may also produce different results. It is important to note 

however that the volatility estimates employed in these studies were not selected by virtue 

of their consistency or their efficiency4, but rather, they were selected in an ad hoc marner 

(Hendricks 1996). In contrast to the first two studies, Fallon's results indicate that a within 

model cornparison, when coupled with a statistically appropriate measure of volatility, may 

indeed provide insight as to the relative performance of a particular class of VaR methods. 

2.2. Conditional Heteroskedasticity in the F o r e h  Exchange Market 

Since the introduction of ARCH (Engle 1982) and GARCH (Bollerslev 1986), the 

empirical studies that have emerged to investigate the usefulness of these models have 

been exhaustive. Mandelbrot (1963) first documented certain empirical regularities in asset 

This will be addressed further in Chapter 3. 
This is used in the context of statistical efficiency and consistency. 



returns and it was those findings, as well as subsequent ones, that motivated the 

development of the (G)ARCH class of tirne series models. The excess kurtosis, as well as 

the temporal persistence of volatility (i.e. volatility clustering) evident in many empirical 

studies of financial time series raised questions as to the validity of the standard Box- 

Jenkins pararneterization. Because of this, researchers searched for a volatility model that 

described the return generating process in a less restrictive fashion than the assumption of 

hornoskedasticity allowed for (Bollerslev 1993). One of the areas of the capital markets 

where the (G)ARCH assumption has been extensively tested has been in the foreign 

exchange market. 

2.2.1. Early Research 

The unimodal as well as the leptokurtotic nature of spot foreign exchange retums have 

been documented as far back as Burt (1977), Westerfield (1997) and Rogalski (1 978), but 

since then, the latter characteristic has received much more attention from the research 

cornmunity. Two possible explanations have been set forth to explain this apparent 

idiosyncrasy of the foreign exchange market. The first implies that the data are drawn fiom 

a fat-tailed stationary distribution whereas the second assumes a temporal dependency in 

the process generating the returns (Hsieh 1988). The focus of the (G)ARCH class of 

models have been to test the latter hypothesis. 

In his original work, Bollerslev (1986) introduced the GARCH model by building on 

the results found by Engle (1982). Furthemore, the developrnent of both these models 

were driven by similar motivations; that given the empirical evidence of heteroskedasticity 

in the asset returns, traditional homoskedastic tirne series models were unable to capture 



the stylized facts of the short run dynamics in the foreign exchange market (Bollerslev et 

al. 1992). The general forrn of the GARCH(p,q) model is given below: 

In this model, st is a real valued discrete-time stochastic process and iy, is the filtration 

generated by the underlying time series containing al1 information through time t 

(Bollerslev 1986). The appealing feature of this model is how the parameterization is well 

suited to the properties exhibited by financial time series. Clearly, a tirne series 

representation with a GARCH variance structure allows for time-variation (i.e. 

heteroskedasticity) in the return generating process and is a conditional measure on d l  of 

the idormation realized. Moreover, the ARMA structure in the variance equation is meant 

to capture both the clustering (Le. the momenturn in the conditional variance) that occurs 

during highly volatile periods as well as the leptokurtosis in the r e t m  distribution (Baillie 

1989). In other words, GARCH processes were developed to formalize the observed 

reality that changes, large or small (and of either sign), seem to be followed by M e r  

large or small changes respectively. Furîherrnore, the observed excess kurtosis in spot 

foreign exchange r e m s  as documented by Westerfield (1977) and others, indicates that a 

linear GARCH structure is appropriate since the unconditional density produced is fat- 

tailed whereas the conditional densities remain normal (Diebold 1987). Therefore, the 

conditional moment structure of GARCH gives us the ability to model the contiguous 

periods of volatility and stability evident in many markets, including the currency markets. 



Although the generalized mode1 allows for lags up to p and q for the variance and the 

squared innovations respectively, many empirical studies have found that a GARCH(1,l) 

parameterization is sufficient to describe the heteroskedasticity in foreign exchange returns 

(Bollerslev et al. 1992). More specifically, Hsieh (1989) found that the standard 

GARCH(1,l) as well as an EGARCH were extremely successful at removing conditional 

heteroskedasticity fiom daily foreign exchange movements. Baillie et al. (1989) also 

confirmed this result. In addition, Bollerslev et al. (1992) highlight an important empirical 

finding concerning the presence of ARCH effects, namely that the presence of ARCH 

tends to weaken with less fiequent sampling - with the dissipation of heteroskedasticity 

becoming clear at weekly levels and almost non-existent at monthly intervals. 

In addition to capturing heteroskedasticity in the foreign exchange market, the 

empirical studies on GARCH processes have docurnented well the persistence (i.e. 

mornentum) in conditional volatility. Nurnerous researchers including Lamoureux et al. 

(1990) and Bollerslev et al. (1992) confïrrned this result. Hsieh (1989) found that the 

persistence in daily foreign exchange rates was very close to unity for many currencies and 

was statistically indistinguishable fiom one in many cases. Given these results, the 

GARCH class of volatility models has enjoyed much success in specifjing the volatility of 

spot foreign exchange retums. 

One of the major criticisms of GARCH processes is rooted in its inherent structure. 

Given its ARMA representation, many studies have documented GARCH's inability to 

capture suddeii structural shifts in volatility (Lamoureux et al. 1990). In other words, 

GARCH imposes a smooth transition fiom highly volatile environments to ones with low 

volatility (and vice versa), even though in reality, transitions such as these do not occur as 



smoothly. The incongruency between GARCH estimates of volatility and actual market 

movements has a large implication with respect to VaR models employing a GARCH 

process for the state variables. Specifically, if GARCH is unable to capture or model 

sudden shifts in the markets, and VaR is meant to capture the losses associated with these 

shifts which are low probability events, then are GARCH processes even appropriate in 

this circwnstance? This inconsistency has many researchers investigating different ways of 

modeling these sudden shifts; one of the more recent methodologies is that of Extreme 

Value Theory. For a more detailed discussion of EVT, the interested reader is referred to 

Danielsson et al. (1997) where the authors explore its potential uses in modeling tail 

events in the context of VaR. 

2.2.2. The Multivariate Models 

Much research has been devoted to evaluating the usefülness of univariate GARCH 

time series models. Surprisingly though, very little work has been conducted in a 

multivariate GARCH setting, regardless of the indisputable need of a statistically sound 

measure of covariation between assets in many financial applications. Some examples 

would include portfolio allocation problems as well as derivatives' pricing when there is 

more than one underlying security (e.g. spread options). Fortunately, many of the 

techniques used in the univariate GARCH setting can be easily extended to a multivariate 

framework (Engle et al. 1996). What follows is a surnmary of the four most cornrnonly 

used multivariate conditional heteroskedasticity models. 

The simplest mdtivariate GARCH model to understand is the vector GARCH (or 

VECH) model as proposed by (Bollerslev et al. 1988). The i jth entry of the covariance 

matrix under the VECH parameterization is: 



hïJ.t = mu + L$ihu,t-~ + ay~,,i.,-i&j.ei 9 J = 1 -  (6)  

where N denotes the number of variables being studied and cq a and P are pararneters 

(time invariant) of three NxNmaûices. Clearly, the VECH model is quite intuitive since it 

is a simple ARMA process in ~,,~q,, .  Although the VECH mode1 is the most general of al1 

the multivariate rnodels and thus provides the greatest flexibility, its complicated structure 

leads to difficulties in estimation. One of the most important properties for a covariance 

matrix is positive definiteness. In order for the VECH model to produce a positive definite 

covariance rnatrix, many restrictions must be placed on the estimated pararneters (Engle et 

al. 1996). 

An attempt to alleviate the problem of positive definiteness was proposed by Engle et 

al. (1995) in their multivariate BEKK model. The structure of the resulting covariance 

matrix is as follows: 

H, =R+BTHt-,B+ A T ~ t - l ~ L , A  (7) 

where A, B and SZ me constant matrices of size M and the superscripted T denotes the 

transpose of a square matrix. The rationale behind this approach is that H, is guaranteed to 

be positive defhte if C2 is positive definite. No M e r  restriction needs to be imposed on 

the matrices A and B since their use as an outer product formulation produces a quadratic 

forrn and therefore is positive definite by construction (Kroner and Ng. 1995). The 

problem associated with the BEKK representation is the large number of parameters that 

need to be estimated. Therefore, the use of the BEKK model in a very large financial 

setting is severely restricted. 



As a means of circurnventing the problems associated with large-scale estimations, 

Engle et al. (1990) introduced the Factor ARCH (FARCH) model. This model was 

developed in the same spirit as the CAPM or the APT pricing models, such that a small 

number of factors act as forcing variables and drive al1 of the conditional variances as well 

as the conditional covariances of asset returns. The individual elements of the covariance 

matrix under a single factor FARCH model can be found below: 

where ij = 1, ...., N and hpt is the conditional variance of the underlying factor (i.e. the 

market portfolio) which obeys a univariate GARCH(1,l) process. Clearly, the key element 

under the above FARCH formulation is the selection of the appropriate factor that drives 

the covariance matrix. In the case of an equity portfolio, the obvious choice would be the 

market return. In the case of spot foreign exchange returns, the selection of the 

appropriate factor is not as clear. 

Finally, the fourth multivariate GARCH model that we will be discussing here is the 

constant correlation model (CCORR) of Bollerslev (1990). The general form for the 

elements of the covariance matrix is given below: 

Given the relative simplicity of the above expression, the CCORR model is very easy to 

estimate due to the small number of parameters involved. Contrary to the previous models 

discussed and as its name implies, the CCORR model assumes time-invariance for the 



correlation term and therefore will not be able to capture the heteroskedasticity (if any) in 

the CO-rnovement of asset prices. 

2.2.3. Intradaily Forei~n Exchange Volatility 

With the advent of advanced data gathering and storage technologies, researchers have 

taken advantage of the accessibility of intraday spot foreign exchange quotations to further 

advance our knowledge on the components of the market microstructure. The importance 

of this data availability lies in the increased statistical significance that arises from large 

datasets as well as the ability to analyze the behaviour and finer details of the various 

market participants (Dacorogna et al. 1993). 

The foreign currency market is in operation 24 hours a day, seven days a week. In 

other words, there are no business hour limitations and any market rnaker can quote a 

bidoffer price at any point in time during the week. Given this infrastnicture, the foreign 

exchange market can be viewed as the closest proxy to continuous time trading that exists 

in the world today (Müller et al. 1996(a)). As the research community scrutinized 

intradaily data on spot foreign exchange quotations, certain characteristics of the price 

formation process became readily apparent. In Müller et al. (1996(a)), the authors study 

numerous currencies at various intraday fiequencies and find results that are consistent 

with studies at the daily level. More specifically, the authors confirrn the excess kurtosis 

that has become a trademark of the foreign cwrency market. Furthemore, their findings 

indicate that as the sarnpling fi-equency increases at the intraday level, the level of kurtosis 

also increases, which implies a non-convergence of the fourth central moment for the 

process generating the returns. The authors also rneasured the Ievel of skewness at various 

frequencies and found that in al1 cases, the absolute value of the skewness coefficient to be 



significantly less than one. Thus implying that the ernpirical distributions are almost 

symmetric about the mean. Müller et al. (1990) and Guillaume (1995) also confirmed 

these results. 

In addition to the empirical results mentioned above, strong seasonality patterns were 

exliibited by most cwrencies and it was found that this phenornenon could be attributed to 

periods of low and high trading activity across days of the week. Furthemore, the 

inclusion of data acquired on the weekends further exacerbated the seasonality patterns 

(Müller et al. 1996(b)). Initially, excluding the quotations recorded on weekends seemed 

like the most obvious approach to take given the circumstances. This new time scale is 

cornmonly referred to as business time, since it reflects prices recorded during a regular 

working week. Unfortunately, time series methodologies require equal spacing of the data 

points and excluding two hl1 days of activity produces a problem in mode1 definition. In 

order to remedy the problems associated with market inactivity, a new time scale was 

developed, referred to as &tirne. Essentially, this new time scale contracts physical time 

during periods of high trading activity and expands it during periods of low trading 

activity. The rationale behind this new tirne scale is to remove the seasonal 

heteroskedasticity associated with changing market activity since each interval of time is 

constructed to expect the same trading activity. For a more thorough treatinent of the 8- 

time scale see Dacorogna et al. (1 993). 

Given that the empirical results of intraday data are closely aligned with the 

docurnented results at the daily level, it would seem that GARCH is an ideal candidate for 

modeling the heteroskedastic behaviour of intradaily foreign exchange returns. 

Unfortunately, of the intraday studies that have attempted to incorporate a standard 



GARCH variance structure, none have provided encouraging results. Furthermore, there is 

no overall consensus in the literature as to which GARCH mode1 is better suited to high 

fiequency foreign exchange returns, or for that matter, even if GARCH is appropriate. The 

lack of agreement arnid the research comrnunity is echoed clearly in Müller (1996 (a)). 

The authors begin by stating that ARCH-type processes are "better suited to capture the 

tail behaviour in foreign exchange returns, in comparison to simple unconditional volatility 

models". Aithough in a subsequent statement, they mention that their analysis of the data 

leads them to believe that the fourth central moment of the intraday r e m  process is non- 

convergent - which is in direct conflict with the standard GARCH structure since it relies 

heavily on the existence of the fourth moment (Diebold 1988). 

In order to resolve this apparent dichotorny, we must first understand the differences 

between volatility defined at the daily level (Le. where GARCH has been quite successful) 

to volatility defined at the intradaily level. As stated previously, intradaily foreign 

exchange returns exhibit seasonal patterns, more so than at the daily level. This has been 

attributed by nurnerous studies (Dacorogna et al, 1993 and Guillaume et al. 1995) to the 

geographic dispersion of the various market agents throughout the world. Therefore, the 

seasonal heteroskedasticity included in intraday price quotes is more a by-product of the 

revolution of the earth than one of information Bow, one of the main theories used to 

explain the volatility clustering evident in foreign exchange returns (Tauchen and Pi- 

1983). In other words, whereas standard GARCH models were developed to account for 

the latter, de-seasonalization of the data is a necessary ingredient to a successful study of 

intraday returns. 



In this vein, Guillaume et al. (1995) empirically tested the performance of a univariate 

GARCH(1,l) process at various intradaily frequencies. Their results indicate that even 

under a de-seasonalized time scale (i.e. atime), the GARCH(1,l) process's predictive 

power left much to be desired. Furthemore, the authors find that the temporal 

aggregation properties of  GARCH seem to break down at the intradaily level, a result that 

indicates the presence of  various time-horizon components. This finding suggests that the 

standard GARCH structure is inappropriate for intraday anaIysis. 

As an outgrowth of Guillaume's results, Müller et al. (1996(b)) conducted an 

exhaustive study of volatility definitions using differing time grids. Their fmdings suggest 

that the study of foreign exchange volatility defined over various intraday levels reveais 

the presence of a heterogeneous market - one that is comprised of market agents with 

markedly different risk tolerances and time horizons. In order to gain an intuitive 

understanding of a "heterogeneous market", the authors contrast the intraday foreign 

exchange trader and a central bank. Intraday price moves go largely unnoticed by the 

latter, but are considered important events for the former. The author's proceed to test the 

HARCH (Heterogeneous ARCH) mode1 against the standard GARCM(1,l) and find that 

HARCH does a better job at describing intraday volatility patterns. 



3. Empirical Results 

In this section, we will present the empirical findings of our study. Included are the 

results of the estimated models as well as their performance in the context of Value at 

Risk. Furthemore, as the empirical evidence pertaining to intraday volatility models in a 

multivariate fiarnework is sparse, the reader will notice that we have attempted to mimic 

the methodologies employed in the univariate case in hopes of providing some empirical 

evidence on foreign exchange volatility in a generalized setting. 

5~ 

The purpose of this study is to examine the heteroskedastic nature of foreign exchange 

returns in a multivariate setting. More specifically, we will investigate the General 

Dynarnic Covariance (GDC) model's (Kroner and Ng 1995) ability to capture the ARCH 

effects exhibited by foreign exchange r e t m s  at the daily as well as at intradaily sampling 

fxquencies. Fwthermore, we will be comparing the results of the GDC model with those 

of the less sophisticated Constant Correlation model (CCORR) of Bollerslev (1 990). The 

two models will then be compared for adequacy on an in-sample basis, with particular 

attention being paid to the intraday results. We will then proceed to test the performance 

of these models with respect to their Value at Risk (VaR) forecasts and compare these 

results to JPMorgan's RiskMetricsTM methodology. The purpose of selecting the CCORR 

model as a basis for comparison was primarily due to the study by Fallon (1996). Fallon 

found that the CCORR model produced better estimates of portfolio VaR than models 

using: 1) a rnultivariate normal, 2) an IGARCH and 3) an EGARCH model for the state 

variables. Therefore, this study is aimed at building on the existing evidence. 

3 -2. The Dataset 



The data used in the analysis consists of one year's worth of spot foreign exchange 

prices for the USDDEM and the USDIJPY. The data was obtained fiom Olsen & 

Associates and was recorded at half-hour intervals starting on January 1, 1996 and ninning 

through December 3 1,1996. Al1 ticks were recorded based on Greenwich Mean Time (to 

avoid the problems associated with daylight savings time) and included both bid and offer 

prices. In keeping consistent with the existing Iiterature on high fiequency data analysis, 

we estimated the true5 price of the exchange rate as follows: 

where p b i d ~  and pofler~ are the recorded bid and offer prices at the f l  tick mark. The retum 

on the spot p ice  was cornputed as the Iogarithm of the relative change in the price. 

The original data series was recorded in physical time, whereas the tirne series used in 

our analysis was actually recorded in business time. in other words, al1 quoted prices 

recorded on a weekend were ignored, although prices recorded on holidays were included 

to avoid the problem of differing holidays in suc11 a global marketplace. We chose not to 

employ the û-time scale for two reasons: 

Previous univariate studies of GARCH voIatility estimates that employed the @tirne 

scale did not provide very encouraging results. Therefore, the incrernental gain (if 

any) in using this time transformation does not warrant the added complexity of the 

procedure for our purposes. 

By "true" we refer to the price at which two parties agree to transact. 



From Lundin (1 998), the &time scale may not be appropriate in a multivariate context 

since its purpose is to remove selected seasondities from the data and therefore may 

eliminate part of the object of measurement. 

In our analysis five different series were used, one at the daily level and the others at 

the intradaily level. They consist of quotes recorded at: 1) half how, 2) two hour, 3) six 

hour, 4) twelve hour and 5) daily intervals for both the USDIDEM and USD/JPY rates. 

3.3. Preliminarv Statistics 

Prior to attempting the estimation of the entire covariance matrix, a preliminary 

analysis of the data was undertaken for the five sarnpling frequencies in order to gain an 

intuition on the behaviour of the sarnple. 

Referring to Appendix A, Table A l ,  we provide sarnple statistics on the log-relative 

change of both the USDIDEM and USDIJPY rates. Both of the series were originally 

demeaned (equivalent to regressing on a constant), since the structure of the mean 

equation is of little consequence in the subsequent analysis. As stated previously, opinions 

Vary on the actual shape of the return distribution in the currency markets, although there 

is widespread agreement that foreign exchange returns possess fat-tails. This becornes 

imrnediately clear fiom the results in Table Al .  Our results also indicate that the level of 

skewness of the data, at al1 sampling frequencies, is substantially less than one in absolute 

value, which concurs with the previous findings of Westerfïeld (1977) and more recently 

of Müller et al. (1996(a)). Therefore, we conclude that our data is almost symmetric with 

increasing kurtosis as the sampling fkequency increases. 

One of the main reasons for implementing a GARCH process in the study of foreign 

exchange returns is to account for the heteroskedasticity inherent in the data. Our next 



step was to test our sample for evidence of non-constant variance and we follow a similar 

methodology as Bollerslev (1 986) and Hsieh (1 989). We ernploy the popular Ljung-Box 

statistic to measure the degree of autocorrelation in squared returns. These statistics can 

be found in Table A2 - Appendix A, for both series as well as the product of the two. The 

purpose of the latter was used to test the hypothesis of autocorrelation in the covariance 

t em.  Given these results, an interesting observation c m  be made concerning the 

stationarity of the given sample. For both exchange rates, the hypothesis of 

hornoskedasticity is rejected at the 2.5% level of significance at which point the Ljung- 

Box statistic tends to decrease quite rapidly. We see similar results for the cross term, but 

the tests we ran produced much larger statistics indicating to us that the non-stationarity in 

covariance may also be present. An important point to note however, is that the computed 

statistics were very Iow in cornparison to previous studies. Hsieh (1989) used 10 years 

worth of daily data and found the Ljung-Box for up to 50 lags for the USD/DEM to be 

2 15 -06. Furthemore, he also computed a value of 206.09 for the USD/JPY with the same 

arnount of data. One potential explanation that may account for the differences in our 

empirical results is that longer spans of time capture more "regime shifts" in the underlying 

price process. When considering our results fiom the higher fiequency data, it is clear that 

these shorter time intervals capture the much shorter-lived movements in the markets. In 

other words, there appear to be regime shifts on an intraday basis. This result is confirrned 

in a paper by Müller et al. (1 996) where the authors investigate the differences in volatility 

estimates over various time resolutions. The two key points emphasized in this paper are 

that the interval size over which volatility is measured is of utmost importance and that 



volatility measured with high-resolution data contains information not covered by low- 

resolution estimates. 

Given the results of the Ljung-Box test on the covariance term, we then proceeded to 

analyze the correlation properties of our data in the same way as Lundin et al. (1 998). The 

procedure we used was to take our data and divide it into equal sub-intervals of tirne. For 

each of these sub-intervals, we then proceeded to compute correlation estimates between 

the foreign exchange return pair. The aim of this approach is to study the structure of the 

correlation coefficient as the time interval being used gets smaller. Our results are 

displayed graphically in Figure 1 in Appendix A. As is clear from the plots of the 

correlation coefficients, the estimates appear quite stable when measured over longer 

intervals of time (see Figure I(a)). But as the time interval decreases, this stability begins 

to dissipate (see Figures l(b)-1 (e)) at which point it approaches white noise behaviour in 

the limit. Lundin et al. refer to this phenornenon as "correlation breakdown". Given this 

result, the importance of high frequency data becomes readily apparent, since coarsely 

defined volatility estimates (based on low fiequency data) seem to incorporate an 

averaging effect whereby information contained in the finer time grids is lost. 

3.4. The General Dynamic Covariance Mode1 

The underlying motivation behind the development of the GDC model was to describe, 

in a generalized fashion, the structure of a conditional covariance matrix. As revealed in 

the previous chapter, a myriad of models have been developed to address the probIem of a 

time varying covariance nlatrix. Upon M e r  inspection of these model specifications, it is 

clear that they differ in two very important ways. First, they very different restrictions on 

the behaviour of the variances and covariances and second, the way they allow the history 



of the process to affect the variances and covariances (Kroner and Ng 1995). This having 

been said, the need for a more generalized approach becarne readily apparent since one 

particular specification may work well in one circumstance, but not as well in others. The 

components of the conditional covariance matrix, as specified by the GDC model are 

provided below: 

Clearly, the GDC model possesses a very complicated structure. The reason for this is an 

outgrowth of the generalized nature of the model. In their paper, the authors provide a list 

of restrictions to the model that, when imposed in specific combinations, will produce one 

of the more traditional multivariate GARCH processes. For example, if a, ,P, and 4 are 

set to zero for i different fiom j, the resulting conditional covariance matrix is the same as 

the one specified by the CCORR model of Bollerslev (1990). Similarly, if p, au and are 

set to zero for i different fiom j, then the resulting covariance structure is equivalent to the 

VECH rnodel (BollersIev et al. 1988). Cleary, the GDC model does accomplish its prirnary 

function, to provide a generalized multivariate GARCH model that acts as a superset to 

the more traditionaI pararneterizations. Furthemore, the GDC model does not impose one 

particular structure to the variance and covariance equations, since it inherentl y captures 



It shouId also be noted that the authors also consider the problem of positive- 

definiteness in a covariance estimate. The reader will recall that some of the other 

multivariate GARCH specifications do not guarantee a resulting estimate that is positive 

definite. Furthemore, for some of those models, a great many parameters restrictions 

must be imposed in order to obtain a suitable estimate of the matrix. This requirement, will 

in rnost circumstances, introduce estimation problems into the foid. Fortunately, due to the 

structure of the GDC model, only a size restriction between p and 4 needs to be imposed 

to guarantee proper behaviour. The interested reader is referred to Kroner and Ng (1995) 

for a detailed proof. 

The complicated structure of the GDC, unfortunately, does not lend itself well to 

interpretation. Unlike some of the other multivariate GARCH models in use today, the 

dynamics of the GDC model explicitly incorporate the movements of one factor into those 

of another. By carefül inspection of equations 1 l(a)-(e), the reader will notice that the 

volatility of one factor will directly affect al1 of the others specified in the covariance 

matrix (albeit a lagged effect - p periods in the general case). This relationship is 

pararneterized through both the covariance term and through the variance equation. In 

direct contrast, the Constant Correlation model of Bollerslev (1990) makes no such 

assumption. The CCORR model irnplicitly assumes that factor volatility is independent 

across the individual factors, but that the co-movement of the factors themselves is defined 

by a time-invariant correlation coefficient. This is a key distinction that must be made 

between these two models, since in some cases volatility in one market may have a direct 

impact on the volatility of another, a circumstance that is unsupported by the CCORR 

structure, but embedded in the GDC dynarnics. 



3 S. Model Estimation Resuits 

In this section, we present the statistical results of the conditional covariance matrix 

estimation under two different models - the GDC model of Kroner and Ng (1 995) and the 

CCORR model of Bollerslev (1990). The estimation of both models made use of the 

aforementioned USD/DEM and USD/JPY retum series and was based on the full sample 

for the five different sampling fiequencies. The parameter estimates for both of the above 

rnodels were obtained through the use the R.A.T.S6 software package, which implements 

the Bernt, Hall, Hall and Hausman search algorithm (Bernt et al. 1974) for the 

maximization of the likelihood h c t i o n .  It should also be noted that we impose a Gaussian 

error structure for both these models and in both cases, the temporal process to be 

estimated can be expressed in the following forrn: 

where & is the conditional covariance matrix under either the GDC or the CCORR 

models, r( is a 2x1 column vector representing the return series and E! is a bivariate white 

noise process with a mean of zero, unit variance and whose components are independent 

and identically distributed random variables. The latter random vector is cornrnonly 

referred to as the forcing variable (Enders 1995) and it is this component that we assume 

to be Gaussian. 

3.5.1. General Dvnamic Covariance Model - Resuits 

We refer the reader now to Appendix B - Table BI, which contains the maximum 

likelihood parameter estimates for the GDC model for the various sarnpling fiequencies. 

R.A.T.S. version 4.0 was used. A sample program is included in the appendix. 



The results indicate that the GDC model does a poor job at describing the data. The t- 

statistics Vary widely for the different sampling fiequencies with only the model on the 30- 

minute data producing seven out of fourteen coeficients as signifiant at the 5% level. 

Furthemore, the pattern exhibited by the estimated parameters does not follow the 

behaviour expected prior to the estimation. As the time interval decreases, we would 

expect the moving average parameters (Le. the q 's) to tend to zero and the 

autoregressive parameters (Le. the ,Ou's) to tend to one (Guillaume et al 1995). In most of 

the cases we investigated, this has not been the observation. Furthemore, the persistence 

in either of the variances does not seem to follow the growth that was expected with high- 

resolution data. For the variance of the USD/DEM, we find that the estimated persistence 

is at a maximum based on 30-minute data, but is at a minimum at two-hour intervals. 

Similar results were found with the USD/JPY rate. From this, we c m  confimi Guillaume 

et al. (1995) results of a break down of the temporal aggregation features of GARCH 

models at the intradaily leve17. 

We then proceeded to analyze the standardized residuals inferred by the model in 

order to assess whether or not the GDC mode1 adequately removed the heteroskedasticity 

fiom the underlying series. The residuals were computed according to the following 

relationship: 

z;'~ . r, = 8, (1 3) 

That is, if the model adequately captures the clustering and persistence of variance, the 

resulting residuals should be described by a bivariate standard normal distribution. The 

results of the analysis can be found in Table B2 in appendix B. 

These results have also been documented with de-seasonlized data (cf. Dacorogna et al. 1997) 



From the computed characteristics of the standardized residuals in Table B2, we c m  

see that the residuals are decidedly non-normal. Furtherrnore, this result is confumed 

through the use of the Kolmogornov-Smirnov and x2 statistics. In every case, the 

standardized residuals failed to meet the criteria required by these tests. Again we can 

conclude that the GDC model does a poor job of describing the dynamics of the 

USD/DEM and USD/JPY exchange rates. 

3 S.2. Constant Correlation Mode1 - Results 

In contrast to the results of the GDC model, the results of the CCORR model were 

more in line with what we expected. For most of the cases investigated, the estimated 

parameters of the mode1 were highly significant. Furtherrnore, the size of the parameters 

were homogeneous for the most part, but the degree of persistence in the variance 

equations were again greater than one - and hence integrated. This finding again 

corroborates with Guillaume et al. (1995), such that there is a breakdown of the temporal 

aggregation process at the intradaily level for GARCH processes. 

From an analysis of the standardized residuals, we find similar results to those found 

under the GDC. The residuals are again decidedly non-normal, a result we expeçted since 

no steps were taken to de-seasonalize the data fiom the outset. Although these results are 

slightly more encouraging, when coupled with the results of the GDC, we can conclude 

that GARCH processes, even in the multivariate case, fail to adequately capture the 

various dynamics that are present at the intraday level. 

One final test was perfomed to test the efficiency of the GDC and CCORR models. It 

has been well documented in the literature that GARCH processes have very little 

predictive power on an out-of-sample basis. Bollerslev et al. (1992) and Brailsford et al. 



(1 996) demonstrate that for a volatility model to produce accurate forecasts, the following 

regression: 

should produce a very close to zero and ,O near unity. Furthemore, for ht to be a good 

predictor of the squared error, the resulting R~ should be quite high (Le. high explanatory 

power). In a recent paper by Andersen et al. (1998), the authors show that judging a 

GARCH volatility model based on a low R~ is incorrect. They claim that the low R' 

produced by GARCH models is a by-product of GARCH itself. The authors show, by way 

of proof, that the coefficient of detemination is bounded above by K-' where K is the 

theoretical kurtosis of the underlying error density. For example, in the case of Gaussian 

errors, the upper bound on IZ2 would be 1/3. Clearly, error densities with greater kurtosis 

will produce a tighter npper bound. 

In order to test whether or not the GDC and CCORR models were good predictors of 

the expected squared returns, we divided our sample into two parts8 and re-estimated the 

models. The regression outlined in (14) was then estimated on the second half of the 

sample (i.e. the actual squared returns) against the estimates of h,. For the regression 

entailing the covariance term, we simply replaced the squared returns with the product of 

the return series. The results of the regressions are displayed in Appendix B - Tables B7 

and B8 for the GDC and CCORR respectively. Please note that the results of the 

maximum likelihood procedure on the first half of the sample are provided in Tables B5 

and B6 respectively. 

This was done for al1 sampling fiequencies. 



The results of the regression provide some interesting results. For the most part, the 

regression CO-efficients for the GDC model are insignificant. Whereas the intercept terms 

are very close to zero, the slope CO-efficients Vary widely and do not approach unity. In 

contrast, the CCORR regressions prove to be highly significant and the estimated 

regression parameters are in line with the theory. It should be noted though, the R*'S 

produced are still quite low, even for the intraday samples - a result that does not concur 

with the findings of Andersen et ai. (1 997). 

3.6 Corn~arison of Models 

In this section we will be comparing the resulting VaR estimates generated by both the 

GDC and CCORR models. In addition, we will be comparing these results to the VaR 

estimates produced by the RiskMetricsTM methodology as outlined by the JPMorgan 

RiskMetricsTM Technical Document (1 995). 

The VaR methodology that we employ is based on the parametric Variance- 

Covariance approach with a delta approximation to the portfolio function. Clearly, since 

our portfolio consists strictly of spot foreign exchange positions, the return distribution is 

linear in its payoffs with a delta equal to unity for each of the positions. We will then 

compare the resulting VaR estimates fiom the three methods across the five sampling 

fiequencies. 

The volatility model defined in the RiskMetricsTM documentation that we wilI be 

camparing to the GDC and CCORR models to is: 



This model is actually a special case of an IGARCH(1,l) with a zero intercept tem. It 

uses a finite historical window fi-om which to draw (0. Note that this is in direct contrast 

to other GARCH models, since by definition GARCH has infinite memory. 

In order to investigate the relative performance of each of these models, we carry out 

tests similar to those used by Fallon (1 996) and Hendricks (1 996). Specifically, we wish to 

ascertain: 1) the différences in size of the estimates produced by the various methods on a 

given date, 2) the actual performance of the estirnate and 3) for those dates that the actud 

loss breached the VaR estimate, how large was the shortfall. 

In order to accomplish this task, a hypothetical portfolio was constnicted fiom the two 

spot foreign exchange positions. Then, for a particular sampling fiequency, the portfolio 

was subjected to the actual gains/losses over that period. By repeating this procedureg 

until the end of the sarnpling period, we effectively construct a senes of gains/losses and 

the associated VaR rneasures. We then repeated this process nine times by varying the 

initial portfolio allocation so that the results would not be biased against a particular 

holding. 

In order to investigate how the VaR estimates differed in size, we computed a statistic 

referred to in Hendricks (1996) as the mean relative bias (MRB). This quantity is defined 

as being the percentage difference between the VaR estimate for a particular model and 

the average VaR estimate for that period provided by al1 three models. Then, the average 

is taken over al1 of the periods in the sarnple. This quantity provides us with an 

understanding of how, on average the VaR estimates differed fiom the mean. For exarnple, 

at the daily level, we find the MRB to be 2.33%, -1.43% and 4 . 9 %  for the GDC, 



CCORR and RiskMetricsTM respectively. These numbers should be interpreted as the size 

of a VaR estimate relative to the overall mean. At the half-hour level, the MRB is 

computed to be 0.42%, -0.21% and -0.2% for the GDC, CCORR and RiskMetricsTM 

model respectively. These results lead us to believe that the RiskMetricsTM model lies in 

between the other two models with the GDC providing the largest forecasts. 

One of the tests we perfomed was to evaluate if eacli of the models provided 

adequate coverage in the event of loss. In Appendix C - Tables Cl and C2, we provide a 

surnmary of the percentage of losses exceeding the forecasted risk measure for 99% and 

95% VaR estimates respectively. Clearly, the GDC model provides us with the best 

coverage at the intraday level but does not provide adequate coverage at the daily level. 

Another interesting result is the performance of the constant correlation model at the 

intradaily level versus its performance at the daily level. The CCORR mode1 perforrned 

better, drnost two times better at the daily level, when compared to the intraday results. 

Finally, the RiskMetricsTM model results are for the most part in between the GDC and 

CCORR's but failing to provide adequate coverage at al1 sarnpling fiequencies. In 

addition, Tables C3 through C6 in Appendix C, contain the z-statistics as well as the 

confidence intervals on the success rates generated by the three models for a confidence 

level of 95%. The reader will notice that for the most part, the VaR estirnates produced by 

the three rnodels do not differ significantly (in a statistical sense) fiom the VaR and that 

the confidence intervals around the true VaR are quite narrow. 

The next statistic we were interested in computing complements the measure of 

adequacy described above. We computed for each VaR model and for each period where 

9 A program was written in C to accomplish this task. 



there was a breech in the VaR limit, the amount of the shortfaIl as a multiplier. Then each 

multiplier was averaged over the entire testing period. What we found, was that the GDC 

estimates were closer to the true VaR than any of the other methods. The multiplier that 

was computed for the GDC for al1 sarnpling fiequencies ranged fiom 1.45 to 1.04, 

whereas the results for the CCORR range fiom a minimum multiplier of 1.02 to a 

maximum of 2.04 (i.e. a 100% shortfall). The results for the RiskMetricsTM mode1 were 

the least encouraging, they ranged fiom 1.45 to 2.30. 



4. Concluding Remarks 

In this study, we have attempted to address two issues: Value-at-Risk and stochastic 

covariance both at the daily and intradaily fiequencies in foreign exchange market. We 

evaluated and compared two competing models that describe heteroskedasticity and have 

found some interesting results. The generalized model, The General Dynarnic Covariance 

Model of Kroner and Ng (1995) did not perforrn quite as well as expected. The lack of 

significance in the estimated parameters leads us to believe that the model is not well 

suited to the foreign exchange market, at least not when used in conjunction with business 

time. Furthemore, even with its complicated structure, the model did not adequately 

capture the inter-temporal and seasonal volatility patterns that are a trademark of intraday 

foreign exchange quotes. 

In contrast, the less sophisticated Constant Correlation Model of Bollerslev (1 990), 

performed quite well in the statistical sense. The significance of the parameter estimates as 

well as the success the model enjoyed with respect to the traditional efficiency tests, at al1 

of the sampling fiequencies, leads us to believe that perhaps the constant correlation 

assumption is not as restrictive as originally anticipated. What remains to be seen is if 

either the GDC or the CCORR perforrn better with a non-Gaussian error structure and 

possibly under a de-seasonalized time scale. 

With respect to Value-at-Risk, we would postdate that the results of the performance 

tests of the three models are mis-leading. Given that the GDC model outperformed both 

the CCORR and the RiskMetricsTM model at the intraday level, where model 

misspecification was greatest, this cannot be misconstrued as a state-variable formulation 

that describes the covariance dynamics effectively. The suspicions surrounding the GDC 



model and the resulting large VaR estimates are plentifil and well grounded. In practice, 

over-estimating VaR will lead to risk-based capital allocation policies that are restrictive 

and could lead to an inability of the firm to compete in the market. Therefore, overly 

conservative models cannot be accepted without question and should be closely 

scrutinized prior to irnplementation. 

From a practitioner's standpoint, VaR has developed into a very effective measure of 

summarizing firm-wide exposure to market risk. In this paper, we have studied two 

complex formulations of the covariance matrix as well as one method which in contrat, is 

much easier to implement. The results of our study do not point to one method that is 

clearly superior in protecting against adverse market movements. This having been said, 

the practice of Value at Risk in a banking environment requires a trade-off between model 

adequacy and ease of implementation - an important trade-off given the constraints 

inherent in the risk management practice. 
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Table A l :  Preliminary statistics for the USDIDEM and USD/JPY rates. 

Sam~linrr Frequenc~ Statistic USDDEM USDIJPY 

Half Hour 
Standard Deviation 
Kurtosis 
Skewness 
Correlation 

Two Hour 
Standard Deviation 
Kurtosis 
Skewness 
Correlation 

Six Hour 
Standard Deviation 0.00220 0.00250 
Kurtosis 4.93493 5.25 829 
Skewness -0.47043 -0.14633 
Correlation 0.54547 

Twelve Hour 
Standard Deviation 0.00296 0.00342 
Kurîosis 1.19176 1.62936 
S kewness -0.21319 -0.15541 
Correlation 0.56030 

Twenty-Four Hour 
Standard Deviation 0.004 12 0.00460 
Kurtosis 2.35997 0.66922 
Skewness -0.3 1052 -0.08678 
Correlation 0.49758 



Table A2: Ljung-Box statistics for autocorrelation in squared returns". 

Series Half Hour Two Hour Six Hour Twelve How Twenty-Four Hour 

USD/DEM 101.01 12 27.3900 18.8345 10.2829 6.4048 
USD/JPY 222.7682 29.7201 17.8589 7.7245 8.3255 
Product 464.6587 143.5378 29.7532 16.6858 3.4210 

The x2 statistic with 15 degrees of freedorn corresponding to a significance level of: 1% (30.58), 
2.5% (27.49), 5% (25.00) and 10% (22.3 1). 



F i m e  - Al: Correlation coefficients calculated using increasingly small sub-intenralsb. 

0.6 7---- 
USDIDEM - - USDIJPY (Figure .-A 1 (a)) 

USDIDEM - USDIJPY (Figure 1 (b)) 
0.7 - --- r 1 I 

Time 

USDIDEM - USDI JPY (Figure 1 (cl) 



Figure Al:  (continued). 

USDIDEM - USDIJPY (Figure l(d)) 

USD/DEM - USD/JPY (Figure 1 (e)) 
1 - -. . . - - - - - . - - -- 

1 

T h e  

3 132, 1566, 783,392,98 data points used for Figures (1  a), (1 b), (1 c), (1 d) and ( 1  e) respectively. 



Appendix B: Mode1 Estimation Results 



Table BI: Maximum Likelihood Estimates - GDC Mode1 (t-statisticsc) 

Parameter Half Hour Two Hour Six Hour Twelve Hour Twenty-Four Hour 

(0.1 1254) 

1 .32x 10" 
(0.79972) 

9 . 0 0 ~  1 
(0.00) 

-9.00~ 1 O-' 
(-0.20243) 

7 . 0 8 ~  1 O-' 
(3.301 1 7) 

7.52 x1 
(O. 15043) 

6 . 7 5 ~  1 O-' 
(4.19 154) 

l.72xl0-' 
(0.45 154) 

6 . 0 4 ~  1 O-' 
(2.88939) 

6.13~10-' 
(4.02776) 

4 . 7 7 ~  1 O-' 
(0.95734) 

5.41x10-~ 
(1 .O5 179) 

-9.06~ 1 
(-0.00 133) 

1 . 3 3 ~  1 O-' 
(O. 1 5 742) 

3.234666 

(0.1 5898) 

2 . 2 5 ~  1 0" 
(O. 19350) 

3 .OOxI om6 
(0.00) 

2 .40~  1 o - ~  
(O. 1 1074) 

5 . 9 2 ~  1 O-' 
(1.73953) 

1 .66~  1 O-' 
(O. 1 8347) 

6.0 1 x 1 O-' 
( I  .78 106) 

1 .34~  1 O-' 
(O. 1 6370) 

6.53~1 O-' 
(1.99989) 

6.31~10-' 
(2.8 1 544) 

1 . 6 4 ~  1 O-' 
(O. 1 8398) 

2.88~1 O-' 
(0.3 1860) 

-2.50~1 O-' 
(-0.1 85 19) 

6 . 4 5 ~  1 O-' 
(0.37908) 

2.73437 
0.93658 

(0.05526) 

4 . 2 4 ~  1 O-' 
(O. 12732) 

5 . ~ O X  1 
(0.00) 

8.70~1 om6 
(O. 14974) 

6 . 3 0 ~  1 O-' 
(1.17558) 

1 . 6 7 ~  1 O-' 
(O. 10650) 

6 . 0 4 ~  1 O-' 
(1.151 13) 

2.63~1 O-' 
(O. 17485) 

6 . 9 2 ~  1 O-' 
(1.03024) 

6.1 8x 1 O-' 
(1.28938) 

2 . 2 6 ~  1 O-' 
(O. 15557) 

2.56~10-' 
(0.18895) 

-3.46~ 1 O-' 
(-0.13203) 

6 . 8 4 ~  1 O-' 
(0.22885) 

3.0 1 6078 
0.952027 

" The critical t-statistics for 14 degrees of fieedom are 1.76 1,2.145 and 2.624 at 5%, 2.5% and 1 % 
level of significance respectively. 



Table B2: Standardized Residuals - GDC Mode1 

Frequency Mean Variance Kurtosis S kewness K-S X' 

Half Hour E, -0.001 75 O. 1 0388 7.69 167 -0.408 15 0.3965 16661 0.6 



Table B3: Maximum Likelihood Estimates - CCORR Mode1 (t-statisticsd) 

a11 

Wz 

a11 

a22 

Pl J 

Pz2 

P 

Persistence 
USD/DEM 
USD/JPY 

Parameter Half Hour Two Hour Six Hour Twelve How Twenty-Four Hour 

4 .6~1  1 . 6 7 ~  1 3 . 0 9 ~  1 3.68x10-' 

The critical t-statistics for 7 degrees of freedom are 1.895,2.365 and 2.998 at 5%, 2.5% and 1 %  
level of significance respectively. 



Table B4: Standardized Residuals - CCORR Mode1 

Frequency Mean Variance Kurtosis Skewness K-S x2 

Half Hour E, -0.0077 3.2578 9.1416 -0.3841 0.31 71 6886.913 



Table B5: Maximum Likelihood Estimates (Half of Sample) - GDC Mode1 (t-statisticse) 

Parameter Half Hour Two Hour Six Hour Twelve Hour Twenty-Four Hour 

1.54~1 O" 5 . 6 4 ~  1 0" 6.71~10" 
(0.162830) 

-5.00~1 
(-0.075680) 

2 . 9 0 ~  1 O-' 
(0.0000002) 

-5 .60~10-~ 
(-0.073 190) 

5 . 0 8 ~  1 O-' 
(2.208840) 

8.3 1 x 1 O-' 
(O. 197900) 

4.9 1 x 1 O-' 
(2.595630) 

1.13~10-' 
(0.3 5 7440) 

5 . 7 9 ~  1 O-' 
(1.163620) 

4 . 9 9 ~ 1  O-' 
(1.148480) 

8.21~10" 
(0.902620) 

6.17~10-' 
(0.649560) 

9 .54~1  
(0.07 1740) 

9 . 3 2 ~ 1  O-' 
(0.068880) 

(0.05345) 

4 . 9 7 ~ 1  o - ~  
(O. 1 075 8) 

6 . 3 0 ~  1 
(0.00000) 

1.13x10-~ 
(0.13191) 

6.52~10-' 
(0.88290) 

1 . 9 4 ~  10" 
(0.08939) 

6 . 2 0 ~  1 O-' 
(0.83289) 

3.13~10" 
(O. 1 4346) 

6 . 9 0 ~  1 0" 
(0.6841 5) 

6 . 4 3 ~  1 O-' 
(0.87432) 

2.73~1 O-' 
(O. 12522) 

1.85xlo-' 
(0.09339) 

-4 .96~ 1 O-' 
(-0.1 1712) 

8 . 2 4 ~  1 O-' 
(O. 1 75 69) 

(2.09 125) 

-2.70~1 
(-0.1 6364) 

2 .38~1  O-' 
(0.26234) 

1 .32xl0'~ 
( 1.66479) 

3 . 9 6 ~  1 O-' 
(2.93 104) 

2.01~10-' 
(0.56 156) 

3.38~10-' 
(2.52234) 

1.23~10-' 
(0.35 105) 

4 .95~1  O-' 
(0.85 1 76) 

5 . 8 2 ~  1 O-' 
(1.04521) 

- 6 . 4 5 ~  1 O-' 
(-0.05392) 

1 .Wxl O-' 
(0.21619) 

2 . 8 2 ~  1 O-' 
(O. 19535) 

2 .56~1 0" 
(0.15608) 

The critical t-statistics for 14 degrees of fi-eedom are 1.761,2.145 and 2.624 at 5%, 2.5% and 1 % 
level of significance respectively. 



Table B6: Maximum Likelihood Estimates (Half of Sample) - CCORR Mode1 (t-statisticsf) 

Parameter Half Hou. Two Hour Six Hour Twelve Hour Twenty-Four Hour 

01 J 2.51x10-' 7 . 9 6 ~  1 o ' ~  4.3 6x 1 o4 5 . 5 3 ~ 1  0" 3 . 6 8 ~ 1  o - ~  

f The critical t-statistics for 7 degrees of freedom are 1.895,2.365 and 2.998 at 5%, 2.5% and 1 % 
leveI of significance respectively. 



Table BI:  Efficiency Regressions - GDC Mode1 (t-statistics) 

Sampling Frequency a P 

Two Hour 

Six Hour 

Twelve Hour 

Twenty-Four Hour 

Half Hour d l  I 1 . 7 ~ 1  o4 0.0964 0.001 5 
(2.6171) (0.444 1 ) 

d 2 2  1 .5x 1 O-' O. 1452 0.0006 
(0.96 1 2) (0.2920) 

0 1 2  3.72~1 O-' -0.9395 0.0036 
(0.9730) (-0.6873) 

021 I 9 . 2 ~  1 0.301 6 0.0404 
(5.9497) (8.1 449) 

0% 1 . 1 2 ~ 1 0 ~  0.6890 0.0 1 06 
(5.8157) (4.1 242) 

0 1 2  2 . 3 ~ 1  o - ~  0.4794 0.034 1 
(1.1 ~ 1 0 ~ ~ )  (0.0643) 

21 1  6 . 4 ~  1 O*' O. 1868 0.0357 
(0.5642) (4.4087) 

&z 2.73~1 o4 0.1069 0.0050 
(1 -36 x10") (0.0656) 

0 1 2  l.2xlo4 0.0663 0.0004 
(0.5 1 19) (0.4863) 

JI  I 1 . 8 ~ 1 0 ~  0.1319 0.0370 
(0.7668) (3.1 827) 

d z z  8 . 9 ~  1 O" 0.0 168 8 . 3 ~  1 o - ~  
(1.795 1) (O. 1475) 

0 1  2  - 9 . 0 ~  1 om7 O. 1868 0.0042 
(-0.161 7) (1.0532) 

2r1 1 .7x10'~ 0.0964 G.OO 15 
(2.6171) (0.444 1 ) 

&2 1.5 X I O - ~  O. 1452 0.0006 
(0.96 1 2) (0.2920) 

0 1 2  3 .7~1  O-' -0.9395 0.0036 
(0.9730) (-0.6873) 



Table Ba: Efficiency Regressions - CCORR Mode1 (t-statistics) 

Sampling Frequency a P l? 

Two Hour 

Six Hour 

Twelve Hour 

Twenfy-Four Hour 

Half Hour 2 1 1  2 . 0 ~  1 o - ~  1 .1700 0.0647 
(16.2614) (29.50 17) 

dzz 1 .OX 1 o - ~  0.7771 0.0426 
(4.9855) (23.653 7) 

ai2 1 .OX 10" 0.9267 0.0 102 
(8.2876) ( 1 1.4082) 

81 1 7 . 7 ~ 1  o - ~  1.1264 0.0258 
(6.6 135) (9.1236) 

d 2 2  1 .Ox 1 o - ~  0.9956 0.0309 
(0.0580) (10.0127) 

0 1 2  1 .4~10-' 1.3293 0.0099 
(0.9724) (5.6 1 75) 

21 I 1 .73x104 1.356 1 0.0297 
(2.5 899) (5.6594) 

&2 8 . 8 ~  1 O-' 0.8633 0.020 1 
(0.6893) (4.6339) 

QI z 1 -46x1 o4 0.7799 0.0036 
(1.7327) (1.9579) 

d1 I 3.15~10" 1.5259 0.0 1 O5 
( 1.2705) (2.35 15) 

&2 3 . 7 6 ~  1 o4 0.6708 0.0 185 
(1.3954) (3.1380) 

0 1  2 3 . 2 0 ~  1 o4 0.6700 0.002 1 
(1.3349) (1 .OSOO) 

di t -5 .26~ 1 O" 1.3326 0.0338 
(-0.43 00) (2.1333) 

Cf22 1.602xl0-~ O. 1586 0.0002 
(0.7458) (0.1619) 

0 1 2  -2 .125~10~ 3.0839 0.0540 
(-1.7701) (2.7262) 



Amendix C :  Cornparison of Models 



TabIe Cl:  Fraction of Outcomes Exceeding VaR Limits (99% Confidence) 

GDC CCORR RiskMetricsTM 

% Exceeded Trials % Exceeded Trials % Exceeded Trials 

Half Hour 0.40% 56592 2.60% 56592 1.80% 56592 

Two Hour 0.07% 14157 2.80% 14157 1.90% 14157 

Six Hour 0.20% 4716 2.39% 4716 2.14% 4716 

Twelve Hour 0.04% 2358 2.54% 2358 2.45% 2358 

Daily 1.11% 900 1 .OO% 900 1.77% 900 



Table C2: Fraction of Outcornes Exceeding VaR Limits (95% Confidence) 

GDC CCORR RiskMeîricsTM 

% Exceeded Trials % Exceeded TriaIs % Exceeded Trials 

Walf Hour 1.78% 56592 2.89% 56592 2.22% 56592 

Two Hour O. 16% 14157 3.35% 14157 3.98% 14157 

Six Hour 0.46% 4716 2.65% 4716 3.43% 4716 

Twelve Hour 1.01% 2358 2.53% 2358 3.82% 2358 

Daily 0.66% 900 2.57% 900 3.74% 900 



Table C3: Test for Significance of 99% VaR Success Rates (95% Confidence) 

GDC CCORR RiskMetricsTM 

Half Hour 0.0603 O. 1608 0.0804 

Two Hour 0.0935 O. 1809 0.0905 

Six Hour 0.0804 0.1397 0.1 146 

Twelve Hour 0.0965 0.1548 0.1457 

Daily 0.01 11 0.0000 0.0774 



Table C4: Test for Significance of 95% VaR Success Rates (95% Confidence) 

GDC CCORR RiskMetricsTM 

Half Hour O. 1477 0.0968 O. 1276 

Two Hour 0.2221 0.0757 0.0468 

Six Hou. 0.2083 O. 1 078 0.0720 

Twelve Hour O. 183 1 0.1133 0.0541 

Daily O. 1991 0.1115 0.0578 



Table C5: 95% Confidence Interval for Successful Coverage (VaR at 99%) 

GDC CCORR RiskMetricsTM 

Lower U P P ~ ~  Lower U P P ~ ~  Lower U P P ~ ~  

Half Hour 99.55% 99.65% 97.27% 97.53% 98.09% 98.31% 

Two Hour 99.89% 99.97% 96.93% 97.47% 97.88% 98.32% 

Six Hour 99.67% 99.93% 97.17% 98.05% 97.45% 98.27% 

Twelve Hour 99.88% 100.00% 96.82% 98.10% 96.93% 98.17% 

Daily 98.21% 99.57% 98.35% 99.65% 9737% 99.09% 



Table C6: 95% Confidence Interval for Successful Coverage (VaR at 95%) 

GDC CCORR Ris kMetricsTM 

Lower U P P ~ ~  Lower U P P ~ ~  Lower U P P ~ ~  

Half Hour 98.1 1% 98.33% 96.97% 97.25% 97.66% 97.90% 

Two Hour 99.77% 99.9 1 % 96.35% 96.95% 95.70% 96.34% 

Six H o u  99.35% 99.73% 96.89% 97.81 % 96.05% 97.09% 

Twelve Hour 98.59% 99.39% 96.84% 98.10% 95.41% 96.95% 

Daily 98.81% 99.87% 96.40% 98.46% 95.02% 97.50% 




