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Abstract 

-4 detailed modelling of contact dpamics involving general flexible multi-body sys- 

tems of arbitrary kinematic architecture is considered. The components undergoing 

direct contact (e-g., the end-effector of a manipulator and a satellite) are modelled 

using the finite element met hod and the Lagrange multiplier technique. Special at  ten- 

tion is paid to dynamic fidelity of contact dynamics. Contact geometric constraints 

and corresponding contact forces are analysed and incorporated into the dynamical 

equations. This model takes into account structural deformations and oscillations, 

friction, time-varying contact area, and repeated contact/impact. Multi-body sys- 

tems, on the other hand, are handled by a modified Euler-Lagrange method based on 

the Natural Orthogonal Complement (NOC). Thus, the system dynamics is composed 

of a set of differential equations (either multi-body formulations or finite element 

nodal displacement formulations) subjected to sets of algebraic equations expressing 

kinematic or contact constraints. -4 systematic procedure for solving this system of 

equations is formulated wit h special emphasis on computational efficiency. 

This dynamic model is then used to design a composite controller which must 

simultaneously achieve three goals: (1) trajectory tracking, (2) force control, and (3) 

stabilization of the flexible degrees of freedom of the multibody system. The singzllar 

perturbation method is used to obtain two reduced order models. Subsequently, the 

slow subsystem is used to design a simultaneous position/force controller based on 

impedance control, where an optimization method is incorporated to accommodate 

manipulator redundancy. The fast subsystem is used to design a Linear Quadratic 



Regulator (LQR) to suppress structural vibrations. 

A simulation environment is developed based on the above procedures and for- 

mulations for the planar case. It is used to perform dynamic and control simulations 

of a variety of contact scenarios involving multi-body systems. -4 comparative study 

of the results indicates that a detailed contact dynamics mode1 may be essential for 

a realistic simulation of contact/impact, capture, and force control operations- 



Résumé 

Une modélisation détaillée de la dynamique de contact est considérée pour des systèmes 

de corps multiples généralement flexibles et d'architecture cinématique donnée. Les 

composants soumis à des contacts directs (par exemple entre l'organe terminal d'un 

robot manipulateur et un satellite) sont modélisés en utilisant la méthode des éléments 

finis et la technique du multiplicateur de Lagrange. Une attention particulière est 

portée à l'exactitude de la dynamique de contact. Les contraintes géométriques 

de contact et les forces de contact associées sont analysées et intégrées dans les 

équations de la dynamique. Ce modèle prend en compte des déformations et os- 

cillations de la structure, la friction, la zone de contact variant avec le temps, les 

impacts et contacts répétés. D'autre part, les systèmes de corps multiples sont 

analysés avec la méthode modifiée d'Euler-Lagrange basée sur le Complément Na- 

turel Orthogonal (CNO). Ainsi, la dynamique du système est composée d'un en- 

semble d'équations différentielles (régissant la dynamique des corps multiples ou Ics 

déplacements des nœuds des éléments finis) sujettes à des ensembles d'équations 

algébriques représentant les contraintes de cinématique ou de contact. Une procédure 

systématique pour résoudre ce système d'équations est détaillée en met tant l'accent 

sur son efficacité numérique. 

Ce modèle dynamique est alors utilisé pour concevoir un contrôleur hybride qui 

doit atteindre trois objectifs en même temps: (1) suivre une trajectoire, (2) contrôler 

la force, et (3) stabiliser les degrés de liberté flexibles du système de corps multi- 

ples. La méthode des perturbations singulières est utilisée pour obtenir deux modèles 



d'ordre réduit. Par conséquent, le sous-système lent est utilisé pour contrôler simul- 

tanément la position et la force en fonction du contrôle d'impédance, où une méthode 

d'optimisation est incorporée pour prendre en compte la redondance du robot rna- 

nipulateur. Le sous-système rapide est utilisé pour créer une Commande Linéaire 

Quadratique (CL&) pour supprimer les vibrations de la structure. 

Un environnement de simulation est développé en fonction des procédures précédentes 

et des formulations pour le cas plan. Il est utilisé pour obtenir des simulations de 

dynamique et de contrôle à travers différents scénarios de contact impliquant des 

systèmes de corps multiples. Une étude comparative des résultats montre qu'un 

modèle détaillé de la dynamique de contact peut être primordial pour une simulation 

réaliste des opérations de contact et d'impact, de capture et de contrôle de force. 



Claim of Originality 

The major contribution of this thesis is the development of a general formulation 

for a detailed and efficient model of contact dynamics involving fleaxibIe multi-body 

systems. Specific contributions of this work are: 

Development of an efficient methodology for the formulation of a finite element 

model of contacting bodies undergoing large displacements, with the use of the 

symbolic software MAPLE V. 

Development of a systematic procedure for solving the equations of motion 

of flexible multi-body systems of arbitrary kinematic architecture subjected to  

sets of kinematic or contact constraints, with special emphasis on computationa1 

efficiency. 

0 Design of a composite controller for trajectory tracking, force and vibration con- 

trol of a spacecraft-mounted manipulator operating on a free-floating system. 

0 Development of a computer code for the simulation of contact dynamics and 

force control of multi-body systems. 

These contributions have been partly reported in preliminary form in Kim Sr Misra 

(1997), Kim et al. (1997), Kim et al. (1998a), and Kim et al. (1998b). 
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Nomenclature 

In this thesis, bold-face: lower-case, Latin and Greek letters denote vectors: bold- 

face, upper-case, Latin and Greek letters denote matrices: and calligraphie and italic 

letters generally represent scalar quantities such as material or geometric properties, 

points, or indices. The term element refers to a finite element of a contacting body 

(addressed in Chapter 2). link refers to a body in a multi-body system (addressed in 

Chapter 3), and subsystem refers to either a contacting body or a multi-body system 

(addressed in Chapter 4). 

Latin Symbols 

ao, - - - , ni : Xewmark integration parameters. 

A : in Chapter 3. kinematic velocity constraint matrk ;  in Chapter 5 ,  desired appar- 

ent mass matrix in impedance control. 

bi : generalized coordinates associated with the bending of link i. 

B : in Chapter 2, strain-displacement transformation matrix; iii Chapter 3; matrix 

of shape functions. 

ci : generalized nonlinear force vector of element, link, or subsystem i containing the 

Coriolis and centrifuga1 forces. 

Ci : darnping matrix of element, link, or subsystem i. 



Cs : spacecraft's centre of m a s .  

Cs : linear interpolation matrix of segment S. 

e : tracking error vector in impedance control. 

E : modulus of elasticity. 

Ei : stress-strain constitutive matLu of element i. 

fi : generalized esternal force vector of element, link, or subsystem i. 

fc, : constraint force vector of element i. 

F : vibration control state feedback gain matrix of reduced-order model. 

gj : j-th constraint vector. 

G : Guyan reduction matriu. 

I : area moment of inertia. 

In, : n x n identity matrix. 

Ih, : inertia matris of the hub of link i. 

J i  : in Chapter 2, Jacobian of element i relating the natural coordinate derivatives 

to the local coordinate derivatives: in Chapter 5, Jacobian of the manipulator 

systern. 

Ki : stiffness matris of element, link, or subsystem i. 

Kd : desired apparent darnping matrix in impedance cont.ro1. 

Kp : desired apparent stiffness mat+ in impedance control. 

L : transformation matrix from 4 to W .  

hli : concentrated mass at the tip of link i. 

Mi : generalized mass matriu of element, link, or subsystem i. 

'cix 



M : generalized m a s  matrix of a contacting body. 

M : generdized m a s  rnatrix of a rnulti-body -stem. 

n k  : unit normal to the target surface for contactor node k. 

N : Natural Orthogonal Complement of the velocity constraint matrix of a multi- 

body system. 

Ni : matriv of interpolating functions of element i. 

p : inertial position vector of the origin of the  local frame xgz of a contacting body. 

fii : position vector of the origin of (,Y, , k;: Zi) with respect to (,Y,. Y,, 2,). 

p h  : position vector of the t ip  of a multi-body/manipulator system with respect to 

its base. 

Pj i  : constraint matrix resulting from the relationship between constraint j and sub- 

system i. 

qi : generalized coordinates of element, link, or subsystem i. 

4 : quaternion formed by either the Euler parameters or the linear invariants de- 

scribing the orientation of a contacting body with respect to an inertial frame. 

ai : quaternion describing the orientation of (X,, Y,? 2,) with respect to  (-Yo. t.,, 2,). 

ri : in Chapter2, inertial position vector of a point on element i; in Chapter 3, posi- 

tion vector of a point on  link i measured with respect to the (S,: Y,, 2,) frame. 

R, : rotation matrix describing the orientation of frame (X i ,  Y,, Zi) with respect to 

(Xi-1, K-1, zi-1)- 

R : rotation matrix describing the orientation of the local frarne xyz of a contacting 

body with respect to  X Y Z .  

t : time variable. 



tk : unit tangential to the target surface for contactor node k. 

Ti : kinetic energy of element or link i. 

T : connectivity matriu. 

Ui : potential energy of element or tink i. 

ui : elastic displacement with respect to the undeformed position of a point in ele- 

ment i measured in the local frame xyz. 

: elastic displacement of node j in element i measured in the local frame xyz. 

vi : eztended velocity vector of link i. 

C; : velocity vector of the origin of (Xi? k;, Zi)  with respect to  (Xo, k',, 2,). 

W j ,  CV,, : weighting factors in Gaussian Quadrature. 

xi : undeformed position vector of a point in element i with respect to the local frame 

x yz. 

: position vector of node j in element i with respect to the local frame xyz. 

x,,f : reference or nominal trajectory of the end-effector. 

xyz : locai frame of a contacting body. 

S Y Z  : inertial frame of a contacting body. 

( Y  Y 2 )  : local frame of link i. 

(XI, Y ,  2 )  : inertial frame at the center of Earth. 

( X ,  Y 2 )  : orbital frame at the spacecraft's center of mass. 



Greek Symbols 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Contact dynamics is becoming a n  important issue in space operations. Berthing or 

docking of two spacecraft systems will become routine operations in the near future: 

the Shuttle will dock with the Space Station during the latter's construction and 

operation, and malfunctioning satellites will be serviced by the Shuttle or  other free 

flyers. These operations are likely to involve a velocity differential between the two 

contacting bodies, which can result in dynamic disturbances. It is important to 

assess the effect of t hese disturbances to  determine whether t hey endanger s t  riictural 

safety and attitude stability of the space systems. After the initial impact. sustained 

contact is desired in rnost operations. In this case, the control system must have 

the capability to damp out the vibrations generated during impact, apply a desired 

amount of force and prevent damage of parts due to overioad. 

Space robots are expected to  play an increasingly significant role in these con- 

tact operations. -4 major motivation behind this is to minimize the need for as- 

tronaut Extra Vehicular Activity (EV-4): which would greatly reduce mission costs 

and hazards to  the astronauts involved. The Canadian Shuttle Remote Manipula- 



Figure 1.1 : S but tle-mounted CANADARM preparing to capture a payload 

tor System (SRMS, also known as CANADARM (Figure 1.1')) represents state of 

the art  technology in the field of space-based. flexible manipulators. It  has been 

operational on board the Shuttle since 1981, and has been used for such activities 

as payload berthing, deployment, and positioning, docking of the Shuttle with the 

space station Mir, and such unexpected tasks as breaking of ice around a vent nozzle 

(Nguyen et al. 1991). The Mobile Servicing System (MSS) (Figure 1.2+), which is the 

Canadian contribution to the International Space Station (ISS). includes a large' 7 

degree-of-freedom self-relocatable manipulator arm called the Space Station Remote 

Manipulator System (SSRMS), and a smaller, dual-arm robot attached to the tip 

of the SSRMS known as the Special Purpose Dextrous Manipulator (SPDM). The 

SSRMS is designed to perform the gross motions such as capture, manipulation and 

berthing operations, while the SPDM satisfies those operations requiring destrous 

'Figure downloaded from http://www.spar.ca/space/irnages/ 
t ~ i ~ u r e  downloaded from http://spacefiight.naça.gov/medialibrary/ 



Figure 1.2: The Mobile Servicing System (MSS) 

capabilities. The MSS is expected to play a major role in the assembly and external 

maintenance of the Space Station. Some of its functions are: (i) rernoval of Space 

Station elements and equipment from the shuttle cargo bay, (ii) Space Station ester- 

na1 maintenance including changeout of Orbit Replaceable Units (ORU), actuatiori of 

mechanisrns, mating/demating utilities, (izi) transportation on the Space Station of 

payloads such as Space Station elements, attached payloads and ORU's, (iv) deploy- 

ment and retrieval of free flyers by capturing and maneuvering to appropriate sites 

on the Space Station or deploying from the Station, and (v) EVA support including 

transporting or positioning of EVA crew (Stieber et al. 1998). 

Most of these operations inevitably involve contact or constrained motions. But 

contact maneuvers are generally recognized to be difficult operations for robotic rna- 

nipulators (Ma & Carr  1998). The contact dynamics behaviour is coupled with 

the entire manipulator and base dynamics, as well as the control system dynam- 



ics. Furthermore, space manipulators have some unique characteristics such as joint 

flexibility, link flexibility, large size, absence of a Lxed base. and the microgravity 

environment of space. The CANADARM, for example, was designed to manipulate 

payload masses of up to 30,000 kg in space, but is unable to lift its own weight on 

Earth. These features make it difficult to conduct esperiments with space manip  

ulators in an Earth laboratory environment, and simplified ground-based tests may 

not be representative of the actuai system in the space environment. Therefore, com- 

puter simulation analyses become al1 the more essential to perform such tasks as 

engineering design, feasibility, along with operations analysis and training. 

During contact operations involving the C-4N-4Db4Rhf. which is the only oper- 

ational space manipulator available today, al1 contact activities are performed very 

slowly, without any sensing capability to inform the operator of the magnitude of the 

forces that the arm exerts on its surroundings. A force feedback control can therefore 

be a welcome addition to  the existing CANADARM or the new SSRMS control archi- 

tecture to improve their performance for the current operational activities, as well as 

to meet emerging requirements for Space Station operations. Most simulation efforts 

on force control: however, have relied on quite simple contact models for verification 

of the control schemes. -4s with most contact activities in space, an accurate contact 

model can add to a more reliable and sophisticated validation tool for candidate force 

control algorit hms. 

The contact dynamical model used for analysis and simulation must then have 

sufficiently high dynamic fidelity to represent the reality. With the steady increase 

of comput.er power over the p a r s  (according to Moore's law, it doubles every 18 

months), it is possible to use increasingly accurate and sophisticated models. How- 

ever, computational efficiency is still important since some simulations will include 

hardware-in-the-loop or human-in-t he-loop components, which will require the Ca- 

pability for real-time simulation. In accordance with these considerations, the main 

interest of this thesis lies in developing a dynamic formulation capable of simulat- 

ing the detailed contact dynamics involving multi-body systems and control systerns. 



But a t  the sarne tirne, special attention will be paid to  computationai efficiency so as 

to explore the possibility of real-time implementation. 

1.2 Contact Dynamics 

Most methods of contact modelling that have appeared in the literature can be clas- 

sified into two main categories: impulse-momentum based methods and contact force 

based methods. The impulse-mornentum based methods assume that impact occurs 

znstantaneously and separate the dynamic analysis of the system into two intervals: 

before and after impact. Given the state of the system just before impact, principles 

of energy and momentum are used to obtain rebound states at  the end of impact. 

Contact force based methods, on the other hand, analyse the contact geometric con- 

straints and corresponding cont.act forces, and incorporate them into the dynamical 

equat ions. 

Among impulse-momentum approaches, the problem of a robotic manipulator im- 

pacting the environment has been studied by several researchers. Zheng & Hemami 

(1985) analyzed the dynamics of a robot colliding with the environment; a mathe- 

matical mode1 was derived to establish a relationship between the abrupt velocity 

changes and the impulsive forces. Wang & Mason (1987) modelled the impact d -  

namics with friction in the planar case using a graphical method. Yoshida et al. 

(1992) used the extended generalized inertia tensor (Ex-GIT) and the virtual rnass 

concept to  formulate the impact dynamics of a system of free-floating links. -411 these 

works were restricted to  rigid rnulti-body systems. Kim (1994) estended the work to 

flexible multi-body systems. Impact was modelled from fully elastic to  fully plastic 

by introducing two parameters characterizing the impact: the energy loss parameter 

and the friction parameter. Due to the complexity of actual physical processes of 

impact, some general simpliSring assumptions were made in al1 the above works in 

order to  render the problem arnenable to  mathematical treatment. Some of these 

assumptions are: (1) impact duration is instantaneous; (2) generalized coordinates 



remain unchanged during impact; (3) impact occurs a t  a point rather than a time- 

varying area. -4nother major weakness of the impulse-momentum approach is that it 

is not direct1y applicable to problems of sustained contact and friction between the 

contacting bodies. 

The contact-force based methods, on the other hand, do not make the assumption 

of instantaneous impact duration and can naturally handle pro blems of sustained 

contact and friction. This method can again be subdivided into three types: the 

spring-dashpot approach, the classical Hertz contact theory approach, and the finite 

element approach. The spring-dashpot approach, also referred to as the Kelvin-Voigt 

model, is the simp1est one, where the contact interface is modelled by a parallel and 

(usually) linear spring-dashpot element. Because of its simplicity. t his mode1 has been 

the preferred choice in most works on force control of manipulator systems (section 

1.5). 

The Hertz contact theory describes a relationship between the normal contact 

force and the local contact deformation by means of material stiffness properties of 

the contacting bodies and local contact surface geometry (.Johnson 1985). Csing 

this simple relationship, the contact problem of cornplex multi-body systems under- 

going complicated contact tasks can be analysed with minimal computational cost 

(Ma 1995, Vallejo et al. 1992). This theory assumes that local contact deformations 

can be described in a quasi-static manner and neglects the effects of elastic structural 

oscillations. However, in al1 contact operations, initial impact is almost unavoidable, 

where elastic waves are excited t hat interact with structural deformations as well as 

local contact deformations. .As time progresses. geometric and material dispersion 

of waves occurs, diminishing initial peak response. This early time response is im- 

portant for prediction of the dynamics of impacting structures. Some researchers 

have attempted to add certain features absent in the original Hertz model. The lack 

of an energy dissipation function, for example, was accounted for by Lankarani & 

Nikravesh (1990) by including a hysteresis damping function. 

Among finite element approaches, several formulation methodologies have been 



advanced in the literature for solving contact problems. One approach is based on the 

use of special gap or interface elements intervening between the surfaces of the bodies 

in contact (Cook 1981). This approach is straightforward but in cases where the con- 

tacting bodies are of complex or irregular shape or undergo large displacements, it is 

inadequate and hence its use is restricted to  simple geometries (Tissakht 1995). More 

general approaches for solving contact problems in finite element analyses are those 

based on the variational formulations. These approaches can generally be classified 

into two types (Cook 1981. Bathe 1982) : (i) the Lagrange multiplier rnethods. and (ai) 

the penalty method. Some variations or combinations of these two approaches have 

also appeared in the literature. such as the augmented Lagrangian rnethod (Simo 9r 

Laursen 1992) and the rnixed method (Shyu et al. 1989). 

In the Lagrange multiplier method (Bathe & Chaudhary 1988. Chaudhav  & 

Bathe 1986, Hughes et al. 1916), the contact constraints are satisfied exacth by 

introducing into the equations of motion a set of Lagrange multipliers representing 

contact forces. Bot h the generalized coordinat es and Lagrange multipliers are treated 

as unknown variables, and therefore, the size of the resulting system of equations 

increases due to the additional variables, Le., the Lagrange multipliers. 

The penalty method easily eliminates this drawback by assuming that  the contact 

pressure is equal to the amount of material penetration times a certain penalty pa- 

rameter (Oden & Kikuchi 1982, de la Fuente & Felippa 1991). However. the contact 

constraints are satisfied exactly only in the limit of infinitc penalty values, while it is 

well-known that penalty methods suffer from ill-conditioning that worsens as penalty 

values are increased. Other weaknesses of the penalty method are: (1) the solution 

strongly depends on the particular choice of the penalty parameter, and (2) it violates 

the principle of conservation of energy of the systems in contact because some of the 

energy is stored in the 'penalty spring'. 

A11 the above-mentioned studies dealt with two single-body systerns. Some re- 

searchers extended the finite element formulation of contact problenls to  general 

multi-body systems (Wu & Haug 1990, Was% 1995). However, due to  the complexity 



and computational cost involved in a full finite element contact model? some simpli- 

fying assumptions and procedures were used. Wu & Haug (1990) used a substructure 

technique to analyse frictionless contact-impact of flexible multi-body systems. In 

this approach, components that may corne into contact are  divided into substructures: 

on each of which deformation modes are defined to account for elastic deformations 

and vibrations. A constraint addition-deletion technique based on Lagrange multi- 

pliers is used t o  account for contact and separation between a pair of contact nodes. 

However, the contact nodes are predetermined, and thus large displacements and 

sliding while in contact are not allowed. Wasfy (1995) presented a finite element 

based technique for modeling contact-impact of flexible manipulators with a fixed 

rigid surface. The  conservation of energy and momentum, or Newton's coliision rule 

and conservation of momentum? are used as velocity constraints on individual mass- 

lumped nodes in contact with the rigid surface to obtain the post-impact velocities 

of the nodes. 

In this thesis, the Lagrange multiplier technique based on the finite elernent 

method was chosen to mode1 contact dynamics of contacting bodies. This method 

represents, to the author's knowledge, the most detailed formulation of contact dy- 

namics, capable of modeling such phenornena as structural deformations, friction? 

time-varying contact area, repeated contact/impact, and ot  hers, without making 

doubtful assumptions about the nature of the physical contact mechanics. Its main 

disadvantage compared with the penalty methods, namely increase in the number of 

equations to be solved, is a minor inconvenience since a t  most, only 3 equations (3D 

sticking case) are added for each nodc in contact. 

Note that only the contacting bodies will be  modelled using the above-mentioned 

approach. These bodies may well be connectecl to  other bodies, as is the case of 

the end-effector (a contacting body) with the rest of the manipulator (a multi-body 

system). The dynamical formulation of multi-body systems are discussed in the 

following section. 



1.3 Dynamics of Multi-Body Systems 

Methods of formulation and simulation of the dynamics of multi-body systems are 

extensive. -4 detailed literature review, however, is beyond the scope of this thesis. 

Only those works directly relevant to this thesis are described here. 

The Newton-Euler method lends itself to very efficient recursive computations for 

solving dynarnics problems of serial, rigid-Ihk multi- body systems. However. t his 

method is not convenient for applicatim to systems containing kinematic loops or 

flexible links. On the other hand, the Euler-Lagrange rnethod is conceptually much 

simpler, with the added advantage of not requiring the calculation of the constraint 

forces. However, this method requires the evaluation of derivatives of energy terms 

which are very lengthy for multibody systems. 

Some energy based methods, however, are capable of circumventing these difficul- 

ties. In Kane's method (Kane & Levinson 1983), the constraint forces are eliminated 

from the equations of motion wit h the introduction of partial velocities and partial an- 

gular velocities. Similarly, in the method of Natural Orthogonal Complement (XOC) 

(Angeles & Lee 1988, Cyril 1988, Cyril e t  al. 1991), the Lagrange equations are de- 

rived for each individual component and then assembled to obtain the equations of 

motion of the whole system. This approach, however, introduces the non-working 

constraint forces which are eliminated later by using the Natural Orthogonal Corn- 

plement (NOC) of the kinematic velocity constraint matris. This method has the 

simplicity of the Newton-Euler formulations which permit the analysis of one body 

a t  a tirne, while it avoids the disadvantages of the usual Lagrange formulations, 

namely evaluation of derivatives of lengthy energy terms. Various types of flexible 

systems have been analysed using this met hod: serial-type multibody systems (Cyril 

et al. 1989), manipulators with kinematic loops (Fattah 1995, Cho 1995), and artic- 

ulating truss structures (Bout in 19%). 

Other energy methods attempt to develop O ( N )  algorithms, where N is the num- 

ber of bodies comprising the system. In other words, in an O ( N )  algorithm, the 



number of arithmetic operations increases linearly with the number of bodies. Most 

formulations are of 0(N3) because the computation of the inverse of the global mass 

matrix requires 0(N3) arithmetic operations. Pradhan et al. (1997) developed an 

O ( N )  algorithm where the kinetic and potential energy are derived for each individ- 

ual body using a decoupled set of coordinates and then assembled to form the kinetic 

and potential energy of the whole system. Next, a coordinate transformation is made 

where the new set of coupled coordinates facilitates the expression of physical con- 

straints between adjacent bodies. -4 unique feature of this transformation process is 

that the new mass matris can be factorized in terms of block diagonal matrices such 

that its inversion is an O ( N )  process. One disadvantage of this method. however. is 

that coastraint forces are not eliminated but are treated as variables; therefore, the 

number of equations increases with the number of constraint equations. This methocl 

was applied to planar dynamics of flexible manipulators with N slewing deployable 

links (Caron et al. 1998) and the dynamics of N-body tethered systems (Kalantzis 

et al. 1998). 

In this thesis, the modified Euler-Lagrange method based on NOC \vas chosen 

to mode1 multi-body systems. This method is conceptually simple, systematic, com- 

putationaily efficient, and combines the advantages of the Xewton-Euler and Euler- 

Lagrange methods. Further incentive for this choice was provided by the availability 

of FLEXLINK (Cyril et al. 1989), an in-house general-purpose software package for 

the dynamic simulation of serial-link flexible manipulators. 

1.4 Integration of Contact Dynamics with Multi- 

body System Dynamics 

En this thesis, the main objective is a detailed rnodelling of contact dynarnics involving 

gcneral multi-body systems of arbitrary kinematic architecture. It is t hus necessary to 

bring together two fields of work: contact dynamics and multi-body system dynamics. 



Payload \ 

Figure 1.3: Schematic diagram of a typical system under study 

The bodies which undergo direct contact (such as the end-efFector and payload) are 

modelled using the finite element method (FEM) since contact effects such as local 

contact deformations and friction occur near the area of contact, while the rest of 

the multi-body systems are modelled using a flexible multi-body formulation based 

on the method of Natural Orthogonal Complement (NOC) (Cyril e t  al. 1991). The 

resulting equations of motion are then integrated by taking into account the kinematic 

constraints at  mechanical joints and contact surfaces. -4 schematic diagram of a 

typical system under studÿ is shown in Figure 1.3: a manipulator mounted on a 

spacecraft is capturing a satellite (payload) . In this case: the end-effector and satellite 

(contacting bodies) are modelled using FEM while the rest of the system is modelled 

using a multi-body formulation. 

These systems of equations are usually sti$ (in the numerical analysis sense) and 

nonlinear, and the number of finite element equations t hat descri be the deformat ions 

of the contacting bodies is large. In fact, the enormous computational cost involved 



in simulating the dynamics of a full finite element contact mode1 is the major reason 

for resorting to less computationally demanding and simplified methods reviewed 

in Section 1.2. Therefore, one of the major objectives of this thesis is to explore 

and develop computationally efficient methods and procedures without sacrificing 

modelling accuracy. 

For large systems of equations, several reduction methods are available in the 

literature (for a comprehensive survey. see Noor (1994)). The response of the system? 

which is originally described in terms of a large number of generalized coordinates, 

q,, is approxirnated by a combination of preselected global approximation vectors. 

The problem is then reformulated in terms of a few discrete variables .Sr, given by 

where I' is an n x r transformation matriu. The crux of reduction methods is the 

proper selection of global approximation methods. An ideal set of global approxirna- 

tion vectors was defined by Noor & Peters (1980) as one which maximizes the quality 

of the results and minimizes the total effort in obtaining them. This criteria depends 

on the particular application, as well as on the system response characteristics being 

approximated. Two commonly used reduction methods are modal truncation and 

Guyan reduction. In modal truncation, the approximation matrix is made up of 

columns of eigenvectors which, based on certain criteria, provide the most significant 

contributions to the system dynamics. UsualI_v, the higher the eigenfrequency. the 

less is its contribution to the overall dynamics. Therefore. it is common practice to 

discard the higher frequency eigenvectors and retain the lower ones (e-g. Ma et al. 

(1997), Boutin (1995)). In Guyan reduction (Cook 1981, Guyan 1965), also known as 

the rnass condensation method, the degrees of freedom are subdivided into two types 

- slaves and masters where the slaves are dependent on the masters and thus disap- 

pear from the final reduced set of equations. Several general methods for choosing 

slaves and masters are available in the literature (Cook 1981, Noor 1994), but this 

criteria is ultimately problem dependent. 

The equations of motion of dynamical systems are usually second-order nonlinear 



differential equations which require taking the inverse of a time-varying, configuration- 

dependent m a s  rnatrix in some manner. In this thesis. there is particdar interest 

in inverting the rnass matrix of a single contacting body but whose order is large 

because of the large number of nodal degrees of freedom involved. Several methods 

have been proposed to compute the inverse of the mass matrix ranging from taking 

an algebraic inverse, to using traditional numerical inverse methods such as Cholesky 

Decomposition (CD) (Bat he 1982). The algebraic inverse is only feasible for rela- 

tively small systems, even wit h powerful syrnbolic manipulation programs such as 

Mathematica, Maple, or AUTOLEV. Taking a numerical inverse a t  each integration 

step is the most generally applicable method. but even CD requires 0(N3) arith- 

metic operations to invert a symmetric and positive definite N x N mass matris. In 

the field of multibody dynamics, some novel techniques of formulating the dynamics 

have beeu developed with the express purpose of finding a more efficient way of tak- 

ing care of this operation. In the O ( N )  algorithms discussed in Section 1.3 (Pradhan 

et al. 1997, Caron et al. 1998, Kalantzis et al. 1998), the mass matris of each body 

is inverted separately such that the overall effort of inverting the global mass matris 

is O ( N ) .  Junkins & Schaub (1997) presented a technique for deriving the equations 

of motion which yields a dynamical system witli an identity m a s  matrix by intro- 

ducing a quasivelocity vector. The problem of inverting a cornplicated mass matrix 

is thus replaced by the problem of solving the corresponding eigenfactor differential 

equations. 

The above-mentioned methods and other procedures are investigated in this thesis 

to reduce the overall computational cost involved in the solution. 

1.5 Trajectory, Force, and Vibration Control 

The problem of force control of robotic manipulators has been widely studied by 

many researchers (Raibert & Craig 1981, Craig 1986, Matsuno 2k Yamamoto 1994, 

Hogan 1987, Lasky & Hsia 1991, Seraji & Colbaugh 1993, Nguyen et al. 1991, Khatib 



1987). -4mong the various force control schemes, the hybnd position/force control and 

impedance control are the  two unified (position and force) control algorithms. The 

hybrid position/force scheme attempts to directly control the end-effector's position 

and applied force. At a typical contact point. the contact direction and end-effector 

motion direction are approximately orthogonal to each other. Therefore. dong  the 

motion direction, a pure position control is activated. and along the contact direction. 

a pure force control is applied. The scheme is implemented by individually designing 

a position and a force control law for each degree of freedom of the task space and 

then integrating the overall control Law t hrough the use of so-called selection matrices. 

which basically represent switches that set the mode of control to be used for each 

degree of freedom. One of the disadvantages of the hybrid position/control is that it 

requires specific knowledge of the motion and force directions of the task space. 

Impedance control easily eliminates this problem; while most control schemes 

are based on directly controiling position or force, impedance control assumes that 

the control should be designed, not to  control motion or force alone, but rather to 

modulate and regulate the interaction between force and motion; in other words. to 

regulate the mechanical impedance of the manipulator. This controller is Cartesian 

task-space based (or operational space as in Khatib (1987)), which eliminates the task 

of solving the inverse kinematics problem. It also uses a nonlinear dynamic decou- 

pling approach, equivalent to  joint-space based cornputed torque control or feedback 

lznearization technique, which fully exploits the knowledge of the dynamic model? 

so that linear and decoupled control structures can be obtained. Impedance con- 

trol works well where the characteristics of the environment are exactly known; in 

the presence of parameter uncertainties, force-tracking becornes poor and additional 

schemes must be incorporated into the control scheme to rectify this problem. Lasky 

& Hsia (1991) proposed a double-loop controller where a conventional impedance 

controller is implemented in the inner loop and a simple force-feedback controller in 

the outer loop. Seraji & Colbaugh (1993) presented adaptive strategies to estimate 

the environmental parameters and adjust online the required reference trajeçtory. 



The main concern in al1 these works, however, was on terrestrial rigid manipula- 

tors. A major problem with controlling flexible manipulators is that in many cases 

the flexible degrees of freedom become unstable and the control maneuver fails. Thus, 

for a fully flexible manipulator system, the controller must not only track a certain 

desired trajectory and apply a desired amount of force but must also stabilize the vi- 

brations which are naturally excited, damping thern out as fast as possible during its 

path. However, these multiple objectives cannot be met with the use of conventional 

rigid-rnanipulator controllers since there are not as many control inputs as output 

variables. 

Attempts to control a flexible multi-link manipulator using rigid rnanipulator con- 

trot by simply ignoring the flexible effects are unsatisfactory when link deflections are 

substantial. They either result in gross inaccuracies in the positioning of the end- 

effector, or instability due to elastic effects. Bayo (1988) presented a feedfonvard 

approach where an inverse dynamics problem is solved to calculate the joint torques 

which would produce zero tip deflection of the manipulator links. Some researchers 

(Baruh St Tadikonda 1989, Jaar et al. 1995, Caron et al. 1998) used the feedback 

linearization technique or the computed torque method to control multi-link robotic 

systems where the flesible dynamics were treated as 'disturbances' but werc not ex- 

plicitly controlled. However, these schemes may fail for fast joint manoeuvres. as the 

flexible dynarnic 'disturbances' become large and unstable. Carusone & D'Eleuterio 

(1993) employed gain scheduling of a series of steady-state optimal regulators based 

on linearized dynamical equations about stationary configurations along the desired 

manipulator trajectory. Others proposed the use of smart structures such as piezo- 

ceramic actuators capable of appiying transverse forces to the links, to damp out the 

undesirable vibrations of the flexible links (Modi et al. 1993, Kalaycioglu et al. 1997). 

Holvever, this scheme necessitates the use of additional (piezo-ceramic) actuators 

besides the conventional joint controllers. 

One scheme that has been used to circumvent the difficulty of achieving stabi- 

lization of the elastic effects using only conventional joint control is the singular per- 



turbation method (for a detailed theoretical presentation, see Kokotovic (1984)). The 

technique exploits the property t hat elastic vibration frequencies are usually greater 

than the frequency content of the rigid body motion trajectory. Hence, highly coupled 

differential equations of motion can be rearranged into two reduced-order systems. 

consisting of a "slo~v'' (rigid) subsystem and a "fast7? (flexible) subsystem, for which 

the latter possesses a much faster time scale. The control scheme for each subsystem 

may then be addressed separately, to establish a composite control design. The at- 

tractive feature of this strategy is that the control system can be designed separately 

using well-established control schemes suitable for each subsystem. For the slow su b- 

systemt any of the conventional control techniques used for rigid manipulators can 

be applied, such as the computed torque or impedance control. The fast subsystem 

turns out to be a linear time-varying system where the slow state variables act as pa- 

rameters. Then, a linear state feedback control based on either the Linear Quadratic 

Regulator (LQR) or the pole placement technique can be applied to damp out the 

flexible variables. This control was designecl for serial-type flexible-link manipula- 

tors by Siciliano & Book (1988). Matsuno 9r Yamamoto (1994) demonstrated its use 

to simuItaneously control position and force of a two-degree-of-freedom flexible ma- 

nipulator where the hybrid position/force control was used for the slow subsystem. 

Bout in (1995) applied this control technique to articulating truss structures. 

Manipulators may also be redundant. i.e., the joint space dimension rnay be 

greater t han t hat of the end-effector task space (as in the case of the 7-joint SSRMS). 

Manipulator redundancy has been esploited to achieve such goals as minimization of a 

quadratic criterion (Whitney 1969), rninimization of joint torques (Chung et al. 1993), 

or avoidance of joint limits, obstacles, or kinematic singularities. Extending Whit- 

ney's work, Khatib (1987) designed an operational-space based controller that mini- 

mizes the instantaneous kinetic energy of the system to obtain an effective inverse of 

the manipulator Jacobian, known as the inertia-weighted pseudoinverse. 



1.6 Scope and Organization of the Thesis 

In this thesis, an efficient solution procedure of a detailed contact dynamics model of 

general multi-body systems of arbitrary kinematic architecture is considered. The 

bodies which undergo direct contact. referred to as contacting bodies. are mod- 

eIIed using the Lagrange Multiplier technique based on the Finite Element Method. 

The modified Euler-Lagrange method based on the Watural Orthogonal Complement 

(NOC) was chosen to mode1 multi-body systems. These systems, by the nature of the 

kinematic or contact constraints acting between t hem, rnay form arbitrary kinemat ic 

configurations such as kinematic loops. or chains of tree- or serial-type topology. The 

dynamics of the individual systems are then globally coupled, and are accounted for 

in a general integration of al1 the systems. 

In order to render the dynamic simulation computationally efficient, the following 

solution procedures are used in t his thesis. Firstly, the computationally straightfor- 

ward and economical Newmark method is used for the time integration of the equa- 

tions of motion, with which the second order dynamical equations can be converted 

into algebraic form. Secondly, algebraic manipulations are made of the resulting 

equations in order to esploit the positive definite and positive semi-definite character 

of the mas ,  damping and stiffness matrices and use the efficient Cholesky Decom- 

position (CD) method for the inversion of matrices. Thirdly, the Guyan reduction 

method is applied to the sets of finite element equations in order to obtain a rediiced 

set of equations. Finally, efficient methods of obtaining the inverse of a configura- 

tion dependent and time-varying mass matrix of large size are investigated and their 

relative merits analysed and weighed against compromises in modelling accuracy. 

This dynamic model is then used to design a composite controller which must 

sirnultaneously achieve t hree goals: (1) trajectory t racking, (2) force control, and (3) 

stabilization of the flexible degrees of freedom of the rnultibody system. The singular 

perturbation method is used to obtain two reduced order models; subsequently, the 

slow subsystem is used to design a position/force controller based on impedance 



coatrol, and the fast linear subsystem is used to design a Linear Quadratic Regulator 

( L Q W  

The detailed presentation of the above thesis description is organized into seven 

chapters in the following manner: 

Chapter 2 deals with the dynarnical formulation of the contacting bodies using the 

Finite Element Method (FEM). The dynamical equations of each element are derived 

individually using the symbolic manipulator software PvIaple V. Then these equations 

are assembled using the method of NOC to form the equations of motion of an entire 

contacting body. 

Chapter 3 presents the dynamicai formulation of multi-body systems using the 

method of NOC. The kinematics formulation is first presented. Then the dynamical 

equations of each body is derived separately. Finally, the equations of motion of the 

multi-body system are assembled using the method of NOC. 

Chapter 4 deals with problems of integrating the various systems formulated in 

Chapters 2 and 3. An arbitrary interconnecting assembly of these systems is consid- 

ered. Several solution strategies are presented with a view to increasing the compu- 

tational efficiency without sacrificing dynamic fiüelity. 

Chapter 5 is concerned with the implementation of a trajectorx force, and vibration 

control of the dynamical model. -A composite control strategy is presented based on 

the Singular Perturbation method. Impedance control is used for the slow subsystem 

and the Linear Quadratic Regulator (LQR) is used for the fast subsystem. Manip- 

ulator redundancy is exploited to minimize the instantaneous kinetic energy of the 

system. 

Chapter 6 presents the computer code description, simulations, validations, results 

and discussions. 

Chapter 7 is devoted to  conclusions and recommendations for further work. 

Appendices provide some basic information and the details of certain derivations. 



Chapter 2 

Finite Element Mode1 of 

Contacting Bodies 

2.1 Introduction 

This chapter describes the dynamical formulation of contacting bodies such as end- 

effectors and payloads. The local contact phenornena such as contact deformations. 

elastic oscillations and friction are modelled based on the finite element method. 

A linear finite element mode1 can be used when both strains and displacements of 

the body to be rnodelled can be assumed to be infinitesimal. Most space contact 

activities are performed slowly and the generated forces are not severe. thus the 

infinitesimal strain assumption holds good. However, for contact operat ions where 

the end-effector and payload undergo prolonged contact with significant rigid-bodu 

motion, such as wlien the end-effector is sliding along a path on the target body, the 

second assumption, Le. the infinitesimal displacement assumption is not valid. Thus, 

a nonlinear finite element mode1 which incorporates large rigid-body displacements 

but assumes infinitesimal strains is presented here. 

The simulations and results presented in this thesis are confined to planar (2D) 

motion. However, the formulations and notation presented in this thesis maintain 



the generality of a spatial (3D) motion, unless othenvise explicitly stated. Note that 

in this thesis, bold-face, lower-case, Latin and Greek letters denote vectors: bold- 

face, upper-case, Latin and Greek letters denote matrices: and calligraphic and italic 

letters generally represent scalar quantities such as material or geometric properties 

or indices. 

-4 schernatic diagram of the end-effector, which is a typical contacting body in 

contact operations, is shown in Figure 2.1. Two reference frames are chosen as 

shown: the inertial frame X Y Z ,  and the local frame xyz: or body-fixed frame. which 

is defined as one having the same rigid-body motion as the body to which it is 

attached. The rigid-body motion can then be fully described by the position and 

orientation of the local frame zyz with respect to X Y Z .  The position of the origin of 

the xyz frame can be described by the position vector p, while its orientation can be 

represented by the rotation tensor R. The nine elements of matrix R are the direction 

cosines which describe the orientation of xyz axes with respect to X Y Z  axes. Due 

to the orthogonality property of R: there are six constraint equations involving the 

nine elements: 

where 133 is a 3 x 3 identity matrix. Hence there are 3 independent parameters 

which can be represented as generalized coordinates, q, using a three-component 

representation such as the Euler angles, or roll, yaw, and pitch angles. such that 

In the planar case illustrated in Figure 2.1, y is the sarne as 6 (shown in Figure 

2.1), while a and P are both zero. The orientation vector 4 can also be represented 

by a four-parameter set or quaternion such as Euler parameters or linear invariants 

(Cyril 1988). If a three-component representation is chosen, the three coordinates 

are independent, but singularity problems are introduced. On the other hand, if a 

four-parameter set is chosen, then the four components of the orientation vector 



are not independent but constrained by 

The angular velocity of the body, W .  and the time derivative of are related by 

where L and A are 3 x 3 matrices if is made up of Euler angles. and 3 x 4 and 

4 x 3 respectively if Q is made up of a four-parameter set. For ease of mathematical 

representation as well as physical interpretation. Euler angles are chosen here to 

represent body orientation. 

The position of an arbitra- point on element i given by x, and elastic displace- 

ment given by ui are rneasured with respect to  the local frame xyz. With this kine- 

mat ic representation, the nodal positions will not change and al1 volume integrations. 

which are nodal-position dependent, will need to be computed (symbolically) only 

once. The reference frames and coordinates for other contacting bodies are chosen in 

the same way. 

The basic procedure in the derivation of the equations of motion of each contacting 

body is as follows: The equations of motion of each element are dcrived symbolically 

using the symbolic manipulator software Maple V and the equations of motion of 

the whole system are assembled using a rnethod which is a simplified application of 

the method of Natural Orthogonal Complement (NOC) (Cyril et al. 1991). The use 

of Maple V lends to computational efficiency because computations such as volume 

integrations and algebraic manipulations and simplifications can be done os-lzne. 

The results of the Maple program can be input to a FORTRAN code where the 

individual sets of equations of motion are assembled. 
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Figure 2.1: Coordinate Systems of a Typical Contacting Body 

2.2 Dynamics of an Individual Element 

The equations of motion of a single element can be derived using the  Lagrangian 

formulation. The position of an  arbitrary point in an element i can be enpressed as: 

where ri is the inertial position vector of the point, p is the inertial position vector of 

the origin of the local frame xyz, xi and ui are respectively the undeformed position 

vector and the elastic displacement with respect to  the undeformed position of the 

point measured in the xyz coordinate frame (see Figure 2.1), and R is the rotation 

matrix which describes the orientation of the local frarne with respect t o  the inertial 

frame. The velocity of the point can be obtained by differentiation with respect to 



where w is measured in the xyz coordinate system. 

The system must be discretized before Lagrange's equations can be applied. 

Isoparametnc finite elements are used in this spatial discret izat i~n~ i.e., the same 

shape functions are used for the interpolations of the element displacements and the 

element coordinates. Using this approach, 

where? if m is the number of nodes of the i-th elernent. and and are position 

vectors and elastic displacements of node j of element i, then g, and û, are 3m x l 

vectors of nodal coordinates and displacements given by 

and Ni is a 3x 3m matrix of interpolating functions. -4ppendix -4.1 discusses isopara- 

metric interpolating functions of various types of elements. Substituting ecluations 

(2.4), (2.8) and (2.9) into equation (2.7): 

where Ni is the cross-product rnatrix associated with (xi + ui). Here, the cross- 

product matriv A associated with a vector a = [a, ay a,IT is the skew-symmetric 

matris of a given by 



so that for an arbitrary vector b, 

Then, rnatrix Ni can be expressed as 

where 

Equation (2.10) can further be espressed in compact form: 

ri = Wiqi 

where 

w, = [ r  --RN, RN* ] 
and qi is the vector of generalized velocities given by 

The kinetic energy of element i can be expressed as 

which can be recast in matrk  form as 



where Mi is the mass matrix given by 

The mass matris can also be expressed in the following block form: 

The above sub-matrices may be partitioned as 

where 

This unique partitioned representation of the mass matriv will be used later in Section 

4.3.1 to develop an efficient method of inversion of a large matrk. 



The differential m a s  of the element dmi can be expressed in terms of natural 

coordinates (Appendix A l ) ,  <qC, such tha t  a certain integral 

may be rewritten as 

M' = Pi IL, /il 1: $1 C) J*(c, V, C ) ~ C ~ V ~ C  (2 -29) 

where pi is the density of the element (which, assuming constant, may be taken out 

of the integral) and Ji is the determinant of Ji which is the Jacobian relating the 

natural coordinate derivatives to  the local coordinate derivatives: 

i, a,] 1 a? ac 

Volume integrations expressed in this form can be carried out using the n-point 

Gaussian Quadrature (Cook l98l ) ,  given by 
n n n  

where E,,  Q and Ci are appropriate sampling points, and CVj, Wk, and ÇVi are cor- 

responding weight ing factors. Volume integrals of equat ions (2.23-2.27) are carried 

out using this method. 

The potential energy of element i can be expressed as 

where ei and cri are vectors comprising the components of the strain and stress 

tensors. The stresses and strains are related by a constitutive equation, known as the 

generalized Hooke's law: 

where Ei is the stress-strain constitutive matrix. The displacements and strains are 

related by 



where 0 denotes a matrix of function derivatives: 

Using equation (2.9), equation (2.33) becomes 

ei = Biûi 

where 

Using equations (2.32) and (2.34), the potential energy of element i can be expressed 

in matrix form as 

1 
Ui = 5 q T ~ i q i  

Vector qi is the set of generaIized coordinates of element 2 given by 

and Ki is the stiffness matrix given by 

where 



,4s already mentioned with respect to the cornputation of the mass matriu. the volume 

integration of equation (2.39) is carried out using the  n-point Gaussian Quadrature. 

The equations of motion of the element can be obtained using Lagrange's equa- 

tions: 

where xi contains al1 the non-conservative generalized forces. The final form of the 

equations of motion for an  elernent i can then be written as 

where Mi is the mass matrix, Ki is the stiffness matrîx, ci is the nonlinear vector 

cornprising the centrifuga1 and Coriolis forces, 6 is the external force vector and f,, 

represents the nonworking constraint forces acting on interelement nodes. Note t hat 

equation (2.41) is computed in its entirety in symbolic form in the Maple V program 

and is done off-lzne. 

2.3 Dynamics of an Entire Contacting Body 

The equations of motion of a whole contacting body can be assembled as follows: 

M ~ + B ~ + E ( Q , & )  = f+T, (2.42) 

where 



and N is the number of elements of the contacting body. Many nodal coordinates 

repeat themselves in the vector, and the relationship between Q and q, which rep- 

resents a set of minimum number of independent nodal coordinates, can be expressed 

as 

where T is a constant connectiuity matrix made up of ones and zeros. Hence. 

Representing the equations of motion in terms of the  new set of coordinates q me 

have 

M T ~  + K T ~  + q q ,  q) = F + Tc 

Premultiplying the above equation by TT we obtain 

Mq+ K q +  c(q ,q)  = f 

where 

The term T ~ T , ,  which does not appear in the equations of motion, is eliminated 

because the constraint forces ?; do not generate any potver in the system, i-e., 

Since the elements of the vector q are independent, equation (2.50) leads to 



Damping effects are complex phenomena which are not simple to mode1 mathe- 

matically. Since damping characteristics depend on the overall frequency content of 

the system, the damping matriv is in general not assembled from element damping 

matrices, but is constructed using the mass and stiffness matrices of the complete 

element assemblage together with experimental results on the amount of damping 

(Bathe 1982). One practical approach to modelling damping is Rayleigh's propor- 

tional damping (Bathe 1982, James et al. 1989), where it is assumed that the damping 

matrix is proportional to either or both the mass and stiffness matrices: 

Here, a and 8 are constants which can be obtained for two typical values of natural 

frequencies wi and corresponding damping factors by performing a modal anâlysis 

on the linear elastic equations of motion where rigid body modes and nonlinear forces 

are rernoved: 

The modal transformation is given by: 

where U is the modal matrix and S is the vector of principal coordinates. Substituting 

the above equations into equation (2.32) and premultiplying by u'. 

Using the orthogonality relationships between the eigenvectors relative t o  the mass 

and stiffness matrices, the following relationship can be obtained: 

where n is the number of independent generalized coordinates. For two known sets 

of values of w, and Cr we can obtain 0 and ,LI. Then, equation (2.48) can be rewritten 

with the inclusion of darnping effects as 



2.4 Contact Constraints 

This section describes the kinematics associated with contact constraints. These 

constraints are then incorporated into the equations of motion using Lagrange multi- 

pliers. The basic conditions of contact along the contact surfaces are that no material 

overlap can occur; this is also called the irnpenetrabilzty condition. -4s a result. con- 

tact forces develop on the surface of contact upon the contacting bodies. which are 

equal and opposite. The local normal forces can only exert compressive action: the 

tangential tractions satisfy a law of frictional resistance. 

Target 

Figure 2.2: Schematic diagram of nodes in contact 

Contact between two bodies can be determined by checking whether the minimum 

distance between them is zero (Ma 1995). For two arbitrarily given bodies, there 

always exists a unique minimum distance between them, which can be found using 

the following optirnization probIem: 



where ri and r, are the position vectors of points i and j on the surface of each 

contacting body. Consider Figure 2.2, which shows in a schernatic diagram a typical 

contact problem. Two generic contacting bodies are shown, where arbitrarily one is 

called contactor and the other target. Coordinate XE'Z represents the inertial frame 

whereas x,y,z, and xty tr t  are local axes of the contactor and target respectively. 

To sirnplify the formulation, it is assumed that the contactor contains the finite 

eIement boundary nodes that  corne into contact with the target segments or  nodes: i.e.? 

the compatibility of surface displacements is only enforced a t  the discrete locations 

corresponding to the contactor nodes. For a certain contactor node k in contact with 

the target surface, a local contact frame can be identified, where nk denotes the unit 

normal to the target surface and tk denotes a unit tangential vector. The position of 

node k can be described by the summation* 

whereas a target point m can be expressed by 

where Rc and Rt denote rotation matrices describing the orientation of the contac- 

tor and target bodies respectively with respect to the inertial frame. The contact 

conditions can be established by calculating the distance of contactor node k on the 

contactor b o u n d a l  to the target boundary, as 

where m is the point on the target boundary such that (rk -rJT(rk -r,) is minimum. 

2.4.1 Frictionless Contact 

In the absence of friction, the contact conditions can be expressed in mathematical 

form using the so-called Kuhn-Tucker conditions (Parisch & Lubbing 1997) (also 
-- - - 

'Note here that, consistent with the notation used in Section 2.2, # and û denote vectors cor- 

responding to discrete nodal points, whereas x and u denote vectors corresponding to arbitrary 

points. 



known as Signorini conditions (Tissakht 1995)): 

The first statement equat ion (2.60): defines the impenetrability condition and states 

that the bodies are allowed to separate but not to penetrate. The second, equation 

(2.61), defines that the normal traction, t,, can only exert compressive action. The 

third, equation (2.62), states that the normal traction is non-zero only when the gap 

becomes zero, and vice-versa. 

Vectors x, and u, can be obtained by linear interpolation bettveen nodes that 

rnake up the segment's on which point rn lies (Figure 2.3 for 2D case); hence 

where p is the number of nodes making up the segment s, Z,, and û,, represent 

the positions and deformations of the said nodes, and B,, are interpolating functions 

const rained by 

where 



Contactor 

Figure 2.3: Definition of variables 

In the 2D case illustrated in Figure 2.3' 

where 

Appendis -4.2 provides details on the derivation of the corresponding matrix Cs for 

3D elements. 



2.4.2 Contact with Friction 

Using Coulomb's law, two states of friction can be identified: sticking and sliding. 

The procedure used to decide whether a contact node is sticking, sliding or separating 

will be discussed in Chapter 4. 

When node k is sticking, constraints are enforced in bot h the normal and tangen- 

tial directions: 

if node k is in sliding contact, a constraint is enforced only in the local normal 

direction, as in equation (2.60) for frictionless contact: 

T 
gn = nk ( r k  - r,) = O (2.72) 

while in the tangential direction, Coulomb's law of frictional resistance is satisfied. If 

the normal traction becomes tensile, then no constraints are enforced and node k is 

separated from point m. 

2.5 Equations of Motion with Contact Constraints 

For a generic contactor node k in contact with a point m on a lczrget segment S. the 

material overlap gk for a general sticking contact can be espressed using equations 

(2.71), (2.57): and (2.58): 

The Lagrange multiplier technique is used to take this constraint into account, and 

from equation (2.55), the equations of motion of the contactor and target can be 

expressed as follows: 



Here, A' is the vector of Lagrange multipliers representing contact forces which en- 

force the associated contact constraints with respect to node k, subscripts c and t 

denote contactor and target values respectively, and 

Differentiation of equation (2.73) and use of equation (2.67) lead to 

where 

Shen, from equations (2.76) and (2.77) 

where matrices 0, and Ot denote zero elements belonging respectively to al1 nodes 

of the contactor other than node k, and al1 nodes of the target other than nodes si ,  

(i = 1 - - - p .  Also, Xk. Uk: Xm and U, are the cross-product skew-symmetric 

matrices of ek, ûk, X, and u, respectively. 

When node k is in sliding contact, the constraint is expressed by equation (2.72): 

where i t  is assumed that the angular velocity of the normal vector nk is identical to 

that of the target. Hence, 



where Nk is the cross-product skew-spmetric matriv associated with nk. 

So far, the problem of accounting for the contact constraints due to a single 

arbitrary node k was presented. The constraint equations with respect to al1 nu 

contacting nodes can be assembled as fotlows: 

Matrices P: and P:, and vectors A", and gk in equations (2.73) . (2.74) and (2.73) 

are then substitutecl by P,, Pt, A, and g respectively 



Chapter 3 

Dynamics of Multi-Body Systems 

The method of derivat ion of the dynamical equations of multi-body systems presented 

by Cyril (1988) and Cyril et al. (1991) will be used in this work. A summary is 

presented in this chapter but Cyril (1988) should be referred to for further details. 

3.1 Kinematics 

3.1.1 General Description 

-4 typical multi-body system may consist of a main body (a spacecraft) that serves 

as a platform on which other bodies (such as a multi-link robotic manipulator) are 

mounted. As an example, a spacecraft with a 2-link robotic manipulator capturing 

a payload is shown in Figure 3.1. The inertial frame ( X r  , YI, ZI) is located at the 

center of the Earth. The orbital frame (X, ,  Y,, 2,) is located at the spacecraft's 

center of mass Cs and rotates at the orbital rate Q. The system frame (XI, Yi, Z1)  is 

engraved on the spacecraft so that its orientation relative to the orbital frame defines 

the attitude of the spacecraft, represented by the pitch, roll and yaw angles. Finally, 
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Figure 3.1: Schematic diagram of a typical multi-body system 

a local frame*, (AI,, Y,: Zi) , is attached to each individual body i, as shown in Figure 

3.1. 

To describe the kinematics of an individual body i, the so-called extended vectors 

are used. The extended position vector of body i is defined as 

where 

pi = the position vector of the origin of the local frame (-Yi, Y,, Zi) with respect 

to (,Y,, Y., 2,) (see Figure 3.2). 

0 qi = a vector defining the orientation of (Xi\; l:, Zi) with respect to (.Y,, Y,, 2,). 

As discussed in Section 2.1, either a three parameter set of Euler angles or a 

four parameter set of quaternions may be use& 

bi = a finite-dimensional vector of discretized deformation coordinates of the 

flexible body with respect to (Xi, K ,  Zi). 
'A local frame is defined as one which has the same rigid-body motion as the body to which it 

is attached (Section 2.1). 



The edended velocity vector is defined as 

,ri = {Y' "T g)= 

where 

Ci = the velocity of the origin of the body-fked axes (Xi. Y,,  Zi) wit h respect 

to (X0, K, ZO). 

. wi = the angular velocity of (Xi,  k;, Zi) with respect to  ('Co, K. 20). 

bi = the tirne derivat ive of bi relative to the (Xi, 1:. Zi) frame. 

3.1.2 Discretization of Flexible Links 

Let ri be the position vector of an  arbitrary point on the flexible body i with respect 

to the (Xi: I.ll Zi) axes (Figure 3.2). If we define ii, ji and k, as unit vectors parallel 

to axes Xi, Y,  and Zi respectively and xi, yi and zi as the coordinates of any point 

in the (Xi, Y,, Zi) frame, t hen ri can be expressed as 

where pi denotes the displacement of the point due to structural deformation. If the 

link is modelled as a slender beam: Yi and ci can be approsimated as zero. The com- 

ponent of pi in the Xi direction is due to the axial shortening effect. that is related 

to centrifuga1 stiffening, which can be assumed negligible for small rotation rates. Its 

two other components in the l$ and Zi directions, which are due to displacements 

in bending, can be discretized using different methods, among which are: (i) the 

assumed modes method (Cyril 1988), (ii) the cubic-splines method (Cho 1993), and 

(iii) the finite element method (Fattah 1995). The finite element method and the 

cubic splines method allow the modelling of complicated structures having nonhomo- 

geneous material properties and nonuniform cross-sections. However, these methods 

generally require a large number of generalized coordinates. The  assumed modes 



method, on the other hand, requires only a small number of lower frequency modes 

to model the system with sufficient accuracy, although the calculation of exact shape 

functions is restricted to  relatively simple systems. Since flexible manipulator links 

can usually be approsimated as slender beams, the assumed modes method is chosen 

here for the discretization of the flexible links. The bending displacements can thus 

be written as 

where 4,  stands for a shape function of link 2 ,  and m is the number of shape functions 

used to model the elastic deformation of the flexibie body in each direction. The shape 

functions must be admissible functions, Le., they must s a t i s l  a t  least the geometric 

boundary conditions (Meirovitch 1967). In compact forrn, 

where B i ( x i )  is a 3 x 2m matris of shape functions and bi is the vector of elastic 

generalized coordinates given by 

The rotation of the tip of the link with respect to (Si: Y i ,  Zi) due to its structural 

deformation, di (its z-component is shown in Figure 3 2 ) ,  can be espressed as 

where - 
0 ... O O . . . O 

O ( 1  - & m ( l i )  

& (4) . . $im (4) O . S .  O - 

3 (3.10) 

li is the length of the beam, and ( )' represents differentiation with respect to xi. 



Figure 3.2: 2D schematic diagram of the i-th body and its coordinates 

3. 1.3 Recursive Relations 

The rotation mat rk  describing the orientation of the local frame (-Yi, l.;, 2,) with 

respect to the orbital frame (X,, k,, 2,) is defined as follows: 

where R, describes the orientation of (Si, Y,, Zi) with respect to (.Y,- , Y;-  1,Z2- 1) .  

For each body, the position of its origin (Xi: l.;, 2,) with respect to that of 

(&, Y., 2.) is defined by the following recursive relation: 

The corresponding translational and angular veloci t ies can be wri t ten as: 

where Bi is the angle between Xi and Xi-I under ngid body conditions (i.e. no 

deformations in flexible links). It is assumed here that joints between adjacent links 



are revolute (refer to  Cyril(1988) for corresponding expressions with prismatic joints). 

Further differentiation of equations (3.13) and (3.14) lead to the corresponding Iinear 

and angular accelerat ions: 

3.2 Dynamics 

The usual practice in Lagrangian dynamics is to consider the dynamical system as a 

whole, Le.' the potential and kinetic energy expressions of the system are obtained en- 

tirely and used to derive the equations of motion of the whole system. In the method 

of Natural Orthogonal Cornplement (NOC) used here, the Lagrange equations are 

obtained for each body separately and  then assembled to derive the equations of 

motion of the system. The resulting nonworking constraint forces are conveniently 

eliminated using the WOC of the kinematic velocity constraint matriu. This niethod 

combines the advantages of the Newton-Euler and Lagrange methods. namel- capa- 

biiity for systernatic analysis of each body separately, and convenient application to 

systems containing flexible bodies. 

3.2.1 Dynamics of an Individual Body 

The position of an  arbitrary point on body i can be expressed as 

pi = 6; + ri 

Differentiating, its velocity is given by 

pi = ci + W i  X ri + r i  

where ri is the derivative of ri relative to  the (Xi, Y,, Zi) frame. 
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Using equations (3.3) and (3.6): the above equation may be expressed as 

where is the cross-product skew syrnrnetric rnatriu associated with the local posi- 

tion vector ri. This equation rnay further be expressed in matrix form as follows: 

where 

and v i  is the eztended velocity vector as defined in equation (3.2). 

The kinetic energy of a flexible link i can be expressed as: 

where pi is the mass per unit length, Mi is the concentrated mass (if any) a t  the tip of 

the link, and Ihi is the hub moment of inertia. Also, assuming that links are long and 

slender, the effects of rotary inertia can be neglected according to Euler-Bernoulli 

beam theory. Let ting 

where 

and using equation (3.20), equation (3.22) may be rewritten as 

where the eztended m a s  rnatrix Mi can be obtained frorn 

Mi = 1" p ( ~ )  wTVVid2 + M~VVTW~I x=tl + H ~ I ~ H  



Neglecting gravity, the potential energy due to the elastic strain energy stored in 

a flexible beam i can be written as: 

where E and I are the modulus of elasticity and the area moment of inertia respec- 

tively. Again using Euler-Bernoulli beam theory, the effects of shear deformations 

have been neglected. Then. letting 

where 

and the symbol ' denotes differentiation with respect to xi, the potential energy can 

be rewritten in m a t r ~ u  form as 

where 

If structural damping of the links is to be ineorporated in the niodel, the niodulus 

of elasticity, E, may be replaced by the modified modulus of elasticit- E* (James 

et al. i989), defined as follows: 

where v is a damping parameter which can be found experimentally 

Having obtained the kinetic and potential energy expressions of body i, the d -  

namical equations of motion of body i are derived using Lagrange's equations: 



where xi contains al1 the non-conservative generalized forces. Upon substitution of 

the kinetic and potential energy expressions into the above equation? the equations 

of motion of body i can be derived in the following forni: 

where @f is the vector of generalized external forces: c#$ contains the  system forces 

such as centrifuga1 and Coriolis forces as well as stiffness and dissipative forces, and 

4: contains the generalized constraint forces (Cyril 1988). Note that if quaternions 

are used for the representation of body orientation, an algebraic constraint force also 

will resuIt. The rneans to eliminate it was presented by Cyril (1988). by virtue of 

which the said constraint does not appear in equation (3.34). 

3.2.2 Dynarnics of an Entire Multi-Body System 

Upon assembling the equations of motion of an N-body multi-body system, the 

constrained equations of motion of the system can be written as: 

where 

is the generalized eztended mass rnatriv of the system and Y, eE, 4S, and @" repre- 

sent the generalized extended acceleration vector, the generalized extended esternal, 

systern, and constraint forces, respectively: 



The kinematic constraints acting a t  joints between adjacent links can be derived from 

linear and angular velocity constraint relations which can be written in the following 

compact form: 

where A is the kinematic velocity constraint matris. and O is a zero vector. 

It is preferable to express the equations of motion in term of a minimum set of 

independent generalized coordinates. which can be defined as follows: 

@ = W T  &- - - -  mT (3.39) 

where II>, represents the spacecraft 's attitude degrees of freedom, for exarnple. pitch. 

yaw, and roll. For the remaining N - 1 bodies, lli for a flexible body i which is linked 

to the preceding body by a revolute joint can be written as: 

T T  
@i = {ei bi } (3.40) 

Using kinematic relations (3.13) and (3.14): the generalized extended velocity v can 

be expressed in terrns of the independent generalized velocities ti> as 

Upon substitution of equation (3.41) into equation (3.38): we obtain 

This relation rnust hold for any vector &: hence, 

where O* is a zero matrix. By virtue of the above relationship, N is called the Natural 

Orthogonal Complement of the velocity constraint matris A. 

By definition, the constraint forces tpC do zero work, Le., they do not introduce 

any power ont0 the system. Hence, 

n =  VT+c = O 

T 
i.e., ï ï  = & N ~ &  = O 



Since 4 iis an independent vector, it follows that 

NT& = O 

Furt hermore, differentiating equation (3.41), v can be obtained as follows: 

Y = N $ + N &  (3.47) 

Pre-multiplying equation (3.35) by W. the constraint forces can be eliminated 

by virtue of equation (3.46); then using equation (3.47) the independent dynamical 

equation of motion of the multi-body system can be expressed as follows: 

M4 = c(*,li>) + f  

where 

Here, M is the generalized rnass rnûtriu of the systern. which is symrnetric and positive 

definite. Vector f represents the generalized external forces, and the vector c contains 

the Coriolis, centrifugai, stiffness, and damping terms. 

If forces are applied at the tip of the multi-body system (cg., the end-effector of 

a manipulator), then the equations of motion may be rewritten as 

Mii, =c(@,li>)+f +P'X (3.52) 

where A represents a vector of forces and moments in Cartesian coordinates associated 

with applied loads and P is the system Jacobian, which can be espressed as 

w here 



and p h  and wh are the position and angular velocity vectors of the tip with respect 

to the base of the multi-body/manipulator system. 



Chapter 4 

Integration of System Equations 

4.1 Introduction 

The goal of this chapter is to describe the integration of general multibody systems of 

arbitrary kinematic architecture as shown in Figure 4.2.  The whole system is made 

up of subsys tems  each of which may be a contacting body or a multi-body system 

of serial- or tree-type kinematic chains and open- or closed-loop configurations. The 

equations of motion for contacting bodies are derived in Chapter 2 and espressed in 

the form of equations (2.74) and (2.75) and those for multi-body systems are pre- 

sented in Chapter 3 and expressed in the form of equation (3.52). Different constraint 

relationships are associated wit h each subsystem. Constraints which result from the 

impenetrabil i ty  condition when one body contacts another are generally temporary 

and time-dependent because the contact surface rnay be in sticking or sliding contact, 

its geometry and area may change, or may cornpletely separate. Such constraints are 

hereafter referred to as contact constraints. On the other hand, constraints es- 

isting a t  joints between subsystems (such as the joint connecting the end-effector 

and a manipulator system) are permanent and depend on the particular kinematic 

architecture of a systern. Such constraints will be referred to as kinematic con- 

straints. -4 subsys t em,  whether a contacting body or a multi-body system, may be 



constrained by either or both of these two types of constraints. Letting N and n 

be respectively the number of subsysterns and constraint relations of a system, the 

equations of motion of each subsystem and associated constraints can be recast in 

the fo1lowing general form: 

with the constraint relations given by 

where rk and sk are the two subsystems which are involved in the k-th constraint, 

and p,, and p,, are the respective position vectors of the point of application of the 

k-th constraint expressed in q,, and (L, coordinates. If subsystem i is a multi-body 

system, the stiffness and dissipative forces may be taken out of the nonlinear force 

vector c in equation (3.52) and expressed separately as done in equation (4.1). In 

equation (4.1) 

In other words, matris Pji exists only ifsubsystem i is involved in the j-th constraint: 

otherwise it is zero. 

When k stands for a constraint corresponding to contact, equation (4.2) is a 

contact constraint and expresses the basic contact condition of no material overlap, 

and both g k  and Pki depend on those time-dependent conditions such as tvhich nodes 

are in contact and which of these nodes are in sticking or sliding friction. However, 

this information is not known a priori; thus the solution procedure is iterative (Bathe 

& Chaudhary 1985, Chaudhary & Bathe 1986). This procedure is described in detail 

in the following sections. 



Rest of Subsystem II 
Kinematic constraints II 

Contact constraints 

Figure 4.1: General muitibody systems in contact 

4.2 Full Solution of Equations of Motion 

4.2.1 Time Integration 

The differential equations of motion given by equation (4.1) are nonlinear and rnay 

be s tzo  ', such that an integration method which efficientlu takes these characteris- 

tics into account such as Gea7"s method would be ideal. Hoivever. due to the large 

number of equations which are usually encountered in finite element analysis, a com- 

putationally less expensive route offered by the Newmark method is used here. In 

t his met hod, the following propagation schemes are used: 

where cr and S are parameters that can be selected to obtain integration accuracy 

and stability. The Newmark method is a direct zmplicit integration algorithm which 

'A system is said to be stiff if the ratio between its Iargest and smallest eigenvalues is large. 
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is unconditionally stable and introduces no artificial damping if a 3 1/4  and 6 = 1/2 

are used. It was shown by Chaudhary & Bathe (1986) that a = 1/2 and 6 = 1/2 are 

effective choices for time integration of dynamic contact equations because bot h the 

critena of energy and momentum conservation are satisfied by the solution. provided 

t hat the time step employed, At, is sufficiently small. 

Using these two equations (4.4) and (4.5), &+al and qr+ar can be expressed in 

terms of the unknown displacement vector q t + ~ ~  only. Therefore, these expressions 

of qt+,, and qt+,, can no, be substituted into the differential equations (4.1) and 

converted into algebraic ones: 

where 

and ao, -*. - O ,  a7 are Newmark integration parameters given by 

4.2.2 Solution of a System of Nonlinear Equations 

Both equations (4.2) and (4.6) are now in algebraic form but are nonlinear. These 

nonlinearities are introduced not only by the term C i ( o a t )  appearing in fi(L+AL) of 

equation (4.81, but also by the nonlinear nature of the contact problem: boundary 

conditions a t  the contact surface change during the motion of the contact body under 

consideration, and these conditions are not known a priori. Therefore, a nonlinear 

solver must be used to solve for unknown vectors q i ( t + ~ t )  and Aj(t+At) from equations 



(4.6) and (4.2). The Newton-Raphson method is chosen to  carry out this task. This 

method is an iterative algorithm which attempts to find the solution of a nonlinear 

algebraic equation of the form given by 

-4ssuming that in the iterative solution we have 

expansion gives 

(4.9) 

evaluated x('-'): then a Taylor series 

&il = 0 

where higher order terms were neglected and 

By expressing equations (4.6) 

The Newton-Raphson method 

it is not easy to evaluate the 

in the form of equation (4.9) w e  have 

can now be applied. However, for the above equations, 

derivative term in equation (4.11). But since the 

Newton-Raphson method is an  iterative procedure (reason for which higher order 

terms in the Taylor series are neglected), it is not absolutely necessary to obtain the 

derivative exactly. -4n approximate term will also work although at the cost of slower 

convergence. Also, with this approach, care must be taken so that the approximated 

derivative is close enough to the exact one such that  the solution does not diverge. 

Some assumptions are now made to facilitate the computation of the derivative term. 

The matrices and vectors in equations (4.2) and (4.12) which are dependent on the 

unknown variables qi are: 



It is assumed that a11 the above vectors and matrices are "weakly" dependent such 

that they may be considered constant during t + t + At, except vectors prk and 

p,, whose derivative terms are Pk, (i  = r ,  S .  With this assumption, we can now 

apply the Newton-Raphson method for the 1-th iteration as given by equation (4.11). 

Omitting the subscript t + At, equations (4.6) and (4.2) may be expressed as: 

Equations (4.13) and (4.14) may now be solved simu1taneously It follows from equa- 

tion (4.7) that since matrix Mi is positive definite, and Ki and Ci are positive semi- 

definite, Ki results in a positive definite rnatriu. An efficient method which esploits 

the syrnrnetry and positive definiteness of the Ri matrices is now presented. 

The efficient Cholesky Decomposition is used to invert the Ki matrices in equation 

(4.13): 

where the superscript I was removed for convenience. Inserting the above equation 

for 2' = r k  and i = s k  into equation (4.14), the resulting equation can be expressed in 

the form given by 

where 

Equation (4.17) is expressed in a general form. In light of equatioii (4.3): the following 

observations can be made about Rkj. If k = j then both terms on the right hand 

side of equation (4.17) exist, thus 



If k # j then either one or both terms will be equal to  zero. One term will be nonzero 

if either r k  or st is equal to  either rj or sj ;  in other words, a common subsystem is 

involved in the k-th and j-th constraint equations. Deooting the common subsystem 

b~ c k j ,  

Equation (4.16) may also be expressed in the following matris forni: 

where 

It turns out that matrix R is both symmetric and positive definite: the proofs are 

presented in Appendix B. Thus, the AXi7s can be obtained from equation (1.21) by 

the inversion of R using Cholesky Decomposition, and the Aqi's can t hen be obtained 

from equation (4.15). Then, variables for the 1-th iteration may be updated to 

The acceleration and velocity terms of each subsystem a t  t + At are calculated by 

rearranging the Newmark propagation schemes (4.4) and (1.5), such that, 



4.2.3 Updated Contact Conditions after Iteration 1 - 1 

The contact conditions after iteration 1 - 1, represented by the constraint vector g';l. 

the contact matrix P$' and the contact force vector 7';' given by 

where T denotes a contact constraint and i a contacting body, are included in equa- 

tions (4.13) and (4.14). It is discussed by Chaudhary & Bathe (1986) that the direct 

use of these contact conditions can lead to serious errors of linearization. Further- 

more, it is also argued that although the decision on whether a contactor node is 

releasing or is in sticking or sliding conditions is perhaps most quickly determined 

based on considering the total and relative magnitudes of the calculated nodal point 

forces, this method can lead to some numerical difficulties. It is deemed more ef- 

fective to establish the condition a t  a contactor node from the accumulated effects 

and conditions of the contactor segments adjacent to the node. Then, a new set of 

updated contact conditions is obtained by the following procedure: 

r The distributed segment tractions, T, are recovered on the contactor surface 

such that they are equivalent (in the virtual mork sense) to the nodal contact 

forces, y:- l . 

New distributed segment tractions. T, are updated to satisfy Coulomb's law 

of friction, which is further discussed in Section 4.2.4. The updated contactor 

surface nodal forces? ~ k - ' ,  are obtained as consistent nodal loads corresponding 

to the updated segment tractions. The updated states of contactor nodes. 

represented by sticking, sliding and tension release, are determined based on 

the states of adjoining contactor segments. These updated nodal states are 

then used to obtain the updated constraint vector and contact matrix, &-$-' and 

P y .  

The corresponding target surface updated nodal contact forces are obtained 

from the contactor surface updated nodal forces by considering static equilib- 



riurn of the contact region (as described in Section 2.4). 

The above procedure for updating the contact conditions is presented in detail for 

the two-dimensional and the general three-dimensional cases in Appendis C. These 

updated contact conditions, namely g:-' and PLL and TF', are incorporated into 

equations (4.13) and (4.14) before proceeding with the 1-t h iteration. 

4.2.4 Contact Friction 

In some previous work on friction (Karnopp 1985. Haessig & Friedland 1991). it was 

decided that the best friction model was one which açsigns a certain small region of 

velocity -vh < 'L' < uh, such that if the relative velocity between two sliding bodies 

falls inside this region, the sliding friction switches to sticking and v = O. This 

model is not only amenable to computational treatment but also accounts for the 

discontinuous manner in which real systems become stuck. Then, when the sticking 

friction force becomes greater than the limiting friction force fh, the friction mode 

switches back to sliding. Thus, it is assumed here that the decision from sliding to 

sticking is solely dependent on the velocity vht which may be found esperimentally. 

This model may be accurate enough for simple bodies subject to friction, but for 

complicated systems where the normal force and contact area change over time, the 

limiting velocity uh may depend on these and other factors as weil, such that it is no 

longer safe to predetermine a constant value of u h .  Therefore, a different mode1 is 

proposed here, as described below. 

At every time step, where the system may be in sticking or sliding contact, a test 

is done and the force which will bring the system to a sticking contact for the current 

time step is calculated. If this calculated force is greater than the limiting friction 

force fh ,  then the system is sliding, if not then sticking. This model can be thought to 

be similar to the previous models except that the concept of the lirniting velocity uh is 

only implicitly used, and this value is dependent on the various dynamic conditions 

of the system such as acceleration, velocity, normal force, and contact area. This 



model is used to simulate the dynamics of a simple system undergoing friction, and 

the results are compared with those found in previous work. The system is illustrated 

in Figure 4.2: where m = O. lkg  and K = 100N/m. The nominal and constant sliding 

friction force is chosen as 0.2N and the limiting sticking friction force as 0.25iV. The 

system is initially a t  rest and the point P undergoes motion as  xo(t) = ~ t ,  where 

vo = 0.002m/s. The results for the motion and friction force of mass m are shown 

in Figure 4.3. For this simple system, both the proposed model and previous models 

(such as Karnopp and the bristle rnodels (Haessig Sr Friedland 1991)) yield similar 

results. Hoivever- in this system neither normal force nor contact area are tirne- 

dependent. For the proposed model, if, for example. the normal force changes for the 

same mass (as in impact dynamics), the limiting velocity zlh will adjust itself online 

and become larger as the force becomes larger. which is in agreement with intuition. 

Changes in other parameters which become a factor in friction can be accounted for 

in the same way. In previous models, ch will have to be found esperimentally e v e l  

time these parameters change and must be done O ff-lzne. 

v o  

Figure 4.2: Single body in friction 

-4nother issue of interest in modelling friction is how to represent the transitional 

phases when friction changes from sticking to  sliding and when the relative sliding 

velocity changes sign. The classical friction model shown in Figure (4.4 a )  shows 

the friction force and direction changing instantaneously a t  v = O. However, in 

reality they cannot change instantaneously but must occur over a finite period of 

time, though this duration may be extremely small. This transitional period of time 
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Figure 4.3: The motion and friction force of the mass 
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should be modelled not only for physical accuracy but also for numerical s tabil i t -  

Changes during this transition (-us < v < us)  are represented linearly as shown in 

Figure (4.4 b). Four regions or modes of friction can be identified: (0) is the sticking 

region, (1) is the sliding region of transition from sticking to sliding, (2) is the sliding 

region, and (3) is the sliding region of transition when the relative velocity changes 

sign. Switches from one region to another must follow some rules. For esample, the 

friction mode may switch from the sticking region (O) to sliding region (1) but not 

to region (3). With a view to a systematic procedure, some rules are defined. From 

the proposed mode1 discussed above one may infer that the friction mode can switch 

from any region to region (O), i-e., sticking is allowed from any sliding region as long 

as the test for stiction (discussed above) is satisfied. Furtherrnore, the rules presented 

in Table (4.1) also apply. 

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (s) 
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Figure 4.4: Two friction models: (a) Classical. (b) Proposed 

Table 4.1: Rules on switching from one region to another 

1 Frorn region 1 Allowed to 

4.2.5 Convergence Criteria 

Convergence of solution is accepted after iteration 1 if the following criteria are si- 

mu1 taneously satisfied: 

Energy convergence criterion. The energy due to the unbalanced force at 

iteration 1 is small in comparison to the energy at first iteration: 



Force convergence criterion. The Euclidean norm of the unbaianced force 

is small in cornparison to that of the total external load: 

a Contact force convergence criterion. The change in the contact force 

vector prior to  updating, y, is small: 

Constants E E ,  E F  and EC are the energq: force and contact force convergence tolerances. 

respectively. In equation ( U g ) ,  a srnall number of 0.001 makes the denominator non- 

zero in case no contact conditions exist during iteration Z - 1. 

4.3 Simplified Solut ions of Equations for Contact- 

ing Bodies 

4.3.1 Efficient Computation of the Inverse of Matrix K 

The inverse of matrix in equation (4.15), where i belongs to a contacting body and 

henceforth omitted for brevity, can be computed using 3 methods. The first method 

is the simple inversion of the positive definite and symmetric rnatrix K using the 

Cholesky Decomposition (CD). This procedure requires about CI = nL/6 operatioiis 

where nt is the order of the matris to be inverted. It is therefore cornputationally 

quite espensive, 

To formulate the second and third methods, matrices M, K and C can be recast, 

using the partitioned representation of equations (2.17)-(2.27): (2.38), and (2.51), as 

follows: 



where 

and the orthogonality property of the rotation matrk (RRT = 1) was used in equa- 

tion (4.30). Equation (4.30) can further be exprcssed in compact form as 

-41.~0 note that 

In light of equations (4.36), (4.39), and (4.40), equation (4.7) may be recast as 

K = T~KT: 



where 

K = K + ~ ~ M + ~ ~ c  

Matrix K may be inverted in symbolic forrn as 

R-l = GTR-~T~L = T c ~ T C  

where 

and using the relationship R-L = RT and equations (2.4)-(2.5): 

Noting that matrices K and C are constant, the only tirne-varying quantity that 

rnatrix K is dependent on is the independent nodal displacernent vector û. The second 

method consists in realizing that for most contacting bodies of interest, û << 2. 

Then, we can assume tha t  X + û zs f such that K now becomes a constant rnatrix 

and may be inverted ofi ine only once. Thus, from equation (4.42) 

where T is the only time-varying quantity in the expression. The inversion of matrix 

K therefore requires ooly C2 = 2(np + 7 ~ ~ ) ~  + (np + n0)*nU operations to cornpute 

online, where np,  ne and nu are respectively the number of translational. rotational 

and elastic degrees of freedom of the contacting body. 

If, hoivever, the elastic deflections are substantial and cannot be neglected, Ive 

pursue the third method. It can easily be verified from equations (2.17) and (2.18)- 



(2.27) that out of the 6 independent sub-matrices of given by 

K Kp0 Kpu 
K = I?s KeO K~~ (4.47) 

~ p ,  K& K., 

rearrange K as 

I 1 
only ROB, Go and Kou are dependent on û and the others are constant. LVe can 

where the subscript c comprises terms related to p and u, Le.. the translational and 

elastic degrees of freedom. Given an equation of the form 

the solution may be obtained in symbolic form as 

Hoe Hec { :r } = [HL. Hcc]  ( 2 1  
From equation (4.48) we can obtain 

From equation (4.51), x, may be isolated as 

where we note that K, is a constant ma t rk  and may be inverted ofl ine only once. 

Substituting the above into equation (4.50), 

where 



Table 4.2: Cornparison of required operations for the three methods of inversion 

Met hod 2D 1 3D 

Substituting equation (4.53) into equation (4.52) 

Comparing equation (4.49) witli equations (4.53) and (.l.j6), the inverse of matriv K 

may be expressed as 

The online cornputation of matrix H requires the calculation of the inverse of only 

one ne x ne matrix, namely A. k k  may now use equation (4.46) to calculate K - ~ .  

In total, this method of computing K - l  requires C3 = 2nDnt + 2ninc + nf + nz + 
ne/6 + 272: + n:(ne + nu)  operations. 

Table 4.2 compares the 3 methods in terms of required operations in 2D (n, = 

2, ne = 1) and 3D (n, = 3, ne = 3) cases. The computational cost of method 1 is 

proportional to n t ,  method 2 to  nu, and method 3 to n:. Figure 4.5 shows ratios of 

the computational cost of methods 1 and 2 over method 3 (C1/C3 and C2/C3)- AS 

expected: method 2 is by far the most efficient in most cases. For 2D cases, method 

3 becomes more efficient than method 1 if nu > 14, or the number of finite element 

nodes exceeds 7. For 3D cases, this is so if nu > 34, or the number of finite element 

nodes exceeds 11. From these comparisons, it can be concluded that if the contacting 

body's elastic displacements are very smali compared with its physical dimensions, 

method 2 should be used for maximum computational efficiency. Otherwise, method 

3 should be used where the number of nodes is greater than 7 for 2D cases and 11 

for 3D cases, which are the usual situations in finite element analysis. 



Figure 4.5: Cornparison of the three methods of inversion for 2D and 3D cases (C1/C3 

- - - ; C2/C3 -) 

4.3.2 Guyan Reduction 

Due to the large order of the sets of finite element equations for contacting bodies, 

use of a reduction method is desirable in order to abtain a smaller set of equations of 

motion and thus increase computational efficiency The G u y a n  reduction method. also 

known as the mass condensation method (Guyan 1965: Cook l98l), is appropriate 

in systems where two different types of degrees of freedom (d.0.f.) can be reaciily 

identified, namely "slaves" and "masters". The slaves are chosen from the set of 

d.o.f.'s on which no esternal forces are applied: and likely candidates are those with 

high Kii/il.lii ratio. The equations of motion (4.1) corresponding to contacting bodies 

can then be rearranged in terms of master and slave d.o.f.'s in the following form: 



The first set of equations in equation (4.58) pertaining to the slave d.o.f.'s can be 

taken out as 

where C:=l Pf and f, are both zero and hence do not appear in the above equation. 

The principal assumption of the Guyan redvction method is that in the above system 

of equations, which carries no external load, the elastic forces play the dominant role 

and inertia? damping and nonlinear forces are negligible. In other words, the stiffness 

matrix K alone dictates how slaves d l  follow masters. Hence, q, can be expressed 

as a function of qm : 

Therefore, 

where 

Substituting the above equation and its first and 

(4.62) 

second time derivatives into the 

original equations and prernultiplying by GT, we obtain 

where 

Note that G is a constant matrix. Thus, matrices M R ,  CR,  and K R  retain the same 

structure as the original matrices, so that the same computationally efficient met hods 

presented in section 4.3.1 are still valid with respect to the new Guyan-reduced forms. 



The constraint equations are dependent only on the master d.o.f.'s and thus, these 

equations can be rewritten as 

The equations of motion of the contacting bodies and the contact constraint rela- 

tions are now expressed in terms of the master d.o.f.'s and the order of the equations 

are reduced to the number of master d.o.f.'s. 

4.3.3 Elirnination of the Flexible Portion of the Nonlinear 

Forces 

Contacting bodies are generally solid objects with high stiffness to mass ratio. Vibra- 

tions and deformations of such bodies are negligible under normal conditions, unless 

they are acted upon by large contact forces or undergoing impact of short duration. 

Rayleigh showed that very little vibration is induced in a body-under the influence 

of forces of duration long in comparison with its natural periods. Therefore, under 

no-contact conditions, the contacting bodies may be considered rigid, and only rigid 

body motion need be included in the equations of motion: 

where subscript r denotes rigid terms. When contact occurs, however, large contact 

forces of short duration make flexibility and vibration effects important, such that 

flexible 

[ 
variables must be included in the dynamical model: 

where subscript f denotes flexible terms. The inertia and stiffness forces are large: 

however, the contribution of the flexible coordinates on the nonlinear forces due 

to centrifuga1 and coriolis forces, CJ, remains relatively small. The validity of this 

assumption was further verified through cornparisons of various simulation results 



(Chapter 6) .  This means that one may safely elirninate the nonlinear force vector CI 

both in contact and no-contact cases, without compromising accuracy; on the other 

hand, a great deal of computer time is saved. 

Note that the three siniplifying methods presented in Section 4.3 apply only to 

the finite element models of contacting bodies, not to multi-body systems. 



Chapter 5 

Force Control 

5.1 Introduction 

This chapter is devoted to the design of a controller for flexible multi-body systems. 

Of particular interest is the case where the multi-body system is a multi-link ma- 

nipulator with an  end-effector a t  its tip for performing a variety of contact tasks. 

-4 typical control task would be to maneuver the end-effector along a given path, 

position it a t  a particular location. such as a grapple fkture of a payload, and apply 

desired amounts of force on the surface. T h e  design of a coutroIler for such a task 

is applicable to rigid manipulators as well. However, flexible manipulators present 

another concern not shared by the counterpart rigid manipulators: instability in the 

elastic vibrations of the links, 

It has been reported by several researchers (e-g., Chiou & Shahinpoor (1989), 

Modi et al. (1993)) that for a manipulator system with link and/or joint flesibility, 

the flexible degrees of freedom can become unstable and cause maneuver failure. The 

discontinuous repeated contact/impact between the manipulator and the environment 

can further contribute to the instability of the system. Thus, For a fully flexible 

manipulator system, the controller must not only achieve trajectory tracking and 

force control on the contact surface but must also stabilize the vibrations which are 



naturally excited during its operation. However, a flexible manipulator system is 

characterized by having a greater number of generalized coordinates than control 

inputs. This problem leads to consideration of a singular perturbation control as 

discussed in Section 1.5. According to the singular perturbation theory, two reduced 

order systerns can be identified: a slow subsystem whose state variables tirrn out to 

be those of the rigid manipulator, and a fast subsystern whose States are composed of 

the flexible coordinates and velocities. In other words. the gross motion of the system 

is approximated by the slow reduced subsystem. while the discrepancy between the 

full model and the slow subsystem represents the fast subsystem. Then, the design of 

the full flexible model can be split into two separate designs of the two reduced-order 

systems, i.e., a composite control can be pursued (Siciliano St Book 1958). 

For the slow subsystem, any of the well-established control techniques developed 

for rigid manipulators can be applied. In this thesis, a position and force controller 

based on impedance control is used. Impedance control is a model-based control 

scbeme: it attempts to make the physical system behave like a desired model (target 

impedance) by linearizing and decoupling the actual dynamics using a combination 

of feedback (servo) and feedforward (model-based) control. -4s such, it suffers from 

some common disadvantages of model-based controllers. Firstly, impedance control 

requires exact knowledge of the dynamic and kinematic parameters of the manipulator 

system to design its control law and achieve decoupling and linearizing of the closed- 

loop error dynamics. In reality, however, it is often not possible to obtain an esact 

model, especially such effects as higli-frequencÿ unrnodelled dynamics, measurement 

noise, and joint friction. Secondly, the dynamics of the system must be cornputed and 

fed online into the controller. In order to  alleviate computational demands. a two-level 

control system architecture rnay be used: the model-based portion of the controller 

rnay be taken out of the servo loop and run a t  a slower rate. Both these defects 

lead to a nonlinear and coupled error dynamics which may behave in a complicated 

way. These considerations also leave open such issues as robustness and sensitivity 

of the controller. However, for simplicity, these issues will not be addressed in this 



thesis Le., it is assumed that the dynamic and kinematic parameters are known 

exactly and that the computational power is sufficient to meet the demands of onlzne 

computatat ion of inverse dynamics. 

Another disadvantage exclusively pertinent to impedance control is that it requires 

exact knowledge of environment parameters in order to achieve good force tracking. 

In this thesis, it is again assumed for sirnplicit?; that these parameters are indeed 

known exactly. However, in practical situations where this is not the case, additional 

st rategies must be implemented to provide im proved force t racking capabili ty (Las ky 

& Hsia 1991, Seraji & Colbaugh 1993). 

The fast subsystem turns out to be a linear tirne-varying system where the slow 

state variables play the role of parameters. Therefore, any linear controller may be 

designed to damp out the flexible variables of the system. In the present work. the 

Linear Quadratic Regulator (LQR) was chosen to meet this objective. The control 

strategy selected involves feedback of the full state, which is not usually available 

in practice, such that implementation of state observers is recommended for future 

work. -41~0, ideal actuators with no torque limitations were assumed. 

5.2 Singular Perturbation Met hod 

The singular perturbation method described in this section is based on the work by 

Siciliano & Book (1988), where the technique \vas successfully applied to the  control 

of a two-link flexible manipulator. 

The dynarnical equations of motion of the multi-link manipulator system to  be 

controlled can be cast as: 

where M is the mass matrix, q is the vector of generalized CO-ordinates, the vector c 

contains the velocity dependent inertia terrns as well as damping terms, rt represents 



the control torques, J is the Jacobian of the manipulator, and fat is the external force 

vector. Equation (5.1) may be partitioned in terms of rigid and flexible variables as 

where 

Subscripts r and f denote rigid and flexible terms respectivel. The inverse of the 

mass matrix may be expressed as 

and equation (5.2) rnay be recast as 

Provided that  the stiffness coefficients are of the same order of magnitude, it is 

appropriate to extract a common scale factor k such that 

and the elastic forces are defined as 

De fining 



and prernultiplying equation (5.4) by K we obtain 

wherc 

To establish the two reduced stibsystems, equations (5.5) and (5.6)  will be written 

in the state space form. The following state variables are defined: 

where the perturbation parameter E is defined as 

With these forms, equations (5.5) and (5.6) become 

Now using the basic assumption of singular perturbation theory of large time scale 

separation between the two subsystems, we obtain the slow subsystem equations of 



motion by letting the perturbation r + O. Formally setting e = O in equations (3.9) 

and (5.10): 

where the overbars are used to indicate that the system with E = O is considered. 

The quasi-static elastic force ZI may be obtained from equation (5.12) as 

To obtain the fast subsystem, a new time scale t is defined as 

and implemented into equations (5.9) -(S. 12) to obtain 

NOW, as c -+ O, only equations (5.18) and (5.19) remain, and by defining the fast 

state variables as 

the fast subsystem is described by 



where, for differentiations wit h respect to  the fast time scale, the quasi-static force 

varies slowly such that 

If we çubstitute iil from equation (5.15) into equation (5.22), the fast subsystem 

simplifies to 

which is expressed in a linear state form mhere the slow variables 3, act as parameters. 

The control input for the fast subsystem r f .  is given by 

5.3 Composite Control 

Once the full flexible system has been split into two reduced-order models, the design 

of the feedback control for the full system can be split into two separate controls 

T and TJ, and the composite control torque for the full-order system can tlien be 

obtained from 

Figure 5.1 shows the following composite control approach in a block diagram. The 

overall control diagram is divided into two boxes (in dashed lines): slow control and 

fast control. 

5.3.1 Slow Control 

For the slow control, using equation (5.15), equation (5.14) may be recast as 

Mrr (a)& = G (q r  Gr, 0,  0 )  + i - ~ T ~ z t  
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where the following easily verifiable relation was used: 

It is realized that equation (5.21) is equivalent to equation (5.1) with flexible terms 

neglected. Equation (5.27) may now be used to design a position/force controller 

based on well-established control schemes suitable for rigid manipulators. 

Most control schemes are joint-based, i-e., the desired trajectory is specified in 

terms of time histories of joint position, velocity and acceleration. and t r a j e c t o ~  

errors are deveioped by differencing t hese values from the corresponding desired ones. 

However, in typical contact operations of a manipulator, it is desirable to specify the 

rnanipulator's task in terms of appropriate motions of its end-point (end-effector) . 

This means that it is necessary to translate the end-point motion into a corresponding 

set of joint motion specifications, i-e., inverse kinematics must be carried out, which 

is known to be a difficult computational problem. lmpedance control avoids this 

difficulty by speciS.ing the manipulator's behaviour in Cartesian space: the measured 

joint position of the manipulator is transformed by means of direct kinematics into a 

Cartesian description of the end-effector position, and tracking errors are specified in 

Cartesian space. The velocity and acceleration of the end-effector in Cartesian space 

can be approximated respectively by 

For non-redundant manipulators, the generalized accelerations may readily be 

obtained by straightforward inversion of the Jacobian as 

However, manipulator systems may be redundant, Le., there is an  infinite number 

of joint motions which can achieve a certain end-effector trajectory (e.g. the 7-joint 

SSRMS). This is because the manipulator has more than the minimum nurnber of 



mechanical degrees of freedom to perfonn tas ks. For redundant manipulators, the 

inverse of the Jacobian, J; in equation (5.30) does not exist; in this case, redundancy 

may be exploited to satisfy a certain optimality criterion such as minimization of 

actuator joint torques or a quadratic criterion. One such optimization rnethod was 

developed by Khatib (1987) which minimizes the instantaneous kinetic energy 

constrained by 

The effective inverse of the Jacobian which satisfies the above optimization is called 

the znertia-wezghted pseudoinverse (Khatib 1987) which can be expressed as 

Therefore, the generalized accelerations can be expressed using equation (5.31) as 

Impedance control is based on specifying the desired behaviour of the system with 

respect to the external force exerted by the end-effector on the environment. mhich 

is referred to as the target impedance. Since the dominant behaviour of manipulator 

systems along each degree of freedom is that of a second order system, a reasonable 

target impedance is usually also chosen as second order (Hogan 1987): 

where e is the tracking error vector defined as the difference between the actual 

end-effector trajectory x and its reference (or nominal) trajectory x r e ~ :  



and A, Kd and Kp are matrices representing respectively the desired apparent mass. 

damping, and stiffness of the manipulator tip. These matrices are usuaily chosen 

as constant and diagonal to provide system decoupling. The desired external force 

is achieved indirectly by an appropriate choice of the reference position t rajectory. 

If the boundary of the environment to be contacted is known to be G. then the 

steady-state reference position of the end-effector normal to the contact surface may 

be chosen as 

where the superscript n denotes the normal to the contact surface. f:zL.d is the desired 

contact force on the environment. and k, is a diagonal element of Kp- 

Letting 

the control torques which provide linearizing and nonli~iear decoupling action on the 

system dynamics can be obtained by selecting the following control structure: 

Vector 7' is sometimes referred to  as the seruo portion of the control law and the rest 

as the model-based portion (Craig 1986). f',. d,, and 3, are estimates of r,: d, and 

J, respectively. Assuming exact measurernent of system parameters. the estimated 

values are identical to the real ones, and the symbol ^ can henceforth be dropped. 

The servo portion of the control law can be selected as 

where x* is selected to satisfy the target impedance (equation (5.33)): 



Substituting equations (5.37) and (5.38) into equation (5.36), the control torques for 

the slow subsystem can be expressed as  

It is worth noting that although these torques are calculated based on the rigid 

model, the effectiveness of the control scherne is assessed based on the original flexible 

system. 

5.3.2 Fast Control 

For the fast control. equations (5.24) and (5.25) may be espressed as 

where 7 = [vT O F ] T ,  and if m and n are respectively the number of flexible degrees 

of freedom and the number of actuator torques, then 

Provided that matris E insures controllability of the States (Readman 1994): the 

Linear Quadratic Regulator (LQR) can now be applied to this system. The  LQR 

performance index which optirnizes tracking error and energy expenditure may be 

espressed as 

where Q and R are symmetric weighting matrices which must be positive semi- 

definite and positive definite respect ivel .  Expressing the feedback control law as 

the optimal control gain which minimizes the performance index J is given by 

F = R - I E ~ P  (5.43) 
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where matrix P is the solution to  the matrit; Ricatti equation, 

D ~ P  + PD - PER-'E~P + Q = 0. 



JI- 
---- 

------ 

Figure 5.1: Block diagram of the composite control strategy 



Chapter 6 

Simulations, Discussions and 

Results 

6.1 Prograrn Description 

The program developed to perform the dynamic simulations involving contact of 

multi-body systems was written in the FORTRAN language. Although the formu- 

lations described in this thesis were for general spatial (3-dimensional) motion. the 

simulation program is restricted to planar dynamics. It is felt that the study of planar 

dynamic simulations alone will give sufficient insight into the formulation presented 

in this thesis, and also provide a solid basis for a full 3D implernentation of contact 

dynamics of mu1 ti-body systems. 

Also, as already mentioned in Chapter 2, the computation of the equations of 

motion of individual finite elements of contacting bodies were carried out in symbolic 

form using the symbolic manipulator software MAPLE V. In the program, computa- 

tions to be performed for dynamic simulation may be divided into o m n e  and online 

operations. 



Offline com~utat ions 
-- 

Initial operations before time integration: 

Read input file: structure definition (length, m a s ,  type of joints' kinematic 

architecture, finite element mesh. etc). initial conditions (qtZol ql=o) ,  simulation 

specifications ( t f ,  At,  tolerances. etc). 

For each subsystern, compute initial mass and stiffness matrices. 

For each subsystem, compute representative values of natural frequencies; then 

compute damping constants and damping matrix. 

For contacting bodies, if Guyan reduction method is used. compute matris G 

of equation (4.62), and new matrices M, ç and K of equation (4.63). 

For contacting bodies, if znd or 3rd rnethods (described in Section 4.3.1) are used 

to calculate matrix K-' of equation (4.15), perform necessary rnatrix algebra to 

compute constant terms included in equat ions (4.46) and (4.57) : respect ivel.  

Online computations 

Integrating from time t to t + At: 

Newton-Raphson iteration: 

1. For each subsystem, compute or assemble, depending on method used 

(Section 4.3.1) and whether Guyan reduction is used (Section 4.32) .  the 

rnass, damping and stiffness matrices' and matrices K and K-'. 

2. For contacting bodies, update the conditions of contact*, based on the 

procedure described in Section 4.2.3. 

3. For each subsystem, update K and f of equation (4.13), and for each 

constraint set, update g of equation (4.14). 

'In the first iteration, assume sticking contact, as discussed in Section 4.2.4. 



4. For each subsystem, compute AX and hq from equations (4.2 1) and (4.15) 

respectively- Update q and X from equations (4.22) and (4.23) respectively. 

5. If convergence criteria outlined in Section 4.2.5 is satisfied, stop iteration: 

othertvise, go back to step 1. Usually, 2 or 3 iterations are found to be 

sufficient for convergence. 

r If composite control is used for force, trajectory and vibration control, slow con- 

trol torques are obtained from equation (5.39), and fast control from equation 

(S-Q), where F is the matrir  of LQR control gains. 

Output results: generalized coordinates and velocities, forces. torques, etc. 

a Go t.o next time step. 

Apart from the use of FLEXLINK (Cyril et al. 1989) to mode1 multi-body systems. 

a few other esternal subroutines were included in this program: 

0 Xatural frequencies of subsystems are calculated using the EISP-4CK library of 

FORTRAN subroutines. 

The solution of the Ricatti equation (5.44) and of the optimal LQR control gain 

F in equation (5.43) are obtained by calls to a FORTRAN subroutine library 

created by C-\SC-4DE (Computer-Aided Systems and Control Analysis and 

Design Environment) and found in Netlzb, a reposi tol  of public domain math- 

ematical software. The LQR control gains, which are manipulator-configuration 

dependent, can therefore be calculated on-line a t  any desired sampling rate. 

6.2 Program Validation 

.4s validation tests of the FEM program, the impact problems of simple structures 

that can be handled analytically using Hertz's theory are simulated and the results 

compared. An example considered by Chaudhary & Bathe (1986) is used here for the 



sake of comparison. The direct impact of two spheres is shown in Figure 6.1. Due to 

the symmet rical nature of the problem and contacting bodies. axisymmet ric elernents 

may be used to mode1 a single sphere which is considered to corne into contact with 

- a Rat rigid surface. -4 final grid size of 128 elements was chosen (comparable to the 

example in Chaudhary & Bathe (1986)), which satisfies the requirements for good 

convergence of resultst and sufficient number of contact nodes in the contact area. 

Figure 6.2 shows the finite element mesh used, where a finer grid was constructed 

near the contact area. 

Identical 
spheres 

Figure 6.1: Impact of identical spheres 

The radius of each sphere is taken as R = 5, the Poisson's ratio u = 0.3. the m a s  

density p = 0.01, and the initial speed of impact as ,vo = 3 (values have no units, as in 

Chaudhary & Bathe (1986)). The Young's modulus was varied between 10' to IO? 

The quasi-static description of elastic impact between two spheres (or bodies which 

make contact over a circular area), based on Hertz theory, can be found in Johnson 

(1985) and is given in -4ppendi.x D. The impact dynamic simulation results obtained 

using the present finite element formulation are compared with those calculated using 

Hertz theory. Figures 6.3 and 6.4 show the force and displacement of the center of 

tFurther grid refinement (increase in the number of elements) did not yield appreciabIy better 

results. 



-2 O 2 4 6 8 
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Figure 6.2: Finite element mesh of half a radial cross-section of a sphere 

mass of one of the spheres through the duration of impact, and Figure 6.5 shows 

the developed normal contact tractions dong the contact surface from the center to 

its boundary at the time of maximum deformation (which occurs at half the total 

impact time). Al1 values are nondimensionalized as follows: 

f u t p r  - - - - -  
f*' u*' t*' a 

where f *  and u* are respectively the contact force and displacement of a sphere a t  

half the impact time t*, which are also the maximum values because t* is the time 

of maximum elastic compression before rebound starts. Pressure po is the contact 

traction a t  the center of the contact circle of radius a a t  t*. ,411 these values pertain 

to those of the quasi-static Hertz theory (see Appendix D for further details). It is 

interesting to note in Figures 6.3 and 6.4 that as the Young's modulus E is increased, 

the results obtained from the present formulation approach those obtained using 



Hertz theory. This is so even though as E is increased, the contact radius decreases 

and fetver number of nodes are available to  represent the details of contact mechanics 

(see Figure 6.5).  This is to  be expected because Hertz theory is based on a quasi- 

static nature of contact which means that the deformation is assumed to be restricted 

to  the vicinity of the contact area and to be given by the statical theory: elastic wave 

motion in the bodies is ignored and the total mass of each body is assumed to be 

moving a t  any instant with the velocity of its centre of mass (Johnson 1983). This 

quasi-static assumption can be used if the duration of the impact is long enough to 

permit stress waves to traverse the Iength of the contact body many times. In other 

tvords,. Hertz theory is valid only if the ratio of contact time to wave time. which 

is of the order of ( J E / ~ / v ~ ) ~ I ~ ,  is rnuch greater than unity. Thus. it makes sense 

that  as E increases and the ratio increases, the results found using the two methods 

approach one another. Table 6.1 compares values of f*: u*, and t* obtained using 

the present formuiation and Hertz theory for different values of Young's modulus. It 

clearly shows t hat the difference decreases as E increases. 

-0.2 1 I 1 I I I 
O 0.5 1 1.5 2 2 5  

time (M.) 

Figure 6.3: Contact force during impact (- Hertz; + E = 102; - . - E = 103; -- 

E = 105) 



Figure 6.4: Displacement of the center of mass during impact (- Hertz; + E = IO*; 

"O 0.2 0.4 0.6 0.8 1 1 2  1.4 
Radius (rla) 

Figure 6.5: Pressure distribution along the contact surface (- Hertz; * E = 102; O 

E = 103; A E = io5) 



Table 6.1: Comparison of results obtained from the present formulation and Hertz 

theory 

E Present Forrr~ulat ion Hertz theory 

f * = 134.4 f*  = 117.0 

u* = 0.4434 u* = 0.5034 

t* = 0.2250 t* = 0.2467 

Percent Difference 

As mentioned in Section 1.3, the subsystems which are categorized under "multi- 

body systems" are modelled using FLEXLINK (Cyril et al. 1989) a n  in-house general- 

purpose software package for the dynamic simulation of serial-link flexible manipula- 

tors. Substantial program verification was carried out by Cyril (1988), and subsequent 

users of the program (Jaar 1993, Kim 1994). 

Partial verification of the program as a whole was done by comparison of results of 

the system rebound dynamics with those obtained using an impulse-momentum ap- 

proach described in Section 1.2 (Kim 1994). However, no simulation result was found 

available in the literature on impact or  sustained-contact dynamics of multi-body 

systems t hat studies what happens during impact or sustained contact. Generally, 

impulse-momentum approaches assume that impact occurs instantaneously and use 

principles of eneigy and momentum conservations, along with certain assumptions 

about the energy loss (eg. coefficient of restitution) and friction during impact, to 

obtain rebound states at the end of impact. For certain assumed values of these 

parameters, the rebound dynamics results may agree quite well with those obtained 

using the finite element formulation. However, the choice of these parameters is ar- 



bitrary, and is usually determined based on experimental results. Thus, one of the 

benefits of carrying out a full finite element simulation of impact/contact dynamics, 

despite its computational cost, is that such impact characteristics as energy loss and 

friction can be obtained without the need of elaborate experiments, by using more 

commonly available material properties such as damping ratios and coefficients of 

friction. 

Three efficient solution methods for contacting bodies which do not compromise 

solution accuracy are used: (i) the second method of computing K and K-' presented 

in Section 4.3.1; (ii) Guyan reduction method (Section 4.3.2): and (iii) elimination 

of the flexible portion of the nonlinear forces (Section 4.3.3). The validity of these 

methods have been verified through comparative studies of the simulation results of 

various scenarios (most of the simulation cases described later in this chapter); it wi 

found that in al1 cases the use of these methods produce very close results to  those 

obtained using the full solution method. 

With respect to the second method of computing K and K-': the validity of 

the assumpt ion t hat deformat ions are negligible compared to the dimensions of the 

body and thus can be eliminated from the mass matrtq is further demonstrated us- 

ing a problem addressed by Misra et al. (1998). This paper considers the dynamics 

of flexible appendages connected to a spinning rigid spacecraft with an offset from 

the spacecraft center of mass, as shown in Figure 6.6. It was observed that neglect- 

ing second and higher order terrns in elastic displacements and velocities from the 

equations of motion resulted in an inaccurate and different response from that of 

the full noniinear analysis. In fact, the response turned out to  become unstable for 

positive offset (Figure 6.6-(a)). The  present method was applied to  this system, Le., 

only the elastic displacements from the mass matrix were removed from the equa- 

tions of motion: the response of the system turned out to be indistinguishable from 

that of the full nonlinear analysis. This result further demonstrztes the validity of 

the present met hod, even for different and more sensitive systems, where the elastic 

displacements are relatively larger than those dealt wit h in this t hesis. 



Finally, in al1 uncontroiled simulation cases where there is no energy input into 

the system, the total energy of the system was plotted against time to verify the 

principle of energy conservation. 

Figure 6.6: Spinning spacecraft and appendages with an offset n 

6.3 Impact Dynamics 

First. the frictionless case of impact dynamics is considered, followed by the case of 

impact with friction. Control is not applied in the following cases. escept in Section 

6.5. 

6.3.1 Erictionless Case 

The problem of a spacecraft-mounted two-link flexible manipulator system impacting 

a satellite is considered here, as seen in Figure 6.7. No friction is assumed to be acting 

at the contact surfaces. The spacecraft and the manipulator system are treated as 

"multi-body systems", and the end-effector and satellite to  be captured as "contacting 

bodies". The spacecraft is assumed rigid, and its orbital rate R (angular velocity of 

the orbital frame with respect to  the inertial frame) is taken as 1.157 x 10-3rad/sec. 

The problem of orbit maintenance is not considered, Le., it is assumed that the 



center of mass of the spacecraft follows a prescribed orbital trajectory. The satellite. 

however, is rnodelled as a free-floating body. The manipulator links are nlodelled as 

Euler-Bernoulli beams, and the assumed modes method (Meirovitch 1967) is used for 

the discretization of the bending motion, where eigenfunctions of a cantilever beam 

are chosen as the admissible functions (Section 3.1.2). One mode was used to mode1 

each link. It has been reported by some researchers (Cyril 1988. Fattah 1995, Jaar 

1993) that the first one or two modes play the dominant roles in many situations: 

thus, fairly good accuracy can be achieved with only one mode. 

The satellite is modelled as an octagonal body and the end-efFector as a U-shaped 

gripper. The end-effector is chosen to play the role of contactor, and the satellite the 

role of target. -4 finite element mesh, made up of 4-node quadrilateral (QCAD4) and 

3-node triangular (CST) elements, is constructeci on these two bodies, where a finer 

grid is applied near contact surfaces, as shown in Figures 6.8 and 6.9. The Young's 

modulus of the end-effector and payload were taken as E = 7 x 10'O(N/m2). 

The three computationally efficient solution rnethods for contacting bodies, men- 

tioned in Section 6.2, rvere applied on the end-effector and payload after verification 

of their validity. For Guyan reduction, the master degrees of freedûm, comprising 

approximately 35% of the total number of degrees of freedom? were chosen to include 

t hose pertaining to potential contacting nodes and t hose with lower Kïi /Mii  ratio. 

This arrangement yielded a computer simulation time of less than 20% of that of the 

full model, with negligible discrepancy in the results. The elimination of the flexible 

portion of the nonlinear forces, discussed in Section 4.3.3, further contributed to an 

additional 30% reduction in simulation time. 

The contact scenario (Figure 6.7) is as follows: the manipulator system reaches out 

to capture the satellite but rebounds with almost no loss of energy. The only source 

of energy loss is in the form of structural damping of 1% of the critical damping for 

contacting bodies and flexible links. The rnaterial specification of the system is given 

in Table 6.2. The non-zero initial conditions immediately before impact are given in 

Table 6.3. Al1 the generalized coordinates and velocities corresponding to the flexible 



degrees of freedom are initiaily assumed to be equal to zero. The manipulator joint 

rates are such that just before impact with the payload, the end-effector moc-es in the 

local horizontal direction with a speed of 0.1 mlsec (Figure 6.7). The basic solution 

methods, system specifications. configurations and initial conditions outlined above 

apply throughout this chapter unless othenvise stated, in which case some features 

may be added or modified to the existing system description. 

Spacecraft 

Satellite 

Figure 6.7: Impact scenario 

Table 6.2: Material specification of the system 

1 Link 1 11 5.13 1 163 1 88,100 ( 3591 

1 Link 2 11 8.13 1 163 1 88,100 1 3591 

EI = Flexural stiffness 

.Jzz = Moment of inertia about origin (joint) 

The forces acting a t  the end-effector joint during impact are shown in Figure 6.10. 

Al1 x and y directions in these figures refer to those of the corresponding local reference 



Table 6.3: Initial conditions of the system 

11 Generalized 1 Generalized 

I II Coordinates ( O )  1 Velocities (O/s) 1 

1 Link 2 II e3=45.4 1 63=-1.82/ 

S pacecraft 

x-ais (m) 

Figure 6.8: Finite element mesh of the end-effector 

1 

=O e ,  =O 
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Figure 6.9: Finite element mesh of the payload 

frames (Figures 6.8 and 6.9). It can be seen that  the duration of impact is about 

3.5 x 10-'sec. As espected? the end-effector joint force is quite high in the y-direction 

(normal to the contact surface) and reaches a maximum of approsimately 15 x 104N 

a t  half the impact time, which is also the point of maximum compression. It can 

also be observed that the force due to elastic vibrations of the end-effector resulting 

from impact is non-negligible even after impact, which is contrary to the assumption 

of Hertz theory. In the x-direction (tangential to the contact surface) the force is 

relatively insignificant due to the assumption of frictionless contact (ft/ fn = 0.003). 

The total energy of each of the three subsystems (spacecraft-mounted manipulator 

system, end-eifector and payload) are plotted in Figure 6.11 (orbital energy is not 

included) . The end-effector initially has negligible total energy but builds potential 

energy as it deforms until a maximum is reached a t  half the impact time and then 

returns to its initial condition a t  the end of impact. The manipulator, on the other 

hand, starts out with a sizeable kinetic energy, loses some of i t  untiI half impact- 



time where it is mostly made up of elastic energy due to the defiections of the links, 

and regains some kinetic energy during the rebound phase of impact. The payload 

initially has no energy but gains some kinetic energy imparted by the manipulator 

during impact. The addition of al1 three plots is equal to the total energy of the whoie 

system which must be a constant as shown in Figure 6.12. The displacements of the 

end-effector joint and payload-center are shown in Figure 6.13. In the y-direction. the 

displacement of the end-effector is comparable in profile to that of the elastic sphere 

presented in Section 6.2, while in the x-direction, the displacement profiles of both the 

end-effector and payload are scarcely affected by the impact. due to the assumption 

of frictionless surfaces. The velocities of the end-effector joint and payload-center 

are shown in Figure 6.14 The rotation angle of the end-effector with respect to the 

payload and the rotation angle of the payload are shown in Figure 6.15. With respect 

to the motion of the end-effector joint, unlike its displacement profiles (Figure 6.13) 

which do not show oscillatory behaviour because its motion is constrained by the tip 

of the rnanipulator, its rotational motion contains oscillatory behaviour. However, 

these angles, along with the payload displacement in the x direction, are quite small 

with both bodies because the resultant impact force acts approsirnately along the 

line joining their centers of niass. The rotation rates are shown in Figure 6.16. 

The post-impact simulation resiilts are shown in Figures 6.17 - 6.20. Figure 6-17 

shows the joint angles of the manipulator during the first 50 seconds after impact, 

where O1 is the attitude drift of the spacecraft. while O2 and O3 are the angles of 

rotation of the two links. Structural damping [vas included in the system (1 % of 

critical damping), which has the effect of damping out the vibrations of the links 

(Figure 6. lg),  and also results in the gradua1 decay of the total energy of the multi- 

body system (Figure 6.18). Figure 6.20 shows snapshots of the post-impact rebound 

motion of the manipulator system and payload a t  every 10 seconds. The rnanipulator 

stretches out to impact against the payload, and rebounds as it folds back on itself. 
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Figure 6.10: End-effector joint forces: frictionless case. ( - - x-dir, - y-dir) 
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Figure 6.11: Energy: frictionless case. (- - Payload, -- End-effector, - Manipu- 

lator) 



Figure 6.12: Total Energy : frict ionless case. 
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Figure 6.13: Displacements of contact ing bodies: frictionless case. ( - - s-dir, - 

y-dir) 
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Figure 6.14: Velocities of contacting bodies: frictionless case. (-- x-dir, - y-dir) 
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Figure 6.15: Rotation angle of the end-effector with respect to the payload and the 

rotation angle of the payload: frictionless case. 
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Figure 6.16: Rotation rates of contacting bodies: frict ionless case. 
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Figure 6.17: Joint angles of multi-body system vs. time: frictionless case. 
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Figure 6.18: Total energy of multi-body system vs. time: frictionless case. 
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Figure 6.19: Tip deflections of manipulator links vs. time: frictionless case. 



Figure 6.20: Configuration of the system from time = O to 50 sec: frictionless case. 

6.3.2 Impact with Friction 

In this case, it is assumed that there is friction acting a t  the contact surfaces. Coulomb 

friction, based on the mode1 described in Sections 4.2.3 and 4.2.4, is applied on the 

contact surfaces with p, = 0.2 and pd = O. 15. The forces acting at the end-effector 

joint during impact are shown in Figure 6-31. In the y direction, the force profile is 

similar to that of the frictionless case, but in the x direction, unlike the frictionless 

case? substantial force is observed due to the frictional effects. The total energy of each 

of the three systems are plotted in Figure 6.22 and the addition of al1 three plots is 

shown in Figure 6.23. The displacements of the end-effector joint and payload-center 

are show11 in Figure 6.24. -41~0, the velocities of the end-effector joint and payload- 

center are shown in Figure 6.25. The rotation angles of the respective bodies are 

shown in Figure 6.26. When comparing these results with those of the frictionless 

case, one can observe a substantial change in dispiacement of the payload in the x- 

direction, and also a n  increase in the rotation of the contacting bodies because in this 

case there is a friction force acting in the local x-direction at the contact surfaces, 

which provides a moment about their centers of mass. The rotation rates are s h o w  
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Figure 6.21: End-effector joint forces: friction case. (-- x-dir, - y-dir) 

in Figure 6.27. 

The post-impact simulation results are shown in Figures 6.28-6.31. The results 

are similar to the frictionless case of Section 6.3.1, but due to the tangential contact 

force component resulting from friction, the payload acquires a small counterclockwise 

rotational speed and the rnanipulator systern rebound t rajectory is also influenced by 

this frictionai force (see Figure 6.31 and compare with 6.20). Comparing the energy 

decay of the two cases (Figures 6.18 and 6-29)! the frictionless impact case seems 

to excite more link vibrations for link 3: so that a higher percentage of post-impact 

energy decay is observed in this case. 



Figure 

I 1 > - - -  - L  - 
O 1 

- - 
2 3 4 5 6 

time (sec) x 104 
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Figure 6.23: Total Energy: friction case. 
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Figure 6.24: Displacements of contacting bodies: friction case. (-- x-dir. - y-dir) 
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Figure 6.25: Velocities of contacting bodies: friction case. (-- s-dir, - y-dir) 
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Figure 6.26: Rotation angles of contacting bodies: friction case. 
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Figure 6.27: Rotation rates of contacting bodies: friction case. 



-0.04~ I 1 I 1 I 1 I I 

O 5 10 15 20 25 30 35 40 45 50 
time (sec) 

ome (sec) 

I I I I I L I I 1 1 
O 5 10 15 20 25 30 35 40 45 50 

rime (sec) 

Figure 6.28: Joint angles of multi-body system vs. time: friction case. 
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Figure 6.29: Total energy of multi-body system vs. time: friction case. 



Figure 

1 1 I I I I I I i 
O 5 10 15 20 25 30 35 40 45 50 

time (sec) 

I 1 1 l I 1 f 1 I 
O 5 1 O 15 20 25 30 35 40 45 50 

time (sec) 

6.30: Tip deflections of manipulator links vs. t ime: friction case. 

Figure 6.31: Configuration of the system from time = O to 50 sec: friction case. 



6.3.3 Other Impact Scenarios 

-4 few other impact scenarios are considered here. The same system parameters 

and initial conditions as in previous cases were used here except that two antennas: 

modelled as flexible beams, are added to the satellite to be captured, where the 

corresponding revolute joints may be either free o r  iocked. The two antennas are 

identical and have the following material properties: mass (m) = JO kg, length (1) = 

5 m, flexural stiffness (EI) = 5 x 1031V.m2, and moment of inertia about joint ( .Jzz)  

= 416.67 kg. m2. To ease computational demands, softer elastic moduli were used to  

mode1 the contacting bodies: E., = 105N/rn2 and Ep = 106iV/m2. In cases 1 and 2, 

the initial configuration of the system is as shown in Figure 6.32. In case 1 the antenna 

joints are free, and in case 2 they are locked. Figures 6.33-6.38 and 6.39-6.43 show 

the impact dynamics response of the system for cases 1 and 2 respectively. The tip 

deflections of the antennas in the two cases show drastic differences. The frequency of 

vibration in case 1 is much higher than in case 2, which is due to the coupling with the 

rigid-body rotational dynamicsf . On the other hand, larger amplitudes of vibration 

are observed in case 2. The translational and rotational motion of the payload in 

case 1 is greater that in case 2 which means that the locked antenna joints in case 2 

provide greater resistance to the motion of the main payload body. 

-4 different normal direction of the contact surface results in quite different post- 

impact dynamics. -4 vertical orientation of the payload a t  the beginning of impact as 

shown in Figure 6.44, results in the post-impact dynamics trajectory shown in Figure 

6.45 for the free antenna joint case, and Figure 6.46 for the locked antenna joint case. 

It is interesting to note that the vertical orientation of the payload causes friction 

to act in the opposite direction to that of the two previous cases, mhich produces a 

clockwise rotation of the payload (as opposed to counterclockwise in cases 1 and 2; 

compare, for example, the respective payload rotations in Figures 6.38 and 6.45). 

~ n o t h e r  way of interpreting this result is that in case 1, the boundary conditions of the antennas 

correspond to those of a pinned-free beam, whereas in case 2 they correspond to a clamped-free beam. 

The natural frequencies of a clamped-free beam are lower than those of a pinned-free beam. 



Figure 6.32: Impact scenario, wit h two satellite antennas 
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Figure 6.33: Joint angles of antennas vs. time. Case 1. 
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Figure 6.34: Tip deflections of antennas vs. tirne. Case 1. 
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Figure 6.35: Displacement of payload. Case 1. (-- x-dir, - y-dir) 
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Figure 6.36: Rotation angle of payload. Case 1. 

Figure 6.37: Total energy vs. time. Case 1. 



Figure 6.38: Configuration of the system from time = O to 50 sec. Case 1. 
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Figure 6.39: Tip deflections of antennas vs. time. Case 2. 
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Figure 6.40: Displacement of payload. Case 2. (-- x-diq - y-dir) 
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Figure 6.41: Rotation angle of payload. Case 2. 
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Figure 6.42: Total energy vs. time. Case S. 

Figure 6.43: Configuration of the system from time = O to 50 sec. Case 2. 
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Figure 6.44: Impact scenario with a vertical contact surface 

Figure 6.45: Configuration of the system from time = O to 50 sec. Free antenna 

joints: and vertical contact surface 



Figure 6.46: Configuration of the system from time = O to 50 sec. Locked antenna 

joints, and vertical contact surface 

6.4 Capture Dynamics 

In this section, the case where the end-effector successfully captures the satellite (as 

opposed to rebound) is considered. The contact scenario is illustrated in Figure 6.47. 

Coulomb friction, based on the mode1 described in Sections 4.2.3 and 4.2.4, is applied 

on the contact surfaces with p, = 0.2 and pd = 0.15. -4n antenna, modelled as a 

flesible beam which has the same material specification as in Section 6.3.3, is attachect 

to the satellite by a revolute joint. 

The simulation of capture dynmics is dependent on the type of capture mecha- 

nism which is employed. But regardless of the type, the capture mechanism should 

essentially fulfill three functions: (i) the resulting dynamic forces must be reduced as 

much as possible; (ii) these forces must be darnped out and; (iii) some type of latch- 

ing or grasping mechanism must exist so that eventually the two impacting bodies 

become rigidly connected. With the purpose of keeping things as general and simple 

as possible, the following type of capture mechanism, illustrated in Figure 6.48, is 



Figure 6.47: Initial capture scenario 

assumed in this case: as soon as initial contact occurs? the grasping mechanism allows 

two spring-dashpot systems to join two pairs of grapple points, where for each pair 

one point is located on the end-effector and one on the payload. The spring compo- 

nent forces the two contacting bodies towards each other and the dashpot component 

damps out the resulting vibrations until eventual rigid attachment. 

The forces produced by the capture mechanism must be accounted for in the 

dynamical rnodel. Let the positions of the two pairs of grapple points on the end- 

effector and payload be (r,, , r,, ) and (r,, , r,,). Then the forces being exerted by the 

capture mechanism are 

w here 

and K, and Cc are diagonal matrices containing spring and damping constants. Then 

the following t e m s  must be added to fi of equation (4.1), ivhere i corresponds to the 

end-effector and payload subsystems: 

where, if q, and qp are the generalized coordinates of the end-effector and payload 



respect ively, t hen 

The spring and damping constants used here are h; = 5 x 104iV/m and Cc = 4 x 

1 ~~l\i.sec/rn respectively. 

\ \- \ Manipulator link 

Payload & End-effector joint 32 ' 
Figure 6.48: Capture mechanism 

The simulation results during the capture operation are shown in Figures 6.49- 

6.52. The forces acting a t  the end-effector joint during capture are shoivn in Figure 

6.49. -4s seen in Figure 6.50, which is an expanded view of Figure 6.49, five repeated 

impacts occur a t  A, B, C, D and E until eventual rigid attachment a t  about 3.5 x 

seconds. This phenomena can be seen by the abrupt changes in an otherwise smooth 

oscillatory profile of the joint forces. The displacements of the end-effector joint 

and payload center are shown in Figure 6.51. The relative rotation angle bettveen 

the end-effector and payload and the rotation angle of the payload are shown in 

Figure 6.52. Fluctuations in the relative angle are observed from the moment of 

contact because the mismatch in the rotations of the payload and end-effector cause 

misalignment between the two contacting surfaces and the torque which thus arises 

induces rotations of the end-effector joint. These phenomena compIicate the whole 



capture operation as already seen by the abrupt changes in contact forces and rotation 

angles of the end-effector. 
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Figure 6.49: End-effector joint forces during capture. (-- x-dir, - y-dir) 

The results for post-impact simulations (O 5 t 5 100sec.) are shown in Figures 

6.53 to 6.56. The joint angles are plotted against time in Figure 6.53. The O1 plot 

shows the attitude drift of the spacecraft and the 8, plot shows the rotation of both 

the end-effector and payload. The total energy of the system is shown in Figure 6.54. 

During the first 10 seconds, the energy is seen to decay gradually by a slight amount 

which is caused by loss of energy due to structural damping in the manipulator links. 

Afterwards, it maintains a steady value. The tip deflections of the two links of the 

manipulator and payload are shown in Figure 6.55. -4s predicted by the energy 

plot, the vibrations are seen to be almost damped out after about 10 seconds. It is 

interesting to note the smaller link tip deflections and energy decay here compared to 

those of impact scenarios in section 6.3, due to the extra constraints imposed by the 

payload inertia at  the tip of the manipulator. The trajectory of the whole systern for 

100 seconds after impact is shown in Figure 6.56. The post-capture motion can be 

explained as follows: After successful rigid capture, the manipulator arms continue 



Figure 6.50: End-effector joint forces during capture. Expanded view (-- x-dir, - 

y-dir) 
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Figure 6.51: Displacements of contacting bodies during capture. (-- x-dir, - y-dir) 
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Figure 6.52: Rotation angles of contacting bodies during capture. 

stretching until the singularity configuration (at about 50 sec), a t  which time a 

moment is induced in both the payload and the base of the spacecraft which causes 

the first to initiate a change in its direction of rotational and translational motion, 

and the second to experience significant attitude drift (note the larger attitude drift 

angle here compared to those of impact scenarios in section 6.3). The attitude drift 

of the spacecraft is an undesirable result, but the post-capture behaviour of the 

payload, which is shown to move towards the spacecraft, suggests that judicious 

approach conditions of the manipulator before capture may be advantageously used 

for uncontrolled satellite retrieval operations. 

6.5 Trajectory, Force, and Vibration Control 

The problem of a spacecraft-mounted flexible manipulator system applying desired 

amounts of force on desired locations of the payload is considered. The spacecraft 

can be thought of as the first link and its center as the base of the manipulator sys- 
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Figure 6.53: Joint angles vs. time after capture. 
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Figure 6.54: Total energy vs. time after capture. 
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Figure 6.55: Tip deflections vs. time after capture. 
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Figure 6.56: Configuration of the systern from time = O to 100 sec after capture. 

tem. Then the manipulator is redundant, so that the optimization method based on 

Khatib's (1987) inertia-weighted pseudoinuerse is used here to obtain a path which 

minimizes the instantaneous kinetic energy of the system (section 5.3.1). The re- 

spective Young's modulus of the end-effector and payload material are taken as 

E., = 1 x 1o5(iV/rn2) and Ep = 7 x 1O6(N/m2). The mass and moment of iner- 

tia of the payload are 35,530 kg and 1.01 x 106 kg. m2 respectively. 

The rnanipulator is initially free and at rest with respect to  the orbital frame: 

its joint angles being = O", B2 = 30": and O3 = 120°. SubsequentIy, control is 

applied in 3 stages (see Figure 6.57). Stage (1): the end-effector attempts to make 

a srnooth direct contact with the payload. To simulate the fact that in reality there 

is bound to be a small velocity differential between the contacting bodies just before 

contact, an error value of 2mm is added to the ideal final position of the end-effector 

(location of surface of payload), such that there is actually a small impact. Stage 

(2): a desired force of 15 N is slowly applied on the payload. Stage (3): the end- 

effector is commanded to follow a straight vertical line along the payload surface 

while maintaining the constant desired force. A difficulty with achieving this task is 



that the payload moves as load is applied to it, and its motion is not known a priori- 

Therefore, the nominal (reference) t rajectory of the end-efEector is divided into two 

parts as follows: 

where xr, x,, and xrlp are 

Xr = Xp + Xrlp 

the nominal trajectory of the end-effector. the location 

of the payload reference frame (engraved on the body, as in Figure 6-57), and the 

reference trajectoy of the end-effector with respect to the payload reference frame, 

respectively The trajectory x, must be fed onlzne, while %/, may be planned ofline. 

Stage 1 1 - Spacecraft 
Payload 

Figure 6.57: Controlled contact scenario 

The following sinusoidal reference trajectory was chosen for ~ 1 , :  

YC&) = c + a { t ,  - bsin(ta/b) } 

w here 

and m and n denote the initial and final values of each stage, respectively. 



The following values were used in the simulation: 

to = Osec; t r  = Gsec: t2 = L4sec: tf = 20sec. 

Subscripts 0,1,2, and f represent the initial, end of stage 1. end of stage 2 and final 

(end of stage 3) values of G,,, respectively. 

One of the conditions of applicability of the singular perturbation method is that 

the elastic vibration frequencies must be much greater than the frequency content of 

the rigid body motion (such as, ratio zz 10 (Boutin 1995)). Since in this particular case 

the lowest natural frequency of the manipulator is 16 radlsec (final configuration) 

whereas the frequency content of the rigid body motion is 1 rnd/sec (from equation 

(5-33)), the use of the singular perturbation method is valid. 

The solution of the matriv Ricatti equation (5.44) can be computationally inten- 

sive such that it may not be possible to compute it online a t  each servo tick. But 

in most cases, the main purpose in vibration control is to damp out the deflections 

a t  steady state; thus, the LQR gain matrices can be designed also on the basis of 

the final joint configuration, provided that under that particular choice the fast vari- 

ables will not go unstable along the slow t r a j e c t o .  It was found through simulation 

results that this was indeed so in this case and in many others. In this way, the so- 

lution of the Ricatti- equations for each joint configuration can be avoided (Siciliano 

8c Book 1988). 

When manipulator links are rigid, the controller is seen to achieve the desired 



trajectory and force with great precision (not shown). However, when links are 

flexible, basically two different controllers are at  work: one which attempts to achieve 

the desired trajectory and force, and the other which attempts to suppress the induced 

vibrations. Since the same torques at tempt to achieve bot h objectives. neither result 

is perfect during contact operations. The t rajectory deviates slightly from the desired 

path, and a constant steady-state error appears in the applied force due to steady- 

state link deflections. This steady state error, horvever, can be circumvented by 

incorporating a corrective term to XI as follows: 

where x,,, xf, fd and fa are the corrected final trajectory, the pre-planned final 

trajectory, the desired force, and the actual force, respective1 y 

Figures 6.58 and 6.59 show the path of the end-effector in orbital and payload 

coordinates respectively. It can be seen that the end-effector traces the desired tra- 

jectory quite efficiently (Figure 6-59): even while in contact with the payload. In 

Figure 6.60 it can be seen that the force applied on the payload in the y-direction 

reaches a steady value of 15 N ,  as desired. Both Figures 6.59 and 6.60 show that 

the end-effector undergoes some bounces before reaching sustained contact. During 

this transitional phase, the end-effector is not able to track the desired trajectory; 

however, during the ensuing sustained-contact phase, the controller is seen to qiiickly 

regain its tracking capability. 

Figure 6.61 shows the x and y displacements of the payload center of mass duc to 

the applied contact forces: and the rotation of the payload caused by the end-effector 

moving along the payload surface, thus producing a counterclockrvise moment about 

its center of mass. Figures 6.62 and 6.63 show respectively the applied torques and 

the joint angles of the spacecraft and manipulator links. The spacecraft is seen to 

undergo some attitude drift, which is due to the absence of an attitude controller. 

The spacecraft was simply treated as an additional link and was controlled to sat- 

isfy the redundancy optimization criteria based on Khatib's (1957) inertia-wezghted 

pseucloinverse, which minimizes the instantaneous kinetic energy of the global space- 



craft/manipulator system. Lastly, Figure 6.64 shows the tip deflections of the turo 

links, where substant ial steady-state deformations are observed in link 2. ait hough 

osciilations have been damped out. In link 1. control torques act at  both ends of the 

link, which have the effect of reducing its steady state deflection. 
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Figure 6.58: X and Y coordinates of the end-effector w.r.t. the orbital frame. Actual 

trajectory. 



-0.21 I I I I 
O 5 10 15 20 

tirne (sec) 

-0.6 1 I 1 I 
O 5 10 15 20 

time (sec) 

Figure 6.59: ,Y and Y coordinates of the end-effector w.r. t. the local payload frame 
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Figure 6.60: Normal force applied by the end-effector on payload (-- desired, - 

ac t ual) 
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Figure 6.61: Payload displacements and rotation. (-- x-dir, - y-dir) 
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Figure 6.62: Torques applied at manipulator joints 
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Figure 6-63: Manipulator joint angles 
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Figure 6.64: Link tip deflections 



Chapter 7 

Conclusions 

In this chapter, a summary is presented of the work done in the thesis and conclusions 

are drawn based on its results. Some suggestions for future work are also put forward. 

7.1 Summary and Conclusions 

The main interest of this thesis was in the development of a dynamic formulation 

capable of simulating contact dynamics involving multi-body systems. The bodies 

which undergo direct contact, referred to as contacting bodies, were modelled using 

the finite element method and the Lagrange Miiltiplier technique for contact con- 

straints, and multi-body systems rvere modelled using a modified Euler-Lagrange 

approach based on the method of Natural Orthogonal Complement. These systems 

are coupled due to kinematic and contact constraints acting between them. Thus, 

the overall system dynamics is composed of a set of differential equations (either 

multi-body formulations or finite element nodal displacement formulations of the 

contact ing bodies) subjected to sets of algebraic equat ions expressing kinematic or 

contact constraints. -4 systematic and efficient procedure for solving this system of 

equations was presented- In this dynamic formulation, special attention was paid to: 



a Dynamic fidelity of contact mechanics. Unlike the impulse-momentum a p  

proaches which neglect what happens during impact, and the Hertzian ap- 

proaches which neglect effects of elastic structural vibrations, the approach 

presented in this thesis models the detailed mechanics of contact by using a 

finite element approach, analyses the contact geornetric constraints and corre- 

sponding contact forces, and incorporat es t hem into the dynamical equations. 

This method is capable of modeling such phenornena as structural deformations. 

eIastic vibrations, friction! time-varying contact area, repeated contact/impact: 

and others, without making doubtful assumptions about the nature of the phys- 

ical contact process. 

Computational efficiency. In order to render the dynamic simulation compu- 

tationally efficient, the folloming solution procedures were used in this thesis. 

First ly, the computationally straightfonvard and economical Newmark met hod 

was used for the time integration of the equations of motion, wvith which the 

second order dynamical equations can be converted into algebraic form. Sec- 

ondly, algebraic manipulations were made of the resulting equations in order 

to exploit the positive definite and positive semi-definite character of the rnass, 

darnping and stiffness matrices and use the efficient Cholesky Decomposit ion 

method for the inversion of matrices. Thirdly, efficient methods of obtaining the 

inverse of a configuration-dependent and time-varying m a s  matris of large size 

were considered and their relative merits analysed and weighed against com- 

promises in modelling accuracy. Fourt hly, the Guyan reduction met hod was 

applied to the sets of finite element equations in order to obtain a reduced set 

of equations. Finally, the flexible portion of the nonlinear forces of contacting 

bodies was analysed and its effects found to be negligible both during contact 

and no-contact phases (Section 4.3.3). 

In order to control manipulator-type rnulti-body systems which may be required 

to handle maneuvers where the end-effector performs contact operations on the en- 

vironment, it is necessary to design a controller capable of achieving trajectory, force 



and vibration control. Thus, the dynamic mode1 was used to design a composite 

controller which must simultaneously achieve these three goals. The singular per- 

turbation method was used to obtain two reduced order models. Subsequentl_vt for 

the slow subsystem, impedance control \vas used along with an optimization method 

based on Khatib's (1987) inertia-weighted pseudoinverse to accommodate manipula- 

tor redundancy. For the fast subsystem. the LQR method was chosen to suppress 

link vibrations. 

A FORTRW program was developed to perform dynamic and control simulations 

involving contact of multi-body systems. Efficient solution methods for contacting 

bodies outlined previously were included and validated. The program \vas then used 

to run simulations on three different types of contact dynamics scenarios invoiving a 

spacecraft-mounted robotic system and a satellite system: 

1. Impact dynamics: the manipulator end-effector hits the payload but rebounds 

after impact. It was observed t hat structural vibrations of contacting bodies 

are non-negligible factors (contra- to the assumption of Hertz theory) which 

should be taken into account for a detailed contact clynamics modelling. It 

was also found that friction has significant effects on the post-impact motion 

or trajectory of the system. 

2. Capture dynamics: a capture mechanism was employed so that the rnanipulator 

achieves successful rigid capture of the payload. It was observed that surface 

rnisalignments between çontacting bodies, friction effects, repeated impacts and 

structural vibrations al1 combine to substantially complicate the overall capture 

operation and dynamics. This suggests that simplified contact models such as 

the impulse-momentum and Hertzian approaches may not capture the cornplex- 

ity involved in a contact operation. 

3. Controlled dynamics: torques were applied at  manipulator joints to achieve 

t rajectory, force, and vibration control. The controller was successfully tested in 

the presence of al1 previously mentioned factors which affect the overall contact 



process. However, during contact a steady-st ate t racking and force error \vas 

observed due to elastic link deflections. -4 corrective action was proposed and 

used to remedy this problem. In general, it was found that contact maneuvers 

are much more difficult to control than no-contact maneuvers. It is concluded 

that a detaiIed contact mode1 is essential for a rigorous validation of control 

systems. 

7.2 Suggestions for Future Work 

The following points may provide a platform for new research activities in the field 

of contact dynamics and force control of multi-body systems: 

Development of a three-dimensional simulation program for contact dynamics 

of multi-body systems. Xlthough the formulations described in this thesis were 

for general spatial motion, the simulation program was restricted to planar 

dy namics. 

Investigation of alternative integration archit.ectures- In t his t hesis, al1 systems 

of equations were integrated iising the Newrnark method a t  the same time step 

size. However, depending on the characterist ics of each subsystem, different 

integration methods may be more suitable (e.g. Gear's method for stiff sys- 

tems), and different time step sizes may be more appropriately used for greater 

computational efficiency (e.g. for slower varying systems, larger step sizes may 

be used. However, coupling between systems of equations must be accounted 

for by periodic eschanges of data). The ultimate objective of this investigation 

is to obtain an optimal tradeoff between accuracy and speed of execution. 

Inclusion of orbital dynamics. It was assumed here that the center of mius of 

the spacecraft follows a prescribed orbital t r a j e c t o -  However, control maneu- 

vers and contact operations rnay cause significant deviation from t his assumed 



orbital path. The base motion, in turn, is likely to affect the dynamic behaviour 

of the rest of the system due to dynamic coupling. 

Attitude control. In this thesis, the spacecraft was treated as an  additional 

link, and was controlled to satisfy the optimization criteria of minimum instan- 

taneous kinetic energy of the global spacecraft/manipulator system. However, 

this method resuits in a slight attitude drift of the spacecraft. which may t e  

undesirable. 

Inclusion of alternate or additional control techniques. -4lternate control meth- 

ocls should be investigated when vibration frequencies are not considerably 

greater than those of the rigid body motion, in which case the singular per- 

turbation rnethod is not suitable for successful control. The use of integral 

manifolds (Spong et al. 1987) to obtain a more accurate reduced order model, 

and the use of smart structures for active vibration control are possible options 

to be explored. Also, the implementations of force tracking strategies and state 

observers should be considered in the more realistic case where esact knowledge 

of environment parameters and full state feedback are not feasible. 
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Appendix A 

Interpolating Funct ions of Finite 

Element s 

A. 1 Shape Funct ions of Isoparametric Element s 

This section describes a few commonly used isoparametric elements and correspond- 

ing shape functions. 

A. l .1  2D Elements 

For a four-node quadrilateral element (QUAD4) shown in Figure A. 1, the interpola- 

tion matriv in equations (2.8) and (2.9) is given by 

where 



Figure A.1: -4 QUAD4 element in (a) xy space, (b) cg space 

-4 constant strain triangle element (CST) can be obtained by degradation of the 

QUAD4 element as 

where 

A.1.2 3D Elernents 

-4 solid hexahedral or brick element is shown in FigureA.2. The corresponding 

interpolating matrix is given by 

Here, 13x3 is a 3 x 3 identity matrix and 

where ci, 17, and <* are natural coordinates of node i. 



(4 (b) 

Figure -4.2: A brick element in (a) xyz space, (b) <q< space 

Kinematics of Contact for 3D Elements 

This section describes, for 3D elements of target bodies, the interpolating functions 

used to obtain positions and elastic cleformations of arbitary points with respect to  

those of segment nodes. This procedure is based on the work by Chaudhary 9L Bathe 

(1986). 

.Assume that the target surfaces are discretized using four-node quadrilateral seg- 

ments as shown in Figure -4.3. The equation relating the position and displacement 

of an arbitrary point p on segment s to those of the nodes -4, El, C? and D of the seg- 

ment is needed in the development of the constraint equations. -4 centroidai position 

O is defined within the segment such that 

-4ssiiming that point p lies in the triangle -4BO as shown in Figure -4.4, its position 

and displacement is linearly interpolated over the triangle as follows: 



Figure -4.3: Contact kinematics of a 3D element 

where a, ,B, and y are triangular area coordinates of point p satisfying the same 

relationship as equation (2.65), Le., 

In light of equation (-4.5), 

where the new forrns of interpolating functions also satisfy equation (2 -65) .  Then: 

analogous to equation (2.68) for 2D cases: here we have 

I 

Cs = 4 [ (4a + 7113x3 (48 + 7)I . îx3  7 1 3 x 3  7 1 3 x 3  ] (-1.9) 

where 13x3 is a 3 x 3 identity matrix. 



Figure -4.4: -An arbitrary triangle 



Appendix B 

Symmetry and Positive 

Definiteness of R in Equation 

Symmetry of R 

-4 matrix is symmetric if it is equal to its transpose. From equations (4.19) and 

(4.20), since matris K is syrnmetric, it f'ollows that 

Positive definiteness of R 

One way of proving positive definiteness of R is by showing that for anu nonzero 

vector a 



Expanding V 

We may organize this series by collecting terms of the same subsystems as 

where for a subsystem k, which is involved in 

have 

(B-1) 

constraint equations ci,  - - - . &,, . we 

Let t ing 

equation (B.2) can be expressed as  

we have 

since K;' is positive definite. Now, from equation (B.l), since the individual Qk7s 

are positive, V is positive. 



Appendix C 

Updated Contact Forces After 

Iteration 1 - 1 

This Appendix describes in detail the calculation of the updated contact nodal forces 

r, discussed in Section 4.2.3. The procedure is based on the formulation presented 

by Chaudhary (1985). 

Ce 1 Recovery of segment tractions 

The traction recovery calculation assumes that the interpoiation of tractions over 

each segment is linear and bilinear for 2D and 3D cases respectivels and that the 

tractions are continuous across the segment boundaries. Figures C.l and C.2 show 

respectively for 2D and 3D cases the distribution of segment tractions over a generic 

contactor segment j. The consistent nodal loads corresponding to the dist ributed 

sepicnt tractions are given by 



t: 

Figure C. 1: 2D: Contactor traction distribution over segment j 

point 

Figure C.2: 3D: Contactor traction distribut ion over segment j 



where Tj is the matrix of nodal point values of the segment tractions given by 

rj  is the matriv of consistent nodal forces corresponding to the segment tractions 

given 

(e-g. 2 is the x-component of the consistent nodal load at node k due to the dis- 

tributed segment tractions over segment j o n .  The total force yr a t  node k is 

the sum of contributions from the tractions acting over al1 segments adjoining node 

k) and Gj  is a coefficient matriv relating nodal values of segment tractions to the 

corresponding consistent nodal Loads. For the 2D case, G j  is given by 

where b is the width of the contact segments, and d, is the length of segnient j .  For 

the 3D case, it is evaluated by (2 x 2) numerical integration (Bathe 1982) as 

where H is a symmetric matrix of the bilinear interpolation functions a t  the (2 x 2) 

Gauss integration points given by 



S pecifically, 

EvIatrir Jj is a diagonal matrix of values of the Jacobian determinant a t  the (2 x 2 )  

Gauss integration points, such that 

1 * J j 1  0 0 0  

Using equation (C.1) and summing the constributions from al1 contactor segments. 

a coefficient matrix relating the nodal values of segment tractions to the nodal contact 

forces is constructed: 

-4 Gauss elimination solution is performed on the above equation to obtain the un- 

known nodal values of the segment tractions T. 

C.2 Friction Update of Segment Tractions 

Using the recovered segment tractions, the total segment contact force, nj, is obtained 

from 

where 



Also, 

(C. 11) 

(C.12) 

where n; and ni are the total normal and tangential segment contact forces respec- 

tively. These values are used in the procedure for updating the segment tractions to 

enforce Coulomb's law of friction. 

Now, the friction update of segment tractions is as follows: 

Condition for tension release. -A contactor segment experiences tension 

reIease after iteration 1 - 1 if the total normal segment contact force is tensile, 

or 

The segment tractions are then updated to zero: 

where 'Fj is the matria of updated nodal point values of segment tractions and 

Fj is the rna t rk  of consistent segment nodal point forces corresponding to the 

updated tractions over segment j. 

0 Condition of sliding contact. A contactor segment esperiences sliding con- 

tact after iteration 1 - 1 if the total segment tangential force exceeds the total 

segment static frictional capacity, or 

where 



The tangential components of the nodal point tractions of segment j are up- 

dated as follows: 

w here 

rl? is the dynamic sliding frictional force (see Section 42.4) given by 

and -4, is the area of segment j given by 

The updated segment tractions and nodal forces are obtained as 

where 

Note that the direction of the updated tangential force is the same as for the 

force ri. 

Condition of sticking contact. -4 contactor segment esperiences sticking 

contact after iteration 1 - 1 if the total segment tangential force is less than the 

total segment static frictional capacity, or 

The segment tractions satisfy Coulomb's law of friction and thus 



Table C.1: State of contactor node as decided by states of adjoining contactor seg- 

ments 

State of 

contactor node 

S t icking 

S t icking 

S t icking 

S t icking 

S t icking 

S t icking 

S t icking 

Sticking 

Sticking 

Sliding 

Tension Release 

Not in contact 

Sliding 

Sliding 

Sliding 

1 Sliding 11 Sliding 

1 Tension Release II Sliding 

1 Not in contact II Sliding 

1 Tension Release Tension Release Tension Release I II 
1 Tension Release 1 -lot in contact ( 1  Tension Release 

By summing the updated segment nodal forces, the total updated contact forces 

a t  the contactor nodes, T ,  are obtained. After the friction update calculation for the 

contactor segments, the algorithm determines the conditions of sticking, siiding and 

tension release at  the contactor nodes as shown in Table C.1. 



Appendix D 

Hertz Theory of Elastic Impact 

According to the Hertz theory of quasi-static elastic and collinear impact of two 

spheres or bodies which make contact over a circular area (Johnson 1985), the 

compression-tirne relationship is given by 

Here, 6 is the relative displacernent of the sphere centers and vo is the relative speed 

of approach immediately before impact: 

where 'LLI and ,u2 are the displacements of the center of mass of body 1 and 2 respec- 

tively. The maximum compression3 a*, is given by 

where, if ml ,  R I ,  El and m2, Ra, E e r e  the m a s ,  radius and Young's niodulus of 

body 1 and 2 respectively, then 



Since the impact is perfectly elastic and frictionless, and the energy absorbed in wave 

motion is neglected, the deforrnation is perfectly reversible. The total time of impact 

Tc, is therefore twice the time of maximum compression t*, and is given by 

The relationship between the deformation and contact force is given by 

and the speed of compression is given by 

The pressure distribution along the contact surface proposed 

(D.10) 

by the  Hertz theory is 

(D. 11) 

where po is the pressure a t  the center of the contact circle given by 

r is the distance of a point from the center and a is the radius of the contact circle. 




