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ABSTRACT 

A new, computationally efficient approach for rnodelling finite amplitude ultrasound 

propagation is descnbed. The model is able to simulate nonlinear distortion of CW and 

pulsed excitations fiom non-axisymmetric sources in tissue. We have developed a second 

order operator splitting approach, enabling the effects of diffiaction, nonlinearity, and 

absorption to be calculated separately over relatively large incremental distances using a 

hctional step marching scheme. A computationally efficient angular spectnim algonthm 

has also been developed to calculate the diffkactive propagation fkom non-axisymmetric, 

non-separable sources. Results of our model have shown close agreement with published 

data. Moreover, our approach may offer computational savings compared with existing 

models. Indeed, with our algonthm it should be possible to simulate the nonlinear 

propagation of sound beams from realistic medical ultrasound scanners, and perhaps to 

investigate ways to improve the design of tissue harmonic imaging systems. 
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Chapter 1 : Introduction and Motivation 

7.7 Medical Ultrasound lmaging 

Ultrasound irnaging has an important, and growing role in modem clinical medicine. 

Benefits of ultrasound irnaging include real-time irnaging capabilities, relatively low cost, 

and safety due to use of non-ionizing radiation. Some limitations of ultrasound compared 

to other modaiities inciuae infenor resoiu tion and poor pencüation dcpth. B e c r ~ s t  

ultrasound attenuation is more severe for higher fkequencies, there is typically an implicit 

tradeoff between resolution, and penetration depth. Moreover, artefacts due ro clutter, 

beam defocusing due to tissue path inhomogeneities, and multiple reflections can diston 

the image and cause erroneous interpretation. 

Reduction of artefacts due to cluner, have been investigated by a number of researchen. 

Bearn-forming techniques such as phased array focusing and apodization have been used 

to reduce sidelobe levels, and thus decrease clutter (e.g. Macovski, 1983; t7Hoen 1982; 

Kino, 1987, Cincotti et. al. 2000). Other promising techniques include the use of Iimited 

difiaction beams (Lu and Greenleaf, 1994), and 1.5 and 2D arrays (e.g. Smith et. al. 

1995, for example). 

The problem of improving spatial resolution without comprornising penetration depth (or 

convenely trying to improve penetration depth without loss of resolution) is a 

challenging one, nevertheless, efforts in using coded excitation show great promise (e.g. 

OYDonnell, 1992; Welch and Fox, 1998). Ultrasound contrast agents have, moreover, 

increased echo signai strength, and enabled visualization of new kinds of clinically 

relevant information (Burns, 1996; Simpson et al. 1999). 

Efforts to overcome loss of contrast resolution due to inhomogeneity-induced phase 

aberration (Nock and Trahey, 1989; Liu and Waag, 1994 a & b; Hinckleman et. al. 1994; 

Mallart and Fink, 1994; Zhu and Steinberg, 1993 a & b; Karaman et. al. 1993 ) have had 

lllnited clinical success. 
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7.2 Tissue Harmonic lmaging and Nonlinear Propagation 

The last few y e m  has seen the emergence a new ultrasound technology called Tissue 

Harmonic haging (THI), or Finite Amplitude Distortion-Based Hamonic Imaging, 

which overcornes some of the problems of phase aberration, clutter artefacts, 

reverberation artefacts, and offen improved spatial resolution. The premise of TH1 is to 

use harmonic information from nonlinear ultrasound propagation to form an image. 

N o n l i n e u  propag3ticn sises from 2 ccnvective phenornenon, and from a nonlinear 

relationship between pressure and density. The compression phase of a wave will travel 

faster than the rarefaction phase, and thus, as the wave propagates, it will undergo 

distortion, which will be more severe for higher pressure amplitudes. In the Erequency 

domain, nonlinearity means that harmonics and sum and difference frequencies will be 

generated. 

The concept of nonlinear propagation, goes back to the work of Euler in 1755. In the 

medical field, although the vast majority of research and developrnent in medical 

ultrasonics has assumed linear propagation, it has been well undentood that nonlinear 

effects play a non-negligible role - especially for ultrasonic devices which use high 

amplitude sources. Therapeutic applications such as Iithotripsy for minimally invasive 

kidney stone hgmentation, generate very hi& source amplitudes. In these cases, 

nonlinear propagation can be quite significant. 

Hannonic Imaging, based on nonlinear ultrasound propagation can be traced back to the 

work of Muir (1980), who presented ideas on nonlinear effects in acoustical imaging. 

Interesthgly, however, commercial development of TH1 has in large part stemmed nom 

research in ultmound contrast agents. Microbubble contrast agents have been used to 

increase the backscatter fiom the vasculature and microvasculature. Because bubbles 

behave in a nonlinear way, they generate harmonics of incident insonifyuig fiequencies, 

as well as sum and difference frequencies. Contrast Harrnonic Imaging is based on ushg 

harmonic echoes fiom contrast microbubbles to form an image. When investigating the 

potential use of ultrasound contrast agents, researchers found that relatively clear B-mode 

ultrasound images could be formed by receiving at hvice the fkequency of the transmitted 
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beam, even when no contrast agents were present. The second harmonic image in the 

absence of contrast agents, is fomed from backscatter of harmonics generated in 

nonlinear propagation through tissue. 

A key paper by Ward et. al. (1997) demonstrated the feasability of applying nonlinear 

propagation to B-mode imaging. Averkiou et. al. (1 997) m e r  demonstrated that 

adecpate harmonic signal level could be obtained nom tissue propagation to enable its 

use for imaging. Chnstopher (1997, 1998) has demonstrated with modeling and 

experimental work that sufficient harmonic signal can be obtained within current 

standards, and that harmonic imaging can reduce the degrading effects of phase 

aberration. Li et. al. (2000) have recently published a computer mode1 for simulating 

realistic tissue harmonic images using an axisymetric source, and have studied the 

improvement in resolution and image contrast derived fi-om TH1 compared with 

conventional B-mode imaging. Clinically, TH1 has been used in a number of fields, 

inciuding cardiology, and has shown promising results. Clinicai images show a marked 

improvement in haze and other artefacts cornpared with fundamental imaging, not to 

mention higher resolution (Tranquart et. al. 1999). Tissue Harmonic hnaging is already 

in widespread clinicd use, and medical ultrasound manufacturen such as ATL, Acuson, 

General Electric, Hewlet Packard, Siemens, etc. al1 have machines with TH1 capabilities. 

Many investigaton will agree, however, that TH1 is still in its infancy, and has much 

room for optirnization. Humphrey, in a recent revîew article (Humphrey, 2000) 

comrnents on the need for "more efficient algonthms and simpler models to be able to 

predict the effects of nonlinearity in a given field." He notes some recent developments, 

and hypothesizes that there is "room for considerable development". 

7.3 Mocieling Nonlinear Propagation 

An important aspect of modem engineering design, is the use of computer models to 

simulate a technology before manufacturing. Often modeling not only saves money by 

dlowing virtual research and developrnent, but it also helps foster an understanding of 
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principles needed for an optimal design. Our work centen on modeling nonlinear 

propagation in tissue from a realistic medical ultrasound scanner. 

The model we have developed contributes a new perspective in modeling methodology. 

Currently, there are a number of approaches to modeling nonlinear propagation. Many 

are based on the 'KZK' equation, which is valid for nonlinear propagation in 

thermoviscous fluids. for fairly directional sources, and for sources which are not too 

focused. Results are not valid in the extreme nearfield, or far off axis as it rnakes the 

parabolic approximation. Numencal solutions have been investigated in the time domain 

(Lee and Hamilton, 1994), and the fiequency dornain (Aanonsen et. al., 1984). Much of 

the work has been done for propagation in water, and for axisyrneaic (piston or focused 

disk) transducen. Cahill and Baker (1 998) have simulated nodinear propagation in water 

from a (non-axisymmetric) phased array transducer. 

Christopher and Parker (1991) have developed another method, not based on the KZK 

equation, wherein they model nonlinear propagation by breaking up difiaction and 

nonlinearity over m a l 1  steps, and solve for diffraction using a fast transfomi - based 

angular spectnim method, and solve for nonlinearity using a frequency domain approach. 

Their results are valid for propagation in arbitrary media (not just thermoviscous fluids), 

and their work can be applied to non-axisyrnmetric sources. 

Tavakkoli et. al. (1998) developed a tirne domain model based on a second order operator 

splitthg. They used the Rayleigh integral to compute the effects of diffraction, a time 

domain algorithm to compute nonlinearity, and a minimal phased FIR filter to calculate 

attenuation. Their model has been verified for axisymmetric lithotripter sources. 

One of the difficulties in using computational modeling of nonlinear propagation is the 

heavy computational burden. Axisymmetric codes dominate the literanire, and even with 

this symmetry, computational complexities of curent models are fairly intense, requiring 

hom or days on supercornputers. Simulating non-axisymmetric sources requires an 

additional order of magnitude in computational cornplexity, and boosts time and memory 
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requirements. The step fiom continuous wave sources to pulsed sources requires yet an 

additional degree of computational complexity. 

So far, published literature is devoid of papers explorhg the modeling of nonlinear 

propagation in tissue fiom a linear phased m a y .  The computational burden needed to 

accomplish such a task may be one explmation for ihis. Simulating fuiite amplitude 

propagation in tissue from a phased array will be addressed in this work. 

7.4 Thesis Objective 

The objective of this thesis is to develop a computationally efficient model of nonlinear 

ultrasound propagation, which may be used as a simulation tool for use in design of a 

hannonic irnaging system. The model should enable simulation of nonlinear propagation 

in arbitmry media, and specifically, should accurately mode1 propagation in tissue. 

Simulation of various types of transducen (inciuding linear phased arrays) and arbitrary 

waveforms should be possible. Cornputational efficiency is a primary concem, and 

we hope that our modeling rnethodology rnay prove to yield some degree of 

cornputational savings compared to existing models. Simulation of nonlinear pulse 

propagation in tissue fiom non-axisymmetric sources should be realizable on a personal 

cornputer with a nin time of a few hours. Verification of our model should be possible, by 

cornparison with published experimental and theoretical results. 

Ultimately it is hoped that our model can be used to investigate optimal design schemes 

and parameters for a tissue harmonic imaging system. With this motivation, peripheral 

investigations stemming from this thesis will include using coded excitation and pulse 

inversion to improve the signal to noise ratio in harmonic imaging. 

7.5 Thesis Outline 
Following this introductory chapter, chapter 2 will establish some fundamental theory 

relevant to nonlinear propagation. Mode1 equations will be presented, and theu relevance 

to propagation in tissue will be discussed. Chapter 3 will discuss numerical methods used 

so far in modeling nonlinear propagation. The principles of the numencd model we 
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choose to Mplement will be discussed in the Chapter 4. In Chapter 5 we will discuss the 

numerical irnplernentation of the Angular Spectrum method for linear propagation. 

Chapter 6 will discuss the application of the second order operator splitting and 2D-FFT 

to propagation of continuous wave sources in nonlinear media. Chapter 7 will discuss 

nonlinear pulsed propagation. The concluding chapter will summarize this work and its 

main conûibutions, give recornmendations for future work, and outline conclusions. 



Chapter 2: Theoretical Background 

2.1 Linear Propagation and the Small Signal Approximation 
Ultrasound waves can be thought of as pressure variations in a media, which propagate 

periodically in space and tirne. To a fint order approximation, ultrasound propagation is 

well descnbed as a linear process, governed by a linear, second order homogeneous 

differential equation. The assumption of linear propagation, however, is valid only for 

relatively srnall disturbances. 

In considering wave propagation in fluids, one can obtain the linear wave equation from 

the Navier-Stokes Equation by making a srnall signal approximation for the density and 

pressure, given by 

where the subscript 'O' denotes the equilibnum quantity, and the subscnpt '1' indicates 

the changes in the quantities, which are small. This small signal approximation leads to 

the well known equation 

where p~ is the buik viscosity, p is the shear viscosity, and K is the adiabatic 

compressibility. This is a linear equation, and can also be expressed in terms of the 

normal particle velocity u, or the velocity potentia.14. 

In the fiequency domain this becomes the homogeneous Helmholtz equation: 

(3) V'Q, + - k 2 0  = O 

where 

t 2  

and k is the wavenumber W/Co. 
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In the absence of viscous loss, the time domain equation becomes the familiar 

homogeneous wave equation: 

and the ftequency domain equation looks the same except that S = k . 

It is useful to consider the 1-D version of this equation for particle velocity - and express 

it in the fonn: 

which can be factored to obtain two uncoupled wave equations called reduced equations 

or evolution equations, one of which is: 

which descnbes plane waves propagating in the positive z-direction. Going to retarded 

time, r = r - z / co we have: 

2.2 Attenuation 
The assumption of viscous loss in the equation of state gives nse to a quadraric frequency 

dependence for the attenuation of the wave propagation. This assumption is only valid for 

thenno-viscous fluids, however, and is not true for tissue. Tissues generally have a more 

cornplicated loss model, and the attenuation coefficient is govemed by af dependence 

where n is typically in the range 1.1 to 1.5. 

2.3 Propagation of Finite Amplitude Waves in Fluids 

Many diagnostic and therapeutic ultrasound systems employ excitations for which the 

mal1 signal approximation is not valid. Although h e a r  analysis of propagation is a good 

fiist order approximation, nonlinear effects are often non-negligible. Disturbances which 

are large enough to invalidate the small signal approximation are often referred to as 



Chapter 2 Theoretical Rackpround 9 

h i t e  amplitude waves. Finite amplitude wave propagation is a noniinear process, and is 

a good deal more complicated than linear wave motion. A sound beam travelling through 

a medium will involve the effects of difiaction, absorption, and nonlinearity, and the 

sound beam can be thought of as interacting with itself as it pmpagates. In the following 

sections, sources of nonlinear distortion will be investigated, and the nonlinear equations 

of motion will be developed. 

2.3.1 Nonlinear Oistortion of Plane Waves 

As an initial step to development of the full 3-D nonlinear wave equations, consider the 

simple case of a finite amplitude plane wave of normal particle velocity u in a 

dissipationless medium. One peculiarity of nonlinear acoustics is that the propagation 

speed of a wave depends on the amplitude of excitation. While it is tnie that the 

beginning and end of a pulse propagate with the small signal speed c,, within the pulse, 

the propagation speed varies. The variation of propagation speed with initial amplitude is 

actually due to two separate effects: convection, and nonlinearity of the medium. 

Convection effects cm be thought of as being like an oscillating wind travelling with the 

wave. Overall, the oscillation propagates with small signal speed c,, however, the peak of 

the oscillation wiIl also have a local particle vefocity ii above and beyond the wave 

velocity c.. 

Effects due to the nonlinearity of the medium can be understood as a dependence of the 

speed of sound with temperanire and pressure. The compression phase of a wave will 

cause a local increase in pressure and temperanire compared with the rarefaction phase. 

Locally, an increase in pressure and temperature causes an increase in the speed of sound. 

Thus the compression phase of a wave travels faster than the rarefaction phase. Note that 

because the speed of sound is dependent on density, the plane wave impedance relation, 

is no longer a linear relation. The slope of a graph of pressure venus density, is thus not a 

straight line, but is rather a curve, where the local slope is proportional to the square of 

the speed of sound. 
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The general propagation speed of sound can thus be written as (Beyer, 1974) 

where we will cal1 p the parameter of nonlinearity. We will show in section 2.3.2 that 

where fint term (unity) is due to convection, and the second term (Bm) is a parameter 

related to the nonlinear relationship between pressure and density. in the case where rc is 

very low, the speed of sound reduces to c., the mal1 signal speed. Convective and 

nonlinear effects can collectively be refened to as nonlinear effects, as both these effects 

will contribute a nonlinear term in the differential equations describing nonlinear 

propagation. 
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These nonlinear effects can contribute to distortion of a aven initial waveform. The 

compression phase of a sinusoid, for example, will have a propagation speed greater than 

that of the rarefaction phase. In an ideal dissipationless medium, a sinusoid will thus 

distort into somethüig which may approach a sawtooth wave, as illustrated in Fig. 1. 

Figure 1 Effects of nodinear distortion of a plane sinusoidal wave. (a) Initial waveform 
of a 1 MHz wave. (b) Showing the distortion after propagating 0.8 of the shock distance 
in a lossless medium where the coefficient of nonlinearity is given by P=3.5. 

Noniinear distortion of a waveform in the kequency domain represents generation of 

harmonics. A sinusoid distorthg in the process of nonlinear propagation transfomis a 

monofiequency source atf,, into an entire specmim of harmonics, atf,, 2f,, 3f,, 4&, . . ., as 

shown in Fig. 2. 
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In addition to harmonies, sum and difference kequencies rnay be generated in the 

nonlinear propagation process. 

- 
0.04 - - E 

O 0.02 - 
7 

* - * .  
0 ' -- 

O 10 20 30 40 50 

Frequency (MHz) 

Figure 2: Frequency spectnim of the waveform in Fig. 1 b. Harmonies above IO MHz are 
present in the spectnim. 

2.3.2 The Parameter B/A 
The thermodynamic relationship between pressure and density, is in general not a linear 

one. The pressw-density relation cm be written as p=p(p,s) ,  where p=p,+p, and 

p=po+p,, and the subscripts denote the equilibriurn and perturbation values respectively. 

A Taylor series expansion can be done: 

where 

3 , d'p 
= POCO t B = P O g  

The first order measure of nonlinearity, HA, is the parameter of nonlinearity (Beyer, 

1974). The coefficient o f  nonlinearity is defhed as 

B 
(13) p=1+-. 

2 A  
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The Eulerian speed of sound under adiabatic conditions c m  be written as (e.g. Hamilton 

and Blackstock, 1998) 

It should be noted that for a linear medium, P=O and NA=-2 (rather than O). 

2.3.3 Reduced Nonlinear Wave Equationç 
The reduced evolution equation for finite amplitude waves in a non-dissipative medium 

cm be written as 

By rearranging, doing a binomial expansion, assuming that pu / c, cc 1 , and 

transfonning to retarded time, we get the approximate f o m  of the evolution equation of a 

plane wave, valid to second order (e.g. Hamilton and Blackstock, 1998): 

This is often called the equation of nonlinearity, and has been solved in both tirne and 

fiequenc y domain. 

2.3.4 The Poisson Solution 
Given the initial value problem ii(.r,O)=G(x), or the boundary value problem u(O:t)=F(t), a 

solution to the reduced wave equation cm be written intrinsically as: 

Essentially the solution represents distortion of the initial waveform, govemed by the 

nonlinear compression of the argument. 

2.3.5 The Fubini Solutin and Harrnonic Generation 
Assuming a sinusoidal plane source propagating in an inviscid medium, the Fubini 

solution (Fubini, 1935; Beyer, 1954) represents an Fourier series solution to the nonlinear 

equation. Given a source amplitude vo, the distorted wave can be represented as: 
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for x/%1 and puo /co e1 ,where  

- c: 
(19) x =- 

Pm. 

is the shock distance, which wili be discussed later. 

The Fubini Solution represents a frequency domain solution, and gîves the amplitude of 

the nth tiarmonic as 

A plot of the harmonic amplitudes of a plane wave up to the shock distance is s h o w  in 

Fig. 3. 



-2 I 
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Propagation distance normalized to shock 

Figure 3 First five harmonic amplitudes generated fiom nonlinear plane wave 
propagation in a lossless medium. 

2.3.6 Shock Waves 
A shock wave is a very abrupt change in the pressure and particle velocity. For a plane 

wave travelling in a non-attenuating medium, a shock wave foms when the maximal 

slope of the wave becomes infinite. This happens at the shock formation distance X . 
Although we do not expect shock waves in a tissue medium when diagnostic pressure 

levels are used, E will be used as a scaling parameter in the nonlinear algorithm. 

2.3.7 The Effect of Attenuation and Burgers Equation 
Attenuation will tend to dampen higher harmonies generated by nonlinear propagation. 

One way of accounting for attenuation for a plane wave in a viscous fluid is to add a 

viscous loss terni to the nonlinea. equation, resulting in 
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which is known as Burgers Equation (Beyer, 1974). We may note that in an attenuating 

medium, a plane wave will never really shock in the true sense, but raîher, the 'shock- 

fiont' will have a finite thickness, rather than an abrupt discontinuity. 

2.4 Modeling Finite Amplitude Sound Beams in 3-Dimensions 

Approximations c m  be made to enable us to derive a second order differential equation 

descnbes acoustic propagation of fuite amplitude waves without invoking the smdl 

signal approximation. The denvation makes use of the equations of state, motion, and 

continuity of a thennoviscous fluid.. 

2.4.1 The KZK Equation 
The most widely used equation for modeling fmite amplitude sound bearn propagation, 

and which accounts for the effects of difiction, nonlinearity, and absorption, is that due 

to Khokhlov, Zabolotskaya and Kuznetsov, which is commonly referred to as the KZK 

equation. It cm be written as (Kuznetsov, 1971) 

where 

is the transverse Laplacian operator. Moreover, it can be cast in the form of an evolution 

equation by taking the temporal (retarded time) integral of the above equation. We could 

also express the KZK equation in terms of the z-component of the particle velocity by 

using a linea. plane-wave impedance relation, uz 5 p /(poco), which is valid to the order 

of the approximations made in the derivation of the KZK equation. 

2.4.2 Approximations in the KZK Model 
An excellent summary of the approximations used to synthesize the second order KZK 

equation can be found in Hamilton and Blackstock (1998; Ch. 3). 
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The nght hand side of equation (22) describes absorption and nonlineuity, and the left 

hand side describes spatial evolution and difnaction. The KZK equation describes quasi- 

plane wave propagation, and is based on the so called parabolic approximation, which is 

that the angular spectrum is assumed to be sufficiently narrow so that the wave will be 

close to planar, and evolving slowly in the z-direction. This approximation is not valid for 

strongly focused beams or for beams with strong irregulaxities in the transverse structure, 

such as occurs in the nearfield zone. Thus, the mode1 is limited to cases where difiaction 

effects are minimal and focusing gains are small. The parabolic approximation is valid 

for focused sources provided that 

where d is the focal length. 

The KZK equation provides a reasonable approximation to the ulîmsonic field for sources 

whose aperatures are large compared to the wavelength (ka>>l), for observation points 

that are beyond a few source radii, and for points whose off axis locations are not too 

great. 

One significant drawback of the KZK equation is that its scope of validity is restricted to 

thermoviscous fluids. The viscous absorption term in the KZK equation irnplies an 

attenuation coefficient proportional to a* as opposed to a near linear dependence as is 

the case in soA tissue. 

In the next chapter, a discussion of numerical methods for solving the KZK equation, will 

also include a bief  description of how arbitrary attenuation may be accounted for in a 

computational scheme to solve the KZK. 



Chapter 3: Background on Numerical Methods 

The subject of numerical modeling of nonlinear propagation has received modest 

attention, and a number of authors have contributed to the subject. The book edited by 

Hamilton and Blackstock (1998) is an excellent resource on the subject, and contains a 

thorough literature review. In this chapter we shall discuss some of the contributions to 

1-D (plane wave) and 3-D nonlinear propagation, including the effects of difiaction, 

attenuation and nonlinearity, that are relevant to the contributions of this thesis. 

3.1 Computational Models for Nonlinear Plane Wave Distortion 

3.1.1 Frequency Domain Algorithm 

A fiequency domain solution to Burgers equation may be obtained by considering a trial 

solution of the form 

where v&) is a complex amplitude weighting f ic t ion for the nth harmonic of fkequency 

/,, and r is the retarded tirne T = WC. By substituting this into (21) of chapter 2, the 

Frequency Domain Solution to Burgers Equation (FDSBE) can be show to be given by 

This expression involves two quadratic surns, the first representing accretion of the nth 

harmonic by a nonlinear combination of other harmonics tliat have a surn fiequency of 

n/,. With conjugation, the second quadratic sum may be interpreted as depletion of the 

nth h m o n i c  harmonics with ciifference fiequemies nf,. Note that to make the 

computation redizable, (2) assumes that the solution to Burgers equation can be 

represented by a finite number of haxmonics. When there is no attenuation, (2) is valid 

o d y  up to the shock distance, and the solution becomes equivdent to Fubini's solution 

given by (18) in chapter 2. Fenlon (1971) was the fust to derive coupled spectral 

equations that are equivalent to (2). He investigated mono and bi-fiequency sources 

(including c ylindrical and spherical spreading. Korpel(198 0) presented coupled spectral 
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for arbitrary absorption and dispersion in progressive plane waves. To do this one rnay 

make the substitution 

(3) a, f n 2  + a, + jd, , 

in (2), where a, is the attenuation coefficient, and d. is the dispersion coefficient for the 

nth hamonic. Attenuation rnay often be modeled by a power law relation, described by 

(4) a, =a,fff, 

where a, is a constant,f, is the frequency of the nth harmonie, and b is an arbitrary real 

number. For biological tissue, b is typically between 1.1 and 1 S. The dispersion 

coefficient rnay be expressed as 

(5) d, = n w, ?(ci' - c i '  ) , 

and accounts for the deviation of the phase speed c,, of the 11th hamonic component from 

the infinitesimal sound speed of the fundamental c,. 

Haan and Cook (1 983) also investigated plane wave nonlinearity using the FDSBE, but 

used a somewhat different f o m  from that given by (3, which we were unable to verify. 

Christopher and Parker (199 1) also cite a form for the FDSBE that diffen fkom (2). It 

should be noted that the form of the FDSBE given by (2) is quoted in Hamilton and 

Blackstock (1 998; pp.3 13-3 14). We have venfied that in the limiting case where there is 

no attenuation, the numerical results obtained by using (2) reduce to those obtained using 

the Fubini solution. 

The main disadvantage of the FDSBE is that hundreds or thousands of harmonics rnay be 

required to accurately propagate pulses or waves which develop shockfionts, and as a 

result, the cornputational burden can be large. A promising algorithmic approach to 

reducing the number of harmonics required for propagation of wavefoms with one (and 

only one) shockfÎont is that introduced by Pischkal'nikov et. al (1996). The premise of 

their scheme is that a shockwave rnay be thought of as a sum of a perfect sawtooth wave 

and smoothly varying (unshocked wave), which is well represented by only a few (for 

example 30 or less) harmonics. Because the Fourier transfomi of a sawtooth wave is 

exactly known, an infinite nurnber of harmonic~ rnay be retained in the spectnun of a 
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shockwave by approximating higher harmonic amplitudes by the analytic amplitudes 

fiom the idealized sawtooth wave. 

3.1.2 Time Domain Solutions 
In the time domain, we cannot easily incorporate attenuation into finite amplitude wave 

propagation. The nonlinear equation itself, however, can be solved in the time domain, 

without attenuation. Two approaches have been taken to the time domain solution to the 

nonlinear algonthm: (0 an interpoiation-based Poisson soiution, and (II) Clinstophzr's 

t h e  domain solution. 

The Interpolation-Based Poisson Solution 

To descnbe the nonlinear distortion of a waveform as it propagates fkom z ro ;+&, the 

Poisson solution (eq. (17) of section 2.3.4) may be written as 

Multivalued solutions c m  be avoided if the step size satisfies 

Equation (9) can be nurnerically irnplemented by sampling the temporal waveform, and 

making use of a discrete tirne-based transformation 

where m is the index of the temporal wavefom and n represents the nth step Az, in r (e.g. 

Tavakkoli et. al. 1998). The discrete version of the inequality (7) c m  be written as 

Subsequent to this non-uniform, discrete transformation, linear interpolation c m  be used 

to resarnple the waveform, and thus to re-establish a uniform temporal grid. A discussion 

of the dimensionless form of this algorithm may be found in Hamilton and Blackstock 

(1 998). 
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Christopher 's Tirne Domain Nonlinear Propagation Algorithm 

Christopher (1993) uses a slightly different nonlinear algorithm. It is valid for plane wave 

nonlinear propagation in a dissipationiess medium. His approach is based on the relation 

which descnbes the incremental change in amplitude of the waveform at identical 

temporal locii after propagating a distance &. It is valid for al1 but very large-amplitude 

waves ( u c ~ d f l ) .  He has also derived a more general relationship that is valid for my 

amplitude. In the discrete implementation of (1 O), a forward difference du/& operator is 

applied to the positive velocity samples, and a backward difference dddt operator applied 

to the negative velocity samples. A three point (quadratic) Adams-BasMorth formula 

(Atkinson, 1978) is used for both the forward and backward difference dddr operator. 

For a forward difference computation, the operator is 

du 1 p ( u ( t  + ~ t )  - ~ ( t ) )  - ( ~ ( t  + Ut) - u ( r  + At) 
( i l )  -=- 

dt 2 At Al 

and the backwards difference operator is given by 

Further precautions are needed to propagate shockfronts. First, shock segments are 

identified by locating consecutive sarnples for which there is a change above some 

threshold level. Next, consecutive shock segments are consolidated into shockfronts, and 

then propagated as a whole without M e r  steepening. T i ,  Christopher's scheme is 

implicity harmonîc-limited, and allows considerable computational savings, while 

offenng great stability, and demonstrating reasonable accuracy. 

3.2 Numerical Models of Nonlinear Sound Beam Propagation in 3- 
Dimensions 

There are few analytic solutions to the equations of noniinear propagation, and such 

solutions are for very specialized conditions. In general, numencal methods must be 

used, and these will be discussed under the following headings: 
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(1) Numerical Solutions to the KZK equation 

(2) T h e  Domain Method of Tavakkoli et. al. 

(3) Frequency Domain Method of Christopher and Parker 

3.2.1 Numerical Solutions to the KZK Equation 
The KZK equation has been solved in a number of ways using time domain, fiequency 

domain, or combined the-~equency dornain algorithms. Al1 of the approaches are based 

on the time-integral of the IiZK equation in retarded tirne, pivcn by 

Combineci The-Frequency Domain Algorithm 

Bakhvalov et. al. (1976, 1978a-b, 1979a-c, 1980) used a dimensionless form of (1 3), and 

solved for difiaction and absorption in the frequency domain. Their approach calcuiates 

nonlinear distortion in the time domain using the method of Godunov (1959) which is 

based on weak shock theory. In this fractional step / operator splitting approach, they 

used standard backward difference methods to propagate step by step the effects of 

difbction and absorption, and of nonlinearity. Their calculations were restricted to 

axisymenic Gaussian, plane and focused sources. Alternative algorithms that solve for 

attenuation and dif ic t ion in the fkequency domain, and nonlinearity in the time domain 

have been presented by McKendree (198 1) and Froysa et. al. (1993). 

Frequency Domain Algot-ithm 

The most widely used approach for analyzing periodic signals radiated fkom circula 

pistons, both focused and unfocused, is a frequency domain approach first developed by 

Aanonsen et. ai. (1984), and is widely referred to as the Bergen code. They substituted 

expansion (1) into the KZK equation to get a system of equations, which they then 

integrated numerically using a simple implicit backward difference scheme. Their work 

was primarily for nearfield studies. Baker et. al. (1988) verified the accuracy of this 

numerical Ka( solution by comparing with experiment in the case of a CW plane disk 

radiator in a water medium. Hamilton et. al. (1985) introduced a transformation to 
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improve the efficiency of the aigorithm in the far-field. For focused beams, a 

modification of the coordinate transformation was introduced by Hart and Hamilton 

(1988). Other frequency domain studies have investigated radiation from bifrequency 

(Kamakura et. al. 1989; Naze Tjotta et. al. 1990; Naze Tjotta et. al. 1991), pulsed (Baker 

and Humphrey, 1992), and rectangular (Kamakura et. al., 1992; Baker et. al. 1995) 

sources. Averkiou et. al. (1995) used the spectral code developed by Naze Tjotta et. al. 

(1991) to compare theoretical mode1 predictions with experiments for finite amplitude 

propagation in water fiom a focused piston. 

Cahill and Baker (19974b; 1998) used a non-axisyrnetnc version of the Bergen code, to 

simulate the acoustic field of a phased array medical scanner for water propagation. They 

demonstrated that nonlinearity can interact with difbction in such a way as to move the 

peak region of intensity off-mis, and io cause the focal region to shift towards the 

transducer. 

Time Domain Algorithm 

A fint order operator splitting approach introduced by Lee and Hamilton (1995), allows a 

numerical solution to be implemented in the time domain. Their technique breaks up 

difhction, nonlinearity and absorption into separate evolution equations and invokes 

field propagation using a frac tional step marching scheme. 

In dimensional coordinates, the operator splitting scheme decomposes the retarded-time 

integral of the KZK into the following three equations: 

JP (14) -=- j(Vip)dr.LDbp (Di fiaction) 
h 2 -  
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To first order in terms of the propagation distance Az, one may show that these equations 

are independent of each other, so that the total change in pressure can be approximated by 

the sum of these contributions, Le., 

As illustrated in Fig. 1, the pnnciple underlying the fractional step algorithm is to first 

solve the diffraction equation for a plane to plane propagation, then apply absorption, and 

findly to solve the nonlinearity equation over the distance Az. 

z+Az 
Plane 2 

2 

Plane 1 

Figure 1 Schematic representing an operator splitting technique. Planes 1 and 2 are an 
incremental distance Az apart. By solving for the effects of difnaction, attenuation, and 
absorption independently over this mal1 step, their combined effects can be well 
approximated. 

The same procedure can be done for the next incremental plane to plane propagation, 

thus propagating the sound beam in a .  incremental march over maIl distances Az. 
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The tirne domain algorithm is well suited to pulsed propagations, and to very large 

amplitude continuous wave propagation. Of particular note is the work of Averkiou et. al. 

(1993), who modeled self-demodulation in strongly absorbing Buids, and that of 

Cleveland et. al., (1 W6), who investigated the eEect of relaxation. 

Acncracy and Computational Burden 
While KZK methods have been shown to give accurate results for sound beam 

propagation in water, Little work has been done to venfy the accuracy of the KZK for 

other media such as tissue. Computational requirements can become an issue for 

nonlinear modeling. Baker (1998) cornrnents that the continuous wave field response 

from an axisyrnmetric source at moderate drive levels can be run on a persona1 computer 

in a matter of minutes. When the drive Ievel is increased, more hatmonics are needed, 

thus incurring more memory and computational tirne requirements. Pulsed waveforms 

are also more demanding since a wide spectnim of fiequency components must be 

included. A non-axisymmetric source geometry can cause an order of magnitude increase 

in the computational burden. The results of Cahill and Baker (1 99%) required about 

500MB of physical memory and took approxirnately 40 h o m  on a DEC alpha 8400 

computer. 

3.2.2 The Time Domain Method of Tavakkoli et. al. 
Tavakkoli et. al. (1998) have developed a tirne domain numerical model based on the 

second order operator spiitting technique illustrated in Fig. 2. The model avoids the 

parabolic approximation by using the Rayleigh integral to compute the effects of 

diffraction. The effects of attenuation and nonlinearity are computed in the t h e  domain 

over srna11 steps. Attenuation is modeled by a minimal phase F R  filter, which is 

convolved with the source wavefom. 

For pulsed propagation, Tavakkoli's method has the advantage of using fairly big A- 

steps between propagation planes, but suffers fiom long computation times for the 

dimct ive  steps (-90% of the total CPU time). 
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Figure 2 The second order operator splitting method of Tavakkoli et. al. ( 1  998). In this 
scheme the combined effects of  diffraction, attenuation, and nonlinearity are 
approximated to a second order in the incremental distance &. 

3.2.3 Chrktophefs Method 
Christopher and Parker (1991) used a ~equency domain approach to modeling nonlinear 

propagation for an axisymmetric geometry. Like other fractional step approaches, they 

compute the effects of diffraction, attenuation, and nonlinearity over small steps. They 

used a discrete Hankel transform - based angular spectnim approach to compute 

diffiction and attenuation. Like the scheme of Tavakkoli et. al. (1998), ttieir difhction 

algorithm does not assume the parabolic approximation. For nonlinearity, a fiequency 

domain algorithm simila. to the one presented in section 3.1.1 is used. Christopher's 
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method allows simulation of nonlinear propagation through media with arbitrary 

absorptive charactenstics, and has inpressive computational efficiency. Their approach 

has been applied to the modeling of highly focused lithotripter sources (1994), and for 

simulation of nonlinear-based irnaging ( 1  997). 



Chapter 4: A New Approach to Modeling Nonlinear Ultrasound 

Propagation in Tissue 

The previous two chapters have mentioned theoretical and numencal schernes for 

modeling nonlinear ultrasound propagation. Directional (finite amplihide) sound beam 

propagation in thermoviscous fluids has been modeled by the so called 'KZK' equation. It 

xas noted that the viscous loss mode1 of the KZK equation leads to an attenuation 

coefficient with a quadratic frequency dependence, and which does not describe the near- 

linear fiequency relationship of most tissues. Many of the numencal methods based on 

the KZK equation were restricted to thennoviscous fluids, and thus are not appropriate 

for modeling finite amplitude propagation in tissue. Although it is possible to model 

finite amplitude propagation in a tissue medium using the frequency domain solution to 

the KZK equation, the computational burden cm be heavy, especially for pulsed 

propagation, and non-axisymmetric sources. The methods of Chnstopher and Parker 

(1 99 l), and Tavakkoli et. al. (1998) have enabled accurate modeling of nonlinear 

propagation in tissue. In the approach used by Tavakkoli et. al. the Rayleigh integral is 

used to compute the effecrs of diffraction, and is thus cornputationally burdensome. 

Chnstopher and Parker use a fast transform approach to difictive propagation. 

Although it f iords some computational savings, their approach, like others, is 

computationally intense for propagation of pulsed excitations, and for non-axisymmteric 

sources. In this chapter, a new method of modeling is introduced, which not only builds 

on the strengths of previous algorithms, but which also aims to gain some degree of 

computational savings compared with these schemes. 

4.1 An Evolution Equation for Finite Amplitude Propagation in Tissue 

Our approach to modeling propagation in tissue rnay be viewed as a phenomenological 

one. We start with a model evolution equation, valid for quasi-plane wave sound beams, 

where LA, LN, and Lo are operators representing absorption, nonlinearity, and difiaction 

respectively, and v is the normal particle velocity. 
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Our hypothesis is that operators Lo, LA, and LN exist such that the evolution equation (1) 

accurately describes finite amplitude propagation in tissue. It is our belief that such a 

hypothesis is well founded. Partial justification of using (1) is that the KZK equation can 

be written in a form equivalent to (1) by integrating with respect to retarded time, to 

obtain (3.22), where the operators are defhed by (3.21). We feel that propagation in 

tissue is likely sirnilar to propagation in thermoviscous fluids, with only attenuation 

mechanisrns being sipificantly different. Experirnental confirmation of this hypothesis 

stems ffom the efforts by Tavakkoli et. al. (1998). They used equation (1) as a basis for 

their model and obtained reasonable agreement with experiments of finite amplitude 

propagation in a tissue mimicking fluid. Moreover, it can be shown that the approach of 

Christopher and Parker is equivalent to a first order operator splitting of an equation 

equivalent to (1). Thus although (1) is not derived from elementary pnnciples of physics 

as is the KZK equation, there is ample evidence that it can accurately model finite 

amplitude propagation in arbitrary media, including biological tissue. 

4.2 A Second Order Operator Splitting Technique 

Our approach to solving (1) will employ an operator splitting scheme so as to solve for 

the equations of dif'ftaction, attenuation, and nonlinearity separately over small steps. 

To intmduce the operator splitting techniques of this thesis, some notation will fint be 

developed. Consider fint the process of difiaction. Given the normal particle velocity 

field profile v(xry,zl;t) across a plane z = zl, we may represent the field profile across 

plane s = 1 2  assuming dif ic t ive  propagation only (no nonlineety or attenuation) by 

introducing an operator îD.&, such that v(x,y,z2;t) = ~g.h-v(.r,y,zl;t). The N O  planes z=z, 

and z=q are spaced a distance Az apart. r D . & ~ ( ~ r ~ r ~ I ; l )  then represents a solution at 

z=zl+d. to the diffraction sub-equation 

with the initial condition v=v(x, y.q;t). 

Similady, we rnay d e h e  propagation operators and TA.& for nonlinearity and 

absoqtion respectively. There is a relationship between the operators r and the operators 
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L of (l), which will be explained in Appendix A. For now it will suffice to Say that 

v(x,y,z2;t) = rN pv(x,y, t ,;t) is a solution to the nonlinear sub-equation, and v(..,y,z2;t) = 

TA,d_~(~,y,~r;t)  is a solution to the absorption sub-equation given the initial condition v = 

v(.ry,,zi;t) on plane z = z,. 

As our approach is similar to that of Chnstopher and Parker (1991), it is important to note 

that thek mode& methodology is equivalent to a fint order operator splitting, which 

may be represented as: 

3 v ( x ~ ~ ,  z2 ; t )  r D - A r N , b . ~ ( ~ , y i  ; t )  = rD+A,~r,~iV.k~(-~v~v-I ;t) + O ( k 2  ) 9 

where ~+I+N.h-~(.r.y,~l,t) represents a solution at z = q+d= to (l), and &+.4.il-~(.r,y.~l,t) 

represents a solution at r = :l+& to the sub-equation 

given the initial contition v = v(.r,y.z,,t). In words, (3) says that the combined effects of 

diffraction, absorption, and nonlinearity c m  be approximated by one incremental step of 

combined difhction and attenuation, followed by one step of nonlinearity. In Appendix 

A, we will prove the fint order nature of this scheme. 

Tavakkoli et.al. (1998) proved a second order operator splitting, 

( 5 )  v ( ~ , y , ~ ~ ; t ) ~ r ~ + ~ + ~ . ~ ~ ( ~ , } ' , ~ ~ ; f ) = r ~ & ~ ~ ~ ~ + ~ . & ~ ~ . ~ / ? ~ ( - ~ ~ y , ~ ~ ; ~ ) ~ O ( ~ ~ ) ,  

which was illustrated in Fig. 2 of chapter 3. 

Tavakkoli et. al. used adaptive step sizes - large steps in the nearfield and smaller steps in 

the focal region. Even for strong pressure amplitudes h m  a highly focused transducer, 

the use of only 23 planes out to the focal region sufficed, and impressive agreement with 

experimental results were reported. In contrast, Christopher's approach required hundreds 

or thousands of fiactional steps out to the focal region of a transducer. Sixnilarly, the 

finite difference techniques used to solve the IUK equation required relatively fine axial 

meshing. 
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In addition to using Tavakkoli's second order operator splitting method, we propose a 

slight variation of their theorem to allow combination of diffraction and attenuation 

together. The operator splitting approach we propose may be written as: 

(6) v ( x , y , ~ Z ; ~ ) ~ r D , A + N , k v ( x , y , ~ , ; t ) = r ~ r ~ . ~ , 2 ~ ; I - r ~ + d . h - , r ~ ( ~ y , ~ I ; t ) + ~ ( ~ 3 )  

which, iike the Tavakkoli (1998) operator splitting, is second order in the small ordering 

parameter k. This operator splitting is illustrated in figure 2. 

-. - 

Half Step . Difbction - + -- 

Plane z=zl 

Figure 2 illustration of the proposed second order operator splitting theorem. 

Plane zl=z +hz 
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Proof of (6) is provided in Appendix A. It should be noted that both second order 

operator splitting methods can be used within the context of the KZK equation. Proof of a 

second order operator splitting aigorithm for the KZK equation is also given in 

Appendix A. 

It is hoped that by taking advantage of the larger axial steps which these second order 

operator splitting schemes allow, and by using faster algorithrns for difiaction, 

considerable computational savings cm be obtained. 

4.3 Proposed Fractional Step Marching Scheme 

To mode1 the nonlinear propagation of a sound beam, o u  approach will be to divide the 

region of propagation into parallel planes separated by incremental distances Az. 

The second order operator splitting presented in section 4.2 can be applied to solve for 

the effects of diffraction, nonlinearity, and absorption over these small steps. Thus, we 

propose a fractional step marching scheme, which progresses fiom plane-to-plane dong 

the direction of propagation. 

In solving the difiction sub-equation (2), or the sub-equation combining diffraction and 

attenuation (4), we may guess that a solution to either of these equations must also be a 

solution to the homogeneous wave equation, as this is the equation which govems linear 

propagation phenornena. When the parabolic approximation is made, as is the case for the 

KZK equation, the solution to the sub-equations are only approximations to the true field 

which is a solution to the homogeneous wave equation. The approaches of Tavakkoli and 

Christopher do not make the parabolic approximation, and dimction is computed 

exact ly . 

Like the KZK equation, out model equation (1) of this chapter is only valid for quasi- 

plane wave sound beams. The quasi-plane approximation assumes that the sound beam is 

directional and that the angular spectmm is nmow. Thus the nonlinear substep used in a 

hctional step marching scheme, based on an operator splitting of our model equation is 

lacking multi-directionality of propagation. It is assumed that the nonlinear propagation 
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process is strictly in the z (axial) direction. In Tavakkoli's operator splitting approach, 

both nonlinearity and attenuation are cornbined together, and thus both processes assume 

propagation only in the z-direction. In the operator splitting (6) which we prove, 

absorption and difiaction are combined together. Combining these two effects takes into 

account the directionality of component ray-paths which are added and attenuated in a 

linear way. Moreover, the parabolic approximation need not be made and diffraction may 

be calculated exactiy. Because of these reasons, a fractional step rnarching scheme based 

on (6) may prove to be more accurate in the near-field than the W( approach. This 

prospect will not, however, be investigated, as the very nearfield is of little importance to 

simulating medical ultrasound systems. 

One disadvantage of using a fiactional step marching scheme to solve for nonlinear 

propagation is that modeling errors may accumulate over many fiactional steps, and the 

scheme rnay become inaccurate at best and unstable at wont. Algonthmic burden, on the 

other hand is problematic. OAen there is an inherent tradeoff between accuracy and 

computational efficiency, and good judgernent must be used in reaching a suitable 

compromise between the two. The choice of an accurate yet efficient way of computing 

the effects of diffraction, attenuation, and nonlinearity is thus key to developing a 

simulation tool for harmonic imaging. 

4.4 Choosing Efficient Algorithms for Calculating the Effects of 

Nonlinearity, Diffraction, and Absorption 

One of the prime objectives of this work is to develop a mode1 of nonlinear propagation 

which is as computationally efficient as possible. With the operator splitting, and 

fiactional step marching schemes presented in sections 4.2 and 4.3, the task of 

computationally efficient modehg reduces to fmding dgorithms for difhction, 

absorption, and nonlinearity which have minimal computational burdens, and yet are as 

accurate as possible. 
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4.4.1 The Choice of a Nonlinear Algorithm 

For continuous wave sources, the frequency domain solution to Burgen equation 

(FDSBE) is a good choice for a nonlinear (plane-wave) algorithm. We use the FDSBE 

presented in chapter 3, when moderate drive levels are simulated. For very high 

amplitude excitations, a number of authors comment on the benefits of calculating 

nonlinearity in the time domain. 

The thne domain nonlinear algorithm presented by Christopher (1 994), and described in 

section 3.1.2, will be used for pulsed excitation modeling, since it offers great stability, is 

implicitly harmonie-limited (and thus efficient), and is reasonably accurate. 

4.4.2 The Inclusion of Absorption 

Absorption can be caiculated together with either the diffraction or the nonlinear 

algorithms. If nonlinearity is modeled in the tirne domain, we will couple absorption with 

the diffiction algorithm. If nonlinearity is modeled in the frequency domain, absorption 

may be included with the nonlinear algorithm (for stability), or with the diffraction 

algo rithm. 

4.4.3 The Choice of a Diffraction Algorithm 

The choice of an efficient difhction algorithm was a pnmary focus of this thesis. Its 

importance is illustrated by the observation that for the algorithms of Tavakkoli et. al., 

which used the Rayleigh integral for the difhction computation, 90% of the CPU time 

was being used on the diffraction substeps. 

Other estabiished methods of computing diffiactive propagation include the impulse 

response method, and the angular spectnim technique. A brief review of these techniques 

will be provided in sections 4.5 and 4.6. 

A suitable difiction algorithm for the proposed fractional step rnarchuig m u t  meet the 

following requirements: 
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Computationally efficient 

Plane to plane 

Valid for non-separable, and non-axisymrnetric field distributions. @y non-separable, 

we mean that a field distribution need not be separable into a product of tirne and 

space hc t ions  of the fonn G(wi )F( t ) ) .  

Reasonably accurate in the nearfield (because we intend to use a fractional step 

marchg scherne, nearfield inaccuracies may propagate out of control) 

Suitable for a linear phased array, and other transducers with and without apodization. 

Should include the possibility of beam steenng. 

Easy to include attenuation, refraction and reflection 

Some way of choosing adequate spatial sampling so as to ensure accurate modeling 

results 

4.5 A Comparative Evaluation of Algorithms for Calculation of 

Diffraction 

Here we consider a few diffraction algorithms and their suitablility for our proposed 

nonlinear algorithm. Suppose we wish to compute the particle velocity or velocity 

potential for al1 points in a plane a distance dz away from a transducer or source plane at 

axial coordinate r = zO. Suppose the normal particle velocity distribution of the source 

plane is v(x, y,r,. t) . 

Computation of the velocity or velocity potential will be done discretely, so let us 

suppose that the x-axis is quantized into Nx discrete values, the y-axis into N, values, and 

tirne into N, values. (Ecylindrical coordinates (r, 8) are used N, and N, become N, and Ne 

respectively). We can express the computational cornplexity of the difiaction algonthms 

in terms of N, Ns and N,. We will, in particular, investigate the foIlowing three methods: 

(1) The Rayleigh approach (2) The impulse response fomalism, and (3) the angular 

speceum method. 
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4.5.1 The Rayleigh lntegral 

The Rayleigh integral is a mathematical statement of Huygens principle - it is a s u m  of 

field contributions fiom small elements across the source. It is given by 

1 v , ( f - R l c , )  
4(r,O=-IJ dS0 , 

sa 

where $I is the velocity potential at the observation point, vn is the normal particle velocity 

acmss the souct ,  R is the distance between the source element and S, is the surface 

across the source. Let us consider the cornputational complexity of the Rayleigh integral. 

If we want to calculate the velocity potential at a point on the plane for al1 times of 

interest, we would evaluate a double integral over the surface of the transducer/çource 

plane. Thus for al1 times of interest, this would require Nl(NxNy) calculations. To do this 

for dl points in the plane ni, would require N,(N~N~)'  calculations. 

If  there is axial syrnmetry, the Rayleigh double integral reduces to a single integral, and 

only the radial component of the plane profile needs to be evaluated to represent the 

entire plane z=z,. Thus the computational complexity for the Rayleigh integral (axial 

symmetry) is only N,N:. 

We are primarily interested in the nonaxisymrnetnc case, and it is evident that the 

cornputational burden due to the Rayleigh integral can be large if planar sampling is 

dense. Otherwise, the Rayleigh integral satisfies the other requirements given in section 

4.4.3. 

4.5.2 Impulse Response Formalism 

The impulse response of a transducer is, as the name suggests the field response of a 

perfect impulse excitation: 
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Here 5 is an apodization factor across the source, and the other variables are the sarne as 

those given in the Rayleigh integral. The transient response due to a given excitation may 

be obtained by convolving the impulse response with the source excitation: 

@(r, t)  = vJt) * h(r,r). 

Note that this method assumes that the source velocity v(x,y,t) is separable, Le. can be 

written as v,( t )~(x,y)  where 5 is an apodization factor. One of the requirements for a 

suitable diffraction aigonthm in the pioposed aonlinex proprg~titioo Agorithm ic tha! the 

approach be valid for non-separable distributions. To see why this is so, consider a point 

source which emits a delta-function excitation. The impulse response on a plane a 

distance away fiom the transducer will consist of an impulse aniving first at the center of 

the plane (the point directly normal to point source), followed by impulses arriving later 

in isochronal rings off a i s .  The impulse response is therefore given by 

which is clearly no t separable. Since we are concemed with plane to plane diffractive 

propagation, it is essential that the method be capable of propagating non-separable 

distributions. The impulse response formalism is thus discounted fiom our list of 

potential candidates for a difiction algorithm. Nevertheless, we will consider its 

computational complexity and compare its efficiency with other techniques. If it is 

computationally efficient, it may be used for the fint step propagation from a transducer 

surface where excitation is separable. 

In investigathg the computational complexity of this approach, we will consider two 

situations: 

(1) The impulse response function c m  be evaluated analytically. 

In this case, to calculate the velocity potential at a point on the plane P=z,, requires a 

convolution of the impulse response with the surface velocity of the transducer/source 

plane. This would require on the order of 3Ntlologz(N,) + N, computations if the FFT 

method of convolution is employed. Thus to evaluate the velocity potential at each point 
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of the plane r-1, we would require on the order of NxNy(3Nf1010g(N,)+Nt) computations. If 

there is axial s yrnrnetry, this reduces to N, (3N,logz(N,)+N,). 

(2) The impulse response fûnction cannot be evaluated analytically, and m u t  be 

computed numencally: 

Here, the impulse response function is obtained by evaluating a surface integral over the 

surface of the transducer/source plane. This would require NINxNy computations, unless 

the transducer has axial symmetry, in which case the surface integrai would reduce to a 

single integral (NINr cornputations). Once we compute the impulse response for a point in 

the plane z=z, for al1 times, we then need to convolve the impulse response with the 

surface velocity to get the velocity potential at a point in the observation plane. Thus for 

one point on the plane z-1, we require NtNxN, + 3N,log2(N,) + Nt computations. To do 

this computation for each point in the plane r=zl, we require N,Nr(NINXNs+3N,log2(~) + 

Nt) computations, which is of the same order of computational complexity as the 

Rayleigh formalism, and even slightly more demanding. 

There is also a way to compute the impulse response function using only one integral, 

which we shall cal1 the Tjotta impulse response method (Tjotta and Tjotta, 1982). By this 

method, one does a coordinate transformation so as to integrate over isochronal ring 

elements (points equidistant fiom the observation point). In this case, suppose that the 

angle to integrate over a single annular isochronal ring is P, and that there are Ng discrete 

points to surn over. Then for each observation point we require Np computations to find 

the impulse response at a single tirne, and NgN, computations for K times. Once the 

impulse response has been found for a aven observation point, we do a convolution over 

the source velocity v. This convolution would require 3Ntlo~(Ni) + Nt computations. We 

then would need to do the identical calculation for al1 points in the observation plane. 

Overall, we would thus need N ' ( N B N ,  + 3N,logt(N,) + Nt) computations, which is 

ap p roximately NXNyNflt. 

4.5.3 Angular Spectrum Method 

The theory of the angular spectnim method d l  be given later on in the chapter. 
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It will suffice to mention that for each frequency component of the source excitation, 

there exists a spatial fiequency representation of the source plane. Propagation fkom one 

plane to another may be accomplished through use of a transfer function H. 

Let us suppose that the surface velocity of the source plane is v(x.y.z,.t). First we need to 

perform a FFT to £ind the firequency domain representation of the velocity s(x.y,zo, a) for 

each point (.Y,))) in the source plane. In general, this will reuuire NrNJVtl~g2~Nt) 

computations. Once s(x,y,z,,o) is found for al1 points (x,y) in the transducer plane, and for 

al1 fiequency components a, the following steps are needed: 

For each frequency component a, 

(1) Perform a 2D-FFT on s(x,y.z,. o) to get S(k, k,; r=z,). (Nx~,log2[NXNJ2] 

computations). 

(2) Multiply S by the transfer function H(knky; zolzl) defined in section 4.6. (IV&', 

computations). 

(3) Perform a 2D-IFFT to obtain the fkequency domain velocity s(x,y,zl,o). 

(NxN,.log2[N'N,J2] computations). 

Thus we require N,[UV,N,log2(NxNJ2)+NXNY] computations for al1 the frequency 

components. (These computations are made once the values for v(x,y,O,t) are computed). 

Finally, once s(x,y,zl, a) has been computed for al1 points (x,y) on the plane z=zi, and for 

al1 fkequencies o, we do an IFFT on s(x,yIrl,& enabling the time domain velocity 

waveform v(x,y,zi,t) to be obtained. This should be done for al1 points (x.y) in the plane 

z=z, (Le. NxN@'logs(Nt) computations). Thus in total, we require 

2N,Nfltlog2(Nt)+Nt[2NXh~logz(N,N,12)+NxNy] computations. 

n i e  anpular spectnim method is very computationally efficient compared to the Rayleigh 

and impulse response methods, given a non-uniform, non-axisymmetric surface velocity 

on the transducer/source plane. 

Below is an exarnple using acnial numben to illustrate this point. Suppose we want to 

compute the particle velocity for a11 points in a plane a distance Az fiom a 
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nonaxisymmetric source. Suppose N, = 4, = Nt = 512. The computational efficiencies of 

the various rnethods is summakized in table 1. 

Table 1 Computational Burden of Various Diffraction Algorithms 

1 Impulse response * 1 3.5188~10'~ 

Method 

Rayleigh 

Tjotta impulse response * 

# Computations 

3.5 184x10" 

1 Angular spectnim 1 7.1135~10' I 
* Ody valid for axisymmetric sources 

Thus, based on this preliminary analysis, the agular s e c t m  method is almost 5000 times 

more computationally efficient than the Rayleigh or impulse response method, and 10 

times faster than the Tjoaa impulse response method. 

Besides being computationally efficient, the angular spectmm method is valid for plane- 

toplane propagations - even when the source plane is non-separable. It can be very 

accurate in the nearfield as will be demonstrated in subsequent chapters. Attenuation, 

refiaction, and reflection can be easily incorporated, and sarnpling theorems will be 

developed to ensure accurate modeling results. in short, the angular spectrum method is 

an ideal choice for modeling difictive propagation. 

4.6 The Angular Spectrum Method: Theory 

In the previous section, it was shown that the angular spectnim method showed great 

promise for efficiently computing the effects of diffraction. Here we consider some 

background information regarding this useful technique. 

The angular spectnim is a widely used technique in optics and is addressed by RatcIiffe 

(1956), as well as in texts by Gaskill(1978) and Goodman (1968). In acoustics, the 

angular spectnim methodology has also been well established. Maynard and Williams 

used it to investigate the possibility of sub-wavelength resolution acoustic holography 
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(IgSO), and to compute the field fiom a plane piston transducer (1982). Stephanishen and 

Benjamin used the angular spectnun for forward and backward propagations (1982), and 

Waag et. al. explored windowing and other issues in discrete implementation of the 

angular spectrum technique (1 985). Shafer (1 W), and Christopher and Parker (1 99 1) 

have applied the angular spectnim method to transducer characterization using 

backpropagation, and nonlinear propagation. 

4.6.1 The Spatial Frequency lnterpretation of a CW Transducer Excitation 

Consider a plane transducer vibrating at a constant fiequencyf. The acoustic waves 

propagating away from the transducer surface can be thought of as a weighted collection 

of wave vectors k = (k,k,,kJ, each wave vector propagating in a different direction, and 

each carrying a different weighting, or amplitude. For a wave that is nearly planar, 

propagating in the z direction, the components k, = O, k, = O will be the most heavily 

weighted, but weighting will be negligible for large values of kt or k, (Le. vecton 

pointing away fforn the direction of propagation). For a pulsating sphere or point source, 

al1 wave vectors may be weighted equally as the radiation field produced would be 

sphencally symmetric. We can consider a transducer as a collection of point sources, and 

the acoustic spatial frequency specrnim as the linear sum of al1 these point source 

contributions. Mathematically speaking, for a flat transducer, we can consider the 

aperature surface s(x,y,zO) to have a particular spatial fkequency spectrum, S(k, k,) given 

by the two dimensional Fourier transfomi of the aperature, i.e., 

The distribution S tells us that a particular wave vector k*k,k,k) has weighting S(k,k,). 

Note that for a particular frequencyf, a particular wave vector (kl = 2nf/c, may be 

specified by referring only to the (k, k,) components since t is given by the relation kL = 

k2 * (k:+k;). 
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For a disk transducer, the spatial fiequency spectnim corresponds to a jinc function, and 

for a rectangular transducer, the spatial fiequency spectnim corresponds to a 2-D sinc 

function. 

4.6.2 The Angular Spectrum 

We can also write the spatial kequency spectnim as an angular spectrum. Given the 

direction cosines 

a C COS^ =LY =-ka. 
P=cosw= k . f = - k f i  

y = (l-(u'+~2))'" = -@k 

where the symbol '*' denotes a unit vector, we c m  write 

-02 

For fume note, we will often refer to S(kfiky), given in (7) as the angular spectrum, even 

though it is technically expressed in terms of spatial fiequency vecton, and not direction 

cosines as is the case for (8). 

4.6.3 Diffractive Propagation Using the Angular Spectrum 

On a plane a distance dz away from a harmonically excited transducer, difhctive 

propagation will alter the spatial frequency spectxum on the transducer surface S(k,k,.; z 

=z,) to something new, S(k,k,; z = r,) related once again to the spatial field profile at the 

plane r = r, by a Fourier Transform. 

There is a linear relation between the field profile at the surface of the transducer, and the 

field profile on plane F Z ~ .  This linear relation can be thought of as a 2D-transfer function 

H(k,k,;Az) in the spatial fkequency domain, or a point spread function h(x,y;Az) in the 

spatial domain. Specifically, we may write: 



where & = ~q-r0l, and ** denotes two dimensional convolution over x and y. 

The f o m  of h and H can be denved analytically, by substituting 

into the homogeneous Helmholtz equation, and solving the resultant second order 

homogeneous differential equation in S, given the initial condition S = S ( Q P : ~ O ) .  

The transfer function H is thus given by 

for (kt +ki) < k' 
(9) H ( k , y k , , : h . ) =  - 

for (ki + k ; ) > k 2  

Thus, given the angular specmim S(k,,k,;zJ on plane ,, we can know the angular 

spectnim on a plane z,, a distance k from plane, by the following transfer function 

relation: 

S(k,,k,;-,) (10) S ( k x y k , ; = , )  = H ( k x y k , ; b )  

The field profile on the plane 21 can then be found by taking the inverse 2-D Fourier 

transform of the above result. The sequence of steps used to compute the angular 

spectrum is illustrated in Fig. 2 below. 
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Figure 2 Illustration of the angular spectmm approach to difiactive propagation. (a) is 
the normal velocity profile ( d s )  of a plane piston of radius km. It transmits a CW 
excitation at 5 MHz. (b) is the spatial kequency representation of the source (c) is the 
argument of the transfer funaion H, and (d) is the normal velocity field profile at r=d A 

The transfer function H can be thought of as a complex phase weighting, that governs 

Huygen's principle of wave superposition. The ultrasonic field from a source may be 

thought of as a collection of constituent waves - each with its own directionality and 

magnitude. The angular spectnim is a mathematical description of the magnitude of such 

directional components. The field across an observation plane, a diaance Az away f b m  

the transducer is characterited by how these constituent waves interfere with each other. 

The superposition of the consthent waves at a point on the observation plane depends on 

the relative phase between the wave components. The transfer function H is the 

mathematical mechanism whereby each component wave is assigned a phase. M e r  these 

components are shifted by their assigneci phase, they are added together linearly in a mm, 

which, is given mathematically by the inverse 2-D Fourier transfonn of (10). 
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An alternative to an angular spectnim based - description of difiactive propagation is a 

spatial one. The point spread function h(x?y;dr) which relates the field profiles between 

planes separated a distance Az apart is obtained by taking the inverse Fourier transform of 

the transfer function H, and is given by 

where 

Thus, given the field profile ~(xJ,,) on a plane ,, we c m  know the angular spectnim on 

a plane rl a distance Az away from zo by the following 2-D convolution relation: 

We can think of the point spread function h(x.y;k), as the field profile or response on 

plane z=zo given a one point source at (xo.y,.~cO) is harmonically excited with frequency 

f: H is the Fourier transform of h, and represents a spatial frequency domain version of 

the response due to a point source excitation. 

Pressure and Normal Particle Velocity 

It should firrther be noted that other field variables may be used for difiactive 

propagation, such as pressure, or normal particle velocity. For example, normal particle 

velocity u is a useful parameter to define the profile across the transducer surface. The 

normal particle velocity distribution across a surface rl a distance Az from the transducer, 

then is given by 

where h is the point spread function. Equivalently, this could be written as 
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where LI denoted the 2D-Fourier Transform of u, and H is the transfer function. Similar 

expressions may be written for pressure field to pressure field d i f i c t ive  propagation. 

If we want to know the pressure, or velocity potential at a plane a distance dz away fiom 

the transducer, given the normal particle velocity on the source plane (transducer 

surface), however, we need a different f om for H and h. 

For example, suppose we want to compute the pressure over a plane z, a distance away 

f?om the transducer: 

p(x ,y . z , )=u(x ,y , s=O)**hu, , (x ,y:&)  
The point spread function h..,, is in this case given by 

where g is the point source Greens function and 

R =  J x ' + y ' + &  

It cm also be shown that the transfer h c t i o n  Hu.>, is given by 

where G is the Fourier transform of the Greens function. Using Hu.>p can be numencally 

troublesome because of the singularity for &=O (Maynard and Williams, 1982), and the 

use of rnay be a better alternative. The forms of and H ,,( are equal to those of 

h,,, and HV+ divided by a factor of -&op. 



Chapter 5: Numerical lmplementation of the Angular Spectrum 
Method 
In Chapter 4, a new scheme was proposed to numerically evaluate finite amplitude 

ultrasound propagation. The proposed methodology was based on a second order 

operator splitting. Difhction, absorption, and nonlinearity are solved separately over 

small incremental steps, and the field profile is marched along in a plane-to-plane fashion 

using a fiactional srep marching scheme. The choice of' an efficient aiid accüïate 

difictive propagation algorithm suitable for such a modeling scheme is important 

considering previous models suffer from computational bottlenecks in the diffraction 

portion of the propagation algorithm. The angular spectrum method was s h o w  to be a 

good candidate for such an algorithm. Discrete hplementation of the angular speccnim 

scherne involves sampling and windowing issues which are nontivial. In this chapter, we 

consider difiactive propagation from non-axisyrnmetric sources. The reader is refened to 

Appendix B for the slightly different analysis needed for radially symmetric sources. 

5.1 Numerical implementation of the Angular Spectrurn Method 
in cases where there is no radial symmetry 

In cases where the transducer has radial syrnmetry, Christopher and Parker's (1 99 1) 

approach to diffractive propagation using the DHT may be used. Their approach, along 

with some general insights into the use of the angular spectnim approach for cases with 

radial symrntery, is discussed in Appendix B. They argue that the pnncipIes behind their 

algorithm can easily be extended to non-axisymetric sources by using the 2DF'FT in place 

of the DHT. In fact, Christopher (1999) implernented a nonaxisymmetric version of his 

FSC algorithm, using the ZD-FFT. However, he used axial increments of 20 per cm, 

which is a subwavelength step size. Our intention is to exploit the second order operator 

splitting introduced in Chapter 4 to enable the use of much larger step sizes, while 

concurrently saving computational cost. Christopher's use of subwavelength distances for 

the angular s p e c t m  likely elicited mal: wraparound errors. For large-step diffractive 

propagation, however, there are some unforiunate problems which will require careful 

analysis. First, however, we will fomalIy introduce the notation, theorerns, and 
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algorithrns associated with the 2D numerical implementation of the angular spectnim 

method. 

5.3.1 Notation 
There are two approaches one may take to irnplement the angular spectnim method 

numencally. One approach, which we shall cal1 the kequency sampled convolution 

(FSC) algorithm, involves sampling the propagator function H in the spatial frequency 

domain. The otner method, calied the spaiially sampled conv~lurion (SSC) approach, is 

to sample the point spread function h in the spatial domain. These approaches have 

different consequences, which will be discussed in due course. In doing so, will first 

describe the SSC algorithm. 

To accurately impiement the 2D SSC algorithm nurnerically, we must choose an 

adequate sarnpling scheme. Thus we must speciQ the sampling intervals Ar and A-v, as 

well as specify the spatial extent of the transform domain. Given a field distribution s(.r,y) 

over an infinite extent source plane : = s,, we mut choose a finite truncation of S. If the 

source plane is coincident with the transducer surface, then the normal particle velocity 

will naturally be of finite extent. However, if we are considering the case of plane to 

plane difiactive propagation, and the source plane is actually some distance fiom the 

transducer, then the field profile across the source will be of infinite extent, and must be 

truncated and windowed. Windowing issues will be dealt with in section 5.7. We shall 

denote the desired spatial extent of the source in the r and y directions by t X, and f Y,. 

The spatial extent of the source plane should be chosen so that the buik of the field 

energy across the plane is contained within these boundaries. Now we must sample s(x,y) 

over the interval [ I X, , t Y, 1, wi th sarnpling intervals Ax and Ay. Let Nx, be the number 

of samples over OUrcX,, and Nv, be the number of samples over WFY,. The sarnpling 

should adequately capture the plana variations in the source distribution, as determined 

by the 2D-Nyquist Theorem. 

Next assume that we wish to find the d i h c t e d  field profile across a plane z = a 

distance dz away fiom the source. Again, the d ihc ted  field profile on the observation 
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plane may be of infinite extent, however, we must choose a finite window in which we 

desire correct results. Ca11 the x and y spatial extents of the observation plane + Xo and 
+ Y, respectively. 

The point spread function h must also be sampled with adequate sarnpling out to some 

f i t e  extent. The point-spread function h is of infinite extent, and must be tnincated. The 

required convolution is only nurnericaiiy redizabie irboth s and ii iue of finiîe exteni. 

Note that h must be sampled out to at least [ X ,  + X,, Y, + Y,] to be able to get accurate 

results out to the extent of interest, [ I X, , t Y, 1. Denote this extent as [T, T,]. Let NT, be 

the nurnber of points spanning O-<Tx, and let NTy be the number of points spanning 

Ocy<Ty. With this notation (see Fig. 6), the convolution becomes 

for -Nr,<m< +NT,-1, and -NT,<nc+NT,- 1. Correct results are obtained in the region 

-Nxo<mc +NY.- 1, -Ny,<nc +Nb- 1, with aliasing erron dominating the region exterior to 

this. 
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Figure 6 The notation and variables used in the 2D-F'FT based angular spectrum 
algorithm for (a) the source plane and (b) the observation plane. 
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5.1.2 The 2D SSC Algorithm 
The convolution (5).  may be implemented in a computationally efficient way using the 

2D-FFT as follows: 

Having chosen [T&Ty], and [dr.Ay], and sampling the sequences s and h as outlined 

above, 

1. Zero pad s[m,n] out to [NTuNn]. Ifs is of infinite extent, finr use a tapered window îo 

taper the edge discontinuities fiom tmcation to zero. This will prevent edge artefacts 

in the convolution. Call the zero padded (and tapered) window s,[ni.n]. 

2. Take the 2D FFT of both hd and s, and cal1 the results f i  and S,, respectively. 

3. Take the 2D IFFT of the product Hd x S'. 
4. The correct result of the convolution can be found by extracting the central [Nx,,Nyo] 

core results of the inverse transfomi. The results outside this core have wraparound 

emor. 

5.1.3 The 2D FSC Algorithm Using the 2D FFT 
Spatial frequency sampling of H may be used as an alternative to the spatial sampling 

(SSC) methodology. The spatial fiequency domain extends across the region 

[-kxma<kx<k,, -kvma<ks< +kyma], where km,= x/dr, and kk,,=dAy. There are IVrx 

samp!es across and ND samples across [O,k,,]. The sampling intervals in the 

spatial fkequency domain are dehed  by Ak, = fix, and Ak, = dTY. 

The 2D FSC aigorithm can be described as follows: 

1. Having chosen [T, TA, and [Ar,Ay], sample the sequences s, as outlined above. 

2. Sample the point spread function in the fiequency domain by sampling the anaiytic 

transfer function H in the frequency domain with discrete spatial fiequency sampling 

defined above. Cal1 this sampled version Hd. 

3. Zero pad s[m,n] out to [NnNy]. Ifs is of infînite extent, first use a tapered whdow to 

taper the edge discontinuities fiom truncation to zero. This will prevent edge artefacts 

in the convolution. Call the zero padded (and tapered) distribution ~ [ m . n ] .  

4. Take the 2D FFT of both s,, scale it by a factor lldrdy, and c d  the result S,. 
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5. Take the 2D IFFT of the product Hd x S'. 
6. The correct result of the convolution can be found by extracthg the central [N.u.,NIo] 

core results of the inverse transfom. The results outside this core have wraparound 

error. 

5.1.4 A Note Regarding the lmplementation of the 2D-FFT Using Established 
Algonthms 
Most 2D FFT algonthms assume that the matrices to be convolved are not centred about 

the ongin, but rather have their lowest indices [1,1] coincident with the ongin (r0,1-O). 

Thus, before using most 'black-box' 2D FFT algorithms, we must fmt shift the sequences 

so their bonom edge coincides with the orign. M e r  using the 2D FFT algorithrn, the 

sequences must be shifted back so that they are centered about the origin. This shifting 

process can be accomplished by a function (called ntshifE in MATLAB), which swaps 

quadrants I and III and II and IV. 

5.2 Accurate Sampling of the Point Spread Function h for the Case of 

Single Step CW Diffiractive Propagation 

The Nyquist theorem demands that the maximal frequency content of the point spread 

Function h ultimately dictates the sampling we should use in the spatial dornain. Thus, by 

iooking at H, the fkequency dornain representation of h, we can get a pichire of what kind 

of sampling dx and Ay we need in the spatial domain. 

Inside the radiation circle, 

(6) k j + k : = ( h r f l c ) ? ,  

the transfer function H(k,,k,) has magnitude 1, and tapers off to zero exponentially 

beyond it. Thus if we choose a threshold for the maximal frequency content [k-k,,] 

of h as being slightly beyond the radiation circle, (Le. k,, = 2#/c + E, where c is a mal1 

amount), the point spread function will be well represented, and the 2D FFT of h will 

have negligible wraparound error. This can be understood b y considering that the 

transform of h would be equivalent to an aliased version of H infinitely wrapped around 

itself with penod [2nf/c + ~,37#/c f E].  It is the evanescent portion of H which will be 

aIiased back into the spectnun, and since the evanescent tails are typically negligible, the 
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wraparound errors associated with Hd will be negligible. Thus the SSC algorithm using 

the 2D FFI' will be accurate. Note that the sampling defined by the Nyquist threshold 

[kmm km] corresponds to a rate of slightly better than N2 sampling. 

If the propagation distance Az is very smdl (less than a wavelength), the evanescent tail 

of H will be significant, and sampling at intervals of Ar - h2 will not suffice. In this 

case, one might consider a much derser sampling, or? altematively. sarnpling the transfer 

fùnction H in the spatial fiequency domain, 

5.3 Accurate Sampling of the Transfer Function H 

Sampiing the transfer function H in the spatial frequency domain in 2-D somewhat more 

subtle than Christopher's axisyrneteric (1-D) treatment. The crux of the problems are 

associated with what one might cal1 circle-square issues. 

Coiisider the following three cases. 

1. The radiation circle is completely within the spatial frequency (transform) domain 

2. The radiation circle is only partially within the spatial frequency (transform) domain 

3. The spatial frequency domain is completely inside the radiation circle 

With cases (1) and (2) at l e s t  part of the radiation circle is within the transform domain. 

In general, these situations are not ammenable to spatial domain sampling of H. This is 

because the radiation circle corresponds to a region of H where there is an abrupt change, 

and very dense oscillations, and cannot be adequately sampled. Sampling the point spread 

function h in these cases is the appropnate route. For case (l), adequate sampling of h is 

guaranteed, since the radiation circle is contained within the transfonn domain, and 

wraparound error Erom the evanescent tail of H is negligible. For case (2), h must be 

sampled at U2 or better, even though this may not be the sampling scheme for the source. 

The 2D-FFT of h may, however be muicated to the extent of the angular spectrum of the 

source, enabling the computation to be done. 
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In case (3), where the radiation' circle is completely beyond the finite-extent spatial 

fiequency domain, the oscillations of H can be adequately sampled, &en the Nyquist 

rate of the most rapidly varying portion of the 2-D transfer function H (within the finite 

spatial frequency domain). 

Suppose that we wish to sample H, and we wish to do so by sampling out to [k,,k,,,], 

which is within the radiation circle. We may ask what sampling [Ak,Ak,l do we need to 

adequately represent the oscillations of the transfer function? The answer cornes from the 

Nyquist theorem, and is based on an analysis of the highest fiequency of oscillations of H 

contained within the transform domain. The highest kequency oscillations will be at the 

corner of the transform domain, since we know the oscillations become more dense dose 

to the radiation circle. We can use the 2-D Taylor expansion of the argument of H in the 

epsilon neighborhood of [k,,k,,] to express H to first order as 

thus giving an estimate [fi,&] of the maximum frequency of oscillations of H in the 

transfonn domain. 

Given that 

- j ~  J k Z - ( k : + k t )  H(k,,k,;Az) = e 

is the transfer function for the fi-equency f (and k = t@), we may define a fimction g, 

such that 

Expanding this as a Taylor's senes about (kxm,k-), to fint order 

The desired sarnpling rate, which will determine Ak, is 
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and a similar result c m  be obtained for P,. Thus the sampling rate Ak, is given by 

x n Jk' -(kt, + kt, ) (7) A k , S -  = 3 

2 P  .c 2 A Z ~  r m u  

and a similar result is obtained for bk,. Al1 of the above analysis assumes that the 

transform domain is completely within the radiation circle. 

Essentially, we can use such a scheme where the extent of the angular spectmm of the 

source is well contained within the extent of the domain, or at least the bulk of the energy 

is contained within the transform domain. This will be the case for field distributions 

which are relatively smooth, and slowly varying in the spatial sense. Thus the nearfield of 

a source would be a poor candidate for using this scheme, and sampling h would likeiy be 

a better choice. 

5.4 The Limitations of the Ray Theory Truncation for 2-D Diffractive 
Propagation 
The idea of the ray theory truncation, described in Appendix B, is to limit the maximum 

spatial fiequency extent based on the maximal angle between the source and the edge of 

the plane where correct results are desired. Tmcation in the spatial fkequency domain 

can reduce the computational requirements for the SSC and FSC a l g o n h s .  The ray 

theory truncation may be used to üuncate the product H x S, and thus decrease the size of 

the matrix on which to perform the inverse 2D-DFT. However, rnay be unprofitable if the 

2D-FFT is used, which requires that the matrix be of size 2 x 2m points (where n and rn 

are integen). The ray theory tmcation may not be used to decrease the spatial sampling 

of s or h directly, as this may incur senous aliasing errors in the convolution. 
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5.5 Sampling of the Transducer Surface 

5.5.1 Sampling in the Spatial Domain vs. the Spatial Frequency Domain 
Sampling of the aperature may be difficult due to the abrupt edges associate with the 

transducer surface. A course sampling of the aperature results in poor nearfield accuracy 

of not only the angular spectnun method, but also the Rayleigh method, and the impulse 

response method. The farther the observation plane from the source, the more accurate 

the computed field profile (b-sed or? the $ven gridding scheme) will be. Reasonably 

accurate results may be obtained for observation planes which are in the farfield of each 

sarnpling element. Nearfield inaccuracies may be a source of instability for a plane-to- 

plane fiactional step nonlinear propagation algorithm, which we intend to develop. 

Nearfield erron may propagate incrementally in the rnarching scheme, and so it is 

important, if at al1 possible to secure reasonably accurate nearfield results. One way of 

ensuring nearfield accuracy is to use an extremely dense gridding scheme. This however 

cornes at the expense of greater computational burden. 

An athlictive alternative, proposed here, is to use sample the analpic msfo rm of the 

aperature in the fiequency domain, when the analytic transform is known. This is 

possible for disks, rectangles, and, in the next section, an analytic representation of a 

linear phved array will be presented. The advantage of sampling the aperanire in the 

spatial frequency domain is that an effectively infinitesimal spatial sampling can be 

obtained, thus eliminating aliasing artefacts associated with sampling an abrupt edge. 

For phased arrays, an optimal design for eliminating grating lobes involves using 

elements whose inter-element spacing is less than h/2. Should we sample the msducer  

in the spatial domain, very fine mesh would be needed to define the smdl detail present. 

Aitematively, sampling the transducer in the spatial fiequency domain, has an additional 

advantage of using moderate sampling rates for representing the angular spectnim of a 

source. 

The angular spectrum only needs to be defined out to a spatial fkequency km, of slightly 

better than k, = 2 S c ,  since ûfter a step of difhctive propagation, the transfer fùnction H 
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will filter dl spatial kquencies beyond the radiation circle. In fact, we have found that 

sampling the aperature in the spatial fkequency domain, can give very accurate results - 
even in the nearfield. 

5.5.2 An Analytic Representation of a Linear Phased Array in the Spatial 
Frequency Domain 
Here we give an analytic expression for the 2D Fourier Transfom of a h e a r  phased 

m y .  Consider a phased array composed of N elements of height H, and width W. 

Suppose the inter-element spacing is s, and the distance kom the center of one element to 

the center of an adjacent element is d = W+s. The length of the array is D = (N-l)d+ W. 

Supposing that N is even, the aperature function may be written as: 

where A,, is an apodization factor for the nth element, e'" is a phase delay for element n, 

and 5 represents the complex phase delay and apodization of a lens applied to the 

elevation plane of the entire array and used for additional focusing. Here the function 

E(x,y)=rect(xAV)rectO,/.. Taking the Fourier Transform of the aperature function, we 

r 

If 5 = 1 (Le. there is no lens), the expression becomes 

ü a  lens is used, the y-component of the Fourier Transform may be difficult to evaluate 

analytically, but can be numerically calculated. Altematively, Wu and Stepinski (1999) 

give an expression, based on an extension of the angular spectrum approach to curved 

radiators, for a linear array with a cylindncally concave surface. Yet a M e r  technique 

for diffictive propagation nom array transducers is to use a non angular spectnun 

technique for the first step, such as the impulse response method of Ullate and San 

Emeterio (1992), which is appropriate for calculating the transient near-field of phased 

array transducers. The angular spectrurn method could then be applied in a plane to plane 

fashion following this k t  step propagation. 
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5.6 Results of One Step Djffractive Propagation from a CW Source 

5.6.1 Plane Piston Transducer 
To ven@ the accuracy of  our angular spectnim method, the field of a plane piston 

transducer was compared with the lateral profile computed with the Rayleigh integral. 

Our approach shows good agreement in the farfield, at a h .  Figs. 7(a) and (b) show the 

cornparison at the axial distance a%. 

w 
-5 4 -3 -2 -1 O 1 2 3 4 S 

lateral distance (cm) 
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lateral distance (cm) 

Figure 7 Lateral field profile at z = d/X from a plane piston (F 1.9cm) O perating at 
3MHz The field amplitudes have been normalized relative to the magnitude of the source 
excitation. (a) Obtained using the Rayleigh integral. @) & (c) Obtained using the angular 
spectnim approach. 
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5.6.2 Linear Array 
Diffraction fiom a h e a r  array using the angular spectnim method with spatial fiequency 

domain sampling outlined in section 5.6.2 was simulated. The array had 16 elements, and 

was of height H=2cm, width W=h/2, and had inter-element spacing s=;V4. It used no 

focusing or apodization, and was excited at f = 1 MHz,  with a normal particle velocity of 

lcmk The lateral field profile was computed at a distance z=x(H/~)'/A. away fiom the 

transducer. The results are show in Fig. 8(a). 

To assess the accuracy of the technique, results were compared with a calculation based 

on the Fresnel approximation. The expression used was (Crombie et. al., 1997) 

wbere 

and where o = - a 44: 
Results of this calculation are shown in Fig. 8(b). Note the close agreement between the 

two methods. 

-5 4 -3 -2 -1 O 1 2 3 4 5 

lateral distance (cm) 
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0 ' 
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Figure 8. The normal particle velocity lateral field profile of a linear array with no 
focusing or apodization using (a) the angular spechum method and (b) the Fresnel 
approximation. The relevant parameters are: N=16 elements, H = î c m , p l  MHz,  W = E ,  
s=?J4, z=rr(~/2)'/)c, v, = lcmls. 

5.7 Muifisfep Diffractive Propagation and Windowing lssues 
For plane-to-plane diffractive propagation, the infinite-extent fields must be tnincated. To 

eliminate the associated edge artefacts, we have used a radially symmetnc cosine-tapered 

window, that is unity out to a cutoff region, and then tapen down to zero at the tmcation 

region, following a cosine-trend. Truncation and windowing are important aspects of our 

model, yet have the distinct disadvantage that some energy may be lost in the plane-to- 

plane diffraction algorithm. 

5.8 Results for Multistep C W Linear Propagation 

5.8.1 Plane Piston Trônsducer 
To assess the accuracy of the multistep difiactive propagation algorithrn, we simulated 

the continuous field response fiom a plane piston transducer, and compared the axial 

profile with the known analytic curve. As shown in Fig. 9(a), the agreement between our 

algorithm and the analytic solution are in excellent agreement. Fig. 9@) shows the field 
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disiribution of the transducer over a plane dehed by the lateral and axial coordinate 

axes. The dark region near the edges ofthe bearn profile are due to windowing. 

axial distance (m) 

O 10 15 20 
axial distance km) 

Figure 9 (a) shows the axial normal particle velocity profile of a plane piston transducer 
of radius a = 1.9cm, f r e q u e n c y p l m  and initial pressure Po = 50kPa. The solid line is 
the analytic profile, and the circles are the result of the multistep angular spectmm 
method. @) Showing the field profile dong the laterd xz-plane out to the distance a2/h. 
For this simulation, the aperahire was sampled in the Eequency domain. The amplitude 
units are d s ,  
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5.8.2 Linear Phased Array 
The field profile for a linear phased array with no elevation focusing is illustrated in 

Figs. 10(a) and @) below. The angular spectmm method appears to be well suited to 

simulate the field profiles of even cornplex, non-axisymmetnc geometries. 

-2 O 2 
xin an 

Figure 10 (a) The normal velocity field profiles from a linear phased array (a) in the 
elevation plane (ô) in the azimutha1 plane. The parameters are: f i 2  N = 64 
elements, F = 10 cm, Po = 347kPa, height 1 cm, and length = 3.7cm. Note that this is a 
finite amplitude signal level. Propagation was in tissue, with a = 0.3 dB/cm and b = 1.1. 

5.9 A Note Regarding Beam-steering and the Angular Spectnrm Method 
Although this thesis will not attempt to mode1 beam-steering fiom phased array 

tramducers, we mention how it rnight be accomplished. We suggest that a non-angular 

spectnun technique, such as the impulse response method of Ullate and San Erneterio 

(1992) be used to calculate the first-step linear field profile across a plane normal to the 
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direction of propagation. Subsequent to this fist  step, the angular spectrum approach 

could be used for the incremental plane-to-plane propagations. 

5. I O  Pulse Propagation 
So far in this chapter, we have discussed the numerical implernentation of the angular 

spectrum method for monofkequency sources. In considering pulsed sources, the source 

waveform must be broken up into frequency components. Each frequency component 

will have its own angular specmun, and may be propagattd saparatdy using a propagator 

function appropriate for the distance and frequency in question. When choosing the sire 

of the mesh over the source and observation planes, sampling at slightly better than the 

Nyquist rate of the highest Erequency present in the spectrum should be used. This 

corresponds to 7J2 sampling, where X is the wavelength of the peak fiequency 

component. Pulsed propagation will be considered more fully in Chapter 7. 

5.1 1 Conclusions Regarding Diffractive Propagation of Non-axisymmefric 
Sources 
Given a planar field distribution as a source, the angular spectrum method rnay be used to 

diffkactively propagate this source to a plane a distance Az away. 

The source plane must be sarnpled at at-least the Nyquist rate of the CW fiequency 

(3J2) or the 2D-Nyquist rate of the distribution, whichever is lower. 

if the angular s p e c t m  of the source is very narrow, the FSC algorithm may be used. 

This is because otherwise potentially dangerous undersarnpling of H for extrerne 

spatial fiequencies will be weighted by negligible values from the angular specmm 

of the source. 

Once the sarnpling rate for the source is decided upon, we must decide how to sample 

the propagator function. The choice of sampling intervals for the source determines 

the extent of the spatial kequency domah. 

If the extent of the spatial fkequency domain is completely contained within the 

radiation circle, the FSC algorithm mey be used. The theorem in section 5.4 tells us 

what samphg intervals are needed within the spatial fiequency domain to adequately 
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sample H. These spatial frequency domain sampling intervals, in tum determine the 

spatial extent to which the source should be zero padded. 

If the extent of the spatial kequency domain completely contains the radiation circle, 

spatial sampling of h is better. Because the radiation circle is contained within the 

transfomi domain, adequate sampling of h in the spatial domain is guaranteed. 

if the radiation circle is only partially contained within the transform domain, h must 

be sampled at a rate slightly better than the source. the sarnpling rate being slightly 

better than ÀJ2 (so as to increase the spatial frequency extent of h to completely 

encompass the radiation circle). Upon taking the Fourier Transform of h, the resulting 

angular spectrum rnay be muicated to match the spatial frequency extent of the 

source. 

The ray theory tmcation rnay be used to truncate the product H x S, and thus 

decrease the size of the matrix on which to perfom the inverse ZD-DFT. This 

however rnay be unprofitable if the ZD-FFT is used, which requires that the matrix be 

of size 2" x 2m points (where n and m are integers). ï h e  ray theory tmcation rnay not 

be used to decrease the spatial sampling of s or h directly, as this rnay incur serious 

aliasing errors in the convolution. 

Frequency Domain sampling of transducer surfaces rnay prove to be more accurate in 

near-field computations, and rnay offer computational savings. 

With the above approach, accurate results for continuous wave propagation were 

obtained, as verified by comparison with other methods. 



Chapter 6: Modeling Finite Amplitude Propagation from 

Continuous Wave Sources 

A propagating finite amplitude wave will distort due to convective and nonlinear effects. 

This distortion gives rise to hmonics  not present in the initial spectnun, md thus in 

modeling nonlinear propagation, each of these harmonic components must be accounted 

for. The ger,ad ilpproach we propose to modeling nonlinear progression has been 

outlined in chapter 4. This chapter will give greater attention to the details of o u  

proposed scheme when the excitation signal is narrowband. In particula., we will 

comment on our choice of operator splitting approaches, the choice of nonlinear 

algorithm, and we will investigate modifications in the angular spectrum algorithm 

needed to propagate harmonics generated in nonlinear propagation. Approaches used to 

validate our algorithm will be explained, and results of our modelling will be compared 

with published data. 

6.1 Choice of Operator Splifüng Scheme 
For continuous wave sources propagating in tissue, attenuation is expected to greatly 

reduce the amplitudes of harmonics generated in the nonlinear propagation process. It is 

anticipated that retention of only a few harmonics may be necessary for propagation at 

excitations levels typically used for diagnostic imaging. Frequency domain algorithm 

lend themselves nicely to nonlinear propagation when only a few harmonics are required. 

The general idea behuid the proposed modelling rnethodology is to solve for the effects 

of diffiction, attenuation and nonlinearity separately over mal1 steps. As explained 

earlier, this can be accomplished by using an operator splitting approach with a fiactional 

step rnarching scheme. In selecting an operator splining technique, two second order 

schemes were presented in Chapter 4 which are suitable for simulation of finite amplitude 

propagation in tissue for CW sources. One of these schemes was originally presented by 

Tavakkoli et. al. (1 998), and consists of an incremental halfstep of difiction, followed 

by a whole step of nonlinearity and attenuation, followed by an additional half step of 

difnaction. The other approach was to fkst do a halfstep of combined diffraction and 
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attenuation, followed by a full step of nonlinearity, and finishing with a half step of 

combined difhction and attenuation. 

The choice of these operator splitting schemes may be based on whether it is desirable to 

combine dif ic t ion and attenuation together, or whether combined nonlinearity and 

attenuation is preferred. 

Our chosen diffraction algonthm, the angular spectrum approach, is inherently a 

frequency domain algorithm. It may save some computation t h e  to calculate the effects 

of nonlinearity in the fkequency domain, since this approach would bypass the need to 

transfomi the spectra back into the time domain. Because of this reason, and because of 

the computational efficiency afforded by needing only a few hannonics, the FDSBE is an 

attractive algonthm for CW nonlinear propagation. The FDSBE, allows the numencaI 

evaluation of the combined effects of nonlinearity and attenuation. The inclusion of 

attenuation in the nonlinear algorithm is attractive for the sake of stability of the 

nonlinear substep, as it will tend to dampen higher harmonies. This may be particularly 

crucial when large substeps, (made feasible due to the second order nature of the operator 

splitting scheme) are chosen. If the FDSBE is used, the operator splitting scheme 

presented by Tavakkoli et. al. (1998) would be the natural choice to use in the fractional 

step marching scheme. Such a scheme has been implemented by us with moderate 

success. It should however be noted that the other second order operator splitting scheme 

has aiso been implemented with accurate results. 

6.2 The Nonlinear Substep 
The accuracy and reliability of our nonlinear propagation algorithm will greatly depend 

on the accuracy and reliability of its substituent algorithms. In particular, the algorithm 

for the nonlinear substep should be not only accurate, but also stable. Ofien times in 

numencd modeling, instability is an undesirable product of nonlinearity. We consider 

here validation of our nonlinear algorithm which will be implemented in the Eractiond 

step NLP algorithm. 
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6.2.1 Validation of the FDSBE Algorithm 
To veriQ the accuracy of o u  FDSBE algorithm, we sirnulated plane wave nonlinear 

propagation in a dissipationless medium, and compared the harmonic trends with that of 

the (analytic) Fubini solution, presented in Chapter 3. This cornparison (shown in Figs. 

l(a) and (ô)) is, of corne, not valid beyond the shock distance. Fig. l(c) shows typical 

harmonic trends of a plane acoustic wave propagating in liver. 

propagation distance nomalized to s hock distance 

: .................................................................................................... ..*...- 
! L ................................................................ ........................................... 
I 

O 0.1 0.2 O .3 0 -4 0 -5 
propagation distance nomalized to shock distance 
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propagation distance nomalized to shock distance 

Figure 1 (a) The propagation curves of the first 5 harmonics (f= M H z  . . . 5MHz) using 
the FDSBE in a dissipationless medium. (b) The Fubini solution. (c) Nonlinear plane 
wave propagation in tissue for the first three harmonics, assuming an attenuaton 
coefficient of 0.3dB/(cm MHz), (Le. a linear frequency dependence of the attenuation) 
using the FDSBE. The source amplitude for a11 three plots was O. l d s ,  and the nonlinear 
parameter p was 3.5. 

6.2.2 Stability of the Plane Wave Nonlinear Algorithm 
Unfortunately, the FDSBE has complex stability properties which are not well 

understood. The algorithm involves a finite number of harmonics. and so propagation of 

temporal waveforrns which deveiop shockfionts may be troublesome if insufficient 

harmonics are retained. Trivett and Van Buren (1984) have investigated the accuracy of 

the algorithm for varying numben of harmonics. 

Step size is an important factor in contributhg to the stability of the algorithm. If the 

steps used in the FDSBE algorithm are too big, the algorithm incorrectly extrapolates the 

nonlinear distortion, causing instability problems. Christopher and Parker (199 1) found 

that limiting the step increments to a certain size resulted in stable cornputations. In 

particular, their step sizes were no larger than the distance over which the highest 

harmonie might be attenuated by a factor of 0.7. We will calI this the 0.7 rule. Mthough 
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it seems counter-intuitive to consider step sizes which limit attenuation, the issue is more 

with regards to the nonlinearity. The FDSBE cannot handle large changes robustly. Our 

work confimis the general utility of the 0.7 nile for the plane wave FDSBE algorithrn. 

We did, however, notice that the d e  did not always apply when diffraction present. 

Some instabilities were observed for moderate amplitude wave propagation in water. 

Fewer problems were encountered for tissue propagation. 

Each nonlinear substep rnay be broken down into smaller substeps to allow the 0.7 rule to 

be implemented. Larger step sizes, however, were still reiained for the diffraction 

substeps, and thus some of the instabilities we noticed may have been for cases where the 

large step size of difiaction perturbed the subsequent application of the nonlinear 

algorithrn. Further investigation of stability for Our approach is recommended for Future 

work. 

For shock wave propagations, hundreds or thousands of harmonics may be needed, 

greatly increasing the computation time of the FDSBE algorithrn. Specifically, 

computational complexity on the order of N ~ ,  where N is the number of harmonics 

retahed. Christopher and Parker used a harmonic limiting scheme whereby artificially 

high attenuation was applied to higher harmonics, thereby allowing shockfiont 

propagations to be carried out reasonably accurately with 50-100 harmonics. Because we 

are prirnarily concerned with nonlinear propagation in tissue, attenuation may work 

naturally to our advantage in this regard, and so artificial ramping of the attenuation for 

higher harmonics was not considered in this work. The scheme proposed by Pischai'nilov 

et. al. (1996) may also be useful for shock wave propagations, but was not considered 

here, as shock waves are not anticipated in tissue for amplitudes used in diagnostic 

medical ultrasound. 

6.3 The Diffractive Substep 
A difbction algorithm suitable for integraion into the CW NLP algorithrn must account 

for dimactive propagation of eequency components generated due to nonlinearity. The 

angular spectnim method has been shown to be an attractive approach to the calculation 

of difliaction. It remains to be shown, however, how the angular spectnim approach can 
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be applied to nonlinear propagation within the context of the second order operator 

splitting scheme. In particular, choosing a planar sampling grid may be a non-trivial task. 

For each harmonic profile, it must M e r  be decided whether to use the FSC or SSC 

approach to calculate diffraction. 

For simplicity, let us presume that each harmonic profile has an identical planar sampling 

scheme. Moreover, although it is possible to use an adaptive gridding scheme, we found 

it simpler to use the identical gridding scheme for each plane dong the direction of 

propagation. 

Intuitively, one might presume that the sampling intervals Ar and Ay which are needed to 

represent planar distributions in propagation of harmonics would be at most kN/2, where 

AN is the wavelength of the highest harmonic. Although this is the rate needed to 

adequately sarnple the point spread function h for step sizes k > A .  the harmonic profile 

itself may be much smoother than this Nyquist rate requires. 

In the work of Christopher and Parker (199 l), it was found that reasonable modeling 

results could be obtained by sarnpling at rates far less than the Nyquist rate of the highest 

harmonic. In fact, they observed that for focused field propagations involving up to 50 

harmonics, a radial sampling rate of 4 times the Nyquist rate of the fundamental has 

given very good results. For unfocused fields, 1 or 2 times the Nyquist rate of the 

fundamental worked very well. Like them, we can contirm of the adequacy of the 

sampling rate by examinhg the radial profiles of the highest harmonics. If the radial 

sampling rate is insufficient, then these profiles will loose coherence. 

Selection of a lateral sampling rate for the harmonic profiles of the planes, essentially 

reduces to an educated guess. If increasing the sampling rate across the lateral profiles of 

the hmonics  does not significantly produce different results, one may surmise that a 

convergent solution has been reached and that sampling is adequate. 
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Once lateral sampling rates have been chosen, each harmonic profile must be propagated 

an incrementd distance using either the FSC or the SSC algonthms. Based on the 

analysis in the previous chapter, there is a reliable way of choosing whether to sample h 

or to sample H. If the radiation circle of the nth harmonic is completely contained within 

the discrete transform domain, sampling of h should be done at the rate determined by the 

gridding of the harmonic distribution itself. If the radiation circle is partially contained 

within the transform domain, once again h should be sampled, however, sampling should 

be done at the Nyquist rate of the nth harmonic (hd2) or better - even if it requires 

sampling at a different rate that the source field. Sampling H rnay be done when the 

radiation circle is exterior to the extent of the spatial kequency domain and when al1 the 

oscillations of H contained within this domain rnay be adequately sampled by the spatial 

fiequency sampling scheme of the source. 

Suppose that the source plane harmonic profiles are sampled at a rate y tirnes the Nyquist 

rate of the fundamental, where y is a real number, typically between 1 and 3. For 

harmonics n > y, the discrete spatial frequency transform domain will be completely 

inside the radiation circles k,'+k,'=k,,'. For some haxmonic n~ > n, and above, it will be 

possible to sample H at the sarne rate as the angular specûum of the source. For 

harmonics nWl  and below, sampling H is not advisable since there rnay be convolutional 

wraparound errors which rnay give erroneous results of the FSC algorithm. Exceptions to 

this hypothesis rnay be in situations where either the propagation distance is small 

compared to the harmonic wavelena&, or where the angular spectnun of the source plane 

is very narrow. The minimum harmonic n~ for which sampling H is reliable can be 

obtained from the theorem given in section 5.4. Equation (7) in this section, rnay be re- 

written as 

where k, = nk = 2nny7c is the magnitude of the wave vector for the nth harmonic. 
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We can solve equation (1) for n to find the minhum harmonic, n ~ ,  for which frequency 

domain sampling of H will give accurate results, given the chosen sampling extents and 

gridding. This minimum harmonic is given by 

where 

6.3.1 The Virtual Source lnterpretation of Nonlinear Hamonic Generation, and 
the Danger of Using a Ray Theory Tnincation 
As a Euüte amplitude sound beam progresses through space it interacts with itself in a 

nonlinear way. In the process, hmonics  as well as surn and difference fîequencies are 

generated. One way of thinking about the harmonic generation process is to consider that 

there are v h a l  sources dong the path of the sound beam, emitting harmonic 

fiequencies. With this oversimplistic, yet useful concept, one may immediately see the 

dmger in using a Ray Theory Tnincation. Virtual sources some distance frein the 

transducer may emit harmonics which will contribute to the field profile at the 

observation plane. The angle subtended by the edge of the observation plane and the 

vimial source will be greater than the angle O,, determined by the ray theory (see Fig. 5- 

4). Thus restricting the spatial frequency extent over the observation plane by a ray 

theory truncation may lead to inaccuncies. For this reason, we chose not to implement 

the ray theory truncation in Our NLP algorithm. 

6.3.2 Sumrnary of the Diffraction Algorithm for CW Nonlinear Propagation 
Our version o f  the difiaction algorithm for propagating multiple fkequency harmonics 

can be sumrnarized as follows: 

fl  Assume that sampling the hamionic source planes at y times the Nyquist rate will 

adequately represent the angular spectra of the highest harmonic. This determines the 

maximal extent of the rransform space in the spatial fkequency domain k,, and k,, 

as well as the spatial sampling intervals Ax and dy. For simplicity, we take equal x 

and y coordinate s amphg  Iengths. 
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Choose the maximal extent [X,, Y,] of the observation plane which one desires correct 

results. Again, for simplicity, let X, = Y.. Moreover, consider for simplicity that the 

sampling extent [X,YS]of the source plane is the same size as the region of interest in 

the observation plane. Thus, X, = X, and Y, = Y,. 

Choose the maximal extent of the spatial dornain transform space: T, 5 X, c X, , 

and T' 2 Y, + Y,. (We cari, moreover choose T,=T,). This choice establishes the 

extent to whicti the source plane must be zero padded. It also esrabiisiies the spatiai 

fiequency domain gridding *, and Ak,. 

Note that the radiation circle of the harmonics n, >y are contained within the spatial 

fiequency transform domain. 

Determine the desired step size Az between planes. Note that a constant step size 

algorithm will be the most computationally efficient since the propagator functions 

would only need to be cornputed cnce. 

For harmonics n~ (given by Eq. (2)) and above, sample H in the spatial fiequency 

domain with the sarnpling prescribed by dk, = f l - d  Ak, = dc.. 

For each of the harmonics 11 = 1, . .., (nH-1), sample h. For harmoaics 1 . . . n, the 

sampling of h should be done with the intervals Ax and A4v used to sample the source 

plane. For harmonics n, . . . n r l ,  sample h with intervals determined by the Nyquist 

rate of the nth harmonic (i,R) or better. 

The product Sd x Hd c m  be truncated in the spatial frequency domain to yk, which is 

the spatial fiequency extent detennined by the sampling AqAy of the hamonic source 

p lanes . 

6.4 Scheme for festing the Diffraction algorithm for harmonies 
Testing that the diffraction algorithm will perform satisfactorily when integrated in the 

NLP algorithm is important because the high fiequency hannonics generated in nonlinear 

propagation need to be propagated accurately. Such a test is difficult to devise because 

there is no known gold standard to test whether a paaicular harmonic generated after a 

nonllliear substep is being propagated properly in the subsequent difhctive substep. 
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Our approach to testing the diffraction algorithm is to quantitatively assess the accuracy 

of linear propagation of several fiequencies from a large piston source - where hamonics 

are not generated due to nonlinear propagation, but rather originate frorn the source 

directly. The astute reader will be cautious of such a test. Having selected a sarnpling rate 

y at between 1 and 4 times the Nyquist rate of the fundamental, it may be that the angular 

spectxum for harmonics n q  extend beyond the extent of the spatial fiequency domain - 

thus incuning wraparound error. Indeed. even after difhctive propagation, where the 

angular spectnim S is tapered by a transfer function H, the extent of the angular spectnim 

rnay still extend out to the radiation circle of the nth harmonie, which is exterior ?O the 

spatial fiequency dornain for n?. For large sources and focused sources, however, the 

sound beam will be fairly directional, and the angular spectrum may be narrow - such 

that the bulk of the energy will be contained within the extent of the spatial frequency 

domain. This is the motivation for using a large disk. 

Results of our multistep difiaction algorithm for a large disk radiating several harmonics 

was compared with results of another diffkaction technique of hown accuracy, where the 

fiequencies were propagated one by one, and not al1 together. Harmonic profiles of the 

two techniques are compared in Fig. 2. 
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Figure 2 The figures on the left are latenl profiles of a disk of radius 1.9 cm using our nonlinear 
propagation algorithm, with P=O, and harmonics of 1,2, and 3 MHz being transrniaed fiom the source. The 
figures on the ri@ are lateral profiles of fiequencies f = 1, 2, and 3 MHz, respectively using a 'Gold 
Standard' one-step angular spectrum method which bas been cross verified with the (slower) Rayleigh 
integral method. This cornparison is to verify that the proposed sampling scheme for the diffraction 
algorithm cm accurately propagate multiple frequency harmonics. The parameters for the resulîs on the 
right are: #planes = IO, pressure amplitude of each fiequency coniponent = 100 kPa, axial distance at which 
the pronles were computed = a'/&, where A. is the wavelength of the 1 MHz signal. Sampling was done at 
1.1 times the Nyquist rate of the fundamental. 
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6.5 Coding of the NLP Algorithm 
The entire nonlinear propagation algorithrn was coded in MATLAB v.5.3. Al1 efforts 

were used to avoid loops in the code, as MATLAB is an interpretive language, and 

handles loops very slowly. However, array operations are a forte of MATLAB, and most 

algorithms could be vectorized to take advantage of MATLAB's optirnized anay 

processing capabilities. Sohvare exists to compile MATLAB code into C/C++, however, 

this route was not taken since run times were reasonable enough in the MATLAE! 

envuoment. 

6.6 Verification of the NL P Algorithm 

6.6.1 The NLP Algorithm with Vanishing B 
An important test to validate the nonlinear propagation algorithrn is that the algonthrn 

successfully simulates linear propagation, when P = O. Results identical to those in figure 

2(a) were obtained when a 1.9 cm disk radiating at MHz was simulated. 

6.6.2 Cornparison with U K  Modeling and Experimental Data for Propagation in 
Water 
Although our primary interest is in nonlinear propagation in biological tissue, modeling 

water propagation should also be anainable. Water has weak absorptive characteristics, 

while maintaining a non-negligible nonlinear properties. Our mode1 was used to compute 

the CW response fiom a plane disk transducer of radius 1.9crn, operating at 2.25 MHz. 

The source pressure was only 100 Wa. Baker (1988) obtained experimental and 

theoretical fields which we use to compare with our results in Fig. 3 and 4. Also shown in 

Fig. 5 is a cornparison with results reported by Christopherts (1 99 1). 



Radal Range (mm) 

Figure 3 Cornparison of our results (colored lines) with Baker's experimental results 
(solid lines) and KZK modeling (dashed lines) for the first three harmonics. The curves 
represent the lateral pofiles at 50 cm in water from a 1.9 cm radius piston at 2.25 MHz. 

Figure 4 Laterd profile at z = 275 mm of the first three harmonics produced fiom a 1.9 
cm plane piston transducer, radiating at 2.25 MHz. The colored lines are the results from 
our modei, the black solid Iine is experiment (Baker, 1988), and the black dashed iine is 
results of KZK modeling (Baker, 1988). 
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Figure 5 Cornparison with the modeling results of Christopher (1991) for the same 
paramters as given in Fig. 2. 

Our simulations for Figs. 3-5 used only 20 propagation planes. In contrast, Baker used a 

smaller step sue in his finite difference code corresponding to over 1 O00 planes. 

Christopher, too uses small steps (often 20 per cm) thus requiring hundreds or thousands 

of increments. The second order operator splitting scheme of our appmach appean to 

offer a fbndamentally new way of improving the computational efficiency white 

maintaining accuracy . 

Note the overall close agreement between our results published data. It may be observed 

in Figs 3-5 that the lateral profile of the findamental drops off at around 35mm on either 

side of the mainlobe. This is due to the windowing we applied to the propagation planes. 

A M e r  observation is that the 3" harmonic is slightiy lower than the experîmental and 

KZK results in Fig. 4, but in very good agreement with Christophers results show in Fig. 

5 .  This rnay be due to the use of the plane impedance relation we used to relate normal 

particle velocity with pressure. Both our method and Christopher's technique used normal 
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particle velocity in the NLP algorithm. The plane irnpedance relation is less accurate in 

the nearfield, and may give rise to a source of error. 

It is interesting that that in Figs. 4 and 5, the on axis fundamental level is actually below 

the levels of the harmonics. Moreover, the levels of the harmonics are fairly high overall. 

In Fig. 3, the second harmonic is less than lOdB down f'rom the fundamental, even out to 

about 20 mm off auis. This is encouraging with regards to harmonic imaghg, since 

extracthg the harmonic signals may be very challenging if the signal level is too low. 

One might wony more about signal levels in tissue propagation, since tissue is typically a 

strongly attenuating medium. Ln the next section we show some encouraging modeling 

which demonstrates the signal level of harmonics in tissue is also promising. 

6.6.3 Cornparison with KZK Modeling for Propagation in Tissue 
Modeling nonlinear propagation in tissue may be considered less of a cornputationally 

burdensome task than simulating nonlinear propagation in water. This is because 

attenuation works to dissipate the energy buildup of higher haxmonics. Averkiou et. al. 

(1997) have simulated nonlinear propagation kom a focused disk in a liver-like medium 

using a KZK modeling approach. We use our mode1 to compare with his results. For 

these simulations, the source, operating at 2 MHz, had a radius of 1 cm and a focal length 

of 10cm. In our modeling approach, we did not sample the aperature in the spatial 

kequency domain. Instead, we implemented sarnpling of the aperature in the spatial 

domain, where we modeled the focused disk as a plane disk with a complex phase 

weighting fùnction e j k / d 2 c r 2  , where d is the focal distance. This is not an exact technique, 

but nther is equivalent to a Fresnel approximation. For the modeling results in Figs. 7 

and 8, only 20 propagation planes were used with a lateral sampling of 2.1 times the 

Nyquist rate of the fundamental. For Fig. 6, more propagation planes were used so as to 

capture the axial variations of the harmonics. The deep nulls which are seen in Averkiou's 

results, but not in oun  may be due to higher axial sampling on their part, and less axial 

sampling on our part. 
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Figure 6 Axial profile of a 1 c m  radius focused disk transducer operating at 2 MHz in 
liver. a = 0.3dB/cm, c = 1486 m/s, and B = 5.0. (a) Results of KZK modeling by 
Averkiou et. al. (1 997) (b) Results obtained with our algorithm. 

latemi distance (m) 

Figure 7 Lateral profile of first three harmonics at the focal distance. (a) From Averkiou 
et. al., (1997). (b) Results fkom our model. The parameters are the same as for Fig. 6. 
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lateral distance (m) 

Figure 8 Lateral profile of the first three harmonics at 0.7 of the focal distance. (a) From 
Averkiou et. al. (1 997). @) Resuits from Our model. Parameters were the same as for 
Fig. 6. 

Note that in the axial profile (Fig. 6) the harmonic build-up due to nonlinearity occurs as 

the beam propagates, and that the signal is not well formed in the extreme nearfield. This 

can be advantageous for imaging, where surface inhomogeneities would othenvise 

perturb the coherence of the Fundamental signal. Because harmonics are pnrnarily formed 

after these surface regions, their utility for imaging deeper structures is more robust 

compared with using the fundamental. 

Note also that there is a prefocal shift of the 1st maximum of the fundamental curve. 

This occurs because energy is being depleted fYom the fundamental tu feed the generation 

of higher haxmonics. Such a shift may be accounted for in designing a tissue hannonic 

imaging system. 

In the lateral profiles, as for water propagation, the harmonic sidelobes fa11 off more 

quickly than the fundamental sidelobes. This is a major factor in the attraction of using 
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harrnonics for imaging. Lower sidelobes may mean an hprovement in the signal to 

clutter ratio. One reason that haxmonic sidelobes are lower may be that harmonic 

generation is amplitude dependent. Where the fundamental level is highest (in the 

mainfobe region) the hamonic level will also be hi&, but when the fundamental level is 

lower (in the sidelobe regions), the harmonic levels &op off rapidly. Propagation in 

tissue may actudly work to our advantage in this regard. In the mainlobe region, 

nonlinearity will dominate over attenuation if the signal is strong enough, however, in the 

sidelobe region, attenuation may dominate over nonlinearity, and the harmonic sidelobes 

will fa11 off very rapidly. 

The lateral profile of the fundamental is still very similar to the profile one would see in 

pure linear propagation. Note the classic Bessel directivity of the fundamental at the 

focus. Sidelobe oscillations called f i n g n  may be seen in the harmoinic profiles and are 

characteristic of nonlinear propagation. They have been noted by a number of authon, 

inciuding Averkiou ( 1 997). 

Finally it should be noted that the second h m o n i c  level is still quite high (only 9dB 

down fi-om the huidarnental at the focus), even for low amplitude excitation, and for 

propagation in tissue. As noted, generation of sufficient harmonic levels is important for 

realizing the feasibility of signal detection for harmonic imaging. 

6.7 Nonlinear Propagation in Tissue from a CW Linear Phased Array 
So far, the nonlinear propagation results presented have been those of radially symrnetric 

transducen. Having verified the accuracy of the algorithm we are in a position to 

demonstrate the nonlinear field response of a linear phased array. Here we consider a 

linear phased array with no bearn-steering, no apodization, and no lens in the elevation 

plane, We have used the spatial fiequency domain sampling approach outlined in section 

5.7.2. The array considered had 64 elements of width N2, and spaced h/4 apart, where 

the operating frequency was Z M H z .  Elements were of height lm, and the array was 

phased such that the focal distance was IOcm. The length of the transducer was 3.7 cm, 
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and the continuous wave excitation was of amplitude 347 kPa. Propagation was in a 

liver-like medium with B=5 and a, = 0.3dBlcm at 1MHz. Shown in Fig. 10 are the 

azimutha1 (.Y-z) and elevation (y-z) planar distributions. As expected, the harmonic 

mainlobes are much nmower than the fundamental. Moreover, as rnay be seen in Fig. 9, 

the h m o n i c  sidelobes &op oDFextremely fast compared with the fundamental. In the 

elevation plane, even when no lens is used, the harmonic profiles are narrower. In phased 

array B-mode imaging, fundamental sidelobes have been known to be particularly 

troublesome, causing clutter artefacts. For hmonic  sidelobes, however, it seems that 

attenuation dominates over nonlinearity, and thus clutter artefacts may be reduced by 

using the harmonic signal. 

There is notable h m o n i c  buildup off axis before the focal region which may be 

troublesome for imaging purposes. Moreover, the 1s t  maximum in the focal region 

seems to be slightly closer to the transducer than the 10 cm mark which we would expect. 

radial ranQe (m) 
Figure 9 Lateral profile of first three harmonies of a linear phased array. 
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- (d) fundamental (e) second hannonic (f) third hmonic 

Figure 10 (a)-@) Azimuthal plane and (d)-(e) elevation plane harmonic profiles from a 2 
MHz linear phased array propagating in a liver-like medium. The array had 64 elements 
of hight lm, and was 3.7cm in total length. The elements were Al2 across, and spaced 
7J4 apart, where h = df The focal length was IOcm. The tissue was assumed to be 
characterized by P=5, a, = 3 &/(cm MHz), and b=l. 1. No lens was used to focus the 
transducer in the elevation plane. 

Factors Affècting Speed 
Oae of the largest fictors affecting the computational burden of the NLP algorithm is the 

lateral extent and sanipling of propagation planes used. Because Our mode1 may handle 

non-axisymmetric sources, a 2D grid of sample points must be used to represent each 

propagation plane. Increasing the number of samples from 5 12 x 5 12 to 1024 x1024, for 

example, produces a large increase in computation t h e .  For a given aperature size, 
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sirnulating the field response of a highrr frequency is more computationally demanding 

than that of a lower fkequency. This is because higher fiequemies require denser 

sampling. 

The other major factor affecting the speed of the algorithm is the number of harmonics 

included. Luckily, for tissue, we can attain reasonable results with only a few hannonics. 

For water. there is less attenuation. and. in general, more harmonics are needed. 



Chapter 7: Nonlinear Propagation of Pulsed Ultrasound 
As noted earlier, when the excitation is pulsed, more fkequency components are needed in 

the initial spectrum, and thus both the nonlinear substeps and the difhctive substeps are 

burdened by a computational load much greater than in the narrowband case. Efficient 

modeling of nonlinear propagation of wideband signals requires a slightly different 

approach than that used for CW excitation as outlined in the previous chapter. In this 

chapter we intend to develop a methodology appropriate for pulsed excitation. 

7.7 Choice of the Nonlinear Algorithm 
Use of the FDSBE algorithm is far less attractive for pulsed excitations than for 

continuous wave excitations. In Chapter 6 it was noted that the computational complexity 

of the FDSBE was on the order of N ', where N is the number of frequency components 

used. For pulsed sources hundreds or even thousands of fiequency components may be 

needed to accurately sarnple the temporal variations of a wideband signal. Artificial 

absorption of higher hannonics has been used in the continuous wave case to limit the 

harmorks created due to nonlinearity. However, such as scheme when applied to pulsed 

waveforms, may cause unnatural distortion. Most investigaton agree that using a thne 

domain nonlinear algorithm is a much more attractive option. For difiaction, our 

intention is to use the angular spectnim method, as this approach has shown great 

computational savings over the Rayleigh method. The disadvantage, then, of using a time 

domain nonlinear operator is that we will need to transform back and forth between tirne 

and fiequency domains for each substep in the NLP algorithm. Not only will this process 

take additional time, but such numencal book-keeping will likely incur some errors. 

However, the computational savings to be won by using a time domain nonlinear 

algorithm, may outweigh any potential t h e  Iosses or inaccuracies due to the transform 

algonthms. 

Of the two time domain algonthms for nonluiear plane wave propagation presented in 

Chapter 3, we selected the algorithm developed by Christopher, as it is very stable, is 

cornputationally efficient, and is reasonably accurate. To ver@ the accuracy of our code, 

we cornpared our T h e  Domain Solution to the Nonhear Equation (TDSNE) with the 
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Fubini solution in the pre-shock region for a sinusoidal excitation. The two methods 

compared well (Figs. l@) and '(c)), although discrepancies may be observed when the 

step size Az is too large (Fig. 1 (a)). The TDSNE also captured relatively well the 

dynamics of plane wave nonlinearity of pulsed sources (Fig. 2). Both step size and 

sampling fiequency of the waveform play an importait role in the accuracy of the 

nonlinear substep. When this algorithm is integrated into the fractional step NLP 

dgoritha, multiple nonlinear substeps may be needed for each large diffractive substep. 

This is especially the case if large substeps are used. 

propagation - - - - - -  distance nomalized to shock distance 
- - - - -  - - - -  

- - - -  
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propagation distance normalized to shock distance 

Figure 1 The harmonic profiles from the time domah nonlinear algorithm for plane wave 
propagation with (a) 20 harmonics and 20 Az steps. @) with 20 harmonics and 100 & 
steps compared with (c) the Fubini solution out to the shock distance. Note that there are 
some discrepancies in (a) due to insufficient step size. 
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Figure 2 Plane wave pulse propagation. (a) Initial waveform @Distorted waveform after 
propagating 0.7 of the shock distance (c) Initial spectnim of the waveform, and (d) 
spectnim of the distorted waveform conesponding to 0.7 of the shock distance. 
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7.2 Choice of Operator Splitting Methods 
In Chapter 6 we selected the second order operator splitthg method of Tavakkoli et. al. 

(1998) to implement the fiactional step marching scheme of the NLP algorithm. In large 

part this choice stemmed fiom the hope that by combining absorption with the nonlinear 

substep the FDSBE would be more stable. For pulsed sources, we have opted to evaluate 

nonlinearity in the time domain, and there is no obvious way to include attenuation in the 

TDSNE algorithm. One option would be to evaluate nonlinearity and attenuation step by 

step over very mal1 intervals (smaller than the difeactive substeps which may be used in 

the NLP aIgorithm). Another alternative is to calculate the attenuation with the difiactive 

substep. The TDSNE is fairly stable, so the absence of  attenuation in the nonlinear 

substep will not greatly affect the stability of the NLP algorithm. Moreover integration of 

attenuation in the diffraction algorithm is relatively easy. By modifying the propagator 

fùnctions h and H to include absorptive effects, 
r 'i 

and 

attenuation may be accounted for in a very computationally efficient way. In light of our 

choice to combine the effects of attenuation and difhction, the operator splitting scheme 

we choose to implement is not that presented by Tavakkoli et. al., but rather the new 

scheme proposed in section 4.2, and illustrated in Fig. 2 of chapter 4. In this scheme, the 

combined effects of diffraction and attenuation are propagated over an incremental half 

step, followed by a full step of nonlinearity, and finishing with a half step of attenuation 

and difiaction. 
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7.3 The Diffraction Substep 
A few key maners need to be addressed when deciding on a diffi-action algorithm for 

nonhmr pulse propagation: sampling of the propagation planes, choosing between the 

FSC or SSC algorithm for each discrete spectral frequency, selection of temporal 

sampling and detemiining an adequate temporal extent to the signal. We will deal with 

the later two issues first. 

7.3.1 Sampling the  Temporal Signal 
Sampling of any temporal signal should be done at a rate equal to or greater than the 

Nyquist rate, which is defined to be twice the rate of the highest frequency component in 

the spectrum. If a pulse has center fiequencyh and bandwidth AL then the sampling rate 

should be at least fN,,,,=2(f&Af12). 

For a finite amplitude pulse, hannonics will be generated during nonlinear propagation 

which are not present in the initial spectrum. Because it is difficult to anticipate the 

complex interaction between difhction, attenuation, and nonlinearity, selection of a 

sampling rate becomes nontrivial. 

For noniinear propagation in tissue, it is likely that attenuation will filter high fiequencies 

generated due to nonlinearity. Based on our experience fiom CW propagation in tissue, it 

is expected that no more than 5-10 harmonies of the center fiequency rnay be required for 

the kinds of amplitudes allowed in diagnostic imaging. Thus, we should choose the 

sampling fkequency to be 5-1 0 times the Nyquist rate fmUist=2&+Afl2) of the initial 

spectrum. 

7.3.2 Temporal Extent of the Signal 
To avoid temporal aliasing of the signal in our plane-to-plane fiactional step marching 

scheme, a sufficiently long temporal window, or pulse repetition intervai (PRI) must be 

used in the initial signal. To choose an adequate temporal window, b o t .  linear and 

nonlinear effects must be considered. 
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Linear Analysis 
Consider a piston transducer of radius a, and consider that we wish to send a pulse f?om 

the transducer where the pulse has duration cr. Now consider that we observe the 

waveform at a point (x,y) on a plane a distance z away from the source. 

The time marking the beginning of the observed waveform will be given by the shortest 

transit time betsveen the tmnsducer and the observation point. The time marking the end 

of the observed waveform is given by the Iongest transit time between the transducer and 

the point plus the length of the pulse. 

If (x,y) is in the shadow of the transducer, ( i.e. r = (.r2 + )'" 5 a ) the tirne duration of 

the observed wavefonn is aven by: 

For a given z. Tp is maximal for r = a. At r = a, 7'''' is maximal for FO. 

Thus, the absolute longest duration the pulse could be is given by: 

If (x,y) is not in the shadow of the transducer, the length of the pulse is given by 

which is maximal for any given r when z=O, and in which case, once again we have: 

Should we want to ensure that a pulse is adequately represented in the fkquency domain, 

we would then need sampling given by the Nyquist theorem: 

If an insufncient temporal extent is used for pulsed propagations, the waveform at the 

observation point may be aliased. The closer the observation plane to the source, the 
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greater the extent of a temporal window is needed to prevent aliasing errors. A plot of the 

required temporal window venus axial distance fiom source is shown in Fig. 3. 

normalized axial distance z/(a2/)c) 

Fig. 3. Pulse duration required to avoid temporal aliasing as a funcfion of axial distance 
for a 1.5 cm radius disk, and a pulse width of 10 ps. 

Nonlinear Analysis 

A peculiar phenomenon occurs in noniinear propagation, where difference frequencies 

accumulate in a spectral region below the fundamental band of the signal. This 

phenornemon has been coined "self demodulation" by Averkiou (1 993) and others. In 

highly absorptive media, attenuation may moreover filter out a good deal of the spectral 

fiequencies above this demodulated band, and thus produce a signal which is of lower 

fkequency than initially transmined. This self-demodulation phenomenon can sometimes 

be accompanied by signal elongation. If the temporal extent of the pulse is shorter than 

the resultant pulse Iengthening, wraparound error may occur. It is our experience, 

however, that the temporal window required for the linear analysis of the previous section 
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is more than adequate to accommodate the small degree of pulse lengthening and self- 

demodulation which occurs in nonlinear propagation through tissue. 

7.3.3 Laterai Sampling of the Propagation Planes 
For linear propagation of a pulse using the angular spectmm method we might presume 

that planar sarnpling should be done at a rate equal to or better than the Nyquist rate of 

the highest spectral componentf;, (thus dr A,& where A,, = c(fM,). For unfocused 

sources, it may well be that such dense spatial sampiing is not needed farther away frorn 

the transducer, and a ray theory truncation rnay enable reduction of this sampling rate. 

For finite amplitude propagation, harmonic profiles rnay Vary more spatially than the 

fundamental profiles, and greater sampling rnay be needed. Borrowing insight from the 

CW investigations, a good guess for spatial sampling of unfocused sources rnay be at 1 to 

2 times the Nyquist rate of the highest spectral component, fm., in the initial spectnim. 

For focused sources between 2 and 4 tirnes this Nyquist rate rnay be more appropriate. 

7.3.4 Sampling of the Propagator Functions 
After temporal and spatial sampling schemes have been chosen, and the axial intervals 

between propagation planes selected, the techniques outlined in chapters 5 and 6 rnay be 

used to choose a sampling scheme for the propagator functions. For each frequency 

componentf, = nf, = n/T,, the choice of sampling either the spatial point spread function 

h or the f?equency domain transfer function H, once again hinges on whether the 

corresponding radiation circle for the given fiequency is wholly or partly contained 

within the discrete spatial fiequency domain. Suppose that lateral field profiles are 

sampled at < times the Nyquist rate of the highest spectral component f,, =f,+A\f/2. This 

corresponds to a rate of rYmM/fi times the rate o f '  = VT,. We rnay de fine an index 

such that for frequency components/, up to nWl, the point spread function should be 

sampled. For n a r r ,  sampling of the transfer nicntion H may be employed. For n <y, the 

sampling of h should be done with the intervals Ax, Ay used to sample the source plane. 
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For each fiequency componentJ, such that y<n<nirl, the point spread function h should 

be sampled with at least the Nyquist rate off,  (i.e. & = A&). 

7.4 Verfication of the Diffraction Algorithm 

To veri@ the diffraction algoithm, we simulated the puised response of a plane piston 

transducer and compared with the waveforms obtained h m  the impulse response 

mcthod. Specificdly, a Icm disk transmining a pu!se with a peak amplinide 1 cm/s, a 

center fiequency of MHz, and 50% bandwidth (figure 4(a)) was simulated. Excellent 

agreement was obtained, as s h o w  in figures 4(b) and (c). The observation point for these 

figures was on axis at a distance of a'/&, where h, is the wavelength of the center 
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Fig. 4 Cornparison of small signal difhction calculations (a) Initial pulse wavefom 
calculated using (b) our angular spectnun approach, (c) the impulse response technique. 
For a disk transducer at a ? ~ .  
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7.5 Veritïcation of the NLP algorithm 
Having verified the accuracy of the nonlinear plane wave algorithm, and the diffraction 

dgorithm, venfication of the full nonlinear propagation (NP) algorithm was performed 

with a few key tests: 

7.5.1 The Quasi-CW Limit 
For a long quasi-continuous wave pulse, the pulsed nonlinear propagation algorithm 

should Sehart like the continiious wwe algorithm of chapter 6. To this end we compare 

the results of Averkiou et. al. (1997), with our own modeling technique for a focused disk 

propagating 100 cycles of a 2 MHz sine wave in a liver-like media. We used 25 

propagation planes, where each plane was divided up into 5 substeps for the nonlinear 

algorithm. In this cornparison, shown in Fig. 5, there are some discrepancies. A cornpiete 

explanation for these discrepancies is not understood, however, it is hypothesized that the 

step size may be too large to account for the complex interaction between difiaction and 

nonlinearity. 



lateral distance (m) 

Fig. 5 .  Cornparison of the new NLP algorithm for pulsed sources (a) in the quasi-CW 
limit with the NLP algorithm (b) of the previous chapter. Shown are the lateral harmonic 
profiles of a 2MHz fundamental signal at the focal distance (z=lOcm) of a concave disk. 
Both results may be compared with Averkiou et. al. ( 1997). 

7.5.2 The Linear Limit 
In the limit where p approaches zero, the nonlinear algorithm should behave in a linear 

way. For this test we try to reproduce the linear propagation results of figure 4(c) abovc. 

The result of our algorithm, shown in figure 6 is in excellent agreement with the result 

obtained by the impulse response method. 
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Fig. 6. The observed waveform computed using our pulsed NLP algonthm in the limit of 
vanishing P. This result may be compared with Fig. 4(c). 

7.6_(;!alitative - - - -  Analysis - - - -  of Nonlinear Pulse Propagation 
- - - - -  - - - -  

Our mode1 demonstrates unique characteristics of nonlinear propagation, including 

wavefiont steepening, and harmonic generation. Figs. 7(a) and (b) demonstrate these 

characteristics. Note in Fig. 7(a) that there is an interesting asymmetry in the envelopes of 

the positive and negative portions of the waveform. This asymmetry is a trademark of the 

interaction between diffraction and nonlinearity, and has been seen in water propagation, 

as descnbed by Hamilton (chapter 8 of Hamilton and Blackstock, 1998). This asymmetry 

rnay be significant with respect to standards in medical ultrasound. Current standards 

limit the Mechanical Index (MI), which is a masure of the peak negative pressure 

divided by the square root of the center frequency. The MI is used as gauge to judge the 

liklelihood of cavitation bioeffects (Apfel and Holland, 19913, and is currently based on 

linear analysis. The amplitude asymmetry shown in Fig. 7 may suggest a more carefil 
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analysis of standards, to account for nonlinear effects. Averkiou and Hamilton (1 997) 

have shown that the negative pressure is ofien maximized before the focal region of the 

transducer, and thus particular attention should be directed to monitoring possible adverse 

cavitation phenornena in the prefocal region. Their simulations, however, were for water 

propagation. It is hoped that future investigations using this mode1 for tissue may shed 

additional light on the important area of standards. 

time (p) 



Figure 7 
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(a) Waveform at the focus of a Gaussian apodized, focused disk transducer after 
propagation through a tissue medium. The disk radius was 1.5 cm, the focal length was 6 
cm, and the Gaussian amplitude shading of the source was such that the half-amplitude 
radial distance was 0.84 cm. The pulse used was a sinusoid modulated by the square root 
of - - - -  a Gaussian function with 50% bandwidth, and amplitude 257 kPa. The tissue had 

- - - - -  - - - -  
- - - -  

parameters P=5, ~ = 3  dBIcm at 1 MHz2and &L3. - 

- - - - -  - - - -  

7.7 Computational Resources and Memory Management 
Simulation of transient excitation nonlinear propagation kom non-axisymrnetric sources 

cm require tremendous computational resources. For any given propagation plane, 

sevzral hundred megabytes - and even Gigabytes of data must be processed. Even with 

512 Mbytes of RAM, and a 550 MHz Pentium III processor, extensive memory 

management was required. Several Gigabytes of fiee hard-disk space were used as a 

swap-space to temporarily store data. Fortunately, even with the time consurning 

processes used to manage the deluge of data, the code could be run within a few hours. 

Qualification should be given, however, to clarify that increasing the nurnber of lateral 

samples in the propagation planes above 256 x 256 or 5 12 x 5 12 points may incur a huge 

computational load, and the code may take days to run. 
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8.7 Summary 
The primary contribution of this thesis has been the development of an efficient computer 

mode1 for sirnulaihg nonlinear ultrasound propagation in tissue. This model shall enable 

accurate modeling of finite amplitude ef5ects in modem clinical ultrasound scanners, and 

in particular, may be useful as a tool for optimising the design of tissue harmonic imaging 

systems. 

Because current modeling techniques involve great computational burden, a pnmary 

focus of this work was to develop an algonthm which is as computationally efficient as 

possible. Towards this end, a second order operator splitting approach similar to that of 

Tavakkoli et. al. (1998) has been devised, so as to enable the computation of difçaction, 

attenuation and nonlinearity separately over small steps. The second order nature of this 

scheme allows the use of relatively large axial Ulcrements in a Eactional step marching 

scheme. Our model has accurately reproduced published expenmental and theoretical 

data with as few as 20 axial increments. This may be contrasted with other techniques 

which typically require hundreds or thousands of axial steps. Our computer model has 

been able to evaluate the nonlinear field response of continuous wave sources in as M e  

as a few minutes, and wideband transient responses in a few houn. In cornparison, 

numerical modeling of nonaxisymrnetric pulsed sources using current methods has taken 

on the order of days. 

Synthesizing an efficient diffraction algorithm was a primary thnist of our efforts. Of the 

effects of difiaction, attenuation, and nonlinearity, diffiction is by far the most 

computationally complex. Tavakkoli et. al. have estimated that the Rayleigh integral - 
based difhction algonthm which they used in their nonlinear propagation model took 

90% of the computation t h e ,  even for axisymrnenic sources. We investigated several 

methods of computing difhction, including the Rayleigh integral, impulse response 

methods, and the angular spectnim method. Because the impulse response method is not 

valid for non-separable field distributions, it was discounted as a candidate for a 
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difiction aigorithm appropnate for a plane-to-plane fractional step rnarching scheme. 

The angular spectnim approach was found to be the most cornputationalIy efficient of the 

difbction algo&hs when fast transfom algorithms are used. Moreover, the angular 

spectnun method is vdid for non-separable field distributions. Because of these reasons, 

we chose the angular spectnun method to calculate the effects of difiaction in our 

nonhear propagation algorithm. 

Christopher and Parker (1991) have used the angular spec tm approach for acoustic field 

propagations, however, the techniques they descnbe are for axisymrnetric sources. 

Although Christopher has also simulated non-axisymmetric sources (e.g, Christopher, 

1997), the step sizes he used were very srnaIl (ofien less than a wavelength), and thus his 

approach does not well descnbe the large step approach we wish to take. In this thesis, a 

new numencal scheme for implementing the angular specaim technique, applicable for 

large axial steps, has been devised for sources which do not possess radial symmtery. 

For continuous wave signals, attenuation and nonlinearity were combined together, and 

the nonlinear substep was computed using the kequency domain solution to Burgen 

equation. For CW sources propagating in tissue, only a few harmonic were non- 

negligible, and so evaluation of the nonlinear substep in the Frequency domain was 

relatively efficient. It was also seen that the attenuation of tissue afforded additional 

stability to the FDSBE algorithm. 

For wideband signals, a tirne domain algorithm was used to compute the nonlinear 

substep, as the frequency domain approach has an undesirable computational load for 

large numben of eequency components. Attenuation was combined with the diffraction 

substep in this case. Pulsed simulations were a good deal more t h e  consurning than the 

continuous wave scenario, and often required extensive memory management. Several 

gigabytes of Bee hard disk space were sometimes needed- even with 5 12 Mbytes of 

system RAM. 
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The continuous wave algorithm was verified with the linear algorithm in the case of 

vanishing nonlinear parameter P. Moreover, our model compared well with published 

results for nonlinear propagation in both water and tissue. 

The algorithm for nonlinear pulsed propagtions was verified in the quasi-continuous 

wave case, and in the linear limit. 

8.2 Recommendatîons and Future Work 
The most obvious recornrnendation for extension of this research is the experirnental 

verification of the pulsed nonlinear model. Once the model is verified experimentally, 

various investigations cari be done using the model. 

So far, only one way (transmit) propagation has been considered. A pulse echo imaging 

system may very well be simulated by adding code for scattering of objects, and for 

propagation of the echoes back to the transducer. Since tissue scattenng is typically fairly 

weak, linear propagation is sufficient for simulation of the reception portion of the 

algorithm. The impulse response method of Ullate and San Emeteno (1988) would be a 

good candidate for simulating the received response. 

Because Tissue Harmonic Imaging is a relatively new modality, there is still much to be 

undentood about optimizing system parameten. Design of an imaging systern based on 

nonlinearly generated harmonies should have some distinct differences as compared with 

design of a typical pulse-echo B-mode imaging system. To this end, our model may be 

used to simulate a tissue harmonic imaging system, and computationally investigate 

optimal design parameten. Some points to investigate are as follows: 

A high-pas or band-pass filter must be designed to filter the spectnim of the received 

echo and pass the second harmonic. The ability of the filter to reject the fundamental 

is cntical since its presence will contribute to a loss of contrast resolution. A novel 

pulse inversion scheme has been proposed by Simpson et. al. (1999), for rejection of 

the fundamental band in contrast harmonic imaging. This scheme rnay also be applied 

to tissue harmonic imaging. The premise of pulse inversion is to send two pulses - the 

second being an inversion of the h t .  The echoes of these pulses may be added, thus 
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extracting the nonlinear portion of the signal, and rejecting the fundamental band. Use 

of our model to better understand pulse inversion and its role in harrnonic imaging 

would be a valuable for tissue harmonic irnaging system design. 

* The dynamic range of the A-D converter in an imaging system must be large enough 

to not only detect the second harmonic, but to differentiate the second harmonic from 

the noise floor. The small signal amplitude is a significant concem in tissue harmonic 

imaging. This means that one typically will want to employ either large drive levels 

fiom the source, or use aggressive focusing. Aggressive focusing, however must be 

traded for depth of field. The investigation of drive levels, focusing and depth of field 

using Our model would be very worthwhile. 

0 Given a certain availab le bandwidth for the transducer, it must be decided in what 

band the transmitted pulse may be sent at, and what band the second harmonic signal 

should be received at. We must also defme what we mean by the second harmonic 

signal. We rnay use as our second harmonic signal the absolute magnitude of the 

pressure, or the second harmonic level relative to the fundamental. If we select the 

absolute defuiition of second harmonic signal, we wish to transmit in a band such that 

the fundamental p,  is maximized AND the received signal pz is maximized. Suppose 

that the amplitude of the paisband for the fundamental is LI, and that the amplitude of 

the passband for the second harmonic is LI. Ifwe make a cmde approximation that 

the amplitude of the fundamentai signal is approximately the square of the second 

harmonic, we should then maximize L~' x Li. Given a semicircular Eequency 

response of the transducer, this results in transrnitting at approximately 7/3 of the 

center frequency of the transducer, and receiving at approximately 4/3 of the center 

kequency (Fig. 1). 
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Fig. 1. One possible way of selecting 
transmit (T,) and receive (R,) bands 

0. Should we choose as our definition, however, the second harmonic level relative to 

the fundamental, and we approximate this level as the fundamental squared, we want 

to rnaximize L,' x ( L ~ I L ~ ' ) ,  or in other words, maxirnize L2. This means receiving at 

the center frequencyJ of the transducer and transmitting at K/, as shown in Fig. 2. 

Figure 2 Another possible scheme for 
choosing the transmit (T,) and receive 
(Rx) bands 

If we do transmit at %hi the transmit band may be more band-limited than if we were 

to transmit at 2/3f,. 

Ushg our mode1 to investigate which of these schemes is optima1 may enab 

of a few decibels of signal level, or some amount of improvement in system 

performance. 

le a gain 
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For hannonic imaging, one must use caution when trying to transmit very short 

pulses. Short pulses will have a wide spectral envelope, which, may interfere with the 

second harmonic signal in the receive band, complicating the filtering procedure, as is 

shown in Fig. 3. Thus, sometirnes axial resolution must be sacrificed for contrast 

resolution. The pulse inversion scheme mentioned above may help in this regard, 

allowing wider bandwidth pulses to be sent without sacnficing contrast resolution. 

Simulation may play a valuable role in understanding how to choose the transmit 

waveform, and how pulse inversion may be used to overcome the problem of 

harmonic band interference, 

Fig. 3. Wideband signals may overlap 
in their h m o n i c  bands, complicating 
the filtering procedure. 

4 The signal to noise ratio (SNR) is of critical importance in harmonic imaging. For 

linear B-mode imaging, several investigaton (O'Donnell, 1993; Welsh, 1998; 

Misaridis, 2000) have explored the use of coded excitation and pulse compression to 

improve the SNR of the received tissue echo. The premise of coded excitation is to 

send a long coded waveform, and cornpress the received echo - often by a matched 

filtering technique. By using a long pulse, one may increase the received energy 

without increasing the signal level above standards. Compression of the signal thus 

enables the signal energy to be temporally localised, while the noise level is 

unaffected by the compression. Li (1999) has recently explored the use of coded 

excitation in tissue h m o n i c  imaging. One of the problems of the technique of Li is 

the inability to completely reject the fundamental band using filtering. It may be 

possible to use pulse inversion to reject the fundamental signal. Our mode1 could be 
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used to simulate nonlinear distortion of coded wavefonns. The results of these 

simulations may weil be used to investigate the feasibility of pulse inversion and 

pulse compression in tissue harmonic imaging. 

8.3 Conclusion 
We have developed a computer mode1 of nonlinear ultrasound propagation in tissue, 

which can simulate the acoustic field from non-axisymrnetric transducrrs. Our mode1 

appears to offer some amount of compuiational savings compared with existing 

techniques. The continuous wave response of disk transducers has been simulated and 

compared with published results for nonlinear propagation in both water and tissue. 

Transient excitation simulations have also been done, and have been verified in the quasi- 

CW limiî, and in the lin& where nonlinearity is negligible. The mode1 we have developed 

appean to be a promising tool for simulation of nonlinear propagation fiom a medical 

phased anay scanner. Such a tool may be extremely useful in optirnizing the design of a 

tissue harmonic imaging system. 
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Appendix A: Proof of Operator Splitting Methods 

Theorem: Proof of a second order operator splitting 

Our starting point for the proof of the second order operator splitting, presented in 

chapter 4 is the mode1 equation: 

Where the operaton L, , i, , and LN represent difliaction, absorption, and 

respectively. Operaton r a r e  defhed such that rD.&~(x.y ,~o. t )  is a solution 

equation 

attenuation, 

to the sub- 

at plane z = io+&, given the initial distribution v(x,y,zo,t) at plane z=z,. Operators cd.&, 
rNdr> rDcAmk, rD+A+N,dr etc. can be defined in a similar way. 

We want to show that 

(3) r D + A , & O < i 2 r N , k r D + A v ~ ~ 2 v ( x 9 ~ < z ~ 9 t ) = r D + A + N J - v ( x , ~ > z ~ 7 t ) C o ( d - 3 ) * *  

To do this we fmt rnust show that the operators L commute with the differential d l  a. 
We will then be in a position to apply the Taylor theorem to show the relation (3). 

Lemrna 1: 

The diffraction operator i, cornmutes with d / & . 
Proof: 

If v is a solution to (2), it will also be a solution to the homogeneous wave equation. 

S i n c e h l  h is dso a solution to the homogeneous wave equation, we may make the 

substitution v + ûv / h in equation 2, yeilding 

which proves that LD comrnutes with a / & . Z 

Lemrna 2: 
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The attenuation operator i,, commutes with d / dz . 

Proof: 

A general forrn for an attenuation operator may be written as a convolution integral: 

a, = 
(5) -=I~(z,s-rt)-v(z,rt)ds'=~,-v, 

as -- 

where K is a kemel which represents the fiequency dependence of the attenuation 

(Tavakkoli, 1998). From j j j  ir is ciear bat 

proving the commutation relation. 

Lemrna 3: 

Although the nonlinear operator does not commute with d I & , we c m  define an operator 

(such that i,v = Â,v' ), which commutes with d / 8. As this is sufficiently clear, no 

proof is provided here. O 

- - - -  - - - - -  - - - -  - - - -  

We are now in a position to prove relation (3). 

S t e ~  1:  

A solution to the evolution equation for dif ic t ion and attenuation, 

at plane Z + ~ / Z ,  given the initial condition v.=v(x.y,z,t) over plane z rnay be written as 

(z) rD+AIL.,2 (=) 

Step 2: 



We may propagate the result fiom step 1, presuming this result is located at plane r using 

a nonlinear propagator. A solution to the evolution equation for nonlinearity 

New substituting for v,  we get: 

Now collecting tems with common factors &, A& etc, we obtain 

L A v O  +A ,, i { i y o  + ~ , ~ ~ : } + d l ' { ~  v , ( z ) = v 0 ( z ) + ~  - ,v O D+A O + À ~ V ~ Â , ~ V ~  + 0 ( k 3 )  

Step 3: 

i 
We may propagate the effects of difhction and attenuation fiom the result fiom step 2, 

presuming this result is located at plane z + A d 2  A solution to the evolution equation (7) 

for diffraction and absorption given the initial condition defined in step 2 may be written 

as 

v3 ( 5 )  rDc.4&a-,2 ( ~ v , J ~ + A ~ i 2 ~ 0  ) = ~ D + A & ! ~ V Z  
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Substituthg for vz and collecting terms with common factors of dz, d, etc. we obtain: 

v3(z )  = Y. + ~ S & , + ~ V ~  + Â,~V.I} 

We are now in a position to compare the result from step 3 with the field profile obtained 

Erorn the combined eflects of difk~ctior.~ nonlineaxity, uid îtknuation. Thus we wish to 

compare v~ with a solution to the evolution equation 

a distance k away fiom plane z, given the initial profile v(.r.y.z.t) accross plane z. We 

have: 

& 

Comparing this expression with the expression for v3, we find that 

Thus we have shown that this operator splitting scheme is second order. 

Endofproof. 0 

Corollary 1 : A second order operator splitting for the KZK eauation 

The retarded time integrai of the KZK equation may be expressed as an evolution 

equation (described in equation 3-14 through 3-17) which satisfies the second order 

operator splitting theorem proved above. 

Proof: 

The attenuation operator defined by (3-16), and the diffraction operator (3-14) clearly 

commute with the operator a / & . The forrn of nonlinear operator may be redefined as 
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the operator ÀN described above, proving its comrnutivity with a 1 & . Any operators 

which satisfy an evolution equation (1) and comrnute with 8 /& are subject to the 

second order operator splitting theorems of Tavakkoli et. al. (1998) and the scheme 

provided above. Thus these second order operator splitting techniques may be extended 

to the KZK equation. G 

Corollarv 2: The approach of Chnstopher and Parker ( 133 1 j is equivaient to a first ordcr 

operator splitting 

of the evolution equation (9). 

Proof: 

step 1: 

A solution to the evolution equation (7) for difiaction and attenuation, at plane z + k ,  

given the initial condition v,=v(.r,y,z.t) over plane z may be written as 

vI (z) rD+A.k~o (z) 

S t e ~  2: We may propagate the result fiom step 1, presuming this result is located at plane 

z using a nonlinear propagator. A solution to the nonlinear evolution equation (8) an 

incremental distance dr fiom the result of step 1 may be given as 

Now substituthg for VI  we get: 
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We are now in a position to compare with the field profile obtained fkom the combined 

effects of diffraction, nonlinearity, and attenuation. Thus we wish to compare v~ with a 

solution to the evolution equation (9) a distance Az away from plane z, given the initial 

profile v(x.y,z,t) accross plane z. We have: 

Comparing this with the expression for vz, we see that the two expressions are valid to 

k t  order, but not to second order. S 



Appendix B: The Angular Spectrum Approach for Radially 
Symmetric Sources 

8.1 Introduction to Approach of Christopher and Parker 

Christopher and Parker (1 99 1) have investigated plane to plane di ffiactive propagation 

usine the Anglar Spectnun approach. Their paper treats the field propagation of planar. 

baffled, radially symmetric acoustic sources. Because the sources considered had radial 

symmetry, Chnstopher and Parker showed that a Discrete Hankel Transform (DHT) 

could be used to numencal~y implement the convolution of the source with the 

propagator hinction, il, descnbed in 4.6. The Hankel transform is equivalent to a 2D- 

Fourier transform, when there is radial symmetry. The double integral of the Fourier 

transform relation reduces to a single integrai with a radial coordinate transformation. As 

the name suggests, the discrete Hankel transform is a discrete implementation of the 

analytic Hankel transfom. 

Two approaches have been taken to sarnpling the propagator functions for numerical 

implementation of difkictive propagation. One method is to sarnple the propagator 

function h (the point spread function) in the spatial domain. The other is to sarnple the 

transfer function H in the spatial fiequency domain. These two approaches may have very 

different consequences, which will be discussed after introducing some notation. 

8.2 Notation 
Consider a disk transducer of radius a, transmitting at a single frequencyJ Let us denote 

the source field, and point spread functions as s(r) and h(r), respectively, where r is the 

radial coordinate. Their analytic transfoms will be denoted by S(kJ and H(kJ 

respec tivel y, w here k, is the radial spatial frequency. 

The discrete implementation of the angular speclnim method uses sampled versions of s 

and h, which may be defined as sd[m]=s(r,), and hd[m]=h(rm), where r, = mAr is the mth 

radial point, and Ar is the sampling interval. The distance between samples, Ar, can be 

chosen to be less than (N2), which is the Nyquist rate of the fundamental fiequency. The 
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extent Tof the radial spatial domain, should be chosen such that T is greater than r. + a, 

where ro is the extent to which correct results are desired. This choice of T prevents 

aliasing in the region of interest O+cr,. 

We shall denote the discrete Hankel transform (DHT) of sd as SA and that of hd as Hd. A 

hat 'N and a subscript '8 will be used to denote sampling done in the spatial fiequency 

domain. Frequency domain sampling of H, thus gives a sequence 

fi [ i l  = H ( k i ) .  

The inverse discrete Hankel transform of the frequency-sampled transfer function is 

denoted b y: 

id = IDHT {&}. 

Note that d l  these discrete sequences defined above can be thought of as implicitly 

periodic. 

8.3 The Spatially Sampled Convolution (SSC) Algorithm 
One approach to numerical implementation of the anpular specmim method, called the 

spatially sampled convolution (SSC) algorithm, directly convolves the sequences sd and 

hd. We desire the discrete convolution of sequences sd and hd to approximate the analytic 

convolution of the fictions s and h. The field profile represented by the analytic 

convolution of s and h will of necessity be of infinite extent. Beyond a few source radii in 

the lateral direction. the field may very well be nearly zero, however, it will not be 

exactly zero. Thus, in using a discrete implementation of the angular spectrum method, 

only a finite extent of the field in the observation plane may be calculated. Suppose that 

across an observation plane a distance Az away from the disk transducer, we wish to 

compute the field profile out to a lateral extent ro. The normal velocity field profile of the 

source will have a finite extent of radius a. The analytic point spread function h, however, 

will have an infinite extent, but must be truncated at some point. By ensuring that h is 

sampled out to a lateral extent of T 2 r, + a , the h e a r  discrete convolution sd*hd Will 

accurately represent the desired field profile out to ro. In the region between ro and T, the 

result of the linear convolution may not accurately reflect the tnie values for the field 

profile due to tnincation of the infinite-extent point spread function h. 
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It is well known that the circular convolution can be used to implement the linear 

convolution of two sequences. The point spread function h may be sampled out to extent 

r., then zero padding may be used to pad sd and hd out to extent T 2 r, + a . The DHT of 

sd and hd are computed, then their transforms are multiplied together. The inverse DHT of 

this product is the circular convolution of sd and hd. The circular convolution is 

quivalent to the dimete lincar comolution of sd and hi t!~ough the whok extint of the 

result (out to T), and represents the analytic convolution (the true field profile) in the 

region of lateral extent out to r,. The use of zero padding prevents wraparound errors. 

Alternatively, h may be sampled out to T 2 r, + a without zero padding (although sd 

should be zero padded), and DHT-based circular convolution may be performed on the 

resulting sequences. The result of the circular convolution will be equivalent to that of 

linear discrete convolution out to r., while the region r, < r < Twill contain a region with 

wraparound error. Thus, in either scheme the correct field profile is represented out io r,, 

as long as both the source and the point spread fùnctions are adequately sampled. 

8.4 The Frequency Sampled Convolution (FSC) 
In contrast to the SSC approach, the frequency sampled convolution (FSC) a 

samples the transfer lunction H directly in the spatial Bequency domain, and 

implements thc convolution as follows 

which is equivalent to circular convolution of the aperature sd with 

(2) 8, = IDHT { H , , ) .  

nie  FSC Algorithm zero pads sd out to some spatial extent T 2 r, + a , while sampling 

the transfer f ic t ion  H across the entire frequency domain. Although the region r, < r < 

Twill contain "wraparound errors", the resulting field given by (1) represents the correct 

field profile out to r,, as long as both the source and the transfer h c t i o n s  are adequately 
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sampled. The criterion of adequate sarnpling is, however, a nontrivial issue as will be 

discussed in the following sections. 

8.5 Sampling of a spatially limited source 
If the source has an abrupt edge, very dense sampling must be used. The farther the 

observation plane fiom the source, the more accurate the computed field profile (based on 

the given gridding scheme) will be. Reasonably accurate results may be obtained for 

observation planes which are in riie fidieid of each sampilng eiement, ajsumilg that aii 

ideal propagator function is used. 

8.6 Sampling the Transfer Function H 
Sampling of the propagator function H can also be troublesome. Figs. I(a)-(d) show the 

real part of H as a function of radial spatial hequency & for different propagation 

distances and frequencies. Notice that for large propagation distances, X has an abrupt 

change at k, = k, where k=21#/c is the magnitude of the wave vector. Notice also the 

chirp-like behavior of H. The apparent bequency modulation looks like a nonlinear 

sweep over a band of frequencies, wvith the chirp ending in a cusp at k. Beyond k, H 

appears to drop off exponentially fast. This evanescent tail is most significant for sub- 

wavelength propagation distances, and virtually negligible for larger propagation 

distances. 
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Figure 1: The real part of the transfer function H for f = IMHz and (a) z=lOh (b) z = 
lOOh , and (c) z = U4. 

When using the FSC algorithm for large propagation distances, adequate sampling of H 

may be difficult to obtain. Reasonable sampling may be obtained for sub-wavelength 

propagation distances, since the cusp at k,=k is less narrow, and the evanescent tail tapers 

off more slowly, providing a less abrupt change. Othenvise, sampling of the transfer 

function H may be a precarious matter. 

Although the FSC algorithm affords the computational shortcut of not having to 

transform the point spread fùnction into the spatial fkequency domain, it involves perils 

associated w ith diasing problems. 

It was noted earlier that the FSC approach is equivalent to discrete convolution of the 

aperatue sd with h , = iüm ( A ,  ). As Chnstopher points out, the correspo~d to 

samples of an aiiased version of the inanite function h. This mparound phenornenon 
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could be physically approxirnated by propagating the field of point source d o m  a 

cylindrical reflecting tube of radius T. 

Wraparound enon associated with 6, degrade the accurac y of the FSC - based 

convolution. Such aliasing problems are more severe for larger propagation distances and 

higher fiequencies, as illustrated in Figs. 2(b) and (d). 

radial distance (cm) 
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radial distance (cm) 

radial distance (cm) 
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radial distance (cm) 

Figure 2 (a) shows the normalized magnitude of the point spread f ic t ion h for f = 

SMHz, z=lOh. @) illustrates the aliasing and wraparound erron evident in 4 for T = 

1.5cm, when the transfer function H is sampled in the spatial frequency domain. The 
disiribution should reproduce (a), but does so with significant enor. (c) shows the 
nomalized magnitude of the point spread function for f = 5MHz and z=100L (d) shows 
that the errors introduced in h', fiom fiequency domain sampling are very severe. 

8.7 The SSC Algorithm 
In contrast to the FSC algorithm, the SSC algorithm introduces negligible errors due to 

aliasing. Finite extent sampling of the relatively srnooth point spread function h (see Figs. 

2(a) and (c)), can be done at moderate sampling rates, while the trmsform Hd has 

virtually no wraparound enor. I& corresponds to the inhnite extent H wrapping around 

itself to produce a finite sequence Hd. Ifsamphg is done at greater than the Nyquist rate 

of 2fc, the evanescent tail of Hd will be well represented, and because the evanescent tail 

exponentially falls off to zero, there will be very little wraparound error in Hd. 
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8.8 A Ray Theory Tnincation for the FSC Algorithm 
Waag et. ai. (1985) first presented a ray theory huncation which Christopher and Parker 

used to rnodify their FSC algorithm. It is based on the premise that at distances greater 

than h, the field of a point source cm be well descnbed by a ray theory (which neglects 

any evanescent waves). Consider, as depicted in Fig. 3, a plane a distance z away from a 

point source. 

Figure 3: Illustration of the coordinate system used in a ray theory 
described in this section 

According to a ray theory interpretation, the radial spatial fiequency, k ,  at point P in the 

observation plane, is given, by 

(3) k, = (21-f / c)sin (O,), 

where 8, is the angIe between the observation point and the point source, as depicted in 

Fig. 3. 

We cm use this ray theory relation with Huygens principle, by applying it to a collection 

of point sources representing a fuiite source. For a finite extent source of radial extent a. 

the angfe subtended by the edge of the rransducer and the point P may be labeled O.,, as 

depicted in Fig. 4, and given by 
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section 

I g n o ~ g  evanescent components, we may Say that km, = k sin(&,,) is the maximum 

spatial fkequency in the angular spectrum of the field across plane P. We can modify 

H(z,kr) in the spatial frequency domain by doing a tmcation, so that H is represented 

only out to km, = ksin(O,,,,). This would not only exclude the evanescent tail of H, but 

also the cusp at k, = 27$/c, and the dense oscillations in the neighbourhood of this cusp. 

Simul~~ëoüsîy,  smpting requirments fer bth  thel?SCané SSC algmithms wouibbe 

reduced. 
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If (r,+a)h = i l f i ,  
8, = d3, and the 
spatial fiequency 
may be m c a t e d  ar 
r v 3  / 2  ofk=2nj7c. 

Figure 5: B y using a ray theory, H may be truncated at a point where sampling of the 
oscillations of H is manageable. 

B.SSarnpling of H withand-wmoutthe Ray Theory - - - -  Truncation - - - -  

- - - -  

The Nyquist theorem requires that we ~ample a fhction at a rate of twice its highest 

spectral component. The transfer function H, however, bas no finite Nyquist fiequency 

limit, and thus infinitely dense sampling would be required to accurately represent H. 

Fortunately, the Ray Theory introduced in the previous section allows an elegant and 

placticai way of implernenting the FSC algorithm without requuing an infinitesimally 

mal1 sampling grid. The truncation of H at a spatial fkequency km, c 2$c bypasses the 

need to sample the dense oscillations, and cusp surrounding the radiation circle. This 

means we can define a h i t e  Nyquist rate for the tmcated propagator function H. 

To M e r  show how the ray theory truncation surpresses aliasing problems associated 

with the FSC algorithm, we prove here a theorem, which we will use as a basis for 

sampling in more complicated scenarios in subsequent sections and chapters. Assuming 
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that we have no prior knowledge of the Ray Theory Truncation, suppose that we wish to 

truncate H at a particular spatial frequency, which we shall cal1 km,. We will show by 

means of a Taylor series expansion that the optimal choice for km, so as to suppress 

aliasing errors, is the km, given by the Ray Theory Truncation. 

B.? 0 Sampling Theorem 
- .  - j&dk*- (k;  +k;) We want to approximate H(k,  , k, ; r ,  1 z, ) = e in the neighbourhood of km, 

by a sinusoid of frequency P. We do this by expanding the argument of H in a Taylor 

senes about km,. Let g(b) = k d k '  - k j  so that from the Taylor series expansion 

we have 

w here 

jp 
a f & d m +  r p T . R 2 ,  and P=d- 

k- - k, k' - k;, 

is the desired spectral frequency. Thus in the neighbourhood of kW, H cm be 

approximated by a sinusoid with 'Eequency' P. Since this is the highest spectral 

component of H, by the Nyquist theorem, we need to sample H at a rate of 2P: 

The number of samples across H is therefore 

which d e t e d e s  the extent of the zero padding required. 
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Since k,, = h i n  0, we may note that 

p=L7tan6=r,+a 

This is just another way of saying that if we require correct results (without wraparound 

errors) out to r,, we can use the ray theory truncation with the FSC approach. 

B.1 i Conclusions Regarding the Radially Symmetric FSC and SSC Algorithms 
Christopher and Parker concluded that for plane-to-plane difiactive propagation, the 

SSC algorithm was to be preferred over the FSC algorithm when no ray theory truncation 

was used. They also concluded that modifying the FSC to include a Ray theory tmcation 

(section B.7) can greatly improve the accuracy of the FSC method, while simultaneously 

reducing the computational burden. 




