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ABSTRACT

A new, computationally efficient approach for modelling finite amplitude ultrasound
propagation is described. The model is able to simulate nonlinear distortion of CW and
pulsed excitations from non-axisymmetric sources in tissue. We have developed a second
order operator splitting approach, enabling the effects of diffraction, nonlinearity, and
absorption to be calculated separately over relatively large incremental distances using a
fractional step marching scheme. A computationally efficient angular spectrum algorithm
has also been developed to calculate the diffractive propagation from non-axisymmetric,
non-separable sources. Results of our model have shown close agreement with published
data. Moreover, our approach may offer computational savings compared with existing
models. Indeed, with our algorithm it should be possible to simulate the nonlinear
propagation of sound beams from realistic medical ultrasound scanners, and perhaps to

investigate ways to improve the design of tissue harmonic imaging systems.
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Chapter 1: Introduction and Motivation

1.1 Medical Ultrasound Imaging

Ultrasound imaging has an important, and growing role in modern clinical medicine.
Benefits of ultrasound imaging include real-time imaging capabilities, relatively low cost,
and safety due to use of non-ionizing radiation. Some limitations of ultrasound compared
to other modalities inciude inferior resolution and poor penetration depth. Because
ultrasound attenuation is more severe for higher frequencies, there is typically an implicit
tradeoff between resolution, and penetration depth. Moreover, artefacts due to clutter,
beam defocusing due to tissue path inhomogeneities, and multiple reflections can distort

the image and cause erroneous interpretation.

Reduction of artefacts due to clutter, have been investigated by a number of researchers.
Beam-forming techniques such as phased array focusing and apodization have been used
to reduce sidelobe levels, and thus decrease clutter (e.g. Macovski, 1983; t’Hoen 1982;
Kino, 1987, Cincotti et. al. 2000). Other promising techniques include the use of limited
diffraction beams (Lu and Greenleaf, 1994), and 1.5 and 2D arrays (e.g. Smith et. al.
1995, for example).

The problem of improving spatial resolution without compromising penetration depth (or
conversely trying to improve penetration depth without loss of resolution) is a
challenging one, nevertheless, efforts in using coded excitation show great promise (e.g.
O’Donnell, 1992; Welch and Fox, 1998). Ultrasound contrast agents have, moreover,
increased echo signal strength, and enabled visualization of new kinds of clinically

relevant information (Burns, 1996; Simpson et al. 1999).

Efforts to overcome loss of contrast resolution due to inhomogeneity-induced phase
aberration (Nock and Trahey, 1989; Liu and Waag, 1994 a & b; Hinckleman et. al. 1994,
Mallart and Fink, 1994; Zhu and Steinberg, 1993 a & b; Karaman et. al. 1993 ) have had

limited clinical success.
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1.2 Tissue Harmonic Imaging and Nonlinear Propagation

The last few years has seen the emergence a new ultrasound technology called Tissue
Harmonic Imaging (THI), or Finite Amplitude Distortion-Based Harmonic Imaging,
which overcomes some of the problems of phase aberration, clutter artefacts,
reverberation artefacts, and offers improved spatial resolution. The premise of THI is to
use harmonic information from nonlinear ultrasound propagation to form an image.
Nonlinear propagation arises from a convective phenomenon, and from a nonlinear
relationship between pressure and density. The compression phase of a wave will travel
faster than the rarefaction phase, and thus, as the wave propagates, it will undergo
distortion, which will be more severe for higher pressure amplitudes. In the frequency
domain, nonlinearity means that harmonics and sum and difference frequencies will be

generated.

The concept of nonlinear propagation, goes back to the work of Euler in 1755. In the
medical field, although the vast majority of research and development in medical
ultrasonics has assumed linear propagation, it has been well understood that nonlinear
effects play a non-negligible role — especially for ultrasonic devices which use high
amplitude sources. Therapeutic applications such as lithotripsy for minimally invasive
kidney stone fragmentation, generate very high source amplitudes. In these cases,

nonlinear propagation can be quite significant.

Harmonic Imaging, based on nonlinear ultrasound propagation can be traced back to the
work of Muir (1980), who presented ideas on nonlinear effects in acoustical imaging.
Interestingly, however, commercial development of THI has in large part stemmed from
research in ultrasound contrast agents. Microbubble contrast agents have been used to
increase the backscatter from the vasculature and microvasculature. Because bubbles
behave in a nonlinear way, they generate harmonics of incident insonifying frequencies,
as well as sum and difference frequencies. Contrast Harmonic Imaging is based on using
harmonic echoes from contrast microbubbles to form an image. When investigating the
potential use of ultrasound contrast agents, researchers found that relatively clear B-mode

ultrasound images could be formed by receiving at twice the frequency of the transmitted
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beam, even when no contrast agents were present. The second harmonic image in the
absence of contrast agents, is formed from backscatter of harmonics generated in

nonlinear propagation through tissue.

A key paper by Ward et. al. (1997) demonstrated the feasability of applying nonlinear
propagation to B-mode imaging. Averkiou et. al. (1997) further demonstrated that
adequate harmonic signal level could be obtained from tissue propagation to enable its
use for imaging. Christopher (1997, 1998) has demonstrated with modeling and
experimental work that sufficient harmonic signal can be obtained within current
standards, and that harmonic imaging can reduce the degrading effects of phase
aberration. Li et. al. (2000) have recently published a computer model for simulating
realistic tissue harmonic images using an axisymetric source, and have studied the
improvement in resolution and image contrast derived from THI compared with
conventional B-mode imaging. Clinically, THI has been used in a number of fields,
inciuding cardiology, and has shown promising results. Clinical images show a marked
improvement in haze and other artefacts compared with fundamental imaging, not to
mention higher resolution (Tranquart et. al. 1999). Tissue Harmonic Imaging is already
in widespread clinical use, and medical ultrasound manufacturers such as ATL, Acuson,

General Electric, Hewlet Packard, Siemens, etc. all have machines with THI capabilities.

Many investigators will agree, however, that THI is still in its infancy, and has much
room for optimization. Humphrey, in a recent review article (Humphrey, 2000}
comments on the need for “more efficient algorithms and simpler models to be able to
predict the effects of nonlinearity in a given field.” He notes some recent developments,

and hypothesizes that there is “room for considerable development™.

1.3 Modeling Nonlinear Propagation
An important aspect of modem engineering design, is the use of computer models to
simulate a technology before manufacturing. Often modeling not only saves money by

allowing virtual research and development, but it also helps foster an understanding of
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principles needed for an optimal design. Our work centers on modeling nonlinear

propagation in tissue from a realistic medical ultrasound scanner.

The model we have developed contributes a new perspective in modeling methodology.
Currently, there are a number of approaches to modeling nonlinear propagation. Many
are based on the ‘KZK’ equation, which is valid for nonlinear propagation in
thermoviscous fluids. for fairly directional sources, and for sources which are not too
focused. Results are not valid in the extreme nearfield, or far off axis as it makes the
parabolic approximation. Numerical solutions have been investigated in the time domain
(Lee and Hamilton, 1994), and the frequency domain (Aanonsen et. al., 1984). Much of
the work has been done for propagation in water, and for axisymetric (piston or focused
disk) transducers. Cahill and Baker (1998) have simulated nonlinear propagation in water

from a (non-axisymmetric) phased array transducer.

Christopher and Parker (1991) have developed another method, not based on the KZK
equation, wherein they model nonlinear propagation by breaking up diffraction and
nonlinearity over small steps, and solve for diffraction using a fast transform — based
angular spectrum method, and solve for nonlinearity using a frequency domain approach.
Their results are valid for propagation in arbitrary media (not just thermoviscous fluids),

and their work can be applied to non-axisymmetric sources.

Tavakkoli et. al. (1998) developed a time domain model based on a second order operator
splitting. They used the Rayleigh integral to compute the effects of diffraction, a time
domain algorithm to compute nonlinearity, and a minimal phased FIR filter to calculate

attenuation. Their model has been verified for axisymmetric lithotripter sources.

One of the difficulties in using computational modeling of nonlinear propagation is the
heavy computational burden. Axisymmetric codes dominate the literature, and even with
this symmetry, computational complexities of current models are fairly intense, requiring
hours or days on supercomputers. Simulating non-axisymmetric sources requires an

additional order of magnitude in computational complexity, and boosts time and memory
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requirements. The step from continuous wave sources to pulsed sources requires yet an

additional degree of computational complexity.

So far, published literature is devoid of papers exploring the modeling of nonlinear
propagation in tissue from a linear phased array. The computational burden needed to
accomplish such a task may be one explanation for this. Simulating finite amplitude

propagation in tissue from a phased array will be addressed in this work.

1.4 Thesis Objective

The objective of this thesis is to develop a computationally efficient model of nonlinear
ultrasound propagation, which may be used as a simulation tool for use in design of a
harmonic imaging system. The model should enable simulation of nonlinear propagation
in arbitrary media, and specifically, should accurately model propagation in tissue.
Simulation of various types of transducers (including linear phased arrays) and arbitrary
waveforms should be possible. Computational efficiency is a primary concern, and

we hope that our modeling methodology may prove to yield some degree of
computational savings compared to existing models. Simulation of nonlinear pulse
propagation in tissue from non-axisymmetric sources should be realizable on a personal
computer with a run time of a few hours. Verification of our model should be possible, by

comparison with published experimental and theoretical results.

Ultimately it is hoped that our model can be used to investigate optimal design schemes
and parameters for a tissue harmonic imaging system. With this motivation, peripheral
investigations stemming from this thesis will include using coded excitation and puise

inversion to improve the signal to noise ratio in harmonic imaging.

1.5 Thesis Outline

Following this introductory chapter, chapter 2 will establish some fundamental theory
relevant to nonlinear propagation. Model equations will be presented, and their relevance
to propagation in tissue will be discussed. Chapter 3 will discuss numerical methods used

so far in modeling nonlinear propagation. The principles of the numerical model we
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choose to implement will be discussed in the Chapter 4. In Chapter 5 we will discuss the
numerical implementation of the Angular Spectrum method for linear propagation.
Chapter 6 will discuss the application of the second order operator splitting and 2D-FFT
to propagation of continuous wave sources in nonlinear media. Chapter 7 will discuss
nonlinear pulsed propagation. The concluding chapter will summarize this work and its

main contributions, give recommendations for future work, and outline conclusions.



Chapter 2: Theoretical Background

2.1 Linear Propagation and the Small Signal Approximation
Ultrasound waves can be thought of as pressure variations in a media, which propagate

periodically in space and time. To a first order approximation, ultrasound propagation is
well described as a linear process, governed by a linear, second order homogeneous
differential equation. The assumption of linear propagation, however, is valid only for

relatively small disturbances.

In considering wave propagation in fluids, one can obtain the linear wave equation from
the Navier-Stokes Equation by making a small signal approximation for the density and
pressure, given by

P=pP, P

P=Dpo+ P

(1)

where the subscript ‘o’ denotes the equilibrium quantity, and the subscript '1" indicates
the changes in the quantities, which are small. This small signal approximation leads to

the well known equation

4

-

0 Py =
or?

4 \a
Vip, +K(#a +3#J5(‘72p1),

@  «p,
where up is the bulk viscosity, u is the shear viscosity, and « is the adiabatic
compressibility. This is a linear equation, and can also be expressed in terms of the

normal particle velocity u, or the velocity potential ¢.

In the frequency domain this becomes the homogeneous Helmholtz equation:
3) VO+kDd=0
where

@ K= K

(5]
1+ jox y3+§u

and % is the wavenumber a/c,.
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5

In the absence of viscous loss, the time domain equation becomes the familiar

homogeneous wave equation:

¢ V-2t
c, ot°

and the frequency domain equation looks the same except that £ =% .

It is useful to consider the 1-D version of this equation for particle velocity - and express
it in the form:

st &
6 195 _29 Ll o
©) {aﬁ C"azz}"

which can be factored to obtain two uncoupled wave equations called reduced equations
or evolution equations, one of which is:

Ou(t,z) 1 ou(t,:z
lors c ot

/]

7

which describes plane waves propagating in the positive z-direction. Going to retarded

time,tr =¢ -z /c, we have:

ou(t,z
8 — 7 = ().
®) .
2.2 Attenuation

The assumption of viscous loss in the equation of state gives rise to a quadratic frequency
dependence for the attenuation of the wave propagation. This assumption is only valid for
thermo-viscous fluids, however, and is not true for tissue. Tissues generally have a more
complicated loss model, and the attenuation coefficient is governed by a /* dependence

where n is typically in the range 1.1 to 1.5.

2.3 Propagation of Finite Amplitude Waves in Fluids

Many diagnostic and therapeutic ultrasound systems employ excitations for which the
small signal approximation is not valid. Although linear analysis of propagation is a good
first order approximation, nonlinear effects are often non-negligible. Disturbances which

are large enough to invalidate the small signal approximation are often referred to as
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finite amplitude waves. Finite amplitude wave propagation is a nonlinear process, and is
a good deal more complicated than linear wave motion. A sound beam travelling through
a medium will involve the effects of diffraction, absorption, and nonlinearity, and the
sound beam can be thought of as interacting with itself as it propagates. In the following
sections, sources of nonlinear distortion will be investigated, and the nonlinear equations

of motion will be developed.

2.3.1 Nonlinear Distortion of Plane Waves

As an initial step to development of the full 3-D nonlinear wave equations, consider the
simple case of a finite amplitude plane wave of normal particle velocity u in a
dissipationless medium. One peculiarity of nonlinear acoustics is that the propagation
speed of a wave depends on the amplitude of excitation. While it is true that the
beginning and end of a pulse propagate with the small signal speed c¢,, within the pulse,
the propagation speed varies. The variation of propagation speed with initial amplitude is

actually due to two separate effects: convection, and nonlinearity of the medium.

Convection effects can be thought of as being like an oscillating wind travelling with the
wave. Overall, the oscillation propagates with small signal speed c,, however, the peak of
the oscillation will also have a local particle velocity v above and beyond the wave

velocity c,.

Effects due to the nonlinearity of the medium can be understood as a dependence of the
speed of sound with temperature and pressure. The compression phase of a wave will
cause a local increase in pressure and temperature compared with the rarefaction phase.
Locally, an increase in pressure and temperature causes an increase in the speed of sound.
Thus the compression phase of a wave travels faster than the rarefaction phase. Note that
because the speed of sound is dependent on density, the plane wave impedance relation,
is no longer a linear relation. The slope of a graph of pressure versus density, is thus not a
straight line, but is rather a curve, where the local slope is proportional to the square of

the speed of sound.
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The general propagation speed of sound can thus be written as (Beyer, 1974)

dx
9 = ,
%) o ¢, + Pu

where we will call B the parameter of nonlinearity. We will show in section 2.3.2 that

B
(10) p=t+—.

where first term (unity) is due to convection, and the second term (B/24) is a parameter
related to the nonlinear relationship between pressure and density. In the case where u is
very low, the speed of sound reduces to c,, the small signal speed. Convective and
nonlinear effects can collectively be referred to as nonlinear effects, as both these effects
will contribute a nonlinear term in the differential equations describing nonlinear

propagation.
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These nonlinear effects can contribute to distortion of a given initial waveform. The
compression phase of a sinusoid, for example, will have a propagation speed greater than
that of the rarefaction phase. In an ideal dissipationless medium, a sinusoid will thus

distort into something which may approach a sawtooth wave, as illustrated in Fig. 1.
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Figure 1 Effects of nonlinear distortion of a plane sinusoidal wave. (a) [nitial waveform
of a 1 MHz wave. (b) Showing the distortion after propagating 0.8 of the shock distance
in a lossless medium where the coefficient of nonlinearity is given by p=3.5.

Nonlinear distortion of a waveform in the frequency domain represents generation of
harmonics. A sinusoid distorting in the process of nonlinear propagation transforms a
monofrequency source at f;, into an entire spectrum of harmonics, at fo, 2f5, 30, 4fs, --., a5

shown in Fig. 2.
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In addition to harmonics, sum and difference frequencies may be generated in the

nonlinear propagation process.

012 -
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Figure 2: Frequency spectrum of the waveform in Fig. 1b. Harmonics above 10 MHz are
present in the spectrum.

2.3.2 The Parameter B/A
The thermodynamic relationship between pressure and density, is in general not a linear

one. The pressure-density relation can be written as p=p(p,s), where p=p,+p, and
p=po+pi, and the subscripts denote the equilibrium and perturbation values respectively.

A Taylor series expansion can be done:

> 2 3
Ay p =2 ol ey o Bl Cle)
apo 2! ap' 0 P, 2! P, kil P,
where
ap 2 162‘[7 363p
12 A= —_— = C-, B= --—’— , = M
(12) p"apo P.Co p°5p'a p ap’O

The first order measure of nonlinearity, B/4, is the parameter of nonlinearity (Beyer,
1974). The coefficient of nonlinearity is defined as
B
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The Eulerian speed of sound under adiabatic conditions can be written as (e.g. Hamilton
and Blackstock, 1998)

B
14) c=c,+u+—u=c,+ pu
(14)  c=c +ur—u=c,+f

It should be noted that for a linear medium, =0 and B/A=-2 (rather than 0).

2.3.3 Reduced Nonlinear Wave Equations
The reduced evolution equation for finite amplitude waves in a non-dissipative medium

can be written as

(15) gu--s-(c, +j3u)-é6‘ﬁ =0
ot oz

-~

By rearranging, doing a binomial expansion, assuming that fu/c, <<1, and

transforming to retarded time, we get the approximate form of the evolution equation of a

plane wave, valid to second order (e.g. Hamilton and Blackstock, 1998):

(16) —=5—

This is often called the equation of nonlinearity, and has been solved in both time and

frequency domain.

2.3.4 The Poisson Solution
Given the initial value problem u(x,0)=G(x), or the boundary value problem u(0:2)=F(z), a
solution to the reduced wave equation can be written intrinsically as:
an u=G{x-(Bu+c,)t}
u=F{t—-x/(Pu+c,)}

Essentially the solution represents distortion of the initial waveform, governed by the

nonlinear compression of the argument.

2.3.5 The Fubini Solutin and Harmonic Generation
Assuming a sinusoidal plane source propagating in an inviscid medium, the Fubini

solution (Fubini, 1935; Beyer, 1984) represents an Fourier series solution to the nonlinear

equation. Given a source amplitude vo, the distorted wave can be represented as:
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18) u =2uai.l,, (nx/X)sinn{(wt — kx) ’

e nx/x

for x/x<1 and Bu,/c, <<1, where

CZ
9 F=e

is the shock distance, which will be discussed later.

The Fubini Solution represents a frequency domain solution, and gives the amplitude of

the nth harmonic as

2u,J,(nx/X)

nx/x

(20) u, =

n

A plot of the harmonic amplitudes of a plane wave up to the shock distance is shown in

Fig. 3.
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Figure 3 First five harmonic amplitudes generated from nonlinear plane wave
propagation in a lossless medium.

2.3.6 Shock Waves
A shock wave is a very abrupt change in the pressure and particle velocity. For a plane

wave travelling in a non-attenuating medium, a shock wave forms when the maximal
slope of the wave becomes infinite. This happens at the shock formation distance X .
Although we do not expect shock waves in a tissue medium when diagnostic pressure

levels are used, ¥ will be used as a scaling parameter in the nonlinear algorithm.

2.3.7 The Effect of Attenuation and Burgers Equation
Attenuation will tend to dampen higher harmonics generated by nonlinear propagation.

One way of accounting for attenuation for a plane wave in a viscous fluid is to add a
viscous loss term to the nonlinear equation, resulting in

Ou(z,t) _ Pudu 1 uf 4 “J

21 + +—
@1 oz ¢t 9t 2clp, arzk“" 3
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which is known as Burgers Equation (Beyer, 1974). We may note that in an attenuating
medium, a plane wave will never really shock in the true sense, but rather, the 'shock-

front' will have a finite thickness, rather than an abrupt discontinuity.

2.4 Modeling Finite Amplitude Sound Beams in 3-Dimensions

Approximations can be made to enable us to derive a second order differential equation
describes acoustic propagation of finite amplitude waves without invoking the small
signal approximation. The derivation makes use of the equations of state, motion, and

continuity of a thermoviscous fluid..

2.4.1 The KZK Equation
The most widely used equation for modeling finite amplitude sound beam propagation,

and which accounts for the effects of diffraction, nonlinearity, and absorption, is that due
to Khokhlov, Zabolotskaya and Kuznetsov, which is commonly referred to as the KZK

equation. It can be written as (Kuznetsov, 1971)

6’ c 1 0 4 & ép®
(22) —f-——°v2p=——-—[(ua+—u) p+ﬁ§4r]

otz 2 YT 2clp, ot 3773t
where

2 2
vi=.55_2+a_2

ox* oy

is the transverse Laplacian operator. Moreover, it can be cast in the form of an evolution
equation by taking the temporal (retarded time) integral of the above equation. We could
also express the KZK equation in terms of the z-component of the particle velocity by

using a linear plane-wave impedance relation, u, = p/(p,c,), which is valid to the order

of the approximations made in the derivation of the KZK equation.

2.4.2 Approximations in the KZK Model
An excellent summary of the approximations used to synthesize the second order KZK

equation can be found in Hamilton and Blackstock (1998; Ch. 3).
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The right hand side of equation (22) describes absorption and nonlinearity, and the left
hand side describes spatial evolution and diffraction. The KZK equation describes quasi-
plane wave propagation, and is based on the so called parabolic approximation, which is
that the angular spectrum is assumed to be sufficiently narrow so that the wave will be
close to planar, and evolving slowly in the z-direction. This approximation is not valid for
strongly focused beams or for beams with strong irregularities in the transverse structure,
such as occurs in the nearfield zone. Thus, the model is limited to cases where diffraction
effects are minimal and focusing gains are small. The parabolic approximation is valid

for focused sources provided that

$/3
d/a>>1, and z>-}-(ij ,
k\a
where d is the focal length.

The KZK equation provides a reasonable approximation to the ultrasonic field for sources
whose aperatures are large compared to the wavelength (ka>>1), for observation points

that are beyond a few source radii, and for points whose off axis locations are not too

great.

One significant drawback of the KZK equation is that its scope of validity is restricted to
thermoviscous fluids. The viscous absorption term in the KZK equation implies an
attenuation coefficient proportional to w? as opposed to a near linear dependence as is

the case in soft tissue.

In the next chapter, a discussion of numerical methods for solving the KZK equation, will
also include a brief description of how arbitrary attenuation may be accounted for in a

computational scheme to solve the KZK.



Chapter 3: Background on Numerical Methods

The subject of numerical modeling of nonlinear propagation has received modest
attention, and a number of authors have contributed to the subject. The book edited by
Hamilton and Blackstock (1998) is an excellent resource on the subject, and contains a
thorough literature review. In this chapter we shall discuss some of the contributicns to
1-D (plane wave) and 3-D nonlinear propagation, including the effects of diffraction,

attenuation and nonlinearity, that are relevant to the contributions of this thesis.

3.1 Computational Models for Nonlinear Plane Wave Distortion

3.1.1 Frequency Domain Algorithm

A frequency domain solution to Burgers equation may be obtained by considering a trial
solution of the form

(1) V(Z,T) =-;— iv" (z)ejuj;nt ,

nm—

where v,(z) is a complex amplitude weighting function for the nth harmonic of frequency
Jo, and t is the retarded time t = t-z/c. By substituting this into (21) of chapter 2, the
Frequency Domain Solution to Burgers Equation (FDSBE) can be shown to be given by

(2) v (7+AZ)—V (z)+.,4(B279() {”Z.lvmvn—m +2 zvmvmn} (aoj'nz)vnAz'

m=l muns1
This expression involves two quadratic sums, the first representing accretion of the ath
harmonic by a nonlinear combination of other harmonics that have a sum frequency of
nfo. With conjugation, the second quadratic sum may be interpreted as depletion of the
nth harmonic harmonics with difference frequencies nf,. Note that to make the
computation realizable, (2) assumes that the solution to Burgers equation can be
represented by a finite number of harmonics. When there is no attenuation, (2) is valid
only up to the shock distance, and the solution becomes equivalent to Fubini’s solution
given by (18) in chapter 2. Fenlon (1971) was the first to derive coupled spectral
equations that are equivalent to (2). He investigated mono and bi-frequency sources

(including cylindrical and spherical spreading. Korpel (1980) presented coupled spectral

18
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for arbitrary absorption and dispersion in progressive plane waves. To do this one may

make the substitution
(3) aa-fnl -_)an +jdn’
in (2), where a, is the attenuation coefficient, and 4, is the dispersion coefficient for the

nth harmonic. Attenuation may often be modeled by a power law relation, described by
(4) an = aofnb ?
where o, is a constant, f; is the frequency of the nth harmonic, and 4 is an arbitrary real

number. For biological tissue, b is typically between 1.1 and 1.5. The dispersion

coefficient may be expressed as

(5) d,=nw,xCc'-c'),

and accounts for the deviation of the phase speed ¢, of the nth harmonic component from
the infinitesimal sound speed of the fundamental c,.

Haran and Cook (1983) also investigated plane wave nonlinearity using the FDSBE, but
used a somewhat different form from that given by (2), which we were unable to verify.
Christopher and Parker (1991) also cite a form for the FDSBE that differs from (2). It
should be noted that the form of the FDSBE given by (2) is quoted in Hamilton and
Blackstock (1998; pp.313-314). We have verified that in the limiting case where there is
no attenuation, the numerical results obtained by using (2) reduce to those obtained using

the Fubini solution.

The main disadvantage of the FDSBE is that hundreds or thousands of harmonics may be
required to accurately propagate pulses or waves which develop shockfronts, and as a
result, the computational burden can be large. A promising algorithmic approach to
reducing the number of harmonics required for propagation of waveforms with one (and
only one) shockfront is that introduced by Pischkal’nikov et. al (1996). The premise of
their scheme is that a shockwave may be thought of as a sum of a perfect sawtooth wave
and smoothly varying (unshocked wave), which is well represented by only a few (for
example 30 or less) harmonics. Because the Fourier transform of a sawtooth wave is

exactly known, an infinite number of harmonics may be retained in the spectrum of a
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shockwave by approximating higher harmonic amplitudes by the analytic amplitudes

from the idealized sawtooth wave.

3.1.2 Time Domain Solutions
In the time domain, we cannot easily incorporate attenuation into finite amplitude wave

propagation. The nonlinear equation itself, however, can be solved in the time domain,
without attenuation. Two approaches have been taken to the time domain solution to the
nonlinear algorithm: (I) an interpoiation-based Poisson soiution, and (II) Christopher’s

time domain solution.

The Interpolation-Based Poisson Solution

To describe the nonlinear distortion of a waveform as it propagates from z ro z+Az, the

Poisson solution (eq. (17) of section 2.3.4) may be written as

6) u(z+Az,7) = u{z,r + Bl:.z u(z,r)}.
c

o

Multivalued solutions can be avoided if the step size satisfies
(7  Az< _C/B .
max(du/dt)

Equation (9) can be numerically implemented by sampling the temporal waveform, and

making use of a discrete time-based transformation

® crt=gn o PA .
c?

where m is the index of the temporal waveform and n represents the nth step Az, in z (e.g.

Tavakkoli et. al. 1998). The discrete version of the inequality (7) can be written as

.1 ¢ /B

9 Az <t -t ,
( ) n [ m m uma.'((ll:' _u:'-l)

Subsequent to this non-uniform, discrete transformation, linear interpolation can be used
to resample the waveform, and thus to re-establish a uniform temporal grid. A discussion
of the dimensionless form of this algorithm may be found in Hamilton and Blackstock
(1998).
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Christopher’s Time Domain Nonlinear Propagation Algorithm

Christopher (1993) uses a slightly different nonlinear algorithm. It is valid for plane wave

nonlinear propagation in a dissipationless medium. His approach is based on the relation

u(z)
- Phzdu
¢l dz

o

(10) u(z+Az)=

which describes the incremental change in amplitude of the waveform at identical
temporal locii after propagating a distance Az. [t is valid for all but very large-amplitude
waves (u<<c,/B). He has also derived a more general relationship that is valid for any
amplitude. In the discrete implementation of (10), a forward difference du/dr operator is
applied to the positive velocity samples, and a backward difference duw/dt operator applied
to the negative velocity samples. A three point (quadratic) Adams-Bashforth formula
(Atkinson, 1978) is used for both the forward and backward difference du/dr operator.
For a forward difference computation, the operator is

(11) iti=l[3(u(t+m)-u(l))_(zt(t+2Az)—u(t+At)ﬂ,
dt 2 Ar At

and the backwards difference operator is given by

(12) gzi=l{3(u(t)—u(t—m))_(u(t—At)-u(t—zm))]
a 2 At At

Further precautions are needed to propagate shockfronts. First, shock segments are
identified by locating consecutive samples for which there is a change above some
threshold level. Next, consecutive shock segments are consolidated into shockfronts, and
then propagated as a whole without further steepening. Thus, Christopher’s scheme is
implicity harmonic-limited, and allows considerable computational savings, while

offering great stability, and demonstrating reasonable accuracy.

3.2 Numerical Models of Nonlinear Sound Beam Propagation in 3-
Dimensions

There are few analytic solutions to the equations of nonlinear propagation, and such
solutions are for very specialized conditions. In general, numerical methods must be

used, and these will be discussed under the following headings:
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(1) Numerical Solutions to the KZK equation
(2) Time Domain Method of Tavakkoli et. al.
(3) Frequency Domain Method of Christopher and Parker

3.2.1 Numerical Solutions to the KZK Equation
The KZK equation has been solved in a number of ways using time domain, frequency

domain, or combined time-frequency domain algorithms. All of the approaches are based
on the time-integral of the KZK equation in retarded time, given by
op 1 4 \o’p | ¢ ton
13 —_—=— -—ul|l—5+2pp—=—|-—= |\VipHr.
(13) % 20p, Ku; 3“)61- Bpar} > I( pH

-

Combined Time-Frequency Domain Algorithm
Bakhvalov et. al. (1976, 1978a-b, 1979a-c, 1980) used a dimensionless form of (13), and
solved for diffraction and absorption in the frequency domain. Their approach calculates
nonlinear distortion in the time domain using the method of Godunov (1959) which is
based on weak shock theory. In this fractional step / operator splitting approach, they
used standard backward difference methods to propagate step by step the effects of
diffraction and absorption, and of nonlinearity. Their calculations were restricted to
axisymetric Gaussian, plane and focused sources. Altemnative algorithms that solve for
attenuation and diffraction in the frequency domain, and nonlinearity in the time domain
have been presented by McKendree (1981) and Froysa et. al. (1993).

Frequency Domain Algorithm
The most widely used approach for analyzing periodic signals radiated from circular
pistons, both focused and unfocused, is a frequency domain approach first developed by
Aanonsen et. al. (1984), and is widely referred to as the Bergen code. They substituted
expansion (1) into the KZK equation to get a system of equations, which they then
integrated numerically using a simple implicit backward difference scheme. Their work
was primarily for nearfield studies. Baker et. al. (1988) verified the accuracy of this
numerical KZK solution by comparing with experiment in the case of a CW plane disk

radiator in a water medium. Hamilton et. al. (1985) introduced a transformation to
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improve the efficiency of the algorithm in the far-field. For focused beams, a
modification of the coordinate transformation was introduced by Hart and Hamilton
(1988). Other frequency domain studies have investigated radiation from bifrequency
(Kamakura et. al. 1989; Naze Tjotta et. al. 1990; Naze Tjotta et. al. 1991), pulsed (Baker
and Humphrey, 1992), and rectangular (Kamakura et. al., 1992; Baker et. al. 1995)
sources. Averkiou et. al. (1995) used the spectral code developed by Naze Tjotta et. al.
(1991) to compare theoretical model predictions with experiments for finite amplitude

propagation in water from a focused piston.

Cahill and Baker (1997a,b; 1998) used a non-axisymetric version of the Bergen cade, to
simulate the acoustic field of a phased array medical scanner for water propagation. They
demonstrated that nonlinearity can interact with diffraction in such a way as to move the
peak region of intensity off-axis, and to cause the focal region to shift towards the

transducer.

Time Domain Algorithm
A first order operator splitting approach introduced by Lee and Hamilton (1995), allows a
numerical solution to be implemented in the time domain. Their technique breaks up
diffraction, nonlinearity and absorption into separate evolution equations and invokes

field propagation using a fractional step marching scheme.

In dimensional coordinates, the operator splitting scheme decomposes the retarded-time

integral of the KZK into the following three equations:

(14) %’ = -zc" -i(Vi pdr=L,-p (Diffraction)
dp _ PBp p L
15 —=——"==[ - onlinearit
( ) 6:.,’ C:pa at N p (N Y)
4
(Mg + S H) 5
(16) P _ 3 %p, L,-p (Absorption)
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To first order in terms of the propagation distance Az, one may show that these equations
are independent of each other, so that the total change in pressure can be approximated by

the sum of these contributions, i.e.,
15/
(17) é:LN p+L,-p+L,-p.

As illustrated in Fig. 1, the principle underlying the fractional step algorithm is to first
solve the diffraction equation for a plane to plane propagation, then apply absorption, and

finally to solve the nonlinearity equation over the distance Az.

SR TETACH 1

«F

Nonlinearity

z zZ+Az
Plape 1 Plane 2

Figure 1 Schematic representing an operator splitting technique. Planes 1 and 2 are an
incremental distance Az apart. By solving for the effects of diffraction, attenuation, and
absorption independently over this small step, their combined effects can be well
approximated.

The same procedure can be done for the next incremental plane to plane propagation,

thus propagating the sound beam in an incremental march over small distances Az.
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The time domain algorithm is well suited to pulsed propagations, and to very large
amplitude continuous wave propagation. Of particular note is the work of Averkiou et. al.
(1993), who modeled self-demodulation in strongly absorbing fluids, and that of
Cleveland et. al., (1996), who investigated the effect of relaxation.

Accuracy and Computational Burden
While KZK methods have been shown to give accurate results for sound beam

propagation in water, little work has been done to verify the accuracy of the KZK for
other media such as tissue. Computational requirements can become an issue for
nonlinear modeling. Baker (1998) comments that the continuous wave field response
from an axisymmetric source at moderate drive levels can be run on a personal computer
in a matter of minutes. When the drive level is increased, more harmonics are needed,
thus incurring more memory and computational time requirements. Pulsed waveforms
are also more demanding since a wide spectrum of frequency components must be
included. A non-axisymmetric source geometry can cause an order of magnitude increase
in the computational burden. The results of Cahill and Baker (1997b) required about
500MB of physical memory and took approximately 40 hours on a DEC alpha 8400

computer.

3.2.2 The Time Domain Method of Tavakkoli et. al.
Tavakkoli et. al. (1998) have developed a time domain numerical model based on the

second order operator splitting technique illustrated in Fig. 2. The model avoids the
parabolic approximation by using the Rayleigh integral to compute the effects of
diffraction. The effects of attenuation and nonlinearity are computed in the time domain
over small steps. Attenuation is modeled by a minimal phase FIR filter, which is

convolved with the source waveform.

For pulsed propagation, Tavakkoli’s method has the advantage of using fairly big Az
steps between propagation planes, but suffers from long computation times for the
diffractive steps (~90% of the total CPU time).
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Half Step Diffraction

z+Az

Figure 2 The second order operator splitting method of Tavakkoli et. al. (1998). In this

scheme the combined effects of diffraction, attenuation, and nonlinearity are
approximated to a second order in the incremental distance Az.

3.2.3 Christopher's Method

Christopher and Parker (1991) used a frequency domain approach to modeling nonlinear

propagation for an axisymmetric geometry. Like other fractional step approaches, they

compute the effects of diffraction, attenuation, and nonlinearity over small steps. They

used a discrete Hankel transform - based angular spectrum approach to compute

diffraction and attenuation. Like the scheme of Tavakkoli et. al. (1998), their diffraction

algorithm does not assume the parabolic approximation. For nonlinearity, a frequency

domain algorithm similar to the one presented in section 3.1.1 is used. Christopher’s
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method allows simulation of nonlinear propagation through media with arbitrary
absorptive characteristics, and has impressive computational efficiency. Their approach
has been applied to the modeling of highly focused lithotripter sources (1994), and for
simulation of nonlinear-based imaging (1997).



Chapter 4: A New Approach to Modeling Nonlinear Ultrasound
Propagation in Tissue

The previous two chapters have mentioned theoretical and numerical schemes for
modeling nonlinear ultrasound propagation. Directional (finite amplitude) sound beam
propagation in thermoviscous fluids has been modeled by the so called 'KZK' equation. It
was noted that the viscous loss medel of the KZK equation leads to an attenuation
coefficient with a quadratic frequency dependence, and which does not describe the near-
linear frequency relationship of most tissues. Many of the numerical methods based on
the KZK equation were restricted to thermoviscous fluids, and thus are not appropriate
for modeling finite amplitude propagation in tissue. Although it is possible to model
finite amplitude propagation in a tissue medium using the frequency domain solution to
the KZK equation, the computational burden can be heavy, especially for pulsed
propagation, and non-axisymmetric sources. The methods of Christopher and Parker
(1991), and Tavakkoli et. al. (1998) have enabled accurate modeling of nonlinear
propagation in tissue. In the approach used by Tavakkoli et. al. the Rayleigh integral is
used to compute the effects of diffraction, and is thus computationally burdensome.
Christopher and Parker use a fast transform approach to diffractive propagation.
Although it affords some computational savings, their approach, like others, is
computationally intense for propagation of pulsed excitations, and for non-axisymmteric
sources. In this chapter, a new method of modeling is introduced, which not only builds
on the strengths of previous algorithms, but which also aims to gain some degree of

computational savings compared with these schemes.

4.1 An Evolution Equation for Finite Amplitude Propagation in Tissue
Our approach to modeling propagation in tissue may be viewed as a phenomenological
one. We start with a model evolution equation, valid for quasi-plane wave sound beams,

given by

(L) -a—v=LA»v+LN~v+LD-v

where L,, Ly, and Lp are operators representing absorption, nonlinearity, and diffraction

respectively, and v is the normal particle velocity.

28
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Our hypothesis is that operators Lp, La, and Ly exist such that the evolution equation (1)
accurately describes finite amplitude propagation in tissue. It is our belief that such a
hypothesis is well founded. Partial justification of using (1) is that the KZK equation can
be written in a form equivalent to (1) by integrating with respect to retarded time, to
obtain (3.22), where the operators are defined by (3.21). We feel that propagation in
tissue is likely similar to propagation in thermoviscous fluids, with only attenuation
mechanisms being significantly different. Experimental confirmation of this hypothesis
stems from the efforts by Tavakkoli et. al. (1998). They used equation (1) as a basis for
their model and obtained reasonable agreement with experiments of finite amplitude
propagation in a tissue mimicking fluid. Moreover, it can be shown that the approach of
Christopher and Parker is equivalent to a first order operator splitting of an equation
equivalent to (1). Thus although (1) is not derived from elementary principles of physics
as is the KZK equation, there is ample evidence that it can accurately model finite

amplitude propagation in arbitrary media, including biological tissue.

4.2 A Second Order Operator Splitting Technique

Our approach to solving (1) will employ an operator splitting scheme so as to solve for
the equations of diffraction, attenuation, and nonlinearnty separately over small steps.
To introduce the operator splitting techniques of this thesis, some notation will first be
developed. Consider first the process of diffraction. Given the normal particle velocity
field profile v(x,y,z;t) across a plane z = z;, we may represent the field profile across
plane z = z; assuming diffractive propagation only (no nonlinearity or attenuation) by
introducing an operator ['p 4., such that v(x,y,z2;f) = I'p a-V(x.y.z,;t). The two planes z=z,
and z=z;, are spaced a distance Az apart. I'p a-V(x,y,z;¢) then represents a solution at
z=z,+Az to the diffraction sub-equation

ov
oz

with the initial condition v=v(x,y,2;,7).

=L,-v,

)

Similarly, we may define propagation operators I'y a- and I'4 4 for nonlinearity and

absorption respectively. There is a relationship between the operators I” and the operators
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L of (1), which will be explained in Appendix A. For now it will suffice to say that
v(x,y,z2;1) = [y a-v(x,y.2;,2) is a solution to the nonlinear sub-equation, and v(x,y,z57t) =
Ly a¥(x,y,z;;t) is a solution to the absorption sub-equation given the initial condition v =

v(x,y,z;;t) on plane z = z,.

As our approach is similar to that of Christopher and Parker (1991), it is important to note
that their modeling methodology is equivalent to a first order operator splitting, which

may be represented as:

(3) V(% 3,2038) = Do a6 Y, 2058) = D, g a Dy oV 1, 2050) + O(AZ%),

where Ips4+5.a:V(X,y,21,2) represents a solution at z = z;+Az to (1), and ['p+y av(x..21.8)
represents a solution at z = z;+Az to the sub-equation

4) g=LD-v+LJ-v

given the initial contition v = v(x,,z,,¢). In words, (3) says that the combined effects of
diffraction, absorption, and nonlinearity can be approximated by one incremental step of
combined diffraction and attenuation, followed by one step of nonlinearity. In Appendix

A, we will prove the first order nature of this scheme.

Tavakkoli et.al. (1998) proved a second order operator splitting,
(5) v(%,3,2358) = Dpy o sV 2,250 = Tp pen Dy s T p e V(% 0020 50) + o(az’),

which was illustrated in Fig. 2 of chapter 3.

Tavakkoli et. al. used adaptive step sizes — large steps in the nearfield and smaller steps in
the focal region. Even for strong pressure amplitudes from a highly focused transducer,
the use of only 23 planes out to the focal region sufficed, and impressive agreement with
experimental results were reported. In contrast, Christopher's approach required hundreds
or thousands of fractional steps out to the focal region of a transducer. Similarly, the
finite difference techniques used to solve the KZK equation required relatively fine axial

meshing.
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In addition to using Tavakkoli’s second order operator splitting method, we propose a
slight variation of their theorem to allow combination of diffraction and attenuation
together. The operator splitting approach we propose may be written as:

6) V(1,250 =, v sV 250 = T sea Dy i D pa e V(6 Y, 250 + O(Az’)
which, like the Tavakkoli (1998) operator splitting, is second order in the small ordering
parameter Az. This operator splitting is illustrated in figure 2.

Half Step D1fﬁ'act10n o
Attenuanon SR

TSN TR RPN PR

Y Y

Half Step leﬁ:actlon +
Attenuation

Plane z=z, Plane z,=z;+Az

Figure 2 Iilustration of the proposed second order operator splitting theorem.
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Proof of (6) is provided in Appendix A. It should be noted that both second order
operator splitting methods can be used within the context of the KZK equation. Proof of a
second order operator splitting algorithm for the KZK equation is also given in

Appendix A.

It is hoped that by taking advantage of the larger axial steps which these second order
operator splitting schemes allow, and by using faster algorithms for diffraction,

considerable computational savings can be obtained.

4.3 Proposed Fractional Step Marching Scheme

To model the nonlinear propagation of a sound beam, our approach will be to divide the
region of propagation into parallel planes separated by incremental distances Az.

The second order operator splitting presented in section 4.2 can be applied to solve for
the effects of diffraction, nonlinearity, and absorption over these small steps. Thus, we
propose a fractional step marching scheme, which progresses from plane-to-plane along

the direction of propagation.

In solving the diffraction sub-equation (2), or the sub-equation combining diffraction and
attenuation (4), we may guess that a solution to either of these equations must also be a
solution to the homogeneous wave equation, as this is the equation which governs linear
propagation phenomena. When the parabolic approximation is made, as is the case for the
KZK equation, the solution to the sub-equations are only approximations to the true field
which is a solution to the homogeneous wave equation. The approaches of Tavakkoli and
Christopher do not make the parabolic approximation, and diffraction is computed

exactly.

Like the KZK equation, our model equation (1) of this chapter is only valid for quasi-
plane wave sound beams. The quasi-plane approximation assumes that the sound beam is
directional and that the angular spectrum is narrow. Thus the nonlinear substep used in a
fractional step marching scheme, based on an operator splitting of our model equation is

lacking multi-directionality of propagation. It is assumed that the nonlinear propagation
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process is strictly in the z (axial) direction. In Tavakkoli’s operator splitting approach,
both nonlinearity and attenuation are combined together, and thus both processes assume
propagation only in the z-direction. In the operator splitting (6) which we prove,
absorption and diffraction are combined together. Combining these two effects takes into
account the directionality of component ray-paths which are added and attenuated in a
linear way. Moreover, the parabolic approximation need not be made and diffraction may
be calculated exactly. Because of these reasons, a fractional step marching scheme based
on (6) may prove to be more accurate in the near-field than the KZK approach. This
prospect will not, however, be investigated, as the very nearfield is of little importance to

simulating medical ultrasound systems.

One disadvantage of using a fractional step marching scheme to solve for nonlinear
propagation is that modeling errors may accumulate over many fractional steps, and the
scheme may become inaccurate at best and unstable at worst. Algorithmic burden, on the
other hand is problematic. Often there is an inherent tradeoff between accuracy and
computational efficiency, and good judgement must be used in reaching a suitable
compromise between the two. The choice of an accurate yet efficient way of computing
the effects of diffraction, attenuation, and nonlinearity is thus key to developing a

simulation tool for harmonic imaging.

4.4 Choosing Efficient Algorithms for Calculating the Effects of

Nonlinearity, Diffraction, and Absorption

One of the prime objectives of this work is to develop a model of nonlinear propagation
which is as computationally efficient as possible. With the operator splitting, and
fractional step marching schemes presented in sections 4.2 and 4.3, the task of
computationally efficient modeling reduces to finding algorithms for diffraction,
absorption, and nonlinearity which have minimal computational burdens, and yet are as

accurate as possible.
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4.4.1The Choice of a Nonlinear Algorithm

For continuous wave sources, the frequency domain solution to Burgers equation
(FDSBE) is a good choice for a nonlinear (plane-wave) algorithm. We use the FDSBE
presented in chapter 3, when moderate drive levels are simulated. For very high
amplitude excitations, a number of authors comment on the benefits of calculating

nonlinearity in the time domain.

The time domain nonlinear algorithm presented by Christopher (1994), and described in
section 3.1.2, will be used for pulsed excitation modeling, since it offers great stability, is

implicitly harmonic-limited (and thus efficient), and is reasonably accurate.

4.4.2 The Inclusion of Absorption

Absorption can be calculated together with either the diffraction or the nonlinear
algorithms. If nonlinearity is modeled in the time domain, we will couple absorption with
the diffraction algorithm. If nonlinearity is modeled in the frequency domain, absorption
may be included with the nonlinear algorithm (for stability), or with the diffraction
algonithm.

4.4.3 The Choice of a Diffraction Algorithm

The choice of an efficient diffraction algorithm was a primary focus of this thesis. Its
importance is illustrated by the observation that for the algorithms of Tavakkoli et. al,,
which used the Rayleigh integral for the diffraction computation, 90% of the CPU time

was being used on the diffraction substeps.

Other established methods of computing diffractive propagation include the impulse
response method, and the angular spectrum technique. A brief review of these techniques

will be provided in sections 4.5 and 4.6.

A suitable diffraction algorithm for the proposed fractional step marching must meet the

following requirements:
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e Computationally efficient

e Plane to plane

e Valid for non-separable, and non-axisymmetric field distributions. (by non-separable,
we mean that a field distribution need not be separable into a product of time and
space functions of the form G(x,v.z)F(z)).

e Reasonably accurate in the nearfield (because we intend to use a fractional step
marching scheme, nearfield inaccuracies may propagate out of control)

e Suitable for a linear phased array, and other transducers with and without apodization.

o Should include the possibility of beam steering.

¢ Easy to include attenuation, refraction and reflection

e Some way of choosing adequate spatial sampling so as to ensure accurate modeling

results

4.5 A Comparative Evaluation of Algorithms for Calculation of

Diffraction

Here we consider a few diffraction algorithms and their suitablility for our proposed
nonlinear algorithm. Suppose we wish to compute the particle velocity or velocity
potential for all points in a plane a distance Az away from a transducer or source plane at
axial coordinate z = z,. Suppose the normal particle velocity distribution of the source

plane is v(x,y.2,.1).

Computation of the velocity or velocity potential will be done discretely, so let us
suppose that the x-axis is quantized into N discrete values, the y-axis into N, values, and
time into A, values. (If cylindrical coordinates (r,6) are used N, and N, become N, and Ny
respectively). We can express the computational complexity of the diffraction algorithms
in terms of N;, N, and V,. We will, in particular, investigate the following three methods:
(1) The Rayleigh approach (2) The impulse response formalism, and (3) the angular
spectrum method.
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4.5.1 The Rayleigh Integral
The Rayleigh integral is a mathematical statement of Huygens principle - it is a sum of

field contributions from small elements across the source. It is given by
1 ¢ev,(t=R/c,)
rt)=— ||+——=-45,,
bty = y = )

where ¢ is the velocity potential at the observation point, v, is the normal particle velocity
across the source, R is the distance between the source element and S, is the surface

across the source. Let us consider the computational complexity of the Rayleigh integral.

If we want to calculate the velocity potential at a point on the plane ==z, for all times of
interest, we would evaluate a double integral over the surface of the transducer/source
plane. Thus for all times of interest, this would require N(N:N,) calculations. To do this

for all points in the plane z=z,, would require Nt(N,N}.)z calculations.

If there is axial symmetry, the Rayleigh double integral reduces to a single integral, and
only the radial component of the plane profile needs to be evaluated to represent the

entire plane z=z,. Thus the computational complexity for the Rayleigh integral (axial

symmetry) is only NN/

We are primarily interested in the nonaxisymmetric case, and it is evident that the
computational burden due to the Rayleigh integral can be large if planar sampling is
dense. Otherwise, the Rayleigh integral satisfies the other requirements given in section

44.3.

4.5.2 Impulse Response Formalism
The impulse response of a transducer is, as the name suggests the field response of a

perfect impulse excitation:

h(r,t) = J‘I§O(x,y)5(t—Rlcn)dSa )
S

2R
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Here & is an apodization factor across the source, and the other variables are the same as
those given in the Rayleigh integral. The transient response due to a given excitation may
be obtained by convolving the impulse response with the source excitation:

o(r.t)=v, (t)*h(r,t).

Note that this method assumes that the source velocity v(x,y,?) is separable, i.e. can be
written as v,(t)&(x,y) where & is an apodization factor. One of the requirements for a
suitable diffraction algorithm in the proposcd nonlinear propagation algorithm is that the
approach be valid for non-separable distributions. To see why this is so, consider a point
source which emits a delta-function excitation. The impulse response on a plane a
distance away from the transducer will consist of an impulse arriving first at the center of
the plane (the point directly normal to point source), followed by impulses armiving later
in isochronal rings off axis. The impulse response is therefore given by

k]

c

h(t,z,r) = 5[! -

which is clearly not separable. Since we are concerned with plane to plane diffractive
propagation, it is essential that the method be capable of propagating non-separable
distributions. The impulse response formalism is thus discounted from our list of
potential candidates for a diffraction algorithm. Nevertheless, we will consider its
computational complexity and compare its efficiency with other techniques. If it is
computationally efficient, it may be used for the first step propagation from a transducer

surface where excitation is separable.

In investigating the computational complexity of this approach, we will consider two
situations:

(1) The impulse response function can be evaluated analytically.

In this case, to calculate the velocity potential at a point on the plane z=z,, requires a
convolution of the impulse response with the surface velocity of the transducer/source
plane. This would require on the order of 3Nlogx(N,) + N, computations if the FFT

method of convolution is employed. Thus to evaluate the velocity potential at each point
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of the plane z=z,, we would require on the order of N;N,(3Nlog;(N,)+N,) computations. If
there is axial symmetry, this reduces to N, (3V,loga(N)+N)).

(2) The impulse response function cannot be evaluated analytically, and must be
computed numerically:

Here, the impulse response function is obtained by evaluating a surface integral over the
surface of the transducer/source plane. This would require N,V,N, computations, unless
the transducer has axial symmetry, in which case the surface integral would reduce to a
single integral (NN, computations). Once we compute the impulse response for a point in
the plane z=z, for all times, we then need to convolve the impulse response with the
surface velocity to get the velocity potential at a point in the observation plane. Thus for
one point on the plane z=z;, we require NN, N, + 3N/log:(V,) + N, computations. To do
this computation for each point in the plane z=z,, we require NN, (VNN +3Nloga(NV)) +
N;) computations, which is of the same order of computational complexity as the

Rayleigh formalism, and even slightly more demanding.

There is also a way to compute the impulse response function using only one integral,
which we shall call the Tjotta impulse response method (Tjotta and Tjotta, 1982). By this
method, one does a coordinate transformation so as to integrate over isochronal ring
elements (points equidistant from the observation point). In this case, suppose that the
angle to integrate over a single annular isochronal ring is B, and that there are Np discrete
points to sum over. Then for each observation point we require N computations to find
the impulse response at a single time, and VgV, computations for N, times. Once the
impulse response has been found for a given observation point, we do a convolution over
the source velocity v. This convolution would require 3Vloga(N;) + N, computations. We
then would need to do the identical calculation for all points in the observation plane.
Overall, we would thus need NN, (N, + 3N loga(V;) + N;) computations, which is
approximately NN, VgN.,.

4.5.3 Angular Spectrum Method
The theory of the angular spectrum method will be given later on in the chapter.
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It will suffice to mention that for each frequency component of the source excitation,
there exists a spatial frequency representation of the source plane. Propagation from one

plane to another may be accomplished through use of a transfer function H.

Let us suppose that the surface velocity of the source plane is v(x,y,2,.t). First we need to
perform a FFT to find the frequency domain representation of the velocity s(x,y,z,, @) for
each point (x,y) in the source plane. In general, this will require NN, Nlog,(N))
computations. Once s(x.y.z,, ®) is found for all points (x,y) in the transducer plane, and for
all frequency components @, the following steps are needed:

For each frequency component ,

(1) Perform a 2D-FFT on s(x,y,zo, @) to get S(ky, &y, z2=2,). (VxNyloga[ N:N,/2]
computations).

(2) Multiply S by the transfer function H(kyk,, =,|z;) defined in section 4.6. (NN,
computations).

(3) Perform a 2D-IFFT to obtain the frequency domain velocity s(x,y,z;, ).
(N:Nyloga[N:NV,/2] computations).

Thus we require N,[2ZN:N,loga(NN,/2)+N:N,] computations for all the frequency
components. (These computations are made once the values for v(x,y,0,t) are computed).
Finally, once s(x,y,2;, w) has been computed for all points (x,y) on the plane z=z,, and for
all frequencies o, we do an IFFT on s(x,y,z;, @) enabling the time domain velocity
waveform v(x,y,z,,t) to be obtained. This should be done for all points (x.y) in the plane
z=z, (i.e. NyN,Nlog2(V;) computations). Thus in total, we require

2NNy N loga(N;)+N 2N Nyloga(N,N;/2)+N:N,] computations.

The angular spectrum method is very computationally efficient compared to the Rayleigh
and impulse response methods, given a non-uniform, non-axisymmetric surface velocity

on the transducer/source plane.

Below is an example using actual numbers to illustrate this point. Suppose we want to

compute the particle velocity for all points in a plane a distance Az from a
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nonaxisymmetric source. Suppose N; = N, = N, = 512. The computational efficiencies of

the various methods is summarized in table 1.

Table | Computational Burden of Various Diffraction Algorithms

Method , # Computations
Rayleigh 3.5184x10"
Impulse response * 3.5188x10"
Tjotta impulse response * 7.2478x10""
Angular spectrum 7.1135x10°

* Only valid for axisymmetric sources

Thus, based on this preliminary analysis, the agular sectrum method is almost 5000 times
more computationally efficient than the Rayleigh or impulse response method, and 10

times faster than the Tjotta impulse response method.

Besides being computationally efficient, the angular spectrum method is valid for plane-
to-plane propagations — even when the source plane is non-separable. It can be very
accurate in the nearfield as will be demonstrated in subsequent chapters. Attenuation,
refraction, and reflection can be easily incorporated, and sampling theorems will be
developed to ensure accurate modeling results. In short, the angular spectrum method is

an ideal choice for modeling diffractive propagation.

4.6 The Angular Spectrum Method: Theory

In the previous section, it was shown that the angular spectrum method showed great
promise for efficiently computing the effects of diffraction. Here we consider some

background information regarding this useful technique.

The angular spectrum is a widely used technique in optics and is addressed by Ratcliffe
(1956), as well as in texts by Gaskill (1978) and Goodman (1968). In acoustics, the
angular spectrum methodology has also been well established. Maynard and Williams

used it to investigate the possibility of sub-wavelength resolution acoustic holography
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(1980), and to compute the field from a plane piston transducer (1982). Stephanishen and
Benjamin used the angular spectrum for forward and backward propagations (1982), and
Waag et. al. explored windowing and other issues in discrete implementation of the
angular spectrum technique (1985). Shafer (1989), and Christopher and Parker (1991)
have applied the angular spectrum method to transducer characterization using

backpropagation, and nonlinear propagation.

4.6.1 The Spatial Frequency Interpretation of a CW Transducer Excitation
Consider a plane transducer vibrating at a constant frequency f. The acoustic waves
propagating away from the transducer surface can be thought of as a weighted collection
of wave vectors k = (k,k,, k), each wave vector propagating in a different direction, and
each carrying a different weighting, or amplitude. For a wave that is nearly planar,
propagating in the z direction, the components &, = 0, k,, = 0 will be the most heavily
weighted, but weighting will be negligible for large values of k. or &y (i.e. vectors
pointing away from the direction of propagation). For a pulsating sphere or point source,
all wave vectors may be weighted equally as the radiation field produced would be
spherically symmetric. We can consider a transducer as a collection of point sources, and
the acoustic spatial frequency spectrum as the linear sum of all these point source
contributions. Mathematically speaking, for a flat transducer, we can consider the
aperature surface s(x,y.z,) to have a particular spatial frequency spectrum, S(ky4,) given

by the two dimensional Fourier transform of the aperature, i.e.,
(N Sk,.k,52,) =Sy is(x,2,2,)} = | _[s(x, y,z,)e "4 dxdy

The distribution S tells us that a particular wave vector k=(k;,k;,k:) has weighting S(k. ;).
Note that for a particular frequency f; a particular wave vector (k| = 2ntf7c, may be
specified by referring only to the (k. k) components since £ is given by the relation k=
I - (k2 +k?).
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For a disk transducer, the spatial frequency spectrum corresponds to a jinc function, and
for a rectangular transducer, the spatial frequency spectrum corresponds to a 2-D sinc
function.

4.6.2 The Angular Spectrum

We can also write the spatial frequency spectrum as an angular spectrum. Given the
direction cosines

a=cosd =k-& =-k/k

B =cosy = k- = -k/k.

Y= (1-(c*+p)'"* = -k/k

where the symbol ‘*’ denotes a unit vector, we can write
®) S(a,B;z,)= I J' s(x,y,z2,)e* P dxdy .

For future note, we will often refer to S(4;,4,), given in (7) as the angular spectrum, even
though it is technically expressed in terms of spatial frequency vectors, and not direction

cosines as is the case for (8).

4.6.3 Diffractive Propagation Using the Angular Spectrum

On a plane a distance Az away from a harmonically excited transducer, diffractive
propagation will alter the spatial frequency spectrum on the transducer surface S(kk,, =
=z,) to something new, S(k:,k,, z = z,) related once again to the spatial field profile at the

plane z = z, by a Fourier Transform.

There is a linear relation between the field profile at the surface of the transducer, and the
field profile on plane z=z,. This linear relation can be thought of as a 2D-transfer function
H(ky, ky; Az) in the spatial frequency domain, or a point spread function A(x,y;Az) in the

spatial domain. Specifically, we may write:

s(x,y,z,)=h(x,y; Az) **s(x,y,z=z,)

or
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Stk .k,;z,)=H(k,,k,;42)S(k, ,k, ;2=2,)

where Az = |z,-z,|, and ** denotes two dimensional convolution over x and y.

The form of h and H can be derived analytically, by substituting

cD(x,y,z):% [[S(a. B : 2)e =" dadp

n L 4
into the homogeneous Helmholtz equation, and solving the resultant second order
homogeneous differential equation in S, given the initial condition S = S(a, 8:2=0).
The transfer function H is thus given by

Ak -(k{ kD)

©) Hik, k. : Az) = - for (kf +k;',)$k3 |

' g SV o (k] +k})>k*

Thus, given the angular spectrum S(ky,ky;2,) on plane z,, we can know the angular
spectrum on a plane z,, a distance A= from plane z, by the following transfer function
relation:

(10)  S(k,.k,;z)=H(k, k ;Az)S(k, .k, 2,

The field profile on the plane z; can then be found by taking the inverse 2-D Fourier
transform of the above result. The sequence of steps used to compute the angular

spectrum is illustrated in Fig. 2 below.
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Figure 2 [lustration of the angular spectrum approach to diffractive propagation. (a) is
the normal velocity profile (m/s) of a plane piston of radius lcm. It transmits a CW
excitation at 5 MHz. (b) is the spatial frequency representation of the source (c) is the
argument of the transfer function 4, and (d) is the normal velocity field profile at z=a A

The transfer function A can be thought of as a complex phase weighting, that governs
Huygen's principle of wave superposition. The ultrasonic field from a source may be
thought of as a collection of constituent waves - each with its own directionality and
magnitude. The angular spectrum is a mathematical description of the magnitude of such
directional components. The field across an observation plane, a distance 4z away from
the transducer is characterized by how these constituent waves interfere with each other.
The superposition of the constituent waves at a point on the observation plane depends on
the relative phase between the wave components. The transfer function A is the
mathematical mechanism whereby each component wave is assigned a phase. After these
components are shifted by their assigned phase, they are added together linearly in a sum,
which, is given mathematically by the inverse 2-D Fourier transform of (10).
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An alternative to an angular spectrum based - description of diffractive propagation is a
spatial one. The point spread function A(x,y,; Ax) which relates the field profiles between
planes separated a distance Az apart is obtained by taking the inverse Fourier transform of

the transfer function #, and is given by

A ze’“( " 1)
LY AZ) =~ 3 il ——
(x,y:4z) i 3

.

where

R=x'+y +A*

Thus, given the field profile s(x,y,z,) on a plane z,, we can know the angular spectrum on
a plane z; a distance Az away from z, by the following 2-D convolution relation:

s(x,y,2,) = h(x,y;Az) **s(x,y,2,) .

We can think of the point spread function 4(x,y; Az), as the field profile or response on
plane z=z, given a one point source at (x,,,,2=0) is harmonically excited with frequency
/. H is the Fourier transform of 4, and represents a spatial frequency domain version of

the response due to a point source excitation.

Pressure and Normal Particle Velocity

It should further be noted that other field variables may be used for diffractive
propagation, such as pressure, or normal particle velocity. For example, normal particle
velocity u is a useful parameter to define the profile across the transducer surface. The

normal particle velocity distribution across a surface z; a distance Az from the transducer,

then is given by

u(x,y,z,) = h(x, y; Az) **u(x, y,z,)

where 4 is the point spread function. Equivalently, this could be written as

u(x,y:2,)=37, {H(k,,ky;Az)U: (k,,ky;zo)}
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where U denoted the 2D-Fourier Transform of u, and H is the transfer function. Similar

expressions may be written for pressure field to pressure field diffractive propagation.

If we want to know the pressure, or velocity potential at a plane a distance Az away from
the transducer, given the normal particle velocity on the source plane (transducer

surface), however, we need a different form for H and A.

For example, suppose we want to compute the pressure over a plane , a distance away
from the transducer:
p(x,y,2,)=u(x,y,z=0)**h,_ _(x,y:Az)
The point spread function A,.», is in this case given by
JkR

. . e
h,,(x,y:Az) = - jopg(x,y,Az) = - jop 3R

where g is the point source Greens function and
R=yx*+y* +4z*

It can also be shown that the transfer function H,.>, is given by

FykT -k k3 )as
wpe’ "

V- +k)

where G is the Fourier transform of the Greens function. Using H,.>, can be numerically

H,,(k, .k, : A2) = = jwpG(k, k, : Az) =

troublesome because of the singularity for £.=0 (Maynard and Williams, 1982), and the
use of h,.>, may be a better alternative. The forms of A..> and H ,.>¢are equal to those of

h..>pand H,.>, divided by a factor of -jwp.



Chapter 5: Numerical Implementation of the Angular Spectrum
Method

In Chapter 4, a new scheme was proposed to numerically evaluate finite amplitude
ultrasound propagation. The proposed methodology was based on a second order
operator splitting. Diffraction, absorption, and nonlinearity are solved separately over
small incremental steps, and the field profile is marched along in a plane-to-plane fashion
using a fractionai step marching scheme. The choice of an efficient and accurate
diffractive propagation algorithm suitable for such a modeling scheme is important
considering previous models suffer from computational bottlenecks in the diffraction
portion of the propagation algorithm. The angular spectrum method was shown to be a
good candidate for such an algorithm. Discrete implementation of the angular spectrum
scheme involves sampling and windowing issues which are nontrivial. In this chapter, we
consider diffractive propagation from non-axisymmetric sources. The reader is referred to

Appendix B for the slightly different analysis needed for radially symmetric sources.

5.1 Numerical implementation of the Angular Spectrum Method
in cases where there is no radial symmetry

In cases where the transducer has radial symmetry, Christopher and Parker’s (1991)
approach to diffractive propagation using the DHT may be used. Their approach, along
with some general insights into the use of the angular spectrum approach for cases with
radial symmtery, is discussed in Appendix B. They argue that the principles behind their
algorithm can easily be extended to non-axisymetric sources by using the 2DFFT in place
of the DHT. In fact, Christopher (1999) implemented a nonaxisymmetric version of his
FSC algorithm, using the 2D-FFT. However, he used axial increments of 20 per cm,
which is a subwavelength step size. Our intention is to exploit the second order operator
splitting introduced in Chapter 4 to enable the use of much larger step sizes, while
concurrently saving computational cost. Christopher’s use of subwavelength distances for
the angular spectrum likely elicited smal} wraparound errors. For large-step diffractive
propagation, however, there are some unfortunate problems which will require careful

analysis. First, however, we will formally introduce the notation, theorems, and

47
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algorithms associated with the 2D numerical implementation of the angular spectrum
method.

5.1.1 Notation
There are two approaches one may take to implement the angular spectrum method

numerically. One approach, which we shall call the frequency sampled convolution
(FSC) algorithm, involves sampling the propagator function A in the spatial frequency
domain. The other method, called the spatially sampled convolution (SSC) approach, is
to sample the point spread function 4 in the spatial domain. These approaches have
different consequences, which will be discussed in due course. In doing so, will first
describe the SSC algorithm.

To accurately implement the 2D SSC algorithm numerically, we must choose an
adequate sampling scheme. Thus we must specify the sampling intervals Ax and Ay, as
well as specify the spatial extent of the transform domain. Given a field distribution s(x,y)
over an infinite extent source plane = = z,, we must choose a finite truncation of s. If the
source plane is coincident with the transducer surface, then the normal particle velocity
will naturally be of finite extent. However, if we are considering the case of plane to
plane diffractive propagation, and the source plane is actually some distance from the
transducer, then the field profile across the source will be of infinite extent, and must be
truncated and windowed. Windowing issues will be dealt with in section 5.7. We shall
denote the desired spatial extent of the source in the x and y directions by + X, and £7,.
The spatial extent of the source plane should be chosen so that the bulk of the field
energy across the plane is contained within these boundaries. Now we must sample s(x,y)

over the interval [+ X, Y, ], with sampling intervals Ax and Ay. Let Nx; be the number

of samples over 0<x<X;, and Ny, be the number of samples over 0<y<Y. The sampling
should adequately capture the planar variations in the source distribution, as determined

by the 2D-Nyquist Theorem.

Next assume that we wish to find the diffracted field profile across a plane z =z, a

distance Az away from the source. Again, the diffracted field profile on the observation
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plane may be of infinite extent, however, we must choose a finite window in which we

desire correct results. Call the x and y spatial extents of the observation plane + X, and

+Y, respectively.

The point spread function # must also be sampled with adequate sampling out to some
finite extent. The point-spread function 4 is of infinite extent, and must be truncated. The
required convolution is only numericaily realizable if both s and # are of finite extent.
Note that A must be sampled out to at least [X, + X;, Yo + Y] to be able to get accurate

results out to the extent of interest, [+ X, ,£Y,]. Denote this extent as [T, 7, ]. Let Nz, be

the number of points spanning 0<x<T, and let N7, be the number of points spanning

0<y<T,. With this notation (see Fig. 6), the convolution becomes

Ny, -1 Ny, -l
(5) Sd[m’n]**hd[man]= Z st[j3k]hd[m-jan—k],
J==Ny, k==Ny,

for -Nri<m<+Nrpz-1, and -Np<n<+Np-1. Correct results are obtained in the region
-Nxo<m<+Ny,-1, -Ny,<n<+Npy,-1, with aliasing errors dominating the region exterior to
this.
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algorithm for (a) the source plane and (b) the observation plane.
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5.1.2 The 2D SSC Algorithm
The convolution (5), may be implemented in a computationally efficient way using the

2D-FFT as follows:

Having chosen [T, 7}], and [Ax,Ay], and sampling the sequences s and 4 as outlined

above,

1. Zero pad s{m,n] out to [N7,, N3;]. If 5 1s of infinite extent, first use a tapered window io
taper the edge discontinuities from truncation to zero. This will prevent edge artefacts
in the convolution. Call the zero padded (and tapered) window s,[m,n].

2. Take the 2D FFT of both 4, and s, and call the results A, and S, respectively.

3. Take the 2D IFFT of the product A, x .

4. The correct result of the convolution can be found by extracting the central [Ny, Ny,]
core results of the inverse transform. The results outside this core have wraparound

error.

5.1.3 The 2D FSC Algorithm Using the 2D FFT
Spatial frequency sampling of // may be used as an alternative to the spatial sampling

(SSC) methodology. The spatial frequency domain extends across the region
[~Remax<kx<kimax, ~Kumax<ky<+kymax), Where kimex=1/Ax, and kymq.=m/4y. There are Vi
samples across [0,kxmax), and Ny, samples across [0,Kymac]. The sampling intervals in the

spatial frequency domain are defined by Ak, = w/T, and Ak, = /T,.

The 2D FSC algorithm can be described as follows:

1. Having chosen [T, T}], and [Ax,4y], sample the sequences s, as outlined above.

2. Sample the point spread function in the frequency domain by sampling the analytic
transfer function A in the frequency domain with discrete spatial frequency sampling
defined above. Call this sampled version ;.

3. Zero pad s[m,n] out to [N N,]. If s is of infinite extent, first use a tapered window to
taper the edge discontinuities from truncation to zero. This will prevent edge artefacts
in the convolution. Call the zero padded (and tapered) distribution sy[m,n].

4. Take the 2D FFT of both s,, scale it by a factor 1/AxAy, and call the result Sp.
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5. Take the 2D IFFT of the product Hy x S.
6. The correct result of the convolution can be found by extracting the central [Ny, Nyo)
core results of the inverse transform. The results outside this core have wraparound

€rITor.

5.1.4 A Note Regarding the Implementation of the 2D-FFT Using Established
Algorithms

Most 2D FFT algorithms assume that the matrices to be convolved are not centred about
the origin, but rather have their lowest indices [1,1] coincident with the origin (x=0,=0).
Thus, before using most black-box' 2D FFT algorithms, we must first shift the sequences
so their bottom edge coincides with the origin. After using the 2D FFT algorithm, the
sequences must be shifted back so that they are centered about the origin. This shifting
process can be accomplished by a function (called ffishift2 in MATLAB), which swaps
quadrants [ and III and IT and IV.

5.2 Accurate Sampling of the Point Spread Function h for the Case of
Single Step CW Diffractive Propagation

The Nyquist theorem demands that the maximal frequency content of the point spread
function 4 ultimately dictates the sampling we should use in the spatial domain. Thus, by
looking at A, the frequency domain representation of &, we can get a picture of what kind

of sampling Ax and Ay we need in the spatial domain.

Inside the radiation circle,

6 kl+k]=Qnpc),

the transfer function H(ky,ky) has magnitude 1, and tapers off to zero exponentially
beyond it. Thus if we choose a threshold for the maximal frequency content [Kumaz Kymax)
of h as being slightly beyond the radiation circle, (i.. knax = 27f/c + & where ¢ is a small
amount), the point spread function will be well represented, and the 2D FFT of  will
have negligible wraparound error. This can be understood by considering that the
transform of # would be equivalent to an aliased version of A infinitely wrapped around
itself with period [2nf7c + €,2af7c + €]. It is the evanescent portion of H which will be
aliased back into the spectrum, and since the evanescent tails are typically negligible, the
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wraparound errors associated with H; will be negligible. Thus the SSC algorithm using
the 2D FFT will be accurate. Note that the sampling defined by the Nyquist threshold
[Kzmax, Kymax] corresponds to a rate of slightly better than A/2 sampling.

If the propagation distance Az is very small (less than a wavelength), the evanescent tail
of A will be significant, and sampling at intervals of Ax ~ A/2 will not suffice. In this
case, one might consider a much denser sampling, or, alternatively. sampling the transfer

function H in the spatial frequency domain.

5.3 Accurate Sampling of the Transfer Function H

Sampling the transfer function A in the spatial frequency domain in 2-D somewhat more
subtle than Christopher’s axisymeteric (1-D) treatment. The crux of the problems are

associated with what one might call circle-square issues.

Cousider the following three cases.

1. The radiation circle is completely within the spatial frequency (transform) domain

2. The radiation circle is only partially within the spatial frequency (transform) domain

3. The spatial frequency domain is completely inside the radiation circle

With cases (1) and (2) at least part of the radiation circle is within the transform domain.
In general, these situations are not ammenable to spatial domain sampling of A. This is
because the radiation circle corresponds to a region of A where there is an abrupt change,
and very dense oscillations, and cannot be adequately sampled. Sampling the point spread
function 4 in these cases is the appropriate route. For case (1), adequate sampling of 4 is
guaranteed, since the radiation circle is contained within the transform domain, and
wraparound error from the evanescent tail of H is negligible. For case (2), # must be
sampled at A/2 or better, even though this may not be the sampling scheme for the source.
The 2D-FFT of h may, however be truncated to the extent of the angular spectrum of the

source, enabling the computation to be done.
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In case (3), where the radiation circle is completely beyond the finite-extent spatial
frequency domain, the oscillations of H can be adequately sampled, given the Nyquist
rate of the most rapidly varying portion of the 2-D transfer function A (within the finite
spatial frequency domain).

Suppose that we wish to sample H, and we wish to do so by sampling out to {kimax, ymax],
which is within the radiation circle. We may ask what sampling [Ak,, Ak,] do we need to
adequately represent the oscillations of the transfer function? The answer comes from the
Nyquist theorem, and is based on an analysis of the highest frequency of oscillations of H
contained within the transform domain. The highest frequency oscillations will be at the
corner of the transform domain, since we know the oscillations become more dense close
to the radiation circle. We can use the 2-D Taylor expansion of the argument of / in the

epsilon neighborhood of [kimax kyma:] to €xpress H to first order as

j(Bk,+0 k, +consant)
H(k k,)=e ' ,

thus giving an estimate [S;,B,] of the maximum frequency of oscillations of A in the

transform domain.

Given that

H(k, k,;Az) = e "V 4
oy

is the transfer function for the frequency f(and & = 2nf/c), we may define a function g,
such that

gk,.k,) =Aka2 -(k; +k;)

Expanding this as a Taylor's series about (Kxmax,Kymax), to first order

og og
ko k)=g, (k, .k, )+Ck, —k _—‘ +(k, —k, .
g( x? y) gn( X max ym) ( x xmx)akx fy ( y L )aky &

kv max

The desired sampling rate, which will determine Ak; is
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5. = a‘gl _ Azk, Ak,
A \/kl__(kf-i-k;)k Jk (K +hi0)

smax Ky man

and a similar result can be obtained for f8,. Thus the sampling rate Ak, is given by

TIPS A L T
T 2B, 242k,

b

and a similar result is obtained for Ak,. All of the above analysis assumes that the

transform domain is completely within the radiation circle.

Essentially, we can use such a scheme where the extent of the angular spectrum of the
source is well contained within the extent of the domain, or at least the bulk of the energy
is contained within the transform domain. This will be the case for field distributions
which are relatively smooth, and slowly varying in the spatial sense. Thus the nearfield of
a source would be a poor candidate for using this scheme, and sampling 4 would likely be

a better choice.

5.4 The Limitations of the Ray Theory Truncation for 2-D Diffractive
Propagation
The idea of the ray theory truncation, described in Appendix B, is to limit the maximum

spatial frequency extent based on the maximal angle between the source and the edge of
the plane where correct results are desired. Truncation in the spatial frequency domain
can reduce the computational requirements for the SSC and FSC algorithms. The ray
theory truncation may be used to truncate the product A x S, and thus decrease the size of
the matrix on which to perform the inverse 2D-DFT. However, may be unprofitable if the
2D-FFT is used, which requires that the matrix be of size Z" x 2™ points (where n and m
are integers). The ray theory truncation may not be used to decrease the spatial sampling

of s or & directly, as this may incur serious aliasing errors in the convolution.
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5.5 Sampling of the Transducer Surface

5.5.1 Sampling in the Spatial Domain vs. the Spatial Frequency Domain
Sampling of the aperature may be difficult due to the abrupt edges associate with the

transducer surface. A course sampling of the aperature results in poor nearfield accuracy
of not only the angular spectrum method, but also the Rayleigh method, and the impulse
response method. The farther the observation plane from the source, the more accurate
the computed field profile (based on the given gridding scheme) will be. Reasonably
accurate results may be obtained for observation planes which are in the farfield of each
sampling element. Nearfield inaccuracies may be a source of instability for a plane-to-
plane fractional step nonlinear propagation algorithm, which we intend to develop.
Nearfield errors may propagate incrementally in the marching scheme, and so it is
important, if at all possible to secure reasonably accurate nearfield results. One way of
ensuring nearfield accuracy is to use an extremely dense gridding scheme. This however

comes at the expense of greater computational burden.

An attractive alternative, proposed here, is to use sample the analytic transform of the
aperature in the frequency domain, when the analytic transform is known. This is
possible for disks, rectangles, and, in the next section, an analytic representation of a
linear phased array will be presented. The advantage of sampling the aperature in the
spatial frequency domain is that an effectively infinitesimal spatial sampling can be

obtained, thus eliminating aliasing artefacts associated with sampling an abrupt edge.

For phased arrays, an optimal design for eliminating grating lobes involves using
elements whose inter-element spacing is less than A/2. Should we sample the transducer
in the spatial domain, very fine mesh would be needed to define the small detail present.
Alternatively, sampling the transducer in the spatial frequency domain, has an additional
advantage of using moderate sampling rates for representing the angular spectrum of a

source.

The angular spectrum only needs to be defined out to a spatial frequency kma. of slightly
better than k, = 2nflc, since after a step of diffractive propagation, the transfer function 4
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will filter all spatial frequencies beyond the radiation circle. In fact, we have found that
sampling the aperature in the spatial frequency domain, can give very accurate results -

even in the nearfield.

5.5.2 An Analytic Representation of a Linear Phased Array in the Spatial
Frequency Domain

Here we give an analytic expression for the 2D Fourier Transform of a linear phased
array. Consider a phased array composed of N elements of height A, and width W.
Suppose the inter-element spacing is s, and the distance from the center of one element to
the center of an adjacent element is d = W+s. The length of the array is D = (N-1)d+W.

Supposing that N is even, the aperature function may be written as:
Ni2 )
®)  s(xy)=&() L AE(x—nd,y)e™,
nm=N12

where 4, is an apodization factor for the nth element, ¢*" is a phase delay for element n,
and & represents the complex phase delay and apodization of a lens applied to the
elevation plane of the entire array and used for additional focusing. Here the function
E(x,y)=rect(x/W)rect(y/H). Taking the Fourier Transform of the aperature function, we
get

N2 Wk
) S(k,.k,)=SEW)rect(y/H)} Z A ——= sm( ) ginth, it

na=N/2 :

IfE =1 (i.e. there is no lens), the expression becomes

( L SIH(M() —jadk.
10 k k = A —_ X7 jadk,  jo,
10 Sthky) === 2 A,

If a lens is used, the y-component of the Fourier Transform may be difficult to evaluate
analytically, but can be numerically calculated. Alternatively, Wu and Stepinski (1999)
give an expression, based on an extension of the angular spectrum approach to curved
radiators, for a linear array with a cylindrically concave surface. Yet a further technique
for diffractive propagation from array transducers is to use a non angular spectrum
technique for the first step, such as the impulse response method of Ullate and San
Emeterio (1992), which is appropriate for calculating the transient near-field of phased
array transducers. The angular spectrum method could then be applied in a plane to plane

fashion following this first step propagation.
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5.6 Results of One Step Diffractive Propagation from a CW Source

5.6.1 Plane Piston Transducer
To verify the accuracy of our angular spectrum method, the field of a plane piston

transducer was compared with the lateral profile computed with the Rayleigh integral.
Our approach shows good agreement in the farfield, at a’/\. Figs. 7(a) and (b) show the

comparison at the axial distance a’/A.
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Figure 7 Lateral field profile at z = @%/A from a plane piston (=1.9cm) operating at
3MHz. The field amplitudes have been normalized relative to the magnitude of the source
excitation. (a) Obtained using the Rayleigh integral. (b) & (c) Obtained using the angular
spectrum approach.
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5.6.2 Linear Array
Diffraction from a linear array using the angular spectrum method with spatial frequency

domain sampling outlined in section 5.6.2 was simulated. The array had 16 elements, and
was of height H=2cm, width W=A/2, and had inter-element spacing s=A/4. It used no
focusing or apodization, and was excited at f= 1 MHz, with a normal particle velocity of
lemvs. The lateral field profile was computed at a distance z=n(H/2)*/A away from the
transducer. The results are shown in Fig. 8(a).

To assess the accuracy of the technique, results were compared with a calculation based

on the Fresnel approximation. The expression used was (Crombie et. al., 1997)
v(x Z,0) = -V ( z )e"bH I
0? ,Va 1<y -~ 0 4R x ¥

where

0, =erflo@ -2x,)]-erf[-o(W +2x,)], T, =erflo(H -2y, )|-erfl-a (& +2,)],

-jr
and where o = .| == ..
42z
Results of this calculation are shown in Fig. 8(b). Note the close agreement between the
two methods.
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Figure 8. The normal particle velocity lateral field profile of a linear array with no
focusing or apodization using (a) the angular spectrum method and (b) the Fresnel
approximation. The relevant parameters are: N=16 elements, H=2cm, f~<IMHz, W=1/2,
s=M4, z=r(H/2)*/\, v, = lemys.

5.7 Multistep Diffractive Propagation and Windowing Issues
For plane-to-plane diffractive propagation, the infinite-extent fields must be truncated. To

eliminate the associated edge artefacts, we have used a radially symmetric cosine-tapered
window, that is unity out to a cutoff region, and then tapers down to zero at the truncation
region, following a cosine-trend. Truncation and windowing are important aspects of our
model, yet have the distinct disadvantage that some energy may be lost in the plane-to-

plane diffraction algorithm.

5.8 Results for Multistep CW Linear Propagation

5.8.1 Plane Piston Transducer
To assess the accuracy of the multistep diffractive propagation algorithm, we simulated

the continuous field response from a plane piston transducer, and compared the axial
profile with the known analytic curve. As shown in Fig. 9(a), the agreement between our
algorithm and the analytic solution are in excellent agreement. Fig. 9(b) shows the field
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distribution of the transducer over a plane defined by the lateral and axial coordinate

axes. The dark region near the edges of the beam profile are due to windowing.
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Figure 9 (a) shows the axial normal particle velocity profile of a plane piston transducer
of radius @ = 1.9cm, frequency /=1MHz, and initial pressure P, = 50kPa. The solid line is
the analytic profile, and the circles are the result of the multistep angular spectrum
method. (b) Showing the field profile along the lateral xz-plane out to the distance a*/A.

For this simulation, the aperature was sampled in the frequency domain. The amplitude
units are m/s.
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5.8.2 Linear Phased Array
The field profile for a linear phased array with no elevation focusing is illustrated in

Figs.10(a) and (b) below. The angular spectrum method appears to be well suited to

simulate the field profiles of even complex, non-axisymmetric geometries.

03

0.25
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0.05
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Figure 10 (a) The normal velocity field profiles from a linear phased array (a) in the
elevation plane (b) in the azimuthal plane. The parameters are: /=2 MHz, N = 64
elements, F = 10 cm, P, = 347kPa, height 1cm, and length = 3.7cm. Note that this is a
finite amplitude signal level. Propagation was in tissue, with « =0.3 dB/cmand b=1.1.

5.9 A Note Regarding Beam-steering and the Angular Spectrum Method
Although this thesis will not attempt to model beam-steering from phased array

transducers, we mention how it might be accomplished. We suggest that a non-angular
spectrum technique, such as the impulse response method of Ullate and San Emeterio
(1992) be used to calculate the first-step linear field profile across a plane normal to the
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direction of propagation. Subsequent to this first step, the angular spectrum approach

could be used for the incremental plane-to-plane propagations.

5.10 Pulse Propagation
So far in this chapter, we have discussed the numerical implementation of the angular

spectrum method for monofrequency sources. In considering pulsed sources, the source
waveform must be broken up into frequency components. Each frequency component
will have its own angular spectrum, and may de propagated separately using a propagator
function appropriate for the distance and frequency in question. When choosing the size
of the mesh over the source and observation planes, sampling at slightly better than the
Nyquist rate of the highest frequency present in the spectrum should be used. This
corresponds to A/2 sampling, where A is the wavelength of the peak frequency

component. Pulsed propagation will be considered more fully in Chapter 7.

5.11 Conclusions Regarding Diffractive Propagation of Non-axisymmetric
Sources

Given a planar field distribution as a source, the angular spectrum method may be used to

diffractively propagate this source to a plane a distance Az away.

® The source plane must be sampled at at-least the Nyquist rate of the CW frequency
(A/2) or the 2D-Nyquist rate of the distribution, whichever is lower.

e If the angular spectrum of the source is very narrow, the FSC algorithm may be used.
This is because otherwise potentially dangerous undersampling of A for extreme
spatial frequencies will be weighted by negligible values from the angular spectrum
of the source.

e Once the sampling rate for the source is decided upon, we must decide how to sample
the propagator function. The choice of sampling intervals for the source determines
the extent of the spatial frequency domain.

@ If the extent of the spatial frequency domain is completely contained within the
radiation circle, the FSC algorithm may be used. The theorem in section 5.4 tells us
what sampling intervals are needed within the spatial frequency domain to adequately
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sample A. These spatial frequency domain sampling intervals, in turn determine the
spatial extent to which the source should be zero padded.

o If the extent of the spatial frequency domain completely contains the radiation circle,
spatial sampling of 4 is better. Because the radiation circle is contained within the
transform domain, adequate sampling of 4 in the spatial domain is guaranteed.

o Ifthe radiation circle is only partially contained within the transform domain, # must
be sampled at a rate slightly better than the source. the sampling rate being slightly
better than A/2 (so as to increase the spatial frequency extent of 4 to completely
encompass the radiation circle). Upon taking the Fourier Transform of 4, the resulting
angular spectrum may be truncated to match the spatial frequency extent of the
source.

e The ray theory truncation may be used to truncate the product A x S, and thus
decrease the size of the matrix on which to perform the inverse 2D-DFT. This
however may be unprofitable if the 2D-FFT is used, which requires that the matrix be
of size 2" x 2™ points (where n and m are integers). The ray theory truncation may not
be used to decrease the spatial sampling of s or 4 directly, as this may incur serious
aliasing errors in the convolution.

e Frequency Domain sampling of transducer surfaces may prove to be more accurate in

near-field computations, and may offer computational savings.

With the above approach, accurate results for continuous wave propagation were

obtained, as verified by comparison with other methods.
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A propagating finite amplitude wave will distort due to convective and nonlinear effects.
This distortion gives rise to harmonics not present in the initial spectrum, and thus in
modeling nonlinear propagation, each of these harmonic components must be accounted
for. The general approach we propose to modeling nonlinear progression has been
outlined in chapter 4. This chapter will give greater attention to the details of our
proposed scheme when the excitation signal is narrowband. In particular, we will
comment on our choice of operator splitting approaches, the choice of nonlinear
algorithm, and we will investigate modifications in the angular spectrum algorithm
needed to propagate harmonics generated in nonlinear propagation. Approaches used to
validate our algorithm will be explained, and results of our modelling will be compared

with published data.

6.1 Choice of Operator Splitting Scheme
For continuous wave sources propagating in tissue, attenuation is expected to greatly

reduce the amplitudes of harmonics generated in the nonlinear propagation process. It is
anticipated that retention of only a few harmonics may be necessary for propagation at
excitations levels typically used for diagnostic imaging. Frequency domain algorithms

lend themselves nicely to nonlinear propagation when only a few harmonics are required.

The general idea behind the proposed modelling methodology is to solve for the effects
of diffraction, attenuation and nonlinearity separately over small steps. As explained
earlier, this can be accomplished by using an operator splitting approach with a fractional
step marching scheme. In selecting an operator splitting technique, two second order
schemes were presented in Chapter 4 which are suitable for simulation of finite amplitude
propagation in tissue for CW sources. One of these schemes was originally presented by
Tavakkoli et. al. (1998), and consists of an incremental half step of diffraction, followed
by a whole step of nonlinearity and attenuation, followed by an additional half step of
diffraction. The other approach was to first do a half step of combined diffraction and

66
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attenuation, followed by a full step of nonlinearity, and finishing with a haif step of

combined diffraction and attenuation.

The choice of these operator splitting schemes may be based on whether it is desirable to
combine diffraction and attenuation together, or whether combined nonlinearity and

attenuation is preferred.

Our chosen diffraction algorithm, the angular spectrum approach, is inherently a
frequency domain algorithm. It may save some computation time to calculate the effects
of nonlinearity in the frequency domain, since this approach would bypass the need to
transform the spectra back into the time domain. Because of this reason, and because of
the computational efficiency afforded by needing only a few harmonics, the FDSBE is an
attractive algorithm for CW nonlinear propagation. The FDSBE, allows the numerical
evaluation of the combined effects of nonlinearity and attenuation. The inclusion of
attenuation in the nonlinear algorithm is attractive for the sake of stability of the
nonlinear substep, as it will tend to dampen higher harmonics. This may be particularly
crucial when large substeps, (made feasible due to the second order nature of the operator
splitting scheme) are chosen. If the FDSBE is used, the operator splitting scheme
presented by Tavakkoli et. al. (1998) would be the natural choice to use in the fractional
step marching scheme. Such a scheme has been implemented by us with moderate
success. It should however be noted that the other second order operator splitting scheme

has also been implemented with accurate results.

6.2 The Nonlinear Substep
The accuracy and reliability of our nonlinear propagation algorithm will greatly depend

on the accuracy and reliability of its substituent algorithms. In particular, the algorithm
for the nonlinear substep should be not only accurate, but also stable. Often times in

numerical modeling, instability is an undesirable product of nonlinearity. We consider
here validation of our nonlinear algorithm which will be implemented in the fractional

step NLP algorithm.
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6.2.1 Validation of the FDSBE Algorithm
To verify the accuracy of our FDSBE algorithm, we simulated plane wave nonlinear

propagation in a dissipationless medium, and compared the harmonic trends with that of
the (analytic) Fubini solution, presented in Chapter 3. This comparison (shown in Figs.
1(a) and (b)) is, of course, not valid beyond the shock distance. Fig. 1(c) shows typical

harmonic trends of a plane acoustic wave propagating in liver.
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Figure 1 (a) The propagation curves of the first 5 harmonics (f= IMHz ... 5SMHz) using
the FDSBE in a dissipationless medium. (b) The Fubini solution. (c) Nonlinear plane
wave propagation in tissue for the first three harmonics, assuming an attenuaton
coefficient of 0.3dB/(cm MHz), (i.e. a linear frequency dependence of the attenuation)
using the FDSBE. The source amplitude for all three plots was 0.1m/s, and the nonlinear
parameter § was 3.5.

6.2.2 Stability of the Plane Wave Nonlinear Algorithm
Unfortunately, the FDSBE has complex stability properties which are not wetll

understood. The algorithm involves a finite number of harmonics, and so propagation of
temporal waveforms which develop shockfronts may be troublesome if insufficient
harmonics are retained. Trivett and Van Buren (1984) have investigated the accuracy of

the algorithm for varying numbers of harmonics.

Step size is an important factor in contributing to the stability of the algorithm. If the
steps used in the FDSBE algorithm are too big, the algorithm incorrectly extrapolates the
nonlinear distortion, causing instability problems. Christopher and Parker (1991) found
that limiting the step increments to a certain size resulted in stable computations. In
particular, their step sizes were no larger than the distance over which the highest
harmonic might be attenuated by a factor of 0.7. We will call this the 0.7 rule. Although
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it seems counter-intuitive to consider step sizes which limit attenuation, the issue is more
with regards to the nonlinearity. The FDSBE cannot handle large changes robustly. Our
work confirms the general utility of the 0.7 rule for the plane wave FDSBE algorithm.
We did, however, notice that the rule did not always apply when diffraction present.
Some instabilities were observed for moderate amplitude wave propagation in water.

Fewer problems were encountered for tissue propagation.

Each nonlinear substep may be broken down into smaller substeps to allow the 0.7 rule to
be implemented. Larger step sizes, however, were still retained for the diffraction
substeps, and thus some of the instabilities we noticed may have been for cases where the
large step size of diffraction perturbed the subsequent application of the nonlinear
algorithm. Further investigation of stability for our approach is recommended for future

work.

For shock wave propagations, hundreds or thousands of harmonics may be needed,
greatly increasing the computation time of the FDSBE algorithm. Specifically,
computational complexity on the order of N°, where N is the number of harmonics
retained. Christopher and Parker used a harmonic limiting scheme whereby artificially
high attenuation was applied to higher harmonics, thereby allowing shockfront
propagations to be carried out reasonably accurately with 50-100 harmonics. Because we
are primarily concerned with nonlinear propagation in tissue, attenuation may work
naturally to our advantage in this regard, and so artificial ramping of the attenuation for
higher harmonics was not considered in this work. The scheme proposed by Pischal'nilov
et. al. (1996) may also be useful for shock wave propagations, but was not considered
here, as shock waves are not anticipated in tissue for amplitudes used in diagnostic

medical ultrasound.

6.3 The Diffractive Substep
A diffraction algorithm suitable for integration into the CW NLP algorithm must account

for diffractive propagation of frequency components generated due to nonlinearity. The
angular spectrum method has been shown to be an attractive approach to the calculation

of diffraction. It remains to be shown, however, how the angular spectrum approach can



Chapter 6. Modeling Finite Amplitude Propagation from Continuous Wave Sources 7]

be applied to nonlinear propagation within the context of the second order operator
splitting scheme. In particular, choosing a planar sampling grid may be a non-trivial task.
For each harmonic profile, it must further be decided whether to use the FSC or SSC

approach to calculate diffraction.

For simplicity, let us presume that each harmonic profile has an identical planar sampling
scheme. Moreover, although it is possible to use an adaptive gridding scheme, we found
it simpler to use the identical gridding scheme for each plane along the direction of

propagation.

Intuitively, one might presume that the sampling intervals Ax and Ay which are needed to
represent planar distributions in propagation of harmonics would be at most Ax/2, where
Ay is the wavelength of the highest harmonic. Although this is the rate needed to
adequately sample the point spread function h for step sizes Az>4, the harmonic profile

itself may be much smoother than this Nyquist rate requires.

In the work of Christopher and Parker (1991), it was found that reasonable modeling
results could be obtained by sampling at rates far less than the Nyquist rate of the highest
harmonic. In fact, they observed that for focused field propagations involving up to 50
harmonics, a radial sampling rate of 4 times the Nyquist rate of the fundamental has
given very good results. For unfocused fields, 1 or 2 times the Nyquist rate of the
fundamental worked very well. Like them, we can confirm of the adequacy of the
sampling rate by examining the radial profiles of the highest harmonics. If the radial

sampling rate is insufficient, then these profiles will loose coherence.

Selection of a lateral sampling rate for the harmonic profiles of the planes, essentially
reduces to an educated guess. If increasing the sampling rate across the lateral profiles of
the harmonics does not significantly produce different resuits, one may surmise that a

convergent solution has been reached and that sampling is adequate.
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Once lateral sampling rates have been chosen, each harmonic profile must be propagated
an incremental distance using either the FSC or the SSC algorithms. Based on the
analysis in the previous chapter, there is a reliable way of choosing whether to sample 4
or to sample H. If the radiation circle of the nth harmonic is completely contained within
the discrete transform domain, sampling of 4 should be done at the rate determined by the
gridding of the harmonic distribution itself. If the radiation circle is partially contained
within the transform domain, once again 4 should be sampled, however, sampling should
be done at the Nyquist rate of the nth harmonic (A,/2) or better - even if it requires
sampling at a different rate that the source field. Sampling A/ may be done when the
radiation circle is exterior to the extent of the spatial frequency domain and when all the
oscillations of A contained within this domain may be adequately sampled by the spatial

frequency sampling scheme of the source.

Suppose that the source plane harmonic profiles are sampled at a rate y times the Nyquist
rate of the fundamental, where y is a real number, typically between 1 and 4. For
harmonics n > v, the discrete spatial frequency transform domain will be completely
inside the radiation circles k,*+k,’=k,". For some harmonic ny > n, and above, it will be
possible to sample H at the same rate as the angular spectrum of the source. For
harmonics nx~1 and below, sampling H is not advisable since there may be convolutional
wraparound errors which may give erroneous results of the FSC algorithm. Exceptions to
this hypothesis may be in situations where either the propagation distance is small
compared to the harmonic wavelength, or where the angular spectrum of the source plane
is very narrow. The minimum harmonic ny for which sampling # is reliable can be
obtained from the theorem given in section 5.4. Equation (7) in this section, may be re-

written as

k2 —(k2 . +k?
Msnﬁ (K + K2 )
f 2Azk

XX

M

?

where k, = nk = 2nnfic is the magnitude of the wave vector for the #nth harmonic.
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We can solve equation (1) for » to find the minimum harmonic, ny, for which frequency
domain sampling of H will give accurate results, given the chosen sampling extents and

gridding. This minimum harmonic is given by

(2) ny, =\/(2Az:yAkx/n:):+.’Z]r2 ,
where

y =knmx /ko‘

6.3.1 The Virtual Source Interpretation of Nonlinear Harmonic Generation, and
the Danger of Using a Ray Theory Truncation

As a finite amplitude sound beam progresses through space it interacts with itself in a
nonlinear way. In the process, harmonics as well as sum and difference frequencies are
generated. One way of thinking about the harmonic generation process is to consider that
there are virtual sources along the path of the sound beam, emitting harmonic
frequencies. With this oversimplistic, yet useful concept, one may immediately see the
danger in using a Ray Theory Truncation. Virtual sources some distance froin the
transducer may emit harmonics which will contribute to the field profile at the
observation plane. The angle subtended by the edge of the observation plane and the
virtual source will be greater than the angle 0,,,, determined by the ray theory (see Fig. 5-
4). Thus restricting the spatial frequency extent over the observation plane by a ray
theory truncation may lead to inaccuracies. For this reason, we chose not to implement

the ray theory truncation in our NLP algorithm.

6.3.2 Summary of the Diffraction Algorithm for CW Nonlinear Propagation
Our version of the diffraction algorithm for propagating multiple frequency harmonics

can be summarized as follows:

& Assume that sampling the harmonic source planes at y times the Nyquist rate will
adequately represent the angular spectra of the highest harmonic. This determines the
maximal extent of the transform space in the spatial frequency domain Kmax and Kymax
as well as the spatial sampling intervals Ax and Ay. For simplicity, we take equal x
and y coordinate sampling lengths.
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e Choose the maximal extent [X,, ¥,] of the observation plane which one desires correct
results. Again, for simplicity, let X, = ¥,. Moreover, consider for simplicity that the
sampling extent [X;, Y;]of the source plane is the same size as the region of interest in
the observation plane. Thus, X; =X, and ¥; = Y.

o Choose the maximal extent of the spatial domain transform space: 7. = X, + X,
and T, 2Y, +Y,. (We can, moreover choose T,=T7}). This choice establishes the

extent to which the source plane must be zero padded. It also estabiishes the spatiai
frequency domain gridding Ak, and Ak,.

¢ Note that the radiation circle of the harmonics n, >y are contained within the spatial
frequency transformm domain.

e Determine the desired step size A- between planes. Note that a constant step size
algorithm will be the most computationally efficient since the propagator functions
would only need to be computed once.

e For harmonics 7y (given by Eq. (2)) and above, sample H in the spatial frequency
domain with the sampling prescribed by Ak, = /T, and Ak, = /T,

e For each of the harmonics n =1, ..., (n4-1), sample 4. For harmonics 1 ... n,, the
sampling of 4 should be done with the intervals Ax and Ay used to sample the source
plane. For harmonics 7, ... ny-1, sample 4 with intervals determined by the Nyquist
rate of the nth harmonic (A/2) or better.

o The product Sz x Hy can be truncated in the spatial frequency domain to yk, which is
the spatial frequency extent determined by the sampling Ax,Ay of the harmonic source

planes.

6.4 Scheme for testing the Diffraction algorithm for harmonics
Testing that the diffraction algorithm will perform satisfactorily when integrated in the

NLP algorithm is important because the high frequency harmonics generated in nonlinear
propagation need to be propagated accurately. Such a test is difficult to devise because
there is no known gold standard to test whether a particular harmonic generated after a

nonlinear substep is being propagated properly in the subsequent diffractive substep.
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Our approach to testing the diffraction algorithm is to quantitatively assess the accuracy
of linear propagation of several frequencies from a large piston source — where harmonics
are not generated due to nonlinear propagation, but rather originate from the source
directly. The astute reader will be cautious of such a test. Having selected a sampling rate
vy at between 1 and 4 times the Nyquist rate of the fundamental, it may be that the angular
spectrum for harmonics n>y extend beyond the extent of the spatial frequency domain —
thus incurring wraparound error. Indeed. even after diffractive propagation, where the
angular spectrum S is tapered by a transfer function H, the extent of the angular spectrum
may still extend out to the radiation circle of the nth harmonic, which is exterior to the
spatial frequency domain for n>y. For large sources and focused sources, however, the
sound beam will be fairly directional, and the angular spectrum may be narrow - such
that the bulk of the energy will be contained within the extent of the spatial frequency

domain. This is the motivation for using a large disk.

Results of our multistep diffraction algorithm for a large disk radiating several harmonics
was compared with results of another diffraction technique of known accuracy, where the
frequencies were propagated one by one, and not all together. Harmonic profiles of the

two techniques are compared in Fig. 2.
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Figure 2 The figures on the left are lateral profiles of a disk of radius 1.9 cm using our nonlinear

propagation algorithm, with f=0, and harmonics of 1,2, and 3 MHz being transmitted from the source. The

figures on the right are lateral profiles of frequencies f= 1, 2, and 3 MHz, respectively using a *Gold
Standard’ one-step angular spectrum method which has been cross verified with the (slower) Rayleigh
integral method. This comparison is to verify that the proposed sampling scheme for the diffraction
algorithm can accurately propagate multiple frequency harmonics. The parameters for the results on the

right are: #planes = 10, pressure amplitude of each frequency component = 100 kPa, axial distance at which
the profiles were computed = a’/A,, where A, is the wavelength of the IMHz signal. Sampling was done at

1.} times the Nyquist rate of the fundamental.
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6.5 Coding of the NLP Algorithm
The entire nonlinear propagation algorithm was coded in MATLAB v.5.3. All efforts

were used to avoid loops in the code, as MATLAB is an interpretive language, and
handles loops very slowly. However, array operations are a forte of MATLAB, and most
algorithms could be vectorized to take advantage of MATLAB's optimized array
processing capabilities. Software exists to compile MATLAB code into C/C++, however,
this route was not taken since run times were reasonable enough in the MATLAB

environment.

6.6 Verification of the NLP Algorithm

6.6.1 The NLP Algorithm with Vanishing
An important test to validate the nonlinear propagation algorithm is that the algorithm

successfully simulates linear propagation, when B = 0. Results identical to those in figure

2(a) were obtained when a 1.9 cm disk radiating at 1MHz was simulated.

6.6.2 Comparison with KZK Modeling and Experimental Data for Propagation in
Water

Although our primary interest is in nonlinear propagation in biological tissue, modeling
water propagation should also be attainable. Water has weak absorptive charactenistics,
while maintaining a non-negligible nonlinear properties. Our model was used to compute
the CW response from a plane disk transducer of radius 1.9cm, operating at 2.25 MHz.
The source pressure was only 100 kPa. Baker (1988) obtained experimental and
theoretical fields which we use to compare with our results in Fig. 3 and 4. Also shown in

Fig. 5 is a comparison with results reported by Christopher's (1991).
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Radial Range (mm)

Figure 3 Comparison of our results (colored lines) with Baker's experimental results
(solid lines) and KZK modeling (dashed lines) for the first three harmonics. The curves
represent the lateral pofiles at 50 cm in water from a 1.9 cm radius piston at 2.25 MHz.

0

Radial Range (mm)

Figure 4 Lateral profile at z = 275 mm of the first three harmonics produced froma 1.9
cm plane piston transducer, radiating at 2.25 MHz. The colored lines are the results from
our model, the black solid line is experiment (Baker, 1988), and the black dashed line is
results of KZK modeling (Baker, 1988).
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Radial Range (mm)

Figure 5 Comparison with the modeling results of Christopher (1991) for the same
paramters as given in Fig. 2.

Our simulations for Figs. 3-5 used only 20 propagation planes. [n contrast, Baker used a
smaller step size in his finite difference code corresponding to over 1000 planes.
Christopher, too uses small steps (often 20 per cm) thus requiring hundreds or thousands
of increments. The second order operator splitting scheme of our approach appears to
offer a fundamentally new way of improving the computational efficiency while

maintaining accuracy.

Note the overall close agreement between our results published data. It may be observed
in Figs 3-5 that the lateral profile of the fundamental drops off at around 35mm on either
side of the mainlobe. This is due to the windowing we applied to the propagation planes.
A further observation is that the 3™ harmonic is slightly lower than the experimental and
KZK results in Fig. 4, but in very good agreement with Christophers results shown in Fig.
5. This may be due to the use of the plane impedance relation we used to relate normal

particle velocity with pressure. Both our method and Christopher’s technique used normal
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particle velocity in the NLP algorithm. The plane impedance relation is less accurate in

the nearfield, and may give rise to a source of error.

It is interesting that that in Figs. 4 and 5, the on axis fundamental level is actually below
the levels of the harmonics. Moreover, the levels of the harmonics are fairly high overall.
In Fig. 3, the second harmonic is less than 10dB down from the fundamental, even out to
about 20 mm off axis. This is encouraging with regards to harmonic imaging, since
extracting the harmonic signals may be very challenging if the signal level is too low.
One might worry more about signal levels in tissue propagation, since tissue is typically a
strongly attenuating medium. In the next section we show some encouraging modeling

which demonstrates the signal level of harmonics in tissue is also promising.

6.6.3 Comparison with KZK Modeling for Propagation in Tissue
Modeling nonlinear propagation in tissue may be considered less of a computationally

burdensome task than simulating nonlinear propagation in water. This is because
attenuation works to dissipate the energy buildup of higher harmonics. Averkiou et. al.
(1997) have simulated nonlinear propagation from a focused disk in a liver-like medium
using a KZK modeling approach. We use our model to compare with his results. For
these simulations, the source, operating at 2 MHz, had a radius of 1 cm and a focal length
of 10cm. In our modeling approach, we did not sample the aperature in the spatial
frequency domain. Instead, we implemented sampling of the aperature in the spatial

domain, where we modeled the focused disk as a plane disk with a complex phase

weighting function e’"‘“‘T”—2 , where d is the focal distance. This is not an exact technique,
but rather is equivalent to a Fresnel approximation. For the modeling results in Figs. 7
and 8, only 20 propagation planes were used with a lateral sampling of 2.1 times the
Nyquist rate of the fundamental. For Fig. 6, more propagation planes were used so as to
capture the axial variations of the harmonics. The deep nulls which are seen in Averkiou's
results, but not in ours may be due to higher axial sampling on their part, and less axial

sampling on our part.
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(a (b)
10. 10;

0.05 0.1 0.15 0.2

Figure 6 Axial profile of a 1 cm radius focused disk transducer operating at 2 MHz in
liver. & = 0.3dB/cm, ¢ = 1486 m/s, and B = 5.0. (a) Results of KZK modeling by
Averkiou et. al. (1997) (b) Results obtained with our algorithm.

(a) (b)
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Figure 7 Lateral profile of first three harmonics at the focal distance. (a) From Averkiou
et. al., (1997). (b) Results from our model. The parameters are the same as for Fig. 6.
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Figure 8 Lateral profile of the first three harmonics at 0.7 of the focal distance. (a) From
Averkiou et. al. (1997). (b) Results from our model. Parameters were the same as for
Fig. 6.

Note that in the axial profile (Fig. 6) the harmonic build-up due to nonlinearity occurs as
the beam propagates, and that the signal is not well formed in the extreme nearfield. This
can be advantageous for imaging, where surface inhomogeneities would otherwise
perturb the coherence of the fundamental signal. Because harmonics are primarily formed
after these surface regions, their utility for imaging deeper structures is more robust

compared with using the fundamental.

Note also that there is a prefocal shift of the last maximum of the fundamental curve.
This occurs because energy is being depleted from the fundamental to feed the generation
of higher harmonics. Such a shift may be accounted for in designing a tissue harmonic

imaging system.

In the lateral profiles, as for water propagation, the harmonic sidelobes fall off more

quickly than the fundamental sidelobes. This is a major factor in the attraction of using
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harmonics for imaging. Lower sidelobes may mean an improvement in the signal to
clutter ratio. One reason that harmonic sidelobes are lower may be that harmonic
generation is amplitude dependent. Where the fundamental level is highest (in the
mainlobe region) the harmonic level will also be high, but when the fundamental level is
lower (in the sidelobe regions), the harmonic levels drop off rapidly. Propagation in
tissue may actually work to our advantage in this regard. In the mainlobe region,
nonlinearitv will dominate over attenuation if the signal is strong enough, however, in the
sidelobe region, attenuation may dominate over nonlinearity, and the harmonic sidelobes

will fall off very rapidly.

The lateral profile of the fundamental is still very similar to the profile one would see in
pure linear propagation. Note the classic Bessel directivity of the fundamental at the
focus. Sidelobe oscillations called fingers may be seen in the harmoinic profiles and are
characteristic of nonlirear propagation. They have been noted by a number of authors,
inciuding Averkiou (1997).

Finally it should be noted that the second harmonic level is still quite high (only 9dB
down from the fundamental at the focus), even for low amplitude excitation, and for
propagation in tissue. As noted, generation of sufficient harmonic levels is important for

realizing the feasibility of signal detection for harmonic imaging.

6.7 Nonlinear Propagation in Tissue from a CW Linear Phased Array
So far, the nonlinear propagation results presented have been those of radially symmetric

transducers. Having verified the accuracy of the algorithm we are in a position to
demonstrate the nonlinear field response of a linear phased array. Here we consider a
linear phased array with no beam-steering, no apodization, and no lens in the elevation
plane. We have used the spatial frequency domain sampling approach outlined in section
5.7.2. The array considered had 64 elements of width A/2, and spaced A/4 apart, where
the operating frequency was 2MHz. Elements were of height 1¢m, and the array was

phased such that the focal distance was 10cm. The length of the transducer was 3.7 cm,
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and the continuous wave excitation was of amplitude 347 kPa. Propagation was in a
liver-like medium with =5 and a, = 0.3dB/cm at IMHz. Shown in Fig. 10 are the
azimuthal (x-z) and elevation (y-z) planar distributions. As expected, the harmonic
mainlobes are much narrower than the fundamental. Moreover, as may be seen in Fig. 9,
the harmonic sidelobes drop off extremely fast compared with the fundamental. In the
elevation plane, even when no lens is used, the harmonic profiles are narrower. In phased
array B-mode imaging, fundamental sidelobes have been known to be particularly
troublesome, causing clutter artefacts. For harmonic sidelobes, however, it seems that
attenuation dominates over nonlinearity, and thus clutter artefacts may be reduced by

using the harmonic signal.

There is notable harmonic buildup off axis before the focal region which may be
troublesome for imaging purposes. Moreover, the last maximum in the focal region

seems to be slightly closer to the transducer than the 10 cm mark which we would expect.
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Figure 9 Lateral profile of first three harmonics of a linear phased array.
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Figure 10 (a)-(c) Azimuthal plane and (d)-(e) elevation plane harmonic profiles from a 2
MHz linear phased array propagating in a liver-like medium. The array had 64 elements
of hight 1cm, and was 3.7cm in total length. The elements were A/2 across, and spaced
A/4 apart, where A = c/f. The focal length was 10cm. The tissue was assumed to be
characterized by =5, a, = 3 dB/(cm MHz), and b=1.1. No lens was used to focus the
transducer in the elevation plane.

Factors Affecting Speed
One of the largest factors affecting the computational burden of the NLP algorithm is the

lateral extent and sampling of propagation planes used. Because our model may handle
non-axisymmetric sources, a 2D grid of sample points must be used to represent each
propagation plane. Increasing the number of samples from 512 x 512 to 1024 x1024, for

example, produces a large increase in computation time. For a given aperature size,
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simulating the field response of a higher frequency is more computationally demanding
than that of a lower frequency. This is because higher frequencies require denser

sampling.

The other major factor affecting the speed of the algorithm is the number of harmonics
included. Luckily, for tissue, we can attain reasonable results with only a few harmonics.

For water, there is less attenuation. and, in general, more harmonics are needed.



Chapter 7: Nonlinear Propagation of Puised Ultrasound
As noted earlier, when the excitation is pulsed, more frequency components are needed in

the initial spectrum, and thus both the nonlinear substeps and the diffractive substeps are
burdened by a computational load much greater than in the narrowband case. Efficient
modeling of nonlinear propagation of wideband signals requires a slightly different
approach than that used for CW excitation as outlined in the previous chapter. In this

chapter we intend to develop a methodology appropriate for pulsed excitation.

7.1 Choice of the Nonlinear Algorithm
Use of the FDSBE algorithm is far less attractive for pulsed excitations than for

continuous wave excitations. In Chapter 6 it was noted that the computational complexity
of the FDSBE was on the order of N °, where N is the number of frequency components
used. For pulsed sources hundreds or even thousands of frequency components may be
needed to accurately sample the temporal variations of a wideband signal. Artificial
absorption of higher harmonics has been used in the continuous wave case to limit the
harmonics created due to nonlinearity. However, such as scheme when applied to pulsed
waveforms, may cause unnatural distortion. Most investigators agree that using a time
domain nonlinear algorithm is a much more attractive option. For diffraction, our
intention is to use the angular spectrum method, as this approach has shown great
computational savings over the Rayleigh method. The disadvantage, then, of using a time
domain nonlinear operator is that we will need to transform back and forth between time
and frequency domains for each substep in the NLP algorithm. Not only will this process
take additional time, but such numerical book-keeping will likely incur some errors.
However, the computational savings to be won by using a time domain nonlinear
algorithm, may outweigh any potential time losses or inaccuracies due to the transform
algorithms.

Of the two time domain algorithms for nonlinear plane wave propagation presented in
Chapter 3, we selected the algorithm developed by Christopher, as it is very stable, is
computationally efficient, and is reasonably accurate. To verify the accuracy of our code,

we compared our Time Domain Solution to the Nonlinear Equation (TDSNE) with the

88
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Fubini solution in the pre-shock region for a sinusoidal excitation. The two methods
compared well (Figs. 1(b) and (c)), although discrepancies may be observed when the
step size Az is too large (Fig. 1(a)). The TDSNE also captured relatively well the
dynamics of plane wave nonlinearity of pulsed sources (Fig. 2). Both step size and
sampling frequency of the waveform play an important role in the accuracy of the
nonlinear substep. When this algorithm is integrated into the fractional step NLP
algorithm, multiple nonlinear substeps may be needed for each large diffractive substep.

This is especially the case if large substeps are used.
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Figure 1 The harmonic profiles from the time domain nonlinear algorithm for plane wave
propagation with (2) 20 harmonics and 20 Az steps. (b) with 20 harmonics and 100 Az
steps compared with (c) the Fubini solution out to the shock distance. Note that there are
some discrepancies in (2) due to insufficient step size.
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Figure 2 Plane wave pulse propagation. (a) Initial waveform (bDistorted waveform after
propagating 0.7 of the shock distance (c) Initial spectrum of the waveform, and (d)
spectrum of the distorted waveform corresponding to 0.7 of the shock distance.
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7.2 Choice of Operator Splitting Methods
In Chapter 6 we selected the second order operator splitting method of Tavakkoli et. al.

(1998) to implement the fractional step marching scheme of the NLP algorithm. In large
part this choice stemmed from the hope that by combining absorption with the nonlinear
substep the FDSBE would be more stable. For pulsed sources, we have opted to evaluate
nonlinearity in the time domain, and there is no obvious way to include attenuation in the
TDSNE algorithm. One option would be to evaluate nonlinearity and attenuation step by
step over very small intervals (smaller than the diffractive substeps which may be used in
the NLP algorithm). Another altemative is to calculate the attenuation with the diffractive
substep. The TDSNE is fairly stable, so the absence of attenuation in the nonlinear
substep will not greatly affect the stability of the NLP algorithm. Moreover integration of
attenuation in the diffraction algorithm is relatively easy. By modifying the propagator
functions A and H to include absorptive effects,

H (k ,k ,AZ =H(k ,/ ’Az _aanz
ook, 02) = Hk, &, )xexP{cos[sm"(ch,+ky/f)]}

and

h,(x,y,Az) = h(x,y,Az) x exp(—ozf"\/z2 +r’ )

attenuation may be accounted for in a very computationally efficient way. In light of our
choice to combine the effects of attenuation and diffraction, the operator splitting scheme
we choose to implement is not that presented by Tavakkoli et. al., but rather the new
scheme proposed in section 4.2, and illustrated in Fig. 2 of chapter 4. In this scheme, the
combined effects of diffraction and attenuation are propagated over an incremental half
step, followed by a full step of nonlinearity, and finishing with a half step of attenuation
and diffraction.
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7.3 The Diffraction Substep
A few key matters need to be addressed when deciding on a diffraction algorithm for

nonlinear pulse propagation: sampling of the propagation planes, choosing between the
FSC or SSC algorithms for each discrete spectral frequency, selection of temporal
sampling and determining an adequate temporal extent to the signal. We will deal with
the later two issues first.

7.3.1 Sampling the Temporal Signal
Sampling of any temporal signal should be done at a rate equal to or greater than the

Nyquist rate, which is defined to be twice the rate of the highest frequency component in
the spectrum. If a pulse has center frequency f, and bandwidth Af, then the sampling rate
should be at least fyyquis=2(fo+Af12).

For a finite amplitude pulse, harmonics will be generated during nonlinear propagation
which are not present in the initial spectrum. Because it is difficult to anticipate the
complex interaction between diffraction, attenuation, and nonlinearity, selection of a

sampling rate becomes nontrivial.

For nonlinear propagation in tissue, it is likely that attenuation will filter high frequencies
generated due to nonlinearity. Based on our experience from CW propagation in tissue, it
is expected that no more than 5-10 harmonics of the center frequency may be required for
the kinds of amplitudes allowed in diagnostic imaging. Thus, we should choose the
sampling frequency to be 5-10 times the Nyquist rate fayquis=2(fo+4/72) of the initial

spectrum.

7.3.2 Temporal Extent of the Signal
To avoid temporal aliasing of the signal in our plane-to-plane fractional step marching

scheme, a sufficiently long temporal window, or pulse repetition interval (PRI) must be
used in the initial signal. To choose an adequate temporal window, both linear and

nonlinear effects must be considered.
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Linear Analysis
Consider a piston transducer of radius a, and consider that we wish to send a pulse from

the transducer where the pulse has duration o. Now consider that we observe the

waveform at a point (x,y) on a plane a distance z away from the source.

The time marking the beginning of the observed waveform will be given by the shortest
transit time between the transducer and the observation point. The time marking the end
of the observed waveform is given by the longest transit time between the transducer and
the point plus the length of the pulse.

If (x,y) is in the shadow of the transducer, (i.e. 7= (<’ + y" )" < a ) the time duration of
the observed waveform is given by:

T ={o- +______“(r+a)2+z-}_£

¢ c c

For a given z, T, is maximal for r = a. At r =a, T, is maximal for z=0.
Thus, the absolute longest duration the pulse could be is given by:

2a
I =0c+—
c

If (x,y) is not in the shadow of the transducer, the length of the pulse is given by

T ={O_+J(r+a)‘+:' }_\[(r-—a)'-a-_.--

P c c

which is maximal for any given r when z=0, and in which case, once again we have:

2a
T, =0c+—
c

Should we want to ensure that a pulse is adequately represented in the frequency domain,

we would then need sampling given by the Nyquist theorem:

1
Af £ —.
/=0T,

If an insufficient temporal extent is used for pulsed propagations, the waveform at the

observation point may be aliased. The closer the observation plane to the source, the
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greater the extent of a temporal window is needed to prevent aliasing errors. A plot of the

required temporal window versus axial distance from source is shown in Fig. 3.
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Fig. 3. Pulse duration required to avoid temporal aliasing as a function of axial distance
for a 1.5 cm radius disk, and a pulse width of 10 ps.

Nonlinear Analysis
A peculiar phenomenon occurs in nonlinear propagation, where difference frequencies
accumulate in a spectral region below the fundamental band of the signal. This
phenomemon has been coined “self demodulation™ by Averkiou (1993) and others. In
highly absorptive media, attenuation may moreover filter out a good deal of the spectral
frequencies above this demodulated band, and thus produce a signal which is of lower
frequency than initially transmitted. This self-demodulation phenomenon can sometimes
be accompanied by signal elongation. If the temporal extent of the pulse is shorter than
the resultant pulse lengthening, wraparound error may occur. It is our experience,

however, that the temporal window required for the linear analysis of the previous section
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is more than adequate to accommodate the small degree of pulse lengthening and self-

demodulation which occurs in nonlinear propagation through tissue.

7.3.3 Lateral Sampling of the Propagation Planes
For linear propagation of a pulse using the angular spectrum method we might presume

that planar sampling should be done at a rate equal to or better than the Nyquist rate of
the highest spectral component f... (thus Ax < 1,,;,/2. where Ani» = ¢/fmax). For unfocused
sources, it may well be that such dense spatial sampiing is not needed farther away from

the transducer, and a ray theory truncation may enable reduction of this sampling rate.

For finite amplitude propagation, harmonic profiles may vary more spatially than the
fundamental profiles, and greater sampling may be needed. Borrowing insight from the
CW investigations, a good guess for spatial sampling of unfocused sources may be at 1 to
2 times the Nyquist rate of the highest spectral component, fmay, in the initial spectrum.

For focused sources between 2 and 4 times this Nyquist rate may be more appropriate.

7.3.4 Sampling of the Propagator Functions
After temporal and spatial sampling schemes have been chosen, and the axial intervals

between propagation planes selected, the techniques outlined in chapters 5 and 6 may be
used to choose a sampling scheme for the propagator functions. For each frequency
component f, = nfs = n/T,, the choice of sampling either the spatial point spread function
h or the frequency domain transfer function /A, once again hinges on whether the
corresponding radiation circle for the given frequency is wholly or partly contained
within the discrete spatial frequency domain. Suppose that lateral field profiles are
sampled at { times the Nyquist rate of the highest spectral component frax = fc+4/72. This
corresponds to a rate of yY=Cfad/f; times the rate of f; = 1/T,. We may define an index

n, =+QAzyAk, In) +2y?
such that for frequency components f, up to nx~1, the point spread function should be

sampled. For n>ny, sampling of the transfer fucntion H may be employed. For n <y, the

sampling of / should be done with the intervals Ax, Ay used to sample the source plane.
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For each frequency component f, such that y<n<ng-1, the point spread function 4 should

be sampled with at least the Nyquist rate of f, (i.e. Ax = A,/2).
7.4 Verification of the Diffraction Algorithm

To verify the diffraction algorithm, we simulated the pulsed response of a plane piston
transducer and compared with the waveforms obtained from the impulse response
method. Specifically, a 1cm disk transmitting a2 pulse with a peak amplitude lcm/s, a
center frequency of IMHz, and 50% bandwidth (figure 4(a)) was simulated. Excellent
agreement was obtained, as shown in figures 4(b) and (c). The observation point for these
figures was on axis at a distance of a’/h,, where A, is the wavelength of the center

frequency.
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Fig. 4 Comparison of small signal diffraction calculations (a) Initial pulse waveform

calculated using (b) our angular spectrum approach, (c) the impulse response technique.

For a disk transducer at azl)s.o.
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7.5 Verification of the NLP algorithm
Having verified the accuracy of the nonlinear plane wave algorithm, and the diffraction

algorithm, verification of the full nonlinear propagation (NLP) algorithm was performed

with a few key tests:

7.5.1 The Quasi-CW Limit
For a long quasi-continuous wave pulse, the pulsed nonlinear propagation algorithm

should behave like the continuous wave algorithm of chapter 6. To this end we compare
the results of Averkiou et. al. (1997), with our own modeling technique for a focused disk
propagating 100 cycles of a 2 MHz sine wave in a liver-like media. We used 25
propagation planes, where each plane was divided up into 5 substeps for the nonlinear
algorithm. In this comparison, shown in Fig. 5, there are some discrepancies. A complete
explanation for these discrepancies is not understood, however, it is hypothesized that the
step size may be too large to account for the complex interaction between diffraction and

nonlinearity.
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Fig. 5. Comparison of the new NLP algorithm for pulsed sources (a) in the quasi-CW
limit with the NLP algorithm (b) of the previous chapter. Shown are the lateral harmonic
profiles of a 2MHz fundamental signal at the focal distance (z=10cm) of a concave disk.
Both results may be compared with Averkiou et. al. (1997).

7.5.2 The Linear Limit
In the limit where B approaches zero, the nonlinear algorithm should behave in a linear

way. For this test we try to reproduce the linear propagation results of figure 4(c) above.
The result of our algorithm, shown in figure 6 is in excellent agreement with the result

obtained by the impulse response method.
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Fig. 6. The observed waveform computed using our pulsed NLP algorithm in the limit of
vanishing . This result may be compared with Fig. 4(c).

_ 7.6 Qualitative Analysis of Nonlinear Pulse Propagation

Our model demonstrates unique characteristics of nonlinear propagation, including
wavefront steepening, and harmonic generation. Figs. 7(a) and (b) demonstrate these
characteristics. Note in Fig. 7(a) that there is an interesting asymmetry in the envelopes of
the positive and negative portions of the waveform. This asymmetry is a trademark of the
interaction between diffraction and nonlinearity, and has been seen in water propagation,
as described by Hamilton (chapter 8 of Hamilton and Blackstock, 1998). This asymmetry
may be significant with respect to standards in medical ultrasound. Current standards
limit the Mechanical Index (MI), which is a2 measure of the peak negative pressure
divided by the square root of the center frequency. The MI is used as gauge to judge the
liklelihood of cavitation bioeffects (Apfel and Holland, 1991), and is currently based on
linear analysis. The amplitude asymmetry shown in Fig. 7 may suggest a more careful
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analysis of standards, to account for nonlinear effects. Averkiou and Hamilton (1997)
have shown that the negative pressure is often maximized before the focal region of the
transducer, and thus particular attention should be directed to monitoring possible adverse
cavitation phenomena in the prefocal region. Their simulations, however, were for water
propagation. It is hoped that future investigations using this model for tissue may shed

additional light on the important area of standards.
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Figure 7 (a) Waveform at the focus of a Gaussian apodized, focused disk transducer after
propagation through a tissue medium. The disk radius was 1.5 cm, the focal length was 6
cm, and the Gaussian amplitude shading of the source was such that the half-amplitude
radial distance was 0.84 cm. The pulse used was a sinusoid modulated by the square root
of a Gaussian function with 50% bandwidth, and amplxtude 257 kPa The nssue had
parameters p=5, a,=3 dB/cm at IMHz and b=1.3. -

7.7 Computational Resources and Memory Management
Simulation of transient excitation nonlinear propagation from non-axisymmetric sources

can require tremendous computational resources. For any given propagation plane,
several hundred megabytes — and even Gigabytes of data must be processed. Even with
512 Mbytes of RAM, and a 550 MHz Pentium III processor, extensive memory
management was required. Several Gigabytes of free hard-disk space were used as a
swap-space to temporarily store data. Fortunately, even with the time consuming
processes used to manage the deluge of data, the code could be run within a few hours.
Qualification should be given, however, to clarify that increasing the number of lateral
samples in the propagation planes above 256 x 256 or 512 x 512 points may incur a huge

computational load, and the code may take days to run.
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8.1 Summary
The primary contribution of this thesis has been the development of an efficient computer

model for simulating nonlinear ultrasound propagation in tissue. This model shall enable
accurate modeling of finite amplitude effects in modem clinical ultrasound scanners, and
in particular, may be useful as a tool for optimising the design of tissue harmonic imaging

systems.

Because current modeling techniques involve great computational burden, a primary
focus of this work was to develop an algorithm which is as computationaily efficient as
possible. Towards this end, a second order operator splitting approach similar to that of
Tavakkoli et. al. (1998) has been devised, so as to enable the computation of diffraction,
attenuation and nonlinearity separately over small steps. The second order nature of this
scheme allows the use of relatively large axial increments in a fractional step marching
scheme. Our model has accurately reproduced published experimental and theoretical
data with as few as 20 axial increments. This may be contrasted with other techniques
which typically require hundreds or thousands of axial steps. Our computer model has
been able to evaluate the nonlinear field response of continuous wave sources in as little
as a few minutes, and wideband transient responses in a few hours. In comparison,
numerical modeling of nonaxisymmetric pulsed sources using current methods has taken

on the order of days.

Synthesizing an efficient diffraction algorithm was a primary thrust of our efforts. Of the
effects of diffraction, attenuation, and nonlinearity, diffraction is by far the most
computationally complex. Tavakkoli et. al. have estimated that the Rayleigh integral -
based diffraction algorithm which they used in their nonlinear propagation model took
90% of the computation time, even for axisymmetric sources. We investigated several
methods of computing diffraction, including the Rayleigh integral, impulse response
methods, and the angular spectrum method. Because the impulse response method is not

valid for non-separable field distributions, it was discounted as a candidate for a

105
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diffraction algorithm appropriate for a plane-to-plane fractional step marching scheme.
The angular spectrum approach was found to be the most computationally efficient of the
diffraction algorithms when fast transform algorithms are used. Moreover, the angular
spectrum method is valid for non-separable field distributions. Because of these reasons,
we chose the angular spectrum method to calculate the effects of diffraction in our

nonlinear propagation algorithm.

Christopher and Parker (1991) have used the angular spectrum approach for acoustic field
propagations, however, the techniques they describe are for axisymmetric sources.
Although Christopher has also simulated non-axisymmetric sources (e.g. Christopher,
1997), the step sizes he used were very small (often less than a wavelength), and thus his
approach does not well describe the large step approach we wish to take. In this thesis, a
new numerical scheme for implementing the angular spectrum technique, applicable for

large axial steps, has been devised for sources which do not possess radial symmtery.

For continuous wave signals, attenuation and nonlinearity were combined together, and
the nonlinear substep was computed using the frequency domain solution to Burgers
equation. For CW sources propagating in tissue, only a few harmonic were non-
negligible, and so evaluation of the nonlinear substep in the frequency domain was
relatively efficient. It was also seen that the attenuation of tissue afforded additional
stability to the FDSBE algorithm.

For wideband signals, a time domain algorithm was used to compute the nonlinear
substep, as the frequency domain approach has an undesirable computational load for
large numbers of frequency components. Attenuation was combined with the diffraction
substep in this case. Pulsed simulations were a good deal more time consuming than the
continuous wave scenario, and often required extensive memory management. Several
gigabytes of free hard disk space were sometimes needed- even with 512 Mbytes of
system RAM.
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The continuous wave algorithm was verified with the linear algorithm in the case of
vanishing nonlinear parameter . Moreover, our model compared well with published

results for nonlinear propagation in both water and tissue.

The algorithm for nonlinear pulsed propagtions was verified in the quasi-continuous

wave case, and in the linear limit.

8.2 Recommendations and Future Work
The most obvious recommendation for extension of this research is the experimental

verification of the pulsed nonlinear model. Once the model is verified experimentally,

various investigations can be done using the model.

So far, only one way (transmit) propagation has been considered. A pulse echo imaging
system may very well be simulated by adding code for scattering of objects, and for
propagation of the echoes back to the transducer. Since tissue scattering is typically fairly
weak, linear propagation is sufficient for simulation of the reception portion of the
algorithm. The impulse response method of Ullate and San Emeterio (1988) would be a

good candidate for simulating the received response.

Because Tissue Harmonic Imaging is a relatively new modality, there is still much to be
understood about optimizing system parameters. Design of an imaging system based on
nonlinearly generated harmonics should have some distinct differences as compared with
design of a typical pulse-echo B-mode imaging system. To this end, our model may be
used to simulate a tissue harmonic imaging system, and computationally investigate
optimal design parameters. Some points to investigate are as follows:
® A high-pass or band-pass filter must be designed to filter the spectrum of the received
echo and pass the second harmonic. The ability of the filter to reject the fundamental
is critical since its presence will contribute to a loss of contrast resolution. A novel
pulse inversion scheme has been proposed by Simpson et. al. (1999), for rejection of
the fundamental band in contrast harmonic imaging. This scheme may also be applied
to tissue harmonic imaging. The premise of pulse inversion is to send two pulses —the

second being an inversion of the first. The echoes of these pulses may be added, thus
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extracting the nonlinear portion of the signal, and rejecting the fundamental band. Use
of our model to better understand pulse inversion and its role in harmonic imaging
would be a valuable for tissue harmonic imaging system design.

# The dynamic range of the A-D converter in an imaging system must be large enough
to not only detect the second harmonic, but to differentiate the second harmonic from
the noise floor. The small signal amplitude is a significant concern in tissue harmonic
imaging. This means that one typically will want to employ either large drive levels
from the source, or use aggressive focusing. Aggressive focusing, however must be
traded for depth of field. The investigation of drive levels, focusing and depth of field
using our model would be very worthwhile.

e Given a certain available bandwidth for the transducer, it must be decided in what
band the transmitted pulse may be sent at, and what band the second harmonic signal
should be received at. We must also define what we mean by the second harmonic
signal. We may use as our second harmonic signal the absolute magnitude of the
pressure, or the second harmonic level relative to the fundamental. If we select the
absolute definition of second harmonic signal, we wish to transmit in a band such that
the fundamental p; is maximized AND the received signal p, is maximized. Suppose
that the amplitude of the passband for the fundamental is L/, and that the amplitude of
the passband for the second harmonic is ;. If we make a crude approximation that
the amplitude of the fundamental signal is approximately the square of the second
harmonic, we should then maximize L;* x L,. Given a semicircular frequency
response of the transducer, this results in transmitting at approximately 2/3 of the
center frequency of the transducer, and receiving at approximately 4/3 of the center

frequency (Fig. 1).
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Fig. 1. One possible way of selecting
transmit (T,) and receive (R,) bands
«* Should we choose as our definition, however, the second harmonic level relative to
the fundamental, and we approximate this level as the fundamental squared, we want
to maximize L,* x (L2/L,?), or in other words, maximize L,. This means receiving at

the center frequency f. of the transducer and transmitting at %: f. as shown in Fig. 2.

Figure 2 Another possible scheme for
choosing the transmit (T,) and receive
(Ry) bands

If we do transmit at '; f, the transmit band may be more band-limited than if we were
to transmit at 2/3 f.

Using our model to investigate which of these schemes is optimal may enable a gain
of a few decibels of signal level, or some amount of improvement in system

performance.



Chapter 8 Conclusions 110

¢ For harmonic imaging, one must use caution when trying to transmit very short
pulses. Short pulses will have a wide spectral envelope, which, may interfere with the
second harmonic signal in the receive band, complicating the filtering procedure, as is
shown in Fig. 3. Thus, sometimes axial resolution must be sacrificed for contrast
resolution. The pulse inversion scheme mentioned above may help in this regard,
allowing wider bandwidth pulses to be sent without sacrificing contrast resolution.
Simulation may play a valuable role in understanding how to choose the transmit
waveform, and how pulse inversion may be used to overcome the problem of

harmonic band interference.

Fig. 3. Wideband signals may overlap
in their harmonic bands, complicating
the filtering procedure.

® The signal to noise ratio (SNR) is of critical importance in harmonic imaging. For
linear B-mode imaging, several investigators (O'Donnell, 1993; Welsh, 1998;
Misaridis, 2000) have explored the use of coded excitation and pulse compression to
improve the SNR of the received tissue echo. The premise of coded excitation is to
send a long coded waveform, and compress the received echo — often by a matched
filtering technique. By using a long pulse, one may increase the received energy
without increasing the signal level above standards. Compression of the signal thus
enables the signal energy to be temporally localised, while the noise level is
unaffected by the compression. Li (1999) has recently explored the use of coded
excitation in tissue harmonic imaging. One of the problems of the technique of Li is
the inability to completely reject the fundamental band using filtering. It may be

possible to use pulse inversion to reject the fundamental signal. Our model could be
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used to simulate nonlinear distortion of coded waveforms. The results of these
simulations may well be used to investigate the feasibility of pulse inversion and

pulse compression in tissue harmonic imaging.

8.3 Conclusion
We have developed a computer model of nonlinear ultrasound propagation in tissue,

which can simulate the acoustic field from non-axisymmetric transducers. Our model
appears to offer some amount of computational savings compared with existing
techniques. The continuous wave response of disk transducers has been simulated and
compared with published results for nonlinear propagation in both water and tissue.
Transient excitation simulations have also been done, and have been vernified in the quasi-
CW limit, and in the limi. where nonlinearity is negligible. The model we have developed
appears to be a promising tool for simulation of nonlinear propagation from a medical
phased array scanner. Such a tool may be extremely useful in optimizing the design of a

tissue harmonic imaging system.
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Appendix A: Proof of Operator Splitting Methods

Theorem: Proof of a second order operator splitting

Our starting point for the proof of the second order operator splitting, presented in

chapter 4 is the model equation:

Where the operators f.D L , »and L v represent diffraction, absorption, and attenuation,

respectively. Operators I” are defined such that I'p s-V(x.y,2,,2) is a solution to the sub-
equation

-

2) =L,-v

Pl

at plane z = z,+Az, given the initial distribution v(x,y,z,,t) at plane z=z,. Operators I, -,
I'naz Tpsnazs [Dearn.az €t€. can be defined in a similar way.

We want to show that

B)  TpessrTnalpenseaV(6¥,20,8) = Doy V(X0 ¥, 2,,0) + O(AZ) .-

To do this we first must show that the operators L commute with the differential 3/0z.

We will then be in a position to apply the Taylor theorem to show the relation (3).

Lemma 1:

The diffraction operator L, commutes with 8/0z.

Proof:

If v is a solution to (2), it will also be a solution to the homogeneous wave equation.
Since dv/ &z is also a solution to the homogeneous wave equation, we may make the

substitution v — 0v/ 0z in equation 2, yeilding

a; av(z)
@ Lwa=L,=

which proves that £, commutes with 8/8z.C

Lemma 2:
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The attenuation operator L ,commutes with 8/0z.

Proof:

A general form for an attenuation operator may be written as a convolution integral:
(5) 5'1 = jK( t—1')-wz,t)dr'=E, v,

where K is a kernel which represents the frequency dependence of the attenuation

(Tavakkoli, 1998). From (3) it is ciear that

2

%EAV = gaz-i[{(z,r —-t'W(z,t')dt'= -J:K(:»:,r —r')-;;v(:,r')dr'-—- l:,{ E’

proving the commutation relation.

Lemma 3:

Although the nonlinear operator does not commute with 8/0z, we can define an operator

. ﬁ —a_
© Av= [2c§ J ot

(such that ﬁNv = ./i,,vz ), which commutes with ¢/0z. As this is sufficiently clear, no

proof is provided here. =

We are now in a position to prove relation (3).

Step 1:

A solution to the evolution equation for diffraction and attenuation,
v -

Q) P Lp. v

at plane z+A4z/2, given the initial condition v,=v(x,y,z,1) over plane z may be written as

v =T, 4nv,(2)
Az Ov, A. 6v() +O(A2%)

= +
v()267 802

=2, ()+ S L. vy + o Dy, +0(42)

-

Step 2:
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We may propagate the result from step 1, presuming this result is located at plane z using
a nonlinear propagator. A solution to the evolution equation for nonlinearity
ov AL,

(8) P Lyv=Ayw

an incremental distance Az from the result of step 1 may be given as

V() =Ty oAl pogaeaV(@) = Ty v (2)

dv, Az d'v 3
=v(z)+Az-—+ 2+ O(A-
1{2) = 3 5 (A7)
Az’ v,

=v(2)+ (Az)./i,,,vl2 + —;—2/1,, [v‘ -54_:! +0(Az?)

Now substituting for v, we get:

v,(2) = {vo(z) +%£MV¢ +%ED,AV‘, +0(Az’)}

+4:z ./iN {V;(Z) +V, %:£D+Avn +%z_(l:DoAva)va +0(A:z)}

2 Jvo(:) +££D~n¢va Vj(:) + vo E[':Dm‘(va
Az? - 2 : 2
A e A A
+ Dy, +0(82) +7(LD.,.vo b, +0(az%)
+0(AZ%)

Now collecting terms with common factors Az, Az?, etc, we obtain

; 2

vl(z) = Vo (:) + A::{Ei;v—u + ANV: } + Azz {_Lﬂéd_vﬂ_ + A.VvaLD+Avo + ANVUA.va } + O(A:J)
Step 3:

We may propagate the effects of diffraction and attenuation from the result from step 2,
presuming this result is located at plane z +Az/2. A solution to the evolution equation (7)
for diffraction and absorption given the initial condition defined in step 2 may be written
as

vy(2) = Fud,m/z(r‘v,xraﬁm/:"o) =Ty, 402V

Az ov. Az 3*v (2) 3
= =% —— +0(Az
v,(2) + > % + T 2 (Az%)

2

vi(z)=w,(2) + 'Af‘ipq"z +'A§'f}um"z +0(4z%)
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Substituting for v; and collecting terms with common factors of Az, Az*, etc. we obtain:

v (z)=v, +Az{LDMvo +A v, }

l\»

+Azz{f‘7’—*2ﬂ-"—°+/x vi, v, j}+0(A.)

We are now in a position to compare the result from step 3 with the field profile obtained
from the combined effects of diffraction, nonlinearity, and attenuation. Thus we wish to
compare v; with a solution to the evolution equation

(9) % = [-‘D-n{vo + Aij

a distance Az away from plane z, given the initial profile v(x,y,z,z) accross plane z. We

have:

dv A::l oy,
Fpoan Vo =V, +Az—2 — +0(4Az°
D+A+N Az a~ .7 0_ ( )

3 — -

hd
-

=v, + Az{l‘.,,”,v, + ./:L‘\,v2 }+ %—{ﬁD‘A [l:,,”,v‘7 + /i,, Vv ]+ 2/‘\,,va [f.oﬁvo + /i‘,,v: ]}-i- 0(4Az?)

=v, +Az{f.D,,‘va +A~v2}+ A;- {LDvAvo +L, AV +2Av, L, v, +2A, vo/i‘vvj}
Comparing this expression with the expression for v3;, we find that

 Dpetsera Dy sl peaaeiaV(%:352008) = D gy a V(X5 ¥5 2550) +7O(7Azj)

Thus we have shown that this operator splitting scheme is second order.

End of proof. []

Corollary 1: A second order operator splitting for the KZK equation
The retarded time integral of the KZK equation may be expressed as an evolution

equation (described in equation 3-14 through 3-17) which satisfies the second order
operator splitting theorem proved above.

Proof:

The attenuation operator defined by (3-16), and the diffraction operator (3-14) clearly

commute with the operator 8/3z . The form of nonlinear operator may be redefined as
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the operator /iN described above, proving its commutivity with 8/8z . Any operators

which satisfy an evolution equation (1) and commute with 8/dz are subject to the
second order operator splitting theorems of Tavakkoli et. al. (1998) and the scheme
provided above. Thus these second order operator splitting techniques may be extended

to the KZK equation. C

Corollary 2: The approach ot Christopher and Parker (1991) is equivalent to a first order
operator splitting

Tyl pe V(% ¥,25,8) = gy ac¥(X, ¥, 2,,0) + O(4AZ°)

of the evolution equation (9).

Prooft

Step 1:

A solution to the evolution equation (7) for diffraction and attenuation, at plane z+A=,
given the initial condition v,=v(x,y,z,r) over plane = may be written as

vi(2) =T, 40v,(2)

ov, A..av()

=v (2)+Az—2
S i

+0(4z’)

=v,(2)+Azi, v, %—L";,,Av,w(m’)

Step 2: We may propagate the result from step 1, presuming this result is located at plane
z using a nonlinear propagator. A solution to the nonlinear evolution equation (8) an

incremental distance Az from the result of step 1 may be given as
Vi(2) =Ly oAl pe g se2aV(2)} = Ty o1 (2)

=v,(z)+Azav" A' av
&z 2 &

=v,(2)+(A2)A V] + A;-ZA[ Z}+O(Azs)

+0(AZ*%)

Now substituting for v; we get:
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2 3
v,(z) = {v,, (2)+ 4z, v, +é;—f?wvo + O(A:-:’)}
+Az-A, {vi(z) +v, Azl v, + Az(f.DM% )vc + O(Azl)}
+i‘23—'2/{,v b.(2) + 04"y} A, {2 (2) + 042"}

+0(Az%)

which may be wriiten as
VI(Z) = vg(z) + AZ( D#A.A.vo + A Ve )

+ Azz(-})—LiJnlva + A.’VvoLD¢Ava + A.V (LD*AVO )vo + ANVOAN Vj) + O(AZJ)

We are now in a position to compare with the field profile obtained from the combined
effects of diffraction, nonlinearity, and attenuation. Thus we wish to compare v; with a
solution to the evolution equation (9) a distance Az away from plane z, given the initial
profile v(x,y,z,f) accross plane z. We have:

ov, A.. v
r =v +Az 2+ 0(AZ’
DOJI#N..LV v a- 2 a- ( )

=v, + Az{L-D,Ava +Ayv? }+% {io,d[f,oﬁva + A~v2]+ 24,v, [I:D,,,va + AV ]}+ 0(4Az*)

=V,+AZ{LD+AV +A V' } %i{LD,Avo-hLDMA v +2A vLDM A 2/{ A f}

Comparing this with the expression for v2, we see that the two expressions are valid to

first order, but not to second order. =



Appendix B: The Angular Spectrum Approach for Radially
Symmetric Sources

B.1 Introduction to Approach of Christopher and Parker

Christopher and Parker (1991) have investigated plane to plane diffractive propagation
using the Angular Spectrum approach. Their paper treats the field propagation of planar,
baffled, radially symmetric acoustic sources. Because the sources considered had radial
symmetry, Christopher and Parker showed that a Discrete Hankel Transform (DHT)
could be used to numerically implement the convolution of the source with the
propagator function, 4, described in 4.6. The Hankel transform is equivalent to a 2D-
Fourier transform, when there is radial symmetry. The double integral of the Fourier
transform relation reduces to a single integral with a radial coordinate transformation. As
the name suggests, the discrete Hankel transform is a discrete implementation of the

analytic Hankel transform.

Two approaches have been taken to sampling the propagator functions for numerical
implementation of diffractive propagation. One method is to sample the propagator
function 4 (the point spread function) in the spatial domain. The other is to sample the
transfer function A in the spatial frequency domain. These two approaches may have very

different consequences, which will be discussed after introducing some notation.

B.2 Notation
Consider a disk transducer of radius a, transmitting at a single frequency /. Let us denote

the source field, and point spread functions as s(r) and h(r), respectively, where r is the
radial coordinate. Their analytic transforms will be denoted by S(k;) and H(k)

respectively, where &, is the radial spatial frequency.

The discrete implementation of the angular spectrum method uses sampled versions of s
and h, which may be defined as s {m)=s(r»), and hs{m]=h(r=), where rn, = mAr is the m"
radial point, and Ar is the sampling interval. The distance between samples, Ar, can be

chosen to be less than (A/2), which is the Nyquist rate of the fundamental frequency. The
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extent T of the radial spatial domain, should be chosen such that T is greater than r, + a,
where r, is the extent to which correct results are desired. This choice of T prevents

aliasing in the region of interest 0<r<r,.

We shall denote the discrete Hankel transform (DHT) of s, as Ss, and that of Ay as Ay A
hat '~ and a subscript ‘d” will be used to denote sampling done in the spatial frequency

domain. Frequency domain sampling of , thus gives a sequence

H,li1= H (k).
The inverse discrete Hankel transform of the frequency-sampled transfer function is
denoted by:

h, = IDHT {H,}.

Note that all these discrete sequences defined above can be thought of as implicitly

periodic.

B.3 The Spatially Sampled Convolution (SSC) Algorithm
One approach to numerical implementation of the angular spectrum method, called the

spatially sampled convolution (SSC) algorithm, directly convolves the sequences s, and
hq. We desire the discrete convolution of sequences sq and 44 to approximate the analytic
convolution of the functions s and k. The field profile represented by the analytic
convolution of s and A will of necessity be of infinite extent. Beyond a few source radii in
the lateral direction, the field may very well be nearly zero, however, it will not be
exactly zero. Thus, in using a discrete implementation of the angular spectrum method,
only a finite extent of the field in the observation plane may be calculated. Suppose that
across an observation plane a distance Az away from the disk transducer, we wish to
compute the field profile out to a lateral extent r,. The normal velocity field profile of the
source will have a finite extent of radius a. The analytic point spread function 4, however,
will have an infinite extent, but must be truncated at some point. By ensuring that 4 is
sampled out to a lateral extent of T 2 r, +a, the linear discrete convolution sa*hg will
accurately represent the desired field profile out to 7,. In the region between r, and 7, the

result of the linear convolution may not accurately reflect the true values for the field

profile due to truncation of the infinite-extent point spread function 4.
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It is well known that the circular convolution can be used to implement the linear
convolution of two sequences. The point spread function 4 may be sampled out to extent

ro, then zero padding may be used to pad s¢ and A4 out to extent 7 > r, +a . The DHT of

sq and hy are computed, then their transforms are multiplied together. The inverse DHT of
this product is the circular convolution of s and k4. The circular convolution is

equivalent to the discrete lincar convolution of 54 and k, through the whole extent of the
result (out to 7), and represents the analytic convolution (the true field profile) in the

region of lateral extent out to 7,. The use of zero padding prevents wraparound errors.

Alternatively, # may be sampled out to T 2 r, + a without zero padding (although s+

should be zero padded), and DHT-based circular convolution may be performed on the
resulting sequences. The result of the circular convolution will be equivalent to that of
linear discrete convolution out to r,, while the region r, < r < T will contain a region with
wraparound error. Thus, in either scheme the correct field profile is represented out to r,,

as long as both the source and the point spread functions are adequately sampled.

B.4 The Frequency Sampled Convolution (FSC)
In contrast to the SSC approach, the frequency sampled convolution (FSC) algorithm

samples the transfer function H directly in the spatial frequency domain, and thus
implements the convolution as follows

(1) s * h=IDHT {DHT [s, Ix A},

which is equivalent to circular convolution of the aperature 54 with

(2) h, = IDHT {H,}.

The FSC Algorithm zero pads s out to some spatial extent T 2 r, +a , while sampling

the transfer function A across the entire frequency domain. Although the region r, <r <
T will contain “wraparound errors”, the resulting field given by (1) represents the correct

field profile out to 1o, as long as both the source and the transfer functions are adequately
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sampled. The criterion of adequate sampling is, however, a nontrivial issue as will be

discussed in the following sections.

B.5 Sampling of a spatially limited source
If the source has an abrupt edge, very dense sampling must be used. The farther the

observation plane from the source, the more accurate the computed field profile (based on
the given gridding scheme) will be. Reasonably accurate results may be obtained for
observation planes which are in the farfield of each sampling clement, assuming that an

ideal propagator function is used.

B.6 Sampling the Transfer Function H
Sampling of the propagator function A can also be troublesome. Figs. 1(a)-(d) show the

real part of H as a function of radial spatial frequency k. for different propagation
distances and frequencies. Notice that for large propagation distances, A has an abrupt
change at k, = k, where k=2nf/c is the magnitude of the wave vector. Notice also the
chirp-like behavior of H. The apparent frequency modulation looks like a nonlinear
sweep over a band of frequencies, with the chirp ending in a cusp at k. Beyond &, H
appears to drop off exponentially fast. This evanescent tail is most significant for sub-
wavelength propagation distances, and virtually negligible for larger propagation

distances.
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Figure 1: The real part of the transfer function A for f= IMHz and (a) z=10A (b) z =
100A , and (c) z = A/4.

When using the FSC algorithm for large propagation distances, adequate sampling of A
may be difficult to obtain. Reasonable sampling may be obtained for sub-wavelength
propagation distances, since the cusp at k,=k is less narrow, and the evanescent tail tapers
off more slowly, providing a less abrupt change. Otherwise, sampling of the transfer

function A may be a precarious matter.

Although the FSC algorithm affords the computational shortcut of not having to
transform the point spread function into the spatial frequency domain, it involves perils

associated with aliasing problems.

It was noted earlier that the FSC approach is equivalent to discrete convolution of the
aperature s; with h, = IDHT {H ,}. As Christopher points out, the &, correspond to

samples of an aliased version of the infinite function h. This wraparound phenomenon
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could be physically approximated by propagating the field of point source down a
cylindrical reflecting tube of radius 7.

Wraparound errors associated with /, degrade the accuracy of the FSC - based

convolution. Such aliasing problems are more severe for larger propagation distances and

higher frequencies, as illustrated in Figs. 2(b) and (d).
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Figure 2 (a) shows the normalized magnitude of the point spread function 4 for f=
5MHz, z=10A. (b) illustrates the aliasing and wraparound errors evident in I;d forT=

1.5cm, when the transfer function A is sampled in the spatial frequency domain. The
distribution should reproduce (a), but does so with significant error. (c) shows the
normalized magnitude of the point spread function for f= SMHz and z=100A. (d) shows

that the errors introduced in A , from frequency domain sampling are very severe.

B.7 The SSC Algorithm
In contrast to the FSC algorithm, the SSC algorithm introduces negligible errors due to

aliasing. Finite extent sampling of the relatively smooth point spread function 4 (see Figs.
2(a) and (c)), can be done at moderate sampling rates, while the transform Hy has
virtually no wraparound error. H, corresponds to the infinite extent // wrapping around
itself to produce a finite sequence Hy. If sampling is done at greater than the Nyquist rate
of 2flc, the evanescent tail of H, will be well represented, and because the evanescent tail

exponentially falls off to zero, there will be very little wraparound error in Hy.
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B.8 A Ray Theory Truncation for the FSC Algorithm
Waag et. al. (1985) first presented a ray theory truncation which Christopher and Parker

used to modify their FSC algorithm. It is based on the premise that at distances greater
than A, the field of a point source can be well described by a ray theory (which neglects
any evanescent waves). Consider, as depicted in Fig. 3, a plane a distance z away from a

point source.

Point
Source

emax

point P

Figure 3: Illustration of the coordinate system used in a ray theory
described in this section

According to a ray theory interpretation, the radial spatial frequency, 4,, at point P in the
observation plane, is given, by

3) k,=Q=af/c)sin(®,),

where 6, is the angle between the observation point and the point source, as depicted in
Fig. 3.

We can use this ray theory relation with Huygens principle, by applying it to a collection
of point sources representing a finite source. For a finite extent source of radial extent a,
the angle subtended by the edge of the transducer and the point P may be labeled Ona,, as
depicted in Fig. 4, and given by

@ m(n, )=
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z } a
transducer R >~ To

Omax
ﬁ point P

Figure 4: Coordinates and parameters for a ray theory truncation described in this
section

Ignoring evanescent components, we may say that kmax = & sin(Ome;) is the maximum
spatial frequency in the angular spectrum of the field across plane P. We can modify
H(z,k,) in the spatial frequency domain by doing a truncation, so that / is represented
only out to kpyax = k 5in(Omar). This would not only exclude the evanescent tail of A, but
also the cusp at k. = 2nf/c, and the dense oscillations in the neighbourhood of this cusp.
~ Simultaneously, sampling requirements for both the FSC-and SSC algorithms wouldbe =~ = _

reduced.
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Figure 5: By using a ray theory, H may be truncated at a point where sampling of the
oscillations of H is manageable.

-~ — — — _ B.9 Sampling of H with and without the Ray Theory Truncation
The Nyquist theorem requires that we sample a function at a rate of twice its highest
spectral component. The transfer function H, however, has no finite Nyquist frequency
limit, and thus infinitely dense sampling would be required to accurately represent A.
Fortunately, the Ray Theory introduced in the previous section allows an elegant and
practical way of implementing the FSC algorithm without requiring an infinitesimally
small sampling grid. The truncation of H at a spatial frequency &mq. < 271f7c bypasses the
need to sample the dense oscillations, and cusp surrounding the radiation circle. This

means we can define a finite Nyquist rate for the truncated propagator function A.

To further show how the ray theory truncation surpresses aliasing problems associated
with the FSC algorithm, we prove here a theorem, which we will use as a basis for

sampling in more complicated scenarios in subsequent sections and chapters. Assuming
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that we have no prior knowledge of the Ray Theory Truncation, suppose that we wish to
truncate H at a particular spatial frequency, which we shall call £ps.. We will show by
means of a Taylor series expansion that the optimal choice for £pyqx SO as to suppress

aliasing errors, is the knq, given by the Ray Theory Truncation.

B.10 Sampling Theorem
We want to approximate H(k,,k,;z, |z,) = e V" in the neighbourhood of kmax
by a sinusoid of frequency . We do this by expanding the argument of A in a Taylor

series about kymar. Let g(kr) = Az Jk* — k7 so that from the Taylor series expansion

g =g@+g'@(x-a)+ £ D (ea) o+ D _ay 1k,
Z. n:

we have
glhr) = A..,/k' r—-——- (k -k )+ R,.

Thus around 4kmax,
eJA:Jk'-k: =~ ej(a-ﬁk,)

where

a=Az,/k2_kfm +—k\/.k;’%‘_kA'_-——+R,, and B—-l%\/%

is the desired spectral frequency. Thus in the neighbourhood of &max, / can be
approximated by a sinusoid with ‘frequency’ B. Since this is the highest spectral

component of H, by the Nyquist theorem, we need to sample A at a rate of 2f3:

The number of samples across A is therefore

NZ krl‘l‘ﬂ!
Ak

r

b

which determines the extent of the zero padding required.
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Since Kmax = ksin6, we may note that
B=Aztanb =r, +a

This is just another way of saying that if we require correct resuits (without wraparound

errors) out to r,, we can use the ray theory truncation with the FSC approach.

B.11 Conclusions Regarding the Radially Symmetric FSC and SSC Algorithms
Christopher and Parker concluded that for plane-to-plane diffractive propagation, the

SSC algorithm was to be preferred over the FSC algorithm when no ray theory truncation
was used. They also concluded that modifying the FSC to include a Ray theory truncation
(section B.7) can greatly improve the accuracy of the FSC method, while simultaneously

reducing the computational burden.





